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ABSTRACT 

The mechanical properties of sheep skin i n compression were 

investigated by two methods; a stress s t r a i n method and a c y c l i c stress 

fatigue method. 

It was shown that the skin behaves l i k e a l i n e a r v i s c o e l a s t i c 

material for small loads, however, f o r large loads i t behaves nonlinearly 

and the s t r a i n i s e s s e n t i a l l y a logarithmic function of load. The e f f e c t 

on the skin of treatment with several solutions and enzymes were also 

investigated and characterized s t a t i s t i c a l l y . 

By the c y c l i c stress fatigue method the dependency of sheep 

skin on the previous h i s t o r y , which i s axiomatic for b i o l o g i c a l materials, 

was investigated and i t was shown that the fatigue behaviour of sheep 

skin i s e s s e n t i a l l y a logarithmic function of time. 

Based on the experimental data, a mechanical model for sheep 

skin was proposed and the simulation of the model was c a r r i e d out using an 

analog computer. By comparing the experimental data with the simulation 

r e s u l t s , the proposed model was shwon to represent the experimental-' 

r e s u l t s s a t i s f a c t o r i l y . 
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INTRODUCTION 

There are many problems i n medicine and d e n t i s t r y , the solutions 

of which require a d e t a i l e d knowledge of the mechanical properties of the 

tissues involved. In dentistry there i s an urgent need for a d e t a i l e d 

knowledge of the mechanical properties of the periodontal membrane and 

other r e l a t e d t i s s u e s . This present work was i n i t i a t e d i n cooperation 

with the Faculty of Dentistry to investigate some of the problems i n t h i s 

f i e l d . 

When the term tissue i s used, i t i s a generic name of c e r t a i n 

organs which include s k i n , s k e l e t a l muscle, lungs, veins, a r t e r i e s , tendon 

etc., whose forms are determined by the presence of the collagenous 

connective t i s s u e . In s k i n , where the collagenous connective tissue forms 

the greater part of the organic substance, i t i s evident that shape and 

strength are conditioned mainly by t h i s component. 

When considering the mechanical properties of tissues i n which 

the collagenous connective tissue forms a large part, three components 

must be taken into consideration; collagen f i b r e s , e l a s t i c t i s s u e and 

amorphous ground substances combined with non-collagen proteins. However, 

there i s great variance i n the proportion of these three components 

i n the various organs. For a d e t a i l e d d e s c r i p t i o n of the composition of 

s k i n , the book by Chvapil (7) i s recommended. 

In skin i t i s necessary to consider nonhomogeneity and d i r e c t i o n a l 

anistropy (8, 9). Skin i s considered to be a complex of three dimensional 

meshwork of collagen f i b r e s which demonstrate some measure of p r e f e r e n t i a l 

d i r e c t i o n (10). However, no quantitative proof of t h i s i s a v a i l a b l e . 
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I t i s assumed that for elements with l i n e a r dimensions i n the order of 

millimeters the l o c a l nonhomogeneity w i l l be averaged out and may be 

ignored and the skin may be considered anisotropic i n only two dimensions. 

When one considers a v i s c o e l a s t i c material which possesses 

both e l a s t i c and viscous properties, although the material might flow 

i t also exhibits a c e r t a i n storage of energy. The c l a s s i c a l l i n e a r theory 

of v i s c o e l a s t i c i t y i s s t r i c t l y applicable only to those materials to which 

can be applied Newton's law for the viscous component and HookeS law for 

the e l a s t i c component. On the basis of the l i n e a r theory, many methods 

have been developed to investigate the v i s c o e l a s t i c properties. For 

example, for the s t a t i c measurements, there are stress r e l a x a t i o n methods 

under f i x e d s t r a i n (51), creep deformation with f i x e d stress (50, 51) 

etc., and for the dynamic measurements there are s t r a i n c y c l i c h y s t e r e s i s 

methods (51), c y c l i c stress fatigue method (51) and forced v i b r a t i o n 

method (48, 49), etc. 

The stress s t r a i n r e l a t i o n s h i p i s of fundamental i n t e r e s t . For 

example, when one considers pathological conditions, an understanding of 

the normal and abnormal stress s t r a i n r e l a t i o n s h i p of tissues (6) may serve 

as a t o o l for d i f f e r e n t i a l diagnosis. In hemodynamics, wave propagation 

i n blood vessels, d i s t e n s i b i l i t y of a r t e r i e s and veins and the stress s t r a i n 

r e l a t i o n s h i p of tissues must be measured. 

A considerable amount of experimental data has been published 

by i n v e s t i g a t o r s who have attempted to measure the mechanical properties of 

tissues (1, 2, 3, 4, 5, 16), but a degree of vagueness and uncertainty 

p r e v a i l s . The main d i f f i c u l t i e s l i e i n the customary use of the i n f i n i t e s i m a l 
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theory of e l a s t i c i t y to media which normally exhibit f i n i t e deformations. 

The high degree of n o n l i n e a r i t y i n the stress s t r a i n r e l a t i o n s h i p of 

tissues i s known to most authors (6), but a t h e o r e t i c a l framework i n which 

experimental r e s u l t s can be imbedded i s lacking. The a p p l i c a t i o n of the 

concepts of the l i n e a r theory of e l a s t i c i t y to a highly nonlinear material 

lead to a c e r t a i n inadequacy i n data presentation. 

In recent years more i n t e r e s t has been aroused i n t h i s f i e l d . 

Kenedi and Daly (11) have studied the stress s t r a i n r e l a t i o n s h i p of skin i n ex

tension and have u t i l i z e d a power function to c o r r e l a t e t h e i r data. Ridge 

and Weight (9) have studied the mechanical properties of skin i n extension. 

They stated that the extension process could be divided i n t o three phases 

for which they gave the following load extension r e l a t i o n s h i p ; phase one,, 

an exponential function, phase two a power function and phase three, 

mechanical f a i l u r e . Fung (12) has studied the e l a s t i c i t y of tissue i n 

simple elongation. He found that the t e n s i l e stress was nearly an 

exponential function of the s t r a i n i n the lower stress range. Other authors 

have studied d i f f e r e n t tissues i n extension, for example, s k e l e t a l muscle, 

heart muscle, etc. (13, 14, 15). Similar r e s u l t s have been found for the 

stress s t r a i n r e l a t i o n s h i p of these t i s s u e s . These experimental r e s u l t s 

show that the v a r i a t i o n i n Young's modulus i s very great. Therefore, i t 

i s meaningless to state Young's modulus of a p a r t i c u l a r t i s s u e unless the 

l e v e l of s t r a i n i s also stated. For example, for the mesenteric membrane, 
6 2 

Young's modulus can be anything between zero to 5 x 10 dyne/cm , and 

i t i s obviously necessary to s p e c i f y the point on the curve re f e r r e d to, 

for the number to have any meaning. But on many occasions (4, 5), a single 

numerical Young's modulus i s given without an accompanying statement 
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concerning the l e v e l s of stress and s t r a i n . An excuse f o r th i s s i t u a t i o n 

perhaps i s that the phy s i o l o g i s t has a " t y p i c a l or "average" condition 

of the tissues i n mind and the published modulus refers to such a state. 

But without a sui t a b l e quantitative d e f i n i t i o n of the t y p i c a l conditions 

involved, the vagueness and confusion of such an approach i s obvious. 

As an a l t e r n a t i v e , some.authors (6) published e n t i r e experimental curves. 

The d i f f i c u l t i e s i n t h i s approach are twofold; a cumbersome documentation 

and no simple way to co r r e l a t e the curves with other p h y s i c a l or 

p h y s i o l o g i c a l parameters. 

Some investigators have studied the mechanical properties of 

i n d i v i d u a l t i s s u e components; collagen f i b r e s (20, 21, 22, 23, 24), 

e l a s t i c f i b r e s (27) , and ground substances combined with noncollagen 

proteins (25, 26). They characterized the collagen f i b r e s as having poor 

e l a s t i c i t y but great mechanicalstrength. The e l a s t i c f i b r e s , i n 

combination with collagen and mucopolysaccharides, allow a large range 

con t r o l of r e v e r s i b l e deformability of the soft t i s s u e framework of the 

body (7). Ground substances are considered to be a dec i s i v e factor i n the 

e l a s t i c i t y of c e r t a i n connective t i s s u e structures (7), p a r t i c u l a r l y that 

of c a r t i l a g e . 

However, many people recognized that i t i s d i f f i c u l t to separate 

the mechanical functions of each component i n skin (7). Fessler (28) 

reported that one possible function of hyaluronic acid i n connective t i s s u e 

i s to produce a combined structure of hyaluronic a c i d , water and collagen 

f i b r e s which has a d e f i n i t e resistance to compression, and Ogston (29) 

reported am' i n t e r a c t i o n between polysaccharides and other macromolecules. 
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Beside the i n t e r a c t i o n of mucopolysaccharides with collagens, etc., the 

;a:morphous substance of molecular mucopolysaccharides, covering i n d i v i d u a l 

collagen f i b r e s and having the same properties as gel or l u b r i c a n t , makes 

slippage between the collagen f i b r e s possible (7). Although the collagen 

f i b r e s are generally supposed to be i n s o l u b l e i n organic or inorganic 

solutions and only the enzyme, collagenase,.can digest the collagen f i b r e s , 

Borustein (30) reported that the t r y p s i n and papain, which mainly digest 

peptides, amides and esters of s k i n , also affected collagen by breaking 

c e r t a i n bonds of the collagen molecules. Some authors (31, 32) reported 

that there were acid soluble collagen f i b r e s , which dissolve mainly i n 

a c e t i c acid. Partington and Wood (25) showed that the hyaluronidase, which 

digests mainly the ground substances of s k i n , had no influence upon i t s 

mechanical strength as indicated hy stress s t r a i n curves. This does not 

agree with 'Fessler's suggestion that hyaluronic acid p a r t i c i p a t e s i n the 

s t a b i l i z a t i o n of collagen f i b r e s . However, the d e f i n i t e e f f e c t s of each 

enzyme on the t i s s u e components are complicated and not w e l l known 

(32, 34, 35). 

Lloyd (17, 18, 19) studied the swelling of protein f i b r e s under 

various conditions, I.e. i n organic and inorganic s o l u t i o n s . He found that 

i n solutions which did not induce a contraction i n f i b r e length (such as 

N/1000 HC1, N/10 HC1 + 2k~NaCl, etc) the elongation of the f i b r e s under load 

i s the same as i n water. With solutions (such as ^/100 HC1, IN'JCH^GOOH, 
N 

/20 NaOH, etc.) which induce a contraction i n length, however, t h i s 

contraction i s always associated with an increase i n width and volume. The 

gain i n volume i s brought about by absorption of water due to osmotic forces. 



The f i r s t e f f e c t s of loading such water distended f i b r e s i s to squeeze 

out the osmotically absorbed waters with a resultant gain i n length and 

loss i n width. Elden (45) studied .the hydration of connective t i s s u e . 

He stated that k i n e t i c analysis of tendon swelling i n water revealed that 

a dispersion factor and a cohesive factor were present which were, rel a t e d t 

the v e l o c i t y of swelling and to tendon weight. He concluded that 

f l e x i b i l i t y of tendon i s very, s e n s i t i v e to s o l u t i o n parameters. 

Many inve s t i g a t o r s have t r i e d to develop mathematical models of 

b i o l o g i c a l materials. V. van del Pol (36) proposed a d i f f e r e n t i a l 

equation to describe nonlinear " r e l a x a t i o n o s c i l l a t o r s " . Fitzhugh (39)' 

proposed a more generalized equation for t h e o r e t i c a l membrane models. 

These equations were simulated on an analog computer by Nelson and Becker 

(38) . Some authors t r i e d to develop the mathematical models of the aorta 

(39) and of the tissues of the human eye (40, 41). However, they based 

t h e i r models on the assumption that the materials behave l i k e l i n e a r 

v i s c o e l a s t i c s o l i d s . Generally the d i f f e r e n t i a l equations or models which 

describe the nonlinear v i s c o e l a s t i c behaviour can be developed (46, 47). 

Subject to the correct boundary conditions, these equations w i l l give the 

response of the material to any imposed stress or s t r a i n . However, f o r 

r e a l materials the equations are d i f f i c u l t to solve, even assuming that 

the values of the relevant parameters can be derived from experimental data 

Much q u a l i t a t i v e information can be derived from a study of 

i d e a l i z e d mechanical models or analogies which are designed to duplicate, 

more or less c l o s e l y , the observed behaviour of r e a l materials. Thus, th e i 

behaviour i s more e a s i l y v i s u a l i z e d than that of the material i t s e l f . 
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Models are made up of combinations of Hookean springs and Newtonian 

dash-pots. The springs and dash-pots i n a model represent the e l a s t i c 

and viscous properties of the'material. The basic element i n any 

mechanical model i s a p a r a l l e l combination of spring and dash-pot, known 

as a Voigt element, and a series combination of these two i s known as a 

Maxwell element. These basic elements represent the behaviour of 

i d e a l i z e d materials. Real materials w i l l consist of a more or less 

complicated combination of these basic elements. Recently, Sobtka (43) 

proposed nonlinear Voigt and Maxwell models to simulate simple second order 

e f f e c t s . 

However, mechanical simulation models of b i o l o g i c a l tissues are 

scarce. Alexander (42) has proposed a model f or the mechanical components 

i n muscle. His approach was, however, only q u a l i t a t i v e . P a r f i t t (44) 

has proposed a model f or the periodontal membrane, which consisted of three 

Voigt elements of dash-pot and spring. He attempted to simulate h i s 

bio'ilogical data by th i s model on an analog computer, using eight l i n e a r 

parameters. He also t r i e d s i m i l a r models i n which one or more of the 

parameters had an exponential function. 
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EXPERIMENTAL 

A. General 

The objectives of t h i s study are to measure the nonlinear stress 

s t r a i n h i s t o r y r e l a t i o n s h i p during large compressive deformations i n sheep 

skin and to propose a mechanical model of i t s behaviour. The word " h i s t o r y " 

was added here to s i g n i f y the dependence of the s t r a i n on the previous 

h i s t o r y of the s t r e s s , as i s usually the case for b i o l o g i c a l materials. 

However, i t i s not the purpose of the present work to d e t a i l the b i o l o g i c a l 

data; the scope i s l i m i t e d to the a n a l y t i c a l aspects. This means that i f 

the experimental data can be characterized mathematically by a few parameters, 

then these parameters can be tabulated and used to co r r e l a t e the mechanical 

properties of sheep skin with the chemical and enzymic environments and 

temperature. 

The experimental program was designed to investigate the mechanical 

properties of sheep sk i n i n compression by the following two approaches: 

1) To get the stress s t r a i n curves. 

2) To get the c y l i c stress fatigue curves. 

The experimental apparatus was designed so that the two approaches were 

possible. Most of the previous authors have studied the mechanical' 

properties of tissues i n elongation but not i n compression and have employed 

approach 1. However, the h i s t o r y dependency of sheep s k i n , which i s 

axiomatic for a l l b i o l o g i c a l materials, was not fourild by t h i s method. 

Therefore, approach 2 was also used to test the h i s t o r y dependency. This 

method i s also very convenient for t e s t i n g the model of the mechanical 

behaviours on an analog computer. 



B. Preparation of Sheep Skin 

A large sample of skin from the abdomen of a sheep was obtained 

within a few hours of the sheep's death and the f a t was c a r e f u l l y removed. 

This sample was frozen i n the deep freeze of the Department of Physiology 

at the University of B r i t i s h Columbia. A G i l e t t e safety razor was used 

to remove the wool. The thickness of the skin was on the average about 

0.1 inches. Samples to be used i n an experiment were cut from the frozen 

sample j u s t p r i o r to use. These were usually 3 - 4 centimeters square. 

Since the skin from one area of a sin g l e sheep was used i n a l l experiments, 

a l l test samples were very s i m i l a r with each other except f o r l o c a l 

nonhomogeneities. 

C. Solutions and Enzymes 

The concentration and the kinds of solutions and enzymes used i n 

t h i s experiment to test t h e i r s p e c i f i c e f f e c t s , are shown i n Table 1. 

Tyrode s o l u t i o n i s a modified Lock's s o l u t i o n , i t s composition i s shown i n 

Table 2. Usually samples of the skin were immersed i n ; t h i s s o l u t i o n for 

a s p e c i f i e d t time before t e s t i n g the e f f e c t s of other solutions and enzymes. 

This s o l u t i o n i s s i m i l a r i n nature to the body f l u i d s and i s used to return 

the frozen skin to i t s normal and natural state. 

Solutions of IN.CH^COOH and 0.1N HC1, were used to investigate 

the swelling of proteins so that the r e s u l t s could be compared to those of 

Lloyd (17, 18, 19). 

The following commercial preparation of enzymes produced by 

" N u t r i t i o n a l Biochemicals Corporation", Cleveland, Ohio, were used to test 

the mechanical properties of tissue components. 



10. 

Collagenase; Source, CL hist o l y t i c u m , containing some proteins and 

and peptides. 

Trypsin; Prepared per Kunze et. r e f . J . Gen. Phy s i o l . , 19, 991, 1936 

Papain; Source, papaya. 

Hyaluronidase; Source, Bovine testes, Depolymerized hyaluronic a c i d . 

TABLE 1 

The concentration and the kinds of solutions and enzymes. 

Names 

Tyrode s o l u t i o n 

Acetic acid 

Hydrochloric acid 

Collagenase 

Trypsin 

Papain 

Hyaluronidase 

Concentration i n Water 

1 N 

0.1 N 

0.1 wt.%. 

0.05 wt.%. 

0.2 wt.%. 

300 units per milligram 

TABLE 2 

Composition of the tyrode s o l u t i o n . 

Components Weights i n 10 L i t e r s 

80.0 gm. 

2.0 

2.0 

1.0 

0.5 

NaHC0„ 10.0 

NaCl 

KC1 

CaCl„ i 
MgCl, 

NaH 2P0 4 
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D. Apparatus 

The experimental equipment;, used f o r th i s work i s shown 

schematically i n Figure 1, and a photograph i s shown i n Figure 2. The 

main apparatus was constructed as shown i n Figure 3 and i n the photograph 

Figure 4. This apparatus includes a force transducer, symbol 1, a l i n e a r 

displacement transducer, symbol 2, a heating c o i l , symbol 7, an arm, 

symbol 4, a ves s e l , symbol 6, and an arm support, symbol 3 i n Figure 3 

res p e c t i v e l y . 

The P r i n c i p l e of the force transducer, made by Daytronic 

Corporation model 152A-5, i s as follows; the d e f l e c t i o n of a unique 

diaphragm spring, i n t e g r a l l y machined from a l l o y s t e e l , i s measured by a 

s e n s i t i v e d i f f e r e n t i a l transformer element. I t has a load l i m i t of 51bs. 

and for weights less than Q51hs the spring movement i s i n the order of 
-3 -4 

10 - 10 millimeters and may be considered n e g l i g i b l e . The experiment 

was c a r r i e d out within t h i s range. 

The l i n e a r displacement transducer, made by Crescent Technology 

Corporation type ZT>25, was a electromechanical v a r i a b l e permeance instrument 

i n which the a.c. current was proportional to the probe displacement from 

a n u l l p o s i t i o n . The maximum allowable displacement was 0.25 inches. 

The probe of the l i n e a r displacement transducer was set at the 

midpoint of the support arm. The probe and the upright arm support were 

connected again by a bar, symbol 9 i n Figure 3, which was p a r a l l e l and 

about 5 millimeters below the support arm. These connecting points 

including the arm supporting point, were moveable and made up the four 

v e r t i c e s of a parallelogram. This arrangement made i t possible to keep the 
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probe of the l i n e a r transducer always v e r t i c a l ( p a r a l l e l to the upright 

support) during the movement of the arm. 

The probes, symbol 5 i n Figure 3, which were used i n t h i s 

apparatus are l i s t e d i i n Table 3. Usually, probe (P-3) was used, but the 

other probes were also used to test the stress s t r a i n r e l a t i o n s h i p s . 

TABLE 3 

The s i z e of probes. 
2 

Symbol Diameter (mm.) Area (mm ) 

P - l 10.02 79.06 

P-2 4.94 19.15 

P-3 3.97 12.40 

P-4 1.98 3.08 

The length of the arm, i n which the probe was held,was,about 24 

centimeters from the support. This length was long enough that i t was 

possible to neglect the h o r i z o n t a l displacement of the probe since the 

v e r t i c a l movement of the probe was always less then 0.2 centimeters. 

A r o l l e r bearing was set at the supporting point of the arm to 

reduce the f r i c t i o n of the arm movement. A screw-adjusted counter-weight, 

symbol 8 i n Figure 3, was used to control the i n i t i a l load. 

Usually,• ^.calibrated a n a l y t i c a l balance weights were used f o r 

forces smaller than 100 grams, but s p e c i a l weights of 100 grams, 200 grams, 

and 500 grams, made from bronze were used i n fatigue experiments when large 

forces were necessary. 

Centering marks were drawn above the probe on the support arm so 

that the weights could be set cons i s t e n t l y on a d e f i n i t e p o s i t i o n on the..arm. 
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During an experiment a sample of the sheep skin was placed on 

the s o l i d base i n the vessel of the main apparatus under the test s o l u t i o n 

at a constant temperature and was held down by a s t a i n l e s s s t e e l r i n g 3 cm. 

i n t e r n a l diameter by 4 cm. external diameter, symbol 10 i n Figure 3. The 

compressive movement of the skin and the magnitude of the applied force were 

transmitted both to the l i n e a r transducer and the force transducer respectively. 

The signald from the l i n e a r transducer was amplified by an 

amp l i f i e r , model 85-N-4 made by Crescent Technology Corporation. This 

amp l i f i e r was t r a n s i s t o r i z e d c a r r i e r a m p l i f i e r , maximum output =10vd.c. An 

amplitude s e t t i n g of one hundred was usually used throughout the experiment. 

The output from the am p l i f i e r was transmitted to a s t r i p chart recorder for 

the stress fatigure experiments and to an X Y recorder f or stress s t r a i n 

experiment. The s t r i p chart recorder, a HoneywellFJectronik 19, was used with 

a chart speed of 10 sec/inch and a s e n s i t i v i t y of 50 mv/chart width. 

The s i g n a l from the force transducer was transmitted to the 

transducer e x c i t e r demodulator; model 201B, made by Daytronic Corporation. 

This i s a s o l i d state s i g n a l conditioning instrument which allows the 

adaptation of d i f f e r e n t i a l transformer transducers to s t r i p chart recorders 

and X Y recorders r e q u i r i n g d.c. input s i g n a l s . 

The output of the transducer e x c i t e r demodulator were transmitted 

to an X Y recorder, model 7035A, made by the Hewlett Packard Mosely D i v i s i o n , 

Input ranges of 1 mv - 20 mv/inch were used on the X Y recorder. 

To co n t r o l the temperature of the l i q u i d i n which a test sample 

was immersed, constant temperature water*from a model NB Colora bath was 

c i r c u l a t e d through a copper immersion c o i l i n the l i q u i d . The constant 
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temperature bath was designed' to maintain selected constant temperatures 
c c C i n the range between - 6 0 ° and 180° . A temperature of 37 .2 ° , which i s 

near the body temperature, was maintained throughout the experiments. 

To get the stress s t r a i n curves an a d d i t i o n a l experimental 

instrument was used. Its photograph i s shown i n Figure 5. This was made 

up from a stand, a funnel and a beaker. To load a specimen at a constant 

rate, f i n e sand (Ottawta sand, average mesh 20, s p e c i f i c gravity 1.68) was 

poured into the funnel continuously, the sand dropped i n t o the beaker on the 

support arm continuously to load the specimens: at a constant rate. The 

rate of weight addition was measured 10 times and the average was found to 

be 3.27 i=0.01 ^/sec. i n these experiments. 

E. Procedure 

a) C a l i b r a t i o n . 

The c a l i b r a t i o n of the l i n e a r transducer arid the force transducer 

was c a r r i e d out with a f e e l e r gauge and c a l i b r a t e d weights re s p e c t i v e l y . 

The input versus output curves were found to be s t r a i g h t l i n e s so l i n e a r 

equations were f i t t e d to each curve by the l e a s t square f i t t i n g method. 

The data and the c a l i b r a t i o n r e s u l t s are shown i n Appendix B 

b) Stress c y c l i c fatigue method. 

The following general procedure was c a r r i e d out and probe (P-3) 

was used throughout t h i s set of experiments. The s i g n a l from the l i n e a r 

displacement transducer was recorded by the s t r i p chart recorder. 

i ) The prepared sheep skin sample from the r e f r i g i r a t o r was 

put into the tyrode s o l u t i o n at 3s?. 2 ° ^ for approximately two and 

a h a l f hours to allow the skin to return to i t s natural state. 



FIGURE 5 Photographic View of Additional Apparatus 
For Stress S t r a i n Method 
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i i ) The sample was set on the main apparatus i n the tyrode 

s o l u t i o n and i t s thickness was measured by means of the l i n e a r 

displacement transducer. 

i i i ) Watching the stopwatch, a weight was put on the marked 

p o s i t i o n on the support arm for f i v e seconds and then removed 

for f i v e seconds res p e c t i v e l y f o r about 15 cycles. 

i v ) Procedure ( i i i ) was c a r r i e d out with the following weights 

5, 10, 20, 30, 40, 50, 60, 80, 100, and 200 grams. The p o s i t i o n 

of the probe on the skin was changed and the i n i t i a l thickness was 

measured by means of the l i n e a r transducer at the s t a r t of each 

t e s t . 

v) A f t e r procedure (iv) i n tyrode s o l u t i o n , the skin was immersed 

i n one of the solutions f o r the s p e c i f i e d times. 

Solutions (IN CR^COOH, 0.1N HC1); 40 minutes 

Enzymes ; 12 hours. 

v i ) Procedure ( i i ) , ( i i i ) arid (iv) were c a r r i e d out with the skin 

immersed i n the new solutions. 

v i i ) A new sample of sheep skin on which the tyrode blank was 

run was used for each s o l u t i o n and the p o s i t i o n of the probe" was 

c a r e f u l l y c o n t r o l l e d so as not to compress the same p o s i t i o n on 

which an experiment have already been done. 

2. Stress s t r a i n method 

A s i m i l a r procedure as described i n section (b) was used except for 

the loading procedure ( i i i ) and ( i v ) . They were changed as follows. Probe 

(P-3) was mainly used but other probes ( P - l , P-2, P-4) were also tested. 
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Signals from both the displacement transducer and the force transducer 

were recorded on the X Y recorder. 

i i i ) Using the a d d i t i o n a l equipment shown i n Figure 5, the 

sand was added continuously to the funnel and dropped into the 

beaker on the loading arm at the constant rate. 

iv) Procedure ( i i i ) was c a r r i e d out four or f i v e times f o r each 

s o l u t i o n . The p o s i t i o n of the probe was changed each time and 

the thickness was measured by means of the l i n e a r transducer. 

d. Mechanical behaviours of dental wax. 

Similar procedures ( i ) - (iv) i n section (b) were ca r r i e d out for 

dental wax to test the apparatus and also to investigate i t s mechanical 

behaviour. The environment was held constant except for the temperature of 

the water i n which the sample of wax was immersed. Results of both the 

mechanical behaviour and of the simulation of wax model are shown i n 

Appendix A. 
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EXPERIMENTAL RESULTS AND DISCUSSION 

A. General 

A l l the r e s u l t s were obtained i n graphical form by recording the 

displacement with time for the c y c l i c stress fatigue method and the 

displacement and load f or the s t r e s s - s t r a i n method. 

Before t a l k i n g about experimental r e s u l t s , however, one thing 

which must always be kept i n mind i s that i n b i o l o g i c a l experiments, i t 

i s very d i f f i c u l t to get reproducible data. Rather wide va r i a t i o n s 

i n the load compression curves for sheep skin were found from one piece 

of skin to the next. This fa c t would preclude any precise assessment of 

the e f f e c t of any treatment with a p a r t i c u l a r s o l u t i o n . 

Therefore, s t a t i s t i c a l analysis has been employed to characterize 

the e f f e c t s of any s o l u t i o n . Two methods were used for analysing the 

data: 

1) Stepwise regression method (52, 53) 

2) One way c l a s s i f i c a t i o n method with analysis of variance (54). 

The computing program for the stepwise regression method i s available at the 

University of B r i t i s h Columbia computing center. It i s c a l l e d BMD02R 

stepwise regression (U.C.L.A.). This program was o r i g i n a l l y written at 

the Department of Preventive Medicine, U.C.L.A., and modified for use at 

the U.B.C. computing center. This method does a least squares f i t on any 

set of data and calculates regression c o e f f i c i e n t s by a stepwise method. 

A t y p i c a l input and output of this program i s shown i n Appendix C. 
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The one way c l a s s i f i c a t i o n method i s a way to c l a s s i f y a set of 

observations according to one c r i t e r i o n , so that the t o t a l v a r i a t i o n 

between the numbers of the set can be broken up into components which 

can be a t t r i b u t e d to the d i f f e r e n t c r i t e r i a of c l a s s i f i c a t i o n . The F 

d i s t r i b u t i o n i s used to test the s i g n i f i c a n c e l e v e l . For more d e t a i l s 

about t h i s method, see the book by Bennet and F r a n k l i n (54). 

B. Stress S t r a i n Method 

a) Behaviours i n Tyrode Solution 

Skin i s supposed to return to i t s natural state when soaked 

i n tyrode s o l u t i o n (P.H. = 8.6). Therefore, the analysis of the skin's 

properties i n tyrode s o l u t i o n i s most important and fundamental. Ty p i c a l 
o 

load compression curves of a sample at 37.2 C with s i m i l a r thicknesses 

at various points are shown i n Figure 6. One can see a rather wide 

v a r i a t i o n i n load compression curves, allowing for the f a c t that the 

thickness of skin i n each experiment i s s l i g h t l y d i f f e r e n t . 

However, there were some i n t e r e s t i n g points which were common 

for a l l of the curves. One point was that within the accuracy of 

experimental curves, a s t r a i g h t l i n e region i s found to a load of about 

lOg. Hence the skin approximates a constant Young's modulus i n t h i s region. 

But for weights larger than 10g., the load compression curves 

are no longer s t r a i g h t l i n e s , i . e . , the Young's modulus i s not constant. 

To analyse the behaviours of curves between lOg. and 225g. the stepwise 

regression method has been used. Eighteen points on curves within t h i s 

region have been chosen and the displacement at each point was divided by 

the i n i t i a l thickness of the skin. A f t e r t r i a l s on the computer, using 

various functions, the following general equation was found to f i t the 
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set of points best within t h i s region: 

y = A l / l o = a + b i n x (1) 

where: y: the s t r a i n i n compression 

A l : the displacement 

16: i n i t i a l thickness 

x: weight (g) 

a,b: constants 

Equation (1) shows that the s t r a i n of the skin i n compression i s 

e s s e n t i a l l y a logarithmic function of the load applied. This r e s u l t i s 

very s i m i l a r to that found by other authors such as Ridge and Weight (9) 

and Fung (12) i n the form of the function r e l a t i n g the s t r a i n and load, 

although t h e i r experiments were c a r r i e d out i n tension. Ridge and Weight 

applied the following functions for load extension curves of s k i n : 

0 - lOOg. E = X + Y log L 

100 - lOOOg. E = C + K! L b 

where: E: extension (inches) 

L: load (g) 

X, Y, C, K, b are constants. 

Fung found that i n simple elongation the t e n s i l e stress was 

nearly an exponential function of the s t r a i n i n the lower s t r a i n range. 

However, both authors did not mention that there was a l i n e a r region i n 

the s t r a i n - l o a d r e l a t i o n s h i p at low loads. 

Regression c o e f f i c i e n t s a and b for the curves as found by the 

stepwise regression method are tabulated i n Table 4. Here RSQ (R square) i s 

a s t a t i s t i c a l term ' t which defines the percentage of the v a r i a t i o n which 

has been explained. Therefore, the higher the value of RSQ, the better i s 



FIGURE 6 Load Compression Curves i n Tyrode Solution 
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the f i t . An i n t e r e s t i n g point from Tableia4 i s that although there are 

some va r i a t i o n s i n the value of a, the value of b i s almost constant and 

the v a r i a t i o n from the mean value ais within 2 percentage:. . This r e s u l t 

shows i n some sense not only the l i m i t of the experimental accuracy but 

also shows that i t i s possible to characterize some e f f e c t s of treatment 

i n a s o l u t i o n by the slope 'b'. This approach i s the same as that used 

by Partington and Wood (26), who investigated the mechanical properties of 

the non-collagen components i n tendon f i b r e s . They said/'Since the slopes 

of the successive load extension curves up to a c e r t a i n s t r a i n were 

reproducible, i t was considered l i k e l y that the e f f e c t of enzymes might be 

assayed by interposing an enzymic treatment between the determination of 

two successive curves, then any change of slope could be at t r i b u t e d to the 

e f f e c t of the enzyme. 

TABLE 4 

Regression c o e f f i c i e n t s i n tyrode s o l u t i o n . 

a b standard error rRSQ 

1 0.303 -0.157 . 0.002 99.74 

2 0.256 -0.160 0.00186 99,79 

3 0.282 -0.164 0.0096 99.95 

4 0.223 -0.165 0.00198 99.77 

5 0.249 -0.163 0.00202 99.75 

(The cordinate was taken i n the fourth quadrant) 
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b. Behaviour i n IN.CH3<IOOH and 0.IN.HC1 Solutions. 

The technique used to f i n d the e f f e c t of various solutions were 

to compare the behaviour i n tyrode s o l u t i o n with that i n the second 

so l u t i o n using the same sample to f i n d the regression c o e f f i c i e n t s 

s t a t i s t i c a l l y . The main reason for t e s t i n g the skin behaviour i n these 

two solutions was to investigate protein swelling, which had been 

investigated previously by Lloyd and Marriott (17, 18, 19). 

T y p i c a l load compression curves i n IN.CH^COOH and 0.IN.HC1 

solutions are shown i n Figure 7 and Figure E - l . A constant Young's 

modulus again applied for loads less than lOg. For loads from lOg. 

to 225g., the curves were also f i t t e d by equation (1). Regression 

c o e f f i c i e n t s 'a' and 'b' i n tyrode, IN.CH^OOH and 0.IN.HC1 solutions 

are shown i n Table 5. Experiments were c a r r i e d out four or f i v e times 

i n each s o l u t i o n with the same sample. 

To investigate each solution's e f f e c t , the slope 'b' of the 

regression c o e f f i c i e n t s have been compared, as was suggested i n the 

previous section (a). The one way c l a s s i f i c a t i o n method has been used 

to test whether the set of slopes i n tyrode s o l u t i o n i s d i f f e r e n t from 

that i n a IN.CH^COOH s o l u t i o n or i n a 0.IN.HC1 s o l u t i o n . Example 

ca l c u l a t i o n s for the one way c l a s s i f i c a t i o n method are shown i n Appendix D. 

To test the s i g n i f i c a n c e l e v e l , the 5 percentage l e v e l of the F - d i s t r i b u t i o n 

has been u t i l i z e d . 

This analysis shows that there i s a d e f i n i t e d i f f e r e n c e between 

the slopes 'b' i n tyrode s o l u t i o n and i n IN.CH^COOH so l u t i o n . However, 

i t also shows that there i s no d i f f e r e n c e between the slopes 'b' i n tyrode 

s o l u t i o n and that i n 0.IN.HC1 s o l u t i o n . I t should be noted again that each 



set of tests was carried out on a sing l e sample of skin to reduce the 

differences i n skin condition and composition. 

These r e s u l t s agree generally with those of Lloyd and coworkers, 

who investigated the swelling of protein f i b r e s . Even though quantitative 

information was not given they explained the swelling as follows; 

"In solutions such as CIN^HCl, etc., which do not induce contraction 

i n the f i b r e length but cause an increase i n width, elongation of the 

f i b r e under load i s the same as i n water. Some loss of water occurs 

over and above that squeezed out by the st r e t c h i n g of the f i b r e s . This 

water may have simply d i f f u s e d f r e e l y i n between the f i b r e s . With 

solutions such as IN.CH^COOH, etc., which induce a contraction i n length, 

however, this contraction i s always associated with an increase of width 

and volume. The gain i n volume i s brought about by absorption of water 

due to the osmotic force". 

From these considerations and the experimental r e s u l t s , i t was 

confirmed that the manner i n which skin swells i n IN.CH^COOH s o l u t i o n and 

i n 0.IN.HC1 s o l u t i o n i s d i f f e r e n t . However, i t i s out of the scope of 

the present work to d e t a i l the b i o l o g i c a l data, f o r example, how each skin 

component changes a f t e r swelling etc. This study i s l i m i t e d to the 

mechanical properties caused by the swelling. 
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TABLE 5 

REGRESSION COEFFICIENTS IN CH3COOH AND IN HC1 

Solution a b Standard 
Errors R.S.9>, 

1 Tyrode 0.158 -0.134 0.0037 98.79 
2 I I 0.018 -0.147 0.0058 97.55 
3 I I 0.078 SO.131 0.0051 97.65 
4 I I 0.127 -0.145 0.0041 98.76 
5 IN CH3COOH 0.256 -0.166 0.0015 99.87 
6 I I 0.301 -0.172 0.0034 99.39 
7 I I 

> 0.223 -0.179 0.0035 99.76 
8 I I 0.204 -0.160 0.0020 98.87 
9 I I 0.227 -0.155 0.0041 99.17 

11 Tyrode 0.137 -0.132 0.0022 99.56 
12 I I 0.150 -0.123 0.0018 99.64 
13 I I 0.173 -0.130 0.0024 99.44 
14 I I 0.123 -0.133 0.0029 99.23 
15 0.IN.HC1 0.205 -0.142 0.0015 99.82 
16 I I 0.082 SO.120 0.0028 99.15 
17 0.052 -0.114 0.0057 96.14 
18 I I 0.199 -0.156 0.0040 98.93 
19 I I 0.170 -0.149 0.0019 99.74 
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c\ Behaviour i n Enzymes. 

The rather wide v a r i a t i o n i n the load compression curves for 

sheep skin also precludes any precise assessment of the e f f e c t of 

enzymic treatment based on a comparison of the behaviour of treated and 

untreated sk i n . Therefore, i t was also considered that any change i n the 

slopes of the curves could be att r i b u t e d to the e f f e c t of the enzymes. 

T y p i c a l load compression curves i n enzymes are shown i n Figure 8 

and Figures E-2 to E-4 i n Appendix E. Figure 8 shows also that there i s 

a l i n e a r region f o r loads less than lOg. For loads from lOg. to 225g., 

Equation (1) was f i t t e d to these curves by the stepwise regression method. 

The regression c o e f f i c i e n t s 'a' and 'b' i n tyrode s o l u t i o n and i n enzymic 

solutions are shown i n Table 6. The comparison of the slopes 'b' i n 

tyrode s o l u t i o n and i n enzymic solutions by the one way c l a s s i f i c a t i o n 

method shows that there are differences between the slopesoof the curves 

i n tyrode s o l u t i o n and i n collagenase, i n tyrode s o l u t i o n and i n papain> 

and i n tyrode s o l u t i o n and i n t r y p s i n at the 5 percentage l e v e l of the F 

d i s t r i b u t i o n . However, there i s no difference between the slopes of the 

curves i n tyrode s o l u t i o n and i n Hyaluronidase. The r e s u l t i n hyaluronidase 

agrees with the r e s u l t s of Partington and Wood (25) , who showed the e f f e c t 

of non=collagenous proteins on the strength of collagen f i b r e s i s o l a t e d 

from a rat t a i l tendon. In t h e i r experimental study they showed that 

subjecting the f i b r e s to pure hyaluronidase had no influence upon the 

mechanical strength of the f i b r e s i n tension. This r e s u l t did not take into 

/ account the p a r t i c i p a t i o n of hyaluronic acid i n the s t a b i l i z a t i o n of 

collggen f i b r e s . However, a quantitative explanation for t h i s e f f e c t rirS 

s t i l l not a v a i l a b l e . 



FIGURE 8 Load Compression Curves i n Collagenase 
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TABLE 6 
REGRESSION COEFFICIENTS IN ENZYMES 

Solution a b Standard 
Error R.S.Q: 

1 Tyrode 0.213 -0.123 0.0012 99.85 
2 it 0.147 -0.120 0.0005 99.99 
3 I I 0.155 -0.119 0.0039 98.5 
4 I I 0.153 -0.132 0.0025 99.41 

5 Collagenase 0.368] -0.163 0.0054 98,29 
6 I I 0.321 -0.154 0.0051 98.85 
7 I I 0.290 -0.154 0.0052 98.2 

8 II 0.343 -0.164 0.0041 99.00 
9 I I 0.346 -0.167 0.0035 99.31 

1 Tyrode 0.243 -0.144 0.0023 99.59 
2 I I 0.244 -0.154 0.0038 99.02 

3 I I 0.276 -0.166 0.0044 98.89 
4 II 0.215 -0.132 0.0017 99.73 

5 Hyaluronidase 0.266 -0.146 0.0032 99.22 
6 II 0. 2f74 -0.147 0.0019 99.73 
7 I I 0.223 -0.131 0.0015 99.8 
8 ii 0.281 -0.155 0.0022 99.66 

9. ii 0.302 -0.158 0.0018 99.79 

1 Tyrode 0.076 -0.110 0.0026 99.14 
2 I I 0.192 -0.130 0.0013 99.84 
3 I I 0.015 -0.111 0.0034 98.54 
4 II 0.153 -0.128 0.0018 99.68 
5 M 0.163 -0.121 0.0015 99.75 
6 Papain 0.290 -0.166 0.0019 99.79 
7 I I 0.254 -0.152 0.0008 99.95 
8 I I 0.270 -0.155 0.0015 99.86 
9 I I 0.294 -0.161 0.0023 99.68 
LO I I 0.242 -0.160 0.0008 99.96 
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TABLE 6 (continued) 

-1 , Standard „ „ ~ Solution a b „ R.S.Ql Error 

1 Tyrode 0.148 -0.132 0.0032 99.07 

2 " 0.143 -0.122 0.0025 99.32 

3 " 0.185 -0.129 0.0022 99.54 

4 " 0.179 -0.139 0.0034 99.06 

5 11 0.143 -0.132 0.0027 99.34 

6 Trypsin 0.227 -0.145 0.0016 99.81 

7 " 0.231 -0.150 0.0010 99.93 

8 " 0.263 -0.155 0.0007 99.97 

9 " 0.254 -0.148 0.0018 99.77 

10 1 1 0.262 -0.145 0.0016 99.81 
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The r e s u l t s with the other enzymes show that collagenase, 

papain and t r y p s i n have attacked or digested, the skin. To investigate 

the e f f e c t of digestion, the following considerations were made. In 

Table 6 the mean value of the slopes for each s o l u t i o n have been evaluated. 

Suppose the mean value of the slopes i n tyrode s o l u t i o n i s Ct, or 

equivalently t a n ^ , and mean value of the slopes i n collagenase is^Q, or 

tan$2> then the angle 'y ' between the two slopes can be calculated by 

the equation 

I t a n v l = tan j & - 0,1 =1 t®0?. ~ t a n ^ 
1 I 1 + t a n # 2 t a n ^ , i + 

•(2) 

The values of j t a n y j h a v e been tabulated i n Table 7 for the 

systems, tyrode-hyaluronidase, tyrode-collagenase, tyrode-trypsin and 

tyrode-papain. The magnitudeSof ^ t a n / j a r e an i n d i c a t i o n of the extent 

of the enzyme attack even though they have no quantitative meaning. 

Therefore, from Table 7, i t i s possible to say that collagenase and papain 

have a greater digestion e f f e c t than does t r y p s i n . 

TABLE 7 

The value of |tan"y[ 

System Mean Value t a n / 

1. Tyrode 
Collagenase 

Ot -0.124 
ft -0.160 

0.0287 

2. Tyrode 
Papain 

a - 0 . 1 2 0 
ft -0.159 

0.0301 

3. Tyrode 
Trypsin 

GU-0.131 
^ -0.148 

0.0038 

4. Tyrode 
Hyaluronidase 

a -0.149 
P -0.147 0.00014 
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I t has already been mentioned that collagenase attacked mainly 

the collagen f i b r e s and papain and t r y p s i n attacked mainly peptides and 

amides. However, b i o l o g i c a l information about skin digestion I s v. not 

a v a i l a b l e , therefore i t i s d i f f i c u l t to characterize each enzyme's 

s p e c i f i c digestive e f f e c t on the skin from t h i s experiment. This w i l l be 

discussed further i n t h i s s section of t h i s t h e s i s . 

d. E f f e c t of temperature. 

Effect.:of temperature on the load compression curve has been 
c c c c investigated using a s i n g l e probe (P-3) at 25° , 30° , 37.2° and 45° . 

However, i t was not possible to f i n d a consistent e f f e c t of temperature 

on the curves. 

e. Stress S t r a i n Relationship. 

In the previous sections the l o a d - s t r a i n r e l a t i o n s h i p has mainly 

been discussed, i . e . , the r e l a t i o n s h i p between X and Y i n Equation (1). 

However, for engineers i t i s more important and general to r e l a t e the 

curves i n a s t r e s s - s t r a i n r e l a t i o n s h i p rather than i n l o a d - s t r a i n 

r e l a t i o n s h i p . 

With t h i s fact i n mind, experiments were c a r r i e d out using d i f f e r e n t 

diameter probes. The same i n i t i a l loads and load ranges were used. Stress 

was calculated as load divided by probe area. The r e s u l t s from t h i s 

experiment are shown i n Figure 9. The stepwise regression analysis using 

a set of eight points on each curve shows that the points were f i t t e d by 

the following equation: 

y = c + d im g. (3) 

where y = s t r a i n 

2̂ = stress 

c,d = are constants 



36. 

The variance explanation term RSQwas 87.8 percentage. 

Equation (3) with constant c = -0.185 and d = 0.08156 has been drawn i n 

Figure 9 as a dotted l i n e . From this figure and the value of RSQ , i t 

seems possible to t a l k about these curves i n terms of stress and s t r a i n . 

Many authors e s p e c i a l l y p h y s i o l o g i s t s presented t h e i r data i n 

a form of a force displacement or a force extension. Their way of 

presenting data i s not general, but often i t i s d i f f i c u l t to calculate 

the stress from b i o l o g i c a l experiments. 

Boninique (56) calculated the stress d i s t r i b u t i o n under a r i g i d 

die and gave the following equation: 

cr= P/27TaV /a 2 - r 2 ~ ~ (4) 

where p = load on the die 

a = radius of the die 

r = distance from center of die to point under consideration 

CT = i n t e n s i t y of stress per unit area. 

The stress i s minimum at the center where r = o and^min P/27Ta 2. 

The stress i s maximum at the boundary of the die where r = a, 0"max = 

i n f i n i t y . He s a i d the i n f i n i t e stress at the boundary w i l l produce 

l o c a l i z e d f a i l u r e of the material i n t h i s region. 

I f t h i s s o l u t i o n i s v a l i d , the simple c a l c u l a t i o n of stress 

(force divided by area) i s no longer v a l i d . Since there was no i n d i c a t i o n 

of l o c a l f a i l u r e due to the i n f i n i t e s t r e s s , t h i s equation predicts at the 

edge, there i s some doubt about the accuracy of equation (4). Therefore, 

for the analysis of present work, the l o a d - s t r a i n r e l a t i o n s h i p was mainly 

used rather than the stress s t r a i n r e l a t i o n s h i p . 



Z Stress ( g/mm 2) 
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tg b » . — s — & r ~ 

FIGURE 9 Stress S t r a i n Relationship 
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C. C y c l i c Stress Fatigue Method. 

These r e s u l t s were obtained by recording on a s t r i p chart 

recorder the displacement with time for an intermittent a p p l i c a t i o n of 

load. Figures 10 and 11 are the r e s u l t s i n tyrode s o l u t i o n fortthe small 
C 

weights 5g. and lOg. using probe (P-3) at 37.2° . Figure 10 shows a 

behaviour s i m i l a r to that for l i n e a r v i s c o e l a s t i c materials when the 

input force i s applied i n square wave form, Figure 11 shows also the same 

behaviour, although some small nonlinear e f f e c t s are observed. Figure 12 

and Figures E-5 to E-10 i n Appendix E are t y p i c a l r e s u l t s measured i n tyrode 

s o l u t i o n for l a r g e r loads by t h i s method. One can recognise i n these 

curves the nonlinear behaviours of skin, i . e . , time dependency, but t h i s w i l l 

be discussed i n more d e t a i l i n the next chapter. 

In a previous section (a), i t was confirmed that the load s t r a i n 

r e l a t i o n s h i p was e s s e n t i a l l y a logarithmic function. The following approach 

was used to test whether t h i s r e s u l t was also v a l i d f or the r e s u l t s 

obtained by t h i s method. The magnitude of the f i r s t response for each 

weight was read from s t r i p chart scale, based on i n i t i a l pen p o s i t i o n , 

and was divided by the i n i t i a l skin thickness. The r e s u l t s of t h i s 

c a l c u l a t i o n are shown i n Figure 13. By a stepwise regression method these 

points were f i t t e d also by a logarithmic function l i k e equation (1) and 

the RS© was found to be 94.6 percentage. The function i s shown i n f F i g u r e 

13 by a s o l i d l i n e . From Figure 13 i t i s possible to say that the s t r a i n 

as measured by c y c l i c stress fatigue method follows a logarithmic function 

of load. 



FIGURE 10 Fatigue Curve i n Tyrode Solution 
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FIGURE 11 Fatigue Curve i n Tyrode S o l u t i o n 
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FIGURE 13 Load Strain Relationship in Fatigue Method 
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T y p i c a l r e s u l t s i n IN.CH^COOH and 0.IN.HC1 solutions are shown i n 

Figure 14 and Figures E - l l to E-14. From these figures i t i s d i f f i c u l t 

to f i n d d i s t i n c t differences i n the behaviour of both solutions i n comparison 

with the behaviour i n tyrode s o l u t i o n except that the displacement i n 

both solutions has become bigger than i n tyrode s o l u t i o n , which was 

caused by the swelling of the skin. 

T y p i c a l r e s u l t s i n enzymic solutions are shown also i n Figure 15 

and Figures E-15 to E-21. I t has been found that the behaviour shown by 

t h i s method of measurement of skin a f t e r treatment with hyaluronidase 

was not d i f f e r e n t from that i n tyrode s o l u t i o n . This agrees with the 

r e s u l t s i n the previous section. However, i t has been shown that there 

were some differences i n the skin behaviour a f t e r treatment with collagenase, 

papain and t r y p s i n . I t was i n t h i s case also d i f f i c u l t to f i n d d i s t i n c t 

differences between these three behaviours and that i n tyrode s o l u t i o n . 

(Some minor differences w i l l be discussed i n the simulation section).?• 

These observations show that i t i s d i f f i c u l t to separate the 

mechanical functions of each chemical component i n t i s s u e . In the book 

edited by Chvapil (7), i t was mentioned that i t was not possible when 

considering t i s s u e function to study, for example, the function of 

mucopolysaccharides of ground substances and collagen f i b r e s separately. 

This means that the components i n tissue or skin affected each other i n a 

complex manner and as Fessler (28) mentioned i n h i s work, there are 

combined mechanical functions produced by the components. 
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] Each enzyme was expected to p r e f e r e n t i a l l y digest one s p e c i f i c 

component of t i s s u e . However, Bornstein (30) reported that t r y p s i n and 

papain also digested the collagen f i b r e s . Frankland and coworkers (31) 

reported there was acid soluble collagen f i b r e s i n rat l i v e r . These 

r e p o r t s i i n d i c a t e that i t i s nearly impossible to investigate the mechanical 

properties of each component i n skin by using enzymes. Furthermore, how 

and what the enzymes attack i n the skin i s not well-known even i n 

enzymology. 



FIGURE 14 Fatigue Curve l n IN.CH^COOH 
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MODELLING AND SIMULATION OF SKIN'S MECHANICAL BEHAVIOUR 

A. Modelling 

In the previous sections i t was shown that i t i s impossible to 

separate the mechanical functions of each component of skin. Therefore, 

new components had to be considered rather than collagen, e l a s t i c f i b r e s 

and ground substances. Also a model had to change from l i n e a r to nonlinear 

for a change from small loads to large loads. 

I f one looks at the r e s u l t s of the c y c l i c stress fatigue measure

ments, i n Figure 16, i t i s possible to f i n d the following three elements; 

ratchet or c o n t r a c t i l e element, e l a s t i c element and v i s c o e l a s t i c element, 

a l l of which are functions of time. The ratchet or c o n t r a c t i l e element 

expresses the degree to which the probe sinks i n t o the skin on each loading. 

The e l a s t i c element means the s t r a i g h t l i n e parts of the response when the 

weight i s suddenly applied or removed. The v i s c o e l a s t i c element means 

the delayed and curved movements of theresponse a f t e r the load i s suddenly 

applied or removed. I t i s now nesessary to consider how these three elements 

are taken into account by the model. 

To in v e s t i g a t e the behaviour of the c o n t r a c t i l e element i n Figure 

16, the chart scales for the point of minimum compression f o r each response, 

points A i n Figure 16, based on i n i t i a l pen p o s i t i o n , were read. These 

points were f i t t e d i n the following equation by the stepwise regression 

method. 

p = c'o + dolmn (5) 
r o o 
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where: p = the chart scale based on i n i t i a l pen p o s i t i o n . 

n = integer number n = 1 n (numbers of cycle of loaded and 

unloaded, i . e . , each cycle takes f i v e seconds so a c t u a l l y 

t h i s means time) 

c n , d n are constants. 

In t h i s case p = 0 when n = 1, therefore c n = 0 

The chart scales f o r the point of maximum compression f o r each 

response, point B i n Figure 16, were also read and f i t t e d by Equation (5) 

with constant c^ and d^. The boundary points of the e l a s t i c element and the 

v i s c o e l a s t i c element, point C i n Figure 16, when the load was suddenly 

applied; were read and f i t t e d by the same equation with constants and 

A^' S i m i l a r l y the boundary points of the e l a s t i c element and the v i s c o 

e l a s t i c element when load was suddenly removed, point D i n Figure 16, were 

read and f i t t e d by Equation (5) with constants c^ and d^. The summary of 

th i s i n v e s t i g a t i o n of s p e c i f i c points follows. The constants i n each equation 

are re l a t e d generally by the following equations: 

i c i i>M>N>l co i • 0 ( 6 ) 

| d o i ^ i d 3 l ^ l d 2 l ^ ! d i I>= 0 ( 7 ) 

(The co-ordinate was taken i n fourth quadrant, therefore each c o e f f i c i e n t has 

a negative value). 

In Equation (7) the equal sign i s v a l i d when the behaviour i s 

l i n e a r . From these observations i t i s possible to say that a l l the elements 

follow Equation (5) and hence are functions of time. 

The model shown i n Figure 17 has been proposed. The constants 

A, B, C and D are logarithmic functions of time according to the following 

equations: 
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FIGURE. 17 A M e c h a n i c a l M o d e l o f Sheep S k i n 
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A = a^ + b^ l i r t -

B = a + b In -t . 
1 1 (8) 

C = a 3 + b 3 In. t . 

D = b. i n . t 4 

a(, bj, a2> D 2 » a 3 ' ^ 3 a n c ^ ^4 a r e constants and parameters for the 

simulation. 

B. Simulation of Skin Behaviour by Analog Computer 

In Figure 17, i f the movement of each element when a load F i s applied 

.Is X^, ^2 and X 3 > the following three equations can be derived: 

F = AX X (9) 

F = CX 2 + BX 2 (10) 

X 3 = D (11) 

where: 

A,B,C and D are functions of time as shown i n Equation (8) and 

X^ means the f i r s t d e r i v a t i v e with respect to time. From Equation (9), (10) 

and (11), an>' analog c i r c u i t has been constructed. The analog computer, 

PACE 231R, i n the Department of E l e c t r i c a l Engineering, was used f o r th i s 

study. 

The c i r c u i t for generating the variables A,, B, C and D i s shown i n 

Figure 18. A function generator was used to generate a logarithmic 

function. Parameters a^,b^, a^, b^, a^, and b^ were set on potentiometers. 

The time scale f o r the function generator was con t r o l l e d by potentiometer 

"0011". 

The c i r c u i t f o r generating the input force F i s shown i n Figure 19. 

In the experiments the input function had been only approximately a square 

.wave. Hence, i t was found that better simulation could be got i f the input 

wave form was trapezoidal rather than square because of damping of the pen 

movement i n s t r i p chart recorder and because t h i s form more nearly 
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FIGURE 18 Constant Generating C i r c u i t 



FIGURE 19 Force Generating C i r c u i t 



FIGURE 20 Main C i r c u i t 
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approximated the experimental loading function. The square wave was 

generated from a sine wave using a comparator. The trapezoidal wave was 

generated from the square wave by using the l o g i c a l u n i t , i . e . , relay c o i l s 

and relay comparators i n the analog computer. The slope of the trapezoidal 

wave was co n t r o l l e d by the potentiometer "Q33" i n Figure 19. The amplitude 

of the wave was con t r o l l e d by the potentiometer "Q42". 

The main c i r c u i t f o r Equation (9), (10) and (11) i s shown i n 

Figure 20. 

A t y p i c a l r e s u l t of the behaviour of the model i s shown i n Figure 

21. In Figure 21, Channel 2 i s the exact square wave, Channel 3 i s the 

trapezoidal wave, Channel 4 i s the movement of the e l a s t i c element, Channel 

6, i s the movement of the ratchet element, Channel 7 i s the movement of 

v i s c o e l a s t i c element and Channel 8 i s the behaviour of t o t a l model of the 

skin. The value of each potentiometer s e t t i n g i s shown i n Appendix F. 

The t o t a l model response can be compared to the acutal response 

of sheep skin i n tyrode s o l u t i o n by comparing Channel 8 to the Figure 22. 

Good agreement can be seen. By reducing the parameters b^, b^* b^ and b^ 

which co n t r o l the degree of n o n l i n e a r i t y , a l i n e a r v i s c o e l a s t i c 

behaviour of s k i n , which was also obtained f o r experimental r e s u l t s , was 

obtained and i s shown i n Figure 23. Other t y p i c a l r e s u l t s are shown i n 

Figure 24 and Figures E-22 to E-24. 

Since each fatigue represents only one experimental r e s u l t of a 

system which can only be represented by a s t a t i s t i c a l weighing of a large 

number of experimental r e s u l t s , no attempt was made to f i n d the model 

parameters f o r a l l the systems studied. However, the testswwhich were made 

on the model indi c a t e d that a l l the types of behaviour found could be 

simulated by t h i s model. 



FIGURE 21-a Simulation of the Model i n Tyrode Solution 
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FIGURE 21-b Simulation of the Model i n Tyrode Solution 



FIGURE 23- Simulation o f the Model i n Tyrode So l u t i o n 





FIGURE 24-a Simulation of the Model i n Tyrode Solution 



FIGURE 24-b Simulation of the Model i n Tyrode S o l u t i on 



FIGURE 25-a Simulation of the Model i n Collagenase 



FIGURE 25-b S i m u l a t i o n o f t h e M o d e l i n C o l l a g e n a s e 



FIGURE 26 S i m u l a t i o n of the Model f o r Ramp Input 
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Observing the same elements which were used i n the simulation 

model, i t was possible to f i n d some enzyme e f f e c t s which had not 

previously been noted. 

(i) I n collagenase, the slope of the v i s c o e l a s t i c element i s steeper 

than that i n tyrode s o l u t i o n and also the movement of the ratchet 

element was larger than that i n tyrode s o l u t i o n . 

( i i ) In papain, the magnitude of the movement of the e l a s t i c element 

became smaller than that i n tyrode s o l u t i o n . 

It i s d i f f i c u l t to f i n d any differences i n t r y p s i n and i n hy a l 

uronidase. Based on the observation ( i ) and ( i i ) , the behaviours i n 

collagenase and papain have been simulated and are shown i n Figure 25 and 

Figure E-25 i n Appendix E. 

I t was found previously that the behaviour of skin i s a logarithmic 

function when the force was applied as a ramp input. The behaviour of skin 

when the force was applied as a ramp function input was also simulated by 

the model and i s shown i n Figure 26. 

In summary from these simulation r e s u l t s , the advantages of th i s 

model are the following. 

( i ) Changing the parameters of constants A,B,C, and D, i t i s possible 

to go from a l i n e a r to a nonlinear behaviour. 

( i i ) By s e t t i n g the value of the seven parameters, i t i s possible to 

simulate any kinds of behaviour of sk i n i n c l u d i n g permanent s t r a i n , 

s t i f f e n i n g e e l a s t i c element etc. 
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CONCLUSIONS 

1. By the stress s t r a i n method and c y c l i c stress fatique method, i t was 

found that for the load greater than approximately 10g., the s t r a i n 

of sheep skin i n compression i s e s s e n t i a l l y a logarithmic function of 

applied load. However, for loads smaller than 10g., the s t r a i n 

approximates a l i n e a r function of load. 

2. It was also confirmed that proteins swell d i f f e r e n t l y i n IN. CH^COOH 

and i n O.IN. HC1. This f a c t had been reported by Lloyd and co-workers 

(18) from tension studies on protein f i b r e s . 

3. Enzymes such as collagenase, t r y p s i n and papain attacked the sheep 

skin and t h e i r e f f e c t s have been observed on load compression curves 

of skin. However, i t was observed that hyaluronidase had no e f f e c t 

upon the load compression curves, which agreed with Partington's 

work (25). 

4. It was expected that by the enzymic treatments the mechanical 

functions of each component could be v i s u a l i z e d , however, i t was 

found d i f f i c u l t to separate the mechanical functions of components. 

It i s evident that t i s s u e components affected each other i n too complex 

a manner to allow t h i s s i m p l i f i c a t i o n . 

5. By the c y c l i c stress fatigue method i t was found that the h i s t o r y 

dependent behaviour of sheep skin i n compression was e s s e n t i a l l y a 

logarithmic function of time. 
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6. A mechanical model has been proposed and simulated on an analog 

computer. I t was confirmed that the s i m u l a t i o n r e s u l t s of the 

model agreed w e l l w i t h the experimental data. 
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RECOMMENDATIONS FOR FURTHER WORK! 

The l i n e a r v i s c o e l a s t i c theory has been w e l l developed by many 

workers, however, the nonlinear v i s c o e l a s t i c theory i s so complicated that, 

i t i s not too w e l l known. Therefore a mechanical model was proposed for 

the analysis of the present work. I t may be i n t e r e s t i n g and possible to 

develop a mathematical model using some analogy of the l i n e a r v i s c o e l a s t i c 

theory. Further work i n t h i s f i e l d i s recommended. 

It would also be i n t e r e s t i n g to test the mechanical properties of 

v i s c o e l a s t i c materials by other methods. For example, a machine, which i s 

c a l l e d a dynamic modulus tester PPM-5R, i s now commercially available from 

H.M. Morgan Co. Inc. With t h i s machine, the dynamic modulus and other 

i n t e r e s t i n g e l a s t i c data can be obtained by measuring the sonic v e l o c i t y i n 

the sample. 

B i o l o g i c a l materials are so complex i n composition that i t i s 

quite d i f f i c u l t to get reproducible data. But, i f possible, i t may be 

i n t e r e s t i n g to c o r r e l a t e the mechanical behaviour with information about 

the type of components remaining a f t e r treatment with d i f f e r e n t s olutions. 

However, for t h i s comparison the d e t a i l e d knowledge of biochemistry, 

enzymology, physiology, anatomy and engineering i s necessary. Therefore, 

cooperation between people who are working i n these f i e l d s i s needed. 
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THE MECHANICAL BEHAVIOUR OF DENTAL WAX 
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A - l General 

The main purpose of t h i s experiment was as a preparatory 

experiment before using sheep sk i n to check whether the apparatus worked 

w e l l . 

The dental wax which was tested i s mainly used as a model of 

periodontal membranes or tissues i n Dentistry. Sheets of wax were obtained 

from the Faculty of Dentistry at the University of B r i t i s h Columbia. Their 

thickness was about 0.096 inches. A sheet of wax was cut into small c i r c l e s 

whose diameter was about 3 centimeters. These sheets of c i r c u l a r wax were 

the test samples. 

A probe whose diameter was about 0.864 millimeters was used 

throughout t h i s experiment. Only the c y c l i c stress fatigue method was used 

for t h i s experiment. The procedure for t h i s method was same as shown i n 

the chapter on "Experimental" section "E-(b)". However, the temperature was 
c c 

changed i n steps from 10° to 40° . The span 50 mv and the chart speed 

10 sec/inch of the s t r i p chart recorder were u t i l i z e d throughout t h i s 

experiment. 

A-2 Experimental Results 

The wax w i l l be dependent more on i t s past h i s t o r y . For example, 

on a microscopic scale actual cystals are not perfect, they may consist of 

m i c r o c r y s t a l l i n e 'domains bounded by good c y r s t a l s . The c y s t a l . 

i r r e g u l a r i t i e s may involve extra or missing layers while the s o l i d surface 

i t s e l f may be very e a s i l y contaminated. Therefore, for a d e t a i l e d study, 

the previous h i s t o r y of the wax has to be considered. 
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However, these sort of considerations are not within the scope 

of t h i s Appendix, which i s l i m i t e d to the presentation of the experimental 

r e s u l t s found during the i n i t i a l equipment t e s t . 

T y p i c a l r e s u l t s of wax behaviours at d i f f e r e n t temperatures as 

measured by the c y c l i c stress fatigue method are shown from Figure A - l 

to Figure A-6. From Figure, A - l , Figure A-2, Figure A-3 arid Figure A-4 at 

a temperature of 10° , i t was found that the wax behaved l i k e a l i n e a r 

v i s c o e l a s t i c material for small loads, but for large loads, greater than 

60 grams, there was a l i m i t i n g s t r a i n which was independent of weight. For 

a load of 500 grams, the probe started sinking through the wax. In Figure 

A-5 and Figure A-6 i t i s shown that at higher temperatures the probe 

started sinking into the wax at lower loads. 

A-3 Model 

Based on the observations reported i n the previous section, the 

following simple wax model shown i n Figure A-7 has been proposed. I t 

consists of a Voigtc element and a limiter.-, However, t h i s model i s only 

v a l i d f o r the behaviour of wax before the probe started sinking. The analog 

c i r c u i t using a diode to control the l i m i t e r i s shown i n Figure A-8. The 

input wave form was trapozoidal and was produced by the c i r c u i t shown i n 

Figure 17. T y p i c a l r e s u l t s are shown i n Figure A-9., to Figure A-12. 

Channel 2 represents the exact square wave, channel 3 represents the input 

force and channel 4 represents the behaviour of the model. From these 

r e s u l t s , the model appears to represent the experimental r e s u l t s w e l l . 
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FIGURE A-3 Fatigue Curve 
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FIGURE A-5 Fa t igue Curve 
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FIGURE A-6 Fa t igue Curve 



FIGURE A-7 A Mechanical Model of Dental Wax 

O 

DIODE 

1 0 0 -

~ OUTPUT 

FIGURE A-8 Analog C i r c u i t for Simulation 



FIGURE A-9 S i m u l a t i o n of the Model 
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CALIBRATION OF THE LINEAR DISPLACEMENT TRANSDUCER 

AND THE FORCE TRANSDUCER 
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X WEIGHT [ g ] 

FIGURE B - l Force Transducer C a l i b r a t i o n 
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L Equat ion F i t t e d For Span IOO mv. 

Z Displacement [inch] 

FIGURE B-2 Linear Displacement Transducer C a l i b r a t i o n 



APPENDIX C 

STEPWISE REGRESSION METHOD. 

EXAMPLE OF THE INPUT AND THE OUTPUT. 



P R O B L M CARD 

PR.06LM 5 A N A ~ 3 

T R N S G E N E R ^ 

TRi\'Ofc'N... 4-17 1 

XAR f A B L E FORN l A 7 CARD 

1 3 F 1 D . 5 ) 

" • D A T A ~ " ~ ' 

YES 

v -| - J 

" 9 
L 

8 

" 6 

0 1 

' " l l 

" c l 

1 2 

j J 

! 0 

9 

SEND 

S U BP R 08 LE.Vj CAR D 

SUBPRO 2. YES YES Y£S 

CONTROL DELETE CARP 

C0js :DEL1112. 

SUBPRO 3 YES YES Y£S ^ 
CO(\iDEL 1 1 1 2 t"1-

IfVlSl-i Input Program for Stepwise Regression Method 



BMD02R - STEPWISE REGRESSION - VERSION OF JULY 27 1965 
UNIVERSITY OF PENNSYLVANIA COMPUTER CENTER 
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PROBLEM CODE SAKAT 
NUMBER OF ORIGINAL VARIABLES 5 
NUMBER OF VARIABLES ADDED 1 
TOTAL NUMBER OF VARIABLES 6 
NUMBER OF SUB-PROBLEMS 4 

NUMBER OF CASES 11 

VARIABLE MEAN STANDARD DEVIATION 
1 106.72727 73.69917 

37.4 2 0.29331 0.11469 
45. 3 0.329_09 0.12195 
30.8 4 0.3395 5 0.12800 
20.8 5 0.31191 0.11520 

6 4.35407 0.93791 

• 

A T y p i c a l Output bfgRegr.ess.ib'n-Met'hod 



SU3-PR0BLM 1 
DEPENDENT V A R I A B L E 2 
MAXIMUM NUMBER OF STEPS 12 
F - L E V E L FOR I N C L U S I O N O.OIOOOO 
F - L E V E L FOR D E L E T I O N 0.005COO 
TOLERANCE L E V E L O.OOIOOO 

STFP NUMBER 1 
V A R I A B L E ENTERED 

M U L T I P L E R 
STD. ERROR OF E S T . 

0. 998'* 
0 . 0 0 6 9 

ANALYSIS. OF VARIANCE 

R E G R E S S I O N 
RESIDUAL 

OF SUM i)F SQUARES 
i 0.131 
9 0.000 

MEAN SQUARE 
0.13 1 
0.000 

F RATIO 
2 7 4 7 . 3 3 8 

VAR I ABLE 

(CONSTANT 
6 

V A R I A B L E S IN EQUATION 

C O E F F I C I E N T STD. ERROR F TO REMOVE 

- 0 . 2 3 8 2 6 ) 
0 . 1 2 2 0 9 0 . 0 0 2 3 3 2 7 4 7 . 3 3 7 9 

VAR IABLE 

4 5 . 
30.B 
20.8 

V A R I A B L E S NOT IN.EQUATION 

P A R T I A L CORR. TOLERANCE 

0 . 4 9 6 5 0 
0 . 7 8 3 6 2 
0.93908 
0 . 8 7 3 6 5 

0 . 1 1 8 8 
0 . 0 0 2 4 
0 . 0 0 3 0 
0 . 0 0 0 7 

F TO ENTER 

2 . 6 1 7 3 
1 2 . 7 2 8 8 
5 9 . 7 2 6 6 
2 5 . 7 9 3 0 

F - L E V E L I N S U F F I C I E N T FOR FURTHER COMPUTATION 

SUMMARY TABLE 

S T E P V A R I A B L E M U L T I P L E INCREASE F VALUE TO ' NUMBER OF INDEPENDENT 
NUMBER ENTERED REMOVED . ,R RSQ . IN RSQ ENTER OR REMOVE V A R I A B L E S J NC L U S E S 

0 . 9 9 8 4 0.9967 0.9967 2 7 4 7 . 3 3 7 9 



f 
L I S T O F R E S I D U A L S 94. 

^ C A S E R E S I D U A L 
> 1 0 . 0 1 4 3 1 

2 - 0 . 0 0 9 7 2 
3 - 0 . 0 0 8 9 2 _ . . . . . . . . 
4 - 0 . 0 0 4 3 4 
5 0 . 0 0 0 1 6 
6 0 . 0 0 0 0 3 
7 0 . 0 0 0 7 9 
8 0 . 0 0 1 5 3 
9 0 . 0 0 4 7 1 

10 0 . 0 0 2 4 1 
11 - 0 . 0 0 0 9 7 

cont'd 
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ONE WAY CLASSIFICATION METHOD 
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General model f o r one way c l a s s i f i c a t i o n i s as follows: 

Analysis of Variance Table 

Source of 
Estimate 

Between 
class 

Within 
class 

T o t a l 

Sum of 
Squares 

S ± = n 2 i(x ± - x ) 2 

Degree of 
Freedom 

p - 1 

S.(i) =7. .(x. . - x . ) 2 N - p 

-s2 
S =S. . (x. . - x) 

13 13 

N - l 

Mean Average 
Square Mean Square 

I /p-1 <x + n 

Sa ( i )/N-P 2 cr 

Where: x = observations which represent n r e p l i c a t e r e s u l t s , 

j = 1 ... n, i n each of p classes i = 1 ... p. 

x. = mean value within the class I 

x = mean value of t o t a l observations. 

The estimate of the basic variance cy , the "within c l a s s " 

estimate i n t h i s case, i s ' f r e q u e n t l y spoken of as the er r o r , or the error 
2 

variance estimate. Under the hypothesis = o, both estimates have an 
2 * 

average value Q- , and the hypothesis can be tested by computing the r a t i o 
of the between classes estimate to the within classes, or error estimate, 

2 

and by concluding C £ > ° a t t n e s i g n i f i c a n t l e v e l a i f th i s r a t i o i s 

greater than F ^ . 
For the present analysis Q i g 

F l ' 7' 0.05 = 5 , 5 9 

05 

F 1, Q , _ c = 5.317 from F d i s t r i b u t i o n . 
-L o U • U J 
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i ) Tyrode and IN.CH^COOH 

Tyrode 

IN.CH3COOH 

To t a l T = 1.38866 N=9 
2 

To t a l N. 
l 

Means T.2/N. l l 
0.55708 4 0.139 0.0776 

0.83158 5 0.166 0.0776 

T /N = 0.214 

Zx 2 . - =0.216 
13 

S.E.. 

Between class 

Within class 

T o t a l 

Analysis of Variance Table 

S. . D.F. Means 

0.00163 1 0.00163 

0.00054 7 0.0000773 

0.00217 8 

F r a t i o 

21.07. 

F l ' 7' 0 05 = 5 , 5 9 F = 21.07 i s greater than Q 05 

Therefore 0£- >6 th i s means there i s a differ e n c e between classes, 
X 

i . e . , there i s a differ e n c e between slopes i n tyrode and i n IN.CH^ COOH. 

i i ) Tyrode and 0.IN.HC1 

To t a l N. Means T.2/N. 
X X 

Tyrode 0.5174 4 0,1294 0.0669 

0.IN.HC1 0.6804 5 0.1361 0.0926 

T = 1.198 N = = 9 T, T. /N. = 0.1595 
1 X 

T 2/N = 0.1594 T x2.. = 0.1609 
^ 13 



ANALYSIS OF VARIANCE TABLE 

S.E. S . 0- D.F. Means F 

Between class 0.0001 1 0.0001 0.5 

Within class 0.0014 7 0.0002 

F = 0.5 < F ^ r % 0 5 - 5.59 

There i s no difference between classes. 

i i i ] Tyrode and Collagenase 
2 

To t a l Ni Means Ti_' /N1 

Tyrode 0.4943 4 0.1236 0.06109 

Collagenase 0.8019 5 0.1604 0.1286 

T = 1.296 N = 9 5.Tj 2/N^ = 0.1897 

T 2/N = 0.1867 ^ ± 2 = °-1899 

ANALYSIS OF VARIANCE TABLE 
S.E. S:Q> D.F. Means F Between c l a s s 

class 0.003 1 0.003 98.46 

Within class 0.00027 7 0.000038 

F = 78.46 > F r ? , o ; b 5 

Therefore t h i s i s a d e f i n i t e difference between classes. 

l y ] Tyrode and Hyaluronidase 
2 

To t a l N:.. Means T i /N-: l l l 

Tyrode 0.5986 4 0.1492 0.089 

Hyaluronidase 0.7369 . 5 0.1474 0.1086 

T = 1.334 N = 9 £T:-2/N:; = 0.1977 
I l 

T 2/N = 0.1977 ^ X : i j 2 = 0.1988 



S.E. 

Between class 

Within Class 

ANALYSIS OF VARIANCE TABLE 

S.£- D.F. Means 

0.00001 1 0.00001 

0.001094 7 0.000156 

F 

0.064 

F - 0.064 < F r ? , o ; q 5 

Therefore there i s no difference between classes. 

v] Tyrode and Papain 

Tyrode 

Papain 

T = 1.393 

Tot a l 

0.6006 

0.7928 

N:; x Means 

0.12012 

0.1585 

T: 2/N; 
x 1 

0.07215 
0.1257 

N = 10 ,.2 I T ; /N; = 0.1978 x x 
T /N = 0.1941 .2 ExJ.J .= 0.1983 

S.E. 

Between Class 

Within class 

ANALYSIS OF VARIANCE TABLE 

S.S- D.F. Means 

0.00369 1 0.00369 

0.000496 8 0.000062 

F 

59.52 

F - 59.52 > F r g , 0 . Q 5 

Therefore there i s a d e f i n i t e d i f f e r e n c e between classes. 

v i ] Tyrode and Trypsin 

Tyrode 

Trypsin 

T = 1.396 

To t a l 

0.6538 

0.7419 

N = 10 

x 

5 

5 

Means 

0.1307 

0.1484 

•LT: /SI = 0.1956 x x 

T /N = 0.1948 Ex.; • =0.1958 

T:;2/N:; x x 

0.0855 

0.1101 



S.E. 

Between class 

Within class 

ANALYSIS OF VARIANCE TABLE 

S. 9* Means 

0.000775 1 0.000775 

0.000221 8 0.0000276 

F 

28.08 

F = 28.08 > F r 8 , 0 i Q 5 

Therefore there i s a d e f i n i t e difference between classes. 

100. 
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FIGURES 



FIGURE E - l Load Compression Curves i n 0.1N.HC1 
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FIGURE E-2 Load Compression Curves i n Papain 





FIGURE E-4 • Fatigue Curves i n Tyrode Solution 



Time ( s e c ) 
0 ' 5 0 -• 9 0 

FIGURE E-5 Fatigue Curves i n Tyrode Solution 
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FIGURE E-6 Fatigue Curves i n Tyrode Solution 



Time (seb) 
0 50 9 0 

FIGURE E-7 Fatigue Curves i n Tyrode Solution 
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FIGURE E-9 Fatigue Curves i n Tyrode Solution 
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FIGURE E-10 Fatigue Curves In Tyrode Solution 





T ime ( s e c ) 

FIGURE 12 Fatigue Curves i n IN.CH COOH 
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FIGURE E-13 Fatigue Curves•in 0.1N.HC1 
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FIGURE E-15 Fatigue Curves i n Collagenase 
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FIGURE E-16 Fatigue Curves i n Hyaluronidase 
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FIGURE E-17 Fatigue Curves i n Hyaluronidase 



FIGURE E-18 Fatigue Curves i n Papain 
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FIGURE E-20 Fatigue Curves i n Trypsin 
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FIGURE E-21 Fatigue Curves i n Trypsin 
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FIGURE E-22-a Simulation of the Model i n Tyrode Solution 



FIGURE E-22-b Simulation of the Model i n Tyrode Solution 



Simulation of the Model i n Tyrode Solution 



ho cr. 
FIGURE E-23-b Simulation of the Model i n Tyrode Solution 
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FIGURE E-24-a Simulation of the Model i n Tyrode Solution 



00 

FIGURE E-24-b Simulation of the Model i n Tyrode Solution 



FIGURE E-25-a Simulation of the Model i n Papain 



FIGURE E-25-b Simulation of the Model i n Papain 
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POTENTIOMETER VALUES FOR SIMULATION 
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Po ten t i omete r ' s 
Name 21 23 24 25 E- 22 E- 23 E- 24 E- 25 

Q03 0 .1 0 .1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 
Q.13 0 .9 0 .9 0. 9 0. 9 0. 9 0 . 9 0. 9 0. 9 
Q04 0 .2 0 .2 0. 2 0. 2 0. 2 0. 2 0. 2 0. 2 
O i l 0 .01 0 .01 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 
Q.15 0 .5 0 .5 0. 4 0. 5 0. 4 0. 4 0. 5 0. 4 
Q05 0 .8 0 .6 0. 9 0. 2 0. 7 0. 8 1, 000 0. 6 
Q09 0 .5 0 .5 0. 4 0. 5 0. 4 0. 4 0. 5 0. 4 
Q.08 0 .8 0 .6 0. 8 0. 8 0. 6 0. 7 0. 9 0. 6 
Q18 0 .45 0 .6 0. 6 0. 5 0. 6 0. 6 0. 6 0. 5 
Q17 0 .4 0 .5 0. 5 0. 6 0. 3 0. 4 . 0. 6 0. 6 
Q19 0 .18 0 .05 0. 14 0. 25 0. 075 0. 12 0. 20 0. 25 
Q33 0 .2 0 .35 0. 15 0. 2 0. 3 0. 25 0. 15 0. 2 
Q.31 0 .1 0 .1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 
Q32 0 .05 0 .05 0. 05 0. 05 0. 05 0. 05 0. 05 0. 05 
Q.44- 0 .1 0 .1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 
Q;42 0 .45 0 .1 0. 4 0. 4 0. 2 0. 3 0. 6 0. 4 


