DETERMINATION OF GAS EFFECTIVE DIFFUSIVITIES IN POROUS SOLIDS, DISPERSION COEFFICIENTS IN PACKED BLDS AND MOLECULAR DIFFUSIVITY OF BINARY SYSTEMS

Ъy

Brian Richard Davis

D.L.C., Loughborough College, 1956 M.A.Sc., University of British Columbia, 1963

A Thesis Submitted In Partial Fulfilment of The Requirements For the Degree Of

Doctor of Philosophy

in the Department

of

Chemical Engineering

We accept this Thesis as conforming to the

required standard

THE UNIVERSITY OF BRITISH COLUMBIA

December, 1965

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Chemical Engineering

The University of British Columbia Vancouver 8, Canada

Janung /1966 Date

The University of British Columbia FACULTY OF GRADUATE STUDIES

PROGRAMME OF THE FINAL ORAL EXAMINATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

of

BRIAN RICHARD DAVIS

Diploma, Loughborough College of Advanced Technology, UK. 1956

M.A.Sc., The University of British Columbia, 1962

December 21, 1965 AT 10:00 A.M.

IN ROOM 207, CHEMICAL ENGINEERING

COMMITTEE IN CHARGE

Chairman: I. McT. Cowan

R. M. R. Branion J. Lielmezs S. D. Cavers K. L. Pinder N. Epstein D. A. Ratkowsky J.R.Sams

Ţ

External Examiner: G. L. Osberg National Research Council Ottawa

Research Supervisor: D. S. Scott

ABSTRACT

SECTION I

AN EXPERIMENTAL METHOD FOR THE MEASUREMENT OF EFFECTIVE GAS DIFFUSIVITIES IN POROUS PELLETS, AND THE LONGITUDINAL DISPERSION COEFFICIENT IN PACKED BEDS

Present methods of measurement of effective diffusivities are not generally adaptable to the pellets in a packed bed, for example a catalytic reactor. An unsteady state pulse method has been developed employing simple gas chromatographic rate theory.

The method is generally applicable to pellet sizes down to about 2mm. With homogeneous pellets reasonable agreement was obtained on comparison of effective diffusivities measured by a steady state method. For anisotropic solids the unsteady state diffusivity can be quite different from the steady state value due to differences in diffusion path.

Pulse dispersions measured in beds of non porous pellets have revealed a laminar flow regime where the dispersion coefficient is dependent on the square of the velocity. This regime was reported for flow in straight pipes but has not previously been demonstrated in packed beds.

SECTION II

DEVELOPMENT OF AN UNSTEADY STATE FLOW METHOD FOR MEASURING BINARY GAS DIFFUSION COEFFICIENTS

Effusion measurements of one gas from a packed bed of known geometry (porosity and tortuosity) into a second flowing gas have been evaluated as a versatile technique for the determination of binary gas diffusion coefficients.

The molecular diffusivities measured (\pm 10%) approached the scatter encountered by other methods (\pm 5%) and satisfactory results (\pm 3%) are envisaged by optimising parameters in the method.

GRADUATE STUDIES

Field of Study: Diffusion and Ki	netics
Chemical Engineering Reactor	
Design	D. S. Scott
Industrial Kinetics and Cata	lysis D, S, Scott
Mass, Heat and Momentum Tran	sfer S, D, Cavers
Chemical Kinetics	E. A. Ogryzlo
	D, G. L. James
Gas Adsorption and Solvent	
Extraction	D. S. Scott
	S, D, Cavers
Other Studies	
Chemical Engineering	
Thermodynamics	P. L. Silveston
Analogue Computers	E. V. Bohn
Mathematical Operations in	
Chemical Engineering	N. Epstein
Fortran Programming	H, Dempster
Differential Equations	S. A. Jennings
Industrial Relations	N. Á. Hall
Industrial Organisation	J. P. Van Gigch

PUBLICATIONS

DAVIS, B. R. and D. S. SCOTT, 1964.

Rate of isomerisation of cyclopropane in a flow reactor.

Ind. & Eng. Chem. Fundementals, 3, 20-23.

ABSTRACT

SECTION I

AN EXPERIMENTAL METHOD FOR THE MEASUREMENT OF EFFECTIVE GAS DIFFUSIVITIES IN PORCUS PELLETS, AND THE LOGITUDINAL DISPERSION COEFFICIENT IN PACKED BIDS

Present methods for measuring effective diffusivities in small porous particles are not applicable to assemblages of such pellets, for example, as in catalytic reactors, and require special techniques or apparatus. A pulse technique has been developed which can successfully yield a reasonable value of the diffusivity by analysis of pulse dispersion in terms of simple chromatographic rate theory. A non-adcorbing pulse gas is necessary, and hydrogen is nearly ideal. Because of the high molecular diffusivity of hydrogen the smallest size of particle which can be tested with this gas is about 2 mm diameter. The unsteady state pulse effective diffusivity measurement which should be more realistic for catalytic studies was compared with a conventional steady state method and good agreement obtained in a spherical isotropic pellet. (4%); however, as may be expected agreement was poor with anisotropic pellets.

A regime was found in a study of beds of non porcus pellets where the dispersion coefficient is proportional to the square of the velocity. This regime is reported for pipes but has not been realized as a separate regime in packed beds. This dispersion data is compared with the limited data of other workers although the ranges of experimental conditions do not overlap.

SECTION II

DEVELOPMENT OF AN UNSTEADY STATE FLOW METHOD FOR MEASURING BINARY GAS DIFFUSION COEFFICIENTS

Effusion of one gas from a packed bed of known geometry into a second flowing gas has been evaluated as a versatile technique for determination of binary gas diffusion coefficients having few limitations of pressure, temp-to, erature and analysis method. Optimization of experimental parameters should yield satisfactory results (\pm 3%).

j.i

. "2

SECTION 1

EXPERIMENTAL MEASUREMENT OF EFFECTIVE GAS DIFFUSIVITIES IN COROUS PELLETS AND DISPERSION COEFFICIENTS IN PACKED BEDS

Ι

INTRODUCTION

Page

26

	Α.	THIELE MODULUS	1
	В.	DIFFUSION MECHANISMS	3
		Molecular Diffusion	4
		Knudsen Diffusion	5
		Intermediate Diffusion	6
		Effective Diffusion Coefficient	7
	C.	EXPERIMENTAL ESTIMATION OF EFFECTIVE DIFFUSIVITIES	8
		Prediction	8
		Steady State Methods	9
		Chemical Reaction Method	10
		Unsteady State Methods	10
		Frequency Response and Pulse Methods	11
		Comparison of Methods	12
	D.	STATEMENT OF OBJECTIVES	13
	MURADY		
II.	THEORY		16
	Α.	DERIVATION OF VAN DEEMTER'S EQUATION	
		Height Equivalent to a Theoretical Plate (HETP)	16
		Measurement of HETP	19
		Input Pulse Distribution	20
		Rate Theory	21
•		Mass Transfer Coefficient and Effective Diffusivity	-
		External Mass Transfer Coefficient	26

Internal Mass Transfer Coefficient

		iv	Page
		Van Deemter's Equation	29
		Typical Values of the Effective Diffusivity Term(
		Least Square Error Fitting of Data to Van Deemter	
		Equation	
,	В.	LONGITUDINAL DISPERSION COEFFICIENTS	34
		Velocity Profile Contribution	36
III	APPARATU	<u>IS</u>	39
	Α.	DEVELOPMENT	39
	В.	DESCRIPTION OF APPARATUS	39
	с.	DETECTORS	44
		Hydrogen Flame Ionization Detector	44
		Thermal Conductivity Detector	47
IV	EXPERIME	NTAL PROCEDURE	<u>48</u>
	Α.	OUTLINE OF EXPERIMENTAL INVESTIGATION	48
	В.	NON POROUS PELLETS IN PULSE APPARATUS	48
	C.	POROUS PELLETS IN PULSE APPARATUS	51
	D.	INDEPENDENT EFFECTIVE DIFFUSIVITY MEASUREMENT	² 52
	E.	PREPARATION OF TEST COLUMNJ	53
	F.	OPERATION OF PULSE APPARATUS	54
,	~ 1	Hydrogen Flame Detector	55
		Thermal Conductivity Detector	55
17		· · ·	- 56
V	RESULTS		56
	Α.	NON POROUS PELLETS	`
	-	Treatment of Data for Non Porous Pellets	56
		Results for Beds of Non Porous Pellets	60
	В.	LONGITUDINAL DISPERSION COEFFICIENT	, 72
			, ;

,

.

۰.

_

C.	POROUS PELLE'IS	.79
	Porous Pellet Samples	79
	Steady State Apparatus Results	85
	Treatment of Data for Pulse Apparatus	35
	Porous Pellet Results	83
	Comparison of Steady State and Pulse Apparatus Results	88
	ł	

v

IV DISCUSSION

.

	Α.	NON POR	OUS PELLETS	89
			HETP vs. Velocity Curves	89
			Axial Dispersion Coefficient	90
			Correlation of the Eddy Diffusivity	93
	Β.	POROUS	PELLETS	94
			Inconsistency of the Steady State and Pulse Results for Activated Alumina	95
			Porosity	96
			Non Spherical Pellets	96
-			Methane Pulse	97
			Errors	97
CONCI	JUGI(ONS		99

~

.

m,c

.

VIII RECOMMENDATIONS

۱

VII

99

SECTION II

DEVELOPMENT OF AN UNSTEADY STATE FLOW METHOD FOR MEASURING BINARY GAS DIFFUSION COEFFICIEN'TS

			Page
I	INTRODUC	D'FION	100
II	THEORY		102
	Α.	SIMPLIFIED SOLUTION OF DIFFUSION EQUATION	102
	В.	MORE RIGOROUS SOLUTION	105
	С.	COMPUTATION OF SLOPE OF DECAY CURVE WITH A RESIDUAL CONCENTRATION	110
III	APPARATU	JS	112
IV	PROCEDUR	Œ	114
	Α.	SELECTION OF DISPLACED AND DISPLACING GAS]] ₁ ;
	B.	OPERATION OF EQUIPMENT	116
v	RESUL'US		117
	Α.	TREATMENT OF DATA	117
	В.	PARALLEL TUBE PACKING	. 119
	C.	POROUS SOLID PACKING	124
	D.	SPHERICAL PACKING	126
VI	DISCUSSI	ON	132
VII	CONCLUSI	ONS	136
VIII	RECOMMEN	DATIONS	136
	NOMENCLA	TURE ,	137
	LITERATU	RE CITED	140

x

-

. .

.

. .

		Page
PPENDIX I DETERMINATION OF STEADY STATE MET	F DIFFUSIVITY IN POROUS SPHERICAL PELLETS BY A THOD	143
INTRODUCTIO	DN · ·	143
THEORY		143
	Knudsen Diffusion	143
	Bulk of Molecular Diffusion	145
APPARATUS		145
PROCEDURE		147
<i>(</i>	Operation	148
RESULTS		148
	Calibration of Thermal Conductivity Detectors	148
	Activated Alumina Pellet $1/4$ " Diameter	1 ^{1†} ð
	Norton Catalyst Support, 1/2" Diameter "Alundum"	150
CONCLUSION	5	152
PPENDIX II	· · ·	
RESULTS FROM PU	LSE APPARATUS	153
NON POROUS		153
	Program	153
	Results	155
POROUS	· ·	171
	Program	171
	Results	173
FLOW METER	CALIBRATION	181

-

vii

Do	_
	age
APPENDIX III	
RATE OF DIFFUSION FROM A SPHERICAL PELLET 18	81+
MANUFACTURER'S DATA ON POROUS PELLET 18	84
Norton Catalyst Supports 1/2" diameter SA 203 mixture 18	85
Activated Alumina Pellets Alcoa H151 $1/4$ " and $1/8$ " 18 diameter	85
POROSITY OF PACKED BEDS 18	88
ESTIMATION OF THE MOLECULAR DIFFUSIVITY OF THE METHANE AIR SYSTEM 19	91
APPENDIX IV	
ADSORPTION OF GASES BY ACTIVATED ALUMINA PELLETS 19	92
THEORY AND APPARATUS	92
RESULTS · 19	94
CONCLUSION	96 _
<u>APPENDIX V</u>	
RESULTS FOR SECTION II, MOLECULAR DIFFUSIVITY APPARATUS 19	98
PROGRAM 19	98
RESULTS	
Parallel: Tube Bed 20	01
Porous Solid Bed 21	i 4
Spherical Packing Bed 22	26
END 23	34

.

3

c

,

. -

-

viii

TABLES

SECTION I

- 1.I. The effect of pellet diameter and effective diffusivity on the 31 effective diffusivity term (C) in equation 1.50.
- 1.II Summary of the pellet and tube to pellet diameter ratios covered 50 by the experimental runs.
- l.III Dispersion results with beds of non porous pellets. .65 l.IV Effect of pulse size (peak height) on HETP. 67 68 l.V Further dispersion results with beds of non porous pellets. l.VI Values of the eddy diffusivity term constant, 70 80 1.VII Properties of porous pellet samples. Dispersion results for porous pellets. 84 1.VIII
- I.IX Comparison of experimental effective diffusion coefficients.
 87
 I.X Potential Errors.
 98

SECTION II

2.I	Properties of diffusion cells.	115
2.II	Results for parallel tube packing.	120
2.III	Results for porous solid packing.	125
2.IV	Results for spherical packing.	127
2.V	Comparison of results with published data	131

APPENDICES

A II.1	Flow meter calibration			181
A IV.1	Results for adsorption apparatus	•	,	197

ix

FIGURES

DECITON 1	SE	CTION	I
-----------	----	-------	---

- --

1.1	Pore model for derivation of effectiveness factor.	2
1.2	Model for derivation of plate theory.	17
1.3	Gaussian distribution properties.	19
1.4	Mathematical model for the column.	22
1.5	Typical plot of HETP vs. velocity (equation 1.50).	32
1.6	Apparatus for exploratory tests.	40
1.7	Basic experimental apparatus.	1+J
1.8	Pulse injectors.	43
1.9	Hydrogen flame detector.	45
1.10	HETP vs. velocity for run 52.	61
1.11	HETP vs. velocity for runs 51, 69 and 70.	62
1.12	Eddy diffusion term, A, (equation 1.50) vs. pellet diameter.	71
1.13	Dispersion coefficient, D_{L} vs. interstitial velocity, u.	73
1.14	Inverse eddy Peclet number vs. superficial Reynolds number.	74
1.15	Inverse eddy Peclet number vs. molecular Peclet number.	75
1.16	Inverse Eddy Schmidt number vs. hydraulic diameter Reynolds number.	76
1.17	Empirical dispersion coefficient correlation	77
SECT:	ION II	
2.1	Model of the bed for proposed diffusion experiment.	103
2.2	Diffusion apparatus.	113
2.3	Results with parallel tube bed. Hydrogen-nitrogen.	121
2.4	Results with parallel tube bed. Ethane-nitrogen.	122
2.5	Results with parallel tube bed. Butane-nitrogen.	123
2.6	Results with spherical packing bed. Hydrogen-nitrogen.	128
2.7	Results with spherical packing bed. Ethane-nitrogen.	129
2.8	Results with spherical packing bed. Butane-nitrogen.	130

APPENDIX I

1

A I.l	Sample mounting in steady state apparatus.	144 144
A I.2	Steady state apparatus.	146
A II.l	Flow meter calibration.	183
A IV.1	Adsorption measurement apparatus	193
A IV.2	Gas volume vs. inverse pressure for adsorption measurement	196

در.

1

...

(

ACKNOWLEDGEMENT

(xii)

Thanks are extended to Dr. Forsythe and the faculty and staff of the University of British Columbia, chemical engineering department. Particularly the author wishes to thank Dr. Epstein for his help in Dr. Scott's absence and Mr. E. R. Rudischer and Mr. J. Baranowski for their assistance and co-operation.

The author is indebted to Dr. Scott for his direction and support and is grateful for financial assistance extended by the National Research Council.

INTRODUCTION

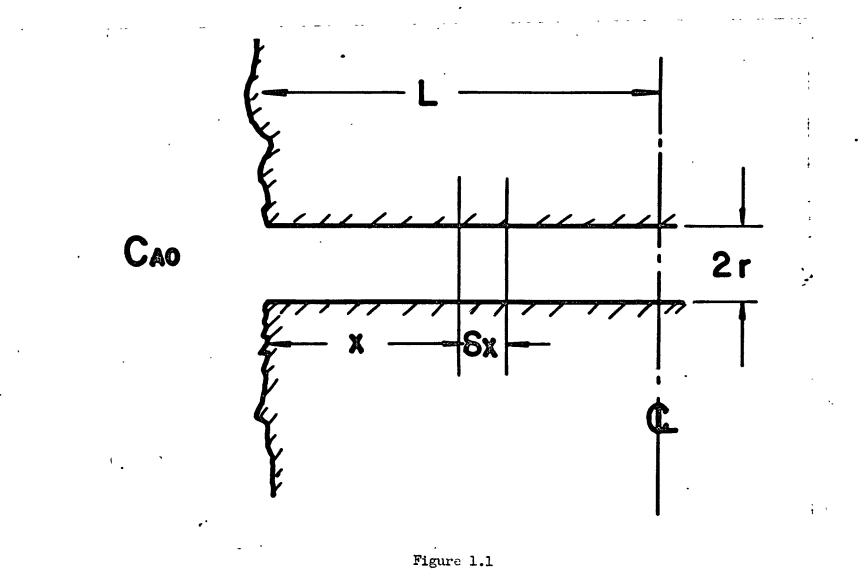
A. THIELE MODULUS

The rate of reaction in a porous solid catalyst can be limited by the rate at which reactants and products can diffuse in and out of the solid. Thiele (1) quantitatively described this effect with a mathematical treatment which is applied to a simple case of an infinite slab in the derivation below. In Fig. 1.1 a single pore of radius r and length L is shown. A first order gas phase reaction with rate = k C_A moles/(sec)(cm²) is assumed to be taking place isothermally on the pore walls, and a constant concentration C_{AO} moles/cm³ is maintained at each face of the slab at the pore mouth. A material balance around the element dx yields,

$$-D \frac{dC_A}{dx} \pi r^2 - (-D) \left[\frac{dC_A}{dx} + \frac{d_2C_A}{dx^2} \mathbf{s}_x \right] \pi r^2 - kC_A 2\pi r \mathbf{s}_x = 0 \quad (1.1)$$

which may be simplified to,

$$\frac{d_2 C_A}{dx^2} = \frac{2k}{rD} C_A$$
(1.2)


The boundary conditions, $C_A = C_{AO}$ at x = 0, and $dC_A/dx = 0$ when x = L, may be applied to the solution of (1.2) to give the concentration in the pore,

$$C_{A} = C_{AO} \frac{\cosh\left[\frac{h\left(1-\frac{x}{L}\right)}{\cosh h}\right]}{\cosh h}$$
(1.3)

where $h = L \sqrt{\frac{2k}{Dr}}$, commonly known as the Thiele modulus.

The rate of reaction is given by the rate of diffusion of A into the pore mouth, which in turn is given by,

$$rate/pore = -D \left(\frac{dC_A}{dx}\right)_{x=0} \pi r^2 \qquad (1.4)$$
$$= \frac{D C_{AO}}{T} h \tanh(h) \pi r^2$$

Pore Model For Derivation Of Effectiveness Factor

1 N If the whole pore contains gas at the surface concentration, C_{AO} , the rate of reaction will be a maximum, given by k.C_{AO} \cdot 2 π rL moles/ sec. The ratio of the rate given by equation (1.4) and this maximum rate is defined as the effectiveness factor, E.

$$\frac{\text{rate/pore}}{\text{maximum rate}} = E = \frac{rD}{2kL^2} \quad h \quad \text{tanh } h = \frac{\tanh h}{h}$$
(1.5)

The effectiveness factor is a function of the Thiele modulus only, and can be used to calculate the rate of reaction when diffusional resistances are controlling.

rate of reaction/pore = $k C_{AO} 2 \pi r L E$ (1.6)

Additional equations can be derived for other orders of reaction, (2) other assumed pore geometries (3), or for cases where the stoichiometry does not allow equimolar counter diffusion to occur (1)(4).

In practical cases it is very difficult to define accurately the pore geometry of a porous solid, and rate constants are more commonly based upon unit mass of catalyst. It is convenient mathematically to treat the porous solid as a homogeneous medium having an effective diffusivity, rather than attempting to use the true interstitial diffusivity together with the void fraction and suitable assumptions about the pore geometry.

B. DIFFUSION MECHANISMS

There are two basic gas transport processes which occur in porous solids, and which obey Fick's laws of diffusion, namely, molecular or bulk diffusion which occurs through intermolecular collisions, and Knudsen diffusion, which depends only upon wall collisions. In addition, a phenomenon known as "surface diffusion" can take place, but this is not a well understood process. Surface diffusion is believed to result from multilayers of gas molecules condensed to a liquid-like state, which flow from the areas with several layers to those of lower surface concentration. This process results in diffusion rates much larger than those possible by collision mechanisms.

- 3.

Gases above their critical temperature are less likely to display this phenomenon, because of the reduction in surface adsorption under these conditions.

Molecular Diffusion in Pores

This mode of diffusion predominates when the ratio of the pore radius to mean free path is greater than about 10. Fick's law, or the one dimensional flux equation for steady-state molecular diffusion in a two component mixture takes the form,

$$N_{A} = -D_{B} \frac{d C_{A}}{dx} + (N_{A} + N_{B}) \frac{C_{A}}{R_{m}}$$
(1.7)

where the last term accounts for bulk flows which may be caused by nonequimolar counter diffusion rates of the two gases with respect to stationary coordinates. In order to apply the equation to a porous structure the flux is taken per total unit area of solid and pore, rather than unit area of pore only,

$$N_{A}^{1} = N_{A} \epsilon_{p} = - \left[\frac{D_{B} \epsilon_{p}}{\lambda} \right] \quad \frac{dC_{A}}{dx} + (N_{A}^{1} + N_{B}^{1}) \quad \frac{C_{A}}{\ell_{m}}$$
(1.8)

where λ is the "tortuosity" which corrects for the fact that the pore length is greater than the geometric length of the structure. The terms which are grouped with the diffusivity form the definition of an "effective diffusivity" which will be discussed later.

Fick's second law which describes the unsteady state diffusion process is usually expressed as,

$$\frac{\partial C_A}{\partial t} = D_B \frac{\partial z C_A}{\partial x^2}$$
(1.9)

In a porous solid, introducing the concept of an effective diffusivity, this equation should be modified as shown below:

- 4 -

In unit area of a porous infinite slab, a mass balance over the element \mathbf{S}_{x} when no chemical reaction is occurring and allowing for a net bulk flow gives the rate of change of gas content in terms of the effective diffusivity, D_{E} , as,

$$\boldsymbol{\epsilon}_{\mathrm{P}} \quad \frac{\partial C_{\mathrm{A}}}{\partial t} \quad \boldsymbol{\delta}_{\mathrm{X}} = + D_{\mathrm{E}} \left(\frac{\partial_{2} C_{\mathrm{A}}}{\partial x^{2}} \right) \quad \boldsymbol{\delta}_{\mathrm{X}} \quad - \quad \frac{\partial (u C_{\mathrm{A}})}{\partial x} \quad \boldsymbol{\delta}_{\mathrm{X}} \quad (1.10)$$

where u is the superficial bulk velocity. Simplication of 1.10 gives,

$$\frac{\partial C_{A}}{\partial t} = + \frac{D_{E}}{\epsilon_{P}} \frac{\partial_{2} C_{A}}{\partial x^{2}} - \frac{1}{\epsilon_{P}} \frac{\partial (u^{C}A)}{\partial x}$$
(1.11)

For equimolal counter diffusion, this reduces to the usual form of Fick's second law, that is, equation (1.9) except that the molecular diffusion coefficient is replaced by the effective diffusion coefficient divided by the porosity.

If equimolar counterdiffusion occurs then equation (1.8) for the steady state reduces to

$$N_{A}^{1} = -D_{E} \frac{d C_{A}}{dx}$$
(1.12)

The binary molecular diffusion coefficient of a gas is proportional to the absolute temperature to about the 1.7 power, and inversely proportional to the pressure.

Knudsen Diffusion

This mechanism predominates when the mean free path of the gas molecules is greater than the pore radius, and because wall collisions contribute primarily to the process in these circumstances, the diffusion coefficient is independent of the presence of other gases. Bulk 'flow is not distinguishable from diffusion in this case, and so Fick's law in the form of equation (1.12) applies.

- 5 -

The Knudsen diffusion coefficient in cylindrical straight pores is given by,

$$D_{\rm K} = 2/3 \ {\rm r} \ {\rm \bar{v}}$$
 (1.13)

where $\bar{\mathbf{v}}$ is the average velocity of the gas molecules, and r the pore radius. In consequence, the value of this coefficient is independent of pressure, and proportional to the square root of the temperature.

Intermediate or Mixed Diffusion Coefficient

In the intermediate range between molecular and Knudsen diffusion there is a region where both the above diffusion mechanisms occur. The ratio of pore radius to mean free path lies approximately between the following limits in the intermediate zone:

> Knudsen Intermediate Molecular 0.1 $< \frac{r}{\lambda} < 10$

By assuming round capillaries, rigid sphere kinetics and diffuse molecular reflection from the walls, Scott and Dullien (5) derived the following relationship for the flux in a binary gas mixture in the intermediate region.

$$N_{A} = - \frac{P}{RT} \frac{dy}{dx} \left[\frac{1}{\frac{1 - jy_{A}}{D_{B}} + \frac{1}{D_{KA}}} \right]$$
(1.14)

where $j = 1 + N_A/N_B$, and y_A is the mole fraction of A.

If the term in brackets is considered as the diffusion coefficient, it is obvious that in this region the coefficient is dependent upon the concentration and flux. A diffusion coefficient defined by an equation of the form of (1.12) and measured in this region is not valid for use in the Thiele modulus as defined previously, as the stoichiometry of the chemical reaction imposes a flux ratio which is unlikely to be the same as the flux ratio obtained in an independent non-reactive determination.

- 6 -

Effective Diffusion Coefficient

An effective diffusion coefficient is defined in equation (1.8) for molecular diffusion where two factors are used to modify the true or interstitial diffusivity. The porosity, or void fraction, is a fairly easily defined and measured absolute quantity, and in a granular bed may be of the range of 0.3 to 0.5. However, the tortuosity is a derived quantity, and is therefore usually a less well-defined property, especially in nonuniform pore structures. Although a value of around 1.5 might be expected from simple pore models, it can vary from 1 to 100 when calculated from experimental results. Thus, a typical simple structure may have an effective diffusivity about 4 times less than the interstitial value.

The large range of tortuosity values can be attributed to two sources. First, the pores are not necessarily open-ended and so the mass transfer may be only occurring in a limited number of passages. Decond, the pore radius is liable to vary along the length of the pore, and it has been shown (6) (7) that the rate of diffusion is smaller through a pore of varying radius than it is through a cylindrical pore of equivalent volume to surface ratio.

The effective diffusivity can serve as a simple correction to the diffusion mechanism so that the diffusion equation describes the transport behaviour in a uniform porous structure. On the other hand, porous structures can be so haphazard that any of the mechanisms described may occur at the same time in series or in parallel in the same solid. The use of an effective diffusivity in this case amounts to forcing the behaviour observed to fit one of the diffusion equations, and so the result cannot be used to predict the diffusive behaviour under other conditions.

• 7 - •

- 8 -

C. EXPERIMENTAL ESTIMATION OF THE EFFECTIVE DIFFUSIVITY

Prediction

The basis for the prediction of the effective diffusivity has been briefly outlined in the previous paragraph, and clearly rests on some physical idealization of the pore structure. Prediction methods based upon porosity and experimental tortuosity values are often not too satisfactory due to the non-uniform nature of many porous solids. However, a variety of catalyst pellets can be approximated by the "pile of bricks" structure which yields a model consisting of a honeycomb of connected passages. This approach has been described in detail by Wheeler (2), with rules for predicting the effective diffusion coefficient defined by this model.

Other simple pore models include unconnected parallel cylindrical pores (8) (9), and pores with "ink bottle" capacities (10) which are used to explain the hysteresis in certain adsorption-desorption curves.

Possibly of more general application to the problems involved in catalytic kinetics is the bidisperse pore structure model proposed by Wakao and Smith (11) and Mingle and Smith (12). In the latter paper, a concept of larger macro pores in series with micro pores is used. In the former, three parallel mechanisms are considered; first, diffusion through the macro pores between the basic particles from which the pellet is pressed, second, diffusion in the micro pores of the basic particle, and finally, series diffusion from micropores to macro pores or vice versa. The model does not require empirical constants, or assumptions regarding the mode of diffusion in any of the pores, but porosities and a pore size frequency distribution function are required in addition to tortuosity values.

.

- 9 -

Steady State Experimental Method for Measurement of Diffusion in Solids

In this method, a cylindrical catalyst pellet is fitted into a tube and two test gases of known composition are passed continuously across the ends. The two exit streams are analyzed, and from an appropriate solution of the diffusion equation the effective diffusivity can be computed (13) (5).

This method has also been used to obtain molecular diffusivities (14), because calibration of the porous pellet by a gas pair of known diffusivity allows calculation of the diffusivities of other gas pairs by making the assumption that the tortuosity is independent of the gas system. As a technique for measuring molecular diffusivities it has the advantage that it is a flow method, and so analysis <u>in situ</u> is not required. On the other hand, care must be taken that a narrow pore size distribution exists and that Knudsen diffusion does not occur.

When used as a method for measuring the effective diffusivity in porous pellets one must be sure that the correct diffusion equation has been used (e.g. eqn. (1.8) or (1.12)). The method can be applied to the mixed diffusion range if measurements are made at varying total pressures. However, it has the limitation of being tedious if a representative average value is needed, because each pellet must be tested separately, and cracks and fissures have an overwhelming influence on the result. The technique is not convenient for use with other than cylindrical shapes, and therefore other shapes must be machined to cylinders. If the pellet is not isotropic, this procedure may result in a faulty value of the diffusion coefficient. 'The result obtained by the steady state method in a bidisperse pellet weighs the diffusivity in favour of the larger pores, but in the chemical reaction case most of the conversion takes place in the micro pores. This bias is frequently not serious as the micropores are generally short, and so a micropore effectiveness factor of unity is common (11). Hence, the diffusional resistance to reaction is in the macropores, and the steady state effective diffusivity value may be quite adequate.

Chemical Reaction Method

It is obviously possible to carry out a chemical reaction of known kinetic behaviour at constant conditions using successively smaller sizes of pellet until the reaction rate becomes constant, indicating that an effectiveness factor of unity has been reached. From these effectiveness factors the Thiele modulus, and hence effective diffusion coefficients, can be calculated providing the kinetic behaviour is not complex. This method is not easy to apply experimentally, and is subject to many errors. Unsteady State Methods

A typical procedure for measuring the molecular diffusivity of a gas (Loschmidt method) consists of flushing two cylinders with the test gases, and then bringing them together at time zero with the lighter gas on top. One or both of the cylinders is removed at a given time, and the total contents analyzed. The diffusion coefficient is then calculated from the solution derived from Fick's second law (equation (1.9)). It is difficult to achieve accuracy in this experiment due to the tendency for eddies to be created either when the cylinders are fitted together or by the action of temperature gradients.

- 10

For porous pellets the analog of the above experiment cannot be readily applied due to the rapidity of the diffusion process in gases. For example, if a one cm. diameter pellet of typical pore structure is initially bathed in one gas, and at time zero the surface is flushed with another gas, then 98.8% of the first gas in the pellet is removed by diffusion in 10 seconds if the diffusivity $D_{\rm E}/E_{\rm P}$ is 0.01 cm²/sec. (See Appendix III for details of this calculation.) Thus, it is obvious that some means to extend the time scale in experiments with small pellets would be very desirable.

Currie (6) has developed a non-flow apparatus of this type which can be used only at normal temperatures and pressures for measuring diffusivities in soils and other granular beds. Only rather complex frequency response techniques, discussed below, are presently available for the measurement of effective diffusion coefficients by transient response methods.

Frequency Response and Pulse Methods

McHenry and Wilhelm (15) have described a method for measuring the eddy diffusivity in packed beds, and this apparatus has been used also by Deissler and Wilhelm (16) to measure both the effective diffusivity and the eddy diffusivity in packed beds. The method is based on frequency response techniques using a concentration sine wave generated in the feed to the bed, with amplitudes and phase angles recorded at the entrance and exit of a test section.

In the same way, Van Deemter, Zuiderweg and Klinkenberg (17) have applied the delta function (that is, an ideal pulse) to packed beds in the form of gas chromatography columns and ion exchange beds. Hougen (18) has pointed out that there is no real difference between the results obtained by a delta function or by a frequency response method.

In the work of Van Deemter et al the dispersion effects due to molecular diffusivity, eddy diffusivity and a mass transfer coefficient are each found, on the basis of the theory developed, to have a different velocity dependence, which allows separation of the influence of each factor on the delta function. The mass transfer coefficient can be derived in terms of the effective diffusivity of the porous pellet, and hence, if this quantity can be evaluated, an effective diffusion coefficient may be calculated from it. The theory on which this approached is based is dealt with more fully in succeeding sections.

Comparison of Various Methods

٠,

In porous solids there is a basic difference between the application of diffusion coefficients to the steady state and the unsteady state. This difference is the result of the capacitance effects which manifest themselves in the unsteady state. In other words, the time of diffusion from a porous solid containing dead end pores would be much greater than the effective diffusivity measured by a steady state method would indicate. This effect is allowed for in equation (1.11) because instead of the effective diffusivity alone, the effective diffusivity divided by a capacitance term (the porosity) is utilized. Similarly, if adsorption occurs on the surface of the solid then the volume of gas adsorbed must be added to the porous volume or porosity in the divisor. (This last statement regarding adsorption assumes that the adsorption process is effectively at equilibrium and that the isotherm is linear, otherwise the simple diffusion equation would no longer hold.) With the correct diffusion equation, there should be no

- 12 -

basic difference between effective diffusivity in an isotropic solid determined by a steady state or unsteady state method.

If bulk diffusion is the transport mechanism there is no difficulty in correctly defining the effective coefficient for either the steady state or unsteady state methods. However, this is not true when Knudsen diffusion predominates. Consider a simple model of dead end pores of equal length in parallel in which Knudsen diffusion is taking place. The total composition of each pore (after a step change in surface concentration) will vary according to its radius. Initially, the large pores will yield the major flux, but after a time the lower flux in the smaller pores will result in larger concentration gradients, which will eventually result in the flux from the smaller pores equalling or exceeding that from the larger pores. Hence, an unsteady state experiment in the Knudsen regime may yield a diffusivity which varies with time.

An interesting aspect of this latter conclusion arises because the majority of a solid-surface catalyzed chemical reaction occurs in the smaller pores (due to the large surface area), and if these pores are long then they may not be fully effective. The steady state method is insensitive to the resistance which may occur in dead end pores, while the unsteady state method is potentially capable of allowing for this resistance. The unsteady state method will give a diffusivity which is some average value of all pore resistances, and the ability of this value to describe the rate of a diffusion limited chemical reaction may depend upon the weighting by the experimental procedure or the experimenter. For example, most unsteady state methods involve an initial period before readings are taken in order to allow the application to the data of simple solutions of the diffusion equation applicable at longer times. Thus, in this case, the

- 13 -

diffusivity obtained from such experiments may be expected to be weighted in favour of the small pores if Knudsen diffusion predominates.

D. OBJECTIVES OF THE PRESENT WORK

On the basis of the foregoing comparison of methods for obtaining a value of the effective diffusivity, it is apparent that, in most cases, a diffusion coefficient obtained from an unsteady-state experiment in which all the pores contribute to the diffusional process may well be a better value for use in chemically reacting systems. In many instances, steadystate experiments may also give suitable values, but this cannot be assumed without considerable knowledge of the particular porous structure.

It would be useful to develop a method using a pulse technique, which would avoid most of the experimental difficulties of frequencyresponse measurements, while giving the advantages of an unsteady-state method and which could be applied to a representative sample of pellets vithout requiring special shaping. It might be possible to make use of such a technique to follow changes in catalyst diffusional behaviour with a'se. Recent advances in the theory of transport processes in chromatographic columns suggest that it might be possible to interpret pulse dispersion results in such a way as to yield an effective diffusion coefficient.

The primary objective of the present work was to attempt the development of a pulse method as a means of measuring effective diffusivities of gases in porous pellets, a technique not previously reported. A secondary objective was to be the investigation of the use of unsteady state flow methods for measuring the binary diffusion coefficient of gases. The flow methods possess the advantage of allowing analysis outside the apparatus, by any convenient means. Further, the use of a porous bed of unit tortuosity would also allow such a measurement to give absolute values of the

- 14 -

diffusion coefficient without any calibration being necessary. Freedom from convective effects would aid in making possible measurements at widely varying temperatures and pressures, as does the freedom in choice of concentration measurement.

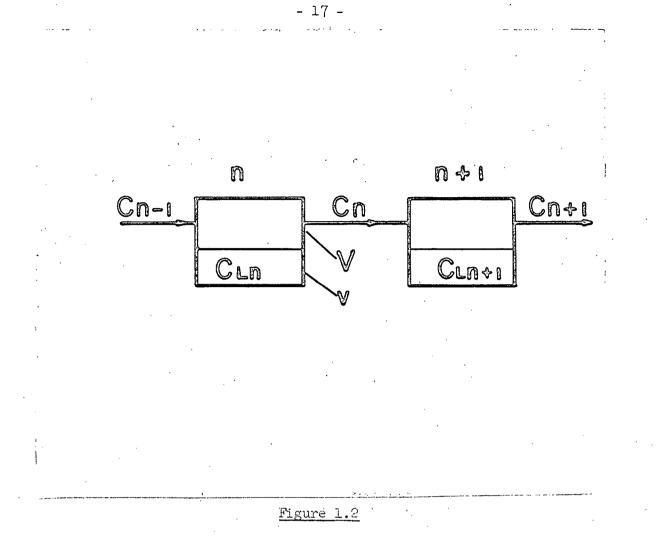
II THEORY

A. DERIVATION OF VAN DEEMTER EQUATION

Height Equivalent to a Theoretical Plate

The performance of a chromatograph column is generally measured in terms of a "height equivalent to a theoretical plate" (HETP). In a gas chromatograph column a narrow band of sample gas is injected into a stream of carrier gas which passes through the column to a detecting device. The components of the sample have differing retention times in the column depending upon the properties of the gas component and the liquid stationary phase in the column. It is obvious that a column which results in a broadening of the pulse is detrimental to the separation desired, and the height equivalent to a theoretical plate (HETP) which is defined below is a measure of the degree of longitudinal dispersion.

The HETP is obtained by postulating that the mechanism of pulse broadening is caused by equilibration of the stationary material in a given plate with the mobile gas phase which then passes on to the next plate.


A linear absorption isotherm $WC_n = C_{Ln}$ (where C_n = mobile phase concentration, C_{Ln} = stationary phase concentration) is assumed and a material balance around the nth plate (see Figure 1.2) with an increment of gas flow dU yields,

$$dU(C_{n-1} - C_n) = (V + W_V)dC_n$$
 (1.15)

from which is obtained,

$$\frac{dC_n}{dU} = \frac{C_{n-1} - C_n}{V + W_V}$$
(1.16)

- 16 -

Model For Derivation Of Plate Theory

where V = volume of mobile phase in plate and v = volume of plate stationary phase.

Assume that all the pulse gas is initially in stage 1 yielding an initial gas concentration C'. Applying n = 1 to equation (1.16), $C_n = C_1$, and $C_{n-1} = 0$,

$$\frac{-dC_{l}}{C_{l}} = \frac{dU}{V_{p}}$$
(1.17)

(1.18)

where V_p = Volume of plate = (V + Wv). On integration, (1.17) gives,

$$C_{l} = K \exp \left(-\frac{U}{V_{p}}\right)$$

When U = 0, $C_1 = C'$, and therefore K = C' in (1.18). Hence,

$$C_{1} = C' \exp\left(-\frac{U}{V_{p}}\right)$$
(1.19)

Now applying the above result to equation (1.16) with n = 2,

$$\frac{dC_2}{dU} + \frac{C_2}{V_p} = \frac{U'}{V_p} \exp\left(-\frac{U}{V_p}\right)$$
(1.20)

Equation (1.20) can be solved by use of the integrating factor, $\exp\left(\begin{array}{c} + \underbrace{U} \\ V_p \end{array}\right)$

$$C_{2} \exp\left(\frac{U}{V}\right) = \frac{C'}{V_{p}} \exp\left(-\frac{U}{V_{p}} + \frac{U}{V_{p}}\right) = C' \frac{U}{V_{p}} + K \quad (1.21)$$

When U = 0, $C_2 = 0$, and so K = 0, yielding the result,

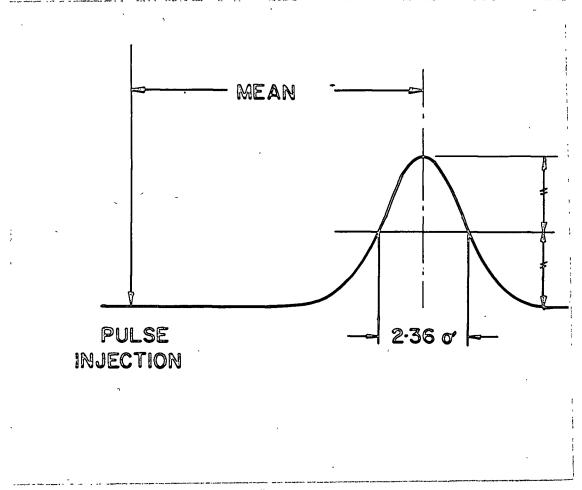
$$C_{2} = C' \underbrace{U}_{V_{p}} \exp \left(- \underbrace{U}_{V_{p}} \right)$$
(1.22)

Hence by continuing this process to the nth stage

$$C_{n} = \frac{C' U^{n-1}}{(n-1)! V_{p}^{n-1}} \exp \left(-\frac{U}{V_{p}}\right)$$
(1.23)

This is a Poisson distribution function, and for a large number of plates this distribution approaches a Gaussian or normal distribution. The mean of the above distribution is $\frac{U}{V_p}$ and the variance is $\frac{U}{V_p}$ (that is, $\sigma = \sqrt{\frac{U}{V_p}}$, so that the (Mean)²/(standard deviation)² = $\left(\frac{U}{V_p}\right)^2 / \frac{U}{V_p} = \frac{U}{V_p}$

Now U is the total volume of gas which has flowed, and V_p is the volume of a theoretical plate, so that when the mean approaches the end of the column the $(\text{mean})^2/\sigma^2$ = no. of theoretical plates.


By definition, therefore,

HETP =
$$L\left(\frac{\sigma}{\text{mean}}\right)^2$$
 (1.24)

where L is the column length.

Measurement of HETP

For a large number of stages the output can be assumed to be a Gaussian distribution, and the mean and variance may be read directly from the record of the output at the end of the column by using the properties of the Gaussian distribution shown in Figure 1.3. This representation is not strictly correct, in that the output is Gaussian with respect to position in the column, while the recorded profile at the end of a column is with respect to time. However, if the time of purge of the pulse is small relative to the time of the mean, the error in reading this time distribution compared to the distance distribution is negligible.

Figure 1.3

Gaussian Distribution Properties

- 19 -

Inasmuch as 90% of a normal distribution lies between $h\sigma$ limits, then the time of purge which is approximately 4 σ , must be «mean to achieve a Gaussian distribution. If now both sides of this inequality are squared and multiplied by L, on rearranging

$$\frac{16 \text{ Lo}^2}{\text{mean}^2} \ll \text{L or L} \gg 16 \text{ HETP}$$

Hence, a column must contain much more than 16 plates to satisfy an assumption of a Gaussian distribution in the output record.

Input Polse Distribution

The derivation of the HETP assumed that all the pulse is in the first stage at the start, however, it is obvious that if the pulse extended over several stages an effect would be noticed in the output. It has been shown by Van Deemter (17) that the effect of the initial distribution can be ignored if,

$$\frac{A_{s}}{V_{p} n} \langle 0.5 \rangle$$
(1.25)

where A_s is the volume of gas in the initial pulse and n is the number of theoretical plates.

Rate Theory

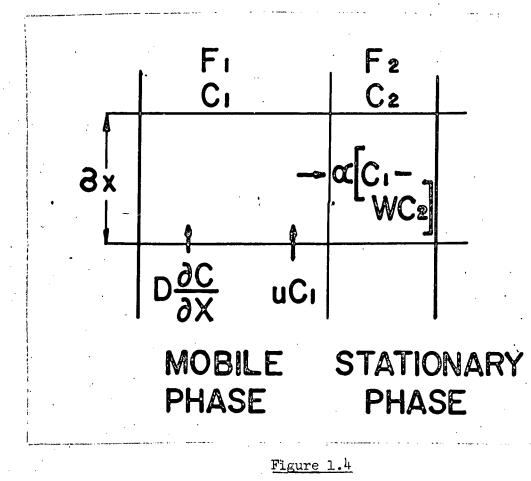
The theoretical plate model does not attempt to explain the rate processes occurring in a chromatograph column, but relies on the fact that the sum of several distributions tend to approach a normal Gaussian distribution, having a mean made up of the sum of the independent means, and having a variance made up of the sum of the independent variances (19).

One obvious mechanism which occurs to cause a pulse to broaden is molecular diffusion in the mobile phase. Longitudinal diffusion in the stationary phase can generally be ignored as the stationary phase is discontinuous in a packed bed, and, in addition, the diffusion coefficient is small in this phase.

There is a group of little understood processes which cause a pulse to disperse due to the flow pattern in the packed bed. Fortunately, in a deep bed these aberrations are of a statistical nature which tend to result in a Gaussian distribution as obtained for molecular diffusion, so that they can be grouped together in a term described as the eddy diffusivity. In the work of Van Deemter et al (17) the eddy diffusivity (below a particle Reynolds number of 1) is considered to be caused by the difference in flow paths between particles. These concepts are discussed in the following sections.

A pulse broadening mechanism analogous to the theoretical plate mechanism described earlier can also occur in the chromatograph column. If a resistance exists preventing equilibrium between the mobile and stationary phase, then the degree of pulse broadening caused by the capacit**ance** of the stationary phase is increased due to the fact that although less material enters the stationary phase the time taken to get out again causes the pulse to broaden more than would be the case for the equilibrium situation.

Lapidus and Amundson (2) have derived an expression based on a diffusion model to describe the concentration profile for the conditions where a pulse gas passes through a packed bed containing a stationary phase with a linear absorption isotherm between the gas and stationary phase. The pulse is not assumed to be in equilibrium with the stationary phase, due to a resistance defined by a mass transfer coefficient, $\boldsymbol{\propto}$. Longitudinal diffusion including molecular and eddy contributions is


- 21 -

characterized by a dispersion coefficient, D_L , and is assumed to occur in the mobile phase, but not in the stationary phase. The model is shown in Figure 1.4.

- 22 -

A material balance around the element δx yields $F_{1} \frac{\partial C_{1}}{\partial t} = F_{2}D_{L} \frac{\partial_{2}C_{1}}{\partial x^{2}} - F_{1}U \frac{\partial C_{1}}{\partial x} + \infty (WC_{2} - C_{1}) \qquad (1.26)$ $F_{2} \frac{\partial C_{2}}{\partial t} = \infty (C_{1} - WC_{2}) \qquad (1.27)$

Where W is the equilibrium constant between the mobile and stationary phases. If the stationary phase is a porous solid W can be replaced by $\frac{1}{\epsilon_n}$.

Mathematical Model for the Column

For a small pulse injection time, t_0 , and an initial pulse concentration C_0 , Lapidus and Amundson (20) obtained the following solution to the ... above equations,

$$\frac{C_{1}}{C} = \frac{x t_{0}}{2t\sqrt{\pi}D_{L}t}} \exp\left(-\frac{(x-ut)^{2}}{4} - \frac{\alpha t}{F_{1}}\right) + \int \frac{x t_{0}}{2t\sqrt{\pi}D_{L}t^{2}}}{F(t^{1})dt^{1}} \exp\left(-\frac{(x-ut^{1})^{2}}{4}\right) X$$

$$F(t^{1}) dt^{1} \qquad (1.28)$$

where

$$F(t)^{1} = \left(\frac{2}{F_{1}F_{2}(t-t^{1})}\right)^{1/2} \exp\left(\frac{\alpha W}{F_{2}}(t-t^{1}) - \frac{\alpha t^{1}}{F_{1}}\right) I_{1}\left(2\sqrt{\frac{2}{F_{1}F_{2}}(t-t^{1})}\right) I_{1}\left(2\sqrt{\frac{2}{F_{1}F_{2}}(t-t^{1})}\right)$$

where t is time, t_0 , time of initial pulse with concentration C_0 , x is distance along the column, and I_1 is the hyperbolic Bessel function.

It has been shown by Van Deemter et al (17) that the above solution can be reduced to a Gaussian distribution under certain conditions. These conditions are that the height of a transfer unit $\frac{F_{\pm 1}}{\alpha} \ll L$, the height of the bed, and the longitudinal mixing stage $2 \frac{D_L}{u} \ll L$. Essentially, these requirements state that the column must contain a large number of

theoretical plates, in which case the concentration profile reduces to,

$$\frac{C_1}{C_0} = \frac{\beta_{t_0}}{\sqrt{2\pi(\sigma_1^2 + \sigma_2^2)}} \exp\left(\frac{L/u - Bt}{2(\sigma_1^2 + \sigma_2^2)}\right)$$

where

$$\frac{1}{\beta} = 1 + \frac{F_2}{F_1} W, \sigma_1^2 = \frac{2}{2} \frac{D_L L}{u^3} \text{ and } \sigma_2^2 = \frac{2}{5} \frac{\beta^2}{F_2^2 L} \frac{F_2^2 L}{F_1 W^2 u}$$
(1.30)

This is a Gaussian distribution with mean L/u or Bt and variance $\sigma_1^2 + \sigma_2^2$. As mentioned above, the variance of a Gaussian distribution is composed of the sum of the individual variances, so equating the ratio $\frac{\sigma^2}{\text{mean}^2}$ for the above solution yields the following which can be combined

with the HETP derivation of equation (1.24).

$$\frac{\sigma_{1}^{2} + \sigma_{2}^{2}}{(L/u)^{2}} = \frac{2}{u} \frac{D_{1}L}{u^{3}} \left(\frac{u^{2}}{L^{2}}\right)^{2} + \left(\frac{1}{1 + \frac{F_{2}}{F_{1}W}}\right)^{2} \frac{2}{\alpha} \frac{F_{2}^{2}L}{F_{1}W^{2}u} \left(\frac{u^{2}}{L^{2}}\right)^{2} = \frac{\sigma^{2}}{mean^{2}} \quad (1.51)$$

$$= \frac{2}{u} \frac{D_{L}}{u} + \left(\frac{1}{1 + \frac{WF_{1}}{F_{2}}}\right)^{2} \frac{2}{\alpha} \frac{F_{1}u}{F_{1}W}^{2} = \frac{\sigma^{2}}{mean^{2}} \times L = \text{HETP} \quad (1.52)$$

The diffusivity D_L in equation (1.32) refers to any axial mixing mechanism which occurs in the mobile phase, so that it can be called a dispersion coefficient, including the eddy diffusivity. It was pointed out by Van Deemter that in the laminar region the eddy diffusivity in a packed bed is probably created by the difference in flow patterns in the bed. A perfectly uniform bed thus conceivably has no eddy term.

The molecular diffusivity corrected for the path lengthening in a packed bed by a tortuosity factor, and the eddy diffusivity D_L^* are commonly assumed to be additive, so that the dispersion coefficient D_L^* is given by, $D_L = \frac{D_B}{2} + D_L^*$ (1.33)

where D_L^* depends on the axial dispersion caused by the flow patterns. This assumption is discussed by Klinkenberg and Sjenitzer (19) and they concluded that this approach is justifiable if the theory adequately describes the results. The abundant work on gas chromatography appears to lend support to the assumption of additivity of coefficients. At high flow rates, the molecular dispersion becomes negligible compared to the turbulent dispersion, so that the overall dispersion is the same as the flow dispersion and can be called the eddy diffusivity.

At low flow rates, e.g. particle Reynolds numbers 1, the eddy diffusivity can be represented according to Van Deemter et al by the expression $D_L^* = u d_p$. Thus equation (1.32), after introducing the

- 25 -

concept of additive coefficients stated in (1.33), takes the form,

$$HETP = 2 \, \mathbf{\lambda}_{\mathrm{B}}^{\mathrm{a}} + \frac{2 \, \mathrm{D}_{\mathrm{B}}}{\mathbf{\lambda}^{\mathrm{u}}} + \left[\frac{1}{1 + \frac{\mathrm{WF}_{\mathrm{I}}}{\mathrm{F}_{\mathrm{2}}}} \right]^{2} \frac{2 \, \mathrm{F}_{\mathrm{J}}^{\mathrm{u}}}{\mathbf{\kappa}} \tag{1.34}$$

The quantity δ is reported to decrease with larger diameter pellets, having a value of about 8 for 200 mesh, and practically zero for 30 mesh, particles.

Mass Transfer Coefficient and Effective Diffusivity

Diffusional resistance to mass transfer from the mobile phase to the interior of the pellets (stationary phase) is made up of two parts, the first being due to resistance in the mobile phase and the second to the resistance within the pellets. The solution of Lapidus and Amundsen (2) used by Van Deemter et al (17) (equation 1.28) treats the resistance in terms of a mass.transfer coefficient.

Van Deemter et al treated the two resistances as separate mass transfer coefficients which could be combined by the resistances-inseries rule. (A mass transfer coefficient is really a conductance rather than a resistance hence the reciprocals are the additive property.)

$$\frac{1}{\alpha} = \frac{1}{\alpha_1} + \frac{W}{\alpha_2} = \frac{1}{k_1 A_p} + \frac{W}{k_2 A_p}$$
(1.35)

Where α_1 is the mobile phase coefficient/unit vol. of bed, α_2 is the stationary phase coefficient and α is the overall coefficient with k_1 and k_2 being the corresponding surface mass transfer coefficients. W is the partition coefficient, which is necessary in gas chromatography because the diffusion in the stationary phase occurs in a liquid and the liquid-phase concentration gradients are expressed in terms of equivalent equilibrium gas phase concentrations in order to make equation (1.35)

consistent. In diffusion in porous solids, the effective diffusivity is defined on the basis of the interstitial gas concentrations and so the partition coefficient becomes a quantity relating interstitial concentrations to stationary phase concentrations, that is $\frac{1}{\epsilon_p}$, where ϵ_p is the pellet ϵ_p

External Mass Transfer Coefficient

Based on the work of Ergun (21) Van Deemter et al suggested the use of the following correlation for the mass transfer coefficient in the mobile phase,

$$k_1 = \frac{25}{6} \frac{D_B}{F_1} A_p \text{ cm. /sec.}$$
 (1.36)

Where k_1 is the mass transfer coefficient per unit area and A is the p surface area per unit volume of bed,

$$\boldsymbol{\varkappa}_{1} = A_{n} k_{1} \text{ sec.}^{-1}$$
(1.37)

In a bod of spherical particles of diameter d_p , the surface area per unit volume, A_p , is given by the following, if the bed porosity is F_1 ,

$$A_{p} = 6(1 - F_{1})/d_{p} \qquad (1.38)$$

Internal Mass Transfer Coefficient

In this work it is desired to obtain the effective diffusivity in the porous pellet, and so it is necessary to find a relationship between the mass transfer coefficient, $\alpha_2 = k_2 A_p$, and the effective diffusivity. Such an expression was given by Van Deemter et al without derivation, but it can be obtained in a pellet of radius R as shown below. Let

$$D_{\rm E}\left(\frac{\partial C}{\partial r}\right) = k_2 \left(C_{\rm s} - C_{\rm avg}\right) \qquad (1.39)$$

where $C_{\rm s}$ and $C_{\rm avg}$ are the surface and average concentrations in the pellet respectively.

- 26 -

Crank (22) (page 233) has obtained solutions of the diffusion equation for a spherical pellet of radius R which give the concentration C_A at any radius r and time t when the surface concentration changes stepwise from 0 to C_s ,

$$C_{A} = C_{s} + \frac{2 RC_{s}}{\pi r} \sum_{n=1}^{\infty} \left(\frac{-1}{n}\right)^{n} \sin\left(\frac{n\pi r}{R}\right) \exp\left(-\frac{DEn^{2}\pi^{2}t}{R^{2}}\right)$$
(1.40)

Similarly the average concentration is given by:

$$C_{\text{avg}} = C_{\text{s}} - \frac{6 C_{\text{s}}}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left(-\frac{D_{\text{b}} n^2 \pi^2 t}{R^2}\right) \quad (1.41)$$

If t is large then only the first terms of the series solutions need be considered. This amounts to suggesting that C_s approaches C_{avg} and in view of the rapidity of gas diffusion as demonstrated in the example given in the introduction, this assumption would appear to be reasonable.

From (1.40),

$$\frac{C_{A}}{C_{S}} - 1 = \frac{C_{A} - C_{S}}{C_{S}} = \frac{-2 R}{\pi r} \quad S \text{ in } \left(\frac{\pi r}{R}\right) \exp\left(-\frac{D_{E} \pi^{2} t}{R^{2}}\right) \quad (1.42)$$

From (1.41),

$$\frac{C_{avg}}{C_s} - 1 = \frac{C_{avg}}{C_s} - \frac{C_s}{\pi^2} = -\frac{6}{\pi^2} \exp\left(-\frac{D_E}{R^2}\right)$$
(1.43)

Divide (1.42 by (1.43)

$$\frac{C_{A} - C_{s}}{C_{avg} - C_{s}} = \frac{2 R \pi}{6 r} \quad \exists n \pi r = \frac{C_{s} - C_{A}}{R} \quad (1.44)$$

Let $\underline{C_s - C}_{r} = \left(\frac{\partial C}{\partial r}\right)_{r} = R$, then substitute in equation (1.39) $D_{T} = R \overline{T}$ Sin $\overline{T}r$ Contained by $C_{T} = R$

$$\frac{R\Pi}{3^{r}} = \frac{R\Pi}{R} = \frac{C_{s} - C_{avg}}{\Delta r} = k_{2} (C_{s} - C_{avg})$$

Taking the limit as $\Delta r \longrightarrow 0$

$$\operatorname{limit}\left[-\frac{D_{\mathrm{E}}\mathbf{n}^{2}}{3k_{2}}\left[\frac{\operatorname{Sin}\left(\frac{\boldsymbol{\pi}_{\mathrm{r}}}{R}\right)}{\frac{\boldsymbol{\pi}_{\mathrm{r}}}{R}}\right]\frac{1}{\boldsymbol{\Delta}_{\mathrm{r}}}=1\right]$$
(1.45)

or
$$\frac{2 \pi^2 D_E}{k_2 d_p} = 1$$
 where $d_p = 2 R$
therefore $k_2 = \frac{2}{3} \pi^2 \frac{D_E}{d_p}$ (1.46)

The mass transfer per unit volume of bed α_2 is obtained by multiplying k_2 by the surface area per unit volume A_p given by equation (1.36).

The two mass transfer coefficients could be combined using equation (1.35). However, at this stage, the conditions of the present work differs from that of Van Deemter et al. If k_1 is large compared to k_2 , then when the inverse is summed in equation (1.35), k_1 may be ignored. The expression for k_1 suggested by Van Deemter et al applies only to the laminar flow region, but in the turbulent region the value will be greater rather than less, and so if reason can be found to neglect k_1 in the laminar region, it need not be considered in evaluating mass transfer in the turbulent flow region.

If we assume the effective diffusivity in the porous pellet is 1/5 of the molecular diffusivity as suggested in the introduction, and assume a bed porosity of 0.4, then the ratio of k_1/k_2 from equations (1.36) and (1.45) is around 28. Thus, at most, the resistance outside the pellet makes a 3% contribution and can be ignored.

The derivation for k_2 was made on the assumption of a step change in the surface concentration, but in this work a Gaussian curve is expected to describe the surface concentration. It would be desirable to have a derivation applicable to other surface functions, or at least to the Gaussian function. An attempt to obtain an alternate expression for k_2 using a ramp surface function could not be made to reduce to the expression of (1.46), because the exponential functions would not cancel

- 28 -

out as is the case in the step yielding equation (1.44). Thus, a further degree of approximation results from using (1.46), but it is provable that an experimental constant other than $2/3\pi^2$ can be found which would yield a satisfactory diffusivity from a pulse experiment.

Van Deemter's Equation

. The expression for the mass transfer coefficient can now be substituted in equation (1.3^{4}) . Ignoring k₁, and combining (1.35) (1.38) and (1.46)

$$\boldsymbol{\alpha} = 2/3 \Pi^2 \frac{D_E}{d_p} \quad 6 \left(\frac{1 - F_1}{d_p} \right) \tag{1.47}$$

Substituting (1.47) into (1.34),

HETP =
$$2\delta d_{p} + 2\frac{D_{B}}{\lambda u} + \left[\frac{1}{1+\frac{WF_{1}}{F_{2}}}\right]^{2}\frac{2F_{1}d_{0}^{2}u}{4\pi^{2}D_{E}(1-F_{1})}$$
 (1.48)

Making the substitutions, $F_1 = \epsilon_B$

$$F_2 = 1 - F_1 = (1 - \epsilon_B)$$
$$W = \frac{1}{\epsilon_D}$$

$$\text{HETP} = 2 \, \mathbf{X} d_{p} + \frac{2 \, D_{B}}{\mathbf{\lambda} u} + \left[\frac{1}{1 + \frac{\boldsymbol{\epsilon}_{B}}{\boldsymbol{\epsilon}_{p}(1 - \boldsymbol{\epsilon}_{B})}} \right]^{2} \frac{2 \, \boldsymbol{\epsilon}_{B} \, d_{p}^{2} u}{4 \, \pi^{2} D_{E}(1 - \boldsymbol{\epsilon}_{B})} \quad (1.49)$$

Inis is the equation derived by Van Deemter et al (17) and it may be observed to be of the general form

$$HETP = A + B/u + Cu \qquad (1.50)$$

where A, B and C would be constants for a given packed bed and a given system.

A sketch of the behaviour of this equation is shown in Figure 1.5 indicating the physical significance of the constants A, B and C.

The magnitude of the A term, which may be called the eddy diffusivity term, depends largely on the value of \checkmark . As pointed out by Van Deemter et al, \checkmark is expected to be quite small for large packing sizes, e.g. 30 mesh diameter or larger. Therefore, it is likely that the eddy diffusivity term may not seriously mask the other terms.

At low flow rates, the quantity B/u, or molecular diffusivity term, may be expected to dominate, while at high flow rates the effective diffusivity, or Cu, term will predominate.

The effective diffusivity, or Cu term, is of primary interest and so this term will be considered in more detail. It was mentioned earlier that a lower mass transfer coefficient or effective diffusivity causes the pulse to broaden, and in the effective diffusivity term a lower effective diffusivity does indeed result in a larger HETP, which is a measure of the amount of pulse dissipation. Similarly, a non porous pellet will have zero porosity (ϵ_p), and so the pellet capacity term becomes zero. This implies that for a bed of non porous pellets the following equation should apply:

HETP = A + B/u

The influence of the bed porosity $\boldsymbol{\epsilon}_{\mathrm{B}}$ on the magnitude of the effective diffusivity term is very small over the range of porosities commonly found in random pellet packings. On the other hand, the pellet diameter which has an exponent of 2 has a strong influence on the value of the effective diffusivity term, and suggests that this term will be much more easily evaluated for larger pellets.

Typical Values of the Effective Diffusivity Term (C)

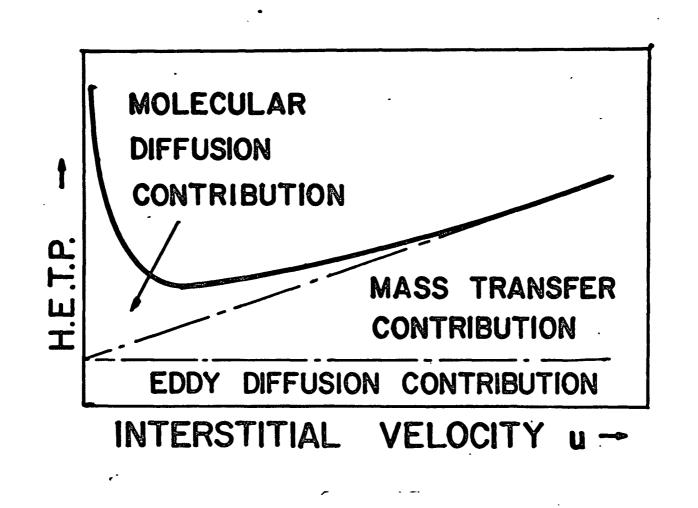
In Table 1.I following, some values of the effective diffusivity term are calculated for some typical porous pellet properties and dimensions,

- 30 -

and for a range of possible effective diffusivities. The velocities where the molecular diffusion term equals the effective diffusivity term in equation (1.49) (i.e. the minimum shown in Figure 1.5) are also calculated. for an effective diffusivity of 0.01 cm²/sec, an assumed molecular diffusion coefficient of 0.2 cm²/sec, and a tortuosity factor of 1.33. It can easily be shown that,

$$u_{\min} = \begin{bmatrix} 2 & D_{B} \\ \hline 1 & \epsilon_{B} \\ \hline \epsilon_{p}(1-\epsilon_{B}) \end{bmatrix} \begin{bmatrix} 2 & D_{B} \\ \epsilon_{A} & d_{p} \\ \hline 2 & D_{E}(1-\epsilon_{B}) \end{bmatrix}^{1/2} = C$$

Because the velocity at the minimum is proportional to $1/d_p$ the particle Reynolds number, $d_p u \rho / \mu$, at each of the minima obtained for different particle sizes will be the same, and has a value of around 6 if a value of 1/6 is taken for the kinematic viscosity.


TABLE 1.I

THE EFFECT OF PELLET DIAMETER AND EFFECTIVE DIFFUSIVITY ON THE EFFECTIVE DIFFUSIVITY TERM (C) IN EQUATION (1.50) ($\mathbf{E}_{B} = 0.4$, $\mathbf{E}_{p} = 0.33$)

â _p cms. Eff.Diff.	l	•5	.25	.1	
.l cm ² /sec ·	.0375 '	.00938	.00235	.000375	
.01 "	•375	.0938	.0235	.00375	
.001 "	3•75	•938	.235	.0375	
Velocity at minimum from $u_{min} = \left(\frac{B}{C}\right)^{1} cm/sec$.895	1.79	3.16	8.95	

From the first three lines of calculations in Table 1.I, it is obvious that for high effective diffusivities and small pellet diameters a pulse dispersion method may break down because the effective diffusion

- 31 -

Typical Plot of HECP Vs. Velocity (Equation 1.50)

term becomes too small with respect to the other terms unless extremely high flow rates can be used. For example, assuming the figures given above, the constant B = .15 and $A = d_p$ if the quantity $2\delta = 1$ is used. At very high flow rates, the description of eddy diffusivity suggested by Van Deemter et al (17) would not be expected to hold. However, if the "perfect mixer" model (discussed in the following section) applies, as suggested by McHenry and Wilhelm (15), then the eddy diffusivity D_L^* is given by $D_{L}^* = 1/2$ ud_p for superficial Reynolds numbers from about 10 to 400. This expression compares favorably with that suggested by Van Deemter et al $(D_{L}^* = \delta' ud_p)$. However, the constant given as 1/2 actually varied with Reynolds number from 1/1.8 to 1/2.2 in McHenry and Wilhelm's experimental work, and this drift would tend to cause errors in determining the effective diffusivity term in equation (1.50) if pellets with high diffusivity and small diameter were used.

As mentioned earlier, the velocities at the bottom of the Table 1.I show the location of the minimum in Figure 1.5, and correspond to a constant particle Reynolds number of about 6 which is well above the flow range considered by Van Deemter et al. Nevertheless, it is apparent that if the effective diffusivity term is to be maximised relative to the other terms, higher flow rates and Reynolds numbers must be used. Least Square Error fit of data to Van Deemter Equation

Consider an equation of the type

$$H = A + B/u + Cu$$
(1.51a)

Given an adequate number of experimental points relating H to u: for a given packing bed and gas system, the best values of the constants A, B and C can be determined by a "least squares error" fit.

- 33 -

Maree simultaneous equations involving A, 8 and C can be obtained in the usual way, that is,

1. Jum all the n data points:

$$nA + \sum_{u} \sum_{u}^{1} + \sum_{u}^{u} = \sum_{u}^{u}$$
 (1.51b)

2. Multiply by the coefficient of B:

$$A \sum_{u}^{1} + B \sum_{u}^{1} \frac{1}{u}^{2} + nC = \sum_{u}^{1} \frac{1}{u}$$
 (1.51c)

3. Multiply by the coefficient of C:

$$A \sum u + nB + C \sum u^2 = \sum Hu$$
 (1.51d)

Eliminating A and B from (1.51b), (1.51c), and (1.51d)

$$C = \begin{pmatrix} \frac{\Sigma(H) - \underline{n} \Sigma(Hu)}{\Sigma(\underline{u})} \\ \frac{\overline{\Sigma(\underline{u})}}{\overline{\Sigma(\underline{u})}} \\ \underline{\Sigma(\underline{u})} \\ \underline{\Sigma(\underline{u})}} \\ \underline{\Sigma(\underline{u})} \\ \underline{\Sigma(\underline{u})}} \\ \underline{\Sigma(\underline{u})} \\ \underline{\Sigma(\underline{u})}} \\ \underline{\Sigma(\underline{u})} \\ \underline{\Sigma(\underline{u})}} \\ \underline{\Sigma(\underline{u})} \\ \underline{\Sigma(\underline{u})$$

Hence,

$$B = \sum H - \frac{n \sum \left(\frac{H}{U}\right)}{\sum \left(\frac{L}{U}\right)} - \wp \left(\sum u - \frac{n^2}{\sum \left(\frac{L}{U}\right)}\right)$$

$$\frac{\sum \left(\frac{L}{U}\right)}{\sum \left(\frac{L}{U}\right)} - \frac{n \sum \left(\frac{L}{U}\right)^2}{\sum \left(\frac{L}{U}\right)}$$
(1.51f)

$$A = \sum_{n} \frac{\sum u - b \sum u}{n}$$
 (1.51g)

B. LONGITUDINAL DISPERSION COEFFICIENTS

----- 177 I

There are two models generally used to describe the longitudinal dispersion in packed beds of non porous solids. The dispersed plug flow model superimposes co-ordinates moving at the average stream velocity, u, on the appropriate solution of the diffusion equation. Thus, the variation of axial concentration profile C with time t and axial distance x of a quantity M per unit area of gas with diffusivity D_L , initially on a plane

at x = 0 is given by (22)

$$C_{A} = \frac{M}{2\sqrt{MD_{L}t}} \exp\left(\frac{-x^{2}}{2(2D_{L}t)}\right)$$
(1.52)

which is a Gaussian distribution with mean 0 and variance 2 $D_{T}t$.

With plug flow at a velocity u this becomes

$$C_{A} = \underbrace{M}_{\sqrt{2\pi 2D_{L}t}} \exp\left(-\frac{(L - ut)^{2}}{2(2D_{L}t)}\right)$$
(1.53)

with mean L \approx and variance 2 $D_{T}t$.

A second model is the "perfect mixers in series" which can be developed by applying the theoretical plate derivation described earlier, again yielding a Poisson distribution, with a mean of $\frac{U}{V_L}$ and variance $\frac{U}{V_L}$, where U is the volume of gas which has passed through, and V_L the v_L volume of each mixer. The number of perfect mixers in series is equivalent to the number of stages and is given by U/V_L as before.

Equating the ratio $(\underline{\text{mean}})^2$ = number of mixers, N, for both variance

models,

$$\begin{pmatrix} \frac{U^2}{V_L} \end{pmatrix} = N = \frac{L^2}{2 D_L t} = \frac{uL}{2 D_L}$$

$$\begin{pmatrix} \frac{U}{V_L} \end{pmatrix}$$

$$(1.54)$$

If one mixer is assumed to correspond to each layer of particles, then the number of mixers = L/d_p , and therefore,

$$D_{\rm L} = 1/2 \, \mathrm{u} \, \mathrm{d}_{\rm p}$$
 (1.55)

The only work, (apart from a few data points in the laminar flow regime obtained by Carberry and Bretton (23)) which has been carried out with gases for the purpose of investigating dispersion models in packed beds has been done by McHenry and Wilhelm (15), using a frequency response technique. They found that over a particle Reynolds number

- 35 **-**

(based on superficial velocity) range of 10-400 the above relationship held reasonably well.

Other factors which influence the axial dispersion coefficient are buoyancy effects which may be expected when flow rates approach laminar conditions, and wall effects which Hiby (24) has shown greatly increase the apparent dispersion coefficient.

Velocity Profile Contribution

Taylor (25) has separated the velocity profile contribution to the dispersion coefficient in pipe flow. Taylor found that four dispersion regimes exist in pipe flow. The first is due to molecular diffusion which predominates at low flow rates. As the velocity increases the parabolic profile contributes to the longitudinal dispersion of a pulse, but the molecular diffusivity is able to largely remove the radial concentration profiles. This yields an eddy diffusivity,

$$D_{L^{*}} = K \frac{u^{2}R^{2}}{D_{B}}$$
 (1.56)

where u is the mean velocity, D_B the molecular diffusivity, and R is the pipe radius. It may be noted that high molecular diffusivity gases reduce the eddy diffusivity in this region. The constant K is $\frac{1}{48}$ for pipes, but Aris (26) has shown that the constant depends upon the geometry of the system. The range of application of the above regime is described by furner (27) as,

$$\frac{7 D_B}{R} \ll u < \frac{4 D_B L^2}{R^2}$$
(1.57)

where L^{\perp} is the length of test section containing most of the pulse. Within the above limits the molecular diffusivity contribution is negligible so $D_{L}^{*} = D_{L}^{*}$. Since a Gaussian distribution is assumed we can say that 95% of the pulse exists in four standard deviations.

- 36 -

If L is defined as 4σ then,

$$L = 4 \sqrt{2D_L t}$$

Substituting for D_L from (1.56) and setting $t = \frac{L}{u}$, where L is the length of column (or mean), the upper limit becomes,

- 37 -

$$u \ll 2 16^2 K_1 \frac{L.D_B}{R^2}$$

For pipes $K_1 = \frac{1}{48}$ giving an upper limit of u \ll 10 $\frac{LD_B}{R^2}$

Turner (27) in his derivation obtained 5 LD/R² for the R.H.J. of (1.58), apparently because of the omission of a factor of 2 in defining L . The residence time is introduced if the velocity is replaced by $\frac{L}{t}$ then,

$$\frac{L}{t} = u \ll 10 \frac{LD_B}{R^2} \quad \text{or } t \gg \frac{R^2}{10 D_B}$$
(1.58)

In other words, a pulse must be allowed to flow for some finite time after the injection before the eddy diffusivity is defined by equation (1.56). If the dispersion is measured very shortly after injection (a time less than $R^2/10 D_B$), then the eddy diffusivity is given by some undefined function. This latter function does not include the molecular diffusivity, and so resembles the function for the turbulent regime.

Longitudinal dispersion in the turbulent flow regime in pipes has been dealt with by Taylor by use of the universal velocity profile. This approach yielded

$$D_{L}^{*} = 7.14 \text{ Ru}\sqrt{f}$$
 (1.59)

where f is the Fanning friction factor.

The application of the Taylor derivation to packed beds has been somewhat limited, although Bischoff and Levenspeil (28) have considered the overall profile in a packed bed. Inasmuch as the velocity profile in packed beds approaches plug flow the contribution of the overall profile to axial dispersion is small.

Saffman (29) has developed a model based on a network of capillaries of length \boldsymbol{l} which are joined in a random manner. Assumptions must be made regarding the length and diameter of the capillaries. Jaffman derived the following expression to cover the transition from laminar to an eddy regime and by assumming a capillary length to diameter ratio of 5 the experimental results of Hiby (24) for liquid were fitted

$$D_{L} = \underbrace{uL}_{6} \left[Log_{e} \underbrace{3}_{2} \underbrace{uL}_{D_{B}} - \underbrace{17}_{12} - \underbrace{1}_{8} \underbrace{R^{2}}_{\ell^{2}} \underbrace{uL}_{D_{B}} \right] + \underbrace{D_{B}}_{\lambda} + \underbrace{4}_{9} \underbrace{D_{B}}_{\beta} + o \left[\underbrace{D_{B}}_{\ell u} \right] (1.60)$$

. 0

The value of the tortuosity λ obtained by Saffman from this model approaches 3 to 4, considerably higher than the tortuosities normally encountered in beds of spheres.

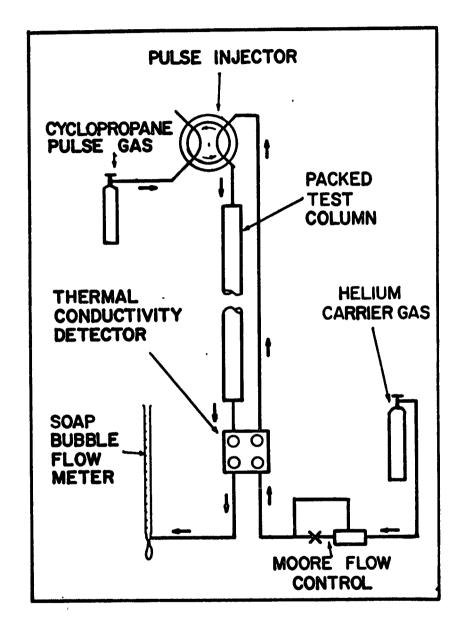
Saffman's model appears to show the most potential at present in describing the axial mixing in packed beds, but as in Taylor's work on pipes assumptions made concerning the nature of the flow lead to different solutions. Hence, the basic flow mechanism must be understood before one can apply the appropriate solution from the model.

- 38 -

- 39 -

III

APPARATUS


A. DEVELOPMENT

The initial work to test the calculation of effective diffusivities by means of the Van Deemter equation was carried out on an apparatus based on a gas chromatograph as shown in Figure 1.6. A cyclopropane pulse was injected by a chromatograph sample valve into a helium carrier gas and was detected on a GOW MAC model 9258-D thermal conductivity cell. The flow rate was measured with a soap bubble flow meter at the cell outlet, and the detector output was recorded on a Leeds and Northrup -1 to 10 mv recorder. The test section was mounted in a vertical plane, although initially a set of results were taken with a horizontal bed, but the settling of the packing resulted in a channel along the top of the bed. The first vertical apparatus suffered from the following defects:

- The detector would only operate within a limited gas flow range (about 50 mls/min.).
- 2. The small ports in the sample injector restricted the flow of gas.
- 3. No provision existed for adjusting the recorder chart speed, and at the available chart speed the pulse output was not broad enough to make accurate measurements of standard deviations possible.

B. DESCRIPTION OF APPARATUS

The apparatus with which the bulk of the results were taken is shown in Figure 1.7. The shortcomings of the earlier apparatus were climinated in this set-up by the following modifications:

Apparatus For Exploratory Tests

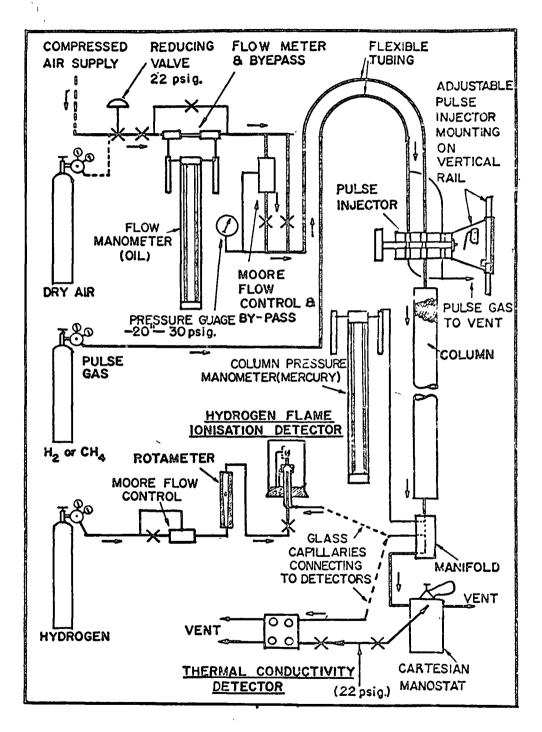
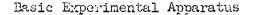



Figure 1.7

١

- 1. A cartesian manostat was fitted on the column exit to maintain a slight positive pressure in the column (1/2 to 2 inches of mercury). This pressure made it possible to direct a side stream through a capillary to supply the detector at a fixed flow rate. At gas flow rates less than the amount needed for the detector the manostat supplied additional gas, thus reversing the flow direction between the manifold and the manostat.
- 2. A sample or pulse injection valve was constructed having large ports as shown in Figure 1.8. This Figure also shows an experimental pulse injection system which was used to test the effect of varying pulse size.
- 3. A Bausch and Lomb 0- 10, 100, 1000 mv recorder with chart speed adjustments from 0.05 to 20 inches/min. allowed the pulses to be recorded in such a way that good accuracy could be obtained in measuring the dispersion of the pulse.

The apparatus was set up with the test bed mounted in a vertical plane, and resting on a manifold block at the discharge end. The side stream for the detector was taken from the manifold, and the main column effluent gas discharged through the manostat. A port connected to a mercury manometer indicated the manifold absolute pressure.

Air carrier gas was taken at either 30% RH from the building supply or from a cylinder of dry air. The air passed through a regulator set for 22 psig. downstream pressure, and then to a flow meter consisting of a sp. gr. 1 oil manometer and capillary tube. A series of capillary tubes were calibrated using soap bubble flow meters or a wet test gas meter, so that a wide range of flows could

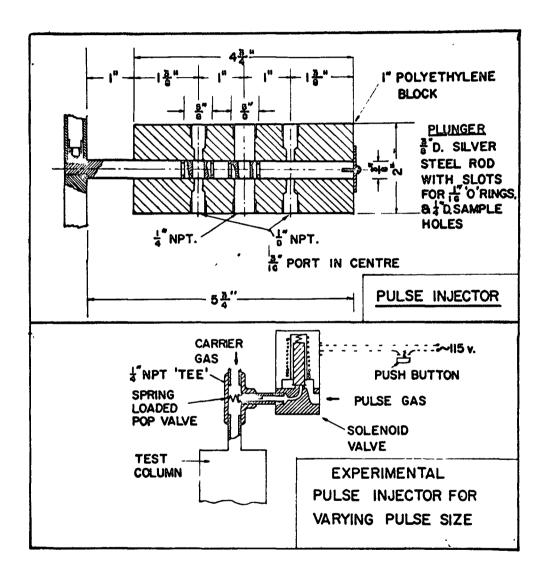
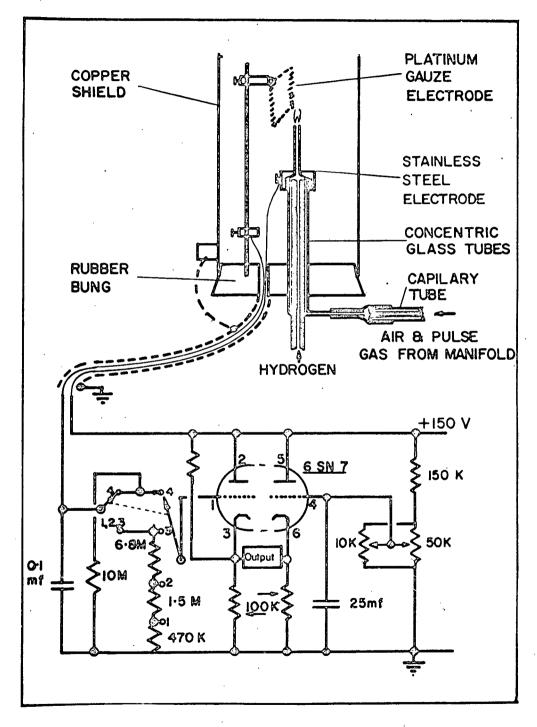


Figure 1.8

Pulse Injectors

be covered. No attempt was made to size the capillaries so that they remained in their linear range. From the flow meter, the carrier gas passed through a Moore Constant Differential gas flow control and by-pass loop to the pulse injector. The pulse injector was mounted on a vertical rail so that it could be adjusted over a six foot range to allow for varying column lengths. Polyethylene tubing was used to supply the carrier gas, as well as the pulse gas to the injector. The flexibility of the polyethylene tubing allowed the injector to be adjusted anywhere on the rail without the need of piping alterations.

A microswitch mounted on the injector was either opened or closed at each movement of the injectors. This action operated an event marker on the recorder to indicate the start of each run.


C. DETECTORS

Hydrogen Flame Ionisation Detector

In equation (1.49), it was evident that lower effective diffusivities increased the magnitude of the C term. To take advantage of this, the hydrogen flame ionisation detector was selected, as it allowed the use of air and hydrocarbons of any convenient molecular weight, as opposed to the need for hydrogen or helium (which have high diffusivities) as one of the Jases in thermal conductivity detectors if high precision is desired. In addition, the hydrogen flame detector is linear over a 5 decade range, and the high sensitivity allows the use of extremely small pulse volumes.

The detector was constructed from the circuit described by Harley, Nels, and Pretorius (30) and is shown in Figure 1.9. A power supply was also constructed to supply the detector, however, the AC filament supply was found to create excessive noise in the output so the detector tube was powered from a 6 volt accumulator.

- 44 -

Hydrogen Flame Detector

- 45 -

No output could be obtained initially from the circuit as described, and on investigation the voltages on the 6 SN 7 tube were found to be outside the range in which a response could be expected. To correct this problem it was necessary to change the two load resistors from 10 KA to 100 Kn. It is concluded that a misprint has occurred in the original publication. The actual ionisation or combustion chamber was constructed to minimize the holdup time of the primary air containing the traces of pulse gas from the manifold. The air entered through the annular space in the glass tubes and joined with the hydrogen before passing through the stainless steel orifice which formed one electrode. Hydrogen was supplied from a cylinder via a Moore flow controller and a rotameter at a rate of about 150 mls/min. Lower flow rates increased the detector output but in the extreme, the flame became unstable. Air and pulse gas arrived through the capillary at the rate of about 0.7 mls/sec. The volume of the detector air side and supply tubes from the manifold was estimated at 0.2 mls, giving a time lag of about 0.3 seconds.

Initially, the flame orifice was made flush with the metal electrode, but the heat from the flame caused the glassware to crack and so the orifice was modified by adding about 1 1/2" of 1/8 inch stainless steel tube. The whole assembly was held on a rubber bung, thus supplying the insulation for the platinum electrode which was supported by a heavy wire inserted in the rubber. Shielded cable connected the detector to the electrical system, and a grounded copper chimney shielded the flame from draughts.

Other modifications to the reference circuit (also shown in Figure 1.9) included a fourth position on the selector switch with a

- 46 -

10 meg resistance to ground, and a coarse and fine zero setting using 20 K and 50 K variable resistors in parallel. The 10 megohm position was used on all runs.

Fibre glass filters were fitted in the hydrogen tube and the manifold to reduce the noise in the detector caused by dust. The detector still gave occasional characteristic jumps in output, probably caused by dust in the secondary air, but no attempt was made to correct this.

Inermal Conductivity Detector

A "Gow mac" model 9238D tungsten wire thermal conductivity detector was used with the recommended conventional auxiliary circuits. A 6v. battery supplied the current for the detector and the event marker on the recorder. The output to the recorder was fitted to an attenuator having 1, 2, 5, 10, 50, 100 and 500 ratios, but only the 1, 2 and 5 positions were needed in the pulse apparatus.

The reference side of the detector was supplied through a needle valve from the 22 psig air line, and a small bleed maintained. The capillary supplying the measuring side of the detector from the manifold was sized to give approximately 46 mls/min. of air at 1/2" Hg gauge manifold pressure.

- 47 -

- 48 -

EXPERIMENTAL PROCEDURE

IV

A. OUTLINE OF EXPERIMENTAL INVESTIGATION

The experimental work was carried out in three parts to (a) test the applicability of Van Deemter's equation with large pellet diameters and higher flow rates; (b) measure the effective diffusivity in some samples of porous pellets using the pulse method, and (c) compare the effective diffusivity obtained with the pulse experiment to those obtained by an independent method. Part (a) was carried out by injecting methane and hydrogen pulses in beds containing non-porous pellets, while (b) was an obvious extension of (a) to porous pellets. The well-tested steady state method was selected to obtain an independent effective diffusivity value. It was convenient, however, to develop a specific solution of the diffusion equation to fit pellets with curved faces. The details of this section of the work are recorded in Appendix 1.

B. NON POROUS PELLETS IN PULSE APPARATUS

A simple gas chromatograph assembly was used for some early exploratory runs with a cyclopropane pulse in an helium or air carrier gas flowing through beds of 2 mm. glass spheres. These results were discarded due to limitations of the apparatus, which included a limited supply of the 2 mm. glass beads necessitating short beds, as well as the defects already listed.

With the development of the more sophisticated apparatus, a series of runs using methane pulses in air was carried out with various bed diameters and lengths packed with three kinds of non porous pellets: 0.208 cm. No. 9 lead shot, 0.568 cm. glass beads, and 1 cm. diameter ceramic beads. Because the value of the quantity "C" in equation (1.50), HETP = A + B + Cu

was not found to be zero in the exploratory work with non porous pellets, runs 50 to 55 were designed to determine the magnitude of this term, and to investigate ways of minimizing it. To check the possibility that this effect was caused by a high velocity "by-pass" flow at the wall, run 50 was made with a 5 cm. diameter column packed with the 0.208 cm. lead shot, and having a maximum particle Reynolds number of 2. Run 50 was aifferent from the other runs in that a higher pressure was used, giving a lower diffusivity. Run 51 was made with a 2.5 cm. column packed with the lead shot to see if particle to tube diameter ratio had much influence on the wall effect. Run 52 duplicated run 50, but used a higher Reynolds number range, and normal column pressure. A run designated 51D was also made on the 2.5 cm. bed, but five doughnut rings were distributed evenly down the column in an attempt to eliminate the wall effect.

Run 53 was made with a 6.27 cm. diameter column packed with the l cm. ceramic spheres. The experimental sample injection system using a solenoid valve, which allowed varying pulse sizes, was introduced in this column. Run 54 was made on a 1/4" polyethylene tube packed with 3 mm. glass spheres, and run 55 was made with a 1.2 cm. diameter bed packed with the l cm. balls to see if a tube/pellet diameter ratio ≤ 2 could eliminate the wall effect. This latter case has been designated as a "single pellet" bed. In all the foregoing runs, the test system used was a methane pulse in air as a carrier gas.

Following these tests, runs 56 to 62 with porous pellets were carried out. One of the porous pellets, an activated alumina, gave abnormally low values for the effective diffusivity. Further investigation, which is summarized in Appendix IV, showed that methane was adsorbed to a significant degree on the activated alumina. The need for a non-adsorbing system resulted in further runs using the non porous pellets being carried out with a hydrogen pulse, as well as the methane pulse, in air system. Runs 63 to 66 were carried out with 0.568 cm. glass spheres, both gas systems and two column diameters, including one for a single pellet diameter. Runs 69 to 72 were a similar set of results with the 1 cm. diameter spheres, two column diameters and two gas systems. Runs 69 and 72 using methane are duplicates of runs 53 and 55, but covered a wider range of Reynolds number. Table 1.II summarizes the values of the variables pertaining to each run number.

TABLE 1.II

Pulse Gas	Tube/Pellet Ratio Pellet Diameter	l	3	6	12	25
Methane	.208 cm.		5 ⁴ *		51 51D	50 52
	.568 cm.	64	65			
1	1.0 cm.	72 55		69 53		
Hydrogen	.567 cm.	63	66			
	1.0 cm.	71		70		

SUMMARY OF THE PELLET AND FUBE TO PELLET DIAMETER RATIOS COVERED BY THE EXPERIMENTAL RUNS

*pellet diam. 0.29 cm.

- 50 -

C. POROUS PELLETS IN PULSE APPARATUS

Three samples of porous spherical pellets were acquired for These included 1/8" and 1/4" diameter H151 Alcoa activated testing. alumina pellets, and 1/2" diameter Norton Alundum catalyst supports. The physical characteristics of these pellets are summarized in Appendix III. One of the difficulties experienced in setting experimental conditions was that the activated alumina test pellets could not be adequately dried in the steady state apparatus, as the epoxy resin holding the sample could not stand the necessary drying temperature. In view of this problem, the pulse investigation was attempted on the "wet" pellets, because it was found that the moisture content of the pellets which had been open to the atmosphere was quite stable even though the atmospheric humidity varied from 30% RH to 100% RH. The only problem remaining concerned the true porosity of the wet pellets, but the manufacturer's literature (31) indicated that the water existed as liquid water, and hence could be assumed to have a density of 1. Thus, the porosity could be computed from the dry pellet porosity and the moisture content. The details of these calculations and other confirming experiments with respect to the porosities of the pellets are included in Appendix III.

51 -

The pulse technique was first applied using a methane pulse, in run 56, to the 1/4" diameter H151 activated alumna pellets in a four foot long single pellet diameter bed. The pellets were in equilibrium with air at room temperature. Unexpectedly high dispersion of the pulse (HETP) caused some doubt about the number of transfer units, so the bed was lengthened for run 57 by adding two bends and two further four foot lengths to create a trombone configuration. A 20% change in C was found between the long bed and the short. As shown later in the "Results", the short column was found to contain insufficient transfer units for a Gaussian distribution. In run 58, the same bed as that used in run 57 was employed but the pellets were previously dried. At this stage, the possibility of surface adsorption of methane by the alumina was appreciated, and run 59 was conducted at higher flow rates in the hope that the adsorption was a slow process and would not occur to a significant extent under these conditions.

In run 60, a methane pulse was used in a single pellet diameter trombone bed, which was packed with 1/2" diameter Norton catalyst carrier pellets. In run 61, the use of a hydrogen pulse was tested on the same dry 1/4" diameter H151 activated alumina pellets from runs 58 and 59, while in run 62 the same bed was wetted back to the normal moisture content, and the hydrogen pulse applied again.

Run 73 was carried out on a four foot long by 3/4" diameter bed packed with 1/8" H151 activated alumina pellets and using a hydrogen pulse.

D. INDEPENDENT EFFECTIVE DIFFUSIVITY MEASUREMENT

A conventional steady state method was selected for a second determination of effective diffusivity, but the technique was adapted for use with spherical pellets. This modification consisted of mounting the pellets with epoxy resin in a hole in a plate about 0.75 pellet diameter in thickness. The two spherical caps on each side of the plate were ground off when the resin had dried. The solution for the differential diffusion equation with this geometry is included in Appendix I, along with the results and details of this experiment. Only the 1/4" and 1/2" pellets

- 52 -

were tested. On the basis of the manufacturer's data Knudson diffusion was expected in the 1/4" alumina pellets, while molecular diffusion was expected in the 1/2" Norton pellets.

The major problem with this part of the investigation was the moisture content of the pellets. The activated alumina could only be dried in situ, but the epoxy resin would not survive the drying temperature. Since the moisture content of the "wet" pellets remained relatively constant, as mentioned previously, it was decided to test the pellets wet and correct the porosity accordingly.

E. PREPARATION OF THE TEST COLUMNS

The packed beds (columns) were constructed from glass tubing with rubber bungs or tubing in the ends. The dimensions of the beds were generally obtained with a metric rule except for small diameter tubes, where a caliper rule was used. The bed porosities were obtained either by weighing the beds full and empty if the pellet density was known, or by addition of water and weighing. For the single pellet diameter beds, the porosity was calculated by counting the number of pellets in a given length of bed, and calculating the pellet volume from the mean pellet diameter.

The mean pellet diameter was measured by placing a known number of pellets in line and measuring the overall length.

For the porous pellet beds, the porosity was calculated as for the single pellet beds above, or from the weight of pellets in the bed with the characteristic data of the pellet. All the columns were then mounted in a vertical plane.

. Joints in trombone columns were made with rubber tubing.

- 53 -

F. OPERATION OF PULSE APPARATUS

- 1. One of the four calibrated flow meter capillaries was selected and fitted.
- 2. The column was assembled, (after taking the necessary data for the porosity calculations), and fitted to the apparatus.
- 3. The air supply was turned on with the flow capillary bypass open, and the column pressure was set at a convenient level (usually around 0.5" Hg), using the cartesian manostat.
- 4. The column was tested for leaks with soap solution.
- 5. The appropriate detector was started up as described below.
- 6. The appropriate pulse gas was set to flow at a low bleed rate using the cylinder regulator and valves. The gas was bubbled in water at the exit to estimate the flow.
- 7. A suitable air flow rate was passed through the column using the flow meter and control. The flow meter manometer reading was recorded.
- 8. The recorder chart was started at any speed (unless previous experiments suggested a specific chart speed), and a pulse injected. When the pulse was produced, the height of the pulse was adjusted on the attenuators (recorder attenuator for H_2 flow or attenuator box for thermal conductivity detector) and the width noted. Using the initial pulse, the equipment was adjusted to give a convenient peak height (e.g. 0.75 scale), and a pulse width on the chart of at least 1.5 cm.
- 9. A series of pulses were injected, each at a different gas flow rate, to give about ten results covering the flow range desired.
- 10. During the course of each run the room temperature, atmospheric pressure and column pressure were recorded.

- 54 -

Hydrogen Flame Detector

- 1. The detector was connected to the manifold with the correct capillary.
- 2. Hydrogen flow was started at around 150 mls/min (using rotaneter) and the flame was ignited.
- The power supply was turned on and connected to a 6v battery for filament and event marker.
- 4. The recorder was turned on and the zero of the recorder and detector adjusted. The selector switch on the detector amplifier was always set at the No. 4 position for all runs.

Thermal Conductivity Detector

- 1. The manifold was connected with the correct capillary.
- 2. The reference air bleed was turned on and adjusted to give a slow positive flow (e.g. by bubbling in water).
- The filament current was adjusted to 100 ma. after connecting to 6v supply along with event marker leads.
- 4. The recorder was set to zero and the detector to zero signal.

- 56 -

RESULTO

A. NON POROUS PELLETS

Treatment of Data for Non Porous Pellets

For each pulse input the primary data consisted of: the flow rate of carrier gas, Q mls/sec, at STP, which is actually recorded as a manometer reading and transformed using the calibration charts in Appendix II to a flow rate, the width of the pulse at half the height (WIDTH) taken from the recorder chart and also the "mean" or distance from the pulse injection to the peak of the pulse (designated TOTAL). These data points are printed (in cm. units) in columns 8, 6 and 7 respectively of the tables of results in Appendix II.

In addition to the above raw data, each table in Appendix II is headed with details of the columns pertinent to the individual run. These include a "Run number" which starts at 50 for the sophisticated apparatus, but a run (No. 1) from the preliminary results obtained on the initial simple apparatus is included. The column length (L), diameter (a_t) and porosity (E_B) are included in the heading along with pellet porosity (E_p) and diameter (d_p) , and the carrier gas temperature $(T^{O}K)$, molecular weight and pressure (P). The pulse gas-carrier diffusivity is also printed for the run temperature and pressure.

The values for the molecular diffusivity of the pulse-carrier gas systems are taken from the following sources:

The diffusivity of hydrogen in air was taken from the experimental results of Currie (6). Currie found a temperature dependence of

diffusivity to the 1.715 power for this system, and this was **used** to interpolate from the experimental results a diffusivity of 0.755 cm^2/sec at 298% and 1 atmosphere.

The diffusivity of methane in air was calculated from the Hirschfelder equation using the force constants tabulated in Bird, Stewart and Lightfoot (32). The computation, which is shown in Appendix III, yielded a diffusivity for methane in air of 0.212 cm²/sec at 298°K and 1 atmosphere.

Values corresponding to the table headings were fed directly to the computer except for the pulse gas-carrier gas diffusivities which were modified to the run temperature and pressure assuming an inverse pressure dependence and a temperature dependence to the 1.7 power.

Provision was included to read in the carrier gas viscosity, but in the computations shown in Appendix II the viscosity value read in has been over-ruled in the program by a viscosity for air computed from the Sutherland equation (33),

$$Y = 0.01709 \left[\frac{273 + 114}{T + 114} \right] \left(\frac{T}{273} \right)^{2/3}$$
(1.61)

The carrier gas density was calculated assuming the perfect gas law

$$P = \frac{Mol. Wt.}{22400} \frac{273}{T} \times P$$
 (1.62)

Finally, the hydraulic diameter was calculated from the following equation,

$$h_{\rm D} = 4 \quad \frac{\text{Free Volume}}{\text{Wetted Area}} = \frac{d_{\rm T}}{\left(\frac{3}{2} \frac{d_{\rm T}}{d_{\rm p}} \left(1 - \boldsymbol{\epsilon}_{\rm B}\right) + 1\right)}$$
(1.63)

As mentioned earlier the primary data of flow rate at STP, WIDTH (= 2.360) and TOTAL (mean) are given in columns 8, 6 and 7, - 58 respectively, in Appendix II. Free these studes and she is in the heading of each table, the following calculates data are prove.

In column 1 the interpotent velocity was calculated from subdiameter dy, and the flow rate Q, corrected for temperature 1 and pressure P.

$$u = Q \frac{T}{273} \frac{1}{P} \left[\frac{1}{\Pi c_{P}}^{2} \right] \frac{1}{E_{B}}$$
(1.64)

The HETP was calculated as defined by equation (1.26)

$$\text{HETP} = \frac{L\sigma^2}{\text{mean}^2} = L \left(\frac{\text{WID}\,\text{CH}}{2.36}\right)^2 \left(\frac{1}{\text{TO}\,\text{TAL}}\right)^2 \tag{1.65}$$

Three Reynolds numbers were calculated for comparing the axial dispersion data with data of other workers and are defined as follows: the particle Reynolds number shown in column 4 of the table of results in Appendix II is given by $\underline{u} \ \underline{d_p} \ \underline{\rho}$, the superificial Reynolds number shown in column 11, $\underline{u} \ \underline{e_B} \ \underline{d_p} \ \underline{\rho}$, and the hydraulic Reynolds number based on the hydraulic diameter, $u \ \underline{h_D} \ \underline{\rho} \ \underline{\rho}$, in column 13.

The dispersion coefficient D_L , was obtained from equation (1.34), which for non porous pellets reduces to,

$$HETP = 2 \frac{D_L}{u}$$
(1.66)
= HETP u

and this value is printed in column 9 under the heading of "eddy diffusivity". In fact, it is the sum of the molecular and eddy diffusivities as given by equation (1.33).

so D_L

The number of transfer units (NTU), defined by \underline{uL} , must be large $2D_L$ for equation (1.30) to be satisfied, however, the values calculated and recorded in column 5 are based on the molecular diffusivity rather than the dispersion coefficient D_{L} . Inspection of the term shows that the NTU is smallest at low velocities, and since low velocities imply the existence of the molecular diffusivity regime, the NTU's based on these diffusivities are an adequate test. The use of "long" beds has generally eliminated the NTU as a limiting criterion in this work.

To make possible comparisons between the eddy diffusivity computed from this work and the correlations and results of other workers, the Peclet and Schmidt numbers were also calculated.

The molecular and so-called "eddy" Peclet numbers are recorded in columns 3 and 10, respectively, and were computed from the following definitions,

Molecular	Peclet number	$\frac{u \ dp}{DB}$
Eddy Pecle	et number	$\frac{u dp}{D_{T_i}}$

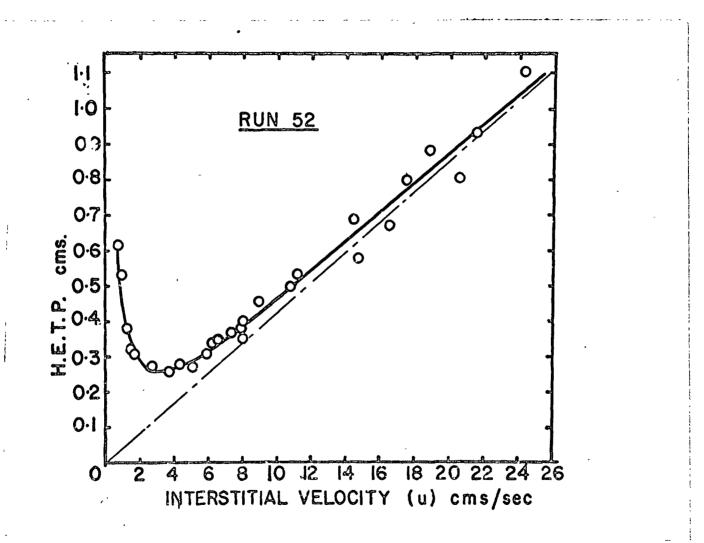
This eddy Peclet number should probably be called the dispersion Peclet number, however, because the eddy diffusivity D_L^* has not been separated from the dispersion coefficient D_L in this work the eddy Peclet or dispersion Peclet are interchangeable.

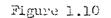
The Schmidt number based on the dispersion coefficient is recorded as the inverse Schmidt number in column 12, that is,

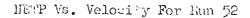
$$\frac{1}{\text{schmidt}} = D_{L} \rho / \gamma$$
.

At the base of each table the least square error fit of the HETP vs. u data to equation (1.50) is computed and the best values of the constants A, B and C are printed out. The span of certain runs was restricted to the eddy diffusion regime, and the scatter of the data points could cause anomalous values of the B, or molecular diffusion, term, which was a relatively small quantity in this range. To offset this problem a second least squares computation is carried out on the data to fit the equation,

HETP =
$$AA + CCu$$
 (1.67)
where HETP = HETP - $\frac{B}{u}$.

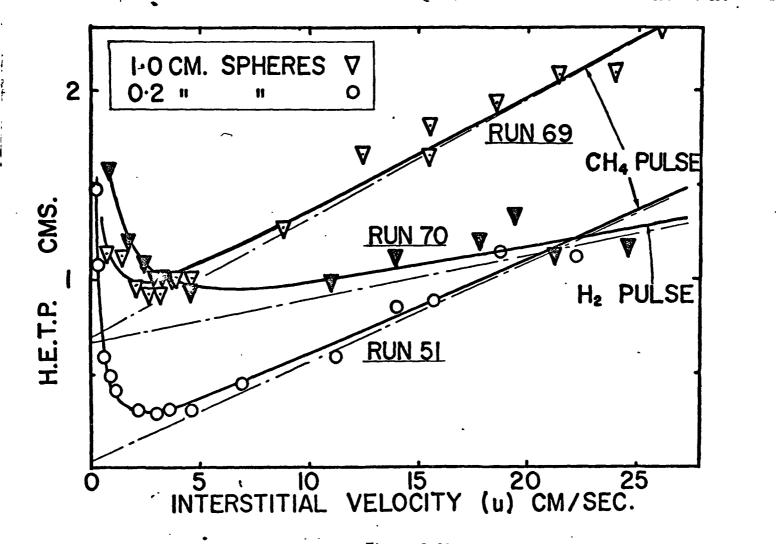

Ine value of B is set at 2 x .75 x D_B , where 0.75 represents the inverse of the tortuosity $1/\lambda$ in equation (1.49).

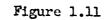

From the value of B derived from the three constant equation (1.50), the inverse of the tortuosity has been calculated for each run. Since λ varies from 1 to ∞ as discussed in the introduction, then the inverse ranges from 1 to 0. The usual value expected in a packed bed is about 0.67 to 0.8. The result printed on the computer sheet (Appendix III) is in the nomenclature originated by Van Deemter (17) and so the inverse tortuosity computed from equation 1.49 as $\frac{1}{\lambda} = \frac{2}{B}$ is given under the heading GANMA.


Similarly, the value of the constant characteristic of the eddy diffusivity which has been designated \mathbf{X} is computed from the value of the eddy diffusion term A using equation (1.49), that is $\mathbf{X} = A/2d_p$. Van Deemter et al (17) suggest that \mathbf{X} varies from about 8 for 200 mesh particles to about zero, for, say, 1/8 inch particles. The computer has printed the values of \mathbf{X} under the heading LAMDA (from Van Deemter et al.) in Appendix III.

Results for Beds of Non Porous Pellets

Jome typical curves of the HETP vs. velocity are shown in Figure 1.10 and 1.11. Figure 1.10 shows the results for run 52 which covered both the molecular and eddy diffusion regimes while Figure 1.11 shows the results for runs 51, 69 and 70. The five straight lines shown





٦.

ь Б

HE"P Vs. Velocity For Runs 51, 69 and 70.

52

on the plots represent the equation HETP = A + Cu, using values of A and C determined from applying equation (1.50) to the data. Runs 69 and 70 were made in a bed with a tube to particle diameter ratio of 6 containing the 1 cm. spheres, but a methane pulse was used in run 69 and a hydrogen pulse in run 70. It may be noted that both sets of data have the same intercept, indicating that Van Deemter's definition of the eddy diffusivity given by $D_L^* = \delta u d_p$ is valid, but a further mechanism which depends on the gas diffusivity and has a velocity exponent of 2 must be added to account for the presence of a "C" term.

Van Deemter et al (17) suggested that the eddy diffusivity term in equation (1.49), $A = 2 \bigvee d_p$, decreased with increase in pellet diameter, due to the decrease of the coefficient \checkmark . In Figure 1.12 it may be noted that with the larger pellets and generally higher flow rates in this work the trend has been reversed, and "A" increases with pellet diameter. If a straight line is put through the points in Figure 1.12 a slope around unity is obtained, making $\checkmark = 1/2$ corresponding to the value obtained by McHenry and Wilhelm (15) with gases at Reynolds numbers greater than 10.

Of the early runs, only run 1, which was carried out on a 134 cm. bed with a cyclopropane pulse in an air carrier gas stream is included in the data. The results of this run together with additional results from initial tests with methane pulses in beds of non porous pellets (runs 50 to 55) are summarized in Table 1.III. The most significant feature of these results is that over a range of pellet diameters from 0.2 cm. to 1 cm., with tube to pellet diameter ratios from 1 to 25, the wall effect or "C," term, which might mask the dispersion effect due to pellet porosity, gave results which varied in value only from 0.04 to 0.08.

- 63 -

In Runs 50 and 52 the C term calculated from tests in the lower Reynolds number range (run 50) is considerably higher than the value obtained in the same column at higher Reynolds numbers (run 52). This suggests that either the wall effect term is not constant or that the exponent of the velocity in the dispersion coefficient is less than 2. The plots of the dispersion coefficient vs. u given in Figure 1.13 would appear to substantiate the latter view.

Comparisons of Runs 51 and 51D demonstrate that artificial mixing devices or wall barriers do not reduce the wall dispersion effect.

No data in the regime in which molecular diffusivity is important were taken in run 51D, so that the comparison is best made using the CC value from run 51D, which was calculated using equation (1.65) as described previously. The value of B found from the results of run 51D represents a molecular diffusivity more than double the normal gas diffusivity (GAMMA = 2.07), demonstrating the failure of equation (1.50) when results in the eddy regime only are used in the least squares evaluation of the three constants A, B and C. Values obtained in run 54 also demonstrate this point.

The large diameter pellets in runs 53 and 55 show a large intercept, or A term, compared to the other runs which show essentially zero intercept. Inasmuch as A is approximately proportional to d_p , this difference is to be expected. It is rather interesting that a bed with a single pellet diameter (run 55) has essentially the same or less slope (i.e. C value) at high Reynolds numbers as the bed six particles in diameter of run 53. This, as well as other results given in Table 1.III, indicate that the dispersion due to the wall effect is not a function of tube diameters.

. 64 .

TABLE 1.III

DISPERSION RESULTS WITH BEDS OF NON POROUS PELLETS

Run	Pell et D ia meter	Column Length	Column Diameter	Column to Pellet Diameter Ratio	A	в	C	. A A	CC	Range of Reynolds Number
1	0.22	134.6	2.61	11.9	0.13	0.18	0.07			
50	0,208	111.8	5.0	24	-0.07	0.35	0.07	÷0,28	-0.150	0.5 - 2.4
51	0.208	118.1	2.6	12.5	0.050	0.31	0.052	0.0 <u>1</u>	0.053	0.29 - 31.3
51 D	0.208	118.1	2.6	12.5	-0.27	0.87	0.071	-0.037	0.064	2.6 - 32.6
52	0.208	111.8	5.0	24	0.001	0.37	0.041 ~	0.032	0.037	0.8 - 33.0
53	1.03	186.3	6.27	. 6.1	0.68	0.36	0.071	0.72	0.061;	5.0 - 12.0
5 ⁴	0.297	185.4	0.415	1.4	-0.22	3.88	0.079	0.177	0.069	16.0 - 79.0
55	1.005	121.0	1.15	1.1	0.601	0.16	0.060	0.260	0.155	3.0 - 48.0

.

-

-

.

Continued...

TABLE 1.III (Continued)

.

.

.

Run	Number of Points	Ganma	Remarks	
l	10			
50	9	0.76		
51	15	0.73		
51D	8	2.07	Doughrant rings in column	ı
52	30	0.87		66
53	13	0.85		ł
5 ⁴	10	2.2 ¹	Very small diameter (and hence plate volume) and high flow rates	
55	10	0.37		

.

.

The experimental pulse injector shown in Figure 1.8 was used in run 53 on the six particle diameter bed containing 1 cm. spheres. Methane pulses are used and the effect of pulse size (as measured by peak height) at a particle Reynolds number of 62.4 is shown in Table 1.IV. Over a 13 fold range different pulse sizes resulted in essentially the same HETP values. It must be pointed out, however, that these values are not included in the data for Run 53. At the time when the data were taken a maximum particle Reynolds number of 35 was employed in the hope that Van Deemter's assumption regarding the eddy diffusivity could be extended to a Reynolds number of 35 without serious error. This limitation was later discarded, and the four points in Table 4 were included with those of Run 53. However, they were found to change seriously the constants of the least square equation (1.50). indicating an inconsistency. Run 60 repeated the conditions of Run 53, but employed the normal pulse injection, and these data were consistent with the results at low flow rates in Run 53, but not with the four points in Table 1.IV. It is concluded that the inconsistency was created by the experimental injector at high flow rates because of the failure of the pop valve in the injector to close cleanly. The requirements suggested by Van Deemter to ensure that the feed pulse size does not influence the exit distribution (equation 1.25) were easily satisfied in this work, particularly with a large diameter column such as that used in Run 53.

TABLE 1.IV

EFFECT	OF	PULSE	SIZE	(PEAK	HEIGHT)	ON	HETP	
•	\mathbf{at}	Partic	le Re	ynolds	number	\mathbf{of}	62.4	
Run 53								
HETP						PI	EAK HEIGHT	
1.65					_		27.5 units	
1.66							59	
1.75						5	56	
1.59						j	19	
//							-	

- 67 -

TABLE 1.V

-

~

FURTHER DISPERSION RESULTS WITH BEDS OF NON POROUS PELLETS

Run	Pellet Diameter	Column Length	Column Diameter	Column to Pellet Diameter Ratio	Pulse	A	В	Inverse Tortuosity	С	AA	CC
6 3	0.568	421.0	0.66	1.16	H2	0.11	1.88	1.25	0.019	0.51	-0.021
64	0.568	421.0	0.66	1.16	CH4	-0.06	0.79	1.88	0.081	0.24	0.048
65	0.568	119.5	2.175	3.83	CH4	0.12	0.37	0.901	0.057	0.18	0.0 ¹ +9
66	0.568	119.5	2.175	3.83	H2	0.12	0.87	0.59	0.027	-0.13	0.039
69	1.03	186.3	6.27	6.1	CH_4	0.70 -	0.32	0.76	0.063	0.703	0.063
70	1.03	186.3	6.27	6.1	H2	0.68	0.86	0.57	0.023	0.54	0.030
71	1.005	122.0	1.15	1.1	H2	0.31	1.14	0.79	0.028	0.34	0.027
72	1.005	122.0	1.15	1.1	CH 4	0.64	0.17	0.41	0.06	0.59	0.062
			A11	Dimensions	, cms.						

-

Continued.....

•

.

Table 1.V (Continued)

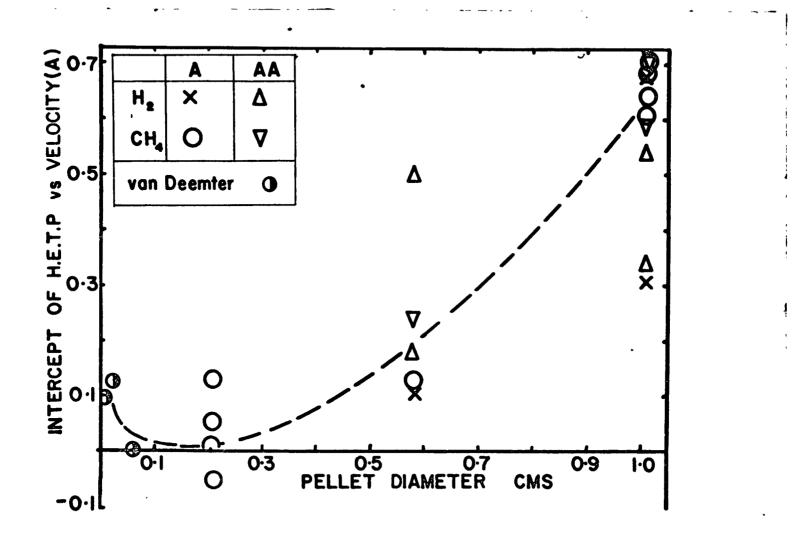
Run	Range of Reynolds Numbers	Number of Points
63	6 - 35	10
64	6 - 33	9
65	4 28	14
66	0.6-125	20
69	5 -180	· 16
70	7 -130	13
71	4 -183	14
72	10 -181	12

•

Remarks

- 69 -

Table 1.V shows the later results with non porous pellets which extend. the range of the earlier data, and allows comparison of the hydrogen pulse technique with methane pulse results. Once again the wall dispersion effects (C value) for the methane vary only from 0.057 to 0.081 with pellet sizes from 0.56 to 1.0 cms. For the hydrogen pulses, the value of the C term varied from 0.019 to 0.028 in the same beds. These data confirm the previous conclusions regarding the effects of tube diameter and pellet diameter.


Runs 63 and 64 show high B values (inverse tortuosity), indicating that insufficient data has been obtained in the molecular diffusivity region, and the AA and CC values are probably more meaningful than the A and C terms.

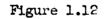

The values of AA and A for all the data are plotted versus pellet diameter in Figure 1.12, which indicates, in spite of considerable scatter, the approximately linear dependence of the packed bed eddy diffusivity on pellet diameter for a wide range of Reynolds numbers, as suggested by Van Deemter. The deviation from linearity could be ascribed to variation of the constant \forall in Van Deemter's eddy diffusion expression. However, the data from this work aligns itself well with the typical values of ð quoted by Van Deemter (17), as shown in Table 1.6, except that the trend is reversed with larger pellets, and ð increases with pellet diameter.

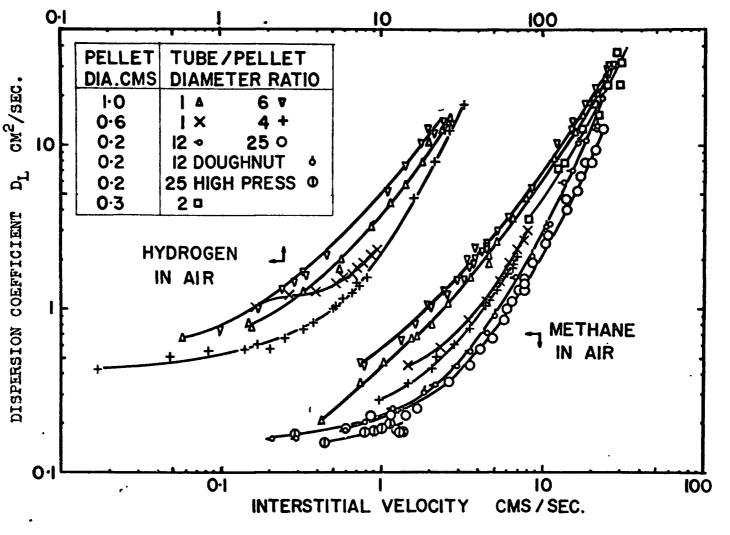
TABLE 1.VI

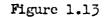
VALUES OF	THE EDDY	DIFFUSIVITY	TERM	I CONSTANI	r;	$\frac{u d_p}{D_L^*}$
Van Deemter " " This work	(17	Pe: .0 .0 .0	03 15	diameters - - .2 .6 1.0	cms. .0074 .025 .083	8 3 ≈0 0.06 0.13 0.37

- 70 -

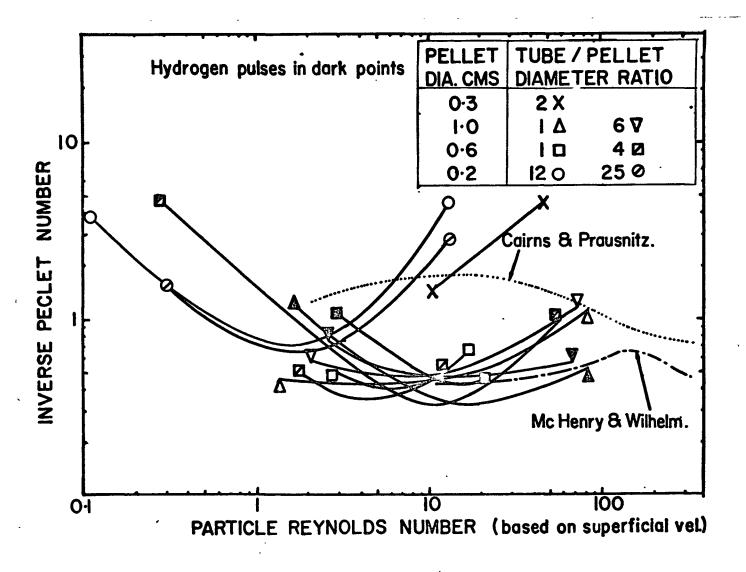
Eddy Diffusion Ferm, A, (Equation 1.50) Vs. Pellet Diameter

Ч


B. LONGITUDINAL DISPERSION COEFFICIENT

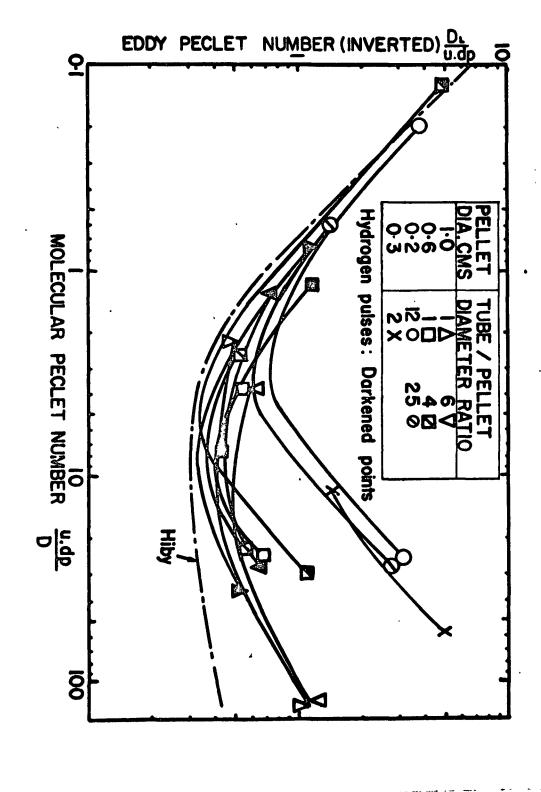

The data obtained in the beas of non porous pellets were computed as overall dispersion coefficients (that is, eddy plus molecular coefficients) and are compared with the correlations and theories of other workers in Figures 1.15, to 1.17. In Figure 1.13 all the data except those from run 1 are plotted as dispersion coefficients vs. the interstitial velocity (u). The data points form smooth curves but the slopes in the turbulent region vary, showing an exponential velocity dependence of 1.5 for the larger 1 cm pellets, increasing to an exponent of 2 for the smaller packing sizes. At low velocities, the dispersion coefficients approach the value of the molecular diffusivity. In Figures 1.14 - 1.17, the smoothed data from Figure 1.13 has been used, and is shown as a continuous curve with identifying symbols marking the start and finish of the line.

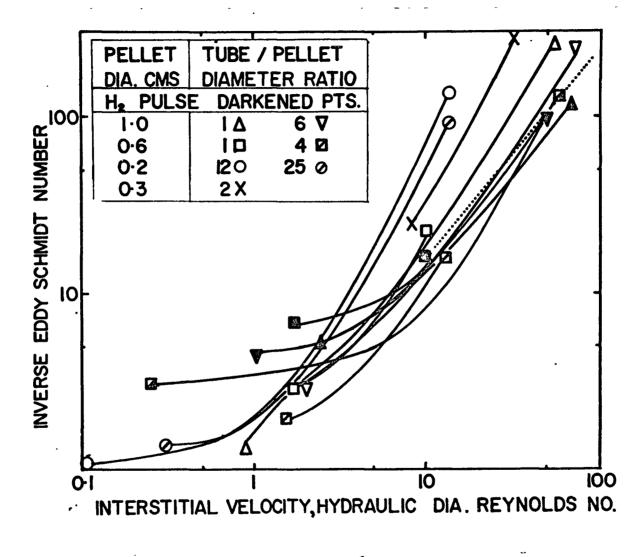
72


In Figure 1.1 j_1 the inverse dispersion Peclet number $\underline{D_{I_1}}$ is ud_p

plotted vs. the superficial Reynolds number $u \in_{\operatorname{Bd}_{p}} \rho' / \rho'$ to compare the results with those of McHenry and Wilhelm (15) obtained by the frequency response method in a bed of 0.3 cm diameter spheres. The data from this work are not entirely consistent with McHenry and Wilhelm's, but the lack of agreement is probably due to a difference in the Schmidt number since HcHenry and Wilhelm used a 50% hydrogen stream while the pulses in thiswork used only a trace of hydrogen. The Reynolds number above is thus not a complete criterion, particularly in the transition flow regimes as pointed out by Hiby (24). The data of Cairns and Prausnitz (34) for liquids are also included in Figure 1.14. Hiby (24) suggested that at low flow rates (approaching the molecular regime) the inverse dispersion Peclet number is better plotted against the molecular Peclet numbers as shown in Figure 1.15. Unfortunately the nolecular Peclet numbers could not

Dispersion Coefficient, ${\tt D}_L$ Vs. Interstitial Velocity, u.




Inverse mady Pecle: Number Vs. Superficial Reynolds Number

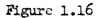
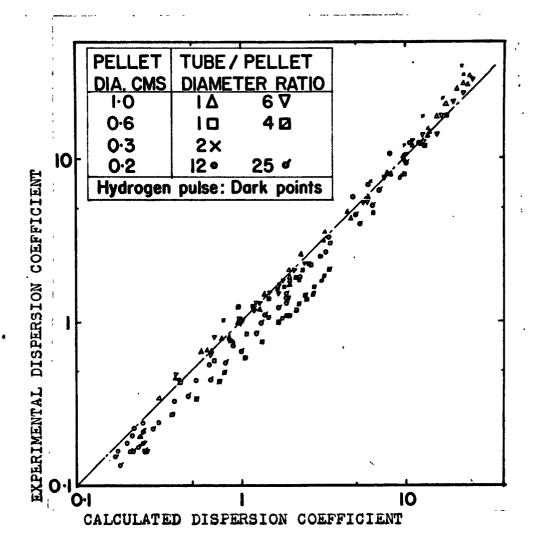

- 74 -

Figure 1.15



Inverse Iddy Schmidt Number Vs. Hydraulic Diameter Reynolds Kumber

- 76 -

Figure 1.17

Empirical Dispersion Coefficient Correlation

primary data and so a comparison could not be made, but it may be noticed that in Figure 1.15 the results from this work are not so scattered as in the previous illustrations. The data for liquids published by Hiby (24) are also included in Figure 1.15, but the values are lower than the results from this work. This decrease was to be expected because Hiby took pains to eliminate the high porosity wall section, and thus remove the dispersion due to wall effect. It is also significant that Hiby considered the results of McHenry and Wilhelm to show lower values of the eddy diffusivity or dispersion coefficient than would be expected in a bed with wall effects.

In Figure 1.16, the correlation suggested by Bischoff and Levenspiel (28) is examined by plotting the data as inverse dispersion Schmidt number vs. the Reynolds number based on hydraulic diameter. The covergence of the data is no better than in the other plots.

The Saffman model (29) could not be tested because the boundaries of the dispersion regimes in packed beds are not known as they are in the case of dispersion in pipes. However, it would appear that the Saffman model may have the greatest potential in providing a correlation for eddy diffusion in packed beds.

In the absence of a more logical correlation, an empirical correlation has been developed below, which is an extension of the simpler form proposed by Bischoff and Levenspiel (28).

$$D_{\rm L} = 0.75 D_{\rm B} + 0.6 u h_{\rm D} + \frac{0.02 u^2 h_{\rm D}^{0.6}}{0.75 D_{\rm B} + 0.022 u h_{\rm D}}$$
(1.68)

- 78 -

This correlation is plotted in Figure 1.17 as experimental vs. calculated values of axial dispersion coefficient, and although the agreement is not good, the method is sufficiently accurate to allow a correction to be calculated for the "C" term in equation (1.50), which will correct the value of this term in porous pellet tests where any effects of eddy dispersion are not allowed for in the eddy diffusion, or "A", term.

C. POROUS PELLETS

Porous Pellet Samples

The properties of the three porous pellet samples tested are summarized in Table 1.VII. However, there was originally some question about the pellet properties, the details of which are discussed in Appendix III. A knowledge of the pellet porosity is essential for this work, but the manufacturers' data supplied with the pellets seemed to be somewhat inconsistent.

The data on the 1/2" Norton catalyst support pellet were generally satisfactory. However, in the trade literature a 41% porosity was quoted for these pellets. In a private communication, a value of 36-40% was given, and a simple experimental measurement described in Appendix III found a 36% porosity. A value of 38% has thus been accepted as a reasonable average.

With the activated alumina pellets, in addition to the inconsistency of the manufacturer's and supplier's data, the amount of moisture contained in the pellet presented a problem. As discussed earlier, the epoxy resins used to mount the test pellet in the steady state diffusion apparatus

- 79 -

IIV.1 ALC. YII

PROPER TIES OF POROUS PELLE" SAMPLES

Manufac:urers' Trade Description	Pellet Diameter	Pellet Porosity	Pellet Moisture Content in 60% RH Air	Porosity of Moist Sample	Pore Diameter	Solid Densiy gm/ml
1/2" Norton Catalyst support SA 203 mixture	1.30 cm.	0.38	negligible	0.38	90% of ports 2-40 microns	3.5
1/h" Alcoa activated	0.597 cm.	0.50	12.0	0.31 at 12% wet 0.34 at 10% wet	50 Å	3.2
1/8" Alcoa activated Elumina H 151	0.32 cm.	0.50	125	0.31 a+ 12% wet	50 Å	3.2

- 80 -

.

.

. .

could not stand the drying temperature necessary, and so it was decided to make the diffusion tests on the web pellets. The moisture content of the wet pellets was found to be stable, and not sensitive to atmospheric humidity, remaining between 10-14% by weight. In addition, the manufacturer's literature (31) suggested that adsorbed water existed in liquid form, so that if the dry pellet porosity could be found, the porosity of the wet pellets could be calculated.

The suppliers quoted a dry pellet porosity of 60-65%, while the manufacturer's literature stated 50%. The moisture content in equilibrium with 60% R.H. air was given as 20-24%, but at no time could more than 15%water actually be found in the pellets. Examination of some of the manufacturer's drying data indicated that after 6 months a 12-15% moisture content was normal. In order to obtain a better value of the dry pellet porosity, special measurements were carried out. One of the experiments for this purpose described in Appendix III involved putting pellets under vacuum and then flooding them with water. This test suggested that the 50% porosity was correct, and this value was later verified more exactly by placing dry pellets in a chromatograph sample loop, and measuring the resulting reduction in sample volume of the loop. Hydrogen gas was used at the sample gas in the loop. This experiment gave a 50% porosity for the dry pellets and yielded 28% and 33% porosities for wet pellets having a 12% moisture content. A porosity of 31% corresponds to a 50% dry porosity in a pellet containing 12% by weight water in the liquid state.

In addition, the alumina pellets are not homogeneous in that they are apparently manufactured by seeding a colloidal solution. Examination of a slice of pellet on a microscope slide showed pores up to 150 microns in the centre core, compared to a pore diameter of 50Å in the

)

- 81 -

outer shell. These pellets provide an excellent example of an instance in which the steady state method of measuring diffusivities would give a poor result for use in catalysis work, while the unsteady state method would yield an average diffusivity value which would be more likely to be suitable.

Steady State Apparatus Results (Appendix I)

The effective diffusivity of hydrogen and nitrogen in 1/2" Norton SA203 spheres was found to be 0.0667 cm²/sec. at 23°C and 760.7 mm. Hg.

The effective diffusion coefficient of hydrogen in 1/4" diameter Alcoa H151 activated alumina pellets containing 12% by weight of vater was found to be 0.0067 cm²/sec. at 26°C.

Treatment of Data for Pulse Apparatus

For the porous pellets, the same measurements and computations are recorded in Appendix II as for the non porous pellets, except that the eddy diffusivity calculations in columns 8, and subsequent columns are omitted. Column 3 contains the inverse velocity rather than the molecular Peclet number which was used with the non porous pellet results.

Equation 1.50 was fitted to the data, and the quantity C found thereby was corrected using the differential of the last term of the empirical correlation equation (1.68) to remove the eddy diffusivity contribution as follows,

Correction =
$$\frac{dHETP}{du} = \frac{0.3 D_B hD}{(0.75 D_B + 0.2 u^* h_D)^2}$$
 (1.69)

where u* is the mean velocity from all the data points and allows the correction to be made in the middle of the velocity range of interest.

The correction is subtracted from the slope C and the corrected slope C applied in the calculation of the effective diffusivity from equation 1.49 and 1.50 using the form,

$$D_{E} = \frac{\boldsymbol{\epsilon}_{B}}{2 C_{CORR}(1 - \boldsymbol{\epsilon}_{B})} \left[\frac{d_{p}}{\Pi \left(1 + \frac{\boldsymbol{\epsilon}_{B}}{\boldsymbol{\epsilon}_{p} (1 - \boldsymbol{\epsilon}_{B})} \right)} \right]^{2}$$
(1.70)

0-

Porous Pellet Results

In Table 1.VIII, runs 56 to 62 were made with 1/4" Activated Alumina pellets, except run 60 which was made with the 1/2" Norton Catalyst support, and run 73 in which the 1/8" Activated Alumina pellets were used. All the results were taken in single pellet diameter beds, except run 73 which used a bed having a 7:1 diameter ratio.

Runs 56 and 57 differ only in the length of column, while in 58 the same bed was used as in 57, except that the pellets were dried. Run 59 was essentially unsatisfactory, but it shows the results of an attempt to eliminate the adsorption effect with extremely high flow rates. Run 61 repeated 58, and 62 repeated 57, except that hydrogen pulses were used. The hydrogen pulse was also used in run 73. Run 60 employed a methane pulse in the single pellet diameter bed packed with the 1/2" Norton Catalyst supports.

The results for porous pellets are summarized in Table 1.VIII. It may be noted that there appears to be an end effect in comparing runs 56 and 57. However, under Table 1.VIII the values of the criterion for Gaussian dispersion, F_{12} are given, and for run 56 these are greater than the column length due to the large dispersion caused by the adsorption of the methane pulse. Thus Van Deemter's solution (17) to obtain equation (1.31) would not hold.

The effects of adsorption on a catalyst pellet have been mentioned in section C of the introduction under "Comparison of Methods". The adsorption of methane on dry Alcoa 1/4" Activated Alumina pellets was

TABLE 1.VIII

•

DISPERSION RESULTS FOR POROUS PELLETS

	ı	Moisture Content	Pellet	Column Length	Column Diameter	Pulse	Pellet		
Run	Pellet	wt., %	Porosity	Cm.	Cm.	Gas	Diameter	A	B C
56	1/4" activated Alumina	.12	0.31	129	0.66	CH_4	0.597	-0.26	-0.64 1.32
57	1/4" activated Alumina	12	0.31	421	0.66	CH_4	0.597	-0.22	0.58 1.61
58	1/4" activated Alumina	0	0.50	421	0.66	CH4	0.597	-2.2	4 .6 5 1.699
59	1/4" activated Alumina	0	0.50	421	0.66	CH4	0.597	6 8	-592 - 0.33
60	1/2" Norton Catalyst Support	-	0.38	420	1.6	CH_4	1.3	0.29	0.50 0.44
61	1/4" activated Alumina	0	0.50	421	0.66	H2	0.397	0.64	0.87 0.22
62	1/4" activated Alumina	10	0.34	421	0.66	H2	0.597	0.38	1.5 0.237
73	1/8" activated Alumina	12	0.31	119.4	2.17	H₂	0.32	-0.015	1.43 0 .096

Run Number

÷

.

Height of Transfer Unit $\underline{F_{12}} < L$ at max. velocity

Continued.....

	æ
56	166 cm.
56 60	3.38 cm.
61	20.2 cm.
73	5.38 cm.

TABLE 1.VIII (Continued)

.

.

Dispersion Results for Porous Pellets

Run	Slope Correction	Corrected Slope	Diffusivity	Diffusivity Assuming Equilibrium Adsorption	Bed Porosity	Reynolds Range
56	0.061	1.26	0.00085		0.471	3-48
57	0.062	1.54	0.00069		0.471	2-42
58	0.061	1.63	0.0012	0.0045	0.471	2-42
5 9	0.019	0.31			0.471	47-318
60	0.12	0.32	0.0193		0.522	5-33
61	0.019	0.20	0.0102		0.471	3-95
62	0.019	0.22	0.0056		0.471	7-86
73	0.017	0.079	0.0045		0.39	1-19

.

..

measured, and the procedure, which involved taking pressure and volume measurements of a gas pellet sample trapped in the leg of a mercury manometer is described in Appendix IV. The results of this experiment, which showed methane adsorbed to the extent of 1.37 mls/ml of pellet, are utilized in run 58 to calculate the effective diffusivity assuming equilibrium of the adsorbed gas in the pulse apparatus. If equilibrium had been attained, then the diffusivity calculated with the increased capacity due to adsorption in the pellet taken into account, should be equivalent to the diffusivity found in run 61 using a hydrogen pulse with dry pellets (after correcting for the different gas system).

In Table 1.IX the diffusivities adjusted to those equivalent to hydrogen diffusion are compared for all the runs. The effective diffusivity with a hydrogen pulse in run 61 lies between the two diffusivities calculated from run 58 with the methane pulse, (a) assuming no adsorption and (b) assuming equilibrium adsorption. This result would indicate that the methane probably does not approach equilibrium adsorption closely in the pulse apparatus.

The values of the constants A and B from equation 1.50 presented in Table 1.VIII would appear to represent a breakdown of the theory and/or an inconsistency with the results from the eddy diffusion runs with non porous pellets, but if the fact that the C terms are extremely large due to the adsorption of methane in runs 56 to 58 is considered, then the A and B terms are negligible, and correction of them has very little influence on the slope, or C, term. For the remaining runs, the C terms are smaller but at the same time the values of the A and B terms are within the expected range.

- 86 -

TABLE 1.IX

COMPARISON OF EXPERIMENTAL EFFECTIVE DIFFUSION COEFFICIENTS

Diffusivities cm²/sec units Result as a Pulse Method Factor to Convert Assuming Experimental Adsorption at λ from Steady Pulse to Hydrogen or Hydrogen Run Gas H2-N2 Diffusivity Equilibrium Column 5 State Result Diffusion 0.0067 0.00085 0.0024 56 CH₄ 0.0067 57 CH₄ 0.00069 0.00195 3.02 0.0036 2.64 0.017 58 CH4 0.00127 0.750 0.208 0.067 60 0.0694 4.14 CH₄ 0.0193 0.0102 0.0102 61 Ho 0.93 ٦ 0.0067 62 0.0056 0.0056 1.05 H2 1 0.0067* 0.0045 0.0045 1.31 73 H2 1

*For 1/4" pellets

Interstitial Diffusivities

 $\begin{array}{rcl} D_{\rm B} & {\rm Nitrogen \ and \ Hydrogen \ = \ 0.755 \ cm^2/sec. \ at \ l \ atm. \ and \ 296^{\circ}{\rm k} \\ \\ D_{\rm K} & {\rm Hydrogen \ in \ 50 \ A \ pores \ = \ 2 \ x \ 25 \ x \ 1.84500 \ x \ \ 296 \ \ z \ 273 \ \ z \ 0.019 \ cm^2/sec. \ at \ 296^{\circ}{\rm k} \\ \\ & {\rm at \ 296^{\circ}{\rm k} \ \ 3 \ 10^8 \ \ z \ 73 \ \ z \ 10^8 \ \ z \ \ z \ 10^8 \ \ z \ \ z \ 10^8 \ \ z \ \ \ z \ \ \ z \ \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ \ z \ \ z \ \ \ z \ \ z \ \ z \ \ z \ \ z \ \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ \ z \ \ \ z \ \ \ \ z \ \ z \ \ z \ \ z \ \ \ \ \ z$

- 87 -

- 88 -

Comparison of Steady State and Pulse Apparatus Results

In order to compare results, Table 1.IX presents the pulse data converted to the equivalent hydrogen diffusivity (or hydrogen-nitrogen for bulk diffusion). If the results ith the 1/2" Norton pellets in run 60 are examined, it is seen that the pulse method agrees with the stondy state value within 4%.

Run 62 should give the same diffusivity for hydrogen in the 1/4" Alcoa activated alumina pellets as the steady state apparatus, but the latter result is 20% higher than the pulse result. If the diffusivity in the 1/8" pellets could be expected to be the same as that in the 1/4" size, the steady state result is 52% higher than the result from run 73. In view of the lack of homogeneity of the alumina pellets these results are not surprising.

The pellet tortuosity values calculated from the true interstitial diffusivities and the pellet porosities shown below Table 1.IX also indicate that the Alcoa activated alumina pellets are not homogeneous, as the tortuosities are much lower than would be expected for this type of material. The steady state results should be even more influenced by the macroporous pellet centre or seed because of the removal of part of the microporous shell, and if the tortuosity is calculated from the steady state result an impossible value of 0.88 is obtained. The reason for this anomalous result is because the pore size has been assumed to be 50A in the calculation of the Knudsen diffusion coefficient, when in fact the centre core has some pores up to 150 microns in diameter as measured under a microscope. - 89 -

νı

DISCUSSION

A. NON POROUS PELLETS

HEFP vs. Velocity Results

The HETP vs. velocity curves shown in Figures 1.10 and 1.11 appear to fit Van Deemter's equation (1.50)well. However, a velocity dependent, or Cu term, was not to be expected with non porous pellets on the basis of Van Deemter's analysis. From Figures 1.10 and 1.11, as well as from the results in Tables 1.III and 1.V, the magnitude of this term can be seen to be independent of particle diameter, but inversely proportional to the molecular diffusivity of the gas system. If the Cu term (which is a velocity dependent axial dispersion effect) in non perous pellets is caused by the higher velocity annulus which results from the high packing porosity at the wall, then by analogy with Van Deemter's treatment, the relative velocity between the flow in the wall annulus and in the packing core could create a term which would be inversely proportional to the molecular diffusivity. This reasoning implies that this additional dispersive effect for non porous pellets is caused by a wall effect.

On the other hand, the above model becomes less satisfactory if single pellet diameter beds are considered, so it would appear that another but similar mechanism occurs in single pellet beds, or that the above physical explanation is questionable.

The intercept, or A term, (which is a dispersion due to the mixing effect of the packing) of equation (1.50) depends on pellet diameter at Reynolds numbers less than 1, according to Van Deemter et al (17), and a similar relationship for high Reynolds numbers based on the mixing stage model has been obtained by McHenry and Wilhelm. The results from this work as shown in Tables 1.III and 1.V, and in Figure 1.12, also show that the intercept A is an approximately linear (\pm 50%) function of the packing diameter for diameters from about 0.2 to 1 cm., and for a wide range of tube: pellet diameter ratios.

Axial Dispersion Coefficient

If the same data as above are considered in terms of the dispersion coefficient (i.e. the data for non porous pellets are not fitted to equation (1.50)) as defined by equation (1.66), then it would appear that the wall effect is not the major contribution to the mixing due to packing geometry.

Figure 1.13 shows that the smaller pellets tend to yield a dispersion coefficient proportional to the square of the velocity which would correspond to the Cu term in equation 1.50, but the larger pellets show a lower exponent of 1.5. Hiby (24) obtained the following empirical correlation for liquids,

$$D_{\rm L} = 0.67 \ D_{\rm B} + \frac{0.65 \ (u \ d_{\rm p})^{1.5}}{7 \sqrt{D_{\rm B}} + \sqrt{u \ d_{\rm p}}}$$

and at low flow rates where $\sqrt[7]{D_B} > \sqrt{u d_p}$ this expression has a velocity exponent to the 1.5 power. In the same work (24), the results of other workers with liquids are summarized. In general, the axial dispersion coefficient found by other workers is a little larger than that obtained by Hiby, who eliminated the wall effect, but Hiby points out that the data of McHenry and Wilhelm, who worked with gas systems, gives the appearance of having the wall effect removed. This effect may be due to the fact that end corrections were applied to the bed data by McHenry and Wilhelm, because in their work relatively short beds were used (1', 2' and 3' long), with only the largest being comparable to the bed lengths in the present work.

In Figure 1.14, it may be seen that the data from this work shows higher dispersion coefficient values than does that of McHenry and Wilhelm (15), so that the data from this work would appear to be consistent with those of Hiby (24).

The use of the hydraulic diameter to describe the system as proposed in Bischoff and Levenspiel's work (28), and as shown in Figure 1.16, does not appear to improve the correlation. The hydraulic diameter would only be expected to account for the wall effect, and if the wall effect is not predominant, as suggested by Hiby, then a major improvement in correlation would not be likely to result.

As mentioned in the "Theory", Saffman's model (29) of a series of interconnected cylindrical capillaries would appear to show the most potential for describing the longitudinal dispersion in a packed bed. Since the results presented here were generally obtained between particle Reynolds numbers of 1 and 100 (i.e. in the intermediate region between laminar and turbulent flow), then it is quite conceivable that a velocity profile mechanism equivalent to that described by Taylor (25) occurs, resulting in regions where the dispersion coefficient is proportional to the squares of the velocity and inversely proportional to the molecular diffusivity.

The upper limit of the region was found to be, from (1.57)

$u \ll 10 L D_B/R^2$

where u is the gas velocity, L the tube length, R the radius and $D_{\rm B}$ the molecular diffusivity.

Let the capillary length be K_1d_p and radius K_2d_p in the Saffman model, which should be a reasonable assumption for packings of uniformly sized spheres.

- 91 -

Then,

$$u \ll \frac{10 K_{1}d_{p} D_{B}}{K_{2}d_{p}^{2}}$$
$$u \ll K_{3} \frac{D_{B}}{d_{p}}$$

where $K_3 = K_1/K_2$

or

Thus, the smaller the pellet diameter, (d_p) , the larger the right hand side of the above equation.

This model would explain therefore, why the smallest pellets showed a velocity exponent of 2 as compared to 1.5 or 1.7 for the larger pellets. A large molecular diffusivity would also increase the upper limit of the region, and may explain why a maximum is seen in McHenry and Wilhelm's results at a superficial Reynolds number of about 100 in Figure 1.14.

It would appear that at least two mechanisms are operating here; 1.) the velocity dependent dispersion described by equation (1.55) which is caused by the difference in flow paths between adjacent parts of the bed, and which can also be described by the mixing stage theory, and 2.) the effects of velocity profile (equation 1.56) in the individual channels, which yield a velocity exponent of 2 within the flow limits derived by Taylor, given in equation (1.57). Thus, the resultant dispersion coefficient has a velocity exponent between 1 and 2. As pointed out above, a high molecular diffusivity would result in a higher upper limit of significance for the velocity profile range. Nevertheless, McHenry and Wilhelm's results for eddy diffusivity using hydrogen approach a velocity dependence of 1, possibly because although the molecular diffusivity is high, the magnitude of the contribution to the dispersion due to the velocity profile in the capillaries is smaller with higher diffusivity gases (equation 1.56), and so the mechanism of equation (1.55) would predominate.

In pipes, when the flow becomes turbulent, the profile contribution changes from the velocity squared dependence of equation (1.56) to a function of velocity and friction factor. In this turbulent region, the dispersion coefficient is independent of the molecular diffusivity and the same independence would be expected in a packed bed.

Correlation of the Axial Dispersion Coefficient

As may be seen from Figures 1.13 to 1.16, several attempts were made to obtain a correlation for the dispersion coefficient. In addition to these efforts, dimensional analysis and a least square calculation based on the resulting expression using all the non porous pellet results yielded the following correlation,

$$\frac{D_{L}}{u h_{D}} = \frac{1}{0.495} \left[\frac{u h_{D}}{D_{B}} \right]^{0.61} \left[\frac{u^{2}}{g h_{D}} \right]^{0.24} \left[\frac{N}{h_{D} u \rho} \right]^{0.41}$$
(1.70)

where p' and p' are the carrier gas viscosity and density. The above correlation shows an exponent for the hydraulic diameter of nearly unity, and a velocity exponent of 1.67, which is an average of the values shown in Figure 1.13. Equation (1.70) does not provide a particularly good fit to the data, which is not surprising because the velocity exponent is obviously not constant, a fact clearly evident in Figure 1.13. Of the correlations of the above type, that of Hiby recommended for the transition region and shown in Figure 1.15 seems to be most satisfactory, but due to a dependence on the packing diameter squared, the degree of correlation is less satisfactory than that given by equation (1.70).

Bischoff and Levenspiel (28) suggest the following expression, which does have the virtue of allowing for the experimental fact that the

- 93 -

velocity dependence is 2 for small pellets and approaches 1.5 for larger ones. The expression is based on the Taylor transition regime in which velocity profile effects are significant, but the molecular diffusivity is replaced by a radial diffusivity which includes a velocity dependent term.

- 94 -

$$D_{L} = \frac{D_{B}}{\lambda} + \begin{pmatrix} \frac{K_{1} u^{2} d_{p}^{2}}{D_{B} + K_{2} u d_{p}} \\ \frac{K_{1} u^{2} d_{p}^{2}}{\lambda} \end{pmatrix}$$

Although better than equation (1.70), a further considerable improvement in fit was achieved by reducing the packing diameter exponent from 2 to 1. However, the equation then becomes dimensionally inconsistent.

The correlation finally utilized essentially makes the longitudinal dispersion coefficient a summation of a molecular term, a mixing stage term as suggested from McHenry and Wilhelm's work (15) and a velocity profile term as suggested by Taylor (25) or by Saffman's model (29).

$$D_{\rm L} = 0.75 \ D_{\rm B} + 0.6 \ u \ h_{\rm D} + \underbrace{0.02 \ u^2 \ h_{\rm D}^{0.6}}_{(0.75 \ D_{\rm B} + 0.0212 \ u \ h_{\rm D})}$$

The above expression is plotted in Figure 1.17 as experimental vs. calculated results.

B. POROUS PELLETS

The effect of gas adsorption on the measured diffusivity presents interesting features of significance in any type of unsteady state diffusion measurement. The method used to measure the degree of adsorption, described in Appendix III, has been developed since this work was done and reported as a technique for determining adsorption isotherms for gases on solids (40). If the amount of gas adsorbed from a methane pulse were close to equilibrium, methods of estimating the diffusivity could still be worked out. Unfortunately, the adsorption is not indicated to be at equilibrium on the alumina pellets in this work, but as the adsorption data were derived for large concentrations (1 atm.) of methane, while the pulse apparatus uses trace concentrations in the presence of air, the state of the

- 95 -

equilibrium cannot really be claimed to be conclusively known.

Inconsistency of Steady State and Pulse Results for Activated Alumina Pellets

The results of runs 62 and 73 with 1/4" and 1/8" activated alumina illustrates the potentially serious errors possible with non homogeneous pelleted materials in measuring the unidirectional diffusion through a part or all of a pellet, as, for example, in the steady state apparatus, when in the actual reaction diffusion occurs towards the centre and out again. There are, of course, other potential reasons for differences in the results from steady state and pulse methods, which have already been discussed.

The pulse method in this work maintains either bulk equimolar counter diffusion or Knudsen diffusion in the pellet so that equation 1.13 is valid no matter what mechanism occurs. In the case of the alumina pellets, the outer shell has a uniform structure with 50°A pores so that Knudsen diffusion occurs, and settles the choice of equation for the steady state apparatus. Thus, the discrepancy between the steady state and pulse apparatus must be caused largely by the macroporous seed which carries a disproportionately large portion of the diffusion flux in the steady state apparatus.

The 1/4" alumina pellets were examined under a microscope and the seed in the centre was seen to be approximately 1/8" across with pores up to 150 microns, as compared to the 50°A pore size in the deposited outer layer. The seed in the 1/8" pellets was not visible by eye and it is possible that these pellets either had an extremely small seed or none at all. This would account for the lower diffusivity of the 1/8" pellets compared to the 1/4" ones. If the interstitial Knudsen diffusivity is calculated for 50 Å cylindrical pores, the extremely large pores in the seed would account for the tortuosity value of less than unity obtained by the steady state method and given in Table 1.IX. Another factor which could account for the difference in diffusivity values from the pulse and steady state apparatus is that the alumina pellets were prone to break down in annular layers. With caps ground off each side in the steady state apparatus, the strata of these layers are exposed and may represent a low resistance diffusion path through the pellet.

Porosity

One of the critical factors in applying the pulse technique is an accurate knowledge of the pellet porosity. A 1% change in porosity can result in a 4% variation in diffusivity. As a check on the manufacturer's data, an experiment was carried out using a gas chromatograph and a 15' by 1/2" diameter empty tube as a dispersing system. Samples of the 1/8" "wet" alumina pellets were placed in the sample loop of the chromatograph and a hydrogen pulse injected in an air carrier gas. The height of the pulse output compared to the height obtained in the same way from the empty sample loop gave a good measure of the solid volume of the porous pellet. The sample gas of hydrogen had to be diluted with air to keep the detector in the linear range, but it would appear reasonable that if a pulse apparatus was to be utilized, a porosity measuring device of this type would be very useful, so that the porosity of the pellets as tested is measured.

Non Spherical Pellets

There should be no reason why the effective diffusion coefficient of granular pellets of almost any form could not be measured by applying an

- 96 -

appropriate shape factor, and a surface-to-volume pellet diameter as used for effectiveness factor charts (3). A derivation was attempted to express the mass transfer coefficient for cylinders in terms of an effective diffusivity, (as in equation (1.46)) but no simplified approximation could be made, due to the presence of Bessel functions in the solution. Thus, for shapes other than spheres, a constant based on experiment would seem to be required to relate the mass transfer coefficient and effective diffusivity if the simplified form of equation (1.49) is to be preserved.

Methane Pulse

The use of a methane pulse seems to be of little value. The correction to the dispersion measured for a bed of porous pellets which is due to eddy diffusion effects is no higher for hydrogen than the correction term for methane. The desirable amplification of the pellet capacity dispersion term can be achieved by a high velocity, rather than attempting to use a gas of lower molecular diffusivity. The hydrogen flame detector could conceivably have a lower response lag as compared to the thermal lag in a hot wire detector (thermal conductivity), but this does not appear to be a problem in this work.

Errors

The errors in the result caused by the mathematical manipulations are not readily estimated, however, the effects of inaccuracies in the measured values are considered below. The effective diffusivity is given by,

$$D_{\rm E} = \left[\frac{1}{1 + \frac{\epsilon_{\rm B}}{\epsilon_{\rm p} (1 - \epsilon_{\rm B})}}\right]^2 \qquad \frac{2 \epsilon_{\rm B} (d_{\rm p})^2}{4 \pi^2 c (1 - \epsilon_{\rm B})}$$

where C is the term from equation (1.50).

- 97 -

The overall potential error may be estimated by adding the effects of individual errors for a given typical set of values.

In the following table typical variable magnitudes are given along with the estimated error and the effect on the resultant effective diffusivity.

Variable	Magnitude	TABLE 1.X POTENTIAL ERRORS Degree of Uncertainty	Percentage error in Effective Diffusivity
С	0.375 cm/sec	<u>+</u> 5%	5%
dp	1.0	± 2%	4%
€ _p	0.33	± 10%	16%
€ _B	0.40	<u>+</u> 5%	<u>2%</u> 27%

It is fairly obvious that more accuracy in the pellet porosity values would radically improve the results, but at the same time it is extremely improbable that all the errors would be in the same sense and yield the above overall error. It should be mentioned that the above error estimates apply to inaccuracies in mean values obtained from a reasonable sample. For example, although the pellet diameters could show 50% variation between individual pellets, the mean of 20 to 40 pellets was not found to vary when a grab sample was taken. İ

- 99 -VII

CONCLUSIONS

1. The effective diffusivity of gases in porous pellets can be adequately measured using a hydrogen pulse technique. A 27% random error is conceivable due to errors in the measured variables; however, this can be halved with better methods of measuring the pellet and bed porobities. In addition, a probable error exists from the mathematical derivations. This latter error should be a relatively constant percentage, thus lending itself to elimination by calibration.

2. An eddy diffusion mechanism exists in the transition region between laminar flow and turbulent flow in packed beds such that the axial dispersion coefficient is proportional to the square of the velocity.

VIII

RECOMMENDATIONS

The method for the measurement of the porosity of pellets by injecting a pulse of hydrogen which has been purged from the sample loop of a chromatograph containing the test pellets, should be developed further and incorporated into the pulse apparatus. The main problem to overcome is that of minimizing the interparticle volume by packing in as many pellets as possible.

By extending the flow ranges covered in this work, the range of the region where eddy diffusivity is proportional to the square of the velocity may be determined. The results may then be compared with the results obtained in empty pipes by Taylor (25).

- 100 -SECTION II

DEVELOPMENT OF AN UNSTEADY STATE FLOW METHOD FOR MEASURING BINARY GAS DIFFUSION COEFFICIENTS

Ι

INTERODUC CION

The bulk, or molecular diffusion coefficient of binary gas mixtures is not readily measured experimentally. One of the oldest techniques is the Loschmidt method which is based on bringing two cylinders containing the gases (lighter on top) together and measuring concentration variation with time. However, this method is sensitive to convection or thermal eddies.

In Stefan's method the rate of diffusion of a vapour in a vertical glass capillary tube is measured by following the drop in level of a liquid meniscus as evaporation occurs. The open top end of the glass tube is flushed with the second component. This method obviously cannot be used for gases above the critical temperature, and, in practice, is limited to narrow ranges of temperature and pressure.

The longitudinal dispersion coefficient in a straight tube, within the limits described in Section I on Taylor's work (25), is a function of the molecular diffusivity. Thus by measuring the dispersion in a straight tube by a method similar to that described in Section I, the molecular diffusivity may be obtained. Chromatography apparatus can also be used for this type of work. Good results can be obtained, although the apparatus is not simple, and experimental conditions feasibly are limited (35)(36). The molecular diffusivity at high temperatures has been measured by Walker and Westenberg (37) by a point source technique in which a trace of one gas is fed through a capillary which is mounted in the centre of a tube in which the second gas is flowing. The profile of the trace gas in the bulk stream is measured downstream from the source, and the molecular diffusivity can be calculated using the appropriate solution of the diffusion equation. Very careful experimental technique is required to obtain accurate values by this method, although wide temperature ranges can be covered.

Other methods, such as measurement of diffusion rates through porous barriers, have been employed by numerous workers, but these do not give absolute values, and require calibration, and a correct interpretation of results. In particular, there appears to exist no absolute methods which can be used to give acceptable values of the binary diffusion coefficient over wide ranges of both temperature and pressure, and which will allow some investigation of concentration effects also. The present work is an attempt to develop a measurement technique which will satisfy all these requirements.

An unsteady state flow method similar to the Stefan technique was selected, as offering the possibility of analysis of an effluent stream remote from the diffusion cell by any convenient means and at any necessary conditions. The cell itself could be maintained at any temperature and pressure desired. By varying flowing and cell gas compositions, concentration effects might be studied. However, convection effects in the cell must be absent, and so some form of packing to produce capillary channels would also be a part of the construction.

- 101 -

- 102 -II

THEORY

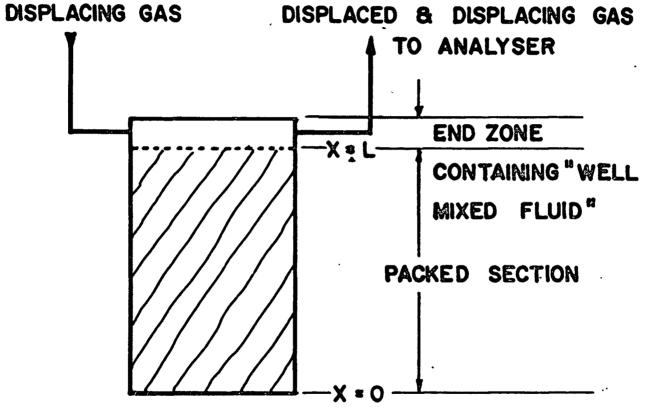
Α. SIMPLIFIED SOLUTION OF A DIFFUSION EQUATION

It has been shown (6) that for equimolar diffusion in a porous solid Fick's second law of diffusion takes the following form,

$$\frac{\partial C_A}{\partial t} = - \frac{D_E}{\epsilon_B} \frac{\partial_2 C_A}{\partial x^2}$$
(2.1)

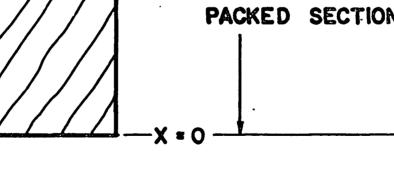
where D_E is the effective diffusivity, \boldsymbol{e}_B the porosity, C the concentration and t the time. The absence of significant surface adsorption is also implied by the above equation.

The relationship between the effective diffusivity ${\rm D}_{\rm E}$ and the true binary diffusion coefficient D_B of the free gas D is given by,


$$D_{\rm E} = \frac{D_{\rm B} E_{\rm B}}{\lambda}$$
(2.2)

where λ is the tortuosity with values varying from 1.0 for straight parallel pores to about 100 for a structure containing dead end pores. If $\text{D}_{\rm E}$ from equation (2.2) is substituted into (2.1), then for a bed with tortuosity 1.0 the solution of (2.1) would yield the molecular diffusivity $D_{\rm B}$ of the gas.

A simple solution of the diffusion equation (2.1) for the model shown in Figure 2.1 is obtained if the assumption is made that the vessel is initially bathed in a gas concentration $\texttt{C}_{\textbf{O}}$ and then at time zero the plane at x = L is maintained at zero concentration.


Mathematically, the boundary conditions are:

$$x = 0, \quad \underline{\partial C} = 0$$

 $C_A = C_0 \text{ for all } x \text{ when } t \leq 0$
 $C_A = 0 \text{ when } x = L \text{ for } t > 0$

.

٩

Nodel of The Bed For Proposed Diffusion Experiment

Ł

Crank (22) (p. 97) has given the colution of equation (2.1) with these boundary conditions, except that his solution applies from f = -L to +L

$$C_{A} = \frac{1}{\pi} \frac{C_{O}}{\sum_{n=0}^{\infty}} \qquad (-1)^{n} \exp - \frac{D_{E}}{B} \frac{(2n+1)^{2} \pi^{2} \delta}{4 L^{2}} \xrightarrow{(O)} \frac{(2n+1)\pi x}{2 L}$$
(2.3)

In order to find the flux from the end of the vessel the above solution must be differentiated with respect to x, and the resulting expression solved to give the concentration gradient at the end (x = L). This gradient may then be applied in conjunction with Fick's first law of diffusion,

$$N_{A} = -D_{E} , \frac{dC_{A}}{dx}$$
 (2.4)

where N_A is the flux of gas A in moles/(sec)(cm²) under conditions of equimolar counter diffusion, which must exist in the model of Figure 2.1.

The series solution for the concentration gradient given by (2.3) when x = L is,

$$\left[\frac{dC_A}{dx}\right]_{x=L} = \frac{2}{L} \sum_{n=0}^{\infty} \exp\left[-\frac{DE}{B} \left(\frac{2n+1}{4}\right)^2 \pi^2 t\right]$$
(2.5)

This solution can be simplified by taking into account only times greater than the time when the second term of the series is less than 1% of the first, or in other words,

$$\operatorname{Ln 0.0l} - \frac{D_{\mathrm{E}}}{\epsilon_{\mathrm{B}}} \quad \frac{\pi^{2} t}{4 \, \mathrm{L}^{2}} = - \frac{9 \, D_{\mathrm{E}}}{4 \, \epsilon_{\mathrm{B}}} \quad \frac{\pi^{2} t}{\mathrm{L}^{2}} \tag{2.6}$$

If a molecular diffusivity of 0.75 cm²/sec (e.g. hydrogennitrogen) is assumed, and a diffusion path of unit tortuosity and length of 10 cm., then solving 2.6 gives t = 31 seconds. Similarly if the gas diffusivity is taken as 0.1 cm²/sec then the time before the second term can be ignored becomes 232 sec. If now the boundary condition requiring that the end of the bed at x = L should be at zero concentration is achieved by sweeping the end rapidly with a second gas, then the concentration of the displaced gas in the exit stream will be proportional to the flux at the end of the bed. If, in addition, sufficient time as calculated above is allowed to elapse before concentrations are recorded so that the second and higher terms become negligible, then the flux equation from (2.5) reduces to the form,

$$Ln C_{exit} = Ln Z - \frac{D_E \pi^2 t}{\epsilon_B^2 + L^2}$$
(2.7)

where Z is a constant including the unwanted terms from the material balance, and from equations 2.4 and 2.5.

$$Z = \frac{A_B D_E}{Q} \cdot \frac{2 C_0}{L}$$
(2.8)

Q is the displacing gas flow rate in mls/sec., and A_B the area of bed at x = L.

A semi-logarithmic plot of exit concentration vs. time for a constant flow rate should yield a straight line with slope $\frac{D_E}{B} = \frac{\Pi^2}{4L^2}$. If the bed is packed with parallel tubes the tortuosity should be 1, and the slope of the plot becomes $\frac{D_B}{4L^2} = \frac{\Pi^2}{4L^2}$, thus providing a means for measuring the free gas molecular diffusivity without calibration of the apparatus.

B. MORE RIGOROUS SOLUTION

A problem with the above experimental model arises, in that if a displacing gas flow rate high enough to satisfy the boundary condition that $C_A = 0$ at x = L is maintained, then by the time analysis is started the concentration is so small that an extremely sensitive analytical method is required. Possibly this very high gas flow rate could be used

- 105 -

anyway, but a second problem due to turbulence caused by the high velocities entering above the packed section could arise and cause eddies in the diffusion zone.

In order to minimize the displacing gas flow rate, the end zone through which the displacing gas flows must be as small as possible, but too narrow an end zone would result in pressure drops which could cause bulk flow in the diffusion section.

Experimentally, it was not found possible to achieve the boundary conditions described above, but a solution for the diffusion equation with a well mixed fluid at the end of the diffusion zone (i.e. a finite end zone) has been obtained by Carslaw and Jaeger (38) for heat conduction from a solid. Essentially, the solution expressed in terms of the mass diffusion case discussed above is for the following boundary conditions,

 $\frac{dC_A}{dx} = 0 \quad \text{at } x = 0 \text{ for all } t$

 $CA = C_0$ for all 2 at t = 0

and a material balance around the well mixed end zone yields,

$$- D_{E}A_{B} \left(\frac{\partial C_{A}}{\partial x} \right)_{x=L} - Q C_{AO} = \ell A_{B} \frac{\partial C_{AO}}{\partial t}$$
(2.9)

where A_{B} is the area of the end of the bed, $\boldsymbol{\ell}$ is the height of the end zone, and C_{AO} is the well-mixed end zone concentration. As before, Q is the gas flow rate, so that the loss of displaced gas from the system is proportional to the concentration in the end zone and also the gas flow rate.

The solution obtained by Carslaw and Jaeger in terms of heat gives the tomperature v at time t in the region $0 \le x \le L$ with initial uniform temperature V, and no heat loss at the plane x = 0. At x = L, contact is assumed with a mass of well stirred fluid M' per unit area of contact, and

- 107 specific heat c' which is cooling by a radiation mechanism at H times its temperature. The initial temperature of the fluid is taken as zero. The latter boundary condition is not compatible with the apparatus proposed for this work but this does not influence the solution at large times which is the region of interest in this work.

$$v = 2V \sum_{n=1}^{\infty} \frac{\exp\left(-K\alpha_{n}^{2} \pm \right)\left(h - k\alpha_{n}^{2}\right) \cos\left(\alpha_{n} x\right)}{\left(L(h - k\alpha_{n}^{2}) + \alpha_{n}^{2}\left(L + k\right) + h\right)\cos\left(\alpha_{n} L\right)}$$
(2.10)

where h = H/K', $k = \frac{M'c'}{Q'c}$ and α_n are the consecutive roots of

$$\propto \tan \alpha L = h - k \alpha^2$$
 (2.11)

In the above equations, \mathcal{Q} is the density of the bed, with heat capacity c and thermal diffusivity K[']cm²/sec. The thermal conductivity is K cals/sec cm² (^oK)/cm.

The above solution has been transposed to the equivalent diffusion case, and the tabulation which follows may assist in explaining the diffusion parameters.

i	Heat Transfer	Mass Transfer
v ę c	cals/cm ³	C_A concentration moles/cm ³
₽ c	cals/cm ^{3 O} K	l.O, unless in a porous bed when equals porosity $\boldsymbol{\epsilon}_{\mathrm{B}}$
K	cm ² /sec	$\left(\frac{D_{\rm E}}{\epsilon_{\rm B}}\right)$ of fective diffusivity cm ² /sec or D _B if $\epsilon_{\rm B}$ 1.0
К ' = Кр с	cals/sec cm ² (^O K/cm)	$D_{\rm E}$
Ηv	cals/sec cm ²	Q C_{AO}/A_B moles/sec cm ² , where Q is the gas flow rate, cm ³ /sec, and A_B the bed area, cm ²

Other quantities appearing in equation (2.10) when written for the diffusion case are,

 $v/V = C/C_0$, where C_0 is the initial concentration in the bed.

$$h = \frac{Q}{A_B D_E}$$
 (2.12)

$$k = \frac{A_{\rm B}}{\epsilon_{\rm B}} \frac{\ell}{\ell_{\rm M}} \frac{\ell}{A_{\rm B}} = \frac{\ell}{\epsilon_{\rm B}}$$
(2.13)

where $\boldsymbol{\rho}_{M}$ is the molar density and \boldsymbol{l} is the length of the end zone. Rewriting equation (2.10) and setting $\mathbf{x} = \mathbf{L}$ yields.

$$C_{Ao} = 2 C_{o} \sum_{n=1}^{\infty} (h - k \alpha_{n}^{2}) \exp \left[- \frac{D_{E}}{\epsilon_{B}} (\alpha_{n})^{2} t \right]$$

$$L (h - k \alpha_{n}^{2})^{2} + \alpha_{n}^{2} (L + k) + h$$
(2.14)

If the time, t, is large then the second term in the series becomes negligible compared to the first, and equation (2.14) becomes,

$$C_{AO} = \frac{2 C_{O} (h - k \alpha_{1}^{2}) exp \left(- \frac{D_{E}}{B} \alpha_{1}^{2} t \right)}{L (h - k \alpha_{1}^{2})^{2} + \alpha_{1}^{2} (L + k) + h}$$
(2.15)

or

$$Ln(C_{A_0}) = L_n(Z) - \underline{D_E}_{\overline{e_B}} \ll_1^2 t$$
(2.16)

where $Z = \frac{2 C_0 (h - k \boldsymbol{\alpha}_1^2)}{L (h - k \boldsymbol{\alpha}_1^2) + \boldsymbol{\alpha}_1^2 (L + k) + h}$

Thus a plot of Ln (C_{AO}) versus t for large times should yield a straight line of slope - $D_E \ll_1^2/\epsilon_B$. It is also of interest to note that an absolute value of the concentration is not needed. For example, the peak height of a chromatograph is proportional to the concentration at low concentrations, and so the logarithm of peak heights rather than concentrations may be plotted versus time.

Equation (2.16) must be solved simultaneously with the auxiliary equation (2.11) in order to obtain a diffusion coefficient from a set of exit gas concentration versus time data. Examination of the equations shows that an analytical solution is not possible. In order to obtain a trial and error solution the following iterative procedure was applied using the Newton-Raphson method (39). The first root of equation (2.11) must lie between $\alpha = 0$ and $\pi/2$. Selection of an initial value approaching zero could result in a break down of the iterative operation because the second approximation falls outside the zero to $\pi/2$ L range. A further reason for selecting a root close to $\pi/2$ L is apparent, because on substitution of $\alpha = \pi/2$ L back in (2.16) the simplified solution given by (2.7) is obtained. Because the apparatus was designed to approach the simpler boundary conditions, it is reasonable to assume that $\alpha = \pi/2$ L will be close to the actual root. Also, due to the iterative nature of the solutions to (2.16) and (2.11), the time when the second root can be ignored cannot easily be derived, but as the more rigorous solution approaches the simplified solution it is reasonable to suppose that the time calculated from the simpler solution (2.6) and (2.7) is an adequate criterion.

From the assumed value of $\varkappa_1 = \pi/2$ L and the slope of the semilogarithmic concentration vs. time plot one gets,

Slope =
$$\frac{D_E}{\epsilon_B} \propto 1^2$$
 (2.17)

and so an initial value of the diffusivity $D_{\rm E}/\epsilon_{\rm B}$ is obtained. Equations (2.12) and 2.13) may then be substituted in equation (2.11), but since the value of $D_{\rm E}/\epsilon_{\rm B}$ is an initial approximation, equation (2.11) is corrected by a term for the resulting error, Δ ,

$$\Delta = h - k \alpha_1^2 + \alpha_1 \tan \alpha_1 L \qquad (2.18)$$

Differentiating (2.18) with respect to α_{l} ,

$$\frac{d\Delta}{d\alpha_1} = -2 k\alpha_1 - \frac{\alpha_1 L}{(\cos \alpha_1 L)^2} - \tan \alpha_1 L \qquad (2.19)$$

The second approximation for the first root \ll_1 can then be obtained from the first approximation, and equations (2.18) and (2.19).

- 109 -

With the second approximation the process can be repeated from equation (2.17) until a satisfactory result is obtained.

C. COMPUTATION OF SLOPE OF DECAY CURVE WITH A RESIDUAL CONCENTRATION

In cases where the gases are not pure, or where there are dead zones in the apparatus which are not easily purged, a plot of experimental data according to equation (2.7) may yield a curve. A problem was experienced in finding the value of the steady state (or infinite time) concentration which the data should approach with time. This value must be subtracted from the results to yield a straight line. It was found that on a log plot a slight change in the steady state value caused a large change in the slope, and hence uncertainty in the resulting value of the diffusivity.

To eliminate the need for judgment on the part of the experimenter in deciding on a value of the steady state level a least squares solution was prepared for the equation $Y-C = A.e^{-Bt}$ where A, B and C are the constants to be determined, Y represents the concentration (or peak height), and t is the time.

There is reason to question the use of an equation of the above form as it tends to weight the solution in favour of data at short times. However, as there is evidence that the so-called steady state value is dependent on the gas flow rate in this apparatus, weighting in favour of shorter times where the steady state value is negligible would seem to be justifiable. The derivation of the expression for evaluating B is given below.

$$E^{2} = \sum \left[Y_{i} - C - A_{e}^{-Bt_{i}} \right]^{2}$$
(2.21)

- 110 -

where C represents the value of Y approached at infinite time and A and B are constants of the system when equation (2.16) is fitted to (2.21), with E being the error to be minimized.

- 111 -

Differentiating 2.21 by A, B and C yields.

$$\frac{dE^2}{dA} = \sum \left\{ Y_i - C - A_e^{-Bt_i} \right\} \quad (-e^{-Bt_i})$$
(2.22)

$$\frac{dE^2}{dB} = \sum 2 \left[Y_i - C - A_e^{-Bt_i} \right] \left(-A_e^{-Bt_i} \right)$$
(2.23)

$$\frac{dE^2}{dC} = \sum 2 \left[Y_i - C - A_e^{-Bt_i} \right] (-1)$$
 (2.24)

Setting (2.22), (2.23) and (2.24) equal to zero and eliminating A and C yields the following, where \triangle represent the error resulting from assuming an incorrect value of B.

$$\Delta = -\sum I e^{-Bt} \sum \frac{te^{-Bt}}{u} \sum e^{-Bt} + \sum Y e^{-Bt} \sum te^{-2Bt} + \sum te^{-Bt} \frac{\sum Y \sum e^{-2Bt}}{n}$$
$$-\sum Y e^{-Bt} \sum e^{-2Bt} - \sum Y e^{-Bt} \frac{\sum te^{-2Bt}}{n} + \sum Y te^{-Bt} \frac{\sum e^{-Bt}}{n}$$
(2.25)

To apply the Newton-Raphson method (39),

$$\frac{d\Delta}{dB} = \frac{\sum Ye^{-Bt}}{n} \left[\left(\sum te^{-Bt} \right)^2 + \sum e^{-Bt} \sum te^{-Bt} \right] + \sum te^{-Bt} \sum e^{-Bt} \sum \frac{Yte^{-Bt}}{n}$$

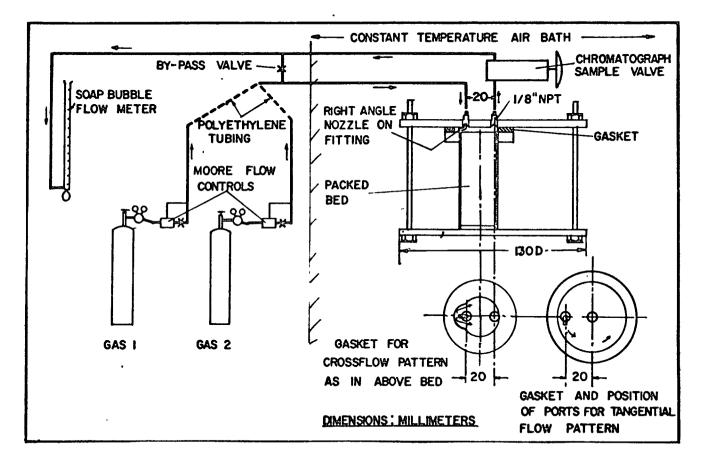
$$- 2\sum Ye^{-Bt} \sum t^2 e^{-2Bt} - \sum te^{-2Bt} \sum Yte^{-Bt} - \frac{2\sum Y \sum te^{-Bt} \sum te^{-2Bt}}{n} + \frac{2\sum Y \sum e^{-2Bt} \sum t^2 e^{-Bt}}{n} + 2\sum Y te^{-Bt} \sum te^{-2Bt} + \sum e^{-2Bt} \sum Y te^{-2Bt} + \frac{2\sum Y \sum e^{-Bt} \sum t^2 e^{-2Bt}}{n} + \sum Y \sum te^{-2Bt} \frac{\sum te^{-Bt}}{n} - 2\sum \frac{Y te^{-Bt} \sum e^{-Bt}}{n} \sum te^{-Bt}$$

$$- (\sum e^{-Bt})^2 \sum \frac{Y t^2 e^{-Bt}}{n}$$
(2.26)

Hence $B_2 \doteq B_1 = \Delta$ (2.27)

In (2.27), B_2 represents a better value of B than the previous assumed value, that is, B_1 .

- 112 -III


APPARATUS

A constant temperature air bath was fitted with the hardware for a gas chromatograph, and a vessel containing the bed for the diffusion measurement. The test vessels were soldered from pieces of brass or copper pipe and were filled to the brim with the packing material. A rubber gasket was used to provide the spacer for the "well mixed end zone" as shown in the sketches in Figure 2.2. Two entrance flow patterns were used in the beds, a tangential entry in the 5 cm. dia. vessel, and a direct sweep across the bed in one direction in the 2.5 cm. cell.

A schematic diagram of the apparatus is shown in Figure 2.2. Moore constant differential flow controllers were used to maintain constant gas flow rates, while a soap bubble meter was used for measurement of the effluent stream flows. In order to reduce the hold up of the apparatus due to valves and fittings, the two gas feed systems were connected to the diffusion cell with 1/4" polyethylene tubing, and switching from one gas to the other was done by disconnecting one tube at the entrance to the constant temperature zone and connecting the second. A bypass valve at the entrance to the constant temperature bath allowed gas to flow directly to the flow meter. The use of 1/8" tubing to connect the test vessel to the chromatograph sample valve provided sufficient resistance to flow to make the bypass valve effective without shut-off valves.

Test gases used in diffusion runs were:

Nitrogen	Prepurified Mat	cheson Co.	99•9%
Ethane	CP	11	,99.0%
Hydrogen	Prepurified	11	99.9%
Butane	CP	11	99%

Diffusion Apparatus

ħ

٠

- 113 -

The details of the packed beds tested are shown in Table 2.I.

The chromatograph columns were packed with 25% Nujol on chromasorb. The separation of nitrogen and ethane was accomplished with a 9' x 1/4" diam. column using a helium carrier. Hydrogen and nitrogen were analyzed on the same column but with a hydrogen carrier so that only nitrogen showed as a peak. Butane and nitrogen were analyzed by an 18" column with helium carrier gas. Ten psig carrier gas pressure was used in the long columns but the short column needed only 2 psig.

IV

PROCEDURE

A. SELECTION OF THE DISPLACED AND DISPLACING GAS

In the selection of displaced and displacing gas from a gas pair two factors must be considered. The tail normally encountered in gas chromatography peaks tends to mask a following peak, and this effect may be particularly serious when the columns are made as short as possible to reduce analysis time. Thus, it was necessary to make the displaced gas the first peak to appear on the chromatograph. The second effect to be considered is that the lighter gas should be placed on top, and if the end zone is also at the top of the bed then this latter requirement is contradictory to the first, as the lighter gases usually tend to appear first in the chromatographic trace.

TABLE 2.1

¢,

.

DIFFUSION CELL PROPER FIES

	Parallel Tube Packing	Porous Solid Packing	Spherical Packing Sphere	
Bed Length, cms.	10.0	7.0	7.0	
Bed Diameter, cms.	5.0	2.61	2.61	
Length of "End Zone", cms.	0.27	0.27	0,27	
Porosity	0.52	0.59	0.39	ı H
Properties of Packing material	"Kimax" melting point tubes 10 cm. long x 1.2 mm O.D. x O.8 mm I.D.	Selas Ol Microporous synthetic ceramic average pore size 4.5 Specific surface area 0.577 m ² /cm ³ or 1.10 m ² /cm ³ by B.E.T. Ref. (5)	Borosilicate Glass	115 -

•

.

.

Three gas systems were tested on each bed, hydrogen-nitrogen, ethane-nitrogen and butane-nitrogen. The problems described above were overcome for the first pair by using a hydrogen carrier gas so that the hydrogen peak was lost completely. For ethane-nitrogen, it was hoped that because of the identical molecular weights density effects would not be significant, however, this system does represent a more difficult separation if chromatography is used for analysis. If the bed packing is firmly held then obviously an inverted bed can be readily used also with gas chromatography for the analysis. Butane and nitrogen were readily separated in the analysis, providing butane was used as the displacing gas.

B. OPERATION OF EQUIPMENT

To start a run the constant temperature air bath was brought up to its control temperature, $(95^{\circ}F)$, the carrier gas was put on stream, and a purge of about one ml/sec. of the displaced gas was passed across the bed (by-pass closed). When the bed had been thoroughly purged, a sample of the purge gas was taken.

After purging, the bypass was opened, and the displacing gas line connected and put on stream. The displacing gas was allowed to purge for about 10 minutes while the flow rate was measured on the soap bubble meter and adjusted to the desired range. The stop watch was started at the same time as the bypass valve was closed. Samples were taken and injected into the chromatograph at convenient times, until the displaced gas peak had become too small to give a satisfactory analysis, or until sufficient results had been obtained. In general, the highest concentration

- 116 -

included in a run was about 25% by volume of the displaced gas and calibrations of the chromatograph indicated a linear response up to about 40%. Therefore, absolute values of concentrations were not usually used, but rather peak height readings.

At the end of the run the flow rate was checked. If any discrepancy from the initial value was found, the later measurement was utilized because the Moore flow controls were found to drift for the first few minutes after a setting change. No flow measurements were taken during a run as the soap bubbles caused a visible increase in pressure in the system. The room temperature and atmospheric pressure were recorded for each run, and the temperature of the air bath was checked.

v

RESULTS

A. TREATMENT OF DATA

The raw data, computer program and computed results are recorded in Appendix V for each run. The value of the diffusivity recorded is actually the $D_{\rm B}/\lambda$ value which is obtained by this experiment. The diffusivity value is for the temperature of the bed, but is corrected to one atmosphere assuming no pressure drop in the vent lines. The effective diffusivity is computed for the same conditions.

The data for each bed are printed along with the constants and sums for the least mean square line computed from the data. Ten iterations were used for this least square calculation, but 4 or 5 were generally sufficient to obtain four figure accuracy. The number of iterations for the diffusivity calculation was set by a test of the

- 117 -

magnitude of the error, and this number is recorded. Certain data points were rejected as described in the following. These points are recorded, but they were not used by the computer.

The results were calculated by a two-part computer program. A subroutine used the Newton-Raphson (39) iteration described in the "Theory" to compute the least mean square fit of the equation Y-C = A exp(-Bt) to the data of peak heights (Y) vs. time, (t). Then using the solution of the diffusion equation described in "Theory" (equation 2.16), the main program calculated the diffusivity from the slope of the least squares line with a second Newton-Raphson iteration.

The least squares fit of the equation in the form Y-C = Aexp (-Bt) weighs the line in favour of the small time (large Y) points. Thus, if the first or second point was inconsistent with the rest of the results, the computed slope showed this inconsistency in spite of all the other points. From the plot of Log Y vs. t, points which appeared to be inconsistent when plotted have been discarded before arriving at the values in the following tables.

The residence time of analysis gases in the chromatograph was extremely short for the butane-nitrogen system, with the result that the recorder was not able to follow the sharp narrow peaks. The lag of the recorder caused the peak heights to be non-linear with composition unless small peak heights were used. Thus, computations for the butane-nitrogen system are based on considerably longer times than the minimum for acceptable data indicated in the discussion of theory. Other reasons for rejecting data points are discussed where applicable.

In order to compare the data, the tortuosity of the beds as calculated from each data point offers a convenient parameter. This calculation requires a knowledge of the value of the molecular diffusivity

- 118 -

for each gas pair used, and the values in Table 2.V show that available published results are not reliable beyond $\pm 5\%$. Because of this discrepancy the tortuosity only gives a good indication of the consistency of the method, but its absolute value depends upon the value of molecular diffusivity selected. The tortuosity is shown in the following tables, but in Table 2.V the computed value D_B/λ for each set of gas systems and beds are averaged, and then ratioed with the results for the ethenenitrogen system. These ratios may then be compared with the same ratios of the published experiments and calculated values, and give a comparison less dependent upon experimental error.

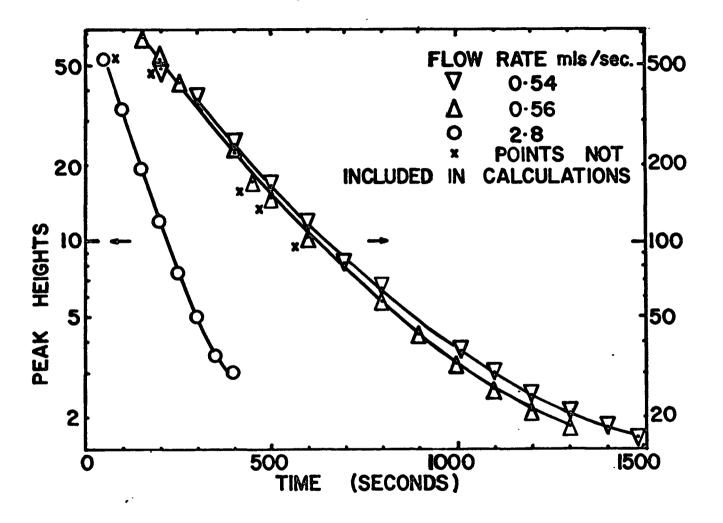
B. PARALLEL TUBE PACKING

The first experiments were carried out on a bed packed with 1.2 mm diameter melting point tubes, thus providing a bed with unit tortuosity parallel to the tube bundle. The details of this bed are given in Table 2.I, while the diffusion results are summarized in Table 2.II and shown graphically in Figures 2.3, 2.4 and 2.5 as plots of the log peak heights vs. time. In some of the runs shown a Millipore Type HA filter (80% porosity) was placed over the bed of tubes to prevent eddy currents in the diffusion channels due to the flowing displacing gas. The results shown suggest that such currents are not significant.

An inspection of the tortuosities in Table 2.II shows that the results scatter over a \pm 9% range. Turning the bed on its side so that gravity effects became influential increased the diffusivity by 50%. The reason for the scatter can be seen in the run with the hydrogen-nitrogen system at a flow rate of 0.563 ml/sec. Three data points had to be discarded because the recorder automatic standardization operated and thus

- 119 -

TABLE 2.11

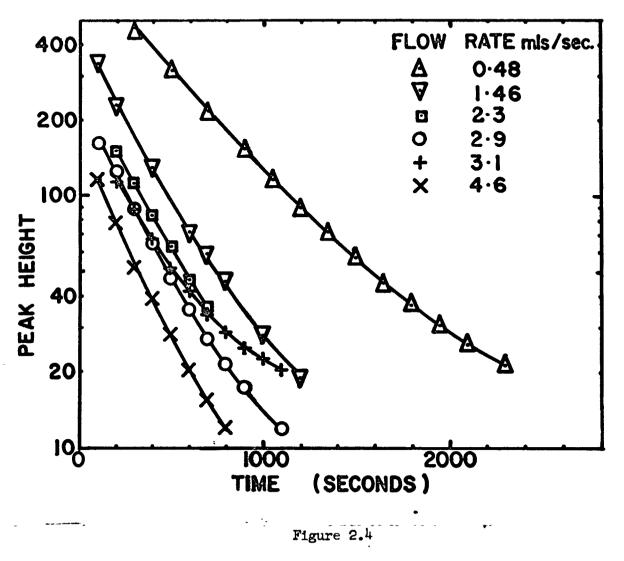

¢

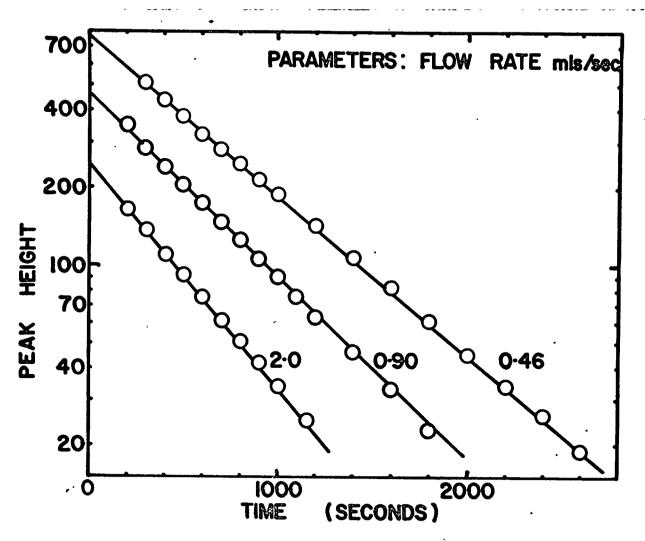
RESULTS FOR PARALLEL TUBE BED

Bed Temp. 306°K

Displacing Gas	Displaced Gas	Flow Rate cm ³ /sec.	Slope sec	$D_{\rm B}/\lambda$ cm ² /sec.	Molecular Diffusivity Used for λ Computation cm ² /sec.	Tortuosıty λ	Remarks
Nitrogen	Hydrogen	0.510	0.00364	0.551	0.82	1.49 -	Beù on Side
Hydrogen	Nitrogen	0.544 0.563 2.81	0.00406 0.00434 0.0115	9.715 0.873 0.776	0.82 0.82 0.82	1.15 0.940 1.05	Millipore
		-A	verage	0.788			
Ethane	Nitrogen	0.485 1.461 2.27 2.94 3.08	0.00200 0.00295 0.00300 0.00357 0.00329	0.135 0.148 0.140 0.165 0.149	0.151 0.151 0.151 0.151 0.151 0.151	1.11 1.02 1.08 0.915 1.015	Millipore Millipore Millipore
		A	verage	0.1505		,	
Nitrogen	Butane	0.460 0.903 2.05	0.00143 0.00158 0.00202	0.0817 0.0766 0.0905	0.095 0.095 0.095	1.16 1.2 ¹ 4 1.016	Millipore Millipore Millipore
		rA	verage	0.084			

.




Results With Parallel "ube Bed. Hydrogen-Mitrogen

- 121 -

ţ

Results With Parallel Tube Bed. Ethane-Nitrogen

Results With Parallel Tube Bed. Butane-Nitrogen

- 123 -

caused a shift in the peak height proportionality with concentration. Removal of these points caused the least square line slope to change from 0.00446 to 0.00434 with a resulting change in the D_B/λ value from 1.008 to 0.873 cm²/sec. The three discarded points are not in error by more than 4%, yet in a total of 15 points these three cause a 3% variation in the slope, which in turn causes a 15% difference in the diffusivity.

C. POROUS SOLID PACKING

The results of the runs using parallel tubes were initially calculated by hand from slopes obtained by graphical means. The sensitivity of the method to slight errors was not appreciated at the time, and errors were tolerated in the iterative calculation as well as those caused by the uncertainty of placing a straight line through a slightly curved set of points to obtain the slope.

Because it was originally felt that these errors could also be due in some measure to eddy diffusion within the relatively coarse-pored tubular packing, additional experiments were carried out using fine porous solids as a diffusion medium.

A Selas Ol ceramic filter medium solid rod was fitted tightly into a 2.61 cm. diameter vessel thereby halving the former bed diameter, but the pore diameter was also reduced from 0.8 mm (800 microns) to 4.5 microns. The details of this bed are given in Table 2.I, and the results are summarized in Table 2.III.

Because of the smaller diameter end zone, the flow pattern was changed from the former tangetial inlet arrangement to one having flow in one direction across the chamber.

- 124 -

- 125 -TABLE 2.III

RESULTS FOR POROUS SOLID PACKING Bea Temp. 306°K

Displacing Gas	Displaced Gas	Flow Rate cm ³ /sec	Slope secs	$\frac{D_{\rm B}}{\lambda} = \frac{D_{\rm E}}{\epsilon_{\rm B}}$ ${\rm cm}^2/{\rm sec}$	Molccular Diffusivity cm ² /sec	λ
Hydrogen	Nitrogen	0.562 0.793 0.928 1.25 1.83	0.0139 0.0159 0.0171 0.0191 0.0245	0.565 0.596 0.533 0.538 0.651	0.82 0.82 0.82 0.82 0.82	1.45 1.37 1.54 1.52 <u>1.26</u>
	Average			0.577		1.43
Ethane	Nitrogen	0.39 0.82 1.32 1.90	0.00450 0.00490 0.00525 0.00523	0.11 ⁴ 0.108 0.112 <u>0.108</u>	0.151 0.151 0.151 0.151 0.151	1.34 1.40 1.35 1.39
	Average			0.1105		1.37
n Butane	Nitrogen	0.594 1.14 2.06	0.00337 0.00380 0.00400	0.0747 0.0802 <u>0.0823</u>	0.099 0.099 0.099	1.32 1.23 <u>1.20</u>
	Average			.0791		1.25

An examination of the results in Table 2.III. shows that the tortuosities are fairly consistent, with each gas system showing about a \div 5% scatter from the mean. However, the butane-nitrogen system tortuosities are lower than those obtained from the other gases, indicating that a true diffusivity value higher than that used would be appropriate. In order to avoid the "tail effect" mentioned earlier, nitrogen was made the displaced gas. The fact that butane is almost double the density of nitrogen would probably lead to gravity effects and could cause an apparent increase in the diffusivity. The difference between the average tortuosity of the hydrogen-nitrogen and ethane-nitrogen systems is not significant as it

,

depends upon the assumed value of the diffusivity. For example, if a value of 0.80 cm^2/sec is assumed for the hydrogen-nitrogen diffusivity rather than 0.82 cm^2/sec , both systems give an average tortuosity of 1.37 to 1.38.

The result at high flow rate for the hydrogen containing system is included in the averages. If this result is ignored it would appear that this system is showing about 5% lower diffusivity relative to the ethane system. The average pore diameter of the Selas Bed is 4.5 microns, while the mean free path of hydrogen at NTP is 0.18 microns. It is unlikely that the pore size distribution is so narrow that some percentage of the pores are not smaller than, say, 1.8 , at which pore size the resultant of the mixed Knudsen and bulk diffusion rates could be 5% less than the bulk diffusion alone.

Thus, in spite of the fact that the results look fairly good, use : of the Selas Ol bed is questionable with high diffusivity gases at room temperature. Such a packing also suffers from the need to calibrate the bed to find the tortuosity before it can be used on gases of unknown diffusivity.

D. SPHERICAL PACKING

The relationship of porosity to tortuosity has been published (6) for beds of spherical particles, and this provides an obvious means of overcoming the need to calibrate a porous solid type of packing to first determine its tortuosity. The bed vessel was the same as that which held the Selas Ol, but it was packed with 42γ diameter glass spheres. However, the porosity obtained with the spherical packing was considerably less than for the porous solid, and the resulting reduced bed capacity led to a decay curve that rapidly decreased below the range of analysis by chromatography. The hydrogen-nitrogen results were most influenced by this effect.

- 126 -

- 127 -TABLE 2.IV

RESULTS FOR SPHERICAL PACKING Bed Temp. 306°K

Displacing Gas	Displaced Gas	Flow Rate cm ³ /sec	Slope sec ⁻¹	$\frac{D_{\mathrm{B}}-D_{\mathrm{E}}}{\lambda}$ B cm ² /sec.	Molecular Diffusivity cm ² /sec	λ
Hydrogen	Nitrogen	0.456 0.832 1.25	0.0164 0.0218 0.0242	0.682 0.687 0.661	0.82 0.82 0.82	1.20 1.19 1.24
		Ave	erage	0.677		
Ethane	Nitrogen	0.604 0.919 1.36	0.00524 0.00521 0.00520		0.151 0.151 0.151	1.29 1.35 1.39
		Ave	rage	0.113		
Butane	Nitrogen	0.596 0.979 1.24	0.00364 0.00370 0.00369		0.099 0.099 0.099	1.25 1.26 1.28
		Ave	rage	0.0785		

The graphical plots of the data in Figures 2.6, 2.7, and 2.8 shows a sharp change of slope at longer times. It is possible that the diffusion flux measured is the resultant of two decay processes, one due to the diffusion from the bed and the other due to diffusion from stagnant portions of the piping. This latter contribution would normally be negligible for a diffusion cell with a sufficiently large capacity. It may be noticed that for the hydrogen data with this bed (Appendix V), the least square computation has shown the decay curve to approach a value higher than the data for larger times. For this reason, the slope and hence the diffusivity (see Table 2.III) is higher for these runs, giving a lower tortuosity.

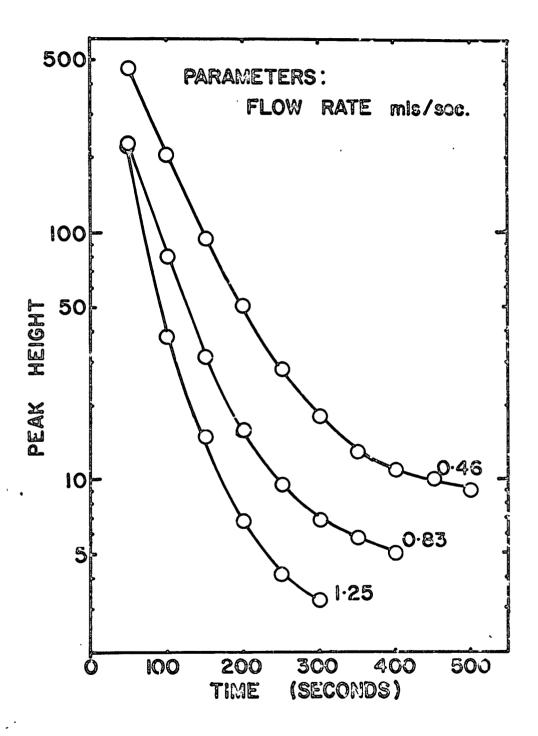
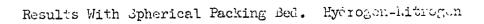



Figure 2.6

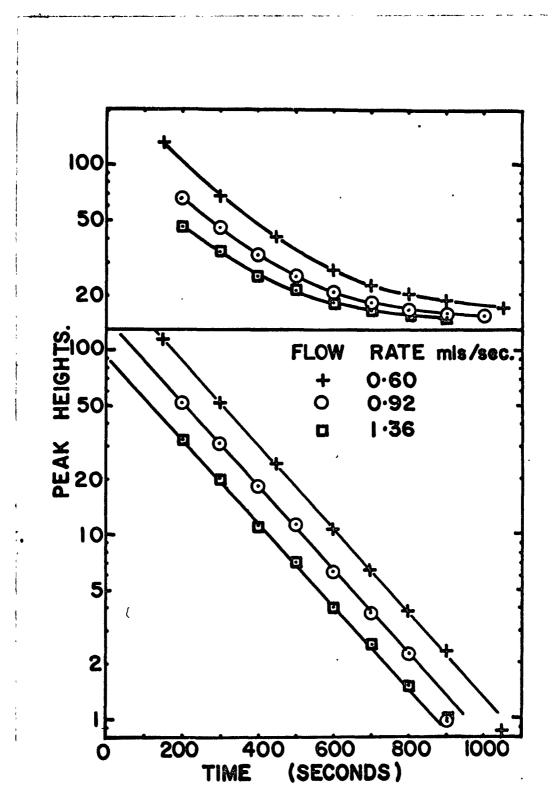
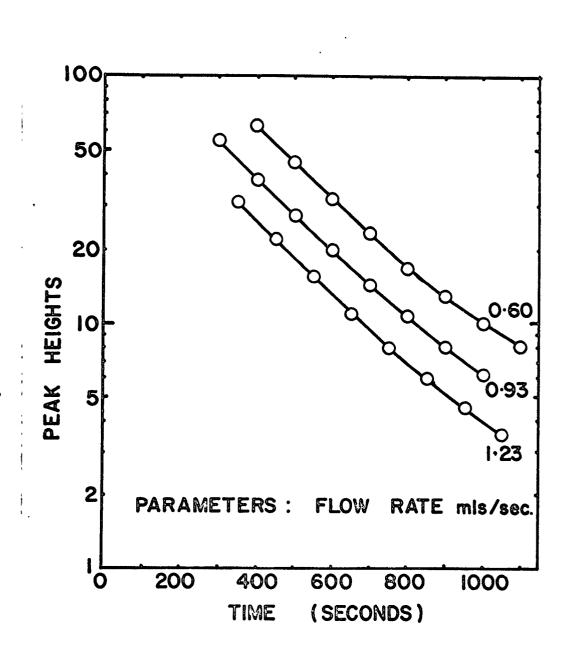



Figure 2.7

Results With Spherical Packing Bed. Ethane-Nitrogen The lower graph shows the above points after the steady state constant has been subtracted

Results With Spherical Packing Bed. Dutane-Nitrogen

TABLE 2.V

COMPARISON OF RESULTS

I	PUBLISHED	DIFFUSI	ITIES RE	EF 40	EXPERIMENTAL RESULTS FROM THIS WORK						
Cal	culated			imental		Melting	Point	Selas (n Spheres
Temp. °K	Diff.	Ratio	Temp. °K	Diff.	Ratio	DB	Ratio	$\overline{\mathrm{DB}}$	Ratio	DB	Ratio
H ₂ -N ₂ 273.2 288.2 293.2 306*	0.656 0.718 0.739 0.790	<u>5.27</u>	273.2 288.2 293.2	0.674 0.743 0.76 0.814	<u>5.28</u>	0.788	5.24	0.577	5.22	0.677	<u>5.99</u>
C2H6-N2 298.2 306*	0.144 0.1498	<u>1.0</u>	298.2	0.148 0.154	<u>1.0</u>	0.1505	<u>1.0</u>	0.1105	<u>1.0</u>	0.113	<u>1.0</u>
nC4H10- 298.2 306*	-N2 0.0986 0.1025	0.685	298.2	0.0908 0.0944	<u>0.613</u>	0.081	0.567	0.0791	<u>0.716</u>	0.0785	0.695

--

.

*Extrapolated Values

.

-

 \sim

- 131 -

¢

Again the use of the heavier gas as the displacing gas in the butane-nitrogen experiments may have caused the diffusivity to be relatively somewhat higher than that of the ethane-nitrogen system, similar to the effect apparent in Table 2.III also.

IV

DISCUSSION

The overall potential error of the method cannot be estimated by the conventional methods due to the iterative nature of the solution. Nevertheless, the extreme sensitivity of the procedure to errors is indicated by the example in the "Results" section (for the hydrogen-nitrogen system in a bed of parallel tubes) where a 3% change in the slope causes a 15% change in the diffusivity. An understanding of the potential accuracy of the method may be aided by examining the first root of the auxillary equation,

$$\tan \alpha L = \underline{h} - \underline{k} = \underline{Q} - \underline{l\alpha} = \underline{Q\lambda} - \underline{l\alpha}$$

If the right hand side (RHS) of the equation is large, then $\ll L$ approaches $\pi/2$ and \ll becomes independent of the flow rate (Q), bed porosity (ϵ_B), bed area (A_B), end zone length (ℓ) and gas diffusivity (D_B). Thus in order to reduce the present 10% scatter of the experiments, it would appear to be necessary to achieve a large value of $\ll L$, that is to increase h/ \ll , and minimize k \ll .

Both h and k are inversely proportional to the porosity, so if $h/\alpha \gg k \propto$, a porosity decrease will increase the RHS, however, the reduction of bed capacity which results, decreases the time available for

- 132 -

analysis of effluent concentrations. It is noticeable that the results from the low porosity 42 micron bed are less scattered.

The term h increases as the bed area decreases, but experimentally, reduction of the area has the same limitations as a decrease of the porosity, except that the benefits do not depend upon the relative magnitude of h and k.

The gas diffusivity has the same influence as the bed area, and so high diffusivity gases are most susceptible to error. The parallel tube bed with the hydrogen-nitrogen system would be expected to have most scatter of the experimental results. Unfortunately, there are not enough data points to carry out any form of statistical comparison.

High flow rates of the displacing gas increase the term Q and therefore h, but once again experimental factors will restrict the maximum flow rate because of the turbulence, which can enter the bed packing to some extent, thereby increasing the effective diffusivity and making the result flow dependent. Coupled to this is the effect of pressure gradients from friction losses, or changes in kinetic energy at the entry port, which could cause bulk flow in the bed. Even the parallel tube bed is susceptible to bulk flows as the tubes are not sealed at the blank end.

An increase in the end zone length will have the deleterious effect of increasing k and hence decreasing the RH3. In the experimental apparatus used in this work, k was negligible, so that the end zone depth could probably be doubled without too much influence on the magnitude of \ll . This depth increase might assist in minimizing another potential source of error, in that the solution to the differential equation assumes perfect mixing in the end zone. The use of a deeper end zone would allow larger scale eddies to increase the mixing, but at the same time the larger eddies should not be able to penetrate too far into the bed. The millipore filter used to discourage eddy penetration does not show any influence on the results, but this is probably to be expected because the added resistance would not amount to more than 0.3% of the total while the results scatter to $\pm 10\%$. The millipore filter may help to reduce the penetration of eddies into the bed but it would not be expected to stop the bulk flow effects discussed earlier.

Finally, the length of the bed, L, may be increased to make \ll small and hence h/d large. On first inspection this is an obvious improvement, however, there are limitations. The dead time, before the second term of the series may be dropped, is increased four fold by doubling the bed length. In the case of the 0.1 cm²/sec diffusivity gas the dead time was found to be 232 secs for a 10 cm bed (see introduction). In a 20 cm bed a 15 min dead time would be required.

At the same time the effluent gas concentration must be considered. From equation 2.7, the effluent concentration would change only linearly, with bed length. Thus, at the time when the second term represents 1% of the first, the 10 cm bed after 232 secs would have doubled the concentration of the 20 cm bed after 928 secs. The longer bed thus has the effect of lengthening the time scale, and would allow more gas chromatograph analysis to be carried out before the samples are too dilute, but at the same time would start from a lower concentration.

The use of the three constant equation to fit the curved data would not appear to be responsible for the variations in the results because the data for the butane-nitrogen system as shown in Figure 2.5 for

- 134 -

the tubular bed are not curved, yet the diffusivities calculated are badly scattered. It may be noticed, however, that at a flow rate of 0.903 mls/ sec the points at 200 and 300 seconds in Figure 2.5 deviate slightly from the other points, and since the least square equation favours the lower times the scatter may be caused by the small deviations of the first two points.

Nitrogen decay was followed in most of the runs, and so the trace of air in the gas systems appeared as nitrogen, resulting in a curve $Y = Ae^{-Bt} + C$ instead of $Y = Ae^{-Bt}$ (where Y and t are the variables), which can be plotted as a straight line. The use of high purity gases might simplify the interpretation of results.

In summary, there are at least three major sources of error which may influence the diffusivity obtained by this method: (a) eddies from the end zone penetrating the bed to increase the diffusivity (b) bulk flow in the bed caused by pressure gradients in the end zone, which also act to increase the diffusivity and (c) poor mixing in the end zone causing a lowered diffusivity.

There is some indication of the presence of the last of these errors in the large diameter parallel tube bed (see Table 2.II). Examination of the data in Tables 2.II, 2.III and 2.IV shows that for the parallel tube bed (Table 2.II) there was no significant increase in diffusivity with increasing gas flow rate. The other beds used, which were more isotropic in structure, do tend to show such an increase with flow rate. As the range of flow rates used in all beds was comparable, there appears to be a slight effect of the first two sources of error mentioned in all but the parallel tube bed. The results for this latter bed (see Table 2.II) also indicate that there may be some evidence for poor mixing in the end zone.

- 135 -

VII

CONCLUSION

The method as used in the present apparatus is satisfactory for measuring gas molecular diffusivities for binary systems within plus or minus 10%. Analysis of sources of error suggest that by redesigning the apparatus a probable accuracy of 2 1/2% could be readily achieved.

VIII

RECOMMENDATIONS

On the basis of this work, it is apparent that a bed of the following dimensions could minimize the potential sources of error encountered in the present experiments.

> Parallel tube packing 1 mm or less OD. Length 20 to 30 cms. Diameter 5 cms.

End Zone length 0.25 - 0.5 cms.

The sealing off of the tubes and prevention of bulk flows through the bed is also advisable. It would be advantageous to be able to invert the bed and also much time could be saved if the displaced gas could be purged through the bed, particularly if the dead time is increased to 15 mins. or half an hour by the larger bed.

Further Study

The advantages of the larger bed should be experimentally verified and the magnitude of the flow effects, like bulk flow and turbulence, should be investigated if the larger beds are used to reduce the scatter. The effect of the end zone length on the mixing should also be investigated.

••	137	
----	-----	--

-

...

NOLIENCLATURE

A,B and C	NONENCLATURE Constants in least square equation.
A_{B}	Area of bed, cm ²
A _p	Specific surface area/unit volume of bed, cm ⁻¹
A _s	Sample or pulse volume, mls.
с _о	Initial gas concentration in Section II, moles/cm ³
Cn	Concentration in stage n, moles/cm ³
Cl	Concentration in mobile phase, moles/cm ³
C ₂	Concentration in stationary phase, moles/cm ³
C _A	Concentration of component A, moles/cm ³
C _{AO}	End zone concentration, moles/cm ³
C _s	Concentration at pellet surface, moles/cm ³
Cavg	Average concentration, moles/cm.
C″	Initial concentration, moles/cm. ³
D	Diffusion coefficient, cm ² /sec
$D_{\mathbf{B}}$	Molecular diffusion coefficient, cm ² /sec
D _K	Knudsen coefficient, cm ² /sec
$D_{\rm E}$	Effective diffusion coefficient, cm ² /sec
D_{L}	Longitudinal dispersion coefficient (Overall including molecular term contribution), cm ² /sec
D_{L}^{*}	Eddy diffusion coefficient (excluding molecular diffusion) cm ² /sec
Ε	Effectiveness factor
Fl	Area fraction of mobile phase = $\epsilon_{\rm B}$
F ₂	Area fraction of stationary phase = $(1 - \epsilon_{B_1})$
H	HETP, cms.
HETP	Height equivalent to a theoretical plant, cms.
К	Constants
L	Length of bed, cms.

.

•

 138	-

\mathbb{N}_{A}	Molar flux, moles/sec of component A per cm ²
IIA 1	Molar flux per unit geometrical area, moles/(em) ² sec.
P	Pressure, abm.
ୟ	Total flux, moles/sec., or gas flow rate, mls./sec. or pellet volume in Appendix IV
R	Gas constant or radius dimension
ú	Temperature, [°] K
U	Volume of gas, mls.
V	Volume of gas phase in theoretical plate, cm ³
Vp	Volume of theoretical plate cms ³
W	Adsorption or partition coefficients.
Z	Coefficient of exponential.
d p	Pellet diameter, cms.
сŀŢ	Column diameter, cms.
ſ	Fanning friction factor.
hD	Hydraulic diameter, cms.
h	Thiele modulus or in section II $h = Q/A_B D_{\mu}$
j	$l + N_A/M_B$
k	First order rate constant, sec.
kı	Mass transfer coefficient in mobile phase, cm/sec.
k2	Mass transfer coefficient in stationary phase, cm/sec.
l	End zone-length, cms.
n	Number of theoretical plates, or number of term in series solution.
r	Pore radius, or radius variable in differential equation, cas.
t	Time, seconds
u	Interstitial velocity, cm/sec.
v	Volume of liquid side of theoretical plate, cm ³
v	Average velocity of a gas molecule, cms/sec.

x	Distance in direction of flux or flow, cms.
У	Mole fraction or peak height.
×	Mass transfer coefficient, sec. ⁻¹ (Jection 1)
∝ _n	Consecutive roots of equation (2.11) (Section2)
\bigtriangleup	Error in equality of equation.
€p	Pellet porosity
€ _B	Bed porosity.
Pm	Molar density, moles/ml.
P~	Density, grams/ml.
γ	Viscosity, cps
8	Eddy diffusivity coefficient.
λ	Tortuosity
Ø	Standard deviation.

•

.

٠

- 139 -

.

٠.

.

F

.

•

- 140 -LITERATURE CITED

- 1. Thiele, E.W., Ind. Eng. Chem., <u>31</u>, 916, (1939).
- Wheeler, A., in "Advances in Catalysis", Vol. 3, 249-327, Academic Press, New York, (1951); Wheeler, A., "Catalysis", Vol. 2, 105-167, P.H. Emmett, Ed., Reinhold Pub. Corp., New York, (1955).
- 3. Aris, R., Chem. Eng. Sci., <u>6</u>, 262, (1957).
- 4. Scott, D. S., Can. J. Chem. Eng., <u>40</u>, 173, (1962).
- 5. Scott, D. S. and Dullien, F.A.L., A.I.Ch.E. Journal, 8, 113, (1962).
- 6. Currie, J.A., Brit. J. App. Phys., <u>11</u>, 314, (1960).
- 7. Petersen, E.E., A.I.Ch.E. Journal, 3, 443, (1957); A.I.Ch.E. Journal, <u>4</u>, 343, (1958).
- 8. Arnell, J.C., Can. J. Res., <u>25A</u>, 191, (1947).
- 9. Rao, M.R. and Smith, J.M., A.I.Ch.E. Journal, <u>10</u>, 293, (1964).
- 10. Turner, G.A., Chem. Eng. Sci., <u>1</u>, 156, (1958).
- 11. Wakao, N. and Smith, J.M., Chem. Eng. Sci., <u>17</u>, 825, (1962).
- 12. Mingle, J.O. and Smith, J.M., A.I.Ch.E. Journal, 7, 243, (1961).
- 13. Weisz, P.B., A. Phys. Chem., <u>11</u>, 1, (1957).
- 14. Scott, D.S. and Cox, K.E., Can. J. Chem. Eng., <u>38</u>, 201, (1960).
- 15. McHenry, K.W. and Wilhelm, R.H., A.I.Ch.E. Journal, 3, 83, (1957).
- 16. Deissler, P.F. and Wilhelm, R.H., Ind. Eng. Chem., <u>45</u>, 1219, (1953).
- 17. Van Deemter, J.J., Zuiderweg, F.J. and Klinkenberg, A., Chem. Eng. Sci., 5, 271, (1956).
- Hougen, J.O., "Experience and Experiments with Process Dynamics",
 P.13, Chem. Eng. Progress Monograph Beries, No.4, <u>60</u>, A.I.Ch.E., New York, (1964).
- 19. Klinkenberg, A. and Sjenitzer, F., Chem. Eng. Sci., <u>5</u>, 285, (1956).
- 20. Lapidus, L. and Amundson, N.R., J. Phys. Chem., <u>56</u>, 984, (1952).
- 21. Engun, J., Chem. Eng. Prog., <u>48</u>, 227, (1952).
- 22. Crank, J., "The Mathematics of Diffusion", p. 121, University Press, Oxford, (1965).

- 23. Carberry, J.J. and Bretton, R.H., A.I.Ch.E. Journal, 4, 367, (1958).
- 24. Hiby, J.W., "Interaction between Fluids and Particles", Inst. Chem. Eng. Symposium, C 71, London, June (1962).
- 25. Taylor, G.I., Proc. Roy. Soc., <u>A 225</u>, 473, (1954).
- 26. Aris, R., Proc. Roy. Soc., <u>A 235</u>, 473, (1956).
- 27. Turner, J.C.R., Brit. Chem. Eng., 2, 376, (1964).
- Bischoff, K.B. and Levenspiel, O., Chem. Eng. Sci., <u>17</u>, 257, (1962), also "Advances in Chemical Engineering", Vol. IV, Academic Press, New York, (1964).
- 29. Saffman, P.C., Chem. Eng. Sci., <u>11</u>, 125, (1959), J. Fluid Mech., <u>6</u>, 321, (1959); <u>7</u>, 194, (1960); <u>8</u>, 273, (1960).
- 30. Harley, J., Nel W., and Pretorius, V., Nature, 181, 177, (1958).
- 31. Newsome, J.W., Heiser, H.W., Russell, A.S. and Stumpf, H.C., "Alumina Properties", Tech. Paper No. 10, Alcoa Research Laboratories, Aluminum Co. of America, Pitsburgh, (1960).
- 32. Bird, R.B., Stewart, W.E. and Lightfoot, E.N., "Transport Phenomena", John Wiley and Sons, New York, (1960).
- 33. Perry, J.H., "Chemical Engineer's Handbook", 3rd Ed., P. 370, McGraw-Hill Book Co., New York, (1950).
- 34. Cairns, E.J. and Prausnitz, J.M., Chem. Eng. Sci., <u>12</u>, 20, (1960).
- 35. Giddings, J.C. and Seager, S.L., Ind. Eng. Chem. Fundamentals, 1, 277, (1962).
- 36. Kenney, N., Dept. of Chemical Engineering, University of Cambridge, Private communication.
- 37. Walker, R.E. and Westenberg, A.A., J. Chem. Phys., 29, 1139, (1958).
- 38. Carslaw, H.S. and Jaeger, J.C., "Conduction of Heat in Solids", 2nd Ed., P. 129, University Press, Oxford, (1959).
- 39. Ralston, A. and Wilf, H.S., Mathematical Methods for Digital Computers", P. 33, John Wiley and Sons Inc., New York, (1964).
- 40. Hirschfelder, J.O., Curtiss, C.F. and Bird, R.B., "Molecular Theory of Gases and Liquids", P. 579, John Wiley and Sons Inc., New York(1954).
- L1. Cox, K.E., MASc. Thesis, "Diffusion of Gases", University of British Columbia, (1959).
- Bluh, O. and Elder, J.D., "Principles and Applications of Physics",
 P. 492, Oliver and Royd Ltd., Edinburgh, (1955).

43. Kipping, P.J., Jeffery, P.C. and Savage, C.A., Research and Der hopment for Industry, No. 39, P. 18, Feb. - March, (1965).

.

•

•

L.

.

٠

.

1

- 143 -APPENDIX I

DETERMINATION OF THE EFFECTIVE GAS DIFFUSIVITY IN A POROUS SPHERICAL PELLET BY A STEADY STATE METHOD

INTRODUCTION

In order to evaluate the results obtained by the pulse technique an apparatus was constructed to measure the effective gas diffusivity in the test materials by a well established procedure. The steady state method described by Weisż (13) was selected.

THEORY

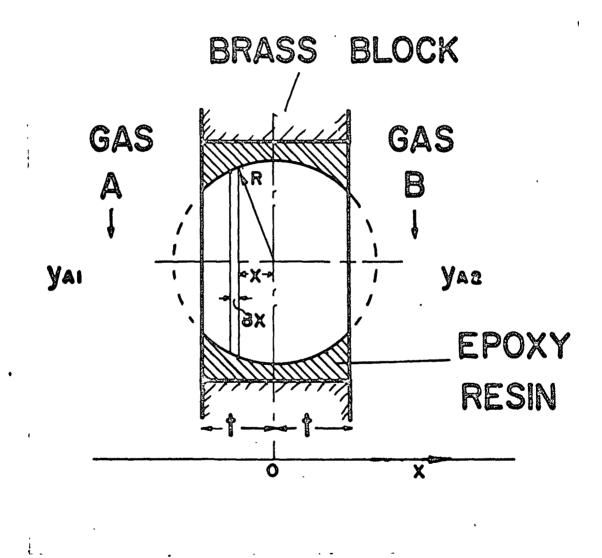
Different diffusion regimes, Knudsen and bulk, were anticipated in the two samples which were examined and so two solutions are needed for the diffusion equation.

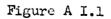
Knudsen Diffusion

The molar flux N_A is given in terms of the Effective Diffusivity D_E and the concentration gradient by Fick's first law,

 $N_A = -D_E \frac{d C_A}{dx}$ at any plane x, moles/sec cm²

Referring to Figure A I.1,


The total flux Q is given by $Q_A = N_A$ (Area of plane) = $N_A \pi (R^2 - x^2)$ moles/sec


$$Q_A = D_E \pi (R^2 - x^2) \frac{dC_A}{dx}$$

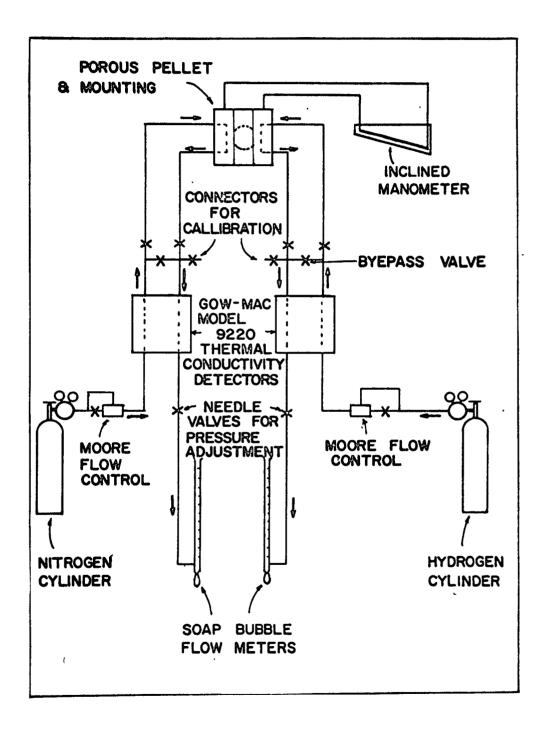
$$\int \frac{\mathrm{dx}}{\mathrm{R}^2 \mathrm{x}^2} = - \int \frac{\mathrm{D}_{\mathrm{E}} \pi}{\mathrm{Q}_{\mathrm{A}}} \, \mathrm{d}^{\mathrm{C}_{\mathrm{A}}} \, \mathbf{\dot{x}}$$
$$\frac{1}{2\mathrm{R}} \left[\operatorname{Ln} \frac{\mathrm{R} + \mathrm{x}}{\mathrm{R} - \mathrm{x}} \right]_{-\mathrm{t}}^{+\mathrm{t}} = - \frac{\mathrm{D}_{\mathrm{E}} \pi}{\mathrm{Q}_{\mathrm{A}}} \, \left[\operatorname{C}_{\mathrm{A}} \right]_{\mathrm{L}}^{2}$$
$$- \mathrm{D}_{\mathrm{E}} = \frac{\mathrm{Q}_{\mathrm{A}}}{2\pi\mathrm{R}} \, \frac{1}{\mathrm{C}_{\mathrm{A}2} - \mathrm{C}_{\mathrm{A}1}} \, \operatorname{Ln} \left[\frac{\mathrm{R} + \mathrm{t}}{\mathrm{R} - \mathrm{t}} \right]^{2}$$

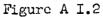
Since $C_A = \rho_m y_A$ where y is the mole fraction and ρ_m the molar density

$$D_{\rm E} = \frac{Q_{\rm A}}{2 \pi R \rho_{\rm m}} \ln \left(\frac{R+t}{R-t}\right)^2 \qquad \frac{1}{y_{\rm A_l} - y_{\rm A_2}} \quad cm^2/sec$$

Sample Mounting In Steady State Apparatus

Bulk Diffusion


Fick's law is again applied but with a correction for the bulk flow caused by non-equimolar counter diffusion.


$$\begin{split} \mathbf{N}_{A} &= -\mathbf{D}_{E} \quad \frac{\mathrm{d} \quad C_{A}}{\mathrm{d} \mathbf{x}} + (\mathbf{N}_{A} + \mathbf{N}_{B}) \mathbf{y}_{A} \quad \text{moles/sec cm}^{2} \\ \mathbf{Q}_{A} &= \mathbf{N}_{A} \text{ (Area)} = -\mathbf{D}_{E} \pi (\mathbf{R}^{2} - \mathbf{x}^{2}) \quad \frac{\mathrm{d} C_{A}}{\mathrm{d} \mathbf{x}} + (\mathbf{Q}_{A} + \mathbf{Q}_{B}) \mathbf{y}_{A} \\ \mathbf{D}_{E} \quad \pi (\mathbf{R}^{2} - \mathbf{x}^{2}) \quad \mathbf{\hat{\rho}}_{m} \quad \frac{\mathrm{d} \mathbf{y}_{A}}{\mathrm{d} \mathbf{x}} = -\mathbf{Q}_{A} + \mathbf{Q}_{A} \mathbf{y}_{A} + \mathbf{Q}_{B} \mathbf{y}_{A} \\ \left[\frac{\mathrm{d} \mathbf{y}_{A}}{\left(1 + \frac{\mathbf{Q}_{B}}{\mathbf{Q}_{A}}\right) \mathbf{y}_{A} - 1} \right] = \frac{\mathbf{Q}_{A} \quad \mathrm{d} \mathbf{x}}{\mathbf{D}_{E} \pi (\mathbf{R}^{2} - \mathbf{x}^{2})} \\ \frac{1}{(1 + \frac{\mathbf{Q}_{B}}{\mathbf{Q}_{A}})} \left[\qquad \mathrm{Ln} \left[\mathbf{y}_{A} \left(1 + \frac{\mathbf{Q}_{B}}{\mathbf{Q}_{A}}\right)^{-1} \right] \right] \mathbf{y}_{A2}^{\mathbf{y}_{A2}} = \frac{\mathbf{Q}_{A}}{\mathbf{D}_{E} \pi (\mathbf{P}_{m})} \left[\frac{1}{2\mathbf{R}} \operatorname{Ln} \left(\frac{\mathbf{R} + \mathbf{x}}{\mathbf{R} - \mathbf{x}}\right) \right]_{-t}^{+t} \\ \mathbf{D}_{B}^{\mathbf{y}_{B}} = \frac{\mathbf{Q}_{A}}{2 \pi \pi \mathbf{R} \mathbf{\rho}_{m}} \left(1 + \frac{\mathbf{Q}_{B}}{\mathbf{Q}_{A}} \right) \frac{\frac{\mathrm{Ln}^{2}}{\mathbf{Q}_{A}} \left(\frac{\mathbf{R} + \mathbf{t}}{\mathbf{Q}_{A}}\right)^{-1}}{\mathrm{Ln}} \left[\frac{\mathbf{y}_{A2} \left(1 + \mathbf{Q}_{B} - 1\right)}{\mathbf{y}_{A1} \left(1 + \mathbf{Q}_{B} - 1\right)} \right] \quad \mathrm{cm}^{2}/\mathrm{sec}} \end{split}$$

APPARATUS

The apparatus shown in Figure A I.2 was assembled around a pair of brass blocks between which a third block (shown in Figure A I.1) containing the sample pellet was bolted. The brass blocks were constructed in such a way that two different gases could be flushed through mirror image passages across the two faces of the sample. Streams of hydrogen and nitrogen from their respective cylinders flowed through their respective cylinder pressure regulators and "Moore" constant differential flow controls to the reference sides of a pair of "Gow Mac" NIS model 9220 thermal conductivity cells. From the reference cells the gases could be

- 145 -

Steady State Apparatus

diverted either across the sample faces, or via a by-pass to the measuring side of the cells, and from here the gases were vented to atmosphere through a needle valve and soap bubble flow meter.

Manometer taps in the sample blocks were located opposite the centre of the sample faces and were connected to an inclined oil filled manometer. Polyethylene 1/4" diameter tubing was used for connecting the apparatus, and this allowed flushing of dead end lines by loosening of the fittings.

The test samples were mounted by bathing them in epoxy resin, and then fitting them into the brass block which was drilled with a clearance hole. After the resin had set the faces of the pellet were ground by means of sand paper on a glass plate.

Two "DORION" potentiometers were used to measure the output of the cells which formed part of a conventional bridge circuit.

PROCEDURE

Calibration of Thermal Conductivity Cells

These "diffusion-type" cells have the property of being relatively independent of flow rate, and at low concentrations a linear output with concentration can be assumed. In order to calibrate the nitrogen cell a fairly high flow was set through the cell and sample block by-pass. The nitrogen flow rate was measured with the bubble meter and the cell zero adjusted electrically. A flow of hydrogen was set through its system and measured on the appropriate bubble meter. The polythene tube from the hydrogen was then disconnected and reconnected into a point on the by-pass of the nitrogen system so that the hydrogen now appeared in the measuring

- 147 -

side of the nitrogen cell. The system was allowed to come to equilibrium and the output measured on the potentiometer. The concentration was calculated from the flow rates of the two gases.

Operation

The two gas flows were set to convenient levels and measured while passing through the sample by-pass system. The outputs of the two detectors were set to zero, and then the flows were diverted to pass across the sample faces. The manometer legs were bled and the outlet measuring valves were adjusted to be at maximum opening but maintaining zero pressure difference across the pellet. The system was allowed to come to equilibrium, and then detector outputs were taken at convenient intervals over a period of twenty minutes. The gas streams were set back on the by-pass and the zero drift of the detectors in the course of the experiment recorded along with the flow rates of the gases.

RESULTS

Calibration of thermal conductivity detectors

Nitrogen content in hydrogen cell

Nitrogen flow: 25 mls in 72.0, 72.2 seconds = 0.346 mls/sec. Hydrogen flow: 50 mls in 8.2, 8.2, 8.6 seconds = 6.1 mls/sec.

Mole % nitrogen =
$$\frac{0.346}{6.1 + 0.346}$$
 x 100 = 5.37%

Output of detector 9.56 millivolts or <u>1.78 mv/1% nitrogen</u> Hydrogen content in nitrogen cell

Nitrogen flow: 50 mls in 7.5, 7.5 seconds = 6.66 mls/sec. Hydrogen flow: 25 mls in 68.0, 68.5 seconds = 0.367 mls/sec. Mole % hydrogen = 0.367 x 100 = 5.22%

$$6.66 + 0.367$$

Output of detector 11.205 x 5 millivolts or 10.72 mv/1% hydrogen

- 148 -

It is of interest to compare the above result with the calibration of Cox (41)who obtained several points with a similar apparatus and verified the linearity of the response. He obtained a slope of 10.85 mv/l%hydrogen.

Activated Alumina Pellet 1/4" Diameter

Pellet Characteristics

"Alcoa H151 Activated alumina sphere" having 42 A mean pore diameter.

Diameter of pellet used in test = 0.255", 0.262", 0.262" Average Dia. = 0.66 cms Thickness of mounting plate, i.e. across flats of pellet = 3/16" = 0.476 cms.

The mean free path of hydrogen at 0°C and 1 atmosphere = 180×10^{-7} cms. (Ref.⁴²) = 1800 A versus 42 A pore size hence Knudsen diffusion will be the predominant mechanism.

The amount of nitrogen which diffused into the hydrogen stream in this experiment was so small that with the lower sensitivity of this detector the output was of the same order as the zero drift during the course of the experiment. For this reason the diffusivity is calculated from the hydrogen flux,

Hydrogen flow rate: 50 mls in 20.5, 20.5 sec. before test 22.0, 22.2 sec. after test Nitrogen flow rate: 50 mls in 18.8, 18.8 sec. before test 19.0, 19.0 sec. after test

Room temperature 26°C Atmospheric Pressure 755.6 mm Hg. Analysis of Streams

Hydrogen in nitrogen mv: 1.47, 1.44, 1.42, 1.41, 1.405, 1.405, 1.405 zero drift add 0.17 mv yielding 1.575 mv. Nitrogen in hydrogen mv: 0.07, 0.07, 0.095, 0.07, 0.08, 0.08 zero drift add 0.045 mv yielding 0.12 mv

Subscript A refers to hydrogen

 $Q_{A} = \frac{50}{19.0} \times \frac{1.575 \ \text{Cm}}{10.85 \times 100} = .00382 \ \text{P}_{m} \text{ moles/sec}$ $y_{A_{1}} = 1.0 - \frac{.125 \times .01}{1.78} = 0.9993 \text{ mole fraction}$ $y_{A_{2}} = \frac{1.575}{10.72} = 0.147\% = .00147 \text{ mole fraction}$ $D_{K} = \frac{Q_{A}}{2\pi R \ \text{P}_{m}} \qquad \text{Ln} \left(\frac{2R + 2t}{2R - 2t} \right)^{2} \frac{1}{y_{1} - y_{2}}$ $= \frac{.00382 \ \text{P}_{m}}{2 \left(\frac{.66}{2} \right) \ \text{P}_{m}} \qquad \text{Ln} \left(\frac{.66 + .476}{.66 - .476} \right)^{2} - \frac{1}{0.9993 - .00147}$ $= 0.0067 \ \text{cm}^{2}/\text{sec}$

Knudsen diffusivity of hydrogen in pellet = 0.0067 cm²/sec at 26°C "Norton" Catalyst Support 1/2" Diameter (Alundum)

Pellet Characteristics

Maximum diameter of pellet = 0.55"

Minimum diameter of pellet = 0.525"

Mean diameter = 0.538" or 1.365 cms.

Thickness of samples plate 0.90 cms.

Pore diameter 90% in range 2 to 40 microns. Hydrogen has a mean free path around 0.18 microns (Ref. 42) so that bulk diffusion will be the predominant mechanism.

Nitrogen	flow rate 50 ml	- 151 - s in 28.0,	27.0, 27.5 se	conds before	test
		28.1,	28.0 seconds	after test	
Hydrogen	flow rate 50 ml	s in 27.2,	27.1 seconds	before test	
		29.8,	30.0 seconds	after test	
Room temperature 2	3°C	-		•	
Atmospheric pressu:	re 760.7 mm Hg		,		
Analysis of stream	<u>s</u>				
Hydrogen in millivo		- ,	Nitr	ogen in hydr millivolts	ogen
17.495 x 5 17.485 17.491 17.46 17.47 17.45 17.43 17.39	17.44 x 5 17.46 17.45 17.44 17.37 17.35 17.39 17.46		3.91 3.95 3.97 4.00 4.02 4.04 4.07 4.10 4.10		4.09 4.10 4.10 4.10 4.13 4.13 4.13
Average = 1	7.421 mv			- 4.103 mv	
Zero drift: a	dd 0.0			add 0.22	
17.421 x 5/ 10.7	2 = 8.11%		4.32/	1.78 = 2.42	5%
Subscript A refers	to hydrogen				
y _{A2} = 0.081				• 0.97575	
$Q_{A} = \frac{50}{28.05} x$.0811 $\rho_{\rm m}$ =	0.1445 Pm	moles/sec		
$Q_{\rm B} = \frac{50}{29.9}$ x	.02425 (° _m =	0.0405 Pm	moles/sec) <u>+</u>) 2	
	<u>QA</u> (1 + 2π R ℓ _m	~	L' way		
	$\frac{1445 \rho_{\rm m}}{\Gamma \frac{1.365}{2} \rho_{\rm m}} \left(\frac{1}{2} \right)$	$-\frac{0.0405}{0.1445}$	$ In \left(\frac{1.365}{1.365} \right) In \left(\frac{0.0811}{0.975} \right) $	$\frac{+0.90}{-0.90}^{2}$ $\frac{-0.90}{-0.90} - 1$ $\frac{-0.90}{-0.90}$	$\overline{\frac{1}{1}}$
Ξ Ω.	$0667 \text{ cm}^2/\text{sec}$				

 $= 0.0667 \text{ cm}^2/\text{sec}$

,

-

Effective bulk diffusivity of hydrogen and nitrogen in the 1/2" Norton catalyst supports was found to be 0.0667 cm²/sec at 23°C and 760.7 mm Hg pressure.

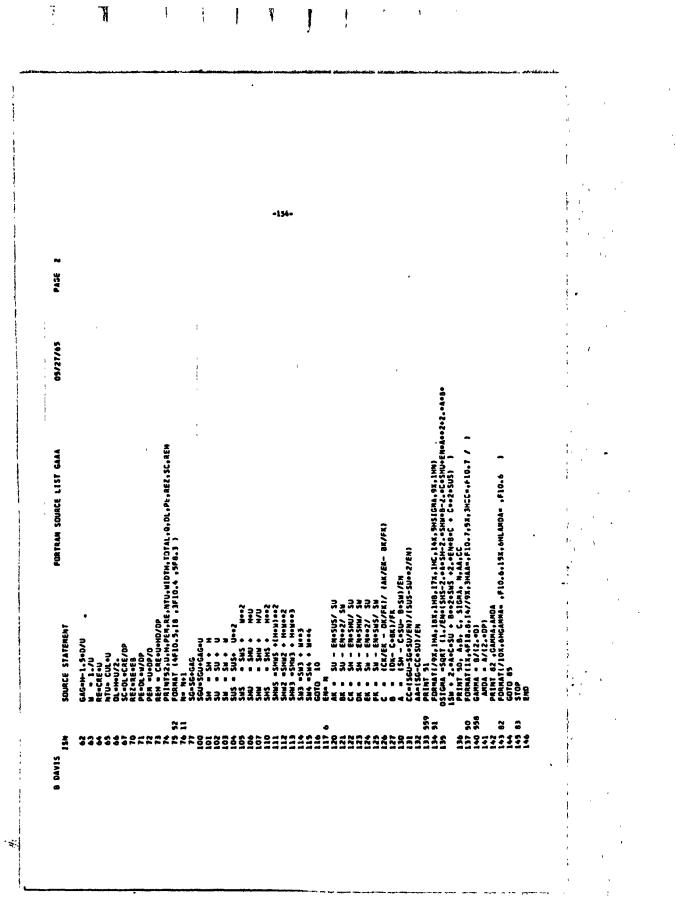
Scott and Dullien (5) pointed out that the ratio of fluxes of two gases diffusing at constant pressure in capillaries should be inversely proportional to the ratio of the square root of their molecular weights. In this experiment a ratio of 3.57 was obtained as compared with a value of 3.74 for the square root of the molecular weights. The difference is probably caused by the difficulty in keeping the pressures identical across the pellet.

No absolute pressure measurements were taken in the test cell and so the actual pressure of the measurement may be expected to be slightly higher than the ambient atmospheric pressure. However, care was taken to operate with the valves wide open except to balance the different pressure drops caused by the difference in viscosity of the gases. Results on other equipment at similar flow rates indicate that a 1/4" tube at flow rates such as used here, the pressure drop is not measurable on a mercury manometer.

CONCLUSION

The diffusion coefficient for the Knudsen diffusion of hydrogen in a 1/4" dia. Alcoa H 151 activated alumina spheres was found to be 0.0067 cm²/sec at 26°C. The moisture content of the pellet is taken to be 12% by wt from analysis of similar pellets, however, the actual moisture of the test pellet during the test was not obtainable.

The diffusion coefficient for the bulk diffusion of hydrogen and nitrogen in 1/2" dia. Norton SA 203 Alundum catalyst carrier spheres was found to be 0.0667 cm²/sec at 23°C and 760.7 mm Hg. No moisture adsorption was found in these pellets.


- 152 -

C PROGRAMY 57 11 59 100000 57 11 59 100000 57 11 59 100000 57 11 50 10000 57 11 50 10000 50 10 50 10 00 50 10000 50 10000 50 1000000000	FORTRAN SOURCE LIST GAAA 05/27/65	10% OF RESULTS FROM 40% POROUS PELLET RUMS 168 "Ee.Dobs 10.75F12.9 1	RUM .2%.6HCOLUNN,3%.6HCOL <mark>UNU</mark> ,4%,6HPELLET,5%.3MBED,6%. (.1HDIFFUSIVIJY 3	PMD .4X.6MLEWGTM.2X.GMDIAMETER.2X.6MDIAMEIER.2X.64PDROS 2005/17 /11X.21MCMS CMS 3 17.1085.P.VISC .405 2.55.2512.7 .	2, 0P , E8 , E9, 0 2510,7,612,91	ER AM TEMP KELVIM PRESS ATM VISCOSITY 。 M OENSITY } -ebi/12.00Pi+1,1	. + +_ \f1+ +_) 41 /273. *e _5 60.#1 1920MD,RMD 12.7 // 2					- 10 101 10 101 10 101 100 101 100 100 1	(***117574); 1.4.5 1.5.5 1.5 1	NETP MOLECULAR PELLET RE NTU MIO 1.34 eddy diff Petet Rait 1.5CM ke nyd / Peclet.27x.104Cm (r 954.346.5CC)	(122400.0415C 4114 273.0P Al		P≎CD≎e2} =f/298.	
5 25 121112R RARARARARARARARARARARARARARARARARARAR	SOURCE STATEMENT	PROGRAM FOR COMPUTA Readss.MD.CL.CD.DP Fommat (15.3F10.4.2 If (MD) 84.83.84 Call Skip TO (1)	PRIME 56 OFORMATIQN RUN ,2 16MPELLET,4X,11MDIFF	74111 57 0728451647,2440 .4X. 18174,28,649080517 READ 81.6M.1.1085.7 F044411612.5,2512.	FRINT 550, MO.CL + C	FORMAT(/51H CART FORMAT(/51H CART 1 12M HYD D1A ,1 ND =EB=CD/(3,=CD=(1	VISC* 0.0170941273 AND=29.0273.09/122 PRINT 64.6N . T .P FORMATTIX.3417.5.16	N=0 SMS= 0.0 SM = 0.0	Su5 - 0.0 Su5 - 0.0	SHU:= 0.0 SHU:= 0.0 SHN:= 0.0	5M2 = 0.0 5M2 = 0.0 5U3 = 0.0 5U4 = 0.0	56=0.0 56J=0.0 PR[NT 40	PUNALI 134,141,74,17 1109,74,2010,64,2411 Printo	FORMAT174H VELOCITY ITM TOTAL 0. 228H CM/SEC CMS	CRE - 09-64 -100. Cul - CL/(2 0) READ 99.9.41014, 70	FURMAT(JF12.5) 1F(Q) 5.6.5 HM =(2-366 f0fal/ V	H - CL/HH U- 004./13.141590EB	
	5	\$ \$2. ****	9 7 9	5 5 23 22	2 1 -	20 65	1 \$\$\$ \$,				•	r	-				

•

•

4 .1 . 4

ļ

UN COLUMN COLUMN PELLEF "BED PELLET DIFFUSIVITY NG LENGTH DIAMETER POROSITY POROSITY CMS CMS CMS CMS 1 134.6000 2.6100 0.2200 0.3800000 0. 0.102000000 ND ND ND

.

1

1

]

ļ

n I

TEMP KELVIN PRESS ATM VISCOSITY MVD DIA DENSITY 296.00000 1.00000 0.0182169 0.0824221 0.0011940 CARIER WW 28.0000

L3 HYD	0.326	0.371	0.283	0.726	0.190	0.124	0.117	0.094	010-0	0.045	0.027	1.300	0.742	0.466	0.583	0. 392	n. 326
12 1/5CH 3E	126-0	0.893	0.855 0.856	119-0	0.756	0.478	0.690	0.641	0.623	9.555	0.595	2.989	1.415	1.132	1.306	116-0	126*0
11 EMPTY 96	0.331	0.326	0.287	0.229	0.191	0.126	0.118	0.096	0.071	140.0	0.027	1.318	0.752	0.473	0.597	0.394	166.0
LO PECLET E	1.058	1-042	[.[32	1.348	1.495	2.043	2.216	2.545	3, 354	4.531	8.251	0.862	0.816	0.909	0.831	0.933	1.058
00Y 01FF	0-1+6		0-135	0.128	0.120	0.107	0.109	0.101	0.098	0.088	10.04	0.472	0.255	0.179	0.206	0.154	0-146
a a FD MLS/SFC	1.2600	1.2600	1-1100	0.8850	0= 7450	0.4880	0.4580	0.3700	0.2730	0.1800	0901-0	5.1000	2.9100	1+8300	2.3100	1.5400	1.2800
TOTAL CH	19.3100	19.7500	22.2000	28-1500	33-1500	14.0500	7.0700	18.3500	12.1000	37.1500	29.8000	4.8700	8.4500	13.3700	10.6500	16-0400	19.3100
6 MEDTH CM	2.6800	2.7200	3.2100	4.4100	5.4700	2.7100	1.4200	3.9500	2.9900	10.6700	11.5500	0.6100	1.0300	1.7200	1.3100	2.0900	2.6800
5 NTU	412	904 904	151	285	240	157	147	119	88	58	*	1444	938	583	441	496	412
¢ PELLET RE	0.87068	0.85708	0.75505	0.60200	0-50676	0.33195	0.31154	0.25168	0.18570	0.12244	0.07210	3.46913	1.97944	1.24480	16172.1	1.04754	0.87068
3 MOLECULAR PECLET	1.34882	1-32774	1.16968 1.16968	0.93258	0.78506	0.51424	0.48262	0.38989	0.28768	0.18968	0.11170	5.37420	3.06646	1.92839	2.43420	1.62280	1.34882
2 HETP Cas	0.46551	0.45838	0.49807 0.49900	0.59312	0.65800	0.89910	0.97490	1.11981	1.47568	1.99357	3.63038	0.37916	0.35907	0.39996	0.36565	0-41030	0.46551
L VELOCITY CA/SEC	0.62536	0.61559	0.54231	0.43238	0.36396	0.23842	0.22376	0.18077	0.13338	Q.08794	0.05179	2.49168	1.42172	0-89407	1.12858	0. 75239	0.62536

LAHDA= 0.295852 GARPA. 0.868393

1556660*0-+33 B 0.17715220

AA= 0.2891281

0.13017484

SIGNA N 0.04166462 19

C 0.07368439

END-OF-DATA ENCOUNTERED CN SYSTEM INPUT FILE.

TIME 19445 18MIN 59+15EC

-155-

Ī

1

١

14

<u>.</u>

ì

. ۰,

*

Ý,

RUN COLUMN COLUMN PELLET BED PELLET DIFFUSIVITY NO LENGTH DIAMETER DIAMETER POROSITY POROSITY CHS CHS CHS 50 111.8000 5.0000 0.2080 0.3660000 0. 0.162381388 CARRIER MW TEMP KELVIN PRESS ATM VISCOSITY HYD DEA DENSITY 29.00000 294.70000 1.26900 0.0181546 0.0766955 0.0015219

2 2 3 ۵ 7 10 11 12 13 5 . . . VELOCITY HETP MOLECULAR PELLET RE NTU WIDTH TOTAL Q EDDY DIFF PECLET EMPTY RE 1/SCH RE HYD CH/SEC CHS PECLET CH HLS/SEC CM 1.37719 0.25976 1.76410 2.40141 474 2.1500 18.9000 12.7000 0.179 0.624 0.879 1.499 D. 885 0.4600 4.0000 1.32840 0.26547 1.70159 2.31632 457 12.2500 0.176 0.639 0.848 1.478 3.554 1-26875 0.28448 1.62519 2-21232 436 0.5000 4.2000 11.7000 0.180 0.684 0.610 1.513 J.815 0.6000 3.745 1.16031 0.34151 1.48629 2.02323 399 4.6000 10.7000 0.821 0.741 1.661 0.198 1.04645 0.35333 1.34044 1.82469 360 0.6700 5.0500 9.6500 0.185 0.849 0.668 1.550 3.673 8-5000 1.502 2.593 0-92174 0.38881 1.18069 1.60724 0.8100 5.8200 0.179 0.935 0.588 1.02790 1.39925 3.512 1.482 3.515 0.80246 0.44057 276 1.0000 6.7500 7.4000 0.177 1.057 1.254 J.287 0-45003 0.66467 0.57646 0.78471 154 2-2200 12.2000 4-1500 0.150 1.578 0.287 0.29279 0.37504 0.51054 2.7000 1.421 . 3.188 1.15811 100 4.9000 20.4000 0.170 2.784 0.187

2242

-136-

A B C SIGMA M -D.06964026 0.34537887 0.07176007 D.02973078 9 AA= D.2799876 CC=-0.1502027

GAMMA- 1.063480

LAMDA= -0.167404

HYD DIA DENSITY 0.0792282 0.0012179
 RUN
 COLUMN
 PELLET
 BED
 PELLET
 DIFFUSIVITY

 MO
 LEWGTH
 DIANETER
 DIANETER
 POROSITY
 POROSITY

 MO
 LEWGTH
 DIANETER
 DIANETER
 POROSITY
 POROSITY

 MO
 CMS
 CMS
 CMS
 S
 S

 S1
 118-1000
 Z-6000
 0..2080
 0..2933964
 VISCOSITY 0.0182169 TEMP KELV[N PRESS AFM 296+00000 1.02000 CARRIER Nº 29.00000 N SI

Л

13 470	2.435 1.893	11911	0-322	0-114 5-323	7.355 6.273 9.693 9.693	
12 1/5CH 3E	4.736 3.542	2.952 2.262 1.639	42 C - 1	1-066 10.432 22-017	39.844 46.541 71.723 84.060 1	
LL EAPTY LE	2.449	1.620	0-324		746.4 215.8 7.96.6	
10 PECLET EI	0.741	0.696 0.735	109.2	3.559	2.053 2.148 2.741 2.714	
9 200 01FF	0.739	0.338	151-0	1.235	5.960 6.976 6.720 6.721 6.725	
8 9 MLS/SEC	9.6000	6.3500 4.6200 2.4500	1-2700	0.4500 14.3500 23.3500	29.0000 32.6000 39.0000 46.5000	076 N
					6.4500 7.5500 5.8500 5.8500	\$16MA 0.04882076
4101H C#	0- 7500	L.1000 L.5000	6.6500 4.1000	6. 5000 0. 4500	1. 7000 1. 5500 1. 3500 1. 3500	15160
s NTU	1297 1006	858 624 131	28%	1939	3919 4406 5270 6284	с 0.05205160
+ PELLET RE	6.39324 4.96142	4.22886 3.07675 1.63161	0.24577	0.29968 9.55656 15.55022	19.31291 21.71038 25.97254 30.96725	6 0+30618003
3 Mulecular Peclet	4.57028 3.54673	3.02305 2.19945 1.16637	0.00461 0.79516 0.79504	0.21423 6.83161 11.11625	13.80605 15.51990 18.56676 22.13729	9 0•30
AETP Cas	0-30830	0~29037 0.30583 0.41800	0.59019 1.08203	1.48041 0.45411 0.58901	0.85824 0.89371 1.14878 1.12923	A D.04999081
L VELOCITY CM/SEC	96192.4 11142.6	3.04098 2.21249 1.17329	0-60820 0-29691 0-29691	0-21550 6-87214 11-18220	13-88795 15-61198 18-67690 22-26862	40

GAMMA- 0.731669

CC+ 0-0528450

AA= 0.0375308

LANDA- 0-120170

-157-

1

1

1

;

}. .

ς.

Ŧ

ł

۲

١

ł

ti,

ł

1

1

.....

٠

-

RUN COLUMN COLUMN PELLET 8ED PELLET DIFFUSIVITY NO LENGTH DIAMETER DIAMETER POROSITY POROSITY CHS CHS CHS 51D 118.1000 2.6000 0.2080 0.3830000 0. 0.209233964 CARRIER NW TEMP KELVIN PRESS ATM VISCOSITY HYD DIA DENSITY 29.00000 296.00000 1.02000 0.0182169 0-0792282 0-0012179

2 3 4 7 . 10 11 12 VELOCITY HETP MOLECULAR PELLET RE NTU HIDTH TOTAL Q EDDY DIFF PECLET ENPTY RE LISCH RE HTD CH/SEC **CHS** PECLET CH EN. MLS/SEC 13.64851 0.69431 13.56801 18.97993 3851 0.3800 2-1000 28-5000 4-738 1.659 7.269 31.678 7.213 17.09655 1.17395 16.99572 23.77486 4824 0.4000 35.7000 10.035 1.7000 2.822 9.106 67.092 9.055 5.8500 22-02917 1.16293 21.89925 30.63427 6217 1.3700 46.0000 12.839 2.796 11.733 85.639 11.667 23-46585 1.64875 23.32746 32.63216 6622 1-4500 5-2000 49.0000 19.345 3.963 12.498 129.333 12.433 8-85954 0.47236 8.80731 12.32031 18.5000 2500 0.5000 3.3500 2.092 1.135 4.719 13.990 4-693 5-26784 0.34159 5.23678 7.32559 0.6600 5.2000 11.0000 0.900 1486 0.821 2.805 5.015 2.773 1-91558 0.31749 1.90428 2.66385 4.0000 540 1.4500 11.8500 0.304 0.763 1.323 2.333 1.315 0.4500 10.91881 0.58901 10.85441 15.18394 3081 2.7000 22.8000 3.216 5-815 21-499 1-416 5.784

,

A B C SIGMA N -0.26517320 0.86951987 0.07300184 0.11659287 8

AA=-0.0705450 CC= 0.0640317

GAMMA= 2.077865 LAMDA= -0.637436

ġ

 RUN
 COLUMN
 PELLET
 BED
 PELLET
 DIFFUSIVITY

 NO
 LENGTH
 DIAMETER
 DIAMETER
 POROSITY
 PORUSITY

 CMS
 CMS
 CMS
 CMS
 S

 52
 111.8000
 5.0000
 0.2080
 0.3720000
 0.209233954

 CARRIER
 MW
 TEMP
 KELVIN
 PRESS
 ATM
 VISCOSITY
 HYD
 DIA
 DEWSITY

 29.00000
 296.00000
 1.02000
 0.0182169
 0.0786661
 0.0012179

ı	2	3	4	5	6	7	6	9	10	11	12	13
VELOCITY	HETP	MOLECULAR	PELLET RE	NTU	WIDTH	TOTAL	<u> </u>	EDDY DIFF		EMPTY RE	1/52H 3	
GM/SEC	CMS	PECLET			64	CH	MLS/SEC					
23.99802	1.04873	23.85649	33.37219	6411	1.2000	5.2500	180.0000	12.594	2.521	12.414	84.130	12.621
21.33157	0.88594	21.20577	29.66417	5699	1.2500	5.9500	160.0000		2.130		63.175	11.217
20.33165	0.76573	20.21175	28.27367	5431	1.2500	6.4380	152.5000		1.841	10.518	52.344	13.593
18.66512	0.84071	18.55504	25.95615	4986	1.3200	6.4500	140.0000		2.021	9.656	52.456	9.517
17.33190	0.75738	17.22968	24-10214	4630	1.3500	6.9530	130.0000		1.821	8.966	43.881	9.115
16.39864	0.63871	16.30193	22.80433	4381	1.3200	7.4000	123.0000		1.535	8.483	35.013	8.625
14.66545	0.54689	14.57896	20.39412	3918	1.3700	8.3000	110.0000		1.315	7.587	25.811	7.713
10.66578	0.47057	10.60288	14.83209	2849	1.6000	10.4500	80.0000		1.131	5.518	16.778	5-512
14.33215	0.65127	14.24762	19.93062	3829	1.4500	8.0500	107.5000		1.555	7.414	31.203	7.535
11.06575	0.50526	11.00049	15.38829	2956	1.6500	10.4000	83.0000		1.215		18.590	5.820
8.86593	0-43273	8.81365	12.32917	2368	1.8500	12.6000	66.5000		1.043	4.586	12.825	4.663
7.86602	0.33131	1.81963	10.93866	2101	1.8500	14.4000	59.0000		0.795	4.069	8.712	4.137
7.86602	0.37977	7.81963	10.93866	2101	1.8500	13.4590	59.0000		0.913	4.369	9.986	4.137
7.79935	0.36079	7.75336	10.84596	2083	1.8300	13.6500	58.5000		0.857	4.035	9.407	4.132
7.26607	0.35437	7.22321	10.10436	1941	1.9000	14.3000	54.5000	1.287	0.852	3.759	8.507	3.921
7.26607	0.34946	7.22321	10.10436	1941	1.9000	14.4000	54.5000	1.270	0.840	3.759	8.488	3.821
6.53279	0.33579	6.49427	9.08465	1745	2.0500	15.8500	49.0000		0.807	3.379	7.333	3.435
6.13283	0.32216	6.09666	8.52845	1638	2.3500	18.5500	46.0000	0.988	0.774	3.173	6.605	3.225
5.82618	0.29331	5.79182	8.10203	1556	0.5500	4.5500	43.7000	0.854	0.735	3.014	5.712	3.364
5.01292	0.26218	4.98335	6.97108	1339	0.6000	5.2500	37.6000	0.657	0.633	2.593	4.393	2.636
5.01292	0.26218	4.98335	6.97108	1339	0.6000	5.2500	37.6000	0.657	0.633	2.593	4.393	2.535
4.23298	0.26754	4.20802	5.88648	1130	0.7100	6.1500	31.7500	0.566	0.643	2.190	3.786	2.226
3.62637	0.24645	3.60498	5.04291	96B	0.8000	7.2200	27.2000	0.447	0.572	1.876	Z.988	1. 707
2.73311	0.26082	2.71699	3.80072	730	1.1000	9.6500	20.5000	0.356	0.627	1.414	2.383	1.437
1.06653	0.29271	1.65670	2.31751	445	1.8500	15.3200	12.5000	0.244	0.704	D+862	1.631	2.575
1.67986	0.28845	1.66995	2.33605	448	1.9000	15.8500	12.6000	0.242	0.693	0.869	1.620	3.884
1.43988	0.30345	1.43139	2.00233	384	2.2500	18.3000	10.8000	0.218	0.729	0.745	1.451	3.757
1.19990	0-36092	1.19282	1.66861	320	2.9500	22.0000	9.0000		0.868	0.521	1.448	3.531
0.87993	0.50323	0.87474	1.22365	235	0.9500	6.0000	6.6000	0.221	1.213	0.455	1.480	2.453
0.61995	0.58414	0.61629	0.86212	165	1.4500	8.5090	4-6500	0.181	1.434	0.321	1.211	0.325

- 4

2222

-159-

A	B	C	SIGMA	N	
0.00153686	0.36652558	0.04075336	0.03271169	30	
AA+ 0.0327542	CC= 0.0389181				

GAMMA= 0.875875

LAMUA= 0.003694

ń.

RUN COLUMN COLURN PELLET BED PELLET DIFFUSIVITY LENGTH DIAMETER DIAMETER POROSITY POROSITY NO CHS CHS CHS 53 186.3000 1.0300 0.4050000 0. 6.2700 0.209233764 CARRIER MW TEMP KELVIN PRESS ATH VISCOSITY HYD DIA DENSITY 29-00000 296-00000 1.02000 0.0182169 0.3947390 0.0012179 2 2 7 11 11 . . A . 10 12 VELOCITY HETP MOLECULAR PELLET RE NTU HTOTH TOTAL Q EDDY DIFF PECLET ENPTY RE 1/SCH RE HYD CH/SEC CHS PECLET CH CH MLS/SEC 0.75928 1.24573 3.73771 5-22858 338 2.2000 11.4000 9-7500 0.473 2.336 0-635 2.118 3.162 1.38227 0.92379 6-80454 9.51869 615 5.7500 34.6000 17.7500 0.638 0.448 3.855 4.269 3.648 2.06368 1.01514 10.15890 14.21101 918 3.8500 22.1000 26.5000 1.047 0.473 5.755 7.003 5.445 1.01455 12.53570 17.53585 0.472 2-54650 1133 3.1000 17.8000 32.7000 7.102 8.636 5.723 1.292 3-05268 0.99830 15.02750 21.02157 2.6000 15.0500 39.2000 0.485 8.514 10.187 9.355 1359 1.524 3.54329 1.12271 17.44264 24.40003 1577 2.4000 13.1000 45.5000 1.989 0.545 9.882 13.298 9.351 0.588 3.91320 1-21205 19-26357 26-94729 1742 2.2500 11.8200 50.2500 2.371 10.914 15.855 13.327 4-36098 1-03526 21-46786 30-03081 1941 1.9000 10.8000 56-0000 2.257 0-503 12-162 15-092 11.509 4-69194 1.08964 23.09712 32.30993 12.383 2088 1.8500 10.2500 60.2500 0.529 13.386 17.090 2.556 3-81585 1.00200 18.78438 26.27696 12-273 1698 2.2500 13.0000 49.0000 1.912 0.485 10.542 12.781 4-59460 1.02629 22.61792 31.63960 2045 1.8900 10.7900 59.0000 2.358 0.498 12.814 15.763 12.125 5.45122 1.10811 26.83482 37.53851 2426 1.7200 9.4500 70.0000 3.020 0.538 15.203 20.193 14.385 6-30784 1.18432 31.05172 43.43742 2808 1.5900 8.4500 81.0000 3.735 0.575 17.592 24.973 16.647 C SIGMA 0.68256506 0.35607676 0.07115107 0.06606999 13 AA= 0.7240111 CC= 0.0641448

GAMMA= 0.850906

ii.

LAMDA= 0.331342

RUN COLUMN COLUMN PELLET BED PELLET DIFFUSIVITY ND LENGTH DIAMETER DIAMETER POROSITY POROSITY CMS CMS CMS 54 L85.4000 0.4150 0.2975 0.6300000 0. 0.209233964

 CARRIER NW
 TEMP KELVIN PRESS ATM
 VISCOSITY
 HYD DIA
 DENSITY

 29.00000
 296.00000
 1.02000
 0.0182169
 0.1473621
 0.0012179

1 .	2	3	4	5	6	7	8	9	10	11	12	13
VELOCITY	HETP	MOLECULAR	PELLET RE	NTU	WIDTH	TOTAL	Q EDI	DY DIFF	PECLET	EMPTY RE	1/SCH 3	LE 47D
CM/SEC	CMS	PECLET			CM	CN	MLS/SEC					
8.34203	0.87373	11.86115	16.59224	3695	1.4500	8.9500	0.7300	3.644	1.458	10.453	24.365	8.219
13.82720	1.12957	19.66026	27.50220	6126	1.0500	5.7000	1.2100	7.809	1.898	17.325	52.211	13-623
17.59826	1.44479	25.02214	35.00280	7796	1.0000	4.8000	1-5400	12.713	2.428	22.952	84.994	17.335
22.74061	1.33151	32.33381	45.23089	10075	0.9200	4.6000	1.9900	15.140	2.236	28.495	101-219	22.404
25.14037	1.86725	35.74592	50.00400	11138	0-9000	3.8000	2.2000	23.472	3.138	31.503	155.925	24.759
29.82562	2.19378	42.40766	59.32293	13214	0.8600	3.3500	2.6100	32.715	3.687	37.373	218.725	29.385
38.28193	2.82904	54.43129	76.14246	16960	0.8600	2.9500	3.3500	54.150	4. 755	47. 970	362.033	37.715
28.56860	2.53873	40.62036	56.82273	12657	0.9500	3.4400	2.5000	36.264	4.257	35.798	242.449	28.145
21.02649	1.69844	29.89659	41.82153	9315	0.9600	4.2500	1.8400	17.856	2.855	26.349	117.382	22.715
12.79874	1.15076	18.19792	25.45658	5670	1.1100	5.9700	1.1200	7.354	1.934	16.038	49.234	12.613

A	8	C	SIGNA	N.
-0.22853924	3.88134199	0.07882725	0.18221123	10

AA= 0.1867108 CC= 0.0688375

GAMMA= 9.275124 LAMDA= ~0.384100

-161-

Ψ

			LLET BE			DIFFUSIVIT	Y							
		METER DIA MS CM		SITY PO	ROSITY									
55 121			.0050 0.454	0000 0.	0.1	196699211								
CARRIER	NW TENP	KELVIN PRE	SS ATH VI	VIIZEDZ	HYD D	A DENSI	TY							
29.000				0182169	0.26951									•
t	Z	3	4	5	6	7	8	9	10	11	12	13		
		MOLECULAR	PELLET RE	NTU	WIDTH	TOTAL		DY DIFF	PECLET E	MPTY RE	1/SCH 3	E HYD		
CM/SEC 6.67826	CMS 1.10204	PECLET	47.73147	2054	CM 1.2500	CN 5.5500	MLS/SEC 3.4400	3.680	0 568	21 670	26.170	12.803		
4.69808	0.81204			2054 1445	1.4500	7.5000	2.4200	1.908	0.404		13.566	9.005		
4.69808	0.92790			1445	1.5500	7.5000	2.4200	Z.180	0.452	15.245		9.005		
3.57209	0.86016			1098	1.9500	9.8000	1.8400	1.536	0.428	11.591	10.926	6.947		
2.64024	0.79122		18.87058	812	2.5000	13.1000	1.3600	1.045	0.394	8.567	7.428	5.261		
2.09666	0.75765			644	3.1000	16.6000	1.0800	0.794	0.377	6.803	5.549	4.019		
1.70839	0.79877	8.72872	12.21038	525	3.9500	20.6000	0.8800	0.682	0.377	5.544	4.852	3.275		- ·
1.04833	0.88864	5.35626	7.49273	322	7.2000	35.6000	0.5400	0.465	0.442	3.402	3.313	2.009		
0.75713	0.91842	3.86841	5.41142	232	2.2000	10.7000	0.3900	0.348	0.457	2.457	2.473	1.451		
0.43680	0.93106	2.23178	3.12197	134	5.9000	28.5000	0.2250	0.203	0.453	1.417	1.446	0.837		1
A		8		C		SIGNA	N						<u>.</u>	
0.	60157888	0.15	542669	0.060	20300	0.0570	0413 10						162.	
	• 0.405872		0.0954678										•	

· ·

.

.

-

١

COLUMN COLUMN RUN PELLET 8ED PELLET DIFFUSIVITY NO LENGTH DIAMETER DIAMETER POROSITY POROSITY CHS CHS CHS 63 421.0000 0.6600 0.5680 0.4970000 0. 0.761496238

CARRIER MW TEMP KELVIN PRESS ATM VISCOSITY HYD DIA DENSITY 29.00000 296.50000 0.98300 0.0182409 0.1747848 0.0011714

1 2 7 5 6 . 10 11 12 13 VELOCITY HETP MOLECULAR PELLET RE NTU WIDTH TOTAL EDDY DIFF PECLET ENPTY RE LISCH RE HYD 0 CH/SEC CMS PECLET CM £9 MLS/SEC 9.46495 0.49963 7.05990 34.53528 1.0000 2616 12.3000 1.5900 2.354 0.443 17.164 15.189 10.627 8.63156 0.49816 6.43828 31.49443 2386 1.1000 13.5500 1.4500 2.150 0.439 15.653 13.811 9.691 7.91722 0.49359 5.90545 28.88800 2188 1.2000 14.8500 1.3300 1.954 0.434 14.357 12.552 8.889 7.20289 0.49283 5.37263 26.28156 1.3000 1991 16-1000 1-2100 1.775 0.434 13.062 11.402 8.387 5.01742 24.54394 4.44019 21.72030 6. 72666 0.49366 1859 1.3900 17.2000 1-1300 0.435 12.198 13.666 1.650 7.553 5.95280 0.53257 1645 1.6200 19.3000 L-0000 1.585 0.459 10.795 10.183 5.584 5.29799 0-54366 3.95177 19.33107 1464 1.8700 22.0500 0.8900 1.440 0.479 9.608 9.251 5.747 3.92885 0.64628 2.93053 14.33540 1086 2.7000 29.2000 0.6600 1.270 0.569 7.125 8.156 4.411 2.67876 0.91561 1.99809 9.77413 740 . 0.9300 8.4500 D.4500 1.226 0.836 4.858 7.878 3.008 1.66678 1.24344 1.24325 6.08168 460 9.3500 72.9000 0.2800 1.095 3.023 1.036 6.657 1.871

C SEGNA 0-10653326 1.87872805 0.01889421 0.02249600 10 AA= 0.5070601 CC=-0.0209654 LAMDA= 0.093779

-163-

1

GAMMA= 1.233577

81 M COLUMN COLUMN PELLET 8ED PELLET DIFFUSIVITY LENGTH DIAMETER DIAMETER POROSITY POROSITY NO CHS CHS CHS 64 421.0000 0.6600 0.5680 0.4970000 0. 0.200754303

CARRIER MW TEMP KELVIN PRESS ATM VISCOSITY MYD DIA DENSITY 29.00000 297.00000 1.05000 0.0182648 0.1767848 0.0012695

1 2 - 2 7 10 11 12 13 6 . VELOCITY HETP MOLECULAR PELLET RE NTU MIDTH TOTAL Q EDDY DIFF PECLET EMPTY RE LISCH RE HYD CH/SEC CHS PECLET C.M CH MLS/SEC 8.37353 0.71677 23.69146 32.53779 8780 13.3500 0.631 16.171 20.530 10.313 1.3000 1.5000 3.001 7.81529 0.67842 22.11203 30.36861 8194 1.3500 14.2500 2.651 0.597 15.093 18.136 9.345 1.4000 7.14541 0.64067 20.21671 27.76558 7492 1.4500 15.7500 1.2800 2.289 0.564 13.799 15.659 8.544 6.36388 0.59639 18.00551 24.72872 1-5500 1.1400 1.898 12.290 12.982 7.612 6672 17.4500 0.525 1.456 5.58235 0.52179 15.79431 21.69186 5853 1.6700 20.1000 1.0000 0.457 10.781 9.964 6.675 4.63335 13.10928 18-00424 0.8300 0.46804 4858 1-9200 24.4000 1.084 0.412 8.948 7.418 5.540 0.6500 3.62853 0.47013 10.26630 14.09971 3804 2-5000 31.7000 0.853 0.414 7.008 5.835 4.337 2.45623 0.47348 6-94950 9.54442 2575 3-7000 46-7500 0-4400 0.581 0.417 4.744 3.976 2.937 1.50723 0.58603 4.26446 5-85680 1580 1-4000 15.9000 0.2700 0.442 0.516 3.021 1.892 2.911 •-

-0.05827764	в 0.79323625	0-08132024	0.01178047	9	-16
AA= 0.2393774	CC= 0.0486056				f

GANNA= 1.975639

LANDA= -0.051301

 RUN
 COLUMN
 PELLET
 BED
 PELLET
 DIFFUSIVITY

 NO
 LENGTH
 DIAMETER
 DIAMETER
 POROSITY
 PDROSITY

 CNS
 CMS
 CMS
 CMS
 0.196749071

 65
 119.5000
 2.1750
 0.5680
 0.46300DD-0.
 0.196749071

 CARRIER MW
 TEMP KELVIN
 PRESS ATM
 VISCOSITY
 MVD
 DIA
 DEVSITY

 29.00000
 293.50000
 1.05000
 0.0180970
 0.2455515
 0.0D12644

1	2	3	•	5	6	7	8	9	10	11	12	13
VELOCITY	HETP	MOLECULAR	PELLET RE	NTU	WIDTH	TOTAL	9 E	DDY DIFF	PECLET	EMPTY RE	1/SEH	
CM/SEC	CMS .	PECLET			CH	CN	HLS/SEC	••••		• · · · · •		
7.08854	0.60342	20.46409	28.13152	2152	2.7000	16.1000	13.0000	2.139	0.531	13.025	14.943	12.211
6.78864	0.55490	19.59830	26.94134	2061	2.7500	17.100D	12.4500		D. 488		13.160	
6.70685		19.36218	26.61675	2036	2.7500	17.2000	12.3000		0.483		12.851	11.554
6.18884	0.53881	17.86673	24.56098	1879	2.9000	18.3000	11.3500		0.474		11.549	10.661
5.61631	0.51662	16-21386	22.28882	1705	3.1500	20.3000	10.3000	1.451	D. 455	10.320	10.136	9.575
5.34367	0.48800	15.42678	21.20684	1622	3.2500	21.5500	9.8000	1.304	0.430		9.110	
4.77113	0.47337	13.77391	18.93468	1448	3.5500	23.9000	8.7500	1.129	0.411		7.890	
4.49850	0.47137	12.98683	17.85270	1366	3.7500	25.3000	8.2500	1.060	0.419	8.266	7.408	7.749
3.57153	0.42841	10.31075	14.17396	1084	4.5500	32.2000	6.5500	0.755	0.371		5.345	5.152
2.90085	0.41559	8.37454	11.51228	880	5.4000	38.8000	5. 3200	0.623	0.366		4.212	4.997
2.13747	0.40664	6.17071	8.48274	649	7.2000	52.3000	3.9200	0.435	0.358		3.036	3.582
2.26288	0.43787	6.53277	8.98045	687	1.6000	11.2000	4.1500		0.385		3.462	3.676
1.55403	0.44896	4.48636	6.16729	471	2.3000	15.9000	2.8500		0.395		2.437	2.577
0.98149	0.55904	2.83349	3.89513	298	4.1000	25.4000	1-8000		0.492		1.917	1-691

A 0.12397321	0.37161307 ⁻	C 0.05709327	SIGMA 0-01086156	N 14	
AA= 0.1831935	CC= 0.0491846				

GAMMA= 0.944383

LANDA= 0.109131

-163-

RUN COLUMN COLUMN PELLET PELLĘT DIFFUSIVITY 8E0 LENGTH DIAMETER DIAMETER POROSITY POROSITY NO CMS CNS CHS 66 119.5000 2.1750 0.5680 0.4630000-0. 0.732060581
 CARRIER MW
 TEMP KELVIN PRESS ATM
 VISCOSITY
 HYD DIA
 DENSITY

 29.00000
 293.50000
 1.00500
 0.0180970
 0.2465515
 0.0012102
 7 8 9 10 11 12 13 TOTAL O EDDY DIFF PECLET EMPTY RE 1/SCH 3E HYD 3 4 MOLECINAR RELIET RE 5 NTU

VELOCITY	HEIP	MULELULAR	PELLET RE	NIU	MIDIH	IUIAL	U ED	UT UIFF	PELLEI	EWLAL XE	1/204 4	ENTU
CHISEC	CHS	PECLET			CN	CM	MLS/SEC					
33.04188	1.08620	25.63693	125.50986	2696	0.9000	4.0000	58.0000	17.945	0.956	58.111	120.008	54.483
26.49047	0.95624	20.55375	100.62429	2162	0.9500	4.5000	46.5000	12.666	0.842	46.589	84.701	43.678
21.79055	0.72807	16.90711	82.77159	1778	1.0500	5.7000	38,2500	7.933	0.641	38.323	53.349	35.929
16.09367	0.59599	12.48695	61.13196	1313	1.2000	7.2000	28.2500	4.796	0.525	28.304	32.072	26.536
8.26047	0.37585	6.40923	31.37747	674	1.8000	13.6000	14.5000	1.552	0.331	14.528	10.381	13.520
7.40594	0.37903	5.74621	28.13152	604	2.1000	15.8000	13.0000	1.404	0.334	13.025	7.386	12.211
7.14958	0.40062	5.54730	27.15774	583	2.2000	16.1000	12.5500	1.432	0.353	12.574	9.578	11.789
6.57989	0.37821	5.10529	24.99377	537	2.3500	17.7000	11.5500	1.244	0.333	11.572	8.321	10.347
5.78233	0.39897	4.48646	21.96423	471	Z.7000	19.8000	10.1500	1.153	0.351	10.167	7.714	9.534
5.32658	0.39289	4.13285	20.23306	434	2.9500	21.8000	9.3500	1.046	0.346	9.368	6.998	8.783
5.01325	0.40014	3.88974	19.04288	409	3.1000	22.7000	8.8000	1.003	0.352	8.617	6.708	8.265
3.81691	0.42907	2.96151	14.49855	311	4.2000	29.7000	6.7000	0.819	D.378	6.713	5.476	6.293
3.30419	0.45182	2.56369	12.55099	269	5.0500	34.8000	5.8000	0.746	0.398	5.811	4.992	5.448
2.53511	0.52718	1.96697	9.62964	206	6.8500	43.7000	4.4500	0.668	0.464	4.459	4.469	4.183
1.70906	0.71956	1.32605	6.49189	139	12.0500	65.8000	3.0000	0.615	0.633	3.006	4.11Z	2.518
2.07936	0.54927	1.61336	7.89847	169	2.0000	12.5000	3.6500	0.571	0.484	3.657	3.819	3.428
1.39573	0.82132	1.08294	5.30171	113	3.6000	18.4000	2.4500	0.573	0.723	2.455	3.833	2.301
0.82605	1.36681	0.64092	3.13775	67	7.9000	31.3000	1.4500	0.565	1.233	1.453	3.775	1.362
0.48423	2.11930	0.37571	1.83937	39	3.3000	10.5000	0.8500	0.513	1.866	0.852	3.43L	3.798
0.17091	5.09239	0.13260	0.64919	13	13.3000	27.3000	0.3000	0.435	4.483	0.301	2.910	0.282

N 20

-166

8	C	SIGMA
0.86630061	0.02745608	0.07473090

AA=-0.1297124 CC= 0.0396874

8

- -

GAMMA= 0.591686

A 0.12011538

.

LAMDA* 0.105735

RUN COLUMN COLUMN PELLET BED PELLET DIFFUSIVITY NO LENGTH DIAMETER DIAMETER POROSITY POROSITY CMS CMS CMS 69 186.3000 6.2700 1.0300 0.4050000 0. 0.209233964

. . ..

.

 CARRIER MW
 TEMP KELVIN PRESS ATM
 VISCOSITY
 HYD DIA
 DENSITY

 29.00000
 296.00000
 1.02000
 0.0182169
 0.3947390
 0.0012179

1	2	3	4	5	6	7	8	9	10	11	12	13
VELOCITY	HETP	HOLECULAR	PELLET RE	NTU	WIDTH	TOTAL		EDDY DIFF	PECLET	EMPTY RE	1/SCH	RE 440
CM/SEC	CHS	PECLET			CH	CM	HLS/SEC			•		
26.08798	2.35665	128.42380	179.64859	11614	2.1500	8-1000	335.0000	30.740	1.144	72.758	205.519	68.849
23.40749	2.09059	117.68987	164.63318	10643	2.2500	9.0000	307.0000	24-990	1.015	66.576	167.378	63.394
21.41551	2.08198	105.42252	147.47272	9534	2.4200	9.7000	275.000	22.293	1.011	59.726	149.046	55.518
18.61202	1.93579	91.62175	128.16720	8265	2.5500	10.6000	239.0000	18.014	0.940	51.908	120.439	47.119
15.57491	1.81694	76.67092	107.25289	6933	2.8900	12.4000	200.0000	14.149	0.882	43.437	94.598	41.104
15.57491	1.65182	76.67092	107.25289	6933	2.8000	12.6000	200.0000	12.854	3.632	43.437	86.391	41.134
12.45993	1.66300	61.33674	85.80231	5547	3.3000	14.8000	160.0000	0 10.360	0.801	34.750	69.267	32.883
8.72195	1.27502	42.93572	60.06162	3882	4-1000	21.0000	112.0000	5.560	0.619	24.325	37.175	23.318
3.58223	1.00956	17-63431	24.66816	1594	2.0500	11.8300	46.0000	1.808	0.473	9.991	12.089	9.454
4.63354	1.03063	22.80960	31.90773	2062	1.6500	9.4000	59.5000	2.388	0.500	12.923	15.964	12.228
3.95213	1.02574	19.45525	27.21542	1759	1.9000	10.8500	50.7500	2.027	0.498	11.522	13.551	10.433
3.32914	0.92915	16.38841	22.92530	1482	2.2000	13.2000	42.750	1.547	0.451	9.285	10.340	8.785
2.60880	0.92915	12.84238	17.96486	1161	2.8000	16.8000	33.5000	1.212	0.451	7.275	8.103	6.88>
2.12208	0.95168		14.61321	944	3.5000	20.7500	27.250		0.452		6.751	5.603
1.46015	1.11456		10.05496	650	1.1500	6-3000	18.750		0.541		5.440	3.853
0.79821	1.14091	3.92938	5.49671	355	2.0500	11-1000	10.250	0.455	0.554	2.225	3.044	2.107

- - -- -

A B C SIGMA N 0.70091049 0.31824413 0.06312746 0.07078120 16

AA= 0.7032348 CC= 0.06301/6

.

2-

٧

GAMMA= 0.760498

LANDA= 0.340248

-167-

 RUN
 COLUMN
 COLUMN
 PELLET
 BED
 PELLET
 DIFFUSIVITY

 ND
 LENGTH
 DIAMETER
 DIAMETER
 POROSITY
 POROSITY
 CMS

 CMS
 CMS
 CMS
 CMS
 0.748550610

 70
 186.3000
 6.2700
 1.0300
 0.4050000
 0.
 0.748550610

CARRIER MW TEMP KELVIN PRESS ATM VISCOSITY . HYD DIA DENSITY 29.00000 296.50000 1.00000 0.0182409 0.3947390 0.0011920

1	2	3	4	5	6	7	8	9	10	11	12	13
VELOCITY	HETP	MOLECULAR	PELLET RE	NTU	WIDTH	TOTAL	Q EL	DV DIFF	PECLET	EMPTY RE	L/SCH 4	IE HTD
CH/SEC	CHS -	PECLET			CK	CN	MLS/SEC					
4.63473	0.92915	6.37736	31.19642	576	1.6000	9.6000	58.2500	2.153	0.451	12.635	14.371	11.755
3.36167	1.00033	4.62564	22.62745	418	2.3000	13.3000	42.2500	1.681	0.486	9-164	10.988	8.672
2.88428	1.00200	3.96874	19.41408	358	2.7000	15.6000	36.2500	1.445	0.481	7.563	9.443	7.443
2.40688	1.10577	3.31185	16.20072	299	3.4000	18.7000	30.2500	1.331	0.531	6.561	8.596	5.209
1.69078	1.19846	2.32650	11.38067	210	5.3000	28.0300	21.2500	1.013	9.582	4.507	6.621	4.362
0.99458	1.58213	1.36853	6.69451	123	10.2000	46.9000	12.5000	0.787	0.766	2.711	5.142	2.565
3.34178	1.01170	4.59827	22.49356	415	2.4000	13.8000	42.0000	1.690	0.471	9.110	11.047	6-620
10,98014	0.98300	15.10859	73.90740	1366	3.0000	17.5000	138.0000	5.397	0.471	27.932	35.268	28.324
14.00366	1.11385	19.26892	94.25871	1742	2.5000	13.7000	176.0000	7.799	0.541	38.175	53.966	36.124
17.82284		24.52408	119,96563	2217	2.2000	11.6000	224.0000	10.722	0.584	48.585	70.065	45.775
21.32375		29.34131	143.53031	2653	1.8000	9.8000	268.0000	12.031	0.548	58.130	78.625	55.007
24.62575			165.75609	3064	1.7000	9.1300	309.5000	14.374	0.561	67.131	93.930	63.525
19.41416			130.67685	2415	2.1000	10.5000	244.0000	12.988	0.650	52.924	84.875	53.381

A	8	C	SIGMA	N	
0.67549519	0.85581615	0.02323083	0.06795941	13	

AA= 0.5390088 CC= 0.0297571

GAMMA= 0.571649

LAMDA= 0.327910

-168-

 RUN
 COLUMN
 COLUMN
 PELLET
 BED
 PELLET
 DIFFUSIVITY

 ND
 LENGTH
 DIAMETER
 DIAMETER
 PDROSITY
 PDROSITY
 DIFFUSIVITY

 ND
 LENGTH
 DIAMETER
 DIAMETER
 PDROSITY
 PDROSITY
 PDROSITY

 71
 122-0000
 1-1500
 1-0050
 0-4540000
 0-725219570

 CARRIER
 NM
 TEMP
 KELVIN
 PRESS
 ATM
 VISCOSITY
 HVD
 DIA
 DENSITY

CARRIER MW TEMP KELVIN PRESS ATM VISCOSITY HYD DIA DENSITY 29.0000D 290.0000D 0.99400 0.0179282 0.2695177 0.0012114

.

1	2	3	4	5	6	7	8	9	10	11	12	13
VELOCITY	HETP	MOLECULAR	PELLET RE	NTU	WIDTH	TOTAL	Ō	EDDY DIFF			1/SCH	
CR/SEC	CHS	PECLET			CN	CN .	MLS/SEC					
26.98967	1.10044	37.40195	183.28539	2270	1.3000	5-8000	13.000		0.541	83.212	100.345	49.153
26-47064	1.05343	36.68268	179.76067	2226	1.2500	5.7000	12.750		0.524		94.212	48.208
24-39451	1.04817	33.80560	165.66179	2051	1.4000	6.4000	11.750		0.521		86.389	44.427
20.76129	1.01516	28.77073	140.98876	1746	1.5500	7.2000	10.000		0.505		71.207	37.910
18.16613	0.88690	25.17439	123.36516	1527	1.6500	8-2000	8.750		0.441		54.434	33.084
14.53290	0.80681	20,13951	98.69213	1222	1.9000	9.9000	7.000		0.401		39.615	26-457
11_93774	0.74504	16.54317	81.06854	1004	Z.2500	12.2000	5.750		0.371		30.050	21.741
8.82355	0.73362	12.22756	59.92022	742	2.8000	15.3000	4.250		0.365		Z1.970	16.369
5.70935	0.69510	7.91195	38.77191	480	4.4000	24.7000	2.750		0.346		13.408	12.398
1.55710	1.01222	2.15780	10.57416	1 30	15.8000	73.5000	0.750		0.534		5.325	2.835
5.50174	0.62926	7.62424	37.36202	462	1.0000	5.9000	2.650		0.313		11.697	10.323
3.32181	0.77561	4.60332	22.55820	279	1.7500	9.3000	1.600		0.386		6.705	6.353
1-45329	1.11689	2.01395	9.86921	122	4.9000	21.7000	0.700		0.556		5.484	2.547
0.57094	2.34615	0.79119	3.87719	48	3.6000	11.0000	0.275		1.157		4.526	1.040

A B	C	SIGMA	N
0.30983941 1.138070	20 0.02831543	0=03608801	14

AA= 0.3436004 CC= 0.0267854

.

GAMMA= 0.784638

×.

LAMDA= 0.154149

-169-

4

RUN ND	COLUMN LENGTH	DIAMETER	PELLET DIAMETER	BED Porosit	PELLET Y POROSIT		FUSIVITI	r					
72	CHS 122.0000	CMS 1-1500	CMS	0.454000		A 31A	973011						
				0.434000	U U.	V.21V	412011						
CARR	ER NW	TEMP KELVIN	PRESS AT	N VISCO	STTV N	ATO DEA	DENSI	rv					
29.		294-00000	1.00000			695177	0.0012						
1	2	3	4	5	6		7	8	9	10	11	12	13
VELOCI		MOLECU	LAR PELLI			DTH	TOTAL		EDDY DIFF			1/5CH 3	
C M/SEC	C MS	PECLE	T					HLS7SEC				173011 1	C 1112
27.191	177 2.3	5064 129.56	047 181-33	3542 7			5.8000	13.000		1.169	87 374	212.367	48.633
26-674		3912 127.06					6.4000	12.750		1.054		189.273	47.695
25.628		7880 122.08					6.5000						
24.059		1762 114.61						12.250		1.084		185.224	45.824
							6.6000	11.500	0 26.677	1.133	72.827	176.981	43.017
21.961		3606 104.64			351 2.2	000	7.4000	10.500	0 21.265	0.953	66.494	141.375	37.278
19.875	530 1.8	7034 94.67	881 132.5	1434 5	746 2.2	500	7-7000	9.500	0 18.587	0.011		123 307	36 637

19.87530		84.71262	132.51434	5746 5141	2.2500 2.4500	7.7000 8.7000	9.5000 8.5000	18.587 15.446		53.829	123.307	35.537 31.797	
15.69102 12.02978	1-39214	57.30559		4536 3478	2.6000 3.0000	9.7000 11.9000	7.5000 5.7500	12.347 8.374	0.783 0.693	47.496 36.414		28.055 21.507	
8.36855 5.23034	1-15284 0-99599	39.86476 24.91548	34.87220	2419 1512	3.9000 5.8000	17.0000 27.2000	4.0000 2.5000	4.824 2.605	0.574 0.496	25.331 15.832	32.002 17.280	14.963	
1.56910	0.84553	7.47464	10.46166	453	16.7000	85.0000	0.7500	0.653	0.421	4.753	4-401	2.375	

A	8	C	SIGMA	N	
0.64111141	0.17188688	0-06044230	0.05391870	12	
0.64111141	0.17188688	0-06044230		12	

.

.

AA= 0.5882264 CC= 0.0625384

GAMMA= 0.407367 LANDA= 0.318961

TIME 16HRS 41MIN 12.6SEC

.

1

2

.

.

.

- --- --- ____

٠

8 DAVES	150	SOURCE STATEMENT	FORTRAN SOURCE LIST GAAA	03/27/65	PAGE 1
	C		IN OF RESULTS FROM POROUS PELLET RUNS		
	1 85	READSS, NO, CL, CD, DP .E8	,EP,DO85		
	3 55	FORMAT (15,3F10.4,2F10).7,F12.9 1		
	4	IF (NQ) 64,63,84	•		
	5 64	CALL SKIP TO (1)			
	•	PRINT 56			
	7 56	OFURMATION COLUMN.2X.6	SHCOLUNN, 3X. SHCOLUNN, 4X. SHPELLET, 5X, 3H	IBED, 6X,	
		IONPELLET AX, IINDIFAUSI			
	10 11 57	PRINT 57	LENGTH, 2X, BHDIAMETER, 2X, BHDIAMETER, 2X,	a	
	11 37		LENGTH, ZAY GADIANETER, ZAY GADIANETER, ZAY	01120-0-0-0-0	
	12	READ 81,64.T.TOBS,P.VI			
	13 81	FORMAT(4F12.5.2F12.7)			
	14	D+DD85+11/10851++1.7			
	15	PRINT SSO, NO, CL . CD .	/P . DP . EB . EP. D		-
	16 550	FORMAT(1X.15.3F10.4.2F	F10.7.F12.9)		
	17	PRINT 65			
	20 65	FORMATE/SIN CARRIER	NW TEMP KELVIN PRESS ATM VISCOSII	V .	
		1 12H HYD DIA ,10H		-	
	21	HD =E8+CD/{3.+CD+(1E	EB1/(2.+DP1+1.)		
	22	VISC= 0.01709+(1273.14	114.1/(1+114.1)+(1/273.1+1.5		
	23	KHU=29. •273. •P/(22400	3_+1}		
	24	PRINT 64. GR . T .P .	VISC +HD+RHD		
	25 64	FORMAT(1X, 3F12.5, 3F12.	57 // 1		
	26 27	N=0 SHS= 0.0			
		SH = 0.0		-	
	31	SU = 0.0			
	32	SUS= 0.0			
	ñ	Su = 0.0			
	34	SWS= 0.0			
	36				
	36	SHW- 0.0			
	37	SHWS . Q.D			
	40	SHW2 = 0.0			
	41	SH¥3 = 0.0			
	42	SH3 = 0.0			
	43	584 = 0.0			
	44				
	45	SGU=0.0 PRINT60			
	46 47 60	FORMATIZAH VELOCITY H	ETP RECIPIVEL RE NTU	at0	
	47 60	1TH TOTAL Q	TELL MERTIN AERT ALA		
		228H CH/SEC CHS	\$57779.338.10078 FB .38.6077	ARET N	
	50	CRF a 00+CM 6100./12	SEC/CH,27X.10HCM CH ,7X.6HCC 2400. •VISC •TI• 273. •P		
	51	CUL = CL/(2. + 0)			
	52 10	READ 59.0.WIDTH, TOTAL	L		
	53 59	FORMAT(3F12.5)	-		
	54	15(0) 5.A.S			
	55 5	HN +12.36+ TOTAL/ WIDT	[H]++2		
	56	M = CL/MR	•		
	57	U= Q+4./13.14159+E8+P+	CD++2) +T/298.		
	60	W = 1./V			
	61	RE-CRE+U			
	62	NTU= CUL+U			

.

1_

-PAGE 05/27/65 1 Þ C-C.C. U.030000000-0007.000 V.021200000000000 C-C.C.C. Co.e(1.-EBJJ)e(DP/13.141300(1.+EB/(EPe(1.-EB))))]002 DS=(EB/(C02.0(1.-EBJJ)e(DP/13)VITY = .FID.8/43H CORRECTION DF 3(DPE FORMAT/23)545666C FORMAT/23)54566C FORMAT/23)545667 FORMAT/23)54667 FORMAT/23)545667 FORMAT/23)54667 FORMAT/23)5467 FORMAT/23)54667 FORMAT/23)5467 FORMAT/23)54667 FORMAT/23)54667 FORMAT/23)54667 FORMAT/23)5467 FORMAT/23)5567 FORMAT/23)5567 FORMAT/23)5567 FORMAT/23)5567 FORMAT/23)5567 F I FORMATI'94.1H4.184.1H4.124.1HC.144.5MSICMA.94.1HMI 0516MA = 50RT 11..EH0-1545-2.051H0-2.-6C5HU0E40A40202.040B0 154 - 2.04065U + Bezesme +2.0EN0B0C + C00205US) } PRIMT 50. 4.16. C. 516MA. W FORMATILLE4F18.8.14 -1 ł ٠ ł 1 FORTRAN SOURCE LIST GAAA 1 IF(EP) 30,65 ,30 COR-____0.030=0=H0==.66/(..75=0 + .0212=SU=HD/EN)==2 i 1 ł SU - ENOSUS/ SU SU - ENOSUS/ SU SU - ENOSUU/ SU SN - ENOSUN/ SU SN - ENOSU/ SU SN - ENOSU/ SU SU - ENOSU/ SU SU - ENOSU/ SU SU - ENOSU/ SU SU - EOSU- DOSU/MEN (DA- COSU- DOSU/MEN (SH - COSU- DOSU/MEN (SH - COSU- DOSU/MEN PRIMT 52 .U.M.W.RE.MTU.MDTM.TOTAL.0 FORMAT (4F10.5,1<u>5</u>,3F10.4 1 Na Na1 SH 854 H SU 824 H SU 824 U SU 824 U SUS 928 U SUS 928 U SUS 818 H SNU 8314 H/U SNU 8314 H/U + (HeW) ==2 ND MESSACES FOR ABOVE ASSEMBLY FIME 17445 20414 99-65EC SOURCE STATEMENT 1 . Keel + 274 SHE3 = SHE3 - SHE3 - SU3 = SU3 = SU3 = SU3 = SU4 SHNS = SHNS PRINT 137 140 83 I SN B DAVIS

.

-172-

COLUMN NO	LENGTH	DIAMETER	PELLET DIAMETER	BED POROSITY	PELLET PORUSITY	DIFF	USIVITY
56	CMS 129-6000	CMS 0.6600	CMS 0.5970	0.4710000	0.3100000	0.2076	05682
		TEMP KELVIN 296.00000	PRESS ATH 1.02800			D DIA 55945	DENSITY 0.0012275

VELOCITY	HETP	RECIP VEL	RE	NTU	WIDT	H TOT <i>i</i>	L Q
CN/SEC	CMS	SEC/CM			CH	CM	CC/SEC
0.95941	0.58791	1.04231	3.85938	299	2.7500	17.3000	0.1600
1.31919	1.00155	5 0.75804	5.30665	411	2.3900	11.5200	0.2200
2.27860	2.14265	5 0.43887	9.16602	711	1.7600	5.8000	0.3800
2.87823	2.85963	3 0.34744	11.57814	898	1.5600	4.4500	0.4800
3.05812	3.46638	0.32700	12.30177	954	7.7000	19.9500	0.5100
4.79705	5.35024	0.20846	19.29689	1497	5.8500	12.2000	0.8000
5.75646	7.57958	0.17372	23.15627	1796	1.1700	2.0500	0.9600
6.17620	7.30867	0.16191	24.84475	1927	5.1000	9.1000	1.0300
7.37546	9.87107	0.13558	29.66898	2302	4.9500	7.6000	1.2300
7.97509	10.41804	0.12539	32.08109	2489	4.5500	6.8000	1.3300
8.63469	12.80894	0.11581	34.73441	2695	4.6000	6.2000	1.4400
8.75461	11.75458	B 0.11423	35.21683	2732	4.3000	6.0500	1.4600
9.59410	12.69980	0.10423	38.59379	2994	4.1000	5.5500	1.6000
10.31365	12.82180	0.09696	41.48832	3219	3.8600	5.2000	1.7200
11.99262	14.12322	2 0.08338	48.24224	3743	3.3500	4.3000	2-0000
A		8		C		SIGMA	N
-0	26101748	-0.63	914265	1.3	2167980	0.652	83886 15

EFFECTIVE DIFFUSIVITY = 0.00085020 Correction of slupe for diffusivity term = 0.0605318 and new slope C = 1.26115 -173-

.

.

.

•

i

COLUMN	I COLUMN	COLUMN	PELLET	BED	PELLET	DIFFUSIVI	TY
NG	LENGTH	DIAMETER	DIAMETER	POROSITY	POROSITY		
	CHS	CMS	CHS				
57	421.0000	0.6600	0.5970	0.4710000	0.3100000	0.210264673	
CARR	IER MW	TEMP KELVIN	PRESS ATM	VISCOSI	ETY HY	D DIA DENS	117
29.	.00000	296.00000	1.01500	0-01821	169 0.16	55945 0.00	12120

•

.

¢

VELOCITY	HETP	RECIP VEL	RE	N	TU WIDT	H TUTA	AL Q
CN/SEC	CHS	SEC/CM				CH	CC/SEC
10.62794	16.53753	0.09409	42.21196	10639	8.7000	18.6000	1.7500
9.53478	15.40599	0.10488	37.87016	9545	9.3000	20.6000	1.5700
8.32016	13.49911	0.12019	33.04593	8329	10.1000	23.9000	1.3700
7.28773	11.65843	3 0.13722	28.94534	7295	10.8000	27.5000	1.2000
6.07311	9.47155	0.16466	24.12112	6079	12.0000	33.9000	1.0000
5.22287	8.50542	2 0.19147	20.74416	5228	2.6500	7.9000	0.8600
4.12971	6.47520	0.24215	16.40236	4134	3.0000	10.2500	0.6800
2.97582	4.53345	5 0.33604	11.81935	2979	3.6000	14.7000	0.4900
2.00413	3.37384	0.49897	7.95997	2006	4.5000	21.3000	0.3300
1.21462	2.20735	0.82330	4.82422	1215	1.3500	7.9000	0.2000
0.48585	1.75714	2.05825	1.92969	486	3.4000	22.3000	0.0800
A		B			C	SIGMA	N
-0	.22380747	0.57	967149	1	•60895641	0-190	540320 11

EFFECTIVE DIFFUSIVITY = 0.00069313 CORRECTION OF SLOPE FOR DIFFUSIVITY TERM = 0.0620292 AND NEW SLOPE C = 1.54693 -174-

.

ţ

COLUNN NO	I COLUMN LENGTH CMS		PELLET DIAMETER CHS	BED POROSITY	PELLET POROSITY	DIFFL	SIVITY
58	421.0000	• • • •		0.4710000	0.5000000	0.20491	5337
		TEMP KELVIN 296.00000	PRESS AT			D D1A 55945	DENSITY 0.0012035

•

1

.

VELOCITY	HETP	RECIP VEL	RE	NTL	J WIDT	'H TOTA	L Q
CM/SEC	CMS	SEC/CM			CM	CM CM	CC/SEC
0.73391	5.41801	1.36257	2.89453	753	21.9000	81.8000	0.1200
2.20172	3.35020	0.45419	8.68360	7261	4.8000	22.8000	0.3600
3.18026	4.78626	0.31444	12.54298	3266	3.8500	15.3000	0.5200
5.32082	8.01792	2 0.18794	20.98537	5465	2.8400	8.7200	0.8700
6.11589	8.98325	5 0.16351	24.12112	6282	2-6200	7.6000	1.0000
6.72748	10.17581	L 0.14864	26.53323	6910	2.5500	6.9500	1.1000
7.33907	11-14604	0.13626	28.94534	7539	2.4000	6.2500	1.2000
8.68456	12.20968	0.11515	34.25199	8921	2.1100	5.2500	1.4200
9.17384	13.47536	6 0.10901	36.18168	9423	2.0900	4.9500	1.5000
10.76397	17.10708	0.09290	42.45317	11057	9.8000	20.6000	1.7600
A		6		C		SIGMA	N
-2	.20553330	4.65	074056	1.6	9947962	0.402	48025 10

EFFECTIVE DIFFUSIVITY = 0.00126920 Correction of slope for diffusivity term = 0.0613776 and new slope C = 1.63810

DIFFUSIVITY WITH K=1/(EP+ADS) = 0.00450397 TORTUDSITY= 22.74828 ADSORPTION = 1.37000HLS GAS/HL OF PELLET

.

-175-

٠

1

:

COLUMN NO		COLUMI LENGTI CMS	H DI	OLUMN Ametei Cms	R D	PELLET LAMETER CMS	BED POROSIT		LLET	DIFFUS	IVITY
59	42)	1.0000		0.660			0.471000	0 0.50	00000	0.211745	851
CARRI	ER	MW	TEMP	KELV	IN PI	RESS ATH	VISCO	SITY	HYD	DIA D	ENSITY
29.	000	000	296.	00000	•	1.00790	0.018	2169	0.165	5945 0	.0012035
VELOCIT	Y	HETP		RECIP	VEL	RE		NTU	WIDT	H TI	OTAL Q
CM/SEC		CMS			/CM				CN	CH	CC/SEC
11.987	15	17.	32317	0.	0834	2 47.27	73911916	9.	0000	18.8000	1.9600
17.430	29	25.	13199	0.	0573	7 68.74	51917327	7.	1500	12.4000	2.8500
22.934	59	30.	70657	0.	0436	90.45	41922799	5.	8000	9.1000	3.7500
27.888	46	36.2	22900	0.	0358	5 109.99	23027724	4.	9500	7.1500	4.5600
32.108	143	40.3	22707	0.	03114	126.63	58731919	4.	4500	6.1000	5.2500
39.447	49	42.3	23292	0.	0253	5 155.58	12139215	3.	7000	4.9500	6.4500
47.703	95	42.	51876	0.	0209	5 188.14	47247423	3.	0000	4.0000	7.8000
54.737	22	42.	09674	0.	0182	7 215.88	40154415	2.	5000	3.3500	8.9500
63.911	06	35.	33998	0.	0156	5 252.06	56963535	8.	0000	11.7000	10.4500

6.9500

6.2000

6.0000

C

CORRECTION OF SLOPE FOR DIFFUSIVITY TERM = 0.0190111 AND NEW SLOPE C = -0.35217

-0.33316236

10.2000

9.6000

8.8000

SIGMA

11.8000

12.7000

13.2000

2.48643523 12

N

0.01386 284.6291971742

0.01287 306.3382077214

0.01239 318.3987680254

8

INVALID OUTPUT FORMAT. -0.59035632E-02 EFFECTIVE DIFFUSIVITY = XXXXXXXXX

-592.80078888

72.16751 35.09355

77.67181 31.52819

80.72976 35.13947

68.01311398

A

٠

.

-176-

ł

COLUMN	COLUM	1 C(DLUMN	P	ELLET	E	BED	P	ELLET	DI	FFUSIV	/ITY	
NO	LENGTH CMS		AMETER CMS		AMETER MS	POP	ROSITY	PO	ROSITY				
60 4	20.0000		1.6000		1.3000	0.52	220000	0.3	800000	0.20	501872	22	
CARRIE	R MW	TEMP	KELVIN	PR	ESS ATH	١	ISCOS	TY	нү	D DIA	DEN	ISITY	
29.0	0000	295.0	00000		1.03500	C	0.01816	590	0.44	36744	0.0	0012400	
ELOCITY	HETP	1	RECIP V	EL	RE		N	U	WID	TH	TOT	AL Q	
CM/SEC	CHS		SEC/C					-	Ē		CM		/SEC
0.5832		\$3971	1.71	457	5.174	474	597	5	.9000		7000	0.640)
0.9568	7 1.	17827	1.04	507			980	3	.1500	25.	2000	1.050)
1.1664	7 1.3	20172	0.85	728	10.34	948	1194	2	.5500	20.	2000	1.280)
1.5218	9 1.3	25354	0.65	708	13.50	284	1558	2	.0500	15.	9000	1.670)
1.9137	5 1.0	\$5079	0.52	253	16.97	962	1960	8	. 3500	60.	2000	2.100	5
2.3967	4 Ī.	59910	0.41	723	21.264	496	2454	7	.1500	49.	1000	2.630)
2.7339	3 1.	72312	0.36	577	24-25	660	2800	6	.5000	43.	0000	3.000)
3.2351	5 1.1	88001	0.30	911	28.70	365	3313	5	.7000	36.	1000	3.550)
3.7181		01567	0.26			898	3808		.1500	31.	5000	4.080)
3.7181	4 2.0	04571	0.26	895	32.98	898	3808	5	.1800	31.	4500	4.080)
	A			8			(SIGMA		N
	0.2940	5186		0.4	9173393		0.	439	67650		0.04	052734	10

· · · · · · ·

>

,

٩.

.

•

EFFECTIVE DIFFUSIVITY = 0.01938486 CORRECTION OF SLOPE FOR DIFFUSIVITY TERM = 0.1182664 AND NEW SLOPE C = 0.32141

.

-177-

- -

COLUMN	COLUM	N C	OLUMN	Ρ	ELLET		8ED	PI	ELLET	DIF	FUSIVIT	Y	
NO	LENGT	H 01	AMETER	DI	AMETER	PO	ROSITY	POI	ROSITY				
	CMS	1	CMS	C	MS								
61 42	1.000	0	0.6600		0.5970	0.4	710000	0.50	000000	0.773	230240		
CARRIER	MM	TEMP	KELVIN	PR	ESS ATH		VISCOS	ITY	HYE	DIA	DENSI	TY	
29.00	000	299.	00000		0.98200		0.0183	-	-	5945	0.001		
ELOCITY	HETP		RECIP V		RE		N	ru –	WEDI	-	TOTAL		
CM/SEC	CMS		SEC/C						13		CH		1SEC
0.95112		80907							2500	40.4		0.150	-
1.71202		48969							9200	20-8		0.270	-
2.28269		55270							2000	15.3		0.360	
3.42404	• -	58861							3500	50.7		0.540	-
5.07265		87352			19.14				4000			0.800	
6.15059		07753		-					7000			0.970	-
7.16512		33134 57822					1950		2500	24.2		1.130	
8.94055		79545					2123		1000	22.2		1.230	-
10.52579		05998					2865		3500	19.5	-	1.660	
11.28665		42417						-	1500	14.6		1.780	-
15.78863		24708			59.59				5600	10.8		2.490	
25.23645		23979							7000	26.8		3.980	-
													-
4	\).6407			8	7210897			-	52800	S	LGMA D.0745		N 13

...

٠

-

.

~

.

- -

CORRECTION OF SLOPE FOR DIFFUSIVITY TERM = 0.0191109 AND NEW SLOPE C = 0.20452

.

-178-

•

-- --- -- -- --

1

COLUMN	COLUMN	COLUMN	PELLET	BED	PELLET	DIF	FUSIVITY
NO	LENGTH	DIAMETER	DIAMETER	POROSITY	POROSITY		
	CNS	CMS	CMS				
62	421.0000	0.6600	0.5970	0.4710000	0.3400000	0.7674	\$28882
CARRI	ER MW	TEMP KELVIN	PRESS AT	VISCOS	ETY HY	DIA	DENSITY
29.	00000	297.50000	0.98100	0.0182	887 0.14		0.0011655

.

VELOCITY	HETP	RECIP VEL	RE	NTI	U WIDT	н тот	
CM/SEC	CMS	SEC/CM			CM	CM	CC/SEC
1.89463	1.61910	0.52781	7.20795	519	13.1500	89.8500	0.3000
3.41034	1.64960	0.29323	12.97431	935	7.1500	48.4000	0.5400
4.42081	1.76095	0.22620	16.81855	1212	5.8000	38.0000	0.7000
5.36812	1.89269	0.18628	20.42253	1472	4.8500	30.6500	0.8500
6.31544	2.13187	0.15834	24.02650	1732	4.4000	26.2000	1.0000
7.01014	2.20875	0.14265	26.66942	1922	4.0000	23.4000	1.1100
7.83114	2.39186	0.12770	29.79286	2148	3.7000	20.8000	1.2400
7.83114	2.49881	0.12770	29.79286	2148	3.8000	20.9000	1.2400
8.58899	2.56615	0.11643	32.67604	2355	3.5100	10.0500	1.3600
9.34685	2.73856	0.10699	35.55922	2563	3.3500	17.6000	1.4800
10.23101	3.06171	0.09774	38.92293	2805	3.2000	15.9000	1.6200
22.79873	5.85278	0.04386	86.73567	6253	1.9200	6.9000	3.6100
A		8		C		SIGMA	N
0.	37897281	1.49	184255	0.2	23788515	0.04	411453 12

CORRECTION OF SLOPE FOR DIFFUSIVITY TERM = 0.0192997 AND NEW SLOPE C = 0.21859

. ·

-179-

.....

ъ

COLUMN COLUMN COLUMN PELLET BED PELLET DIFFUSIVITY LENGTH DIAMETER DIAMETER POROSITY POROSITY NO CHS CHS CHS 0.3200 0.3900000 0.3100000 0.742124423 73 119.4000 2.1700 HYD DIA DENSITY

 CARRIER NW
 TEMP KELVIN PRESS ATM
 VISCOSITY
 HYD DIA
 DENSITY

 29.00000
 295.00000
 1.00000
 0.0181690
 0.1174626
 0.0011981

VELOCITY	HETP	RECIP VEL	RE	NTU	#ID1	'H T01	AL Q
CM/SEC	CMS	SEC/CM			CM	I CM	CC/SEC
9.09386	1.01778	0.10996	19.18923	731	4.7500	21.8000	13.2500
8.92227	0.9815	0.11208	18.82717	717	4.9000	22.9000	13.0000
8.40753	0.9692	5 0.11894	17.74099	676	5.0500	23.7500	12.2500
7.72120	0.89770	0.12951	16.29275	621	5.3000	25.9000	11.2500
7.03487	0.88500	0.14215	14.84450	565	5.7500	28.3000	10.2500
6.00538	0.81740	0.16652	12.67214	483	1.6500	8.4500	8.7500
5-14747	0.72322	2 0.19427	10.86183	414	1.8000	9.8000	7.5000
4.11797	0.72916	0.24284	8.68946	331	2.2500	12.2000	6.0000
2.91690	0.7627	3 0.34283	6.15504	234	3.1500	16.7000	4.2500
1.88740			3.98267	151	5-6000	27.0000	2.7500
0.68633	2.14010	1.45703	1.44824	55	4.8500	15.3500	1.0000
۵		8		c		SIGNA	N
	.01542345	1.43	413471	0.0	9574282	0.01	539098 11

EFFECTIVE DIFFUSIVITY = 0.00447061 CORRECTION OF SLOPE FOR DIFFUSIVITY TERM = 0.0166358 AND NEW SLOPE C = 0.07911

TIME 17HRS 21MIN 55.4SEC

ú.

 \mathbf{b}

, ²

TABLE A II.1

	Manometers Inches Oil	Flow Rate cm ³ /sec. at 298°K 760 mm Hg
Low Flow (LF)	1.8 3.65 7.9 10.7 17.5 23.7 26.1	0.338 0.674 1.416 1.87 2.82 3.65 3.96
High Flow (HF)		κ.
	.91 1.5 2.8 4.1 5.1 7.7 7.0 10.2 15.1 8.1 14.4 18.1 21.1 24.9 24.0	.811 1.31 2.37 3.21 3.91 5.88 5.38 6.90 9.46 5.85 9.00 10.50 11.70 12.68 13.45
Very High Flow (VH	F) 1.65	12.9
	2.35 5.3 8.7 14.4 20.05 26.1	15.9 26.3 33.9 44.0 52.0 59.5

,

.

`,

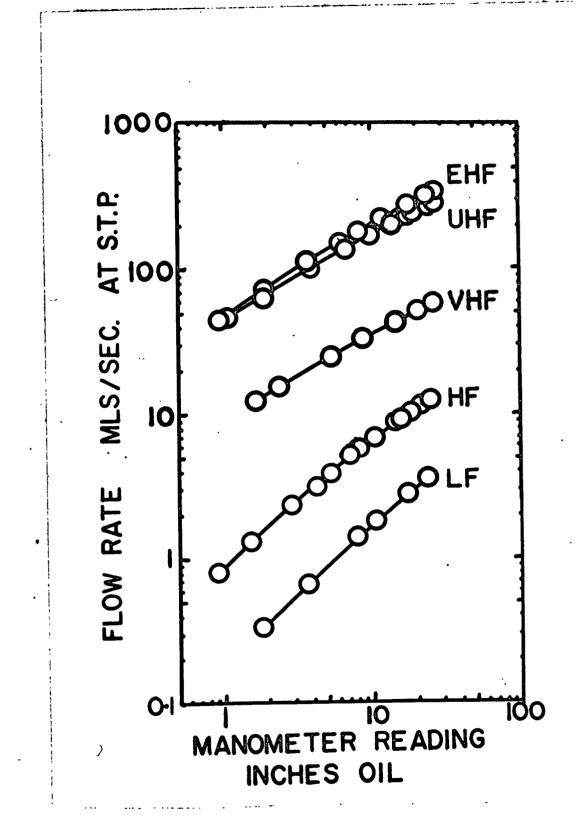
Continued....

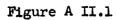
TABLE A II.1 (Continued)

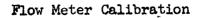
•

	Manometers Inches Oil	Flow Rate cm ³ /sec. at 298°F 760 mm Hg
Ultra High Flow	(UHF)	
	26.7 23.3 19.6 17.6 13.9 10.0 6.8 4.35 1.85 1.1	287.5 271 246 233 204 171 139 106 64.4 48
Extra High Flow	(EHF) 26.75 23.3 17.6 11.85 6.25 6.35 3.77 1.88 .95	348 323 278 221 180 152 112.5 73.6 45.3

-


,


-


•

•-

J

- 184 -

APPENDIX III

TIME OF DIFFUSION OF A GAS FROM A SPHERICAL PELLET WITH A STEP CHANGE IN SURFACE CONCENTRATION

RATE OF DIFFUSION FROM A SPHERICAL PELLET

The diffusion of a gas from a spherical pellet with a step change in the surface concentration is given by Crank (Ref. 2, page 86).

The amount of gas diffused at time $t_{,}(M_{t})$ as compared to the amount of gas diffused at infinite time (M_{∞}) is given by,

$$\frac{M_{t}}{M_{\infty}} = 1 = \frac{6}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n} \exp\left(-\frac{DEn^2\pi^2t}{a^2}\right)$$

where a is the pellet radius.

For the second term in the series to be less than 1% of the first,

$$\exp\left(-\frac{D_{\rm E}}{a^2}\right) = \frac{100}{4} \exp\left(-\frac{4}{D_{\rm E}}\frac{\pi^2 t}{a^2}\right)$$
$$\ln(25) = \frac{4\pi^2 D_{\rm E} t}{a^2} - \frac{\pi^2 D_{\rm E} t}{a^2} = 3\frac{\pi^2}{a^2}$$

If $D_E = 0.01 \text{ cm}^2/\text{sec}$ and a = 0.5 cms

$$t = .25 \ln(25)$$
 = 2.82 seconds
3 $\Pi^2 \times .01$

Thus after ten seconds

$$\frac{M_{t}}{M_{\infty}} = 1 - \frac{6}{\pi^{2}} e \left(-\frac{.01^{2} \times 10}{.25}\right) = .9881$$

= 98.81%

Thus in ten seconds 98.8% of the gas will diffuse out of a 1 cm diameter pellet if the effective gas diffusivity is 0.01 cm²/sec <u>MANUFACTURERS DATA ON POROUS PELLETS</u> (INCLUDING CONTRADICTIONS AND VERIFICATIONS) Norton Catalyst Supports, 1/2" diameter SA 203 mixture

Information from two sources is summarized below, the first from the manufacturer's general information sheet, and the second from data supplied by the manufacturer in a private communication.

- 185 -Manufacturer's Data Private Communication Apparent Porosity 0.41 .36 - .40 Water absorption 20% 15 - 19% Bulk density 2.1 grams/ml 2.1 - 2.3 grams/ml 3.4 - 3.6 Apparent Specific Gravity 75 - 78 lb/ft³ Packing Density less than 1 meter²/gram Surface Area Pore Diameter Range 90% in 2-40 microns

Using the bulk density value of 2.1 and the specific gravity of 3.5, a porosity of 0.382 can be calculated. As a further check on the consistency of the data, if the water adsorbed is assumed to exist as liquid water occupying the pores, then 17% water indicates a porosity of 0.37%. In an experimental check, a pellet was dried by heating to 500°F, and then put in a vacuum which was released by water so that the pellet absorbed as much water as possible. Weighing the pellet between each operation showed that the initial water content was negligible, but the evacuation and saturation procedure yielded a water content of 16.8% which again is an indication of a 37% porosity if the pellet specific gravity of 3.5 is accepted.

In conclusion, a value of 38% porosity has been taken for the pulse apparatus experiments and the information available suggests an error limit of $\pm 1\%$.

Activated Alumina Pellets Alcoa H 151 1/4" and 1/8" diameter

Two sources of information were again used to determine the properties of these pellets, but some of these data were contradictory. Because one of these sources was private communication in the form of a letter from the supplied, which differed from the manufacturer's data it was concluded that the supplier had not furnished the correct data. This conclusion is justified in the following paragraphs.

Manufacturer's Data	Private Communication
52-55 lb/ft ³ 51-53 lb/ft3	
3.1-3.3	
0.3 mls/gm	0.5-0.55 mls/gm 40 A°
50 A°	40 A°
350 meter ² /gm	390 meter ² /gm
	0.28 mls/gm
o 30A° region 2 2-25 %	42A°
	52-55 lb/ft ³ 51-53 lb/ft ³ 3.1-3.3 0.3 mls/gm 50 A° 350 meter ² /gm 0 30A° region

- 1.86 -

A pore volume of 0.3 mls per gram represents a porosity of 50% if the specific gravity of the pellets is taken as 3.2, while a pore volume of 0.5 indicates a porosity of 63%. The problem amounts to deciding which set of data above are consistent.

Placing the pellets in a vacuum and releasing with water to measure the water absorbed showed a porosity of around 50 to 55% which is somewhat indeterminate, lying as it does between the data from the two sources. However, for the 1/8 inch activated alumina pellets the test described below was applied.

The test pellets were placed in the sample loop of a gas chromatograph and a hydrogen purge put on the loop. Air carrier gas was put on the column, which consisted of a 20 ft. length of 1/2" plastic hose to cause dispersion and create a Gaussian pulse distribution. The height of the pulse was proportional to the gas in the pulse, and so by noting the difference in height between the pulse with the pellets in the sample loop, and without, the volume of the solids in the pellets could be determined. The peak heights were calibrated in terms of gas volume by injecting known volumes of hydrogen with a syringe. The volume of the sample loop was found to be 4.80 mls while the volume of gas when 47 dried pellets occupied the tube was 4.40 mls. From the mean diameter the overall volume of the pellets was calculated to be 0.81 mls and so the porosity is given by (0.81-0.40)/0.81 = 50.5%.

Similarly for 47 wet (12%) pellets, porosities of 28.4 and 33% were obtained.

If the water is assumed to exist as liquid water (31), then the porosity of the wet pellets can be calculated from the moisture content if the dry pellet porosity is known. If a 50% dry pellet porosity is assumed, then for a 12% wet pellet the porosity comes out to be 30.8%. Thus, the manufacturer's data appears to give the best agreement with the observations.

Finally, two individual pellets were weighed and the dimensions of three diameters measured on callipers. This allowed the apparent density of the pellets to be calculated, and if the water content is taken into account, the porosity of the dry pellets can be obtained from a knowledge of the true specific gravity.

0.699 cm pellet weighed 0.3140 grams so density = 1.76 gms/ml 0.617 cm pellet weighed 0.2300 grams so density = 1.87 gms/ml

If 12% water in the pellet is assumed then the densities become 1.57 and 1.67 respectively. In conjunction with the specific gravity the porosities of these two pellets when dried are;

1.57/3.2 = 49% 1.67/3.2 = 52%

The only anomaly left in the manufacturer's data is the claim of 22 to 25% static adsorption of moisture in air of 60% RH. Even with soaking in water only 14% water was adsorbable. However, in an Alcoa product data

- 187 -

bulletin, ("Activated and Catalytic Aluminas", Feb. 1, 1963, Section GB2A, Figure 2, page 8), it is shown that after about six months operation the adsorptive capacity of this material drops to 13 or 14%. The samples used in this work were stored for six months before work was started, and so it is possible that the low moisture contents are to be expected.

The dry pellets were assumed to have a 50% porosity in the pulse apparatus determinations and the porosity of the wet pellets was taken as 31% corresponding to a 12% wet pellet. The 1/4" and 1/8" pellets were assumed to have the same properties.

POROSITY OF PACKED BEDS

Two general methods were used to obtain the porosity of the non porous pellet beds

A.) If the density of the pellet packing was known, the bed was weighed before and after filling and the pellet density used to convert the packing weight to a packing volume. The overall volume of the vessel was calculated from the internal dimensions of the bed.

Example

Run 50: 5 cm. diameter by 111.8 cm. length bed packed with No. 9 lead shot having a density of 10.808 gm/ml.

Weight of column + bungs + screens " " " + packing	=	1051 grams 35.5 lb. 161028 grams
Weight of packing	3	15,051 grams
Volume of packing 15,051/10.808	Ξ	1392 ml.
Volume of bed $\frac{\pi(5.0)^2}{4}$ 111.8	=	2195 ml.
Bed Porosity = <u>2195 - 1392</u> 2195	=	36.6%

- 188 -

B.) The alternate method of porosity measurement was to weigh the bed, (a) empty, (b) packed, (c) packed and filled with water, (d) unpacked and filled with water. If the density of water is taken as unity the bed porosity is given by (c-b)/(d-a).

Example

Run 54: 1/4" polyethylene tube packed with 2.975 mm glass beads. Column length 184.5 cm and diameter 0.415 cm.

Weight						=	43.0 grams
11	11	и.	+ packing		×	=	72.0 grams
11	11	11	11	+ water			89.0 grams
11	11	¹¹ -	+ water				70.0 grams

Porosity of bed = (89.0 - 72.0)/(70.0 - 43.0) = 63%

The porosities of the beds of porous pellets are treated individually depending on the reliability of the available manufacturer's data.

Norton Catalyst Support 1/2" diameter SA 203 Mixture, RUN 60

The moisture content of these pellets was found to be negligible and so the manufacturer's pellet density was accepted as a value of 2.05 grams/ ml. With the weight of pellets in the bed measured, the porosity of the bed (not including pellet pores) was calculated by method A) above. Activated Alumina Pellets Alcoa H151 1/4" diameter, RUNS 56,57,58,59,61,62

The bed used for these runs was a single pellet diameter and the porosity was measured as follows. The average diameter was used to calculate the mean pellet volume and then the number of pellets in a measured length of tube was measured. The volume of the pellets is thus known and the volume of the bed over the measured length can be calculated from the internal diameter of the vessel.

- 189 -

Example

Forty-four pellets in line occupy 25.0 cm. making a mean pellet diameter of 0.568 cm. (Note the pellets were graded so that a small pellet was not adjacent to a large pellet, which would introduce an error into the result.)

In the packed bed 18 pellets occupied 10 cm. The volume of the pellets is thus $18 \text{ Tr}(0.568)^3/6 = 1.727 \text{ mls.}$ and the volume of the vessel is given by $10 \text{ Tr}(0.66)^2/4 = 3.42 \text{ mls.}$

The bed porosity is (3.42 - 1.727)/3.42 = 49.7%Activated Alumina Pellets, Alcoa H 151 1/8" Diameter, RUN 73

The above method could not be applied to a bed of several particle diameters thick. The moisture content of the pellets was determined to be 12%, and weighing the bed before and after filling showed that 467 grams of the wet pellets packed the bed. Thus the weight of dry pellets was 411 grams and since the density of the dry pellets was given as 3.1 to 3.3 gm/cm. by the manufacturer, the volume of solid can be calculated to be 129 ml. The 119.4 cm. long by 2.175 cm. diameter bed contains a volume of 441 ml. and so the porosity of the bed can be evaluated by method A if the dry pellets are assumed to be 50% porous.

The porosity is thus (441 - 129/0.5)/441 = 41%

As a corollary to the above calculation, the porosity of the dry activated alumina pellets is unlikely to be 65% as claimed in the supplier's literature. The assumption of a 65% pellet porosity yields impossible bed porosities, for example, a value of 54% is obtained and a 54% bed porosity is extremely unlikely in a random packed bed of uniform spheres.

Estimation of the Molecular Diffusivity of the Methane Air System Ref (32)

Mol Wt. Tc \mathbf{Pc} Ve o K 3.617 Å 97.0 28.97 36.4 86.6 1,32 Air 3.822 190.7 45.8 16.04 137.0 99.7 Methane

 $\sigma_{AB} = 3.7195 \text{ Å}$

$$\frac{\epsilon_{AB}}{K} = \sqrt{97 \times 137} = 115.4 \,^{\circ}\text{K}$$

At 298°K $\frac{KT}{\epsilon_{AB}} = \frac{298}{115.4} = 2.54$

From Table B.2 $\Omega = 0.990$

$$D_{AB} = 0.001858 / \frac{(293)^3 1}{(16.04)^4} + \frac{1}{(28.97)^2} \sqrt{\frac{1}{1}(3.7195)^2 \cdot 990^2}$$

 $= 0.212 \text{ cm}^2/\text{sec}$

- 192 -

APPENDIX IV

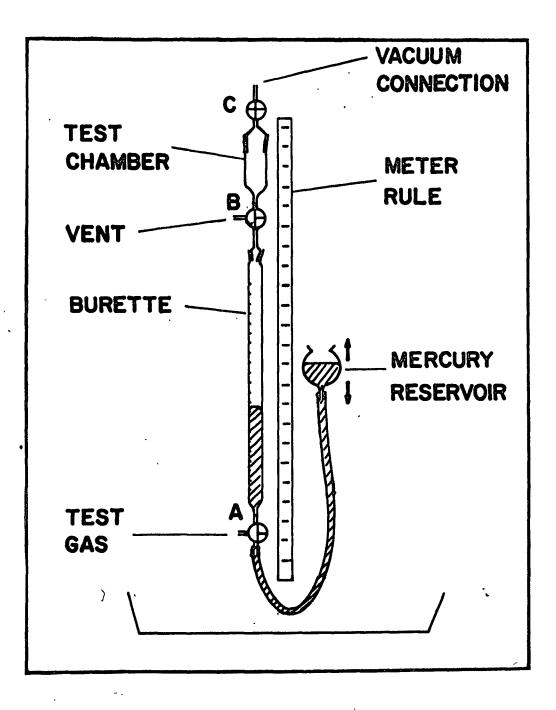
ADSORPTION OF GASES BY ACTIVATED ALUMINA PELLETS

THEORY AND APPARATUS

This experiment was carried out in order to obtain the degree of methane adsorption in dry alumina pellets, adsorption is known to influence the effective diffusivity in a porous pellet (2). The following two assumptions were made,

the adsorption isotherm is linear, i.e. moles adsorbed/gm. solid = W(partial press.)

and the presence of other gases does not affect the adsorption isotherm.


The apparatus is shown in Figure A IV.1. The test chamber BC could be evacuated while the burette zone AB was purged with the test gas. The stop cock A was then turned to shut off the purge gas and open the mercury tube to the burette. The amount of gas used in the test could be adjusted by regulating the burette zone vent at B and adjusting the manometer level.

The vacuum in the test chamber could be shut off at C, and the burette and test chamber connected at B. Thus by knowing the volume of the test chamber and the tube connecting to the burette zero, a series of measurements of the volume and pressure of trapped gas could be made by altering the manometer position. A series of burette readings (volume) and manometer readings (pressure) were taken at corresponding points as well as the atmospheric pressure. The volume of sample solids was also obtained.

Total gas in the system = $\frac{P_0V_0}{RT}$ Moles

A material balance of the trapped gas yields,

 $\frac{P_{o}V_{o}}{R T} = \frac{P V}{R T} + WP \rho_{p}Q$

Adsorption Measurement Apparatus

or $V = \frac{P_0 V_0}{P} - WRT \rho_p Q$

Where $\rho_{\rm p}$ is the pellet density, and Q the volume of pellets.

Hence a plot of volume V against $\frac{1}{P}$ should yield a straight line having an intercept WRT $\rho_p Q$ which is the volume of gas adsorbed. If the overall volume of the pellets (including pores) is known then the volume of adsorbed gas per unit volume of pellets is easily obtained.

- 194 -

RESULTS

Table A IV.I shows the manometer and burette readings along with data in terms of volume and inverse pressure for the methane, hydrogen and nitrogen. Two sets of data are recorded for methane, one assumed atmospheric pressure and the other at about 1/2 atmospheres in order to try and approach the concentration in the pulse apparatus. These points are plotted in Figure A IV.2.

Following are the characteristics of the apparatus which had to be known to prepare Table A IV. 1,

Volume from zero of burette to stop cock B = 6.7 ml.Volume of empty test chamber= 25.29 ml.Pellets ALCOA H 151 activated alumina spheres 1/4" diameter.Weight of dry pellets in sample= 7.68 gramsVolume of solid excluding pores= 7.65/3.2 = 2.4 ml.Overall volume of pellet (50% porosity)= 4.8 ml.

The overall volume of the pellets was also computed from the dimensions of the pellets and the same result was obtained.

Hence volume to be added to the burette reading = 25.29 + 6.7 - 2.4

= 29.59 ml.

Volume of gas = 29.59 + Burette reading Pressure in chamber = Atmospheric ± manometer pressure:difference

RESULTS AND CONCLUSIONS

The intercept of the hydrogen data is of the order of the accuracy of the experiment, and so it may be concluded that the hydrogen intercept represents zero adsorption. The intercepts were computed by the least squares technique and methane showed 5.22 ml. adsorbed at a half atmosphere and 5.387 ml, at one atmosphere. Since the hydrogen intercept of + 0.316 is taken as zero this must be added to the methane result giving 5.22 + .31 = 5.53 ml. in 4.8 ml. of pellet at a half atmosphere and 6.60 ml, in 4.8 ml. pellet at one atmosphere.

Hence the methane adsorbed per unit volume of pellet material is 1.15 ml. at a half atmosphere and 1.375 ml./ml. pellet at one atmosphere. The results for nitrogen are not particularly of interest but it can be seen from Figure A IV.2 that nitrogen adsorption is slightly higher than that of hydrogen as may be expected. A least squares computation for the nitrogen data was not carried out.

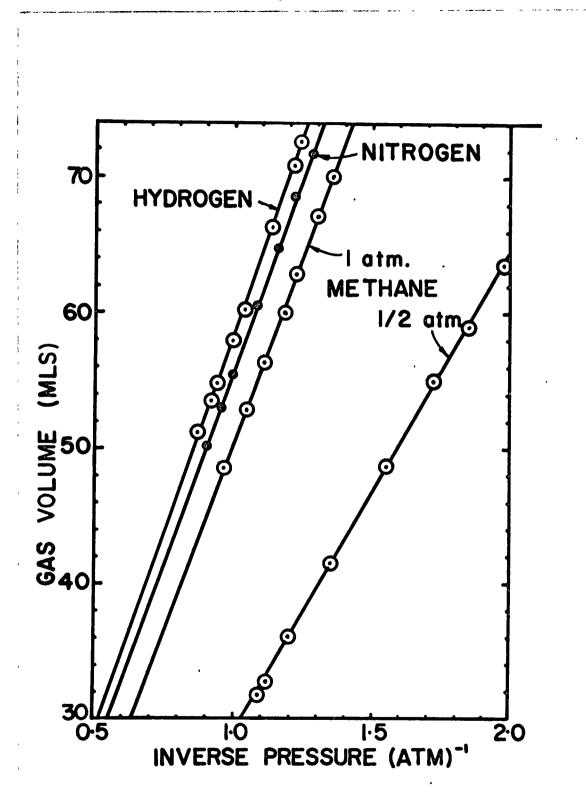


Figure A IV.2

Gas Volume vs. Inverse Pressure For Adsorption Measurement

TABLE A IV.1

RESULTS FOR ADSORPTION APPARATUS

METHANE La Atm. Press Room Temp	sure		.0 mm Hg C		HYDROGEN 765.2 m 22°C				
Burette mls.	Man. cm.	Press. mm Hg	atm. ⁻¹	Vol. mls.	Burette mls.	Man. cm.	Press. mm Hg	l/P_1 atm	Vol. mls.
0	- 1.5	74.4	.1.02	29.59	41.3	-14.0	62.5	1.215	70.8 9
2.3	- 6.2	69.7	1.09	31.89	43.0	-15.4	61.1	1.242	72.59
4.2	- 8.2	67.7	1.12	33.79	36.7	- 9.7	66.8	1.138	66. 29
6.5	-12.8	63.1	1.20	36.09	30.7	- 3.2	73.3	1.038	60.29
11.9	-19.7	56.2	1.35	41.49	25.3	+ 4.3	80.8	•940	59 .8 9
19.1	-26.8	49.1	1.55	48.69	23.9	+ 6.4	82.9	.917	53.99
25.4	-31.8	44.1	1.72	54.99	21.6	+10.7	87.2	.872	51.19
29.4	-35.0	¹ 40.9	1.85	58.99	28.4	0	76.5	•99 ¹ 4	57•99
34.01	-37.5	38.4	1.98	63.60					
49.0	-45	30.9	2.45	78.59			,		
ΖĒ	= 25.45 = 15.33 477.7	;			Σ	$\frac{\overline{P}}{P} = 8$.86418 .356 87.62		
$\sum \frac{V}{P} =$	7 99•7	635			Σ	$\frac{V}{P} = 5$	517.23384		
Intercept	= -5.220	08 mls.			Inte	rcept= (.3167 mls.	,	

-

•

NITROGEN Atm. Press Room Temp		765.2 mm 22°C	Hg		ME]HANE 749 22.		ssure		
Burette mls.	Man. cm.	Press. mm Hg	l/P atm1	Vol. mls.	Burette mls.	Man. cm.	Press. mm Hg.	1/P atm1	Vol. mls.
42.3	-17.0	59•5	1.279	71.89	31.0	-10.6	64.3	1.185	60.6
39.0	-14.0	62.5	1.215	68.59	33.3	-12.7	62.2	1.225	62.9
35.2	-10.5	66.0	1.152	64.79	37.55	-16.4	58.5	1.30	67.2
31.0	- 6.1	70.4	1.08	60.59	40.8	-18.9	56.0	1.35 ⁴	70 . 4
25.95	0	76.5	•994	55•5 ⁴	26.8	- 6.5	6 8.4	1.11	56.4
23.4	÷ 3.3	79.8	•953	52.99	23.3	- 2.3	72.6	1.045	52.9
20.6	+ 7.7	84.2	.901	50.19	21.2	0	74.9	1.018	50.8
					19.0	+ 3.3	78.2	0.965	48.6
						= 10.	71984		
					\sum_{p}^{1}	= 9.3	202		
			•		\sum_{P}^{V}	= 5 ⁴⁸	.0431		
					Σv	= 469	.8		
					n	= 8			
					Intercep	t = -6.	387 moles		

•

- 198 -

PROGRAM		APPENDIX V				7age-198	i
B DAVES			FURTRAM	SOURCE	LIST	GAAA	04/29/65
	15N	SOURCE STATEMENT				-	
	1	PI=3.14159					
	26	READ 1.DB,EL,ELE,E					
	31	FORMAT (4F10.5)					
	4	IF(DB) 70, 70,5					
	55	READ2, S, Q, P, T, TB, DO, J					
	72	FORMAT(F10.8.5F10.5 .12)					
	10	1F(5)6,6,9 040+TB/T					
	12	CALL SKIP TO (1)					
	13	I=0					
	13	IF(J-62)101,102,103					
	15 10						
	16 6		GEN /	3			
	17	GOTO105		•			
	20 1						
	21 6		NE /				
	22	GOTO105					
	23 1	03 PRINT63					
	24 6	3 FORMATI 20H NITROGEN-BUT	INE	/}			
	25 1						
	26 3						
		118H BED DIAMETER CHS .F					
						TURE= .Fl	
			10.5.20X.1	SHATM.PR	ESSU	RE MM HG	.F10.11
	27	PRINT31,E,TB				TURE K= ,	
	30 3 31	1 FORMAT(9H POROSITY ,F) CALLABED(S)		INDED IF	PERA	TURE Nº +	F10.4777
	32	A=1.56/EL					
	33 2						
	34	H=4.+0/(D+E+PI+DB++2)					
	35	EK=ELE/E					
	36	DEL=H-EK+A++2-A+SIN(A+EL	/COS(A+EL)				
	37	1=1+1					
	40	IF(ABS(DEL)00001) 51.5	0,50				
	41 5	0 DDEL=-2.+EK+A-A+EL/(COSI	+EL))++2-5	IN(A+EL)	/C05	(A+EL)	
	42	A=A-DEL/DOEL					
	43	1F(1-20) 71,71,51					
	- 44 - 7						
	45 5						
	46	AMDA=DO/D					
	47	DEF=D+E					
	50	PRINT52, D, AMDA, DEF, DO, A,				- 514.94	
	51 5					= .F16.8/	
		1FECTIVE DIFFUSIVITY= + 28/10X+6HALPHA= +F16+8+2				DIFFUSIVIT	+12)
	52	60T06	INTERN NUM	CR ITERA	1104	3-	71C7
	53 7						
	54	END					
		10 · · · · · ·					

- .

1

ND MESSAGES FOR ABOVE ASSEMBLY TIME 17MRS DOMEN 06.05EC

. .

- .

•

.

<pre>ISM SQUACE STATEMENT SUBAQUTINE ABCDIB: DIMENSION Y1000 DIMENSION Y1000 ACCOUNTINE ABCDIB: DIMENSION Y1000 ACCOUNTING DIMENSION Y1000 ACCOUNTING DIMENSION Y1000 ACCOUNTING CONTINUE ACCOUNTINUE CONTINUE C</pre>	B DAVES		SOURCE LIST JAAA	04/29/65
2 DIMENSION *(100) 3 DIMENSION *(100) 4 2 SY=0.0 5 N=1 6 PRINTSO 7 DD FORMATIZOX,30H TIME SEC. PEAK HFIGHTS) 10 26 CONTINUE 11 READ25,TIN1,YIN1 12 25 FORMATIFUG.1,FI0.21 13 IF(1N1) 40,40,41 14 41 PRINT27,TIN1,YIN1 15 27 FORMATIZUX,FI0.1,FI0.2) 16 SY=SYY(N) 17 N=N=1 20 GOTO26 21 40 NUMAR-1 22 GOTO26 23 STEBT=0.0 24 STEBT=0.0 25 STEBT=0.0 26 SYTEBT=0.0 27 STEBT=0.0 28 STEBT=0.0 29 STEBT=0.0 20 STEBT=0.0 20 STEBT=0.0 21 STEBT=0.0 23 STEBT=0.0 24 STEBT=0.0 25 STEBT=0.0 26 SYTEBT=0.0 27 STEBT=0.0 28 STEBT=0.0 29 STEBT=0.0 20 STEBT=0.0 21 STEBT=0.0 23 STEBT=0.0 24 STEBT=0.0 25 STEBT=0.0 26 STEBT=0.0 27 STEBT=0.0 28 STEBT=0.0 29 STEBT=0.0 20 STEBT=0.0 20 STEBT=0.0 21 STEBT=0.0 22 STEBT=0.0 23 STEBT=0.0 24 STEBT=0.0 25 STEBT=0.0 26 STEBT=0.0 27 STEBT=0.0 28 STEBT=0.0 29 STEBT=0.0 20 STEBT=0.0 20 STEBT=0.0 20 STEBT=0.0 20 STEBT=0.0 21 STEBT=0.0 22 STEBT=0.0 23 STEBT=0.0 24 STEBT=0.0 25 STEBT=0.0 26 STEBT=0.0 27 STEBT=0.0 28 STEBT=0.0 29 STEBT=0.0 20 STEBT=0.0 20 STEBT=0.0 21 STEBT=0.0 21 STEBT=0.0 22 STEBT=0.0 23 STEBT=0.0 24 STEBT=0.0 25 STEBT=0.0 26 STEBT=0.0 27 STEBT=0.0 28 STEBT=0.0 29 STEBT=0.0 20 STEBT=0.0 20 STEBT=0.0 20 STEBT=0.0 20 STEBT=0.0 21 STEBT=0.0 21 STEBT=0.0 22 STEBT=0.0 23 STEBT=0.0 24 STEBT=0.0 25 STEBT=0.0 26 STEBT=0.0 27 STEBT=0.0 27 STEBT=0.0 28 STEBT=0.0 29 STEBT=0.0 20	ISN	SOURCE STATEMENT		
<pre>2 DIMENSION Y(100) 3 DIMENSION T(100) 4 2 Symbol 5 N=1 6 PRINTS0 7 DIFORMATI20X,30H TIME SEC. PEAK HFIGHTS ; 10 26 CONTINUE 11 READ25,T(N),Y(N) 12 25 FORMATI20X,10H TIME SEC. PEAK HFIGHTS ; 10 26 CONTINUE 12 FORMATI20X,10H TIME SEC. PEAK HFIGHTS ; 11 READ25,T(N),Y(N) 12 25 FORMATI20X,10H TIME SEC. PEAK HFIGHTS ; 13 JFIT(N) 40,40,41 14 41 PRINT27,T(N),Y(N) 15 27 FORMAT(20X,4FL0.1,FL0.2) 16 SY-SYM(N) 17 N=N=1 20 GOTO26 21 GOTO26 21 GOTO26 21 GOTO26 23 SYEBT=0.0 23 SYEBT=0.0 24 SYEBT=0.0 25 SYEBT=0.0 26 SYTEBT=0.0 27 STEBT=0.0 28 SYEBT=0.0 29 SYEBT=0.0 20 SYEBT=0.0 20 SYEBT=0.0 21 SIE28=0.0 23 SYEBT=0.0 24 SYEBT=0.0 25 SYEBT=0.0 26 SYTEBT=0.0 27 SIE28=0.0 28 SYEBT=0.0 29 SYEBT=0.0 29 SYEBT=0.0 20 SYEBT=0.0 20 SYEBT=0.0 21 SIE28=0.0 22 SYEBT=0.0 23 SYTEBT=0.0 24 SYEBT=0.0 25 SYEBT=0.0 26 SYTEBT=0.0 27 SIE28=0.0 28 SYEBT=0.0 29 SYEBT=0.0 20 SYEBT=0.0 20 SYEBT=0.0 20 SYEBT=0.0 21 SYEBT=0.0 21 SYEBT=0.0 22 SYEBT=0.0 23 SYEBT=0.0 24 SYEBT=0.0 25 SYEBT=0.0 25 SYEBT=0.0 26 SYEBT=0.0 27 SYEBT=0.0 28 SYEBT=0.0 29 SYEBT=0.0 20 SYEBT=0.0</pre>	1	SUBROUTINE ABCD(B)		
<pre>3 DIMENSION T(100) 4 2 SY=0.0 5 N=1 6 PRINTS0 7 50 FORMATIZOX,30H TIME SEC. PEAK HFIGHTS 1 0 46 CONTINUE 1 READ25,TIN).YIN1 12 25 FORMATIGUA,IFI0.21 13 IFIT(N) 40,40,41 14 (1 PRINT27,TIN).YIN1 15 27 FORMATIZOX,FI0.1,FI0.2 1 16 SY=SY=VIN 17 N=N=1 20 GOTIST. 20 GOTIST. 21 GOTIST. 22 GOTIST. 23 II SEBT=0.0 24 STEET=0.0 25 SYEET=0.0 26 SYTEET=0.0 27 SIE28E=0.0 28 SYEET=0.0 29 SYEET=0.0 20 SYTEET=0.0 21 SIE28E=0.0 21 SIE28E=0.0 23 SYTEET=0.0 24 SITEEET=SYEET=SEET=SEET=SEET=SEET=SY</pre>	2			
<pre>5</pre>	3			
<pre>6 PRINTSO 7 50 FORMATIZOX, 30H TIME SEC. PEAK HFIGHTS) 10 26 CONTINUE 8 AD25, TINN, YIN) 12 25 FORMATIZOX, 50H, 150, 21 13 JIFITNI) 40, 40, 41 14 41 PRINTS7, TINN, YIN) 15 27 FORMATIZOX, FID.1, FID.2) 16 SY SYYYIN 17 N.+41 20 GOTO26 21 40 NUEN-1 22 DOTIFI, 10 23 11 SEBT=0.0 24 STEBT=0.0 25 SYE6T=0.0 26 SYE6T=0.0 27 STE28T=0.0 30 SE28T=0.0 31 ST2E8T=0.0 32 ST2E70=0.0 33 SYT2E8 = 0.0 34 DOI, 24: NU 35 E8T=SYE6T=0.0 36 SE28T=0.0 37 STE28T=0.0 38 SYT2E8 = 0.0 39 SE28T=0.0 30 SE28T=0.0 31 ST2E8T=0.0 32 ST2E70=0.0 33 SYT2E8 = 0.0 34 DOI, 24: NU 35 E8T=SYE6T=0.0 36 SE28T=SYE6T=0.0 37 ST2E8T=0.0 38 SYT2E8 = 0.0 39 SE28T=0.0 30 SE28T=0.0 31 ST2E8T=0.0 32 ST2E70=0.0 33 SYT2E8 = 0.0 34 DOI, 24: NU 35 E8T=SYE6T=SYE6T=SYE8</pre>		\$Y=0.0		
7 50 F CDMPAT(20X,30H TIME SEC. PEAK HFIGHTS) 10 46 CONTINUE 11 READ25,T(N),Y(N) 12 25 F COMATIFICI,IFI0.2) 13 IF,ITN); 40,40,41 14 41 PRIN72,T(N),Y(N) 15 27 F CDMAT(20X,FI0.1,FI0.2) 16 SYSY+Y(N) 17 N=441 20 GOTT26 21 40 NU=H-1 22 00717=1,10 23 11 SEDT=0.0 24 STEBT=0.0 25 SYEBT=0.0 26 SYEBT=0.0 27 STE2BT=0.0 28 SYEBT=0.0 29 SYEBT=0.0 20 SYEBT=0.0 21 STE2BT=0.0 23 SYEEBT=0.0 24 STEEDT=0.0 25 SYEBT=0.0 26 SYEBT=0.0 27 STE2BT=0.0 28 SYEBT=0.0 29 SYEBT=0.0 20 SYEBT=0.0 20 SYEBT=0.0 21 STE2BT=0.0 23 SYEEBT=0.0 24 STE2BT=0.0 25 SYEBT=0.0 26 SYEBT=0.0 27 STE2BT=0.0 28 SYEBT=0.0 29 SYEBT=0.0 20 SYEBT=0.0 20 SYEBT=0.0 20 SYEBT=0.0 21 STE2BT=0.0 23 SYEEBT=0.0 24 STE2BT=0.0 25 SYEBT=0.0 26 SYEBT=0.0 27 STE2BT=0.0 28 SYEEBT=0.0 29 SYEEBT=0.0 20 SYEBT=0.0 29 SYEBT=0.0 20 SYEBT=0.0 20 SYEBT=0.0 20 SYEBT=0.0 20 SYEBT=0.0 21 STE2BT=0.0 22 STE2BT=0.0 23 SYEEBT=0.0 24 SYEBT=0.0 25 SYEBT=0.0 26 SYEBT=0.0 27 SYEBT=0.0 27 SYEBT=0.0 28 SYEBT=0.0 29 SYEBT=0.0 20	5	N=1		
<pre>10 26 CONTINUE 11 REAU25.T(N).Y(N) 12 25 FQRMAT(F10.1,F10.2) 13 JF(T(N).Y(N) 14 41 PRINT27.T(N).Y(N) 15 27 FQRMAT(200,F10.1,F10.2) 16 SYSYY(N) 17 N.H+1 20 GOT026 21 40 NUH-1 22 DOTIT-1.10 23 11 SEBT=0.0 24 STEBT=0.0 25 SYEBT=0.0 26 SYEBT=0.0 27 STE28T=0.0 30 SE28T=0.0 31 ST2E8T=0.0 32 ST2E8T=0.0 33 SYT2E8 = 0.0 34 DOL2A*1.NU 35 EBT=CKTE8T=0.0 36 EST=SYEBT=0.1 37 SET=SYEBT=0.1 38 DOL2A*1.NU 39 EBT=CKTE8T=0.0 31 ST2E8T=0.0 32 ST2E8T=0.0 33 SYT2E8 = 0.0 34 DOL2A*1.NU 35 EBT=CKTE8T=CKTE8T=CKTE8T=CKTE8T=CKTE8T=SYEBT=CKTE8</pre>				
11 READ25,T(N),Y(N) 12 25 FCRMAT(FL0.1,FL0.2) 13 JF(T/N) 40,40,41 14 41 PRINT27,T(N),Y(N) 15 27 FCRMAT(20X,FL0.1,FL0.2) 16 SYSY*(N) 17 N=N=1 20 GOTO26 21 40 NU=H-1 22 DOTIT=1,L0 23 11 SEB1=0.0 24 STERT=0.0 25 SYERT=0.0 26 SYTERT=0.0 27 STERT=0.0 28 SYERT=0.0 29 SZERT=0.0 30 SZZERT=0.0 31 SZZERT=0.0 32 SYTERT=0.0 33 SYTERT=0.0 34 DOIZN=TNU 35 DOIZN=TNU 36 ERT=EXPT.ENT(N)=Z=1 37 STERT=0.0 38 SYTERT=0.0 39 SYTERT=0.0 30 SZZERT=0.0 31 SZZERT=0.0 32 SYTERT=0.0 33 SYTERT=0.0 34 DOIZN=TNU 35 ERT=EXPT.ENT(N)=Z=1 36 ERT=EXPT.ENT(N)=Z=1 37 STERT=0.0 38 SYTERT=0.0 39 SYTERT=0.0 30 SZZERT=0.0 30 SZZERT=0.0 31 SZZERT=0.0 32 SYTERT=0.0 33 SYTERT=0.0 34 DOIZN=TNU 35 ERT=SYTERT=0.0 36 ERT=EXPT.ENT(N)=Z=1 37 STERT=SYTERT=0.0 38 SYTERT=0.0 39 SYTERT=0.0 30 SZZERT=0.0 30 SZZERT=0.0 31 SZZERT=0.0 32 SYTERT=0.0 33 SYTERT=0.0 34 DOIZN=TNU 35 ERT=SYTERT=0.0 35 SYTERT=0.0 36 ERT=SYTERT=0.0 37 SYTERT=SYTERT=0.0 38 SYTERT=0.0 39 SYTERT=SYTERT=0.0 30 SZZERT=0.0 30 SZZERT=0.0 31 SZZERT=0.0 32 SYTERT=SYTERT=0.0 33 SYTERT=SYTERT=0.0 34 DOIZN=0.0 35 SYTERT=0.0 35 SYTERT=0.0 36 ERT=SYTERT=0.0 37 SYTERT=SYTERT=0.0 38 SYTERT=0.0 39 SYTERT=SYTERT=0.0 30 SZZERT=0.0 30 SZZERT=0.0 30 SZZERT=0.0 30 SZZERT=0.0 30 SZZERT=0.0 31 SZZERT=0.0 32 SYTERT=0.0 33 SYTERT=0.0 34 DOIZN=0.0 35 SYTERT=0.0 35 SYTERT=0.0 36 ERT=SYTERT=0.0 37 SYTERT=0.0 38 SYTERT=0.0 39 SYTERT=0.0 30 SYTERT=0.			IFIGHTS)	
12 25 FORMATIFIO.1,FID.2) 13 IF(ITAN): 40,40,41 14 41 PRIMT27,TINN;YNN 15 27 FORMATIGUX,FID.1,FID.2) 16 ST=ST+YTAN 17 NNNEL 20 00T026 21 40 NUM-1 22 D07IT+1,IO 23 11 SEB1-0.0 24 SIEST-0.0 25 SYEST-0.0 26 SYTEST-0.0 27 STE2BT-0.0 30 SE24T-0.0 31 ST2EBT-0.0 32 SIZE2B-0.0 33 SYT2EB -0.0 34 D012N+1,NU 35 EBT=SEBT-EBT 40 SYTEST-SEBT-EBT 41 SYEST-SEBT-EBT 41 SYEST-SEBT-EBT 42 STEEST-SEBT-EBT 43 SYT2EB -SEEST-EBT 43 SYT2EB -SEEST-EBT 44 SYEST-SYEST-SEBT-SEBT-EBT 45 SIZE2B -SEEST-EBT 45 SIZE2B -SEEST-EBT 46 SIZE2B -SEET-EBT 47 SE2BT-SEET-EBT 48 SYT2EB -SEET-EBT 49 SYT2EB -SEET-EBT 40 SYTEBT-SYEST-SEBT-SEBT-EBT 40 SYTEBT-SYEST-SEBT-SEBT-EBT 43 SYT2EB -SEET-EBT 44 SYEST-SYEST-SEET-EBT 45 SIZE2B -SIZE2B +TIN)+SZEBT 45 SIZE2B -SIZE2B +TIN)+SZEBT 46 SIZE2B -SIZE2B +TIN)+SZEBT 47 SE2BT-SEET-SEBT-SEBT-SEBT-SEBT-SEBT-SEBT-SE				
<pre>13 IF(TIN1): 40;40;41 14 41 PRINT27.TIN1;Y(N) 15 27 FORMAT(20X,F10.1,F10.2) 16 SY=SY=Y(N) 17 N=N=1 20 G0T026 21 40 NU=A-1 22 G0T17=1,10 23 41 SEBT=0.0 24 ST68T=0.0 25 SYE6T=0.0 26 SYE6T=0.0 27 ST628T=0.0 30 SE28T=0.0 31 ST268T=0.0 32 ST2628=0.0 33 SYT268 =0.0 34 G0T2N=1,NU 35 EEST=SYTE0T=0.EEST 40 SYT628T=SYTE0T=0.EEST 41 SYT268 =0.0 42 ST62T=ST268T=ST</pre>				
<pre>14 41 PRINZZY_T(N); V(N) 15 27 FGRMAT(20X,F10.1,F10.2) 16 SY-SY-Y(N) 17 N=H41 17 N=H41 17 N=H41 17 N=H41 17 N=H41 17 N=H41 17 N=H41 18 ENT=0.0 24 DT11=,10 23 11 SEDT=0.0 24 STEBT=0.0 25 SYEBT=0.0 26 SYTEST=0.0 27 STE2ST=0.0 30 SE28T=0.0 31 ST2EST=0.0 33 SYT2ES =0.0 34 DD12A=1,NU 35 EBT=SYEBT=V(N)=2.1 37 SEBT=SYEBT=V(N)=2.1 37 SEBT=SYEBT</pre>				
<pre>15 27 F00MAT(20x,F10.1,F10.2) 16 17 N=M+1 17 N=M+1 20 G0T026 21 40 NU=M=1 22 D0717=1,10 23 11 SEBT=0.0 24 STEBT=0.0 25 SYEBT=0.0 26 SYTEBT=0.0 27 STE2BT=0.0 30 SE2dT=0.0 31 ST2EBT=0.0 32 ST2EZE=0.0 33 ST2EE =0.0 34 D012N=1,NU 35 EEBT=EXPL=B=T1N)+EET 40 SYTEEBT=SYTEBT=SEETTEBT=SEETTEBT=SEETTEBT=SY=SE2DT=EXPL=B=T1N)+EET 41 SYEBT=SYTEEDT=SEETTEBT=SEETTEBT=SEETTEBT=SY=SE2DT=EXPL=B=T1N)+EET 42 STEATETEBT=STEEDT=SEETTEBT=SEETTEBT=SEETTEBT=SY=SE2DT=EXPL=B=T1N)+EET 45 ST2EZT =.SYEETTEBT=SEETTEBT=SEETTEBT=SEETTETETETETETETETETETETETETETETETETE</pre>				
<pre>16 SY-SY-Y(N) 17 N=N+1 17 N=N+1 17 N=N+1 20 G0T026 21 40 NU=1 22 D0717=1,10 23 11 SEBT=0.0 24 STEBT=0.0 25 SYEBT=0.0 26 SYTEBT=0.0 27 STE2BT=0.0 30 SE20T=0.0 31 ST2EBT=0.0 32 ST2EB=0.0 33 SYT2EB=0.0 34 D012N=1.NU 35 EBT=EXP(-B=T(N)=2.) 37 SEEST=EXP(-B=T(N)=2.) 37 SEEST=EXP(-B=T(N)=EBT 40 SYTEBT-SYTEBT+SEBT+SEET=SEET=SEET=SEET=SEET=SEET=SEET=SEE</pre>				
<pre>17</pre>				
20 G0T026 21 40 MU=1 22 00711=1,10 23 11 SEBT=0.0 24 STEBT=0.0 25 SYEGT=0.0 26 SYTEBT=0.0 27 STE2BT=0.0 30 SE20T=0.0 31 ST22BT=0.0 33 SYT2EB =0.0 34 D012N=1,NU 35 EBT=SXP1=B=T(N)=2.) 36 C2BT=EXP1=B=T(N)=2.) 37 SEBT=SXEDT=STEBT=SEBT 40 SYTEBT=SYTEBT=Y(N)=EBT 41 SYEDT=SYEBT=Y(N)=EBT 42 STERT=STEBT=Y(N)=EBT 43 SYT2EB =ST22B +1(N)=2.2EBT 44 ST222B =ST22B +1(N)=2.2EBT 45 ST2EBT=ST2BT+1(N)=E2BT 46 ST222B =ST2EBT+1(N)=2.2EBT 47 SE27B =ST2EBT+1(N)=2.2EBT 48 ST2EBT=ST2BT+1(N)=2.2EBT 49 ST2EBT=ST2BT+1(N)=2.2EBT 40 SYTEBT=STEBT=STEBT=SEBT/EN+SYEBT=STEBT=SYBSE20T/EN-SYTF0T= 48 ST2EBT=ST2BT+1(N)=2.2EBT 49 ST2EBT=ST2EBT+1(N)=2.2EBT 40 ST2E2B =ST2EBT+1(N)=2.2EBT 40 ST2E2B =ST2EBT+1(N)=2.2EBT 41 SE2DT =SYSEBT=STEBT=SEBT/EN+SYEBT=STEBT=STEBT=SYBSE20T/EN-SYTF0T= 41 SE2DT =SYSEBT=STEBT=SEDT/EN+SYEBT=STEBT=SEDT=SY=SE20T/EN-SYTF0T= 41 SE2DT =SYSEBT=STEBT=STEBT=SEBT/EN+SYEBT=STEBT=STEBT=SYBSET=STEBT=STEBT=STEBT=STEBT=STEBT=STEBT=STEBT=STEBT=SEDT=STEBT=SEDT=STEBT=STEBT=SEDT=STEBT=SEDT=STEBT=SEDT=SEDT=STEBT=SEDT=STEBT=SEDT=STEBT=SEDT=STEBT=SEDT=STEBT=SEDT=STEBT=SEDT=STEBT=SEDT=STEBT=SEDT=STEBT=SEDT=STEBT=SEDT=STEBT=SEDT=STEBT=SEDT=STEBT=SEDT=STEBT=SEDT=STEBT=SEDT=STEBT=SEDT=SEDT=STEBT=SEDT=SEDT=SEDT=SEDT=SEDT=SEDT=SEDT=SED				
22 0071+1,10 23 11 SED1+0,0 24 ST681+0,0 25 SY681+0,0 26 SY7681+0,0 30 SE281+0,0 31 ST268+0,0 32 ST262+0,0 33 SY7268+0,0 34 D012N+1,NU 35 E81+581+581+010+2,1 36 E81+5871+8+1(N)+2,1 37 SED1+581+4 40 SY1E81-SY1E81+V(N)+E11 41 SYE51+SY1E81+V(N)+E11 42 STEHT-SY1E81+V(N)+E11 43 SY7268+SY1E81+V(N)+E11 44 SY1268+SY1E81+V(N)+E11 45 ST2681+681 46 SY1268+SY1E81+V(N)+E11 47 SE281+SE31+V(N)+E11 48 SY1268+SY1E81+V(N)+E11 49 SY1268+SY1E81+V(N)+E11 40 SY1E81+SY1E81+V(N)+E11 41 SYE51+SY1E81+V(N)+E11 42 STEHT+STEB1+T(N)+E281 43 SY1268+SY1E81+V(N)+E281 44 SY1268+SY1E81+V(N)+E281 45 ST2681+ST2281+V(N)+22481 47 SE281+SE281+V(N)+22481 47 SE281+SE281+V(N)+22481 50 12 CONTINUE 51 ENNU 52 ENNU 53 ENON 54 10 DEROR + SYEB1+STE81+SY				
<pre>23 11 SEBT=0.0 24 ST6BT=0.0 25 SY6BT=0.0 26 SYTEBT=0.0 30 SE2DT=0.0 31 ST2EBT=0.0 32 ST2EZB=0.0 33 SY12EB =0.0 33 SY12EB =0.0 34 D012N=1,NU 35 EBT=CXP1=0=T(N)= 36 EZBT=CXP1=0=T(N)=T(N)=TN]=EBT 40 SYTEBT=SY</pre>	21 40	NU=N-1		
<pre>24 SILetT=0.0 25 SYE6T=0.0 26 SYTE8T=0.0 27 SITE28T=0.0 30 SE2dT=0.0 31 SIZE8T=0.0 32 SIZE28=0.0 33 SYIZE8 =0.0 34 D012N=1.NU 35 EBT=EXP[=8=T(N])=2.) 36 E2BT=EXP[=8=T(N])=2.) 37 SEBT=SYE8T=V(N]=EBT 40 SYTE8T=SYTE8T=V(N]=EBT 41 SYE8T=SYE8T=V(N]=EBT 42 SILEXT=SYLE8T=V(N]=EBT 43 SYTZE8 =SIZE28 +I(N)=2.2EBT 44 SIZE28 =SIZE28 +I(N)=2.2EBT 45 SIZE8T =SIZE8T +I(N)=2.2EBT 46 SIZE8T =SIZE8T +I(N)=2.2EBT 47 SE28T=SIZE8T +I(N)=2.2EBT 47 SE28T=SIZE8T +I(N)=2.2EBT 47 SE28T=SIZE8T +I(N)=2.2EBT 48 SIZE8T =SIZE8T +I(N)=2.2EBT 49 SIZE8T =SIZE8T +I(N)=2.2EBT 40 DEROR = SYE8T=SIE8T=SEBT/EN+SYE8T=SIZE8T+SY=SE28T+SY=SY=SE28T+SY=SY=SY=SY=SY=SY=SY=SY=SY=SY=SY=SY=SY=S</pre>				
<pre>25 \$YEBT=0.0 26 \$YTEBT=0.0 27 \$TE2BT=0.0 30 \$E2AT=0.0 31 \$T2EBT=0.0 32 \$T2E2B=0.0 33 \$YT2EB=0.0 34 DD12N=1,NU 35 EBT=EXP(-B=T(N)=2.) 37 \$EBT=EXP(-B=T(N)=2.) 37 \$EBT=SEBT=0 40 \$YTEBT=SYTEBT=Y(N)=T(N)=EBT 41 \$YEBT=SYTEBT=Y(N)=T(N)=EBT 42 \$TENT=STEBT=Y(N)=T(N)=2EBT 43 \$YT2EB=SYT2E0 +Y(N)=T(N)=2EBT 44 \$T2E2B=ST2E0 +Y(N)=T(N)=2EBT 45 \$T2EEB=ST2E0 +Y(N)=T(N)=2EBT 46 \$T2E2B=ST2E0 +Y(N)=T(N)=2EBT 47 \$SE2BT=SE2BT+F(N)=2EBT 46 \$T2E2B=ST2E0 +Y(N)=100 51 ERON= -SYEBT=STEBT=SEBT/EN=SEBT/EN=STEBT=2/EN 52 EN=NU 53 ERON= -SYEBT=STEBT=SEBT/EN=SEBT=2/EN 54 10 DEROR= SYEBT=STE2BT/EN=SYEBT=STEBT=2/EN 55 7 B=B=ERON/LERON 57 15 A= SYEBT=STE2D=SYEBT=STEBT=SEBT=2/EN 57 B=B=ERON/LERON 57 15 A= STEDT=TE2BT/EN=SEBT/STEBT=2/EN=SYEBT=STE2Z/LN + 35 \$TEBT=STE2D=STE2D=STE2BT=SYEBT=STEZT=2EZ/LN + 35 \$TEBT=STE2D=STE2D=STE2DTSTEBT=SEBT=2/EN 55 7 B=B=ERON/LERON 55 1 B=B=ERON/LERON 55 1 B=B=ERON/LERON 55 1 B=B=ERON/LERON 55 1 B=B=ERON/LERON 55 1 A= STEBT=STEBT/STEBT=SEBT=STEZT_EDT=2 2017/EN=2=SYTEBT=STEBT=STEZT_EDT=2 35 \$TEBT=SYEBT/EN=2=SYTEBT=STEZT_EDT=2 35 \$TEBT=SYEBT/EN=2=SYTEBT=STEZT_EDT=2 35 \$TEBT=SYEBT/EN=2=SYTEBT=STEZT_EDT=2 35 \$TEBT=SYEBT/EN=2=STEZDT=STEZDT_EDT=2 35 \$TEBT=SYEBT/EN=2=STEZDT=STEZDT_EDT=2 35 \$TEBT=SYEBT/EN=2=STEZDT=STEZDT_EDT=2 35 \$TEBT=SYEBT=STEZDT=2 35 \$TEBT=STEZDT=2 35 \$TEBT=SYEBT=STEZDT=2 35 \$TEBT=STEZDT=2 35 \$TEBT=STEZDT=2 35 \$TEBT=STEZDT=2 35 \$TEBT=STEZDT=2 35 \$TEBT=STEZDT=2 35 \$TEBT=STEZDT=2 35 \$TEBT=2 35 \$TEBT=2 35 \$TEBT=2 35 \$TEBT=2 35 \$TEBT=2 35 \$TEBT=2 35 \$TEDT=2 35 \$TEBT=2 35 \$TEDT=2 35 \$TEDT=2 35 \$TEDT=2 35 \$TEDT=2 35 \$TEDT=2 35 \$TEDT=2</pre>				
26 SYTEBT-0.0 27 STE2BT-0.0 30 SE2JT-0.0 31 ST2EBT-0.0 32 ST2E2B-0.0 33 SYT2EB = 0.0 34 D012N=1,NU 35 EBT-EXP(-B=T(N))=2.1 37 SEBT-SUFEBT-Y(N)=T(N)=2.1 37 SEBT-SUFEBT-Y(N)=T(N)=EBT 41 SYEBT-SYTEBT+Y(N)=FBT 42 STEHT-SIEBT+T(N)=EBT 43 SYT2EB = ST2E0 + T(N)=0.2=EBT 44 SYE2EB = ST2E0 + T(N)=0.2=EBT 45 ST2EB = ST2E0 + T(N)=0.2=EBT 46 STE2B = ST2E0 + T(N)=0.2=EBT 47 SE2BT = SE2BT + E2BT 40 SYTEBT-SYTEBT+Y(N)=EET 41 SYEBT-SYEBT+T(N)=EET 42 STEHT-SIEBT+EET=SEBT/EN+SYEBT=SEBT=2/EH 43 SYT2EB = ST2EDT+T(N)=0.2=EBT 44 STE2B = ST2EDT+T(N)=0.2=EBT 45 ST2EBT = SE2BT + E2BT 46 STE2BT = SE2BT + E2BT 47 SE2BT = SE2BT + E2BT 48 STE2BT = SYEBT=STEBT=SEBT/EN+SYEBT=SET=2/EH=SYEBT=STEET=SYEBT=STEE				
<pre>27 STE2BT=0.0 30 SE2AT=0.0 31 ST2EB=0.0 32 ST22EB=0.0 33 ST22E = 0.0 34 D012N=1,NU 35 EBT=EXP(=B=T(N)=2.) 37 SEBT=SCBT=EAT 40 SYTEBT=SYTEBT=Y(N)=T(N)=EBT 41 SYEBT=SYEBT=Y(N)=EAT 42 STEAT=STEBT=STEBT=STEBT=SEBT 43 SYT2EB=ST2E2B +1(N)=2=EBT 44 ST2E2B =ST2E2B +1(N)=2=EBT 45 ST2EBT =ST2EBT +1(N)=2=EBT 46 ST2EBT =ST2EBT +1(N)=2=EBT 47 SE2BT =ST2EDT +1(N)=2=EBT 48 ST2EBT =ST2EBT +1(N)=2=EBT 49 ST2EBT =ST2EBT +1(N)=2=EBT 40 ST2EBT =ST2EBT +1(N)=2=EBT 40 ST2EBT =ST2EBT +1(N)=2=EBT 41 SE2BT =ST2EBT +1(N)=2=EBT 42 ST2EBT =ST2EBT +1(N)=2=EBT 43 ST2EBT =ST2EBT +1(N)=2=EBT 44 ST2EBT =ST2EBT +1(N)=2=EBT 45 ST2EBT =ST2EBT +1(N)=2=EBT 46 ST2EBT =ST2EBT +1(N)=2=EBT 47 SE2BT =ST2EBT +2=STEBT +2=EBT=ST2EBT=2=E</pre>				
<pre>30 SE2uT=0.0 31 ST2E8I=0.0 32 ST2E20=0.0 33 SYT2E6 =0.0 34 DD12N=1,NU 35 EBT=EXPI=B=TINN=2.1 37 SEBT=SETEEBT 40 SYTEBT=SYTEAT=YINI=TINN=2.1 37 SEBT=SETEEBT 41 SYEDT=SYTEAT=YINI=TINN=2.1 42 STEHT=STEDT=YINI=TINN=2.2EBT 43 SYT2EB =ST2E0 =YINI=YINI=TINN=2.2EBT 44 ST2E20 =ST2E20 =TINN=2.2EBT 45 ST2E0 =ST2E20 =TINN=2.2EBT 46 ST2E20 =ST2E20 =TINN=2.2EBT 47 SE2DT =SE2DT +E2DT 47 SE2DT =SE2DT +E2DT 50 12 CONTINUE 52 EN=NU 53 EROR= -SYEDT=STEDT=SEBT/EN+SYTEBT=SEBT=STEDT=STE20T/EN-SYTEBT=ST2EBT=ST2EDT +E2DT 54 L0 DEROR = SYEDT=STE20T/EN +SYTEBT=ST2EBT=ST2EDT/EN +STEDT=ST2EDT=ST2EDT=ST2EDT 55 T B=A=EROR/UEROR 57 15 A= (STEDT=STATESTEDT=SEBT/EN-STEDT=SEDT=SEDT=SEDT=SEDT=SEDT=SEDT=SEDT</pre>				
<pre>31 ST2EBT=0.0 32 ST2E2B=0.0 33 SYT2EB =0.0 34 D012N=1,NU 35 EBT=SP(=D=T(N)) 36 E2BT=EXP(=D=T(N)) 37 SEBT=STEBT=STTEBT=Y(N)=EBT 40 SYTEBT=SYTEBT=Y(N)=EBT 41 SYEBT=SYTEBT=Y(N)=EBT 42 STEHT=STEBT=KIN)=EBT 43 SYT2EB =SYT2E0 +Y(N)=T(N)==2=EBT 44 ST2E2B =ST2E0 +T(N)==2=EBT 45 ST72EB =ST2E0 +T(N)==2=EBT 46 STE2BT =ST2E0T +T(N)==2=EBT 47 SE2DT =ST2E0T +T(N)==2=EBT 47 SE2DT =ST2E0T +T(N)==2=EBT 48 STE2BT =ST2E0T +T(N)==2=EBT 49 ST2E0T =ST2E0T +T(N)==2=EBT 40 DEROR = SYEBT=STE2BT=SEBT/EN =STEEDT==2/EBT 50 12 CONTINUE 52 EN=NU 53 EROR= -SYEBT=STE2BT=SEBT/EN =STEEDT==2/EBT=SY=EBT==2/EBT 54 10 DEROR = SYEBT=STE2BT=STEEDT=SEBT==2/EBT=STE2BT=SY=EBT=STE2DT=STE2BT</pre>				
<pre>32 ST2E28=0.0 33 SYT2E8 =0.0 34 D012v=1,NU 35 EBT=EXP(-8=T(N)) 36 E20T=EXP(-8=T(N)=2.) 37 SEBT=SCBT+EBT 40 SYTEBT=SYTEBT+Y(N)=EBT 41 SYEBT=SYTEBT+Y(N)=EBT 42 STENT=STEBT+T(N)=00T 43 SYT2E8 =SYT2E0 +Y(N)=1(N)=*2*E8T 44 ST2E8 =ST2E8 +T(N)=*2*E8T 45 ST2E8T =ST2EBT+T(N)=*2*E8T 46 ST2E8T =ST2EBT+T(N)=*2*E8T 47 SE28T =SE28T +E28T 50 12 CONTINUE 52 ENONU 53 EROR= -SYEBT=STEBT=SEBT/EN+SYTEBT=SEBT=*2/EN 54 DEROR = SYEBT=STEBT=SEBT/EN+SYTEBT=SEBT=*2/EN 55 12 CONTINUE 54 DEROR = SYEBT=STEBT=YTEBT=SEBT=*STEBT=STEBT=STEBT=ST2EBT=YTEBT= 55 7 B=4=EROR/DEROR 57 15 A= (STE8T/EN -2.*SYTEBT=SEBT=STE2DT) 61 PRINT3T,A,B,C 62 FROMAT(//AOH CONSTANTS FOR LEAST SAUARES FIT OF DATA IN Y=C= A=EXP 1(-BT) /20X,3MA =,F16.5 /20X,3MB =,F16.B/Z0X,3HC =,F16.B /// 250H SUMMAT(DONS FROM LEAST SAUARES CALCULATION) 53 PAINT 13,SEBT,SYEBT, STE2DT,ST2E0T,ST2EDT,ST2E2D , 561 PRINT 13,SEBT,SYEBT, ST2EDT,ST2E0T,ST2EDT,ST2E2D , 57 SA (ST2FASE)/EN YEBT,ST2E0T,ST2EDT) 561 PRINT3T,A,B,C 563 PRINT 13,SEBT,SYEBT, ST2EDT,ST2E0T,ST2EDT,ST2E2D , 563 PRINT 13,SEBT,SYEBT, ST2EDT,ST2E0T,ST2EDT,ST2E2D , 57 SA (ST2FASE)/EN YEBT,ST2E0T,ST2E0T,ST2EDT,ST2E2D , 563 PRINT 13,SEBT,SYEBT, ST2EDT,ST2E0T,ST2E0T,ST2E2D , 563 PRINT 13,SEBT,SYEBT, ST2EDT,ST2E0T,ST2E0T,ST2E2D , 57 SEBT,ST2EDT,ST2EDT, ST2EDT,ST2E0T,ST2EDT,ST2E2D , 563 PRINT 13,SEBT,SYEBT, ST2FAT,ST2E0T,ST2E0T,ST2E2D , 563 PRINT 13,SEBT,SYEBT, ST2FAT,ST2E0T,ST2E0T,ST2E2D , 57 ST2EDT,ST2E2D , 564 PRINT 13,SEBT,SYEBT, ST2FAT,ST2E0T,ST2EDT,ST2E2D , 57 ST2EDT,ST2EDT,ST2EDT,ST2EDT,ST2EDT,ST2E2D , 57 ST2EDT,ST2EDT,ST2EDT,ST2EDT,ST2EDT,ST2E2D , 57 ST2EDT,ST2EDT,ST2EDT,ST2EDT,ST2EDT,ST2E2D , 57 ST2EDT,ST2EDT,ST2EDT,ST2EDT,ST2EDT,ST2E2D , 57 ST2EDT,ST2EDT,ST2EDT,ST2EDT,ST2EDT,ST2EDT,ST2E2D , 57 ST2EDT,</pre>				
 33 SYTZEB =0.0 34 D012N=1,NU 35 EBT=EXP(=B=T(N)) 36 E2BT=EXP(=B=T(N)=2.) 37 SEBT=SCEDTEBT 40 SYTEBT=SYTEBT=Y(N)=EBT 41 SYEDT=SYEBT=YTEBT=Y(N)=T(N)=02+EBT 42 STEHT=STE2BT=SEZEBT 43 SYTZEB =STZEZB +T(N)=02+EBT 44 STZEZB =STZEZB +T(N)=02+EBT 45 STZEBT =SEZBT +EZBT 46 STE2BT =SEZBT +EZBT 50 12 CONTINUE 52 ENNU 53 ERDR= -SYEBT=STEBT=VEN=SEBT/EN=SYEBT=SZ/EBT=SYEBT=SYEBT=STZEBT 54 10 DERDR= SYEBT=STEBT=VEN=SYTEBT=SZEBT=Z/EN 55 7 B==CR0R/UERDR= -SYEBTSTEBT=SYEBT=SEBT=STEBT=STEBT=SYEBT=STZEBT/EN 55 8 B==ER0R/UERDR 57 8 B==ER0R/UERDR 57 8 B==ER0R/UERDR 57 8 B==ER0R/UERDR 51 A= (TEBT=SYEN=SYEBT)/(STEBT=SEBT/EN=STEBTZEBT)/EN=STZEBT=ZEDT) 61 PRINT3T,A,B,C 62 37 FORMATI//CON CONSTANTS FOR LEAST SAUARES FIT OF DATA IN Y=C= A=EXP 1(=BT) /20X,3NA =,FL6.5 /20X,3NE =,FL6.B/20X,3NC =,FL6.B /// 63 PRINT 13,SEBT,SYEBT, STE2DT,STE2DT,STZEDT,STZEBT,STZEBT,STZEBT,STZEBT,STZEDE, A 				
<pre>35 EDT=EXP(=0+T(N)) 36 E2BT=EXP(=0+T(N)) 36 E2BT=EXP(=0+T(N)+EBT 40 SYTEBT=SYTEBT+Y(N)+EBT 41 SYEBT=SYTEBT+Y(N)+EBT 42 STEHT=STEBT+T(N)+EBT 43 SYT2EB =SYT2ED +T(N)+=2+EBT 44 ST2E2B =ST2E2B +T(N)+=2+EBT 45 ST2EBT =ST2EBT +T(N)+=2+EBT 46 ST2E2BT =ST2EBT+T(N)+=2+EBT 47 SE2BT=SE2BT+EEBT 50 12 CONTINUE 52 EN+NU 53 ENOR= -SYEBT=STEBT>EEBT>EEBT>EEBT=SEBT=ST2EBT)/EN +STEBT=SEBT=ST2EBT>EET=ST2EBT+EET=SEBT=ST2EBT)/EN +STEBT=SEBT=ST2EBT)/EN +STEBT=SEBT=ST2EBT)/EN +STEBT=ST2EBT>EEBT=ST2EBT)/EN +STEBT=ST2EBT>EEBT=ST2EBT>EEBT=ST2EBT)/EN +STEBT=ST2EBT>EEBT=ST2EBT)/EN +STEBT=ST2EBT>EEBT=ST2EBT)/EN +STEBT=ST2EBT>EEBT=SEBT=ST2EBT>EEBT=SEBT=ST2EBT>EEBT=SEBT=ST2EBT>EEBT=SEBT=ST2EBT>EEBT=SEBT=ST2EBT>EEBT=SEBT=ST2EBT>EEBT=SEBT=ST2EBT>EEBT=SEBT=ST2EBT>EEBT=SEBT=ST2EBT>EEBT=SEBT=ST2EBT>EEBT=SEBT=ST2EBT>EEBT=SEBT=ST2EBT>EEBT=SEBT=ST2EBT>EEBT=SEBT=ST2EBT>EEBT=SEBT=ST2EBT>EEBT=SEBT=ST2EBT>EEBT=SEBT=ST2EBT>EEBT=SEBT=SEBT=ST2EBT>EEBT=SEBT=SEBT=ST2EBT>EEBT=SEBT=SEBT=SEBT=ST2EBT>EEBT=SEBT=SEBT=SEBT=SEBT=SEBT=SEBT=SEBT=</pre>				
<pre>36 E2BT=EXP(-B=T(N)+2.) 37 SEBT=SCBT=EXT(BI+Y(N)+T(N)+EBT 40 SYTEBT=SYTEBT+Y(N)+EHT 41 SYEBT=SYEBT+Y(N)+EHT 42 STEHT=STEBT+T(N)+EBT 43 SYT2EB =SYT2EB +T(N)+02+EBT 44 ST2E2B =ST2E2B +T(N)+02+EBT 45 ST2EBT =ST2EBT+T(N)+02+EBT 46 STE2BT =ST2EBT+T(N)+02+EBT 47 SE2BT = SE2BT 47 SE2BT = SE2BT 48 STE2BT =ST2EBT+T(N)+02+EBT 50 12 CONTINUE 52 EN+NU 53 EKOR# -SYEBT=STE2BTSEBT+SEBT+SEBT+SEBT+02/EN 54 16 DEROR - SYEBT=STE2BTSEBT+2EBT=02/EN 54 16 DEROR - SYEBT=STE2BT=02/EN 55 7 B=B=EROR/DEROR 57 15 A= (STEBT=SYTEBT)/(STEBT=SEBT=SEBT=SEBT=SEBT=SEBT=SEBT=SEBT</pre>				
<pre>37 \$EBT=\$CBT+EBT 40 \$YTEBT=\$YTEBT+Y(N)=EBT 41 \$YEBT=\$YTEBT+Y(N)=EBT 42 \$TEHT=\$TEBT+Y(N)=EBT 43 \$YT2EB=\$YT2E0=Y(N)=TEN]=22EBT 43 \$YT2EB=\$YT2E0=Y(N)=02=2BT 44 \$T2E2B=\$T2E2B+T(N)=02=EBT 45 \$T2EBT=\$T2EBT+T(N)=02=BT 47 \$E2BT=\$T2EBT+T(N)=02BT 47 \$E2BT=\$E2BT+EBT=02BT 50 12 CONTINUE 52 EN=NU 53 ENOR= -\$YEBT=\$TE2BT7EN=02BT 54 10 DEROR=\$YEBT=\$TE2BT7EN=02FEBT=027EN 54 14 DEROR=\$YEBT=\$TE2BT7EN=02FEBT=027EN 55 16 DEROR=\$YEBT=\$TE2BT7EDT=22=\$YTEBT=\$TE2BT7EDT=22= 28T77EDT=\$T2E2D=\$TE2BT5EDT=\$TE2BT7EDT=22=\$YTEBT=\$TE2DT7EN=\$YTEBT= 55 7 B=0=ENCPUENTSTEBT7E2DT7EDT=22=\$YTEBT=\$TE2DT7EN=\$TE2DT5YTEBT=\$T22DT7EN=\$YT2ED=22=\$YT2ED=\$TE2DT7EN=\$TE2DT5YT2ED=22=\$YT2ED=\$TE2DT7EN=\$YT2ED=22=\$YT2ED=\$TE2DT7EN=\$T2E2DT7</pre>				
 40 SVTEBT=SYTEBT=Y(N)=FIN)=FBT 41 SYEDT=SYTEBT=Y(N)=FBT 42 STEHT=STEBT=Y(N)=FBT 43 SVT2EB=SYT2E0=Y(N)=FIN)=>2=EBT 44 ST2E2B=ST2E2B=T(N)=>2=EBT 45 ST2EBT=ST2EBT=FIN)=F2ET 46 ST122BT=ST2EBT=F1N)=F2ET 50 12 CONTINUE 52 ENON= -SVEBT=STE2BT>E2EBT 53 ENON= -SVEBT=STE2BT>E2EBT 54 16 DERON= SYEBT=STE2BT2EBT=SYTEBT=SYTEBT=STE2BT2EDT=SYTEBT=ST2EBT=ST2EBT 55 7 B=B=EROR/DEROT=STEEDT=SEEST=FEBT=SEET=SUT=SYTEBT=STE2BT2EDT=SYTEBT=ST2E2DT/EN=SYTEEDT=SEEST2EBT7EBT=SEEST2EBT7EN=SEETSEEDT=SEEST2EBT7EN=SEETSEEDT=SEEST2EBT2EBT2EBT=ST2E2DT=SYTEEST2EDT=ST2E2DT=SYTEBT=ST2E2DT=ST2E2DT=SYTEBT=ST2E2DT=SYTEBT=ST2E2DT=ST2E2DT=SYTEBT=ST2E2DT=S				
<pre>41 SYEBT=SYEBT+Y(N)=EdT 42 STEHT=STEBT+T(N)=EdT 43 SYT2EB =SYT2ED +Y(N)=T(N)=*2=EdT 44 ST2EZB =ST2EZB +T(N)=*2=EdT 45 ST2EBT =ST2EZB +T(N)=*2=EdT 46 STE2BT =ST2EDT+T(N)=*2EdT 47 SE2DT =ST2EDT+T(N)=E2DT 50 12 CONTINUE 52 ENNU 53 ERORE -SYEBT=STEDT=SEBT/EN+SYEBT=SEBT=2/EN 54 10 DEROR = SYEBT=STE2DT/EN +SYEEBT=SEBT=2/EN 55 10 DEROR = SYEBT=STE2DT/EN +SYEEBT=SEBT=2/EN 55 10 DEROR = SYEBT=STE2DT-SEBT=STEEDT=2/EN 56 10 DEROR = SYEBT=STE2DT=STE2DT=STEEDT=2/EN 57 10 DEROR = SYEBT=STE2DT=STE2DT=STE2DT=2/EN 57 10 DEROR = SYEBT=STE2DT=STE2DT=STE2DT=2/EN 55 7 B=B=EROR/UEROR 55 7 B=B=EROR/UEROR 55 1 B=B=EROR/UEROR 56 11 FEBT=SYZH=STEBT]/(STEBT=SEBT=EDT=ZBT=STE2DT=2NTEBT=2NT</pre>				
42 STENT=STENT+T(N)=08T 43 SYT2EB =SYT2E0 *Y(N)=T(N)=*2*E0T 44 STZ2EB =ST22E0 *T(N)=*1(N)=*2*E0T 45 ST2EB =ST2EDT *T(N)=*2*E0T 46 ST2EDT =ST2EDT *T(N)=*2*E0T 47 SE2DT =SE2DT *E2DT 50 12 CONTINUE 52 EN=NU 53 EROR= -SYEDT=STEDT=SE0T/EN+SYTEDT=SE0T=*2/EN 54 10 DEROR =SYEDT=STEDT=SE0T/EN+SYTEDT=SE0T=*2/EN 54 10 DEROR =SYEDT=STE2DT=SE0TSTEDT=STEDT=STEET/EN 55 7 D==CSYEDT=ST2EDT =SE2DT=STEDT=STEDT=STEDT=STEETSTEET/EN 55 7 D==CROR/UEROR 57 15 A= (STEDT=STEDT=SE0T=SE0T/EN=STEDT=SE0T=*2/EN 51 A= (STEDT=ST2EDT)/(STEDT=SE0T=STEDT=SE0T=*2/EN 55 7 D==CROR/UEROR 55 7 D==CROR/UEROR 57 15 A= (STEDT=ST2/EN=STEDT)/(STEDT=SE0T=*EDT= 56 10 C=(SY=A=SEDT)/EN=STEDT)/(STEDT=SE0T=*EDT) 61 PRINT3T,A,B,C 62 37 FORMAT(//AOH CONSTANTS FOR LEAST SAUARES FIT OF D4TA IN Y=C= A=EXP 1(=DT) /20X,3HA =,F16.5 /20X,3HB =,F16.8/20X,3HC =,F16.8 /// 250H SUMMATIONS FROM LEAST SQUARES CALCULATION } 63 PRINT 13,SE0T,SYEDT, SYEDT,STE2DT,ST2EDT,ST2EDT,ST2EDT , 64 PRINT 13,SE0T,SYEDT, SYEDT,ST2EDT,ST2EDT,ST2EDT,ST2EDT , 65 PRINT 13,SE0T,SYEDT, SYEDT,ST2EDT,S				
 \$3 \$77268 -\$77260 +Y(N)=T(N)=22687 \$4 \$72228 -\$72281 +T(N)=2287 \$5 \$77267 -\$7287 +T(N)=2287 \$6 \$72287 -\$7287 +T(N)=2287 \$7 \$2287 -\$7287 +7287 \$2 EN=NU \$3 ERQH= -\$YEBT+\$TEBT+\$2687 +\$77287 +\$72				
 44 ST2E28 =ST2E28 +T(N)=>2eE8T 45 ST2E8T =ST2E8T +T(N)=2eBT 46 ST2E8T =ST2E8T +T(N)=2eBT 47 SE28T =ST2E8T +T(N)=22BT 47 SE28T = SE28T +E28T 50 12 CONTINUE 52 ENNU 53 EROR= -SYEBT=STE8T=SE8T/EN+SYEBT=SE8T=>2/EN 54 16 DEROR = SYEBT=STE28T/EN +SYTEBT=SE8T=>2/EN 54 16 DEROR = SYEBT=STE28T/EN +SYTEBT=SE8T=>2/EN 54 16 DEROR = SYEBT=STE28T/EN +SYTEBT=SYEBT=ST2E8T/EN +STEBT=ST2E8T=STE8TSFETST2E 26T)/EN +2-SSYEBT=ST2E20T -STE28T=SYTEBT=SYEBT=ST2E8T-SYEBT=ST2E8T=ST2E8T-SYEBT=ST2E8TST2E8T=ST2E8T=ST2E8T=ST2				
 \$6 \$TE28T *STE28T+T(N)*E28T \$7 \$E28T \$E28T *E28T \$9 \$12 CONTINUE \$2 ENNU \$3 EROR= -SYEBT*STE8T*SE8T/EN*SYEBT*STE8T*SY*SE20T/EN-SYTF#T* \$1828T -SY*SEBT*STE28T/EN*SYTE8T*SE8T*2/EN \$4 16 DEROR * SYEBT*STE28T*STE8T*SET/EN*STE8T*SET*SF#T*STE8T*SY*SE20T/EN*SYTE8T*SE8T*2/EN \$4 16 DEROR *SYEBT*STE220T *STE8T*SE8T*2/EN \$4 16 DEROR *SYEBT*STE220T *STE8T*SE8T*2/EN \$5 7 B==CROR/DEROR \$7 15 A* (STE8T*SYEBT)/(STE8T*SE8T*SE6T/EN-STE28T/EN*SYTE8T*SE8T*2/EN/EN* \$6 1 PRINT37,A,B,C \$6 2 37 HOMAT(//COH CONSTANTS FOR LEAST SAUARES FIT OF D4TA IN Y=C* A*EXP \$6 1 PRINT37,A,B,C \$6 3 PRINT 13,SE8T,SYEBT, \$Y*STE8T\$,STE20T,ST220T,ST2225 * 				
 47 SE20T = SE20T + E20T 50 12 CONTINUE 52 ENNU 53 EROR= - SYEDT = STEDT = SE0T/EN + SYEDT = SE0T = SY+SE20T/EN - SYTEUT = SE20T - SY+SEDT = STE20T/EN + SYTEUT = SE0T = SYEDT = STE20T - SY+SEDT = STE20T + SYTEUT = STE20T + SYTEUT = STE20T = STE20T + SYTEUT = STE20T /li>	45	STZEBT =STZEBT +T(N)++2+EBT		
 50 12 CONTINUE 52 EN=NU 53 EROR# -SYEBT+STEBT+SEBT/EN+SYEBT+STE28T+STEBT+SY				
52 EN=NU 53 EROR# -SYEBT*STEBT*SEBT*SYEB				
53 EROR= SYEBT=STEBT=SEBT=SEBT+SEBT+SEBT+SYEBT=ST2/st=ST2/st=ST25207/EA-SYTF6T= 1SE2BT 54 16 DEROR SYEBT=ST22507/EA-SYTEBT=ST2EBT=Z/EA 54 16 DEROR SYEBT=ST2250 28 1/2.5SYEBT=ST2220 STE2BT=ST2EST2EBT=Z/EA 28 1/2.5SYEBT=ST2220 STE2BT=ST2250 28 1/2.5SYEBT=ST2220 STE2BT=STE2BT=SYTEBT=Z 28 1/2.5SYEBT=ST2220 STE2BT=STE2BT=STE2BT=SYTEBT=Z 28 1/2.5SYEBT=STE2BT=STE2BT=STE2BT=STE2BT=STE2BT=STE2BT=STE2BT=STE2BT 28 16 1.2.5SYEBT=STE3T2/EA 55 7 8-8-EROR/DEROR 57 7 8 58 7 8-16EBT=ST2/EA 59 7 8 57 8-8-EROR/DEROR 5 57 8 15EBT=ST2/EA 57 8 8 58 7 8 59 8 8 51 8 8 52 8 8 54 8 9 57 8 8 57				
15220T -5Y*5EBT*5T220T/EN *\$YTEBT*5EBT**2/EN 54 16 DEROR = SYEBT*5T222D -ST220T*SYTEBT=5EBT**2/EN 1-2.*SYFBT*5T222D -ST220T*SYTEBT-(2.*SY*5TBT*ST22DT*SY*5EBT*ST22DT/EN 35Y*5T220T*5TE0T/EN-2.*SYTEOT*5EBT*STE0T/EN-25E207/EN 55 7 B==EROR/DEROR 57 15 A= (STEBT*SY/EN-2**SYTEBT)/(STEBT*SE0T/EN-ST22DT) 60 C=(SY-A*SEBT)/EN 61 PRINT37.A,B,C 62 37 + FORMT(//COH CONSTANTS FOR LEAST SAUARES FIT OF D4TA IN Y=C* A*EXP 1(-BT) /20X,3HA *,F16.5 /20X,3HB *,F16.8/20X,3HC *,F16.8 /// 250H SUMMATIONS FROM LEAST SAUARES CALCULATIOW } 63 PRINT 13,SEBT,SYEBT, SY*STEBT,ST220T,ST22DT,			TEZHTALTHRTACVALEZRTJEL.	-547641.
54 16 DEROR = SYEBT+(STEBT+2 + SEBT=STEEDT/EN + STEBT=STATSYTEBT/EN + L2.*SYEBT+ST2E2D - STE2BT*STEBT/EN + STEBT*ST2E2DT+SYEBT*ST2E2DT+ST	23			
L=2.*SYEBT*ST2E20 =STE2BT*SYTEBT+C2.*SY*STEBT*ST2EDT*SY*SE2HT*ST2E 2017/EN *2.*SYTEBT*STE2DT *SE2UT*SYT2EB *2.*SY*SFBT*ST2E2H/L* 3SY*STE2BT*STEBT7/EN =2.*SYTEBT*STEGT /EN-SEUT**Z*SYT2EB/L* 57 15 A= (STEBT*SY/EN-SYTEBT)/(STEBT*SEUT/EN-STE2UT) 60 C=(SY=A*SEBT)/EN 61 PRINT37.A,B.C 62 3Y +0RMT(//AOH CONSTANTS FOR LEAST SAUARES FIT OF D4TA IN Y=C* A*EXP 1(=BT) /20X,3HA *,F16.5 /20X,3HB =,F16.8/20X,3HC =,F16.8 /// 250H SUMMATIONS FROM LEAST SAUARES CALCULATION } 63 PRINT 13,SEBT,SYEBT, SY*STEBT,STE2OT,ST2E2D,ST2E2D ,	54 16			TZEN
35Y+STE2BT=STEBT/EN -2.*SYTEBT=STEBT+STEBT /EN-SEBT+*2+SYT2EB/E4 55 7 B=B-ERUR/IDEROR 57 15 A= (STEBT=SYTEN=SYTEBT)/(STEBT+SEBT/EN-STE2BT) 60 C=(SY=A+SEBT)/EN 61 PRINT3T,A,B,C 62 37 FORMAT(//60H CONSTANTS FOR LEAST SAUARES FIT OF D4TA IN Y=C= A+EXH 1(-BT) /20X,3HA *,F16.5 /20X,3HB = ,F16.8/20X,3HC =,F16.8 /// 250H SUMMATIONS FROM LEAST SQUARES CALCULATION } 63 PRINT 13,SEBT,SYEBT, SY+STEBT,STE2DT,ST2E2DT,ST2E2DT,ST2E2DT,				
55 7 B=B-EROR/DEROR 57 15 A= (STEBT=SY/EN-SYTEBT)/(STEBT=SEBT/EN-STE2BT) 60 C=(SY-A=SEBT)/EN 61 PRINT37,A,B,C 62 37 FORMAT(//AOH CONSTANTS FOR LEAST SAUARES FIT OF DATA IN Y=C= A=EXP 1(-BT) /20X,BHA =,F16.5 /20X,BHB =,F16.88/20X,BHC =,F16.8 /// 250H SUMMATIONS FROM LEAST SQUARES CALCULATION } 63 PRINT 13,SEBT,SYEBT, SYEBT,STE2BT,ST2EBT,ST2EBT,ST2EBT,ST2EBT,		28T)/EN +2.+SYTEBT+STE28T +SE28T+SYT	268 +2.+5V+SF8T+ST2E28/	LN +
57 15 A= (STEBT=SY/EN-SYTEBT)/(STEBT=SEGT/EN-STE2bT) 60 C=(SY-A+SEBT)/EN 61 PRINT37.4,8.6 62 37 FORMAT(//60H CONSTANTS FOR LEAST SAUARES FIT OF DATA IN Y=C= A+EXP 1(=BT) /20X,3HA =,F16.5 /20X,3HB = ,F16.8/20X,3HC =,F16.8 /// 250M SUMMATIONS FROM LEAST SQUARES CALCULATION } 63 PRINT 13,SEBT,SYEBT, SY,STEBT,STE20T,ST2EDT,ST2E2B ,			STEAT /EN-SEBT++2+SYT2E	8/E4
60 C=(SY=A+SEBT)/EN 61 PRINT37,A,B+C 62 37 CORMAT(//GON CONSTANTS FOR LEAST SAUARES FIT OF D4TA IN Y=C= A+EXP 1(=BT) /20X,BHA =,F16-5 /20X,BHB =,F16-8/20X,BHC =,F16-8 /// 250M SUMMATIONS FROM LEAST SQUERS CALCULATION } 63 PRINT 13,SEBT,SYEBT, SY+STEBT,STE20T,ST2EDT,ST2EDT,ST2E25 ,			· · · · · · · · · · · · · · · · · · ·	
61 PRINT37.4,8,6 62 37 FORMAT(//AOH CONSTANTS FOR LEAST SAUARES FIT OF D4TA IN Y-C= A+EXP 1(-BT) /20X,3HA *,F16.5 /20X,3HB = ,F16.8/20X,3HC =,F16.8 /// 250H SUMMATIONS FROM LEAST SQUARES CALCULATION } 63 PRINT 13,SEBT,SYEBT, SY,STEBT,STE20T,ST2EDT,ST2E2B ,			VEN-STE281)	
62 37 +ORMAT(//GOH CONSTANTS FOR LEAST SAUARES FIT OF DATA IN Y-C= &+EXP 1(-BT) /20X,3HA =,F16.5 /20X,3HB = ,F16.8/20X,3HC =,F16.8 /// 250H Summations from Least Squares calculation } 63 Print 13,SEbt,SYEbt, Sy,STEBT,STE20T,SE26T,ST2EDT,ST2E26 ,				
1(-87) /20X,3HA =,F16.5 /2DX,3HB = ,F16.8/20X,3HC =,F16.8 /// 250H SUMMATIONS FROM LEAST SQUARES CALCULATIGN } 63 PRINT 13,SEBT,SYEBT, SY,STEBT,STE20T,ST2E0T,ST2E0T,ST2E2B ,			WARES ELT OF DUTA TH M-	
250H SUMMATIONS FROM LEAST SQUARES CALCULATIGN } 63 PRINT 13,SEBT,SVEBT, SY,STEBT,STE20T,ST2E0T,ST2E26 ,	62 37			
63 PRINT 13,5EBT,SYEBT, SY,STEBT,STE20T,SE2BT,ST2E2B ,				
	63			•
	••			

. ว

· ·

 B DAVIS
 FORTRAN SOURCE LIST JAAA
 04/29/65

 ISN
 SOURCE STATEMENT
 1SYT2EB , SYTEBT
 04/29/65

 64 13
 FORMAT(16X, 7HSEBT = , £12, 5/16X, 7HSYEBT = , £12, 5/16X, 7HSYEBT = , £12, 5/16X, 7HST26T = , £12, 5/16X, 7HST26T = , £12, 5/16X, 7HST26BT = , £12, 5/16X

.

,

-

ſ

...

ND MESSAGES FOR ABUVE ASSEMBLY TIME 17HRS COMIN 39-3SEC

· • • •

.

٢

.

J

. .

.

۰.

-200~

FLOW RATE CC/SEC= 0.51029 RUGH TEMPERATURE= 295.5000 ATM.PRESSURE MM HG 757.6 BED DIAMETER CHS 5.03000 HED LENGTH CHS 10.05000 ENU ZONE HEIGHT 0.27000 PORUSITY 0.52000 BED TEMPERATURE K= 309.0000 TIME SEC. PEAK HEIGHTS 200.0 2925.00 REJECTED POINTS 2050.00 100 4050 400.0 1400.00 500.0 1000.00 600.0 700.0 700.00 CONSTANTS FOR LEAST SAUARES FIT OF DATA IN Y-C= A+EXP(-BT) A = 6035.51483 U = 0.00364182 Č. 13.98370361 SUMMATIONS FROM LEAST SQUARES CALCULATION SENT = 0.14035E 01 SYLHT = 0.27037E 04 SY = 0.85550E 04 STEBT = 0.49346E 03 STE28T= 0.12702E 03 ---ST2281= 0.27076 55 SE281 = 0.424471E-00 ST2281= 0.20602E 06 ST2228= 0.42225E 05 SYT2E8= 0.422773E 09 SYT2E8T= 0.77353E 06 DIFFUSIVITY= 0.55121716 LAMDA = 1.48761696 EFFECTIVE DIFFUSIVITY= 0.28663293 PUBLISHED DIFFUSIVETY= 0.82000000 ALPHA= U.(-8122977 NUMBER ITFRATIONS= 21

.

~

.

.

.

.

,

PARALLEL TUBE BED HYDRUGEN-NITROGEN

BED DATA

-201-

.

.

.

-

RUN DATA

سويديا بوية الانتقاد بحا

С

-202-

.

HYDRUGEN-NITROGEN

-

•

.

۰.

.

.

SED DATA

HED UPAMETER CHS 5.33000 FLOW RATE CC/SEC= RDOM TEMPERATURE= ATM.PRESSURE MM HG 0.54376 BED LENGTH CMS END ZONE HEIGHT PORUSITY 0.52000 10.05000 295.5000 0.27000 757.0 SED TEMPERATURE K# 309.0000 TIPE SEC. 300.0 400.0 PEAK HEIGHTS REFECTED 360.09 800. 490. 500.0 167.50 600.0 115.00 700.0 82.00 800.0 65.00 1010.0 1100-0 30.00 24.50 20.70 1200.0 1300-0 1400.0 18.20 1500.0 16.50 CONSTANTS FOR LEAST SAUARES FIT OF DATA IN Y-C= A+EXP(-BT) A = L164+03903 A = B = C = 0.00406258 15.53300405 SUPMATIONS FRUM LEAST SQUARES CALCULATION SEUT = 0.85436E 00 SYEBT = 0.19530E 03 SY = 0.11869E 04 STEDT = C.41040E 03 STE2BT = 0.5025E 02 SE2BT = 0.15648E+00 ST2EBT = 0.23771F 06 ST2EBT = 0.23771F 06 ST2EBT = 0.23040E 06 SYTEBT = 0.2040E 06 SYTEBT = 0.75092F 05 DIFFUSIVITY= 0.71461010 LAMDA = 1.14747888 EFFECTIVE DIFFUSIVITY= 0.820 ALPHA= 0.607522820 0.37159725 0.82000000 NUMBER ITERATIONS= 21

.

,

-

-

. . . . · · · ·

r,

.

.

RUN DATA

-203-

•

.

RUN DATA

HYDRUGEN-NITRUGEN

,

.

• •

.

BED DATA

BED DIANETER CMS 5.03000		FLOW BAT	E COVSEC.	0.56248
BED LENGTH CMS 10.05000				295.0600
END LONE HEIGHT 0.27000			SURE MM HG	
PORUSITY 0.52000	BED TEMP		= 309.000	
	PEAK HEIGHTS	REJ.	ected points	
150.0	655.00			
200.0	530.00			
250.0	430.00			
300.0	350.00			
400.0	227.50			
700.0	80.00	450.	173.	
0.008	58.00	500.	150.	
900.0	44.00	600.	104.	
1000.0	33.00			
1100-0	20.03			
1200.0	21.50			
1300.0	18.50			
CONSTANTS FUR LEAST SAUARES FIT	2.H0475 0434213	• A+EXP(-	MT)	
SUPMATIONS FROM LEAST SQUARES SEBT = 0.18550E SYEUT = 0.45162E SY = 0.26725E	01 03			
STEBT = 0.508330	03			
STE28f= 0.14210E	03			
SE20T = 0.670/6E	00			
ST2FBT= 0.19886E				
ST2E28= 0.34280E				
SYT2E8= 0.45327E				
SYTEBT= 0.182368				
	.87263739			
LAMDA = 0.9396301				
EFFECTIVE DIFFUSIVITY=				
PUBLISHED DIFFUSIVELY=				
ALPHA= C.07060957		NUM	BER ITERAT	1UNS= 21

1

.

.

.

.

· •.

•

, **·**

,

.

-

•

ſ

.

•

-204-

.

HYDRUGEN-NITROGEN

.

•

.

BED DATA

RUN DATA

•

BED DEAMETER CHS	5.03000		FLOW RATE (C/SEC= 2.80714
HOD LENGTH CHS	10.05000		RUUM TENPER	TURE= 295.0000
END ZONE HEIGHT	0.27000		ATM. FALSSURE	MM HG /55.3
PURUSITY 0.52000		HED TEMPE	RATURE K=	09.0000
	TIRE SEC.	PEAK HEIGHTS	REJECTED	C. INTS
		33.50		3.
	150.0	19.50	••••	
		12.00		
	250.0	7.50		
	360.0	5.00		
	350-0	3.50		
	400.0	3.00		
	400417	3.00		
CUNSTANTS FOR LEAS	T SAULARS FIT L			
CONSTANTS TOR ELAS	A = 100.		APCART DIT	
	B = 0.011			
	C = 1.893			
	C - L.075	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
SUMMATIONS FROM L	AST SOUNDES CA	CHLATION		
	$I = C_{\bullet} 70626E 0$			
	T = 0.15872E 0			
	= 0.84000E G			
	31 = 0.11141E 0			
	28f= 0.17835E 0	-		
	5T = (1.14510E-()			
	EBT= 0.21.94E 0			
	E28= 0.243^5E 0			
	2E8= 0.28352E 0			
	EBT= 0.19974E 0			
DIFFUSIVI		7602991		
	••••	1002 141		
LAMDA #		0.40353		
	DIFFUSIVIT/=			
ALPHA+	DIFFUSIVITY	0.8200000		TTERATIONED 1.4
ALPHA#	0.12234301		NUMBER	ITERATIONS= 18
•				

-205-

- -

•

RUN DATA

NUMBER ITERATIONS= 18

.

.

.

.

.

NFTROGEN-ETHANE

BED DATA

ALPHA=

.

.

•

.

0.12223252

.

BED DJAMETER CHS BED LENGTH CHS END ZONE HEJGHT PORUSJTY 0.52000 FLOW KATE CC/SEC= 0.48497 ROOM TEMPERATURE= 295.0000 ATM.PRESSURE MM HG 749.8 5.03000 10.05000 0.27000 HED TEMPERATURE K# 309.0000 TIME SEC. PEAK HEIGHTS \$00.0 470.00 500.0 310.00 217.00 900.0 1050.0 116.00 1200.0 90.00 1350.0 72.50 57.00 45.50 1500.0 1650.0 1800.0 37.00 31.00 26.00 21.50 1950.0 2100.0 2300.0 CCNSTANTS FOR LEAST SAUARES FIT UF DATA IN Y-C= A*EXP(-BT) A = R27, R8149 B = 0.00199940 C = 14.53532410 SUPMATIONS FRUM LFAST SQUARES CALCULATION SEDT = 0.17290F UL SYEDT = 0.48771E 03 SY = 0.10535E 04 STEBT = 0.12777E 04 STE2MT = 0.26591E 03 SE2MT = 0.25991E 03 SE2MT = 0.12649E 00 ST2EBT - 0.12649E 00 SYT2BT - 0.12649E 00 SYT2BT - 0.12649E 00 DIFFUSIVITY - 0.13564177 LAMDA = 1.11322641 EFFECTIVE DIFFUSIVITY - 0.00 0.07051372 PUBLISHED DIFFUSIVITY= 0.15100000

NETRUGEN-ETHANE BED DATA RUN DATA 5.03000 19.05000 FLOW RATE CC/SEC= ROOM TEMPERATURE= BED DIAMETER CHS 1.46170 BBD LENGTH CHS 295.0000 END ZONE HEIGHT PORUSITY 0.52000 0.27000 ATM. PRESSURE MM HG 755.5 BED TEMPERATURE K= 109.0000 TIME SEC. PEAK HEIGHTS 200.0 230.00 400.0 130.00 600.0 76.00 100.0 59.00 800.0 46.00 1000.1 28.00 1200.0 19.00 CONSTANTS FOR LEAST SAUARES FIT OF DATA IN Y-C= A+FXP(+8T) A = B = 400.67521 1.00294594 Ç = 1.47580498 SUPMATIONS FROM LEAST SQUARES CALCULATION SEBT = 0.13359+ 01 SYEBT = 0.13457E 03 SY = C.50800E 03 STEBT = 0.50806E 03 STE28T= 0.3972E 03 SE28T= 0.46742F=00 ST2EBT= 0.46742F=00 ST2EBT= 0.35038E 04 ST2E20= 0.24912E 08 SYTE8T= 0.60145F 05 DIFFUSIVITY= (.14782405 DIFFUSIVITY= 0.14782405 LAMDA = 1.02148466 EFFECTIVE DIFFUSIVITY= PUBLISMED DIFFUSIVITY= 0.14160762 1.02148467 0.07686850 v.15100000 ALPHA= 0.14160762 NUMBER ITERATIONS= 12

- -

.

3.

.

 γ

-206-

4

٠.

· ·· · ·

7

-- ---- --

-207-

.

. •

NITROGEN-ETHANE

.

BED DATA

۰.

.

.

RUN DATA

1

.

END ZONE HEIGHT 0.27000	FLOW RATE CC/SEC= 2.26669 RUUM TEMPERATURE= 296.5000 ATM.PAESSURE MM HG 755.3 RATURE K= 309.0000
-------------------------	---

. ~

r

TIME SEC. PEAK HEIGHTS 200.0 150.00 111.00 400.0 84.00 62.50 600.0 46.50 700.0 35.50

CONSTANTS FUR LEAST SAUARES FIT OF DATA IN Y-C= A+EXP(-BT) A = 268.37303 b = 0.002/99714 A = b = C = 2.44440460

- -

.

.

.

SUPMATEONS FRUM LEAST SQUARES CALCULATION UF LEAST SQUARES CALC SEGT = 0.17693E 01 SYEBT = 0.17689E 03 SY = C.468950E 03 STERT = C.664948F 03 STERT = C.664948F 03 SE28T = 0.19830L 03 SE28T = C.65944E 00 ST2E28T = 0.26243E 06 ST2E28T 0.71241E 05 SYT2EBT C.54807E 05 SYT7EBT = C.54807E 05 SIVITY= 0.18 0.13953946 DIFFUSIVITY= 1.08213115 LAMDA = EFFECTIVE DIFFUSIVITY= PUBLISHED DIFFUSIVITY= 0.67256052 0.15100000 ALPHA= 0.14701164

NUMBER ITERATIONS= 11

-

-

.

•

.

.....

-208-

.

NITROGEN-ETHANE

.....

.

.

۰. ،

.

.

,

BED DATA

.

RUN DATA

BED DIAMETER CMS 5.03000	FLOW 44TE CC/SEC= 2.94336
HED LENGTH CMS 10.05000	ROUM TEMPERATURE= 295.0000
END ZONE HEIGHT G.27000	ATM. PRESSURE MM HG 752.6
PORUSITY 0.52000	BED TEMPERATURE K= 309.0000
ITME SEC. PE	AK HEIGHTS
200.0 124	.00
300.0 88	.00
400.0 65	•00
500.0 47	•50
o00.0 35	• 50
700.0 27	.00
90.0 51	•50
900-0 17	• 50
100.0 12	• 00
CONSTANTS FOR LEAST SAUARES FIT OF D	
A = 236.846	
8 = 0.003569	
C = 7.685269	65
1	
SUPPATIONS FROM LEAST SQUARES CALCU	LATION
SEBT = 0.155736 01	
SYEHT = 0.12301L 03	
SY # 0.43800E 03	
STEST = 0.612561 03	
STE2BT= 0.13794E 03	
SE28T = 0.46895E-00	
ST2EBT= 0.30660F 06	
ST2E28= 0.48597E 05	
SYT2cH= 0.13858E 08	
SYTEBI = 0.373545 05	
DIFFUSIVITY= 0.1649	4461
LAMUA = 0.91545884	
EFFECTIVE DIFFUSIVITY=	0.08577120
PUBLISHED DIFFUSIVITY=	0.15100000
ALPHA# 0.14782880	NUMBER ITERATIONS= 10

.

.

, •

-

....

-

n

•

· .

•

.... ---

.

.

.

7

-209-

NETRUGEN-ETHANE

BED DATA

.

۰.

.

RUN DATA

BED DIAMETER CMS BEC LENGTH CMS END ZONE HEIGHT PORUSITY 0.52000	5.03000 19.05000 J.27000	UED TEMPE	FLOW RATE C RUIM TEMPERA ATM.PRESSURE RATURE K= 3	TURE= 295.0000
	TIME SEC.	PEAK HEIGHTS		
	200.0	115.00		
	300.0	49.00	1	00 165
	400.0	67.00		
	500.0	52.00		
	600.0	42.00		
	700.0	34.00		
	800.0	29.00		
	900.0	25.00		
	1000.1	22.50		
	1100.1	20.50		
	Δ = 194. Β = 3.00 C ≈ 14.99			
SUMMATIONS FROM LE	AST SOUARES C	ALEUCATION		
SEBT				
SYED	T = 0.13444E			
ŠY	# 0.49600E 1	03		
STER	T = 0.74435E	03		
STEZ	BT= 0.17032E	33		
SE 28	T = 0.55637E	00		
\$T2E	BT= 0.40273E (06		
ST2E	28= 0.637/9E (05		
	E8= 0.18428E (
	8T= 0.442692 (
DIFFUSIVIT		14867555		
LAMUA =	1.01563447			
	DIFFUSIVITY=			
	DIFFUSIVITY=	0.1510000		
AL PHA=	0.14885776		NUMBER	ITERATIUNS= 10

.

.

.

-

-

.

-210-

NETROGEN-ETHANE

BED DATA

.

.

.

,

RUN DATA

BED LENGTH LMS 1	5.03000 0.03000 0.27000	-	FLUW RATE C RUDM TEMPIRA ATM.PRESSURF RATURE K# 3	TURE= 295	
	TIME SEC. 200.0 300.0 400.0 500.0 500.0 700.0 800.0	PEAK HEIGHTS 78.00 52.00 39.00 28.00 20.50 15.50 12.60	100 ,	. 1,18	
н	SAUARES FIT UF = 158+0 = 0.0030 = 5.9201	29557 29948	&+EXP(-8T)		
SYEBT SY STEBT STE28 STE28 ST288 ST288 ST288 SYT28 SYT28 SYT88 DIFFUSIVITY LAMDA =	= 0.12803E 0 $= 0.24500E 0$ $= 0.24500E 0$ $= 0.45836E 0$ $T = 0.1095E 0$ $T = 0.1095E 0$ $T = 0.10981E 0$ $R = 0.33193E 0$ $R = 0.64644E 0$ $T = 0.18923E 0$ $= 0.18923E 0$	1 2 3 3 3 3 5 5 7 7 7 7 7 8 14471	6.26		
	1FFUSIVITY= 1FFUSIVITY= 0.15027141	0.09263 0.1510000	0	ITERATIONS=	. y

NITROGEN-BUTANE

ъ

1

۰.

BED DATA

RUN CATA

FLOW RATE CC/SEC= 0.46141 RUDM TEMPERATURE= 246.0000 ATM.PRESSURE MM HG 761.0 BED TEMPERATURE K= 309.0000

 \sim

<u>`</u>`

h

• -- -

.

	TER CMS	5.03000
 ZONE	HE IGHT 0.52000	0.27000

TIME SEC.	PEAK HEIGHTS
300.0	510.00
400.0	440.00
500.0	380.00
600.0	325.00
700.0	265.00
800.0	250.00
900.0	215+00
1000.0	190.00
1200.0	142.00
1400.0	108.00
1600.0	82.00
1800.0	61.00
2000.0	45.00
2200.0	34.00
2400.0	26.00
2600.0	19.00

-211-

CONSTANTS FOR LEAST SAUARES FIT OF DATA IN Y-C= A+EXP(-BT) A = 776.69521 B = 0.00143133 C = 1.50567818

SUMMATIONS FROM LEAST SQUARES CALCULATION SEBT = 0.39757E 01 SYEBT = 0.12508E 04 SY = 0.31120E 04 STEBT = 0.29702E 04 STE2BT = 0.86801E 03 SE2BT = 0.16027E 01 ST2EBT = 0.30831E 07 ST2E2B = 0.62188E 06 SYT2EB = 0.662189E 06 DIFFUSIVITY = 0.008172526 LAMDA = 1.16243123 EFFECTIVE DIFFUSIVITY = 0.005 PUBLISHED DIFFUSIVITY = 0.095 ALPMA = 0.13225333 0.04249714 0.09500000 NUMBER ITERATIONS= 15

¢

-212-

.

.

NITROGEN-BUTANE

õ

. ۰.

.

BED DATA

RUN DATA

POROSITY 0.52000 BED TEMPERATURE K= 309.0000	BED DIAMETER CMS BED LENGTH CMS END ZONE MEIGHT POROSITY 0.52000	5.03000 10.05000 0.27000	ROOM TEMPERATURE = 2 Atm.Pressure MM Hg	0.90299 296.0000 761.0
--	---	--------------------------------	--	------------------------------

•

TIME SEC.	PEAK HEIGHTS
300.0	285.00
400.0	240.00
500.0	205.00
600.0	174.00
700.0	148.00
800.0	126.00
900.0	104.00
1000.0	90.00
1100.0	76.00
1200.0	63.00
1400.0	46.00
1600.0	33.00
1800.0	23.00

CONSTANTS FOR LEAST SAUARES FIT OF DATA IN Y-C= A+EXP(-BT) A = 466+99112 B = 0.00163191 C = -1.74857622

SUMMATIONS FROM LEAST SQUARES CALCULATION SEBT = 0.35027E 01 SYEBT = 0.60839E 03 SY = 0.16130E 04 STEBT = 0.23890E 04 STE2BT= 0.70196E 03 SE2BT = 0.13159E 01 ST2EBT = 0.20596E 07 ST2E2B= 0.46022E 06 SYTEBT = 0.32363E 06 DIFFUSIVITY= 0.07939063 DIFFUSIVITY= 0.0 LAMDA = 1.19661468 EFFECTIVE DIFFUSIVITY= PUBLISHED DIFFUSIVITY= ALPHA= 0.14327731 0.07939063 0.04128313 0.09500000

- -

.

.

NUMBER ITERATIONS= 12

•

2

-213-

NITROGEN-BUTANE BED DATA RUN DATA FLOW RATE CC/SEC= 2.0460B RODM TEMPERATURE= 246.0000 ATM.PRESSURE MM HG 761.0 BED DIAMETER CHS 5.03000 BED LENGTH CHS END ZONE HEIGHT POROSITY 0.52000 10.05000 0.27000 BED TEMPERATURE K= 309.0000 TIME SEC. 300.0 400.0 PEAK HEIGHTS 138.00 110.00 92.00 76.00 61.00 500.0 700.0 51.00 800.0 1000.0 34.00 1150.0 CONSTANTS FOR LEAST SAUARES FIT UF DATA IN Y-C= A+EXP(-BT) A = 249.21826 B = 0.00202606 C = 1.23396216 SUMMATIONS FROM LEAST SQUARES CALCULATION SEBT = 0.24793E 01 SYEBT = 0.21855E 03 SY = 0.62900E 03 STEBT = 0.14174E 04 STE2BT = 0.41079E 03 SE2BT = 0.46048E 00 ST2EBT = 0.95420E 06 ST2EBT = 0.95420E 06 ST2EBT = 0.22771E 06 SYTEBT = 0.10412E 06 DIFFUSIVITY= 0.09057913 LAMDA = 1.01568647 EFFECTIVE DIFFUSIVITY= 0.092 ALPHA= 0.14946068 2 0.04710115 0.09200000 NUMBER ITERATIONS= 10

>

- .

 γ

、··

END-OF-DATA ENCOUNTERED ON SYSTEM INPUT FILE.

~

.

TIME 17HRS OIMIN 25.3SEC

	01/		
POROUS SOLID		· · · · · · · · ·	
HYDRUGEN-N1	TROGEN		
NED	DATA	RUN DATA	
BED DIAMETE Bed Length End Zone He Porosity	CHS 7.00000 IGHT 0.27000	FLOW RATE CC/SEC= 0.56238 RUOM TEMPERATURE= 296.0000 ATM.PRESSURE MM HG 765.1 D TEMPERATURE K= 306.0000	
	TIME SEC. PEAK H	FIGHTS	
	150.0 123.00 200.0 61.00		
	250.0 34.00		
	300-0 18-00 350-0 10-00		
	400 0 4 20		
	450.0 4.50 500.0 3.20		
	500.0 3.20		
SUPMATIONS DI LA EF PU	JBLISHED DIFFUSIVITY= 0. .PHA= 0.15623751	JN 0.33321406 R2000000 NUMBER ITERATIONS= 21	,

)	
		\sim	•
t			
		- <u>.</u>	
,		,	
•			

•

•

-

.

•

-215-

HYDROGEN-NITROGEN

۰.

BED DATA

RUN DATA

BED DEAMETER CMS	2.61000	FLOW RATE CC/SEC= 0.7	9291
BED LENGTH CMS	7.CC000	ROOM TEMPERATURE = 296.	0000
END ZONE HEIGHT	0.27000	ATM.PRESSURE MM HG	165.1
POROSETY 0.59000		BED TEMPERATURE K= 306.0000	

TIME SEC.	PEAK HEIGHTS
150.0	66.50
200.0	29.00
250+0	13.50
300.0	6.50
350.0	3.50
400.0	2.20
400.0	2.20

•

CONSTANTS FOR LEAST SAUARES FIT OF DATA IN Y-C= A+EXP(-bT) A = 832+02716 B = 0+01698613

° C =	1.35669861
SUMMATSUNS FROM LEAST	SGUARES CALCULATION
SEBT =	0.135888-00
SYEBT =	0.64184E 01
SY =	0.12120F C3
STEBT =	0.25209E 02
STE2BT=	0.12077E 01
SE28T =	C. 74926E-02
ST2EBT=	0.50447E 04
ST2E2B=	0.19977E 03
SYT2E8=	0.17307E 06
SYTEBT=	U-10390E 04
DIFFUSIVITY=	0.59620015
LAMUA =	1. 37537704
EFFECTIVE DIFI	FUSIVITY= 0.35175809
PUBLISHED DIF	

~

.

ALPHA= 0.16822422 NUMBER ITERATIONS= 20

ο.

- _

····

.

۰.

2

-216-

.

HYDRUGEN-NITRUGEN

۰,

.

•

,

.

BED DATA

RUN DATA

. . . .

•

.

.

HED DEAMETER CHS Hed Length CMS	2.61000 7.00000		FLOW RATE (RUOM TEMPER	ATURE= 296.0000
END ZONE HEIGHT Purosity 0.59000	0.27000	BED TEMPI	ATM.PRESSURI FRATURE K=	
		PEAK HEIGHTS		
	100.0 1	24.00		
		54.00		
	200.0	23.00		
		10.00		
	300.0	5.00		
	350.0	3.00		
	400.0	2.00		
				•
CONSTANTS FOR LEAST	SAUARES ETT OF	DATA IN Y-C	= A+FXP(-HT)	
	A # 673.3			
	B = 0.0170	-		
	C + 1.0037			
SUPMATIONS FROM LE				
SEBT				
	T = 0.27622F 02			
SY				
	T = 0.42971E 02			
	8T= 0.44717E U1			
	T = 0.40254E - 01			
	BT# 0.67745E 04			
	28# 0+52398E 03			
	EN# 0.30210E 00			
	9T= 0.30754E 04			
DIFFUSIVIT	Y= 0.53	309685		
LAMOA =	1-53818204			
	DIFFUSIVITY=	0.31452		
	DIFFUSIVITY=	0.8200000		
ALPHA=	0.17831466		NUMBER	ITERATIONS= 18

-217-

、

.

.

.

.

HYDROGEN-NITROGEN

.

•

BED DATA

.

RUN DATA

BED DEAMETER CHS	2.61000	FLOW RATE CC/SEC= 1	1.24571
BED LENGTH CHS	7.00000		96.0000
END ZONE HEIGHT	0.27000	ATH. PRESSURE MM HG	765.l
POROSITY 0.59000		BED TEMPERATURE K= 306.0000	

	TIME SEC.	PEAK HEIGHTS
•	100.0	71.00
	150.0	26.00
	200.0	10.50
	250.0	4.50
	300.0	2.20
	350.0	1.10

CONSTANTS FOR LEAST SAUARES FIT OF DATA IN Y-C= A+EXP(-BT) A = B = C = 474.73421 0.01905806 0.46243683

SUMMATIONS FROM LEAST SQUARES CALCULATION DM LEAST SQUARES CALC SEUT = C.24124E-00 SYEBT = N.12443E 02 SY = J.11730F 03 STEJT = N.31456E 02 STE28T = U.28243E 01 SE28T = 0.25975E-01 ST2E8T = N.46459E 04 ST2E28 = 0.32038E 03 SYT2E8 = U.15421E 06 SYTEBT = 0.13553F 04 SIVITY = 0.537 DIFFUSIVITY= 0.53771282 LAMDA = 1.52497758 EFFECTIVE DIFFUSIVITY= PUBLISHED DIFFUSIVITY= 0.31725056 0.82000000 ALPH4= 0.18763416 HUMBER ITERATIONS= 16

BED DATA KUN DATA BED DIAMETER CHS 2.61000 FLOW RATE CC/SEC= 1.83497 BED LENGTH CHS ROOM TEMPERATURE= 7.00000 296.0000 END ZONE HEIGHT 0.27000 ATM. PRESSURE MM HG 765.1 PURUSITY 0.59000 BED TEMPERATURE K= 306.0000 TIME SLC. PEAK HEIGHTS 50.0 124.00 100-0 37.00 150.0 14.00 200.0 5.00 250.0 2.00 - -CUNSTANTS FOR LEAST SAUARES FIT OF DATA IN Y-C= A+EXP(-BT) 414.35182 A = 8 = 0.02445598 C = 1.89934120 SUMMATEONS FROM LEAST SQUARES CALCULATION Steat = 0.41(32C=00 SYEBT = 0.40112E 02 SY = 0.18;00E 03 STEAT = 0.29271E 02 STEAT = 0.51551E 01 SE28T = 0.94899E-01 ST2EBT= 0.26156E 04 ST2E28= 0.3092E 03 SYT2E8= 0.13315E 06 SYTE8T= 0.22092E 04 SYTE8T= 0.65093117 DIFFUSIVITY= LAMDA # 1.25973380 EFFECTIVE DIFFUSIVITY= 0.38404939 PUBLISHED DIFFUSIVITY= 0.82000000 NUMBER ITERATIONS= 15 ALPHA= 0.19318470 .

-

з,

n,

2

1

- --- -- -- --

.

.

.

۰.

~ ---

HYDROGEN-NITRUGEN

-218-

-219-

NHTRUGEN-ETHANE

BED DATA

RUN DATA

.

2

.

BED DIAMETER CMS	2.61000	FLOW RATE CC/SEC=	0.39180
BED LENGTH CMS	7.0000	ROOM TEMPERATURE=	296+0000
END ZONE HEIGHT	0.27000	ATN.PRESSURE MM HG	700.9
POROSITY 0.59000		BED TEMPERATURE K= 306.0000	-

PEAK HEIGHTS
212.50
117.00
68.00
43.50
30.50
24.50
20.50

CONSTANTS FOR LEAST SAUARES FIT OF DATA IN Y-C= A+EXP(-BT) A = 598.64044 B = 0.00448394 C = 17.36491060

د ه . می معنام مانور در میران ماند <u>معامر در میران ماند معامر م</u>

.

. . .

•

.

SUMMATIONS FROM LEAST SQUARES CALCULATION SEBT = 0.659746 00 SYEBT = 0.974596 02 SY = 0.51650E 03 STEUT = 0.26179E 03 STE2BT= 0.43494E 02 SC2BT = 0.14366E-00 ST2EBT= C.12880E 06 ST2E2B 0.14695E 05 SYT2E3E 0.11034E 08 SYTEBT= 0.30583E 05 DIFFUSIVITY= 0.11308980 LAMDA = 1.33527204 EFFECTIVE DIFFUSIVITY= 0.06672298 PUBLISHED DIFFUSIVITY= 0.15100000 ALPMA= 0.19822370 NUMBER ITERATIONS= 14

	-2	20-	_	
N&TRUGEN-ETHANE				
BED DAT	A			RUN DATA
BED DIAMETER CH Bed Length CMS End Zone Height Purosity 0.59	7.00000		FLOW RATE CC/SEC ROOM TEMPERATURE= ATM.PRESSURE MM HO RATURE K= 306.000	296.0000 766.9
	TIME SEC.	PEAK HEIGHTS		
	200-0	116.00		÷
		77.50		
	400-0	53.00		
	500.0 600.0	38.50 29.50		
	700.0	24.00		
CONSTANTS FOR LI	1200.0 EAST SAUARES FIT U A = 267.	16.00 IF DATA IN Y-C= 69002	A+EXP(-BT)	
CONSTANTS FOR LI	1200.0 EAST SAUARES FIT U A = 267.	16.00 F DATA IN Y-C= 69002 87665	A+EXP(-BT)	
	1200.0 EAST SAUARES FIT U A = 267. B = 0.004 C = 15.173	16.00 F DATA IN Y-C= 69002 87665 82121	A+EXP(-BT)	
SUPMATIONS FROM	1200.0 EAST SAUARES FIT U A = 267. B = 0.004 C = 15.173 M LEAST SQUARES CA	16.00 IF DATA IN Y-C= 69002 87665 82121 LCULATION	A+EXP(-BT)	
SUPMATIONS FROM	1200.0 EAST SAUARES FIT () A = 267. B = 0.004 C = 15.173 M LEAST SQUARES CA SEBT = 0.92750F ()	16.00 F DATA IN Y-C= 69002 87665 82121 LCULATION	A+EXP(-BT)	
SUPMATIUNS FROM	1200.0 A = 267. B = 0.044 C = 15.173 M LEAST SQUARES CA SEBT = 0.74999 0 SY = 0.35450 0	16.00 F DATA IN Y-C= 69002 87665 882121 LCULATION 0 2	A+EXP(-BT)	
SUPMATIONS FROM	1200.0 EAST SAUARES FIT U A = 267. B = 0.004 C = 15.173 M LEAST SQUARES CA SEBT = 0.7499Pt U SY = 0.735450E 0 SYEBT = 0.30406E 0	16.00 F DATA IN Y-C= 69002 87665 82121 LCULATION 0 2 3 3	A+EXP(-BT)	
SUPMATIONS FROM	1200.0 EAST SAUARES FIT U A = 267. B = 0.004 C = 15.173 M LEAST SQUARES CA SEBT = 0.92750F 0 SYEBT = 0.74999E 0 SY = 0.35450E 0 STEOT = 0.3040E 0 STEOT = 0.30910E 0	16.00 F DATA IN Y-C= 69002 87665 82121 LCULATION 00 2 3 3 2	A+EXP(-BT)	
SUPMATIONS FROM	1200.0 EAST SAUARES FIT () A = 267. B = 0.004 C = 15.173 M LEAST SQUARES CA SEBT = 0.92750F () SYEBT = 0.74599F () SY = 0.35450E () STE2BT = 0.30406E () STE2BT = 0.30406E () STE2BT = 0.30406E () STE2BT = 0.22760E-0	16.00 F DATA IN Y-C= 69002 87665 882121 LCULATION 00 2 3 3 3 2 0	A+EXP(-BT)	
SUPMATIONS FROM	1200.0 EAST SAUARES FIT () A = 267. B = 0.004 C = 15.173 M LEAST SQUARES CA SEGT = 0.927500 0 SYEBT = 0.74999t () SY = 0.35450E 0 STEBT = 0.30406E 0 STE2BT = 0.58910t 0 ST22BT = 0.22760E-0 ST22BT = 0.12007L 0	16.00 F DATA IN Y-C= 69002 87665 82121 LCULATION 0 2 3 3 2 0 6	A*EXP(-BT)	
SUPMATJUNS FRO	1200.0 EAST SAUARES FIT () A = 267. B = 0.004 C = 15.173 M LEAST SQUARES CA SEBT = 0.92750F () SYEBT = 0.74599F () SY = 0.35450E () STE2BT = 0.30406E () STE2BT = 0.30406E () STE2BT = 0.30406E () STE2BT = 0.22760E-0	16.00 IF DATA IN Y-C= 69002 87665 82121 LCULATION 0 2 3 3 2 0 6 5	A•EXP(-BT)	
SUPMATIONS FROM	1200.0 A = 267. B = 0.004 C = 15.173 M LEAST SQUARES CA SEGT = 0.7499F 0 SY = 0.7499F 0 SY = 0.33650E 0 STEBT = 0.3040GE 0 STE2BT = 0.22760E-0 ST2EBT = 0.12607L 0 ST2EET = 0.12607L 0	16.00 F DATA IN Y-C= 69002 87665 82121 LCULATION 0 2 3 2 0 6 5 7	A•EXP(-BT)	
SUPMATJUNS FRUI Diffus	1200.0 A = 267. B = 0.004 C = 15.173 M LEAST SQUARES CA SEBT = 0.92750F 0 SYEBT = 0.74999E 0 SYEBT = 0.35450E 0 STE2BT = 0.30406E 0 STE2BT = 0.30406E 0 STE2BT = 0.22760E-0 STE2BT = 0.12007L 0 ST2EBT = 0.12007L 0 SYT2EB = 0.64335F 0 SYT2EB = 0.62385E 0 LVITY = 0.1	16.00 F DATA IN Y-C= 69002 87665 82121 LCULATION 0 2 3 2 0 6 5 7	A•EXP(-BT)	
SUPMATJUNS FRU Diffusi Lamda	1200.0 A = 267. B = 0.004 C = 15.173 M LEAST SQUARES CA SEGT = 0.72450F 0 SYEBT = 0.74597F 0 SYEBT = 0.30406E 0 STEBT = 0.30406E 0 STEBT = 0.22760F-0 ST2EBT = 0.12607L 0 ST2EBT = 0.12607L 0 SYZEB = 0.64333F 0 SYTEBT = 0.20383F 0 IVITY = 0.1 1.39985816	16.00 IF DATA IN Y-C= 69002 87665 882121 LCULATION 0 2 3 3 3 2 0 6 5 7 5 0786807	-	
SUPMATIONS FROM Diffusi Lamda Effecti	1200.0 A = 267. B = 0.004 C = 15.173 M LEAST SQUARES CA SEBT = 0.92750F 0 SYEBT = 0.74999E 0 SYEBT = 0.35450E 0 STE2BT = 0.30406E 0 STE2BT = 0.30406E 0 STE2BT = 0.22760E-0 STE2BT = 0.12007L 0 ST2EBT = 0.12007L 0 SYT2EB = 0.64335F 0 SYT2EB = 0.62385E 0 LVITY = 0.1	16.00 F DATA IN Y-C= 69002 87665 82121 LCULATION 0 2 3 3 2 0 6 5 7 5	216	

, , ,

- .

ე

.

....

<

.

.

•

-221-

, .

NITROGEN-ETHANE

BED DATA

.

RUN DATA

ŧ

(. . <u>.</u> .

٦

 γ

λ.

}

BED DIAMETER CPS BED LENGTH CMS	2.61000	FLOW RATE CC/SEC= ROOM TEMPERATURE=	1.32324
END ZONE HEIGHT PUROSITY 0.59000	0.27000	ATM.PRESSURE MM HG BED TFMPERATURE K= 306.0000	766.9

TIME SEC.	PEAK HEIGH	ITS		,
100.0	122.00		-	
200.0	78.50			
300.0	53.00			
400.0	37.50			
500.0	28.50			
u00.0	23.50			

CONSTANTS FUR LEAST SAUARES FIT OF DATA IN Y-C= A+EXP(-BT) A = 179.89997

	1110101011
8 =	0.00525755
C =	15.67274153

SUPMATIONS FRUM LEAST SQUARES CALCULATION SEBT = 0.13840E 01 SYEBT = 0.11813E 03 SY = 0.34300E 03 STEBT = 0.30147E 03 STE2BT= 0.81814E 02 SE2BT = 0.91407E 05 ST2EBT= 0.91407E 05 ST2EBT= 0.19442F 05 DIFFUSIVITY= 0.11160270 LAMOA = 1.35301381 EFFECFIVE DIFFUSIVITY= 0.15100000 ALPMA= 0.21606873 NUMBER ITERATIONS= 10

.

~

-222-

NETRUGEN-ETHANE

BED CATA

- -

, .

.

.

RUN DATA

.

ć

- --

.

-

- ---- --_-

.

م د الله د درور

.

n

.

100.0- 200.0	87.50				
200.0	60 00				
	58.00				
300.0	40.50				
400.0	30.00				
500.0	24.20				
600.0	20.50				
700.0	18.00				
	400+0 500+0 600+0	400.0 30.00 500.3 24.20 600.3 20.50	400+0 30+00 500+3 24+20 600+3 20+50	400.0 30.00 500.0 24.20 600.0 20.50	400+0 30+00 500+0 24+20 600+0 20+50

.

CONSTANTS FOR LEAST SAUARES FIT OF DATA IN Y-C= A+EXP(-BT) A = 122.18379 8 = 0.00522691 C = 15.04567635

.

.

,

SUMMATIONS FROM LEAST	SQUARES CALCULATION	
SEBT =	0.14190E 01	
SYEBT =	0.87549E 02	
SY =	0.278705 03	
STEBT =	0.322328 03	
STE2BT=	0.83302E 02	
SE281 =	0.54180F 00	
ST2EB1=	0.10511E 06	
ST2E28=	6.17161E 05	
SYT2EB=	0.36787E 07	
SYTEBT=	0.150286 05	
D1FFUSIVITY=	0.10828433	
LAMDA =	1.39447691	
EFFECTIVE DIF	-USIVITY= 0.06388776	
PUBLISHED DIF	FUSIVITY= 0.15100000	
ALPHA= 0	.21871432	NUMBER ITERATIONS= 8

-223-

- -

NETROGEN-BUTANE

-

.

۰.

. .. .

BED DATA

RUN DATA

-

BED DIAMETER CMS	2.61000	FLOW RATE CC/SEC= 0.59443
HED LENGTH CMS	7.00000	ROOM TEMPERATURE= 296.0000
END ZONE HEIGHT	0.27000	ATM.PRESSURE MM HG 761.4
PUROSITY 0.59000		BED TEMPERATURE K= 306.0000

.

TIME SEC.	PEAK HEIGHTS
600.0	58.20
700.0	42.00
800.0	30.50
900-0	22.00
1000.0	16.00
1100.0	12.00
1200.0	9.00

CUNSTANTS FOR LEAST SAUARES FIT OF DATA IN Y-C= A+EXP(-BT) A = 429.92207 H = 0.00337326

Ĉ =	1.43004961

 SUMMATIONS FROM LEAST SQUARES CALCULATION SEBT = 0.41796E-00 SYEGT = 0.1579E 02 SY = 0.1579E 02 SY = 0.1579E 03 STERT = 0.3249F 03 STE2BT = 0.24598F 02 SE2BT = 0.35205C-01 ST2EBT = 0.35205C-01 ST2EBT = 0.26477E 06 ST2E2B = 0.17748E 05 SYT2EG = 0.80036E 07 SYTEBT = 0.1039E 05 DIFFUSIVITY = 0.07472375 LAMDA = 1.32487999 EFFECTIVE DIFFUSIVITY = 0.04408701 PUBLISHED DIFFUSIVITY = 0.09900000 ALPHA = 0.21227366

~

.

NUMBER ITERATIONS# 11

2

.

,

-224-

۰.

NETROGEN-BUTANE

.

.

4

.

. ۰.

.

.

BED DATA BED DIAMETER CHS 2.61000 FLOW RATE CC/SEC= ROOM TEMPERATURE= 1.14750 BBD LENGTH CHS END ZONE HEIGHT PURDSITY 0.59000 7.00000 296.0000 ATH. PRESSURE MM HG 0.2/000 761.4 BED TEMPERATURE K= 306.0000 ١ TIME SEC. PEAK HEIGHTS 500.0 30.50 600.0 21.00 700.0 15.00 800.0 10.50 900.0 7.50 X 1000.0 5.50 CONSTANTS FOR LEAST SAUARES FIT OF DATA IN Y-C= A+EXP(-BT) 196.21128 Δ = 8 = C = 0+00380157 1.12496328 UNS FRUM LEAST SQUARES CALCULATIO SEBT = 0.42479E-00 SYEBT = 0.46218F 01 SY = 0.400JE 02 STEBT = 0.27490E 03 STE2BT = 0.24136E 02 SE2BT = 0.41507E-01 ST2EMT= 0.18776E 06 ST2E2BT 0.18776E 06 ST2E2BT 0.30430F 07 SYT2EBF 0.30430F 07 SYT2EBF 0.50450F 04 DIFFUSIVITY= 0.06021061 LAMCA = 1.23424071 EFFECTIVE DIFFUSIVITY= 0 SUPMATIONS FROM LEAST SQUARES CALCULATION EFFECTIVE DIFFUSIVITY= 0.04732426 PUBLISHED DIFFUSIVITY= 0.09900000 ALPHA= 0.21750321 NUMBER ITERATIONS= 9

. .

- -

RUN DATA

,

.

n

.

ł

,

-225-

.

NETROGEN-BUTANE

``

. .

.

BED DATA

BEC DIAMETER CMS BED LENGTH CMS END ZONE MEIGHT POROSITY 0.59000 FLOW RATE CC/SEC= ROOM TEMPERATURE= ATM.PRESSURE MM HG 2.61000 2.06757 7.00000 296.0000 0.27000 761.4 BED TEMPERATURE K= 306.0000 TIME SEC. PEAK HEIGHTS 300.0 33.00 **350.**0 27.60 400.0 23.00 450.0 19.50 500.0 16.00 CONSTANTS FUR LEAST SAUARES FIT OF DATA IN Y-C= A*EXP(+6T) A = 100.53757 B = 0.00400643 A = B = C = 2.632/2942 SUPMATIONS FROM LEAST SQUARES CALCULATION UNS FRUM LEAST SQUARES CALCULATIO SEBT = 0.20568E 02 SY = 0.11850E 03 STEBT = 0.39847E 03 STE26T = 0.39847E 03 ST226T = 0.85344E 02 SE20T = 0.85344E 02 SE20T = 0.36382E-00 ST226BT 0.32038E 05 ST226BT 0.30391E 07 SYTEBT - 0.96794E 04 DIFFUSIVITY= 0.06230689 LAMDA = 1.20281547 EFFECTIVE DIFFUSIVITY= 0 LAMDA = 1.20281547 EFFECTIVE DIFFUSIVITY= PUBLISHED DIFFUSIVITY= 0.04856106 0.09900000 0.22042512 NUMBER ITERATIONS . 8 ALPHA=

.

. .

.

)

.

.

.

2

RUN DATA

HYDROGEN-NITROGEN					
BED DATA				RU	N DATA
BGD DJAMETER CMS BED LENGTH CMS ENG ZONE HEJGHT POROSITY 0.39300	2.61000 7.00000 0.27000	BED TEMP	FLOW RATE RUDM TEMPE ATM.PRESSU ERATURE K=	RATURE= 20 RE MM HG	0.45564 95.0000 742.5
	TIME SEC.	PEAK HEIGHTS			
	50.0	460.00			
	100.0	207.50			
	150.0	95.00			
	200.0	50.50			
	250.0	28.00			
	300.0	18.00			
	350.0	13.00			-
	400.0	11.00			
	450.0	10.00	×		
	500.0	9.00			
CONSTANTS FOR I SAFT					
CONSTANTS FOR LEAST	54ÚmRES FIT A = 1023 B = 0.01		- A-EXPT-BT)	
SUMMATIONS FROM LE	CAÚMRES FIT A = 1023 8 = 0.01 C = 9.99 AST SQUARES C	UF DATA IN Y-C 1.41085 1.643952 351410 CALCULATION	- A-EXPT-BT)	
SUMMATIONS FROM DE Sebi	SAÚMRÉS FIT A = 1023 B = 0.01 C = 9.95 AST SOURES C - = 0.78411E	UF DATA IN Y-C 441085 643952 351410 CALCULATION 00	- A•EXPI-BT)	-
SUMMATIONS FROM CE Sebi Syee	SAUMRES FIT A = 1023 B = 0.01 C = 9.95 EAST SQUARES T = 0.78411E ST = 0.25290E	UF DATA IN Y-C 643952 351410 CALCULATION 00 03	- A+EXPT-BT		-
SUMMATEONS FRUM LE Sed Syee Sy	SAUMRES FIT A = 1023 B = 0.01 C = 9.95 SAST SOUARES C I = 0.78411E ST = 0.25290E = 0.90200E	UF DATA IN Y-C .41085 .643952 .351410 CALCULATION 00 03 03	• A•EXP{-BT	•	-
SUMMATJONS FRUM EE Sebi Syee Sy Stee Stee Stee	SAUMRES FIT A = 1023 B = 0.01 C = 9.95 EAST SQUARES C I = 0.78411E ST = 0.69240E ST = 0.69849E	UF DATA IN Y-C .41085 .443952 .351410 CALCULATION 00 03 03 02	- A•EXPI-BT)	-
SUMMATIONS FROM DE Sed Syee Sy Stee Stee Stee	SAUMRES FIT A = 1021 B = 0.01 C = 9.95 AST SQUARES C = 0.78411E ST = 0.69849E EBT = 0.69849E	UF DATA IN Y-C 441085 643952 351410 CALCULATION 00 03 03 02 02	- A•EXPI-BT		-
SUMMATIONS FROM LE Sebt Syee Sy Stee Stee Stee Stee Stee Stee	SAUMRES FIT A = 1023 B = 0.01 C = 9.95 SAST SGUARES G = 0.78411E ST = 0.25290E = 0.90700E ST = 0.69849E SBT = 0.23949E SBT = 0.23949E	UF DATA IN Y-C .41085 .643952 .351410 ALCULATION 00 03 03 03 02 02 00	- A-EXPT-BT	•	
SUMMATIONS FROM LE Sebt Sye Sy Stee Stee Stee Stee Stee Stee S	T SAUMRES FIT A = 1023 8 = 0.01 C = 9.95 AST SQUARES C = 0.78411E ST = 0.90200E 0.90200E ST = 0.90200E ST = 0.4842E ST = 0.23949E BT = 0.89128E	UF DATA IN Y-C 1.41085 643952 351410 CALCULATION 00 03 03 02 02 04	- A•EXPT-BT		-
SUMMATIONS FROM DE Sebi Syee Sy Stee Stee Stee Stee Stee Stee S	SAUMRES FIT A = 1023 B = 0.01 C = 9.95 SAST SQUARES C = 0.78411E ST = 0.25290E ST = 0.69849E BT = 0.14842E ST = 0.23949E BT = 0.23949E ST = 0.89128E 2B = 0.10975E	UF DATA IN Y-C -41085 -443952 -351410 CALCULATION 00 03 03 02 02 02 04 04	• A•EXP{-BT) 	-
SUMMATIONS FROM CE Sed Syee Sy Stee Stee Stee Stee Stee Stee S	SAUMRES FIT A = 1023 B = 0.01 C = 9.95 SAST SOUARES ST = 0.78411E ST = 0.69849E ST = 0.69849E ST = 0.423949E ST = 0.23949E ST = 0.423949E ST = 0.423949E ST = 0.423949E ST = 0.423949E	UF DATA IN Y-C 3.41085 643952 5351410 CALCULATION 00 03 03 02 02 02 04 04 04 07	- A•EXPI-BT		-
SUMMATIONS FROM CE Sed Syee Sy Stee Stee Stee Stee Stee Stee S	SAUMRES FIT A = 1023 B = 0.01 C = 9.95 SAST SGUARES G = 0.78411E ST = 0.25290E = 0.90200E ST = 0.69849E ST = 0.23949E ST = 0.23945E ST = 0.89128E 28 = 0.10975E Eb= 0.12131E BT = G.15885E	UF DATA IN Y-C .41085 .643952 .351410 	- A•EXPI-BT		-
SUMMATIONS FROM DE Sebt Syee Sy Stee Stee Stee Stee Stee Stee	SAUMRES FIT A = 1023 B = 0.01 C = 9.95 SAST SGUARES G = 0.78411E ST = 0.25290E = 0.90200E ST = 0.69849E ST = 0.23949E ST = 0.23945E ST = 0.89128E 28 = 0.10975E Eb= 0.12131E BT = G.15885E	UF DATA IN Y-C 1.41085 643952 351410 CALCULATION 00 03 03 02 02 00 04 04 04 05 69188812	• A•EXPT-BT	•	-
SUMMATIONS FRÜM LE Sebt Syte Stee Stee Stee Stee Stee Stee Ste	T SAUMRES FIT A = 1023 B = 0.01 C = 9.95 SAST SQUARES C = 0.78411E ST = 0.25290E = 0.90200E ST = 0.69849E BT = 0.4842E ST = 0.23949E BT = 0.89128E 28 = 0.10975E 28 = 0.12131E BT = G.15885E Y = 0.2	UF DATA IN Y-C 441085 443952 351410 CALCULATION 00 03 03 02 02 02 04 04 04 07 05 69188812) 	
SUMMATIONS FROM CE Sed Syee Sy Stee Stee Stee Stee Stee Stee S	SAUMRES FIT A = 1023 B = 0.01 C = 9.95 SAST SQUARES G = 0.78411E ST = 0.25290E = 0.90200E ST = 0.69849E BT = 0.14842E ST = 0.29128E 2B = 0.10975E 2B = 0.12131E BT = G.15885E Y = 0.20254330	UF DATA IN Y-C 441085 443952 351410 CALCULATION 00 03 03 02 02 02 04 04 04 07 05 69188812		•	-

-227-

HYDRUGEN-NITRUGEN

,

>

- - -----

.

.

BEU DATA

RUN DATA

BED DIAMETER CHS	2.61000	× -	FLOW RATE CC/SEC= 0.83168
BBD LENGTH CMS	7.00000		Ruom Temperature= 295.0000
END ZONE MEIGHT Porusity 0.39300	0.27000	8	ATM.PRESSURE MM HG 742.5 ED TEMPERATURE K= 309.0000

TIME SEC.	PEAK HEIGHTS
50.0	229.00
100.0	80.00
150-0	31.40
200.0	16.00
250.0	9.50
300.0	6.80
350.0	5.80
400.7	5.00

CUNSTARTS FOR LEAST SAUARES FIT OF DATA IN Y-C= A+EXP(-BT) A = 664.12617 B = 0.02184377

.

6.03	381014			
SQUARES CA	ALCULATION			
U-50477E (00			
0.872716 0	52			
•••••				
	0.2700365	2		
		-		
		NUMBER	ITERATIONS=	17
	U.50477E (U.38350E (U.38350E (U.38350E (U.37948E (U.1452E (N.12682E (N.12682E (N.37986E (U.44788E (U.42075E (U.49743E (USIVITY= 0.2700365 USIVITY= 0.82000000	U.50477E 00 U.50477E 02 U.38350E 03 0.37948E 02 U.71452E 01 N.12682E-00 N.37986E 04 N.44788E 03 U.52075E 06 N.49743E 04 0.68711584 L19339411 USIVITY= U.27003652 USIVITY= 0.82000000	U.50477E 00 U.30377E 02 U.30350E 03 O.37948E 02 U.71452E 01 N.12682E-00 N.37986E 04 N.44788E 03 U.52075E 06 U.49743E 04 U.68711584 L.19339411 U.27003652 USIVITY= U.27003052

مو بعوده جد

.

-- ----

.

-228-

.

HYDROGEN-NITRUGEN

· • .

· •

.

.

.

.

BED DATA

.

RUN DATA

-

,

-

.

•

.

 \sim

.

.

.

BED DIAMETER CHS	2.61000	FLOW RATE CC/SEC= 1.25171	
Red Length Cas	7.00000	RUOM TEMPERATURE= 295.0000	
END ZONE HEIGHT POROSITY 0.39300	0.27000	ATM.PRESSURE MM HG 742.5 BED TEMPERATURE K= 309.0000	

.

TIME SEC.	PEAK HEIGHTS
	122.25
	38.00
	15.00
200.0	
	4.10
300+0	3.20
CONSTANTS FOR LEAST SAUARES FIT	OF DATA IN Y-C= A+EXP(-BT)
4 = 399	9.98923.
B = 0.02	2429557
C = 3.44	4353834
SUPMATIONS FROM LEAST SQUARES (CALCULATION
SEPT = 0.42173C	
SYEBT = 0.40084E	
SY = 0.18935E	
STEHT = 0.29899E	
STE26T= 0.52955E	
SE28T = 0.96582F=	
ST2EBT= 0.27265E	
\$72E28= 0.31592E	-
SY12EH= 0.13589E	•
SYTEBT= 0.22211E	•
	66116180
LANDA - 1 36036168	

 Imposivite
 0.86116180

 LAMDA =
 1.24024105

 EFFECTIVE DIFFNSIVITY=
 0.25983658

 PUBLISHED DIFFNSIVITY=
 0.82000000

 ALPHA=
 0.19394036

-229-

NTROGEN-ETHANE

.

.

•

BED DATA

.

RUN DATA

--

•

.

2

.

.

· - ·

•

BED DJAMETER CMS JED LENGTH CMS END LONE HEJGHT POHOSJTY 0.39300	2.61000 7.0000 0.27000	BED TEMP	FLOW RATE CC/SEC RUUM TEMPERATURE ATM.PRESSURE MM F ERATURE K= 309.00	295.0000 19 755.5
	TIME SEC.	PEAK HEIGHTS		
		131.00		
	300-0	68.00		
	450-0	40.50		
	600.0	27.00		
	700.0	22.50		
	800.0	20.00		
	900.0	18.50		
	1050.0	17.00		
CONSTANTS FOR LEAST	SAHARES ETT CA	DATA IN V-C		
	A = 251.8		- A-EAP(-BI)	
	L = 0.005			
	C = 16.168			
SUMMATIONS FROM LE				
	= 0.85416E 00			
	T = 0.79892E 07			
SY	= 0.34450E 0			
	T = U.24116E 01			
	BT# 0.49098E 07 T = 0.26231E-00			
	81 = 0.97431E 0	-		
	2B= 0.11567E U			
	EB= 0.44904E 07			
	HT= 0.16458E 05			
DIFFUSIVIT		735015		
LAMDA =	1.28674738			
	DIFFUSIVITY=	0.0461	1861	
	DIFFUSIVITY=	0.151000		
ALPHA=	0.21198461		JUMBER ITERA	FIUNS# 11
				•

-230-

.

.

NITROGEN-ETHANE

1

.

.

BED DATA

RUN DATA

BED DJAMETER CHS	2.61000	FL	LOW RATE CC/SEC	0.91862
BED LENGTH CMS	7.00000	ŔĹ	DOM TEMPERATURE=	295.0000
END ZONE HEIGHT	0.27000	A1	TM.PRESSURE MM HO	3 155.5
POROSITY 0.39300		BED TEMPERA	ATURÉ K= 309+000	00
	TIME SEC.	PEAK HEIGHTS		
	200+0	66.00		
	300+0	45.50		
	400.0	32.50		
	500.0	25.00		
	600.0	20.50		
	700+0	18.00		
		16.50		
	900.0	15.80		
	1000.C	15.20		
	A = 147.	09993 20905	4•EXP (-87)	,
SUPPATIONS FROM LE	AST SQUARES CA	LCULATION		
SEBT				
SYEN	T = 0.40569E 0	-		
SY	= 0.25500E 0	-		
	T = 0.29095E 0			
	BT= 0.48934E (
	T = 0.19242E-0			
	at= 0.122816 0			
	20= U.14058E 0			
	EN= 0.38177E 0			
	8T= 0.11348E 0			
DIFFUSIVIT		1182137		
LAMDA =	1.35036799		_	
	DIFFUSIVITY=	0.0439458	90	
	DIFFUSIVITY=	0.15100000		
ALPHA=	0.21647434		NUMBER ITERAT	IONS= 9

-231-

NETRUGEN-ETHANE

.

.

.

.

۰.

.

-

BED DATA

RUN DATA

BED DIAMETER CHS	2.61600			CC/SEC= 1.	46140
BED LENGTH CHS	7.00000		RUOM TEMPER		5.0000
END ZONE HEIGHT	0.27000		ATM.PRESSUR		755.5
PONDSITY 0.39300			RATURE K=		(73. 3
		000 10400	ATURE N-	JU 76 GU UU	
		_			
	TIME SEC.	PEAK HEIGHTS			
	200.0	47.00			
	300.0	34.00			
	400.0	25.50			
	500.0	21.00			
	600.0	18.00			
	700.0	16.50			
	800.0	15.50			
	900.0	15.00			
CONSTANTS FOR LEAST	SAUARES FIT O	F DATA IN Y-C=	A.FXP(-HT)		
		58899			
	8 = 0.005	20108			
	C = 14.027	65203			
SUPPATIONS FROM LE	AST SQUARES CA	CULATION			
	= 0.85778E 0				
	T = 0.30102E 0				
SY	# 0.19250F 0				
- ·	T = 0.286425 0	-			
	ST= 0.49124F 0	-			
	T = 0.193076-0				
	BT= 0.11751E 0	-			
	28= 0.14103E 0				
÷·-+	E8= 0.29717E 0	-			
	BT= 0.86157E 0				
DIFFUSIVIT		0895333			
LAMOA =	1.38591449	······			
	DIFFUSIVITY=	0.04281	366		
	DIFFUS[V]IY=	0.1510000			
ALPHA=	0.21913726			ITERATIONS	8
MEL UM-			10-054	1.12.14110.43	

.

С

,

-232-

•

NFTRUGEN-BUFANE

.

.

- - --

.

BED DATA

.

RUN DATA

•

860	DIAME	TE	R	CMS	2.61000
88D	LENGT	н	СM	S	1.00000
END	ZONE	HE	1 G	HT	0.27000
PONO	SITY		0.	39300	

FLUN RATE CC/SEC=	0.59619
ROOM TEMPERATURE #	297.5000
ATM.PRESSURE MM HG	746.8
BED TEMPERATURE K= 309.0000	

.

TIME SEC. PEAK HEIGHTS 400.0 63.00 500-0 45.00 600.0 32.00 23.50 700.0 800.0 900.0 13.00 1000.0 10.00 1100.0 8.00

CONSTANTS FOR LEAST SAUARES FIT UF DATA IN Y-C= A*FXP(-bT) A = 256.29736 B = 0.00363822 C = 3.26159501

C = 3.26159501 SUPMATIONS FRUM LEAST SQUARES CALCULATION SEBT = 0.72341E 00 SYEBT = 0.29272E 02 SY = 0.21150E 03 STEBT = 0.4200 HE 03 STE2BT = 0.4200 HE 03 STE2BT = 0.51504E 02 SE2BT = 0.10500L-00 ST2EBT = 0.27074E 06 ST2EBT = 0.27074E 06 ST2EBT = 0.27074E 05 SYT2EBT = 0.27074E 05 DIFFUSIVITY= 0.07947453 LAM'JA = 1.245604206 EFFECTIVE DIFFUSIVITY= 0.03123349 PUBLISHED DIFFUSIVITY= 0.09900000 ALPNA = 0.21584170 NUMBER ITERATIONS= 10 -233-

.

NETROGEN-BUTANE

.

.

.

•

BED DATA

RUN DATA

- ----

.

•

BED DIAMFTER CMS	2.61000		FLOW RATE CC/SEC	0.37945
HED LENGTH CHS	7.00000		RUOM TEMPERATURE=	
ENG ZONE HEIGHT	0.27000		ATM.PRESSURE MM H	
	0.27000			
POROSITY 0.39300		BED IEM	PERATURE K= 309.00	10
	TIME SEC.	PEAK HEIGHT	s	
	300.0	55.00	-	
	400.0	38.00		
	500-0	27.50		
	600.0	20.00		
	700.0	14.20		
	800.0	10.70		
	90.0	8.00		
	1000.0	6.20		
CONSTANTS FOR LEAST	SAUARES FIT	OF DATA IN Y-	C= A+FXP(+BT)	
	4 = 159	.15279		
		370354		
		304090		
SUMMATIONS FROM LI	EAST SQUARES C	ALCULATION		
SEB1	F = 0.10087E	01		
SYE	ST = 0.35282E	02		
SY	= 0.17960E	03		
STEI	3T = 0.48367E	03		_
STE	26T= 0.80358E	02		-
SE 21	3T = 0.20658t-	00		
\$121	EBT= 0.26753E	06		
ST26	28= 0.34501E	05		
SYT.	268= 0.61296E	07		
SYTI	EBT# 0.13942E	05		
DIFFUSIVI	F¥= 0.	07844734		
LAMDA =	1.26197301			
	DIFFUSIVHTY=	0.030	82981	
PUBLISHED	DIFFUSIVITY=	0.09900	000	
ALPHA=	0.21919160		NUMBER ITERA	TIONS= 8

-

-234-

NETRUGEN-BUTANE

BED DATA

RUN DATA

.....

- ----

BED DEAMETER CMS	2.01000		FLOW RATE		23600
BED LENGTH CHS	7.00000		RUOM TEMPER		7.5000
END ZONE HEIGHT	0.27000		ATM. PRESSUR		746.8
PORDSITY 0.39300		BED TEMPE	RATURE K=	309.0000	
				•	
•	TIME SEC.	PEAK HEIGHTS			
	350.0	31.00			
	450.0	22.00			
	550.0	15.50			
	650+0	11.00			
	750.0	8.00			
	850.0	6.00			
	950.0	4.60		-	
	1050.0	3.50			
CONSTANT COD					
CONSTANTS FOR LEAST			A+EXP(-81)		
	•••••	61678			
		69706			
	C = 1.280	90966			
SUPMATIONS FROM LE	AST SQUARES CA	LCULATION		•	
StoT	# 0.84106E 0	0			
SYEB	T = 0.16659E 0	2			
SY	# 0.10160E 0	3			
STEB	T = 0.44553E 0	3			
	BT= 0.63004E 0				
	T = 0.14346E=0				
	BT= 0.26574E 0				
	2H= 0.29929E 0	-			
	E8= 0.35909F 0				
	BT= 0.74140E 0				
DIFFUSIVIT		7752087			
LAMDA =	1.27707544				
	DIFFUSIVITY=	0.03046	5 70		
	DIFFUSIVITY=				
	0.22030460			ITERATIONS	
					-

TIME 20HRS SOMIN 39.55EC

, , ,

•

.

....
