By
 YUN XIE

B.Sc. Peking University, 1983
 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

in
THE FACULTY OF GRADUATE STUDIES (Department of Chemistry)

We accept this thesis as confirming to the required standard

July, 1990
© YUN XIE, 1990

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Chemistry
The University of British Columbia
Vancouver, Canada
Date Aug, 23.90

Abstract

This thesis work resulted from an on-going project in this laboratory focusing on the hydration of olefins, using transition metal complexes as catalysts, with the ultimate aim of achieving catalytic asymmetric hydration, for example:

Initially, the hydration of maleic to malic acid, catalyzed by $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right) 6_{6}^{3+}$ at $100^{\circ} \mathrm{C}$ in aqueous solution was studied, including the kinetic dependences on Cr^{3+}, maleic acid and $\mathrm{pH} . \mathrm{A}$ proposed mechanism involving $1: 1$ complexes of Cr^{3+} with the maleato and malato monoanions is consistent qualitatively with the kinetic data. This Cr system was, however, ineffective for hydration of prochiral olefins, and the work became a minor component of the thesis and is described in the last chapter.

Emphasis was switched to the study of water-soluble phosphine systems based on Pd and Pt . The major part of this thesis describes the synthesis and characterization, principally by ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{195} \mathrm{Pt}\left({ }^{1} \mathrm{H}\right\}$ NMR spectroscopies, of: square-planar complexes of the type $\mathrm{MX}_{2}\left(\mathrm{PPh}_{3-\mathrm{nPy}}^{\mathrm{n}}\right)_{2}(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt} ; \mathrm{X}=$ halides; $\mathrm{n}=1,2,3)$; the binuclear species $\mathrm{M}_{2} \mathrm{X}_{2}(\mu-$ 10 b and $\mathrm{n}=3,10 \mathrm{c})$; and the $\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{py}\right)_{3}, 27 \mathrm{a}$, and $\mathrm{Pt}\left(\mathrm{Ppy}_{3}\right)_{3}, 26 \mathrm{c}$, complexes. The reactivities of the binuclear complexes toward acetylenes, and the $\mathrm{Pt}(0)$ species toward O_{2}, olefins, HCl and MeI, are also described.

With use of PPhpy2 within the binuclear phosphine-bridged species, the P atom incidentally becomes chiral. The diastereomers of $\mathbf{1 0 b}$ were isolated and characterized by ${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data.

All the isolated binuclear complexes react in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with dimethylacetylenedicarboxylate, DMAD, to form an A-frame insertion product. The HH or HT configuration of the precursor is maintained in every case except for 10 b and 10 c which form initially an HHDMAD adduct that slowly isomerizes to the corresponding HT-DMAD adduct. Detailed

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic studies show that the presence of a properly positioned pyridyl group promotes the isomerization by forming a detectable chelated P-N intermediate, and that insertion of DMAD precedes chelation.
 kinetically first-order in both $\left[\mathrm{Pt}_{2}\right]$ and [DMAD] for the insertion step, and first-order in $\left[\mathrm{Pt}_{2}\right]$ and zero-order in [DMAD] for the isomerization step. The activation parameters for the insertion step are consistent with oxidative addition to a binuclear system. A proposed mechanism is fully supported by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data.

Complex 26c, reacts in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or CDCl_{3} with limited oxygen' to give $\mathrm{Pt}(\mathrm{Ppy3})_{3}\left(\mathrm{O}_{2}\right)$, which may contain an end-on superoxo structure as judged by an IR band at $1114 \mathrm{~cm}^{-1}$. Complex 26c, under $1 \mathrm{~atm} \mathrm{O}_{2}$, forms the 'expected' peroxo species $\mathrm{Pt}(\mathrm{Ppy3})_{2} \mathrm{O}_{2}$.

Complexes 26c and 27a, react with the olefins (maleic anhydride, acrylonitrile, methacrylonitrile and crotonitrile) to give the square-planar species $\operatorname{Pt}\left(\mathrm{PPh}_{3-\mathrm{n}} \mathrm{py}_{\mathrm{n}}\right)_{2}\left(\eta^{2}\right.$-olefin). The square-planar geometry infers strong π-back donation from metal to olefin, a state which is probably undesirable for the purpose of olefin activation toward hydration. Indeed, complex $\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{py}\right)_{2}\left(\eta^{2}\right.$-maleic anhydride $), 47 \mathrm{a}$, shows no olefin hydration product when heated at $80^{\circ} \mathrm{C}$ in aqueous NaOH solution.

Trans- $\mathrm{Pt}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PPh}_{2 \mathrm{py}}\right)_{2}$, 50a, was prepared from 27a and gaseous HCl in THF; 50a in acetone- d_{6}, reacts with acrylonitrile to give cis- $\mathrm{PtCl}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)\left(\mathrm{PPh}_{2} \mathrm{py}\right)_{2}$, but in the presence of aqueous NaOH at $80^{\circ} \mathrm{C}, 50$ a was inactive for hydration of acrylonitrile to either β cyanoethanol or acrylamide.

Table of Contents

Page
Abstract ii
Table of contents iv
List of tables x
List of figures xii
List of schemes xvi
Abbreviations and symbols xvii
Acknowledgements xxii
CHAPTER ONE: INTRODUCTION
1.1 Overview of homogeneous catalysis 1
1.2 Objective of this thesis 2
1.3 Alcohol manufacture and synthesis of asymmetric alcohols. 3
1.4 Feasibility of catalytic hydration by transition metal complexes 9
1.4.1 Activation of water 9
1.4.2 Activation of olefins toward nucleophilic attack by hydroxide, and migratory insertion of olefin into an $\mathrm{M}-\mathrm{OH}$ bond. 12
1.4.3 Reductive elimination of alkyl-hydride and alkyl hydroxy moieties 15
1.4.4 Olefin hydration catalyzed by metal phosphine complexes 15
1.4.5 Olefin hydration catalyzed by metal non-phosphine complexes 18
1.4.6 A comparison of catalytic hydrocyanation and hydration of olefins; olefin oxidation via hydration. 19
1.5 Chemistry of pyridylphosphines 21
1.5.1 Developments in syntheses of pyridylphosphines. 21
1.5.2 Coordination chemistry of pyridylphosphines 22
1.5.3 Reactivity of the coordinated pyridylphosphines and catalytic activities of their metal complexes 25
1.6 The scope of this thesis 26
References 28
CHAPTER TWO: GENERAL EXPERIMENTAL PROCEDURES
2.1 Materials 37
2.2 General instrumentation 40
2.3 Preparation of Pd and Pt starting materials 40
2.3.1 Dichlorobis(benzonitrile)-palladium(II) and -platinum(II) 41
2.3.2 Cis-dichloro(1,5-cyclooctadiene)platinum(II) 41
2.3.3 Tris(dibenzylideneacetone)dipalladium(0) 41
2.3.4 Bis(dibenzylideneacetone)platinum(0) 42
2.4 Preparation of 2-pyridylphosphines 42
2.4.1 2-(Diphenylphosphino)pyridine 43
2.4.2 Bis(2-pyridyl)phenylphosphine 43
2.4.3 Tris(2-pyridyl)phosphine 44
2.5 Preparation of $\mathrm{Pt}(\mathrm{II})$ and $\mathrm{Pd}(I I)$ complexes of 2-pyridylphosphines 44
2.5.1 Cis-dihalobis(2-pyridylphosphine)platinum(II) 44
2.5.2 Dihalobis(2-pyridylphosphine)palladium(II) 45
2.6 Preparation of homo- and hetero- dinuclear palladium (I) and platinum(I) complexes of pyridylphosphines 47
2.6.1 Dihalobis(2-pyridylphosphine)diplatinum(I) (head-to-tail, HT) 47
2.6.2 Diiodobis(2-pyridylphosphine)diplatinum(I) (head-to-head, HH) 48
2.6.3 Dihalobis(2-pyridylphosphine)dipalladium(I) (HT) 50
2.6.4 Diahalobis[tri(2-pyridyl)phosphine]palladium(I)platinum(I) (HT) 52
2.7 Preparation of DMAD A-frame adducts. 52
2.8 Preparation of $\operatorname{Pt}(0)$ complexes of pyridylphosphines and their derivatives from reactions with olefin, hydrogen chloride and methyl iodide 53
2.8.1 Tetrakis[tri(2-pyridyl)phosphine]platinum(0) 54
2.8.2 Tris[2-(diphenylphosphino)pyridine]platinum(0) 55
2.8.3 Olefin derivatives from $\mathrm{Pt}(0)$ complexes of pyrdylphosphines 55
2.8.3.1 Acrylonitrile, methacrylonitrile and crotonitrile complexes 55
2.8.3.2 Maleic anhydride and diethyl maleate complexes 56
2.8.4 Hydridochloro derivatives from $\mathrm{Pt}(0)$ complexes of pyridylphosphines 57
2.8.4.1 Trans-chlorohydridobis[(2-diphenylphosphino)pyridine]- platinum(II) 57
2.8.4.2 Attempted preparation of hydridochlorobis[tri(2-pyridyl)- phosphine]platinum(II) 58
2.8.5 Iodo(methyl) derivatives from $\mathrm{Pt}(0)$ complexes of pyridylphosphines 59
2.9 Preparation of bis(maleato) and bis(malato) chromium(III) species 59
2.9.1 Cis-potassium diaquobis(maleato)chromate(III) trihydrate 60
2.9.2 Cis-potassium diaquobis(malato)chromate(III) monohydrate 60
References 61
CHAPTER THREE: STRUCTURES OF M(II) AND M(I) ($\mathrm{M}=\mathrm{Pd}, \mathrm{Pt}$) PYRIDYL- PHOSPHINE COMPLEXES AND THEIR SOLUTION CHEMISTRY
3.1 Introduction 63
3.2 Structural characterization of pyridylphosphine complexes 66
3.2.1 $\mathrm{Pt}(\mathrm{II})$ pyridylphosphine complexes. 66
3.2.2 $\mathrm{Pd}(\mathrm{II})$ pyridylphosphine complexes 69
3.2.3 $\mathrm{Pt}(\mathrm{I})$ dinuclear pyridylphosphine complexes 81
3.2.4 $\mathrm{Pd}(\mathrm{I})$ dinuclear pyridylphosphine complexes 83
3.3 Solution equilibrium of the cis- $\mathrm{PtI}_{2}\left(\mathrm{PN}_{2}\right)_{2}$ complex in CDCl_{3} 96
3.4 Aqueous solution studies 102
3.4.1 Dichlorobis[tri(2-pyridyl)phosphine]dipalladium(I) 102
3.4.2 Cis-dichlorobis[tri(2-pyridyl)phosphine]palladium(II) 105
References 112
CHAPTER FOUR: REACTIVITIES OF THE HEAD-TO-HEAD ISOMERS OF
$\left.\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu \text {-PN })_{2}\right)_{2}$ COMPLEXES TOWARD DIMETHYLACETYLENEDICARBOXYLATE AND TOWARD PHOSPHINE
4.1 Introduction 116
4.2 Experimental 118
4.3 Results and discussion 120
4.3.1 Reactions of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}$ (HT) with acetylenes. 120
4.3.2 Reaction of $\mathrm{P}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HH})$ with DMAD 122
4.3.3 Reaction of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2}(\mathrm{HH})$ with DMAD 132
4.3.4 Reactions of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HH})$ with DMAD 137
4.3.4.1 Reaction of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HH})(1 \mathrm{~S}, 2 \mathrm{R})$ with DMAD 137
4.3.4.2 Reaction of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HH})(1 \mathrm{~S}, 2 \mathrm{~S}) /(1 \mathrm{R}, 2 \mathrm{R})$ mixture with DMAD 140
4.3.4.3 Kinetic studies on the reactions of the diastereomers of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HH})$ with DMAD 141
4.3.5 Mechanism of the reaction of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{n}\right)_{2}(\mathrm{HH})$ with DMAD. 146
4.4 Reaction of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HH})$ with PN_{3} under air in organic solvents 150 159
CHAPTER FIVE: PREPARATIONS AND REACTIVITIES OF PYRIDYLPHOSPHINE PLATINUM(0) COMPLEXES
5.1 Platinum(0) complexes of pyridylphosphines 161
5.1.1 Tetrakis[tris(2-pyridyl)phosphine]platinum(0). 161
5.1.2 Tris[2-(diphenylphosphino)pyridine]platinum(0) 171
5.2 Characterization of olefin complexes of 2-(diphenylphosphino)pyridine and tris(2-pyridyl)phosphine 174
5.2.1 Acrylonitrile, methacrylonitrile and crotonitrile complexes 174
5.2.2 Maleic anhydride and diethyl maleate complexes 178
5.2.3 An ethylene complex 181
5.3 Reactions of $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{3}$ and $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{4}$ with HCl 183
5.3.1 Reaction of $\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{3}$ with HCl 183
5.3.2 Reaction of $\operatorname{Pt}\left(\mathrm{PN}_{3}\right)_{4}$ with HCl 187
5.4 Reaction of $\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{3}$ and $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{4}$ with methyl iodide 188
5.5 Attempted hydration of olefinic compounds using platinum and palladium pyridylphosphine complexes 188
5.5.1 Hydration of acrylonitrile 188
5.5.2 Hydration of maleic acid 190
References 192
CHAPTER SIX: CATALYTIC HYDRATION OF MALEIC ACID BY CHROMIUM(III)
SPECIES
6.1 Kinetic experiments 194
6.2 Results and discussion 197
6.2.1 Spectroscopic properties of $\mathrm{Cr}(\mathrm{III})$ and complexation with maleic and malic acid 197
6.2.2 Kinetic results 201
6.2.2.1 Maleic acid dependence 201
6.2.2.2 Catalyst concentration dependence 204
6.2.2.3 pH dependence 206
6.2.3 Mechanisms 207
6.2.4 Other metal ion catalysts and the hydration of other olefinic carboxylic acids 211
6.3 Conclusion 212
References 214
APPENDICIES
AI Crystallographic data for $\mathrm{Pt}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HT})(1 \mathrm{~S}, 2 \mathrm{~S})$ 216
AII Acid-base titration data for $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ in aqueous solution 219
AIII Kinetics of oxidative addition of DMAD to $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 221
AIV Kinetics of oxidative addition of DMAD to $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HH})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 226
AV Kinetics of isomerization of $\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-\mathrm{DMAD})(\mu-\mathrm{PN})_{2} \cdot(\mathrm{HH})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 229
AVI Kinetics of oxidative addition of DMAD to $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2}(\mathrm{HH})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 232
AVII Kinetics of oxidative addition of DMAD to $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{2}\right) 2(\mathrm{HH})(1 \mathrm{R}, 2 \mathrm{R}) /(1 \mathrm{~S}, 2 \mathrm{~S})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 234
AVIII Kinetics of oxidative addition of DMAD to $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HH})(1 \mathrm{R}, 2 \mathrm{~S})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 237
AIX 1.Calculation of the $\Delta \mathrm{G}^{0}$ and ΔH^{0} values for Eq. 6.1 and the $\Delta \mathrm{G}$ values at different temperatures 239
2. Visible absorption spectral parameters of $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ solutions at various concentrations 239
3.Determination of composition and formation constant of maleato and malato Cr^{3+} aquo complexes in aqueous solution at $100^{\circ} \mathrm{C}$ 240

List of Tables

2.1 Elemental analyses of cis- $\mathrm{PtX}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}$ complexes 44
2.2 Elemental analyses of $\mathrm{PdX}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}$ complexes. 46
2.3 Visible spectral data of $\mathrm{PdX}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}$ complexes 46
2.4 Elemental analyses of $\mathrm{Pt}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{PN}_{n}\right)_{2}$ complexes 48
2.5 Elemental analyses of $\mathrm{Pd}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2}(\mathrm{HT})$ complexes 51
2.6 Visible spectral data of $\mathrm{Pd}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2}$ (HT) complexes. 51
2.7 Elemental analysis of $\mathrm{PtPdX}_{2}(\mu-\mathrm{PN})_{2}(\mathrm{HT})$ complexes 52
2.8 Elemental analyses of DMAD insertion products 53
$3.1{ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ NMR parameters of $\mathrm{PtX} 2\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}$ complexes 67
$3.2{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR parameters of $\mathrm{PdX}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}$ complexes 70
$3.3{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\}$ NMR chemical shifts of $\mathrm{PdX}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}(\mathrm{n}=1$ and $2, \mathrm{X}=\mathrm{I} ; \mathrm{n}=3, \mathrm{X}=\mathrm{Cl})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-2^{\circ} \mathrm{C}$ 77
3.4 Solid state ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data of $\mathrm{PdX}_{2}\left(\mathrm{PN}_{n}\right)_{2}$ at ambient temperature 79
$3.5{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{195} \mathrm{Pt}\left({ }^{1} \mathrm{H}\right\}$ NMR data of $\mathrm{Pt}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2}$ (HT) complexes 85
$3.6{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{n}\right)_{2}(\mathrm{HH})$ complexes 90
$3.7{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Data of $\mathrm{PtPdX}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT})$ complexes. 93
$3.8{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts of $\mathrm{Pd}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2}(\mathrm{HT})$ complexes 95
$3.9{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ data of cis- $\mathrm{PtX}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}$ species in CDCl_{3} 102
3.10 Chemical analyses of $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}\left(\mathrm{OH}_{2}\right)_{2}\right] \mathrm{X}_{2}\left(\mathrm{X}=\mathrm{BF}_{4}, \mathrm{PF}_{6}\right.$ and $\left.\mathrm{BPh}_{4}\right)$ species 103
3.11 IR, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and conductivity data of bis(aquo)dipalladium salts. 103
3.12 Visible spectral data of $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT})$ in different solvents 104
4.1 ${ }^{31} \mathrm{P}\left[{ }^{1} \mathrm{H}\right]$ NMR parameters of DMAD insertion adducts 119
4.2 Kezdy-Swinbourne treatment of the data in Table IV 7 for estimating A_{∞} 125
4.3 First-order analysis of the data in Table AIV 7 by the Guggenheim method. 128
4.4 The observed pseduo first-order rate constants at different [DMAD],
at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 128
4.5 Temperature dependence of rate constants k_{1} and k_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. 129
4.6 Dependence of $\mathrm{k}_{\mathrm{obs}}$ on [DMAD] for reaction of $\left.\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-\mathrm{PN})_{3}\right)_{2}(\mathrm{HT})$ with DMAD, at $18^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 132
4.7 Rate constants of reaction $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}$ (HT) with DMAD at various temperatures in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the activation parameters 132
4.8 Rate constants of reaction 4.3 at various temperatures and the activation parameters. 135
$5.1{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right]$ NMR parameters of compounds $\mathrm{Pt}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}\left(\eta^{2}-\mathrm{ol}\right)(\mathrm{n}=1$, ol $=$ acrylonitrile, methacrylonitrile and crotonitrile; $\mathrm{n}=3$, $\mathrm{ol}=$ acrylonitrile) in CDCl_{3} 175
$5.2{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR parameters of $\mathrm{Pt}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}\left(\eta^{2}-\mathrm{ol}\right)(\mathrm{n}=1$, ol $=$ MA, DEMA and DEFM; $\mathrm{n}=3$, $\mathrm{ol}=\mathrm{MA}$). 179
5.3 Hydration of acrylonitrile catalyzed by Pt and Pd complexes at $80^{\circ} \mathrm{C}$. 189
6.1 ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of control samples 197
6.2 Visible spectral data of some hydration isomers of $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. 198
6.3 Visible spectral parameters of chromium(III) oligomers 199
6.4 Initial rate of the catalytic hydration of maleic acid at various $\left[\mathrm{H}_{2} \mathrm{MA}\right]$ 202
6.5 Catalytic conversion of maleic acid to malic acid and fumaric acid. 203
6.6 Data for Cr^{3+} concentration dependence 205
6.7 pH dependence data 206
6.8 Results of aquation of maleato complexes of Cr^{3+} 209
6.9 Hydration products of maleic acid using diaquo-bis(maleato) and -bis(malato) Cr^{3+} complexes as catalysts 212

List of Figures

Page
2.1 Schematic representation of a spectral cell 39
3.1 Relative energy levels of d-orbitals in different geometries. 64
$3.2{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of cis- $\mathrm{PI}_{2}\left(\mathrm{PN}_{2}\right)_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-50^{\circ} \mathrm{C}$ 68
3.3 Infrared spectrum of the phosphine ligand PN_{3} in Nujol. 72
3.4 Infrared spectra of cis $-\mathrm{PtCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ and cis- $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ on Nujol 73
$3.5{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of cis- $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$, trans- $\mathrm{PdI}_{2}\left(\mathrm{PN}_{1}\right)_{2}$ and trans- $\mathrm{PdI}_{2}\left(\mathrm{PN}_{2}\right)_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$. 76
3.6 Solid-state ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{1}\right)_{2}$ at r.t. 78
3.7 Solid-state ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathrm{PtCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ and $\mathrm{PdX}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$) at r.t. 80
3.8 The isotopomers of a $\mathrm{Pt}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2}(\mathrm{HT})$ type compound 81
$3.9{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathrm{Pt}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT})$ in CDCl_{3} at r.t. 83
3.10 ${ }^{31} \mathrm{P}\left[{ }^{1} \mathrm{H}\right]$ NMR spectrum of the diastereomers of $\mathrm{Pt}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}$ in CDCl_{3} at r.t. 84
3.11 3D structure of $\mathrm{Pt}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}$ (HT) (1S, 2S) 87
3.12 The isotopomers of a $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2}(\mathrm{HH})$ type compound 88
$3.13{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{195} \mathrm{Pt}\left({ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-\mathrm{PN})_{2}(\mathrm{HH})$ in CDCl_{3} at r.t. 89
$3.14{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the mixture of diastereomers of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HH})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at r.t. 91
$3.15{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the separated diastereomers of $\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-\mathrm{PN})_{2}(\mathrm{HH})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at different temperatures 92
$3.16{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{PtPdCl}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT})$ in CDCl_{3} at r.t. 94
3.17 Variable temperature ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HT})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ 97
3.18 Variable temperature ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectra of $\mathrm{Pd}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HT})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ 98
3.19 Low temperature ${ }^{31} \mathrm{P}\left[{ }^{1} \mathrm{H}\right]$ NMR spectra of cis- $\mathrm{PtI}_{2}\left(\mathrm{PN}_{2}\right)_{2}$ in CDCl_{3} 99
$3.20{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction product $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{2}(\mathrm{~S})^{2+}(\mathrm{S}=$ solvent $)$, formed in situ from cis- $\mathrm{PtCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ and AgNO_{3} in $\mathrm{CH}_{3} \mathrm{CN}$ 101
3.21 The pH -titration curves of $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT})$ in $25.0 \mathrm{~mL} \mathrm{HNO}_{3}$ solution. 105
3.22 The pH -titration curves of $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ in $10.0 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ 106
$3.23{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ in $\mathrm{D}_{2} \mathrm{O}$ at r.t 107
3.24 The pH-titration curves of $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ in 25.0 mL HNO 3 solution 110
3.25 Infrared spectrum of $\left[\operatorname{Pd}\left(\mathrm{PN}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{OH})\right]\left(\mathrm{PF}_{6}\right)$ in Nujol at r.t. 111
4.1 ORTEP drawing of $\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{DMAD})\left(\mu-\mathrm{PN}_{3}\right)_{2}$ 117
$4.2{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-\mathrm{DMAD})(\mu-\mathrm{PN})_{2}(\mathrm{HT})$ in CDCl_{3} at r.t. 121
$4.3{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-\mathrm{MPP})\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT})$ in CDCl_{3} at r.t. 121
4.4 (a) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the $\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-\mathrm{DMAD})\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HH})$ intermediate in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at r.t.; (b) ${ }^{195} \mathrm{Pt}\left\{{ }^{l} \mathrm{H}\right\} \mathrm{NMR}$ of the intermediate in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$; (c) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the same sample taken 20 h after spectrum (b) was taken 123
4.5 The observed changes in visible spectra for reaction 4.1 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ 124
4.6 Pseudo first-order rate plot for the DMAD binding step of reaction 4.1 at $25^{\circ} \mathrm{C}$. 126
4.7 Estimation of the A_{∞} value by Kezdy-Swinbourne method. 127
4.8 The Guggenheim treatment to give $\mathrm{k}_{\mathrm{obs}}$ 127
4.9 Pseudo first-order rate plot for the isomerization step of reaction 4.1 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ 130
4.10 Eyring plots for the rate constants of step 1 and step 2 of reaction 4.1 130
4.11 The spectral changes for reaction 4.2 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $21^{\circ} \mathrm{C}$. 131
4.12 Pseudo first-order rate plot for reaction 4.2 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $18^{\circ} \mathrm{C}$. 133
4.13 The Eyring plot for reaction 4.2 133
$4.14{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{195} \mathrm{Pt}^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-\mathrm{DMAD})(\mu-\mathrm{PN})_{2}(\mathrm{HH})$ in CDCl_{3} at r.t. 134
4.15 Pseudo first-order rate plots for reaction 4.3 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ 146
4.16 The Eyring plot of the rate constants of reaction 4.3. 146
$4.17{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra for the products of reactions 4.4 and 4.5 in CDCl_{3} at r.t. 139
4.18 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra for the products of reactions 4.6 and 4.7 in CDCl_{3} at r.t. 142
4.19 The spectral changes for reactions 4.4 and 4.5 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ 144
4.20 Pseudo first-order rate plot for reactions 4.4 and 4.5 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ${ }^{25}{ }^{\circ} \mathrm{C}$ 144
$4.21{ }^{31} \mathrm{P}$ NMR spectra of the diastereomeric mixture of $\mathrm{Pd}_{2} \mathrm{I}_{2}(\mu-\mathrm{DMAD})\left(\mu-\mathrm{PN}_{2}\right)_{2}$ and $\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-\mathrm{DMAD})\left(\mu-\mathrm{PN}_{2}\right)_{2}$ in CDCl_{3} at r.t. 145
4.22 Pseudo first-order rate plot for reactions 4.6 and 4.7 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ${ }^{2} 0^{\circ} \mathrm{C}$. 147
4.23 The Eyring plot for the rate constants of reaction 4.6 and 4.7 147
4.24 Reaction of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}$ in air with one equivalent of PN_{3}, as followed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy in CDCl_{3} at r.t. 152
$4.25{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of in situ formed $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}\left(\mathrm{PN}_{3}\right)_{2}$ in CDCl_{3} at r.t. 155
4.26 The gradual dissociation and isomerization of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}\left(\mathrm{PN}_{3}\right)_{2}$ in CDCl_{3} in air to the final product $\mathrm{P}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT})$, as followed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. 156
$4.27{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}\left(\mathrm{PN}_{3}\right)_{2}\right]\left(\mathrm{BPh}_{4}\right)_{2}$ in acetone- d_{6} at r.t. 158
5.1 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of isolated $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{4}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at various temperatures 163
$5.2{ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{4}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-45^{\circ} \mathrm{C}$. 163
$5.3{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, recorded in CDCl_{3} at $-45^{\circ} \mathrm{C}$, of a freshly isolated but unpurified " $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{4}$ " sample by $\mathrm{N}_{2} \mathrm{H}_{4}$ reduction of cis- $\mathrm{PtCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ in the absence of extra PN_{3} ligand 165
5.4 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum, recorded at $-10^{\circ} \mathrm{C}$, of the same sample of Fig. 5.3, after 48 h in CDCl_{3} at $-20^{\circ} \mathrm{C}$. 165
5.5 Infrared spectrum of $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{3} \mathrm{O}_{2}$ in Nujol at r.t. 168
$5.6{ }^{31} \mathrm{P}\left[{ }^{1} \mathrm{H}\right] \mathrm{NMR}$ spectrum in CDCl_{3} at r.t. of an in situ reaction product formed from $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{4}$ with pure oxygen gas 168
5.7 (a) Infrared spectrum of solvent CDCl_{3}; (b) infrared spectrum of $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{2} \mathrm{O}_{2}$ in CDCl_{3} at r.t. 169
$5.8{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, recorded at $-50^{\circ} \mathrm{C}$, of $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{4}$ in toluene $-\mathrm{d}_{8}$ after a week at $-20^{\circ} \mathrm{C}$ 170
$5.9{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Pt}\left(\mathrm{PN}_{1}\right) 3$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-50^{\circ} \mathrm{C}$. 172
$5.10{ }^{195} \mathrm{Pt}\left({ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{3}$ in CDCl_{3} at $-45{ }^{\circ} \mathrm{C}$ 172
5.11 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of the in situ formed $\mathrm{Pt}\left(\mathrm{PN}_{1}\right) 4$ in CDCl_{3} at $-45^{\circ} \mathrm{C}$. 172
5.12 Decomposition of $\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{3}$ in CDCl_{3} after 48 h at $-20^{\circ} \mathrm{C}$, as shown by the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($\mathrm{CDCl}_{3},-20^{\circ} \mathrm{C}$) 173
$5.13{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CHCN}\right)$ in CDCl_{3} at ${ }^{25}{ }^{\circ} \mathrm{C}$ 175
$514{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CN}\right)$ in CDCl_{3} at various temperatures 176
$5.15{ }^{31} \mathrm{P}\left[{ }^{1} \mathrm{H}\right]$ NMR spectrum of $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}\left(\eta^{2}-\left(\mathrm{CH}_{3}\right) \mathrm{CHCHCN}\right)$ in CDCl_{3} at $250^{\circ} \mathrm{C}$ 177
$5.16{ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra of $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}(\mathrm{MA})$ in CDCl_{3} at r.t. 179
$5.17{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of complexes $\mathrm{Pt}(\mathrm{PN})_{2}(\mathrm{DEMA})$ and $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}(\mathrm{DEFM})$ in CDCl_{3} 180
$5.18{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, recorded at $-85^{\circ} \mathrm{C}$ in toluene- d 8 , of the $\mathrm{Pt}(0)$ ethylene adduct $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ formed in situ at r.t. 182
$5.19{ }^{1} \mathrm{H}$ NMR spectrum of trans $-\mathrm{Pt}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PN}_{1}\right)_{2}$ in CDCl_{3} at r.t. 184
$5.20{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of trans $-\mathrm{Pt}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PN}_{1}\right)_{2}$ in CDCl_{3} at r.t. 184
5.21 ${ }^{1} \mathrm{H}$ NMR spectrum of the in situ mixture of trans- $\mathrm{Pt}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PN}_{1}\right)_{2}$ and cis $-\mathrm{PtCl}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)\left(\mathrm{PN}_{1}\right)_{2}$ after 1 h in CDCl_{3} at r.t. 190
$5.22{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of in situ, fully formed cis $-\mathrm{PtCl}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)\left(\mathrm{PN}_{1}\right)_{2}$ in CDCl_{3} 190
5.23 Infrared spectrum of $\mathrm{HPtCl}\left(\mathrm{PN}_{3}\right)_{2}$ " in Nujol at r.t. 191
6.1 A typical ${ }^{1} \mathrm{H}$ NMR spectrum of the hydration product mixture containing maleic, malic and fumaric acid in acetone- d_{6} at r.t. 196
6.2 The UV/vis absorption spectrum, recorded at $25^{\circ} \mathrm{C}$, of $\mathrm{Cr}(\mathrm{HMA})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}{ }^{2+}$ in $\mathrm{H}_{2} \mathrm{O}$. 200
6.3 The UV/vis absorption spectrum, recorded at $25^{\circ} \mathrm{C}$, of $\mathrm{Cr}(\mathrm{Hmal})\left(\mathrm{H}_{2} \mathrm{O}\right) 5^{2+}$ in $\mathrm{H}_{2} \mathrm{O}$ 200
6.4 Plot of $\Delta\left[\mathrm{H}_{2} \mathrm{MA}\right] / \Delta t$ vs. $\left[\mathrm{H}_{2} \mathrm{MA}\right]$, at the initial stage of the reaction 202
6.5 Plot of $\ln \left[\mathrm{H}_{2} \mathrm{MA}\right]$ vs. t 204
6.6 Initial rate of loss of maleic acid as a function of [Cr] 205
6.7 Conversion of maleic acid after 10 h as a function of pH 207

List of Schemes

Page
1.1 Major processes in industrial alcohol production 4
1.2 Regioselective synthesis of alcohol via hydroboration of alkene 5
1.3 Asymmetric synthesis of an alcohol via a chiral borane 5
1.4 Acohol formation via mercuration of alkene 5
1.5 Asymmetric synthesis of alcohol via a carboxylate complex of Hg (II) 6
1.6 Hydrosilylation of a prochiral ketone catalyzed by a Rh complex 7
1.7 Mechanism of hydrosilylation of a ketone 8
1.8 Examples of enzyme-catalyzed hydration of biologically important olefins. 8
1.9 Possible mechanistic pathways in catalytic hydration using a platinum metal complex. 10
1.10 Interaction between metal and olefin 13
1.11 Possible reactions for a coordinated olefin with nucleophile 13
1.12 The proposed mechanism for catalytic hydration of fluoroethylene by Ru^{2+}. 19
1.13 Synthetic route for 2-pyridylphosphine via lithiopyridine 21
1.14 Possible coordination modes of pyridylphosphines to transition metals 23
3.1 The equilibria between the species possibly present in CDCl_{3} for cis- $\mathrm{PtI}_{2}\left(\mathrm{PN}_{2}\right)_{2} \ldots$ 100
3.2 Solution behaviour of the palladium(II) bisaquo species 108
4.1 Expected isomerization products based on a concerted pathway involving phosphorus migration and nitrogen coordination 147
4.2 The proposed mechanism for the oxidative addition of DMAD to $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{n}\right)_{2}(\mathrm{HH})$ and the subsequent isomerization 149
4.3 Schematic presentation of the isomerization reaction promoted by one equivalent of PN_{3} 153
4.4 Schematic diagram of possible reaction pathway with excess PN_{3} 157
6.1 The plausible mechanism of maleic acid hydration catalyzed by the Cr^{3+} aquo ion. 209

ABBREVIATIONS AND SYMBOLS

The following list of abbreviations and symbols will be employed in this thesis.
$\AA \quad$ Ångstrom (s) (10^{-10} metre)
A absorbance
Ar aryl
aq. aqueous
anal. calcd. analysis calculated
atm atmosphere ($1 \mathrm{~atm}=760 \mathrm{mmHg}$)
br broad, in NMR spectroscopy
${ }^{n} \mathrm{Bu} \quad$ normal butyl
BINAP 2,2'-bis(diphenylphosphino)-1,1'-dinaphthyl
BPPM (2S,4S)-N-(tert-butoxycarbonyl)-4-(diphenylphosphino)-2-
[(diphenylphosphino)-methyl]pyrrolidine
BPPFOH $\quad 1-[(\mathrm{s})-1$ 12-(diphenylphosphino)ferrocenyl]ethanol
BMPP benzylmethylphenylphosphine
Ch. chapter
OOD 1,5-cyclooctadiene
$\mathrm{cm} \quad$ centimetre
conc. concentration
${ }^{\circ} \mathrm{C} \quad$ degree Celsius
${ }^{13} \mathrm{C} \quad$ carbon- 13 isotope
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad$ proton broad band decoupled carbon-13 NMR spectroscopy
CAMP cyclohexylanisolylmethylphosphine
Cy cyclohexyl
CP cross polarization in solid state NMR spectroscopy
d doublet, in NMR spectroscopy

dba	dibenzylideneacetone
DMAD	dimethylacetylenedicarboxylate, $\left(\mathrm{CH}_{3} \mathrm{OOCC}=\mathrm{CCOOCH}_{3}\right)$
DEFM	diethylfumarate, (trans- $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OOCCH}=\mathrm{CHCOOC} 2 \mathrm{H}_{5}$)
DEMA	diethylmaleate, (cis- $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OOCCH}=\mathrm{CHCOOC}_{2} \mathrm{H}_{5}$)
dppm	bis(diphenylphosphino)methane
dmpm	(dimethylphosphino)methane
DMA.HCl	$\mathrm{N}, \mathrm{N}^{\prime}$-dimethylacetamide hydrochloride
DIOP	4,5-bis[(diphenylphosphino)methyl]-2,2-dimethyl-1,3-dioxolane
e.e	enantiomeric excess
e.u.	entropy unit, cal $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$
en	ethylenediamine
equiv.	equivalent
Eq.	equation
Et	ethyl ($\mathrm{C}_{2} \mathrm{H}_{5}$-)
$\mathrm{Et}_{2} \mathrm{O}$	diethyl ether
FT	Fourier transform
FA	fumarate dianion
Fig.	figure
g	gram (s)
GC	gas chromatography
HH	head-to-head
HT	head-to-tail
$\mathrm{H}_{2} \mathrm{MA}$	maleic acid
HMA	maleate monoanion
$\mathrm{H}_{2} \mathrm{FA}$	fumaric acid
HFA	fumarate monoanion
$\mathrm{H}_{2} \mathrm{mal}$	malic acid
Hmal	malate monoanion

h	hour (s)
HEDTA	trianion of ethylenediaminetetraacetic acid
Hz	Hertz, cycles per second
ΔH^{\ddagger}	activation enthalpy
IR	infrared spectroscopy
J	coupling constant
k	rate constant
K	equilibrium constant
$\mathrm{k}_{\text {obs }}$	observed rate constant
Kcal	kilocalories
OK	degree Kelvin
lit.	literature
L	ligand, litre(s)
\ln	natural logarithm
MA	maleate dianion, or maleic anhydride
mal	malate dianion
M	metal, or molarity (moles per liter)
m.p.	melting point
m	multiplet, in NMR spectroscopy
mg	milligram(s)
mL	milliliter(s)
mmol	millimole(s)
Me	methyl (CH_{3}-)
MCPBA	m-chloroperbenzoic acid
min	minute(s)
MAS	magic angle spinning in solid state NMR spectroscopy
MPP	methyl propiolate, $\mathrm{MeOOCC} \cong \mathrm{CH}$
nm	nanometre(s)

NMR	nuclear magnetic resonance spectroscopy
ol	olefin
${ }^{31} \mathrm{P}$	phosphorus-31 isotope
${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$	proton broad band decoupled phosphorus NMR spectroscopy
${ }^{195} \mathrm{Pt}$	platinum-195 isotope
${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$	proton broad band decoupled platinum NMR spectroscopy
Ph	phenyl ($\mathrm{C}_{6} \mathrm{H}_{5}$-)
i-Pr	iso-propyl
ppm	parts per million
PPh3	triphenylphosphine
PR_{3}	trialkylphosphine
py	pyridine
PN_{1}	2-(diphenylphosphino)pyridine, $\mathrm{PPh}_{2} \mathrm{py}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$
PN_{2}	bis(2-pyridyl)phenylphosphine, $\mathrm{PPhpy}_{2}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{2}$
PN_{3}	tris(2-pyridyl)phosphine, $\mathrm{Ppy}_{3}, \mathrm{P}\left(2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{3}$
PN_{n}	(2-pyridyl)phosphines
q	quartet, in NMR spectroscopy
ref.	reference
RLi	organolithium
RMgX	Grignard reagent
r.t.	room temperature
r.d.s	rate determining step
sh	shoulder in UV/visible spectroscopy
Sect.	section
ΔS^{\prime}	activation entropy
s	second
t	time, triplet in NMR spectroscopy
temp.	temperature

THF	tetrahydrofuran
TLC	thin layer chromatography
TMS	tetramethylsilane
TCNE	tetracyanoethylene
UV/vis	ultra-violet/visible spectroscopy
λ	wavelength, in nm
μ	bridging coordination mode
ν	wavenumber in infrared $\left(\mathrm{cm}^{-1}\right)$
ε	extinction coefficient, $\mathrm{M}^{-1} \mathrm{~cm}^{-1} ;$ or dielectric constant
Λ_{M}	equivalent molar conductivity $\left(\Omega^{-1} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}\right)$
η	hapticity
[]	concentration
$\left\{{ }^{1} \mathrm{H}\right\}$	proton broad band decoupled

ACKNOWLEDGEMENTS

I wish to thank Professor B. R. James for his guidance and encouragement throughout the preparation of this thesis. I would also like to thank the members of this group for their helpful comments and discussions. Sincere gratitude is due to my husband, Gang, whose encouragement and understanding were a constant support throughout the work.

The CGP Award (1984-1985) from the State Education Commission of the People's Republic of China is also acknowledged.

Chapter 1

Introduction

1.1. Overview of homogeneous catalysis

Advances in the field of homogeneous catalysis have been particularly impressive since the discovery of the potent alkene hydrogenation catalyst, $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$, by Wilkinson's group in 1965. In spite of the problems in separating the product from the catalyst, homogeneous catalysts are utilized in many important industrial processes, including the Wacker process (oxidation of olefin to aldehyde or ketone), the Oxo process (hydroformylation of olefin), the Monsanto process (carbonylation of methanol), and the Ziegler process (olefin polymerization). 1-5 Growing interests in industrial application of homogeneously catalyzed processes have stimulated research in the area called heterogenization of homogeneous catalysts. The approaches toward heterogenization, which are currently under active study, include direct immobilization of homogeneous catalysts on inert supports and application of phase transfer catalysts. In the former approach, the catalyst is attached to an insoluble support (including inorganic supports, such as silica and zeolites, and organic supports, such as organic polymers). In the second approach, a tetraalkylammonium salt, such as benzyltriethylammonium chloride, is used to transport the catalyst to the organic phase and to keep the catalyst in the aqueous phase when the reaction is complete. By either of these approaches, the major disadvantage of product separation in homogeneous catalysis is compensated by the advantages of heterogeneous catalysis. A new generation of catalysts - heterogenized homogeneous catalysts - could have a much wider industrial application and represent a revolutionary progress in the field of catalysis. 6-10

The field of homogeneous catalysis ranges from simple acid-base catalysis to more complicated enzyme catalysis. In this thesis, transition metal catalysts are of interest. The principal reasons why transition metals contribute the essential ingredient in a wide range of catalyst systems are: the bonding ability of transition metal to a catholic choice of ligands, the variability of oxidation states accessible by the transition metals, and the variability of
coordination sites accessible by the ligands. Delicate combinations of ligand steric and electronic effects influence strongly the structure and reactivity of the catalytically active species. Most reactions in homogeneous catalysis using transition metal complexes can be described by virtue of fundamental reactions of coordination and organometallic chemistry. These reactions, including ligand substitution, oxidative addition, reductive elimination and migratory insertion, occur in a logical sequence bringing about the necessary transformation in a catalytic cycle. Each species in the catalytic cycle obeys, in general, the sixteen- or eighteen-electron rule. These species may not all be detected by spectroscopic methods; however, characterization of the detected species often provides valuable information on the mechanism involved. Knowledge of catalytic mechanism is very essential because it will serve as a guide for tailoring a catalyst intentionally to meet the special need of more sophisticated organic synthesis in the research laboratory as well as in the fine chemical industry. ${ }^{3}$

1.2. Objective of this thesis

As one interest of our group is in bleaching and delignification chemistry of pulp, we became aware of the need for developing new chemistry for the bleaching of high-yield pulp (i.e. containing a large amount of lignin fragment* from chemical pulping) because current Cl_{2} bleaching processes raise concern in the environment as a result of the formation of toxic chloro-organic materials, and because the sulfite-bleached pulp is prone to re-oxidation by air which leads to yellowingt. ${ }^{11-15}$ It is certainly of interest to study what olefin hydration would do in regard to reduction of the chromophoric group. If the hydration of the $\mathrm{C}=\mathrm{C}$ bond could be

[^0]†Origin of color: (1) formation of carbonyl-olefinic double bond conjugation; (2) formation of alkali metal complex with chromophoric and auxochromic groups which are the products of oxidation of the phenolic group (ref. 11). The principal objective of pulp bleaching is the reduction or removal of the color constituents (ref. 16).
done catalytically, the chemistry could be useful for the utilization of lignin rich pulp in the paper making industry.

When this work began in 1985, there had been examples in the literature of olefin hydration to give alcohols catalyzed in solution by both non-phosphine or phosphine transition metal complexes. A few examples are presented here, while a more comprehensive coverage is given in Sect. 1.4. Chromium trichloride hexahydrate $\left(\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right)$ activates hydration of maleic acid at $170^{\circ} \mathrm{C} .{ }^{17}$ Several α, β-unsaturated nitriles were hydrated using platinum phosphine catalysts in a side-reaction during nitrile hydration to the amide. ${ }^{18-20}$ Addition of water to non-activated $\mathrm{C}=\mathrm{C}$ bonds in 1,3 -dienes was catalyzed by a palladium(0) triphenylphosphine complex in the presence of $\mathrm{CO}_{2} .{ }^{21}, 22$ Jensen and Trogler later claimed successful direct hydration of the $\mathrm{C}=\mathrm{C}$ bond in both simple olefins and in α, β-unsaturated nitriles catalyzed by trans $-\mathrm{Pt}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PMe}_{3}\right)_{2},{ }^{23}$ although the reproducibility remains controversial. ${ }^{24}$

The initial objective of this thesis work was to realize catalytic hydration of olefins, particularly activated ones such as fumaric acid, by either non-phosphine or phosphine transition metal complexes. Limited success with some non-phosphine aquo metal ions (Ch. 6) led to the exploration of several pyridylphosphine palladium and platinum complexes (Ch. 3, 4, 5), and indeed the syntheses and characterizations of these pyridylphosphine complexes form the major part of this thesis. Their potential as hydration catalysts of olefins was investigated.

1.3. Alcohol manufacture and synthesis of asymmetric alcohols

Current industrial alcohol manufacturing is largely based on the Oxo process and the aldol process, using ethylene or propene as feedstocks; these processes are catalyzed homogeneously by organometallic complexes. 25 The Oxo process produces straight chain alcohol, while the aldol process gives branched alcohol.

Oxo process:

Aldol process:

Scheme 1.1. Major processes in industrial alcohol production (ref.25).

Another industrial synthesis of an aliphatic alcohol directly from olefin is via hydration catalyzed by solid phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ in the vapour phase, the process requiring severe reaction conditions; 26,27 the corrosion of the reactor, and deactivation of catalyst due to elimination of phosphoric acid during operation, have limited the application of the methods. Research developments in catalytic hydration of olefins on ion-exchanged zeolites (including exchange with metal ions and proton) under mild operating conditions are currently under active investigation by many researchers worldwide and provide a promising alternative to the direct hydration. 28-37

In laboratory organic syntheses, the hydroxyl group can be introduced by either hydroboration or mercuration of alkenes. ${ }^{38,39}$ The anti-Markovnikov alcohol is formed from hydroboration of alkene followed by oxidation of the alkylborane intermediate, as illustrated below:

Scheme 1.2. Regioselective synthesis of alcohol via hydroboration of alkene.

The addition of diborane to alkene is rapid and quantitative, while oxidation of alkylborane gives highly regioselective alcohol with the OH situated on the less hindered carbon atom. Use of a modified chiral borane, such as a pinene derivative, gives for example 67-70\% e.e of exonorborneol from norbornene after the oxidation: 39,40

Scheme 1.3. Asymmetric synthesis of an alcohol via a chiral borane (ref.40). The example for asymmetric synthesis of 2-butanol from cis-butene given in ref. 40 appears to be erroneous.

As an alternative to acid-catalyzed hydration of olefins in solution, mercuration of the alkene, followed by sodium borohydride reduction of the intermediate hydroxyalkyl mercuric salt, produces the Markovnikov alcohol with the OH group on the more sterically hindered carbon atom (Scheme 1.4). ${ }^{38}$ Asymmetric synthesis of an alcohol using modified mercuric salts is less successful, a tartaric acid complex of mercury(II) giving about 32% e.e in hydration of styrene (Scheme 1.5). ${ }^{41}$

Scheme 1.4. Alcohol formation via mercuration of alkene.

Scheme 1.5. Asymmetric synthesis of alcohol via a carboxylate complex of $\mathrm{Hg}(\mathrm{II})$ (ref. 41).

Unfortunately, both the hydroboration and mercuration reactions are stoichiometric and have limited uses in laboratory synthesis, and they are not suitable for industrial scale synthesis. Because of the importance of chiral alcohols in the fine chemical industry, as well as in laboratory synthesis of chiral alcohol ligands for asymmetric induction, ${ }^{42}$ asymmetric synthesis of alcohols has been pursued by many research groups using catalytic hydrogenation of ketones ${ }^{43-51}$ or catalytic hydrosilylation of ketones followed by hydrolysis. ${ }^{52-58}$ Chiral alcohol synthesis with 50% e.e from a prochiral olefin has also been realized via catalytic hydrosilylation of the olefin, followed by stoichiometric oxidation by MCPBA, using dichloro[(R)-N,N-dimethyl-1-[(S)-2(diphenylphosphino)ferrocenyllethylamine]palladium(II) as the hydrosilylation catalyst. 59

Homogeneous asymmetric hydrogenation of ketones has generally been less fruitful than for the olefinic substrates in terms of enantiomeric excess and the predictability of product configuration. The optical yields of the alcohol products normally range from 5~40\% normally; a few ketones that are reduced with over 80% e.e. have a second functionality, such as keto or hydroxyl, at the α or β position capable of interacting with the metal centre, although the chelation has not yet been substantiated during the course of hydrogenation. The best homogeneous catalysts 60 are complexes of rhodium with 1-[(S)-1'2-(diphenylphosphino)ferrocenyl]ethanol (BPPFOH), ${ }^{49}$ 4,5-bis[(diphenylphosphino)methyl]-2,2-dimethyl-1,3-dioxolane (DIOP), ${ }^{50}$ and (2S,4S)-N-(tert-butoxycarbonyl)-4-(diphenylphosphino)-2-[(diphenylphosphino)methyl]pyrolidine (BPPM), ${ }^{51}$ and of ruthenium with 2,2'-bis(diphenylphosphino)-1, 1^{1} dinaphthyl (BINAP). ${ }^{43}$ The understanding of specific catalyst-substrate interactions which give rise to the high enantioselectivity is far from clear. On the other hand, asymmetric reduction of ketone via initial hydrosilylation is better understood. Although $\mathrm{PtL}^{*} \mathrm{Cl}_{2}[\mathrm{~L} *=$ benzylmethyl-
phenylphosphine, (+)BMPP] was the first catalyst reported to catalyze hydrosilylation of ketonic substrates, ${ }^{52}$ rhodium is again found to be the most effective metal, giving higher conversion and asymmetric induction. The optical yield for hydrosilylation of simple ketones is, in general, higher than for the corresponding hydrogenation reaction. The results from many studies show that the steric requirements for a match of the chiral ligand, hydrosilane and ketone are of critical importance for success of the asymmetric induction (Scheme 1.6).

$$
\text { (R, } 56 \% \text { e.e) }
$$

Scheme1.6. Hydrosilylation of a prochiral ketone catalyzed by a Rh complex, $\mathrm{S}=$ solvent (ref.58); the importance of matching the ligand, hydrosilane and ketone is demonstrated by the fact that a change of phenyl to ethyl group on the hydrosilane results in a change of the absolute configuration of the major optical isomer.

The catalytic cycle for the asymmetric hydrosilylation of prochiral ketones using Rh complexes involves four basic steps (Scheme 1.7): (a) oxidative addition of hydrosilane to the metal centre, (b) coordination of ketone, (c) insertion of carbonyl into the Si-M bond to form an α-siloxyalkylrhodium hydride, and (d) reductive elimination of the optically active silyl ether. 58,61 As the stereorelationship of ligand, silane and ketone has become clearer, the enantiomeric excesses have improved; the highest e.e of 97.6% was achieved in the hydrosilylation of acetophenone using a rhodium diamine complex. 55

The rapid developments in catalytic reduction of ketones via hydrogenation or hydrosilylation have perhaps led to an impediment in research on olefin hydration. Further, despite the great amount of work done in the hydrogenation/hydrosilylation areas, the results are still lacking in certain aspects - the rates for ketone reduction are much slower than those for

Scheme 1.7. Mechanism of hydrosilylation of a ketone; $S=$ solvent, ${ }^{*} \mathrm{~L}_{2}=$ a chiral, bidentate ligand (modified from ref. 61).
olefins, and the number of ketones which give a high optical yield is far smaller than that of olefins. $42,43,47,48,60,61$ Direct catalytic hydration of olefins, using transition metal complexes, leading to asymmetric synthesis of alcohols is still well worth pursuing.

The only systems, which effect asymmetric hydration of olefins directly, are those of a biologically active enzyme, such as fumarase, aconitase and enoyl-CoA-hydratase (Scheme 1.8). ${ }^{63}$ Specific substrate-enzyme interactions, are believed to play key role in these systems, although the detailed mechanisms of these hydration processes are not well understood. ${ }^{63}$ The aconitase system is iron-dependent. ${ }^{63}$

Scheme 1.8. Examples of enzyme-catalyzed hydration of biologically important olefins.

1.4. Feasibility of catalytic hydration by transition metal complexes

Hydration of olefins is a thermodynamically favourable process ${ }^{64}$ and, in principle, transition metal complexes capable of activating water and/or olefin can catalyze the conversion of olefin to alcohol. 65 Three possible catalytic cycles will be dealt with: the first one (Scheme 1.9a) involves oxidative addition of water by a low valent metal complex, followed by coordination of olefin and then its insertion into the $\mathrm{M}-\mathrm{OH}$ bond, and finally reductive elimination of the hydroxyalkyl-hydride as alcohol; the second one (Scheme 1.9b) involves coordination of an olefin followed by nucleophilic attack at the olefin by external OH^{-}and then protonation of the metal-carbon bond to give alcohol; alternatively the protonation could go via oxidative addition to give a $\mathrm{Pt}(\mathrm{II})$ hydride with subsequent reductive elimination of the hydroxyalkyl-hydride; the third one (Scheme 1.9c) involves oxidative addition of water, insertion of olefin into the $\mathrm{M}-\mathrm{H}$ bond followed by reductive elimination of alkyl-hydroxyl to form an alcohol. All three possible catalytic cycles will be commented upon in later sections (Sect. 1.4.1-1.4.5), and also comparisons between catalytic hydration, hydrocyanation, and the Wacker process, will be discussed.

The following sections (Sect. 1.4.1-1.4.4) are divided according to the four major steps in the catalytic cycles, separate accounts being given on the possibility of the individual step. Following a review of the bond strengths of the M-C and M-O bonds, and thermodynamic consideration with respect to reductive elimination, a summary of the feasibility of catalytic hydration will be presented at the end of Sect. 1.4.4.

1.4.1 Activation of water

Transition metals interact with water molecules in the following fashions: coordination of a water molecule to a metal centre of higher oxidation state promotes the deprotonation of the water (Eq. 1.1), and oxidative addition of a water molecule to a low valent transition metal

$$
\begin{align*}
& \mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)^{\mathrm{n}+1} \rightleftharpoons \mathrm{M}(\mathrm{OH})^{\mathrm{n}+}+\mathrm{H}^{+} \tag{1.1}\\
& \mathrm{M}^{0}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{M}^{\mathrm{I}}(\mathrm{H}) \mathrm{OH} \tag{1.2}
\end{align*}
$$

(a)

(b)

(c)

Scheme 1.9. Possible mechanistic pathways for catalytic hydration using, for example, a platinum metal complex; ${ }^{23}$ oxidative addition of $\mathrm{H}_{2} \mathrm{O}$ is written as giving trans species (Sect.1.4.1).
complex gives a hydridohydroxo species (e.g., Eq. 1.2). The chemistry exemplified in Eq. 1.1 has been recognized since the early days of aqueous solution chemistry while that of the latter is relatively new, within last twenty years. In aqueous solution, the proton dissociation constant or hydrolysis constant of a transition metal aquo complex increases several orders of magnitude with respect to that of free water; the higher the charge of the central ion, the more acidic the coordinated water becomes. ${ }^{66}$ As a result of a strong M-OH interaction, the electron density is largely drawn to the metal and the basicity of hydroxide drops accordingly. On the other hand, oxidative addition of water to low-valent metal complexes is generally believed to promote the basicity of the OH group. Oxidative addition of protic compounds to low-valent transition metal complexes has been known for many years to give a metal hydride species, ${ }^{67}$ and water has been shown in several cases to add oxidatively to give $\mathrm{M}(\mathrm{H}) \mathrm{OH}$ species, in which the hydroxo group can be coordinated or present as an associated anion. Within the coordinated OH species, both cis- and trans- geometry have been revealed. The cis-hydridohydroxo complexes are more stable thermodynamically; 68 however, trans addition products are more evident. Very few cases of cis addition have been reported. The early transition metal complexes of $\mathrm{M}(\mathrm{H}) \mathrm{OH}$ type tend to dimerize and form a bridging oxo species, and are thus less useful for the purpose of hydration. The only example of an early transition metal monomeric $\mathrm{M}(\mathrm{H}) \mathrm{OH}$ species is a hafnium permethylated cyclopentadienyl (Cp^{*}) complex, which is not formed directly from an oxidative addition of $\mathrm{H}_{2} \mathrm{O}$ but from an exchange reaction of $\mathrm{Hf}(\mathrm{H})\left(\mathrm{NH}_{3}\right) \mathrm{Cp}^{*}$ with $\mathrm{H}_{2} \mathrm{O} .69$ Complexes of the cis- $\mathrm{M}(\mathrm{H}) \mathrm{OH}$ type, formed directly from oxidative addition of $\mathrm{H}_{2} \mathrm{O}$, are cis$\mathrm{Os}(\mathrm{H})(\mathrm{OH})\left(\mathrm{PMe}_{3}\right)_{4} 70$ and cis- $\mathrm{Ir}(\mathrm{H})(\mathrm{OH})\left(\mathrm{PMe}_{3}\right)_{4}\left(\mathrm{PF}_{6}\right) .68$ The iridium compound, which has been characterized crystallographically, is both air and thermally stable and does not eliminate water even at $200^{\circ} \mathrm{C} .68$ The more reactive oxidative adduct is of the type trans- $\mathrm{M}(\mathrm{H}) \mathrm{OH}$. As a result of the strong trans influence of hydride, ${ }^{71}$ the nucleophilicity of OH is greatly enhanced, and the basicity and nucleophilicity of the OH group have been recognized in several catalytic processes. Trans oxidative addition of water has been seen for several group VIII transition metal complexes. The $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ complex reacts with $\mathrm{H}_{2} \mathrm{O}$ at $200^{\circ} \mathrm{C}$ giving $\mathrm{Os}_{3}(\mathrm{H})(\mathrm{OH})(\mathrm{CO})_{10} ;{ }^{72}\left[\mathrm{Rh}(\mathrm{en})_{2}\right]^{+}$, electrochemically produced from $\left[\mathrm{RhCl}_{2}(\mathrm{en})_{2}\right]^{+}$in aqueous
solution, adds water to give $\left[\mathrm{Rh}(\mathrm{H})(\mathrm{OH})(\mathrm{en})_{2}\right]^{+}$, which has been isolated as the tetraphenylborate salt. ${ }^{73}$ The rhodium phosphine complexes, $\mathrm{Rh}(\mathrm{H})\left[\mathrm{P}(\mathrm{i}-\mathrm{Pr})_{3}\right]_{3}$ and $\mathrm{Rh}_{2}(\mathrm{H})_{2}(\mu-$ $\left.\mathrm{N}_{2}\right)\left(\mathrm{PCy}_{3}\right)_{4}$, are capable of activating $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$ via oxidative addition for an $\mathrm{H}-\mathrm{D}$ exchange process in aromatic compounds via orthometallated species. ${ }^{74}$ The key intermediate in the Water Gas Shift (WGS) reaction catalyzed by $\mathrm{Rh}(\mathrm{H})\left(\mathrm{PEt}_{3}\right)_{3}$ or $\mathrm{Rh}(\mathrm{H})\left(\mathrm{PEt}_{3}\right)_{4}$ was found to be $\left[\mathrm{Rh}(\mathrm{H})\left(\mathrm{PEt}_{3}\right)_{3}\right] \mathrm{OH} .75$ The non-phosphine complex, Ru(HEDTA)(CO)-(HEDTA = trianion of ethylenediaminetetraacetic acid), was recently discovered by Khan et al. to catalyze the WGS reaction efficiently under mild conditions ($20 \sim 80^{\circ} \mathrm{C}, 1 \sim 35 \mathrm{~atm} \mathrm{CO}$); kinetic investigations indicate that oxidative addition of water to form trans- $\mathrm{Ru}(\mathrm{H})(\mathrm{OH})(\mathrm{CO})(\mathrm{HEDTA})$ - is the rate limiting step. ${ }^{76}$ The complex trans- $\left[\mathrm{Ru}(\mathrm{H})(\mathrm{OH})(\mathrm{S})\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{S}=\mathrm{THF}, \mathrm{H}_{2} \mathrm{O}\right)$, reported by Wilkinson's group, is however formed by substituting a Cl^{-}with $\mathbf{O H} ; 77$ this hydridohydroxo species readily undergoes reductive elimination of $\mathrm{H}_{2} \mathrm{O}$ under vacuum in dry solvents. The possibility that $\mathrm{Ru}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{2} \mathrm{py}\right)_{3}$ (where py represents a 2 -pyridyl substituent) might form a $\mathrm{Ru}(\mathrm{H})(\mathrm{OH})$ species was examined by Prystay, but a dihydride formed instead. ${ }^{78}$ The platinum tertiary phosphine derivatives, $\mathrm{PLL}_{\mathrm{n}}\left[\mathrm{L}=\mathrm{P}(\mathrm{i}-\mathrm{Pr})_{3}, \mathrm{n}=2,3\right]$, catalyze the conversion of CO and $\mathrm{H}_{2} \mathrm{O}$ to CO_{2} and H_{2}, and $\mathrm{D}-\mathrm{H}$ exchange in water via a $\mathrm{Pt}(\mathrm{H}) \mathrm{OH}$ intermediate; hydration of nitriles to amides, and olefins to alcohols, has also been investigated using the same systems. ${ }^{79-83}$ The $\mathrm{IrCl}\left(\mathrm{PCy}_{3}\right)_{2}$ complex was found by James et al. to react reversibly with $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{CH}_{3} \mathrm{CN}$ form the unstable $\mathrm{Ir}(\mathrm{H})(\mathrm{OH}) \mathrm{Cl}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{PCy}_{3}\right)_{2}$ species. ${ }^{84}$ It is interesting to point out that oxidative addition of water has so far been limited to the second and third row group VIII metal complexes.
1.4.2. Activation of olefins toward nucleophilic attack by hydroxide, and migratory insertion of olefin into an M-OH bond

An olefin is electron-rich and generally prone to attack by an electrophile, such as H^{+}, Br^{+}, etc. However, upon complexation to an appropriate electron-deficient metal centre, the olefin ligand becomes subject to nucleophilic attack, because the electron-density of the olefin is now shifted towards the metal centre via a σ - M -olefin bond (Scheme 1.10).

σ-donation
from olefin to M

$d-\pi$ back donation from M to olefin

Scheme 1.10. Interactions between metal and olefin.

Transition metal complexes capable of activating an olefin must be in a relatively high oxidation state and have a number of associated electron withdrawing ligands, such as carbon monoxide, which will stabilize the negative charge resulting from an external nucleophilic attack. 85 The most characteristic reaction of a coordinated olefin complex is the attack of nucleophile to produce a σ-alkyl metal complex. Two basic modes of attack are possible and are distinguishable by both their stereo- and regiochemistry. Trans attack, from the face opposite the metal by a nucleophile (Nuc^{-}) without prior coordination, is commonly observed with the Nucattack occurring predominantly at the more substituted olefin terminus: ${ }^{85}$

Cis attack, by a previously coordinated nucleophile, from the same side as the metal, appears as the net insertion of olefin into the M-Nuc bond. The cis attack normally occurs at the less substituted olefin terminus. ${ }^{85}$ In both processes, a major competing reaction is the displacement of olefin by the nucleophile, particularly if the nucleophile is a good ligand for the metal, as illustrated below (Scheme 1.11). ${ }^{85}$

Scheme 1.11. Possible reactions for a coordinated olefin with nucleophile.

Hydroxide has long been perceived as a weak ligand for a late-transition-metal because of the mismatch of hard ligand base with soft metal acid. 86,87 Before 1986 , the success of the Wacker process had been attributed to the weak coordination of hydroxide to Pd , so that displacement of olefin did not compete with OH^{-}attack at the olefin. 88 Bryndza and his coworkers have since investigated the relative bond strength of $\mathrm{M}-\mathrm{H}, \mathrm{M}-\mathrm{O}, \mathrm{M}-\mathrm{N}$ and $\mathrm{M}-\mathrm{C}$ bonds through equilibrium studies and found them to be $\mathrm{M}-\mathrm{C}_{(\mathrm{sp})}>\mathrm{M}-\mathrm{O}>\mathrm{M}-\mathrm{H}>\mathrm{M}-\mathrm{C}_{\left(\mathrm{sp}^{3}\right)}>\mathrm{M}-\mathrm{N}, 64$ indicating that the M-O bond is not intrinsically weak. Studies on the thermochemistry of the late transition metal hydroxide, alkoxide, and amide complexes further revealed that the bond strength of M-OH was $15 \mathrm{Kcal} / \mathrm{mol}$ greater than that of $\mathrm{M}-\mathrm{OMe} .{ }^{89}$ The stability of the $\mathrm{M}-\mathrm{OAr}$ bond $(\mathrm{M}=$ $\mathrm{Pd} \mathrm{II}, \mathrm{Ni}^{\mathrm{II}}$) with respect to the $\mathrm{M}-\mathrm{Me}$ bond has been demonstrated by Yamamoto et al. by the preferential insertion of CO into the M-Me bond in some chelating diphosphine complexes. 90,91 On the other hand, insertion of CO and/or olefin into the M-OMe rather than the M-Me bond is more common in platinum(II) phosphine complexes. 65, 92-94 The higher reactivity of the MOMe bond compared to the M-Me bond toward CO and/or olefin in these examples has been attributed to kinetic lability. 89 In fact, Yamamoto's group reported recently that reaction of CO with mixed alkyl alkoxo (not aryloxo) $\mathrm{Pd}^{\mathrm{II}}$ and $\mathrm{NiII}^{\mathrm{II}}$ complexes results in the formation of an alkoxycarbonyl, instead of an acetyl, before reductive elimination of an ester takes place. 95 These low valent metal alkoxide complexes display high reactivity, quite different from that of the high valent earlier group metal alkoxides. 96

Migratory insertion of olefin into a Pt-OH bond was proposed by Jensen and Trogler as one option in a scheme for catalytic 1-hexene hydration, although there was no proof of a formation of a hydroxyalkyl intermediate. ${ }^{23}$ Tetrafluroethylene has been shown to insert into a Pt -OMe bond, 65 but there are no data on reactivity with a $\mathrm{Pt}-\mathrm{OH}$ species. The thermodynamics of olefin insertion into an M-OH bond are as favourable as those of the uncatalyzed olefin hydration, as inferred by the relative bond strengths of $\mathrm{M}-\mathrm{OH}$ and $\mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} .89$ The olefin insertion step may not be actually observed in catalysis by spectroscopic methods and the
hydroxyalkyl insertion product may not be isolable but, nevertheless, the insertion product is energetically accessible, and therefore a viable catalytic intermediate.

1.4.3. Reductive elimination of alkyl-hydride and alkyl-hydroxy moieties

Reductive elimination, the reverse of oxidative addition, is accompanied by a decrease in coordination number and lowering of metal oxidation state, and is of interest because the process leads to the formation of bonds between two ligands; this is particularly important in most homogeneously catalyzed reactions for it frees the organic product at the end of cycle. For reductive elimination to occur, the cis geometry is required; usually the reductive elimination of trans disposed ligands requires a preceding isomerization to a cis disposition. A trans hydrido(cyanomethyl)platinum(II) species, for instance, undergoes isomerization by photolysis before acetonitrile is produced by reductive elimination of the cis hydrido/cyanomethyl groups: ${ }^{97}$

Reductive elimination from hydrido(alkyl) metal complexes has been well documented, whereas that from a hydroxo(alkyl) is very rare. The cis- $\mathrm{Pt}(\mathrm{H}) \mathrm{MeL}_{2}$ and the cis$\mathrm{Pt}(\mathrm{H})\left(\mathrm{CH}_{2} \mathrm{CF}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ complexes have been shown to eliminate CH_{4} and $1,1,1$-trifluoroethane at $-25^{\circ} \mathrm{C}$, respectively 98.99 The relative rate of reductive elimination of hydrido- R is related to the metal-ligand (R) bond strength, and decreases in the order $\mathrm{R}=\mathrm{CH}_{3} \mathrm{CO}>\mathrm{CH}_{3}>\mathrm{PhCH}_{2}>$ $\mathrm{CF}_{3}{ }^{100,101}$ It is not surprising that $\mathrm{M}(\mathrm{H})\left(\mathrm{R}^{\prime} \mathrm{OH}\right)$ species should eliminate alcohol more readily than does $\mathrm{M}(\mathrm{OH}) \mathrm{R}^{\prime}$. Indeed, as noted in the literature, many hydroxo(alkyl) complexes appear to be very stable; ${ }^{19,102}$ the corresponding alkoxo(alkyl) complex is, in certain cases, also resistant to reductive elimination. ${ }^{103}$

1.4.4. Olefin hydration catalyzed by metal phosphine complexes

The only such transition metal hydration catalysts reported thus far are transhydridochlorobis(trimethylphosphine)platinum(II), $\operatorname{trans}-\mathrm{Pt}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PMe}_{3}\right)_{2}$ and the tris(iso-
propyl)phosphineplatinum(0) species, $\mathrm{Pt}\left[\mathrm{P}(\mathrm{i}-\mathrm{Pr})_{3}\right] 3$. The former catalyst was claimed to catalyze the hydration of an unsaturated terminal olefin such as 1-hexene to the primary alcohol with a reasonable turnover rate at moderate temperatures. ${ }^{23 b}$ It was also found by the same research group, in a study of the catalytic hydration of acrylonitrile to amide, that in a side-reaction the α, β-unsaturated olefinic bond was hydrated at a competitive rate. ${ }^{23 a}$ In the presence of base, trans $-\mathrm{Pt}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PMe}_{3}\right)_{2}$ was converted to a hydridoaquobisphosphineplatinum(II) species. The reported turnover rates were $6.9 \mathrm{~h}^{-1}$ at $60^{\circ} \mathrm{C}$ for n -hexanol, and $8.3 \mathrm{~h}^{-1}$ at $100^{\circ} \mathrm{C}$ for n dodecanol:

The proposed mechanism is similar to cycle (a) given on page 10 , and basically consists of oxidative addition of $\mathrm{H}_{2} \mathrm{O}$, coordination of olefin followed by OH^{-}attack at the coordinated olefin to form a hydroxyalkyl complex, and reductive elimination of alcohol; catalyst is regenerated by oxidative addition of $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{PtL}_{2}\left(\mathrm{~L}=\mathrm{PMe}_{3}\right)$. A kinetic study showed that the rate of olefin hydration was independent of $\left[\mathrm{OH}^{-}\right]$when present in excess, and first-order in the alkene concentration. Water replacement by olefin was said to be the rate limiting step. Deuterium labelling using $\mathrm{D}_{2} \mathrm{O}$ showed exclusive β-deuterium incorporation, indicative of reductive elimination occurring at the end of cycle; deuterium scrambling or olefin isomerization was not observed, ruling out olefin insertion into the Pt-H bond which is often reversible. ${ }^{103}$ The complex did not catalyze the hydration of an internal olefin such as 2-hexene, or 3-hexene. The β-hydrogen elimination from hydroxyalkyl, which occurs very readily in oxidation of olefins catalyzed by $\mathrm{Pd}^{\mathrm{II}}$ to form ketone or aldehyde, does not compete with a trans to cis isomerization step which leads to the formation of alcohol. The primary alcohol formed in the reaction was better accounted for by olefin insertion into the Pt-OH bond, rather than OH external attack which would predominantly produce a secondary alcohol (Sect.1.4.2). A five-coordinate, square
pyramid intermediate may be involved before insertion. A controversy has arisen, however, concerning the olefin insertion step and the question of alcohol formation. The original authors claimed that slow insertion into $\mathrm{Pt}-\mathrm{H}$ by the olefin did not compete with the insertion into $\mathrm{Pt}-\mathrm{OH}$ which eventually led to the alcohol formation. On the contrary, some ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopic studies conducted by Ramprasad et al. showed that trans- $\left[\mathrm{Pt}(\mathrm{H})\left(\mathrm{PMe}_{3}\right)_{2}(1-\right.$ hexene) $]^{+}$was formed $\mathrm{at}-544^{\circ} \mathrm{C}$ and was only stable below $-30^{\circ} \mathrm{C} .{ }^{24}$ Significant decomposition of the hydride/olefin complex occurred at $-12^{\circ} \mathrm{C}$ and resulted in total isomerization of the 1 hexene, with no alcohol being detected. Formation of trans $-\mathrm{Pt}(\mathrm{H}) \mathrm{OH}\left(\mathrm{PMe}_{3}\right)_{2}$, a key intermediate in Trogler's cycle, by adding $\mathrm{NMe}_{4}+\mathrm{OH}^{-} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ to trans- $\left[\mathrm{Pt}(\mathrm{H})\left(\mathrm{PMe}_{3}\right)_{2}(1 \text {-hexene) }]^{+}\right.$ at $-59^{\circ} \mathrm{C}$, was confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy, but no primary alcohol was formed on gradually warming the mixture to room temperature. ${ }^{24}$

Yoshida et al. have reported olefin hydration using $\mathrm{Pt}\left[\mathrm{P}(\mathrm{i}-\mathrm{Pr})_{3}\right]_{\mathrm{n}} / \mathrm{H}_{2} \mathrm{O}(\mathrm{n}=2,3)$ systems ${ }^{18}$ via a pathway similar to cycle (a) in Scheme 1.9. Although $\mathrm{Pt}^{(\mathrm{OH}) \mathrm{RL}_{2} \text { has also been }}$ reported as a catalyst precursor for the hydration of the olefinic bond in acrylonitrile, ${ }^{19}$ the poor reproducibility suggested the involvement of a hydride impurity. ${ }^{104}$

Platinum is so far the only metal with coordinated phosphines showing promise for catalytic hydration. The chemistry related to mechanistic aspects still remains to be explored. Within the three cycles shown in Scheme 1.9, the metal-hydride in cycle (a) seems to be essential for product liberation at the end of catalytic cycle; meanwhile, the presence of both metal hydride and hydroxide initiates a major competition for olefin insertion; in cycle (b), there is no precedence for an PtRL_{2} complex to undergo protonation of the alkyl by a $\mathrm{H}_{2} \mathrm{O}$ molecule; in order to complete the catalytic cycle, an extra step may be required to cleave the Pt-C bond; 88 in cycle (c), the major concern is that the $\mathrm{Pt}(\mathrm{OH}) \mathrm{RL}_{2}$ complex is probably stable to reductive elimination. ${ }^{19,64,101}$ The challenge of finding an effective catalyst remains.

1.4.5. Olefin hydration catalyzed by metal non-phosphine complexes

Catalytic activation of olefinic substrates by non-phosphine transition metal complexes was pioneered by Halpern and coworkers in the early 1960s, when maleic, fumaric and acrylic acids were catalytically hydrogenated in aqueous acid solutions containing chlororuthenate(II) species. ${ }^{105}$ The formation of a $\mathrm{Ru}{ }^{\amalg}$-olefin complex, which later reacted with hydrogen, was demonstrated; in the case of maleic acid, a $1: 1$ olefin complex was confirmed spectrophotometrically and the stability constant was measured to be $5 \times 10^{3} \mathrm{M}^{-1}$ (aq. 3 M HCl , $20^{\circ} \mathrm{C}$). Further studies 106 using D_{2} and $\mathrm{D}_{2} \mathrm{O}$ demonstrated that the hydrogen atoms which added to the double bond originated from the aqueous solvent rather than hydrogen gas. However, no hydration product was revealed. The same group reported the catalytic hydration of acetylenic compounds by RuIII chlorides in aqueous acid solution. 107 Acetylene, methylacetylene and ethylacetylene were converted under mild conditions to acetylaldehyde, acetone and methyl ethyl ketone, respectively. In the mechanism proposed for hydration of acetylene, a coordinated hydroxo ligand underwent migratory insertion into the coordinated acetylene, and the resulting hydroxyalkene group was cleaved off $\mathrm{Ru}^{I I I}$ by a proton to give the corresponding product, 'vinyl alcohol', which rearranged to acetaldehyde. 107 Aqueous acid solutions of some rhodium(III) chloro complexes, $\left[\mathrm{Rh}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6-n} \mathrm{Cl}_{n}\right]^{(n-3)}$, were also found later to be active for acetylene hydration. ${ }^{108}$ Hydration of fluoroolefins was also observed in the aqueous Ru II 3 M HCl system, under conditions similar to those for hydrogenation of the olefinic acids; hydration was thus competitive with hydrogenation of the $\mathrm{C}=\mathrm{C}$ bond in fluoro- or 1,1 -difluoroethylene even under 1 atm H_{2}, so that only acetaldehyde and acetic acid, respectively, were detected following hydrolysis of the hydroxyfluorides. 109 Thus, chlororuthenate(II) species can function as a hydration catalyst for fluoroethylene as well as a hydrogenation catalyst for olefinic acids. Scheme 1.12 was the suggested mechanism of the olefin hydration process. ${ }^{109}$

Scheme 1.12. The proposed mechanism for catalytic hydration of fluoroethylene by $\mathrm{Ru}^{2+} .109$

The unique reactivity of fluoroethylenes in this Ru (II) system is not fully understood, but the suggestions were that fluoroolefins stabilize $\mathrm{Ru}^{\mathrm{II}}$ sufficiently to prevent the reduction (e.g. under H_{2}) to metal, while the high electronegativity of fluorine promotes the nucleophilicity of the coordinated OH which attacks the olefin bond leading to a β-hydroxyalkyl intermediate. This reaction is a true olefin hydration catalyzed by a non-phosphine transition metal complex. Another example found in the literature in the late 1960s is that reported by Bzhasso and Pyatnitskii who found that $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ catalyzes the hydration of maleic acid at $170^{\circ} \mathrm{C} .{ }^{17}$ Formation of a $[\mathrm{C}-\mathrm{Cr}]^{3+}$ cation analogous to a carbonium ion was suggested to play a crucial role in the catalysis. Matching a metal complex catalyst with a substrate under suitable conditions was the initial major aim of this thesis project, although the goal has not yet been achieved. In Chapter 6, a kinetic study of the $\mathrm{Cr}^{3+} /$ maleic acid system is described.
1.4.6. A comparison of catalytic hydrocyanation and hydration of olefins, and olefin oxidation via hydration

Hydrogen cyanide has a bond dissociation energy of $123 \mathrm{Kcal} / \mathrm{mol}$, which is very close to that of water, $119 \mathrm{Kcal} / \mathrm{mol}, 110$ and it is beneficial to compare activation of hydrogen cyanide with activation of water. Hydrocyanation is one of the most successful homogeneously catalyzed reactions in chemical industry, the catalysis utilizing $\mathrm{Ni}(0)$ phosphite and $\operatorname{Pd}(0)$ phosphine
complexes. Asymmetric induction has been achieved in a Pd(DIOP) $)_{2}$ system with up to 40% e.e. 111 The mechanism of catalytic hydrocyanation using nickel complexes has been reported recently in detail,112-114 whereas studies on the Pd-catalyzed reaction are still at a preliminary stage. Some similarities between systems using Ni and Pd catalysts have been revealed. ${ }^{112}$ Nickel-catalyzed hydrocyanation has been shown to involve oxidative addition of hydrogen cyanide, coordination of olefin followed by olefin insertion into the $\mathrm{Ni}-\mathrm{H}$ bond, and reductive elimination of alkyl cyanide. 112-116 The relative order of oxidative addition and olefin coordination may be reversed depending on the alkene; isomerization of olefin often takes place in the olefin insertion step because of its reversibility which may lead to the formation of linear and branched nitriles. Addition of a Lewis acid has been demonstrated to promote the formation of the linear nitrile. 113 Oxidative addition of HCN is shown to be cis, and olefin is shown to insert into the M-H bond exclusively. ${ }^{115}$ The reductive elimination of alkyl cyanide is facile. Oxidative addition of $\mathrm{H}_{2} \mathrm{O}$ can give either cis or trans hydridohydroxo species. There is little information on the reactivity of the cis type toward olefin insertion, while in the trans type olefin appears to insert readily into an M-OH bond. ${ }^{23}$ Although insertion of olefin into the $\mathrm{Pt}-\mathrm{H}$ bond of $\mathrm{Pt}(\mathrm{H}) \mathrm{OH}$ species was observed by Ramprasad et al., no reductive elimination of alkyl-hydroxide to give alcohol formation was detected. ${ }^{24}$

Oxidation of olefins to aldehyde or ketones has been catalyzed successfully by a $\mathrm{PdII} / \mathrm{O}_{2} / \mathrm{CuCl}_{2}$ system in the Wacker process. Olefin is hydroxylated but, because of the β hydride elimination, no alcohol is formed. The order of olefin reactivity is $\mathrm{CH}_{2}=\mathrm{CH}_{2}>$ $\mathrm{RCH}=\mathrm{CH}_{2}>\mathrm{R}_{1} \mathrm{CH}=\mathrm{CHR}_{2}$, geminal di-substituted, tri-substituted and tetra-substituted olefins, and electrophilic olefins generally do not coordinate sufficiently well to permit further chemistry. 117 The olefin, once coordinated to palladium, is generally subject to nucleophilic attack by OH^{-}or $\mathrm{H}_{2} \mathrm{O}$, which occurs rapidly at the more substituted position. The α alkylpalladium species then formed is unstable and undergoes rapid, spontaneous β-hydride elimination to form an OH -substituted olefin which isomerizes to ketone. The $\operatorname{Pd}(0)$ formed after β-hydride elimination is oxidized to PdII by $\mathrm{O}_{2} / \mathrm{CuCl}_{2}$ and is continually used as catalyst. The
success of the Wacker process for formation of acetaldehyde from ethylene indicates that alcohol formation in this system is not attainable.

1.5. Chemistry of pyridylphosphines

1.5.1. Developments in synthesis of pyridylphosphines

Phosphines with substituted benzene rings and heteroaromatic groups, such as pyridine, were first reported by Davis and Mann, 118 and the synthetic strategy was further developed by Mann and Watson. 119 The overall yield of pyridylphosphine production, $\mathrm{PPh}_{3-\mathrm{n}} \mathrm{py}_{\mathrm{n}}$ (abbreviated as $\mathrm{PN}_{\mathrm{n}}, \mathrm{n}=1,2,3$; py represents the 2 -py moiety throughout this thesis), was very poor because the use of a Grignard reagent created problems in product separation, so that extensive purification procedures including vacuum distillation were required. The introduction of 2-lithiopyridine by Wibaut et al. ${ }^{120}$ provided an alternative route for pyridylphosphine synthesis. A revised experimental procedure using lithiopyridine was laid out by Plazek and Tyka ${ }^{121}$ and has been adopted with minor modifications in more recent years by several research groups. 122 - 125

Scheme 1.13. Synthetic route for 2-pyridylphosphines via lithiopyridine.

Because of the instability of lithiopyridine above $-60^{\circ} \mathrm{C}$, the yield of this one pot synthesis is normally around $40 \sim 50 \%$. $\mathrm{PPh}_{2} \mathrm{py}\left(\mathrm{PN}_{1}\right)$ and $\mathrm{PPhpy}_{2}\left(\mathrm{PN}_{2}\right)$ can also be made via a lithiophenylphosphine route, which is sometimes complicated by the coupling reaction of metallated phosphine; nevertheless, the yields are often comparable with those using lithiopyridine. Lithiophenylphosphine can be prepared by reacting lithium metal with $\mathrm{PPh}_{3},{ }^{126}$, $\mathrm{PPh}_{2} \mathrm{Cl}$ or $\mathrm{PPhCl}_{2}{ }^{127}$, or from reaction of methyllithium with diphenylphosphine, ${ }^{128}$ as in equations (1.3) to (1.6)

$$
\begin{align*}
& \mathrm{PPh}_{3}+2 \mathrm{Li} \longrightarrow \mathrm{PPh}_{2} \mathrm{Li}+\mathrm{PhLi} \tag{1.3}\\
& \mathrm{PPh}_{2} \mathrm{Cl}+2 \mathrm{Li} \longrightarrow \mathrm{PPh}_{2} \mathrm{Li}+\mathrm{LiCl} \tag{1.4}\\
& \mathrm{PPhCl}_{2}+4 \mathrm{Li} \longrightarrow \mathrm{PPhLi}_{2}+2 \mathrm{LiCl} \tag{1.5}\\
& \mathrm{PPh}_{2} \mathrm{H}+\mathrm{MeLi} \longrightarrow \mathrm{PPh}_{2} \mathrm{Li}+\mathrm{CH}_{4} \tag{1.6}\\
& \mathrm{PPh}_{3}+\mathrm{Na} / \mathrm{NH}_{3} \longrightarrow \mathrm{PPh}_{2} \mathrm{Na}+\mathrm{PhNH}_{2} \tag{1.7}
\end{align*}
$$

Tolmachev et al. reported that triphenylphosphine could be metallated using sodium in liquid ammonia, Eq. (1.7), with the yield of PPh_{2} py being 50-60\%. 129 A minor modification of the experimental conditions of Plazek and Tyka's method was used in the present work, giving an average yield of $40 \sim 56 \%$ for the three phosphines (Ch. 2).

1.5.2. Coordination chemistry of pyridylphosphines

Since a 1965 breakthrough in the field of homogeneous catalysis made by Wilkinson's group, who used $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ as a catalyst to hydrogenate alkenes at $25^{\circ} \mathrm{C}$ and 1 atm H_{2} in organic solvents, attention has focused on tertiary phosphines as ligands in catalyst design. Phosphines are, in fact, found to be the most popular ligands in many catalytic systems, and it is not surprising that phosphine chemistry has flourished ever since. Triphenylphosphine is the most exhaustively studied phosphine; 2-pyridylphosphines, $\mathrm{PPh}_{3-\mathrm{n}} \mathrm{py}$ n , appear to be a good choice for systematic studies on the electronic effect of pyridine on the phosphine, because the geometry of a pyridylphosphine remains relatively constant with respect to triphenylphosphine. ${ }^{130}$ Equally important and significant are the heteropolydentate characteristics of these pyridylphosphines, which could be highly desirable in areas such as catalysis, asymmetric synthesis and organometallic stereochemistry. ${ }^{131}$ Pyridylphosphine, as a heteropolydentate ligand, is more attractive perhaps than the chelating diphosphines and polyphosphines because the binding characteristic of phosphorus and nitrogen allow for a more rationalized design of a catalyst.

Pyridylphosphines, however, received little attention until the late 1970s and, in fact, the X-ray crystallographic structure of Ppy3 was only done in 1988, ${ }^{132}$ forty-four years after it was
first made. The binding options offered by these 2-pyridylphosphines are shown in the following diagram (Scheme 1.14).

I

IV

II

V

III

VI

Scheme 1.14. Possible coordination modes of pyridylphosphines to transition metals.

Transition metals (Group VIB -VIII, IB) form complexes with 2-pyridylphosphines of the various structures I - V shown in Scheme 1.14. Although there is no example of an isolated type VI compound reported in the literature, this coordination mode is nevertheless possible from electronic and steric points of view, ${ }^{122,133}$ and it has been proposed to coexist in solution with type I (square planar) and type II (square pyramid) complexes in the case of the trans$\mathrm{RhCl}_{2}(\mathrm{CO})\left(\mathrm{PN}_{2}\right)$ and trans- $\mathrm{RhCl}_{2}(\mathrm{CO})\left(\mathrm{PN}_{3}\right) .{ }^{133}$ The most common coordination mode among the second and the third row transition metal 2-pyridylphosphine complexes is type I; i.e. only the phosphorus donor coordinates, for example, $\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{PN}_{1}\right)_{2},{ }^{134} \mathrm{PdX}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}(\mathrm{n}=1 ; 128 \mathrm{n}$ $=2$ and 3, Ch. 3), and $\mathrm{PtX}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}(\mathrm{n}=1 ; 135 \mathrm{n}=2$ and 3, Ch. 3). Cu, Ag and Au form $\mathrm{M}(\mathrm{X}) \mathrm{PN}_{\mathrm{n}}$ species ($\mathrm{X}=$ halides) which have unusually short M-P distances; under suitable conditions $\mathrm{M}(\mathrm{X}) \mathrm{P}$ is believed to aggregate to form a cluster. ${ }^{136}$ The chelating coordination type II is found in some isolated $\mathrm{Pt}^{\mathrm{II}}\left(\left[\mathrm{PtI}\left(\mathrm{PN}_{1}\right)_{2}\right] \mathrm{PF}_{6}\right),{ }^{135} \mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PN}_{1}\right)^{137}$ and UIII ($\left.\mathrm{U}\left(\mathrm{BH}_{4}\right)_{3}\left(\mathrm{PN}_{1}\right)_{2}\right)$ complexes, ${ }^{138}$ and also is present in solution for several type I complexes as indicated by ${ }^{31}$ P NMR data (Ch. 3). The UIII complex is shown by X-ray crystallography to be 13-coordinate with three BH_{4}^{-}ligands being tridentate and two chelating phosphines being
coplanar with one of the boron atoms. ${ }^{138}$ Tetrahedral $\mathrm{CoCl}_{2}\left(\mathrm{PN}_{2}\right)$ is a type III compound, the phosphorus lone-pair not interacting with the central metal atom as shown by crystallographic data. ${ }^{139}$ The unsymmetrical bridging mode in type IV is another common coordination mode for both hetero and homo binuclear complexes; examples include $\mathrm{Pd}_{2} \mathrm{X}_{2}\left(\mathrm{PN}_{n}\right)_{2}(\mathrm{Ch} .3), \mathrm{PdMo}(\mu-$ $\mathrm{CO})(\mathrm{CO})_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2},{ }^{134} \mathrm{Re}_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{PN}_{1}\right)_{3}{ }^{140}, \mathrm{RhPtCl}_{3}(\mathrm{CO})\left(\mathrm{PN}_{1}\right)$ (head-to-tail, HT$)^{141}$, $\mathrm{Rh}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{CO})\left(\mu-\mathrm{PN}_{1}\right)_{2}(\mathrm{HT})^{142}$, and $\mathrm{RhPdCl}_{3}(\mathrm{CO})\left(\mu-\mathrm{PN}_{1}\right)_{2}(\mathrm{HT}) .{ }^{143}$ Because of the different softness of phosphorus and nitrogen donors, M_{1} and M_{2} can be linked together even if they are of different hardness. The tridentate mode via three nitrogen atoms in type V is common among the first row transition divalent metals, as in $\left[\mathrm{M}\left(\eta^{3}-\mathrm{PN}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2},{ }^{122,144}$ and a $\mathrm{Ru}{ }^{I I}$ complex can also be formed of the same structure. ${ }^{124}$

The interesting coordination chemistry of these phosphine ligands has been extended to their oxides of both the phosphine and pyridine. Phosphine oxides have found practical applications in selective extraction processes for the platinum metals. 145 Formation of $\left(\mathrm{OPN}_{1}\right) \mathrm{PtBr}_{4}$, containing a five-member chelating structure as in (a), ${ }^{146}$ demonstrates the affinity of pyridylphosphine oxides for platinum in a high oxidation state. Pyridylphosphine P, N-oxide is a 1,3-bifunctionalized ligand as in (b), structurally similar to ligands containing monophosphoryl and carbonyl groups, or carbonyl and phosphine oxide groups which are good extractant ligands for lanthanide and actinide ions. ${ }^{147,148}$ The ligand $\mathrm{OP}(\mathrm{Ph})_{2}(\mathrm{Opy})$ was made in an attempt to replace these extractants so that selective extraction of uranium as $\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}\left[\mathrm{OP}(\mathrm{Ph})_{2}(\mathrm{Opy})\right]$ could be carried out. The structure of the uranium complex contains a six-member ring arranged in a distorted boat form. ${ }^{149}$

5-member ring
(a)

6-member ring
(b)
1.5.3. Reactivity of the coordinated pyridylphosphines and catalytic activities of their metal complexes

The pyridylphosphine complexes are also interesting in their distinctive reactivity. The triply bonded dirhenium(II) complex $\mathrm{Re}_{2} \mathrm{Cl}_{4}\left(\mathrm{PN}_{1}\right)_{3}$ readily undergoes HCl elimination in the presence of base to give the ortho-metallated complex $\mathrm{Re}_{2} \mathrm{Cl}_{3}\left(\mathrm{PN}_{1}\right)_{2}\left[\mathrm{PPh}\left(\mathrm{o}-\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{py}\right] ;{ }^{139,140}$ the base can be the 2-(diphenylphosphino) pyridine ligand itself. This is reported to be the first example of ortho-metallation occurring at a metal-metal multiple bond. When $\mathrm{Ru}_{3}(\mathrm{CO})_{11}\left(\mathrm{PN}_{1}\right)$ is heated under reflux in methanol, the spontaneous cleavage of a phosphorus-carbon bond of 2(diphenylphosphino)pyridine takes place to give a doubly bridged phosphido ligand with the pyridyl nitrogen coordinated to the third ruthenium, while a bridging benzoyl group is formed by migratory insertion of a phenyl group onto a terminal carbonyl group. ${ }^{150}$ A similar phosphoruscarbon bond cleavage reaction for triphenylphosphine occurs, but at a much higher temperature, at the boiling point of xylene for some Mn, Rh and Os clusters. ${ }^{151}$

A few catalytic aspects of pyridylphosphine complexes have also been investigated, but mechanistic studies of the catalysis are non-existent. The catalyst precursor in most cases is formed in situ; for instance, when a mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PN}_{1}, \mathrm{p}-\mathrm{Me}^{-} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{SO}_{3} \mathrm{H}$, and propyne is heated at $45^{\circ} \mathrm{C}$ in methanol under 60 bar CO pressure, methylmethacrylate was obtained with 99% selectivity at a very high turnover rate $\left(20,000 \mathrm{~h}^{-1}\right) .152$ Catalytic homologation from methanol to ethanol can also be achieved at $155 \sim 180^{\circ} \mathrm{C}$ under $200 \sim 300$ bar syn-gas $\left(\mathrm{CO}: \mathrm{H}_{2}=\right.$ 1:1) pressure using a ruthenium pyridylphosphine catalyst, the selectivity being over 30% with $60 \sim 74 \%$ conversion. 153 A rhodium complex containing tripyridylphosphine formed in situ from $\mathrm{Rh}_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}$ catalyzes the conversion of a water and carbon monoxide mixture to hydrogen and carbon dioxide, the water gas shift (WGS) reaction. ${ }^{154}$ The only example of a catalytic process using a well-defined catalyst precursor, $\mathrm{RhH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{PN}_{3}\right)_{2}$, is the hydroformylation of 1-hexene at low CO and H_{2} pressures in the presence of excess PN_{3}; no mechanistic detail was given by the authors. ${ }^{125}$

Pyridylphosphine complexes thus exhibit many differences in their coordination chemistry, reactivity and catalytic activity from those of the triphenylphosphine analogs. In this thesis, efforts in revealing these aspects of pyridylphosphine complexes are presented.

1.6. Scope of this thesis

The water solubility of the tris-2-pyridylphosphine palladium complex, $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}$ (HT) 11c, appeared to be an asset for the complex as a candidate for a hydration catalyst, and the complex attracted our attention since it was discovered earlier in our group by Lee and Yang. 155 To our knowledge, few neutral tertiary phosphine complexes, excluding those with highly polar substituents $\left(-\mathrm{SO}_{3} \mathrm{H},-\mathrm{CO}_{2} \mathrm{H},-\mathrm{OH}\right.$, and $\left.-\mathrm{NH}_{2}\right)$ in the phosphine molecules, 156 are soluble in water. ${ }^{74}, 75,79-84,157 \mathrm{Cis}^{2}-\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ was later found in the present work to have even better solubility in water than the binuclear complex. The solution behaviours are discussed in Chapter 3. Some monomeric and binuclear metal pyridylphosphine complexes of palladium and platinum were synthesized via methods based on literature procedures for 2(diphenylphosphino)pyridine derivatives described in Chapter 2, and structurally characterized by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\},{ }^{31} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectroscopic methods (Ch .3). The molecule structure of $\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{PN} 2)_{2}(\mathrm{HT})(1 \mathrm{~S}, 2 \mathrm{~S}$) was determined crystallographically (Ch. 3). The diastereoisomers $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HH})(1 \mathrm{~S}, 2 \mathrm{~S})$ and $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HH})(1 \mathrm{~S}, 2 \mathrm{R})$ were successfully separated by preparative TLC (Ch. 2) but, unfortunately, the high symmetry of the single crystals grown precluded crystallographic characterization. None of the $\mathrm{M}(\mathrm{I})$ or $\mathrm{M}(\mathrm{II})$ pyridylphosphine halide complexes binds olefin in organic solvents or in aqueous solution. The binuclear head-to-head (HH) or head-to-tail (HT) complexes $\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{PN}_{n}\right)_{2}\left(\mathrm{M}_{1}=\mathrm{M}_{2}=\mathrm{Pd}\right.$, or $\mathrm{Pt} ; \mathrm{M}_{1}=\mathrm{Pd}, \mathrm{M}_{2}=\mathrm{Pt} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I} ; \mathrm{n}=1,2,3$) form a bridging adduct with dimethylacetylenedicarboxylate (DMAD). The isolated products bear the HT-configuration in most cases, except in $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2}(\mathrm{HH})$ where the HH -configuration is maintained (Ch. 4). Kinetic and spectroscopic studies on the reactions of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{n}\right)_{2}(\mathrm{HH})(\mathrm{n}=1,2,3)$ with DMAD are presented in Chapter 4: a five-coordinate $\mathrm{Pt}(\mathrm{II})$ intermediate with chelating pyridine is
proposed based on ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ NMR data, while a destabilization effect of a non-bridging pyridine substituent plays a crucial role in isomerization of the HH DMAD adduct to the HT adduct. Isomerization of the HH to HT form of the binuclear complex $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}$ in the presence of excess phosphine PN_{3} was also investigated by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR in some detail, and the findings are included in Chapter 4. Some platinum(0) pyridylphosphine complexes were then synthesized by modifying literature methods reported for the well known PPh_{3} analogues (Ch. 2). Reactions of these $\mathrm{Pt}(0)$ complexes with $\mathrm{HCl}, \mathrm{O}_{2}$, and olefins were studied, differences in reactivity from their triphenylphosphine analogs being noticed. The discussion on some failed attempts at catalytic hydration using the palladium and platinum pyridylphosphine complexes is presented in Chapter 5. In Chapter 6, the results of a kinetic study on maleic acid hydration catalyzed by $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$ ion is presented. Despite complications in the Cr^{3+} system, the results suggest that the major pathway proposed previously for stoichiometric aquation is also followed in the catalytic hydration process.

References

1. Collman, J.P.; Hegedus, L.S.; Norton, J.R.; Finke, R.G. Principles and Applications of Organotransition Metal Chemistry, 2nd ed.; University Science Books: Mill Valley, CA, 1987; Ch. 10.
2. Masters, C. Homogeneous Transition Metal Catalysis - A Gentle Art; Chapman and Hall: London, 1981; Chs.1, 2.
3. Nakamura, A.; Tsutsui, M. Principles and Applications of Homogeneous Catalysis; John Wiley \& Sons: New York, 1980; Chs.1, 2.
4. Dickson, R.S. Homogeneous Catalysis with Compounds of Rhodium and Iridium; Ugo, R., James, B.R., Eds.; Reidel: Dordrecht, 1985; Ch.1.
5. Parshall, G.W. Homogeneous Catalysis; John Wiley \& Sons: New York, 1980.
6. Hartley, F.R. Supported Metal Complexes; Ugo, R., James, B.R., Eds.; Reidel: Dordrecht, 1985; Ch.1.
7. Iwasawa, Y., Ed. In Tailored Metal Catalysts; Ugo, R., James, B.R., Eds.; Reidel: Dordrecht, 1986; Ch.1.
8. Bond, G.C. Heterogeneous Catalysis, 2nd ed.; Oxford University Press: Oxford, 1987.
9. Stiles, A.B., Ed. Catalyst Support and Supported Catalyst: Theoretical and Applied Concepts; Butterworths: Boston, 1987.
10. Bleach, B.E. In Applied Industrial Catalysis; Bleach, B.E., Ed.; Academic Press: New York, 1983; Vol.1, Ch.1.
11. MacDonald, R.G., Ed. The Pulp of Wood; McGraw-Hill: New York, 1969; Vol.1.
12. Wahren, D. Paper Technology: Compendium after Lectures - Part 1. Fundamentals; Bonano, E.J., Ed.; Institute of Paper Chemistry: Appleton, WI., 1980.
13. Pulp and Paper Manufacture-Sulfite Science and Technology, 3rd ed.; Joint Textbook Committee of the Paper Industry: Montreal, 1983.
14. Nissan, A.H., Ed. Future Technical Needs and Trends in the Paper Industry; TAPPI: Atlanta, GA, 1973.

15. Crawford, R.L. Lignin Biodegradation and Transformation; John Wiley \&Sons: New York, 1980; p.8.

16. Ref. 11, p. 662.
17. (a) Bzhasso, N.A.; Pyatnitskii, M.P. Zh. Prikl. Zhim., 1969, 42, 1610. (b) Bzhasso, N.A.; Pyatnitskii, M.P. Izv. Vyssh. Ucheb. Zaved., Pishch. Tehch. Tekhnol., 1967, 5, 207 through C.A., 1968, 68, 39013k.
18. Yoshida, T.; Matsuda, T.; Okano, T.; Kitani, T.; Otsuka, S. J. Am. Chem. Soc., 1979, 101, 2027.
19. Arnold, D.P.; Bennett, M.A. J. Organomet. Chem., 1976, 199, 119.
20. Bennett, M.A.; Yoshida, T. J. Am. Chem. Soc. , 1973, 95, 3030.
21. Inoue, Y.; Sato, M.; Satake, M.; Hashimoto, H. Bull. Chem. Soc. Jpn., 1983, 56, 637.
22. Atkins, K.E.; Walker, W.E.; Manyik, R.M. J. Chem. Soc. Chem. Commun., 1971, 330.
23. (a) Jensen, C.M.; Trogler, W.C. J. Am. Chem. Soc., 1986, 108, 723. (b) Jensen, C.M.; Trogler, W.C. Science (Washington, DC) 1986, 233, 1069.
24. Ramprasad, D.; Yue, H.J.; Marsella, J.A. Inorg. Chem., 1988, 27, 3151.
25. Encyclopedia of Chemical Technology, 3rd. ed.; Wiley: New York, 1978; Vol.1, pp.716-754.
26. Onone, Y.; Mizutani, Y.; Akiyanma, S.; Izumi, Y.; Ihara, H. Shokubai, 1976, 18, 180 through C.A., 1977, 86 , 170747s.
27. Wiseman, P. An Introduction to Industrial Organic Chemistry; Applied Science: London, 1979.
28. Eguchi, K.; Tokiai, T.; Kimura, Y.; Arai, H. Chem. Lett. , 1986, 567.
29. Tojo, M.; Fukuoka, Y. Jpn Patent, JP 61/234946 A2 ,1987 through C.A., 1987,106 , 158285p.
30. Eguchi, K.; Tokiai, T.; Arai, H. Appl. Catal., 1987, 34, 275.
31. Mitsui, O.; Nakagawa, K. Jpn. Patent , JP 63/154633 A2, 1988 through C.A., 1989, 110 , 134782e.
32. Arai, H.; Sekizawa, K. Jpn. Patent, JP 63/ 218251 A2 ,1988 through C.A., 1989, 110, 78064h.
33. Mitsui, O.; Nakagawa, K. Jpn. Patent , JP 63/ 1556736 A2 ,1988 through C.A., 1989, 110, 38661u.
34. Mtkins, M.P. Eur. Patent, Appl. EP 210793 A1, 1987 through C.A., 1987, 106, 122902 y .
35. Francois, F.F.F.; Moudafi, L.; Vera Pacheco, M.; Nicolas, S.; Dufresme, P.; Gueguen, C. Belg. Patent , BE 904797 A1, 1986 through C.A., 1987, 106, 69118u.
36. Okumura, S.; Kamiyama, S.; Furukawa, H.; Kaneko, K. Eur. Patent, Appl. EP. 127486 A1, 1984 through C.A., 1985, 102, 148714 f.
37. Tsybulevskii, A.M.; Kondrat'ev, V.A.; Tolkacheva, C.N.; Novikova,, C.A.; Mortikov, E.S.; Minachev, Kh. M.; Breshchenko, E.M.; Lipkind, B.A. U.S.S. R. Patent, SU 803969, 1981 through C.A., 1981, 94, 163378j.
38. Streitwieser, A. Jr.; Heathcock, C.H. Introduction to Organic Chemistry, 2nd ed.; MacMillan: New York, 1981; pp.311, 315.
39. Brown, H.C. Boranes in Organic Chemistry; Cornell University Press: Ithaca, New York, 1972; p. 285.
40. Brown, H.C.; Lue, N.R.de; Rabalka, H.C.; Hegecock, H.C., Jr. J. Am. Chem. Soc. , 1976, 98, 1290.
41. Sugita, T.; Yamasaki, Y.; Itaoh, O.; Ichikawa, K. Bull. Chem. Soc. Jpn., 1974, 47, 1945.
42. Kagan, H.B. In Asymmetric Synthesis; Morrison, J.D., Ed.; Academic Press: Orlando, 1985; Vol.5. Ch.1.
43. Kitamura, M.; Ohkuma, T.; Inoue, S.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Chta,T.; Takaya, H.; Noyori, R. J. Am. Chem. Soc., 1988, 110, 629.
44. Hatat, C.; Karim, A.; Kokel, N.; Mortreux, A.; Petit, F. Tetrahedron Lett., 1988, 29, 3675.
45. Takahashi, H.; Morimoto, T.; Achiwa, K. Chem. Lett., 1987, 855.
46. Akira, T.; Harada, T.; Hiraki, Y.; Murakami, S. Bull. Chem. Soc. Jpn., 1983, 56, 1414.
47. James, B.R.; Joshi, A.M.; Kvintovics, P.; Morris, R.H.; Thorbum, I.S. In Catalysis of Organic Reactions; Eds. Blackburn, D.W.; Marcel Dekker: New York, 1990; Ch.2.
48. Heil, B.; Mark6, L.; Törös, S. In Homogeneous Catalysis with Metal Phosphine Complexes; Ed. Pignolet, L.H.; Plenum Press: New York, 1983; p. 317.
49. Hayashi, T.; Katsumure, A.; Konishi, M.; Kumada, M. Tetrahedron Lett. 1979, 425.
50. Törös, S.; Kollar, F.; Heil, B.; Markó, L. J. Organomet. Chem., 1982, 232, C17.
51. (a) Ojima, I.; Kogura, T.; Terasaki, T.; Achiwa, K. J. Org. Chem., 1978, 43, 3444. (b) Achiwa, K.; Kogure, T.; Ojima, I. Tetrahedron Lett., 1977, 4431.
52. Yamamoto, K.; Hayashi, T.; Kumada, M. J. Organomet. Chem., 1972, 46, C65.
53. Nishiyama, H.; Sakaguchi, H.; Nakamura, T.; Horihata, M.; Kondo, M.; Itoh, K. Organometallics, 1989, 8, 846.
54. Noyori, R.; Ohkuma, T.; Kitamura, M.; Takaya, H.; Sayo, N.; Kumobayashi, H.; Akutagawa, S. J. Am. Chem. Soc., 1987, 109, 5856.
55. (a) Brunner, H.; Becker, R.; Reipel, G. Organometallics, 1984, 3, 1354. (b) Brunner, H.; Kürtzinger, A. J. Organomet. Chem., 1988, 346, 413.
56. Payne, N.C.; Stephan, D.W. Inorg. Chem., 1982, 21, 182.
57. Hayashi, T.; Mise, T.; Fukushima, M.; Kagotani, M.; Wagashima, N.; Hamada, Y.; Matsumoto, A.; Kawakami, S.; Konishi, M.; Yamamoto, K.; Kumada, M. Bull. Chem. Soc. Jpn., 1980, 53, 1138.
58. Ojima, I.; Kogura, T.; Kumagai, M.; Horiuchi, S.; Sato, T. J. Organomet. Chem.,1976, 122, 83.
59. Hayashi, T.; Tamao, K.; Katsuro, Y.; Nakae, Y.; Kumada, M. Tetrahedron Lett., 1980, 21, 1871.
60. Koenig, K.E. In Asymmetric Synthesis; Morrison, J.D., Ed.; Academic Press: Orlando, 1985; Vol.5, Ch.3.
61. Hayashi, T.; Yamamoto, K.; Kasuga, K.; Omizu, H.; Kumada, M. J. Organomet. Chem., 1976, 113, 127.
62. Ojima, I.; Hirai, K. In Asymmetric Synthesis; Morrison, J.D., Ed.; Academic Press: Orlando, 1985; Vol.5, Ch.4.
63. Bohinski, R.C. Modern Concepts in Biochemistry, 5th ed; Allyn \& Bacon: Boston, 1987; pp.540-544.
64. Bryndza, H.E.; Fong, I.K.; Paciello, R.A.; Tam, W.; Bercaw, J.E. J. Am. Chem. Soc., 1987, 109, 1444.
65. (a) Bryndza, H.E. Organometallics , 1985, 4, 406. (b) Idem, 1985, 4, 1686.
66. Basolo, F.; Pearson, R.G. Mechanisms of Inorganic Reactions-A Study of Metal Complexes in Solution, 2nd. ed.; John Wiley \& Sons: New York, 1967; pp.31-32.
67. Muetterties, E.L. Transition Metal Hydrides; Marcel Dekker: New York, 1971.
68. Milstein, D.; Calabrese, J.C.; Williams, I.D. J. Am. Chem. Soc., 1986, 108, 6387.
69. Hillhouse, G.L.; Bercaw, J.E. J. Am. Chem. Soc., 1984, 106, 5472.
70. Gotzig, R.; Werner, R. Werner, H. J. Organomet. Chem., 1985, 290, 99.
71. Appleton, T.G.; Clark, H.C.; Manzer, L.E. Coord. Chem. Rev. , 1973, 10, 355.
72. Eady, O.R.; Johnson, B.F.G.; Lewis, J. J. Chem. Soc. Dalton Trans., 1977, 838.
73. Gillard, R.D.; Heaton, B.T.; Vaughan, D.H. J. Chem. Soc. A., 1970, 3126.
74. Yoshida, T.; Okano, T.; Saito, K.; Otsuka, S. Inorg. Chim. Acta, 1980, 44, L135.
75. Yoshida, T.; Okano, T.; Ueda, Y.; Otsuka, S. J. Am. Chem. Soc., 1981, 103, 3411.
76. Khan, M.M.T.; Halligudi, S.B.; Skukla, S. Angew. Chem., Int. Engl. Ed., 1988, 27, 1735.
77. Chaudret, B.N.; Cole-Hamilton, D.J.; Nohr, R.S.; Wilkinson, G. J. Chem. Soc. Dalton Trans., 1972, 1546.
78. Prystay, M.C. B.Sc. thesis, University of British Columbia,1988; p.13.
79. Gerlach, D.H.; Kane, A.R.; Parshall, G.W.; Muetterties, E.L. J. Am. Chem. Soc., 1971, 93, 3543.
80. Yoshida, T.; Matsuda, T.; Okano, T.; Kitani, T.; Otsuka, S. J. Am. Chem. Soc. , 1976, 98, 850.
81. Yoshida, T.; Matsuda, T.; Okano, T.; Kitani, T.; Otsuka, S. J. Am. Chem. Soc., 1979, 101, 2027.
82. Yoshida, T.; Ueda, Y.; Otsuka, S. J. Am. Chem. Soc., 1978, 100, 3941.
83. Yoshida, T.; Otsuka, S. In Catalytic Aspects of Metal Phosphine Complexes, ACS Symposium Series 196; American Chemical Society: Washington, DC, 1982; Ch.8.
84. James, B.R.; Preece, M.; Robinson, S.D. In Catalytic Aspects of Metal Phosphine Complexes, ACS Symposium Series 196; American Chemical Society: Washington, DC, 1982; Ch.9.
85. Ref. 1, p. 410.
86. Pearson, R.G. J. Am. Chem. Soc., 1963, 85, 3533.
87. Pearson, R.G. J. Chem. Educ., 1968, 45, 643.
88. Ref. 1, pp.412-414.
89. Bryndza, H.E.; Tam. W. Chem. Rev., 1988, 88, 1163.
90. Yamamoto, T.; Kohara, T.; Yamamoto, A. Bull. Chem. Soc. Jpn. , 1981, 54, 2161.
91. Komiya, S.; Akai, Y.; Tanaka, K.; Yamamoto, T.; Yamamoto, A. Organometallics, 1985, 4, 1130.
92. Bennett, M.A.; Yoshida, T. J. Am. Chem. Soc., 1978, 100, 1750.
93. Michelin, R.A.; Napoli, M.; Ros, R. J. Organomet. Chem., 1979, 175, 239.
94. Bryndza, H.E.; Calabrese, J.C.; Wreford, S.S. Organometallics, 1984, 3, 1603.
95. Kim, Y-J.; Osakada, K.; Sugita, K.; Yamamoto, T.; Yamamoto, A. Organometallics, 1988, 7, 2182.
96. Newman, L.J.; Bergman, R.G. J. Am. Chem. Soc. , 1985, 107, 5314.
97. Sostero, S.; Traversso, O.; Ros, R.; Michelin, R.A. J. Organomet. Chem., 1978, 246, 325.
98. Halpern, J.; Sen, A.; Abis, L. J. Am. Chem. Soc., 1978, 100, 2915.
99. Michelin, R.A.; Faglia, S.; Ugualiati, P. Inorg. Chem., 1983, 22, 1831.
100. Ref. 1, p. 332.
101. (a) Brown, M.P.; Puddephatt, R.J.; Upton, C.E.E.; Lavington, S.W. J. Chem. Soc., Dalton Trans., 1974, 1613. (b) Evitt, E.R.; Bergman, R.G. J. Am. Chem. Soc., 1980, 102, 7003.
102. Appleton, T.G.; Bennett, M.A. Inorg. Chem., 1978, 17, 738.
103. Benard, K.A.; Atwood, J.D. Organometallics, 1987, 6, 1133.
104. Ref. 89, footnote 147.
105. Halpern, J.; Harrod, J.F.; James, B.R. J. Am. Chem. Soc., 1961, 83, 753.
106. Halpern, J.; Harrod, J.F.; James, B.R. J. Am. Chem. Soc., 1966, 88,, 5150.
107. Halpern, J.; James. B.R. Kemp, A.L.W. J. Am. Chem. Soc., 1961, 83, 4097.
108. James, B.R.; Rempel, G.L. J. Am. Chem. Soc., 1969, 91, 863.
109. James, B.R.; Louie, J. Inorg. Chim. Acta, 1969, 3, 568.
110. McMillen, D.F.; Golden, D.M. Ann. Rev. Phys. Chem., 1982, 33, 493.
111. Hodgson, M.; Parker, D.; Taylor, R.J.; Ferguson, G. Organometallics , 1988, 7, 1761.
112. Tolman, C.A.; McKinney, R.J.; Seidel, W.C.; Bruliner, J.D.; Stevens, W.R. Adv. Catal., 1985, 33, 1.
113. Tolman, C.A.; Seidel, W.C.; Bruliner, J.D.; Domaille, P.J. Organometallics, 1984, $3,33$.
114. McKinney, R.J.; Roe, D.C. J. Am. Chem. Soc., 1986, 108, 5167.
115. James, B.R. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F.G.A., Abel, E.W., Eds.; Pergamon Press: Oxford, 1982; Vol. 8 , Ch.51, p. 353.
116. Ref. 1, pp.568-571.
117. Ref. 1, p. 826.
118. Davies, W.C.; Mann, F.G. J. Chem. Soc., 1944, 276.
119. Mann, F.G.; Watson, J. J. Org. Chem., 1948, 13, 502.
120. Wibaut, J.P.; Jonge, A.P.de; Voort, H.G.P. van der, Otto, P.P.H.L. Rec. Trans. Chim., 1951, 70, 1054 through C.A., 1952, 46, 11197d.
121. Plazek, E.; Tyka, R. Zeszyty Nauk. Politech. Wroclaw., Chem., 1957, 4, 79 through C.A.,1958, 52, 20156c.
122. Boggess, R.K.; Zatko, D.A. J. Coord. Chem., 1975, 4, 217.
123. Ch. 2 of this thesis.
124. Keene, F.R.; Snow, M. R.; Stephenson, P.J.; Tiekink, E.R.T. Inorg. Chem., 1988, 27, 2040.
125. Kurtev, K.; Ribola, D.; Jones, R.A.; Cole-Hamilton, D.J.; Wilkinson, G. J. Chem. Soc. Dalton Trans., 1980, 55.
126. Bianco, V.P.; Boronzo, S. Inorg. Synth. 1976, 16, 161.
127. Newkome, G.R.; Hager, D.C. J. Am. Chem. Soc. , 1978, 100, 5567.
128. Maisonnet, A.; Farr, J.P.; Olmstead, M.M.; Hunt, C.T.; Balch, A.L. Inorg. Chem., 1982, 21, 3961.
129. Tolmachev, A.A.; Kozlov, E.S.; Pinchuk, A.M. Zh. Obshck. Khim., 1984, 54, 971.
130. Wajda-Hermanowicz, K.; Pruchnik, F.R. Transition Met. Chem., 1988, 13, 22.
131. Meek, D.W. Ref. 48, p. 257.
132. Keene, F.R.; Snow, M.R.; Tiekink, E.R.T. Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1988, 44, 757.
133. Wajda-Hermanowicz, K.; Pruchnik, F.R. Transition Met. Chem., 1988, 13, 101
134. Zhang, Z.; Wang, H.; Wang, H-G.; Wang, R. J. Organomet. Chem., 1986, 314, 357.
135. Farr, J.P.; Olmstead, M.M.; Hunt, C.H.; Balch, A.L. Inorg. Chem., 1983, 22, 3387.
136. Alcock, N.W.; Moore, P.; Lampe, P.A.; Mok, K.F. J. Chem. Soc. Dalton Trans., 1982, 207.
137. Olmstead, M.M.; Maisonnat, A.; Farr, J.P.; Balch, A.L. Inorg. Chem., 1981, 20, 4060.
138. Wasserman, H.J.; Moody, D.C.; Paine, R.T.; Ryne, K.R.; Saluzar, K.V. J. Chem. Soc. Chem. Commun., 1984, 537.
139. Ehrlish, M.G.; Fronczek, F.R.; Watkins, G.R.; Newkome, G.R.; Hager, D.C. Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1984, 40, 78.
140. (a) Barder, T.J.; Cotton, F.A.; Powell, G.L.; Tetrick, S.M.; Walton, R.A. J. Am. Chem. Soc., 1984, 106, 1323. (b) Barder, T.J.; Tetrick, S.M.; Walton, R.A.; Cotton, F.A.; Powell, G.C. J. Am. Chem. Soc., 1983, 105, 4090.
141. Farr, J.P.; Olmstead, M.M.; Wood, F.E.; Balch, A.L. J. Am. Chem. Soc., 1983, 105, 792.
142. Farr, J.P.; Olmstead, M.M.; Hunt, C.H.; Balch, A.L. Inorg. Chem., 1981, 20, 1182.
143. Farr, J.P.; Olmstead, M.M.; Balch, A.L. J. Am. Chem. Soc., 1980, 102, 6654.
144. Boggess, R.K.; Huges, J.W.; Chew, C.W.; Kemper, J.J. J. Inorg. Nucl. Chem., 1981, 43, 939.
145. Lomakina, L.N.; Ignat Va, T.I.; Pisareve, S.A.; Ya Medved, T.; Kabachnik, M.I. Zh. Anal. Khim., 1980, 35, 86.
146. Wood, F.E.; Olmstead, M.M.; Farr, J.P.; Balch, A.L. Inorg. Chim. Acta , 1985, 97, 77.
147. Navrail, J.D.; Schulz, W.W.; Talbot, A.E. Actinide Recovery from Waste and Low Grade Resource; Harwood Academic: New York, 1982.
148. Schulz, W.W.; Narail, J.D. In Recent Developments in Separation Science ; Li, N.N., Ed.; CRC: Boca Raton, Fla., 1982; p.31.
149. Mecabe, D.J.; Russell, A.A; Karthikeyan, S.; Paine, R.T. Ryan, R.R.; Smith, B. Inorg. Chem., 1987, 26, 1230.
150. Lugan,N.; Lavigne, G.; Bonnet, J.J. Inorg. Chem., 1987, 26, 585.
151. Garrou, P.E. Chem. Rev., 1985, 85, 171.
152. Drent, E. Eur. Patent, Appl. Ep 271144 A2, 1988 through C.A., 1989, 110, 232239c.
153. Lindner, E.; Rauleder, H.; Wegner, P. Z. Naturforsch., B: Anorg. Chem., Org. Chem., 1984, 39 B, 1224.
154. Pruchnik, F.P.; Kuczewska-Patrzalek, G.; Wajda-Hermanowicz, K. Pol. Patent, Pl. 128,190,1984 through C.A., 1986, 104, 209509h.
155. Lee, C-L.; Yang, Y-P.; James, B.R. Unpublished results.
156. Joo, F.; Tóth, Z. J. Mol. Catal., 1980, 8, 369.
157. (a) Kullberg, M.L.; Kubiak, C.P. Organometallics, 1984, 3, 632. (b) Kullberg, M.L.; Kukiak, C.P. C1 Mol. Chem., 1984, 1, 171. (c) Kullerg, M.L.; Lemke, F.R.; Powell, D.R., Kubiak, C.P. Inorg. Chem., 1985, 4, 3589.

Chapter 2

General Experimental Procedures

2.1. Materials

Spectral or reagent grade solvents, such as dichloromethane, benzonitrile, and diethyl ether, etc., were obtained from the commercial suppliers, Aldrich, Eastman, Fisher, or BDH. Where necessary, dichloromethane was dried over phosphorus pentoxide and distilled under nitrogen prior to use. Hexanes, THF, benzene and toluene were dried with sodium/ benzophenone ketyl and distilled just before use. Chloroform was purified by passing through an Alumina (neutral, Fisher Scientific) column. Methanol and ethanol were refluxed over alkoxides formed by reaction of Mg turnings with alcohol initiated by trace amount of I_{2}, and were distilled under nitrogen.

Deuterated solvents used in the present study, acetone- d_{6}, chloroform- d_{1}, toluene- d_{8}, dichloromethane $-\mathrm{d}_{2}$, and benzene $-\mathrm{d}_{6}$, were obtained from Merck Frosst Canada Inc., and degassed by three to six "freeze-pump-thaw" cycles for anaerobic NMR studies.

Anhydrous $\mathrm{HCl}(\mathrm{g})$ was supplied by BDH Chemical Co. Ethylene (CP Grade) was used as supplied from Matheson Gas Co. Argon, nitrogen, and oxygen (99.99%) were supplied by Union Carbide of Canada Ltd. All gases were used without purification.

Platinum and palladium were supplied on loan from Johnson Matthey Ltd. as $\left(\mathrm{PtCl}_{2}\right)_{\mathrm{n}}$, $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ and $\left(\mathrm{PdCl}_{2}\right)_{\mathrm{n}}$. Chromium trichloride hexahydrate, $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, was purchased from Aldrich Chemical Co. Potassium dichromate, $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (Aldrich), was used as supplied.

Diphenylchlorophosphine $\left(\mathrm{PPh}_{2} \mathrm{Cl}\right)$ and dichlorophenylphosphine (PPhCl_{2}) were purchased from Aldrich chemical Co. and distilled before use. Phosphorus trichloride, PCl_{3}, was supplied by Mallinckrodt chemical Co., and was purified by distillation at $70-72^{\circ} \mathrm{C}$ after 30 \min of vigorous reflux under N_{2}. 2-Bromopyridine, purchased from Aldrich, was purified by
stirring with NaOH pellets overnight at room temperature and then distilling from CaO under vacuum prior to use. 2-Chloropyridine (Aldrich Chemical Co.) was used without purification. Dimethylacetylenedicarboxylate, DMAD, supplied by Aldrich, was distilled under vacuum for kinetic studies only. Acrylonitrile, methacrylonitrile, crotonitrile and diethyl maleate (Aldrich) were distilled over CaO under reduced pressure and kept in the fridge. n -Butyllithium (1.60 M in hexane) and methyllithium (1.56 M in ether) were used as supplied from Aldrich. Dibenzylideneacetone, dba, was synthesized by a literature method. ${ }^{1}$ Anhydrous hydrazine and the hydrate (reagent grades) were supplied by MCB Co. and used without further purification. Maleic acid and fumaric acid, purchased from Fisher Scientific Co., were recrystallized twice from water. Aconitic acid, mesaconic acid, R, S-malic acid and maleic anhydride were supplied by Aldrich and used without further purification.

2.2. General instrumentation

Visible absorption spectra were recorded on a thermostated $\left(\pm 0.1^{\circ} \mathrm{C}\right)$ Perkin-Elmer 552A spectrophotometer, using spectral quartz cells of 1 or 10 mm path length. Absorbance data for kinetic experiments were obtained either from the digital display on the instrument at the wavelength of interest, or taken from the repetitive scanning spectra. Times were recorded either directly from a Lab-chron 1400 timer for faster reactions (10-20 s between readings), or by a built-in timer for slower reaction (3 to 90 min between readings). For recording visible spectra under anaerobic condition, the one type of cell shown in Fig. 2.1 was employed. The details of sample preparation and time recording for the kinetic studies will be described in Chapter 4, Sect. 4.2.

Infrared spectra were recorded on a Nicolet 5DX-FT or a Perkin-Elmer 598 spectrophotometer calibrated with the $1601 \mathrm{~cm}^{-1}$ peak of polystyrene film. Nujol mulls between KBr or CsI plates were normally used for solid state IR, while KRS-5 plates ($42 \% \mathrm{TlBr}+58 \%$ TII, Harshaw Chem. Co.) were used for the cis- $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ and cis- $\mathrm{PtCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ species. A KBr solution cell with path length 0.1 mm was used for solution IR samples.

Fig. 2.1. Schematic representation of a spectral cell.

Nuclear magnetic resonance spectra were obtained on a Varian XL-300 MHz spectrometer using 5 mm NMR tubes. ${ }^{1} \mathbf{H}$ chemical shifts were recorded in ppm relative to external TMS, and ${ }^{13} \mathrm{C}$ chemical shifts were relative to external TMS or the CDCl_{3} solvent peak at 77.1 ppm . All ${ }^{31} \mathrm{P}$ chemical shifts, both in solution and in solid state, were referenced to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. The ${ }^{195 \mathrm{Pt}}$ chemical shifts were referenced to the absolute resonance frequency of ${ }^{195 \mathrm{Pt}}$ which itself is relative to the ${ }^{1} \mathrm{H}$ resonance of TMS ; at $100 \mathrm{MHz}, \Xi \mathrm{Pt}=21.4$ $\mathbf{M H z}, 2,3$ or 64.2 MHz on the Varian XL-300 spectrometer. This Pt reference is -4535 ppm upfield from the $\mathrm{PtCl}_{6}{ }^{2}$ - standard ${ }^{4}$ which is frequently cited in the literature. Solid state ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a Bruker CXL- 100 MHz instrument using a cross polarization and magic angle spinning FT programme. The high-frequency-positive convention, recommended by IUPAC, has been used in reporting all chemical shifts. Simulation of ${ }^{31} \mathrm{P}$ and

195Pt NMR spectra were performed using the Bruker software PANIC85 on BDS-1000, or UBCPANIC on ASPECT-2000. The fit of the simulation was based on matching the individual peak positions of the experimental and calculated spectra.

Melting points of phosphine ligands were determined using a 6548-J17 microscope equipped with a Thomas model 40 micro, hot stage, melting point apparatus. GC analyses for organic compounds (in Ch. 5) were performed with an Hewlett-Packard 5890A instrument using a thermal conductivity detector and a 6 -ft Porapak-Q column. Conductivity measurements were recorded in a cell (Fisher Scientific Co., cell constant 1.0) connected to a Beckman Serfass conductance bridge. pH -Titrations were carried out in aqueous media using a Corning 12 pH meter and a combination glass electrode; care was taken to ensure that each reading recorded represented equilibrium conditions. The atmosphere was kept CO_{2}-free by bubbling presaturated N_{2} through the solution. The temperature was maintained constant within $0.2^{\circ} \mathrm{C}$ by a water-bath equipped with a thermocouple.

Elemental analyses were performed by Mr. P. Borda of this department. The X-ray . crystal structure determination of $\mathrm{Pt}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HT})$ was carried out by Dr. S.J. Rettig of this department.

2.3. Preparation of Pt and Pd starting materials

2.3.1. Dichlorobis(benzonitrile)-palladium(II) and -platinum(II)

The precursors $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}$ and $\mathrm{PtCl}_{2}(\mathrm{PhCN})_{2}$ were prepared by standard methods described in the literature ${ }^{5}$ using $\left(\mathrm{PdCl}_{2}\right)_{\mathrm{n}}$ and $\left(\mathrm{PtCl}_{2}\right)_{\mathrm{n}}$, respectively.

The $\mathrm{PtCl}_{2}(\mathrm{PhCN})_{2}$ compound was also synthesized from $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ by reaction with benzonitrile in a biphasic system. Some $\mathrm{K}_{2} \mathrm{PtCl}_{4}(2.0 \mathrm{~g}, 4.8 \mathrm{mmol}$) was dissolved in a minimum amount of water to which 30 mL of benzonitrile was added, and the mixture was then heated on a steam bath until the aqueous layer turned colourless. The yellow benzonitrile solution of $\mathrm{PtCl}_{2}(\mathrm{PhCN})_{2}$ was separated from the aqueous layer while still hot and then left at
$-20^{\circ} \mathrm{C}$ overnight. The yellow crystals that separated were collected by filtration, washed carefully with $\mathrm{Et}_{2} \mathrm{O}$, and dried in vacuo at $80^{\circ} \mathrm{C}$; yield 1.2 g (55\%). Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{Pt}$: C 35.61, H 2.13, N 5.93; found: C 35.77, H 2.11 , N 5.96.

2.3.2. Cis-dichloro(1, 5-cyclooctadiene)platinum(II)

The cis- $-\mathrm{PtCl}_{2}$ (COD) complex was prepared by a published procedure, 6 the purity being ascertained by elemental analysis; yield 76\%. Anal. calcd. for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{Pt}$: C 25.68, H 3.23; found: C 26.02, H 3.45.

2.3.3. Tris(dibenzylideneacetone)dipalladium(0), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$

The title compound, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, was prepared by a modified literature procedure; ${ }^{7}$ the benzonitrile precursor was used instead of $\left[\mathrm{PdCl}_{2}\right]_{\mathrm{n}}$. To a reaction flask containing 150 mL MeOH was added $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}(2.3 \mathrm{~g}, 6 \mathrm{mmol}), \mathrm{dba}(4.6 \mathrm{~g}, 19.0 \mathrm{mmol})$ and sodium acetate ($3.9 \mathrm{~g}, 47.5 \mathrm{mmol}$). The mixture was refluxed for 1 h and then cooled to r.t. The precipitated product was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$ and acetone successively, and dried in vacuo to give a reddish purple solid; yield $4.0 \mathrm{~g}(73 \%)$. This compound was redissolved in hot CHCl_{3} (130 mL) and reprecipitated with diethyl ether (100 mL) to yield the solvated, dark purple, microcrystalline compound $\mathrm{Pd}_{2}(\mathrm{dba}) 3 \cdot \mathrm{CHCl}_{3}$. Anal. calcd. for $\mathrm{C}_{51} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Pd}_{2} \cdot \mathrm{CHCl}_{3}: \mathrm{C} 60.34$, H 4.19; found: C 59.87, H 4.01 .

2.3.4. $\operatorname{Bis}\left(\right.$ dibenzylideneacetone)platinum(0), $\mathrm{Pt}(\mathrm{dba})_{2}$

The $\mathrm{Pt}(\mathrm{dba})_{2}$ complex was prepared according to a literature procedure. ${ }^{8}$ A hot aqueous solution (5 mL) of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(1.0 \mathrm{~g}, 2.4 \mathrm{mmol}$) was added to a well stirred, refluxing solution of $\mathrm{dba}(1.6 \mathrm{~g}, 6.7 \mathrm{mmol})$ and sodium acetate ($2.6 \mathrm{~g}, 32 \mathrm{mmol}$) in $\mathrm{EtOH}(50 \mathrm{~mL})$ under N_{2}. The solution rapidly turned dark green and was left refluxing for 5 h (10 min in the original procedure). The mixture was cooled and the resulting black precipitate was filtered off. The crude product was run through a silica gel column using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The purple eluent was
collected, and evaporated to dryness, and the resulting solid dried in vacuo; yield $0.97 \mathrm{~g}(61 \%)$. Anal. calcd. for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Pt}$: C 61.53, H 4.25; found: C 60.97, H 4.41.

2.4. Preparation of 2-Pyridylphosphines

Syntheses of $\mathrm{PPh}_{3-\mathrm{n}} \mathrm{Py}_{\mathrm{n}}$, or $\mathrm{PN}_{\mathrm{n}}(\mathrm{n}=1,2,3)$, were carried out under N_{2} using conventional bench-top techniques for manipulation of air-sensitive compounds. 9 The phosphines, for convenience, are designated as $\mathrm{PN}_{1}, \mathrm{PN}_{2}$, and PN_{3}, respectively, according to the number of incorporated pyridyl substituents. These abbreviations will be used throughout this thesis.

2.4.1. 2-(Diphenylphosphino)pyridine

The ligand $\mathrm{PPh}_{2} \mathrm{Py}$, or PN_{1}, was previously prepared in this group following the reported procedure ${ }^{10}$ via diphenylphosphine, $\mathrm{PPh}_{2} \mathrm{H}$, which was itself made according to a literature method. ${ }^{11}$ Diphenylphosphine is a bad smelling, toxic compound and is very airsensitive. All the manipulations were carried out in an efficient fumehood. The yield of the PN_{1} production step is 80%, while the overall yield from PPh_{3} is 56%. The reaction procedure is outlined in the following equations:

$$
\begin{aligned}
& \mathrm{PPh}_{3} \xrightarrow[+2 \mathrm{Li}]{\mathrm{THF}, \text { r.t. }} \mathrm{PPh}_{2} \mathrm{Li}+\mathrm{PhLi} \xrightarrow[-2 \mathrm{LiOH}]{2 \mathrm{H}_{2} \mathrm{O}} \mathrm{PPh}_{2} \mathrm{H}+\mathrm{PhH} \\
& \mathrm{PPh}_{2} \mathrm{H} \xrightarrow[-\mathrm{CH}_{4}]{\text { THF, r.t. }} \mathrm{PPh}_{2} \mathrm{Li} \xrightarrow[\text {-LiCl }]{\text { 2-chloropyridine }} \mathrm{PPh}_{2} \mathrm{py}
\end{aligned}
$$

An alternative route was via the procedure used to make PN_{3}, but using $\mathrm{PPh}_{2} \mathrm{Cl}$ (80 mmol) in place of PCl_{3} (see below); white crystals of PN_{1} were obtained after recrystallization, yield $45-50 \%$. The latter preparation is preferred because it requires a shorter reaction time and simpler work-up procedure. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NP}$: C 77.54, H 5.36, N 5.32; found: C
76.92, H 5.37, N 5.14. M.p. $84.5-86^{\circ} \mathrm{C}$; lit. $82^{\circ} 10$ and $85^{\circ} \mathrm{C} .{ }^{12}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data $\left(\mathrm{CDCl}_{3}\right.$, r.t. $):-3.28$ (s).

2.4.2. Bis(2-pyridyl)phenylphosphine

The ligand PPhpy2 $\left(\mathrm{PN}_{2}\right)$ was prepared by the method described in the next section for Ppy3, but using PPhCl_{2} (40 mmol) instead of PCl_{3}. White crystals were obtained after recrystallization from acetone-petroleum ether (b.p. $30-60^{\circ} \mathrm{C}$), yield $53-60 \%$.

Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2}$ P: C 72.71, H 4.96, N 10.60 ; found: C 72.90, H 4.99, N 10.43. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ data $\left(\mathrm{CDCl}_{3}\right.$, r.t.): -1.98 (s). M.p. $96.7-98.3^{\circ} \mathrm{C}$; lit. $96^{\circ} \mathrm{C} .{ }^{12}$

2.4.3. Tris(2-pyridyl)phosphine

The ligand $\mathrm{Ppy}_{3}\left(\mathrm{PN}_{3}\right)$ was prepared by a modified version of a procedure described in the literature. ${ }^{13}$

A 50 mL of n -butyllithium (1.6 M in hexane, 80 mmol) was transferred to a flask containing 50 mL of diethyl ether at $-100^{\circ} \mathrm{C}$. 2-Bromopyridine ($8 \mathrm{~mL}, 80 \mathrm{mmol}$) was introduced and then the mixture was stirred vigorously at $-100^{\circ} \mathrm{C}$ for 4 h until the colour turned to deep red. Liquid $\mathrm{PCl}_{3}(2.3 \mathrm{~mL}, 27 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was then added dropwise via a syringe with vigorous stirring of the reaction solution. A light brown slurry was obtained. Before being warmed to r.t. gradually, the reaction mixture was stirred at $-90^{\circ} \mathrm{C}$ for another 2 h . The mixture was extracted with degassed $\mathrm{H}_{2} \mathrm{SO}_{4}(2 \mathrm{M}, 2 \times 100 \mathrm{~mL})$, and the aqueous layer collected. The aqueous solution was then made alkaline by adding saturated NaOH at $0^{\circ} \mathrm{C}$ and stirred, whereupon yellow crystals were deposited. The collected yellow crystals were washed thoroughly with $\mathrm{H}_{2} \mathrm{O}$ and then acetone: $\mathrm{H}_{2} \mathrm{O}$ (1:1), and recrystallized from acetone-petroleum ether (1:1) and dried in vacuo; yield 30-46\%.

Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{P}$: C 67.91, H 4.56, N 15.84 ; found: $\mathrm{C} 68.10, \mathrm{H} 4.45, \mathrm{~N}$ 15.87. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ data $\left(\mathrm{CDCl}_{3}\right.$, r.t.): -0.05 (s). M.p. $114.5-116^{\circ} \mathrm{C}$; lit. $115^{0} 12$ and 111 $113^{\circ} \mathrm{C} .14,15$

2.5. Preparation of $\mathbf{P t}(\mathrm{II})$ and $\mathbf{P d}(\mathrm{II})$ complexes of 2-pyridylphosphines

2.5.1. Cis-dihalobis(2-pyridyl)phosphineplatinum(II), 1a - 1c

The complexes cis $-\mathrm{PtCl}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}, \mathrm{n}=1\left(1 \mathrm{a}^{*}\right), 2(\mathbf{1 b})$ and 3 (1c), were obtained by reacting a yellow $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (50 mL) of cis $-\mathrm{PtCl}_{2}(\mathrm{PhCN})_{2}(\sim 1.0 \mathrm{~g}, 3.76 \mathrm{mmol})$ with a colourless solution of 2.0 equivalent of $\mathrm{PN}_{\mathrm{n}}(\mathrm{n}=1-3)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The reaction mixture was stirred for 1 h at r.t, and the resulting colourless solution was concentrated to ~ 15 mL before $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to complete the precipitation. The white solid (1a-1c) were collected by filtration and washed by $\mathrm{Et}_{2} \mathrm{O}$; yield $\sim 90 \%$. These compounds can also be made using cis- $-\mathrm{PtCl}_{2}(\mathrm{COD})$ in place of cis $-\mathrm{PtCl}_{2}(\mathrm{PhCN})_{2}$. The elemental analyses of compounds $\mathbf{1 a}-\mathbf{1 c}$ are listed in Table 2.1, while the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data are listed in Table 3.1.

Table 2.1. Elemental Analyses of Cis- $\mathrm{PtX} 2\left(\mathrm{PN}_{n}\right)_{2}$ Complexes

Complexes	C		H		N	
	calcd.	found	calcd.	found	calcd.	found
$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{P} 2 \mathrm{Pt}, 1 \mathrm{a}$	51.52	51.32	3.56	3.67	3.54	3.29
$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{I}_{2} \mathrm{P}_{2} \mathrm{Pt}, 3 \mathrm{a}$	41.86	42.03	2.89	3.05	2.87	2.60
$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}, 1 \mathrm{~b}$	48.36	46.44	3.30	3.32	7.05	6.66
$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{I}_{2} \mathrm{P}_{2} \mathrm{Pt}, 3 \mathrm{~b}$	39.32	38.94	2.68	2.74	5.73	5.57
$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}, 1 \mathrm{c}$	45.23	45.46	3.04	2.94	10.55	10.51
$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{Br}_{2} \mathrm{P}_{2} \mathrm{Pt}, 2 \mathrm{c}$	40.23	40.55	2.73	2.83	9.49	9.28
$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{I}_{2} \mathrm{P}_{2} \mathrm{Pt}, 3 \mathrm{c}$	36.77	36.53	2.47	2.46	8.58	8.41

The complexes cis $-\mathrm{PtX}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}(\mathrm{X}=\mathrm{Br}, \mathrm{n}=3(2 \mathrm{c}) ; \mathrm{X}=\mathrm{I}, \mathrm{n}=1(3 \mathrm{a}), 2$ (3b) and 3 (3c)) were made by metathesis of $\mathrm{cis}-\mathrm{PtCl}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}$ with the appropriate NaX . Complex $1 \mathrm{la}(0.20$ $\mathrm{g}, 0.250 \mathrm{mmol}), 1 \mathrm{~b}(0.20 \mathrm{~g}, 0.250 \mathrm{mmol})$ or $\mathbf{1 c}(0.20 \mathrm{~g}, 0.251 \mathrm{mmol})$ was suspended in

[^1]$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL), and about a five-fold excess of NaX dissolved in a minimum amount of water was added to the suspension. A small amount of $\mathrm{MeOH}(5 \mathrm{~mL})$ was introduced to homogenize the mixture, which was then stirred at r.t. for about 1 h . The solution turned to pale or bright yellow for bromide or iodide, respectively, and was then concentrated to about 8 mL ; the product precipitated was collected by filtration, washed extensively with $\mathrm{H}_{2} \mathrm{O}$ and MeOH , and dried in vacuo; yields $\sim 85 \%$.

The elemental analyses of compounds $\mathbf{2 c}$ and $\mathbf{3 a}-\mathbf{3 c}$ are also listed in Table 2.1; the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data are given in Table 3.1. Compounds $\mathrm{PtCl}_{2}\left(\mathrm{PN}_{1}\right) 2,1 \mathbf{a}$, and $\mathrm{PtI}_{2}\left(\mathrm{PN}_{1}\right) 2,3 \mathrm{a}$, have been reported previously by Farr et al. 16

2.5.2. Dihalobis(2-pyridylphosphine)palladium(II), 4-6

Most of the complexes under this heading have been made before, except 5b and $\mathbf{6 b}$. $\operatorname{PdCl}_{2}\left(\mathrm{PN}_{1}\right)_{2}, 4 \mathrm{a}$, and $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{2}\right)_{2}, 4$ b, were reported by Balch's group ${ }^{17}$ and Newkome's group ${ }^{18}$ respectively. The others were made in our own group via a simple substitution of the coordinated benzonitrile groups by the corresponding phosphine; ${ }^{19}$ however, these complexes were not characterized in terms of geometry and the elemental analyses were not satisfactory. Therefore, complexes $\mathbf{4 c}, 5 \mathrm{a}-5 \mathrm{c}$, and $\mathbf{6 a - 6 c}$ were prepared by the following procedures and characterized; 4 a and $\mathbf{4 b}$ were also prepared. The ${ }^{31} \mathrm{P}\left[{ }^{1} \mathrm{H}\right]$ NMR data of the complete series are listed in Table 3.2.

Compounds $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}(\mathbf{4 a}-4 \mathrm{c})$ were made by dissolving $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}(300 \mathrm{mg}$, $0.781 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and adding to this reddish-brown solution two equivalents of $\mathrm{PN}_{\mathrm{n}}(\mathrm{n}=1-3)$ dissolved in a minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$. After the solution mixture was stirred at r.t. for 30 min , a yellow solid slowly precipitated; $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added to complete the precipitation. Species $\mathbf{4 a}-\mathbf{4 c}$ were purified after dissolution and reprecipitation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ twice and dried in vacuo; yields $\sim 95 \%$.

The compounds $\operatorname{PdX}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}(\mathrm{X}=\mathrm{Br}, \mathrm{I} ; \mathrm{n}=1-3,5 \mathrm{a}-5 \mathrm{c}$ and $\mathbf{6 a}-6 \mathrm{c})$ were prepared through the same method of metathesis as used for 2 c and $\mathbf{3 b}$, 3c; yields $85-90 \%$. The
elemental analyses of $\mathbf{4 c}, 5 \mathrm{a}-5 \mathrm{c}$, and $\mathbf{6 a}-\mathbf{6 c}$, and the visible spectral data of $\mathbf{4 a - 4 c}, 5 \mathrm{a}-$ 5 c , and $6 \mathrm{a}-6 \mathrm{c}$, are summarized in Tables 2.2 and 2.3, respectively.

Table 2.2. Elemental Analyses of $\mathrm{PdX}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}$ Complexes

Complexes	$\begin{gathered} \text { C } \\ \text { calcd. found } \end{gathered}$		$\begin{gathered} \mathrm{H} \\ \text { calcd. found } \end{gathered}$		N calcd. found	
$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pd}, 4 \mathrm{a}$	58.01	57.89	4.01	4.27	3.98	4.20
$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{Br}_{2} \mathrm{P}_{2} \mathrm{Pd}$, 5a	51.51	51.42	3.56	3.53	3.53	3.42
$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{I}_{2} \mathrm{P}_{2} \mathrm{Pd}, 6 \mathrm{a}$	46.05	45.94	3.18	3.09	3.16	2.99
$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pd}, 4 \mathrm{~b}$	54.45	54.67	3.71	3.99	7.94	7.88
$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{Br}_{2} \mathrm{P}_{2} \mathrm{Pd}, 5 \mathrm{bb}$	48.36	46.84	3.30	3.52	7.05	6.71
$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{I}_{2} \mathrm{P}_{2} \mathrm{Pd}$, 6b	43.24	41.85	2.95	2.82	6.31	6.59
$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pd}, 4 \mathrm{c}$	50.90	50.62	3.42	3.34	11.87	11.90
$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{Br}_{2} \mathrm{P}_{2} \mathrm{Pd}, 5 \mathrm{c}$	45.22	44.55	3.04	3.00	10.55	9.94
$\mathrm{C} 30 \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{I}_{2} \mathrm{P}_{2} \mathrm{Pd}, 6 \mathrm{c}$	40.45	39.90	2.72	2.65	9.44	9.51

Table 2.3. Visible Spectral Data of $\mathrm{PdX}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}$ Complexes ${ }^{\text {a }}$

Complexes	$\lambda_{\max }\left(\varepsilon \times 10^{-3}\right)$
$\mathbf{4 a}$	$340(13.2)$
$\mathbf{5 a}$	$363(9.73)$
$\mathbf{6 a}$	$425(3.11)$
$\mathbf{4 b}$	$337(6.21)$
$\mathbf{5 b}$	$362(6.63)$
$\mathbf{6 b}$	$421(3.62)$
$\mathbf{4 c}$	$338(3.42)$
$\mathbf{5 c}$	$362(4.13)$
$\mathbf{6 c}$	$428(3.03)$

(a) Measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, at r.t.; λ in nm and ε in $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$.

Abstract

2.6. Preparation of homo- and hetero-binuclear platinum(I) and palladium(I) complexes of pyridylphosphines

2.6.1. Dihalobis(2-pyridylphosphine)diplatinum(I) (head-to-tail, HT), 7-9

The complexes $\mathrm{Pt}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2}(\mathrm{HT})(\mathrm{X}=\mathrm{Cl}, \mathrm{n}=1(7 \mathrm{a}), 2(7 \mathrm{~b}), 3(7 \mathrm{c}) ; \mathrm{X}=\mathrm{Br}, \mathrm{n}=3$ (8c)) were made using a modified literature procedure. ${ }^{16}$ A purple CHCl_{3} solution (60 mL) of $\mathrm{Pt}(\mathrm{dba})_{2}(0.25 \mathrm{~g}, 0.38 \mathrm{mmol})$ was added dropwise to a CHCl_{3} solution (40 mL) of the corresponding cis- $\mathrm{PtX}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)$ complex, 1a-1c, or $2 \mathrm{c}(0.38 \mathrm{mmol})$, and the mixture was then refluxed under N_{2} for 5 h . TLC was performed every 30 min until the $\mathrm{Pt}(\mathrm{dba})_{2}$ had all been consumed. The CHCl_{3} solvent was completely removed on the rotary evaporator, and the crude product mixture was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was then charged on to a silica gel column, and $2 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used as eluent. The reddish-orange eluate following the yellow dba band was collected. An orange (7a-7c) or brownish-orange solid (8c) was obtained after solvent evaporation, respectively. The products were recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ (1:1), and dried in vacuo; yield $50-60 \%$. The complex $\mathrm{Pt}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2}(\mathrm{HT})$, 7a, was previously made by Balch's group. 16

The $\mathrm{Pt}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HT})$ (7b) sample separated by column chromatography ($\sim 3 \mathrm{mg}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$, on top of which $\mathrm{MeOH}(1.0 \mathrm{~mL})$ was carefully placed. The red, hexagonal flakey single crystals of $\mathrm{Pt}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HT})(1 \mathrm{~S}, 2 \mathrm{~S})$ (see Sect. 3.2.3) for X ray diffraction analysis were thus grown by the slow diffusion of MeOH into the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at $5^{\circ} \mathrm{C}$.

Complexes $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2}(\mathrm{HT}), \mathrm{n}=2(9 \mathrm{~b})$ or $3(9 \mathrm{c})$, were prepared by metathesis of $\mathrm{Pt}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2}(7 \mathrm{~b}$ or 7 c) with NaI, using the method described for 3c (Sect. 2.5.1). The products were obtained as pure HT form in nearly quantitative yield. Analytical data of the HT isomers of $\mathrm{Pt}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{PN}_{n}\right)_{2}$ are given in Table 2.4, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data in Table 3.5.

2.6.2. Diiodobis(2-pyridylphosphine)platinum(I) (head-to-head, HH), $\mathbf{1 0}$

Complexes $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2}(\mathrm{HH}), \mathrm{n}=1$ (10a), $2(10 \mathrm{~b})$ and $3(10 \mathrm{c})$, were synthesized by the procedure described for $\mathrm{Pt}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2}(\mathrm{HT}), \mathrm{X}=\mathrm{Cl}(7 \mathrm{c})$ and $\mathrm{Br}(8 \mathrm{c})$; see Sect. 2.6.1. The reactions were completed within $30 \min$ to 1 h . The crude product was separated from free dba by column chromatography as described in Sect. 2.6.1. Pure HH isomer of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2}$, 10 a , was isolated (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) from the first chromatography separation, while a mixture of HH and HT isomers was obtained for $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}, 10 \mathrm{~b}$, and $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}, 10 \mathrm{c}$, with the HH isomer being a major product ($\mathrm{HH} / \mathrm{HT} \sim 80 \%$) (silica gel, $2 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); the yield of 10 a was 60%, and the yields of $10 \mathrm{~b}(+9 \mathrm{~b})$ and $10 \mathrm{c}(+9 \mathrm{c})$ were $\sim 65 \%$.

Table 2.4. Elemental Analyses of $\mathrm{Pt}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{PN}_{n}\right)_{2}$ Complexes

Complexes	$\mathrm{C}_{\text {calcd. found }}$		$\begin{gathered} \mathrm{H} \\ \text { calcd. found } \end{gathered}$		calcd. found	
$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}_{2}, 7 \mathrm{7a}$ (HT)	41.35	41.60	2.86	2.96	2.84	3.15
$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{I}_{2} \mathrm{P}_{2} \mathrm{Pt}_{2}, 10 \mathrm{a}$ (HH)	34.89	34.77	2.41	2.30	2.39	2.13
$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}_{2}, 7 \mathrm{~b}(\mathrm{HT})^{\text {a, } b}$	38.83	37.37	2.65	2.93	5.66	5.23
$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{I}_{2} \mathrm{P}_{2} \mathrm{Pt}_{2}, 9 \mathrm{~b}(\mathrm{HT})^{\text {b }}$	32.78	32.42	2.23	2.25	4.78	4.60
$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{I}_{2} \mathrm{P}_{2} \mathrm{Pt}_{2}, 10 \mathrm{~b}(\mathrm{HH})^{\text {b }}$	32.78	33.16	2.23	2.54	4.78	4.45
$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}_{2}, 7 \mathrm{c}$ (HT)	36.34	36.46	2.44	2.50	8.48	8.39
$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{Br}_{2} \mathrm{P}_{2} \mathrm{Pt}_{2}, 8 \mathrm{c}$ (HT)	33.34	33.20	2.24	2.34	7.78	7.72
$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{I}_{2} \mathrm{P}_{2} \mathrm{Pt}_{2}, 9 \mathrm{c}$ (HT)	30.67	30.69	2.06	2.14	7.15	6.96
$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{I}_{2} \mathrm{P}_{2} \mathrm{Pt}_{2}, 10 \mathrm{c}(\mathrm{HH})$	30.67	30.65	2.06	2.01	7.15	7.08

(a) This compound is hygroscopic. The X-ray crystal structure is done for the ($1 \mathrm{~S}, 2 \mathrm{~S}$) diastereomer (Chapter 3, Fig. 3.11). (b) Mixture of diastereomers is analyzed.

The 10 b and 9 b mixture ($0.28 \mathrm{~g}, 0.24 \mathrm{mmol}$), obtained after initial column chromatography (silica gel, $2 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), was separated as three bands using a preparatory TLC plate (2 mm silica gel, $2 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5$ runs). The first band contained

10b.2/10b. 3 ($83 \mathrm{mg}, 30 \%$), the second band contained 10 b .1 ($92 \mathrm{mg}, 33 \%$), and the third band contained 9b ($36 \mathrm{mg}, 13 \%$). Complexes $10 \mathrm{~b} .1,10 \mathrm{~b} .2$ and 10 b .3 are optical isomers (see Sect. 3.2.3).

The red, single crystals of 10 b .1 and $10 \mathrm{~b} .2 / 10 \mathrm{~b} .3$ were grown by the same diffusion method as described for 7 b (Sect. 2.6.1) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and $\mathrm{MeOH}(1.0 \mathrm{~mL})$ at $5^{\circ} \mathrm{C}$. Compound 10b. 1 grew as twin crystals on three occasions, and the $10 \mathrm{~b} .2 / 10 \mathrm{~b} .3$ mixture grew as highly disordered single crystals.

Complex $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HH}), \mathbf{1 0}$ c, was obtained pure by fractional crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH . The HT isomer 9c was presumably more soluble and was left in the mother solution. The orange solid that came out from the solution after overnight standing in a freezer was the desired isomer.

Analytical data of the HH isomers 10 a to 10 c are listed in Table 2.4 , and the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data are given in Chapter 3 (Table 3.6). Compound $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2}(\mathrm{HH}), 10 \mathrm{a}$, has been made previously by Balch's group. ${ }^{16}$ The spectroscopic data of 10 a , prepared in the present study, are in good agreement with the literature values.

Reaction of 10 c with greater than a two-fold excess of phosphine PN_{3} yields a new tetrakisphosphine binuclear platinum species. The procedure for the isolation of the tetraphenylborate salt of this binuclear species, $\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}\left(\mathrm{PN}_{3}\right)_{2}\right]\left(\mathrm{BPh}_{4}\right)_{2}, 41.2$, is described here. To an orange solution of $10 \mathrm{c}(30 \mathrm{mg}, 0.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added solid PN_{3} ($30 \mathrm{mg}, 0.11 \mathrm{mmol}$), and the mixture was stirred at r.t. for 15 min under air until the orange colour faded to nearly colourless. Water (15 mL) was added to extract the ionic species that had formed; to the extract was added excess $\mathrm{NaBPh}_{4}(0.1 \mathrm{~g}, 0.3 \mathrm{mmol})$ in MeOH (5 mL). The bright yellow precipitate that formed was collected by filtration, purified by reprecipitation from acetone using $\mathrm{Et}_{2} \mathrm{O}$, and dried in vacuo; yield $55 \mathrm{mg}(88 \%)$. Anal. calcd. for $\mathrm{C}_{108} \mathrm{H}_{88} \mathrm{~N}_{12} \mathrm{~B}_{2} \mathrm{P}_{4} \mathrm{Pt}_{2}$: C 62.07, H 4.24, N 8.04; found: C 62.43, H 4.35, N 7.94. UV/Vis.
(acetone, r.t.): $\lambda_{\max }=336,424 \mathrm{~nm} ; \varepsilon_{\max }=1.6 \times 10^{4}, 1.1 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$. Molar conductivity $\left(\mathrm{CH}_{3} \mathrm{CN}\right.$, r.t.): $204.3 \Omega^{-1} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}$ at $1.9 \times 10^{-3} \mathrm{M} .{ }^{31} \mathrm{P}$ and ${ }^{195} \mathrm{Pt}$ NMR: see Sect. 4.4.

2.6.3. Dihalobis(2-pyridylphosphine)dipalladium(1) (HT) (X = Cl, $\mathrm{Br}, \mathrm{I}), 11$ - 13

Most of the binuclear palladium(I) HT isomers have been made before, except $\mathrm{Pd}_{2} \mathrm{X}_{2}(\mu$ $\left.\mathrm{PN}_{2}\right)_{2}, \mathrm{X}=\mathrm{Cl}(11 \mathrm{~b}), \mathrm{Br}(12 \mathrm{~b})$, or $\mathrm{I}(13 b)$. Complex $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{1}\right) 2$, 11a, was made by Maisonnat et al. ${ }^{20}$ and complexes $\mathrm{Pd}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2}(\mathrm{n}=1, \mathrm{X}=\mathrm{Br}(12 \mathrm{a})$ and $\mathrm{I}(13 \mathrm{a}) ; \mathrm{n}=3, \mathrm{X}=$ $\mathrm{Cl},(11 \mathrm{c}), \mathrm{Br}(12 \mathrm{c})$, and $\mathrm{I}(13 \mathrm{c})$) were made previously in this laboratory. ${ }^{19}$ The X-ray crystal structure of $\mathrm{Pd}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2}, 13 \mathrm{c}$, revealed the HT phosphine arrangement. ${ }^{16}$ However, it was uncertain whether the rest of the binuclear palladium complexes were also adopting the same arrangement. In an effort to clear up the ambiguity regarding the relative orientation of these pyridylphosphine complexes, the complete series 11 to 13 , a to c inclusive (Table 2.5), were made according to the following procedure.

A dark violet, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (20 mL) of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.22 \mathrm{~g}, 0.21 \mathrm{mmol})$ was added slowly into a suspension of $\mathrm{PdX}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}(0.42 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The resulting solution was stirred at r.t. for about 1 h until the suspended solid was all dissolved. The solution was concentrated to 10 mL , and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added slowly to yield the desired products, which were reprecipitated from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ two or three times, and dried under vacuum; yield $\sim 90 \%$. The elemental analyses and the visible spectral data are summarized in Tables 2.5 and 2.6.

The ${ }^{31} \mathrm{P}\left[{ }^{1} \mathrm{H}\right]$ NMR data of the complete series are listed in Chapter 3 (Table 3.8). The structural characterization of these binuclear compounds, with emphasis on the diastereomers present, is discussed in Chapter 3.

Table 2.5. Elemental Analyses of $\mathrm{Pd}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{PN}_{n}\right)_{2}(\mathrm{HT})$ Complexes

Complexes	C					
calcd. found		H calcd. found		N calcd. found		
$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2}, 11 \mathrm{a}$	51.40	51.17	3.48	3.25	3.46	3.73
$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{Br}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2}, 12 \mathrm{a}$	45.42	45.31	3.14	3.15	3.11	2.95
$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{I}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2}, 13 \mathrm{a}$	41.11	41.47	2.84	3.07	2.82	2.76
$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}, 11 \mathrm{~b}^{a}$	44.17	44.06	3.37	3.23	6.24	6.27
$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{Br}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2}, 12 \mathrm{~b}$	42.65	42.30	2.91	2.80	6.22	6.34
$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{I}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2}, 13 \mathrm{~b}$	38.62	37.60	2.63	2.78	5.63	5.29
$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2}, 11 \mathrm{c}$	44.25	44.28	2.97	3.01	10.32	10.26
$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{Br}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2}, 12 \mathrm{c}$	39.90	39.63	2.68	2.70	9.31	9.00
$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{I}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2}, 13 \mathrm{c}$	36.14	36.08	2.43	2.40	8.43	8.20

(a) The chlorine analysis was done for this particular compound: calcd. 15.80 , found 16.00 .

Table 2.6. Visible Spectral Data of $\mathrm{Pd}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{PN}_{n}\right)_{2}(\mathrm{HT})$ Complexes ${ }^{\text {a }}$

Complexes	$\lambda \max \left(\varepsilon x 10^{-3}\right)$	
12a	$348(13.7)$	$483(7.92)$
13a	$379(13.4)$	$540(10.8)$
11b	$333(10.8)$	$462(9.47)$
12b	$345(15.0)$	$476(9.90)$
13b	$376(15.3)$	$530(13.7)$
11c	$335(12.0)$	$460((8.43)$
12c	$348(11.6)$	$475(10.3)$
13c	$376(9.7)$	$525(11.7)$

(a) Measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; the wavelength λ is in nm and the molar absorptivity ε is in $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$.

2.6.4. Dihalobis[tri(2-pyridyl)phosphine]palladium(I)platinum(I) (HT), 14c - 16c

Complexes $\mathrm{PtPdX}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT})(\mathrm{X}=\mathrm{Cl}(\mathbf{1 4 c}), \mathrm{Br}(\mathbf{1 5 c})$ and $\mathrm{I}(\mathbf{1 6 c}))$ were prepared by reaction of the appropriate cis- $\mathrm{PtX}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ with $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ using the same conditions described for the syntheses of $\mathrm{Pt}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2}$ (HT) (Sect. 2.6.1). Head-to-tail isomers were formed exclusively. Analytical data are given in Table 2.7, while the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data are given in Chapter 3, Table 3.7.

Table 2.7. Elemental Analyses of $\mathrm{PtPdX}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT})$ Complexes

Complexes	$\begin{gathered} \text { Calcd. found } \end{gathered}$		$\begin{gathered} \mathrm{H} \\ \text { calcd. found } \end{gathered}$		$\mathrm{N}_{\text {calcd. found }}$	
$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{PdPt}, 14 \mathrm{c}$	39.90	39.96	2.68	2.75	9.31	9.03
$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{Br}_{2} \mathrm{P}_{2} \mathrm{PdPt}, 15 \mathrm{c}$	36.63	35.59	2.44	2.54	8.47	8.16
$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{I}_{2} \mathrm{P}_{2} \mathrm{PdPt}, 16 \mathrm{c}$	33.17	33.37	2.23	2.46	7.74	7.40

2.7. Preparation of the DMAD A-frame adducts

An excess amount of DMAD ($0.2 \mathrm{~mL}, 1.6 \mathrm{mmol}$) was added to a $20 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution containing ($0.1 \mathrm{~g}, 0.1 \mathrm{mmol}$) of the appropriate $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2}(\mathrm{HT})$ or $(\mathrm{HH})(\mathrm{n}=1-3)$ complexes at r.t. The reaction mixture was stirred for about 15 min until the colour of solution turned from orange to yellow. The volume of solution was then reduced on a rotary evaporator to about 3 mL , when the orange solid that deposited was collected, and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10$ $\mathrm{mL})$ to get rid of excess DMAD. The products $\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-\mathrm{DMAD})\left(\mu-\mathrm{PN}_{1}\right)_{2}(\mathrm{HH})(17), \mathrm{P}_{2} \mathrm{I}_{2}(\mu-$ DMAD $)\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HT})(18)$, and $\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-\mathrm{DMAD})\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT})(19)$,were dried at $80^{\circ} \mathrm{C}$ in vacuo; yield 95\%. The complexes $\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{DMAD})\left(\mu-\mathrm{PN}_{3}\right)_{2}$, 20, and $\mathrm{PtPdCl}_{2}(\mu-\mathrm{DMAD})(\mu-$ PN_{3})2, 21, were also isolated in this way. A methylpropiolate (MPP) A-frame adduct, 22, was formed from 9c in situ in an NMR tube by adding the acetylene to a CDCl_{3} solution (0.8 mL) of $9 \mathrm{c} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data of $\mathbf{2 2}$, together with those of the isolated complexes, $\mathbf{1 7 - 2 1}$, inclusive are listed in Table 4.1.

The palladium DMAD adducts were also prepared from the $\operatorname{Pd}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right) 2$ precursors, in the same manner as the platinum adducts (Sect. 2.6.3). The compound $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2}$, which was found not to react with $\mathrm{CO},{ }^{20}$ reacts with DMAD , yielding an orange solid $\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-$ DMAD $)\left(\mu-\mathrm{PN}_{1}\right)_{2}$, 23. The corresponding PN_{2} complexes $\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{DMAD})\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HT})$, 24, and $\mathrm{Pd}_{2} \mathrm{I}_{2}(\mu-\mathrm{DMAD})\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HT}), 25$, are also among those isolated and characterized. The elemental analyses of 17-21 and 23-25 are presented in Table 2.8.

Table 2.8. Elemental Analyses of DMAD Insertion Products

complex	C		H		N	
calcd. found	calcd. found	calcd. found				
$\mathrm{C}_{40} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{I}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pt}_{2}, 17$	36.60	36.45	2.61	2.65	2.13	2.01
$\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{I}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pt}_{2}, 18$	34.72	34.88	2.45	2.41	4.26	4.50
$\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{I}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pt}_{2}, 19$	32.84	32.80	2.30	2.14	6.38	6.16
$\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pt}_{2}, 20$	38.14	38.11	2.67	2.86	7.42	7.17
$\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{PdPt}^{21} 21$	41.37	41.27	2.89	2.99	8.04	7.91
$\mathrm{C}_{40} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pd}_{2}, 23$	50.45	50.68	3.60	3.51	2.94	3.09
$\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pd}_{2}, 24$	47.72	47.59	3.38	3.50	5.87	5.69
$\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{I}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pd}_{2}, 25$	40.13	39.87	2.84	2.68	4.93	5.04

2.8. Preparation of $\operatorname{Pt}(\mathbf{0})$ complexes of pyridylphosphines and their derivatives from reactions with olefin, hydrogen chloride and methyl iodide

Experimental procedures similar to those described for the preparation of triphenylphosphine $\mathrm{Pt}(0)$ complexes ${ }^{5}$ were adopted for syntheses of the pyridylphosphine $\operatorname{Pt}(0)$ derivatives. Some modifications in the experimental conditions were made. All reactions and subsequent manipulations were performed under anaerobic conditions, using conventional techniques for handling air-sensitive compounds. 9

2.8.1. Tetrakis(tripyridylphosphine)platinum(0), 26c

(1) A saturated aqueous solution of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(0.50 \mathrm{~g}, 1.2 \mathrm{mmol}$; in 5 mL$)$ was added to a refluxing THF solution (20 mL) containing $\mathrm{KOH}(0.13 \mathrm{~g}, 2.4 \mathrm{mmol}$) and five equivalents of PN_{3} ($2.92 \mathrm{~g}, 11 \mathrm{mmol}$). The mixture was refluxed for about 10 min , and the resulting orange solution was cooled to r.t., when the water and THF layers separated. The THF was pumped off, and the yellow precipitate that had formed in the aqueous layer upon cooling was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL); this $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was subsequently transferred via a cannula tube to another flask where the extract was dried over MgSO_{4} for 2 h . The drying agent was filtered off, and hexane was introduced to the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ filtrate until the precipitate reformed again; the solid was collected, washed thoroughly with hexane, and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane (v/v 1:1) to give a yellow solid, which was dried in vacuo at r.t.; yield $0.65 \mathrm{~g}, 43 \%$.
(2) A benzene suspension of cis $-\mathrm{PtCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}(0.30 \mathrm{~g}, 0.38 \mathrm{mmol}$; in 30 mL$)$ with PN_{3} ligand ($0.30 \mathrm{~g}, 1.14 \mathrm{mmol}$) was refluxed at $80^{\circ} \mathrm{C}$. Hydrazine hydrate in benzene (10% by vol) was added dropwise to the mixture with vigorous stirring until all the white solid had dissolved. The yellow solution thus formed was refluxed for another 10 min and then cooled to $5^{\circ} \mathrm{C}$. The yellow solid that formed upon concentration of the solution to 10 mL was collected by filtration and redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL). Compound 26c, obtained by a reprecipitation procedure using hexane ($\sim 20 \mathrm{~mL}$), was then collected and dried in vacuo; yield $0.19 \mathrm{~g}, 40 \%$.*

Compound 26c obtained from either method (1) or (2) has the same ${ }^{31} \mathrm{P}$ and ${ }^{195} \mathrm{Pt} \mathrm{NMR}$ solution spectra which prove the identity of the complex but satisfactory elemental analysis was not obtained. Anal. (optimum) calcd. for $\mathrm{C}_{60} \mathrm{H}_{48} \mathrm{~N}_{12} \mathrm{P}_{4} \mathrm{Pt}$: C 57.37, H 3.85, N 13.38 ; found: C 59.38, H 3.80, N 13.49. ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3},-40^{\circ} \mathrm{C}\right): \delta_{\mathrm{P}}=30.1\left(\mathrm{~s}^{\dagger}\right),{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=3829 \mathrm{~Hz}$. ${ }^{195 \mathrm{Pt}}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3},-40^{\circ} \mathrm{C}\right): \delta_{\mathrm{P}}=-538.3$ (quintet), ${ }^{1} \mathrm{~J}_{\mathrm{Pt}-\mathrm{P}}=3840 \mathrm{~Hz}$.

[^2]Use of ethanol, the solvent used in the original preparation of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}, 5$ resulted in formation of orange solutions on reaction of $\mathrm{PtCl}_{4}{ }^{2-}$ with PN_{3} or cis- $\mathrm{PtCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ in the presence of $\mathrm{N}_{2} \mathrm{H}_{4}$; upon concentration, the solutions yielded only a red oil.

An oxygen complex of $\mathbf{2 6 c}$, tentatively formulated as $" \mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{3} \mathrm{O}_{2}$ ", was isolated as an orange solid by leaving crude 26c, obtained from method (2) ($\sim 80 \mathrm{mg}, 0.064 \mathrm{mmol}$), in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and hexanes (15 mL) at $0^{\circ} \mathrm{C}$ under N_{2} for four days ($\sim 30 \mathrm{mg}$, yield 38%). Anal. calcd. for $\mathrm{C}_{45} \mathrm{H}_{36} \mathrm{~N}_{9} \mathrm{O}_{2} \mathrm{Pt}$: C 52.83, H 3.55, N 12.32 ; found: $\mathrm{C} 52.23, \mathrm{H} 3.51, \mathrm{~N} 11.85$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, r.t. $): \delta_{P}=23.3(\mathrm{~d}), 22.5(\mathrm{t}) ; \mathrm{J}_{\mathrm{PtP}}=2700,4050 \mathrm{~Hz} ; \mathrm{J}_{\mathrm{PP}}=14 \mathrm{~Hz} . \mathrm{IR}$ data are given in Fig. 5.5.

2.8.2. Tris[2-(diphenylphosphino)pyridine]platinum(0), 27a

The exact experimental procedure described for the synthesis of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{3}$ was followed. 5^{5} A saturated aqueous solution of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(1.0 \mathrm{~g}, 2.4 \mathrm{mmol}$; in 10 mL$)$ was added to a refluxing EtOH solution (20 mL) containing $\mathrm{KOH}(0.27 \mathrm{~g}, 4.8 \mathrm{mmol})$ and 3.5 equivalents of PN_{1} ligand ($2.3 \mathrm{~g}, 8.5 \mathrm{mmol}$). The mixture was refluxed for 20 min , and the resulting yellowish-orange solution was cooled to r.t. and then concentrated to 15 mL . A yellow solid that formed was collected by filtration and then washed with cold EtOH (5 mL) thrice. This product was then redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$, reprecipitated by the addition of hexane (20 $\mathrm{mL})$, and then dried in vacuo; yield of $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{3} 1.7 \mathrm{~g}(72 \%)$. Anal. calcd. for $\mathrm{C}_{51} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{P}_{3} \mathrm{Pt}$: C 62.19, H 4.30, N 4.27; found: C 62.63, H 4.49, N 3.90. ${ }^{31} \mathrm{P}\left[{ }^{1} \mathrm{H}\right\}$ NMR (toluene-d 8 , $-70^{\circ} \mathrm{C}$): $\delta_{\mathrm{P}}=57.02(\mathrm{~s}),{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=4444 \mathrm{~Hz} .{ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\right.$ toluene $-\mathrm{d}_{8},-70^{\circ} \mathrm{C}$): $\delta_{\mathrm{Pt}}=-300.3$ (quartet), ${ }^{1}{ }^{\mathrm{JPtP}}=4433 \mathrm{~Hz}$.

2.8.3. Olefin derivatives from $\operatorname{Pt}(0)$ complexes of pyridylphosphines

2.8.3.1. Acrylonitrile, methacrylonitrile and crotonitrile complexes (44a, 44c, 45a, 46a)

A solution of excess acrylonitrile (distilled, $\sim 1 \mathrm{ml})$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was degassed by the freeze-and-thaw method three times. This solution was added dropwise to a suspension of $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{3}(93 \mathrm{mg}, 0.094 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ until the yellow solid dissolved and the solution turned colourless. This reaction mixture was then left at $-20^{\circ} \mathrm{C}$ overnight. A white solid which deposited on the side-wall of the flask was collected. The supernatant was then transferred to a beaker where a second crop of solid was obtained by scratching the side of the beaker. The product $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CHCN}\right), 44 \mathrm{a}$, is air-stable; yield 54 mg (air dried), $\sim 75 \%$. Pumping on the wet reaction product resulted in reformation of yellow $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{3}$.

The complex $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{2}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CHCN}\right), 44 \mathrm{c}$, was formed in situ in an NMR tube when an excess of liquid acrylonitrile was added to a yellow CDCl_{3} solution of $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{4}$ at r.t. The colour of the resulting solution became pale yellow.

The exact procedure outlined for isolation of the acrylonitrile complex 44a was also used for synthesis of the methacrylonitrile and crotonitrile species. The complexes $\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{2}\left(\eta^{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CN}\right), 45 \mathrm{a}$, and $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}\left(\eta^{2}-\mathrm{CH}_{3} \mathrm{CHCHCN}\right), 46 \mathrm{a}$, are also white solids. Because a mixture of cis and trans crotonitrile is used, two isomers of 46a which differ in the geometry of the olefin are obtained (Sect. 5.2.1). Yields of 45a, 46a are $\sim 60 \%$.

Unfortunately, because of the loss of coordinated olefin on pumping, these olefin complexes (44a, 45a, 46a) could not be dried properly and therefore did not analyze to a satisfactory standard for confirmation of their chemical formulation.
2.8.3.2. Maleic anhydride (MA) and diethyl maleate (DEMA) complexes (47a, 47c 48a)

A saturated solution of maleic anhydride, MA , in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was degassed by three freeze-and-thaw cycles and added slowly to a solution of $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{3}(98 \mathrm{mg}, 0.1 \mathrm{mmol})$ in benzene (20 mL). After the solution rapidly became pale yellow, n -hexane (20 mL) was added. The pale yellow precipitate that gradually formed upon cooling the solution to $-20^{\circ} \mathrm{C}$ was filtered, washed with $\mathrm{Et}_{2} \mathrm{O}$, and dried in vacuo; yield of $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}\left[\eta^{2}-(\mathrm{CHCO})_{2} \mathrm{O}\right], 47 \mathrm{a}$, is $89 \%(72 \mathrm{mg})$. Anal. calcd. for $\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Pt}$: C 55.68, H 3.69, N 3.42; found: C 55.61, H 4.00, N 3.19.

The $\operatorname{Pt}\left(\mathrm{PN}_{3}\right)_{4}$ complex also reacts with MA, under the same experimental conditions used for the synthesis of 47a, to form a pale yellow compound $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{2}\left[\eta^{2}-(\mathrm{CHCO})_{2} \mathrm{O}\right]$, 47c; yield 80%. Anal. calcd. for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Pt}$: C 49.58, H 3.18, N 10.21 ; found: C $49.25, \mathrm{H} 3.19, \mathrm{~N}$ 10.42 .

The preparation of a mixture of $\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{2}(\mathrm{DEMA}), 48 \mathrm{a} .1$, and $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}(\mathrm{DEFM})(\mathrm{DEFM}$ $=$ diethyl fumarate), 48a.2, was carried out in $\mathrm{Et}_{2} \mathrm{O}$ using $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{3}$ as described for the preparation of 47 a . The addition of DEMA in $\mathrm{Et}_{2} \mathrm{O}$ was controlled very carefully in order to obtain a solid product, because excess DEMA resulted in the formation of a white, colloidal product. White microcrystals of 48a. 1 and 48a. 2 were obtained upon leaving the solution at $-20^{\circ} \mathrm{C}$ for two days; yield 30%. Anal. calcd. for $\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Pt}$: C 56.43, H 4.51, N 3.13; found: C 55.95, H 4.72, N 3.37 .

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data of $47 \mathrm{a}, 47 \mathrm{c}, 48 \mathrm{a} .1$ and 48a.2 are presented in Table 5.2.
2.8.4. Hydridochloro derivatives from $\mathrm{Pt}(0)$ complexes of pyridylphosphines
2.8.4.1. Trans-chlorohydridobis[(2-diphenylphosphino)pyridine]platinum(II), 50a

The complex trans- $\mathrm{Pt}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PN}_{1}\right) 2$, 50a, was obtained by reaction of a THF solution (40 mL) of $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{3} 27 \mathrm{a}$ ($200 \mathrm{mg}, 0.2 \mathrm{mmol}$), initially under N_{2}, with anhydrous HCl gas at 1 atm .

The solution was stirred vigorously for 20 min until the yellow colour dissipated. Excess HCl was pumped off completely and an N_{2} atmosphere was re-established. Hexane (40 mL) was then laid on top of the colourless THF solution, the mixture then being left in a freezer at $-20^{\circ} \mathrm{C}$ for 72 h . White crystals formed and these were collected by filtration and washed with hexanes/THF ($\mathrm{v} / \mathrm{v} 1: 1$) and then THF alone; yield 67 mg (45%). The complex, 50 a , is airsensitive and turns orange when exposed to air. Anal. calcd. for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{ClP}_{2} \mathrm{Pt}$: C $53.87, \mathrm{H}$ 3.86, N 3.70; found: C 54.01, H 4.31, N 3.34. IR (Nujol): $\mathrm{VPHH}_{\mathrm{PH}}=2212 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR of the hydride $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, r.t. $): \delta=-16.32$ (t), $\mathrm{J}_{\mathrm{PH}}=12.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{PLH}}=1213 \mathrm{~Hz} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, r.t.): $\delta=30.00$ (s), JPtP $=3031 \mathrm{~Hz}$.

Excess HCl in solution, after the reactant solution turned colourless, must be removed immediately because otherwise the reaction is more complex. A new, white solid was isolated under similar experimental conditions in the presence of excess HCl . The IR and ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right]$ NMR data of this unknown platinum hydride species are different from those of 50 a : IR (CDCl_{3}): $\mathrm{v}_{\mathrm{PtH}}=2219 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR of the hydride $\left(\mathrm{CDCl}_{3}\right.$, r.t. $): ~ \delta=-15.5$ (br. s), $\mathrm{JPtH}=$ $1173 \mathrm{~Hz} ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, r.t. $): \delta=35.2(\mathrm{~s}), \mathrm{JPtP}=3136 \mathrm{~Hz}$.
2.8.4.2. Attempted preparation of hydridochlorobis[tri(2-pyridyl)phosphine]platinum(II)

The following procedures were used for the preparation of the title complex:
(1) Tetrakis[tris(2-pyridyl)phosphine]platinum(0), 26c, ($31.4 \mathrm{mg}, 0.024 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~mL}\right.$). Anhydrous $\mathrm{HCl}(\mathrm{g})$ was bubbled through deoxygenated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for about 5 min , and this HCl -saturated solution (0.2 mL) was added slowly, using a syringe, to the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{2 6} \mathrm{c}$, the colour of the reaction mixture turning from bright yellow to greyish yellow. The solid that gradually deposited (30 min) was filtered, washed three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ hexanes ($5 \mathrm{~mL}, \mathrm{v} / \mathrm{v} 1: 1$) and dried in vacuo.
(2) Compound 26 c ($15.4 \mathrm{mg}, 0.012 \mathrm{mmol}$) was suspended in benzene (10 mL) under a positive pressure of N_{2} in a septum-capped Schlenk tube. The HCl (g) (5 mL at 1 atm) was
injected slowly, and the suspension was then stirred for about 10 min until the yellow solid dissolved. A canary yellow solid formed after 30 min , and was collected by filtration, washed twice with benzene (5 mL), and dried under vacuum.
(3) Some 26c ($10.2 \mathrm{mg}, 0.008 \mathrm{mmol}$) was suspended in THF (10 mL) at r.t.; and 0.5 mL THF solution of DMA $\cdot \mathrm{HCl}^{*}(0.016 \mathrm{M}, 0.008 \mathrm{mmol} ; 1.0$ equiv) was then added dropwise. The colour of the suspension turned from bright yellow to pale yellow upon stirring ($\sim 10 \mathrm{~min}$), and the suspension was allowed to settle at $0^{\circ} \mathrm{C}$. No further colour change was observed. The resulting canary yellow solid was collected and washed with THF ($3 \times 5 \mathrm{~mL}$) to remove DMA.
2.8.5. Iodo(methyl) derivatives from $\mathrm{Pt}(0)$ complexes of pyridylphosphines, trans$\operatorname{PtI}(\mathrm{Me})\left(\mathrm{PN}_{1}\right)_{2}, 52 \mathrm{a}, *$ and trans $-\mathrm{PtI}(\mathrm{Me})\left(\mathrm{PN}_{3}\right)_{2}, 52 \mathrm{c}$

Some $\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{3}(100 \mathrm{mg}, 0.10 \mathrm{mmol})$ was dissolved in benzene (20 mL) and four equivalents of $\mathrm{MeI}(0.035 \mathrm{~mL}, 0.40 \mathrm{mmol})$ were added. The reaction mixture was refluxed at $80^{\circ} \mathrm{C}$ for 20 min and then cooled to $\sim 5^{\circ} \mathrm{C}$. A pale yellow precipitate formed when the solution was concentrated by evacuation to 5 mL at this temperature. The solid was collected by filtration, redissolved in water (5 mL), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~mL}\right.$). The colourless $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ portion was then transferred via a cannula tube to another Schlenk flask where the solution was concentrated to 5 mL . The white solid of trans $-\operatorname{PtI}(\mathrm{Me})\left(\mathrm{PN}_{1}\right)_{2}, 52 \mathrm{a}$, was precipitated by addition of hexanes (10 mL); yield $58 \mathrm{mg}(67 \%)$. Anal. calcd. for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{IN}_{2} \mathrm{P}_{2} \mathrm{Pt}$: $\mathrm{C} 48.68, \mathrm{H}$ 3.62 , N 3.24; found: C 47.71, H 3.61, N 2.92. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, r.t.): $\delta_{\mathrm{p}}=26.82(\mathrm{~s})$, ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}=3078 \mathrm{~Hz} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, r.t. $): \delta_{\mathrm{Mc}}=0.05(\mathrm{t}){ }^{3} \mathrm{~J}_{\mathrm{PH}}=5.7,{ }^{2} \mathrm{~J}_{\mathrm{PtH}}=75 \mathrm{~Hz} . \quad\left(\left[\mathrm{MePN}_{1}\right] \mathrm{I}\right.$ was made in situ in the present study by adding excess MeI to the CDCl_{3} solution of PN_{1} at r.t.: $\left.\delta_{P}=17.5(\mathrm{~s}): \delta_{\mathrm{Me}}=3.21(\mathrm{~d}),{ }^{2} \mathrm{~J}_{\mathrm{PH}}=12.1 \mathrm{~Hz}\right)$.

[^3]Trans $-\mathrm{PtI}(\mathrm{Me})\left(\mathrm{PN}_{3}\right)_{2}, 52 \mathrm{c}$, was obtained in the same manner. The final product was isolated as a pale yellow solid; yield 57%. Anal. calcd. for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{IN}_{6} \mathrm{P}_{2} \mathrm{Pt}$: C 42.92, H 3.14, N 9.69; found: C 43.45, H 3.37, N 9.51. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, r.t. $): \delta_{\mathrm{P}}=25.64$ (s), ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}=$ 3133 Hz . ($\left[\mathrm{MePN}_{3}\right] \mathrm{I}$ was made in situ in the same manner as described for [MePN $\left.{ }_{1}\right] \mathrm{I}: \delta_{P}=$ 12.46 (s)).

2.9. Preparation of bis(maleato) and bis(malato) chromium (III) species

Preparations of $\mathrm{K}\left[\mathrm{Cr}(\text { maleato })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right], 53$, and $\mathrm{K}\left[\mathrm{Cr}(\text { malato })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, 54, complexes have not been reported in the literature. The procedure adopted here follows the reported synthesis for the cis- $\mathrm{K}\left[\mathrm{Cr}(\text { malonato })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ complex. ${ }^{22}$

2.9.1. Cis-potassium diaquobis(maleato)chromate(III) trihydrate, $\mathbf{5 3}$

Solutions of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(2.95 \mathrm{~g}, 0.01 \mathrm{~mol} ; 6 \mathrm{~mL})$ and maleic acid ($5.80 \mathrm{~g}, 0.05 \mathrm{~mol} ; 6$ mL) in boiling water were mixed, and allowed to react until no more carbon dioxide evolved. About 45 mL water was then added to the mixture. After being cooled, the solution was added very slowly with vigorous stirring to 100 mL of 95% ethanol; the product thus precipitated was collected by filtration, washed with 95% ethanol and ether, and dried in air, yield of the greyish blue solid was 5.4 g (78\%). Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{13} \mathrm{CrK}$: C 23.47 , H 3.45; found: C 23.59 , H 3.75. Visible spectral data in $\mathrm{H}_{2} \mathrm{O}$ ($\lambda_{\max } \mathrm{nm}, \varepsilon \mathrm{M}^{-1} \mathrm{~cm}^{-1}$): 420 (72.9), 572 (74.4).

2.9.2. Cis-potassium diaquobis(malato)chromate(III) monohydrate, 54

The procedure described for the preparation of the maleato complex was adopted, except that 3.42 g R , S-malic acid and $1.5 \mathrm{~g} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ were used instead; yield 4.1 g (90%). Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{13} \mathrm{CrK}$: C 23.47, H 3.45; found: C 23.46, H 3.35. Visible spectral data in $\mathrm{H}_{2} \mathrm{O}\left(\lambda_{\max } \mathrm{nm}, \varepsilon \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right): 420$ (76.4), 572 (77.0)

References

1. Conard, C.R.; Dolliver, M.A.; Organic Synthesis; Blatt, A.H., Ed.; John Wiley \& Sons: New York, 1943; Coll. Vol.2, p.167.
2. Brevard, C.; Granger, P. Handbook of High Resolution Multinuclear NMR; Wiley: New York, 1981; p. 200.
3. Georgii, I.; Mann, B.E.; Taylor, B.F. Inorg. Chim. Acta , 1984, 86, L81.
4. Kerrison, S.T.S.; Sadler, P.J. J. Mag. Res., 1978, 31, 321.
5. Hartley, F.R. Organometallic Rev. A., 1976, 6, 119.
6. McDermott, J.X.; White, J.F.; Whitesides, G.M. J. Am. Chem. Soc., 1976, 98, 652.
7. Ukai, T.; Kawazura, H.; Ishii, Y.; Bonnett, J.J.; Ibers, J.A. J. Organomet. Chem., 1974, 65, 253.
8. Moseley, K.; Maitlis, P.M. J. Chem. Soc. Dalton Trans., 1974, 169.
9. Shriver, D.F.; Drezdon, M.A. The Manipulation of Air-Sensitive Compounds, 2nd ed.; Wiley: New York, 1986.
10. Maisonnat, A.; Farr, J.P.; Olmstead, M.M.; Hunt, C.T.; Balch, A.L. Inorg. Chem., 1982, 21, 3961.
11. Bianco, V.P.; Boronzo, S. Inorg. Synth, 1976, 16, 161.
12. Mann, F.G.; Watson, J. J. Org. Chem., 1948, 13, 502.
13. Kurtev, K.; Ribola, D.; Jones, R.A.; Cole-Hamilton, D.J.; Wilkinson, G. J. Chem. Soc. Dalton, 1980, 55.
14. Keene, F.R.; Snow, M.R.; Stephenson, P.J.; Tiekink, E.R.T. Inorg. Chem., 1987, 27, 2040.
15. Boggess, R.K.; Zatko, D.A. J. Coord. Chem., 1975, 4, 217.
16. Farr, J.P.; Wood, F.E.; Balch, A.L. Inorg. Chem., 1983, 22, 3387.
17. Farr, J.P.; Olmstead, M.M.; Balch, A.L. Inorg. Chem., 1983, 22, 1229.
18. Newkome, G.R.; Evans, D.W.; Fronczek, F.R. Inorg. Chem. 1987, 26, 3500.
19. Lee, C-L.; James, B.R. unpublished results.
20. Maisonnat, A.; Farr, J.P; Balch, A.L. Inorg. Chim. Acta, 1981, 53, L217.
21. Thorburn, I.S. Ph.D Dissertation, University of British Columbia, 1985; Ch.2.
22. Chong, J.C. Inorg. Synth., 1976, 16, 81.

Chapter 3

Structures of $\mathbf{M}(\mathrm{II})$ and $\mathrm{M}(\mathrm{I})$ Pyridylphosphine Complexes and Their Solution Chemistry

3.1. Introduction

The oxidation state $\mathrm{M}(\mathrm{II})$ is the most common for both palladium and platinum. Due largely to the crystal field splitting effects (Fig. 3.1), ${ }^{1}$ these d^{8} metal ions prefer square-planar geometry because the greatest stabilization energy is achieved compared to any other coordination number and geometry. ${ }^{2}$ All the $\mathrm{M}(\mathrm{II})$ bisphosphine complexes are of square-planar geometry and are generally formulated as $\mathrm{MX}_{2} \mathrm{P}_{2}$, and consequently, two possible geometric isomers cis and trans* - exist (see below). Because of the potential catalytic properties of these divalent complexes, isomerization of one geometric form to another has been a research topic for several decades and studies in this area still remain active. 3-9 These mononuclear complexes of $\mathrm{Pt}^{\mathrm{II}}$ have also been used as models for catalytic intermediates in mechanistic investigations.10-12

cis

trans
$\mathrm{M}=\mathrm{Pd}, \mathrm{Pt} ; \mathrm{P}=$ tertiary phosphines;
$\mathbf{X}=$ halides, or other monoanions

Another now well established oxidation state for Pt and Pd is +1 , which was previously considered to be rare. ${ }^{13}$ However, this oxidation state is readily found among binuclear complexes, both homonuclear and heteronuclear, that contain a formal single metal-metal bond. 14,15 . The metal-metal bond formed by the overlap of single electrons on each metal stabilizes the binuclear framework against the disproportionation reaction $\left(\mathrm{M}_{2} \mathrm{I} \longrightarrow \mathrm{M}^{\mathrm{II}}+\mathrm{M}^{0}\right)-$ the reverse of the $\mathrm{M}_{2}{ }^{\mathrm{I}}$ synthesis, the conproportionation reaction. Two metal centres, acting cooperatively, offer unique reactivity patterns which differ from the well-established reactivity of

[^4]the mononuclear metal complexes: examples include the insertion of small molecules such as $\mathrm{H}_{2} \mathrm{~S}, 16 \mathrm{CO}, 14,17-19$ and $\mathrm{SO}_{2} 17,18$ into the metal-metal bond. In the field of catalysis particularly, the binuclear complexes have been used as simplified models for understanding the mechanisms of catalysis taking place on metal surfaces, because the bridging coordination mode available with binuclear systems may resemble a chemisorption mode of small molecules on such surfaces. ${ }^{10}$

Fig. 3.1. Relative energy levels of d-orbitals in different geometries.

The $\mathrm{M}(\mathrm{I})$ binuclear complexes ($\mathrm{M}=\mathrm{Pt}, \mathrm{Pd}$) to be described here are made from a conproportionation reaction of $\mathrm{M}(0)$ and $\mathrm{M}(I I)$ (see below). ${ }^{21,22}$ The pyridylphosphine ligands in these binuclear complexes adopt a P-N bridging mode, forming a five-member ring with the two metal atoms. The $\mathrm{Pt}(\mathrm{I})$ or $\mathrm{Pd}(\mathrm{I})$ centres in the molecule resemble $\mathrm{Pt}(\mathrm{II})$ or $\mathrm{Pd}(\mathrm{II})$ centres, and adopt a four-coordinated, square-planar configuration. Stereoisomerism thus arises from two different orientations of the bridging pyridyl ligand, that is, the head-to-head (HH) and head-totail (HT) configurations. The complexes prepared in the present work are shown below:

Head-to-Tail, HT
$\mathbf{M}_{1}=\mathbf{M}_{2}=\mathbf{P d}, \mathbf{P t}$
$\mathbf{M}_{1}=\mathbf{P d}, \mathbf{M}_{2}=\mathbf{P t}$
$\mathbf{X}=\mathbf{C l}, \mathrm{Br}, \mathrm{I}$
$\mathbf{P}=\mathbf{P h} \mathbf{P}, \mathbf{P h P p y}, \mathrm{Ppy}_{2}$

Head-to-Head, HH
$\mathrm{M}_{1}=\mathrm{M}_{2}=\mathrm{Pt}$
$\mathbf{X}=\mathrm{I}$
$\mathrm{P}=\mathrm{Ph}_{2} \mathrm{P}, \mathrm{PhPpy}, \mathrm{Ppy}_{2}$

The compound $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2}, 11 \mathrm{a}$, was prepared in 1981 by Maisonnat et al. ${ }^{21}$ Two years later, the syntheses of $\mathrm{Pt}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2}(\mathrm{HT})(\mathrm{X}=\mathrm{Cl}(7 \mathrm{a}), \mathrm{I}(9 \mathrm{a}))$ and $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2}(\mathrm{HH})$ (10a) were reported by Farr et al. 22 Independently, the tris(2-pyridyl)phosphine palladium binuclear complex, $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(11 c)$, was made in our group. ${ }^{20}$ The $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2}$ complex was reported not to give the insertion product with $\mathrm{CO} ;{ }^{21}$ also $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}$ was shown in the present work not to react with 1 atm CO in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature. The reactivity of the $\mathrm{M}-\mathrm{M}$ bond toward insertion of small molecules is common for the systems with the bridging diphosphine ligand bis(diphenylphosphino)methane, dppm, which was being used for gas separation study in our group originally. ${ }^{17}$ The lack of flexibility of the bridging pyridylphosphines was thought responsible for the loss of reactivity. ${ }^{21}$ However, the bridging pyridylphosphines are perhaps not as rigid as suggested because Lee and Yang in our group discovered that the reaction of dimethylacetylenedicarboxylate, DMAD, with $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}$ led to the formation of the bridged acetylene compound, $\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{DMAD})\left(\mu-\mathrm{PN}_{3}\right) 2 .{ }^{20}$ The interest in this thesis work was then directed more toward activation of unsaturated hydrocarbons, such as olefins and acetylenes. This study was also extended here to the platinum system. Use of bisand tris(2-pyridyl)phosphine increases gradually the hydrophilicity of the complexes, which was considered to be an asset for hydration catalysis. The aqueous solution chemistry of the tris(2-
pyridyl)phosphine complexes $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ will be considered in Sect. 3.4. The incidental phosphine chirality induced by the bridging of one pyridyl group within the PN_{2} systems leads to many interesting features in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic data, which will be dealt with later on.

The present study was originally directed to the potential catalytic hydration of activated olefins by the pyridylphosphine complexes. However, preliminary results showed that none of the $M(I)$ and $M(I I)$ complexes made activated olefins (acrylonitrile and maleic acid) either in organic solvents or in water, although, acetylenes (dimethylacetylenedicarboxylate, DMAD, and methylpropiolate, MPP) inserted into $\mathrm{M}_{2}{ }^{\mathrm{I}}$ metal-metal bond, forming olefinic complexes (Sect. 2.7), further chemistry on the bridging molecules was not observed. In this Chapter, the structural characterizations of $M(I I)$ mononuclear and $M(I)$ binuclear complexes of pyridylphosphines by spectroscopic methods are presented.

3.2. Structural characterization of pyridylphosphine complexes

3.2.1. $\mathrm{Pt}(\mathrm{II})$ pyridylphosphine complexes

The complexes synthesized are shown below:

$\mathrm{PtX}_{2}\left(\mathrm{PN}_{1}\right)_{2}$	$\mathrm{PtX}_{2}\left(\mathrm{PN}_{2}\right)_{2}$	$\mathrm{PtX}_{2}\left(\mathrm{PN}_{3}\right)_{2}$
$\mathrm{X}=\mathrm{Cl}$,	$\mathbf{1 a}$	$\mathrm{X}=\mathrm{Cl}, \mathbf{1 b}$
$\mathrm{X}=\mathrm{I}$,	3a	$\mathrm{X}=\mathrm{I}, \quad \mathbf{3 b}$

The synthetic route to dichlorobisphosphineplatinum(II) complexes is basically via reaction of phosphine with potassium tetrachloroplatinate(II) in ethanol solution, or phosphine reaction with a platinum(II) precursor containing a readily displaceable ligand such as cyclooctadiene and benzonitrile. The latter was chosen in the present study, and $\mathrm{PtCl}_{2}(\mathrm{PhCN})_{2}$ and PtCl_{2} (COD) were used as precursor complexes. Dichlorobis(2-pyridylphosphine) derivatives of platinum(II) were obtained by simple replacement of PhCN or COD with the appropriate phosphine ligand. The corresponding bromo and iodo complexes were readily
obtained by metathesis of $\mathrm{PtCl}_{2}(\mathrm{PhCN})_{2}$ with appropriate sodium halides. All these isolated mononuclear compounds show satisfactory elemental analysis (see Table 2.1). The $\mathrm{PtX}_{2}\left(\mathrm{PN}_{1}\right)_{2}$ ($\mathrm{X}=\mathrm{Cl}, \mathrm{I}$) species have been made previously. 22

The geometry of the dihalobis(2-pyridylphosphine)platinum(II) species 1-3 in solution can be easily identified by means of ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. The magnitude of the ${ }^{195} \mathrm{Pt}$ ${ }^{31} \mathrm{P}$ coupling constant diagnoses the geometry of the complex. It was first revealed by Pidcock and coworkers in 1962 that the cis ${ }^{1} \mathrm{~J}_{\text {Pt-P }}$ value was significantly larger than the corresponding trans one in $\mathrm{PtX}_{2}\left(\mathrm{PR}_{3}\right)_{2}$ systems. ${ }^{23}$ This observation was later supported by Grim et al. using a different series of $\mathrm{Pt}(\mathrm{II})$ bisphosphine complexes. ${ }^{24}$ Since these studies, the one bond ${ }^{1} \mathrm{~J}_{\text {Pt-P }}$ coupling constants have been well documented. $25-29$ The ratio of ${ }^{1} \mathrm{~J}_{\mathrm{Pt}-\mathrm{P}}$ cis to trans is normally about 1.5.24 The assignments for all the $\mathrm{PtX}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}$ listed in Table 3.1 are made according to the above coupling constant criteria. A typical ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of a cis- $\mathrm{PtX}_{2}\left(\mathrm{PN}_{n}\right)_{2}$ species is shown in Fig. 3.2.

Table 3.1. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Parameters for $\mathrm{PtX}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}$ Complexes

Complexes	Solvent	$\delta(\mathrm{ppm})$	$1^{1} \mathrm{P}_{\text {PPP }}(\mathrm{Hz})$	Ref. ${ }^{\text {a }}$
cis- $\mathrm{PtCl}_{2}\left(\mathrm{PN}_{1}\right)_{2}, 1 \mathrm{la}$	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	11.6(s)	3676	tw
cis- $\mathrm{PtI}_{2}\left(\mathrm{PN}_{1}\right)_{2} \cdot \mathbf{3 a}$	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	6.7(s)	3514	tw
trans- $\mathrm{PtI}_{2}\left(\mathrm{PN}_{1}\right)_{2}$	CDCl_{3}	9.8(s)	2503	22
cis $-\mathrm{PtCl}_{2}\left(\mathrm{PN}_{2}\right)_{2} .1 \mathrm{lb}$	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	13.3(s)	3765	tw
cis- $\mathrm{PtI}_{2}\left(\mathrm{PN}_{2}\right)_{2} \cdot \mathbf{3 b}^{\mathrm{b}}$	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	7.4(s)	3630	tw
trans $-\mathrm{PtI}_{2}\left(\mathrm{PN}_{2}\right)_{2}{ }^{\mathrm{b}}$	CDCl_{3}	10.4(s)	2500	tw
cis- $\mathrm{PtCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}, 1 \mathrm{c}^{\mathrm{c}}$	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	20.0(s)	3910	tw
cis- $\mathrm{PtBr}_{2}\left(\mathrm{PN}_{3}\right)_{2}, 2 \mathrm{c}^{\mathrm{c}}$	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	17.3(s)	3833	tw
cis- $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mathrm{PN}_{3}\right), 3 \mathrm{c}^{\mathrm{c}}$	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	11.24(s)	3660	tw

[^5]

Fig. 3.2. $121.4 \mathrm{MHz}{ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right]$ NMR spectrum of cis- $-\mathrm{PU}_{2}\left(\mathrm{PN}_{2}\right)_{2}, 3 \mathrm{~b}$, in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-50^{\circ} \mathrm{C}$.

Based on the assignments in Table 3.1, general trends in the 31P NMR chemical shifts and coupling constants of these pyridylphosphine $\mathrm{Pt}^{\mathrm{II}}$ complexes become obvious. A shift to lower resonance frequency is seen on going from $\mathbf{1 a}$ (11.6), through 1b (13.3), to 1c (20.0 ppm), when PN_{1} is replaced by PN_{2} and then PN_{3} for the chloro complexes; and an upfield shift of the phosphorus resonance is observed on going, for example, from 1c (20.0), through 2c (17.3), to 3 c (11.2 ppm), when chlorine is replaced by bromine and then iodine for the complexes of the same phosphine. The coupling constant $\mathrm{J}_{\mathrm{PPP}}$ of the complex increases, for example, on going from 1a (3676), through 1b (3765), to 1c (3910 Hz), and decreases on going from 1c (3910), through 2c (3833), to 3c (3660 Hz).

The downfield shift in the phosphorus resonance signals of the series compared to those of the free ligands, and the trend within 1 a to $\mathbf{1 c}$, can be understood in a simplified manner in terms of the ligand basicity and the metal deshielding ability. The ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right)$ NMR chemical shifts of the free ligands move downfield from -3.28 for PN_{1} through -1.7 for PN_{2} to -0.05 ppm for PN_{3}, indicating that the phosphorus nucleus in PN_{1} is more shielded than that in PN_{3} by the lone pair electron density and implying that as a free phosphine, PN_{1} is more basic than PN_{3}. Upon coordination, the phosphorus nucleus is deshielded by the metal. The M-P bond is formed by the σ donation of the phosphine lone pair of electrons to the empty dsp^{2} hybrid orbital and π back donation from the filled $\mathrm{d}_{\mathrm{xz}}, \mathrm{d}_{\mathrm{yz}}$ of the metal to the 3 d orbital of the phosphorus. A reduction of
electron density on the phosphorus nucleus occurs, and the phosphorus resonance on coordination is expected to shift downfield with respect to the free ligand resonance. The difference between the chemical shift of phosphorus in a coordination compound and in the free ligand is referred to as the coordination shift. The larger the coordination shift is , the greater the degree of electron transfer from the ligand to the metal. Apparently, PN_{3} with a coordination shift of 20.05 ppm in $\mathbf{1 c}$ perhaps forms a stronger interaction with $\mathrm{Pt}(\mathrm{II})$ than PN_{1} which shows a coordination shift of 14.9 ppm in 1a. This interaction between metal and ligand is also reflected in another NMR parameter, the $\mathrm{J}_{\mathrm{PtP}}$ coupling constant, where the trend is $\mathrm{J}_{\mathrm{PPP}}(\mathbf{1 c})>$ $\mathrm{J}_{\mathrm{PLP}(\mathbf{1 b})}>\mathrm{J}_{\mathrm{PtP}(1 \mathbf{1})}$, consistent with the conclusion made based on the coordination shifts. For a particular phosphine ligand, the observed upfield chemical shift trend $\delta_{\mathrm{Cl}}>\delta_{\mathrm{Br}}>\delta_{\mathrm{I}}$, as the halogen changes from chlorine through bromine to iodine, possibly reflects the successive weakening of the platinum-phosphorus σ-bond which is consistent with the decrease in the directly bonded spin-spin coupling constant ${ }^{1 \mathrm{~J}_{\mathrm{PtP}}}$, $\mathrm{J}_{\mathrm{PtP}(\mathrm{Cl})}>\mathrm{J}_{\mathrm{PtP}(\mathrm{Br})}>\mathrm{J}_{\mathrm{PtP}(\mathrm{I})}$, as observed previously. ${ }^{29 a}$

3.2.2. $\mathrm{Pd}(\mathrm{II})$ pyridylphosphine complexes

The complexes synthesized in this category are shown below:

$\mathrm{PdX}_{2}\left(\mathrm{PN}_{1}\right)_{2}$	$\mathrm{PdX}_{2}\left(\mathrm{PN}_{2}\right)_{2}$	$\mathrm{PdX}_{2}\left(\mathrm{PN}_{3}\right)_{2}$
$\mathrm{X}=\mathrm{Cl}, 4 \mathrm{a}$	$\mathrm{X}=\mathrm{Cl}, 4 \mathrm{~b}$	$\mathrm{X}=\mathrm{Cl}, 4 \mathrm{c}$
$\mathrm{X}=\mathrm{I}, \quad \mathbf{6 a}$	$\mathbf{X}=\mathbf{I}, \quad 6 \mathrm{~b}$	$\mathrm{X}=\mathrm{Br}, 5 \mathrm{c}$
		$\mathrm{X}=\mathrm{I}, \quad 6 \mathrm{c}$

As described in Chapter 2 (Sect. 2.5.2), $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}$ complexes were synthesized by the reaction of $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}$ with PN_{n} ligand in dichloromethane solvent. The bromo and iodo complexes were again obtained from the metathesis reaction of the $P \mathrm{~N}_{\mathrm{n}}$ dichloro species with sodium halides. In contrast to the $\mathrm{Pt}(\mathrm{II})$ phosphine complexes, the corresponding $\mathrm{Pd}(\mathrm{II})$ complexes presented problems in assignment of cis or trans geometry. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy reveals no information regarding metal-phosphorus (J_{MP}) coupling — palladium is

NMR inactive. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data of these palladium complexes (Table 3.2) do not serve independently as a structural probe. Apart from the NMR spectroscopy including ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\},{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left[{ }^{1} \mathrm{H}\right]$ which will be discussed later on in more detail, two other techniques - dipole moment measurement and infrared spectroscopy - used for identification of cis and trans isomers of $\mathrm{PdX}_{2} \mathrm{P}_{2}$ type compounds in the solution and in the solid state fail to provide a concrete assignment for these complexes. The basic principles and limitations of these techniques are discussed in the following paragraphs.

Table 3.2. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Parameters of $\mathrm{PdX}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}$ Complexes ${ }^{\mathrm{a}}$

Complexes	δ Chemical Shifts (ppm)		
cis	trans	Ref. ${ }^{\text {b }}$	
$\mathrm{PdCl}_{2}\left(\mathrm{PN}_{1}\right)_{2}, 4 \mathrm{a}$	$29.5(\mathrm{~s})$	$23.4(\mathrm{~s})$	$21 \& \mathrm{tw}$
$\mathrm{PdBr}_{2}\left(\mathrm{PN}_{1}\right)_{2}, 5 \mathbf{a}^{\mathrm{c}}$	$26.5(\mathrm{~s})$	$20.5(\mathrm{~s})$	tw
$\mathrm{PdI}_{2}\left(\mathrm{PN}_{1}\right)_{2}, 6 \mathrm{a}^{\mathrm{c}}$	-	$9.6(\mathrm{~s})$	tw
$\mathrm{PdCl}_{2}\left(\mathrm{PN}_{2}\right)_{2}, 4 \mathbf{b}$	$30.9(\mathrm{~s})^{\mathrm{d}}$	$17.7(\mathrm{~s})^{\mathrm{d}}$	30 \& tw
$\mathrm{PdBr}_{2}\left(\mathrm{PN}_{2}\right)_{2}, 5 \mathbf{b}^{\mathrm{c}}$	$27.9(\mathrm{~s})$	-	tw
$\mathrm{PdI}_{2}\left(\mathrm{PN}_{2}\right)_{2}, 6 \mathbf{b}^{\mathrm{c}}$	-	$8.9(\mathrm{~s})$	tw
$\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mathrm{PN}_{3}\right)_{2}, 4 \mathrm{c}$	$34.6(\mathrm{~s})$	-	tw
$\mathrm{PdBr}_{2}\left(\mathrm{PN}_{3}\right)_{2}, 5 \mathrm{c}^{\mathrm{c}}$	$32.1(\mathrm{~s})$	-	tw
$\mathrm{PdI}_{2}\left(\mathrm{PN}_{3}\right)_{2}, 6 \mathrm{c}^{\mathrm{c}}$	-	$7.0(\mathrm{~s})$	tw

(a) Recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at r.t. unless otherwise noted; (b) tw $=$ this work; (c) Recorded at $-70^{\circ} \mathrm{C}$;
(d) Cis and trans were made separately in ref. 30.

Dipole moment measurement: The geometric isomers of the square-planar type complexes $\mathrm{MX}_{2} \mathrm{~L}_{2}$ are distinguishable by their dipole moments. ${ }^{31,32}$ In principle, trans- $\mathrm{PdX}_{2} \mathrm{P}_{2}$ with $\mathrm{D}_{2 \mathrm{~h}}$ symmetry has zero dipole moment, as opposed to the cis-complex having a non-zero dipole moment, and measurement of the dielectric constant of a non-polar solvent containing either a cis or a trans isomer of $\mathrm{PdX}_{2} \mathrm{P}_{2}$ relates to the dipole moment of the solute. A zero dipole moment indicates that the solute is of trans structure; however, a non-zero dipole moment does not
exclude the presence of trans isomer. To distinguish whether the solute is pure cis or a mixture of cis and trans, a standard cis-compound of similar composition with known dipole moment is required. It is important for the test compound to have good solubility in a non-polar solvent. Unfortunately, the pyridylphosphine Pd(II) series do not dissolve in benzene or carbon tetrachloride (two common solvents used for measurement of dielectric constant) and are only slightly soluble in dichloromethane; the low solubilities made the measurement impractical.

Infrared spectroscopy (IR): The position and band shape of palladium halogen (VPd-X) and palladium phosphorus ($V_{\text {Pd-P }}$) stretches are often cited in the literature in reporting the geometry of $\mathrm{PdX}_{2} \mathrm{P}_{2}$ compounds. In principle, for the cis-isomer with $\mathrm{C}_{2 \mathrm{v}}$ symmetry, $\mathrm{Pd}-\mathrm{X}$ and Pd-P stretches appear as two bands; for the trans isomer with $\mathrm{D}_{2 \mathrm{~h}}$ symmetry, the symmetric stretch is IR inactive, therefore the Pd-X and Pd-P stretches appear as single bands. ${ }^{26,33}$ The palladium-halogen stretching frequencies in cis isomers are lower than those in trans isomers $\left[\mathrm{VPd}_{\mathrm{Pl}}(\mathrm{Clis})=280-310 \mathrm{~cm}^{-1}, \mathrm{~V}_{\mathrm{Pd}-\mathrm{Cl}(\text { trans })}=350-357 \mathrm{~cm}^{-1}\right], 34-40$ because the trans influence of phosphine in a cis isomer weakens the palladium halogen bond. ${ }^{37 b}$ On the other hand, the palladium-phosphorus stretching frequencies in cis isomers are higher than those in trans ones $\left[V_{P d-P(c i s)}=400-450 \mathrm{~cm}^{-1}, v_{P d-P}(\right.$ trans $\left.)=340-400 \mathrm{~cm}^{-1}\right], 34-36,37 a$ because the greater trans influence of the second trans phosphine reduces the palladium phosphorus bond strength more efficiently than does the halogen. As the halogen changes from chlorine through bromine to iodine, the reduced mass $\mu\left[\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)\right]$ increases, which leads to the lowering of vibration frequency according to the following equation:

$$
\bar{v}=\frac{1}{2 \pi c} \sqrt{\frac{k}{\mu}}
$$

The stretching frequencies of $\mathrm{Pd}-\mathrm{X}$ bands $(\mathrm{X}=\mathrm{Br}, \mathrm{I})$ should apparently be below 280 cm^{-1}. Unfortunately, the free pyridylphosphines absorb strongly in the stretching frequency range of the palladium-halogen and palladium-phosphorus atoms; the absorption bands of the coordinated pyridylphosphines also cover up the bands of interest and make the identification of the $\mathrm{Pd}-\mathrm{X}$ and $\mathrm{Pd}-\mathrm{P}$ vibration modes and geometry assignment impossible (Figs. 3.3 and 3.4).

Fig. 3.3. Infrared spectrum of the phosphine ligand PN_{3} in Nujol on KBr plate.

Nuclear magnetic resonance: Apart from the one bond metal-phosphorus coupling constant criterion which has been used very successfully in $\mathrm{PtX}_{2} \mathrm{P}_{2}$ systems, the magnitude of a two bond phosphorus-phosphorus coupling constant is also known to be dependent on whether the atoms are mutually cis or trans, and is thereby characteristic of the geometry of the complex. $25,41,42$ This is particularly important for the palladium systems where the one bond metal-phosphorus coupling does not exist. It is well established that, in bis(phosphine) complexes of palladium(II), phosphorus-phosphorus coupling in trans geometry is much greater than in cis; for example, the values of ${ }^{2} \mathrm{~J}_{\mathrm{PP}}$ in cis and trans $\mathrm{PdCl}_{2}\left(\mathrm{PMe}_{3}\right)_{2}$ are -8.0 and +610 Hz respectively. 42 Direct observation of a ${ }^{31}$ P NMR spectrum does not show this ${ }^{2} \mathrm{~J}_{\text {PP }}$ because the two phosphorus atoms are always chemically and magnetically equivalent. Indirect observation

Fig. 3.4. Infrared spectra of the complexes cis- $\mathrm{PtCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}, 1 \mathrm{c}$, and cis- $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}, 4 \mathrm{c}$, in Nujol on $\mathrm{KRS}-5$ plate $(42 \% \mathrm{TlBr}+58 \% \mathrm{TlI})$.
of ${ }^{2} \mathrm{~J}_{\mathrm{PP}}$ is possible, however, by ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopies in which the magnetic inequivalence of the phosphorus nuclei gives rise to a complicated second order spectrum. 26,42-46 These techniques work particularly well for determining the gross geometry of bis(phosphine) palladium(II) complexes with phosphines containing α-methyl or methylene groups, as the phosphines when trans are virtually coupled. The spin systems for these complexes are $A_{n} X X A^{\prime}{ }^{\prime}\left(n=3\right.$ or 2) for the ${ }^{1} H$ and $A X X '$ for the ${ }^{13} C\left\{{ }^{1} H\right\}$ NMR spectra, respectively, of the phosphine methyl and methylene groups ($\mathrm{A}=$ the measured nucleus, ${ }^{1} \mathrm{H}$, or ${ }^{13} \mathrm{C} ; \mathrm{X}={ }^{31} \mathrm{P}$). Mann et al. extended this method to an aromatic ${ }^{13} \mathrm{C}$ atom and obtained similar results. 44 The multiplicity of the ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}$ signals in the ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra is largely dependent on the magnitude of ${ }^{2} \mathrm{~J}_{\text {PP }}$. Unfortunately, the limited resolving power of the NMR spectrometer in many cases only allows for an estimate of ${ }^{2} J_{\text {PP }}$ after lengthy mathematical calculations and spectrum simulation. In practice, the splitting pattern - a doublet or triplet is found to be characteristic of the geometry. This is possible because in trans complexes the α methyls or -methylenes are virtually coupled, and ${ }^{2} \mathrm{~J}_{\text {PP }}$ is usually large (approximately 400 Hz) such that the phosphine ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left[{ }^{1} \mathrm{H}\right\}$ resonances appear as a 1:2:1 triplet. ${ }^{26}$ When the phosphines are mutually cis, these resonances normally appear as a $1: 1$ doublet since ${ }^{2} \mathrm{~J}_{\mathrm{PP}}$ is usually small. A ${ }^{1} \mathrm{H}$ NMR 1:2:1 triplet for the methyl or methylene protons will be observed when $\mid J_{P H}-J_{P^{\prime} H}{ }^{2}<2 J_{P P^{\prime}} \Delta v_{1 / 2}$, where $\Delta v_{1 / 2}$ is the resolving power of the spectrometer; and a $1: 1$ doublet will be observed when $\|_{\mathrm{PH}}-\left.\mathrm{J}_{\mathrm{P}^{\prime}}\right|^{2}>4 \mathrm{~J}_{\mathrm{PP}} \Delta \mathrm{v}_{1 / 2}$. The condition for the occurrence of a 1:2:1 triplet in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum is that $\mathrm{J}_{P C}-J_{P^{\prime} C}{ }^{2}<8 J_{P P}{ }^{\prime} \Delta v_{1 / 2}$. The intensity ratio of $1: 2: 1$ is essential in judging the authenticity of trans geometry because cis complexes sometimes give a pseudo triplet with variable intensity ratio, the so-called "filled-in" doublet. This pseudo triplet can be misleading, especially when the signal-to-noise ratio is low. $4 c, 25,45$

As mentioned above, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of either a cis or a trans $\mathrm{PdX}_{2} \mathrm{P}_{2}$ species in solution shows as a singlet because in both circumstances the phosphorus nuclei are chemically and magnetically equivalent. When only one isomer is present, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectroscopy does not tell whether that species is cis or trans. If both isomers are present, the
resonance at lower field is often assigned to the cis- $\mathrm{PdX}_{2} \mathrm{P}_{2}$ species, $30,40,46$ despite the opposite order being seen for the platinum analogues. ${ }^{24,}{ }^{30}$. The ${ }^{31} \mathrm{P}\left[{ }^{1} \mathrm{H}\right]$ NMR spectral data in Table 3.2 show that all except 4a and 5 a of the $\mathrm{PdX}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}$ complexes made give one ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ singlet in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, which presents difficulty in making assignments for these phosphine complexes. However, if the singlet at 29.5 ppm of $\mathbf{4 a}$ is assigned to the cis isomer and the upfield singlet at 23.4 ppm to the trans one (the assignments to cis and trans were not made by the authors who first reported $\mathbf{4 a})^{21}$ a downfield shift, $\delta_{4 \mathrm{a}(\mathrm{cis})}<\delta_{\mathbf{4 b}}$ (cis) $<\delta_{\mathbf{4 c}(\mathrm{cis})}$, becomes evident. Newkome and coworkers ${ }^{30}$ also found that the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts of cis$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$, cis- $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{1}\right)_{2}$, and the crystallographically characterized cis- $-\mathrm{PdCl}_{2}\left(\mathrm{PN}_{2}\right)_{2}$, moved downfield with the sequential replacement of the phenyl groups by the pyridyl groups on the phosphorus. Apart from this, an upfield shift trend is established for the trans iodo complexes, $\delta_{6 a(\text { (trans })}>\delta_{6 b \text { (trans) }}>\delta_{6 c \text { (trans) }}$. The halide substitution induced shifts within both series can be understood in terms of the trans influence order $\mathrm{I}>\mathrm{Br}>\mathrm{Cl}$.

The ${ }^{1} \mathrm{H}$ NMR spectra of the above phosphine complexes showed overlapping multiplets in the pyridyl and phenyl resonance regions, and the lack of methyl or methylene protons makes a clear-cut judgement of the signal pattern impossible. Fortunately, the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the complexes, whose ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra show one singlet at $-40^{\circ} \mathrm{C}$ in CDCl_{3}, showed more definitive results. The basic patterns described previously - doublet for a cis isomer and triplet for a trans isomer - are observed. The complexes $\mathrm{PdI}_{2}\left(\mathrm{PN}_{1}\right)_{2}, \mathbf{6 a}$, and $\mathrm{PdI}_{2}\left(\mathrm{PN}_{2}\right)_{2}, \mathbf{6 b}$, showed 1:2:1 triplets for the ortho- and meta-carbons on both pyridyl and phenyl rings, indicative of a trans geometry; on the other hand, $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right) 2,4 \mathrm{c}$, gave $1: 1$ doublets for the ortho- and meta-carbons on the pyridyl rings, indicative of a cis geometry (Fig. 3.5). These results are consistent with the previous assignments based on the ${ }^{31}$ P NMR chemical shift trends. The positions of the ${ }^{13} \mathrm{C}$ signals of the selected compounds are listed in Table 3.3. Because the assignments are based on the solution ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data, the assigned structures are then the preferred geometries in solution under the conditions of study. Isomerization may have taken place when the solid complex dissolves in solution. An attempt was made using

Fig. 3.5. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (75.4 MHz) of palladium pyridylphosphine complexes: (a) trans $-\mathrm{PdI}_{2}\left(\mathrm{PN}_{1}\right)_{2}, 6 \mathbf{a}$, (b) trans- $\mathrm{PdI}_{2}\left(\mathrm{PN}_{2}\right)_{2}, 6 \mathbf{b}$ and (c) cis- $-\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}, 4 \mathrm{c}$; in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$ (see Table 3.3 for C atom numbering system).

Table 3.3. ${ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\}$ NMR Chemical Shifts of $\mathbf{4 c}$, $\mathbf{6 a}$ and $\mathbf{6 b}$, in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathbf{C a}^{\mathbf{a}}$

(a) The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the free ligands were measured in CDCl_{3} solvent at r.t. and those of the complexes were recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$; the chemical shifts are referenced to TMS in ppm, and the number in the brackets is the ${ }^{n J}{ }_{P C}+{ }^{n+2}{ }^{\mathrm{J} P d}$ value in Hz ; s, d and t indicate singlet, doublet and triplet, respectively. The carbon atoms $\mathrm{C}(1)$ to $\mathrm{C}(9)$ correspond to the individual carbon atoms on the phosphine ligand as depicted below.

solid state ${ }^{31} \mathrm{P}\left[{ }^{1} \mathrm{H}\right]$ NMR (cross-polarization and magic angle spinning, CP/MAS) to correlate structures in solution with those in the solid state, but with little success (Table 3.4). The selected samples analyzed by CP/MAS ${ }^{31} P\left({ }^{1} \mathrm{H}\right\}$ NMR show a pronounced chemical shift anisotropy for the phosphorus nuclei. The ${ }^{31} \mathrm{P}$ peaks are normally broad, up to 10 ppm ; for instance, $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{1}\right)_{2}, 4 \mathrm{a}$, gives a singlet at 25.2 ppm with linewidth at half height of 8 ppm (Fig. 3.6). It is uncertain, therefore, whether one isomer or both are present in the solid state, knowing that the solution chemical shift of the cis is seen at 29.5 ppm and that of the trans at 23.4 ppm . Solid state site symmetry ${ }^{47}$ also presents a problem in interpreting the spectra. For example, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of cis- $\mathrm{Pt}_{2}\left(\mathrm{PN}_{3}\right)_{2}$, 3c, (Fig. 3.7a) shows two sets of signals with JPLP values of 3599 and 3294 Hz . Both of these are assigned to cis isomers according to a literature report ${ }^{48}$ in which a similar splitting pattern is seen for cis- $\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$. The splitting is attributed to the site symmetry in the solid state. It is relatively easy to identify such splitting for Pt but is difficult for Pd. For example, even when two peaks appear at 46.4

Fig. 3.6. Solid-state ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $(40.4 \mathrm{MHz})$ of $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{1}\right)_{2}$ obtained at r.t. using cross-polarization and magic angle spinning; $\delta=25.5$ (s).
and 40.3 ppm in the case of $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ (Fig. 3.7b), it is still uncertain whether they are due to the resonances of cis and trans isomers or arise from the local site symmetry. In addition, chemical shifts measured in the solid state are somewhat different from those measured in solution. Nevertheless, for the iodo complexes $6 \mathbf{a}-\mathbf{6 c}$, the solid state ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data agree well with the solution spectra. The trans- $\mathrm{PdI}_{2}\left(\mathrm{PN}_{n}\right)_{2}$ species is confirmed to be the only isomer present both in solution and in the solid state. In the case of $\operatorname{PdBr}_{2}\left(\mathrm{PN}_{3}\right)_{2}, 5 \mathrm{c}$, it seems reasonable to conclude that both cis and trans isomers are present in the solid state with their chemical shifts about 20 ppm apart. But it is impossible to correlate the observed solution singlet at 31.0 ppm with either of the two singlets observed in the solid state (Fig. 3.7c). The phosphorus resonances at 42.1 and 23.8 ppm are assigned to the cis and trans isomers, respectively.

Table 3.4. Solid State ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right]$ NMR Data of $\mathrm{PdX}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}$ Complexes at Ambient Temperature

Complexes	δ Chemical Shifts (ppm)
$\left.\mathrm{PdCl}_{2} \mathrm{PN}_{1}\right)_{2}, \mathbf{4 a}$	25.2
$\mathrm{PdI}_{2}\left(\mathrm{PN}_{1}\right)_{2}, \mathbf{6 a}$	8.0
$\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}, 4 \mathrm{c}$	$46.4(50 \%), 40.3(50 \%)$
$\mathrm{PdBr}_{2}\left(\mathrm{PN}_{3}\right)_{2}, 5 \mathrm{c}$	$42.1(50 \%), 23.8(50 \%)$
$\mathrm{PdI}_{2}\left(\mathrm{PN}_{3}\right)_{2}, \mathbf{6 c}$	-2.5

Thus despite the problems with the mononuclear Pd pyridylphosphine complexes, assignments are made. We also notice that the chloro and bromo complexes prefer cis geometry in solution at low temperature. A weak π interaction of the pyridyl group on one phosphine with the pyridyl group on the adjacent phosphine in the $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{2}\right)_{2}$ crystal structure was noticed by Newkome et al.; 30 this weak interaction might provide extra stabilization energy for the cis geometry, especially at low temperature when molecular motion is restricted.

Fig. 3.7. Solid-state ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (40.4 MHz) of (a) $3 \mathrm{c},(\delta=13.1$ (s) and 1.9 (s), ${ }^{1} \mathrm{~J}_{\text {PtP }}=3599$ and 3294 Hz , respectively), (b) $\mathbf{4 c}$, and (c) 5 c , obtained at r.t. using crosspolarization and magic angle spinning.

The Pt^{I} binuclear bridging complexes discussed here were synthesized via the conproportionation reaction of $\mathrm{Pt}(0)$ and $\mathrm{Pt}(\mathrm{II})$ precursors (Sect. 2.6). ${ }^{22}$ Two stereoisomers: head-to-head, HH, and head-to-tail, HT, are possible (see Sect. 3.1). However, the only isolable HH isomers were limited to the three iodo complexes $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2}$. The head-to-tail isomers 7 - 9 discussed here are shown below:

$X=\mathrm{Cl}, 7 \mathbf{a}$
$X=I, 9 a$

$X=C l, 7 b$
$X=I, 9 b$

$$
\begin{aligned}
& \mathrm{X}=\mathrm{Cl}, 7 \mathrm{c} \\
& \mathrm{X}=\mathrm{Br}, \mathbf{8 c} \\
& \mathrm{X}=\mathrm{I}, \mathbf{9 c}
\end{aligned}
$$

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy was commonly used as the structural tool in assigning configurations. The isotopomers drawn below (Fig. 3.8) can be applied to any of the $\mathrm{Pt}-\mathrm{PN} \mathrm{N}_{\mathrm{n}}$ systems with an HT arrangement. The natural abundances indicated for each isotopomer arise from the presence of the ${ }^{195} \mathrm{Pt}$ spin labelled isotope.

A
43.8\%

B
44.8\%

C
11.4%
Fig. 3.8. The isotopomers of a $\mathrm{Pt}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2} \mathrm{X}_{2}(\mathrm{HT})$ type compound, $\mathrm{n}=1,2,3, \mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$; $\mathrm{Pt}^{*}={ }^{195 \mathrm{Pt}}$, natural abundance of ${ }^{195 \mathrm{Pt}}=33.8 \%, \mathrm{I}=1 / 2 ; \mathrm{P}=\mathrm{PPh}_{2}, \mathrm{PPhpy}$ or $\mathrm{Ppy} 2 ; \mathrm{N}=$ pyridyl moiety; halides are not shown.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shown in Fig. 3.9 is that of $\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-\mathrm{PN})_{2}(\mathrm{HT}), 9 \mathrm{c}$, which is typical of an HT-isomer. The major central peak A in Fig. 3.9 arises from the unlabelled isotopomer A , because in the absence of ${ }^{195} \mathrm{Pt}$, the two phosphorus atoms are chemically as well as magnetically equivalent. The doublet of doublets labelled B comes from the singly labelled isotopomer B , in which the two phosphorus atoms are chemically equivalent but magnetically inequivalent, this giving rise to the fine satellite splitting centred at the A position. This is an $A A^{\prime} X$ spin system with $\left.J_{A X}-J_{A} X^{(1}{ }^{1} \mathrm{~J}_{\mathrm{PtP}}-{ }^{-2} \mathrm{~J}_{\mathrm{PLP}}\right)$ being $\gg \mathrm{J}_{P P}$, and hence the spectrum is pseudo-first-order with the outermost doublets given by the phosphorus directly bonded to ${ }^{195} \mathrm{Pt}$ centre and the innermost doublets arising from the phosphorus bonded to the non-spin labelled Pt . The signal labelled C arises from isotopomer C , but such signals are not always observable due to the low intensity.

The only situation where the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum is ambiguous for an $\mathrm{HT} / \mathrm{HH}$ assignment is when the ${ }^{3} \mathrm{~J}_{\text {PP }}$ coupling constant becomes very small or unresolvable (see Ch .4 , Sect. 4.3.1). When the ambiguity arises, ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR can be used to distinguish the two possible phosphine orientations. The typical ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum of an HT isomer, e.g. 9 c , is shown in Fig. 3.9(b) as a "doublet of doublets" arising from the overlap of the signals due to the isotopomer B and C . The ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}$ and ${ }^{2} \mathrm{~J}_{\mathrm{PtP}}$ can be obtained by spectrum simulation with good agreement with the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ data.

The basic spectral pattern does not change as the number of pyridyl substituents on the phosphorus atom changes. A downfield δ_{p} chemical shift is seen on going from 7a through 7b to 7 c (Table 3.5). Fig. 3.10 shows the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 7 b as two distinct sets of the basic spectral pattern discussed above, and can be understood in terms of stereoisomers drawn in Fig. 3.10.

Fig. 3.9. ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ and ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT}), 9 \mathrm{c}$, in CDCl_{3} at r.t.; (a) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121.4 MHz) and (b) ${ }^{195} \mathrm{Pt}\left({ }^{1} \mathrm{H}\right\}$ NMR (64.2 MHz) (data given in Table 3.5).

(1S, 2S) ${ }^{*}$
7 b .1

(1R, 2R)
7b. 2

(1R, 2S)
7b. 3

Fig. 3.10. ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right)$ NMR spectrum of the diastereomers of $\mathbf{7 b}$ in CDCl_{3} at r.t. (data given in Table 3.5). Peaks are not assigned to specific diastereomers.

[^6]Table 3.5. ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ and ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Data of $\mathrm{Pt}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2}(\mathrm{HT})^{\mathrm{a}}$

Complexes	Solvent	δ_{P}	$\delta_{\text {Pt }}$	$1^{1} \mathrm{P}_{\text {Pt-P }}$	${ }^{2} \mathrm{~J}_{\text {Pt-P }}$	$3^{3} \mathrm{~J}_{\text {PP }}$	Ref. ${ }^{\text {b }}$
$\mathrm{Pt}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2}(\mathrm{HT}), 7 \mathrm{a}$	CDCl_{3}	-1.5		4124	215	17.8	22
$\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2}(\mathrm{HT}), 9 \mathrm{a}$	CDCl_{3}	5.7		3905	198	17.8	22
$\mathrm{Pt}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HT}), 7 \mathrm{~b}$	CDCl_{3}	0.3		4090	215	20.0	tw
		-0.2		4090	215	20.0	tw
$\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HT}), 9 \mathrm{~b}$	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	-4.67		3945	196	$\sim 16 \mathrm{C}$	tw
		-5.04		3945	196	$\sim 16 \mathrm{C}$	tw
$\mathrm{Pt}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT}), 7 \mathrm{c}$	CDCl_{3}	0.66		4074	214	18.2	tw
$\mathrm{Pt}_{2} \mathrm{Br}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT}), 8 \mathrm{c}$	CDCl_{3}	-0.27		4006	214	17.6	tw
$\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT}), 9 \mathrm{c}$	CDCl_{3}	-3.09		3936	205	18.9	tw
			-197.3	3901	207	-	tw

(a) Recorded at r.t.; δ_{P} and δ_{Pt} measured in ppm , coupling constants in Hz . (b) tw $=$ this work. (c) Satellites difficult to resolve.

When one of the two pyridyl groups attached to a phosphorus atom forms a bridging bond across $\mathrm{Pt}-\mathrm{Pt}$, that phosphorus atom becomes asymmetric. Assuming no or slow exchange between the bridging and non-bridging pyridyl groups, three compounds, 7b.1, 7b. 2 and 7b.3, are expected. The stereochemical relationships between these isomers are described by symmetry operations. $\mathbf{7 b} .1$ and $\mathbf{7 b} .2$, related by a mirror plane, are enantiomeric; $\mathbf{7 b} .3$ is not related by any symmetry to $\mathbf{7 b} .1 / 7 \mathrm{~b} .2$ and therefore, is a diastereomer of these. ${ }^{49,50}$ In an achiral solvent, diastereomers are chemically different, but enantiomers are indistinguishable. 49 Consequently, 7b. 1 and $\mathbf{7 b} .2$ give one set of signals and 7 b .3 gives another set (Fig. 3.10).

The well-resolved resonances in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Pt}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{2}\right) 2(\mathrm{HT})$ at room temperature imply that either no exchange of the bridging pyridyl with nonbridging pyridyl takes place or the exchange is too slow relative to the NMR time scale.

The crystal structure of $7 \mathrm{~b} .1, \mathrm{Pt}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HT})(1 \mathrm{~S}, 2 \mathrm{~S})$ was done by S.J. Rettig in this department (Fig. 3.11). In the solid state, this molecule is, in fact, not coplanar as drawn above. The dihedral angle between two coordination square planes of platinum is $36.19{ }^{\circ}$. The Pt, P, and N atoms are arranged rather like a boat conformation. There is a C_{2} axis through the centre of the $\mathrm{Pt}_{1}-\mathrm{Pt}_{2}$ bond for the main frame, and the noncoordinated phenyl and pyridyl groups are severely twisted (the dihedral angles between two phenyl rings and two pyridyl rings are 44.10 and 41.25°, respectively). On the whole, the C_{2} symmetry of $\mathbf{7 b} .1$, present in solution, no longer exists; the phosphorus atoms become diastereotopic in the crystal lattice.

The other P-N phosphine arrangement is the head-to-head, as described in Sect. 3.1. The iodo complexes of HH configuration discussed here are shown as follows:

10a

10b

10 c

The change of ligand orientation from HT to HH brings about significant changes in the appearance of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum. In general, four isotopomers with appropriate abundances need to be considered (see Fig. 3.12). The representative ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}$ $(\mathrm{HH}), 10 \mathrm{c}$, is shown in Fig. 3.13. The major singlet D is due to the unlabelled isotopomer D . The outermost satellites labelled E arise from isotopomer E , where the splitting, ${ }^{1} \mathrm{~J}_{\mathrm{Pt}-\mathrm{P}}$, is determined by the 3260 Hz difference between the two lines, which correspond to the one bond $\mathrm{Pt}-\mathrm{P}$ coupling. This value is significantly smaller than that of the HT isomer, 3936 Hz , due to the trans effect of the phosphine ligands. The inner satellites labelled F are considerably broader and are due to the isotopomer F. The broadening is accounted for by the fast relaxation

Fig. 3.11. 3D structure of $\mathrm{Pt}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HT}), 7 \mathrm{~b} .1$; the ORTEP drawing and atomic numbering scheme.

Representative bond lengths and angles, in \AA and ${ }^{\circ}$, respectively:

$$
\begin{array}{ll}
\mathrm{Pt}(1)-\mathrm{Pt}(2)=2.574(1) & \mathrm{N}(3)-\mathrm{Pt}(1)-\mathrm{Pt}(2)=91.4 \\
\mathrm{Pt}(1)-\mathrm{P}(1)=2.169(3) & \mathrm{N}(3)-\mathrm{Pt}(1)-\mathrm{Cl}(1)=88.0 \\
\mathrm{Pt}(1)-\mathrm{N}(3)=2.10(1) & \mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{Cl}(2)=99.1 \\
\mathrm{Pt}(2)-\mathrm{P}(2)=2.169(1) & \mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{Pt}(2)=81.5 \\
\mathrm{Pt}(2)-\mathrm{N}(1)=2.08(1) & \mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{Pt}(2)=173.5 \\
& \mathrm{Cl}(2)-\mathrm{Pt}(2)-\operatorname{Pt}(1)=176.6
\end{array}
$$

transmitted from the quadrupolar nitrogen atoms through ${ }^{195} \mathrm{Pt}$ to P . Isotopomer G is supposed to give a doublet of doublets, but the signal-to-noise ratio is insufficient to allow identification of the peaks.

D
43.8\%

E
22.4\%

F
22.4%

G
11.4%

Fig. 3.12. The isotopomers of a $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2}(\mathrm{HH}), \mathrm{n}=1,2,3$; natural abundance of ${ }^{195} \mathrm{Pt}=33.8 \%, \mathrm{I}=1 / 2 . \mathrm{Pt}^{*}={ }^{195} \mathrm{Pt} ; \mathrm{N}=$ pyridyl moiety; $\mathrm{P}=\mathrm{PPh}_{2}, \mathrm{PhPpy}$, or Ppy 2 ; halides are not shown.

In all the isotopomers shown, the phosphorus nuclei within each isotopomer are always equivalent. The splitting of satellites seen in the HT isomers is no longer visible in the HH system. The differences in the ${ }^{31}$ P NMR spectral appearance, as well as the magnitude of ${ }^{1} \mathrm{~J}_{\text {PIP }}$ coupling constant, provide a good probe for elucidating the structure of these bridging Pt complexes. The typical ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of an HH isomer, for example 10 c , is shown in Fig. 3.13(b) as an authentic triplet arising from the isotopomer E. The ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ and ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data for the $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2}(\mathrm{HH})$ complexes are listed in Table 3.6.

Examining the stereochemical relationship between the stereoisomers of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}$ $(\mathrm{HH}), \mathbf{1 0 b}$, generated in situ, one expects for planar structures two similar sets of signals for 10 b .1 and $10 \mathrm{~b} .2 / 10 \mathrm{~b} .3$ because 10 b .2 and 10 b .3 are enantiomers and both of them are diastereomers of $\mathbf{1 0 b} .1$ by external comparison. 42,43 The two phosphorus nuclei in $\mathbf{1 0 b} .1$, related by a mirror plane perpendicular to the P-Pt-P axis, are enantiotopic and, therefore, a ${ }^{31} \mathrm{P}$

(b)

Fig. 3.13. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{195} \mathrm{Pt}_{\mathrm{t}}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HH}), 10 \mathrm{c}$, in CDCl_{3} at r.t.; (a) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121.4 MHz) and (b) ${ }^{195} \mathrm{Pt}$ ($\left.{ }^{1} \mathrm{H}\right\}$ NMR (64.2 MHz) (data given in Table 3.6).

Table 3.6. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Data of $\mathrm{Pt}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2} \mathrm{I}_{2}(\mathrm{HH})^{\mathrm{a}}$

Complexes	Solvent	δ_{P}	$\delta_{\text {Pt }}$	${ }^{1} \mathrm{~J}_{\text {PtP }}$	${ }^{2} \mathrm{JPtP}$	${ }^{3} \mathrm{~J}_{\text {PP }}$	Ref. ${ }^{\text {b }}$
$\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2}, 10 \mathrm{a}$	CDCl_{3}	9.6		3260	153	-	22 \& tw
$\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}, 10 \mathrm{~b} .1 \mathrm{c}$	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	12.55		3276	122	441	tw
		11.0		3276	122	441	tw
			-739.4(t)	3261	-	-	tw
10b.2/10b.3c	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	11.30		3249	182	-	tw
$\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}, 10 \mathrm{c}$	CDCl_{3}	14.11		3260	136	-	tw
			-759.5(t)	3259	-	-	tw

(a) Recorded at r.t.; chemical shifts δ_{P} and δ_{Pt} measured in ppm, coupling constants in Hz . (b) $\mathrm{tw}=$ this work. (c) Recorded at $-20^{\circ} \mathrm{C}$.
 (1S, 2R)
$\mathbf{1 0 b} .1$

(1S, 2S)
10 b .2

(1R, 2R)
10 b .3
singlet with Pt satellites is expected. The two phosphorus atoms in $\mathbf{1 0 \mathrm { b }} . \mathbf{2 / 1 0 \mathrm { b } . 3}$, related by the C_{2} axis in the molecular plane perpendicular to the P-Pt-P axis, are equivalent and should give rise to a singlet and Pt satellites. However, the actual experimental spectrum of the diastereomeric mixture of 10b (Fig. 3.14) is different from that expected for planar structures. It appears to be composed of a singlet and an AB quartet with their respective Pt satellites. This was ascertained by measuring the ${ }^{31}$ P NMR spectrum of both the separated diastereomer 10 b .1 and the $\mathbf{1 0 b} .2 / 10 \mathrm{~b} .3$ mixture - enantiomers are not separable by TLC (see Sect. 2.6 .2 for detailed separation procedure) (Fig. 3.15). The tight $A B$ quartet reflects inequivalent P atoms in the molecule. The coupling constants of this compound were resolved by spectrum simulation:
$\mathrm{J}_{\mathrm{PP}},{ }^{1} \mathrm{~J}_{\mathrm{PtP}}$ and ${ }^{2} \mathrm{~J}_{\text {PtP }}$ were found to be 441,3276 and 122 Hz , respectively. The magnitude of the P-P coupling confirms that the two P atoms are trans to each other, and this is reinforced by the value of ${ }^{1} \mathrm{~J}_{\mathrm{PIP}}(3276 \mathrm{~Hz})$. The inequivalence of the P atoms can only arise from lack of symmetry element in the molecule: the P atoms are no longer enantiotopic as in 10b.1, or equivalent as in 10b.2/10b.3, and must be diastereotopic.

Fig. 3.14. $121.4 \mathrm{MHz}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the mixture of diastereomers of 10 b in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at r.t.

The correlation between the diastereomeric structures depicted above and the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra in Fig. 3.15 was not obvious. Some single crystals of 10 b .1 obtained were highly disordered, and species 10b.2/10b.3 grew as twin crystals in three occasions (Sect. 2.6.2). The problem in assigning the structures was finally solved later by the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectral analyses of the DMAD derivatives of 10 b .1 and $10 \mathrm{~b} .2 / 10 \mathrm{~b} .3$ which will be discussed in full detail in Chapter 4, Sect. 4.3.4. Species 10b.1, the second fraction obtained from a TLC plate, turns out to be the one giving the "abnormal" 31P spectrum shown in Fig. 3.15(b). The 10b.2/10b. 3 mixture, the first fraction from the TLC, gives the typical ${ }^{31}$ P NMR spectrum as in Fig. 3.15(d) expected for coplanar geometry. The inequivalence of phosphorus atoms in 10b. 1 arises because the mirror plane relating these atoms must be disrupted. However, the C_{2}

Fig. 3.15. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (121.4 MHz) of the separated diastereomers of $\mathbf{1 0 b}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$; (a) 10 b .1 at r.t., (b) 10 b .1 at $-10^{\circ} \mathrm{C}$, (c) $10 \mathrm{~b} .2 / 10 \mathrm{~b} .3$ at r.t., and (d) $10 \mathrm{~b} .2 / 10 \mathrm{~b} .3$ at $-20^{\circ} \mathrm{C}$ (data given in Table 3.6).
symmetry of the molecule does not seem to be affacted. Recall that in the X-ray structure of the HT isomer 7b. 1 (Fig. 3.11), the noncoordinated pyridyl and phenyl groups on one phosphorus atom are twisted with respect to those on the another, despite these groups being relatively far away from one another spacewise. In the HH isomer, two phosphorus atoms are situated on one platinum, the interaction between the groups on the phosphorus atoms being so severe that, even in solution, the expected mirror plane for $\mathbf{1 0 b} .1$ molecules symmetry cannot be maintained.

3.2.4. $\mathrm{Pd}(\mathrm{I})$ pyridylphosphine complexes

Dichlorobis[2-(diphenylphosphino)pyridine]dipalladium(1), $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2}$, was reported by Maisonnat et al. ${ }^{21}$ and was assigned the head-to-tail structure based on analogous structures for heterodinuclear complexes of the same phosphine ligand, for example, with $\mathrm{Pd}^{\mathrm{I}} \mathrm{Pt}^{\mathrm{I}}$ 22,51 and PdIRh. ${ }^{I I}$. 52 In these cases, the P-N phosphine arrangement on the metal centre can be easily distinguished by the spectroscopic analysis. The $\mathrm{Pd}^{\mathrm{I}} \mathrm{Pt}^{\mathrm{I}} / \mathrm{PN} 3$ heterodinuclear complexes made in the present work, $14 \mathrm{c}-16 \mathrm{c}$, were shown to have exclusively the HT configuration by their ${ }^{31}$ P NMR spectra (Table 3.7, Fig. 3.16). The doublet must arise from the chemical inequivalence of the two P atoms attached to two different metal centres. The P atom attached to Pt is split by ${ }^{195 \mathrm{Pt}}$ and gives rise to the larger satellite $(3900 \mathrm{~Hz})$, while the P atom attached to Pd
 atoms, $14.3-16.8 \mathrm{~Hz}$, is characteristic of an HT disposed phosphine (see the corresponding Pt_{2} analog, Sect. 3.2.3). No HH -isomer with both P atoms on palladium has ever been found.

Table 3.7. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right]$ NMR Data for $\left.\mathrm{PtPdX}_{2}(\mu-\mathrm{PN})_{3}\right)_{2}(\mathrm{HT})$ Complexes ${ }^{\mathrm{a}}$

Complexes	$\delta_{P(P t}$	$\delta_{P(P d}$	${ }^{1} \mathrm{~J}_{P t P}$	${ }^{2} \mathrm{~J}_{\mathrm{PtP}}$	${ }^{3} \mathrm{~J}_{\mathrm{PP}}$
$\mathrm{PtPdCl}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}, 14 \mathrm{c}$	$-3.92(\mathrm{~d})$	$9.4(\mathrm{~d})$	3988	110.5	14.3
$\mathrm{PtPdBr}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}, 15 \mathrm{c}$	$-5.62(\mathrm{~d})$	$7.78(\mathrm{~d})$	3951	100.0	15.6
$\mathrm{PtPdI}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}, 16 \mathrm{c}$	$-8.36(\mathrm{~d})$	$4.46(\mathrm{~d})$	3863	75.4	16.8

(a) The spectra were recorded at r.t. in $\mathrm{CDCl}_{3} ; \delta$ ' s are measured in ppm and the coupling constants are in Hz .

Fig. 3.16. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 14 c in CDCl_{3} at r.t., see Table 3.7. The singlet at 6.3 labelled X is the $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}$ impurity.

The molecular structure of $\operatorname{Pd}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2}$ was determined crystallographically, ${ }^{20}$ where the HT orientation was shown explicitly. The downfield shift of ${ }^{31}$ P NMR resonances through the series 13a, 13b and 13c (Table 3.8) is normal, as is the downfield shift induced by the halogen substitution from 11a, 12a, to 13a (Sect. 3.2.2). In the case of $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}$, support for the HT configuration comes indirectly from the HT configuration determined for the DMAD insertion adduct, assuming no rearrangement occurs during the course of reaction (see Xray structure in Fig. 4.1). Hence, the HT configuration is assigned to all the dipalladium complexes, based on the relationships between their ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data (Table 3.8). The structures of the $\mathrm{HT} \mathrm{Pd}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2}$ species discussed here are shown below:

$\mathrm{X}=\mathrm{Cl}, 11 \mathrm{~b}$
$X=B r, 12 b$
$\mathrm{X}=\mathrm{I}, 13 \mathrm{~b}$
$X=C l, 11 a$
$\mathbf{X}=\mathrm{Br}, 12 \mathrm{a}$
$X=\mathrm{I}, \mathbf{1 3 a}$

$\mathrm{X}=\mathrm{Cl}, 11 \mathrm{c}$
$X=\mathrm{Br}, 12 \mathrm{c}$
$X=I, 13 c$

Table 3.8. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ Chemical Shifts for $\mathrm{Pd}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2}(\mathrm{HT})$ Complexes ${ }^{\mathrm{a}}$

Complexes	Solvent	$\delta_{P}(\mathrm{ppm})$	Ref.b
$\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2}, 11 \mathrm{a}$	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	4.4	$21 \& \mathrm{tw}$
$\mathrm{Pd}_{2} \mathrm{Br}_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2}, 12 \mathrm{a}$	CDCl_{3}	2.92	tw
$\mathrm{Pd}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2}, 13 \mathrm{a}$	CDCl_{3}	-0.44	tw
$\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}, 11 \mathrm{~b}$	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	5.2	tw
$\mathrm{Pd}_{2} \mathrm{Br}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}, 12 \mathrm{~b}$	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	3.28	tw
$\mathrm{Pd}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}, 13 \mathrm{~b}$	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	-0.16	tw
$\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}, 11 \mathrm{c}$	CDCl_{3}	6.3	tw
$\mathrm{Pd}_{2} \mathrm{Br}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}, 12 \mathrm{c}$	CDCl_{3}	4.35	tw
$\mathrm{Pd}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2} \mathrm{I}_{2}, 13 \mathrm{c}$	CDCl_{3}	0.55	tw

(a) All these chemical shifts are measured at r.t. (b) tw $=$ this work.

A sharp ${ }^{31} \mathrm{P}$ NMR singlet signal is seen for 11a and 11c, while a broad singlet is obtained for 11 b where the diastereomeric mixture is present as $11 \mathrm{~b} .1,11 \mathrm{~b} .2$ and 11 b .3 , as depicted below:

11 b .1

11 b .2

11 b .3

The P nuclei in 11b.1/11b. 2 are equivalent and should give one singlet. The P atoms in 11 b .3 , related by a centre of inversion located in the centre of the $\mathrm{Pd}-\mathrm{Pd}$ bond, are enantiotopic and should also give rise to a singlet. Therefore, two singlets reflecting the presence of two sets of diastereomers are anticipated. The broad singlet in experimental spectrum in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature indicates the presence of an exchange process responsible for an
averaging of the two singlets. Two sharp singlets do appear at $-20^{\circ} \mathrm{C}$ and remain unchanged down to $-85^{\circ} \mathrm{C}$ (Fig. 3.17). This broadening phenomenon is not seen in the Pt_{2} case (see $\mathbf{7 b}$, Sect. 3.2.3). It is well-known that Pd systems are substitutionally more labile than Pt systems, 53,54 therefore, it is not surprising that $11 \mathrm{~b} .1,11 \mathrm{~b} .2$ and 11 b .3 are interconvertible. Direct inversion of the phosphorus centre is not feasible. 55,56 Dissociation of the pyridyl moiety from the Pd seems to be involved: subsequent rotation of the $\mathrm{Pd}-\mathrm{P}$ bond would allow for the two pyridyl groups to be indistinguishable in reforming the bridging binuclear compound. The inversion of absolute configuration of the P atom is realized via the dissociation-rotationrecoordination. This cycle is prevented when the sample is subjected to sufficiently low temperature. This mechanism also explains the resolution of the diastereomers at low temperature.

The iodo complex 13b exhibits much more complex 31P NMR behaviour in a variable temperature experiment (Fig. 3.18). These spectra are reproducible in the temperature range from room temperature down to $-85^{\circ} \mathrm{C}$, and are unaffected by addition of an acetone solution of sodium iodide. The broad peak seen at room temperature separates into two broad peaks at $-20^{\circ} \mathrm{C}$; however, further cooling allows the downfield signal to coalesce at $-40^{\circ} \mathrm{C}$ and to reappear at $-60^{\circ} \mathrm{C}$ as a doublets of doublets (or an AB quartet) centred at the original position. The upfield singlet stays at the same position with enhanced intensity. We have no definite explanation at this stage for the observed ${ }^{31}$ P NMR spectra; perhaps, a non-planar structure (cf. 7b and 10b.1) is responsible for the inequivalence of the two phosphorus atoms, especially when the molecular motion is restricted at low temperature.

3.3. Solution equilibrium of the $\operatorname{cis}-\operatorname{PtI}_{2}\left(\mathrm{PN}_{2}\right)_{2}$ complex in CDCl_{3}

In previous discussion, the geometry of the $\mathrm{PtX}_{2}\left(\mathrm{PN}_{n}\right)_{2}$ compounds was assumed to be cis, according to the magnitude of their $\mathrm{J}_{\mathrm{PtP}}$ coupling constants in the ${ }^{31}$ P NMR spectra (Sect. 3.2.1). No signals of any other species are detected from room temperature down to $-70^{\circ} \mathrm{C}$ from 100 to -200 ppm in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solvent for such species. However, the ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{3 b}$
(a)

(c)

Fig. 3.17. Variable temperature ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ NMR spectra (121.4 MHz) of 11 b in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$: (a) at r.t., (b) at -20° and (c) $-85^{\circ} \mathrm{C}$. Peaks are not assigned.
(a)

Fig. 3.18. Variable temperature ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (121.4 MHz) of $\mathbf{1 3 b}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$: (a) at r.t., (b) 0°, (c) -20°, (d) -45°, (e) -60° and (f) $-85^{\circ} \mathrm{C}$. Peaks are not assigned.
in CDCl_{3} at $-55^{\circ} \mathrm{C}$ exhibits a complex pattern (Fig. 3.19); the analysis is based on the presence of three species, cis and trans isomers, and another unknown compound which is believed to be responsible for the broad peaks at 24.0 and $\mathbf{- 7 0 . 3} \mathrm{ppm}$. The relative intensities of all these signals vary with temperature. As the solution is warmed from $-55^{\circ} \mathrm{C}$ to $-30^{\circ} \mathrm{C}$, the intensity of the unknown species grows in and the resonance of the cis isomer broadens ($\delta=7.4 \mathrm{ppm}$, based on the data in $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$. This unusual behaviour of cis- $\mathrm{PtI}_{2}\left(\mathrm{PN}_{2}\right)_{2}$ resembles that of the
(a)

Fig. 3.19. Low temperature ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(121.4 \mathrm{MHz})$ spectra of cis- $\mathrm{PtI}_{2}\left(\mathrm{PN}_{2}\right)$, 3 b , in CDCl_{3}; (a) at $-30^{\circ} \mathrm{C}$ and (b) at $-55^{\circ} \mathrm{C}$. The singlet at 7.4 with Pt -satellites are the signals of cis$\mathbf{3 b}$, and the singlet at 10.4 with corresponding satellites are the resonances of trans-isomer of $\mathbf{3 b}$; the broad singlets at 24.0 and -70.3 with Pt -satellites are assigned to the signals of the cischelate.
analogous cis- $\mathrm{Pt}_{2}\left(\mathrm{PN}_{1}\right)_{2}$ system in CDCl_{3} reported in the literature. ${ }^{22}$ The peaks at 24.0 and 70.3 ppm in Fig. 3.19 are assigned to a cis-chelated ionic compound (Scheme 3.1). This assignment is supported by the reported ${ }^{31} \mathbf{P}$ NMR data of the corresponding isolated ionic compound cis-[$\left.\mathrm{PtI}\left(\mathrm{PN}_{1}\right)_{2}\right] \mathrm{PF}_{6}{ }^{22}$ and those of cis- $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{2}(\mathrm{~S})+(\mathrm{S}=$ solvent $)$ generated in situ in the present work by reacting cis $-\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{2} \mathrm{Cl}_{2}$ with two equivalents of AgPF_{6} in $\mathrm{CH}_{3} \mathrm{CN}$ (Fig. 3.20 and Table 3.9). The colourless solution of cis- $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{2}(\mathrm{~S})^{+}$gradually changes on standing to a bright yellow, a colour characteristic of a trans-isomer. 57 The following scheme outlines the solution equilibria, which account for the three species observed; that the trans-chelated ionic species is not seen implies instability of this intermediate with respect to the trans neutral isomer.

Scheme 3.1. The equilibria between the species possibly present in CDCl_{3} solvent for cis- $\mathrm{PtI}_{2}\left(\mathrm{PN}_{2}\right)_{2}, \mathbf{3 b}$.

Fig. 3.20. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (121.4 MHz) of the reaction product $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{2}(\mathrm{~S})^{2+}$, formed in situ from cis- $\mathrm{PtCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ and AgNO_{3} in $\mathrm{CH}_{3} \mathrm{CN}$; the heptet centred at -143.6 is the resonance of $\mathrm{PF}_{6} ; \mathrm{X}=\mathrm{PF}_{2} \mathrm{O}_{2}$ - impurity from PF_{6} - hydrolysis (ref.58).

Despite the solution behaviour observed in CDCl_{3}, only the cis- $\mathrm{PtX}_{2}\left(\mathrm{PN}_{n}\right)_{2}$ species are observed in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. The solvent dependent nature of the equilibria cannot be rationalized in terms of solvent polarity as $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (dielectric constant $\varepsilon=9.0$) is more polar than CDCl_{3} $(\varepsilon=6.0)$. The ionic dissociation was originally thought to be caused by $\mathrm{H}_{2} \mathrm{O}$ impurity present in CDCl_{3}; however, this is ruled out by a ${ }^{31} \mathrm{P}$ experiment using $\mathbf{3 b}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ with added $\mathrm{D}_{2} \mathrm{O}$ the cis-isomer is still the only one present. This ionic dissociation phenomenon was observed by ${ }^{31} \mathrm{P}$ NMR for several cis- $\mathrm{PtX}_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}$ complexes in CDCl_{3} (Table 3.9).

3.4. Aqueous solution studies

The water solubility of the neutral $\mathrm{PdX}_{2}\left(\mathrm{PN}_{n}\right)_{2}$ and $\mathrm{Pd}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{PN}_{n}\right)_{2}$ complexes increases with n (the number of pyridyl groups on phosphorus) and decreases in the order of $\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$. The cis- $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ complex is the most water soluble species, 100 mg in 40 mL at ambient conditions (Conc. $=3.7 \times 10^{-3} \mathrm{M}$). The chemistry of $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT}), 11 \mathrm{c}$, and cis$\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}, 4 \mathrm{c}$, in aqueous solution is discussed in the following sections.

Table 3.9. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Data for Cis-PtX ${ }_{2}\left(\mathrm{PN}_{\mathrm{n}}\right)_{2}$ Species in $\mathrm{CDCl}_{3}{ }^{\mathrm{a}}$

Complex	$\delta_{\text {P }}$	$\delta \mathrm{P}_{c}$	${ }^{1} \mathrm{~J}_{\mathrm{PLP}}$	${ }^{1} \mathrm{JPLP}_{\text {c }}$	${ }^{2} \mathrm{JPP}_{\mathrm{c}}$	Ref. ${ }^{\text {b }}$
1 a	18.5	-51.5	3695	3443	c	22
3a	19.2	-61.0	3645	3240	c	22
1 b	22.4	-60.9	c	c	c	tw
3b	24.0	-70.3	3654	3280	c	tw
3 c	24.4	-73.7	3693	3457	16.5	tw
$\left[\mathrm{PII}\left(\mathrm{PN}_{1}\right)_{2}\right] \mathrm{PF}_{6}$	19.3	-61.2	3637	3241	c	22
$\xrightarrow{\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{2}(\mathrm{~S})^{2+}}$	26.34	-53.74	3642	3478	12.0	tw

(a) Only the data for the cis-chelated species are included in this Table; all the spectra except that of the $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{2}(\mathrm{~S})^{2+}$ done in the present work were taken at $-55^{\circ} \mathrm{C}$. The chemical shifts are recorded in ppm and the coupling constants are in Hz . P represents the P atom of the nonchelated phosphine and the P_{c} represents the P atom of the chelated phosphine. (b) $t w=$ this work. (c) The Pt-satellites are buried in the background noise, or the coupling constants are not resolved.
3.4.1. Dichlorobis[tris-(2-pyridyl)phosphine]dipalladium(I) $\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{PN})_{2}(\mathrm{HT})$, 11c

reddish orange
green

Dissolution of 11 c in water occurs according to equation (3.1); the liberation of chlorides and the formation of bisaquo dipalladium species are demonstrated by the isolation of bisaquo dipalladium salts using $\mathrm{NaBF}_{4}, \mathrm{KPF}_{6}$ and NaBPh_{4}. These green products can be redissolved in
acetone and acetonitrile for further purification by reprecipitation using diethyl ether, and do not dissolve in dichloromethane or chloroform. The elemental chemical analyses for these salts agree well with the proposed formulation $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}\left(\mathrm{OH}_{2}\right)_{2}\right] \mathrm{X}_{2}\left(\mathrm{X}=\mathrm{BF}_{4}, \mathrm{PF}_{6}\right.$ or $\left.\mathrm{BPh}_{4}\right)$ (Table 3.10). In addition, the conductivity data listed in Table 3.11 also support that the green products are 1:2 electrolytes (for the ideal 1:2 electrolyte, $\Lambda=210-240 \Omega^{-1} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}$), ${ }^{59}$ although the molar conductivity of $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}\left(\mathrm{OH}_{2}\right)_{2}\right]\left(\mathrm{BPh}_{4}\right)_{2}$ is somewhat low. The ${ }^{31} \mathrm{P}$ NMR spectra show a singlet at much higher field than that of the corresponding dichloro complex 11c ($\Delta \delta \cong$ 30 ppm); a blue shift of 460 nm band of 11 c is observed in the visible spectra (Table 3.12). The infrared spectra of the $\mathrm{BF}_{4}-$ and PF_{6} - salts show a band assignable to the coordinated water and reveal no band assignable to a palladium-hydroxide stretch. The IR band of coordinated water in the $\mathrm{BPh}_{4}{ }^{-}$salt is obscured by stretching bands of the phenyl groups (Table 3.11). Although the configuration (HT or HH) of the ionic green species is not obvious from the above data, the reversibility of reaction (3.1) implies that the head-to-tail configuration is perhaps preserved: when a 10 -fold excess of lithium chloride is introduced into the green aqueous solution, an orange solid, the original dichloro dipalladium complex, is precipitated.

Table 3.10. Chemical Analyses of $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}\left(\mathrm{OH}_{2}\right)_{2}\right] \mathrm{X}_{2}$ Species

X	C					
	calcd.	found	H			
calcd. found	c calcd. found					
BF_{4}	37.81	37.37	2.96	2.90	8.82	8.47
PF_{6}	33.70	33.71	2.64	2.55	7.86	7.72
BPh_{4}	66.08	66.45	4.83	4.78	5.93	5.92

Table 3.11. IR, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and Conductivity Data for Bis(aquo)dipalladium Salts

\mathbf{X}	IR $\mathrm{V}_{\mathrm{H}_{2} \mathrm{O}}\left(\mathrm{cm}^{-1}\right)$	$31 \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ $\delta(\mathrm{ppm})$	conductivity $\Lambda\left(\Omega^{-1} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}\right)$
BF_{4}	1627	$-21.81\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CN}\right)$	269
PF_{6}	1627	$-22.19\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CN}\right)$	256
BPh_{4}	c	$-21.63(\mathrm{~s}$, acetone $)$	188

[^7]Table 3.12. Visible Spectral Data for $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}$ Complexes in Different Solvents ${ }^{\mathrm{a}}$

Complex	Solvent	$\lambda_{1}\left(\varepsilon \times 10^{-3}\right)$	$\lambda_{2}\left(\mathrm{Ex10}^{-3}\right)$	$\lambda_{3}\left(\mathrm{Ex10}^{-3}\right)$
$\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}, 11 \mathrm{c}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$335(12)$	$460(8.4)$	-
	$\mathrm{H}_{2} \mathrm{O}$	-	$409(9.3)$	$600(1.7)$
$\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$	$\mathrm{CH}_{3} \mathrm{CN}$	-	$420(6.1)$	$610(0.41)$
$\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$	$\mathrm{CH}_{3} \mathrm{CN}$	-	$420(6.1)$	$610(0.41)$
$\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{BPh}_{4}\right)_{2}$	$\mathrm{CH}_{3} \mathrm{CN}$	-	$420(5.7)$	$610(0.41)$

(a) λ is a wavelength maximum in nm ; ε is the molar absorptivity in $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$.

The other reported cases of a neutral phosphine binuclear bridged complex being soluble in water is the dihalobis(dimethylphosphino)methane bridged dipalladium complex $\mathrm{Pd}_{2} \mathrm{X}_{2}(\mu-$ $\mathrm{dmpm})_{2}(\mathrm{X}=\mathrm{Cl}$ and Br), which liberates hydrochloric acid and forms a neutral dihydroxo derivative. ${ }^{14}$ However, the coordinated $\mathrm{H}_{2} \mathrm{O}$ on the ionic bisaquo PN_{3} species is not as acidic. Attempts were made to measure the pK_{a} value of the coordinated water by standard pH -titration experiments 60 in aqueous solution under vigorous bubbling of N_{2}. No appreciable amount of proton is titrated up to pH 11.0 (Fig. 3.21), implying that dissociation of proton from coordinated $\mathrm{H}_{2} \mathrm{O}$ is negligible. An increase in the initial pH of the solution containing the complex with respect to the initial pH of the dilute acid without complex is attributed to perhaps protonation of nitrogen atoms on the noncoordinated pyridine rings by the added acid at $\mathrm{pH}<$ 5.6. The difference between two curves above pH 5.6 is perhaps due to some residual CO_{2} in solution.

Unfortunately, neither the ionic compounds in aqueous solution nor the salts in organic solvents (acetone, acetonitrile) react with olefins (acrylonitrile, maleic acid) or acetylenes (DMAD, methylpropiolate) at room temperature.

Fig. 3.21. The pH-titration curves of 11 c in $25.0 \mathrm{~mL} \mathrm{HNO}_{3}$ solution. $\left[\mathrm{HNO}_{3}\right]=9.8 \times 10^{-4} \mathrm{M}$, $[11 \mathrm{c}]=4.98 \times 10^{-4} \mathrm{M},[\mathrm{NaOH}]=4.71 \times 10^{-2} \mathrm{M} ; \mathrm{I}=0.3 \mathrm{M}$ using NaNO_{3}, temp. $=22^{\circ} \mathrm{C}$.

3.4.2. Cis-dichlorobis[tris(2-pyridyl)phosphine]palladium(II), cis- $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}, 4 \mathrm{c}$

On dissolution in water, 4 c instantly gives a molar conductivity ($267 \Omega^{-1} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}$ at $1.08 \times 10^{-3} \mathrm{M}$) corresponding to a $1: 2$ electrolyte which results from loss of two chloride ligands as estimated by AgNO_{3} titration. The relative high value infers the possible involvement of conduction by proton arising from the dissociation of coordinated water. In fact, one proton is titratable by NaOH (Fig. 3.22). The protonation/deprotonation equilibration between bisaquo and aquohydroxo is fast on the NMR time scale, as a result, only one singlet peak should be observed at the concentration-weighted average chemical shifts of bisaquo and aquohydroxo species. 62,63 However, the ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ NMR specrum of 4 c in $\mathrm{D}_{2} \mathrm{O}$ consists of two distinct singlets at 27.3 and 21.6 ppm with intensity ratio of approximately $2: 1$ (Fig. 3.23), and these peaks did not vary noticeably when the solution was titrated with NaOH . The observed ${ }^{31} \mathrm{P}$ NMR spectrum can be rationalized, based on a literature report that cis-palladium(II) bisaquo

Fig. 3.22. The pH -titration curve of 4 c in 10 mL of $\mathrm{H}_{2} \mathrm{O}$ in the absence of HNO_{3}. [4c] $=$ $3.34 \times 10^{-3} \mathrm{M},[\mathrm{NaOH}]=1.0 \times 10^{-3} \mathrm{M} ; \mathrm{I}=0.3 \mathrm{M}$ using NaNO_{3}, temp. $=25^{\circ} \mathrm{C}$, under N_{2}. The method for graphical determination of pK_{a} is described in ref. 61 . A: equivalence point, B : volume at equivalence point, C : volume at half equivalence point, D : half equivalence point, and E: pH at half equilvalence point.
species dimerize rapidly in aqueous solution, equation (3.2); ${ }^{63}$ it is perhaps reasonable to assume that an analogous binuclear phosphine complex of this sort is formed in aqueous solution. Indeed, a purple solid, precipitated at the end of pH titration ($\mathrm{pH}=11.0$) as a $\mathrm{BPh}_{4}{ }^{-}$

salt and recrystallized from $\mathrm{CH}_{3} \mathrm{CN}$ and EtOH at $-15^{\circ} \mathrm{C}$ as dark red crystals, analyzed well for $\left[\mathrm{Pd}(\mu-\mathrm{OH})\left(\mathrm{PN}_{3}\right) \mathrm{CH}_{3} \mathrm{CN}_{2}\left(\mathrm{BPh}_{4}\right)_{2}\right.$ (calcd.: C 65.77, H 4.85, N 7.48, O 2.14; found: C 65.50, H. 4.64, N 7.34, O 2.24). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of this product consists of a singlet at 29.1 ppm in $\mathrm{CD}_{3} \mathrm{CN}$, indirectly suggesting that the phosphine is monocoordinated and that $\mathrm{CH}_{3} \mathrm{CN}$ must occupy the fourth available coordination site. The presence of $\mathrm{CH}_{3} \mathrm{CN}$ in this molecule is confirmed by a ${ }^{1} \mathrm{H}$ resonance at 2.35 ppm in the NMR spectrum in $\mathrm{CD}_{3} \mathrm{CN}$. The \mathbb{R} stretching band for OH is observed at $3680 \mathrm{~cm}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ after solvent subtraction, but no band is observed assignable to the coordinated $\mathrm{CH}_{3} \mathrm{CN}$.

Fig. 3.23. $121.4 \mathrm{MHz}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}, 4 \mathrm{c}$, in $\mathrm{D}_{2} \mathrm{O}$ at r.t.

Efforts were made to isolate the bisaquo species cis- $\mathrm{Pd}\left(\mathrm{PN}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{2+}$ by adding methanol solutions of $\mathrm{NaBF}_{4}, \mathrm{KPF}_{6}$ or NaBPh_{4} to the aqueous solution of $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$. Because of the high solubility of the $\mathrm{BF}_{4}-$ and PF_{6} product salts in water, isolation of these salts was more difficult; even when the solids were sometimes collected by filtration, further purification of the solids by a reprecipitation procedure proved to be difficult because of their poor solubilities in organic solvents (acetone or acetonitrile). Therefore, the attempted characterization is largely based on the BPh_{4}^{-}salt. An orange tetraphenylborate salt, obtained by reacting the aqueous solution of cis $-\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ with a methanol solution of NaBPh_{4}, is readily dissolved in acetone and can be reprecipitated from the acetone solution by the addition of diethyl
ether. This isolated orange solid is believed to be the cis bisaquo exclusively, with a ${ }^{31} \mathrm{P}$ NMR singlet at 33.4 ppm in $\mathrm{CD}_{3} \mathrm{CN}$. Possibly because of the solubility difference between the mononuclear and binuclear species, only the mononuclear species appears to be precipitated. The equilibria are outlined in Scheme 3.2.

Scheme 3.2. Solution behaviour of the palladium(II) bisaquo species.

Any bisaquo and aquohydroxo species would equilibrate rapidly on the NMR time scale, as mentioned previously, perhaps giving the one singlet at 33.4 ppm in $\mathrm{CH}_{3} \mathrm{CN}$. This singlet may correlate with the 27.3 ppm singlet in $\mathrm{D}_{2} \mathrm{O}$, and thus the downfield singlet in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum in $\mathrm{D}_{2} \mathrm{O}$ is assigned to the bisaquo/aquohydroxo species, while the upfield one is assigned to the binuclear hydroxo bridged species. The elemental analysis required for $\left[\mathrm{Pd}\left(\mathrm{PN}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{BPh}_{4}\right)_{2}$ (calcd: C 71.43, H 5.23, N 6.41; found: C 69.43, H 4.73, N 6.87), however, was low in carbon and hydrogen contents and somewhat high in nitrogen content. Further reprecipitation procedures gave species with gradually decreasing carbon and increasing nitrogen contents (for example, C 67.08, H 4.85, N 7.18). The molar conductivity of the 'best' salt sample in acetonitrile (Conc. $=8.4 \times 10^{-4} \mathrm{M}$) was $170 \Omega^{-1} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}$ which is too high for a 1:1 electrolyte and somewhat low for a 1:2 electrolyte (for $1: 1$ electrolyte $\Lambda_{M}=110-120$ $\Omega^{-1} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}, 1: 2$ electrolyte $\left.\Lambda_{M}=210-240 \Omega^{-1} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}\right) .58$ The analytical and conductivity results are more sensible, however, when the above equilibria are taken into consideration (Scheme 3.2). In fact, the pH of an aqueous solution of 4 c at $3.7 \times 10^{-3} \mathrm{M}$ is 2.9 , corresponding to 34% proton dissociation. The chemical analysis data, recalculated based on a $34 \%: 66 \%$ mixture of $\left[\mathrm{Pd}\left(\mathrm{PN}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{OH})\right]\left(\mathrm{BPh}_{4}\right)$ and $\left[\mathrm{Pd}\left(\mathrm{PN}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{BPh}_{4}\right)_{2}$, assuming that this ratio is unaltered by precipitation (C 69.39, H 5.08, N 7.11), fit much better the experimental
result. This treatment is also applicable for the BF_{4}^{-}salt. The isolated solid, assumed to be a mixture of $66 \%\left[\mathrm{Pd}\left(\mathrm{PN}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ (calcd: C 42.56, H 3.33, N 9.93) and 34% $\left[\mathrm{Pd}\left(\mathrm{PN}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{OH})\right]\left(\mathrm{BF}_{4}\right)$ (calcd: $\mathrm{C} 47.48, \mathrm{H} 3.59, \mathrm{~N} 11.08$) gives experimentally found values for C, H and N of $43.84,3.20$ and 10.63 , respectively, which match well the calculated values, $44.23,3.42$ and 10.32 .

The pK_{a} value of bisaquo species was estimated to be 3.8 ± 0.2 by a pH -titration shown in Fig. 3.22 and 4.8 ± 0.1 by the previously mentioned standard titration 60 (Fig. 3.24). These pK_{a} values are not true representations of the acid dissociation constants of a bisaquo species, but are mixed constants of proton dissociation and dimerization (Scheme 3.2). In the absence of acid, the measured constant reflects more of the dimerization; in the presence of acid, dimerization being inhibited, the measured constant reflects more proton dissociation. There are no comparable acid dissociation constant data available in the literature for this type of aquo/phosphine Pd^{2+} species; there are a few for the bisaquo/amino acid Pd^{2+} compounds $\operatorname{Pd}(\mathrm{L})\left(\mathrm{H}_{2} \mathrm{O}\right) 2^{2+}\left(\mathrm{L}=\right.$ methionine, $\mathrm{pK}_{\mathrm{a}}=4.96 ; \mathrm{L}=$ alanine, $\mathrm{pK}_{\mathrm{a}}=5.50 ; \mathrm{L}=$ tyrosine, pK_{a} $=4.77) .64$ The reason for this is perhaps attributable to the complexity of reactions taking place in solution, dissociation of proton being usually accompanied by dimerization. ${ }^{63,65}$ The same problem was encountered for $\mathrm{Pd}(\mathrm{en})\left(\mathrm{OH}_{2}\right)_{2}{ }^{2+}$, where only the endpoint of a titration, pH 7.5 , was reported. 65 In contrast with the rapid dimer formation from $\mathrm{Pd}(\mathrm{en})\left(\mathrm{H}_{2} \mathrm{O}\right) 2^{2+}$ (Eq. 3.2), the formation of the corresponding Pt^{2+} analog is slow with respect to the pK_{a} determination so that the pK_{a} 's of $\mathrm{Pt}(\mathrm{en})\left(\mathrm{H}_{2} \mathrm{O}\right) 2^{2+}$ were found to be 5.8 and 7.6.65 This complexity in pK_{a} determination for bisaquo/phosphine Pd^{2+} species is best shown in the $\overline{\mathrm{n}}$ vs pH plot (Fig. 3.24, inset) based on the data from the two titrations. A simple, one proton pH titration should give a smooth S-shaped curve. Despite the uncertainties, the pK_{a} values measured (3.8 and 4.8) seem to fall into the same range as the data for the bisaquo/amino acid species.

Fig. 3.24. The pH -titration curves of (1) HNO_{3} and (2) 4 c in HNO_{3}. [HNO_{3}] $=2.0 \times 10^{-3} \mathrm{M}$, $[4 \mathrm{c}]=2.0 \times 10^{-3} \mathrm{M},[\mathrm{NaOH}]=9.42 \times 10^{-2} \mathrm{M} ; \mathrm{I}=0.3$ using NaNO_{3}; temp. $=25.0 \pm 0.2^{\circ} \mathrm{C}$. Inset: $\overline{\mathrm{n}}$ vs. pH plot, yielding $\mathrm{pK}_{\mathrm{a}} \approx 4.8 . \overline{\mathrm{n}}$ is defined as the molar fraction of the protonated species present, the value of which can be calculated from the volume difference between curves (2) and (1) divided by the volume used to titrate $2 \mathrm{mM} \mathrm{HNO}_{3}$.

To avoid formation of a possible bisaquo and aquo-hydroxo mixture, the pH values of two aqueous 4 c solutions were adjusted to 1.5 by adding dilute HNO_{3} and to 5.6 by adding solid NaHCO_{3}, respectively. The colour of the former solution ($\mathrm{pH}=1.5$) is orange-yellow and the latter $(\mathrm{pH}=5.6)$ is brownish orange. A tetraphenylborate salt precipitates out from the acidified solution as a yellow powder with an improved chemical analysis result (found: C 70.12, H 5.10, N 6.60), and a $\mathrm{CD}_{3} \mathrm{CN}$ solution of the sample still showed the same ${ }^{31} \mathrm{P}$ NMR shift, 33.4 ppm . The conductivity of this product in acetonitrile solution (Conc. $=7.5 \times 10^{-4} \mathrm{M}$) is $217.6 \Omega^{-1} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}$. The orange solid precipitated from the pH 5.6 solution analyzes for $\left[\mathrm{Pd}\left(\mathrm{PN}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{OH})\right]\left(\mathrm{BPh}_{4}\right)$ with relatively satisfactory results except for nitrogen content
which is about 0.8% off (calcd: C 65.42, H 4.78, N 8.48; found: C 65.39, H 4.60, N 7.72); the conductivity is $183.6 \Omega^{-1} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}$ (Conc. $=6.3 \times 10^{-4} \mathrm{M}$). The v_{OH} and $\mathrm{v}_{\mathrm{H}_{2} \mathrm{O}}$ stretches are detected in a sample assumed to be $\left[\mathrm{Pd}\left(\mathrm{PN}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{OH})\right]\left(\mathrm{PF}_{6}\right)$ (Fig. 3.26) but not in $\left[\mathrm{Pd}\left(\mathrm{PN}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{OH})\right]\left(\mathrm{BPh}_{4}\right)$.

On addition of lithium chloride to the aqueous solution of $\mathbf{4 c}$, the precursor $\mathbf{4 c}$ complex is not precipitated; instead, an unknown pale yellow, water soluble species, possibly $\mathrm{PdCl}_{3}\left(\mathrm{PN}_{3}\right) 2^{-}$, is formed, giving a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ resonance at 54.3 ppm in $\mathrm{D}_{2} \mathrm{O}$ with no formation of an intermediate species between the assumed anionic species and the cationic species. Even if $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ is formed, it is only a transient species. The labile character of the Pd^{2+} centre would promote such product formation.

Fig. 3.25. Infrared spectrum of $\left[\mathrm{Pd}\left(\mathrm{PN}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{OH})\right]\left(\mathrm{PF}_{6}\right)$ in Nujol on KBr at r.t.

1. Basolo, F.; Pearson, R.G. Mechanisms of Inorganic Reactions - A Stucty of Metal Complexes in Solution, 2nd Ed.; John Wiley \& Sons: New York, 1969; p.69.
2. Hartley, F.R. The Chemistry of Platinum and Palladium; John Wiley \& Sons: New York, 1973; p. 19.
3. Ref. 1, pp.423-427.
4. (a) Redfield, D.A.; Nelson, J.H. Inorg. Chem., 1973, 12, 15. (b) Redfield, D.A.; Nelson, J.H.; Henry, R.A.; Moore, D.W.; Jonassen, H.B. J. Am. Chem. Soc., 1974, 96, 6298. (c) Verstuyft, A.W.; Redfield, D.A.; Cary. L.W.; Nelson, J.H. Inorg. Chem., 1976, 15, 1128
5. (a) MacDougall, J.J.; Mathey, F.; Nelson, J.H. Inorg. Chem., 1980, 19, 1400 (b) MacDougall, J.J.; Nelson, J.H.; Mathey, F. Inorg. Chem., 1982, $21,2145$.
6. (a) Haake, P.; Pfeiffer, R.M. J. Chem. Soc. D , 1969, 1330. (b) Haake, P.; Pfeiffer, R.M. J. Am. Chem. Soc., 1970, 92, 5243. (c) Haake, P.; Pfeiffer, R.M. J. Am. Chem. Soc., 1970, 92, 4996.
7. (a) Cooper, D.G.; Powell, J. Can. J. Chem., 1973, 51, 1634. (b) Cooper, D.G.; Powell, J. J. Am. Chem. Soc., 1973, 95, 1102.
8. Romeo, R. Inorg. Chem., 1978, 17, 2040 .
9. Favez, R.; Roulet, R.; Pinkerton, A.A.; Schwarzenbach, D. Inorg. Chem., 1980, 19, 1356.
10. Brown, M.P.; Fisher, J.R.; Franklin, S.J.; Puddephatt, R.J.; Thomson, M.A. In Catalytic Aspects of Metal Phosphine Complexes, ACS Symposium Series 196; Alyea, E.C., Meek, D.W., Eds.; American Chemiccal Society: Washington, DC, 1982; p. 231.
11. Collman, J.P.; Hegedus, L.S.; Norton, J.R.; Finke, R.G. Principles and Applications of Organotransition Metal Chemistry, 2nd ed.; University Science Books: Mill Valley, CA., 1987; pp.412-416.
12. Panunzi, A.; DeRenzi, A.; Paiaro, G. J. Am. Chem. Soc., 1970, 92, 3488.
13. Ref. 2, pp.16-17.
14. (a) Kullberg, M.L.; Kubiak, C.P. Organometallics, 1984, 3, 632 and references therein. (b) Kullberg, M.L.; Lemke, F.R.; Powell, D.R.; Kubiak, C.P. Inorg. Chem., 1985, 24, 3589. (c) Kullberg, M.L.; Kubiak, C.P. C ${ }_{1}$ Mol. Chem., 1984, 1,171 .
15. Mague, J.T.; Klein, C.L.; Majeste, R.J.; Stevens, E.D. Organometallics, 1984, 3, 1860.
16. (a) Barnabas, A.F. M. Sc. thesis, University of British Columbia, 1989. (b) James, B.R.; Lee, C-L.; Lilga, M.A.; Nelson, D.A. U.S. Patent 4,693,875, 1987; C.A. 1988, 107, 239618x. (c) Barnabas, A.F.; Sallin, D.; James, B.R. Can. J. Chem., 1989, 67, 2009.
17. (a) Lee, C-L.; James, B.R.; Nelson, D.A.; Hallen, R.T. Organometallics, 1984, 3, 1360. (b) Lyke, S.F.; Lilga, M.A.; Nelson, D.A.; James, B.R.; Lee, C-L. Ind. Eng. Chem. Prod. Res. Dev., 1986, 25, 517.
18. Balch, A.L.; Benner, L.S.; Olmstead, M.M. Inorg. Chem., 1979, 18, 2996.
19. (a) Olmstead, M.M.; Hope, H.; Benner, L.S.; Balch, A.L. J. Am. Chem. Soc., 1977, 99, 5502. (b)Holloway, R.G.; Penfold, B.R.; Colton, R.; McCormick, M.M. J. Chem. Soc. Chem. Comm., 1976, 485.
20. Lee, C-L.; Yang, Y-P.; James, B.R. to be submitted to Organometallics.
21. Maisonnat, A.; Farr, J.P.; Balch, A.L. Inorg. Chim. Acta, 1981, 53, L217.
22. Farr, J.P.; Wood, F.E.; Balch, A.L. Inorg. Chem., 1983, 22, 3387.
23. Pidcock, A.; Richards, R.W.; Venanzi, L.M. Proc. Chem. Soc., 1962, 184.
24. Grim, S.O.; Keiter, R.L.; McFarlane, W. Inorg. Chem., 1967, 6, 1133.
25. Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis; Verkade, J. G., Quin, L. D., Eds.;VCH: Deerfield Beach, FL, 1987.
26. Verkade, J.G. Coord. Chem. Rev., 1973, 9, 1.
27. (a) Goodfellow, R.J. J. Chem. Soc. D, 1968, 114. (b) Goodfellow, R.J. J. Chem. Soc. A, 1967, 1579.
28. Pregosin, P.S.; Kunz, R.W. ${ }^{31}$ P and ${ }^{13} \mathrm{C}$ NMR of Transition Metal Phosphine Complexes; Springer-Verlag: Berlin, 1979.
29. (a) Nixon, J.F.; Pidcock, A. Ann. Rev. NMR Spectr., 1969, 2, 346. (b) Mather, G.G.; Rapsey, G.J.N.; Pidcock, A. Inorg. Nucl. Chem. Letters, 1973, 9, 567. (c) Sullen, F.H.; Pidcock, A.; Waterhouse, C.R. J. Chem. Soc. A, 1970, 2087. (d) Allen, F.H.; Pidcock, A. J. Chem. Soc. A, 1968, 2700.
30. Newkome, G.R.; Evans, D.W.; Fronczek, F.R. Inorg. Chem., 1987, 26, 3500.
31. Jensen, K.A. Z. Anorg. Chem., 1936, 229, 225.
32. (a) Chatt, J.; Wilkins, R.G. J. Chem. Soc., 1952, 273. (b) Chatt, J.; Wilkins, R.G. Ibid., 1952, 4300. (c) Chatt, J.; Wilkins, R.G. Ibid., 1953, 70. (d) Chatt, J.; Wilkins, R.G. Ibid., 1956, 525.
33. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed.; Wiley: New York, 1986; p.324, 339.
34. Coates, G.E.; Parkin, C. J. Chem. Soc., 1963, 421.
35. Park, P.J.D.; Hendra, P.J. Spectrochimica Acta A, 1969, 25, 227.
36. Rosevear, D.T.; Stone, F.G.A. J. Chem. Soc., 1965, 5275.
37. (a)Adams, D.M.; Chandler, P.J. J. Chem. Soc. Chem. Commun., 1966, 69. (b)Adams, D.M.; Chatt, J.; Gerratt, J.; Westland, A.D. J. Chem. Soc., 1964, 734.
38. Goggin, P.L.; Goodfellow, R.J. J. Chem. Soc. A, 1966, 1402.
39. (a)Cheney, A.J.; Mann, B.E.; Shaw, B.L.; Slade, R.M. J. Chem. Soc. A, 1971, 3833. (b)Cheney, A.L.; Shaw, B.L. J. Chem. Soc. Dalton Trans., 1972, 860.
40. Grim, S.O.; Keiter, R.L. Inorg. Chim. Acta, 1970, 4, 56.
41. Cheney, A.L.; Shaw, B.L. J. Chem. Soc. Dalton Trans., 1972, 754.
42. Goodfellow, R.J.; Taylor, B.F. J. Chem. Soc. Dalton Trans., 1974, 1676.
43. Jenkins, J.M.; Shaw, B.L. J. Chem. Soc. A , 1966, 770.
44. Mann, B.E.; Shaw, B.L.; Stainbank, R.E. J. Chem. Soc. Chem. Comm., 1972, 151.
45. (a)Verstuyft, A.W.; Nelson, J.H.; Cary, L.W. Inorg. Chem., 1976, 15, 732. (b) Redfield, D.A.; Cary, L.W.; Nelson, J.H. Inorg. Chem., 1975, 14, 50.
46. Goggin, D.L.; Goodfellow, R.J.; Haddock, S.R.; Knight, J.R.; Reed, F.J.S.; Taylor, B.F. J. Chem. Soc. Dalton Trans., 1974, 523.
47. Fyfe, C.A. Solid State NMR for Chemists; C.F.C.Press: Guelph, Ontario, 1983; pp.363-365, 375-377.
48. Bermi, L.; Clark, H.C.; Davies, J.A.; Fyfe, C.A.; Wasylishen, R.E. J. Am. Chem. Soc., 1982, 104, 438.
49. Mislow, K.; Raban, M. Topics. Stereochem., 1974, 1, 1.
50. Mislow, K.; Bickart, P. Isr. J. Chem., 1976/1977, 15, 1.
51. Maisonnat, A.; Farr, J.P.; Olmstead, M.M.; Hunt, C.T.; Balch, A.L. Inorg. Chem., 1982, 21, 3961.
52. Farr, J.P.; Olmstead, M.M.; Balch, A.L. Inorg. Chem., 1983, 22, 1229.
53. Ref. 11, p. 214.
54. Ref. 1, pp. 414-417.
55. McEwen, W.E. In Topics in Phosphorus Chemistry, Vol. 2; Grayson, M., Griffith, E.L., Eds.; Interscience: New York, 1965; pp.17-19.
56. Gallagher, M.L.; Jenkins, I.D. In Topics in Stereochemistry, Vol. 3; Eliel, E.L., Alliger, N.L., Eds.; Interscience: New York, 1968; p.11.
57. Hartley, F.R. Organomet. Chem. Rev. A, 1970, 6, 119.
58. Sue, C-Y. Ph.D. dissertation, University of British Columbia, 1989; p.189.
59. (a) Dodd, R.E.; Robinson, P.L. Experimental Inorganic Chemistry - A Guide to Laboratory Practice, Elsevier: Amsterdam, 1954; p.378. (b) Geary, W.J. Coord. Chem. Rev., 1971, 7, 81.
60. James, B.R. D. Phil. dissertation, Oxford, 1960.
61. Reynolds, C.A. Principles of Analytical Chemistry, Allyn \& Bacon: Boston, 1966; p. 79.
62. Appleton, T.G.; Hall, J.R.; Ralph, S.F.; Thompson, C.S.M. Inorg. Chem., 1989, 28, 1989.
63. Lippard, S.J. Science, (Washington, D.C.) 1982, $218,1075$.
64. Chernova, N.N.; Kurskii, I.G. Zh. Neorg. Khim., 1978, 23, 1014 through C.A., 1978, 89, 31695x.
65. Lim, M.C.; Martin, R.B. J. Inorg. Nucl. Chem., 1976, 38, 1911.

Chapter 4

Reactivities of the Head-to-Head Isomers of $\mathbf{P t}_{\mathbf{2}} \mathrm{I}_{\mathbf{2}}\left(\mu-\mathbf{P N}_{\mathbf{n}}\right)_{\mathbf{2}}$
 Complexes ($\mathrm{n}=1,2$ or 3) toward Dimethylacetylenedicarboxylate and toward Phosphine

4.1. Introduction

Many metal acetylene complexes have been characterized since the mid 1970s in a search for hydrogenation and cyclotrimerization catalysts for acetylenes. There is no ambiguity in the bonding mode of mononuclear metal acetylene complexes in which the acetylene molecule acts as a σ donor and π acceptor. In binuclear complexes, two acetylene bonding modes are most commonly observed: the tetrahedral $\mu_{2}-\eta^{2}$ geometry (A) in which the acetylene sits perpendicular to the metal-metal axis, ${ }^{1-9}$ and the cis-bimetallated olefinic geometry (B) in which the acetylene lies parallel to the metal-metal axis. ${ }^{10-16}$ Most of type A complexes are carbonyl complexes of the first row transition metals, whereas the B type complexes usually involve the phosphine complexes of the second or third row transition metals.

A

B

It is anticipated ${ }^{13}$ that the binuclear acetylene complexes will show significantly enhanced activity over that of free acetylene because the 'coordinated' acetylenic bond is significantly lengthened with respect to that in free acetylene, 17 or even with respect to acetylene bound to one single metal. ${ }^{18}$ One aspect of the present study was originally aimed at activation toward hydration of olefins and acetylenes via coordination to the previously described pyridylphosphine binuclear metal complexes.

As previously discussed, binuclear complexes containing the bridging PN_{n} ligands do not form A-frame insertion adducts with CO. 19 However, the dimethylacetylenedicarboxylate, DMAD, insertion complex with $\left.\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{PN})_{3}\right)_{2}, 11 \mathrm{c}$, was prepared and crystallographically characterized by our group to have the cis-bimetallated olefinic structure (type B) (Fig. 4.1). ${ }^{20}$ The reactivity seen in a chelating diphosphine to accommodate DMAD^{13} is also observed in pyridylphosphine complexes, and the noted absence of a Pd-Pd bond is seen also in the similar insertion product $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{CF}_{3} \mathrm{C}=\mathrm{CCF}_{3}\right)(\mathrm{dppm}){ }_{2}{ }^{12}$ The head-to-tail, HT, configuration of the product allows us to suggest tentatively the HT configuration for the precursor 11c, assuming no isomerization during the insertion reaction; the HT geometry is not demonstrated from other physical characterization data (Sect. 3.2.4). This study was extended in the present work to platinum complexes, and the insertion reaction seems to be a quite general one (Sect. 2.7).

Fig. 4.1. ORTEP drawing of $\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{DMAD})\left(\mu-\mathrm{PN}_{3}\right)_{2}$ and the atom numbering scheme. ${ }^{20}$
Some representative bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$.
$\operatorname{Pd}(1)-\mathrm{C}(1)=2.010(3)$
$\operatorname{Pd}(1)-\mathrm{P}(2)=2.2434(9)$
$\mathrm{Pd}(1)-\mathrm{Cl}(1)=2.3929(10)$
$\mathrm{Pd}(2)-\mathrm{C}(2)=2.003(3)$
$\mathrm{Pd}(2)-\mathrm{Cl}(2)=2.3841(10)$
$C(1)-C(2)=1.330$
$\operatorname{Pd}(1)-\mathrm{C}(1)-\mathrm{C}(2)=112.1(3) \quad \mathrm{Pd}(1)-\mathrm{C}(1)-\mathrm{C}(3)=121.0(2)$
$\mathrm{P}(2)-\mathrm{Pd}(1)-\mathrm{N}(1)=174.8$ (8)
$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{C}(1)=175.0(1) \mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{N}(1)=89.04$ (8)
$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{P}(2)=95.71$

In this Chapter, general reactivities of the $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{n}\right)_{2}$ head-to-tail (HT) and head-tohead (HH) species, 9 and 10, toward DMAD will be described. The kinetic and spectroscopic studies are focused on the simple oxidative addition of DMAD to the HT isomer, and the same oxidative addition to the HH isomer followed by isomerization to the HT form (see below). To our knowledge, there has been no similar study reported in the literature on such isomerizations involving a binuclear metal framework. It was considered to be of interest from an organometallic chemistry point of view to investigate the detailed mechanism and the origin of such isomerization.

Also in this Chapter, a related isomerization reaction of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HH}), 10 \mathrm{c}$, in the presence of PN_{3} to give $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN} \mathrm{N}_{3}\right)_{2}(\mathrm{HT}), 9 \mathrm{c}$, will be discussed.

4.2. Experimental

Syntheses of the HH isomers of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{n}\right)_{2}(\mathrm{n}=1-3), 10 \mathrm{a}-10 \mathrm{c}$, and separation of the HH from the HT isomers have been described in Chapter 2, Sect. 2.6.1-2.6.2, and the structures of complexes $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}, 10 \mathrm{~b}$, were discussed in detail in Sect. 3.2.3. Reactions of 10a-10c with DMAD have also been described in Chapter 2, Sect. 2.7. The isolated reaction products were characterized as $1: 1$ insertion complexes, and the configuration of adducts were determined unambiguously using ${ }^{31} \mathrm{P}$ and ${ }^{195} \mathrm{Pt}$ NMR spectroscopies. Table 4.1 lists the ${ }^{31} \mathrm{P}\left[{ }^{1} \mathrm{H}\right]$ parameters of the DMAD adducts made.

Kinetic experiments for reactions of the binuclear platinum complexes with DMAD were carried out using a thermostated $\left(\pm 0.1^{\circ} \mathrm{C}\right)$ Perkin-Elmer 502 A UV/vis spectrophotometer. Pure DMAD liquid was added by a microsyringe so that the concentration of DMAD could be calculated from the known volume and density data, and was placed in the side-flask of the anaerobic optical cell (Fig. 2.1); a solution of the Pt complex of known concentration was transferred from a volumetric flask and placed in the cell (3 mL solution for 10 mm path length

Table 4.1. ${ }^{31}$ P NMR Parameters of DMAD Insertion Adducts ${ }^{\text {a }}$

Compound	δ (ppm) $\quad{ }^{1} \mathrm{JPtP}$	$3^{3} \mathrm{JPLP}$	
$\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-\mathrm{DMAD})(\mu-\mathrm{PN})_{2}(\mathrm{HH}), 17$	21.5 (s)	3496	242
$\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-\mathrm{DMAD})(\mu-\mathrm{PN})_{2}{ }_{2}(\mathrm{HT}), 18{ }^{\text {b }}$	6.85 (s) (32\%)	4480	268
	7.35 (s) \& 8.47 (s) ${ }^{\text {c (}}$ (59\%)	4517	257
	9.32 (s) (9\%)	4540	272
$\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-\mathrm{DMAD})\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT}), 19$	8.37 (s)	4455	272
$\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{DMAD})(\mu-\mathrm{PN})_{2}(\mathrm{HT}), 20$	9.88 (s)	4605	272
$\mathrm{PtPdCl}_{2}(\mu-\mathrm{DMAD})(\mu-\mathrm{PN} 3)_{2}(\mathrm{HT}), 21{ }^{\text {d }}$	12.84 (d)	4486	478
	29.58 (d)		
$\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-\mathrm{MPP})\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT}), 22^{\text {e }}$	12.24 (s)	4620	279
	10.12 (s)	4584	242
$\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{DMAD})\left(\mu-\mathrm{PN}_{1}\right)_{2}(\mathrm{HT}), 23$	35.77 (s)		
$\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{DMAD})\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HT}), 24 \mathrm{~b}$	35.46 (s) (44\%)		
	35.25 (s) \& 33.83 (s) ${ }^{\text {c }}$ (44%)		
	33.33 (s) (12\%)		
$\mathrm{Pd}_{2} \mathrm{I}_{2}(\mu-\mathrm{DMAD})(\mu-\mathrm{PN})_{2}(\mathrm{HT}), \mathbf{2 5}$	35.02 (s) (34\%)		
	34.61 (s) \& 33.46 (s) ${ }^{\text {c }}$ (48%)		
	32.98 (s) (18\%)		

(a) The spectra were recorded in CDCl_{3} solvent at r.t. (b) Diastereomers of the DMAD adducts were detected, the relative intensities of the individual peaks being given as percentages in the brackets. (c) Diastereotopic P atoms give rise to two singlets with equal intensities. (d) ${ }^{4} \mathrm{~J}_{\mathrm{PP}}$ was resolved as 5.0 Hz . (e) This adduct was not isolated (Sect. 2.7).
quartz cell) shown in Fig. 2.1. No degassing procedure was required. Reaction times were recorded, following mixing of the reactants, on a Chron-Lab 1400 timer for faster reactions (1020 seconds between readings), or recorded with the repetitive scanning spectra for the slower reactions (3-90 minutes between readings) by a built-in timer. For the binding of DMAD, a decrease of absorbance was monitored at one specific wavelength (e.g. 500 nm for 10 c , and 520 nm for 9 c , see Sect. 4.3.2) for most reactions, except for the reaction of 10 a and 10 b with DMAD in which the spectra from 400 to 600 nm were recorded (see Sect. 4.3.3); for the isomerization step (from 28.2 to 19), a subsequent increase of absorbance was monitored from

450 to 600 nm (see below). The reactions were run under pseudo-first order conditions by using a 10 to 100 -fold excess of DMAD. The concentrations of platinum complexes were usually in the range of $0.20-1.30 \times 10^{-4} \mathrm{M}$. The absorbance data versus time, and the corresponding $-\ln \left(\mathrm{A}_{\mathrm{t}} \mathrm{A}_{\infty}\right)$ or $-\ln \left(\mathrm{A}_{\infty}-\mathrm{A}_{\boldsymbol{J}}\right)$ vs. time data, are listed Tables AIII-AVIII in the Appendix.

The observed first-order rate constants were obtained from the slopes of the plots of $\ln \left(\mathrm{A}_{\mathrm{t}}-\mathrm{A}_{\infty}\right)$ vs. t by a least-square analysis; the plots were generally linear with correlation coefficients higher than 0.996 (A_{t} is the absorbance at time t, and A_{∞} normally is the absorbance at completion of the reaction for a one-step process). For consecutive DMAD binding and isomerization reactions, the lowest absorbances (see Fig. 4.5) were taken as A_{∞} for the binding step. This method is justified by application of the Kezdy-Swinbourne treatment. 21,22 The estimated A_{∞} values from a K-S plots were usually very close (within two percent or less) to those obtained directly from the spectra. The Guggenheim treatment ${ }^{23}$ was applied to confirm the accuracy of the rate constants in some cases. Detailed descriptions are given in Sect. 4.3.2. The activation enthalpies and entropies were obtained from Eyring plots of $\ln \mathrm{k} / \mathrm{T}$ vs. $1 / \mathrm{T}$.

4.3. Results and discussion

4.3.1. Reactions of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT}), 9 \mathrm{c}$, with acetylenes

Reaction of 9c with DMAD yielded the A-frame product shown as 19 in Fig. 4.2, the expected analogue of the $\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{DMAD})\left(\mu-\mathrm{PN}_{3}\right)_{2}$ (HT) complex (Fig. 4.1). Initially surprising, however, was the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (Fig. 4.2), which showed no splitting of the Pt satellites. The ${ }^{31} \mathrm{P}$ spectrum was expected to be similar to that of 9 c (Fig. 3.9) because of magnetic inequivalence of the P atoms in the ${ }^{195} \mathrm{Pt}$ spin labelled isotopomer. The apparent anomaly was clarified when 9 c was treated in situ in an NMR tube with methylpropiolate (MPP), and the ${ }^{31} \mathrm{P}$ NMR spectrum of the product $\left.\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-\mathrm{MPP})(\mu-\mathrm{PN})_{3}\right)_{2}(\mathrm{HT}), 22$, was measured (Fig. 4.3); the now chemically inequivalent P atoms are seen as two singlet (with Pt satellites) peaks, and there is no PP coupling (i.e. $\mathrm{J}_{\mathrm{PP}} \approx 0 \mathrm{~Hz}$ or is unresolvable). Thus in 19 , the magnetic inequivalence of the two P atoms is not detected. The HT geometry is also supported by the

Fig. 4.2. ${ }^{11} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum (121.4 MHz) of $19 \mathrm{in} \mathrm{CDCl}_{3}$ at r.t.: $\delta=8.37 ;{ }^{1} \mathrm{~J}_{\mathrm{PLP}}=4455$ $\mathrm{Hz},{ }^{3} \mathrm{~J}_{\mathrm{PtP}}=272 \mathrm{~Hz}$.

Fig. 4.3. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (121.4 MHz) of 22 in CDCl_{3} at r.t.: $\delta=12.24(\mathrm{~s}), 10.12$ $(\mathrm{s}) ;{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=4620,4584 \mathrm{~Hz} ;{ }^{3} \mathrm{~J}_{\mathrm{PtP}}=279,242 \mathrm{~Hz}$, respectively. Peaks are not assigned to individual P atoms.
${ }^{195 P t}$ NMR spectrum of $19\left(\delta=293.2(\mathrm{~d}),{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=4453 \mathrm{~Hz}\right.$; in CDCl_{3}, r.t) which is similar to the pattern observed for 9 c in Fig. 3.9b and apparently dissimilar to that of $\mathbf{1 0} \mathrm{c}$ in Fig. 3.13b.

4.3.2. Reaction of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HH}), 10 \mathrm{c}$, with DMAD

Extension of the concept of the acetylene reaction to reaction of 10 c with DMAD would lead to the expectation of a product with structure 28.1. The ${ }^{31}$ P NMR spectrum of $\mathbf{2 8 . 1}$ would basically look similar to that of 10 c (Fig. 3.13). However, the reaction of 10 c with DMAD finally yielded an orange compound which was clearly identical with 19.

28.1
$10 c+$ DMAD
28.2 19

The difference in 28.1 and 19 lies only in the relative P-N orientation, one is being HH , and the other is HT. Obviously, an isomerization has taken place during the reaction. This reaction was monitored in situ by ${ }^{31}$ P NMR spectroscopy and the results are shown in Fig. 4.4. In Fig. 4.4(a), the immediately formed species, 28.2, has in fact a ${ }^{31} \mathrm{P}$ spectrum very different from either that of 19 (Fig. 4.2) or the expected pattern for 28.1 (cf. 10c in Fig. 3.13a and 17 in Fig. 4.14). As indicated by the doublet of doublets, two phosphorus atoms in 28.2 are chemically inequivalent. The value of $J_{P P}, 13 \mathrm{~Hz}$, is typical of either a cis phosphorus, or diagonally oriented-HT, phosphorus coupling. The ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of intermediate 28.2, shown in Fig. 4.4(b), consists of a pseudo-triplet which is in fact a doublet of doublets, ruling out the possibility of an HT configuration because of the apparent dissimilarity between (b)

Fig. 4.4. (a) ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ NMR spectrum (121.4 MHz) of 28.2 the initially formed DMAD adduct of 10 c , in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at r.t.: $\delta_{\mathrm{P}_{1}}=21.2$ (d), $\delta_{\mathrm{P}_{2}}=26.5(\mathrm{~d}) ;{ }^{1} \mathrm{~J}_{\mathrm{PtP}_{1}}=3719,{ }^{1} \mathrm{~J}_{\mathrm{PtP}_{2}}=3625 \mathrm{~Hz} ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=$ 13.5 Hz , respectively. (b) $\left.{ }^{195 \mathrm{Pt}}{ }^{1} \mathrm{H}\right\}$ NMR spectrum (64.2 MHz) of 28.2 obtained at $-20^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta=-128.1$ (dd); ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}=3712,3613 \mathrm{~Hz}$. The broad peaks at 230.0 and 300.0 are assignable to the HT DMAD adduct, 19. (c) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (121.4 MHz) of the same sample taken 20 h after spectrum (b) was taken (sample was stored at $-20^{\circ} \mathrm{C}$); ${ }^{3} \mathrm{~J}_{\mathrm{PL}_{1}}$ of 28.2 was resolved here as $190 \mathrm{~Hz} . \mathrm{X}=$ impurity.
and the ${ }^{195} \mathrm{Pt}$ spectrum of $9 \mathrm{c}, \mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT})$, (Fig. 3.9b). The basic " HH " configuration must therefore be maintained in $\mathbf{2 8 . 2}$ while distortion from 'perfect HH' must result in chemical inequivalence of the P nuclei. The ${ }^{1} \mathrm{~J}_{\mathrm{PtP}_{1}}$ and ${ }^{1} \mathrm{~J}_{\mathrm{P}_{4} \mathrm{P}_{2}}$ values measured in (b) are consistent with the values measured in (a). In Fig. 4.4(c), the upfield peaks, growing in with time, are the peaks due to the HT-A-frame adduct 19, the result of a geometrical rearrangement.

Monitoring reaction 4.1 by visible spectroscopy consistently reveals that this overall reaction involves two consecutive steps; typical visible spectra recorded in kinetic experiments are displayed in Fig. 4.5.

Fig. 4.5. The observed changes in visible spectra for reaction. 4.1 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$. - - - is the spectrum of the precursor $10 \mathrm{c}\left(\lambda_{\max }=498 \mathrm{~nm}, \varepsilon=456 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$; $\ldots .$. is the spectrum of the intermediate 28.2 (see Fig. 4.4a); ---- is the spectrum of the HT DMAD adduct 19. The solid lines between 19 and 28.2 are the spectra recorded every 30 min for the formation of 19 from 28.2; changes for the conversion of 10 c to 28.2 are not shown.

The first-order plot, $\ln \left(A_{t}-A_{\infty}\right)$ vs. t, for the spectral change from spectrum of $10 c$ to that of 28.2 in Fig. 4.5 is linear to about four half-lives ($\mathrm{t}_{1 / 2}=40.1 \mathrm{~s}$) (Fig. 4.6). The direct reading of the lowest absorbance 0.170 at 500 nm was assumed to be A_{∞}, and the observed first-order rate constant obtained thereby is $1.73 \times 10^{-2} \mathrm{~s}^{-1}$ (Appendix Tables AIV 1-11). The problem of using (A_{∞}) exp directly for the $\mathrm{k}_{\mathrm{obs}}$ calculation is the degree of reliability of A_{∞} because of the slow secondary reaction. Kezdy et al. ${ }^{21}$ and Swinbourne ${ }^{22}$ developed a method to estimate A_{∞}, based on the following equation, when the final instrument reading is unreliable or unavailable: $A_{t}=\left(A_{t+\tau}\right) e^{k \tau}-A_{\infty}\left(e^{k \tau}-1\right)$, where τ is a suitably chosen time interval; and at the theoretical end point $A_{t}=A_{t+\tau}=A_{\infty}$. The intersection of the line $\left(A_{t} v s . A_{t+\tau}\right)$ for the experimental data and the 450 line is the estimated A_{∞}. In this method, the τ value is chosen between $t_{1 / 2}$ and $1.5 \mathrm{t}_{1 / 2}$ to give the best accuracy. The absorbances were thus processed also according to the KezdySwinbourne method, and the analysis is listed in Table 4.2. Fig. 4.7 shows the A_{t} vs. $A_{t+\tau}$ plot for the data, and the A_{∞} thus found is $\mathbf{0 . 1 7 5}$. Several other experimental data analyzed in the same way show that the difference between the estimated A_{∞} and the experimental value is less than two percent. The assumption that the lowest absorbance value is $\mathrm{A}_{\boldsymbol{\infty}}$ is thus validated; hereafter, $\left(\mathrm{A}_{\infty}\right)$ exp. is used as the real A_{∞}, without further verification.

Table 4.2. Kezdy-Swinbourne Treatment of the Data in Table AIV 7 for Estimating A_{∞}

$t(\mathrm{~s})$	A_{t}	$(\mathrm{t}+\tau)^{\mathrm{a}}(\mathrm{s})$	$\mathrm{A}_{\mathbf{t}+\tau}$
0	0.488	40	0.325
30	0.352	70	0.263
40	0.325	80	0.250
50	0.299	90	0.237^{b}
60	0.280	100	0.228
70	0.263	110	0.220^{b}
80	0.250	120	0.212
90	0.237^{b}	130	0.205^{b}
100	0.228	140	0.200
110	0.220^{b}	150	0.195^{b}
120	0.212	160	0.191

(a) $\tau=40$ second was used based on the $t_{1 / 2}$ result from data in Table AIV 7. (b)These values are interpolated from the A_{t} vs. t plot.

Fig. 4.6. Pseudo first-order rate plot, $\ln \left(\mathrm{A}_{\mathrm{t}}-\mathrm{A}_{\infty}\right)$ vs. t, for the DMAD binding step of reaction 4.1 (10 c to 28.2), at $25^{\circ} \mathrm{C}:[10 \mathrm{c}]=1.10 \times 10^{-3} \mathrm{M},[\mathrm{DMAD}]=6.50 \times 10^{-2} \mathrm{M}$ (Table AIV 7). Inset: the observed pseudo first-order rate constants vs. [DMAD] (see Table 4.4). At this particular temp., only two [DMAD] values were used; at $34^{\circ} \mathrm{C}$, three [DMAD] values were used (Table AIV 1-3).

The Guggenheim treatment, ${ }^{23}$ in which $\ln \left(A_{t}-A_{t+\tau}\right)$ is plotted against time, was also applied to avoid the complication of estimating A_{∞} in order to obtain the $k_{o b s} v a l u e . ~ T h e$ observed first-order rate constant is obtained from the slope without knowing the real A_{∞}; for the best accuracy, τ is chosen between two to three half-lives (Table 4.3, Fig. 4.8). The rate constant obtained in this way is $1.80 \times 10^{-2} \mathrm{~s}^{-1}$. Changing the DMAD concentration resulted in a change of the observed psuedo first-order rate constant, and a first-order dependence on [DMAD] was demonstrated by the linear relationship of the $\mathbf{k}_{\mathrm{obs}}$ vs. [DMAD] plot including the origin (Fig. 4.6 inset). A summary of DMAD dependence data is given in Table 4.4. Direct involvement of DMAD in the conversion of 10 c to $\mathbf{2 8 . 2}$ is clearly indicated by the DMAD dependence result, and this step in later sections is called the DMAD binding step. The measured second-order rate constant k_{1} at $25^{\circ} \mathrm{C}$ is $0.270 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ (Fig. 4.6 inset).

Fig. 4.7. Estimation of the A_{∞} value by Kezdy-Swinbourne method; plot of A_{t} vs. $A_{t+\tau}$ (see Table 4.2; $\tau=40.0 \mathrm{~s} \approx \mathrm{t}_{1 / 2}$).

Fig. 4.8. The Guggenheim treatment to give $k_{\text {obs }}$; plot of $-\ln \left(A_{t}-A_{t+\tau}\right)$ vs. t (see Table 4.3; $\tau=$ $80 s \approx 2 t_{1 / 2}$)

The first-order plot for the subsequent step involving conversion of 28.2 to $19, \ln \left(A_{\infty}-\right.$ A_{t}) vs. t (Fig. 4.9) is also essentially linear. The two observed rate constants, 4.77×10^{-5} and $4.70 \times 10^{-5} \mathrm{~s}^{-1}$, are essentially independent of [DMAD]. The zero-order kinetics with respect to DMAD are characteristic of an intramolecular rearrangement process; this step (28.2 to 19) is called the isomerization step.

Table 4.3. First-Order Analysis of the Data in Table AIV 7 by the Guggenheim Method

$t(s)$	A_{t}	$t+\tau(\mathrm{s})$	$\mathrm{A}_{t+\tau}$	$\mathrm{A}_{t} \mathrm{~A}_{t+\tau}$	$-\ln \left(\mathrm{A}_{\mathrm{t}}-\mathrm{A}_{t+\tau}\right)$
0	0.488	80	0.250	0.238	1.435
10	0.427	90	0.236	0.191	1.655
20	0.381	100	0.228	0.153	1.877
30	0.352	110	0.220	0.132	2.025
40	0.325	120	0.212	0.113	2.180
50	0.299	130	0.205	0.094	2.364

$\mathbf{k}_{\mathrm{obs}}=1.80 \times 10^{-2} \mathrm{~s}^{-1}$

Table 4.4. The Observed Pseudo First-Order Rate Constants at Different [DMAD], in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$

[DMAD] $\times 10^{2}(\mathrm{M})$	0.00	4.06	6.50
$\mathrm{k}_{\text {obs }}\left(\mathrm{s}^{-1}\right)$	0.00	1.08	1.73
$\mathrm{k}_{1}=0.270 \mathrm{M}^{-1} \mathrm{~s}^{-1}$			

The binding of DMAD to 10 c (4.1) is an oxidative addition reaction, as is the net DMAD insertion reaction into the metal-metal bond with 9c (Sect. 4.3.1). However, the expected insertion product 28.1 (p. 106) is simply not observed throughout the reaction although, from the spectroscopic data, we know that the initially observed product $\mathbf{2 8 . 2}$ is structurally similar to 28.1.

Based on the results from studies on reaction 4.1, a plausible reaction pathway is outlined
as:

$$
10 c+\text { DMAD } \cdots \underset{(28.2]}{\left(k_{1}>k_{2}\right)}<\cdots
$$

The second-order rate constants for the binding of DMAD (k_{1}), and the first-order rate constants for the isomerization (k_{2}) at various temperatures in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ are summarized in Table 4.5. The plot of $\operatorname{lnk}_{1} / \mathrm{T}$ vs. $1 / \mathrm{T}$ (Fig. 4.10) yields the activation enthalpy, $\Delta \mathrm{H}^{\neq}=8.5 \pm 0.3 \mathrm{kcal} / \mathrm{mol}$, and the activation entropy, $\Delta S^{\neq}=-32.4 \pm 0.9 \mathrm{e} . \mathrm{u}$; and the plot of $-\ln \mathrm{k}_{2} / \mathrm{T}$ vs. $1 / \mathrm{T}$ gives $\Delta \mathrm{H}^{\neq}(24.0 \pm$ $1.0 \mathrm{kcal} / \mathrm{mol})$ and $\Delta S^{\neq}(6 \pm 4 \mathrm{e} . \mathrm{u})$ for the isomerization reaction step.

Table 4.5. Temperature Dependence of Rate Constants \mathbf{k}_{1} and $\mathbf{k}_{\mathbf{2}}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

$\mathrm{T}(\mathrm{K})$	$1 / \mathrm{Tx} 10^{3}$	$\mathrm{k}_{1}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	$-\ln \mathrm{k}_{1} / \mathrm{T}$	$\mathrm{k}_{2} \times 10^{5}\left(\mathrm{~s}^{-1}\right)$	$-\ln \mathrm{k}_{2} / \mathrm{T}$
290.15	3.446	0.176	7.385	1.39	16.85
294.15	3.400	0.229	7.158	2.74	16.19
298.15	3.354	0.270	7.007	4.74	15.64
302.15	3.310	0.339	6.793	9.10	15.02
307.15	3.256	0.436	6.557	16.7	14.42
		$\Delta \mathrm{H}^{\neq}=8.5 \pm 0.3 \mathrm{kcal} / \mathrm{mol}$	$\Delta \mathrm{H}^{\neq}=24.0 \pm 1.0 \mathrm{kcal} / \mathrm{mol}$		
		$\Delta \mathrm{S}^{\neq}=-32.4 \pm 0.9 \mathrm{e} . \mathrm{u}$.	$\Delta \mathrm{S}^{\neq}=6 \pm 4 \mathrm{e} . \mathrm{u}$.		

The activation parameters found for the oxidative addition step are typical of data for oxidative addition at a single metal centre, which has been reported upon extensively in the literature. ${ }^{24}$ The parameters are also comparable to the data for oxidative addition of $\mathrm{H}_{2} \mathrm{~S}$ at $\mathrm{Pd}_{2} \mathrm{Br}_{2}(\mu-\mathrm{dppm})_{2}\left(\Delta \mathrm{H}^{\neq}=13 \mathrm{kcal} / \mathrm{mol}, \Delta \mathrm{S}^{\neq}=-27\right.$ e.u. $), 25$ and DMAD at $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT})$, $9 \mathrm{c},\left(\Delta \mathrm{H}^{\neq}=9.0 \pm 0.2 \mathrm{kcal} / \mathrm{mol}, \Delta \mathrm{S}^{\neq}=-33.0 \pm 0.8\right.$ e.u.) (see below), which are among the very few known for oxidative addition systems at binuclear metal centres. ${ }^{26}$ The relatively high $\Delta \mathrm{H}^{\neq}$ for the isomerization step is considered to result from a required Pt-P bond cleavage, while the ΔS^{\neq}value close to zero implies 'minimal' geometric changes in the process (see below for further discussion).

Fig. 4.9. Pseudo first-order rate plot, $\ln \left(A_{r} A_{\infty}\right)$ vs. t, for the isomerization step (28.2 to $\mathbf{1 9}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C} ;[10 \mathrm{c}]=1.10 \times 10^{-3} \mathrm{M}$ (Table AV 6-7).

Fig. 4.10. The Eyring plots, $\ln k / T$ vs. $1 / T$, for the rate constants of step 1 (binding of DMAD) and step 2 (isomerization) (see Table 4.5).

By a similar approach, the rate of the reaction of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}, 9 \mathrm{c}$, with DMAD to give the expected HT insertion product 19 was investigated:

$$
\begin{equation*}
9 \mathrm{c}+\mathrm{DMAD} \longrightarrow 19 \tag{4.2}
\end{equation*}
$$

The reaction was monitored by the absorbance decrease at the absorption maximum of 9 c at 520 nm or from spectral changes over $360-600 \mathrm{~nm}$ region (Fig. 4.11). The first-order plot, $\ln \left(\mathrm{A}_{\mathrm{t}^{-}}\right.$ A_{∞}) vs. t , is linear with a correlation coefficient 0.999 (Fig. 4.12, Table AIII). The observed first-order rate constant is also DMAD dependent, and the straight line plot of $k_{0 b s}$ vs. [DMAD] plot demonstrates the first-order relationship (Fig. 4.12, inset). The DMAD dependence data are summarized in Table 4.6. The temperature dependence of the second order rate constants for this reaction in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Table 4.7) is shown in Fig. 4.13 by the Eyring plot $\ln \mathrm{k} / \mathrm{T}$ against $1 / \mathrm{T} . \Delta \mathrm{H}^{\neq}$ and $\Delta \mathrm{S}^{\neq}$are found to be $9.0 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$, and -33.0 ± 0.8 e.u. respectively.

Fig. 4.11. The spectral changes for reaction 4.2 (9c to 19) at $21^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: the spectrum labelled 9c was taken before the mixing ($\lambda_{\max }=320,403$ and $518 \mathrm{~nm} ; \varepsilon=1.55 \times 10^{4}, 5.04 \times 10^{3}$ and $725 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$); the spectrum labelled 19 was taken at the experimental infinite time; the solid lines between 9 c and 19 were recorded every 3 min (an isosbestic point at 474 nm is seen). [9c] $=1.45 \times 10^{-4} \mathrm{M},[\mathrm{DMAD}]=8.13 \times 10^{-3} \mathrm{M}$ (Table AIII 10).

Table 4.6. Dependence of $\mathrm{k}_{\mathrm{obs}}$ on [DMAD] for Reaction 9 c with DMAD , at $18{ }^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

[DMAD] $\times 10^{2}(\mathrm{M})$	0.00	1.19	2.39	2.71	4.54
$\mathrm{k}_{\mathrm{obs}} \times 10^{3}\left(\mathrm{~s}^{-1}\right)$	0.00	0.764	1.49	2.00	2.75

$$
\mathrm{k}=6.2 \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Table 4.7. Rate Constants for Reaction of 9 c with DMAD, at Various Temperatures in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the Activation Parameters ।

$\mathrm{T}(\mathrm{K})$	$1 / \mathrm{Tx10} 0^{3}\left(\mathrm{~K}^{-1}\right)$	$\mathrm{kx10} 0^{2}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	$-\ln \mathrm{k} / \mathrm{T}$
286.15	3.495	4.54	8.749
291.15	3.435	6.19	8.456
294.15	3.400	8.11	8.196
298.15	3.354	9.00	8.106
302.15	3.310	11.7	7.840
307.15	3.256	14.4	7.645
$\Delta \mathrm{H}^{\neq}=9.0 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$	$\Delta \mathrm{S}^{\neq}=-33.0 \pm 0.8$ e.u.		

4.3.3. Reaction of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2}(\mathrm{HH}), 10 a$, with DMAD

In order to assist in identifying the structure of 28.2 in reaction (4.1), the structurally related compounds, 10 a and 10 b (the corresponding PN_{2} complex), were reacted with DMAD. Reactions of the latter, as the various diastereomers 10 b .1 and $\mathbf{1 0 b} .2 / 10 \mathrm{~b} .3$, with DMAD will be dealt with in the next section.

When the title compound 10a was reacted with DMAD, an orange solid, 17, was isolated and characterized by ${ }^{31} \mathrm{P}$ and ${ }^{195} \mathrm{Pt}$ NMR spectroscopies (Fig. 4.14), as well as elemental analysis (Table 2.8). Both spectra strongly suggest the HH configuration. This particular product, 17 , is stable in solution for more than a week, and no isomerization process is apparent.

Fig. 4.12. Pseudo first-order rate plot, $\ln \left(\mathrm{A}_{\mathrm{t}}-\mathrm{A}_{\infty}\right)$ vs. t , for reaction 4.2 at $18^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $[9 \mathrm{c}]=1.18 \times 10^{-3} \mathrm{M},[\mathrm{DMAD}]=2.39 \times 10^{-2} \mathrm{M}$ (Table AIII 12). Inset: the observed first-order rate constants vs. [DMAD] (see Table 4.6).

Fig. 4.13. The Eyring plot of $\ln \mathrm{k} / \mathrm{T}$ vs. $1 / \mathrm{T}$ for reaction 4.2 (Table 4.7).

10a
17
(a)

(b)

Fig. 4.14. (a) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (121.4 MHz) of 17 in CDCl_{3} at r.t.: $\delta=21.2$ (s), ${ }^{1} \mathrm{~J}_{\mathrm{PLP}}$
 $\delta_{P t}=-43.3(\mathrm{t}),{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=3496 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{PtPt}}=670 \mathrm{~Hz}$.

The rate of reaction (4.3) was studied by monitoring absorbance decrease in the 400 to 600 nm region spectrophotometrically (the spectral changes are similar to those in Fig. 4.11, except only one absorbance maximum at $496 \mathrm{~nm}\left(405 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ is seen; an isosbestic point occurs at 476 nm). Analyzing data for the spectral changes at selected wavelengths (Tables AVI) gives a first-order dependence in $\left[\mathrm{Pt}_{2}\right]$, i.e. the $\ln \left(\mathrm{A}_{t}-\mathrm{A}_{\infty}\right)$ vs. t plot is a straight line (Fig. 4.15). Doubling the concentration of DMAD doubles the pseudo first-order rate constant, implying a first-order dependence on [DMAD]. The simple first-order dependences in both metal and DMAD are the same as those found for the first steps of reaction 4.1.

The temperature dependence of the rate constants was also investigated, and the results are summarized in Table 4.8 and Fig. 4.16. The $\Delta \mathrm{H}^{\neq}$and $\Delta \mathbf{S}^{\neq}$values are again in the same range as for the oxidative addition reactions at binuclear metal centres described in the previous section.

Table 4.8. Rate Constants for Reaction 4.3 at Various Temperatures, and the Activation Parameters

$\mathrm{T}(\mathrm{K})$	$1 / \mathrm{Tx} 10^{3}\left(\mathrm{~K}^{-1}\right)$	$\mathrm{kx10}\left(\mathrm{M}^{-1} \mathrm{~S}^{-1}\right)$	$\mathrm{k} / \mathrm{T} \times 10^{4}$	$-\operatorname{lnk} / \mathrm{T}$
293.15	3.411	2.60	0.887	9.330
298.15	3.354	3.21	1.077	9.136
303.15	3.299	4.04	1.323	8.923
308.15	3.245	4.90	1.590	8.747
$\quad \Delta \mathrm{H}^{\neq}=7.1 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$				
		$\Delta \mathrm{S}^{\neq}=-41.0 \pm 0.7 \mathrm{e} . \mathrm{u}$.		

The key point that the studies on this reaction demonstrate (in conjuction with findings on reaction 4.1) is that the instability of an HH DMAD adduct is not governed by simple steric factors: the phenyl group is little different in size to pyridine (cf. 17 vs. 28.1 (p.106)). The nonbridging pyridyl groups are clearly playing an important role in destabilizing the HH insertion product and in promoting isomerization to the HT product. The role of the nonbridging pyridyl group will be illustrated further in the following section.

Fig. 4.15. Pseudo first-order rate plot, $\ln \left(\mathrm{A}_{\mathrm{t}}-\mathrm{A}_{\infty}\right)$ vs. t , for reaction 4.3 (10a to 17) at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}:[10 \mathrm{a}]=2.89 \times 10^{-4} \mathrm{M}$; [DMAD] $=1.63 \times 10^{-2} \mathrm{M}$. Inset: the observed rate constants at $25^{\circ} \mathrm{C}$ vs. [DMAD] (data in Table AVI 6).

Fig. 4.16. The Eyring plot for the rate constants of reaction 4.3 (Table 4.8).

4.3.4. Reactions of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HH}), 10 \mathrm{~b}$, with DMAD

Reactions of the diastereomers of 10b with DMAD are shown to undergo initially the same oxidative addition with DMAD to form an A-frame insertion adduct; the diastereomers, in which the binuclear P-N bridging complex has one non-chelated pyridyl group and one phenyl group on the phosphorus atom, are found to combine reaction patterns of both 10 a and 10 c , leading to HH, HT or a mixture of HH and HT adducts (see below). Knowledge of the fates of the diastereomeric insertion adducts is essential in elucidating the origin of the isomerization. The use of the isolated diastereomers 10 b .1 and $10 \mathrm{~b} .2 / 10 \mathrm{~b} .3$ (Sect. 3.2.4) allows for a thorough understanding of the relationship between the structures of the starting complexes and the endproducts. In this section, the results of ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and kinetic studies are presented.

4.3.4.1. Reaction of $\mathbf{1 0 b} .1$ with DMAD

(1R, 2S)

30

The reaction of $\mathbf{1 0 b} .1$ with DMAD is expected to yield two diastereomers 29.1 and 30 (Eqs. 4.4 and 4.5). Each diastereomer is expected to give one set of ${ }^{31} \mathrm{P}$ NMR signals. The ${ }^{31} \mathrm{P}$

NMR spectrum of the reaction mixture after 20 min is shown in Fig. 4.17(a), and consists of one upfield singlet and two downfield doublets with corresponding Pt satellites. The striking similarity in the spectral pattern of the downfield signals to that of $\mathbf{2 8 . 2}$ (Fig. 4.4a), and in the pattern of the upfield signals to that of $\mathbf{1 7}$ (Fig. 4.14a) suggests that 29.1 gives rise to the downfield doublet of doublets and $\mathbf{3 0}$ to the upfield singlet. More convincing evidence for these assignments is obtained from the ${ }^{31}$ P NMR spectrum of the same sample taken after one week (Fig. 4.17b). Signals corresponding to $\mathbf{3 0}$ stay unchanged while those of $\mathbf{2 9 . 1}$ disappear completely. The upfield four singlets with different intensities are those of $\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-\mathrm{DMAD})(\mu-$ $\left.\mathrm{PN}_{2}\right)_{2}(\mathrm{HT}), 18$, present as a diastereomeric mixture. In other words, adduct 30 mimics the reactivity of $\mathbf{1 7}$ as $\mathbf{3 0}$ and $\mathbf{1 7}$ are structurally similar; and adduct 29.1 mimics the reactivity of 28.2. The stability of $\mathbf{3 0}$ against isomerization is thought to be due to steric reasons. Formation of the A-frame insertion product pushs the iodo group backwards in the same plane as the pyridyl groups; as a result, the pyridyl groups are blocked from possible contact with central Pt atom. On the other hand, the pyridyl groups in compound 29.1 are not blocked. The presence of properly positioned pyridyl group(s) is essential for the isomerization, which is thus predictable based on the structure of the initial A-frame adduct.

The equivalence of the phosphorus nuclei seen in compound $\mathbf{3 0}$ is due to the σ symmetry in the molecule. Obviously, the inequivalence of the P nuclei seen in 29.1 must result from an interaction similar to that observed in $\mathbf{2 8 . 2}$; this is thought to be the chelating form of 29.1 is labelled as 29.2.

28.2

29.2

Fig. 4.17. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $(121.4 \mathrm{MHz})$ for the products of reactions 4.4 and 4.5 , in CDCl_{3} at r.t.: (a) initially formed adducts 29.2 and 30 after 20 min , (b) products $\mathbf{1 8}$, after isomerization (see also Fig. 4.18b), and 30 after one week; unlabelled peaks are unassigned. (29.2: $\delta=28.3$ (d), ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}=3705 \mathrm{~Hz} ; \delta=26.4(\mathrm{~d}),{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=3763,{ }^{3} \mathrm{~J}_{\mathrm{PtP}}=215 \mathrm{~Hz} ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=15.0$ Hz. 30: $\left.\delta=21.15(\mathrm{~s}),{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=3459,{ }^{3} \mathrm{~J}_{\mathrm{PtP}}=238 \mathrm{~Hz}\right)$.

The difference between a phenyl group and a pyridyl group is that the latter contains a nitrogen atom capable of chelation such that a five-coordinate square-pyramidal phosphorusnitrogen chelatied intermediate can be formed. There are several examples in the literature of chelating pyridylphosphine complexes containing 4-membered rings. ${ }^{27}, 28$ With this assumption, the splitting of the phosphorus signals in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 28.2 and 29.2 can be accounted for. This type of chemical inequivalence of the P nuclei has never been
observed for the HH precursors in the absence of DMAD. The isomerization of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}$ (HH), 10c, to the HT form, 9 c , does not proceed even at $60^{\circ} \mathrm{C}$ in CHCl_{3} for 24 h , at least in the absence of PN_{3} (see Sect. 4.4). The isomerization of 28.2 and 29.2 to their corresponding HT isomers is therefore promoted by the chelation which is itself promoted by the DMAD oxidative addition. Whether the chelation of the pyridyl group takes place simultaneously upon, or is preceded by, the oxidative addition of DMAD is clarified in the following section.

4.3.4.2. Reaction of the $10 \mathrm{~b} .2 / 10 \mathrm{~b} .3$ mixture with DMAD

The reactions of the mixture of $10 \mathrm{~b} .2 / 10 \mathrm{~b} .3$ with DMAD are assumed to proceed initially as follows:

10 b .2
31.1

Externally related by a mirror plane, 31.1 and 32.1 are enantiomers, as are the starting complexes 10b. 2 and 10b.3. Enantiomers are not distinguishable from each other in an achiral environment by NMR spectroscopy. The P atoms are diastereotopic within one enantiomer by internal comparison. ${ }^{29}$ These inequivalent P atoms show strong mutual trans coupling, and
therefore a strongly coupled AB quartet with corresponding Pt satellites is expected in the ${ }^{31} \mathrm{P}$ NMR spectrum. The peaks labelled with stars in Fig. 4.18a are the expected signals for 31.1/32.1. The inequivalence arising from the diastereotopic phosphorus nuclei is reflected in the $J_{P P}$ value of these enantiomers, 454 Hz , which is comparable to the $J_{P P}$ value in $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HH}), 10 \mathrm{~b} .1$ (Fig. 3.15). The downfield closely spaced doublet of doublets is assigned to the subsequent chelating intermediate 31.2/32.2 (2 enantiomers) because of the similarity in spectral pattern to that of 28.2. The prominent feature of this spectrum is that the direct insertion products in the HH forms, 31.1 and 32.1, are detected; the corresponding products were never seen in reactions (4.1) and (4.4). There is no obvious explanation for the difference, except that statistically 31.1 and 32.1 have fifty percent less chance for chelation than the precursors (28.1 and 29.1) to 28.2 and 29.2 in which chelation is apparent. Also during the NMR experiment, the signals of 31.1/32.1 disappeared much faster than the other set. This evidence favours pathways involving initial oxidative addition of the acetylene, followed by chelation. With the availability of one pyridyl group for chelation, 31.1/32.1 have favourable geometry to isomerize. The ${ }^{31}$ P NMR spectrum of the reaction products after one week is displayed in Fig. 4.18b. The final reaction mixture contains only the HT-insertion adduct 18, the NMR signals being similar to the upfield signals in Fig. 4.17b. These experiments demonstrate again that if the Pt centre is accessible by the pyridyl group, the isomerization is inevitable.

4.3.4.3. Kinetic studies on the reaction of the diastereomers of 10 b with DMAD

The rate measurements for the reactions (4.4) and (4.5) were done by using the previously described methods, that is by monitoring the spectral changes from 400 to 600 nm , Fig. 4.19. Reaction of $\mathbf{1 0 b} .1$ with DMAD produces the two diastereomers 29.2 and $\mathbf{3 0}$, presumably by two, direct parallel reactions. The rate law, in terms of optical density data, is derived easily, assuming that 29.2 and $\mathbf{3 0}$ have the same absorptivities:

10b. 1 + DMAD

Fig. 4.18. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (121.4 MHz) for the products of reactions 4.6 and 4.7 , in CDCl_{3} at r.t.: (a) the initially formed (20 min) adducts $31.2 / 32.1$ are labelled with stars, and the chelated intermediates $31.2 / 32.2$ via which isomerization occurs, (b) the end products 18 , $\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-\mathrm{DMAD})\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HT})$, after one week (Pt satellites are not visible, see also Fig. 4.21b). (31.1/32.1: AB quartet centred at $18.5,{ }^{1} \mathrm{~J}_{\mathrm{PLP}}=3459,{ }^{3} \mathrm{~J}_{\mathrm{PtP}}=249,{ }^{2} \mathrm{~J}_{\mathrm{PP}}=454 \mathrm{~Hz}$; 31.2/32.2: $\delta=25.5$ (d), 25.9 (d); ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}=3763,3654 \mathrm{~Hz} ;{ }^{3} \mathrm{~J}_{\mathrm{PtP}}=169 \mathrm{~Hz} ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=14.7 \mathrm{~Hz}$.

$$
-\mathrm{d}[10 \mathrm{~b} .1] / \mathrm{dt}=\mathrm{k}_{1}[10 \mathrm{~b} .1][\mathrm{DMAD}]+\mathrm{k}_{2}[10 \mathrm{~b} .1][\mathrm{DMAD}]
$$

$$
\begin{aligned}
& =\left(k_{1}+k_{2}\right)[10 \mathrm{~b} .1][\mathrm{DMAD}] \\
& =k^{\prime}{ }_{\mathrm{obs}}[10 \mathrm{~b} .1] \quad \text { where } \mathrm{k}_{\mathrm{obs}}=\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)[\mathrm{DMAD}]
\end{aligned}
$$

By monitoring the decrease of 10 b .1 concentration in conditions using excess DMAD, the observed pseudo first-order rate constant $k_{o b s}$ is obtained from the slope of the $\ln \left(A_{t}-A_{\infty}\right)$ vs. t plot. The true second-order rate constant for the loss of $\mathbf{1 0 b} .1$ is the sum of rate constants for each of the parallel reactions. The difference in these latter rate constants is reflected by the difference in the final concentrations of 29.2 and $\mathbf{3 0}$: that is, $\mathrm{k}_{1} / \mathrm{k}_{2}=[29.2] /[30]$. The pseudo first-order plot, $\ln \left(\mathrm{A}_{\mathrm{t}}-\mathrm{A}_{\infty}\right)$ vs. t , gives a very good straight line and the second-order rate constant, the sum of k_{1} and k_{2}, obtained from the slope of $\mathrm{k}_{\mathrm{obs}} \mathrm{vs}$. [DMAD] plot, is 8.10×10^{-3} $\mathrm{M}^{-1} \mathrm{~s}^{-1}$ at $25^{\circ} \mathrm{C}$ (Fig. 4.20). The ratio of [29.2] to [30] was determined through the ${ }^{31} \mathrm{P}$ signal integration to be $3.5: 1$ (Fig. 4.17a); these data give $\mathrm{k}_{1} \approx 6.3 \times 10^{-3}$, and $\mathrm{k}_{2} \approx 1.8 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. The difference reflected in the rates must be attributed to the preferential binding of DMAD to the 'pyridyl face' over the 'phenyl face'. This preference seems to be applicable also in the reactions of the diastereomeric mixture within the $\mathrm{Pd}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HT})(\mathrm{X}=\mathrm{Cl}, \mathrm{I})$ and $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}$ (HT) complexes with DMAD (Fig. 4.21). The $\ln \left(\mathrm{A}_{\mathrm{t}}-\mathrm{A}_{\infty}\right)$ vs. t data of reactions (4.4) and (4.5) are listed in Tables AVIII. Monitoring of the subsequent isomerization step (29.2 to 18) by visible spectroscopy was not possible because the acccompanying largest total absorbance change was too small (~ 0.03). However, a rough estimate of $t_{1 / 2}$ for this step at $25^{\circ} \mathrm{C}$ is 6 h (cf. for $10 \mathrm{c}, \mathrm{t}_{1 / 2}=4.1 \mathrm{~h}$, Table 4.5).

The rate measurements for reactions (4.6) and (4.7) were also monitored by visible spectroscopy; spectral changes similar to those in Fig. 4.19 were observed. Compounds 10b. 2 and 10 b .3 are enantiomers, and so are the insertion adducts 31.1 and 32.1 , and the subsequently formed chelated species 31.2 and 32.2. Reactions (4.6) and (4.7) are independent, occurring with the same rate constants,

Fig. 4.19. The spectral changes for reactions 4.4 and 4.5 at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: the spectrum labelled 10b.1 (--) was taken at $t=0\left(\lambda_{\max }=496 \mathrm{~nm}, \varepsilon=608 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$; the spectrum labelled $29.2+30(---)$ gave the lowest absorption among the repetitive scan spectra; the solid lines in between were recorded every $5 \mathrm{~min} .[10 \mathrm{~b} .1]=1.99 \times 10^{-4},[\mathrm{DMAD}]=1.22 \times 10^{-2}$ M (Table AVIII 4).

Fig. 4.20. Pseudo first-order plot, $\ln \left(\mathrm{A}_{\mathrm{t}}-\mathrm{A}_{\infty}\right)$ vs. t, for reactions 4.4 and 4.5 , at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}:[10 \mathrm{~b} .1]=1.99 \times 10^{-4} \mathrm{M},[\mathrm{DMAD}]=8.13 \times 10^{-3} \mathrm{M}$. Inset: the observed rate constants $\left(25^{\circ} \mathrm{C}\right)$ vs. [DMAD] (data in Tables AVIII).

py, py

Ph, py

Fig. 4.21. ${ }^{31} \mathrm{P}$ NMR spectra (121.4 MHz) of the diastereomeric mixture of (a): $\mathrm{Pd}_{2} \mathrm{I}_{2}(\mu-$ DMAD) $\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HT}), 25$, and (b): $\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-\mathrm{DMAD})\left(\mu-\mathrm{PN}_{2}\right)_{2}(\mathrm{HT}), \mathbf{1 8}$, in CDCl_{3} at r.t. (data see Table 4.1); the structures of the diastereomeric mixture of 18 are identical to the Pd analogues except that the central metal atoms are Pt (Scheme 4.1).

The rate law is simply
$-\mathrm{d}\{[10 \mathrm{~b} .2]+[10 \mathrm{~b} .3]\} / \mathrm{dt}=\mathrm{k}[\mathrm{DMAD}]\{[10 \mathrm{~b} .2]+[10 \mathrm{~b} .3]\}=\mathrm{k}_{\mathrm{obs}}\{[10 \mathrm{~b} .2]+[10 \mathrm{~b} .3]\}$
Therefore, the rate of the individual reaction is first-order with respect to the concentration of the corresponding enantiomer, and the overall reaction rate is first-order with respect to the total [P_{2}]. With the assumption that the non-chelated and the chelated species are formed in a fixed ratio (by the fast equilibrium shown in Scheme 4.2), the plot of $\ln \left(A_{t}-A_{\infty}\right)$ vs. t should appear linear (see derivation in Appendix VII), and $\mathrm{k}_{\text {obs }}(=\mathrm{k}[\mathrm{DMAD}]$) should be directly proportional to [DMAD]. Such analyses are obtained for this system (Fig. 4.22). At $20^{\circ} \mathrm{C}$, the second-order rate constant is found to be $8.05 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. The activation enthalpy and activation entropy are found to be $8.2 \pm 0.5 \mathrm{Kcal} / \mathrm{mol}$ and -35.0 ± 0.8 e.u., respectively (Fig. 4.23) (the raw data are listed in Tables AVII). Accurate monitoring of the subsequent isomerization step was again very difficult because the largest total absorbance change was only about 0.06 . A rough estimate of $\mathrm{t}_{1 / 2}$ at $25^{\circ} \mathrm{C}$ is 5 h (cf. for $10 \mathrm{c}, \mathrm{t}_{1 / 2}=4.1 \mathrm{~h}$, Table 4.5 ; for $10 \mathrm{~b} .1, \mathrm{t}_{1 / 2}=6 \mathrm{~h}$).

4.3.5. Mechanism of the reaction of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{\mathrm{n}}\right)_{2}(\mathrm{HH})$ with DMAD

The ratios of relative intensities of the diastereomeric isomers of the final product $\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-\mathrm{DMAD})(\mu-\mathrm{PN})_{2}(\mathrm{HT}), 18$, in Fig. 4.17 and 4.18 are similar. This observation cannot be explained in terms of a concerted migration of a phosphorus atom from one Pt to the other, because this would lead to the stereospecific (HT) isomers, as shown in Scheme 4.1.

According to Scheme 4.1, compound 29.2 would undergo isomerization to give the enantiomers 33 and 34. The expected ${ }^{31}$ P NMR spectrum for 33 and 34 should contain only one singlet with the corresponding Pt-satellites, because the phosphorus atoms are chemically equivalent due to the presence of a C_{2} axis. Compounds 31.2 and 32.2 would generate 35 and 36, respectively, which are also enantiomers. The expected ${ }^{31}$ P spectrum for 35 and 36 should

Fig. 4.22. Pseudo first-order plot, $\ln \left(A_{t}-A_{\infty}\right)$ vs. t, for reactions 4.6 and 4.7 , at $20^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}:[10 \mathrm{~b} .2 / 10 \mathrm{~b} .3]=2.18 \times 10^{-4} \mathrm{M},[\mathrm{DMAD}]=8.13 \times 10^{-3} \mathrm{M}$. Inset: the dependence of the pseudo first-order rate on [DMAD] (data in Tables AVI).

Fig. 4.23. The Eyring plot, $\ln \mathrm{k} / \mathrm{T}$ vs. $1 / \mathrm{T}$, for the rate constants of reactions 4.6. and 4.7 (see Tables AVII 8).

Scheme 4.1. The expected isomerization products, based on a concerted pathway involving phosphorus migration and nitrogen coordination, and the actual isomerization products observed.
contain two singlets with equal intensity due to the diastereotopic P atoms in the molecule $\left(\mathrm{J}_{\mathrm{PP}}=\right.$ 0 , see Sect. 4.3.1). Instead, four singlets are seen (Figs. 4.17, 4.18). These are assigned to the three possible sets of enantiomers drawn above, and thus the concerted migration pathway of Scheme 4.1 does not account for the observed products. The mechanism is best explained as involving complete dissociation of a P atom from Pt , followed by recoordination to the other Pt , during which process the chiral identity of the P atom is lost. The activation enthalpy of 24 $\mathrm{kcal} / \mathrm{mol}$ for reaction (4.1) seems consistent with the involvement of a P ligand dissociation in the isomerization step. 30

Thus, the general reaction pathway for the reaction of DMAD with $10 b$ and $10 c(\mathrm{HH})$ species leading to the isomerized insertion adduct is presented in Scheme 4.2:

C

E

Scheme 4.2. The proposed mechanism for the oxidative addition of DMAD to $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{n}\right)_{2}$ (HH) and the subsequent isomerization; \equiv and $=$ represent the free and bridged acetylene, respectively; P^{*} represents the chiral \mathbf{P} atom; r.d.s $=$ rate determining step.

In this scheme, the HH starting complexes A, comprising 10b.1, 10b.2/10b. 3 and 10c, and the corresponding isomerized A-frame products, E (18 and 19), have been well
characterized. Among the three suggested intermediate species (B, C and D), only D has not been detected, and this is consistent with its subsequent rearrangement in a fast step to give the product E. Nevertheless formation of D is suggested by the relatively high activation enthalpy $\left(\Delta \mathrm{H}^{\neq}=24 \mathrm{kcal} / \mathrm{mol}\right.$) for the slow step in the isomerization (28.2 to 19) and also by the formation of the nonstereospecific HT products 18 from species 29.2, 31.2 and 32.2 (Scheme 4.1). B is detected in situ by ${ }^{31}$ P NMR spectroscopy in reaction (4.5) as 30, and in reactions (4.6) and (4.7) as $\mathbf{3 1 . 1}$ and 32.1. When the phosphine is PN_{1}, the HH-DMAD adduct was isolated as 17. C , a key intermediate species, has been seen in every isomerization reaction as $\mathbf{2 8 . 2}, \mathbf{2 9 . 2}, \mathbf{3 1 . 2}$ and $\mathbf{3 2 . 2}$. The suggested reaction pathway is fully supported by the ${ }^{31} \mathrm{P}$ and ${ }^{195 \mathrm{Pt} \text {. NMR spectral data and is consistent with the results of the kinetic }}$ experiments.
4.4. Reaction of $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathbf{H H})$, 10 c , with PN_{3} under air in organic solvents

The HH isomer $\operatorname{PtPdI}_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2}$, with two P atoms on the Pt , has been shown to isomerize in solution under reflux in air to the HT isomer, ${ }^{31}$ with the P coordinated to both Pd and Pt. This HT isomer was more stable thermodynamically, and the HH isomer was believed to be the kinetic product of the synthesis procedure used. ${ }^{31}$ The $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HH})$ complex, 10c, shows no tendency to isomerize in solution after refluxing in CHCl_{3} or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under air for 48 h . When tris(2-pyridyl)phosphine (PN_{3}) was introduced to the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{1 0 c}$ at room temperature, the isomerization of $\mathbf{1 0 c}$ and the oxidation of phosphine ligand were observed. If one equivalent of phosphine was added, the HT complex, $9 \mathbf{c}$, was produced; if two or more equivalents of phosphine were added, an ionic complex containing two HT bridging phosphines and two terminal phosphines could be isolated as the BPh_{4} - salt (see below). Both of these reactions were investigated by ${ }^{31}$ P NMR spectroscopy and the results are discussed here.

Reaction of $\mathbf{1 0} \mathbf{c}$ with one equivalent of PN_{3} in air, leading to the formation of 9 c , was followed by ${ }^{31}$ P NMR spectroscopy; although a reaction of phosphine with the HH isomer is
observed almost instantaneously, as indicated by the colour change from orange to yellow, the isomerization proceeds relatively slowly. The ${ }^{31} \mathrm{P}$ NMR spectrum of the immediately formed yellow species 39 is shown in Fig. 4.24a; the splitting pattern and the coupling constants strongly suggest that compound 39 still contains an HH skeleton, while the third phosphine could be on either one of the Pt centres. Fig. 4.24b, taken one week after the mixing, suggests that the terminal phosphine coordinates to the Pt with two nitrogen atoms because the intermediate 40 has an HT isomerized skeleton. This conclusion is drawn based on the matching of the ${ }^{31} \mathrm{P}$ NMR spectrum of the reaction product from 9 c and PN_{3} in situ, and the understanding of the spectral patterns; the ${ }^{31} \mathrm{P}$ NMR pattern of 40 indicates three inequivalent P atoms, these giving three sets of doublets of doublets. The only reasonable structure for $\mathbf{4 0}$ is the HT binuclear complex with an extra terminal phosphine on one of the Pt centres. As the isomerization proceeds via 39, the terminal phosphine must become bridging while one of the bridged phosphines becomes non-bridging. The overall picture of the isomerization process is given in Scheme 4.3. The equilibrium between 10c and 39 is established instantaneously and very much favours the formation of 39 , while the formation of 40 from 9 c is not as favourable, perhaps because of steric reasons. This infers that the incoming phosphine adds to the Pt with the two coordinated N atoms; the phosphine perhaps replaces the iodide so that the Pt still retains a square-planar geometry (39). The Scheme 4.3 illustrates the chemical processes which are monitored spectroscopically (Fig. 4.24). The formation of a cationic species from a $\mathrm{Pt}_{2}{ }^{\mathrm{I}}$ phosphine dihalide on reaction with phosphine is precedented in the literature. ${ }^{32}$ In the final stage, the phosphine is oxidized to the phosphine oxide; this process does not occur normally in air in the absence of metal complex.

Fig. 4.24. Reaction of 10 c in air with one equivalent of PN_{3}, as followed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (121.4 MHz) spectroscopy at r.t. in CDCl_{3}. (a) immediately after addition of PN_{3}, (b) one week after addition of PN_{3}, (c) twenty days after. (39: $\delta_{\mathrm{P}_{1,2}}=6.0$ (d), ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}=3305,{ }^{2} \mathrm{~J}_{\mathrm{PtP}}=126 \mathrm{~Hz}$; $\delta_{P_{3}}=16.2(\mathrm{t})$, the Pt satellites of P_{3} not being visible; ${ }^{2} \mathrm{~J}_{\mathrm{PP}}=17.6 \mathrm{~Hz} .40$: see Fig. 4.26).

10 c

39

40

9c

Scheme 4.3. Schematic presentation of the isomerization reaction promoted by one equivalent PN3.

As the ratio of added phosphine to [Pt_{2}] increases (\geq 2equiv.), the immediately formed species 41.1 has a ${ }^{31}$ P NMR spectrum completely different to that of 39 ; the spectrum of 41.1 in CDCl_{3} consists of two parts - an upfield "singlet" with pseudo-first order Pt satellites and a downfield "singlet" with non-first-order Pt satellites - with equal integrals (Fig. 4.25). The upfield "singlet" is actually a triplet with some fine splitting of 5 Hz , and so is the downfield one. The upfield half of the spectrum indicates that 41.1 has at least two HT-arranged bridging phosphines, while the downfield half resembles the coupling pattern of the ${ }^{31}$ P NMR spectrum of $\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mathrm{PPh} 3)_{2}(\mathrm{CO})_{2} 33\left({ }^{1} \mathrm{~J}_{\mathrm{PtP}}=2189,{ }^{2} \mathrm{~J}_{\mathrm{PtP}}=475,{ }^{3} \mathrm{~J}_{\mathrm{PP}}=227 \mathrm{~Hz}\right)$ in which two phosphines are colinear with the binuclear Pt_{2} core. Because of the magnetic inequivalence of four phosphorus nuclei and the quadruple broadening effect of two nitrogen nuclei, the fine splittings between cis-phosphorus atoms and between diagonally situated phosphorus atoms are not resolvable and the spectra are thus broadened. The broad peaks are not caused by fluxional behaviour of the molecule, as the low temperature ${ }^{31}$ P NMR spectrum shows no improvement of
resolution. The ${ }^{195} \mathrm{Pt}$ NMR spectrum of 41.1 (Fig. 4.25b) indicates chemical equivalence of the Pt nuclei in the molecule. A tetrakisphosphine diplatinum complex is proposed with the structure shown in Scheme 4.4. The major coupling constants: ${ }^{1} \mathrm{~J}_{\mathrm{PtP}_{1}},{ }^{2} \mathrm{~J}_{\mathrm{PtP}_{2}},{ }^{1} \mathrm{~J}_{\mathrm{PtP}_{3}},{ }^{2} \mathrm{~J}_{\mathrm{PtP}_{4}}$ and ${ }^{3} \mathrm{~J}_{\mathrm{PP}}$ are resolved by spectrum simulation to be $3936,126,2240,750$ and 220 Hz , respectively.

Compound 41.1 is not stable in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or CHCl_{3} in air, and gradually the phosphine is 'removed' as the oxide, and the HT complex, 9c, is formed. The ${ }^{31}$ P NMR spectrum of the species present in solution after one week consists of about 25% of 40 , while only the HT isomer 9c is present after two weeks (Fig. 4.26). Scheme 4.4 shows a possible route for the formation of 41.1 and 9 c in solution.

The ionic nature of 41.1 is demonstrated by its large solubility in water. The tetraphenylborate salt of 41.1 was isolated and characterized as 41.2 (Sect. 2.6); the molecular conductivity measurement agrees with the presence of a $1: 2$ electrolyte ($204.3 \Omega^{-1} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}$ at $1.9 \times 10^{-3} \mathrm{M}$). ${ }^{34}$ Complex 41.2 readily dissolves in acetone- d_{6} and acetonitrile-d d_{3}, giving a ${ }^{31} \mathrm{P}$ NMR spectrum which is the same as that of the 41.1 in CDCl_{3}; and this spectrum does not vary over a period of at least three weeks (Fig. 4.27). No decomposition was seen during an extensive purification procedure.*

Complexes 41.1 and 41.2 do not react with olefins, such as styrene, acrylonitrile and maleic acid, and no hydration of these olefins was found when 41.1 or $41.2(\sim 0.5 \mathrm{mM}$, in $1: 1$ acetone/ $\mathrm{H}_{2} \mathrm{O}$ mixture) was mixed with olefin substrate (~ 50 equivalents) under N_{2} at $80^{\circ} \mathrm{C}$ for a period of 2 h .

[^8]

Fig. 4.25. (a) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $(121.4 \mathrm{MHz})$ of in situ formed $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}\left(\mathrm{PN}_{3}\right)_{2}$, 41.1, in CDCl_{3} at r.t.: $\delta_{\mathrm{P}_{1,2}}=-12.3(\mathrm{t}) ;{ }^{1} \mathrm{~J}_{\mathrm{PtP}_{1}}=3926,{ }^{3} \mathrm{~J}_{\mathrm{PtP}_{1}}=126 \mathrm{~Hz} ; \delta_{\mathrm{P}_{3.4}}=27.9(\mathrm{t}),{ }^{1} \mathrm{~J}_{\mathrm{PtP}_{3}}$ $=2240,{ }^{2} \mathrm{~J}_{\mathrm{PtP}_{3}}=750,{ }^{3} \mathrm{~J}_{\mathrm{P}_{3} \mathrm{P}_{4}}=220 \mathrm{~Hz}$; the two major peaks are split into a triplet with 5 Hz coupling. (b) ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (64.2 MHz) of 41.1 in CDCl_{3} at r.t.: multiplets centred at 250.3 , natural line width $=80 \mathrm{~Hz}$.

Fig. 4.26. The gradual dissociation and isomerization of $\mathbf{4 1 . 1}$ in CDCl_{3} in air to the final product 9 c , as followed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectroscopy (121.4 MHz) at r.t.: (a) immediately after addition of excess PN_{3}, (b) one week after addition, (c) three weeks after addition. (40: $\delta_{P_{1}}=-2.5(d d),{ }^{3} \mathrm{~J}_{\mathrm{P}_{1} \mathrm{P}_{2}}=18.3,{ }^{3} \mathrm{~J}_{\mathrm{P}_{1} \mathrm{P}_{3}}=3.6 ;{ }^{1} \mathrm{~J}_{\mathrm{PtP}_{1}}=3897,{ }^{2} \mathrm{~J}_{\mathrm{PtP}_{1}}=120 \mathrm{~Hz} ; \delta_{\mathrm{P}_{2}}=-10.8(\mathrm{dd}),{ }^{2} \mathrm{~J}_{\mathrm{P}_{2} \mathrm{P}_{3}}=9.7 ;{ }^{1} \mathrm{~J}_{\mathrm{PtP}_{2}}=$ $\left.3933,{ }^{2} \mathrm{~J}_{\mathrm{PtP}_{2}}=194 \mathrm{~Hz} ; \delta_{\mathrm{P}_{3}}=16.8(\mathrm{dd}),{ }^{1} \mathrm{~J}_{\mathrm{PtP}_{3}}=2430,{ }^{2} \mathrm{~J}_{\mathrm{PtP}_{3}}=550 \mathrm{~Hz}\right)$.

40

9c

41.1
NaBPh_{4}
$\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$

41.2

Scheme 4.4. Schematic diagram of possible reaction pathway with excess PN_{3}.

In conclusion, the HH configuration appears to be very stable toward frame rearrangement in the absence of added PN_{3} or DMAD. The strong tendency to form the HT configuration in the presence of such reagents in air, however, suggests that the HH isomer is formed in a metastable state, and that a large kinetic barrier normally stops the isomerization in the absence of a nucleophile. Any factor which lowers this kinetic barrier will accelerate the isomerization. The fact that the HH configuration was not obtained in any $\mathrm{Pd}(\mathrm{I})$ binuclear
species is likely attributed to a low kinetic barrier under the experimental conditions for this metal which is a much more labile system. With Pd systems, even if an HH isomer is formed as an intermediate, it will soon isomerize to the HT form. On the other hand, the HT form plus PN_{3} even in the Pt system, will never go to the HH configuration, because the process is thermodynamically unfavourable.

Fig. 4.27. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}\left(\mathrm{PN}_{3}\right)_{2}\right]\left(\mathrm{BPh}_{4}\right)_{2}, 41.2$, in acetone- d_{6} at r.t. (see also Fig. 4.25).

References

1. Muetterties, E.L ; Pretzer, W.R.; Thomas, M.G.; Beier, B.F.; Thorn, D.L.; Day, V.W.; Anderson, A.B. J. Am. Chem. Soc., 1978, 100, 2090.
2. Day, V.W.; Abdel-Meguid, S. S.; Dabestani, S.; Thomas, M.G.; Pretzer, W.R.; Muetterties, E.L. J. Am. Chem. Soc., 1976, 98, 8289.
3. Bailey, W.I. Jr.; Cotton, F.A.; Jamerson, J.D.; Kolb. J.R. J. Organomet. Chem., 1976, 121, C23.
4. Cotton, F.A.; Jamerson, J.D.; Stults, B.R. J. Am. Chem. Soc. , 1976, 98, 1774.
5. Sly, W.G. J. Am. Chem. Soc., 1959, 81, 18.
6. Bennett, M.A.; Johnson, R.N.; Robertson, G.B.; Turney, T.W.; Whimp, P.O. Inorg. Chem., 1976, 15, 97.
7. Wang, Y.; Coppens, P. Inorg. Chem., 1976, 15, 1122 .
8. Millis, O.S.; Shaw, B.W. J. Organomet. Chem., 1968, 11, 595.
9. Dickson, R.S.; Pain, G.N.; Mackay, M.F. Acta Crystallogr. Sect B , 1979, 35, 2321.
10. Davidson, J.L.; Harrison, W.; Sharp, D.W.A.; Sim, G.A. J. Organomet. Chem., 1972, 46, C47.
11. Dickson, R.S.; Johnson, S.H.; Kirsch, H.P.; Lloyd, D.J. Acta Crystallogr. Sect. B , 1977, 33, 2057.
12. Balch, A.L.; Lee, C-L.; Lindsay, C.H.; Olmstead, M.M.; J. Organomet. Chem., 1979, 177, C22.
13. Southern, T.G.; Cowie, M.A. Inorg. Chem., 1982, 21, 246.
14. Mague, J.T. Inorg. Chem., 1989, 28, 2215.
15. (a) Dickson, R.S.; Hames, B.W.; Cowie, M.A. Organometallics , 1984, 3, 1879. (b)Idem. 1985, 4, 852.
16. Koie, Y.; Shinoda, S.; Saito, Y.; Fitzgerald, B.; Pierpont, C.G. Inorg. Chem., 1980, 19, 770.
17. International Tables for X-ray Crystallography; Ibers, J. A., Ed.; Kynoch Press: Birmingham, England, 1973 ; Vol.3, Table 4.2.2.
18. Ittel, S.D.; Ibers, J.A. Adv. Organomet. Chem., 1976, 14, 33.
19. Maisonnat, A.; Farr, J.P.; Balch, A.L. Inorg. Chim. Acta, 1981, 53, L217, and Sect. 3.1. of this thesis.
20. Lee, C.-L.; Yang, Y-P.; James, B.R. unpublished results.
21. Kezdy, F.J.; Kaz, J.; Bruylants, A. Bull. Soc. Chim. Belg., 1958, 67, 687.
22. (a)Swinbourne, E.S. J. Chem. Soc., 1960, 2371. (b)Manglesdorf, P.C. J. Appl. Phys., 1958, 30, 443.
23. (a) Guggenheim, E.A. Phil. Mag., 1926, 2, 538. (b) King, E.L. J. Am. Chem. Soc., 1952, 74, 563.
24. Atwood, J.D. Inorganic and Organometallic Reaction Mechanisms; Brooks/Cole: New York, 1985; p. 166.
25. Barnabas, A.F.; Sallin, D.; James, B.R. Can. J. Chem., 1989, 67, 2009.
26. Brost, R.D.; Kimberly Freldsted, D.O.; Stobart, S.R. Chem. Commun., 1989, 488.
27. Farr, J.P.; Olmstead, M.M.; Wood, F.; Balch, A.L. J. Am. Chem. Soc., 1983, 105, 792.
28. Farr, J.P.; Olmstead, M.M.; Balch, A.L. Inorg. Chem., 1983, 22, 1229.
29. Mislow, K.; Roban, M. Topics in Stereochemistry 1977, $1,1$.
30. (a) Joshi, A.M.; James, B.R. Organometallics, 1990, 9, 199. (b) Krassowski, D.W.; Nelson, J.H.; Brower, K.R.; Nauenstein, D.; Jacobson, R.A. Inorg. Chem. 1988, 27, 4294.
31. Farr, J.P.; Wood, F.E.; Balch, A.L. Inorg. Chem., 1983, 22, 3387.
32. Blau, R.J. Energ Res. Abstr., 1985, 10, No. 21297 through C.A. 1985, 103, 129835a.
33. Koie, Y.; Schinoda, S.; Saito, Y. Inorg. Chem., 1976, $20,4408$.
34. (a) Dodd, R.E.; Robinson, P.L. Experimental Inorganic Chemistry - A Guide to Laborotory Practice; Elsevier: Amsterdam, 1954; p.378. (b) Geary, W.J. Coord. Chem. Rev., 1971, 7, 81.

Chapter 5

Preparation and Reactivity of Pyridylphosphine Platinum(0) Complexes

The chemistry of the $\operatorname{Pt}(0)$ species, $\mathrm{Pt}\left(\mathrm{PR}_{3}\right)_{\mathrm{m}}(\mathrm{m}=2,3,4)$, has been investigated in great detail since the synthesis of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$ was reported in 1958;1 yet interest in this subject is not diminishing. Among the $\mathrm{Pt}\left(\mathrm{PR}_{3}\right)_{\mathrm{m}}$ species $\left(\mathrm{R}=\mathrm{Et},{ }^{2} \mathrm{i}-\mathrm{Pr},{ }^{3,4}\right.$ aryl $\left.{ }^{5,6}\right), \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{3}$ and $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$ are the most studied because they are easily handled and readily available. Even though the pyridylphosphine ligands were made forty years ago, ${ }^{7}$ the chemistry of their platinum(0) compounds has not been investigated prior to this work. In this Chapter, the preparation of the platinum precursors $\operatorname{Pt}\left(\mathrm{PN}_{3}\right)_{4}, 26 \mathrm{c}$, and $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{3}, 27 \mathrm{a}$, and their reactivities toward oxygen, olefin, HCl and methyl iodide will be discussed. By and large, the chemical behaviour of the $\operatorname{Pt}\left(\mathrm{PN}_{n}\right)_{\mathrm{m}}$ species $(\mathrm{n}=1,3 ; \mathrm{m}=3,4)$ resembles that of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{\mathrm{m}}$, but the differences in their reactivities with respect to this complex will be emphasized. The catalysis attempted using these platinum pyridylphosphine derivatives will be discussed at the end of this Chapter.

5.1. Platinum(0) complexes of pyridylphosphines

5.1.1. Tetrakis[tris(2-pyridyl)phosphine]platinum(0), 26c

The synthesis of $\operatorname{Pt}\left(\mathrm{PN}_{3}\right) 4,26 \mathrm{c}$, has been described previously in Chapter 2 (Sect. 2.8.1); $\mathbf{2 6 c}$ is made by refluxing $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ in aqueous solution with a THF solution of KOH in the presence of PN_{3} ligand at temperatures higher than $60^{\circ} \mathrm{C}$, or by reducing cis $-\mathrm{PtCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$, 1c, with hydrazine in the presence of PN_{3} in benzene solution. The yield in the former preparation varies from 18 to 43% with reaction time, and in the latter is about 40%. The solvents used in these reactions are critical, THF and benzene being found through trial-and-error to be the best solvents for the particular reactions, respectively. When ethanol, the solvent used for the successful preparation of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$ by either method, ${ }^{8}$ is used in the present work, a deep red oil, which is not air-sensitive, results upon concentration and gives a complicated ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$
spectrum. The role of ethanol played in these reduction reactions is unknown. The hydrazine reduction route was chosen for the larger scale preparation of 26 c because of its better reproducibility.

Sodium or potassium amalgam reduction of trans- $\mathrm{PtCl}_{2}\left(\mathrm{PR}_{3}\right)_{2}$ in THF is also known in the literature ${ }^{4}$ for the preparation of bisphosphine and trisphosphine $\operatorname{Pt}(0)$ complexes. This method, however, does not yield any $\operatorname{Pt}\left(\mathrm{PN}_{3}\right)_{\mathrm{m}}(\mathrm{m}=2,3)$ species from a cis $-\mathrm{PtCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ precursor. Preparation of trans $-\mathrm{PtCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ for the starting material for the amalgam reduction (via Hg lamp photolysis of cis- $\mathrm{PtCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ in benzene, as in the procedure for making trans$\left.\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}{ }^{9}\right)$ leads to decomposition of the starting cis complex.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 6 c}$ shows a singlet at $\delta \mathbf{3 0 . 1} \mathrm{ppm}$, and two singlet satellites, at $-20^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (Fig. 5.1). The signals have relative intensities of 1:4:1, and the ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}$ coupling constant is 3824 Hz , a typical value for $\mathrm{Pt}\left(\mathrm{PR}_{3}\right)_{4}$ tetrahedral complexes. ${ }^{3}$ The ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 26 c (Fig. 5.2) consists of a quintet centred at $\delta-538.3 \mathrm{ppm}$, having a ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}$ coupling constant of 3839 Hz , close to the value measured from the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. Complex 26c certainly remains undissociated from -85° to $-20^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, the signals beginning to broaden only around $0^{\circ} \mathrm{C}$, behaviour unlike that of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)$. The variable temperature ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR experiment for $\mathrm{Pt}(\mathrm{PPh} 3) 4$, investigated by Sue in this group, shows that the $1: 4: 1$ signal pattern of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$ can only be seen at $-90^{\circ} \mathrm{C}$, and the equilibrium constants for $\mathrm{Pt}_{\mathrm{t}}\left(\mathrm{PPh}_{3}\right)_{4}$ dissociation into $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{3}$ and free phosphine in toluene- d_{8} are 0.24 at $20^{\circ} \mathrm{C}$ and 0.013 M at $-90^{\circ} \mathrm{C}$, corresponding to 40 and 10% dissociation at $10^{-2} \mathrm{M}$, respectively. ${ }^{10}$ Consequently, compound $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{3}, 27 \mathrm{c}$, tris[tri(2-pyridyl)phosphine]platinum(0), cannot be made by refluxing $26 c$ in benzene, which is the corresponding method used for obtaining pure $\operatorname{Pt}\left(\mathrm{PPh}_{3}\right)_{3} .{ }^{10}$ The unusual stability of 26 c was also noticed during the course of its synthesis via the hydrazine reduction method; 26 c was still the major product obtained even when the extra three equivalents of PN_{3} were omitted (Sect. 2.8.1). Compound 27c is only formed as a minor product (Fig. 5.3). The ${ }^{31} \mathrm{P}$ chemical shift, 52.9 ppm , and the

(c)

Fig. 5.1. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra (121.4 MHz) of isolated $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{4}, 26 \mathrm{c}$, at $3.2 \times 10^{-2} \mathrm{M}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at various temperatures; (a) $0^{\circ} \mathrm{C}$, (b) $-20^{\circ} \mathrm{C}$, (c) $-85^{\circ} \mathrm{C}: \delta=30.1$ (s), ${ }^{1} \mathrm{~J}_{\mathrm{Pt}}=3824 \mathrm{~Hz}$.

Fig. 5.2. ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum (64.2 MHz) of 26 c , at $3.2 \times 10^{-2} \mathrm{M}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-45^{\circ} \mathrm{C}: \delta$ $=-538.3$ (quintet, the low intensity peaks being indicated by arrows), ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}=3839 \mathrm{~Hz}$ (the natural line width $=60 \mathrm{~Hz}$).
coupling constant, 4435 Hz , for 27 c are comparable with those of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{3}$ and $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{3}$: $\left(\mathrm{Pt}^{(} \mathrm{PPh}_{3}\right)_{3}: 50.07$ (s), $4449 \mathrm{~Hz} ;{ }^{10} \mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{3}: 52.0$ (s$), 4417 \mathrm{~Hz}$, see below).

The ${ }^{31} \mathrm{P}\left[{ }^{1} \mathrm{H}\right]$ NMR spectra of $\mathbf{2 6 c}$ mentioned above were recorded either immediately or within a few hours after sample preparation. Samples for ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR studies were prepared under a vigorous flow of nitrogen using degassed deuterated solvents, and the sample tubes were capped with a rubber septum and then wrapped with parafilm. The original bright yellow sample solution gradually changes to finally deep red (after one week) on standing. The ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ NMR spectrum of a mixture of 26 c and 27 c after 48 h in CDCl_{3} solution (still orange) displays a major doublet at $\delta_{1} 23.3 \mathrm{ppm}$ and a major triplet at $\delta_{2} 22.5 \mathrm{ppm}$ with an integration ratio of 2:1 (Fig. 5.4). The coupling constants (${ }^{1} \mathrm{JPPP}_{1},{ }^{1} \mathrm{~J}_{\mathrm{PLP}}$ and ${ }^{2} \mathrm{~J}_{\mathrm{PP}}$) for the new complex are 2700 , 4050 and 14 Hz , respectively. Another noticeable change in the ${ }^{31} \mathrm{P}\left[{ }^{1} \mathrm{H}\right]$ NMR spectrum is the significant enhancement of signal intensities of the free phosphine and the phosphine oxide. Tentative structures for the newly formed complex, 42, are postulated to have a T-shaped phosphine arrangement, based on the coupling pattern and the magnitude of the coupling constants (see below for possible structures). There is no precedence in the literature for a $\operatorname{Pt}(0)$ (d^{10}) complex possessing a T-shaped phosphine geometry within a 3 - or 4 -coordinate complex. Logically, the oxidation state of compound 42 should be either I or II. The increase in the amount of phosphine oxide implies that oxygen coordination might be involved. A similar "doublet and triplet" ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ NMR pattern was reported in a spectroscopic investigation of phosphine oxidation catalyzed by $\mathrm{Pt}(0) .{ }^{11} \mathrm{~A}$ five-coordinate, square pyramidal, trisphosphine peroxo intermediate (see (iii) below, where $\mathrm{P}=\mathrm{PMePh}_{2}$) was proposed based entirely on the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR parameters of this in situ formed compound, the data being indicative of a cis phosphine arrangement ($\delta=13.2$ (d), ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}=2740 \mathrm{~Hz} ; \delta=-12.7\left(\mathrm{t}\right.$), ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}=2930 \mathrm{~Hz} ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=$ 22 Hz). The oxidation of the phosphine in the presence of KOH was demonstrated by both kinetic and spectroscopic data to go via hydrogen peroxide formed in situ. The Pt-P coupling constants in 42 are very different from those in $\mathrm{Pt}\left(\mathrm{PMePh}_{2}\right)_{3} \mathrm{O}_{2}$, and also no formation of such peroxo species is detected (see below).

Fig. 5.3. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (121.4 MHz), recorded in CDCl_{3} at $-45^{\circ} \mathrm{C}$, of a freshly isolated but unpurified " $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{4}$ " sample formed by $\mathrm{NH}_{2} \mathrm{NH}_{2}$ reduction of cis- $\mathrm{PtCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$, 1c, in the absence of extra PN_{3} phosphine ligand: $\delta=52.9(\mathrm{~s}),{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=4435 \mathrm{~Hz}$ for 27 c .

Fig. 5.4. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum (121.4 MHz), recorded at $-10^{\circ} \mathrm{C}$, of the same sample of Fig. 5.3, after 48 h in CDCl_{3} at $-20^{\circ} \mathrm{C}$; compounds $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{4}$ and $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{3}$ have disappeared completely. 42: $\delta_{P_{1}}=23.3(\mathrm{~d}), \delta_{P_{2}}=22.5(t) ; \mathrm{J}_{\mathrm{PLP}_{1}}, \mathrm{~J}_{\mathrm{PLP}_{2}}$ and J_{PP} are 2700,4050 and 14 Hz , respectively (see text).

(i)

(ii)

(iii)

(iv)
(possible structures for 42)

Compound 42 was isolated as an orange solid from the reprecipitation of the product from hydrazine reduction of cis-1c (see Sect. 2.8.1). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the isolated orange crystals in CDCl_{3} shows only signals of 42 when taken immediately following sample preparation. When the solution of 42 in CDCl_{3} was left for ten days, a dark red oil formed in the NMR tube; this sample showed only a singlet for OPN 3 in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. Similar chemical behaviour has been reported for triphenylphosphine platinum(0) species in the literature. ${ }^{12,13}$ An analogous red material was formed slowly in the presence of trace oxygen (impurity in commercial nitrogen gas ${ }^{13}$) and was characterized as the trinuclear $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right] 3$ cluster. ${ }^{12}$ The red oil in the present study is assumed to be a similar oligomeric platinum(0) phosphine species. The lack of a ${ }^{31} \mathrm{P}$ signal for this species is perhaps due to its low concentration because of the poor solubility of the oil. The source of oxygen in the in situ NMR experiment may be attributed to the slow permeation of air through the rubber septum, and in the preparatory scale, oxygen may come as the impurity in the nitrogen gas used.

Elemental analysis of the orange solid isolated fits the formulation of $\operatorname{Pt}\left(\mathrm{PN}_{3}\right)_{3} \mathrm{O}_{2}$ " reasonably well (Sect. 2.8.1). The lack of a peroxo stretching band in the $740-930 \mathrm{~cm}^{-1}$ region ${ }^{14}$ (Fig. 5.5) and the presence of new bands between $1093-1135 \mathrm{~cm}^{-1}$ suggest that complex 42 possibly contains a superoxo ligand((i) or (ii)). The classical superoxo metal complexes invariably bind the O_{2} molecule in a "bent end-on" fashion, exhibiting an IR band between $1070-1200 \mathrm{~cm}^{-1} .15$ The only side-on, symmetrical bound superoxo species, characterized recently is $\mathrm{Tp}^{\prime} \mathrm{Co}\left(\mathrm{O}_{2}\right)$ ($\mathrm{Tp}^{\prime}=$ hydridotris(3-tert-butyl-5-methylpyrazolyl)borate which has an IR band at $961 \mathrm{~cm}^{-1} .{ }^{16} \mathrm{Pt}(0)$ is not a transition metal moiety favouring superoxo complex formation. Nonetheless, $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{3}$ partially satisfies the general requirements: the metal must have one coordination site available and possibly a favourable one-electron oxidation
potential. ${ }^{17}$ Compound 42 is unstable both in solution and in the solid state (a single crystal of the isolated material decomposed after a week in a grease-sealed capillary tube under N_{2} atmosphere). In order to elucidate the likely role of oxygen in this reaction, a parallel reaction using pure oxygen gas (1 atm) with $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{4}(\sim 15 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was performed at room temperature. There was no noticeable colour change during this reaction. The reaction was stopped after 15 min . The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the orange-yellow solid obtained by pumping off the solvent shows a major singlet at 18.2 ppm with the Pt-satellites (Fig. 5.6). The ${ }^{31} \mathrm{P}\left[{ }^{1} \mathrm{H}\right)$ data for this compound are comparable with those for the $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{O}_{2}$ peroxo species ($\left.\delta=14.5(\mathrm{~s}),{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=4045 \mathrm{~Hz} ;{ }^{10} \delta=16.4(\mathrm{~s}),{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=4059 \mathrm{~Hz}^{11}\right)$. The typical IR band for peroxide is not obvious in CDCl_{3}, although a shoulder is evident at $812 \mathrm{~cm}^{-1}$ (Fig. 5.7); the corresponding band for the $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{O}_{2}$ peroxo species is at $821 \mathrm{~cm}^{-1}$. Based on these limited data, the formation of the $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{2} \mathrm{O}_{2}$ peroxide, 43c, seems likely.

A superoxo structure (the more usual end-on ${ }^{18,19}$, or novel side-on arrangement ${ }^{16}$) for the unknown, supposed oxygen complex 42 is very speculative at this stage, confirmation by an X-ray crystal structure being critical. The possibility of $\mathbf{4 2}$ being a dinitrogen complex (a non air-sensitive, mononuclear dinitrogen complex of $\mathrm{Pt}\left(\mathrm{AsPh}_{3}\right)_{3}$ has been characterized recently ${ }^{20}$) is ruled out by the lack of a \mathbf{v}_{NN} stretching vibration around $2200 \mathrm{~cm}^{-1}$, and also the elemental analysis which corresponds closely to that for a $\operatorname{Pt}\left(\mathrm{PN}_{3}\right)_{3}\left(\mathrm{O}_{2}\right)$ formulation. The possibility of $\mathrm{H}_{2} \mathrm{O}$ participation to give -OOH or -OH ligands is also ruled out by the lack of $\mathrm{v}_{\mathrm{OOH}}$ and v_{OH} stretching vibrations around $3500-3600 \mathrm{~cm}^{-1}$.

As the phosphine oxide OPN_{3} is formed gradually in a relatively large quantity, the possibility of a phosphine oxide complex was examined. Balch's group has made a $\mathrm{Pt}(\mathrm{IV})$ phosphine oxide complex of $\mathrm{OPN}_{1}\left(\mathrm{PtBr}_{4}\left(\mathrm{OPN}_{1}\right)\right.$, see below), this showing a v_{PO} band at 1115 cm^{-1} (the band of the free phosphine oxide is seen at $1180 \mathrm{~cm}^{-1}$). ${ }^{21}$ The ${ }^{31} \mathrm{P}$ NMR spectrum of this $\mathrm{Pt}(\mathrm{IV})$ complex shows a singlet at 25.4 ppm with no Pt satellites being seen, this being attributed to the weak interaction between the Pt and P atoms separated by an O atom (the ${ }^{31} \mathrm{P}$ signal for the free OPN_{1} is seen at 21.4 ppm). ${ }^{21}$ The ${ }^{31} \mathrm{P}$ resonance of free OPN_{3} is at 15.7 ppm, and the resonances at 23.3 and 22.5 ppm could be those of coordinated phosphine oxide,

Fig. 5.5. Infrared spectrum of 42 c in Nujol.

Fig. 5.6. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (121.4 MHz) in CDCl_{3} at r.t of an in situ reaction product formed from $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{4}$ with pure oxygen gas: $\delta=18.2(\mathrm{~s}),{ }^{1} \mathrm{~J}_{\mathrm{Pt}}=3848 \mathrm{~Hz}$ for $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{2} \mathrm{O}_{2}$, 43 c .

Fig. 5.7. (a) Infrared spectrum of solvent CDCl_{3}; (b) infrared spectrum of $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{2} \mathrm{O}_{2}, 43 \mathrm{c}$, in CDCl_{3} at r.t.

particularly in view of the IR band at $1114 \mathrm{~cm}^{-1}$ (Fig. 5.5). A possible structure of the $\mathrm{Pt}(0)$ phosphine oxide complex is depicted as (iv) (see above). The doublet in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum could then be assigned to the two equivalent phosphorus atoms of coordinated OPN3. The relatively small J_{Pt} value of 2700 Hz (compared to values of $\sim 3800 \mathrm{~Hz}$ in $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{4}$ and $\sim 4400 \mathrm{~Hz}$ in $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{3}$) would then be attributed to a two-bond $\mathrm{Pt}-\mathrm{P}$ coupling, and the J_{PP} value of 14 Hz to a three-bond coupling. However, the evidence against this assignment is the value of the ${ }^{2} \mathrm{~J}_{\mathrm{PtP}}$ coupling, because the corresponding value in the $\mathrm{PtBr}_{4}\left(\mathrm{OPN}_{1}\right)$ species was reported to be too small to be resolved. ${ }^{21}$ Further, the hard nature of the oxygen of the phosphine oxide ligand makes such oxygen coordination at a soft centre such as $\mathrm{Pt}(0)$ unlikely.

The different products formed from the oxygen reactions of 26 c may be caused by two different reaction pathways. Complex 26c reacts quickly with oxygen molecules under O_{2} atmosphere to form the peroxide 43 c . On the other hand, the formation of $\mathbf{4 2}$ occurs much more slowly, and is also solvent dependent, being promoted by chlorinated solvents, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (or $\mathrm{CD}_{2} \mathrm{Cl}_{2}$), CDCl_{3}. Toluene- d_{8} does not promote the formation of 42 , as demonstrated by the ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 6 c}$ taken one week after the sample preparation (Fig. 5.8).

Fig. 5.8. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (121.4 MHz), recorded at $-50^{\circ} \mathrm{C}$, of 26 c in toluene-d8 after a week being stored in a freezer at $-20^{\circ} \mathrm{C}$.

5.1.2. Tris[2-(diphenylphosphino)pyridine]platinum(0), 27a

The synthesis of $\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{3}, 27 \mathrm{a}$, has been described in Sect. 2.8 2, the purity of the isolated product being dependent on the used phosphine concentration. A mixture of tetrakisand tris-phosphine platinum(0) species resulted if the ratio of phosphine to platinum used was between 4 and 6.5 .

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-50^{\circ} \mathrm{C}$ of 27 a contains a singlet at 52.0 ppm and two singlet satellites (Fig. 5.9); the coupling constant $\mathrm{J}_{\mathrm{PtP}}$ is 4417 Hz which is typical of a $\mathrm{Pt}\left(\mathrm{PR}_{3}\right)_{3}$ trigonal planar complex. ${ }^{3}$ The ${ }^{195} \mathrm{Pt}\left({ }^{1} \mathrm{H}\right)$ NMR spectrum of 27 a reveals a quartet centred at $\delta-300.3 \mathrm{ppm}$ at $-45^{\circ} \mathrm{C}$ in CDCl_{3} with a coupling constant ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}$ of 4433 Hz (Fig. 5.10). An attempt was made to isolate the tetrakis PN_{1} compound, $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{4}$ 26a, by adding five equivalents of PN_{1} ligand ($\sim 60 \mathrm{mg}, 0.23 \mathrm{mmol}$) of the tetrakis and tris species to a mixture at room temperature, with limited success: although in a solution of 27a containing excess free ligand $\mathrm{PN}_{1}, 26 \mathrm{a}$ is detected as a major singlet at $25.6 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{PtP}} 3910 \mathrm{~Hz}\right)$ (Fig. 5.11), a precipitation procedure again produces the mixture of the tetrakis and tris $\mathrm{Pt}(0)$ species. The coupling constant and the chemical shift of $\mathbf{2 6 a}$ are similar to those of $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{4}, 26 \mathrm{c}$. The reason for the unusually high coordination shifts for both tetrakis phosphine platinum(0) species, 26a ($\Delta \delta=28.1 \mathrm{ppm}$) and 26c $(\Delta \delta=29.8 \mathrm{ppm})$, compared to those of other four-coordinate complexes $\mathrm{Pt}\left(\mathrm{PR}_{3}\right)_{4}, \Delta \delta \approx 4.6$ to $13.8 \mathrm{ppm}, 3,10,22$ is not understood.

The ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right)$ NMR spectrum of 27 a after 48 h at $-20^{\circ} \mathrm{C}$ indicates that more than two thirds of the $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{3}$ complex is decomposed in CDCl_{3} (Fig. 5.12). Three major, new, platinum containing complexes in addition to 27 a are seen: one has a singlet at 20.5 ppm with Pt satellites at 31.2 and $9.65 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{PLP}}=2616 \mathrm{~Hz}\right)$ and could be trans $-\mathrm{PtCl}_{2}\left(\mathrm{PN}_{1}\right)_{2}$ [cf. trans$\left.\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right) 2,20.6(\mathrm{~s}),{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=2634 \mathrm{~Hz}^{23}\right]$; the second one has a singlet at 13.0 ppm with Pt satellites at 29.2 ppm and -3.1 ppm (${ }^{1} \mathrm{~J}_{\mathrm{PLP}}=3921 \mathrm{~Hz}$) and is possibly a peroxo species, $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2} \mathrm{O}_{2}$, 43a, (cf. $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{2} \mathrm{O}_{2} 43 \mathrm{c}: 18.2$ (s), ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}=3848 \mathrm{~Hz}$, Fig. 5.6; $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{O}_{2}$, $14.5(\mathrm{~s}),{ }^{1} \mathrm{~J}_{\mathrm{PPP}}=4045 \mathrm{~Hz}^{10,11}$); the third compound whose ${ }^{31} \mathrm{P}$ NMR signals are centred at 30.1

Fig. 5.9. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (121.4 MHz) of $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{3}, 27 \mathrm{a}$, at $4.5 \times 10^{-2} \mathrm{M}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-50^{\circ} \mathrm{C}: \delta=52.0(\mathrm{~s}),{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=4417 \mathrm{~Hz}$.

Fig. 5.10. $64.2 \mathrm{MHz}{ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of 27 a at $4.5 \times 10^{-2} \mathrm{M}$ in CDCl_{3} at $-45^{\circ} \mathrm{C}: \delta=$ -300.3 (quartet), ${ }^{1}{ }_{\mathrm{PtP}}=4433 \mathrm{~Hz}$ (the natural line width is 40 Hz).

Fig. 5.11. ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ NMR spectrum (121.4 MHz) of the in situ formed $\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{4}, 26 a$, in CDCl_{3} at $-45^{\circ} \mathrm{C}: \delta=25.6(\mathrm{~s}),{ }^{1} \mathrm{~J}_{\mathrm{PP}}=3910 \mathrm{~Hz}$.

Fig. 5.12. Decomposition of $\mathrm{Pt}\left(\mathrm{PN}_{1}\right) 3$ in CDCl_{3} after 48 h at $-20^{\circ} \mathrm{C}$ shown by the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right] \mathrm{NMR}$ spectrum ($\mathrm{CDCl}_{3},-20^{\circ} \mathrm{C}$). $\mathrm{X}_{1}: ~ " \mathrm{HPtCl}\left(\mathrm{PN}_{1}\right)_{2}$ ", see Fig. 5.20a; $\mathrm{X}_{2}:$ trans $-\mathrm{PtCl}_{2}\left(\mathrm{PN}_{1}\right)_{2}, \mathrm{X}_{3}: \operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{2} \mathrm{O}_{2}, 43 \mathrm{a}: \delta=13.0(\mathrm{~s}),{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=3921 \mathrm{~Hz}$.
ppm as a doublet with satellites at 42.2 and $18.0 \mathrm{pm}\left(\mathrm{J}_{\mathrm{PtP}}=2938 \mathrm{~Hz}\right)$ has parameters very similar to those of the trans $-\mathrm{Pt}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PN}_{1}\right)_{2}$ complex which will be discussed in Sect. 5.3.1 (30.2 (d), ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}=3023 \mathrm{~Hz}$, Fig. 5.20a). The decomposition of $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{3}$ is clearly complicated; no analog of $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{3} \mathrm{O}_{2}, 42$, is detected. The formation of trans $-\mathrm{Pt}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PN}_{1}\right)_{2}$ and trans$\mathrm{PtCl}_{2}\left(\mathrm{PN}_{1}\right)_{2}$ may be rationalized by the presence of $\mathrm{HCl}, \mathrm{Cl}_{2}$ and COCl_{2} impurities produced by the light-promoted chloroform oxygen reaction. 24

5.2. Characterization of olefin complexes of 2-(diphenylphosphino)pyridine and tris(2-pyridyl)phosphine

5.2.1. Acrylonitrile, methacrylonitrile and crotonitrile complexes (44a, 44c, 45a, 46a)

Syntheses of these olefin complexes have been described in detail in Chapter 2, Sect. 2.8.3.1. Although satisfactory chemical analyses were not obtained for complexes 44a-46a, because of the loss of olefin in drying procedures, the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic evidence (Table 5.1) unambiguously reveals that these complexes are essentially square-planar with a cis-phosphine arrangement (see below). For instance, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CHCN}\right), 44 \mathrm{a}$, contains a major AB quartet and the corresponding Pt satellites with a phosphorus-to-phosphorus coupling of 34.7 Hz , typical of cis-phosphorus coupling (Fig. 5.13). Carbon C^{1} probably has a stronger trans influence than does the C^{2} carbon atom. Therefore, the downfield half of the AB quartet is assigned to P^{2} which has the platinumphosphorus coupling of 3969 Hz ; the upfield half of the $A B$ quartet is then due to the resonance of P^{1} which has the smaller platinum-phosphorus coupling, 3445 Hz . The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum at $\mathbf{2 5}^{\circ} \mathrm{C}$ shows that $\mathbf{4 4 a}$ is non-fluxional, implying that the bonding between Pt and the hydrocarbon is more like the metallocyclic structure shown, than a π-bonded olefin structure which more readily allows for rotation of olefin around the Pt-olefin bond. Strong Pt d - π-back donation is also indicated by the multiplets at 2.0 and 3.8 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum of the coordinated acrylonitrile (free acrylonitrile appears as a multiplet between 5-6 ppm); strong olefin-to-metal σ-donation via the olefin π molecular orbital would result in a downfield shift of the olefinic protons to around $7 \mathrm{ppm} .{ }^{25,} 26$

Fig. 5.13. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (121.4 MHz) of $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CHCN}\right), 44 \mathrm{a}$, in CDCl_{3} at $25^{\circ} \mathrm{C}$ (data are given in Table 5.1).

Table 5.1. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Parameters of Compounds $44 \mathrm{a}-46 \mathrm{a}$ in $\mathrm{CDCl}_{3}{ }^{\mathrm{a}}$

| Complexes | Temp. $\left({ }^{\circ} \mathrm{C}\right)$ | $\delta_{\mathrm{P}_{1}}$ | $\delta_{\mathrm{P}_{2}}$ | ${ }^{1} \mathrm{~J}_{\mathrm{PtP}_{1}}$ | ${ }^{1} \mathrm{~J}_{\mathrm{PPP}_{2}}$ | ${ }^{2} \mathrm{~J}_{\mathrm{PP}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{2}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CHCN}\right), 44 \mathrm{a}$ | 25 | 30.7 | 31.7 | 3445 | 3969 | 34.7 |
| $\operatorname{Pt}\left(\mathrm{PN}_{3}\right)_{2}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CHCN}\right), 44 \mathrm{c}$ | -45 | 34.6 | 35.4 | 3406 | 3934 | 31.9 |
| $\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{2}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CN}\right), 45 \mathrm{a}$ | 25 | 31.3 | 31.3 | 3538 | 3718 | 35.2 |
| $\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{2}\left(\eta^{2}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CHCN}\right), 46 \mathrm{a} .1$ | 25 | 31.8 | 32.6 | 3265 | 4095 | 38.5 |
| $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}\left(\eta^{2}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CHCN}\right), 46 \mathrm{a} .2$ | 25 | 31.6 | 32.1 | 3240 | 4086 | 39.4 |

(a) The chemical shifts and coupling constants are in ppm and Hz , respectively.

The platinum(0) precursor $\operatorname{Pt}\left(\mathrm{PN}_{3}\right)_{4}, \mathbf{2 6}$ c, forms a complex with acrylonitrile, 44c, whose ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (Table 5.1) contains also an AB quartet (with satellites) similar to that seen in Fig. 5.13, and the complex is considered to possess the same geometry as 44a.

The $\mathrm{Pt}(0)$-methacrylonitrile complex $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CN}\right), 45 \mathrm{a}$, displays a distinct ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right]$ NMR spectrum containing a very intense singlet at 31.3 ppm and symmetric AB quartets as Pt-satellites (Fig. 5.14a). The "accidental equivalence" of the two chemically different phosphines in 45a is disrupted upon cooling the system to $-20^{\circ} \mathrm{C}$ when the central singlet splits into a very close AB quartet (Fig. 5.14b). The P-P coupling constant in the AB quartet, arising from inequivalent phosphorus atoms, is 35.2 Hz which is similar to that of compound 44a. The ${ }^{1} \mathrm{JPLP}_{1}$ and ${ }^{1} \mathrm{~J}_{\mathrm{PtP}_{2}}$ values are found to be 3718 and 3538 Hz , respectively. The difference (180 Hz) is small compared to the difference in $44 \mathrm{a}(524 \mathrm{~Hz})$, this presumably reflecting the similar electron densities at the two olefinic carbon atoms: the electron density on the carbon with the electron withdrawing CN group and electron donating CH_{3} group appears comparable with that on the methylene carbon, which consequently leads to similar trans influences imposed by the two carbon fragments. By inference, the difference in the two Pt-P coupling constants within the crotonitrile complexes 46a.1 or 46a.2 should be the largest among 44a, 44c, 45a and 46a.1/ 46 a .2 (see below).
(a)

Fig. 5.14. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (121.4 MHz) of $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CN}\right)$, 45a, in CDCl_{3} at various temperatures, (a) r.t., (b) $-20^{\circ} \mathrm{C}$, (c) $-45^{\circ} \mathrm{C}$; see Table 5.1.

When $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{3}, 27 a$, is treated with a mixture of cis and trans crotonitrile, two product isomers are obtained (Sect. 2.8.3). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of this mixture basically consists of two sets of signals, each set composed of an AB quartet and the corresponding Pt satellites (Fig. 5.15). These two complexes 46a.1 and 46a.2 do not interconvert at room temperature. The peaks labelled with an asterisk (*) belong to one complex which has a major AB quartet centred at 32.2 ppm and the corresponding Pt-satellites $\left({ }^{1} \mathrm{JPLP}_{1},{ }^{1} \mathrm{~J}_{\mathrm{PtP}}^{2}\right.$ and ${ }^{2}{ }^{\mathrm{J}} \mathrm{PP}$ are 3265,4095 and 38.5 Hz , respectively); the unlabelled resonances belong to a second complex with an AB quartet centred at 31.9 ppm and Pt -satellites (${ }^{1} \mathrm{JPtP}_{1},{ }^{1} \mathrm{JPtP}_{2}$ and ${ }^{2} \mathrm{~J}_{\mathrm{PP}}$ are 3240,4086 and 39.4 Hz , respectively). The average difference of 840 Hz between ${ }^{1} \mathrm{~J}_{\mathrm{PtP}_{1}}$ and ${ }^{1} \mathrm{~J}_{\mathrm{PtP}_{2}}$, the largest among 44a-46a, is attributed to the large difference in electron densities of the olefinic carbon atoms (see above) because one has the electron-withdrawing CN substituent and the other has the electron-donating methyl group. The ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right]$ NMR spectra of $\mathrm{Pt}(0)$ complexes with prochiral olefins have not been reported before. The splitting pattern in the 31P NMR signals in these complexes (44a-46a) strongly supports the assigned square-planar geometry.

Fig. 5.15. ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ NMR spectrum $(121.4 \mathrm{MHz})$ of $\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{2}\left(\eta^{2}-\left(\mathrm{CH}_{3}\right) \mathrm{CHCHCN}\right)$ in CDCl_{3} at $25^{\circ} \mathrm{C}$; peaks labelled with ${ }^{*}$ belong to 46 a .1 , unlabelled peaks belong to 46 a .2 , see Table 5.1. No assignment regarding the geometry of the coordinated olefin for 46a.1 and 46a.2 is made.
5.2.2. Maleic anhydride (MA) and diethyl maleate (DEMA) complexes 47a, 47c, 48a

Syntheses of $\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{2}(\mathrm{MA}), 47 \mathrm{a}, \mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{2}(\mathrm{MA}), 47 \mathrm{c}$, and $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}$ (DEMA), 48a, have been described in Sect. 2.8.3.2. The reaction of diethyl maleate with $\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{3}, 27 a$, was carried out in diethyl ether; the addition of DEMA was done carefully to obtain a solid product, because excess DEMA results in the formation of a white, colloidal product. Reactions of MA or DEMA with the $\operatorname{Pt}(0)$ complexes were noticably more rapid than the nitrile reactions possibly because activation by the two carboxylate groups is greater than that by the one CN group. The geometries of these olefinic complexes are characterized using NMR techniques. The ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ NMR spectra of these complexes are not as informative as those of 44a-46a because MA and DEMA are symmetric. For instance, the ${ }^{31}$ P NMR spectrum of 47a, shown in Fig. 5.16b, contains a major singlet at 27.0 ppm , indicating that the two P nuclei are equivalent. Although the coupling constant value of 3841 Hz implies a cis-phosphine geometry (cf. trans- $\mathrm{PtI}_{2}\left(\mathrm{PN}_{2}\right)_{2}$, ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}=2500 \mathrm{~Hz}$, Table 3.1), whether the geometry of this molecule is square-planar or tetrahedral cannot be assertained from the ${ }^{31} \mathrm{P}$ data. Fig. 5.16a shows the ${ }^{1} \mathrm{H}$ NMR spectrum of 47a: a pseudo triplet of doublets centred at 3.45 ppm is assigned to the olefinic protons of the coordinated maleic anhydride, which have shifted upfield by 3.65 ppm upon coordination. ${ }^{18}$ The shift to high field is similar to that observed for complex 44a. This infers that the olefin bonding in 47a and 44a is perhaps similar. This shift is caused by the increase of electron density on the carbon atom to which the olefinic protons are attached. These protons resonances, split by the adjacent ${ }^{31} \mathrm{P}$ into a doublet $\left({ }^{3} \mathrm{~J}_{\mathrm{PH}}=8.0 \mathrm{~Hz}\right)$ and by the ${ }^{195 \mathrm{Pt}}$ into a larger doublet $\left({ }^{2} \mathrm{~J}_{\mathrm{PtP}}=60.0 \mathrm{~Hz}\right)$, are similar in position to those of the protons on saturated sp^{3} carbon atoms, perhaps reflecting a lowering of the $\mathrm{C}-\mathrm{C}$ bond order.

The maleic anhydride complex $\operatorname{Pt}\left(\mathrm{PN}_{3}\right)_{2}(\mathrm{MA}), 47 \mathrm{c}$, formed from 26 c and MA (Sect. 2.8.3.3), is assumed to have a geometry similar to that of $\mathbf{4 7 a}$. The ${ }^{31}$ P NMR data of 47 c are given in Table 5.2.

Table 5.2. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR Parameters of 47a-48a ${ }^{\mathrm{a}}$

Complexes	δ_{P}	δ_{H}	$\mathrm{J}_{\mathrm{PtP}}$	$\mathrm{J}_{\mathrm{PLH}}$	J_{PH}
$\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{2}(\mathrm{MA}), 47 \mathrm{a}$	27.0	3.45	3841	60.0	8.0
$\operatorname{Pt}\left(\mathrm{PN}_{3}\right)_{2}(\mathrm{MA}), 47 \mathrm{c}$	32.3	-	3836	-	-
$\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{2}(\mathrm{DEMA}), 48 \mathrm{a} .1$	30.0	-	3750	-	-
$\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{2}(\mathrm{DEFM}), 48 \mathrm{a} .2$	28.1	-	3815	-	-

a) The spectra are recorded in CDCl_{3} at r.t.; the chemical shifts are in ppm and the coupling constants are in Hz .

Fig. 5.16. ${ }^{1} \mathrm{H}(300 \mathrm{MHz})$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}(121.4 \mathrm{MHz})$ NMR spectra of $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}(\mathrm{MA}), 47 \mathrm{a}$, in CDCl_{3} at r.t. (a) ${ }^{1} \mathrm{H}$ NMR: $\delta=3.45$ (d), ${ }^{2} \mathrm{~J}_{\mathrm{PLP}}=60.0,{ }^{3} \mathrm{~J}_{\mathrm{PH}}=8.0 \mathrm{~Hz} ; \mathrm{X}_{1}$ are signals due to $\mathrm{Et}_{2} \mathrm{O}$ and X_{2} is the $\mathrm{H}_{2} \mathrm{O}$ peak in CDCl_{3}. (b) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta=27.0$ (s), ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}=3841 \mathrm{~Hz}$.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the isolated $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}$ (DEMA) (DEMA $=$ diethyl maleate), 48a.1, at room temperature in CDCl_{3} unexpectedly consists of two sets of signals with relative integration ratio $1: 1.2$ - the singlet at 30.0 ppm with coupling constant ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}$ of about 3750 Hz and another singlet at 28.1 ppm with a ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}$ of 3815 Hz (Fig. 5.17 b). The mother solution, as indicated by the ${ }^{31} \mathrm{P}$ NMR spectrum, contains the same two compounds, but at remarkably different concentrations. The reaction of $\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{3}$ with DEMA initially ($\sim 20 \mathrm{~min}$) gives one major compound (Fig. 5.17a), which on standing slowly converts to another species

Fig. 5.17. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (121.4 MHz) of complexes 48 a .1 and 48 a .2 in CDCl_{3}. (a) the initial (20 min) in situ reaction product from $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{3} 27 a+\mathrm{DEMA}$ at $-20^{\circ} \mathrm{C}$. (b) the isolated white crystals of the $\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{2}$ (DEMA) 48a.1 and $\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{2}(\mathrm{DEFM}) 48 \mathrm{a} .2$ mixture at r.t. (c) the initial (10 min) in situ reaction product from $27 \mathrm{a}+\mathrm{DEFM}$ at $-20^{\circ} \mathrm{C}$. Data are given in Table 5.2.
whose ${ }^{31} \mathrm{P}$ signal is centred at 28.1 ppm . Isomerization of the coordinated olefin is involved. This is confirmed by the formation of $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}$ (DEFM) (DEFM = diethyl fumarate), 48a.2, in situ by reacting 27a with DEFM: the single species formed immediately ($\sim 10 \mathrm{~min}$) has the same ${ }^{31}$ P NMR chemical shift and ${ }^{1}{ }^{1}$ PtP coupling constant as the isomerization product from 48a.1; 48a. 2 does not isomerize for 72 h in solution. A similar cis-trans isomerization of maleate to fumarate ester catalyzed by $\mathrm{CO}_{2}(\mathrm{CO})_{8}$ complex has been reported recently by Ungváry. 27

5.2.3. An ethylene complex 49a

The ethylene complex, $\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{2}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 49 \mathrm{a}$, was formed in situ by introducing via a syringe ethylene gas at $1 \mathrm{~atm}(2 \mathrm{~mL})$ into a toluene- d_{8} solution ($1 \mathrm{~mL}, \sim 7.0 \times 10^{-3} \mathrm{M}$) of $\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{3}, 27 \mathrm{a}$, in an NMR tube filled with N_{2}. The solution turned from yellow to colourless for reactions at room temperature. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of this colourless solution at $-85^{\circ} \mathrm{C}$ (Fig. 5.18) showed the formation of new species whose ${ }^{31} \mathrm{P}$ parameters are very similar to those of $\operatorname{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ reported in the literature $\left(\delta=32.5(\mathrm{~s}),{ }^{1} \mathrm{~J}_{\mathrm{PLP}}=3694 \mathrm{~Hz}\right.$ at $-80{ }^{\circ} \mathrm{C}$ in toluene-d8). 22 On warming up to room temperature, the same sample gave a very broad peak centred at 26 ppm because species 27a and 49a exchange very rapidly according to (Eq. $5.1)$ in the presence of free PN_{1} ligand. This exchange behaviour has also been observed in $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ system.

$$
\begin{align*}
& \mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{3}+\mathrm{CH}_{2}=\mathrm{CH}_{2} \underset{\text { toluene-d }}{ } \tag{5.1}\\
& 27 \mathrm{a} \\
& \mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)+\mathrm{PN}_{1} \\
& 49 \mathrm{a}
\end{align*}
$$

The $\operatorname{Pt}\left(\mathrm{PN}_{3}\right)_{4}$ species, 26 c , does not react with ethylene under the same conditions, as indicated by the ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right)$ NMR spectrum of 26 c which remains unaltered after an attempted reaction.

Fig. 5.18. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (121.4 MHz) recorded at $-85^{\circ} \mathrm{C}$ in toluene- d_{8} of the $\mathrm{Pt}(0)$ ethylene adduct $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 49 \mathrm{a}$, formed in situ at r.t.: $\delta=35.5(\mathrm{~s}),{ }^{1} \mathrm{~J}_{\mathrm{P} P}=3654$ Hz .

In conclusion, $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{4}, 26 \mathrm{c}$, and $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{3} ; 27 \mathrm{a}$, react with activated olefins in ways similar to the triphenylphosphine $\mathrm{Pt}(0)$ complexes $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$ or $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{3}$; in the case of ethylene and DEMA, $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{4}$ appears to be less reactive. The geometries of all the olefinic complexes made here are unambiguously square-planar, based on the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectroscopic data. The square-planar geometry in these platinum olefin complexes infers that there is strong π-back-donation from the Pt to olefin which lessens the electron density on the platinum, of the formal oxidation state zero. As a result, the coordinated olefin is reduced to a nearly saturated state. This is consistent with the molecular orbital interpretation of the bonding between platinum and olefin in such complexes; that is, a negligible σ olefin to metal bond and a strong π metal to olefin bond. ${ }^{28}$ The C-C distance in the tetracyanoethylene complex $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{C}_{2}(\mathrm{CN})_{4}\right](1.52$ $\AA^{28 a}, 1.49 \AA^{28 b}$) is stretched 0.21 or $0.18 \AA$ compared to that in free TCNE; and is closer to a single $\mathrm{C}-\mathrm{C}$ bond distance. By analogy, the $\mathrm{C}-\mathrm{C}$ bond distances in the olefin complexes made here are likely to approximate those of a single bond.

5.3. Reactions of $\mathbf{P t}\left(\mathrm{PN}_{1}\right)_{3}$ and $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{4}$ with $\mathbf{H C l}$

5.3.1. Reaction of $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{3}$ with HCl

Oxidative addition of HCl to $\mathrm{Pt}(0)$ phosphine complexes generally yields transhydridochlorobisphosphineplatinum(II) species. ${ }^{29,30}$ A white crystal isolated using $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{3}$ as reactant (Sect. 2.8.4.1) was analyzed to be trans- $\mathrm{Pt}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PN}_{1}\right)_{2}, 50 \mathrm{a}$. The complication described in Sect. 2.8.4.1, regarding the necessity of removing excess HCl because of protonation of the pyridyl group, is not apparent in the triphenylphosphine system. ${ }^{10,30}$

The hydride resonance in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 0 a}$ appears at -16.32 ppm as a resolved pseudo triplet of triplets at room temperature, due to coupling to the ${ }^{195} \mathrm{Pt}$ nucleus and two equivalent ${ }^{31} \mathrm{P}$ nuclei (Fig. 5.19). The signals at 1.76 ppm and 3.73 ppm can be assigned to the presence of solvated THF in the crystal lattice, the integration of these signals corresponding to one half mole of THF per platinum complex. The microanalysis results for the hydrogen and nitrogen improve significantly based on the formula trans- $\mathrm{Pt}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PN}_{1}\right)_{2} \cdot 1 / 2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ (calcd. for $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{ClN}_{2} \mathrm{O}_{0.5} \mathrm{P}_{2} \mathrm{Pt}$: C 54.44, H 4.19, N 3.53; found: C 54.01, H 4.31, N 3.34). The Pt-H IR band at $2212 \mathrm{~cm}^{-1}$ (Nujol) is similar to those found for trans- $\mathrm{Pt}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{2}$ in the literature (2209, 2217 and $2210 \mathrm{~cm}^{-1}$ in refs. 10,29 and 30 , respectively). The original ${ }^{31}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 50a showed a major doublet with corresponding doublet platinum satellites; the separation between the major doublet is $\sim 12.0 \mathrm{~Hz}$ (Fig. 5.20a) which is indicative of phosphorus-hydride coupling (see Fig. 5.19). The appearance of the doublet in the ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ NMR spectrum was indeed due to the insufficient decoupling power applied to suppress the interference of the hydride; this coupling was suppressed by applying a stronger decoupling power (Fig. 5.20b).

Fig. 5.19. ${ }^{1} \mathrm{H}$ NMR spectrum (300 MHz) of trans- $\mathrm{Pt}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PN}_{1}\right)_{2}, 50 \mathrm{a}$, in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at r.t.: δ (hydride) $=-16.32(\mathrm{t}),{ }^{2} \mathrm{~J}_{\mathrm{PLH}}=1213,{ }^{3} \mathrm{~J}_{\mathrm{PH}}=12.7 \mathrm{~Hz}$. Free THF is seen as multiplets at 1.76 and 3.73. $\mathrm{S}=$ solvent.
(a)

Fig. 5.20. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (121.4 MHz) of 50 a in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at r.t.; (a) obtained with the decoupling power $\mathrm{DLP}=6: \delta=30.2$ (d), ${ }^{1} \mathrm{~J}_{\mathrm{PLP}}=3023 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{PH}}=12.1 \mathrm{~Hz}$. (b) obtained with the decoupling power increased by $2^{6}(\mathrm{DLP}=0): \delta=30.2(\mathrm{~s}),{ }^{1} \mathrm{~J}_{\mathrm{PP}}=3026 \mathrm{~Hz}$.

Transfer of a single hydrogen atom to an olefin is a common reaction for transition metal hydride complexes. ${ }^{31}$ Compound 50a reacts with acrylonitrile to form an alkyl complex, as indicated by the loss of intensity of the high field hydride signal and the appearance of multiplets in the methylene proton region in the ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 5.21). It is clear from the ${ }^{1} \mathrm{H}$ NMR data that the linear $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$ rather than the branched $-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CN}$ group is formed. Olefin insertion into an M-H bond in this anti-Markovnikov fashion is more commonly seen in the literature. ${ }^{32}$ Accompanying this olefin insertion into the $\mathrm{Pt}-\mathrm{H}$ bond is the isomerization of a trans phosphorus complex to a cis one (Eq. 5.2).

The above reaction proceeds with no colour change, the solution remaining colourless. Fifty percent of the hydride is converted to the alkyl species in about an hour at room temperature. Compound 51 is not isolated. However, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum at $-45^{\circ} \mathrm{C}$ in acetone- d_{6} of in situ, fully formed 51 contains two doublets centred at 20.22 and 17.15 ppm with a JPP coupling of 16.5 Hz , indicative of cis-phosphine geometry (Fig. 5.22b). The ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}$ coupling for the phosphorus trans to the alkyl group is 1954 Hz , and that for the phosphorus trans to the chloride is 4254 Hz . The doublet assigned to the phosphorus trans to alkyl group collapses to a broad singlet when the sample is warmed to room temperature (Fig. 5.22a). The collapse of the phosphorus resonance at room temperature seemed not being caused by β-hydride elimination ${ }^{33}$ of the cyanoethyl group because the ${ }^{1} \mathrm{H}$ NMR of the reaction mixture at room temperature showed no exchange between the methylene proton and the hydride resonances (Fig. 5.21). Interaction between the CN group and the central Pt atom in the following fashion seems likely.

Fig. $5.21 .{ }^{1} \mathrm{H}$ NMR spectrum (300 MHz) of the in situ mixture of $\mathbf{5 0} \mathrm{a}$ and 51 formed after 1 h reaction (Eq. 5.2) in acetone- d_{6} at r.t. The signals at 2.53 and 1.19 (expanded) are the methylene resonances of $\mathbf{5 1}$; the upfield triplet is the hydride resonance of $\mathbf{5 0} \mathrm{a} ; \mathrm{X}=\mathrm{THF} ; \mathrm{S}=$ solvent.

Fig. 5.22. ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right)$ NMR spectra (121.4 MHz) of in situ, fully formed 51 in acetone- d_{6} : (a) at r.t., (b) at $-45^{\circ} \mathrm{C}$; $\delta_{\mathrm{P}_{1}}=20.22$ (d), $\delta_{\mathrm{P}_{2}}=17.15$ (d); ${ }^{1} \mathrm{~J}_{\mathrm{PLP}_{1}}=1954,{ }^{1} \mathrm{~J}_{\mathrm{PLP}_{2}}=4254, \mathrm{~J}_{\mathrm{PP}}=$ 16.5 Hz .

5.3.2. Reaction of $\operatorname{Pt}\left(\mathrm{PN}_{3}\right)_{4}$ with HCl

Attempted preparations of trans- $\mathrm{Pt}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PN}_{3}\right)_{2}, 50 \mathrm{c}$, were unsuccessful using either $\mathrm{HCl}(\mathrm{g})$ or DMA•HCl (dimethylacetamide hydrogen chloride) as a source of HCl (Sect. 2.8.4.2). A canary yellow solid, isolated from the reaction of $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{4}$ with HCl , is extremely air-sensitive in the solid state (turning to orange-red) and is sparsely soluble in chlorinated solvents, moderately soluble in acetone and in $\mathrm{CH}_{3} \mathrm{CN}$, and very soluble in EtOH and in $\mathrm{H}_{2} \mathrm{O}$ giving deep red solutions under an inert atmosphere. Of interest, these red solutions appear to be less airsensitive (see below for ${ }^{31}$ P NMR data). The IR spectrum of this yellow solid displays three bands in the Pt-H region (2056, 1983 and $1947 \mathrm{~cm}^{-1}$) and two bands in the $\mathrm{N}-\mathrm{H}$ stretching region ($3516,3443 \mathrm{~cm}^{-1}$) that presumably arise from protonation of the pyridine groups (Fig. 5.23). Samples for IR were prepared using degassed Nujol under a N_{2} atmosphere in a glovebag immediately before the measurement.

Fig. 5.23. Infrared spectrum of " $\mathrm{Pt}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PN}_{3}\right)_{2}$ ", 50c, in Nujol at r.t. under N_{2}.

The yellow solid isolated from method 1 (Sect. 2.8.4.2) has a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum in $\mathrm{CD}_{3} \mathrm{CN}$ containing a major singlet at 26.7 ppm and two singlet satellites (${ }^{1} \mathrm{~J}_{\mathrm{PtP}}=3869 \mathrm{~Hz}$).

The ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{CD}_{3} \mathrm{CN}$ showed a very weak multiplet around -5.5 ppm with no satellites; this signal was not seen when the spectrum was measured in $\mathrm{D}_{2} \mathrm{O}$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of this unknown compound in either $\mathrm{D}_{2} \mathrm{O}\left(\delta=27.1(\mathrm{~s}),{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=3875 \mathrm{~Hz}\right)$ or $\mathrm{CD}_{3} \mathrm{OD}$ ($\delta=26.8(\mathrm{~s}),{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=3879 \mathrm{~Hz}$) showed no change under air.

The reason for the different reactivities of $\operatorname{Pt}\left(\mathrm{PN}_{3}\right)_{4}, 26 \mathrm{c}$, and $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{3}, 27 a$, toward HCl are not fully understood. One possible reason is the difference in the number of pyridyl groups on phosphine. The twelve pyridyl groups of 26 c appear to stabilize the tetrakis compound against dissociation (Sect. 5.1.1) and make bisphosphine $\mathrm{Pt}(0)$ species less readily available for reaction with HCl ; furthermore, the pyridyl groups can compete with the Pt centre for HCl (see Fig. 5.23 for evidence of protonation of pyridine).

5.4. Reactions of $\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{3}$ and $\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{4}$ with methyl iodide

Both $\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{3}$ and $\operatorname{Pt}\left(\mathrm{PN}_{3}\right)_{4}$ react with MeI to give trans $-\operatorname{PtI}(\mathrm{Me})\left(\mathrm{PN}_{n}\right)_{2}$, in ways perhaps analogous to the triphenylphosphine $\operatorname{Pt}(0)$ systems. ${ }^{34}$ The isolation of these complexes has been described in Sect. 2.8.5.
5.5. Attempted hydration of olefinic compounds using platinum and palladium pyridylphosphine complexes

5.5.1. Hydration of acrylonitrile

Compounds $\operatorname{Pt}\left(\mathrm{PN}_{1}\right)_{3}, 27 \mathrm{a}, \mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{4}, 26 \mathrm{c}, \mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CHCN}\right), 44 \mathrm{a}$, and trans$\mathrm{Pt}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PN}_{1}\right)_{2}, 50 \mathrm{a}$, synthesized in the present work, were used as catalyst precursors in the hydration of acrylonitrile. The reaction mixture typically consisted of 0.5 mL of acrylonitrile, 0.5 mL of $\mathrm{H}_{2} \mathrm{O}, 0.02 \mathrm{mmol}$ of the complex and 0.02 mmol of NaOH . The reactant solutions were contained in ampules that were charged under N_{2} and sealed under vacuum. After being loaded, the reaction vessels were placed in a flask containing refluxing benzene. At the end of the prescribed time (1 h), the vessels were opened and the metal complexes present were separated from organic products via vacuum distillation at $\sim 40^{\circ} \mathrm{C}$. The solid residues were extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extracts combined with the organic distillates. The organic mixtures, in the
distillates and extracts were analyzed by gas chromatography (Sect. 2.9). An initial column pressure of 40 psi and an initial temperature of $150^{\circ} \mathrm{C}$ were used. After 14 min , the temperature was raised $15^{\circ} \mathrm{C} / \mathrm{min}$ to $220^{\circ} \mathrm{C}$. Table 5.3 summarizes the results obtained by GC. Sodium hydroxide was shown to be the likely catalyst in the hydration of acrylonitrile to the alcohol and the amide, because the platinum complexes were found to be inactive in the absence of NaOH . The turnover numbers of around 40 disagree with the number of 1.16 presented in reference 35 . The acrylonitrile in the present study, distilled over CaH_{2} (b.p. $54-56^{\circ} \mathrm{C}, 40 \mathrm{mmHg}$), has perhaps higher purity than that used in reference 35 , because purification of acrylonitrile has been reported to increase the β-cyanoethanol production. ${ }^{36}$ Another possible difference could result from the procedures used in separating organic compounds from the metal species prior to sample injection into the GC. Platinum metal, if contaminating the column, could be the active species performing the catalysis. It is interesting to point out that trans $-\mathrm{Pt}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PN}_{1}\right)_{2}$, cis$\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ and cis- $\mathrm{PtCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$ inhibit the base catalysis. In aqueous solution, the aquo complexes formed by substitution of chloride(s) show acidic behaviour (at least with 1c, see Sect. 3.4.2); the added base likely generates $\mathrm{M}(\mathrm{OH})$ species that are inactive under these experimental conditions.

Table 5.3. Hydration of Acrylonitrile Catalyzed by Pt and Pd Complexes at $\mathbf{8 0}^{\circ} \mathrm{C}$

Catalyst ${ }^{\text {a }}$	Turnovers ${ }^{\text {b }}$	
	β-cyanoethanol	acrylamide
$\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{3}$, 27a	40.2	-
$\mathrm{Pt}\left(\mathrm{PN}_{3}\right)_{4}, \mathbf{2 6 c}$	37.8	3.9
$\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{CHCN}\right), 44 \mathrm{a}$	42.5	-
trans $-\mathrm{Pt}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PN}_{1}\right)_{2}$, 50a	-	-
cis- $\mathrm{PtCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}$, 1c	-	-
cis- $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}, 4 \mathrm{c}$	-	-
NaOH	42.4	15.2

(a) Catalyst $=0.02 \mathrm{mmol}$ complex +0.02 mmol NaOH . (b) Turnover numbers $=$ mole per mole of catalyst per hour; (-) implies non-detection.

5.5.2. Hydration of maleic acid

A strong acid, such as HCl (see below), and metal ions such as Cr^{3+} (Sect. 6.2.4), were found to catalyze the hydration of maleic acid at $100^{\circ} \mathrm{C}$, a thermodynamically favourable but kinetically slow process. The water solubilities of the pyridylphosphine complexes cis$\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}, 4 \mathrm{c}$, and $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}, 11 \mathrm{c}$ (Sect. 3.4), led to the investigation of these species as potential catalyst precursors for the hydration of maleic acid, during at the earlier stages of this thesis work. The reaction mixture typically consisted of a solution containing 2.0×10^{-4} to $1.0 \times 10^{-3} \mathrm{M}$ complex and 0.1 M maleic acid in 20 mL of $\mathrm{H}_{2} \mathrm{O}(\mathrm{pH}=1.8)$. The pH of the solutions were adjusted by adding solid NaOH . Initially, the reaction mixtures at $80^{\circ}, 100^{\circ}$ or $120^{\circ} \mathrm{C}$ were contained in a 80 mL autoclave that was charged either under air or N_{2}, and later the autoclave was replaced by a regular Schlenk flask (see below). After being loaded, the autoclave or flask was placed in a thermostated oil-bath. At the end of 16 h , the autoclave was opened and the solution was concentrated to dryness. The solid obtained thereby was redissolved in acetone- d_{6} for ${ }^{1} \mathrm{H}$ NMR analysis. A typical ${ }^{1} \mathrm{H}$ NMR spectrum that contains maleic acid, fumaric acid and malic acid is shown in Fig. 6.1 (Ch. 6). Initially, complex 4 c in the presence of NaOH $(\mathrm{pH} \approx 7.0)$ showed positive results ($3-40$ turnovers in 16 h) but with poor reproducibility; Fe^{3+} impurity from the autoclave is almost certainly responsible for the catalysis (see also Sect. 6.2.4), because no catalysis was detected in a wide range of $\mathrm{pH}(3.0-12.5)$ when the autoclave was replaced by a glass flask and experiments were carried out at $\sim 100^{\circ} \mathrm{C}$. At $\mathrm{pH}>10.0,4 \mathrm{c}$ started to decompose gradually to metal at $100^{\circ} \mathrm{C}$ under either an air or N_{2} atmosphere. Because strong acid $\mathrm{HCl}(3.0 \mathrm{M})$ completely converted maleic acid (0.86 M) to fumaric acid (50%) and malic acid (50\%) in 3 h at $100^{\circ} \mathrm{C}$, the addition of acid was avoided in the catalysis experiments.

Complex 11c is green in $\mathrm{H}_{2} \mathrm{O}$ and the solution is stable for at least 5 h at $120^{\circ} \mathrm{C}$; however, the solution decomposed to give metal after 3 h at $80^{\circ} \mathrm{C}$ when maleic acid was introduced. Neither malic acid nor fumaric acid was detected after the reaction.

The ionic complexes $\left[\mathrm{Pd}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{OH})\left(\mathrm{PN}_{3}\right)_{2}\right]\left(\mathrm{BPh}_{4}\right),\left[\mathrm{Pd}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PN}_{3}\right)_{2}\right]\left(\mathrm{BPh}_{4}\right)_{2}$, $\left[\mathrm{Pd}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PN}_{3}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$, and $\left[\mathrm{Pd}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PN}_{3}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$, derived from 4 c and 11 c (Sect. 3.4) are generally less water-soluble than $4 c$ and 11 c , and were shown in the present study to be inactive toward hydration of maleic acid.

The catalytic activity of the $\mathrm{Pt}(0)$ complex of maleic anhydride $\mathrm{Pt}\left(\mathrm{PN}_{1}\right)_{2}(\mathrm{MA})$, 47a, was also tested; 47a was reacted with NaOH (5-fold excess) in aqueous solution at $80^{\circ} \mathrm{C}$ for 1 h . No hydration product was found by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

References

1. Malatesta, L.; Cariello, C. J. Chem. Soc., 1958, 2323.
2. Pearson, R.G.; Louw, W.; Rajaran, J. Inorg. Chim. Acta , 1974, 9, 251.
3. Mann, B.E.; Musco, A. J Chem. Soc. Dalton Trans., 1980, 776.
4. Otsuka, S.; Yoshida, T.; Matsumoto, M; Nakatsu, K. J. Am. Chem. Soc., 1976, 98, 5850.
5. Tolman, C.A.; Seidel, W.C.; Gerlock, D.M. J. Am. Chem. Soc., 1972, 4, 2669.
6. Halpern, J.; Weil, T.A. J. Chem. Soc. Chem. Commun., 1976, 631.
7. Mann, F.G.; Watson, J. J. Org. Chem., 1948, 13, 502.
8. Hartley, F.R. Organomet. Chem. Rev. A , 1976, 6, 119.
9. Hartley, F.R. The Chemistry of Platinum and Palladium; John Wiley \& Sons: New York, 1973; p. 458.
10. Sue, C-Y. Ph.D dessertation, University of British Columbia , 1989; Chs. 2, 5.
11. Sweany, R.L.; Halpern, J. J. Am. Chem. Soc., 1977, 99, 8337.
12. Gillard, R.D.; Ugo, R.; Cariati, F.; Cenini, S.; Bonati, F. Chem. Commun., 1966, 869.
13. Ugo, R.; La Monica, G.; Cariati, F.; Cenini, S.; Conti, F. Inorg. Chim. Acta, 1970, 4, 390.
14. Jones, R.D.; Summerville, D.A.; Basolo, F. Chem. Rev., 1979, 79, 139.
15. Suzuki, M.; Ishiguro, T.; Kozuka, M.; Nakamoto, K. Inorg. Chem., 1981, 20, 1993.
16. Egan, J.W. Jr.; Haggerty, B.S.; Rheingold, A.L.; Sendlinger, S.C.; Theopold, K.H. J. Am. Chem. Soc., 1990, 112, 2445.
17. Collman, J.P.; Hegedus, L.S.; Norton, J.R.; Finke, R.G. Principles and Applications of Organotransition Metal Chemistry, 2nd ed.; University Science Books: Mill Valley, CA., 1987; p. 400.
18. Neiderhoffer, E.C.; Timmons, J.H.; Martell, A.E. Chem. Rev., 1984, 84, 137.
19. Ref. 17, pp.200-203.
20. Frem, R. Unpublished data, communicated to B.R. James.
21. Wood, F.E.; Olmstead, M.M.; Farr, J.P.; Balch, A.L. Inorg. Chim. Acta, 1985, 97, 77.
22. Sen, A. ; Halpern, J. Inorg. Chem., 1976, 19, 1073.
23. Farr, J.P.; Wood, F.E.; Balch, A.L. Inorg. Chem., 1983, 22, 3387.
24. Perrin, D.D.; Armarego, W.C.F.; Perrin, D.R. Purification of Laboratory Chemicals, 2nd ed.; Pergaman Press: Oxford, 1980; p.167.
25. (a)Cenini, S.; Ugo, R.; La Monica, G. J. Chem. Soc. A, 1971, 409. (b)Cenini, S.; Ugo, R.; Bonati, F.; La Monica, G. Inorg. Nucl. Chem. Letters, 1976, 3, 191.
26. Maddox, M.L.; Stafford, S.L.; Kaesz, H.D. Adv. Organometallic Chem. 1965, 3, 1.
27. Ungváry, F. Fifth IUPAC Symposium on Organometallic Chemistry Directed towards Organic Synthesis; Florence, Italy, 1989; PSI-60.
28. (a) Panattoni, C.; Bombienri, G.; Belluco, U.; Baddley, W. H. J. Am. Chem. Soc., 1968, 90, 798. (b) Bombieri, G.; Forsellini, E.; Parattoni, C.; Graziani, R.; Bandoli, G. J. Chem. Soc. A, 1970, 1313.
29. Collamati, I.; Furlani, A.; Attioli, G. J. Chem. Soc. A, 1970, 1694.
30. Carriati, F.; Ugo, R.; Bonati, F. Inorg. Chem., 1966, 5, 1128.
31. Ref. 17, pp. 384, 698-700.
32. Docherty, N.M.; Bercaw, J.E. J. Am. Chem. Soc., 1985, 107, 2670.
33. Clark, H.C.; Kurosawa, H. Inorg. Chem., 1972, 11, 1275.
34. Hall, T.L.; Lappert, M.F.; Lednor, P.W. J. Chem. Soc., Dalton Trans., 1980, 1448.
35. Jensen, C.M.; Trogler, W.C. J. Am. Chem. Soc., 1986, 108, 723.
36. Arnold, D.P.; Bennett, M.A. J. Organomet. Chem., 1980, 199, 119.

Chapter 6

Catalytic Hydration of Maleic Acid by Chromium(III) Species

Olefins, such as maleic and fumaric acids, are activated toward nucleophilic attack by the presence of the electron-withdrawing carboxylic groups and, if coordinated to a metal via the $\mathrm{C}=\mathrm{C}$ bond, the double bond is seen more susceptible to the nucleophilic attack (see Sect. 1.4.2). The hydration product of maleic or fumaric acid, malic acid, is a good synthetic substitute for citric acid used in food acidification. ${ }^{1}$ Malic acid, containing a chiral carbon atom, is often obtained as a mixture of enantiomers. Asymmetric synthesis of S-malic acid is achieved using the biologically active enzyme, fumarase, via the hydration of fumaric acid under physiological conditions (Sect. 1.3). The salt $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ has been reported to convert maleic acid in aqueous solution to malic and fumaric acid catalytically at $170^{\circ} \mathrm{C} .{ }^{2}$ In the absence of a strong acid or a metal ion, kinetic and thermodynamic data for the maleic acid hydration reaction shows that lowering the temperature favours the formation of malic acid. ${ }^{1}$ The temperature employed in the Cr^{3+} /maleic acid system studied in the present work is $100^{\circ} \mathrm{C}$, at which the catalysis operates at a measurable rate. Attempts to develop new catalysts and to extend the catalysis to other olefinic substrates were unsuccessful. In this chapter, preliminary kinetic results of this non-phosphine, transition metal complex catalyzed hydration of maleic acid are presented; preliminary data on coordination of the various carboxylic acids are also presented.

6.1. Kinetic experiments

The total chromium content of the catalyst precursor, $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, was determined by the spectrophotometric measurement of the chromate $\left(\mathrm{CrO}_{4}{ }^{2-}\right)$ concentration, formed quantitatively by oxidation of Cr (III) species by the action of peroxide in alkaline solution. ${ }^{3}$ The characteristic absorption band at 371.9 nm of the formed yellow species ($\mathrm{CrO}_{4}{ }^{2-}$) has a molar extinction coefficient of $4.8 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$. The average $\mathrm{Cr}^{I I}$ content determined for standards prepared from $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was 1.5% higher than the calculated value.

The kinetic experiments were carried out in a series of reaction vessels for various periods of time, the reaction conditions being maintained as close as possible; each separate reaction yielded one kinetic data point. The typical initial $\left[\mathrm{Cr}^{3+}\right]$ in kinetic runs was $3.60 \times 10^{-2} \mathrm{M}$, with the maleic acid present in a 50 -fold excess. The reactions were carried out at $100 \pm 1^{\circ} \mathrm{C}$ on a circulating steam-bath. The reaction mixture, 10 mL of an aqueous solution, whose pH was measured, was kept in a 50 mL Schlenk flask under air or N_{2} which held more than 1 atm pressure when the quickfit stoppers and the stopcocks were tightened by rubber bands. The reaction was stopped immediately at any specified time by cooling the flask in an ice-water bath; no measurable product formation resulting from isomerization or hydration is detected at $40^{\circ} \mathrm{C}$ for 8 h . The volume of the resulting aqueous solution was then reduced to about 1 mL , and the organic compounds were extracted thoroughly by $\mathrm{Et}_{2} \mathrm{O}(10 \times 10 \mathrm{~mL}$ portions) until the ethereal extract contained no more acids as shown by TLC. The blue, aqueous solution containing Cr^{3+} was discarded. The $\mathrm{Et}_{2} \mathrm{O}$ solution was dried over anhydrous MgSO_{4} for 5 h before evaporation to dryness on a rotary evaporator. The white solid obtained thereby was dried under vacuum overnight.

Analysis for product composition by gas chromatography was impractical because of the low vapour pressures and high boiling points of maleic, fumaric and malic acids. The molar composition of the reaction mixture was thus determined from the integration ratios of each component in the ${ }^{1} \mathrm{H}$ NMR spectrum; the isolated white solid product was dissolved in acetone-d ${ }_{6}$ for the NMR analysis and, as noted above, each analysis provided one point for the rate plot. A typical ${ }^{1} \mathrm{H}$ NMR spectrum is shown in Fig. 6.1. Table 6.1 summarizes the results of ${ }^{1} \mathrm{H}$ NMR analysis of samples with known composition, which had been subjected to the same work-up procedure as described for the unknown samples from the kinetic runs. Some errors in the kinetic experiments are derived from the work-up procedure. The extraction recovery is about 98%, with some organic substrate possibly being lost in the coordination sphere of Cr^{3+}. Another error is from the measurement of the integrals in the ${ }^{1} \mathrm{H}$ NMR spectrum: the relative error is normally $1-2 \%$ for maleic acid, $2-5 \%$ for malic acid and $3-10 \%$ for fumaric acid.

Fig.6.1. A typical ${ }^{1} \mathrm{H}$ NMR (300 MHz) spectrum of the hydration product mixture containing maleic, malic and fumaric acids in acetone-d d_{6} at r.t.; $\mathrm{H}_{2} \mathrm{MA}: \delta_{=\mathrm{CH}-}=6.4(\mathrm{~s}) ; \mathrm{H}_{2} \mathrm{FA}: 6.8(\mathrm{~s}) ; \mathrm{H}_{2} \mathrm{mal}: \delta_{-\mathrm{CH}}=4.52, \delta_{-\mathrm{CH}_{2^{-}}}=2.75 ;{ }^{2} \mathrm{~J}_{\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}}=15.9,{ }^{3} \mathrm{~J}_{\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{c}}}=4.5$, ${ }^{3} \mathrm{~J}_{\mathrm{H}_{b} \mathrm{H}_{\mathrm{c}}}=7.2 \mathrm{~Hz} . \mathrm{S}=$ solvent peak.

Table 6.1. ${ }^{1} \mathrm{H}$ NMR Analysis of Control Samples ${ }^{a}$

Mixture I	$\mathrm{H}_{2} \mathrm{MA}$	$\mathrm{H}_{2} \mathrm{mal}$	$\mathrm{H}_{2} \mathrm{FA}$	Mixture II	$\mathrm{H}_{2} \mathrm{MA}$	$\mathrm{H}_{2} \mathrm{mal}$	$\mathrm{H}_{2} \mathrm{FA}$
calcd.(\%)	49.5	42.2	8.3	calcd.(\%)	47.2	43.6	9.2
found(\%)	48.6	44.4	7.0	found(\%)	50.0	42.4	7.6

(a) Maleic, malic and fumaric acids are abbreviated as $\mathrm{H}_{2} \mathrm{MA}, \mathrm{H}_{2}$ mal and $\mathrm{H}_{2} \mathrm{FA}$, respectively, throughout this Chapter.

6.2. Results and discussion

Hydration of maleic acid to R, S-malic acid (Eq. 6.1) at room temperature is, in fact, a thermodynamically favourable process with a ΔG^{0} value of $-5.3 \mathrm{kcal} / \mathrm{mol}^{*}$ (see Appendix AIX). However, in the present studies, the hydration was found not to proceed in the absence of a catalyst even at $100^{\circ} \mathrm{C}$. Chromium(III), added as $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, was found to be active in favour

$$
\begin{gather*}
\text { cis- } \mathrm{HOOCCH}=\mathrm{CHCOOH}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HOOCCH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH} \\
\text { maleic acid } \tag{6.1}\\
\text { R, S-malic acid }
\end{gather*}
$$

of malic acid formation at $100^{\circ} \mathrm{C}$, while Fe (III), added as $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, gave a much higher percentage of the isomerization product fumaric acid, which was not hydrated at this temperature (see below).
6.2.1. Spectroscopic properties of $\mathrm{Cr}(\mathrm{III})$ and complexation with maleic and malic acids

Chromium(III) has a d^{3} electronic configuration and is substitutionally inert. ${ }^{5,6}$ The weak electronic absorption of chromium(III) is the result of symmetry (Laporte) forbidden d-d transitions. ${ }^{6}$ Two absorption maxima are often observed in the visible region, and their positions are influenced by the ligands coordinated according to the ligand field strength(s). When trans$\left[\mathrm{CrCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the catalyst precursor (commercially available as $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}^{7,8}$), dissolves in water, $\mathrm{H}_{2} \mathrm{O}$ slowly replaces one chloride, resulting in a blue shift of both original absorption maxima. This process has a half life of 2.5 h at room temperature, ${ }^{9}$ but the rate is

[^9]greatly accelerated at $100^{\circ} \mathrm{C}$. The chloropentaaquo species is relatively stable $\left(t_{1 / 2}=70 \mathrm{~h}\right.$, r.t.). 10 The following table lists the room temperature visible spectral data of the hydration isomers, and these data serve as a guide for identification of the chemical species present in the catalytic reactions.

Table 6.2. Visible Spectral Data of Some Hydration Isomers of $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}^{\mathrm{a}}$

complex	$\lambda_{1}, \varepsilon_{1}$	$\lambda_{2}, \varepsilon_{2}$	Ref.
trans- $\left[\mathrm{CrCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{+}$	$650,24.1$	$455,22.0$	8,9
cis- $\left[\mathrm{CrCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{+}$	$650.0,18.0$	$455,25.7$	8,9
$\left[\mathrm{CrCl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}$	$609,16.4$	$425,20.8$	10
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	$572,13.4$	$409,15.4$	11,12

(a) Wavelengths in nm and extinction coefficients in $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$.

The oligomerization of $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$ at elevated temperature to form hydroxo bridged dimeric, trimeric and tetrameric species often becomes more important in basic, concentrated solutions. ${ }^{13,14}$ A study by Laswick and Plane ${ }^{14}$ has shown that in the absence of the added base, some 70.4% of the Cr^{3+} species remained as hexaaquo species in a chromic perchlorate solution ($0.05-0.10 \mathrm{M}$) after 24 h boiling, while only 38.8% remained as $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$ after 3 h if $\mathrm{NaOH}(0.05-0.10 \mathrm{M})$ was added prior to reflux. The rest of the $\mathrm{Cr}(\mathrm{III})$ species were present as oligomerized hydroxo bridged forms. Oligomerization, however, could be controlled to a certain extent by lowering the pH of the solution. More detailed studies of chromic oligomers by Stunzi and Marty led these authors to state that the absorbance ratio of the shorter wavelength band over the longer one was 1.17 ± 0.01 for the monomer, 1.18 ± 0.01 for the dimer, $1.60 \pm$ 0.01 for the trimer, 1.95 ± 0.04 for the tetramer, and $1.5-1.56$ for the oligomers higher than four Cr units respectively. ${ }^{15}$ A red shift of both maxima is also indicative of the oligomer formation. ${ }^{15}$

Table 6.3. Visible Spectral Parameters of Chromium(III) Oligomers 15

	monomer	dimer	trimer	tetramer	hexamer
$\lambda_{1}\left(\varepsilon_{1}\right)$	$575(13.2)$	$582(17.4)$	$584(19.2)$	$580(15.6)$	$585(18.6)$
$\lambda_{2}\left(\varepsilon_{2}\right)$	$409(15.5)$	$417(20.4)$	$425(30.5)$	$426(30.3)$	$426(29.0)$
$\varepsilon_{2} / \varepsilon_{1}{ }^{\mathrm{a}}$	1.17	1.17	1.59	1.94	1.56

(a) Calculated from data given in the ref. 15.

In the present study, both maleic and malic acid are found to form complexes with Cr^{3+} in solutions containing $0.20 \mathrm{M} \mathrm{KNO}_{3}$ and $0.02 \mathrm{M} \mathrm{HNO}_{3}$ at $100^{\circ} \mathrm{C}$. These complexes are different from those formed by reduction of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ with the same acids (Sect. 2.9). The absorbances of $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ solutions at different concentrations (in solutions containing 0.20 M KNO_{3} and $0.02 \mathrm{M} \mathrm{HNO}_{3}$ at $\mathrm{pH}=2.0$) which had been heated at $100^{\circ} \mathrm{C}$ for 30 min were recorded as 'blanks'; plots of ε at 410 and 572 nm against [Cr^{3+}] is presented in Appendix (Fig. A.2) . The ratios of the two ε values are between 1.16-1.17 (Table AIX 1), indicating the formation of $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right) 6^{3+}$ under these conditions. The acid nitrate solutions containing $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right) 6^{3+}$ and the maleic (or malic) acid at various ratios were heated at $100^{\circ} \mathrm{C}$ for 30 min and the absorbances were recorded. Through Job's Continuous Variation method ${ }^{16}$ (the data and treatment are shown in Appendix AIX 3), the composition of both complexes was determined to be $1: 1$, and the formation constants are 8.1×10^{2} and $9.1 \times 10^{3} \mathrm{M}^{-1}$ for the maleate and malate complexes, respectively. The in situ maleate complex 55, considered to be $\left[\mathrm{Cr}(\mathrm{HMA})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}$, has absorption band maxima at 418 and 572 nm (Fig. 6.2), while the corresponding malate complex (56) has maxima at 410 and 562 nm (Fig. 6.3). The positions of the absorption maxima indicate that these complexes are free of coordinated chloride ligands (cf. Table 6.2) because a carboxylate ligand is comparable to $\mathrm{H}_{2} \mathrm{O}$ within the spectrochemical series. The malate complex formed under similar conditions from malic acid (0.25 M) and $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $(0.25 \mathrm{M})$ was separated on a cation-exchange column, yielding largely a charge $2+$ species with the same absorption maxima $(410,562 \mathrm{~nm})$ as those of the in situ formed species.

Fig. 6.2. The UV/vis absorption spectrum recorded at $25^{\circ} \mathrm{C}$ of $\left[\mathrm{Cr}(\mathrm{HMA})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}, 55$, in $\mathrm{H}_{2} \mathrm{O} ; \lambda\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ data are noted. on the spectrum.

Fig. 6.3. The UV/vis absorption spectrum recorded at $25^{\circ} \mathrm{C}$ of $\left[\mathrm{Cr}(\mathrm{Hmal})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}, 56$, in $\mathrm{H}_{2} \mathrm{O} ; \lambda\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ data are noted on the spectrum.

The maleate and malate complexes are thus written as containing the mono-protonated, monodentate, mono-anion. It was also shown in Olson and Taube's work that some 92% of the maleate Cr^{3+} complex was monodentate containing the HMA anion. ${ }^{4}$ However, this monodentate and the chelate species $\left[\mathrm{Cr}(\mathrm{MA})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{+}$containing the maleate dianion were found to be present in equilibrium with an equilibrium constant of $15.4 \mathrm{M}^{-1}$ at $25^{\circ} \mathrm{C}$, in favour of the formation of the monodentate form (Eq. 6.2). ${ }^{17}$ Mixing fumaric acid and $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ solutions under the same conditions gave green solutions whose absorbances varied with the concentration of the added chromic species, perhaps indicating no formation of a complex.

$$
\begin{equation*}
\left[\mathrm{Cr}(\mathrm{MA})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{+}+\mathrm{H}^{+} \rightleftharpoons\left[\mathrm{Cr}(\mathrm{HMA})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+} \tag{6.2}
\end{equation*}
$$

6.2.2. Kinetic results

The experimental conditions of the kinetic runs have been described in the experimental section (Sect. 6.1). The reaction solution is homogeneous throughout. In this section, the maleic acid concentration dependence, the catalyst concentration dependence, and the pH dependence will be discussed. An observed competition between the malic acid formed in situ and the maleic acid for the $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$ ion complicates the reaction kinetics. Another complication arises from a slow formation of fumaric acid from the coordinated maleato complex. Nevertheless, with certain simplifications and assumptions, the results of the kinetic study can be interpreted to some satisfaction.

6.2.2.1. Maleic acid dependence

Maleic acid dependence experiments were done through two different methods measuring the initial rate of reaction at different starting maleic acid concentration, and monitoring the H_{2} MA concentration change with time. The initial rate measured at $\mathrm{t}=2.0 \mathrm{~h}$ with $<16 \%$ conversion gives a zero-order dependence on maleic acid concentration (Table 6.4), the slope of $\Delta\left[\mathrm{H}_{2} \mathrm{MA}\right] / \Delta \mathrm{t}$ vs. $\left[\mathrm{H}_{2} \mathrm{MA}\right]$ plot being essentially zero (Fig. 6.4). The second method shows that
even up to first 8 h the rate is independent of maleic acid concentration (Fig. 6.5 inset), although after about 8 h a first-order dependence seemed apparent (Table 6.5, Fig. 6.5).

Table 6.4. Initial Rate of the Catalytic Hydration of Maleic Acid at Various $\left[\mathrm{H}_{2} \mathrm{MA}\right]^{\text {a }}$

$\left[\mathrm{H}_{2} \mathrm{MA}\right]_{\mathrm{i}}(\mathrm{M})$	0.344	0.688	1.03
$[\mathrm{Cr}] \times 10^{3}(\mathrm{M})$	3.6	3.6	3.6
$\left[\mathrm{H}_{2} \mathrm{MA}\right]_{\mathrm{t}}(\mathrm{M})$	0.289	0.638	0.972
$\left[\mathrm{H}_{2} \mathrm{mal}_{\mathrm{t}}(\mathrm{M})\right.$	0.039	0.020	0.025
$\left[\mathrm{H}_{2} \mathrm{FA}\right]_{\mathrm{t}}(\mathrm{M})$	0.015	0.029	0.033
$\Delta\left[\mathrm{H}_{2} \mathrm{MA}\right] / \Delta \mathrm{t}(\mathrm{M} / \mathrm{h})$	0.0273	0.0248	0.0288

(a) Data measured after 2 h ; subscripts i and t refer to initial and time of measurements, respectively. The pH levels of these reactions are between 1.6 to 1.8 .

Fig. 6.4. Plot of $\Delta\left[\mathrm{H}_{2} \mathrm{MA}\right] / \Delta \mathrm{t}$ vs. $\left[\mathrm{H}_{2} \mathrm{MA}\right]_{i}$ at the initial stage of the reaction; $[\mathrm{Cr}]=3.60 \times 10^{-3}$ M , temp. $=100 \pm 1^{\circ} \mathrm{C}, \mathrm{t}=2.0 \mathrm{~h} ; \mathrm{pH}=1.6-1.8$.

Table 6.5. Catalytic Conversion of Maleic Acid to Malic Acid and Fumaric Acida ${ }^{\text {a }}$

$t(\mathrm{~h})$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{MA} \\ & (\%, \mathrm{M}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{mal} \\ & (\%, \mathrm{M}) \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{H}_{2} \mathrm{FA} \\ (\%, \mathrm{M}) \end{gathered}$
0.0	100.0, 1.72	0.0, 0.0	0.0, 0.0
0.5	94.5, 1.63	3.9, 0.067	1.5, 0.026
1.0	90.4, 1.55	7.3, 0.126	2.4, 0.041
1.0	$90.0,1.56$	6.1, 0.105	3.0, 0.052
2.0	87.7, 1.51	7.8, 0.134	4.5, 0.077
2.0	86.1, 1.48	12.6, 0.217	1.4, 0.024
3.0	84.4, 1.45	11.2, 0.193	4.4, 0.076
4.0	78.6, 1.35	17.8, 0.306	3.7, 0.064
4.0	73.8, 1.27	23.7, 0.408	2.5, 0.043
5.0	80.8, 1.39	12.0, 0.206	7.1, 0.122
5.0	78.5, 1.35	15.9, 0.273	5.6, 0.096
6.0	68.6, 1.18	27.5, 0.473	4.0, 0.069
7.7	66.0, 1.14	30.4, 0.523	3.7, 0.064
8.0	66.2, 1.14	30.8, 0.530	3.1, 0.053
16.0	55.1, 0.948	37.9, 0.652	6.9, 0.119
20.0	47.2, 0.812	46.8, 0.805	6.0, 0.103
24.0	34.3, 0.590	53.8, 0.925	11.9, 0.205
24.0	31.9, 0.549	53.9, 0.927	14.2, 0.244
24.0	38.0, 0.654	52.6, 0.905	9.5, 0.163
32.0	27.4, 0.471	63.1, 1.09	9.4, 0.162
32.0	29.3, 0.504	62.6, 1.08	8.2, 0.141
32.0	29.9, 0.514	55.1, 0.948	15.6, 0.268
40.0	23.6, 0.406	67.7, 1.15	7.9, 0.136
40.0	23.4, 0.402	62.8, 1.08	12.4, 0.213

(Table 6.5 continued)

40.0	$20.9,0.359$	$69.3,1.19$	$9.8,0.169$
48.0	$14.4,0.248$	$71.5,1.23$	$14.1,0.243$
48.0	$17.4,0.299$	$72.8,1.25$	$9.8,0.169$

(a) $\left[\mathrm{H}_{2} \mathrm{MA}\right]_{\mathrm{i}}=1.72 \mathrm{M},\left[\mathrm{Cr}^{3+}\right]=3.6 \times 10^{-2} \mathrm{M} ;$ temp. $=100 \pm 1{ }^{\circ} \mathrm{C} ; \mathrm{pH}=1.3$.

Fig. 6.5. Plot of $\ln \left[\mathrm{H}_{2} \mathrm{MA}\right]$ vs. $\mathrm{t}(0.0 \leq \mathrm{t} \leq 48.0 \mathrm{~h}), \mathrm{t} 1 / 2 \cong 19.3 \mathrm{~h}$; inset: plot of $\left[\mathrm{H}_{2} \mathrm{MA}\right]$ vs. t $(0.0 \leq t \leq 8.0 h)$.

6.2.2.2. Catalyst concentration dependence

The $\left[\mathrm{Cr}^{3+}\right.$] dependence was determined by varying the concentration of Cr^{3+} species, while keeping the concentration of maleic acid relatively constant (Table 6.6, Fig. 6.6).

At low Cr^{3+} concentration, the order approximates to one (Fig. 6.6), while a gradual decrease from the first-order dependence is seen at higher Cr^{3+} concentration and eventually the dependence is approaching zero-order. The decrease in order on Cr is tentatively attributed to the interference of the malic acid product, by coordination of the malate mono-anion to the Cr^{3+} (Sect. 6.2.1); reduction of the effective Cr^{3+} concentration because of the oligomerization is also a possibility.

Table 6.6. Data for Cr^{3+} Concentration Dependence ${ }^{\mathrm{a}}$

$\left[\mathrm{Cr}^{3+}\right] \times 10^{3}(\mathrm{M})$	$\mathrm{H}_{2} \mathrm{MA}$ $(\%, \mathrm{M})$	$\mathrm{H}_{2} \mathrm{mal}$ $(\%, \mathrm{M})$	$\mathrm{H}_{2} \mathrm{FA}$ $(\%, \mathrm{M})$	$\Delta[\mathrm{MA}] / \Delta \mathrm{t}$ $\left(\mathrm{M} / \mathrm{hx} 10^{2}\right)$
3.0	$96.3,0.830$	$1.7,0.015$	$1.9,0.016$	1.60
7.4	$92.2,0.795$	$6.0,0.052$	$1.7,0.015$	3.35
9.0	$91.3,0.787$	$6.4,0.055$	$2.2,0.019$	3.75
14.4	$89.2,0.769$	$8.7,0.075$	$2.1,0.018$	4.65
18.0	$86.6,0.746$	$11.5,0.099$	$2.1,0.018$	5.80
22.0	$84.3,0.727$	$13.8,0.119$	$1.9,0.016$	6.75
27.0	$81.8,0.705$	$15.9,0.137$	$2.2,0.019$	7.85
36.0	$79.2,0.683$	$18.0,0.155$	$2.8,0.024$	8.95
45.0	$78.1,0.673$	$18.3,0.158$	$3.6,0.031$	9.45
60.8	$77.3,0.666$	$19.7,0.170$	$3.0,0.026$	9.80
65.0	$76.1,0.660$	$19.9,0.172$	$3.9,0.034$	10.1

(a) $\left[\mathrm{H}_{2} \mathrm{MA}\right]_{\mathrm{i}}=0.862 \mathrm{M}$, temp. $=100 \pm 1^{\circ} \mathrm{C}, \mathrm{t}=2.0 \mathrm{~h}, \mathrm{pH}=1.5$.

Fig. 6.6. Initial rate of loss of maleic acid as a function of [Cr].

6.2.2.3. pH dependence

The adjustable pH range for kinetic measurements is very narrow in this system because of the formation of a grey, colloidal precipitate, possibly $\mathrm{Cr}(\mathrm{OH})_{3}$, around pH 2.6 . For those solutions required with $\mathrm{pH}>1.6$, the pH levels were initially brought to selected values by addition of solid NaOH ; the solutions were then self-buffered by the substrate (maleic $\mathrm{acid} /$ maleate conjugate pair action). For those solutions with $\mathrm{pH}<1.6$, the pH levels were adjusted using $\mathrm{HCl}-\mathrm{KCl}$ buffer solution. A $\Delta \mathrm{pH}$ change of 0.2 between the initial and final solutions was observed (Table 6.7), the unbuffered solutions normally have a $\Delta \mathrm{pH}$ change of around $0.2-0.3$. Spectra of some of the 'final' catalysis solutions after 10 h reaction were measured at room temperature; broad maxima, noted at ~ 415 and $\sim 570 \mathrm{~nm}$, are between the maxima of the maleate and malate complexes. The experimental conditions and work-up procedures were similar to those of the unbuffered experiments, except that aqueous HCl was added to neutralize the added base before the $\mathrm{Et}_{2} \mathrm{O}$ extraction. The data are summarized in Table 6.7 and Fig. 6.7.

Table 6.7. pH Dependence Data ${ }^{\text {a }}$

pH (initial)	pH (final)	$\mathrm{H}_{2} \mathrm{MA}$ $(\%, \mathrm{M})$	$\mathrm{H}_{2} \mathrm{mal}$ $(\%, \mathrm{M})$	$\mathrm{H}_{2} \mathrm{FA}$ $(\%, \mathrm{M})$
0.87	0.75	$65.6,0.565$	$25.5,0.220$	$8.9,0.077$
1.00	1.07	$44.7,0.385$	$43.4,0.374$	$11.8,0.102$
1.30	1.46	$37.9,0.327$	$52.7,0.454$	$9.4,0.081$
1.77^{b}	1.96	$54.0,0.465$	$36.0,0.310$	$10.0,0.086$
1.92^{b}	2.12	$61.9,0.533$	$31.6,0.272$	$6.5,0.056$
2.0	2.15	$51.7,0.446$	$32.5,0.280$	$15.9,0.137$
2.35	2.44	$84.4,0.728$	$9.1,0.078$	$6.5,0.056$
2.64	2.60	$91.5,0.789$	$3.9,0.034$	$4.6,0.040$
3.0	2.86	$92.3,0.796$	$3.5,0.030$	$4.2,0.036$

(a) $\left[\mathrm{H}_{2} \mathrm{MA}\right]_{\mathrm{i}}=0.862 \mathrm{M},\left[\mathrm{Cr}^{3+}\right]=3.6 \times 10^{-2} \mathrm{M}$; temp. $=100 \pm 1^{\circ} \mathrm{C}, \mathrm{t}=10.0 \mathrm{~h}$. (b) Buffered by potassium hydrogen phthalate and NaOH solutions.

Fig. 6.7. Conversion of maleic acid after 10 h as a function of $\mathrm{pH} ; \mathrm{pH}$ values are averaged between the initial and final values (Table 6.7)

From the data in Fig. 6.7, the rate of catalytic hydration is obviously pH dependent; however, no quantitative information can be obtained from these results. As mentioned previously, in the presence of base the oligomerization becomes more important, and this may explain the drastic reduction of the conversion at higher pH .

6.2.3. Mechanism

There are several possible mechanisms for the formation of malic and fumaric acids. Three of the most plausible ones are discussed below.

The $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$ ion may form a $\mathrm{Cr}\left(\eta^{2}\right.$-olefin $)\left(\mathrm{H}_{2} \mathrm{O}\right) 4^{3+}$ complex analogous to the known $\mathrm{Ru}\left(\eta^{2}-\mathrm{H}_{2} \mathrm{MA}\right)$ complex; ${ }^{18}$ then free or coordinated $\mathrm{H}_{2} \mathrm{O}$ attacks the coordinated $\mathrm{C}=\mathrm{C}$, forming a hydroxyalkyl ligand (Scheme 1.12). The alkyl group, as in the case of a fluoroolefin substrate, ${ }^{19}$ is cleaved off in a subsequent protonation step. This mechanism is considered unlikely because of the fact that the maleato ligand is coordinated through the oxygen donor of the carboxylic group instead of the olefinic bond, as indicated by the small shift of absorption maxima on coordination of the maleate mono-anion to the $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right) 6^{3+}$ species. Other O -bonded maleato complexes have also been isolated (see below).

A second possible mechanism involves the direct formation of a $[\mathrm{C}-\mathrm{Cr}]^{3+}$ cation, analogous to a protonated $\mathrm{C}=\mathrm{C}$ bond. Cleavage of the $\mathrm{C}-\mathrm{Cr}$ bond yields a zwiterion, and addition of $\mathrm{H}_{2} \mathrm{O}$ to this unstable intermediate gives the hydrated product (see Eq. 6.3). This mechanism was proposed by Bzhasso and Pyatnitskii, ${ }^{2}$ and was used to explain the formation of fumaric acid and malic acid. This mechanism also accounts for a kinetic dependence on the catalyst concentration that was noted in the present study, but it would predict that Cr^{3+} should catalyze the hydration of fumaric acid; also a fumarate complex would be expected to form during the reaction.

The coordination of carboxylate oxygen to the Cr centre has been demonstrated by Olson and Taube in the stoichiometric aquation of $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{HMA})^{2+}$ at temperatures of $40-60^{\circ} \mathrm{C}, 4$ and more recently a similar monomethyl maleate $\mathrm{Co}(\mathrm{III})$ complex, $\mathrm{Co}\left(\mathrm{CH}_{3}-\mathrm{MA}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}{ }^{3+}$, was characterized by Sargeson and coworkers. ${ }^{20}$ The experimental conditions in the present study differ from those in the reported stoichiometric reaction in the temperature, pH and the concentration of maleic acid. ${ }^{4}$ However, the reactions occurring in these two systems appear to be very much related. The chromium(III) maleato complexes, formed in situ by mixing perchloric acid, hexaaquochromium(III) and maleic acid in a 1:1:2 ratio at $40^{\circ} \mathrm{C}$ for 115 h , were separated by cation exchange chromatography into three species. 4 a chelate $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{MA})^{+}$, a 'malato intermediate' (see below), and a monodentate maleate species $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{HMA})^{2+}$. On aquation at $60^{\circ} \mathrm{C}$ for 20 h in 0.94 M perchloric acid, each species gave maleic, fumaric and malic acids with the compositions shown in Table 6.8.4 This intermediate was characterized by an absorption maxima at $417 \mathrm{~nm}\left(\varepsilon 36.3 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ and, from its elution behaviour, was more like a +1 than a +2 complex. ${ }^{4}$ This chromic species, giving predominantly malic acid on aquation, was suggested to be the 5 -member ring chelate (57 , see structure in Scheme 6.1) formed by the
hydroxyl and carboxylate groups of malic acid. With knowledge of this structure for 57, the elution behaviour can be explained by dissociation of the proton on the coordinated hydroxo group (the pK_{a} of this proton in the Co (III) complex was found to be $2.75{ }^{20}$). The scheme presented in the reference 4 , showing a conversion of a monodentate maleate species to monodentate fumarate and chelate malate species 57 , seems applicable to the catalytic hydration system. Although the possibility of a "C-Cr"+ cation" mechanism cannot be excluded, the similarity between the stoichiometric and catalytic reactions is very evident. Based on the spectroscopic and kinetic results, the catalytic cycle for the hydration of maleic acid is outlined below (Scheme 6.1). In this mechanism, formation of fumaric acid is very slow and irreversible.

Table 6.8. Results of Aquation of Maleato Complexes of Cr^{3+4}

Complex (\% yield ${ }^{a}$)	$\mathrm{H}_{2} \mathrm{MA}(\%)$	$\mathrm{H}_{2} \mathrm{mal}(\%)$	$\mathrm{H}_{2} \mathrm{FA}(\%)$
chelate (6.4)	76	22	1
intermediate (1.6)	28	69	3
monodentate (~ 92)	87	10	3

(a) The yields are calculated from the data given in ref. 4.

Scheme 6.1. A plausible mechanism for maleic acid hydration catalyzed by the Cr^{3+} aquo ion; the HMA, HFA and Hmal species are monoanions, but the charges are omitted for convenience both in the Scheme and in the derivation of the rate-law.

The rate-law for the disappearance of maleic acid can be derived, assuming that the H^{+} transfer from the coordinated water to the double bond of the coordinated maleate is the rate determining step.

$$
\text { rate }=\mathrm{k}_{2}[55]=\mathrm{k}_{2} \mathrm{~K}_{1}\left[\mathrm{Cr}_{r}\right][\mathrm{HMA}], \quad \text { where }[\mathrm{Cr}]=\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right) 6^{3+}\right]
$$

and as $[\mathrm{Cr}]_{\mathrm{to}}=[\mathrm{Cr}]+[55]+[56]=[\mathrm{Cr}]\left(1+\mathrm{K}_{1}[\mathrm{HMA}]+\mathrm{K}_{2}[\mathrm{Hmal}]\right)$,

$$
\begin{equation*}
\text { rate }=\mathrm{k}_{2} \mathrm{~K}_{1} \frac{[\mathrm{Cr}]_{\mathrm{tod}}[\mathrm{HMA}]}{1+\mathrm{K}_{1}[\mathrm{HMA}]+\mathrm{K}_{2}[\mathrm{Hmal}]} \tag{6.4}
\end{equation*}
$$

Assuming dissociation of the second proton is negligible for both maleic acid and malic acid under the catalysis condition ($\mathrm{pK}_{\mathrm{a}_{2}}$ values are 6.07 and 5.10 , respectively), we have

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}_{1}}=\frac{[\mathrm{HMA}]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{MA}\right]}=10^{-1.8} \quad \text { and } \quad \mathrm{K}_{\mathrm{a}_{1}}^{\prime}=\frac{[\mathrm{Hmal}]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{mal}\right]}=10^{-3.4} \text {, and thus } \\
& {\left[\mathrm{H}_{2} \mathrm{MA}\right]_{\text {tot }}=[\mathrm{HMA}]\left(\frac{\mathrm{K}_{\mathrm{a}_{1}}+\left[\mathrm{H}^{+}\right]}{\mathrm{K}_{\mathrm{a}_{1}}}\right) \quad \text { and } \quad\left[\mathrm{H}_{2} \mathrm{mal}\right]_{\text {tot }}=[\mathrm{Hmal}]\left(\frac{\mathrm{K}_{\mathrm{a}_{1}}^{\prime}+\left[\mathrm{H}^{+}\right]}{\mathrm{K}_{\mathrm{a}_{1}}^{\prime}}\right)}
\end{aligned}
$$

At the beginning of the reaction, the concentrations of malic acid (and fumaric acid) are very small, and at the pH values used, with knowledge of the K_{1} and K_{2} values ($\sim 10^{3}$ and 10^{4} M^{-1}, respectively) and the $\mathrm{p} \mathrm{K}_{\mathrm{a}_{1}}$ values (see above), it is simple to show that the $\mathrm{K}_{1}[\mathrm{HMA}]$ term in the denominator of Eq. 6.4 dominates (i.e. 'all' the Cr is present as 55). Thus

$$
\text { rate }=\mathrm{k}_{2}[\mathrm{Cr}]_{\text {tot }}
$$

The rate is first-order in $[\mathrm{Cr}]_{\text {tot }}$ concentration, and independent of the maleic acid concentration as found experimentally.

When malic acid has accumulated to a significant amount, it will compete with maleic acid for a coordination site on Cr^{3}; ; i.e. $\mathrm{K}_{2}[\mathrm{Hmal}]$ and $\mathrm{K}_{1}[\mathrm{HMA}]$ become comparable. Under these conditions (assuming that the concentration of free $\mathrm{Cr}^{3}+$ is negligible), Eq. 6.4 gives

$$
\text { rate }=\mathrm{k}_{2} \mathrm{~K}_{1} \frac{[\mathrm{Cr}]_{\text {tod }}[\mathrm{HMA}]}{\mathrm{K}_{1}[\mathrm{HMA}]+\mathrm{K}_{2}[\mathrm{Hmal}]}
$$

The rate expression at the later stages of the hydration is thus

$$
\text { rate }=\frac{\mathbf{k}_{2} \mathrm{~K}_{1} \mathrm{~K}_{\mathrm{a}}[\mathrm{Cr}]_{\text {tod }}\left[\mathrm{H}_{2} \mathrm{MA}\right]_{\mathrm{tot}}\left(\mathrm{~K}_{\mathrm{a}_{1}}^{\prime}+\left[\mathrm{H}^{+}\right]\right)}{\mathrm{K}_{1} \mathrm{~K}_{\mathrm{a}_{1}}\left(\mathrm{~K}_{\mathrm{a}_{1}}^{\prime}+\left[\mathrm{H}^{+}\right]\right)\left[\mathrm{H}_{2} \mathrm{MA}\right]_{\text {tot }}+\mathrm{K}_{2} \mathrm{~K}_{\mathrm{a}_{1}}^{\prime}\left(\mathrm{K}_{\mathrm{a}_{1}}+\left[\mathrm{H}^{+}\right]\right)\left[\mathrm{H}_{2} \mathrm{mal}\right]_{\mathrm{tot}}}
$$

Approximately, $\left[\mathrm{H}_{2} \mathrm{mal}\right]_{\text {tot }}=\left[\mathrm{H}_{2} \mathrm{MA}\right]_{\mathrm{i}}-\left[\mathrm{H}_{2} \mathrm{MA}\right]_{\text {tot }}$, where $\left[\mathrm{H}_{2} \mathrm{MA}\right]_{\mathrm{i}}$ is the initial concentration of $\mathrm{H}_{2} \mathrm{MA}$. Thus,

$$
\begin{aligned}
& \text { rate }=\frac{A\left[C r_{t o l}\left[H_{2} M A\right]_{\text {tot }}\right.}{B+C\left[H_{2} M A\right]_{\text {tot }}} \\
& \text { where } A=k_{2} K_{1} K_{a_{1}}\left(\left[H^{+}\right]+K_{a_{1}}^{\prime}\right), B=K_{2} K_{a_{1}}^{\prime}\left[H_{2} M A\right]_{i}\left(K_{a_{1}}+\left[H^{+}\right]\right), \\
& C=K_{1} K_{a_{1}}\left(K_{a_{1}}^{\prime}+\left[H^{+}\right]\right)-K_{2} K_{a_{1}}^{\prime}\left(K_{a_{1}}+\left[H^{+}\right]\right)
\end{aligned}
$$

The rate is still first-order in chromium, and is between first- and zero-order in maleic acid concentration. At the stage where $\mathrm{K}_{2}[\mathrm{Hmal}]>\mathrm{K}_{1}[\mathrm{HMA}]$ (Eq. 6.4), the rate then becomes first-order in maleic acid concentration.

The above analysis based on the plausible mechanism shown in Scheme 6.1 is in qualitative agreement with the kinetic results. The rate of the isomerization reaction is very slow compared to the hydration, and no kinetic information is available on the formation of fumaric acid because of the difficulty in measuring the fumaric acid concentration accurately.
6.2.4. Other metal ion catalysts, and the hydration of other olefinic carboxylic acids

Besides $\mathrm{Cr}^{3+}, \mathrm{Fe}^{3+}$ ion (added as $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$) was found in the present study and Al^{3+} (added as $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}$) is known from the literature, ${ }^{2}$ to catalyze the hydration of maleic acid in a similar fashion. The last two catalyst systems, however, give more isomerization product, fumaric acid. The Al^{3+} catalyst is reported to yield $\mathbf{7 3 . 9 \%}$ malic acid and $\mathbf{2 6 . 1 \%}$ fumaric acid while the Cr^{3+} catalyst yields 88.8 and 11.2% of malic and fumaric acid, respectively, at $170^{\circ} \mathrm{C} .{ }^{2}$ In the present study, the Fe^{3+} catalyst gave a system that analyzed for a mixture of $38.6,44.0$ and 17.4% of $\mathrm{H}_{2} \mathrm{MA}, \mathrm{H}_{2} \mathrm{mal}$ and $\mathrm{H}_{2} \mathrm{FA}$, respectively, while Cr^{3+} under the same conditions (Table 6.5, 8 h entry) gave a mixture of $66.2,30.8$ and 3.1% of $\mathrm{H}_{2} \mathrm{MA}$,
H_{2} mal and $\mathrm{H}_{2} \mathrm{FA}$, respectively. Other metal ions, such as, Rh^{3+} (added as $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$), $\mathrm{Rh}^{3+} / \mathrm{Rh}^{+}$(prepared in situ from $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ using $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)^{21}, \mathrm{Ru}^{3+}\left(\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right), \mathrm{Ru}^{2+}$ (via TiCl_{3} reduction of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{RuCl}_{6}$ in 3 M HCl$)^{22}$ and $\mathrm{Pt}^{2+}\left(\mathrm{K}_{2} \mathrm{PtCl}_{4}\right)$, were shown in the present studies to be ineffective for either hydration or isomerization of maleic acid under the same conditions ($100^{\circ} \mathrm{C}$, closed system).

Among the olefinic carboxylic acids tested with the Cr^{3+} system, maleic acid was the only substrate catalytically hydrated. Fumaric acid, mesaconic acid $\left(\mathrm{HO}_{2} \mathrm{CC}\left(\mathrm{CH}_{3}\right)=\mathrm{CHCO}_{2} \mathrm{H}\right)$ and aconitic acid $\left(\mathrm{HO}_{2} \mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{COOH}\right)=\mathrm{CHCO}_{2} \mathrm{H}\right)$ were shown in the present work to be unreactive. When the mixture of R, S-malic acid and Cr^{3+} was heated at $100^{\circ} \mathrm{C}$ for 8 h , no dehydration product, either as maleic acid or fumaric acid, was detected; furthermore, under the same conditions, S-malic acid was not racemized. The replacement of malato ligand by maleate must be facile when maleic acid is present in large excess, however, because under similar experimental conditions, both cis- $\mathrm{K}\left[\mathrm{Cr}(\mathrm{MA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ and cis $-\mathrm{K}\left[\mathrm{Cr}(\mathrm{mal})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ as catalysts gave comparable hydration mixtures after $\sim 2 \mathrm{~h}$ (Table 6.9).

Table 6.9. Hydration Products of Maleic Acid Using Diaquo- bis(MA) and -bis(mal) Cr^{3+} Complexes as Catalysts

cis- $\mathrm{K}\left[\mathrm{Cr}(\mathrm{MA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$			cis- $\mathrm{K}\left[\mathrm{Cr}(\mathrm{mal})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$		
$\begin{aligned} {\left[\mathrm{H}_{2} \mathrm{MA}_{\mathrm{i}}\right.} & =0.862 \mathrm{M},[\mathrm{Cr}]=1.01 \times 10^{-2} \mathrm{M} \\ \mathrm{t} & =2.17 \mathrm{~h}, \text { temp. }=100.0^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} {\left[\mathrm{H}_{2} \mathrm{MA}\right]_{\mathrm{i}}=0.862 \mathrm{M},[\mathrm{Cr}]=9.52 \times 10^{-3} \mathrm{M}} \\ \mathrm{t}=2.17 \mathrm{~h}, \text { temp. }=100.0^{\circ} \mathrm{C} \end{gathered}$		
[$\mathrm{H}_{2} \mathrm{MA}$]	[$\mathrm{H}_{2} \mathrm{mal}$]	[$\mathrm{H}_{2} \mathrm{FA}$]	[$\mathrm{H}_{2} \mathrm{MA}$]	[$\left.\mathrm{H}_{2} \mathrm{mal}\right]$	[$\mathrm{H}_{2} \mathrm{FA}$]
86.7\%	10.0\%	3.3\%	84.6\%	12.0\% ${ }^{\text {a }}$	3.4\%

(a) Malic acid from the catalyst contributes $9.52 \times 10^{-3} \times 2 /\left[0.862+\left(2 \times 9.52 \times 10^{-3}\right)\right]=2.2 \%$.

6.3. Conclusion

The catalytic hydration of maleic acid by a non-phosphine metal complex was realized at $100^{\circ} \mathrm{C}$ using Cr^{3+} ion, and the kinetics were studied in some detail in the present work.

Previous workers had reported on such catalytic activity at $170{ }^{\circ} \mathrm{C} .{ }^{2}$ Because of the practical problems of this system (Sect. 6.1), large errors in the kinetic data became inevitable. A temperature variation study was impossible because of the concentration change of the key catalytic species resulting from oligomerization. The maleic acid consumption is first-order in $\mathrm{Cr}_{\text {total }}$ concentration below approximately $2.7 \times 10^{-2} \mathrm{M}$, but the initial rate dependence gradually drops off at higher Cr concentrations. This decrease is attributable perhaps partially to the oligomerization and partially to the interference of malic acid (see Scheme 6.1). A pH dependence of the maleic acid conversion is evident. Addition of base causes extensive oligomerization and formation of possibly a hydroxide; the reduction of catalyst concentration at higher $\mathrm{pH}(2.0-3.0)$ is believed to be responsible for the reduction in conversion. The specific interaction between maleate and Cr involved in the catalysis is not yet clear. Several other metal ions tested showed negative results with maleic acid, and the hydration of fumaric acid and other prochiral olefins using Cr^{3+} was also unsuccessful. Asymmetric synthesis of malic acid from prochiral fumaric acid was thus not pursued further.

Olson and Taube's results ${ }^{4}$ provide very useful information in attempts to elucidate the reaction mechanism. The malato ligand of Cr (malato) $\left(\mathrm{H}_{2} \mathrm{O}\right) 5^{2+}$ can be replaced readily by maleate at the initial stage of reaction. As malic acid accumulates, it becomes more difficult for the product to be released; the rate thus becomes substrate concentration dependent because of the competition of maleic and malic acid for the active $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right) 6^{3+}$ catalyst.

References

1. Kása, Z.; Déak, Gy. Hung. J. Ind. Chem., 1983, 11, 313.
2. (a) Bzhasso, N.A.; Pyatnitskii, M.P. Zh. Prikl. Khim., 1969, 42, 1610. (b) Bzhasso, N.A.; Pyatnitskii, M.P. Izv. Vyssh. Ucheb. Zaved., Pishch. Tekhnol., 1967, 5, 207; through C.A. 1968, 68, 39013k.
3. Haupt, G.W. J. Res. Natl. Bur. Stand. (U.S.), 1952, 48, 414.
4. Olson, M.V.; Taube, H. J. Am. Chem. Soc., 1970, 92, 3236.
5. Cotton, F.A.; Wilkinson, G. Advanced Inorganic Chemistry, 4th ed.; John Wiley and Sons: New York, 1980; p. 727.
6. (a) Wood, D.L.; Ferguson, J.; Knox, K.; Dillon, J.F. Jr. J. Chem. Phys., 1963, 39, 890. (b) Figgis, B.N. Introduction to Ligand Fields; Wiley: New York, 1966; p.209, 222.
7. O'Brien, T.O. In Chemistry of Coordination Compounds, Ed. Bailar, J.C. Jr.; Reinhold: New York, 1956; pp.261-262.
8. Gates, H.S.; King, E.L. J. Am. Chem. Soc., 1958, 80, 5011.
9. Johnson, H.B.; Reynolds, W.L. Inorg. Chem., 1963, 2, 468.
10. Swaddle, T.W.; King, E.L. Inorg. Chem., 1965, 4, 532.
11. Halpern, J.; Harkness, A.C. J. Chem. Phys., 1959, 31, 1147.
12. Cathers, R.E.; Wendlandt, W.W. J. Inorg. Nucl. Chem., 1965, 27, 1015.
13. (a) Thompson, M.; Connik, R.E. Inorg. Chem., 1981, 20, 2279. (b) Finholt, J.E.; Thompson, M.; Connik, R.E. Inorg. Chem., 1981, 20, 4151.
14. Laswick, J.A.; Plane, R.A. J. Am. Chem. Soc., 1959, 81, 3564.
15. Stunzi, H.; Marty, W. Inorg. Chem., 1983, 22, 2145.
16. Bauer, H.H.; Christian, G.D.; O'Reilly, J.E. Instrumental Analysis; Allyn and Bacon: Boston, 1978; pp.178-179.
17. Olson, M.V.; Taube, H. Inorg. Chem., 1970, 9, 2072.
18. Halpern, J.; Harrod, J.F.; James, B.R. J. Am. Chem. Soc., 1961, 83, 753.
19. James, B.R.; Louie, J. Inorg. Chim. Acta, 1969, 3, 568.
20. Gahan, L.R.; Harrowfield, J.M.; Herlt, A.J.; Lindoy, L.F.; Whimp, P.O.; Sargeson, A.M. J. Am. Chem. Soc., 1985, 107, 6231.
21. (a) James, B.R.; Kastner, M.; Rempel, G.L. Can. J. Chem., 1969, 47, 349. (b) James, B.R.; Rempel, G.L. Can. J. Chem., 1968, 46, 571.
22. Halpern, J.; James, B.R. Can. J. Chem., 1966, 44, 495.

Appendix
AI. Structural parameters of $\mathrm{P}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{2}\right.$ h (HT), 7b. 1

Empinical formula	$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{P}_{7}$
Formula weight	989.62
Crystal system	Monoclinic
Latice parameters:	$a=15.142(5) \AA$
	$\mathrm{b}=9.853(3) \AA$
	$c=23.74(1) \AA$
	$\beta=107.98(3)^{\circ}$
	$\mathrm{V}=3369(2) \mathrm{A}^{3}$
Space group	P21/n (${ }^{(14)}$
Z value	4
Density calculated	$1.95 \mathrm{~g} / \mathrm{cm}^{3}$
Residuals: R; Rw	0.056; 0.069
Goodness of fit indicator	2.09
Maximum shift in final cycle	0.08
Largest peak in final diff. map	$4.11 \mathrm{e} / \mathrm{A}^{3}$

Intramolecular distances involving the nonhydrogen atorss

atom	atom	distance	atom	atom	distance
Pt(1)	N(3)	2.10 (1)	C(6)	C(7)	1.36(2)
P1(1)	$P(1)$	2.169(3)	C(7)	C(8)	1.36(2)
P1(1)	C1(1)	$2.405(4)$	$\dot{C}(8)$	C(9)	1.36(3)
P1(1)	$\mathrm{Pt}(2)$	2.574(1)	C(9)	C(10)	1.33(3)
P (2)	N(1)	2.08(1)	C(11)	C(12)	1.35(2)
P1(2)	$\mathrm{P}(2)$	2.169(4)	C(11)	C(16)	1.36(2)
P1(2)	Cl(2)	2.383(4)	C(12)	C(13)	1.46(3)
P(1)	C(6)	1.83 (2)	C(13)	C(14)	1.35(3)
P(1)	C(1)	1.83(2)	C(14)	C(15)	1.26(3)
$P(1)$	C(11)	1.86(2)	C(15)	C(16)	1.37(3)
$\mathrm{P}(2)$	C(17)	1.80(2)	C(17)	C(18)	- 1.41(2)
P(2)	C(22)	1.80(2)	C(18)	C(19)	1.35(2)
P(2)	C(27)	1.84(2)	C(19)	C(20)	1.36(3)
N(1)	C(1)	$1.36(2)$	C(20)	C(21)	1.40(2)
N(1)	C(5)	1.36(2)	C(22)	C(23)	1.36(2)
N(2)	C(6)	1.33(2)	C(23)	C(24)	1.39(2)
N(2)	C(10)	1.37(2)	C(24)	C(25)	1.37(3)
N(3)	C(21)	1.31(2)	C(25)	C(26)	1.34(3)
N(3)	C(17)	1.38(2)	C(27)	C(32)	1.35(2)
$N(4)$	C(22)	$1.38(2)$	C(27)	C(28)	1.37(2)
N(4)	C(26)	1.39(2)	C(28)	C(29)	1.31(2)
C(1)	C(2)	$1.36(2)$	C(29)	C(30)	1.31(3)
C(2)	C(3)	1.38(3)	C(30)	C(31)	1.40(3)
C(3)	C(4)	1.37(3)	C(31)	C(32)	1.39(2)
$\mathrm{C}(4)$	C(5)	1.30(3)			

Distances are in \AA. Estimated standard deviations in the least significant
figure are given in parentheses.

(1)	(2)	(3)	(4)	angle	(1)	(2)	(3)	(4)	angle
Pt(1)	$\mathrm{N}(3)$	$\mathrm{C}(21)$	$\mathrm{C}(20)$	178(2)	P1(2)	$\mathrm{Pl}(1)$	$\mathrm{P}(1)$	$\mathrm{C}(1)$	39.2(6)
Pt(1)	$\mathrm{N}(3)$	$\mathrm{C}(17)$	$\mathrm{C}(18)$	176(1)	Pl(2)	$\mathrm{Pr}(1)$	$\mathrm{P}(1)$	C(11)	159.8(6)
Pt(1)	$\mathrm{N}(3)$	$\mathrm{C}(17)$	$\mathrm{P}(2)$	-2(1)	$\mathrm{Cl}(1)$	$\mathrm{Pl}(1)$	$\mathrm{N}(3)$	$\mathrm{C}(21)$	39(1)
Pr(1)	$P(1)$	C (6)	$\mathrm{N}(2)$	118(1)	Cl(1)	$\mathrm{Pr}(1)$	$\mathrm{N}(3)$	$\mathrm{C}(17)$	-143(1)
Pt(1)	$P(1)$	C(6)	$\mathrm{C}(7)$.60(1)	Cl(1)	$\mathrm{P}(1)$	$\mathrm{P}(1)$	C (6)	$91.2(5)$
$\mathrm{Pr}(1)$	$P(1)$	C (1)	$\mathrm{N}(1)$	-29(1)	Cl(1)	$\mathrm{Pr}(1)$	$\mathrm{P}(1)$	$\mathrm{C}(1)$	-147.4(6)
$\mathrm{Pt}(1)$	$P(1)$	C(1)	$\mathrm{C}(2)$	149(2)	Cl(1)	P (1)	$\mathrm{P}(1)$	C(11)	-26.7(6)
$\mathrm{Pt}(1)$	$P(1)$	C(11)	$\mathrm{C}(12)$	-26(2)	$\mathrm{Cl}(1)$	$\mathrm{Pr}(1)$	$\mathrm{Pr}(2)$	$\mathrm{N}(1)$	-130(1)
Pr(1)	$P(1)$	$\mathrm{C}(11)$	$\mathrm{C}(16)$	159(1)	Cl(1)	$\mathrm{Pr}(1)$	$\mathrm{Pr}(2)$	$\mathrm{P}(2)$	$48(1)$
Pt(1)	P (2)	$\mathrm{N}(1)$	$\mathrm{C}(1)$	32(1)	Cl(1)	P (1)	$\mathrm{P}(2)$	$\mathrm{Cl}(2)$	48(3)
Ph(1)	$\mathrm{Pr}(2)$	$\mathrm{N}(1)$	C(5)	-150(1)	Cl(2)	$\mathrm{Pr}(2)$	$\mathrm{N}(1)$	$\mathrm{C}(1)$	-148(1)
Pr(1)	$\mathrm{Pt}(2)$	$\mathrm{P}(2)$	C(17)	44.7(5)	Cl(2)	$\mathrm{P}(2)$	$\mathrm{N}(1)$	$\mathrm{C}(5)$	31(1)
Pt(1)	$\mathrm{Pr}(2)$	$\mathrm{P}(2)$	C(22)	-76.7(5)	Cl(2)	$\mathrm{Pr}(2)$	$\mathrm{P}(2)$	$\mathrm{C}(17)$	-135.3(5)
$\mathrm{Pr}(1)$	$\mathrm{N}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	174(1)	Cl(2)	Pt (2)	$\mathrm{P}(2)$	C(27)	-17.1(6)
$\mathrm{Pr}(1)$	$\mathrm{Pt}(2)$	$\mathrm{P}(2)$	$\mathrm{C}(27)$	162.9(6)	$\mathrm{Cl}(2)$	$\mathrm{Pr}(2)$	P(2)	C(22)	103.3(6)
Pt (2)	$\mathrm{N}(1)$	$\mathrm{C}(5)$	$\mathrm{P}(1)$	-8(2)	Cl(2)	$\mathrm{Pr}(2)$	$\mathrm{Pr}(1)$	$\mathrm{N}(3)$	-37(2)
P (2)	$\mathrm{N}(1)$	C(5)	$\mathrm{C}(4)$	-176(2)	Cl(2)	$\mathrm{Pr}(2)$	$\mathrm{P}(1)$	$\mathrm{P}(1)$	143(2)
Pt(2)	$\mathrm{P}(2)$	C(17)	$\mathrm{N}(3)$	-37(1)	$P(1)$	$\mathrm{C}(6)$	$\mathrm{N}(2)$	$\mathrm{C}(10)$	-178(1)
$\mathrm{Pl}(2)$	$P(2)$	C (17)	C(18)	145(2)	P(1)	C(6)	$\mathrm{C}(7)$	$\mathrm{C}(8)$	179(1)
P (2)	$P(2)$	C(22)	C(23)	-25(2)	P(1)	$\mathrm{C}(1)$	$\mathrm{N}(1)$	$\mathrm{C}(5)$	174(1)
$\mathrm{Pl}(2)$	$P(2)$	$\mathrm{C}(22)$	$\mathrm{N}(4)$	159(1)	P(1)	C(1)	$\mathrm{C}(2)$	$\mathrm{C}(3)$.173(2)
$\mathrm{Pr}(2)$	$P(2)$	C (27)	C(32)	110(2)	P(1)	C(11)	$\mathrm{C}(12)$	$\mathrm{C}(13)$.179(1)
P (2)	$P(2)$	$\mathrm{C}(27)$	C(28)	-64(1)	P(1)	C(11)	$\mathrm{C}(16)$	C(15)	180(2)
P (2)	$\mathrm{Pr}(1)$	$\mathrm{N}(3)$	C(21)	-147(1)	P(1)	$\mathrm{Pt}(1)$	$\mathrm{N}(3)$	C(21)	-146(2)
$\mathrm{Pr}(2)$	$\mathrm{Pr}(1)$	$\mathrm{N}(3)$	C(17)	$30(1)$	P(1)	$\mathrm{Pt}(1)$	$\mathrm{N}(3)$	$\mathrm{C}(17)$	32(3)
$\mathrm{Pr}(2)$	$\mathrm{Pt}(1)$	$\mathrm{P}(1)$	$\mathrm{C}(6)$	-82.2(5)	P(1)	$\mathrm{Pr}(1)$	$\mathrm{Pt}(2)$	$\mathrm{N}(1)$	-34.2(4)
$\mathrm{P}(1)$	$\mathrm{Pt}(1)$	$\mathrm{Pr}(2)$	$\mathrm{P}(2)$	143.4(1)	N(3)	$\mathrm{Pr}(1)$	$P(1)$	$\mathrm{C}(6)$	-84(3)
$\mathrm{P}(2)$	C(17)	$\mathrm{N}(3)$	$\mathrm{C}(21)$	$176(1)$	N(3)	$\mathrm{Pr}(1)$	$P(1)$	$\mathrm{C}(1)$	38(3)
$\mathrm{P}(2)$	C(17)	C(18)	C(19)	-174(2)	$N(3)$	$\mathrm{Pr}(1)$	$\mathrm{P}(1)$	C(11)	158(3)
P(2)	C(22)	C(23)	C(24)	-177(1)	N(4)	C(22)	$\mathrm{C}(23)$	$\mathrm{C}(24)$	-1(3)
$\mathrm{P}(2)$	C(22)	$\mathrm{N}(4)$	C(26)	$177(1)$	$\mathrm{N}(4)$	C(22)	P(2)	C(17)	35(1)

(to be continued)

(1)	(2)	(3)	(4)	angie	(1)	(2)	(3)	(4)	angle
P(2)	C (27)	C(32)	C(31)	-168(2)	N(4)	C(22)	$P(2)$	C(27)	-73(1)
P(2)	C(27)	C(28)	C(29)	176(2)	N(4)	C(26)	C(25)	$\mathrm{C}(24)$	O(3)
$\mathbf{P}(2)$	Pl(2)	$N(1)$	C(1)	10(4)	C(1)	N(1)	C(5)	C(4)	2(3)
$\mathbf{P}(2)$	$\mathrm{Pr}(2)$	$\mathrm{Pl}(1)$	N(3)	.-36.8(3)	C(1)	$P(1)$	C(6)	C(7)	175(1)
$N(1)$	C(1)	$\mathrm{C}(2)$	C(3)	5(3)	C(1)	$P(1)$	C(11)	C(12)	100(1)
$N(1)$	C(1)	P(1)	C(6)	96(1)	C(1)	$P(1)$	C(11)	$\mathrm{C}(16)$	-75(1)
N(1)	C(1)	$\mathbf{P}(1)$	C(11)	-158(1)	C(2)	C(1)	N(1)	C(5)	-4(2)
N(1)	C(5)	$\mathrm{C}(4)$	C(3)	-1(4)	C(2)	C(1)	$P(1)$	C(6)	-87(2)
$N(1)$	$\mathrm{Pt}(2)$	$P(2)$	C(17)	67(3)	C(2)	C(1)	$\mathbf{P}(1)$	C(11)	20(2)
N(1)	$\mathrm{Pl}(2)$	$P(2)$	C(22)	-54(3)	C(2)	C(3)	C(4)	C(5)	2(4)
$N(1)$	$\mathrm{P}(2)$	$P(2)$	C(27)	-175(3)	C(6)	N(2)	C(10)	C(9)	0(3)
N(1)	Pt(2)	$\mathrm{Pr}(1)$	$\mathrm{N}(3)$	145.6(5)	C(6)	C(7)	C(8)	C(9)	-1(3)
N(2)	C(6)	C(7)	C(8)	1(2)	C(6)	$P(1)$	C(11)	C(12)	-149(1)
N(2)	C(6)	$P(1)$	C(1)	-7(1)	C(6)	P(1)	C(11)	$\mathrm{C}(16)$	36(1)
N(2)	C(6)	$P(1)$	C(11)	-115(1)	C(7)	C(8)	C(9)	C(10)	O(3)
N(2)	C(10)	C(9)	C(8)	O(4)	C(7)	C(6)	N(2)	C(10)	O(2)
N(3)	C(21)	$\mathrm{C}(20)$	C(19)	4(3)	C(7)	C(6)	$\mathrm{P}(1)$	C(11)	67(1)
N(3)	C(17)	$\mathrm{C}(18)$	C(19)	8(3)	C(11)	$\mathrm{C}(12)$	C(13)	C(14)	3(3)
$N(3)$	C(17)	$\mathbf{P}(2)$	C(22)	89(1)	C(11)	$\mathrm{C}(16)$	C(15)	C(14)	-3(4)
N(3)	C(17)	$\mathrm{P}(2)$	C(27)	-163(1)	C(12)	$\mathrm{C}(11)$	$\mathrm{C}(16)$	C(15)	5(3)
C(12)	C(13)	$\mathrm{C}(14)$	C(15)	-1(4)	C(13)	$\mathrm{C}(14)$	C(15)	C(16)	1(4)
C(13)	C(12)	$\mathrm{C}(11)$	C(16)	-5(3)	C(17)	N(3)	C(21)	C(20)	O(3)
C(17)	$\mathrm{C}(18)$	C(19)	C(20)	-5(4)	C(17)	$\mathrm{P}(2)$	C(27)	C(32)	-128(2)
C(17)	$\mathrm{P}(2)$	C(27)	C(28)	58(1)	C(18)	$\mathrm{C}(19)$	C(20)	C(21)	-1(4)
C(18)	C(17)	$\mathrm{N}(3)$	C(21)	-6(2)	C(18)	$\mathrm{C}(17)$	P(2)	C(22)	-89(2)
C(18)	C(17)	$\mathbf{P}(2)$	C(27)	19(2)	C(22)	$\mathrm{C}(23)$	C(24)	C(25)	1(3)
$\mathrm{C}(22)$	$N(4)$	C(26)	C(25)	-1(3)	C(22)	$\mathbf{P}(2)$	C(27)	C(32)	-17(2)
C(22)	$\mathbf{P}(2)$	C(27)	C(28)	169(1)	C(23)	$\mathrm{C}(22)$	N(4)	C(26)	1(3)
C(23)	C(22)	$\mathrm{P}(2)$	C(27)	103(1)	C(23)	$\mathrm{C}(24)$	C(25)	C(26)	$0(3)$
C(27)	C(32)	C(31)	C(30)	-9(4)	C(27)	C(28)	C(29)	C(30)	-6(4)
C(28)	C(29)	C(30)	$\mathrm{C}(31)$	3(4)	C(28)	C(27)	C(32)	C(31)	6(3)
C(29)	C(28)	C(27)	C(32)	1(3)	C(29)	C(30)	C(31)	C(32)	$5(4)$

Intramolecular bond angles involving the nonhydrogen atoms

atom	atom	atom	angle	atom	atom	atom	angle
N(3)	P(1)	P(1)	172.9(3)	C(5)	$N(1)$	P1(2)	120(1)
N(3)	P(1)	C1(1)	88.0(3)	C(6)	N(2)	C(10)	116(1)
N(3)	$\mathbf{P t}(1)$	Pt (2)	91.4(3)	C(21)	N(3)	C(17)	118(1)
$\mathrm{P}(1)$	Pr(1)	$\mathrm{Cl}(1)$	99.1(1)	C(21)	N(3)	P1(1)	122(1)
$\mathrm{P}(1)$	Pt(1)	P (2)	81.5(1)	C(17)	$N(3)$	P1(1)	119.0(9)
Cl(1)	P(1)	Pt(2)	173.5(1)	C(22)	N(4)	C(26)	119(2)
$\mathrm{N}(1)$	$\mathrm{Pl}(2)$	P(2)	173.7(3)	N(1)	C(1)	C(2)	121(2)
N(1)	P(2)	Cl(2)	90.6(4)	$N(1)$	C(1)	P(1)	113(1)
N(1)	P (2)	Pl(1)	92.8(3)	C(2)	C(1)	$\mathrm{P}(1)$	126(1)
$P(2)$	$\mathrm{Pr}(2)$	C(2)	95.3(2)	C(1)	C(2)	C(3)	117(2)
$\mathrm{P}(2)$	$\mathrm{Pr}(2)$	$\mathrm{Pt}(1)$	81.4(1)	C(4)	C(3)	C(2)	122(2)
$\mathrm{Cl}(2)$	$\mathrm{Pr}(2)$	$\mathrm{Pr}(1)$	176.6(1)	C(5)	C(4)	C(3)	120(2)
C(6)	$\mathbf{P}(1)$	C(1)	107.0(7)	C(4)	C(5)	N(1)	121(2)
C(6)	$\mathbf{P}(1)$	C(11)	101.7(7)	N(2)	C(6)	C(7)	122(1)
C(6)	$P(1)$	Pr(1)	112.3(5)	N(2)	C(6)	$\mathrm{P}(1)$	120(1)
C(1)	$\mathbf{P}(1)$	C(11)	103.0(7)	C(7)	C(6)	P(1)	118(1)
C(1)	$\mathbf{P}(1)$	P(1)	113.4(5)	$\mathrm{C}(8)$	C(7)	C(6)	120(1)
C(11)	$P(1)$	$\mathrm{Pr}(1)$	118.2(6)	C(7)	C(8)	C(9)	119(2)
C(17)	$P(2)$	C(22)	106.9(7)	C(10)	C(9)	C(8)	119(2)
C(17)	$P(2)$	C(27)	103.3(7)	C(9)	C(10)	N(2)	124(2)
C(17)	$\mathbf{P}(2)$	P1(2)	111.0(5)	C(12)	C(11)	C(16)	122(2)
C(22)	$\mathbf{P}(2)$	C(27)	102.6(8)	C(12)	C(11)	P(1)	120(1)
C(22)	$\mathbf{P}(2)$	Pl(2)	$114.9(5)$	C(16)	C(11)	$\mathrm{P}(1)$	118(1)
C(27)	$\mathbf{P}(2)$	Pt(2)	117.06)	C(11)	C(12)	C(13)	116(2)
C(1)	N(1)	C(5)	120(1)	C(14)	C(13)	C(12)	120(2)
C(1)	N(1)	$\mathrm{Pt}(2)$	120(1)	C(15)	C(14)	C(13)	120(2)
C(14)	C(15)	C(16)	124(2)	C(11)	C(16)	C(15)	$118(2)$
N(3)	C(17)	C(18)	120(1)	N(3)	C(17)	C(18)	120(1)
N(3)	$\mathrm{C}(17)$	$\mathrm{P}(2)$	113(1)	C(18)	C(17)	$\mathrm{P}(2)$	127(1)
C(19)	C(18)	C(17)	120(2)	C(18)	$\mathrm{C}(19)$	$\mathrm{C}(20)$	120(2)

aumm	atom	atom	angle	atom	atom	atam	angle
$\mathbf{C}(19)$	$\mathrm{C}(20)$	$\mathrm{C}(21)$	$119(2)$	$\mathrm{N}(3)$	$\mathrm{C}(21)$	$\mathrm{C}(20)$	$123(2)$
$\mathrm{C}(23)$	$\mathrm{C}(22)$	$\mathrm{N}(4)$	$120(2)$	$\mathrm{C}(23)$	$\mathrm{C}(22)$	$\mathrm{P}(2)$	$121(1)$
$\mathrm{N}(4)$	$\mathrm{C}(22)$	$\mathrm{P}(2)$	$119(1)$	$\mathrm{C}(22)$	$\mathrm{C}(23)$	$\mathrm{C}(24)$	$119(2)$
$\mathrm{C}(25)$	$\mathrm{C}(24)$	$\mathrm{C}(23)$	$121(2)$	$\mathrm{C}(26)$	$\mathrm{C}(25)$	$\mathrm{C}(24)$	$119(2)$
$\mathrm{C}(25)$	$\mathrm{C}(26)$	$\mathrm{N}(4)$	$122(2)$	$\mathrm{C}(32)$	$\mathrm{C}(27)$	$\mathrm{C}(28)$	$121(1)$
$\mathrm{C}(32)$	$\mathrm{C}(27)$	$\mathrm{P}(2)$	$124(1)$	$\mathrm{C}(28)$	$\mathrm{C}(27)$	$\mathrm{P}(2)$	$115(1)$
$\mathrm{C}(29)$	$\mathrm{C}(28)$	$\mathrm{C}(27)$	$117(2)$	$\mathrm{C}(28)$	$\mathrm{C}(29)$	$\mathrm{C}(30)$	$125(2)$
$\mathrm{C}(29)$	$\mathrm{C}(30)$	$\mathrm{C}(31)$	$119(2)$	$\mathrm{C}(32)$	$\mathrm{C}(31)$	$\mathrm{C}(30)$	$116(2)$
$\mathrm{C}(27)$	$\mathrm{C}(32)$	$\mathrm{C}(31)$	$120(2)$				

Angles are in degrees. Estimated standard deviations in the least significant figure are given in parencheses.

All. The acid-base titration data for $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PN}_{3}\right) 2(\mathrm{HT}), 11 \mathrm{c}$, and $\mathrm{PdCl}_{2}\left(\mathrm{PN}_{3}\right)_{2}, 4 c$, in aqueous solution.

Table All I. NaOH ditration against $\mathrm{HNO}_{3}{ }^{\mathrm{a}}$

vol (mL)	pH	vol (ml.)	pH
0.000	2.905	0.618	9.650
0.126	3.030	0.649	9.820
0.262	3.228	0.681	9.950
0.390	3.570	0.778	10.195
0.427	3.725	0.905	10.395
0.455	3.962	1.134	10.615
0.488	4.460	1.382	10.770
0.520	6.795	1.610	10.910
0.552	8.970	1.962	10.990

(a) $\left|\mathrm{HNO}_{3}\right|=9.80 \times 10^{-4} \mathrm{M},|\mathrm{NaOH}|=4.71 \times 10^{-2} \mathrm{M}$; ionic strength $\mathrm{I}=$ 0.3 M using NaNO_{3}. temp. $=25.0 \pm 0.2^{\circ} \mathrm{C}$, under N_{2} (sec Fig. 3.21)
$\stackrel{N}{0}$

$\mathrm{vol}(\mathrm{mL})$	pH	$\mathrm{vol}(\mathrm{mL}$)	pH
0.000	2.970	0.682	9.610
0.102	3.075	0.712	9.780
0.166	3.166	0.745	9.910
0.259	3.330	0.807	10.100
0.324	3.490	0.870	10.240
0.394	3.765	0.934	10.345
0.427	3.995	0.996	10.430
0.460	4.442	1.061	10.500
0.490	4.920	1.157	10.590
0.524	5.845	1.316	10.705
0.554	7.075	1.506	10.815
0.584	8.200	1.665	10.885
0.618	8.960	1.859	10.955
0.650	9.360	1.986	10.995

(a) $\left[1 \mathrm{NO}_{3}\right]=9.80 \times 10^{-4} \mathrm{M},|\mathrm{NaOH}|=4.7\left|\times 10^{-2} \mathrm{M} .|11 \mathrm{c}|=4.98 \times 10^{-4}\right.$
M ; ionic strength $\mathrm{I}=0.3 \mathrm{M}$ using NaNO_{3}, temp. $=25.0 \pm 0.2^{\circ} \mathrm{C}$, under N_{2} (see Fig. 3.21).

Table All 3. NaOH titration against $\mathrm{HNO}_{3}{ }^{\circ}$

vol (mL)	pH	vol (mL)	pH
0.000	2.890	0.613	9.575
0.129	3.016	0.646	9.760
0.228	3.150	0.709	10.005
0.291	3.266	0.805	10.228
0.387	3.530	0.969	10.454
0.420	3.680	1.166	10.626
0.452	3.895	1.427	10.780
0.483	4.300	1.631	10.870
0.516	6.070	1.828	10.940
0.548	8.770	1.993	10.990
0.580	9.285		
(a) The conditions are exacty the same as described in Table AIIT(a).			

Table All 4:. NaOH titration against HNO_{3} and $11 \mathrm{c}^{\text {a }}$

vol (mL)	pH	vol (mL)	pH
0.000	2.830	0.871	8.680
0.101	2.904	0.904	9.055
0.165	2.960	0.936	9.330
0.229	3.022	0.967	9.520
0.293	3.097	1.000	9.700
0.358	3.186	1.033	9.840
0.422	3.295	1.065	9.952
0.486	3.435	1.096	10.040
0.550	3.624	1.162	10.182
0.582	3.750	1.226	10.290
0.614	3.906	1.322	10.420
0.647	4.114	1.423	10.520
0.678	4.422	1.523	10.595
0.710	4.975	1.650	10.685
0.743	6.080	1.810	10.775
0.774	6.560	2.004	10.865
0.808	7.185		
0.840	8.005		

Table All 5. NaOH nitration against HINO3a

vol (mL)	pH	vol (mL)	pll
0.000	2.610	0.611	10.080
0.100	2.715	0.644	10.225
0.150	2.791	0.675	10.333
0.200	2.865	0.707	10.421
0.264	2.980	0.803	10.618
0.329	3.130	0.997	10.860
0.394	3.365	1.250	10.990
0.426	3.555	1.347	11.100
0.450	3.790	1.564	11.202
0.482	4.705	1.724	11.260
0.498	7.145	1.855	11.302
0.516	8.780	1.959	11.335
0.546	9.520	1.999	11.402
0.578	9.875		

(a) $\left[\mathrm{HNO}_{3}\right]=1.98 \times 10^{-3} \mathrm{M},[\mathrm{NaOH}]=9.42 \times 10^{-2} \mathrm{M}$; ionic strength $]=$ 0.3 M using NaNO_{3}, temp. $=25.0 \pm 0.2^{\circ} \mathrm{C}$, under nitrogen (see Fig. 3.24).

Table All 6. NaOH titration againsi INO3 and 4ca			
vol (mL)	pH	vol (mL)	pH
0.000	2.635	0.909	9.27
0.099	2.708	0.941	9.65
0.163	2.765	0.972	9.90
0.260	2.865	1.005	10.07
0.356	2.990	1.038	10.20
0.423	3.100	1.069	10.30
0.579	3.335	1.136	10.47
0.583	3.585	1.200	10.585
0.616	3.770	1.264	10.675
0.650	4.040	1.330	10.752
0.681	4.460	1.417	10.850
0.714	4.940	1.555	10.957
0.740	5.350	1.654	11.020
0.811	6.610	1.749	11.072
0.843	7.38	1.880	11.135
0.875	8.43	1.986	11.180

(a) $\left.\left[\mathrm{HNO}_{3}\right]=1.98 \times 10^{-3} \mathrm{M}, \mid 4 \mathrm{c}\right]=2.00 \times 10^{-3} \mathrm{M},[\mathrm{NuOH}]=9.42 \times 10^{-2}$ M ; ionic strength $\mathrm{I}=0.3 \mathrm{M}$ using NaNO_{3}, temp. $=25.0 \pm 0.2^{\circ} \mathrm{C}$, under N_{2}.

Table All 7. Nat PH titration against HNO_{3} and $4 \mathrm{c}^{\mathrm{B}}$

vol (mL)	pH	vol (mL)	pH
0.000	2.500	0.888	6.29
0.132	2.607	0.923	7.09
0.230	2.712	0.954	8.15
0.381	2.925	0.991	9.06
0.478	3.120	1.025	9.25
0.575	3.430	1.089	9.590
0.640	3.825	1.155	9.960
0.682	4.320	1.221	10.215
0.716	4.660	1.319	10.440
0.748	4.960	1.448	10.643
0.781	5.270	1.583	10.780
0.824	5.855	1.844	10.965
0.856	5.99	1.972	11.030

(a) The conditions are exactly the same as described in Table All 6 (see

Fig. 3.24)
Table All $8 . \mathrm{NaOH}$ titration against $4 c$ in the absence of $\mathrm{HNO}_{3}{ }^{\mathbf{a}}$

vol (min)	pH	vol (mL)	pH
0.000	2.900	28.83	5.80
2.28	3.03	29.44	6.00
5.09	3.12	29.81	6.20
7.90	3.24	30.35	6.50
11.76	3.50	31.09	6.80
15.73	3.75	31.61	7.03
19.04	4.00	32.31	7.40
21.70	4.30	32.95	7.88
23.45	4.51	33.70	8.45
25.03	4.75	34.70	8.92
25.37	4.85	35.75	9.40
26.09	5.00	36.98	9.60
26.80	5.15	38.21	9.80
27.35	5.30	39.36	9.92
27.85	5.45	40.95	10.10
28.18	5.60	45.45	10.32
(a) $\left.\|\mathrm{NuOH}\|=1.0 \times 10^{-3} \mathrm{M}, \mid 4 \mathrm{c}\right]=3.34 \times 10^{-3} \mathrm{M}, 10 \mathrm{~mL}$; ionic strength I $=0.3 \mathrm{M}$ using NaNO_{3}; temp. $=25.0 \pm 0.2^{\circ} \mathrm{C}$, under N_{2} (see Fig. 3.22).			

	AIII. Kinetic data of the oxidative addition of DMAD $10 \mathrm{P}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{3}\right)_{2}$ (HT). 9 c , in $\mathrm{Cl}_{2} \mathrm{Cl}_{2}$.		
	(3)	$A_{t}(\lambda=518 \mathrm{~nm})$	$\cdot \ln \left(A_{1}-A_{\infty}\right)$
	0.0	0.852	0.681
	20.0	0.810	0.768
	40.0	0.760	0.882
	60.0	0.715	0.997
	80.0	0.676	1.109
	100.0	0.643	1.214
	120.0	0.612	1.324
	140.0	0.587	1.423
	160.0	0.563	1.528
	180.0	0.544	1.619
	200.0	0.526	1.715
N	220.0	0.509	1.814
\cdots	260.0	0.483	1.988
	300.0	0.462	2.154
	340.0	0.455	2.313
	∞	0.346	

slope $=4.77 \times 10^{-3} \mathrm{~s}^{-1}, \mathrm{R}^{2}=0.996$.

Table Alll 2. $\mid 9 \mathrm{c}]=1.18 \times 10^{-3} \mathrm{M}$. [DAMD] $=2.39 \times 10^{-2} \mathrm{M}$. temp. $=$ $34.0^{\circ} \mathrm{C}$.

$1(\mathrm{~s})$	$\mathrm{A}_{1}(\lambda=518 \mathrm{~nm})$	${ }^{-\ln \left(A_{1}-A_{-}\right)}$
0.0	0.857	0.671
40.0	0.793	0.805
60.0	0.758	0.887
80.0	0.726	0.968
100.0	0.697	1.047
120.0	0.671	1.124
140.0	0.649	1.194
180.0	0.609	1.336
200.0	0.592	1.402
250.0	0.554	1.570
280.0	0.535	1.666
320.0	0.513	1.790
380.0	0.486	1.960
450.0	0.462	2.154
∞	0.346	
slope $=3.29 \times 10^{-3} \mathrm{~s}^{-1}, \mathrm{R}^{2}=0.996$.		
Table AIII 3. $\|9 \mathrm{c}\|=1.18 \times 10^{-3} \mathrm{M}$. $\|\mathrm{DAMD}\|=1.19 \times 10^{-2} \mathrm{M}$, cemp. $=$ $34.0^{\circ} \mathrm{C}$.		
1 (s)	$\mathrm{A}_{1}(\lambda=518 \mathrm{~nm})$	$-\ln \left(A_{4}-A_{*}\right)$
0.0	0.852	0.681
40.0	0.822	0.742
60.0	0.803	0.783
80.0	0.784	0.826
100.0	0.766	0.868
120.0	0.748	0.911
140.0	0.732	0.952
160.0	0.717	0.992
180.0	0.702	1.033
200.0	0.689	1.070
240.0	0.663	1.149
280.0	0.640	1.224
320.0	0.619	1.298
390.0	0.587	1.423
450.0	0.564	1.523
480.0	0.553	1.575
∞	0.347	

Table AIII 4. [9c] $=1.18 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=3.58 \times 10^{-2} \mathrm{M}$, temp. $=$ $29.0^{\circ} \mathrm{C}$.

$t(\mathrm{~s})$	$\mathrm{A}_{1}(\lambda=518 \mathrm{~nm})$	$-\ln \left(\mathrm{A}_{1}-\mathrm{A}_{00}\right)$
0.0	0.858	0.717
20.0	0.817	0.805
40.0	0.776	0.901
60.0	0.738	1.000
80.0	0.705	1.090
100.0	0.674	1.190
120.0	0.648	1.280
140.0	0.624	1.370
160.0	0.603	1.457
180.0	0.584	1.542
200.0	0.565	1.635
220.0	0.549	1.720
250.0	0.527	1.852
280.0	0.509	1.973
300.0	0.497	2.064
340.0	0.476	2.244
400.0	0.455	2.465
510.0	0.423	2.937
600.0	0.407	3.297
∞	0.370	

slpoe $=4.28 \times 10^{-3} \mathbf{g}^{-1}, R^{2}=0.999$.

Table AllI $5 .[9 \mathrm{c}]=1.18 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=2.39 \times 10^{-2} \mathrm{M}$, temp. $=$ $29.0^{\circ} \mathrm{C}$.

$1(s)$	$A_{1}(\lambda=518 \mathrm{~nm})$	$-\ln \left(A_{1}-A_{\infty}\right)$
0.0	0.858	0.687
20.0	0.837	0.730
40.0	0.807	0.794
60.0	0.780	0.856
80.0	0.753	0.921
100.0	0.730	0.981
120.0	0.708	1.041
140.0	0.688	1.100
160.0	0.669	1.158
200.0	0.636	1.269
240.0	0.607	1.378
300.0	0.571	1.532
360.0	0.540	1.687
400.0	0.522	1.790
450.0	0.503	1.911
∞	0.355	
slope $=2.74 \times 10^{-3} \mathrm{~s}^{-1}, \mathrm{R}^{2}=0.998$		

Table Alli 6. [9 c$]=1.18 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=1.19 \times 10^{-2} \mathrm{M}$, temp. $=$ $29.0^{\circ} \mathrm{C}$.

(1s)	$A_{1}(\lambda=518 \mathrm{~nm})$	$-\ln \left(A_{1}-A_{\infty}\right)$
0.0	0.858	0.687
20.0	0.854	0.695
40.0	0.840	0.724
60.0	0.825	0.755
80.0	0.810	0.787
100.0	0.796	0.819
120.0	0.783	0.849
140.0	0.770	0.879
160.0	0.758	0.909
180.0	0.747	0.936
$\because \quad 200.0$	0.736	0.965
240.0	0.714	1.024
280.0	0.696	1.076
320.0	0.677	1.133
380.0	0.653	1.211
450.0	0.627	1.302
510.0	0.607	1.378
570.0	0.589	1.452
∞	0.355	

slope $=1.38 \times 10^{-3} \mathrm{a}^{-1}, \mathrm{R}^{2}=0.999$.

Table AIII 7. $[9 \mathrm{c}]=1.18 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=3.25 \times 10^{-2} \mathrm{M}$, temp. $=$ $25.0^{\circ} \mathrm{C}$.

$1(s)$	$A_{1}(\lambda=518 \mathrm{~nm})$	$-\ln \left(A_{4} \cdot A_{\infty}\right)$
0.0	0.885	0.679
40.0	0.829	0.796
60.0	0.802	0.858
80.0	0.775	0.924
100.0	0.751	0.986
120.0	0.729	1.047
150.0	0.701	1.130
180.0	0.675	1.214
200.0	0.660	1.266
240.0	0.632	1.370
280.0	0.606	1.478
360.0	0.564	1.682
400.0	0.547	1.778
∞	0.378	

slope $=2.74 \times 10^{-3} \mathrm{~s}^{-1}, \mathrm{R}^{2}=0.998$.
Table AIII 8. $[9 \mathrm{c}]=1.18 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=1.63 \times 10^{-2} \mathrm{M}$, temp. $=$ $25.0^{\circ} \mathrm{C}$.

$1(\mathrm{~s})$	$\mathrm{A}_{1}(\lambda=518 \mathrm{~nm})$	$-\ln \left(A_{1}-A_{m}\right)$
0.0	0.884	0.681
40.0	0.857	0.736
60.0	0.839	0.774
80.0	0.824	0.807
100.0	0.807	0.846
140.0	0.784	0.901
180.0	0.755	0.976
220.0	0.733	1.036
260.0	0.711	1.100
300.0	0.693	1.155
360.0	0.666	1.245
450.0	0.632	1.370
∞	0.378	

slope $=1.55 \times 10^{-3} 5^{-1}, \mathrm{R}^{2}=0.998$.

Tuble AIII 9. [9c] $=1.45 \times 10^{-4} \mathrm{M},\left[\right.$ DAMD] $=5.70 \times 10^{-3} \mathrm{M}$, temp. $21.0^{\circ} \mathrm{C}$.

$1(\min)$	$A_{l}(\lambda=413 \mathrm{~nm})$	$-\ln \left(A_{4}-A_{\infty}\right)$
0.0	0.645	1.019
4.0	0.611	1.146
8.0	0.576	1.262
12.0	0.549	1.363
16.0	0.523	1.470
20.0	0.498	1.585
24.0	0.478	1.687
	0.293	

slope $=2.76 \times 10^{-2}$ min $^{-1}, R^{2}=0.999$.

Table AIII 11. $[9 c]=1.18 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=2.71 \times 10^{-2} \mathrm{M}$, temp. $=$ $18.0^{\circ} \mathrm{C}$

t (s)	$A_{1}(\lambda=518 \mathrm{~nm})$	$-\ln \left(A_{4}-A_{20}\right)$
0.0	0.881	0.687
40.0	0.844	0.764
60.0	0.819	0.819
80.0	0.798	0.868
100.0	0.779	0.914
120.0	0.761	0.960
160.0	0.729	1.047
200.0	0.700	1.133
240.0	0.674	1.217
280.0	0.651	1.298
330.0	0.625	1.398
390.0	0.597	1.519
450.0	0.573	1.635
510.0	0.552	1.749
570.0	0.534	1.858
660.0	0.510	2.025
780.0	0.485	2.235
∞	0.378	

Table AIII 10. [9c] $=1.45 \times 10^{-4} \mathrm{M},[\mathrm{DAMD}]-8.13 \times 10^{-3} \mathrm{M}$, wemp. $21.0^{\circ} \mathrm{C}$.

$t(\min)$	$A_{1}(\lambda=428 \mathrm{~nm})$	$-\ln \left(A_{1}-A_{\mathrm{an}}\right)$
0.0	0.631	1.073
3.0	0.596	1.189
6.0	0.561	1.302
9.0	0.532	1.415
12.0	0.505	1.532
15.0	0.478	1.666
18.0	0.457	1.784
21.0	0.438	1.904
24.0	0.420	2.033
∞	0.289	

slope $=4.01 \times 10^{-2} \mathrm{~min}^{-1}, R^{2}=1.000$.

Table AIII 12. [cc$]=1.18 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]-2.39 \times 10^{-2} \mathrm{M}$, watup. $=$ $18.0^{\circ} \mathrm{C}$.

$t(\mathrm{~s})$	$A_{1}\left(\lambda_{-518} \mathrm{~nm}\right)$	$-\ln \left(\mathrm{A}_{4} \cdot \mathrm{~A}_{\mathrm{m}}\right)$
0.0	0.883	0.683
40.0	0.839	0.774
60.0	0.821	0.814
80.0	0.805	0.851
110.0	0.780	0.911
150.0	0.754	0.978
180.0	0.736	1.027
240.0	0.705	1.118
300.0	0.678	1.204
360.0	0.652	1.295
420.0	0.630	1.378
480.0	0.609	1.465
540.0	0.590	1.551
660.0	0.556	1.726
780.0	0.528	1.897
∞	0.378	

[^10]| 1 (5) | $A_{1}(\lambda=518 \mathrm{~nm})$ | $-\ln \left(A_{1}-A_{\infty}\right)$ |
| :---: | :---: | :---: |
| 0.0 | 0.876 | 0.697 |
| 40.0 | 0.864 | 0.722 |
| 80.0 | 0.844 | 0.764 |
| 120.0 | 0.827 | 0.801 |
| 180.0 | 0.805 | 0.851 |
| 220.0 | 0.792 | 0.882 |
| 260.0 | 0.780 | 0.911 |
| 300.0 | 0.767 | 0.944 |
| 380.0 | 0.745 | 1.002 |
| 460.0 | 0.734 | 1.033 |
| 540.0 | 0.703 | 1.124 |
| 620.0 | 0.683 | 1.187 |
| 720.0 | 0.662 | 1.259 |
| 840.0 | 0.639 | 1.343 |
| 960.0 | 0.618 | 1.427 |
| ∞ | 0.378 | |
| slope $=7.64 \times 10^{-4} \mathrm{~s}^{-1}, \mathrm{R}^{2}=0.999$. | | |
| Table Alli 15. $[9 \mathrm{c}]=1.18 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=3.58 \times 10^{-2} \mathrm{M}$, temp. $=$ $120^{\circ} \mathrm{C}$. | | |
| 1 (s) | $\mathrm{A}_{1}(\lambda=518 \mathrm{~nm})$ | $-\ln \left(A_{1}-A_{\infty}\right)$ |
| 0.0 | 0.892 | 0.666 |
| 40.0 | 0.857 | 0.736 |
| 60.0 | 0.837 | 0.779 |
| 80.0 | 0.818 | 0.821 |
| 100.0 | 0.800 | 0.863 |
| 120.0 | 0.785 | 0.899 |
| 160.0 | 0.758 | 0.968 |
| 200.0 | 0.735 | 1.030 |
| 240.0 | 0.712 | 1.100 |
| 280.0 | 0.693 | 1.155 |
| 330.0 | 0.669 | 1.234 |
| 390.0 | 0.646 | 1.317 |
| 480.0 | 0.613 | 1.448 |
| 600.0 | 0.576 | 1.619 |
| 720.0 | 0.545 | 1.780 |
| ∞ | 0.378 | |

[^11]Table AIII 16. $[9 \mathrm{c}]=1.18 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=2.39 \times 10^{-2} \mathrm{M}$, temp. $=$ $13.0^{\circ} \mathrm{C}$

$1(8)$	$A_{1}(\lambda=518 \mathrm{~nm})$	$-\ln \left(A_{1}-A_{00}\right)$
0.0	0.890	0.641
40.0	0.873	0.673
60.0	0.858	0.703
80.0	0.845	0.730
100.0	0.833	0.755
120.0	0.821	0.781
140.0	0.811	0.803
200.0	0.782	0.870
280.0	0.750	0.949
330.0	0.731	1.000
390.0	0.710	1.058
480.0	0.682	1.143
600.0	0.648	1.255
720.0	0.618	1.366
∞	0.378	

slope $=1.09 \times 10^{-3} \mathrm{~s}^{-1}, R^{2}=0.998$.
Table AIII 17. $[\mathrm{Cc}]=1.18 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=1.19 \times 10^{-2} \mathrm{M}$, temp. = $13.0^{\circ} \mathrm{C}$

$1(\mathrm{~s})$	$A_{1}(\lambda=518 \mathrm{~nm})$	$-\ln \left(A_{1}-A_{m}\right)$
0.0	0.885	0.650
40.0	0.867	0.685
80.0	0.852	0.715
120.0	0.838	0.744
160.0	0.824	0.774
210.0	0.810	0.855
270.0	0.793	0.844
360.0	0.774	0.889
420.0	0.760	0.924
540.0	0.735	0.989
600.0	0.722	1.024
720.0	0.700	1.088
∞	0.378	

slope $=6.08 \times 10^{-4} \mathrm{~s}^{-1}, \mathrm{R}^{2}=0.998$.

AIV. Kinetic data of the oxidative addition of DMAD to $\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-$ $\left.\mathrm{PN}_{3}\right)_{2}$ (HH) 10 c in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (binding of DMAD, k_{1})

Table AIV $1 .[10 \mathrm{c}]=1.10 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=4.88 \times 10^{-2} \mathrm{M}$, temp. $=34.0^{\circ} \mathrm{C}$.

$1(\mathrm{~s})$	$\mathrm{A}_{1}(\lambda=500 \mathrm{~nm})$	$-\ln \left(\mathrm{A}_{1}-\mathrm{A}_{\infty}{ }^{*}\right)$
0.0	0.499	1.162
40.0	0.332	1.924
50.0	0.305	2.129
60.0	0.285	2.313
70.0	0.268	2.501
80.0	0.254	2.688
90.0	0.240	2.919
100.0	0.229	3.147
120.0	0.214	3.576
140.0	0.204	4.017
∞	0.186	

*The lowest absorbance recorded before the subsequent increase of absorbance reading, similarly hereinafter.
slope $=2.00 \times 10^{-2} \mathrm{~g} \cdot 1, \mathrm{R}^{2}=0.998$.
Table AIV 2. $[10 \mathrm{c}]=1.10 \times 10^{-3} \mathrm{M}$. [DAMD] $=2.28 \times 10^{-2} \mathrm{M}$, temp. $=34.0^{\circ} \mathrm{C}$.

$1(s)$	$A_{1}(\lambda=500 \mathrm{~nm})$	$-\ln \left(\mathrm{A}_{1}-\mathrm{A}_{\infty}{ }^{*}\right)$
0.0	0.508	1.146
40.0	0.415	1.492
60.0	0.379	1.666
80.0	0.349	1.839
100.0	0.324	2.010
120.0	0.304	2.172
140.0	0.288	2.323
160.0	0.275	2.465
180.0	0.263	2.617
200.0	0.253	2.765
∞	0.190	

[^12]TAble AIV 3. $[10 \mathrm{c}]=1.10 \times 10^{-3} \mathrm{M},[$ DAMD $]=3.25 \times 10^{-2} \mathrm{M} . \operatorname{temp}$. $-34.0^{\circ} \mathrm{C}$.

$t(s)$	$A_{1}(\lambda=500 \mathrm{~nm})$	$-\ln \left(A_{1}-A_{\infty}{ }^{*}\right)$
0	0.501	1.168
30	0.399	1.565
40	0.377	1.677
60	0.336	1.924
80	0.305	2.163
100	0.278	2.430
120	0.258	2.688
140	0.242	2.957
160	0.230	3.219
180	0.219	3.540
200	0.212	3.817
∞	0.190	

코

Table AIV 4. $[10 c]=1.10 \times 10^{-3} \mathrm{M},[D A M D]=3.25 \times 10^{-2} \mathrm{M}$, temp. $=$ $29.0^{\circ} \mathrm{C}$.

$t(\mathrm{~s})$	$\mathrm{A}_{1}(\lambda=500 \mathrm{~nm})$	$-\ln \left(\mathrm{A}_{1} \cdot \mathrm{~A}_{\infty}^{*}\right)$
0.0	0.498	1.158
40.0	0.382	1.619
60.0	0.346	1.820
80.0	0.318	2.010
100.0	0.295	2.198
120.0	0.275	2.397
140.0	0.259	2.590
160.0	0.245	2.797
180.0	0.234	2.996
200.0	0.225	3.194
∞	0.184	
slope $=1.00 \times 10^{-2} \mathrm{~g}^{-1}, \mathrm{R}^{2}=0.999$.		

Table AIV 5. $[10 \mathrm{c}]=1.10 \times 10^{-3} \mathrm{M}$, [DAMD] $=6.50 \times 10^{-2} \mathrm{M}$, temp. $=$ $29.0^{\circ} \mathrm{C}$.

$l(s)$	$A_{1}(\lambda=500 \mathrm{~nm})$	$\ln \left(\mathrm{A}_{1}-\mathrm{A}_{\infty}{ }^{*}\right)$
0.0	0.509	1.136
40.0	0.320	2.025
50.0	0.298	2.207
60.0	0.276	2.430
70.0	0.260	2.631
80.0	0.247	2.830
90.0	0.236	3.037
100.0	0.227	3.244
120.0	0.213	3.689
∞	0.190	

slope $=2.20 \times 10^{-2} \mathrm{~s}^{-1}, \mathrm{R}^{2}=0.999$.

Table AIV 6. $[10 \mathrm{c}]=1.10 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=4.06 \times 10^{-2} \mathrm{M}$. temp. $=$ $25.0^{\circ} \mathrm{C}$.

$1(\mathrm{~s})$	$A_{1}(\lambda=500 \mathrm{~nm})$	$-\ln \left(A_{1}-A_{\infty}{ }^{\circ}\right)$
0.0	0.488	1.130
30.0	0.384	1.519
40.0	0.359	1.640
50.0	0.340	1.743
60.0	0.323	1.843
70.0	0.308	1.945
80.0	0.294	2.048
100.0	0.270	2.254
120.0	0.250	2.465
140.0	0.235	2.659
160.0	0.222	2.865
∞	0.168	

slope $=9.08 \times 10^{-3} \mathrm{~s}^{-1}, \mathrm{R}^{2}=1.000$.
Table AIV 7. $[10 \mathrm{c}]=1.10 \times 10^{-3} \mathrm{M},(\mathrm{DAMD}]=6.50 \times 10^{-2} \mathrm{M}$, temp. $=$ $25.0^{\circ} \mathrm{C}$

$t(s)$	$A_{1}(\lambda=500 \mathrm{~nm})$	$-\ln \left(A_{t}-A_{\infty}{ }^{\circ}\right)$
0.0	0.488	1.106
30.0	0.352	1.704
40.0	0.325	1.864
50.0	0.299	2.048
60.0	0.280	2.207
70.0	0.263	2.375
80.0	0.250	2.526
100.0	0.228	2.847
120.0	0.212	3.170
∞	0.170	

[^13]Table AIV 8. $\quad[10 c]=1.10 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=3.25 \times 10^{-2} \mathrm{M}$, temp. $=$ $21.0^{\circ} \mathrm{C}$.

$t(s)$	$A_{1}(\lambda=500 \mathrm{~nm})$	$-\ln \left(A_{1}-A_{00}{ }^{\circ}\right)$
0.0	0.490	1.152
40.0	0.398	1.500
50.0	0.375	1.604
60.0	0.359	1.687
70.0	0.344	1.772
80.0	0.331	1.852
90.0	0.319	1.931
100.0	0.308	2.010
120.0	0.290	2.154
140.0	0.275	2.293
160.0	0.260	2.453
200.0	0.238	2.749
240.0	0.223	3.016
280.0	0.211	3.297
∞	0.174	

slope $=7.58 \times 10^{-3} \mathrm{~s}^{-1}, \mathrm{R}^{2}=0.999$
Table AIV 9. [10c] $=1.10 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=6.50 \times 10^{-2} \mathrm{M}$, temp. $=$ $21.0^{\circ} \mathrm{C}$.

$1(\mathrm{~s})$	$\mathrm{A}_{1}(\lambda=500 \mathrm{~nm})$	$-\ln \left(A_{4} \cdot A_{\infty 0^{\circ}}\right)$
0.0	0.499	1.124
40.0	0.340	1.833
60.0	0.299	2.129
70.0	0.286	2.244
80.0	0.270	2.408
90.0	0.259	2.538
100.0	0.249	2.674
120.0	0.232	2.957
160.0	0.210	3.502
∞	0.177	

slope $=1.33 \times 10^{-2} \mathrm{~s}^{-1}, \mathrm{R}^{2}=0.999$.

Table AIV 10. $[10 \mathrm{C}]=1.10 \times 10^{-3} \mathrm{M},\{\mathrm{DAMD}]=6.50 \times 10^{-2} \mathrm{M}$, temp $=$ $17.0^{\circ} \mathrm{C}$.

$1(s)$	$A_{1}(\lambda=500 \mathrm{~nm})$	$-\ln \left(A_{t}-A_{\infty}{ }^{*}\right)$
0.0	0.493	1.121
30.0	0.356	1.614
40.0	0.328	1.766
50.0	0.307	1.897
60.0	0.290	2.017
70.0	0.274	2.146
100.0	0.239	2.501
140.0	0.213	2.882
180.0	0.192	3.352
∞	0.164	

slope $=1.09 \times 10^{-2} \mathrm{~s}^{-1}, \mathrm{R}^{2}=0.997$.
Table AIV $11 .[10 c]=1.10 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=4.07 \times 10^{-2} \mathrm{M}$, temp. $=$ $170^{\circ} \mathrm{C}$

$1(\mathrm{~g})$	$\mathbf{A}_{1}(\lambda=500 \mathrm{~nm})$	$-\ln \left(A_{1} \cdot A_{\infty}{ }^{\circ}\right)$
0.0	0.492	1.109
30.0	0.396	1.431
40.0	0.376	1.519
50.0	0.357	1.609
60.0	0.340	1.698
80.0	0.313	1.858
100.0	0.293	1.995
120.0	0.273	2.154
160.0	0.245	2.430
220.0	0.217	2.813
∞	0.159	

slope $=7.14 \times 10^{-3} \mathrm{~s}^{-1}, \mathrm{R}^{2}=0.997$.

AV. Kinetic data of the isomerization of $\mathrm{P}_{2} \mathrm{I}_{2}(\mu-\mathrm{DMAD})\left(\mu-\mathrm{PN}_{3}\right)_{2}$ (HH), 28.2 to $\mathrm{P}_{2} \mathrm{~J}_{2}(\mu-\mathrm{DMAD})\left(\mu-\mathrm{PN}_{3}\right)_{2}(\mathrm{HT})$, 19, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{k}_{2}\right)$.
Table AV $1 .[10 \mathrm{c}]=1.10 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=2.28 \times 10^{-2} \mathrm{M}$, temp.. $34 . \%^{\circ} \mathrm{C}$.

$t(\min)$	$A_{1}(\lambda=476 \mathrm{~nm})$	$-\ln \left(A_{00}-A_{1}\right)$
0.0	0.363	1.174
5.0	0.373	1.207
35.0	0.460	1.551
65.0	0.517	1.864
95.0	0.558	2.172
125.0	0.589	2.489
155.0	0.609	2.765
185.0	0.625	3.058
215.0	0.636	3.324
∞	0.672	

slope $=1.01 \times 10^{-2} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.997$.
Table AV 2. $[10 \mathrm{c}]=1.10 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=3.25 \times 10^{-2} \mathrm{M}$, termp. . $34.0^{\circ} \mathrm{C}$.

$t(h)$	$A_{1}(\lambda=460 \mathrm{~nm})$	$-\ln \left(A_{0} A_{1}\right)$
0.0	0.478	0.872
0.04	0.503	0.929
1.04	0.698	1.609
2.04	0.787	2.198
3.04	0.830	2.688
4.04	0.860	3.270
∞	0.898	

slope $=9.76 \times 10^{-3} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.997$.

Table AV 3. $[10 \mathrm{c}]=1.10 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=4.88 \times 10^{-2} \mathrm{M}$, temp. $=$ $34.0^{\circ} \mathrm{C}$.

$1(\min)$	$A_{1}(\lambda=460 \mathrm{~nm})$	$-\ln \left(A_{\infty}-A_{1}\right)$
0.0	0.451	0.920
3.0	0.469	0.965
28.0	0.568	1.266
53.0	0.634	1.532
78.0	0.685	1.802
103.0	0.715	2.002
128.0	0.745	2.250
153.0	0.765	2.470
178.0	0.782	2.690
203.0	0.795	2.900
∞	0.850	

slope $=9.72 \times 10^{-3} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.997$.

Table AV 4. $[10 \mathrm{c}]=1.10 \times 10^{-3} \mathrm{M}$, $\{\mathrm{DAMD}]=3.25 \times 10^{-2} \mathrm{M}$, temp. $=$ $29.0^{\circ} \mathrm{C}$.

$1(\mathrm{~min})$	$A_{1}(\lambda=480 \mathrm{~nm})$	$-\ln \left(A_{\infty}-A_{U}\right)$
0.0	0.286	1.115
9.0	0.296	1.146
39.0	0.356	1.355
69.0	0.399	1.537
99.0	0.435	1.720
129.0	0.463	1.890
159.0	0.486	2.056
189.0	0.507	2.235
219.0	0.522	2.386
249.0	0.539	2.590
279.0	0.548	2.718
∞	0.614	

slope $=5.72 \times 10^{-3} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.999$.
Table AV 5. [10c] $=1.10 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=6.50 \times 10^{-2} \mathrm{M}$, temp. $29.0^{\circ} \mathrm{C}$.

$1(\mathrm{~min})$	$\mathrm{A}_{\mathbf{1}}(\lambda=470 \mathrm{~nm})$	$-\ln \left(\mathrm{A}_{0}-\mathrm{A}_{\mathbf{U}}\right)$
0.0	0.386	1.013
3.0	0.393	1.033
33.0	0.457	1.231
63.0	0.502	1.398
93.0	0.538	1.556
123.0	0.570	1.720
153.0	0.595	1.871
183.0	0.620	2.048
213.0	0.638	2.198
243.0	0.652	2.333
273.0	0.668	2.477
303.0	0.686	2.740
∞	0.749	

[^14]Table AV 8. $[10 \mathrm{c}]=1.10 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=3.25 \times 10^{-2} \mathrm{M}$, cemp. $=$
$21.0^{\circ} \mathrm{C}$.

$t(\mathrm{~min})$	$\mathrm{A}_{1}(\lambda=478 \mathrm{~nm})$	$-\ln \left(\mathrm{A}_{\sigma}-\mathrm{A}_{\mathrm{A}}\right)$
0.0	0.297	1.162
45.0	0.324	1.252
90.0	0.347	1.336
135.0	0.366	1.411
180.0	0.383	1.483
225.0	0.401	1.565
270.0	0.415	1.635
315.0	0.426	1.693
∞	0.610	

slope $=1.65 \times 10^{-3} \mathrm{~min}^{-1}, \mathrm{R}^{\mathbf{2}}=0.996$.		
Table AV 9. $[10 \mathrm{c}]=1.10 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=6.50 \times 10^{-2} \mathrm{M}$, temp. $21.0^{\circ} \mathrm{C}$.		
$1(\mathrm{~min})$	$\mathrm{A}_{1}(\lambda=457 \mathrm{~nm})$	$-\ln \left(A_{\infty}-A_{4}\right)$
4.0	0.501	0.801
44.0	0.532	0.872
84.0	0.561	0.944
124.0	0.584	1.005
164.0	0.604	1.061
204.0	0.621	1.112
244.0	0.638	1.165
284.0	0.654	1.217
324.0	0.667	1.262
364.0	0.681	1.313
404.0	0.694	1.363
444.0	0.707	1.415
484.0	0.718	1.461
524.0	0.727	1.501
∞	0.950	

slope $=1.37 \times 10^{-3} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.997$.

Table AV 6. $[10 \mathrm{c}]=1.10 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=6.50 \times 10^{-2} \mathrm{M}$, temp. $=$
$25.0^{\circ} \mathrm{C}$.

$\mathrm{t}(\mathrm{min})$	$\mathrm{A}_{\mathbf{t}}(\lambda=486 \mathrm{~nm})$	$-\ln \left(\mathrm{A}_{\mathrm{L}}-\mathrm{A}_{\mathbf{l}}\right)$
0.0	0.258	1.262
34.0	0.288	1.374
64.0	0.313	1.478
94.0	0.333	1.570
124.0	0.350	1.655
154.0	0.365	1.737
184.0	0.379	1.820
214.0	0.391	1.897
∞	0.541	

slope $=2.82 \times 10^{-3} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.997$.

Table AV 10. $[10 \mathrm{c}]=1.10 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=6.50 \times 10^{-2} \mathrm{M}$, temp. $=$ $17.0^{\circ} \mathrm{C}$.

$1(\min)$	$A_{1}(\lambda=470 \mathrm{~mm})$	$-\ln \left(\mathrm{A}_{\infty}-\mathrm{A}_{U}\right)$
0.0	0.342	1.016
60.0	0.360	1.070
120.0	0.375	1.112
180.0	0.392	1.165
240.0	0.405	1.207
300.0	0.419	1.255
360.0	0.432	1.302
420.0	0.446	1.355
480.0	0.457	1.398
∞	0.704	

slope $=7.95 \times 10^{-4} \mathrm{~min}^{-1}, \mathrm{R}^{2}=1.000$.
Table AV 11. [10c] $=1.10 \times 10^{-3} \mathrm{M},[\mathrm{DAMD}]=4.07 \times 10^{-2} \mathrm{M}$, temp. $=$ $17.0^{\circ} \mathrm{C}$.

$1(\mathrm{~min})$	$\mathrm{A}_{1}(\lambda=478 \mathrm{~nm})$	$-\ln \left(\mathrm{A}_{\infty} \mathrm{A}_{1}\right)$
0.0	0.275	1.162
80.0	0.301	1.248
160.0	0.320	1.317
240.0	0.337	1.382
320.0	0.351	1.440
400.0	0.366	1.505
480.0	0.379	1.565
560.0	0.392	1.630
∞	0.588	

slope $=7.68 \times 10^{-4} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.999$.

AVI. Kinetic data of the oxidative addition of DMAD to $\mathrm{P}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{1}\right)_{2}$ (HH), 10a, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
Table AVI $1 .[10 \mathrm{a}]=2.89 \times 10^{-4} \mathrm{M},[\mathrm{DAMD}]=1.08 \times 10^{-2} \mathrm{M}$, temp. $=$ $35.0^{\circ} \mathrm{C}$.

0.0	$A_{1}(\lambda=425 \mathrm{~nm})$	$-\ln \left(A_{r} A_{0}\right)$
3.0	0.709	0.904
13.0	0.673	0.997
23.0	0.578	1.295
33.0	0.506	1.599
43.0	0.449	1.931
53.0	0.411	2.235
63.0	0.381	2.564
73.0	0.361	2.865
∞	0.346	3.170

slope $=3.16 \times 10^{-2} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.997$.
Table AVI 2. $[10 \mathrm{a}]=2.89 \times 10^{-4} \mathrm{M},[\mathrm{DAMD}]=8.13 \times 10^{-3} \mathrm{M}$, temp. $=$ $35.0^{\circ} \mathrm{C}$.

$t(\min)$	$\mathrm{A}_{\mathbf{1}}(\lambda=425 \mathrm{~nm})$	$-\ln \left(A_{r} A_{\infty}\right)$
0.0	0.709	0.880
20.0	0.546	1.366
30.0	0.489	1.619
40.0	0.449	1.845
50.0	0.414	2.096
60.0	0.390	2.313
70.0	0.366	2.590
80.0	0.350	2.830
90.0	0.337	3.079
∞	0.291	

slope $=2.39 \times 10^{-2} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.999$.

Table AVI 3. $|10 \mathrm{a}|=2.89 \times 10^{-4} \mathrm{M},|\mathrm{DAMD}|=1.08 \times 10^{-2} \mathrm{M}$, temp.

$=30.0^{\circ} \mathrm{C}$.		
$\mathbf{t (m i n})$	$\mathrm{A}_{1}(\lambda=425 \mathrm{~nm})$	0.931
0.0	0.723	0.983
2.5	0.703	1.359
17.5	0.586	1.754
32.5	0.502	2.137
47.5	0.447	2.538
62.5	0.408	2.900
77.5	0.384	
∞	0.329	

slope $=2.64 \times 10^{-2} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.999$.
Table AVI 4. $[10 \mathrm{a}]=2.89 \times 10^{-4} \mathrm{M},[$ DAMD $]=1.63 \times 10^{-2} \mathrm{M}$, temp. $=30.0^{\circ} \mathrm{C}$.

$t(\min)$	$\mathrm{A}_{\mathrm{t}}(\lambda=425 \mathrm{~nm})$	$-\ln \left(\mathrm{A}_{\mathrm{C}} \mathrm{A}_{\infty}\right)$
0.0	0.732	0.919
3.0	0.684	1.047
13.0	0.574	1.423
23.0	0.494	1.826
33.0	0.439	2.244
43.0	0.401	2.688
53.0	0.375	3.170
∞	0.333	

slope $=4.20 \times 10^{-2} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.998$.
Table AVI 5. $[10 \mathrm{a}]=2.89 \times 10^{-4} \mathrm{M},[\mathrm{DAMD}]=1.63 \times 10^{-2} \mathrm{M}$, temp. $=25.0^{\circ} \mathrm{C}$.

$t(\min)$	$A_{t}(\lambda=425 \mathrm{~nm})$	$-\ln \left(\mathrm{A}_{t} \mathrm{~A}_{\infty}\right)$
3.0	0.681	0.965
11.0	0.601	1.201
19.0	0.536	1.444
27.0	0.483	1.698
35.0	0.444	1.938
43.0	0.413	2.180
51.0	0.390	2.408
59.0	0.369	2.674
∞	0.300	

slope $=3.05 \times 10^{-2} \mathrm{~min}^{-1}, \mathrm{R}^{2}=1.000$.

Table AVI $6 .|10 \mathrm{a}|=2.89 \times 10^{-4} \mathrm{M},|\mathrm{DAMD}|=8.13 \times 10^{-3} \mathrm{M}$, temp.

$=25.0^{\circ} \mathrm{C}$.	$-\ln \left(\mathrm{A}_{\mathrm{t}}-\mathrm{A}_{\infty}\right)$	
$1(\mathrm{~min})$	$\mathrm{A}_{1}(\lambda=425 \mathrm{~nm})$	0.965
3.0	0.683	1.149
15.0	0.619	1.343
27.0	0.563	1.528
39.0	0.519	1.749
51.0	0.476	1.938
63.0	0.446	2.137
75.0	0.420	2.333
87.0	0.399	
∞	0.302	
slope $=1.65 \times 10^{-2} \mathrm{~min}^{-1}, \mathrm{R}^{2}=1.000$.		

$\frac{\infty}{\infty} \frac{0.302}{\text { slope }=1.65 \times 10^{-2} \mathrm{~min}^{-1}, \mathrm{R}^{2}=1.000 .}$
Table AVI 7. $[10 \mathrm{a}]=2.89 \times 10^{-4} \mathrm{M},[\mathrm{DAMD}]=1.63 \times 10^{-2} \mathrm{M}$, temp. $=20.0^{\circ} \mathrm{C}$.

$\mathrm{l}(\mathrm{min})$	$\mathrm{A}_{\mathrm{l}}(\lambda=425 \mathrm{~nm})$	$-\ln \left(\mathrm{A}_{1} \mathrm{~A}_{\infty}\right)$
3.0	0.693	0.949
18.0	0.570	1.332
33.0	0.482	1.737
48.0	0.425	2.129
63.0	0.386	2.526
78.0	0.357	2.976
∞	0.306	

slope $=2.69 \times 10^{-2} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.999$.
Table AVI 8. $[10 \mathrm{a}]=2.89 \times 10^{-4} \mathrm{M},[\mathrm{DAMD}]=1.08 \times 10^{-2} \mathrm{M}$, temp. $=20.0^{\circ} \mathrm{C}$.

$\mathbf{t}(\mathrm{min})$	$\mathrm{A}_{1}(\lambda=425 \mathrm{~nm})$	$-\ln \left(A_{-}-A_{\infty}\right)$
0.0	0.714	0.856
5.0	0.684	0.929
25.0	0.571	1.266
45.0	0.488	1.614
65.0	0.432	1.945
85.0	0.393	2.263
105.0	0.365	2.577
125.0	0.346	2.865
∞	0.289	

slope $=1.63 \times 10^{-2} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.999$.

Table AVI 9. $\mid 10 \mathrm{a}]=6.63 \times 10^{-4} \mathrm{M},[\mathrm{DAMD}]=1.33 \times 10^{-2} \mathrm{M}$, temp. $=30.0{ }^{\circ} \mathrm{C}$.

1 (min)	$\mathrm{A}_{1}(\lambda=425 \mathrm{~nm})$	$-\ln \left(A_{1}-A_{\infty}\right)$
0.0	1.614	0.091
3.5	1.551	0.163
13.5	1.304	0.506
23.5	1.138	0.828
33.5	1.021	1.139
43.5	0.930	1.474
53.5	0.869	1.784
63.5	0.833	2.025
∞	0.701	
$\text { slope }=3.26 \times 10^{-2} \mathrm{~min}^{-1}, \mathrm{R}^{2}=1.000 .$		
Table AVI 10. $[10 \mathrm{a}]=5.31 \times 10^{-4} \mathrm{M},[$ DAMD $]=1.33 \times 10^{-2} \mathrm{M}$, temp. $=30.0^{\circ} \mathrm{C}$.		
1 (min)	$A_{1}(\lambda=430 \mathrm{~nm})$	$\underline{\ln \left(A_{4}+A_{\infty}\right)}$
0.0	1.178	0.392 .
3.5	1.123	0.476
13.5	0.946	0.812
23.5	0.820	1.146
33.5	0.721	1.519
43.5	0.669	1.790
53.5	0.621	2.129
∞	0.502	

slope $=3.25 \times 10^{-2} \mathrm{~min}^{-1}, \mathrm{R}^{2}=1.000$.
Table AVI 11. [10a] $=4.09 \times 10^{-4} \mathrm{M},[\mathrm{DAMD}]=1.33 \times 10^{-2} \mathrm{M}$, temp.

$=30.0^{\circ} \mathrm{C}$.		
$1(\mathrm{~min})$	$\mathrm{A}_{1}(\lambda=430 \mathrm{~nm})$	$-\ln \left(\mathrm{A}_{r}-\mathrm{A}_{\infty}\right)$
0.0	0.908	
3.5	0.857	
13.5	0.726	
23.5	0.631	
33.5	0.564	
43.5	0.517	
53.5	0.482	
∞	0.390	

slope $=3.23 \times 10^{-2} \mathrm{~min}^{-1}, \mathrm{R}^{2}=1.000$.

Table AV1 12. $|10 \mathrm{ax}|=2.83 \times 10^{-4} \mathrm{M},|\mathrm{DAMD}|=1.33 \times 10^{-2} \mathrm{M}$, temp.

$=30.0^{\circ} \mathrm{C}$		$-\ln \left(A_{1}-A_{\infty}\right)$
$1(\min)$	$A_{1}(\lambda=430 \mathrm{~nm})$	
0.0	0.629	
3.5	0.601	
13.5	0.513	
23.5	0.448	
33.5	0.405	
43.5	0.373	
53.5	0.348	
∞	0.285	

slope $=3.17 \times 10^{-2} \min ^{-1}, \mathrm{R}^{2}=1.000$.

AVII Kinetics of the oxidative addition of DMAD to $\mathrm{P}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}$ (HH), 10b.2/10b.3, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Derivation of the rate-law for reactions 4.6 and 4.7:
Because 10b. 2 and 10b.3, 31.1 and 32.1, as well as 31.2 and 32.2 are three enantiomeric sets, $\mathrm{E}(10 \mathrm{~b} .2)=\mathrm{e}(10 \mathrm{~b} .3) \mathrm{etc}$.
$A_{0}=A_{0}(10 b .2)+A_{0}(10 b .3)=E(10 b .2)([10 b .2]+$ $[10 \mathrm{~b} .3])!=\mathrm{e}(10 \mathrm{~b} .2)\left[10 \mathrm{~b} .2 / 10 \mathrm{~b} .311=\mathrm{eC} \mathrm{C}_{\mathrm{i}} \mathrm{l}\right.$

Assuming 31.1/32.1 and 31.2/32.2 are formed in a fixed ratio, at the end of reaction: $[31.2 / 32.2]:[31.1 / 32.1]=K$, and [31.2/32.2] $+[31.1 / 32.1]=C_{i} ; x$ is the concentration of

$$
\begin{aligned}
& 10 \mathrm{~b} .2 / 10 \mathrm{~b} .3 \text { at time } \mathrm{t} \text {. } \\
& A_{\infty}=\varepsilon_{31.1} \frac{C_{i}}{1+K} 1+\varepsilon_{31.2} \frac{K C_{i}}{1+K} 1 \\
& \dot{A_{i}}=x \varepsilon_{100.2}+\frac{C_{i}-x}{1+K} \varepsilon_{31.1}+\varepsilon_{31.2} \frac{K\left(C_{i}-x\right)}{1+K} 1 \\
& A_{1}-A_{-}=x\left(\varepsilon_{10 \mathrm{~L} .2}-\frac{\varepsilon_{31.1}+K \varepsilon_{31.2}}{1+K}\right) \\
& A_{0}-A_{\omega}=C_{1}\left(\varepsilon_{100.2}-\frac{\varepsilon_{31.1}+K \varepsilon_{31.2}}{1+K}\right. \\
& \frac{A_{i}-A_{\infty}}{A_{0}-A_{\infty}}=\frac{x}{C_{i}} \\
& \text { Thus, for a first-order reaction, a plot of } \ln \left(A_{t}-A_{\infty}\right) \text { vs. } t \text { should } \\
& \text { be a straight line. }
\end{aligned}
$$

Table AVII 1. [10b. $2 / 10 \mathrm{~b} .3]=2.18 \times 10^{-4} \mathrm{M},\left[\right.$ DAMD] $=8.13 \times 10^{-3} \mathrm{M}$, temp. $=25.0^{\circ} \mathrm{C}$.

$1(\min)$	$\mathrm{A}_{1}(\lambda=425 \mathrm{~nm})$	$-\ln \left(\mathrm{A}_{1}-\mathrm{A}_{\mathrm{m}}\right)$
0.0	0.998	0.732
3.3	0.703	0.952
5.0	0.669	1.044
8.0	0.630	1.162
13.0	0.559	1.419
18.0	0.514	1.625
23.0	0.471	1.870
28.0	0.441	2.087
33.0	0.415	2.323
38.0	$\because .396$	2.538
∞	0.317	

slope $=4.55 \times 10^{-2} \mathrm{~min}^{-1}, R^{2}=0.999$.
Table AVI 2. $[10 \mathrm{~b} .2 / 10 \mathrm{~b} .3]=2.18 \times 10^{-4} \mathrm{M},[\mathrm{DAMD}]=8.13 \times 10^{-3} \mathrm{M}$, temp. $=35.0^{\circ} \mathrm{C}$.

$1(\mathrm{~min})$	$\mathrm{A}_{1}(\lambda=425 \mathrm{~nm})$	$-\ln \left(\mathrm{A}_{4}-\mathrm{A}_{\infty}\right)$
0.0	0.819	0.757
2.5	0.708	1.027
6.5	0.600	1.386
10.5	0.532	1.704
14.5	0.479	2.048
18.5	0.445	2.354
22.5	0.422	2.631
∞	0.350	

slope $=8.08 \times 10^{-2} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.998$.

Table AVI 3. $[10 \mathrm{~b} .2 / 10 \mathrm{D} .3]=2.18 \times 10^{-4} \mathrm{M},[\mathrm{DAMD}]=8.13 \times 10^{-3} \mathrm{M}$, temp. $=15.0^{\circ} \mathrm{C}$.

1 (min)	$\mathrm{A}_{l}(\lambda=425 \mathrm{~nm})$	$-\ln \left(\mathrm{A}_{1}-\mathrm{A}_{\infty}\right)$
0.0	0.788	0.633
3.0	0.704	0.805
13.0	0.559	1.197
23.0	0.484	1.483
33.0	0.427	1.772
43.0	0.385	2.056
53.0	0.352	2.354
63.0	0.329	2.631
∞	0.257	

slope $=2.99 \times 10^{-2} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.996$.
Table AVI4. $[10 \mathrm{~b} .2 / 10 \mathrm{~b} .3]=2.18 \times 10^{-4} \mathrm{M},[$ DAMD $]=8.13 \times 10^{-3} \mathrm{M}$, temp. $=30.0^{\circ} \mathrm{C}$.

$1($ min $)$	$A_{1}(\lambda=425 \mathrm{~mm})$	$-\ln \left(A_{r} A_{\infty}\right)$
0.0	0.794	0.699
2.5	0.696	0.919
7.5	0.581	1.259
12.5	0.506	1.565
17.5	0.450	1.877
22.5	0.413	2.154
27.5	0.386	2.419
32.5	0.366	2.674
37.5	0.352	2.900
∞	0.297	

slope $=6.02 \times 10^{-2} \mathrm{~min}^{-1}, R^{2}=0.996$.

Table AVI 5. $[10 \mathrm{~b} .2 / 10 \mathrm{~b} .3]=2.18 \times 10^{-4} \mathrm{M},[\mathrm{DAMD}]=8.13 \times 10^{-3} \mathrm{M}$, temp. $=20.0^{\circ} \mathrm{C}$.

$t(\min)$	$A_{t}(\lambda=425 \mathrm{~nm})$	$-\ln \left(A_{1}, A_{\infty}\right)$
0.0	0.815	0.656
3.0	0.723	0.851
13.0	0.567	1.306
23.0	0.475	1.720
33.0	0.420	2.087
43.0	0.380	2.477
53.0	0.354	2.847
∞	0.296	

alope $=3.93 \times 10^{-2} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.997$.
Table AVII 6. $[10 \mathrm{~b} .2 / 10 \mathrm{~b} .3]=2.18 \times 10^{-4} \mathrm{M},[$ DAMD $]=4.07 \times 10^{-3} \mathrm{M}$, temp. $=20.0^{\circ} \mathrm{C}$.

$t(\mathrm{~min})$	$\mathrm{A}_{1}(\lambda=425 \mathrm{~nm})$	$-\ln \left(\mathrm{A}_{r} \mathrm{~A}_{\infty}\right)$
0.0	0.806	0.669
3.0	0.743	0.801
15.0	0.626	1.103
27.0	0.549	1.366
39.0	0.488	1.640
51.0	0.447	1.877
63.0	0.412	2.137
75.0	0.387	2.375
87.0	0.369	2.590
∞	0.294	

slope $=2.07 \times 10^{-2} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.996$.

Table AVII. $[10 \mathrm{~b} .2 / 10 \mathrm{~b} .3]=2.18 \times 10^{-4} \mathrm{M},[\mathrm{DAMD}]=1.62 \times 10^{-2} \mathrm{M}$, lemp. $=20.0^{\circ} \mathrm{C}$.

$1(\mathrm{~min})$	$\mathrm{A}_{1}(\lambda=425 \mathrm{~nm})$	$-\ln \left(\mathrm{A}_{1}-\mathrm{A}_{\infty}\right)$
0.0	0.791	0.650
2.5	0.669	0.916
7.5	0.527	1.355
12.5	0.440	1.766
17.5	0.338	2.674
22.5	0.350	2.513
27.5	0.324	2.900
32.5	0.309	3.219
∞	0.269	

slope $=7.88 \times 10^{-2} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.998$.
Table AVII 8. Activation parameters of reaction 4.6 and 4.7.

$\mathrm{T}(\mathrm{K})$	$\mathrm{K}\left(\times 10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	$1 / \mathrm{T}\left(\times 10^{3} \mathrm{~K}^{-1}\right)$	$\ln \mathrm{k} / \mathrm{T}$
288.15	5.80	3.47	-8.511
293.15	8.06	3.41	-8.199
298.15	9.33	3.35	-8.070
303.15	12.3	3.30	-7.810
308.15	16.6	3.25	-7.526

AVIII. Kinetic data of the oxidative addition of DMAD o $\mathrm{Pt}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{PN}_{2}\right)_{2}$ (HH), 10b.1, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Table AVIII $1 .[10 \mathrm{~b} .1]=1.99 \times 10^{-4} \mathrm{M},[\mathrm{DAMD}]=8.13 \times 10^{-3} \mathrm{M}$, temp. $=25.0^{\circ} \mathrm{C}$.

$t(\min)$	$A_{t}(\lambda=425 \mathrm{~mm})$	$-\ln \left(\mathrm{A}_{\mathbf{t}}-\mathrm{A}_{0}\right)$
0.0	0.712	0.764
2.5	0.643	0.924
6.5	0.572	1.121
10.5	0.521	1.291
14.5	0.473	1.483
18.5	0.438	1.650
22.5	0.407	1.826
26.5	0.383	1.988
30.5	0.361	2.163
∞	0.246	

slope $=4.37 \times 10^{-2} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.999$.
Table AVIII 2. $[10 \mathrm{~b} .1]=1.99 \times 10^{-4} \mathrm{M},[$ DAMD $]=4.07 \times 10^{-3} \mathrm{M}$. temp. $=25.0^{\circ} \mathrm{C}$.

$1(\min)$	$A_{1}(\lambda=425 \mathrm{~nm})$	$-\ln \left(\mathrm{A}_{t}-\mathrm{A}_{\infty}\right)$
0.0	0.713	0.819
3.7	0.665	0.934
13.7	0.576	1.191
23.7	0.512	1.427
33.7	0.461	1.666
43.7	0.424	1.884
53.7	0.394	2.104
63.7	0.370	2.323
∞	0.272	

[^15]Table AVIII 3. $[10 \mathrm{~b} .1]=1.99 \times 10^{-4} \mathrm{M},[\mathrm{DAMD}]=1.62 \times 10^{-2} \mathrm{M}$, temp. $=$ 25.00 C .

$\mathrm{t}(\mathrm{min})$	$\mathrm{A}_{1}(\lambda=425 \mathrm{~nm})$	$-\ln \left(\mathrm{A}_{1} \cdot \mathrm{~A}_{\infty}\right)$
0.0	0.706	0.730
2.5	0.597	0.986
6.5	0.489	1.328
10.5	0.415	1.655
14.5	0.363	1.973
18.5	0.327	2.273
22.5	0.300	2.577
26.5	0.280	2.882
∞	0.224	

slope $=7.85 \times 10^{-2} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.999$.
Table AVIII. $[10 \mathrm{~b} .1]=1.99 \times 10^{-4} \mathrm{M},[$ DAMD $]=1.22 \times 10^{-2} \mathrm{M}$, temp. $=25.0^{\circ} \mathrm{C}$.

1 (min $)$	$\mathrm{A}_{1}(\lambda=425 \mathrm{~nm})$	$-\ln \left(\mathrm{A}_{1}-\mathrm{A}_{\infty}\right)$
0.0	0.727	0.753
2.5	0.641	0.955
7.5	0.528	1.302
12.5	0.449	1.645
17.5	0.401	1.931
22.5	0.361	2.254
27.5	0.332	2.577
∞	0.256	
slope $=6.37 \times 10^{-2} \mathrm{~min}^{-1} ; \mathrm{R}^{2}=0.999$.		

Table AVIIS. $[10 \mathrm{~b} .1]=1.99 \times 10^{-4} \mathrm{M},[\mathrm{DAMD}]=2.04 \times 10^{-2} \mathrm{M}$, temp. $=25.0^{\circ} \mathrm{C}$.

$\mathrm{t}(\mathrm{min})$	$\mathrm{A}_{1}(\lambda=425 \mathrm{~nm})$	$-\ln \left(\mathrm{A}_{\mathrm{t}}-\mathrm{A}_{\infty}\right)$
0.0	0.707	0.730
2.5	0.589	1.011
7.5	0.419	1.640
12.5	0.337	2.189
17.5	0.288	2.765
22.5	0.261	3.324
27.5	0.245	3.912
∞	0.225	

slope $=1.15 \times 10^{-1} \mathrm{~min}^{-1}, \mathrm{R}^{2}=1.000$.
Table AVIII 6. $[10 \mathrm{~b} .1]=1.99 \times 10^{-4} \mathrm{M},[$ DAMD $]=2.44 \times 10^{-2} \mathrm{M}$, temp. $=25.0^{\circ} \mathrm{C}$.

$t(\mathrm{~min})$	$A_{1}(\lambda=425 \mathrm{~nm})$	$-\ln \left(A_{1}-A_{\infty}\right)$
0.00	0.725	0.724
2.12	0.598	1.027
5.12	0.482	1.419
8.12	0.408	1.784
11.12	0.350	2.207
14.12	0.323	2.489
17.12	0.298	2.847
∞	0.240	

[^16]Table AVIII 7. $[10 \mathrm{~b} .1]=1.99 \times 10^{-4} \mathrm{M},[$ DAMD $]=2.71 \times 10^{-2} \mathrm{M}$, temp. $=25.0^{\circ} \mathrm{C}$.

$1(\mathrm{~min})$	$\mathrm{A}_{1}(\lambda=425 \mathrm{~nm})$	$-\ln \left(\mathrm{A}_{1}-\mathrm{A}_{\infty}\right)$
0.00	0.718	0.709
2.12	0.571	1.064
5.12	0.453	1.483
8.12	0.380	1.871
11.12	0.331	2.254
14.12	0.296	2.659
17.12	0.276	2.996
∞	0.226	

slope $=1.31 \times 10^{-1} \mathrm{~min}^{-1}, R^{2}=0.998$.
Table AVIII 8. $[10 \mathrm{~b} .1]=1.99 \times 10^{-4} \mathrm{M},[$ DAMD $]=3.26 \times 10^{-2} \mathrm{M}$, temp. $=25.0^{\circ} \mathrm{C}$.

$1(\min)$	$A_{1}(\lambda=425 \mathrm{~mm})$	$-\ln \left(A_{1}-A_{\infty}\right)$
0.00	0.707	0.717
2.12	0.551	1.103
5.12	0.412	1.645
8.12	0.338	2.129
11.12	0.294	2.590
14.12	0.266	3.058
17.12	0.250	3.474
∞	0.219	

[^17]
AIX

1.Calculation of the ΔG^{0} and ΔH^{0} values for Eq. 6.1, and the $\Delta \mathrm{O}$ values at different temperatures.

	maleic acid $+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{R}$, S-malic acid		
Standard states:	crystalline	liquid	crystalline
$\Delta \mathrm{G}^{\rho}(\mathrm{kcal} / \mathrm{mol})$	-149.40	-56.75	-211.45
$\Delta H^{\rho} \mathrm{f}$ ($\left.\mathrm{kcal} / \mathrm{mol}\right)$	-188.94	-68.37	-264.27
$\Delta \mathrm{G}^{0}=-5.3 \mathrm{kcal} / \mathrm{mol}$			
$\Delta H^{\circ}=-6.96 \mathrm{kcal} / \mathrm{m}$			

According to the Gibbs-Helmholze equation:

$$
\mathrm{f} \frac{\partial(\Delta \mathrm{G} / \mathrm{T})}{\partial \mathrm{T}} \mathrm{l}_{\mathrm{p}}=-\frac{\Delta \mathrm{H}^{\circ}}{\mathrm{T}^{2}}
$$

ΔG values at 100 and $1700^{\circ} \mathrm{C}$ are calculated to be -4.9 and $-4.5 \mathrm{kca} / \mathrm{mol}$,

respectively.

(a) The $\Delta G \rho{ }^{\rho}$ and $\Delta H_{f}{ }^{\rho}$ values are taken from: 1) Dean, J.A. Handbook of Organic Chemistry, McGraw-Hill: New Yort, 1987, S-22, S-26. 2) Kaye, G.W.C.; Laby, T.H. Tables of Physical and Chemical Constants, 15th ed; Longman: London, 1986; p. 268.
(b) The $\Delta G \rho^{\circ}$ value for \mathbf{R}, S-malic acid is unavailable; the value used in calculation is that for S-malic acid.
2. Visible absorption spectral parameters of $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ solutions at various concentrations ${ }^{\circ}$

Table AIX 1. Visible absorption spectral data for $\mathrm{CrCl}_{3}-6 \mathrm{H}_{2} \mathrm{O}$ solutions at various concentrations

[CT] (M)	410 nm	572 nm	2410est2
0.007	0.148	0.128	1.16
0.014	0.277	0.240	1.16
0.021	0.372	0.319	1.17
0.028	0.485	0.418	1.16
0.035	0.605	0.523	1.16

(a) Solutions in this series of experiments had been beated for 30 min at $100{ }^{\circ} \mathrm{C}$ prior to the measurements; the ionic strength and acidity of the zolutions were held relatively constant using 0.02 M HNO 3 and 0.20 M $\mathrm{KNO}_{3}: \mathrm{pH}=\mathbf{2 . 0}$.

Fig. A 1. Plot of absorbance against [Cr] for $\mathrm{CrCl}_{3}-6 \mathrm{H}_{2} \mathrm{O}$ solutions.
3. Determination of compositions and formation constants of maleato and malato C^{3+} complexes in aqueous solution at $100^{\circ} \mathrm{C}$.

Table AIX 2. Absorbances at various $\mathrm{C}_{1} / \mathrm{H}_{2} \mathrm{MA} /$ ratios ${ }^{\mathrm{a}}$

$\mathrm{V}_{\mathrm{Cr}^{\text {(mL) }}}$	$\mathrm{V}_{\mathrm{H}_{2} \mathrm{MA}}(\mathrm{mL}$)		As72
5.0	0.0	1.0	0.47
4.0	1.0	0.8	0.58
3.5	1.5	0.7	0.60
3.0	2.0	0.6	0.61
2.5	2.5	0.5	0.54
2.0	3.0	0.4	0.52
1.5	3.5	0.3	0.47
1.0	4.0	0.2	0.30
0.0	5.0	0.0	0.0

(a) $\left[\mathrm{Cr}^{3+}\right]_{\mathrm{i}}=\left[\mathrm{H}_{2} \mathrm{MA}\right]_{\mathrm{i}}=0.035 \mathrm{M}$. Absorbances (A) were recorded at r.t, after the solutions were heated at $100^{\circ} \mathrm{C}$ for 30 min . The solution pH and $0.20 \mathrm{M} \mathrm{KNO}_{3}$
$\stackrel{N}{\delta}$

Table AIX 3. Formation constants calculated based on the data from Fig. A. 2 at selected molar ratios, $\mathbf{p H}=\mathbf{2 . 0}$.

$[\mathrm{Cr}]_{\mathrm{i}}$	$[\mathrm{Cr}(\mathrm{IMA})]_{\mathrm{eq}_{4}}$	
$\overline{\left.[\mathrm{Cr}]_{\mathrm{i}}+\left[\mathrm{H}_{2} \mathrm{MA}\right)\right]_{\mathrm{i}}}$	$\frac{[\mathrm{Cr}]_{\mathrm{eq}}+[\mathrm{Cr}(\mathrm{HMA})]_{\mathrm{eq}}}{}$	K_{1}
0.50	71.6	8.3×10^{2}
0.45	76.9	7.6×10^{2}
0.40	81.7	7.6×10^{2}
0.35	87.0	9.0×10^{2}

$\mathrm{V}_{\mathrm{Cr}}(\mathrm{mL})$	$\mathrm{V}_{\mathrm{H}_{2} \mathrm{mal}}$ (mL)	$\left[\mathrm{Cr}_{1} \mathrm{l}^{(}\left(\mathrm{CO}_{2}\right]_{i}+\left[\mathrm{H}_{2} \mathrm{mal}\right]_{\mathrm{j}}\right)$	As62
5.0	0.0	1.0	0.44
4.0	1.0	0.8	0.56
3.5	1.5	0.7	0.56
3.0	2.0	0.6	0.57
2.5	2.5	0.5	0.57
2.0	3.0	0.4	0.52
1.5	3.5	0.3	0.42
1.0	4.0	0.2	0.30
0.5	4.5	0.1	0.17
0.0	5.0	0.0	0.0

(a) $\left|\mathrm{Cr}^{3+}\right|_{\mathrm{i}}=\left|\mathrm{H}_{2} \mathrm{mal}\right|_{\mathrm{i}}=0.035 \mathrm{M}$. Absorbances (A) were recorded at r.L, after the solutions were heated at 1000 C for 30 min . The solution pH (2.0) and ionic strength were held relatively constant using $0.02 \mathrm{M} \mathrm{HNO}_{3}$ and $0.20 \mathrm{M} \mathrm{KNO}_{3}$.

[^18]

Fig. A.3. Job's plot; absorbance at 562 mm ve. $[\mathrm{Cr}]_{j} /\left([\mathrm{Cr}]_{\mathrm{i}}+\left[\mathrm{H}_{2} \mathrm{mal}\right]_{\mathrm{i}}\right)$; data from Table AIX 4.

Table AIX 5. Forrnation constants calculated based on the data from Fig. A. 3 at selected molar ratios, $\mathrm{pH}=2.0$.

$\frac{[\mathrm{Cr}]_{i}}{\left.[\mathrm{Cr}]_{i}+\left[\mathrm{H}_{2} \mathrm{mad}\right)\right]_{i}}$	$\frac{[\operatorname{Cr}(\mathrm{Hmal})]_{\text {oy }}}{[\mathrm{C}]_{\text {eq }}+[\mathrm{Cr}(\mathrm{If} \text { mal })]_{\text {o4. }}}(\%)$	\mathbf{K}_{2}
0.50	67.9	9.8×10^{3}
0.45	72.6	8.8×10^{3}
0.40	76.9	8.5×10^{3}
0.35	82.4	9.6×10^{3}

$\mathrm{K}_{2}=9.2 \times 10^{3} \mathrm{M}^{-1}$

Table AIX 6. Absorbances at various $\left[\mathrm{Cr} V\left[\mathrm{H}_{2} \mathrm{mal}\right]\right.$ ratios ${ }^{\text {a }}$

$\mathrm{V}_{\mathrm{Cr}}(\mathrm{mL})$	$\mathrm{V}_{\mathrm{H}_{2} \mathrm{mal}}(\mathrm{mLL}$)		A $_{562}$
4.0	1.0	0.8	0.58
3.5	1.5	0.7	0.63
3.0	2.0	0.6	0.64
2.5	2.5	0.5	0.62
2.0	3.0	0.4	0.53
1.5	3.5	0.3	0.48
1.0	4.0	0.2	0.31
0.5	4.5	0.1	0.19
(a) $\left\{\mathrm{Cr}^{3}\right]_{\mathrm{i}}=\left[\mathrm{H}_{2} \mathrm{mal}\right]_{\mathrm{i}}=0.035 \mathrm{M}$. Absorbances (A) were recorded at r.t, after the solutions were heated at 1000 C for 30 min . The sotution pH (~ 2.4) and ionic strength were held relatively constant by $0.01 \mathrm{M} \mathrm{HNO}_{3}$ and $0.20 \mathrm{M} \mathrm{KNO}_{3}$.			

Fig. A.4. Job's plot; absorbance at 562 nm vs. $[\mathrm{Cr}]_{\mathrm{i}}\left([\mathrm{Cr}]_{i}+\left[\mathrm{H}_{2} \mathrm{mal}\right]_{\mathrm{i}}\right)$; data from Table AIX 6.

Table AlX 7. Formation constants calculated based on the data from Fig
A. 3 al selected molar ratios, $\mathrm{pH}=2.4$.

$\frac{[\mathrm{Cr}]_{i}}{[\mathrm{Cr}]_{i}+\left[\mathrm{H} \mathrm{H}_{2}^{\mathrm{mal})]_{i}}\right.}$	$\frac{[\mathrm{Cr}(\mathrm{Imal})]_{\text {ou }}}{\left[\mathrm{Cr}_{\mathrm{oq}}+[\operatorname{Cr}(\mathrm{IImal})]_{\mathrm{oq}}\right.} \text { (\%) }$	K_{2}
0.50	76.5	8.7×10^{3}
0.45	81.0	7.2×10^{3}
0.40	87.7	9.0×10^{3}
0.35	93.0	1.1×10^{4}

Sample calculation for the formation constant:
The equilibrium concentration for the malate monoanion [Hmal] is calculatod using the $K_{a_{1}}^{\prime}$ expression, i.e.

$$
[\text { Hmal }]=\frac{\left.K_{a}^{\prime} / H_{2} \text { mal }\right]_{101}}{K_{a_{1}}^{\dot{+}}+\left[H^{+}\right]}
$$

Thus,

$$
K_{2}=\frac{[C r(\mathrm{Hmal})]}{[\mathrm{Cr}][\mathrm{Hmal}]}=\frac{\left[\mathrm{Cr}^{(}(\mathrm{Hmal})\right]\left(\mathrm{K}_{\mathrm{a}}^{\dot{+}}+\left[\mathrm{H}^{+}\right]\right)}{\left.\mathrm{K}_{\mathrm{a}}^{\prime} \mid \mathrm{Cr}\right]\left[\mathrm{H}_{2} \mathrm{mal}\right]_{\text {bot }}}
$$

$\mathrm{Cr}]=\left[\mathrm{H}_{2} \mathrm{mal}\right]_{10 t}=\mathrm{C}_{\mathbf{i}}-[\mathrm{Cr}(\mathrm{Hmal})]$, where $\mathbf{C}_{\mathbf{i}}$ is the initial concentration for both $[\mathrm{Cr})$ and $\left[\mathrm{H}_{2} \text { mal }\right]_{\text {loc }}$ as they are mixed in a $1: 1$ ratio. From the Job's plot, the percentage of the undissociated complex at the equilibrium is determined to be $\mathbf{7 6 . 5 \%}$, i.e. another $\mathbf{2 3 . 5 \%} \mathrm{Cr}^{3+}$ is present as the aquated ion.

Therefore, based on the data in Table AIX 6 .

$$
\begin{aligned}
K_{2}= & \frac{0.765 \times 0.0175\left(10^{-3.4}+10^{-2.4}\right)}{(0.235 \times 0.0175)^{2} \times 10^{-3.4}} \\
& =8.7 \times 10^{3}\left(\mathrm{M}^{-1}\right)
\end{aligned}
$$

Similarly, at other molar ratios, K_{2} values are calculated and given in Table AIX 7, the averaged K_{2} value is $9.0 \times 10^{3} \mathrm{M}^{-1}$.

[^0]: *Basic units of lignin (ref. 15).

[^1]: ${ }^{*} a, b$ and c will be used throughout this thesis to label complexes containing $\mathrm{PN}_{1}, \mathrm{PN}_{2}$ and PN_{3} phosphine, respectively.

[^2]: * An identical procedure but using no added PN_{3} gave a smaller yield (18\%) of 26 c .
 \dagger The ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ NMR pattern containing a major singlet, doublet or triplet, as well as the corresponding platinum satellites, is noted in this thesis simply as a singlet, a doublet or a triplet.

[^3]: * DMA•HCl: N,N-dimethylacetamide hydrogen chloride was provided by A. Joshi, its synthesis is described in ref. 21.
 * A recent paper (Jain, V.K. et al. J. Organomet. Chem., 1990, 389, 417.) has noted the synthesis of trans$\mathrm{Pu}(\mathrm{Me})\left(\mathrm{PN}_{1}\right)_{2}$ from the reaction of $\mathrm{PL}(\mathrm{Me})(\mathrm{COD})$ with 2 equivalents of PN_{1} in benzene; the reported spectral properties are essentially the same as those presented here.

[^4]: *The term cis and trans are used throughout with reference to the position of two phosphine ligands in a complex.

[^5]: (a) $t w=$ this work; (b) Recorded at $-50^{\circ} \mathrm{C}$; (c) Recorded at $-70^{\circ} \mathrm{C}$.

[^6]: *Only the chiral phosphorus atoms are numbered; regardless of the configuration of the molecule drawn, in the paper plane, the P atom above Pt is labelled $\mathrm{P}(1)$, and the P atom below is labelled $\mathrm{P}(2)$.

[^7]: (a) In Nujol mull. (b) Solvent $=\mathrm{CH}_{3} \mathrm{CN}$. (c) Obscured by the \mathbb{R} bands of $\mathrm{BPh}_{4}{ }^{-}$.

[^8]: * A recrystallization procedure from acetone generated yellow crystals of 41.2, but unfortunately they were unsuitable for X-ray analysis.

[^9]: * $\mathrm{A} \Delta \mathrm{G}^{\mathrm{o}}$ value of $-7 \mathrm{kcal} / \mathrm{mol}$ in acidic solution was given in ref. 4.

[^10]: slope $=1.49 \times 10^{-3} \mathrm{~g}-1, \mathrm{R}^{2}=0.991$.

[^11]: slope $=1.48 \times 10^{-3} \mathrm{~s}^{-1}, \mathrm{R}^{2}=0.999$.

[^12]: slope $=9.85 \times 10^{-3} \mathrm{~s}^{-1}, \mathrm{R}^{2}=1.000$

[^13]: slope $=1.73 \times 10^{-2} \mathrm{~s}^{-1}, \mathrm{R}^{2}=1.000$.

[^14]: slope $=5.35 \times 10^{-3} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.999$.

[^15]: slope $=2.29 \times 10^{-2} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.999$.

[^16]: slope $=1.21 \times 10^{-1} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.998$.

[^17]: slope $=1.61 \times 10^{-1} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.998$.

[^18]: Fig. A.2. Job's plot; absorbance at 572 nm vs. $|\mathrm{C}|]_{\mathrm{j}} /\left([\mathrm{C}]_{\mathrm{i}}+\left[\left.\mathrm{H}_{2} \mathrm{MA}\right|_{\mathrm{i}}\right)\right.$; data from Table AIX 2.

