HINDERED SETTLING

by

YU SEN CHONG

B.Sc., Nanyang University, 1966

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE

in the Department

of

CHEMICAL ENGINEERING

We accept this thesis as conforming to the required standard

Members of the Department of Chemical

Engineering

THE UNIVERSITY OF BRITISH COLUMBIA

December, 1968

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and Study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Chemical Engineering

The University of British Columbia Vancouver 8, Canada

Date December 27, 1968

ABSTRACT

Natural and commercially available particles of uniform shape and size were used to study the effect of particle shape on hindered settling in creeping flow ($Re_0 < 0.1$), where fluid flow behaviour is independent of particle Reynolds number and the effect of shape is most prominent. Particles of different shapes used were spherical glass beads, cubic salt (NaCl) crystals and ABS plastic pellets, flaky sugar crystals and angular mineral (silicate) crystals. They were carefully sized by sieving and liquid elutriation to avoid other effects like size segregation. Constant settling data were processed in the form of $u\nu$ rather than u to eliminate the effect of temperature variation on viscosity.

The effect of the wall on hindered settling rate was found to be small in most cases. The method proposed by Beranek and Klumpar for correlating fluidization data on different shaped particles was found to be only moderately successful in correlating the present settling data for different shapes.

Results were plotted as $\log u\nu$ versus $\log \epsilon$, and the index n of the equation $u\nu/(u\nu)_{ext} = \epsilon^n$ was calculated by least squares. It varied from an average value of 4.8 for the smooth spheres to 5.4 for the cubes to 5.8 for the flaky or angular particles. In contrast to the corresponding term proposed by Richardson and Zaki, the term $(u\nu)_{ext}$ was measurably lower than $u\nu$ for free settling of the spherically isotropic particles. More significantly, the index n was graphically found to display a definite trend with the random loose fixed bed porosity, which is shape dependent and easily measured, and may therefore turn out to be a simple and useful parameter for taking account of shape variation.

ACKNOWLEDGEMENTS

I am greatly indebted to Drs. Norman Epstein and David A. Ratkowsky, under whose guidance this study was made, for their invaluable assistance and encouragement during the course of this project. The help of Dr. Epstein in the final writing is deeply appreciated.

I wish to thank the University of British Columbia for financial assistance received in the form of a Graduate Fellowship, and the National Research Council of Canada for additional support.

The cooperation of Mr. Muelchen and the other staff of the Chemical Engineering Workshop in fabricating the apparatus, and the assistance of Mr. Musil of Metallurgy in the use of the photomicrograph facilities, are also appreciated.

TABLE OF CONTENTS

		Pa	ge
INTRODUC	TION		1
LITERATU	IRE S	URVEY	2
1.	Sing	le Particle	2
2.	Mult	iparticle	4
3.	The	Work of Beranek and Klumpar	12
GENERAL	THEO	RETICAL CONSIDERATIONS	16
1.	Free	Settling	16
2.	Hind	ered Settling	20
3.	Wall	Effect	24
EXPERIME	ENTAL	• • • • • • • • • • • • • • • • • • • •	26
1.	Vari	ables Studied	,26
2.	Mate	rials	26
	Α.	Particle Selection	26
	B.	Discussion on Segregation	27
	С.	Separation of Particles	28
	D.	Liquid Elutriation	30
	E.	Description of the Particles	32
	F.	Test Liquids	37
3.	Appa	ratus	37
4.	Expe	erimental Procedures	40
	Α.	Particle Size Measurement	40
	B.	General Procedure	41
	C.	Experimental Technique and Settling Data Selection	43
	D.	Data Processing	46
RESULTS	AND	DISCUSSION	48
-r .			

1.	General	48		
2.	Index n for Hindered Settling	50		
3.	Comparison with Single Particle Results	71		
4.	Settled Bed Porosity	74		
5.	Beranek-Klumpar Plot	81		
6.	n - $\epsilon_{\rm b}$ Plot	81		
7.	Observations	87		
CONCLUSI	LONS	90		
RECOMMENDATIONS				
NOMENCLATURE 9				
LITERATURE CITED				

APPENDICES

. .

- I. THEORY OF SEDIMENTATION
- II. DESCRIPTION AND TESTING OF LIQUID ELUTRIATION APPARATUS
- III. NEWTONIAN BEHAVIOUR OF POLYETHYLENE GLYCOL SOLUTION
 - IV. MEASUREMENT OF DENSITY AND VISCOSITY
 - V. CALIBRATION OF VISCOMETERS
 - VI. JUSTIFICATION OF USING $u\nu$
- VII. ORIGINAL DATA ON HINDERED SETTLING
- VIII. CALCULATED RESULTS FOR HINDERED SETTLING
 - IX. DATA AND RESULTS FOR FREE SETTLING
 - X. MICROSCOPIC MEASUREMENT OF PARTICLE SIZE
 - XI. DATA ON SETTLED BED POROSITY
 - XII. SAMPLE PLOT OF EXPERIMENTAL BED HEIGHT vs. SETTLING TIME
- XIII. SAMPLE CALCULATIONS AND ERRORS

Page

LIST OF TABLES

Table	Page
1.	Equivalent Diameters 21
2.	Shape Factors 21
3.	Properties of Particles
4.	Dimensions of Settling Columns
5.	Summary of Results for Spherical Glass Beads 51
6.	Summary of Results for Cubic Particles 51
7.	Summary of Results for Sugar Crystals and Mineral Crystals
8.	Comparison of $u\nu$ for Glass Beads
9.	Comparison of $u\nu$ for Cubic Particles
10.	Comparison of Diameters of Glass Beads
11.	Comparison of Cube Lengths of Cubic Particles 76
III-1.	Calculated Viscosity of PEG from Different Size ViscometersIII-1
V-1.	Summary of Viscometer Calibration V-2

viii

LIST OF FIGURES

ï

Figure	e e e e e e e e e e e e e e e e e e e	Page
1.	Modified Plot of C _D - Re for Single Particle and Suspension	10
2.	Beranek-Klumpar Plot based on Richardson-Zaki Empirical Equations	13
3.	Comparison of Settling Rates of Different Size Distributions of Particles	29
4.	Schematic Drawing of Liquid Elutriation Apparatus	31
5.	Photographic Pictures of Particles	34
6.	Assembly Drawing of Settling Apparatus	39
7.	Illustration of Suspension Circulation	44
8.	Loguv-log ϵ Plot of Glass Beads in 40% PEG	52
	a. $D_v = 0.114 \text{ cm}, D_v/D_t = 0.045 \dots$	52
	b. $D_v = 0.114 \text{ cm}, D_v/D_t = 0.030 \dots$	52
	c. $D_v = 0.114 \text{ cm}$, $D_v/D_t = 0.022 \dots$	53
	Loguv-log ϵ Plot of Glass Beads in 45% PEG	53
	d. $D_v = 0.114 \text{ cm}, D_v/D_t = 0.045 \dots$	••• 53
	e. $D_v = 0.114 \text{ cm}$, $D_v/D_t = 0.030 \dots$	54
	f. $D_v = 0.114 \text{ cm}$, $D_v/D_t = 0.022 \dots$	54
8g.	Loguv-log Plot of Glass Beads in 35.4% PEG $D_v = 0.0492$ cm, $D_v/D_t = 0.0097$	55
9.	Wall Effect on Glass Bead Settling	••• 56
10.	Results of n Plotted against D_v/D_t	••• 57
11.	Loguv-log ϵ Plot of Salt Crystals in Oil	59
	a. $D_v = 0.0341 \text{ cm}, D_v/D_t = 0.0134 \dots$	59
	b. $D_v = 0.0341 \text{ cm}, D_v/D_t = 0.0090 \dots$	59
	c. $D_v = 0.0341 \text{ cm}, D_v/D_t = 0.0067 \dots$	60
	d. $D_v = 0.0341 \text{ cm}, D_v/D_t = 0.0044 \dots$	60

Figure	Pag	;e
•	e. $D_v = 0.0391 \text{ cm}, D_v/D_t = 0.0103 \dots 6$	1
	f. $\dot{D}_v = 0.0391 \text{ cm}, \ \dot{D}_v / \dot{D}_t = 0.0077 \dots 6$	1
	g. $D_v = 0.0282 \text{ cm}$, $D_v/D_t = 0.0056 \dots 6$	2
	Loguv-loge Plot of ABS Pellets in Oil	53
	h. $D_v = 0.288 \text{ cm}, D_v/D_t = 0.0374 \dots 66$	53
	i. $D_v = 0.288 \text{ cm}$, $D_v/D_t = 0.0285 \dots 66$	53
12.	Wall Effect on Salt Particle Settling 6	54
13.	Loguv-log ϵ Plot of Sugar Crystals in Oil 6	57
	a. $D_v = 0.1346 \text{ cm}, D_v/D_t = 0.0356 \dots 6$	57
	b. $D_v = 0.1346 \text{ cm}, D_v/D_t = 0.0265 \dots 6$	57
	c. $D_v = 0.1133$ cm, $D_v/D_t = 0.0223$	58
14.	Logu ν -log ϵ Plot of Mineral Crystals in Oil ϵ	59
	a. $D_v = 0.0508 \text{ cm}, D_v/D_t = 0.013466$	5 9
	b. $D_v = 0.0508 \text{ cm}, D_v/D_t = 0.01006$	59
	c. $D_v = 0.0426 \text{ cm}, D_v/D_t = 0.0113 \dots 7$	70
	d. $D_v = 0.0426 \text{ cm}, D_v/D_t = 0.0084 \dots$	70
15a.	Settled Bed Porosity of Glass Beads	77
15b.	Settled Bed Porosity of Cubic Particles	78
15c.	Settled Bed Porosity of Mineral and Sugar Crystals	79
16a.	Beranek-Klumpar Plot using (u-uin)/uext 8	32
16b.	Beranek-Klumpar Plot using u/u _{ext}	33
16c.	Beranek-Klumpar Plot using $(u-u_{in})/u_{\infty}$	34
16d.	Beranek-Klumpar Plot using u/u_{∞}	35
17.	n vs. ϵ_b Plot	86
18.	Comparison of the Present Results for Spheres to Models in the Literature	8 9

	· · ·
I.	
Figure	Page
I-1.	Sedimentation Flux Plot, Single Concave I-3
I-2.	Sedimentation Flux Plot, Double Concave I-3
II-3.	Detailed Drawing of Screen GateII-3

.

.

INTRODUCTION

Single spherical particle settling or free settling of spheres in a quiescent infinite fluid within the creeping flow regime was studied theoretically by Stokes (1), and the well known Stokes' law has been verified by various experimental data (2). Hindered settling, in contrast to free settling of isolated particles, describes a swarm of particles settling simultaneously, as in most practical sedimentations. It is different from free settling because of the interference on the fluid stream surrounding a given particle by the presence of neighbouring particles.

An early investigation of sedimentation made by Coe and Clevenger (3) showed that sedimentation usually began with a constant rate, and that particles were continuously depositing on the bottom of the container to form a bed of sediment. The settling rate in this period is called the contant initial settling rate. From a hydrodynamic point of view, hindered settling of a monosize system is similar to particulate fluidization when there are no boundaries to the particle bed. In fact studies in these two areas are complementary to each other. Because of their wide application in chemical engineering and other fields, a considerable amount of study has been made of such fluid-particle systems.

Most work in the literature deals with spherical particle systems, presumably because a sphere has the most simple configuration, of which the size and shape are easily defined. Investigations on nonspherical particles are mostly restricted to free settling.

LITERATURE SURVEY

1. Single Particle

The earliest study on resistance of a single spherical body moving relative to fluid was made by Stokes (1), whose analytical result is applicable within the creeping or viscous flow region, where fluid inertia is negligible compared to viscous shear. Later, study was extended to somewhat higher Reynolds numbers by Proudman and Pearson (4), Whitehead (5), Oseen (6) and Jenson (7). An analytical solution of creeping flow past an ellipsoid has been developed by Oberbeck (8) and Gans (9), who proved that a body possessing three perpendicular planes of symmetry has no tendency to assume any particular orientation as it settles. Subsequently, theoretical study on free settling of a single particle was extended to settling at higher Reynolds numbers, to cases where the fluid is bounded by solid walls and a bottom, to irregular shaped body settling, and to improved mathematical techniques of analysis. The studies are well described by Happel and Brenner (10).

An experimental study on single non-spherical particles of well-defined shape was made by Pernolet (11), who investigated cubes, disc and prisms over a narrow range of Reynolds number. Pettyjohn and Christiansen (12) specifically studied isometric particles over a large range of Reynolds number, and were able to correlate the Stokes' law shape factors of five isometric bodies in creeping flow region, as well as drag coefficients at higher Reynolds number region, with sphericity. Similar work was done by Chowdhury (13) and

a similar conclusion was obtained. Heiss and Coull (14) studied the effect of orientation and shape on the settling velocity of non-isometric particles in the viscous region, and reached the conclusion that sphericity alone was not sufficient to take account of both shape and orientation effects on the free settling of non-isometric orthotropic bodies. Correlation of sphericity to Stokes' law shape factor was possible by including as additional parameters the diameter of a sphere of equal volume and the diameter of a circle of equal projected area to the body in question. Recently Blumberg and Mohr (15) have extended the study of cylindrical particles in viscous flow to orientations intermediate between horizontal and vertical. Other experimental studies on orthotropic bodies were those of McNown and Malaika (16), who investigated discs, cylinders, a prismatic body and a conical body settling parallel to the particle axis, and determined the limit of the viscous flow region for the various shapes; and Jayaweera (17), who studied the free settling of cylinders and cones over a particle Reynolds number range of 0.01 to 1000. At high particle Reynolds number, free settling of single particles was found to depend on the density ratio of solid to liquid, as well as on shape, by both Christiansen (18) and Isaacs (19).

Becker (20) has attempted to correlate shape and Reynolds number with drag coefficient, for various literature data. A review by Torobin and Gauvin (21) covered extensive references on the effect of particle shape and roughness. So far, even for single particle settling, the choice of a suit-

able shape factor which is applicable to all the experimental data has been found to be extremely difficult because of the complicating effects of orientation, and of rotation of nonisometric orthotropic bodies. The problem is further complicated by the different character of flow at different Reynolds numbers, by the dependence of free roientation on Reynolds number, and by the vast irregularity and diversity of particle shapes to be considered.

2. Multiparticle

Empirical and analytical approaches to the dynamics of hindered settling have often followed two methods:

i. treating the dynamics of a single particle and trying to extend the result to a multiple particle system by appropriate modification of the boundary conditions, which usually turned out to be some function of the concentration of particles in the fluid (22, 23, 24, 25, 26).

ii. modifying the continuum mechanics of a single phase fluid by treating the suspension as a liquid, the properties of which are altered by the presence of particles (10, 27, 28, 29, 30).

Some empirical equations also resulted from adopting the law of flow through packed beds with certain modifications (31, 32, 33).

The problem of the motion of a swarm of solid spherical particles through fluid has been treated theoretically by various investigators by the approach of method ii. The viscosity of dilute suspension was derived by Einstein (34), and

was later adopted by Vand and Hawskley (35, 27) in developing their equation for sedimentation in the viscous region. Their equation was confirmed by Hanratty and Bandukwala (28) to be valid over a certain concentration range for spherical particles. Based on the equation of motion, neglecting the fluid inertia, and on Darcy's equation for fluid flow through packed beds, Brinkman (36) also arrived at a solution for concentrated suspensions which was verified experimentally by Verschoor (37). By modification of the boundary conditions on a fluid flowing past a single sphere, various models have been assumed and studied either analytically or numerically, namely the hexagonal configuration of Richardson and Zaki (26), the free surface model of Happel (22) for viscous region settling, and the numerical solution at higher Reynolds number by LeClair and Hamielec (24) following the model of Kuwabara (23).

An experimental study by Robinson (38) suggested a modification of Stokes' law for predicting the settling rates of a suspension of fine, closely sized particles. Steinour (30), using a similar approach, was able to find the correction factor to account for the change in the properties of the pseudo-single phase suspension due to the presence of particles. Loeffler and Ruth (33) considered that the settling condition should agree with Stokes' law as porosity approaches unity and be similar to flow through a packed bed at a porosity of 0.48, the value assigned to loosely packed spherical particles. By comparison to the Kozeny equation they obtained a porosity dependent correction function which could be incorporated into the free settling equation, Richardson (31) and

Harris (32), respectively, calculated the friction factor for fluid flow through an expanded bed at different concentrations. Oliver (39) also obtained a semi-empirical expression by modifying the stream function for a single spherical body and inserting a correction factor for the viscosity change due to the surrounding particles.

Other empirical expressions based on the approaches stated earlier were also found in particulate fluidization (40, 41, 42).

An overall experimental study of hindered settling and particulate fluidization of spherical particles over a wide range of Reynolds number was undertaken by Richardson and Zaki (43), and later hindered settling of spherical particles was carried out by Gasparyan and Ikaryan (25). The results of both studies were comparable and similarly correlated. Without resorting to any sophisticated hydrodynamics, both pairs of investigators plotted the settling velocity, u, against the porosity, ϵ on log-log coordinates. The slope of the resulting straight line was found by Richardson and Zaki (43) to depend on the free settling Reynolds number, Re₀, of the given uniform-size particles, with extrapolation to a porosity of unity giving approximately the free settling velocity, u_∞:

$$\frac{u}{u_{\infty}} = \epsilon^{n} \tag{1}$$

The exponent n depended on wall effect, in addition to Re_0 : n = 4.65 + 19.5 $\frac{D}{D_t}$ Re₀ < 0.2 (2a)

n	=	$(4.35 + 17.5 \frac{D}{D_t}) \operatorname{Re_0^{-0.03}}$	0.2	2 <	Re _o <	1	(2Ъ)
n	=	$(4.45 + 18 \frac{D}{D_t}) \text{Re}_0^{-0.1}$	1	<	Re _o <	200	(2c)
n	=	4.45 Re ^{-0.1}	200	<	Reo <	500	(2d)
n	Ξ	2.39	500	<	Reo		(2e)

This method of correlation had previously been attempted by Hancock (44). The correlation, though simple, was found to be generally valid in ideal hindered settling without flocculation and particulate fluidization. Fluidization data of Wilhelm and Kwauk (42) and of Lewis et al (40) were also found to be well correlated in this way.

Most of the previous investigations have been done on spherical particles, and occasionally on irregular particles, but without particle shape as a specified variable of study.

The effect of particle shape in particulate fluidization at high Reynolds number has been studied by Richardson and Zaki (43) for non-spherical particles of regular geometrical shape, namely cubes, plates, cylinders and hexagonal prisms. It was found that in the high Reynolds number range, the particulate fluidization expansion data of these particles did not differ very much from the corresponding results for spherical particles. When correlated in exponential form the power n could be related to the Heywood volumetric shape factor:

$$K_{v} = \frac{\pi}{6} \frac{D_{v}^{3}}{D_{c}^{3}}$$
(3)

Irregular shape particle hindered settling over a large Reynolds number range was studied by Gasparyan and Ikaryan (45). Using the hypothesis that a layer of immobile fluid clings to the surface of an irregular particle, so as to form a smooth pseudo-particle, they were able to extend their hindered settling equation for spherical particles to irregular particles by means of appropriate correction factors. The so-called "form coefficient" and "volume coefficient" were different for different systems of irregular particles, and thus have to be determined experimentally for any specific particle shape.

In sedimentation of non-spherical particles at low Reynolds number, which often prevails in practical problems, the shape correction factors like those of Gasparyan are not known, and a spherical shape is therefore usually assumed for predictive purposes. However, experimental data in the viscous region of Richardson and Meikle (31) on sedimentation of alumina powder, of Jottrand (46) on fluidization of sand, and of Gasparyan and Ikaryan (45) on sedimentation of crushed basalt, crushed barite, and other irregular particles when correlated in the Richardson-Zaki exponential form, show values of the exponent n significantly different from that for spherical particles in the same Reynolds number range. Thus values of 5.6 were obtained for sand, around 6.5 for crushed basalt particles and as high as 10.5 for alumina powder, compared to 4.65 found by Richardson and Zaki for spheres.

Mueller and Schramm (47) suggested that in the low Reynolds number region, expansion of a fluidized bed of non-

spherical particles which possess a maximum length dimension less than 1.5 times the maximum width could be predicted from the same graph which applies to spherical particles; and that only at Reynolds numbers beyond the creeping flow region was a different graph for irregular particles required. The graph presented by these authors can also be found in the textbook by Zenz and Othmer (48), who indicate that the graph was prepared by drawing smooth curves through the experimental data of a number of investigators. The graph is a log-log plot of $(\text{Re/C}_D)^{1/3}$ against $(\text{ReC}_D)^{1/3}$ with bed porosity as parameter. Thus the variables velocity and diameter each appear only on the respective coordinate axes, thereby eliminating the usual trial and error procedure when either of these variables is the unknown.

For convenience, Figure 1 was prepared based on the accepted drag coefficient-Reynolds number plot for single sphere settling (49), and on Richardson and Zaki's empirical equations for hindered settling, assuming no wall effect. The graph appears to be in fair agreement with that of Mueller and Schramm. The variable, diameter, on the abscissa, when applied to a nonspherical particle, was taken by Mueller and Schramm to be the diameter of a sphere having the same volume as the given particle. It is noted that in the creeping flow region ($Re_0 < approx. 0.2$) the lines for each porosity are straight and parallel to each other, and have a slope of 2. This result arises from Stokes' law, which can be put in the form

;

Figure 1. Modified Plot of C_D - Re for Single Particle and Suspension

$$C_{\rm D} = \frac{24}{\rm Re_0} \tag{4}$$

$$\left(\frac{Re_{0}}{C_{D}}\right)^{1/3} \propto \left(C_{D}Re_{0}^{2}\right)^{2/3}$$
 (4a)

or

The vertical spacing between these lines of different porosity is proportional to the index n of equation 1 and 2, and is constant in the creeping flow region, where n = 4.65. In the light of the few experimental data on nonspherical particles in creeping flow mentioned earlier, the graph obviously does not apply to alumina powder and crushed basalt. Even for nonspherical particles in which the maximum length is equal to the maximum width, for example the data of the present work on cubic salt crystals in creeping flow, the prediction of this graph is poor. It is interesting to note that, on the one hand, Richardson and Zaki's results on artificial nonspherical particles showed a smaller difference between the index n for nonspheres and that for spheres in the high Reynolds number range than in creeping flow, while on the other hand Mueller and Schramm suggested that a separate graph was required for irregular particles only in the region beyond creeping flow.

It can be concluded that no extensive investigation has been done on the effect of shape on the relationship between hindered settling rate and concentration, except possibly in the high Reynolds number range. A study of the particle shape effect, particularly in the creeping flow regions, should therefore be useful and significant.

3. The Work of Beranek and Klumpar

In their paper titled "A New Theory of Fluidization", Beranek and Klumpar (50), in correlating expansion data of fluidized beds, suggested that a plot of $(1-\epsilon)/(1-\epsilon_{\rm b})$ against either u/u_{∞} or $(u-u_{in})/u_{\infty}$ was superior to other methods of correlation which did not fit their experimental data. Here ϵ is the porosity of the expanded bed, $\epsilon_{\rm b}$ is the fixed bed porosity corresponding to a random loose packed bed obtained by letting the particles in suspension settle freely until they had reached a constant height, and uin is the incipient fluidization velocity. The term $(1-\epsilon)/$ $(1-\epsilon_b)$ was denoted as "characterizing the geometric similarity". Without using any conventional shape factor, they were able to plot both spherical particle data and irregular particles data, obtained at different free settling Reynolds numbers, on the same curve. However, plotting of data at different free settling Reynolds numbers on a single curve is in principle wrong, since it is well known that dependence of u/u_{∞} on porosity for particles of fixed shape (e.g. spherical) varies with free settling Reynolds number. This point becomes more obvious by reference to Figure 2, where the Richardson-Zaki empirical equations for spherical particles are plotted in the manner of Beranek, assumming $\epsilon_{\rm b}$ equal to 0.435.

That Beranek and Klumpar were apparently able to correlate their data on a single curve may be attributed to

Figure 2.

Beranek-Klumpar Plot based on Richardson-Zaki Empirical Equations

the relatively narrow range of free settling Reynolds number covered.

If spherical and nonspherical particle data at similar values of Re_0 could really fall on the same curve as suggested by Beranek, it must be ϵ_b which accounts for the shape variation of the particles. Random loose fixed bed porosity has indeed been reported to be related to the sphericity of particles (51). The use of such a fixed bed porosity has the advantage of being much easier to measure than conventional shape factors, and of giving a statistical "shape measurement" without referring to the orientation of particles, which is assumed random in a randomly packed bed.

As the effect of Reynolds number level on the concentration dependence of bed expansion was ignored by Beranek and Klumpar, in fact no conclusion can be drawn as to the validity of their correlation. Furthermore Beranek and Klumpar, in presenting their result, included some data on porous particles, and also the data of Wilhelm and Kwauk(42), whose fixed bed porosity was not for random loose packing. The previously mentioned studies (31, 45, 46) show that hindered settling and particulate fluidization data, plotted in exponential form, give more sensitive variation of index, n, with shape in creeping flow than at higher Reynolds numbers. In the creeping flow region, where the fluid flow behaviour is independent of Reynolds number, comparison of effects due to shape may be simplified. Therefore a study of hindered settling of various shape

particles in the creeping flow region, which will be described in this work, should clarify the validity or otherwise of the above stated suggestion by Beranek and Klumpar.

GENERAL THEORETICAL CONSIDERATIONS

1. Free Settling

Consider a single, uniform density particle of size, L settling with a constant terminal velocity u_{∞} and constant orientation in an infinite fluid medium of viscosity μ . When the motion is in the creeping flow region, the total drag force on the particle, which consists of both viscous shear forces and pressure forces, is proportional to L, u_{∞} and μ , and is independent of the fluid density ρ :

$$\mathbf{F} = K \mathbf{L} \boldsymbol{\mu} \mathbf{u}_{\infty} \tag{5}$$

The criterion of flow behaviour is the particle Reynolds number, which is the ratio of fluid inertia to viscous forces and is defined as

$$Re_{o} = \frac{L_{U\infty}}{\nu}$$
(6)

At low Re_0 , fluid inertia is relatively unimportant compared to viscous shear, and equation 5 applies at any Re_0 within certain limits. The flow is called creeping flow or viscous flow and is characterized by the absence of wakes and of boundary layer separation of fluid behind the particle. Beyond the creeping flow region the fluid inertia can no longer be neglected, and the resistance force on the particle cannot be expressed by equation 5.

A sphere is the simplest shaped particle, the size of which can be described by a single dimension, diameter D, irrespective of its orientation. Equation 5, written for a sphere, becomes

$$\mathbf{F} = 3\pi \mathbf{D}\mu \mathbf{u}_{\infty} \tag{5a}$$

which can be proved analytically from the equation of motion and has been verified experimentally. The Reynolds number then becomes

$$Re_{0} = \frac{Du_{\infty}}{\nu}$$
 (6a)

In general, for all particle shapes and Reynolds numbers, the drag force is expressed as

$$F = C_{\rm D} A_{\rm p} \frac{u_{\odot}^2 \rho}{2}$$
(7)

For a sphere, where A_p is the projected area of the particle normal to the flow axis.

$$C_{\rm D} = \frac{24}{{\rm Re}_{\rm O}}$$
 ${\rm Re}_{\rm O} < 0.2$ (4)
 $C_{\rm D} = f({\rm Re}_{\rm O})$ ${\rm Re}_{\rm O} > 0.2$ (4b)

By equating the drag force exerted on a spherical particle to the gravitational force less the buoyancy force on it, the terminal settling velocity of the particle can be calculated as

$$u_{\infty} = \frac{D^2 (\rho_p - \rho)_g}{18\mu} \tag{8}$$

which is a familiar special form of Stokes' law applicable to particle motion in a gravitational field. The more regular particles of interest with shapes other than spherical may be classified into spherically isotropic particles, which have three equal mutually perpendicular axes of symmetry, and orthotropic particles, which possess three mutually perpendicular planes of symmetry and of which spherically isotropic particles are a particular case. Nonspherical particle settling is more complicated than that of spheres because of the unlimited number of orientations which are possible and the variation of translational resistance with orientation. The problem is further complicated by rotation of particles at higher Reynolds numbers, or by shape assymmetry even at low Reo.

Within the creeping flow region, a spherically isotropic particle settles in its initial orientation and in the direction of the gravitional force. The translational resistance is the same in any orientation and is larger than that on a sphere of equal volume (12). The drag force exerted on a steadily settling particle in creeping flow is then given by

$$\mathbf{F} = \frac{3\pi}{K_{\rm ST}} D_{\rm V}\mu u_{\infty} \tag{5b}$$

Thus

$$u_{\infty} = K_{ST} \frac{\frac{D_V^2(\rho_{p} - \rho)g}{18\mu}}{18\mu}$$
(8a)

where D_V is the diameter of a sphere of equal volume and K_{ST} is called the Stokes' law shape factor, which was found to be a function of sphericity (12).

An orthotropic particle, if settling in the creeping

flow region, will preserve its initial orientation, but will not necessarily fall in the direction of the gravitational force except when its axis is parallel to the gravitational force (14). The translational resistance depends on the orientation for a specified shape particle. A similar Stokes' law shape factor can be derived for some artificial orthotropic particles (14), but since correlation of this factor to sphericity alone is insufficient, such parameters as ratio of axis lengths, and diameters defined in various ways, become necessary to account for the volume and orientation of the particle (14, 15).

Particles without any axis of symmetry and irregular particles, when settling in creeping flow, will rotate and thus rotational resistance arises in addition to translational resistance. Both resistances contribute to the drag force of the fluid exerted on the particle.

Beyond the creeping flow region, settling of a particle may involve spinning, wobbling and other secondary motions, and the particle orientates in such a way that resistance to fluid flow is a maximum, at least for many particles studied (20).

Analytical proofs for creeping flow are available for bodies of revolution like spheres and spheroids. These proofs can be intuitively applied to particles of symmetric shape with plane surfaces, for which analytical solutions are difficult but experimental verifications are possible.

To account for variation in shape, many methods have been suggested for "measuring the shape" of nonspherical particles and their equivalent diameters. The equivalent diameter of a nonsphere has usually been based on a sphere of equal volume, or equal surface area or equal settling velocity, each of which has its own justification on hydrodynamical grounds. Examples are given in Tables 1 and 2.

The Stokes' law shape factor, K_{ST}, has been correlated to the other shape factors, which can be determined by nonhydrodynamic measurements (12). Use of shape factor may be successful for particular shapes, but not generally satisfactory for all shapes, especially when orientation effects are important and other parameters are required.

The measurement of a shape factor such as sphericity is always difficult. As previously mentioned, the fixed bed porosity of uniform size and shape particles has been suggested to be in some way related to sphericity (51). Fixed bed packing, however, does not give an unique porosity for a set of particles. Spheres, for example, give four considerably different porosities corresponding to special geometric arrangements in the bed (53) of which random packing can be considered to be mixtures in varying proportions. Random loose packing however, was found to give roughly a constant porosity.

2. Hindered Settling

In a multiparticle system, the effect of the presence of other particles in the vicinity of the particle must be considered; this effect may be hydrodynamical or mechanical. Richardson and Zaki (43), by means of dimensional analysis and considering the possible effect of the wall on particle motion, arrived at the following grouping of dimensionless quantities

Table 1

Equivalent Diameters

Equivalent diameter	Definition: Diameter of sphere of same
D _v	volume or drag force
D _S	surface area
Ďu	settling rate

Table 2

Shape Factors

Shape factor	Variable compared	Fixed variable
$\psi = A_S/A$	surface area	volume or drag force
$\varphi = C^{*}/C$	perimeter of projection	projected area
$K_v = \pi D_v^3 / 6D_c^3$	volume	
$K_{ST} = u_{\infty}/u_{V}$	settling rate	volume or drag force

for spherical particles:

$$\frac{\mathbf{u}}{\mathbf{u}_{\infty}} = \emptyset \left(\frac{\mathbf{D}\mathbf{u}_{\infty}}{\nu}, \frac{\mathbf{D}}{\mathbf{D}_{\mathsf{t}}}, \epsilon \right)$$
(9)

where ϵ is the porosity of the bed. The empirical equations were presented in the form

$$\frac{u}{u_{ext}} = \epsilon^n$$
 (1a)

where u_{ext} is the velocity obtained by extrapolating the log-log plot of settling rate versus porosity to a porosity of unity, and was found to be approximately the same as the free settling velocity of a single particle in an infinite medium. Thus, multiparticle settling is related to free settling by a correction term which is a function of porosity. In the creeping flow region, $Re_0 < 0.2$, this function does not vary with Re_0 , and equation la becomes

$$\frac{u}{u_{ext}} = \epsilon^{4.65}$$
(1b)

when wall effect is negligible. The function varies with Reynolds number beyond the creeping flow region.

Analytical solutions of creeping flow hindered settling have been proposed (22, 23, 24, 26) based on some idealized models. The agreement with experiment is not entirely satisfactory, the experimental results always showing higher settling rates than predicted. Two particles settling represents a particular case of multiparticle settling. Both analytical and experimental results, in good agreement (10) with each other, have shown that mutual interference of two spherical particles always reduces the drag force on the particles, and consequently the settling rate is faster than the free settling rate. This result is in apparent contradiction to equation 1a, considering porosity as fractional volume of fluid unoccupied by solid. It is therefore suggested that when the number of particles is small, for example at high porosity, the general equation for an "infinite" number of particles should not be applied.

In analysing spherical particle hindered settling it is always assumed that the hindrance effect is essentially hydrodynamical, and also that the spheres do not rotate, though rotation does not affect the drag force appreciably in viscous For nonspherical particles, however, even free settling flow. may involve non-vertical motion and rotation. Thus the hindered settling rate may be further changed by mechanical contact between particles, in addition to pure hydrodynamic interference caused by neighbours. Analysis which includes the possible effects of rotation and orientation of an infinite number of nonspherical particles may be rather complicated. Even in the diverse studies of spherical multiparticle systems, the conclusions are not unique. An investigation of the effect of shape on hindered settling in creeping flow is therefore reasonably restricted to an experimental study on uniform particles of various available, suitable shapes. This study was confined to the constant rate sedimentation period, the universal existence of which for uniform size particles can be justified even on theoretical grounds (see Appendix I).

3. Wall Effect

The wall effect on a single particle arises from the backflow of liquid which is displaced by the settling particle in a vessel with a finite boundary. In the creeping flow region, when a sphere settles axially along a tube, the actual drag force on the sphere (10) is given by

$$\mathbf{F} = \frac{\mathbf{F}}{1 - \mathbf{k} \left(\frac{\mathbf{D}}{\mathbf{D}_{+}}\right) + \mathbf{o} \left(\frac{\mathbf{D}}{\mathbf{D}_{+}}\right)^{3}} \tag{10}$$

where F is the drag force on a sphere settling in an infinite medium given by equation 5a and k has a numerical value of 2.104. The sphere settles without rotation in this center location. At any other (eccentric) position, however, a torque is exerted on the sphere and it rotates in one direction or another while settling. Consquently k changes in accordance with the radial location of the particle. The value of k decreases very slightly (about 3%) when the location of the sphere changes from the cylinder axis to a distance from the axis equal to 0.4 of the cylinder radius. Further eccentricity causes an abrupt increase in k. Nonspherical particles, besides undergoing rotation, may also drift sideways. The same correction for wall effect as for spheres is applicable to nonspherical particles if D_v is used as the characteristic diameter of the particle (54). The approximate form for equation 10, obtained by performing the division and neglecting higher orders of D/D_t , is

 $F' = F(1+k \frac{D}{D_t})$

(11)

The corresponding correction for free settling velocity is

$$u_{\infty} = u_0 (1 + k \frac{D}{D_t})$$
 (12)

The latter was found to be valid at low D/D_t(<0.1) in the creeping flow region (55). At higher Reynolds numbers wall effect becomes less significant. The problem, taking into account fluid inertia, has been studied by Faxen and others (10).

Wall effect in multiparticle settling has not been solved theoretically. Richardson and Zaki have attempted to include the wall effect for sedimentation of spheres in the index n of equation 1. The same trend as for free settling was found, with wall effect being important at low Reynolds numbers and absent at high Reynolds numbers.
EXPERIMENTAL

1. Variables Studied

The main object of the experimental work was to investigate the effect of particle shape on hindered settling in creeping flow and testing the correlation of Beranek and Klumpar. Other effects such as segregation, which was found to have an appreciable effect on settling behaviour, were to be avoided as far as possible. The experimental data collected were hindered settling rate, u, and the corresponding bed porosity, ϵ . Fixed bed porosity, $\epsilon_{\rm b}$, is required for the Beranek-Klumpar plot. Since estimated free settling rate was found to be obviously different from the extrapolated value, uext, at porosity of unity, data on free settling rate, uo, were collected for spherically isotropic particles. The possible effect of the boundary on settling was studied by performing tests on the same systems in columns of different sizes, the highest value of D_v/D_t being 0.045.

2. Materials

A. Particle Selection

It was desirable to have particles of uniform shape and size, a requirement which was impossible to fulfill absolutely. The criteria used for selecting particle size may be described as follows. On the one hand, the size had to be large enough so that such electrostatic effects as flocculation were negligible and individual particle shape could be easily observed. On the other hand, a preliminary test showed that with the experimental method adopted, the particle size had to be relative-

ly small in order to get uniform suspension of the particles. To assure that settling was in the creeping flow regime, an extremely viscous liquid was required for the larger particles. Agitation of the suspension then became difficult. Another objection to the use of large particles was that the relatively large wall effect possibly present in creeping flow might overshadow the effect of particle shape. The initial idea was to manufacture a large quantity of artificial particles cut from square and round rods. Because of the lengthy fabrication time required, however, use was instead made of natural or commercially available particles which conformed to the above requisites as far as possible and, in addition, were of homogeneous density, free running, non-hygroscopic and insoluble in an appropriate settling medium and washing liquid.

B. Discussion on Segregation

Perfectly monosize particles are practically impossible to obtain by various methods of sizing. The degree of segregation by size will be different for different size distributions, and will be attenuated at higher particle concentrations. Kaye and Davies (56) reported that segregation by size was observable visually in the settling of a binary mixture of two sets of particles having a mode mean size distribution ratio of about 1.3, when the porosity was higher than 0.6. Binary mixtures from two consecutive fourth root series Tyler Screens have been observed to give size segregation in fluidization (57).

In a preliminary test it was found that a mixture of sized salt particles from two consecutive fourth root series

screens, the smaller fraction of which was colored, displayed minor size segregation up to a porosity of 0.87. Visual observation during settling was difficult. However, the final sediment showed the colored smaller size particles concentrated in the top portion of the bed. A quantitative comparison was obtained by simultaneously settling in similar cylinders 35/42 mesh mineral particles and a 90% mixture of the same material with 10% 42/48 mesh particles, the next smaller size in the fourth root screen series. The results, plotted in Figure 3, show that the effect of size distribution was significant, especially at high porosity. This result emphasized the necessity of using closely sized particles.

The effect of particle size distribution was carefully studied by Loeffler and Ruth (33) using spherical particles. They found that fourth root series screen fractions, with a maximum size distribution of less than 20%, settled at the same rate as carefully ground spheres which had a diameter variation of only 5%. Thus fourth root series screens are capable of producing "monosize spheres" as far as hindered settling is concerned.

C. Separation of Particles.

Two methods of separating particles were used: conventional sieving on Tyler fourth root series screens and liquid elutriation. Liquid elutriation, which separates particles by differences in hydrodynamic drag, was introduced in addition to sieving, since particles of different shape may not be well separated by sieving.

In sieving, about 400 grams of solid was introduced on to the top screen. After the first sieving, the particle fractions were collected and further screening was performed on these primary fractions, using 100 gram samples obtained by combining like fractions from several primary screenings. Subsequent sieving was carried out for 10-minute intervals, until the change in weight of each particle fraction became negligible. Blind sieves were cleaned after each sieving. Sieving was performed on a Ro-tap shaker.

D. Liquid Elutriation

 \mathcal{C}

Liquid elutriation is fundamentally particulate fluidization at high porosity, where segregation by size is prominent. It was carried out in a glass column of 4.6 cm. I.D., equipped with a supporting screen S, and a screen gate G, as shown in Figure 4. Liquid was stored in jar A and was pumped to the column F through an explosion-proof centrifugal pump P. The flow rate of liquid was controlled by a diaphragm valve D. The liquid, after passing through the column, was returned to the storage jar from the overflow H. Pump heat was removed by the water cooling coil C. The fine particles carried over by the liquid were collected on screen B. Detailed description of the elutriation apparatus and its testing is reported in Appendix II. The method was capable of separating spherical particles of different size as effectively as fourth root series Tyler screens.

The particles which underwent elutriation were all sieved as described above. An appropriate quantity of particles

to make a fluidized bed of porosity about 0.95 in the available length was introduced into the column. Cooling water was turned on and elutriating liquid was circulated through the unit, its flow rate being controlled by adjusting the valve.

The quantity of particles to be removed was determined roughly by trial and error on the first batch of a given set of particles. In a trial, the total height of the fluidized bed of a certain quantity of particles was recorded before closing the screen gate to remove the "smaller" size portion. After the screen gate was closed, the column was disassembled and those particles on top of the screen gate were recovered. The remaining particles were tested for segregation by fluidizing in the same column. The topmost part of the bed was again collected by the screen gate, colored, and re-inserted into the column. If visual segregation was observed, further trials were performed which involved fluidizing the total original particles to a larger bed height, which was recorded, and removing a larger quantity of particles than in the previous trial, until no visual segregation could be observed in the remaining particles. Other batches of the particles were separated by fluidizing the same weight of particles to the final recorded bed height and closing the screen gate.

E. Description of the Particles

Five kinds of particles were used. They were: spherical glass beads, cubic salt (NaCl) crystals and cubic ABS copolymer pellets, both of which are isometric and spherically isotropic, flaky sugar crystals, and imperfect octahedron-shaped mineral

(silicate) crystals (henceforward referred to as mineral crystals). Their properties are described in Table 3, and their shapes are illustrated in Figure 5.

Table 3

Particle shape	Materials	Size, D _v	Density g/cm ³	Run No.
Spherical	glass beads	0.0492	2.959	7
		0.114	2.977	1,2
Ćubi c	salt crystals	0.0282	2.161	5
		0.0341	2.169	3
		0.0391	2.163	4
	ABS pellets	0.288	1.061	6
Flaky	sugar crystals	0.113	1.590	12
· .		0.135	1.590	11
Angular	mineral	0.0426	2.632	10
		0.0508	2.632	9

Properties of Particles

The glass beads were practically spherical. Most of the salt crystals were cubic in shape, with rounded off corners. A few twin crystals were present. The ABS pellets, which had been originally chopped from plastic rods and occasionally contained pores within the particles, were used without further treatment. They were not perfect cubes, but they were uniform in shape and size. The sugar crystals did not have any plane of symmetry and

Glass beads, Run 7-3

x12

Glass beads, Run 1,2-

x24

Salt crystals, Run 5-3

x24

Salt crystals, Run 3-

Salt crystals, Run 4-

ABS pellets, Run 6-

Figure 5. Photographic Pictures of Particles

x5

Sugar crystals, Run 12-3

Sugar crystals, Run 11-

x24

Mineral crystals, Run 10-

x24

Mineral crystals, Run 9-

x24

Discarded mineral crystals from liquid elutriation, Run 10-

x24

Discarded mineral crystals from liquid elutriation, Run 9-

Figure 5. Photographic Pictures of Particles (continued)

differed markedly from spheres or granules; and the mineral crystals of imperfect octahedron had one axis grown longer than the other two and appeared to be less uniform than the other particles. The particles other than the glass beads and the sugar crystals had microscopically rough surfaces, but the protuberances were small compared to the particle dimensions, and it is therefore likely that the particles were hydrodynamically smooth.

The behaviour of spherical particles was used as a basis for comparison with other work on the same shape and with the behaviour of particles of different shape. Cubic particles were used because cubes are spherically isotropic, and because free settling results for such particles are available in the literature. Thus comparisons will be more significant.

The glass beads and salt crystals were sized by sieving; subsequent elutriation did not show improved separation. Sugar crystals and mineral crystals were sieved before elutriation. The raw particles of sugar contained some broken crystals, besides being contaminated by other brittle needleshaped material which could not be completely removed by sieving. The mineral crystals contained some irregular particles with rough surfaces, which were still present after sieving. These unwanted particles of odd shape or size were removed by liquid elutriation. Benzene was used as an elutriation liquid. About 10-20% of the particles were removed by elutriation from each set after sieving.

F. Test Liquids

The test liquids had to be Newtonian fluids and to preferably show viscosity stability with respect to time of storage. Test liquids used were water solutions of polyethylene glycol, and blended solutions of different grades of automobile crank case oil for those particles which were soluble in aqueous solution. The advantages of these liquids was that the desired viscosity could be obtained by suitable blending. The oil solutions, which were miscible mixtures of two Newtonian hydrocarbon liquids, were naturally Newtonain liquids. The 45% polyethylene glycol-water solutions were tested and found to behave as Newtonian liquids, at least in the experimental range. Details are given in Appendix III.

3. Apparatus

Settling was carried out in two-foot long, flatbottomed glass columns with vertical cylindrical walls. The bottom ends of the columns were closed by flat blind flanges. Diameters of the glass columns did not vary significantly in different directions, and the column walls were practically straight. Thus the final bed porosity could be calculated by measuring the final bed height, knowing the weight and density of the particles. The top ends of the column were fitted with threaded flanges, which were accessible to threaded plexiglass plugs. The bottom surfaces of the plugs were slightly conical and the apexes were fitted with venting valves so that trapped air and excess liquid could escape on tightening. Holes of appropriate size were drilled in the top and bottom flanges at accurate positions for mounting. Paper scales gra-

duated to one millimeter were fixed to the column, and several movable hairlines made from cellophone were provided for easy visualization during timing.

Five columns of different internal diameters were available, in order to obtain results at different particle to column size ratios. The mean diameter of each column was determined from direct measurement of diameters in different directions. The volume of each column was calculated from the weight of water which filled the empty column. The diameter and volume of each column is shown in Table 4.

Table 4

Dimensions of Settling Columns

Column No.	Mean inside diameter, cm	Volume cm3
1	2.54	313
2	3.78	692
3	5.08	1250
4	7.71	2877
5	10.12	4893

The assembly of the apparatus is shown in Figure 6. Each column was mounted on the supporting frame, with space allowable for more than one column to be tested simultaneously, and was carried on an angle iron rack at pivot, 6. The

Figure 6. Assembly Drawing of Settling Apparatus

supporting frame could be cranked by handle, 7, and set vertical by the stopping clamp, 8, which was released during cranking. To assure a vertical position of the column during settling, the unit was placed on a horizontal surface adjusted by a level. Hooks, 9, and bolts, 10, were accurately located during fabrication in such a position that any of the columns was in a vertical position when mounted on it. The position of the stopping clamp was adjustable for vertical alignment of the columns.

4. Experimental Procedures

A. Particle Size Measurement

Particle sizes were measured by three different methods. Small samples of appropriate size were obtained by means of a sample splitter.

a. A sample of about 1000 particles was collected, counted and weighed on an analytical balance. From the known density of the particles, the average volume of a single particle was calculated. The average size of the particles could then be easily calculated if a particle shape was defined in the first place.

b. Particles from a sample were settled one at a time in the same liquid as used for the hindered settling runs, at the center position of one of the larger glass columns. The temperature of the liquid was recorded along with the settling rate. From the average value of $u\nu$, a particle size could be calculated.

c. Samples of glass beads and salt crystals were measured on a microscope equipped with a prism to project the enlarged picture of the particles onto a ground glass screen. With a suitable combination of lenses, the size of the enlarged particles pictures, which were of the order of an inch, could be measured by Vernier calipers. The glass beads were measured in an arbitrary but consistent direction. The salt crystals were measured in both directions parallel to their two edges. The measurements were calibrated against a gage of size 1 mm., the image of which was projected onto the screen and measured similarly. This measurement is reported in Appendix X.

B. General Procedure

Experiments were set up to find the hindered settling rate at various bed porosities, as well as the final settled bed porosity, of homogeneous particles of different sizes and shapes. It was essential that the initial particle suspension had uniform concentration corresponding to the overall voidage throughout the column, and that the column was in a vertical position during settling. The viscosity and density of liquids were respectively measured by Cannon-Fenske viscometers and Westphal balance. The particle density was determined by conventional specific gravity bottles. These measurements are described in Appendix IV. The routine procedures used were as follows:

a. Samples were taken from the specified set of particles in order to measure particle size.

b. Density of the particles was also measured. The quantity of particles required for a column to attain the highest desired porosity, and the subsequent increments required for specified lower porosities, were weighed on a scale

having a sensitivity of at least \pm 0.05 grams. The possible accumulated error in weight was checked by weighing the particles remaining.

c. Based on the measured physical properties of the solid and the approximate density of the test liquid, the required viscosity of the liquid for creeping flow was estimated; and from a pre-composed empirical chart of viscosity vs. concentration of liquid solution, a suitable quantity of test liquid was prepared with the required concentration. The liquid density at room temperature was measured, as was the viscosity at intervals of 1°F. over the maximum conceivable range of room temperature to be encountered in the experiments.

d. The particles required for the highest porosity were soaked in the test liquid. The suspension was agitated on the supporting frame by cranking to get the particles completely wetted. A short period of standing was allowed for entrained tiny air bubbles to be released from the liquid. The column was then filled with excess liquid, which was vented through the venting valve when the plug was tightened to exclude air from the system. Agitation was started again until particles and liquid came to thermal equilibrium with the room temperature. The temperature of the liquid was then measured by the same thermometer which had been used in the viscosity measurements.

e. The column was cranked carefully with an appropriate speed and constant observation until uniform suspension throughout the column was believed to have been attained. It was then set vertically. Timing began after the supernatant-suspension interface had fallen several centimeters. Two stopwatches, one

of which hung on the string beside the column, were started. Height of interface and corresponding time were recorded constantly. After a certain height, estimated to be within the constant settling rate range from a first trial, the nonhanging watch was stopped, while the one on the string was still used for recording height and time. Observation of particle motion circulation was reported. Those trials which had obvious circulation were discarded.

f. The timing was usually repeated at least once if the result was satisfactory by the criteria of no obvious circulation and constant rate settling. Otherwise more trials were performed.

g. The temperature of the liquid was measured after every two trials. Air was excluded from the liquid after each opening and retightening of the plug for temperature measurement. Final bed height and approximate duration of settling were recorded after the suspension had settled for a long period.

For experiments on lower porosities, increments of particles were added and the procedure from step d. was repeated.

C. Experimental Technique and Settling Data Selection

After the column was set vertical from its rotary cranking motion, circulation of the suspension was often observed, the direction being always opposite to the direction of cranking. An unreproducibly high settling velocity would

then result. The circulation phenomenon, illustrated in Figure 7, may be explained as follows.

Figure 7. Illustration of Suspension Circulation

Before the column is set vertical, it is in an inclined position, during which particles start settling onto the lower side of the column wall. Because of the obstruction offered by the wall, the particles can only move by "sliding down" along the wall to the bottom of the tube, the liquid displaced being forced upward along the upper wall and thereby creating circulation in the opposite direction to the cranking. By the time the column has been set vertical, this motion still persists until its force is fully damped.

Circulation in the dilute suspension was more vigorous than that in the concentrated suspension, but both cases could result in a faster initial settling velocity than without circulation and invalidated the assumption of uniform initial concentration. Circulation diluted the upper portion of the bed and undoubtedly also introduced unpredictable forces on the particles.

The circulation trouble caused by the cranking motion was minimized by cranking with a suitable speed and watching the tendency for circulation. The column was set vertical with a gentle action, but when the suspension tended to circulate, the column was swung slowly in the opposite direction to a slight inclination in such a way as to produce an opposing circulation, after which it was again gently set vertical. This technique was successful in damping the circulation tendency. For fine particles, the motion and concentration distribution of which were difficult to visualize by eye, some of the particles were colored.

Any inclination of the column during settling also caused circulation to develop, even if the above method did avoid circulation at the beginning. This phenomenon had been noted by Pearce (58). The vertical positioning of the column was therefore checked by a level.

The experimental method adopted was successful in excluding air from the column. In the viscous liquid, a large air bubble always introduces a diffuse interface during the early stage of settling, while tiny air bubbles which rise slowly during settling can interfere with the downward moving particles. The speed of cranking was important to get a uniform suspension throughout the column. When it was too fast,

a centrifugal action was introduced and concentration of the suspension at both ends was observed visually, while if it was too slow, the particles would either concentrate at one end or keep on circulating about the middle part of the column. Acceptance of data which conformed to the requirement of uniform concentration was by indirect judgement, based on the sedimentation theory discussed in Appendix I. Irrespective of the mode of the settling flux-concentration curve, any initially uniform suspension should have an initial period of constant settling rate, which corresponds to the specified concentration. The height versus time plot should therefore have a straight line section at the beginning, for the duration of the constant rate period. In the present experiments, height versus time was plotted for each trial. An example of such a plot is included in Appendix XII. Those tests with initial settling curves concave upward (implying more concentrated suspension at the lower end of the bed) or concave downward (implying the opposite) were discarded. The settling rate of a test was then calculated from corresponding height and time intervals within the initial constant rate settling period. It was found that the reproducibility by this selection method was acceptable, standard deviation being rarely higher than 5% and usually within 3%.

D. Data Processing

Because the temperature was not controlled, viscosity of the liquid varied among the tests on a given porosity, besides varying from one porosity to another. In order that

viscosity not become an additional parameter in the correlation of settling rate with porosity, the product $u\nu$ instead of u alone was treated as a variable independent of temperature, as shown in Appendix VI. For those tests in which temperature variation was noted, the arithmetic mean of the temperature before and after a test was used to calculate the viscosity. The viscosity at any temperature was obtained by linear interpolation from a series of temperature-viscosity data which bracketed the experimental temperature. Temperature had much effect on viscosity of the test liquids, a change of about 3 per cent per ^oF. being typical. In the final correlation the average value of $u\nu$ at one porosity was used.

Similarly, in calculating the size of particles from several measurements of free settling velocity, $u\nu$ was averaged as a product instead of u and ν individually.

RESULTS AND DISCUSSION

1. General

Experimental results for $u\gamma$ at different porosities for various runs on different shapes and different particle-tocolumn diameter ratios are reported in Appendix VII. For each run, average values of $u\nu$ at each porosity were plotted as log $u\nu$ against log ϵ . It was found that a straight line could be drawn through the data if one or a few points in the dilute region were left out in the curve-fitting. The best straight lines were drawn through the data by the least squares method, using $\log \epsilon$ as the independent variable. Those data in the dilute region which had to be left out in the straight line fitting were obvious from the plot. They invariably turned out to be more than 6% lower than the values from the accepted best fit equation. For the runs like Run 11- and Run 12-, where the data were intrinsically more scattered, data in the dilute region which deviated slightly more from the estimated best fit values were still accepted.

Results were presented in the above form because of its simplicity. Data on sedimentation and particulate fluidization collected from the literature (29, 30, 33, 42) showed that, by discarding a few data in the very dilute and very concentrated regions, straight line fitting was acceptable even at higher Reynolds numbers. By correlating in this manner, particle shape and particle-to-column diameter ratio were expected to show their effect in the index n.

The processed data are presented in Appendix VIII. The slopes of the fitted straight lines in the log $u\nu$ -log ϵ plots,

and their respective 95% confidence limits, were calculated. The possible effect of the wall was studied by comparing the results obtained for different particle-to-column diameter ratios.

The value of $(u\nu)_{ext}$, obtained by extrapolating the least squares lines to a porosity of unity, and their respective 95% confidence limits, were calculated and compared to the experimental free settling results (Appendix IX) for the glass beads, salt crystals and ABS pellets, the shape factors of which were all known. The corresponding Stokes particle sizes were compared with microscopic size measurements (Appendix X) and results from weighing particle samples.

The method suggested by Beranek and Klumpar (50), that of using fixed bed porosity in order to account for shape variation in correlating settling data on particles of different shapes, was tested.

According to equation 2a, using D_v as particle diameter, a linear relationship exists between log u and D_v/D_t at a fixed porosity. Thus, for the present linear extrapolation of log u ν versus D_v/D_t to zero D_v/D_t , at constant ϵ , should eliminate any wall effect present. However this method is not appropriate to the present data because of the variation of $u\nu$ within a test, and because of the limited number of values of D_v/D_t available, which may give rather uncertain extrapolation.

The variation of $u\nu$ in the original data might be due to experimental error, including the difficulty of getting absolutely uniform suspensions. From the respective average values of $u\nu$, a wall effect appears to manifest itself, but not prominently. The results for the five kinds of particles are presented below. In all log $u\nu$ -log ϵ plots, solid points were not used in the curve-fitting calculation.

2. Index n for Hindered Settling

A. Spherical Glass Beads

The settling data are plotted in Figures 8a-8g, and a summary of results from Appendix VIII is given in Table 5, which shows the least squares values of the index n, with their respective 95% confidence limits.

The measured values of n for the glass beads were all lower than those suggested by Richardson and Zaki (43) with wall correction (equation 2a), but slightly higher than the Richardson-Zaki value of 4.65 without wall correction. For all but Run 7-3, the calculated Richardson-Zaki indices, assuming wall effect, lay outside the 95% confidence limits of the experimental values.

In Figure 9, average values of $u\nu$ for the same set of particles settling in columns of different sizes are compared for wall effect. The qualitative trends seem to be reasonable except in the case of Runs 1-2 and 1-3, the positions of which appear reversed.

Values of n for different particle-to-column diameter ratios are plotted in Figure 10, with the line recommended by Richardson and Zaki (43) included for comparison. The reason why the values of n in the present experiments are different from those of Richardson and Zaki is probably the rigorous criterion for accepting or rejecting settling data used here, as opposed to the methods of either simply timing an initial sett-

ГаЪ]	le 5
------	------

Summary of Results for Spherical Glass Beads

				•
Run No.	D _v , cm	D _v /D _t	n with 95% Confidence limits	Eqt. 2a, n = 4.65 + 19.5 D/D _t
1-1	0.114	0.045	4.97 <u>+</u> 0.35	5.53
1-2		0.030	4.83 <u>+</u> 0.11	5.24
1-3		0.022	4.82 <u>+</u> 0.09	5.08
2-1		0.045	4.68 <u>+</u> 0.32	5.53
2-2		0.030	4.74 <u>+</u> 0.37	5.24
2-3		0.022	4.67 <u>+</u> 0.16	5.08
7-3	0.0492	0.0097	4.69 <u>+</u> 0.16	4.84

Table 6

Summary of Results for Cubic Particles

Particles	Run No.	D _v cm	D _v /D _t	n with 95% Confidence limits
Salt	5-3	0.0282	0.0056	5.45 <u>+</u> 0.08
	3 -1A	0.0341	0.0134	5.54 <u>+</u> 0.12
	3-2		0.0090	5.50 <u>+</u> 0.09
	3-3		0.0067	5.38 <u>+</u> 0.07
	3-4		0.0044	5.24 <u>+</u> 0.06
	4-2	0.0391	0.0103	5.55 <u>+</u> 0.07
	4-3		0.0077	5.49 ± 0.05
ABS	6-4	0.288	0.0374	5.44 <u>+</u> 0.13
· · · ·	6-5		0.0285	5.45 <u>+</u> 0.22

• · · · ·

Figure 8. Logu ν -log ϵ Plot of Glass Beads in 40 % PEG

с З

 $D_v = 0.0492 \text{ cm}, D_v/D_t = 0.0097$ Figure 8g. $Logu\nu - log \epsilon$ Plot of Glass Beads in 35.4% PEG

ა ა

Figure 9. Wall Effect on Glass Bead Settling

Figure 10. Results of n Plotted against D_v/D_t

ling period, or drawing a tangent to any initial settling curve and computing the constant settling rate from this tangent. The former method was apparently used by Richardson and Zaki. Either method would have given a variation as large as 10% in the present experiments.

B. Cubic Salt Crystals and ABS Pellets

Results for cubic shape particles are plotted in Figures lla-lli and summarized in Table 6, the detail of which are in Appendix VIII.

The slopes of the best straight lines, given by the index n, were consistently higher than those for the glass beads, as shown in Figure 10. Figure 12 is a plot of the averaged data for particles of the same size settling in columns of different diameters. In this range of D_v/D_t , the effect of the wall was again not prominent, particularly at high porosity where the points overlapped. Differences in values of the index n mainly arose from the differences in settling rate at low porosity. No definite trend could be observed in the graphs. However, by ignoring Run 3-4 on the salt crystals and the two runs on the ABS pellets, and plotting n for each run against D_v/D_t , as in Figure 10, the best straight line fit to the points was given by

$$n = 5.33 + 17.3 \frac{D_v}{D_t}$$
(13)

This form of equation was suggested by Richardson and Zaki who obtained

Figure 11a. Logu ν -log ϵ Plot of Salt Crystals in Oil

 $D_v = 0.0341 \text{ cm}, D_v/D_t = 0.0067$

 $D_v = 0.0341 \text{ cm}, D_v/D_t = 0.0044$

Figure 11d. $Logu\nu$ -log ϵ Plot of Salt Crystals in Oil

60

 $D_v = 0.0391 \text{ cm}, D_v/D_t = 0.0103$ Figure lle. Logu ν -log ϵ Plot of Salt Crystals in Oil

δ

 $D_v = 0.0282 \text{ cm}, D_v/D_t = 0.0056$

Figure 11g. Logu ν -log ϵ Plot of Salt Crystal in oil

 $D_v = 0.288 \text{ cm}, D_v/D_t = 0.0285$

Figure 11i. $Logu \nu - log \epsilon$ Plot of ABS Pellets in Oil

Wall Effect on Salt Particle Settling Figure 12.

$$n = 4.65 + 19.5 \frac{D}{Dt}$$
 (2a)

for spheres. The line corresponding to equation 13 could not be extended to the ABS pellets, which lie almost in the same region of n as the salt crystals but have higher values of D_v/D_t . The linear relationship may not be applicable to those higher values of D_v/D_t , where n appears to level off, at least temporarily. Richardson and Zaki obtained similar unexplained results for spheres at higher Re_o and higher D/D_t (0.04).

C. Flaky Sugar Crystals and Angular Mineral Crystals

The results are summarized in Talbe 7 and shown in Figures 13a - 14d. The least squares values of the index n for the sugar crystals and the mineral crystals were much higher than those for the glass beads, and somewhat higher than those for the salt crystals and the ABS pellets, in the same range of D_V/D_t (Figure 10). This was consistent, since flaky and angular shapes have a lower sphericity than cubes, which in turn are of course lower in sphericity than spheres.

The settling rate of similar particles in columns of different diameters (Runs 9-, 10-, 11- in Appendix VIII) did not show any consistent wall effect.

The index n thus appears to be more sensitive to particle shape than to wall effect, at least for the present data. Comparison of shape effect is, nevertheless, best made at similar particle-to-column diameter ratios.

It has been reported that n for nonspherical particles of specified shape varied with absolute particle size (59). However, from the present results for different sets of salt

Table 7

Summary of Results for Sugar Crystals

Particles	Run No.	D _v , cm	D _v /D _t	n with 95% Confidence limits
Sugar	12-3	0.113	0.0222	5.83 <u>+</u> 0.34
	11-2	0.135	0.0356	5.69 <u>+</u> 0.33
	11-3	0.135	0.0265	5.66 ± 0.45
Mineral.	10-2	0.0426	0.0113	5.89 <u>+</u> 0.19
	10-3	0.0426	0.0084	5.76 ± 0.08
	9-2	0.0508	0.0135	5.69 ± 0.07
	9-3	0.0508	0.010	5.69 ± 0.10

and Mineral Crystals

 $D_v = 0.1346 \text{ cm}, D_v/D_t = 0.0356$

Figure 13a. Logu ν -log ϵ Plot of Sugar Crystals in Oil

 $D_V = 0.1346 \text{ cm}, D_V/D_t = 0.0265$ Figure 13b. Logu ν -log ϵ Plot of Sugar Crystals in Oil

 $D_v = 0.1133 \text{ cm}, \quad D_v/D_t = 0.0223$

 $D_v = 0.0508 \text{ cm}, D_v/D_t = 0.0134$ Figure 14a. Logu ν -log ϵ Plot of Mineral Crystals in Oil

Figure 14b. Logu ν -log ϵ Plot of Mineral \circ Crystals in Oil

crystals having average sizes which differed by a factors of 1.5 and similar narrow size distributions (Appendix X), the index n for the same shape did not depend on the particle size.

The deviation of the data at high porosity ($\epsilon \sim 0.90-0.95$) from the best straight line cannot be regarded as an intrinsic behaviour of ideal suspensions. This can be judged from the logu ν -log ϵ plots, which show that the straight lines for the finer particle suspensions apply to higher porosities than those for the coarser particle suspensions. Despite the greater difficulty in obtaining a narrow cut of the finer particles, the coarser particles were subject to a slightly greater uncertainty in the location of the supernatant-suspension interface, and were also more subject to the possible distorting effect of circulation and the wall.

3. Comparison with Single Particle Results

In Tables 8 and 9, values of $u\nu$ obtained by extrapolating the logu ν -log ϵ plot to a porosity of unity are compared to the average values of the same product obtained by free settling. Both have also been corrected for wall effect by equation 12. Values of $(u\nu)_{ext}$ and $(u\nu)_{ext}^{i}$ are consistently several percent lower than $(u\nu)_{0}$ and $(u\nu)_{\infty}$ respectively, which is different from what Richardson and Zaki (43) suggested.

To check the validity of the small samples used in the free settling experiments, sphere diameter and cube length were calculated from $(u\nu)_{ext}^{i}$ and $(u\nu)_{\infty}$ by equation 8a:

$$D_{v} = \left[\frac{18u\nu\rho}{K_{ST}(\rho_{p} - \rho)g}\right]^{\frac{1}{2}}$$
(8a)

Та	ь1	е	8
		_	-

Run No.		$(u\nu)_{\infty}$	<u>uvv</u>				
	$(u\nu)_{ext}$	$(u\nu)'_{ext}$	(u <i>v</i>) ₀	$(u\nu)_{\infty}$	uvν	(u ^v)'ext	(uv)'ext
1-1	115.4	126.2	125.7	129.6	125.9	1.027	0.998
1-2	116.5	123.8				1.047	1.017
1-3	114.3	119.6				1.083	1.052
2-1	106.8	116.8	123.7	127·•6	123.9	1.092	1.061
2-2	111.2	118.2	_			1.080	1.048
2-3	110.0	115.2				1.107	1.076
7-3	20.85	21.27	23.8	24.3	23.5	1.142	1.105

Comparison of $u\nu$ for Glass Beads

Та	b	1e	9
----	---	----	---

Comparison of $u\nu$ for Cubic Particles

Particle	Run No.	u	ν (0.01 cm ³	(uν) _∞	<u>uv</u> <i>v</i>			
		$(u\nu)_{ext}$	$(u\nu)'_{ext}$	(u <i>v</i>) ₀	(uv) _∞	u _v ν	(uv) ext	(u)'ext
Salt	5-3	5.30	5.36	6.50	6.57	6.54	1.23	1.22
	3-1A	7.68	7.90	8 .79	8.91	9.67	1.13	1.22
	3-2	7.63	7.77				1.15	1.24
	3-3	7.51	7.62				1.17	1.27
	3-4	7.33	7.39				1.20	1.31
	4-2	10.72	10.9	11.78	11.97	12.6	1.10	1.16
	4-3	10.53	10.67				1.12	1.18
ABS	6-4	70.2	75.7	87.4	94.3	94.8	1.25	1.25
	6-5	76.5	81.1				1.16	1.17

For a cube

$$K_{ST} = 0.93$$
 (12)

 $L^3 = D_v^3(\frac{\pi}{6})$

and

The calculated diameters and cube lengths are recorded in Tables 10 and 11. Agreement between diameters and cube lengths calculated from the free settling experiments and those by both microscopic measurements and sample weighing was satisfactory, thus confirming that the small samples used in the free settling experiments were representative, and that the log $u\nu - \log\epsilon$ plots therefore do really extrapolate at a porosity of unity to values of $u\nu$ lower than those obtained by free settling.

Gasparyan and Ikaryan (25) obtained a similar result in the creeping flow region, and found that the difference between the extrapolated u and the u calculated for free settling was greater than 20% at higher Reynolds numbers.

The agreement between the calculated average lengths of the salt crystals and those from both microscopic measurements and sample weighing indicates that the chosen salt crystals behaved as cubes even though they had rounded-off corners.

4. Settled Bed Porosity

The settled bed porosity was found to approach a constant value a short time after the observable settling process had subsided. These values were reproducible, and are plotted against sediment bed height in Figures 15a-c for different shapes of particles. Those data at low bed height were rendered less reliable than the others because of the boundary effect at the

	Т	a	Ь	1	е	1	0
--	---	---	---	---	---	---	---

Comparison of Diameters of Glass Beads

Run No.	Sieve openings	Sphere diameter, cm, from								
	cm	Sample weighing D _V	$(u\nu)_{ext}$	$(u\nu)'ext$	(u <i>v</i>) ₀	(u <i>v</i>) _∞	microscope			
1-1	0.0991/0.117	0.114	0.109	0.114	0.114	0.116	0.112			
1-2	ave. 0.108		0.110	0.113						
1-3			0.109	0.111						
2-1			0.106	0.111						
2-2			0.108	0.111						
2-3			0.107	0.110						
7-3	ave. 0.0456	0.0492	0.0463	0.0468	0.0494	0.050	0.492			
	0.0417/0.0495									

Ta	b	16	3	1	1

Comparison of Cube Lengths of Cubic Particles

Particles	Run No.	Sieve openings	Dv	Length of Cube, cm., from							
		cm	Cm	$(u\nu)_{ext},$	$(u\nu)'_{ext}$	$(u\nu)_0 (u\nu)_\infty$	microscope	Sample weighing			
Salt	5-3	0.0208/0.0250	0.0282	0.0212	0.0214	0.0234 0.0236	0.0229	0.0234			
		ave. 0.0229					0.0232				
	3 - 1A	0.0250/0.0295	0.0341	0.0254	0.0258	0.0272 0.0274	0.0273	0.0272			
	3-2	ave. 0.0273		0.0253	0.0256	i	0.0274				
	3-3			0.0252	0.0254						
	344			0.0248	0.0249						
	4-2	0.0295/0.0351	0.0391	0.0302	0.0305	0.0316 0.0318	0.0316	0.0316			
	4-3	ave. 0.323		0.0295	0.0302		0.0319				
ABS	6-4		0.288	0.207	0.214	0.230 0.239		0.232			
	6-5			0.216	0.221	:					

•

Figure 15a. Settled Bed Porosity of Glass Beads

RUN NO. 0.47 0 ο 0 0 0 0.46 0 0 0 0 0 0 0 3-1A 0.45 0.44 0.47 00 0 0 ° 0 0 0 0 0 0.46 0 0 3-2 0.45 0.44 ° ° ° 0.46 E-0 0 0 0 0.45 3-3 0 0 0 0 0 0.44 0.46 ° ° ° ° 3-4 0.45 0 О 0 ο 0 0.44 ¢₽ ο ° _{° o} 0.46E 0 0 0 4-2 0 0.45 0 POROSITY ο 0 0.44 0 ° _{° o} 0.46E ° 0 0 4-3 0 0.45 0 0 θ 0.47 0 0 o 0 0.46 0 0 ο 0 0 0 5-3 0.45 0.44F 0.48 0 0 0.47 ο 0 6-4 0.46 0 0 0 0.45 0.48 0 0.47 0 0 0 0 6-5 0.46 0 0.45E 5 10 15 20 25 30 35 4 HEIGHT OF FIXED BED, mm. 35 40 0

Figure 15b. Settled Bed Porosity of Cubic Particles

	0.50		1	1	1		1		I			Γ	1	1	RUN NO.
	0·49 0·49		0	0	0	0	0	0	0	0	0	0	9	0	9-2
	0·50 0·49 0·48	استاستا ا	o	0	0	0	0	0	0	o	o	0	0	0	9 - 3
	0·50 0·49 0·48	hudud	0	0	0	0	9	0	0	0	0	0	0	0	10-2
TY €b	0·50 0·49 0·48		0	0	0	0	8	0	0	. 0	0	0	0	-	10-3
POROSI	0·50 0·49 0·48	lu ul uul	0	0	0	0	0	0	9	. 0	0	0	0	-	11-2
_	0·50 0·49 0·48	المعيا	0	0	0	0	0	o	0	0	0	0	0	-	11-3
	0·50 0·49 0·48	. اديديا ديرا	0	0	0	0	0	0	0	0	0	0	0	-	12-3
			<u> </u>				<u> </u>					75			<u> </u>
	. (J	D	IC) 	10	2	.0	2:) 	50	ວວ 	4	U	
			ΗE	IG	H٦	ΓΟ)F	F	X	ED	B	ED	, m	nm.	

Figure 15c. Settled Bed Porosity of Mineral and Sugar Crystals

bottom, complicated possibly by uneveness of the walls at the bottom of the columns.

Fixed or settled bed porosity decreased slightly with bed height. The probable explanation for this trend is that, the greater the bed height, the greater the applied pressure on the lower portion of the bed, and hence the greater the degree of compaction of the bed.

It was found that those particles with shapes appreciably different from spheres showed a greater sensitivity of ϵ_b to bed height than the spheres. Stacked beds of non-spherical bodies or rough bodies have been observed to form beds of less stable porosity with respect to pressure then smooth spheres (60). This effect, however, was only a minor one for the random loose packed beds of the present experiments.

The mean values of ϵ_b for each run were estimated by drawing a horizontal line through the data, ignoring the points at low bed height. The mean values of ϵ_b obtained were 0.435 (variation 0.432-0.438) for the spherical glass beads, 0.455 (variation 0.450-0.461) for the cubic salt crystals, 0.486 (variation 0.485-0.487) for the mineral crystals and 0.485 for the sugar crystals. The ABS pellets showed an appreciable change of ϵ_b with bed height, due presumably to their low density which requires a greater bed height to produce packing stability. Comparing with the packed bed porosity results of Brownell et. al. (51), the value of ϵ_b obtained for the glass beads agrees very closely to their value of random loose porosity for uniform smooth spheres, while ϵ_b of the salt crystals corresponds to their random loose packed bed of particles having a sphericity of 0.84.

The latter figure is a little higher than the sphericity of a perfect cube, 0.806, and might be attributed to the rounded-off corners of the salt crystals which increased their sphericity.

5. Beranek-Klumpar Plot

Figures 16a-16d, respectively, are tests of four variations of the Beranek-Klumpar method, using the experimental data of the present study. Where u_{∞} rather than u_{ext} is used in the abscissa, only the data for spherically isotropic particles are plotted, since u_{∞} for the other particles is a function of orientation. The data for ABS pellets were not included because of the large bed height effect on ϵ_b . The term u_{in} was obtained from

$$u_{in} = u_{ext} \epsilon_b^n \tag{14}$$

using the experimentally determined values of n for the given run and of ϵ_b for the given particles shape. The best of the four variations is Figure 16a, which does result in some correlation of the data for different shapes, but can hardly be considered a perfect correlation, the maximum horizontal spread between the points averaging about 15%. A distinct difference between the curves for different shapes still persists even when the comparison is restricted to similar particle-to-column diameter ratios.

6. $n - \epsilon_b$ Plot

Ignoring the wall effect, the index n was plotted against the settled bed porosity in Figure 17. An obvious trend was found for n to increase with ϵ_b . The latter is related to particle shape in general and sphericity in particuler (51). We thus have

Figure 16a. Beranek-Klumpar Plot using (u-uin)/uext

Figure 17. n vs. $\epsilon_{\rm b}$ Plot

(The numbers in the graph indicate Run Nos.)

a potentially useful method of predicting n for different particle shapes. Any uncertainty in the prediction of n by this method is probably smaller than the error (up to 20%) incurred by the Richardson-Zaki method of using u_{∞} instead of u_{ext} in

$$\frac{u}{u_{\text{ext}}} = \epsilon^n \tag{1a}$$

7. Observations

For spherical glass beads, the top layer of a settling suspension, the thickness of which was of the order of a few particle diameters, consisted of particles arranged randomly in space. Relative motion of the particles within this layer rarely occurred, except that occasionally a particle might move upward through the bed and then fall on its arrival at the inter-Below this calm layer, particles travelled relative to face. each other in apparently random directions. Clusters of particles were moving downward, while some nearby clusters of particles were rising. A given cluster might rise at one moment and fall at another moment, or might break up during its movement. By "cluster" is meant a group of particles which moved together and rotated as a whole, but not in the same sense as agglomorated particles which occur in flocculation; there was no distinct difference in interparticle distance within and outside a cluster. Lateral motion of particles was observed in the lower portion of a suspension. The motion was not systematically in the radial direction. The occurrence of interparticle contact between spherical particles was uncertain.

The same general type of behaviour was found in the settling beds of nonspherical particles. Orientation of the individual particles was apparently random and changing during settling. There was observable interparticle contact between some particles. A particle would change its orientation when it was diverted by a neighbour either by direct obstruction or by hydrodynamic interference.

It is likely that the net motion of the particles was affected by particle orientation. The overall orientation of a settling bed may not be the one which gives the least resistance to fluid flow and, in addition, mechanical contact between particles causes further energy dissipation. This might be one reason why nonspherical particles with flaky or angular shapes have hindered settling rates more affected by concentration than do spheres.

Experimental settling rates in creeping flow reported here and many in the literature (33, 43, 62) were found to be considerably higher than those for a mechanically extended bed with spheres in cubic array (61), and also considerably higher than those predicted theoretically by both the "free surface" model of Happel (22) and the hexagonal configuration model of Richardson and Zaki (26) (see Figure 18). On the other hand, multiparticle motion in small clusters was reported (10) to have reduced drag, which could explain the faster settling rates of the experimental results compared to those of the idealized models.

Figure 18. Comparison of the Present Results for Spheres to Models in the Literature

CONCLUSIONS

1. Hindered settling without flocculation of spherical and nonspherical narrowly sized particles of uniform shape in creeping flow can be well represented by a simple straight line fitted to the data on log uv-log ϵ coordinates, if a few data in the dilute region (ϵ ~0.90-0.95) are excluded. The non-linearity of this region was believed to arise from the uncertainty in the low concentrations. The slope n of the fitted line depends on particle shape, ranging from an average value of 4.8 for smooth spheres to 5.4 for cubes to 5.8 for angular crystals.

2. The index n for spheres was close to that found in the literature (25, 43), but the results for different particle-to-column diameter ratios $(D_V/D_t < 0.045)$ did not show nearly the same effect of the wall as that reported by Richardson and Zaki (43). On the other hand, for cubic salt crystals, n could be represented statistically up to $D_V/D_t = 0.015$ by

$$n = 5.33 + 17.3 D_v/D_t$$

the wall correction constant of which is close to that of Richardson and Zaki. However, this constant fails completely at values of D_v/D_t above 0.015.

3. The method recommended by Beranek and Klumpar for correlating both spherical and nonspherical particle fluidization data was only moderately successful in correlating the present settling data for different shapes. The fluidization data plotted by Beranek and Klumpar included some on porous particles and were thus probably misleading; and even those data showed considerable scatter.

4. The settling rates obtained by linear extrapolation on log-log coordinates to a porosity of unity were found to be lower than the corresponding free settling rates obtained by experiment or computed by size measurement. This finding is supported by some careful experimental data in the literature (33).

5. The index n obtained for non-isotropic particles was consistently higher than that for spherically isotropic particles. This greater concentration dependence of the nonisotropic particle settling rates could be caused by the random orientation and consequent greater mutual hindrance of the nonisotropic particles, observed visually.

6. The index n showed a definite increase with the settled or random loose fixed bed porosity of the particles. The latter decreased slightly with bed height for low bed heights.

RECOMMENDATIONS

Prediction of index n by measuring ϵ_b should be useful. It is suggested that more data at low D_v/D_t for various particle shapes, including elongated needle shapes, be collected in the creeping flow region to confirm the method. A procedure for obtaining a more consistent value of ϵ_b should be used. It is also desirable to study the prediction of u_{ext} and its relationship to u_{∞} , which has a unique value independent of orientation only for spherically isotropic bodies. For non-isotropic bodies, the free settling velocity u_v of an equivalent volume spheres, which does have a unique value for a given particle, could be applied instead of u_{∞} .

Since the present experimental method could not be used for mixing a fast settling suspension, and the method of processing data in the $u\nu$ form is inapplicable beyond creeping flow, further work at high Reynolds numbers should be done by using fluidization as both the mixing and fluid-solid contacting method, with liquid temperature well controlled. This would involve careful design of the fluidization column and examination of the effect of entrance design and supporting screen.

Artificial particles with regular shapes would give more information than irregular shapes since their behaviour in free settling is better understood. In addition, current work (63) on artificially expanded packed beds of spheres could be profitably extended to non-spherical particles.

The wall effect on hindered settling of spherical particles found by Richardson and Zaki did not agree with the present work, which was not aimed specifically to study wall effect. The wall effect on spheres in the high Reynolds number region was studied by Nenzil and Hrdina (64), who used ϵ as a parameter and correlated u with D/D_t. More work is required on wall effect for hindered settling of spheres in creeping flow and the influence of non-sphericity on this effect. This information would be particularly useful for further work in this field involving the use of relatively large particles in small containers.

NOMENCLATURE

,

A _s	surface area of sphere of equal volume	cm^2
A _p	projected area of particle	cm^2
A	surface area of particle	cm^2
С	perimeter of the particle projected onto a surface	cm^2
CI	circumference of a circle of area equal to the projected area of the particle	c m ²
CD	drag coefficient	
C_v	calibration constant of viscometer	⁽ cs/sec
с	volumetric concentration of suspension, $(1-\epsilon)$	
D	diameter of sphere	cm
D _c	diameter of a circle of same area as the projected area of the particle lying in its most stable position	CM
D _s	diameter of sphere of equal surface area	cm
D _t	column diameter	cm
Du	diameter of sphere of equal settling rate	cm
D_v	diameter of sphere of equal volume	cm
F	drag force on particle settling in infinite medium	g.cm.sec ⁻²
F۱	drag force	g.cm.sec ⁻²
f	function of	
g	acceleration of gravity 980	cm.sec ⁻²
K,k	proportionality constant	
KST	Stokes! law shape factor	
K _v	Heywood volumetric shape factor defined as $\pi D_v^3/6D_c^3$	
L	dimension of length	cm
n	Richardson-Zaki index	

Re	particle Reynolds number defined as $\frac{Du}{v}$ or I	Vu V
Reo	free settling particle Reynolds number defi as $\frac{Du_{\infty}}{\nu}$, $\frac{D_{\nu}u_{\infty}}{\nu}$, or $\frac{Lu_{\infty}}{\nu}$	Ined
t _{cr}	duration of constant rate settling	sec
t _e	efflux time of liquid in viscometer	sec
u	hindered settling rate or superficial velocity of liquid in fluidization	cm sec ⁻¹
u _{ext}	extrapolated free settling rate	$cm sec^{-1}$
uin	incipient fluidization velocity	cm sec ⁻¹
u _O	single particle free settling rate in bounded medium	cm sec ⁻¹
u _{co}	single particle free settling rate in infinite medium	$cm sec^{-1}$
u _v	free settling rate of sphere of equal volume in infinite medium	"cm:sec ⁻¹
$(u\nu)_{ext}$	corresponding to $u_{ext} \times v$	$(0.01 \text{ cm}^3 \text{ sec}^{-2})$
$(u\nu)_{ext}$	$(u\nu)_{ext}$ corrected for wall by eqt. 12	$(0.01 \text{ cm}^3 \text{ sec}^{-2})$
(u <i>v</i>) ₀	corresponding to $u_0 \propto v$	$(0.01 \text{ cm}^3 \text{ sec}^{-2})$
$(u\nu)_{\infty}$	corresponding to $u_{\infty} \times \nu$	$(0.01 \text{ cm}^3 \text{ sec}^{-2})$
U	upward travelling rate of concentration discontinuity plane in hindered settling	$cm sec^{-1}$
V	volume	cm ³
W	upward travelling rate of a constant concentration element in hindered settling	cm sec ⁻¹
zi	initial suspension bed height	cm

Greek Letters

•

E	porosity of suspension or fluidized bed	,
έ _b	fixed bed porosity	
ρ	density of liquid	g⊊cm ² 3

ρ _p	density of particle	g.cm ⁻³
Ø	function of	
Ψ	sphericity defined as A _S /A	
·μ	viscosity of liquid	cp or (0.01gcm ⁻¹ sec ⁻¹).
ν	kinematic viscosity of liquid	cs or $(0.01 \text{ cm}^2 \text{ sec}^{-1})$

Abbreviations

DIST	distance
Eqt.	equation
нтв	height of settled bed
PEG	polyethylene glycol
TEMP	temperature
WT.	weight of solid
STD.DEV.	standard deviation

LITERATURE CITED

1.	Stokes, G.G., Trans. Cambridge Phil. Soc., <u>9</u> , II, 51 (1851)
2.	Perry, J.H., Chemical Engineers' Handbook, 3rd, McGraw-Hill, New York (1950)
3.	Coe, H.S., Clevenger, G.H., Trans. Am. Inst. Mining Engrs., <u>55</u> , 356 (1916)
4.	Proudman, I., Pearson, J.R.A., J. Fluid Mech., <u>2</u> , 237 (1957)
5.	Whitehead, A.N., Quart. J. Math., 23, 143 (1889)
6.	Oseen, C.W., Neuere Methoden und Ergebnisse in der Hydrody- namik, Leipzig, Akademishe Verlag (1927)
7.	Jenson, V.G., Proc. Roy. Soc., <u>A249</u> , 346 (1959)
8.	Oberbeck, H.A., Crelles J., <u>81</u> , 79 (1876)
9.	Gans, R., Sitzber Math-physik klasse Akad. Wissen, Munich, <u>41</u> , 198 (1911)
10.	Happel, J., Brenner, H., Low Reynolds Number Hydrodynamics, Prentice-Hall (1965)
11.	Pernolet, V., Ann. Mines, 4me. Series, 20, 379 and 535 (1851)
12.	Pettyjohn, E.S., Christiansen, E.B., Chem. Eng. Prog., <u>44</u> , 157 (1948)
13.	Chowdhury, K.C.R., Fritz, W., Chem. Eng. Sci., <u>11</u> , 92 (1959)
14.	Heiss, J.F., Coull, J., Chem. Eng. Prog., <u>48</u> , 133 (1952)
15.	Blumberg, P.N., Mohr, C.M., A.I. Ch.E. Journal, <u>14</u> , 331 (1968)
16.	McNown, J.S., Malaika, J., Trans. Am. Geophys. Union <u>31</u> , 74 (1950)
17.	Jayaweera, K.O.L.F., Mason, B.J., J. Fluid Mech., <u>22</u> , 709 (1965)
18.	Christiansen, E.B., Barker, D.H., A.I. Ch.E. Journal, <u>11</u> , 145 (1965)
19.	Isaacs, J.L. Thodos, G., Can. Jour. Chem. Eng., <u>45</u> , 150 (1967)
20.	Becker, H.A., Can. Jour. Chem. Eng., <u>37</u> , 85 (1959)
21.	Torobin, L.B., Gauvin, W.H., Can. Jour. Chem. Eng., <u>38</u> , 142 (1960)
-----	--
22.	Happel, J., A.I. Ch.E. Journal, <u>4</u> , 197 (1958)
23.	Kuwabara, S., J. Physics Soc., Japan, <u>14</u> , 527 (1959)
24.	Leclair, B.P., Hamielec, A.E., Viscous Flow through Particles Assemblages at intermediate Reynolds Number. McMaster Univ. (1967)
25.	Gasparyan, A.M., Ikaryan, N.S., Izv. Akad. Nauk. Arm. SSR. Ser. Tekhn. Nauk., <u>15</u> , No. 2, 49 (1962)
26.	Richardson, J.F., Zaki, W.N., Chem. Eng. Sci., <u>3</u> , 65, 1954
27.	Hawskley, P.G.W., Some Aspect of Fluid Flow, (1950)
28.	Hanratty, T.J., Bandukwala, A., A.I. Ch.E. Journal <u>3</u> , 293 (1957)
29.	Whitmore, R.L., Brit. Jour. Appl. Phy., <u>6</u> , 239 (1955)
30.	Steinour, H.H., Ind. Eng. Chem. <u>36</u> , 618 (1944)
31.	Richardson, J.F., Meikle, R.A., Trans. Instn. Chem. Engrs., 39, 348 (1961)
32.	Harris, C., Nature, <u>183</u> , 530 (1959)
33.	Loeffler Jr., A.L., Ruth, B.F., A.I. Ch.E. Journal, <u>5</u> , 310 (1959)
34.	Einstein, A., Ann. Phys. Lpz., <u>19</u> , 286 (1906) <u>34</u> , 591 (1911)
35.	Vand, V, J. Phys. and Colloid Chem., <u>52</u> , 277 (1948)
36.	Brinkman, H.C., Appl. Sci. Res., <u>A1</u> , 27 (1947)
37.	Verschoor, H., Appl. Sci. Res., <u>A2</u> , 155 (1950)
38.	Robinson, C.S., Ind. Eng. Chem., <u>18</u> , 869 (1926)
39.	Oliver, D.R., Chem. Eng. Sci., <u>15</u> , 230 (1961)
40.	Lewis, E.W., Bowerman, E.W., Chem. Eng. Prog., <u>48</u> , 604 (1952)
41.	Lewis, W.K, et.al., Ind. Eng. Chem., <u>41</u> , 1104 (1949)
42.	Wilhelm, R.H., Kwauk, M., Chem. Eng. Prog., <u>44</u> , 201 (1948)
43.	Richardson, J.F., Zaki, W.N., Trans. Instn. Chem. Engrs., 32. 35 (1954)

44.	Hancock, R.T., Trans. Instn, Min. Engrs., <u>94</u> , 114 (1938)
45.	Gasparyan, A.M., Ikaryan, N.S., Izv. Akad. Nauk. Arm. SSR. Ser. Tekln. Nauk., <u>15</u> , No. 4, 53 (1962)
46.	Jottrand, R., J. Appl. Chem., <u>2</u> , Sup 1, S17 (1952)
47.	Mueller, F., Schramm, W., Mitteilungen, <u>5</u> , 361 (1966)
48.	Zenz, F.A., Othmer, D.F., Fluidization and Fluid-Particle Systems, Reinhold (1960)
49.	McCabe, W.L., Smith, J.C., Unit Operations of Chemical Engineering, McGraw-Hill (1956)
50.	Beranek, J., Klumpar, I., Chem. Lusty., <u>50</u> , 1540 and 1673 (1956)
51.	Brownell, L.E., Dowbrowski, H.S., Dickey, C.A., Chem. Eng. Prog., <u>46</u> , 415 (1950)
52.	Waddal, H., Physics, <u>5</u> , 281 (1934)
5 3.	Martin, J.J., McCabe, W.L., Monrad, C.C., Chem. Eng. Prog., <u>47</u> , 91 (1951)
54.	Brenner, H., J. Fluid Mech., <u>12</u> , 35 (1962)
55.	McNown, J.S., et.al., Proc. 7th. Intern. Cong. Appl. Mech., London (1948)
56.	Kaye, B.H., Davies, R., Proceeding of the Symposium on the Interaction between fluid and Particles, London, June (1962)
57.	Pruden, B., M.A.Sc. Thesis, Dept. of Chem. Eng., UBC (1964)
58.	Pearce, K.W., Proceeding of the Symposium on the Interaction between Fluid and Particles, London, June (1962)
59.	Whitmore, R.L., Jour. Inst. Fuel, <u>30</u> , 238 (1957)
60.	Coulson, J.M., Trans. Instn. Chem., Eng. <u>27</u> , 237 (1949)
61.	Happel, J., Epstein, N., Ind. Eng. Chem., <u>46</u> , 1187 (1954)
62.	Shannon, P., Stroupe, E., Tory, E., Ind. Eng. Chem., <u>2</u> , 203 (1963)
63.	Gunn, D.J., Malik, A.A., Trans. Instn. Chem. Engrs., <u>44</u> , 371 (1966)
64.	Neuzil, L., Hrdina, M., Collection Czechoslov. Chem. Commun., <u>30</u> , 753 (1965)

- 65. Kynch, G.J., Trans. Faraday Soc., <u>48</u>, 166 (1952)
- 66. Shannon, P., et.al., Ind. Eng. Chem., <u>3</u>, 250 (1964)

67. Buchanan, J.E., Ind. Eng. Chem., <u>4</u>, 367 (1965)

- 68. A.S.T.M. Standards on Petroleum Products and Lubricants, D445-53T, Baltimore (1958)
- 69. Bird, R.B., Stewart, W.E., Lightfoot, E.N., Transport Phenomena, Wiley (1960)
- 70. De Verteuil, G.F., M.A.Sc. Thesis, UBC (1958)
- 71. Hodgeman, C.D., Handbook of Chemistry and Physics, The Chemical Rubber Pub. Co., (1962-63)

APPENDIX I THEORY OF SEDIMENTATION

A theory of sedimentation without detailed consideration of the hydrodynamics of particles was suggested by Kynch (65) and verified experimentally by Shannon et. al. (66). The analysis is restricted by the assumption of an ideal suspension, namely, uniform particle shape and density, absence of wall effect, and settling velocities dependent only on the local particle concentration. Consider such a suspension in a cylindrical container. By material balance it can be shown that if there is any concentration gradient present in the settling suspension, an elemental plane of constant concentration will propagate upward through the bed with velocity

$$W = - \frac{\partial(uc)}{\partial c}$$
(I-1)

where c is the local particle concentration at the elemental plane under consideration. The term uc is the volumetric solid flux. If discontinuity of concentration is present in the bed, the discontinuity plane will move upward through the dispersion at a velocity of

$$U = -\frac{\Delta(uc)}{\Delta c} = -\frac{(uc)_2 - (uc)_1}{c_2 - c_1}$$
 (I-2)

where Δ signifies a finite change of concentration at the discontinuity. With these relationships and the relationship between settling flux, uc, and concentration, c, as shown in Figure I-1, it is possible to predict quantitatively the complete settling curve for a suspension of given concentration,

I-1

and at least qualitatively, the curve for any dispersion having a certain variation of concentration with height. The shape of the settling flux graph has a profound effect on the settling curve derived from it. The settling flux graph of a microglass bead suspension which was an unflocculated ideal suspension was found to be of the form shown in Figure I-2 (62), though argument arose as to the actual shape of the curve at high concentration (67). In spite of this point, it can still be shown that an initially uniform suspension should have a period of constant initial settling rate, with a solid flux corresponding to the overall concentration. For a suspension of initial concentration ci which settles discontinuously to an ultimate sediment of concentration c_{∞} , the initial settling rate is u; while the upward velocity of discontinuity between c_i and c_{∞} , according to equation I-2, should be

$$U = \frac{u_i c_i - 0}{c_{\infty} - c_i}$$
 (I-2a)

All settling is then at constant rate for a period

$$t_{cr} = \frac{z_i}{u_i + U}$$
(I-3)

where z_i is the initial height of the suspension.

If the flux graph is of the double concave type as suggested by Shannon (66) and shown in Figure I-2, and if the initial concentration c_i happens to be in a concentration region where a discontinuous step change to c_{∞} is unstable, the suspension will settle in such a way that the upper portion still corresponds to the initial concentration c_i and the lower

I-2

part varies abruptly from c_{∞} at the bottom to c_3 , and thence continuously to c_2 , where c_3 and c_2 are inflexion points on the curve. The elemental plane of constant concentration c_2 will propagate upward with velocity corresponding to equation I-1

$$W = -\left[\frac{\partial(uc)}{\partial c}\right]_{at c_2}$$
(I-la)

and the downward moving rate of supernatant-suspension interface is u_{i} . The first period of duration

$$t_{cr} = \frac{z_i}{u_i + W}$$
(I-4)

is of constant rate. After time t_{cr}, the downward moving supernatant-suspension interface will settle with a decreasing rate as it hits the upward moving element planes of increasing concentration.

APPENDIX II DESCRIPTION AND TESTING OF LIQUID ELUTRIATION APPARATUS

The column consisted of two parts, with a supporting screen midway in the lower part, so that a considerable length of column acted as an entrance calming section (see Figure 4). The two parts of the column were inserted into matching polyethylene blocks with openings equal to the column diameter. The connections between the column and the polyethylene blocks were sealed with 0-rings to facilitate easy disassembly of the column. A gate with a screen at the center was installed in the gap between the two blocks. It could be pulled out of the opening so that free flow through the opening was permitted, or pushed into the opening so that only liquid could pass through the screen. Details of the screen gate unit are shown in Figure II-1. The column was clamped to an iron support and set in vertical position by means of a plummet.

The column was tested with spherical glass beads which had been closely sized by sieving. Mixtures of glass beads from two consecutive fourth root series Tyler screens were prepared in the proportion 90% of the larger size fraction and 10% of the smaller, the latter colored black by marking ink. The volume of column available for a fluidized bed was calculated, and the amount of mixture which would produce a fluidized bed of porosity 0.95 was introduced. Visual segregation by size was obvious in the fluidization even at lower porosity. Clear cut separation was naturally impossible. Nevertheless the column

II-1

was able to separate spherical particles of different sizes as effectively as the fourth root series Tyler screens. A further test was done by fluidizing closely sized glass beads from fourth root series screens in the column and collecting a small portion of the particles at the topmost part of the bed by shutting the screen gate. The recovered "apparently smaller" particles were colored as before and re-inserted in the column. In this case no visual segregation could be observed.

 $\mathcal{A} = \{ f_{i,j}^{(m)} \}^{(i)}$

LOWER PART OF POLYETHYLENE BLOCKS

SECTION 1-1

SCREEN GATE

Figure II-1. Detailed Drawing of Screen Gate

II-3

• {

. .

APPENDIX III NEWTONIAN BEHAVIOUR OF POLYETHYLENE GLYCOL SOLUTION

The 45% polyethylene water solution was tested for Newtonian behaviour in capillary viscometers (Cannon-Fenske) of different sizes. Table III-1 shows that the calculated viscosity did not change with capillary diameter. This indicated that the liquid behaved like a Newtonian fluid at least below the shear stress experienced by the liquid in the test, the highest of which was in the largest capillary. It can be shown that the capillary viscometers of different sizes calibrated with Newtonian liquids do not give constant apparent viscosity for a

Table III-1

Calculated Viscosity of PEG from Different Size Viscometers Temperature: 77.05⁰F

Viscometer	Approx. I.D. of Capillary* cm	Efflux Time Sec.	Calculated Viscosity cs
C3(size 200)	0.102	2383.6	259.8
D91(size 300)	0.126	1130.7	259.9
C965(size 400)	0.188	222.1	260.0

* from A.S.T.M. D445-53T (68)

non-Newtonian liquid. The maximum shear stress of the test, which occured at the wall of the capillary, and the largest capillary was estimated by the laminar pipe flow equation for a Newtonian fluid (69).

$$\tau_{rzIR} = \frac{\Delta PR}{2L}$$
(III-1a)

where $\tau_{rz|R}$ is the axial direction shear stress at the wall of the capillary the radius of which is R and ΔP is the pressure difference over the capillary length L. In the viscometer, ΔP can be taken as $L\rho g$ (In fact ΔP is larger than $L\rho g$ since the driving head in the viscometer is larger than the capillary length, which causes the main friction to fluid flow). Neglecting the unsteady state flow, equation III-la becomes

$$\tau_{\mathbf{r}\mathbf{z}|\mathbf{R}} = \frac{\rho \mathbf{R}\mathbf{g}}{2} \tag{III-1b}$$

Approximate shear stress for viscometer C965 was estimated as

$$\tau_{rz_{IR}} = \frac{1.082 \times 0.094 \times 980}{2} = 49.8 \text{ dynes/cm}^2$$

The possible maximum shear stress experienced by the liquid in glass bead settling was estimated from the equation for a single sphere settling in an infinite medium (69)

$$\tau_{\mathbf{r}\Theta|R} = \frac{3}{2} \frac{\mu_{u\infty}}{R} \quad \text{Sin }\Theta \tag{III-2}$$

where $\tau_{r\Theta|R}$ is the shear stress in the angular direction at the sphere surface which is larger than that beyond the surface, u_{∞} is the free settling velocity and R is the radius of the sphere. Maximum shear stress occurs at $\Theta = \pi/2$. From free settling data on 0.1135 mm glass beads, taking R = 0.058 cm,

$$\tau_{relR} = \frac{3}{2} \frac{140.5}{0.058} = 36.3 \text{ dynes/cm}^2$$

which is within the shear stress of the test. Thus 45% polyethylene glycol water solution conformed to Newtonian behavior in the present experimental condition.

APPENDIX IV MEASUREMENT OF DENSITY AND VISCOSITY

A. Measurement of Liquid Density

Liquid density was measured with a Westphal balance which had been calibrated with distilled water at room temperature, from which the appropriate correction factor was applied to all subsequent measurements. The sensitivity of the balance depended on the viscosity of the liquid and was estimated to be better than 0.001 gram/cu.cm.

B. Measurement of Particle Density

Conventional specific gravity bottles were used to measure the density of the particles. The density was based on the known density of water (71), in which the particles were immersed. For those particles which were soluble in water, a second immersing medium, benzene, was used. The bottles which contained liquid and particles were boiled to drive out the air bubbles trapped between the particles. All weighings were made at the same temperature by letting the bottles stand in a constant temperature bath slightly above room temperature, and immediately tightening the cap on removing the bottle from the bath in order to avoid losing liquid by evaporation.

C. Measurement of Liquid Viscosity

The kinematic viscosity of various test liquids was determined by Cannon-Fenske viscometers of appropriate size, essentially conforming to the specifications and procedures described in ASTM manual (68). The viscometers were immersed

IV-1

in a constant temperature bath with temperature controlled to within $\pm 0.05^{\circ}F$. The efflux time of the test liquid was measured by a stopwatch graduated in divisions of 0.2 seconds. The stopwatches used were all tested against N.B.S. time signals broadcasted on Station WWV over 12-hour periods, and were found to be accurate to within 0.02%. Calibration of a series of viscometers ranging from size 100 to size 400 is reported in Appendix V.

APPENDIX V CALIBRATION OF VISCOMETERS

The Cannon-Fenske viscometers ranging from size 100 to size 450 were calibrated by comparing the efflux time of a liquid in two viscometers of consecutive size number in the same bath at 77°F. Viscometer No. B78 was the standard on which all the other larger viscometers were based. It was calibrated by Cannon Laboratories. This step-up procedure of calibration, which was originally suggested in A.S.T.M. D445-53T (68) for basic calibration of master viscometer, was found to be satisfactory for the routine viscometers. The calibration constant of each of the viscometers used are listed in Table V-1. The correction for kinetic energy is negligible for the larger size viscometers at liquid efflux time higher than 200 seconds. Thus viscosity was calculated as

 $v = C_v t_e$

where t_e is the efflux time of the liquid in the viscometer of calibration constant, C_v . The calibration constant of the viscometer of the highest size number was checked by the standard oil supplied by Cannon Laboratories. The difference was less than 0.5%. Procedures for filling, cleaning and measuring efflux time are described in the A.S.T.M. manual (68).

The excellent agreement in Table V-1 between C_v (2.590) for the largest viscometer as determined by the standard oil (S-600) and that obtained by the step-up procedure using the blended solutions of automobile crank case oils (2.583) is a strong indication that the later oils were Newtonian.

V-1

Table V-1

				.		· · · · · · · · · · · · · · · · · · ·	
Cali visc	brated ometer	Reference viscometer	Standard liquid	Efflux time sec	Efflux time ratio	Ave. Efflux time ratio	Calibration constant at 77°F C., cs/sec
No.	Size No.	No.					
B78	100	*	-	-	-	-	0.01246
H69	150	B78	Oil A Oil B	208.7 324.4	2.581 2.584	2.582	0.03218
C 3	200	н69	Oil C Oil D	334•7 338•7	3 .3 90 3.387	3.388	0.1090
68	200	**	-	-	-	-	0.1086
D 91	300	C3	Oil E Oil F	222.4 336.7	2.109 2.107	2.108	0,2299
J781	300	D91	PEG sol'n	619.7	1.081	1.081	0.2485
C965	400	D91	Oil G Oil H	225.5 249.0	5.095 5.096	5.096	1.171
E60	400	D91	Oil H	254.0	4.985	4.985	1.149
V389	450	C965	Oil I PEG sol'n	160.4 337.9	2.205 2.206	2.206	2.583
V389	450	***	0il S-600	562.5	-	-	2.590

Summary of Viscometer Calibration

* Calibrated by Cannon Laboratories, Penn. State College.

** Calibrated by De Verteuil (70).

*** Standard oil supplied by Cannon Laboratories, kinematic viscosity = 1457 cs. at 77°F

V-2

2

APPENDIX VI JUSTIFICATION OF USING $u\nu$

In the viscous flow region the free settling rate of a particle in a given orientation is

$$u_{\infty} = k \frac{L^2(\rho_p - \rho)g}{18\rho\nu_{\infty}}$$

or

$$u_{\infty}\nu_{\infty} = k \frac{L^2(\rho_{\rm P}-\rho)g}{18\rho}$$
(8b)

The general expression for multiparticle settling system is

$$\frac{u}{u_{\infty}} = \phi(\epsilon, \operatorname{Re}_{0}, \frac{D_{v}}{D_{t}})$$
(9)

and under viscous flow conditions in a given container

$$\frac{u}{u_{\infty}} = \phi'(\epsilon)$$
 (VI-1)

where u and u_{∞} are measured under the same physical conditions. Temperature change has much effect on the viscosity but not on the other physical properties in equation. Thus

$$u_{\infty}\nu_{\infty} = constant$$
 (VI-2)

if u of equation VI-1 is measured at a temperature for which the liquid viscosity is ν , which is different from the value ν_{∞} at which u_{∞} is measured, u_{∞} can be corrected to

$$u_{\infty}' = \frac{u_{\infty} \nu_{\infty}}{\nu}$$

which is then the free settling velocity at viscosity ν . Equation VI-1 then becomes

$$\frac{\mathrm{u}\,\nu}{\mathrm{u}_{\infty}\,\nu_{\infty}} = \emptyset^{*}(\epsilon) \tag{VI-1a}$$

Thus when temperature is not constant, $u\nu/u_{\infty}\nu_{\infty}$ has the same functional relationship as u/u_{∞} provided that the right hand side of equation 8b is independent of temperature.

Variation of the right hand side of equation 8b with temperature was checked by the data from Run 2-, Glass beads in Polyethylene Glycol solution. The particle dimension, L, and particle density, ρ_p , should not contribute significant change since solid expansion coefficient is very small (0.274x10⁻⁴ in volume, (2)). Variation of liquid density over 8 Fahrenheit deg. of 45% PEG solution was from

1.085 g/cm³ at
$$67.2^{\circ}$$
F
to 1.0825 g/cm³ at 75.2°F

The corresponding variation of $(\rho_p - \rho)/\rho$ was calculated based on $\rho = 2.977 \text{ g/cm}^3$ as

1.744 at 67.2^oF and 1.750 at 75.2^oF

Percentage change is 0.35%. Temperature effect on the other liquid was expected to be of the same order. Actual temperature variation in the experiment was much smaller than 8 Fahrenheit degrees, as shown in the original data in Appendix VII.

APPENDIX VII ORIGINAL DATA ON HINDERED

SETTLING

The first number in Run No. signifies a combination of particles and liquid. Except in Run 8-P and 8-M, where P and M stand for "pure" and "mixture" respectively, the second number represents and the size of the column used in the settling. The column diameters of 2.54 cm, 3.78 cm, 5.08 cm, 7.71 cm and 10.12 cm are denoted respectively by the numbers 1 to 5.

Nomenclature in all computer print out is explained in Appendix XIII.

APPENDIX VII INDEX

SETTLING DATA

Run No.	Particles*	Liquid	Column Diameter	Page
Spheric	al shape	•	-	
1-1	0.114 cm Glass Beads	40% PEG Solution	2.54 cm	VII-4
1-2	0.114 cm Glass Beads	40% PEG Solution	3.78 cm	VII-5
1-3	0.114 cm Glass Beads	40% PEG Solution	5.08 cm	VII-6
2-1	0.114 cm Glass Beads	45% PEG Solution	2.54 cm	VII-8
2-2	0.114 cm Glass Beads	45% PEG Solution	3.78 cm	VII-9
2-3	0.114 cm Glass Beads	45% PEG Solution	5.08 cm	VII-10
7-3	0.0492 cm Glass Beads	35.4% PEG Solution	5.08 cm	VII-11
Cubic s	hape			
3 - 1A	0.0341 cm Salt Crystals	84.9% SAE 10W + Kerosene	2.54 cm	VII-12
3-2	0.0341 cm Salt Crystals	84.9% SAE 10W + Kerosene	3.78 cm	VII-13
3-3	0.0341 cm Salt Crystals	84.9% SAE 10W + Kerosene	5.08 cm	VII-14
3-4	0.0341 cm Salt Crystals	84.9% SAE 10W + Kerosene	7.71 cm	VII-15
4-2	0.0391 cm Salt Crystals	88.1% SAE 10W + Kerosene	3.78 cm	VII-16
4-3	0.0391 cm Salt Crystals	88.1% SAE 10W + Kerosene	5.08 cm	VII-17

 $* D_V$ is used to indicate particle size

•0

VII-1

APPENDIX VII INDEX (continued)

SETTLING DATA

Run No.	Particles*	Liquid	Column Diameter	Page
Cubic s	hape		•	
5- 3	0.0282 cm Salt Crystals	88.1% SAE 10W + Kerosene	5.08 cm	VII-18
6-4	0.288 cm ABS Pellets	66% SAE 30 + Kerosene	7.71 cm	VII-19
6-5	0.288 cm ABS Pellets	66% SAE 30 + Kerosene	10.12 cm	VII-20
Segrega	tion test			
8-P	35/42 mesh Mineral Crystals	88.1% SAE 10W + Kerosene	3.5 cm	VII-21
8-M	90% 35/42 mesh + 10% 42/48 mesh Mixture of Mineral Crystals	88.1% SAE 10W + Kerosene	3.5 cm	VII-22
Angular	shape			
9- 2	0.0508 cm Mineral Crystals	95% SAE 10W + Kerosene	3.78 cm	VII-23
9-3	0.0508 cm Mineral Crystals	95% SAE 10W + Kerosene	5.08 cm	VII-24
· 10- 2	0.0426 cm Mineral Crystals	88.1% SAE 10W + Kerosene	3.78 cm	VII-25
10-3	0.0426 cm Mineral Crystals	88.1% SAE 10W + Kerosene	5.08 cm	VII-26

,

۲

VII-2

APPENDIX INDEX (continued)

SETTLING DATA

Run No.		Particl	les*	Liquid Colum Diame	n Page eter
Flaky s	hape		-		
11-2	0.135 c	m Sug <u>a</u> r	Crystals	66% SAE 30 + SAE 10W 3.78	cm VII-27
11-3	0.135 c	m Sugar	Crystals	66% SAE 30 + SAE 10W 5.08	cm VII-28
12-3	0.113 c	m Sugar	Crystals	24% SAE 30 + SAE 10W 5.08	cm VII-29

VISCOSITY DATA

VII-30

VII-4 . • • • •

-		RUN 1-1 PARTICLES LIQUID= PARTICLE SIEVE OPE	= GLASS BE P.E.G.SC SIZE Dv = C NINGS 0.99	ADS JLN 40/100 0.1135 CM, 91/1.168 MM	D ₁ = 2. • NO EL	DENSITY= 2.977 DENSITY= 1.071 54 CM, Dv/Dt = UTRIATION	GM/CM ³ GM/CM ³ 0.0447	
		TEMP °F	DIST CM	SETTLING TIME SEC	U CM/SEC	U*NU 0.01CM ³ /SEC ²	EPS	<u> </u>
		74.23 74.23	20.0 20.0	51.8 51.5	0.386 0.388	63.0 63.4	0.90	
	·	75.42 74.55 75.00	20.0 30.0 30.0	49.2 81.8 82.3	0.407 0.367 0.365	64.8 59.5 58.6	0.90 0.88 0.88	· · · ·
		78.10 78.10 78.10 77.30	15.0 15.0 15.0	45.4 45.9 45.5 45.6	0.330	49.9 49.3 49.7 50.4	0.85 0.85 0.85	
·	. . .	75.26 74.20 74.20	15.0 15.0 15.0	52.0 52.7 52.8	0.288 0.285 0.284	46.1 _46.5 _46.4	0.83 0.83 0.83	
	····	74.20 74.20 73.38 73.28	15.0 15.0 15.0 15.0	51.4 49.8 65.7 64.4	0.292 0.301 0.228 0.233	47.6 49.2 37.9 38.7	0.83 0.83 0.80 0.80	
		69.30 69.30 69.70	10.0 10.0 10.0	56.8 52.4 67.5	0.176 0.191 0.148	31.8 34.5 26.5	0.77 0.77 0.74	
		69.80 69.80 71.80	10.0 10.0 6.0	91.4 92.4 69.9	0.149 0.109 0.108 0.086	19.6 19.4 _14.7	0.70 0.70 0.67	
		71.80 72.90	6.0	65.9 66.5	0.091 0.090	15.6 15.1	0.67	
	· ··· ···	- -				• • • • •		·
			· · · · ·					
	·. ·						<u>.</u>	

· · - .

.

.

÷

......

- -

•

.

.....

.

. . .

							-
	RUN 1-2	0.466	05400		0	ou (cu3	
•	PARTICLES=	GLASS	BEAUS	· .	UENSITY= 2.977	GM/CM°	
	LIQUID=	P.E.G.	SULN 40/100		DENSITY = 1.071	GM/CM°	
	PARTICLE SI	$IZE D_V =$	0.1135 CM, 1	$J_{1} = 3.$	$18 \text{ CM}, \text{ D}_{\text{V}}/\text{D}_{\text{T}} =$	0.0300	
	SIEVE OPEN	INGS 0.	991/1.168 MM	, NO EL	UTRIATION		-
	TEND	DICT			11-5-011	500	
	IEMP	0121				EPS	
·	<u> </u>	CM	IIME SEC	LM/SEL	U.UICM-/SEC		• • •
	75 03	20 0	72 2	0 416	66 9	0 00	
	75 03	30.0	73 0	0 411		0.90	
•	75.00	30.0	72.2	0.416	66.8	0.90	
	75.00	30.0	72 /	0 414	66 6	0.90	
	74 00	20 0	48 2	0 415	68 0	0 90	
and a second	74 00	20.0		0 417		0.90	
	73 40	20.0	52 8	0 379	62 8	0.88	
	73.40	20.0	51.5	0.388	64.4	0.88	
<u> </u>	74.00	30.0	79.9	0.375	61.5	0.88	
	74.63	30.0	78.7	0.381	61.7	0.88	
	.75.57	15.0	43.6	0.344	54.7	0.85	
	75.00	15.0	47.0	0.319	51.3	0.85	-
	74.83	15.0	46.8	0.321	51.7	0.85	
	77.13	15.0	48.8	0.307	47.3	0.83	
	77.13	15.0	48.6	0.309	47.5	0.83	
	76.60	15.0	48.9	0.307	47.7	0.83	
	76.10	15.0	49.4	0.304	47.7	0.83	
	73.60	15.0	62.6	0.240	39.6	0.80	
	73.60	15.0	60.8	0.247	40.8	0.80	
	73.60	15.0	61.7	0.243	40.2	0.80	
	73.80	15.0	61.8	0.243	39.9	0.80	
	73.88	15.0	73.4	0.204	33.6	0.77	
· ·	73.40	10.0	50.8	0.197	32.7	0.77	
	73.40	10.0	48.2	0.207	34.4	0.77	
	73.40	10.0	48.2	0.207	34.4	0.77	
·····	70.50	10.0	69.1	0.145	25.5	0.74	
	70.50	10.0	64.1	0.156	27.5	0.74	
	70.50	10.0	65.0	0.154	27.1	0.74	
	70.50	10.0	65.7	0.152	26.8	0.74	
	70.12	10.0	86.6	0.115	20.5	0.70	
	69.20	6.0	64.4	0.093	16.9	0.67	
·	10.50	6.0	62.0	.0.097	17.1	0.67	
	/1.00	6.0	64•1 75 0	0.094	10.3	0.67	
	12.10	6.0	15.0	0.080	13.6	0.64	
· ···	/1.00	6.0	16.8	0.078	13.6	0.64	.

·

• • •

. .

÷

.

VII-5

.

	DUM 1 2				•		
	RUN 1-3					CM/CM ³	
	PARTICLES	= GLASS BE	AUS		DENSITY = 2.977	GM/CM ³	
· . ·	LIQUID=	P.E.G.SL	LN 40/100		DENSITY = 1.071	GM/CMS	
	PARTICLE S	SIZE $D_V = C$	0.1135 CM,	$D_{\dagger} = 5$.	$08 \text{ CM}, D_V/D_{\dagger} =$	0.0223	
	SIEVE OPEN	<u>VINGS 0.99</u>	01/1.168 MM	<u>I, NO EL</u>	UTRIATION		_
	TEMP	DIST	SETTLING	U	U*NN °	EPS	
	° C	<u> </u>	TIME SEC	CM/SEC	0.01CM ³ /SEC ²		
	22.15	20.0	52.4	0.382	65.1	0.90	
	22.15	20.0	51.0	0.392	66.9	0.90	
	22.15	20.0	53.4	0.375	63.9	0.90	
	22.15	20.0	51.6	0.388	66.2	0.90	
· · · -	22.05	20.0	52.8	0.379	64.9	0.90	
	22.05	20.0	51.8	0.386	66.1	0.90	
	21.95	20.0	55.8	0.358	61.6	0.88	
	21.95	20.0	56.6	0.353	60.8	0.88	
	22.15	20.0	56.6	0.353	60.3	0.88	
	22.15	20.0	56.8	0.352	60.1	0.88	
	22.40	20.0	55.9	0.358	60.5	0.88	
	21.65	20.0	66.8	0.299	52.1	0.85	-
	21.85	20.0	67.4	0.297	51.2	0.85	
,	22.10	20.0	65.3	0.306	52.4	0.85	
	22.10	20.0	65.8	0.304	52.0	0.85	
	22.10	20.0	65.4	0.306	52.3	0.85	
	22.80	20.0	72.1	0.277	46.2	0.83	
	22.80	20.0	69.8	0.287	47.7	0.83	-
	22.75	20.0	71.5	0.280	46.7	0.83	
	22.75	15.0	53.1	0.282	47.1	0.83	
	22.65	20.0	72.0	0.278	46.5	0.83	
	21.58	15.0	65.4	0.229	40.0	0.80	
	22.00	15.0	62.5	0.240	41.2	0.80	
5 5 7 mm	22.50	15.0	66.0	0.227	38.3	0.80	
	22.40	12.0	51.4	0.233	39.5	0.80	
	22.40	12.0	50.6	0.237	40.1	0.80	
	22.35	12.0	51.6	0.233	39.4	0.80	
	22.25	12.0	60.6	0.198	33.7	0.77	
	22,25	12.0	63.2	0.190	32.3	0.77	
	22.20	12.0	63.4	0.189	32.2	0.77	
	22.20	12.0	61.0	0.197	33.5	0.77	
	22.20	12.0	62.5	0.192	32.7	0.77	
	22.15	9.0	58.4	0.154	26.3	0.74	<u></u>
	22.15	9.0	58.8	0.153	26.1	0.74	
	22.20	9.0	57.3	0.157	26.8	0.74	
	22.20	9.0	56.8	0.158	27.0	0.74	
	21 65	9.0	78.9	0.114	19.9	0.70	
	21 80	5.0 6.0	51.8	0 114	20.0	0.70	
	21.00	<u> </u>	51 0	0 119	20+0	0.70	
	21.07 71 05	6.0 4 0	JI • U /7 //	0.127	20.5	0.70	
	21.02	6.U 6 0	47.4 40 7	0 1 2 1	21 P	0.70	
	21.00	<u> </u>	· · · · · · · · · · · · · · · · · · ·	0.141	16 0	0.67	
	21.00		01.0 43 0	0.097	16 7	0.47	
	21.00		62.0	0.097	10.1	0.67	
	21.90	0.0	02.0	0.090	10.7	0.07	

	<u>. </u>					<u></u>	
	21.90 21.70 21.70 21.70 21.70 21.70	6.0 6.0 6.0 6.0 6.0	62.4 81.0 78.3 77.4 79.6	0.096 0.074 0.077 0.078 0.075	16.6 12.9 13.3 13.5 13.1	0.67 0.64 0.64 0.64 0.64	
 	· · · · · · · · · · · · · · · · · · ·						•
	• • •	-1 <u>-</u>					
· · · · · · · · · · · · · · · · · · ·	· · · ·	• <u>•</u> •••		• •			
	· · · · · · · · · · · · · · · · · · ·				· · ·	· · · · ·	
· · ·		. <u></u> .				• • • •	
• • •	-	· · ·		· · ·		· · · · ·	
·· ·	· · ·			· · · · · · · · · · · · · · · · · · ·		· · · · · ·	· • • •
					· · · · · · · · · · · · · · · · · · ·		

•

	RUN 2-1 PARTICLES= LIQUID=	GLASS B	EADS OLN 45/100		DENSITY= 2.977 DENSITY= 1.082	GM/CM ³ GM/CM ³	
	PARTICLE S SIEVE OPEN	$ZE D_V = $ INGS 0.9	0.1135 CM, 91/1.168 MM	D ₁ = 2. , NO EL	54 CM, D _V /D ₁ = UTRIATION	0.0447	
	TEMP °F	DIST	SETTLING TIME SEC	U CM/SEC	U*NU 0.01CM ³ /SEC ²	EPS	
-		<u> </u>				<u> </u>	
	71.00	37.0	186.0	0.1989	63.4	0.90	
	71.05	37.0	190.0	0.1000	63 3	0.90	
	71 10	37 0	101 5	0 1032	61 4	0.90	
	71 20	37.0	208 0	0.1779	56 4	0.88	
* *	71.20	37.0	208.0	0.1779	56.4	0.88	•
	72 20	20 0	126 8	0 1577	48 Q	0.85	
	72.20	20.0	122.8	0.1629	50.5	0.85	
	72.20	20.0	123.4	0.1621	50.2	0.85	
	72.20	20.0	122.3	0.1635	50.7	0.85	
•	72.00	20.0	137.5	0.1455	45.3	0.83	
	72.00	20.0	134.2	0.1490	46.4	0.83	• •
	72.00	20.0	135.8	0.1473	45.8	0.83	
	73.40	16.0	127.6	0.1254	37.7	0.80	
	73.40	16.0	123.7	0.1293	38.9	0.80	
	73.40	12.0	94.3	0.1273	38.3	0.80	
	72.20	16.0	128.8	0.1242	38.5	0.80	
	74.40	38.0	344.5	0.1103	32.4	0.77	•
•	75.30	38.0	330.0	0.1152	33.2	0.77	
	75.40	38.0	332.0	0.1145	32.9	0.77	
	72.10	16.0	198.1	0.0808	25.1	0.74	
	73.20	28.0	421.0	0.0665	20.1	0.70	
	75.30	20.0	354.0	0.0565	16.3	0.67	
-					· · ·		
					·····		

• .

-

-

.

.

.

. . .

	RUN 2-2				. ·	_	
	PARTICLES	= GLASS BE	ADS		DENSITY = 2.97	7 GM/CM ³	
-			N 45/100		DENSITY- 1 08	2 GM/CM3	
			1125 CM	0	70 CM D /D		
	PARIICLE	SIZE $U_V = 0$	J.1133 UM,	Ut = 3.	18 CM, UV/UT	= 0.0300	
· · · · · · · · · · · · · · · · · · ·	SIEVE UPE	NINGS 0.99	9171.168 MM	, NU EL			
					•		
	TEMP	DIST	SETTLING	U	U*NU	EPS	
	°F	CM	TIME SEC	CM/SEC	0.01 C M^3 / SEC ²		
•		···					
			н.				
	70 70	20 0	106 5	0 1024	62 1	0 005	
	71.50	20.0	190.5	0.1934	.02.1	0.095	
	71.50	38.0	202.5	0.1877	59.1	0.000	
	/1.40	38.0	234.5	0.1620	51.2	0.850	
	71.40	38.0	227.0	0.1674	52.9	0.850	
	71.40	38.0	234.5	0.1620	51.2	0.850	
	72.87	21.0	137.6	0.1526	46.5	0.830	
	72.87	20.0	134.0	0.1493	45.5	0.830	
•••	72.87	20.0	132.6	0.1508	46.0	0.830	•
	72.87	20.0	129.2	0.1548	47.2	0.830	
	71 50	20.0	164 2	0 1218	38 4	0 800	
· · · · · ·	72 50	16 0	167 2	0 1019	21 2	0.770	
	72.50	10.0	157.2	0.1018	21.2	0.770	
	72.50	16.0	157.2	0.1018	31.3	0.770	
	12.40	18.0	203.4	0.0885	27.3	0.740	
	72.20	16.0	182.6	0.0876	27.1	0.740	
·	74.50	30.0	397.0	0.0756	22.2	0.700	
	75.50	30.0	370.0	0.0811	23.3	0.700	
	72.60	22.0	424.0	0.0519	15.9	0.670	
	72.60	22.0	388.5	0.0566	17.4	0.670	
	74.10	20.0	480.0	0.0417	12.3	0.640	
<u> </u>	74.60	20.0	460.0	0.0435	12.7	0.640	
		-					
	· · ·	-				· -	
	•						
						·	
-	·	•					-
						·	
<i>y</i>						• •	
·					· ,		
				·		· · · · · · · · · · · · · · · · · · ·	
•						•	
	·• · Ţ-			·. · · · · · · · · · · · · · · · · · ·	· -·		
11111111111111111111111111111111111111						·····	
					-		

. .

	RUN 2-3	- CIACC DI			DENCITY- 2 077	CM/CM3	
	PARIICES-	- GLASS DI		- · · ·	DENSITY - 1 002	CM/CM3	
			JLN 45/100		DENSITY = 1.082		
	PARTICLE S	SIZE $D_V = 0$	J.1135 CM;		U8 CM, DV/DT =	0.0223	
	SIEVE UPER	VING2 0.9	91/1-168 MM	, NU EL			
	TEMP	DICT		·		500	
	IEMP	DISI	SETTLING			EPS	
* *	• <u>• F</u>	CM	IIME SEC	CMISEC	U.UILM-/SEL		
	71 00	20.0	0((0 2075		0.00	
	71.80	20.0	90.4	0.2075	04•9 45 0	0.90	
	71.80	20.0	90.2	0.2079	<u> </u>	0.90	
	12.00	20.0	90.2	0.2019	64.0	0.90	
	69.90	20.0	100.8	0.1984		0.90	
	<u> </u>	20.0	103.1	0.1929		0.90	· ··· ··
	70.20	20.0	108.8	0.1838	57.1	0.88	
	70.20	20.0	109.5	0.1826	59.3	0.88	
	/0.10	20.0	109.1	0.1833	59+1	0.88	·····
	69.58	20.0	128.3	0.1559	51.3	0.85	
	69.58	20.0	123.6	0.1618	53.3	0.85	
	69.58	20.0	129.8	0.1541	50.8	0.85	
	69.80	20.0	123.0	0.1626	53.3	0.85	
	69.80	20.0	125.6	0.1592	52.2	0.85	
	69.80	20.0	127.0	0.1575	51.6	0.85	
	69.95	20.0	141.3	0.1415	46.2	0.83	
	70.00	20.0	142.0	0.1408	45.9	0.83	
	70.10	20.0	141.7	0.1411	45.9	0.83	
	70.10	20.0	137.2	0.1458	47.4	0.83	
	71.90	10.0	75.2	0.1330	41.5	0.80	
	71.90	10.0	75.8	0.1319	41.2	0.80	
	71.90	10.0	76.8	0.1302	40.6	0.80	
	71.90	10.0	74.4	0.1344	41.9	0.80	
	72.30		_ /3.1	0.1094	33.8	0.77	
	72.30	8.0	74.5	0.1074	33.2	0.77	
	72.70	8.0	74.0	0.1081	33.1	0.77	
······································	72.30	15.1	139.0	0.1086	33.6	0.77	
	72.70	15.6	149.0	0.1047	32.0	0.77	
	72.80	20.8	234.0	0.0891	27.2	0.74	
	72.80	21.0	244.0	0.0863	26.3	0.14	• • • •
	73.00	6.0	68.2	0.0880	26.7	0.74	
	73.15	20.9	305.5	0.0684	20.7	0.70	
	73.15	21.3	311.0	0.0686	20.8	0.70	
	75.50	20.9	278.0	0.0752	21.6	0.70	
	75.50	20.9	305.0	0.0685	19.7	0.70	
	70.60	_21.2	423.0	0.0500	16.1	0.67	
	72.05	21.1	398.0	0.0530	16.5	0.67	
	72.05	20.2	371.0	0.0544	16.9	0.67	
	72.15	20.1	429.0	0.0469	14.5	0.64	
	72.15	.21.0	481.5	0.0436	13.5	0.64	dir.
							-

.

. .

.. i...

	<u> </u>	RUN 7-3 PARTICLES= LIQUID= PARTICLE S SIEVE OPEN	GLASS B P.E.G.S IZE Dv= INGS 0.4	EADS OLN 35.4 % 0.0492 CM, 17/0.495 MM	D ₁ = 5. , NO ELU	DENSITY= 2.959 DENSITY= 1.062 O8 CM, D _V /D ₁ = DTRIATION	GM/CM ³ GM/CM ³ 0.0097	-
	.	TEMP ° F	DIST CM	SETTLING TIME SEC	U CM/SEC	U*NU 0.01CM ³ /SEC ²	EPS	
		73.20 73.20	9.0 9.0	66.4 66.8	0.1355	14.75	0.95	
		73.75	12.0	97.2	0.1235	13.30	0.92	
		73.75	12.0	. 98.8	0.1215	13.08	0.92	
-: ·		73 <u>,</u> 75	12.0	99.4	0.1207	13.00	0.92	
		71.60	12.0	113.4	0.1058	11.90	0.90	
		71.60	12.0	107.4	0.1117	12.57	0.90	
		71.60	12.0	107.3	0.1118	12.58	0.90	
		71.60	12.0	109.0	0.1101	12.38	0.90	
		72.70	12.0	117.8	0.1019	11.20	0.88	
		12.70	12.0	119.8	0.1002	11.02	0.88	
		72.70	12.0	111.6	0.1075	11.83	0.88	
		72.70	12.0	118.5	0.1013	11.14	0.88	
	<u> </u>	73.10	$\frac{12.0}{12.0}$	132.0	0.0909	9.80	0.85	
		13.10	12.0	132+2	0.0908	9.19		
		74.00	12.0	150.4	0.0700	0 22	0.82	
• • •		74.90	12.0	102.0	0.0734	<u>8 • 32</u>	0.82	
		70.70	12.0	107.0	0.0710	0 • 1 7	0.02	
		72 25	12.0	176 2	0.0752	0.JO 7.56	0.02	
	_	72 55	12.0	176.2	0.0681	7 51	0.80	
• *		72.90	9.0	156.0	0.0577	6.32	0.77	
		73.65	9.0	194.2	0.0463	5.00	0.74	
		73.65	9.0	190.0	0.0474	5.11	0.74	
		73.65	9.0	191.2	0.0471	5.08	0.74	
•		71.60	10.0	268.6	0.0372	4,19	0.71	
		71.60	10.0	262.0	0.0382	4,29	0.71	
		73.20	10.0	330.0	0.0303	3.30	0.68	
		74.20	10.0	320.0	0.0313	3.34	0.68	
		75.20	10.0	381.0	0.0262	2.75	0.65	
					• <u></u>			-

••

.

·-- : . .

-

	RUN 3-1A PARTICLES= LIQUID= PARTICLE S SIEVE OPEN	SALT_CRY SAE 10W IZE Dy= 0 INGS 0.25	STALS 84.9%+ KE .0341 CM, 0/0.298 MM	ROSENE, Dt = 2, , NO EL	DENSITY= 2.169 DENSITY= 0.858 54 CM, Dv/Dt = UTRIATION	GM/CM ³ GM/CM ³ 0.0134	
	TEMP °F	DIST CM	SETTLING TIME SEC	U CM/SEC	U*NU 0.01CM ³ /SEC ²	EPS	
	71.10	5.0 5.0	29.8 31.0	0.1678	5.395 5.186	0.95	
	71.10	5.0	28.6	0.1748	5.622	0.95	
	71.80	10.0	65.4	0.1529	4.827	0.92	
-	71.80	10.0	67.1	0.1490	4.704	0.92	. .
	/1.80	10.0	69.6	0.1437	4.535	0.92	-
	71.95	10.0	65.5	0.1527	4.800	0.92	
	72.40	10.0		0.1425	4.429	0.90	
	12.40	10.0	12.8	0.1374	4.2/1	0.90	
	72.00	10.0	84.0	0.1182	$3 \cdot (31)$	0.88	
	72.00	10.0	102.2	0.1215	2.042	0.05	
	72.00	10.0	103.2	0.1053	3.042	0.05	
	72.00	10.0	92.0	0.1053	3.302		
	71 70	10.0		0.0973	2 762	0.83	
	72 50	10.0	114.0	0.0862	2.102	0.93	
	72.30	10.0	136 4	0.0733	2.074	0.80	
	73.50	10.0	122.7	0 0754	2 281	0.80	
	73.40	10.0	163.2	0.0613	1 859	0.77	
	73.40	10.0	165.7	0.0604	1.831	0.77	
	73.85	10.0	210.3	0.0476	1.427	0.74	
	73.85	10.0	210.4	0.0475	1.426	0.74	
	74.65	10.0	205.0	0.0488	1.435	0.74	
	70.80	10.0	279.0	0.0358	1.161	0.71	
	70.80	10.0	294.5	0.0340	1.100	0.71	
	71.10	10.0	270.6	0.0370	1.188	0.71	
	70.40	8.0	296.6	0.0270	0.883	0.68	
	70.20	8.0	285.6	0.0280	0.921	0.68	
-			· . · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
			-			,	

• ---

. . .

• -- •

• ~

-

- · · · · ·

.

	RUN 3-2 PARTICLES= LIQUID= PARTICLE S SIEVE OPEN	SALT CRY SAE 10W IZE Dv= C INGS 0.25	/STALS 84.9%+ KE 0.0341 CM, 50/0.298 MM	ROSENE, D† = 3. , ND EL	DENSITY= 2.169 DENSITY= 0.858 78 CM, D _V /D ₁ = UTRIATION	GM/CM ³ GM/CM ³ 0.0090
-	TEMP °F	DIST CM	SETTLING TIME SEC	Ù CM/SEC	U*NU 0.01CM ³ /SEC ²	EPS
	71.20 71.20	10.0	59.1 60.5	0.1692 0.1653	5.427 5.301	0.95 0.95
	71.20 71.80 71.80	10.0	59.5 66.8 67.4	0.1681 0.1497	5.390 4.726 4.683	0.95 0.92
	71.80	10.0	68.7 67.1	0.1456	4.595 4.698	0.92 0.92 0.92
	72.40 72.40 72.40	10.0 10.0 10.0	71.7 70.7 72.3	0.1395 0.1414 0.1383	<u>4.336</u> <u>4.398</u> <u>4.300</u>	0.90 0.90 0.90
	71.90 71.90 72.00	10.0 10.0	84.6 83.0 82.0	0.1182 0.1205	3.721 3.793 3.829	0.88
	71.80	<u>10.0</u> 10.0	<u>96.7</u> 99.8	0.1034	<u>3.264</u> 3.163	0.85
	71.80 72.90 71.50	10.0 9.9 10.0	99.0 95.8 116.0	0.1010 0.1028 0.0862	3.189 3.157 2.743	0.85 0.85 0.83
	72.40 73.45	10.0	115.0 136.2	0.0870	2.704 2.225	0.83 0.80
	73.45 73.45	10.0	165.2 167.0	0.0605	1.834	0.77 0.77
	73.80 73.80 74.30	10.0 10.0 10.0	210.7 205.8 205.0	0.0475 0.0486 0.0488	1.426 1.460 1.448	0.74 0.74 0.74
	70.90 70.90 71.20	8.0 8.0	222.8 226.4 215.5	0.0359 0.0353	1.161 1.142	0.71 0.71
	70.30	8.0 8.0	287.6 294.1	0.0278	0.912 0.892	0.68
	70.30 70.30	6.0 6.0	273.2	0.0220	0.720	0.65

.

•

۰..

.....

- .

•	RUN 3-3					· · · · · · 3	
	PARTICLES=	= SALT_CR	YSTALS		DENSITY = 2.169	GM/CM [*]	
	LIQUID=	SAE 10W	84.9%+ KE	ROSENE,	DENSITY= 0.858	GM/CM ³	
	PARTICLE S	SIZE $D_V = 0$	0.0341 CM,	$D_{1} = 5.$	08 CM, $D_V/D_1 =$	0.0067	
	SIEVE OPEN	VINGS 0.2	50/0.298 MM	, NO EL	UTRIATION		Au
•							
	TEMP	DIST	SETTLING	·U	U*NU	EPS	
· · · ·	<u>•F</u>	<u>C M</u>	TIME SEC	CM/SEC	0.01CM ³ /SEC ²		_ -
		•					
	72.70	16.0	92.1	0.1737	5.361	0.95	
	72.70	16.0	91.1	0.1756	5.420	0.95	
	. 72.70	12.0	68.8	0.1744	5.383	0.95	
	72.70	12.0	68.8	0.1744	5.383	0.95	
. .	72.00	13.0	86.3	0.1506	4.730	0.92	
	72.00	13.0	87.0	0.1494	4.692	0.92	
	72.00	12.0	79.9	0.1502	4.716	0.92	
	72.00	12.0	79.9	0.1502	4.716	0.92	
	72.20	16.0	117.0	0.1368	4.273	0.90	
	72.20	16.0	120.0	0.1333	4.166	0.90	
	72.20	16.0	116.2	0.1377	4.302	0.90	•
	71.75	16.0	132.6	0.1207	3.814	0.88	
	71.75	16.0	133.3	0.1200	3.794	0.88	
	71.75	16.0	134.5	0.1190	3.760	0.88	
<u>-</u> .	71.75	16.0	130.2	0.1229	3.884	0.88	
	72.30	16.0	161.2	0.0993	3.094	0.85	
	72.30	16.0	154.5	0.1036	3.228	0.85	
	72.30	16.0	158.5	0.1009	3.146	0.85	
	72.30	12.0	118.0	0.1017	3.170	0.85	
	73.70	16.0	173.0	0.0925	2.785	0.83	
	73.70	16.0	173.7	0.0921	2.774	0.83	
	73.70	16.0	171.2	0.0935	2.815	0.83	
	74.10	16.0	209.5	0.0764	2.278	0.80	
	74.10	16.0	213.0	0.0751	2.240	0.80	
	74.70	14.0	182.3	0.0768	2.257	0.80	
	74.70	20.0	314.5	0.0636	1.869	0.77	
	74.70	20.0	322.0	0.0621	1.825	0.77	
	75.10	20.0	322.5	0.0620	1.804	0.77	
	75.30	16.0	322.5	0.0496	1.436	0.74	
	75.30	16.0	312.0	0.0513	1.484	0.74	
	75.30	16.0	311.0	0.0514	1.489	0.74	
	75.30	16.0	307.0	0.0521	1.508	0.74	
	73.80	8.0	204.0	0.0392	1.178	0.71	
	74.20	8.0	200.0	0.0400	1.190	0.71	
	75.00	8.0	200.8	0.0398	1.162	0.71	
	75.30	8.0	245.5	0.0326	0.943	0.68	
	75.30	8.0	239.3	0.0334	0.968	0.68	
	75.50	8.0	309.4	0.0259	0.745	0.65	
	75.50	8.0	320.0	0.0250	0.720	0.65	

. .

.

:

			<i>a</i> .				
	RUN 3-4						-
	PARTICLES=	SALT CRY	STALS		DENSITY = 2.169	GM/CM	5
	LIQUID=	SAE 10W	84.9%+ KE	ROSENE,	DENSITY= 0.858	GM/CM3	3
	PARTICLE S	TZE $D_v = 0$.0341 CM.	$D_{+} = 7$.	71 CM, $D_{y}/D_{t} =$	0.004	4
	SIEVE OPEN	INGS 0.25	0/0.298 MM	NO EL	UTRIATION		
							1
	TEMP	DIST	SETTLING	11		FPS	· ·
	00	CM	TIME SEC	CMISEC	0.01 cm ³ /sec ²	L, J	
· · · · · · · · · ·	- F	CH	TIME SEC	CHISLO	0.01CH / SLC		
	70 50	14 0	05 0	0 1/22	5 210	0.05	
	70.50	14.0	82.8	0.10.52		0.95	
	70.50	8.0	48.0	0.1646	2.305	0.95	
	70.50	8.0	49.6	0.1613	5.256	0.95	
	70.62	8.0	54.5	0.1468	4.770	0.92	
· · · ·	70.62	8.0	55.7	0.1436	4.667	0.92	
	71.83	10.0	75.0	0.1333	4.203	0.90	
	71.83	10.0	75.0	0.1333	4.203	0.90	
	70.05	10.0	77.7	0.1287	4.241	0.90	-
	70.39	10.0	85.7	0.1167	3.813	0.88	
	70.39	10.0	86.7	0.1153	3.769	0.88	
	70.53	10.0	102.2	0.0978	3.186	0.85	
	70.53	10.0	103.6	0.0965	3.143	0.85	
· ·	71.07	10.0	117.3	0.0853	2.739	0.83	
	71.07	10.0	116.5	0.0858	2.758	0.83	
	71.20	12.0	140.2	0.0856	2.742	0.83	
	71.11	10.0	141.0	0.0709	2,277	0.80	
	71.11	10.0	141.3	0.0708	2.272	0.80	
	71.52	10.0	173.7	0.0576	1.829	0.77	
	71 55	10.0	172 2	0.0581	1 844	0 77	
	71 05	10.0	214 6	0.0444	1 409	0.74	
	71.05	10.0	213.4	0.0469	1 507	0.74	
	71.05	10.0	213.4	0.0409	1.215	0.71	
	71 20	0.0	209.0	0.0372	1 102	0.71	
· · • =	71 /5		214.7	0.0373	1 • 1 9 3	0.71	
	71.40	8.0	259.1	0.0308	0.981		
	71.50	0 .0	240+8	0.0243	0.771	0.05	
	11.80	0.0	242.2	0.0244	0.771	0.65	
- · · · · ·			·	·	·····		
					•		
		· · · · · · · · · · · · · · · · · · ·					
						÷.,	
			· ·· ••				• •• •
	·						
· · · · · · · · · · · · · · · · · · ·	<u></u>						· · · ·

· . •

	RUN 4-2 PARTICLES=	SALT CR	YSTALS		DENSITY= 2.16	3_ <u>GM/CM³</u>	
	LIQUID= PARTICLE S	SAE 10W	88.1%+ KE	ROSENE, $D_{+} = 3$.	DENSITY= 0.86	L GM/CM ³ = 0,0103	
· · · · · · · · · · · · · · · · · · ·	SIEVE OPEN	INGS 0.2	95/0.351 MM	, NO EL	UTRIATION		
	TEMP °F		SETTLING	U CM/SEC	U*NU 0.01CM ³ /SFC ²	EPS	
·	······				010100 / 020	<u> </u>	
	71.20	10.0	53.0 52.3	0.1887	7.30 7.39	0.950 0.950	
	71.20	10.0	54.5	0.1835	7.09	0.950	
	71.20	10.0	51.7	0.1934	7.48	0.950	
	72.40	10.0	55.1	0.1815	6.80	0.920	
	72.40	10.0	56.0	0.1786	6.69	0.920	
	72.40	10.0	57.5	0.1739	6.52	0.920	
	70.70	10.0	59.7	0.1675	6.56	0.920	
	70.70	10.0	59.1	0.1692	6.63	0.920	
	71.40	10.0	65.0	0.1538	5.92	0.900	
-	71.40	10.0	63.2	0.1582	6.09	0.900	
	71.40	11.0	70.0	0.1571	6.04	0.900	
	72.46	10.0	71.9	0.1391	5.20	0.880	
	72.46	11.0	74.5	0.1477	5.52	0.880	
	72.46	11.0	79.8	0.1378	5.16	0.880	
	72.46	11.0	78.0	0.1410	5.28	0.880	
.	71.00	11.0	98.8	0.1113	4.33	0.850	
	71.00	11.0	98.9	0.1112	4.32	0.850	
	71.00	11.0	94.7	0.1162	4.51	0.850	•
· · ·	71.00	11.0	94.7	0.1162	4.51	0.850	
	72.73	15.0	148.3	0.1011	3.76	0.830	
	72.73	11.0	108.3	0.1016	3.77	0.830	
	72.73	11.0	106.1	0.103 <u>7</u>	3.85	0.830	
	69.25	14.0	180.8	0.0774	3.15	0.800	
	69.25	11.0	141.9	0.0775	3.15	0.800	
	69.25	11.0	144.1	0.0763	3.10	0.800	
	70.50	10.0	156.0	0.0641	2.52	0.770	
	70.50	10.0	157.1	0.0637	2.51	0.770	
. .	70.52	10.0	157.0	0.0637	2.51	0.770	
•	72.00	10.0	191.2	0.0523	1.98	0.740	
	72.00	10.0	193.2	0.0518	1.96	0.740	
	72.00	10.0	181.3	0.0552	2.09	0.740	
	72.40	10.0	191.0	0.0524	1.90	0.740	
	71.25	10.0	244.4	0.0409	1.58	0.710	
	(1.1)		242.3	0.0413	<u> </u>	0.710	
	11.15	10.0	242.3	0.0413	1.5/	0.710	
	12.00	8.0	230.1	0.0339	1.28	0.680	
	72.00		242.1	0.0330	1.20	0.080	
	12.15	10.0	3U3+4	0.0330	1.24		
	12.20	0.0	272.2	0.0271	0.00		
· · · · ·	13.20	0.0	290.0	0.0270	0:33	0.000	· · ·

.

VII-16

. . .

	PLIN 4-2						
			VETALS		DENCITY- 2 14	2 CM/CM3	i
• =	PARTICLES-	- SALI UR	TOTALO	DOCENE	DENSITY- 0.94		
		SAE IUW	88.1 70+ NE	RUSENE,	DENSI11= 0.00		
	PARTICLE S	SIZE $D_V = 0$	0.0391 LM,	$V_{1} = 5.$	US CM, DV/Dt	= 0.0077	
	SIEVE UPER	<u>VINGS 0.2</u>	95/0.351 MM	, NU EL	UTRIATION		<u> </u>
						500	
2	IEMP	DIST	SETILING	U	U*NU	EP2	
-	<u>°F</u>	СМ	TIME SEC	CM/SEC	0.01CM*/SEC-		
	71.15	10.0	54.0	0.1852	7.17	0.950	÷
	71.15	10.0	53.8	0.1859	7.20	0.950	
	71.15	10.0	53.4	0.1873	7.25	0.950	
	71.15	10.0	52.0	0.1923	7.45	0.950	
	72.15	10.0	56.5	0.1770	6.67	0.920	
	72.15	10.0	56.4	0.1773	6.69	0.920	
	72.15	10.0	58.2	0.1718	6.48	0.920	
	71.40	10.0	66.3	0.1508	5.80	0.900	
	71.40	10.0	64.7	0.1546	5.94	0.900	
	71.40	10.0	64.7	0.1546	5.94	0.900	
	72.55	10.0	72.3	0.1383	5.16	0.880	
	72.55	10.0	71.2	0.1404	5.24	0.880	
	72.55	10.0	72.2	0.1385	5.17	0.880	
	72.55	10.0	72.2	0.1385	5.17	0.880	
	70.90	11.0	98.0	0.1122	4.37	0.850	
	70.90	11.0	99.5	0.1106	4.31	0.850	
	70.90	11.0	95.1	0.1157	4.51	0.850	
-	72.60	15.0	148.8	0.1008	3.76	0.830	
	72.60	11.0	107.6	0.1022	3.81	0.830	
	72.60	11.0	106.5	0.1033	3.85	0.830	
••	69.20	14.0	184.3	0.0760	3.09	0.800	
	69.20	11.0	144.0	0.0764	3.11	0.800	
	69.20	11.0	145.4	0.0757	3.08	0.800	
· • • ·	70.48	10.9	173.3	0.0629	2.48	0.770	
	70.48	10.9	172.8	0.0631	2.48	0.770	
	70.48	10.0	156.0	0.0641	2.53	0.770	
	72.05	10.0	189.5	0.0528	1.99	0.740	
	72.05	10.0	191.7	0.0522	1.97	0.740	
	72.05	10.0	180.5	0.0554	2.09	0.740	
	72.40	10.0	185.7	0.0539	2.02	0.740	• • •
	70,95	10.0	245.7	0.0407	1.58	0.710	
	71.65	10.0	236.9	0.0422	1.61	0.710	
	71.65	10.0	237.7	0.0421	1.61	0.710	
	71.65	10.0	238.5	0.0419	1.60	0.710	
	71.90	8.0	234.4	0.0341	1.30	0.680	
	71.90	8.0	240.0	0.0333	1.27	0.680	
	72.03	8-0	241.3	0.0332	1.25	0.680	÷
	73.05	8.0	299.1	0.0267	0.99	0.650	
	73-05	8.0	298-0	0.0268	0.99	0.650	

- --
-

..

--- --

• • •

	RUN 5-3 PARTICLES= LIQUID= PARTICLE S SIEVE OPEN	SLAT CRY SAE 10W IZE Dy= (INGS 0.20	(STALS 88.1% + KE 0.0282 CM, 08/0.250 MM	ROSENE, D† = 5. , NO EL	DENSITY= 2.1 DENSITY= 0.8 08 CM, D _V /Dt UTRIATION	61 GM/CM ³ 61 GM/CM ³ = 0.0056	· · ·
	TEMP	DIST	SETTLING	U	บ*งุบ	EPS	
	° F	CM	TIME SEC	CM/SEC	0.01CM ³ /SEC	·	
	70 / 5			0.0007	2 (0)	0.050	
	70.65	8.0	85.4	0.0937	3.081	0.950	
	70.65	8.0	<u> </u>	0.0957	2 712	0.950	
	70.00	8.0	04.5	0.0943	3 322	0.920	
	70.70	8.0	95.0	0.0842	3,305	0.920	
	71.92	10.0	123.9	0.0807	3,068	0.905	
	71.92	10.0	126.6	0.0790	3,002	0.905	
	69.92	10.0	128.6	0.0778	3.114	0.905	
	70.37	10.0	140.7	0.0711	2.813	0.890	· · · ·
	70.37	10.0	142.6	0.0701	2.776	0.890	
	70.55	10.0	159.4	0.0627	2.472	0.870	
	70.55	10.0	160.4	0.0623	2.456	0.870	
	71.20	10.0	173.2	0.0577	2.237	0.850	
	71.40	10.0	174.8	0.0572	2.205	0.850	
	71.21	10.0	199.4	0.0502	1.942	0.830	
	71.21	10.0	195.4	0.0512	1.982	0.830	
	71.35	10.0	244.9	0.0408	1.576	0.800	
	71.50	10.0	247.2	0.0405	1.555	0.800	
	70.90	10.0	307.4	0.0325	1.270	0.770	
	70.90	10.0	298.9	0.0335	1.306	0.770	
	71.30	8.0	297.4	0.0269	1.039	0.740	
	71.10	8.0	302.7	0.0264	1.026	0.740	
-	71.41	8.0	375.6	0.0213	0.821	0.710	
	71.65	8.0	464.0	0.0172	0.660	0.680	
	/1.99	6.0	351.2	0.01/1	0.648	0.680	
	12.90	6.0	453.2	0.0132	0.490	0.650	
	12.69	1.0	518.4	0.0135	0.503	0.050	

.

.

. .

PARTICLES LIQUID= PARTICLE NOMINAL L	SAE 30 6 SAE 30 6 SIZE D _V = 0 ENGTH 1/10	C PELLETS 56%+ KEROS 5.2880 CM, 5 INCH, NO	ENE Dt = 7. SIEVING	DENSITY= 1.061 DENSITY= 0.876 71 CM, D _V /D _t =	GM/CM ³ GM/CM ³ 0.0374
TEMP °F	DIST	SETTLING TIME SEC	U CM/SEC	U*NU 0.01CM ³ /SEC ²	EPS
70.90 70.90	10.0	43.4 42.4	0.2304	48.30 49.44	0.95
71.15	10.0	48.8	0.2049	42.57	0.92
71.15	10.0	49.4	0.2024	42.05	0.92
71.15	10.0	49.4	0.2024	42.05	0.92
71.15	10.0	52.6	0.1901	39.49	0.90
70.50	10.0	62.1	0.1610	34.22	0.88
70.50	10.0	60.2	0.1661	35.30	0.88
71.42	10.0	70.0	0.1429	29.36	0.85
71.42	10.0	71.0	0.1408	28.94	0.85
71.42	10.0	72.2	0.1385	28.46	0.85
72.38	10.0	75.3	0.1328	26.31	0.83
72.38	10.0	78.2	0.1279	25.33	0.83
72.38	10.0	74.4	0.1344	26.62	0.83
72.38	11.0	85.8	0.1282	25.39	0.83
71.85	9.0	88.8	0.1014	20.46	0.80
70.05	9.0	114.0	0.0789	17.04	0.77
70.05	9.0	113.8	0.0791	17.07	0.77
70.78	9.0	140.7	0.0640	13.46	0.74
70.78	9.0	138.0	0.0652	13.73	0.74
71.95	6.0	109.6	0.0547	11.01	0.71
72.12	6.0	112.0	0.0536	10.71	0.71
69.67	6.0	136.0	0.0441	9.64	0.68
69.67	9.0	199.4	0.0451	9.86	0.68

- - --

-

• • • •

•.--

	RUN 6-5						
	PARTICLES=	ABS CUBI	C PELLETS		DENSITY= 1.061	GM/CM ³	
	LIQUID=	SAE 30 6	56 %+ KERDS	SENE	DENSITY= 0.876	GM/CM ³	
	PARTICLE SI	$7E D_{y} = 0$.2880 CM.	$D_{+} = 10$	12 CM $D_{v}/D_{t} =$	0.0285	
	NOMINAL LEN	IGTH 1/10) INCH, NO	SIEVING			
-						<u> </u>	
	TEMP	DIST	SETTLING	U	U*NU	EPS	
	۰F	СM	TIME SEC	CM/SEC	0.01 cm ³ /SEC ²		
						······································	
	72.80	12.0	45.0	0.2667	52.06	0.95	
	72.95	12.0	49.0	0.2449	47.56	0.95	
	72.95	6.0	24.7	0.2429	47.18	0.95	
	73.30	12.0	48.0	0.2500	47.95	0.92	
	73.30	12.0	48.0	0.2500	47.95	0.90	
	74.30	12.0	56.4	0.2128	39.42	0.90	
•	74.30	12.0	54.4	0.2206	40.87	0.90	
· · ·	74.30	12.0	53.8	0.2230	41.33	0.90	
	75.60	12.0	54.5	0.2202	39.05	0.88	
	75.70	12.0	55.4	0.2166	38.28	0.88	
	76.90	12.0	61.8	0.1942	32.85	0.85	
-	77.10	12.0	61.2	0.1961	32.93	0.85	
	77.10	12.0	62.8	0.1911	32.09	0.85	
	72.40	12.0	84.2	0.1425	28.21	0.83	
	72.50	12.0	88.5	0.1356	2675	0.83	
	72.50	12.0	84.0	0.1429	28.18	0.83	
_	72.90	12.0	103.2	0.1163	22.62	0.80	
	73.00	12.0	105.5	0.1137	22.05	0.80	
	73.00	12.0	101.0	0.1188	23.03	0.80	
	73.10	9.0	98.2	0.0916	17.70	0.77	
. ·	71.10	9.0	131.8	0.0683	14.21	0.74	
	71.10	9.0	129.5	0.0695	14.47	0.74	
-	71.10	9.0	127.2	0.0708	14.73	0.74	
	71.90	9.0	150.0	0.0600	12.09	0.71	
	72.15	6 . 0 [.]	100.8	0.0595	11.88	0.71	
	72.15	6.0	103.2	0.0581	11.61	0.71	
	73.40	6.0	115.0	0.0522	9.97	0.68	
	73.40	9.0	185.3	0.0486	9.28	0.68	_
- - · ·			- ·				
		•	· .	1. 1.			
			. <u></u>		· · · · · · · · · · · · · · · · · · ·		
	·						
				· .			
		. .	· -	· · · ·	a secondaria a constante da const		• • •
		·					
					· · · · · · · · · · · · · · · · · · ·		
					,		
.*							
	•• • • • • •	• ••== .			·····	· · · · · · · · · · · · · · · · · · ·	
			•				

		RUN 8-P PARTICLES LIQUID= PARTICLE FROM SIE	S= MINERAL SAE 10W SIZE Dv= C VING 35/42	CRYSTALS 88.1%+ KE 0.0384 CM, 2 MESH, S	EROSENE, Dt = 3. Seggregat	DENSITY= 2.623 DENSITY= 0.861 50 CM, Dv/Dt = ION TEST	GM/CM ³ GM/CM ³ 0.0110	• • · ·
-		TEMP °F	DIST CM	SETTLING TIME SEC	U CM/SEC	U*NU 0.01CM ³ /SEC ²	EPS	
		74.85 74.85	10.0	37.0 15.5	0.2703	9.54 9.11	0.90 0.90	
		74.85 74.85 72.30	4.0 4.0 5.0	15.4 15.4 26.8	0.2597 0.2597	9.16 9.16 7.03	0.90 0.90 0.85	
		72.30	5.0	27.0	0.1852	6.98 4.90	0.85	ин и жир и н к .,
		73.00	5.0	57.2	0.0874	3.23 3.42	0.75	
-		73.50 73.50 73.50	5.0 5.0 5.0	59.0 54.7 57.6	0.0847 0.0914 0.0868	3.09 3.34 3.17	0.75	
		73.50 74.10 74.10 74.10	5.0 3.0 3.0	57.4 57.4 45.2 52.0	0.0903	3.18 2.39 2.07 2.12	0.75 0.70 0.70 0.70	
		74.10	3.0	50.2	0.0598	2.12	0.70	
	••••		·	• • • •				
	·							
	• •					· · · · ·		
	·		·					
	· ant w				<u>.</u>	na in anti-a in		
•								

.*

.

.

.

	RUN 8-M PARTICLES LIQUID= PARTICLE MIXTURE	S= MINERAL SAE 10W SIZE Dv= 0 90% 35/42	CRYSTALS 88.1 %+ KE 0378 CM, MESH + 109	ROSENE, D† = 3. %42/48 M	DENSITY= 2.623 DENSITY= 0.861 50 CM, Dv/Dt = ESH, SEGGREG	GM/CM ³ GM/CM ³ = 0.0108 GATION TEST
	TEMP °F	DIST CM	SETTLING TIME SEC	U CM/SEC	U*NU 0.01CM /SEC	EPS
	74.75 74.75	10.0	42.8 17.8	0.2336	8.26 7.95	0.90
	74.75 74.75 72.30 72.30 73.40 73.40	4.0 4.0 5.0 5.0 5.0	18.1 18.5 30.0 30.0 41.0	0.2210 0.2162 0.1667 0.1667 0.1220	7.82 7.65 6.28 6.28 4.46 4.50	0.90 0.90 0.85 0.85 0.80 0.80
······································	73.40 72.95 72.96 73.40 73.40	5.0 5.0 5.0 5.0 5.0 5.0	40.9 60.4 58.4 62.0 57.4	0.1222 0.0828 0.0856 0.0806 0.0871	4.47 3.06 3.17 2.95 3.19 3.04	0.80 0.75 0.75 0.75 0.75 0.75
	73.40 73.40 74.00 74.00 74.00 74.00 74.00	5.0 5.0 3.0 3.0 3.0 3.0 3.0	59.4 60.4 48.2 54.5 53.2 53.3	0.0842 0.0828 0.0622 0.0550 0.0564 0.0563	3.08 3.03 2.24 1.98 2.03 2.03	0.75 0.75 0.70 0.70 0.70 0.70 0.70
				. <u>.</u>	· · · ·	· · · · · · · ·
	• •	ء میں جب م	· · · · · ·		••• • •• • • •	• • • • • • • • • • • • • • • • • • •
	•				• •	
		-		· : ·		
	· .			· · ·	· · · · ·	

. .

. -

				-			· · ·
	RUN 9-2		COVETALS		DENCITY- 2 422	CM/CM3	·
	PARTICLES	- MINERAL		SENE	DENSITY- 0 042	CM/CM3	· -
		SAE IUW	93767 NEKU		79 CM 0 (D) -	0 0124	
	PARTICLE	SIZE UV=	U.U.D.U.B UM9 17/0 405 MM		• 10 CM • DV/UT -		
	SIEVE UPE	NINGS 0.4	1170.495 MM	, SIEV	ING + ELUIRIATI	UN	
	TEMD	דיזת			. 11±×111	EDC	
	1000	- CM	TIME SEC	CMISEC	0 01CM3/SEC2	L1 J	
· · · ·	ະເ	<u> </u>	ITHE SEC	UPIT SEC	0.0104 /320	· · · · · · · · · · · · · · · · · · ·	
	26.65	6.0	18.0	0.3333	15.68	0.95	
	26.65	6.0	18.9	0.3175	14.93	0.95	
	26.65	6.0	19.2	0.3125	14.70	0.95	
	26.65	6 0	18 1	0.3315	15.59	0.95	
	27.37	6.0	20.0	0.3000	13.61	0.92	
	27 37	6.0	19.2	0 3125	14.18	0.92	
	27.27	6.0	19.6	0 3061	12 80	0 92	
	27.55	6.0	19.6	0.3061	12 77	0 92	
	27.55	<u> </u>	19.0	0.3001	12 70	0.92	
	21.00	12 0	19.1	0.3040	12.74	0.92	
	21.04	12.0	42.07	0.2844	12.14	0.90	
	. 21.04	12.0	40.7	0.2948	13.21	0.90	
	27.64	12.0	41.1	0.2878	12.89	0.90	
	27.75	12.0	40.0	0.3000	13.30	0.90	
	25.97	12.0	49.4	0.2429	11.80	0.88	
	25.97	15.0	62.8	0.2389	11.60	0.88	
	25.97	15.0	63.8	0.2351	11.42	0.88	
	26.20	15.0	60.4	0.2483	11.94	0.88	
	26.55	15.0	72.8	0.2060	9.74	0.85	
	26.55	15.0	73.3	0.2046	9.67	0.85	
	26.55	15.0	75.2	0.1995	9.43	0.85	
	26.63	15.0	83.4	0.1799	8.47	0.83	
	26.70	15.0	83.0	0.1807	8.48	0.83	
	26.85	12.0	80.8	0.1485	6.91	0.80	
	26.85	12.0	80.8	0.1485	6.91	0.80	
	26.90	9.0	61.0	0.1475	6.85	0.80	
	26.90	9.0	77.8	0.1157	5.37	0.77	
	26.90	9.0	76.4	0.1178	5.47	0.77	
	23.63	9.0	116.6	0.0772	4.22	0.74	
	23.63	9.0	111.8	0.0805	4.40	0.74	
	23.80	9.0	111.0	0.0811	4.40	0.74	
-	24.40	9.0	141.4	0.0636	3.35	0.71	
	24.40	9.0	136.4	0.0660	3.47	0.71	
	24.50	9.0	137.8	0.0653	3.42	0.71	
•	24.82	6.0	116.0	0.0517	2.66	0.68	
	25.67	6.0	111.6	0.0538	2.65	0.68	
	25.67	6.0	109.6	0.0547	2.70	0.68	
	25.80	6.0	139.9	0.0429	2.10	0.65	
-							-

· · · · · · · · · · · ·

•• • • •

• -

. ...

SIEVE OPENINGS 0.417/0.495 MM, SIEVING + ELUTRIATION	
TEMP DIST SETTLING U U*NU EPS °C CM TIME SEC CM/SEC 0.01CM ³ /SEC ²	 .
26.50 6.0 18.3 0.3279 15.54 0.95 26.50 6.0 18.3 0.3279 15.54 0.95	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
27.55 8.0 19.6 0.3081 13.77 0.92 27.65 12.0 42.3 0.2837 12.70 0.90 27.65 12.0 41.0 0.2927 13.10 0.90	
27.65 12.0 41.7 0.2878 12.88 0.90 27.75 12.0 41.4 0.2899 12.91 0.90 25.90 12.0 47.8 0.2510 12.24 0.88	·
25.90 15.0 63.3 0.2370 11.55 0.88 25.90 15.0 63.3 0.2370 11.55 0.88 26.10 15.0 61.8 0.2427 11.72 0.88	
26.5015.073.30.20469.700.8526.5015.074.10.20249.600.8526.5015.074.40.20169.560.85	
26.60 15.0 83.0 0.1807 8.52 0.83 26.60 15.0 82.7 0.1814 8.55 0.83 26.65 15.0 83.6 0.1794 8.44 0.83	
26.85 12.0 81.0 0.1481 6.89 0.80 26.85 12.0 81.8 0.1467 6.83 0.80	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
26.90 9.0 75.2 0.1197 5.55 0.77 23.55 9.0 113.2 0.0795 4.37 0.74 23.55 9.0 112.2 0.0802 4.41 0.74	
23.70 9.0 112.0 0.0804 4.38 0.74 24.32 9.0 139.2 0.0647 3.41 0.71 24.32 9.0 138.5 0.0650 3.43 0.71	
24.45 9.0 135.1 0.0666 3.49 0.71 24.80 7.0 134.7 0.0520 2.68 0.68 25.62 6.0 109.5 0.0548 2.71 0.68	
25.62 6.0 107.6 0.0558 2.76 0.68 25.85 6.0 142.5 0.0421 2.06 0.65	

VII-24

. .

	RUN 10-2 PARTICLES= LIQUID= PARTICLE S SIEVE OPEN	MINERAL SAE 10W SIZE Dy= NINGS 0.3	CRYSTALS 88.1 %+ KE 0.0426 CM, 51/0.417 MM	ROSENE, Dt = 3. , SIEVI	DENSITY= 2.632 DENSITY= 0.858 78 CM, Dv/Dt = NG + ELUTRIATI	GM/CM ³ GM/CM ³ 0.0113 ON	
-	TEMP °F	DIST CM	SETTLING TIME SEC	U CM/SEC	U*NU 0.01CM ³ /SEC ²	EPS	
	74.75 74.75	9.0 9.0	24.5	0.3673	13.00 13.84	0.95 0.95	
	75.60 75.60 75.70 75.70	9.0 9.0 12.0 12.0	29.0 28.4 36.2 38.3	0.3103 0.3169 0.3315 0.3133	10.74 10.97 11.45 10.82	0.92 0.92 0.92 0.92	<u> </u>
	76.30 76.30 76.30	9.0	28.6 30.0	0.3147 0.3000	10.70 10.20	0.90	
	76.10 76.10 75.95 75.95	12.0 12.0 12.0 12.0	46.0 44.0 58.3 59.2	0.2609 0.2727 0.2058 0.2027	8.92 9.32 7.06 6.96	0.88 0.85 0.85	
	73.85 73.85 73.85 74.80	12.0 12.0 9.0	72.6 76.8 55.6 81.6	0.1653 0.1562 0.1619 0.1471	5.99 5.66 5.86 5.20	0.82 0.82 0.82 0.80	
	74.80 74.80 71.90	12.0 12.0 12.0 12.0	77.2 82.2 110.8	0.1554 0.1460 0.1083	5.49 5.16 4.13	0.80 0.80 0.77	- 1997
	71.90 71.90 73.65 73.65 74.25	9.0 9.0 9.0 9.0 9.0	81.2 83.6 100.1 98.2 127.6	0.1108 0.1077 0.0899 0.0916 0.0705	4.23 4.10 3.27 3.34 2.53	0.77 0.77 0.74 0.74 0.74	
	74.40 74.40 73.50 73.50 73.20	6.0 6.0 6.0 6.0	86.6 86.8 114.2 112.7 143.4	0.0693 0.0691 0.0525 0.0532 0.0418	2.47 2.47 1.92 1.95	0.71 0.71 0.68 0.68 0.65	
	73.20	6.0	141.0	0.0426	1.57	0.65	

. ...

.

. .

RUN 10-3 PARTICLES= MINERAL CRYSTALS LIQUID= SAE 10W 88.1% + KEROSENE, PARTICLE SIZE DV= 0.0426 CM, D1 = 5 SIEVE OPENINGS 0.351/0.417 MM, SIEVTEMP DIST SETTLING U °F CM TIME SEC CM/SEC74.509.026.20.343574.509.025.60.351675.4012.039.50.303875.409.029.70.303075.409.029.60.301176.309.029.60.301176.409.029.60.304176.309.031.60.2848376.1011.036.40.302276.1011.044.30.248376.1012.055.60.215876.0012.055.60.211876.0012.055.60.211876.0012.072.00.166773.8012.074.50.161174.6012.083.30.144174.6012.083.20.144271.8012.0114.20.105171.809.085.10.105873.609.098.00.091874.206.083.00.072373.506.0110.80.054273.206.0139.00.043273.206.0142.20.0422		
PARTICLES MINERAL CRYSTALS LIQUID= SAE 10W 88.1% + KEROSENE, PARTICLE SIZE Dy= 0.0426 CM, Dt = 5 SIEVE OPENINGS 0.351/0.417 MM, SIEV °F CM TIME SEC CM/SEC 74.50 9.0 26.2 0.3435 74.50 9.0 25.6 0.3516 75.40 12.0 39.5 0.3038 75.40 9.0 29.7 0.3030 75.40 9.0 29.5 0.3041 76.30 9.0 29.6 0.3041 76.30 9.0 29.6 0.3041 76.30 9.0 29.6 0.3041 76.30 11.0 36.4 0.3022 76.10 11.0 44.3 0.2483 76.10 12.0 55.6 0.2118 76.00 12.0 59.6 0.2013 76.00 12.0 74.5 0.1611 73.80 12.0 74.5 0.1611 74.60 12.0 83.3<		cu (cu3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DENSITY = 2.632	GM/CM°
PARTICLE SIZE $D_y = 0.0426$ CM, $D_1 = 5$ SIEVE OPENINGS 0.351/0.417 MM, SIEVTEMP DIST SETTLING UororCMTIME SEC CM/SEC74.509.026.20.343574.509.025.60.351675.4012.039.50.303875.409.029.70.303075.409.029.60.304176.309.029.60.304176.309.031.60.284876.1011.036.40.302276.1011.044.30.248376.1012.044.80.267976.0012.055.60.211876.0012.055.60.201376.0012.056.80.211373.8012.074.50.166773.8012.074.50.161174.6012.083.30.144174.6012.083.20.144271.809.085.10.105873.609.099.20.090773.609.098.00.091874.406.083.00.072273.506.0110.80.054273.206.0142.20.043273.206.0142.20.0422	DENSITY = 0.858	GM/LM ^S
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	08 CM, Dy/D =	0.0084
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ING + ELUIRIAIIU	N
$\circ_{\rm F}$ CMTIME SECCM/SEC74.509.026.20.343574.509.025.60.351675.4012.039.50.303075.409.029.70.303075.409.029.60.304176.309.029.60.304176.309.031.60.284876.3011.036.40.302276.1011.044.30.248376.1012.044.80.267976.0014.066.10.211876.0012.055.60.215876.0012.059.60.201376.0012.073.70.162873.8012.073.70.162873.8012.073.70.162873.8012.074.50.161174.6012.083.30.144174.6012.083.20.144271.809.084.50.106573.609.099.20.090773.609.099.20.090773.609.0125.10.071974.206.085.60.071274.406.083.00.072373.506.0112.00.053673.206.0139.00.043273.206.0142.20.0422	11±N11	EDC
74.50 9.0 26.2 0.3435 74.50 9.0 25.6 0.3516 75.40 12.0 39.5 0.3038 75.40 9.0 29.7 0.3030 75.40 9.0 29.7 0.3030 75.40 9.0 29.5 0.3051 76.30 9.0 29.6 0.3041 76.30 9.0 219.6 0.3041 76.30 9.0 31.6 0.2848 76.30 9.0 31.6 0.2848 76.10 11.0 36.4 0.3022 76.10 11.0 44.3 0.2483 76.10 12.0 44.8 0.2679 76.00 14.0 66.1 0.2118 76.00 12.0 55.6 0.2118 76.00 12.0 55.6 0.2113 73.80 12.0 73.7 0.1628 73.80 12.0 74.5 0.1611 74.60 12.0 83.3 0.1442 71.80 12.0 83.2 0.1442 71.80 9.0 85.1 0.1058 71.80 9.0 84.5 0.1065 73.60 9.0 99.2 0.9907 73.60 9.0 99.2 0.9907 73.60 9.0 85.6 0.0701 74.40 6.0 83.0 0.0723 73.50 6.0 110.8 0.0542 73.20 6.0 139.0 0.0432 73.20 6.0 <		LFJ
74.50 9.0 26.2 0.3435 74.50 9.0 25.6 0.3516 75.40 12.0 39.5 0.3038 75.40 9.0 29.7 0.3030 75.40 9.0 29.5 0.3051 76.30 9.0 29.6 0.3041 76.30 9.0 29.6 0.3041 76.30 9.0 31.6 0.2848 76.30 11.0 36.4 0.3022 76.10 11.0 44.3 0.2483 76.10 12.0 44.8 0.2679 76.00 14.0 66.1 0.2118 76.00 12.0 55.6 0.2138 76.00 12.0 59.6 0.2013 76.00 12.0 59.6 0.2013 76.00 12.0 73.7 0.1628 73.80 12.0 74.5 0.1611 74.60 12.0 83.3 0.1441 74.60 12.0 83.2 0.1442 71.80 9.0 85.1 0.1058 71.80 9.0 85.1 0.1058 71.80 9.0 98.0 0.0918 74.20 6.0 83.0 0.0723 73.50 6.0 110.8 0.0542 73.20 6.0 139.0 0.0432 73.20 6.0 142.2 0.0422	U.UICM-73EC	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.23	0.95
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.52	0.95
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.57	0.92
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.54	0.92
76.30 9.0 29.6 0.3041 76.30 9.0 31.6 0.2848 76.30 11.0 36.4 0.3022 76.10 11.0 44.3 0.2483 76.10 12.0 44.8 0.2679 76.00 14.0 66.1 0.2118 76.00 12.0 55.6 0.2158 76.00 12.0 59.6 0.2013 76.00 12.0 59.6 0.2013 76.00 12.0 56.8 0.2113 73.80 12.0 72.0 0.1667 73.80 12.0 73.7 0.1628 73.80 12.0 74.5 0.1611 74.60 12.0 83.3 0.1441 74.60 12.0 83.2 0.1442 71.80 9.0 85.1 0.1058 71.80 9.0 85.1 0.1058 71.80 9.0 99.2 0.0907 73.60 9.0 98.0 0.0918 74.20 6.0 85.6 0.0701 74.40 6.0 83.0 0.0723 73.50 6.0 110.8 0.0542 73.20 6.0 142.2 0.0422 73.20 6.0 142.2 0.0422	10.61	0.92
76.30 9.0 31.6 0.2848 76.30 11.0 36.4 0.3022 76.10 11.0 44.3 0.2483 76.10 12.0 44.8 0.2679 76.00 14.0 66.1 0.2118 76.00 12.0 55.6 0.2158 76.00 12.0 59.6 0.2013 76.00 12.0 59.6 0.2013 76.00 12.0 59.6 0.2013 76.00 12.0 56.8 0.2113 73.80 12.0 74.5 0.1667 73.80 12.0 74.5 0.1611 74.60 12.0 83.3 0.1441 74.60 12.0 83.3 0.1442 71.80 9.0 85.1 0.1058 71.80 9.0 84.5 0.1065 73.60 9.0 99.2 0.0907 73.60 9.0 98.0 0.0918 74.20 9.0 125.1 0.0719 74.40 6.0 83.0 0.0723 73.50 6.0 110.8 0.0542 73.20 6.0 139.0 0.0432 73.20 6.0 142.2 0.0422	10.34	0.90
76.30 11.0 36.4 0.3022 76.10 11.0 44.3 0.2483 76.10 12.0 44.8 0.2679 76.00 14.0 66.1 0.2118 76.00 12.0 55.6 0.2158 76.00 12.0 59.6 0.2013 76.00 12.0 59.6 0.2013 76.00 12.0 56.8 0.2113 73.80 12.0 72.0 0.1667 73.80 12.0 74.5 0.1611 74.60 12.0 83.3 0.1441 74.60 12.0 83.2 0.1442 71.80 9.0 85.1 0.1058 71.80 9.0 85.1 0.1058 71.80 9.0 84.5 0.1065 73.60 9.0 99.2 0.0907 73.60 9.0 98.0 0.0918 74.20 6.0 83.0 0.0723 73.50 6.0 110.8 0.0542 73.20 6.0 139.0 0.0432 73.20 6.0 142.2 0.0422	9.69	0.90
76.10 11.0 44.3 0.2483 76.10 12.0 44.8 0.2679 76.00 14.0 66.1 0.2118 76.00 12.0 55.6 0.2158 76.00 12.0 59.6 0.2013 76.00 12.0 59.6 0.2013 76.00 12.0 56.8 0.2113 76.00 12.0 56.8 0.2113 76.00 12.0 56.8 0.2113 76.00 12.0 56.8 0.2113 73.80 12.0 73.7 0.1628 73.80 12.0 73.7 0.1628 73.80 12.0 74.5 0.1611 74.60 12.0 83.3 0.1441 74.60 12.0 83.2 0.1442 71.80 9.0 85.1 0.1058 71.80 9.0 84.5 0.1065 73.60 9.0 99.2 0.0907 73.60 9.0 98.0 0.0918 74.20 6.0 83.0 0.0719 74.40 6.0 83.0 0.0723 73.50 6.0 110.8 0.0542 73.20 6.0 139.0 0.0432 73.20 6.0 142.2 0.0422	10.28	0.90
76.10 12.0 44.8 0.2679 76.00 14.0 66.1 0.2118 76.00 12.0 55.6 0.2158 76.00 12.0 59.6 0.2013 76.00 12.0 59.6 0.2013 76.00 12.0 56.8 0.2113 73.80 12.0 72.0 0.1667 73.80 12.0 73.7 0.1628 73.80 12.0 74.5 0.1611 74.60 12.0 83.3 0.1441 74.60 12.0 83.2 0.1442 71.80 12.0 114.2 0.1051 71.80 9.0 85.1 0.1058 71.80 9.0 84.5 0.1065 73.60 9.0 99.2 0.0907 73.60 9.0 98.0 0.0918 74.20 6.0 83.0 0.0719 74.40 6.0 83.0 0.0723 73.50 6.0 110.8 0.0542 73.20 6.0 139.0 0.0432 73.20 6.0 142.2 0.0422	8.49	0.88
76.00 14.0 66.1 0.2118 76.00 12.0 55.6 0.2158 76.00 12.0 59.6 0.2013 76.00 12.0 56.8 0.2113 73.80 12.0 72.0 0.1667 73.80 12.0 73.7 0.1628 73.80 12.0 74.5 0.1611 74.60 12.0 83.3 0.1441 74.60 12.0 83.2 0.1442 71.80 9.0 85.1 0.1058 71.80 9.0 84.5 0.1065 73.60 9.0 99.2 0.0907 73.60 9.0 98.0 0.0918 74.20 6.0 83.0 0.0719 74.40 6.0 83.0 0.0723 73.50 6.0 110.8 0.0542 73.20 6.0 139.0 0.0432 73.20 6.0 142.2 0.0422	9.16	0.88
76.00 12.0 55.6 0.2158 76.00 12.0 59.6 0.2013 76.00 12.0 56.8 0.2113 73.80 12.0 72.0 0.1667 73.80 12.0 73.7 0.1628 73.80 12.0 74.5 0.1611 74.60 12.0 83.3 0.1441 74.60 12.0 83.2 0.1442 71.80 12.0 114.2 0.1051 71.80 9.0 85.1 0.1058 71.80 9.0 85.1 0.1058 71.80 9.0 84.5 0.1065 73.60 9.0 99.2 0.0907 73.60 9.0 98.0 0.0918 74.20 6.0 85.6 0.0701 74.40 6.0 83.0 0.0723 73.50 6.0 112.0 0.0536 73.20 6.0 139.0 0.0432 73.20 6.0 142.2 0.0422	7.26	0.85
76.00 12.0 59.6 0.2013 76.00 12.0 56.8 0.2113 73.80 12.0 72.0 0.1667 73.80 12.0 73.7 0.1628 73.80 12.0 74.5 0.1611 74.60 12.0 83.3 0.1441 74.60 12.0 83.2 0.1442 71.80 12.0 114.2 0.1051 71.80 9.0 85.1 0.1058 71.80 9.0 84.5 0.1065 73.60 9.0 99.2 0.0907 73.60 9.0 98.0 0.0918 74.20 6.0 85.6 0.0701 74.40 6.0 83.0 0.0723 73.50 6.0 110.8 0.0542 73.20 6.0 139.0 0.0432 73.20 6.0 142.2 0.0422	7.40	0.85
76.00 12.0 56.8 0.2113 73.80 12.0 72.0 0.1667 73.80 12.0 73.7 0.1628 73.80 12.0 74.5 0.1611 74.60 12.0 83.3 0.1441 74.60 12.0 83.3 0.1442 71.80 12.0 114.2 0.1051 71.80 9.0 85.1 0.1058 71.80 9.0 84.5 0.1065 73.60 9.0 99.2 0.0907 73.60 9.0 98.0 0.0918 74.20 9.0 125.1 0.0719 74.40 6.0 83.0 0.0723 73.50 6.0 110.8 0.0542 73.20 6.0 139.0 0.0432 73.20 6.0 142.2 0.0422	6.90	0.85
73.80 12.0 72.0 0.1667 73.80 12.0 73.7 0.1628 73.80 12.0 73.7 0.1628 73.80 12.0 74.5 0.1611 74.60 12.0 83.3 0.1441 74.60 12.0 83.2 0.1442 71.80 12.0 114.2 0.1051 71.80 9.0 85.1 0.1058 71.80 9.0 84.5 0.1065 73.60 9.0 99.2 0.0907 73.60 9.0 98.0 0.0918 74.20 9.0 125.1 0.0719 74.20 6.0 83.0 0.0723 73.50 6.0 110.8 0.0542 73.50 6.0 112.0 0.0536 73.20 6.0 144.4 0.0416 73.20 6.0 142.2 0.0422	7.24	0.85
73.80 12.0 73.7 0.1628 73.80 12.0 74.5 0.1611 74.60 12.0 83.3 0.1441 74.60 12.0 83.2 0.1442 71.80 12.0 114.2 0.1051 71.80 9.0 85.1 0.1058 71.80 9.0 84.5 0.1065 73.60 9.0 99.2 0.0907 73.60 9.0 98.0 0.0918 74.20 9.0 125.1 0.0719 74.20 6.0 85.6 0.0701 74.40 6.0 83.0 0.0542 73.50 6.0 110.8 0.0542 73.20 6.0 139.0 0.0432 73.20 6.0 142.2 0.0422	6.04	0.82
73.80 12.0 74.5 0.1610 73.80 12.0 74.5 0.1611 74.60 12.0 83.3 0.1441 74.60 12.0 83.2 0.1442 71.80 12.0 114.2 0.1051 71.80 9.0 85.1 0.1058 71.80 9.0 85.1 0.1058 71.80 9.0 84.5 0.1065 73.60 9.0 99.2 0.0907 73.60 9.0 98.0 0.0918 74.20 9.0 125.1 0.0719 74.20 6.0 83.0 0.0723 73.50 6.0 110.8 0.0542 73.50 6.0 112.0 0.0536 73.20 6.0 139.0 0.0432 73.20 6.0 142.2 0.0422	5 90	0.82
73.80 12.0 74.5 0.1011 74.60 12.0 83.3 0.1441 74.60 12.0 83.2 0.1442 71.80 12.0 114.2 0.1051 71.80 9.0 85.1 0.1058 71.80 9.0 84.5 0.1065 73.60 9.0 99.2 0.0907 73.60 9.0 98.0 0.0918 74.20 9.0 125.1 0.0719 74.20 6.0 85.6 0.0701 74.40 6.0 83.0 0.0723 73.50 6.0 110.8 0.0542 73.50 6.0 112.0 0.0536 73.20 6.0 139.0 0.0432 73.20 6.0 142.2 0.0422	5 84	0.82
74.00 12.0 83.3 0.1441 74.60 12.0 83.2 0.1442 71.80 12.0 114.2 0.1051 71.80 9.0 85.1 0.1058 71.80 9.0 84.5 0.1065 73.60 9.0 99.2 0.0907 73.60 9.0 98.0 0.0918 74.20 9.0 125.1 0.0719 74.20 6.0 85.6 0.0701 74.40 6.0 83.0 0.0723 73.50 6.0 110.8 0.0542 73.50 6.0 112.0 0.0536 73.20 6.0 139.0 0.0432 73.20 6.0 142.2 0.0422	5 12	0.02
74.80 12.0 83.2 0.1442 71.80 12.0 114.2 0.1051 71.80 9.0 85.1 0.1058 71.80 9.0 84.5 0.1065 73.60 9.0 99.2 0.0907 73.60 9.0 98.0 0.0918 74.20 9.0 125.1 0.0719 74.20 6.0 85.6 0.0701 74.40 6.0 83.0 0.0723 73.50 6.0 110.8 0.0542 73.50 6.0 112.0 0.0536 73.20 6.0 144.4 0.0416 73.20 6.0 142.2 0.0422	J+12 5 10	0.00
71.80 12.0 114.2 0.1051 71.80 9.0 85.1 0.1058 71.80 9.0 84.5 0.1065 73.60 9.0 99.2 0.0907 73.60 9.0 98.0 0.0918 74.20 9.0 125.1 0.0719 74.20 6.0 85.6 0.0701 74.40 6.0 83.0 0.0723 73.50 6.0 110.8 0.0542 73.50 6.0 112.0 0.0536 73.20 6.0 139.0 0.0432 73.20 6.0 144.4 0.0416 73.20 6.0 142.2 0.0422	2.12	0.80
71.80 9.0 83.1 0.1038 71.80 9.0 84.5 0.1065 73.60 9.0 99.2 0.0907 73.60 9.0 98.0 0.0918 74.20 9.0 125.1 0.0719 74.20 6.0 85.6 0.0701 74.40 6.0 83.0 0.0723 73.50 6.0 110.8 0.0542 73.50 6.0 112.0 0.0536 73.20 6.0 139.0 0.0432 73.20 6.0 144.4 0.0416 73.20 6.0 142.2 0.0422	4.02	$\frac{0 \cdot 11}{0 \cdot 77}$
71.80 9.0 84.5 0.1085 73.60 9.0 99.2 0.0907 73.60 9.0 98.0 0.0918 74.20 9.0 125.1 0.0719 74.20 6.0 85.6 0.0701 74.40 6.0 83.0 0.0723 73.50 6.0 110.8 0.0542 73.50 6.0 112.0 0.0536 73.20 6.0 139.0 0.0432 73.20 6.0 144.4 0.0416 73.20 6.0 142.2 0.0422	4.04	0.11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.07	0.74
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.25	0.74
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.37 2.50	0.71
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.58	0.71
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.52	$\frac{0.11}{0.71}$
73.50 6.0 110.8 0.0542 73.50 6.0 112.0 0.0536 73.20 6.0 139.0 0.0432 73.20 6.0 144.4 0.0416 73.20 6.0 142.2 0.0422	2.58	U • / 1
73.50 6.0 112.0 0.0536 73.20 6.0 139.0 0.0432 73.20 6.0 144.4 0.0416 73.20 6.0 142.2 0.0422	1.98	0.68
73.20 6.0 139.0 0.0432 73.20 6.0 144.4 0.0416 73.20 6.0 142.2 0.0422	L.96	0.68
73.20 6.0 144.4 0.0416 73.20 6.0 142.2 0.0422	1.59	0.65
73.20 6.0 142.2 0.0422	1.53	0.65
	1.55	0.65
		-
		-

.

· -

. . .

-

• ••

·····	RUN 11-2 PARTICLES= LIQUID= PARTICLE S SIEVE OPEN	_SUGAR CI SAE 30 IZE Dy = (INGS 0.9	RYSTALS 66% + SAE 1 0.1346 CM, 91/1.168 MM	OW D† = 3. , SIEVI	DENSITY= 1.590 DENSITY= 0.876 78 CM, D _V /Dt = NG + ELUTRIATI	GM/CM ³ GM/CM ³ 0.0356 DN	
	TEMP °F	DIST CM	SETTLING TIME SEC	U CM/SEC	U*NU 0.01CM ³ /SEC ²	EPS	
	71.90	9.0	39.4	0.2284	43.35	0.95	
·	71.90	9.0	39.4	0.2284	43.35	0.95	
	71.90	9.0	41.0	0.2195	41.66	0.95	
	72.70	9.0	44.6	0.2018	37.21	0.92	
	72.70	9.0	43.4	0.2074	38.24	0.92	
	72.70	9.0	43.2	0.2083	38.42	0.92	
	73.40	12.0	60.8	0.1974	35.48	0.90	
	73.40	12.0	61.7	0.1945	34.96	0.90	
	73.80	12.0	64.5	0.1860	32.95	0.88	
	73.80	12.0	64.0	0.1875	33.21	0.88	
· ·	73.80	12.0	66.4	0.1807	32.01	0.88	
	73.20	12.0	77.4	0.1550	28.07	0.85	
	73.20	12.0	78.8	0.1523	27.58	0.85	
	73.20	12.0	75.0	0.1600	28.97	0.85	
	73.20	12.0	75.5	0.1589	28.78	0.85	
	73.70	12.0	96.3	0.1246	22.15	0.82	
	73.70	12.0	90.6	0.1325	23.55	0.82	
	73.70	12.0	91.8	0.1307	23.24	0.82	
	71.50	9.0	85.0	0.1059	20.38	0.80	
	71.50	9.0	83.0	0.1084	20.87	0.80	
	71.50	9.0	81.2	0.1108	21.34	0.80	
	73.70	9.0	103.1	0.0873	15.52	0.77	
	73.70	9.0	95.4	0.0943	16.77	0.77	-
	74.00	9.0	96.2	0.0936	16.45	0.77	
	73.60	6.0	78.0	0.0769	13.73	0.74	
	74.20	6.0	85.5	0.0702	12.25	0.74	
,	72.50	6.0	112.2	0.0535	9.93	0.71	
	72.50	6.0	107.4	0.0559	10.38	0.71	
	74.20	5.8	133.0	0.0436	7.62	0.68	
-	· · · · ·						

_

. .

ņ. •

	RUN 11-3						
	PARTICLES=	SUGAR CR	YSTALS	1	DENSITY= 1.590	GM/CM ³	
i an agrannagat y i		SAE 30 6	5% + SAF 1	0W 1	DENSITY = 0.876	GM/CM ³	
	DARTICLE S	$17E D_{\rm H} = 0$	1346 CM.	$D_{+} = 5.0$	$08 \text{ CM}_{2} \text{ Dy} \text{ Dy} =$	0.0265	
.,	STEVE OPEN	INGS 0.99	1/1.168 MM	- SIEVI	NG + FINTRIATI		
· ·		1005 0.99	1/1+100 MM	y SILVII	NO I LEOINIAII		
	TEMD	DIST	SETTLING	11	LIXNII	FDS	
•			TIME CEC				
-	<u></u>	UM	IIME SEC	CHISLU	0.01CM-73LC		•
	71 45	9.0	<i>(</i> ,1, 0)	0 2105	12 02	0 05	
	71.65	9.0	41.0	0 2195	42.03	0.95	
	72 70	9.0	41.0	0.2027	27 28	0.92	
	72 70	7.0	43 0	0 2003	38 60	0.92	
	72 70	9.0	43.0	0.2093	20.00	0.92	
	72.10	9.0	42.0	0.2005	20.42	0.92	•
	73.40	12.0	50.4	0.1987	32.11	0.90	
·	73.40	12.0	59.4	0.2020	30.32	0.90	
	73.40	12.0	61.0	0.1967	<u> </u>	0.90	
	13.85	12.0	65.2	0.1840	32.54	0.88	
	73.85	12.0	66.0	0.1818	32.14	0.88	
	73.85	12.0	65.8	0.1824	32.24	0.88	
	73.20	12.0	75.2	0.1596	28.90	0.85	
	73.20	12.0	75.3	0.1594	28.86	0.85	
	73.30	12.0	94.4	0.1271	22.93	0.82	
	74.05	12.0	92.0	0.1304	22.89	0.82	
	71.30	9.0	82.8	0.1087	21.07	0.80	
• .	71.30	9.0	81.0	0.1111	21.54	0.80	
	72.00	9.0	81.0	0.1111	21.01	0.80	
	73.65	9.0	97.0	0.0928	16.53	0.77	
	73.65	9.0	97.2	0.0926	16.49	0.77	
•	73.90	9.0	97.0	0.0928	16.37	0.77	
	. 73.00	6.0	83.4	0.0719	13.12	0.74	
	73.20	6.0	79.7	0.0753	13.63	0.74	_
	73.20	6.0	80.2	0.0748	13.55	0.74	
	74.30	6.0	78.3	0.0766	13.34	0.74	
	73.30	6.0	109.6	0.0547	9.88	0.71	
	73.30	6.0	108.2	0.0555	10.00	0.71	
	72.70	6.0	143.0	0.0420	7.74	0.68	
	73.50	6.0	138.8	0.0432	7.74	0.68	
					,		
			,				
					<u></u>		
•		· · ·	. .				
		. '					
			,				
			-				
· · · · · · · · · · · · · · · · · · ·		·····	· · · · · · · · · · · · · · · · · · ·				

....

	PARTICLE S SIEVE OPEN	IZE $D_V =$ INGS 0.8	0.1133 CM, 83/0.991 MM	Dt = 5.0 , SIEVI0	08 CM, Dv/Dt = NG + ELUTRIATI	0.0223 DN	
-	TEMP °F	DIST CM	SETTLING TIME SEC	U CM/SEC	U*NU 0.01CM ³ /SEC ²	EPS	
	74.90	9.0	32.4	0.2778	31.43	0.95	
	74.90	9.0	31.8	0.2830	32.02	0.95	
	74.90	9.0	30.4	0.2961	33.50	0.95	
	76.50	9.0	32.5	0.2769	29.73	0.92	
	76.50	9.0	33.0	0.2727	29.28	0.92	
	76.50	9.0	32.4	0.2778	29.82	0.92	
	78.20	9.0	32.4	0.2778	28.24	0.90	
	78.20	9.0	31.7	0.2839	28.87	0.90	
	78.20	9.0	33.0	0.2727	27.73	0.90	
	78.20	9.0	31.6	0.2848	28.96	0.90	
	78.20	9.0	33.4	0.2695	27.40	0.90	-
	77.25	12.0	47.5	0.2526	26.49	0.88	
	77.25	12.0	49.8	0.2410	25.27	0.88	
	77.25	9.0	36.2	0.2486	26.07	0.88	
	79.40	12.0	49.4	0.2429	23.78	0.85	
	79.40	12.0	51.4	0.2335	22.86	0.85	
	79.40	12.0	52.0	0.2308	22.59	0.85	
	75.20	12.0	74.6	0.1609	18.02	0.82	
	75.20	11.9	73.2	0.1626	18.21	0.82	
	76.80	9.0	59.3	0.1518	16.14	0.80	
	79.45	9.0	68.2	0.1320	12.90	0.77	
	79.45	9.0	67.2	0.1339	13.09	0.77	
	79.50	.6.0	59.4	0.1010	9.86	0.74	
	80.10	6.0	75.0	0.0800	7.65	0.71	
	80.80	6.0	92.6	0.0648	6.04	0.68	
•							_

. . . .

:

•- ·

VISCOSITY DATA

. . . .

.

· /

Run 1-1,2

Temperature Viscosity	of cs	68.00 185.90	69.00 181.90	70.00 178.06	71.03 174.26	71.96 170.98	73.01 167.21	74.01 163.80	75.00 160.79	75.97 157.55
Temperature Viscosity	o _F cs	77.02 154.14	77.99 151.23	78.99 148.26						
Run 1-3								·		
Temperature Viscosity	oC cs	18.80 194.79	20.10 184.86	20.48 182.26	21.16 177.80	22.02 171.50	23.05 165.02	24.16 158.45	25.00 153.39	
Run 2-1,2										
Temperature Viscosity	oF cs	68.02 341.11	69.00 333.74	70.03 326.00	71.02 318.51	72.00 311.31	73.02 303.52	74.45 293.50	75.10 289.47	76.25 283.00
Temperature Viscosity	of Cs	77.13 278.46								
Run 2-3										
Temperature Viscosity	o F cs	68.02 341.11	69.00 333.74	70.03 326.00	71.02 318.51	72.00 311.31	73.02 303.52	75.10 289.47	77.13 278.46	
Run 3-1A,2,	3									
Temperature Viscosity	of Cs	67.00 35.66	68.00 34.86	69.03 33.86	70.00 33.04	71.00 32.24	72.01 31.39	73.00 30.63	75.02 29.15	76.00 28.43
Temperature Viscosity	o _F cs	77.20 27.64								

VII-30

VISCOSITY DATA (continued)

Run 3-4									
Temperature Viscosity	of Cs	68.00 34.72	69.01 33.86	70.00 32.99	71.00 32.19	71.95 31.43	73.01 30.62	74.00 29.88	
Run 4-2,3									
Temperature Viscosity	o _F cs	68.00 42.04	69.00 40.94	70.00 39.88	71.00 38.87	72.00 37.85	73.00 36.90	74.00 35.90	75.00 34.94
Run 5-3									
Temperature Viscosity	of cs	68.00 42.17	69.01 41.05	70.00 39.96	71.00 38.94	71.95 37.98	73.01 36.94	74.00 36.02	
Run 6-4									
Temperature Viscosity	o _F cs	68.05 231.6	69.20 221.9	69.98 216.3	71.10 208.2	72.00 200.7	73.00 193.9	74.00 186.9	
Run 6-5									
Temperature Viscosity	o _F cs	68.05 231.64	69.20 221.86	69.98 216.3	71.10 208.16	72.00 200.66	73.06 193.87	74.00 186.96	74.90 181.97
Temperature Viscosity	o _F cs	76.20 173.43	77.20 167.34						
Run 7-3									
Temperature Viscosity	o _F cs	70.00 116.07	71.00 113.73	72.00 111.64	73.00 109.27	74.00 107.20	75.00 105.18	76.00 103.06	

VISCOSITY DATA (continued)

Run 8-P,M										
Temperature Viscosity	o _F cs	72.00 38.01	73.05 36.92	73.98 36.06	74.90 35.24					
Run 9-2,3										
Temperature Viscosity	oc cs	23.00 56.56	23.50 55.06	24.00 53.67	24.50 52.32	25.00 51.04	25.50 49.70	26.00 48.51	26.50 47.40	27.00 46.16
Temperature Viscosity	о _С cs	27.50 45.10	28.00 44.00							
Run 10-2,3										
Temp er ature Viscosity	oC cs	71.00 39.04	71.85 38.18	73.00 37.02	74.10 35.98	75.05 35.10	76.10 34.18	77.10 33.32		
Run 11-2,3										
Temperature Viscosity	o _F cs	70.00 203.00	71.00 195.90	72.00 189.10	73.00 182.40	74.00 175.80	75.00 169.90			
Run 12-3										
Temperature Viscosity	o _F cs	74.00 116.30	75.00 112.80	76.00 109.00	77.00 105.70	78.00 102.30	79.00 99.15	80.00 96.02	81.20 91.90	

VII-32

APPENDIX VIII CALCULATED RESULTS FOR HINDERED SETTLING

** Data not used in curve fitting of eqt. la

WIN 1-3 PARTICLES- GLASS DEADS LIQUID P.E.G.SDLN 40/100 DENSITY 1.071 GLYCH PARTICLE SILE DWA 01113 G.M. 9 = 5.0223 STRE GPEGNIPSS 0.991/1.164 MM, MI ELUTHIATION	EPS U#MU(AVE) LG(2PS) LG(U#NU) STU.DEV. ND.()5 0.010.47.5662 16.515	0.99 65.5 -0.0458 1.816 1.08 6 ** 0.83 60.7 -0.0555 1.783 0.60 5	0.65 52.0 -0.676/8 1.716 0.45 5 0.83 46.9 -0.0864 1.871 0.59 5 0.83 39.7 -0.0864 1.594 0.96 5	0.77 32.9 -0.1135 1.517 9.67 5 0.74 2.6.5 -0.11305 1.424 0.40 4 0.77 20.6 -0.1549 1.313 0.81 5	0.67 16.7 -0.1759 1.222 0.17 4 0.64 13.2 -0.1938 1.120 0.26 4	RE(0) 0.041- 0.045 I SAKT SOUNDES ESTIMATES	UGG(UMU)= 2.0519 + 4.024(0G(EPS) UPXU) = 114.274544 4.02 UPXU = 114.2745454 4.02 UGG(UPXU)0 2.05954 6.019 UGG(UPXU)0 2.05954 6.019 UGG(UPXU)0 2.057954 6.019	014. 0F SPYERE GUARESOUNDING TO 0.1086 CM UNAVIENT 114.274 0.1104 CM CURRECTS FOR MENTION 0.1111 CM CURRECTS FOR MENTION 0.1071-0.1101CM	NUN 2-3 PANTICLES- GLASS GEADS LIGUID: F-E.S.GLASS GEADS LIGUID: F-E.S.GLASS 45400 0ENSITY - 1.002 GM/CH3 PANTICLE SIZE U-= 0.1135 CM. D1 - 5.09 CM U/01 - 0.0223 SLEVE DPENTICLE 3.0.991/1.169 M** NN ELUTALIATUM	EPS UONULAVE) LGLEPS) LGLUONU) STUDDEV NU.OF 0.01043/5662	0.90 64.5 -0.0458 1.810 0.82 5 ** 0.89 59.6 -0.0555 1.775 0.21 3	0.00 2/21 1/0/0/00 1/1/1 1/0/2 0 0.01 46.4 -0.0009 1/666 0.72 4 0.80 41.3 -0.0949 1/616 0.55 4 ••	0.77 23.1 -0.113 1.527 0.58 7 0.77 26.7 -0.1308 1.427 0.43 3 0.77 -0.1569 1.316 0.78 4	0.67 16.5 -0.1739 1.217 0.42 3 0.64 14.0 -0.1938 1.147 0.71 2	RE(Q) 0.011-0.014 15AST SQUARES ESTIMATES	- LDG(LWWU)= 2.0412 + 4.67*LOG(EPS) UAU = 100.915FPS+4.67 UAFLDEWCE INTERVL N= U671 104.67 ± 0.16 U04.UUANU) 2.0412 ± 0.205 UU-8UUS 104.673-115.275	014. OF SPHERE CORRESPONDING TO 0.1074 CM (US-NU)EXT= 109-951 0.1095 CM CORRECTE FOR MALL 0.1099 CM UN-NU)EXT DF 104-813- 115.274, 0.1073-0.1100CH CORRECTED FOR MALL 0.1073-0.1125CH
RUN 1–2 DAATICLES GLASS READS LIQUID= P.E.G.SOLN 40/IC0 DENSITY= 1.011 CM/CM ³ LIQUID= P.E.G.SOLN 40/IC0 DENSITY= 1.011 CM/CM ³ APATICLE SIZE UP.3.0.1135 CM. DI = 3.23 CM. 0V/DI = 0.0300 SIZVE DEFILIDES A.991/1.168 MM, MU ELUTALALICH	EPS U&NULAVE) LG(EPS) LG(U#NU) STU.UEV. NO.OF 0.01CH/3/SEC2	0.90 67.1 -0.058 1.827 0.46 6 ** 0.40 62.4 -0.0555 1.797 1.33 6	0.55 52.6 -0.0766 1.721 1.83 3 0.83 47.5 -0.0809 1.677 0.21 0.83 40.1 -0.07559 1.673 0.49 4	0.77 33.0 -0.1135 1.528 0.64 4 0.74 26.7 -0.1309 1.477 0.05 4 7.72 20.5 -0.1309 1.312 1	0.67 16.8 -0.1739 1.224 0.39 3 0.64 13.6 -0.1930 1.135 0.01 2	RE(0) 0.039-0.054	<pre></pre>	DIA. OF SPHERE CRAESPONCING TO UNAULEST AILA-970 0.1096 CH CURRECEPT PIA-970 0.113 CH (UNAULEST DF LIZ-1460-120.214, 0.1079-0.1114CH (UNAULEST DF LIZ-1460-120.214, 0.1079-0.1114CH	RUN 2-2 PARTICLES = GLASS READS PARTICLES = GLASS READS PARTICLES = CLASS READS PARTICLE SIZE DA = 0.1135 GHC43 STEVE DEFUNCS 0.991/1.168 MM. MO ELUIMATION STEVE DEFUNCS 0.991/1.168 MM. MO ELUIMATION	EPS U+HUTAVEJ LG(EPS) LG(U+NU) STU.DEV. NO.DF 0.01CH ³ 7552 ²	0,90 62.1 -0.0461 1.793 1 ** 0.98 50.1 -0.0555 1.772 1	0.85 51.7 -0.0765 1.714 0.98 3 0.83 44.3 -0.0809 1.445 0.73 4 0.80 38.4 -0.0809 1.544 1	0.77 31.3 -0.1135 1.496 -0.00 2 0.74 27.2 -0.1308 1.455 0.10 2 0.0 - 0.1108 1.455 0.10 2	0.67 16.6 -0.1739 1.221 1.03 2 0.64 12.5 -0.1938 1.078 0.28 2	KE(Q) 0.012- 0.015	LEAS SOUARES ESTIMATES LIGSTURANES ESTIMATES UNU = 111.1570EPS+* 4.74+LOG(EPS) UNU = 111.1570EPS+* 4.74 CONFIDENCE INTERVI N= LGG(U+NU)O 2.0659 ± 0.0474	(1)24015K1 94.6/4- (23.403 014.0 E SPHEE CARESPONDING TO 0.1086 CM (U-WUDEKT= 111.151 CORRECTED FOR MALL CORRECTED FOR MALL 0.1032 0.1136CM CORRECTED FOR MALL 0.1035 0.1136CM
AUN 1-1 PARTICLES CLASS BEADS LIGUIDES CLASS BEADS LIGUIDES P.E.G.SALN 40/10 PARTICLE SIFE Qu-0.1135 CM, 0, 2.24 CH, DVA, 5 0.04-7 SIEVE OPENIESS (1.91/1.1A) MM, AO ELUTAIATICN	EPS U*NUTAVEJ LG(EPS) LG(U*NU) STD.DEV. ND.OF 0.016N ³ /SEC ²	0.90 63.7 -0.0458 1.804 0.95 3 ** 0.83 59.0 -0.0555 1.771 0.61 2	0.95 49.4 -0.0706 1.649 0.46 4 0.43 47.2 -0.0809 1.613 0.20 5 0.80 30.3 -0.0999 1.513 0.60 2	0.77 33.2 -0.1135 1.521 1.89 2 0.74 26.2 -0.1308 1.419 0.46 2 0.79 1.425 -0.1349 1.289 0.15	0.67 15.2 -0.1739 1.181 0.65 3 RELOJ 0.039-0.055	LEAST SQUARES ESTIMATES IOCTIMANIA 2.6423 + 6.07#IODGEPSI	UVIU = 115.3974E5500 4.97 UVIU = 115.3974E5500 4.97 COMFIDENCE INTERVIL N = LOGUVANUID 2.0622±0.0403 (UVANUISXT 105.176- 126.012	DIA. 0 STHERE CURRESPONDING TO 0.1091 CM U.P.NUJETT 115.397 0.11041 CM CORRECTOF FOR MALL U.P.NUETT UF 105.176-126.412, 0.1042-0.1146CM CORRECTOF FOR MALL 0.1090-0.1196CM	RUN 2-1 PARTICLES= GLASS.BEADS LIDUDE P.E.G.SOLN 45/100 DENSITY= 2.977 GN/CM ³ LIDUDE P.E.G.SOLN 45/100 DENSITY= 1.082 GN/CM ³ PARTICLE SIZE DV= 0.1135 GN 0, 1 = 2.54 GM 0/JN)= 0.0447 SIEVE DEFNINGS 2.991/J.1.68 MM, ND EUTRIATION	EPS UNUIAVE) LG(EPS) LG(U+11U) STD.DEV. NO.OF 0.01CH ² /SEC ²	0.90 62.1 -0.0458 1.793 1.60 4 ** 0.88 54.4 -0.0555 1.751 -0.00 2	D.85 50.0 -0.0706 1.699 0.01 4 0.83 45.8 -0.0009 1.661 0.56 3 0.80 30.5 -0.0929 1.584 0.49 4	0.77 32.9 -0.1135 1.517 0.40 3 0.74 25.1 -0.1308 1.399 0.74 25.1 -0.1308 1.399	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	REIG) 0.011- 0.014 Least sources estimates	UDG(UENU) = 2,0237 + 4,60%LOG(EPS) UPNU = 106.04426556 + 4,68 UPNU = 106.0442 = 104.52 N = 147EWAL N = 147EWAL N = 147EWAL N = 147ENU 2,0214 0,0369 (UENU)EXT 98.148-116.310	DIA. OF SPHERE COARESPONDING TU (U-MU)CTT 106.04.1 U-MU)CTT 06.04.1 UORRECTED FOR MALL U.MU)EXT OF 98.148- 116.310, 0.1015- 0.1106.CM CORRECTED FOR WALL 0.1061- 0.1155CH

 MUN 3-Z MUN 3-Z PARTICLESS SALT CAYSTALS PARTICLESS SALT CAYSTALS LIQUIDE SAL 10W 04.9% + KEROSENE, DENSITY* 0.1858 GM/CM³ LIQUIDE SAL 10W 04.9% + KEROSENE, DENSITY* 0.1858 GM/CM³ LIQUIDE SAL 10% 04.9% + KEROSENE, DENSITY* 0.0500 SLEVE OFENINGS 0.2750/02.398 MM, MO EUVIRIALIOM 	EPS L#NU(AVE) LG(EPS) LG(U#NU) STD.DEV. NU.DF 0.01CM ³ JSEC ²	0.95 5.373 -0.0223 0.730 0.065 3 **	0.09 4.345 -0.659 0.656 0.069 3 0.05 3.193 -0.0769 0.526 0.55 0.05 3.193 -0.0769 0.524 0.069	0.83 2.723 -0.0869 0.445 0.028 2 0.80 2.228 -0.0969 0.348 0.005 2 0.77 1.874 -0.1155 0.251 0.014 2	0.74 1.144 -0.154 0.165 0.2617 3 0.71 1.144 -0.1467 0.066 0.217 3 0.68 0.402 -0.1687 -0.144 0.003 2 0.65 0.710 -0.1671 -0.144 0.003	RE(D) 0.021- 0.026	LEAST SQUARES ESTIMATES LOGIU+*UD= Dam23 • 5.50+LOGIEPS) UNU = 7.426+EFS4 • 5.50 COVFIDENCE INTERVAL	LOG (U*NU) 0.8823 ± 0.6108 (U*NU) EXT 7.439- 7.017	DIA. OF SPHERE COWRESPONDING TO 1.0*NUTEX1= 7.626 COARECTEN FOA MALL 1.0*NUTEX1= 7.439- 7.817, 0.02396 CM 1.0*NUTEX1= 7.439- 7.817, 0.02397 CM	CORRECTED FOR WALL 0.0309CM	· · · · · · · · · · · · · · · · · · ·	RUN 4-2 PARTICLES= SALT CRYSTALS CM3 100105 SALT CRYSTALS CM3 100105 SALT CRYSTALS CM3 100105 SAL 10W 80.17% + KENOSCHC, DENSITY= 0.461 GW/CM3 DV44 51FEG 151E DV5 0.0301 CM 01 = 0.0103 DV44 51FEG DFEN:465 0.29570,351 MH- UN ELUTRIATION	EPS U"AUTAVE) LG(EPS) LGU"AU) STU-4EV NO.CF 0.010/43/56C2	0.95 7.32 -0.0223 0.864 0.16 4 ** 0.92 6.64 -0.0352 0.822 0.11 5	0.40 0.02 -0.0458 0.779 0.09 5 0.88 0.29 -0.0555 0.723 0.16 4 0.85 4.42 -0.0706 0.645 0.11 4	0.83 3.79 -0.0809 0.579 0.05 3 0.80 3.14 -0.0090 0.596 3.03 3 0.77 2.51 -0.1135 0.500 0.01 3		AE101 0.023- 0.920	LEAST SQUARES ESTIMATES LOG(U-NU)= 1.0301 + 5.55eLOG(EPS) U+U = 10.718/EPS+6 5.55 CONFIGENCE INTERVAL	N3 2.55 ± 0.07 LOG(UFWU) 2.555 ± 0.080 LOG(UFWU) 2.532 ± 0.080	DIA, DF SPHERE CORRESPONDING TO 0-0341 CM IU+NU)EXT 10-718	CONFECTOF MALL 10-NU)EXTOF 10-53- 10-017, 0-0558- 0.0344CA CORRECTED FOR MALL 0-0361- 0-0368CM
NUN 3-1A PARTICLES= SALT CRYSTALS LIQUID= SALT CRYSTALS LIQUID= SALT OR 84.9%+ KEROSENE, DENSITY= 0.658 GR/C PARTICE SIZE OVE 0.04.04.04. MO EUVINI DN PO SIEVE DPENINGS 0.25000.794 MF, MO EUVINI DN PO	EPS Levu(AvE) LG(EPS) LG(Ue(U) STU.DEV. NO.OF 0.01CM ³ /SEC ² TESTS	0.95 5.401 -0.0223 0.737 0.210 3 ** 0.92 4.717 -0.03472 0.434 0.132 4	0.90 4.359 -0.658 0.630 0.112 2 0.68 3.173 -0.0755 0.577 0.059 2 0.69 3.173 -0.0756 0.501 0.131 3	0.83 2.718 -0.0609 0.434 0.062 2 0.80 2.255 -0.0096 0.355 0.036 2 0.71 1.845 -0.1135 0.766 0.070 2	0.74 1.420 0.130 0.155 0.055 3 0.11 1.100 0.01437 0.045 3 0.48 0.407 0.1675 0.045 7	HE(0) 0.022- 0.027	LEAS SOURCE SETTATES LOGOURCE SETTATES UNU = 7.6655595 5.54 CONFIDEGE 154 4.12 LEAST DEFENAL - 1.2 LEAST DEFENAL - 1.2 LEAST DEFENAL - 1.2 LEAST DEFENAL - 1.2	LUNDARD V. 0000 - 1, 0120 (U*NU) EXT 7, 476- 7, 900	 DIA DE SPHERE CORRESDONDING TO DIA DE SPHERE CORRESDONDING TO DUADIET 7.665 D.0300 CM CORRECTED FON MALL CORRECTED FON MALL CORRECTED FON MALL CORRECTED FON MALL 			RUN 3-4 PARTICLES SALT CRYSTALS PARTICLES SALT CRYSTALS PARTICLES SALT CRYSTALS PARTICLE SLE DH 84.9% + KENDSENE, DENSITY= 0.40 PARTICLE SLE DF= 0.011 CK, DL 101 PARTIDN SLEVE DFRYNSS 0.550/0.998 M, ND ELURIATIDN	EPS U+HU(AVC) LG(EPS) LG(U+HU) STD.DCY. ND.OF TESTS	0.95 5.313 -0.0223 0.725 0.054 3 ** 0.92 4.718 -0.0362 0.674 0.673 2	0.90 4.216 -0.0458 0.027 0.021 3 0.48 3.791 -0.0555 0.579 0.031 2 0.48 3.145 -0.0714 0.600 2	0.83 2.746 -6.0809 0.459 0.610 3 0.80 2.274 -6.0809 0.459 0.610 3 0.80 2.274 -0.0969 0.357 0.003 2 0.81 2.274 -0.1156 0.375 0.003 2	- 0.14 1.502 -0.1349 0.177 0.506 2 0.11 1.204 -0.1487 0.641 0.015 2 0.641 0.641 0.015 2 0.64 0.941 -0.1675 -0.009 1 0.64 0.701 2	RE(0) 0.020- 0.022	LEAST SQUARES ESTIMATES LGG(U*4U) 0.8653 + 5.24*LGG(EPS) U*U = 7.335859*9.5.24 CONSTINENCE INTERVAL	No. 10.000 100(10:000) 100(10	DIA. DF SPHERE CORRESPONDING TO (U-NULEXTE 7.333 0.0297 CM	CONVECTED FOR MALL 0.0299- CM 10*0/1587 0F 7.224- 7.444, 0.0295- 0.0297CM COAMECTED FOR MALL 0.0295- 0.0301CM
NLW 7-3 PARTICLES- GLASS BEADS PARTICLE STE DA-0.0492 CM, D-5 5.00 GW/CM ³ LIOUTD= P.E.G.SCLN 35.4%, DEMSITY= 1.062 GM/CM ³ PARTICLE SIZE DA-0.0492 CM, P. 5.500 GH, DA/D1 = 0.0037 \$1242 OPE41405 0.4.17/D0.495 MH, MD ELUNATIA	EPS V+NULAVEJ LG(EPS) LG(U+NU) STU.DEV. N0.0F 0.01CM3/55C2 LG(EPS) LG(U+NU) STU.DEV. N0.0F TESTS	0.95 14.71 -0.0223 1.166 0.706 2 ** 0.92 13.13 -0.0362 1.118 0.15 3 **	0.00 12.36 -0.9459 1.092 0.32 4 0.88 11:30 -0.9559 1.653 0.36 4 0.55 9.179 -0.0706 0.91 0.01 2	0.42 0.24 -0.0962 0.918 0.09 4 0.80 7.55 -0.0969 0.817 0.03 2 0.71 7.55 -0.1135 0.901 1	0.71 5.04 -0.1300 0.705 0.07 0.07 2 0.06 3 0.06 0.71 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72	kE(0) 0.007- 0.009	LEAST SCUMMES ESTIMATES LEAST SCUMMES ESTIMATES LOGULIUUP 1.2014 4.409 CONFIDENCE INTEMAL CONFIDENCE INTEMAL	Une to the term of ter	014. OF SPHERE CORRESPONDING TO 10*NUTEXT= 20.852 CONSECTED FIRM ANLL CONSECTED FIRM ANLL 0.0455-0.045750 0.0453-0.045750	CORRECTED FOR WALL 0.0459- 0.0478CM		RUN 3-3 PARTICLES SALT CHYSTALS PARTICLES SALT CHYSTALS LIQUITS SALE CHYSTALS EXAMPLES SALT CHYSTALS EXAMPLES SALE DA 84.9% * KKHOSENE, DENSITY 8.0.8958 PARTICLE SALE DA 9.0.9% 1 (M. D) - 5.00 CM. DV/D) = 0.0007 SALE DAGIANCE A.250.00.388 MM. HI THTATATATA	EPS LeNULAVES LGEPS) LG(U+NU) STO.DEV. NU.OF 0.01CM3/SEC ²	0.95 5.387 -0.0223 0.731 0.024 4 •• 0.97 4.713 -0.0352 0.613 0.016 4	0.90 4.247 -0.0458 0.628 0.072 3 0.84 3.413 -0.0555 0.581 0.075 4 0.51 3.50.50.555 4	0.67 2.171 -0.0700 0.400 0.021 3 0.60 2.258 -0.0969 0.334 0.019 3 0.61 2.258 -0.0969 0.334 0.019 3	0.74 1.475 -0.1136 0.070 0.014 4 0.74 1.475 -0.1366 0.071 0.014 3 0.74 1.177 -0.1467 0.071 0.014 3 0.66 0.955 -0.1675 0.017 0.017 2	V-02 V-132 - J-1011 - V112 V-011 - RE(0) 0.023- 0.027	LEAST SQUARES ESTIMATES LOGUNNUJ= 0.8759 + 5.30+LOCIEPS) UNNUJ= 7.512+550+5.38	42 12 12 12 12 12 12 12 12 12 1	DIA. DE SPHERE CORRESPONDING FO A LUMINISKIR CORRESPONDING FO 0.0301 CM	CONRECTED EOR M441 UNWILEX DE 7.133- 7.647, 0.0303 EM UNWILEX DE 7.133- 7.647, 0.0303CM COPRECTED FOY MALL 0.0300-0.0305CM

NUM 4-4 PARTCLES= ANS CUBIC PELLETS PRATTCLES= ANS CUBIC PELLETS LIGUID= SAC 30 ANG+ KENDSENE DENSITY= 0.070 GW/CW ³ PARTTCLE SIZE 05 2.2000 GL 0 - 7.71 CM, 0V/01 - 0.0374 AND THAL LEDGTH (710 GHCH- MA) STUVIG.	EPS L+NU(AVE) LG(EPS) LG(U+NU) STU-DEV ND.DF 0.010x3-X562	0,05 40.07 -0.0223 1.669 0.81 2 **	0.90 34.47 0.0056 1.577 1.540 0.76 2 0.90 34.76 0.0550 1.577 1 0.80 34.76 0.0555 1.547 0.76 2	0.45 28.42 -0.0706 1.461 0.45 3 0.85 0.83 25.91 -0.080 1.414 0.65 4 0.65 4 0.65 1.311 1	1.17 17.05 -0-113 1.237 0.027 7 0.17 13.40 -0.1361 1.133 0.197 7 0.11 13.46 -0.1487 1.036 0.13 2 0.11 0.46 -0.1487 1.036 0.13 2	35(D) 0.036- 0.044	LEAST SCUARES ESTIMATES LOSTURANJ= 1.4441 + 5.44eLOGTEPS) U=1U = 70.162ePS+0+ 5.44 CGNFIDENCE INTERVAL	N N= 0.44 ± 0.13 Lnc(uesuu)0.1.0601± 0.0127 (Uesuu)EXT 06.140- 12.243	014, OF SPHERE CORRESPONDING TO (USCULFXT= 70,162	COMMECTED FOR WALL COMMECTED FOR WALL UNNUEST OF 60.140-72.2431 0.25454-0.250764 COMMECTED FOR WALL	· · · ·		<pre>WUN 9-1 WUN 9-1 PARTICLES= MINEAAL CNYSTALS PARTICLES= MINEAAL CNYSTALS PARTICLE 512E 00 95% - FABOSENE, DENSTTY= 2.632 CM/CM³ PARTICLE 512E 0, 0,0530 CM, CI = 5.008 CM/CM³ PARTICLE 512E 0, 0,0530 CM, CI = 5.008 CM/CM³ PARTICLE 512E 0,0530 CM/CM³ P</pre>	EPS U*MULAVE) LG(EPS) LG(U*NU) STD.DEV. NU.DF 0.01Cm3/36c2	0.95 15.34 -0.0223 1.196 0.27 4 •• 0.92 13.99 -0.0362 1.146 0.26 4 ••	0.40 12.40 -0.055 1.071 0.16 4 0.40 1.17 -0.0555 1.071 0.07 4 0.45 9.47 -0.0754 0.481 0.07 4 0.43 8.42 -0.0849 0.491 0.06 3 0.10 6.47 -0.6409 0.410 0.06 3	0.77 5.51 -0.1135 0.741 0.05 3 0.74 4.18 -0.11508 0.042 0.07 3 0.18 7.71 -0.1665 0.434 0.04 3 0.68 7.71 -0.1615 0.434 0.04 3 0.69 7.61 -0.1615 0.434	NEGO 0.037-0.057	LEAST SOURES ESTIMATES LEAST SOURES ESTIMATES LUCU = 24.2019EPS:4.5.69 LONU = 24.2019EPS:4.5.69 LONE INTERVAL MSFIDENCE INTERVAL	LCG(U0430)0 1,3030 ± 0.013 (U*NU)EXT 23.578- 24.841	DIA. DI SUMME CORRESPONDING TO DIA. DI SUMMER 24.201 CONNECTOR FAR 24.201 CONNECTOR F	CORRECTED FOR WALL 0.04764 0.04760
AUN 5-3 PANTCEES SLAT CAVSTALS LICUTO E SAE TOU VESTALS LICUTO E SAE TOU BULYA, REROSENE, DENSITYE 2.161 CM/CM ³ ANATCLE SIEM BULYA, REROSEME, DA CH, DV/CH, 9.00056 SILVE DPERLISES 0.2010/0.250 MP. NO ELUTAINIUM.	EPS U®NU(AVE) LG(EPS) LG(U®NU) STD.DEV. NU.OF 0.01CM ³ 7567 ² TESTS	0.950 3.691 -0.0223 0.567 0.018 3 **	0.905 3.004 -0.0434 0.466 0.056 3 0.900 2.745 -0.0565 0.446 0.027 2	0.870 2.464 0.0055 0.395 0.011 2 0.850 2.214 0.0176 0.346 0.023 2 0.830 1.967 0.0869 0.293 0.023 2	2.779 1.1239 -0.1015 7.170 0.010 2.202 2.2	5.650 0.497 -0.1871 -0.304 0.009 2	ŘELD} 0.008-0.010 LEAST SQUARES ESTIMATES LOGIUV6U3-0.7242 + 3.45€LOGIEPS)	U+1U = 5.3006FS5+ 5.45- CONFLIDENCE INTEXAM N=	LGG(14*VU)0 0.7242 2.0083 (U+VU)EXT 5.200- 5.401	D14. UF SPHERE COARESPONDING TO (1940)EX18 - 2,220 CCR48ECTED FOR MALL (1940)EX1 UF 5,200- 5,401, 0.0255 CM (1940)EX1 UF 5,200- 5,401, 0.0255- 0.0256CM	UNRELIED FOR MALL 0.022- 9.020CM		NUN 9-2 PARTICLESS XINEMAL CHYSTALS DEVESTY* 2.632 GM/CM ³ LIOUID 5 SA LOM 95%+ KÄNDSENE, DENSTY* 0.002 GM/CM ³ PARTICLE 51/E Dy* 0.0508 CM, D1 = 3.78 CM, DV/D1 = 0.0134 STEVE OPENIX05 0.417/02.495 MM, STEVING + FLUIKIATION	EPS U*NUIAVE) LGIEPS) LGIU+NU) SID.DEV. NO.OF 0.01CM ³ /Sic ²	0.95 15.22 -0.0223 1.182 0.48 4 ** 0.92 13.83 -0.0302 1.141 0.22 5 **	0.90 13.05 -0.0555 1.116 0.29 4 0.68 11.05 -0.0555 1.066 0.23 5 0.89 1.67 -0.0756 0.903 0.18 5 0.80 6.89 -0.0959 0.438 5.01 3 0.80 6.89 -0.0959 0.438 5.01 3	0.77 5.42 -0.135 0.734 0.07 2 0.74 4.34 -0.1304 0.638 0.10 3 0.80 2.41 -0.1487 0.427 0.02 3 0.65 2.10 -0.187 0.427 1.02 3	RF(C) 0.038-0.057	LEAST SCUARES ESTIMATES LEOSIUNUJE 1, 1931 • 5.09°LOGIEPS) CORIUNUJE 1, 1931 • 5.09°LOGIEPS) CORIEDENCE INTERVAL ASTETDENCE INTERVAL 5.69 • 0.07	LCG(U+HUJU 1.383)± 0.0085 (U+HUJEXT 23.691- 24.633	DIA. (P. SPHFRE CINRESPONEING TO 0.0465 CM CINAMIERT A. ALOL 0.0465 CM CONVECTED FOR MALL.	CORRECTED FOR WALL 24:0304 0:0467- 0:0476CM
QUK 4-3 PARTICLESS SALT CRVSTALS LIQUID= SAE 100 MBL/04 × REROSKNE, DENSITY= 2.163 GH/CM ³ LIQUID= SAE 100 MBL/04 × REROSKNE, DENSITY= 0.061 GH/CM ³ PARTICLE SIZE 04 = 0.0991 Cm, Dh = 5.08 CM, DH/Dh = 0.0077 SIEVE OPENINGS 0.2592/0.351 MM, NO ELUTRIATIUN	* EPS' U++VUTAVE) LG(EPS) LG(U+NU) STD.DEV. ND.UF 0.010/03/SEC ²	0.95 7.270.0223 0.861 0.13 4 ** 0.92 6.61 -0.9362 0.870 0.12 3	0.49 5.49 -0.0458 0.771 0.08 3			RE(0) 0.023- 0.028	LEAST SQUARES ESTIMATES LEGIOUARUN = 1.0225 + 5.49+LOG(EPS) HOULO = 10.533+EPS9+ 5.49	CorrIDENCE INTERA CorrIDENCE INTERA N LOG(U-PNU)D 1,0225 ± 0,0054 LOG(U-PNU)D 1,0225 ± 0,0054	(UONU)EXT (U.4427 (U.605) D:4. CF SPHERE CORRESPONDING TO	UPWU)EXT= 10.533 0.555 CM CONFECTE FOR NALL (N=WU)EXT FO 10.422- 10.665, 9.0554 0.3060CM CONFECTED FOR MALL	· · · · · · · · · · · · · · · · · · ·		WUR 6-5 PAATICLES= ANS CUDIC PELLETS DEMSITY= 1.001 CM/CM ³ LIQUID= 5.AF 30 6.0% + KEWUSENF DEMSITY= 0.876 GM/CM ³ PAATICLE 5.17F U0=5 0.2830 CG N, 0 + 10.12°CM, 0,/U1 = 0.0285 MDAVIVL LEUGTH //10 14CH, MN 51F4/140	EPS U-ANU(AVE) LG(EPS) LG(U+NU) STU.DEV. NJ.OF 0.01Cx3-X5EC ²	0.95 48.93 -0.0223 1.690 2.72 3 ** 0.92 47.95 -0.0352 1.681 1 **	0.40 42.39 -0.0458 1.627 3.79 4 0.85 38.40 -0.0555 1.587 0.55 2 0.05 32.42 -0.0766 1.514 0.46 3 0.05 27.71 -0.0660 1.445 0.04 3 0.05 27.71 -0.0600 1.445 0.04	0.77 17.10 -0.1135 1.248 1 0.74 14.47 -0.1497 1.160 0.26 3 0.74 19.45 -0.1497 1.074 6.24 3 0.60 9.63 -0.1675 0.993 0.69 2	RE(U) 0.046- 0.070	LEAST SUMMES ESTIMATES LEAST SUMMES ESTIMATES UDGU/WWULL 1.8835 5.45*LOCIEPS) UDGU/WWULL 1.8835 5.45*LOCIEPS) UDGU/WWULL 1.8835 5.45*LOCIEPS) UDGU/WWULL 1.8835 5.45*LOCIEPS) MARINA 1.8835 5.45*LOCIEPS)	UUCIUE 17/10 1:00:01 8:00:01 (U*HU)[X1 72.355- 80.838	DIA, of Sheike Cokresponding id (10410)573 - So.AT Cokresters for Ant Cokresters for Ant (10410)577 (16772)555- B0.833, 0.72070-0.25250	CONRECTED FUR MALL 0. 2383- U.2755

RUN 11-2 PARTICLES= SUGAR CAYSTALS DENSITY- 1.590 GAVCH	LIQUID= SAE 30 63% 545 104, DENITY= 0376 6MCM ³ PARTICE SIZE D= 0.1346 6M, D; = 3.78 CM, D/D) = 0.0356 SIGVE CPENIVES 0.991/1.146 MM, SIEVING - FLUTHIAIO	EPS U*NU(AVE) LG(EPS) LG(U*NU) STD.DEV. NJ.DF 0.01(2)/SEC2	0.95 42.79 -0.0223 1.631 0.98 3 ** 0.97 37.96 -0.0362 1.579 0.65 3 **	0.90 35.22 -0.0459 1.547 0.37 2 ** 0.88 32.72 -0.0555 1.515 0.63 3	0.02 22.92 -0.0062 1.402 0.00 0.10 22.92 -0.0862 1.319 0.15 0.60 20.086 -0.0969 1.319 0.48	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	KE(D) 0.029	LEAST SOUARES ESTIMATES LOCIUMUN = 1.0510 + 5.4.6%+DOCIEPS) New 1 = 70.960#EPS4* 5.4.6	CONFIDENCE INTERVAL N= 5.63 0.33 LDCUANUJD 1.8510 £ 0.0377	(U*iU)EXT 65.054-77.402	01A. 0F SPHERE CORRESPONDING TO 1U=VU)EXT= 70.960 Creaters file Akul	10+301EX 0F 55.054-77.402, 0.121-0.1321CM COARECTED FOR WALL 0.1255-0.1306CM	 RUN 8-P PARTICLES= MINEMAL CHYSTALS DENSITY= 2.623 GH/CM ³ LIQUID= 5.6 LOW BAL16+ KENDEHLE DENSITY= 0.601 GM/CM ³	AXILLE DIE UF UNDAR CAN UT SECREGATION TEST FROM SIEVING VS/4-X VESH, SEGREGATION TEST B EPS U-NULAVE, LG(EPS) LG(U+NU) STD.0EV. ND.0F 0.010/2/SIG2	0.90 4.24 -0.0458 0.966 0.20 4 **	0.75 3.25 -0.1249 0.511 0.11 7	0,70 2,18 -0,1549 0,339 0,14 4	LEAST SOULAES ESTIMATES LOGUIUSMUIS 1.2731 + A.0541 DALEDAN	NUN J-M PARTITY= Z.623 GN/CM ³	LIDUID= 5.6 TOM B0.1% + KENDERE, DENSITY = 0.061 GMCx ³ PARTICLE SIZE (1 = 0.0318 GR, 0) = 3.50 GM, 0J/DF = 0.010 MIXTURE 90% 35/42 MESH = 1.0% 42/48 MESH. SEGARGARIGATION TES	EPS U*NUTAVEL LG(EPS) LG(U*NU) ST0.DEV. NO.DF 0.C.C.M.7.5FC 1F5.15	0.90 7.92 -0.0458 0.899 0.26 4.90 0.85 6.28 -0.0706 0.798 -0.00 2		RE(0) 0.048	LEAST SQUARES ESTIMATES LOGUPENUI 1,2009 + 5,73-LOGIEPS)
NUN 10-3 PAATICLES- MINERAL CRYSTALS DEMSITY = 2.632 GM/CM3	LIQUID= 5.6E [ON ON.1% + KENDSINE [DENSITE - 0.895 GM/CR ³ PARTICLE SILE DUE 0.0426 CM. DI = 5.03 CM. U/UDI = 0.0064 SISVE OPENINGS 0.331/0.417 MM. SISVIN: + ELUTHIATION	EPS UNNUIAVE) LGIEPS) LGIU*NU) STR.DEV. NO.UF 0.01CM ³ /SEC ²	0.95 12.30 -0.3273 1.093 0.20 2 ** 0.32 10.53 -0.0322 1.024 0.04 3 **	0.40 10.10 -0.0458 1.004 0.36 3 0.89 0.92 -0.0555 0.946 0.47 2	0.32 5.93 -0.01/10 0.137 0.10 0 0.32 5.93 -0.0822 0.173 0.10 2 0.30 5.12 -0.0959 0.709 0.00 2	5.7.7 7.13 5.1132 0.607 0.133 5 5.7.1 3.7.3 -0.1349 0.522 0.033 5 6.71 3.7.4 -0.1349 0.522 0.04 5 0.71 3.7.5 -0.1349 0.522 0.04 5 0.71 3.7.9 -0.1493 0.522 0.04 5	6.65 1.56 -0.1871 0.193 0.03 3 4F101 0.051 0.065	LEAST SOUMES FSTIMATES LEAST SOUMES FSTIMATES	UPRU = 18.476€PS.●● 5.76 CONFIDENCE INTERVAL *= 5.76 ± 0.08	LCGIU+WUJU 1.2666±0.9099 (UPHU)EXT 10.060- 18.902	UIA. OF SPMERE COARESPONDING TO (19-10)EXT = 18.476 0.0405 CM	ÚDALECTER FOR MALL 0.04/99 CX (1)*NUFET DF 10.050- 18.902, 0.04/01-0.0410CA CDARECTED FIN MALL 0.0404-0.4415CA		XUM 12-3 PARTICLES= SUGAR CAYSTALS LICULE SAE 30 24%-54E 104, DENSITY= 1.550 GA/CA PARTICLE STE Du= 0.1133 CK, 0, = 5.08 CM, DV/D, = 0.025	SIEVE CPERINGS 0-893/0.991 MM. SIEVING + ELUTAIATION	0.01CM3/SEC	0.95 32.22 -0.0223 1.509 1.06 3 ** 0.92 29.61 -0.936 1.471 0.29 3 ** 0.90 29.24 -0.0658 1.451 0.69 5 **	0.48 25.94 -0.0555 1.414 0.62 3 0.85 23.09 -0.0706 1.303 0.62 3 0.62 19.12 -0.0662 1.369 0.14 2	0.77 12.64 -0.1136 1.116 0.14 2 0.74 9.86 -0.1130 0.044 2 0.71 7.85 -0.1130 0.044 1 0.71 7.85 -0.1130 0.044 1	HE(C) 0.051- 0.075	LEAST SQUARES ESTIMATES LOSTUPUN = 1.1822 + 5.03+LOG(EPS) LOSTUPUN = 1.720AGEGGG & A3	CONFIDENCE INTERVAL	LUGUNAND 1. (61.2 20.0391 10401015X1 52.729- 63.139	DIA. OF STRIFT COMESPONDING TO 0.1132 CM COMMESTED FUR WALL 0.1153 CM	UPSUIERT DF 57.129- 63.139, 0.1082- 0.11845M CURRECTED FOR MALL 0.1107- 0.1211CM
AIM 10-2 ALM 10-2 MINEAAL CAYSTALS DENSITY= 2.032 GM/CM ³	LIQUIDE SAE IQM 00.1% + KENOSCNE, DENSITY 0.026 CAC4 ³ PARTICLE SIZE Due 00.428 CH. U + 3.73 Ch. DV/A: 2.0113 51:74 DESUTICS 7.351/0.417 MM- 51EV/MC + CUMIAIANION	EPS L'eNULIVEJ LG(EPS) LG(U-NU) STU.DEV. NU.OF 9.015.07.5652	0.45 13.42 -0.6723 1.128 0.66 2 •• 0.45 13.42 -0.6723 1.128 0.56 2 ••	0.00 10.49 -0.0555 0.940 0.26 3 0.08 9.12 -0.0555 0.940 0.29 2	0.85 7.01 -0.0706 0.546 9.09 Z C.87 S.94 -0.0862 0.766 9.17 3 0.00 5.28 -0.0969 9.773 0.18 3	0.77 4.15 -0.1136 0.461 0.406 2 0.71 -2.49 -0.1136 0.54 2 0.71 -2.49 -0.1147 0.396 0.02 2 0.51 1:49 -0.1455 0.286 0.02 2	0.65 1.55 -0.16/1 0.191 0.02 2		URAU = 19.1224E954* 5.89 CORFIDENCE INFERIAL 	LCr(U+XU)0 1.2315 ± 0.0225 (U+XU)EXT 19.156- 20.139	DIA. DF SPHERE CCARESPONDING TO 	CURVERTED FORMALL CURVERTED FORMALL UPERDED FORMALL UPERDED FORMALL CUPERDED FORMALL		4UN 11-3 ∩AATICLES= SUGAN CRYSTALS LIQUID: 5.5E 9 06%→ 5.8E 104, DERSITY= 11.990 GM/CM ³ LIQUID: 5.5E 9 06%→ 5.8E 104, DERSITY= 3.8E 6M/CM ³ AATICLE 5.1/E 0.40 0.1346 (2K, 0, = 9.06 (M, 0V/D) = 0.2026)	STEVE CPERINGS 0.971/1.160 MM- STEVING + ELUTATATON	LPS ORULARES LOLERS LULUTING SUCCEVENT NUCC	0.95 (2.03 -0.0273 1.624 -0.00 2 ** 0.97 30.13 -0.3362 1.501 0.66 3 ** 0.031 35.50 -0.0551 1.554 0.48 3 **	0.62 22.90 -0.0126 1.500 0.21 2 0.65 22.90 -0.0126 1.561 0.03 2 0.22 22.91 -0.0022 1.366 0.03 2		KE(Q) 0.024- 0.030	LEAST SOUARES ESTIMATES LEGU-9XU13 1.8511 • 5.60*LDG(EPS) - 70 937420543 • 4.64 × 64	CUNFIDENCE INTERVAL N= 5.65 ± 0.45	100.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA. OF SPHERE CRAFEPONDING TO U.W.U.EXT= 70.973 CONFECTED FON MALL 0.1297 CM	10-101/EAT CF 63.956- 79.395, 0.1192-0.1342H CuARFCTED FUK WALL 0.1225-0.1179CM

APPENDIX IX DATA AND RESULTS FOR FREE

SETTLING

Original Data

Run No.	Particles	Column	Page
2-Single	0.114 cm Glass Beads	7.71 cm	IX-2
7-Single	0.0492 cm Glass Beads	5.08 cm	IX-4
3-Single	0.0341 cm Salt Crystals	5.08 cm	IX-6
4-Single	0.0391 cm Salt Crystals	5.08 cm	IX-8
5-Single	0.0282 cm Salt Crystals	5.08 cm	IX-10
6-Single	0.288 cm ABS Pellets	7.71 cm	IX-12

Calculated Results

Run No.	Page
2-Single	IX-13
1-Single	IX-13
7-Single	IX-14
3-Single	IX-15
4-Single	IX -1 6
5-Single	IX-17
6-Single	IX-18

VISCOSITY DATA IX-19

The first number in Run No. indicates the same combination of particles and liquid as used in the hindered settling tests.

- ----

Run 2- Single 0.114 cm Glass Beads in 7.71 cm Column

.

	TEMP	DIST	SETTLING	U	U*NU
	DEG. F	CM	TIME SEC	CM/SEC	0.01CM ³ /SEC ²
	70.50	10.0	16.4	0.61	123.32
	.70.50	10.0	15.6	0.64	129.65
	70.50	20.0	28.5	0.70	141.93
	70.60	20.0	27.4	0.73	147.37
	70.60	20.0	35.1	0.57	115.04
	70.60	20.0	35.1	0.57	115.04
	70.80	20.0	32.4	0.62	124.20
	70.80	20.0	35.3	0.57	113.99
	70.80	20.0	32.7	0.61	123.06
	70.80	20.0	34.1	0.59	118.01
	70.80	20.0	35.8	0.56	112.40
,	70.80	20.0	36.1	0.55	111.47
	70.80	20.0	33.5	0.60	120.12
	70.80	20.0	34.2	0.58	117.66
	70.10	20.0	35.0	0.57	116.37
	70.20	20.0	27.2	0.74	149.49
	70.20	20.0	33.9	0.59	119.94
	70.20	20.0	30.4	0.66	133.75
	70.20	20.0	33.2	0.60	122.47
	70.20	20.0	35.7	0.56	113.89
	70.20	20.0	38.0	0.53	107.00
	70.20	20.0	34.7	0.58	117.18
	70.20	20.0	35.0	0.57	116.17
	70.20	20.0	35.9	0.56	113.26
	70.20	20.0	32.0	0.63	127.06
	70.20	20.0	. 28.4	0.70	143.17
	70.20	20.0	35.4	0.56	114.86
	70.20	20.0	31.5	0.63	129.08
	70.20	20.0	35.6	0.56	114.21
<u></u>	70.20	20.0	29.8	0.67	136.44
	70.20	20.0	33.2	0.60	122.47
	70.20	20.0	38.0	0.53	107.00
-	70.20	20.0	30.0	0.67	135.53
	70.20	20.0	27.2	0.74	149.49
	70.20	20.0	35.0	0.57	116.17
	70.20	20.0	37.4	0.53	108.72
	70.20	20.0	28.7	0.70	141.67
	70.20	20.0	35.0	0.57	116.17
	70.20	20.0	31.2	0.64	130.32
	70.20	20.0	36.4	0.55	111.70
	70.20	20.0	31.0	0.65	131.16
·····	70.20	20.0	33.5	0.60	121.37
	70.20	20.0	30.7	0.65	132.44
	70.20	20.0	28.2	0.71	144.18
	70.20	20.0	31.0	0.65	131.16
	70.20	20.0	27.4	0.73	148.39
	70.20	20.0	26.9	0.74	151.15

			· · ·	IX-3	
70.20	20.0	29.2	0.68	139.25	
70.20	20.0	36.1	0.55	112.63	
70.20	20.0	31.3	0.64	129.90	
70.20	20.0	26.6	0.75	152.86	
70.20	20.0	38.1	0.52	106.72	
70.20	20.0	35.7	0.56	113.89	
70,20	20.0	35.3	0.57	115.18	
70.20	20.0	33.6	0.60	121.01	
70,20	20.0	37.4	0.53	108.72	
70 20	20.0	33.8	0.59	120.30	
70.20	20.0	36.1	0.55	112.63	
68 85	10.0	17.6	0.57	118.96	
49 49	20.0	20.0	0.67	140.09	
. 49.45	20.0	24 3	0.55	115 95	
	20.0	34 0	0.56	116 92	
	20.0	50.0 21.4	0.00	122.00	
	20.0	51.0	0.03	100.09	
68.80	20.0		0.59	164 55	
68.80	20.0	29.0	0.69	144+30	
68.80	20.0	31.9	0.03	101.41	
	20.0	. 29.9		140.20	
68.90	20.0	33.0	0.61	126.76	
69.00	20.0	31.3	0.64	133.35	
69.00	20.0	29.6	0.68	141.01	
69.00	20.0	31.8	0.63	131.26	
69.00	20.0	32.6	0.61	128.04	
69.00	20.0	34.8		119.94	
69.00	20.0	34.8	0.57	119.94	
69.00	20.0	32.9	0.61	126.87	
69.00	20.0	35.3	0.57	118.24	
69.25	20.0	31.7	0.63	130.93	
69.70	20.0	32.2	0.62	127.58	
	20.0	34.0	0.58	119.96	• •
69.25	20.0	36+2	0.55	114.65	
69.40	20.0	32.8	0.61	126.11	
69.40	20.0	35.4	0.55	110.82	
69.40	20.0	30.6	. 0.00	100.10	
69.50	20.0	20.4	0.10	100.00	
69.50	20.0	. <u>54•</u> .8		110.09	•
69.50	10.0	15•4	0.55	1.3.3 • 99	•
69.50	20.0	30.0	0.55	112.70	
69.50	20.0		0.60	122.83	
69.70	20.0	33.1	0.60	124.11	
69.70	20.0	28.8	0.69	142.65	
			0.60	122.21	•
69.70	20.0	33.1	0.59	121.91	
69.70	20.0	34.2	0.58	120.12	
69.70	20.0	34.0	0.59	120.83	—
69.70 (0.70	20.0	0. C	0.00	122.21	
69.70	20.0	20 • ∠		100.00	
69.70		10.0	0.60	122.21	•
69.80	20.0	27.4	0.08	137.41	
69.80	20.0	28.6	0.70	143.51	
69.90	20.0	<u> </u>	0.20	110+91	

.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	······	Kun /= 51n	gie <u>0.0497</u>	<u>cm Glass Beads</u>	<u>s in 5.08 cm (</u>	olumn	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,			·. · ·		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		· · ·	• 	· · · · · · · · · · · · · · · · · · ·	_.		• •
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	• .	· · ·		•		•	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		TEMP	DIST	SETTLING	U	U*NU	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		DEG. F	СМ	TIME SEC	CM/SEC	0.01CM3/SEC2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		69.75	10.0	52.4	0.19	21.69	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		69.75	10.0	48.8	0.20	23.29	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		69.70	10.0	44.8	0.22	25.39	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		69.70	10.0	52.8	0.19	21.55	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		69.70	10.0	44.2	0.23	25.74	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		69.70	10.0	45.6	0.22	24.95	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·	69.80	10.0	47.8	0.21	23.75	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		69.80	10.0	43.6	0.23	26.04	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		69.80	10.0	50.6	0.20	22.44	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		69.90	10.0	46.4	0.22	24.42	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		70.00	10.0	56.6	0.18	19.98	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		70.05	10.0	50.0	0.20	22.59	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		70.05	10.0	47.2	0.21	23.93	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·	70.10	10.0	38.8	0.26	29.08	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		70.10	10.0	46.8	0.21	24.11	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		70.10	10.0	38.0	0.26	29.69	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		70.40	10.0	54.2	0.18	20.69	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		70.40	10.0	43.0	0.23	26.08	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		70.40	10.0	48.2	0.21	23.27	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.70.40	10.0	44.0	0.23	25.49	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		70.45	10.0	42.0	0.24	26.68	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		70.50	10.0	45.6	0.22	24.55	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		70.50	10.0	49.4	0.20	22.66	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		70.50	10.0	47.6	0.21	23.51	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		70.60	10.0	44.8	0.22	24.93	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·	70.60	10.0	50.2	0.20	22.25	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		70.70	10.0	44.0	0.23	25.34	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		70.70	10.0	47.8	0.21	23.32	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		70.75	10.0	49.0	0.20	22.73	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		70:75	10.0	43.2	0.23	25.78	
70.80 10.0 40.6 0.25 27.40 70.80 10.0 43.6 0.23 25.52 70.90 10.0 51.4 0.19 21.60 70.90 10.0 55.3 0.18 20.08 70.90 10.0 50.4 0.20 22.03 70.95 10.0 53.8 0.19 20.62 71.00 10.0 45.8 0.22 24.19 71.00 10.0 39.8 0.25 27.84 71.00 10.0 51.2 0.20 21.64 71.00 10.0 52.9 0.19 20.95 71.05 10.0 45.8 0.22 24.17 71.05 10.0 58.5 0.17 18.92 71.10 10.0 48.2 0.21 22.94 71.10 10.0 44.0 0.23 25.13 71.15 10.0 51.6 0.19 21.41 71.15 10.0 51.8 0.19 21.33	• •	70.80	10.0	43.8	0.23	25.40	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		70.80	10.0	40.6	0.25	27.40	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		70.80	10.0	43.6	0.23	25.52	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		70.90	10.0	51.4	0.19	21.60	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		70.90	10.0	55.3	0.18	20.08	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		70.90	10.0	50.4	0.20	22.03	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		70.95	10.0	53.8	0.19	20.62	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		71.00	10.0	45.8	0.22	24.19	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		71.00	10.0	39.8	0.25	27.84	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· •	71.00	10.0	51.2	0.20	21.64	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		71.00	10.0	52.9	0.19	20.95	
71.0510.058.50.1718.9271.1010.048.20.2122.9471.1010.044.00.2325.1371.1510.051.60.1921.4171.1510.051.80.1921.33		71.05	10.0	45.8	0.22	24.17	
71.1010.048.20.2122.9471.1010.044.00.2325.1371.1510.051.60.1921.4171.1510.051.80.1921.33		71.05	10.0	58.5	0.17	18.92	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		71.10	10.0	48.2	0.21	22.94	
71.1510.051.60.1921.4171.1510.051.80.1921.33		71.10	10.0	44.0	0.23	25.13	
71.15 10.0 51.8 0.19 21.33		71.15	10.0	51.6	0.19	21.41	
		71.15	10.0	51.8	0.19	21.33	

N					IX-5
	71.15	10.0	46.6	0.21	23.71
	71.50	10.0	56.8	0.18	19.32
	71.50	10.0	51.6	0.19	21.27
	71.50	10.0	52.9	0.19	20.75
	71.50	10.0	46.4	0.22	23.65
	71.50	10.0	43.6	0.23	25.17
	71.50	10.0	44.0	0.23	24.94
	71.40	10.0	48.6	0.21	22.62
	71.40	10.0) 44.4	0.23	24.76
	71.40	10.0) 44.2	0.23	24.88
	71.40	10.0	42.0	0.24	26.18
	71.40	10.0	43.6	0.23	25.22
	71.55	10.0	42.0	0.24	26.10
	71:55	10.0	43.0	0.23	25.50
	71.55	10.0	48.0	0.21	22.84
	71.55	10.0	52.0	0.19	21.08
	71.60	10.0	44.0	0.23	24.89
	71.60	10.0	43.6	0.23	25.12
	71.60	10.0	39.5	0.25	27.73
	71.60	10.0	40.4	0.25	27.11
	71.70	10.0	52.6	0.19	20.78
	71.70	10.0	53.8	0.19	20.32
	71.70	10.0	40.8	0.25	26.79
<u> </u>	71.70	. 10.0	40.6	0.25	26.93
	71.70	1.0.0	45.6	0.22	23.97
	71.70	10.0	40.2	0.25	27.19
	71.70	10.0	48.6	0.21	22.49
	71.80	10.0) 54.0	0.19	20.21
	71.80	10.0) 47.5	0.21	22.97
	71.80	10.0	51.6	0.19	21.15
	71.80	10.0) 42.2	0.24	25.86
	. 71 00	10 0		0 70	
	11.00		49.6	0.20	22.00
	11.00		49.6	0.20	22.00
	11.00		49.6	0.20	22.00
	71.00		49.6	0.20	22.00
	71.00		<u>4</u> 9.6	0.20	22.00
	71.00		49.6	0.20	22.00
	71.00		49.0	0.20	
	71.00		49.0	0.20	22.00
	11.00		49.6	0.20	22.00
· · ·	/1.00	10.0	49.6	0.20	22.00
· · ·	71.00	10.0	49.6	0.20	22.00
· · · · · · · · · · · · · · · · ·	71.00		49.6	0.20	
· · · · · · · · · · · · · · · · · · ·	/1.00		. 49.6	0.20	22.00
· · · · · · · · · · · · · · · · · · ·	/1.00		49.0		22.00
	/1.00		. 49.6		22.00
· · · · · · · · · · · · · · · · · · ·	/1.00		49.0	0.20	22.00
	/1.00		49.0		
	/1.00		49.0		22.00
			49.0		22.00
	/1.00		49.0		22.00
	/1.00		49.0		
	/1.00		49.6		
	/1.00		49.0		
			49.6		22.00
			49.0		22.00
	/1.00		49.0		
	/1.00		49.0		
	/1.00		49.0		
	/1.00		49.0		
	/1.00		49.0		

		·	•	
موسیقہ میں میں معرفی میں میں میں میں میں میں میں م	· • •	10 L L L L L	a an	
			· · ·	
TEMP	DIST	SETTLING	U	
DEG. F	<u> </u>	TIME SEC	CM/SEC	0.01CMº/SEL ²
				7 70
74.50	10.0	38.6	0.26	1 • 12
14.45	10.0		0.32	9.62
74.45	20.0	58.0	0.34	10.28
74.50	20.0	60.1	0.33	9.91
14.52	20.0	. 57.0	0.35	10.45
74.50	20.0	60.2	0.33	9.89
74.50	20.0	63.3	0.32	9.41
14.60	20.0	50.8	0.32	10.40
74.60	20.0	55.6	0.30	10.69
14.65	20.0	66.1	0.30	8.98
14.65	20.0	54.2	0.31	10.95
74.65	20.0	5/+1	0.35	10.39
74.65	20.0	71.0	0.28	8.36
74.80	10.0	31.0	0.32	9.54
74.80	20.0	65.4	0.31	9.04
74.80	20.0	64.8	0.31	9.13
75.20	20.0	62.5	0.32	9.37
75.20	20.0	69.4	0.29	8.44
75.20	20.0	64.5	0.31	9.08
75.20	20.0	62.6	0.32	9.36
75.20	30.0	105.0	0.29	8.37
75.20	20.0	72.8	0.27	8.04
75.20	20.0	69.2	0.29	8.46
75.20	20.0	54.4	0.37	10.77
75.20	20.0	66.6	0.30	8.79
75.20	20.0	54.2	0.37	10.81
75.20	20.0	66.0	0.30	8.87
75.20	20.0	63.1	0.32	9.28
75.20	20.0	70.9	0.28	8.26
75.20	20.0	75.0	0.27	7.81
75.20	20.0	55.0	0.36	10.65
	20.0	/8.0	0.26	1.63
74.55	20.0	99.2	0.20	6.00
74.55	20.0	78.0	0.26	7.63
74.55	20.0	65.4	0.31	9.10
74.55	20.0	68.0	0.29	8.75
74.55	20.0	69.7	0.29	8.54
74.80	20.0	80.0	0.25	7.39
74.80	40.0	150.4	0.27	7.86
74.80	30.0	95.8	0.31	9.26
74.80	20.0	66.3	0.30	8.92
74.80	20.0	69.0	0.29	8.57
74.80	20.0	64.9	0.31	9.11
74.80	20.0	64.9	0.31	9.11
74.80	20.0	71.7	0.28	8.25
74.80	20.0	65.8	0.30	8.99
74.80	20.0	74.6	0.27	7.93

Run 3- Single 0.0341 cm Salt Crystals In 5.08 cm Column

•

		· · · · · · · · · · · · · · · · · · ·		. Hereita ann a			
						IX - 7	
	74.80	20.	. 0	74.2	. 0.27	. 7.97	
	74.80	20	. 0	65.5	0.31	9.03	
	74.80	20.	. 0	85.0	0.24	6.96	
· .	74.80	20.	. 0	73.2	0.27	8.08	
	74.60	10.	0	37.8	0.26	7.86	
	74.60	10.	.0	36.8	0.27	8.07	
	74.60	10.	.0	32.2	0.31	9.23	
	74.60	10.	.0	34.0	0.29	8.74	•••••
	74.60	10.	.0	31.2	0.32	9.52	
	74.60	20.	.0	76.2	0.26	7.80	
	74.60	10.	.0	35.6	0.28	8.35	
	74.60	10.	.0	46.8	0.21	6.35	
	74.60	20.	.0	71.8	0.28	8.28	
· ••	14.60	20.	0	63.3	0.32	9.39	•••• ••
	74.60	10.	.0	31.2	. 0.27	7.99	
	74.60	10.	.0	36.1	0.28	- 8-23	
	74.60	10.	0		0.26	1.28	
	74.60	10.	.0	40.0	0.25	7.40	
	74.60	10.	.0	38.0	0.26	1.82	
	74.00	10.	0	21+0	0.20	1.00	
	74.00	10.	.0	32•Z	0.20	0.44	
	74.60	30.	.0	10.2	0.20	11•40 9 76	
······································	74.60		0	34 5	0.29	8 61	
	14.00	10.		5+•5	0.27	0.01	
······							
						•	
•					•	ţ	
· · · · · ·							
		۰ بر ۲۰۰	 .				
••			,			··	
				<u> </u>	<u></u>		
	•						·
	· · · · · · · · · · · · · · · · · · ·	* * ·		- •		· · · · · ·	
							-
	,			·			
	• • • • •	· .	-	··• .		· · · · ·	· · · · · ·
	·	••••	·····		· · · ·		
. <u>No 1</u>				-			
		·		-	÷ • •	· · · · -	
							;
			T.				
	<u> </u>						
· · ·							
			_				
						· · · -	

Kun 4-Single	0.0391 C	I Salt Crystals I	.I J.00 Cui 00) I Gini I	
				•	
		· · · · ·			
				· · · · · · · · · · · · · · · · · · ·	
TEMP	DIST	SETTLING	U	U≭NU	
DEG. E	C M	TIME SEC	CM/SEC	0.01 CM ³ / SEC ²	
					·····
73-60	10.0	28.6	0.35	12.73	
73.60	10.0	30.1	0.33	12.09	
73 75	10.0	28 0	0.36	12 95	
	10.0	20.0	0.35	12.00	
72.80	10.0		0.30	12.99	
72.80	10.0	20.0	0.39	14.51	
72.80	10.0	29.0	0.34	12.81	
72.80	10.0	25.0	0.40	14.86	
73.10	10.0	28.7	0.35	12.84	
76.65	10.0	25.6	0.39	13.13	
76.65	10.0	27.5	0.36	12.22	
76.65	10.0	30.0	0.33	11.21	
76.65	10.0	29.6	0.34	11.36	
76.65	10.0	- 29.4	0.34	11.43	
76.65	10.0	29.2	0.34	11.51	
76.65	10.0	24.9	0.40	13.50	
76.65	10.0	32.0	0.31	10.51	
76.65	10.0	29.4	0.34	11.43	•
71.70	30.0	107.4	0.28	10.69	
71.70	10.0	25-6	0.39	14,94	
71 70	20.0	50.6.	0.40	15.12	
71 70	10.6	27 6	.0.38	14.69	
71 90	10.0	27.0	0.37	14 03	
71.00	10.0		0.37	13 00	
. 72.00	10.0	27 6	0.36	13.75	
72.05	10.0	27.0	0.36	12.54	
72.10	10.0	20.0	0.30	11 00	
	10.0	25 0	0.29	10 55	
72.20	10.0		0.20		
72.20	10.0	20.9	0.35	12 20	
12.20	10.0	28.0	0.35	13.20	
72.20	10.0	34.0	0.29	11.10	
. 72.20	10.0	30.8	0.32	12.26	
12.40	10.0	.54.5	0.18	0.89	
72.20	10.0	30.3	0.33	12.46	
72.40	10.0	32.4	. 0.31	11.59	
72.40	10.0	25.8	0.39	14.56	
72.40	10.0	33.8	0.30	11.11	
72.50	10.0	30.6	-0.33	12.24	
72.50	10.0	32.0	0.31	11.70	
72.50	10.0	31.4	0.32	11.93	
72.50	10.0	34.6	0.29	10.83	•
72.50	10.0	28.4	0.35	13.19	
72.50	10.0	31.8	0.31	11.78	
72.50	10.0	30-0	0.33	12.48	
72.50	10.0	30.6	0.33	12.24	
72 50	20.0	67.2	0.30	11.15	
	10.0	22 0	0.21	11 70	
	10.0		0.22	11 02	
12.50	10.0	<u> </u>	U•32	11.73	

· IX-8

Run 4-Single 0.0391 cm Salt Crystals In 5.08 cm Column

										•
								•	IX-9	
	72.50		20.0		55.0		0.36		13.62	
4	72.50	-	10.0		34.2		0.29		10.95	
	72.50		10.0		29.6		0.34		12.65	
	71.50		10.0		37.2		0.27		10.34	
	71.50		10.0		33.4		0.30		11.52	
	71.50		10.0		35.2		0.28		10.93	
	71 50		10.0		22 6		0.21		11 80	
	71.50				22.0		0.30		11.60	
	71.50	-	10.0	•	<u>22.0</u>				11 05	. •••
	71.50				22.2		0.31		11.07	-
	/1.50		10.0		32.4		0.31		11.87	
,	/1.50		10.0		34.9		0.29		11.02	·
	71.50		10.0		28.6		0.35		13.45	
	71.50		10.0		31.8		0.31		12.10	
	71.50		10.0		34.6	•	0.29		11.12	-
	71.50		10,0		27.9		0.36		13.79	
	71.50	-	10.0		36.1		0.28		10.66	
	71.60	· .	10.0		35.1		0.28		10.93	
x	71.60		10.0		35.6		0.28		10.78	•
	71.60	:	20.0		56.8		0.35		13.51	
	71.60	•	10.0		33.6	•	0.30		11.42	
	71 60	· -		··· ··	30 0		0 32	· • • • •	12 70	
	71.00		10.0		20.0		0.26		10 56	
	70.60		10.0		38.4		0.20		10.20	
······································	70.60		$\frac{10.0}{10.0}$		40.2		0.22		8.23	
	70.50		10.0		83.6		0.12		4.12	
	70.50	• .	10.0		32.6		0.31		12.11	
	70.50		10.0		37.7		0.27		10.48	· · ·
	70.50		10.0		38.9		0.26		10.15	
	70.50	· · ·	10.0	•	40.7		0.25		9.70	
•	70.50	•	10.0		35.6	•	0.28		11.09	
	70.40		10.0		42.2		0.24		9.38	
	70.40		10.0		37.5		0.27		10.56	•
	70.40		10.0		45.4		0.22		8.72	
	70.40		10.0		75.5		0.13		5.24	
	70.40		10.0		37.4		0.27		10.59	
	70.40		10.0		55.0		0.18		7.20	
	70.40		10.0		33.2		0.30		11.93	
	70.80		10.0		30.0		0.33		13.06	
	70.80		10.0		31.6		0.32	· .	12.40	
	71 10		10 0		22 4		0.31		12 00	
*	71.10				20 0		0.24		12.00	
	71.20		10.0	•	29.0		0.34		12.01	
	71.20		$\frac{10.0}{20.0}$		29.8		0.34		13.01	:
•	/1.20	· · ·	20.0		02.2	1	0.31		11,89	
A reaction of the second			•••			··· .				
	· ·	•		· · ·						
			· .					· -		
						e	•			
	· · · · · ·				-				·· -	
•		,								
	•									

. .

•••

	- • • • •		-		
	TEMP	DIST	SETTLING	U	U*NU
-	DEG. F	CM	TIME SEC	CM/SEC	0.01CM ³ /SEC ²
,	· · ·				
	74.40	10.0	85.2	0.12	4.18
	74.40	20.0	148.2	0.13	4.81
	74.20	20.0	124.0	0.16	5.78
	74.50	10.0	62.8	0.16	5.66
	74.50	10.0	56.0	0.18	6.35
	74.50	10.0	47.8	0.21	7.44
	74.50	10.0	59.6	0.17	5.96
	74.60	10.0	47.5	0.21	7.46
	74.60	10.0	57.8	0.17	6.13
·	74.60	10.0	56.0	0.18	6.33
	74.60	10.0	67.2	0.15	5.28
	74.60	10.0	60.2	0.17	5.89
· .	74,60	10.0	68.0	0.15	5.21
	74.60	10.0	.63.4	0,16	5.59
	74.60	20.0	140.7	0.14	5.04
	74.60	10.0	48.8	0.20	7.26
	74.60	10.0	65.3	0.15	5.43
	74.60	10.0	62.9	0.16	5.64
	74.60	10.0	63.4	0.16	5.59
	74.60	10.0	60.6	0.17	5.85
	74.60	10.0	55.6	0.18	6.38
	74.60	10.0	60.9	0.16	5.82
	74.60	10.0	63.0	0.16	5.63
	74.60	10.0	67.6	0.15	5.24
	74.60	10.0	65.3	0.15	5.43
، ميوس مەرد	74.60	10.0	62.3	0.16	5.69
	74.60	10.0	58.8	0.17	6.03
	74.60	10.0	69.0	0.14	5.14
	74.20	10.0	56.4	0.18	6.35
	74.60	10.0	57.0	0.18	6.22
	74.60	10.0	48.0	0.21	7.39
	74.60		49.6	0.20	_ /•15
	74.60	10.0	41.0	0.24	8.65
	74.60	10.0	44.0	0.23	8.06
	74.60	10.0	45.4	0.22	
	74.60		42.0	0.22	1.00
	74.90	20.0	106.2	0.19	6.62
	75.10	20.0	102.0	0.20	
	75.10	10.0	45.0	0.22	
	75.20	20.0	90.6	0.22	
	12.20		42.2	0.21	1.12
	12.20 75.20	10.0	41.U	0.20	1 • 42
	75.20		47•4 1 45 9	0.20	1.00
	75 20	10.0	40.0 57 2	0 17	4 10
	12.20	10.0		0.21	7 10
	12.20	20.0	71.C 57.2	0.17	(+10 6 09
× .	12.30	10.0	21+2	<u>U+1</u>	0.00

					IX-11	
	75.30	10.0	50.0	0.20	6.96	
	75.30	1.0.0	54.6	0.18	6.37	
· · ·	75 30	10.0	55 5	0.18	6 27	
•	75 40	10.0	. 42.2	0.16	5 40	
	75.40	. 10.0	03.5	0.10	2.40	
	75.40	10.0	52.0	0.19	<u> </u>	
	75.40	10.0	23.4	0.19	6.50	
	75.40	10.0	55.1	0.18	6.30	
the company of the s	. 15.40	10.0		0.22		· ·
	75.40	20.0	92.9	• 0.22	(•41	
	75.40	10.0	44.0	0.23	7.89	
	75.60	10.0	57.8	0.17	5.97	
•	75.60	10.0	50.8	0.20	6.80	
	75.60	10.0	47.8	0.21	7.22	
	75.60	20.0	106.2	0,19	6.50	
	75.60	10.0	49.1	0.20	7.03	
	75.60	10.0	57.6	0.17	5.99	•
	75.80	10.0	57.4	0.17	5.98	
	75.80	10.0	57.1	0.18	6.02	
	75 80	10.0	51.2	0.20	6.71	
	76.00	10.0	51.4	0.19	6.65	
	76.00	10.0	44.6	0.22	7.66	
	76.00	10.0	44.0 E4 0	0.10	- 1.00	
	76.00	10.0	20.0	0.18	0.10	
	76.00	.10.0	56.0	0.18	6.10	
	76.00	10.0	50.4	0.20	6.18	
	76.10	10.0	45.8	0.22	1.44	
	76.20	10.0	44.2	0.23		· ·· ·
•	76.20	10.0	49.4	0.20	6.88	
	76.20	10.0	46.6	0.21	7.30	
	76.20	10.0	52.2	0.19	6.51	
	76.20	10.0	55.8	0.18	6.09	
	76.30	20.0	.112.0	0.18	6.06	
· · ·	76.30		143.6	0.21	7.09	
	76.30	10.0	53.4	0.19	- 6.35	
	76.30	20.0	117.0	0.17	5.80	
	76.30	10.0	59.0	0.17	5.75	
	76.40	10.0	54.8	0.18	. 6.17	
	76.40	10.0	57.2	0.17	5.91	
	76.40	10.0	51.4	0.19	6.58	
	76.40	10.0	58.4	0.17	5.79	
	76.40	10.0	50.0	0,20	6.77	
	76.40	10.0	53.6	0.19	6.31	
	76.40	10.0	52.8	0,19	6.41	
	76 40	. 10.0	57.6	0.17	5.87	
	76 40	20.0	. 103 1	0.19	6.56	
	76 40		44 4	0.23	7.62	
	76 50	10.0	40 4	0.17	5 50	
	76 50	10.0		· · · · · · · · · · · · · · · · · · ·	200 E	
	74 50	10.0	- 40.9	0.21	7.10	
	10.50	20.0	91.0	0.22	1.42	
•	10.50	30.0	155.3	0.19	6.52	
	16.50	10.0	46.1	0.22	1.32	• . • • • • • • •
,	16.50	10.0	51.2	0.20	6.59	
	76.50	10.0	49.2	0.20	. 6.86	
					·	

......

• •	· · · · ·	· · ·	· · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	TEMP	DÍST	SETTLING	U	U*NU
	DEG. F	<u> </u>	TIME SEC	CM/SEC	0.01CM9/SEC2
	70.20	16.0	36.8	0.43	93.40
	70.20	16.0	40.2	0.40	85.50
	70.20	16.0	36.2	0.44	94.95
	70.20	16.0	36.8	0.43	93.40
	70.20	16.0	38.2	0.42	89.98
	70.30	16.0	38.8	0.41	88.28
	70.30	16.0	36.8	0.43	93.08
	70.40	16.0	36.9	0.43	92.51
	70.40	16.0	39.2	0.41	87.08
•	70.40	16.0	35.6	0.45	95.88
	70.50	16.0	44.3	0.36	76.79
	70.50	. 16.0	46.0	0.35	73.95
	70.55	16.0	38.4	0.42	88.43
	70.55	16.0	43.0	0.37	78.97
	70.55	16.0	40.0	0.40	84.89
	70.60	16.0	33.7	0.47	100.59
	70.60	16.0	36.7	0.44	92.36
	70.60	16.0	34.7	0.46	97.69
	7.0.60	16.0	36.9	0.43	91.86
	70.65	16.0	51.0	0.31	66.35
	70.65	16.0	34.5	0.46	98.08
	70.65	16.0	38.2	0.42	88.58
	70.90	16.0	39.4	0.41	85.13
	70.90	16.0	41.8	0.38	80.24
	70.90	16.0	37.7	0.42	88.97
	70.90	16.0	40.0	0,40	83.86
	70.85	16.0	38.0	0.42	88.43
	70.85	16.0	39.2	0.41	85.72
·	70.85	16.0	31.4	0.43	89.84
	70.82	16.0	40.7	0.39	
	70.85	16.0	39.5	0.41	85.07
		16.1		0.25	74 34
	70.05	10.1	42.4	0.55	14.34
	10.05	10.0		0.42	00.0V 87 94
	10.05	10.0	20.2	U++2	01.070

Run 6-Single 0.288 cm ABS Pellets In 7.71 cm Column

IX-J	13
------	----

	Run 2-Single	Calcul	lated Results	•			
	106.72	107.00	107.00	108.72	108.72	111.47	
	111.70	112.40	112.63	112.63	112.76	113.26	
	113.89	113.89	113.91	113.99	114.21	114.65	
· · · ·	114.86	115.04	115.04	115.18	115.85	116.17	
	116.17	116.17	116.37	116.82	116.85	117.18	
	117.66	118.01	118.24	118.59	118.96	119.94	
	119,94	119.94	119.96	120.12	120.12	120.30	
	120.83	121.01	121.37	121.91	122.27	122.27	
	122.27	122.47	122.47	122.83	123.06	123.29	
	123.32	124.11	124.20	126.11	126.76	126.87	•
	127.06	127.58	128.04	129.08	129.65	129.90	
	130.32	130.93	131.16	131.16	131.26	131.41	
	132.44	133.09	133.35	133.75	133.99	135.18	
	135.53	136.03	136.44	139.25	139.41	140.09	
	140.20	141.01	141.67	141.93	142.65	143.17	
	143.31	144.18	144.55	147.37	148.39	149.49	
	149.49	151.15	152.86	156.33	· .		
	AVERAGE U*NU CORRECTED FO	R WALL =	125.74 (0.01 129.64 (0.01 11.89 (0.01	$CM^3/SEC^2)$ $CM^3/SEC^2)$ $CM^3/SEC^2)$		·····	×
	NO. OF MEASU	REMENTS=	100				

Run 1-Single

Results from Run 2-Single corrected for liquid density,

 $U*NU = 123.7 \quad (0.01 \text{ cm}^3/\text{sec}^2)$ CORRECTED FOR WALL 127.6 $(0.01 \text{ cm}^3/\text{sec}^2)$

IX-	14	
-----	----	--

	Run 7-Single	e Calcula	ted Results			
	18.92	19.32	19.98	20.08	20.21	20.32
	20.62	20.69	20.75	20.78	20.95	21.08
	21.15	_21.27		21.41	21.55	21.60
	21.64	21.69	22.00	22.03	22.25	22.44
	22.94	22.97	22.02	22.00	22.12	22.04
<u> </u>	23.65	23.71	23.75	23.93	23.97	24.11
	24.17	24.19	24.42	24.55	24.76	24.88
	24.89	24.93	24.94	24.95	25.12	25.13
	25.17	25.22	25.34	25.39	25.40	25.49
	25.50	25.52	25.014	25.18	25.86	26.04
	27.11	27.19	27.40	27.73	27.84	29.08
	29.69					
·	· · ·			۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰		- • · ·
			22 21 /0 0	$1 c M^3 / c c^2$	·	
	CORRECTED E		23.31 (0.0)	1 CM / SEC		
·	STANDARD DE	VIATION =	2.37 (0.0	1CM 3/SEC2)		
	NO. OF MEAS	UREMENTS=	79			
		· ~	·	- . •		
	,					
			· .			
	• ·	•· · · ·		. <u> </u>		•• •• • • • •
			· .			
			•			
	and and an and a second s			<u></u>		
		· · ,		••••••	a	
			•			
	••	· · ·				· · · ·
		•				•
			. .			
	· · · · · ·				• •	· • •
				<u></u>		
	· · · · · · · · ·		,	· · · · · · · · · · · · · · · · · · ·	••••	· · · · · ·
		· · · · · · · · · · · · · · · · · · ·		•		
			• .			
•						

Ī	X-	1	5
	•		

	Run	3-Single	Calculate	d Results				
	- · ·	6.00 7.63 7.86 8.04	6.35 7.63 7.86 8.07	6.96 7.72 7.86 8.08	7.39 7.80 7.93 8.23	7.43 7.81 	7.58 7.82 7.99 8.26	
		8.28 8.46 8.76	8.35 <u>8.54</u> 8.79	8.36 <u>8.57</u> 8.87	8.37 <u>8.61</u> 8.92	8.44 <u>8.74</u> 8.98	8 • 44 8 • 75 8 • 99	
		9.03 9.13 9.39 9.91 10.69	9.04 9.23 9.41 10.28 10.77	9.08 9.26 9.52 10.39 10.81	9.10 9.28 9.54 10.45 10.95	9.11 9.36 9.62 10.46 11.40	9.11 9.37 9.89 10.65	
<u>.</u>	AVE COF ST/ NO	ERAGE U*NU RRECTED FOI ANDARD DEV OF MEASUI	= R WALL = IATION = REMENTS=	8.7 <u>9</u> (0.0 8.91 (0.0 1.08 (0.0 71	01CM ³ /SEC ²) 01CM ³ /SEC ²) 01CM ³ /SEC ²)			
				 .				
						······		
· · · · ·	•···-					. ·	···· · · · · · ·	
				•				
	-			•	• •			
	5.			· .				
					· 			
	• - ···			1		• • • • • • • • • • • • • • • • • • •		
	·.	.		····· ·· ··	, 		· · · · · · · · · · · · · · · · · · ·	
				<u> </u>		<u> </u>	<u> </u>	-

ł

IX**-1**6

	Run 4-Single	Calculated	Results			
	4.72 9.38 10.51 10.78 11.02 11.21	5.24 9.70 10.55 10.83 11.09 11.36	6.89 10.15 10.56 10.93 11.10 11.42	7.20 10.26 10.59 10.93 11.11 11.43	8.53 10.34 10.66 10.95 11.12 11.43	8.72 10.48 10.69 11.00 11.15 11.51
· · · · · · · ·	11.52 11.80 11.95 12.24 12.65 12.99	11.59 11.87 12.00 12.24 12.73 13.01	11.66 11.89 12.09 12.26 12.79 13.06	11.70 11.93 12.10 12.40 12.81 13.13	11.70 11.93 12.11 12.46 12.84 13.19	11.78 11.93 12.22 12.48 12.95 13.20
	13.37 13.75 14.58	13.45 13.79 14.69	13.50 13.99 1 <u>4</u> .8 <u>6</u>	13.51 14.03 14.94	13.54 14.51 15.12	13.62 14.56
<u></u>	AVERAGE U*NU CORRECTED FO STANDARD DEV NO. OF_MEASU	= 1 R WALL = 1 IATION = REMENTS= 8	1.78 (0.01C) 1.97 (0.01C) 1.88 (0.01C) 9	M ³ /SEC ²) M ³ /SEC ²) M ³ /SEC ²)		
<u></u> . *.					. <u></u>	·
• • • • • • • • •	-4				·····	· · · · · · · · · · · · · · · · · · ·
. <u>.</u>	· · · · · ·		· · · · · ·			
······································	· · · · · · · · · · · · · · · · · · ·		· · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·					•.
	· · · · · ·		- -	· .		-
1X-1/						

	Run	5-Single	Calculated	Results			
	· · · · ·	4.18	4.81	5.04	5.14	5.21	5.24
		5.28	5.43	5.43	5.48	5.59	5.59
		5.59	5.63	5.64	5.66	5.69	5.75
		5.78	5.79	5.80	5.82	5.85	5.87
		5.89	5.91	5.96	5.97	5.98	5.99
		6.02	6.03	6.06	6.08	6.09	6.10
		6.10	6.10	6.13	6.17	6.22	6.27
		6.30	6.31	6.33	6.35	6.35	6.35
		6.37	6.38	6.41	6.48	6.50	6.50
· · · · ·	·	6.51	6.52	6.56	6.58	6.59	6.62
		6.65	6.71	6.77	6.78	6.80	6.86
		6.86	6.88	6.96	7.03	7.06	7.09
		7.15	7.18	7.20	7.22	7.26	7.30
		7.32	7.39	7.42	7.42	7.44	7.44
,		7.46	7.47	7.48	7.62	7.62	7.66
		7.69	7.70	7.72	7.77	7.81	7.88
•		7.89	8.06	8.65			
				0.02			
	- AV	ERAGE U*NU	= .	6.50 (0.0	DICM ² /SEC ²		
· -	CO	RRECTED FO	R WALL =	6.57 (0.0	DICM ³ /SEC ²)		
	S T	ANDARD DEV	IATION =	0.83 (0.0	D1CM ³ /SEC ²)		
	NO	. OF MEASU	REMENTS= 9	9			
			•				
·	•		· · ·	· · · ·			
						•	
		•					
· •		· · · · · · · · · · · · · · · · · · ·					
							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
						•	
			· · ·				
					• •• · · · · · ·		
				•	. *		
				· .			`
						,	
		· .	· · ·			-	
			•		.		
	_		· · ·				
		-					
					•		
			• .	· ·	·		
		· -,				•	a na senan a
		<u> </u>		· · · · · · · · · · · · · · · · · · ·		·········	
					· .		
. '							

IX-18

	Run	6-S	ingle	Calc	ulat	ed R	lesul	ts						
		66.3 82.6 85.7 88.4 91.8 94.9	5 5 2 3 6 5	73.9 83.6 86.6 88.4 92.3 95.8	95 36 50 43 36 38	- 	74.34 34.89 37.08 38.58 92.51 97.69	4 9 3 3 L 9	76.79 85.0 87.50 88.9 93.08 98.08	9 7) 7 3 3	78.9 85.1 87.9 89.8 93.4 100.5	97 _3 96 34 +0 59	80. 85. 88. 89. 93.	24 50 28 98 40
	_ AV CC ST NC	ERAG IRREC ANDA	E U≭N TED F RD DE MEAS	U OR WAI VIATIO UREMEN	= _L =]N = NTS=	87 94 7 35	40 27 29	(0.0] (0.0] (0.0]	LCM ³ / SE(LCM ³ / SE(LCM ³ / SE(2 ²) 2 ²) 2 ²)			-	<u>-</u>
· · ·						,			-	· ·			·	
	•	, .	· .		•			-			· · · · · · · · · · · · · · · · · · ·	• ·		
	· .	- -	• • • •					· · ·		-	· · · · ·	· <u></u>	 	
· · · · · · ·	- -	•	.					-	 -			•		
	· · · · · · · · · · · · · · · · · · ·	- -							• •	· · · · · · ·			 	
		-	- <u>-</u>			-				• •	-		·. :	
				•		· ·						· - · ·		

VISCOSITY DATA

Run 2-Single				·						
Temperature Viscosity	o _F cs	68.00 213.20	69.00 208.70	70.00 204.00	71.00 200.50				• •	
Run 3-Single						•				
Temperature Viscosity	o F cs	69.02 33.94	70.00 33.06	71.00 32.24	72.00 31.46	73.00 30.67	74.00 29.88	75.02 29.15	76.00 29.43	
Run 4-Single	.`									
Temperature Viscosity	o _F cs	69.02 41.03	69.98 40.03	71.00 38.98	72.00 37.95	73.10 36.86	74.00 36.03	75.05 35.02	76.00 34.17	77.20 33.15
Run 5-Single										•
Temperature Viscosity	ÓF. CS	69,02 41.03	69 . 98 40.03	71.00 3898	72.00 37.95	73.10 36.86	74.00 36.03	75.05 35.02	76.00 34.17	77.20 33.15
Run 6-Single										
Temperature Viscosity	o _F cs	69.20 221.86	70.00 216.3	71.10 208.16	72,00 200,66					
Run 7-Single		•								
Temperature Viscosity	o _F cs	69.00 115.42	70.00 113.06	71.00 110.80	71.9 0 108.90					

IX-19

APPENDIX X MICROSCOPIC MEASUREMENT OF PARTICLE SIZE

The results were calculated from the measurement of particle images of an order of an inch by Vernier calipers, and arranged in an increasing order. Two dimensions of the salt crystals were measured.

INDEX

Run No.	Particles	Page
1,2	0.114 cm (D_v) Glass Beads	X- 2
7	0.0492 cm Glass Beads	X-3
3	0.0341 cm Salt Crystals	X-4.
4	0.0391 cm Salt Crystals	X - 5
5	0.0282 cm Salt Crystals	X - 6

\$1

	Run 1,2	Microscopic	Measurement	of 0.114 cm	Glass Beads	
	0.1017 _0.1045 _0.1056	0.1019 0.1049 0.1058	0.1024 0.1050 0.1058	0.1031 0.1056 0.1060	0.1039 0.1056 0.1060	0.1044 0.1056 0.1060
	0.1060 0.1066 0.1080	0.1063 0.1067 0.1081	0.1065 0.1067 0.1082	0.1065 0.1067 0.1082	0.1085 0.1070 0.1089	0.1086 0.1071 0.1090
	0.1092 0.1100 0.1108 0.1113	0.1094 0.1102 0.1108 0.1114	0.1099 0.1102 0.1109 0.1117	0.1099 0.1104 0.1112 0.1117	0.1099 0.1106 0.1112 0.1119	0.1100 0.1108 0.1112 0.1119
	0.1119 0.1128 0.1142	0.1122 0.1132 0.1145	0.1124 0.1138 0.1147	0.1125 0.1140 0.1154	0.1125 0.1141 0.1154	0.1125 0.1141 0.1164 0.1175
• • •	0.1179 0.1210 0.1228	0.1189 0.1213 0.1229	0.1171 0.1195 0.1217 0.1233	0.1217 0.1217 0.1236	0.1207 0.1218 0.1243	0.1210 0.1223 0.1245
	0.1263 AVERAGE LE STANDARD D ND. DE MEA	0.1272 NGTH = 0 EVIATION = 0 SUREMENTS = 1	0.1285 0.1123 CM (di 0.0063 CM 05#	ameter)		····
	. .		• ·· ·· ·· ······			
				• . · · ·		
	-					···· · · ·
						· · · · · · · · · · · · · · · · · · ·
				•		· · · · · ·
		· •• • •				· · · · ·
			•			

X-2

Run 7	Microscope Me	asurement of	0.0492 cm G	lass Beads	
0.0448	0.0450	0.0450	0.0450	0.0452	0.0454
0.0454	0.0455	0.0456	0.0456	0.0457	0.0458
0.0458	0.0458	0.0459	0.0459	0.0460	0.0460
0.0460	0.0461	0.0461	0.0462	0.0462	0.0462
0.0463	0.0465	0.0465	0.0465	0.0465	0.0465
0.0467	0.0467	0.0468	0.0469	0.0470	0.0470
0.0470	0.0470	0.0471	0.0471	0.0472	0.0474
0.0474	0.0475	0.0475	0.0475	0.04/5	0.0476
0.0476	0.0476	0.0478	0.0478	0.0478	0.0480
0.0480	0.0480	0.0481	0.0481	0.0481	0.0482
0.0482	0.0484	0.0486	0.0486	0.0487	0.0487
0.0409	0.0488	0.0400	0.0400	0.0407	0.0404
0.0496	0.0495	0.0496	0.0497	0.0497	0.0497
0.0498	0.0498	0.0499	0.0500	0.0500	0.0503
0.0503	0.0503	0.0505	0.0505	0.0509	0.0511
0.0514	0.0516	0.0517	0.0520	0.0536	
				•	
AVERAGE	LENGTH =	0.0479 CM (d	Lameter)		
STANDARI	DEVIATION =	0.0018 CM			,
NO. OF M	MEASUREMENTS =	101			
<u></u>			•		
	••••				·
		<u>.</u>		•	
	•				
,				а	
					·
•				,	
** · · ·	a and a second of a	• •			· .
	· 	- · · · ·		مواجعه می در این از از از از ا	
·					
· ·					
· • • • •		· · · ·			-
			•		· · · · · · · · · · · · · · · · · · ·

X-3

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0221 0.0253 0.0264 0.0277 0.0230 0.0261 0.0254 0.0283 0.0293 0.0293 0.0236 0.0274 0.0257 0.0274 0.0257 0.0278 0.0291 0.0235 0.0275 0.0275 0.0275 0.0275 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278	0.0237, 0.0240, 0.0240, 0.0240, 0.0250, 0.0250, 0.0255, 0.0257, 0.0261, 0.0266, 0.0266, 0.0266, 0.0266, 0.0269, 0.0271, 0.0271, 0.0272, 0.0274, 0.0275, 0.0276, 0.0278, 0.0280, 0.0283,	0.0387 0.0237 0.0249 0.0262 0.0260 0.0240 0.0274 0.0280 0.0265 0.0273 0.0250 0.0268 0.0269 0.0252 0.0252 0.0252 0.0272 0.0266 0.0313 0.0301 0.0284 0.0265	· ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0253 0.0264 0.0277 0.0230 0.0261 0.0254 0.0254 0.0283 0.0293 0.0293 0.0236 0.0274 0.0257 0.0257 0.0257 0.0278 0.0291 0.0235 0.0295 0.0275 0.0275 0.0275 0.0278 0.0275	0.0240, 0.0240, 0.0240, 0.0250, 0.0250, 0.0255, 0.0257, 0.0261, 0.0262, 0.0266, 0.0266, 0.0266, 0.0266, 0.0271, 0.0271, 0.0271, 0.0274, 0.0275, 0.0276, 0.0278, 0.0280, 0.0283,	0.0237 0.0249 0.0262 0.0260 0.0240 0.0240 0.0274 0.0280 0.0265 0.0273 0.0250 0.0268 0.0269 0.0252 0.0272 0.0266 0.0313 0.0301 0.0284 0.0265	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0264 0.0277 0.0230 0.0261 0.0254 0.0246 0.0283 0.0293 0.0236 0.0274 0.0257 0.0257 0.0257 0.0278 0.0291 0.0235 0.0275 0.0275 0.0275 0.0275 0.0275 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0266	0.0240, 0.0245, 0.0250, 0.0252, 0.0255, 0.0257, 0.0261, 0.0262, 0.0266, 0.0266, 0.0266, 0.0266, 0.0269, 0.0271, 0.0271, 0.0272, 0.0274, 0.0275, 0.0276, 0.0278, 0.0280, 0.0283,	0.0249 0.0262 0.0260 0.0240 0.0274 0.0280 0.0265 0.0273 0.0250 0.0268 0.0269 0.0252 0.0266 0.0272 0.0266 0.0313 0.0301 0.0284 0.0265	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0277 0.0230 0.0261 0.0254 0.0254 0.0283 0.0293 0.0236 0.0274 0.0257 0.0257 0.0257 0.0278 0.0291 0.0235 0.0275 0.0275 0.0275 0.0275 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0266	0.0245, 0.0250, 0.0252, 0.0255, 0.0257, 0.0261, 0.0262, 0.0266, 0.0266, 0.0266, 0.0266, 0.0266, 0.0271, 0.0271, 0.0272, 0.0274, 0.0275, 0.0276, 0.0278, 0.0280, 0.0283,	0.0262 0.0260 0.0240 0.0274 0.0280 0.0265 0.0273 0.0250 0.0268 0.0269 0.0252 0.0266 0.0272 0.0266 0.0313 0.0301 0.0284 0.0265	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre> 0.0230 0.0261 0.0254 0.0246 0.0283 0.0293 0.0236 0.0274 0.0257 0.0242 0.0278 0.0291 0.0235 0.0275 0.0275 0.0275 0.0275 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0266 </pre>	0.0250, 0.0252, 0.0255, 0.0257, 0.0261, 0.0262, 0.0266, 0.0266, 0.0269, 0.0271, 0.0271, 0.0272, 0.0274, 0.0275, 0.0276, 0.0276, 0.0280, 0.0283,	0.0260 0.0240 0.0274 0.0280 0.0265 0.0250 0.0250 0.0268 0.0269 0.0252 0.0252 0.0272 0.0266 0.0313 0.0301 0.0284 0.0265	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0261 0.0254 0.0246 0.0283 0.0293 0.0236 0.0274 0.0257 0.0242 0.0278 0.0291 0.0235 0.0275 0.0275 0.0275 0.0275 0.0275 0.0278 0.0278 0.0275 0.0275 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278	0.0252, 0.0255, 0.0257, 0.0261, 0.0262, 0.0266, 0.0266, 0.0269, 0.0271, 0.0272, 0.0274, 0.0274, 0.0275, 0.0276, 0.0278, 0.0280, 0.0283,	0.0240 0.0274 0.0280 0.0265 0.0273 0.0250 0.0268 0.0269 0.0252 0.0272 0.0266 0.0313 0.0301 0.0284 0.0265	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0254 0.0246 0.0283 0.0293 0.0236 0.0274 0.0257 0.0242 0.0278 0.0291 0.0235 0.0275 0.0275 0.0275 0.0275 0.0275 0.0278 0.0278 0.0278 0.0278 0.0278	0.0255, 0.0257, 0.0261, 0.0262, 0.0266, 0.0266, 0.0269, 0.0271, 0.0271, 0.0272, 0.0274, 0.0275, 0.0276, 0.0278, 0.0280, 0.0283,	0.0274 0.0280 0.0265 0.0273 0.0250 0.0268 0.0269 0.0252 0.0272 0.0266 0.0313 0.0301 0.0284 0.0265	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0246 0.0283 0.0293 0.0236 0.0274 0.0257 0.0257 0.0242 0.0278 0.0291 0.0235 0.0275 0.0275 0.0275 0.0275 0.0274 0.0278 0.0278 0.0278 0.0278	0.0257, 0.0261, 0.0262, 0.0266, 0.0266, 0.0269, 0.0271, 0.0271, 0.0272, 0.0274, 0.0275, 0.0276, 0.0278, 0.0280, 0.0283,	0.0280 0.0265 0.0273 0.0250 0.0268 0.0269 0.0252 0.0252 0.0272 0.0266 0.0313 0.0301 0.0284 0.0265	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0283 0.0293 0.0236 0.0274 0.0257 0.0257 0.0242 0.0278 0.0291 0.0235 0.0275 0.0275 0.0275 0.0275 0.0278 0.0278 0.0278 0.0278	0.0261, 0.0262, 0.0266, 0.0266, 0.0269, 0.0271, 0.0272, 0.0274, 0.0275, 0.0276, 0.0276, 0.0278, 0.0280, 0.0283,	0.0265 0.0273 0.0250 0.0268 0.0269 0.0252 0.0272 0.0266 0.0313 0.0301 0.0284 0.0265	
8 0.0262 93 0.0265 93 0.0265 93 0.0265 93 0.0265 93 0.0265 93 0.0265 93 0.0267 93 0.0270 93 0.0271 93 0.0271 94 0.0275 91 0.0276 95 0.0280 95 0.0280 96 0.0284 90 0.0285	0.0293 0.0236 0.0274 0.0257 0.0242 0.0278 0.0291 0.0235 0.0275 0.0275 0.0295 0.0274 0.0278 0.0278 0.0278	0.0262, 0.0266, 0.0266, 0.0269, 0.0271, 0.0272, 0.0274, 0.0275, 0.0276, 0.0278, 0.0280, 0.0283,	0.0273 0.0250 0.0268 0.0269 0.0252 0.0252 0.0272 0.0266 0.0313 0.0301 0.0284 0.0265	
0.0265 0.0265 0.0265 0.0265 0.0267 0.0267 0.0270 0.0271 0.0274 0.0274 0.0275 0.0276 0.0276 0.0276 0.0278 0.0278 0.0280 0.0282 0.0284 0.0285	 0.0236 0.0274 0.0257 0.0242 0.0278 0.0291 0.0235 0.0275 0.0275 0.0275 0.0274 0.0278 0.0278 0.0266 	0.0266, 0.0266, 0.0269, 0.0271, 0.0272, 0.0274, 0.0275, 0.0276, 0.0278, 0.0280, 0.0283,	0.0250 0.0268 0.0269 0.0252 0.0272 0.0266 0.0313 0.0301 0.0284 0.0265	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0274 0.0257 0.0242 0.0278 0.0291 0.0235 0.0275 0.0275 0.0295 0.0274 0.0278 0.0278 0.0278	0.0266, 0.0269, 0.0271, 0.0272, 0.0274, 0.0275, 0.0276, 0.0276, 0.0278, 0.0280, 0.0283,	0.0268 0.0269 0.0252 0.0272 0.0266 0.0313 0.0301 0.0284 0.0265	
8 0.0267 75 0.0270 93 0.0271 94 0.0275 91 0.0278 95 0.0280 96 0.0282 91 0.0282 91 0.0284 91 0.0284 91 0.0284 91 0.0285	0.0257 0.0242 0.0278 0.0291 0.0235 0.0275 0.0275 0.0275 0.0274 0.0278 0.0278 0.0266	0.0269, 0.0271, 0.0272, 0.0274, 0.0275, 0.0276, 0.0276, 0.0278, 0.0280, 0.0283,	0.0269 0.0252 0.0272 0.0266 0.0313 0.0301 0.0284 0.0265	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0242 0.0278 0.0291 0.0235 0.0275 0.0295 0.0274 0.0278 0.0278 0.0266	0.0271, 0.0272, 0.0274, 0.0275, 0.0276, 0.0278, 0.0280, 0.0283,	0.0252 0.0272 0.0266 0.0313 0.0301 0.0284 0.0265	
33 0.0271 72 0.0274 54 0.0275 01 0.0276 78 0.0278 55 0.0280 68 0.0282 01 0.0284 00 0.0285	0.0278 0.0291 0.0235 0.0275 0.0295 0.0274 0.0278 0.0266	0.0272, 0.0274, 0.0275, 0.0276, 0.0278, 0.0280, 0.0283,	0.0272 0.0266 0.0313 0.0301 0.0284 0.0265	
1 0.0274 0.0275 0.0275 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0280 0.0282 0.0282 0.0284 0.0285	0.0291 0.0235 0.0275 0.0295 0.0274 0.0278 0.0266	0.0274, 0.0275, 0.0276, 0.0278, 0.0280, 0.0283,	0.0266 0.0313 0.0301 0.0284 0.0265	
0.0275 0.0275 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0284 0.0285	0.0235 0.0275 0.0295 0.0274 0.0278 0.0266	0.0275, 0.0276, 0.0278, 0.0280, 0.0283,	0.0313 0.0301 0.0284 0.0265	
0.0276 0.0276 0.0278 0.0280 0.0280 0.0282 0.0284 0.0284 0.0285	0.0275 0.0295 0.0274 0.0278 0.0266	0.0276, 0.0278, 0.0280, 0.0283,	0.0301 0.0284 0.0265	
0.0278 0.0278 5 0.0280 5 0.0282 0 0.0284 0 0.0285	0.0295 0.0274 0.0278 0.0266	0.0278, 0.0280, 0.0283,	0.0284	
0.0280 0.0280 0.0282 0.0284 0.0284 0.0285	, 0.0274 , 0.0278 , 0.0266	0.0280, 0.0283,	0.0265	
0.0282 0.0284 0.0284 0.0285	, 0.0278 , 0.0265	0.0283,		· · -
0.0284	, 0.0265		0.0260	
0.0285	,	0.0284.	0.0266	
	• 0.0293	0.0285.	0.0289	
0.0286	0.0314	0.0287	0.0269	
0.0287	0.0291	0.0288	0.0265	
7 0.0288	0.0286	0.0288	0.0305	
0.0289	. 0.0265	0.0289.	0.0246	
0.0290	0.0281	0.0290.	0.0296	
0.0291	• 0.0304	0.0292,	0.0312	
1 0.0294	. 0.0297	0.0294,	0.0276	
0.0296	. 0.0248	0.0297.	0.0261	
0.0303	. 0.0271	0.0304,	0.0316	
0.0307	. 0.0286	0.0308.	0.0279	
0.0310	. 0.0318	0.0314.	0.0291	
6 0.0319	, 0.0300	0.0326,	0.0269	·
	0 0075 04		. •	
= 0.0273	, 0.0275 CM			
110N = 0.0023	, 0.0024 CM			
MENIS = 108	PAIRS			
				- -
				•
	0.0307 0.0310 0.0310 0.0319 0.00273 0.0023 0.0023 0.0023 0.0023 0.0023	08 0.0307, 0.0286 04 0.0310, 0.0318 76 0.0319, 0.0300 A = 0.0273, 0.0275 CM ATION = 0.0023, 0.0024 CM EMENTS = 108 PAIRS	08 0.0307, 0.0286 0.0308, 04 0.0310, 0.0318 0.0314, 76 0.0319, 0.0300 0.0326, 14 = 0.0273, 0.0275 CM ATION = 0.0023, 0.0024 CM EMENTS = 108 PAIRS	08 0.0307, 0.0286 0.0308, 0.0279 04 0.0310, 0.0318 0.0314, 0.0291 76 0.0319, 0.0300 0.0326, 0.0269 4 = 0.0273, 0.0275 CM ATION = 0.0023, 0.0024 CM EMENTS = 108 PAIRS

X**-**4

• •	0.0222	0.0233	0.0262.	0.0335	0.0269.	0.0291
	0.0278.	0.0319	0.0280.	0.0295	0.0286	0.0370
	0.0288.	0.0335	0.0290.	0.0320	0.0290	0.0297
	0.0293.	0.0302	0.0294	0.0312	0.0295.	0.0279
	0.0298	0.0338	0.0299.	0.0291	0.0300,	0.0286
	0.0300,	0.0300	0.0300,	0.0307	0.0300,	0.0343
	0.0301,	0.0312	0.0302,	0.0310	0.0303,	0.0332
	0.0303,	0.0311	0.0303,	0.0314	0.0304,	0.0296
• ·	0.0304,	0.0296	0.0305,	0.0358	0.0306,	0.0306
	0.0307,	0.0300	0.0307,	0.0344	0.0308,	0.0323
	0.0309,	0.0326	0.0309,	0.0299	0.0309,	0.0306
	0.0309,	0.0286	0.0309,	0.0305	0.0309,	0.0310
	0.0309,	0.0311	0.0312,	0.0312	0.0312,	0.0356
.	0.0313,	0.0305	0.0313,	0.0343	0.0313,	0.0315
	0.0315,	0.0302	0.0315,	0.0311	0.0315,	0.0297
	0.0315,	0.0301	0.0316,	0.0341	0.0318,	0.0292
	0.0318,	0.0318	0.0319,	0.0319	0.0319,	0.0300
	0.0319	0.0349	0.0321	0.0318	0.0320	0.0307
	0.0322	0.0309	0.0323	0-0259	0.0325	0.0300
	0.0325	0.0316	0.0325	0.0347	0.0326	0.0296
	0.0327.	0.0344	0.0327.	0.0323	0.0329.	0.0311
	0.0330,	0.0289	0.0330,	0.0329	0.0330,	0.0337
	0.0330,	0.0374	0.0331,	0.0324	0.0332,	0.0341
	0.0334,	0.0316	0.0335,	0.0343	0.0336,	0.0331
	0.0336,	0.0338	0.0336,	0.0334	0.0337,	0.0370
	0.0337,	0.0359	0.0338,	0.0334	0.0342,	0.0355
	0.0345,	0.0349	0.0347,	0.0360	0.0349,	0.0320
	0.0352,	0.0283	0.0358,	0.0337	0.0383,	0.0354
	0.0427;	0.0325				
	AVEDACE		- 0 0316	0 0210 CM		·- ·
			= 0.0310	0.0025 CM		
	NO. OF M	EASUREMENTS :	= 88	PATRS		
, -	-				· · · ·	-
		,	·	,		

•

X-5

.. ..

	Run	5	Micro	scopic	Measur	ement of	Particle	e Size	9		
		0.	.0197,	0.018	1	0.0198,	0.0198		0.0201,	0.0212	
		0.	.0203,	0.021	0	0.0205,	0.0227		0.0206,	0.0189	
• •		0.	.0207,	0.021	8	0.0207,	0.0260		0.0208,	0.0278	
		0.	.0208,	0.022	3	0.0209,	0.0216		0.0211,	0.0221	
		0.	.0211,	0.025	0	0.0212,	0.0262		0.0213,	0.0234	
		0.	.0214,	0.021	2	0.0215,	0.0255		0.0215,	0.0228	
		0.	.0215,	0.023	2	0.0216,	0.0200		0.0216,	0.0237	
		0.	.0217,	0.021	8	0.0217,	0.0242		0.0217,	0.0221	
-		0.	.0218,	0.022	1	0.0219,	0.0230		0.0220,	0.0275	
		0.	.0220,	0.024	0	0.0221,	0.0224		0.0222,	0.0222	
		0.	.0222,	0.024	4	0.0223,	0.0227		0.0223,	0.0217	
		0.	.0223,	0.025	0	0.0224,	0.0228		0.0225,	0.0215	
		0.	.0225,	0.023	9	0.0225,	0.0265		0.0227,	0.0213	
		0.	0227,	0.023	1	0.0227,	0.0229		0.0229,	0.0235	
		0.	.0230,	0.026	4	0.0230,	0.0247		0.0230,	0.0220	
		0.	0230	0.024	1	0.0230,	0.0213		0.0230,	0.0244	
		0.	.0231,	0.021	5	0.0232,	0.0258		0.0234,	0.0223	
		0.	0235,	0.022	7	0.0235,	0.0239	<u> </u>	0.0235,	0.0226	
		0.	.0237,	0.022	4	0.0237,	0.0230		0.0237,	0.0223	
		0.	0240,	0.022	1	0.0241,	0.0222		0.0244,	0.0241	
		0	0246,	0.022	0	0.0246,	0.0247	-	0.0246,	0.0264	•
		0.	.0247,	0.021	4	0.0247,	0.0243		0.0248,	0.0282	
		0.	.0250,	0.023	7	0.0251,	0.0227		0.0252,	0.0234	
		0.	.0252,	0.025	4	0.0253,	0.0226		0.0254,	0.0244	
		0.	0254,	0.023	1	0.0255,	0.0232		0.0258,	0.0232	
		0.	.0259,	0.020	5	0.0269,	0.0285		0.0280,	0.0224	
									-		
							·				
		A V 8	ERAGE	LENGTH	Ξ	0.0229,	0.0232 0	СМ			
		ST7	ANDARD	DEVIA	TION =	0.0017,	0.0020 (CM			<u></u>
		NO.	. OF M	IEASURE	MENTS =	78	PAIR	२ऽ			
			،								
								•			
										~	
	÷										
			•								
	<u></u>										
		* • • •				• · •			•		

.

APPENDIX XI DATA ON SETTLED BED POROSITY

INDEX

Run No.	Particles	Page
1-1	0.114 cm Glass Beads	XI-1
1-2	0.114 cm Glass Beads	XI-1
1-3	0.114 cm Glass Beads	XI- 2
2-1	0.114 cm Glass Beads	XI-2
2-2	0.114 cm Glass Beads	XI-3
2-3	0.114 cm Glass Beads	XI-3
7-3	0.0492 cm Glass Beads	XI-4
3-1A	0.0341 cm Salt Crystals	XI-4
3-2	0.0341 cm Salt Crystals	XI-5
3-3	0.0341 cm Salt Crystals	XI-5
3-4	0.0341 cm Salt Crystals	XI-5
4-2	0.0341 cm Salt Crystals	XI-6
4-3	0.0391 cm Salt Crystals	XI-6
5-3	0.0282 cm Salt Crystals	XI-6
6-4	0.288 cm ABS Pellets	XI-7
6-5	0.288 cm ABS Pellets	XI-7
9-2	0.0508 cm Mineral Crystals	XI-7
9-3	0.0508 cm Mineral Crystals	XI-8
10-2	0.0426 cm Mineral Crystals	XI-8
10-3	0.0426 cm Mineral Crystals	XI-8
11-2	0.135 cm Sugar Crystals	XI-9
11-3	0.135 cm Sugar Crystals	XI - 9
12-3	0.113 cm Sugar Crystals	XI-9

KUN I-I	0.114 CM GLA.	55 BEADS		ى ئىلىنىدىن بارچورچوچوچوچوچ
EPS	SETTLED BED HEIGHT CM	SETTLED BED POROSITY	APPH Time	₹0ו E
0•90 0•88	11•10 13•28	0•439 0•437		
0.85 0.80 0.77	16.55 22.20 25.60	0•436 0•439 0•440	1	HR
0 • 74 0 • 74 0 • 74	29.00 28.90 29.00	0 • 4 4 2 0 • 4 4 0 0 • 4 4 2		
0.74 0.70 0.70	29.00 33.38 33.22	0.442 0.440 0.438	10	HRS
0.67 0.67 0.64	36•40 36•35 39•64	0•435 0•435 0•434	5 10	HRS HRS

APPROX. TIME

RUN 1-2	0.114 CM GLAS	SS BEADS
EPS	SETTLED BED Height Cm	SETTLED BED POROSITY
0•90 0•88	11.10 13.25	0•442 0•439
() VE	1/ E9	0 1 0

0.90	11.10	0.442			
0.88	13.25	0.439			
0.85	16.53	0.438 ,		· · · · · · · · · · · · · · · · · · ·	
0•85	16.55	0.438			
0.83	18.80	0.440			
0.80	22.15	0.440.	. l	нĸ	
0.77	25.35	0.438		Ň	
0.77	25.40	0.439	5	HRS	
0.74	23.60	0.437		ng, element gelande mensike Bragen ditte opper menne andrake met byge mensi	
0.70	33.05	0.437			
0.70	33.13	0.439			
0.70	33.10	0.438	· · ·	***	•
0.67	36.05	0.433	2	HRS	
Ŭ•67	36.12	0.434	2	HRS	
0.64	39.35	0.433	4	HRS	•
0.64	. 39.40	0.434	3	HRS	
0.64	39.35	0.433	5	HRS	

FPS	SETTIED BED	SETTLED BED	ADDD:	١Χ			
	HEIGHT CM	POROSITY	T T ME				
		10000111					
0.90	11.10	0.444	25	MINS			
0.88	13.20	0.439	1.5	HRS			
0.85	16.50	0.439					
0.85	16.50	0.439	10	MINS			
0.83	18.70	0.439	20	MINS			
0.80	22.00	() 4 3 9	1.5	- 197			
0.80	21.97	0.439	5	MINS			
0.77	25.20	0 - 437	20	MINS			
0.74	28.50	0 437	0.5				
0.74	28.50	0.437	2				
0.74	28.48	0.437	40	MINS			
0.70	32-00	0 / 28		MING			
0.70	32-95	0.427	10	о 1 1 МО С И Т МО			
0.67	36 10	0.436	10				
0.67	36 50	0 • 4 50	10	MINS			
0.67	36.00	0 435	30	MINO LIDE			
0.54	30.39	0 436		THC 3			
0.64	- 30 22	0.430		8.2 T A I			
0.64	20 18 J	0 433	1	MIN			
0.64	30.15	0 4 2 3	1 7 5	LDC			
				•			
RUN 2-1	0.114 CM GLA	SS BEADS					
EPS	SETTLED BED	SETTLED BED	APPRO)Х.			
2.0	HEIGHT CM	POROSITY	TIME				
	neroni ch						
0.90	11.10	0.442	2.5	HRS			
0.90	<u>11.10</u> 13.15	0.442	2•5 16	HRS HRS			
0.90 0.88 0.85	11.10 13.15 16.45	0.442 0.434 0.435	2.5 16 0.5	HRS HRS HR			
0.90 0.88 0.85 0.85	11.10 13.15 16.45 16.45	0 • 4 4 2 0 • 4 3 4 0 • 4 3 5 0 • 4 3 5	2.5 16 0.5 1	HRS HRS HR HR			
0.90 0.88 0.85 0.85 0.85	$ \begin{array}{r} 11 \cdot 10 \\ 13 \cdot 15 \\ 16 \cdot 45 \\ 16 \cdot 45 \\ 18 \cdot 60 \\ \end{array} $	$ \begin{array}{r} 0.442\\ 0.434\\ 0.435\\ 0.435\\ 0.435\\ 0.434\\ \end{array} $	2.5 16 0.5 1 2	HRS HRS HR HR HRS			
0.90 0.88 0.85 0.85 0.85 0.80	$ \begin{array}{r} 11.10 \\ 13.15 \\ 16.45 \\ 16.45 \\ 18.60 \\ 21.80 \end{array} $	0 • 4 4 2 0 • 4 3 4 0 • 4 3 5 0 • 4 3 5 0 • 4 3 4 0 • 4 3 1	2.5 16 0.5 1 2 14	HRS HRS HR HR HRS HRS			
0.90 0.88 0.85 0.85 0.83 0.80 0.80	$ \begin{array}{r} 11.10 \\ 13.15 \\ 16.45 \\ 16.45 \\ 18.60 \\ 21.80 \\ 21.85 \\ \end{array} $	$ \begin{array}{r} 0.442\\ 0.434\\ 0.435\\ 0.435\\ 0.434\\ 0.431\\ 0.431\\ 0.433\\ \end{array} $	$ \begin{array}{r} 2.5 \\ 16 \\ 0.5 \\ 1 \\ 2 \\ 14 \\ 20 \\ \end{array} $	HRS HRS HR HRS HRS MINS			
0.90 0.88 0.85 0.85 0.83 0.80 0.80 0.80 0.77	$ \begin{array}{r} 11.10\\ 13.15\\ 16.45\\ 16.45\\ 18.60\\ 21.80\\ 21.85\\ 24.80\\ \end{array} $	$ \begin{array}{r} 0.442\\ 0.434\\ 0.435\\ 0.435\\ 0.434\\ 0.431\\ 0.433\\ 0.425\\ \end{array} $	$ \begin{array}{r} 2.5 \\ 16 \\ 0.5 \\ 1 \\ 2 \\ 14 \\ 20 \\ 36 \end{array} $	HRS HRS HR HR HRS HRS MINS HRS			
0.90 0.88 0.85 0.85 0.83 0.80 0.80 0.77 0.77	11.10 13.15 16.45 16.45 18.60 21.80 21.85 24.80 25.15	$\begin{array}{c} 0.442 \\ 0.434 \\ 0.435 \\ 0.435 \\ 0.435 \\ 0.434 \\ 0.431 \\ 0.433 \\ 0.425 \\ 0.433 \end{array}$	$ \begin{array}{r} 2 \cdot 5 \\ 16 \\ 0 \cdot 5 \\ 1 \\ 2 \\ 14 \\ 20 \\ 36 \\ 0 \cdot 5 \end{array} $	HRS HRS HR HRS HRS MINS HRS HR			
0.90 0.88 0.85 0.85 0.83 0.80 0.80 0.80 0.77 0.77	11.10 13.15 16.45 16.45 18.60 21.80 21.80 21.85 24.80 25.15 25.05	0.442 0.434 0.435 0.435 0.434 0.431 0.431 0.433 0.425 0.433 0.431	$ \begin{array}{r} 2.5\\ 16\\ 0.5\\ 1\\ 2\\ 14\\ 20\\ 36\\ 0.5\\ 2.5\end{array} $	HRS HRS HR HRS HRS MINS HRS HR HRS			
0.90 0.88 0.85 0.85 0.83 0.80 0.80 0.80 0.77 0.77 0.77	$ \begin{array}{r} 11 \cdot 10 \\ 13 \cdot 15 \\ 16 \cdot 45 \\ 16 \cdot 45 \\ 18 \cdot 60 \\ 21 \cdot 80 \\ 21 \cdot 85 \\ 24 \cdot 80 \\ 25 \cdot 15 \\ 25 \cdot 05 \\ 28 \cdot 20 \\ \end{array} $	$\begin{array}{c} 0.442 \\ 0.434 \\ 0.435 \\ 0.435 \\ 0.435 \\ 0.431 \\ 0.431 \\ 0.433 \\ 0.425 \\ 0.433 \\ 0.425 \\ 0.431 \\ 0.431 \\ 0.429 \end{array}$	$ \begin{array}{r} 2.5 \\ 16 \\ 0.5 \\ 1 \\ 2 \\ 14 \\ 20 \\ 36 \\ 0.5 \\ 2.5 \\ 2 \end{array} $	HRS HRS HR HRS HRS HRS HRS HRS HRS HRS			
0.90 0.88 0.85 0.85 0.83 0.80 0.80 0.80 0.77 0.77 0.77 0.74 0.74 0.74	$ \begin{array}{r} 11.10\\ 13.15\\ 16.45\\ 16.45\\ 18.60\\ 21.80\\ 21.85\\ 24.80\\ 25.15\\ 25.05\\ 28.20\\ 28.15\\ \end{array} $	$\begin{array}{c} 0.442 \\ 0.434 \\ 0.435 \\ 0.435 \\ 0.435 \\ 0.434 \\ 0.431 \\ 0.433 \\ 0.425 \\ 0.425 \\ 0.433 \\ 0.425 \\ 0.431 \\ 0.429 \\ 0.428 \end{array}$	$ \begin{array}{c} 2.5\\ 16\\ 0.5\\ 1\\ 2\\ 14\\ 20\\ 36\\ 0.5\\ 2.5\\ 2\\ 11\\ \end{array} $	HRS HRS HR HRS HRS HRS HRS HRS HRS HRS H			
0.90 0.88 0.85 0.85 0.83 0.80 0.80 0.77 0.77 0.77 0.74 0.74 0.74 0.70	$ \begin{array}{r} 11.10\\ 13.15\\ 16.45\\ 16.45\\ 18.60\\ 21.80\\ 21.85\\ 24.80\\ 25.15\\ 25.05\\ 28.20\\ 28.15\\ 32.75\\ \end{array} $	$\begin{array}{c} 0.442 \\ 0.434 \\ 0.435 \\ 0.435 \\ 0.435 \\ 0.431 \\ 0.431 \\ 0.433 \\ 0.425 \\ 0.433 \\ 0.425 \\ 0.431 \\ 0.429 \\ 0.428 \\ 0.432 \end{array}$	$ \begin{array}{r} 2.5\\ 16\\ 0.5\\ 1\\ 2\\ 14\\ 20\\ 36\\ 0.5\\ 2.5\\ 2\\ 11\\ 5.5\\ \end{array} $	HRS HRS HR HRS HRS HRS HRS HRS HRS HRS			

RUN 1-3 0.114 CM GLASS BEADS

· ·

EPS	SETTLED BED	SETTLED BED	APPROX.				
	HEIGHT CM.	POROSITY	TIME				
•83	13.20	0.44	1•75	HRS			
0•85	16.45	0.438	15	MINS			
0.85	16.40	0 • 4 3 6	15	HRS			
0.83	18.60	0 • 4 3 7	11.5	HRS			
0.80	21.88	0 • 4 3 7	15	HRS			
0.77	25•20	0•437	2	HRS			
0.74	28•40	0•436	3.33	HRS			
0.70	32•40	0•429	9	HRS			
0.67	36.00	0.435	3	HRS			
0.64	38.90	0.430	0.5	HR			
0.64	38.70	0.427	10.5	HRS			

• RUN 2-2 0.114 CM GLASS BEADS

RUN 2-3 0.114 CM GLASS BEADS

· .					
	EPS ·	SETTLED BED	SETTLED BED	APPR	οX.
		HEIGHT CM	POROSITY	TIME	
-	and the statement of the statement of the statement of the				
	0.90	11.05	0.442		
. ·	ە90	11.00	0.439	3	DAYS
	0.88	13.25	0.441	1	HR
	0.85	16.45.	0.438	•	
	0.85	16.45	0.438	10	MINS
	0.83	18.65	0.438	1.5	HRS -
	0.80	21.85	0.435	5-0	MINS
	0.80	21.85	0.435	20	MINS
	C.77	25.20	0.437	10	MINS
	0.74	28.55	0.438	14	MINS
	0.74	28.50	0.437	18	MINS
	0.70	32.40	0.429	11	HRS
	0.64	39.40	0.436	16	MINS
	0.64	39.20	0.434	17	MINS
•	0.64	39.40	0.436	11	MINS

EPS	SETTLED BED Height CM	SETTLED BED POROSITY	APPRO TIME	X •
0.92	8.75	0•436	10•5	HRS
0.90	10.95	0•437	24	HRS
0.88	13.05	0•433	4	HRS
0.85	16.40	0•436	20	HRS
0.82	19.50	0•430	11	HRS
0.82	19.65	0 • 4 3 5	40	MINS
0.80	21.80	0 • 4 3 4	2.75	HRS
0.77	24.95	0 • 4 3 1	0.5	HR
0.74	28.20	0 • 4 3 1		HRS
0.71	31.40	0 • 4 3 0		HRS
0.68	34.65	0 • 4 3 0		MINS
0.68	34•70	0.431	4	HRS
0.68	34•50	0.428		HRS

R	Ų	,	N	i	7	 3	0	0	4	٢Ś)	2	C	V]	1	G	Ĺ.	A	5	5	۶É	1	١L):	S	·

RUN 3-1/	A 0.0341 CM SA	LT CRYSTALS				
EPS	SETTLED BED HEIGHT CM	SETTLED BED PORUSITY	APPROX • TIME			
• 95	5 • 8.0	0•462	58	MINS		
. •92	9.30	0.465	1.12	HRS		
• 90	11.60	0.46	T	HR.		
85•0	13.92	0.464	24	HRS		
0.85	19.60	0.524	· 9	HRS		
0.83	17.36	0.391	3.5	HRS		
0.80	23.03	0.460	2	HRS		
0.77	26.45	0.459	2	HRS		
0.74	.29.93	0.459	1	HRS		
0.71	33.33.	0.459	10	HRS		
0.68	36.72	0.458	1.5	.HRS		
0.65	40.05	0.456	12	HRS		

XI-4

			· · ·	· · · · · ·
RUN 3-2	0.0341 CM SAL	T CRYSTALS		
EDS .	SETTLED GED	SETTHEN RED	ADDDO	- X
	HEIGHT CM	POROSITY	<u> </u>	
0.95	5,80	0.469	50	MINS
0.92	9.32	0.471	1.75	HRS
0.90	11.63	0.470	1	HR
0.88	13.92	0.469	24	HRS
0.85	17.36	0.467	3.5	HRS
0.83	19.60	0.465	9	HRS
0.30	23.03	0.465	2	HRS
Ü.77	26.45	0.464	2	HR 5
0.74	29.86	0:453	1	HR
0.71	33.28	0.463	10.	HR3
0.68	36.60	0.461	1.5	HRS
0.65	3,9.90	0.459	12	HRS
_				
	an a barren er a men d	· · · · · · · · · · · · · · · · · · ·	an n gana diamang kalamp a sin ganggang di na sapan na kalampi na sin	
RUN 3-3	0.0341 CM SA	LT CRYSTALS		
EPS	SETTIED BED	SETTLED SED		$\gamma \chi$
	HEIGHT CM	POROSITY		
			11/14	
0.95	5.70	0.459	10	MINS
0.95	5.70	• 0.459	10	
0.92	9.17	0.452	21	MIND
0.90	11.40	0.459	3.5	- HRS
85.0	13.63	0.457	2.5	HRS
0.85	17.00	0.456	23	HRS
0.83	19.20	0.454	12 .	HRS
0.80	22.55	0.453	2	HRS
0.77	25.90	0.452	1.5	HRS
0.74	29.20	0.451	33	HRS
0.71	32.60	0.451	<u>55</u>	MINS
0.68	35.90	0.450	17.5	MINS
0.65	39.28	.0.450	15	HRS
		99. 199. 19 . 19. 19. 19. 19. 19. 19. 19. 19. 19. 19		
•		· .		
RUN 3-4	0.0341 CM SA	LT CRYSTALS	· · · · · · · · · · · · · · · · · · ·	
EPS	SETTLED BED	SETTLED BED	APPR	οХ.
	HEIGHT CM	POROSITY -	TIME	
0.58	13.70	0.460	3	HRS
0.85	17.00	0.456	20	HRS
0.83	19.20	0.454	18 -	HRS
0.60	22.55	0.453	, 1	HRS
0.77	25.35	0.451	0.5	HR
0.74	28.90	0.445	16	HRS
0.71	32.40	0.448	3.5	HRS
0.68	35.70	0.447	11	HRS
0-65	39.00	0-446	2.5	2 GH

XI-5

÷. .

	2			
			· · ·	X
	• • • • •			
RUN 4-2	0.0391 CM SAI	_T CRYSTALS		
EPS	SETTIED BED	SETTLED RED	APPRO)Х.
	HEIGHT CM	POROSITY	TIME	
	۵۰ - ۲۰۰۰ میلی در این	n an		
0.95	5.75	0.464	10	HRS
0.92	<u>9•15</u>	0.461	3	HRS
0.90	11.40	0.459	25	MINS
0.88	13.60	0.456	16	HRS
0.05	10.30	0.455	<u>خ</u>	HRS
$0 \cdot 0 \cdot 0 \cdot 0 = 0$	19.20	0.452	57	MINO
0.77	. 25.94			HKS.
0.74	29.20	0.452	2 • 75	
0.71	27 • 20	0.451	2.5	-unc
0.68	35.78	0.4491	5	
0:05	38.93	0.445	<u> </u>	
0.65	39.20	0.450	0.7	
	J 7 8 2 0	0.4900	U • I	1 I IX
			araa da da da araa ka da da araa ka da araa ahaa ahaa ahaa ahaa ahaa ahaa	
RUN 4-3	0.0391 CM SAL	TCRYSTALS		· · · · · · · · · · · · · · · · · · ·
EPS	SETTLED BED	SETTED BED	APPRO	× -
21,0	HEIGHT CM	POROSITY	TIME	•
0.95	5.80	0.468	10	HRS
0.92	9.20	0.464	· 3	HRS
0.90	11.40	0.459	25	MINS
0.88	13.65	0.458	16	HRS
0.85	17.05	0.457	3	HRS
0.83	19.30	0.457	57	MINS
0.80	22.60	0.454	17	HRS
0.77	25.96	0.453	. 2.75	HRS
0.74	29.30	0.453	9.5	HRS
0.71	32.65	0.452	3	HRS
0.68	35.95	0.451	4	HRS
0.65	39.28	0.450	0.7	HR
	» سینی در			
RUN 5-3	0.0282 CM SAL	T CRYSTALS		
грс 	SETTLED RED	SETTLED RED	APPRO	Х.
	HEIGHT CM	POROSITY	TIME	
		0 4 4 6		
0.92	9.30	U•469	Ċ	ב מו⊔
0.89	12.10	U • 400	<u>د</u>	רוגט דעעד
U•0/ C 4=	14・ソイ	U • 404 0 . 760	20 1 A	HRS HRS
	22 00		0 =	нр
0.50		0.409	14	
$\begin{array}{c} 0 \bullet 1 1 \\ 0 \bullet 7 \mathbf{A} \end{array}$	20.10	0.452	3.5.	HRS
$0 \cdot 74$		· 0.457	11	HRK
0.11	26.23	0.421	2.5	
0.45	20 · 22	0.455	2 • 2	2701 - 2 9 H
0.65	39.65	0.455	3.5	HRS

• •	· · · · · ·			· .
RUN 6-4	0.288 CM ABS	PELLETS		· · · ·
LDC	SETTIEN DEN	CETTIEN SEN		\ <u>\</u>
LFJ	SETTLED BED	SCILED DED	APPRC) / •
	height CM	PORUSITY	I I ME	
0.95	6.00	0.486	ô.5	ЧР
	0.00	0.501	0.5	111X
0.92	12 10	0.501		
0.90	12.10	0.490	, r	
0.85	11.15	0.479	1.5	HR
0.83	20.10	0.478	2	HRS
0.80	23.30	0 • 4 7.0	1.0	HR
0.17	26.50	0.465	11	HR5
0.74	29.70	0.460	6.5	HRS
0.71	32.90	0.456	16	HRS
0.68	36.10	0.453	24	HRŞ
	· · · · · · · · · · · · · · · · · · ·	· · · · ·		
R∪N 6-5	0.288 CM ABS	PELLETS		
FPS	SETTLED BED	SETTLED RED	ADDER) X
210	HEIGHT CM	DOPOSITY	APP (C	
		FUNUSITI	1100	
0.92	8-30-	0 4 1 4	2	uns
0.00	12 10	$0 \cdot 414$	2	nko
0.90	12.10	0.497		
0.03	19.00	$0 \cdot 472$	9	HRS
0.80	23.00	• 0 • 4 / 1	3	HRS
0 • 7 4	29.60	0.465	3	. HRS
$0 \cdot 71$	33.00	0.465	0.5	HR
0.03	36.00	0.459	8	HRS
				······································
RUN 9-2	0.0508 CM MI	NERAL CRYSTALS		
	SETTIEN SEN	- SeTTIER SE.	6002	ο Υ
LF J	LETCHT CM	DADACITY		
	HLIONI CM	FUNUSIII	11110	
0.95	6.10	0.495	1.5	HRS
0.92	9.70	0.492	0.5	НŘ
0.00	✓ ♥ + U		1 5	нр.
	12.10	11 - 4 9 1		TIKU -
0.00	12.10	0.491	· 10	HPS
0.890	12•10 12•10	0.491	· 10	HRS
$\begin{array}{r} 0.90 \\ \hline 0.88 \\ \hline 0.85 \end{array}$	12 • 10 12 • 10 14 • 45	0.491 0.491 0.488	10 43	HRS MINS
0.90	12.10 12.10 14.45 18.10 20.50	0.491 0.491 0.483 0.489	10 43 2 43	HRS MINS HRS MINS
0.90 0.83 0.85 0.83	12.10 12.10 14.45 18.10 20.50	0.491 0.491 0.488 0.489 0.489	10 43 2 43	HRS MINS HRS MINS
0.90 0.88 0.85 0.83 0.80	12.10 12.10 14.45 18.10 20.50 24.00	$ \begin{array}{c} 0.491 \\ 0.491 \\ 0.483 \\ 0.489 \\ 0.489 \\ 0.489 \\ 0.486 $	$ \begin{array}{r} 10 \\ 43 \\ 2 \\ 43 \\ 17 \\ 1 \end{array} $	HRS MINS HRS MINS
0.90 0.88 0.85 0.83 0.80 0.77	12.10 12.10 14.45 18.10 20.50 24.00 27.55	0.491 0.491 0.488 0.489 0.489 0.489 0.485 0.485	$ \begin{array}{r} 10 \\ 43 \\ 2 \\ 43 \\ 17 \\ 16 \\ (2) \end{array} $	HRS MINS HRS MINS MINS HRS
0.90 0.88 0.85 0.83 0.80 0.77 0.74	12.10 12.10 14.45 18.10 20.50 24.00 27.55 31.15	0.491 0.491 0.488 0.489 0.489 0.485 0.485 0.485 0.485	10 43 2 43 17 16 43	HRS MINS MINS MINS MINS MINS
0.90 0.88 0.85 0.83 0.80 0.77 0.74 0.71	12.10 12.10 14.45 18.10 20.50 24.00 27.55 31.15 34.70	0.491 0.491 0.488 0.489 0.489 0.485 0.485 0.485 0.485 0.485	10 43 2 43 17 16 43 19	HRS MINS MINS MINS HRS MINS MINS
0.90 0.88 0.85 0.83 0.80 0.77 0.74 0.71 0.71	12.10 12.10 14.45 18.10 20.50 24.00 27.55 31.15 34.70 38.10	0 • 4 9 1 0 • 4 9 1 0 • 4 8 3 0 • 4 8 9 0 • 4 8 9 0 • 4 8 5 0 • 4 8 5	$ \begin{array}{r} 10 \\ 43 \\ 2 \\ 43 \\ 17 \\ 16 \\ 43 \\ 19 \\ 3 \\ \end{array} $	HRS MINS MINS MINS MINS MINS HRS
0.90 0.88 0.85 0.83 0.80 0.77 0.74 0.71 0.68 0.68	12.10 12.10 14.45 18.10 20.50 24.00 27.55 31.15 34.70 38.10 33.25	0 • 4 9 1 0 • 4 9 1 0 • 4 8 3 0 • 4 8 9 0 • 4 8 9 0 • 4 8 5 0 • 4 8 2 0 • 4 8 4	10 43 2 43 17 16 43 19 3 18	HRS MINS MINS MINS MINS MINS HRS MINS

XI -7

· · · · ·			•	
RUN 9-3	0.0508 CM MIN	NERAL CRYSTALS		
EPS	SETTLED BED	SETTLED BED	APPR	DX •
	HEIGHT CM	POROSITY	TIME	
	(10			1100
0.95	6 • 10	0.494	1.5	HRS
0.92	9.15	0.494	<u>1</u>	HR
0.92	9.10	0.494	1	HK
0.80	12.10	0.490	1.2	MIMS
0.00	19 15	0.409	<u> </u>	
0.83	20 55	0 490	4.2	MINS
0.80	20.05	0.487	17	MINS
0.77	27.60	0.486	16	HRS
0.74	31.20	0.486	. 43	MINS
0.71	34.70	0.484	19	MINS
0.68	38.20	0.483	3	HRS
0.68	38.20	0.483	18	MINS
0.65	41.70	0.482	1.4	HRS
RUN 10-2	0.0426.CM MI	NERAL CRYSTALS		
- 	CUTTIEN DEN	SETTLED GEN		. v
EP3	JETTED DED	DODOLLTY	T T LUN	<i>∧</i> •
·		PURUSITI	11140	
0.95	6.15	0 / 09	•	
0.92	9.75	0.494	1.5	HRS
0.90	12,15	0.493	15	MINS
0.88	14.30	0.483	20	MINS
0,85	17.95	0.485	25	MINS
0.85	18.00	0.486	3	HRS
0.82	21.45	0.483	1.2	HR
0.80	23.90	0.484	10	HRS
0.77	27.50	Ú•484	5	MINS
0.7.4	31.05	0.484	3.5	HRS
0.71	34.60	0.483	2.5	HRS
0.68	38.10	0.482	0.5	HR
0.65	41.43	0.479	9.5	HRS
RUN 10-3	0.0426 CM MI	NERAL CRYSTALS	· • · · *	
EPS	SETTLED BED ,	SETTLED BED	APPRO)X •
	HEIGHT CM-	POROSITY	TIME	
0.05		0 5 0 0		
0.95	0 75	0.502	٦ <i>٢</i>	90×
0.72	۲۰۱۵ ۱۳	0 474	C•1	MINS
0.00		0 • 4 7 Z	20	MINS
0.85	12 05	0 430	20	MINC MINC
0.85	18.15	0.401	<u></u>	
0.82	21_65	0.487	1.0	HRS
0.80	23.05	0.485	10	HDS
0.00	2J • 7J 27 - 62	0.405 0.486	20	MINS
0.77	27.70	· 0.488	20	MINS
0.74	31.40	0.489	3.5	HRS
	34.85	0.437	2.5	HRS
0.68	38.45	0.487	0.5	HR
0.65	41.80	0.483	9.5	HRS
	· · · · · ·			

XI-8

RUN 11-2	0.135 CM SUG	SAR CRYSTALS		
EPS	SETTLED BED HEIGHT CM	SETTLED BED POROSITY	APPRC TIME	אט .
0.05	())	0.500		14 7 81 9
0.95	6.20	0.503	15	MINO
0.92	9.70	0.492	<u>↓</u>	HK
0.90	12.10	0.491	1	HR
0.88	14.50	0.490	0.5	HR
0.85	18.00	0.486	0.5	HR
0.82	21.65	0.488	0.5	HR
0.80	24.00	0.486	10	HRS
0.80	23.90	0.484	0.5	HR
0.77	27.45	0.484	3.5	HRS
0.74	31.05	0.484	40	MINO
0.71	34.45	0.481	9	HRS
0.68	37.95	0.480	2	HRS
		·	· · ·	
RUN 11-3	3 0.135 CM SUG	SAR CRYSTALS		
FPS	SETTLED RED	SETTLED BED	ADDB!	ox.
ET 0	HEIGHT CM	POROSILY		0/
		FURUSITI		
0 0 5	ζ <u></u> Σε	0 506	15	MINS
0.02	0.20	0.508	10	MINO
0.92	9.80	0.496	<u>↓</u>	<u> </u>
0.90	12.20	0.494	1	HR
0.88	14.55	0.491	0.5	HR
0.85	18.05	0.487	0.2	HR
0.82	2170	0.483	0.5	HR
0.80	24.00	0.486	10	HRS
0.80	24.00	0.486	0.5	HR
0.77	27.55	0.485	3.5	HRS
0.74	31.00	0.483	40	MINS
0.74	31.00	0.483	9	HRS
0.71	34 • 45	0.481	35	MINS
0.68	38.10	0.482	4.	HRS
RUN 12-1	3 0.113 CM SU	GAR CRYSTALS		· · · · · · · · · · · · · · · · · · ·
EDS	SETTIEN SED		4000	
	SCITED DED	DODODILLY	· APPR	0
		PUKUSIII	I IME	
0,95	6 24	0 504	0	
			ン 1	mk3
0.52	7 • 7U	1000	<u> </u>	HR
	12.20	U•494	3	HRS
0.08	14.55	0.491	- 1.5	HR
0.85	18.05	0.487	9.	HRS
0.82	21.60	0.486	20	MINS
08.0	. 24 00	0.486	2.5	HRS
·`` ·· ··	24.00	0.400	2.00	
0.11	27.50	• • • • • • • • • • • • • • • • • • • •	12	MINS
0.74	<u>27.50</u> <u>31.00</u>	· 0•434 ∪•483	12 10	MINS MINJ
0.74 0.74 0.71	27.50 31.00 34.35	0 • 4 3 4 0 • 4 8 3 0 • 4 7 9	12 10 22	MINS MINJ MINJ

XI-9

•

APPENDIX XII SAMPLE PLOT OF EXPERIMENTAL BED HEIGHT vs. SETTLING TIME

.

.

.

.

.

·

APPENDIX XIII SAMPLE CALCULATIONS AND ERRORS

Sample calculations are given below; random cases for error analysis are included.

u = DIST/TIME

By linear interpolation between short temperature interval,

 $\nu = \nu_1 + \frac{(\text{TEMP}-\text{TEMP}_1)}{(\text{TEMP}_2 - \text{TEMP}_1)} \times (\nu_2 - \nu_1)$

a. Run 3-1A at $\epsilon = 0.92$

DIST = 10.0 ± 0.2 cm TIME = 65.4 ± 0.2 sec u = 10.0/65.4 = 0.153 cm/sec

Maximum relative error in u

$$= \pm \left(\frac{0.2}{10.0} + \frac{0.2}{65.4}\right) = \pm 2.4\%$$

TEMP = 71.8 ± 0.15 deg. F

where \pm 0.15 deg. F is the uncertainty in the estimated liquid temperature.

TEMP₁ = 70.1 ± 0.03 deg. F
TEMP₂ = 72.01 ± 0.03 deg. F

$$\nu_1$$
 = 32.24 (± 0.2%) cs
 ν_2 = 31.39 (± 0.2%) cs

By linear interpolation

$$\nu = 31.57 \ cs$$

Maximum relative error in estimated ν

$$\frac{1}{1.0} = \frac{10.002 \times \frac{32.24}{31.57}}{0.79} + \frac{0.03 + 0.03}{1.0} + \frac{0.002 + 0.002}{0.85} \times \frac{0.67}{31.57}$$

Thus maximum relative error in $u\nu$,

 $= \pm (2.4 \pm 0.8) = \pm 3.2\%$

b. Run 3-2 at $\epsilon = 0.74$ with the largest temperature variation

DIST = 10.0 ± 0.2 cm TIME = 205.0 ± 0.2 sec u = $10.0/205.0 \pm 0.0488$ cm/sec

Maximum relative error in u

$$= \pm \left(\frac{0.2}{10.0} + \frac{0.2}{205.0}\right) = \pm 2.0\%$$

TEMP = 74.3 ± 0.5 deg. F
TEMP₁= 73.0 ± 0.03 deg. F
TEMP₂= 75.02 ± 0.03 deg. F
 ν_1 = 30.63 (± 0.2%) cs
 ν_2 = 29.15 (± 0.2%) cs

By interpolation

$$\nu$$
 = 29.68 cs

Maximum relative error of estimated ν

$$= \pm \left[0.002 \times \frac{30.63}{29.68} + \left(\frac{0.5 \pm 0.03}{1.3} \pm \frac{0.03 \pm 0.03}{2.02} + \frac{0.002 \pm 0.002}{1.48} \right) \times \frac{0.95}{29.68} \right]$$

= \pm 1.6%

Maximum relative error in $u\nu$

$$= \pm (2.0+1.6)\% = \pm 3.6\%$$

Error in the linear interpolation of viscosity over a small temperature interval should be comparatively negligible.

2. Porosity

Porosities were selected to calculate the required amount of particles to be weighed

$$\begin{split} & \text{WT} = \text{V} \ (1-\epsilon)\rho_{\text{S}} \\ & \text{WT} = \sum \text{ (incremental weight for porosity change of} \Delta \epsilon) \\ & = \text{V} \sum \Delta \epsilon \rho_{\text{S}} \\ & \epsilon = 1-\text{WT}/\text{V}\rho_{\text{S}} \end{split}$$

a. Run 3-1A at $\epsilon = 0.65$

 $V = 313.0 \pm 1.0 \text{ cm}^3$ $\rho_s = 2.169 \pm 0.005 \text{ g/cm}^3$ WT = 313 x 2.169 x (0.05+0.03x8+0.02x3) = 237.4 g.

accuracy

 $WT = 237.4 \pm 0.3 g$

Maximum relative error in ϵ

$$= \pm \left(\frac{0.36}{237.4} + \frac{1.0}{313.0} + \frac{0.005}{2.169}\right) \times \frac{0.35}{0.65}$$
$$= \pm 0.37\%$$

b. Run 3-3 at $\epsilon = 0.65$

$$V = 1250 \pm 1.0 \text{ cm}^3$$

WT = 1250 x 2.169 x (0.05 + 0.03 x 8 + 0.02 x 3)
= 949.2 \pm 0.4 g

Maximum relative error in ϵ

$$= \pm \left(\frac{0.4}{949.2} + \frac{1}{1250} + \frac{0.005}{2.169}\right) \times \frac{0.35}{0.65}$$
$$= \pm 0.19\%$$

3. Fixed bed porosity

$$\epsilon_{\rm b} = 1 - \frac{WT/\rho_{\rm s}}{HTBxD_{\rm r}^2 x 0.7854}$$

Run 3-3 at $\epsilon = 0.65$

WT = $1250 \times 2.169 \times (0.05 \pm 0.03 \times 8 \pm 0.02 \times 3)$ = 949.2 ± 0.4 g ρ_s = 2.169 ± 0.005 g/cm³ HTB = 39.28 ± 0.05 cm D_t = 5.08 ± 0.01 cm ϵ_b = $1 - \frac{949.2/2.169}{39.28 \times 5.08^2 \times 0.7854}$ = 0.450

Maximum relative error in $\epsilon_{\rm b}$

$$= \pm \left(\frac{0.4}{949.2} + \frac{0.005}{2.169} + \frac{0.05}{39.28} + \frac{0.01x2}{5.08}\right) \times \frac{0.55}{0.45}$$
$$= \pm 0.96\%$$

4. Effect of Uncertainty of ϵ on $u\nu$

Consider equation 1a, taking n = 5. A 0.4% uncertainty in ϵ could cause an uncertainty of 2% in u ν . Therefore any variation in $u\nu$ which was larger than its own maximum error plus that caused by ϵ , should be considered to arise from the minor nonuniformities in the suspension dicussed in the text.

5. Computation

The data on hindered settling were processed by the computer program A on page XIII-6 which does the viscosity interpolation, averaging of $u\nu$ and preliminary least squares calculation. Program B was used to do the least squares estimates of the processed data from program A.

Program A

Variables of the programs

	•	
RUN	run number	
PTC	particle name	
LÌQ	description of liquid	
SCREEN	sieve opening	
T(A)	t _A , 0.05 value	
TIME	settling time, sec	
DIST	settling distance, cm	
EPS	porosity	
U	settling rate, cm/sec	
NU	kinematic viscosity, cs	
UNU	$u\nu$, (0.01 cm ³ sec ⁻²)	
UNUA	average $u\nu$, (0.01 cm ³ sec ⁻²)	
TEMP	temperature ^o F or ^o C	
TEMPS	read-in temperature of viscosity data, unit as TEMP	same
NUS	read-in viscosity data in cs at TEMPS	
NUMIN, NUMAX,	, minimum and maximum value of NU in a run	
DENP	particle density	g/cm ³
DENLIQ	liquid density	g/cm ³
DV	diameter of sphere of same volume as the particle	cm
DT	column diameter	cm
DRATIO	DV / DT	
NTEST	number of tests	
STNDD	standard deviation of average u $ u$, (0.01 cm ³	sec ⁻²)
LGUNUA	log. of average $u\nu$	
LGEPS	log. of €	

XIII-7

SLUNU	sum of log $(u\nu)$
SLGE	sum of $\log \epsilon$
SLUNU2	sum of $\left[\log (u\nu)\right]^2$
SLUNE	sum of log $(u\nu)$ x log ϵ
SLGE2	sum of $(\log \epsilon)^2$
N	least squares estimated Richardson-Zaki index n
LGUNUO	extrapolated log (uv) to $\epsilon = 1$
UNUO	$(u\nu)_{ext}$ calculated from extrapolated log $(u\nu)$ (0.01 cm ³ /sec ²)
CF DN	95% confidence interval of n
CFDLUN	95% confidence interval of extrapolated log (u ν)
UNUO1-UNUO2	95% confidence limits of extrapolated $(u\nu)_{ext}$, (0.01 cm ³ /sec)
DPEXT	sphere diameter calculated from $(u\nu)_{ext}$, cm
DPEXT1-DPEXT2	sphere diameter calculated from 95% confidence limits of $(u\nu)_{ext}$, cm
DPEXCO	sphere diameter calculated from $(u\nu)_{ext}$ corrected by wall, cm
REOMIN, REOMAX	maximum and minimum Re _O based on DPEXT

EASE	RETURN TO	THE CH	EMICAL	ENGINEE	RING HU	ILDING		XI]	I - 8	
	LD (3 - P 11 1 A 4 17 17 17	1/11/	САТГ	CODV E				C	H4 20
	J Ut) NUPDER	e Telle	5 UATE	MURAT F	0256.5	MAME- I	J-SEA CHUN	* 7	0.31. W
	J0[3 START	10HRS	34MIN 0	5.5080		V9M011			OFF-
<u>08</u>	16116 (HONG YL	I-SEN					<u></u>		
AGE	٤	30								
IME		3								
ORTR	AN	PROGRAM	A							
					1.0.5.0.0					
1		COMMON	U,N,NUS TEMP.T	, LGUNUA	PC. MUS.	, LGUNUU	FNUMIN,NU Itsi ,shima'	JMAX X		
23		DIMENS	TAN TIM	,NU,ICA	TST(10)	-EPS(15)	•U(16)•D	NU(15).		
2		1TEMP(2	0),NU(2	O),TEMP	S(20),N	IUS (21), U	INUA (20),	LGUNJA(15)	,LGEPS(15)
4		DIMENS	IUN PTC	(3),LIO	(4), SCR	EEN(12),	RUN(2)			
5		DIMENS	ION T(1	4)						~
. 6		DATA T	(2),T(3	5),T(4),	T(5),T(5),T(7),	T(8), T(9)),T(10),T(= 2 10/ 2	11), T(1)	2), 1(1)
		$13)_{1}(1)$	4)/4.30	0.2 145	16.1101	2.5(2,2.	441,2.30	5,2.500,2.	2029201	2012-6
• 7		DIMENS	TON EMT	(16).F8	7 10111116).EMOUT2	(16).EMO	JT3(16)		
1	0	DIMENS	ION ST	MDP(15)	, NTEST(15)				
1	1 10000	READ 1	14, RUN,	PTC, DEN	P,LIQ,D	DENLIC, DV	,DT,SCRE	− ; N	<u></u>	
1	2 114	FORMAT	(246,	346,F6.	3,446,F	10.4/2F1	0.4/12/6)		
1	3	WRIFE	(7, 114)	RUM, PT	C, DENP,	LIQ, DENL	10,00,01	SCREEN		
1	4 E 111	REAU I	11, (1t . /0510	mp3(m),	MUS(M),	四=1,12)				
1	5 111 6	PUKMAI READ 1	- (0019) - ENT.EN	9) 900 11. E	MULT2.	EMONTS				
<u>-</u>	7 1	FORMAT	(1645)						<u> </u>
2	0	WRITE(7,11) F	MOUT2,F	MOUT3					
¥ 2	1 11	FORMAT	(1645/	')						
2	2	NUMIN=	SC00.0							
2	3	NUMAX=	:0.0 -0.175 T							
	4 5	DRAIL	$\frac{1 = 0 \sqrt{D}}{2 \cdot R N \cdot R}$	TC .DENP	ALTO DE	NI IG. DV.	DT.DRATI	2. SCREEN		
2	5 6 2	FORMAT	(1H1./	1////.2	2X,246/	23X.11HP	ARTICLES	= • 3A6•8X•	SHDENSI	ΤY= ,
-		1F6.3,7	H GM/CM	/23X,1	THETQUE	D= ,	4A6,2X,8	HDENSITY=	,F6.3,7	H GM/C
		2M /23X	(, 17HPAR	TICLE S	IZE D =	• ,F7.4,9	H CM, D	=,F5.2,12	H CM, D	/D =
	-	3, F7.4/	23X ,12	PA6 /)						
2	<u>/</u> () 21		21 126X-4	HT SAD . 5	Y AHDIS	T. 4Y. 8HS	ETTLING.	58.141.88.	41112011.	6X.2115
2	0 21	195/36X	120A,9 2HCM.5	Y.8HTIM	F SFC .	2X.6HCM/	SEC • 2X • 1	THO.OICM /	SEC /)	
3	1	DO 100	OII=1,1	5		- ,				
3	2	00 100	I=1,10)						
3	3	REAU (5, FMT)	TEMP(I)	,DIST(I),TIME(I),EPS(II), INCTR		
3	4		CTR.NE.	$\frac{101}{10} \frac{60}{10} \frac{1}{10}$	$\frac{0}{0}$ $\frac{10}{10}$ $\frac{10}{20}$	<u></u>				
3 2	2 6 100	CONTIN	1115 1115	1W•J•J 0		100				
3	7 10	CALL N	IUCAL							
4	C	NTEST	II)=I							
4	1	SUM=0								
4	2	SUMSQA	<u>,=0.</u>			<u></u>				
4	3	DO 200) K=1+I (TCT/V)	****						
4	4 5		=)(K)%))T21(K)/	1105(K) 91(K)						
4	- 6	WRITE	(6, FMU)	NT1) TEM	р(к),01	ST(K),TI	ME(K),U(K),UNU(K),	EPS(II)	
4	7	SUMSQA	=SUMSQA	+UNU(K)	**2					

.

	EC	200	$C_{11}M = C_{11}M + (L_{11})$
	51	200	
	52		$\frac{1}{1} = \frac{1}{1} = \frac{1}$
	52		$ \begin{array}{c} 1\Gamma & 1 \bullet U \forall \bullet 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 &$
	50 57	201	STNUD([1])=SURT((SUMSVA=SUM**Z/FLUAT([])/FLUAT([=1])
	55	201	
	56	1000	
	57	2000	
	0.0	2000	SI = III = 0
	61		
	62		St (N)(2=0.0
	63		SLUNI E=0.0
	64		SLGE2=0.)
	65		$DO_{30} = I = 1 \cdot II$
	66		SLUNU=SLUNU+LGUNUA(I)
	67		SLGE=SLGE+LGEPS(I)
	70		SLUNU2=SLUNU2+LGUNUA(I)**2
	71		SLUNLE=SLUNLE+LGUNUA(I)*LGEPS(I)
	72		SLGE2=SLGE2+LGEPS(I)**2
	73	30	CONTINUE
	74		N=(FLUAF(II)*SLUNLE-SLGE*SLUNU)/(FLUAT(II)*SLGE2-SLGE**2)
	75		LGUNUO=(SLUNU-N*SLGE)/FLOAT(II)
	76		UNU0=10.0**LGUNU0
	77		REAL LGEAVE
	100		LGEAVE=SLGE/FLOAT(II)
	101		SDLUA2=(SLUAU2-LGUAU0*SLUAU-A*SLUALE)/(FLOAT(II)-2.0)
	102		SDLUN=SQRT(SDLUN2)
	103		SLELE2=SLGE?-SLGE**2/FLOAT(II)
	104		CFDN=T(II-2)*SDLUN/SORT(SLELU2)
4	105		CFDLUN=1(11-2)*30LUN*S0R1(1.07FLU4)(11)+LGEAVE**2/SLELE2)
ź	106		VARN=SULUNZ/SLELEZ
	107		1010-10 0**101000 200+2081(VARN)
	110		UNUU=1(,0**L6UNUU UNU01 1: 0**L6UNU0 CEDLUN)
	111		$U \cap U \cup I = I \cup U \land \land \land (L \cup U \cap U \cup U \cap U \cap U \cap U)$
	$\frac{112}{112}$		$\frac{0}{10} \frac{1}{2} = 10 \cdot \frac{0}{4} + 10 \cdot \frac{1}{10} = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =$
	115		5050-UNH0*04VD20
	114		
	116		0PE250+UNDO2*PHTENO
	117		$\frac{\partial PEYT + SORT(DPSO)}{\partial PEYT + SORT(DPSO)}$
	120		DPEXI1 = SORT(DPE1SO)
	121		OPEXI2=SORT(DPE2SO)
	122		CURFAC=1.0+2.104*DRATIO
	123		CORF=SCRT(CORFAC)
	124		DPEXCO=DPEXT*CORF
	125		REOMIN=OPEXT*UNUO/NUMAX**2*100.0
	126		REOMAX=DPEXT*UNUO/NUMIN**2*100.0
	127		PRIMT 2, RUN, PTC, DENP, LIG, DENLIG, DV, DT, DRATID, SCREEN
	130		PRINT 22, REUMIN, REOMAX
	131	22	FORMAT (23X,5HRE(D),4X,F6.3,1H-,F6.3//28X,3HEPS,2X,9HU*NU(AVE) ,
			12X,7HLG(FPS),2X,8HLG(U*NU),2X,8HSTD.DEV.,1X,5HNU DF/32X,12H0.010M
			2/SEC ,19X,13H TEST /)
	132		WRITE(7,221) NUMIN, NUMAX
	133	221	FORMAT (2F10.3)
	134		DO 3000 K=1,II
	135		IF (NTEST(K).EQ.1) GU TO 110
	136		WRITE (6,FMOUT2)EPS(K),UNUA(K),LGEPS(K),LGUNUA(K), STNDD(K),NTEST(
	137		WRITE (7, FMUUT2)EPS(K), UNUA(K), LGEPS(K), LGUNUA(K), SINDD(K), NTEST(

. -

		1K)
140		GO TU 3000
141	110	WPITE(6,FMOUT3) EPS(K),UNUA(K),LGEPS(K),LGUMUA(K),NTEST(K)
142		WRITE(7,FMOUT3) EPS(K),UNUA(K),LGFPS(K),LGUNUA(K),NTEST(K)
143	3000	CONTINUE
144		PRINT 8, LGUNUD, M, UNUD, M, N, CEPN, LGUNUD, CEDLUN, UNUD1, UNUD2
145	8	FORMAT (/23X,24HLEAST SQUARES ESTIMATES /27X,10HLOG(U*NU)=,F7.4,2
		18 +,F6.2,9H*LOG(2PS) /27X, 6HU*NU =,F8.3,6H*EPS**,F5.2 /27X,19HCOM
		2FIDENCE INTERVAL /28X,2HN=,8X,F5.2,3X,F5.2 /28X,10HL0G(U*NU)0,F7.4
		3,1X,F7.4 /28X,9H(U*NU)EXT ,F8.3,1H-,F8.3)
146		PRINT 9, UNUO, DPEXT, DPEXCO, UNUOI, UNUO2, DPEXT1, DPEXT2
147	9	FORMAT (/23X, 31HDIA. OF SPHERE CORRESPONDING TO /27X, 10H(U*NU)EXT
		1=, F8. 3, 14Y, F7. 4, 3H CM/27X, 18HCORRECTED FOR WALL, 14X, F7. 4, 3H CM/ 27
		2X,12H(U*NU)EXT_OF,F8.3,1H-,F8.3,1H,,2X,F7.4,1H-,F7.4,2HCM)
150		GO TO 10000
151		END
	С.	

•

è

152		SUBROUT LOF MUCAL
153		REAL NU-NUS-NUMIA-NUMAX
154		COMMON TEMP, I.NU, TEMPS, NUS, UNUA, NUMIN, NUMAX
155		DIMENSION TEMP(20), NU(20), TEMPS(20), NUS(20), UNUA(20)
156		DQ 22 K=1,I
157		DO 11 M=1,12
160		IF (TEMP(K).6T.TEMPS(M).AND.TEMP(K).LE.TEMPS(M+1)) GO TO 12
161	11	CONTINUE
162	12	RATIO =(NUS(M+1)-NUS(M))/(TEMPS(M+1)-TEMPS(M))
163		NU(K)=NUS(M)+(TEMP(K)-TEMPS(M))*RATIO
164		IF (NU(K).LT.NUMIN) NUMIN=NU(K)
165		IF(NU(K).GT.NUMAX) NUMAX=NU(K)
166	22	CONTINUE
167		RETURN
170		END
	\$ENT	RY

.

.

٠

è

EASE RET	URN TO	D THE CHEMICAL ENGINEERING BUILDING	
	108	NUMBER 16116 CATEGORY F USER'S NAME- YU-SEN CHONG U	JSER
	JOB	START 01HRS 50MIN 06.4SEC V9M011 0)FF-
<u>OB 161</u>	<u>16 C</u>	CHONG YU-SEN	
AGE	3	35	
IME	3	3	
ORTRAN	P	PROGRAM B	
1 2 3		REAL NU,N,NUS,LGUNUA,LGEPS ,LGUNUO,NUMIN,NUMAX INTEGER DISCAR DIMENSION TIME(10),DIST(10),EPS(15),U(10),UNU(15), ITEMP(20),NU(20),TEMPS(20),NUS(20),UNUA(20),LGUNUA(15),LGEPS(15))
4	<u>_</u>	DIMENSION PTC(3),LIQ(4),SCREEN(12),RUN(2)	
5 6		DATA $T(2), T(3), T(4), T(5), T(6), T(7), T(8), T(9), T(10), F(11), T(12), 13), T(14)/4, 303, 3, 182, 2, 776, 2, 570, 2, 447, 2, 365, 2, 306, 2, 262, 2, 228, 201, 2, 170, 2, 160, 2, 145/$	T(1 2.2
`7		DIMENSION FMT(16), FMOUT1(16), FMOUT2(16), FMOUT3(16), FMOUT4(16), F 1T5(16)	100
10 11 12 13 14	10000 114 1	DIMENSION - STNDD(15),NTEST(15) D READ 114,RUN,PTC,DENP,LIQ,DENLIQ,DV,DT,SCREEN,NUMIN,NUMAX FORMAT (2A6,3A6,F6.0,4A6,F10.0/2F10.0/12A6 /2F10.0) READ 1, FMOUT2,FMOUT3,FMOUT4,FMOUT5 FORMAT(16A5) DRATIO=DV/DI	
16 17	2	PRINT 2,RUN,PTC,DENP,LIQ,DENLIQ,DV,DT,DRATIO,SCREEN FORMAT (1H1,22X,2A6/23X,11HPARTICLES=,3A6,8X,8HDENSITY=,F6.3, 1GM/CM /23X,11HLIQUID=,4A6,2X,8HDENSITY=,F6.3,7H GM/CM /23X 2HPARTICLE SIZE D =,F7.4,9H CM, D =,F6.2,12H CM, D /D =,F7.4/ 3,12A6 /)	7H (11 (23)
20	21	PRINT 21 EDRMAT (28X, 3HEPS, 2X, 9HU*NU(AVE), 2X, 7HLG(EPS), 2X, 8HLG(U*NU), 2X	(.8)
22 23 24 25	21	1STD.DEV.,1X,5HNG.OF /32X,12HO.O1CM /SEC ,19X,14H TEST SLUNU=0. SLGE=0.0 SLUNU2=C.0 SLUNLE=0.0	57
26 27 30 31 32		<pre>SLGE2=0.0 I=0 DO 30 J=1,14 I=I+1 READ (5,31) EPS(I),UNUA(I),LGEPS(I),LGUNUA(I), STNDD(I),NTEST(I LISCAR</pre>	[),
33 34 35 36 37	31	FORMAT (26X,F9.0,F9.0,F10.0,F9.0,F11.0,I1,4X,I1) IF (EPS(I).LT.0.COOL) GO TO 40 IF (DISCAR.NE.0) GO TU 32 IF (NTEST(I).EQ.1) GO TO 110 WRITE (6,FMOUT2)EPS(I),UNUA(I),LGEPS(I),LGUNUA(I), STNDD(I),NTE 11)	EST
40 41 42 43 44	110 35	GO TO 35 WRITE(6,FMOUT3) EPS(I),UNUA(I),LGEPS(I),LGUNUA(I),NTEST(I) SLUNU=SLUNU+LGUNUA(I) SLGE=SLGE+LGEPS(I) SLUNU2=SLUNU2+LGUNUA(I)**2	

.

	45		SI UNI F=SI UNI F+I GUNUA(I)*I GEPS(I)
	46		SLGE2=SLGE2+LGEPS(I) * *2
	47		GO TO 30
	50	32	IF(NTEST(1), EQ.1) GO TO 33
	51		WRITE (6, FMOUT4) EPS(I), UNUA(I), LGEPS(I), LGUNUA(I), STNDD(I), NTEST(
			11)
	52		I = I - I
	53		GO TO 30
	54	33	WRITE(6, EMOUT5) EPS(I), UNUA(I), LGEPS(I), LGUNUA(I), NTEST(I)
	55	20	
	56	30	
	57	40	
	60		$N = (ELDAT(TT) \times SLUBRE E - SLOE \times SLUNU) / (ELDAT(TT) \times SLOE 2 - SLOE \times 2)$
	61		$I_{GUNUD} = (SUUNU-N*SUGE)/FUDAT(UU)$
	62		
	63		REAL LIGEAVE
	64		t c = A V = - (t c = A + (t + 1))
	65		SD(1)N2 = (S(1)N1)2 + (G(1)N1)2 + (G(1)N1) + (S(1)N1)
	66		SDEGNE - (SEGNOE) - EGGNOE - SEGNOE - SEG
	67		
	70		
•	70		CEDUUN-TITT 21*50LUN/ 39RTISELEEZ/ CEDUUN-TITT 21*50LUN/ 39RTISELEEZ/
	70		UFULUN=1(11-2)*30LUN*3QKI(1.0)/FLUAT(11)+LUEAVE**2/3LELE2/
	12		
	13		
	75		UNUU=10.0**LGUNUU
	10		
			UNUUZ=10.044(LGUNUU+CFULUN)
	11		PHYPRU=0.18*DENL10/((DENP-DENL10)*980.)
	-100		
	101		
è	102		
	103		UPEXT=SQRT(UPSQ)
	104		UPEXIL=SQRT(UPEISQ)
•	105		DPEXI2=SQRT(DPE2SQ)
	106		CORFAC=1.0+2.104*DRAT10
	107		CURF=SQRI(CURFAC)
	110		
	111		
	112		DPE2CU=DPEXI2*CURF
	113		REOMIN=DPEXT*UNUO/NUMAX**2*100.0
	114		REUMAX=DPEXT*UNUU/NUMIN**2*100.0
	115		PRINT 22, REUMIN, REUMAX
	116	22	FURMAI(/23X,5HRE(U),7X,F6.3,1H-,F6.3)
	117	_	PRINT 8,LGUNUU,N,UNUU,N,N,CFDN,LGUNUU,CFDLUN,UNUUI,UNUU2
	120	8	FURMAT (/23X,24HLEAST SQUARES ESTIMATES /27X,10HLOG(U*NU)=,F7.4,
			1H + F6.2, 9H*LOG(EPS) / 27X, 6HU*NU = F8.3, 6H*EPS**, F5.2 / 27X, 19HCC
			<u>2FIDENCE INTERVAL /28X,2HN=,9X,F5.2,3X,F5.2 /28X,10HLOG(U*NU)U,F7.</u>
			3,1X,F/.4 /28X,9H(U*NU)EXT ,F8.3,1H-,F8.3)
	121		PRINT 9, UNUO, DPEXT, DPEXCO, UNUO1, UNUO2, DPEXT1, DPEXT2, DPE1CO, DPE2CO
	122	9	FORMAT (/23X, 31HDIA. GF SPHERE CORRESPONDING TO /27X, 10H(U*NU)EX
			1=,F8.3,14X,F7.4,3H CM/27X,18HCORRECTED FOR WALL,14X,F7.4,3H CM/ 2
			2X,12H(U*NU)EXT OF,F8.3,1H-,F8.3,1H,,2X,F7.4,1H-,F7.4,2HCM/27X,18H
			3URRECTED FOR WALL ,14X,F7.4,1H-,F7.4,2HCM)
	123		GO TO 1CCCO
	124		END
		\$ENT	RY