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ABSTRACT 

The syntheses of s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e s (15, 3-R-TAP) 

by reac t ion of hydra laz ine (12, 1 -hydrazinophthalaz ine) with N-protected 

amino ac ids and d ipept ides under homogeneous (so lu t ion ) and heterogeneous 

( "so l id -phase" ) cond i t ions are repor ted . T r a n s i t i o n metal complexes 

conta in ing the TAP l igand were prepared and t h e i r spect ra l p roper t ies 

i n v e s t i g a t e d . The use of meta l - ions and a cat ion-exchange r e s i n ( H + form) 

were considered fo r the mi ld h y d r o l y s i s of s i d e - c h a i n amide bonds in TAP 

d e r i v a t i v e s . The o b j e c t i v e of these s tud ies was to determine the f e a s i b i ­

l i t y of reac t ing the carboxyl groups in amino ac ids with hydra laz ine to 

a f fo rd the TAP d e r i v a t i v e s as a method f o r peptide sequencing from the 

C-terminal r e s i d u e . 

Hydralaz ine reacts with c a r b o x y l i c ac ids to form an amide 

intermediate which undergoes r i n g c l o s u r e with e l i m i n a t i o n of water to form 

the s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e d e r i v a t i v e . To promote the i n i t i a l b inding 

of hydra laz ine to the a c i d , coupl ing reagents were used to a c t i v a t e the 

carboxyla te group towards n u c l e o p h i l i c a t tack . 

N - E t h y l - 5 - p h e n y l i s o x a z o l i u m - 3 ' - s u l f o n a t e (17, NEPIS), 1-ethoxy -

c a r b o n y l - 2 - e t h o x y - l , 2 - d i h y d r o q u i n o l i n e (27, EEDQ), var ious phosphorus 

compounds, ca rbod i im ides , and chloroformates were carboxyl a c t i v a t i n g agents 

used to synthes ize TAP d e r i v a t i v e s . 

In s o l u t i o n s t u d i e s , the carbodi imides (EDC, 16 and DCC, Si), 

NEPIS (17), and a combination of t r ipheny lphosph i te with imidazole are the 

most success fu l procedures f o r TAP s y n t h e s i s . 
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In s o l i d - p h a s e s t u d i e s , the best procedures f o r a c t i v a t i n g 

immobilized amino acids, are with isobuty'l ch loroformate , NEPIS ( l ? ) , and 

DCC (51). 

T r a n s i t i o n metal complexes were synthesized with the general 

formula: [M(3-H-TAP) ( H 2 0 ) 6 _ n ] ( C 1 0 4 ) m (n = 4, m = 2, M = Co, N i , Cu; 

n = 2, m = 2, M = N i ; n = 6, m = 3, M = Co) . The i n f r a r e d and v i s i b l e 

spectra of these complexes are repor ted . 

[ C o ( . t r i e n ) C 3 - ( N - A c - g l y ) - T A P ) J ( C 1 0 4 ) 2 was a l s o prepared and under 

a c i d i c c o n d i t i o n s , no hydro lys is of the s i d e - c h a i n amide bond was observed. 

There was a l s o no s i g n i f i c a n t hydro lys is of the s i d e - c h a i n with f ree 

?+ 2+ 

3 - (N-Ac-g ly ) -TAP in the presence of Co and Cu under a c i d i c c o n d i t i o n s , 

or when i t was e luted through a cat ion-exchange (H + form) column. 

The decomposit ion of hydra laz ine in non-aqueous media was 

inves t iga ted and a major product of the decomposit ion was i d e n t i f i e d as 

d i p h t h a l a z i n y l h y d r a z i n e {82). 

The i m p l i c a t i o n of our s tud ies i s that the m o d i f i c a t i o n of amino 

ac ids with hydra laz ine is not ye t a v i a b l e method f o r C-terminal peptide 

sequencing. Improvements are requi red f o r improving the y i e l d s of the 

coupled product , and the lack o f a mi ld and s e l e c t i v e method f o r hydrolyz ing 

the C-terminal peptide bond l i m i t s the method at present to determinat ion 

of the C-terminal res idue o n l y . 
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CHAPTER 1 

PROTEIN SEQUENCE DETERMINATION 

1.1 INTRODUCTION 

Pro te in sequence a n a l y s i s has , with j u s t i f i c a t i o n , been descr ibed 

as one of the most important research a c t i v i t i e s o f t o d a y . 1 The informat ion 

contained in pro te in sequence i s something e s s e n t i a l l y new. The data repre­

sent the cova lent chemical s t r u c t u r e o f the prote in molecule and are o f 

immediate use and importance i n many d i f f e r e n t d i s c i p l i n e s . 

I t i s c e r t a i n that the importance o f sequence information on 

prote ins w i l l continue to increase in the same way as the body o f informa­

t ion i t s e l f w i l l i n c r e a s e . Sequence data on prote ins are being amassed at 

an ever i n c r e a s i n g r a t e . This can be seen from the phenomenal growth o f 

the "At las of Prote in Sequence and S t r u c t u r e " , which approximately doubles 

every y e a r . 2 

The rap id development o f appropr iate a n a l y t i c a l procedures has 

been one of the fac to rs enabl ing sequence data to be accumulated at the 

present r a t e . However, a t the present t ime, the determination of the amino 

a c i d sequence o f a prote in may s t i l l requi re a major e f f o r t and can not be 

considered a rout ine matter. In 1943, Synge s ta ted : 
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. . . i t seems that the main obstacle to progress in the 

study of protein structure by methods of organic chemistry 

is inadequacy of technique rather than any theoretical 

d i f f i c u l t y . It is l i k e l y that new methods of work in 

this field will lead us to a very much clearer understanding 

of the proteins. 3 

Today, t h i r t y - f o u r years l a t e r , that statement i s s t i l l v a l i d . 

1.2 PROTEIN STRUCTURE AND NOMENCLATURE 

The prote ins are chains of long unbranched polymers with 

L-a-amino acids as the monomeric u n i t s , only twenty o f which are commonly 

found as the b u i l d i n g blocks of p r o t e i n s . The names and s t r u c t u r e s o f 

these common amino ac ids are given in Table 1.1. The amino ac ids are 

l i n k e d together in a head to t a i l arrangement through amide bonds c a l l e d 

peptide bonds, which a r i s e by e l imat ion of the elements o f water from the 

carboxyl group o f one amino ac id and the a-amino group of the next . The 

peptide bond i s the repeat ing un i t in p r o t e i n s . The c h a r a c t e r i s t i c bond 

s t r u c t u r e i s enclosed in the dot ted area: 

H jo 

-N-CKR-C-N 

I H 
i i 

0 

CHR'-C-

Such polymer chains are c a l l e d polypeptides. 

In peptide nomenclature, the amino a c i d res idues are wr i t ten as 

they occur i n the chain s t a r t i n g from the f ree a-amino group, which i s 

convent iona l ly shown at the l e f t - h a n d part of the s t r u c t u r e . The terminal 

res idue with the f ree amino group i s r e f e r r e d to as the N-terminal res idue . 
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CONH2 

I 
\ 
CH2 I 

\ 

// > * 
-

V-cy 

Gin 

ivdes 

One letter abbrev iat ions 

A l a G Gly M Met S~ Ser 
Cys H His N Asn T Thr 
Asp 1 l ie P Pro V Val 
Glu K Lys Q Gin W Trp 

Phe L Leu R Arg Y Tyr 

6>V * 

Table 1.1 The "amino a c i d wheel". The s t ruc tures of the amino ac id  

res idues are shown as they normally occur in a polypept ide 

c h a i n . 
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S i m i l a r l y , the terminal residue with the f ree carboxyl group i s r e f e r r e d 

to as the C-terminal r e s i d u e . The sequence of the amino a c i d residues in 

the polypept ide chains which make up the prote ins i s f requent ly c a l l e d the 

primary structure of the p r o t e i n . 

. In g e n e r a l , the polypept ide chains of prote ins usua l ly have 

between 100 to 300 amino a c i d residues (mol. wt. 12,000 to 36,000). A few 

prote ins have longer c h a i n s , such as serum albumen (^550 res idues) and 

myosin (^1800 r e s i d u e s ) . U s u a l l y , any prote in having a. molecular weight 

exceeding 50,000 can be suspected to have two or more c h a i n s . 

1.3 PROTEIN SEQUENCE ANALYSIS 

The approach genera l ly used in determining the primary s t r u c t u r e 

o f prote ins i s , in p r i n c i p l e , that devised by Sanger in h is epoch-making 

determinat ion of the amino a c i d sequence of the polypept ide chains of 

i n s u l i n , f o r which he was awarded a Nobel p r i z e in 1958. S ince that 

accomplishment, many refinements have been added, and new procedures have 

been developed. Although each prote in o f f e r s s p e c i a l problems, the 

fo l low ing sequence of steps i s genera l ly used, though not n e c e s s a r i l y in 

the order shown. 4 

a. I f the prote in chain contains more than one polypept ide 

c h a i n , the i n d i v i d u a l chains are f i r s t separated and p u r i f i e d . 

b. A l l the d i s u l f i d e groups are reduced, and the r e s u l t i n g 

t h i o l groups a l k y l a t e d . 

c . A sample o f each polypept ide chain is subjected to to ta l 

h y d r o l y s i s , and i t s amino a c i d composit ion is determined. 

d. On another sample o f the polypept ide c h a i n , the N-terminal 
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and C-terminal res idues are i d e n t i f i e d . 

e. The i n t a c t polypept ide chain i s c leaved in to smal le r 

peptides by enzymatic or chemical h y d r o l y s i s . 

f . The r e s u l t i n g peptide fragments are separa ted , and t h e i r 

amino a c i d composit ion and sequence are determined. 

g. Another sample o f the o r i g i n a l polypept ide chain i s p a r t i a l l y 

hydrolyzed by a second procedure to fragment the chains at 

points other than those cleaved by the f i r s t p a r t i a l h y d r o l y s i s . 

These peptide fragments are separated and t h e i r amino a c i d 

composit ion and sequence determined. 

h. By comparing the amino a c i d sequences o f the two sets of 

peptide fragments, p a r t i c u l a r l y where the fragments from the 

f i r s t p a r t i a l h y d r o l y s i s over lap the cleavage points in the 

second, the peptide fragments can be placed in the proper 

order to y i e l d the complete.ami no a c i d sequence. 

i . The p o s i t i o n s of the d i s u l f i d e bonds and the amide groups in 

the o r i g i n a l polypept ide chain are determined. 

A d i s c u s s i o n o f a l l the steps invo lved in the complete s t r u c t u r e 

of a pro te in i s beyond the scope of t h i s t h e s i s . For reviews in these 

a reas , readers are r e f e r r e d to other w o r k s . 5 ' 6 

Of d i r e c t re levance to our s tud ies are the methods for e l u c i d a t i n g 

the primary sequence o f pept ides , i . e . , determining the amino a c i d sequence 

from the N - , and C - t e r m i n i . 

\ 
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1.4 AMINO TERMINAL PEPTIDE SEQUENCING AND END-GROUP IDENTIFICATION 

The general p r i n c i p l e f o r amino end-group determination i s based 

on the i n t r o d u c t i o n of a marker group ( c o l o r e d , f l u o r e s c e n t , UV absorb ing , 

e t c . ) onto the amino f u n c t i o n , fo l lowed by the q u a n t i t a t i v e i s o l a t i o n and 

c h a r a c t e r i z a t i o n o f the d e r i v a t i z e d amino a c i d . 

In recent y e a r s , methods o f N-terminal ana lys is based on dansyl 

c h l o r i d e (l3 l -d imethylaminonaphthalene-5-sul fonyl c h l o r i d e , DNS-C1) have 

found wide a p p l i c a t i o n , l a r g e l y because of the ease with which one can 

study minute amounts of peptides and l p r o t e i n s . 7 

Dansyl c h l o r i d e , which i s i t s e l f n o n - f l u o r e s c e n t , gives a strong 

ye l low f luorescence upon sulfonamide formation with the amino group of 

prote ins and peptides as shown in Equation 1. 

Hydro lys is o f the DNS-peptide with a c i d produces free amino ac ids and the 

dansyl d e r i v a t i v e o f the N-terminal res idue . A f t e r separat ion from the 

untagged amino a c i d s , the dansyl-amino a c i d may be i d e n t i f i e d by e l e c t r o ­

phoresis or th in l a y e r chromatography and v i s u a l i z e d by f l u o r e s c e n c e . 

The most important and widely used l a b e l l i n g reac t ion for the 

N-terminal residue o f a pept ide or p ro te in is the Edman d e g r a d a t i o n . 8 

Since i t s i n t r o d u c t i o n over 25 years ago, t h i s procedure has undergone 
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almost cont inual m o d i f i c a t i o n , culminat ing in the development o f two auto­

mated versions for sequence a n a l y s i s . 9 

The f i r s t step of the Edman procedure (Scheme 1.1) involves 

reac t ing the peptide or prote in N-terminus with phenyl iso th iocyanate (2) at 

a l k a l i n e pH. A f t e r removal of excess reagents , the r e s u l t i n g pheny l th io -

carbamyl peptide [3, PTC-peptide) i s t reated with a c i d , which causes c y c l i z a -

t ion and cleavage o f the N-terminal amino a c i d as a 2 - a n i l i n o - 5 - t h i a z o l i n o n e 

(4). A f t e r separat ion from the pep t ide , the th iazo l inone i s converted to 

the isomeric 3 -phenyl -2 - th iohydanto in {5, PTH), which can be i d e n t i f i e d by a 

number o f phys ica l techniques. U s u a l l y , the Edman procedure i s not r e s t r i c t e d 

to determining the N-terminal r e s i d u e , and the peptide or p ro te in i s subjected 

to add i t iona l cyc les of the Edman degradat ion , thus e f f e c t i n g a sequential 

N-terminal a n a l y s i s . 

In favourable cases , one may expect the manual technique to produce 

about 30 degradat ion cyc les with c l e a r l y i n t e r p r e t a b l e r e s u l t s . To perform 

one degradation requi res the best part o f a working day. 

In 1967, Edman and B e g g 1 0 reported the development o f an automatic 

Edman Sequenator. S ince that t ime, machines based on t h e i r design have 

become such an i n t e g r a l par t o f the methodology used f o r sequence a n a l y s i s 

that less emphasis i s now being placed on manual determinat ion of N-terminal 

sequences o f p r o t e i n s . The sequence ana lyzer i s i d e a l l y su i ted to degrada­

t ion o f prote ins and large peptide fragments, the optimal s i z e being 100-150 

res idues . T y p i c a l l y , one may expect the unambiguous e l u c i d a t i o n of between 

30 and 70 residues of amino a c i d sequence with the Edman Sequenator, as 

opposed to about 15-20 res idues with the manual method in not unfavourable 

c a s e s . 1 1 
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PhNCS + NH 2-CHR-C-NH -PEPTIDE 

(2) 

pH 8-9 

S 0 

PhNH-C-NH-CHR-C-NH PEPTIDE 

(3) 

(4) ° 

H 

+ NH, •PEPTIDE 

PhNCS, pH 8-9 

H + , H 20 
\ 

e t c . 

- A 
(5) 

Scheme 1.1 The Edman Degradation 
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A complementary automatic method i s the so l id -phase sequencer o f 

L a u r s e n . 1 2 , 1 3 With th is technique, the peptide i s at tached to a s o l i d 

support and subjected to the Edman degradat ion with rad ioac t i ve phenyl 

i so th iocyana te . The e f f i c i e n c y o f the so l id -phase method only permits the 

determination of up to about 30 r e s i d u e s , 1 1 and in t h i s respect i s i n f e r i o r 

to the Edman Sequenator. However, the so l id -phase instrument may be used 

with small pept ide fragments (up to 30 r e s i d u e s ) , and i s considerably cheaper 

in cost and maintenance. 

The use o f enzymes fo r N-terminal ana lys is of prote ins i s s t i l l i n 

a f a i r l y i n c i p i e n t s t a t e . Two enzymes are commercially a v a i l a b l e for th is 

purpose: leuc ine aminopeptidase and aminopeptidase M. These enzymes 

cata lyze h y d r o l y s i s of the peptide bond o f the N-terminal residue o f prote ins 

and pep t ides , r e l e a s i n g a f ree amino a c i d . Hydro lys is proceeds s e q u e n t i a l l y 

from res idue to r e s i d u e , f o r the degradation c o n t i n u a l l y produces a new 

N-terminus. A p a r t i a l sequence of a pro te in may thus be deduced from a 

k i n e t i c a n a l y s i s o f the amino ac ids r e l e a s e d . 

The N-terminal residues o f a l l amino ac ids are cleaved by amino-

peptidase M and leuc ine aminopeptidase, with the exception of p r o l i n e fo r 

the l a t t e r enzyme. Rapid h y d r o l y s i s i s observed with a l i p h a t i c and aromatic 

amino a c i d r e s i d u e s , slower rates with a l l o t h e r s , with i n d i v i d u a l d i f f e r ­

ences spanning a range o f several orders of m a g n i t u d e . 1 4 

1.5 CARBOXY TERMINAL PEPTIDE SEQUENCING AND END-GROUP IDENTIFICATION 

While the procedures f o r N-terminal a n a l y s i s o f prote ins and 

peptides are among the best and most useful methods that have been appl ied 

in sequence determinat ions, methods f o r the i d e n t i f i c a t i o n o f C-terminal 

residues have been l e s s s u c c e s s f u l . Only two methods, a chemical and an 
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enzymatic one, have been app l ied to any great extent . 

The h y d r a z i n o l y s i s method is based on the d iscovery of Akabori 

e t a l . 1 5 that C-terminal residues of a pro te in are l i b e r a t e d as f ree amino 

acids by treatment of the prote in with anhydrous hydraz ine . A l l other amino 

acids in peptide l inkage are converted to amino ac id hydrazides as shown in 

Equation 2. 

H 9 N-CHR,-C0•••NH-CHR ,-CO-NH-CHR -C00H + N-hL -
2 - 1 n-1 n d 4 

H 2N-CHR 1-C0NHNH 2 + • • • + H2N-CHR ^CONHNHg + H 2N-CHR n-C00H (2) 

Although the h y d r a z i n o l y s i s method i s simple i n p r i n c i p l e , i t s 

a p p l i c a t i o n i s f raught with d i f f i c u l t i e s . The y i e l d s o f C-terminal amino 

acids are only moderate, n e c e s s i t a t i n g the a p p l i c a t i o n of high c o r r e c t i o n 

f a c t o r s . The quant i ta t iveness o f the method a lso s u f f e r s from the ra ther 

compl icated methods fo r i s o l a t i n g and est imat ing the f ree amino a c i d s . 

The technique of Braun and S c h r o e d e r 1 6 , however, appears to be the best 

improvement of the o r i g i n a l procedure. In th is method the reac t ion o f the 

pept ide with anhydrous hydrazine i s ca ta lyzed by Amberl i te CG-50 in the 

hydrogen form. A f t e r removal of c a t a l y s t and excess hydraz ine , the amino 

acids are separated from hydrazides on a cat ion-exchange res in column, and 

subsequently analyzed by automatic amino ac id a n a l y s i s . 

The h y d r a z i n o l y s i s method f a i l s when the C-terminal res idue i s 

a r g i n i n e , c y s t e i n e , c y s t i n e , asparagine , or glutamine, and may f a i l when the 

terminal group i s a s p a r t i c a c i d . As with a l l methods fo r the i d e n t i f i c a t i o n 

of end-groups in macromolecules, po ten t ia l causes o f e r r o r are s u f f i c i e n t l y 

numerous with hydrazi n o l y s i s t o ' j u s t i f y reservat ions about any r e s u l t s 

unless i t i s corroborated by other methods. 
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Carboxypeptidases act on prote ins and peptides to re lease L-amino 

ac ids one residue at a time from the C-termini o f peptides and p r o t e i n s . 

Several types of enzymes have been charac te r i zed according to t h e i r substra te 

s p e c i f i c i t i e s . Carboxypeptidase A (CPA) shows a marked preference for 

C-terminal residues with an aromatic or branched a l i p h a t i c s ide c h a i n , 

(Table 1.2). 

Table 1.2 Approximate Re la t ive Rates o f Release o f Amino Acids by 

Carboxypeptidase A 1 7  

Rapid Release: T y r , Phe, T r y , Leu, H e , Met, Thr , G i n , H i s , A l a , 

V a l , Homoserine 

Slow Release: A s n , S e r , L y s , MetSC^ 

Very Slow Release: G l y , Asp , G l u , CySC^H, S-carboxymethylcysteine 

Not Released: Pro , Arg 

Note: The presence o f a "very slow" or "not re leased" amino a c i d as 
penult imate res idue w i l l genera l ly decrease the rate of re lease 
of the C-terminal amino a c i d . 

Carboxypeptidase B (CPB) e x h i b i t s a narrower s p e c i f i c i t y , and 

cleaves the bas ic amino acids l y s i n e , and arg in ine very much f a s t e r than any 

o f the other common amino a c i d s . In common with a l l carboxypept idases, the 

rate of re lease o f C-terminal residues i s grea t ly in f luenced by the s t r u c ­

ture o f the adjacent r e s i d u e . 1 8 

Another enzyme ga in ing popu la r i t y f o r C-terminal ana lys is o f 

peptides i s carboxypeptidase C ( C P C ) . 1 9 This enzyme has a broad s p e c i f i c i t y 

for a c i d i c , neutral and bas ic amino a c i d s . A great advantage of CPC i s i t s 

a b i l i t y to hydrolyze both peptide l inkages on e i t h e r s ide o f p r o l i n e . 
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A new commercially a v a i l a b l e exopeptidase i s carboxypeptidase 

Y ( C P Y ) . 2 0 L ike CPC, i t s s p e c i f i c i t y i s broad fo r a l l common amino a c i d s . 

In g e n e r a l , when the penult imate and/or C-terminal residues have aromatic 

or a l i p h a t i c s ide chains c a t a l y s i s is h i g h , bu^when g lyc ine i s p laced in 

the penultimate p o s i t i o n , the re lease of the terminal amino a c i d i s extremely 

slow. In cont ras t to CPA and CPB, C-terminal p r o l i n e i s a ra ther good 

s u b s t r a t e . However, the rate o f s p l i t t i n g of the peptide bond on e i t h e r 

s ide o f p r o l i n e depends ex tens ive ly upon the s t ruc tu re of the adjacent 

amino a c i d s . 

The enzymes of choice fo r C-terminus determinat ion o f prote ins and 

peptides have t r a d i t i o n a l l y been CPA and CPB. In a t y p i c a l end-group deter ­

minat ion , these enzymes may be incubated s e p a r a t e l y , o r in combination with 

the prote in s u b s t r a t e . However, with the increased a v a i l a b i l i t y of CPC 

and CPY, these l a t t e r exopeptidases w i l l f i n d wider use i n view of t h e i r 

broader s p e c i f i c i t i e s , and t h e i r a b i l i t y to cleave p r o l i n e . 

In p r a c t i c e , the rate o f re lease o f amino acids from a peptide 

by carboxypeptidase i s fo l lowed by ana lyz ing the e n t i r e r e a c t i o n mixture 

with an amino a c i d ana lyzer . In favorable c i rcumstances, the k i n e t i c 

measurement can give a f a i r l y r e l i a b l e i n d i c a t i o n o f the C-terminal sequence. 

However, the chances of m i s i n t e r p r e t a t i o n are l a r g e , and the r e s u l t s should 

be confirmed whenever p o s s i b l e . 

The method o f S t a r k 2 1 ' 2 2 f o r C-terminal sequencing o f peptides 

and prote ins i s based on the r e a c t i o n o f the C-terminal amino ac id with 

ammonium thiocyanate and a c e t i c anhydride (Scheme 1.2). 

The C-terminal amino ac id i s a c t i v a t e d to n u c l e o p h i l i c at tack by 

formation o f a mixed anhydride (6) by r e a c t i o n with a c e t i c anhydr ide. 

Attack by the thiocyanate a n i o n , a f t e r c y c l i z a t i o n of the product , gives 
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R O R' O I II I II NH,CHCNHCHCOH 

Peptide 

A. Addition 
O 
II (CH,C)20 

O R O II I I CHXNHCHC. 

Oxazolinone 

O 
II -c I ,.CHR' 

NCS 

O R O R' O O II I II I II II 
C H 3 C N H C H C N H C H C O C C H 3 

N-Acetyl mixed anhydride (f?) 

"NCS 

O R O II I II CH.CNHCHC-

Mixed anhydride with 
isothiocyanic acid 

R' I O R O HC-II I II I CH-CNHCHC— 

O II -c I „NH 

Aminoacylthiohydantoin ( y ) 

R' I O R O HC-II I II I CH„CNHCHC—N v 

II 
s 

-c 
I 

, N H 

B. Cleavage 
O II CH.CNHO O R O O II I II II CH3CNHCHCONHCCH3 

OH or H 
O R O II I II 

C1LCNHCHCOH 
(8) 

Scheme 1.2 S t a r k ' s Method for C-Terminal Sequencing of 
Peptides and Prote ins 
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the pept idy l th iohydantoin (?) which can be cleaved with aqueous a c i d or 

base, or with acetohydroxamate. A hydantoin (g) i s l i b e r a t e d which i s 

c h a r a c t e r i s t i c of the C- terminus, and the remaining ace ty la ted peptide or 

prote in possesses a f ree carboxylate group at the new C-terminus. Degrada­

t ion o f peptides may be fo l lowed s u b t r a c t i v e l y by amino ac id a n a l y s i s of the 

peptide product a f t e r each c y c l e or a l t e r n a t i v e l y , the thiohydantoins may 

be determined d i r e c t l y by t h i n - l a y e r chromatography. The thiohydantoin 

method i s somewhat l i m i t e d i n that C-terminal a s p a r t i c a c i d and p r o l i n e are 

not removed. The rather extreme condi t ions requi red f o r cleavage of the 

acyl th iohydantoin ( e . g . 12M HC1) l i m i t the method to 2 or 3 cyc les fo r 

most peptides because o f n o n - s p e c i f i c h y d r o l y s i s o f in te rna l peptide bonds. 

mi nation o f C-terminal amino acids invo lves s e l e c t i v e exchange o f the 

hydrogen on the asymmetric carbon o f the C-terminal amino a c i d with t r i t i u m 

as in Scheme 1.3 

The t r i t i a t i o n method o f Matsuo and c o - w o r k e r s 2 2 f o r the deter -

Rl Rn-I Rn 
H,N-CH-C0NH—-CONH-CH-CONH-CH-COjH 

V 7"-' II 
AcNH-CH-CONH—C0NH-CH-\ 

base 

hydrolysis 

Scheme 1.3 The T r i t i a t i o n Method f o r C-Terminal Sequencing 
of Peptides and Prote ins 
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In the presence of a c e t i c anhydride, C-terminal amino acids o f peptides and 

prote ins s e l e c t i v e l y undergo c y c l i z a t i o n to form oxazalones. The oxazalones 

contain an ac t ive hydrogen and r e a d i l y incorporate t r i t i u m when t reated with 

3 H 2 0 and p y r i d i n e . Hydro lys is with 18% HCl produces a mixture o f amino 

ac ids which can be separated by paper chromatography. The tagged amino a c i d 

i s i d e n t i f i e d by i t s r a d i o a c t i v i t y . D i f f i c u l t i e s with the procedure of 

Matsuo e t a l . 2 3 are that C-terminal a s p a r t i c a c i d and p r o l i n e do not i n c o r p ­

orate t r i t i u m , and a c i d - c a t a l y z e d condi t ions must be used. Problems may 

a lso a r i s e with s e r i n e , t h r e o n i n e , 2 h and non-terminal a s p a r t i c a c i d . 2 5 

A s tep-wise degradation of peptides from the carboxyl end based 

on N , 0 -m igra t ion of acyl groups in conjunct ion with a reduct ion procedure 

was descr ibed by B a i l e y . 2 6 In th is .scheme, peptide esters are reduced to 

the corresponding a l c o h o l s , which, in the presence of P0C1 3 or S 0 C 1 2 , 

rearrange to y i e l d the B-amino e s t e r , which can be fu r ther reduced to give 

the f ree amino a lcohol and res idua l pept ide in a form prepared f o r fu r ther 

rearrangement (Scheme 1.4). 

Y - N H - C H R ' - C 0 N H - C H R " - C 0 0 R M H » Y - N H - C H R ' - C 0 N H - C H R " - C H 2 0 H 

P O C I 3 

Y - N H - C H R ' - C H 2 0 H + H 0 - C H 2 - C H R " - N H 2 Y - N H - C H R 1 - C - 0 C H 2 - C H R " - N H 3
+ 

0 

Scheme 1.4 C-Terminal Peptide Sequencing by Reduction 

The most s t r ingen t requirement in t h i s method i s fo r a mild and s e l e c t i v e 

reduct ion of the C-terminal es ter bond without any accompanying reduct ion of 

peptide bonds. Thus, LiBH^ i s p r e f e r a b l e , whi le L i A l i s u n s u i t a b l e . 

D i f f i c u l t i e s in e s t a b l i s h i n g optimum reac t ion condi t ions f o r the s e l e c t i v e 



16 

reduct ion of es ter groups have l im i ted i t s a p p l i c a t i o n in peptide 

sequencing. 

In a m o d i f i c a t i o n of B a i l e y ' s procedure, Hamada and Yonerni tsu 2 7 

recent ly descr ibed the reduct ion of peptide esters with NaBH^ in aqueous 

s o l u t i o n fol lowed by hydro lys is of the peptide bonds with 6N HCl . Because 

of the n o n - s p e c i f i c h y d r o l y s i s of the peptide a l c o h o l , the method is l im i ted 

to determinat ion of the C-terminal res idue o n l y . 

A new method fo r determinat ion of the C-terminal res idue in 

peptides descr ibed by Loudon and c o - w o r k e r s 2 8 involves formation of an 

O-subst i tu ted hydroxamic ac id (9) by reac t ion of the peptide C-terminal 

carboxyl group with a water -so lub le carbodi imide (WSC) and an O-subst i tu ted 

hydroxy!amine. The O-subst i tu ted hydroxamic a c i d undergoes, at higher pH, 

a Lossen rearrangement to the isocyanate (10) leading to degradation of the 

C-terminal res idue (Scheme 1.5) . 

0 0 0 0 0 

Pep-C-NH-CHR-COOH + H 9 N-0 -C -Bu- t —*~ Pep-C-NH-CHR-C-NH-O-C-Bu-t 
(9) 

OH" 
0 0 

t - B u - C - 0 " + Pep-C-NH-CHR-N=C=0 
(10) 

H 20 

o o H+ j H Q 0 
Pep-C-NH, + RCH + NH, — Pep-C-NH-CHR-NH 0 + C0 o 

(11) 

Pep = N-terminal por t ion of a peptide 

Scheme 1.5 Peptide C-Terminus Determination v i a Lossen Rearrangement 
of an O-subst i tu ted Hydroxamic ac id 
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Hydro lys is of the carboxamide bond to generate a new carboxyl terminus 

would make a sequent ia l procedure p o s s i b l e . However, the Niaminomethylamide 

( l l ) formed on degradat ion of the isocyanate , decomposes under v igorous 

h y d r o l y t i c condi t ions to the corresponding peptide-amide and aldehyde. 

I d e n t i f i c a t i o n of the C-terminal residue depends on the d i f f e r e n c e in amino 

ac id a n a l y s i s of the peptide before and a f t e r degradat ion. Th is r e s t r i c t s 

the method to r e l a t i v e l y small peptides of a s i z e f o r which t h i s a n a l y t i c a l 

technique i s a p p l i c a b l e . The method f a i l s when a s p a r t i c or glutamic ac ids 

are the C-terminal r e s i d u e s . Inter ferences in the method a^e the low 

degradat ion y i e l d s of asparagine and glutamine and the p a r t i a l l o s s of 

in te rna l t y ros ine and tryptophan. 

1.6 OBJECTIVES AND OUTLINE OF THE PRESENT WORK 

From the preceding presentat ion of methods c u r r e n t l y in use , or 

proposed f o r determining the amino ac id sequence of pept ides and p r o t e i n s , 

i t should be obvious that while some procedures have reached a s ta te of 

matur i ty ( e . g . Edman degradat ion ) , there are others which are as ye t 

u n s a t i s f a c t o r y . The statement by Stark seven years ago that no entirely 

satisfactory chemical method of carboxyl-terminal analysis e x i s t s 2 ^ s t i l l 

a p p l i e s . Of the several C-terminal methods that have been proposed (vide 

supra), a l l s u f f e r l i m i t a t i o n s , and few have been useful in actual p r a c t i c e . 

Vigorous c o n d i t i o n s , so lvent r e s t r i c t i o n s , and f a i l u r e at c e r t a i n amino 

ac id res idues have a l l cont r ibuted to t h e i r lack of general u t i l i t y . 

It would be h igh ly advantageous to have a method of sequencing 

peptides from the carboxyl end s i m i l a r in s e n s i t i v i t y , convenience, and 

a p p l i c a b i l i t y to the Edman degradation from the amino terminus. 
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The work descr ibed in th is thes is has as i t s o b j e c t i v e s the inves­

t i g a t i o n of a reac t ion s p e c i f i c f o r carboxylates which could be used as a 

method f o r C-terminal residue a n a l y s i s or C-terminal peptide sequencing. 

The concept of the method which we envisaged f o r determinat ion of 

the C-terminal res idue in peptides i s shown in Scheme 1.6. 

0 

Pep-C-NHCHRn_ 1CONH-CHR COOH + 

N N 

j j 
Pep-CONH-CHRn_1CONH-CHR ^ N 

(13) N 
H 20 

Pep-CONH-CHR -jCOOH 

N H - N H i 

Further Degradative Cycles 

(12) 

+ 2H 20 

N N 

Pep = N-terminal por t ion of a peptide 

Scheme 1.6 Proposed C-Terminal Peptide Sequencing  
v i a s -Tr iazo lo l_3 ,4 -aJphtha laz ines 

The reac t ion involves the coupl ing of 1-hydrazinophthalaz ine (12) with the 

C-terminal amino ac id of peptides to a f fo rd a p e p t i d y l - s - t r i a z o l o [ 3 , 4 - a ] -

phthalaz ine d e r i v a t i v e (13). Hydro lys is of the terminal peptide bond 

removes the C-terminal res idue as a 3 -aminomethy l -s - t r i azo lo [3 ,4 -a ]ph tha laz ine 

(14) d e r i v a t i v e which i s c h a r a c t e r i s t i c of the terminal amino a c i d . The 
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remaining peptide contains a f ree carboxyla te which can undergo fu r ther 

degradative c y c l e s with 1 -hydraz inophtha laz ine . The choice of 1-hydrazino­

phthalazine as the reagent f o r m o d i f i c a t i o n o f the C-terminal amino ac id 

a r i s e s from several c o n s i d e r a t i o n s : 

a . 1-Hydrazinophthalazine reacts with carboxylates to form an 

amide intermediate which spontaneously c y c l i z e s with l o s s 

o f water to form an s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e (TAP). The 

formation of t h i s c y c l i c product i s s p e c i f i c f o r carboxyl 

groups among those f u n c t i o n a l i t i e s which are commonly found 

in amino a c i d s , and there can be no ambiguity in r e s u l t s 

a r i s i n g from p o s s i b l e r e a c t i o n o f 1-hydrazinophthalazine 

with other c l a s s e s o f e l e c t r o p h i l e s . 

b. An advantage o f the TAP system i s that i t e x h i b i t s a strong 

blue f luorescence when i r r a d i a t e d with short wavelength u l t r a ­

v i o l e t l i g h t . This property of TAP d e r i v a t i v e s should permit 

i d e n t i f i c a t i o n and de tec t ion o f the TAP-modif ied amino acid 

with high s e n s i t i v i t y , analogous to the Dansyl method fo r 

N-terminal amino a c i d s . 

c . The e s s e n t i a l components f o r formation of a fused 1 , 2 , 4 - t r i a z o l e 

r i n g are a carboxyl component and a hydrazino compound with the 

s t r u c t u r e : 

NH-NH, 

We chose the hydrazino d e r i v a t i v e o f phthalazine s ince i t s 

chemistry i s well known, and in almost a l l o f i t s reac t ions with c a r b o x y l i c 

a c i d s , the f u l l y c y c l i z e d products are formed, un l ike those o f other 

r i n g systems which may stop at the amide product . 



20 

The major thrust of t h i s work was in d e l i n e a t i n g the cond i t ions 

necessary f o r coupl ing 1-hydrazinophthalaz ine with N-protected amino ac ids 

and d i p e p t i d e s . 1-Hydrazinophthalazine does not reac t with c a r b o x y l i c ac ids 

under mi ld c o n d i t i o n s , hence we explored several methods o f promoting t h i s 

r e a c t i o n . In view of the p o s s i b l e a p p l i c a t i o n of our r e a c t i o n f o r pept ide 

sequencing, we a l s o explored the s o l i d - p h a s e synthes is of TAP d e r i v a t i v e s . 

We considered the use of metal complexes to promote the h y d r o l y s i s of 

pept ide bonds. In t h i s contex t , severa l t r a n s i t i o n metal coord ina t ion 

complexes of s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e d e r i v a t i v e s were syn thes i zed . 
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i 

CHAPTER 2 

REACTION OF 1-HYDRAZINOPHTHALAZINE WITH N-PROTECTED AMINO ACIDS 

2.1 INTRODUCTION 

The reac t ions of hydra laz ine (12, 1 -hydraz inophtha laz ine , 

Apreso l ine ) NH-NH 2 

(12) 

have been studied only s ince 1 9 5 0 . 3 0 Studies with th is chemical were 

prompted by the d iscovery that in hypertensive man, hydra laz ine lowers blood 

pressure by reducing vascu la r r e s i s t a n c e through d i r e c t r e l a x a t i o n of 

a r t e r i o l a r smooth muscle. These c h a r a c t e r i s t i c s made i t an idea l agent f o r 

the treatment of severe a r t e r i a l h y p e r t e n s i o n . 3 1 The e f f e c t on blood 

pressure was so s t r i k i n g that i n t e r e s t in the drug surged , and wi th in 8 

y e a r s , there were some 920 references to hydra laz ine in the l i t e r a t u r e . 

Today, despi te the advent of many other d rugs , hydra laz ine i s s t i l l widely 

used fo r the treatment of high blood p r e s s u r e , and i s f requent ly administered 

in combination with s y m p a t h e t i c - i n h i b i t i n g and/or d i u r e t i c an t ihyper tens ive 

a g e n t s . 3 2 The c e l l u l a r mechanism respons ib le f o r the r e l a x a t i o n of vascu la r 
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smooth muscle remains unknown, but the a b i l i t y of hydra laz ine to chelate 

c e r t a i n t race metals perhaps requi red fo r smooth-muscle c o n t r a c t i o n may be 

i m p o r t a n t . 3 3 

Hydralaz ine was f i r s t synthesized and tested in the Ciba L a b o r a ­

t o r i e s at Basle by Gross , Druey, and Meir as one of a s e r i e s of experimental 

a n t i h i s t a m i n e agents conta in ing a hydrazino g r o u p . 3 0 As i t turned out , 

th is compound was not an a n t i h i s t a m i n e , but i t s i n j e c t i o n in to animals 

caused long ac t ing vasodepressor responses un l ike those of any h i ther to 

known drug. 

In response to the p o t e n t i a l i t i e s of such an agent,[ s tud ies were 

immediately i n i t i a t e d in to the chemical and biochemical reac t ions of 

hydra laz ine with the i n t e n t i o n of e l u c i d a t i n g i t s mode of ac t ion 

Druey and R ing ie r made the f i r s t systemat ic study of the chemistry 

of h y d r a l a z i n e . 3 4 They found that a c y l a t i n g agents , such as c a r b o x y l i c 

a c i d s , ac id c h l o r i d e s , anhydr ides , and e s t e r s , d id not give the expected 

N-acyl d e r i v a t i v e s with hydra laz ine . Instead of the amide product being 

i s o l a t e d , r i n g c losure occurred with e l i m i n a t i o n of water and a new type of 

compound, the s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e (TAP) d e r i v a t i v e was always 

obta ined . 

NH-NH 2 

(12) 

Hydralaz ine 

X = -OH, - O R ' , -0C0R", ha l ide 
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Subsequent ly , two reports appeared which i d e n t i f i e d N - a c e t y l -

hydra laz ine as a major metabol ic product o f hydra laz ine in jec ted in to 

a n i m a l s . 3 5 ' 3 6 These i d e n t i f i c a t i o n s were l a t e r shown to be erroneous, and 

the metabol i te i s o l a t e d was in f a c t , 3 - m e t h y l - s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e 

[15, R = C H 3 ) . 3 7 > 3 8 Other metabol i tes of hydra laz ine i d e n t i f i e d s ince that 

time inc lude the compounds shown in Chart 2 . 1 . 3 9 - 1 4 2 

N N 

R 1 = OH 

Chart 2.1 Metabol i tes of 1-Hydrazinophthalazine 

The non-enzymatic convers ion of hydra laz ine to 3-CH 3 -TAP was shown 

to occur in the presence of ace ty l CoA in human plasma u l t r a f i l t r a t e . 1 * 3 

Independently of the pharmacological and c l i n i c a l s tudies on 

hydra laz ine and i t s me tabo l i t es , Love le t te and Potts inves t iga ted the 

synthesis and chemical proper t ies of var ious s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e 

d e r i v a t i v e s as part of a general program on the study of bridgehead n i t rogen 

heteroaromatic r ing s y s t e m s . 1 * 4 * 1 * 5 
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While the work descr ibed in th is thes is was in p rogress , Zimmer 

and co-workers reported t h e i r i n v e s t i g a t i o n s on the react ion between 

hydra laz ine and a v a r i e t y of a c y l a t i n g a g e n t s . 4 6 The i r ob jec t i ve was to 

determine whether the r i n g c losure to g ive 3 -subst i tu ted-TAP d e r i v a t i v e s 

was a c h a r a c t e r i s t i c of a c y l a t i o n reac t ions on ly . In every reac t ion they 

s t u d i e d , the c y c l i z e d product was obta ined . The range of react ions from 

which TAP d e r i v a t i v e s may be formed are shown in Table 2 .1 . 

The r e a c t i o n mechanism f o r the coupl ing and r i n g c losure suggested 

by Druey and R ing ie r i s shown in Scheme 2 . 1 . 3 4 

• H 

(15) 

Scheme 2.1 Reaction Mechanism f o r Formation of s -T r iazo1o[3 ,4 -a ]ph tha laz ines 

It has been shown with the 1-hydrazinophthalazine system, that 

once the ac id component was coup led , the amide intermediate c y c l i z e d 

spontaneously , even in those cases where attempts were made to synthesize 

the a c y l h y d r a l a z i n e . 3 8 > 4 4 > 4 5 The ease by which t h i s c y c l i z a t i o n occurs 

seems to be unique f o r the phthalaz ine system. In other c a s e s , e . g . the 

a c y l a t i o n of 2 -hydraz inopyr id ine , the amide d e r i v a t i v e s could be obtained 

as s tab le and i s o l a b l e compounds 4 7 which c y c l i z e under dehydrat ive c o n d i -
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Table 2.1 Reactions of Hydralazine with. Various 
Carboxy l ic Ac id Der iva t ives 

N N 

A c i d Der iva t i ve R Reference 

HCOOH H 45 

CH3COOH CH 3 45 

CC1 3 C00H c c i 3 46 

HSCHpCOOH CH2SH 46 

PhCH(0H)C00H CH(0H)Ph 46 

COOH H 45 
COOH 

( C F 3 C 0 ) 2 0 
C F 3 46 

0 

( C H 2 ) 2 C 0 0 H 46 

(CH 3 ) 3 C-C0C1 C ( C H 3 ) 3 46 

CC13CN c c i 3 46 

H C ( 0 E t ) 3 H 45 

C H 3 C ( 0 E t ) 3 C H 3 45 

c s 2 SH 44 

CNBr NH 3Br" 44 
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t i o n s , such a s , r e f l u x i n g with phenol or phosphorous o x y c h l o r i d e . 4 7 - 1 + 9 

The f i r s t goal of t h i s work was to de l inea te the cond i t ions 

required f o r coupl ing hydra laz ine with c a r b o x y l i c acids under as mild 

cond i t ions as p o s s i b l e . L i t e r a t u r e methods c a l l f o r t h i s coupl ing to be 

e f fec ted at r e f l u x temperatures with neat l i q u i d c a r b o x y l i c a c i d s , or under 

melt cond i t ions f o r s o l i d a c i d s . 4 5 * 4 6 

If the coupl ing reac t ion is to be appl ied to amino acids or to 

pept ides , such severe cond i t ions are not appropr ia te . The f i r s t step in 

the coupl ing reac t ion i s the formation of an amide bond from carboxyl and 

amine components. Amide formation i s an endoergic reac t ion so that energy 

must be s u p p l i e d , e . g . in the form of heat. An a l t e r n a t i v e is that one of 

the r e a c t i o n components i s introduced in an ac t iva ted form. Most of the 

publ ished a p p l i c a t i o n s of t h i s r e a c t i o n are der ived from t h i s common 

technique: they occur through an a c t i v a t e d form of the carboxyl group, in 

general through acyl d e r i v a t i v e s such as h a l i d e s , anhydrides and e s t e r s . 5 0 

2.2 NOMENCLATURE 

The fo l lowing naming and numbering systems, both IUPAC and 

t r i v i a l , are used in t h i s work. 

1-Hydrazinophthalazine (Hydralazine) 
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s - T r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e (TAP) 

2 
N N 

The naming of the s i d e - c h a i n in the 3 - p o s i t i o n fo l lows normal procedures 

when the TAP d e r i v a t i v e i s der ived from hydra laz ine and a simple c a r b o x y l i c 

a c i d , e . g . , 

When the TAP d e r i v a t i v e i s der ived from an amino a c i d , we depart from IUPAC 

ru les and give the s i d e - c h a i n subs t i tuen t the same name as the parent 

carboxyl component. The naming of TAP d e r i v a t i v e s i s i l l u s t r a t e d in 

Table 2 .2 . 

2.3 PRELIMINARY RESULTS 

The coupl ing r e a c t i o n of hydra laz ine hydrochlor ide with neat 

g l a c i a l a c e t i c ac id to give 3 - m e t h y l - s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e hydro­

c h l o r i d e requi res up to 4 hours under r e f l u x cond i t ions to be completed. 

Carboxy l ic ac ids are not always l i q u i d s however, and the quest ion a r i s e s 

whether the coupl ing can s t i l l occur when the reactants are d i l u t e d in a 

so lvent medium. In aqueous acetate buf fe r s o l u t i o n s (pH 2 . 9 - 4 . 8 ) , no 

coupl ing reac t ion occurred a f t e r 9 hours at 100°C which suggested that the 

Hydralaz ine + CH^COOH 

Hydralaz ine + HCOOH *• s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e (3-H-TAP) 

*- 3 - m e t h y l - s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e (3-CHLTAP) 



Table 2.2 Nomenclature f o r the S ide-cha ins of s - T r i a z o l o [ 3 , 4 - a ] p h t i i a l a z i n e s 

Parent Carboxy l ic Acid 
Accepted Name of 

3-Subst i tuent on TAP 
T r i v i a l Name of 

3 -Subst i tuent on TAP TAP Abbrev ia t ion 

Formic Ac id 

HCOOH 

3-H-TAP 

A c e t i c Acid 

CH3C00H 

N - A c e t y l - g l y c i n e 

CH3C0NHCH2C00H 

Methyl 

Acetarnidomethy1 

3-Me-TAP 

N - A c e t y l - g l y c y l 3 - (N-Ac-g ly ) -TAP 

N- t -Buty loxycarbony lg lyc ine N-t-Butyloxycarbonylaminomethyl N - t -Buty loxycarbony l - 3 - (N-B0C-gly) -TAP 

(CH3)3COCONHCH2COOH g i y c y i 

N- t -Buty loxycarbonyla l anine 

(CH3)3C0C0NHCHC00H 

l - (N- t -Buty loxycarbonyl )amino- N - t -Buty loxycarbony l - 3- (N-B0C-ala) -TAP 
ethyl a lanyl 

CH. 

u -Acety l -methionine 

CH3C0NHCHC00K 

( C H 2 ) 2 

SCH, 

l -Acetamido-3-methyl thiopropyl N-Acetyl -methionyl 3-(N-Ac-met)-TAP 
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coupl ing of a c a r b o x y l i c ac id with hydralaz ine was unfavourable under d i l u t e 

c o n d i t i o n s . The a l t e r n a t i v e mode of a c t i o n , that of a c t i v a t i n g the carboxyl 

group was then cons idered . 

The approach taken was to generate the a c t i v a t e d carboxyl interme­

d ia te in situ by means of a 'coupl ing reagent , ' and to react the a c t i v a t e d 

species d i r e c t l y with the amine component without p r i o r i s o l a t i o n of the 

intermediate . The coupl ing reagent used f o r exp lora tory s tud ies was 

l -e thy l -3 -d imethy laminopropyl carbodi imide h y d r o c h l o r i d e 5 1 (16„ EDC). 

+ 
Et -N=ON- (CH 2 ) 3 NMe 2 C l " 

H 

(16) 

The carbodi imide reacts with c a r b o x y l i c ac ids to form an 0 - a c y l i s o u r e a which 

is attacked very r e a d i l y by amine nucleophi les to form the amide product 

(see Sect ion 2 . 4 . 4 ) . 

The f i r s t t r i a l s were performed with hydra laz ine HC1 and aqueous 

a c e t i c ac id in the presence of EDC at ambient temperature. The r e a c t i o n was 

monitored by UV spectroscopy (F igure 2 .1 ) . The molar a b s o r p t i v i t y (e) of 

the most intense absorpt ion of 3-CH 3 -TAP i s almost four times greater than 

that of hydra laz ine . Thus, as the coupl ing reac t ion proceeds, i t i s p o s s i b l e 

to monitor the growth of the 231 nm band of 3-CH 3 ~TAP, concomitant with the 

decrease in i n t e n s i t y of the hydralaz ine bands. 

In aqueous s o l u t i o n , the reac t ion d id proceed with the formation 

of 3 -CH 3 -TAP. However, the reac t ion is slow, and a f t e r two weeks there was 

s t i l l a s i g n i f i c a n t amount of unreacted hydra laz ine HC1. 

Coupl ing occurred much f a s t e r using dry methanol as s o l v e n t , the 

react ion being e s s e n t i a l l y complete wi th in two days. 
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Figure 2.1 U l t r a v i o l e t Spectra of Equimolar Amounts of (a) Hydra laz ine , 
(b) 3-M.e-TAP, and (c) a Mixture in \\n0 S o l u t i o n 
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Although the reac t ion time was not yet s a t i s f a c t o r y , these 

experiments showed that with carboxyl a c t i v a t i n g agents mi lder reac t ion 

condi t ions than previous l i t e r a t u r e methods could be used. Th is se t the 

stage fo r the coupl ing of hydra laz ine with N-protected amino a c i d s . 

In p r i n c i p l e , the problems faced in t h i s work were s i m i l a r to 

those found in peptide s y n t h e s i s . The synthes is of peptides requi res 

a c t i v a t i o n of the carboxyl group of an N-protected amino a c i d such that 

i t w i l l react with the amino func t ion of another C-protected amino a c i d 

molecule to give a new peptide l i n k . In our c a s e , the nuc leoph i le is the 

amino group of a monosubstituted hydraz ine , raNther than the amino group of 

an amino a c i d . Previous work has shown that once the carboxamide l inkage 

is formed with hydra laz ine and c a r b o x y l i c a c i d s , r ing c losure i s immediate 

to form the s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e d e r i v a t i v e . 4 5 ' 4 6 One expects 

t h e r e f o r e , that coupl ing methods used in peptide synthes is should be 

a p p l i c a b l e to the formation of TAP compounds from hydra laz ine and amino 

a c i d s . 

Because of the mult i tude of coupl ing methods used in peptide 

s y n t h e s i s 5 2 " 5 4 i t i s necessary to be h igh ly s e l e c t i v e i n the choice of 

methods f o r coupl ing the amino and carboxyl components. In pept ide 

s y n t h e s i s , the choice of coupl ing reagents i s f requent ly d i c t a t e d by the 

ease of racemizat ion produced by the method. Racemization is unimportant 

in our system. 

In view of the promise of coupl ing reagents f o r e f f e c t i n g TAP 

format ion under mi ld c o n d i t i o n s , we d i r e c t e d our a t ten t ion to f i n d i n g 

t In peptide s y n t h e s i s , coupl ing reagents are genera l ly considered to be 
reagents added to the amino and carboxyl components to e f f e c t amide bond 
formation in a one-pot r e a c t i o n , without i s o l a t i o n of in termedia tes . 
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appropr ia te coupl ing reagents . The use of coupl ing reagents s i m p l i f i e s the 

synthe t ic procedures c o n s i d e r a b l y , and makes the method more amenable to 

p o s s i b l e automation of the procedure. 

2.4 RESULTS 

2.4.1 The Isoxazolium S a l t Method 

N - E t h y l - 5 - p h e n y l i s o x a z o l i u m - 3 ' - s u l f o n a t e (17, NEPIS, Woodward's 

Reagent K) was f i r s t used as an amide-forming reagent in 1 9 6 1 . 5 5 ' 5 6 

(17) 

This reagent reacts with carboxyl groups to form a c t i v e enol es ters which 

condense with amine nuc leophi les with amide bond formation as shown in 

Scheme 2 .2 . 

React ion i s i n i t i a t e d by the base induced a b s t r a c t i o n of a proton 

in 17 with a concerted r ing opening rearrangement to form the h igh ly r e a c t i v e 

ketoketenimine ( i s ) . The reac t ion of t h i s species with f ree c a r b o x y l i c ac id 

produces an iminoanhydride (19b) which i s converted to the enol es te r (20). 

This intermediate can react with amine nuc leophi les to form the amide product , 

or i t can undergo 0 N acyl migrat ion to y i e l d the unreact ive keto-

amide, 21. 5 7 

The enol es te r i s a good a c y l a t i n g agent towards nuc leophi les 

s ince the leav ing group i s s t a b i l i z e d as the an'ion of a B-ketoamide. Some 

add i t iona l s t a b i l i z a t i o n of the leav ing group might be der ived from i n t r a -
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Ar 
,N-Et 

Base 
Ar 

(17) 

Ar 0 

H ,0-CO-R 

NH-Et 
(19a) 

o o 
(21) 

R-CO-NH-R 

Ar = m - S 0 3 C 6 H 4 

H ^ C . 

(18) 
^N-Et 

RCOOH 

Ar. .OH 

O-CO-R 

NH-Et 

(22a) 

A r ^ O 

H - V NH-Et 

(22b) 

Scheme 2.2 Mechanism of Amide Formation with NEPIS 
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molecular hydrogen bonding to the forming 0-anion during attack by the 

nuc leophi le (:N). 

R 
i 

I 

0 

The high r e a c t i v i t y of the a c t i v e enol ester intermediate together 

with i t s f a c i l e generat ion in situ, recommended the isoxazol ium s a l t method 

f o r f a c i l i t a t i n g the coupl ing of hydra laz ine with amino a c i d s . Another 

f a c t o r in favour of t h i s method was the reputed ease of separat ion of 

by-products from the des i red coupled product . 

NEPIS was designed by incorpora t ing a su l fonate group onto the 

phenyl subs t i tuen t to provide an i o n i c ketoamide by-product (22), 

S0 3 HNEt3 

(22) 

The procedure recommended fo r product i s o l a t i o n in peptide 

synthes is involves simple t r i t u r a t i o n with water to remove the water -so lub le 

i m p u r i t i e s . 5 6 Any unconsumed enol es te r or s i d e - r e a c t i o n products connected 

to the sul fonated framework would be removed from the coupled product along 

with 22. 
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L i t e r a t u r e procedures f o r synthesis of peptides c a l l f o r i n i t i a l l y 

suspending the isoxazol ium s a l t with the ac id component in the presence of 

EtgN, in e i t h e r a c e t o n i t r i l e or nitromethane so lvent u n t i l the isoxazol ium 

s a l t d i s s o l v e d complete ly . At t h i s s tage , the c a r b o x y l i c ac id i s assumed 

to be completely converted to the enol e s t e r . The amine component i s then 

added and the a c y l a t i o n reac t ion i s usua l l y allowed to proceed overnight 

(15-18 hours) before work-up of the r e a c t i o n mixture. 

For our t r i a l s with the isoxazol ium s a l t method, NEPIS was the 

coupl ing reagent used. The amine component was hydra laz ine as the HC1 s a l t 

because of the i n s t a b i l i t y of the f ree base (c f . Chapter 5 ) . I n i t i a l e x p e r i ­

ments were conducted with N-acety l -DL-methionine because of i t s s o l u b i l i t y 

in a c e t o n i t r i l e and a l s o because, at t h i s ear ly stage of the work, there 

were few other N-protected amino ac ids on hand. The r e a c t i o n of the above 

components i s shown in Scheme 2 .3 . 

(22) 

Scheme 2.3 Formation of 3-(N-Ac-met)-TAP with NEPIS 
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The r e a c t i o n cond i t ions used i n i t i a l l y were s i m i l a r to those 

recommended fo r peptide s y n t h e s i s , with a d d i t i o n of hydra laz ine HCl and Et-^N 

in a c e t o n i t r i l e suspension a f t e r formation of the enol e s t e r . However, 

i t became apparent that s t r i c t adherence to l i t e r a t u r e procedures was 

i m p r a c t i c a l . In the f i r s t i n s t a n c e , high concentrat ions of a l l reagents 

could not be used to promote the coupl ing r e a c t i o n because of the low s o l u ­

b i l i t y o f the hydra laz ine s a l t in a c e t o n i t r i l e . A yel low p r e c i p i t a t e was 

formed during the coupl ing r e a c t i o n which appeared to be a decomposit ion 

product of hydra laz ine . 

I s o l a t i o n of the TAP d e r i v a t i v e was not s p e c t a c u l a r l y s u c c e s s f u l . 

T r i t u r a t i o n of the r e a c t i o n mixture with water a f t e r the p r e c i p i t a t e was 

f i l t e r e d o f f , and the so lvent removed, not only d i s s o l v e d the su l fonated 

by -products , but a lso some TAP product as w e l l . Ex t rac t ion of a C H ^ C ^ 

s o l u t i o n of the r e a c t i o n mixture with water a l s o r e s u l t e d in loss of product 

in to the aqueous phase. On an encouraging note however, the CH2CT2 s o l u t i o n 

a f t e r e x t r a c t i o n showed c lean UV spectra c h a r a c t e r i s t i c of the TAP 

chromophore. The i d e n t i t y of the product i s o l a t e d from the C H g C ^ s o l u t i o n 

was confirmed by mass spectrometry to be the des i red 3 - ( N - a c e t y l - m e t h i o n y l ) -

TAP (23). 

In an e f f o r t to improve the r e a c t i o n c o n d i t i o n s , the next s e r i e s of 

experiments were conducted with N-buty loxycarbonylg lyc ine (N-BOC-gly ) . The 

expected reac t ion product is 3 - ( N - B 0 C - g l y ) - T A P (24). 
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N-Buty loxycarbonylg lyc ine i s very so lub le in a c e t o n i t r i l e , and i s 

thus s u i t a b l e f o r our needs. Of more importance, the TAP d e r i v a t i v e should 

be r e l a t i v e l y i n s o l u b l e in water, thus f a c i l i t a t i n g i s o l a t i o n of product . 

Coupling reac t ions were performed under the same cond i t ions as 

p r e v i o u s l y , with the product i s o l a t e d by ex t rac t ion of C h ^ C ^ s o l u t i o n with 

water. As expected, 3 - (N-B0C-gly) -TAP showed low s o l u b i l i t y in water, and 

very l i t t l e TAP was l o s t in the aqueous phase during e x t r a c t i o n s . The 

i s o l a t i o n procedure was a lso modif ied by e x t r a c t i n g the C f - ^ C ^ s o l u t i o n f i r s t 

with d i l u t e HCl to expedite removal of unreacted h y d r a l a z i n e , and then with 

aqueous NaHC0 3 s o l u t i o n and water. The ex t rac t ions were u s u a l l y monitored 

by record ing the UV spectra of the organic and aqueous phases, and ex t rac t ions 

were repeated u n t i l the UV spectra of the aqueous phases showed no UV 

absorbing m a t e r i a l . However, during the ex t rac t ions with 5% H C l , some 

compound remained in the aqueous phase in approximately constant concent ra ­

t i o n even a f t e r most of the su l fonated products were removed. Th is compound 

showed a d i f f e r e n t UV band s t ruc tu re from the TAP chromophore. When an HCl 

ex t rac t was t i t r a t e d with base, the c h a r a c t e r i s t i c TAP band s t ruc tu re was 

generated. Thus , protonat ion o f one of the r i n g n i t rogen atoms o c c u r r e d , and 

the protonated product was more s o l u b l e than the bas is TAP molecule in aqueous 

media. When IN or ~\% HCl were used f o r e x t r a c t i o n s , no protonat ion of TAP 

was observed. 

To obta in more homogeneous cond i t ions f o r amide-bond format ion , the 

so lvent system was modi f ied . As be fore , the enol es ter of the N-protected 

amino ac id was prepared in a c e t o n i t r i l e s o l u t i o n . Hydralaz ine HCl and Et^N. 

v/ere added in DMF suspension . When the r e a c t i o n mixture was s t i r r e d overnight 

almost a l l the hydra laz ine HCl had d i s s o l v e d . An attempt was made to i s o l a t e 

the TAP d e r i v a t i v e by s o n i c a t i n g the reac t ion mixture with 0.5N HCl a f t e r 
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organic so lvent had been removed. The s o n i c a t i o n procedure acce le ra ted the 

ex t rac t ion of wa te r -so lub le mater ia ls in to aqueous s o l u t i o n , l eav ing TAP as 

a s o l i d . 

When t h i s mixture was l e f t s t a n d i n g , a gas was l i b e r a t e d and a l l 

s o l i d g radua l ly d i s s o l v e d . Very l i t t l e of the d i s s o l v e d product could be 

extracted in to C H 2 C 1 2 or EtOAc. Ev ident ly the work-up procedure deblocked 

the butyloxycarbonyl group from 3- (N-B0C-gly) -TAP with l i b e r a t i o n of C 0 2 

(Equation 3) . The deblocking o f . t h e BOC- group under such mi ld cond i t ions 

C M e 3 _djl_HCl_ 

(24) 

CI 
C 0 2 + Me3C0H 

(3) 

i s in cont ras t with the observed s t a b i l i t y in IN HC1, and the usual deblock­

ing procedure with HBr in g l a c i a l a c e t i c a c i d . 5 8 

When the coupl ing r e a c t i o n was done e n t i r e l y in DMF s o l u t i o n , a l l 

hydra laz ine HC1 d i s s o l v e d on overnight r e a c t i o n , but i t s disappearance was 

masked by the simultaneous p r e c i p i t a t i o n of E t^N.HCl . Moni tor ing the 

r e a c t i o n by TLC showed s i g n i f i c a n t unreacted reagents a f t e r 5 hours, but the 

reac t ion appeared to be e s s e n t i a l l y complete wi th in 22 hours. The product 

was obtained by e x t r a c t i o n with IN or 2N HC1 and H 20 of a methylene c h l o r i d e 

s o l u t i o n of the reac t ion a f te r DMF was removed. Th is procedure removed 

almost a l l i m p u r i t i e s . R e c r y s t a l l i z a t i o n of the product from methanol gave 

3- (N-B0C-gly) -TAP pure by TLC c r i t e r i a . 
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In cont ras t to t h e i r recommended use in peptide s y n t h e s i s , aceto­

n i t r i l e and nitromethane were unsui tab le fo r the synthes is o f TAP d e r i v a t i v e s 

due to the low s o l u b i l i t y o f hydra laz ine H C l . Incomplete d i s s o l u t i o n o f 

hydra laz ine HCl has an obv ious ly detr imental e f f e c t on TAP y i e l d s , and 

delayed or prolonged add i t ion o f the amine component to the reac t ion s o l u t i o n 

encourages compet i t ion o f rearrangement and s i d e - r e a c t i o n s . 5 6 

N,N-Dimethylformamide was used as a so lvent medium with some 

reserva t ions in view of i t s reported u n s u i t a b i l i t y f o r carboxamide formation 

with NEPIS 5 6 and the i n s t a b i l i t y o f hydra laz ine in DMF s o l u t i o n . Water and 

ethanol are not recommended as so lvents because they react with the keten-

imine intermediate {18). Low coupl ing y i e l d s in dioxane, tetrahydrofuran 

(THF) and ethyl acetate are a t t r i b u t e d to incomplete enol es ter format ion. 

Lowered y i e l d s are found with DMF and d imethy lsu l fox ide (DMSO) probably due 

to an increase in the rate o f ketoamide formation caused by the increased 

p o l a r i t y o f the s o l v e n t . 

Our r e s u l t s show that whereas the occurrence o f the s i d e - r e a c t i o n 

(20*21) d iscourages the use o f po lar s o l v e n t s , po lar so lvents are required 

to s o l u b i l i z e hydra laz ine H C l . Indeed, i t i s poss ib le that the y i e l d -

l i m i t i n g f a c t o r for TAP formation in DMF s o l u t i o n i s the rearrangement 

20-+21. No extensive e f f o r t s were made to optimize the reac t ion c o n d i t i o n s , 

and our maximum observed TAP y i e l d o f 73% does not represent an optimum 

va lue . C e r t a i n l y , the y i e l d should be improved with a mixed CH3CN/DMF 

system by decreasing the extent o f competing 0->N acyl m igra t ion . S u b s t i t u t i o n 

o f DMF with dimethylacetamide (DMA) should decrease the extent o f hydralaz ine 

decomposit ion in s o l u t i o n ( c f . Chapter 5 ) . 

Another means o f improving the coupl ing reac t ion i s to use an 

isoxazol ium s a l t with l e s s tendency to undergo rearrangement o f the enol 
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e s t e r . Woodward and Woodman showed that s u b s t i t u t i n g the N-a lky l s u b s t i -

tuent with a b u l k i e r group slowed down the rea r rangement . 5 9 They succeeded 

in b locking the enol es te r rearrangement completely in N - t - b u t y l - 5 - m e t h y l -

isoxazol ium perch lora te (25) which bears the bulky N- t -buty l group. 

(25) 

Unfor tunate ly , the i s o l a b l e t - b u t y l ketenimine (26) der ived from t h i s ca t ion 

was so unreact ive that i t d id not e a s i l y y i e l d enol es ters with peptide 

a c i d s ; the a c t i v a t i o n step was so slow that s ide react ions became 

s i g n i f i c a n t . 6 0 * 6 1 

(26) 

2.4.2 The EEDQ Coupling Reagent \ 

l - E t h o x y c a r b o n y l - 2 - e t h o x y - l , 2 - d i h y d r o q u i n o l i n e (27, EEDQ) was 

o r i g i n a l l y developed by Bel leau and his a s s o c i a t e s 6 2 as a depressor of the 

cent ra l nervous system. EEDQ was a l s o shown to be an e f f i c i e n t and 

s e l e c t i v e coupl ing reagent . Be l leau and Malek proposed the mechanism for 

amide bond formation shown in Scheme 2 . 4 . 6 3 
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I 

R 7 N H 2 

O 
EtOH + C 0 2 + R - C - N H - R ' 

Scheme 2.4 Mechanism of Amide Formation with EEDQ 
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The c a r b o x y l i c a c i d replaces the ethoxy group of EEDQ to form an 

intermediate (28) which i s converted to a mixed carbonic anhydride in situ. 

This mixed anhydride (30) reacts with amine nuc leophi les to form the amide 

compound. The by-products of the reac t ion ( q u i n o l i n e , e t h a n o l , and carbon 

d ioxide) are reported to be r e a d i l y removed by f l a s h evaporat ion of the 

r e a c t i o n mixture . The r e a c t i o n may be c a r r i e d out in so lvents such as 

benzene, absolute e t h a n o l , or te t rahydro furan . An a t t r a c t i v e fea ture of 

t h i s method i s the promise of easy i s o l a t i o n of the des i red product . 

T r i a l s with EEDQ were conducted with N - a c e t y l - g l y c i n e and 

hydra laz ine in methanol s o l u t i o n . UV spect ra l a n a l y s i s of the r e a c t i o n 

mixture showed very l i t t l e of the TAP product when the r e a c t i o n was allowed 

to proceed at room temperature f o r up to three days. The presence of 

qu ino l ine i n ' t h e r e a c t i o n mixture ind ica ted that the mixed carbonic 

anhydride had been formed, but apparent ly much of the a c t i v e intermediate 

was l o s t through h y d r o l y s i s with water present in the s o l v e n t . 

Other t r i a l s in a c e t o n i t r i l e s o l u t i o n were only m i l d l y s u c c e s s f u l 

due to the spar ing s o l u b i l i t y of N - a c e t y l - g l y c i n e in a c e t o n i t r i l e and the 

tendency of hydra laz ine^to p r e c i p i t a t e from s o l u t i o n when EEDQ was added. 

In s p i t e of these problems, the y i e l d of 3 - ( N - a c e t y l - g l y c y l ) - T A P was higher 

in a c e t o n i t r i l e than in methanol. 

Using N - a c e t y l - L - a l a n i n e , which was more s o l u b l e in a c e t o n i t r i l e 

than the g l y c i n e d e r i v a t i v e , formation of 3 - ( N - a c e t y l - L - a l a n y l ) - T A P was 

much improved fo r overnight reac t ions at room temperature. Although some 

hydra laz ine s t i l l p r e c i p i t a t e d from s o l u t i o n , the tendency to do so was 

much less than with N - a c e t y l g l y c i n e , notwithstanding the use of more 

concentrated s o l u t i o n s with the a lan ine d e r i v a t i v e . 

Coupl ing reac t ions with EEDQ in THF or DMSO s o l u t i o n r e s u l t e d in 

l i t t l e or no TAP formed. Good amide formation was e f fec ted with N-BOC-L-
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a lan ine and hydra laz ine in methylene c h l o r i d e s o l u t i o n . The product could 

be i s o l a t e d by e x t r a c t i n g the methylene c h l o r i d e so lu t ion with d i l u t e aqueous 

ac id and base. 

2 .4 .3 Acyloxyphosphonium Cations 

Acyloxyphosphonium d e r i v a t i v e s [zo) are very suscept ib le to 

n u c l e o p h i l i c at tack at the carbonyl carbon atom [Scheme 2 .5 ) , and such species 

feature as intermediates in several r e c e n t l y developed procedures f o r amide 

bond format ion. 

0 . 0 . R'NH 2 0 
II + n + Z II + 

R-C-0" + R 3 P-X ^ . R - C - 0 - P R 3 - R - C - N H R ' + "0 -PR 3 

(30) 

Scheme 2.5 Amide Formation v i a an Acyloxyphosphonium Intermediate 

Much e f f o r t has been expended in developing acyloxyphosphonium 

s a l t s as v i a b l e a c y l a t i n g agents in peptide synthes is with encouraging 

s u c c e s s , and several methods show promise f o r p r a c t i c a l use in peptide 

s y n t h e s i s . 5 k 

Phosphorus-containing reagents were considered f o r the fo l low ing 

reasons: 

1. Reaction condit ions, are genera l l y mi ld and s u i t a b l e f o r 

' e i n t o p f ver fahren ' o f TAP d e r i v a t i v e s . 

2. Reagents are inexpensive and r e a d i l y a c c e s s i b l e . 

. 3. The reagents, were deyeloped f o r peptide synthes is and l i t t l e 

i s known about t h e i r more general a p p l i c a b i l i t y in carboxamide 

s y n t h e s i s . 
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In 1969, Kenner and a s s o c i a t e s reported on the resonance-

s t a b i l i z e d acyloxyphosphonium s a l t s der ived from hexamethylphosphoramide 

(31, HMPA) (the Kenner-Sheppard Reaction) . 6 l * » 6 5 They showed amide formation 

according to the sequence in Scheme 2 .6 . 

+ 
(Me 2 N) 3 P0 + TsCl * [ ( M e ^ P - O T s j C l " 

(31) (32) 

+ + 

[•(Me 2 N) 3 P-0-P(NMe 2 ) 3 3TsO"CV 

(33) 

1RC00H 
0 
•i + 

[RC-0-P(NMe 2 ) 3 ]Cl" (OTs") 

(34) 

R'NH 2 

RC-NHR' + (Me 2N) 3P0 

T s - = M e ^ ~ y S 0 , 

Scheme 2.6 Amide Formation v i a an Acyloxydimethylaminophosphonium S a l t 

The a d d i t i o n of tosy l c h l o r i d e to excess HMPA y i e l d s the d i c a t i o n 

(33), presumably by way of the i n i t i a l adduc t .(32) . The d i c a t i o n (33) i s 

r e l a t i v e l y s t a b l e , and the c r y s t a l l i n e d i - t e t r a f l u o r o b o r a t e s a l t has been 

used as a coupl ing reagent in peptide s y n t h e s i s . 6 6 

Two routes can be v i s u a l i z e d f o r the a c y l a t i o n s tep . Th is step 

can proceed e i t h e r by d i r e c t a t tack of the amino component at the a c t i v a t e d 

carboxyl group with anchimeric ass is tance by a hydrogen-bonded c y c l i c 

t r a n s i t i o n s ta te (35) or v ia the add i t ion of the amino component to the 
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eg 
H_N:3 yc ...2 

R 1/ H-N 

(35) 

•NMe, 

0" 
I 

R ~ , C - 0 W N M e 2 

7 W ^ 
Me, 

phosphorus atom of 34 to form 55, which then decomposes to the amide and 

0 
II 

R-C-0x 

R'-I/ 
I 
H 

P(NMe 9 ) 2'3 

(36) 

HMPA in a manner not d i s s i m i l a r to the Wi t t ig r e a c t i o n . 5 5 A c t i v a t i o n of 

HMPA can a l s o be achieved with t o s i c anhydride or th iony l c h l o r i d e in place 

of t o s y l c h l o r i d e . 

In a t r i a l with HMPA and tosy l c h l o r i d e , we used N - a c e t y l - g l y c i n e 

as the carboxyl component and hydra laz ine HCl with Et^N as the amine 

component with reac t ion at room temperature. TAP was detected in the r e a c ­

t i o n mixture w i th in two hours , but a f t e r overnight r e a c t i o n , there s t i l l 

remained a f a i r amount of undissolved hydra laz ine HCl . E f f o r t s at i s o l a t i n g 

the TAP product were u n s u c c e s s f u l . Ex t rac t ion of the HMPA s o l u t i o n with 

benzene, petroleum^ether, d ie thy l e t h e r , and methylene c h l o r i d e was 

u n s a t i s f a c t o r y because of the high s o l u b i l i t y of 3<-.(N-acetyl-glycyl)-TAP 

in HMPA. The high b o i l i n g point of HMPA (^290°C) precluded removal of 

so lvent by d i s t i l l a t i o n . 
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No f u r t h e r work was done with th is system because of the problems 

of i s o l a t i n g the product from HMPA s o l u t i o n . A lso d iscouraging any recon­

s i d e r a t i o n of t h i s method f o r TAP s y n t h e s i s , was a repor t that HMPA is a 

potent ia l c a r c i n o g e n . 6 7 

Since the Kenner-Sheppard method proved to be u n s a t i s f a c t o r y f o r 

TAP s y n t h e s i s , we considered an a l t e r n a t i v e means of generat ing acy loxy ­

phosphonium in termedia tes , i . e . the coupl ing reagent , a z i d o - t r i s ( d i m e t h y l -

amino)phosphonium hexafluorophosphate ( 3 7 ) . 6 8 

+ 

[ ( M e 2 N ) 3 P - N 3 ] P F 6 " 

(37) 

In so lu t ion ,37 reacts r a p i d l y at -10°C with triethylammonium 

s a l t s of c a r b o x y l i c ac ids to give the acyl azide (39) v ia an acy loxy ­

phosphonium azide (38) which i s not i s o l a b l e . The a c t i v e intermediate 

reacts with amines to form the carboxamide (Scheme 2 .7 ) . 

0 

[ ( M e 2 N ) 3 P - N 3 ] P F 6 + RCOOH + E t 3 N " 1 Q ° C > [R -C -0 -P (NMe 2 ) 3 ]N 3 + [Et 3 NH]PFg 

(37) (38) 

\ 
0 

R-N=C=0 + N 2 [ R - C - N 3 ] + (Me 2 N) 3 P0 
(40) (39) 

R'NH 2 - 1 0 ° 

0 

R'NH 2 

R-NH-CO-NH-R' RC-NHR1 

(41) 

Scheme 2.7 Amide Formation v i a an Acyl Azide 
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At higher temperatures, the acyl az ide may undergo the Curt ius rearrangent 

to the isocyanate (40) which w i l l condense with the amine component to g ive 

the urea (41). 

Our e f f o r t s with the coupl ing reagent (37) involved reac t ion o f 

N-BOC-glycine with hydra laz ine at -15°C in DMF s o l u t i o n . A f t e r one hour, 

TLC a n a l y s i s o f the r e a c t i o n mixture ind ica ted only a l i t t l e TAP present , 

and UV spectra showed mainly unreacted hydralaz ine in s o l u t i o n . Overnight 

r e a c t i o n at room temperature d id not s i g n i f i c a n t l y increase the y i e l d s o f 

TAP. Coupl ing reac t ions in Methyl C e l l o s o l v e s o l u t i o n under the same 

cond i t ions a lso gave low y i e l d s of 3 - (N -B0C-g lycy l ) -TAP. 

The coupl ing reac t ion with [(Me2N) 3P-N2]PFg was not pursued 

fu r ther because o f the low TAP y i e l d s and d i f f i c u l t i e s in mainta in ing low 

temperatures to minimize the Curt ius rearrangement. 

Another coupl ing method used was the s o - c a l l e d "ox ida t ion -

reduct ion condensat ion" r e a c t i o n o f Mukaiyama and c o - w o r k e r s , 6 9 ' 7 0 i n which 

the dehydrat ion reac t ion involved in amide synthes is i s coupled with 

ox ida t ion o f an ary l phosphine and reduct ion of a d i s u l f i d e (Scheme 2 .8 ) . 

(45a) (45b) 

Scheme 2.8 Amide Formation v ia an Acyloxytriphenylphosphonium Sa l t 
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The e f f e c t i v e n e s s of t h i s combination of oxidant and reductant can 

be envisaged as a r i s i n g from formation of an acyloxyphosphonium t h i o l a t e 

(44) as the a c t i v e a c y l a t i n g in termediate . Th is s a l t , by v i r t u e of the 

e l e c t r o n withdrawing proper t ies of the phosphonium e n t i t y , reac ts r a p i d l y 

with incoming amino components to a f f o r d amides, t r iphenylphosphine oxide 

and the thione as depicted below. 

o 
o 

/ ° - c - R #T "CNH-R1 
A f 3 P \ R'-NH, A'3P /H 

R-CO-NH-R1 + Ar 3P=0 + ( f ^ 
N S H 

A dec id ing f a c t o r in using 2 , 2 ' - d i t h i o d i p y r i d i n e (42, 2-DTP) as 

the oxidant i s the isomer iza t ion in s o l u t i o n of the hydrogenated product 

(45a) to the thione form (45b). In the absence of t h i s i s o m e r i z a t i o n , the 

t h i o l formed would reac t with the acyloxyphosphonium s a l t intermediate to 

g ive undesi rab le s ide products thus n e c e s s i t a t i n g the add i t ion of a t h i o l 

scavenger to the r e a c t i o n mixture . 

A coupl ing r e a c t i o n with the Mukaiyama procedure was attempted 

using N - a c e t y l - g l y c i n e and hydra laz ine HC1 (+ Et 3 N) in dioxane s o l u t i o n . 

A f t e r overnight r e a c t i o n at 4 0 ° C , UV spec t ra l and TLC a n a l y s i s of the 

r e a c t i o n s o l u t i o n showed only a l i t t l e of the TAP d e r i v a t i v e in s o l u t i o n . 

A s o l i d p r e c i p i t a t e during the r e a c t i o n showed Et^N.HCl and a decomposit ion 

product of h y d r a l a z i n e . 
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The o x i d a t i o n - r e d u c t i o n condensation r e a c t i o n showed l i t t l e 

promise f o r our purposes although the y i e l d of TAP would probably be 

improved by conducting the r e a c t i o n in a so lvent where hydra laz ine decom­

p o s i t i o n is l ess pronounced. No fu r ther ac t ion was taken with t h i s system 

because more encouraging r e s u l t s were being obtained elsewhere. 

considered the method developed by Mi t i n 7 1 fo r the one-step synthes is of 

peptides from s u i t a b l y protected amino ac ids (Scheme 2 .9 ) . 

Continuing our e f f o r t s with phosphorus-containing reagents , we 

P(PhO) 3 + H N ^ N ( P h O ) 2 P - N ^ N + PhOH 

(46) 

RCOOH 

0 0 ^ ' 
R - C - N 0 N H (PhO) 2 P-0" 

(47b) 

II 
PhOH R-C-OPh 

(48) 

0 
n 

^ R C - N H - R ' 

Scheme 2.9 Amide Formation v i a an Acyl imidazol ium S a l t 

On the bas is of i n d i r e c t data o n l y , M i t i n et a l . 7 2 assumed the 

r e a c t i o n mechanism shown. The r e a c t i o n sequence i s considered to c o n s i s t of 

i n i t i a l formation of imidazo ly l d iphenylphosphi te (46), which on r e a c t i o n 
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with the carboxyl component gives the a c t i v a t e d compound of the l a t t e r 

(47a=^±: 47b). The acy l imidazo l ium intermediate (47b) reacts with the amino 

component to a f fo rd the carboxamide. In the absence of the amine component, 

the a c t i v e intermediate (47b) reacts with the phenol formed at the f i r s t 

stage to give the phenyl e s t e r o f the c a r b o x y l i c a c i d . 

Our f i r s t experiment with the Mi t in procedure involved the 

coupl ing of N-BOC-glycine with hydra laz ine HCl suspended in dioxane with 

Et^N added to n e u t r a l i z e the s a l t . When the react ion was c a r r i e d out in 

the presence of t r ipheny l phosphite and imidazole f o r one day at 4 0 ° C , UV 

spect ra l a n a l y s i s of the reac t ion s o l u t i o n showed a high concentra t ion o f 

the des i red TAP product . Th is r e s u l t was most g r a t i f y i n g ; un fo r tuna te ly , a 

s i g n i f i c a n t amount o f hydra laz ine HCl remained und isso lved . 

The s i n g l e t r i a l with t h i s procedure showed more promise than any 

of the previous reac t ions i n v o l v i n g other phosphorus-containing reagents. 

We there fore set about to opt imize the cond i t ions fo r TAP format ion. 

The reac t ion of c a r b o x y l i c ac ids with t r i a r y l p h o s p h i t e s leads to 

the formation of ary l e s t e r s , but high temperatures ( 1 5 0 ° - 2 0 0 ° C ) are 

requ i red . In the presence of t e r t i a r y amines, however, the react ion 

proceeds r a p i d l y at room t e m p e r a t u r e . 7 3 

A s e r i e s o f coup l ing r e a c t i o n s were performed in which the base 

was v a r i e d . It became apparent that the i n i t i a l choice of bases in the 

exp lora tory experiment was the optimum one. The e f f i c i e n c y of bases in 

promoting TAP formation fo l lows the sequence: 

Imidazole + EtgN >> DBU, Imidazole , EtgN » Morphol ine , 2 , 4 , 6 - C o l l i d i n e , 

DABCO, t - B u 3 N , Proton Sponge 

where DBU = 1 , 5 - d i a z a b i c y c l o [ 5 . 4 . 0 ] u n d e c - 5 - e n e 
DABCO = 1 , 4 - d i a z a b i c y c l o [ 2 . 2 . 2 ] o c t a n e 
Proton Sponge = 1 ,8-bis(dimethylamino)naphthalene 
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One conc lus ion from the above sequence i s that i t i s not based 

on base st rength a l o n e , s ince the s t rong ly basic Proton Sponge (pK 12.37) 
a 

i s i n e f f e c t i v e in the coupl ing r e a c t i o n , w h i l s t imidazole (pK 6.95) in 
a 

combination with t r i e t h y l amine (pK 11.0 ) i s s a t i s f a c t o r y . 
a 

Coupling reac t ions were performed at ambient temperature ( ^ 2 3 ° C ) , 

40°C and 70°C to determine the e f f e c t of temperature on the y i e l d of TAP. 

Not s u r p r i s i n g l y , higher y i e l d s of TAP were obtained at the higher tempera­

t u r e s . However, some deblocking of the BOC-group from 3-(N-B0C-gly)TAP was 

observed at 7 0 ° C . 

The e f f i c i e n c y of TAP formation was h igh ly so lvent dependent. A 

s e r i e s of experiments was conducted with var ious so lvents using imidazole 

and t r ipheny lphosphi te as the carboxyl a c t i v a t i n g agents, and EtgN to 

n e u t r a l i z e the hydra laz ine HC1. The most s u i t a b l e of the so lvents t r i e d 

was DMF. A c e t o n i t r i l e , THF, and dioxane gave good to moderate y i e l d s of 

TAP with d i s s o l v e d h y d r a l a z i n e , but were l im i ted because of incomplete 

s o l u t i o n of hydra laz ine HCI. even a f t e r one day 's r e a c t i o n . Dimethyl -

s u l f o x i d e , water and Methyl C e l l o s o l v e were unsui tab le even though hydra­

laz ine HCI d i s s o l v e d completely in the s o l v e n t s . 

An expected consequence of slow or incomplete s o l u t i o n of 

hydralaz ine HCI is formation of the phenyl es ter {48) of the N-acylamino 

a c i d . In f a c t , when the amino component i s absent , t h i s procedure may be 

u t i l i z e d f o r the synthes is of phenyl e s t e r s . 7 2 Thus, in those so lvents 

where re lease of hydra laz ine in to s o l u t i o n i s slow, a c y l a t i o n of hydra laz ine 

v ia the a c t i v e phenyl es te r should become more prominent. 

In the coupl ing reac t ion of ca rboxy l i c ac ids with amines, promoted 

by t r ipheny lphosphi te in the presence of im idazo le , M i t in et al.71*72 

reported the by-products of the r e a c t i o n to be diphenylphosphi te and phenol . 
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They d id not consider the p o s s i b i l i t y of fu r ther coupl ing reac t ions with 

the d iphenylphosphi te . 

Yamazaki and H i g a s h i 7 4 re-examined the reac t ion with t r i p h e n y l -

phosphite and determined the e f f e c t of var ious t e r t i a r y bases on the 

synthesis of an amide. In agreement with our r e s u l t s , they found that 

imidazole was s i g n i f i c a n t l y more e f f e c t i v e than other bases. An unexpected 

r e s u l t was the r e a c t i o n with d ipheny lphosphi te , in which p y r i d i n e was the 

super ior base. As a consequence, Yamazaki and Higashi explored the use of 

d iphenylphosphi te and p y r i d i n e f o r peptide s y n t h e s i s . 7 k They showed that 

the coupl ing reac t ion proceeds as shown in Scheme 2.10 

H0-P(0Ph) 9 n 

2 0 ^|\| n l N u 0 0 
u > R-C-0-P-H "OPh R-C-IMHR" + H-'P-OPh + PhOH 

py / \ i 
HO OPh OH H-P(0Ph) 9 

II <-

0 
(49) \\ 

(H0) 2 P-0Ph 

Scheme 2.10 Amide Formation v i a an Acyloxyphosphonium S a l t 

from Diphenylphosphite 

The acyloxyphosphonium s a l t of py r id ine (49) i s formed f i r s t , with 

re lease of a- phenolate anion from the phosphi te . In the presence of an 

amino component, t h i s a c t i v e ingred ient reacts r e a d i l y to form the amide 

d e r i v a t i v e . When no amino component i s present the phenyl es ter of the • 

c a r b o x y l i c ac id i s formed by in teramolecular reac t ion with the phenolate 

anion re leased from the phosphorus atom. 

If t r ipheny l phosphite i s used in the r e a c t i o n , then only h a l f an 

equiva lent amount i s r e q u i r e d , s ince the pyr id in ium s a l t of d i p h e n y l ­

phosphite (50) i s formed which can undergo fu r ther r e a c t i o n (Scheme 2.11) . 
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"OPh 

+ ( + 

+ 

py II i \t 
P(OPh) 3 + RCOOH ^ R - C - O - P - H 

P H ° M ° P H RS-NHR'^+ PhOH P h 0 ' ° P h 

"OPh 

O-P-H 

hO Ol 

(50) 

RCOOH ^ R'NH 2

 0 0 

II it 
(50) ^ R - C - O - P - H — R C - N H R 1 + PhOH + H-P-OPh 

HO OPh OH 

Scheme 2.11 Amide Formation v ia Acyloxyphosphonium S a l t s 

from Tr iphenylphosphi te 

The r e a c t i o n mechanism proposed by Yamazaki and Higashi f o r the 

coupl ing r e a c t i o n with phosphites i s at var iance with that of M i t i n , which 

assumes that the a c t i v e intermediate i s an acy l imidazo l ium s a l t . It would 

be i n t e r e s t i n g to t e s t these assumptions to determine which i s the actual 

a c t i v e a c y l a t i n g agent: acyloxyphosphonium s a l t or acy l imidazol ium s a l t . 

To complete our i n v e s t i g a t i o n s with phosphorus-conta in ing reagents , 

we attempted a coupl ing r e a c t i o n between N-BOC-alanine and hydra laz ine HCI 

with diphenyl phosphite in p y r i d i n e suspens ion , f o l l o w i n g the procedure of 

Yamazaki and H i g a s h i . 7 4 A f t e r two days , the reac t ion s o l u t i o n showed no 

t race of the des i red 3- (N-B0C-alany1) -TAP. The f a i l u r e of t h i s r e a c t i o n 

was a t t r i b u t e d p a r t l y to the i n e f f e c t i v e n e s s of py r id ine in n e u t r a l i z i n g 

hydra laz ine HCI. No f u r t h e r t r i a l s were attempted under more e f f e c t i v e 

c o n d i t i o n s . 

2.4.4 Carbodiimides 

In 1955, Sheehan and H e s s , 7 5 and K h o r a n a 7 6 working independently 

showed that s u i t a b l y blocked amino ac ids could be jo ined through an amide 

l inkage under the in f luence of d icyc lohexy lcarbod i im ide (51, R = C f i H 1 1 , DCC). 
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Since that t ime, DCC has become perhaps the most useful and popular 

coupl ing reagent in peptide s y n t h e s i s , and i t has a lso gained great 

importance as a v e r s a t i l e reagent in organic s y n t h e s i s . 7 7 

The accepted mechanism f o r amide bond formation i s shown in 

Scheme 2 . 1 2 . 7 8 The f i r s t step of the reac t ion sequence invo lves the 

add i t ion of the carboxyl component to a carbodi imide to form an 0 - a c y l -

isourea (52) which i s h igh ly r e a c t i v e . If the external nuc leoph i le i s 

d i l a t o r y then in te rna l n u c l e o p h i l i c at tack may occur to produce an 

N-acylurea (53). For amide fo rmat ion , two pathways are p o s s i b l e : 

a . D i r e c t at tack of the amino component on the r e a c t i v e 

intermediate with formation of the amide bond. 

b. Attack by the carboxyl component to g ive a symmetrical 

anhydride (54) which in turn acy la tes the amine. 

Delayed a d d i t i o n of the amine component decreases the importance of path (a) 

and increases the extent of anhydride p a r t i c i p a t i o n . 7 9 - 8 1 

In cont ras t to many other methods f o r carboxyl a c t i v a t i o n , the 

carbodi imide reac t ion i s reported to be r e l a t i v e l y i n s e n s i t i v e to moisture . 

The coupl ing r e a c t i o n may even be c a r r i e d out in aqueous s o l u t i o n , a l b e i t 

with lowered y i e l d . The by-product of the r e a c t i o n , d icyc lohexy lurea 

( 5 5 , R=CgH-j-|, DCU), has low s o l u b i l i t y in most organic and aqueous s o l v e n t s , 

and i s u s u a l l y removed by f i l t r a t i o n . However, the d i s s o l v e d DCU i s 

sometimes troublesome to remove, and to overcome the problems of separat ing 

the by -product , the water -so lub le ca rbod i im ides , l - e t h y l - 3 - ( 3 - d i m e t h y l -

aminopropyl) carbodi imide h y d r o c h l o r i d e , (16, EDC) and 1 - c y c l o h e x y l -

3 - (2 -morpho l iny l -4 -e thy l )ca rbod i im ide metho p - to luenesu l fona te (56, CMC) 

may be u s e d . 5 1 > 8 2 The corresponding urea and acylurea d e r i v a t i v e s are 
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R'COOH + R-N=C=N-R 

(5J) 

RHN-C-NHR RHN-C-NHR 

C55) C55) 

Scheme 2.12 Mechanisms of Amide Formation with a Carbodiimide 
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•Et-r =C=N-(CH2)3NHMe2 

(16) 

"CI 

O - N=C=N-(CH 2) 2N 0 "OTs 

(56) Me 

usua l ly s o l u b l e in water and may be removed by e x t r a c t i o n with d i l u t e ac id 

or water. 

The extent of the carbodi imide-mediated coupl ing of hydra laz ine 

with N-protected amino ac ids was determined from UV spec t ra and TLC of the 

reac t ion mix tures , u s u a l l y a f t e r overnight r e a c t i o n . F igure 2.1 shows the 

UV spect ra of equimolar amounts of 3-Me-TAP and h y d r a l a z i n e , and a mixture 

of the two i n g r e d i e n t s . The spectrum (c) shows a spectrum of a r e a c t i o n 

mixture in which hydra laz ine has been h a l f converted to the TAP d e r i v a t i v e . 

I f no other components in the r e a c t i o n mixture show s i g n i f i c a n t UV absorp­

t ions in the useful wavelength r e g i o n , then the i n t e n s i t y of the most 

in tense TAP band (^230-240 nm) r e l a t i v e to those of hydra laz ine (^270 nm) 

can be used as a q u a l i t a t i v e guide to the r e l a t i v e proport ions of TAP and 

hydra laz ine in the r e a c t i o n mixture. In g e n e r a l , the components of the 

carbodi imide coupl ing r e a c t i o n show l i t t l e in te r fe rences in the UV region 

of i n t e r e s t . The only s i g n i f i c a n t in te r fe rences in the 250-290 nm region 

a r i s e from degradation products o f hydra laz ine . These decomposit ion products 

have higher molar a b s o r p t i v i t i e s than hydra laz ine i t s e l f and can make the 

coupl ing r e a c t i o n appear l e s s complete than i t a c t u a l l y i s , the extent 

depending on the degree of hydra laz ine decomposit ion. 

The f i r s t s e r i e s of experiments with the carbodi imide method 

involved a comparison of coupl ing react ions run under i d e n t i c a l cond i t ions 
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2 0 0 2 5 0 3 0 0 3 5 0 
Wavelength (nm) 

Figure 2.1 U l t r a v i o l e t Spectra of Equimolar Amounts of (a) H y d r a l a z i n e , 
(b) 3-Me-TAP, and (c) a Mixture i n " H O S o l u t i o n 
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(hydra laz ine : N-BOC-glycine : DCC = 1 : 1 : 1; 0.05M) except f o r the 

solvent used. S ix solvents were compared under these c o n d i t i o n s . Good 

y i e l d s of TAP were obtained when C H 2 C 1 2 , CHC1 3 , CH 3 CN, and THF were used. 

Methyl C e l l o s o l v e , d ioxane, and DMF gave poor y i e l d s of TAP. Other e x p e r i ­

ments with N - a c e t y l - g l y c i n e as the carboxyl component showed methanol to be 

capable of mediating good y i e l d s of TAP. Water on the other hand, gave poor 

r e s u l t s , e s p e c i a l l y under bas ic c o n d i t i o n s , because of the ox ida t ion of 

hydra laz ine to phthalaz ine which was detected in the r e a c t i o n mixture . 

Reaction in DMA s o l u t i o n gave a moderate y i e l d of TAP. 

These r e s u l t s are c o n s i s t e n t with the observat ions of Sheehan 

et a Z . 7 5 > 8 3 who found that rearrangement of the O-acy l isourea intermediate 

(52) to the i n a c t i v e N-acylurea {53) i s suppressed in solvents l i k e methyl ­

ene c h l o r i d e and a c e t o n i t r i l e . K h o r a n a 7 6 showed that when d ioxane, t e t r a -

hydrofuran, and chloroform were solvents in peptide s y n t h e s i s , N-acylurea 

was always obta ined. I s d e b s k i , 8 4 in a study of the formation of N-acylurea 

in the r e a c t i o n of N -benzy l - l euc ine with g lyc ine ethyl e s t e r , found that 

reac t ion in DMF gave 22% of the s ide -product whi le r e a c t i o n in THF and C H g C l 2 

gave 4 and 2% N-acy lurea , r e s p e c t i v e l y . In the synthesis o f TAP d e r i v a t i v e s , 

we a l s o i s o l a t e d s i g n i f i c a n t amounts of the N-acylurea from C H g C ^ s o l u t i o n . 

Two sets of comparisons were made to determine the e f f e c t of 

e levated temperature on the formation of TAP. The coupl ing of hydra laz ine 

HCI with N-BOC-glycine using DCC in methanol s o l u t i o n in the r a t i o 1 : 1 : 1 

and 1 : 5 : 5 r e s p e c t i v e l y were studied at ambient and a t r e f l u x temperatures. 

The comparisons ind ica ted tha^t there were l i t t l e advantages to be 

gained from pursuing the carbodi imide reac t ion at high temperature. Indeed, 

the accepted p r a c t i c e i s to i n i t i a l l y lower the temperature to 0°C in order 

to minimize N-acylurea f o r m a t i o n . 8 5 When hydra laz ine HCI in the presence of 
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Et-jN i s the amine component in so lvents where the s a l t has only l im i ted 

s o l u b i l i t y , there i s a s i g n i f i c a n t increase in the rate of TAP formation 

at higher temperature, presumably because o f increased s o l u b i l i t y of 

hydra laz ine HCl . To compensate f o r the greater p r o b a b i l i t y of N-acylurea 

formation at e levated temperature an excess of c a r b o x y l i c a c i d and 

carbodi imide must be used. Another danger assoc ia ted with e levated 

temperatures i s the increased decomposit ion of f ree base hydra laz ine . 

In view of the low s o l u b i l i t y of hydra laz ine HCl in most organic 

s o l v e n t s , we wished to determine the e f f e c t of varying the proport ion of 

Et^M in s o l u t i o n . The f i r s t s e r i e s of comparisons involved a 1 : 1 : 1 

reac t ion mixture of hydra laz ine H C l , N -BOC-g lyc ine , and EDC in methanol, 

with e i t h e r 0, 1, 1.3, 1.6, 3 .4 , 5 .3 , 16, or 50 equiva lents of E t 3 N added 

to the r e a c t i o n mixture . 

Coupling reac t ions conta in ing more than 5 equiva lents of Et^N 

showed l i t t l e evidence of TAP formati 'on. I n h i b i t i o n of the reac t ion by 

excess Et^N a r i s e s in several ways. In the mechanism f o r reac t ion of 

c a r b o x y l i c ac ids with carbodi imides (Scheme 2 .13 ) , the f i r s t step involves 

formation of the protonated carbodi imide (51a) which i s added to a 

H + + R'COO" 
R_N=C=N-R ' R-NH=C=N-R R-NH-ON-R 

R'COO 

(51) (51a) (52) 

+ j. 0 0 
, % H + R'COO" 
(52) „ R-NH-C=NHR - R-C-0-C-R + R-NH-C-NH-R 

R'COO 0 
(52a) (54) (55) 

Scheme 2.13 Reaction of Carboxy l ic Acids with Carbodi imides 
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carboxylate anion to form the 0 - a c y l i s o u r e a (52). In the presence of excess 

a c i d , a s i m i l a r protonat ion e q u i l i b r i u m fs set up, and the protonated species 

(52a) reacts f u r t h e r with carboxylate to give an anhydride {54).78 

When hydra laz ine HCI i s the amino component in the coupl ing 

r e a c t i o n , i t reacts opt ima l ly only when i t s amino group i s unprotonated. 

This requirement c o n f l i c t s with the i n i t i a l need to protonate both carbo­

di imide and the 0 - a c y l i s o u r e a . As a r e s u l t , the y i e l d of the coupled 

product should be very pH-dependent, and add i t ion of a t e r t i a r y base w i l l 

reduce the concentra t ion of the protonated carbodi imide {51a) and the 

adduct (52a), and thereby reduce the rate of r e a c t i o n . 

Another consequence of excess t e r t i a r y base i s the i n c r e a s e d - y i e l d 

of N -acy lurea . For example, reac t ion of N-protected amino ac ids with DCC 

in the presence of py r id ine or t r i e t h y l amine may a f f o r d the N-acylurea as 

the main p r o d u c t . 8 5 * 8 7 We detected subs tan t i a l amounts of N-acylurea 

by-products in r e a c t i o n mixtures conta in ing excess t r i e t h y l amine. 

A d i s t r e s s i n g feature of reac t ions conducted in the presence of 

excess t r i e thy lamine i s the ready decomposit ion of hydra laz ine ca ta lyzed by 

the t e r t i a r y base. Th is decomposit ion i s charac te r i zed in UV spect ra by an 

absorpt ion band centered at 278 nm ( c f . Chapter 5 ) . 

Carbodiimide coupl ing reac t ions performed with 1.3 , 1.6, or 3.4 

equiva lents of t r i e thy lamine showed good formation of TAP. In a coupl ing 

reac t ion of N - a c e t y l - g l y c i n e with hydra laz ine HCI and one equiva lent of 

t r i e thy lamine in methanol s o l u t i o n , unreacted hydra laz ine HCI was i s o l a t e d 

from the r e a c t i o n mixture a f t e r 2 days. Thus, in p r a c t i c e , an excess of 

t e r t i a r y base is needed when EDC i s the carbodi imide used. The e f f e c t of 

excess t r ie thy lamine on the y i e l d of TAP in carbodi imide-mediated reac t ions 

i s evident in F igure 2 .2 . 



urc 2.2 E f f e c t of Excess Tr ie thy lamine on Carbodiimide-mediated 
Coupling React ions . Hydralaz ine : ac id : Carbodiimide : Et 
(a) 1 :5:5:5 , (b) 1:5:5:1.3 Spectra normalized with respect 
to bands at 270 nm. 
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The reac t ion between hydra laz ine HCl and N - a c e t y l - g l y c i n e in 

methanol s o l u t i o n i s slower without added t r ie thy lamine but is unexpectedly 

f a c i l e cons ider ing that hydra laz ine is present in the protonated form. 

The rearrangement o f O-acy l isourea to the i n a c t i v e N-acylurea is 

always a danger in carbodi imide coupl ing r e a c t i o n s . A consequence of the 

rearrangement i s loss of the carboxyl component to the i n a c t i v e by-product 

and hence a lowering of the y i e l d of the des i red product . F igure 2.3 shows 

coupl ing reac t ions with s t o i c h i o m e t r i c and with excess amounts of the 

carboxyl component and carbodi imide . The s u p e r i o r i t y of the r e a c t i o n with 

excess reagents is ev ident . S i m i l a r r e s u l t s are a l s o obtained in comparison 

reac t ions with added t r i e t h y l a m i n e . 

Since the reac t ion of hydra laz ine with the N-acylamino a c i d -

carbodi imide adduct (52) i s i n t e r m o l e c u l a r , whereas the rearrangement of the 

adduct to the N-acylurea (53) i s i n t r a m o l e c u l a r , keeping the volume of the 

s o l u t i o n to a minimum favors formation of the des i red TAP product . The 

concentra t ion e f f e c t i s evident in a comparison of coupl ing react ions at 

d i f f e r e n t concentrat ions (Figure 2 .4 ) . 

S ince hydra laz ine was of ten used as the hydrochlor ide s a l t in the 

carbodi imide coupl ing r e a c t i o n s , i t was i n t e r e s t i n g to compare the e f f e c t 

of d i f f e r e n t t e r t i a r y bases in the reac t ion mixture. Two coupl ing reac t ions 

were conducted under i d e n t i c a l condi t ions of reagent concentra t ion and 

s to ich iometry with Et^N or py r id ine as the added t e r t i a r y base. F igure 2.5 

of UV spectra of the reac t ions a f t e r one day shows d e f i n i t e l y super io r TAP 

formation with the t r i e t h y l a m i n e - c o n t a i n i n g r e a c t i o n . Py r id ine i s a ra ther 

i n e f f e c t i v e base f o r n e u t r a l i z i n g the HCl s a l t s ince the s p e c t r a l fea tures 

at 300-320 nm in F igure 2.5(b) a r i s e s from protonated hydra laz ine . 
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Wavelength, (nm) 

Figure 2.3 E f f e c t of Excess Carboxyl Component and Carbodiimide on 
Carbodiimide Mediated Coupling React ions . Hydralaz ine : A c i d 
Carbodi imide , (a) 1:1:1 , (b) 1:5:5. Spectra normalized with 
respect to band at 240 nm. 
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Wavelength (nm) 

Figure 2.4 E f f e c t of Concentrat ion on Carbodi imide-mediated Coupling 
Reac t ions . Hydralazine.HCI : A c i d ; Carbodi imide : E U N 
= 1 :1 :1 :1 .5 . Concentrat ion (a) 0.016 M,. (b) 0.029 M. 

Spectra normalized with respect to band at 240 nm. 
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Figure 2.5 Comparison of Py r id ine and Tr ie thy lamine in Carbodi imide-
Mediated Coupling React ions . Hydralazine.HCI : Ac id : 
Carbodi imide : Base = 1:1:1:1 . (a) Et^N, (b) P y r i d i n e . 
Reaction f o r 1 day. Spectra normalized with respect to 
band at 240 nm. 
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I 1— 
2 5 0 3 0 0 

Wavelength (nm) 

Figure 2.6 Comparison of Pyr id ine and Tr ie thy lamine in Carbodi imide-
Coupling React ions . Hydralaz ine.HCl : Ac id : Carbodiimide : 
Base = 1 :1:1:1 . (a) Et^N, (b) P y r i d i n e . Spectra normalized 
with respect to band at 240 nm. Reaction f o r 4 hours. 
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The y i e l d of TAP a f t e r one day can be r e a d i l y expla ined by the 

r e l a t i v e base strengths of E t 3 N and p y r i d i n e , but the y i e l d a f t e r 2 hours 

of reac t ion can not . F igure 2.6 of the react ion a f t e r four hours shows a 

d i f f e r e n t order of r e a c t i v i t y . Reaction with added pyr id ine i s i n i t i a l l y 

f a s t e r than with E t 3 N . There i s l i t t l e change in the r e a c t i o n with pyr id ine 

between 4 and 24 hours w h i l s t the react ion with added E t 3 N shows a s lower , 

more even growth o f TAP. 

The d i f f e r e n c e in reac t ion rates suggests somewhat d i f f e r e n t 

reac t ion mechanisms in both cases . A poss ib le explanat ion of these observa­

t ions i s formation of an acylpyr id in iurn d e r i v a t i v e from the 0 - a c y l i s o u r e a 

and pyr id ine which condenses with hydra laz ine to form the TAP product . 

There i s good evidence f o r the acety lpyr id in iurn ion as an intermediate in 

the p y r i d i n e - c a t a l y z e d h y d r o l y s i s o f a c e t i c a n h y d r i d e . 8 8 When the carboxyl 

component i s in excess r e l a t i v e to the amine component as in the case with 

the pyr id ine r e a c t i o n , in which hydra laz ine i s r e l a t i v e l y i n a c c e s s i b l e as 

the protonated base, then carbodi imide coupl ing may proceed v i a the mixed 

anhydride pathway (Scheme 2.12) . 

If the above specula t ions are c o r r e c t , then t h i s may be the f i r s t 

case , to the au thor 's knowledge, o f amide formation proceeding v i a an a c y l -

pyr id ine in termedia te . A c y l a t i n g agents der ived from other bases such as 

imidazo le , p y r a z o l e , 1 , 2 , 4 - t r i a z o l e , and t e t r a z o l e are well known. 8 9 

Since the subst i tuents on the carbodi imide molecule are expected 

to in f luence the r e a c t i v i t y of the 0 - a c y l i s o u r e a in termediate , we wanted to 

compare the s u i t a b i l i t y of some carbodi imides (DCC, EDC, and CMC) f o r TAP 

s y n t h e s i s . 

Three pa i rs o f comparison coupl ing react ions were made, each p a i r 

under i d e n t i c a l cond i t ions of reagent s to ichiometry and concen t ra t ion . In 
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the coupl ing o f hydra laz ine HCl with N - a c e t y l - g l y c i n e in methanol s o l u t i o n , 

EDC i s somewhat more e f f e c t i v e than CMC in TAP format ion . In the presence 

of t r i e t h y l a m i n e , the reac t ion with CMC i s much more s u s c e p t i b l e to s i d e -

react ions than with EDC. This may a r i s e from increased N-acylurea formation 

with CMC. Faced with a d e f i c i e n c y of the a c t i v e O-acy l i sourea with which to 

c o u p l e , hydra laz ine showed greater tendency to undergo base-ca ta lyzed 

decomposit ion. Comparison react ions with DCC and EDC show that the l a t t e r 

carbodi imide gives super ior y i e l d s of TAP. The e f f i c i e n c y of the carbo­

di imides in the formation of TAP d e r i v a t i v e s thus fo l low the order: 

EDC > DCC > CMC. A f a c t o r to be considered in the choice of carbodi imide 

is that DCC i s a l l e r g e n i c and should be handled with c a r e . Cases o f 

dermat i t i s have been ascr ibed to i t s use. 

There i s l i t t l e d i f f e r e n c e in the rate of formation of TAP whether 

hydra laz ine i s added to the r e a c t i o n mixture as the f ree base, or as the 

hydrochlor ide s a l t with one equiva lent of t r i e t h y l a m i n e . Thus, from that 

c o n s i d e r a t i o n , i t matters l i t t l e which form of hydra laz ine i s used in the 

r e a c t i o n - f r e e base or HCl s a l t with added Et^N. One caut ion with the l a t t e r 

system i s that a large excess of t e r t i a r y base cannot be t o l e r a t e d due to 

hydra laz ine decomposi t ion , but a s l i g h t excess of Et^i i s needed to ensure 

complete n e u t r a l i z a t i o n of the hydra laz ine HCl s a l t . 

An unusual fea ture of the carbodi imide coupl ing r e a c t i o n was 

observed when N - a c e t y l - g l y c i n e reacted with hydra laz ine in methanol or 

aqueous s o l u t i o n . In a d d i t i o n to the expected product , 3 - ( N - a c e t y l - g l y c y 1 ) -

TAP, another product was i n v a r i a b l y formed which possessed t y p i c a l charac­

t e r i s t i c s of a TAP d e r i v a t i v e : blue f luorescence under short wavelength 1 

UV l i g h t , and s i m i l a r UV spectrum. The s ide -p roduc t was i d e n t i f i e d by i t s 

TLC behaviour , NMR and mass spectra to be 3-methyl-TAP. Its formation 
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appears to be favored by EDC r e l a t i v e to DCC and CMC. I t forms under a c i d i c 

and basic cond i t ions apparent ly simultaneous with 3 - ( N - a c e t y l - g l y c y l ) - T A P . 

Pure 3 - ( N - a c e t y l - g l y c y l ) - T A P i s i t s e l f i n d e f i n i t e l y s tab le i n methanol 

s o l u t i o n . The expected product from hydro lys is o f the s i d e - c h a i n amide bond 

i s 3-aminomethyl-TAP and no evidence o f th is compound was found in c a r b o d i ­

imide coupl ing r e a c t i o n s . Authent ic 3-aminomethyl-TAP appears to be s tab le 

in methanol s o l u t i o n . 

The fo l low ing summarizes the r e s u l t s obtained fo r the r e a c t i o n 

o f hydralaz ine with N-protected amino acids using carbodi imide coupl ing 

reagents . Appropr iate so lvents f o r the coup l ing r e a c t i o n are CH^Cl^ . CHCl^ , 

CH 3 CN, THF, CH30H, and DMA. The l e a s t po lar of these solvents are p re fe r red 

as r e a c t i o n media in order to minimize formation o f the N-acylurea s i d e -

product . Low r e a c t i o n temperatures, high reagent concentrat ions and a s l i g h t 

excess o f carbodi imide and carboxyl component are advantageous f o r the same 

reason. I f the HCl s a l t o f hydralaz ine i s used as the amino component, then 

a s l i g h t excess o f a t e r t i a r y base such as Et^N i s needed. However, to avoid 

compl icat ions a r i s i n g from the presence o f excess t e r t i a r y base, f r e s h l y -

prepared, f ree base hydralaz ine i s p r e f e r r e d . As f a r as coupl ing e f f i c i e n c i e s 

and ease o f i s o l a t i o n o f the TAP product are concerned, EDC i s more s u i t a b l e 

than DCC as the coupl ing reagent. 
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2.5 DISCUSSION 

We have shown that hydra laz ine w i l l couple with N-protected amino 

ac ids under a v a r i e t y of reac t ion cond i t ions to a f f o r d s - t r i a z o l o [ 3 , 4 - a ] -

phthalaz ine d e r i v a t i v e s . The rate l i m i t i n g step of th is coupl ing i s forma­

t ion of an amide intermediate which undergoes spontaneous dehydrat ive 

c y c l i z a t i o n to y i e l d the t r i a z o l o compound. We addressed ourse lves p r i m a r i l y 

to the problem of s u i t a b l y a c t i v a t i n g the r e a c t i o n components to give the 

des i red product . 

To lend the proper t ies of an a c y l a t i n g agent to an amino ac id or 

pept ide , the e l e c t r o p h i l i c character of the carbonyl carbon of the r e a c t i n g 

carboxyl group must be enhanced - usua l l y by s u b s t i t u t i o n of an e l e c t r o n -

withdrawing group on the carboxyl f u n c t i o n : 

0 

Z-NH-CHR-C X 
6+ <5-

This s t r u c t u r a l m o d i f i c a t i o n of a carboxyl group must r a i s e i t s r e a c t i v i t y 

to the ' r i g h t ' l eve l so that coupl ings w i l l occur r a p i d l y and complete ly , 

without the in tervent ion of i n t e r - or i n t r a - m o l e c u l a r s i d e - r e a c t i o n s . 

O v e r a c t i v a t i o n may lead to r e a c t i o n with amino a c i d s i d e - c h a i n s , whi le low 

a c t i v a t i o n leads to low coupl ing r a t e s . The coupl ing reagents and t h e i r 

r e a c t i v e a c y l a t i n g intermediates which were used in t h i s work are shown in 

Table 2 .3 . The r e a c t i v e intermediates inc lude such types as mixed and 

symmetric anhydr ides, a c t i v a t e d e s t e r s , acyloxyphosphonium s a l t s , acyl 

a z i d e s , and h e t e r o c y c l i c amides. 

In mixed anhydr ides , the strong e lectron-wi thdrawing e f f e c t of the 

carboxyl group a c t i v a t e s the carbonyl carbon of the amino a c i d d e r i v a t i v e . 
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Table 2.3 Coupling Reagents and t h e i r Reactive Intermediates used in Amide 

Synthesis  

Coupl ing Reagent 

Isoxazolium S a l t 

N - e t h y l - 5 - p h e n y l i s o x a z o l i u m - 3 ' -
su l fonate (NEPIS) 

1-Ethoxycarbonyl -2-ethoxy- 
1 ,2 -d ihydroquino l ine (EEDQ) 

I 
c=u 
I 

OEt 

Acyloxyphosphonium Sa l ts 

( i ) [ ( C H 3 ) 2 N ] 3 P 0 + TsCl 

Hexamethylphosphoramide (HMPA) 
+ tosy l c h l o r i d e 

+ 
( i i ) [ ( C H 3 ) 2 N ] 3 P - N 3 P F 6 " 

Az ido t r i s (d imethy l ami no)-
phosphonium hexaf1uorophosphate 

( i i i ) Ph^p + (fil fj 

Triphenylphosphine + 2 , 2 ' - d i t h i o 
d i p y r i d i n e 

Reactive Intermediate 

0 

0 0 

R-C-0-C-OEt 

2 • 
R - C - 0 - P [ N ( C H 3 ) 2 ] 3 TsO" ( C T ) 

0 
n 

R -C -N . v ia 
0 % 

R - C - 0 - P [ N ( C H 3 ) 2 ] 3 N 3 ~ 
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Coupling Reagent Reactive Intermediate 

0 

N or ( iv ) (PhO) 3P + HN^N R - C - N ^ f 

Diphenylphosphite + py r id ine 

4. Carbodiimide 

0 Imid-H + 

Tr iphenylphosphi te + imidazole R-C-O-P-H OPh 

PhO OPh 

(v) (Ph0) 2 P-0H + ( [ ̂ ) R_C_0 -P-H "OPh 

HO* OPh 

0 

R'-N=C=N-R" R-C-0 or 

R'NH-C=NR" 

( i ) R ^ R - ' - C g H , , 
0 1 1 0 0 

n n 
Dicyc lohexy lcarbodi imide (DCC) R-C-O-C-R 

+ 
( i i ) R ' = - C 2 H 5 , R"=- (CH 2 ) 3 NH(CH 3 ) 2 CI" 

l - E t h y l - 3 - ( 3 - d i m e t h y l a m i n o p r o p y l ) -
carbodi imide hydrochlor ide (EDC) 

( i i i ) R ' = - C 6 H i r R"=- (CH 2 ) 2 N / \ "OTs 

M e - 7 

l - C y c l o h e x y l - 3 - ( 2 - m o r p h o l i n y l - 4 - e t h y l ) 
carbodi imide metho-p- to luenesul fonate 
(CMC) 
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However, there are two e l e c t r o p h i l i c s i t e s , and n u c l e o p h i l i c s u b s t i t u t i o n at 

0 0 

Z-NH-CHR-C-O-C-R' 
+ t 
a b 

s i t e b w i l l r e s u l t in the undesired amide product . To minimize t h i s 

compet i t ion r e a c t i o n , an e lec t ron-donat ing s t ruc tu re i s requi red in the 

'par tner ' a c i d . The ethoxy moiety in the mixed anhydride der ived from EEDQ 

f u l f i l s t h i s requirement. The isobuty loxy mixed anhydr ide , der ived from 

l - i s o b u t y l o x y c a r b o n y l - 2 - i s o b u t y T o x y - l , 2 - d i h y d r o q u i n o l i n e {57, IIDQ) has been 

suggested to be pre ferab le for reducing reac t ion at the a c t i v a t i n g group by 

0-CH 2 CH(CH 3 )2 
C=0 
6-CH 2 CH(CH 3 ) 2 

{57) 

v i r t u e of the s t e r i c hinderance of the isobuty l g r o u p . 9 0 In symmetrical 

anhydr ides , the s i t e s for n u c l e o p h i l i c s u b s t i t u t i o n are i d e n t i c a l , and only 

one amide product is p o s s i b l e . 

The es te r intermediates der ived from carbodi imides and NEPIS 

rece ive t h e i r a c t i v i t y from the e lectron-withdrawing nature of the m u l t i p l e -

bonded C=N and C=C attached to the ester oxygen. The migrat ion of e l e c t r o n 

dens i ty from the carbonyl oxygen in v acyloxyphosphoniurn s a l t s i s enhanced by 

l o c a l i z a t i o n of a p o s i t i v e charge on the phosphorus atom. 
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Although the azide group is not a powerful e lectron-wi thdrawing 

group, the r e a c t i v i t y of acyl az ides towards amines can be explained by 

formation of a hydrogen-bonded c y c l i c t r a n s i t i o n state which enhances the 

a c y l a t i o n r e a c t i o n . 9 1 * 

0 

i % 
H-N-H. . .N 

i 
R' 

The high r e a c t i v i t y of N-acy l imidazole i s connected with the 

aromatic nature of the h e t e r o c y c l e . As a r e s u l t of p a r t i c i p a t i o n of the 

e l e c t r o n - p a i r on the amide n i t rogen in the i r-system of the r i n g , t h i s 

n i t rogen becomes more p o s i t i v e , exer t ing an a t t r a c t i o n on the e lec t rons of 

the e x o c y c l i c bond towards the r i n g , thus enhancing the rate of n u c l e o p h i l i c 

reac t ion at the carbonyl carbon of the acyl group. 

Of the ten reagents inves t iga ted f o r a c t i v a t i n g the carboxyl group 

of amino a c i d s , four of these were s u f f i c i e n t l y success fu l in TAP synthes is 

to meri t f u r t h e r c o n s i d e r a t i o n . These reagents are the carbodi imides - EDC 

and DCC, the isoxazol ium s a l t - NEPIS, and the combination of t r i p h e n y l -

phosphite with imidazo le . 

As we a n t i c i p a t e d when t h i s work was i n i t i a t e d , the use of coupl ing 

reagents d id permit the synthes is of TAP d e r i v a t i v e s under r e l a t i v e l y mi ld 

c o n d i t i o n s . 

The r e a c t i o n of hydra laz ine with amino ac ids to a f f o r d TAP 

compounds i s s p e c i f i c f o r carboxyl groups, but some care must be taken when 

r e a c t i v e s i d e - c h a i n s in the amino ac ids are present . These s i d e - c h a i n s show 
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d i f f e r i n g s e n s i t i v i t i e s to coupl ing reagents. Thus, the carboxyl groups of 

s e r i n e , th reon ine , and ty ros ine can be ac t iva ted by NEPIS without previous 

protec t ion of the s i d e - c h a i n hydroxyl groups. Asparagine and glutamine can 

be ac t iva ted without ser ious p r o b l e m s ; 5 6 t h i s i s e s p e c i a l l y s i g n i f i c a n t 

s ince the co-amide group in these amino acids i s the only r e a c t i v e amino 

acid s ide -group ing which cannot o r d i n a r i l y be b locked. 

No problems are observed with h i s t i d i n e and arg in ine using the 

t r ipheny lphosphi te and imidazole combinat ion, but s ide react ions may 

sometimes occur with asparagine and glutamine. The hydroxyl groups of 

ser ine and threonine must be p r o t e c t e d . 7 1 

When the carboxyl groups of N-protected asparagine or glutamine 

are ac t i va ted by DCC, dehydrat ion of the e- or y-carboxamide moiety to the 

corresponding cyano group occurs , asparagine being more s u s c e p t i b l e to the 

r e a c t i o n . Dehydration does not occur when these amino acids occur w i th in 

a peptide c h a i n . In a d d i t i o n , the formation of adducts between the imidazole 

r ing of h i s t i d i n e and DCC has been o b s e r v e d . 5 3 The successfu l use s e r i n e , 

th reon ine , and t y r o s i n e in peptide synthesis i s n o t e w o r t h y , 9 2 however, in 

aqueous s o l u t i o n s carbodi imides have been reported to react with t y r o s i n e and 

ser ine s i d e - c h a i n s in p r o t e i n s . 9 3 

An unfortunate feature of the methods developed f o r coupl ing 

hydralaz ine to amino acids i s the long reac t ion times r e q u i r e d ; in per iods 

of l ess than 15 hours, coupl ing reac t ions were often incomplete. While times 

of t h i s durat ion are not unreasonable from a syn the t ic v iewpoint , they do 

impose l i m i t a t i o n s on the p r a c t i c a l i t y of the react ion of hydra laz ine with 

carboxyl groups as a method of peptide sequencing. 

We have i s o l a t e d pure TAP d e r i v a t i v e s from the coupl ing reac t ions 

in y i e l d s up to about 80% which are l ess than ideal f o r a peptide sequencing 

method though s a t i s f a c t o r y f o r a new syn the t i c procedure. Thus, assuming 
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80% coupl ing y i e l d in each cyc le of a sequencing procedure, the y i e l d of 

TAP a f t e r 5 cyc les i s 33%. 

Several modes of ac t ion are a v a i l a b l e f o r improving the hydra­

l a z i n e coupl ing r e a c t i o n with amino a c i d s . The coupl ing methods used in t h i s 

work are based on an increase in the r e a c t i v i t y of the carboxyl group of the 

carboxyl component due to enhanced e l e c t r o p h i l i e p roper t ies of i t s carbonyl 

carbon. A counterpart of th is approach would be enhancement of the nuc leo-

p h i l i c p roper t i es of the amino group o f hydra laz ine . This approach has been 

considered in peptide s y n t h e s i s , but only a few a p p l i c a t i o n s are known. 

Although the a v a i l a b l e methods do invo lve a r e a c t i v e d e r i v a t i v e of the amine, 

in the f i n a l a n a l y s i s , they proceed through an ac t i va ted carboxyl component. 

They a re , in f a c t , s p e c i a l cases of the mixed anhydride method. An example 

i s the phosphazo method which invo lves reac t ion of the amino component with 

PCI3 to g ive the phosphazo intermediate which i s present i n a d imer ic 

s t a t e , 5 2 (Scheme 2 .14 ) . The r e a c t i o n of the phosphazo compound with the 

2 P C 1 3 + 4R ' -NH 2 

Scheme 2.14 Amide Formation by the Phosphazo Method 

carboxyl component leads to formation of the amide product v i a a mixed 

anhydride. The method presents the same problems with regard to p o s s i b l e 

a p p l i c a t i o n s as d i r e c t mixed anhydride methods. 

R'-N 

R'-N 

/ 
\ 4R"r00H 

y - N H - R ' 4R"C0-NHR' + [ P H O ^ 

P=N-R' 
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A less d i r e c t method of i n c r e a s i n g the r e a c t i v i t y of the primary 

amino group in hydra laz ine is s u b s t i t u t i o n of a Tr -e lectron donating group 

onto the phthalaz ine r i n g system. Considered by i t s e l f , the s u b s t i t u t i o n 

may have only a marginal e f f e c t on the r e a c t i v i t y of the hydrazino moiety , 

but i f s u i t a b l y p l a c e d , i t may a l s o enhance the coupl ing r e a c t i o n by 

r e s t r i c t i n g the r o t a t i o n a l freedom of the hydrazino group. Thus, placement 

of a group on the 8 - p o s i t i o n of the aromatic r i n g system (55) e . g . a lkoxy , 

d i r e c t s the hydrazino subst i tuent in to a favorab le o r i e n t a t i o n f o r coupl ing 

with carboxylates which i s fo l lowed by dehydrat ive c y c l i z a t i o n . The 

hydrazino group can be " f rozen" in to a s i n g l e conformation by hydrogen-

bonding to the alkoxy oxygen atom. 

H 
I 

(58) 

Cohen has shown that as a r e s u l t of a lky l s u b s t i t u t i o n in both 

the aromatic r i n g and the s i d e - c h a i n (c f . 59), the rate constant f o r a c i d -

ca ta lyzed l a c t o n i z a t i o n of hydrocoumaric ac id (60) i s increased by f a c t o r s 

as high as 5 x 1 0 ^ . 9 4 The r a t e - a c c e l e r a t i o n e f f e c t s are a t t r i b u t e d 

p r i m a r i l y to a cons iderab le increase in the populat ion of a conformer h igh ly 

favorab le to the l a c t o n i z a t i o n r e a c t i o n . 

(60) (59) 
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The procedures we have developed f o r the synthes is of s - t r i a z o l o -

[3 ,4 -a ]phtha laz ine d e r i v a t i v e s from hydra laz ine and N-protected amino ac ids 

have potent ia l a p p l i c a t i o n s in the general synthesis of fused r i n g 

s - t r i a z o l e systems. The o v e r a l l procedures which we used in t h i s work fo r 

phthalaz ine are a p p l i c a b l e to other r i n g systems as well (Scheme 2 .15) . 

0 0 
NH-NH 2 + RC-X NH-NH-C-R ^ N N 

^ ( « ) " < ^ N 

X = OH, OR, OCOR', 

Scheme 2.15 Synthesis of Fused s - T r i a z o l e s ha l ide 

If the carboxyl component i s a c a r b o x y l i c a c i d , r e a c t i o n cond i t ions 

involve heat ing a mixture of the a c i d and hydrazino components to high 

temperatures. If the ac id i s a s o l i d , melt cond i t ions may be r e q u i r e d . 

Reactions with other more r e a c t i v e carboxyl d e r i v a t i v e s may a lso 

involve e levated temperatures, but these are l ess common than with a c i d s , 

presumably because the d e r i v a t i v e s are genera l ly l e s s a c c e s s i b l e . 

As a r e s u l t of the severe reac t ion condi t ions and the low 

a v a i l a b i l i t y of a large v a r i e t y of carboxyl d e r i v a t i v e s , the s i d e - c h a i n 

subst i tuent in fused s - t r i a z o l e systems i s often l i m i t e d to groups such as 

a l k y l s , h a l o a l k y l s and a r y l s . 

Although we have not pursued the a p p l i c a b i l i t y of coupl ing 

reagents to hydrazino d e r i v a t i v e s of heterocycles other than ph tha laz ine , 

or to carboxyl components other than amino a c i d s , there i s no reason why 

the mild r e a c t i o n condi t ions made p o s s i b l e by our procedures should not 

al low the synthes is of a much wider v a r i e t y of fused s - t r i a z o l e s with s ide 

chain subst i tuents than i s now p o s s i b l e . Thus, a wide v a r i e t y of c a r b o x y l i c 
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ac ids w i t h , or without other s e n s i t i v e f u n c t i o n a l i t i e s can now be used, 

and t h i s opens up the p o s s i b i l i t y of s i d e - c h a i n s in the t r i a z o l e with 

r e a c t i v e groups ( e . g . Scheme 2 .16) . 

(61) + H0-C-CH 2 -NH-B0C BOC 

N N 

Scheme 2.16 Synthesis of a Fused s - T r i a z o l e with an Aminomethyl S i d e - c h a i n 

Reaction of a hydra laz ino compound with N-BOC-glycine can give a 

s - t r i a z o l e d e r i v a t i v e with an aminomethyl s i d e - c h a i n a f t e r removal of the 

BOC-group. We have done t h i s with 1 -hydraz inophtha laz ine . 

One might well ask what i s the s i g n i f i c a n c e of extending the scope 

of s - t r i a z o l e s y n t h e s i s , beyond that of a purely academic achievement. The 

uses and poten t ia l uses of t r i a z o l e d e r i v a t i v e s are many and v a r i e d , and 

even l i m i t i n g our cons idera t ion to fused s - t r i a z o l e s o n l y , the number of 

a p p l i c a t i o n s remains c o n s i d e r a b l e . Table 2.4 shows a sample of condensed 

s - t r i a z o l e systems and t h e i r p roper t ies and uses , taken from the recent 

l i t e r a t u r e (mostly 1976-1977). 

In many of the examples shown in Table 2.4 the t r i a z o l e r ing was 

formed by coupl ing a hydrazino d e r i v a t i v e with a carboxyl compound and 

subsequent c y c l i z a t i o n of the r e s u l t i n g carboxamide. Other methods involve 

a preformed s - t r i a z o l e which bind to r e a c t i v e groups in the molecule to 

form the m u l t i c y c l i c s t r u c t u r e . 

The t r i a z o l e d e r i v a t i v e s in Table 2.4 show proper t ies and uses 

which inc lude a p p l i c a t i o n s as f u n g i c i d e s , in cancer chemotherapy, and a wide 

v a r i e t y of pharmacological uses . A s i g n i f i c a n t aspect of these uses i s that 

most of them are descr ibed in the patent l i t e r a t u r e . E v i d e n t l y , the 
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Table 2.4 Fused s - T r i a z o l e s - Proper t ies and Uses 

Fused s - T r i a z o l e Proper t ies Reference 

62 

63 

N N 

(CH 2'n 

N N 
1 A 

Central nervous system and 95 

r e s p i r a t o r y system st imulants 

A n t i - c o n v u l s a n t and t r a n q u i l - 96 

i z e r . Ant i - in f lammatory agent 

64 

CF 

Ant i - in f lammatory , a n a l g e s i c , 97 

3 and a n t i - p y r e t i c a c t i v i t i e s 

65 N N. 

l L h 3 
N 

Ant i - in f lammatory agent 98 

66 Control of plant-pathogens 99a 

67 N — N Control of plant-pathogens 99b 

68 N N 

X X 

R" R 

Ant i - in f lammatory , ana lges ic 

and anti . -yi .ral a c t i v i t i e s 

100 
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Fused s - T r i a z o l e Proper t ies Reference 

69 

70 

HO 

N N 

X J L 
| \ r ^ N ^ S H 

Ant i - tumor and a n t i - c a n c e r 101 

a c t i v i t y 

A n t i - d e p r e s s i v e and a n x i o l y t i c 102 

a c t i v i t i e s . Hypothermia 

an tagon is t , t r a n q u i l i z e r , 

s e d a t i v e , muscle re laxant 

71 N N 

Jl A 
Control of p lant -pathogens. 103 

72 Control of fungal f o l i a r 

pathogens 

104 

75 N N Sedat ive and ana lges ic 

a c t i v i t i e s . An t i -hypotens ive 

ac t ion 

105 
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synthes is of these condensed s - t r i a z o l e s are s u f f i c i e n t l y important to 

warrant p ro tec t ion of the procedures and a p p l i c a t i o n s under the patent laws. 

An in tegra l part of any screening program fo r b i o l o g i c a l a c t i v i t y 

of a compound i s the synthesis of a s e r i e s of compounds wi th in the same 

general c l a s s . V a r i a t i o n of the s i d e - c h a i n subst i tuent on the t r i a z o l e 

r i n g i s a common denominator in most of the examples shown i n Table 2 .4 . 

Our work would permit the synthes is of t r i a z o l e s with a wider range of 

s i d e - c h a i n s than p rev ious ly prepared, and hence, p o s s i b l y fused t r i a z o l e s 

with a broader spectrum of a c t i v i t i e s . 

Only a few of the b i o l o g i c a l p roper t ies of the condensed 

s - t r i a z o l e s have been descr ibed in any d e t a i l . 3 - T r i f l u o r o m e t h y l -

s - t r i a z o l o [ 3 , 4 - a ] i s o q u i n o l i n e (64) shows a pharmacological p r o f i l e which 

suggests that i t would be useful in the treatment of edema, pain and fever 

assoc ia ted with inflammatory d i s e a s e s , such as rheumatoid a r t h r i t i s . The 

minimal g a s t r i c a c t i v i t y in the ra t i n d i c a t e s that i t causes l e s s g a s t r i c 

d i s t r e s s than the ant i inf lammatory agents now in use. Its ana lges ic 

a c t i v i t y in mice i s greater than that of a c e t y l s a l i c y l i c a c i d . 9 7 

3 - T r i f l u o r o m e t h y l [ 3 , 4 - a ] p h t h a l a z i n e (65) was r e c e n t l y reported 

to have a higher ant i inf lammatory e f f e c t than the corresponding i s o q u i n o l i n e 

d e r i v a t i v e (64).98 

s - T r i a z o l o [ 4 , 3 - a ] q u i n o l i n e s (66) are used fo r the cont ro l of 

p lant pathogenic organisms. Thus, the methyl d e r i v a t i v e (F^CH^) c o n t r o l l e d 

anthracnose of cucumbers and r i c e b l a s t of r i c e . 9 9 a A lso a c t i v e f o r the 

contro l of r i c e b l a s t are s - t r i a z o l o [ 4 , 3 - a ] q u i n o x a l i n e (67), the parent 

t r i a z o l e (R ,RpH) being most e f f e c t i v e against Piriaularia oryzaef9^ and 

s - t r i a z o l o [ 3 , 4 - b ] b e n z o t h i a z o l e s (71).103 
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l -Mercapto -5 -hydroxy -6 ,7 - te t ramethy lene -s - t r i azo1o[3 ,4 -b ]pyr imid ine 

(69) prevents metastasis of human epidermoid carcinoma and e x h i b i t s antitumor 

a c t i v i t y aga inst primary human epidermoid carcinoma and other tumors, such 

as adenocarcinoma and s a r c o m a . 1 0 1 
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CHAPTER 3 

SOLID-PHASE SYNTHESIS OF S-TRIAZQLO[3,4-AjPHTHALAZINES 

3.1 INTRODUCTION 

The process of assembling a peptide chain in a s tep-wise manner 

while i t i s attached at one end to an i n s o l u b l e support i s known as the 

" s o l i d - p h a s e " method f o r polypept ide s y n t h e s i s . The technique was f i r s t 

used by two groups operat ing independent ly . The f i r s t a p p l i c a t i o n was by 

M e r r i f i e l d in 1963 to the synthesis o f a t e t r a p e p t i d e . 1 0 6 Soon a f t e r , 

Le ts inger reported the synthes is of a d ipept ide on a "popcorn" polymer 

s u p p o r t . 1 0 7 The major d i f f e r e n c e in the two methods was that M e r r i f i e l d 

attached the polymer to an amino ac id as the carboxylate es te r whi le 

Lets inger bound the amino ac id v i a the amino group as an amide. 

Since i t s i n t r o d u c t i o n , the s o l i d - p h a s e method has been s u c c e s s ­

f u l l y app l ied to pept ides of increas ing s i z e . These developments have been 

crowned by the s o l i d - p h a s e preparat ion of r ibonuc lease A (124 r e s i d u e s ) 1 0 8 

and human growth hormone (188 r e s i d u e s ) , 1 0 9 both with a s i g n i f i c a n t degree 

of enzymic a c t i v i t y . 

A f t e r the o r i g i n a l successes of the s o l i d - p h a s e method in 

polypept ide s y n t h e s i s , p a r a l l e l a c t i v i t y developed in the a p p l i c a t i o n of 
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polymer attachment to non-peptide organic syntheses. Polymer supports have 

now been app l ied to the synthes is of carbohydrates-and t h e i r d e r i v a t i v e s , 

and to p o l y n u c l e o t i d e s . 1 1 0 . 1 1 1 Only very r e c e n t l y have s o l i d supports been 

used in general organic synthes is unrelated to r e p e t i t i v e ' s e q u e n t i a l - t y p e ' 

syntheses of po lypep t ides , p o l y n u c l e o t i d e s , and p o l y s a c c h a r i d e s . It has now 

been found that i n s o l u b l e polymers can be used fo r many purposes to so lve 

s p e c i f i c synthe t ic problems. 

We considered the coupl ing of hydra laz ine with N-protected amino 

ac ids on an i n s o l u b l e support f o r two primary reasons. The f i r s t stems from 

syn the t i c advantages of the s o l i d - p h a s e method. The most appeal ing advantage 

w i th in the context of t h i s work i s that the s o l i d - p h a s e method al lows 

excesses of reagents to be separated from the reac t ion product by simple 

f i l t r a t i o n , thus avoiding tedious chromatographic or so lvent ex t rac t ion 

procedures. For example, we have shown in Chapter 2 that s - t r i a z o l o [ 3 , 4 - a ] -

phthalaz ine (TAP) d e r i v a t i v e s can be obtained by a v a r i e t y of coupl ing 

methods. D i f f i c u l t i e s i n some of these methods arose from i s o l a t i n g the 

des i red product from s o l u t i o n . Thus, e f f o r t s to i s o l a t e the TAP product 

were f r u s t r a t e d when HMPA + tosy l c h l o r i d e were used as a coupl ing method 

( c f . Sect ion 2 . 4 . 3 ) . 

The other reason f o r cons ider ing the s o l i d - p h a s e method i s connected 

with the p o s s i b l e a p p l i c a t i o n of the hydra laz ine r e a c t i o n with carboxylate 

groups of peptides as a C-terminal peptide sequencing method. Several 

bene f i t s are obtained by anchoring the peptide onto a polymeric support : 

a . The peptide m a t e r i a l , once attached to the s o l i d suppor t , 

i s not l o s t dur ing the degradat ive procedures. Th is permits 

sequencing to be performed with small amounts of peptide 

samples or fu r ther in to the peptide c h a i n . 
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b. A f t e r each reac t ion s t e p , excess reagents may be r e a d i l y 

removed by f i l t e r i n g and washing the support . 

c . The s o l i d - p h a s e method i s amenable to automation because 

of the r e p e t i t i v e nature of peptide sequencing. 

The f i r s t a p p l i c a t i o n to the step-wise degradation of peptides by 

the s o l i d - p h a s e method was that of S t a r k , 1 1 2 whose procedure invo lved 

a t tach ing the peptide at i t s N-terminus to an i n s o l u b l e Edman reagent , 

p o l y s t y r y l i s o t h i o c y a n a t e , c y c l i z i n g the adduct to form the th iohydanto in , 

i s o l a t i n g and ana lyz ing the res idua l pept ide , and rea t tach ing the peptide 

to the support (Scheme 3 .1 ) . 

0 

S 0 

repeat degradat ion 

c o p o l y s t y r e n e - d i v i n y l benzene support 

Scheme 3.1 S t a r k ' s Method for Subt rac t ive N-terminal Peptide Degradation 
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Using a somewhat d i f f e r e n t approach, Laursen attached the peptide 

by i t s C-terminal amino ac id to a polystyrene support and then p e r f o r m ' ^ 

the degradation in the usual manner with phenyl i s o t h i o c y a n a t e . The 

l i b e r a t e d t h i a z o l i n o n e i s removed in each c y c l e by f i l t r a t i o n . A f t e r the 

t h i a z o l i n o n e i s converted to a phenyl th iohydantoin i t i s i d e n t i f i e d by a 

number of procedures (Scheme 3 . 2 ) . 1 3 In keeping with the success of s o l i d -

0 

X-NH-CHR-C-NH-peptide-COOH 

0 

P S - N H 2 

X-NH-CHR-C-NH-peptide-CONH-P c 

deblock 

NH 2 -CHR-C-NH-peptide-CONH-P c 

0 

PhNCS 

PhNH-C-NH-CHR-C-NH-peptide-CONH-P 

H 

H 

Ph-I \K^ + NrL-peptide-CONH-P 
n 4 R 2 

H 

repeat degradat ion 

P s = c o p o l y s t y r e n e - d i v i n y l benzene support 

Scheme 3.2 Laursen 's Method fo r N-Terminal Peptide Sequencing 



88 

phase peptide s y n t h e s i s , peptide sequencing by the Laursen method has been 

automated and commercial vers ions of the so l id -phase sequencer are a v a i l ­

a b l e . 1 1 3 

a peptide attached to an i n e r t support were descr ibed by Laursen over 10 

years a g o , 1 1 4 the method i s s t i l l not as commonly used as the l i q u i d - p h a s e 

techniques of Edman and B e g g . 1 0 The reasons f o r t h i s a r i s e mainly from the 

development of only a few s u i t a b l e supports , and the problems assoc ia ted 

with the procedures f o r coupl ing peptides to supports . Some progress is 

being made i n overcoming these problems, and the s o l i d - p h a s e sequencing 

method i s r a p i d l y increas ing in p o p u l a r i t y . 

i n fancy , sequencing from the C-terminus i s barely past the embryonic s tage . 

During the time that th is work was in progress , two C-terminal s o l i d - p h a s e 

methods were reported based on S t a r k ' s thiocyanate reac t ion and using 

copoly (s tyrene-d iv iny lbenzene) or porous-g lass supports (Scheme 3 . 3 ) . 1 1 ' 1 ' 1 1 5 

Although the p r i n c i p l e s of determining the amino ac id sequence of 

While so l id -phase N-terminal peptide sequencing i s s t i l l in i t s 

0 0 
II II 

P-C-NH-peptide-C-NH-CHR-COOH 

a c e t i c anhydride 

P = polymeric support 
repeat 
degradation 

H 

Scheme 3.3 So l id -phase Peptide Sequencing by S t a r k ' s Thiocyanate Reaction 
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3.2 RESULTS 

The choice of an appropr ia te support mater ia l and the means of 

a t tach ing the substra te onto the support in the s o l i d - p h a s e method of 

organic synthes is are major d e c i s i o n s a f f e c t i n g the success of the 

s y n t h e s i s . In s p i t e of the enormous polymer technology which has developed 

in recent y e a r s , a very l i m i t e d amount of polymer types have been examined 

f o r use in s o l i d - p h a s e s y n t h e s i s . The most widely used polymer, and the 

one used in t h i s work, i s the copolymer of styrene and d iv iny lbenzene 

( D V B ) . 1 0 6 The r e s i n ^ used was a polymer in the form of small (200-400 mesh) 

beads with 1% c r o s s - l i n k i n g by d iv iny lbenzene . The low degree of c r o s s -

l i n k i n g allows the polymer to swell in non-polar so lvents and permits 

penetrat ion of reagents in s o l u t i o n to react with substra te molecules bound 

to in te rna l sur faces of the polymer. 

For the synthes is of s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e d e r i v a t i v e s on 

i n s o l u b l e suppor ts , e i t h e r hydra laz ine or the amino ac id may be anchored to 

the suppor t . If hydra laz ine i s attached to the suppor t , the hydrazino group 

must remain f ree f o r r e a c t i o n with amino a c i d s . The attachment i s most 

r e a d i l y achieved v ia a f u n c t i o n a l i t y introduced onto the a ry l r i n g of the 

phthalaz ine moiety. However, synthes is of r i n g - s u b s t i t u t e d hydra laz ine 

s u i t a b l e f o r s o l i d - p h a s e synthes is i s not a t r i v i a l undertak ing, and the 

more d i r e c t a l t e r n a t i v e of immobi l iz ing the amino ac id v ia i t s a-amino 

group i s p r e f e r r e d . 

Several opt ions are a v a i l a b l e f o r anchoring amino groups onto a 

polymeric matr ix . The method used by L e t s i n g e r , 1 0 7 and by M e r r i f i e l d 1 1 6 

t The s o l i d - p h a s e terminology which has become es tab l i shed f o r d e r i v a t i v e s 
of copolystyrene-DVB and f o r var ious l inkages with amino ac ids or 
pep t ides . 
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was adopted in t h i s work. Commercial chloromethylated copolystyrene-1% DVB 

was t reated with potassium ace ta te . The product was converted to the 

hydroxymethylated r e s i n by s a p o n i f i c a t i o n with aqueous sol ium hydroxide. 

Treatment of t h i s r e s i n with phosgene in benzene a f forded the methyl -

ch loroformylated r e s i n (Scheme 3 .4 ) . By th is procedure, complete conversion 
* 

KOAc NaOH C0C1 9 ?, 
P -CrLC l - P -ChLOAc » P -CrLOH C P -CrLOC-Cl 

S <: S c s c s c . 

P s = copo lys ty rene-d iv iny lbenzene support 

Scheme 3.4 Preparat ion of Methylchloroformylated Resin 

of c h l o r i d e to a c i d c h l o r i d e groups was obtained to g ive a r e s i n capac i ty 

of 1.36 meq c h l o r i d e per gram dry r e s i n . 

The f u n c t i o n a l i z e d po lystyrene r e s i n thus obtained can couple 

r e a d i l y to the amino groups of C-protected amino ac ids v i a an amide bond 

which i s normally s tab le to syn the t i c operat ions with the r e s i n . Solvents 

such as benzene, p y r i d i n e , DMF, and chloroform penetrate the polymer 

e f f e c t i v e l y and are therefore good r e a c t i o n media, whereas with water, 

methanol, and e the r , regions of the polymer appear to be i n a c c e s s i b l e 

s ince there i s l i t t l e swel l ing in these s o l v e n t s . 

Dahlmans suggested the use of a polystyrene r e s i n conta in ing 

s u l f o n y l c h l o r i d e groups which would bind amino groups by means of a 

Schotten-Bauman r e a c t i o n . 1 1 7 A b e n e f i t of t h i s method is the high 

s t a b i l i t y of the P S-S02"NH bond. The r e s i n may be s p l i t o f f from the bound 

amino a c i d by treatment with phosphonium iod ide in t r i f l u o r o a c e t i c a c i d . 

Th is method however, has found very l i m i t e d use in s o l i d - p h a s e s y n t h e s i s . 
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In our f i r s t e f f o r t s at coupl ing amino ac ids to the carboxyl 

ac t iva ted r e s i n we used the procedure of Le ts inger and K o r n e t . 1 0 7 The 

methylchloroformylated r e s i n was s t i r r e d with excess g l y c i n e ethyl es ter 

hydrochlor ide and t r ie thy lamine in dry DMF. The product was sapon i f i ed 

with base in methanol-acetone s o l u t i o n . The f i n a l r e s i n product , expected 

to be immobil ized g l y c i n e ethyl e s t e r , showed strong i n f r a - r e d bands at 

3580 cm" 1 and 3440 cm" 1 which were a t t r i b u t e d to f ree and hydrogen-bonded 

0-H groups, r e s p e c t i v e l y . A f t e r es te r h y d r o l y s i s , the lower wavenumber 

v(O-H) band s h i f t e d to 3390 c m " 1 . The carbonyl bands were broad f o r both 

products , and exh ib i ted a s h i f t from 1724 cm" 1 to 1718 cm" 1 upon r e s i n 

h y d r o l y s i s . By comparison, f ree g l y c i n e ethyl es te r hydroch lor ide e x h i b i t s 

a sharp carbonyl s t r e t c h i n g band at 1746 c m " 1 , and g l y c i n e shows a very 

broad band about 1582 c m - 1 . Le ts inger and Kornet observed a s h i f t of 

s i m i l a r magnitude from 1730 cm" 1 to 1724 c m - 1 on ester h y d r o l y s i s of 

P s ~ C H 2 0 - l e u c i n e ethyl e s t e r . Hydro lys is of a sample of the ac id c h l o r i d e 

r e s i n with sodium hydroxide in methanol-acetone showed v(O-H) bands s i m i l a r 

to those obtained in the attachment r e a c t i o n . However, there were no 

carbonyl bands i n d i c a t i n g that any a c i d which might have been formed by 

h y d r o l y s i s of the ac id c h l o r i d e had decomposed f u r t h e r to the hydroxymethyl 

r e s i n . If h y d r o l y s i s of the a c i d c h l o r i d e r e s i n was c a r r i e d out i n the 

presence of excess p y r i d i n e , i n f r a - r e d spect ra of the product showed bands 

at 3575 and 3360 c m " 1 , and 1738 c m " 1 , suggesting that both P s -CH 2 0C00H and 

P s -CH 2 0H were formed. On the basis of i n f r a - r e d s p e c t r a , the coupl ing 

react ion of the ac id c h l o r i d e r e s i n with g l y c i n e ethyl es te r was in terpre ted 

as g i v i n g a mixture of P s -CH 2 0C00H, P s - C H 2 0 H , and the des i red P s - C H 2 0 C 0 -

g lyc ine ethyl e s t e r . The low i n t e n s i t y of the v(0-H) bands in the spect ra 

of the g l y c i n e ethyl es te r r e s i n from the i n i t i a l attachment reac t ions 

suggested low s u b s t i t u t i o n y i e l d s . Further t r i a l s using chloroform in place 
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of DMF as the r e a c t i o n medium appeared to g ive somewhat bet ter y i e l d s , and 

t h i s so lvent was used in subsequent immobi l izat ion r e a c t i o n s . 

The cond i t ions u l t ima te ly used f o r a t taching amino ac ids to the 

support were s t i r r i n g the methylchloroformyl r e s i n (1.36 mmol C l / g ) with 

two-fo ld excesses of the amino ac id ethyl es te r hydrochlor ide and t r i e t h y l ­

amine in dry chloroform at room temperature f o r one day. A f t e r f i l t e r i n g 

and washing, the r e s i n was resuspended in chloroform and reacted with 

excess diethylamine to block any unreacted ac id c h l o r i d e groups. The r e s i n 

thus obtained was s a p o n i f i e d with potassium hydroxide in methanol-acetone 

s o l u t i o n . S u b s t i t u t i o n s of up to 0.63 mmoles of amino ac id per gram of 

r e s i n were obtained with a lan ine and g lyc ine ethyl es ter h y d r o c h l o r i d e s . 

A s u b s t i t u t i o n of 0.19 mmol/g r e s i n was obtained with g l y c y l g l y c i n e ethyl 

es ter hydroch lo r ide . These r e s u l t s compare with a s u b s t i t u t i o n of up to 

0.50 mmol L - l e u c i n e BOC-hydrazide/g r e s i n from P S-CH 20C0C1 (0.72 mmol C l / g ) 

by F e l i x and M e r r i f i e l d . 1 1 6 S u b s t i t u t i o n c a p a c i t i e s up to about 0.6 mmol 

d i p e p t i d e s / g were obtained by Darbre and R a n g a r a j a n . 1 1 5 

We focussed our a t ten t ion on u t i l i z i n g the immobil ized substrate 

once cond i t ions fo r a t tach ing amino ac ids to the support were e s t a b l i s h e d . 

A search of the l i t e r a t u r e showed that the number of carboxyl a c t i v a t i o n 

methods used in s o l i d - p h a s e synthesis was qui te l i m i t e d . 

The f i r s t e f f o r t s at coupl ing hydra laz ine with immobil ized g l y c i n e 

were with the carbodi imide method (c f . Sect ion 2 . 4 . 4 ) . The g l y c i n e r e s i n 

was s t i r r e d with 2 . 5 - f o l d excesses of hydra laz ine HCI, t r i e t h y l a m i n e , and 

d icyc lohexy lcarbod i im ide in dimethylacetamide suspension under an argon 

atmosphere. A f t e r r e a c t i o n overn igh t , the r e a c t i o n products were cleaved 

from the polystyrene support with HBr/CFgCOOH. The des i red product should 

be obtained as the HBr of 3 -aminomethy l -s - t r i azo lo [3 ,4 -a ]ph tha laz ine 

(Scheme 3 .5 ) . 



Scheme 3.5 So l id -phase Synthesis of s - T r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e s 

Monitor ing the progress of the reac t ion i s a d i f f i c u l t problem, 

as i t i s in s o l i d - p h a s e peptide s y n t h e s i s . In a developmental s i t u a t i o n i t 

i s important to know, at l e a s t q u a l i t a t i v e l y , the rate of r e a c t i o n and when 

the reac t ion is completed. Unfor tunate ly , we d id not f i n d any e n t i r e l y 

s a t i s f a c t o r y monitor ing method. 

In p r i n c i p l e , i n f r a - r e d spectroscopy should be u s e f u l . Reaction 

of hydra laz ine with the immobil ized amino ac id should show a disappearance 

of the carbonyl band a r i s i n g from the c a r b o x y l i c a c i d . In p r a c t i c e , the 

over lap o f strong bands a r i s i n g from amide carbonyls of the l inkage bonds 

makes any changes in shape and/or frequency of the broad carbonyl bands of 

dubious d iagnos t ic va lue . In f ra - red bands a r i s i n g from the t r i - c y c l i c TAP 

product are superimposed on the ra ther crowded spectrum exh ib i ted by the 

copolystyrene-DVB matr ix . Furthermore, in our hands, polystyrene beads 

almost i n v a r i a b l y d id not give t rans lucent KBr d i s c s . 

A s t ra ight forward monitor ing procedure i s to measure the decrease 

of hydra laz ine in s o l u t i o n by u l t r a - v i o l e t spectroscopy. This procedure 

however, i s inaccurate and u n r e l i a b l e by v i r t u e of the decomposit ion of 

h y d r a l a z i n e , e s p e c i a l l y in the presence of t r i e t h y l a m i n e . 
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In view of the d i f f i c u l t i e s , l i t t l e e f f o r t was made to fo l low the 

rate of the coupl ing r e a c t i o n , although IR spectra of the r e s i n , and UV 

spectra of the s o l u t i o n were recorded r o u t i n e l y . Coupling reac t ions were 

usua l ly terminated a f t e r one day and the products examined f o r the presence 

of TAP product . 

unsuccessful in de tec t ing any TAP products . Th is i s not s u r p r i s i n g as 

ample oppor tun i t ies were a v a i l a b l e for f a i l u r e at every stage o f the s o l i d -

phase procedure. A p o t e n t i a l l y ser ious d i f f i c u l t y with the carbodi imide 

methods i s the p r o b a b i l i t y that some of the a c t i v e 0 - a c y l i s o u r e a intermediate 

might be shunted o f f to the i n e r t N-acylurea (Scheme 2.12) . In s o l i d - p h a s e 

peptide synthes is the s i d e - r e a c t i o n i s rap id in DMF s o l u t i o n 1 1 8 and t h i s may 

be a c o n t r i b u t i n g f a c t o r to f a i l u r e of the hydra laz ine coupl ing reac t ion in 

DMA. Chloroform was used in subsequent reac t ions s ince the s i d e - r e a c t i o n i s 

not favored in t h i s s o l v e n t . However, the coupl ing reac t ion remained 

r e l a t i v e l y u n s u c c e s s f u l , presumably because of the low s o l u b i l i t y of hydra­

laz ine HCl in ch loroform. 

Confronted with the lack o f success with the ca rbod i im ides , 

s a l v a t i o n was sought with the mixed-anhydride method used by Le ts inger and 

K o r n e t . 1 0 7 The mixed anhydride intermediate may be prepared in situ by the 

r e a c t i o n of i sobuty l chloroformate with the carboxyl component, and then 

coupled d i r e c t l y with the amino reagent (Scheme 3 . 6 ) . 1 1 9 

I n i t i a l e f f o r t s with the carbodi imide method were t o t a l l y 

0 
0 R-C 
n 

C„H n 0 -C-C l + RCOOH 
C 4 H g 0 -C . 

» RCONHR' + C 4 H 9 0H + C 0 2 

Scheme 3.6 Amide Formation with Isobutyl Chloroformate 
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Isobutyl and other a lky l chloroformates react through s i m i l a r 

intermediates as the EEDQ and IIDQ coupl ing reagents (Sect ion 2 . 4 . 2 ) . In a 

s o l i d - p h a s e peptide synthesis by extension from the C- terminus, T i l a k and 

H o l l i n d e r 1 2 0 reported that mixed anhydride coupl ing with i sobuty l c h l o r o -

formate proceeded f a s t e r than with DCC and required shor ter coupl ing 

peri ods. 

Mixed-anhydride coupl ing was e f fec ted by reac t ing an excess of 

isobuty l chloroformate with the amino ac id res in in chloroform suspension 

f o r an hour at - 1 0 ° C . A f t e r the amino ac id anhydride was freed of excess 

ch loro formate , the r e s i n was immediately resuspended in a chloroform 

s o l u t i o n of hydra laz ine HCI and t r i e t h y l a m i n e . The product was cleaved 

from the support a f t e r the reac t ion mixture was allowed to react f o r about 

18 hours at room temperature. 

Two undesired s i d e - r e a c t i o n s are assoc ia ted with amide formation 

by the mixed-anhydride method. F i r s t , anhydride (74) can d ispropor t iona te 

to y i e l d a symmetrical anhydride (75) and-a d ia lky lpyrocarbonate (76) 

(Scheme 3 .7 ) . The l a t t e r can i r r e v e r s i b l y block the amino component 

0 0 

R - C - 0 - C - 0 C 4 H 9 

Scheme 3.7 S i d e - r e a c t i o n s of Mixed-anhydride in Amide Synthesis 

(route l). In s o l i d - p h a s e s y n t h e s i s , aminolys is of the symmetrical anhydride 

r e s u l t s in lowered y i e l d of the coupled product s ince ha l f of the carboxyl 

(1) 

R'NH, t 

(2) 

0 0 
II II 

R-C-O-C-R + 

(75) 

0 

C 4 H g 0-C-NHR' 

0 
n 

0 
II 

C 4 H 9 0 - C - 0 - C - 0 C 4 H g 

(76) 

+ R-COOH 
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component is l o s t as the f ree a c i d . This d i s p r o p o r t i o n a t e reac t ion i s 

minimized by a c t i v a t i n g the amino ac id at low temperature. Second, wrong 

s ide aminolys is of the anhydride (74) can r e s u l t in a mixture of products 

(route 2). Th is reac t ion i s made less favorable by using a bulky alkoxy 

group, e . g . i s o b u t y l o x y . 

We were f i n a l l y success fu l with the mixed-anhydride method in 

preparing the TAP d e r i v a t i v e s by coupl ing hydra laz ine with immobil ized 

g l y c i n e . Only one f l u o r e s c e n t product was i s o l a t e d i n d i c a t i n g that nuc leo-

p h i l i c at tack by hydra laz ine at the isobuty loxy carbonyl carbon atom 

(route 2) was i n s i g n i f i c a n t . The product of the coupl ing reac t ion was 

p u r i f i e d by preparat ive TLC on s i l i c a g e l , and i t s i d e n t i t y was confirmed 

by mass spectrometry. Coupling of hydra laz ine with a lan ine r e s i n under 

s i m i l a r r e a c t i o n condi t ions a lso gave the des i red TAP product in moderate 

y i e l d . 

Buoyed by the success with isobuty l ch loroformate , we next t r i e d 

the coupl ing reagent , l - e t h o x y c a r b o n y l - 2 - e t h o x y - l , 2 - d i h y d r o q u i n o l i n e (EEDQ, 

Sect ion 2 . 4 . 2 ) . EEDQ generates an ethoxy mixed carbonic anhydride on reac ­

t ion with c a r b o x y l i c a c i d s . G lyc ine r e s i n in TilF suspension was allowed 

to react with excess EEDQ at room temperature f o r 45 minutes under a 

n i t rogen atmosphere, and then f i l t e r e d f ree of excess reagents . A f t e r the 

r e s i n had reacted with hydra laz ine in Th'F s o l u t i o n f o r about 18 hours, the 

product was cleaved from the r e s i n with HBr/HOAc. UV spec t ra l a n a l y s i s of 

the product showed that TAP was s u c c e s s f u l l y formed, but in r e l a t i v e l y low 

y i e l d . 

In s o l i d - p h a s e peptide synthes is and in th is work, the usual 

l inkage of amino ac ids to the polystyrene r e s i n is a benzyl es te r bond. 

For a long t ime, the standard procedure f o r c l e a v i n g t h i s bond was treatment 
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of the r e s i n in t r i f l u o r o a c e t i c a c i d suspension with HBr. However, t r i -

f l u o r o a c e t i c ac id swel ls the polystyrene r e s i n very p o o r l y , and i n f r a - r e d 

spectra of the r e s i n (a f te r 4 hours treatment) showed incomplete cleavage 

of product . This has a lso been one of the more aggravating disadvantages 

of the HBr/TFA cleavage in peptide s y n t h e s i s . 1 2 1 When t r i f l u o r o a c e t i c a c i d 

was rep laced by a c e t i c a c i d , swel l ing of the polystyrene support was 

improved, and the cleavage reac t ion appeared to be more complete by IR 

c r i t e r i a (absence of v(C=0) bands). 

The experiments with d icyc lohexy lcarbod i imide as a coupl ing 

reagent were performed at an e a r l y stage of t h i s work when experience with 

the s o l i d - p h a s e procedure, and with i n t e r p r e t a t i o n of i n f r a - r e d spectra o f 

the r e s i n s were l i m i t e d . A coupl ing reac t ion in chloroform s o l u t i o n with 

DCC was repeated under the same condi t ions as descr ibed p r e v i o u s l y except 

f o r the change in cleavage procedure to treatment with HBr/HOAc. UV spec­

t r a l a n a l y s i s of the product showed the des i red 3 -aminomethy l -s - t r i azo lo -

[3 ,4 -a ]ph tha laz ine ! Thus, the apparent f a i l u r e of the carbodi imide method 

in e a r l i e r e f f o r t s probably r e s u l t e d not only from the coupl ing s t e p , but 

from incompleteness of the cleavage reac t ion as w e l l . 

3.3 DISCUSSION 

One f a c e t of our s tudies on the s o l i d - p h a s e synthes is of 

s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e d e r i v a t i v e s that i s c l e a r l y evident i s the 

interdependence o f the var ious f a c t o r s : support m a t e r i a l , at tachment, 

c o u p l i n g , and cleavage methods, in determining the success of the s o l i d -

phase method f o r chemical s y n t h e s i s . 

The i n s o l u b l e support i s the backbone of the s o l i d - p h a s e method 

i t s e l f . A good support should possess c e r t a i n d e s i r a b l e phys ica l and 
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chemical , c h a r a c t e r i s t i c s . The support should be in the form of homogeneous, 

r e l a t i v e l y r i g i d , porous beads. An appropr ia te p o r o s i t y permits rap id 

d i f f u s i o n of reagents in to the r e a c t i v e s i t e s and easy removal of reagents 

by f i l t r a t i o n and washing. It a l s o provides fo r a large e f f e c t i v e sur face 

area which is d e s i r a b l e f o r obta in ing a high degree of m o d i f i c a t i o n . 

I d e a l l y , the support should have good mechanical s t rength and 

chemical s t a b i l i t y toward extremes of temperature and pH, and toward organic 

s o l v e n t s . The support should a l s o be h i g h l y i n s o l u b l e in the so lvent media 

of r e a c t i o n . 

The support must possess chemical c h a r a c t e r i s t i c s which al low 

i n t r o d u c t i o n of r e a c t i v e f u n c t i o n a l i t i e s under mild cond i t ions and permit 

a c t i v a t i o n of the support without dest roy ing i t s s t r u c t u r a l i n t e g r i t y . 

L a s t , but not l e a s t , a good support should be reasonably p r i c e d , 

otherwise l a r g e - s c a l e syntheses would be economical ly p r o h i b i t i v e . A v a i l ­

a b i l i t y from e i t h e r supply houses or from simple chemical synthes is i s 

advantageous. The cost f a c t o r w i l l be minimized i f the a c t i v e support can 

be regenerated a f t e r use. 

The support mater ia l which we used in t h i s work was a copolymer 

of styrene and d iv iny lbenzene which i s an amorphous gel with a random net­

work of l o o s e l y c r o s s l i n k e d polystyrene c h a i n s . We pre fer red the 1% c r o s s -

l inked polymer over the 2% c r o s s l i n k e d r e s i n used in the major i ty of s o l i d -

phase r e a c t i o n s . Copolystyrene-1% DVB swel ls apprec iab ly more in non-polar 

solvents than polymers with higher c r o s s l i n k i n g , and can lead to more 

complete reac t ions in peptide s y n t h e s i s . 1 2 2 In h igh ly c r o s s l i n k e d copo ly -

styrene-DVB polymers, the beads are too r i g i d to permit easy penetrat ion of 

reagents , and slower and less complete react ions may r e s u l t . The c r o s s -

l inked polystyrene beads are not a "sur face support" . Due to t h e i r 
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swe l l ing in organic so lvents they are f r e e l y permeable to reagents . M e r r i ­

f i e l d and L i t t a u 1 2 3 showed by autoradiography of beads conta in ing t r i t i a t e d 

peptides that the d i s t r i b u t i o n i s qui te uniform throughout the bead. Recent 

s tudies with polymer-bound t r a n s i t i o n metal c a t a l y s t s and complexes s t rong ly 

suggest that the degree of swel l ing of the polymer l a t t i c e i s an important 

f a c t o r in determining the chemical r e a c t i v i t y of immobil ized molecu les , and 

there in l i e s one of the main d e f i c i e n c i e s of c r o s s l i n k e d p o l y s t y r e n e . 1 2 4 * 1 2 5 

Supports are needed which are more compatible with po lar s o l v e n t s , or are 

l ess a f f e c t e d by the s w e l l a b i l i t y of the r e s i n . 

In N-terminal peptide sequencing with an i n s o l u b l e Edman reagent , 

Dowling and S t a r k 1 1 2 synthesized a copolystyrene-O.25% DVB r e s i n with 

cova len t l y l inked glucosaminol to increase i t s h y d r o p h i l i c charac te r . 

Rangarajan and D a r b r e 1 1 5 introduced methylthiocarbamoyl groups in to the 

benzene r ings of copolystyrene-2% DVB to achieve the same end. Th is 

modif ied polymer approximately doubled i t s swel l ing in aqueous media and 

showed improved attachment y i e l d s of t e t r a - and hexapeptides to the support . 

The improvement was ascr ibed to the increased p o l a r i t y of the polymer 

a l lowing e a s i e r a c c e s s i b i l i t y of r e a c t i v e s i t e s . 

A f f i n i t y chromatography has in common with sol i -d-phase synthes is 

the use of i n s o l u b l e supports f o r immobi l iz ing a l i g a n d . In the former 

a p p l i c a t i o n , i t i s f requent ly advantageous to at tach the l igand to the 

support at a d is tance from the s u r f a c e . Spacer arms provide more e f f i c i e n t 

i n t e r a c t i o n between the immobil ized l igand and the so lu te molecules due to 

the increased s t e r i c a v a i l a b i l i t y of the l igand to the s o l u t e . The length 

of the spacer i s chosen e m p i r i c a l l y and must be optimized f o r each use. 

The same p r i n c i p l e s a lso apply to the s o l i d - p h a s e r e a c t i o n of 

amino ac ids with hydra laz ine . The b i f u n c t i o n a l molecules B-alanine methyl 
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ester HCl and 3 -a lan ine isopropyl es ter HCl were therefore synthesized to 

be used as spacer arms as shown in Scheme 3.8. 

0 0 0 0 
H n 

P S -CH 2 0C-C1 + H 2 N - ( C H 2 ) 2 - C - 0 R P s - C H 2 0 C - N H - ( C H 2 ) 2 - C - 0 R 

R=CH 
OH" 

n ' II 

P s - C H 2 0 C - N H - ( C H 2 ) 2 - C - 0 H 

Scheme 3.8 M o d i f i c a t i o n of Polystyrene with a Spacer Arm 

The advantages of a spacer arm were a l s o apparent to Rangarajan 

and D a r b r e 1 1 5 who attached a y -amino-n -bu ty r ic ac id methyl e s t e r spacer arm 

to a carboxylate polystyrene support . An improvement in the y i e l d of 

peptide attachment was a t t r i b u t e d to a r i s e p a r t l y from t h i s polymer m o d i f i ­

c a t i o n . 

In a s i m i l a r v e i n , S p a r r o w 1 2 6 modif ied a M e r r i f i e l d r e s i n by 

in t roducing a long spacer arm f o r use in peptide s y n t h e s i s . A t h r e e - f o l d 

improvement in the o v e r a l l y i e l d of a 19-residue peptide was r e a l i z e d with 

th is support . EPR studies of a s p i n - l a b e l attached to the N-terminus of a 

peptide on t h i s r e s i n suggested an increased m o b i l i t y of the N-terminal 

res idue over the unmodified commercial r e s i n , and hence decreased pept ide -

r e s i n i n t e r a c t i o n s . 

In s p i t e of mod i f i ca t ions to the usual polystyrene mat r ix , the 

inherent hydrophobic!'ty and dependence on swel l ing by so lvents of styrene 

Br 
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based polymers l i m i t t h e i r usefu lness in peptide sequencing. An ideal 

support should be capable of coupl ing e f f e c t i v e l y a l l s i z e s of p e p t i d e s , 

inc lud ing p r o t e i n s , and the func t iona l groups should be a c c e s s i b l e f o r 

chemical reac t ion in a v a r i e t y of aqueous and organic media. 

Polyacrylamide appears to be an e x c e l l e n t matr ix f o r s o l i d - p h a s e 

s y n t h e s i s . The beads are mechanical ly and chemica l ly s t a b l e , and are 

r e l a t i v e l y h y d r o p h i l i c . The neutral polyacrylamides are e n t i r e l y s y n t h e t i c 

ge ls formed by copolymer izat ion of acrylamide with the A f u n c t i o n a l c r o s s -

l i n k i n g agent , N ,N 1 -methy lene -b is -acry lamide . The r a t i o of the concentra ­

t ion of acrylamide in the reac t ion mixture to that of the c r o s s l i n k i n g 

agent can be var ied to g ive an i n f i n i t e s e r i e s of i n s o l u b l e gel products 

which d i f f e r in t h e i r average pore s i z e . 1 2 7 F igure 3.1 shows part of a 

polyacrylamide matr ix . The p r i n c i p a l advantage of polyacrylamide i s that 

-CH-CH 0 -CH-CH 0 -CH-CH 0 -CH-

CONH CONHo CONH, 2 

HN-CO 

C H 2 

HN-CO 

-CH-CH 2 -CH-CH 2 -CH-

C0NH9 OC-NH 

CH 2 

OC-NH 

- C H 2 - C H - C H 2 - C H - C H 2 - C H -
CONH, CONH, 

F igure 3.1 P a r t i a l S t ructure of a Polyacrylamide Matr ix 
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i t possesses a very abundant supply of modi f iab le carboxamide groups which, 

together with a v e r s a t i l i t y in d e r i v a t i z a t i o n techniques , al lows the 

covalent attachment of a v a r i e t y of f u n c t i o n a l i t i e s . 1 2 7 L im i ta t ions of 

polyacrylamide as an i n s o l u b l e matrix are the low degree of poros i ty of the 

beads c u r r e n t l y a v a i l a b l e , and the shrinkage observed during the chemical 

mod i f i ca t ions requi red for attachment of func t iona l groups. 

Polyacrylamide ge ls have found t h e i r most f requent a p p l i c a t i o n s in 

the immobi l izat ion of prote ins and other b ioorganic mater ia ls in a f f i n i t y 

chromatography, immunosorbent s y n t h e s i s , e t c . 1 2 7 " 1 3 0 A p p l i c a t i o n s in 

s y n t h e t i c organic chemistry are l i m i t e d to the recent use of a po lyd imethy l -

acrylamide support in peptide s y n t h e s i s . 1 3 1 A notable feature of t h i s 

support i s the large swel l ing of the r e s i n in po lar media such as DMF, HOAc, 

and l-^O. Very much less swel l ing occur in methylene c h l o r i d e and less 

polar organic s o l v e n t s . These proper t ies are the reverse of those of po ly ­

styrene-based r e s i n s . In peptide s y n t h e s i s , the polydimethyl 'acrylamide 

support gave r e s u l t s c l e a r l y super ior to those obtained with the customary 

polystyrene support . In N-terminal p ro te in sequencing, polyacrylamide-based 

supports are j u s t beginning to a t t r a c t a t t e n t i o n . Pre l iminary r e s u l t s show 

s i g n i f i c a n t advantages over polystyrene r e s i n s . 1 3 2 > 1 3 3 C l e a r l y , p o l y a c r y l -

amide supports show s u f f i c i e n t promise to warrant f u r t h e r i n v e s t i g a t i o n s in 

a wider range of a p p l i c a t i o n s . 

B io-Gel CM-2 i s a f u l l y carboxylated polyacrylamide matrix a v a i l ­

able from Bio-Rad Labora tor ies with a capac i ty of 5 meq/gram. We used t h i s 

mater ia l to prepare the a c i d - c h l o r i d e r e s i n by reac t ion with th iony l 

c h l o r i d e , with the in ten t ions of modifying the support with a 3 -a lanine 

ester spacer arm, and using t h i s support to evaluate i t s s u i t a b i l i t y f o r 

the s o l i d - p h a s e synthes is of TAP d e r i v a t i v e s . These experiments however, 

remain incomplete , and they deserve cons idera t ion by other workers. 
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Other types of supports are in use fo r s o l i d - p h a s e prote in 

sequencing and prominent among them are those based on c o n t r o l l e d - p o r e g lass 

(CPG). The term c o n t r o l l e d - p o r e r e f e r s to a rather narrow pore d i s t r i b u t i o n . 

Th is type of support was f i r s t introduced f o r Edman degradat ion of peptides 

and prote ins by Machleidt and co-workers in 1 9 7 3 . 1 3 4 Porous g lass i s an 

a t t r a c t i v e support mater ia l f o r a number of reasons. It i s r i g i d , w i th ­

stands organic s o l v e n t s , i s regenerable , and i s r e s i s t a n t to microb ia l 

a t tack . 

Porous g lass may be ac t i va ted by s i l a n i z a t i o n with y -aminopropyl -

t r i e t h o x y s i l a n e . 1 3 5 The amino groups of the r e s u l t i n g alkylamine g lass may 
o 

be s u c c i n y l a t e d to give an extension arm approximately 10 A long . The 

carboxyl g lass may be converted to the acyl c h l o r i d e with th iony l c h l o r i d e . 

0 0 

- S i - ( C H 2 ) 3 - N H - C - ( C H 2 ) 2 - C - 0 H 

This product can be used d i r e c t l y f o r coupl ing with the amino groups 

p r o t e i n s . The s u c c i n y l a t e d CPG i s commercial ly a v a i l a b l e from P ie rce 

Chemical Company, as are the N-hydroxysuccinimide and p -n i t ropheny l e s t e r s . 

For an e x c e l l e n t review on CPG, the reader i s re fe r red to the P ierce General 

C a t a l o g . 1 3 6 

Recent C-terminal peptide and prote in sequencing s tud ies have used 

N-hydroxysucciniinide CPG b e a d s . 1 1 4 * 1 1 5 Good attachment y i e l d s of lysozyme 

and r ibonuclease to the porous g lass support were obta ined. Wi l l iams and 

K a s s e l l 1 1 4 achieved average attachment y i e l d s varying from 49 to 85% with 

e ight d i f f e r e n t peptides possessing between two and f i v e amino a c i d s . 

Porous g lass possesses many of the r e q u i s i t e s for a good support 

m a t e r i a l , and i t i s g radua l ly rep lac ing the conventional po lystyrene-based 

support in prote in sequencing. There are severa l inherent l i m i t a t i o n s in 
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the suppor t , however. The S i - 0 bonds which hold the l igand to the g lass 

are not completely s tab le to an ac id ( p a r t i c u l a r l y aqueous ac id ) and small 

amounts of peptide tend to be l o s t in each degradat ive c y c l e . Erosion of 

the g l a s s , e s p e c i a l l y at high pH i s a lso a problem, and severe l igand 

leakage can be encountered. A coat of z i rconium oxide s t a b i l i z e s the g lass 

but t h i s r a i s e s fu r ther the cos t of an a l ready expensive m a t e r i a l . The 

Corning CPG/N-hydroxysuccinimide ester d i s t r i b u t e d by P ierce costs $60/25 

m l . 1 3 6 A f u r t h e r l i a b i l i t y of CPG i s i t s rather low binding capac i ty 

(CPG/N-hydroxysuccinimide, ^0.036 m e q / m l ) 1 3 6 which makes i t somewhat 

imprac t ica l f o r preparat ive s c a l e syntheses. 

in the s o l i d - p h a s e coupl ing r e a c t i o n of hydra laz ine with amino a c i d s . 

Using d icyc lohexy lca rbod i im ide as a coupl ing reagent , the des i red TAP 

product i s formed, but y i e l d s are u n s a t i s f a c t o r y . Perhaps one of the most 

ser ious problems with the carbodi imide method i s the p o s s i b i l i t y of forma­

t ion of the i n a c t i v e N-acy lurea . A t a c t i c used to reduce the amount of 

N-acylurea i s the a d d i t i o n of N-hydroxy compounds such as 1-hydroxybenzo-

t r i a z o l e ( H O B t ) 1 3 7 (77) and 3 - h y d r o x y - 4 - o x o - 3 , 4 - d i h y d r o - l , 2 , 3 - b e n z o t r i a z i n e 

(78).138 These reagents are used p r i m a r i l y f o r the suppression of racemiza-

At the present s ta te of development, there are many d e f i c i e n c i e s 

OH 

(77) (78) 

t ion in peptide synthesis with DCC. They combine r a p i d l y with the carboxyl 

component to form h igh ly r e a c t i v e es ters which in turn couple with the 

amino component. Formation of a complex between the amino component and 
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the HOBt a c t i v e es te r was proposed to expla in the proper t ies of these 

a d d i t i v e s 1 3 9 (Scheme 3 . 9 ) . 

0 

R-C-OH + 

OH 
0 

DCC n " J\lx 
R-C-O-N *N 

R'NH, 

5 
0 

R - C 

RCONHR1 + HOBt 

Scheme 3. 9 Amide Formation with DCC/HOBt 

N-hydroxy a d d i t i v e s are good nuc leophi les and they compete with 

the amino component f o r the acyl group of the 0 - a c y l i s o u r e a intermediate to 

form a c t i v e e s t e r s . Furthermore, the presence of the amine and of the 

a d d i t i v e r e s u l t s in a higher concentra t ion of n u c l e o p h i l e s , thus reducing 

the l i f e t i m e of the 0 - a c y l i s o u r e a , and hence decreasing the p r o b a b i l i t y of 

in t ramolecu lar rearrangement. S ing le coupl ing reac t ions were attempted with 

the HOBt add i t i ve f o r both s o l i d - p h a s e and s o l u t i o n r e a c t i o n s . In both 

c a s e s , r e s u l t s were i n c o n c l u s i v e and no d e f i n i t e improvement in coupl ing 

y i e l d s could be demonstrated. 

The best coupl ing y i e l d s were obtained when isobuty l chloroformate 

was used to a c t i v a t e the immobil ized amino a c i d . This suggested that EEDQ 

and IIDQ ( c f . Sect ion 2.4.2) which a l s o react v i a mixed-anhydride i n t e r ­

mediates should a lso be s u c c e s s f u l . Thus, Yajima and c o - w o r k e r s 9 0 obtained 

near ly q u a n t i t a t i v e coupl ing of a hexapeptide with H - G l y - A l a - P s after~43 

hours r e a c t i o n with IIDQ in DMF. Good coupl ing y i e l d s with EEDQ were a lso 

obtained by Sipos and Gaston in s o l i d - p h a s e peptide s y n t h e s i s . 1 4 0 
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The N - e t h y l - 5 ' - p h e n y l i s o x a z o l i u m - 3 1 - s u l f o n a t e (NEPIS), 

(c f . Sect ion 2.4.1) coupl ing reagent was s u c c e s s f u l l y app l ied to the 

synthesis of TAP d e r i v a t i v e s under convent ional l i q u i d - p h a s e c o n d i t i o n s . 

However, t h i s reagent has a t t rac ted very l i t t l e a t ten t ion f o r s o l i d - p h a s e 

r e a c t i o n s , and i t would be worthwhile to i n v e s t i g a t e i t s e f f i c i e n c y in 

s o l i d - p h a s e TAP s y n t h e s i s . 

Of the other reagents used in t h i s work f o r coupl ing hydra laz ine 

with N-protected amino ac ids in homogeneous s o l u t i o n , only the " o x i d a t i o n -

reduct ion" reagents of llukaiyama et al. ( c f . Sect ion 2.4 .3) appear to have 

been used in s o l i d - p h a s e s y n t h e s i s . This method i s p a r t i c u l a r l y re levant 

to our s tudies s ince there are very few examples in the l i t e r a t u r e f o r 

carboxyl a c t i v a t i o n of an amino ac id or peptide attached to a support at 

i t s amino group. These s tudies in peptide synthesis by chain e longat ion 

from the N-terminal amino a c i d use isobutoxy mixed anhydride (from isobuty l 

c h l o r o f o r m a t e ) 1 0 7 and a z i d e 1 1 6 in termediates . Matsueda and co-workers 

succeeded in syn thes iz ing porcine l u t e i n i z i n g hormone-releasing hormone 

(LH-RH, 10 res idues) by coupl ing three fragments with excess 2 , 2 ' - d i t h i o -

d i p y r i d i n e and t r i p h e n y l p h o s p h i n e . 1 4 1 Th is synthes is was accomplished 

without the necess i ty of pro tec t ing the s ide chains of t ryptophan, g lutamine, 

h i s t i d i n e , t y r o s i n e and s e r i n e . In a fu r ther demonstration of the u t i l i t y 

of the o x i d a t i o n - r e d u c t i o n method, a 24 residue segment of a d r e n o c o r t i c o ­

t r o p i c (ACTH) was synthesized in good y i e l d by e longat ion from the N-terminus 

in f i v e fragment coupl ing s t e p s . 1 4 2 

The s u p e r i o r i t y of the o x i d a t i o n - r e d u c t i o n process c e r t a i n l y l i e s 

in the advantage i t possesses of minimizing s i d e - r e a c t i o n s . By comparison 

the carbodi imide method, which i s by f a r the most widely used in s o l i d - p h a s e 

peptide s y n t h e s i s , i s s u s c e p t i b l e to (a) N-acylurea format ion , and 
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(b) n i t r i l e formation from s i d e - c h a i n carboxamide groups during a c t i v a t i o n 

of glutamine or asparagine d e r i v a t i v e s . 

While we were unsuccessful with the o x i d a t i o n - r e d u c t i o n method 

f o r synthes is of TAP d e r i v a t i v e s in s o l u t i o n , perhaps t h i s was due to the 

experimental condi t ions used, and not to the method i t s e l f . The o x i d a t i o n -

reduct ion method c e r t a i n l y deserves some cons idera t ion f o r the s o l i d - p h a s e 

coupl ing of hydra laz ine with immobilized amino a c i d s . 

We have shown new avenues f o r fu r ther development of our s o l i d -

phase s t u d i e s , but with the present system, a modicum of changes in the 

reac t ion cond i t ions can br ing about s i g n i f i c a n t improvements in the r e a c t i o n 

e f f i c i e n c i e s observed. The f i r s t change which suggests i t s e l f i s the use of 

f ree base hydra laz ine ra ther than hydra laz ine HCI with t r i e t h y l a m i n e . The 

hydrochlor ide s a l t requi res polar so lvents f o r d i s s o l u t i o n whereas p o l y ­

styrene-based supports are most e f f i c i e n t l y swelled by non-polar s o l v e n t s . 

With f resh ly -p repared hydra laz ine non-polar so lvents such as methylene 

c h l o r i d e can be used. In a d d i t i o n , hydra laz ine decomposes r a p i d l y in the 

presence of excess Et^N. This i s e s p e c i a l l y a problem when the d i s s o l u t i o n 

of hydra laz ine HCI i s slow, and there i s a low concentrat ion of hydra laz ine 

in s o l u t i o n r e l a t i v e to Et^N. If hydra laz ine decomposit ion i s ex tens ive , 

any of the decomposition products conta in ing primary or secondary amine 

groups may couple with the amino ac id to give undesired s i d e - p r o d u c t s . Our 

observat ion o f a ye l low co lour in the r e s i n during coupl ing reac t ions may 

be evidence of t h i s s i d e - r e a c t i o n . 

Several approaches are a v a i l a b l e f o r improving the coupl ing 

e f f i c i e n c y of any given coupl ing method. Reaction times of 15-18 hours 

were genera l l y used in these s t u d i e s . Even these extended r e a c t i o n times 

may be i n s u f f i c i e n t . In s o l i d - p h a s e peptide s y n t h e s i s , the standard 
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reac t ion time i s two hours. However, the a p p l i c a t i o n of i n c r e a s i n g l y longer 

reac t ion times has been a not iceab le t rend . In some c a s e s , reac t ion times 

have been extended to 24 hours or g r e a t e r . 1 2 1 One of the i n t r i n s i c problems 

with the s o l i d - p h a s e procedure i s that the phase separat ion may o f ten r e s u l t 

in slower r e a c t i o n . 

A p p l i c a t i o n of l a rger excesses of hydra laz ine and 'coupl ing reagent 

would seem to be an obvious remedy f o r incomplete c o u p l i n g . We have 

genera l ly used a two- to t h r e e - f o l d excess of these reagents in the coupl ing 

r e a c t i o n . In a s o l i d - p h a s e synthesis of cytochrome C, Sano and Kuihara used 

amounts of 30- to 7 0 - f o l d excess of reagents in a rout ine manner through the 

f i n a l eighteen steps of t h e i r s y n t h e s i s . 1 4 3 In these c a s e s , excesses of 

reagents would be f i l t e r e d o f f and reused. 

The r e a c t i v i t y of any peptide carboxylate group i s somewhat 

dependent on the nature of the amino ac id s i d e - c h a i n and the adjacent amino 

a c i d sequence. Th is v a r i a b i l i t y in r e a c t i v i t y advises aga ins t a standard 

reac t ion time fo r hydra laz ine coupl ing with amino ac ids and pept ides . There 

must there fore be some means of monitor ing the progress of the r e a c t i o n . 

The d i f f i c u l t i e s assoc ia ted with a p p l i c a t i o n of i n f r a - r e d spectroscopy to 

polymeric mater ia ls have been p rev ious ly d iscussed (vide supra). F e a s i b l e 

a l t e r n a t i v e s inc lude cleavage of the peptide from the support and subject ing 

i t to amino a c i d a n a l y s i s to determine the extent of TAP m o d i f i c a t i o n . The 

amount of TAP present in a hydrolyzate of the peptide under study may a lso 

be determined by q u a n t i t a t i v e f luorescence a n a l y s i s of the TLC i s o l a t e d 

product . The extent o f peptide m o d i f i c a t i o n by hydra laz ine can a l s o be 

monitored by microana lys is of the peptide r e s i n . However, low s u b s t i t u t i o n 

of pept ide on the suppor t , and the presence of the support i t s e l f , can make 

th is a somewhat i n s e n s i t i v e method. 
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If the so l id -phase method is to be used as a purely syn the t ic 

procedure, then a cleavage of the benzyl es te r bond i s required by which 

the TAP d e r i v a t i v e i s attached to the support . We have found that s c i s s i o n 

of th is bond i s s a t i s f a c t o r y under a c i d i c condi t ions with HBr/HOAc. 

However, i f se r ine and threonine are present in the peptide c h a i n , the 

hydroxyl groups may be ace ty la ted under these c o n d i t i o n s . 1 1 8 Th is s i d e -

reac t ion is avoided i f a c e t i c ac id i s subs t i tu ted by anhydrous t r i f l u o r o -

a c e t i c a c i d , but extended reac t ion times may be requi red s ince we observed 

incomplete cleavage with HBr/TFA. A l t e r n a t i v e l y , anhydrous, l i q u i d hydrogen 

f l u o r i d e may be u s e d . 1 1 8 

Peptide sequencing from the carboxyl terminus by the s o l i d - p h a s e 

method requ i res attachment of the N-terminal amino a c i d to the support at 

the a-amino group. A f requent ly used method f o r producing peptides from 

prote ins i s treatment of the prote in with t r y p s i n . This enzyme cleaves 

peptide bonds at the C-end of l y s i n e and a r g i n i n e . A s i g n i f i c a n t number of 

peptides used in peptide sequencing may therefore contain l y s i n e . If such 

a peptide i s attached to a support , binding w i l l occur at the N-terminus 

(a-amino group) and at the C-terminus (e-amino group) . C-terminal sequenc­

ing of the peptides thus anchored w i l l show gaps in the amino ac id sequence 

at the N-terminus and at l y s i n e s s ince these res idues w i l l remain bound to 

the r e s i n . The i r i d e n t i t i e s may be deduced from the d i f f e r e n c e between the 

amino ac id composit ion of the peptide and the TAP d e r i v a t i v e s de tec ted , or 

by h y d r o l y s i s and a n a l y s i s of the support a f t e r degradat ion. 

I f bas ic amino ac ids are present in the p e p t i d e s , attachment of 

the peptide at the amino s i d e - c h a i n s may be prevented by car ry ing out one 

step of Edman N-terminal degradation on the f ree p e p t i d e . 1 1 4 This procedure 

protects e-amino groups of l y s i n e as t h e i r phenylthiocarbamyl (PTC) d e r i v a -
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t i v e , and at the same time permits i d e n t i f i c a t i o n of the N-terminal res idue . 

A f t e r t h i s s t e p , the a-amino group of the second residue i s the only amino 

group f ree f o r attachment to the support . 

A p o s s i b l e compl icat ion in C-terminal residue a n a l y s i s i s the 

reac t ion of hydra laz ine with s i d e - c h a i n carboxyl groups of a s p a r t i c and 

glutamic a c i d s . Th is s i d e - r e a c t i o n may create d i f f i c u l t i e s where the 

hydra laz ine m o d i f i c a t i o n reac t ion is used f o r C-terminal determinat ion o n l y . 

Tota l h y d r o l y s i s of the modi f ied peptide w i l l y i e l d TAP d e r i v a t i v e s from 

both the C-terminal amino ac id and in te rna l amino a c i d s . The s i t u a t i o n may 

be more complex in the case of a s p a r t i c a c i d ; the 3-carboxyl group a f t e r 

a c t i v a t i o n by coupl ing reagent can react with a neighbouring amide ni t rogen 

to form a B-lactam which may stop peptide degradation complete ly . 

Several s o l u t i o n s to the s i d e - c h a i n carboxyl group problem are 

p o s s i b l e . Prev iero et al.ll*k have shown that carbodi imides can e f f e c t both 

p ro tec t ion of s i d e - c h a i n carboxyl groups and a c t i v a t i o n of the C-terminus 

under s u i t a b l e experimental cond i t ions (Scheme 3.10) . Peptides conta in ing 

a carboxyl group only at the C-terminal reach a degree of a c t i v a t i o n which 

remains constant as a func t ion of t ime, while peptides conta in ing a s i d e -

chain carboxyl show an i n i t i a l maximum of a c t i v a t i o n which subsequently 

decreases . Thus, a c i d i c peptides which were incubated with l - e t h y l - 3 -

dimethylaminopropyl carbodi imide hydrochlor ide (EDC) f o r 90 minutes a t 40°C 

in the absence of nuc leoph i les before reac t ing with the amino component 

showed coupl ing with only the C-terminal amino a c i d . During the incubat ion 

p e r i o d , the 0 - a c y l i s o u r e a intermediate isomerizes to the i n e r t N-acylurea 

d e r i v a t i v e at the s i d e - c h a i n c a r b o x y l , whi le the C-terminus remains ac t i va ted 

as an oxazol inone which subsequently reacts with the amino component. 



I l l 

0 O R ' 

P -NH-CH-C-peptide-C-NH-CH-COOH 

COOH 

RN=C=NR 

7NR 
0 n 0-(/ 
" // I NHR 

P - N H - C H - C - p e p t i d e - C 7 C=0 I N n K 

S i I I 

RN=C-0-C=0 

NHR 

HN—CHR 1 

S / O v xO ,NHR 
P -NH-CH-C-pept ide-C C / + 0=C 

0 ( C H 2 L 

HN-C-N-C=0 

N—CHR' NHR 

R R 

R"NH, 

0 - 0 0 

P s -NH-CH-C-pept ide-C-NH-CHR'-C-NHR" 

HN-C-N-C=0 
i i 
R R 

Scheme 3.10 S e l e c t i v e Amide Formation at the C-Terminus of Peptides 



112 

A d i f f e r e n t approach to t h i s problem i s to e s t e r i f y a l l the 

carboxyl groups in the pept ide , and then to l i b e r a t e the C-terminal 

a -carboxyl group with t r y p s i n , which can act as a f a i r l y s p e c i f i c es te rase . 

Mross and D o o l i t t l e have suggested convert ing peptide carboxyl groups to 

amides and then c leav ing the C-terminal amide s e l e c t i v e l y with t r y p s i n . 1 4 5 

3.4 SUMMARY 

We have inves t iga ted the reac t ion of hydra laz ine with amino ac ids 

attached to i n s o l u b l e supports under a v a r i e t y of c o n d i t i o n s . Using a 

copolystyrene-1% div iny lbenzene matrix subs t i tu ted with methylchloroformyl 

groups, amino ac id and peptide esters can be attached to the support v i a 

t h e i r a-amino groups. The immobil ized amino ac ids react with hydra laz ine 

to form the s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e (TAP) d e r i v a t i v e s when isobuty l 

ch loroformate , l - e t h o x y c a r b o n y l - 2 - e t h o x y - l , 2 - d i h y d r o q u i n o l i n e (EEDQ), and 

d icyc lohexy lcarbod i imide (DCC) are used f o r carboxyl a c t i v a t i o n . The TAP 

d e r i v a t i v e s may be c leaved from the r e s i n under a c i d i c cond i t ions with 

HBr-HOAc. 

The work on s o l i d - p h a s e react ions i s s t i l l in a pre l iminary s ta te 

of development, but we have demonstrated the f e a s i b i l i t y of using the s o l i d -

phase method f o r the synthesis of TAP d e r i v a t i v e s . Under the present 

reac t ion c o n d i t i o n s , the products of the coupl ing r e a c t i o n are contaminated 

with unreacted amino a c i d s , and they requi re chromatographic techniques f o r 

p u r i f i c a t i o n . The coupl ing reac t ion of hydra laz ine with amino ac ids i s not 

ye t p r a c t i c a l f o r so l id -phase C-terminal sequencing of pept ides because of 

the unacceptably low coupl ing y i e l d s . 
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CHAPTER 4 

TRANSITION METAL COMPLEXES WITH 

THE S-TRIAZ0L0[3,4-A]PHTHALAZINE LIGAND 

4.1 INTRODUCTION 

Perhaps the most ser ious l i m i t a t i o n which prevents the extension 

of most peptide C-terminal amino ac id determinat ion methods to sequent ia l 

a n a l y s i s i s a s a t i s f a c t o r y method of s e l e c t i v e l y and q u a n t i t a t i v e l y 

hydro lyz ing the terminal peptide bond under mild c o n d i t i o n s . 

In the thiocyanate method of S t a r k , 2 1 * 2 2 (Scheme 1.2) the 

th iohydantoin group which i s formed from the C-terminal amino a c i d i s cleaved 

by n u c l e o p h i l i c c a t a l y s i s with acetohydroxamate, or ac id c a t a l y s i s with 

12M HCI. The use of h igh ly a c i d i c condi t ions f o r cleavage of the th iohydan­

to in group i s a r i s k y p r o p o s i t i o n , and cleavage of in terna l peptide bonds i s 

a l s o l i k e l y . The p r o b a b i l i t y of t h i s occurr ing prompted Y a m a s h i t a 1 4 6 to 

look f o r a m i l d e r , more s e l e c t i v e cleavage method. He found that shaking 

the pept idy l th iohydanto in with the a c i d i c form of a cat ion-exchange r e s i n 

was success fu l in hydrolyz ing the bond between the peptide and t h i o h y d a n t o i n , 

but not the other peptide bonds. With t h i s m o d i f i c a t i o n , Yamashita was able 

to determine the amino acid sequence up to around 10 res idues from the 

C-termini of p o l y p e p t i d e s . 1 4 7 . 
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The very nature of the h y d r a z i n o l y s i s method 1 5 precludes i t s use 

as a C-terminal sequent ia l procedure s ince on treatment of peptides with 

hydraz ine , the peptide chain i s s p l i t and a l l the in terna l amino ac ids are 

converted to hydraz ides , except the C-terminal amino ac id which remains as 

the f ree amino a c i d . 

The t r i t i a t i o n method o f Matsuo et al.12 (Scheme 1.3) and the 

reduct ion method of B a i l e y 2 6 (Scheme 1.4) r e l y on concentrated h y d r o c h l o r i c 

ac id to hydrolyze the terminal peptide bond. These methods s u f f e r from 

the same l i m i t a t i o n s as the Stark method. 

In the method descr ibed by Loudon and c o - w o r k e r s 2 8 (Scheme 1.5) 

the N-aminomethylamide formed from the C-terminal residue degrades under 

h y d r o l y t i c cond i t ions (6N HC'i) to the peptide-amide which prevents f u r t h e r 

C-terminal amino ac id ana lys is of the pept ide . 

In another C-terminal amino ac id a n a l y t i c a l method, Maekawa and 

Kumano 1 4 8 converted peptides to the corresponding p e p t i d e - t r i a z i n e s by 

react ing the carboxyl groups with d imethylb iguanid ine . However, in the 

absence of a m i l d , s e l e c t i v e method f o r c leav ing the terminal bond they 

resorted to t o t a l hydro lys is of the peptide with Streptomyoes griseus 

protease, and i d e n t i f i c a t i o n of the modif ied C-terminal d e r i v a t i v e in the 

hydro lyzate . 

NMe2 

HN< 
peptide-NH-CHR-COOH + NH p e p t i d e - N H - C H R - r ^ N V ' 2 

HN=< J. U. 
NH 2 

N ^ N 

N H 2 

From the above e x p o s i t i o n , i t i s c l e a r that the lack of a 

s u i t a b l e method of hydro lyz ing the C-terminal peptide bond is an impediment 
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which i s common to most of the C-terminal methods. The approach which we 

considered was the meta l - ion a s s i s t e d h y d r o l y s i s of the peptide bond. 

The r o l e that metal ions can play in c a t a l y z i n g the h y d r o l y s i s of 

peptide bonds was long u t i l i z e d by Nature in incorpora t ing a z inc ( I I ) ion 

in to the a c t i v e s i t e of carboxypeptidase A (CPA). This enzyme, as i t s name 

i m p l i e s , ca ta lyzes the h y d r o l y s i s of the peptide bonds at the carboxyl end of 

a polypept ide s u b s t r a t e . The z inc l igands have been i d e n t i f i e d as two 

h i s t i d i n e s , glutamic a c i d , and water in d i s t o r t e d te t rahedra l c o o r d i n a t i o n ! 4 9 

In the presence of a peptide s u b s t r a t e , the carbonyl group of the C-terminal 

peptide bond d i s p l a c e s the water l igand from the z i n c ion in the complex. 

A nearby a rg in ine s i d e - c h a i n binds the terminal carboxyl group present in 

the s u b s t r a t e . 

A p o s s i b l e mechanism f o r the ac t ion of CPA given by Lipscomb and 

c o - w o r k e r s , 1 5 0 i s shown in Scheme 4 . 1 . 

H i s ^ 6 9 

H i s - 1 9 6 — Z n — 

G l u ^ 7 2 

N H G l u - 2 7 0 

H i s ^ 9 

H i s - 1 S 6 — Z n — 

G l i / 7 2 

H 
O^-hQ) - T y r - 2 4 8 

C H 2 V 
l H . G l u - 2 7 0 

Scheme 4.1 Poss ib le Mechanism f o r the Carboxypeptidase A- 
Catalyzed Hydro lys is of G l y c y l - L - t y r o s i n e 
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Lipscomb has suggested that coord ina t ion of the metal ion by the 

carbonyl oxygen atom of the substrate r e s u l t s in p o l a r i z a t i o n of the C=0 

bond of the carbonyl group, render ing the carbon atom more s u s c e p t i b l e to 

n u c l e o p h i l i c a t tack . 

In a d d i t i o n to the ' z i n c - c a r b o n y l 1 mechanism, the ' z i n c - h y d r o x i d e ' 

mechanism can a lso be cons idered , in which a z inc-bound hydroxide ion acts 

as a n u c l e o p h i l e . The two mechanisms are i l l u s t r a t e d in F igure 4 . 1 . 

S t ruc tu ra l evidence from X-ray studies however, favors the z i n c - c a r b o n y l 

mechanism. 

H—0 > 

R—d-^-NH—R' 
II o 
0 H _ 

270 

OH lyr 
248 

V 

to) 

R—C—NH—R 

Co H 
p~H H 0—| 

glu 
270 

lyr 
248 

(b) 

Figure 4.1 Diagrammatic I l l u s t r a t i o n of the Mechanism of Carboxypeptidase-
Catalysed Peptide H y d r o l y s i s : (a) Zn-hydroxide Mechanism and 

(b) Zn-carbonyl Mechanism 

The e f f e c t of metal ions on the h y d r o l y s i s of amide bonds has been 

known f o r over twenty y e a r s . Lawrence and M o o r e 1 5 1 found that C o C ^ almost 

doubled the rate of ac id h y d r o l y s i s of g l y c y l g y c i n e . Meriwether and 

W e s t h e i m e r 1 5 2 examined the e f f e c t s of copper ( I I ) , c o b a l t ( I I ) , and n i c k e l ( I I ) 

ions on the hydro lys is of glycinamide and pheny la lany lg lyc inamide . Copper ( l l ) 

ions were the most e f f e c t i v e c a t a l y s t s , and between pH 7.9 and 9.25 at 7 5 ° C , 

they increased the rate of h y d r o l y s i s of glycinamide by a f a c t o r of t h i r t y 

over the uncatalyzed h y d r o l y s i s . The mechanism of these h y d r o l y s i s reac t ions 

i s not ye t e s t a b l i s h e d , but i t i s l i k e l y that the c a t a l y t i c a l l y a c t i v e spec ies 

i s the carbonyl-bonded complex. 
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The copper ( I I ) - ca ta lyzed hydro lys is of g l y c y l g l y c i n e a t t a i n s a 

maximum rate at pH 4 . 2 . 1 5 3 The decrease in rate at higher pH values is 

assoc ia ted with the formation of a c a t a l y t i c a l l y i n a c t i v e complex produced 

by i o n i z a t i o n of the peptide hydrogen atom (Figure 4 . 2 ) . 1 5 4 

R 

U • M-^ C 

NH, 
I + H1 

CH, 
I NH2 

act ive inactive 

Figure 4.2 Ion izat ion of Peptide Amide Hydrogen 

Extensive work, mainly by the Buckingham and Sargeson groups in 

Canberra , with k i n e t i c a l l y i n e r t c o b a l t ( I I l ) complexes has g r e a t l y c l a r i f i e d 

the mechanist ic pathways in m e t a l - a s s i s t e d amide h y d r o l y s i s . 

It has been found that a number of complexes of the type 

[CoL 4(()H) (H 2 0)] = 2en, t r i e n , t r e n , edda, eee) s t o i c h i o m e t r i c a l l y 

and s p e c i f i c a l l y c leave the N-terminal amino a c i d from p e p t i d e s . 1 5 5 , 1 5 9 

Buckingham et al.155 were the f i r s t to demonstrate the s e l e c t i v e 

N-terminal h y d r o l y s i s of simple peptides by s t o i c h i o m e t r i c reac t ion with the 

g - [Co( t r ien)0H(H 2 0) j i o n . The proposed mechanisms f o r the h y d r o l y s i s are 

shown in Scheme 4 .2 . 

The ra te determining step invo lves the replacement of a coordinated 

water molecule by the terminal amino group of the pept ide . Then e i t h e r the 

carbonyl group i s attacked by the adjacent coordinated hydroxide group 

(path A) or the carbonyl group becomes ac t iva ted to attack by external 

t en = ethylenediamine, t r i e n = t r i e t h y l e n e t e t r a m i n e , t ren = 2 , 2 ' , 2 " - t r i - . 
aminotr ie thylamine, edda = e thy lened iamine -d iace ta to , eee = 1,8-diamino-
3 ,6 -d i th iaoc tane 
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i 

fast 

N H C H j C O - P e p 
[Coltnerrt AAJ 

[Cof t r ienXHptOH] 2 * 
+ N H 2 C H / ; O N H C H p D - P e p 

NH j 

fast 

0 = 0̂  \ 
N H j C O - P e p 

Scheme 4.2 Proposed Mechanisms f o r Peptide Hydro lys is 

hydroxide through p r i o r coord ina t ion of the carbonyl oxygen (path B) . 

These mechanisms are analogous to the " z i n c - c a r b o n y l " and "z inc -hydrox ide" 

mechanisms proposed f o r carboxypeptidase A. Buckingham, Sargeson, and t h e i r 

c o l l a b o r a t o r s have shown that both of these mechanisms cont r ibu te s i g n i f i ­

can t ly to the h y d r o l y s i s reac t ions although the exact extent of t h e i r 

c o n t r i b u t i o n may depend on the reac t ion condi t ions e m p l o y e d . 1 5 0 } 1 6 1 

d i r e c t p o l a r i z a t i o n of the coordinated carbonyl func t ion by metal ion 

(carbonyl mechanism) i s l O 4 - 10 5 over that found in the absence of the 

meta l . Intramolecular at tack of bound hydroxide (hydroxide mechanism), in 

the absence of buf fers i s somewhat l e s s e f f e c t i v e at pH 7 ( l C ^ - l O 4 ) , but 

buf fers ( e . g . HPO^ ) r e s u l t in a tremendous rate enhancement, 1 0 1 0 - 1 0 n a t 

pH7. Under s l i g h t l y more a c i d i c condi t ions (pH 4-5) where the bound aquo 

group i s i n v o l v e d , there is a s i m i l a r ra te increase ( 1 0 1 1 ) . Such rates match, 

or exceed, the turn -over number found in carboxypeptidase and t r y p s i n 

The a c c e l e r a t i o n of amide and peptide h y d r o l y s i s provided by 
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proteases under i d e n t i c a l condi t ions of pH and t e m p e r a t u r e . 1 6 2 

Ci s-B-coba11(111) complexes are -appea l ing as c a t a l y s t s fo r 

N-terminal peptide sequencing because of the amino ac id s p e c i f i c i t y and 

the large rate enhancement e f f e c t . Indeed, the h y d r o l y s i s of peptides and 

2+ 

prote ins by c i s - B - [ C o ( t r i e n ) 0 H ( H 2 0 ) ] has been developed into an N-terminal 

amino a c i d determinat ion and peptide sequencing method by several 

w o r k e r s . 1 6 3 - 1 6 7 Comparisons of the e f f i c i e n c y of var ious c i s - [ C o L 4 ( 0 H ) ( H 2 0 ) ] 

species ind ica ted the order of La f o r peptide h y d r o l y s i s : 1 6 4 

t r i e n > t ren > 2en 

In a comparison of t r i e n and edda, Oh and S t o r m 1 5 8 found that the 

rates of h y d r o l y s i s of d ipept ides were somewhat slower f o r edda complexes, 

but that there was a smal ler ra te v a r i a t i o n between d i f f e r e n t pept ides . 

The success of coba l t ( I I I ) complexes in s e l e c t i v e l y promoting the 

h y d r o l y s i s of peptide bonds prompted us to consider the f e a s i b i l i t y of using 

metal complexes to f a c i l i t a t e the h y d r o l y s i s of s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e 

modif ied pept ides . The o v e r a l l scheme envisaged f o r pept ide sequencing with 

hydra laz ine and coba l t ( I I I ) complexes i s shown in Scheme 4 .3 . 

In t h i s scheme, we a n t i c i p a t e displacement of the aquo and hydroxo 

2+ 

l igands in c i s - B - [ C o ( t r i e n ) 0 H ( H 2 0 ) ] by the l ^ - n i t r o g e n of the TAP l igand 

and the deprotonated amide ni t rogen of the C-terrninal peptide bond. Ac id 

h y d r o l y s i s of the e x o c y c l i c imide bond should l i b e r a t e the peptide minus the 

C-terminal r e s i d u e . 



120 

Scheme 4 .3 . Proposed Peptide Sequencing with Pept idy l -TAP and Cobal t ( I I I ) 

Complexes 

There are two l i k e l y s i t e s in the TAP group at which the TAP-

peptide can coordinate to the matal i o n : N-2 of the t r i a z o l e r i n g ( I ) , or 

N-5 of the phthalaz ine r ing ( I I ) . CPK s p a c e - f i l l i n g models of both c o o r d i n a ­

t ion p o s s i b i l i t i e s show that the t -o complexes are f e a s i b l e and there is no 

undue s t e r i c s t r a i n i n v o l v e d . A l k y l a t i o n of s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e s 

give only the N-2 a l k y l p r o d u c t 4 5 i n d i c a t i n g that N-2 i s the most bas ic 

ni t rogen atom and hence the most l i k e l y to form a strong coordinate bond. 
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Since our envisaged scheme f o r peptide sequencing involves metal 

complexes with TAP l i g a n d s , we saw our f i r s t task as studying the c o o r d i n a ­

t ion proper t ies of the TAP l igand s ince these are t o t a l l y unknown. The 

next p r i o r i t y was then to prepare metal complexes with a s u i t a b l e TAP d e r i v a ­

t i v e to determine whether the presence of the metal ion a c t u a l l y a ided i n 

hydrolyz ing amide bonds in the TAP s i d e - c h a i n . 

4.2 RESULTS 

The fo l lowing t r a n s i t i o n metal complexes conta in ing the s - t r i a z o l o -

[3 ,4 -a ]phtha laz ine (3-H-TAP) l igand were synthes ized: 

[M (3 -H -TAP) n (H 2 0 ) 6 _ n ] ( C 1 0 4 ) 2 (n = 4, M = Co, N i , Cu ; n = 2, M = Ni) and 

[Co(3-H-TAP) 6 ] ( C 1 0 4 ) 3 . 

[Co(3-H-TAP)g] ( C 1 0 4 ) 3 was prepared from a 6:1 molar mixture of 

s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e and sodium t r i s ( c a r b o n a t o ) c o b a l t a t e ( I I I ) i n 

an ethanol suspension conta in ing d i l u t e p e r c h l o r i c a c i d . N a 3 [ C o ( C 0 3 ) 3 ] i s 

a convenient intermediate f o r the synthesis of coba l t ( I I I ) complexes s ince 

i t avoids the d i f f i c u l t i e s assoc ia ted with other methods of synthes is which 

involve in situ ox idat ion of coba l t ( I I ) to c o b a l t ( I I I ) . 1 6 8 The hexakis-

( s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e ) c o b a l t ( I I I ) perchlorate complex i s formed as 

a l i g h t brown amorphous s o l i d . 

6 3+ 

The octahedral s p i n - p a i r e d d Co ion is s u i t a b l e f o r nmr 

studies of the coordinated l igand without in ter fe rences from paramagnetism 

of the metal i o n . [Co(3-H-TAP)g] ( C 1 0 4 ) 3 was synthesized p r i m a r i l y f o r nmr 

s t u d i e s . On coord ina t ion of 3-H-TAP, per turbat ion by the metal ion of the 

e lec t ron dens i ty about the protons^is expected to be most evident in the 

chemical s h i f t s of protons adjacent to the locus of coord ina t ion on the 

l i g a n d . Thus, in 3-H-TAP, coord ina t ion of metal to N-2 should desh ie ld 



the proton at the C-3 p o s i t i o n which would show up in a s h i f t of the nmr 

resonance to lower f i e l d . There may be a smal ler d e s h i e l d i n g e f f e c t at 

other p o s i t i o n s a r i s i n g from an induct ive e f f e c t . 

^ - n m r s tud ies of [Co(3 -H-TAP)g] (C10 4 ) 3 are hindered by i t s low 

s o l u b i l i t y in s u i t a b l e organic s o l v e n t s . A Four ie r - t rans fo rm nmr spectrum 

of a d imethy lsu l fox ide -dg s o l u t i o n of the complex is shown in F igure 4 . 3 . 

It i s i d e n t i c a l in appearance with that of f ree 3-H-TAP. The sharp s i n g l e t 

at lowest f i e l d i s assigned to H-3 and the adjacent sharp resonance at 

h igher f i e l d a r i s e s from H-6. The chemical s h i f t s of s e l e c t e d resonances 

of f r e e , complexed, and protonated 3-H-TAP are l i s t e d in Table 4 . 1 . 

Table 4.1 NMR Spectra l Data f o r s -T r iazo lo [3 , . 4 -a ]ph tha laz ine in DMS0-d c 

Chemical S h i f t s , ppm 

b 

a 

1 0 7 . 8 , 9 

3-H-TAP 9.58 9.07 8.53 8.44 8.06 

3-H-TAP.DC! 9.80 9.21 8.68 8.60 8.14 

3-H-TAP.HCl 9.71 9.17 8.63 8.56 8.15 

[ C o ( 3 - H - T A P ) f i ] 3 + 9.77 9.16 8.54 8.46 8.12 

a Chemical s h i f t s f o r 6 and 6 are given f o r resonances ind ica ted 
1 0 7 > 8 > 9 in F igure 4 .3 . 

b Doublet with superimposed f i n e s t r u c t u r e . 

o M u l t i p l e t 
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Figure 4.3 100 MHz. Four ie r - t rans form NMR Spectrum of 

. [ C o ( 3 - H - T A P ) 6 ] ( C 1 0 4 ) 2 in DMS0-d g 
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It i s apparent from Table 4.1 that the greatest change in chemical 

s h i f t s on.complexation and protonat ion of 3-H-TAP occurs f o r H-3. Th is 

suggests that complexation and protonat ion do occur at the N-2 s i t e . We cannot 

s tate unequivocal ly that coord inat ion d id not occur at N-5, but the small 

s h i f t of 6 6 to lower f i e l d ind ica tes that t h i s is not very s i g n i f i c a n t . 

Small changes in the chemical s h i f t s may a r i s e from an induct ive or concen­

t r a t i o n e f f e c t . 

[ C o ( 3 - H - T A P ) 6 ] ( C 1 0 4 ) 3 i s not completely s tab le in DMSO or methanol 

so lu t ion s ince f ree l igand c r y s t a l l i z e s from a saturated s o l u t i o n of the 

complex . The d i s s o c i a t i o n of l igands i s not evident in nmr spect ra of the 

complex which were obtained wi th in one hour of s o l u t i o n prepara t ion . 

For a s p i n - p a i r e d d^ ion in an octahedral f i e l d , two e l e c t r o n i c 

t r a n s i t i o n s are expected: -<- and ^ T ^ ^ i g - The d i f f u s e 

re f l ec tance spectrum of [Co(3 -H-TAP)g] (C10 4 ) 3 i s shown in F igure 4 .4 . Only 

one d-d t r a n s i t i o n i s resolved in the v i s i b l e spectrum, and t h i s i s super­

imposed on an intense background. A nujol mull absorpt ion spectrum of the 

complex has the same appearance as the d i f f u s e re f l ec tance spectrum. The 

band at 17.1 kK (584 nm) i s assigned to the H-j ^ A ^ t r a n s i t i o n . An 

i n d i c a t i o n of the higher energy t r a n s i t i o n is apparent in F igure 4 . 4 , but an 

estimate of the energy of band i s not poss ib le due to the intense background 

3+ 

absorpt ion . For comparison, the absorpt ion spectrum of the [Co(en) 3 ] ion 

in aqueous s o l u t i o n shows bands at 21.4 kK (467 nm) and 29.4 kK (340 n m ) . 1 6 9 

The tetraaquobis(3-H-TAP) and d iaquotetrak is(3-H-TAP) complexes 

were a l l prepared by the same procedure. The hexaquo metal( I I ) perch lora tes 

(metal = c o b a l t , n i c k e l , copper) were dehydrated with 2 ,2 -d imethoxypropane 1 7 0 

according to the equat ion: 

( C H 3 0 ) 2 C ( C H 3 ) 2 + H 20 2CH30H + CH 3 C0CH 3 



350 400 450 500 550 600 650 700 

Wavelength (nm) 

Figure 4.4 D i f fuse .Re f lec tance Spectrum of [Co(3-H-TAP) , . ] (CIO, ) q 
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The s o l u t i o n s of the so lvated metal perch lora tes thus obtained were used 

d i r e c t l y f o r react ion with the s t o i c h i o m e t r i c amount of 3-H-TAP. 

Infrared spectra of the 3-H-TAP complexes are shown in Figure 4 .5 . 

In g e n e r a l , the i n f r a r e d spect ra of the complexes are not p a r t i c u l a r l y 

d i f f e r e n t from those of the f ree s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e (a l lowing f o r 

the peaks due to v/ater and the an ion) . However, some of the TAP bands change 

i n t e n s i t i e s on coord ina t ion or are s p l i t . A number of the v i b r a t i o n a l modes 

of TAP show s i g n i f i c a n t s h i f t s to higher f r e q u e n c i e s , and these may be 

c h a r a c t e r i s t i c of coord ina t ion of the TAP l i g a n d . These bands are the C-H 

s t r e t c h i n g modes oa. 3120-3030 cm"'' , and a l s o the bands at 1530, 1476, the 

doublet 1356 and 1352, 1184, 776, and 625 c m " 1 . 

The two absorpt ion bands between 3600 and 3400 may be a t t r i b u t e d • 

to the antisymmetric and symmetric 0-H s t re tch ing modes of coordinated and 

l a t t i c e - b o u n d water. A n a l y t i c a l evidence supports the presence of l a t t i c e 

water in a l l of the complexes except [ C u ( 3 - H - T A P ) 4 ( H 2 0 ) 2 ] ( C 1 0 4 ) 2 . The broad 

band about 1640-1600 c m - 1 may be assigned to the H0H bending mode. Other 

v i b r a t i o n s a r i s i n g from coordinated water are not v i s i b l e because of the 

superimposed TAP v i b r a t i o n s . The band s t ruc ture about 630 cm" 1 in 

[ N i ( 3 - H - T A P ) 2 ( H 2 0 ) 4 ] ( C 1 0 4 ) 2 may a r i s e from overlap of a N i - 0 H 2 wagging 

v i b r a t i o n on a TAP r ing deformation mode and the CI0^ bending modes of 

p e r c h l o r a t e . 

The f ree perch lora te ion possesses te t rahedra l symmetry and belongs 

to the point group having nine v i b r a t i o n a l degrees of freedom d i s t r i b u t e d 

between four normal modes of v i b r a t i o n . The assignments of these modes are 

l i s t e d in Table 4 . 2 . 1 7 1 

In the s o l i d s tate i n f r a r e d spectra of p e r c h l o r a t e s , the non-

degenerate f requency, v-,, which should be i n f r a r e d i n a c t i v e usua l l y occurs 
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Table 4.2 V i b r a t i o n s of the Perchlorate Group as a Funct ion o f Symmetry 

State 
of 

Anion 

CIO," 

Symmetry 

-0-C10, 
3v 

' l v 2 

E(R) A (R ) . 

sym.s t r . sym.bend 

v 2 

A-j (r,R). 

C10*s t r . 

v 3 

F 2 ( I , R ) 

asym.s t r . 

v 6 v l 

£ ( I , R ) A(I ,R) 

rock sym.s t r . 

CIO. 

v 4 

E(I ,R) 

asym.st r . 

C10 o 

v 4 

F 2 ( I , R ) 

asym.bend 

v 3 v 5 

A( I ,R) E( I ,R) 

sym.bend asym.bend 

CIO, CIO, 

A , non-degenerate E, doubly degenerate F, t r i p l y degenerate I, i n f ra red 
ac t ive R, Raman a c t i v e 

as a weak absorpt ion owing to d i s t o r t i o n o f the ion in a c r y s t a l f i e l d of 

lower symmetry than i t s e l f . 

Where the in f ra red spect ra of perchlorates d i f f e r from those of 

the f ree i o n , one of three f a c t o r s i s u s u a l l y i n v o l v e d . These f a c t o r s are: 

lowering of the s i t e symmetry o f the a n i o n , per turbat ion of the anion' by 

water mo lecu les , and coord ina t ion o f the anion to the meta l . 

The in f ra red data of the perchlorate groups in the complexes are 

given in Table 4 .3 . Only in the copper(I I ) and the coba l t ( I I I ) complexes do 

the perch lora te groups show symmetry. In the othef complexes there i s a 

s l i g h t lowering of symmetry as evidenced by a small s p l i t t i n g of the 

degenerate v 3 band, and in one case , the band. Agreement of the band 



Figure 4.5 Nujol Mull Infrared Spectra of 3-H-TAP and Metal Complexes 

(a) 3-H-TAP, (b ) . [Co(3H-TAP) 6 ] ( .C10 4 ) 3 .H 2 0 



Figure 4.5 IR Spectra , (c) [ C o ( 3 - H - T A P ) 4 ( H 2 0 ) 2 ] ( C 1 0 4 ) 2 . H 2 0 , . ( d ) [ N i ( . 3 - H - T A P ) 4 ( H 2 0 ) 2 ] ( C 1 0 4 ) 2 . H 2 0 



Figure 4.5 IR Spect ra , . ( e ) [ C u ( 3 - H - T A P ) 4 ( H 2 0 ) 2 ] ( C 1 0 4 ) 2 . H 2 0 , ( f ) [ N i ( 3 - H - T A P ) 2 ( H 2 0 ) 4 ] ( C l 0 4 ) . o 
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Table 4.3 Infrared Spectra of Perchlorate Groups ( c m - 1 ) * 

v 3 v l v 4 v 2 

[ C u ( 3 - H - T A P ) 4 ( H 2 0 ) 2 ] ( C I 0 4 ) 2 l lOOvsb 93 lw 621s -

[ C o ( 3 - H - T A P ) 6 ] ( C 1 0 4 ) 3 1093vsb 950w 622s 448vwb 

[ C o ( 3 - H - T A P ) 4 ( H 2 0 ) 2 ] ( C 1 0 4 ) 2 l l l O v s b 1070vsb 929w 623s 446vw 

[ N i ( 3 - H - T A P ) 4 ( H 2 0 ) 2 ] ( C 1 0 4 ) 2 l l l O v s b 1070vsb 928w 619s 446vw 

[ N i ( 3 - H - T A P ) 2 ( H 2 0 ) 2 ] ( C 1 0 4 ) 2 l l l O v s b 1080vsb 935 626s 620s , -

[ C o ( p y ) 4 ( C 1 0 4 ) 2 ] 1 7 2 1137s 1034s 931m 631m 617m 425w 

c i o 4 " 1 7 1 1110 932 626 460 

* Band assignments in terms of symmetry 

v s , very strong, s , strong . . m, medium, vw, very weak, w, weak. 

b, broad. 

f requencies with those of i o n i c C10 4 ~ i n d i c a t e s that perch lora te i s uncoord i ­

nated in the complexes s t u d i e d . The lowering of the perch lora te group 

symmetry from y ^ t o C S y probably a r i s e s from d i s t o r t i o n of the anion by the 

c r y s t a l l a t t i c e or from i n t e r a c t i o n with water molecules with which the 

C10 4 ~ ion may form hydrogen-bonds. These e f f e c t s are common in the spectra 

of metal p e r c h l o r a t e s . 1 7 3 By comparison, in the t e t r a g o n a l l y d i s t o r t e d 

[ C o ( p y ) 4 ( C l 0 4 ) 2 ] where the perch lora te groups are coord ina ted , there i s 

c l e a r s p l i t t i n g o f the (103 c m - 1 ) and v 4 (14 c m - 1 ) bands un l ike the 

complexes studied here which show incomplete r e s o l u t i o n of the s p l i t 

band, and removal of degeneracy of the v 4 band is observed in only one case . 

The e l e c t r o n i c spect ra of the b is and te t rak is (3 -H-TAP) complexes 

in the s o l i d s ta te were obtained by d i f f u s e r e f l e c t a n c e and from nujol mul ls 

at room temperature. So lu t ion spectra were not obtained because of the 

l i m i t e d s o l u b i l i t y of the complexes in appropr iate s o l v e n t s . 
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[ C o ( 3 - H - T A P ) 4 ( H 2 0 ) 2 ] ( C 1 0 4 ) 2 . H 2 0 i s obtained as an amorphous 

tangerine s o l i d . Nujol mull v i s i b l e spectra of the complex are charac te r i zed 

by a weak, very broad band centered at 10.5 kK (950 nm) and a st ronger 

asymmetric band at 21.1 kK (475 nm) with a shoulder about 19.1 kK (523 nm), 

(Figure 4 .6 ) . 

Three sp in -a l lowed t r a n s i t i o n s are expected f o r h i g h - s p i n d 7 

coba l t ( I I ) complexes in an octahedral f i e l d , and the observed absorpt ions in 

the v i s i b l e spectrum are given the assignments: 

4 T 2 g ( F ) <- 4 T l g ( F ) 10.5 kK V ] 

4VP) - 4VF) 21J kK
 v 3 

The shoulder about 19.1 kK probably a r i s e s from s p i n - f o r b i d d e n 

t r a n s i t i o n s to doublet s ta tes or from low symmetry s p l i t t i n g of the ^T-jg(P) 

term. The 4 A 2 ^ -<- ^ T ^ t r a n s i t i o n i s not normally o b s e r v e d . 1 7 4 

By a p p l i c a t i o n of the Tanabe-Sugano diagram and T r a n s i t i o n Energy 

Rat io diagram f o r ions with the T-j ground s ta te (Figure 4.7) to the e l e c ­

t r o n i c spectrum, i t i s p o s s i b l e to c a l c u l a t e the l igand f i e l d s p l i t t i n g 

parameter, Dq, and the Racah e lec t ron repu ls ion parameter, B. 1 7 5 The r a t i o 

of the upper and lower bands, v^/v^ = 2 .0 , when f i t t e d to a p l o t of t r a n s i ­

t ion energy r a t i o v s . Dq/B corresponds to 

Dq/B = 1.50 and to 

4 w f ) - V F ) . , 3 . 5 

B 

= 10,500 
B 

t kK = k i lokayser = 10 3 cm" 1 



I I I 1 I I 1 1 1 — 
400 600 800 1000 1200 

Wavelength (nm) 

F i g u r e . 4 . 6 Nujol Mull V i s i b l e Spectrum of iCo(3-ti-TI\P) Jti?0)^(ClO,)9.Ho0 
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Figure 4.7(a) Energy Level -Diagram (Tanabe-Sugano) f o r d 
Ions in a Octahedral F i e l d " 

F igure 4.7(b) T r a n s i t i o n Energy Ratio Diagram fo r T-. Ground State 
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Whence, f o r [ C o ( 3 - H - T A P ) 4 ( H 2 0 ) 2 ] ( C 1 0 4 ) 2 : 

B = 780 cm" 1 

10 Dq = 11,800 cm" 1 

Using the c a l c u l a t e d values of B and 10 Dq the f i t of the upper 

and lower band to the Tanabe-Sugano diagram pred ic ts that the A 2 (F) «-

4 T-|g(F) t r a n s i t i o n should be at 22.1 kK (452 nm). This t r a n s i t i o n i s not 

observed in the v i s i b l e spectrum because of the over lapping 4 T ^ ( P ) 

4T-jg(F) t r a n s i t i o n in t h i s r e g i o n . 

The Racah e l e c t r o n repu ls ion parameter, B, i s a func t ion of l i g a n d , 

centra l i o n , and s to ich iomet ry . The l a r g e r the metal i o n , the smal ler i s 

the mutual i n t e r e l e c t r o n i c r e p u l s i o n . Since the s i z e of the ion is re la ted 

to the e f f e c t i v e nuclear charge experienced by the d - e l e c t r o n s , B i s not 

only a measure of s i z e , but a lso of e f f e c t i v e nuclear charge. A comparison 

of the B value f o r the Co(11) complex with that of the f ree ion 

(B = 971 cm" 1 ) shows a reduct ion in B upon complexat ion, A mechanism 

respons ib le f o r t h i s e f f e c t i s covalency in the meta l - l i gand bond. Thus, 

the greater the reduct ion in B, as represented by the r a t i o 

B in complex 
B in f ree ion 

the greater the covalency in the meta l - l i gand bond. The s e r i e s obtained 

f o r 3 with d i f f e r e n t l igands i s c a l l e d the nephelauxet ic s e r i e s . The l igand 

f i e l d and nephelauxet ic parameters f o r octahedral coba l t ( I I ) complexes are 

shown in Table 4 .4 . 
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Table 4.4 Ligand F i e l d and Nephelauxetic Parameters f o r 
Octahedral C o b a l t ( l l ) Ions *  

Complex 10 ^ ( c n f 1 ) B ( c n f 1 ) 3 

[ C o ( 3 - H - T A P ) 4 ( H 2 0 ) 2 ] 2 + 11,800 780 0.80 

[ C o ( H 2 0 ) 6 ] 2 + 9,200 825 0.85 

[ C o ( N H 3 ) 6 ] 2 + 10,200 885 0.91 

[ C o ( D M S 0 ) 6 ] 2 + 8,480 824 0.85 

[ C o ( P y O ) 6 ] 2 + 10,195 766 0.79 

C o C l 2 7,640 775 0.80 

CoBr 2 6,490 786 0.81 

* Parameters f o r a l l complexes, except those of the TAP complex are taken 
from reference 176. 

2+ 

The covalency of the meta l - l igand bonds in [ C o ( 3 - H - T A P ) 4 ( H 2 0 ) 2 ] 

thus appear to be s i m i l a r to complexes conta in ing C l " , B r " , and p y r i d i n e - N -

ox ide . 
The l igand f i e l d parameter, 10 Dq(b) i s a measure of the s p l i t t i n g 

of the t 0 and the e d - o r b i t a l s of a metal ion in an octahedral f i e l d . For 
2g g 

a given meta l , and s tereochemist ry , a spectrochemical s e r i e s of the l igands 

can be e s t a b l i s h e d . There may be a number of f a c t o r s such as p o l a r i z a b i l i t y , 

d i p o l e moment, l igand charge or e l e c t r o n e g a t i v i t y which make up the ' s t r e n g t h ' 

of a l i g a n d , and t h i s makes i t d i f f i c u l t to r a t i o n a l i z e the order of l igands 

in the s e r i e s . However, the l igand f i e l d parameter f o r the TAP complex 

probably r e f l e c t s the extent of n-bonding ,of the l igand with the meta l . In 

a mixed l igand complex such as [ C o ( 3 - H - T A P ) 4 ( H 2 0 ) 2 ] ( C 1 0 4 ) 2 i t i s appropr ia te 
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to apply the law of average environment, which s ta tes that the 10 Dq(k) 

value is given by the weighted average of the 10 R v a l u e s f o r each of the 

i n d i v i d u a l l i q u i d s . Thus, f o r the complex [ M A ^ ] we have 

A = 1 / 6 [ 4 A A + 2 A B ] 

Using the appropr iate A values from Table 4.4 we obtain a A f o r 

2+ -1 

[Co(3-H-TAP)g] of 13,100 cm . When comparing the parameters der ived 

from the v i s i b l e spectrum of the TAP complexes, i t must be remembered that 

the symmetry i s not 0^, but a c t u a l l y c l o s e r to D ^ , and thus the l igand f i e l d 

and nephelauxet ic parameters are only approximat ions. 

The pale blue [ N i ( 3 - H - T A P ) 4 ( H 2 0 ) 2 J ( C I 0 4 ) 2 shows two c l e a r l y 

resolved bands in the nujol mull e l e c t r o n i c spectrum at 11.2 kK (890 nm) and 

17.7 kK (564 nm) (F igure 4 .8 ) . The n i c k e l ( I I ) ion has a 3d valence e lec t ron 
3 

con f igura t ion which gives r i s e to a F ground term. In an octahedral c r y s t a l 
3 

f i e l d , the degeneracy of the F term i s removed, and the v i s i b l e spectrum 
3 

involves three spin allowed t r a n s i t i o n s from the A 2 g(F ) s ta te to the 

3 3 3 

T 2 g ( F ) , T- |g(F) , and T]g(P) l e v e l s . The bands observed are assigned as 

f o l l o w s : 

3 T 2 g ( F ) - % g ( F ) H . 2 kK v}  

3 T l g ( F ) - 3 A 2 g ( F ) 17.7 kK v 2 

3 3 

The highest energy t r a n s i t i o n (v^) T-^^(P) .-«- ^ ( F ) appears as a shoulder 

about 27.8 kK (360 nm). A weak absorpt ion at 13.7,k 1< (730 nm) probably a r i s e s 

frcm a s p i n - f o r b i d d e n t r a n s i t i o n to the V l e v e l . 



CO 
CO 

400 600 800 1000 1200 

Wavelength (nm) 

Figure 4.8 Nujol Mull V i s i b l e Spectrum of [ N i ( 3 - H - T A P ) 4 ( H 2 0 ) 2 ] ( C 1 0 4 ) 2 . H 2 0 
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The accuracy of the nephelauxet ic parameter, B, c a l c u l a t e d from 

incomplete spec t ra l data may be suspect . Thus, using the Tanabe-Sugano 

diagram f o r ground state ions and the appropr iate t r a n s i t i o n energy r a t i o 

diagram (Figure 4 . 9 ) 1 7 5 and the v i and v 2 bands, we obtain B = 826 c m - 1 and 

pred ic t that v 3 [ 3 T l g ( P ) 3 A 2 g ( F ) ] should appear at 28.4 kK (352 nm). Th is 

shows reasonable agreement with the shoulder about 27.8 kK observed in the 

v i s i b l e spectrum. A problem with using the vj and v 2 bands to c a l c u l a t e 

the e lec t ron repu ls ion parameter i s that a comparat ively small e r r o r in 

measuring the band maxima can cause qui te a large change in the c a l c u l a t e d 

value of B. In a mixed l igand complex such as [Ni ( 3 - H - T A P ) 4 ( H 2 0 ) 2 ] ( C l O ^ 

the lowered symmetry from 0^ may be r e f l e c t e d in a s p l i t t i n g of the v i band, 

and p o s s i b l y of the v 2 and v 2 bands as w e l l . These s p l i t t i n g s are another 

source of e r r o r . However, the v i s i b l e spectrum of the TAP complex shows 

l i t t l e s p l i t t i n g of these absorpt ion bands, i n d i c a t i n g that d i s t o r t i o n from 

0^ symmetry i s s m a l l . By comparison, in the D^ molecules [ N i ( p y ) 4 ( C 1 0 4 ) 2 ] 

or [ N i f p y J ^ S O g F j g L d e f i n i t e s p l i t t i n g o f a l l absorpt ion bands are 

observed. 

The c r y s t a l f i e l d parameter, 10 Dq, i s equal to the energy separa -

3 3 

t ion between the A 2 g ( F ) and the T 2 g ( F ) l e v e l s . The 10 Dq values f o r 

var ious n i c k e l ( I I ) complexes are compared in Table 4 . 5 . 

Apply ing the law of average environment using the data from Table 4.5 

the c a l c u l a t e d 10 Dq f o r [ N i ( 3 - H - T A P ) g ] 2 + is 12,550 c m - 1 . 

The nujol mull e l e c t r o n i c spectrum of [Cu(3-H-TAP) / j (H 2 0) 2 ] ( C 1 0 4 ) 2 

c o n s i s t s of a s i n g l e asymmetric band centered at 18.3 kK (546 nm) which 

spans the e n t i r e v i s i b l e region (Figure 4 .10) . 
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Figure 4.9(a) Energy Level •Diagram (Tanabe-Sugano) f o r d 
Ions in an Octahedral F i e l d 

ure 4.9(b) T r a n s i t i o n Energy Rat io Diagram f o r Ions with the A 2 

Ground State 
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Table 4.5 Crysta l F i e l d Parameters f o r Octahedral N icke l ( I I ) Der iva t ives * 

Complex 10 Dq(cm~^ ) 

[ N i ( 3 - H - T A P ) 4 ( H 2 0 ) 2 ] 2 + 11,200 

[ N i ( H 2 0 ) 5 ] 2 + 8,500 

[ N i ( C H 3 0 K ) 6 ] 2 + 8,430 

[ N i ( N H , ) J 2 + 10,800 '3'6-

>6-[ N i ( D M S 0 ) - ] 2 + 7,730 

CNi(Py0)6J2+
 8 j 4 0 0 

L N i ( C H 3 N H 2 ) 6 J 2 +

 1 0 > 0 0 0 

[ N i ( C H 3 C N ) 6 ] 2 +

 1 0 > 7 0 0 

C N i ( B i P y ) 3 J 2 +

 1 2 j 6 5 Q 

C N i ( B i p y z ) 3 J 2 +

 1 2 } 9 0 0 

* Values taken from r e f . 178 except f o r 3-H-TAP complex. 

In an octahedral cub ic l igand f i e l d , the f i v e - f o l d degenerate 

3 d - o r b i t a l s s p l i t in to the lower t 2 g o r b i t a l s and the upper e g o r b i t a l s . 

9 
The s i n g l e unpaired e l e c t r o n in d copper( I I ) could be in e i t h e r of the 

components of the eg s ta te thus g iv ing r i s e to a s i n g l e t r a n s i t i o n 

2 2 

Eg T 2 g in the absorpt ion spectrum. The J a h n - T e l l e r e f f e c t requi res 

any n o n - l i n e a r system with a degenerate ground s ta te to undergo such a 

d i s t o r t i o n as w i l l remove the degeneracy. For copper ( I I ) , the degeneracy 

is of ten removed by elongated tetragonal d i s t o r t i o n s of the octahedron. 

A s i n g l e asymmetrical absorpt ion band is f requent ly observed f o r 

c o p p e r ( l l ) compounds because the r e l a t i v e energies of the d-d t r a n s i t i o n s 

involved genera l l y occur wi th in 5.0 kK of each o t h e r . 1 7 9 
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2 2 

Hathaway 1 8 0 has observed that the E g B-j t r a n s i t i o n i s the 

most intense t r a n s i t i o n , and l i e s at the higher energies in tetragonal 

compounds. The band maximum at 18.3 kK (545 nm) f o r [ C u ( 3 - H - T A P ) 4 ( H 2 0 ) 2 ] 
2 2 

therefore probably represents a c lose approximation to the E g 

t r a n s i t i o n with the remaining t r a n s i t i o n s hidden on the low energy s ide of 

the band to give an asymmetric band shape. 

The f a c i l e synthesis and spectra l p roper t ies of t r a n s i t i o n metal 

complexes conta in ing the 3-H-TAP l igand ind ica ted that the l igand possesses 

a f a i r l y strong and s p e c i f i c coord inat ion to metal i o n s . We therefore turned 

our a t tent ion to the bidentate coord inat ion of the h e t e r o c y c l i c N-2 n i t rogen 

of TAP and the amide n i t rogen of a s i d e - c h a i n at the C-3 p o s i t i o n . In 

Scheme 4.3 we envisaged complexation. of a metal ion with a TAP-modif ied 

peptide to give a f t e r h y d r o l y s i s , a complex with the general s t r u c t u r e : 

As a model fo r the bidentate TAP l i g a n d , we considered that 2-amino-

methylpyr id ine (2-AMPy) would possess s i m i l a r coord ina t ion p r o p e r t i e s . Both 

l igands possess h e t e r o c y c l i c and primary amine ni t rogens s i m i l a r l y or iented 

f o r metal c o o r d i n a t i o n . By using the 2-AMPy l igand we were able to conserve 

the precious supply of TAP l igand during pre l iminary studies on e s t a b l i s h i n g 

the protocol f o r the complexation reac t ion and i s o l a t i n g the product from 

the react ion mixture. 
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The react ions studied i n v o l v i n g formation of a cobalt(111) - 2-AMPy 

complex i s shown in Scheme 4 .4 . The procedures of Bentley and C r e a s e r 1 6 5 

H 3+ OH 2+ 
6 - [ C o ( t r i e n ) C 0 3 ] + B - [ C o ( t r i e n ) ( H 2 0 ) 2 ] B- [Co( t r ien)0H(H 2 0) ] 

2-AMPy 

B-[Co(tr ien)(2-AMPy)] 
3+ 

Scheme 4.4 Synthesis of B-[Co(tr ien)(2-AMPy)] 3+ 

f o r the formation of [Co ( t r ien) (amino a c i d ) ] complexes were modif ied to 

our purposes. A s o l u t i o n of [CoUr ienJCOgjC lO^ was a c i d i f i e d to form the 

red diaquo complex which was then converted to the hydroxoaquo complex. 

A f t e r add i t ion of 2-aminomethylpyridine to the s o l u t i o n and heating to 60°C 

or being l e f t at room temperature f o r a couple of hours , the reac t ion mixture 

turns orange. This i s ev ident in absorpt ion spect ra by s h i f t s of the two 

bands v i s i b l e f o r the hydroxoaquo-cobalt ( I I I ) complex to lower wavelength. 

On heating the s o l u t i o n , an intense purple complex p r e c i p i t a t e s which 

d i s s o l v e s in ch loro form, acetone, and methanol to give a blue s o l u t i o n , and 

in water to give a b l u e - v i o l e t - s o l u t i o n . V i s i b l e spectra of t h i s complex in 

var ious so lvents are shown in Figure 4 .11. No e f f o r t was made to i d e n t i f y 

the purple complex. 

of the reac t ion mixture were separated by ion-exchange chromatography on 

Carboxymethyl Sephadex CM-25, e luted with sodium perchlorate s o l u t i o n 

(0 .1-1.5M). Four components were i s o l a t e d by the cat ion-exchange column. 

V i s i b l e spect ra of these components are shown in Figure 4.12. 

A f t e r removing the purple p r e c i p i t a t e by f i l t r a t i o n , the components 
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Figure 4.12 Components Separated from the Preparat ion of [Co(tr ien)(2-AMPy)] by 

Ion-exchange Chromatography (a) Red, (b) Brown 



Figure 4.12 (cont inued) , (c) 1st Orange, (d) 2nd Orange 
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The f i r s t complex e luted from the column as a red band with 

absorpt ions at 28.0 kK (357 nm) and 19.8 kK (505 nm) in the v i s i b l e spectrum. 

2+ 

This was probably B- [Co( t r ien)0H(H 2 0) ] . The next component of the reac t ion 

mixture was a brown complex with a s i n g l e absorpt ion band at 28.2 kK (355 nm) 

in the v i s i b l e spectrum. Its i d e n t i t y was not determined, but by i t s e l u t i o n 

behaviour appears to be a 3+ charged s p e c i e s . C l o s e l y fo l lowing the brown 

complex was a major orange band in the ion-exchange column which s p l i t in to 

two well resolved components. The two orange components showed s i m i l a r 

v i s i b l e s p e c t r a , the f i r s t orange complex e l u t i n g exh ib i ted absorpt ion band 

at 29.2 kK (342 nm) and 21.2 kK (471 nm); the other orange complex showed 

bands at 29.5 kK (339 nm) and 21.4 kK (467 nm). These complexes were taken 
3+ 

to be the two isomers of the 3- [Co(tr ien)(2-AMPy)] i o n : 

I n f r a r e d , UV, and mass spect ra of the complexes ind ica ted the 

presence of both t r i e n and 2-AMPy l igands in the orange complexes. 

Chela t ion of 3 - (N-Ac-g ly ) -TAP to e - [ C o ( t r i e n ) 0 H ( H 2 0 ) ] 2 + was 

e f fec ted in a manner s i m i l a r to that of 2-AMPy, the main d i f f e r e n c e in 

procedure being the add i t ion of a lcohol to the aqueous suspension to d i s s o l v e 

3 - (N-Ac-g ly ) -TAP complete ly . The reac t ion components were separated a f t e r 

overnight reac t ion by ion-exchange chromatography. 

On developing an ion-exchange column with 0.1M NaClO^, a red band 

was r a p i d l y e luted which appeared to conta in two metal components and 
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uncomplexed TAP. Well separated from the red bands were two orange components 

which were e luted with 0.2-0.3M NaClO^ and showed absorpt ion bands at 21.2 kK 

(472 nm) and 21.1 kK (475 nm) r e s p e c t i v e l y . Other bands %28.2 kK (355 nm) 

were not resolved f o r both complexes because of high absorpt ion in the UV 

reg ion . UV spectra of the orange components showed band s i m i l a r in shape to 

protonated TAP, with maxima at 41.8 kK (239 nm) and 41.5 kK (241 nm) respec ­

t i v e l y . A brown band was e luted with 0.5M NaClO^ which showed an absorpt ion 

at 28.5 kK (351 nm). This component d id not appear to conta in any TAP by i t s 

UV spectrum. In another attempt at c h e l a t i o n of 3 - ( N - A c - g l y ) - T A P , only two 

major coloured bands were obtained - a red band which could be e lu ted from 

the ion-exchange column with pure water with v i s i b l e absorpt ions at 28.2 kK 

(355 nm) and 19.8 kK (505 nm). An orange band was e lu ted with 0.2M NaC10 4 

with only one resolved band in the v i s i b l e region at 21.1 kK (474 nm), and 

a T A P - l i k e band in the UV region at 41.3 kK (239 nm). The two orange compo­

nents were not resolved in t h i s case because a smal ler column with less 

r e s o l v i n g power was used f o r the l a t t e r separa t ion . Some brown mater ia l 

always remained f i r m l y stuck at the top of the ion-exchange column which 

could not be e lu ted even with 1M NaClO^ s o l u t i o n ( F i g . 4 .13 ) . 

3+ 
By comparison with the i s o l a t i o n of the 3- [Co( t r ien) (2-AMPy)] 

isomers, the two orange bands separated from the reac t ion mixture were 

2+ 
i d e n t i f i e d as two isomers of the 3 - [ C o ( t r i e n ) ( S - ( N - A c - g l y ) - T A P ] i o n : 



Figure 4.13 Isomers of [Co ( t r i en ) (3 - (N -Ac -g ly ) -TAP) ;p Iso la ted by Ion-exchange 

Chromatography, (a) 1st Orange, (b) 2nd Orange 
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A d i f f e r e n c e between the coba l t ( I I I ) complexes of the two hetero­

c y c l i c l igands i s that the complexes with 2-AMPy are obtained as 3+ ions 

whereas those with 3 - (N-Ac-g ly ) -TAP are obtained as 2+ i o n s . Th is i s ev ident 

in t h e i r e l u t i o n behaviour on an ion-exchange column. Sodium perch lora te 

s o l u t i o n s of concentrat ion c a . 1.0M were needed to e lu te the 

[ C o ( t r i e n ) ( 2 - A M P y ) ] 3 + isomers, whereas [ C o ( t r i e n ) ( 3 - ( N - A c - g l y ) - T A P ) ] 2 + c o u l d 

be e luted with c a . 0.25M NaC10 4 < 

In [Co(tr ien)(3-(N-Ac-gly)-TAP)] 2t che la t ion of 3 - (N-Ac-g ly ) -TAP 

to the metal i s expected to occur at N-2 of the t r i a z o l e r i n g , and at the 

ion ized amide ni t rogen of the s i d e - c h a i n s u b s t i t u e n t . Coordinat ion of an 

amide or peptide ni t rogen atom to a metal ion a f t e r deprotonat ion is well 

e s t a b l i s h e d . 1 8 1 It seems l i k e l y that the propensi ty of a coordinated amide 

to lose a proton from the bound amido group i s a func t ion of the combined 

e lectron-wi thdrawing capac i ty of the metal ion and the C = 0 group. 

With the condi t ions e s t a b l i s h e d f o r the c h e l a t i o n of 3 - ( N - A c - g l y ) -

TAP to a coba l t ( I I I ) complex, and the presence of the des i red product demon­

s t ra ted by i t s i s o l a t i o n from the reac t ion mixture , we next considered what 

would happen to the complex under a c i d i c or bas ic c o n d i t i o n s . 

Hydro lys is of an amide under a c i d i c cond i t ions involves at tack 

by water on the protonated amide: 

0 OH „ n OH 0 

R-C-NHR1 — - — - R-C+ • R-C-OHo R-C-OH + R'NH 0 
1 . • • . i 1 

NHR' NHR' 

0 

R-C-0" R ' N H 0

+ 
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A s i m i l a r mechanism may be a p p l i c a b l e f o r metal complexes with a 

che la t ing TAP l igand conta in ing an amide s i d e - c h a i n , e . g . the hydro lys is , of 

[ C o ( t r i e n ) ( 3 - ( N - A c - g l y ) - T A P ) ] 2 + (Scheme 4 .5 ) . The most bas ic s i t e in an 

Scheme 4.5 M e t a l - a s s i s t e d Hydrolys is of 3 - (N-Ac-g ly ) -TAP 

amide l inkage i s the carbonyl oxygen so that protonat ion occurs at that atom. 

This has been demonstrated in an X-ray c r y s t a l study o f . t h e protonated 

product of the [ C o I I I ( g l y - g l y ) 2 J " anion (79) which showed that protonat ion 

occurred at the amide oxygen atom to form the iminol tautomer of g l y c y l g l y ­

c i n e , [ C o I I I ( g l y - g l y H ) 2 ] + (80).182 P o l a r i z a t i o n of the iminol group in 

2+ 

protonated [ C o ( t r i e n ) ( 3 - ( N - A c - g l y ) - T A P ) ] by the metal ion should promote 

n u c l e o p h i l i c at tack at the iminol carbon by water. In th is r e s p e c t , the metal 

ion i s l i k e a "super -proton" to enhance the hydro lys is r e a c t i o n . 

H 

(79) (80) 
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We a n t i c i p a t e that chelated 3 - (N-Ac-g ly ) -TAP complex with 

coord inat ing imide ni t rogen would be i n a c t i v e toward base h y d r o l y s i s due to 

resonance s t a b i l i z a t i o n of the coordinated imide group. A s i m i l a r s i t u a t i o n 

e x i s t s with C o ( e n ) 2 ( g l y N H R ) . 1 8 3 At high pH (^11) deprotonat ion of the amide 

ni t rogen o c c u r s , and the deprotonated species does not undergo base 

h y d r o l y s i s (Figure 4 .2 ) . 

The peptide bond in B - [ C o ( t r i e n ) ( Z - g l y p h e - H ) ] + (81) has been shown 

•NH. 

^HN. 
HN • "Co. 

I 

N 

:NH 2 

CHR 

^ L ^ C H 2 - N H - Z 

- (81) 

to be s tab le under cond i t ions (pH 7 .5 , 65°C) which r a p i d l y hydrolyze the 

2+ 

amide bond in 8 - [Co( t r ien ) (g lyphe) ] with coordinated amino terminus and 

the amide carbonyl group ( c f . Scheme 4 . 2 ) . 1 5 5 

To i n v e s t i g a t e the m e t a l - a s s i s t e d h y d r o l y s i s of amide bonds under 

a c i d i c c o n d i t i o n s , [ C o ( t r i e n ) ( 3 - ( N - A c - g l y ) - T A P ) ] ( C 1 0 4 ) 2 was d i s s o l v e d in 

0.05M HCI and incubated at 50°C. Under these cond i t ions of a c i d i t y and 

temperature we expect h y d r o l y s i s of the amide bond in the s i d e - c h a i n 
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acetamidomethyl group. The reac t ion was checked by TLC on a sample of the 

s o l u t i o n t reated with IH NaCN which d isp laced the TAP l igand from the Co(111) 

coord inat ion sphere. A l t e r n a t i v e l y , the Co(II I ) complex was reduced with 

s o l i d NaBH^ to the more l a b i l e Co(11) complex. Thin layer chromatograms of 

the l igands re leased by the metal were obtained a f t e r n e u t r a l i z a t i o n of the 

s o l u t i o n . There was no evidence of 3-aminomethyl-TAP from TLC a f t e r 

[ C o ( t r i e n ) ( 3 - ( N - A c - g l y ) - T A P ) ] 2 + was heated f o r 4 hours. 

In view of the apparent f a i l u r e of Co(II I ) to f a c i l i t a t e the 

hydro lys is of s i d e - c h a i n amide groups in TAP d e r i v a t i v e s we a l s o considered 

h y d r o l y s i s by in situ formation of metal-TAP complexes. 

An equimolar mixture of 3 - (N-Ac-g ly ) -TAP and C o C l 2 . 6 H 2 0 s o l u t i o n s 

(0.0125M) in 1.0M HCl was incubated at 4 4 ° C . Another s o l u t i o n of 

3 - (N-Ac-g ly ) -TAP (0.0125M) in 1.0M HCl was a l s o heated to 44° as a cont ro l 

experiment. A f t e r 3 hours at e levated temperature, the h y d r o l y s i s and 

contro l reac t ions were neu t ra l i zed and analyzed by TLC on s i l i c a g e l . The 

th in layer chromatograms showed that most of the 3 - (N-Ac-g ly ) -TAP remained 

unhydrolyzed with only a l i t t l e 3-NH 2CH 2~TAP present . The i d e n t i t i e s of the 

TAP d e r i v a t i v e s were confirmed by comparison with s tandards, and by r e a c t i o n 

with n i n h y d r i n . From v i s u a l inspec t ion of the T L C ' s under UV l i g h t , we 

concluded that there was no s i g n i f i c a n t d i f f e r e n c e between the hydro lys is 

mixture conta in ing metal ions and the contro l s o l u t i o n . 

It thus appears that under the h y d r o l y s i s reac t ions with C o C l 2 

3- (N-Ac-g ly ) -TAP i s coordinated to the metal only at the N-2 s i t e of the TAP 

moiety. At low pH, the hydrogen on the amide n i t rogen of the s i d e - c h a i n i s 

un- ion ized and c h e l a t i o n does not occur , hence there i s no m e t a l - a s s i s t e d 

hydro lys is of the amide bond. Thus, coba l t ( I I ) ion promoted i o n i z a t i o n of 

the amide hydrogens in peptides does not appear to occur below pH 10-11 

(c f . pH 4-6 f o r copper( I I ) and pH 7-8 f o r n i c k e l ( l l ) i o n s ) . 1 8 4 
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To ensure that che la t ion of 3 - (N-Ac-g ly ) -TAP a c t u a l l y took p l a c e , 

an hydro lys is reac t ion was conducted with equimolar amounts of 3 - ( N - A c - g l y ) -

TAP and CuSO^. The mixture was adjusted to pH 10 to ion i ze the s i d e - c h a i n 

amide hydrogen and then a c i d i f i e d to pH 0.8 f o r hydro lys is at 50°C. Compari­

son of the h y d r o l y s i s mixture with a cont ro l hydro lys is s o l u t i o n without 

2+ 
Cu a f t e r 5 hours showed that the s o l u t i o n contained predominantly unhydro-

lyzed S-CH-jCONHCh^-TAP. However, the concentrat ion of the hydro lys is product 

2+ 

3-NH2CH0 -TAP, was s l i g h t l y higher in the presence of Cu than in the contro l 

s o l u t i o n . 

Attempts to study the hydro lys is of 3 - (N-Ac-g ly ) -TAP under bas ic 

2+ 2+ 

condi t ions with Co and Cu were f r u s t r a t e d by p r e c i p i t a t i o n of the metal 

hydroxides on a d d i t i o n of base to neutral so lu t ions of the metal s a l t and 

1igand. 

In add i t ion to our attempts with metal ions f o r a s s i s t i n g in the 

hydro lys is of amide bonds we a lso considered the method of Y a m a s h i t a 1 4 6 in 

which ion-exchangers in the hydrogen form were used to e f f e c t the hydro lys is 

of peptides under mild c o n d i t i o n s . 

An aqueous s o l u t i o n of 3 - (N-Ac-g ly ) -TAP was e lu ted through a 

chromatography column conta in ing an excess of Dowex 50W-X8 (B io -Rad , 200-400 

mesh, 5.1 meq/dry g ) . The TAP compound bound s t rong ly to the cat ion-exchange 

mater ia l and was removed from the column with saturated NaCl s o l u t i o n . UV 

spectra of the s o l u t i o n e luted from the column ind ica ted the presence of 

protonated TAP [Figure 4 .14(a) ] . A f t e r n e u t r a l i z a t i o n of the s o l u t i o n , UV 

spectra showed the band s t ruc ture c h a r a c t e r i s t i c of the TAP chromophore 

[F igure 4.13(b)] and t h i n - l a y e r chromatography of the product showed only 

one product from ion-exchange chromatography which was i d e n t i c a l with 

3 - (N-Ac-g ly ) -TAP standard. The product a l s o showed no reac t ion with n inhydr in 

conf i rming the absence of the h y d r o l y s i s product , 3 -NH ? CH ? -TAP. 
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Figure 4.14 U l t r a v i o l e t Spectra of 3 - (N-Ac-g ly ) -TAP Eluted from  

Cation-exchange R e s i n , (a) Protonated, (b) Neut ra l i zed 
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From our i n v e s t i g a t i o n s with metal ions we have shown that TAP 

3+ 2-t* 2"f" 2~f~ 
d e r i v a t i v e s coordinate s t rong ly with metal ions (Co , Co , . N i , Cu ) to 

3+ 2+ 

form well def ined complexes. Furthermore, Co and Co ions do not promote 

the a c i d - h y d r o l y s i s of amide bonds in s i d e - c h a i n s of 3 -subs t i tu ted TAP 

compounds. Copper(II) ions show a s l i g h t l y b e n e f i c i a l e f f e c t but not to any 

great extent under the condi t ions s t u d i e d . We therefore conclude that meta l -

a s s i s t e d a c i d - h y d r o l y s i s of peptide-TAP d e r i v a t i v e s does not o f f e r any 

s i g n i f i c a n t advantages f o r s e l e c t i v e l y and m i l d l y c leav ing the C-terminal 

peptide bond. Relevant to our s tudies is the observat ion by Buckingham that 

the peptide bond in [ C o t e n ^ Z - g l y g l y ) ] * i s s tab le to hydro lys is in IM [H + ] 

over a per iod of w e e k s . 1 8 5 

Broader imp l i ca t ions of our l i m i t e d success with m e t a l - a s s i s t e d 

hydro lys is are that our method f o r modifying carboxylates with hydra laz ine i s 

present ly r e s t r i c t e d to C-terminal amino ac id ana lys is of peptides on ly . 

Extension to a sequencing method awaits development of an appropr ia te 

hydro lys is procedure. 
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CHAPTER 5,  

HYDRALAZINE DECOMPOSITION 

5.1 INTRODUCTION 

Hydralazine (12, 1 -hydrazinophthalazine) is commercial ly a v a i l a b l e 

as a s tab le hydrochlor ide s a l t , the form in which i t is u s u a l l y used f o r 

most of i t s a p p l i c a t i o n s , s ince the f ree base i s unstable both in the s o l i d 

s tate and in s o l u t i o n . 

Hydralazine is very unstable in basic s o l u t i o n with many f a c t o r s 

cont r ibu t ing to th is behavior: 

a . Oxygen i s necessary f o r the breakdown to occur . 

b. pH i s a c r i t i c a l f a c t o r in the r e a c t i o n . 

c . Type and concentra t ion of ions in aqueous s o l u t i o n are 

i m p o r t a n t . 1 9 3 

Very l i t t l e hydralaz ine decomposition occurs at neutral or a c i d i c 

pH, whereas decomposition is rapid at basic pH, e . g . , 30-50% decomposit ion 

in 1/2 hr . in pH 7.4 S0rensen buf fer at 3 7 ° C . t f 0 Phosphate bu f fe r causes more 

rapid disappearance of hydra laz ine than borate or g l y c i n e b u f f e r s , 1 9 3 but 

I'^EDTA i n h i b i t s the decomposition in aqueous s o l u t i o n . 4 0 The rate of 

breakdown i s independent of the concentrat ion of hydra laz ine . 
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The major product obtained from degradation of hydra laz ine in 

aqueous s o l u t i o n i s ph tha laz ine , which is hydra laz ine minus i t s hydrazine 

s i d e - c h a i n . 4 0 ' 1 9 3 Oxidat ion of hydra laz ine with oxygen in ethanol a l k a l i 

or with copper s u l f a t e at pH8 i s a l s o reported to f u r n i s h p h t h a l a z i n e . 1 9 4 

In apparent c o n f l i c t with other work {vide supra), Mclsaac and 

Kanda observed a major product which does not appear to be p h t h a l a z i n e . 3 6 

Using 1 - h y d r a z i n o p h t h a l a z i n e - l - C 1 4 , they observed a new r a d i o a c t i v e compound 

which had a much lower than phthalaz ine on paper chromatography with 

n-Bu0H-H0Ac-H20(4 : 1 : 5 ) , and which d id not give co lour reac t ions with 

d i a z o t i z e d s u l f a n i l i c ac id or p-dimethylaminobenzaldehyde, i n d i c a t i n g the 

absence of f ree amine or hydrazine groups. To exp la in the negative r e s u l t s 

with the co lour r e a c t i o n s , they speculated that the product might be 

d iph tha laz iny lhydraz ine (82). However, in the vast l i t e r a t u r e on hydra laz ine 

(82) 

there i s no f u r t h e r evidence to support t h i s s p e c u l a t i o n . 

The i n s t a b i l i t y of f ree base hydra laz ine has plagued the work 

descr ibed in t h i s t h e s i s from the beginning. While hydra laz ine degradation 

in aqueous media has been amply descr ibed in the l i t e r a t u r e , nothing is 

reported on degradat ion i n non-aqueous s o l u t i o n , or in the s o l i d s t a t e . We 

there fore considered i t to be a worthwhile d i g r e s s i o n to i n v e s t i g a t e the 

decomposit ion process s ince i t would be b e n e f i c i a l for determining a p p r o p r i ­

ate cond i t ions fo r reac t ions i n v o l v i n g h y d r a l a z i n e , and f o r i n t e r p r e t i n g 

UV and NMR s p e c t r a . 
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5.2 RESULTS AND DISCUSSION 

The decomposit ion of hydra laz ine in the s o l i d s ta te i s charac te r ­

ized v i s u a l l y by a change in co lour from l i g h t lemon-yellow to dark orange. 

This change occurs gradua l ly at room temperature wi th in minutes of the 

s o l i d being exposed to the atmosphere, and very much slower (days) in vacuo. 

Storage o f the f r e e base below 0°C re tards the decomposit ion but does not 

stop i t complete ly . 

The decomposit ion rate of hydra laz ine in s o l u t i o n var ies with the 

s o l v e n t . To compare these rates q u a l i t a t i v e l y , the UV spectra of f r e s h l y -

prepared hydra laz ine in var ious so lvents were monitored at var ious time 

i n t e r v a l s . The changes in the spect ra observed were band s h i f t s , band 

shapes and i n t e n s i t i e s , and the appearance of new bands. 

The so lvents used in t h i s i n v e s t i g a t i o n were: water (pH 7 ) , 

methanol, DMSO, DMF, DMA, THF, d ioxane, a c e t o n i t r i l e , methylene c h l o r i d e , 

and ch loroform. Hydralaz ine decomposition was monitored up to 42 hours 

a f t e r the s o l u t i o n s were prepared, and care was taken to ensure that 

condi t ions were standardized f o r a l l the s o l u t i o n s . The same batch of 

f r e s h l y - p r e p a r e d hydra laz ine was used f o r a l l the degradat ion s t u d i e s . 

Some general conc lus ions can be drawn concerning the s u i t a b i l i t y 

of c e r t a i n so lvents as media f o r reac t ions with h y d r a l a z i n e . Hydralaz ine 

showed the grea tes t s t a b i l i t y in CHClg and C H ^ C ^ , and UV spectra of hydra­

laz ine in these so lvents were e s s e n t i a l l y unchanged wi th in the time per iod 

s t u d i e d . In aqueous s o l u t i o n at pH 7, hydra laz ine showed s l i g h t decomposi­

t i o n , presumably due to the formation of ph tha laz ine . The decomposit ion 

was ind ica ted in UV spectra by a reduct ion i n r e l a t i v e i n t e n s i t y of the 

263 nm band of hydra laz ine . A methanol s o l u t i o n showed s l i g h t l y increased 

absorpt ion in the 240-250 nm r e g i o n . Th is change was a t t r i b u t e d to the 
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formation of 1,2(H)-phthalazone with support ing evidence from TLC. However, 

the product was not i s o l a t e d f o r d e f i n i t i v e conf i rmat ion of i t s i d e n t i t y . 

Hydralaz ine s o l u t i o n s in CH 3 CN, DMSO, DMA, and DMF showed the growth of new 

bands at 286 nm and <395 nm. These bands were most evident in DMF s o l u t i o n 

where the 286 nm band became the s t rongest band in the UV spectrum. In 

CH^CN, DMSO, and DMA s o l u t i o n s , the 286 nm absorpt ion was only s l i g h t l y 

resolved above the background. Dioxane and THF s o l u t i o n s showed d i f f e r e n t 

UV band shapes from the other s o l u t i o n s . In the UV spectra of the s o l u t i o n s , 

an absorpt ion at 286 nm appeared wi th in one minute of preparat ion of the 

s o l u t i o n as a shoulder on a more intense 272 nm band and gradua l ly decreased 

in i n t e n s i t y , and was replaced by a strong unresolved band ^278 nm. Dioxane 

s o l u t i o n s showed the presence of t h i s 278 nm band from the onset and, in 

common with THF s o l u t i o n s , the 263 nm band of hydra laz ine decreased to a 

weak shoulder on the 273 nm band. 

Another s e r i e s of s tud ies on hydra laz ine decomposit ion in var ious 

so lvents using hydra laz ine HCI in the presence of excess Et^N under an argon 

atmosphere gave s l i g h t l y d i f f e r e n t r e s u l t s from the one where f ree base 

hydra laz ine was used with t e r t i a r y base absent . The UV spectra of the hydra­

l a z i n e s o l u t i o n s a l l showed the 286 nm band to varying degrees with the 

exception of a dioxane s o l u t i o n which, as b e f o r e , showed a strong 278 nm 

band, and a THF s o l u t i o n which in cont ras t with previous r e s u l t s , showed no 

286 nm band at a l l . The v a r i a b i l i t y of these r e s u l t s serves to demonstrate 

that hydra laz ine degradation is dependent on f a c t o r s other than the s o l v e n t . 

Thus, decomposit ion occurs even under an argon atmosphere, and oxygen has 

been reported to be e s s e n t i a l f o r the degradat ion to o c c u r . 1 9 3 It appears 

that d i s s o l v e d oxygen in the solvent i s s u f f i c i e n t . Presumably, impur i t i es 

in the so lvent may a l s o play a r o l e in the decomposi t ion, e . g . d iethylamine 

in DMF. 
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Some conclus ions may be drawn regard ing the s t a b i l i t y of hydra­

laz ine in s o l u t i o n although d i f f e r e n t decomposit ion products may be formed 

in d i f f e r e n t s o l v e n t s . The s t a b i l i t y o f hydra laz ine in var ious so lvents 

appears to fo l low the order : 

C H ? C 1 ? H ?0 DMSO THF 
> > ChLCN > > Dioxane > 

CHC1 3 CH30H J DMA DMF 

Methyl C e l l o s o l v e (2-methoxyethanol) was not inc luded in any of 

the s e r i e s of hydra laz ine decomposition s t u d i e s , but hydra laz ine showed 

l i t t l e tendency to decompose in t h i s s o l v e n t , which may there fore be p laced 

c lose to the c h l o r i n a t e d hydrocarbons in the s t a b i l i t y order . 

Of the so lvents ind ica ted above, d ioxane, THF, and DMF are not 

recommended as media f o r reac t ions i n v o l v i n g h y d r a l a z i n e . The remaining 

solvents are s a t i s f a c t o r y provided that the hydra laz ine r e a c t i o n i s completed 

wi th in 1 day, or that an excess of hydra laz ine i s used in the r e a c t i o n . 

Other sol vents w h i c h are unsui table as reac t ion media are morpholine and 

N-methy l -pyrro l idone. 

The decomposit ion of hydra laz ine in aqueous and organic so lvents 

i s acce lera ted in the presence of a t e r t i a r y base. In a d d i t i o n , the degrada­

t ion product respons ib le f o r the 286 nm band in the UV spectrum i t s e l f breaks 

down f u r t h e r to g ive a species absorbing at 278 nm in the UV spectrum. Thus, 

in 1 ,5 -d iazab icyc lo [5 .4 .0 ]undec-5 -ene (DBU) s o l u t i o n , the i n t e n s i t y of the 

286 nm band grows to a maximum and then decreases which i s concomitant with 

growth of the 278 nm band. The UV spectra showed i s o s b e s t i c points at 277 

nm and 291 nm. In the presence of a large excess of strong base, e . g . , 

Et^N, the species absorbing at 286 nm has a very shor t l i f e t i m e s ince i t was 



163 

not observed, and UV spectra showed only the decomposit ion product absorbing 

at 278 nm. Clean i s o s b e s t i c points were observed in the UV s p e c t r a . 

From the m u l t i p l i c i t y of changes seen in the UV spectra of hydra­

laz ine during so lvent - induced decomposi t ion, i t is c l e a r that the decomposi­

t ion phenomenon is a complex one. Thin layer chromatography of the decom­

p o s i t i o n products from DMF s o l u t i o n on s i l i c a gel with CHCl^/MeOH (10:1) 

showed at l e a s t f i v e components, the major ones being a ye l low compound at 

Rp0.76, and f l u o r e s c e n t components at R^0.47 and 0.18. 

A l a r g e - s c a l e degradation of hydra laz ine was performed in DMF 

s o l u t i o n in order to i d e n t i f y the major decomposit ion products . The products 

were separated by preparat ive s c a l e TLC on s i l i c a g e l . 

The major component of the decomposit ion was i s o l a t e d as an 

orange amorphous s o l i d whose UV spectrum showed strong bands at 286 nm and 

393 nm. However, i t was unstable in chloroform and methanol s o l u t i o n , and 

i t s UV spectrum changed even during the time i t was being scanned. N o t w i t h ­

standing these changes, the 286 nm band remained, and changes were mainly 

of i n t e n s i t y , a red s h i f t of the higher wavelength band, and the appearance 

of two new bands at 255 nm and 265 nm. The UV spectrum of the major 

decomposition product i s o l a t e d by preparat ive TLC, and p u r i f i e d by column 

chromatography on s i l i c a gel i s shown in F igure 5 .1 . 

A 100MHz Four ie r - t rans fo rm NMR spectrum of the major decomposit ion 

product f r e s h l y obtained by column chromatography i s shown in F igure 5.2. 

The resonances between 0.8 and 2.0 ppm probably a r i s e from degradat ion of 

the "286 nm" s p e c i e s , s ince aged s o l u t i o n s show new bands in t h i s region 

and a growth of the bands evident in F igure 5.2. 

Whi lst i t was d i f f i c u l t to obtain c lean UV and NMR s p e c t r a , good 

mass spect ra of the major decomposit ion product were c o n s i s t e n t l y obta ined . 
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Figure 5.1 UV Spectrum of a C H 2 C 1 2 So lu t ion of the Major Product 

from Decomposition of Hydralazine in DMF 



Figure 5.2 100 MHz Four ier - t ransform NMR Spectrum of the Major Product from Decomposition of 

Hydralazine in DMF 
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H i g h - r e s o l u t i o n mass spectra showed a parent m/e at 288.1118 i n d i c a t i n g a 

composit ion of C-jgH-^Ng (ca lcu la ted mass. 288.1123). The low- reso lu t ion mass 

spectrum obtained with a probe temperature of 200°C is shown in F igure 5.3. 

The mass spectrum is charac te r i zed by intense fragment ions at m/e 273, 272, 

and 171 in the higher m/e r e g i o n . At probe temperatures below 2 0 0 ° C , the 

m/e 171 ion i s the base peak in the mass spectrum on the bas is of high and 

low r e s o l u t i o n mass s p e c t r a , the p r i n c i p a l decomposition product of hydra­

l a z i n e was i d e n t i f i e d as d iph tha laz iny lhydraz ine (82). A fragmentat ion 

scheme c o n s i s t e n t with t h i s assignment i s shown in Scheme 5 .1 . The fragmen­

t a t i o n steps notated with an a s t e r i s k (*) were v e r i f i e d by the appearance of 

metastable peaks at the appropr ia te (m^/nip) va lues . 

D iphtha laz iny lhydraz ine i s unstable in the s o l i d s t a t e , and 

apparent ly undergoes a i r o x i d a t i o n . Preparat ive sca le TLC of the ox id ized 

product on s i l i c a gel with CHCl^/MeOH (10:1) g ives two components about 

R^'s 0.12 and 0.22 which e x h i b i t blue f luorescence under short wavelength 

UV l i g h t . These components in CHCl^ s o l u t i o n show strong bands in t h e i r UV 

spectra at 280 and 267 nm, r e s p e c t i v e l y . V a r i a b i l i t y of the band i n t e n s i t i e s 

in the UV spectra ind ica ted that the components were not pure. The R^ 0.22 

component showed fragment ions in the mass spectrum at m/e 149 (100), 

167 (54) , 185 (22) , 200 (6 ) , and 279 (48). The numbers in brackets c o r r e s ­

pond to the r e l a t i v e i n t e n s i t i e s - of the i o n s . H i g h - r e s o l u t i o n mass s p e c t r o ­

metry d id not g ive unambiguous atomic composit ions f o r these i o n s , but the 

parent ion at m/e 279 appears to have the composit ion C ^ ^ i N ^ O - j (observed 

279.1569, c a l c u l a t e d 279.1583). The mass spectrum of the Rf 0.12 component 

showed the same fragment i o n s , but with d i f f e r e n t r e l a t i v e i n t e n s i t i e s : 

m/e 149 (53) , 167 (35) , 185 (100), 200 (26) , and 279 (37). No subs tan t i a l 

e f f o r t was expended in attempting to obtain these secondary decomposit ion 

products in a pure s t a t e , or to determine t h e i r i d e n t i t i e s . 
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Figure 5.3 Mass Spectrum of the Major Product from Decomposition of Hydralazine in DMF 



Scheme 5.1 . Fragmentation Scheme f o r P inh tha laz iny lhydraz ine 



169 

We have there fore shown that d iph tha laz iny lhydraz ine i s a major 

decomposition product of 1 -hydrazinophthalaz ine in non-aqueous s o l v e n t s . 

It there fore appears that the specu la t ion by Mclsaac and K a n d a 3 6 i s co r rec t 

a f te r a l l . While we d id not observe d iph tha laz iny lhydraz ine under the 

condi t ions they r e p o r t e d , we have been able to i s o l a t e and c h a r a c t e r i z e i t 

fo r the f i r s t t ime. 

The formation of an N , N ' - d i s u b s t i t u t e d hydrazine from a N-mono-

subst i tu ted hydrazine i s not without precedence. I s o n i c o t i n y l h y d r a z i n e 

(83, I son iaz id ) is ox id i zed at a l k a l i n e pH to give d i i s o n i c o t i n y l h y d r a z i n e 

(84) as a major product . 

CONHNH 2 CONHNHCO 

(83) (84) , 

From our s tudies on the decomposit ion of hydra laz ine in s o l u t i o n 

we can recommend c e r t a i n condi t ions to minimize the degradat ion. If f r e e -

base hydra laz ine i s obtained by n e u t r a l i z a t i o n of the HCl s a l t , i t should be 

f r e s h l y prepared immediately before use. C h ^ C ^ and CHC1^ should be used 

as so lvent media whenever p o s s i b l e s ince hydra laz ine shows l i t t l e tendency 

to decompose in these s o l v e n t s . Methanol , water (pH 7 ) , a c e t o n i t r i l e , 

dimethylacetamide and d imethy lsu l fox ide may a l s o be used. Reactions should 

pre ferab ly be conducted under an i n e r t atmosphere, s ince hydra laz ine i s 

s e n s i t i v e to oxygen, and the s o l u t i o n s should be de-oxygenated. An excess 

of strong base ought to be avoided i f p o s s i b l e s ince t h i s promotes decomposi­

t ion of h y d r a l a z i n e . Hydra laz ine i n excess of that required f o r r e a c t i o n 

should be used to compensate f o r decomposed reagent i f strong base cannot 

be avoided. 
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CHAPTER 6 

EXPERIMENTAL 

6.1 GENERAL METHODS 

E l e c t r o n i c Spectroscopy 

Cary recording spectrophotometers Model 17, 14 or 15 were used to 

obtain u l t r a - v i o l e t , v i s i b l e and n e a r - i n f r a r e d s p e c t r a . So lu t ion spect ra 

were obtained with matched s i l i c a g lass c e l l s of 1 mm path l eng th . S o l i d 

s ta te mull spectra were run using nujol mul ls pressed between s i l i c a windows. 

L ight scat te red by the mull was compensated f o r with a nujo l -soaked f i l t e r 

paper in the reference beam of the spectrophotometer. The l i g h t i n t e n s i t y 

in the sample and reference beams were balanced by p lac ing appropr ia te 

at tenuators c o n s i s t i n g of metal screens of varying meshes in the reference 

beam. 

D i f fuse r e f l e c t a n c e spectra were recorded on a Bausch and Lomb 

Spect ron ic 600 spectrophotometer equipped with a v i s i b l e r e f l e c t a n c e a t t a c h ­

ment and a Sargent r e c o r d e r , Model SR. Spectra were obtained over the wave­

length range 740-350 nm. Magnesium carbonate was used as the r e f l e c t a n c e 

standard. 



171 

Infrared Spectroscopy 

Infrared spect ra were recorded on a Perkin-Elrner Model 457 grat ing 

spectrophotometer cover ing the frequency range 4000-250 cm~\ The c e l l 

windows used to conta in the sample were KBr and NaCl . The c u t - o f f points 

with these c e l l s were approximately 450 c m - 1 and 550 c m - 1 r e s p e c t i v e l y . 

Nujol and hexachlorobutadiene were used as mul l ing agents. IR spectra were 

c a l i b r a t e d with polystyrene f i l m at 1601.4 c m - 1 and 906.7 c m " 1 . 

Nuclear Magnetic Resonance 

Nuclear magnetic resonance spectra were obtained at 60 MHz with a 

Varian T-60 or Varian EM-360A spectrometer , and at 100 MHz with a Var ian 

HA-100 spectrometer f o r continuous-wave spectra and a Varian XL-100 or 

N i c o l e t Model NIC-80 spectrometer f o r F o u r i e r - t r a n s f o r m s p e c t r a . The 

chemical s h i f t s are recorded in the <s(ppm) s c a l e with te t ramethy ls i l ane 

(TMS) as an in te rna l s tandard . 

Mass Spectrometry 

Mass spectra were recorded on an A t l a s CH-4 spectrometer or an 

A . E . I . MS-902 spectrometer , high r e s o l u t i o n measurements being obtained on 

the l a t t e r instrument. 

Melt ing Point Determination 

Mel t ing points of s o l i d s were measured with a Thomas-Hoover 

c a p i l l a r y melt ing point apparatus and are uncorrec ted . 

Elemental A n a l y s i s 

Elemental analyses f o r carbon, hydrogen and n i t rogen were performed 

by Mr. P. Borda of the M i c r o a n a l y t i c a l Laboratory , U. b. C. 
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Chromatography 

Column chromatography was performed using s i l i c a gel obtained from 

1CN Pharmaceuticals ( s i l i c a gel woelm f o r A d s o r p t i o n , A c t . I) or Baker 

(column chromatography grade) . 

Thin l ayer chromatography (TLC) was performed using S i l i c a Gel GF 

precoated p la tes (Ana l tech -Un ip la te , 250y). Precoated p lates 2000M th ick 

were used f o r preparat ive sca le TLC. Drummond Microcap c a p i l l a r y tubes were 

used f o r spot t ing samples to a n a l y t i c a l TLC p l a t e s . Compounds were detected 

by UV l i g h t (254 nm) or iod ine a b s o r p t i o n , or by spraying the p la tes with 

n inhydr in s o l u t i o n in ethanol fol lowed by warming at 110°C. Unless s p e c i f i e d 

otherwise , the so lvent system used f o r developing TLC p la tes was CHCl^-MeOH 

(10:1) . 

Ion-exchange chromatography was performed using Carboxymethyl-

Sephadex CM-25 (Pharmacia) with a capac i ty of 4.5 meq/g. 

6.2 CHEMICALS 

A l l chemicals were reagent grade unless otherwise i n d i c a t e d . 

Spect ra l grade solvents were used in a l l so lu t ions f o r u l t r a - v i o l e t and 

v i s i b l e s p e c t r a . 

Tr ie thy lamine 

Tr ie thy lamine was p u r i f i e d by d i s t i l l a t i o n from sodium hydroxide 

fo l lowed by double d i s t i l l a t i o n with 2% 1-naphthyl i s o c y a n a t e , and a s i n g l e 

d i s t i l l a t i o n from sodium t u r n i n g s . 
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N, N-Dimethylformamide 

N,N-Dimethylformamide was p u r i f i e d by d i s t i l l a t i o n from anhydrous 

copper( I I ) s u l f a t e at reduced pressure under a n i t rogen atmosphere. The 

middle f r a c t i o n b o i l i n g a t 53°C at 20 nm pressure was c o l l e c t e d and s tored 

over molecular s ieves 4A in serum-capped b o t t l e s . 

Tetrahydrofuran 

Tetrahydrofuran was d r ied by r e f l u x i n g over l i t h i u m aluminum 

hydride f o r 15 hours and d i s t i l l i n g . The f r a c t i o n d i s t i l l i n g at 6 4 . 9 ° C was 

c o l l e c t e d . To remove perox ides , THF was e luted through a column of Alumina 

Brockman A c t i v i t y I which had been d r ied at 110°C. 

Hexamethylphosphoramide 

Hexamethylphosphoramide (HMPA) was d i s t i l l e d , from ca lc ium 

hydride at water -asp i ra tor pressure ( b . p . ^ l 3 5 ° C ) under an argon atmosphere. 

The d i s t i l l e d mater ia l was stored under argon. 

Chloroform 

Chloroform was re f luxed over ca lc ium hydr ide , f r a c t i o n a l l y 

d i s t i l l e d , and stored over molecular s ieves 3A. 

Ethanol 1 8 6 

Absolute ethanol (1 a) was s t i r r e d with c lean sodium turnings 

(14 g) u n t i l the sodium had reacted complete ly . Ethyl formate (40 g) was 

added and the mixture re f luxed f o r 3 hours before being d i s t i l l e d . The 

f i r s t 25 ml of d i s t i l l a t e was d i s c a r d e d . The dry ethanol was s tored in a 

t i g h t l y stoppered b o t t l e with Para f i lm wrapped around the b o t t l e cap. 
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N-Ethy1-5-pheny1isoxazo1ium-3' -su1fonate (17, NEPIS, Woodward's Reagent K ) 5 6 

NEPIS (Aldr ic l i ) was d i s s o l v e d in excess IN HCI, p r e c i p i t a t e d with 

acetone, f i l t e r e d , v/ashed with acetone, and d r ied in vacuo to give a f l u f f y 

white product . 

0 
+ II 

Glyc ine Isopropyl Ester H y d r o c h l o r i d e , 1 8 7 H 3 NCH 2 C0C 3 H 7 CI" 

Fresh ly d i s t i l l e d th iony l c h l o r i d e (15 ml) was added slowly to 

a s t i r r e d suspension of g lyc ine (15.1 g , 0.250 mol) in isopropyl a lcohol 

(150 ml) which was maintained at 0 ° C . The suspension was heated to 80°C 

f o r 12 hours protected from moisture by D r i e r i t e . The c l e a r s o l u t i o n thus 

obtained was concentrated to about 50 ml in vacuo and ether added u n t i l the 

s o l u t i o n became t u r b i d . On c o o l i n g , the product c r y s t a l l i z e d from s o l u t i o n 

and was c o l l e c t e d by suct ion f i l t r a t i o n , and r e c r y s t a l l i z e d twice from 

absolute ethanol /anhydrous e ther . The t w i c e - r e c r y s t a l l i z e d product weighed 

26.5 g (86%). 

NMR (CDC1 3 ) : 1.27 (double t , J = 6 Hz, 6, 2 C H 3 ) , 3.92 ( s i n g l e t , 2 , 

C H 2 ) , 5.05 (septe t , 1, CH), 8.40 (broad s i n g l e t , 3, NH 3 ) . 

0 
+ n 

DL-Alanine Ethyl Es te r Hydroch lo r ide , H 3 NCHC0C 2 H 5 CI" 

C H 3 

DL-Alanine (18.8 g , 0.211 mol) was suspended in absolute ethanol 

(350 ml) and dry hydrogen c h l o r i d e was bubbled through the s t i r r e d suspen­

sion u n t i l no more gas appeared to be absorbed. The c l e a r s o l u t i o n thus 

obtained was cooled to 0°C and re -sa tu ra ted with hydrogen c h l o r i d e . The 

s o l u t i o n was s t i r r e d at room temperature f o r 15 hours protected from the 

atmosphere with a D r i e r i t e dry ing tube. The solvent was removed under 

reduced p ressure , and the r e s u l t i n g syrup was twice d i s t i l l e d with 200 ml 
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absolute ethanol to remove water as the a lcoho l -water azeotrope. On 

t r i t u r a t i n g with dry e ther , the syrup c r y s t a l l i z e d to a white s o l i d . Y i e l d 

of crude product - 31.7 g (98%). The product was r e c r y s t a l l i z e d from 

ethanol-petroleum ether and d r ied under reduced pressure over D r i e r i t e . 

0 

G l y c y l g l y c i n e Ethyl Ester Hydroch lo r ide , H 3NCH 2C0NHCH 2C0C 2H 5 CI" 

G l y c y l g l y c i n e (9.98 g , 75.5 mmol) was suspended in dry ethanol 

(200 ml) and hydrogen c h l o r i d e was bubbled through the s t i r r e d suspension. 

Within 10 minutes, almost a l l the g l y c y l g l y c i n e had d i s s o l v e d and a white 

p r e c i p i t a t e appeared. Hydrogen c h l o r i d e treatment was continued f o r 5 

minutes before the reac t ion mixture was cooled to 0°C and resatura ted with 

HCl f o r an add i t iona l 5 minutes. The mixture was s t i r r e d f o r 21 hours and 

the s o l i d was c o l l e c t e d by suc t ion f i l t r a t i o n . Another crop of product 

was obtained from the concentrated f i l t r a t e . The product was r e c r y s t a l l i z e d 

from absolute ethanol in 82 % y i e l d . 

0 

N - B u t y l o x y c a r b o n y l - g l y c i n e , 1 8 8 Me3C0CNHCH2C00H 

A s o l u t i o n of butyloxycarbonyl az ide (17 ml) in 150 ml dioxane 

was slowly added to a s t i r r e d s o l u t i o n of g l y c i n e (7.51 g , 100 mmol) in 

150 ml water and 42 ml t r i e t h y l a m i n e . A f t e r 2 hours , suspended mater ia l 

was removed by f i l t r a t i o n , and dioxane was d i s t i l l e d o f f from the s o l u t i o n 

under reduced pressure . The aqueous s o l u t i o n was a c i d i f i e d with IN HCl and 

then extracted with ethyl ace ta te . The organic ex t rac t was d r i e d with 

anhydrous magnesium s u l f a t e and taken to dryness to g ive an orange syrup . 

On c o o l i n g , the syrup c r y s t a l l i z e d . The crude product r e c r y s t a l l i z e d from 

ethyl acetate /petro leum ether as la rge t rans lucen t needles in 75% y i e l d . 

Caut ion: B0C-N 3 i s shock s e n s i t i v e and has a thermal i n s t a b i l i t y range of 

1 0 0 ° - 1 3 5 ° C and an a u t o i g n i t i o n temperature of 1 4 3 ° C . 1 8 9 
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NMR (CDC1 3 ) : 1.45 ( s i n g l e t , 9, C ( C H 3 ) 3 ) , 3.87 (doublet , J = 6 Hz, 

2, C H 2 ) , 5.32, 6.43 (broad s i n g l e t s , 1, NH), 11.38 ( s i n g l e t , 1, COOH). 

Mass spectrum, m/e (Re l . i n t e n s i t y ) : Parent at 175 not observed, 

Base at 120; 160 (3 ) , 130 (9) , 120 (100), 116 (3) , 102 (5 ) , 86 (1 ) , 76 (17) , 

75 (6) , 74 (8). 

N - T r i f l u o r o a c e t y l - g l y c y l g l y c i n e , 1 9 0 CF3C0NHCH2C0NHCH2C00H 

S-Ethy l t h i o l t r i f 1 u o r o a o e t a t e (1.60 ml , 12.5 mmol) was s t i r r e d with 

g l y c y l g l y c i n e (1.06 g , 8.00 mmol) d i s s o l v e d in IN NaOH (8 ml) f o r 24 hours. 

The reac t ion was quenched with cone. HCI (5 ml) whereupon a white p r e c i p i t a t e 

appeared. The product was c o l l e c t e d by suct ion f i l t r a t i o n a f t e r being placed 

in a r e f r i g e r a t o r f o r 2 hours. Add i t iona l product was obtained by e x t r a c t i n g 

the f i l t r a t e with ethyl ace ta te . Weight of the crude product was 1.53 g 

(84%). R e c r y s t a l l i z a t i o n from 95% ethanol gave small c o l o u r l e s s c r y s t a l s . 

Azidotris(dimethylaminophosphoniurn) H e x a f l u o r o p h o s p h a t e , 6 8 (37) 

[ ( M e 2 N ) 3 P - N 3 ] P F 6 

Tris(dimethylaminophosphine) (10 g , 0.061 mol) was d i s s o l v e d in 

i c e - c o l d anhydrous ether (250 m l ) , and the temperature maintained at 0°C in 

an ice -water bath. Bromine (10 g , 0.063 mol) was added slowly and with 

e f f i c i e n t mixing (Caut ion: t h i s i s an extremely vigorous r e a c t i o n , and 

appropr ia te safe ty precaut ions must be taken) . A f t e r a few minutes, sodium 

hexafluorophosphate (10.4 g , 0.061 mol) in 250 ml water was added. The 

p r e c i p i t a t e of [ (Me 2 N) 3 P-Br ]PFg was f i l t e r e d , and washed with water and ether 

u n t i l a l l the excess bromine was removed. A f t e r the l i g h t ye l low s o l i d was 

d r ied overn ight in a vacuum desiccator- over i t was d i s s o l v e d in 200 ml 

acetone ( d i s t i l l e d from KMn04) and an excess of sodium az ide (5 g) was added. 
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The s o l u t i o n was s t i r r e d overnight and NaBr and excess NaN 3 f i l t e r e d o f f . 

A f t e r so lvent was removed with a ro ta ry evaporator , the product was obtained 

as a white s o l i d which was r e c r y s t a l l i z e d from acetone/e ther i n 83% y i e l d . 

Mel t ing point > 250°C . 

IR (nujol mu l l ) : v (N 3 ) = 2173 cm" 1 ( l i t . 2176 c m " 1 ) . 6 8 

NMR (DMS0-d 6): 2.82 (double t , J = 11 Hz, 6, C-(-CH 3 ) 2 ) ( l i t . 2.79 

ppm, J = 11 H z ) . 6 8 

l - E t h o x y c a r b o n y l - 2 - e t h o x y - l , 3 - d i h y d r o q u i n o l i n e , 1 9 1 (27, EEDQ) 

6=0 
OEt 

A s o l u t i o n of absolute ethanol (92 ml , 2.0 mol) and t r i e thy lamine 

(155 m l , 1.07 mol) was added dropwise to a s t i r r e d and we l l - coo led ( - 5 ° C ) 

mixture of ethyl chloroformate (97 m l , 1 mol) and qu ino l ine ( tech . grade) 

(130 g , 1.0 mol) in benzene (300 ml ) . A f t e r s t i r r i n g f o r 1 hour more, the 

mixture was washed with water and the aqueous layer ext racted with chloroform 

(300 ml ) . The combined organic s o l u t i o n was evaporated to dryness under 

reduced pressure . On the add i t ion of ether (^50 ml) to the r e s i d u e , an 

o f f -whi te s o l i d separated and a f t e r standing in the c o l d , i t was c o l l e c t e d 

and washed with co ld e ther . R e c r y s t a l 1 i z a t i o n from ether a f forded large 

c o l o u r l e s s c r y s t a l s in 65% y i e l d . 
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N N 

A mixture of hydra laz ine .HCl (5.668 g, 28.8 mmol), t r i e t h y l 

orthoformate (60 m l ) , and t r i e thy lamine (4 ml) v/as re f luxed f o r 3 hours , and 

s t i r r e d at room temperature f o r 1 day. The s o l i d was f i l t e r e d o f f , washed 

with t r i e t h y l or thoformate, and r e c r y s t a l l i z e d from water and from methanol. 

The product was obtained as long c o l o r l e s s needles . A n a l . C a l c d . f o r 3-H-TAP: 

C, 63 .5 ; H, 3 .6; N, 33.0. Found C, 63.5; H, 3 .6; N, 33.0. 

Mel t ing po in t : 186.5 - 1 8 7 . 5 ° C . 

UV ( C H 9 C 1 9 ) , X m 3 v (nm): 234 s h , 239, 246, 264, 274, 284 s h . 
L. l max 

NMR (CDC1 3 ) : 7.92 ( m u l t i p l e t , 3, H-7, 8, 9 ) , 8.65 ( s i n g l e t - m u l t i p l e t , 

2, H-6, 10) , 9.04 ( s i n g l e t , 1, H-3). 

Mass spectrum, m/e (Re l . I n t e n s i t y ) : Parent and Base at 170; 

170 (100),129 (2) , 116 (4) , 115 (33) , 114 (9) , 102 (2) , 88 (15) , 76 (4) . 

0 
M 

3-Aminomethyl -s -Tr iazolo[3 ,4 -a ]phtha1az ine . HOCCF, 

3- (N-B0C-gly) -TAP (100 mg) was d i s s o l v e d in 50% (V/V) t r i f l u o r o a c e t i c 

ac id (2 ml) in C H ^ C ^ . The deprotect ion of the BOC-group was monitored by TLC 

on s i l i c a gel GF with CHCl 3-MeOH (10:1) developer . When deprotect ion was 

completed (approx. 10 mins ) , the s o l u t i o n was concent ra ted , and the product • 

was p r e c i p i t a t e d by adding ^ C ^ . The y i e l d was 95%. 

UV (H 2 0) , X m a x (nrn): 233 s h , -238, 244, 262, 271 , 281. 

Mass spectrum, m/e (Re l . I n t e n s i t y ) : Parent and Base at 199; 199 

(100), 198 (53) , 133 (10), 171 (47), 149 (9) , 145 (10), 129 (22), 117 (11), 

115 (16) , 102 (11). 
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3 - M e t h y l - s - T r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e Hydrochlor ide 

N N.HCI 

_ II J l 

1-Hydrazinophthalazine hydrochlor ide (0.485 g , 2.47 mmol) in 

g l a c i a l a c e t i c ac id (50 ml) was re f luxed f o r 4 hours. Excess a c e t i c ac id 

was removed from the l i g h t blue s o l u t i o n under reduced p r e s s u r e , and the 

product d r i ed in vacuo f o r 18 hours. Y i e l d of 3-Me-TAP.HCl = 0.505 g (93%). 

Mel t ing po in t : 233 - 245°C dec. 

NMR (DMS0-d 6 ): ^8.15 ( m u l t i p l e t , 3, H-7, 8 , 9 ) , 8.59 (doublet , 

J i 7 Hz, 1, H-10), 9.17 ( s i n g l e t , 1, H-6), 9.71 ( s i n g l e t , 1, H-3). 

3-Methyl - s - T r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e t t ' + 

N N 

1-Hydrazinophthalazine (0.993 g , 5.05 mmol) in t r i e t h y l o r t h o a c e t a t e 

(15 ml) was heated to r e f l u x f o r 1 hour. The product separated from the g o l d -

co lored reac t ion mixture as ye l low ish needles and was r e c r y s t a l l i z e d from 

water conta in ing a t race of NaOH, as c o l o r l e s s needles in 96% y i e l d . 

Mel t ing po in t : 167 - 169°C. 

UV (MeOH), A (nm): 236 s h , 240, 248, 265, 275, 285 s h . max 

NMR (CDC1 3 ) : 2.78 ( s i n g l e t , 3, C H 3 ) , 7.84 ( m u l t i p l e t , '3, a romat ic ) , 

8.58 (poss ib le double t , 2, a romat ic ) . 

Mass spectrum, m/e (Re l . I n t e n s i t y ) : Parent and Base at 184; 

184 (100), 156 (7) , 155 (8) , 129 (11), 116 (11), 115 (82), 114 (20), 102 (8) , 

88 (26), 76 (9) . 
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+ II 

M l anine Methyl Es te r Hydroch lor ide , H 3 N(CH 2 ) 2 C0CH 3 CI" 

Hydrogen c h l o r i d e was bubbled through a suspension of B-a lanine 

(17.8 g , 0.200 mol) in dry methanol (300 ml) at 0°C u n t i l the s o l i d had 

d isso lved completely and the s o l u t i o n was saturated with HCI. The s o l u t i o n 

was s t i r r e d at room temperature f o r 18 hours and then ro tary evaporated to 

dryness. The product was r e c r y s t a l l i z e d from e thano l -e ther in 80% y i e l d . 

0 
3-Alanine Iso-Propyl Ester Hydroch lor ide , H 3 N ( C H 2 ) 2 C 0 C H ( C H 3 ) 2 CI" 

Hydrogen ch lo r ide was bubbled through a suspension of e -alanine 

(17.8 g , 0.200 mol) in iso-propanol (200 ml) at 0°C f o r 2 hours. The mixture 

was then s t i r r e d f o r 1 day at room temperature when a l l s o l i d d i s s o l v e d . 

The solvent was removed by ro tary evaporat ion and the product r e c r y s t a l l i z e d 

from e thanol -e ther in 85% y i e l d . 

1-Hydrazinophthalazine (Hydralazine) 

1-Hydrazinophthalazine HCI (Hydralazine HCI, Apreso l ine HCI ; 

Sigma, CIBA Pharm Co.) (washed with CHC1 3 and r e c r y s t a l l i z e d from CH-jOH) 

was d i s s o l v e d in a minimum volume of hot water and n e u t r a l i z e d with a 

s t o i c h i o m e t r i c amount of IN NaOH s o l u t i o n . The s o l u t i o n was immediately 

extracted with chloroform under an i n e r t atmosphere (Note: the e x t r a c t i o n 

procedure i s not very e f f i c i e n t ) . The organic phase was d r ied with 

anhydrous Na 2S0^ and concentrated to dryness by ro ta ry evaporat ion with as 

l i t t l e heating as p o s s i b l e . Hydralazine decomposit ion products may be 

sometimes seen as a dark band of mater ia l in the f l a s k . The impur i t ies 

p r e c i p i t a t e from s o l u t i o n before the bulk of hydra laz ine when the s o l u t i o n 

i s concentrated and may thus be separated e a s i l y from the hydra laz ine . 

The f ree -base hydra laz ine was d r ied under reduced pressure and was used 

immediately , or stored at 5°C in vacuo or under an i n e r t atmosphere. 
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6.3 COUPLING REACTIONS WITH THE ISOXAZOLIUM SALT METHOD 

Synthesis of 3-(N-Ac-met)-TAP in A c e t o n i t r i l e So lu t ion 

N-acety l -DL-methionine (0.319 g , 1.67 mmol) was d i s s o l v e d in warm 

a c e t o n i t r i l e (10 ml) conta in ing t r ie thy lamine (0.175 g , 1.72 mmol), cooled to 

0°C and s t i r r e d with a suspension of p u r i f i e d NEPIS (17) (0.424 g , 1.68 mmol) 

in i c e - c o l d a c e t o n i t r i l e (10 ml ) . A f t e r a l l s o l i d had d i s s o l v e d (1 hour ) , 

hydralaz ine HCI (0.326 g , 1.66 mmol) was added together with t r ie thy lamine 

(0.166 g , 1.64 mmol), and the reac t ion mixture s t i r r e d at room temperature. 

A f t e r 2 days a l i g h t yel low s o l i d was removed by f i l t r a t i o n . UV spect ra of 

the s o l i d in methanol showed bands at 263, 278, and 318 nm. The s o l u t i o n 

was concentrated to an orange syrup which was d i s s o l v e d in methylene c h l o r i d e 

and extracted with water. Most of the co lour i s t rans fe r red to the aqueous 

phase. On r e - e x t r a c t i n g the organic l ayer with water, some product i s l o s t 

in to the aqueous phase. The CH^Cl^ s o l u t i o n was extracted with saturated 

NaCl s o l u t i o n , dr ied with anhydrous sodium s u l f a t e , and concentrated to 

dryness. The crude product was obtained in 50-60% y i e l d . 

Mel t ing po in t : 166 - 167°C. 

UV ( C H 2 C 1 2 ) , A m a x (nm): 237 s h , 243, 252, 264, 278. 

Mass spectrum, m/e (Re l . I n t e n s i t y ) : Parent at 315, Base Peaks at 

240 and 197; 315 (11) , 253 (11), 245 (5 ) , 241 (16) , 240 (100), 229 (6 ) , 

223 (5) , 211 (17), 198 (17) , 197 (100), 183 (9) , 170 (25) , 144 (5) , 129 (11) , 

117 (5 ) , 115 (9) , 102 (7 ) , 89 (3) . 

High r e s o l u t i o n mass spectrum: C a l c d . for C ^ H ^ N g O S , 315.1154. 

Found 315.1152. 
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Synthesis of 3 - (N -B0C-g ly ) -TAP in DMF So lu t ion 

A s o l u t i o n of N-BOC-glycine (0.300 g , 1.71 mmol) in d r y , p u r i f i e d 

DMF (2 ml) conta in ing t r ie thy lamine (0.24 m l , 1.7 mmol) was s t i r r e d with a 

suspension of p u r i f i e d NEPIS [17) (0.434 g , 1.71 mmol) in dry DMF (3 ml) at 

0 ° C . A f t e r 1 hour, a l l the s o l i d d i s s o l v e d and hydralazine.HCI (0.337 g , 

1.71 mmol) and t r ie thy lamine (0.24 m l , 1.7 mmol) was added to the reac t ion 

mixture. The s o l u t i o n was s t i r r e d f o r 2 days at room temperature, and then 

f i l t e r e d . The white s o l i d thus obtained was shown by nmr and mass s p e c t r o ­

metry to be Et^N.HCI. The lack of any UV absorpt ions i n d i c a t e d the absence 

of undissolved hydra laz ine .HCI . A f t e r DMF was removed from the f i l t r a t e 

under reduced p ressure , the res idue was d i s s o l v e d in CH2d2> and extracted 

with IN HCI and water. The C H 2 C I 2 s o l u t i o n was dr ied over anhydrous MgSO^, 

reduced to dryness , and the l i g h t ye l low res idue washed with ether to remove 

most of the coloured i m p u r i t i e s . Y i e l d of crude 3 - (N -B0C-g ly ) -TAP = 0.450 g 

(88%). R e c r y s t a l l i z a t i o n from methanol-hexane gave f l u f f y white f l akes of 

3 - (N -B0C-g ly ) -TAP which showed only one spot by TLC on s i l i c a gel GF with 

CHCl 3/MeOH (10:1) . 

Mel t ing po in t : 166 - 167°C. 

UV ( C H 2 C 1 2 ) , X m a x (nm): 238 s h , 243, 251.5, 267, 277, 288 s h . 

NMR ( C D C I 3 ) : 1.47 ( s i n g l e t , 9, C ( C H 3 ) 3 ) , 4.93 (double t , J = 6 Hz, 

2, C H 2 ) , 5.51 (broad s i n g l e t , 1, NH), 7.9 ( m u l t i p l e t , 3 , a romat ic ) , 8.66 

( s i n g l e t - m u l t i p l e t , 2, a romat ic ) . 

Mass spectrum, m/e ( R e l . I n t e n s i t y ) : Parent at 299, Base at 243; 

299 (11) , 244 (22), 243 (100), 226 (20) , 199 (23), 198 (39), 183 (22) , 

172 (10), 171 (16), 145 (9) , 129 (10), 115 (9 ) , 102 (5) , 88 (5) . 

High r e s o l u t i o n mass spectrum: C a l c d . f o r C-j^H-j^N^O^, 299.1442. 

Found 299.1412. 
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6.4 COUPLING REACTIONS WITH THE EEDQ COUPLING REAGENT 

Synthesis of 3 - (N -Ac-g ly ) -TAP in A c e t o n i t r i l e So lu t ion 

EEDQ (27) (51 mg, 0.21 mmol) was added to a mixture of hydra laz ine 

(32 mg, 0.20 mmol) and N - a c e t y l - g l y c i n e (27 mg, 0.23 mmol) in a c e t o n i t r i l e 

(10 m l ) , and s t i r r e d at room temperature f o r 4 1/2 hours. The reac t ion 

mixture was f i l t e r e d to remove a yel low s o l i d which showed UV absorpt ion bands 

at 265 nm and 278 nrn, i n d i c a t i v e of decomposed h y d r a l a z i n e , and bands at 

239 nm and 248 nm i n d i c a t i v e of the TAP chromophore. Due to the apparent ly 

low concentra t ion of TAP in s o l u t i o n and in the s o l i d , no e f f o r t was made to 

work up the reac t ion mixture . 

Synthesis of 3 - (N-Ac-DL-a la ) -TAP in A c e t o n i t r i l e So lu t ion 

EEDQ (70 mg, 0.28 mmol) was s t i r r e d with a s o l u t i o n of hydra laz ine 

(45 mg, 0.28 mmol) and N -ace ty l -DL -a lan ine (48 mg, .37 mmol) in a c e t o n i t r i l e 

(10 ml ) . A f t e r 18 hours at room temperature, the s o l u t i o n was f i l t e r e d to 

remove p r e c i p i t a t e d s o l i d . UV spect ra of the s o l u t i o n showed a high concen­

t r a t i o n of TAP in add i t ion to the qu ino l ine by-product . The s o l u t i o n was 

reduced to d ryness , the r e s u l t a n t res idue d i s s o l v e d in water, and ext racted 

with ^ C ^ . UV spectra and TLC showed both q u i n o l i n e and TAP in the organic 

phase.- Solvent was removed from the CHgClg s o l u t i o n under reduced pressure , 

and the s o l i d obtained was washed with cyclohexane to remove a l l t races of 

q u i n o l i n e . A small amount of yel low impuri ty was removed from the crude 

3 - (N-Ac-DL-a la ) -TAP by preparat ive sca le TLC on s i l i c a gel G with e thano l . 

Mel t ing Point : ^215° dec. 

UV ( C H 9 C 1 9 ) , \ v (nm): 237 s h , 243, 251.5, 267, 287, 288 s h . c c max 

Mass spectrum, m/e ( R e l . I n t e n s i t y ) : Parent at 255, Base at 212; 

255 (47), 213 (18) , 212 (100), 198 (33), 197 (12) , 184 (7) , 172 (12), 171 (79) , 

145 (6) , 144 (7) , 129 (26), 117 (10 ) , 115 (14), 102 (11), 89 (11) , 76 (6) , 

69 (7) . 
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Synthesis of 3-(N-B0C-l_-ala)-TAP in Methylene Ch lor ide So lu t ion 

EEDQ (0.136 g , 0.552 mmol) w a s . s t i r r e d with a s o l u t i o n of hydra la ­

z ine (0.088 g , 0.55 mmol) and N-BOC-L-alanine (0.103 g , 0.546 mmol) in 

CH2CI2 (20 ml ) . Within 4 hours the reac t ion mixture showed good formation 

of TAP by UV spect roscopy, never the less , the reac t ion was continued f o r 

23 hours at room temperature. The C F U C ^ s o l u t i o n was extracted with d i l u t e 

HCT u n t i l a l l qu ino l ine was removed, then with 5% NaHCOg s o l u t i o n , and 

f i n a l l y d r ied over anhydrous sodium s u l f a t e . A f t e r so lvent was removed, 

crude 3 - ( N - B 0 C - L - a l a ) - T A P was obtained as a yel low sol id iim -150% y i e l d . 

UV ( C H 9 C 1 9 ) , X m a v (nm): 237 s h , 243, 252, 268, 278, 288 s h . 
L. c. max 



6.5 COUPLING REACTIONS WITH THE 

185 

ACYLOXYPHOSPHONIUM SALT METHODS 

6.5.1 The Kenner-Sheppard Reaction 

A s o l u t i o n of N - a c e t y l - g l y c i n e (0.340 g , 2.91 mmol) in d r y , 

d i s t i l l e d HMPA (2.9 ml) was added to a s o l u t i o n of r e c r y s t a l l i z e d tosy l 

c h l o r i d e (0.549 g , 2.88 mmol) in dry HMPA (4.64 g , 25.9 mmol) at 0 ° C . 

A f t e r 10 minutes, hydra laz ine .HCl (0.568 g , 2.89 mmol) and t r ie thy lamine 

(0.51 g , 5.0 mmol) were added, and the mixture was allowed to warm to room 

temperature. A f t e r 2 hours the reac t ion was checked by UV spectroscopy and 

TLC on s i l i c a gel G with ri-BuOH developer . Thin l a y e r chromatograms showed 

a large f luorescent spot i n d i c a t i v e of the TAP product . The TAP bands in 

UV spectra are p a r t i a l l y obscured by strong absorpt ions of the tosy l group. 

The r e a c t i o n was allowed to proceed overnight before undissolved s o l i d was 

f i l t e r e d . The s o l i d was predominantly hydra laz ine .HCl by i t s UV spectrum. 

Attempts to ex t rac t the 3 - (N-Ac-g ly ) -TAP product by ex t rac t ion of the HMPA 

s o l u t i o n with benzene, petroleum e ther , and d ie thy l ether were l a r g e l y 

u n s u c c e s s f u l . On ex t rac t ion of the HMPA s o l u t i o n with ^ C ^ some TAP was 

t r a n s f e r r e d into the C H 2 C I 2 l ayer together with a l l the co lored components 

of the reac t ion mixture. However, the ex t rac t ion of TAP in to CHgCl 2 s o l u t i o n 

was i n e f f i c i e n t , and no f u r t h e r e f f o r t was made to i s o l a t e the product . 
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6.5.2 The A z i d o - Tris(dimethylamino)phosphoniurn Hexaf1uorophosphate Method 

[ ( M e 2 N ) 3 P - N 3 ] P F 6 (37) (0.072 g , 0.21 mmol) was added over a per iod 

of 1 - 1 1/2 hours to a s t i r r e d s o l u t i o n of N -BOC-glycine (0.036 g , 0.21 mmol) 

and t r ie thy lamine (33 y l ) in DMF (10 ml) at - 1 5 ° C . A f t e r 1 hour, hydra laz ine 

HCl (0.040 g , 0.20 mmol) and t r ie thy lamine (60 pi) were added, and the 

coupl ing reac t ion continued under an argon atmosphere f o r an add i t iona l 

4 hours at -15°C and 15 hours at room temperature. Thin layer chromatograms 

of the reac t ion mixture showed a low concentrat ion of the f l u o r e s c e n t TAP 

product . There was no evidence of 3 - ( N -B0C-g ly ) -TAP in UV spect ra because of 

the high UV c u t - o f f of DMF. However, hydra laz ine decomposit ion products 

were evident by absorpt ion bands at 278 nm and 286 nm. 

A coupl ing reac t ion in Methyl C e l l o s o l v e was conducted under 

i d e n t i c a l cond i t ions as the reac t ion in DMF and s i m i l a r r e s u l t s were obta ined. 

However, UV spectra of the Methyl C e l l o s o l v e reac t ion showed very l i t t l e 

decomposit ion of hydra laz ine a f t e r 20 hours of r e a c t i o n . 

6 .5 .3 The "Oxidat ion-Reduct ion Condensation" Method 

A suspension of N - a c e t y l - g l y c i n e (0.039 g , 0.34 mmol) and 

2 , 2 ' - d i t h i o d i p y r i d i n e (42, 2-DTP) (0.077 g , 0.32 mmol) in dioxane (2 ml) 

was s t i r r e d with a mixture of hydra laz ine .HCl (0.064 g , 0.32 mmol), t r i e t h y l ­

amine (0.039 g , 0.38 mmol), and t r iphenylphosphine (0.110 g , 0.419 mmol) in 

dioxane (5 ml) at 40°C f o r 20 hours. P r e c i p i t a t e d s o l i d was removed by 

s o l u t i o n f i l t r a t i o n and was shown by i t s UV spectrum to conta in predominantly 

decomposed hydra laz ine U m a x (nm): 267, 278, 317). NMR and mass spect ra 

ind ica ted that the s o l i d a l s o contained 3 - ( N - A c - g l y ) - T A P and E t o N . H C l . 

TLC on S i l i c a Gel GF developed with n-BuOH showed a low concentra t ion of 

TAP product in the s o l u t i o n . 
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6.5.4 The Tr iphenylphosphi te - Imidazole Method 

In view of the large number (24) of reac t ions conducted with the 

M i t i n 7 1 procedure under s i m i l a r c o n d i t i o n s , only one coupl ing r e a c t i o n 

t y p i c a l of those used in t h i s study w i l l be d e s c r i b e d . 

Synthesis of 3 - (N-Z -g ly ) -TAP 

A mixture of N -Z -g lyc ine (0.307 g , 1.47 mmol), hydralazine.HCI 

(0.290 g , 1.48 mmol), t r ipheny lphosphi te (0.478 g , 1.54 mmol), and t r i e t h y l ­

amine (0.21 ml) was d i s s o l v e d in dry DMF (5 ml ) . A s o l u t i o n of imidazole 

( r e c r y s t . toluene) (0.202 g , 2.96 mmol) in DMF (7 ml) was added to the other 

reagents , and the mixture s t i r r e d at 4 0 ° C . TLC of the reac t ion mixture 

showed the presence of TAP even before the s o l u t i o n was heated . / A f t e r 

heating f o r one day, the s o l u t i o n was f i l t e r e d and reduced to dryness under 

reduced pressure . UV spect ra of the s o l i d f i l t e r e d from the s o l u t i o n showed 

the presence of undissolved hydra!azine.HCI and a phosphorus d e r i v a t i v e . 

The syrup obtained from concentra t ing the s o l u t i o n was d i s s o l v e d in CHgClg 

and extracted with 1M Ua^CO^ and 0.7N HCI r e s p e c t i v e l y . The o i l y res idue 

which was obtained a f t e r CHgCl 2 was removed by rotary evaporat ion c r y s t a l ­

l i z e d on s tand ing . The crude product was r e c r y s t a l l i z e d from ethanol 

s o l u t i o n . i n 60% y i e l d . 
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6 .5 .5 The Pi pheny lphosphi te -Pyr id ine Method 

A mixture of N-BOC-L-alanine (0.289 g , 1.53 mmol), hydralazine.HCI 

(0.301 g , 1.53 mmol), and diphenyl phosphite ( p r a c t i c a l grade) (0.362 g , 

1.55 mmol) was s t i r r e d with pyr id ine (10 ml) f o r 2 days. Undissolved s o l i d 

(hydralazine.HCI) was f i l t e r e d o f f and the gold s o l u t i o n concentrated under 

reduced pressure . A s o l i d which c r y s t a l l i z e d from s o l u t i o n was shown by 

UV spectroscopy to be predominantly hydralazine.HCI a f t e r washing with 

acetone. The acetone wash contained mostly phosphorus d e r i v a t i v e s . There 

was no evidence fo r TAP product in the reac t ion mixture . 

6.6 COUPLING REACTIONS WITH THE CARBODIIMIDE METHOP 

It would be impract ica l to descr ibe a l l the coupl ing reac t ions 

conducted with carbodi imides s ince they t o t a l l e d some f i f t y in number. 

Instead, several experiments w i l l be descr ibed to i l l u s t r a t e c e r t a i n features 

and c h a r a c t e r i s t i c s of the procedures i n v o l v e d . 

Synthesis of 3 - ( N - Z - g l y c y l ) - T A P with PCC in DMA So lu t ion 

Tr ie thy lamine (1.10 m l , 7.89 mmol) was added to a mixture of 

N -Z -g lyc ine (1.076 g , 5.141 mmol), hydralazine.HCI (1.034 g , 5.257 mmol), and 

d icyc lohexy lcarbod i imide (si) (2.137 g , 10.36 mmol) in dry dimethylacetamide 

(50 ml) at 0 ° C . A f t e r 1 hour, a d d i t i o n a l hydralazine.HCI (1.015 g , 5.162 

mmol) and t r ie thy lamine (1.10 m l , 7.89 mmol) were added. The reac t ion 

mixture was s t i r r e d at 0°C f o r 4 hours before being al lowed to warm to room 

temperature. The reac t ion was continued f o r 1 day at room temperature, and 

5 hours to 60°C . On coo l ing the s o l u t i o n , d icyc lohexy lurea (DCU) c r y s t a l l i z e d 

o u t , and was removed by f i l t r a t i o n . Rotary evaporat ion of the DMA s o l u t i o n 

gave a syrup which s o l i d i f i e d when the l a s t t races of DMA were removed by 
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ro tary evaporat ion of the syrup d i s s o l v e d in methanol or C F L C ^ . The 

res idua l s o l i d was d i s s o l v e d in CI-^Cl^j the i n s o l u b l e DCU f i l t e r e d o f f , and 

the s o l u t i o n extracted with 2% MCI, 5% Nal-ICOg, and saturated NaCl s o l u t i o n s , 

r e s p e c t i v e l y . When the C H 2 C 1 2 s o l u t i o n was concent ra ted , more DCU c r y s t a l ­

l i z e d from s o l u t i o n which was removed by f i l t r a t i o n . The product was f u r t h e r 

p u r i f i e d by column chromatography on s i l i c a qel with CHCl^-MeOH (50:1) as the 

developing s o l u t i o n . The crude 3 - (N-Z -g ly ) -TAP thus obtained was leached 

with benzene to remove a l l remaining co lored i m p u r i t i e s . A n a l . C a l c d . f o r 

3 - ( N - Z - g l y ) - T A P : C, 64 .9; H, 4 . 5 ; N, 21.0 . Found C, 65 .0; H, 4 .5 ; N, 21.0. 

Mel t ing p o i n t : 147 - 148°C dec . 

U V i ( C H 2 C l 2 ) , A m a x (nm): 236 s h , 242.5, 251, 266, 276, 287 s h . 

NMR (CDC1 3 ) : 5.00 (doublet , J = 6 Hz, 2, C H 2 ) , 5.15 ( s i n g l e t , 2, 

C H 2 ( b e n z y l ) ) , 6.03 (broad s i n g l e t , 1, NH), 7.32 ( s i n g l e t , 5, C g H 5 ) , 7.95 

( m u l t i p l e t , 3, a romat ic ) , 8.59 ( s i n g l e t - m u l t i p l e t , 2, a romat ic ) . 

Mass spectrum, m/e ( R e l . I n t e n s i t y ) : Parent at 333, Base at 198; 

333 (63) , 242 (15), 225 (17), 199 (22) , 198 (100), 197 (47), 184 (95) , 

183 (32) , 171 (28) , 155 (6) , 129 (17) , 115 (14) , 103 (11), 102 (10) , 91 (71) , 

79 (18) , 77 (19), 66 (44), 51 (12). 

High r e s o l u t i o n mass spectrum: C a l c d . f o r C^gH^Ng0 2 , 333.1226. 

Found 333.1208. 
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Synthesis of 3 - (N-Ac-q ly ) -TAP with EDC in Methanol So lu t ion 

Tr ie thy lamine (0.071 m l , 0.51 mmol) was added to a mixture of 

N -Ac -g lyc ine (0.0399 g , 0.513 mmol), hydra laz ine .HCl (0.100 g , 0.510 mmol), 

and 1 -e thy l -3 - (3 -d imethy laminopropyl )carbodi imide hydrochlor ide {16, EDC) in 

dry methanol (15 ml) at 0 ° C . A l l the s o l i d s d i s s o l v e d to give a l i g h t ye l low 

s o l u t i o n . Reaction was continued f o r 4 hours at 0 ° C , and 18 hours at room 

temperature. The solvent was removed from the s o l u t i o n by ro tary evaporat ion 

to give a dry. s o l i d . The residue was shaken and sonicated with C H 2 C 1 2 u n t i l 

a l l TAP product was leached into s o l u t i o n . The C H 2 C 1 2 s o l u t i o n was streaked 

onto a s i l i c a gel TLC p la te (2000 y) and developed with CHCl 3-MeOH (10:1) . 

Two we l l -separa ted f l u o r e s c e n t bands were obtained which were i d e n t i f i e d as 

3-CH 3~TAP (upper band) and 3 - (N-Ac-g ly ) -TAP (lower band) by t h e i r nmr and 

mass s p e c t r a . 

Synthesis of 3 - (N-B0C-gly) -TAP with DCC in Methylene Ch lo r ide S o l u t i o n 

D icyc lohexy lcarbodi imide (51, DCC) (0.373 g , 1.81 mmol) was s t i r r e d 

with a mixture of f r e s h l y - p r e p a r e d hydra laz ine (0.255 g , 1.59 mmol) and 

N-BOC-glycine (0.280 g , 1.60 mmol) in dry C H 2 C 1 2 (25 ml) at 0 ° C . The 

r e a c t i o n was allowed to proceed f o r 1 hour at 0°C and 18 hours at room 

temperature before i t was f i l t e r e d to remove d i c y c l o h e x y l u r e a . The s o l u t i o n 

was extracted with IN H C l , 5% N a 2 C 0 3 , and saturated NaCl s o l u t i o n , respec ­

t i v e l y . A f t e r so lvent was removed by ro tary evapora t ion , the crude l i g h t -

ye l low 3- (N-B0C-gly) -TAP thus obtained was r e c r y s t a l l i z e d from methanol in 

76% y i e l d . 
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Synthesis of 3 - (N -Ac-g ly ) -TAP with DCC in Methanol So lu t ion 

Tr ie thy lamine (0.85 m l , 6.1 mmol) was added to a mixture of 

N - a c e t y l - g l y c i n e (1.444 g , 1.233 mmol), hydralazine.HCI (1.176 g , 5.983 mmol) 

and d icyc lohexy lcarbod i imide (51, DCC) (2.602 g , 12.61 mmol) in dry methanol 

(45 ml) at 0 ° C . UV spectra of the s o l u t i o n a f t e r 15 minutes showed the 

presence of protonated hydra laz ine . Excess t r ie thy lamine (0.85 ml , 6.1 mmol) 

was therefore added. The reac t ion was conducted at 0°C f o r 2 hours , and at 

ambient temperature f o r 18 hours. During t h i s time the c o l o r of the s o l u t i o n 

changed from ye l low to reddish-orange . When the r e a c t i o n mixture was 

re f luxed f o r 1 hour, UV spectra showed ^ 3x increase in the concentra t ion 

of TAP. However, TLC ind ica ted that r e f l u x i n g a lso e f fec ted the formation 

of 3-CH.j-TAP s i d e - p r o d u c t . The s o l u t i o n was concentrated to dryness and 

the res idue suspended in CHCl^. Undissolved d icyc lohexy lu rea (DCU) was 

f i l t e r e d o f f . The TAP product i s only moderately so lub le in CHClg. The 

chloroform s o l u t i o n was p u r i f i e d by column chromatography on s i l i c a gel 

developed i n i t i a l l y with pure CHC1 ^» then with a CHClg-MeOH mixture whose 

composit ion var ied from a r a t i o of 50:1 to 20:1. Crude 3 - (N-Ac-g ly ) -TAP was 

obtained as a l i g h t ye l low s o l i d . C r y s t a l l i z a t i o n from HgO-EtOH a f f o r d 

white needles of pure 3 - ( N - A c - g l y ) - T A P . A n a l . C a l c d . f o r 3 - ( N - A c - g l y ) - T A P . 

1/2 H 2 0: C, 57.6; H, 4 .8 , N, 28.0 . Found C, 57.4; H, 4 .8 ; N, 28.0. 

Mel t ing po in t : 209 - 210°C dec. 

UV ( C H 2 C 1 2 ) , A m a x (nm): 236 s h , 242.5, 251, 267, 277, 287 s h . ' 

NMR (CDC1 3 ) : 2.11 ( s i n g l e t , 1, C H 3 ) , 5.07 (double t , J = 5 Hz, 2, 

C H 2 ) , 6.78 (broad s i n g l e t , 1, NH), 7.9 ( m u l t i p l e t , 3, a romat ic ) , 8.67 

( s i n g l e t - m u l t i p l e t , 2, a romat ic ) . 

Mass spectrum, m/e ( R e l . I n t e n s i t y ) : Parent at 241, Base at 198; 

241 (77), 199 (16) , 198 (100), 183 (7 ) , 171 (32) , 129 (11) , 117 (4) , 115 (4) , 

102 (4) . 

High r e s o l u t i o n mass spectrum: C a l c d . f o r C - ] 2 H 1 1 N 5 ° , 241.0964. 
Found 241.0965. 
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Synthesis of 3 - (N -B0C-g1y ) -TAP in A c e t o n i t r i l e So lu t ion 

A s o l u t i o n of N-BOC-glycine (0.258 g , 1.47 mmol) in a c e t o n i t r i l e 

(10 ml) conta in ing t r ie thy lamine (0.21 m l , 1.5 mmol) was- s t i r r e d with a 

suspension of p u r i f i e d NEPIS (17) (0.373 g , 1.47 mmol) in a c e t o n i t r i l e (10 ml) 

at 0 ° C . A f t e r 1 1/4 hours, hydra laz ine hydrochlor ide (0.307 g , 1.56 mmol) 

and t r ie thy lamine (0.22 m l , 1.6 mmol) were added and the mixture allowed to 

warm to room temperature. Undissolved h y d r a l a z i n e H C l was f i l t e r e d a f t e r 

18 hours, and the so lvent removed from the s o l u t i o n with a rotary evaporator . 

The residue -as d i s s o l v e d in C H 2 C 1 2 and extracted with 5% MaHCO^, 5% HCI, and 

H^O, r e s p e c t i v e l y . Ex t rac t ions were repeated u n t i l the aqueous phases 

showed no UV absorbing m a t e r i a l . However, during ex t rac t ions with 5% HCI, 

the TAP product was protonated and l o s t in to aqueous s o l u t i o n . Y i e l d of crude 

product = 0.132 g (30%). The work-up procedure in which 5% HCI was replaced 

with 1% or IN HCI gave higher y i e l d s of 3 - ( N - A c - g l y ) - T A P . 

Attempted Synthesis of 3 - (N-B0C-gly) -TAP in CH^CN-DMF So lu t ion 

A s o l u t i o n of N-BOC-glycine (0.265 g , 1.5. mmol in a c e t o n i t r i l e 

(5 ml) conta in ing t r ie thy lamine (0.21 m l , 1.5 mmol) was s t i r r e d with a 

suspension of NEPIS (l?) (0.383 g , 1.51 mmol) in a c e t o n i t r i l e (7 ml) at 0 ° C , 

and added a f t e r 1 hour to a suspension of hydra laz ine HCI (0.299 g , 1.52 mmol) 

in DMF (8 ml) conta in ing t r i e thy lamine (0.21 m l , 1.5 mmol). Almost a l l s o l i d 

d i s s o l v e d a f t e r the mixture was s t i r r e d f o r 18 hours at room temperature. 

Solvent was removed from the s o l u t i o n under reduced p r e s s u r e , and the s t i c k y 

res idue sonicated with 0.5N HCI (40 ml) to give an amorphous s o l i d . However, 

a f t e r a per iod of hours , a gas was evolved and most of the s o l i d d i s s o l v e d . 

L i t t l e TAP product could be ext racted from the aqueous s o l u t i o n with C H ^ C ^ 

or ethyl ace ta te . A f t e r the pH of the aqueous s o l u t i o n was adjusted to 7 .5 , 

TAP was extracted in to CH 2 CI ' 2 . TLC of the C H 2 C 1 2 s o l u t i o n showed predomi­

nantly 3-NH2CH2-TAP and only a small amount of 3 - ( N - B 0 C - g l y ) - T A P . 
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6.7 SOLID-PHASE STUDIES 

H y d r o x y m e t h y l - R e s i n , 1 1 6 P $ -CH 2 0H 

Chloromethyl -poly (s tyrene-co-1% div inylbenzene) (1.34 mmol of C l / g , 

200-400 mesh, Bio-Beads S - X l ; 29.3 g , 39.2 mmol) was suspended in Methyl 

C e l l o s o l v e (200 ml) and s t i r r e d with potassium acetate (10.Og, 102 mmol) at 

135°C f o r 70 hours. The r e s i n was c o l l e c t e d and washed s u c c e s s i v e l y with 

water and methanol. The product was s t i r r e d with f r e s h l y prepared 0.51N 

NaOH s o l u t i o n (200 m l , 101 mmol) f o r 72 hours, then f i l t e r e d , washed with 

water and methanol, and vacuum d r i e d . The r e s i n was used immediately f o r 

the preparat ion of methylchloroformyl r e s i n . 

IR (HCB m u l l ) : v (0 -H) , 3575 and 3385 cm" 1 ( l i t . 3610 and 

3448 c m " 1 ) . 1 0 7 

0 

M e t h y l c h l o r o f o r m y l - R e s i n , 1 1 6 P -CH 20C-C1 

Hydroxymethyl r e s i n (27.9 g) was t reated with 12.5% phosgene in 

benzene s o l u t i o n (200 ml ) . The s l u r r y was d i l u t e d f u r t h e r with benzene 

(50 ml) and s t i r r e d f o r 6 hours, fo l lowed by f i l t r a t i o n and washing with 

benzene and e ther . The r e s i n thus obtained was dr ied in vacuo and s tored in 

a vacuum d e s i c c a t o r over D r i e r i t e . Volhard t i t r a t i o n f o r c h l o r i d e ind ica ted 

a r e s i n capac i ty of 1.36 mmol of c h l o r i d e / g of r e s i n . 

IR (HCB m u l l ) : v(C=0),' 1772 cm" 1 ( l i t . 1779 c m " 1 ) . 1 0 7 

0 0 

R e s i n - A l a n i n e , P -Q-LOCNHCHCOEt s c | 
C H 3 

DL-Alanine ethyl es te r hydrochlor ide (1.37 g , 8.94 mmol) and 

t r ie thy lamine (2.0 m l , 36 mmol) were s t i r r e d fo r 23 hours at room temperature 

with chloroformylmethyl r e s i n (3.09 g , 4.20 mmol) suspended in dry chloroform 

(50 ml ) . The r e s i n was f i l t e r e d , washed with ch loro form, then resuspended in 
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dry chloroform (50 ml) and reacted with diethylamide (0.50 m l , 4.9 mmol) f o r 

4 hours. The r e s i n was washed with a ch loroform-ether mixture (concentrat ion 

gradient from 0 to 100% ether) and d r ied in vacuo. The r e s i n - a l a n i n e ethyl 

es te r was sapon i f i ed with 0.5N K0H (50 ml) in methanol-acetone (1:1) f o r 

21 hours, f i l t e r e d , a c i d i f i e d with d i l u t e H C l , and washed with a methanol-

ether mixture with a concentrat ion gradient of ether varying from 0 to 100%. 

The r e s i n was dr ied in vacuo f o r 18 hours. The carboxylate content by 

t i t r a t i o n with NaOH i s 0.63 mmol/g r e s i n . 

0 0 

R e s i n - g l y c i n e , PS-CH20C.NHCH2C0H 

Glyc ine ethyl es ter hydrochlor ide (1.60 g , 11.5 mmol) and t r i e t h y l ­

amine (5.0 m l , 36 mmol) were s t i r r e d f o r 21 hours at room temperature with 

chloroformylmethyl r e s i n (8.49 g , 11.5 mmol) suspended in dry chloroform 

(100 ml ) . The r e s i n was f i l t e r e d , washed with ch loroform, then resuspended 

in chloroform and s t i r r e d with diethylamide (1.0 m l , 9.7 mmol) f o r 5 hours 

to block unreacted ac id c h l o r i d e groups. The product was washed - i t h a 

mixture of chloroform and methanol whose composit ion was var ied from pure 

chloroform to pure methanol. The r e s i n was sapon i f i ed with 0.5N K0H (100 ml) 

in methanol-acetone (1:1) f o r 18 hours. A f t e r washing with a methanol-

ch loroform-ether mixture (mixture composit ion var ied from 100% CH^OH to 100% 

E t 2 0 ) , the r e s i n was suspended in 75 ml of a methanol-acetone mixture (2 :1) , 

and s t i r r e d with 12N HCl (1 ml) f o r 1 h o u r . . The r e s i n - g l y c i n e was washed 

with copious amounts of water, ethanol and e t h e r , then dr ied in vacuo. The 

carboxylate content by t i t r a t i o n with NaOH is 0.62 mmol/g r e s i n . 
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0 0 

R e s i n - g l y c y l g l y c i n e , P -CH0C0NHCH2C0NHCH2C0H 

G l y c y l g l y c i n e ethyl es ter hydrochlor ide (1.89 g , 9.63 mmol) and 

t r ie thy lamine (5.0 ml , 36 mmol) were s t i r r e d f o r 23 hours with c h l o r o f o r m y l -

methyl r e s i n (3.50 g , 4.75 mmol) suspended in dry chloroform, (100 ml ) . The 

res in was f i l t e r e d , washed with chloroform and e t h e r , and d r ied in vacuo. 

Tiie product was suspended in chloroform (75 ml) and reacted with diethylamine 

(0.50 ml , 4.9 mmol) f o r 5 hours to block unreacted ac id c h l o r i d e groups. 

A f t e r washing with chloroform and e t h e r , the r e s i n - g l y g l y O E t was d r ied by 

pumping on a vacuum l i n e . The r e s i n was sapon i f i ed with 0.5N NaOH (50 ml) 

in methanol-acetone (1:1) f o r 17 hours, then washed with water , methanol, and 

ether p r i o r to dry ing in vacuo. A n a l y s i s fo r c a r b o x y l i c ac id by t i t r a t i o n 

with NaOH gave a value of 0.19 mmol/g. The low value probably r e f l e c t s the 

g l y c y l g l y c i n e subs t i tuen t being present p r i m a r i l y as the sodium s a l t , and 

not n e c e s s a r i l y from low s u b s t i t u t i o n of d ipept ide onto the r e s i n . 

Coupling of R e s i n - g l y c i n e with Hydralazine using Iso-buty l Chloroformate 

Isobutyl chloroformate (5 g , 37 mmol) was s t i r r e d at - 8 ° C with a 

suspension of r e s i n - g l y c i n e (1.86 g , 0.689 mmol) in dry chloroform (25 ml) 

and t r i e thy lamine (5.0 ml ) . A f t e r one hour, the r e s i n was f i l t e r e d and 

washed with dry ch loroform. A co ld mixture of hydra laz ine hydrochlor ide 

(1.96 g , 10.0 mmol) in chloroform (100 ml) conta in ing t r i e thy lamine (1.56 m l , 

11.2 mmol) was added. The suspension was s t i r r e d fo r 1 hour at - 8 °C and 

f o r 19 hours at room temperature, f i l t e r e d , and s t i r r e d with 75 ml water f o r 

2 hours to remove any undissolved hydra laz ine h y d r o c h l o r i d e . The r e s i n was 

f i l t e r e d , v/ashed with water, acetone, ch loro form, and e the r , and d r i e d under 

reduced pressure . 
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Cleavage from the Res in: 2 -Aminomethy l -s -Tr iazo lo [3 ,4 -a ]phtha laz ine from  

the Coupling Reaction with Isobutyl Chloroformate as Carboxyl A c t i v a t i n g  

Agent fo r R e s i n - g l y c i n e 

Hydrogen bromide was introduced f o r 3 1/2 hours in to a suspension 

of r e s i n - 3 - g l y c y l - T A P i n ^ t r i f l u o r o a c e t i c ac id (5 ml) and the suspension was 

allowed to stand f o r 15 hours. The res in was removed by f i l t r a t i o n and washed 

with t r i f l u o r o a c e t i c a c i d . Evaporat ion of the f i l t r a t e under reduced pressure 

gave a l i g h t orange syrup. 

P u r i f i c a t i o n of the res idue by preparat ive sca le TLC on s i l i c a gel 

with CHC1 3 /CH 30H (10:1) gave a main f l u o r e s c e n t band at low R f which showed UV 

spectra c h a r a c t e r i s t i c of TAP, and a ye l low non- f luorescent band at high R f 

which showed a prominent band at 278 nm in the UV spectrum reminiscent of 

decomposed hydra laz ine (c f . Chapter 5) . The f l u o r e s c e n t band was extracted 

with methanol and p u r i f i e d two more times by preparat ive sca le TLC. A ye l low 

impurity was removed by washing the product with ch loroform. Comparison of 

UV and mass spect ra with those of authent ic 3-NH 2CH 2~TAP confirms the i d e n t i t y 

of the product . 

UV (MeOH), A m a v (nm): 235 s h , 241, 248, 265, 274, 285 s h . 

Mass spectrum, m/e (Re l . I n t e n s i t y ) : Parent and Base at 199; 

199 (100), 198 (59), 184 (15), 183 (15), 171 (48), 149 (13), 145 (15), 129 (24), 

117 (11), 115 (14). 

Coupling of R e s i n - g l y c i n e with Hydralazine using EEDQ 

l - E t h o x y c a r b o n y l - 2 - e t h o x y - l , 2 - d i h y d r o q u i n o l i n e (27, EEDQ) (0.249 g , 

1.01 mmol) was s t i r r e d at room temperature with r e s i n - g l y c i n e (1.61 g , 1.0 

mmol) suspended in dry te t rahydrofuran (25 ml ) . Tr ie thy lamine (0.40 ml) was 

added to a suspension of hydra laz ine .HCl (1.00 g , 5.09 mmol) in d r y , perox ide-

f ree THF (25 ml) under a n i t rogen atmosphere and the suspension f i l t e r e d . 
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A f te r the r e s i n - g l y c i n e was a c t i v a t e d f o r 45 minutes, the hydra laz ine s o l u t i o n 

was added under a n i t rogen atmosphere, and the mixture s t i r r e d f o r 21 hours. 

From the weight of hydralazine.HCI recovered , f ree -base hydra laz ine in THF 

s o l u t i o n was estimated to be 0.10 g (0.51 mmol). The r e s i n was f i l t e r e d , and 

washed with THF, methanol, and e ther . 

Cleavage from the Resin: 3 -Aminomethy l -s -Tr iazo lo [3 ,4 -a ]phtha laz ine from the 

Coupling Reaction with EEDQ as Carboxyl A c t i v a t i n g Agent fo r R e s i n - g l y c i n e 

Hydrogen bromide was bubbled f o r 4 hours in to a suspension of r e s i n -

3 -g lycy l -TAP in g l a c i a l a c e t i c ac id and the suspension was l e f t standing f o r 

24 hours. The r e s i n was removed by suct ion f i l t r a t i o n and washed with a c e t i c 

a c i d . Evaporat ion of the f i l t r a t e under reduced pressure gave a l i g h t orange 

syrup which showed r e l a t i v e l y c lean UV spectra in methanol s o l u t i o n charac­

t e r i s t i c of the TAP chromophore: A m a x (nm), 233 s h , 238, 245, 261, 271, 

281 s h . 

Coupling of R e s i n - g l y c i n e with Hydralazine using D icyc lohexy lcarbodi imide (51) 

Hydralazine hydrochlor ide (1.02 g , 5.19 mmol) was suspended in dry 

chloroform (50 ml) under a ni t rogen atmosphere, and s t i r r e d with t r ie thy lamine 

(0.72 m l , 5.2 mmol) f o r 1 hour. The undissolved hydralazine.HCI was removed 

by f i l t r a t i o n under N 2 with Schlenk g lass -ware , and the hydra laz ine s o l u t i o n , 

a f t e r coo l ing to 0°C was added to r e s i n - g l y c i n e (1.60 g , 1.01 mmol) with 

d icyc lohexy lcarbod i im ide (0.286 g , 1.39 mmol). The mixture was s t i r r e d at 0°C 

f o r 2 hours, and at room temperature f o r 15 hours. UV spectra of the s o l u t i o n 

showed cons iderab le hydra laz ine decomposit ion evidenced by a strong band at 

278 nm a f t e r overnight r e a c t i o n . Ref luxing the reac t ion mixture fo r 2 hours 

showed no change in the UV spectra of the s o l u t i o n . The r e s i n was f i l t e r e d , 

washed with ch loroform, methanol, and e the r , and dr ied in vacuo f o r 4 hours. 



198 

Cleavage from the Res in : 3-Aminomethyl -s-Tr iazo1o[3,4-a]phtha1azine from the  

Coupling Reaction with DCC as Carboxyl A c t i v a t i n g Agent f o r R e s i n - g l y c i n e 

Hydrogen bromide was bubbled fo r 3 1/2 hours in to a suspension of 

r e s i n - 3 - g l y c y l - T A P (1.63 g) in g l a c i a l a c e t i c ac id (10 ml ) . The suspension 

was allowed to stand f o r 16 hours, f i l t e r e d , and washed with a c e t i c a c i d . 

Evaporat ion of the s o l u t i o n in vacuo gave an orange sy rup , which on t r i t u r a t ­

ing with ch loro form, c r y s t a l l i z e d to a white s o l i d . UV spect ra of the s o l i d 

in methanol s o l u t i o n showed bands c h a r a c t e r i s t i c s of the c lean TAP chromo-

phore. 

Polyacrylamide Ac id Ch lor ide 

Carboxypolyacrylamide (Bio-Gel CM-2; 100-200 mesh, 5 meq/g, Na + 

form) (50 g , 250 meq) was suspended in Dioxane/2N NaOH (3:1) (250 ml) f o r 

2 hours, and in Dioxane/2N HCI (3:1) f o r 2 hours. The polymer was washed 

with water , acetone, and e ther , and d r ied in vacuo f o r 19 hours. The polymer 

thus p u r i f i e d was s t i r r e d f o r 3 1/2 hours in f r e s h l y d i s t i l l e d th iony l 

c h l o r i d e (conta in ing 5% pyr id ine ) (100 ml ) . The d e r i v a t i z e d product was 

f i l t e r e d , washed with dry benzene and e the r , and d r ied in vacuo fo r 18 hours. 

The polyacrylamide ac id c h l o r i d e was stored over d r i e r i t e . 

Ch lor ide A n a l y s i s of the Chioroformylmethyl Resin by the modif ied Volhard  

Method 1 9 2 

The chloroformylmethyl r e s i n (^200 mg) was hydrolyzed in pyr id ine 

(3 ml) f o r 3 hours at 100°C. The s o l u t i o n was t r a n s f e r r e d q u a n t i t a t i v e l y to 

a 125 ml Erlenmeyer f l a s k with 50% aqueous a c e t i c ac id (30 m l ) , and a c i d i f i e d 

with cone, n i t r i c ac id (5 ml ) . The c h l o r i d e was p r e c i p i t a t e d with 0.100N 

AgNOo (5.00 ml ) . The AgCI formed was coated with toluene (about a 1/4 inch 
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layer of toluene on the water sur face) and the excess AgNO^ b a c k - t i t r a t e d 

with standard 0.100N NH^SCN s o l u t i o n , using a saturated f e r r i c alum s o l u t i o n 

as an i n d i c a t o r . A red c o l o r , due to the formation of FelSCN)^, i nd ica ted 

that the end point has been reached. 

Ana lys is fo r c h l o r i d e content in P - ^ O C O C l was done in d u p l i c a t e , 

and agreed wi th in + 0.01 mmol C l / g r e s i n . Hydro lys is of the r e s i n was 

i n e f f i c i e n t with IN NaOH s ince the r e s i n f l o a t e d in th is medium, and tended 

to r i s e up the s ide of the con ta ine r . In a d d i t i o n , the r e s i n swel led poor ly 

in IN NaOH s o l u t i o n . 

A n a l y s i s of the Resin-Amino Ac id (peptide) by T i t r a t i o n with Hydroch lor ic 

Ac id 

The r e s i n (^500 mg) was suspended in 95% ethanol (25 ml) and 

standard 0.100N NaOH s o l u t i o n (25.00 ml) added. The mixture was heated to 

r e f l u x f o r 10 minutes, and cooled to room temperature. The excess base was 

b a c k - t i t r a t e d with 0.100N H C l , using phenolphthalein as i n d i c a t o r . A l l 

analyses were done in d u p l i c a t e , and u s u a l l y agreed wi th in + 0.02 mmol/g 

r e s i n . The t i t r a t i o n f o r ac id content i s i n d i r e c t l y a measure of the amino 

a c i d s u b s t i t u t i o n on the r e s i n . 



200 

6.8 TRANSITION METAL COMPLEXES AND HYDROLYSIS STUDIES 

Sodium T r i s c a r b o n a t o c o b a l t a t e ( l I I ) T r i h y d r a t e , 1 6 8 Na[Co(C03)3].3H20 

A s t i r r e d s l u r r y of sodium bicarbonate (42.0 g , 0.50 mol) in 50 ml 

of H 20 was cooled to 0°C and a s o l u t i o n of C o C l 2 . 6 H 2 0 (23.8 g , 0.10 mol) and 

30% H 2 0 2 (10 ml) in 50 ml of H 20 was added dropwise over a per iod of 20 mins. 

(Note: vigorous e f f e r v e s c e n c e ) . The o l i v e - g r e e n s l u r r y was al lowed to stand 

at 0°C f o r 1 hour with continuous s t i r r i n g . The product was f i l t e r e d and 

washed with three 10 ml por t ions of co ld H 2 0 . The complex was u s u a l l y used 

immediately f o r the preparat ion of c i s - g - [ C o ( t r i e n ) 0 H ( H 2 0 ) ] ( C 1 0 4 ) 2 , however, 

i t may be stored f o r fu ture use i f protected from moisture . 

g is -g -Carbonato t r ie thy lenete t raminecoba l t (111 ) Perchlorate Monohydrate 

[ C o ( t r i e n ) C 0 3 ] ( C 1 0 4 ) 2 . H 2 0 

Concentrated (60%) p e r c h l o r i c a c i d (15.2 ml) was slowly added to an 

i c e - c o l d s o l u t i o n of t r i e thy lenete t ramine (12.5 ml) in 75 ml of H 2 0 . The 

complete batch of f r e s h l y prepared N a 3 [ C o ( C 0 3 ) 3 ] . 3 H 2 0 was added and the 

mixture s t i r r e d for 30 minutes at 0 ° C , (Note: vigorous ef fervescence) and 

then warmed to 60°C fo r 30 minutes. A l i g h t purple s o l i d was removed from 

the hot s o l u t i o n by suct ion f i l t r a t i o n with a coarse , s i n t e r e d - g l a s s f u n n e l . 

The s o l u t i o n was concentrated to ^75 ml by ro tary evapora t ion , and then placed 

in the cold f o r 1 hour to complete c r y s t a l l i z a t i o n of the complex. The 

product was c o l l e c t e d by suct ion f i l t r a t i o n and washed with 95% methanol. 

The red s o l i d was d i s s o l v e d in hot water (35 ml ) , and sodium 

perch lora te (8 g) and methanol (15 ml) were added. The product r e c r y s t a l l i z e d 

on coo l ing and was f i l t e r e d and washed with 95% ethanol u n t i l the washing was 

c o l o r l e s s . One f u r t h e r r e c r y s t a l l i z a t i o n from water gave a n a l y t i c a l l y pure 

m a t e r i a l . 

Absorpt ion spectrum, A (nm): 506, 359. 



201 

T e t r a a q u o b i s ( s - t r i a z o l o [ 3 , 4 - a ] p h t h a 1 a z i n e ) n i c k e l ( I I ) Perch lora te 

[ N i ( 3 - H - T A P ) 2 ( H 2 0 ) 4 ] ( C 1 0 4 ) o 

On s t i r r i n g n icke l (II) perch lora te hexahydrate (1.101 g , 3.01 mmol) 

with 10 ml 2,2-dimethoxypropane a dense immiscible o i l y layer of the metal 

s a l t was formed. Within an hour, the c o l o r changed from green to ye l low . 

A f t e r 1 1/2 hours , a s o l u t i o n 3-H-TAP (0.881 g, 5.18 mmol) in methanol was 

added to the mixture . A pale blue s o l i d p r e c i p i t a t e d slowly as a f i n e powder. 

The reac t ion mixture was s t i r r e d overn igh t , f i l t e r e d , a n d the s o l i d washed 

with methanol ( s l i g h t l y s o l u b l e ) . The product was d r ied in vacuo a t room 

temperature fo r 13 hours over D r i e r i t e . A n a l . C a l c d . f o r [ N i ( 3 - H - T A P ) 2 ( H 2 0 ) 4 ] -

( C 1 0 4 ) 2 : C, 32 .3; H, 3 .0; N, 16.7. Found C, 32.2; H, 3 .0; N, 16.7. 

D i a q u o t e t r a k i s ( s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e ) coba l t ( I I ) Perch lora te Mono- 

h ^ d r a t e [ C o ( 3 - H - T A P ) 4 ( H 2 0 ) 2 ] ( C 1 0 4 ) 2 . H 2 0 

Cobal t ( I I ) perch lora te hexahydrate (0.391 g , 1.07 mmol) was s t i r r e d 

with 20 ml 2,2-dimethoxypropane under a n i t rogen atmosphere f o r 2 hours. 

s - T r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e (0.726 g , 4.27 mmol) was d i s s o l v e d in 20 ml warm 

methanol and added to the s o l u t i o n of coba l t p e r c h l o r a t e . A tangerine 

p r e c i p i t a t e appeared slowly which was f i l t e r e d a f t e r two hours, washed with 

dry methanol and e t h e r , and dr ied under vacuum at room temperature f o r 18 

hours. The complex d id not show any d e f i n i t e melt ing p o i n t , but turned 

v i o l e t c a . 224°C . A n a l . C a l c d . fo r [ C o ( 3 - H - T A P ) 4 ( H 2 0 ) 2 ] ( C 1 0 4 ) 2 . H 2 0 : C, 43 .6; 

H, 3 .1 ; N, 22.6. Found: C, 43 .7 ; H, 3 .0 ; N, 22.6. 



202 

D i a q u o t e t r a k i s ( s - t r i a z o l o [ 3 , 4 - a j p h t h a l a z i n e ) n i c k e l ( I I ) Perch lora te 

l ^ ^ ^ l ? [ N i ( 3 - H - T A P ) 4 ( H 2 0 ) 2 ] ( C 1 0 4 ) 2 . H 2 0 

N icke l ( I I ) perch lora te hexahydrate (0.156 g , 0.455 mmol) was s t i r r e d 

in 5 ml 2,2-dimethoxypropane f o r one hour, dur ing which time the suspended 

s o l i d changed from a pale green c o l o r to orange. Methanol (1.5 ml) was added <• 

to d i s s o l v e a l l the s o l i d , and the deep orange s o l u t i o n was s t i r r e d fo r a 

fu r ther per iod of one hour. s - T r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e (0.308 g , 1.81 mmol) 

was d i s s o l v e d in 15 ml warm methanol and added to the s o l u t i o n of n icke l 

p e r c h l o r a t e . The c o l o r of the s o l u t i o n l ightened u n t i l i t was almost 

c o l o r l e s s , and a pale blue s o l i d g radua l ly p r e c i p i t a t e d from s o l u t i o n . A f t e r 

two hours, the s o l i d was f i l t e r e d , washed with dry methanol (the complex i s 

moderately s o l u b l e ) , and e ther , and d r ied in vacuo a t room temperature fo r 

18 hours. A n a l . C a l c d . f o r [ N i ( 3 - H - T A P ) 4 ( H 2 0 ) 2 ] ( C 1 0 4 ) 2 . H 2 0 : C, 43 .6; 

H, 3 .1 ; N, 22.6. Found C, 43 .8; H, 3 .0 ; N, 22.5 . 

D i a q u o t e t r a k i s ( s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e ) c o p p e r ( I I ) Perch lora te 

[ C u ( 3 - H - T A P ) 4 ( H 2 0 ) 2 ] ( C 1 0 4 ) 2 

Copper(I I ) perch lora te hexahydrate (0.245 g , 0.662 mmol) was 

s t i r r e d with 5 ml 2,2-dimethoxypropane f o r two hours. s - T r i a z o l o [ 3 , 4 - a ] -

phthalaz ine (0.449 g , 2.64 mmol) was d i s s o l v e d in 15 ml warm methanol and 

added to the blue o i l of copper p e r c h l o r a t e . A l i g h t blue p r e c i p i t a t e was 

formed which immediately changed to purp le . The p r e c i p i t a t e was f i l t e r e d , 

and on washing with methanol (the complex i s s l i g h t l y s o l u b l e ) , the blue 

co lo r re turned. On drying in vacuo a t room temperature fo r 43 hours, the 

product was obtained as a purple amorphous s o l i d . On exposure to moist a i r 

or s o l v e n t s , the co lour changed to l i g h t b lue . The in te rconvers ion between 

the purple and blue forms appear to be r e a d i l y r e v e r s i b l e . A n a l . C a l c d . f o r 

[ C u ( 3 - H - T A P ) 4 ( H 2 0 ) 2 ] ( C 1 0 4 ) 2 ' ( p u r p l e form): C, 44 .2; H, 2 .9 ; N, 22.9 . 

Found: C, 44 .0; H, 2 .8 ; N, 22.9 . 
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H e x a k i s ( s - t n ' a z o 1 o [ 3 , 4 - a ] p h t h a l a z i n e ) c o b a l t ( H I ) Perchlorate Monohydrate 

[ C o ( 3 - H - T A P ) g ] ( C I 0 4 ) 3 . H 2 0 

Sodium t r is (carbonato )coba1ta te ( I I I ) (0.749 g , 1.55 mmol) and 

' s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e (1.582 g , 9.30 mmol) were suspended in 75 nil 

95% ethanol and 10 ml 2M HCIO^. The suspension v/as heated to r e f l u x f o r 3 

hours, during which time the c o l o r of the s o l i d changed from dark green to 

a l i g h t brown. Reaction was continued fo r an hour at room temperature. 

The s o l i d was f i l t e r e d , washed with 95% ethanol and e t h e r , and d r ied in 

vacuo at room temperature f o r 18 hours. A n a l . C a l c d . fo r [Co(3-H-TAP)gj -

( C 1 0 4 ) 3 . H 2 0 : C, ,46.5; H, 2 .7 ; N, 24 .1 . Found: C , 46 .5 ; H, 2 .9 ; N, 24.3. 

c - is -g -2 -an inomethy lpyr id ine ( t r ie thy lenete t ramine)coba l t (111 ) Perchlorate 

[Co( t r i en ) (2 -AMPy) ] (C10 4 ) 3 

Two equiva lents of 2M HC10 4 (2.3 ml) were added to 8 - [ C o ( t r i e n ) C 0 3 ] -

C10 4 .Hp0 (1.045 g , 2.731 mmol) and the s o l u t i o n warmed at 70°C u n t i l C 0 o 

ceased to be l i b e r a t e d (10 ni i n ) . On c o o l i n g , the pH of the s o l u t i o n was 

adjusted to about 4 with IM NaOH, and 2-aminomethylpyridine (2-AMPy) (0.296 g , 

2.74 mmol) added. A f t e r heating the s o l u t i o n to 70°C f o r 15 minutes, the 

s o l u t i o n was quenched to pH 4 with 2M HCIO^, and a purple p r e c i p i t a t e f i l t e r e d 

o f f . A f t e r the s o l u t i o n was concentrated by rotary evapora t ion , the product 

was loaded onto the top of a chromatography column conta in ing Sephadex CM-25 

ca t ion exchange r e s i n , and e luted with sodium perch lora te s o l u t i o n (0 .1-2.0M). 

If a s u f f i c i e n t l y long column i s used, two isomers of the product can be 

obtained as separate orange bands. Sodium perch lora te impuri ty was removed by 

concentrat ing the e luents conta in ing the complexes and c r y s t a l l i z i n g the NaClO^ 

from s o l u t i o n whi le rep lac ing the water with methanol. The s o l i d thus obtained 

always contained some i laCl0^- impur i ty , however. 

Absorpt ion spectrum, X m a x (nm): 1st isomer e l u t e d , 342 and 471. 
2nd isomer e l u t e d , 339 and 467. 
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(3-Acetimi d o m e t h y l - s - t r i a z o l o [ 3 , 4 - a ] p h t h a l a z i n e ) t r i e t h y l e n e t e t r a m i n e -

coba l t ( I I I ) Perch lora te _ . . . . 

[ C o ( t r i e n ) ( 3 - ( N - A c - g l y ) - T A P ) J ( C 1 0 4 ) 2 

B- [Co( t r i e r . )C0 3 ]C10 4 .H z 0 (0.126 g , 0.329 mmol) was converted to 

3 - [ C o ( t r i e n ) ( 0 H 2 ) 2 ] 3 + with two equiva lents of 2.0M HC10 4 (0.33 ml ) . A f te r the 

evo lu t ion of C 0 2 ceased, the s o l u t i o n was heated to 60°C f o r 10 minutes. On 

c o o l i n g , the pH of the s o l u t i o n was adjusted to about 4 by a d d i t i o n of 1M NaOH, 

and 3 - (N -Ac-g ly ) -TAP (0.080 g , 0.33 mmol) was added. The pH of the s o l u t i o n 

was ra ised to 8.0 with NaOH s o l u t i o n . A f t e r heating the s o l u t i o n to 6 0 ° C , 

methanol was added to d i s s o l v e 3 - (N-Ac-g ly ) -TAP complete ly , and the reac t ion 

continued f o r 1 hour at 60°C and 18 hours at room temperature. 3 - ( N - A c - g l y ) -

TAP tended to p r e c i p i t a t e from s o l u t i o n , so s u f f i c i e n t methanol was added to 

prevent t h i s from o c c u r r i n g . The s o l u t i o n was concentrated by ro ta ry evapora­

t i o n , and the components of the s o l u t i o n were separated by ion-exchange 

chromatography on Sephadex CM-25 using sodium perch lora te (0.1M - 0.5M) f o r 

e l u t i o n . Two orange bands which appear to be isomers of [ C o ( t r i e n ) ( 3 - ( N - A c -

- 2+ 
g ly ) -TAP) ] were e luted with 0.2 - 0.3M NaClO^. The products were contami­
nated with NaC10 4 , and p u r i f i e d by f r a c t i o n a l r e c r y s t a l l i z a t i o n from methanol 

s o l u t i o n , 

complexes, 

s o l u t i o n . However, i t was d i f f i c u l t to remove a l l t races of NaC10 4 from the 

Absorpt ion spectrum, A (nm): 1st isomer e luted ^355 - 360 s h , 
max 

and 472. 2nd isomer e luted ^355 sh and 475. 

2+ 

Hydro lys is Study on 3 - (N-Ac-g ly ) -TAP in the Presence of Co 

A s o l u t i o n conta in ing equimolar amounts of 3 - (N -Ac-g ly ) -TAP and 

C o C l 2 . 6 H 2 0 (0.0125 M) in 1.00 M HCI, and a cont ro l s o l u t i o n conta in ing only 

3 - (N-Ac-g ly ) -TAP at the same concentra t ion (0.0125 M) in 1.00 M HCI were 

incubated at 44°C . The progress of the h y d r o l y s i s reac t ions was monitored 

by TLC on s i l i c a gel GF a f t e r n e u t r a l i z a t i o n of a sample of the s o l u t i o n 
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with d i l u t e NaOH. The concentrat ions of the spots on the TLC p la tes were 

estimated v i s u a l l y . A f t e r 3 hours the degree of hydro lys is was s m a l l , and 

there was no s i g n i f i c a n t d i f f e r e n c e in the concent ra t ion of hydrolyzed product 

2+ 
conta in ing C6 ions from the contro l s o l u t i o n . 

Hydro lys is study on 3 - (N-Ac-g ly ) -TAP in the Presence of Cu*1 ' 

An aqueous s o l u t i o n conta in ing equimolar amounts of 3 - (N -Ac-g ly ) -TAP 

and CuSO^.SH^O was adjusted to pH 10 with concentrated NaOH (Cu p r e c i p i t a t e s 

as C u t O H ^ ) , and then to pH 0.8 with 5N HCl . A cont ro l s o l u t i o n conta in ing 

only 3 - (N -Ac-g ly ) -TAP at the same concentra t ion (0.0125 M) was t reated 

s i m i l a r l y with base and a c i d . Both s o l u t i o n s were incubated at 5 0 ° C . The 

rate of h y d r o l y s i s of the acetamidomethyl group was monitored by TLC with 

s i l i c a gel on a n e u t r a l i z e d sample. A f t e r 5 hours, TLC a n a l y s i s showed a 

r e l a t i v e l y low concentra t ion of hydrolyzed product , which however, was s l i g h t l y 

2+ 
higher in the s o l u t i o n conta in ing Cu i o n s . 

Attempted Hydro lys is of 3- (N-Ac-g1y)-TAP with a Cation-exchange Resin 

An aqueous s o l u t i o n of 3 - (N-Ac-g ly ) -TAP was e luted through a 

chromatography column conta in ing cat ion-exchange r e s i n (B io -Rad , Dowex 50W-X8; 

200-400 mesh, 5.1 meq/g, H + form) (2.335 g , 11.91 meq) with water. The e luent 

was monitored by UV spectroscopy and TLC on s i l i c a gel 3F. No UV-absorbing 

mater ia l passed through the column. The b.ound TAP was e lu ted from the column 

with saturated NaCl s o l u t i o n . UV spectra were c o n s i s t e n t with protonated 

3 - (M-Ac-g ly ) -TAP. There was no evidence of hydrolyzed product in th in layer 

chromatograms. The e luent gave negative r e s u l t s to the n inhydr in tes t f o r 

amines a f t e r n e u t r a l i z a t i o n of the s o l u t i o n . 
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