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Abstract

This thesis reports some quantum chemical calcu-
lations directed at elucidating principles useful for
refining calculations of electron distribution and other
properties for complex molecules. In this work calcu-
lations have been made with the valence bond and mole-~
cular orbital methods using minimum basis sets of Slater-
type orbitals on the ground states of the molecules HF
and HO, and on states of grt corresponding to the ionl-
zation of either a 1s electron or a 2p® electron from
fluorine in HF, Calculations have been made for mole~
cular energies, bond lengths, force constants, dipole
moments, and electron distributions as given by HMulli-
ken population analysis,

For HF, the perfect pairing model with molecule~
optimized exponents yields molecular energies about 6
kcal./mole lower than the comparable molecular orbital
calculations; the dipole moment calculated by the per-
fect pairing method is 0.3 D. closer to the experimen-
tal value (1.82 D.) than that caiculated by the molecu-
lar orbital method. The HF equilibrium bond length and
force constants are calculated to a reasonable degree
of accuracy with the two methods, although the first
ionization potentials seem to be better calculated by

the molecular orbital method either by Kooprman's Theorem
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or by taking the difference between the energies of the
two states,

The calculations reported in this thesis show
clearly that in general free atom exponents are not re-
liable for calculating molecuiar proverties, and this
is important for calculations on larger molecules which
most frequently use basis functions appropriate to free
atoms. As part of a programme for finding ways of op=-
timizing exponents relatively inexpensively, for use
with more complex molecules, an approximation due to
Lowdin, for overlap charge distributions in electron
repulsion integrals, was tested. The results reported
in this thesis show that the method has promise in pro-
vidihg a way of initially optimizing exponents prior to
the actual calculation wherein all integrals are.evalu-

ated exactly.
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Chapter One

Introduction

Quantum mechanics is important in chemistry for
several reasons, In the most fundamental sense, it
provides, in principle, the means of determining the-
oretically all the properties of molecules, either by
the time-dependent or the time-independent Schrodinger
equation,1 and, given the properties of individual |
molecules and the interaction energies between themn,
statistical mechanics allows predictions to be made
for macroscopic collections of molecules, That the
possibilities for exact quantum mechanical calcula-
tions on individual molecules are somewhat limited,
can be assessed by noting that agreement between the-
ory and experiment for the binding energy of the sime-

plest neutral molecule, H2, has only recently been
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reached,? Thus, for molecular systems of general in-
terest to the chemist, theoretical treatments must be
based on some degree of approximation,

Molecular properties in organic and inorganic
chemistry are often discussed in terms of electron
distributions, ¥ and in this vein Platt5 has argued
that a theory of chemistry is primarily a theory of e-
lectron density. Early quantum mechanical calculations
on atoms and molecules, and experimental Studies, espe-
clally in structural chemistry, have led to quantum
chemical concepts such as orbitals, ionic character,
hybridization, and electron palr bonds. These con-
cepts are freely used in discussing eléctron density

6,7 although density distributions can

in molecules,
rarely be obtained directly by experiment.

Another use of quantum mechanics in chemistry has
evolved with the development, during the last two or
three decades, of experimental techniques, such as nu-
clear magnetic resonance, electron spin resonance, nu-
clear quadrupole resonance, Mossbauer spectroscopy and
photoelectron spectroscopy, which are now widely used
by chemists in attempting to gain an improved under-
standing of chemical bonding. Quantum mechanics has
been employed in this context, both for elucidating the
basic physics of these'experiments, and for developing

approximate computational schemes from which calculated



molecular properties can be compared with experimental
values, This provides important information for asses-
sing the validity of the models of electron density and
chemical bonding used by chemists,

Two major approaches have been developed for ap-
proximate calculations on molecules, and these are the
molecular orbital method and the valence bond method.
The former has been more generally used, mainly because
it has been considered to be computationally simpler.
Nevertheless, recent developments have led to efficient
computational schemes for valence bond.célculations,
and, moreover, attempts are now being made to develop

8 Also it has

semi-empirical schemes with this method.
been known for some time that calculations using the

perfect pairing model, such as that proposed by Furley,
Lennard-Jones and Pople,9 which represents an extension
to polyatomic molecules of the Heitler~London calcula-

10

tion on H2, can give better molecular energies than

the corresponding molecular orbital calculations.11
This improvement occurs because electron motions are
better correlated in Heitler-London type wave functions
than in molecular orbital wave functions.12 The use-
fulness of perfect pairing wave functions in polyatomics
is closely related to the usefulness of the concept of

hybridization, which is itself dependent on the pro-

verties of atomic orbitals in molecules, The behaviour
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of atomic orbitals in molecules 1s of general interest,
but 41t is also of particular importance for studying
molecules containing the heavier atoms (such as those
of the second row of the perlodic table and beyond, in-
cluding transition metals) for which the details of
chemical bonding have not yet been established unam-
biguously in a number 6f important cases.13‘16 Large
basis set 6alcu1ations on these molecules would seem
to be impractical in the near future, and the alterna-
tive is to attempt to make reasonable calculations of
molecular properties by using well chosen restricted
basis sets of atomic orbitals, In any event, laige
basis set calculations are difficult to interpret in
terms of quantum chemical concepts,17 an example being

18 that the increase in bond

Mulliken's suggestion
length observed on ionizing a T electron in many dia-
tomic hydrides indicates a-degree of W bonding in
these molecules, and therefore the involvement of 2ps
atomic orbitals on hydrogen. Although large baslis set
calculations have been performed for diatomic hydrides,
including up to 34 orbitals on hydrogen in the basis
set,19 the chemical significance of hydrogen 2p«® orbi-
tals in bonding has not been determined.,

In discussing the valence bond and molecular or-
bital methods of molecular calculations, one starts with

the time-independent Schrddinger equation

@



HY = EV, (1)
where H is the Hamiltonian operator, E is the energy of
the system, and V¥ is the state function. In the nonre-
lativistic approximation, the Hamiltonian operator can

be written as

pp-

S o & . 2% o 2,2 , < 1.
Sk 1 v/
E- M J,E' /4 Zz r k k% A<vr"v (2)

for a collection of N electrons and S nuclei, where the
first term represents the summed kinetic energies of the
nuclei, the second term represents the summed kinetic e~
nergies of the ‘electrons, the third term represents the
‘attraction energy between the electrons and the nuclejl,
and the fourth and fifth terms represent respectively the
nuclear-nuclear repulsions and the electron-electron re-
pulsions. In molecular calculations the Born-Oppenheimer
approximatlon2° is frequently made, Physically this ap-
proximation consists of regarding the motions of the nuc-
lei in a molecule as insignificantly small in comparison
to the motions of the electrons, and this is dependent on
the masses of the nuclei being very much greater than the
masses of the electrons. Thus one regards the nuclei as
remaining essentially at rest relative to the motions of
the electrons. Using the Born-Oppenheimer approximation,
therefore, the wave function is approximated as a function
of the electron co-ordinates only, the nucleil being regard-

ed as stationary. Then the electron motions are contained
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in the electronic wave function.'We. which is obtained in

principle by solving the equation

HeW, = Ec¥ (3)
where
‘H__i_ivx. i ._Z.L—*.”..L (4)
¢ e M L k21 r/k“ Y] Tpv ‘

A=l ' A
In the Born-Oppenheimer approximation, E is Ee plus the
nuclear-nuclear repulsioﬂ energy.
The molecular orbital and valence bond methods pro-
vide schémes for writing down approximate forms of fhe €=~

lectronic wave function, ¥

approx’ and for calculating the

corresponding electronic energies according to (in the

Dirac notation)

L Vappron [Hel Yappron D
< "Pa.pprOL ' Wﬂpp?ox)

The approximate electronic wave functions are obtained ac-

£,

(5)

cording to the variation principle;21 by which the best:-
wave function is selected according to the criterion of

minimum energy.

The Molecular Orbital Method

The molecular orbital method originated from studies

22 and Mullikenz3 made within a few years of the

by Hund
formulation of quantum mechanics, and this method repre-

sents the direct extension to molecules of the atomic



24,25
orbital method for atoms,

For 51nglet states of
a molecule contalning 2N electrons, the electronic wave
function in molecular orbital theory is approximated

by a single determinant as in
Yoo = (M) peT | ¥ (1) V) ... Yo n-) %GR (6)

where only the diagonal elements of the determinant are
defined explicitly. The determinantal form of equaf
tion (6) is convenient for ensuring consistency with
the antisymmetry principle;26 (2N)'% is the normaliza-
tion factor. Each molecular orbital is doubly occupied
by electrons of opposite spin, 4 spin being indicated
in equation (6) by a bar over the molecular orbital.,
The molecular orbitals are one-electron functions which
extend over the whole molecule and they can be defined
to be that set of orthonormal functions, satisfyling the

conditions

<*ﬁ'“ﬁ> =JU ) (7)
which minimize the electronic energy of the system

according to

K [He [ Yo
e <‘yﬂo’ l'(lﬁfo > ’ (8)

where He is the electronic Hamiltonian defined in
equation (4),

In earlier work on atoms, orbitals were given in
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numerical form;zu

in practical applications to molecules,
however, they are usually expanded following the pro-
cedure reviewed by Boothaan27 over a éet of basis funce

tions as in
LA WP
R (9)

Boothaan's procedure consists of determining, by the
variation theorem, the coefficients in equation (9) in
order to specify the molecular orbitals, Often the
basis functions Qkin.equation (9) may be identified
as atomic orbitals. In practice, a linear combination
of atomic orbitals represents an approximation to a mo~
lecular orbital wave function because only a restricted
number of atomic orbitals are included in the basis set,
although, in principle, one may approach as close to
the 1limit as desired, The atomic orbitals in equation
(9) may be centred on only one atom in a molecule, how-
ever, the convergence to minimum energy is then slow,
and, with modern computing facilities, this approxima-~
tion seems to be of only limited value.28.
The energy of the determinantal wave function in
equation (6), where the one-electron orbitals satisfy

the conditions in equation (7), can be expressed29 as

Ermo =28 Hyp +Z L (2 J;J——K;)-)’ (10)
¢ o

where



H;z=<‘¥;l-§V.-’-§é“;“Va> (11)

gives the contribution of one electron in Wi to the
total electronic energy. The term in equation (11) in-
volving the Laplacian operator represents the kinetic
energy of one electron in V&; the second term represents
the attraction between an electron in 4& and the nuclei.
In equation (10), Jy4 and K,y represent, respectively,
Coulomb and exchange electron repulsion 1htegrals de-

fined as
I;,-=H\Va“)‘*'z“)r—i: «PJ(J)WS(J)AztAr“ (12)

and

Kij=[[¥; (1) wi(x);‘:wj(z)q@ (1) degde,

The integrals Hii' Jij' and Kij’ can readily be ex-
panded in terms of the basis orbitals in equation (9),
and, following Roothaant!s procedure, a self-consistent
field calculation allows the determination of the co=-
efficients, cy, 1n equation (9) given the molecular
integrals over the basis orbitals,

For open shell systems more than one determinant
can be written for a given configuration, and the de-
terminants must be combined according to the approp-

riate electronic state in order to obtain approximations
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to the total wave function of the system., A simple ex-
ample is the triplet state of a two-electron system for
which the total electronic wave function is set up in

terms of the orbitals Vi and Vz as

¥, = Vi) %)

¥, & ) vl
' I (1%4)
(AN A AV ACH] I

2:-1

A detalled discussion of the molecular orbital method
for open shell systems has been given by Roothaan.Bo
Molecular orbital calculations using the Roothaan
procedure and evaluating all molecular integrals withe
out approximation become excessively expensive as the
number of eélectrons in the molecule and the size of
the basis set increase, The greater computational ef-
fort and expense 1s due in part to the number of elec-
tron-electron repulsion integrals to be evaluated,
which increases as approximately the fourth power of the
basis set.31 Also, for large basis sets, it is often
found that more time 1s required to evaluate integrals
involving higher members of the basis set than to e-
valuate 1ﬁtegrals involviﬁg the lower members of the
set, These factors have led to the development of a

nunber of approximate molecular orbital methods suitable
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for application on a routine basis to molecules which
are too complex to be readily treated using the more
complete methods,

In these approximate molecular orbital methods
one attempts to make judicious approximations which
will simplify the computations so that properties of
fairly larze molecules can be caiculated without either
imposing concepts such as preconceived bonding schemes,
or eliminating established physical features such as
the relative energy levels of atomic orbitals, One
development has been to incorporate empirical date
into a model such as is done in the Huckel method32:33
developed for & electrons in organic systems and ex-
tended to include all the valence electrons.Bu This
"method does not explicitly include electron-electron
repulsions, but by relating Huckel's Coulomb integrals
to valence ionization potentials, and expressing the
resonance integrals in terms of the Coulomb and overlap
integrals, Hoffmann35 has discussed charge distributions
and conformation energies of a large number of hydro-
carbons, and similar methods have been applied to many
inorganic molecules.36'37

Less drastic approximations are made in the Com-
plete Neglect of Differential Overlap and related me-
thods which are discussed in a recent book by Pople

and Beveridge38 and also in a book edited by Sinano¥lu
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and Wiberg.39 1In these methods, emphasis is placed
on the valence electrons, and electron repulsion in-
tegrals are included, but approximations are made such

as

(/..v l )‘r> = S)«V Sh"</~/A‘AA> (15)

and

Qp\v> ‘%#V . (16)

Atomic spectral data>are again incorporated in these
methods, but a guiding principle is that they are for-
mulated so that the calculated results are invariant to
the rotation of axes. This prorerty is required phy-
sically, but is not shown by the extended Huckel method.
Many applications have been made to the calculation of
molecular energies, molecular geometries, charge distri-
butions, ionization potentials, and nuclear magnetic

40,41,42 .13 these methods have

resonance parameters,
been established as providing a reasonable balance be-
tween computational expense and worthwhile calculations of

molecular properties,

The Valence Bond Fethod

Historically, the valence bond theory provided
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the first method for molecular calculations, and this
theory originated from the work of Heitler, London,
Slater, and Pauling.h3 In this method one assumes a

set of basis functions for a molecule, and these func-
tions are most frequently identified as atomic orbitals,
In the most complete form of the valence bond method,
combinations of determinantal functions are written
down for 211 possible ways of accommodating the elecs
trons in the various atomic orbital functions in ac-
cordance with both the Pauli principle,26 and with the
symmetry of the particular electronic state for which
the wave function is being expressed, The determinan-
tal functions are defined by the various valence bond
configurations for a given electronic state, As an
11lustrative example, all the valence bond configu-
rations are listed in Table 1 for the 1E state of HF
using a basis set of the 1s atomic orbital at hydrogen,
and the 1s, 2s, 2p0, and 2p« atomic orbitals at fluorine.
The ground state wave function is then obtained by a
free mixing of the zero-order wave functions corres-

ponding to all the configurations as in

‘P = ZE ¢ w; ? (17)

ve

where ¢, 1s the linear mixing coefficlent, and Wi is
the appropriate combination of determinantal functions

for the 1th valence bond configuration., As examples,
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Table 1. Valence bond configurations
for the e state of HF

1, 1s? 262 2 m2 o n
2. 15 2s° m? m,? o?
3. 15° 252 7, % M2 n?
4, 1s% 2s Mm% w2 % p
5. 1s? 28 77'12 7r22 K2
6, 132 ’Tf127?‘220‘2 h2
74 15° 252 ™, o2 n?
8. 1s 23277127722 2 h
9. 1s 2s27712 w20 n®
10. 1s 2s 77—127722 7 h?
11, 2s 712 7r22 2 p?

The symbols 1s, 2s, 73.

y» 2p¢ functions at F and the 1s func~

ﬂé, 7, h refer resrectively

to 1s, 2s, 2pﬂ1, Zpﬂé

tion at H,
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the specific forms of the unnormalized zero-order wave
functions for the first two configurations in Table 1

are
V J1s BB mT a7 ~F | + |15 s 5m7 T A (18)

and

‘Vz z llsﬁlsﬁﬂﬁfﬁﬁr;—’ o

(19)

The linear coefficients in equation (17) and the corres-

ponding energles are obtained by application of the

variation principle, The technique is well known;12 and

involves solving the secular equation
DET |Hij~ Sii€ |= o (20)
for the energles, and
L ¢ (wy- ESj)-0 (21)
3 :

for the coefficients. The matrix elements in equations

(20) and (21) are defined as
Hiy = (¢ ¥ ¥; de (22)
and
S.. = vyl <
gy Y‘ 3 . (23)

When a8ll the configurations formed from a given

basis set are mixed, as in equation (17), the valence
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bond method is equivalent to a complete configuration
interaction calculation in terms of molecular orbitals
expanded over the same basis.uh Clearly, as the size

of a basis set is increased, more configurations can be
formed with the approvoriate symmetry, and, in the 1limit,
the energies obtained by the valence bond method con-
verge to the eigenvalues for a complete solution of the
Schrodinger equation in the Born-Opprenheimer approxi-
mation. In less accurate applications of the method,
however, it turns out that some configurations can be
disregarded, A valence bond study by Harris and Michelsus
on HF for a range of bond lengths, has shown that mixing
the six most imvortant configurations leads to a cal-
culated molecﬁlar energy only 0.35 kcal./mole above that
obtained from the'mixing of all eleven configurations.
The five configurations which may be neglected, with
only small error; either correspond to charge distri-
butions in the sense H~-F*, which is contrary to che-
mical experience based on the concept of electronega-
tivity, or correspond to configurations involving ex-
citation of electrons from the fluorine 1s core, Si-
milarly, calculations by lMaglagan and Schnuelle8 for
BeH2 show, for the particular case of using free atom
exponents and a Be-E distance of 1.3% A, that the effect

of neglecting those valence bond configurations, where

Be is more neratively charged than H,. and neglecting
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also those configurations where Be is non-bonding, raises
the total energy by only 1.2 kcal,/mole, These consi-
derations indicate ways of selecting for approximate cal-
culations those valence bond configurations which are

most significant to a given basis set. A consequence of
such a selection is an appreciable saving in computational
effort and expense, and this becomes more important for
larger molecules,

A more restricted form of the valence bond method
is that which involves perfect pairing,9 and this method
is usually based on hybrid rather than natural atomic
orbitals, In this approach, electron pair bonds are
constructed between orbitals in a molecule; and the to-
tal electronic wave function is given in terms of the
determinantal functions appropriate to the wvarious
spin couplings for the electron pair bonds. As an ex-
ample of this approach, one can consider BeHZ, for
which two electron pair bonds.éfg assumed to be formed
from the overlap of the 1s orbitals (designated 1, and
1, ) on each hydrogen with the appropriate directed
hybrid functions h; and h, at the Be atom. For this
example, the unnormalized perfect pailring wave function

is written as
Vs hh LA -1IE e g ) - 18,0, Lol o h 2,4, (20)

where one electron pair bond is formed by the overlap
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of 11 and hl' and the other bond 1is fbrmed by the overlap
of 12 and hz. Two interpretations can be given to pr.ué
In the first, Vpp involves only neutral configurations

at Be, and h1 and h2 are the digonal hybrids formed

from the 2s and 2psr atomic orbitals at Be., The second
interpretation allows for ionic character in the BeH
bonds by expressing hl and h2 as suitable combinations

of the 1s orbitals at H and the digonal hybrids as in

h N{da, + k1,)
1 1 1 (25)

hy

N(dy, + k1,) ,

where k i1s a measure of the ionic character of the bond
and may be taken as a variation parameter; N is the nor-
malization factor.,

In general, within the perfect‘pairing model; for
a closed-shell molecule with n electron-pair bonds,
there will be 2" determinants in the electronic wave
function., Hurley, Lennard-Jones, and Pople have shmn?
that, provided that the orbitalsvinvolved in any ele~
tron pair bond are orthogonal to all other orbitals in
a molecule, a comparatively simple expression can be
written in closed form for the electronic energy cor-
responding to the perfect pairing wave function of the
molecule, The evaluation of this expression is related
to the methods which are discussed in chapter two for

evaluating the Hamiltonian and overlap matrix elements
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in equations (22) and (23).

A useful criﬁerion for different methods for mo-
lecular calculations is provided by the agreement between
calcuzated and experimental molecular properties, Cal-
culations performed using the valence bond and molecular
orbital methods with comparable basis sets, enable com-
parisons to be made between the two methods.,

Detailed comparisons of the valence bond and mole-
cular gfbital methods have been made for H2.47 Using a
minimum basis set of Slater-type orbitals with energy-
optimized exponents, the valence bond method predictsu8
an equilibrium bond length of 0.743 A and a binding
energy of 85,94 kcal./mole, The experimental values
are 0,741 A and 109.98 kcal./mole respectiveiy, while the
corresponding quantities from the molecular orbital me-
thod*9 are 0.732 A and 80.27 kcal./mole with a minimum
basis set. The molecular orbital method becomes much
less reliable as the bond distance 1s increased, and
this 1s associated with the overemphasis of ionic con-
tributions in the molecular orbital method?g’ ‘Karo and
01sen’0 have compared the molecular orbital and valence
bond methods for the ground state (1L ) of LiH using a
basis set of numerical 1s, 2s, and 2p orbitals at Li
and a Slater 1s orbital at H, At the equilibrium bond
length of 1,56 A, both methods predict a dipole moment

of 6,05 D, which may be compared with the experimental
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value of 5,88 D.;51 and at this bond distance, the va-
lence bond method gives a molecular energy which 1s o.4
kcal./mole lower than that given by the molecular orbital
method, Again, as the internuclear distance increases,
the molecular orbital method becomes relatively less
reliable, DMaglagan and Schnuelle8 have noted that the
valence bond method generally glves lower molecular
energies than the molecular orbital method for mole-
cules in which the model of electron pair bonds is
frequently used, By contrast, the molecular orbital me-
thod is comparatively better for delocalized systems
such as benzene, although, as noted previously, with
sufficient refinement the two methods merge, A de-
tailed comparison has recently been made by litchell and
Thirunamachandran46 for BeH2 employing a basis set of
Slater-type orbitals with energy-optimized exponents.

The molecular energy calculated with the perfect pair-
ing model is 15 kcal,.,/mole below that for the molecu-
lar orbital method, and the calculated Be-H distances

are 1.35 A and 1.37 & for the pérfect pairing and mo-
lecular orbital methods respectively. A further in-
teresting comparison between the molecular orbital and
valence bond methods has been made by Harrison and Allens2
for the ground 3VB]_ state and two low excited states

1a and 1p of CH,. Using a basis set of Gaussian lobe

1 1 2
functions, these authors calculate the bond angles of
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the 78, 1A, and 1B, states to be 131°, 111°, and 1540
according to the molecular orbital method, and using

the valence bond approach the corresponding angles are
1389, 108°, and 1&89 which are to be compared with ex-
perimental équilibrium bond angles of ~135°, 1039, and
1400 for the three states.oo Finally, the 1A1-1B1 ver-
tical transition is 0,96 kcal./mole closer to the exper-

imental value using the valence bond method.

Aims of the Thesis

This study follows recent calculations by Hitchell

L6, 54

and Thirunamachandran on BeH in which the mole-~

2
cular orbital and valence bond methods have been compared
using a minimum basis set of energy-optimized Slater- '
type orbitals., The work on BeH2 indicates that the per-
fect pairing model provides a very good approximation

for this molecule, and further comparative calculations
are necessary in order to provide basie information

with which to assess these methods on a wider basis. EF
was chosen as a suitable molecule for continuing this

work because the computational effort is reduced for di-

atomic hydrides, and the lafge electronegativity dif-
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ference between H and F contrasts with the much smal-
ler difference in electronegativities between neigh-
bouring atoms in BeHZ. Although many calculations
have already been made on HF using large basis sets, 19155
it still seems worthwhile to make a direct comparison

of the different models for molecular calculations

using an energy-optimized miniﬁum basis set of Slater-
typre orbitals, in part because the large basis set
calculations are difficult to interpret in terms of
quantum chemical concepts. Connected with the perfect
palring model is the concept of hybridization, and

in this work, attempts are made to compare the atomic
orbital hybridization at F in HF ard HF+, and also to
compare with the hybridization at O in the diatomic

HO which 1s isocelectronic with HF*. Calculations on

AF* were made for states in which a 1s or a 2pT elec=-
tron has been ionized from fluorine in the neutral me-
lecule.,

Since minimum basis set calculations are performed
in the various semi-empirical molecular orbital methods
currently being used,38'39 and because these methods
have been designed especially for evaluating properties
of related series of molecules, it seems necessary, in
order to gain a better understanding of these semi-em-
pirical methods, to know just how well minimum basis

set calculations are able, in principle, to give useful
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calculated values of properties such as bond lengths,
1on;zation rotentials, dipole moments, and molecular
energies, This is especially so for more complicated
molecules, such as those containing an atom of the se-
cond row of the Periodic Tadble or beyond, for which
computational expense most often requires calculations
to be carried out using restricted basis sets,

It is hoped that the calculations on HF, HF+, and
HO reported in this thesis can contribute both to a
better understanding of the reliability of minimum basis
set computations for calculating molecular properties
of basic interest to the chemist, and to a better a-
wareness of the value and limitations of the perfect
pairing model and the use of hybridization in molecular
wave function calculations. Finally, a preliminary
attempt 1s made to assess the value of an approximation,

56 for simplifying molecular integrals

proposed by Lowdin,
for the purpose of optimizing atomic orbital exponents,
The need for suitable integral approximations is great-
est for more complex molecules, but it is necessary

to assess the applicability of any approximations by
comparing results obtained using the approximations with
those from the more complete calculations and also with

experimental results, and this indicates in part'the

reason for this study on HF,
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Chapter Two

Calculations

on

HF, HFY, and HO

In principle, quantum chemical calculations on
molecules can give direct information about electronic
distribution by squaring the electronic wave function;
some assessment of the reliability of actual calcula-
tions may be obtained by comparing calculated mozecular
properties with those measured experimentally. In
Tables 2 and 3 results are coliected from a number of
recent calculations on HF}Z, HFtﬂ,, and HO;T, which are
of special interest to this thesis. The main part of
this chapter describes the detalils of the calculations
which have been carried out during this work, and the
results in Tables 2 and 3 provide a reference for asses-

sing the results which are discussed in chapter three,



2. Results of some previous calculations of molecular properties for HFH;

Table
Wave function A Molecular properties
Model| Basis set|Ref.|Energies |H-F Distance|Dipole Ionization Forcg Constants
(a.u.), (a.u.) |Moments (D.)[Potl,(1ir)(eV)| +10”(dynes/cm)
min, STO
mo |free atom| 57 |[-99.4915 1.733 1.12
exp.
« STO
mo |0t exp.| 58 |-99.5361 | 1.733 1,44
min, STO
vb | pt. exp. 59 |-99.563%* 1.860
mo . '
min, STO )
> lopt. exp. 58 [-99.5640 | 1.733 1.30
. G
mo |SXLr stom| 60 {-99.8873 | 1.743 14,00 9.60
- exp.
ext, GTO '
mo | bt. exp. 55 ]=100,0622 | 1.733
ext, STO
mo | opt. exp.| 19 [-100.0708 | 1.696 14, 6% 11.22
Experimental -100,5271 | 1,7238 1.8195 16,06 9.657

#* The value is taken from a graph
**1 8ele= 27 .2056 .VQ

_gz-



Table 3 .

r

Results of some previous calculations of molecular properties of
Hptﬁ and HO

Wave functio
HO 5y,

n

Molecular properties

Model|Basis set|Ref, |[Energies| Bond dis- Dipole Ionization Force Constants
(a,u.) |tance (a.u.) | Moments (D.)Potl.(1 )(eV)| «105(dynes/cm)
ext, GTO
mo |opt. atom| 60 [-75.2872] 1,813 11.7
eXp.
vb H.-Fock 61 |=75.325 1.80
8.0,
mo H;j§?°k 61 |-75.327 | 2.00
ext. STO
mo Opt.ex’p. 19 -7501"'208 1.80 11 03* 7079
Experimental -75.778 | 1.834 1,66 13.2 9.216
HF§7r
ext. GTO -
mo opt. atom| 60 [-99.3734| 1.96
eXP.,
mo  |€XF: STO 1 6o 1_99,53% | 1,85 14,45
opt. exp.

Experimental
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Basis Functions

As seen in Table 2, a number of different types of
functions have been used as bases for molecular cal-
culations, In principle, any set of functions which is
complete may be used to expand a molecular wave function;
in practice the choice of functions is determined by the
computational effort required to obtain a desired level
of convergence. DMost often the basis functions used in
molecular calculations are related in some way to atomic
orbital functions., Traditionally, the Hartree-Fock
method for atoms leads to atomic orbitals which are in
numerical form, however, these tabulated functions are
too unwieldy to be useful in molecular computations. In
more recent work analytié expressions are used to repre-
sent atomic orbitals and these analytic atomic orbitals

are expressed as
¢nlm = 2 R; (r)-Y;(m (6,¢), (26)

where Ylm represents the approprlate spherical harmonics
(11sted for example by Pauling and Wilson™3 ), and the
Ry (r) are some type of radial function. One commonly
used representation of the radial functions is that gi-

Yen by Slater63 and expressed as

m ¢

R R IeT) (z7)
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where ni andc(i are the principal gquantum number and
orbital exponent respectively: N1 is a normalization
factor. This form was proposed by Slater in order to
approximate, in a simple way, the radial functions

from the Hartree-Fock calculations for atomic orbitals.,
The radial function in equation (27), when combined with
a spherical harmonic defines a Slater-type orbital, Sla-
ter-type orbitals have no radial nodes, however, they

do converge efficiently in atomic and molecular calcul-

ations, An alternative radial function is the Gaussian

function, conveniently expressed as

an z N-,—“'l.up (-—a&-r"). (28)

The use of Gaussian functions was first proposed by

Boys,éu

because integrals required in molecular calcul-
ations are more easily obtained using Gaussian functions
than Slater functions. This advantage must be weighed
against the fact that these functions provide much slow-
er convergence for molecular energies than do Slater-
type orbitals; in fact it requires about half the number
of Slater basis functions as Gaussian functions to ob-
tain a given molecular energy.

In the present study, the interest centres mainly
on the use of minimum basis set calculations and asses-

sing the possibilities for calculating properties of

large molecules; therefore Slater-type radial functions
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combined with the appropriate spherical harmonics are
used as basis sets, To overcome the lack of orthogo-~-
nality which oceurs for pure Slater-type orbitals of
the same symmetry on the same centre, orthogonalized
Slater-type orbitals are constructed according to the
Schmidt orthogonalization prodedure.65 For orbitals

on the same centre this procedure consists of reinsta-
ting the radial nodes which were neglected in the ap-
proximation implicit in equation (27). In the general
case, to Schmidt orthogonalize a function ¢1 to another

function ¢2, one takes

&, - S ¢

iorﬂwg * b (29)

where

h

<o, 0.7 .

> (30)

When normalized, ¢ defines the function ¢1 which

lorthog
has been Schmidt orthogonalized to ¢2.

The Slater furnctions used as a basis set for the
study of HF consist of a 1s function at H and 1s, 2s,
2po and the degenerate vair of 2p7 functions at F, The
formulation of the energy expressions i1s simplified if
all valence orbital functions are orthogonalized to the
Fis core, and this is achieved by Schmidt orthogonalizing
both Hls and F2s individually to Fis.

In the perfect pairing model of EF there is one
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electron palr bond constructed from the overlap of the
1s atomic orbital at H with a hybrid formed from the 2s
and 2po atomic orbitals at F., The second hybrid formed
from these two atomic orbitals at F is regarded as a non-
bonding orbital, and is doubly occupied, These two hyb-

rids may be expressed as

sinot 2s + cos ok 2po (31)
and
d

d, = sing 2s' + cos g 2po&y (32)

where d1 is the bonding hybrid and d2 is the non-bond-
ing hybrid., The primes in the expression for d2 allow
for the possibility that the radial functions used for
the bonding hybrid could be different from those used
for the non-bonding hybrid; < is a variation parameter
which determines the mixing of the atomic orbitals in
d‘l' and @ is chosen so as to ensﬁre that d1 and d2 are

orthogonal by taking

tanp = -S__ / (S

PP stana ), (33)

ss

where SS is the overlap integral between the 2s and

S

2s' functions and Spp is the overlap between 2p and

2pt,
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Valence Bond and Molecular Orbital Wave Functions

In the perfect pairing model the ground state wave
function of HF can be written in unnormalized form as =a

combination of two determinants as in
Yoo » | 1s EmAMT 4,304, ] + l1s BT 0,7,44,45],(34)

where there is a single electron pair bond between the
hybrid d1 and the orbital combination designated h in

equation (34); 1is, 7y, and o refer to doubly occupied

2
non-bonding orbitals at F. Allowance 1s'made in equation
(34) for the possibility of ionic character in the H-F

oo bond, expected since F is more electronegative than

H, by forming the electron pair bond between the hybrid

d1 and a linear combination of the 1s function at H

with d1 defined as

'{\=Nx($in¥-a + cas*{-ét), (35)

In equation (35), a is the H, 4 atomic orbital orthoge-
nalized to the Fls core, and Y 1§ a variation paraméter
which gives a measure of the ionic character of the H=F
o~ bond., This formulation corresponds to the second in-
terpretation given to Vpp on page 18,

When d,, d,, and h, as given by equations (31), (32), and
(35) are substituted into equation (34), ¥ __ can be ex-

PP
panded as
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5
Vo8, et (36)

where each Wi corresponds to a valence bond configu=-
ration expressed 1h terms of the orthogonalized Sla-
ter-type orbitals, The fifteen Wi which can be formed
from the expansion of pr, are listed in Table 4, The
coefficients c; in equation (36) are then determined by
the values of the parameters &, 8 , and ¥, For the
special case that 2s = 2s! and 2p = 2p!', corresponding
to the minimum basis set situation, only three of the
fifteen configurations in Table 4 are different, and
in this case the wave function obtained by solving the
secular equation for these three structures is equi-
valent to the perfect pairing wave function in equa-
tion (34), These perfect pairing and valence bond
wave functions for the ground state of HF are to be
compared with the corresponding molecular orbital wave
functions discussed below; howver, consideration is
first given, within the perfect pairing framework, to
some doublet states of HF' which are of interest in
interpreting results from photoelectron spectroscopy66
and electron spectroscopy for chemical analys1s67 on the
neutral HF molecule. Two states of HF' are considéred

in an approximate way., The first 1is a 25 state
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Table 4, Zero-order wave functions
in equation (36)
for the 13 state of HF

1. ‘¥1= |lsi§rr1F11T2-T7223'§_s-'23:2_§'
2. V,=|1sismm m,7W,25'2572p2p|
3. V3= lls-l_éfrlﬁﬂzrf_f_zZp'é_—NZSé_sl
by ¥y=[tsTsmT, m,T,2p!2p!2p2p|

5. Yg=|tsTsmm m 7_2s'2s'2s8| + |1slsm T, M, T,251 25 a2s]|

1122
6. l"6= [1sts Trlﬁ']'_W2F225"2_s_"2p§[ + llslslrlfflﬂzﬁ'éZS 12sta2p|
7. Vo=|tsIsm i m,M,2s 257 252D +| 131"577'171i727r—223'§§_'2p§|

—

8. l}'8= llslsn'lﬂ'lﬂ' 722p'§?‘2$§] + llsli_s-‘rrlﬁ;Trz?r'éZp'z—'p;aZ—él |

9. ¥Yg= [tsism ™, T,2p'2pt2pal + [1s1s 17111'117'2?!"2

T,2p'2p’ 282p| + |1s_1‘s7717T“17rz7r—22p' 2p'2p2s)

2p'2p'alp|

172
11.¥,=|1s1s rrl"'lfz'fr‘ézs"z';T'ZSé'El +|1slsm ™ ¥, 7,2p'2s" 2525
12, ‘¥12= |1s]31rl’n"17r27f223 12p12p2p| + |1si"§f717r—1n'2'722p'2_s_'2p§-}3l
13.¥) 5= |1slsm ™ m,7,2s12p1282p| +|1sTs m 77,7, 2p' 257282

+ l1si‘§1r17r‘1n-2F22s'2”5"2p2“s\ + [tsismm 7,7 2p 251 2p2s|
1&.“’14: llSlS?lﬁ?ZTBZs'.Z—I;?ZSEI +| 1sism 7, 752p! 2s'2sal

—

+ llsI—sfrlrr' rr217228'§3‘a§§| + |1s'féﬁ1?r'iﬂ2%22p' 55&2?(

1
15, \!/15= |1sf'31r1?T"1rr27_r'éZs'2_-p'2pEl + IlsﬁﬁlﬁWZQZP'Z-ETZpE}

+ \1sﬁw1“ﬁﬂ2?2'28'r13'a_2—§| + llsl_s'frl?i_’i ﬂz'ﬂSZp'é?aﬁal

Symbols are ag in the text.
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obtained by the ionization of an electron from the Fis

orbital in the neutral HF; the second 1s a 27 state obe-
tained by removing an electron from a 2pT atomic orbital
at F, In the perfect pairing approximation, the appro-
priate wave functions for these two states of urt may be

expressed in unnormalized form as

q/P?,_i = ' {s 1(17-7-1'17’:??': A,,I;k—d-; \ + I 1s ﬂ’,?{fﬁﬁ&:&:&:gl (37)
and
W?P;ﬂ. =llsl—sr"r’rdd l | 1515 m,m, T, d, h’
71 (38)
tluGnTEmddhd) ¢ [ sBnTndddR], 3

where Szf% in both cases., The wave function in equation
(38) also represents an approximation within the perfect
pairing model for the ground state of the diatomic spee
cles HO which is isoelectronic with HFY,

Wave functions in the molecular orbital approach
have been constructed so as to enable as close a compa-
rison as possible with the valence bond and perfect
rairing wave functions discussed above. Consequently,
the molecular orbitals were constructed from only the
valence basis orbitals, The molecular orbitals which
would involve mainly the inner basis orbitals, were sim-
ply taken to be core atomic orbitals as was done in the
perfect palring calculations. ©On this basis, the

electronic wave function for the ground state of HF in
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the molecular orbital approximation can be expressed

as

Ve s M AL o |

(39)

1 and ré are reépectively the bonding and es-

sentially non-bonding molecular orbitals, defined as

where &

oy o= N (sin $-a + cos §-4,) (40)

and

™, = N, (sin € a + cos € (sin {"lt*“"{'a*))’ (41)

in such a way as to be useful for discussing hybri-
dization in this model, In equations (40) and (41)
Ng and N, are normalization factors; é and { (along
with <) are variation parameters, and € is fixed by
the condition that oy and aé are mutually orthogonal,
Since the F1s core orbital has the same symmetry as 61
and 0oy 8 free mixing of this core orbital must lead
to a slight lowering of energy by the variation prin-
ciple., The corresponding approximate wave functions
in the molecular orbital approximation for the 25 and
Zﬂ electronic states of HF+ formed by removing either

an Fls or an F electron from HF are expressed as

2pm
| tsm, 7, 7, T, 07 577 o, 7, (42)

and
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Computational Details

Given the electronic wave function of a molecule
and the electronic Hamiltonian, the electronic energy
of the system is obtalned by equation (5)., When the
determinantal wave functions defined in the previous
section are substituted into equation (5), the expression

for the electronic energy involves functions of the type

Hip = LW IH W D (Lh)

)

and.

S | (45)

where Wi and 43 are many-electron determinantal func-
tions, The general procedures for the evaluation of
these many-electron matrix elements in terms of coef-
ficlents and one and two-electron molecular integrals
have been given by Lowdin68 and are fully discussed by
Slater.69 The latter treatment was followed in thls

work with all expressions for the overlap and Hamilto-



-37 -

nian matrix elements being evaluated by hand by deter-
mining the appropriate coefficients, in terms of the
overlap integrals, for all the molecular integrals oc-
curring for the particular basis set, Computer pro-
grammes were written to sum all these contributions and
consideration is now given to the methods employed to
obtain the various molecular integrals,

The basishset, as described above, becomes con-
taminated by the orthogonallzation procedures, however,
the one and two-electron molecular integrals over the
basis orbitals are readily expanded in terms of one
and two-electron integrals involving only Slater-type
orbitals. A procedure due to Magnusson and Zauli70 pro-
vides a convenient way of obtalning those electron~elec-
tron repulsion integrals which involve a charge distri-

bution on a single centre such as
b
CALAN L AL AN (46)

where a and b are the two nuclei and Wi to ¥, are Slater-
type orbitals on the indicated centres, This procedure

involves expressing the integral in (46) as
a o a
( ¥, I 4 (WLV.\.)‘ 0 > ’ (47)

a
where V (?1?2) is the potential due to the charge dis-
tribution WiaWéa centred on a. Potentials of this type

for Slater-type orbitals have been tabulated by Magnuse '
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son and ZaulL?O and some extensions and corrections

71 When using polar

have been reported by Mitchell,
co-ordinates ( r, 8, ¢ ) at each centre, the integral
in (47) 4nvolves six variables; however, by intro-
ducing the elliptical co-ordinates 4 and v, defined

as

*

T (rer ) (48)

and

%(ra._rb) )

-,
v

(49)

where R is the inter-nuclear distance, the integral in
(47) can readily be eipressed in terms of the three
variables «, v, and ¢, where ¢ measures the angle of
rotation about the inter-nuclear axis a-b., Also for the
known form of the Slatef-type orbitals and the potential
V, the integration over ¢ is trivial and can be done an-
alytically., Thus the evaluation of the integral in (47)
requlires Integration over the two co-ordinates‘/.and v,
and to cover all space the respective ranges are 1 to =°
end ~1 to +1. The evaluation of 1ntegrals of the type
in (46) was pverformed using two-dimensional Gaussian
quadrature72 with Legendre polynomials of order 16;

and as an illustration of this technique, an integral
involving a single variable with limits p and @ is given

in this appfoximation by
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’zfr(x)éx - r 2% a; £(x; EL & day , (50)
where Xy is the 1th root of the Legendre polynomial of
order n, and ay are tabulated constants associated with
each Xy The form of equation (50) can be directly ex-
tended to any number of variables,

One advantage of this approach for the evaluation
of the two-electron integrals of the type in (46) is that
all the one-electron integrals can be obtained by the same

methods at the same time. The overlap and nuclear attrac-

tion integrals respectively, written in general as
< ¥ | &) (51)
and

<'!V;/‘ZF1LI/1> (52)

represent special cases of the integral in (47), Fur-

thermore, the kinetilc energy integrals
1
Cw -39 ¥ (53)

can be expressed in terms of overlap integrals as shown

by Roothaan73 who gave the expression

L g (ndm) = - 2 o) -a(2n fant) R (e 14

(nfj)(’?-[*‘ 1) M~ »
[Jn(.'ln~1)(o?n—2)(2n-3)]1/2( o >;

(54)
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fof the effect of the kinetic energy operator on a
Slater-type orbital represented by ( nlm ) with expo-
nent «, |

The method used in going from (46) to (47) is
not applicable in a convenient way for evaluating the
electron-electron repulsion exchange integrals of the

type

SARAA AR AN (55)

Exact numerical values of these integrals were obtained
by using a computer programme written by Pitzer, Wright
and Barnett7u and translated into Fortran IV by Mitchell.
Since these integrals were much the most time consunming,
an approximation proi;osed by Lowd1n58 was also used to
obtain values of the integrals. Lowdin's approximation
consists of expressing the charge distribution Wiawzb

as

Bout o Su[ A, (KO AL q’*b)], (56)

2

where S;, 1s the overlap integral between Wi and Wz,
and Al and Az are determined by the condition that the

dipole moments of the charge distributions on the right
and left hand sides of (56) are equal, Substitution of

(56) into (55) yields

R = Su D (900 90t ) » eyl )
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and the right hand side now involves integrals which
can be evaluated by the numerical method discussed a-
bove.

Secular equations for wave functions of the type
in equation (36) were solved with computer programmes
from Quantum Chemistry Programme Exchange.75;76 For
the molecular orbital and perfect pairing calculations,
the molecular energies were minimized by varying the
relevant mixing parameters by making successive five
point per variable grid searches until the energy con-
verged to the fifth decimal place (energies in atomic
units). The optimum orbital exponents were obtained by
varying the individual exponents in turn until self-con-
sistency was achieved in the exponent values to two de-
cimal places, The bond distances corresponding to mi-
nimum energies for the various wave functions were ob-
tained by determining the orbital exponents for minimum
energy for a series of bond dlstanées, and then inter-
polating exponeﬁts linearly and calculating energies
for the intermediate lengths, thereby allowing estima-

tion of the equilibrium distance.
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Chapter Three

Results
and

Discussion

Using thé wave functions and procedures described
in chapter two, & series of calculations have been madé
for HF, HFY*, and HO in their ground states, and also
for HF* in the s state obtained on lonizing a fluorine
core 1s electron from HF, Computations have been made
using molecule~-optimized exponents for the Slater-type
functions, snd the resulting wave functions, molecular
energies, one-electron energies, Mulliken populations,
divole moments, H-F bond distances and force constants
are reported in Tables 5 - 12, Included in these tables
are comparative resulits obtained from calculations using

free atom'exponents.77



Table 5, Orbital exponents and molecular properties for different wave

functions of HF at the experimental bond distance (1.733 a.u.)

Orbital exponents Molecular properties
Wave Energy Dipole Ionization potentials
function|His F2s F2po- |F2pw | (a.u.) Moment (D) (1) (eV) | (12)(eV)
pp a 1,34 2.55 2.60 2.491 -99.5450 1.73 713.29 12.39
pp b 1.38 2,56 2.59 | 2.49| <99,.5449 1.77
PP C 1,00 | 2.56 | 2.55 | 2.55| =99.4956 1.44 712,32 12,45
mo a 1,32 | 2.56 | 2.67 | 2.50| -99.5355 144 714,07 12.66
mo b 1,36 | 2.56 | 2.63 | 2.49| -99.5346 1.55
mo ¢ 1,00 | 2,56 | 2.55 | 2.55| =99.4908 1.12 714,12 13.32

All F1s exponents have been optimized

at 8.650

*¥ All properties have been calculated exactly.

a - All orbital exponents have been optimized completely.,

b - Orbital exponents have been optimized with the Lowdin approximation in (56).
¢ - Free atom exponents have been used, '

-En-



Table 6., Variation parameters and Mulliken populations for different wave
functions of HF at the experimental bond distance (1,733 a.u.)
Variation parameters Mulliken populations
Wave
function|sin« sin¥ sind sinf sin € His F2s F2po
pp a 0.,1203 | 0.9344 0.685 | 1,999 1,316
pp b 0.1281 | 0.9313 0,679 | 1.999 1.322
pPp ¢ 0.0875 0.9438 0.702 2,000 1.298
mo a 0.4000 0.6000 0.0344 [-0,1970 0.773 1.944 1.284
mo b 0.2797 0.5922 | -0,0422 |-0,1488 O, 744 | 1,945 1.312
mo ¢ 0.3094 0.6250 | -0,0219 |-0,2042 0.781 | 1.959 1.260
a, b, ¢, - are as in Table 5, |



Table 7. Orbital exponents and molecular properties for different wave

functions of HF at calculated equilibrium bond distances

Orbital exponents

Molecular properties

Wave Energy Bond length |Dipole Force
function |His F2s  |F2po [F2psr (a.u.) (a,u,) Moment (D,) constant
PP a 1.33 | 2.55 | 2,60 | 2,49 |-99.5456 1.77 1.72 8.3
PP b 1.35 2,55 2,58 2,49 [-99.5410 1.79 1.83 7.1
PP ¢ 1,00 2.56 2,55 2.55 | ~-99.5088 1.93 1.31 7.1
mo a | 1.31 | 2,56 | 2,66 | 2.50 |-99.5356 1.75 1.4 8.5
mo b 1,35 | 2.56 | 2.62 | 2,49 [-99,5263 1.76 1.71 7.6
mo ¢ 1.00 [ 2.56 | 2.55 | 2,55 |-99.5021 1.92 0.89 7.2

All Fl1s exponents have been optimized at 8,65,
a - All orbital exponents have been optimized exactly.
b - The Lowdin approximation in (56) has been used for calculating exponents and
molecular properties.
¢ - Free atom exponents have been used and molecular properties have been cal-
culated exactly.

‘-517-



Table 8,

Variation parameters and Mulliken populations for different wave

functions of HF at calculated equilibrium bond distances

Variation parameters

Mulliken populations

Wave

function|sin e« sin ¥ sin J sin 4 sin € His F2s F2po-
PP 2 0.1188 | 0,9378 0,694 1.999 1.306
pp b 0.1376 0.9313 0.682 1,999 1.319
pP ¢ 0.0700 | 0.9613 0,769 2,000 1.232
mo a 0.4938 0.5875 0.,1000 | -0.2301 0.777 1.948 1.275
mo b 0.3125 0.5750 | =0,0313 | -0.1428 | 0.721 1.936 1.343
mo ¢ | 0.3375 0.6563 | 0.0187 |-0.2185| 0.860 | 1.965 | 1.175

a, b, ¢, - are as in Table 7,



Table 9. Orbital exponents and molecular properties for different wave

-+

functions of HF at HF experimental bond distance (1,733 a.u.)

Orbital exponeits | Molecular preperties:

Wave Energy Dipole lMoment
function |His Fis F2s F2po |F2pT (a.u.) (D,)

PP a 1.49 | 8.97 | 2.77 | 3.03 | 2.97 -74.1245 2.70

ppb | 1.50 | B.97 | 2.77 | 3.02 | 2,97 7l ,1245 2.73

PP C 1,00 8.65 2.56 2455 2.55 =73.5303 3.80

mo a 1.9 | 8,97 | 2.77 | 3.03 | 2,96 -74,1103 2.81

mo b 1,50 | 8.97 | 2.77 | 3.02 | 2.96 -74.1102 2.80

mo ¢ 1.00 | 8.65| 2.56 | 2.55| 2.55 -73.5316 3.83

- A,n—

a, b, cy are as in Table 7.



Table 10. Variation parameters and Mulliken populations for different wave

functions of HFti at HF experimental bond distance (1.733 a.u.)

. Variation parameters Mulliken populétions
?gic'tion sin « sin ¥ sin § | sin % sine His F2s F2po~
PP a 0.1625 0.7938 0,466 1.999 1.536
pp b 0.1625 | 0,7888 0.459 1,999 1.542
pp ¢ 0.0000 0.37°19 0.146 2.000 1.854
mo a 0.4125 0.4000 0.,0000 | =0,1157 0.452 1,951 1.597
mo b 0.3625 0,4031 | -0.0187 | -0.1024 0.451 1.954 1,595
mo ¢ 0.,0469 0.1719 | -0,0500 | -0.0555 0.108 2.033 1,859

a, b, c,~ are as in Table 7,



Table 11. Orbital exponents and molecular properties for a series of
wave functions for HF",;,r and HO-WI‘
Orbital exponents Molecular properties
Wave Energy Bond length | Dipole
function|His Fi1s |F2s F2psr |F2pw (a.u.) (a.u.) #% | Moment(D,)
HF pp a | 1.48 | 8,641 2,63 | 2.74 2,67 ~99.1983 1.73 2.44
b | 1,48 | 8,64] 2.63 | 2,73 2,67 -99.1983 1.73 2.44
c | 1.00 | 8.65] 2.56 | 2.55 2.55 -99.0989 1.73 2.79
d 1.43 8.64{ 2,63 2,71 2,68 -99.2031 1.84 2.55
HF mo a 1.47 8,64 2,63 2.74 2.67 -99.1835 1.73. 2.46
b | 1.47 | 8.,64] 2.63 | 2.74 2,67 ~99.1835 1.73 2,46
c | 1,00 | 8,65| 2.56 | 2.55 2.55 -99.0900 1.73 2.87
HO®pp b | 1.28 | 7.66] 2.24 | 2,27 | 2.18 -75.1154 1.83 1.16

¥ Calculation for HO

#* 1,73 is a fixed value for the bond length.
- are as in Table 7.

a, b, ¢,

d - The Lowdin approximation has been used for calculating exponents and molecular
properties,
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Table 12, Variation parameters and Mulliken populations for a series of
wave functions for HFt”. and HO,
Variation parameters Mulliken populétions
Wave
function| sin « sin ¥ sin é sinf sin e His F2s F2po-

PP & 0.1560{ 0.8391 0.525 1.999 1.476
pp b 0.,1563| 0.8375 0.523 1.999 1.478
pp ¢ 0.0656| 0.7313 0.384 2,000 1,616
pp d 0.1594{ 0,8438 0.534 1.999 1.467
mo a | 0.,0734 0.4563{ -0.1391 | -0,0311 0.530 1.948 1.522
mo b 0.,0734 0.4563| -0.,1391 | -0,0311 0.530 1.948 1.522
mo c¢ 0.2911 0.3625| -0,0438| -0,1115 0.373 1,982 1.645
pp b* 0.1500], 0.,9881 0.863 1.999 1.139

* Calculation for HO

a, b' Ch

- are as

in Mable 7.
d - 1s as in Table 11,

-Og-
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Atomic Orbital Exvonents

The first choice of variables for molecular cal-
culations with a basis set of Slater-type orbitals con-
cerns the selection of appropriate orbital exponents.
In semi-empirical schemeé, free atom exponents are usu=-
ally used,38’39 however, examination of the optimized
exponent values in Tables 5, 7, 9, and 11 shows that in
certain cases the exponent values are considerably mo-
difled from atomic values; and this indicates that in
general the choice of suitable exponent values 1s not
a trivial one,

Looking first at the exponent values for HF in
Tables 5 and 7, a significant change has occurred in
the Hils exponent, from 1,00 for the free atom value to
the optimized value of about 1,32, depending on the
particular wave function. As the distance of maximum

probability for a Slater-type orbital is given by
Fmax = N/, (58)

where n is the principal quantum number and « is the
érbital exponent, an increase in an exponent value cor-
responds to a contraction of the Slater-type orbital,
The Hls orbital appears to be contracted in HF com-
pared with the free H atom, and the contraction can be

related, in part at least, to a transfer of charge from
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H to F expected by electronegativity arguments and
shown by the Mulliken populations in Tables 6 and 8,
This charge transfer results in H becoming positively
charged and the electronic density at H is in conse-
quence held more tightly. The optimized exponents for
the Fis, F2s, and F2p7T orbitals experience only small
changes from the free atom values, although an increase
of around 0.1 is shown by the F2ps orbital. Previous
experienceU6'78'79 has indicated that exponent values
often tend to increase by this Amount for orbitals in-
volved in bonding, and this can be related to the Vi-
rial Theorem.80 When highly polarizable excited orbi-
tals are involved in bonding however, the changes in
exponent values may be 1arge.81 Similar exponent va-
lues are found from both the perfect pairing and mole-
cular orbital calculations for HF, the greatest dif-
ference for the calculated equilibrium bond length 1s
0,06 for F2pr,

The results for HF and HFﬁﬂ. show that the Fls
exponent is not sensitive to changes in the valence
shell electronic structure, and this is expected for
a core orbital which has a very low polarizability.

As shown in Table 9 however, on ionizing an Fls elec-
tron from HF this exponent value is increased very
significantly. In general, for this ionization all

the exponents are increased and this corresyonds to a
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contraction of the atomic orbitals which 1s expected

since the remaining electrons will be held more tightly
in the positively charged species,as has been noted in
previous calculations on C,H, and C2H2+ by Goodman and

82

Griffith, although these workers did not optimize the

His exponent which they fixed at 1.20, In HFti_ the
Fi1s exponent now has a value of 8,97 which is very close

to the value (9,00) obtained by Slater's rules.63 The

+
s
value, and 0,2 larger than that for HF, Again, this

His exponent in HF is 0.5 larger than the free atom
increase for HF"'.;2 can be associated with the large
transfer of electronic charge from H to F., It may be
noted that the effect of this charge transfer is that -
Iﬁﬂkz approximates to the situation represented by HY-F
where the electron distribution at F tends towards
spherical symmetry. This is reflected in the F2ps and
F2pmr exponents being more nearly equal than, for example,
in HF, The optimum exponent values in the perfect pair-
ing and molecular orbital models are nearly identical,
the greatest difference being 0,01, and again this can
by rationalized by the tendency to approach H*-F,

The optimum exponent values for HF;#, listed in
Table 11, are intermediate between the exponent values

for HF and those for EFY With the same doubly occu-

z L ]
pied F1s core, the Fls exponent for HFf”r has the value

of 8,65 equal both to that for the free atom, and that
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for HF, The contraction of the Hls orbital in HFtﬂ, is

less than that in HF*;2 but greater than the Hls con-
traction in HF,

The results in Tables 5 - 12 give evidence that
calculations of molecular properties such as bond lengths
and dipole moments with minimum basis sets are much im-
proved 4if molecule-optimized exponents are used rather
than free atom exponents, In applying this result to
more complex molecules, it will be necessary to have con-
venient and relatively inexpensive methods for optimizing
Slater orbital exponents, and with this in mind consider-
ation has been given to obtaining optimal exponents when
the time-consuming electron repulsion integrals involving
two two-centre charge distributions are evaluated using
the approximation due to Lowdin in equation (56). The
first point to note is that in all cases in Tables 5, 7,

9, and 11, the optimum exponents obtained using the Low-
din approximation are quite similar to the values from e-
xact calculations and therefore are rather different from
free atom falues; in the cases of Hth and HF*;” the a-
greement is very close, For these cases the contraction

in the Hls orbitals, as reflected in the large Hls expo-
nent values, reduces the numerical values of the two-centre
exchange integrals with the consequence that the errors in-

troduced by the approximation are reduced also. Likewise,

for these two states of HF+, the molecular properties cal-

AN
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culated with the Lowdin approximation are very similar

to those from the exact calculations, and even for neu-
tral HF the errors introduced are not large considering
the saving in computation time, This suggests it could

be advantageous to investigate further in this context.

Molecular Energies

As noted in Tables 2 and 3, (with the exception of
HF*ﬁz ), molecular energies lower than the values repor-
ted in Tables 5, 7, and 11 have been given previously
for the moleculér species of interest here, However,
the intention in the present work is to restrict the ba-
sis sets to forms which have applications to more com-
rlex molecules, and consequently the results obtained
will be discussed more in relation to similar calcula-
tions, rather than to those‘with the extended basis
sets noted in Tables 2 and 3,

The molecular energies for HF at the calculated e-
quilibrium bond distances listed in Table 7, show that
the perfect pairing model gives a molecular energy
(=99.5456 a,u.) which is 6,27 kcal./mole lower than
that from the molecular 6rb1ta1 model (-99.5356 a.u.)
for a minimum basis set of Slater-type orbitals with

energy-optimized exponents, Using the Lowdin approx-
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imation for the two-centre exchange integrals in the way
described above, the perfect pairing wave function gives
a molecular energy (-99,5410 a.u.) 9.22 kcal./mole lower
than the molecular orbital calculation (-99.5263 a.u.),
and this perfect pairing energy is 2.88 kcal./mole higher
than that obtained when all integrals are evaluated ex-
actly. Using free atom exponents77 and evaluating all
integrals exactly, the molecular energy for HF for the
perfect pairing wave function (-99,5088 a.u.) is 3.20
kcal,/mole lower than that for the molecular orbital
wave function (=99, 5021 a.,u.) but it is 23.07 kcal./mole
above that obtained with energy-optimized exponents,
Similarly, the energy for HF calculated with the mole-
cular orbital model is 21.00 kcal./mole higher when free
atom exponents are used instead of molecule-optimized
exponents, Thus for the three different sets of calcu-
lations in Table 7, the perfect palring model ylelds
lower energies than the corresponding molecular orbital
calculations, and the use of free atom exponents gives
energles more than 20 kcal./mole higher than the ener-
gles obtained with molecule-optimized exponents., As
expected, results in Table 5 show similar trends for
calculations on HF with the bond length fixed at the
experimental value (1,733 a.u.).

Previously, Han81157 has used a minimum basis set

of Slater-type orbitals for a molecular orbital calcula-



-57 -

tion on HF at the experimental bond distance and repor=-
ted an energy of -99.4785 a.u. using orbital exponents
obtained from Slater's rules (E1s=1.00, F1s=8,70,
F2s=2,60, F2p=2,60)., An energy 0,0006 a,u, (0.38
kcal./mole) higher than Ransil's energy was obtained
with the computer programme used in this study for the
same values of bond length and orbital eiponents. This
difference is attributed to the use in thils work of the
pure 1s atomic orbital at F in the molecular orbital
wave function in equation (39), By the variation prin-
ciple this constraint must raise the energy compared
with the case when all atomic orbitals of the same sym-
metry type are freely mixed to form the molecular orbi-
tals., |

When the same values are given separately to the
F2s and the F2p6 exponents in the hybrids d, and d,, the
perfect pairing wave function in equation (34) corres-
ponds to a free mixing of the configurations (F2s)?
(E1s)1(F2ps)t, (F2s)2(F2pr)?, and (F2pes)?(H1s)l(F2s)?,
( omitting the common core (F1s)2(F2pm,)2(F2pm,)2)., Pre-
viously, Silk and Murrell,s9 using a minimum basis set
of Slater-type orbitals, mixed these three configura-
tions in combination with three more configurations cor-
responding to E-F+, Silk and Murrell gave the same ex=~
ponent values for the F2ps and F2p7 orbitals and calcu-~

lated an equilibrium bond length of 1,86 a.,u, in only
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falr agreement with the experimental value (1.733 a.u.).
Molecular energies for the perfect pairing wave function
in equation (34) can not be compared directly with Silk
and Murrellts because they mixed more configurations, but
at 1.4 a.u. where they find the H-F* configurations to
contribute only slightly, the programmes used in this
work give a molecular energy (-99.4725 a.u.) 1.25
kcal./mole higher than their published value (-99,4745
a;u.), using their exponents.

As for HF, calculations on HFf%_ using optimized
orbital exponents give lower molecular energies for the
perfect pairing wave function than for the molecular or-
bital model, When exponents are optimized for exact
calculation of all molecular integrals, the perfect
pairing energy is 8.91 kcal./mole lower than the mole-
cular orbital energy. As noted above, the use of the
Lowdin approximation yields exponents in close agreement
with those from the exact calculation, and the increase
in energy in using Lowdin exponents is only 0.07
kcal./mole. A very great difference occurs when free
atom exponents are used; in the perfect pairing model
the molecular energy is then 373 kcal./mole above the
value obtained with molecule-optimized exponents and the
corresponding value for the molecular orbital model is
363 kcal./mole. This large difference between energies

obtained using free atom exponents and those obtained
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with optimized exponents, emphasizes that electronic re-
laxation must be included in calculations of E.S.C.A.
energies, As noted in the section on orbital exponents,
however, this study does indicate that it may be possible
to use Slater's rules63 or something similar77 for esti-
mating exponents when the positive ion is formed by the
removal of a core electron.

The comparison of perfect palring and molecular
orbital energies for Hqur is similar to that reported
above for HF and HF*;Z, and the details are to be found
in Table 11. The interest in the energy of HFt” in
this work is mainly in relation to calculating the first
ionizaﬁién potential of EF with a minimum basis set of
Slater~type orbitals,

The energies are presented in Table 5 for the io-
nizing of an Fls electron (1sr) or an F2pmwr éléctron (1m)
as calculated assuming no reorganization of the remain-
ing electrons ( this is usually referred to as Koopman!
Theorem®3). A value of 13.32 e.V, is calculated for the
17 ionization potential with free atom exponents, and a
bond length of 1.733 a.u,, and this is to be compared
with the experimental value84 of 16,06 e.V, by photoe-
lectron spectroscopy. Using Koopmang! Theorem and ex-
ronents given by Slater's rules, Pople and Beveridge38
report a value of 12,65 e,V, with the molecular orbital

theory, and with Slater-type orbitals optimized for HF
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(Table 5) calculated values of 12,66 and 12,39 e.,V, are
obtained for the molecular orbital and perfect palring
models respectively. In principle, an improved calcula-
tion of the vertical ionization potential is made by
taking the differences between the molecular energies

of HF and HF*,, for tﬁe H-F bond length, but surprising-
ly the first ionization potential calculated this way
has a value in less good agreement for both the perfect
pairing and the molecular orbital model using either
optimized or free atom exponents , than the value ob-
tained with Koopmans! Theoreﬁ. Thus at the experimental
bond length (1.733 a.u.) energy differences between Ta- -
bles 5 and 11 give a value of 10.90 e.V, from the mole-
cular orbital method using free atom exponents. The
reasons for the less good agreement in taking the dif-
ferences between the state energies is not clear, al-
though presumably it is related in part to the restricted
form of the basis set;

As noted already, the differences between using
free atom exponents and molecule-optimized exponents are
much larger for calculating the energy of ionizing an
.Fls electron., Using Koopmang! Theorem, this ilonization
potential is calculated to be 714,12 e.V, when using
free atom exponents and the molecular orbital method.,
This value can be compared with the values of 706.26 e.V,

and 691.57 e.V, obtained respectively with free atom
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exponents and molecule-optimized exponents when dif-
ferences in the molecular orbital energies for HF and
-HF+;2 in Tables 5 and 9 are taken. Unfortunately,
these numbers can not be compared with experiment

since HF does not seem to have been studied by E.S.C.A.

yet.,

Bond Lensths and Force Constants

Equilibrium bond lengths have been calculated u-
sing the perfect pairing and molecular orbital wave
functions for various sets of orbital exponents, and the
method for obtaining the equilibrium distance has been
described on page 41, The results in Table 7 show that
the molecular orbital method using molecule-optimized
exponents gives an equilibrium bond distance of 1.75
a.u, which is only 0,02 a.,u. (0,01 &) longer than the
experimental value of 1,733 a.u. 93 The perfect pairing
method gives a calculated value of 1,77 a.u.. Using
exponent values obtained with the Lowdin approximation,
the calculated equilibrium bond lengths are within 0,02
a.u. (0,01 A) of the best calculated values, and there-
fore are in reasonable agreement with experiment., It is
significant that the ealculations with free atom eXpo-

nents give bond lengths in poor agreement with experi-
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mental values, Thus using free aton exponents,77 the
perfect pairing model predicts an equilibrium bond
length 0,20 a,u. greater than that obtained using op-
timized exponents. Likewise, the molecular orbital cal-
culation gives a bond distance 0.18 a.ﬁ. larger with
free atom exponents than that obtained with molecule-op-
timized exponenté. Thus for these calculations, the
error in calculated bond lengths using free atom expo-
nents is an order of magnitude greater than the error
1ﬁtroduced using exronent values optimized with Low-
din's approximation,

As discussed above, and shown in Table 11, the
oprtimum orbital exponent values for HthT calculated
with and without Lowdin's approximation are very nearly
equal, Therefore it seems reasonable to calculate the
equilibrium bond length of HFf”T by using the Lowdin
apprroximation for optimizing exponents at different
bond distances, The calculated equilibrium value of
1.84 a,u, is close to the value (1,85 a.u.) calculated

62

recently by Richards and Raftery, although appreciably

lower than the value of 1.96 a.u, quoted by Popleéo

N
sing a basis set of Gaussian functions derived from a=-
tomic wave functions. No experimental Qalue for the
equilibrium distance in HFtﬂ. is presently avallable,

The lLowdin approximation has also been used for a pre-

liminary calculation on the equilibrium distance in EO
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for which the experimental value 1is 1.83 a.u.53 in the
2fr state. Using the Lowdin approximation, the opti-
mized exponent values at 1.83 a.u. are Hls=1,28, 01s=7,66,
02s=2,24, O2pr=2.,27, and 02pm=2,18 and with these ex-
ronents the calculated equilibrium distance 1s 1.91 a,u,,
0.08 a.u. longer than the experimental value, As there
is less charge transfer from H in EO compared with HFtX
the Lowdin approximation may be less reliable for HO,

It is possible, therefore, that a calculation with all
integrals evaluated exactly would give an improved va-
lue for the equilibrium bond distance in HO,

Like bond lengths, values of force constants are
often used to give information about the nature of the
bonding. The calculation of a force constant depends
on calculating molecular energlies as a function of the
displacement from equilibrium, and in the harmonic ap-
proximation,29 the stretching force constant (k) for a

diatomic molecule is obtained from

£ K (r-v)? (59)

where E i1s the molecular energy calculated at a bond
length r, and ro is the calculated equilibtrium bond
distance, The force constant, therefore, is readily
determined from a plot of E versus (r-re)z. Using

molecule~optimized exponents, HF stretching force

constants equal to 8,3 x 105 dynes/cm and 8.5 x 105
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dynes/cm are obtained from the perfect pairing and mo-
lecular orbital models respectively, and these values
are to be compared with an experimental value of 9.66

X 105 dynes/cm.60 The correspondence to the experimen-
tal value is less good by about 1 x 105 dynes/cm when
free atom exponents are used to calculate the force

constant,

Electron Distributions

The calculated charge distributions in the mole-
cules of interest in this work are determined by the
values of the variation parameters =, ¥, & and { in e~
quations (31),(35),(40), and (41), Experimentally, ine-
formation relating to charge distributions is obtained
by measgrements of dipole moments and of the higher mo-v

85, 86

rents, and these moments may be calculated from
molecular wave functions. Thus, for a molecule, the

dipole moment, which is a vector quantity, 1is given by
& = —el¥icl¥) (60)

for a state function ¥; r is a sum of the electron po=-
sition vectors. For diatomic hydrides with cylindrical
symmetry about the internuclear axis, the dipole moment

is directed along this axis with magnitude
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P :—z(%lzl%>+~ ez, r;, (61)

where Vﬁ is the electronic wave function, z is the sum
of components along the internuclear axis of electron
positions, ry and Z1 are respectively the position and
charge of the 1th nucleus.

Another convenient measure of electron distribu-
tions which is used frequently for molecular wave funce -
tions expressed as a baslis of atomic orbital functions
is provided by the population analysis due to Eullikenﬁ?

In the molecular orbital model, when the 1th polecular

orbital is expressed as
% s Z Ciu ¢‘( y (62)
“u

the total electron population of ¢u in the linear com-
bination of atomic orbitals - molecular orbital method,
is glven by

™

R™ =S n {c.-.f ¢ S i c;,sa,z (63)
apy 3

where

Suv = <¢u ‘¢v>. (64)

The summation over i is over all occupied molecular or-
bitals ¢f and ny is the occupation number., Implicit in
eqiation (63) is that the overlap charze distribution

has been partitioned equally between the two centres
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involved, An equivalent population analysis for va-
lence bond wave functions is obtained according to the

following procedurex88

%b = 2‘_-6; l{/‘ , ) (65)

where the zer-order wave function ¥ corresponds to a
configuration with occupancy n (i) for the atomic or-
bital fu. Then the total electron population in @, in

the valence bond method is given by

vb ; 2 .
P, .—gl__n“o)jc,.éicic,su}, (66)
where

. (67)

Some of the variation parameters in equations (35)
and (40) provide measures of electron distributions,
Thus for the perfect pairing model an increase in sin?¥
indicates an increase in the charge at H; sin¥ equal to
1,00 implying no charge transfer while sin ¥equal to 0.0
corresponds to transfer of one electron from H., Simi-
larly in the molecular orbital model sin & is a measure
of the charge at H in the bonding molecular orbital,
Quantitatively, as the values of either sin ¥ or sin 2]
decrease, one may expect the Hls orbital population to
decrease and correspondingly the dipole moment to in-

crease. In both the molecular orbital and perfect pair-
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ing models, as used in this work, sin «x is a measure of
the sp hybridization at F., As sin « increases, the hy-
brid designated d1 has more F2s character, and corres-~

rondingly the hybrid designated d2 has ess F2s charac-
ter, The trends in these various measures of electron

distribution will now be examined for the different mo-
lecular wa&e functions.,

Looking first at the results in Tables 7 and 8
for the calculated HF equilibrium distances, the agree-
ment to 0.01 in the values of sin ¥ or sin é using the
.exactly-optimized and the Lowdin-optimized exponents
is reflected in the Hls populations being similar for
either set of exponents. The Hls populations are, how-
ever, slightly higher for the molecular orbital model
(0,78) than for the perfect pairing model (0.69); and
this is consistent with the calculated dipole moment
being higher for the verfect pairing calculation (1,72
D.) than for the molecular orbital model (1.41 D.),

The experimentally-measured dipole moment of HF is 1,82
D..89 With free atom exponents, the charge redistri-
bution on formation of HF is calculated to be less, and
this is reflected in the lower calculated values of the
dipole moment, being 1,31 D, and 0.89 D, for the vper-
fect pairing and molecular orbital calculations respec-
tively. Similar trends in results are found for the

calculations at experimental distance of 1.733 a.u..
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The values of sin & in Tables 6 and 8 indicate
that the perfect palring model is consistent with some-
what less sp hybridization than the molecular orbital
method, and although it is well known that the concept
of hybridization is not necessary in the molecular or-

bital theory,l?

results of comparing values of sin e
are consistent with the Fulliken popﬁlations on the F2s
orbital being 0,05 greater in the perfect pairing cal-
culation than in the molecular orbital calculation.,
Nevertheless, the hybridization at F in HF is small in
both models, as expected from the average 2s to 2p pro-
motion energy, which from atomic spectral data is es-

timated to be 20.8 e.E.12

The results obtained are
consistent with the bonding hybrid d.1 being essentially
F2pes, and therefore, the nonfbonding hybrid designated
d2 being mainly F2s in character.

Even though the sp hybridization at F seems to be
small, the hybrids have been looked at in a different
way for the purpose of molecular calculations. This ex-
tension involved assigning one orbital exponent to d1
and a different exponent to d2 without regard to the
basis Slater-type orbitals; that is the 81a£er exponents

are selected such that

X 25 = & 2p (68)
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and
<2s' = a(lpl, (69)
with

o 2 S 9‘-@(25'» (70)

With these basis functions, the energy was completely
minimized for the perfect pairing wave function. The
optimized exponents were found to be His=1.35, Fl1s=8,65,

F2pr=2,49, d4,=2,62 and d,=2.55. The optimum exponents

1
for d1 and d2 are within 0.02 of the optimum values of
F2per and F2s in Table 7, however, this approadh results
in a perfect pairing energy of -99.5459 a.u, which is
0.19 kcal./mole lower than the previous best perfect
pairing energy, and a calculated equilibrium H-F distance
of 1,75 a.,u. which is 0.02a,u, better than the perfect
pairing calculation using the more conventional basis
of atomic orbitals. Assigning exponents to hybrids ra-
ther than natural atomic orbitals might be expected to
give greater impro%ements in the calculations of pro-
verties of molecules in which the hybridization of a-
tomic orbitals is suggested to occur to a greater ex-
tent than at F in HF,

An interesting observation from all the results

is that with the single exception of the molecular or-

bital calculation for HFT,

ag atomic orbital hybridiza-
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tion at F is less when free atom exponents are used in-
stead of molecule-optimized exponents. This suggests
that one should perhaps be cautious in deducing conclu-
sions regarding possibilities of hybridization purely
from considerations related to data for free atoms, al-
though it may be noted that in the limit of complete
transfer of electronic charge from H to F, the hybri-
dization picture becomes irrelevant. It is_not too
clear at present, but the fact that the molecular orbi-
tal calculation of HFﬁHT is out of line may be related
to this consideration. Another odd feature of this
calculation is that the Mulliken population for F2s is
indicated to be greater than 2. This result is asso-
ciated-with the equal partitioning of overlap charge
between the two centres in the FMulliken analysis. This
is not realistic and is well known to yield negative
pooulations in some cases.90 .
The results in Tables 10 and 12 show that large
modifications occur in the calculated electron distri-
butions for Hth. and HF*a, when free atom exponents
are used instead of molecule-optimized exponents., Iow-
ever, when the Lowdin approximation is used for deter-
mining orbital exponents for these molecular svecies,
the Mulliken povulations and dipole moments are in closé
agreement with those from the exact calculations. As

expected, the charge transfer from H to F increases in
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the series HF, H?ﬁw , grt, and this is reflected in

_-12 ’
the values for the MNulliken populations and the calcu-
lated dipole moments. Also, as noted above, the Hls ex-

ponent tends to increase with this charge transfer.

+

ag is provided by

A further comparison with HF
a preliminary calculation on HO,X with the perfect pair-
ing model and utilizing the Lowdin approximation. In
this case it turns out that sin¥ 1is close to unity and,
correspondingly, the Hls electron populatioﬁ is 0.86,
This is to be exvected because of the much lower elec-
tronegativity of O compared with F in the species be-
ing considered, The smaller charge transfer compared
with F results in a lower divole moment; our calculated

value of 1.16 D, is to be compared with the experimental
value of 1.66 D,?! ror HO.

Concluding Remarks

The interest in finding useful methods for deriving
wave functions with applications to complex molecules
stems from many considerations, but without doubt there
is currently much interest in developing quantum chemical
methods with applications to molecular systems as di-
verse as those of biological 1nterest93 and those present

in structures of the solid state,9? Inevitably, methods
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with apvlication to compléx systems must first be tested
on simpler molecules, On the whole, the molecular orbi-
tal method has proved most useful in applications to com-
vlex systems so far,38-39tmt recent advances in comvou-
tational techniques have indicated the feasibility of na-
king valence bond calculations on a more routine basis

to polyatomic molecules§-45 and it has been known for
some time that calculations in the perfect pairing mo-
del can be formulated readily with comparatively simple
expressions for molecular energies.9'69 Probably in the
future, wave functions for complex molecules will be
written so as to represent some hybrid of the molecular
orbital and perfect pairing schemes, such as is built
into many conventional bonding models (eg. the localized
and delocalized components of the electronic structure

of benzene)., In part, this thesis has been directed at
comparing the molecular orbital and perfect pairing mo-
dels for some simplevdiatomic hydrides,; and this repre-
sents an extension of the recent work by Mitchell and
Thirunamachandran on BeHzf“;We can conclude that for
minimum basis set calculations, both the perfect pairing

~and molecular orbital models provide reasonable accounts

et
Fas
Nore specifically, calculations of molecular energies

of a number of basic properties of HF, H and HF+5R.

using wave functlions in the perfect pairing framework

are between 6 and 10 kcal/mole lower than those from
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corresponding calcﬁlations using molecular orbital

wave functions, Equilibrium bond lengths calculated
with both the perfect pairing and molecular orbital mo-
dels are within 0.04 a.u. (0.02 A) of the experimental
value for HF; where comparison with experimental data
1s possible dipole moments seem to be better predicted
with the perfect pairing model, although, force con-
stants and ionization potentials are calculated with si-
milar reliabilities with the perfect pairing and mole-
cular orbital methods., To some extent this contrasts
with the situation for BeHZ, where the perfect pairing
model seems to be preferable to the molecular orbital
model; in part this contrast can be associated with

the greater electronegativity difference between H and
F; thus in the limit of HYF~ both the perfect pairing
and the molecular orbital models would merge with the
lonic model,

The comparisons made here between calculations
with free atom exponents and those with molecule-opti-
mized exponents show that free atom exponent values can
not in general be considered avpropriate for calculations
which attempt to evaluate properties such as bond lengths

38

and dipole moments, Often semi-empirical methods give

the same exponent values to the different 2p orbitals,
which, in a molecular environment, are often inequiva-

~

lent., This restriction is made in part for simplicity
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and in part to maintain rotational 1nvariance.94Ne-
vertheless, i1t should be noted that this constraint

does introduce error compared with the situation where
the symmetrically different 2p orbitals have different
exponents, It may be noted that in this work, the per-
fect pairing calculations for HF gave much better cal-
culations of the H-F equilibrium distance than that re-
ported by Silk and Murrell,sg even though these workers
used a larger set of basis configurations for their va-
lence bond wave functions. The difference in bond length
seems to be due to the allowance in this work of diffe-
rent 2psr and 2pfT exponents, whereas Silk and Murrell
constrained theirs to have a single value, For this ba-
sis set with Slater-tyve orbitals it seems therefore

that the choice of orbital exponents is quite crucial

for estimating molecular properties, Further studies of
the changes in exponents from free atom values are neces-
sary to enable reasonable predictions of suitable ex-
ronents for larger molecules,

The determination of molecule-optimized exponent
values by means of exact calculations does, however,
become very expensive for large molecules, and for this
reason it is important that there are approximate schemes
available for limiting the computational effort. One
way 1s to approximate the molecular integrals by dras-

tically limiting the number that need to be calculated
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exactly. This study has shown that an approximation
proposed by Lowdin,56 when avpplied to calculating some
two-centre electron-repulsion exchange integrals, pre-
dicts optimum exponent values which are close (0,04

for all cases considered here) to the values obtained
from calculations in which all integrals are evaluated
exactly. The approximation as used here does make a
substaﬁtial saving in computational expense for the
diatomic hydrides considered in this thesis, but to be
really useful for more complex molecules it would be
necessary for the Lowdin approximation to be made for
all overlap charge distributions occurring in electron-
repulsion integrals. Nevertheless, the results obtained
here encourage the belief that the use of the Lowdin
aprroximation should be considered further for esti-
mating suitable exponent values prior to a calculation

where all molecular integrals are evaluated exactly.
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