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ABSTRACT

Numerical solutions of the velocity profiles for
laminar, stratified flow of two immiscible, Newtonian liquids
in a circular pipe were determined for viscosity ratios of
1, 10, 100 and 1000 at wvarious interface positions. These
results were used to calculate the theoretical volumetric
flow rate enhancement factors, power reduction factors and
hold-up ratios, which for laminsr flow depend only upon the
viscosity ratio and the interface position. The maximum
voiumetric flow rate enhancenent factors and maximum power
reduction factors, and the corresponding input volume ratios,
were determined. Dimensionless quantities were used, wmaking
the result's applicable to any pipe diameter, any ligquid
viscosities.and any pressure zradient, providing laminar flow

of both phases prevails.

The theoretical results were compared to the
experimental results of Russell, Hodgson and Fovier for
horizontal cocurrent flow of a mineral oil and water in a
circular pine. .As expected, the two sets of results differed
considerably in the region of turbulent water flow. As
turbulence decreased however, the difference decreased, until
in the laminar region very good agreement between the

theoretical and experimentsl results was obtained.
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INTRODUCTION

The pipeline transportation of heavy crude oil is
difficult because of the high viscosity of the o0il. ILarge
snd closely-spaced pumping stations are required to over-
come the high frictionsl pressure drop asscciated with very
viscous oil. It has been found (1,2,3,4,6) that addition
of water to the o0il decreases the resistance to flow and
for certain propbrtions of water, the same volumetric flow
rate of o0il can be msintained st lower pressure gradients

and lower power requirements.

Clarke (1), in a private communication to Russell

and Cherles (2), renorted results using a heavy viscous
crude oil flowing in a 0.375-inch pilot pipeline st Reynolds
numbers of 10 to 20. The pressure gradient was reduced by
factors of 6 to 12 when 7-13% water was introduced. The
shape of the interfsce was not known but "it was suzggested

that the water wetted the inside of the pipe preferentislly.”

Clark and Ghapiro (3) patented a method,described
by Russell and Churles (2),whereby they injected water and
demulsifying agents into the flowing crude oil. Using oils
of viscosities estimated &t 800 to 1000 c¢p., results were

reported for laminar flow in a 6-inch commercial pipeline



%3 miles long. They observed pressure gradient reduction
factors ranging from 7.8 to 10.5 with the injection of
7-24 % water, and the maximum reduction factor at a water
¥nput of 8-10%. )

Chilton and Handley (4) patented a process in
1958 which was subsequently mentioned in a letter by
Chilton (5). Theyobserved a pressure drop reduction by
adding a film of water at the wall of & pipe carrying
‘extremely highly viscous crude o0il. Over a 50-foot length
of approximately one-inch pipeline there appeared no mixing
of the o0il and water, and the water film remained essentielly

intact over this distance.

Russell, Hodgson, and Govier (6) studied
stratified flow of a refined minersl oil and water in a
28-foot transparent pipeline with a 0.806-inch diameter.
The o0il, which had a viscosity of 18 cp., was observed to
be flowing above the waster in the laminar region. At a
water content of 10%, the pressure gradient was reduced by
a factor of 1.2 at Reynolds numbers of 10 to 400. The
authors also found that hold-up ratioc was a function of the
input volume ratio in the lazmwinar region, and was also a
function of velocity of the liquids in the turbulent

region.

The experimental results discussed above are



summarized in Table I as in Russell and Charles (2).

While the maximum pressure gradient reduction factor for an
0il of viscosity 18 cp. was listed as 1.2, which corresponds
to 10% by volume of water input, examination of the actual
data of Russell, Hodgson and Govier (6,7) showed factors as
high as 1.52, which occurred at approximately 40% water

input.

The existence of an interface between the oil and
the water is substantiated by the findings of Tipman and
Hodgson (8) and Pavlov (9) as discussed by Russell and
Charles(2). The former investigators found that the
viscosity of an oil and water emulsion is almost always
greater than that of the pure oil. Therefore Russell and
Charles concluded that a pressure gradient reduction can

only occur if the water flows as & separate phase.

Two flow models for stratified laminar flow of
two immiscible liquids were investigated theoretically by
Russell and Charles (2). The first model studied was that
of a more viscous liquid, A, flowing above a less viscous
liquid, B, between infinite parallel plates. Equations
relating pressure drop to geometry, flow rates and
viscosities were developed. This was done by applying force
balances to the two liquids and assuming that the velocities
of the two are equal at the interface, which results in

expressions for the volumetric flow rates of the more



PREDICTED AND ORSERVED PRESSURE GRADIENT REDUCTION FACTORS

TABLE I

FOR OTII-WATER FLOW (2)

Maximum predicted Maximum
gradient reduction observed
0il 0il factor pressure
. . . . gradient
Reference Oil Type g?gxégy, v152381ty, reduction
Concentric| Parallel factor
flow prlates
]
Clarke(1l) Crude 7.0 800-1000 400-500 3-4 12
* %
Clark and Shapiro (3) Crude 13.4 800-1000 400-500 Z_4 10.5
Russell et 2l (6) Refined 38 18 9 2.2 1.2

*

observations were

* %

mede.

Estimated viscosity of McMurray oil-sand oil at 70°C., the temperature at which the

Estimated from a general knowledge of the viscosity of heasvy crude oils at normal
pipeline temperatures.




viscous liguid,. QA’ and the less viscous liquid, QB‘ The
minimum frictional pressure gradient was found by
differentiating the expression for QA/(f%%) with respect

to the interfacial position, and equating the result to
zero. Optimum positions of the interfasce for the greatest:
reduction in the pressure gradient were determined for
viscosity'ratios gredter than one. As reported in Table I,
the maxiﬁum'pressure gradient reduction factor is 4 for an
0il of viscosity 1000 cp. and 2.2 for an oil of viscosity

18 cp., flowing with water between parallel plates. It was
also shown that the minimum power requirement could be
computed by differentiating the expression for é&% (QA + QB)
with respect to interfacial position and equating the result

to zero.

The second model studied was that of concentric
flow of two immiscible liquids in a8 circular pipe. The less
viscous liquid flowed next to the pipe wall as an annulus,
with the more viscous liquid flowing inside of ;t. Force
balances were again employed to obtain expressions for the
volumetric flow rates of the two liquids. By differentiating
the expression for QA/(fii) with respect to the interfacial
position and equating the result to zero, an interfacial
position was determined for the maximum pressure gradient
reduction. As before, optimum positions were found for
viscosity ratios greater than one. Expressions were also

obtained for maximum pressure gradient reduction factors,



by comparing the pressure drop for two-phase flow to the
pressure drop if the pive were flowing full of the more
viscous liquid at its same volumetric flow rate. The
pressure gsradient reduction factors for concentric flow

are very much %reater than those obtained for parsllel

plate flow, ss is shown in Table I, For an oil of viscosity
1000 ¢cp., the meximum pressure gradient reduction factor is
500 and for a viscosity of 18 c¢cp., it is 9. Power reduction
factors were determined in 2 menner similar to that of
determining pressuvre gradient reduction factors. The
position of the interface for maximum power reduction factor
was closer to the wall of the pipe than the interface

position for maximum pressure gradient reduction factor.

The results, summsrized in Table I, show thsat
those values derived from the two theoretical models are
quite different from each other and also auite different
from the availaeble field data. Maximum pressure zZradient
reduction factors determined experimentally for the two
crude oils fsall between the values predicted by the two
theoretical models. However, the values of the maximum
factor measured for the refined oil, which wes observed to
be flowing as a strstified layer, fell below thoze predicted
by the theoretical models. Russell and Charles concluded
that for stratified flow in a circulsar pine, the maximum

pressure 3Iradient reduction factor falls below that



predicted for parsllel plate flow. Since the measured
values for the crude oils were 10.5 and 12, which are above
the %-4 predicted for parallel plate flow, they concluded
that in these cases the flow must be intermediate between
concentric and stratified flow. It is thought that such a
conclusion cannot be drawn, beczuse of the absence of the
theoretical solution for stratified flow in a circulsr pipe
and because of the sparseness of the available experimental

data.

The purpose of the present study was to provide
the theoretical sqlution for the case of stratified laminar
flow of two immiscible Newtonian liquids in a circular pipe.
The results cf this,investigation could then be used to
predict pressure gradient snd power reduction factors for
this type of flow ss well as hold-up and optimum input
ratios. Also, the added results could be vsed to either
substantiate or dispute the above conclusion of Ruséell and
Charles. The two liquids involved do not necesserily have
to be 0il and water but can be any two immiscible liquids,
and therefore the model was solved for viscosity ratios,
rather than ;bsolute viscosities, of 1.0, 10, 100 and 1000.
The cases of viscosity ratios of 10, 100 and 1000 were
solved for 8 different interface positions. Dimensionless
flow equations were solved numerically, using relaxation

methods, to obtain velocity profiles for any size of pipe.

Volumetric flow rates were easily determined from the velocity



profiles. F¥rom these data, values of the pressure gradient
reduction factors and power reduction factors were
determined as well as location of the interface for the
maximum factors. The relationship between hold-up ratio,

input volume ratio and viscosity ratio were also shown.

The theoretical results were compared to the
experimental case of stratified flow (6) for a viscosity
ratio of 20,1, with remgards to hold-up ratios, frictional

pressure drop and pressure gradient reduction factors.



COMPUTATIONS

A. Velocity Profiles

a. Theory

The present study considers the stratified,
laminar flow of two immiscible, incompressible, Newtonian
liguids in a8 circular pipe. A schematic diazram of the

flow situation is shown in figure 1 with the coordinate

axis marked.

Figure 1. Schematic Diagram of Flow Model
(1liquid B more dense thsn liquid A)

The basic assumplion is made that the velocify at
the pipe wall is zero. It is further assumed that at the
interface both liguids display the same velocities and

equal but opposite shear stresses with respect to the
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interface. These boundary conditions can be applied to the

Navier-Stokes momentum equations, which describe the flow.

The Navier-Stokes equation for an incompressible

fluid flowing in the x direction is expressed as

2 2 2
Du  u o 9u o .du du L 9P, adu du sy
Dt = Yox * Vay * Wor * 3% T fxT P ox * /’(§;§+5y2+325) (1)

Recause laminar, stratified flow is assumed in a conduit of

ik

constant cross-~sectional area, there is no flow in the y and
z directions and the Navier-Stokes equations vanish for these

two coordinate directions.

The continuity equation for steady-state flow of

an incompressible fluid is
3 P) '
a; + a; - LA (2)

Because there is flow only in the x direction, v = O and

w = 0O and therefore

¥ - o0 (3)

Also since steady-state exists,

Ju '
3 < 0 (4)
and therefore Du = O (5)
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From equation (3) it follows that

2
&3 = 0 (6)
9x
As there are no significant external forces in the x
direction,
£ =0 (7)

The Navier-Stokes momentum equations thus reduce to the
following single equation for the case of steady-state,

laminar flow of an incompressible liquid in the x direction:

2 2
- a_u
X "/L(S;Z *

o
|
[\

3) (8)

o-
Qo
N

Equation (8) applieé to each liquid, using its respective

viscosity.

At the interface, the condition of equal and

opposite shear stresses is expressed as

Equations (8) and (9) restricted by the requirement of no

siip at the wall and ‘at the interface describe completely

the flow conditions investigated.

The absolute quantities of these equations are
transformed to dimensionless quantities, so that the results

are applicable to any pressure gradient, pipe diameter and
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viscosity ratio of the two phases, rather than to specific
pressure gradients, pipe diameters and viscosities. This

is achieved by letting:

u .
u' = == (10)
Up
Re 5 P
where Uy = §7IZ ( - E_E) (11)

The gquantity UA is the average velocity in a pipe flowing
full of liquid A at the same pressure gradient as in the
two-phase flow. The following dimensionless distances are

used:
v o= & z' = £ | « (12)

Substitution of equations (10), (11) and (12) into

equations (8) and (9) converts the Navier-Stokes equation to

2 2
' u Ma
+ = -8'¢ (13)
ay|é aZ'g /u
and the shear force equation to
A Ju' du'
A A R (14)

/AB' éy' B oy!
The finite difference approximetion of equation (13%)

as shown in Mickley, Sherwood and Reed (10), is expressed as

' ' - 2u' + u'
m,n m,n-1 m,n © “m,n+l Ay

S - .
(ay*)? (2')°

u! - 2u + u' u
m+l,n +

(15)
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The relaxation pattern, as shown in figure 2, is
obtained by letting AY' = Az' and substituting subscripts
1,2, and 4 for m,n-1, m+l,n, m,n+l and m-l,n respectively.
These four points are situated on straight lines at right
angles to each other and at equal distances from the central

point O, which is substituted for m,n.
"lli'

Figure 2. Relaxation Pattern

Equation (15) then simplifies to

A
u'1 + u'2 + u'5 + u'4 - 4u'o + 8?5%(‘A'y'>2 = 0 (16)

which is the general numericsl flow equation to be applied
to each liquid. This equation is solved by relsaxation

methods- which are described briefly in Appendix I.



13

The general procedure for obtaining a numericeasl
equation applicable at the interface is found in Allen (11),
and was followed in this study. The finite difference
approximation to equation (14) is
A

Ty htag) - () an

By examining the relaxation pattern at the interface, as in

figure 3 below, it is seen that the velocities u'A and u'

B
1 3
are fictitious because u'A is in liquid B and u'B is in
1 i)
liquid A.
liquid A
_interface _
liquid B

Figure 3. Relaxation Patterns at the Interface

Therefore u'A ahd u'n must be eliminsted by substitution.

1 5
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Rewriting equation (16) as it applies to each
Ma

liquid, A and B, and letting —= = «', a dimensionless

s

viscosity ratio, the following two equations result:

2
+ u' + u' - 4y + 8( A y')s =0 (18)
1 2 Az Ay A

u‘Bl + u'B2 + u'BB + u'P4 - 4u'B + 8/uﬁ(zsy')2= 0 (19)
- i - 0

Multiplying equation (18) by a' and subtracting equation

(17) from it eliminates u', . Subtraction of equation (19)
1
from the resulting equation, eliminates u'B . Since the

velocities at the interface are assumed equal, u'A = ufB s

o o}

u' = u' and u', = u' and therefore the final
A2 82 Ay BQ’

equation at the interface is

0 (20)

0+l u'Bl+u'A2t%ff% u'A3+u'A4-4u'Ao+%géé%(A,y.)E
Equetions (18) and (19) in the mein body of each liquid,
respectively, equation (20) at the interface, and no slip

at the wall fully describe the flow conditions. These
equa£ions were solved by relsxation methods to obtasin point
velocities throughout a relaxation grid for viscosity ratios
of 10,100 and 1000 at 8 different interface positions.
Points of the grid which were outside the curved boundary,on

which all velocities are zero, were assighed negative values

by extrspolating linearly as in figure 4.
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~-boundary
Az -
Ug u' u Aqu'
0 2 2= VYo
Ap
Ap -~ Aq—]

Ficure 4. PBoundary Conditions

In the case of a viscosity ratic of one, the two
liquids flow as one, that is, without any discontinuity in
the rate of shear. Therefore the same velocity profile
exists fof all interface positions. The grid point
velocities were calculated by relaxation methods and from

the FPoiseuille equation,

2 2

u - (Rw ) (- 35 (22)

U = /1 (— (11
2_.2

Theref v o (R=x” (22a)
ereiore u ﬁ R2

The velocity profile obtained from the PoOiseuille eqguation
was used to calculate derivstive results for seventeen

interface positions.
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b. Sanmple Calculations

Sample calculations are shown for a viscosity ratio
of 10 and an interface situated mid-way between the centre
and bottom of the pipe. If y is the vertical height of the
interface from the bottom of the pipe, this position |
corresponds to yi= %. Fach case was solved for three
different grid sizes, progressing from a coarse grid to a

fine grid, unless a reasonable estimate of the veldcities

could be made directly for the finer grid.

Initial grid size = %

Therefore Ay' = -;l_,- and ( ‘Qy')2 = Z]-"_—-

and the resulting flow equations are
for liquid A: u', +u', +u', +u', -4u', +2.00 = O (18a)
Al A, ,A3 A4 AO

at interface: 0.182u'B +u'A +l.82u’A +u'A -4u'A +3,64 = O (20a)
, -1 2 3 4 o

and for liguid B: u'y +u'y +u'y +u'y ~4u'y, +20.0 = 0 (19a)
Bl B2 B5 34 BO

These equations were solved by relaxation nethods,
typical calculations of which are shown in figure 5. Only
half of the pipe cross-section was considered because the
velocity profile is symmetrical about the vertical axis
through the centre of the pipe. This condition bf symmetry
was imposed when performing the relaxation about the

vertical axis, as illustrated in figure 7.
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-0.43
.2\-0.53
LIQUID A
1.88 |
2.00 130 -043
2.50 1.60 - 0.53
['=10
.84
.80
.60
INTERFACE
LIQUID B

Pizure 5. Sample Relaxation Calculations
(small numbers denote residuals)
large numbers denote values of u')
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Intermediate grid size = % .

L .1': ' 2 1
Therefore Ay' =7 and (A yY) = g
and the resulting flow equations are
for liquid A: u', +u'i +u', +u', -4u', +0.50 = O (18b.)-:..
AT A5 A3 Ky A :

at interface: 0.182u'y, +u', +1.82u', +u', -4u', +0.91 = 0 (20b)
Bl A2 A5 A4 AO

and for liquid B: u'y, +u'y +u'y +u'y —4u'y, +5.00 = 0 (19b)
Bl 82 BB 84 Bo

These equations are solved in a similar manner to the
equations for the coarser grid.

Final gridléize = %

Therefore Ay' = % and ( A.’)")2 = g]z';;

and the resulting flow equations are
for ligquid A: u', +u', +u', +u', -4u', +0.12 = 0 (18¢c)
Al A2 A5 A4 AO

at interface: 0.182u'B +u'A +l.82u'A +u'A -4u'A +0.2% = 0 (20¢)
1 2 3 4 0

and for liquid B: u'y +u'y +u'y +u'y ~4u'y +1.25 = 0 (19c¢)
Bl B2 B5 B4 Bo

These equations are solved as previously.
c. Results

Final point velocities are shown for grid sizes
of %, % and % in figures 6,7 and 8 respectively, for the

sdmple case of ¥yi= % and /uf = 10, Horizontal and vertical
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velocity profiles for this case are shown in figures 9 and

10, respectively.

In figure 11, velocity profiles through the central
vertical axis are compared for viscosity ratios of 10, 100

and 1000, with the interface again at yi= %.



LIQUID A
. 188 .30 -0.43

+0.02 +0.0I

2.94 2.19 0 ' =

+0.0! +0.0l ,.L i lo

e _ L 53 . _ /- 7084 |NTERFACE
LIQUID B

_0__/—0.84

Figure 6. Sample of Final Point Velocities for Grid
Size A y' = %

(swall numbers denote residuals)



Fizure 7.

Size Ay' = %'
(small numbers denote residuals)

-0.10 0] =0.10 -0.50
J/\\

0.91 .04 0.9l 0.50 \\-o.w
) +0.0l o -0.0l

LIQUID A
.70 1.85 1.70 1.25 0.51 —-0.5I
(o] o] [o] 0 +0.0!
2.29 2.46 2.29 1.79 0.98 - 0.1
[o] -0.01 (o) +0.0l [o]
2.71 2.90 2.71 2.15 1.23 0} ;£=IO
+0.02 +0.01 +0.02 -0.01 -0.02
3.02 323 3.02 2.36 1.27 -0.14

— M2 \NTERFACE

3.44 384 3.44 205,//—068
+0.0l +0.02 +0.0l y

LIQUID B
-038 |0 __+<038 [-2.05

Sample of Final Point Velocities for Grid

21
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Figure 8. Sample of Final Point Velocities for Grid Size

Ay' = B (small numbers denote residuals)
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B. Volumetric Flow Rates
a., Theory

The volumetric flow rate is equal to the product
of average velocity and cross-sectional area. Volumetric
flow rates for the study are spproximated by assuming that
a nodal point in the grid is the average velocity for a
square area of dimensions A y' by AODz', with the nodal
point at its centre. At the boundery, rectangular-like and
triangular-like areas swaller than ( & y')( D 3z') are left
over by this procedure. These asreas are approximated by
rectangles, and the average velocity computed as the
arithmetric averaze of the velocities at the four corners
of the rectangle. The velocities at the corners are found
by interpolation between nodal velocities and boundary
values. The product of the point veloéities and the
corresponding areas, including the boundary approximations,
is expressed as Eu’A( S y' YD z') for liquid A and as
Eu'B( Ay')(Dz') for liquid B. Transforming these

expressions to absolute values the following relation holds:

Sw(ay(az g
Uy B® C Sarull/ey

Zu,(ay)(az') - (23)

where QAfull is the volumetric flow rate for the pipe flowing

full of liquid A, under the same pressure gradient as for

the two-phase flow., The volumetric flow rate factor,



27

QA/QAfull’ is an expression for comparing two-phase to one-
phase flow at equal pressure gradients. Factors greater
than unity constitute an advantage, becsuse they signify
that at the same pressure gradient, more liquid A can be
transported by two-phase flow than by single-phase flow.
Factors smaller than unity signify an opposite effect. The
equation for evaluating the volumetric flow rate factor is

Q’A _ ZU-'A( A y')( AN Zl) ) (2_5>

U rull T

Previous authors (2) have compared pressure
gradient reduction factors at constant volumetric flow
rates. The followihg[steps show the relationship between
this‘factor and the volumetric flow rate factor of the

present study.

Poiseuille's equation for one-phase laminar flow

can be written as

3P
(3%)ru11 = °1 % full (24)

Similarly, for two-phasse flow, since equation (8) indicates

direct proportionality between pressure gradient and

velocity,

(-35) =cp @y , (25)
It - 350, - -3D),
‘then A _c ' (26)

ru1r 2



28

and 1f ruil T o
then BCE 2P %y
(_—3?;—__— ¢ T (27)
T 3x
(-
=Y
Therefore 5A- at equal pressure gradients = 2X full
YAfull (- =
X
at equal flow rates (28)

Thus the volumetric flow rate enhancement factor and the

pressure gradient reduction factor are the same.

The maximum volumetric flow rate factor is
calculated using the Douglass-Avakian method, as described
in Appendix III, apolied to the seven points, % apart, between
¥i=0 8nd B = %R. A fourth degree polynomial is thus
obtained, relating QA/QAfull to the interface position.
This polynomial is differentiated and the result equated
to zero, to zive the value and location of the maximum

volumetric flow rate factor,
b. Sample Calculations

Sarple calculations [or volumetric flow rates are

based on the case Of’/A' = 10 a2nd an interface position of
yi = %. The final point velocities for this case are shown
in figure 8.

For most interior points, except those near the

boundaries, (Ay') (&oz') = EJ:ZI and
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Zu', = 0.49 + 0.97 + 1.40 + 1.78 + 2.11 + 2.39 + 2.6%

+

+ 2.8% + 3,00 + %.15 + 3,28 + 0.%9 + 0.86 + 1.29
+ 1.66 + 1.98 + 2.26 + 2.49 + 2.68 + 2.84 + 2.98
+ 3,10 + 0.68 + 1.10 + 1.46 + 1.77 + 2.04 + 2.26
+ 2.44 + 2.58 + 2,69 + 2.79 + 0.43 + 0.8% + 1.19
+ 1,49 + 1.74 + 1.94 + 2,10 + 2.22 + 2.30 + 2.3%6
+ 0,50 + 0.85 + 1.14 + 1.37 + 1.55 + 1.68 + 1.76
+ 1.79 + 1.80 + 0.43 + 0.71 + 0.92 + 1.08 + 1.18
+ 1.21 + 1,19 + 1.11 + O.42 + 0.54 + 0.61 + 0.60
+ 0.51 = 105.92

At the vertical axis and interface (Dy')(Az') = T%E and

2,3-A = 0,53 + 1,01 + 1.44 + 1.82 + 2.15 + 2.4% + 2.67

+ 2,88 + %5.05 + 3.20 + 3.34 + 3,40 + 3,21 + 2.88

-

+ 2.42 + 1.81 + 1.01 = 39,25

At the intersection of the vertical axis snd the interface

] 1] — l 1 — r
(Ay' )(Aaz') = PETS and u', = 3.46.

For boundary areas approximated by (ay')(az') = T%E

Su', = 0.12 + 0.27 + 0.22 + 0.2%3 + 0.23 + 0.22 + 0.27

A
+ 0.1% + 0.14 + 0.%8 + 0.3%6 = 2.57

For boundary areas approximated by (ay')(Aaz') = 5%5

Zu'A = 0,14 + 0.15% + 0,1% + 0,10 + 0.11 + 0.12 + 0.15
+ 0.12 = 1.02
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For boundary areas approximated by (ay')(azl) = 3%5

ZU'A = 0008 + 0006 + 0'08 + 0.06 + 0006 + 0009 = 0045

4

Therefore iﬁu'A(ny')(Aszg) lg%;g or 1.655

(59'2§5§'57) or 0.3267

-+

N (3.46+1.,02) or 0.0175

+ 0.43 or 0.00084
= 2.00

This value is only for one half of the pipe; therefore for

the whole pipe

Zu'A(Ay')(Az') = 4,00

QA _ 4.00 = 1,27

Qurull )

and

The volumetric flow rate summation for liquid B is performed
in exactly the same manner. For the whole pipe, jﬂu'B(Axy')

(az') = 1.44,

Sample calculations for locating the maximum
volumetric flow rate factor are illustrated for a viscosity
ratio of 10. The data for this case are presented in Table
ITI. Ietting X = il

S Byren |
following the Douglass - Avakian method, described in

and Y = interface position and

Appendix III, the calculation table below can be set up:
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Y X Z kK kX  k°X KX K%
-Y-0.375
0 1.00  ~0.3%95" -% _%.00 9.00 -27.00  81.00

0.125 1.12 . -0.250 -2 =2.24 4,48 -8.96 17.92
0.250 1.20° -0.125 -1 =1.20 1.20 -1.20 1.20
0.370 1.27 0 0 0 0 0 0

0.500 1.27 0.125 1 1:27 1.27 1.27 1.27
0.625 1.18 0.250 2 2.36 4.72 9.44 18.88
0.750 1.06 0.375 5 5,18 9.54 28.62 85.86

Orgetetermyoamy

0.37 30.21 ~2.17 206.13

. The constants in the polynomial X = d+bZ+c2°+d% 0 4e2" are

then calculated as

| 524(8.10) - 245(3%0.21) + 21(206.1%)

a.= 5% = 1.27

| 97(0.%7 7(2.1 _

b = I%T§%6?1255 - ETérﬁT%%BJ = 0.21%

o . =840(8.10) + 679(30.21) - 67(206.13) _ _5 g
= 3168 (0.125)2 - T oTe
_ =7(0.37) + 2.17; C |

8 = T5T60.155)3 o798

o - 72(8.10) - 67(50°2i) +7(206.13) - 2.59

3168(0125)

The fourth degree polynomial which fits the seven points

best is then

2 _0.998 22 + 2.59 z¥

and differentiating,

d

e

= 0+ 0.214 - 4,12 2 - 2.99 22 + 10.4 Z°

N
oF
e

0.050,

l
fl
o

At Z

[aF
o5

Therefore the maximum volumetric flow rate factor occurs

at Y = (0.050 + 0.375)R = 0.425R and the maximum value of



QA is
Fpeu1l

¥ = 1,27 + 0.011 - 0.005 = 1.28
¢c. Calibtration of Numerical Method

The numerical solution of stratified laminar flow
of two liquids in a circular pipe was examined for accuracy
by two methods. First, it was checked against the analytical
results for single-liquid flow given by Poiseuille's equation.
Secondly, similar numerical equations were derived for
stratified flow of two liduids between parallel plates and
solved by relaxation methods. These results were compared to

the analytical results reported by Russell and Charles (2).

The dimensionless, nurerical equation for single

liquid flow is
2
1 ' ' 1 - ' ' -
u'y +u'y +uty +ouly 4u' o+ 8(ay") 0 (18)
and for a grid size of Ay = g, equation (18) becomes

u'l + u'2 + u'5 + U'4 - 4u'o + 0,12 = O

This equation was solved by relsxation methods to obtain
dimensionless point velocities on the grid. In the first
approximate solution, the residuals were unbalanced, that is,
there was a predominance of either negative or positive
residuals. Comparing this unbalesnced numerical solution

to the anslytical solution of Poiseuille, the average per

cent deviation of the velocities was 1.23%%. The residuals



were then bslanced so that the sum of all the residuals
was approximately zero, and the average per cent deviation

of the velocities in this case was 0.45%,

The volumetric flow rstes were calculated for the
two cases of unbalanced and balanced residuals. The
analytical result is Ju'(ay')(az') =1, whereas for the
unbalanced numericsl solution,Ju'(Aay')(Az') = 3.16 and
for the balanced numericel solution, Zu'(ay')(az') = 3.14,
The deviation for the unbalsnced solution was thus 0.64% and
for the balanced case was undetectable in three significant
fisures. Throughout the investigation, the residuals were
not completely balanced; the above results show that good

agreement can nevertheless be expected.

For a larger grid size of Ay = %, 2u'(ay)(az')

= 3,26, which is a devistion of %.8% from the analytical
result. Therefore a grid size of Ay = %»was chosen,

because of the better agreement with the analyticsl result.

When the interface was a distance % above the

bottom of the pipe, there were no grid points in the region
of flow of liquid B with a ¢rid size of Ay = g. Therefore
8 srid size of Ay = %é was used. Errors in the c¢slculation
of Eu’B(Ay')(Az') using the larger srid, especially at
high viscosity ratios, were elirinated by using the smaller
grid for which point velocities could be obtained in the

main body of liquid B.
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A solution for two-phase flow with the interface
a distance % above the bottom of the pipe and a <rid size of
Ay = % was calculated using three-figure accuracy, then
recalculated using two-figure accuracy. As the difference
in the volumetric flow rate factors was 3.6%, all celculations

were subsequently performed with three~-figure accuracy.

.

The numerical solution was also checked against
an analogous case of stratified laminar flow of two liquids
between infinite parallel plates. DNumerical equations for
this model were derived in a manner similar to those derived

in the present investigstion, and sre

for liguid A: u', + u' - 2u'  + §(£>y')2 =0 (29)

2 oy oL

2
4] u'Bl 7Ry P Sy

—(ay)P-0  (30)

st interface:

and for liquid B: wu'p + u'y - 2u'Bo + j/A'(zky')2=O (31)

These dimensionless equations were solved by relaxation
methods for the case Of/p{' = 1000 and the interface st Yi = S»
where the plates are a distance 2s apart, using a3 zrid size

of Ay = g. .The point velocities were solved snalytically
using the expressions given by Russell and Charles (2). The
two results are shown in figure 12, where it is seen that all

corresponding point velocities match up exactly for three-

figure accuracy.
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ANALYTICAL RESULTS RELAXATION RESULTS
0 0
0.54 0.54

' 0
. <1000
1.03 H# .03
+0.01
1.48 .48
o]
.88 LIQUID A 288
2.23 2.23
. o]
253 253
+0.01
279 2.79
(o]
3.00 3.00
——— = INTERFACE ~——Te - -
167 167
0
284 284
(o]
354 354
0
377 LIQUID B 377
353 353
(o]
282 282
(o]
164 16 4
+1
o) 0

Pigure 12. Comparison of Analytical and Relsxation
Results for Parallel Plate Flow
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These two checks show that the numerical solution
employed in this study agrees extremely well with those
analytical solutions available, and can therefore be
considered very reliable for the three significant figures

reported.
d. Results

Calculated values of the numerical flow rate
factors for different interface positions are presented in
Tables II, III, IV and V for viscosity ratios of 1,10,100

and 1000 respectively.

In figure 13, the volumetric flow rate factor is
plotted against the interface position for the four viscosity
ratios invéstigated. Flow area fractions were calculated
from the interface positions as described in Appendix IT,
and figure 14 is a plot of volumetric flow rate factor versus
flow area fraction of liquid B for all four viscosity ratios;
The maximum volumetric flow rste factors, recorded in Table

VI are plotted in figure 15 agsinst the viscosity ratios.
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Table II

-Volumetric Flow Rates, u' = 1.0

Zu',(ay)(az')  2u'z(ay)(az')
3.16 0
3,14 0.02
3,07 0.09
2.94 0.22
2.75 O.41
2.51 0.65
2.22 0.94
1.91 1.25
1.58 1.58
1.25 1.91
0.94 2.22
0.65 2.51
O.41 2.75
Q.22 2.94
0.09 %.07
0.02 3,14

0 3.16
Table III

Volumetric Flow Rates, /4' = 10

Eu'A(Ay')(A z2') Eu'B(Ay')(Az')‘.
3ell 0
35.53 0.0014
3.76 0.282
%.99 0.724
4,00 1.44
3.72 2.45
3‘33 5~80
2.43 7.78
0.590 . 2001

O .

QA
iAfull

1.00
1.12
1.20
1.27

2 1.27

1.18

1,06
o 0774
T 00188

0



R/8
R/4
3R/8
R/2
SR/8
3R/4

R
3R/2
2R

R/8
R/4
3R/8
R/2
SR/8
3R/4

R
3R/2
2R

Volupmetric F

Table IV

low Rates, ' = 100

Zu',(ay)(az')  Z2u'glay'i(az')

5e 14
5.85

0
0.127
0.801
2.92
7.24

14,6

25.6

6l.2
188

Table V

Volumetric Flow Rates, ' = 1000

Zu'A(Ay')(Az') Zu'B(Ay')(Az'.)

0]
0.559
547

24.0

64,1
135
242
596
1860

38

U ruil

1.00
1.23
1.3%
1.%8
1.57
1026
1,11
0.812
0.196

Urull

-1.00

1025
1.3%6
l.41
1.40
1.28
1.1%
0.828
0.196



Table VI

Maximum‘Volumetric Flow Rate Factors

Viscosity Ratio, au' 1.0 10 100 1,000

i

5 1.00 1.28 138 1.4
Atull

Maximum

Interface Position, ¥i 0 0.425R 0,390R 0.385R

39
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C. Power Requirements
8. Theory

The power requirement per unit length of pipe is
the product of the pressure drop per unit length and the
total volumetric flow rate of both liquids. In the case

of two-phase flow, it is expressed as
Power P - )
TOUET -y = (- $2)(Q, + Q) (32)
and for the pipe flowing full of liquid A, as

‘ OP
Tew11l = & 5% fu11(Rueur1) (33)

“full ( jx>full A ;A
—ts . 4
W = 37 for con;tant Ul g (34)

and from equation (28),

W

full Qy ap\l 11 (3%)
—2== = |- for constant(- =) ;
W Urull X1 14 Q-:E
A
Leee 0 Woyy o G 1 (36)
W = Q Su! ' '
Afull A(ayi(azt)

1 +

_fﬁﬂB(A yio(Aaz')

: W :
and therefore the power reduction factor, f%ll, is easily

calculated from the data of the previous section.,
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To obtain the maximum power reduction factor and
thus the minimum power requirement for two-phase flow, the
Douglass - Avékian method was applied over seven equidistant
points, at increments of %@’ The smaller increments were
chosen because the maximum power reduction factors occur at
interface posifions closer to the bottom of the pipe, and the
piot of power reduction fsctor versus interface pésition‘has
a greater curvature, than in the case of volumetric flow rate

factors,

Since the previous calculations were for‘increhents
of %, the intermediate values for increments of §€~were
obtained by interpolation of the previous data. From the
polynomial relatigg éé——+— and interface position,uthé

Afull
volumetric flow rate factors for the intermediate. points
were determined and by equation (23), Zu',(Aay')(az') was
calculated. -Intermediate Qalues of IEu'B(£>y')(£>z') were
interpolated from a polynomial of the form, X = a+bY+cY2+dY5,.
where X =Zu'-ﬁ(Ay')(Az') and Y was the interface position.
The constants of the polynomial were evaluated from four
pairs of values calculated>§reviously for increments of %.
The Douglass.— Avakian method was not used with the larger
incréments because the values of X for seven equidistant .
values of Y varied greatly in magnitude, and the resulting
relationship, though it was the best fourth degreénéolynomial
for the seven points, was not accurate enough in the'region

of the maximum power reduction factor. The Douglass -.

Avakian method, followed by differentiation, was,.however,

-
l



45

applied to the smaller increments to obtain the value and

location of the maximum power reduction factors.
b. Sample Caslculations

Sample calculations for power reduction factor sre

based on the case of ' = 10 and the interface at ¥y = g.

QA = 1027
P full
Eu'A(Ay')(Az') = 4,00
Zu'B(Ay')(Az') = l.44
and W
full 1
———W— = (1027) I"‘;“m = 0-933
4,00

A sample determination of the maximum power reduction factor
is based on values for a viscosity ratio of 10. Calculations

are shown for obtsining values at the intermediaste point of
2R

y=%€ = 0.1875R. Considering first the liquid A, snd letting

X = 9A and Y interface position such that Y = éﬁ
Afull

corresponds to Z

t

[}

0, the Douglass - Avakian method gave

the following polynomial

2 4

X = 1.27 + 0.2147 - 2.062° - 0.998Z° + 2.59%

At an interface position of Y = %% or 2 = -0.1875

X = 1.2740.214(-0.1875)=2,06(~0.1875)°-0.998(-0,1875)>
+ 2.59(-0.1875)%,
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A

that is )
Afull

= 1,17
and therefore Eu'A(Ay')(Az') =T (1.17) = 3,68

For liquid B, the following results were obtained:

Y Su'glay)(az')
0 0

R/8 | 0.0614

R/4 0.282

3R/8 0.724

If X

Eu'B(Ay')(Az') and Y = interface position, their
relationship cen be given by the polynomial, X = a+bY+cY2+dY5.
Substitution of the above values and solution for the constants

resulted in the polynomial
2 P,
X = 0.012Y + Bong + 5010Y .

o O
L

X = O.Ol2(0.l875)+3.19(0.1875)2+5.10(O.1875)3=O.148

W, .
and therefore full . (117 —Fm = 112
1+ 35385
5.
Other intermediate values were obtained for interface
positions of %@ and %g. The seven equidistant points

between ¥ = O and Y = %g were then used to obtain the value

and location of the maximum power reduction factor by the
Douglass - Avakian method, followed by differentiation, in a

manner identical to that used for determining the maximum
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volumetric flow rate factor.

¢. Results

Results for power reduction factors are presented

in Table VII for viscosity ratios of 10, 100 and 1000,

In figure 16, the power reduction factors are
plotted against the interface position for the three
viscosity ratios. These factors are then replotted against
the fractional flow aresz in figure 17. A graph of the
maximum power requirement factor against the viscosity
ratio is shown in figure 18, based on results recorded in

table VIII.
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Table VII

Power Reduction Factors

W
vy Tru1
* W
M= 10 fﬂ = 100 /A = 1000
o . 1.00 1.00 1.00
R/16 1.05 1.10 1.05
R/8 1.10 1.19 1.10
3R/16 1.12 1.20 0.897
R/4 1.11 1.12 0.597
5R/16 1.12 0.995 0. %66
3R/8 1.08 0.828 0,220
R/2 0.93%3 0.511 0.0897
5R/8 0,710 0.268 0.0570
3R/4 0.495 0.133 0.0164
R 0.184 0.0%25 0.00435
3R/2 0.005%6 0.0006%9 0.0000656
2R 0 0 0
,(* - interpolated position)
Table VIII

Maximunm Power Reduction Factors

Viscosity Retio, ' 10 100 1000
Wenl
Maximum % 1.12 1,22 1.09
(1.1)
Interface Position, ¥y, 0.267R 0.170R 0.0%R ¢

(0.27R) (0.17R) (0.1R)
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D. Hold-up Ratios
a. Theory

The hold-up ratio is defined as the input volume
ratio div;ded by the in situ volume ratio. The input volume
ratio is the volumetric flow réte of liquid A divided by the
volumetric flow rate of liquid B, and in this study it is
evalusted as

zu',(ay')(az')

input volume ratio = (37)
Su'pg(ay')(az')

The in situ volume ratio is the ratio of the volumes of A
and B inside the pipe, and for steady stratified flow of

incompressible ligquids may be expressed as

flow area of liquid A (38)

in situ volume ratio = oo reroF Tiquid ©

Therefore flow area of

su', (ay')(az') . O
hold-up ratio = A liguid 2 (39)
Su'o(ay' ) (az') flow area of
R\ liquid B

A plot of hold-up ratio versus input volume ratio
can be made for different viscosity ratios, to illustrate
the point that the hold-up ratio is independent of liquid
velocities for laminsr flow, as realized by Russell, Hodgson

and Govier (6).
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b. Sample Calculations

Calculations are based on tne case of /;' = 10 and

Ji = 2°

As shown previously, Zu‘A(A y')(Az') = 4,00

and Zu'B(Ay')(Az') = 1l.44
, ' : 4.00

Therefore input volume ratio = T4 = 2.78
Flow area of liquid A = 2.5% R°
Flow area of liquid B = 0.614 R°

i

\ . \ . -
Hence 1q situ volume ratio NS 4.¥¢

and therefore

)
ﬁ

03]
i

hold-up ratio 0.675

¢c. Results

Table IX contains the results for input volume
ratio, in situ volume ratio and hold-up ratio for viscosity
ratios of 1, 10, 100 and 1000. 1In figure 19 hold-up ratio
is plotted against input volume ratio for four viscosity

ratios,

Graphs of volumetric flow rate factor and power
reduction factor versus input volume fraction could now be
made and are shown in figure 20 and 21, respectively. Also,
input volume fractions for the maximum volumetric flow rate
factors and for the maximum power reduction factors could be
calculated, and these values are plotted in figures 15 and 18,

respectively, for vsrious viscosity ratios.
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R
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SR/4

11R/8
3R/2

13R/8
7R/4

15R/8
2R

Input Volume Ratio

1.0

oo .
LS
TV
13.4
_6.71
3.86
2.3%6
1.53
1.00 .
0.654
0.423
0.259
0.149
0.0748
0.0295%
0.0063%7
0

K4

AL
~ 10

0.0294

100

30.3

5.21
-1.49
0.595
0.271

10.13%7

0.0417

0.00327 0.000%%3

Table IX

1000

o0
7.0%
0.781

0.184
0.0685

0.0298
0.0147

0.00436

Calculated Hold-up Data

In Situ
Volume Ratio

38.3
12.8

6.69
4.12
2.74
1.91
1.38
1.00-
0.725
0.524
0.365
0.24%
0.149

1.0

00
4.10

2.66

2.00
1.63

1.41 -

1.24

1.11

1.00

0.902
0.807
0.710
0.61%
0.502

0.0781 0.375
0.0261 0.244

0

0

Hold-up

4

AL
10

1.50 .
1.04
0.834
0.675

- 04555
0459

0.121

Ratio

100

o
0.791
0.407

0.223
O0.144

0.0989
0.0717

0.0417

0.01%5

1000

o

0.184
0.0610

0.0275
0.0166

0.0109
0.00770

0.00436

0.00137

4
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DISCUSSION OF RESULTS

The numerical flow equations were checked by two
methods. Comparison of point velocities caslculated by
relaxation methods with those calculated using Poiseuille's
equation, for single-liquid flow, show an average deviation
of 1.23% for a numerical solution with unbalanced residuals,
and 0.45% for a numerical solution with balanced residuals.
Finite difference equations were derived for stratified
laminar flow between parallel plates, in a manner similar to
those derived in the present study. Velocities determined
numerically using these equations were compared to velocities
calculated. esnalytically (2), for the case of an interface
located»mid—way btetween the two plates and a viscosity ratio
of 1000. Corresponding velocities were identicel. These
comparisons show that the numerical method of solution employed

iB accurate.

The velocity profiles cormputed numerically for the
round pipe were consistent with those calculated anslytically
for psrallel plates. As the viscosity ratio increased, the
point velocities of the less viscous liquid B, as compared to

the point velocities of the more viscous ligquid A, increased

apoproximately to the same degree as the viscosity ratio. This

result can be seen in figure 11.
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For a solution with unbalanced residuals, a

deviation of 0.64% resulted between the volumetric flow raste

calculated by the numerical method snd that calculated by
Poiseuille's equation, for single-liquid flow. When the
residuéls were balenced, the deviation could not Ee detected
within three-figure accuracy. This result again shows good

agreement between the numerical snd analytical solutions.

The volumetric flow‘rate factor‘at any spécific
ihterface position increased with increasing Viscosity ratio,
This tfend was also followed by the maximum volumetric flow
rate factor, as seen in figure 15. TFrom the point of view of
volumetric flow rate enhancement, the viscosity ratio of 1000
is practically equivelent to an infinite viscosity ratio.
This arises from the fact that equations (18),(19) and (20)
produce &8 constsnt dimensionless velocity profile, within

three-figure accuracy, in liquid A for viscosity ratios greater
)

| Qufull ‘
significantly with an increase of the viscosity rstio above

than 1000. It follows that will not increase

1000; that is, its value at ' = 1000 will be within 0.1% of
its asymptotic value at infinite‘/x'. Similar asymptotic
behaviour is displayed by the concentric flow model, where

the factor (/JA + /KB) is safely taken as /UA at viscosity

ratios equal to or exceeding 1000 (2).

The interface position of the maximum volumetric

flow rate factor moved closer to the bottom of the pipe”as
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the viscosity ratio increased in the range of 10 to 1000,

This is seen in Table VI and figure 13, As can be seen in
figures 15 and 20, the input volume fraction of the less
viscous Iiquid increased with increasing viscosity ratio, for
the conditions of msximum volumetric flow rate enhancement.

In the case of the viscosity ratio of 1000, the maximum
enhancement factor is achieved at sn input of 81% of liquid B,

compared to 8.0% B at a viscosity ratio of 10.

For specific viscosity ratios, the maximum volumetric
flow rate factors for stratified flow in & circular pipe were
smaller than those for stratified flow between parallel plates,
and were very much smaller than those obtained for concentric
flow in a circular pipe. This is seen in figure 22 for a

viscosity ratio of 10.

The lsrgest of the three computed msximum power
reduction factors occured for the case of au' = 100, The
maximum factor for‘/A' = 10 was slightly larger than that for
/;' = 1000, This is easily seen in figures 16, 17 and 18.
The case of /x' = 1000 resulted in az lowered power reduction
factor because for this case a large input of liquid B, which
even occurs at small fractional flow areas, more than
counteracts the effect of the lowered pressure gradient st a
given throughput of liguid A. The fact that power reduction
factors were always lower than corresponding pressure

reduction factors can be attributed to the mere presence of B,
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which must be incorporated into the calculation of powér.

The position of the interface for the maximum
power reduction factor moved closer to the bottom of the
pipe as thé viscosity rstio increased in the region of 10
to 1000, This is seen in Table VIII and figure 16. Over the
same range, though, the inpﬁt volume fraction of liquid B
remained esseﬁtially constant, with approximately 6.0 to 8.0%
of liquid B required to produce the maximum power reduction

factor, as seen in figure 18.

In the laminar region, hold-up ratio is a function
of input volume ratio and viscosity ratio only. At a
constant input volume ratio, the hold-up ratio decreased with

increasing viscosity ratios.

An oral presenﬁation on the same topic by Redberger
and Charles (12) came to tﬁe present author's attention sfter
completion of his calculations. Though the two studies are
very similar, a number of differences exist which can be
noted here. Redberger and Charles solved the flow equations
on an electronic computer, which necessitated that the pipe
wall be approximated by horizontal and Verticallstraight lines,
The present calculations were performed using a true circular
boundary, negative values being obtained by extrepolation for
grid voints lying outside the pipe wall. They performed
relaxations at the liquid interface in one-dimension only,

while the present study incorporated a two-dimensionsal
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relaxation method, necessitated by the velocity variation
along the interface. The volumetric flow rate factors
calculated here are slightly larger than those calculated by
Redberger and Charles, but these authors admit that their
results may be conservative. Finally, their calculations
were performed for specific pipe diameters and viscosities

of the two phsses rather than for the general case, as in the

present investigation.
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COMPARISON OF EXPRRIMENTAL AND THEORETICAL RESULTS

A, Bxperimental Data

The theoretical results of this study were compared -
to the experimental results reported by Russell, Hodgson and
Govier (6). The complete tabular data of their
investigations sre deposited with the American Documentation
Institute (7). Their tests were conducted at 77°F in a
horizontal, smooth, transparent pipe, 28.18 feet in length,
with an inside diameter of 0.8057 inches. The two liquids
used were a refined minersl oil with a specific gravity of
0.8%4 and a viscosity of‘lB c.p., and water with a viscosity
of C.894 c.p., giving 8 viscosity ratio of 20.1l. The two-
phase flow was studied at thirteen superficial water
velocities and input oil-water volume ratios within the range
0.1-10. These flow rates corresponded to superficial Reynolds
numbers rangine from 809 to 24,700 for the water flow and

9.58 to 942 for the o0il flow.

Russell et al measured pressure drop in sll of
their runs and hold-up in some. Most of the pressure drop
measurements were made for the whole pipe length, but some

were performed on a half-section of pipe.

Lockhart and Martinelli (1%) have proposed criteria
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for defining the rezions of laminar flow and turbulent flow

of two cocurrent phases. If the superficial Reynolds number
of a phase is less than 1000, the liquid flow is postulated to
be 1aminer, while for superficiél Reynolds numbers greater
than 2000, the flow is taken as turbulent. The exact point of
transition is not known; the criterion of Re = 2000 for
turbulence is considered a conservative one. Values of
Reynolds numbers between 1000 and 2000 can be considered tp

e in the transition region. Of the thirteen superficial
water velocities studied, only the lowest velocity of 0.1l1l6
feet/sec. corresponds to a Reynolds number less than 1000, and
is thus in the laminsr region. The next four hisher water
velocities lie in the fransition region and the remainder are
in the range of turbulent flow. All the o0il flow rates
investigated were in the laminar region, the largest oil
Reynolds number being 942. Therefore, in comparing the

theoretical and experimental dsta, the flow regime must be

considered, since all the present theoretical results are based

on laminar flow of both liquids.

\
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B. Hold-Up
a. Computational Procedure

A plot of hold-up ratio veréus input volume ratio
is shown in figure 19 for viscosity ratios of 1, 10, 100 and
1000. From this graph, a cross-plot of hold-up ratio versus
viscosity ratio, with input volume ratio as the parameter was
drawn., Values for the viscosity ratio of 20.1 were read from
the cross-plot, and the theoretical curve of hold-up ratio
versus input volume ratio was drawn for//x' = 20.1. This curve
was compared to the experimental rezults by directly plotting
on the same graph the corresponding tabular data (7) of

Russell, Hodgson and Govier.
b. Results

The cross-plot of hold-up ratio versus viscosity
ratio, with:input volume ratio as the parameter, is shown in
figure 23. From this graph, the theoretical curve of hold-up
ratio versus input volume ratio for a wviscosity ratio of 20.1
was drewn, as illustrated in fizure 24. The-experimental
results were plotted on the same graph for the'eight
superficial water velocities for which hold-up data were

reported.

c., DIiscussion of Results

The best agreement between the theoretical and

experimenﬁal results occurs for the superficial water velocity
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of 0.116 ft./sec., cofresponding to a Reynolds number of 809,
This is the only water flow rate thst lies within the laminar
region defined by Lockhart and Martinelli (13). Four of the
six points for this velocity lie on or very close fo the
theoretical curve. As the water velocities increase, the
agreement between the theoretical and experimental results
decreases, This is true even of the data for the four
superficial water velocities which fall within the transition
region of Ré = 1000-2000. These points lie increésingly
above the theoretical curve. The data for the three
superficial water velocities of 0.358, 0.718 and 1.79 ft./sec.,
corresponding to Reynolds numbers of 2500, 5000 and 12500
respectively, deviate even more greatly from the theoretical
curve, the largest superficiasl water velocity having the

greatest deviation from the theoretical. All three velocities

are well within the region of turbulent flow.

From the comparison, it is easily seen that there is
close agreement bétween the experimental and theoretical
results in the laminar region. As the flow becomes
increasingly turbulent, however, the experimental hold-up
ratio develops an increasing positive deviation from the
theoretical lasminer curve. The hold-up ratio is then no
lonzer a function of input volume ratio and viscosity ratio

alone.
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C. Pressure Drop
a. Computational Procedure

In order to compare theoretical and experimental
pressure drop data, the theoretical values were transformed
to dimensionel quantities and compared with the experimental

points at specific superficisl water velocities.

A plot of QA/QAfull versus flow area fraction for
/u} = 20.1 was obtained as the first step of the calculstions.
From figure lj, 2 cross-plot was made of QA/QAfull versus
viscosity retio, with the interface position as the parameter.

. - ¢ L

From this cross-plot, values of QA/QAfull for’/; = 20.1 were
easily obteined for gll the interface positions. The
interface was expressed in terms of a flow area fraction,
as in Appendix II, and the required plot of QA/QAfull versus

flow area fraction was then drawn.

The second step in the calculations started with
the assumption of a series of input volume ratios. The
pressure 4drop was calculated for each input volume ratio
separately. From figure 24, which is a plot of hold-up ratio
versus input volume ratio fOr’/A' = 20,1, the hold-up ratio
was found for each assumed input volume ratio. Since the
in-situ volume ratio is equsl to the input volume ratio
divided by the hold-up ratio, it was poésible to compute the

flow area fraction by the relation that
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. - in-situ volume ratio '
flow area fraction = 1 + in-situ volume ratio - (40)

Knowing the flow area fraction for an assumed input volume
ratio, the value of QA/QAfull at &' = 20.1 was easily read
from the graph determined in the first step of the-

calculations.

The third step consisted of éhoosing.a superficial -
veiocixy of liquid B which is equal to 6ne of the superficial
water vélocities reported in the experimental. paper. fhe
volumetric flow rate of the less viscous liquid, QB’ is equal
to the product of its superficial velocity and the total
cross—-sectional esrea of the pipe. The volumetric flow rate

of the more viscous liguid, QA’ is given as

Q) = Qg (input volume ratio) : (41)

d = Q/%% (s2)
an Urual = WA

U full :

From the Poiseuille equation,

AP, 1B a1
(-5 = =4 (43)
sD
All the values on the right hand side of equation (43) were
then known. Therefore (- 5%2) could be calculated for an
agsumed input volume rstic, for a chosen superficiasl velocity.
The calculations were repeated for the several input volume

ratios assumed, and a theoretical curve of pressure drop

versus input volume ratio was thus drawn for the given
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superficisl water velocity. This procedure was repeated for
the other twelve water rates. The experimental data were
converted to the same units as the theoretical, and were

plotted with the theoretical curves.
b. Sample Calculations and Results

The cross-plots of QA/QAfull versus viscosity ratio,
with interface position as the parameter, are shown in figure
h] o - i LI
25. From these plots, vslues of QA/QAfull for ' = 20.1 were
obtained for various interface positions. Having expressed
the interface position in terms of flow srea fraction es in
Table "X, Appendix II, QA/QAfull was plotted against flow area

fraction for ' = 20.1, as illustrated in figure 26.

Assume an input A-B volume ratio = 5.00

From fisure 24, the hold-up ratio = 0.655
Therefore the in-situ volume ratio = 0.085 = 7.6%
and the flow area fraction of A = %42% = 0.884
From figure 26, QA/QAfull = 1.31

Choose superficial water velocity of liquid B = 0.116 ft./sec.

Diameter of pipe = 0.8057 in. = 0.0671 feet.

2
srea of pipe = —28997)" _ o.00354 5.2
Therefore QB = (0.116)(0.00354) = 0.000411 ft.a/sec,,
q, = (0.000411)(5.00) = 0.00206 £t.°/sec.,

, . 0.00206
eand  Ruen11 T TTLET

Now 4 = 0.0121 1lbs./ft.sec.

0.00157 ft.2/sec.

]

and ¢, = 32.174 poundals/lt.-force
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412) _128(0.0121)(0.00157)
) =

| 2
S eI 05 e 1-19 1bs./ft.7/1t.

Therefore (-

This calculation was repeated for several input volume ratios,

so that the theoretical curve could be obtained.

Data for a typical experimental point are as

follows:

Superficial water velocity = 0.116 ft./sec.
Fxperimental input oil-water volume ratio = 4.21

Average pressure dron = 6.90 inches of water

(6.90)(5.202) = 35.9 1lbs./ft.°
Length of test section = 28.18 feet

. and therefore pressure sradient (- fi%) = %%4%3 = 1.27 lbs./ft.g/
: ® g ft.

This tabulation was repeated for all the input oil-water volume
ratios reported, and the experimental results were plotted on

the same graph as the theoreticsl curve.

The theoretical curves and experimental data for the
thirteen water rates were plotted in figures 27, 28, and 29 as

pressure gradient versus input volume fraction.
c. Discussion of Results

Jn figure 27, experimental data are shown for the
superficial water velocity of 0.116 ft./sec., Re = 809. This
is the only water flow rate which definitely lies within the
laminar region, and the experimental and theoretical results

show very close agreement for this case. The data for the
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other four velocities plotted in Tizure 27 lie in the
transitional region, and it i1s seen that acreement between

the experimentsl and theoretical results is not quite as good.

Figures 28 and 29 contain experimental data for flow
rates which all lie in the turbulent resion, and they show
increasing deﬁiation from the theoretical curve as the
velocity increases. At the hishest superficisl water veleocity

of 3.95 ft./sec., the deviation is very sreat.

Therefore the experimental and theoretical results
azree in the laminar resion, but as turbulence increases, the
agreeument decreases. In the turbulent rezion, the experimental
pressure drovs are very much greater than those predicted
theoretically for laminar flow. This disagreement is in the

anticipated direction,
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D. ZEnhancement of Volumetric Flow Rate
a. Computational Procedure

The comparison of experimental and theoretical
volumetric flow rate factors was made on a plot of QA/QAfull
versus input volume fraction of liguid B. The input volume
fraction was chosen because it gives a better representation

of the data than input volume ratio.

Figure 24 is a plot of hold-up ratio versus input

A-P volume ratio for ' = 20.1. From this figure, the in-situ

A-B volume ratio for a corresponding input A-B volume ratio

was determined, knowing that the hold-up ratio is equal to

the input volume ratio divided 5y the in-situ volume ratio.

The flow area fraction of liquid B was calculated from the
in-situ A-B volume ratio, and from figure 26 the corresponding
value of QA/QAfull was obtained. In this way the entire
theoretical curve of QA/QAfull versus input volume fraction

of liquid B was plotted.

The experimental inout oil-water volume ratio was

converted to the input volume fraction of water as follows:

input oil-water volume ratio
l+input oil-water volume ratio

(44)

input volume fraction of water = 1
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Previously it was proved that

(- 25 o) 2
3§;fU11 at constant @, = 5é———— at constant (- :;g (28)
(- oI A Bpegn

Therefore if the experimental pressure reduction factor could
be calculated, it would be equal to the volumetric flow rate
enhancement factor. The ratio of the pressure gradient for
the pipe flowins full of o0il to the measured experimental

pressure gradient for two-phase flow was expressed as

5p _ 220117041

(- 5% ru11 £ D7 (45)
3D = 5P

(- :Ti)exp. (- ?Ti)exp.

The superficial oil velocity was calculated as

v =V (input volume ratio) (46)

oil water
and then all the values on the risght hand side of equation
(45) were known. Thus the experimental pressure gradient

factor or its equivalent, the volumetric flow rate factor,

were calculated for all the experimental data, and these were

plotted on the same graoh as the theoretical curve.
b. Sample Calculations and Results

Consider first the theoreticel cslculations.,
Assume an input A-R volume ratio = 5.00

From figure 24, hold-up ratio = 0.655

Therefore in-situ A-B volume ratioc = 8%%%3 = 7.6%

Pl



8%

0.116

it

and the flow area fraction of liquid B = 1—7:23
From figure 26, QA/Q%full = 1.3%31
Corresponding inout volume fraction of liguid B

.00 _
1 - 2766 = 0.167

This calculation was repested for various input volume ratios,

and a plot of Q,/Q versus input volume fraction of
, A7 ¥Afull

liquid B is shown in figure 30.

Now consider the experirental data.
Superficial water velocity = 0.116 ft./sec.
Input oil-water volume ratio = 4.21
Superficial o0il velocity = (0.116)(4.21) = 0.488 ft./sec.
0il viscosity = 0.0121 1lbs./ft.sec.
= 32.174 poundals/lb.-force
Pipe dismeter, D = 0.0671 feet

32(0.0121)(0.488) _
(32.174)(0.0671)°

1.3%0 lbs./ft.e/ft.

Therefore (f}%)full =

From the previous section

o P 2 /n
(:;; exp. = 1.27 1lbs./ft.“/ft.
Q
Hence AA = i’gg = 1,02
“Afull °

’ i
and the input volume fraction of water = 1 - ?L%% = 0.192

The experirental datae for all thirteen superficiesl water

velocities are plotted in fizure 30,



LEGEND FOR FIGURE 30
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Flow Rate Factors for‘/A' = 20.1
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¢, Discussion of Results

The experimental results in figure 30 show a wide
scatter of points. A trend is noted, though, that the values
of the volumetric flow rate factor in the turbulent region
lie much lower than the theoretical curve and that values in
the laminar and transitionezl regions are closer to the
theoretical curve. A few experimental points even fall
above the theoretical curve, and it is therefore presumed that
perfect horizontsl strastification did not necessarily occur
but that the interface may have been slightly curved. Such a
slizsht tendency towards concentric flow would result in

raising the volumetric flow rate factor (see figure 22).

Russell et al (2,6) reported a pressure gradient
reduction factor of 1.2 for 10% water input, and it 1is seen
that this agrees with the experimental values plotted in
figure 30. Later they reported this as their maximum factor,
but it is seen in figure 30 that factors greater than 1.2

were actually cbtsined, as was mentioned in the introduction.
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CONCLUSIONS

Theoretical volumetric flow rate enhancement
factors, power reduction factors and hold-up ratios have
been derived numerically for the stratified lsminar flow of
two immiscible Newtonian liquids flowing in a circular pipe,
for viscosity ratios of the two liquids ranging from 1 to 1000,

and for various positions of the liquid-liquid interface.

The volumetric flow rate enhancement factor =zt any
specific interface position increases with increasing viscosity
ratio. ‘A simjilar trend is also followed by the maximum
volumetric flow rate factor which achieves a meximum
asymptotic value at infinite viscosity rstio. This
esymptotic value is nractically reached at a viscosity ratio

of 1000.

For the range of viscosity ratio from 10 to 1000,
the position of the interface for the maximum volumetric flow
rate factor moves closer to the bottom of the pipe with
increasing viscosity ratio. Howevef, the input volume
fraction of the less viscous liquid, for the condition of
maximum volumetric flow rate enhancement of the more viscous

liquid, increases with increasing viscosity ratio.

At specific viscositly ratios, the maximum

volumetric tlow rate factor for stratified flow in a
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circular pive is smaller than the corresponding maximum
factor for perallel plate flow, and very much smaller than the
correcsponding maximum factor for concentric flow in a

circular pipe.

Power reduction factors are always lower than

corresvonding volumetric flow rate factors.

The position of the interface for the maximum power
reduction factor moves closer to the bottom of the pipe as
the viscosity ratio increases in the range of 10 to 1000.

In the same range, the input volume fraction of the less
viscous liquid necessary to produce the maximum factor

remains essentially constant.

For leminar flow of both liguids, hold-up ratio is

a function of input volume ratio and viscosity ratioc only.

The present theoretical results and the experimental
results of Russell, Hodgson and Govier for the case of
laminar {low of both phases, show zood agreement with regard
to hold-up ratios, vressure gradients and volumetric flow
rate enhancement factors. In the case of experimentsal
results in the transition region of f{low of the less viscous
liquid, there 1s distinct disagreement between these results
and the present theoreticsl 1lsminar ilow results. This
expected disagreement increases as the flow of the less

viscous liquid becomes increasinzly turbulent.
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The pressure gradient reduction factors measured
experimentally for the two crude oils reported in table I
fall between the values determined theoretically for
concentric flow and stratified flow in a circular pipé.
These results substantiate the statement by Russell and
Charles that the flow for these experiments was intermediate

between the stratified end concentric models.
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APPENDIX

J. Relaxation Methods

Relaxation methods can in Zeneral be used to solve
various tyoes of differential eqﬁations, but for this study
they were used to solve only linear second order partial
differential equations. This section will describe how
relaxation methods are employed to solve this particular type

of equation.

The partial differential equation representing the
flow conditions investigated, is rewritten as a finite

difference equation of the form

ui + ué + ué + u& - 4u6 + 8/u}(z>y')2 =0 (16)

as shown on page 1l2a The above equation sugzgests that the
velocity at the point O is equal to the arithmetric mean of
the velocity at four surrounding points, plus a constant.

The relative nosition of the five points referred to are
shown in figure 2. Suppose the values of the five velocities
wefe guessed at and substituted in equation (19). If the
cuesses were incorrect, a remainder or residual would result
because the equation would not be satisfied. The residual

can be exnressed as

ui + ué + u% +ou, - dul o+ 8/u’(£>y')2 = Residual (47)
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It is noticed that by increasing the value of ué»by 1, the
residual is decreased by 4, whereas increasing the value of
any of the surroundinzs velocities by 1, increases the residual
by 1. This 4 to 1 ratio leads to convergence towards the
solution, which is attained when the residual is zero or
aoproximately zerc. For example, a new guess of ué greater

than the previous value by one-quarter of the residual, will

eliminate the residual and thus achieve a tentative solution.

This procedure is then applied to a grid of points
as in figure 5, where all the point velocities are guessed at,
and the residuals calculated for each point using equation (19).
The point with the largest residual is relaxed first by
rendering the residual equal to zero. This procedure is
repeated until all the residuals are approximately equal to

zero, in which case the desired solution has been arrived at.

There are methods of aiding convergence to the
solution, such as over-relaxation and block relaxation, but
these are refinements of the basic method described above.
Kickley, Sherwood and Reed (10) present a brief description
of relaxation methods, its refinements and some examples of
its use, but a more complete description is found in Allien's

text (11).
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I7I. TPFlow Area Fraction

The relationship between the interface position and
flow area fraction is developned from the expression for the

area of a segment of a circle which is
1 .2 .
Area = 3 T (© - s5in® ) (48)

where © is the central angle of radian measure and r is the
radius. Since cos % = (r-h)/h, Perry (14) has expressed this
area in terms of the height, h, of the segment (which
corresponds to the interface position yi) and the diameter D
of the circle, and presents a table relating the area of the
circular segment to the ratio h/p. Thus, knowins the

interface position, the area of the segment is easily arrived

at. Dividinsz this area by the total cross-sectionsal area of
the pipe results in the flow area fraction. The following

table was determined using this information.

Table X
Interface Position Flow Area Fraction of

Liquid B

0] 0

R/8 0.02602

R/4 0.07214

3R/8 0.1298

R/2 0.1955

5R/8 0.2670

ZR/4 0.3%425

R 0.5000

2R/2 0.8045

2R 1.0000
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II. Flow Aresa Fraction

The relationship between the interface position and
flow area fraction is develooed from the expression for the

area of a segment of a circle which is

Arvea = %— RE(© - 5in® ) (48)

where © is the central angle of radian measure and R 1s the
radiuvs. S3ince cos % = (R-H)/H, Perry (14) has expressed this
area in terms of the heizht, H, of the segment (which
corresponds to the interface position yi) and the dismeter D
of the circle, and presents a table relating the area of the
circular segment to the ratio H/D. Thus, knowins the

interface position, the area of the segment is easily arrived

at. Dividings this area by the total cross-sectionsl area of
the pipe results in the flow area fraction. The following

table was determined usin< this information.

Table X
Interface Position Rlow Area Fraction of

0 0

R/8 0.02602
R/4 0.07214
2R/8 0.1298
R/2 0.1955
5R/8 0.2670
3R/4 0.3425
R 0.5000
3R/2 00,8045

2R 1.0000
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I1II. Douglass-Avakian Method

The Douglass-Avakian method, which is described by
Mickley, Sherwood and Reed (10), employs a fourth degree
polynomial which is fitted to seven equidistant points to

give the best curve through them. The polynomial is

2 4

X =a + b2 + cZ° + d2° + eZ (49)

The seven points must be spaced at equal intervals h of 7,

and the coordinstes adjusted so that 2 = O, for the central
point. The seven vslues of the variable Z are then -3h, -2h,
-h, 0, hy 2h and 3%h, and k is the coefficient of h in the
values of Z. Thus at Z = -3h, k = -3; at Z = -2h, k = -2 etc.

The values of the constants are given by the following

expressions:

2 4

a = 54X - 2455:2[1: X + 212k X (50)

%
_ 397 kX 73 k’X

b = He75p - “>T6h (51)

2 4
3168h
_ )
d = ?ZkX+E§kX (5%)
216h
2 4

3168n"



