

THE EqUILIDKIUN PreSiUtes UF UXYGEN ON ACTIVATHO Chatcual by

Guy Waddington.

A Thesis submitted for the Desree of MASTER OF AITS in the Department
of
CHEMISTKY

The University of British Columbia
APKlL, 19E5.
TABLE OF CONTENTS
Introduction ..... 1
Object of InvestiEation ..... 3
Apparatus ..... 4
Experimental Deteils ..... 6
Results ..... 8
Discussion of Fesults ..... 10
Summary ..... $1 \%$
Bibliography ..... 13

#  <br> un activated chaticoal. 

## Introauction.


temperatures. He arrives at the conclusion that for oxyeen the equilibrium pressure, at pressures below $\sim .5 \times 10^{-3} \mathrm{~mm}$. is a linear function of the quantity of gas adsorbed, while at hicher pressures the equilibrium is better representea by an equation of the type

$$
\log _{10} \frac{\alpha}{P}=A_{0}-A_{1} \alpha
$$

where $A_{0}$ and $A_{1}$ are constants and $\alpha$ is the quantity adsorbed. This equation is more satisfactory than the familiar Freundich aasorption isotherm

$$
\alpha=k P^{\frac{1}{n}}
$$

Turnine from pressures to neats of adsorption we find that Keyes and Marshall have shown that the initial heat of adsorption of oxygen on activated charcoal reaches the high value of 72,000 calories per mole, while Marshall 6
and Eramston-Cook nave obtainea a value of 69,600 calories per mole for the heat of adsorption at zero concentration. This high value of the heat or adsurption arops off rapidly as the concentration increases, finally reaching a constant value of about $4,0 \cup 0$ calories per mole of adsorbed oxyeen. Keyes and Marshall have also shown that this high initial heat is much greater in the case of oxyeen, other gases not exhibiting such a high initial value.

This sugeests that the first oxygen added to a freshly "outgassed" charcoal surface is held in a different manner from that which is subsequently added. In fact, it seems that the reaction may be more a chemical combination
than an adsorption, or it might be that there are certain "active centers" on the charcoal which hold the adsorbed gas more tenaciously than does the remainaer of the surface. These views are supported by the work of Lowry and Hulett who found that only one half of the adsorbed oxygen could be recovered as such, the remainder comine off as carbon dioxide and carbon monoxide when outgassed at high temperatures.

## Object.

The fact that little work has leen aone upon equilibrium pressures at very low pressures, and that the heats of adsorption of oxyeen do not vary linearly at low pressures, suge ested that interesting results might possibly be obtained by measuring the equilibrium pressures of oxysen upon activated charcoal at very low pressures. And it was also thought, that by measuring the equilibrium pressures over a range of temperatures, that data would be obtained which would enable the heats of acisorption to be calculatea by means of the Clausius Clapeyron equation, which coula be applied in this case since any slight change in the pressure would have but little effect on the actual concentration of gas on the charcoal.

At the low pressures it was proposed to work with, any slight traces of impurity in the oxygen present woula invalidate the results. These impurities might be derived from the admitted oxyen, or might possibly be displacea from the charcoal surface by the adsorbed oxygen. A third
possibility presenüs itself; that carbon monoxiae ana cation dioxicie are formed as the oxyeen aasorbs on tne surtiace. Hence it was proposed to analyse the residual eases over the surface of the charcoal.

To sum up; in this investieation it is proposea to measure the equilibrium pressures of oxyeen on activatea charcoal over a range of temperatures, ana to aetermane tne composition of the residual sases.

## Apparatus.

The principle features of the aparatus used dire shown in the figure. The tube A containea chericaily pure potassium chlorate to which had ween adaed a trace of manganese dioxide. This was carefully meltea ana exhausteu several times in order to remove mater vapor ana other eases which mieht possibly be present. The bulb $B$, of c.lout ¿20 c.c. capacity, was used to store the oxyén. A buu c.c. moleod guage (D) was usea to measure the residual pressures or oxygen over the charcoal. Trils glace waio carefuliy standardized and was sensitive down to pressures of $1 v^{-5}$.in.. of mercury. The connection between $I$ and the mercury resevoir $F$ was all of glase, the level of the mercury beane controlled ky means of a water pump and ly damittant air throueh the stop cock as shown. The charcoal was continine in a quartz tube $E$. The quartz tube was linea with platinum in order to prevent any possible interaction between tne charcoal and silica while outeassine.


The charcoal used was a sample or cocoanut charcoal obtained from the National Carbon Co. It was washed in a Soxhlet extractor with hyarochloric acia and afterwards treated with hydrofIuoric acid, the final ash content being . $267 \%$. Before use it was outeassed for $\approx 0$ hours at $950^{\circ} \mathrm{C}$. After outyaswing it weifned $\alpha \mathbf{0} .75_{\mathrm{E}}$ grams. A platinum wound resistance iurnace was usea ior heating. An electrical pyrometer was used to check tne resistance furnace. Plotting amperes against temperature we obtain a straight line over the range $900^{\circ}$ to $1,000^{\circ} \mathrm{C}$. The electrical pyrometer had previously been checkea acainst a constant boiling point sulphur bath and had ween founa accurate to within one degree, hence tne outeassing temperature was known with consiaerable accuracy. The apparatus was exhausted with a mercury difiusion pump backeo. by a Cenco-Hyvac oil pump. With this arrangement it was possible to obtain a vacuum which woula resister no pressure whatever on the sensitive Mcleod euage employed, certainly below $10^{-6} \mathrm{~mm}$.

## Experimental.

After the apparatus had been set up, all accessible parts were baked and exhausted simultaneously in order to eliminate, as far as possible, gas adsorbea on the walls. This process was repeated until no appreciable pressure developed in the apparatus after standing for $\approx 4$ hours. It was found that much gas could be removed from the walls by means of a high frequency aischarge, this metrod being particularly applicable where a flame coula not ke used.

The charcoal was outsassed at $900^{\circ} \mathrm{C}$ until the pressure fell to approximately $6 \times 10^{-4} \mathrm{~mm}$. of mercury. This usually required from 6 to 8 hours. Prolonged heating failed to decrease the pressure further. In oraer to be sure that all undesirable gases were removed from the charcoal surface, it was saturatea with oxy€en several times, outgassing after each addition of oxygen.

The first attempt to measure the equilibrium pressure was performed as follows. Oxygen was admitted, sufiicient to produce a concentration of about $.6 \times 10^{6}$ moles of oxyen per gram of charcoal. This was given about o minutes to attain equilibrium and the pressure was read off on the guage. This value was apparently steady and showed but little drop with time. The stop-cock $G$ was then closed and the system evacuatea completely. G was then opened and after j minutes the pressure was read off. This value increasea slightly with time but never reached the pressure value ob-
tained immediately after admitting the oxysen. It is assumed that the true equilibriusn lies between these two pressures. A series of readings were made in this fashion from concentrations of $.6 \times 10^{-6}$ to $8 \times 10^{-6}$ moles per t. of charcoal. Above this concentration equilibriuri took longer to occur arid even with the concentrations used, it is believed that the values are not strictly accurate, owing to the fact that not sufficient time was eiven for a true equilibrium to occur.

At the higher concentrations used it was thought worth while to make a series of measurements on the rates of adsorption. This was done merely by takinc pressure measurements at regular time intervals until the pressure showed some signs of reaching a constant value.

A further careful atiempt was made to obtain an equiliurium pressure in the following manner. As before, a small amount of oxygen was added and the pressure observed, $G$ was closed, the system evacuated, $G$ was opened aeain ana the system allowed to come to equilibrium, the pressure being taken again. Next $G$ was closed again, the system evacuated and then oxyeen was admitted to the system at a pressure somewhat greater than the approximate equiliorium pressure. The stop-cock $G$ was then opened, and the pressure read atter 5 minutes. In this fashion fairly consistent and reproaucikle results were obtained. The last small adaition of oxyeen would have a negligible effect on the concentration of oxygen
already on the charcoal. These readings were repeated at $0^{\circ} \mathrm{C}$. and at room temperature which was $22^{\circ} \mathrm{C}$.

## Results.

The first series of equilibrium preswures ovtained are given in Table 1 and are plottea on Graph 1. Concentrations are expressed in moles of oxyeen per sram of charcoal. $P$ is the pressure after the oxyén hás stooa over the charcoal for $\overline{5}$ minutes, and $P$ is the pressure obtained after closing $G$, evacuating the system, tnen opening G and reading the pressure after equilibriun has been reached. As was statea before, the true equilibrium probably lies between these two values.

Table 1.

Moles per grani.
$.613 \times 10^{-6}$
$1.31 \times 10^{-6}$
$1.90 \times 10^{-6}$
$2.57 \times 10^{-6}$
$3.19 \times 10^{-6}$
$4.95 \times 10^{.6}$
$0.87 \times 10^{.6}$
$6.48 \times 10^{-6}$
$7.9 \times 10^{-6}$
$8.03 \times 10^{-6}$

P $\times 10^{-5} \mathrm{~mm}$.
2.191 .0
3. in 1.94
3.76 2. えu
3.89 2.40
3.80 2.26
8.07 4.0\%

2ん.1 10
21.313 .1
32.310 .5
38.417 .5

The results of the study of rates of adsorption are given in Table II and are plotted on Graph II. The
concentration of oxygen on the charcoal before measuremerts were commenced was $37.4 \approx \times 10^{-6} \mathrm{moles}$ per gram wnile the fraction admitted was $4.94 \times 10^{-6} \mathrm{~mole}$. The range of tre Micleod guage was such that measurements could only be commenced after 40 minutes.

Table II.
Time in mins. $P \times 10^{-4} \mathrm{~mm}$. Time in mins. $P \times 10^{-4} \mathrm{~mm}$.

| 40 | 242 | 100 | 34 |
| :--- | :---: | :---: | :---: |
| 40 | 185 | 110 | 28 |
| 50 | 146 | 120 | 24.0 |
| 50 | 116 | 130 | 23 |
| 60 | 95 | 140 | 20 |
| 60 | 83.5 | 100 | 18.3 |
| 70 | 70.0 | 160 | 15.0 |
| 75 | 63 | 180 | 13.1 |
| 80 | 46.5 | 200 | 12.1 |
| 85 | 42.0 | 00 | 0.90 |

The following are the results obtained from an
attempt to find the equilibrium pressure at two temperatures. The concentration of oxygen on the charcoal was $2.04 \times 10^{-6}$ moles per fram. It was allowed to stand for 24 hours, which at that concentration would be ample time for equilikrium to be attained. The stop-cock $G$ was closed and the systern exhausted, $G$ was then opened, a pressure of $1.88 \times 10^{-5} \mathrm{~mm}$.
was observed. The system was exhausted again and then oxygen at a pressure of $2.0 \times 10^{-5} \mathrm{~cm}$. was adaed, the pressure observed was $\approx \times 10^{-5} \mathrm{~mm}$. Further adaition of two small quantities of oxygen both gave pressures of $2.04 \times 10^{-5} \mathrm{~mm}$. The mean pressure of the four measurements being $2.04 \times 10^{-6}$ mm . at $2 \mathscr{L}^{\circ} \mathrm{C}$. The same procedure was repeatec at $0^{\circ} \mathrm{C}$, a mean pressure of $1.178 \times 10^{-6} \mathrm{~mm}$. being obtained. Applying these results to the integrated form of the clausius Clapeyron equation

$$
\log \frac{P_{1}}{P_{2}}=-\frac{Q}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

we obtain for the heat of adsorption 3,990 calories per mole.

## Discussion of Results.

From Graph I we see that at very Low concentrations the equilibrium pressure is a linear function of the arnount of gas adsorbed, while at hifher concentrations it departs from this linear relationship. It is possible that if more time had been allowed for the eases to come to equilibrium, that a linear relationship would have been observed even at the higher concentrations.

It was observed that only at concentrations below $2.5 \times 10^{-6}$ moles of oxygen, per gram of charcoal, was equilibrium attainea almost instantaneously. At low concentrations however, activated charcoal appears tu a very efficient means of creating high vacuum. In one particular
case the pressure was decreasea from .478 mm . to .0000 219rm. in one minute, i.e. the fraction of oxysen not adsorbed amounted to only .0000408 of the whole.

At hieher concentrations or oxyeen such as is shown in Table II, although the greater part of the gas eoes on very quickly there is always a certain fraction which adas on slowly in a regular manner. The rate of aecrease is not a linear function of pressure kut will very likely be a function both of pressure and oi the condition of the charcoal surface. These observations sugeest that the rapid adsorption is due to condensation taking place on the more active carbon centers first, this being followed by a surface rearrangement of the molecules or by a diffusion into the interior of the charcoal particles.

Another interestine observation made was that, when the concentration of oxygen on the charcoal was smail, there was a rapid drop to the equilibrium value, this being followed by a slow increase in pressure which occurred invariably when the sample was allowed to stand fior any length of time. For example, after standing for ic hours the pressure increased from $2.67 \times 10^{-5} \mathrm{~mm}$. to $5 \times 10^{-5} \mathrm{~mm}$. It seems probable that this is caused by the formation of carbon monoxide or carbon dioxide, althoueh this can not we steted definitely until an analysis of the gases has been carried out.

The heat of adsorption determined by means of the

Clausius Clapeyron equation does not agree with the hien initial heat found by Keyes and Narshall and by Marshall and Bramston-Cook, but does afree quite closely witn the final heat of 4,000 calories per mole iounc by these investigators.

## Summary.

1. At concentrations below c.j $\times 10^{-6}$ moles or oxyeen per gram of charcoal, adsorption is almost instantaneous.
2. At higher concentrations a large fraction of the oxygen goes on quickly, the remainaer leing adsurbea slowly.
3. At small concentrations, after attainino equilibriurn, a slow but regular increase in pressure ocuurs.
4. 

A. value of the heat of adsorption was obtained of 3,990 calories per mole.

## Bibliography.

1. Proceedings of the Royal Society. '74, L2E and lí', 1904.
. Nature, July 10̄, 1870.
2. Compte Renau 158, 861, 1614.
3. Zeitschrift fur Physikolische Chemie. 74, 1\&9, 1910.
4. Philosophical Nagazine. (7) 1 (I9之6) IO9
5. Journal of the American Chemical society. 49, 100, 1927.
6. Journal of the American Chemical Society. June, 1929.
7. N. K. Chaney, Transactions of the American Electrochemical Society. (36) 91, 1815.
8. Journal of the American Chemical Society. 4i, 1401, 1920.


