OXYGEN TRANSFER IN A STIRRED TANK

by

MING-SHEN LIU
B.E., University of Shizuoka, 1966

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in the Department
of

CHEMICAL ENGINEERING

We accept this thesis as conforming to the required standard

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Ming-Shen Liu

Department of Chemical Engineering The University of British Columbia

Vancouver 8, Canada

ABSTRACT

Microbiological leaching of sulfide minerals in fermenters is believed to have commercial potential. The oxygen transfer rate has been assumed to be one of the most important factors affecting the leach rate. The mass-transfer rate at various solution $\mathrm{pH}^{\prime} \mathrm{s}$ was studied by using an unsteady gassing out process. The sulfite-oxidation process was also studied in an attempt to explain the absorption mechanism.

A 7.5 inch I.D. methyl methacrylate tank with 4 baffles and a 4-inch diameter paddle type impeller were used. The impeller was driven by a motor mounted on a dynamometer which allowed measurement of the power used in agitation. All the experiments were carried out under highly turbulent conditions and covered the liquid temperature range $25^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.

The results showed that pH had no effect on mass-transfer coefficient. The values of K_{L} a increased as temperature increased. The relationship between $K_{L} a$, power input and superficial gas velocity was found to be of the form:

$$
K_{L} a=c(H P / V)^{x} \cdot\left(V_{S}\right)^{y}
$$

A comparison of the K_{L} a observed in an unsteady gassing out process and that in a sulfite-oxidation process showed that the interfacial area/unit volume of liquid, a, is directly proportional to (V_{s}) ${ }^{0.50}$ which coincides with Calderbank's result.

TABLE OF CONTENTS
ACKNOWLEDGEMENT iii
NOMENCLATURE iv
ABSTRACT vi
INTRODUCTION 1
SURVEY OF LITERATURE
A. Over-all Mass-Transfer Coefficient 4
B. Controlling Resistances 4
C. Sulfite-Oxidation Process 5
D. Unsteady Gassing Out Process 10
E. Mass Transfer with Chemical Reaction (Sulfite-Oxidation Process) and without Chemical Reaction (Unsteady Gassing Out Process) 10
(1) Infinitely Fast Reaction 11
(2) Irreversible-Pseudo-First-Order-Slow-Reaction 14
F. Factors Affecting the Values of Mass-Transfer Coefficients 16
(1) Effect of Liquid Temperature on $K_{L} a$ 16
(2) Effect of Liquid Depth on K_{1} a 17
(3) Effect of Gas Superficial Vellocity and Power Input 20
(4) Other Factors 23
G. Effect of Aeration Rate on Power Consumption 23
EXPERIMENTAL DETAILS 25
I. APPARATUS 25
A. General 25
B. Detail
(1) Reactor 25
(2) Impeller 25
(3) Agitator with Dynamometer 25
(4) Nozzle 2.7
(5) Saturators 27
(6) Heating Coil 27
(7) Water Bath 27
(8) Oxygen Analyzer with Electrode 27
(9) Recorder 29

table of Contents (Cont'd)

(10) Manometer 29
(11) Thermocouples and Potentiometer 29
(12) Variable Flow Meter 29
(13) Thermoregulator and Relay 29
(14) Needle Valve 29
(15) Tachometer 30
(16) Liquid Nitrogen 30
II. PROCEDURES 30
A. Unsteady Gassing Out Process 30
B. Sulfite-Oxidation Process 33
III. RESULTS AND DISCUSSION 34
A. Saturation Oxygen Concentrations 34
B. Effect of Unsaturated Air on $\mathrm{K}_{\mathrm{L}}{ }^{\mathrm{a}}$ 34
C. Effect of Tap Water vs. Distilled Water on $K_{L}{ }^{\text {a }}$ 38
D. Effect of Oxygen Concentration on $\mathrm{K}_{\mathrm{L}} \mathrm{a}$ 38
E. Correlation of $\mathrm{K}_{\mathrm{L}}{ }^{a}$ with Operating Variables 42
F. Sulfite-Oxygen Reaction Mechanism 49
G Sulfite-Oxygen Absorption Mechanism 49
H. Oxygen Supply 58
I. Power Requirements in a Gassed System 59
IV. CONCLUSION 62
V. RECOMMENDATIONS FOR FURTHER STUDY 63
LITERATURE CITED 64
APPENDIX
I Alsterberg (Azide) Modification of Winkler Method (46) 1-1
II Calibration Chart for Thermocouples 2-1
III Calibration Chart for Flowmeter 3-1
IV Computier Program for Calculation of Unsteady Gassing Out Process 4-1
V Computer Program for Curve Fitting 5-1
VI Computer Program of Sulfite Oxidation Process 6-1
VII Unsteady Gassing Out Process Data 7-1
VIII Sulfite Oxidation Process Data 8-1

ACKNOWLEDGEMENT

I wish to thank Professor Richard Branion of the Department of Chemical Engineering of the University of British Columbia, Dr. D. W. Duncan and Dr. C. C. Walden of the British Columbia Research Council for their guidance and helpful suggestions in carrying out this project.

I wish to thank the British Columbia Research Council for use of facilities and equipment and for financial assistance.

I wish also to thank Dr. J. S. Forsyth, the Head of the Department of Chemical Engineering of the University of British Columbia for lending the agitation equipment and for additional financial support.

NOMENCLATURE
interfacial area per unit volume, $f t^{2} / f t^{3}$
stoichiometric coefficients for reacting substance B concentration of liquid, g moles/1
concentration of component in gas-liquid interface, g moles/1 concentration of component in liquid which would be in equilibrium with partial pressure of component in the gas phase, g moles/l
concentration of reacting component in liquid, g moles/1
molecular diffusivity of component $A, \mathrm{~cm}^{2} / \mathrm{hr}$ molecular diffusivity of component $B, \mathrm{~cm}^{2} / \mathrm{hr}$ impeller diameter, ft mean diameter of bubbles, cm gravitational constant, $\mathrm{cm} / \mathrm{sec}^{2}$

Henry's constant, g moles/1 atm gas hold up, \%
power input, horsepower/1000 gallons of liquid reaction rate constant, (conc) ${ }^{n-1} /(T I M E)^{n}$ mass transfer coefficient for gas film, g moles $/ \mathrm{hr} \mathrm{cm}^{2} \mathrm{~atm}$ mass transfer coefficient for liquid, cm/hr over-all mass-transfer coefficient based on gas-film control, g moles/hr $\mathrm{cm}^{2} \mathrm{~atm}$
over-all mass-transfer coefficient based on liquid-film control, $\mathrm{cm} / \mathrm{hr}$
mass-transfer rate, g moles/hr ft ${ }^{2}$
mass-transfer rate of species A per unit area, g moles/hr $f t^{2}$ mass-transfer rate of species B^{\prime} per unit area, g moles/hr ft^{2} agitation speed, rpm

Schmidt number, dimensionless
partial pressure in gas phase, atm

$\mathrm{P}_{\mathbf{i}}$	partial pressure of component at gas-liquid interface, at
$\mathrm{p} *$	partial pressure of component which would be in equilibrium with concentration of liquid, atm
(Pg/V)	power input, erg/ml of liquid
Q	air flow rate, $\mathrm{ft}^{3} / \mathrm{hr}$
t	time, hr
T	absolute temperature, ${ }^{\circ} \mathrm{K}$
V_{S}	superficial gas velocity, ft/hr
V_{t}	terminal superficial gas velocity, ft/hr
x	constant
X_{L}	liquid-film thickness, cm
y	constant
z	constant
σ	surface tension, dyne/cm
ρ_{c}	continuous phase viscosity, $\mathrm{g} / \mathrm{cm}^{3}$
$\rho_{\text {d }}$	dispersed phase viscosity, $\mathrm{g} / \mathrm{cm}^{3}$
ρ_{L}	density of liquid, $\mathrm{g} / \mathrm{cm}^{3}$
$\Delta \rho$	density difference, $\mathrm{g} / \mathrm{cm}^{3}$
${ }^{\mu} \mathrm{c}$	continuous phase viscosity, centipoise
H̄d	dispersed phase viscosity, centipoise
ξ	reaction coefficient

INTRODUCTION

The bacterium, Thiobacillus ferrooxidans, is unique among bacteria in that it can oxidize ferrous iron and reduced sulfur compounds utilizing the energy so derived for its life processes. When metallic sulfides are oxidized, the release of associated metals into solution may be of considerable economic value. Microbiological leaching of metallic sulfides is currently used commercially in the leaching of waste dumps or abandoned areas of mines. It has a potential use in the leaching of sulfide concentrates utilizing tank type fermenters. In such a system a pulp of finely ground sulfide mineral in water would be aerated and agitated in a suitable vessel in the presence of T. ferrooxidans and nutrients essential for growth. The bacteria would oxidize the sulfide to sulfate releasing the associated metal ions into solution. A better understanding of the various factors influencing bacterial growth and the microbiological dissociation of sulfides may aid in improving the efficiency of the biological leaching process and lead to its increased utilization.

Oxygen transfer has been assumed to be one of the most important rate controlling factors, because the oxygen demand in oxidizing sulfide to sulfate is large. Moreover, the respiratory enzymes can utilize only dissolved oxygen and oxygen is so insoluble that at any time only a small reservoir exists in solution (at $35^{\circ} \mathrm{C}$ for example, water in equilibrium with air contains about 7 ppm of oxygen). The microorganisms are continuously drawing upon this reservoir and the supply must be replenished at a rate adequate to satisfy the demand in every portion of the culture fluid. Otherwise, there will be local or temporary depletion of oxygen which may damage the respiring cells.

The oxygen uptake rate for a resting cell suspension of T. ferrooxidans can be as high as 22,000 microliters of oxygen per milligram of cell nitrogen per hour, when oxidizing ferrous iron (1). When oxidizing chalcopyrite the oxygen uptake rate has been reported to be as high as $8,524 \mu 1 / \mathrm{mg}$ N / hr for resting cell suspensions (2). However, when the organism was growing on chalcopyrite the maximum rate of oxygen utilization was $756 \mathrm{mg} / 1 / \mathrm{hr}$ (3).

Individual rate processes for the transfer of oxygen from the air to the respiratory enzyme system may be summarized as follows:
(1) Diffusional transfer from the air to the gas-1iquid interface.
(2) Diffusional transfer through the liquid film.
(3) Diffusional or convective transfer through the liquid to the cells.
(4) Diffusion through the film which surrounds the cell wall.
(5) Diffusion across the cell wall to the cell membrane.
(6) Chemical reaction with oxidizable substances through the mediation of the cell enzymes.

Each individual process must have a rate at least equal to the over-all rate; i.e., the over-all rate of the transfer can not exceed the lowest individual rate.

It has been assumed in most biological processes that the diffusional transfer of oxygen from the air to the liquid medium is a limiting factor in the rate of metabolism. Since the biological leaching of chalco-
pyrite is to be carried out at an optimum temperature of $35^{\circ} \mathrm{C}$ and at pH values of 1.0 to 3.0 , a knowledge of oxygen transfer rates under these conditions was required. Data at such pH values were not available prior to this study.

The object of this study was to attempt to obtain a correlation between over-all mass-transfer coefficient and the pH and temperature of the solution. At the same time the effects of various other parameters such as superficial velocity of the air and agitation speed were evaluated. This knowledge should allow one to predict the maximum leach rates possible if oxygen transfer is the rate limiting step in the microbiological oxidation of sulfides.

SURVEY OF LITERATURE

A. Over-all Mass Transfer Coefficient

The rate of dissolution of oxygen is proportional to the depletion of dissolved oxygen in the liquid. The rate is also proportional to the interfacial area, and therefore, one may write for a unit volume of culture fluid

$$
\begin{aligned}
& \text { rate of absorption, } N_{A}=k_{G} a\left(P-P_{i}\right)=k_{L} a\left(C_{i}-C\right) \quad--(1) \\
& N_{\dot{A}}=K_{L} a\left(C^{*}-C\right)=K_{G} a\left(P-P^{*}\right) \quad--(2)
\end{aligned}
$$

The product of K_{L} and a can be found indirectly through a knowledge of C^{*} (by Henry's Law), and C (by measurement) and the rate of absorption N_{A} (by measurement). Since, in a steady state, the rate of absorption exactly equals the rate of demand

$$
\begin{equation*}
K_{L} a=N_{A} /\left(C^{*}-C\right) \tag{3}
\end{equation*}
$$

K_{L} a provides an over-all measure of the gas absorbing capacity of any fermenter. It is in fact the only practical way to characterize the performance of laboratory or industrial devices.

B. Controlling Resistances

The proportionality constant K_{L} in equation (2) is the over-all mass transfer coefficient. Its reciprocal, $1 / K_{L}$, an over-all resistance, is equal to the sum of the separate resistances residing in the gas film, the interface and the liquid film.

Chiang and Toor (4) and Scriven and Pigford (5) found in laminar liquid jet experiments that little interfacial resistance existed. Therefore the over-all resistance, as shown by equation (4)

$$
\begin{equation*}
1 / K_{L} a=1 / k_{L} a+1 / H k_{G} a \tag{4}
\end{equation*}
$$

indicates that, when $k_{G} a$ is large compared to $k_{L} a$, the term $1 / k_{G}$ a is negligible compared to the term $1 / \mathrm{k}_{\mathrm{L}}$ a and the over-all transfer coefficient approximately equals the liquid phase coefficient. In such a case, it is said that the liquid phase constitutes the controlling resistance of the operation.

Experiments have shown that liquid film resistance was controlling for oxygen transfer in bubble aeration (6). Even under conditions of minimum mass-transfer rate in the gas film, Calderbank (7) showed that the mass-transfer coeffient of the gas film was at least 44 times higher than that of the liquid film.

C. Sulfite-Oxidation Process

Oxygen absorption rates can be determined practically in several ways, among which the sulfite oxidation process of Cooper et al (8) is used perhaps the most frequently for aeration rate studies. Basically, this method depends on the oxidation of sulfite to sulfate by oxygen in the presence of a catalyst according to equation (5).

$$
\begin{equation*}
\mathrm{SO}_{3}^{\overline{\overline{3}}}+\frac{1 / 2 \mathrm{O}_{2}}{\text { Catalyst }} \mathrm{Cu}^{++} \mathrm{SO}_{4}^{=} \tag{5}
\end{equation*}
$$

The reaction is considered to be zero order with respect to both sulfite and sulfate concentrations and the reaction rate is considered to be sufficiently fast so that it is not the rate limiting step.

In Cooper's procedure a sulfite solution is aerated for a measured time; a known excess of iodine is then added to react with the unoxidized sulfite and the unreacted iodine is titrated with sodium thiosulfate. By calculation, the amount of sulfite converted to sulfate may be determined; and hence, the amount of oxygen going into solution during the measured time interval can be calculated.

At any time the amount of unreacted, dissolved oxygen in the solution can be assumed to be zero because the chemical reaction rate is much faster than the rate of solution of oxygen. Therefore when $C=0$, equation (3) becomes

$$
\begin{equation*}
\mathrm{K}_{\mathrm{L}} \mathrm{a}=\mathrm{N}_{\mathrm{A}} / \mathrm{C}^{*} \tag{6}
\end{equation*}
$$

The saturation values $\left(C^{*}\right)$ for oxygen in sulfite solutions can be calculated from the data of MacArthur (9). In very dilute solutions the values can be assumed to be the same as those in pure water. The rate of absorption $\left(\mathrm{N}_{\mathrm{A}}\right)$ is determined experimentally and hence, values of K_{L} a are obtained.

Miyamoto $(10,11,12,13)$ has presented a comprehensive study of the sulfite-oxygen system. He found the absorption rate to be directly proportional to oxygen partial pressure and interfacial area. It increased with temperature, exhibiting an activation energy of approximately 12.5 kcal/mole.

Fuller and Crist (14) later made a very careful study of the reaction rate. The uncatalyzed reaction rate was found to be first-order with respect to sulfite. Westerterp et al (15) found that the copper-catalyzed sulfite-oxygen reaction was zero-order with respect to sulfite concentration and first-order with respect to the dissolved oxygen concentration.

Phillips and Johnson (16) measured the effect of oxygen partial pressure on the rate of oxidation of copper- and cobalt-catalyzed sulfite solution in both sparged and unsparged cylinders. They found that in the sparged system the rate of oxidation varied directly with oxygen partial pressure. For the unsparged cylinder, at low turbulence levels, the rate of oxidation varied as the 1.5 power of the partial pressure of oxygen, and at high turbulence levels it varied directly, as for the sparged system. They derived one equation for low turbulence absorption where it was assumed that all of the oxygen-sulfite reaction occurred in the stagnant liquid film. This equation was second-order with respect to oxygen concentration and first-order with respect to sulfite concentration. A second equation was given for highly turbulent conditions in which it was assumed that the chemical reaction occurred in the bulk of the liquid. Under these conditions the transfer rate was independent of sulfite concentration and varied directly with oxygen partial pressure. The oxygen uptake rate determined under these highly turbulent conditions was considered to be the maximum rate at which oxygen could be transferred from the gas phase into a fermentation liquid.

Murphy et al (17) investigated aeration in tower-type fermenters in which air was introduced at the base of the fermenter through porous discs. They found that the rate of oxidation of copper-catalyzed sulfite solutions was strongly dependent on the total amount of sulfite and sulfate present, and not on the concentration of sulfite alone. For initial concentration of sulfite in the range 0.10 to 0.20 N the rate was highly dependent on the concentration. They attributed this to the dependence of bubble size on normality of the solution.

Roxburgh (18) studied the effect of different catalysts on the oxidation of sodium sulfite solutions in several different types of equipment and showed radical differences in rates between copper-, cobalt-, nickel-, and iron-catalyzed systems. He also observed that the rate found for any single catalyst system depended to an appreciable extent on the pH of the sulfite solution.

Fuller and Crist (14) found that the rate of sulfite oxidation was independent of the pH between 8.2 and 8.8 but decreased in a complicated way between 3.2 and 5.9. This was accounted for by assuming that the rate was dependent on the sulfite ion concentration and the square root of the hydrogen ion concentration, but was independent of the acid sulfite ion concentration. They also found that the reaction system was very sensitive to both positive and negative catalysis. However, increased cupric ion concentration had no effect on the reaction rate at concentrations above $10^{-4} \mathrm{M}$.

Robinson and Engel (19) found that the copper-catalyzed sulfiteoxygen reaction rate was even slower than the uncatalyzed reaction rate: They recommended the use of a cobalt catalyst instead of.a copper catalyst.

Carpani and Roxburg (20) found that the rate of oxidation of copper-catalyzed sulfite solutions decreased as agitation was increased in an unbaffled stirred jar in which oxygen could enter the liquid only. through the horizontal air-liquid interface. This was contradictory to the results they found for oxygen transfer to water and sodium chloride solutions, where transfer rates increased with increasing agitation. Schultz and Gaden (21) had previously reported a similar phenomenon, and explained it on the basis of a chain mechanism for the oxidation of sulfite, with the requirement of an induction period for the concentration of intermediates to build up.

Phillips (22), using three horizontal fermenters, rotating at peripheral velocities in excess of $100 \mathrm{~cm} / \mathrm{sec}$, found that the rate of oxygen transfer to catalyzed sodium sulfite solutions was similar to those for fermentations. However, at peripheral velocities below $100 \mathrm{~cm} / \mathrm{sec}$ some unknown factors apparently affected the reaction kinetics and the resulting transfer rates were considerably higher than those observed for oxygen transfer to fermentations.

Carpani and Roxburgh, and Phillips were not dealing with the mass transfer from air bubbles to liquid but with transfer from air to flat liquid surfaces. Apparently, this kind of transfer was less affected than air bubble-1iquid transfer by the properties of the liquid (23).

The kinetics and mechanism of the oxidation of sulfite have been extensively studied and mechanisms have been proposed by several authors, the most noteworthy being Laidler (24), who postulated a free radical ion intermediate. Nevertheless, many questions concerning this reaction remain unanswered. The sulfite-oxidation process has also been found not suitable for comparison of the over-all mass-transfer rate at low pH values, because as shown by Fuller and Crist (14), the rate of the sulfite-oxygen reaction was so slow at low pH values that it became the rate limiting step.

However, the dependence of the reaction rate of the copper-catalyzed sulfite-oxygen reaction on the unreacted sulfite concentration was studied as part of this thesis. The data were compared with those obtained by an unsteady gassing out process. An attempt was made to explain the absorption mechanism in the sulfite-oxidation process.

D. Unsteady Gassing Out Process

A gassing out process appeared to be the only way of measuring K_{L} a in a liquid medium at low pH . Under these conditions of low pH dissolved oxygen can be determined either by the Modified Winkler Method Appendix (I) or by the use of an oxygen analyser. Saṭuration values can be determined at any pH. Data from International Critical tables (25) showed that when air was brought into contact with 0.5 N sulfuric acid, the saturation oxygen concentration was 7.05 ppm at $25^{\circ} \mathrm{C}$, the value in pure water under the same condition is 7.50 ppm .

The mass transfer coefficient can be calculated from the integral form of the rate equation either graphically or numerically,

$$
\begin{equation*}
\frac{d C}{d t}=K_{L} a \quad\left(C^{*}-C\right) \tag{7}
\end{equation*}
$$

on integration

$$
\begin{equation*}
K_{L} a=\frac{1}{\left(t_{2}-t_{1}\right)} \ln \frac{\left(C^{*}-C_{1}\right)}{\left(C^{*}-C_{2}\right)} \tag{8}
\end{equation*}
$$

E. Mass Transfer with Chemical Reaction (Sulfite-Oxidation Process) and without Chemical Reaction (Unsteady Gassing Out Process)

Theoretical equations for simultaneous diffusion and chemical reaction in the liquid phase have been derived. The first attempt was made by Hatta (26). He applied Lewis and Whitman's two film theory (27) to the absorption of carbon dioxide in alkali solution. Derivations based on the unsteady-state theories of Higbie and Danckwerts have been given in many papers (28). From a physical point of view, the unsteady-state theories are probably more correct, but all these models give qualitatively the same
results as the film theory (29). Because of this and the simplicity of the film theory, we shall deal with it exclusively.

The film theory assumes that the resistance to diffusion is concentrated in both the gas and liquid films which are adjacent to the gas-liquid interface, that the concentration profile is independent of time, i.e., at steady state, and that instantaneous equilibrium between P_{i} and C_{i} is established as soon as the gas contacts the liquid (Figure 1). Figure 1 shows the concentration profiles in the two films.
(1) Infinitely Fast Reaction

When the reaction is infinitely fast according to the equation,

$$
\mathrm{A} \text { (gas phase) }+\mathrm{b} \text { B (liquid phase) } \longrightarrow \text { product }-- \text { (9) }
$$

A will dissolve and react immediately with B at the phase boundary. The product will begin to diffuse toward the main body of liquid. The concentration profiles for this case would be as shown in Figure 2.

In a unit contact area, the diffusion rate of A and B in the liquid phase can be expressed as:

$$
\begin{align*}
& \mathrm{N}_{\mathrm{A}}^{\mathrm{l}}=\frac{\mathrm{D}_{\mathrm{A}}}{\mathrm{fx}_{\mathrm{L}}} \quad\left(\mathrm{C}_{\mathrm{i}}-0\right) \tag{10}\\
& \mathrm{N}_{\mathrm{B}}^{1}=\frac{\mathrm{D}_{\mathrm{B}}}{(1-\mathrm{f}) \mathrm{x}_{\mathrm{L}}} \quad\left(\mathrm{C}_{\mathrm{B}}-0\right)=\frac{\mathrm{SD}_{A}}{(1-f) \mathrm{x}_{\mathrm{L}}} C_{B}
\end{align*}
$$

where $S=D_{B} / D_{A}$ and f is as shown in Figure 2.

FIG 1. CONCENTRATION PROFILES ACROSS A GASLIQUiD INTERFACE. THE VALUE OF PI IS INEQULIBRIUM WITH THAT OF CI, THE CONCENTRATIONS (C AND P) WITHIN THE EFFECTIVE FLMS CHANGE LINEARLY WITH DISTANCE FROM THE INTERPHASE

FIG 2. SKETCH OF GRADIENTS IN DOUBLE FILM WITH IRREVERSIBLE INSTANTANEOUS REACTION FOLOUNNG ABSORPTION

At steady state $N_{B}{ }^{l}=N_{A}{ }^{l} b$, therefore by combining equation (10) and (11), solving for f and substituting in equation (10),

$$
\begin{equation*}
N_{A}^{1}=\frac{D_{A}}{x_{L}} C_{i}\left(1+\frac{S}{b} \frac{C_{B}}{C_{i}}\right)=k_{L} C_{i}\left(1+\frac{S}{b} \frac{C_{B}}{C_{i}}\right)- \tag{12}
\end{equation*}
$$

Since $C_{i}=H P_{i}$, equation (12) can be rearranged as:

$$
\begin{equation*}
N_{A}^{1}=\frac{P_{A}+\mathrm{S} \mathrm{C}_{B} / \mathrm{b} \cdot \mathrm{H}}{1 / \mathrm{k}_{\mathrm{G}}+1 / \mathrm{H} k_{\mathrm{L}}}=\frac{\mathrm{C}^{*}+\mathrm{S} \mathrm{C}_{B} / \mathrm{b}}{\mathrm{H} / \mathrm{k}_{\mathrm{G}}+1 / \mathrm{k}_{\mathrm{L}}} \tag{13}
\end{equation*}
$$

where $C^{*}=\mathrm{HP}_{\mathrm{A}}$
when there is no chemical reaction

$$
\mathrm{N}_{\mathrm{A}}^{\mathrm{l}}=\mathrm{k}_{\mathrm{L}} \mathrm{C}_{\mathrm{i}}
$$

The reaction coefficient

$$
\begin{equation*}
\xi=\frac{\mathrm{N}_{\mathrm{A}}^{1} \text { with reaction }}{\mathrm{N}_{\mathrm{A}}^{1} \text { without reaction }}=1+\mathrm{qS} \tag{14}
\end{equation*}
$$

where, $q=C_{B} / b C_{i}$

The derivation of equation (13) follows that of Hatta (26), who was interested in the batch absorption of CO_{2} by KOH solutions.
(2) Irreversible-Pseudo-First-Order-Slow-Reaction

If the reaction is a pseudo-first-order reaction and the reactant in the liquid is insoluble in the gas, i.e., the zone of reaction is in the liquid film, the diffusion rate $=$ reaction rate (30). Therefore,

$$
\begin{equation*}
-D \frac{d^{2} C_{A}}{d x^{2}}=k_{1} C_{A} \tag{15}
\end{equation*}
$$

The boundary conditions are:

$$
\begin{array}{ll}
\mathrm{x}=\mathrm{o} & \mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{i}} \\
\mathrm{x}=\mathrm{x}_{\mathrm{L}} & \mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{L}} \tag{16}
\end{array}
$$

Solution of (15) and (16) gives:

$$
\begin{aligned}
& N_{A}|x=0=-D| \frac{d C_{A}}{d x} \left\lvert\, x=0=\frac{D C_{i}}{x_{L}}\left(\frac{b_{1} \cosh b_{1}-b_{1} \Gamma}{\sinh \cdot b_{1}}\right)--(17)\right. \\
& \left(N_{A}\right) \text { no reaction }=-D\left|\frac{d C_{A}}{d x}\right|_{x=0} \text { no reaction }=\frac{D C_{i}}{x_{L}}(1-\Gamma)--(18)
\end{aligned}
$$

where $b_{1}=\sqrt{k_{1} x_{L}{ }^{2} / D}, \quad \Gamma=C_{L} / C_{i}$

In the special case where the concentration of A in the main body of liquid is low, equation (17) may be written

$$
\begin{equation*}
N_{A} \left\lvert\, x=0=\frac{b D \cdot\left(C_{i}-C_{L}\right)}{x_{L}}\right. \tag{19}
\end{equation*}
$$

where $\mathrm{b}_{1}=\frac{\mathrm{b}_{1}}{\tanh \mathrm{~b}_{1}}>1.0$

$$
\begin{equation*}
\left(K_{L}\right) \text { reaction }=\frac{N_{A} \mid x=0}{\left(C_{i}-C_{L}\right)}=b \frac{D}{x_{L}} \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\left(K_{L}\right) \text { no reaction }=\frac{D}{x_{L}} \tag{21}
\end{equation*}
$$

The reaction coefficient

$$
\begin{equation*}
\xi=\frac{\left(K_{L}\right) \text { reaction }}{\left(K_{L}\right) \text { no reaction }}=\frac{b_{1}}{\tanh b_{1}}>1.0 \tag{22}
\end{equation*}
$$

The ratio of mass-transfer coefficients is always greater than 1.0. It depends on the reaction rate constant, film thickness and diffusivity. If $b_{l}>5, \xi$ nearly equals b_{1}, and it equals b. Therefore the absorption rate becomes

$$
\begin{equation*}
\mathrm{N}_{\mathrm{A}}=\sqrt{\mathrm{k}_{1} \mathrm{D}} \mathrm{C}_{\mathrm{i}} \tag{23}
\end{equation*}
$$

With a very fast reaction the absorption rate will be a constant, which is independent of the film thickness. It should be pointed out that the magnitudes of $k_{G}, k_{L}, H, C_{i}, C^{*}$ in the above equations are different to those for purely physical absorption, because the properties should be adjusted to allow for the presence of salts. But with very dilute solutions, we can assume that all the values are the same in both situations.

F. Factors Affecting the Values of Mass-Transfer Coefficients

(1) Effect of Liquid Temperature on K_{L} a

Robinson and Enge1 (19) made a series of runs over the liquid temperature range 65° to $105^{\circ} \mathrm{F}$, with a sipgle-stage cycled apparatus and found that the temperature dependence of the over-all mass-transfer coefficient was not significantly greater than the normal experimental scatter.
0^{\prime} Connor (31) studied the effect of temperature on the value of $K_{L} a$ and found the following relationship to exist:

$$
\begin{equation*}
\frac{K_{L} a\left(t_{1}\right)}{K_{L} a\left(t_{2}\right)}=\sqrt{\frac{T_{1} \mu_{2}}{T_{2} \mu_{1}}} \tag{24}
\end{equation*}
$$

This equation was derived on the basis of oxygen transfer during bubble aeration of an activated-sludge process for the biological treatment of waste.

Yoshida (32) found that in oxygen-water contactors, the effect of temperature on K_{L} a was slight. At 20° and $40^{\circ} \mathrm{C}$ values of K_{L} a coincided over the entire experimental range of agitator speeds 100 to 600 rpm , indicating that at those two temperatures the effect of temperature on K_{L} and on the interfacial area, a, offset each other. The values of $K_{L} a$ at $7^{\circ} C$ were found to be about 25% lower than at $20^{\circ} \mathrm{C}$ for the same agitator speed.

As far as fermentation is concerned only a narrow range of temperature is of any interest. Thus the present experiments covered a liquid temperature range from $25^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
(2) Effect of Liquid Depth on K a

Yoshida (32) used oxygen-water contactors and found that the effect of the ratio of liquid depth to tank diameter on K_{L} a was negligible for ratios less than 1.0 , but it becomes appreciable for values above unity, e.g., at 1.4 , values of K_{L} a are reduced about 30% from those at unity.

An empirical factor (f_{c}) was presented in graphical form by Cooper et al (8) to correct for the case in which the ratio of liquid height to vessel diameter, H_{L} / D_{t}, deviates from 1.0.
$K_{L} a=f_{c}\left(K_{L} a\right)_{H_{L}} / D_{t}=1: 0$.
e.g., when $H_{L} / D_{t}=2.0$
$\mathrm{f}_{\mathrm{c}} \quad \doteqdot \quad 1.45$
Bewtra and Nicholas (33) performed aeration tests in a 4-foot deep aeration tank and found a linear relationship between percent oxygen absorbed from the inlet air stream and depth. The oxygen absorption efficiency increased as the water depth increased. To evaluate the contribution of surface aeration and transfer during formation, they extended their plot of absorption efficiency versus depth to zero depth and considered the intercept on the vertical axis as the contribution of oxygen transfer occurring during bubble formation and at the surface. They assumed that gas transfer occurring at bubble formation and the surface was independent of depth. Aiba et al (34) made the same assumption when they extended a plot of K_{L} a versus depth to zero depth in order to evaluate the contribution of transfer during bubble formation and at the surface.

Radford (35) found that in a 7.5-inch I.D. 1ucite column the overall transfer coefficient, $\mathrm{K}_{\mathrm{L}} \mathrm{a}$, was essentially independent of water depth from 1 to 7 feet at an air flow rate of $2300 \mathrm{ml} / \mathrm{min}$. There was only a slight variation in K_{L} a with depth at a flow rate of $1150 \mathrm{ml} / \mathrm{min}$.

Obviously, the oxygen absorption efficiency will be increased as the water depth is increased, because of the longer retention time of air bubbles in the water at greater depths. On the other hand, the effect of liquid depth on the values of K_{L} a does not appear straightforward. Yoshida's (32) and Cooper's (8) results contradict each other. This present work does not resolve this conflict because liquid depth was maintained at a constant level. Since the true oxygen transfer rate from the air bubbles to the liquid must be calculated by subtracting the amount of oxygen transfer by surface aeration from the total aeration rate, the magnitude of surface aeration should be studied.

According to equation (3)

$$
\begin{equation*}
K_{L} a=N_{A} /\left(C^{*}-C\right) \tag{3}
\end{equation*}
$$

where C^{*} is the concentration of oxygen in the liquid that would be in equilibrium with the partial pressure of oxygen in the air. However, there is some debate over what value of $\left(C^{*}-C\right)$ should be used. Cooper et al (8) have assumed $C=0$ and have based the concentration driving force on C * in equilibrium with the inlet gas stream. But when the liquid medium is perfectly mixed, the proper driving force would be based on C * of the outlet gas stream. If liquid depth in the tank is comparably high, a logarithmic mean driving force based on C^{*} at the gas inlet and C^{*} at , the gas outlet should be used.
(3) Effect of Gas Superficial Velocity and Power Input

To correlate the mass-transfer coefficients in agitated vessels to the pertinent operating variables, equations of the following form are often encountered:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{L}} \mathrm{a} \quad \alpha \quad(\mathrm{HP} / \mathrm{V})^{\mathrm{x}}\left(\mathrm{~V}_{\mathrm{s}}\right)^{\mathrm{y}} \tag{26}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{K}_{\mathrm{L}} \quad \alpha \quad \alpha \quad(\mathrm{~N})^{\mathrm{z}} \quad\left(\mathrm{~V}_{\mathrm{S}}\right)^{\mathrm{y}} \tag{27}
\end{equation*}
$$

The relationship between $K_{L} a$ and power input at constant gas flow rate obtained by Cooper (8) for a vaned-disc impeller was:

$$
\begin{equation*}
K_{\mathrm{L}} \mathrm{a} \quad \alpha \quad(\mathrm{HP} / \mathrm{V})^{0.95}\left(\mathrm{~V}_{\mathrm{S}}\right)^{0.67} \tag{28}
\end{equation*}
$$

whereas Augenstein and Wong (36) showed that the following relationship existed:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{L}} \mathrm{a} \quad \alpha \quad(\mathrm{HP} / \mathrm{V}){ }_{\left(\mathrm{V}_{\mathrm{s}}\right)}^{0.85} \text { for (HP/V)<40.0 } \tag{29}
\end{equation*}
$$

However, when the agitator power was increased above $40 \mathrm{HP} / 1000$ gallons the dependence of K_{L} a on power input was found to be drastically reduced. Thus

$$
\mathrm{K}_{\mathrm{L}} \mathrm{a} \quad \alpha \quad(\mathrm{HP} / \mathrm{V})^{0.57}\left(\mathrm{~V}_{\mathrm{S}}\right)^{0.2} \text { for }(\mathrm{HP} / \mathrm{V})>40.0 \quad-\text { (30) }
$$

the latter authors postulated that for power inputs greater than $40 \mathrm{HP} / 1000$ gallons the increase in the over-all mass-transfer coefficient was due to a combination of a decrease in the average bubble size and possibly an increase in the K_{L} arising from an increase in the velocity of the bubbles.

The same authors showed that for gas flow rates equivalent to a superficial gas velocity of $39.6 \mathrm{ft} / \mathrm{hr}$, the mass-transfer coefficient was proportional only to the 0.2 power of the gas velocity. A further increase in the gas flow had no effect on the mass transfer coefficient. These findings were in general agreement with the results reported by Westerterp et al (15).

It has been recommended (37) that equation 28 be applied under the following conditions ($\mathrm{V}_{\mathrm{s}}<90 \mathrm{~m} / \mathrm{hr}$) for one set of impellers and $\left(V_{s}<150 \mathrm{~m} / \mathrm{hr}\right)$ for two sets of impellers, provided:

$$
(\mathrm{HP} / \mathrm{V})>0.1 \mathrm{HP} / \mathrm{m}^{3} \text { and } \mathrm{H}_{\mathrm{L}} / \mathrm{D}_{\mathrm{t}}=1.0
$$

For a paddle impeller

$$
\begin{equation*}
\mathrm{K}_{\mathrm{L}} \mathrm{a} \quad \alpha(\mathrm{HP} / \mathrm{V})^{0.53}\left(\mathrm{~V}_{\mathrm{S}}\right)^{0.67} \tag{3I}
\end{equation*}
$$

provided:

$$
\mathrm{V}_{\mathrm{s}}<21.0 \mathrm{~m} / \mathrm{hr}, \quad \mathrm{HP} / \mathrm{V}>0.06 \mathrm{HP} / \mathrm{m}^{3}, \quad \mathrm{H}_{\mathrm{L}} / \mathrm{D}_{\mathrm{t}}=1.0
$$

Using the light-transmission technique, Calderbank (7,38) found the mean diameter for dispersions of gas bubbles in solutions of electrolytes to be:

$$
\mathrm{D}_{\mathrm{P}}=2.25 \frac{\sigma^{0.6}}{(\mathrm{Pg} / \mathrm{V})^{0.4} \rho_{\mathrm{c}}^{0.2}} \mathrm{H}_{0}^{0.40} \frac{\left(\mu_{\mathrm{d}}\right)^{0.25}}{\left(\mu_{\mathrm{c}}\right)}--(32)
$$

For dispersions of gas bubbles in aqueous solutions of alcohols he found:

$$
\begin{equation*}
\mathrm{D}_{\mathrm{P}}=1.90 \frac{0^{0.6}}{(\mathrm{Pg} / \mathrm{V})^{0.4} \rho_{\mathrm{c}}^{0.2}} \quad \mathrm{H}_{\mathrm{o}}^{0.65}\left(\frac{\mu_{\mathrm{d}}}{\mu_{\mathrm{c}}}\right)^{0.25} \tag{33}
\end{equation*}
$$

The bubble sizes in pure liquids were greater than in electrolytes. Calderbank explained this could be attributed to the greater ease of bubble coalescence in the pure liquids. He concluded that the bubbles close to the tip of the impeller were not the mean values for the whole tank contents and proposed the equation:

$$
\begin{equation*}
a=1.44 \frac{(\mathrm{Pg} / \mathrm{V})^{0.4} \rho_{c}^{0.2}}{\sigma^{0.6}}\left(\frac{\mathrm{v}_{\mathrm{s}}}{\mathrm{v}_{\mathrm{t}}}\right)^{0.5} \tag{34}
\end{equation*}
$$

He also found two correlations for liquid-phase mass-transfer coefficients for the different sizes of the bubbles. For average bubble diameter greater than about 2.5 mm :

$$
\begin{equation*}
\mathrm{k}_{\mathrm{L}}\left(\mathrm{~N}_{\mathrm{sc}}\right)^{0.5}=0.42\left(\frac{\Delta \rho_{\mu_{c^{2}}}}{\rho_{\mathrm{c}}{ }^{2}}\right)^{1 / 3} \tag{35}
\end{equation*}
$$

For average bubble diameter less than 2.5 mm :

$$
\begin{equation*}
\mathrm{k}_{\mathrm{L}}\left(\mathrm{~N}_{\mathrm{Sc}}\right)^{2 / 3}=0.31\left(\frac{\Delta \rho \cdot \mu_{\mathrm{c}} \mathrm{~g}}{\rho_{\mathrm{c}}^{2}}\right)^{1 / 3} \tag{36}
\end{equation*}
$$

Both equations show that k_{L} is independent of bubble size and rising velocity and depends only on the physical properties of the system.
(4) Other Factors

The presence of organic substances, solid particles, cells, etc., may affect the values of $\mathrm{K}_{\mathrm{L}} \mathrm{a}$ but they will not be examined as part of this thesis.
G. Effect of Aeration Rate on Pöwer Consumption

The power consumption for an impeller operating at various speeds in a liquid can be predicted from published power number versus Reynold's number plots (39). However, similar plots are not available for gassed systems, since aeration causes changes in the liquid properties, (density and viscosity) in a manner which is not easily characterized.

Ohyama and Endoh (40) have correlated $\mathrm{Pg} / \mathrm{Po}$, with aeration number Q/ $\left(\mathrm{ND}_{\mathrm{I}}{ }^{3}\right)$ where:
$\frac{\mathrm{Pg}}{\text { Po }}=\frac{\text { Power requirement in gassed system }}{\text { Power requirement without gassing }} \quad$ (Dimensionless)
$\frac{Q}{\left(N D_{I}{ }^{3}\right)}=\frac{Q / D_{I}{ }^{2}}{\left(N D_{I}\right)}=\frac{\text { Velocity of air through sectional area of tank }}{\text { Tip velocity of impeller }}$ (Dimensionless)

The resulting curves were independent of physical properties of the liquids, but were dependent on the types of impellers and the geometrical ratio of the agitated vessels.

Calderbank (38) and Moo-Young (41) used flat-blade impellers in aerated mixing vessels and found that the curves of $\mathrm{Pg} / \mathrm{Po} v \mathrm{v} . \mathrm{Q} /\left(\mathrm{ND}_{\mathrm{I}}{ }^{3}\right.$) were independent of the properties of the liquids used.

Aiba (42) reached the opposite conclusion since his curves of $\operatorname{Pg} / \mathrm{Po}$ vs. $\mathrm{Q} /\left(\mathrm{ND}_{\mathrm{I}}{ }^{3}\right)$ were dependent on the viscosity of the liquid for both Newtonian and non-Newtonian liquids.

EXPERIMENTAL DETAILS

I. APPARATUS

A. General

The apparatus consisted of a reactor, an impeller, an agitator with dynamometer, a nozzle, three saturators, a heating coil, a water bath, an oxygen analyser with electrode, a recorder, a mercury manometer, thermocouples, a thermometer, a variable flow meter, a needle valve, a temperature regulator, a relay, a tachometer, a liquid nitrogen cylinder and normal titration equipment.

B. Detail

(1) Reactor

The reactor was a cylindrical tank made of methyl methacrylate polymer, $7 \frac{1}{2}$ inches I.D. and 24 inches high with an open top. Four baffles, each one-tenth of the tank diameter and extending the full depth of the tank, were symmetrically attached to the internal wall. A steel rule was attached to the tank wall as shown in Figure 3.
(2) Impeller

The stainless steel impeller had six straight, flat-blades, 4 inches in diameter, of the paddle type. It was located one impeller diameter above the bottom of the tank (Figure 3).
(3) Agitator with Dynamometer

A quarter horsepower BENCO model ELB experimental agitator with dynamometer accessory was used. Fastened to the motor, whichrrested on a nearly frictionless ball-bearing, was a rod that was attached to a spring balance. The displacement of the spring, due to the action of the rotating shaft could then be measured. The motor had an output speed of 0 to 1100 rpm .

FIGURE 3. SCHEMATIC DRAWING OF REACTOR
(4) Nozzle

A stainless steel nozzle, having 18, 0.0260 in. I.D. holes (Figure 4), was mounted 1 inch below the impeller.
(5) Saturators

Three 1 \& pyrex Erlenmeyer flasks filled with water were connected in series as an air saturator.
(6) Heating Coil

Air was preheated to the desired temperature by passing through an externally heated coil made of $3 / 8^{\prime \prime}$ O.D. copper tubing.
(7) Water Bath
The reactor, saturators and heating coil were kept in a $3^{\prime} \mathrm{x} 2^{\prime} \mathrm{x}$ $2 \frac{1}{2}{ }^{\prime}$ galvanized iron water bath. A one KN. heater activated by a mercury thermoregulator, maintained the desired temperature ($\pm 0.5^{\circ} \mathrm{C}$). An agitator driven by a $1 / 20$ horsepower motor was used to circulate the water.
(8) Oxygen Analyzer with Electrode

A Beckman 39065 polarographic oxygen electrode was mounted through on the side of the reactor, two inches from the bottom (Figure 3). It was placed at an angle of nearly 15 degrees from the horizontal, in order to prevent any air bubbles from contacting the sensing membrane. A thermistor is built into this electrode to compensate for variations in diffusion rate through the teflon membrane, due to temperature changes. According to the manufacturer this temperature compensation reduced errors to less than $\pm 5 \%$ of the reading over the $15^{\circ} \mathrm{C}$ range. The accuracy of the electrode at constant temperature was 1% full scale.

FIGURE 4. SCHEMATIC DRAWNG OF NOZZLE

A Beckman Model 777 Laboratory Oxygen Analyser was connected to the electrode to determine the dissolved oxygen concentration. It showed a linearity of 0.5% full scale at constant temperature and could be operated over the temperature range $0^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$.
(9) Recorder

The output of the oxygen analyser was recorded on a Sargent Model SRL Recorder.
(10) Manometer

A mercury manometer was used to indicate the pressure at the air inlet.
(11) Thermocouples and Potentiometer

All temperature measurements were made with pre-calibrated copperconstantan thermocouples and a Leeds and Northrup Co. No. 8657-C Double Range Potentiometer. The calibration curve for the thermocouples is shown in Appendix II.
(12) Variable flow meter

A size number 5, RGI spherical float flow meter was used. The calibration curve for air at standard conditions is shown in Appendix III.
(13) Thermoregulator and Relay

A Canlab-Magnetic Control Thermoregulator No. 81-635/2 was used. The temperature range was 0 to $50^{\circ} \mathrm{C}$, with subdivisions of $1^{\circ} \mathrm{C}$. The relay was a mercury plunger type 81-573/110, having a load rating of 3300 watts.
(14) Needle Valve

A high pressure gas needle valve was used to control the air flow rate accurately.
(15) Tachometer

A Jones Motroda Co. Model 4800, 3 dial, multiple range hand tachometer with stop button was used. A peripheral wheel normally used for measuring surface speeds was used for measuring the shaft speeds.
(16) Liquid Nitrogen

Canadian Liquid Air "L" grade nitrogen was used.

II PROCEDURES

A. Unsteady Gassing Out Process

Water was added to the reactor to a depth of 2 tank diameters (15 inches), and was heated by the surrounding water bath to the desired temperature, within the range $25^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. The pH of the solution was adjusted with c.p. grade concentrated sulfuric acid or 18 Normal sodium hydroxide solution. The range covered was pH 1.0 to 12.5 .

Most of the tests were run in tap water. A few, however, were made in distilled water. Five agitation speeds (285, 380, 570, 760, and 950 rpm) were chosen. These were equivalent to ungassed Reynolds' numbers of $44,000,67,000,100,000,130,000$ and 170,000 in pure water at $70^{\circ} \mathrm{F}\left(21.1^{\circ} \mathrm{C}\right)$ respectively. The usually accepted Reynolds' number for the transition to turbulence in mixing tanks is around 1,000.

Prior to each test the dissolved oxygen was removed to a final concentration of approximately 0.5 ppm by the desorptive effect of rising nitrogen bubbles (43). The solution was then agitated for at least 5 minutes to remove any nitrogen bubbles in the solution.

Air preheated to the desired temperature during passage through the copper coil immersed in the water bath and saturated with water was injected through the nozzle (Figure 5). Unsaturated air was used in some of the tests in order to check the effect of saturation on the mass-transfer coefficient.

Dissolved oxygen was detemmined with the Beckman Oxygen Analyser. It was calibrated at the saturation value before each run. The signals from the anlyser were amplified and continuously recorded by the Sargent Recorder with respect to time. During the aeration interval, the agitator power consumption, the air flow rate, gas hold up, and the temperature of the solution were measured several times. Normally they were constant for a given run.

The over-all mass-transfer coefficients were calculated numerically according to equation (8) using an I.B.M. 7044 computer. The correlation work was also carried out with the same computer. The programs for these calculations are shown in Appendix IV and Appendix V.

The magnitude of aeration through the liquid surface should be measured. This should be done by measuring the oxygen accumulation when the air bubbles had the oxygen composition which was equivalent to the oxygen concentration in the solution. It was difficult to control the composition of the air bubbles so that this condition could be achieved, hence, we measured the oxygen accumulation while the air flow was turned off. It is realized that the exact values of surface aeration could not be obtained by using this method.

FIGURE 5. FLOWSHEET OF APPARATUS

B. Sulfite-Oxidation Process

The apparatus used in the unsteady gassing out process was used in the sulfite-oxidation process. Distilled water was placed in the tank and the agitator was started. Approximately 1000 grams of c.p. grade sodium sulfite anhydrous powder were added to make the solution approximately 1.2 Normal with respect to the sulfite ion. After the sulfite powder had completely dissolved, predissolved c.p. cupric sulfate was added to give a Cu^{++} concentration of $10^{-3} \mathrm{M}$. The air was then turned on and a timer was started. The oxidation reaction was allowed to continue for 3-100 minutes, depending on the rate of oxidation. The oxidative reaction was exothermic especially at high agitation speeds. The addition of a cooling coil could possibly change the flow pattern in the reactor, so air without preheating was used. The temperature remained within $\pm 1^{\circ} \mathrm{C}$ of the desired value.

The rate of oxygen absorption was followed by the determination of the sulfite-ion concentration before and after each run. A 4.0 ml sample was taken directly from the reactor with a 10 ml syringe and was run immediately into an excess of freshly pipetted standard iodine solution (14). The tip of the syringe was held as closely as possible to the iodine standard solution surface, to prevent air oxidation of the samplefduring transfer. After at least a 10 minute wait, designed to ensure complete oxidation of sulfite to sulfate, the unreacted iodine was back-titrated with standard sodium thiosulfate solution to a starch indicator end point (44).

The over-all mass-transfer coefficients K_{L} a were calculated according to equation (6) where:

$$
\begin{equation*}
K_{L} a=N A /\left(C^{*}\right) \tag{6}
\end{equation*}
$$

The logarithmic mean value of C * was used.

III RESULTS AND DISCUSSION

A. Saturation Oxygen Concentrations

The modified Winkler Method (Appendix I) was used to measure the oxygen concentration of water in equilibrium with water-saturated air. However, this method could not be applied at low pH levels. Saturation values for 0. il N N sulfuric acid solutions were measured with a Beckman Oxygen Analyser. The values are compared in Table I with the experimental values calculated according to Eckenfelder's equation (45). It was concluded that pH had no effect on saturation values (C^{*}) and so the calculated values were used in $\mathrm{K}_{\mathrm{L}} \mathrm{a}$ calculations.
B. Effect of Unsaturated Air on K_{L} a

Unsaturated air was used to check the effect of saturation on $K_{L}{ }^{a}$ at $30^{\circ} \mathrm{C}$ (Figure 6) and $35^{\circ} \mathrm{C}$ (Figure 7). The K_{L} a values were plotted versus superficial gas velocities for two shaft speeds (950 rpm and 285 rpm) on log-log paper. The data are in Appendix VII. At both temperatures $K_{L}{ }^{a}$ values for unsaturated air were found to fall on the same line as those for saturated air. This shows that the diffusional transfer of water vapor to the gas phase had an insignificant effect on K_{L} a over the entire experimental range of gas flow rates ($5.01 / \mathrm{min}$ to $52.41 / \mathrm{min}$, at $1 \mathrm{~atm} ., 21^{\circ} \mathrm{C}$).

TABLE I

Saturation Oxygen Concentration of Water and Acid Solution at Various Temperatures (ppm)

	$25{ }^{\circ} \mathrm{C}$	$30{ }^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$40{ }^{\circ} \mathrm{C}$
Calculated Value (Eckenfelder eq (45))	8.11	7.53	7.04	6.60
Distilled Water (by Winkler Method)	8.10	7.50	7.03	6.60
0.1 N Sulfuric Acid (by Oxygen Analyser)	8.04	7.48	7.00	6.59

Hence, in later studies the air was used without making sure it was saturated. The same result was obtained by Chiang and Toor (4) in laminar liquid jet experiments.
C. Effect of Tap Water vs. Distilled Water on $K_{\text {E }}$ a

The effect of tap water versus distilled water on K_{L} a was examined at $35^{\circ} \mathrm{C}$. When values of K_{L} a were plotted against superficial gas velocities, using shaft speed as a parameter (Figure 8), the values of K_{L} a for tap water were found to lie on the same line as those for distilled water. The data are shown in Appendix VII. Consequently tap water was used in all subsequent experiments.
D. Effect of Oxygen Concentration on K_{L} a

To obtain a typical time versus oxygen concentration curve, such as is shown in Figure 9, the oxygen analyser was calibrated initially at the saturation value for the given conditions. Then the air was turned off, and the nitrogen turned on to strip the dissolved oxygen from the solution. After the nitrogen was shut off, the oxygen concentration continued to decrease slowly because of the time required for the nitrogen bubbles to escape from the reactor. When air was introduced into the reactor at the desired flow rate, the dissolved oxygen concentration increased with time (Figure 9). Table II presents the K_{L} a values calculated from Figure 9 according to equation (8). The relatively constant values of K_{L} a indicate that $\mathrm{K}_{\mathrm{L}} \mathrm{a}$ is almost independent of the oxygen concentration over the range studied. The experimental data are presented in Appendix VII.

FIGURE 9. TYPICAL TIME-CONCENTRATION CURVE $\left(40^{\circ} \mathrm{C}, 570 \mathrm{RPM}, A N D V_{s}=126 \mathrm{CM} / \mathrm{MIN}\right)$

Sample Calculation of K_{L} a Based on Fig. 9

Temperature $=40^{\circ} \mathrm{C}$
Saturation Oxygen Concentration $C^{*}=6.60$
Shaft Speed $=570 \mathrm{rpm}$
Superficial Velocity $=127 \mathrm{~cm} / \mathrm{min}$

TIME (Min)	0.0	0.1	0.2	0.3	0.4
Oxygen Concentration (ppm)	1.78	3.40	4.55	5.27	5.75
$\begin{aligned} & \text { Driving Force } \\ & \mathrm{C}^{*}-\mathrm{C} \\ & \text { (ppm) } \end{aligned}$	4.82	3.20	2.05	1.33	0.85
$\begin{aligned} & K_{L} a \\ & (\text { Min })^{-1} \end{aligned}$					

E. Correlation of K_{L} a with Operating Variables

One way to examine the rate of mass transfer in agitated vessels is to compare the overall mass-transfer coefficient, $K_{L} a$, to the impeller power input and superficial gas velocity. However, there is considerable variation between the results obtained by various investigators with regard to the correlation of $\mathrm{K}_{\mathrm{L}} \mathrm{a}$ and the operating variables (8, $21,32,37,38$).

In this study the K_{L} a values were determined by the gassing out technique at $\mathrm{pH} 1.0,2.0$ and 5.7 (natural pH of tap water) and at solution temperatures of $25,30,35$ and $40^{\circ} \mathrm{C}$. In addition at $35^{\circ} \mathrm{C}$, values were determined at $\mathrm{pH} 1.5,4.5,7.0,10.0,11.0$ and 12.5 . The raw data are in Appendix VII. Figure 10 obtained at $35^{\circ} \mathrm{C}$ is typical of the results and shows that pH has no effect on K_{L} a values.

The data were then rearranged in the form $(H P / V)^{a} \cdot\left(V_{S}\right)^{b}$ using a least squares curve fitting method. The computer program is shown in Appendix V. The K_{L} a values obtained at various pH^{\prime} s were plotted against $(\mathrm{HP} / \mathrm{V})^{\mathrm{a}}\left(\mathrm{V}_{\mathrm{S}}\right)^{\mathrm{b}}$ for the temperatures $25,30,35$ and $40^{\circ} \mathrm{C}$ (Figures 11-14). The " a " and " b " values calculated at different temperatures are as follows:

$$
\begin{align*}
& \left(\mathrm{K}_{\mathrm{L}} \mathrm{a}\right)_{25^{\circ} \mathrm{C}}=(7.5 \pm 0.06)(\mathrm{HP} / \mathrm{V})^{0.32} \pm 0.02\left(\mathrm{~V}_{\mathrm{S}}\right)^{0.46} \pm 0.04 \\
& \left(\mathrm{~K}_{\mathrm{L}} \mathrm{a}\right)_{30^{\circ} \mathrm{C}}=(9.3 \pm 0.03)(\mathrm{HP} / \mathrm{V})^{0.33} \pm 0.02\left(\mathrm{~V}_{\mathrm{S}}\right)^{0.46} \pm 0.03 \\
& \left(\mathrm{~K}_{\mathrm{L}} \mathrm{a}\right)_{35^{\circ} \mathrm{C}}=(8.6 \pm 0.05)(\mathrm{HP} / \mathrm{V})^{0.39} \pm 0.01\left(\mathrm{~V}_{\mathrm{S}}\right)^{0.46} \pm 0.02 \\
& \left(\mathrm{~K}_{\mathrm{L}} \mathrm{a}\right)_{40^{\circ} \mathrm{C}}=(8.8 \pm 0.04)(\mathrm{HP} / \mathrm{V})^{0.40} \pm 0.01\left(\mathrm{~V}_{\mathrm{S}}\right)^{0.50} \pm 0.02 \tag{40}
\end{align*}
$$

These confidence limite are for the 95% level. The computer program for these calculations is shown in Appendix 5-5.

In view of these confidence limits, one could say that the exponent on the gas superficial velocity is 0.5 . Since according to

FIGUFE 10. EFFECT OF PH ON Kla AT $35^{\circ} \mathrm{C}$

FIGURE I I. CORRELATION BETWEEN MASS TRANSFER AND POWER INPUT PER UNIT VOLUME OF UNGASSED LIQUID HP/V, AND SUPERFICIAL GAS VELOCITY V s.

FIGURE 12. CORRELATION BETWEEN MASS TRANSFER COEFFICIENT Kl a AND POWER INPUT PER UNIT VOLUME OF LIQUID HPN, AND SUPERFICIAL GAS VELOCITY V s .

FIGURE 13. CORRELATION BETWEEN MASS TRANSFER COEFFICIENT Kla AND POWER INPUT PER UNIT VOLUME OF LQUID HPIV, AND SUPERFICIL GAS VËLOCITY $v s$.

FIGURE 14. CORRELATION BETWEEN MASS TRANSFER COEFFICIENT Kla AND POWER INPUT PER UNIT VOLUME OF LIQUID HP/V, AND SUPERFICIAL GAS VELOCITY Vs.

Calderbank (38), the value of K_{L} is independent of bubble size and rising velocity, but depends only on the physical properties of the system, any increase in K_{L} a must be contributed only by an increase in interfacial area of the gas bubbles per unit volume of the liquid, a, hence,

$$
a \quad \alpha\left(V_{s}\right)^{0.50}
$$

which agrees with Calderbank's result (38). According to his light transmission experiments, the value of a in a stirred vessel varies with V_{S} in the same way. It should be noted that precise comparison with other workers' results is made difficult by differences in the geometry of the studied tank systems.

The value of K_{L} a increases with increasing temperature which is contrary to the conclusions reported by Robinson and Engel (19) and Yoshida et al (32). However, 0^{\prime} Connor suggests that according to equation (24), the ratio of K_{L} at different temperatures is dependent on the temperature and the viscosity of the liquid, for example, the ratio of K_{L} at $40^{\circ} \mathrm{C}$ to that at $25^{\circ} \mathrm{C}$ for pure water is:

$$
\begin{aligned}
\frac{\left(\mathrm{K}_{\mathrm{L}} \mathrm{a}\right) 40^{\circ} \mathrm{C}}{\left(\mathrm{~K}_{\mathrm{L}} \mathrm{a}\right) 25^{\circ} \mathrm{C}} & =\sqrt{\frac{\mathrm{T}_{40{ }^{\circ} \mathrm{C} \quad \mu_{25^{\circ} \mathrm{C}}}^{\mathrm{T}_{25^{\circ} \mathrm{C}}{ }^{4} 40^{\circ} \mathrm{C}}}{}} \\
& =\sqrt{\frac{313 \times 0.8937}{298 \times 0.6560}} \\
& =1.20
\end{aligned}
$$

The ratio is a constant for a given pair of temperatures. However, in my study the ratio of K_{L} a is dependent on the power input. The ratio is not a constant for a given pair of temperatures.

$$
\frac{\left(\mathrm{K}_{\mathrm{L}} \mathrm{a}\right) 40^{\circ} \mathrm{C}}{\left(\mathrm{~K}_{\mathrm{L}} \mathrm{a}\right) 25^{\circ} \mathrm{C}}=1.2(\mathrm{HP} / \mathrm{V})^{0.08}
$$

F. Sulfite-Oxygen Reaction Mechanism

The data obtained from the sulfite-oxidation experiments are shown in Appendix VII and plotted in Figures 15 to 18 . The resulting straight lines in these plots indicate that the copper-catalyzed sulfiteoxidation reaction is zero order with respect to sulfite concentration in all cases (shaft speeds of 280,570 and 950 rpm , and sulfite concentrations ranging from 0.06 to 1.30 N). Hence, the diffusion rate of sulfite ions is not the rate limiting step. Therefore, this is not the case of infinitely fast reaction. This agrees with the results of Cooper (8) and Westerterp (15).

G. Sulfite-Oxygen Absorption Mechanism

According to the data presented in Figure 19 - 21, the relationship between K_{L} and superficial gas velocity V_{S}, as determined by the sulfite-oxidation process is:
$K_{L} a \quad \alpha \quad\left(V_{S}\right)^{0.50}$
The $\mathrm{K}_{\mathrm{L}} \mathrm{a}$ values determined by the sulfite-oxidation process and by purely physical absorption are compared at different agitation speeds, in Figures 19 to 21. The data are given in Appendices VII-C and VIII.

According to Figures 19 to 21 the average ratios of K_{L} a for the sulfite-oxidation process to $\mathrm{K}_{\mathrm{L}} \mathrm{a}$ for pure water are: 9.0 at an agitation speed of $950 \mathrm{rpm}, 5.0$ at an agitation speed of $570 \mathrm{rpm}, 2.5$ at an agitation speed of 275 rpm . This was plotted on a logarithmic paper and shown in Figure 22. The resulting straight line has a slope of nearly 1.0. The more experiments are needed to confirm this.

FIG 15. TIME-CONCENTRATION CURVE FOR COPPER
CATALYZED SULFTE-OXYGEN REACTION AT $35^{\circ} \mathrm{C}(285 \mathrm{RPM})$.

FIG I6. TIME-CONCENTRATTON CURVE FOR COPPER
CATALYZED SULFITE-OXYGEN REACTION AT $35^{\circ} \mathrm{C}$ (570 RPM)

FIGIT. TIME-CONCENTRATION CURVE FOR COPPER CATALYZED SULFITE-OXYGEN. REACTION AT $35^{\circ} \mathrm{C}$ (950 R PM)

FIG I8. TIME-CONCENTRATION CURVE FOR COPPER CATALYZED SULFITE-OXYGEN REACTION AT $35^{\circ} \mathrm{C}$ (950 RPM)

FIGURE 2I. COMPARISON OF Kla \mathbb{N} SULFITE OXIDATION PROCESS AND UNSTEADY GASSING OUT PROCESS ($35^{\circ} \mathrm{C}, 285 \mathrm{RPM}$)

FIGURE 22 THE PLOT OF AGITATION SPÉED VERSUS AVERAGE RATIO OF Kl a FOR THE SULFTE OXIDATION PROCESS TO K a FOR PURE WATER AT $35^{\circ} \mathrm{C}$

There is little agreement among those investigators (21,22) who have tried to compare K_{L} a values from sulfite-oxidation experiments with those obtained from real fermentations. As based on film theory, $\mathrm{K}_{\mathrm{L}} \mathrm{a}$ in a reaction system is dependent on film thickness, diffusivity and reaction rate constant. The fermentation broths generally differ greatly from sulfite solutions in physical and chemical properties. Physical properties, such as ionic strength, surface tension, and viscosity may affect the value of 'a' as well as K_{L}. The differences in these physical properties between fermentation broths and sulfite solutions can be minimized by using a very dilute solution, but this has no effect on chemical properties.

Since reaction rate constants vary from one reaction system to another, different K_{L} 's from different reaction systems are expected. Hence, if the reaction rate constants are different, the comparison of K_{L} between the two different systems is of little value. Furthermore, there are great differences between the diffusional processes involved in these two systems. In sulfite solution, oxygen passes from the gas through the interface into the liquid film. Oxygen utilization takes place in this film. In a suspension of microorganisms, the site of oxygen utilization is intimately associated with discrete cell units which are physically localized and relatively remote from the interface. So the best way of comparing the performance of different fermentation equipment is to use an actual fermentation system. H. Oxygen Supply

In order to supply the maximum oxygen uptake rate of $756 \mathrm{mg} / 1 / \mathrm{hr}$ (3) required by T. ferrooxidans when oxidizing chalcopyrite, the value of
K_{L} a should be greater than $756 /(7.0-0) \mathrm{hr}^{-1}$ or $108 \mathrm{hr}^{-1}$ at $35^{\circ} \mathrm{C}$ (in this case, the oxygen concentration in the fermentation tank is assumed to be zero). This value of K_{L} a for the case of pure physical absorption, is:

$$
\left(\mathrm{K}_{\mathrm{L}} \mathrm{a}\right) 35^{\circ} \mathrm{C}=8.6(\mathrm{HP} / \mathrm{V})^{0.39}\left(\mathrm{~V}_{\mathrm{S}}\right)^{0.48}
$$

Therefore (HP / V) ${ }^{0.39}\left(\mathrm{~V}_{\mathrm{s}}\right)^{0.48}$ should be greater than $108 / 8.6$ or 12.5 . This is easily achieved, for example, when $\mathrm{HP} / \mathrm{V}=10$ horsepower/ 1000 gallons of liquid, and $\mathrm{V}_{\mathrm{s}}=100 \mathrm{ft} / \mathrm{hr}$, the value of K_{L} a will be $190 \mathrm{hr}^{-1}$, which is much greater than $108 \mathrm{hr}^{-1}$.

If oxygen supply is the rate limiting factor in bacterial growth during biological leaching of chalcopyrite, then, the physical properties of the biological suspension may limit the rate of oxygen absorption.

I. Power Requirements in a Gassed System

Plots of $\mathrm{Pg} /$ Po versus $\mathrm{Q} /\left(\mathrm{ND}_{\mathrm{I}}{ }^{3}\right.$) based on the present data (Appendix VII) are shown in Figures 23. - 24. The results are not as simple as those shown by Ohyama (40), Moo-Young (41) and Aiba (42). The resulting curves are not only dependent on the shaft speed from 285 rpm to 950 rpm (Figure 22), but also dependent on the temperature of the liquid from $25^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (Figure 23). Only at the highest shaft speed of 950 rpm does the effect of temperature seem insignificant. Further study of the power requirements in a gassed system would be of interest.

$\therefore \quad \because \quad-09-$

FIGURE 23. PONER CONSUMPTION VERSUS AERATION NUMBER. ($35^{\circ} \mathrm{C}$)

(1) The values of K_{L} a were unaffected by solution pH over the range 1.0 to 12.5 . The use of unsaturated air or tap water also had no effect on $\mathrm{K}_{\mathrm{L}} \mathrm{A}$.
(2) The values of K_{L} a obtained by the unsteady gassing out process were correlated as a form of $\mathrm{C} \cdot(\mathrm{HP} / \mathrm{V})^{\mathrm{a}} \cdot\left(\mathrm{V}_{\mathrm{S}}\right)^{\mathrm{b}}$, at $35^{\circ} \mathrm{C}$ for example:

$$
\left(\mathrm{K}_{\mathrm{L}} \mathrm{a}\right)_{35^{\circ} \mathrm{C}}=8.6(\mathrm{HP} / \mathrm{V})^{0.39}\left(\mathrm{~V}_{\mathrm{S}}\right)^{0.48}
$$

The value increased with increasing temperature of the solution.
(3) The copper-catalyzed sulfite-oxidation reaction was found to be zero order with respect to unreacted sulfite concentration. The values of $K_{L} \mathrm{a}$ from this technique were found to be proportional to $\left(\mathrm{V}_{\mathrm{S}}\right)^{0.50}$. When combined with the data obtained by the unsteady gassing out process, it was concluded that the interfacial area of the bubbles per unit volume of liquid 'a' was proportional to $\left(V_{S}\right)^{0.50}$.
(4) The oxygen demand of T. ferrooxidans oxidizing chalcopyrite would appear to be easily satisfied but further study on the rate of oxygen absorption during the biological fermentation is necessary to confirm this.
(5) Plots of $\mathrm{Pg} / \mathrm{Po}$ versus $\mathrm{Q} /\left(\mathrm{ND}_{\mathrm{I}}{ }^{3}\right)$ were not as straightforward as shown by other investigators. The resulting curves were dependent on the temperature of the liquid as well as the shaft speed of the impeller.

There are many problems to be solved both in the theory of oxygen transfer and in the application of the theory to tanks containing thousands of gallons of bacterial suspension.

If the rate of oxygen transfer is a rate limiting step in the rate of metabolism, a further study including the effects of ore particles, cell bodies and other nutrients on oxygen transfer rate is necessary.

Instead of using chemical systems, use of biological systems to study this type of mass transfer problem has certain advantages. Although the chemical systems are less sensitive to changes in physical and chemical properties the direct application of the data from chemical systems to the biological systems is extremely difficult. With biological systems, realistic values for the mass transfer rates can be obtained, even if thereaction and absorption mechanisms are unknown. The biological system is the most reliable method for evaluating the performance of fermentors.

The coefficient K_{L} a is known to be dependent on the power input and superficial gas velocity. In most cases high superficial gas velocities are desired because it is more economical to increase the superficial gas velocity than to increase the agitator power imput. However, a minimum power input is necessary in order to assure the suspension and even distribution of ore particles and cell bodies. This is a very important factor when considering the economic value of a biological leaching process.

LITERATURE CITED

1. Landesman, J., Duncan, D.W. and Walden, C.C. Can. J. Microbiol. 12: 25, 1966.
2. Landesman, J., Duncan, D.W. and Walden, C.C. Can. J. Microbio1. 12: 957, 1966.
3. Duncan, D.W. Personal communication.
4. Chiang, S.H. and Toor, H.L. A.I.Ch.E. Journal 5: 165, 1959.
5. Scriven, L.E. and Pigford, R.L. A.I.Ch.E. Journal 5: 397, 1959.
6. Aiba S. and Yamada, T. J. Gen. App1. Microbiol. 7: 100, 1961.
7. Calderbank, P.H. A.I.Ch.E. Journal 37: 173, 1959.
8. Cooper, C.M., Fernstron, G.A. and Miller, S.A. Ind. Eng. Chem. 36: 504, 1944.
9. MacArthur, C.G. J. Phys. Chem. 20: 495, 1916.
10. Miyamoto, S. Bull. Chem. Soc. Japan 2: 748, 1927.
11. Miyamoto, S. and Kaya, T. Bul1. Chem. Soc. Japan 5: 123, 229, 321, 1930.
12. Miyamoto, S., Kaya, T. and Nakata, A. Bu11. Chem. Soc. Japan 6: 264, 1931.
13. Miyamoto, S. Bu11. Chem. Soc. Japan 7: 8, 1932.
14. Fuller, E.C. and Crist, R.H. J. Am. Chem. Soc. 63: 1644, 1941.
15. Westerterp, K.R., Van Dierendonck, L.L. and DeKraa, J.A. Chem. Eng. Sci. 18: 157, 1963.
16. Phillips, D.H. and Johnson, M.J. Ind. Eng. Chem. 51: 83, 1959.
17. Murphy, D., Clark, D.S. and Lentz, C.P. Can. J. Chem. Eng. 37: 157, 1959.
18. Roxburgh, J.M. Can. J. Chem. Eng. 40: 127, 1962.
19. Robinson, R.G. and Engel, A.J. Bio. Eng. Food Proc., Chem. Eng. Prog. Symp. Series 69, 62, 129, 1966.
20. Carpani, R.E. and Roxburgh, J.M. Can. J. Chem. Eng. 36: 73, 1958.
21. Schultz, J.S. and Gaden, E.L.Jr. Ind. Eng. Chem. 48: 2209, 1956.
22. Phillips, K.L., Ph. D. Thesis, Dept. of Chem. Eng., U. of Saskatchewan, Dec. 1965.
23. Zieminski, S., Caron, M., and Blackmore, R., Ind. Eng. Chem. 6: 223, 1967.
24. Laidler, K.J.; P 126, Chemical Kinetics 1st Edition, McGraw-Hill Co. Inc. 1950.
25. International Critical Tables, P 257, Vol. 3, 1st Edition, McGraw-Hill Co., N.Y., 1926.
26. Hatta, S., Techol. Repts. Tohoku Imp. Univ., 10: 119, 1932.
27. Lewis, W.K., and Whitman, W.G., Ind. Eng. Chem. 16: 1215, 1924.
28. Sherwood, T.K. and Pigford, R.L. P 328, Absorpt. and Extract. McGrawHill Co. Inc., N.Y., 1952.
29. Otakei, T., P 64, Kagaku Kogaku III. Iwanami Book Co., 1963.
30. Bird, S.L., P 521, Transport Phenomena, John Wiley and Sons, Inc., N.Y.; 1960.
31. 0^{\prime} Connor, D.J. D. Sc. Thesis, N.Y. Univ. 1955 as cited in Aiba, S. P 151 Bio. Chem. Eng. Academic Press, N.Y., 1965.
32. Yoshida, F., Ikeda, A., Imakawa, S., and Miura, Y. Ind. Eng. Chem. 52: 435, 1960.
33. Bewtra, J.K. and Nichblas, W.R., J. Water Poll. Control Fed. 36: 1195, 1964.
34. Aiba, S., Yamada, T., Yamamoto, A., and Shimasake, S. Air and Water Poll. Int. Jour. 5: 103, 1963.
35. Radford, Norman D., P 68, MSSE Tech. Rept. Dept of Environmental Sci. and Eng., Univ. of North Carolina, June 1967.
36. Augenstein, D.C. and Wong, I.C. Presented at the 17th Can. Chem. Eng. Conf. October 1967.
37. Chem. Engrs. Handbook, P 814, 1958, Maruzen Book Co., Tokyo.
38. Calderbank, P.H. Trans. Inst. Chem. Engrs. 36: 443, 1958.
39. Rushton, J.H.; Costich, E.W. and Everett, H.J. Chem. Eng. Progress 46: 467, 1950.
40. Ohyama; Y. and Endoh, K. Chem. Eng. (Japan) 19: 2, 1955.
41. Moo-Young, M.B., External Ph.D. Thesis, London Univ., 1961, P 97 as cited in Vincent and Joseph,Mixing Theory and Practice, Academic Press, N.Y., 1967.
42. Aiba, S., P 268, Bio. Chem. Eng. Academic Press, N.Y., 1965.
43. King, H.R., P 1007, Sewage and Industrial Wastes, September 1955.
44. Kolthoff, I.M. Anal. Chem. 60: 341, 1921.
45. Eckenfelder, W.W. P76 Biological Waste Treatment. Pergamon Press, N.Y., 1961.
46. Standard Methods for the Examination of Water and Waste-Water, P 309, 11th Edition, 1960, APHA•AWWA.WPCF.

APPENDIX I

ALSTERBERG (AZIDE) MODIFICATION OF WINKLER METHOD (46)

A. Reagents

(1) Manganous Sulfate Solution Dissolve $480 \mathrm{~g} \mathrm{MnSO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}, 400 \mathrm{~g} \mathrm{MnSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, or 364 g $\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ in distilled water, filter, and dilute to 1 liter. When uncertainty exists regarding the water of crystallization, a solution of equivalent strength may be obtained by adjusting the specific gravity of the solution to a value of 1.270 at $20^{\circ} \mathrm{C}$. The manganous sulfate solution should liberate not more than a trace of iodine when added to an acidified solution of potassium iodide.
(2) A1kali-Iodide-Azide Reagent

Dissolve 500 g NaOH (or 700 g KOH) and 135 g NaI (or 150 g KI) in distilled water and dilute to 1 liter. To this solution add $10 \mathrm{~g} \mathrm{NaN}_{3}$ dissolved in 40 ml distilled water. Potassium and sodium salts may be used interchangeably. This reagent should not give a color with starch solution when dilute and acidified.
(3) Sulfuric Acid, Concentrated The strength of this acid is about 36 N . Hence, 1 ml is equivalent to about 3 ml of the alkali-iodide-azide reagent.
(4) Starch Solution

Prepare an emulsion of $5-6 \mathrm{~g}$ potato, arrowroot, or soluble starch in a mortar or beaker with a small quantity of distilled water. Pour this emulsion into 1 liter of boiling water, allow to boil a few minutes, and let settle overnight. Use the clear supernatant. This solution may be preserved with 1.25 g
salicylic acid per liter or by the addition of a few drops of toluene.
(5) Standard Sodium Thiosulfate Solution, 0.025 N Harleco Volumetric Concentrate Ampul was used. Hartman-Leddon Co. production.

Procedure
(1) To the sample, as collected in a 250 - to $300-\mathrm{ml}$ bottle, add 2 ml MnSO_{4} solution followed by 2 ml alkali-iodide-azide reagent, well below the surface of the liquid; stopper with care to exclude air bubbles and mix by inverting the bottle several times. When the precipitate settles, leaving a clear supernatant above the managanese hydroxide floc, shake again. When settling has produced at least 100 ml clear supernatant, carefully remove the stopper and immediately add 2.0 ml concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ by allowing the acid to run down the neck of the bottle, restopper, and mix by gentle inversion until dissolution is complete. The iodine should be uniformly distributed throughout the bottle before decanting the amount needed for titration. This should correspond to 200 ml of the original sample after correction for the loss of sample by displacement with the reagents has been made. Thus, when a total of 4 ml (2 ml each) of the manganous sulfate and alkali-iodide-azide reagents is added to a $300-\mathrm{ml}$ bottle, the volume taken for titration should be

$$
200 \times \frac{300}{300-4}=203 \mathrm{~m} 1
$$

(2) Titrate with 0.025 N thiosulfate to a pale straw color. Add 1-2 ml freshly prepared starch solution and continue the titration to the first disappearance of the blue color. If the end point is overrun, the sample may be back-titrated with 0.025 N biniodate, which is added dropwise, or by an additional measured volume of sample. Correction for the amount of biniodate or sample should be made. Subsequent recolorations due to the catalytic effect of nitrite or to traces of ferric salts which have not been complexed with fluoride should be disregarded.

APPENDIX I I CALIBRATION CHART OF RGI FLOMMETER (1 ATM, $70^{\circ} \mathrm{F}$)

COMPUTER PROGRAM FOR CALCULATION OF UNSTEADY GASSING OUT PROCESS


```
C
    DIMENSION Y(3,3), V(3)
    REAL PH,TEMP,RPM,POW,HOLD,KLA,SUPVEL
2000 DO 10 I I 1,3
    DO 10 J=1,3
10 Y(I,J)=0.0
1000 READ 20, PH,TEMP,RPM,POW,HOLD,KLA,SUPVEL
    RPM=RPM*1.9/0.5
    PHOLD=HOLD/15.0*100.0
20 FORMAT(7F10.0)
C
C POWER INPUT HORSEPOWER
C
    HP=5.0*POW*RPM/63025.0
C
C HP/1000.0 GALLON OF LIQUID
c VOLIME OF LOQUID IN (CM)**3, (FT)**3, U.S. GALLON
C
    AREA =(7.5*2.54/2.0)** 2*3.1416
    VCM=(7.5*2.54/2.0)**2*3.1416*15.0*2.54
    VFT=VCM/28316.0
    VGAL=VFT*7.481
C
    AA=HP/VGAL*1000.0
    BB=SUPVEL/30.48*60.0
    KLA=KLA*60.0
    IFITEMP.EQ.25.01 GO TO 52
    IF (TEMP.EQ. 30.0) GO TO 53
    IF (TEMP.EQ. 35.0) GO TO 54
    A =0.4011
    B=0.4974
    GO TO 51
52 A =0.3199
    B=0.4621
    GO TO 51
53 A=0.3286
    B=0.4562
    GO TO 51
54 A=0.3872
    B=0.4777
51. AAA=AA**A
    BBB=BB**B
```


SOURCE STATEMENT
\$IBFTC DATA
SUBROUTINE DAT ($X, A V, P R O D, N R E A D, N R O W, N V A R, X M I N, X M A X)$
DIMENSION $X(70), A V(70), P R O D(70,70), X M I N(70), X M A X(70)$
DO $5 \mathrm{~K}=1$, NROW
READ $(5,4)(X(I), I=1$, NREAD $)$
4 FORMAT (3F10.0)
$X(1)=\operatorname{ALOG}(X(1))$
$X(2)=\operatorname{ALOG}(X(2))$
$X(3)=A L D G(X(3))$
C X=VARIABLES
C TRANSFORMATIONS ENTERED HERE
IF (K.NE.1) GO TO 3
C FIND MINIMUM AND MAXIMUM VALUES
DO $2 \mathrm{I}=1$, NVAR
XMIN(I) $=X(I)$
$X \operatorname{MAX}(I)=X(I)$
2 DO $1 \quad I=1$, NVAR
IF (X(I).LT.XMIN(I)) XMIN(I) $=X(I)$
IF (X(I).GT.XMAX(I)) XMAX(I)=X(I)
1 CONTINUE
C CALCULATE SUMS (AV) AND PRODUCTS (PROD)
DO $5 \mathrm{I}=1$, NVAR
$\operatorname{AV}(I)=\operatorname{AV}(I)+X(I)$
DO $6 \mathrm{~J}=\mathrm{I}, \mathrm{NVAR}$
$\operatorname{PROD}(I, J)=\operatorname{PROD}(I, J)+X(I) * X(J)$
$6 \quad \operatorname{PROD}(J, I)=\operatorname{PROD}(I, J)$
5 CONTINUE
RETURN
END
jES FOR ABOVE ASSEMBLY
. 7 SEC

COMPUTER PROGRAM OF SULFITE OXIDATION •PROCESS

SUPVEL $=B B$
\& PRINT 30, RPM, SUPVEL, AA
30 FORMAT(1X, 3F20.8)
CONCENTRATION OF SULFITE IN THE SOLUTION AT T(I)
ANORMI $=($ CCI 11$)-$ CCNA (1) $) * 0.2 /$ SAMP
$\mathrm{NN}=\mathrm{N}-1$
$\operatorname{SUM}=0.0$
DO $40 \quad \mathrm{I}=1, \mathrm{NN}$
c.
CONCENTRATION OF SULFITE IN THE SOLUTION AT T(2)
ANORM2 $=($ CCI $(I+1)-$ CCNA $(I+1)) * 0.2 /$ SAMP
$D T=T(1+1)-T(1)$
\dot{C}
C SATURATION GXYGEN CONCENTRATIÓN CSIN̈=7.0394

- O OXYGEN ABSORBED LITERS/MIN
OXYABS $=($ ANORMI-ANORM2 $) / 2 . * 22.4 * 10.86 / 0 T$
C
C. AIR INLET LITERS/MIN
AIRIN=SUPVEL*ARE/(30.48)**2/60.*28.32*273./308.
10
C. OXYGEN INLET LITERS/MIN OXYIN=AIRIN*0.21
C
C COMPOSITION OF OXYGEN IN OUTLET PERCENT
OUTLET=(OXYIN-OXYABS)/(AIRIN-OXYABS)
C OXYGEN CONCEN. IN EQUL. WITH OUTLET AIR CSOUT=CSIN*OUTLET
log mean value of saturation oxygen concen. CS = (CSIN-CSQUT)/2.303/ALOG(CSIN/CSOUT)
KLA $=($ ANORM1-ANORM2 $) * 16.0 * 1000.0 . . \quad / D T / C S$
$K L A=K L A * 60$.
PRINT50, KLA; OUTLET
50 FORMAT(1X,2F20.8)
40 CONTINUE
* AVKLA=SUM/FLOAT(NN)
PRINT 60, AVKLA

60. FORMAT (//1X,F20.8//)
C
C
$K L A=A V K L A * 60.0$
$Y Y=A L O G 10(K L A)$
$A A=A L O G 10(A A)$
$B B=A L O G 10(B B)$

UNSTEADY GASSING OUT PROCESS

(A) Temperature $25^{\circ} \mathrm{C}$

$$
\begin{aligned}
& c=7.46 \\
& a=0.32
\end{aligned}
$$

pH value 1.0
$K_{L} a=c(H P / V)^{a}(V s)^{b}$

Agitation speed rpm	Power Input HP/1000 Gals.	```Superficial Velocity ft/hr```	$\mathrm{K}_{\mathrm{L}} \mathrm{a} \mathrm{hr}^{-1}$	$\begin{aligned} & (\mathrm{HP})^{a} \\ & (\mathrm{Vs})^{b} \end{aligned}$	P/Po	$\begin{array}{ll} \mathrm{Q} / \mathrm{ND}_{\mathrm{T}}^{3} \\ \mathrm{x} & 10^{2} \end{array}$
285	1.182	0.000	0.300	0.000	1.000	0.000
285	1.024	35.610	35.340	5.252	0.867	0.345
285	0.709	67.618	49.440	6.280	0.600	0.655
285	0.630	141.398	60.540	8.504	0.533	1.370
285	0.552	262.697	70.320	10.849	0.467	2.545
285	0.552	362.815	78.120	12.595	0.467	3.576
380	3.152	0.000	0.480	0.000	1.000	0.000
380	2.837	36.024	53.160	7.314	0.900	0.262
380	2.102	67.618	78.720	8.889	0.667	0.491
380	1.576	141.398	92.280	11.401	0.500	1.027
380	1.471	233.622	95.220	14.064	0.467	1.697
380	1.366	358.071	120.180	16.731	0.433	2.604
570	11.033	0.000	1.080	0.000	1.000	0.000
570	10.245	35.886	86.280	11.010	0.929	0.174
570	8.826	67.618	126.600	14.068	0.800	0.328
570	5.989	141.398	149.520	17.474	0.543	0.685
570	5.359	235.000	163.740	21.326	0.486	1.139
570	5.044	359.016	178.800	25.441:	0.457	1.740
760	25.218	0.000	1.080	0.000	1.000	0.000
760	25.218	35.748	111.780	14.661	1.000	0.132
760	21.015	67.618	162.000	18.567	0.833	0.246
760	14.711	140.925	180.660	23.258	0.583	0.516
760	13.030	230.846	198.420	28.103	0.517	0.840
760	12.609	353.346	206.400	33.856	0.500	1.284
950	52.538	0.000	2.400	0.000	1.000	0.000
950	49.912	35.886	105.180	18.272	0.950	0.104
950	42.031	67.382	201. 240	23.139	0.800	0.196
950	28.896	141.398	226.440	28.910	0.550	0.410
950	26.269	235.000	233.700	35.461	0.500	0.684
950	24.168	359.016	230.460	41.997	0.460	1.044

Temperature $25^{\circ} \mathrm{C}$
$c=7.46$
pH Value 2.0
$\mathrm{a}=0.32$
$\mathrm{K}_{\mathrm{L}} \mathrm{a}=\mathrm{c}(\mathrm{HP} / \mathrm{V})^{\mathrm{a}}\left(\mathrm{V}_{\mathrm{S}}\right)^{\mathrm{b}}$
$b=0.46$

Agitation Speed rpm	Power Input HP/1000 Gals.	Superficial Velocity $\mathrm{ft} / \mathrm{hr}$	$\mathrm{K}_{\mathrm{L}} \mathrm{Chr}^{-1}$	$\begin{aligned} & (\mathrm{HP})^{\mathrm{a}} \\ & (\mathrm{Vs})^{\mathrm{b}} \end{aligned}$	P/Po	$\begin{aligned} & \mathrm{Q} / \mathrm{ND}_{1}^{3} \\ & \times 10^{2} \end{aligned}$
285	1.182	0.000	0.000	0.000	1.000	0.000
285	1.103	37.618	32.040	5.506	0.933	0.365
285	0.788	71.457	53.760	6.663	0.667	0.696
285	0.709	146.969	67.020	8.990	0.600	1.424
285	0.709	243.996	78.180	11.363	0.600	2.364
285	0.630	368.504	92.820	13.239	0.533	3.576
380	3.152	0.000	0.300	0.000	1.000	0.000
380	3.047	37.874	53.280	7.659	0.967	0.275
380	2.102	71.398	86.100	9.115	0.607	0.518
380	1.681	150.689	105.600	11.986	0.533	1.094
380	1.576	246.083	120.420	14.728	0.500	1.788
380	1.576	372.283	137.400	17.833	0.500	2.705
570	11.821	0.000	0.840	0.000	1.000	0.000
570	11.033	37.874	89.340	11.559	0.933	0.184
570	9.457	71.437	138.660	14.752	0.800	0.639
570	6.305	149.744	167.340	18.241	0.533	0.725
570	5.517	247.461	186.480	22.044	0.467	1.199
570	5.201	374.173	203.460	26.188	0.440	1.812
760	27.320	0.000	1.860	0.000	1.000	0.000
760	25.218	37.087	138.480	14.912	0.923	0.132
760	22.066	71.220	211.560	19.317	0.808	0.258
760	14.711	150.217	238.560	23.955	0.538	0.546
760	13.660	247.461	246.600	29.463	0.500	0.900
760	12.609	372.283	262.980	34.683	0.462	1.356
950	49.912	0.000	2.040	0.000	1.000	0.000
950	47.285	37.480	131.340	18.323	0.947	0.109
950	39.404	71.220	175.320	23.254	0.789	0.208
950	28.896	150.217	208.860	29.729	0.579	0.437
950	26.269	246.083	220.680	36.224	0.526	0.715
950	24.956	377.953	239.640	43.450	0.500	1.098

Temperature $25^{\circ} \mathrm{C}$
$c=7.46$
pH Value 5.7
$a=0.32$
$K_{L} a=c(H P / V)^{a}(V s)^{b}$
$c=0.46$

Agitation Speed rpm	Power Input HP/1000 Gals.	Superficial Velocity $\mathrm{ft} / \mathrm{hr}$	$\mathrm{K}_{\mathrm{L}} \mathrm{a} \mathrm{hr}^{-1}$	$\begin{aligned} & (\mathrm{HP})^{a} \\ & (\mathrm{Vs})^{b} \end{aligned}$	P/Po	$\begin{aligned} & \mathrm{Q} / \mathrm{ND}_{\mathrm{I}}^{3} \\ & \times \quad 10^{2} \end{aligned}$
285	1.182	0.000	0.000	0.000	1.000	0.000
285	0.946	36.024	31.440	5.147	0.800	0.349
285	0.709	67.382	45.540	6.270	0.600	0.653
285	0.630	142.776	61.500	8.542	0.533	1.382
285	0.552	236.378	69.840	10.332	0.467	2.292
285	0.552	360.925	78.420	12.564	0.467	3.492
380	3.152	0.000	0.000	0.000	1.000	0.000
380	3.047	36.024	46.020	7.483	0.907	0.262
380	2.102	67.382	78.360	8.875	0.667	0.490
380	1.576	142.776	102.840	11.452	0.500	1.038
380	1.576	236.378	120.000	14.456	0.500	1.716
380	1.471	360.925	131.760	17.195	0.467	2.628
570	11.033	0.000	0.000	0.000	1.000	0.000
570	11.033	35.886	64.200	11.274	1.000	0.174
570	9.457	67.382	115.260	14.359	0.857	0.324
570	6.305	142.323	158.280	17.817	0.571	0.684
570	5.517	232.087	192.120	21.401	0.500	1.128
570	5.517	359.016	194.220	26.180	0.500	1.739
760	27.320	0.000	0.000	0.000	1.000	0.000
760	25.218	35.079	81.660	14.534	0.923	0.127
760	21.015	67.382	136.320	18,537	0.769	0.245
760	14.711	141.398	195.000	23.294	0.538	0.514
760	13.660	230.846	232.800	28.531	0.500	0.839
760	12.609	364.705	241.440	34.354	0.462	1.320
950	47.285	0.000	0.000	0.000	1.000	0.000
950	47.285	35.610	90.480	17.895	0.947	0.103
950	39.404	67.382	150.360	22.666	0.833	0.196
950	28.896	141.850	215.580	28.952	0.611	0.412
950	24.956	234.311	273.540	34.837	0.528	0.680
950	22.329	363.760	310.860	41.196	0.472	1.057

(B) Temperature $30^{\circ} \mathrm{C}$
$c=9.27$
pH Value 1.0
$\mathrm{a}=0.33$
$K_{L} a=c(H P / V)^{a}(v s)^{b}$
$b=0.46$

Agitation Speed rpm	Power Input HP/1000 Gals.	Superficial Velocity $\mathrm{ft} / \mathrm{hr}$	$\mathrm{K}_{\mathrm{L}} \mathrm{a}_{\text {hr }}{ }^{-1}$	$\begin{aligned} & (\mathrm{HP})^{a} \\ & (\mathrm{Vs})^{b} \end{aligned}$	P/Po	$\begin{array}{r} \mathrm{Q} / \mathrm{ND}_{\mathrm{I}}^{3} \\ \times \quad 10^{2} \end{array}$
285	1.182	0.000	1.740	0.000	1.000	0.000
285	1.103	36.024	36.060	5.298	0.933	0.348
285	0.788	67.382	51.600	6.312	0.667	0.653
285	0.630	236.378	77.580	10.399	0.533	2.292
285	0.630	360.925	94.860	12.614	0.533	3.492
380	3.152	0.000	0.060	0.000	1.000	0.000
380	2.627	36.024	60.420	7.046	0.827	0.262
380	2.102	67.618	85.680	8.727	0.688	0.492
380	1.576	141.850	105.540	11.133	0.503	1.031
380	1.576	233.622	122.640	13.978	0.503	1.692
380	1.576	360.925	142.980	17.046	0.503	2.622
570	10.245	0.000	0.540	0.000	1.000	0.000
570	10.245	35.886	97.200	11.000	1.000	0.173
570	8.669	67.382	141.840	13.880	0.846	0.326
570	6.305	142.323	177.060	17.583	0.615	0.690
570	5.517	232.224	193.020	21.040	0.538	1.124
570	5.517	359.016	211.560	25.666	0.538	1.740
760	25.218	0.000	0.300	0.000	1.000	0.000
760	25.218	35.079	121.140	14.637	1.000	0.127
760	19.965	67.382	183.480	18.258	0.792	0.245
760	13.660	141.398	217.200	22.602	0.542	0.514
760	13,660	230.846	250.560	28.266	0.542	0.839
760	12,609	364.705	265.320	33.919	0.500	1.320
950	49.912	0.000	2.640	0.000	1.000	0.000
950	47.285	35.610	175.440	18.119	0.947	0.103
950	39.404	67.382	244.560	22.828	0.789	0.196
950	28.896	141.850	292.260	28.953	0.579	0.408
950	25.218	234.311	303.960	34.810	0.505	0.682
950	23.642	363.760	318.720	41.652	0.474	1.057

Temperature $30^{\circ} \mathrm{C}$
$c=9.27$
pH Value 2.0
$a=0.33$
$K_{L} a=c(H P / V)^{a}(V s)^{b}$
$b=0.46$

Agitation Speed rpm	Power Input HP/1000 Gals.	Superficial Velocity $\mathrm{ft} / \mathrm{hr}$	$\mathrm{K}_{\mathrm{L}} \mathrm{a} \mathrm{hr}^{-1}$	$\begin{aligned} & (\mathrm{HP})^{\mathrm{a}} \\ & (\mathrm{Vs})^{\mathrm{b}} \end{aligned}$	P/Po	$\begin{aligned} & \mathrm{Q} / \mathrm{ND}_{\mathrm{I}}^{3} \\ & \mathrm{x} \quad 10^{2} \end{aligned}$
285	1.576	0.000	0.420	0.000	1.000	0.000
285	1.576	37.618	37.920	6.076	1.000	0.365
285	1.340	71.220	55.380	7.707	0.850	0.690
285	0.946	149.744	69.960	9.648	0.600	1.452
285	0.630	244.843	88.920	10.568	0.400	2.376
285	0.552	373.228	104.460	12.259	0.350	3.612
380	4.203	0.000	0.600	0.000	1.000	0.000
380	3.993	37.736	58.500	8.259	0.953	0.275
380	3.362	71.220	94.140	10.428	0.800	0.517
380	2.837	148.819	110.160	13.803	0.677	1.081
380	2.732	246.083	142.680	17.149	0.650	1.788
380	2.627	373.228	158.880	20.472	0.626	2.712
570	11.821	0.000	1.200	0.000	1.000	0.000
570	11.821	37.480	102.660	11.761	1.000	0.181
570	9.142	71.220	154.680	14.486	0.773	0.344
570	6.777	150.689	182.280	18.481	0.573	0.730
570	6.305	245.394	197.580	22.544	0.533	1.189
570	5.832	371.319	215.760	26.544	0.493	1.799
760	26.269	0.000	1.860	0.000	1.000	0.000
760	25.218	37.618	139.618	.15.111	. 0.960	0.137
760	23.117	71.220	201. 540	19.649	0.880	0.259
760	15.762	150.217	239.340	24.353	0.600	0.546
760	14.711	246.772	263.400	29.857	0.560	0.896
760	12.609	370.374	274.980	34.159	0.480	1.344
950	52.538	0.000	3.420	0.000	1.000	0.000
950	49.912	37.480	167.760	18.880	0.950	0.109
950	42.031	71.220	246.540	23.915	0.800	0.208
950	28.896	150.217	282.900	29.720	0.550	0.437
950	26.269	247.461	306.720	36.170	0.500	0.720
950	23.642	369.429	315.840	41.947	0.450	1.074

 \(c=9.27\)
 pH Value 5.7
$a=0.33$
$K_{L} a=c(H P / V)^{a}(V s)^{b}$
$b=0.46$

Agitation Speed rpm	Power Iñput HP/1000 gals.	```Superficial Velocity ft/hr```	$\mathrm{K}_{\mathrm{L}} a \mathrm{hr}^{-1}$	$\begin{aligned} & (\mathrm{HP})^{a} \\ & (\mathrm{Vs})^{b} \end{aligned}$	P/Po	$\begin{array}{ll} \hline \mathrm{Q} / \mathrm{ND}_{\mathrm{I}}^{3} \\ \mathrm{x} & 102 \end{array}$
285	1.024	32.972	37.740	4.966	1.000	0.000*
285	0.867	59.724.	60.660	6.164	0.846	0.578*
285	0.709	117.697	74.340	7.864	0.692	1.140*
285	0.630	178.917	85.440	9.159	0.615	1.728*
285	0.630	252.087	101.880	10.709	0.615	2.448*
285	1.103	37.736	35.280	5.412	1.000	0.000
285	0.867	71.220	58.440	6.680	0.786	0.690
285	0.709	150.217	73.860	8.790	0.643	1.452
285	0.709	246.083	84.540	11.010	0.643	2.388
285	0.709	371.319	103.260	13.283	0.643	3.598
380	2.732	37.874	59.700	7.302	1.000	0.275
380	2.207	71.220	92.280	9.080	0.808	0.517
380	1.681	151.142	114.900	11.705	0.615	1.098
380	1.576	246.772	142.020	14.332	0.577	1.788
380	1.576	375.118	167.520	17.349	0.577	2.725
570	11.003	37.736	109.500	11.533	1.000	0.182
570	9.457	71.220	172.620	14.648	0.857	0.345
570	6.620	150.689	201.780	18.339	0.600	0.730
570	5.989	248.150	236.280	22.280	0.543	1.200
570	5.517	376.063	263.760	26.215	0.500	1.824
760	25.218	37.480	145.380	15.086	1.000	0.136
760	22.066	70.965	227.760	19.319	0.875	0.258
760	15.762	150.217	284.940	24.353	0.625	0.546
760	13.660	247.461	316.800	29.176	0.542	0.899
760	12.609	376.063	349.740	34.397	0.500	1. 368
950	49.912	.0:000	3.540	0.000	1.000	0.000*
950	47.285	32.697	175.200	17.427	0.947	$0.095 *$
950	42.031	59.232	265.320	21.986	0.842	0.172^{*}
950	28.896	117.224	307.920	26.541	0.579	$0.341 *$
950	26.269	178.917	349.680	31.195	0.526	0.520*
950	24.956	251.969	403.140	35.860	0.500	$0.732 *$
950	47.285	37.618	165.540	18.578	0.947	0.109
950	42.031	71.220	268.620	23.915	0.889	0.208
950	28.896	150.689	332.640	29.763	0.611	0.438
950	26.269	248.150	373.740	36.216	0.556	0.721
950	24.956	373.228	410.100	42.899	0.528	1.085

[^0](C) Temperature $35^{\circ} \mathrm{C}$
$c=8.58$
pH Value 1.0
$\mathrm{a}=0.39$
$K_{L} a=c(H P / V)^{a}(V s)^{b}$
$b=0.48$

Agitation Speed rpm	Power Input HP/1000 gals.	Superficial Velocity ft/hr	$K_{L} a h r l^{-1}$	$\begin{aligned} & (\mathrm{HP})^{\mathrm{a}} \\ & (\mathrm{Vs})^{\mathrm{b}} \end{aligned}$	P/Po	$\begin{aligned} & \mathrm{Q} / \mathrm{ND}_{\mathrm{I}}^{3} \\ & \mathrm{x} \quad 10^{2} \end{aligned}$
285	1.024	37.618	40.440	5.710	1.000	0.365
285	0.788	71.220	62.760	6.997	0.769	0.688
285	0.709	149.744	81.120	9.581	0.692	1.452
285	0.709	246.083	97.140	12.147	0.692	2.376
285	0.709	371.319	115.440	14.784	0.692	3.612
380	2.627	37.480	62.400	8.208	1.000	0.274
380	1.891	70.965	94.740	9.804	0.720	0.516
380	1.576	150.217	117.660	13.072	0.600	1.092
380	1.471	246.772	151.320	16.133	0.560	1.788
380	1.366	376.063	183.840	19.171	0.520	2.692
570	10.718	37.618	115.500	14.172	1.000	0.182
570	8.669	70.965	182.760	17.678	0.809	0.343
570	6.305	150.217	232.560	22.359	0.588	0.727
570	5.674	247.461	277.740	27.245	0.529	1.200
570	5.359	376.063	298.140	32.546	0.500	1.824
760	25.218	37.480	169.740	19,704	1.000	0.136
760	21.015	70.965	270.540	24.907	0.833	0.258
760	14.711	149.744	315.960	30.994	0.583	0.544
760	13.450	246.772	355.680	38.005	0.533	0.896
760	12.609	376.063	360.780	45.330	0.500	1.368
950	47.285	37.205	202.020	25.045	1.000	0.108
950	42.031	70.728	314.340	32.523	0.889	0.205
950	28.896	150.217	388.080	40.314	0.611	0.437
950	26.269	247.461	442.020	49.316	0.556	0.720
950	23.642	376.063	459.840	57,822	0.500	1.093

Temperature $35^{\circ} \mathrm{C}$
$c=8.58$
pH value 1.5
$a=0.39$
$K_{L} a=c(H P / V)^{a}(v s)^{b}$
$b=0.48$

Agitation Speed rpm	Power Input HP/1000 gals.	Superficial Velocity ft/hr	$\mathrm{K}_{\overline{\mathrm{L}}} \mathrm{a}^{\text {a }} \mathrm{hr} \overline{\mathbf{r}}^{-1}$	$\begin{aligned} & (H P)^{a} \\ & (V s)^{b} \end{aligned}$	P/Po	$\begin{aligned} & \mathrm{Q} / \mathrm{ND}^{3} \mathrm{I} \\ & \mathrm{x} \\ & \hline \end{aligned} 0^{2}$
285	1.103	37.618	41.880	5.876	1.000	0.365
285	0.788	70.965	64.320	6.985	0.714	0.688
285	0.709	150.689	82.980	9.610	0.643	1.464
285	0.709	248.858	101.880	12.212	0.643	2.412
285	0.709	376.063	124.920	14.874	0.643	3.648
380	3.152	37.618	72.300	8.823	1.000	0.274
380	2.312	71.220	106.560	10.615	0.733	0.516
380	1.786	150.217	144.420	13.721	0.567	1.092
380	1.681	246.772	166.440	16.989	0.533	1.793
380	1.576	376.063	192.840	20.263	0.500	3.279
570	10.245	37.205	118.200	13.853	1.000	0.180
570	9.457	70.965	194.940	18.283	0.923	0.343
570	6.305	150.217	235.440	22.359	0.615	0.727
570	5.674	248.150	281.100	27.281	0.554	1.200
570	5.359	376.063	325.020	32.546	0.523	1.824
760	25.218	37.618	174.240	19.738	1.000	0.137
760	21.015	70.728	265.080	24.868	0.833	0.257
760	14.711	150.217	318.960	31.040	0.583	0.546
760	13.450	248.150	356.220	38.106	0.533	0.901
760	12.609	376.063	393.480	45.330	0.500	1.368
950	49.912	36.949	208.860	25.491	1.000	0.107
950	42.031	70.728	316.860	32.523	0.842	0.205
950	28.896	150.217	397.980	40.314	0.579	0.437
950	24.956	246.772	435.840	48.282	0.500	0.718
950	23.642	376.063	453.480	57.822	0.474	1.093

```
Temperature \(35^{\circ} \mathrm{C}\)
    \(c=8.58\)
pH value 2.0
    \(a=0.39\)
\(\mathrm{K}_{\mathrm{L}} \mathrm{a}=\mathrm{c}(\mathrm{HP} / \mathrm{V})^{\mathrm{a}}(\mathrm{Vs})^{\mathrm{b}}\)
b \(=0.48\)
```

Agitation Speed rpm	Power Input HP/1000 gals.	Superficial Velocity $\mathrm{ft} / \mathrm{hr}$	$\mathrm{K}_{\mathrm{L}} \mathrm{a} \mathrm{hr}^{-1}$	$\begin{aligned} & (\mathrm{HP})^{\mathrm{a}} \\ & (\mathrm{Vs})^{\mathrm{b}} \end{aligned}$	P/Po	$\begin{aligned} & \mathrm{Q} / \mathrm{ND}_{\mathrm{I}}^{3} \\ & \times 10^{2} \end{aligned}$
285	1.182	0.000	0.420	0.000	1.000	0.000
285	1.024	37.618	39.060	5.710	0.867	0.365
285	0.788	70.965	61.620	6.985	0.667	0.688
285	0.709	149.744	78.180	9.581	0.600	1.452
285	0.709	244.705	100.740	12.114	0.600	2.376
285	0.630	368.484	105.160	14.074	0.533	3.576
380	3.047	0.000	0.720	0.000	1.000	0.000
380	2.837	37.618	64.440	8.471	0.931	0.274
380	2.102	71.220	94.800	10.230	0.689	0.517
380	1.576	149.291	122.760	13.033	0.517	1.085
380	1.576	247.461	140.280	16.592	0.517	1.798
380	1.471	370.374	174.000	19.586	0.483	2.688
570	10.245	37.205	114.960	13.853	0.929	0.180
570	9.457	70.965	170.760	18.283	0.857	0.343
570	6.305	150.689	200.760	22.392	0.571	0.730
570	5.674	247.461	220.440	27.245	0.514	1.200
570	5.359	373.228	243.360	32.429	0.486	1.812
760	25.218	0.000	2.460	0.000	1.000	0.000
760	26.269	37.343	152.940	19.983	1.000	0.136
760	23.117	70.728	220.380	25.803	0.917	0.257
760	14.711	148.819	250.620	30.902	0.583	0.649
760	13.660	246.772	274.020	38.234	0.542	0.896
760	12.609	373.228	303.540	45.167	0.500	1.356
950	52.538	0.000	4.620	0.000	1.000	0.000
950	49.912	37.343	178.680	25.620	0.950	0.109
950	42.031	70.728	266.640	32.523	0.800	0.205
950	28.896	150.217	298.320	40.314	0.550	0.537
950	26.269	247.461	326.220	49.316	0.500	0.719
950	23.642	373.228	331.740	57.614	0.450	1.085

Temperature $35^{\circ} \mathrm{C}$	$\mathrm{c}=8.58$
pH value 4.5	$\mathrm{a}=0.39$
$\mathrm{~K}_{\mathrm{L}} \mathrm{a}=\mathrm{c}(\mathrm{HP} / \mathrm{V})^{\mathrm{a}}(\mathrm{Vs})^{\mathrm{b}}$	$\mathrm{b}=0.48$

Agitation Speed rpm	Power Input HP/1000 gals:	Superficial Velocity $\mathrm{ft} / \mathrm{hr}$	$\mathrm{K}_{\mathrm{L}} \mathrm{a} \mathrm{hr}^{-1}$	$\begin{aligned} & (\mathrm{HP})^{\mathrm{a}} \\ & (\mathrm{Vs})^{\mathrm{b}} \end{aligned}$	P/Po	$\begin{aligned} & \mathrm{Q} / \mathrm{ND}_{\mathrm{I}}^{3} \\ & \times \quad 10^{2} \end{aligned}$
285	1.024	38.012	41.460	5.738	1.000	0.368
285	0.709	71.693	61.920	6.739	0.692	0.695
285	0.630	152.992	77.700	9.248	0.615	1.490
285	0.630	248.858	98.940	11.667	0.615	2.412
285	0.630	376.063	102.720	14.211	0.615	3.648
380	2.627	38.012	60.720	8.263	1.000	0.272
380	1.891	71.693	91.740	9.852	0.720	0.516
380	1.576	152.067	119.400	13.148	0.600	1.092
380	1.471	250.925	146.520	16.262	0.560	1.793
380	1.471	375.118	162.060	19.706	0.520	2.732
570	11.033	37.874	116.940	14.378	1.000	0.184
570	9.457	71.693	184.200	18.373	0.857	0.347
570	6.305	152.067	226.500	22.490	0.571	0.737
570	5.832	250.236	260.760	27.683	0.529	1.212
570	5.517	377.953	295.320	32.992	0.500	1.830
760	23.117	71.457	245.880	25.929	1.000	0.259
760	15.131	152.067	295.860	31.565	0.655	0.552
760	13.660	250.925	355.500	38.540	0.591	0.912
760	12.609	379.843	356.820	45.547	0.545	1.380
950	49.912	37.736	187.800	25.749	1.000	0.110
950	39.404	71.457	306.000	31.876	0.789	0.208
950	28.896	148.898	358.620	40.144	0.579	0.433
950	26.269	257.874	437.880	50.297	0.526	0.750
950	24.693	377.008	467.100	58.875	0.495	1.096

Temperature $35^{\circ} \mathrm{C}$
$c=8.58$
pH value 5.7 (Distilled Water)
$\mathrm{a}=0.39$
$K_{L} a=c(H P / V)^{a}(V s)^{b}$
$\mathrm{b}=0.48$

Agitation Speed rpm	Power Input HP/1000 gals.	Superficial Velocity $\mathrm{ft} / \mathrm{hr}$	$\mathrm{K}_{\mathrm{L}} \mathrm{A} h \mathrm{r}^{-1}$	$\begin{aligned} & (\mathrm{HP})^{\mathrm{a}} \\ & (\mathrm{Vs})^{\mathrm{b}} \end{aligned}$	P/Po	$\begin{aligned} & \mathrm{Q} / \mathrm{ND} \mathrm{D}_{\mathrm{I}} \\ & \times 10^{2} \end{aligned}$
285	0.946	33.091	38.820	5.207	1.000	0.320*
285	0.788	59.961	59.100	6.445	0.833	0.528*
285	0.709	117.697	75.600	8.540	0.750	1.140*
285	0.709	179.606	89.280	10.450	0.750	1.740*
285	0.630	253.031	99.720	11.760	0.667	2.448*
285	0.946	37.736	40.500	5.544	1.000	0.366
285	0.788	71.220	60.120	6.997	0.833	0.690
285	0.630	150.217	73.860	9.167	0.667	1.452
285	0.630	247.461	86.700	11.636	0.667	2.400
285	0.552	372.283	115.500	13.430	0.583	3.672
380	2.837	38.012	68.940	8.513	1.000	0.276
380	2.837	38.012	68.940	8.513	1.000	0.276
380	2.102	71.220	106.020	10.230	0.741	0.517
380	1.681	151.142	131.460	13.442	0.593	1.098
380	1.471	247.461	155.280	16.154	0.519	1.798
380	1.471	374.173	180.060	19.682	0.519	2.719
570	11.033	0.000	1.380	0.000	1.000	0.000
570	11.033	37.480	110.760	14.307	1.000	0.181
570	8.669	71.220	182.040	17.708	0.786	0.346
570	6.305	151.142	217.260	22.424	0.571	0.732
570	5.832	248.150	263.220	27.57.2	0.529	1.200
570	5.517	374.154	269.580	32.834	0.500	1.812
760	27.320	0.000	2.040	0.000	1.000	0.000
760	25.218	37.618	156.660	19.738	0.923	0.137
760	23.117	70.965	263.820	25.844	0.846	0.258
760	14.711	150.689	305.580	31.087	0.538	0.547
760	13.660	248.150	340.140	38.335	0.500	0.901
760	12.609	377.953	365.640	45.439	0.462	1.368
950	49.912	0.000	4.680	0.000	1.000	0.000*
950	49.912	32.697	168.960	24.045	1.000	0.095*
950	28.896	117.224	305.340	35.810	0.579	0.341*
950	42.031	59.232	259.260	29.881	0.842	0.172*
950	26.269	178.917	340.080	42.238	0.526	0.520*
950	24.956	252.087	382.740	48.776	0.500	0.733*
950	49.912	37.343	191.160	25.620	1.000	0.108
950	42.031	70.965	299.880	32.575	0.842	0.206
950	27.583	150.689	365.280	39.654	0.553	0.438
950	26.269	249.547	417.540	49.514	0.526	0.725
950	23.642	374.173	436.560	57.683	0.474	1.087

Temperature $35^{\circ} \mathrm{C}$
$c=8.58$
pH value 10.0
$a=0.39$
$K_{L}{ }^{a}=c(H P / V)^{a}(V s)^{b}$
$\mathrm{b}=0.48$

Agitation Speed rpm	Power Input HP/1000 gals.	Superficial Velocity $\mathrm{ft} / \mathrm{hr}$	$\mathrm{K}_{\mathrm{L}} \mathrm{ahr}^{-1}$	$\begin{aligned} & (\mathrm{HP})^{a} \\ & (\mathrm{Vs})^{b} \end{aligned}$	P/Po	$\begin{aligned} & \mathrm{Q} / \mathrm{ND} \frac{3}{\mathrm{I}} \\ & \mathrm{x} \quad 102 \end{aligned}$
285	1.024	37.618	43.080	5.710	1.000	0.365
285	0.788	70.965	62.100	6.985	0.769	0.690
285	0.709	150.217	76.860	9.595	0.692	1.452
285	0.709	244.705	91.440	12.114	0.692	2.388
285	0.709	372.283	112.260	14.803	0.692	3.598
380	2.837	37.618	62.820	8.471	1.000	0.274
380	1.996	70.965	94.380	10.012	0.704	0.516
380	1.576	150.217	123.720	13.072	0.556	1.092
380	1.471	245.394	143.460	16.090	0.519	1.788
380	1.471	370.374	168.300	19.586	0.519	2.692
570	11.033	37.480	115.620	14.307	1.000	0.181
570	8.826	70.965	180.480	17.801	0.800	0.312
570	6.305	$\therefore 149.744$	214.800	22.325	0.571	0.724
570	5.674	246.772	251.520	27.209	0.514	1.195
570	5.359	371.319	274.980	32.349	0.486	1.799
760	25.218	37.205	164.160	19.635	1.000	0.136
760	22.066	70.728	245.220	25.342	0.875	0.257
760	15.131	150.689	297.840	31.428	0.600	0.547
760	13.660	249.429	335.100	38.430	0.542	0.905
760	12.609	377.953	363.720	45.439	0.500	1.373
950	47.285	37.205	204.480	25.045	1.000	0.108
950	42.031	70.728	315.180	32.523	0.889	0.205
950	28.896	151.142	388.440	40.432	0.611	0.439
950	25.744	247.461	399.180	48.932	0.544	0.720
950	23.642	377.008	460.320	57.892	0.500	1.096

Temperature $35^{\circ} \mathrm{C}$
$c=8.58$
pH value 11.0
$\mathrm{a}=0.39$
$K_{L}{ }^{a}=c(H P / V)^{a}(V s)^{b}$
$c=0.48$

Agitation Speed rpm	Power Input HP/1000 gals.	Superficial Vēlocity $\mathrm{ft} / \mathrm{hr}$	$\mathrm{K}_{\mathrm{L}} \mathrm{ahr}^{-1}$	$\begin{aligned} & (\mathrm{HP})^{\mathrm{a}} \\ & (\mathrm{VS})^{\mathrm{b}} \end{aligned}$	P/Po	$\begin{aligned} & \mathrm{Q} / \mathrm{ND} \frac{3}{\mathrm{I}} \\ & \times 10^{2} \end{aligned}$
285	1.103	37.618	39.720	5.876	1.000	0.365
285	0.788	70.965	61.500	6.985	0.714	0.688
285	0.709	149.744	80.640	9.581	0.643	1.452
285	0.709	244.705	93.420	12.114	0.643	2.376
285	0.709	371.319	113.280	14.784	0.643	3.600
380	2.837	37.480	60.660	8.456	1.000	0.272
380	2.312	70.965	98.700	10.596	0.815	0.515
380	1.576	149.744	120.480	13.052	0.556	1.088
380	1.471	248.150	145.020	16.176	0.519	1.804
380	1.471	377.008	167.040	19.753	0.519	2.738
570	11.033	37.343	105.660	14.281	1.000	0.181
570	8.669	70.965	170.040	17.678	0.786	0.343
570	5.674	149.744	202.980	21.433	0.514	0.725
570	5.359	246.772	223.260	26.613	0.486	1.195
570	5.044	375.118	260.280	31.753	0.457	1.817
760	25.218	37.343	147.540	19.669	1.000	0.136
760	21.015	70.728	226.080	24.868	0.833	0.257
760	14.711	150.217	277.500	31.040	0.583	0.546
760	13.660	246.083	306.180	38.183	0.542	0.894
760	12.609	376.063	330.780	45.330	0.500	1.368
950	47.285	37.343	170.760	25.090	1.000	0.109
950	39.404	70.965	260.100	31.771	0.833	0.206
950	27.583	150.197	294.360	39.592	0.583	0.437
950	25.744	248.150	344.220	48.997	0.544	0.721
950	23.642	374.173	352.500	57.683	0.500	1.087

Temperature $35^{\circ} \mathrm{C}$
$c=8.58$
pH value 12.5
$\mathrm{a}=0.39$
$K_{L} a=c(H P / V)^{a}(V s)^{b}$
$a=0.48$

Agitation Speed rpm	Power Input HP/1000 gals.	Superficial Velocity $\mathrm{ft} / \mathrm{hr}$	$\mathrm{K}_{\mathrm{L}} \mathrm{a} \mathrm{hr}^{-1}$	$\begin{aligned} & (\mathrm{HP})^{\mathrm{a}} \\ & (\mathrm{Vs})^{\mathrm{b}} \end{aligned}$	P/Po	$\begin{aligned} & \mathrm{Q} / \mathrm{ND}_{\mathrm{I}}^{3} \\ & \times 10^{2} \end{aligned}$
285	1.182	37.343	43.740	6.014	1.000	0.361
285	0.867	70.728	67.500	7.237	0.733	0.685
285	0.788	149.291	81.780	9.965	0.667	1.452
285	0.709	243.996	90.360	12.097	0.600	2.364
285	0.709	374.173	126.960	14.839	0.600	3.624
380	2.627	37.480	70.680	8.208	1.000	0.272
380	2.102	70.728	113.460	10.196	0.800	0.514
380	1.681	149.744	131.100	13.382	0.640	1.088
380	1.576	245.394	155.880	16.525	0.600	1.788
380	1.471	374.173	179.040	19.682	0.560	2.719
570	10.245	37.343	125.040	13.878	1.000	0.181
570	8.669	70.728	186.660	17.649	0.846	0.343
570	5.989	149.744	220.500	21.886	0.585	0.725
570	5.517	246.083	263.580	26.878	0.538	1.192
570	5.044	374.173	277.320	31.715	0.492	1.812
760	26.269	37.205	167.580	19.947	1.000	0.136
760	22.066	70.728	253.080	25.342	0.840	0.257
760	14.711	149.744	303.120	30.994	0.560	0.544
760	13.660	246.083	345.660	38.183	0.520	0.894
760	12.609	374.173	349.980	45.221	0.480	1.360
950	49.912	36.949	188.580	25.491	1.000	0.107
950	39.404	70.256	274.620	31.619	0.789	0.204
950	27.583	149.724	342.840	39.532	0.553	0.436
950	24.956	246.083	375.960	48.217	0.500	0.715
950	22.329	374.173	419.040	56.421	0.447	1.087

(D) Temperature $40^{\circ} \mathrm{C}$
$c=8.82$
pH value 1.0
$\mathrm{a}=0.40$
$K_{L}{ }^{a}=c(H P / V)^{a}(V s)^{b}$
$\mathrm{b}=0.50$

Agitation Speed rpm	Power Input HP/1000 gals.	Superficial Velocity $\mathrm{ft} / \mathrm{hr}$	$\mathrm{K}_{\mathrm{L}} \mathrm{hrr}^{-1}$	$\begin{aligned} & (\mathrm{HP})^{\mathrm{a}} \\ & (\mathrm{Vs})^{\mathrm{b}} \end{aligned}$	P/Po	$\begin{aligned} & \mathrm{Q} / \mathrm{ND} \frac{3}{\mathrm{I}} \\ & \times \quad 10^{2} \end{aligned}$
285	1.024	37.736	50.460	6.145	1.000	0.366
285	0.788	70.965	70.260	7.572	0.769	0.688
285	0.709	150.689	91.500	10.557	0.692	1.464
285	0.709	248.150	104.280	13.530	0.692	2.404
285	0.709	377.008	136.560	16.659	0.692	3.653
380	2.942	37.618	73.080	9.367	1.000	0.274
380	2.207	70.965	121.860	11.444	0.750	0.516
380	1.681	150.689	141.540	14.924	0.571	1.094
380	1.576	246.772	174.540	18.586	0.536	1.788
380	1.576	376.063	227.220	22.919	0.536	2.732
570	11.033	37.480	127.020	15.887	1.000	0.181
570	9.457	71.220	205.980	20.552	0.857	0.345
570	6.147	150.689	260.940	25.102	0.557	0.730
570	5.674	246.083	297.180	31.025	0.514	1.192
570	5.674	246.083	297.180	31.025	0.514	1.192
570	5.359	376.063	330.120	37.443	0.486	1.822
760	25.218	37.343	180.900	22.092	1.000	0.136
760	19.965	70.728	279.000	27.639	0.792	0.257
760	14.711	149.744	363.960	35.511	0.583	0.544
760	13.660	246.772	399.660	44.193	0.542	0.896
760	12.609	376.063	455.460	52.774	0.500	1.368
950	48.598	37.205	231.240	28.689	1.000	0.108
950	39.404	70.728	387.540	36.304	0.850	0.205
950	28.896	150.689	484.980	46.700	0.595	0.438
950	26.269	247.461	544.200	57.527	0.541	0.720
950	24.956	377.953	562.380	69.570	0.514	1.098

Temperature $40^{\circ} \mathrm{C}$
$\mathrm{c}=8.82$
pH value 1.5
$\mathrm{a}=0.40$
$\mathrm{K}_{\mathrm{L}} \mathrm{a}=\mathrm{c}(\mathrm{HP} / \mathrm{V})^{\mathrm{a}}(\mathrm{Vs})^{\mathrm{b}}$

Agitation Speed rpm	Power Input HP/1000 gals.	Superficial Velocity $\mathrm{ft} / \mathrm{hr}$	$\mathrm{K}_{\mathrm{L}} \mathrm{a} \mathrm{hr}{ }^{-1}$	$\begin{aligned} & (\mathrm{HP})^{\mathrm{a}} \\ & (\mathrm{Vs})^{\mathrm{b}} \end{aligned}$	P/Po	$\begin{array}{r} \mathrm{Q} / \mathrm{ND}_{\mathrm{I}}^{3} \\ \times \quad 10^{2} \end{array}$
285	1.024	37.736	44.640	6.145	1.000	0.366
285	0.788	70.965	68.040	7.572	0.769	0.688
285	0.630	151.142	92.580	10.085	0.615	1.464
285	0.630	246.083	110.760	12.852	0.615	2.388
285	0.630	376.063	133.620	15.870	0.615	3.648
380	2.942	37.618	98.220	9.367	1.000	0.273
380	2.312	70.965	124.920	11.660	0.786	0.516
380	1.786	150.217	160.440	15.267	0.607	1.092
380	1.576	248.858	195.780	18.664	0.536	1.812
380	1.576	376.063	238.920	22.919	0.536	2.732
570	11.033	37.618	135.600	15.916	1.000	0.182
570	6.305	149.291	273.600	25.241	0.571	0.724
570	5.674	245.394	309.960	30.982	0.571	1.189
570	5.359	376.063	367.140	37.443	0.486	1.822
760	25.218	37.480	195.780	22.133	1.000	0.137
760	22.066	70.728	313.800	28.771	0.875	0.257
760	14.711	150.689	401.280	35.622	0.583	0.540
760	13.660	247.461	422.460	44.255	0.542	0.899
760	12.609	376.063	416.400	52.774	0.500	1.368
950	47.285	37.480	225.600	28.480	1.000	0.109
950	42.031	70.728	380.760	37.256	0.889	0.205
950	27.583	150.217	496.800	45.766	0.583	0.437
950	26.269	246.083	569.100	57.367	0.556	0.715
950	24.956	376.063	559.200	69.397	0.528	1.093

Temperature $40^{\circ} \mathrm{C}$	$\mathrm{c}=8.82$
pH value 5.7	$\mathrm{a}=0.40$
$\mathrm{~K}_{\mathrm{L}} \mathrm{a}=\mathrm{c}(\mathrm{HP} / \mathrm{V})^{\mathrm{a}}(\mathrm{Vs})^{\mathrm{b}}$	$\mathrm{b}=0.50$

Agitation Speed rpm	Power Input HP/1000 gals.	Superficial Vëlocity $\mathrm{ft} / \mathrm{hr}$	$\mathrm{K}_{\mathrm{L}} \mathrm{a} \mathrm{hr}^{-1}$	$\begin{aligned} & (\mathrm{HP})^{a} \\ & (\mathrm{Vs})^{\mathrm{b}} \end{aligned}$	P/Po	$\begin{aligned} & \mathrm{Q} / \mathrm{ND}_{\mathrm{I}}^{3} \\ & \times 10^{2} \end{aligned}$
285	1.024	37.736	41.640	6.145	1.000	0.366
285	0.788	71.220	66.060	7.586	0.769	0.828
285	0.709	150.689	86.160	10.557	0.692	1.464
285	0.630	247.461	93.000	12.888	0.615	2.398
285	0.630	375.118	121.200	15.850	0.615	3.636
380	2.942	37.618	70.440	9.367	1.000	0.274
380	2.102	69.488	107.520	11.105	0.714	0.505
380	1.576	151.142	141.000	14.564	0.536	1.098
380	1.576	247.461	172.380	18.612	0.536	1.800
380	1.471	376.063	188.340	22.293	0.500	2.732
570	11.821	0.000	1.440	0.000	1.000	0.000
570	11.033	37.618	122.160	15.916	0.933	0.182
570	9.457	69.252	189.780	20.268	0.800	0.336
570	6.305	150.689	222.060	25.358	0.533	0.730
570	5.674	247.461	266.220	31.111	0.480	1.200
570	5.359	361.870	295.320	36.733	0.453	1.752
760	26.269	0.000	3.000	0.000	1.000	0.000
760	25.218	37.618	156.900	22.173	0.960	0.137
760	21.015	70.965	244.500	28.260	0.800	0.258
760	14.711	150.689	297.300	35.622	0.560	0.540
760	13.660	246.772	334.080	44.193	0.520	0.804
760	12.609	377.953	333.540	52.906	0.480	1.368
950	49.912	0.000	4.800	0.000	1.000	0.000
950	42.031	70.965	308.040	37.318	0.842	0.206
950	28.896	150.689	336.000	46.700	0.579	0.438
950	26.269	246.772	363.660	57.447	0.526	0.718
950	23.642	376.063	412.920	67.908	0.474	1.093

SULFITE OXIDATION PROCESS

Temperature $=35^{\circ} \mathrm{C}$ Shaft speed $=950 \mathrm{rpm}$

$\begin{array}{\|l} \text { Superficial } \\ \text { Velocity } \\ \text { ft/hr } \end{array}$	Power Input (HP/1000 ga1s)	Time (min)	Sulfite Conc. (N)	$\begin{gathered} \mathrm{K}_{\mathrm{L}} \mathrm{a} \times 10^{-2} \\ \left(\mathrm{hr}^{-1}\right) \end{gathered}$	Average $\begin{gathered} \left.K_{L} \times \mathrm{K}^{-1}\right) \end{gathered}$
37.74	47.28	0.0	1.324		
		10.0	1.234	12.21	
		20.0	1.116	14.20	
		30.0	1.026	13.54	
		40.0	0.948	12.82	
		50.0	0.882	12.04	
		60.0	0.802	11.82	12.8
70.97	38.09	0.0	0.790		
		10.0	0.656	18.29	
		20.0	0.484	20.80	
		30.0	0.322	21.27	
		40.0	0.168	21.16	20.4
149.29	28.90	0.0	1.256		
		5.0	1.148	29.44	
		10.0	1.040	29.44	
		15.0	0.926	29.89	
		20.0	0.860	26.91	28.9
245.39	26.27	0.0	0.860		
		5.0	0.718	38.78	
		10.0	0.598	35.91	37.3
360.92	24.96	0.0	0.390		
		3.5	0.292	42.04	45.1
		7.0	0.152	48.18	
0.0		0.0	0.190		
		6.0	0.188		
		12.0	0.186		

Temperature $=35^{\circ} \mathrm{C}$
Shaft speed $=570 \mathrm{rpm}$

$\begin{gathered} \text { Superficial } \\ \text { Velocity } \\ \mathrm{ft} / \mathrm{hr} \end{gathered}$	Power Input (HP/1000 gals)	Time (min)	Sulfite Conc. (N)	$\begin{gathered} \mathrm{K}_{\mathrm{L}} \mathrm{a} \times 10^{-2} \\ \left(\mathrm{hr}^{-1}\right) \end{gathered}$	$\begin{gathered} \text { Average } \\ \mathrm{K}_{\mathrm{L}} \mathrm{a} \times 10^{-2} \\ (\mathrm{hr}-1) \end{gathered}$
36.55	10.56	0.0	1.212		
		0.6	1.192	6.07	
		20.0	1.122	6.63	
		40.0	1.048	10.40	6.24
67.14	9.46	0.0	1.046		
		10.0	0.962	10.44	
		20.0	0.910	9.89	10.17
140.46	6.30	0.0	0.910		
		8.0	0.864	6.24	
		15.0	0.806	8.56	7.40
227.38	5.52	0.0	0.806		
		8.0	0.740	13.00	
		15.0	0.668	12.90	12.1
344.83	5.20	0.0	0.668		
		8.0	0.594	12.00	
		15.0	0.526	12.60	12.3
0.0		0.0	0.526		
		15.0	0.516	15.0	

Temperature $=35^{\circ} \mathrm{C}$
Shaft speed $=285 \mathrm{rpm}$

Superficial Velocity $\mathrm{ft} / \mathrm{hr}$	Power Input (HP/1000 gals)	$\begin{aligned} & \text { Time } \\ & (\min) \end{aligned}$	Sulfite Conc. (N)	$\begin{gathered} \mathrm{K}_{\mathrm{L}} \mathrm{a} \times 10^{-2} \\ \left(\mathrm{hr}^{-1}\right) \end{gathered}$	$\begin{gathered} \text { Average } \\ \mathrm{K}_{\mathrm{L}} \mathrm{a} \times 10^{-2} \\ \left(\mathrm{hr}^{-1}\right) \end{gathered}$
38.01	0.71	0.0	1.318		
		10.0	1.298	2.73	
		31.0	1.286	1.43	2.08
71.21	, 0.71	0.0	1.296		
		34.0	1.272	0.90	
		77.0	1.240	0.97	
		96.0	1.216	1.12	1.00
148.36	0.63	0.0	1.216		
		25.0	1.192	1.28	1.23
		50.0	1.172	1.19	
241.23	0.63	0.0	1.172		
		15.0	1.148	2.36	
		52.0	1.084	2.36	
		90.0	1.050	1.86	2.19
351.45	0.63	0.0	1.052		
		25.0	1.020	1.64	
		50.0	0.966	2.32	1.98
0.0		0.0	0.956		
		25.0	0.958		

[^0]: * unsaturated air

