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Abstract 

A generalized mathematical model is developed to describe the transport of fluid and plasma 

proteins or other macromolecules within the interstitium. To account for the effects of plasma 

protein exclusion and interstitial swelling, the interstitium is treated as a multiphase deformable 

porous medium. Fluid flow is assumed proportional to the gradient in fluid chemical potential 

and therefore depends not only on the local hydrostatic pressure but also on the local plasma 

protein concentrations through appropriate colloid osmotic pressure relationships. Plasma pro

tein transport is assumed to occur by restricted convection, molecular diffusion, and convective 

dispersion. 

A simplified version of the model is used to investigate microvascular exchange of fluid and a 

single 'aggregate' plasma protein species in mesenteric tissue. The interstitium is approximated 

by a rigid, rectangular, porous slab displaying two fluid pathways, only one of which is available 

to plasma proteins. 

The model is first used to explore the effects the interstitial plasma protein diffusivity, the 

tissue hydraulic conductivity, the restricted convection of plasma proteins, and the mesothelial 

transport characteristics have on the steady-state distribution and transport of plasma proteins 

and flow of fluid in the tissue. The simulations predict significant convective plasma protein 

transport and complex fluid flow patterns within the interstitium. These flow patterns can 

produce local regions of high fluid and plasma protein exchange along the mesothelium which 

might be erroneously identified as 'leaky sites'. Further, the model predicts significant inter

stitial osmotic gradients in some instances, suggesting that the Darcy expression invoked in a 

number of previous models appearing in the literature, in which fluid flow is assumed to be 

driven by hydrostatic pressure gradients alone, may be inadequate. 

Subsequent transient simulations of hypoproteinemia within the model tissue indicate that 
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the interstitial plasma protein content decreases following this upset. The simulations there

fore support (qualitatively, at least) clinical observations of hypoproteinemia. Simulations of 

venous congestion, however, demonstrate that changes in the interstitial plasma protein con

tent following this upset depends, in part, on the relative sieving properties of the filtering and 

draining vessels. For example, when the reflection coefficients of these two sets of boundaries are 

similar, the interstitial plasma protein content increases with time due to an increased plasma 

protein exchange rate across the filtering boundaries and sieving of interstitial plasma proteins 

at the draining boundaries. (This eifect is supported by the clinical observation that interstitial 

plasma protein content in liver increases during venous congestion.) As the reflection coefficient 

of the draining boundaries decreases relative to that of the filtering boundaries, there is a net 

loss of plasma proteins from the interstitium, resvdting in a decrease in the total interstitial 

plasma protein content over time (i.e., the familiar 'plasma protein washout'). Further, the 

model predicts increased fluid transfer from the interstitium to the peritoneum during venous 

congestion, supporting the clinical observation of ascites. 

Finally, the model is used to study the effects of interstitial plasma protein convection and 

diffusion, plasma protein exclusion, and the capillary transport properties on the transit times 

of two macromolecular tracers representative of albumin and 7-globulin within a hypothetical, 

one-dimensional tissue. As was expected, the transit times of each of the tracers through the 

model tissue varied inversely with the degree of convective transport. Increasing the interstitial 

diffusivity of the albumin tracer also led to a moderate decrease in the transit time for that 

tracer. The capillary wall transport properties, meanwhile, had only a marginal effect on 

the transit time for the range of capillary permeabilities and reflection coefficients considered. 

However, these properties (and, in particular, the reflection coefficient) had a more pronounced 

effect on the ultimate steady-state concentration of the tracer in the outlet stream. 

It was the interstitial distribution volume of a given tracer that had the greatest impact on 

the time required for the outlet tracer concentration to reach 50 % of its steady-state value. 

This was attributed to the increased filling times associated with larger interstitial distribution 
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volumes. These findings suggest that the :gel chromatographic effect' observed in some tissues 

could possibly be explained on the basis of varying distribution volumes. 
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Chapter 1 

Introduction 

The systemic blood circulation consists of a complex network of vessels that form a closed loop, 

passing through the various body tissues before completing the circuit. Blood, driven by the 

pumping action of the heart, travels through a set of small, permeable blood vessels where it 

exchanges fluid and solutes, including the plasma proteins, with the surrounding tissue. Fluid 

and solutes are drained from the tissue spaces by an additional circulatory system, called the 

lymphatics. This exchange is essential both for providing nutrients to the tissue cells, and for 

removing metabolic wastes from the cells' environment. Further, the exchange of fluid and 

plasma proteins between the blood, the tissue space and the lymph plays an essential part in 

balancing fluid within the body. 

The various physiological elements involved in the exchange of materials within tissues 

constitute the microvascular exchange system. A disturbance to the system, be it from an 

extrinsic source (such as a burn or hemorrhage) or an intrinsic one (such as venous congestion 

or hypoproteinemia), compromises the health and well-being of the individual. For example, 

following a burn, large quantities of fluid may shift from the blood stream to the tissues. The 

resultant loss of blood volume can be life threatening. A fundamental understanding of the 

forces and mechanisms governing exchange is therefore of interest to physiologists and clinicians 

alike. 

During exchange, fluid and plasma proteins encounter three principle resistances: the cap

illary wall and basement membrane, the tissue space (i.e., the interstitium), and the lymphatic 

wall. These are the major barriers encountered during the transfer of materials from the blood 

stream to the lymphatic circulation. 
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Chapter 1. Introduction 2 

To describe the mechanisms governing mass exchange within the microvascular exchange 

system and, ultimately, to predict its response to physiological upsets, the transport character

istics of each of the resistances must be known. Due to the complexity of the system, and as 

a complement to experimental studies, mathematical models have been developed to describe 

microvascular exchange. Much of the effort has been directed to modelling the transport prop

erties of the capillary wall (see, for example, [30, 31, 58, 71, 75, 81] ). However, over the years 

researchers have identified the interstitium as another important component of the microvas

cular exchange system. General models of this system must therefore include mathematical 

descriptions of the interstitium and its physicochemical properties. 

Two basic modelling approaches have been adopted. In the first of these, the microvascular 

exchange system is reduced to a set of subsystems, or compartments. Material is exchanged be

tween compartments according to the driving forces present (such as differences in fluid chemical 

potential or solute concentration between compartments) and the transport properties of the 

interveiung boundary. Each compartment is assumed to be homogeneous; i.e., spatial hetero

geneities in the material properties of that part of the system represented by the compartment 

are not accounted for. Furthermore, the compartment is assumed to be well-mixed, so that 

mcoming material is instantaneously dispersed throughout its entire volume. Therefore, the 

solute concentrations, fluid pressures, and fluid volume associated with a given compartment 

represent average quantities. 

Because of the well-mixed assumption invoked in compartmental models, the driving forces 

for mass exchange between compartments will, in general, differ from the local driving forces 

found in the real system. This limits the model's ability to simulate the real system, particularly 

under transient conditions. In addition, compartmental models tell us nothing about mass 

transport within an individual compartment and its effect on the overall behavior of the system. 

However, the assumption of a well-mixed, homogeneous compartment simplifies the modelling 

problem immensely, because it reduces the number of parameters needed to characterize the 

system (since the transport properties of the compartment itself are neglected), and because 
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it simplifies the mathematical description of the system. Hence, complex phenomena, such as 

tissue swelling, can be included fairly easily in these models. For these reasons compartmental 

models are frequently used to simulate whole organ and body fluid and plasma protein exchange 

under both normal and pathological states [108, 18, 14, 3. 70]. 

Recent advances in microfluorometry, electron microscopy and digital image analysis now 

permit much more detailed experimental studies of interstitial fluid and protein transport than 

were previously possible [61, 40. 115], including measurements of interstitial plasma protein 

gradients. Mathematical models of interstitial transport are therefore required to interpret this 

expanding body of experimental data. The requisite model must include mathematical descrip

tions of the physicochemical properties of the interstitium, such as plasma protein exclusion 

and interstitial swelling characteristics, which impact on fluid and protein transport. It must 

also be able to predict possible variations in the distribution of fluid pressure and protein within 

the interstitial space [40, 61, 110!. Compartmental models are incapable of this. Such detailed 

descriptions are only possible with a distributed (i.e., spatially varying) model of interstitial 

transport. 

Unlike compartmental models, the distributed models of the microvascular exchange system 

do not assume that the various body compartments are well-mixed so that, in principle at least, 

these models more closely describe the real system. Distributed models can therefore be used 

to investigate the influence of mass transport within a given compartment (such as the blood 

or the interstitial space) on microvascular exchange. In addition, since the distributed models 

eliminate the artificial dispersion caused by the well-mixed assumption, they better describe 

transient processes. 

The advantages associated with the distributed models are not without their costs. First, 

these models require far more detailed information about the structure, transport properties 

and spatial distribution of the various compartments. This leads naturally to a larger number 

of system parameters which need to be quantified, such as the interstitial hydraulic conduc

tivity, plasma protein effective diffusivity, and capillary vessel diameter. More often than not, 
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many of these quantities must be estimated due to a lack of experimental data. In such in

stances it is necessary to conduct numerical experiments to determine the sensitivity of the 

model's predictions to the values assumed for the estimated parameters. Given the degree of 

uncertainty associated with these estimates, the results from distributed models are more often 

qualitative than quantitative. Despite these limitations, distributed models provide a powerful 

tool for investigating the mechanisms governing interstitial transport and their influence on 

microvascular exchange. 

A number of distributed models have already been proposed to describe fluid and/or protein 

transport within the interstitium. These models vary both in detail and in complexity. Blake 

and Gross [22] and Fleischman et al. [36] investigated fluid exchange within idealized tissues 

consisting of ordered arrays of capillaries. In both cases the interstitial space was treated 

as an isotropic, homogeneous, rigid porous medium. In addition; interstitial fluid flow was 

described by a form of Darcy's Law in which the authors assumed that the local fluid flux 

is proportional to the local gradient in hydrostatic pressure. Hence both models neglect the 

influence of osmotic pressure gradients on local fluid movement. Furthermore, neither model 

considers protein transport within the interstitium. 

Several investigators have addressed protein transport through the interstitial space. For 

example, Baxter et al. [7] assumed that protein transport occurs strictly by diffusion. Convec

tive contributions were not accounted for. Fry [43] considered both convection and diffusion in 

his model of interstitial transport of multiple protein species. However, Fry's model requires 

prior knowledge of the fluid velocities throughout the interstitial space. Furthermore, it makes 

no attempt to describe the effect of interstitial swelling on protein transport. 

Salathe and Venkataraman [87| presented equations to describe both fluid and protein trans

port within the interstitium. Again, fluid flow was assumed proportional to the gradient in 

hydrostatic pressure. The equation of protein transport included both convective and diffusive 

terms. However, their model does not distinguish between those regions of the interstitium 

which are accessible to protein and those from which protein is excluded. Hence, their model 
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neglects the intrinsic heterogeneities within the interstitium resulting from plasma protein ex

clusion. Furthermore, the model is limited to steady-state conditions. It is therefore incapable 

of predicting the time-dependent response of the interstitial fluid and protein distributions to 

a variety of systemic perturbations. 

Each of the models cited above provides insights into various aspects of interstitial transport. 

However, in each case the mathematical model is limited in scope. The objective of the present 

work, therefore, is to develop a more general mathematical model which describes the combined 

effects of interstitial swelling and plasma protein exclusion on the transient re-distribution 

of fluid and any number of macromolecular species within the interstitium. Local fluid flow 

is related to the gradient in total fluid chemical potential rather than hydrostatic pressure 

alone. Thus fluid movement is linked to gradients in solute concentration through associated 

colloid osmotic pressure gradients. Protein transport occurs by convective, dispersive and 

diffusive mechanisms, thereby providing further linkage between fluid and solute behavior. 

As a consequence, the equations governing fluid and protein movement within the deforming 

interstitium must always be solved as a coupled set rather than as the independent equations 

often assumed in previous analyses. 

This dissertation is divided into seven remaining chapters. Chapter 2 provides an overview 

of the physiology of the microvascular exchange system. In Chapter 3, the general model of 

interstitial transport is developed. Chapter 4 applies a simplified version of the general model 

to investigate the mechanisms governing the steady-state exchange of fluid and macromolecules 

within mesenteric tissue. In Chapter 5, the analysis is extended to transient conditions and 

considers the response of the model system to two specific systemic perturbations. Chapter 6 

adds a further dimension to the problem by investigating the simultaneous transport of multiple 

plasma protein species through the interstitium. Finally, Chapters 7 and 8 summarize the 

findhigs and ramifications of the dissertation and recommend several additional studies. 



C h a p t e r 2 

P h y s i o l o g i c a l O v e r v i e w o f t h e M i c r o v a s c u l a r E x c h a n g e S y s t e m 

Fluid and various solute species contained within blood are transported to the body tissues 

and organs via a complex network of vessels fonning the systemic blood circulation. Upon 

entering a specific organ, blood passes through a system of small, permeable blood vessels that 

constitute the microcirculation (see Figure (2.1)). It is here that nutrients and metabolic wastes 

exchange between the blood and the tissues cells. In addition, fluid and various macromolecules 

(in particular, the plasma proteins) are transported across the walls of the exchange vessels to 

enter the surrounding tissue space called the interstitium. 

The blood capillaries are the principal vessels responsible for exchange between the blood 

and the interstitium. However, the blood vessels supplying the capillaries, namely the arterioles. 

and those which drain the capillary bed, i.e., the venules, are also known to participate in the 

exchange process [82]. The exchange vessels are of minute dimensions; capillary diameters, for 

example, average 6 /J.m in humans [46]. 

In addition to the blood vasculature, the body contains another circulatory network, called 

the lymphatic system, that drains fluid and solutes from the interstitial space. The lymphatic 

vessels return material to the systemic circulation, emptying into the venous portion of the 

latter network in the vicinity of the heart [46]. 

The exchange vessels of the blood vasculature (namely, the arterioles, the capillaries and 

the venules), the interstitium, and the tissue drainage system (such as the teiminal lymphatic 

vessels) constitute the microvascular exchange system. Based on this anatomical definition, the 

microvascular exchange system can be viewed as a series of resistances that fluid and solutes 

encounter in their journey from blood to lymph. These resistances may be loosely defined 

6 
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Figure 2.1: The network of permeable vessels constituting the microcirculation. 
Blood enters via the arteriolar vessel (A) . A portion of this is drawn into the 
terminal arteriole (TA) , passes through the network of capillaries (C), is taken 
up by the terminal venule ( T V ) , and returned to the venule (V) . During this time 
fluid and solutes, including plasma proteins, leak from the blood to the surrounding 
tissue spaces [109]. 
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as the capillary wall and basement membrane, the interstitium, and the wall of the terminal 

lymphatic vessel. A discussion of each of these three components follows. 

2.1 The Capillary Wall and Basement Membrane 

2.1.1 General Description 

The capillary wall is composed of a single layer of flattened endothelial cells that rest on 

a specialized region of the interstitial matrix call the basement membrane or basal lamina 

[90, 13]. The latter structure consists largely of specialized forms of collagen that are not to 

be found elsewhere within the interstitial matrix [13] (see Section 2.2.1 for a further discussion 

of collagen). The basal lamina carries a net negative charge. It is believed to both provide 

mechanical support to the endothelial cells and to act as an additional transport barrier [112]. 

Together, the capillary wall and basal lamina act as a semi-permeable membrane that separates 

the blood and the interstitial compartments. Fluid and solutes selectively pass from the blood 

to the interstitium, driven by the local differences in the hydrostatic pressures, colloid osmotic 

pressures, and solute concentrations between the two compartments. 

The endothelial cell consists of the aqueous cytoplasm of the cell interior surrounded by 

a plasma membrane, the latter being comprised largely of lipids and protein. Within the 

cytoplasm are small spherical bodies 60 to 80 nm in diameter, called plasmalemmal vesicles 

[90J. These appear open on the lurninal (blood) and interstitial surfaces of the cell and as 

free bodies within the cytoplasm [112]. The vesicles axe thought to play a role in the transfer 

of macromolecules across the endothelial barrier. Several mechanisms have been suggested, 

including the shuttling of material from the luminal surface to the interstitial side by individual 

vesicles. It is also postulated that several vesicles may fuse to form temporary water channels 

across the width of the cell (see Figure (2.2)). Evidence suggests that vesicular uptake of 

macromolecules is selective [112]. For example, vesicles found in the microvessels of adipose 

tissue will take up native ferritin, but not native albumin, although the latter is smaller. 

The outer surface of the endothelial cells are covered with delicate, negatively charged fibers, 
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Figure 2.2: This figure depicts vesicular transport pathways within a cross-section of 
an endothelial cell resting on the basement membrane below. Proposed vesicular 
transport mechanisms include the formation of temporary fluid channels due to 
fusion of several vesicles bridging the endothelial cell (modified after [103]). 

thought to be glycosaminoglycans, that form a coat 10 to 20 nm thick [90]. This felt-like cover 

also lines the inner surface of the vesicles. It is thought to serve as ait additional diffusion 

barrier, repelling like-charged particles such as the red blood cells. 

Adjacent endothelial cells meet at intercellular clefts that are typically 10 to 20 nm wide 

[44]. In all tissues except the brain, the intercellular clefts and plasmalemmal vesicles provide 

the major transport pathways for water and macromolecules [83]. However, certain portions 

of the clefts may be sealed due to contacting of apposing cells. In the case of the capillaries 

of the brain, the contacting cells fuse, eliminating the cleft altogether. Such seals prohibit 

the transport of larger molecules through intercellular junctions, confining exchange along this 

pathway to water, salts, and other small molecules [32]. 

Individual capillary vessels fall into one of three classifications, depending on the structural 

characteristics of their endothelia: namely continuous, fenestrated, or discontinuous capillaries. 

Continuous vessels are common to the microvascular beds of the lung, the nervous system. 
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skeletal muscle, and skin, among others [90]. As the name implies, the endothelia of these 

vessels form a continuous layer 0.2 to 0.3 /xm thick, interrupted only by the intercellular clefts. 

The basement membrane is likewise continuous. 

Fenestrated vessels are characterized by the presence of disk shaped regions, typically 60 

to 80 nm in diameter, located on the vessel wall. These regions, called fenestrae, are due 

to an attenuation of the endothelial cell to a thickness of 6 to 8 nm [90]. The attenuated 

cellular matter forms a diaphragm, the structure of which differs from the rest of the cell 

membrane in that it is thought to be composed largely of hydrophilic elements [112]. In some 

cases, such as the glomerular capillaries of the kidney, the fenestrae lack diaphragms altogether. 

The basement membrane of fenestrated vessels is continuous. The enhanced permeability of 

these vessels to plasma proteins suggests that the fenestrae provide a major pathway for the 

transport of macromolecules across the capillary wall [84]. Fenestrated vessels are found within 

the micro vasculature of the pancreas, the endocrine glands, and the gastrointestinal tract. 

Discontinuous vessels, also called sinusoids, are identified by large gaps in the endothelial 

layer and basement membrane. Fenestrae hundreds of nm in diameter may also be present [90]. 

While their structure would suggest that discontinuous vessels are highly permeable to various 

plasma proteins, lymph composition from tissues containing these vessels indicates that sieving 

of certain plasma protein species occurs even here [93]. 

2.1.2 Transport Pathways Across the Capillary Barrier 

Several transport pathways have been identified for passage of fluid and various solute species 

across the capillary wall. These are summarized below [84]: 

1. through the cell itself which includes two layers of cell membrane and the intervening 

cytoplasm; 

2. within the endothelial cell membrane by lateral diffusion through intercellular junctions 

or lipid phase vesicular channels; 
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3. through interendothelial junctions in the aqueous extracellular phase (these pathways con

sist both of highly restrictive channels that are virtually impermeable to plasma proteins 

and less restrictive channels that permit exchange of these macromolecules); 

4. via endothelial cell fenestrae; and 

5. by vesicular transport, which includes shuttling of material within individual vesicles (i.e., 

transcytosis) and the fusion of several vesicles to form temporary fluid filled channels 

across the cell. 

These pathways are illustrated in Figure (2.3). 

(I) (2) (3aab)(5a) (5b) 

capillary •( 

(4a) (4b) 

Figure 2.3: This figure illustrates a cross-sectional slice of the capillary wall. Trans
port pathways across the capillary wall include direct routes across the cell (1), 
through the cell membrane (2), via intercellular pathways (3), across fenestrae (4), 
and via vesicular mechanisms (5a, 5b) (modified after [31]). 

Transport directly through the cell matter is limited to the diffusion of water and small 

lipid soluble molecules. Convective transport of fluid along this path is negligible [84]. In all 

likelihood virtually all respiratory gases are exchanged directly tlirough the cell. In addition, 

substantial amounts of fatty acids and other lipids cross the capillary wall. However, these 
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substances cannot penetrate the ceD cytoplasm and are therefore limited to transport through 

the cell membrane and lipid vesicles. 

Finally, the lipid insoluble materials, including small ions and the plasma proteins, are 

limited to the paracellular pathways (i.e., across open fenestrae, in fluid filled vesicles and across 

aqueous vesicular channels, and via interendothelial junctions). The permeability of these 

substances decreases with increasing molecular size, suggesting that these pathways display 

sieving characteristics [84]. Charge may also play a role in detemiining solute permeability. 

For example, the capillaries of the brain are more permeable to transferrin than to albumin, 

although transferrin is a larger molecule [83]. Transferrin, however, carries a smaller net negative 

charge. 

2.1.3 Quantifying Transport Across the Capillary W a l l 
i 

We have seen that the capillary wall offers several different routes for the transport of material. 

While attempts have been made to delineate between these different pathways (see, for example, 

[83]), transcapillary exchange is typically quantified using expressions analogous to those for 

porous membranes. These describe mass exchange rates in terms of both the principal driving 

forces present and lumped parameters that characterize transcapillary resistance. 

Fluid is driven across the capillary wall by differences in the effective fluid chemical potential 

from one side of the barrier to the other. This driving force can be resolved into two principal 

components: a hydrostatic pressure difference and an osmotic pressure difference. The latter 

reflects the reduction in fluid chemical potential due to the presence of solute species within 

the fluid. The osmotic pressure of a particular solute species is typically a nonlinear function 

of the solute concentration. Each solute species present in the plasma and interstitial fluid can 

potentially influence fluid exchange across the capillary wall. 

In fact, the degree to which a particular solute species alters transcapillary fluid exchange 

depends on the ease with which the given solute crosses the capillary wall. Only those solutes 

to which the capillary wall is impermeable exert their entire osmotic pressure. The effective 
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osmotic pressure of those solutes that can penetrate the capillary barrier varies inversely with 

the solute's permeability. 

The fraction of the total osmotic pressure of a solute species i that acts on the capillary 

membrane is represented by the reflection coefficient for that solute species, cr\. A a of 0 

indicates that the solute's permeability across the capillary wall is equal to that of water [80]. 

If the membrane is completely impermeable to a given solute, a equals 1. Most small lipid-

insoluble solutes, such as NaCl, have reflection coefficients below 0.1, while a for most plasma 

proteins approaches 0.9 - 1.0 [80]. Further, since the capillary wall is very permeable to these 

small solutes and ions, any differences in their osmotic pressures across the membrane are 

quickly dissipated [71]. It is the plasma proteins, then, that contribute most to the overall 

osmotic driving force for fluid exchange across the capillary wall. 

If we treat the array of plasma proteins as an aggregate species exerting an overall osmotic 

pressure of LT and having an effective reflection coefficient of cr, then the fluid flux across the 

capillary wall, j v , is given by the Starling equation [81]: 

JV = L P [ P P - [ P ^ - c ^ I P - [ n^j j ] , • (2.1) 

where L p is the hydraulic conductance of the capillary membrane, and P p and [Prat]b are 

the hydrostatic pressure in the plasma and in the interstitial space adjacent the boundary, 

respectively. IP and [IImt]b denote the plasma protein osmotic pressures in the plasma and in 

the interstitial space adjacent the capillar}- wall, respectively. 

We will now turn to the exchange of plasma proteins across the capillar}- wall. Again, for 

convenience, we will limit the discussion to a single (possibly 'aggregate') species. More detailed 

discussions can be found in any one of many reviews on the subject [80, 82, 84, 31, 71, 93, 75. 

58]. Assuming that plasma protein convection and diffusion occur along the same paracellular 

pathways, the exchange of these substances is described by the nonlinear flux equation (see, for 

example, [71]): 
[ C P _ rnint] -p e] 
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where j s is the local flux of plasma proteins from blood to tissue, C p and [ C m t ] b are the plasma 

protein concentrations in the plasma and the interstitial plasma protein distribution volume 

adjacent the boundary respectively, and where Pe is a modified Peclet number, denned as 

p e = ( l _ - 0 ) j v 
D v ; 

D refers here to the permeability of the capillary wall to the plasma proteins. The modified 

Peclet number indicates the relative contributions of convection and diffusion to the total ex

change of plasma proteins. As Pe approaches oo, the exchange is dominated by convection. A 

Pe of 0, on the other hand, indicates purely diffusive exchange. Equations (2.2) and (2.3) have 

been used to describe transcapillary macromolecular exchange in a range of tissues (see, for 

example, [80]). 

2.2 The Interstitium 

2.2.1 Structure and Composition 

The interstitium has been likened to a three-dimensional meshwork of fibrous elements em

bedded in a gel-like substance, referred to as ground substance, created by soluble polymers 

in an aqueous solution [26, 53] (see Figure (2.4)). The interstitium is therefore a composite 

of elements, each element contributing to the overall behavior of this medium. The principal 

components detennining the gross characteristics of the interstitium include the following: col

lagen, elastin, the glycosaininoglycan and proteoglycan elements, and the interstitial plasma 

proteins. Each of these will now be discussed briefly. 

Collagen Collagen is the primary structural protein of the body [57]. It is formed from 

a precursor molecule, procollagen, that consists of three extended polypeptide chains wound 

to form a triple helix [4]. The helical configuration is stabilized by interchain hydrogen and 

covalent bonds [57]. The procollagen molecules combine to form the collagen monomer, a 

rod-like molecule 300 /xm long and having a diameter of approximately 1.5 nm [26]. The 
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Figure 2.4: A n artist's concept of the interstitium shows the fibrous collagen mesh-
work [ 1 3 ] . 
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monomers spontaneously form aggregates through covalent bonding and crosslinks [o7], yielding 

the collagen fibrils. The fibrils further combine to give collagen fibers (Figure (2.5)). 

Collagen 
33S&3c^&2SX5o?2S^ monomer 

Collagen fiber 

Figure 2.5: The hierarchy of collagen elements is shown above. Procollagen combines 
to give the collagen monomers that aggregate to give collagen fibrils which, in turn, 
combine to yield the collagen fiber (modified after [26]). 

Numerous distinct collagen types have been identified within the interstitia of various tissues 

[5, 13]. The extent to which a particular collagen type is found within the interstitium varies 

from tissue to tissue. Each of the collagen types, however, forms molecules of similar structure 

and dimensions. 

Collagen is polyampholytic; that is, it is capable of bearing both positive and negative 

charges. The former are due to amino groups present in collagen, while the latter are attributed 

to carboxyl groups [57]. However, at physiological pH most of these are neutralized, so that 

collagen bears only a slight positive charge. 

Functionally, collagen fibers provide tensile strength to the tissue, resisting changes in tissue 
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volume when stressed along the longitudinal axis of the fiber [4j. This is due to the covalent 

cross-linkages that form between collagen molecules [26]. By forming a meshwork, the fibers 

tend to immobilize the polymers responsible for the interstitial gel (i.e., the glycosarninoglycans 

and proteoglycans) [26]. Finally, collagen is partly responsible for the exclucling properties of 

the interstitium [13], to be discussed later. 

Elastic Fibers While collagen fibers impart tensile strength to a tissue, elastic fibers provide 

it with elasticity [13]. Elastic fibers occur in small quantities (relative to collagen content) in 

most interstitia, with the possible exception of certain specialized tissues such as the greater 

arteries [53] that display a high degree of elasticity. 

Elastic fibers consist of two principal components: an amorphous mass of elastin surrounded 

by microfibrils of protein [13]. Elastin is one of the most apolar proteins known [57], providing 

it with a hydrophobic nature [13]. 

At physiological pH, elastic fibers contain approximately 0.56 ml of water per ml of elastin 

[13]. Most of this water is likely accessible to small molecules and ions, such as sucrose, urea, 

sodium, and chloride. Larger molecules, such as the plasma proteins, however, are thought to 

be excluded from this fluid space. 

Glycosarninoglycans and Proteoglycans Glycosarninoglycans are linear polymer chains 

of disaccharide units common to all tissues [4]. Essentially all of the charge groups associated 

with these polymers are ionized at physiological pH [57]. Glycosarninoglycans therefore at

tract counterions, thereby creating a Donnan distribution of mobile ions that exert an osmotic 

pressure [4]. 

One of the most prevalent of the glycosarninoglycans is hyaluronate. In its hydrated state, 

hyaluronate forms an unbranched, random coil that occupies a solvent domain some 1000 times 

greater than the polymer volume [4]. Further, the mutual repulsion of negative charges present 

along the hyaluronate chains tends to expand the coil [13]. Therefore, even at concentrations 
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as low as 0.1 percent by weight, hyaluronate molecules become entangled [4]. It is the entan

glement of hyaluronate and other glycosarninoglycans and proteoglycans that gives the ground 

substance its gel-like properties. Gersh and Catchpole [47] also identified 'water-rich, colloid 

poor' regions within .the interstitial matrix, leading some to postulate the existence of free fluid 

channels within the interstitium (see, for example [104]). However, the original study made no 

mention of such continuous structures; rather, the authors simply identified heterogeneities in 

glycosaminoglycan distribution within the matrix [4]. Other early ultrastructural studies have 

identified transient, submicroscopic fluid vacuoles within the interstitium, but later studies have 

not confirmed their existence [4]. In fact, the preparative procedures used in many of these 

studies are known to extract ground substance [53], suggesting that the 'free fluid phase' may 

well be an artifact of these early experiments. However, as Aukland and Nicolaysen [4] point 

out, this does not preclude the possibility of heterogeneities within the interstitial gel, due to 

local rarefactions in polysaccharide content, that might provide preferential channels for fluid 

and solute transport. 

Except for hyaluronate, glycosarninoglycans exist tn vivo not as free polymers, but covalently 

bound to a protein core [13]. Such structures are termed proteoglycans. These can further bind 

to hyaluronate molecules to form proteoglycan aggregates, having molecular weights in excess of 

2 xlO8 Daltons. At physiological pH, proteoglycans display a high charge density [13]. These 

structures are also known to bind to collagen [26]. 

The glycosaminoglycan and proteoglycan elements contribute to the interstitium's resistance 

to bulk fluid movement [13]. Their water retaining properties also enhance the stability of 

coUagen-glycosarninoglycan solutions, resisting volume changes under compression [26]. This 

has been demonstrated experimentally using prepared solutions of collagen and hyaluronate, 

for example. In vitro mixtures of thermally precipitated collagen and hyaluronate produce 

structures that resist compression during centrifugation [13]. 

The Interstitial Plasma Proteins Plasma proteins represent a broad group of macro-

molecules. Various types of these are transported across the endothelial membrane into the 
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interstitium. They range in size, displaying Stokes' radii anywhere from 1 to 11 run [13]. At 

physiological pH, most plasma proteins carry a net negative charge [13]. 

Interstitial plasma proteins exert an osmotic pressure that is a nonlinear function of plasma 

protein concentration. However, the major part of the osmotic pressure is due to a single species 

- albumin [13]. 

Albumin is the most plentiful of the plasma proteins, constituting approximately 60 % of 

the serum protein content in humans [46]. It has a molecular weight of 6.6 X l O 4 Daltons and 

a Stokes' radius of 3.5 nm [13]. With an isoelectric point at a pH of 4.7, albumin bears a net 

negative charge at physiological pH. Experimental studies of extravascular albvunin indicate that 

significant quantities of this protein he outside of the blood stream, largely in the interstitia of 

muscle and skin [13]. This suggests that the interstitium may act as a reservoir for osmotically 

active macromolecules [13]. 

2.2.2 V o l u m e E x c l u s i o n w i t h i n t h e I n t e r s t i t i u m 

As mentioned earlier, the various components of the interstitium, particularly the glycosarnino

glycans, occupy a volume in solution that far exceeds the volume of the polymers themselves. 

Even at low concentrations, the solvent domains associated with these polymers overlap to cre

ate a meshwork of molecular dimensions [53]. A given interstitial solute species will distribute 

throughout only those spaces in the meshwork that have dimensions larger than the solute itself. 

The remaining regions of the meshwork are inaccessible to the solute. As a consequence, the 

space available to certain interstitial solutes (i.e., the solute's distribution volume) is consider

ably less than the total interstitial fluid volume. This phenomenon has been termed volume 

exclusion. 

The glycosarninoglycans have traditionally been identified as the principal components re

sponsible for the exclusion of plasma proteins from regions of the interstitium [4]. The fraction 

of total fluid volume inaccessible to plasma proteins in hyaluronate solutions, for example, can 

be significant, even at low concentrations. A 0.5 % by weight solution of hyaluronate excludes 
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albumin from 25 % of the solution space. As the hyaluronate concentration is raised to 1.5 % 

by weight, the excluded volume increases to 75 % of the solution volume [13]. However, because 

of its abundance relative to the glycosarninoglycans in certain tissues such as dermis, collagen 

may well be the major source of plasma protein exclusion in some instances [13]. 

Exclusion bears upon the processes within the interstitial space. It is the effective concen

tration of a given solute species (i.e., the concentration based on the solute's distribution volume 

rather than the total fluid volume) that determines its chemical activity, which in turn affects 

chemical equilibria, osmotic properties, solubilities, and driving forces for diffusion within the 

system [27]. 

By treating the interstitial solute species as spheres contained in a random meshwork of rods, 

Ogston and co-workers [72] developed the following equation to calculate volume exclusion: 

fe = i_e-Kr-+r<)/r<]2v'c', (2.4) 

where fe is the excluded volume fraction, r s and rr are the solute radius and radius of the rods 

making up the meshwork, respectively, Vf is the partial specific volume of the rod material, and 

Cf is the mass concentration of rods in the system. This analysis would suggest that exclusion 

increases with increased concentration of excluding species (i.e., the rods) and increased solute 

radius, but decreases with increasing rod diameter. Similar expressions have been developed 

for single rod-sphere and sphere-sphere systems (see [13] for details). 

The above analysis of exclusion considers only geometric factors. However, since the gly

cosarninoglycans are negatively charged, electrostatic effects may also play a role in determining 

the exclusion properties of specific tissue-solute systems. This may be true, in particular, for 

tissues such as cartilage that display a high interstitial charge density [53]. In fact, the exclusion 

of low molecular weight anionic tracers has been demonstrated, but the effect is unpredictable 
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2.2.3 Characterizing Interstitial Swelling 

The glycosarninoglycans and the collagen fibers are the principal components within the in

terstitium that determine the mechanical properties of connective tissues [4, 53, 117, 89]. It 

is generally thought that the glycosaminoglycan element provides the tissue with its swelling 

tendency by virtue of its osmotic activity. As a polymer solution, the glycosarninoglycans (and 

their aggregates) exert an osmotic pressure that tends to imbibe fluid. The charged groups 

associated with the polymers create a mutual repulsive force that may further tend to expand 

the network [4]. The stiff collagen meshwork, on the other hand, imparts rigidity to the tissue, 

acting to limit volume changes within the interstitium. 

The relative influences of the glycosarninoglycans and of the collagen on tissue hydration are 

well demonstrated experimentally. Degradation of the collagen by chemical treatment causes 

umbilical cord to swell [53]. Destruction of hyaluronate in swollen tissue, on the other hand, 

leads to a reduction in tissue hydration [53]. Theoretical interpretations of the swelling process, 

however, are clouded in controversy (see, for example, [53, 89, 107]). Much of the confusion 

seems to he i n the delineation of the various forces acting on the system into the mechanical 

components responsible for deformation (i.e., the mechanical stresses within the system) and 

the forces responsible for fluid exchange within the system (namely differences in fluid chemical 

potential between vascular and tissue compartments). 

Typically, the swelling properties of a tissue are characterized by an experimentally deter

mined relationship between the equihbrium tissue hydration and the interstitial fluid pressure, 

i.e., the tissue compliance relationship. The interstitial fluid pressure within a tissue is mea

sured at various states of hydration using microneedles, wicks, or implanted capsules. The 

major problem i n such experiments lies with interpreting the reading provided by the pressure 

measuring device (see, for example, [107]). Again, there seems to be a great deal of confu

sion regarding whether such devices measure an equivalent interstitial fluid chemical potential, 

which would include both hydrostatic and colloid osmotic pressures, or whether they isolate 

the hydrostatic component. A fundamental understanding of the operation of these pressure 
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Compliance = AIFV/AP; 

1 _ I 
IFV 

Figure 2.6: This figure shows the general trend in the change in interstitial fluid vol
ume (IFV), given along the x-axis, following a change in interstitial fluid pressure, 
shown on the y-axis (modified after [5] ) . 

measuring devices within tissues is therefore needed before tissue hydration data can be reliably 

interpreted. 

The general shape of the pressure-volume curves typical of tissues is given in Figure (2.6). 

Generally, the change in tissue hydration per unit change in interstitial fluid pressure is low 

at the lower tissue hydrations, increasing as the tissue becomes swollen. The high resistance 

to tissue hydration in the initial part of the curve suggests a mechanism to ward off edema 

formation. Specifically, a small change in interstitial hydration is accompanied by a substantial 

increase in the interstitial fluid pressure. According to the Starling equation (see Eq. (2.1)), 

this increase in interstitial fluid pressure reduces the driving force for fluid transport from the 

blood to the tissue space, thereby reducing the threat of severe tissue swelling [13j. 
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2.3 The Lymphatic System 

2.3.1 General Description 

In contrast to the abundance of data on the exchange vessels of the blood vasculature, there 

appears to be a dearth of information regarding the operation of the lymphatic network. Several 

reviews [4, 117, 77, 49] are available in the literature, however, and the reader is referred to 

these for more detailed discussions of this system. Only a brief description will be provided 

here that focuses on the withdrawal of interstitial fluid and plasma proteins by the permeable 

vessels of the lymphatic network. 

Lymphatic vessels occur in most tissues; exceptions include the brain, the retina, and bone 

marrow [5]. Unlike the arterio-venous blood system, the lymphatic network typically begins 

with bulbous terminal lymphatic vessels located in close proximity to the blood capillaries. 

These bulbous structures are typically 20 to 80 /mi in diameter, although they can reach 

diameters of 720 ^m in some tissues (e.g., the bat wing) [49!. The terminal lymphatic vessels 

are unevenly distributed within the microcirculation, being more prominent at the venous side of 

the microvascular bed where the blood vessels are most permeable [77]. Further, they occur less 

frequently than the blood capillaries [5]. Figure (2.7) illustrates the structure and orientation 

of these vessels within the microcirculation. 

Fluid and solutes that have been withdrawn from the tissue space are carried along the 

lymphatic network via collecting vessels. These empty their contents into the left and right 

subclavial veins [46], thereby returning fluid and solutes to the blood circulation. In the average 

human, an estimated 25 % to 50 % of the total circulating plasma proteins are returned to the 

blood circulation along this route on a daily basis, while 2 to 4 liters of fluid enter the lymphatics 

from the interstitial space each day [46]. 
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Figure 2.7: The lymphatic vessels within the bat wing are illustrated above in solid 
black. The system begins with the bulbous terminal lymphatic vessels, located 
close to the blood capillaries. These drain into collecting vessels that eventually 
return fluid and solutes to the blood vasculature (modified after [49]). 
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2.3.2 The Terminal Lymphatic Vessels 

The terminal lymphatic vessels are responsible for chaining fluid and solutes from the interstitial 

space. The wall of the terminal lymphatic vessel is similar to that of the blood capillary in 

that it consists of a single layer of fiat endothelial cells [77]. However, it differs from the 

capillary wall in several respects [49]. First, the interendothelial junctions appear more loose, 

the cells overlapping each other at times. The basement membrane is poorly developed or 

absent altogether. Furthermore, while the endothelial cells of the tenninal lymphatic vessels 

contain vesicles, fenestrae have not been observed. The terminal lymphatics display irregular 

geometries with bulbous sacs and constricted regions along the vessel length. The vessels are 

easily collapsed, making pressure measurements within terminal lymphatics difficult [77]. 

The wall of the terminal lymphatic vessel is anchored to the surrounding interstitial matrix 

by fine strands of reticular fibers and collagen [49] (see Figure (2.8)). It is thought that the 

anchoring filaments aid in the withdrawal of fluid from the interstitial space. As fluid accumu

lates within the tissue spaces, the tissue expands, placing the anchoring filaments under tension. 

This tensile stress keeps the lymphatic vessel from collapsing under the increased tissue fluid 

pressure associated with the accumulation of fluid there. The terminal lymphatic is then able 

to withdraw fluid and solutes from the interstitium [49, 77]. 

Interstitial fluid is thought to cross the terminal lymphatic wall via diffusion through the 

endothelial cell, by vesicular pathways, and through the intercellular junctions [49]. The relative 

importance of these pathways in lymphatic filling is, as yet, unknown. A number of theories for 

the filling of the terminal lymphatic vessels have been proposed, mcluding vesicular, osmotic 

pressure driven, and hydraulic (i.e., hydrostatic pressure) driven mechanisms. To date, there is 

little to no experimental evidence to support the first two hypotheses [5]. However, it has been 

demonstrated experimentally that lymph flow increases with increased interstitial fluid pressure 

in a number of tissues, including dog hindpaw, the small intestine, the fiver, the myocardium, 

and rat kidney [5j. Hence, it is frequently assumed that the rate of lymph formation in the 

teirninal vessel is a direct function of the local tissue fluid pressure (see, for example, [108, 14]). 
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Figure 2.8: T h e structure of the terminal lymphatic vessel is shown, illustrating the 
anchoring filaments that serve to keep the vessel patent under increased tissue fluid 
pressure [49]. 
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In the absence of injury, tissue swelling, or muscular activity, the intercellular junctions 

are typically closed. However, given any of these circumstances, the junctions open to permit 

large particles to pass through [49]. Experiments with labelled particles suggest that both 

intercellular junctions and vesicular mechanisms serve as routes for macromolecules. although 

the relative importance of these two pathways is debated [49]. However, it is typically assumed 

that the composition of lymph in the terminal lymphatic vessel is the same as the interstitial 

fluid in the adjacent tissue space [117]. 
The walls of most collecting lymphatic vessels contain smooth muscle [5]. The collecting 

vessels propel fluid and solutes along the network in response to both extrinsic forces (such as 

limb movements, respiratory pressure variations, and massage) and spontaneous, coordinated 

contractions of the muscle within the vessel walls [49]. The intrinsic contractile behavior of the 

lymphatic vessels appears driven by the increased stress (hoop pressure) within the vessel walls 

that accompanies the uptake of fluid from the surrounding interstitial space. The amplitude of 

the contraction is proportional to the degree of wall stretch [77]. 
Lymph flow within the collecting vessels remains uni-directional by virtue of one-way valves 

found within the vessels [77]. These valves occur in abundance along the lymphatic network; 

the average spacing between valves ranges from 2.3 mm to 4.0 mm in the upper arm in humans, 

for example [49]. The valves of the larger vessels can withstand back-pressures as high as 60 

rnmHg [77], far above typical pressure drops reported within the lymphatic network (see [49]). 



Chapter 3 

Formulation of the General Model of Interstitial Transport 

3.1 A Continuum Representation of the Interstitium 

At the microscopic level, the transport of fluid and plasma proteins through the interstitium 

represents an extremely complex process. Fluid and plasma proteins interact as they traverse 

the interstitial space along tortuous pathways. Furthermore, plasma proteins may encounter 

barriers resulting from electrostatic forces and/or the architectural configuration of various 

structural components, such as hyaluronate, proteoglycans, collagen, and elastin, all of which 

exclude proteins from regions of the interstitium. These structural components deform under 

a complex set of forces as the tissue hydration changes. 

A detailed description of interstitial transport is impractical. Instead, we adopt the concept 

of a continuum to represent the interstitium (see [106, 8, 28] for details). Here each principle 

phase, such as fluid or structural elements, is represented by a hypothetical continuum which 

is distributed throughout the interstitium. The properties of these continua, as well as the pro

cesses occurring within them, represent spatial averages of the properties and processes found 

at the microscopic level. The characteristic dimension of the elementary volume over which this 

averaging procedure takes place is large relative to the microscopic dimensions (represented, 

for example, by the diameter of a collagen fiber bundle), yet small relative to the characteristic 

dimension of the system as a whole (such as the total distance traversed by fluid and plasma 

proteins in their journey from the blood to the lymphatic circulations). The resulting averaged 

properties are assigned to the point about which the elementary volume is centered. The vol

ume is then centered about an adjacent point, and the averaging process is performed again. 

The procedure is repeated throughout the domain, transforming the complex, heterogeneous 

28 
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system into a hypothetical continuum to which the laws of differential calculus apply. The 

averaging process introduces parameters associated with the continuum, such as the intersti

tial fluid conductivity, the effective protein diffusivities, and the excluded volume fractions. 

These represent the averaged effects of the complex structure and molecular interactions at the 

level of the microscale. The parameters are then used to describe interstitial transport when 

approximating the real system by the continuum. 

The principle of spatial averaging is applied here to analyze the transient flow and distri

bution of fluid and any number of macromolecular species through the interstitium, which is 

treated as an isotropic, deformable porous medium. Since crystalloid solutions are exchanged 

rapidly, compared to the plasma proteins [71], any disturbances to the system with respect 

to small ion distribution is likely dissipated quickly. Therefore, interstitial gradients in small 

ion concentrations and the influence of tissue cells on fluid exchange will be neglected here. 

Hence the analysis cannot describe hypertonic fluid resuscitation, for example. Since the to

tal plasma protein concentration in plasma is small (6 gm/dl in humans [46].), the interstitial 

fluid and plasma proteins form a dilute, incompressible solution. The sohd components of the 

interstitium are also considered incompressible. Hence interstitial deformation results from the 

spatial reorientation (e.g. bending) of the sohd elements relative to each other. Exclusion is 

accounted for by assigning different distribution volume fractions to the various plasma protein 

species. These distribution volume fractions are functions of the sohd phase volume fraction, 

and therefore vary with interstitial hydration. Fluid and protein transport parameters may 

vary between individual distribution volume fractions and with interstitial hydration. 

In the remainder of this section we present mathematical descriptions of each of the following 

aspects of the interstitial continuum: 

1. plasma protein exclusion and its effect on local protein partitioning, colloid osmotic pres

sures, and fluid chemical potential; 

2. the relationship between fluid transport and fluid chemical potential; and 
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3. protein transport mechanisms wi thin the interstit ium. 

These relationships are then used in the following section to develop the mass balance equations 

which govern the time-dependent distributions of solids, fluid and protein species i n a deforming 

interst i t ium. 

3.1.1 Plasma Protein Partitioning within the Interstitium: Exclusion 

Plasma protein exclusion i n tissues can be substantial; for example, a lbumin is excluded from 60 

percent of the total interstitial volume i n canine smooth muscle [13]. Because of exclusion, the 

effective concentration of an interstitial plasma protein species (i.e., its mass per unit volume of 

available space) is higher than its concentration based on the total fluid volume. The effective 

concentration plays an important role i n interstitial fluid and protein transport because it 

detennines the protein osmotic pressures, convective protein fluxes, and the diffusional driving 

force wi th in the interst i t ium [27]. A complete description of interstitial transport must therefore 

include a treatment of exclusion and its effect on local plasma protein distribution and fluid 

chemical potential. We w i l l now discuss how the principle of volume averaging can be employed 

to describe exclusion of multiple solute species. 

Figure (3.1) is a schematic diagram of a typical elementary volume centered about some 

point wi th in the interst i t ium, over which the averaging process has been performed. The volume 

element contains m protein species and m+3 distinct volume fractions: 

1. a total mobile fluid volume fraction (n° ) ; 

2. m volume fractions corresponding to the distribution volume fractions for each of the m 

protein species ( n k , k = l , 2 , . . . m ) ; 

3. a sohd phase volume fraction (n s ) comprised of structural elements such as collagen, gly

cosarninoglycans, proteoglycans, and elastin, which form the sohd skeleton of the porous 

structure; and 
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4. an immobile water volume fraction consisting of water trapped and/or bound to the solid 

phase (n™). 

The immobile fluid phase will, in general, depend on the amount and composition of the 

solid phase. For a given tissue, then, n™ will be a function of ns: 

n™ = Fs(ns), (3.1) 

where F s is an empirical function relating the two volume fractions. If, for example, we assume 

that the immobile fluid is largely made up of the intrafibrillar water of collagen and that the 

collagen is uniformly distributed throughout the solid phase, then n m is directly proportional 

to the solid phase volume fraction: 

n™ = /T • n s, (3.2) 

where f3~ is an experimentally determined constant of proportionality. The remaining distribu

tion volume fractions are indexed such that 

n° > n1 > n 2 > ... > n1""1 > n m . (3.3) 

We also define a set of incremental volume fractions, £n k, where 

6n k = n k - n k + 1 , k = 0,1,2,m - 1. (3.4) 

That is, the incremental volume fraction £nk represents the difference between the distribution 

volume fractions of species k and species k+1. Note that, by this definition, £n m equals n m . 

As we will see shortly, these incremental volume fractions are needed to describe the plasma 

protein and fluid pressure distributions within the volume element. 

The total excluded volume for a given protein species depends on the amount of interstitial 

solid components present in the elementary volume [53j. Therefore the fraction of total mobile 

and immobile fluid from which plasma protein species k is excluded, n^, is a function of ns: 

nck = k = 1,2,..., m; (3.5) 



Chapter 3. Formulation of the General Model of Interstitial Transport 32 

Figure 3.1: Elementary volume of interstitium before (A) and after (B) volume aver
aging. The various incremental volume fractions, tfn1, distribution volume fractions, 
n 1 , solid phase volume fraction, n s , and immobile fluid phase volume fraction, n , m , 
are associated with the point, P, in the continuum about which the elementery 
volume is centered. The heterogeneous interstitium is thereby transformed into a 
multiphase continuum. 
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where F is an empirical function for the kth protein species. By definition, the sum of the 

distribution volume fraction and the excluded volume fraction for species k must equal the total 

fluid volume fraction (i.e., 1 — n s). That is, 

n k = 1 - n s - n * . (3.6) 

It therefore follows from Eqs. (3.5) and (3.6) that 

n k = 1 - n s - F k ( n s ) , (3.7) 

while from Eqs. (3.4) and (3.7) we have 

Snk = F k + 1 ( n s ) - F k (n s ) , k = l , . . . , m - 1. (3.8) 

Hence all pertinent fluid volume fractions ( n k , 6 n k , n e k , and n m ) may be expressed in terms of 

n° for a given tissue using Eqs. (3.1), (3.5), (3.7), and (3.8). 

To describe fluid and protein transport through the interstitium, we must make some as

sumptions regarding the distribution of proteins and the variation of fluid chemical potential 

throughout the incremental volume fractions within the elementary volume. Consider first the 

distribution of plasma proteins within the volume element. The incremental volume fraction 

6n° contains no protein (see Figure (3.1)). Each subsequent incremental volume fraction con

tains an additional protein species. Let C ^ 1 represent the concentration of protein species k 

in far1. Assuming that, for each volume element, the protein has a uniform concentration C k 

within its distribution volume n k , then 

Qk.1 = C k ) ! > k ) (3.9) 

and 

& ' 1 = 0, 1 < k. (3.10) 

Hence only one value, C k , is needed to describe the local concentration of protein species k 

throughout all of the incremental volume fractions in the elemental volume which are accessible 

to that species. 
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Assuming an isothermal system free of external forces, the chemical potential of the fluid 

in far1, pi, is [62] 

ul = / C R + V ^ P 1 + R T • In (TWXL) , (3.11) 

where u%f is the reference chemical potential, equal to the chemical potential of the pure fluid 

at standard conditions, and P 1 are the fluid's partial molar volume and hydrostatic pressure 

in far1, respectively, R is the universal gas constant, T is the absolute temperature, 7 W is the 

activity coefficient for the fluid, and is the mole fraction of fluid in far1. For dilute solutions, 

variations in V^, are negligible. Using the Gibbs-Duhem relation, the chemical potential can be 

expressed alternatively in terms of hydrostatic and colloid osmotic pressures [117] as 

fil = /x^ + V w ( ? l - £ n k ) . 1 = 1 , 2 , m , (3.12) 

where V ]

w has been replaced by V w , the molar volume of pure fluid, due to the assumption of 

a dilute solution. 

The colloid osmotic pressure exerted by plasma protein species k in far1, TI k' 1, is a function 

of the protein concentration in far1, i.e., 

H k > 1 = G k (C k ' 1 ) , (3.13) 

where G k is the coUoid osmotic pressure relationship for plasma protein species k. By virtue of 

Eqs. (3.9), (3.10) and (3.13), 

n k , l = I J k ? 1 > k, (3.14) 

and 

n k l l = 0, l < k . (3.15) 

In fai° we have 

/z°w = / C f + V w ( P ° - n ° ) (3.16) 

where P° is the hydrostatic pressure in fat0, and II 0 is the sum of any additional osmotic 

terms associated with fai°, such as Donnan and polysaccharide osmotic pressure contributions. 
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If the relative amounts of these osmotically active components are known, then II0 can be 

determined through an appropriate osmotic relationship. Assuming that the fluid throughout 

the elementary volume is in thermodynamic equilibrium, it follows that 

m 
p° - n° = P 1 - n 1 = P 2 - n 1 - n 2 = ... = p m - ^ n k . (3.17) 

k=i 

Hence the fluid hydrostatic pressure in any of the incremental volume fractions may be expressed 

in terms of a single hydrostatic pressure ( P M ) and the various osmotic pressures (nk, k = 

0. 1.2....m). 

The concepts and definitions presented here are best illustrated with a simple example. 

Consider an elementary volume of interstitium containing a single plasma protein species k, 

as shown in Figure (3.2A). By definition, the sum of the sohd phase volume fraction, nE, the 

excluded volume fraction, n^, and the plasma protein's distribution volume fraction, n k, equals 

1. Since we are considering only a single plasma protein species, it follows from Eq. (3.4) that 6n k 

equals n k. Also, since we have assumed local thermodynamic equilibrium within the elementary 

volume, the sum of the hydrostatic and colloid osmotic pressures in the distribution volume, 

P K - lfk, equals the sum of pressures in the excluded volume, P ° — 11°. 

Figure (3.2B) shows the same elementary volume following an increase in hydration accom

panying, for example, an increase in local fluid hydrostatic pressure. If we assume that the 

local concentration in protein species k remains the same, then the local fluid chemical poten

tial in n k, P K — n k , will increase. Since the fluid within the volume is in local thermodynamic 

equihbrium, P ° — n° will also increase by the same amount. Since the hydration has increased, 

the local sohd phase volume fraction is reduced. This results in a reduction in the excluded 

volume fraction as well, since the latter depends only on the amount of sohd phase present in 

the volume. Consequently, the volume available to the plasma proteins increases, so that n k 

increases. We will now discuss how such a change in tissue hydration may be described in more 

rigorous terms. 
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Figure 3.2: A n elementary volume of interstitium containing a single plasma protein 
species k before (A) and after (B) an increase i n local hydration. Following hydra
tion, the local solids phase volume fraction, n &, decreases, resulting i n a decrease 
in the excluded phase volume fraction, n e k , as well. B y definition, the fraction of 
tot a l fluid available to the plasma proteins, n^, increases. 
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3.1.2 Tissue Strain, Volumetric Dilat ion, and Tissue Compliance 

Changes in interstitial hydration result from a net flow of fluid into or out of the interstitium. 

Swelling is therefore linked to the forces governing fluid exchange, including interstitial hy

drostatic and colloid osmotic pressures. As interstitial sohd components deform there is an 

accompanying change in the sohd stress. The system maintains mechanical equilibrium by 

a concomitant change in the hydrostatic pressure of the interstitial fluid [53, 89, 117]. This 

change in hydrostatic pressure, together with the change in interstitial hydration and possi

ble net exchange of plasma proteins, alters the driving forces for fluid exchange. Interstitial 

swelling therefore involves a complex set of coupled processes that depend on the mechanical 

characteristics and transport properties of the microvasacular exchange system. 

A rigorous examination of swelling in a porous medium requires a complete description of 

the stress distribution throughout the medium, together with constitutive relationships between 

sohd stress and deformation. This type of analysis has been used to describe fluid movement 

in deformable porous rocks [19, 28]. To apply the principles underlying this theory to biolog

ical systems in turn requires detailed information regarding the mechanical properties of the 

interstitium and its boundaries. Such information is not available for most tissues. Therefore a 

simpler - albeit less rigorous - approach is adopted which follows the method used by Terzaghi 

[98] to analyze land subsidence following the removal of large volumes of groundwater [28]. 

The method assumes that the local deformation at any point in the interstitium is a function 

of the local fluid hydrostatic pressure (see [89]). The problem of swelling then reduces to de

termining the distribution of fluid pressure within the interstitium. This is accomplished by 

solving the set of transport equations which are developed in Section 3.2. Fatt and Goldstick 

[35] and Friedman [41] have used similar approaches to study swelling in corneal stroma. In 

these cases, however, swelling is linked to a 'swelling pressure', rather than the hydrostatic fluid 

pressure. In addition, their analyses are limited to a single dimension. The present analysis ap

plies to the case of isotropic, tlu-ee-dimensional swelling in which the influence of shear stresses 

is neglected. As such it represents only a first approximation to the complete description of 
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Figure 3.3: Linear deformation of a differential segment, dxj, by an amount d U j . 

The following discussion is limited to the case of small deformations described by classical 

elastic theory. Therefore the equations do not apply, for example, to the development of se

vere edema. We begin with a brief description of deformation theory. Let dU; represent the 

deformation in the x; direction of a small element of initial length dx; (see Figure (3.3)). By 

definition, the local solid strain in the xi direction, ei, is equal to the change in length of the 

element divided by its initial length, i.e., 

5Uj 
dxi 

(3.18) 

Similar equations apply for the strains in the x 2 and x 3 directions. The local volumetric dilation, 

ev, of an infinitesimal volume element, dV° , undergoing deformation is defined as 

d V 1 - dV° 
dV° 

(3.19) 

where d V 1 is the volume of the deformed element (see Figure (3.4)). For small strains, ev is 

equal to the sum of the individual linear strains [102]: 

(3.20) 
i = l 
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That is, 

<v = ^ , (3-21) 

where the right hand side of Eq. (3.21) is written in tensor notation (see [99]). 

Figure 3.4: Volumetric dilation of a differential volume element from an unstrained 
volume, d V ° , to a strained volume, d V 1 . 

To relate the volumetric dilation, ev, to the local fluid hydrostatic pressure we begin with 

Terzaghi's concept of effective stress, which forms the basis for describing deformation in porous 

media [19, 59, 101, 67]. The total stress is set equal to the sum of the local fluid pressure and 

an effective stress responsible for the deformation of the solid skeleton as follows [102]: 

c-^o-f-PSz, (3.22) 

where CT;J and <7-jff are the components of the total stress tensor and the effective stress ten

sor, respectively, P denotes the local hydrostatic fluid pressure, and 5;J is the Kronecker delta 

function (see [99]). The negative sign in front of the pressure term results from defining the 

c 
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pressure as positive in compression, while the remaining stresses are defined as positive in ten

sion. Furthermore, Eq. (3.22) assumes that the pressure in the fluid creates a normal stress 

of equal magnitude in the sohd skeleton, and that both the fluid and the sohd skeleton are 

incompressible. The effective stress then represents the additional stress within the sohd phase 

that causes the sohd components to reorient themselves relative to each other, resulting in the 

deformation of the medium. 

If, for the small range of volume changes considered, we neglect any changes in the overall 

stress in the system which might occur, for example, due to changes in the applied stresses at 

the interstitial boundaries, then 

A ( r f = AP5ij. (3.23) 

Equation (3.23) implies that the local volumetric dilation is a function only of the local hydro

static pressure within the system. 

This function is provided by the interstitial compliance, fi, [4] defined here as 

where A V is the change in the interstitial fluid volume, relative to a reference volume, in re

sponse to a change in fluid hydrostatic pressure, relative to the corresponding reference pressure. 

The compliance can be expressed in terms of the volumetric dilation, ev, by dividing Eq. (3.24) 

by the reference volume. Then, in the limit of infinitesimal volumes, the specific compliance, 

fi, is 

"(P) = ^ - ( 3 2 5) 

In the multiphase system proposed here the question arises as to which of the m+1 hydro

static pressures (corresponcling to the m+1 incremental fluid volume fractions) are to be used 

in the compliance relationship. Following Lewis and Schrefler [67], the average local hydrostatic 

pressure, 
1 m 

k=0 
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will be used. The exact form of Eq. (3.26) will depend on the experimental method used to 

measure interstitial fluid pressures when deterrnining the compliance of a given tissue. For 

example, the average pressure given above assumes that the measuring device (such as a mi-

cropipette) cannot distinguish between the hydrostatic pressures in the various fluid phases, 

and hence yields a composite value. 

Together, Eqs. (3.21), (3.25) and (3.26) define the relationship between the local hydrostatic 

pressures in each of the incremental volume fractions, the local linear strains, and the local vol

umetric dilation. These equations will be used when developing expressions for the distribution 

of fluid pressure and various plasma protein species within the deformable interstitial space. 

To detennine the geometry of the deformed medium, it is necessary to calculate the linear 

displacements, U; , i = 1,2,3, throughout the interstitial space as functions of the local average 

hydrostatic pressure. The spatial components of the deformed medium are then evaluated from 

these displacements, i.e., 

x! = x; + TJi(xi), (3.27) 

where x- is the X j location after deformation of a point that was originally positioned at xi. Hence 

TJi(xi) represents the total displacement of a point from its original (unstressed) position, x;. 

The displacements are found by introducing the solid displacement potential, $, where [59j 

^ = U, (3.28) 

$ is therefore related to ev by (see Eq. (3.18)) 

d 2 $ 
(3.29) Sx;2 v-

Upon deterrnining the local average fluid pressure from the transport equations and Eq. (3.26), 

the volumetric dilation, eV ) the displacement potential, 4?, and the individual local solid phase 

displacements, U;, are calculated from Eqs. (3.25), (3.29), and (3.28) respectively. The deformed 

geometry of the interstitial space is then calculated using Eq. (3.27). Together, these equations 

describe the local interstitial deformation associated with variations in local fluid hydration. 
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3.1.3 A Constitutive Relationship between Fluid Flow and Fluid Chemical Po

tential 

At low Reynolds numbers, the creeping flow of a homogeneous Newtonian fluid through an 

isotropic porous medium is described by Darcy's Law: 

*, = - * " • £ . <»•*» 

where j ° . is the total local volumetric fluid flux in the x; direction, K° is the hydraulic conduc

tivity of the porous medium-fluid system, and P is the fluid hydrostatic pressure. The hydraulic 

conductivity is a function of the structure of the porous medium and the absolute viscosity, 

p, of the fluid. However, the specific hydraulic conductivity, K' , equal to K/p, is a material 

property of the porous medium and therefore does not depend on the type of fluid flowing 

within the system [31, 66, 60]. 

In deforming porous media, j° represents the fluid flux relative to the moving solids [20]. 

It is related to the absolute fluid flux, q° . (where q°. is the fluid flux relative to stationary 

coordinates), and the local sohd phase velocity, v s ; (taken with respect to the same set of 

stationary coordinates), by 

qw,=Jw 1 +n 0 -v^ ) (3.31) 

where, as before, n° is the mobile fluid volume fraction. 

In the case of solutions, the presence of solutes influences the flux of solvent. This interac

tion is described by the phenomenological relationships of irreversible thermodynamics. These 

relationships, which have been used to quantify mass exchange across the vascular wall, relate 

the fluid flux to the colloid osmotic pressure and hydrostatic pressure driving forces present in 

the system. The exact way in which the colloid osmotic and hydrostatic pressures within the 

interstitial space affect the local interstitial fluid flux remains unresolved. However, as a start

ing point, it is assumed here that the local fluid flux through an incremental volume fraction is 

proportional to the local gradient in fluid chemical potential there, i.e., 
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While Eq. (3.32) is a postulate only, it should provide a satisfactory first approximation for 

quantifying the effect of colloid osmotic pressure gradients on the solvent flux. This dependence 

of fluid flux through a porous medium on the gradient in fluid chemical potential was first 

proposed by Biot [21], and has been suggested by several researchers to describe interstitial fluid 

transport [57, 26, 69]. However, Eq. (3.32) does not consider the influence of solute mobility in 

determining the effective colloid osmotic pressure driving fluid within the interstitium. It will 

therefore most likely over-estimate the effect of colloid osmotic pressure gradients on fluid flow. 

Further research is needed to determine the influence of osmotic pressures on interstitial fluid 

flow and, hence, the appropriate form of Eq. (3.32). 

Since we have assumed local thermodynamic equflibrium with respect to the fluid chemical 

potential in each of the incremental volume fractions, the total local fluid flux for our system is 

A = -K° •^(pm-Enk)- (3-33) 

Equation (3.33), because it incorporates colloid osmotic effects in the fluid flow relationship, 

represents a more general version of Eq. (3.30). The assumption of local thermodynamic equi-

hbrium in fluid chemical potential implies that the local driving force for fluid flow in each 

of the incremental volume fractions within an elementary volume of interstitium is the same. 

That is 

M = M = ... = M ( 3 3 4 ) 

dxi dx\ dxi 

The local fluid flux associated with the distribution volume fraction n k , expressed in terms of 

hydrostatic and colloid osmotic pressure gradients, is then 

J ^ = ~ K k ^ ( P m " £ n k ) ' ( 3 - 3 5 ) 

where is the local fluid flux and K k is the hydraulic conductivity associated with the dis

tribution volume fraction of protein species k. It follows from Eqs. (3.34) and (3.35) that the 

fraction of the total volumetric fluid flux that is associated with the distribution volume fraction 

n k is 

•k K k -o 
J w ^ ^ o J w r (3-36) 
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In general, K°, and hence Kk, will vary with interstitial hydration (see, for example, [53]). For 

a discussion of interstitial hydraulic conductivity and its dependence on hydration and on sohd 

phase composition, the reader is referred to the recent review by Levick [66]. The local fluid 

flux through any of the protein distribution volume fractions can then be calculated using Eqs. 

(3.33) and (3.36). 

3.1.4 P r o t e i n T r a n s p o r t M e c h a n i s m s w i t h i n t h e I n t e r s t i t i u m 

The transport of a solute through a porous medium occurs via convective and diffusive mech

anisms. The relative contributions of these two processes to the overall solute flux will depend 

on the fluid velocities within the medium and the system's transport properties with respect to 

that particular solute. When modelling the interstitial transport of plasma proteins it is often 

assumed that molecular diffusion dominates [38, 65,.7]. However, given the comparatively high 

hydraulic conductivity of certain tissues, such as tumours [61], cases may exist in which convec

tive transport plays an important role. In addition, convective transport in porous media can 

result in mechanical dispersion which, while bearing a resemblance to diffusion, is dependent on 

the solute convective velocities [8]. A general description of interstitial protein transport must 

consider the possible contributions of each of these mechanisms to the overall protein flux. 

Molecular diffusion is the result of random thermal motions of the solute. When coupled 

with convective transport, the diffusive flux represents the solute flux relative to the convective 

component. In a porous medium the apparent diffusive flux of the solute is somewhat hindered, 

due to both the increased pathlength of the tortuous channels that the solute must follow and 

the reduced cross-sectional area available to the solute due to the presence of the sohd matrix 

In dilute solutions, interactions between solute molecules are negligible [91]. The local 

diffusive flux of protein species k through the interstitium is then described by Fick's Law: 

[88]. 

<9Ck 

(3.37) 
dx; 

where j is the diffusive flux of protein species k in the X ; direction. The effective molecular 



Chapter 3. Formulation of the General Model of Interstitial Transport 45 

diffusion coefficient, D ^ , is typically less than the protein's free difhision coefficient, reflecting 

the hindering effects of the matrix components. Therefore, as interstitial hydration increases, 

DrfT approaches the free chffiision coefficient [53, 4, 27]. Comparison of the diffusion of plasma 

proteins and various dextrans within tissues suggests that charge and molecular size also play 

a major role in determining the effective diffusivity of individual macromolecular species [61]. 

The local convective velocity of an interstitial plasma protein may be somewhat less than the 

local fluid velocity, due to the hydrodynamic interaction between the protein molecule and the 

sohd matrix [92, 87, 61]. This phenomenon has been analyzed, from a theoretical standpoint, 

for the case of neutrally buoyant spheres travelling through narrow cylindrical channels (e.g. 

[23, 31]). The extent to which a particle is hindered (given by the ratio of the local particle 

velocity to the local fluid velocity, v") depends both on the position of the particle relative to 

the wall and the ratio of the particle radius to the channel radius, A [23]. 

Brenner and Gaydos [23] estimate the mean velocity of particles in the channel for cases 

where A is less than or equal to 0.2. Their analysis reveals two opposing effects. On the 

one hand, the velocity ratio v" decreases with increasing particle radius, due to hydrodynamic 

interaction. However, the larger particles are also restricted, due to steric exclusion, to the 

more central portions of the flow field where the local fluid velocities are higher. For this range 

of A, Brenner and Gaydos predict mean particle velocities that are greater than the mean fluid 

velocity within the channel, even though the local particle velocities are always less than the 

local fluid velocities. 

Because of the complex geometry of the interstitium, the extent to which this type of inter

action influences interstitial protein transport is unknown. Based on the foregoing discussion 

however, we assume that the mean convective velocity of protein species k in the x; direction, 

vk., is related to the mean interstitial fluid velocity within the protein's distribution volume, 

v 'pby 

vc

k

; = (3-38) 

where the fluid and protein velocities are defined relative to the sohd phase velocity. The 
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convective hindrance of the protein, £ k , is less than or equal to 1. Since £ k is a function of A, 

it will vary with interstitial hydration. The mean interstitial fluid velocity in the X ; direction is 

related to the fluid flux through the distribution volume, j k . , by 

< = (3-39) 

The total convective flux of protein species k in the X j direction, j k , relative to the moving 

solid phase is 

4 = n k - £ k - v V C k , ( 3 - 4 0 ) 

which states that the convective solute flux is equal to the net fluid flux through the protein's 

distribution volume fraction (n k • v k . ) times the protein's convective hindrance ( £ k ) and the 

local protein concentration (C k ) . This expression can be rewritten in terms of the total fluid 

flux, j ° . , relative to the solid phase by noting that 

^ • < = § - J w ; - (3-41) 

Equation (3.40) then becomes 

j k 

? K o C k , (3.42) 

where the bracketed term may be identified as the retardation factor, R k , [92, 61] associated 

with protein species k. 

In light of the preceding discussion, it does not necessarily follow that the mean convective 

velocity of the protein m exceeds the mean velocity of some larger protein n. According to Eqs. 

(3.38) and (3.41), the ratio of these two velocities depends on the quantity ( £ m K m n n ) / ( f n K n n m ) . 

This suggests a new, alternative mechanism for the 'gel chromatographic effect' where the 

mean transit time through the interstitium for larger protein molecules is less than that for 

smaller proteins [104]. This mechanism is quite different from the one proposed by Watson and 

Grodins [104], who divided the interstitial space into a 'gel phase', in which proteins move by 

restricted diffusion, and a 'free fluid phase', in which proteins are transported by convection 

and free diffusion. In their model the smaller proteins, which access a greater percentage of 



Chapter 3. Formulation of the General Model of Interstitial Transport 47 

the gel phase, are retarded compared to the bigger proteins, which are largely restricted to the 

free fluid channels. Equations (3.38) and (3.41) together suggest that protein exclusion in a 

continuum may be sufficient to account for the gel chromatographic effect without introducing 

open channels in the description of the interstitium. 

The contribution of mechanical dispersion to the total interstitial plasma protein flux has 

neither been addressed experimentally nor theoretically. The mechanical dispersive flux arises 

from variations in the true microscopic convective velocity of the protein from the mean con

vective velocity given by Eq. (3.38). This includes the phenomenon of Taylor dispersion [96, 97] 

which results from local velocity profiles within a given channel, and the fact that the protein, 

because of its finite size, cannot access the entire channel cross-section [23]. Mechanical disper

sion in porous media also results from deviations in the microscopic flow paths of the solute 

particles from the direction of bulk convective flow [8]. Like diffusion, mechanical dispersion 

tends to spread an advancing solute front. It is therefore generally assumed that the mechanical 

dispersive flux obeys Fick's Law (see Anderson for details [1]): 

j U = - n k ^ , (3.43) 

where j ^ . is the flux of protein species k in the X ; direction resulting from mechanical dispersion, 

and $ k is the protein's coefficient of mechanical dispersion, a second rank tensor. In general, 

the dispersive flux is some fraction of the total convective flux. It is therefore significant only 

when the magnitude of the convective protein flux is large compared to the diffusive flux. 

Mechanical dispersion is a function of both the local convective protein velocity and the 

structure of the porous medium. The latter effect is characterized by a set of parameters, the 

longitudinal and transverse dispersivities (QJ and a t). For an isotropic medium, t?k is related 

to the components of the mean protein convective velocity and the dispersivities by [8] 
-k -k 

tfk = a k |v k | tfs + ( a k - a k ) (3.44) 

where |v k | is the magnitude of the mean convective velocity of the protein, i.e., 

(3.45) 
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While the dispersivities depend on the medium's pore geometry, no analytical expressions 

exist to link these parameters to other appropriate material properties, such as the solid phase 

volume fraction and the medium's hydraulic conductivity. Hence, in practical applications, the 

dispersivities are adjusted to give the best possible agreement between experimental observa

tions and model predictions [1]. Since the dispersivities reflect, for example, the tortuosity of 

the pathways available to the various plasma protein species, they will vary with tissue hy

dration. Furthermore, since the pathways for different protein species will vary as a result of 

exclusion, the dispersivities may also be expected to vary amongst protein species. 

The sum of the diffusive flux (Eq. (3.37)), the convective flux (Eq. (3.42)), and the mechan

ical dispersive flux (Eq. (3.43)) gives the total protein flux at any point within the interstitium, 

relative to the moving solid phase. Equations (3.37), (3.42), and (3.43) will be used in Section 

3.2.3 to develop expressions for the transient distributions of the various macromolecular species 

within the interstitial space. 

3.2 Mass Balance Equat ions for Sol id , F l u i d , and Solute Species 

In the previous section we developed mathematical expressions for the flow of solid, fluid and 

protein species within a deformable interstitium. We will now develop the equations that 

describe the transient distribution of these phases within the interstitium. The equations de

scribing fluid transport through a porous medium subject to small deformations have been 

applied in a number of fields, including groundwater hydrology and soil mechanics [19, 8. 101]. 

The equations are based on differential mass balances for the solid and fluid phases, combined 

with an appropriate description of deformation. A similar approach is adopted here. Likewise, 

the equations describing the distribution of various plasma protein species within the interstitial 

space are based on differential mass balances on each of the protein species contained within 

the hiterstitium. Because of the linkages existing between the fluid flux and the protein os

motic pressures, between the convective protein flux and the fluid flux, and between the various 

transport properties and the tissue hydration, the material balances result in a set of coupled 
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partial differential equations which must be solved simultaneously. We will now consider each 

of the material balances individually. 

3.2.1 Mater ia l Balance on the Solid and Immobile F lu id Phases 

The solid and immobile fluid phases have much the same impact on mass flow within the 

interstitium in that they both reduce the volume available to mobile fluid and plasma proteins. 

Furthermore, given that the immobile fluid phase volume fraction is a function of the solid phase 

volume fraction, it is convenient to consider the two as a single composite phase (n s + F s (n s )) 

when carrying out mass balances on the various components within the interstitium. 

Assuming that the density of the solid phase is constant, a material balance on the solid 

and immobile fluid phases within a differential volume of interstitium gives 

d(n s + F') g([ns + F 5 ] - v S i ) . 

dT~ = ~ dl, ' ( 3 ' 4 6 ) 

where [ns + F s ] • Vj. is the net flux of the composite phase, per unit volume, at a point within 

the interstitimn. Equation (3.46) states that the net rate of change in the composite phase 

volume per unit volume of interstitium at some point is equal to the net flux of the phase at 

that point. The solid phase velocity, v s., relative to a fixed coordinate system, is related to the 

solid displacement in the x; direction, TJ;, by [101J 

= (3-47) 

Since the volumetric dilation, ev, is equal to d\Ji/dxi, then 

dvs. dev 
(3.48) 

dxi dt ' 

The local solid phase velocity can therefore be related to the local average hydrostatic pressure 

through the compliance relationship (Eq. (3.25)). Together, Eqs. (3.46) and (3.48) describe the 

distribution of solid material and immobile fluid in response to variations in the local average 

hydrostatic pressure. 
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3.2.2 M a t e r i a l Balance on the Flu i d Phase 

Consider the flow of fluid-protein solution within the interstitium. For dilute solutions, varia

tions in density can be neglected. Furthermore the volumetric flux of solution is approximately 

equal to the total solvent flux, q° . . A material balance on the total fluid-protein mixture within 

a differential volume of interstitium then gives 

di dx-, • v ; 

The total mobile fluid volume fraction, n° , can be rewritten in terms of the sohd phase 

volume fraction, i.e., 

n° = 1 - n s - F s (n s ) . (3.50) 

Furthermore, the total solvent flux relative to fixed coordinates, q^., may be expressed in terms 

of solvent flux relative to the sohd phase, j ° . , the sohd phase velocity, v s ; , and n s using Eqs. 

(3.31) and (3.50), i.e., 

< = J w i + ( l - n s - F s ( n s ) ) - v S i . (3.51) 

The second term of Eq. (3.51) represents the flux of mobile water at the sohd phase velocity. 

Equation (3.49) can now be expressed in terms of j ° . , n s , F s , and v S i using Eq. (3.51) to give 

5(n s + F s ) d([ns + F s ] - v s ; ) + 
o 

dt dx; 

Since the sohd phase and immobile fluid phases are conserved, the sum in square brackets is 

zero (see Eq. (3.46)). Also, the second term in Eq. (3.52) is equal to dev/dt, so that Eq. (3.52) 

becomes 

5T--5x7 ( 3 - o 3 ) 

which states that the rate of volumetric dilation at a given point in the interstitium is equal to 

the net rate of fluid inflow to that point. 

Finally, using the expressions for j° and ev developed earlier (see Eqs. (3.35), (3.24) and 

(3.25)), Eq. (3.53) can be rewritten in terms of the local average hydrostatic pressure and the 
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local fluid chemical potential to give 

1 T = 5 « ( ' - - S 4 (3'54) 

3.2.3 Material Balance on Protein Species k 

The net rate of increase in the mass of protein species k contained in a differential element 

within the interstitium is equal to the net diffusive, dispersive and convective flows of protein 

into the element. In a fixed coordinate reference frame 

- ± (»M«S + DSA] f ) - £ + B X ] ( ? ) (3,5, 

where — n k(i9 k + D k
f f6jj)c?C k/dXj is the total dispersive and diffusive flux, n k V s . C k is the convec

tive protein flux at the solid phase velocity, and R k j ° . C k is the additional convective protein 

flux due to the motion of the fluid relative to the solid phase. is the retardation factor for 

protein species k, denned in Section 3.2.2. 

Equation (3.55) is combined with the equation for volumetric dilation (Eq. (3.48)) to give 

g(n k C k ) k p > T , c?(nkCk) fifRi&C") 

dt  + dt '  S i d^  + d^ 

Equation (3.56) may be interpreted as follows. The first term represents the net rate of change 

in protein content, per unit volume of interstitium, within the element. The second term 

represents the change in protein content associated with deformation within the interstitium. 

The third term represents the net convective flow of protein, at the solid phase velocity, out of 

the element, while the fourth term is the remaining convective flow associated with the solute 

motion relative to the solid phase. The final term represents the net dispersive and diffusive 

flows leaving the element. 

3.2.4 Summary of Governing Equations 

Table (3.1) summarizes the equations describing fluid, solids, and protein transport in a deform

ing interstitium. Alongside are fisted the primary dependent variables obtained as the solution 
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of each equation. The equations and dependent variables are grouped into one of three cate

gories: those describing interstitial deformation, those describing interstitial fluid transport and 

distribution, and those pertaining to solute transport and distribution within the interstitium. 

The first category includes equations for the conservation of sohd phase and local sohd phase 

velocity (Eqs. (3.46) and (3.47)), relationships linking the geometry of the deformed interstitium 

to the local volumetric dilation (Eqs. (3.27) and (3.28)), and constitutive relationships express

ing volumetric dilation as a function of the local average hydrostatic pressure (Eqs. (3.25) and 

(3.26)). The second category consists of an equation for the conservation of fluid mass within 

the system (Eq. (3.54)), expressions relating local fluid fluxes to gradients in local fluid hydro

static and coUoid osmotic pressures (Eq. (3.35)), and coUoid osmotic relationships (Eq. (3.13). 

The final category is comprised of the conservation equations for the various protein species 

(Eq. (3.56)), expressions hoiking each of the distribution volume fractions to the sohd phase 

volume fraction (Eq. (3.7)), and relationships used to define the various protein and fluid fluxes 

and velocities (Eqs. (3.36), (3.37), (3.38), (3.39) and (3.43)). 

Together these equations form a coupled system that must be solved simultaneously. For 

example, the total local volumetric fluid flux, j ° . , is a function of the local colloid osmotic 

pressures, II k, k = l ,2 , . . .m, and hence the local concentrations of the various plasma protein 

species, C k , k = l ,2, . . .m. In the next three chapters, we demonstrate how the method of Finite 

Elements can be used to solve sets of coupled equations, based on those shown in Table (3.1), 

for a number of simplified circumstances. 



U N K N O W N GOVERNING EQUATION L O C A T I O N IN T E X T 

I. INTERSTITIAL DEFORMATION 
n 

• o J ( 1 i = 1,2,3 -°V> =
 0 '1 W Y I ' 1 " , ' > . /Tij. (3.46), Sec. 3.2.1 

U i , 1=1,2,3 « . ,= ^ . ' £g. (3.47), Sec. 3.2.1 
* i t _ y. £<?. (3.28), Sec. 3.1.2 

% _ " £ 9 . (3.29), Sec. 3.1.2 

P „ A 3 1 7 1 " . ' ' / £ 9 . (3.25), Sec. 3.1.2 

= 1,2,3 m ' - l _ T ^ f ' (3.26), Sec. 3.1.2 
= ^ 1 2-*=o&n £ 0 . (3.17), Sec. 3.1.1 

p ° - n ° = P 1 - n 1 = p 3 - n ' - n J =... = P M -x)™ = 1 n* 
II. FLUID TRANSPORT 

II** = 1,2 m , = £ ( * ° & (J"" - Er=, "')) • Eq. (3.54), Sec. 3.2.2 
Jl,i= 1,2,3 nk = C*(C*). xTij. (3.13), Sec 3.1.1 

j " — j£L (p m _ yj"1 II*) El4 (3 33), Sec. 3.1.3 

III. PLASMA PROTEIN TRANSPORT 

C , A = l , 2 , . . , m i ^ . J . f ) l » U + J , l A-.-lasiW « n „ t „ + f i * , - « l c O (3-6), Sec. 3.1.1 
* .* .» '= 1.2,3; j = 1,2,3 * l B r « + X , ^ H ^ K T U " " ' ' + ^ H C J £ g . (3.56), Sec. 3.2.3 

« i „ » = 1,2, 3 ' ' = «f + U -at) Eq. (3.44), Sec. 3.1.4 
. = ^ ' (3.39), Sec. 3.1.4 

. k V - - ^ - (3.38), Sec. 3.1.4 
J ' ° " l ~ 1 , 2 , 3 (3.36), Sec. 3.1.3 

Jitl — K" Jul' 

Table 3.1: Summary of the model equations. 
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3.3 Concluding Remarks 

In the preceding two sections, mathematical relationships were developed to describe the tran

sient flow and distribution of fluid and plasma proteins within the interstitium. resulting in a 

system of coupled, nonlinear partial differential equations which must be solved simultaneously 

(see Table (3.1)). Despite the complexity of the model, it is limited in several respects. First, 

the description of interstitial deformation applies to small strains only (on the order of ten 

percent). The model is therefore unsuitable for analysing extreme cases of edema formation. 

However, the model could be expanded to consider large deformations by introducing a more 

general and, as a result, a more complex finite deformation theory (e.g., [21]). Furthermore, 

the model uses a compliance relationship to characterize deformation, which assumes that any 

change in volume is a function of the hydrostatic pressure within the system. This neglects the 

influence of shear stresses on deformation. However, we are interested primarily in the effect 

of volume changes on the various transport properties and material characteristics of the inter

stitial space (such as the hydraulic conductivity, effective diffusivities, and various distribution 

volume fractions), rather than a description of the deformed geometry of the interstitium. We 

therefore consider this approach a reasonable first approximation to the complete theory devel

oped by Biot [19]. A more detailed analysis of deformation would require additional information 

about the material properties of the various interstitial components, such as their stress-strain 

characteristics. 

Fluid flow within the interstitium is assumed to be proportional to the gradient in fluid 

chemical potential alone, thus neglecting any coupling between fluid flow and solute chemical 

potential, for example. The theory presented here could easily be modified to include these 

additional effects, given better information about the nature of fluid transport in the intersti

tium. Previous models of interstitial fluid transport have considered the effect of hydrostatic 

pressure gradients only [22, 36, 87]. Therefore, because it includes the influence of colloid os

motic as well as hydrostatic pressure gradients, the interstitial fluid flux representation given 

here is considered to be more general than that offered by any previous interstitial transport 
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models. However, further research in the area of fluid flow within osmotically active, partially 

restricting matrices (such as the interstitium) is needed. 

Despite its limitations, the model describes the combined effects of a number of interstitial 

properties (such as exclusion and swelling characteristics) and transport mechanisms (such as 

protein convection, (hffusion, and dispersion) on interstitial fluid and plasma protein transport. 

It therefore provides a far more comprehensive description of interstitial transport than has 

been offered by any of the previous models. The model can be used to study numerous aspects 

of interstitial transport over a wide range of physiological conditions. When combined with 

mathematical descriptions of fluid and protein exchange across the capillary wall and, where 
c 

appropriate, the lymphatic wall, the model provides a tool to investigate the sensitivity of 

the microvascular exchange system to any number of parameters characterizing its transport 

behaviour. The next three chapters give examples of the model's utility in this respect by 

investigating fluid and plasma protein exchange, both in mesentery and a hypothetical tissue, 

under steady-state and transient conditions and for a number of systemic upsets. 



Chapter 4 

Steady-State Exchange i n Mesenteric Tissue 

In the previous chapter we presented a general mathematical model describing the transport 

and distribution of fluid and macromolecules within the interstitium, which is treated as a mul

tiphase, deforming porous medium. In this chapter, a simplified version of the model, in which 

the interstitium is approximated as a rigid porous medium containing a single plasma protein 

species, is combined with mathematical descriptions of transport across the interstitial bound

aries to study steady-state fluid and protein exchange within the mesentery. The mesentery 

was selected both for its simple geometry and because a number of its transport parameters 

have been measured. Furthermore, the mesentery remains a popular tissue for experimental 

studies of microvascular exchange [30] and interstitial transport [115, 40]. 

The mesentery consists of a thin sheet of loose connective tissue, the upper and lower 

surfaces of which are bounded by a serous membrane (the mesothehum) made of a single layer 

of epithelial cells [50]. In some respects, then, fluid and plasma protein exchange across the 

mesothehum may resemble that of the capillary wall. While it is generally accepted that fluid 

and plasma proteins are able to cross this boundary and enter the surrounding peritoneal 

fluid [50, 37], the mesothehum's exchange properties remain poorly defined. Therefore, one 

objective of this study is to explore the potential influence of the mesothehum on the steady-

state exchange of fluid and a single plasma protein species within the mesentery. Three scenarios 

are considered: 

1. the mesothehum is impermeable to fluid and proteins; 

2. the mesothehum's transport properties are identical to those of the capillary wall; and 

3. the resistance of the mesothehum to fluid and plasma protein exchange is substantially 

56 
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lower than that of the capillary wall. 

These three cases were selected so as to encompass a wide range of mass transport character

istics. 

We also investigate the sensitivity of microvascular exchange in the mesentery to a select 

number of interstitial parameters, namely the tissue hydraulic conductivity, the protein effective 

diffusion coefficient and the protein convective hindrance. The possible influence of dispersion 

on interstitial transport is not considered in this study. (In fact, the effects of mechanical 

dispersion on mass exchange within this model tissue are tentatively in Appendix C.) The 

model equations are recast in dimensionless form. This reduces the number of interstitial 

parameters that must be varied from the three listed above to two equivalent dimensionless 

groups. A brief description of the model follows. 

4.1 Defining the System 

Figure (4.1) is a schematic diagram of a cross-sectional portion of mesenteric tissue of uniform 

thickness. For simplicity we will assume that the conditions in the tissue are independent of the 

z-direction, thereby limiting the flow field to the two remaining dimensions. The interstitium 

is bounded left and right by arteriolar and venular capillaries respectively. It is assumed that 

the tissue thickness, H , is small relative to the distance, L , separating the vessels, so that the 

system can be approximated by the two-climensional rectangular domain shown in Figure (4.2). 

In addition, the hydrostatic pressure and plasma protein concentration in each of the vessels 

are assumed uniform along the vascular walls. The upper and lower boundaries of Figure (4.1) 

represent the mesothelial layers. For simplicity, and for lack of additional information, it is 

assumed that the peritoneal fluid is well-mixed, semi-infinite in extent, and subject to a uniform 

hydrostatic pressure along the length of the mesothehum. 

The following notation will apply in the remainder of the paper A superscript '0' denotes 

a quantity associated with the total mobile fluid phase (denned below), while a superscript 

'1' identifies a parameter associated with the accessible volume phase (also defined below). 



Figure 4.1: Schematic diagram of a cross-sectional slice of mesentery. The shaded 
area represents the region of interest. 
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Figure 4.2: Schematic diagram of the tissue segment studied. The system is assumed 
symmetric about the x-axis; hence only the upper half of the tissue is modelled. 
T h e finite element grid is superimposed on this portion of tissue. T h e aspect ratio 
( H / L ) is 0.1. For simplicity, the curvature associated with the vessels' walls is 
neglected. 
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Parameters associated with the arteriolar capillary, the venular capillary, and the mesothehum 

are identified by superscripts 'art', 'ven', and 'mes', respectively. Finally, a superscript 'b' 

will be used to identify parameters associated with a general permeable boundary or with the 

well-mixed fluid on the luminal side of the boundary. 

The mathematical description of interstitial transport developed in the previous chapter is 

applied here, along with these additional simplifying assumptions. 

1. Since detailed information on the swelling properties of mesentery is unavailable, it is 

assumed that the tissue behaves as a rigid porous medium. Furthermore, for lack of 

additional information, the material properties of the tissue are considered to be spatially 

invariant. 

2. In this study we are not concerned with the relative transport rates of individual plasma 

protein species within the interstitium. Therefore, the array of interstitial plasma pro

tein species is treated as a single aggregate displaying averaged properties. In fact, sev

eral steady-state simulations were performed to investigate the effects of treating the 

plasma and interstitial fluid as aqueous solutions containing two different osmotically ac

tive plasma proteins representative of albumin and globulin. The results of that study, 

not presented here, identified albumin as the dominant osmotically active plasma protein, 

when these species are present in physiological concentrations. These fmdings substanti

ate the notion that albumin is the major contributor to the coUoid osmotic driving forces 

within tissues. 

3. In light of assumption 2, the interstitium contains two distinct mobile fluid phases, only 

one of which is accessible to proteins (see Figure (4.3)). The accessible volume fraction 

is denoted by n 1 , while the total mobile fluid volume fraction is represented by n°. In 

addition to the two mobile fluid phases, the interstitium contains a 'solid' phase, n s , 

composed of elements such as hyaluronate. elastin, collagen and proteoglycans, and an 

immobile fluid phase, n m . It is recognized that, under some conditions, hyaloronate 
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may be mobile [5]. However, provided that the relative amount of mobile hyaloronate 

is small, and assuming that interstitial hyaloronate lost to the circulation is replaced, 

so that the physicochemical properties of the tissue does not change, it is reasonable to 

neglect movement of this component. Further, the intrafibrillar water of the collagen is 

included in the immobile phase, due to the comparatively low hydraulic conductivity of 

the intrafibrillar spaces [66]. 

4. The total interstitial hydraulic .conductivity, K° , is divided between the accessible fluid 

phase and the excluded mobile fluid phase according to their proportionate share of the 

total mobile fluid volume. Hence, 

K> = ^ . K ° . (4.1) 

Equation (4.1) therefore neglects any variations in flow resistance between the accessible 

fluid phase pathways and the pathways of the excluded fluid phase. Given further in

formation about the relative resistances of these two pathways, an alternative expression 

relating K 1 to K° can be substituted for Eq. (4.1). 

5. Interstitial protein transport occurs via molecular diffusion and restricted convection only; 

i.e., mechanical dispersion is not considered. This represents a significant limitation only 

in convectively dominant problems. 

6. Body forces, such as gravity, are neglected. 

7. The system is at steady-state. 

Since the tissue is assumed rigid, a material balance on the fluid within a differential volume 

of interstitial space gives (see Eq. (3.53) in Chapter 3) 

where is the local total fluid flux in the x; direction. This fluid flux is related to the gradient 

in hydrostatic pressure in the accessible fluid phase. P 1 , and the gradient in plasma protein 
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Figure 4.3: A schematic diagram of an elementary volume of interstitium illustrating 
the different volume fractions associated with any one point in the continuum 
representation of the interstitial space. 
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osmotic pressure, II 1, according to Eq. (3.33) in Chapter 3. That is, 

(4.3) 

The local protein osmotic pressure depends on the local plasma protein concentration in the 

accessible volume, C 1 , according to a polynomial relationship: 

n 1 = A 1 • c1 + A 2 • ( c 1 ) 2 + -43 • ( c a ) : (4.4) 

Substituting Eq. (4.3) in Eq. (4.2) gives 

d2{P1 - n1) d2(P1 - n1) 
dx2 + dy2 

-: 0. (4.5) 

The local flux of plasma proteins within the interstitial space consists of a convective com

ponent, j c ; , and a diffusive component, j d . . The first of these is given by Eq. (3.42) in Chapter 

3: 
K 

\ - P • — • i° - C 1 

Jc; — C. j£0 J w ; ^ , 
(4.6) 

where £ is the convective hindrance. The (diffusive flux is defined by Eq. (3.37) in that same 

chapter: 

Jd; - n x D efT 
d C 1 

(4.7) 

A material balance on the plasma proteins within a differential volume of interstitium then 

gives (see Eq. (3.56) in Chapter 3) 

n J D 
^ C 1 c W 
dx2 + dy 2 

K 1 

K° 
.0 d& ^ .0 d& 

J w i dx ' J w ' ay = 0. (4.8) 

The first term in Eq. (4.8) represents the net diffusive flux of plasma proteins at a point within 

the interstitium, per unit volume of interstitial space. The second term is the net convective 

protein flux, per unit volume of interstitium, at that point. Since the system is at steady-state, 

the net accumulation of plasma proteins at the point (the right-hand side of Eq. (4.8)) is zero. 

Boundary conditions are needed to complete the description of fluid and protein exchange. 

Their forms depend on the physical nature of the boundaries themselves. We will consider three 
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boundary types in our system: a symmetry boundary (i.e., from (0.0) to (0,L) in Figure (4.2)). 

an impermeable boundary (i.e., from (0,H/2) to (L.H/2), corresponding to the case where 

the mesothelium is treated as an impermeable barrier), and the permeable boundaries (i.e., 

from (0,0) to (0,H/2) and from (L,0) to (L,H/2), corresponding to the arteriolar and venular 

capillary wails, respectively, and from (0,H/2) to (L,H/2), for those cases where the mesothelium 

is permeable). 

In the case of a symmetry boundary, the gradients in plasma protein concentration and fluid 

chemical potential normal to the boundary are zero. That is. 

and 

^(P 1 - n 1 ) " 
dx 

•lx + 
b 

' ^(P 1 

dCl~ 
•lx + 

b 

dc1' 
dx 

•lx + 
b dy 

dy 
• ly = 0, 

J b 

• L = 0, 

(4.9) 

(4.10) 

where l x and l y are the x and y components of the unit outward normal to the boundary (see 

Figure (4.4)), and where implies an interstitial quantity evaluated at a point along the 

boundary. 

At an impermeable boundary the fluid flux and plasma protein flux normal to the boundary 

are zero. That is, 

(4.11) 

and 

([idxlb + Li c j b ) • ix + (Lidjb + l i c j b ) • i y = o. (4.12) 

Upon substituting Eqs. (4.3), (4.6). and (4.7) into these last two expressions, Eqs. (4.11) and 

(4.12) reduce to Eqs. (4.9) and (4.10), respectively, cited for the symmetry boundary. 
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Figure 4.4: A n elementary volume representing a point in the interstitial continuum 
adjacent a permeable boundary. T h e fluid film of infinitesimal thickness is in local 
equil ibrium with the fluid in the accessible space at that point in the continuum. 
T h e vectors l x and l y represent the x and y components of the unit outward normal, 
n. 
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Fluid flow across a permeable boundary is described by Starling's Law. This is equated to 

the total fluid flux to the boundary from within the interstitium to give 

-K1 
d{?1 - n 1) 

dx lx + 
' ^ P 1 - n 1) 

dy 
L p(I p l ] b - p b - b ( [ n l - n b ) ) (4.13) 

where L b and <xb are the hydraulic conductivity and reflection coefficient, respectively, of the 

boundary, while P b and f l b represent the hydrostatic and colloid osmotic pressures on the 

luminal side of the boundary. 

Plasma protein exchange across a permeable boundar)' obeys the nonlinear flux equation 

[76, 71]. Equating the plasma protein flux across the boundary with the sum of the diffusive 

and convective protein fluxes through the available space to the boundary then gives 

- j i 1 D 
8Cl 

[ C r j b - C b e( - P g ) 
1 - e(- P e) 

dC1 

•lx + 
dy 

•1, 

K 1 

(4.14) K° V r ^ J b " • L"™TJb - ' / L J b 

where C b is the plasma protein concentration on the luminal side of the boundary, and where 

Pe, the local Peclet number for the boundary, is denned by 

( [ j ° J b - l x + [ j ° , ] b - l . v ) - ( l - - b ) 
Pe D b (4.15) 

D b represents the boundary's permeability to plasma proteins. 

The boundary conditions defined by Eqs. (4.13) and (4.14) assume that a thin fluid film 

exists between the boundary and the interstitial space (see Figure (4.4)) . This fluid is in local 

equilibrium with the interstitial fluid within the perivascular region of the accessible space, and 

is therefore at a hydrostatic pressure [Px]b and protein concentration [C 1 ]^ By this assumption 

we circumvent the need to distinguish between the transport properties of the boundary segment 

exposed to the accessible space from those of the boundary segment exposed to the excluded 
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space. It therefore represents a mathematical convenience rather than a physiological condition. 

However, since it is impossible to distinguish between these two segments when measuring the 

transport parameters for a given permeable boundary, Eqs. (4.13) and (4.14) are considered 

reasonable approximations to the conditions prevailing in vivo . 

In the case of m different plasma protein species, it is assumed that the fluid film is in 

equilibrium with the material contained in the distribution volume m. Hence, the thin film 

concentration of each plasma protein species is equal to the concentration within that protein's 

distribution volume, C k . The mathematical formulation is therefore consistent with the fact that 

it is the distribution volume concentration of a plasma protein species, and not the concentration 

based on the total fluid volume, that determines, for example, the interstitial osmotic pressure 

influencing fluid exchange across the capillary wall [26]. 

To miiiirnize the number of independent parameters that must be evaluated in the numerical 

simulations, the equations governing fluid and protein transport are recast in dimensionless 

form. This is accomplished by introducing the following nondimensional parameters: P = 

P / P " 4 , C = C / C " 1 , fi = n/P"", i = x / L , y = y / L , H = H / L , a = (K° • P ^ / D ^ , 

f3 = K V K ° , j ° . - j W i L / D e f f , j d i = j d j L / P e f f C " 1 ) , j c ; = j C i L / ( D e f f C a r t ) , M = A a • C ^ / P ^ , 

A 2 = A 2 • ( C a n ) 2 f P a T t , A 3 = A 3 • (Can)3/Paxt, = (L£ • L ) / K ° , and D b = ( D b • L J / D ^ . 

The governing equations and auxiliary relationships then take the following form. 

1. Fluid transport within the interstitium: 

(4.16) 

(4.17) 

(4.18) 

2. Plasma protein transport within the interstitium: 

d2Cl d2c' 
Jw x Q - 1 JW 

dC 1 

(4.19) n dx2 cK-2 w* dx dy 
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U = £ - / 3 - J ° i - C 1 , 

dx-, ' 

The boundary conditions axe rewritten in dimensionless form as fohows. 

1. Conditions at a symmetry boundary or impermeable boundary: 

dx •lx + 
<9(pa - ii 1) 

dv 
• lv - 0, 

J b 

dCl 

dx •4 + 
J6 

dCl 

dy 
•ly = 0. 

2. Fluid flow across a permeable boundary: 

^ ( P 1 -n 1) 
dx • l x - r 

^ ( P 1 - n 1) 
dy 

lv 

£ p ( [ p 1 b - p b - b - ( M b - r f b ) ) 

3. Protein transport across a permeable boundary: 

!i°-.-/ '-f-e i] b-n 1-

+ ( [ j ° y - / 3 - £ - C 1 ] b - n 1 

1 - e(- P e b ) 

9C 1 

<9x 

a c 1 

Ur -

u, 

P e b = ( l - a b ) - i f e 
D b 

Equations (4.16) to (4.26) fully describe the system. 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

4.2 Case Studies 

Values for the various system parameters are reported in Table (4.1). while Table (4.2) lists 

values for the corresponding dimensionless parameters used in the numerical simulations. The 
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values presented in Table (4.1) were drawn from the literature, where available. However, 

several of the variables had to be estimated, including the permeabilities of the vascular walls, 

D™1 and D v e n , the plasma protein reflection coefficients, cr1""1 and cr v e n , the immobile fluid 

volume fraction, n1™, and the accessible volume fraction, n 1 . In addition, values for the tissue 

dimensions, H and L , the mesothelial transport parameters, and the peritoneal fluid properties 

were assumed. 

The permeabilities D*" and D v e n were assigned values of 2.4 X 1 0 - 8 cm/s and 3.6 X 1 0 - 6 

cm/s, respectively, which he within the range of capillary permeabilities to albumin reported for 

a variety of tissues (see [83]). Furthermore, these values were selected so that the ratio D a r t / D v e n 

equaled the ratio Lp^/Lp 6 1 1 reported for mesentery [39]. The protein reflection coefficients for 

the arteriolar and venular capillaries were both allotted a value of 0.85, which falls within the 

normal range reported for continuous capillaries (see [83]). 

It was assumed that the principal component of the immobile fluid volume was the in-

trafibrillar water of the collagen. The immobile volume fraction was then calculated assuming 

that the specific volume of intrafibrillar water equalled 1.14 cm 3 /gm of collagen [66], and that 

the volume fraction of collagen in mesentery equalled that found in subcutaneous tissue. This 

yielded a value of 0.128 for n m . The accessible fluid volume fraction was assigned a value of 

0.68, which lies within the range reported for albumin in skin (see [18]). Since , by definition, 

the sum of n s , n1™ and n° equals 1.0 (see Figure (4.3)), a value of 0.089 for n s [66] implies that 

n° equals 0.783. 

H was assumed to equal 3 X l O - 3 cm, which is the same order of magnitude as the mi-

crovessels. L was assigned a value of 3 x l O - 2 cm. The peritoneal fluid was assumed to be at 

atmospheric pressure, with a plasma protein content of 0.015 gm/cm 3 . The transport param

eters L™", D m c s . and cr m c s were varied to simulate three different boundary conditions along 

the mesothehum. In boundary condition 1, Lp"" and D m c s were set to zero, thus describing an 

impermeable boundary, fn boundary condition 2, L™", D m e s , and cr"1" were set equal to the 

corresponding parameters for the arteriolar capillary. Finally, in boundary condition 3, L™" 
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and D m e s were assigned values 100 times greater than Lp^1 and D 8 " , respectively, while cr™" 

was assigned a value of zero, thereby reducing substantially the resistance of the mesothehum. 

compared to the resistances of the other two permeable boundaries. 

According to Eqs. (4.18), and (4.20), the dimensionless parameters £ and a are key to 

characterizing the interstitial transport of fluid and plasma proteins. The first of these, the 

convective hindrance, is a measure of the local convective velocity of the solute relative to the 

local fluid velocity (see Chapter 3). The parameter a, on the other hand, is a measure of 

the resistance of the interstitium to plasma protein diffusion, relative to its resistance to fluid 

flow. Together, these two parameters determine the relative role of convection and diffusion in 

transporting plasma proteins through the interstitium. 

A series of numerical simulations were performed to investigate the coupled effects of £ and 

a on microvascular exchange within the model tissue for each of the three mesothelial boundary 

conditions outlined above. For each boundary condition, £ was assigned values of 1.0, 0.5, and 

0.0, while a was given values of 9.117, 0.9117, and 0.09117, resulting in a 3 x 3 x 3 factorial 

study. The results of the study are presented in Section 4.4. 

4.3 Numerical Procedure 

A form of the Finite Element Method using isoparametric elements [59J was used to solve the 

system of coupled partial differential equations presented in Section 4.1. The interstitial space 

was first divided into a set of rectangular subdomains of variable dimensions (see Figure (4.2)). 

To enhance the accuracy of the solution, the element size was reduced in the vicinity of the 

interstitial boundaries, where fluid pressure and solute concentration gradients were typically 

greatest. Associated with each element were eight nodes representing discrete locations within 

the domain. The dependent variables, P 1 and C 1 , were approximated in each element by a set 

of biquadratic interpolating functions, which in turn depended on the nodal values of P 1 and 

C 1 . By following the Galerkin procedure [59], the partial differential equations were reduced to 

a set of coupled algebraic expressions for these nodal values (see Appendix B for details). The 
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Parameter Value Tissue Source 

A i 2.8 x IO5 dyne - cm/gm plasma [64] 

A 2 
2.1 x IO6 dyne - cm 2 /gm 2 

1.2 x IO7 dyne - cm 3 / gm 3 

plasma [64] 

A 3 

2.1 x IO6 dyne - cm 2 /gm 2 

1.2 x IO7 dyne - cm 3 / gm 3 plasma [641 
0.06 gm/cm 3 human serum [46] 

c m e s 0.015 gm/cm 3 - Assumed 
0.06 gm/cm 3 human serum " [46] 

2.4 x 10~8 cm/s - See text 
0 - 2.4 x I O - 6 cm/s - See text 

D v e n 3.6 x 10~8 cm/s - See text 
H 3.0 x IO" 3 cm - Assumed 
K° 3.1 x I O - 1 2 cm4/(dyiie - s) 

3.0 x 10"2 cm 
mesentery [111] in [66] 

L 
3.1 x I O - 1 2 cm4/(dyiie - s) 

3.0 x 10"2 cm - Assumed 
T art 
L p 1.35 x I O - 9 cm3/(dyne - s) 

0 - 1.35 x 10~ s cm 3/(dyne - s) 
mesentery [39] 

T mcs 
p 

1.35 x I O - 9 cm3/(dyne - s) 
0 - 1.35 x 10~ s cm 3/(dyne - s) - See text 

T ven 2.02 x I O - 9 cm3/(dyne - s) 
6.8 x I O - 8 cm 2 /s 

mesentery [39] 
n 1 - D ^ 

2.02 x I O - 9 cm3/(dyne - s) 
6.8 x I O - 8 cm 2 /s mesentery [38] 

n™ 0.128 subcutaneous See text 
n s 0.089 subcutaneous [66] 
n 1 0.68 rabbit skin [86] in [13] 

part 2.942 x IO4 dyne/cm 2 mesentery [63] 
pmcs 0.0 dyne/cm 2 - Assumed 
p vcn 1.667 x 104 dyne/cm 2 mesentery [63] 
Tjart 2.707 x IO4 dyne/cm 2 - Eq. (4.4) in text 

0.472 x IO4 dyne/cm 2 - Eq. (4.4) in text 
Jjven 2.707 x IO4 dyne/cm 2 - Eq. (4.4) in text 

0.85 - See text 
0 - 0.85 - See text 

o- v e n 0.85 - See text 
0.0 - 1.0 - See text 

Table 4.1: Values of model parameters assumed in the simulations. 



Chapter 4. Steady-State Exchange in Mesenteric Tissue 72 

Parameter Value 

0.571 
A 2 0.261 
A 3 0.881 

Qart 1.0 
Qmes 0.25 
c v e n 1.0 
part 0.0072 
pjmes 0. - 0.72 
D v e n 0.0180 

H 0.1 
T art 
^ P 

• 13.06 
T mcs 0. - 1306. 
f ven 19.55 
n m 0.128 
n s 0.089 
n 1 0.68 

part 1.00 
pmcs 0.00 
pvcn 0.57 

a 0.09117 - 9.117 

P 0.87 
jjart 0.92 
jjmes 0.16 
jTven 0.92 
^art 0.85 

0.00 - 0.85 
C T v e n 0.85 

0.0 - 1.0 

Table 4.2: Values of dimensionless parameters assumed in the simulations. 
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system of algebraic equations was then solved using a banded matrix technique [100]. 

Because of their coupled nature, the fluid and protein material balance equations were solved 

iteratively. A n initial guess of C 1 was used to calculate the local gradients in plasma protein 

osmotic pressure, by differentiating Eq. (4.17). The hydrostatic pressure distribution was then 

calculated using Eq. (4.16) and its corresponding boundary conditions. Using this solution 

of P 1 and Eq. (4.18), the local fluid fluxes throughout the interstitial space were determined. 

A n updated estimate of C 1 was then obtained by solving Eq. (4.19), subject to the assigned 

concentration boundary conditions. 

The iteration procedure was terminated when one of the following two criteria was met. 

1. The change in the value of the dependent variables at each node during successive itera

tions satisfied the conditions 

p.1. - pi . 
^ < I O - 5 , ( 4 . 2 7 ) 

and 

PJ 
i.max 

C-1- - & i 
1J 1-1.. 

f l 
i.max 

< 1 0 - 5 , (4.28) 

where denotes value of some variable tb at node j , calculated in the ith iteration, and 

where V'i.max represents the maximum nodal value of ip from that iteration. 

2. The total number of iterations exceeded 200. 

In the latter case convergence was not achieved to within the specified tolerance, and the 

solutions were rejected. Under-relaxation techniques [24] were used where needed to achieve 

convergence. As an additional check of the numerical solution's accuracy, overall material 

balances were performed around the boundaries of the system. In all cases, the total inflow of 

fluid and plasma proteins equalled the total outflow, to within .005 percent. Finally, numerical 

tests were performed to determine the sensitivity of the solution to grid size. Increasing the 

grid density from 501 to 971 elements produced less than one percent change in the calculated 

fluid and protein exchanges across each of the permeable boundaries. Thus, all of the results 

presented hi the next section were produced with a grid having 501 elements. 
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4.4 Results and Discussion 

The large number of simulations performed makes it impractical to discuss each one in detail. 

Instead the following discussion focuses on selected examples of how the model can be used to 

investigate microvascular exchange in this system. The discussion is divided into four parts. 

In the first part we demonstrate with a specific example how the model can be used to predict 

fluid and plasma protein flow patterns and plasma protein transport mechanisms within the 

interstitium. The second part discusses the influence of f, a. and the mesothelial transport 

properties on the net fluid exchange across each of the permeable boundaries while the third 

part considers the influence of these parameters on net plasma protein exchange across the 

boundaries. In the final section we discuss the effects of £, a. and the mesothelial transport 

parameters on plasma protein distribution and transport within the interstitial space. 

4.4.1 A Specific Case of Interstitial Transport 

The analysis of fluid and plasma protein transport within the interstitium is complex, due to 

the coupled nature of the transport equations and the nonlinear effects arising from the osmotic 

activity of the interstitial plasma proteins. In the following discussion we will seek a mechanistic 

interpretation of the model predictions for the specific case where £ equals 0.5, a equals 9.117, 

and the mesothelial transport properties are described by boundary condition 2. However, 

this interpretation is only possible with the detailed description of interstitial fluid and plasma 

protein flow patterns and plasma protein distribution afforded by the model itself; the results 

are not intuitively obvious. 

The solution of Eqs. (4.16) and (4.19), with the appropriate auxiliary equations and bound

ary conditions, yields the steady-state distributions of both the dimensionless hydrostatic pres

sure, P 1 , and the dimensionless plasma protein concentration. C 1 . throughout the interstitial 

space. Combining tins information with the expressions for the local interstitial fluid flux (Eq. 

(4.18)). the local convective protein flux (Eq. (4.20)) and the local diffusive protein flux (Eq. 

(4.21)) gives a complete description of fluid and plasma protein transport within the modelled 
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interstitivirn. 

Figure (4.5) presents plots of the distribution in the interstitium of the dimensionless hy

drostatic pressure and the dimensionless total plasma protein concentration, C 1 , where 

n 1 

ct = (T^ r c 1 ' <4-29) 
i.e., the plasma protein concentration based on the total fluid volume. C 1 represents the concen

tration that would be calculated, for example, from measurements of fluid and plasma protein 

content within the interstitium using ultraviolet absorbance techniques. Figure (4.5) also con

tains a plot of the distribution of P 1 — IP, which is a measure of the local fluid chemical potential 

(see Eq. (3.12) in Chapter 3). In each plot the x / L axis corresponds to the symmetry boundary 

in Figure (4.2), while the y / L axis hes on the arteriolar capillary wall. 

The concentration plot reveals a local ridge of high plasma protein content near the arteriolar 

capillary, and a trough near the venular capillary corresponding to a local region of low plasma 

protein concentration. As we will see, the profile is a direct consequence of the transport of 

fluid- and plasma proteins from the arteriolar end of the interstitium into the peritoneal fluid 

and the entry of fluid and proteins from the peritoneum to the interstitium at the venular end 

of the system, together with the sieving properties of the mesothehum. p m e s — <rmes • n m e s , is 

a measure of the driving force for fluid exchange at the mesothehum. Its value hes between 

part_0.art.nart ^ pven^ven.Tjven Therefore, fluid entering the interstitium from the arteriolar 

capillary is drawn to the mesothehum due to the lower chemical potential of the peritoneal fluid, 

carrying with it plasma proteins. The plasma proteins are sieved at the mesothehum where then-

concentration builds up. At the venular end of the system, fluid is drawn into the interstitium 

from the peritoneum and then removed from the interstitium by the venular capillary. Again 

proteins are sieved at the mesothehum so that the fluid-plasma protein solution entering the 

interstitium is diluted somewhat, causing the local washout of proteins seen in the surface plot. 

Interstitial plasma proteins carried by the fluid to the venular capillar}' once again build up due 

to the sieving properties of this boundary. Hence, the peritoneum acts here as both an infinite 

source and an infinite sink for fluid and plasma proteins. A substantial portion of the fluid and 

http://part_0.art.nart
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(iii) 

Figure 4.5: Surface plots of the distri b u t i o n of (i) dimensionless to t a l concentration, 
(ii) dimensionless hydrostatic pressure, and (iii) dimensionless fluid chemical po
tential (expressed as an equivalent pressure, P 1 — I I 1 ) in the interstitium, for the 
case where £ = 0.5, a = 9.117, and the mesothelial transport properties are defined 
by boundary condition 2. The x/L axis represents the symmetry boundary, while 
the y/L axis lies on the arteriolar-end capillary boundary. Note that the tissue's 
aspect ratio, H, is exaggerated in these figures to provide greater detail. 
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plasma proteins entering the interstitium from the arteriolar capillary are transported into the 

peritoneum at the arteriolar end of the system. Some fraction of this re-enters the interstitium in 

the vicinity of the venular capillary, bypassing the central region of the interstitium altogether. 

The local gradient P 1 - IT1 gives the driving force for fluid flow within the interstitium. 

Comparing the surface plots of P 1 and P 1 — IT1 (Figures (4.5) (ii) and (iii), respectively), it is 

clear that the colloid osmotic pressure contributes significantly to the overall driving force for 

interstitial fluid transport. The local ridge of high plasma protein concentration in the vicinity 

of the arteriolar capillary creates a local minimum in fluid chemical potential there, while the 

region of low plasma protein content produces a local maximum in fluid chemical potential 

in the vicinity of the venular capillary. Therefore, while the gradients in fluid hydrostatic 

pressure would suggest a flow of fluid from the arteriolar end of the system to the venular end, 

the gradients in fluid chemical potential produce a complex recirculating flow pattern. This is 

illustrated in Figure (4.6) (i). However, since the fluid chemical potential varies only marginally 

in the central regions of the interstitium, the fluid flow associated with the recirculation is 

comparatively small. It is also apparent from these surface plots that, for this case at least, the 

gradients in the y-direction are small compared to those in the x-direction, indicating that the 

mesentery acts here as a one-dimensional tissue. In fact, this is investigated for all of the cases 

considered here in detail in Appendix A and taken advantage of in subsequent chapters. 

The convective plasma protein flux pattern follows that of the fluid. However, the diffusive 

flux pattern must be calculated from the plasma protein concentration distribution using Eq. 

(4.21). The latter pattern, illustrated in Figure (4.6) (ii), reveals that the chffusive protein flux 

also recirculates. However, the diffusive flux often occurs in a direction opposite to the local 

convective plasma protein flux, particularly in the vicinity of the capillary boundaries. The sum 

of these two flow patterns gives the net protein flow pattern within the interstitium shown in 

Figure (4.6) (iii). The combined convective and diffusive patterns produce a net flow of plasma 

proteins from the arteriolar end of the system to the venular end. Note that the plasma protein 

transport characteristics could have been presented in terms of local Peclet numbers, given by 
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Figure 4.6: Flux patterns for the case where £ = 0.5, a = 9.117, and the mesothelial 
transport properties are denned by boundary condition 2. Plot (i) shows the fluid 
flux pattern, or equivalently, the convective plasma protein flux pattern within 
the interstitial space. Plot (ii) is the diffusive flux, and plot (iii) illustrates the 
total (convective plus diffusive) plasma protein flux. The arrows show the local 
directions of the fluxes at the positions corresponding to their origins and their 
lengths are proportional to the magnitudes of the local flux vectors. Note that the 
tissue aspect ratio, H, is exaggerated in these figures to provide greater detail. 
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the ratio of the magnitude of the local convective flux to the magnitude of the local diffusive 

flux. However, the Peclet number fails to account for direction. Therefore, in Figure (4.6), we 

have chosen to present the predicted flux patterns. 

The opposing effects of the convective and diffusive plasma protein fluxes on the net protein 

transport are further illustrated in plots (iii) and (iv) of Figure (4.7). These panels of Fig

ure (4.7) show, respectively, the local interstitial convective and diffusive plasma protein fluxes 

normal to the mesothelial boundary as a function of position, x, along the mesothelium. At the 

arteriolar end of the boundary the convective flux transports plasma proteins to the mesothe

lium from within the interstitium, while the chffusive flux draws protein from the mesothelial 

boundary into the adjoining interstitial space. These trends are reversed near the venular end 

of the mesothehum. The lack of convective and diffusive protein transport to the mesothelium 

in the central portions of the boundary implies that these fluxes run parallel to the boundary in 

this region. The stun of the local convective and diffusive plasma protein fluxes normal to the 

mesothehum gives the net protein flux crossing the boundary, as a function of position x (see 

Figure (4.7) (ii)). For this particular case the magnitude of the normal interstitial convective 

plasma protein flux to the mesothehum is greater than that of the normal interstitial diffusive 

flux of plasma proteins from that boundary, resulting in a net transport of plasma proteins into 

the peritoneum. Associated with this steady-state condition, and as a result of the resistance 

of the mesothelial barrier to plasma protein transport, there is local high concentration of in

terstitial plasma proteins near the arteriolar end of the system, and a local dilution of plasma 

proteins near the venular end. 

From the above example it is clear that transport within the system can be complex. In 

some cases this yields surprising behavior that could be subject to misinterpretation. Consider, 

for example, the fluid and plasma protein exchange across the mesothelial boundary when its 

transport properties are defined by boundary condition 2, with £ = 1.0, and a = 9.117. Panels 

(i) and (ii) of Figure (4.8) show these fluxes as a function of x. Despite uniform mesothelial 

transport properties, there is a localized region of high fluid and plasma protein exchange, 
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Figure 4.7: Panels (i) and (ii) represent local dimensionless fluid fluxes and plasma 
protein fluxes crossing the mesothelium, as a function of position along the bound
ary, when £ = 0.5, a = 9.117, and the mesothelial transport properties are given 
by boundary condition 2. Panels (iii) and (iv) show the local dimensionless con
vective protein flux and the local dimensionless diffusive protein flux reaching the 
mesothelium from within the adjacent regions of the interstitium. T h e s u m of 
(iii) a n d (iv) yields the net protein flux crossing the mesothelium (panel (ii)). A 
negative value represents a flux directed into the interstitial space, while a positive 
quantity denotes a flux directed into the peritoneal fluid. 
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located at approximately x = 0.2, that could be erroneously interpreted as a 'leaky site' in the 

mesothelial layer. 

4.4.2 Fluid Exchange across the Boundaries of the Interstitium 

Table (4.3) lists the average fluid fluxes crossing each of the permeable boundaries for the various 

cases studied. Note that, with £ = 1, a = 9.117, and the mesothelial transport properties denned 

by boundary condition 3, the simulation failed to converge to the required tolerances. Hence, 

no numerical results are reported for this case. (In fact, in this case the solution suffered from 

oscillations from one iteration to the next, suggesting that alternate choices for the relaxation 

parameters could possibly alleviate the problem.) 

£ a Boundary Condition 1 Boundary Condition 2 Boundary Condition 3 
Art. Ven Mes Art Ven Mes Art Ven Mes 

1.0 0.09117 -0.04 0.04 — -0.22 0.06 0.01 -0.31 0.09 0.01 
1.0 0.9117 -0.40 0.40 — -2.30 0.63 0.08 -2.87 0.65 0.11 
1.0 9.117 -4.49 4.49 — -25.16 6.84 0.92 No Convergence 
0.5 0.09117 -0.04 0.04 — -0.22 0.06 0.01 -0.31 0.09 0.01 
0.5 0.9117 -0.37 0.37 — -2.26 0.61 0.08 -2.87 0.66 0.11 
0.5 9.117 -4.30 4.30 — -24.90 6.46 0.92 -26.14 2.47 1.18 
0.0 0.09117 -0.03 0.03 — -0.22 0.06 0.01 -0.31 0.09 0.01 
0.0 0.9117 -0.34 0.34 — -2.21 0.60 0.08 -2.86 0.66 0.11 
0.0 9.117 -2.42 2.42 — -20.20 5.70 0.72 -25.58 2.92 1.13 

Table 4.3: Average dimensionless fluid fluxes across permeable boundaries. A nega
tive value indicates a flux entering the interstitium, while a positive value denotes 
a flux leaving the interstitial space. 

As seen in Table (4.3), an increase in a led consistently to an increase in the net fluid 

exchange across each of the permeable boundaries. For example, increasing a from 0.9117 

to 9.117, with £ equal to 0.5 and the mesothelial transport properties given by boundary 

condition 2, increases the fluid exchange across each of the permeable boundaries by an order 

of magnitude. 

It should be noted that a, which is defined as K°Part/Dee-, was increased by increasing the 
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F i g u r e 4.8: C o m p a r i s o n o f t h e l o c a l d i m e n s i o n l e s s fluid fluxes a n d p l a s m a p r o t e i n 
fluxes a s a f u n c t i o n o f p o s i t i o n a l o n g t h e m e s o t h e l i u m f o r v a r i o u s v a l u e s o f £, a s s u m 
i n g a = 9.117, a n d t h e m e s o t h e l i a l t r a n s p o r t p r o p e r t i e s a r e d e f i n e d b y b o u n d a r y 
c o n d i t i o n 2. I n p a n e l s ( i ) a n d ( i i ) £=1.0, i n p a n e l s ( i i i ) a n d ( i v ) £=0.5, a n d i n p a n e l s 
(v) a n d (vi) £=0.0. 
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value of K ° . Furthermore, L b is defined as L b L / K ° . To maintain L b constant, L b was increased 

by a proportionate amount. The increase in fluid exchange accompanying an increase in a is 

therefore attributed to the enhanced fluid transport properties of both the interstitium and the 

permeable boundaries. 

As previously mentioned, the fluid exchange rate within the system depends on the values 

of P b and rib, which are the driving forces, as well as the transport properties of each of the 

permeable boundaries. While £ affects the plasma protein transport mechanisms within the 

interstitium it does not influence the transport properties of the permeable boundaries, nor 

does it alter the fluid chemical potential in the blood or the peritoneal fluid. In these cases, 

where the principal resistances to fluid flow are at the boundaries, a change in £ generally had 

only a marginal effect on the net fluid exchange to or from the interstitium. However, £ did 

influence substantially the distribution of fluid flux crossing the mesothehum, since it affected 

the distribution of interstitial plasma proteins and therefore the distribution of interstitial fluid 

chemical potential. This is illustrated in panels (i), (iii), and (v) of Figure (4.8), which show the 

distribution of fluid fluxes crossing the mesothehum when £ equals 1.0, 0.5, and 0.0, respectively, 

for the case where a equals 9.117 and the mesothelial transport properties are defined by 

boundary condition 2. 

Enhancing the transport characteristics of the mesothehum typically led to a moderate 

increase in fluid exchange across the arteriolar capillary, due to the increased capacity for the 

system to exchange fluid with the peritoneum. Consider, for example, the case where £ = 0.5, 

and a = 0.9117. Altering the mesothelial transport properties from those given by boundary 

condition 2 to those of boundary condition 3 increased the fluid flux across the arteriolar 

capillary from 2.26 to 2.87. 

4.4.3 Plasma Protein Exchange across the Interstitial Boundaries 

Table (4.4) reports the average plasma protein fluxes across the permeable boundaries for each 

of the 26 successful simulations. The enhanced fluid exchange associated with an increase 
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in a produced a concomitant increase in the convective plasma protein exchange across the 

permeable boundaries, thereby increasing the total exchange of plasma proteins within the 

system. 

£ a Boundary Condition 1 Boundary Condition 2 Boundary Condition 3 
Art Ven Mes Art Ven Mes Art Ven Mes 

1.0 0.09117 -0.005 0.005 — -0.034 0.000 0.002 -0.046 0.001 0.002 
1.0 0.9117 -0.060 0.060 — -0.345 0.069 0.014 -0.430 0.029 0.020 
1.0 9.117 -0.673 0.673 — -3.774 0.396 0.169 No Convergence 
0.5 0.09117 -0.005 0.005 — -0.034 -0.000 0.002 -0.046 -0.001 0.002 
0.5 0.9117 -0.056 0.056 — -0.339 0.064 0.014 -0.430 0.029 . 0.020 
0.5 9.117 -0.645 0.645 — -3.736 0.512 0.161 -3.920 0.130 0.189 
0.0 0.09117 -0.005 0.005 — -0.034 -0.000 0.002 -0.046 0.001 0.002 
0.0 0.9117 -0.051 0.051 — -0.332 0.060 0.014 -0.430 0.028 0.020 
0.0 9.117 -0.364 0.364 — -3.030 0.433 0.130 -3.840 0.144 0.184 

Table 4.4: Average dimensionless plasma protein fluxes across permeable bound
aries. A negative value indicates a flux entering the interstitium, while a positive 
value denotes a flux leaving the interstitial space. 

Material balances dictate that the net amount of plasma proteins entering the venular capil- . 

lary and the peritoneum must equal the net amount of plasma proteins entering the interstitium 

from the arteriolar capillary. In general the exchange of plasma protein across the arteriolar 

capillary was predominantly convective. Since £ had negligible effect on the net fluid influx 

across the arteriolar boundary, it had little impact on the net amount of plasma proteins en

tering the system. However, since £ had a strong influence on the distribution of fluid flux 

crossing the mesothehum, it also influenced the distribution of plasma protein fluxes crossing 

that boundary (see panels (ii), (iv), and (vi) of Figure (4.8)). 

The influence of the mesothehum on net plasma protein exchange paralleled its influence 

on net fluid exchange across each of the permeable boundaries. For example, a change from 

boundary condition 2 to boundary condition 3, with £ = 0.5 and a = 0.9117, increased plasma 

protein exchange across the arteriolar capillary from 0.339 to 0.430. Again, this behavior 

is attributed to the increased capability of the interstitium to exchange material with the 
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peritoneum. 

4.4.4 Interstitial Plasma Protein Convection, Diffusion, and Distribution 

According to Eq. (4.20), interstitial plasma protein convection is directly proportional to the 

interstitial fluid flux available to transport proteins, as well as the local concentration of plasma 

proteins within the interstitium. Plasma protein diffusion, on the other hand, is proportional 

to the local gradient in plasma protein concentration (see Eq. (4.21)). Therefore, the influence 

of £, a, and the mesothelial transport properties on protein convection and diffusion within the 

interstitium will depend upon the effect of these parameters on each of the interstitial fluid flux, 

the local interstitial plasma protein concentration, and the interstitial plasma protein gradients. 

Consider first the influence of the parameters on convective plasma protein transport. Since 

an increase in a typically enhanced fluid flow through certain regions of the interstitium (par

ticularly in the vicinity of the arteriolar capillary), such a change promoted protein convection 

there. Likewise, reducing the resistance of the mesothehum to fluid and protein exchange in

creased fluid transport through these regions of the interstitial space. However, such a change 

also tended to decrease the average value of C l within the entire interstitium (see Table (4.5)); 

i.e., as the resistance and plasma protein sieving properties of the mesothehum were decreased, 

the interstitial fluid composition approached that of the peritoneal fluid. For example, a change 

from boundary condition 2 to boundary condition 3, holding £ and a constant at 0.5 and 0.9117 

respectively, reduced the average value of & within the interstitium from 0.54 to 0.18. (It is 

worth noting that those mean dimensionless interstitial concentrations in the range of 0.31 

to 0.37 predicted by a number of the simulations agree closely with the typical value of 0.33 

reported by Drake and Gabel [45].) The overall influence of the mesothehum on plasma pro

tein convection therefore depended on the relative magnitudes of the two opposing effects of 

increased fluid flow and reduced interstitial plasma protein concentration. Finally, while £ had 

only a limited influence on the magnitude of net exchange of fluid between the interstitium 

and the vascular system, it determined the degree of convective hindrance for plasma protein 
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transport (see Eq. (4.20)). It therefore played a key role in deteimining the degree of plasma 

protein convection within the interstitium. 

Q Boundary Boundary Boundary 
Condition 1 Condition 2 Condition 3 

1.0 0.09117 0.74 0.31 0.19 
1.0 0.9117 0.61 0.55 0.18 
1.0 9.117 0.24 0.37 No Convergence 
0.5 0.09117 0.74 0.31 0.19 
0.5 0.9117 0.69 0.54 0.18 
0.5 9.117 0.42 0.54 0.19 
0.0 0.09117 0.75 0.31 0.19 
0.0 0.9117 0.77 0.53 0.18 
0.0 9.117 0.95 0.52 0.20 

Table 4.5: Mean values for the total plasma protein concentration, C , for each of 
the simulations. 

The plot of C 4 (Figure (4.5) (i)) reveals comparatively small gradients in the y direction. 

This suggests that averaging the concentration in this dimension will still provide a reasonable 

picture of the plasma protein distribution within the interstitium. Furthermore, a y-averaged 

profile approximates more closely the plasma protein distributions obtained experimentally 

using, for example, ultraviolet light absorbance techniques [40, 115]. We will therefore refer to 

these averaged profiles in our discussion of diffusion within the interstitial space. 

The y-averaged plasma protein concentration profile of each of the 26 cases is given in 

Figure (4.9). A single plot is reported for each of the nine possible combinations of £ and 

mesothelial boundary conditions. Each plot contains up to three curves corresponding to the 

three values of a considered. Comparing plot (ii) to plot (iii), for example, it is evident that 

enhancing the transport properties of the mesothehum reduced the plasma protein concentra

tion gradients within the central regions of the interstitium, suggesting reduced diffusion there. 

In Figure (4.9) (ii), with a equal to 9.117, the high convective flux of plasma proteins encoun

tered a barrier at the mesothehum, creating a local buildup of proteins that promoted diffusion 
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towards the central portions of the interstitial space. As the mesothelium became more per

meable to fluid and proteins, the plasma protein buildup was ehminated, and the diffusive flux 

was reduced, producing the corresponding profile in plot (iii). 

A decrease in a promoted plasma protein diffusion relative to convection within the inter

stitium, since a is a measure of the resistance of the interstitium to diffusion relative to its 

resistance to fluid flow. Furthermore, a reduction in a resulted in less protein exchange across 

the permeable boundaries, as discussed earlier. The enhanced protein diffusivity, relative to 

fluid conductivity, and the reduced quantity of plasma proteins entering the interstitium caused 

a flattening of the interstitial plasma protein concentration profiles in all of the plots. 

With £ equal to zero, interstitial plasma protein transport was limited to diffusion alone 

(see Eq. (4.21)), so that the protein concentration profiles were often altered substantially from 

those in which protein convection occurred. For example, the local buildup of plasma proteins 

due to the high convective plasma protein flux to the mesothehum discussed earlier (see plots 

(ii) and (iv)) is absent in plot (viii) where plasma protein transport is by diffusion only. 

It is not generally possible, however, to identify the dominant transport mechanism on the 

basis of the averaged concentration profile alone. Compare, for example, the curves in plot (vi), 

corresponding to a value of 0.5 for £ to the curves in plot (ix) in which £ equals 0.0. The curves 

closely resemble one another. However, in the former case, the ratio of the average interstitial 

plasma protein convective flux in the £ direction to the diffusive flux in that direction ranges 

from 1.52 to 2.34 in the vicinity of the arteriolar capillary, indicating significant plasma protein 

convection in this region for all values of a considered (see Table (4.6)). In plot (ix), however, 

interstitial plasma protein transport is by cliffusion alone. 

Based on the above discussion, it is clear that no single parameter can be identified that 

fully characterizes fluid or plasma protein transport within the interstitium. It is the com

bined influence of the various transport parameters that determine the relative importance of 

interstitial plasma protein convection to diffusion. This is illustrated in Table (4.6). No clear 
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Figure 4.9: The thickness-averaged dimensionless total concentration, C t / C a r t , as a 
function of position, x / L . The nine plots correspond to the nine different combina
tions of boundary conditions (columns) and values of £ (rows) studied. Each plot 
contains up to three curves corresponding to the three values of a considered (i.e., 
the solid line corresponds to a equal to 0.09117, the dotted line corresponds to a 
equal 0.9117, and the chain-dot line corresponds to a equal to 9.117). 
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a Boundary Condition 1 Boundary Condition 2 Boundary Condition 3 
Art Ven Mes Art Ven Mes Art Ven Mes 

1.0 0.09117 -1.22 -1.21 — -1.69 -0.99 -2.26 -3.54 -0.97 23.22 
1.0 0.9117 -1.35 -1.21 — -1.34 -1.21 -1.34 -7.89 -1.21 5.73 
1.0 9.117 -64.51 -1.21 — -2.71 -1.21 -1.23 No Convergence 
0.5 0.09117 -1.55 -1.53 — -5.28 -0.98 9.16 2.34 -0.93 0.92 
0.5 0.9117 -1.67 -1.53 — -1.89 -1.53 -1.98 1.52 -1.53 0.75 
0.5 9.117 -9.22 -1.53 — -2.30 -1.53 -1.62 1.80 -1.53 0.71 

Table 4.6: Ratio of average plasma protein convection to average plasma protein 
diffusion normal to each of the permeable boundaries, evaluated in the intersti
tial space adjacent the respective boundaries. A negative values indicates that 
convection and diffusion are in opposite directions. 

trend appears relating the ratio of convective to diffusive protein transport to a, the mesothe

lial transport properties, and non-zero values of £. However, the data reported in Table (4.6) 

emphasize the importance of convection in the model's prediction of interstitial plasma protein 

transport for all cases in which £ is non-zero. 

Finally it is noted that, under certain circumstances, the local concentration of interstitial 

plasma proteins in the accessible space, C1, exceeded that in the blood. Consider, for example, 

the case where a=9.117, £=1 .0 , and the mesothelial transport properties are given by boundary 

condition 2. The buildup of plasma proteins at the mesothehum discussed earlier caused C 1 to 

reach a value of 0.8 at x=0.2, which corresponds to a value of 1.07 for C 1 . A more dramatic 

concentrating effect was observed for the case where the mesothehum was assumed impermeable, 

a equalled 9.117, and £ equaled 0 (corresponding to diffusion only within the interstitium). In 

this case the large convective flux of plasma proteins crossing the arteriolar capillary caused a 

buildup of protein in the interstitial space, until the plasma protein gradient was sufficient to 

transport proteins by diffusion at the same rate as they entered the interstitium at the arteriolar 

capillary. 
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4.4.5 Comparison of Model Predictions to Experimental Data 

To date, there is little experimental data in the literature describing the distribution of native 

interstitial plasma proteins within a specific tissue. Recently, however, Friedman and Witte 

[40] measured the interstitial plasma protein concentration profile in rat mesentery. We will 

therefore refer to this data set in the following discussion. Furthermore, B.J. Barber of the 

University of Wisconsin has improved on the technique used by Friedman and Witte and is 

currently using it to determine plasma protein content and distribution within mesentery. It is 

therefore expected that even better data will be available in the near future. 

Friedman and Witte employed ultraviolet light absorbance techniques and fluorescent tracers 

to determine local interstitial plasma protein content and interstitial fluid content, respectively, 

as a function of position in the ileal mesentery of the rat. A segment of the tissue bounded by 

arteriolar and venular microvessels was selected for study, where the distance separating the 

two vessels was approximately 295 pm. 

The experimental determination of the local interstitial plasma protein content was based 

on the fact that aromatic amino acids have maximum light absorption at a wavelength of 280 

nm and negligible absorption at 320 nm. Therefore, by performing two measurements of hght 

absorbance using these wavelengths, the authors were able, in principle, to distinguish between 

the absorbance due to the interstitial plasma proteins the absorbance associated with other non

specific material. Local fluid volume was determined by measuring the hght intensity from the 

fluorescent tracers (in this case, sodium and FITC-dextran) that distribute rapidly throughout 

the entire interstitial fluid volume. From the measurements of local plasma protein content and 

fluid content, and employing some simplifying assumptions regarding the geometry of the tissue 

(e.g., that the thickness of the mesenteric tissue segment is constant), the authors estimated 

the variation in the local concentration of interstitial plasma proteins (i.e., Ct) with position. 

The results of the experimental study are presented in Figure (4.10). Due to the considerable 

scatter in the data, the authors calculated two profiles based on the upper and lower limits 

in the scatter, as well as an average profile lying between these two limits. The top graph of 
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Figure (4.10) shows upper and lower bounds of the concentration profile associated with local 

fluctuations in the measurements, while the bottom graph plots the mean value of these two 

curves. 

The boundary parameters and interstitial transport parameters of the model were adjusted 

to obtain a reasonable fit between the model predictions of C 1 and the mean concentration 

profile shown in Figure (4.10). This was done for two different scenarios: one in which it was 

assumed that interstitial plasma protein transport occurs by diffusion alone (i.e., £ equal to 

0), and one in which both convection and diffusion take place (i.e., a non-zero value for £) . In 

both cases, the parameter values were detemiined by trial-and-error using only a few iterations. 

A rigorous least-squares fit was not attempted. Hence, it is conceivabe that other choices of 

parameters might lead to even better agreement between model predictions and experimental 

data. 

With £ equal to zero, a reasonable match between the model predictions and experimental 

data was obtained by adjusting the following parameters as stated, keeping the other variables 

at their baseline values: Lp^ = 1.5 X 10- 8cm 3/(dyne-s), Lp""31 = 3.0 x 10- 8cm 3/(dyne-s), LJJ"" = 

1.0 x 10- 9cm 3/(dyne-s), cr** = 0.85, <rven = 0.80, tr™5 = 0.70, P v e n = 2.207 X 10 4dyne/cm 2, 

C m e s = 3.0 gm/dl, K° = 3.0 x 10- ncm 4/(dyne-s), and D e f f = 2.0 x 10- 7 cm 2 /s . I £ * and Lp™ 

are therefore somewhat higher than reported for mesentery, but not outside the general range 

of values reported in the literature [71]. A similar profile could also be obtained assuming 

£ equalled 0.35 and the assigning these same parameters the following values: Lp^1 = 1.4 x 

10- 8cm 3/(dyne-s), Lp™ = 1.6 X 10- 8cm 3/(dyne-s), L ^ = 5.0 X 10- 9cm 3/(dyne-s), o** = 0.75, 

<rven = 0.70, o^" = 0.51, P v e n = 2.207 x 10 4dyne/cm 2, C m e s = 3.6 gm/dl, K° = 3.0 x 

10 _ 1 1crn 4/(dyne-s), and = 1.0 X 10~ 7cm 2/s. Again, while and L £ m are elevated, they 

remain within the range reported in the literature. The arteriolar and venular capillary reflection 

coefficients, meanwhile, are somewhat lower than reported in the literature for mesentery. But 

again, the values he within the range reported for single capillaries in frog mesentery, for 

example [71]. The resulting profiles for these two cases are compared to the experimental data 
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Figure 4.10: The upper graph shows the maxima and minima associated with the ex
perimental determination of interstitial plasma protein concentration distribution 
in rat mesentery by Friedman and Witte [40]. The lower graph plots the average 
between these two. 
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in Figure (4.11). 

1.0 

o 
*—t 

% 
E -
iz; 
w 
o 
% 
o 
o 
CO 
CO 

w 

o 
t—t 
CO 
2 

0.0 
0.0 1.0 

DIMENSIONLESS DISTANCE 

Figure 4.11: The model predictions of C* assuming £ is zero (solid line) and assum
ing £ is 0.35 (dotted line) are compared here to the mean concentration profile 
determined by Friedman and Witte. 

In both cases, fluid and plasma proteins enter the interstitial space from the two vascular 

compartments and leave the interstitium via the mesothehum. Clearly, when £ is zero, all 

plasma protein transport is by diffusion alone. However, when £ is 0.35, there is substantial 

convective transport of plasma proteins within the interstitium. For example, the ratio of 

convection to diffusion at the arteriolar, venular and mesothelial boundaries is 3.36, 2.56, and 
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1.63 respectively. It is also interesting to note that neither of these scenarios agrees with 

Friedman's and Witte's interpretation of the data. These authors assumed that fluid and 

plasma proteins entered the interstitium across the arteriolar wall, some of the proteins then 

crossing the mesothehum to cause the local gradient in concentration near that vessel. However, 

in contrast to the model predictions, they further assumed that proteins were transported by 

convection to the venular vessel where they were reabsorbed into the blood. 

It is clear from Figure (4.11) that reasonable agreement between experimental data of Fried

man and Witte and model predictions is possible assuming drastically different interstitial 

plasma protein transport mechanisms. In both cases, however, the hydraulic conductivities 

of the vascular boundaries had to be increased by an order of magnitude, while decreasing 

the reflection coefficients for these vessels somewhat, to match the experimental data. More 

importantly (and contrary to opinions expressed by some [115, 74]), it is evident from this ex

ample that, without reasonable estimates of the transport properties of arteriolar, venular and 

mesothelial boundaries, one cannot draw definitive conclusions regarding interstitial plasma 

protein transport mechanisms from concentration profiles in mesentery. 

4.5 Concluding Remarks 

In the preceding sections we applied a simplified version of the general model of interstitial 

transport developed in Chapter 3 to study the influence of a number of transport parameters 

on microvascular exchange in mesentery. The analysis was limited in several respects. First, 

the simplified model failed to account for possible deformation resulting from pressure gradients 

within the interstitium. The extent to which this limits the analysis depends on the deformation 

characteristics of the mesentery, which remain poorly defined. Second, the study focussed 

on steady-state exchange only. Since the model considered only a single 'average' plasma 

protein species, it neglected the possible influence of several distinct plasma protein species 

on the overall exchange of fluid and proteins in the system. Thirdly, values for a number of 

the model parameters were unknown and had to be estimated from the best available data. 
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Finally, the largest fluid and plasma protein fluxes occurred in the vicinity of the arteriolar and 

venular capillaries, which were approximated by rectangular boundaries. The vessels' curvature 

may have to be considered to provide a more accurate description of fluid and plasma protein 

exchange in these regions. 

The findings of the study are therefore hypothetical. However, several points are noted 

which warrant further attention. These are summarized below. 

1. A recent experimental study of the movement of labelled albumin in rat mesentery sug

gests that convection plays a significant role in interstitial plasma protein transport 

[115, 74]. Our numerical investigation further suggests this even at reduced values of 

convective hindrance, £. Hence, diffusion models [38, 7] may represent an oversimplifica

tion of interstitial plasma protein transport in this tissue. However, the model also shows 

that steady-state interstitial plasma protein concentration profiles alone yield insufficient 

information to determine the principal mechanisms of plasma protein transport within the 

interstitium. In some cases where plasma protein transport was predominantly convective, 

the profiles are virtually indistinguishable from those in which plasma protein transport is 

purely diffusive. These profiles are strongly influenced by the transport properties of the 

mesothehum, for example. Further information about the mesothehum's exchange char

acteristics, as well as other system parameters, is needed to interpret interstitial plasma 

protein distribution data (see, for example, [40]). 

2. Because it is influenced by osmotic as well as hydrostatic pressure gradients, the hydrody

namics within the interstitium can be quite complex, culminating, for some circumstances, 

in the recirculation of fluid within the mterstitium. The hydrodynamics, in combination 

with the sieving properties of the bounding walls, can also result in irregularities in the 

distribution of fluid and plasma protein fluxes crossing a permeable boundary, such as 

the mesothehum, even when the boundary's transport properties are uniform. This could 

lead to the erroneous identification of 'leaky sites' within the system. 
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3. The coUoid osmotic pressure gradients exert a strong influence on the flux patterns within 

the interstitium, suggesting that the Darcy expression evoked in a number of previous 

models [22, 36, 87], which considers hydrostatic gradients only, is inadequate for describing 

interstitial fluid transport. 

The model presented here can be adapted readfly to simulate microvascular exchange in a 

variety of tissues. The changes might include, for example, the addition of a lymphatic vessel 

as an interstitial boundary, the inclusion of multiple plasma protein species in the analysis, 

and extension to transient conditions. In fact these changes are incorporated into the model 

formulation in subsequent chapters. In this way the model provides a powerful tool to investi

gate microvascular exchange under transient conditions and for other tissue systems, providing 

insights into the behavior of the system that may not be identified readily in laboratory studies. 



Chapter 5 

Transient Exchange in Mesentery Following a Systemic Upset 

In the previous chapter we studied the steady-state exchange of fluid and plasma proteins 

within a segment of mesentery as a function of interstitial transport mechanisms (i.e., restricted 

convection and molecular diffusion) and the transport properties of the mesothelial layer. In this 

chapter we will extend the analysis to consider the transient behavior of the system following 

a systemic perturbation. Specifically, we will look at exchange within the mesenteric slab in 

response to two different upsets: a sustained reduction in plasma protein concentration in the 

blood (i.e., hypoproteinemia), and a sustained elevation in systemic blood pressure (i.e., venous 

congestion). As before, the system response to these perturbations will be investigated as a 

function of mesothelial transport properties and interstitial transport mechanisms. Since the 

tissue segment is assumed to be rigid, however, edema formation will not be addressed here. 

. The remaining portion of this chapter is divided as follows. In Section 5.1 we present the 

transient version of the system equations. Section 5.2 specifies the cases making up the study, 

while Section 5.3 outlines the numerical procedures employed in the simulations. A discussion 

of the results is found in Section 5.4. Finally, Section 5.5 summarizes the findings of the 

investigation. 

5.1 T h e Governing Equations 

In Chapter 4 the mesentery was treated as a two-dimensional, rectangular slab. The results 

of that study suggested that, in many cases at least, the twc>-dimensional tissue could be 

adequately approximated by an equivalent one-dimensional system. This suspicion was fur

ther substantiated by a series of numerical experiments in which the simulations performed 

97 
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i n Chapter 4 were repeated assuming a one-dimensional mesentery'. The development of the 

one-dimensional equations and the results of that analysis are presented i n Appendix A . Based 

on those findings, al l subsequent simulations have assumed the one-dimensional geometry. 

Consider first the material balance equation for the interstitial f luid. Since the tissue is 

assumed to be rigid and the fluid is incompressible, the local interstitial fluid flux adjusts in

stantaneously to any changes that occur in the interstit ial colloid osmotic pressure distribution. 

Hence, the interstitial fluid mass balance equation is the same as for the steady-state case. That 

is, the sum of the net local efflux of interstitial fluid, per unit volume of interstitium, and the 

net loss of interstitial fluid to the peritoneum, per uni t volume of intersti t ium, must equal zero. 

Hence, for the one-dimensional mesentery we have 

f + | . j ? « = 0 , (5..) 

where j ° is the local interstitial fluid flux at some point x i n the system, H is the tissue thickness, 

and j™ 6 5 is the local fluid flux crossing either of the two mesothelial boundaries at that same 

point. (By virtue of the symmetry of the system, the fluid fluxes across the upper and lower 

mesothelial boundaries are identical.) 

The local interstitial fluid flux is given by the extended Darcy expression: 

where, as before, the colloid osmotic pressure, II1, is related to the local interstitial plasma 

protein concentration, C 1 , v ia a third-order polynomial . The fluid exchange rate between the 

intersti t ium and the peritoneum, meanwhile, is described by Starling's Law: 

jmes = jmes j p l _ pmes _ ^ j j l _ jj m e s j j ^ 3) 

Substituting Eqs. (5.2) and (5.3) into E q . (5.1) gives the final form of the fluid mass balance 

equation: 

d 2 ( P l ; n l ) - ^ [ p l - p m e s - *™ (nl - n m e s)] = o- 0-4) 
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A material balance on the plasma proteins within a differential volume of interstitium under 

transient conditions gives the following: 

IP 
;o dC1 2 a s 

^ Jw dx H 

where j™es is given by the nonlinear flux equation, i.e., 

•mes _ /-, m « \ -mes [C1 - C m C SeXp(-Pem c S)] 
J s - { 1 ~ a ) - J w ' [ l - « p ( - P e — ) ] ' ( 5 - 6 ) 

Pe being the modified Peclet number given by Eq. (4.15) of Chapter 4. Substituting Eq. (5.6) 

into Eq. (5.5) then gives 

0 dC1 _ _ _ r l - m e s 
J w ' dx H 

^ C 1 

2 [C1 - C™exp(-Pe—)] , 5C1 

+ )J. [ L ^ . p e — ) ] ~ - n ^ T - ( 5 J) 
The first set of terms of Eq. (5.7) found within the square brackets represents the net 

convective efflux of plasma proteins from a point within the interstitium, per unit volume of 

interstitial space, while the second term is the net diffusive efflux of proteins, per unit volume 

of interstitium (mechanical dispersion effects are neglected here). The third term represents the 

net loss of plasma proteins to the peritoneal fluid (j™"), per unit volume of interstitium. The 

sum of these three terms equals the local net rate of decrease in interstitial plasma proteins per 

unit volume of interstitium, given by the right-hand-side of the equation. 

Equations (5.4) and (5.7) must be combined with the pertinent set of boundary and initial 

conditions. The boundary conditions at the arteriolar and venular capillaries remain unchanged 

from the steady-state analysis, and so are given by Eqs. (4.13), (4.14), and (4.15) of Chapter 4. 

The initial conditions, meanwhile, can be calculated by solving the steady-state versions of the 

transport equations using appropriate boundary conditions. 

The interstitial fluid and plasma protein mass balance equations are cast in dimensionless 

form using the same set of dimensionless groups as before, along with the dimensionless time, 

t, equal to t Deff/L2. The fluid mass balance equation then becomes 

d 2 ( P i _ f j i ) 2 

dx2 H - ^ t ™ " [P 1 - p m c s - <rmcs (n 1 - nm c s)j = o. (5.8) 
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The plasma protein mass balance equation, meanwhile, is given by 

•r0 dC1 _ - ra - 1  

J w ' dx H J w 

, d'C1 

1 -1F- + 
2 fc1 - Cm e sexp(-Pem e s)| 

+ - • (1 - <rmes) • j m e s • f : Y-1 = 0, (5.9) H 1 - exp(-Pemes)] 

where Pem e s is given by Eq. (4.26), and where j™" is 

= a • Lp""* [P1 - P m e s - <rmcs (ii 1 - n m e s)] . (5.10) 

This completes the mathematical formulation of the transient mass balance equations. 

5.2 Case Studies 

As was mentioned at the beginning of this chapter, two systemic perturbations were simulated, 

namely the case of sustained hypoproteinemia and that of sustained venous congestion. These 

two upsets are discussed below. 

Hypoproteinemia Hypoproteinemia is characterized by a drop in the plasma protein con

centration within the blood. In the simulations presented here, it was assumed that C"*1 and 

C v e n fell instantaneously to 50 % of their original value (that is, from 6 gm/dl to 3 gm/dl). 

C m e s , on the other hand, was kept at its original value of 1.5 gm/dl. While an instantaneous 

drop in plasma protein content is not representative of a typical pathological state, it does 

provide a reasonable starting point for simulating the effects of a injection of saline into the 

vascular system, for example, provided that the time course for the injection is much shorter 

than the response time of the system. 

Venous Congestion The arteriolar and venular capillary pressures can be related to the 

venous and arterial blood pressures ( P V E N and P A R T , respectively) through the following 

resistance relationships [108]: 

part = pVEN + k i (pART _ pVENJ ^ ( 5 u ) 
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pvcn _ pVEN + k z ^pART _ pVEN j ; ( 5 1 2 ) 

where kj and k 2 are the fractions of the systemic resistances associated with the branch of the 

blood vasculature from the arteriolar end of the network to the heart and from the venular end 

of the network to the heart, respectively. Given that, in the simulations, P*"* equals 2.942 x l O 4 

dyne/cm2 (22 mmHg) while P v e n equals 1.667 XlO 4 dyne/cm2 (12.5 mmHg), and assuming that 

P A R T and P V E N are 1.337 XlO 5 dyne/cm2 (100 mmHg) and 1.605 x lO 4 dyne/cm2 (12 mmHg), 

respectively, [108], then ki becomes 0.1136 while k 2 assumes a value of 0.0057. 

During venous congestion, P V E N is elevated. This results in an increase in both P 0 1 1 and 

P v c n according to Eqs. (5.11) and (5.12). In the venous congestion case studies it is assumed 

that P V E N increases to 3.342 x lO 4 dyne/cm2 (25 mmHg), raising and P v e n to 4.4825 x l O 4 

dyne/cm2 (33.52 mmHg) and 3.400 x lO 4 dyne/cm2 (25.43 mmHg), respectively. Hence the 

arteriolar capillary pressure increases by 52 % of its original value, while the venular capillary 

pressure increases by 103 % of its baseline value. Again, it is assumed that these shifts in hydro

static pressures occur instantaneously, so that the simulations provide only a first approximation 

to the onset of venous congestion. 

Computer Simulations The three different mesothelial boundary conditions described in 

Chapter 4 were simulated to determine the influence of this boundary on the transient response 

of the system to each of the two systemic perturbations cited above. In addition, the plasma 

protein convective lundrance was varied to consider two extreme cases of interstitial plasma 

protein transport: pure diffusion (£ equal to 0), and full convection (£ equal to 1). Al l other 

system parameters were maintained at their baseline values during the simulations. Hence a, 

for example, remained 0.9117. These alterations in £ and the mesothelial transport properties 

resulted in a 2 X 3 factorial study for each of the perturbations considered. 

Finally, it is noted that the initial conditions of each of the simulations were calculated 

from the steady-state model, assuming pre-perturbation conditions, while the final steady-

state conditions were determined using the same model and assuming the perturbed conditions 
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prevailed. 

5.3 Numerical Procedures 

As before, the finite element method was used to reduce the fluid mass balance equation to a set 

of coupled, algebraic expressions that could be solved iteratively using matrix techniques. The 

interstitial plasma protein mass balance equation, however, contains both spatial and temporal 

terms, hi this case the finite element method was applied to the spatial terms of the equation, 

while a Crank-Nicolsen finite difference scheme was used to approximate the temporal term. A 

detailed discussion of this combined technique, as it applies to the plasma protein mass balance 

equation, can be found in Appendix B. 

The interstitial plasma protein concentration distribution and the interstitial hydrostatic 

pressure field were determined using the following iterative procedure. A fully explicit finite 

difference formulation was used to obtain a first estimate of the plasma protein concentration 

distribution at some time At after initiation of the system upset, using the specified initial con

ditions. This initial estimate of C 1 was used to update the hydrostatic pressure distribution, P1, 

using the finite element formulation. Having an estimate of both C 1 and P 1 at the new time, 

the Crank-Nicolsen finite difference scheme could then be used during subsequent iterations at 

this same time step to obtain new estimates of C 1 at At. Upon each iteration, the appropriate 

finite element matrices and vectors were revised to reflect the updated estimates of the plasma 

protein concentration distribution and hydrostatic pressure field. The iterative procedure was 

repeated until the convergence requirements outlined in Section 4.3 of Chapter 4 were met. 

This overall process was repeated at each new time step to determine the plasma protein con

centration distribution and hydrostatic pressure field as functions of space and time. Typically, 

the system required less than 10 iterations to achieve convergence at any one time-step. 

The simulation specifications were as follows. The domain was divided into 25 quadratic 

elements (i.e., each element contained 3 nodes) to give a total of 51 nodes within the one-

dimensional tissue space. This choice of step size was based on the favourable results of the 
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one-dimensional simulations performed in Appendix A. Lagrange basis functions were used to 

approximate the spatial variations of C 1 and P 1 . The initial time-step size was chosen so that 

the Courant number did not exceed a specified value (see Section B.4 in Appendix B for details). 

For a number of cases, the value of the initial Courant number was varied over a range of values 

from 0.0001 to 0.01 to assure a consistent estimate of the dependent variables. The validity 

of the transient simulations was further coimrmed by allowing selected simulations to reach 

steady-state. These estimates of the new system steady-state conditions were then compared 

to the steady—state conditions calculated by the one-dimensional steady-state simulator. In all 

cases, the two predictions showed excellent agreement. 

5.4 Results and Discussion 

We will now consider, individually, the results of the transient simulations of hypoproteinemia 

and venous congestion. In each case we will address the effects of the mesothelial transport 

properties and the interstitial transport mechanisms on the transient exchange of fluid and 

plasma proteins within the system, as well as their effect on the distribution of interstitial 

plasma proteins over time. 

5.4.1 Transient Exchange in Sustained Hypoproteinemia 

The transient exchange rates of fluid and plasma proteins and the changes in interstitial plasma 

protein distribution within the mesenteric tissue segment following a drop in the vascular plasma 

protein content are all affected by the transport properties of the mesothelial layer and the 

mechanisms governing interstitial plasma protein transport. However, before discussing how 

these factors influence the behavior of the system during hypoproteinemia, it seems appropriate 

to consider briefly the effect that this perturbation has on the overall driving forces for fluid 

and plasma protein exchange within the system. 
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T h e E f f e c t o f H y p o p r o t e i n e m i a o n L u m i n a l D r i v i n g F o r c e s 

T h e o v e r a l l d r i v i n g forces for the exchange o f fluid a n d p l a s m a p ro t e in s w i t h i n the m o d e l 

t issue consist o f t h e differences i n t h e effective fluid c h e m i c a l p o t e n t i a l a n d p l a s m a p r o t e i n 

c o n c e n t r a t i o n , r e spec t ive ly , b e t w e e n e a c h o f three l u r n i n a l fluids i n the s y s t e m (i .e . , the a r t e r i o l a r 

c a p i l l a r y fluid, t he v e n u l a r c a p i l l a r y fluid, a n d the p e r i t o n e a l fluid). C l e a r l y , a d r o p i n p l a s m a 

p r o t e i n content i n t h e b l o o d reduces t h e ove ra l l d r i v i n g force for diffusive exchange o f p l a s m a 

p r o t e i n s i n the s y s t e m . L i k e w i s e , t h i s r e d u c t i o n i n vascu la r p r o t e i n con ten t w o u l d t e n d to 

r e d u c e the ne t c o n v e c t i v e exchange o f p l a s m a p ro t e in s , s ince less p r o t e i n w o u l d a c c o m p a n y the 

fluid t r a n s p o r t e d across the vascu la r b o u n d a r i e s . H o w e v e r , the convec t ive t r a n s p o r t o f p l a s m a 

p r o t e i n s , a n d h e n c e t h e t o t a l exchange o f p ro t e in s , also depends o n the t o t a l v o l u m e o f f l u i d 

e x c h a n g e d b e t w e e n t h e var ious l u m i n a l c o m p a r t m e n t s . H e n c e , we m u s t also cons ide r h o w t h e 

lower vascu la r p l a s m a p r o t e i n c o n c e n t r a t i o n i m p a c t s o n the d r i v i n g forces for fluid exchange 

w i t h i n the t issue segment . 

T h e d imens ion le s s effective fluid c h e m i c a l p o t e n t i a l o f the l u m i n a l fluid assoc ia ted w i t h a 

p e r m e a b l e b o u n d a r y b , / Z ^ , is g i v e n b y P b — erh Ilb. F o l l o w i n g a d r o p i n p r o t e i n c o n c e n t r a t i o n i n 

the p l a s m a , the effective p l a s m a p r o t e i n o s m o t i c pressure , <rb l l b , decreases b y a n e q u a l a m o u n t 

i n b o t h the a r t e r i o l a r a n d the v e n u l a r c a p i l l a r y . T h e effective c o l l o i d o s m o t i c pressure o f the 

p e r i t o n e a l fluid, h o w e v e r , r ema ins u n c h a n g e d . H e n c e , f o l l o w i n g the d r o p i n p l a s m a p r o t e i n 

c o n c e n t r a t i o n i n t h e b l o o d , p,^ increases from 0.218 t o 0.692, p^ increases from -0.215 t o 

0.259, a n d flQf* r e m a i n s -0.136 for b o u n d a r y c o n d i t i o n 2 a n d 0 for b o u n d a r y c o n d i t i o n 3. 

T h e ove ra l l d r i v i n g force for the e x c h a n g e o f fluid from one l u m i n a l c o m p a r t m e n t to a n o t h e r 

is g i v e n b y the difference i n the effective f l u i d c h e m i c a l p o t e n t i a l b e t w e e n the t w o c o m p a r t m e n t s . 

T a b l e (5.1) l is ts these for the var ious p a i r s o f c o m p a r t m e n t s . T h e f o l l o w i n g gene ra l observa t ions 

are m a d e . 

1. W h i l e b o t h p^]: a n d /2^™ inc rease , the difference b e t w e e n the t w o , p,^ - p^f1, r e m a i n s 

u n c h a n g e d from p r e - p e r t u r b a t i o n t o p o s t - p e r t u r b a t i o n i n a l l cases. 
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State Boundary Condit ion 1 Boundary Condit ion 2 Boundary Condition 3 

' s f T * e f f ' S i T ^eff > « f f * e f f ^eff * e f f ^c f f »*eff ^ t f f ^eff ^c f f _ 

Pre-Upset 0.433 0.433 0.354 -0.079 0.433 0.21S -0.215 

Post-Upset 0.433 0.433 0.828 0.395 0.433 0.692 0.259 

Table 5.1: Fluid chemical potential differences between the various luminal com
partments before and after the initiation of hypoproteinemia. 

2. The magnitude of p,^ — pt'^s increases in all cases where the mesothehum is permeable. 

AefP ~~ /•'ST J U S O increases in all cases where the mesothehum is permeable. Furthermore, 

Aeff 1 ~~ changes from a negative value to a positive value in each of these cases. 

We will return to these general observations in later discussions of fluid and plasma protein 

exchange during hypoproteinemia. 

Mass Exchange Assuming an Impermeable Mesothelial Layer 

Fluid Exchange The transient fluid exchange rates across the arteriolar boundary, for those 

cases in which the mesothehum is impermeable, are illustrated in Figure (5.1). Since the tissue 

segment and fluid are both incompressible, the fluid exchange at the venular boundary is equal 

in magnitude to that at the arteriolar boundary, and hence is not shown. The net driving 

force for fluid exchange within the system is p,^ — p^. As mentioned earlier, this quantity 

remains unaffected by the drop in vascular plasma protein content. In addition, because the 

mesothehum is impermeable, fluid entering the interstitium from one vascular compartment 

must pass through the entire interstitial space before re-entering the blood at the other end of 

the tissue segment. Therefore, the overall effective hydraulic resistance of the system remains 

constant and equal to the sum of the two vascular wall resistances and the total resistance 

associated with the interstitial space. 

Given this, one would expect no change in fluid exchange within the system following the 
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Figure 5.1: The average transient fluid flux across the arteriolar capillary wall fol
lowing hypoproteinemia is shown assuming an impermeable mesothelium and (i) £ 
equal to unity, and (ii) £ equal to zero. In both cases the fluid flux is normalized 
with respect to its initial value prior to the upset. The dotted line represents the 
new steady-state value in each case. 
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drop in systemic plasma protein concentration, provided that the transcapillary fluid exchange 

and interstitial fluid flux were both independent of interstitial coUoid osmotic pressures. The 

transient changes in fluid exchange within the tissue segment must therefore reflect the varia

tions in the interstitial osmotic pressure distribution, and hence the interstitial plasma protein 

distribution, with time. 

For the case where £ is unity, the system experiences a marginal increase in fluid exchange 

shortly after the drop in vascular plasma protein concentration. (At t equal to 0.1, or 15 minutes 

after initiation of hypoproteinemia, the dimensionless fluid flux crossing the arteriolar boundary 

has increased in magnitude by only a factor of 1.004, from -0.3982 to -0.3999.) This is illustrated 

in panel (i) of Figure (5.1), which shows the transient flux across this boundary, normalized 

with respect to its value prior to the onset of hypoproteinemia. The marginal rise in fluid 

exchange rate is attributed to the increase in f i ^ , which is only partially offset by a concomitant 

increase in P 1 . The effective interstitial osmotic pressure at the boundary, a0** •IT a r t , meanwhile, 

is still near its pre-upset value since insufficient time has elapsed to significantly reduce the 

concentration of interstitial plasma proteins there. Hence, the arteriolar fluid exchange rate, 

given by Starling's Law, is slightly greater following the upset. Subsequently, as the local plasma 

protein content near the boundary decreases with time, the dimensionless fluid flux across this 

boundary also declines so that, at t of 5.0 (i.e., 12.5 hours), it is -0.3836. This represents 48.4 

% of the total drop that occurs before the system reaches its new steady-state value of 0.3662. 

When £ is zero, the transient fluid exchange within the system follows a different pattern 

(see panel (ii) of Figure (5.1)). Again, there is a marginal increase in the fluid exchange rate 

across the arteriolar boundary (i.e., at t equal to 0.1 units, the dimensionless fluid flux has 

increased in magnitude from 0.3378 to 0.3400). However, in this case the magnitude of the 

dimensionless fluid flux across this boundary continues to increase with time until it reaches 

a new steady-state value of 0.3462. which represents a 2.5 % increase over the initial value of 

0.3378. At t equal 5.0, the arteriolar fluid flux has undergone 59.5 % of the total increase from 

initial to final steady-state conditions, indicating that the relaxation time for this case may be 
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somewhat less than, though of the same order of magnitude as, that when £ equals one. 

The fact that the the fluid exchange rate within the system increases with time when £ is 

zero, but decreases with time when £ is one, indicates that, with an impermeable mesothehum, 

the interstitial plasma protein transport mechanisms play a significant role in determining the 

transient fluid exchange within the model system following the onset of hypoproteinemia. As 

mentioned earlier, this can only be attributed to differences between the transient adjustments 

in the interstitial coUoid osmotic pressure distributions for the two cases. 

Plasma Protein Exchange and Interstitial Plasma Protein Distribution The tran

sient plasma protein exchange between the vascular and interstitial compartments is coupled 

to the fluid exchange between these via the convective transport of the macromolecules across 

the vascular boundary. In addition, plasma proteins enter the interstitium from the vascular 

compartment by diffusion. The relative importance of these two transport mechanisms depends 

on the magnitude of the fluid flux across a given permeable boundary, the degree of sieving at 

the boundary, and the differences in plasma protein concentration on either side of the bound

ary. Assuming that convection dominates, the total plasma protein flux across a permeable 

boundary b from vascular to interstitial compartments, expressed as a dimensionless quantity, 

is equal to (1 — erb) • j w • C b . Likewise, if the exchange is from the interstitium to the vascular 

compartment and assuming that convection dominates, the plasma protein flux is given by 

( l - t r b ) . j « .[C 1 ]!, . 

Figures (5.2) (i) and (ii) Ulustrate the transient plasma protein exchange across the arteriolar 

and venular capiUaries assuming £ equal to 1 and £ equal to 0, respectively. In each case the 

flux is normalized with respect to its value prior to the upset. Consider first the case where £ 

equals 1. During the entire transient phase and subsequent steady-state, the plasma protein 

transport from the arteriolar capiUary to the interstitium is predominantly convective. Hence 

the transient flux of plasma proteins across this boundary foUows the general trend of the 

transient fluid flux profile there. However, the former profile is further characterized by a 

dramatic reduction in the plasma protein exchange rate immediately after the perturbation, 
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due to the reduced vascular concentration of plasma proteins. 

At the venular boundary, convective plasma protein exchange likewise dominates during the 

transient period and the subsequent new steady-state. However, since the interstitial plasma 

protein concentration near the boundary is greater than the vascular plasma protein concentra

tion during the transient period, the plasma protein flux across the venular boundary exceeds 

the plasma protein flux across the arteriolar boundary. This results in a net exchange of plasma 

proteins from the interstitium to the blood and subsequent reduction in interstitial plasma pro

tein content. Furthermore, while the dimensionless arteriolar plasma protein exchange rate is 

only 4.7 % greater than the steady-state value at t of 5.0, the venular exchange rate is still 66.3 

% greater than its steady-state value. The length of the transient period is therefore determined 

by the time required to remove the excess plasma proteins from the interstitial space by way 

of the venular capillary. This is further illustrated in the transient interstitial plasma protein 

distributions shown in the left panel of Figure (5.3). 

Within the interstitium itself, both convection and diffusion play significant roles during the 

entire transient period. For example, the ratio of convection to diffusion within the interstitial 

space adjacent the arteriolar boundary varies from -1.15 to -1.33 from a t of 0.1 units to the 

new steady-state. The negative values for these ratios indicate that diffusion and convection 

occur in opposite directions. 

When £ is 0, plasma protein exchange across the arteriolar and venular capillaries is, like

wise, predominantly convective. The arteriolar plasma protein exchange rate drops slightly 

below, and then slowly rises to, the ultimate steady-state value so that, at t equal 5.0, the 

dimensionless arteriolar plasma protein exchange rate is approximately 1 % less than at steady-

state. Meanwhile, the dimensionless plasma protein flux across the venular boundary first rises 

above its initial value of 0.0507, then steadily decreases until reaching a new steady-state value 

of 0.0260. By t equal 5.0, the venular plasma protein exchange rate is approximately 69 % 

greater than the final steady-state value. The length of the transient period when £ is zero is 

therefore close to that when £ is one. 
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Figure 5.2: The average transient p lasma prote in flux across the arteriolar and venu
lar capil lary walls following hypoproteinemia is shown assuming a n impermeable 
mesothel ium and (i) £ equal to uni ty , and (ii) £ equal to zero. In b o t h cases the 
prote in flux is normal ized w i t h respect to its in i t i a l value p r io r to the upset. T h e 
dot ted line i n each case represents the new steady-state value. 
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Figure 5.3: The transient total dimensionless plasma protein concentration distribu
tions ( C 1 ) following hypoproteinemia and assuming an impermeable mesothelium 
are shown for (i) the case where £ is 1 (left panel) and (ii) for the case where £ 
is 0 (right panel). In each case the solid line represents the i n i t i a l condition, the 
dotted hne is at t equal 0.5, the chain-dot line is at t equal 2.5, the dashed line 
corresponds to t equal 5.0, and the chain-dash line represents the fin a l steady-state 
condition. 
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Because the plasma protein content in the blood decreases following the onset of hypopro

teinemia, the rate of plasma protein exchange across the arteriolar capillary drops. Meanwhile, 

the interstitial plasma protein concentration adjacent the venular boundary is near its initial 

condition. The net exchange rate across the venular boundary therefore exceeds the exchange 

across the arteriolar boundary during the course of the transient period so that, once again, 

there is a net loss of plasma proteins from the interstitium to the blood. This is reflected in 

the concentration profiles in the right panel of Figure (5.3). However, unlike the case where £ 

is one, the fluid exchange rate within the system remains elevated above its initial condition 

despite the washout of plasma proteins from the interstitium. 

Mass Exchange Assurning Mesothelial Transport Properties Similar to Those of 

the Vascular Walls 

In these simulations, it is assumed that the mesothelial transport properties are identical to 

those of the arteriolar capillary wall. Since the mesothehum is permeable, fluid and plasma 

proteins may be exchanged between the arteriolar capillary and the peritoneum, the venular 

capillary and the peritoneum, and the arteriolar and venular capillaries. In addition, the over

all effective resistance of the tissue segment to mass exchange depends on the flow patterns 

within the interstitium itself, since fluid and plasma proteins are able to bypass regions of the 

interstitium via the peritoneum. 

In fact, the steady-state analysis of Chapter 4 suggests that, when the mesothehum is 

permeable, the majority of fluid and plasma proteins exchanged between the various luminal 

compartments passes through only a small portion of the interstitial space. Further, intersti

tial fluid and plasma proteins located in the central portions of the tissue segment need only 

travel a short distance to reach the mesothelial surface. Hence, when all bounding surfaces are 

permeable, the system can achieve its new steady-state following the onset of hypoproteinemia 

much more quickly here than for those cases in which the mesothelial layer is impermeable. 
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F lu id Exchange In the previous discussion of luminal driving forces it was noted that, fol

lowing the drop in vascular plasma protein concentration, p^ — / i j f 5 and p ^ — both 

increase in magnitude, suggesting that the fluid exchange between these respective compart

ments should increase following the systemic upset. In addition, it was noted that /x^p — p ^ 

changes from a negative quantity to a positive one, which would imply a reversal in the direction 

of fluid exchange between the venular capillary and the peritoneum. In fact these trends are 

observed both when £ is zero and when £ is one, as discussed below. 

Consider first the case in which the convective hindrance, £, is unity. Initially following the 

drop in vascular protein, there is a substantial increase in the rate of fluid exchange across each 

of the three permeable boundaries (see Table (5.2)). Further, the fluid exchange rate across the 

venular capillary changes direction, so that the vessel moves from a state of fluid re-absorption 

to one of fluid filtration. Likewise, the direction of the mesothelial fluid flux near the venular 

boundary changes direction, as shown in Figure (5.4). The system has reached steady-state 

with respect to fluid exchange by t equal 3.0 units (i.e., 7.5 hours), as illustrated in Figure (5.5). 

£ Period Boundary Condition 2 Boundary Condition 3 
Art Ven Mes Art Ven Mes 

1.0 Pre-Upset -2.387 0.656 0.087 -3.551 0.762 0.139 
1.0 Post-Upset -5.567 -3.253 0.441 -8.600 -6.243 0.742 
1.0 Steady-State -5.527 -3.247 0.439 -8.305 -5.238 0.677 

0.0 Pre-Upset -2.313 0.632 0.084 -3.570 0.803 0.138 
0.0 Post-Upset -5.439 -3.187 0.431 -8.630 -6.273 0.745 
0.0 Steady-State -5.444 -3.180 0.431 -8.319 -5.263 0.679 

Table 5.2: T h e average transient fluid fluxes across the permeable boundaries fol
lowing hypoproteinemia, for the mesothelial boundary conditions 2 and 3. In each 
case the table reports the flux prior to the upset ('pre-upset'), at t equal 0.001 
post-upset ('post-upset'), and at the new system steady-state ('steady-state'). A 
negative flux indicates a flow into the interstitium. 

Upon examining the distribution of P 1 - ft1 at t equal 2.5 (see Figure (5.6)), it is clear that 
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Figure 5.4: The dimensionless transient fluid flux distribution across the mesothe
li u m following hypoproteinemia, assuming mesothelial transport properties equal 
to those of the arteriolar capillary and a £ of 1, are shown at the pre-perturbation 
state (panel (i)), and at a t of 0.001 (panel (ii ) ) , 0.05 (panel ( i i i ) ) , 0.5 (panel (iv)), 
and at the final steady-state (panel (v)). 
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Figure 5.5: The average transient fluid fluxes across the permeable boundaries fol
lowing hypoproteinemia, assuming mesothelial transport properties equal to those 
of the arteriolar capillary and a £ of 1, are shown in the three panels above. Panel 
(i) shows the fluid flux across the arteriolar capillary, panel (ii) corresponds to 
the fluid flux across the venular capillary, and panel (iii) represents the net fluid 
flux across the mesothelium. In each case the fluxes are normalized with respect 
to their respective pre-perturbation values. The dotted line represents the new 
steady-state value in each case. 
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Figure 5.6: T h e dimensionless interstitial fluid chemical potential distribution 
(P 1 — II 1) is shown at t equal 2.5 following hypoproteinemia for the case where 
the mesothelial transport properties equal those of the arteriolar capillary and £ is 
1. 
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the majority of interstitial fluid flow occurs in the regions near the blood vessels; the central 

regions of the tissue space are relatively quiescent. Movement of fluid within the interstitial 

space near the vessels is towards the central regions of the tissue. Conservation of fluid mass, 

meanwhile, is satisfied by a local, concomitant exchange of fluid across the mesothelial boundary. 

The transient fluid exchange within the system for the case where £ equals 0 is much the 

same as when £ is one. There is a rapid increase in fluid exchange across each of the permeable 

boundaries immediately following the onset of hypoproteinemia, as shown in Table 5.2. Again, 

the venular capillary shifts from a state of fluid re-absorption to one of fluid filtration. Further, 

the transient fluid flux distribution across the mesothelial boundary parallels that for £ equal 

to one, and so is not shown. However, the fluid fluxes reach their new steady-state values by t 

equal 1.0 (i.e., 2.5 hours), indicating a shorter transient period than that found when £ is one. 

Plasma Prote in Exchange and Interstitial Plasma Prote in Distribution When £ is 

equal to one, the plasma protein transport across each of the permeable boundaries is predomi

nantly convective. Therefore, since both the arteriolar and venular capillaries are filtering fluid, 

the plasma protein exchange rates across these boundaries follow the respective transient fluid 

fluxes. For example, the plasma protein flux across each of these boundaries reaches a new 

steady-state value at the same time as the fluid fluxes. However, since the vascular plasma 

protein content is lower subsequent to the perturbation, the increase in the plasma protein 

fluxes across these boundaries is not as pronounced as increase in the fluid exchange rates (see 

Table (5.3)). 

The exchange rate of plasma proteins across the mesothehum is also enhanced following the 

onset of hypoproteinemia. Again, since the exchange is largely convective, the plasma protein 

flux distribution across the mesothehum is qualitatively the same as the fluid flux distribution. 

The transient plasma protein fluxes across each of these boundaries is illustrated in Figure (5.7). 

In this case, the system reaches a new steady-state by a dimensionless time of 3.0. 

Since, during the transient period, the total efflux of plasma proteins across the mesothehum 
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£ Period Boundary Condition 2 Boundary Condition 3 
Art Ven Mes Art Ven Mes 

1.0 Pre-Up set -0.358 0.072 0.014 -0.533 0.762 0.025 
1.0 Post-Upset -0.417 -0.244 0.049 -0.645 -0.468 0.148 
1.0 Steady-State -0.415 -0.244 0.033 -0.623 -0.393 0.051 

0.0 Pre-Upset -0.347 0.063 0.014 -0.535 0.036 0.025 
0.0 Post-Upset -0.408 -0.239 0.049 -0.647 -0.471 0.151 
0.0 Steady-State -0.408 -0.239 0.032 -0.624 -0.395 0.051 

Table 5.3: The average transient plasma protein fluxes across the permeable bound
aries following hypoproteinemia, for the mesothelial boundary conditions 2 and 3. 
In each case the table reports the flux prior to the upset ('pre-upset'), at t equal 
0.001 post-upset ('post-upset'), and at the new system steady-state ('steady-state'). 
A negative flux indicates a flow into the interstitium. 

exceeds the influx of protein across the other two boundaries, there is a net loss of plasma pro

teins from the interstitium to the peritoneum: This is to be expected for the following reasons. 

Prior to the onset of hypoproteinemia, the net plasma protein transport into the system is zero 

because steady-state conditions prevail. Immediately following the upset, there is increased 

fluid exchange from the blood to the interstitium. The concentration of plasma proteins within 

the fluid is more dilute, however, so that convective transport of plasma proteins across the 

vascular boundaries does not increase in proportion to the increased fluid fluxes. At the same 

time, the fluid exchange from the interstitium to the peritoneum increases by an amount equal 

to the increase in fluid exchange across the blood vessels. This increases the convective trans

port of plasma proteins from the interstitium to the peritoneum. However, the interstitial fluid 

crossing the mesothehum has virtually the same plasma protein concentration as that prior 

to the onset of hypoproteinemia, so that the increase in plasma protein exchange across this 

boundary is substantial. Since the vascular fluid replacing the interstitial fluid is somewhat 

diluted, compared to the conditions before the upset, there is a net loss of plasma proteins from 

the interstitial space. Furthermore, plasma protein exchange across the mesothehum does not 
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reach its new steady-state value until the wash-out of interstitial plasma proteins is complete. 

The transient dimensionless plasma protein distributions assuming £ is one are shown in 

the left panel of Figure (5.8). By a dimensionless time of 0.001, the profile has been altered 

substantially in the region of the venular blood vessel, so that the gradient in interstitial plasma 

protein concentration changes direction following the shift from plasma protein re-absorption to 

filtration at that boundary. Furthermore, by this time there is a slight increase in the local in

terstitial plasma protein concentration near the arteriolar and venular capillaries. This appears 

to be similar, qualitatively, to the buildup of plasma proteins seen in several of the steady-state 

cases of Chapter 4 and is presumably due to the same effects, namely the combination of signif

icant convective plasma protein transport within the interstitium and the sieving of proteins at 

the mesothehum. However, these local maxima in interstitial plasma protein concentration are 

soon dissipated as interstitial plasma proteins continue to be lost to the peritoneum. (Compare, 

for example, the profiles at a t of 0.001 and 0.05.) It is still conceivable that, in some circum

stances, irregularities in the mesothelial fluid and plasma protein flux distributions, similar to 

those discussed in Chapter 4, might occur as transient phenomena during hypoproteinemia. 

As Figure (5.6) showed, convective transport of plasma proteins is directed towards the 

central regions of the tissue, with the largest convective velocities occurring near the blood 

vessels. Based on the concentration gradients of Figure (5.8), then, plasma protein convection 

and djffusion continue to oppose one another in the vicinity of the vascular boundaries during 

the entire transient phase. Furthermore, there is very httle plasma protein transport in the 

central portions of the tissue throughout that period. The fact that diffusion and convection 

oppose one another may offer one explanation for the longer transient period of fluid exchange 

when £ is one, compared to that when £ is zero. 

The overall transient exchange of plasma proteins within the system when the interstitial 

convective hindrance of zero is much the same as for the case where £ is unity (see Table (5.3)). 

Once again, the plasma protein transport across each of the boundaries is largely convective. 

The transient distributions of dimensionless plasma protein fluxes across the mesothehum are 
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Figure 5 .7: The average transient plasma protein fluxes across the permeable bound
aries following hypoproteinemia, assuming mesothelial transport properties equal 
to those of the arteriolar capillary and a £ of 1 , are shown i n the three panels 
above. Panel (i) shows the protein flux across the arteriolar capillary, panel (ii) 
corresponds to the protein flux across the venular capillary, and panel (iii) rep
resents the net protein flux across the mesothelium. In each case the fluxes are 
normalized w i t h respect to their respective pre-perturbation values. The dotted 
line represents the new steady-state value in each case. 



Chapter 5. Transient Exchange in Mesentery Following a Systemic Upset 121 

Figure 5.8: The transient dimensionless t o t a l plasma protein concentration distribu
tions (C*) following hypoproteinemia and assuming that the mesothelial transport 
properties are equal to those of the arteriolar capillary are shown for (i) the case 
where £ is 1 (left panel) and (ii) for the case where £ is 0 (right panel). In each 
case the solid line corresponds to the i n i t i a l condition, the dotted line is at t equal 
0.001, the chain-dot line is at t equal 0.05, the dashed line corresponds to t equal 
0.5, and the chain-dash line represents the final steady-state condition. 
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similar here to the case where £ is one and so are not shown. 

The transient distribution of interstitial plasma proteins assuming £ is zero is illustrated 

in the right panel of Figure (5.8). Since the venular boundary shifts from a re-absorbing to a 

filtering one, and since the only means of interstitial plasma protein transport is by diffusion, 

the gradient is forced to reverse directions immediately following the onset of the perturbation. 

Further, because the plasma protein exchange across the permeable boundaries is largely con

vective, there is a net loss of plasma proteins from the interstitium to the peritoneum, for the 

same reasons given when £ is one. The mean interstitial plasma protein concentration therefore 

decreases with time, as illustrated in Figure (5.8). 

It is clear from these results that, although the transient variations in the interstitial plasma 

protein distributions depend strongly on the value of £ assumed, the overall transient exchange 

of fluid and plasma proteins within the system does not. This further emphasizes the fact that, 

when the mesothehum is permeable, the interstitium contributes less to the overall resistance 

within the system, so that the interstitial plasma protein transport mechanisms have less impact 

on the behavior of the system as a whole. 

Mass Exchange Assuming a Highly Permeable Mesothel ium 

In the final set of simulations of hypoproteinemia, it is assumed that the mesothelial transport 

properties are given by boundary condition 3 of Chapter 4; that is, the mesothehum is much 

more permeable than the capillary walls and offers no sieving of proteins (crTnes is zero). 

Fluid Exchange Once again, the simulations suggest that the transient fluid exchange within 

the model mesenteric tissue is affected little by the interstitial plasma protein transport mech

anisms (see Table (5.2)). Further, the general trends are similar to those found when the 

mesothelial transport properties niimic the arteriolar capillary, except that the fluxes are typi

cally an order of magnitude larger and the time to reach steady-state is an order of magnitude 

smaller. The reduced time for the transient is attributed to the lower mass transfer resistance 

of the mesothelial layer. Hence, following an initial increase immediately after the onset of 
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hjpoproteinemia, fluid exchange across each of the boundaries declines slightly over time to 

reach a new steady-state value by a t of 0.5 (i.e., 1.25 hours). 

The dimensionless fluid flux distribution across the mesothelial boundary for the case where 

£ is one is shown in Figure (5.9). Figure (5.9) shows that the majority of the fluid exchange 

across the mesothehum occurs in close proximity to the blood vessels. However, although it is 

not apparent in the figure, there is some exchange in the central portions of the tissue segment 

as well. Again, the trend is virtually identical when £ is zero. 

Following the drop in vascular plasma protein content, then, the interstitial fluid flow is 

directed towards the central regions of the tissue, independent of the value of £. Again, the fluid 

material balance constraints are met by the appropriate fluid exchange across the mesothehum. 

Plasma Protein Exchange and Interstitial Plasma Protein Distribution Since plasma 

protein transport is largely convective, the transients follow the fluid flux behavior, except that 

the increase in protein exchange across the arteriolar boundary is limited by the fact that the 

filtering fluid contains less plasma proteins following the upset. Again, the transient plasma 

protein exchange across the permeable boundaries is affected only marginally by the transport 

mechanisms within the interstitial space. 

Both when £ is one and when £ is zero, plasma proteins leave the interstitium by way 

of the mesothelial boundary. Since the exchange across this boundary is largely convective, 

the distribution of the plasma protein flux across the mesothehum follows closely the fluid flux 

profile, and so is not shown here. The transient distribution of plasma proteins for the two values 

of £ investigated are shown in Figure (5.10). In both cases the massive plasma protein fluxes 

across the mesothehum in the vicinity of the blood vessels reduce the plasma protein content in 

those regions. This causes the local depletion of interstitial plasma proteins in the vicinity of the 

arteriolar and venular boundaries over time, so that diffusive transport tends to move interstitial 

plasma proteins from the central regions of the tissue towards the vascular boundaries. For 

the case where £ is one, this is counteracted in part by a convective flux of plasma proteins 

towards the central portions of the tissue. However, when plasma protein transport is limited to 
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Figure 5.9: The dimensionless transient fluid flux distribution across the mesothe
lium following hypoproteinemia, assuming the mesothelial transport properties are 
given by boundary condition 3 and £ equals 1, are shown at the pre-perturbation 
state (panel (i)), and at a t of 0.001 (panel (ii)), 0.05 (panel (iii)), 0.5 (panel (iv)), 
and at the final steady-state (panel (v)). 
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Figure 5.10: The transient dimensionless total plasma protein concentration distri
butions (C*) following hypoproteinemia and assuming a highly permeable mesothe
l i u m (boundary condition 3) are shown for (i) the case where £ is 1 (left panel) and 
(ii) for the case where £ is 0 (right panel). The solid line corresponds to the i n i t i a l 
condition, the dotted line is at t equal 0.001, the chain-dot line corresponds to t 
equal 0.05, the dashed line is at t equal 0.5, and the chain-dash hne corresponds 
to the final steady-state conditions. 
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difrusion, the interstitial plasma protein concentration distribution undergoes further alterations 

so that, by the time the system has reached its new steady-state, there is a net diffusion of 

interstitial plasma proteins from the vascular boundaries towards the center of the interstitial 

space in the regions adjacent the blood vessels. Because the magnitude of the shift is small and 

limited to the region adjacent the capillary walls, it is not apparent in Figure (5.10). 

Once again the interstitial plasma protein content decreases following hypoproteinemia, 

both when £ is one and when £ is zero. This occurs for the same reasons presented earlier when 

discussing plasma protein exchange assuming the mesothelial transport properties equal those 

of the arteriolar capillary wall. 

Summary of Hypoproteinemia Simulations 

In all cases considered here, the onset of hypoproteinemia led to a washout of interstitial plasma 

proteins. The transient behavior of the system during the washout, however, depended on the 

transport properties of the mesothehum and, to a lesser degree, on the interstitial plasma 

protein transport properties. When the mesothehum is assumed to be impermeable, fluid and 

plasma proteins must traverse the entire interstitial length in their journey from the arteriolar 

end of the system to the venular end. However, when it is assumed that the mesothehum is 

permeable, the distance travelled by material leaving the interstitium is reduced substantially. 

As a result, the response time of the model system to hypoproteinemia varied inversely with 

the permeability of the mesothelial layer. 

Further, when the mesothehum is impermeable, the interstitium represents a substantial 

portion of the total resistance to mass exchange within the system. Hence, the behavior of 

the system as a whole is influenced to a great degree by the conditions prevailing within the 

interstitial space. For example, in this case the transient changes to the interstitial colloid 

osmotic pressure distribution had a significant effect on the transient fluid exchange within the 

tissue segment. The transient fluid exchange across the boundaries of the system therefore 

varied according to changes in the interstitial plasma protein distribution, which depended 
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further on the interstitial plasma protein transport properties. 

However, when the mesothehum is assumed to be permeable, the behavior of the system 

with respect to mass exchange is dominated by the transport properties of this boundary. In 

addition, the interstitial plasma protein transport mechanisms have less impact on the transient 

distribution of interstitial plasma proteins as the transport properties of the mesothehum are 

enhanced. 

5.4.2 T r a n s i e n t E x c h a n g e D u r i n g S u s t a i n e d V e n o u s C o n g e s t i o n 

In this set of simulations, the system response to sustained venous congestion is studied as a 

function of the mesothelial transport properties and interstitial transport mechanisms outlined 

in the investigation of hypoproteinemia. Once again, it is instructive to consider first the effect 

that venous congestion has on the driving forces for fluid and plasma protein exchange between 

the luminal compartments. 

T h e Effect o f V e n o u s C o n g e s t i o n o n the L u m i n a l D r i v i n g F o r c e s 

During venous congestion, the venous pressure rises, resulting in an increase in hydrostatic 

pressure throughout the microcirculation. However, according to Eqs. (5.11) and (5.12), the 

incremental increases in arteriolar and venular capillary pressures are not equal. In fact, the 

arteriolar pressure increases by 1.538 x l O 4 dyne/cm 2 (11.5 mmHg), while the venular pressure 

rises by 1.725 x l O 4 dyne/cm 2 (12.9 mmHg). The hydrostatic pressure of the peritoneal fluid, 

meanwhile, is assumed to remain at 0 dyne/cm 2. 

Since the vascular plasma protein content is unchanged following the perturbation; the 

effective fluid chemical potential in each of the two blood vessels of the tissue segment increases 

according to the change in the hydrostatic pressures. The effective chemical potential of the 

peritoneal fluid is unaffected by the systemic disturbance. Further, the driving force for diffusive 

plasma protein exchange between the various luminal compartments is unchanged following 

venous congestion. 
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State Boundary Condition 1 Boundary Condition 2 Boundary Condition 3 
"rfT ''eff * c f f * s f f " t f f * e f f ^ e f f " i f f * e f f ^zfl >*e« l*cS 

Pre-Upset 0.433 0.433 0.354 -0.079 0.433 0.218 -0.215 

Post-Upset 0.370 0.370 0.602 0.232 0.370 0.738 0.368 

Table 5.4: F l u i d chemical potential differences between the various luminal com
partments before and after the initiation of venous congestion. 

Table (5.4) lists the differences in effective fluid chemical potential for the various pairs of 

compartments both before and after the onset of venous congestion. The following general 

observations are made. 

1. While in all cases both p^ and /i^p increase, the difference between the two, p^ — /i^p, 

decreases. 

2. p^ff - p^ increases in all cases where the mesothehum is permeable. 

3. The magnitude of /Z p̂ — p^ also increases in all cases where the mesothehum is perme

able. Furthermore, p^1 — p^* changes from a negative value to a positive value in each 

of these cases. 

We will return to these general observations in later discussions of fluid and plasma protein 

exchange during venous congestion. 

Mass Exchange Assuming an Impermeable Mesothel ium 

Flu id Exchange Based on the information of Table (5.4), the fluid exchange rate within the 

system for this set of mesothelial boundary conditions is expected to decline following the onset 

of venous congestion, since p^ — p^ decreases with the increase in systemic blood pressure. 

In fact this trend is observed, both for the case of £ equal to one and for the case where £ is 

zero. 
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Figure 5.11: T h e average transient fluid flux across the arteriolar capillary wall 
following venous congestion is shown assuming an impermeable mesothelium and 
(i) £ equal to unity, and (ii) f equal to zero. In bo th cases the fluid flux is normalized 
with respect to its steady-state value prior to the upset. T h e dotted line represents 
the new steady-state value in each case. 
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With £ equal to one, the dimensionless fluid flux across the arteriolar capillary wall drops 

from its pre-upset value of-0.3982 to 86 % of that (i.e., -0.3422) by t equal 0.1 (i.e., 15 minutes). 

This flux declines further with time to -0.3401, then gradually increases to its new steady-state 

value of -0.3423 (see panel (i) of Figure (5.11)). 

The transient fluid exchange within the system when £ is zero somewhat different. Again, 

by a t of 0.1, the dimensionless arteriolar fluid flux has dropped from its original value of -

0.3378 to 85 % of that (i.e., -0.2879). However, by a t of 0.5 (i.e., 1.25 hours), this flux has 

risen shghtly to -0.2884 and, by steady-state, has reached -0.2885. Hence, in this case fluid 

exchange within the system is very close to its steady-state by 1.25 hours (see panel (ii) of 

Figure (5.11)). Note that, when £ is zero, the interstitial plasma protein distribution remains 

virtually unchanged following the onset of venous congestion (see Figure (5.13)). Since the 

interstitial plasma protein washout is less here than when £ is one, the system response time is 

shorter. 

Plasma Protein Exchange and Interstitial Plasma Prote in Distr ibut ion Consider 

first the case where £ is one. Plasma protein transport across the arteriolar and venular bound

aries is predominantly convective during the transient period and subsequent steady-state. The 

rate of plasma protein exchange across the arteriolar boundary therefore closely follows the fluid 

flux pattern there. Shortly after the perturbation, the dimensionless plasma protein flux across 

this boundary drops from its original value of -0.05973 to 86 % of that, or -0.0512. It declines 

further to -0.509, then slowly rises to eventually reach its new steady-state value of -0.0514. At 

the venular end, the dimensionless plasma protein flux drops from 0.05973 to approximately 83 

% of that, or 0.0498 shortly after the onset of venous congestion. By t equal to 0.5, the protein 

flux has dropped to 0.0497. From this point it rises slowly to achieve the steady-state value of 

0.0514. This is illustrated in panel (i) of Figure (5.12). 

These transients have the following effect on the interstitial plasma protein concentration 

distribution. Under the initial conditions, interstitial plasma protein diffusion is from the venu

lar boundary towards the arteriolar boundary, as illustrated in the left panel of Figure (5.13). 
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Figure 5.12: The average transient plasma protein flux across the arteriolar and 
venular capillary walls following venous congestion is shown assuming an imper
meable mesothelium and (i) £ equal to unity, and (ii) £ equal to zero. In both cases 
the protein flux is normalized w i t h respect to its steady-state value prior to the 
upset. The dotted line i n each case represents the new steady-state value. 
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Figure 5.13: The transient dimensionless total plasma protein concentration distribu
tions (C 4) following venous congestion and assuming an impermeable mesothelium 
are shown for (i) the case where £ is 1 (left panel) and (ii) for the case where f 
is 0 (right panel). In each case the solid line represents the initial condition, the 
dotted line is at t equal 0.1, the chain-dot line is at t equal 0.5, the dashed line 
corresponds to t equal 5.0, and the chain-dash line represents the final steady-state 
condition. 
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Since fluid flows from the arteriolar capillary to the venular capillary, interstitial plasma pro

tein convection and diffusion are in opposite directions throughout the tissue space. As the 

fluid flow through the system decreases following the onset of venous congestion, so does the 

convective transport of plasma proteins through the interstitial space. With the decrease in 

convective plasma protein transport, diffusion within the interstitium tends to diminish the 

gradient in interstitial plasma protein concentration. Hence the interstitial plasma protein con

centration near the arteriolar wall increases while the plasma protein concentration near the 

venular boundary decreases. 

Now the transport of plasma proteins into the system across the arteriolar boundary is 

largely convective, so that it is approximately equal to (1 - era r t) • j° • C a r t . By the time the 

system achieves a new steady-state, this influx of plasma proteins must be balanced by the 

efflux of proteins at the venular boundary. This latter quantity is approximately equal to 

(1 — 0-art) • j w • [C 1]ven ) where [ C 1 ] v e n is the interstitial plasma protein concentration in the 

accessible space adjacent the venular boundary. Since o-^ equals o-ven, [ .C 1 ] v e n must eventually 

equal the plasma protein concentration in the arteriolar vessel to satisfy continuity. Hence the 

plasma protein concentration in that region eventually increases to its original value, as seen in 

the left panel of Figure (5.13). 

When £ is zero, convective plasma protein exchange across the permeable boundaries domi

nates once again. Hence, the trends in the transient dimensionless plasma protein fluxes follow7 

the variations in dimensionless fluid exchange. Specifically, the dimensionless protein flux across 

the arteriolar boundary drops from -0.0507 to -0.0432 by a t of 0.1 units. This flux then in

creases slowly with time to eventually reach the steady-state value of -0.0433. At the venular 

boundary, the dimensionless plasma protein flux drops from 0.0507 to 0.0434 by t equal to 0.1 

units, and continues to drop, albeit slowly, to eventually reach the steady-state value of 0.0433 

(see panel (ii) of Figure (5.12)). 

The onset of venous congestion has a marginal effect on the interstitial plasma protein 

distribution when interstitial plasma protein transport is restricted to diffusion only (see the 
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right panel of Figure (5.13)). The drop in transcapillary transport of plasma proteins into the 

interstitium at the arteriolar end of the system results in the net loss of plasma proteins from 

the interstitium via the venular capillary. Since this reduction in plasma protein transport into 

the system is sustained, the net diffusive flux of plasma proteins through the interstitium must 

drop as the system approaches its new steady-state. Hence, the interstitial plasma protein 

concentration gradient must be slightly less under the new steady-state conditions, compared 

to the initial state. However, by the time the system has reached steady-state, conservation of 

plasma proteins within the system dictates that [ C 1 ] v e n equal C 8 1 * . The interstitial plasma pro

tein concentration adjacent the arteriolar boundary therefore increases to satisfy the constraints 

imposed by continuity and the fact that diffusion of interstitial plasma protein transport is less 

under the new steady-state conditions. 

Mass Exchange Assuming Mesothelial Transport Properties Similar to Those of 

the Vascular Walls 

F l u i d Exchange The shifts in the effective chemical potential of the various luminal fluids 

following venous congestion suggest that subsequent fluid exchange between the blood and the 

peritoneum should increase and that fluid flow across the venular capillary wall should change 

direction. In fact, this is observed both when £ is one and when it is zero (see Table (5.5)). 

Figure (5.14) shows the transient fluid exchange across the three permeable boundaries 

following venous congestion and assuming that £ is unity. The fluid fluxes increase dramatically 

following the onset of venous congestion, then continue to rise more slowly, so that the system 

achieves steady-state-by a t of 5.0. However, when £ is zero, the system reaches steady-state 

with respect to fluid exchange almost immediately after the onset of the perturbation. 

The transient distribution of fluid exchange across the •mesothelial boundary is qualitatively 

the same as shown in Figure (5.4), both when £ is one and when it is zero. Fluid exchange 

across the mesothehum in the vicinity of the venular capillary shifts direction so that, following 

the onset of venous congestion, fluid is transported from the interstitium to the peritoneum 
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Figure 5.14: The average transient fluid fluxes across the permeable boundaries 
following venous congestion, assuming mesothelial transport properties equal to 
those of the arteriolar capillary and a £ of 1, are shown in the three panels above. 
Panel (i) shows the fluid flux across the arteriolar capillary, panel (ii) corresponds 
to the fluid flux across the venular capillary, and panel (iii) represents the net fluid 
flux across the mesothelium. In each case the fluxes are normalized with respect 
to their respective pre-perturbation values. The dotted line represents the new 
steady-state value in each case. 
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£ Period Boundary Condition 2 Boundary Condition 3 
Art Ven Mes Art Ven Mes 

1.0 Pre-Upset -2.387 -0.656 0.087 -3.551 -0.762 0.139 
1.0 Post-Upset -5.857 -4.134 0.500 -9.232 -8.070 0.865 
1.0 Steady-State -5.971 -4.278 0.513 -9.143 -7.347 0.825 

0.0 Pre-Upset -2.313 0.632 0.084 -3.570 0.803 0.138 
0.0 Post-Upset -5.720 -4.048 0.488 -9.259 -8.100 0.868 
0.0 Steady-State -5.708 -4.024 0.487 -9.153 -7.364 0.826 

Table 5.5: T h e a v e r a g e t r a n s i e n t fluid fluxes a c r o s s t h e p e r m e a b l e b o u n d a r i e s f o l l o w 
i n g v e n o u s c o n g e s t i o n , f o r t h e m e s o t h e l i a l b o u n d a r y c o n d i t i o n s 2 a n d 3. I n e a c h 
c a s e t h e t a b l e r e p o r t s t h e flux p r i o r t o t h e u p s e t ('pre-upset'), a t t e q u a l 0.001 
p o s t - u p s e t ( ' p o s t - u p s e t ' ) , a n d a t t h e n e w s y s t e m s t e a d y - s t a t e ( ' s t e a d y - s t a t e ' ) . A 
n e g a t i v e flux i n d i c a t e s a flow i n t o t h e i n t e r s t i t i u m . 

along the entire length of the mesothelial boundary. 

P l a s m a P r o t e i n E x c h a n g e a n d I n t e r s t i t i a l P l a s m a P r o t e i n D i s t r i b u t i o n Table (5.6) 

lists the transient plasma protein fluxes across each of the three boundaries following venous 

congestion. Figure (5.15), meanwhile, shows the dimensionless plasma protein flux across the 

three boundaries as a function of time and assuming that £ is one. Because the plasma pro

tein exchange across the boundaries is predominantly convective, the transient plasma protein 

exchange parallels the transient fluid exchange behavior. However, as this figure illustrates, 

the relative changes in protein fluxes across the permeable boundaries are more dramatic than 

the relative changes in fluid exchange rates. Further, the transient behavior assuming £ is zero 

is qualitatively the same as when £ is one, except that the length of the transient period is 

somewhat shorter. 

Both when £ equals zero and when it equals one, the time needed for the mesothelial 

boundary to achieve steady-state with respect to plasma protein exchange is longer than the 

period required for the other two boundaries. Since the arteriolar and venular capillaries filter 

fluid and plasma proteins following the upset, and since the transport of proteins across these 
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Figure 5.15: The average transient plasma protein fluxes across the permeable 
boundaries following venous congestion, assuming mesothelial transport proper
ties equal to those of the arteriolar capillary and a £ of 1, are shown in the three 
panels above. Panel (i) shows the protein flux across the arteriolar capillary, panel 
(ii) corresponds to the protein flux across the venular capillary, and panel (iii) 
represents the net protein flux across the mesothelium. In each case the fluxes are 
normalized with respect to their respective pre-perturbation values. The dotted 
line represents the new steady-state value in each case. 
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Figure 5.16: The transient dimensionless total plasma protein concentration distr i 
butions (C l ) following venous congestion and assuming mesothelial transport prop
erties equal to those of the arteriolar capillary are shown for (i) the case where £ 
is 1 (left panel) and (ii) for the case where £ is 0 (right panel). I n each case the 
solid line represents the i n i t i a l condition, the dotted line is at t equal 0.001, the 
chain-dot line is at t equal 0.05, the dashed line corresponds to t equal 0.5, and 
the chain-dash line represents the final steady-state condition. 
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£ Period Boundary Condition 2 Boundary Condition 3 
Art Ven Mes Art Ven Mes 

1.0 Pre-Upset -0.358 0.072 0.014 -0.533 0.762 0.025 
1.0 Post-Upset -0.878 -0.620 0.059 -1.385 -1.210 0.188 
1.0 Steady-State -0.896 -0.604 0.077 -1.371 -1.102 0.124 

0.0 Pre-Upset -0.347 0.063 0.014 -0.535 0.036 0.025 
0.0 Post-Upset -0.858 -0.607 0.055 -1.389 -1.215 0.192 
0.0 Steady-State -0.856 -0.604 0.073 -1.373 -1.105 0.124 

Table 5.6: The average transient p lasma pro te in fluxes across the permeable bound
aries following venous congestion, for the mesothel ial boundary condit ions 2 and 3. 
I n each case the table reports the flux pr ior to the upset ( 'pre-upset ') , at t equal 
0.001 post-upset ( 'post-upset'), and at the new system steady-state ( 'steady-state'). 
A negative flux indicates a flow into the in te rs t i t ium. 

boundaries is largely convective, the length of the transient associated with plasma protein 

exchange is approximately equal to that for fluid exchange. However, as indicated in the 

plasma protein distributions of Figure (5.16), a considerable increase in the total interstitial 

plasma protein content occurs following the initiation of venous congestion. This filling period 

is much longer than the time required for the fluid exchange rates within the system to adjust. 

Further, plasma protein exchange across the mesothelial boundary cannot reach steady-state 

until the interstitial plasma protein concentration distribution stabilizes. 

The left-hand panel of Figure (5.16) shows the transient distributions of the aimensionless 

interstitial plasma protein concentration assuming £ is equal to one. In this case, there is 

a local buildup of interstitial plasma proteins in the vicinity of the arteriolar and venular 

vessels shortly after the onset of venous congestion, similar to the buildup observed during 

the early stages of hypoproteinemia. This is likely due to the same causes cited in that case, 

namely the combination of plasma protein convection within the interstitium and sieving at the 

mesothelial boundary. Furthermore, since interstitial fluid flow is directed towards the center 

of the tissue, interstitial plasma protein convection and diffusion generally act in opposite 

directions, as evidenced by the interstitial plasma protein concentration gradients of the left 
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panel of Figure (5.16). When £ is zero, the gradient near the venular boundary changes direction 

following the perturbation (see the right panel), reflecting the shift in plasma protein exchange 

across that boundary. 

In contrast to the situation during hypoproteinemia, we have already noted that the inter

stitial plasma protein content following venous congestion increases with time for both values 

of £ (see Figure (5.16)). This occurs for the following reason. The average plasma protein 

concentration in the interstitium prior to the upset is less than that in the serum. Following 

the perturbation, the convective flux of plasma proteins from the blood into the interstitium 

rises. The convective flux of plasma proteins from the interstitium to the peritoneum likewise 

increases. However, since the sieving properties of the three boundaries are the same (i.e., 

a*** = <rven = cr1 1 1 6 5), and since the interstitial plasma protein concentration is less than that 

of the serum, the concentration of plasma proteins in the mcorning fluid is higher than that of 

the fluid leaving the interstitium. In addition, since the rate of fluid flow into the interstitium 

equals the rate of fluid flow out of the interstitium at all times (because the interstitium is 

rigid), the convective flow of proteins into the tissue space must then exceed the convective flow 

of proteins out of the interstitium, thereby increasing the interstitial plasma protein content. 

Mass Exchange Assuming a Highly Permeable Mesothel ium 

F l u i d Exchange The data of Table (5.4) suggest that the fluid exchange within the system 

should increase following the onset of venous congestion. In fact, as illustrated in Table (5.5), 

this is true for both values of £ investigated. The normalized transient fluid fluxes across the 

permeable boundaries are illustrated graphically in Figure (5.17) for the case where £ is one. A 

similar pattern is seen when £ is zero, except that, once again, the transient period is somewhat 

shorter when plasma protein transport occurs by cfiffusion alone. 

The transient distribution of fluid fluxes across the mesothehum is qualitatively the same 

as that of Figure (5.9), both when £ is one and when it is zero. Therefore, the fluid flow across 

the mesothehum in the vicinity of the venular capillary changes direction so that, following 
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Figure 5.17: The average transient fluid fluxes across the permeable boundaries 
following venous congestion, assurning a highly permeable mesothelium (boundary 
condition 3) and a £ of 1, are shown in the three panels above. Panel (i) shows 
the fluid flux across the arteriolar capillary, panel (ii) corresponds to the fluid flux 
across the venular capillary, and panel (iii) represents the net fluid flux across the 
mesothehum. In each case the fluxes are normalized with respect to their respective 
pre-perturbation values. The dotted line represents the new steady-state value in 
each case. 
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the onset of venous congestion, fluid movement is from the interstitium to the peritoneum. 

Furthermore, interstitial fluid flow is directed from the vascular boundaries towards the center 

of the tissue segment in both cases. 

Plasma Protein Exchange and Interstitial Plasma Protein Distribution The ex

change of plasma proteins across the various boundaries is largely convective for both values of 

£. Hence, the transient behavior of the system with respect to plasma protein exchange follows 

its pattern of fluid exchange. Further, the transient distribution of plasma protein fluxes across 

the mesothehum is qualitatively the same as that shown in Figure (5.9). Figure (5.18) shows 

the normalized transient plasma protein exchange across the three boundaries for a £ of one. In 

each case, there is an initial rise in the plasma protein flux, followed by a decay in the exchange 

rate. A similar behavior is observed when £ is zero, except that, once more, the length of the 

transient period is shorter. 

The transient plasma protein distribution for the two values of £ are shown in Figure (5.19). 

Whereas, when the mesothehum behaves as a sieving boundary the interstitial plasma protein 

content increases following venous congestion (see Figure (5.16)), in this case the mean intersti

tial plasma protein content decreases with time. Following the onset of venous congestion, the 

fluid exchange across the vascular boundaries increases, so that the convective flux of plasma 

proteins also increases. However, as fluid enters into the interstitium from the vascular com

partments, plasma proteins are sieved. In contrast, the fluid crossing the mesothelial boundary 

is not filtered so that, as the fluid flux across the mesothehum increases, there is a net loss 

of plasma proteins from the interstitium to the peritoneal fluid. This demonstrates that the 

sieving properties of the drainage system within a tissue (in this case, the mesothehum) play 

a major role in determining the ratio of interstitial plasma protein concentration to vascular 

plasma protein concentration. 

Once again the simulations suggest that, when both interstitial plasma protein convection 

and diffusion occur, they oppose one another. The comparatively high interstitial plasma 

protein content initially found in the vicinity of the venular boundary is soon depleted, as 
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Figure 5.18: The transient plasma protein fluxes across the permeable boundaries 
following venous congestion, assuming a highly permeable mesothelium (boundary 
condition 3) and a £ of 1, are shown in the three panels above. Panel (i) shows the 
protein flux across the arteriolar capillary, panel (ii) corresponds to the protein flux 
across the venular capillary, and panel (iii) represents the net protein flux across the 
mesothelium. In each case the fluxes are normalized with respect to their respective 
pre-perturbation values. The dotted line represents the new steady-state value in 
each case. 
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F i g u r e 5.19: T h e t r a n s i e n t d i m e n s i o n l e s s t o t a l p l a s m a p r o t e i n c o n c e n t r a t i o n d i s t r i b u 
t i o n s ( C 4 ) f o l l o w i n g v e n o u s c o n g e s t i o n a n d a s s u m i n g a h i g h l y p e r m e a b l e m e s o t h e 
l i u m ( b o u n d a r y c o n d i t i o n 3) a r e s h o w n f o r ( i ) t h e c a s e w h e r e £ i s 1 a n d ( i i ) f o r t h e 
c a s e w h e r e £ i s 0. I n e a c h c a s e t h e s o l i d l i n e r e p r e s e n t s t h e i n i t i a l c o n d i t i o n , t h e 
d o t t e d l i n e is a t t e q u a l 0.001, t h e c h a i n - d o t l i n e is a t t e q u a l 0.005, t h e d a s h e d l i n e 
c o r r e s p o n d s t o t e q u a l 0.01, a n d t h e c h a i n - d a s h l i n e r e p r e s e n t s t h e final s t e a d y - s t a t e 
c o n d i t i o n . 
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the venular capillary shifts from a re-absorbing to a filtering vessel. W h e n interstitial plasma 

protein transport is l imited to diffusion, there is a change i n gradient i n interstitial plasma 

protein concentration some distance from the venular boundary shortly after the perturbation 

begins. This is due to the increased protein exchange from the interst i t ium to the peritoneum 

there. However, adjacent the venular capulary wall, plasma protein diffusion is directed into the 

interst i t ium, due to the transfer of proteins the from blood to the interst i t ium at that boundary. 

Since this shift i n the interstitial plasma protein concentration gradient occurs over a very short 

distance just outside of the venular boundary, it is not discernable i n Figure (5.19). 

S u m m a r y o f V e n o u s C o n g e s t i o n S i m u l a t i o n s 

A s in the case of hypoproteinemia, the length of the transient period varied inversely wi th the 

permeability of the mesothelial layer. Further, when it is assumed that the mesothehum is 

impermeable, the transient behavior of the fluid and plasma, protein fluxes entering and leaving 

the system are strongly influenced by the interstitial plasma protein transport mechanisms and 

by the transient distribution of plasma proteins wi th in the interstitial space. Once again, this 

is due to the greater role that the interst i t ium has here i n determining the overall resistance of 

the system. 

In contrast to the simulations of hypoproteinemia, however, some of the simulations of 

venous congestion predicted an increase i n the interstitial plasma protein content with t ime. A 

determining factor for this behavior appears to be the plasma protein sieving properties of the 

filtering boundary relative to the sieving properties of the draining boundary. This provides a 

possible explanation for the differences i n the interstitial plasma protein content within selected 

tissues observed i n clinical settings during venous congestion, and is discussed further below. 

5.4.3 C l i n i c a l O b s e r v a t i o n s o f H y p o p r o t e i n e m i a a n d V e n o u s C o n g e s t i o n 

According to the simulations presented above, the rate of fluid exchange wi th in the model tissue 

segment typically increases following hypoproteinemia. However, because of the reduced plasma 
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protein content in the filtering fluid, the net rate at which plasma proteins enter the interstitial 

space is less than that prior to the upset. This causes a 'washout' of plasma proteins from the 

interstitium and leads to a somewhat reduced interstitial plasma protein content by the time 

the system has achieved a new steady-state. These findings are in keeping with the clinical 

observations reported by Witte and co-workers [114]. The authors state that hypoproteinemia 

is followed by a lowering of interstitial plasma protein content. 

The simulations of venous congestion revealed several interesting phenomena that might 

shed further light on clinical observations of this state. Clinical data show that, in most pe

ripheral tissues, the plasma protein concentration in lymph decreases with the onset of venous 

congestion, suggesting that the interstitial plasma protein concentration likewise drops [113]. 

Witte and co-authors attribute the washout of plasma proteins to the increased filtration rates 

that accompany an elevation in systemic pressure. However, the simulations presented here 

demonstrate that an increased nitration rate does not assure washout of plasma proteins from 

the interstitium of mesentery, for example. On the contrary, the majority of the simulations 

predicted an increase in interstitial plasma protein content within the model tissue. Only in 

those cases in which the sieving of proteins at the draining boundary (e.g., the mesothehum) 

was less than the sieving at the filtering boundaries did the interstitial plasma protein content 

decrease following venous congestion. 

The simulations suggest that it is the relative sieving properties of the draining and filtering 

boundaries, and not simply the filtration rate, that determines whether plasma protein washout 

occurs. Since it is generally thought that the terminal lymphatics do not sieve proteins to any 

great extent [77], it follows that, in most tissues, we would expect a decrease in plasma protein 

content to accompany enhanced nitration, as seen clinically. The notion that the relative sieving 

properties are important in determining changes in interstitial plasma protein content is further 

supported by the fact that the plasma protein content in hepatic lymph (and so, presumably, 

the plasma protein content in the interstitium of the fiver) increases under venous congestion 

[114]. Since the exchange vessels of the fiver are sinusoids, far less sieving occurs across the 
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vascular walls in this tissue, so that the sieving properties of the filtering and the draining 

boundaries are similar. 

One other characteristic of venous congestion is the accumulation of fluid in the pleural 

cavity. This pathological state is called ascites [51]. The increased fluid exchange across 

the mesothehum predicted by the model seems to support this clinical observation. Further, 

the simulations indicate that this increase accompanies a shift from fluid re-absorption to fluid 

filtration at the venular capillary, due to the increase in hydrostatic pressure in that vessel. This 

suggests that there may be some hmiting value for venular hydrostatic pressure, corresponding 

to the shift in the direction of transcapillary fluid flux there, that leads to ascites. 

5.5 Concluding Remarks 

In this chapter we studied the response of the model tissue segment to two systemic pertur

bations, namely hypoproteinemia and venous congestion. Since the simplified version of the 

model employed in these simulations does not include all of the features of the microvascular 

exchange system (for example, interstitial swelling is neglected) the results are, at best, quali

tative. However, the simulations reveal several interesting features of the model microvascular 

exchange system. These are summarized below. 

1. When the mesothehum is permeable, the trends in fluid and plasma protein exchange 

following a systemic perturbation can be anticipated by considering the effect that the 

given upset has on the effective chemical potential of the luminal fluids. In such instances 

the interstitium may not be the major resistance within the system. However, when the 

mesothehum is impermeable, fluid and plasma proteins must cross the entire interstitial 

space in their journey from the filtering vessel to the re-absorbing vessel, so that the 

interstitium comprises a large fraction of the system's total resistance to mass exchange. 

In these cases the distribution of interstitial plasma proteins plays a greater role in de

termining the overall behavior of the model tissue. Further, the length of the transient 

period following an upset is typically shorter for those cases in which the mesothehum is 
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permeable. 

2. Following hypoproteinemia, the interstitial plasma protein content of the tissue segment 

typically decreases with time, due to a decrease in plasma protein exchange across the 

vascular boundaries and an increase in the total rate of fluid exchange within the system. 

This is in keeping with qualitative clinical observations. 

3. Following venous congestion, the fluid exchange rate and plasma protein exchange rate 

within the system both typically increase. However, the change in interstitial plasma 

protein content depends, in part, on the relative sieving properties of the filtering and 

draining boundaries. When the reflection coefficients of these two sets of boundaries 

are similar, the interstitial plasma protein content increases due to the increased protein 

exchange rate across the filtering boundaries and sieving of interstitial plasma proteins at 

the draining boundaries. As the reflection coefficient of the chaining boundaries decreases 

relative to that of the filtering boundaries, there is a net loss ..of plasma proteins from 

the interstitial space, resulting in a decrease in total interstitial plasma protein content 

over time. These results are supported by the clinical observation that interstitial plasma 

protein content in the liver increases during venous congestion. Since this tissue is serviced 

by sinusoids, the sieving properties of the filtering blood vessels and the draining lymphatic 

vessels are similar. (It should be noted, however, that both the filtering and draining 

vessels of the liver offer little sieving of plasma proteins.) In addition, the model predicts 

an increase in fluid transfer from the mesentery to the peritoneal fluid, supporting the 

clinical observation of ascites formation. 

The trends in system behavior predicted by the simplified model are, for the most part, 

in keeping with the limited number of clinical observations associated with hypoproteinemia 

and venous congestion discussed here. Furthermore, the simulations provide a clearer picture 

of the relationship between the vascular wall transport properties, the interstitial transport 

properties, and the transient behavior of the system as a whole following these upsets. 



Chapter 6 

A Prel iminary Study of Tracer Transport through the Interstitium 

6.1 Introduction 

Thus far we have considered the transport of a single, aggregate plasma protein species through 

the interstitium of a model tissue. In fact, numerous types of macromolecules are exchanged 

between the blood and the interstitium under normal conditions. In addition, certain clinical 

procedures, such as chemotherapy, involve the exchange of small quantities of foreign substances 

between the blood stream and a particular organ or tissue. The exchange of multiple solute 

species within the microcirculation is therefore of interest to physiologists and clinicians alike. 

This chapter presents a study of the relative exchange rates of two different macromolecular 

tracers representing albumin and 7 — globulin within a hypothetical, one-dimensional tissue. 

Specifically, the study investigates the time required for the concentration of the tracer in the 

outlet stream to reach 50 % of its steady-state value, subsequent to its introduction in the blood 

at a dimensionless concentration of 0.01, as a function of the following: 

1. the transport properties of the capillary wall to the tracer, 

2. the transport properties of the tracer through the interstitial space, and 

3. the interstitial distribution volume of tracer. 

The results of the study suggest that the distribution volume of a particular solute species 

can play a major role in determining its rate of transport through the interstitium. Further, the 

exclusion properties of the interstitium can create conditions for a 'gel-chromatographic effect', 

whereby larger macromolecules pass through the interstitial space more quickly than smaller 

149 
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macromolecules. (This mechanism is to be distinguished from the 'free-fluid phase - gel phase' 

mechanism proposed by Watson and Grodins [104] that lacks substantial structural evidence.) 

The chapter is divided into five remaining sections. Section 6.2 describes the model tissue 

segment and the equations applying to the transient movement of a solute species through 

that tissue segment. Section 6.3 outlines the particular numerical experiments constituting 

the study, while Section 6.4 outlines the numerical procedures employed to solve the relevant 

mathematical expressions. The results of the study are then discussed in Section 6.5. Finally, 

Section 6.6 summarizes the ramifications of these findings to the interpretation of transient 

tracer experiments and the delivery of substances to specific tissue sites. 

6.2 Defining the System 

Consider a flat, thin, sheet-like tissue analogous to the mesenteric tissue of Chapter 4 and 

bounded left and right by a blood capillary and a terminal lymphatic vessel, respectively. 

It is assumed that the upper and lower surfaces of the tissue are impermeable and that the 

mtervening interstitium is both homogeneous and isotropic. Furthermore, the tissue properties 

and conditions are considered uniform in the direction parallel to the vessels' axes, so that the 

model tissue can be treated as a one-dimensional system. 

Contained within the tissue is an aggregate plasma protein species representative of the 

various osmotically active plasma protein species found in vivo. These display the same char

acteristics as the aggregate plasma proteins of Chapters 4 and 5. It is further assumed that, at 

some time te, a macromolecular tracer is introduced into the blood vessel. Since this macro-

molecule is present in minute quantities only (i.e., one percent of the total plasma protein 

concentration), its contribution to the system osmotic pressure is negligible and therefore it 

does not alter the exchange of fluid or the exchange of aggregate plasma protein species within 

the system. Given this, the interstitial fluid flux depends only on the local gradient in fluid 

hydrostatic pressure, P 1, and aggregate protein osmotic pressure, II1, according to Eq. (5.2). 

The fluid material balance is then given by Eq. (5.4), with the added constraint that L™" is 
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zero. With these assumptions, the transient tracer distribution problem is uncoupled from the 

steady-state problem of fluid and aggregate plasma protein transport. 

The material balance expression for the aggregate plasma protein species is therefore given 

by the steady-state version of Eq. (5.7), assuming further that j™" (given by Eq. (5.6)) is zero. 

Meanwhile, the transient distribution of interstitial tracer concentration, C 2 , is described by 

an analogous form of Eq. (5.7), assruning once more that no exchange of tracer occurs across 

the upper and lower surfaces of the tissue segment. Furthermore, since the tracer's osmotic 

pressure is negligible compared to that of the aggregate plasma protein species, then the fluid 

chemical potential in the tracer's distribution volume is equal to P 1 — II1. 

The exchanges of fluid and solutes across the capillary wall are described by the same set of 

boundary conditions as presented in Chapter 4 (see Eqs. (4.13), (4.14), and (4.15)). However, 

the conditions prevailing at the lymphatic vessel warrant some discussion. 

It is typically assumed [3, 14, 70. 108] that, under normal conditions, the flow of fluid across 

the lymphatic wall is proportional to the interstitial hydrostatic fluid pressure, P 1. That is, 

[j«L= L ? m -([ p l L- p I , m ) ' ^ 
where L^-P 1 5 ™ is some reference lymph drainage rate. This type of relationship can be viewed 

as a specific form of the Starling relationship in which the reflection coefficient of the lymphatic 

wall, cr , y m, is zero. If we further assume, for simplicity, that the hydrostatic pressure within the 

lymphatic vessel,Plyin, is zero, we then have 

li°L=LiMp lL- <6-2' 
Solutes, meanwhile, are assumed to cross the lymphatic wall by unhindered convection [3,14, 75, 

108]. The valve-like behavior of the overlapping endothelial cells of the lymphatic wall prevents 

back-flow of solutes from the lymph to the tissue space. Hence, assuming that a thin fluid film 

separates the lymphatic wall and the interstitium (analogous to that at the vascular boundary), 

the rate of exchange of aggregate proteins across the vessel wall ( [ j s ] ^ ) , for example, is 

• Ic 1 ' 
J , J l v m L J w lvm 

. (6.3) 
lym 
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A similar expression applies for the exchange of a particular tracer species 2, namely, 

lym lym lym 
(6.4) 

An alternative boundary condition for the exchange of a given solute species k at the lym

phatic vessel wall might be 

where ^ • |C k ] is equivalent to the average plasma protein concentration based on the total 
n L J lym 

mobile fluid volume fraction. In this fashion, Eq. (6.5) eliminates the 'thin film' assumption. 

However, since all previous simulations used the thin film approach, it is retained here as well. 

The dimensionless form of the mass balance equations can be found in Chapters 4 and 

5. Note that the tracer mass balance equation is non-dimensionalized with respect to the 

parameters for the aggregate plasma protein species. For example, the dimensionless diffusivity 

of tracer species k is n ^ - D ^ / D ^ . The dimensionless forms of Eqs. (6.2) and (6.3), meanwhile, 

are, respectively, 

die 
lym 

and 

I lym L"w J lym L J lym ' ^ ^ 

where lb™ = L ^ L / K 0 . As before, all pressures and concentrations are normalized with 

respect to P ^ and C 1 , a r t (the arteriolar concentration of the aggregate plasma protein species), 

respectively. Equations (6.6) and (6.7) are combined with the appropriate dimensionless forms 

of the aggregate plasma protein mass balance equation, the tracer mass balance equation, the 

fluid mass balance equation, the capillary wall boundary conditions, and the initial conditions 

to describe the movement of both the aggregate plasma protein species and the tracer through 

the interstitium. 
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6.3 Case Studies 

In order to carry out the numerical simulations, the various model parameters must first be 

assigned values. These parameters can be divided into three groups: those parameters charac

terizing fluid and aggregate plasma protein exchange across the capillary wall and the transport 

of these materials through the interstitium; those parameters characterizing the transcapillary 

exchange and interstitial transport of the tracers; and the parameters characterizing mass ex

change across the lymphatic wall. 

The first group of parameters were assigned the same set of values as in the steady-state 

analysis of fluid and aggregate plasma protein exchange in mesentery (see Table (4.1) in Chap

ter 4), assuming further that the aggregate protein convective hindrance, £, equalled 0.5. The 

properties of the aggregate plasma protein species are therefore close to, but not identical with, 

the values described below for the albumin tracer. 

The following tracer parameters were assumed. The capillary wall permeabilities to the 

albumin and globulin tracers, D 8 1 1 , 0 1 1 5 and D a r t , g l o b , assumed values of 2.4 x 10~8 cm/s and 

1.39 X 10 - 8 cm/s respectively. These values fall within the range reported in the literature for 

these two species [83]. The values of the reflection coefficients for the albumin tracer and the 

globulin tracer, <ralb and , were 0.89 and 0.91 respectively, based on data reported for dog 

hindpaw [82]. The distribution volume fractions assumed for the two tracers, meanwhile, were 

0.68 and 0.5, respectively, based on rabbit skin data [13]. The effective interstitial diffusivity 

of the albumin tracer, D*^, assumed a value of 1.0 x 10 _ r cm2/s, based on the data of Fox and 

Wayland [38]. Since no value was available for the interstitial diffusivity of globulin, D ^ b , this 

parameter was assigned a value such that D^/D^* 5 equalled D a r t - o l b / D B r t , g l o b . This yielded a 

Bf°h of 0:58 X K T 7 cm2/s. 

The product £ k • / 3 k for the albumin and globulin tracers was varied over a range of values 

by establishing first the lower limits for £ k and / 3 k individually. The lower limit for £ k was 

arbitrarily set equal to 0.25. The lower limit for / 3 k , meanwhile, was set equal to the ratio n k /n°, 

thereby assuming that the flow conductivity of the interstitial space was uniformly distributed 
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throughout the various mobile fluid volume fractions. Under this assumption the regions of the 

interstitial space accessible to the macromolecular tracers were no more conductive to fluid than 

the excluded regions of the interstitium. On this basis, a lower limit for / 3 k - £ k of 0.21 for alburnin 

and 0.16 for globulin was determined. However, in all likelihood, macromolecules excluded from 

portions of the interstitial matrix will be limited to pathways of higher conductivity, leading to 

somewhat larger values of /3k • £ k . Hence, additional values of /3k • £ k equal to 0.5 and 0.9 were 

assumed for each of the two tracers during the sensitivity analyses discussed below. 

According to Eqs. (6.2) and (6.3), mass exchange across the lymphatic vessel wall is charac

terized by a single parameter - the lymphatic hydraulic conductance, Lp5™. Since no information 

could be found in the literature to quantify Lp7™, a set of simulations was first performed to 

investigate the influence of this parameter on the exchange of fluid within the system. Increas

ing Lpy111 from 1.35 x 1 0 - 9 cm3/(dyne-s) to 1.35 x 10~7 cm3/(dyne-s) caused the fluid exchange 

rate within the system to increase by less than 7 %, indicating that fluid flow was relatively 

insensitive to the value of in this range. The lymphatic hydraulic conductance was there

fore arbitrarily assigned a value of 1.35 x 1 0 - 9 cm3/(dyne-s), equal to the value applied to the 

arteriolar boundary. 

Having established the reference values for the model parameters, a series of numerical 

simulations was performed to investigate the effect of several system parameters on the transport 

rates of the alburnin and globulin tracers through the model tissue. These system parameters 

are summarized below: 

1. the transport characteristics of the capillary wall to each of the two tracers; 

2. the interstitial distribution volume fraction of the globulin tracer; and 

3. the diffusivity of the albumin tracer. 

In each case, the product /3k - £ k of the tracer was varied over the range of values described 

earlier to provide a factorial design. In all, 21 transient simulations were performed, as well as 

21 corresponding steady-state runs. 
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6.4 Numerical Procedures 

A numerical procedure similar to that reported in Chapter 5 that combined the finite element 

and finite difference methods was used here to solve for the transient distribution of tracer 

throughout the interstitium. Again, the interstitium was divided into 25 elements and 51 nodal 

points. The initial time step size was determined by specifying an initial Courant number 

of 0.05. As a further check of the validity of the numerical solution, one of the simulations 

was repeated assuming an initial Courant number of 0.025, thereby doubling the number of 

time steps performed during the run. As a result, the dimensionless time taken for the tracer 

concentration at the lymphatic vessel to reach 50 % of its steady-state value, t50%, changed by 

less than .05 %. In another test, the initial Courant number was reduced from 0.05 to 0.01, 

resulting in a 5-fold increase in the number of time steps taken during the simulation. The 

reduced time step produced no significant change in the model predictions. 

6.5 Results and Discussion 

This section is divided into three parts. The first discusses the effect of the capillary wall 

transport properties on the transport rates of the globulin and albumin tracers, assuming 

various values of /3k • £ k for these macromolecules. The second part considers the effect of the 

globulin interstitial distribution volume on the transport of that tracer for different values of 

/ ? g l o b • £ g l o b . Finally, the third part of this section discusses the effect of interstitial diffusivity 

on the transport rate of the albumin tracer as a function of /3 a l b • £ a l b . 

6.5.1 The Effect of Capillary Boundary Conditions on Tracer Transit Time 

The first set of simulations explored the combined effect of the /? k • £ k and the capillary wall 

transport properties on the exchange of each of the two tracers. Two 2 x 3 factorial studies 

were performed in which each tracer was subjected to first the globulin boundary conditions 

and then the albumin boundary conditions for each value of /3k - £ k considered. (Recall that the 
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alburnin boundary condition corresponds to a reflection coefficient of 0.89 and a permeability, 

D 1 " 1 , of 2.4 X 1 0 - 8 cm/s at the capillary wall, while the globulin boundary condition implies a 

reflection coefficient of 0.91 and a permeability of 1.39 X 10~8 cm/s.) 

Tracer Boundary Condition £ • /3 Steady-State 
Outlet Concentration 

0.16 0.00091 
Globulin Globulin 0.50 0.00091 

0.90 0.00091 

0.16 0.00113 
Globulin Albumin 0.50 0.00113 

0.90 0.00113 

0.21 0.00113 
Albumin Albumin 0.50 0.00113 

0.90 0.00113 

0.21 0.00091 
Albumin Globulin 0.50 0.00091 

0.90 0.00091 

Table 6.1: T h e effect of capi l lary w a l l boundary condit ions on the steady-state con
centrat ion o f the tracers i n the outlet ( lymphat ic ) stream. 

Table (6.1) presents the steady-state dimensionless concentrations for the albumin and the 

globulin tracers in the lymphatic vessel (i.e., their plasma/lymph ratios) as functions of and 

the capillary wall boundary conditions. Recall that the outlet concentration in the lymphatic 

vessel equals the interstitial concentration within the tracer's distribution volume in the vicinity 

of the lymphatic vessel. It is clear from Table (6.1) that the steady-state concentration of a 

tracer is determined by the boundary conditions at the capillary wall, and not the transport 
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mechanisms within the interstitial space. In fact, the outlet concentration is determined largely 

by the capillary wall reflection coefficient since, in the simulations presented here, the principle 

mechanism for the transcapillary exchange of tracer is convective transport. Hence, the influx 

of some tracer k into the system is proportional to (1 - o*). Under steady-state conditions 

and for this model tissue, then, the flux of tracer across the lymphatic vessel wall must also be 

proportional to (1 — cr^), so that the outlet stream composition is determined by the degree of 

sieving at the capillary wall. 

Table (6.2) presents the dimensionless time required for the tracer's outlet stream concen

tration to reach 50 % of its steady-state value, t50%, as a function of /3 • £ and the capillary wall 

reflection coefficient for both the globulin tracer and the albumin tracer. The breakthrough 

curves associated with these simulations are shown in Figure (6.1). In each case iso% decreases 

with increasing /3-£ , due to the enhanced convective transport of the tracer accompanying such 

an increase. In addition, when the capillary wall is assigned the more permeable (albumin) 

transport properties, the time required for each tracer to reach 50 % of its steady-state value 

decreases marginally (i.e., by less than 0.5 %) in each case. Hence, the capillary transport prop

erties exert a stronger influence on the ultimate steady-state outlet concentration than on the 

transit times through the interstitium, for the range of permeabilities and reflection coefficients 

considered here. 

Of greater significance is the difference in transit times between the albumin and globulin 

tracers. In all cases, the globulin tracer reaches 50 % of its steady-state value in a significantly 

shorter time than the albumin tracer, even when both tracers are subject to the same boundary 

conditions (and hence achieve the same ultimate outlet concentrations), and despite the fact that 

the globulin interstitial diffusivity is less than that of albumin. For example, when /3-£ is 0.90 and 

assuming globulin boundary conditions, the t50% for the globulin tracer is 1.636, compared to a 

t50% of 2.115 for the albumin tracer. Therefore, only two model parameters remain to account 

for this difference in transit times: the tracer distribution volume and interstitial diffusivity. 

These are investigated separately below. 
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1.2. 

HX 0 

DIMENSIONLESS TIME DIMENSIONLESS TIME 

Figure 6.1: The breakthrough curves for various values of are shown (I) for glob
ulin, assuming globulin boundary conditions; (II) for globulin, assuming alburnin 
boundary conditions; (III) for albumin, assuming albumin boundary conditions; 
and (IV) for albumin, assuming globulin boundary conditions. In each case the 
top (chain-dot) curve corresponds to 13 • £ equal to 0.90, the middle (dotted) curve 
corresponds to /3 • f equal to 0.50, and the lower (solid) curve corresponds to 0 • f 
equal to 0.16 for globulin and 0.21 for albumin. 
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Tracer £ • 8 t5Q% t 5 0 % 

Assuming Albumin B . C . Assuming Globulin B . C . 

0.21 2.355 2.349 
Albumin 0.50 2.254 2.247 

0.90 2.119 2.115 

0.16 2.064 2.057 
Globulin 0.50 1.853 1.849 

0.90 1.639 1.636 

Table 6.2: Transit times of Albumin and Globulin tracers as functions of /3 • £ and 
the capillary wall transport properties. 

6.5.2 The Effect of Tracer Distribution Volume on Globulin Transit Times 

Table (6.3) shows the t50% for the globulin tracer assuming a distribution volume of first 0.50 and 

then 0.68, and compares these values to the t50% for albumin (which has a distribution volume 

of 0.68). In each case globulin boundary conditions prevail. The breakthrough curves for these 

cases are illustrated in Figure (6.2). The increase in globulin distribution volume results in a 

dramatic increase in the transit time for that tracer. In fact, when both the globulin tracer's 

distribution volume and /3-£ equal those of the albumin tracer, the £50% for the globulin tracer 

exceeds the t60% for the albumin tracer, due to the globulin tracer's lower interstitial diffusivity. 

Assuming a /3 • £ of 0.50, for example, the t50% for globulin increases by 29 %, from 1.853 to 

2.394, as the tracer's distribution volume is raised from 0.50 to 0.68. This is to be compared 

to the t50% of 2.247 for the albumin tracer at the same /3 • £ and a distribution volume of 0.68. 

The rise in transit time accompanying the increase in distribution volume is attributed to 

the increased capacity of the interstitium to contain the given tracer. Altering the distribution 

volume from 0.50 to 0.68 represents a 36 % increase in the interstitial volume available to the 

globulin tracer. It is not surprising, then, that an increase in the distribution volume leads to a 
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t50% ^50% ^50% 

^ l o b = 0.50 n 8 l o b = 0.68 Alburnin Tracer n' 

0.16 
0.50 
0.90 

2.064 
1.853 
1.639 

2.607 
2.394 
2.177 

2.355* 
2.254 
2.119 

* evaluated at 0 • £ = 0.21 

Table 6.3: The effect of interstitial distribution volume on the transit time of a glob
ulin tracer through the interstitium. The last column of values presents the transit 
times for the albumin tracer assuming the same capillary boundary conditions as 
those for the globulin tracer, and assuming that the distribution volume of the 
albumin tracer equals 0.68. 

concomitant rise in the length of the transient for a given tracer, since the tracer must fill the 

available interstitial space before steady-state conditions prevail. 

This finding offers an alternative mechanism for the 'gel chromatographic effect' discussed 

in Chapter 3. Recall that some experimental data suggests that, in certain instances, larger 

probes pass through the interstitial space more rapidly than smaller ones [48]. To date, only one 

paper has addressed this phenomenon from a theoretical standpoint [104]. In that work, the 

authors assumed that the interstitium contained a 'free-fluid phase', in which macromolecules 

moved by convection and diffusion, and a 'gel phase', in which the transport of macromolecules 

was limited to restricted diffusion alone. Assuming, then, that the larger molecules were limited 

to the free-fluid phase while smaller molecules penetrated both phases, the transit time through 

the interstitium for the smaller tracer could conceivably exceed that of the larger probe. 

As was mentioned in Chapter 2, the concept of continuous, distinct free-fluid and gel phases 

lacks solid evidence. Macromolecular exclusion, on the other hand, is well documented (see, 

for example, [13]). Hence this latter mechanism for the 'gel chromatographic effect' requires no 

additional assumptions regarding the structure of the interstitium, and so is preferred over the 
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'gel phase - free-fluid phase' mechanism of Watson and Grodins [104]. It is also conceivable that 

variations in the convective hindrances for various macromolecular species may, under certain 

conditions, create conditions for the gel chromatographic effect, as described in Chapter 3. 

Again, this mechanism does not rest on a 'gel phase - free-fluid phase' model of the interstitium. 

6.5.3 The Effect of Interstitial Diffusivity on Albumin Transit Times 

Finally, consider the effect of interstitial diffusivity on the transit time of the albumin tracer 

through the interstitium. Table (6.3) presents t 5 0 % for the various values of /? • £, assuming 

three different values of D^: 0.58 X 10 - 7 cm2/s (i.e., equal to Df^ b), 1.0 x 10~7 cm2/s, and 

1.5 x 10 - 7 cm2/s. The breakthrough curves are shown in Figure (6.3). 

£ • P ho% t 5 0 % t 5 0 % 

= 0.58 X IO"7 cm2/s = 1.00 x IO"7 cm2/s = 1.50 x IO - 7 cm2/s 

0.21 2.564 2.349 2.246 
0.50 2.389 2.247 2.174 
0.90 2.173 2.115 2.081 

Table 6.4: The effect of interstitial diffusivity on the transit time of an albumin 
tracer through the interstitium. 

In general, varying the interstitial diffusivity according to these amounts had only a small 

to moderate effect on the value of t 5 0 % for the alburnin tracer. For example, increasing the 

diffusivity from 0.58 x l O - 7 cm2/s to 1.0 x l O - 7 cm2/s, assuming a/3-£ of 0.50, reduced f 5 0 % by 

less than 6 %. Further increases in the tracer diffusivity had an even less pronounced effect on 

the transit time of the macromolecule. For example, increasing the diffusivity of the albumin 

tracer from 1.0 x 10 - 7 cm2/s to 1.5 xl0~ 7 cm2/s, at a f3 • £ of 0.50, only dropped t 5 0 % by 

an additional 3.2 %. This trend was observed for all values of 0 • £ considered in the study. 

Furthermore, even at the higher diffusivity, the transit time for the aiburnin tracer exceeded 
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the transit time for the globulin tracer for all values of 0 • £ investigated. Within the limits of 

this study, then, it appears that interstitial diffusion has less impact on the transit time of an 

interstitial macromolecule than does the interstitial distribution volume of that species. 
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1-2 

DDffiNaONLESS TIME 

Figure 6.2: The breakthrough curves for various values of /3-£ and globulin boundary 
conditions are shown (i) for albumin; (ii) for globulin, assuming a distribution vol
ume of 0.50; and (iii) for globulin, assuming a distribution volume of 0.68. In each 
case the top (chain-dot) curve corresponds to /3-£ equal to 0.90, the middle (dotted) 
curve corresponds to /3 • £ equal to 0.50, and the lower (solid) curve corresponds to 
/? • £ equal to 0.16 for globulin and 0.21 for albumin. 
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Figure 6.3: T h e b r e a k t h r o u g h c u r v e s for a l b u m i n , a s s u m i n g v a r i o u s va lues o f ft • £, 

a r e s h o w n for (i) T>f£ = 0.58 x I O " 7 c m 2 / s , (ii) T>f£ = 1.00 x 1 0 - 7 c m 2 / s , a n d (iii) 

= 1.50 x I O " 7 c m 2 / s . I n e a c h case t h e t o p ( c h a i n - d o t ) c u r v e c o r r e s p o n d s to 

(3 • £ e q u a l to 0.90, the m i d d l e ( d o t t e d ) c u r v e c o r r e s p o n d s to /3 • £ e q u a l to 0.50, a n d 

t h e l ower (sol id) c u r v e c o r r e s p o n d s to /3 • £ e q u a l to 0.16 for g l o b u l i n a n d 0.21 for 

a l b u m i n . 
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6.6 Concluding Remarks 

This chapter presented the results of a preliminary study that investigated the effects of intersti

tial convection and diffusion, interstitial distribution volume, and capillary transport properties 

on the transit times of two macromolecular tracers representative of albumin and 7 — globulin 

for a specific set of interstitial fluid flow conditions. The findings are summarized below. 

1. As to be expected, the transit time of the tracers varied inversely with the degree of 

convective transport within the interstitium. 

2. Increasing the interstitial diffusivity of the alburnin tracer also led to a moderate decrease 

in the transit time for that tracer. 

3. The capillary transport properties had only a marginal effect on the transit times of 

the tracers, for the range of capillary permeabilities and reflection coefficients consid

ered. However, these properties (and, in particular, the reflection coefficient) had a more 

pronounced effect on the ultimate steady-state concentration in the outlet stream. 

4. The interstitial distribution volume of a given tracer had the greatest influence on the 

time required to achieve steady-state. This is attributed to the increased filling times 

associated with the larger interstitial distribution volumes. These findings suggest that 

the 'gel chromatographic effect' [48] observed in some tissues could possibly be explained 

on the basis of varying distribution volumes, rather than the hypothetical 'gel phase -

free-fluid phase' model proposed by Watson and Grodins [104]. 

Clearly, much more experimental and theoretical research is needed before the interstitial 

transport of multiple tracer species can be well characterized. However, this study suggests that 

the relative transport rates of different macromolecules is governed by a number of interstitial 

properties, including the interstitial distribution volume. This may ultimately bear clinical 

import, particularly in the use of macromolecular carriers for drug delivery. 



Chapter 7 

Summary of Conclusions 

In this dissertation, mathematical relationships are developed to describe the transient flow and 

distribution of fluid and various macromolecular solute species within the interstitium, yielding a 

system of coupled, nonlinear partial differential equations. The resultant mathematical model 

describes the combined effects of a number of interstitial properties (such as exclusion and 

swelling characteristics) and transport mechanisms (such as solute convection, cliffusion, and 

dispersion) on mass transport within the interstitium. 

Despite the complexity of the model, it is limited in several respects. First, the description of 

interstitial deformation applies to small strains only (on the order of ten percent), and so is not 

suited to analyzing extreme cases of edema formation. Further, the model uses a compliance 

relationship to characterize swelling which assumes that any change in volume is a function 

of the interstitial hydrostatic pressure. It therefore neglects the influence of shear stresses on 

interstitial deformation. However, since the model concerns itself primarily with the effect that 

swelling has on the various transport properties and material characteristics of the interstitial 

space (such as the hydraulic conductivity, effective diffusivities, and various distribution volume 

fractions), rather than a description of the deformed geometry of the interstitium, this approach 

provides a reasonable first approximation to the complete theory of deformation for porous 

systems developed by Biot [19]. The use of Biot's theory to describe interstitial swelling must 

await further experimentation to quantify the material properties of the various interstitial 

components. 

Interstitial fluid flow is assumed to be proportional to the gradient in fluid chemical poten

tial alone, thus neglecting any coupling between fluid flow and solute chemical potential, for 

166 
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example. However, the theory developed here could be modified to include these additional 

effects, given better information about the nature of fluid transport within the interstitium. 

Further research in the area of fluid flow within osmotically active, partially restricting matri

ces is therefore needed. However, because the interstitial fluid flow expression presented here 

includes the influence of colloid osmotic as well as hydrostatic pressure gradients, it is considered 

more general than that offered in previous models [87, 36, 22]. 

Despite these limitations, the model of Chapter 3 provides a far more comprehensive de

scription of interstitial transport than that offered by any of the previous models to appear in 

the literature. Its strength lies in the general, self-consistent, and self-contained nature of the 

mathematical formulation. It therefore provides a framework in which to further understand 

the interstitium and its role in microvascular exchange. 

Subsequent chapters of the dissertation have used simplified versions of the general model 

to conduct theoretical investigations of microvascular exchange under normal and pathological 

states. In Chapter 4, for example, the model is used to describe the steady-state exchange 

of fluid and plasma proteins in mesenteric tissue, which is treated as a two-dimensional, rigid 

system. This tissue was selected both for its simple geometry and because it is a popular tissue 

for experimental studies of interstitial transport and microvascular exchange. The array of 

plasma protein species found in vivo was approximated by a single, 'aggregate' species that 

displayed average properties. 

The simulations of Chapter 4 indicate that convective transport of plasma proteins is sig

nificant, even at reduced values of convective hindrance, £. This supports a recent study of the 

movement of labelled albumin in rat mesentery suggesting that convection plays a significant 

role in interstitial plasma protein transport within that tissue [74]. However, the simulations 

also show that exact nature of interstitial plasma protein transport cannot be determined from 

protein distributions alone. 

The model predictions also reveal that the hydrodynamics within the interstitial space can 
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be complex, resulting, for example, in the development of fluid recirculation patterns. The hy

drodynamics can also lead to irregularities in the distribution of fluid and plasma protein fluxes 

across a permeable boundary, such as the mesothehum, even when the boundary's transport 

properties are uniform. This behavior, which is strongly influenced by the transport properties 

of the mesothelial layer, could lead to the erroneous identification of 'leaky sites' within the 

system. 

Finally, the model predicts significant interstitial osmotic pressure gradients in some in

stances, suggesting that the Darcy expression evoked in a number of previous models [22, 36, 87], 

that considers hydrostatic gradients only, is inadequate for describing interstitial fluid transport. 

The analysis of Chapter 4 is extended to transient perturbations in Chapter 5. Again, a 

rigid model of mesenteric tissue is used although, in this case, the two-dimensional tissue is 

replaced by a one-dimensional analogue. Two systemic perturbations are considered: namely 

hypoproteinemia and venous congestion. 

The simulations of Chapter. 5 demonstrate that, assuming a permeable mesothehum, the 

trends in fluid and plasma protein exchange can be anticipated by considering the effect that a 

particular upset has on the effective chemical potential of the luminal fluids. In these instances 

the interstitium is not the major resistance within the system, due to by-passing. However, when 

the mesothehum is impermeable, fluid and plasma proteins must cross the entire interstitial 

space in their journey from the filtering vessel to the re-absorbing vessel, so that the interstitium 

comprises a large fraction of the system's total resistance to mass exchange. In these cases 

the distribution of interstitial plasma proteins plays a greater role in determining the overall 

behavior of the system. 

The simulations indicate further that, following hypoproteinemia, interstitial plasma protein 

content decreases, while the rate of fluid exchange within the tissue increases. This is in keeping 

(qualitatively, at least) with clinical observations of hypoproteinemia. In the case of venous 

congestion, however, the change in interstitial plasma protein content depends, in part, on the 

relative sieving properties of the filtering and draining vessels. When the reflection coefficients 
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of these two sets of boundaries are similar, the interstitial plasma protein content increases 

due to the increased plasma protein exchange rate across the filtering boundaries and sieving 

of interstitial plasma proteins at the draining boundaries. This effect is further supported by 

the clinical observation that interstitial plasma protein content in fiver increases during venous 

congestion. Since this tissue is serviced by sinusoids, the sieving properties of the filtering blood 

vessels and the draining lymphatic vessels are similar. The simulations also predict that, as 

the reflection coefficient of the chaining boundaries decreases relative to that of the filtering 

boundaries, there is a net loss of plasma proteins from the interstitium, resulting in a decrease 

in the total interstitial plasma protein content over time (i.e., the familiar 'plasma protein 

washout'). 

In Chapter 6 a one-dimensional model of a hypothetical tissue was used in a preliminary 

study investigating the effects of interstitial plasma protein convection and diffusion, plasma 

protein exclusion, and the capillary transport properties on the transit times of two macro

molecular tracers representative of albumin and 7-globulin. As was expected, the transit times 

of each of the tracers through the model tissue varied inversely with the degree of convective 

transport. Increasing the interstitial chffusivity of the albumin tracer also led to a moderate 

decrease in the transit time for that tracer. The capillary wall transport properties, meanwhile, 

had only a marginal effect on the transit time for the range of capillary permeabilities and 

reflection coefficients considered. However, these properties (and, in particular, the reflection 

coefficient) had a more pronounced effect on the ultimate steady-state concentration of the 

tracer in the outlet stream. 

It was the interstitial distribution volume of a given tracer that had the greatest impact on 

the time required for the outlet tracer concentration to reach 50 % of its steady-state value. 

This was attributed to the increased filling times associated with larger interstitial distribution 

volumes. These findings suggest that the 'gel chromatographic effect' [48] observed in some 

tissues could possibly be explained on the basis of varying distribution volumes, rather than 

the hypothetical 'gel phase - free fluid phase' model proposed by Watson and Grodins [104]. 
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Finally, in Appendix C, we investigate the possible influence of mechanical dispersion on 

mass exchange within the model tissue. While it influenced the distribution of interstitial 

plasma proteins to some extent, mechanical dispersion had less impact on the overall exchange 

of fluid and plasma proteins within the system. 

Clearly, much more experimental and theoretical research is needed before the interstitial 

transport of fluid and multiple solute species can be well characterized. However, it is hoped that 

the work presented here offers some further insight into the mechanisms governing interstitial 

transport and microvascular exchange. Continued research in this area will not only contribute 

to a fundamental understanding of the operation of the microvascular exchange system, but will 

assist clinicians in developing more effective techniques for fluid resuscitation and drug delivery. 



Chapter 8 

Recommendations 

In the preceding chapters we investigated the combined effects of a number of system parameters 

(such as the interstitial hydraulic conductivity, the interstitial plasma protein diffusivity, and 

the plasma protein convective hindrance) on the steady-state and transient exchange of fluid 

and various plasma protein species within a model tissue representative of mesentery. However, 

many questions regarding the nature of the interstitium and its influence on mass exchange 

within tissues remain unanswered. These include, among others, the effect of interstitial swelling 

on microvascular exchange and the nature of interstitial fluid flow. To address these and other 

questions, the analysis presented in this dissertation might be extended to include the following. 

1. The equations describing interstitial deformation should be incorporated into the numer

ical simulations to include the influence of tissue swelling on microvascular exchange. 

Alternate expressions suitable for large changes in interstitial hydration should be sought 

out and applied, where possible. 

2. The analysis of mass exchange in mesentery should be extended to other tissue mod

els. Such models would include, for example, a more rigorous description of lymphatic 

drainage. 

3. The effect of local gradients in interstitial coUoid osmotic pressure on local interstitial 

fluid flow should be investigated, possibly by introducing an "effective interstitial reflection 

coefficient' analogous to the capillary wall reflection coefficient into the extended Darcy 

flux expression. However, a rigorous theoretical description of interstitial fluid flow is to 

be desired over the introduction of an arbitrary parameter such as this. 
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4. F inal ly , the prehminary study of the transient movement of multiple tracer species through 

the interst i t ium should be expanded to consider other species having a broader range of 

solute transport characteristics. 



Nomenclature 

SYMBOL DESCRIPTION UNITS 

A;, i=l,2,3 first, second, and third virial coefficients of coUoid F • L ' / M 1 

osmotic pressure relationship for aggregate plasma protein species 

C b plasma protein concentration of luminal fluid associated M / L 3 

with boundary b 

C ^ 1 local concentration of plasma protein species k in incremental M / L 3 

volume fraction 1 (6nl) 

C k local concentration of plasma protein species k in species' M / L 3 

distribution volume fraction (nk) 

Cr Courant number 

D permeability of membrane boundary to aggregate plasma L/0 

protein species 

Da local dispersion coefficient of interstitial plasma protein species k L2/6 

D ^ local effective diffusion coefficient of interstitial plasma protein species k L 2 /# 

F k function relating excluded volume fraction for plasma protein species 

k to the sohd volume fraction (ns) 

F s function relating the inrmobfle fluid phase volume fraction to 

the sohd volume fraction (ns) 

G k function relating the osmotic pressure of plasma protein species k 

(LTk) to its concentration (C k) 

H mesentery thickness L 

H e f f effective resistance thickness for one-dimensional mesentery L 

173 



Nomenclature 1 7 4 

SYMBOL DESCRIPTION UNITS 
j k local convective flux of protein species k in x; direction, relative M/(L 2 • 0) 

to moving solids 

local diffusive flux of protein species k in x; direction, relative M/(L 2 • 0) 

to convective flux 

j ^ . local mechanical dispersive flux of protein species k in Xj direction, M/(L 2 • 0) 

relative to convective flux 

j s transcapillary plasma protein flux M/(L 2 • 0) 

j k total local flux of plasma protein species k in Xj direction, M/(L 2 • 0) 

j v transcapillary fluid flux L/0 

j k . local volumetric fluid flux in Xj direction through distribution L/0 

volume of protein species k, relative to the moving solids 

j° local total volumetric fluid flux in Xj direction, relative to L/0 

moving solids 

j W i local non-specific fluid flux in x; direction, relative to moving L/0 

solids 

K k local interstitial hydraulic conductivity associated with distribution L 4 / (F- 0) 

volume of protein species k 
K° local total interstitial hydraulic conductivity L4/(F • 0) 

K' local interstitial specific hydraulic conductivity L 2 

L distance separating arteriolar and venular capillaries L 

L p hydraulic conductance of membrane boundary L3/F-0 

l x ; x;th component of outward normal, n, of boundary 

Al maximum dimension of finite element 

n unit outward normal of boundary 

n k local distribution volume fraction of protein species k 
n e k local excluded volume fraction of protein species k 
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SYMBOL 

n 

n° 
P1 

Pe 

q° 

R 

R k 

tot R 

T 

t 

tk 

W o 

V 1 

vk 

DESCRIPTION 

local total mobile fluid volume fraction 

local immobile fluid volume fraction 

local solid phase volume fraction 

local fluid hydrostatic pressure in incremental volume fraction 1 (tW) 

average local hydrostatic fluid pressure 

Peclet number 

local total volumetric fluid flux in Xi direction, relative to 

stationary coordinates 

universal gas constant 

retardation factor of plasma protein species k 

effective hydraulic resistance of in y direction 

for one-dimensional mesentery 

effective diffusive resistance of in y direction 

for one-dimensional mesentery 

absolute temperature 

time 

time for breakthrough curve of species k to reach 50 % 

of its steady-state value 

local sohd phase displacement in X; direction 

partial molar volume of fluid in incremental volume fraction 1 (for1) 

molar volume of pure fluid 

local mean convective velocity of protein species k in x; direction, 

relative to sohd phase velocity (vs;) 

local sohd phase velocity 

local superficial convective solute velocity 

UNITS 

F / L 2 

F / L 2 

L/6 

F/(MOL • T) 

6 • F / L 3 

6/1 

T 

e 

6 

L 

L 3 /M0L 

L 3 /MOL 

L/6? 

L/0 
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SYMBOL DESCRIPTION UNITS 

Vgd local superficial dispersive solute velocity L/6 

vk. local mean fluid velocity in x\ direction through distribution volume L/0 

of protein species k, relative to solid phase velocity (v8.) 

v" ratio of particle velocity to local fluid velocity, for arbitrary spherical L/6 

particle travelling in cylindrical channel 

local fluid mole fraction in incremental volume fraction 1 (far1) 

Xj local spatial coordinate L 

x- local spatial coordinate of deformed medium L 

Q ratio of interstitial resistance to plasma protein diffusion to 

interstitial resistance to fluid flow (K^P011 /D^) 

Qk longitudinal dispersivity of protein species k in interstitium L 

a k transverse dispersivity of protein species k in interstitium L 

0k ratio of hydraulic conductivity in distribution volume k 

to total interstitial hydraulic conductivity (K k/K°) 

0' ratio of immobile fluid phase volume fraction to solid phase volume 

fraction (n^/n5) 

7 W fluid phase activity coefficient 

A difference sign 

6% Kronecker delta function 

6nl incremental volume fraction 1 

e; local solid strain in the Xj direction 

£v local volumetric dilation of interstitium 

t?j- local coefficient of mechanical dispersion for protein species k L2/6 

X ratio of particle diameter to channel diameter for arbitrary 

spherical particle travelling in cylindrical channel 
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SYMBOL DESCRIPTION UNITS 

u^ff effective fluid chemical potential of luminal fluid associated with F / L 2 

boundary b 

Uy, general solvent chemical potential F • L/MOL 

fr], local chemical potential of fluid in incremental volume fraction 1 (cm1) F • L/MOL 

fi^f reference fluid chemical potential F • L/MOL 

£ k local convective hindrance of protein species k 

n1^1 local osmotic pressure of protein species k in incremental volume F / L 2 

fraction 1 (/in1) 

ITk local osmotic pressure of protein species k averaged over its F / L 2 

distribution volume fraction (nk) 

cr° reflection coefficient of membrane boundary b 

cr̂ j component of total stress tensor in interstitium 

component of effective stress tensor in interstitium 

c; finite element weighting function 

$ sohd displacement potential function 

<j)\ finite element basis function 

fi interstitial compliance function 

fi specific interstitial compliance function 

[•]b interstitial quantity evaluated at boundary b 

Superscripts and Subscripts 

alb albumin 

anal analytical solution of dependent variable 

art arteriolar capillary 

b unspecified permeable boundary 



Nomenclature 

Superscripts and Subscripts 

glob globulin 

grid finite element grid quantity 

int interstitium 

lym lymphatic 

mes mesothehum 

P plasma 

simul numerical simulation solution of dependent variable 

tot total 'effective' quantity for one-dimensional mesentery 

ven venular capillary 
7 dimensionless quantity (see text for specific definitions) 
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Appendix A 

One Dimensional Approximat ion to the Two Dimensional M o d e l Mesentery 

A . l Introduction 

The mathematical model developed earlier to describe interstitial transport and microvascular 

exchange in mesentery treats the tissue as a two-dimensional structure. However, the fact 

that the distance separating the arteriolar and venular vessels is an order of magnitude greater 

than the tissue thickness provokes the question: can the behavior of the tissue segment be 

adequately described by a one-dimensional model. As initial evidence that this in fact is the 

case, one need only examine the surface plots of interstitial fluid pressure and interstitial plasma 

protein concentration from the two-dimensional simulation presented earlier (see Figure (4.5) of 

Chapter 4). In this case the gradients in the transverse (y) direction are insignificant compared 

to those in the longitudinal (x) direction. However, this represents the results of only one of 

26 simulations. Hence a detailed study was undertaken to determine under what conditions a 

one—dimensional description of the system would prove adequate. 

The presentation will take the following form. In Section A.2 the mathematical expressions 

describing interstitial fluid and plasma protein transport are developed. These equations, along 

with the various boundary conditions, are then cast in dimensionless form. Section A.3 describes 

the simulations performed in this study, while Section A.4 outlines the numerical procedures 

used. In Section A.5 the results of the study are presented and the ramifications discussed. 

Section A.6 summarizes the work. We will now develop the one-dimensional model of interstitial 

transport in mesentery. 

191 
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A.2 One—Dimensional Approximations to the Two—Dimensional Equations 

Consider the steady flow of fluid and plasma proteins through a thin, twc>--dimensional seg

ment of mesenteric tissue (see Figure (4.1) of Chapter 4). The interstitium is assumed to be 

homogeneous and isotropic. In addition, it is assumed that variations in the y-direction can 

be neglected, so that the analysis is reduced to one spatial dimension. We will now develop ex

pressions for the conservation of fluid mass and plasma protein content within the interstitium, 

given this simplification. 

A.2.1 Conservation of Fluid Mass 

H 
;0 

1ST-Si 

i 

J 

Figure A . l : A schematic diagram of a one-dimensional segment of mesenteric tissue 
of thickness H and differential length 6x showing the various fluid fluxes. 

Figure (A.l) is a schematic diagram of a differential element of interstitium of length 6x and 

thickness H . The upper and lower boundaries of the element consist of segments of mesothehum 

that are permeable to both fluid and plasma proteins. Let j° be the fluid flux in the x-direction 

at some position x in the interstitium. Furthermore, let j™" represent the fluid flux crossing 

either of the two mesothelial segments and entering the peritoneum at that same point. A 
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material balance on the fluid within the volume element gives 

H- [it, - Ji, + f c] - 2-JST - ̂  = 0. (A.l) 

Rearranging Eq. ( A . l ) and taking the limit as 6x — • 0 gives 

§ + f - s - = o. <A-2> 

The local fluid flux is related to the local hydrostatic and colloid osmotic pressures in the 

available space, P 1 and II1 respectively, via an extended Darcy relationship: 

.„ = _ K . ^ m . ( A . 3 ) 

The fluid exchange rate between the interstitium and the peritoneum, meanwhile, is described 

by Starling's Law: 

jmcs _ J P L _ pmes _ ^mes ^jjl _ TTmes^j (A.4) 

Substituting Eqs. (A.3) and (A.4) into Eq. (A.2) then gives 

d2(~Pl-T\1} 2 L m e s r / \n 
K ̂ 2 ; - H ^ C T [ P 1 - P M E S - * m e s (n1 - n-)] = o. ( A . S ) 

Equation ( A . 5 ) provides an expression for the hydrostatic pressure distribution in the ac

cessible space as a function of the interstitial material properties, the mesothelial boundary 

parameters, and the interstitial colloid osmotic pressure distribution. This latter distribution 

can be related to the plasma protein distribution in the accessible space through a colloid 

osmotic relationship. It is assumed here that 

n ^ A ^ C 1 ) + A ! ( C 1 ) J + A S ( C 1 ) 3 , (A.6) 

where A i , A2, and A 3 are constants. 

A .2.2 Conservation of Interstitial Plasma Proteins 

Consider once more a differential element of interstitium (see Figure (A.2)). Let j C x represent 

the convective flux of plasma proteins through the accessible space and in the x-direction at 



Appendix A. One Dimensional Approximation to the Two Dimensional Model Mesentery 194 

H 

J d x 

1 

8x 8x 

•Sx 

Figure A.2: A schematic diagram of a one-dimensional segment of mesenteric tissue 
of thickness H and differential length 8x showing the various plasma protein fluxes. 

some point x in the interstitium. Let ja x be the dispersive flux of plasma proteins through that 

space and in the x-direction at that same point. Finally, let j ™ " be the local flux of plasma 

proteins from the accessible space to the peritoneum crossing one of the mesothelial segments 

at that point. 

A material balance on the plasma proteins within the differential element under steady-state 

conditions gives 

H - .[ja, - J d x + , x + Jc - j c I + J - 2 • • 6x = 0. (A.T) 

In the limit, as Sx —• 0, Eq. (A.7) becomes 

d ( j c + j d ) , 2 : r + — • = 0. dx. Ff 

The local convective flux, j c , is related to the local fluid flux, j°, by 

Jc = £-/3-j°w-C1. 

The local dispersive flux, ja, is given by Fick's Law: 

jd = -n 1 • D d • 
dC 1 

dx 

(A.8) 

(A.9) 

(A.10) 
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where the coefficient of mechanical dispersion, Da, is (see Appendix C) 

D d = \L£-M . a i + D c f f . (A . l l ) 
n 1 

Finally, we will assume that the flux of plasma proteins crossing each of the mesothelial bound

ary segments, j m e s , is given by the nonlinear flux equation. That is, 

:mes _ / , ir.es>, -mes [C 1 - C m e s e x p ( - P e m e 5 ) ] M.M 
J s - ( 1 _ < 7 } - J w • [ l - e x p ( - P e - ) ] * ( A " 1 2 ) 

where 

Equation (A.8) then becomes 

/ i _ _mes \ - mes 
p e mes = V °_ / J w _ (A.13) 

d (j° • C 1 ) , d / dC>\ 2 [C1 - C " e x p ( - P e — ) ] _ 
^ dx

 n d x ( D d ' ^ r J + H - ( 1 - £ r > J w • [ l - e x p ( - P e - ) ] — 0- (A.14) 

That is, the sum of the net convective plasma protein flux per unit volume of interstitium, the 

net dispersive flux of plasma proteins per unit volume of interstitium, and the net exchange of 

plasma proteins between the interstitium and the peritoneum, per unit volume of interstitium, 

equals zero at steady-state. 

The differential in the convective term may be expanded as follows: 

Similarly, the diffusive term may be expanded to give 

d / d C x \ dDd d C 1 _ d 2 ^ , c , 
c b l ( D d l x - j = - d x - - ^ + D d - - d x ^ ( A J 6 ) 

However, Dd may be related to the fluid flux, j° , via Eq. (A. l l ) , so that 

d D d _ M - a i d | j ° | 

"dx" - ' dx • [ A - U ) 

Equation (A.17) further assumes that £, /3, n 1 . Deff, and ct\ are all spatially invariant. However, 

according to Eq. (A.2) dj^/dx is equal to - 2 j m e s / H . Hence Eq. (A.15) becomes 

dj° • C 1

 0 d C 1 j 2 CA IR1! 
~~d7~ "J-" ~d7 ~ C H • (A-18) 

http://ir.es
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Substituting Eq. (A.18) into the convective term of Eq. (A.14) and Eq. (A.17) in the chffusive 

term, the final form of the solute transport equation becomes 

o ^ C 1 2 j m e s 

^ Jw Jw • dx H — n 
d ' C 1 £ / 3 a , d | j ° | d C 1 

J->d , , + dx 2 dx dx + 
2 ^ ^ [ ^ - C — e x p ( - P e - ) ] 

+ H - ( 1 _ < r ) J w [ i - e x p ( - P e - ) ] " ° -
(A.19) 

A.2.3 Boundary Conditions 

A complete description of fluid and plasma protein transport within the interstitium requires 

expressions for fluid and plasma protein exchange at each of the arteriolar and venular capillar

ies. These boundary conditions are the same as those for the two-dimensional system analyzed 

earlier. That is, 

J ° ] b ' 1 > = L p [ [ p ' ] l - p k - < 1 - < r k ) ( [ n l - n b ) ] -

and 

where 

. r i ( [ C 1 ] . - C b e x p ( - P e b ) ) 

Pe b q - ^ ) - [ j w j b - i x 
D b 

(A.20) 

(A.21) 

(A.22) 

and where [-]b represents an interstitial parameter evaluated at a point adjacent to the boundary 

b. 

A.2.4 Non-Dirnensional Form of the Equations 

The set of coupled, ordinary differential equations developed above can be recast in dimen

sionless form by introducing the following dimensionless parameters: J? - P / P * " 4 , C = 0/0™*, 

Lf = I I / P " 1 , x = x / L , H = H/L, Q = (K° • P ^ J / D r f , (3 = K V K 0 , 7 = ( ^ Q i V f L n 1 ) , j° = 

J w L / D ^ , j d = j d L / ( D e f f C o r t ) ; j c = j c L / ( D e f f C a r t ) , j ™ s = j ^ L / D r f , di = a i / L , D d = D d / D ^ , 

A i = A i • C ^ / P 8 * , A 2 = A 2 • ( C a n ) 2 / P a r S A 3 = A 3 • ( C ^ / P * * , L b = ( L b • L ) / K ° , and 

D b = ( D b • L ) /D e f f . The equations then take the following form. 
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1. Fluid Transport within the Interstitium: 

d 2 ^ . ~ n l ) - gL^™ [p 1 - P m e s - o*** (ft1 - II m e s )] = 0, 

ft1 = A a ( C 1 ) + A 2 ( C 1 ) 2 + A 3 ( C 1 ) 3 , 

T 0 _ tf^-H1) 
di 

2. Plasma Protein Transport within the Interstitium: 

£•/? 
T 0 d C 1 2 -
, w'"dT~I' J w c 

+ S - ( I - « T » " " ) . J ; 

D d 

d 2 C J 

+ 7' 
d C 1 

dx 2 ' dx dx 

C 1 - C m e s e x p ( - P e m e s ) ] 

[ l - e x p ( - P e m e s ) ] 

d C 1 

jd = - n 1 • D d • 
dx ' 

j m e s = a • ip™8 [p1 - p m c s - ^ (ft 1 - nm e s)] 

3. Boundary Conditions: 

d(P a - ft1) 
dx 

l , = L5 ( [ p ' ] b - P ' - ^ ( [ f t> ] b - f i ' ) ) . 

[ J t + J a ] b - i I - ( i - . ) - [ J . | b . i I . f . M - • 

Pe" 

(l - e*p (-Pe1)) 

(A.23) 

(A.24) 

(A.25) 

+ 

= 0, (A.26) 

(A.27) 

(A.28) 

(A.29) 

D b 

(A.30) 

(A.31) 

(A.32) 

Equations (A.23) through (A.32) fully describe the system. 
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A.2.5 Influence of the 1-D Approximation on Characterizing the Mesothelial 

Transport Properties 

The equations developed earlier provide a one-dimensional approximation to the two-dimensional 

equations describing fluid and plasma protein transport within a segment of mesenteric tissue. 

The validity of this simplification rests on the assumption that variations in the transverse 

(y) direction are negligible. However, a further consequence of this simplification is that the 

resistance of the interstitium to fluid and plasma protein transport in the transverse direction 

is ignored. This presents no real problem, provided that the permeable boundaries, and not 

the interstitium, are the major sources of resistance to mass exchange. However, should the 

interstitial resistance to fluid and plasma protein transport be significant, the hydraulic conduc

tance and permeability of the mesothelial layer, Lp"65 and D m e s respectively, must be reduced 

in the one-dimensional case to account for the contribution of the interstitium to the overall 

resistance of the system in this direction. 

Let H"^ be the effective thickness of the interstitium which contributes to the overall re

sistance to transport in the transverse direction. Given the symmetry of the system about 

the longitudinal axis of the interstitium, then H/2, the half-thickness of the tissue, serves as 

an upper bound to H ^ . However, H ^ will in fact depend on the hydrodynamics within the 

tissue itself. For example, should the majority of fluid and plasma proteins be transported 

within a fraction of the total tissue thickness, H ^ will be less than H/2 . The magnitude of H ^ 

can therefore only be determined by first investigating mass transport in the two-dimensional 

system. 

Suppose that the effective tissue thickness is known. The resistance of the interstitium to 

fluid flow, R m t , is then given by 

R ^ = f ^ (A-33) 

where K° is the hydraulic conductivity of the interstitial space. The resistance of the mesothelial 
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layer, R™65, on the other hand, is 

B ^ ' = L = - ( A - 3 4 ) 

The total resistance to fluid flow in the transverse direction is given by the sum of these two: 

R^ o t = R ^ + R ^ 5 . (A.35) 

The total hydraulic conductivity of the system in the transverse direction, L p

o t , is then given 

by 
l 

L " = R T ' ( A 3 6 ) 

The same argument can be applied to the resistance to protein diffusion in the transverse 

direction. For example, the resistance of the interstitium to plasma protein diffusion, R™1 is 

«S* = ^ . (A.37) 

where, as before, Da is the dispersion coefficient. The resistance associated with the mesothelial 

boundary, meanwhile, is 

Rr=oL. (A.38) 

The total resistance to diffusion, R d

o t is then 

R a

o t = Bit + R j " , (A.39) 

while the system's total transverse permeability to plasma proteins, D t o t , is given by 

D t o t = • (A-40) 

Since the dispersion coefficient is linked to the fluid flow, the interstitial resistance to diffusion 

will vary with the hydrodynamics of the interstitium. If mechanical dispersion is negligible 

compared to molecular cliffusion, Da can be replaced by D^r in Fiq. (A.37). (Note that, in the 

numerical analysis that follows, mechanical dispersion is neglected so that Da reduces to Deff, 

the coefficient of molecular diffusion.) 
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The above analysis fails to consider the additional effect of convective retardation on the 

plasma protein transport properties of the mesothehum in the one-dimensional approximation. 

Presumably, the influence of the retardation factor can be accounted for by adjusting the 

reflection coefficient of the mesothehum. The exact way in which this can be described is 

unclear. Initially, one might assume that if £ • /? is less than (1 — t r m e s ) , the former replaces the 

latter. However, this fails to consider the possibility of a change in plasma protein transport 

mechanisms at the boundary itself. In the extreme case, t r m e s and £ might both equal 0. 

Hence, plasma protein transport would be restricted to diffusion alone in the interstitium, 

while considerable convective transport might take place across the mesothelial layer. The 

matter of adjusting t r m e s in the one-dimensional case will therefore be left unresolved at this 

time. 

A . 3 Case Studies 

The various parameters associated with the one-dimensional model were assigned the same 

values as those used in the two-dimensional simulations. A 3 X 3 X 3 factorial study was 

performed as before, with a varying as 0.09il7, 0.9117, and 9.117, £ assuming values of 1.0, 0.5, 

and 0.0, and where the mesothelial transport properties varied according to boundary condition 

1, boundary condition 2, and boundary condition 3 outlined previously (see Chapter 4). 

Four additional simulations were performed to study the influence of the interstitial resis

tance in the transverse direction, discussed in Section A.2, on microvascular exchange in the 

tissue segment. In these latter simulations a assumed a value of 9.117 and the mesothelial 

transport properties were defined by boundary condition 3 — the mesothehum's most perme

able state. £ was assigned values of 0.5 and 0.0. (An £ value of 1.0 was not considered since no 

two-dimensional simulation was available for comparison. ) Two values of H"^ were considered: 

1.5 x 1 0 - 3 cm (i.e., the tissue half-thickness) and 1.5 X 1 0 - 4 cm. These corresponded to a total 

hydraulic conductivity hi the y-direction, Lp° l, of 2.04 x 1 0 _ s cm3/(dyne-s) and 1.79 x 10""7 
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cm3/(dyne-s), respectively, while the total transverse plasma protein permeability, Dtot, as

sumed values of 2.28 X 10 - 6 cm/s and 2.39 x 10 - 6 cm/s, respectively. These 'effective values' 

of hydraulic conductivity and permeability were then used to characterize the mesothehum. 

A.4 Numerical Procedures 

The numerical procedure used to solve the twc>-dimensional problem was applied to the one-

dimensional system as well. Again, the finite element method was employed, with second-

order Lagrange polynomials serving as basis functions. The tissue domain was divided into 25 

elements resulting in a system of 51 nodal points. Nodal values of P 1 and C 1 were determined 

iteratively. A tolerance of 10 - 6 served as the criterion for convergence (see Section 4.4 of 

Chapter 4 on numerical procedures for the two-dimensional simulations for details). 

Global material balances on fluid and plasma protein exchange were performed to verify the 

numerical solution. In all cases the material balances were accurate to within 0.005 percent. 

A.5 Results and Discussion 

A.5.1 General Comparison of the 1-Dimensional and 2-Dimensional Simulations 

Panels i through ix of Figure (A.3) yield the profiles of the total plasma protein concentration, 

C1, as a function of position x for each of the 27 1-climensional simulations. Recall that the 

total concentration is related to the concentration in the accessible space, C1, by 

C' = ^ . C \ (A.41) 

where n 1 and n s are accessible phase volume fraction and the solid phase volume fraction, 

respectively. Each panel of Figure (A.3) contains three curves corresponding to the three 

values of a considered, as in the concentration plots from the 2-dimensional simulations (see 

Figure (4.9) of Chapter 4). hi each case is assumed to be zero. Clomparing the curves from 

the 1-dimensional simulations to the corresponding curves from the 2—dimensional simulations, 

it is clear that, for the most part, the curves closely resemble one another. 
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Figure A.3: The dimensionless total concentration, C l, as a function of dimension
less position, 5c. The nine plots correspond to the nine different combinations of 
boundary conditions (columns) and values of £ (rows) studied. Each plot contains 
three curves corresponding to the three values of a considered (i.e., the solid hne 
corresponds to a equal to 0.09117, the dotted line corresponds to a equal 0.9117, 
and the chain-dot line corresponds to a equal to 9.117). 
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i 

One exception to this is the case where £ equals 1.0, a is 9.117, and the mesothelial transport 

properties are denned by boundary condition 2. The plot from the 1-dimensional simulation 

reveals a sharper peak in the total concentration than the corresponding curve from the 2-

dimensional simulation. This discrepancy is attributed largely to the finer grid density, and 

hence the greater definition, in the 1-dimensional simulation. At the very least, the two curves 

show good qualitative agreement. The similarity is further substantiated when we consider the 

distribution of fluid and solute fluxes crossing the mesothehum predicted by the two simulations. 

Panel i of Figure (A.4) corresponds to the 1-dimensional simulation, while panel ii corresponds 

to the 2-dimensional simulation. 

Other significant differences in the concentration profiles predicted by the 1-dimensional 

and 2-dimensional simulations are restricted to those cases for which the mesothelial transport 

properties are given by boundary condition 3. The differences are most pronounced in the 

vicinity of the arteriolar and venular walls when a is 9.117. However, these discrepancies will 

be fully addressed in Section A.5.2. 

The average fluid and solute fluxes across each of the permeable boundaries predicted by 

the 1-dimensional simulations are compared to those from the 2-dimensional simulations in 

Table A . l and Table A.2, respectively. With exception of those simulations associated with 

boundary condition 3, the 1-dimensional model predictions and 2-dimensional model predic

tions are in close agreement. Consider, for example, the fluxes across the arteriolar wall for 

boundary condition 1 and 2. In all cases the fluid and solute fluxes predicted by the two models 

agreed to within 6.6 percent of each other, and generally agreed to within 4.6 percent. Simi

larly, the ratio of the average convective protein flux to the average chffusive protein flux in the 

vicinity of the arteriolar wall differed by no more than 4.6 percent (see Table A.3). A compar

ison of the one-dimensional and two-dimensional model predictions assuming the mesothelial 

boundary condition 3 follows. 
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Figure A.4: The mesothelial fluid and plasma protein flux distributions, assum
ing £ is 1.0, a is 9.117, and the mesothelial transport properties are given by 
boundary condition 2, are shown for the one-dimensional model (panels i) and the 
two-dimensional model (panels ii). 
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£ a Boundary Condition 1 Boundary Condition 2 Boundary Condition 3 
Art Ven Mes Art Ven Mes Art Ven Mes 

1.0 0.09117 -0.04 0.04 — -0.22 0.06 0.01 -0.31 0.09 0.01 
1.0 0.9117 -0.40 0.40 — -2.30 0.63 0.08 -2.87 0.65 0.11 
1.0 9.117 -4.49 4.49 — -25.16 6.84 0.92 No Convergence 
0.5 0.09117 -0.04 0.04 — -0.22 0.06 0.01 -0.31 0.09 0.01 
0.5 0.9117 -0.37 0.37 — -2.26 0.61 0.08 -2.87 0.66 0.11 
0.5 9.117 -4.30 4.30 — -24.90 6.46 0.92 -26.14 2.47 1.18 
0.0 0.09117 -0.03 0.03 — -0.22 0.06 0.01 -0.31 0.09 0.01 
0.0 0.9117 -0.34 0.34 — -2.21 0.60 0.08 -2.86 0.66 0.11 
0.0 9.117 -2.42 2.42 — -20.20 5.70 0.72 -25.58 2.92 1.13 

£ a Boundary Condition 1 Boundary Condition 2 Boundary Condition 3 
Art Ven Mes Art Ven Mes Art Ven Mes 

1.0 0.09117 -0.04 0.04 — -0.23 0.06 0.01 -0.38 0.12 0.01 
1.0 0.9117 -0.40 0.40 — -2.39 0.66 0.09 -3.55 0.76 0.14 
1.0 9.117 -4.49 4.49 — -25.83 7.03 0.94 -33.06 2.25 1.54 
0.5 0.09117 -0.04 0.04 — -0.23 0.06 0.01 -0.38 0.12 0.01 
0.5 0.9117 -0.37 0.37 — -2.35 0.64 0.09 -3.56 0.78 0.14 
0.5 9.117 -4.30 4.30 — -25.64 6.69 0.95 -33.17 2.47 1.53 
0.0 0.09117 -0.03 0.03 — -0.23 0.06 0.01 -0.38 0.12 0.01 
0.0 0.9117 -0.34 0.34 — -2.31 0.63 0.08 -3.57 0.80 0.14 
0.0 9.117 -2.42 2.42 — -21.53 6.05 0.77 -33.23 3.19 1.50 

Table A.l: T h e upper table presents the average dimensionless fluid fluxes across the 
various permeable boundaries assuming a two-dimensional model of the mesentery. 
T h e same data is shown in the lower table for the case of a one-dimensional model 
of the tissue segment. A negative value indicates a fluid flux entering the interstitial 
space, while a positive value denotes a flux leaving the interstitium. 
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£ Q Boundary Condition 1 Boundary Condition 2 Boundary Condition 3 
Art Ven Mes Art Ven Mes Art Ven Mes 

1.0 0.09117 -0.005 0.005 _ -0.034 0.000 0.002 -0.046 0.001 0.002 
1.0 0.9117 -0.060 0.060 — -0.345 0.069 0.014 -0.430 0.029 0.020 1.0 9.117 -0.673 0.673 — -3.774 0.396 0.169 No Convergence 

0.5 0.09117 -0.005 0.005 — -0.034 -0.000 0.002 -0.046 -0.001 0.002 0.5 0.9117 -0.056 0.056 — -0.339 0.064 0.014 -0.430 0.029 0.020 0.5 9.117 -0.645 0.645 — -3.736 0.512 0.161 -3.920 0.130 0.189 0.0 0.09117 -0.005 0.005 — -0.034 -0.000 0.002 -0.046 0.001 0.002 0.0 0.9117 -0.051 0.051 — -0.332 0.060 0.014 -0.430 0.028 0.020 0.0 9.117 -0.364 0.364 — -3.030 0.433 0.130 -3.840 0.144 0.184 

£ Q Boundary Condition 1 Boundary Condition 2 Boundary Condition 3 
Art Ven Mes Art Ven Mes Art Ven Mes 

1.0 0.09117 -0.005 0.005 -0.035 0.000 0.002 -0.058 0.001 0.003 
1.0 0.9117 -0.060 0.060 — -0.358 0.072 0.014 -0.533 0.034 0.025 1.0 9.117 -0.673 0.673 — -3.874 0.395 0.174 -4.959 0.120 0.242 0.5 0.09117 -0.005 0.005 — -0.035 0.000 0.002 -0.058 -0.001 0.003 0.5 0.9117 -0.056 0.056 — -0.353 0.067 0.014 -0.534 0.035 0.025 0.5 9.117 -0.645 0.645 — -3.846 0.521 0.166 -4.976 0.130 0.242 0.0 0.09117 -0.005 0.005 — -0.035 0.000 0.002 -0.058 0.001 0.003 0.0 0.9117 -0.051 0.051 — -0.347 0.063 0.014 -0.536 0.036 0.025 0.0 9.117 -0.364 0.364 — -3.229 0.445 0.139 -4.985 0.164 0.241 

Table A.2: T h e upper table presents the average dimensionless plasma protein 
fluxes across the various permeable boundaries assuming a two-dimensional model 
of the mesentery. T h e same data is shown in the lower table for the case of a 
one-dimensional model of the tissue segment. A negative value indicates a protein 
flux entering the interstitial space, while a positive value denotes a flux leaving the 
interstitium. 
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£ a Boundary Condition 1 Boundary Condition 2 Boundary Condition 3 
Art Ven Mes Art Ven Mes Art Ven Mes 

1.0 0.09117 -1.22 -1.21 — -1.69 -0.99 -2.26 -3.54 -0.97 23.22 
1.0 0.9117 -1.35 -1.21 — -1.34 -1.21 -1.34 -7.89 -1.21 5.73 
1.0 9.117 -64.51 -1.21 — -2.71 -1.21 -1.23 No Convergence 
0.5 0.09117 -1.55 -1.53 — -5.28 -0.98 9.16 2.34 -0.93 0.92 
0.5 0.9117 -1.67 -1.53 — -1.89 -1.53 -1.98 1.52 -1.53 0.75 
0.5 9.117 -9.22 -1.53 — -2.30 -1.53 -1.62 1.80 -1.53 0.71 

£ a Boundary Condition 1 Boundary Condition 2 Boundary Condition 3 
Art Ven Mes Art Ven Mes Art Ven Mes 

1.0 0.09117 -1.22 -1.21 — 
1.0 0.9117 -1.35 -1.21 — 
1.0 9.117 -65.46 -1.21 — 
0.5 0.09117 -1.55 -1.53 — 
0.5 0.9117 -1.67 -1.53 — 
0.5 9.117 -9.21 -1.53 — 

-1.68 -1.01 — -3.61 -1.06 
-1.33 -1.21 — -8.91 -1.21 
-2.60 -1.21 — 10.69 -1.21 
-5.05 -1.01 — 2.25 -1.11 
-1.88 -1.53 — 1.34 -1.53 
-2.21 -1.53 — 0.95 -1.53 

Table A.3: The upper table presents the ratios of the average dimensionless convec
tive plasma protein flux to the average dimensionless diffusive protein flux across 
the various permeable boundaries assuming a two-dimensional model of the mesen
tery. The same data is shown in the lower table for the case of a one-dimensional 
model of the tissue segment. A negative value indicates that the two protein fluxes 
are in opposite directions. 
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A.5.2 Effect of H 6 0 on Exchange in the 1—D Simulations 

The results from the 27 simulations suggest that the 1-dimensional model is, under most cir

cumstances, a reasonable approximation to the 2-dimensional formulation. Notable exceptions 

are those cases in which the mesothelial transport properties are given by boundary condi

tion 3. Here the 1-dimensional simulations predict substantially higher fluxes across each of 

the permeable boundaries when compared to the 2-dimensional simulations. Four additional 

simulations were therefore performed to evaluate the effect of the interstitial matrix resistance 

on mass exchange for those cases in which the mesothehum was most permeable. In these 

simulations a was set equal to 9.117, since the differences between the 2-dimensional and the 

1- dimensional simulations were greatest under these conditions. Two values of £ were consid

ered: namely 0.5 and 0.0. A £ value of 1.0 was not included in the study since the corresponding 

2- dimensional simulation failed to converge to a solution. For each value of £ two simulations 

were performed in which assumed values of 1.5 x 10"3 cm and 1.5 x 10 ~ A cm. Together 

with the initial 1-dimensional simulations, in which was zero, this gave a total of three 

cases with ranging from zero to the tissue half-thickness. The results of these predictions 

were then compared with the corresponding 2-dimensional simulations. 

In general, an increase in was accompanied by a substantial decrease in the local 

dimensionless fluid and plasma protein fluxes across the mesothehum. This is illustrated in 

Figure (A.5), where £ equals 0.5, and Figure (A.6), in which £ equals 0.0. Panels i through 

iii of these figures plot the local dimensionless fluid and plasma protein fluxes as a function of 

position, x, for equal to 0 cm, 1.5 X 10 - 4 cm, and 1.5 x 10 - 3 cm, respectively. Consider, 

for example, those cases where £ equals 0.5. The maximum dimensionless fluid flux drops 

from approximately 116 to something less than 25 as Heff increases from 0 to 1.5 X 10 - 3 cm. 

In addition, the fraction of the mesothelial surface over which fluid and plasma proteins are 

exchanged increases with Heff. A similar trend is observed for those simulations in which £ 

equals 0. The reduced fluxes and greater portion of mesothelial surface area active in exchange 

associated with increased H*̂  both compare more favorably with the 2-dimensional predictions. 
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This is shown for the case where £ equals 0.5 in panels i and ii of Figure (A.7). 

The average (hmensionless fluid and plasma protein fluxes across the permeable boundaries, 

assuming various values of H 6* 7 and £ equal to 0.5, are compared to the 2-dimensional simulation 

in the upper data of Table (A.4). Similar data for the case where £ equals 0 are given in the lower 

set of panels of Table (A.4). Again, the data suggest that the interstitial matrix contributes 

significantly to the overall resistance when the mesothehum assumes its most permeable state 

and a equals 9.117. Consider, for example, the case where £ equals 0.5. When H*^ is zero, the 

average dimensionless fluid flux across the arteriolar vessel, jjf 1, is approximately 27 percent 

higher than that predicted by the 2-dimensional simulation. This increased influx of fluid into 

the interstitium is attributed to the enhanced capacity of the system to exchange material with 

the peritoneum, due to the ehmination of the interstitial resistance in the transverse direction. 

This effect is also reflected in the average fluid flux across the mesothehum when is zero, 

which is approximately 53 percent higher than the mesothelial fluid flux associated with the 

2-dimensional simulation. 

The enhanced fluid exchange is accompanied by a concomitant increase in plasma protein 

exchange in the system. Again assuming £ equals 0.5 and is zero, the plasma protein 

fluxes across the arteriolar wall and the mesothehum are 27 percent and 28 percent higher, 

respectively, than the fluxes predicted in the 2-dimensional simulation. 

The situation is reversed when we assume a value of 1.5 x 10"3 cm for rT*. In this case the 1— 

dimensional simulations underestimate j^f1 and j^™ by 16 percent and 19 percent, respectively, 

suggesting that the effective thickness of the interstitium is something less than the tissue 

half-thickness. A similar conclusion may be drawn from the solute flux data since, with a 

H"^ of 1.5 X 1 0 - 3 , the 1-dimensional simulation underestimates ^ ^ d by 16 percent 

and 17 percent, respectively. Furthermore, since a value of 1.5 x 1 0 - 4 cm for H e f f again leads 

to an overestimate of the various fluxes across the arteriolar and mesothelial boundaries, it is 

concluded that the effective thickness hes between this and 1.5 x 10~3 cm. 

Finally, it is observed that the 1-dimensional model's prediction of the relative importance 
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Figure A.5: This figure illustrates the effect of varying H e f f on the fluid and plasma 
protein flux distribution across the mesothelium in the one-dimensional model of 
mesentery, assuming £ equal to 0.5. Panel i assumes H e f f is 0 cm, Panel i i assumes 
H e f f equals 1.5 X 10~ 4 cm, and panel i i i assumes H e f f equals 1.5 x 1 0 - 3 cm. Panel 
iv provides the results from the 2-dimensional model. 
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DIMENSIONLESS DISTANCE DIMENSIONLESS DISTANCE 

Figure A.6: This figure illustrates the effect of varying H on the fluid and plasma 
protein flux distribution across the mesothelium in the one-dimensional model of 
mesentery assuming £ equal to 0. Panel i assumes H e f r is 0 cm, Panel ii assumes 
H e f f equals 1.5 X 10 - 4 cm, and panel iii assumes H e f f equals 1.5 x 10~3 cm. Panel 
iv provides the results from the 2-dimensional model. 
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DIMENSIONLESS DISTANCE DIMENSK3NLESS DISTANCE 

Figure A.7: This figure compares the fluid and plasma protein flux distributions 
across the mesothelium for the one-dimensional model (left column) and the 
two-dimensional model (right column) assuming £ equal to 0.5 (panels i) and £ 
equal to 0 (panels ii) and with H e f f equal to 1.5 x 10~3 cm. 
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TJeff Tart v̂en Tmes Tart -ven Tmes Tort /Tart Tven /Tv< 
n Jw Jw Jw Js Js Js Jc /Jd Jc /Jd 

0.0 -33.17 2.47 1.53 -4.976 0.130 0.242 0.95 -1.53 
1.5 x 10"4 -29.29 2.50 1.34 -4.393 0.132 0.213 1.10 -1.53 
1.5 X IO"3 -21.69 2.53 0.96 -3.254 0.132 0.156 1.41 -1.53 

2-D -26.14 2.47 1.18 -3.920 0.130 0.189 1.52 -1.53 

xreff Tart 7 ven Tmes "iart Tven ;mes Tart /'•art T v c n /Tv«n 
n Jw Jw Jw Js Js Js Jc /Jd Jc /Jc 

0.0 
1.5 x 10 - 4 

1.5 x 10 - 3 

2-D 

33.23 3.19 
29.23 3.15 
21.56 3.08 
25.58 2.92 

1.50 -4.985 
1.30 -4.385 
0.92 -3.233 
1.13 -3.840 

0.164 0.241 
0.160 0.211 
0.151 0.154 
0.144 0.184 

0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 

Table A.4: The upper table presents the effect of H e f f on the the average fluid and 
plasma protein fluxes across the permeable boundaries for the case where £ is 0.5. 
The same data are shown for £ equal to 0 in the lower table. 
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of convection to diffusion within the interstitial space depends, in part, on the value of 

assumed. With £ equal to 0.5 and an of zero, the ratio of the average convective flux of 

proteins to the average chffusive flux adjacent the arteriolar vessel, j ^ / j ^ , is 0.95. When 

is increased to 1.5 x 1 0 - 3 cm, the ratio of convection to diffusion also increases to 1.41. The 

2-dimensional simulation predicts a ratio of 1.52. This effect is further illustrated in panel i 

of Figure (A.8), which plots the total interstitial plasma protein concentration as a function 

of x for the various values of H ^ . From this figure it is clear that the concentration gradient 

adjacent the arteriolar vessel increases with decreasing R"^, implying more diffusion in that 

region as approaches zero. This may be explained by the following. As decreases, the 

rate of plasma protein exchange between the interstitium and the peritoneum is enhanced near 

the arteriolar wall (see panels i, ii, and iii of Figure (A.5)). This greater rate of protein depletion 

near the wall increases the concentration gradient there, which in turn enhances diffusion. The 

same phenomenon is seen in the case where £ is 0, as shown in panel ii of Figure (A.8). While in 

each case the profile associated with an of zero follows closely the y-averaged concentration 

profile from the 2-dimensional simulation in the central portions of the tissue, it deviates from 

the 2-D profile in the vicinity of the arteriolar and venular boundaries, where the majority of 

the mass exchange occurs. On the other hand, the concentration profile associated with an 

of 1.5 x 10~3 cm, while it never coincides with the 2-D profile, follows more closely the trend 

of latter curve in the vicinity of the arteriolar and venular capillaries, and therefore provides a 

more accurate description of the plasma protein transport processes there. 

A.6 Concluding Remarks 

In the preceding sections we developed a one-dimensional model of interstitial transport and 

microvascular exchange in mesentery and compared the model predictions to-those based on a 

two-dimensional representation of the tissue. In general it was found that the one-dimensional 

simulations were in close agreement with the two-dimensional simulations, suggesting that the 

one-dimensional model was an adequate approximation of the real system. 
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0.3 

04 1 ' ' • • 1 

0 1 

Figure A.8: The upper panel (i) shows the effect of varying H on the dimensionless 
inter s t i t i a l plasma protein distribution (C 1 assuming an £ of 0.5. The same data 
is illustrated i n panel (ii) for the case where £ equals 0. In each plot, the solid 
line represents the results from the two-dimensional simulation, the dotted line 
assumes H e f f is 1.5 x 1 0 - 3 cm, the chain-dotted line assumes H e f f is 1.5 X 1 0 - 4 cm, 
and the dashed line assumes H e f f is 0. 
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Notable exceptions to this were those cases in which the mesothehum assumed its most 

permeable state. Under these conditions the interstitium contributed significantly to the overall 

resistance to mass transport in the transverse direction. Hence the one-dimensional simulations 

tended to over-estimate the amount of fluid and plasma proteins exchanged within the tissue. 

However, it was also shown that the interstitial resistance could be accounted for, at least in 

part, by reducing the hydraulic conductance and permeability of the mesothehum. An 'effective 

thickness', H e f f , was proposed as one method of characterizing the interstitium's contribution 

to the overall resistance in the transverse direction. 

Finally, given the general effectiveness of the one-dimensional model to describe the system's 

behavior under steady-state conditions, and the substantial savings in computational effort it 

offers over the twc^-climensional model, the one-dimensional model is used in the transient anal

ysis presented in Chapters 5 and 6. Further, since the analysis of these chapters is qualitative, 

and since the the one-dimensional simulations are, for the most part, in close agreement to the 

two dimensional predictions, no attempt is made in the simulations of Chapters 5 and 6 to 

adjust the mesothelial resistances to account for the interstitial resistance. 



Appendix B 

An Overview of the Combined Finite Element — Finite Difference Technique 

B.l Introduction 

The transient one-dimensional solute mass balance equation developed in Appendix A repre

sents the most general partial differential equation we will consider, in that it contains both 

spatial and temporal terms. This equation has therefore been selected to provide an example 

of the numerical procedures used in this research to solve the system of equations describing 

microvascular exchange in the model tissue. 

In dimensionless form, the transient form of the solute mass balance equation for a single 

solute species is 

r 0 OC1 _ 2 r m c s =,! 
J w dx fi w 

- n 1 

dx2 dx dx + 

+ H ( 1 ^ ) J - [l-esp ( - P e ™ * ) ] ~8t"' < B 1 ) 

The solution to Eq. (B.l) is obtained numerically using a combined finite element - finite 

difference scheme. This approach has been used to solve, for example, problems of consolidation 

and solute transport in porous media [67, 42]. The original partial differential equation is 

reduced to a set of time-dependent ordinary differential equations by applying the finite element 

method of weighted residuals to the spatial components of the partial differential equation. (The 

selective application of the finite element procedure to the spatial elements of the equation is 

referred to in the literature as the partial discretization method , or Kantorovich's method 

[116].) This set of coupled ordinary differential equations is then reduced to a set of coupled 

algebraic expressions by applying a semi-implicit finite difference scheme to the time derivatives. 

217 
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The system of simultaneous algebraic equations can then be solved using appropriate matrix 

techniques. 

The sequential applications of the finite element procedure and the finite difference technique 

to the solute mass balance equation are discussed in detail in Sections B.2, B.3, and B.4. For 

more information on the techniques and their apphcation to transport problems, the reader 

may refer to any number of sources in the literature (see, for example, [67, 42, 59, 116]). 

Finally, in Section B.5 we discuss briefly, by way of two examples, some of the techniques 

used to validate the simulator. 

B.2 Solving for the Spatial Variat ion in Concentration Us ing Finite Elements 

The finite element method partitions the domain (in this case, the mesenteric tissue segment) 

into a set of connected subregions, the so-called finite elements of the system (see, for exam

ple, Figure (4.2) of Chapter 4). Each element contains a number of nodes representing discrete 

locations within the domain. Associated with each node j is a basis function, ctfj, that takes on a 

value of 1 at node j and is zero at all other nodes within the system. The value of the basis func

tions elsewhere in the domain depend only on position (in fact, the basis functions are typically 

polynomial relationships in the spatial coordinates). The basis functions are combined with the 

nodal values of the dependent variable (e.g., the dimensionless plasma protein concentration, 

C 1) to create a continuous approximation to the dependent variable throughout the region. 

Specifically, the approximating function C 1 to the interstitial plasma protein concentration C 1 

is 
m 

C ^ E ^ - C j , (B.2) 
where Cj is the value of C 1 at node j, and where m is the total number of nodes in the system. 

Since the plasma protein concentration varies with time, the nodal values Cj will vary with 

time as well. However, they represent constant coefficients with respect to the spatial variation 

of C1. 

The dependence of the basis functions on position is known a priori. However, we must 
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determine the m nodal values of C 1 before the interstitial plasma protein distribution is known. 

These are calculated as follows. First, the piecewise approximating function C 1 is substituted 

into Eq. (B.l). Since C 1 is only an approximation to the true function C 1 , C 1 will not, in 

general, satisfy the differential equation completely. Rather, there will be some residual error, 

e(x), associated with the approximation. That is, assuming the temporal variation of C 1 is 

known, 

S C 1 2 , „ 

dx H J 
• C 1 - n D d 

d2Cx , d D d d C 1 

2 - IC ] 

dx2 dx dx 

( . • 
— Pe 

+ 
m e s \ "I 

exp 

)\ i d c l 

(B.3) 

To nunimize the residual error, the nodal values Cj are chosen such that the weighted integral of 

e over the entire domain D is zero for m different choices of weighting functions, c;, i = 1 , 2 , m . 

That is, 

cj • edx = 0, i = l ,2 , . . . ,m. (B.4) L D 
Hence the solution of the system of m equations represented by Eq. (B.4) yields the m nodal 

values of C 1 which minimize the error associated with the piecewise approximating function, 

C 1 . 

The choice of weighting functions, c\, is arbitrary; however, each weighting function must 

be independent of the others. In the Galerkin procedure (used in this research) the weighting 

function cj is set equal to the basis function <j)\. The set of weighted residual equations then 

becomes 

, 0 5C 1 

dx H

J v 
C 1 

— n 
- c ^ C 1 dtitdC1 

D d ^ r + dx2 dx dx + 
5exp ( - P e m C S ) | QC1} , 

v / J } dx = 0, i = l ,2 , . . . ,m. 
1 — exp ^—Pemesj at 

(B.5) 

Since C 1 is only C° continuous in D (i.e., the derivatives of C 1 are not necessarily contin

uous), and to facilitate the introduction of the boundary conditions into the weighted residual 
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expressions, we reduce the second-order dispersive term in Eq. (B.5) to a first-order term and 

a boundary integral using Green's Second Theorem: 

/ D ^ W B ^ f ^ - / E ^ § - <»*> 
where l x is the direction cosine of a unit outward normal to the boundary, B . Note that, for the 

one-dimensional system, Green's Second Theorem is equivalent to integration by parts since 

the boundary integral reduces to an evaluation of the integrand at the domain's two end-points. 

The second term on the right-hand-side of Eq. (B.6) can be expanded as follows: 

d(<kDd) ac l  

dD / <t>i 
df» d dC1 

D dx dx J D t ' dx 3x ' JD d dx dx ^ 
dD + Z 6 ' 

JT> 

d& ac l  

(B.7) 

Substituting Eqs. (B.6) and (B.7) into Eq. (B.5) yields the 'weak form' [116] of the weighted 

residual equations: 

\0 dC1 2: 
Jw dx H J 

mes + n* D a - ^ — + 
dx dx 

+^(1 
C 1 - C m e s e x p ( - P e m e s ) ] l d & 

+ dx 
[l - exp ( - P e m e s ) ] ' " di 

t dC1 

= y 0 i D d — • l x d B , i = l ,2 , . . . ,m. (B.8) 

Based on the definition of C 1 (see Eq. (B.2)), Eq. (B.8) can be written in matrix form as 

d C 1 

M — + A • C 1 = b, (B.9) 
dt 

where 

Cij = / fc-^jdi, (B.10) M : 

(B. l l ) 

WD[*M a2-l*"* , - d ^ d^j 
+ n Da -TT ~rr + ax dx 

+ I ( 1 ~ < r ) J " [i-«,(-*,-)] 
dx, (B.12) 
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and 

>i = / fr D d — • l x dB + 
JB d± I fr 

JD 

2 C m e s exp ( - P e m e s ) 
_ / -I _ _mes \ -mes V 1_ 
H l l - e x p ( - P e JJ 

di. (B.13) 

The boundary conditions are incorporated into the finite element expressions as follows. We 

have at each vascular boundary the condition 

b (l - esp (P^)) 

Rearranging Eq. (B.14) and substituting into the boundary integral term gives 

8C1' 

(B.14) 

/ fr 
JB 

D d 

C 1 + 

dx 

C bexp ( - P e b ) 

L d B 

dB. (B.15) 
y [l-exp(pe b)]J ' [ l - e x p ( P e b ) ] 

The A matrix is then adjusted to include those components of the boundary integral that 

contain C 1 (i.e., the first term in the right-hand-side integral), while the remaining terms are 

retained in the expression for the b vector. That is, the boundary contributions A - j and b b 

are introduced into the A matrix and b vector where 

& - / B ^ i ° ] b ^ ^ - ( ' - ^ ) [ l _ e i p

1

K ) | ) 

and 
C bexp ( -Pe b ) 

dB. 

(B.16) 

(B.17) 
exp (Pe b)] 

We are now left with the task of representing the temporal derivative in the matrix Eq. (B.9) 

using the finite difference method. This will be discussed in the next section. 

B.3 Solving for the Temporal Variation in Concentration Us ing Finite Differences 

As we have seen, the finite element method reduces the second order p.d.e. (Eq. (B.l)) to a 

set of first order o.d.e.'s in the nodal values of C 1 . We are now free to apply a finite difference 
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scheme to Eq. (B.9) to approximate the time chfFerential. The semi-imphcit method will be 

presented here (for more information on this technique see, for example [59]). 

Let 0 be a parameter bounded by [0,1]. Let k and k+1 be adjacent finite difference time 

levels. Then the value of C 1 at time level k + 0 is 

r - . 1 k-J-e r . ,1 k r . , -i k+1 

[ A - C 1 ] = ( 1 - 0 ) - [ A - C 1 ] + 0 - [ A - C 1 J . (B.18) 

Similarly, if the b vector varies with time 

b k + e = ( 1 - 0 ) - b k + 0 - b k + 1 . (B.19) 

The temporal derivative at time level k + 0 is 
d C 1 

dt 

k+6 ' - ' k + 1 

[ c f « - [c>]' 
(B.20) 

A t 

where At is the finite difference time step. 

Substituting Eqs. (B.18), (B.19), and (B.20) into Eq. (B.9) gives the semi-imphcit finite 

difference form of the matrix equation: 

^ • ( [ c f + 1 - [ c 1 ] k ) + ([i - e] • A K • [ c 1 ] k + e • AK+> • [ c 1 ] k + 1 ) = 0 • b k ^ + (1 - 0) • h\ 

(B.21) 

When 0 is equal to 0, Eq. (B.21) reduces to the fully explicit form, while a 0 value of 1 transforms 

Eq. (B.21) to the fully implicit scheme. A 0 of 0.5 represents the Crank-Nicolson form of the 

finite difference method. The Crank-Nicolson method was used in the transient simulations of 

Chapters 5 and 6. 

B.4 Guidelines for Selecting Grid and Time Step Sizes 

In general, numerical techniques for solving partial differential equations, be they finite element 

or finite difference schemes, are subject to some numerical error. For example, when the con

vective component of the local solute flux is significant relative to the dispersive flux, the finite 

element method suffers from spatial osculations when estimating the solute concentration in 
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the vicinity of the advancing front [59]. These oscillations can be reduced by using a finer grid. 

For this reason, and to assure an accurate solution to the model equations in general, tests were 

performed in each of the numerical studies to confirm that the grid size was sufficiently small. 

Guidelines have been estabhshed for selecting grid size as a function of the local convective 

velocity and dispersion coefficient for a limited number of problems [59]. These guidelines are 

expressed in terms of a local grid Peclet number, Pe 8" 1 1, where 

P e g r i d _ I f S j ^ (B.22) 
D d 

and where v^ is the local superficial convective velocity of the solute within an element, A l is 

the maximum dimension of the element, and Da is the dispersion coefficient. The superficial 

convective velocity is related to the convective solute flux, j c , by 

vsc = - ^ - (B.23) 

It has been found that, when using linear basis functions at least, the spatial oscillations 

previously mentioned are virtually non-existent provided Pe8"1 1 is less than 2. The maximum 

grid Peclet number was therefore monitored in all simulations as a further check of numerical 

accuracy. 

The criterion for selecting the time step size utilizes the local grid Courant number, Cr 8 ™ 1 , 

where 

C r g r i d = I s c A t 

A l V ; 

and where A t is the time step size. Since, for our system, the superficial dispersive velocity is 

frequently of the same order of magnitude as the superficial convective velocity, v s c , in Eq. (B.24) 

is replaced by the total superficial solute velocity, vs<j + v s c . The superficial dispersive velocity 

is related to the dispersive flux, ja by 

vsd = ^ l . (B.25) 
According to Huyakorn and Pinder [59], the local grid Courant number should not exceed 

1. (A value greater than 1 would imply that a solute particle passes through an entire element 
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in less time than the time step size. The simulation would therefore be unable to describe 

the transient interactions occurring within that element due to the presence of that solute 

particle from one time interval to the next.) In fact, in this research, the maximum was 

assigned an initial value much less than one (see appropriate sections on numerical procedures 

for details), and monitored during the course of the simulations. 

B.5 Validation of Simulator 

To assure an accurate numerical solution to a given problem, the computer program itself must 

be validated. One source of validation for steady-state simulations is through a global material 

balance (see, for example, Chapter 4). For transient problems the simulation can be run until 

the system achieves steady-state (see Chapter 5 for an example of this approach). This final 

solution can then be compared to the solution obtained using the steady-state simulator. 

As further validation, the governing equations and boundary conditions can be simplified, 

by a judicious choice of system parameters, to a point where an analytical solution is possible. 

The computer predictions are then compared to the analytical solution. Clearly, this latter 

validation procedure must consider all of the features of a given model equation. For example, 

simplifying the steady-state plasma protein transport equation to a simple diffusion equation 

does not validate that part of the simulator responsible for the convection term. However, in 

some cases it is not possible to retain all of the salient features of the differential equation and 

still obtain an analytical solution. In such instances the validation procedure must be conducted 

in stages, considering the various terms within the equation one at a time. In fact, this procedure 

was used to test the ability of the simulator to accurately determine a solution to the fluid and 

plasma protein mass balance equations under steady-state and transient conditions. In the 

following pages we will demonstrate the process by way of some examples. 
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B.5.1 Validation of the Fluid Mass Balance Equation and Starling Boundary Con

ditions in a One-Dimensional Mesentery 

Recall from Appendix A that the dimensionless fluid mass balance equation for the one-

dimensional model of the mesentery is 

d 2 ^ 1 - n1) _ 2 - m e s 

dx2 H 
p i pmcs .̂mes ^TJ-I jjmes^ (B.26) 

where the local interstitial coUoid osmotic pressure, IT1, is related to the local interstitial plasma 

protein concentration, C1, by a third-order polynomial: 

ft1 = A x (C 1) + A 2 ( C 1 ) 2 + A 3 (C 1) 1 (B.27) 

The boundary condition at a vascular waU b, meanwhile, is given by Starling's Law so that 

di?1 -tl1)' 
dx l x = L b ({P1}h- P b - <rb ( [ f i ^ - fl b)) . (B.28) 

Equation (B.26) can be simplified as foUows. Assume first that C 1 equals x throughout the 

interstitial space. Assume further that Ai and A 2 are identicaUy equal to zero. It then foUows 

that 

II1 = A 3 x 3 . 

If we also assume that P m e s and n m e s are zero, then Eq. (B.26) reduces to 

d 2 p i 2 L m e s P 1 - 2 L m e s 

p = 6 A 3 i c - p - m e s 

dx2 H 

The boundary condition, meanwhile, becomes 

dP 1 

H 
mes » -3 

•A • A « • x . 

(B.29) 

(B.30) 

die l x = L b ( [ P ^ - P b - crb [A3 • ([x]J3 - fl b ]) . (B.31) 

By virtue of the simphfying assumptions x, C1, II1 and dil 1/dx are all zero at the arteriolar 

capiUary wall. Hence, at this boundary we have 

dP1" 
dx 

T a r t 
- S 

p i ] _ p a r t _ £j.b j j a r t A 

J art / 
(B.32) 
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To simplify the problem we further assume that the interstitial pressure, P 1 , is a specified 

constant, K , at the venular end of the system (i.e., at x = 1). That is, 

P 1 = K . (B.33) 
J ven 

The solution to Eq. (B.31), given boundary conditions (B.32) and (B.33), is 

P*= B „ e x p JTic + B 1 e x p f - 1 » 

+ 3 7 ^ r -k^"* - l ] -x + < 7 m e s A 3 x 3 , (B.34) 
Lines 

where 

B, = 

exp 

2 L m e t 

H p 

+exp 

and 

(B.35) 

~̂ 1 3 Q A 3 . _ -̂mcsj _|_ £art f^art Jjart _ part 

B 0 = ) r — ^ f B ! + - ^ / . i - (B.36) 

L F H 
H P ; v H p 

The analytical equation given above was used validate the numerical solution to the fluid 

mass balance equation assuming a Starling boundary condition at the arteriolar wall. Let the 

relative error, e1*1, between the simulation estimate of P 1 at some point x;, P ^ u i ; , and the 

analytical solution at that point, P ^ j ; , be denned as 

p i . _ p i 
simul.i. anal,i 

pi 
anal, max 

(B.37) 

where P i . m „ „ is the maximum value of P 1 within the domain. Then the maximum relative er-
anal,max 

ror associated with the numerical solution of the problem described above was less than 0.001% 
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with 50 finite elements. Similar approaches were used to validate the numerical solutions to 

the Starling boundary condition at the venular capillary wall, the steady-state solute mass bal

ance equation, and the nonlinear flux boundary conditions for solute exchange at the arteriolar 

and venular boundaries. In each case the numerical and analytical solutions were in excellent 

agreement. 

B.5.2 Val idation of the Transient Solute Mass Balance Equat ion in a One-Dimensional 

Mesentery 

Having validated the spatial components of the program, we are left with testing the simula

tor's ability to accurately predict temporal variations in the distribution of interstitial plasma 

proteins. Again, this is acheived by simplifying the governing equation to a point where an 

analytical solution to the problem is attainable. 

In this case, it is assumed that j° is constant and that j m e s and j m e s are both zero. It then 

follows that d j w /dx is zero and that, according to E q (A.17), dDa/dx is also zero. Equation (B.l) 

then becomes 

- , ^ = - » 1 6 ' W + « « ^ - ( B' 3 8 ) 

where Da, a constant, is given by 

We will assume further that the interstitial solute concentration at the arteriolar wall is 

equal to some constant, K 0 , for all time. Likewise, the solute concentration at the venular 

wall remains constant and, in this case, zero for all time. With the added assumption that the 

interstitial space initially contains no solute, the solution to Eq. (B.38) is [8] 

pi _ Ko 
° " I " 

erfc + exp S i l ± L - • erfc ' (B.40) 

Equation (B.38) was also solved numerically by the combined finite element - finite difference 

technique outlined earlier, using a grid of 25 elements, an initial Courant number of 0.1, and 
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a Crank-Nicolson time stepping procedure (corresponding to a 6 equal to 0.5). After 160 time 

steps the relative error associated with the numerical solution was less than 0.0025%. 



Appendix C 

A PreUminary Study of Interstitial Plasma Protein Dispersion 

C.l Introduction 

In the analyses presented in Chapters 4, 5, and 6, the interstitial transport of plasma proteins 

was limited to restricted convection and molecular diffusion. However, as was discussed in 

Chapter 3, the convective transport of a solute through a porous medium can give rise to 

mechanical dispersion which, through a convective process at the microscopic level, appears 

similar to molecular diffusion at the macroscale. The extent to which mechanical dispersion 

affects the overall transport of a solute within the interstitium will depend on several factors, 

including the structure of the interstitial matrix and the magnitude of the convective velocity 

of the solute relative to its diffusive velocity. To date there is nothing reported in the literature 

that investigates the possible ramifications of mechanical dispersion on the interstitial transport 

and exchange of macromolecules or other solute species. Hence, in the following sections we will 

take a cursory look at the possible effects of this phenomenon on the steady-state interstitial 

transport and microvascular exchange of an aggregate plasma protein species within a one-

dimensional model tissue representative of mesentery. 

C.2 Defining the System 

Recall from Chapter 3 that the coefficient of mechanical dispersion for some interstitial solute 

species k, tff-, is related to the three principle components of the local convective velocity of the 

solute by 

(C.l) 
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As Eq. (C.l) indicates, ?9k is a second-order tensor. The longitudinal and transverse dispersiv

ities, Q i and a t , meanwhile, are functions of the interstitial matrix structure and have units of 

length. 

The dispersivities are typically fitted parameters [1]. In geologic formations, which can 

extend for many hundreds or thousands of meters, a i may vary from 3 m to 200 m fl]. a t , 

meanwhile, is generally 1/10 to 1/100 the magnitude of Q I . Unfortunately, it is not yet pos

sible to accurately estimate the magnitude of the dispersivities from measured properties of a 

porous structure. Hence, there are no correlations to predict the value of the dispersivities in 

tissues. One can only infer from the data for geological formations that the dispersivities will 

be somewhat less than the overall dimensions of the system. 

Confining ourselves to the steady-state version of the one-dimensional model of the mesen

tery first developed in Appendix A and considering an aggregate plasma protein species only, 

then the coefficient of mechanical dispersion reduces to a scalar quantity given by 

= ai |v c | , (C.2) 

where 

(C.3) 

The total dispersive flux of interstitial plasma proteins is given by Fick's Law, with the 

coefficient of total dispersion given by the sum i? + Deff. The relative importance of the me

chanical dispersive component compared to molecular diffusion will depend on the magnitude 

of the local convective velocity, v c , and the structure of the interstitial matrix, characterized 

by Q j in the one-dimensional system considered here. It follows from Eqs. (C.2) and (C.3) that 

the mechanical dispersive flux is zero when one or more of ct\, £, and j w are zero. 

The dimensionless form of the longitudinal dispersivity, d i , is Q i / L for the case of the one-

dimensional model. The dimensionless coefficient of mechanical dispersion, d, is then defined 

as d i £ /3 jw/n 1 . These expressions are combined with the appropriate forms of fluid and 

plasma protein mass balance equations and auxiliary equations (see Appendix A) to describe 
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the dispersive and convective fluxes of interstitial plasma proteins within the one-dimensional 

tissue model under steady-state conditions. 

C.3 Case Studies 

According to Eqs. (C.2) and (C.3), the coefficient of mechanical dispersion is directly propor

tional to the interstitial plasma protein convective hindrance, £, and the longitudinal dispersiv

ity, Q J . A series of numerical simulations were performed to investigate the coupled effects of 

£ and dj on the exchange and interstitial distribution of the aggregate plasma protein species 

for each of the three mesothelial boundary conditions outlined in Chapter 4. The interstitial 

plasma protein convective hindrance assumed values of 1.0 and 0.5, while the dimensionless 

longitudinal dispersivity was assigned values of 0.0, 0.01, 0.1, and 1.0. The ratio of interstitial 

hydraulic conductivity to interstitial plasma protein diffusivity, a, meanwhile, was assigned its 

intermediate value of 0.9117. All other system parameters were kept at their baseline values 

(see Table (4.2) for details). This resulted in a 2 x 4 X 3 factorial study. 

As discussed further in this appendix, convective dispersion had very little effect on the 

system behavior when a equalled 0.9117. Since increasing a results in a concomitant increase 

in the fluid exchange within the system, and hence enhanced convective transport of interstitial 

plasma proteins at any given nonzero value of £, the same factorial set of numerical simulations 

outlined above was repeated at an elevated value of a (i.e., 9.117). In total, then, 48 simulations 

were carried out in the study. 

C.4 Numerical Procedure 

Based on the previous simulations of Appendix A , the one-dimensional tissue space was divided 

into a set of 25 elements and 51 nodal points. The steady-state values of C 1 and P 1 were then 

determined using the iterative procedure outlined in Chapter 4 assuming a tolerance of 1 0 - 6 

and limiting the total number of iterations to 999. In all cases it was necessary to use under-

relaxation techniques [24] to assure convergence within the specified number of iterations. The 
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under-relaxation parameter assumed values between 0.1 and 0.2 in all cases. 

As a further check of the numerical solution, overall material balances were performed 

around the boundaries of the system. In all cases, the total inflow of fluid and plasma proteins 

equalled to total outflow, to within 0.002 %. 

C.5 Results and Discussion 

Figure C . l shows the effect of £, a\ and the mesothelial boundary conditions assuming a is equal 

to 0.9117. It is clear from this figure that, for these conditions, mechanical dispersion has no 

significant effect on the interstitial plasma protein concentration profiles. The most significant 

variation is found when £ equals one and the mesothehum is assumed to be impermeable. In 

this case, the enhanced dispersion associated with increased values of d i tended to reduce the 

gradient in the interstitial plasma protein distribution. However, in ah cases varying d i from 0 

to 1 had only a marginal effect on the interstitial transport and microvascular exchange of fluid 

and plasma proteins within the model tissue. 

Given these results, a similar set of numerical simulations was performed assuming that 

a equalled 9.117. The fmdings from these simulations are illustrated in Figure (C.2). To 

be expected, the increase in dispersive transport of interstitial plasma proteins associated with 

increasing values of d i yields reduced gradients in the plasma protein concentration distribution 

within the interstitium. This reduction in the protein concentration gradient is particularly 

well illustrated in the case where £ is 1 and the mesothelial transport properties are defined 

by boundary condition 2. The sharp increase in the interstitial plasma protein concentration 

found in the vicinity of the arteriolar vessel is nearly obliterated as d j increases from 0 to 1. 

As a result, the irregular fluid flux distribution across the mesothelial layer associated with no 

mechanical dispersion and discussed in detail hi Chapter 4 is eliminated as the longitudinal 

dispersivity achieves a value of 1. 

Table (C.l) summarizes the effect of varying a\ on the rate of fluid exchange across each of 
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BOUNDARY OONLTITON 1 BOUNDARY CONDITION 2 BOUNDARY CCNLTilON 3 

Figure C.l: The dimensionless interstitial plasma protein distribution is shown for 
the various cases where a equals 0.9117. The solid line represents the distribu
tion assuming QJ equal to 1.0, the dotted line corresponds to QJ equal 0.1, the 
chain-dotted line represents the distribution assuming a\ equal to 0.01, and the 
dashed line corresponds to an b\\ of 0.0. 
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BOUNDARY CONIITION 1 
12 

BOUNDARY CONDTTTON 2 
12 

BOUNDARY CONDITION 3 

Figure C.2: The dimensionless interstitial plasma protein distribution is shown for 
the various cases where a equals 9.117. The sohd line represents the distribu
tion assuming 5j equal to 1.0, the dotted line corresponds to cii equal 0.1, the 
chain-dotted line represents the distribution assuming cx\ equal to 0.01, and the 
dashed line corresponds to an Si of 0.0. 
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the permeable boundaries. With a equal to 9.117, the rate of fluid exchange across the arte

riolar boundary, for example, typically increased slightly with decreased dispersion. However, 

the increase in the rate of fluid exchange across this boundary as dj varied from 1 to 0 was 

less than 10 % for all values of £ and all mesothelial boundary conditions considered in this 

study. Moreover, for those cases in which the mesothehum was most permeable (i.e., boundary 

condition 3), the fluid exchange rate across the arteriolar capillary varied by less than 1.2 %. 

These results emphasize further that, for the conditions assumed in this study, the net rate of 

fluid exchange within the system is determined primarily by the chemical potential of the lumi

nal fluids and the transport properties of the permeable boundaries, and not by the interstitial 

plasma protein transport mechanisms. 

£ ai Boundary Condition 1 Boundary Condition 2. Boundary Condition 3 
Art Ven Mes Art Ven Mes Art Ven Mes 

1.0 1.00 -4.15 4.15 — -23.75 6.55 0.86 -33.45 2.78 1.53 
1.0 0.10 -4.47 4.47 — -25.38 6.90 0.92 -33.12 2.13 1.55 
1.0 0.01 -4.49 4.49 — -25.86 7.01 0.94 -33.07 2.22 1.54 
1.0 0.00 -4.49 4.49 — . -25.83 7.03 0.94 -33.06 2.25 1.54 
0.5 1.00 -3.99 3.99 — -23.60 6.43 0.86 -33.47 2.95 1.52 
0.5 0.10 -4.26 4.26 — -24.65 6.61 0.90 -33.27 2.51 1.54 
0.5 0.01 -4.29 4.29 — -25.48 6.68 0.94 -33.19 2.47 1.54 
0.5 0.00 -4.34 4.34 — -25.64 6.69 0.95 -33.17 2.47 1.54 

Table C . l : T h e average dimensionless fluid fluxes across each of the permeable 
boundaries as a function of £, the mesothelial boundary condit ions and oq, assuming 
a equals 9.117. A negative value indicates a flux entering the inters t i t ia l space, 
whi le a posi t ive value denotes a flux leaving the in ters t i t ium. 

Since the rate of plasma protein exchange across the permeable boundaries is largely con

vective, the average plasma protein fluxes across the boundaries for the various cases follow 

the same behavior as the fluid fluxes. The results are summarized in Table (C.2). Again, the 

change in plasma protein exchange rate across the arteriolar capillary is never more than 10 % 

as di is varied from 0 to 1 and, in most cases, is much less. 
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£ ai Boundary Condition 1 Boundary Condition 2 Boundary Condition 3 
Art Ven Mes Art Ven Mes Art Ven Mes 

1.0 1.00 -0.62 0.62 — -3.56 0.58 0.15 -5.01 0.15 0.24 
1.0 0.10 -0.67 0.67 — -3.81 0.46 0.17 -4.97 0.11 0.24 
1.0 0.01 -0.67 0.67 — -3.88 0.40 0.17 -4.96 0.12 0.24 
1.0 0.00 -0.67 0.67 — -3.87 0.39 0.17 -4.96 0.12 0.24 
0.5 1.00 -0.60 0.60 — -3.54 0.55 0.15 -5.02 0.15 0.24 
0.5 0.10 -0.64 0.64 — -3.70 0.52 0.16 -4.99 0.13 0.24 
0.5 0.01 -0.64 0.64 — -3.82 0.52 0.17 -4.98 0.13 0.24 
0.5 0.00 -0.64 0.64 — -3.85 0.52 0.17 -4.98 0.13 0.24 

Table C.2: T h e average dimensionless plasma prote in flux across each o f the per
meable boundaries as a function of £, the mesothelial boundary condit ions and a i , 
assuming a equals 9.117. A negative value indicates a flux entering the in ters t i t ia l 
space, whi le a posi t ive value denotes a flux leaving the in ters t i t ium. 

While varying di from 0 to 1 had little effect on the net rates of fluid and plasma protein 

exchange across the permeable boundaries, it did alter substantially the relative roles of plasma 

protein convection and dispersion within the regions of the interstitium adjacent the boundaries. 

The results are reported in Table (C.3). The most dramatic effect is seen when it is assumed 

that the mesothehum is impermeable (i.e., boundary condition 1). In this case, the ratio of 

interstitial plasma protein convection to dispersion adjacent the arteriolar boundary decreases 

in magnitude by a factor of 44 (i.e, from -65.44 to -1.48). 

C.6 C o n c l u d i n g Remarks 

In summary, when the interstitial hydraulic conductivity and interstitial plasma protein diffu

sivity assume their baseline values (corresponding to an a of 0.9117), mechanical dispersion has 

only a marginal effect on the exchange of fluid and plasma proteins within the model tissue. 

As the interstitial hydraulic conductivity is increased relative to the interstitial plasma protein 

diffusivity, however, mechanical dispersion does have a noticeable, albeit small, effect on the 
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£ aj Boundary Condition 1 Boundary Condition 2 Boundary Condition 3 
Art Ven Mes Art Ven Mes Art Ven Mes 

1.0 1.00 -1.48 -1.21 — -1.26 -1.21 -1.25 -16.73 -1.21 5.35 
1.0 0.10 -8.92 -1.21 — -1.42 -1.21 -1.24 -10.67 -1.21 5.91 
1.0 0.01 -48.18 -1.21 — -2.17 -1.21 -1.23 -10.56 -1.21 5.78 
1.0 0.00 -65.44 -1.21 — -2.60 -1.21 -1.23 -10.68 -1.21 5.71 
0.5 1.00 -2.08 -1.53 — -1.67 -1.53 -1.65 0.91 -1.53 0.71 
0.5 0.10 -5.48 -1.53 — -1.84 -1.53 -1.63 0.91 -1.53 0.74 
0.5 0.01 -8.62 -1.53 — -2.12 -1.53 -1.63 0.94 -1.53 0.74 
0.5 0.00 -9.21 -1.53 — -2.21 -1.53 -1.63 0.95 -1.53 0.74 

Table C.3: The ratio of the average dimensionless convective plasma protein flux to 
the average dimensionless dispersive flux normal to each of the permeable bound
aries as a function of £, the mesothelial boundary conditions and ai , assuming a 
equals 9.117. A negative value indicates that convection and dispersion are in 
opposite directions. 

rates of fluid and plasma protein exchange within the system. Further, the relative rates of in

terstitial plasma protein convection and dispersion are altered substantially, thereby modifying 

the distribution of plasma proteins within the interstitium. 

The results of the study, though limited in scope, suggest that, for the conditions presented 

here, mechanical dispersion likely has only a marginal effect on the rates of fluid and plasma 

protein exchange within the model tissue. However, much more research is needed before any 

general conclusions can be drawn regarding the nature and importance of mechanical dispersion 

in tissues. 



Appendix D 

Program Listings 

D . l Parameter List for Steady-State and Transient Simulators 
********************************************************** 
* * 
* A LIST OF THE PROGRAM VARIABLES FOR THE SIMULATORS MES8N0D.FOR, * 
* MESDISP.FOR, MES2P.FOR, TRANS.FOR, AND TRANS2P.FOR * 
* * 
*********************************************************************** 

******************************** 
*GRID AND TOLERANCE PARAMETERS * ******************************** 

COUR: INITIAL COURANT NUMBER 
DELT: INITIAL TIME STEP SIZE 
DX: X-INCREMENTS BETWEEN NODES 
DY: Y-INCREMENTS BETWEEN NODES 

DISPMX: MAXIMUM LOCAL DISPERSION COEFFICIENT 
EPS: TOLERANCE FOR ITERATIVE IMPROVEMENT FOR MATRIX SOLVER DGBAND 

(DGBND1) 
IDISP: ELEMENT LOCATION OF MAXIMUM DISPERSION COEFFICIENT 

IMAX (ITMAX): MAXIMUM NUMBER OF ITERATIONS FOR CONVERGENCE OF POLD, COLD 
IMAX: MAXIMUM NUMBER OF TIME STEPS 
IPEC: ELEMENT LOCATION OF THE MAXIMUM GRID PECLET NUMBER 

M: NUMBER OF NODES IN THE Y DIRECTION (M=l FOR 1-D MODEL) 
N: NUMBER OF NODES IN THE X DIRECTION 

NP,NT: TOTAL NUMBER OF NODES 
NECHO: IF 0, DO NOT ECHO INPUT DATA 
NEX: NUMBER OF ELEMENTS IN THE X DIRECTION 
NEY: NUMBER OF ELEMENTS IN THE Y DIRECTION 
NEXY: TOTAL NUMBER OF ELEMENTS IN GRID (NEX*NEY) 
NODEL: MATRIX CONTAINING NODE REFERENCES FOR A GIVEN FINITE ELEMENT 
OMEGAF: RELAXATION PARAMETER FOR PRESSURE DISTRIBUTION 
OMEGAC: RELAXATION PARAMETER FOR PROTEIN DISTRIBUTION 
PECMAX: MAXIMUM GRID PECLET NUMBER 
TFACT: TIME STEP ACCELERATION FACTOR 
THETA: SEMI-IMPLICIT FACTOR (THETA=0.5 - CRANK-NICOLSON FINITE DIFF) 
TOLC: CONVERGENCE TOLERANCE FOR THE PROTEIN DISTRIBUTION 
TOLP: CONVERGENCE TOLERANCE FOR THE PRESSURE DISTRIBUTION 
XNOD: VECTOR OF X COORDINATES OF NODAL POINTS 
YNOD: VECTOR OF Y COORDINATES OF NODAL POINTS 

************************** 
* MATRIX VARIABLES * ************************** 

BCTIME: THETA*SOLUTB + (1-THETA)*SB0LDT - (1-THETA)*SC0LDT 
CFLUX: MATRIX OF LOCAL CONVECTIVE INTERSTITIAL PROTEIN FLUXES 
COLD: VECTOR CONTAINING PREVIOUS ESTIMATE OF PROTEIN DISTRIBUTION 
COLDT: PROTEIN DISTRIBUTION FROM PREVIOUS TIME STEP 
DFLUX: MATRIX OF LOCAL DIFFUSIVE INTERSTITIAL PLASMA PROTEIN FLUXES 
ELOC: COORDINATE LOCATION OF INTERSTITIAL FLUXES (FFLUX,CFLUX,DFLUX) 
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FFLUX: MATRIX OF LOCAL INTERSTITIAL FLUID FLUXES 
FLUID: FINITE ELEMENT MATRIX (IN VECTOR FORM) FOR PRESSURE FIELD Eq. 
FLUIDB: FINITE ELEMENT B VECTOR FOR PRESSURE FILED EQ. 
(HOLD, 
HOLDS, 
IPERM, STORAGE VECTORS FOR MATRIX SOLVER DGBAND (DGBND1) 
IPERMS, 

RES, 
RESS *) 
POLD: VECTOR CONTAINING PREVIOUS ESTIMATE OF PRESSURE DISTRIBUTION 

QFC.QSC.QCC: VECTORS CONTAINING FLUID FLUXES, PLASMA PROTEIN FLUXES, AND 
CONVECTIVE PROTEIN FLUXES ACROSS EACH ELEMENT CONSTITUTING 
ARTERIOLAR CAPILLARY WALL 

QFV.QSV.QCV: AS ABOVE, BUT FOR THE VENULAR CAPILLARY BOUNDARY 
QFM.QSM.QCM: AS ABOVE, BUT FOR THE MESOTHELIAL BOUNDARY 

SBOLDT: PLASMA PROTEIN B VECTOR AT OLD TIME STEP 
SCOLDT: SOLDT*COLDT 
SOLDT: FINITE ELEMENT MATRIX (IN VECTOR FORM) FOR PRESSURE FIELD EQ. 

FROM PREVIOUS TIME STEP 
SOLUTE: FINITE ELEMENT MATRIX (IN VECTOR FORM) FOR PROTEIN FIELD EQ. 
STNEW: T/DELT + THETA*SOLUTE 

T: TIME STEP MATRIX T IN VECTOR FORM 
TCOLDT: TDT*COLDT 

TDT: T/DELT 

******************************************** 
* INTERSTITIAL PARAMETERS * ******************************************** 

AK: TOTAL INTERSTITIAL HYDRAULIC CONDUCTIVITY, KO 
AL: LENGTH OF TISSUE SEGMENT IN X DIRECTION 

ALPHL: DIMENSIONLESS LONGITUDINAL DISPERSIVITY 
ALPHT: DIMENSIONLESS TRANSVERSE DISPERSIVITY 

AOS1.BOS1.COS1: VIRIAL COEFFICIENTS FOR OSMOTIC PRESSURE RELATIONSHIP IN 
PLASMA 

AOSM.BOSM.COSM: VIRIAL COEFFICIENTS FOR INTERSTITIAL OSMOTIC RELATIONSHIP 
BETA: RATIO OF Kl/KO 

CC.CV.CM: CONCENTRATION OF PLASMA PROTEINS IH ARTERIOLAR CAPILLARY, 
VENULAR CAPILLARY, AND PERITONEAL FLUID, RESPECTIVELY 

CDC.CDV.CDM: DIMENSIONLESS PLASMA" PROTEIN CONCENTRATION IN ARTERIOLAR 
CAPILLARY, VENULAR CAPILLARY, AND PERITONEAL FLUID, 
RESPECTIVELY 

CONC.CONV.CONM: HYDRAULIC CONDUCTANCE OF ARTERIOLAR CAPILLARY, VENULAR 
CAPILLARY, AND MESOTHELIAL LAYER, RESPECTIVELY 

DDC.DDV.DDM: DIMENSIONLESS PERMEABILITY OF ARTERIOLAR CAPILLARY, VENULAR 
CAPILLARY, AND MESOTHELIUM, RESPECTIVELY 

DEFF: EFFECTIVE DIFFUSIVITY OF INTERSTITIAL PLASMA PROTEINS 
PERMC,PERMV,PERMM: PERMEABILITY OF ARTERIOLAR CAPILLARY, VENULAR CAPILLARY, 

AND MESOTHELIUM, REPSECTIVELY 
PC.PV.PM: FLUID PRESSURE IN ARTERIOLAR CAPILLARY, VENULAR 

CAPILLARY, AND MESOTHELIUM, RESPECTIVELY 
PDC.PDV.PDM: DIMENSIONLESS FLUID PRESSURE IN ARTERIOLAR CAPILLARY, 

VENULAR CAPILLARY, AND MESOTHELIUM, RESPECTIVELY 
PIC.PIV.PIM: COLLOID OSMOTIC PRESSURE IN ARTERIOLAR CAPILLARY, VENULAR 

CAPILLARY, AND MESOTHELIUM, RESPECTIVELY 
PHIA: DISTRIBUTION VOLUME OF INTERSTITIAL PLASMA PROTEINS 
PHIT: TOTAL MOBILE INTERSTITIAL FLUID VOLUME FRACTION 
PHIS: INTERSTITIAL SOLIDS PHASE VOLUME FRACTION 

PIDC.PIDV.PIDM: DIMENSIONLESS COLLOID OSMOTIC PRESSURE IN ARTERIOLAR 
CAPILLARY, VENULAR CAPILLARY, AND MESOTHELIUM, RESPECTIVELY 

RET: INTERSTITIAL PLASMA PROTEIN CONVECTIVE HINDRANCE 
SIGC.SIGV.SIGM: REFLECTION COEFFICIENT OF ARTERIOLAR CAPILLARY, VENULAR 

CAPILLARY, AND MESOTHELIUM, RESPECTIVELY 
YL: TISSUE THICKNESS 
YYL: DIMENSIONLESS TISSUE THICKNESS 

*************************************************************************** 
* NOTE: IN THE CASE OF MULTIPLE SOLUTE SPECIES (I.E., MES2P.FOR AND * 



Appendix D. Program Listings 240 

* TRANS2P.FOR), PARAMETERS AFFILIATED WITH INDIVIDUAL SOLUTES * 
* ARE DISTINGUISHED BY NUMBERS 1 AND 2 (E.G., SIGM1 AND SIGM2) . * ************************************************** 

D.2 Two Dimensional Simulator: MES8NOD .FOR 

C THIS PROGRAM MODELS THE STEADY TRANSPORT OF FLUID AND PROTEIN 
C THROUGH THE INTERSTITIAL SPACE OF THE MESENTERY. IT ASSUMES 
C THAT THE TISSUE BEHAVES AS A RIGID POROUS MEDIUM. IT IS 
C FURTHER ASSUMED THAT THE FLUID PRESSURE IN THE EXCLUDED 
C SPACE IS IN EQUILIBRIUM WITH THAT IN THE AVAILABLE SPACE. 
C 
C 

IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION H0LD(2000),IPERM(2000),RES(2000),H0LDS(2000), 
#RESS(2000),IPERMS(2000),GAUS(4),W(4) 
C0MM0N/BLK1/N0DEL(600,8),XN0D(2000),YN0D(2000) 
COMMON/BLK2/DX(41),DY(41) 
COMMON/MATBAL/QFC(40),QCC(40),QSC(40),QFV(40),QCV(40),QSV(40), 
#QFM(40),QCM(40),QSM(40) 
COMMON/FLUMAT/FLUID(210000) 
C0MH0N/0LD/P0LD(2000).COLD(2000) 
C0MM0N/S0LB/S0LUTB(2000) 
COMMON/FLUB/FLUIDB(2000) 
C0MM0N/S0LMAT/S0LUTE(210000) 
COMMON/OSMOT/AOSM,BOSM,COSM 
COMMON/TISDAT/AK,DEFF,ALPHL,ALPHT,PHIA,PHIT,RET,SIGT 
COMMON/CAPDAT/PC,CC 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM, 
#SIGC,SIGV,SIGM,CDC,CDV,CDM 
C0MM0N/FLUXES/FFLUX(600,2),CFLUX(600,2),DFLUX(600,2), 
#EL0C(600,2) 
DATA Tl,T2,T3,T4,T5,T6,T7,T8,T9/9*0.DO/ 
DATA W/.347854845137454D0,.652145154862546D0, 
#.652145154862546D0,.347854845137454D0/ 
DATA GAUS/-.861136311594053D0.-.3399810435848S6D0, 
#.339981043584856D0,.861136311594053D0/ 

C 
C SET MARKER AND TOLERANCE VALUES 
C 

READ(5,504)OMEGAF,OMEGAC,TOLP,TOLC,PECMAX,EPS 
READ(5,550)IMAX,ITER,NECHO,N,H 

550 F0RMAT(5I3) 
NEX=(N-l)/2 
NNUM=NEX+1 
NEY=(M-l)/2 
MNUM=NEY+1 
NEXY=NEX*NEY 
NT=NEX*(3*NEY+2)+2*NEY+l 
LUB=3*NEY+4 
ICOUNT=0 

C 
C READ IN THE DATA FROM EXTERNAL FILE 
C 

DO 1 I=1,NNUM 
READ(5,501) DX(I) 

501 F0RMAT(E12.6) 
1 CONTINUE 
C 

YLL=0.D0 
DO 2 J=1,MNUM 
READ(5,501) DY(J) 
YLL=YLL+DY(J) 

2 CONTINUE C 
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READ(5,502) AOSM,BOSM,COSM,AK,PC,PHIA,PHIT,RET,PHIS 
READ(5,504) ALPHL,ALPHT,AL,DEFF,SIGT,CC 
READ(5,504) CONC,CONV,CONM,PERMC,PERMV,PERMM 
READ(5,504) DDC,DDV,DDM,SIGC,SIGV,SIGM 
READ(5,504) CDC,CDV,CDM,DLC,DLV,DLM 
READ(5,506) PDC.PDV.PDM 
READ(5,506) A0S1,B0S1,C0S1 
YL=YLL*AL 
PIDC=CDC*(A0S1+CDC*(B0S1+CDC*C0S1)) 
PIDV=CDV*(A0S1+CDV*(B0S1+CDV*C0S1)) 
PIDM=CDM*(A0S1+CDM*(B0S1+CDM*C0S1)) 
PV=PDV*PC 
PM=PDM*PC 
CV=CDV*CC 
CM=CDM*CC 

502 F0RMAT(9E10.4) 
503 F0RMATC5E10.4) 
504 F0RMAT(6E10.4) 
506 F0RMAT(3E10.4) 

C 
DO 21 1=1,NT 
READ(5,505) POLD(I),COLD(I) 

505 FORMAT(2E10.4) 
21 CONTINUE 

C ECHO DATA IF NECHO N.E. 0 
C 

IF(NECHO.EQ.O) GO TO 999 
C 
C PRINT OUT INPUT DATA 
C 

WRITE(6,611) 
611 FORMAT(IX,'STEADY-STATE FLUID PRESSURE AND SOLUTE CONCENTRATION' 

#) 
WRITE(6,667) 

667 FORMAT(IX,'PROFILES FOR TWO DIMENSIONAL TISSUE SYSTEM',//) 
WRITE(6,612) 
WRITE(6,612) 

612 F0RMAT(//,1X,' ' 
#.//) 
WRITE(6,660) 

660 FORMAT(IX,'INPUT PARAMETERS') 
WRITE(6,612) 
WRITE(6,613) 

613 FORMAT(IX,'1. GRID DATA:',//) 
WRITE(6,614)NEX,DX(2) 

614 FORMAT(IX,'NUMBER OF ELEMENTS IN X-DIRECTION:',11,12,/.IX, 
#'SMALLEST X INCREMENTS:'.19X.E10.4,/) 
WRITE(6,615)NEY,DY(2) 

615 FORMAT(IX,'NUMBER OF ELEMENTS IN Y-DIRECTION:',IX,12,/,IX, 
#'SMALLEST Y INCREMENTS:'.19X.E10.4,/) 
WRITE(6,616)NTJNEXY 

616 FORMAT(IX,'TOTAL NUMBER OF NODES:',10X,I4,/,1X, 
#'TOTAL NUMBER OF ELEMENTS:',6X,14) 
WRITE (6,612) 
WRITE(6,617) TOLP,TOLC,IMAX,OMEGAF,OMEGAC,PECMAX 

617 F0RMAT(1X,'2. CONVERGENCE CRITERIA:',//,IX,'PRESSURE TOLERANCE:' 
#,17X,E10.4,/,1X,'S0LUTE TOLERANCE:',20X,E10.4,/,1X, 
#'MAXIMUM NUMBER OF LOOP ITERATIONS:',2X,13,/,IX, 
#'PRESSURE RELAXATION PARAMETER:',6X,E10.4,/,IX, 
#'SOLUTE RELAXATION PARAMETER:',9X,E10.4,/,IX, 
#'MAXIMUM DESIRED GRID PECLET NUMBER:',1X.E10.4) 
WRITE(6,612) 
PIC=PIDC*PC 
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PIV=PIDV*PC 
PIM=PIDM*PC 

C 
WRITE(6,618) AL.YL.CC.CV.CM.PC.PV.PM,PIC,PIV.PIM.AK,DEFT,SIGT 

618 F0RMAT(1X,'3. DIMENSIONAL INPUT PARAMETERS:',//,IX, 
#'TISSUE X-DIMENSION (CM):',21X,E10.4,/,IX, 
#'TISSUE Y-DIMENSION (CM):',21X,E10.4,/,1X, 

,14X,E10.4,/,1X, 
1,14X,E10.4,/,1X, 
',14X,E10.4,/,1X, 
1,14X,E10.4,/,1X, 
',14X,E10.4,/,1X, 
',14X,E10.4,/,lX, 
',14X,E10.4,/,1X, 
',14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 

#'CAP. PROTEIN CONC. (GRAMS/DL): 
#'VEN. PROTEIN CONC. (GRAMS/DL): 
#'MES. PROTEIN CONC. (GRAMS/DL): 
#'CAP. DYN. PRESSURE (DYN/CM**2) : 
#'VEN. DYN. PRESSURE (DYN/CM**2) : 
#'MES. DYN. PRESSURE (DYN/CM**2): 
#'CAP. OSM. PRESSURE (DYN/CM**2): 
#'VEN. OSM. PRESSURE (DYN/CM**2): 
#'MES. OSM. PRESSURE (DYN/CM**2): 
#'TISSUE FLUID CONDUCTIVITY (CM**4/(DYN-SEC):',2X,E10.4,/,1X, 
#>TISSUE SOLUTE DIFFUSIVITY (CM**2/SEC):',7X,E10.4,/,1X, 
#'TISSUE REFLECTION COEFFICIENT:'.15X.E10.4) 
WRITE(6,653) RET 

653 FORMAT(IX,'RETARDATION FACTOR:'.26X.E10.4) 
WRITE(6,626) CONC,CONV,CONM,PERMC,PERMV,PERMM 

626 FORMAT(IX,'CAP. CONDUCTIVITY (CM**3/(DYN-S));',11X,E10.4,/,1X, 
#'VEN. CONDUCTIVITY (CM**3/(DYB-S)):',11X.E10.4,/,IX, 
#'MES. CONDUCTIVITY (CM**3/(DYK-S)):',11X,E10.4,/,1X, 
#'CAP. PERMEABILITY (CM/S):',21X,E10.4,/,1X, 
#'VEN. PERMEABILITY (CM/S):',21X,E10.4,/,1X, 
#'MES. PERMEABILITY (CM/S):',2iX,E10.4) 
WRITE(6,612) 
WRITE(6,619)PDC,PIDC,PDV,PIDV,PDM,PIDM 

619 F0RMAT(1X,'4. DIMENSIONLESS INPUT PARAMETERS:',//,IX, 
#'PRESSURE:',6X,'DYNAMIC,5X,'OSMOTIC,//,IX,'CAPILLARY:',5X, 
#E10.4, 
#2X,E10.4,/,1X,'VENULE:',8X,E10.4.2X.E10.4,/,IX,'MESOTHELIUM:', 
#3X,E10.4,2X,E10.4,//) 
WRITE(6,620)CDC,CDV,CDM 

620 FORMAT(IX,'CONCENTRATIONS:',//,IX,'CAPILLARY:',SX,E10.4,/,1X, 
#'VENULE:',9X,E10.4,/,iX,'MESOTHELIUM:'.1X.E10.4,//) 
WRITE(6,621)SIGC,SIGV,SIGM 

621 FORMAT(IX,'REFLECTION COEFFICIENTS:',//,IX,'CAPILLARY:',5X, 
#E10.4,/,1X,'VENULE:'.QX.ElO^./.iX,'MESOTHELIUM:',1X,E10.4,//) 
WRITE(6,622)DLC,DLV,DLM 

622 FORMAT(IX,*VESSEL FLUID CONDUCTANCES:',//,IX,'CAPILLARY:',5X, 
#E10.4,/,1X,'VENULE:'.9X.E10.4,/,IX,'MESOTHELIUM:',1X.E10.4,//) 
WRITE(6,625)AOSM,BOSM,COSM 

625 FORMAT(IX,'VIRIAL COEFFICIENTS:',//,IX,'AOSM:',IX,E10.4,/.IX, 
#'BOSM:',1X,E10.4,/,1X,'COSM:'.1X.E10.4,//) 
WRITE(6,623)DDC,DDV,DDM 

623 FORMAT(IX,'VESSEL SOLUTE PERMEABILITIES:',//,IX,'CAPILLARY:',5X, 
#E10.4,/,IX,'VENULE:',9X,E10.4,/,IX,'MESOTHELIUM:',IX,E10.4,//) 
WRITE(6,624)PHIT,PHIA,PHIS 

624 FORMAT(IX,'TOTAL TISSUE FLUID VOLUME FRACTION:'.2X.E10.4,/.IX, 
#'SOLUTE DISTRIBUTION VOLUME FRACTION:',IX,E10.4,/,IX, 
#'TOTAL SOLIDS VOLUME FRACTION:',8X,E10.4,///) 

C 
c 
c 
999 CALL GRID(NEX.NEY) 

C 
C INITIALIZE FLUID VECTOR 
C 

CALL SETMAT(NEX,NEY,0,PEC,IEL) 
C 
C ADJUST FLUID VECTOR TO FIT BOUNDARY CONDITIONS 
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c 
CALL ASTAR(HEX,NEY,0) 
CALL VSTAR(NEX,NEY,0) 

C CALL MESTAR(NEX,NEY,0) 
C 
C ENTER ITERATION LOOP, CHECK COUNTER VALUE 
C 
C 
IOO IC0UNT=IC0UNT+1 

IF(ICOUNT.GT.IMAX)GO TO 200 
C 
C 
C INITIALIZE FLUIDB VECTOR AND ADJUST TO FIT BOUNDARY CONDITIONS 
C 

CALL SETMAT(NEX,NEY,1,PEC,IEL) 
C 

CALL ASTAR(NEX,NEY,1) 
CALL VSTAR(NEX,NEY,1) 

C CALL MESTAR(NEX,NEY,1) 
C 
C SOLVE THE FLUID SYSTEM 
C 

EP=EPS 
CALL DGBAND(FLUID,FLUIDB,NT,LUB,LUB,ICOUNT,IPERM,DET,JEXP,HOLD, 
#RES,ITER,EP) 

C 
C DETERMINE THE MAXIMUM CHANGE IN P FROM ONE ITERATION TO THE NEXT 
C AND UPDATE POLD USING A RELAXATION PROCEDURE. PDIFMX HILL BE 
C COMPARED TO TOLP TO ESTABLISH CONVERGENCE 
C 

PMAX=O.DO 
PDIFMX=O.DO 
DO 3 1=1,NT 
IF(DABS(FLUIDB(I)).GT.PMAX) PMAX=DABS(FLUIDB(I)) 
TEST=DABS(FLUIDB(I)-POLD(I)) 
IF(TEST.GT.PDIFMX) PDIFMX=TEST 
POLD(I)=(OMEGAF)*(FLUIDB(I)-POID(I))+POLD(I) 

3 CONTINUE 
PDIFMX=PDIFMX/PMAX 

C 
C NOW INITIALIZE SOLUTE AND SOLUTB. STORE MAX. GRID PECLET 
C NUMBER IN PECLET. ADJUST SOLUTE AND SOLUTB TO SUIT BOUNDARY 
C CONDITIONS 
C 

CALL SETMAT(NEX,NEY,2,PEC,IEL) 
PECLET=PEC 
IELE=IEL 
CALL SETMAT(NEX,NEY,3,PEC,IEL) 
CALL PATART(NEX,NEY) 
CALL PATVEN(NEX,NEY) 

C CALL PATMES(NEX,NEY) 
C 
C 
C SOLVE THE SYSTEM OF EQUATIONS FOR THE SOLUTE FLOW EQUATION 
C 

EP1=EPS 
CALL DGBND1(SOLUTE,SOLUTB,NT,LUB,LUB,1,IPERMS,DET,JEXP,HOLDS, 
#RESS,ITER,EP1) 

C 
C DETERMINE THE MAXIMUM CHANGE IN CALCULATED CONCENTRATION FROM 
C ONE ITERATION TO THE NEXT,- AND UPDATE COLD USING A RELAXATION 
C PROCEDURE. CDIFMX WILL BE COMPARED TO TOLC TO ESTABLISH 
C CONVERGENCE 
C 
C 

CMAX=O.DO 
CDIFMX=O.DO 
DO 4 1=1,NT 
IF(DABS(SOLUTB(l)).GT.CMAX) CMAX=DABS(SOLUTB(I)) 
TEST=DABS(SOLUTB(I)-COLD(I)) 
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IF(TEST.GT.CDIFMX) CDIFMX=TEST 
COLD(I)=(OMEGAC)*(S0LUTB(I)-COLD(I))+C0LD(I) 

4 CONTINUE 
CDIFMX=CDIFMX/CMAX 

C 
C CHECK TO SEE IF FURTHER ITERATION IS REQUIRED 
C 

IF(PDIFMX.GT.TOLP) GO TO IOO 
IF(CDIFMX.GT.TOLC) GO TO 100 

C 
GO TO 300 

C 
C MAXIMUM NUMBER OF ITERATIONS REACHED. PRINT OUT WARNING. 
C 
200 IC0UNT=IC0UNT-1 

WRITE(6,600) ICOUNT 
600 FORMAT(//,IX,'WARNING. CONVERGENCE CRITERIA NOT MET AFTER', 

#1X,13,IX,'ITERATIONS') 
WRITE(6,601) PDIFMX,CDIFMX 

601 FORMATC//,IX,'MAXIMUM FRACTIONAL CHANGE IN P',2X, 
#'MAXIMUM FRACTIONAL CHANGE IN C,//,11X.E9.4.22X.E9.4,//) 

C 
300 IF (PECLET. LT. PECMAX) GO TO 400 

WRITE(6,603) PECLET,IELE 
603 FORMAT(//,'WARNING. GRID PECLET NUMBER EQUALS',1X,E9.4,3X, 

#'ELEMENT LOCATION:',IX,14) 
C 
400 WRITE(6,604) ICOUNT 
604 FORMATCl',//,'STEADY-STATE SOLUTION ACHIEVED AFTER',IX,13,IX, 

#'ITERATIONS:') 
WRITE(6,670) PECLET,IELE 

670 FORMAT(//,IX,'MAXIMUM GRID PECLET NUMBER:',1X.E9.4,3X, 
#'ELEMENT LOCATION:',IX,14) 
WRITE(6,601)PDIFMX,CDIFMX 
WRITE(6,605) 

605 FORMAT(//,IX,'X POSITION',2X,'DYN. PRESS',2X,'OSM. PRESS',2X, 
#'TOT. PRESS' ,2X, 'AVAIL. CONC.',2X,'TOTAL CONC',/7) 

C 
WRITE(7,701)NEX,NEY 

701 F0RMAT(1X,I2,1X,I2) 
C 
C CALCULATE THE Y-AVERAGED PROTEIN CONCENTRATION, CAV, PRESSURE, 
C PAV, AND PROTEIN OSMOTIC PRESSURE,PIAV 
C 

X=O.DO 
DO 5 1=1,NEX 

C 
C IDENTIFY X-COORDINATE FOR AVERAGED QUANTITIES 
C 

X=X+DX(I) 
PAV=O.DO 
PIAV=O.DO 
CAV=O.DO 

C 
C ENTER LOOP FOR INTEGRATION, IDENTIFYING APPROPRIATE BASIS FUNCS 
C 

DO 6 IT=1,4 
T=GAUS(IT) 
B1=(T-1.D0)*T*.5D0 
B7=(T+1.D0)*T*.5D0 
B8=1.D0-T*T 

C 
C NOW INTEGRATE IN THE Y-DIRECTION, ELEMENT BY ELEMENT 
C 

DO 7 J=1,NEY 
C 
C IDENTIFY THE ELEMENT NUMBER, EL 
C 
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NEL=(I-1)*NEY+J 
C 
C CALCULATE C(S,T) 
C 

CST=B1*COLD(NODEL(NEL,1))+B7*C0LD(NODEL(NEL,7))+ 
# B8*C0LD(N0DEL(NEL,8)) 

PAV=PAV+(B1*POLD(NODEL(NEL,1))+B7*POLD(NODEL(NEL,7))+ 
# B8*P0LD(NODEL(NEL,8)))*W(IT)*DY(J+l)*.5D0 

CAV=CAV+CST*W(IT)*DY(J+l)*.5D0 
PIAV=PIAV+CST*(AOSM+CST*(BOSM+CST*COSM))*W(IT)*DY(J+1)*.5D0 

7 CONTINUE 
6 CONTINUE 

CAV=CAV/YLL 
C1=CAV*PHIA/(1.DO-PHIS) 
PAV=PAV/YLL 
PIAV=PIAV/YLL 
PTOT=PAV-PIAV 
WRITE(6,606) X,PAV,PIAV,PTOT,CAV,C1 

606 F0RMAT(1X,E9.3,2X,E10.4,2X,E10.4,2X,E10.4,2X,E10.4,3X,E10.4) 
WRITE(7,606) X,C1,PAV,PIAV,PTOT,CAV 

5 CONTINUE 
C 
C AND FINALLY WE CONSIDER THE VENULAR BOUNDARY 
C 

X=X+DX(NEX+1) 
CAV=0.D0 
PAV=0.D0 
PIAV=O.DO 
DO 8 IT=1,4 
T=GAUS(IT) 
B3=(T-1.D0)*T*.5D0 
B4=1.D0-T*T 
B5=(T+1.D0)*T*.5D0 
DO 9 J=1,NEY 
NEL=(NEX-1)*NEY+J 
CST=B3*C0LD(NODEL(NEL,3))+B4*C0LD(NODEL(NEL,4))+ 

# B5*C0LD(N0DEL(NEL,5)) 
PAV=PAV+(B3*P0LD(NODEL(NEL,3))+B4*P0LD(NODEL(NEL,4))+ 

# B5*P0LD(N0DEL(NEL,5)))*W(IT)*DY(J+1)*.5D0 
PIAV=PIAV+(CST*(AOSM+CST*(BOSM+CST*COSM)))*W(IT)*DY(J+l)*.5D0 
CAV=CAV+CST*W(IT)*DY(J+l)*.5D0 

9 CONTINUE 
8 CONTINUE 

PAV=PAV/YLL 
PIAV=PIAV/YLL 
CAV=CAV/YLL 
C1=CAV*PHIA/(1.DO-PHIS) 
PTOT=PAV-PIAV 
WRITE(6,606) X,PAV,PIAV,PT0T,CAV,C1 
WRITE(7,606) X,CI,PAV,PIAV,PTOT,CAV 

C 
C 

WRITE(6,607) 
607 FORMAT('1',//,IX,'MASS BALANCE DATA'///) 

CALL MASFC(NEX,NEY) 
CALL MASFV(NEX.NEY) 

C CALL MASFM(NEX.NEY) 
CALL MASSC(NEX,NEY) 
CALL MASSV(NEX,NEY) 

C CALL MASSM(NEX,NEY) 
DO 10 1=1,NEY 
Tl=Tl+qFC(I) 
T2=T2+QSC(I) 
T3=T3+QFV(I) 
T4=T4+QSV(I) T7=T7+QCC(I) 
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T8=T8+qCV(I) 
1 0 CONTINUE 

C WRITE(6,612) 
C DO 11 1=1,NEX 
C T5=T5+qFM(I) 
C T6=T6+QSM(I) 
C T9=T9+qCM(I) 
C 1 1 CONTINUE 

WRITE(6,608) 
608 FORMAT(///,IX,'NET DIMENSIONLESS FLUID FLOWS') 

TF=T1+T3+T5 
WRITE(6,609) T 5 , T 1 , T 3 , T F 

6 0 9 FORMAT(//.IX,'MES:',1X,E12.4,/,1X,'CAP:', 
#E12.4,/,1X,'VEN:',1X,E12.4,/,1X,'TOT:'.1X.E12.4) 
WRITE(6,661) 

6 6 1 FORMAT(///,IX,'NET DIMENSIONLESS SOLUTE FLOWS') 
TS=T2+T4+T6 
WRITE(6,609)T6,T2,T4,TS 
WRITE(6,662) 

662 FORMAT(//,IX,'CONVECTIVE COMPONENTS OF DIMENSIONLESS SOLUTE 
#FLOWS') 
TC=T8+T9+T7 
WRITE(6,610) T9,T7,T8,TC 

610 F0RMAT(//,1X,'MES:',1X.E12.4./.1X,'CAP:',1X,E12.4,/,1X,'VEN:', 
#1X,E12.4,/,1X,'T0T:'.1X.E12.4) 

C 
C WRITE OUT TEE MESOTHELIAL FLUID FLUXES TO DEVICE 7 
C 

qFMAX=O.DO 
qSMAX=O.DO 
qSMIN=O.DO 
qFMIN=O.DO 
qCSMIN=O.DO 
qCSMAX=O.DO 
X=DX(1) 

C DO 1 2 1=1,NEX 
C IP=I+1 
C X=X+DX(IP)*.5D0 
C qF=qFM(I)/DX(IP) 
C IF(qF.GT.qFMAX) qFMAX=QF 
C IF(QF.LT.qFMIN) QFMIN=QF 
c qs=qsM(i)/DX(ip) 
c iF(qs.GT.qsMAX) qsMAX=qs 
c iF(qs.LT.qsMiN) qsMiN=qs 
c qc=qcM(i)/DX(iP) 
c iF(qc.LT.qcsMiN) qcsMiN=qc 
C IF(qCGT.QCSMAX) QCSMAX=qC 
c WRITE(7,702) x.qF.qs.qc 
C702 F0RMAT(1X,E10.4,1X,E10.4,1X,E10.4,1X,E10.4) 
C X=X+DX(IP)*.5D0 
C12 CONTINUE 
c 
C WRITE FLUX DATA FOR 2-D PLOTS 
C 
C CALL FLUX(NEX,NEY) 
C NEL=NEX*NEY 
C DO 15 1=1,NEL 
C WRITE(7,705) ELOC ( I , 1 ),ELOC ( I , 2 ),FFLUX ( I , 1 ),FFLUX(I , 2 ) , 
C tfCFLUXd.D.CFLUXd^J.DFLUXd.l) ,DFLUX(I,2) 
CC 
C 705 FORMAT(8(1X,E10.4)) 
C 15 CONTINUE 
C 
C NOW WRITE THE CONTOUR INFORMATION TO DEVICE 7 
C 

CMIN=0.D0 
CMAX=0.D0 
DO 13 1=1,NT 
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PI=COLD(I)*(AOSM+COLD(I)*(BOSM+COLD(I)*COSM)) 
C=C0LD(I)*PHIA/(1.DO-PHIS) 
WRITE(7,703)XN0D(I),YN0D(I),C,P0LD(I),PI 

703 F0RMAT(lX,Ei0.4,lX,E10.4,3(lX,E12.6)) 
IF(C.GT.CMAX) CMAX=C 
IF(C.LT.CMIN) CMIN=C 

13 CONTINUE 
c 

WRITE(7,704) CMIN,CMAX,qFMIN,QFMAX,QSHIN,QSHAX,qCSHIN,qCSMAX 
704 F0RMAT(lX,E7.2,lX,E7.2,lX,E7.2,lX,E7.2,lX,E7.2,iX,E7.2,lX,E7.2, 

#1X,E7.2) 
STOP 
END 

SUBROUTINE GRID(NEX,NEY) 
C 
C THIS SUBROUTINE ESTABLISHES A RECTANGULAR GRID CONSISTING OF 
C EIGHT-NODE ISOPARAMETRIC ELEMENTS. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
C0MM0N/BLK1/N0DEL(600,8),XN0D(2000),YNOD(2000) 
C0MM0N/BLK2/DX(41),DY(41) 

C 
C THE TOTAL NUMBER OF NODES IS GIVEN BY NEX*(3*NEY+2)+2*NEY+l, 
C WHERE NEX IS THE TOTAL NUMBER OF ELEMENTS IN THE X DIRECTION, 
C AND NEY IS THE TOTAL IN THE Y DIRECTION. 
C 

X=0.D0 
c 

DO 1 1=1,NEX 
X=X+DX(I) 
IP=I+1 
DXH=DX(IP)*.5D0 
Y=0.D0 

C 
DO 2 J=1,NEY 
Y=Y+DY(J) 
JP=J+1 
DYH=DY(JP)*.5D0 
IT=(I-1)*NEY+J 
N0DEL(IT,1)=(3*NEY+2)*(I-1)+2*J-1 
NODEL(IT,2)=N0DEL(IT,1)+2*NEY+2-J 
NODEL(IT,3)=NODEL(IT,2)+NEY+J 
N0DEL(IT,4)=N0DEL(IT,3)+1 
N0DEL(IT,5)=N0DEL(IT,4)+1 
N0DEL(IT,6)=N0DEL(IT,2)+1 
NODEL(IT,7)=NODEL(IT,1)+2 
NODEL(IT,8)=NODEL(IT,1)+1 

C 
XN0D(N0DEL(IT,1))=X 
YN0D(N0DEL(IT,1))=Y 
XNOD(NODEL(IT,2))=X+DXH 
YN0D(N0DEL(IT,2))=Y 
XNOD(NODEL(IT,3))=X+DX(IP) 
YN0D(N0DEL(IT,3))=Y 
XNOD(NODEL(IT,4))=X+DX(IP) 
YNOD(NODEL(IT,4))=Y+DYH 
XNOD(NODEL(IT,5))=X+DX(IP) 
YNOD(NODEL(IT,5))=Y+DY(JP) 
XNOD(NODEL(IT,6))=X+DXH 
YNOD(NODEL(IT,6))=Y+DY(JP) 
XNOD(NODEL(IT,7))=X 
YNOD(NODEL(IT,7))=Y+DY(JP) 
XN0D(N0DEL(IT,8))=X 
YNOD(NODEL(IT,8))=Y+DYH 

C 2 CONTINUE 
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1 CONTINUE 
RETURN 
END 

C 
C 

SUBROUTINE SETMAT(NEX,NEY,IND,PE,IPEC) 
C 
C THIS SUBROUTINE INITIALIZES THE STIFFNESS MATRICES FOR THE 
C FLUID FLOW AND PROTEIN TRANSPORT EQUATIONS, CONVERTING THE 
C BANDED MATRICES TO VECTOR EQUIVALENTS WHICH STORE ONLY THE 
C BANDS OF THE MATRICES. AN ELEMENT LOCATION (I.J) IS PLACED 
C IN THE VECTOR LOCATION (K) WHERE K=(3*LUB)*J+I-LUB, AND 
C LUB IS THE HALF BANDWIDTH OF THE MATRIX (EXCLUDING THE 
C DIAGONAL). LUB IS RELATED TO NEY BY LUB=3*NEY+4. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
C0MM0N/BLKl/N0DEL(600,8),XN0D(2000),YN0D(2000) 
C0MM0N/BLK2/DX(4l),DY(41) 
COMMON/FLUMAT/AF(210000) 
C0MM0N/S0LMAT/AS(210000) 
COMMON/TISDAT/AK,DEFF,AL,AT,PHIA,PHIT,RET,SIGT 
COMMON/OSMOT/AO,BO,CO 
COMMON/CAPDAT/PC,CC 
C0MM0N/0LD/P0LD(2000).COLD(2000) 
COMMON/FLUB/BF(2000) 
C0MM0N/S0LB/BS(2000) 

C 
DIMENSION GAUS(4),W(4),B(8),DBS(8),DBT(8),DBX(8),DBY(8), 
#AJAC(2,2),AJACIN(2,2) 

C 
DATA NGAUS/4/ 
DATA W/.3478548451374S4D0,.652145154862546D0, 
#.6S2145154862546D0,.3478S4845137454D0/ 
DATA GAUS/-.8611363115940S3D0,-.339981043584856D0, 
#.339981043584856D0,.861136311594053D0/ 

C DATA NGAUS/3/ 
C DATA W/0.5555555555S56DO,0.8888888888889D0.0.5555555555556DO/ 
C DATA GAUS/-0.774596669241483DO.O.D0.0.774596669241483DO/ 
C 
C DATA NGAUS/2/ 
C DATA W/l.ODO.l.ODO.O.DO/ 
C DATA GAUS/-0.577350269189626D0,0.577350269189626D0,0.D0/ 
C 
C ZERO APPROPRIATE ARRAY 
C 
C 

IF(IND.EQ.3)G0 TO 999 
C 

IF(IND.NE.2)G0 TO 900 
DO 90 1=1,210000 
AS(I)=0.D0 

90 CONTINUE 
C 

PE=O.DO 
C 

GO TO 101 
C 
900 IF(IND.NE.O) GO TO 901 

DO 91 1=1,210000 
AF(I)=0.D0 

91 CONTINUE 
C 

GO TO 101 
C 
901 DO 92 1=1,2000 

BF(I)=0.D0 
92 CONTINUE 
C 
C 
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C 
C CARRY OUT THE INTEGRATION ELEMENT BY ELEMENT. INTEGRATION IS 
C ACCORDING TO A THREE POINT GAUSS QUADRATURE. 
C 
101 LUB=3*NEY+4 

LP=3*LUB 
NEL=NEX*NEY 

C 
C ENTER LOOP WHICH EVALUATES INTEGRAND AT APPROPRIATE (S,T) 
C POINTS FOR GAUSS QUADRATURE. 
C 

DO 1 II=1,NGAUS 
S=GAUS(II) 

C 
DO 2 JJ=1,NGAUS 
T=GAUS(JJ) 

C 
C DEFINE THE BASIS FUNCTIONS AND THEIR S AND T DERIVATIVES, 
C EVALUATED AT THE QUADRATURE POINTS 
C 

B(1)=(S-1.D0)*(1.D0-T)*(1.D0+S+T)*.25D0 
B(2)=(1.D0-S*S)*(1.D0-T)*.5D0 
B(3)=(l.DO+S)*(T-l.D0)*(l.DO-S+T)*.25DO 
B(4)=(1.DO-T*T)*(1.DO+S)*.5D0 
B(5)=(1.D0+S)*(1.D0+T)*(T+S-1.D0)*.25D0 
B(6)=(1.D0-S*S)*(1.D0+T)*.5D0 
B(7)=(S-1.D0)*(1.D0+T)*(1.D0+S-T)*.25D0 
B(8)=(1.D0-T*T)*(1.D0-S)*.5D0 
DBS(1)=(1.DO-T)*(T+2.DO*S)*.25D0 
DBT(l)=(l.D0-S)*(S+2.D0*T)*.25D0 
DBS(2)=S*(T-1.D0) 
DBT(2)=(S*S-1.D0)*.5D0 
DBS(3)=(1.D0-T)*(2.D0*S-T)*.25D0 
DBT(3)=(l.D0+S)*(2.D0*T-S)*.25D0 
DBS(4)=(1.DO-T*T)*.5D0 
DBT(4)=-T*(1.D0+S) 
DBS(5)=(1.DO+T)*(2.DO*S+T)*.25 
DBT(5)=(1.D0+S)*(2.D0*T+S)*.25 
DBS(6)=-S*(1.D0+T) 
DBT(6)=(1.D0-S*S)*.5D0 
DBS(7)=(l.D0+T)*(2.D0*S-T)*.25D0 
DBT(7)=(1.D0-S)*(2.D0*T-S)*.25D0 
DBS(8)=(T*T-1.D0)*.5D0 
DBT(8)=T*(S-1.D0) 

C 
C NOW CONSIDER EACH ELEMENT ONE BY ONE C 

DO 110 ITX=1,NEX 
DO 100 ITY=1,NEY 
IT=(ITX-1)*NEY+ITY 

C 
C WE NOW CALCULATE THE JACOBIAN MATRIX, AJAC, ITS DETERMINANT, 
C DETJ, AND ITS INVERSE AJACIN. 
C 
C 

AJAC(1,1)=0.D0 
AJAC(2,l)=O.D0 
AJAC(l,2)=O.D0 
AJAC(2,2)=O.D0 

C 
DO 3 JAK=1,8 
AJAC(1,1)=AJAC(1,1)+DBS(JAK)*XNOD(NODEL(IT,JAK)) 
AJAC(1,2)=AJAC(1,2)+DBS(JAK)*YNDD(NODEL(IT,JAK)) 
AJAC(2,1)=AJAC(2,1)+DBT(JAK)*XNOD(NODEL(IT,JAK)) 
AJAC(2,2)=AJAC(2,2)+DBT(JAK)*YN0D(N0DEL(IT,JAK)) 

3 CONTINUE 
C 

DETJ=AJAC(1,1)*AJAC(2,2)-AJAC(1,2)*AJAC(2,1) 
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C CHECK TO SEE IF THE DETERMINANT IS ZERO 
C 

IF(DETJ.GT.1.D-16) GO TO 777 
WRITE(6,60l) IT 

601 FORMAT(IX,'DETERMINANTS AT ELEMENT',IX,14) 
STOP 

C 
777 AJACIN(1,1)=AJAC(2,2)/DETJ 

AJACIN(1,2)=-AJAC(1,2)/DETJ 
AJACIN(2,1)=-AJAC(2,1)/DETJ 
AJACIN(2,2)=AJAC(1,1)/DETJ 

C 
C WE CAN NOW CALCULATE D(B(I))/DX AND D(B(I))/DY, EVALUATED AT 
c (X(S,T),Y(S;T)), USING JACIN 
c 

DO 4 1=1,8 
DBX(I)=DBS(I)*AJACIN(1,1)+DBT(I)*AJACIN(1,2) 
DBY(I)=DBS(I)*AJACIN(2,1)+DBT(I)*AJACIN(2,2) 

4 CONTINUE 
C 
C DETERMINE WHICH MATRIX IS TO BE EVALUATED 
C 

IF(IND.Eq.O)GO TO 902 
C 
C WE NOW HAVE SUFFICIENT INFORMATION TO DETERMINE QX.QY, AND C, 
C ALL EVALUATED AT (S,T). THIS INFORMATION WILL BE USED TO 
C CALCULATE AF. 
C 

CST=O.DO 
DPX=O.DO 
DPY=O.DO 
DCX=O.DO 
DCY=O.DO 

C 
DO 5 J=l,8 
DPX=POLD(NODEL(IT,J))*DBX(J)+DPX 
DPY=POLD(NODEL(IT,J))*DBY(J)+DPY 
DCX=COLD(NODEL(IT,J))*DBX(J)+DCX 
DCY=COLD(NODEL(IT,J))*DBY(J)+DCY 
CST=COLD(NODEL(IT, J ) ) *B (J )+CST 

5 CONTINUE 
C 

DPIX=DCX*(AO+CST*(2.DO*B0+3.DO*CO*CST))*SIGT 
DPIY=DCY*(A0+CST*(2.D0*B0+3.D0*C0*CST))*SIGT 

C 
C IF IND EQUALS 1, THEN EVALUATE BF VECTOR 
C 

IF(IND.NE.2)G0 TO 903 
C 

QXST=-AK*PC*PHIA/(DEFF*PHIT)*RET*(DPX-DPIX) 
QYST=-AK*PC*PHIA/(DEFF*PHIT)*RET*(DPY-DPIY) 

C 
C 
C 
C NOW CALCULATE THE DISPERSION COEFFICIENTS DXX.DXY.DYY, WHERE 
C DXX=(AL*qX**2/QMAG+AT*QY**2/qMAG)+PHIA, ETC 
C 

qMAG=DSQRT(qXST*qXST+qYST*qYST) 
c 
C CHECK TO SEE IF QMAG IS NONZERO 
c 

IF(QMAG.GT.1.D-10)G0 TO 500 
DXX=PHIA 
DXY=0.D0 
DYY=PHIA 
GO TO 600 C 

500 DXX=(AL*qXST*QXST+AT*qYST*QYST)/QMAG+PHIA 
DXY=(AL-AT)*QXST*QYST/qMAG 
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DYY=(AL*QYST*QYST+AT*QXST*QXST)/QMAG+PHIA 
C 
C 
600 DO 6 M=l,8 

MM=N0DEL(IT,M) 
C 

DO 7 N=l,8 
NN=NODEL(IT,K) 

C 
C CONVERT INDEX(M,N) TO K BY FORMULA K=LP*N+M-LUB 
C AND THEN DETERMINE AS(K) 
C 

K=LP*NN+MM-LUB 
C 

AS(K)=AS(K)+(DBX(M)*(DXX*DBX(N)+DXY*DBY(N))+ 
#DBY(M)*(DXY*DBX(N)+DYY+DBY(N))+ 
#(QXST*DBX(N)+QYST*DBY(N))*B(M))*W(II)*W(JJ)*DETJ 

C 
7 CONTINUE 
6 CONTINUE 
C 
C NOW CALCULATE THE LOCAL GRID PECLET NUMBER EVALUATED AT (S,T), 
C AND COMPARE TO PE 
C 

QMAX=DMAX1(QXST,QYST) 
DIFMIN=DMIN1(DXX.DYY) 
DLMAX=DMAX1(DX(ITX+1),DY(ITY+1)) 
PEST=DLMAX*QMAX/DIFMIN 
IF(PEST.LT.PE)GO TO 100 
PE=PEST 
IPEC=IT 

C 
GO TO 100 

C 
C CALCULATE AF 
C 
C 
902 DO 8 M=l,8 

MM=NODEL(IT,M) 
C 

DO 9 N=l,8 
NN=NODEL(IT,N) 

C 
K=LP*NN+MM-LUB 

C 
AF(K)= AF(K)+(DBX(M)*DBX(N)+DBY(M)*DBY(N))*W(II)*W(JJ)*DETJ 

C 
9 CONTINUE 
8 CONTINUE 
C 

GO TO 100 
C 
C CALCULATE BF 
C 
903 DO 10 M=l,8 

MM=NODEL(IT,M) 
C 

BF(MM)=BF(MM)+(DBX(M)*DPIX+DBY(M)*DPIY)*W(JJ)*W(II)*DETJ 
C 
10 CONTINUE 
C 
100 CONTINUE 
C 
110 CONTINUE 
C 
2 CONTINUE 
1 CONTIFJE C 
999 DO 93 1=1,2000 

BS(I)=O.DO 
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93 CONTINUE 
C 

RETURN 
END 

C 
C 

SUBROUTINE ASTAR(NEX,NEY,IND) 
C 
C THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO SUIT THE 
C BOUNDARY CONDITION Jv=Lpc*(P-Pc-sigc*(Pi-Pic)) AT THE CAPILLARY 
C WALL. IF IND=0 THEN THE AF VECTOR IS ADJUSTED. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION B(3).INDEX(3),GAUS(3) ,W(3) 
C0MM0N/BLK1/N0DEL(600,8),XN0D(2000),YN0D(2000) 
C0MM0N/BLK2/DX(41),DY(41) 
COMMON/FLUMAT/AF(210000) 
COMMON/FLUB/BF(2000) 
COMMON/OLD/POLD(2000),COLD(2000) 
COMMON/OSMOT/AO,B0,C0 
COMMON/WALL/DLC,DLV.DLM.DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM, 
#SIGC,SIGV,SIGM,CDC,CDV,CDM 

C 
DATA W/0.5555555555556D0,0.8888888888889D0,0.5555555555556D0/ 
DATA NGAUS.GAUS/3.-.774596669241483D0.0.D0,.774596669241483D0/ 

C 
C DEFINE PARAMETERS FOR INDEXING AF VECTOR 
C 

LUB=3*NEY+4 
LP=3*LUB 

C 
C CONSIDER THE CAPILLARY WALL, ELEMENT BY ELEMENT. 
C 

DO 1 IT=1,NEY 
IP=IT+1 

C 
C ENTER LOOP FOR GAUSS QUADRATURE INTEGRATION. IDENTIFY T VARIABLE 
C 

DO 2 M=1,NGAUS 
C 

T=GAUS(M) 
C 
C DEFINE BASIS FUNCTIONS B(1)=B1, B(2)=B7, B(3)=B8, EVALUATED 
C AT (-1.T) 
C 

B(1)=(T-1.D0)*T*.5D0 
B(2)=(T+1.D0)*T*.SD0 
B(3)=1.D0-T*T 

C 
C • SEE IF AF VECTOR IS TO BE ADJUSTED 
C 

IF(IND.EQ.O)GO TO 100 
C 
C ADJUST THE BF VECTOR 
C C=C0LD(N0DEL(IT,1))*B(1)+C0LD(N0DEL(IT,7))*B(2)+ 

#C0LD(N0DEL(IT,8))*B(3) 
PI=C*(AO+C*(BO+C*CO)) 
BF(NODEL(IT,1))=BF(NODEL(IT,1))+B(1)*DLC*W(M)*DY(IP)*.5D0*(PDC 
# +SIGC*(PI-PIDC)) 
BF(N0DEL(IT,7))=BF(N0DEL(IT,7))+B(2)*DLC*W(M)*DY(IP)*.5D0*(PDC 
# +SIGC*(PI-PIDC)) 
BF(N0DEL(IT,8))=BF(N0DEL(IT,8))+B(3)*DLC*V(M)*DY(IP)*.5D0*(PDC 
# +SIGC*(PI-PIDC)) 
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GO TO 2 
C 
C ADJUST THE AF VECTOR 
C 
100 INDEX(1)=N0DEL(IT,1) 

INDEX(2)=NODEL(IT,7) 
INDEX(3)=N0DEL(IT,8) 

C 
DO 3 1=1,3 
DO 4 J=l,3 
K=LP *INDEX(J)+INDEX(I)-LUB 
AF(K)=AF(K)+B(I)*B(J)*W(M)*DY(IP)*.5D0*DLC 

4 CONTINUE 
3 CONTINUE 
C 
2 CONTINUE 
1 CONTINUE 
C 

RETURN 
END 

C 

C 
SUBROUTINE VSTAR(NEX,NEY,IND) 

C 
C THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO SUIT THE 
C BOUNDARY CONDITION Jv=Lpc*(P-Pv-sigv*(Pi-Piv)) AT THE VENULAR 
C WALL. IF IND=0 THEN THE AF VECTOR IS ADJUSTED. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION B(3).INDEX(3),GAUS(3),W(3) 
C0MM0N/BLK1/N0DEL(600,8),XNOD(2000),YN0D(2000) 
C0MM0N/BLK2/DX(41),DY(41) 
COMMON/FLUMAT/AF(210000) 
COMMON/FLUB/BF(2000) 
COMM0N/OLD/P0LD(2OO0),C0LD(2000) 
COMMON/OSMOT/AO,BO,CO 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV.DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM, 
#SIGC,SIGV,SIGM,CDC,CDV,CDM 

C 
DATA W/0.555555555SS56D0,0.8888888888889D0,0.5555555555556D0/ 
DATA NGAUS.GAUS/3.-.774596669241483D0.0.D0,.774596669241483D0/ 

C 
C DEFINE PARAMETERS FOR INDEXING AF VECTOR 
C 

LUB=3*NEY+4 
LP=3*LUB 

C 
C CONSIDER THE VENULAR WALL, ELEMENT BY ELEMENT. 
C 

DO 1 ITT=1,NEY 
IP=ITT+1 
IT=(NEX-1)*NEY+ITT 

C 
C ENTER LOOP FOR GAUSS QUADRATURE INTEGRATION. IDENTIFY T VARIABLE 
C 

DO 2 M=1,NGAUS 
C 

T=GAUS(M) 
C 
C DEFINE BASIS FUNCTIONS B(1)=B3, B(2)=B4, B(3)=B5, EVALUATED 
C AT (1,T) 
C 

B(1)=(T-1.D0)*T*.5D0 
BC3)=(T+1.D0)*T*.5D0 
B(2)=1.D0-T*T 

C 
C SEE IF AF VECTOR IS TO BE ADJUSTED 
C 

IF(IND.EQ.O)GO TO 100 
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C 
C ADJUST THE BF VECTOR 
C 

C=C0LD(N0DEL(IT,3))*B(1)+C0LD(N0DEL(IT,4))*B(2)+ 
#C0LD(N0DEL(IT,5))*B(3) 

C 
PI=C*(AO+C*(BO+C*CO)) 

C 
BF(NODEL(IT,3))=BF(NODEL(IT,3))+B(1)*DLV*W(M)*DY(IP)*.5D0*(PDV 
# +SIGV*(PI-PIDV)) 

C 
BF(NODEL(IT,4))=BF(NODEL(IT,4))+B(2)*DLV*W(M)*DY(IP)*.5D0*(PDV 
# +SIGV*(PI-PIDV)) 

C 
BF(N0DEL(IT,5))=BF(N0DEL(IT,5))+B(3)*DLV*W(M)*DY(IP)*.5D0*(PDV 
# +SIGV*(PI-PIDV)) 

C 
GO TO 2 

C 
C ADJUST THE AF VECTOR 
C 
100 INDEX(1)=N0DEL(IT,3) 

INDEX(2)=N0DEL(IT,4) 
INDEX(3)=NODEL(IT,5) 

C 
DO 3 1=1,3 
DO 4 J=l,3 
K=LP*INDEX(J)+INDEX(I)-LUB 
AF(K)=AF(K)+B(I)*B(J)*W(M)*DY(IP)*.5D0*DLV 

4 CONTINUE 
3 CONTINUE 
C 
2 CONTINUE 
1 CONTINUE 
C 

RETURN 
END 

C 
C 

SUBROUTINE MESTAR(NEX,NEY,IND) 
C 
C THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO SUIT THE 
C BOUNDARY CONDITION Jv=Lpc*(P-Pm-sigm*(Pi-Pirn)) AT THE MESOTHEL. 
C WALL. IF IND=0 THEN THE AF VECTOR IS ADJUSTED. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION B(3),INDEX(3),GAUS(3),W(3) 
C0MM0N/BLK1/N0DEL(600,8),XN0D(2000),YNOD(2000) 
C0MM0N/BLK2/DX(41),DY(41) 
COMMON/FLUMAT/AF(210000) 
C0MM0N/FLUB/BF(2000) 
C0MM0N/0LD/P0LD(2000).COLD(2000) 
COMMON/OSMOT/AO,BO,CO 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PTUM, 
#SIGC,SIGV,SIGM,CDC,CDV,CDM 

C 
DATA W/0.S5S5555555556D0,0.8888888888889D0,0.5555555555556D0/ 
DATA NGAUS,GAUS/3,-.774596669241483D0,0.D0,.774596669241483D0/ 

C 
C DEFINE PARAMETERS FOR INDEXING AF VECTOR 
C 

LUB=3*NEY+4 
LP=3*LUB 

C 
C CONSIDER THE MESOTHELIAL WALL, ELEMENT BY ELEMENT. 
C 

DO 1 ITT=1,NEX 
IP=ITT+1 
IT=ITT*NEY C 
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C ENTER LOOP FOR GAUSS QUADRATURE INTEGRATION. IDENTIFY S VARIABLE 
C 

DO 2 M=1,NGAUS 
C 

S=GAUS(M) 
C 
C DEFINE BASIS FUNCTIONS B(1)=B5, B(2)=B6, B(3)=B7, EVALUATED 
C AT (S,l) 
C 

B(3)=(S-1.D0)*S*.5D0 
B(l)=(S+l.D0)*S*.5D0 
B(2)=1.D0-S*S 

C 
C SEE IF AF VECTOR IS TO BE ADJUSTED 
C 

IF(IND.EQ.O)GO TO 100 
C 
C ADJUST TBE BF VECTOR 
C 

CST=COLD(NODEL(IT,5))*B(1)+COLD(NODEL(IT,6))*B(2)+ 
#C0LD(N0DEL(IT,7))*B(3) 

C 
PIST=AO*CST+BO*CST*CST+CO*CST*CST*CST 

C 
BF(N0DEL(IT,5))=BF(N0DEL(IT,S))+ 
#B(1)*DLM*DX(IP)*W(M)*.5D0*(PDM+SIGM*(PIST-PIDM)) 

C 
BF(N0DEL(IT,6))=BF(N0DEL(IT,6))+ 
#B(2)*DLM*DX(IP)*W(M)*.5D0*(PDM+SIGM*(PIST-PIDM)) 

C 
BF(N0DEL(IT,7))=BF(N0DEL(IT,7))+ 
#B(3)*DLM*DX(IP)*W(M)*.5D0*(PDM+SIGM*(PIST-PIDM)) 

C 
GO TO 2 

C 
C ADJUST TBE AF VECTOR 
C 
100 INDEX(i)=N0DEL(IT,5) 

INDEX(2)=NODEL(IT,6) 
INDEX(3)=NODEL(IT,7) 

C 
DO 3 1=1,3 
DO 4 J=l,3 
K=LP*INDEX(J)+INDEX(I)-LUB 
AF(K)=AF(K)+B(I)*B(J)*W(M)*DX(IP)*.5D0*DLM 

4 CONTINUE 
3 CONTINUE 
C 
2 CONTINUE 
1 CONTINUE 
C 

RETURN 
END 

C 
SUBROUTINE PATART(NEX,NEY) 

C 
C THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO SUIT THE ' 
C NONLINEAR FLUX BOUNDARY CONDITION AT THE CAPILLARY 
C WALL. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION B(3) ,INDEX(3),GAUS(3),W(3) 
COMMON/BLK1/NODEL(600,8),XN0D(2000),YN0D(2000) 
C0MM0N/BLK2/DX(41),DY(41) 
COMMON/SOLMAT/AS(210000) 
C0MM0N/S0LB/BS(2000) 
COMM0N/OLD/P0LD(2O00),C0LD(2000) 
COMMON/OSMOT/AO,BO,CO 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDH,PIDC,PIDV,PIDM, 
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#SIGC,SIGV,SIGM,CDC,CDV,CDM 
COMMON/TTSDAT/AK,DEFF,AL,AT,PHIA,PHIT,RET,SIGT 
COMMON/CAPDAT/PC,CC 

C 
DATA W/O.5555555555556D0,0.8888888888889D0,0.5555S55555556D0/ 
DATA NGAUS,GAUS/3,-.774596669241483D0,0.D0,.774596669241483D0/ 

C 
C DEFINE PARAMETERS FOR INDEXING AF VECTOR 
C 

LUB=3*NEY+4 
LP=3*LUB 

C 
C CONSIDER THE CAPILLARY WALL, ELEMENT BY ELEMENT. 
C 

DO 1 IT=1,NEY 
IP=IT+1 

C 
C ENTER LOOP FOR GAUSS QUADRATURE INTEGRATION. IDENTIFY T VARIABLE 
C 

DO 2 M=1,NGAUS 
C 

T=GAUS(M) 
C 
C DEFINE BASIS FUNCTIONS B(1)=B1, B(2)=B7, B(3)=B8, EVALUATED 
C AT (-1.T) 
C 

B(l)=(T-l.D0)*T*.5D0 
B(2)=(T+1.D0)*T*.5D0 
B(3)=1.D0-T*T 

C 
INDEX(1)=NODEL(IT,1) 
INDEX(2)=NODEL(IT,7) 
INDEX(3)=NODEL(IT,8) 

C 
C CALCULATE C(S,T), PI(S,T) AND Q(S,T) 
C 

CST=O.DO 
QST=O.DO 
DO 3 1=1,3 
CST=CST+COLD(INDEX(I))*B(I) 
QST=QST+POLD(INDEX(I))*B(I) 

3 CONTINUE 
PIST=CST*(AO+CST*(BO+CST*CO)) 
QST=(QST-PDC-SIGC*(PIST-PIDC))*(AK*PC*DLC)/DEFF 
F=PHIA/PHIT 
PEC=QST*(l.DO-SIGC)/DDC 

C 
C CHECK TO SEE IF CONVECTIVE COMPONENT DOMINATES 
C 

IF(PEC.GT.170.D0)G0 TO 101 
IF(PEC.LT.-170.D0)G0 TO 102 

C 
C CHECK TO SEE IF CONVECTIVE COMPONENT IS SIGNIFICANT 
C 

TEST=1.DO-DEXP(-PEC) 
IF(DABS(TEST).LT.l.D-10) GO TO 100 

C 
C ADJUST THE AS VECTOR AND BS VECTOR 
C 

DO 4 1=1,3 
DO 5 J=l,3 
K=LP*INDEX(J)+INDEX(I)-LUB 
AS(K)=AS(K)-

# (RET*F-(1.D0-SIGC)/TEST)*QST*B(I)*B(J)*DY(IP)*.5D0«W(M) 
5 CONTINUE 

BS(INDEX(I))=BS(INDEX(I))+ 
#B(I)*QST*(1.DO-SIGC)*CDC*DEXP(-PEC)/TEST*DY(IF)*.SCO*V(M) 

4 CONTINUE 
GO TO 2 

C 
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C ADJUST AS AHD BS FOR CASE WHERE SOLUTE FLUX IS PREDOMINANTLY 
C DIFFUSIVE 
C 
100 DO 6 1=1,3 

DO 7 J=l,3 
K=LP*INDEX(J)+INDEX(I)-LUB 
AS(K)=AS(K)+(DDC-F*RET*QST)*B(I)*B(J)*DY(IP)*.5D0*W(M) 

7 CONTINUE 
BS(INDEX(I))=BS(INDEX(I))+B(I)*DDC*CDC*DY(IP)*.5D0*W(M) 

6 CONTINUE 
C 

GO TO 2 
C 
C ADJUST AS AND BS FOR CASES WHERE CONVECTIVE TRANSPORT DOMINATES 
101 DO 8 1=1,3 

DO 9 J=l,3 
K=LP*INDEX(J)+INDEX(I)-LUB 
AS(K)=AS(K)-(RET*F-(1.DO-SIGC))*qST*B(I)*B(J)*DY(IP)*.5D0*W(M) 

9 CONTINUE 
8 CONTINUE 

GO TO 2 
C 
C 
102 DO 10 1=1,3 

DO 11 J=l,3 
K=LP*INDEX(J)+INDEX(I)-LUB 
AS(K)=AS(K)-RET*F*qST*B(I)*B(J)*DY(IP)*.5D0*W(M) 

11 CONTINUE 
BS(INDEX(I))=BS(INDEX(I))-
#(1.DO-SIGC)*qST*CDC*B(I)*DY(IP)*.5D0*W(M) 

10 CONTINUE 
C 
2 CONTINUE 
1 CONTINUE 
C 

RETURN 
END 

SUBROUTINE PATVEN(NEX.NEY) 
C 
C THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO SUIT THE 
C NONLINEAR FLUX BOUNDARY CONDITION AT THE VENULAR 
C WALL. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION B(3),INDEX(3),GAUS(3),W(3) 
C0MM0N/BLK1/N0DEL(600,8),XN0D(2000),YN0D(2000) 
C0MM0N/BLK2/DX(41),DY(41) 
COMMON/SOLMAT/AS(210000) 
COMMON/SOLB/BS(2000) 
COMMON/0LD/P0LD(2OO0),C0LD(2000) 
COMMON/OSMOT/AO,B0,C0 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM, 
#SIGC,SIGV,SIGM,CDC,CDV,CDM 
COMMON/TISDAT/AK,DEFF,AL,AT,PHIA,PHIT,RET,SIGT 
COMMON/CAPDAT/PC,CC 

C 
DATA W/0.5S55555555556D0,0.8888888888889D0,0.5555555555556D0/ 
DATA NGAUS,GAUS/3,-.774S96669241483D0,0.D0,.774596669241483D0/ 

C 
C DEFINE PARAMETERS FOR INDEXING AF VECTOR 
C 

LUB=3*NEY+4 
LP=3*LUB 

C 
C CONSIDER THE CAPILLARY WALL, ELEMENT BY ELEMENT. 
C DO 1 ITT=1,NEY 

IP=ITT+1 
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IT=(NEX-1)*NEY+ITT 
C 
C ENTER LOOP FOR GAUSS QUADRATURE INTEGRATION. IDENTIFY T VARIABLE 
C 

DO 2 M=1,NGAUS 
C 

T=GAUS(M) 
C 
C DEFINE BASIS FUNCTIONS B(1)=B3, B(2)=B4, B(3)=B5, EVALUATED 
C AT (1,T) 
C 

B(1)=(T-1.D0)*T*.5D0 
B(3)=(T+1.D0)*T*.5D0 
B(2)=1.D0-T*T 

C 
INDEX(1)=NODEL(IT,3) 
INDEX(2)=NODEL(IT,4) 
INDEX(3)=NODEL(IT,5) 

C 
C CALCULATE C(S,T), PI(S,T) AND Q(S,T) 
C 

CST=O.DO 
qST=O.DO 
DO 3 1=1,3 
CST=CST+COLD(INDEX(I))*B(I) 
QST=qST+POLD(INDEX(I))*B(I) 

3 CONTINUE 
PIST=CST*(AO+CST*(BO+CST*CO)) 
qST=(qST-PDV-SIGV*(PIST-PIDV))*(AK*PC*DLV)/DEFF 
F=PHIA/PHIT 
PEC=QST*(1.DO-SIGV)/DDV 

C 
C CHECK TO SEE IF CONVECTIVE COMPONENT DOMINATES 
L IF(PEC.GT.170.DO)GO TO 101 

IF(PEC.LT.-170.D0)G0 TO 102 
C 
C CHECK TO SEE IF CONVECTIVE COMPONENT IS SIGNIFICANT 
C 

TEST=1.DO-DEXP(-PEC) 
IF(DABS(TEST).LT.l.D-10) GO TO 100 

C 
C ADJUST THE AS VECTOR AND BS VECTOR 
C 

DO 4 1=1,3 
DO 5 J=l,3 
K=LP*INDEX(J)+INDEX(I)-LUB 
AS(K)=AS(K)-

# (RET*F-(1.DO-SIGV)/TEST)*qST*B(I)*B(J)*DY(IP)*.5D0*W(M) 
5 CONTINUE 

BS(INDEX(I))=BS(INDEX(I))+ 
#B(I)*QST*(1.DO-SIGV)*CDV*DEXP(-PEC)/TEST+DY(IP)*.5D0*W(M) 

4 CONTINUE 
GO TO 2 

C 
C ADJUST AS AND BS FOR CASE WHERE SOLUTE FLUX IS PREDOMINANTLY 
C DIFFUSIVE 
C 
100 DO 6 1=1,3 

DO 7 J=l,3 
K=LP*INDEX(J)+INDEX(I)-LUB 
AS(K)=AS(K)+(DDV-F*RET*QST)*B(I)*B(J)*DY(IP)*.5D0*W(M) 

7 CONTINUE 
BS(INDEX(I))=BS(INDEX(I))+B(I)*DDV*CDV*DY(IP)*.5D0*W(M) 

6 CONTINUE 
C 

GO TO 2 
C 
C ADJUST AS AND BS FOR THE CASE WHERE CONVECTION DOMINATES 
C 
101 DO 8 1=1,3 
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DO 9 J=l,3 
K=LP*INDEX(J)+INDEX(I)-LUB 
AS(K)=AS(K)-(RET*F-U.DO-SIGV))*QST*B(I)*B(J)*DY(IP)*.5D0*W(M) 

9 CONTINUE 
8 CONTINUE 

C 
GO TO 2 

C 
102 DO 10 1=1,3 

DO 11 J=l,3 
K=LP*INDEX(J)+INDEX(I)-LUB 
AS(K)=AS(K)-RET*F*qST*B(I)*B(J)*DY(IP)*.5D0*W(M) 

11 CONTINUE 
BS(INDEX(I))=BS(INDEX(I))-
# (l.D0-SIGV)*qST*CDV*B(I)*DY(IP)*.5D0*tf(M) 

10 CONTINUE 
C 
2 CONTINUE 
1 CONTINUE 
C 

RETURN 
END 

SUBROUTINE PATMES(NEX,NEY) 
C 
C THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO SUIT THE 
C NONLINEAR FLUX BOUNDARY CONDITION AT THE MESOTHELIAL 
C WALL. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION B(3),INDEX(3),GAUS(3),W(3) 
C0MM0N/BLK1/N0DEL(600,8),XN0D(2000),YN0D(2000) 
C0MM0N/BLK2/DX(41),DY(41) 
COMMON/SOLMAT/AS(210000) 
COMMON/SOLB/BS(2000) 
COMMON/OLD/POLD(2000),C0LD(2000) 
COMMON/OSMOT/AO,B0,CO 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PTDC,PIDV,PIDM, 
#SIGC,SIGV,SIGM,CDC,CDV,CDM 
COMMON/TISDAT/AK,DEFF,AL,AT,PHIA,PHIT,RET,SIGT 
COMMON/CAPDAT/PC,CC 

C 
DATA W/0.55S5S55555556D0,0.8888888888889D0,0.5555555555556D0/ 
DATA NGAUS,GAUS/3,-.774596669241483D0,0.D0,.774596669241483D0/ 

C 
C DEFINE PARAMETERS FOR INDEXING AF VECTOR 
C 

LUB=3*NEY+4 
LP=3*LUB 

C 
C CONSIDER THE MESOTHELIAL WALL, ELEMENT BY ELEMENT. 
C 

DO 1 ITT=1,NEX 
IP=ITT+1 
IT=ITT*NEY 

C 
C ENTER LOOP FOR GAUSS QUADRATURE INTEGRATION. IDESTIFY S VARIABLE 
C 

DO 2 M=1,NGAUS 
C 

S=GAUS(M) 
C 
C DEFINE BASIS FUNCTIONS B(1)=B5, B(2)=B6, B(3)=B7, EVALUATED 
C AT (S.l) 
C B(3)=(S-1.D0)*S*.5D0 

B(l)=(S+l.D0)*S*.5D0 
B(2)=1.D0-S*S 
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INDEX(1)=N0DEL(IT,5) 
INDEX(2)=NODEL(IT, 6 ) 
INDEX(3)=NODEL(IT,7) 

C 
C CALCULATE C(S,T), PI(S,T) AND Q(S,T) 
C 

CST=O.DO 
qST=O.DO 
DO 3 1=1,3 
CST=CST+COLD(INDEX(I))*B(I) 
QST=QST+POLD(INDEX(I))*B(I) 

3 CONTINUE 
PIST=CST*(AO+CST*(BO+CST*CO)) 
QST=(QST-PDM-SIGM*(PIST-PIDM))*(AK*PC*DLM)/DEFF 
F=PHIA/PHIT 
PEC=QST*(1.DO-SIGM)/DDM 

C 
C CHECK TO SEE IF CONVECTION DOMINATES 
C 

IF(PEC.GT.170.D0)G0 TO 101 
IF(PEC.LT.-170.D0)G0 TO 102 

C 
C CHECK TO SEE IF CONVECTIVE COMPONENT IS SIGNIFICANT 
C 

TEST=1.DO-DEXP(-PEC) 
IF(DABS(TEST).LT.l.D-10) GO TO 100 

C 
C ADJUST THE AS VECTOR AND BS VECTOR 
C 

DO 4 1=1,3 
DO 5 J=l,3 
K=LP*INDEX(J)+INDEX(I)-LUB 
AS(K)=AS(K)-

# (RET*F-(l.D0-SIGM)/TEST)*qST*B(I)*B(J)*DX(IP)*.5D0*W(M) 
5 CONTINUE 

BS(INDEX(I))=BS(INDEX(I))+ 
#B(I)*QST*(1.DO-SIGM)*CDM*DEXP(-PEC)/TEST*DX(IP)*.5D0*W(M) 

4 CONTINUE 
GO TO 2 

C 
C ADJUST AS AND BS FOR CASE WHERE SOLUTE FLUX IS PREDOMINANTLY 
C DIFFUSIVE 
C 
100 DO 6 1=1,3 

DO 7 J=l,3 
K=LP*INDEX(J)+INDEX(I)-LUB 
AS(K)=AS(K)+(DDM-F*RET*QST)*B(I)*B(J)*DX(IP)*.5D0*W(M) 

7 CONTINUE 
BS(INDEX(I))=BS(INDEX(I))+B(I)*DDM*CDM*DX(IP)*.5D0*W(M) 

6 CONTINUE 
C 

GO TO 2 
C 
C ADJUST AS AND BS FOR CASES WHERE CONVECTION DOMINATES 
C 
101 DO 8 1=1,3 

DO 9 J=l,3 
K=LP*INDEX(J)+INDEX(I)-LUB 
AS(K)=AS(K)-(RET*F-(1.DO-SIGM))*QST*B(I)*B(J)*DX(IP)*.5D0*W(M) 

9 CONTINUE 
8 CONTINUE 

C 
GO TO 2 

C 
102 DO 10 1=1,3 

DO 11 J=l,3 
K=LP*INDEX(J)+INDEX(I)-LUB 
AS(K)=AS(K)-RET*F*QST*B(I)*B(J)*DX(IP)*.5D0*W(M) 

11 CONTINUE 
BS(INDEX(I))=BS(INDEX(I))-
# (i.D0-SIGM)*qST*CDM*B(I)*DX(IP)*.5D0*W(M) 
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10 CONTINUE 
C 
2 CONTINUE 
1 CONTINUE 
C 

RETURN 
END 

C 
C 

SUBROUTINE MASFC(NEX,NEY) 
C 
C THIS SUBROUTINE CALCULATES THE FLUID FLUX ACROSS THE CAPILLARY 
C WALL, STORING IT IN QFC(NEY), AS WELL AS THE CONVECTIVE FLUX 
C OF PROTEIN TO THE WALL FROM THE INTERSTITIUM (QSC(NEY)). 
C 

IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION B(3),INDEX(3),GAUS(3),W(3) 
C0MM0N/BLK1/N0DEL(600,8),XN0D(2000),YN0D(2000) 
C0MM0N/BLK2/DX(41),DY(41) 
COMMON/SOLMAT/AS(210000) 
COMMON/SOLB/BS(2000) 
C0MM0N/0LD/P0LD(2000),C0LD(2000) 
COMMON/OSMOT/AO,BO,CO 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM, 
#SIGC,SIGV,SIGM,CDC,CDV,CDM 
COMMON/TISDAT/AK,DEFF,AL,AT,PHIA,PHIT,RET,SIGT 
COMMON/CAPDAT/PC,CC 
C0MM0N/MATBAL/QFC(40),QCC(40),QSC(40),QFV(40),QCV(40),QSV(40), 
#QFM(40),qCM(40),QSM(40) 

C 
DATA W/0.555555555S556D0,0.8888888888889D0,0.55555555S5556D0/ 
DATA NGAUS,GAUS/3,-.774596669241483D0,0.DO,.774596669241483D0/ 

C 
C CONSIDER THE CAPILLARY WALL, ELEMENT BY ELEMENT. 
C 

F=PHIA/PHIT 
DO 1 IT=1,NEY 
IP=IT+1 

C 
C ENTER LOOP FOR GAUSS QUADRATURE INTEGRATION. IDENTIFY T VARIABLE 
C 

DO 2 M=l,NGAUS 
C 

T=GAUS(M) 
C 
C DEFINE BASIS FUNCTIONS B(1)=B1, B(2)=B7, B(3)=B8, EVALUATED 
C AT (-1.T) 
C 

B(1)=(T-1.D0)*T*.5D0 
B(2)=(T+1.D0)*T*.5D0 
B(3)=1.D0-T*T 

C 
INDEX(1)=N0DEL(IT,1) 
INDEX(2)=NODEL(IT,7) 
INDEX(3)=N0DEL(IT,8) 

C 
C CALCULATE C(S,T), PI(S,T) AND Q(S,T) 
C 

CST=O.DO 
QST=O.DO 
DO 3 1=1,3 
CST=CST+COLD(INDEX(I))*B(I) 
QST=qST+POLD(INDEX(I))*B(I) 

3 CONTINUE 
PIST=CST*(AO+CST*(BO+CST+CO)) 
qST=(qST-PDC-SIGC*(PIST-PIDC))*(AK*PC*DLC)/DEFF 

C 
C NOW CALCULATE THE CONVECTIVE FLUX OF PROTEIN, QCC, iM) THE 
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C FLUID FLUX, QFC, BOTE INTEGRATED OVER THE ELEMENTAL BOUNDARY 
C 

QFC(IT)=QFC(IT)+QST*DY(IP)*.5D0*W(M) 
OCC(IT)=qCC(IT)+QST*RET*F*CST*DY(IP)*.5D0*W(M) 

C 
2 CONTINUE 
1 CONTINUE 

RETURN 
END 

C 
SUBROUTINE MASFM(NEX.NEY) 

C 
C THIS SUBROUTINE CALCULATES THE FLUID FLUX ACROSS THE MESOTHEL. 
C WALL, STORING IT IN QFM(NEY), AS WELL AS THE CONVECTIVE FLUX 
C OF PROTEIN TO THE WALL FROM THE INTERSTITIUM (QSM(NEY)). 
C 

IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION B(3).INDEX(3),GAUS(3),W(3) 
COMMON/BLK1/NODEL(600,8),XN0D(2000),YN0D(2000) 
C0MM0N/BLK2/DX(41),DY(41) 
COMMON/SOLMAT/AS(210000) 
C0MM0N/S0LB/BS(2000) 
COMMON/OLD/POLD(2000),COLD(2000) 
COMMON/OSMOT/AO,BO,CO 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM, 
#SIGC,SIGV,SIGM,CDC,CDV,CDM 
COMMON/TISDAT/AK,DEFF,AL,AT,PHIA,PHIT,RET,SIGT 
COMMON/CAPDAT/PC,CC 
C0MM0N/MATBAL/QFC(40),QCC(40),QSC(40),QFV(40),QCV(40),qSV(40), 
#qFM(40),qCM(40),qSM(40) 

C 
DATA W/0.55555555S55S6D0,0.8888888888889D0,0.5555555555556D0/ 
DATA NGAUS,GAUS/3,-.774596669241483D0,0.D0,.774596669241483D0/ 

C 
C CONSIDER THE MESOTHELIAL WALL, ELEMENT BY ELEMENT. 
C 

F=PHIA/PHIT 
DO 1 ITT=1,NEX 
IT=NEY*ITT 
IP=ITT+1 

C 
C ENTER LOOP FOR GAUSS qUADRATURE INTEGRATION. IDENTIFY T VARIABLE 
C 

DO 2 M=1,NGAUS 
C 

S=GAUS(M) 
C 
C DEFINE BASIS FUNCTIONS B(1)=B5, B(2)=B6, B(3)=B7, EVALUATED 
C AT (S,l) 
C 

B(3)=(S-1.D0)*S*.5D0 
B(1)=(S+1.D0)*S*.5D0 
B(2)=1.D0-S*S 

C 
INDEX(1)=N0DEL(IT,5) 
INDEX(2)=N0DEL(IT,6) 
INDEX(3)=N0DEL(IT,7) 

C 
C CALCULATE C(S,T), PI(S.T) AND Q(S.T) 
C 

CST=0.D0 
qST=0.D0 
DO 3 1=1,3 
CST=CST+COLD(INDEX(I))*B(I) 
qST=QST+POLD(INDEX(I))*B(I) 

3 CONTINUE 
PIST=CST*(AO+CST*(BO+CST*CO)) 
qST=(qST-PDM-SIGM*(PIST-PIDM))*(AK*PC*DLM)/DEFF 

C 
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C HOW CALCULATE THE CONVECTIVE FLUX OF PROTEIH, QCM, AND THE 
C FLUID FLUX, QFM, BOTH INTEGRATED OVER THE ELEMENTAL BOUNDARY 
C 

qFM(ITT)=QFM(ITT)+QST*DX(IP)*.5D0*W(M) 
QCM(ITT)=qCM(ITT)+QST*RET*F*CST*DX(IP)*.5D0*W(M) 

C 
2 CONTINUE 
1 CONTINUE 

RETURN 
END 

C 

SUBROUTINE MASFV(NEX.NEY) 
C 
C THIS SUBROUTINE CALCULATES THE FLUID FLUX ACROSS THE VENULAR 
C WALL, STORING IT IN qFV(NEY), AS WELL AS THE CONVECTIVE FLUX 
C OF PROTEIN TO THE WALL FROM THE INTERSTITIUM (QSV(NEY)). 
C 

IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION B(3),INDEX(3),GAUS(3),W(3) 
C0MM0N/BLK1/N0DEL(600,8),XN0D(2000),YH0D(2000) 
C0MM0N/BLK2/DX(41),DY(41) 
COMMON/SOLMAT/AS(210000) 
COMMOH/SOLB/BS(2000) 
C0MM0N/0LD/P0LD(2000),C0LD(2000) 
COMMON/OSMOT/AO,B0,CO 
COMMON/WALL/DLC,DLV.DLM.DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM, 
#SIGC,SIGV,SIGM,CDC,CDV,CDM 
COMMON/TISDAT/AK,DEFF,AL,AT,PHIA,PHIT,RET,SIGT 
COMMON/CAPDAT/PC,CC 
C0MM0N/MATBAL/qFC(40),qCC(40),qSC(40),qFV(40),qcv(40),qsv(40), 
#qFM(40),qCM(40),qSM(40) 

c 
DATA W/0.5555555555556D0,0.8888888888889D0,0.5555555555556D0/ 
DATA NGAUS,GAUS/3,-.774S96669241483D0,0.DO,.774596669241483D0/ 

C 
C CONSIDER THE VENULAR WALL, ELEMENT BY ELEMENT. 
C 

F=PHIA/PHIT 
DO 1 ITT=1,NEY 
IT=(NEX-1)*NEY+ITT 
IP=ITT+1 

C 
C ENTER LOOP FOR GAUSS qUADRATURE INTEGRATION. IDENTIFY T VARIABLE 
C 

DO 2 M=l,NGAUS 
C 

T=GAUS(M) 
C 
C DEFINE BASIS FUNCTIONS B(1)=B3, B(2)=B4, B(3)=B5, EVALUATED 
C AT (l.T) 
C 

B(1)=(T-1.D0)*T*.5D0 
B(3)=(T+1.D0)*T*.5D0 
B(2)=1.D0-T*T 

C 
INDEX(1)=NODEL(IT,3) 
INDEX(2)=NODEL(IT,4) 
INDEX(3)=NODEL(IT,5) 

C 
C CALCULATE C(S,T), PI(S,T) AND q(S,T) 
C 

CST=0.D0 
qST=O.DO 
DO 3 1=1,3 
CST=CST+COLD(INDEX(I))*B(I) 
qST=qST+POLD(INDEX(I))*B(I) 

3 CONTINUE 
PIST=CST*(AO+CST*(BO+CST+CO)) 
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QST=(QST-PDV-SIGV*(PIST-PIDV))*(AK*PC*DLV)/DEFF 
C 
C NOW CALCULATE THE CONVECTIVE FLUX OF PROTEIN, qCV, AND THE 
C FLUID FLUX, qFV, BOTH INTEGRATED OVER THE ELEMENTAL BOUNDARY 
C 

QFV(ITT)=qFV(ITT)+qST*DY(IP)*.5D0*W(M) 
qCV(ITT)=qCV(ITT)+qST*RET*F*CST*DY(IP)*.5D0*W(M) 

C 
2 CONTINUE 
1 CONTINUE 

RETURN 
END 

C 
SUBROUTINE MASSC(NEX.NEY) 

C 
C THIS SUBROUTINE CALCULATES THE PROTEIN FLUX ACROSS THE 
C CAPILLARY WALL, STORING THE INTEGRATED FLUX IN THE VECTOR 
C qsc(40). 
C 

IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION B(3),INDEX(3),GAUS(3),W(3) 
COMMON/BLK1/NODEL(600,8),XN0D(2000),YNOD(2000) 
C0MM0N/BLK2/DX(41),DY(41) 
COMMON/SOLMAT/AS(2lOOOO) 
C0MM0N/S0LB/BS(2000) 
C0MM0N/0LD/P0LD(2000),C0LD(2000) 
COMMON/OSMOT/AO,BO,CO 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM, 
#SIGC,SIGV,SIGM,CDC,CDV,CDM 
COMMON/TISDAT/AK,DEFF,AL,AT,PHIA,PHIT,RET,SIGT 
COMMON/CAPDAT/PC,CC 
COMMON/MATBAL/qFC(40),qCC(40),qSC(40),qFV(40),QCV(40),qSV(40), 
#qFM(40),qCM(40),qSM(40) 

c 
DATA W/0.5555555555556D0,0.8888888888889D0,0.55555555S5556D0/ 
DATA NGAUS,GAUS/3,-.774596669241483D0,0.D0,.774596669241483D0/ 

C 
C CONSIDER THE CAPILLARY WALL, ELEMENT BY ELEMENT. 
C 

DO 1 IT=1,NEY 
IP=IT+1 

C 
C ENTER LOOP FOR GAUSS QUADRATURE INTEGRATION. IDENTIFY T VARIABLE 
C 

DO 2 M=1,NGAUS 
C 

T=GAUS(M) 
C 
C DEFINE BASIS FUNCTIONS B(l)=Bl, B(2)=B7, B(3)=B8, EVALUATED 
C AT (-1.T) 
C 

B(1)=(T-1.D0)*T*.5D0 
B(2)=(T+l.DO)*T*.SD0 
B(3)=1.D0-T*T 

C 
INDEX(1)=NODEL(IT,1) 
INDEX(2)=NODEL(IT,7) 
INDEX(3)=NODEL(IT,8) 

C 
C CALCULATE C(S,T), PI(S,T) AND Q(S,T) 
C 

CST=O.DO 
qST=O.DO 
DO 3 1=1,3 
CST=CST+COLD(INDEX(I))*B(I) 
qST=QST+POLD(INDEX(I))*B(I) 

3 CONTINUE 
PIST=CST*(AO+CST*(BO+CST*CO)) 
qST=(qST-PDC-SIGC*(PIST-PIDC))*(AK*PC*DLC)/DEFF 



Appendix D. Program Listings 

PEC=QST*(1.DO-SIGC)/DDC 
C 
C CHECK TO SEE IF CONVECTION DOMINATES 
C 

IF(PEC.GT.170.D0)G0 TO 101 
IF(PEC.LT.-17O.D0)G0 TO 102 

C 
C CHECK TO SEE IF CONVECTIVE COMPONENT IS SIGNIFICANT 
C 

TEST=1.DO-DEXP(-PEC) 
IF(DABS(TEST).LT.1.D-10) GO TO .100 

C 
C CALCULATE THE INTEGRATED FLUX ALONG THE ELEMENTAL BOUNDARY 
C 

QSC(IT)=QSC(IT)+ 
#(1.DO-SIGC)*qST*(CST-CDC*DEXP(-PEC))/TEST*DY(IP)*W(M)*.5D0 
IND=1 
WRITE(6,600) IND,M,qST,PEC,IT,qSC(IT) 

600 FORMAT(IX,'CONDITION',12,IX,'M=',12,IX,'qST=',F14.7,IX,'PEC=', 
#F14.7,lX,,qSC(',I2,,)='.F14.7) 

C 
GO TO 2 

C 
C CASE WHERE CONVECTIVE TRANSPORT IS INSIGNIFICANT 
C 
100 QSC(IT)=qSC(IT)+DDC*(CST-CDC)*DY(IP)*.5D0*W(M) 

IND=2 
VRITE(6,600) IND,M,qST,PEC,IT,qSC(IT) 

C 
GO TO 2 

C 
101 QSC(IT)=QSC(IT)+(l.D0-SIGC)*qST*CST*DY(IP)*.5D0*W(M) 

IND=3 
VRITE(6,600) IND,M,qST,PEC,IT,qSC(IT) 

C 
GO TO 2 

C 
102 QSC(IT)=qSC(IT)+(1.DO-SIGC)*qST*CDC*DY(IP)*.5D0*W(M) 

IND=4 
WRITE(6,600) IND,M,qST,PEC,IT,QSC(IT) 

C 
2 CONTINUE 
1 CONTINUE 
C 

RETURN 
END 

C 
SUBROUTINE MASSV(NEX,NEY) 

C 
C THIS SUBROUTINE CALCULATES THE PROTEIN FLUX ACROSS THE 
C VENULAR WALL, STORING THE INTEGRATED FLUX IN THE VECTOR 
C QSV(40). 
C 

IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION B(3),INDEX(3),GAUS(3),W(3) 
C0MM0N/BLK1/N0DEL(600,8),XN0D(2000),YN0D(2000) 
C0MM0N/BLK2/DX(41),DY(41) 
COMMON/SOLMAT/AS(210000) 
COHMON/SOLB/BS(2000) 
C0MM0N/0LD/P0LD(2000),C0LD(2000) 
COMMON/OSMOT/AO,BO,CO 
COMHON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM, 
#SIGC ,SIGV,SIGM,CDC,CDV,CDM 
COMMON/TISDAT/AK,DEFF,AL,AT,PHIA,PHIT,RET,SIGT 
COMMON/CAPDAT/PC,CC 
COMMON/MATBAL/QFC(40),qCC(40),qSC(40),qFV(40),qCV(40),qSV(40), 
#0FM(40),qCM(40),QSM(40) 

DATA W/0.S555555555556D0,0.8888888888889D0,0.5555555555556D0/ 
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DATA NGAUS,GAUS/3,-.774596669241483D0,0.DO,.77459666924148300/ 
C 
C CONSIDER THE VENULAR WALL, ELEMENT BY ELEMENT. 
C 

DO 1 ITT=1,NEY 
IT=(NEX-1)*NEY+ITT 
IP=ITT+1 

C 
C ENTER LOOP FOR GAUSS QUADRATURE INTEGRATION. IDENTIFY T VARIABLE 
C 

DO 2 M=l,NGAUS 
C 

T=GAUS(M) 
C 
C DEFINE BASIS FUNCTIONS B(1)=B3, B(2)=B4, B(3)=B5, EVALUATED 
C AT (1,T) 
C 

B(1)=(T-1.D0)*T*.5D0 
B(3)=(T+1.D0)*T*.5D0 
B(2)=1.D0-T*T 

C 
INDEX(1)=NODEL(IT,3) 
INDEX(2)=NODEL(IT,4) 
INDEX(3)=NODEL(IT,5) 

C 
C CALCULATE C(S,T), PI(S.T) AND Q(S,T) 
C 

CST=0.D0 
QST=0.D0 ' 
DO 3 1=1,3 
CST=CST+COLD(INDEX(I))*B(I) 
QST=QST+POLD(INDEX(I))*B(I) 

3 CONTINUE 
PIST=CST*(AO+CST*(BO+CST*CO)) 
QST=(QST-PDV-SIGV*(PIST-PIDV))*(AK*PC*DLV)/DEFF 
PEC=QST*(1.DO-SIGV)/DDV 

C 
C CHECK TO SEE IF CONVECTION DOMINATES 
C 

IF(PEC.GT.170.D0)G0 TO 101 
IF(PEC.LT.-170.DO)GO TO 102 

C 
C CHECK TO SEE IF CONVECTIVE COMPONENT IS SIGNIFICANT 
C 

TEST=1.DO-DEXP(-PEC) 
IF(DABS(TEST).LT.l.D-10) GO TO 100 

C 
C CALCULATE THE INTEGRATED FLUX ALONG THE ELEMENTAL BOUNDARY 
C 

QSV(ITT)=QSV(ITT)+ 
#(1.D0-SIGV)*QST*(CST-CDV*DEXP(-PEC))/TEST*DY(IP)*.5D0*W(M) 
IND=1 
WRITE(6,600) IND,M,QST,PEC,ITT,QSV(ITT) 

600 FORMAT(IX,'CONDITION ',12,IX,'M=',12,IX,'qST=',F14.7,IX,'PEC=', 
#F14.7,1X,'QSV(',12,')='.F14.7) 

C 
GO TO 2 

C 
C CASE WHERE CONVECTIVE TRANSPORT IS INSIGNIFICANT 
C 
100 QSV (ITT)=QSV(ITT)+DDV*(CST-CDV)*DY(IP)*.5D0*W(M) 

IND=2 
WRITE(6,600) IND, M,QST,PEC,ITT,QSV(ITT) 

C 
GO TO 2 

C 
101 QSV(ITT)=QSV(ITT)+(1.D0-SIGV)*QST*CST*DY(IP)*.5D0*W(M) 

IND"=3 
WRITE(6,600) IND,M,QST,PEC,ITT,QSV(ITT) 
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GO TO 2 
C 
102 qSV(ITT)=QSV(ITT)+(l.D0-SIGV)*qST*CDV*DY(IP)*.5D0*W(M) 

IND=4 
WRITE(6,600) IMD,MtqST,PEC,ITT,qSV(ITT) C 

2 CONTINUE 
1 CONTINUE 
C 

RETURN 
END 

C 

SUBROUTINE MASSM(NEX,NEY) 
C 
C THIS SUBROUTINE CALCULATES THE PROTEIN FLUX ACROSS TEE 
C MESOTHELIAL WALL, STORING THE INTEGRATED FLUX IN THE VECTOR 
C qSM(40). 
C 

IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION B(3).INDEX(3),GAUS(3),W(3) 
C0MM0N/BLK1/N0DEL(600,8),XN0D(2000),YB0D(2O0O) 
C0MM0N/BLK2/DX(41),DY(4l) 
COMMON/SOLMAT/AS(210000) 
C0MM0N/S0LB/BS(2000) 
C0MM0N/0LD/P0LD(2000),C0LD(2000) 
COMMON/OSMOT/AO,BO,CO 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDH,PIDC,PIDV,PIDM, 
#SIGC,SIGV,SIGM,CDC,CDV,CDM 
COMMON/TISDAT/AK,DEFF,AL,AT,PHIA,PHIT,RET,SIGT 
COMMON/CAPDAT/PC,CC 
COMMON/MATBAL/qFC(40),qCC(40),qSC(40),qFV(40),qCV(40),QSV(40), 
#QFM(40),qCM(40),QSM(40) 

c 
DATA W/0.5555555555556D0,0.8888888888889D0,0.555555555SS56D0/ 
DATA NGAUS,GAUS/3,-.774596669241483D0,0.D0,.774596669241483D0/ 

C 
C CONSIDER THE VENULAR WALL, ELEMENT BY ELEMENT. 
C 

DO 1 ITT=1,NEX 
IT=NEY*ITT 
IP=ITT+1 

C 
C ENTER LOOP FOR GAUSS qUADRATURE INTEGRATION. IDENTTFT S VARIABLE 
C 

DO 2 M=1,NGAUS 
C 

S=GAUS(M) 
C 
C DEFINE BASIS FUNCTIONS B(1)=B5, B(2)=B6, B(3)=B7, EVALUATED 
C AT (S,l) 
C 

B(3)=(S-1.D0)*S*.5D0 
B(1)=(S+1.D0)*S*.5D0 
B(2)=1.D0-S*S 

C 
INDEX(1)=N0DEL(IT,5) 
INDEX(2)=NODEL(IT,6) 
INDEX(3)=NODEL(IT,7) 

C 
C CALCULATE C(S,T), PI(S.T) AND q(S,T) 
C 

CST=0.D0 
qST=O.DO 
DO 3 1=1,3 
CST=CST+COLD(INDEX(I))*B(I) 
qST=qST+POLD(INDEX(I))*B(I) 

3 CONTINUE 
PIST=CST*(AO+CST*(BO+CST+CO)) 
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QST=(qST-PDM-SIGM*(PIST-PIDM))*(AK*PC*DLM)/DEFF 
PEC=QST*(1.DO-SIGH)/DDM 

C 
C CHECK TO SEE IF CONVECTION DOMINATES 
C 

IF(PEC.GT.170.D0)G0 TO 101 
IF(PEC.LT.-170.D0)G0 TO 102 

C 
C CHECK TO SEE IF CONVECTIVE COMPONENT IS SIGNIFICANT 
C 

TEST=1.DO-DEXP(-PEC) 
IF(DABSCTEST).LT.l.D-10) GO TO 100 

C 
C CALCULATE THE INTEGRATED FLUX ALONG THE ELEMENTAL BOUNDARY 
C 

qSM(ITT)=qSM(ITT)+ 
#(1.DO-SIGM)*qST*(CST-CDM*DEXP(-PEC))/TEST*DX(IP)*W(M)*.5D0 

C 
GO TO 2 

C 
C CASE WHERE CONVECTIVE TRANSPORT IS INSIGNIFICANT 
C 
100 qSM(ITT)=QSM(ITT)+DDM*(CST-CDV)*DX(IP)*.5D0*W(M) 
C 

GO TO 2 
C 
101 qSM(ITT)=qSM(ITT)+(l.D0-SIGM)*qST*CST*DX(IP)*W(M)*.5D0 
C 

GO TO 2 
C 
102 qSM(ITT)=qSM(ITT)+(l.D0-SIGM)*qST*CDM*DX(IP)*.5D0*W(M) 
C 
2 CONTINUE 
1 CONTINUE 

C 
RETURN 
END 

SUBROUTINE FLUX(NEX,NEY) 
C 
C THIS SUBROUTINE CALCULATES THE FLUID FLUXES AND CONVECTIVE 
C AS WELL AS DISPERSIVE PROTEIN FLUXES IN EACH ELEMENT, 
C STORING THEM IN VECTORS FFLUX(NEL,2), CFLUX(NEL,2) AND 
C DFLUX(NEL,2), RESPECTIVELY. THE (X.Y) COORDINATES CORRESPONDING 
C TO THESE FLUXES ARE STORED IN EL0C(NEL,2). NOTE THAT THE FLUXES 
C ARE CALCULATED AT THE MIDPOINT OF EACH ISOPARAMETRIC ELEMENT 
C (THAT IS, AT (S,T) = (0,0)). 
C 

IMPLICIT REAL*8(A-H,0-Z) 
C0MM0N/BLK1/N0DEL(600,8),XN0D(2000),YN0D(2000) 
COMMON/TISDAT/AK,DEFF,AL,AT,PHIA,PHIT,RET,SIGT 
COMMON/OSMOT/AO,B0,CO 
COMMON/CAPDAT/PC,CC 
C0MM0N/0LD/P0LD(2000),C0LD(2000) 
C0MM0N/FLUXES/FFLUX(600,2),CFLUX(600,2),DFLUX(600,2), 
#EL0C(600,2) 
DIMENSION GAUS(4),W(4),B(8),DBS(8),DBT(8),DBX(8),DBY(8), 
#AJAC(2,2),AJACIN(2,2) 

C 
DATA NGAUS/4/ 
DATA W/.34785484S1374S4D0,.652145154862546D0, 
#.652145154862546D0,.347854845137454D0/ 
DATA GAUS/-.861136311594053D0,-.339981043584856D0, 
#.33998104358485600,.861136311594053D0/ 

C DATA NGAUS/3/ 
C DATA W/0.5555555555556D0,0.8888888888889D0,0.5555555555556D0/ 
C DATA GAUS/-0.77459666924148300,0.DO,0.774596669241483D0/ 
C 
C DATA NGAUS/2/ 
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C DATA W/1.0D0,1.0D0,0.D0/ 
C DATA GAUS/-0.577350269189626D0.0.577350269189626D0.0.D0/ C 
C CARRY OUT THE EVALUATION ELEMENT BY ELEMENT. FLUXES ARE 
C EVALUATED AT (S,T)=(0,0). 
C 

NEL=NEX*NEY 
F=PHIA/PHIT 

C 
C DEFINE THE BASIS FUNCTIONS AND THEIR S AND T DERIVATIVES, 
C EVALUATED AT THE QUADRATURE POINT (0,0) 
C 

S=0.DO 
T=O.DO 

C 
B(1)=(S-1.D0)*(1.D0-T)*(1.D0+S+T)*.25D0 
B(2)=(1.D0-S*S)*(1.D0-T)*.5D0 
B(3)=(1.D0+S)*(T-1.D0)*(1.D0-S+T)*.25D0 
B(4)=(1.D0-T*T)*(1.D0+S)*.5D0 
B(5)=(1.D0+S)*(1.D0+T)*(T+S-1.D0)*.25D0 
B(6)=(l.DO-S*S)*(l.DO+T)*.5D0 
B(7)=(S-1.DO)*(1.DO+T)*(1.DO+S-T)*.25D0 
B(8)=(1.D0-T*T)*(1-D0-S)*.5D0 
DBS(1)=(1.D0-T)*(T+2.D0*S)*.2SD0 
DBT(1) = (1.DO-S)*(S+2.DO*T)*.25D0 
DBS(2)=S*(T-1.D0) 
DBT(2)=(S*S-1.D0)*.5D0 
DBS(3)=(l.D0-T)*(2.D0*S-T)*.25D0 
DBT(3)=(1.D0+S)*(2.D0*T-S)*.25D0 
DBS(4)=(l.DO-T*T)*.5D0 
DBT(4)=-T*(1.D0+S) 
DBS(S)=(1.D0+T)*(2.D0*S+T)*.25 
DBT(5)=(1.D0+S)*(2.D0*T+S)*.2S 
DBS(e)=-S*(l.DO+T) 
DBT(6)=(1.D0-S*S)*.5D0 
DBS(7)=(l.D0+T)*(2.D0*S-T)*.25D0 
DBT(7)=(l.DO-S)*(2.DO*T-S)*.25D0 
DBS(8)=(T*T-1.D0)*.5D0 
DBT(8)=T*(S-1.D0) 

C 
C NOW CONSIDER EACH ELEMENT ONE BY ONE 
C 

DO 100 IT=1,NEL 
C 
C WE NOW CALCULATE THE JACOBIAN MATRIX, AJAC, ITS DETERMINANT, 
C DETJ, AND ITS INVERSE AJACIN. 
C 
C 

AJAC(1,1)=0.D0 
AJAC(2,1)=0.D0 
AJAC(1,2)=0.D0 
AJAC(2,2)=O.D0 

C 
DO 3 JAK=1,8 
AJAC(1,1)=AJAC(1,1)+DBS(JAK)*XNOD(NODEL(IT,JAK)) 
AJAC(1,2)=AJAC(1,2)+DBS(JAK)*YNOD(NODEL(IT,JAK)) 
AJAC(2,1)=AJAC(2,1)+DBT(JAK)*XNOD(NODEL(IT,JAK)) 
AJAC(2,2)=AJAC(2,2)+DBT(JAK)*YN0D(NDDEL(IT,JAK)) 

3 CONTINUE 
C 

DETJ=AJAC(1,1)*AJAC(2,2)-AJAC(1,2)*AJAC(2,1) 
C 

AJACIN(1,1)=AJAC(2,2)/DETJ 
AJACIN(1,2)=-AJAC(1,2)/DETJ 
AJACIN(2,1)=-AJAC(2,1)/DETJ 
AJACIN(2,2)=AJAC(1,1)/DETJ 

C 
C WE CAN NOW CALCULATE D(B(I))/DX AND D(B(I))/DY, EVALUATED AT 
C (X(S,T),Y(S,T)), USING JACIN 
C 
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DO 4 1=1,8 
DBX(I)=DBS(I)*AJACIN(1,1)+DBT(I)*AJACIN(1,2) 
DBY(I)=DBS(I)*AJACIN(2,1)+DBT(I)*AJACTN(2,2) 

4 CONTINUE 
C 
C WE NOW HAVE SUFFICIENT INFORMATION TO DETERMINE qX,QY,C,DC/DX, 
C DC/DY, AND THE LOCATION IN (X,Y) -COORDINATES, ALL CORRESPONDING 
C TO VALUES AT (S,T)=(0,0) 
C 

CST=O.DO 
DPX=O.DO 
DPY=O.DO 
DCX=O.DO 
DCY=O.DO 
XEL=O.DO 
YEL=O.DO 

C 
DO 5 J=l,8 
DPX=POLD(NODEL(IT,J))*DBX(J)+DPX 
DPY=POLD(NODEL(IT,J))*DBY(J)+DPY 
DCX=COLD(NODEL(IT,J))*DBX(J)+DCX 
DCY=COLD(NODEL(IT,J))*DBY(J)+DCY 
CST=COLD(NODEL(IT,J))*B(J)+CST 
XEL=XEL+XNOD(NODEL(IT,J))*B(J) 
YEL=YEL+YNOD(NODEL(IT, J ) ) *B ( J ) 

5 CONTINUE 
C 

DPIX=DCX*(A0+CST*(2.D0*B0+3.D0*C0*CST))*SIGT 
DPIY=DCY*(AO+CST*(2.D0*B0+3.DO*CO*CST))*SIGT 

C 
FFLUX(IT,1)=-AK*PC/(DEFF)*(DPX-DPIX) 
FFLUX(IT,2)=-AK*PC/(DEFF)*(DPY-DPIY) 
ELOC(IT,l)=XEL 
EL0C(IT,2)=YEL 

C 
QXST=FFLUX(IT,1)*F*RET 
QYST=FFLUX(IT,2)*F*RET 

C 
C NOW CALCULATE THE DISPERSION COEFFICIENTS DXX.DXY.DYY, WHERE 
C DXX=(AL*QX**2/qMAG+AT*QY**2/QMAG)+PHIA, ETC 
C 

qMAG=DSQRT(qXST*QXST+qYST*qYST) 
C 
C CHECK TO SEE IF QMAG IS NONZERO 
C 

IF(QMAG.GT.l.D-10)GO TO 500 
DXX=PHIA 
DXY=O.DO 
DYY=PHIA 
GO TO 600 

C 
500 DXX=(AL*qXST*QXST+AT*qYST*qYST)/qMAG+PHIA 

DXY=(AL-AT)*qXST*QYST/qMAG 
DYY=(AL*qYST*qYST+AT*qXST*qXST)/qMAG+PHIA 

C 
600 DFLUX(IT,1)=-(DXX*DCX+DXY*DCY) 

DFLUX(IT,2)=-(DXY*DCX+DYY*DCY) 
CFLUX(IT,1)=qXST*CST 
CFLUX (IT, 2 ) =qYST*CST 

C 
100 CONTINUE 

RETURN 
END 

C 
SUBROUTINE DGBND1 (A, B, N, ML, NU, LT, IP, DET, NCN1, 
1 BB, RZ, ITR1, EPS1) 

C 
C ROUTINE SOLVES SYSTEM OF LINEAR EQNS. AX=B WHERE A IS A GENERAL 
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C BAND MATRIX. METHOD USED IS GAUSSIAN ELIMINATION WITH PARTIAL 
C PIVOTING. OPTION OF ITERATIVELY IMPROVING SOLUTION IS AVAILABLE. 
C UPPER BAND WIDTH OF MATRIX INCREASES DUE TO INTERCHANGES BY 
C AMOUNT ML. ROUTINE REQUIRES BAND ELEMENTS OF MATRIX TO BE STORED 
C BY COLUMN IN A ONE DIMENSIONAL ARRAY. EACH COLUMN IS OF LENGTH 
C 2+ML+NU AND BAND IS TO BE STORED IN ELEMENTS ML+1 TO 2*ML+NU OF 
C EACH COLUMN. ELEMENTS 1 TO ML OF COLUMN ARE SET TO ZERO BY GBAND. 
C IF MATRIX IS SYMMETRIC USER MAY SPECIFY LOWER BAND ONLY IN 
C ELEMENTS ML+NU+1 TO 2*ML+NU OF EACH COLUMN AND GBAND WILL 
C GENERATE REMAINING ELEMENTS. (IF THIS IS DESIRED, SET LT=-1 ON 
C FIRST CALL TO GBAND.) 
C A = 1 DIMENSIONAL ARRAY CONTAINING MATRIX OF COEFFICIENTS. 
C B = 1 DIMENSIONAL ARRAY CONTAINING RIGHT HAND SIDE VECTORS. 
C ON EXIT, B WILL CONTAIN THE SOLUTION VECTOR X. 
C N = ORDER OF MATRIX 
C ML = LENGTH OF LOWER BAND (EXCLUDING DIAGONAL) 
C NU = LENGTH OF UPPER BAND (EXCLUDING DIAGONAL) 
C LT = ABS(LT)=1 IF ONLY 1 B VECTOR OR IF 1ST OF SEVERAL. 
C ABS(LT),=1 FOR SUBSEQUENT B VECTORS. 
C (NOTE. LT=+1 IF FULL BAND WIDTH GIVEN, LT=-1 IF LOWER BAND 
C ONLY OF SYMMETRIC MATRIX GIVEN.) 
C IP = INTEGER ARRAY CONTAINING INTERCHANGE INFORMATION. 
C DET = DETERMINANT OF A = DET*(10**NCN) WHERE 1.D-15<|DET|<1.D+15. 
C IF DET=0.0 MATRIX IS SINGULAR AND ERROR RETURN TAKEN. 
C BB, RZ = ARRAYS REQUIRED FOR IMPROVEMENT OPTION. CAN BE REAL*8 
C VARIABLES IF OPTION NOT REQUIRED. 
C ITER = 0 IF IMPROVEMENT NOT REQUIRED, OTHERWISE ITER= NO. OF 
C ITERATIONS OR CYCLES. 
C EPS - CONVERGENCE CRITERION. 
C 
C MODIFIED TO DO ITERATIVE IMPROVEMENT (FORMERLY AVAILABLE ONLY 
C WITH THE SINGLE PRECISION VERSION). MIKE PATTERSON - NOV, 1980 

IMPLICIT REAL*8 (A-H, 0-Z) 
COMMON /GBAND$/ NITER 
DIMENSION A(l), B(N), IP(N), BB(N), RZ(N) 
COMPLEX*16 DSUMM, QADDQ, QMULD 
REAL*8 QRNDQ 

C TO ASSIGN LOGICAL UNITS 94 AND 95 ONLY ONCE: 
LOGICAL ASSIGN /F/, YES /T/ 

C STATEMENT FUNCTION TO CALCULATE POINTERS INTO A: 
IFN(I, J) = 1 + (J - 1)*LC + I - J + NUM 

C 
C 

NCN=NCN1 
ITR=ITR1 
EPS=EPS1 
ITER = ITR 

C 
LCM = NU + 2*ML 
LC = LCM + 1 
NLC = N*LC 
NUM = NU + ML 

C GENERATE REMAINING ELEMENTS OF SYMMETRIC MATRIX 
IF (LT .NE. -1) GO TO 120 
NN = N - 1 
DO 110 I = 1, NN 

IFI = IFN(I, I) 
IFJ = IFI 
II = I + 1 
IML = MINO(I + ML, N) 
DO 100 J = II, I ML 

IFI = IFI + 1 
IFJ = IFJ + LCM 

100 A(IFJ) = A(IFI) 
110 CONTINUE 
120 IF (ITER .EQ. 0) GO TO 140 
C ASSIGN UNITS 94 AND 95 IF THEY HAVE NOT ALREADY BEEN ASSIGNED: 

IF (ASSIGN) GO TO 125 
CALL FTNCMD ('ASSIGN 94=-GBAND94;') 
CALL FTNCMD ('ASSIGN 95=-GBAND95;') 
ASSIGN = YES 
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125 REWIND 94 
REWIND 95 
DO 130 I = 1, N 

130 BB(I) = B(I) 
140 IF (IABS(LT) .NE. 1) GO TO 280 

IP(N) = 1 
IF (ML .Eq. 0) GO TO 160 

C SET ELEMENTS 1 - ML OF EACH COLUMN TO ZERO 
DO 150 I = 1, N 

IFK = (I - 1)*LC 
DO 150 J = 1, ML 

IFK = IFK + 1 
150 A(IFK) = O.ODO 
160 IF (ITER .NE. 0) CALL DWR1 (A, NLC, 94) 

DET = O.ODO 
NCN = 0 
IF (ML .Eq. 0) GO TO 230 

C LU DECOMPOSITION 
DO 220 K = 1, N 

IFK = IFN(K, K) 
IF (K .Eq. N) GO TO 210 
KP = K + 1 
KPM = MIN0(K + ML, N) 
KPN = MINO(K + NUM. N) 
M = K 
IFM = IFK 
IFI = IFK 
DO 170 I = KP, KPM 

IFI = IFI + 1 
IF (DABS(A(IFI)) .LE. DABS(A(IFM))) GO TO 170 
M = I 
IFM = IFI 

170 CONTINUE 
IP(K) = M 
T = A (IFM) 
IF (M .NE. K) IP(N) = -IP(N) 
A(IFM) = A(IFK) 
A(IFK) = T 
IF (T .Eq. O.ODO) GO TO 260 
OT = l.ODO/T 
IK = IFK 
DO 180 I = KP, KPM 

IK = IK + 1 
180 A(IK) = -A(IK)*OT 

KJ = IFK 
MJ = IFM 
DO 200 J = KP, KPN 

KJ = KJ + LCM 
MJ = MJ + LCM 
T = A(MJ) 
A(MJ) = A(KJ) 
A(KJ) = T 
IF (T .Eq. O.ODO) GO TO 200 
IK = IFK 
IJ = KJ 
DO 190 I = KP, KPM 

IK = IK + 1 
IJ = IJ + 1 

190 A(IJ) = A(IJ) + A(IK)*T 
200 CONTINUE 
210 IF (A(IFK) .EQ. O.ODO) GO TO 260 
220 CONTINUE 
230 IFK = IFN(1, 1) 

DET = A(IFK) 
DO 250 K = 2, N 

IFK = IFK + LC 
DET = DET*A(IFK) 
IF (DET .Eq. O.ODO) GO TO 260 
IF (DABS(DET) .GT. l.D-15) GO TO 240 
DET = DET+l.D+15 
NCN = NCN - 15 
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GO TO 250 
240 IF (DABS(DET) .LT. l.D+15) GO TO 250 

DET = DET+l.D-15 
NCN = NCN + 15 

250 CONTINUE 
DET = DET*IP(N) 
GO TO 280 

260 DET = O.ODO 
WRITE (6, 270) K 

270 FORMAT ('0* DGBND1 - matrix is singular. '/ 
1 ' Error occurred in attempt to find', 15, 'th pivot.') 
RETURN 

280 CALL DS0LV1 (A, B, IP, N, ML, NU) 
IF (ITER .EQ. 0) RETURN 

C 
C ITERATIVE IMPROVEMENT 
C RESIDUALS (R) = AX-B ARE FOUND AND STORED IN ARRAY RZ USING 
C EXTENDED PRECISION ARITHMETIC. SYSTEM AZ=R IS SOLVED AND NEW 
C SOLUTION =X+Z IS STORED IN ARRAY B. ABOVE STEPS REPEATED UNTIL 
C (1) MAX(Z)/MAX(X) < EPS OR 
C (2) NO. OF CYCLES > ITER OR 
C (3) IMPROVEMENT STARTS TO DIVERGE. 
C ROUTINE THEN RETURNS AFTER SETTING EPS=MAX(Z) (FOR (1)) OR 
C SETTING EPS=-MAX(Z) AND PRINTING APPROPRIATE ERROR MESSAGE (FOR 
C (2) AND (3)) 
C 
C 

IF (IABS(LT) .EQ. 1) CALL DWR1 (A, NLC, 95) 
XNORM = O.ODO 
DO 290 K = 1, N 

290 XNORM = DMAX1(XNORM, DABS(B(K))) 
IF (XNORM .LE. O.ODO) RETURN 
ZX = l.D+60 
LD = 0 
DO 340 L = 1, ITER 
REWIND 94 
CALL DRE1 (A, NLC, 94) 
DO 310 K = 1, N 
DSUMM = (O.DO, O.DO) 
KPM = MAXO(K - ML, 1) 
KPN = MINO(K + NU, N) 
IFK = IFN(K, KPM) 
DO 300 J = KPM, KPN 

C DSUMM = DSUMM + A(IFK)*B(J) 
C USING EXTENDED PRECISION: 

DSUMM = QADDQ(DSUMM, QMULD(A(IFK), B(J))) 
300 IFK = IFK + LCM 

RZ(K) = BB(K) - QRNDQ(DSUMM) 
310 CONTINUE 

REWIND 95 
CALL DRE1 (A, NLC, 95) 
CALL DS0LV1 (A, RZ, IP, N, ML, NU) 
ZNORM = O.ODO 
DO 320 K = 1, N 
ERZ — RZ(K) 
ZNORM = DMAX1(ZNORM, DABS(ERZ)) 

320 B(K) = B(K) + ERZ 
IF (ZNORM .GT. ZX) GO TO 330 
IF ((ZNORM - EPS*XNORM) .LT. O.ODO) GO TO 390 
ZX = ZNORM 
GO TO 340 

330 IF (ZNORM .GT. 10.0D0*ZX) GO TO 360 
LD = LD + 1 
IF (LD .GE. 3) GO TO 360 

340 CONTINUE 
L = ITER 
WRITE (6, 350) 

350 FORMAT ('0* DGBND1- Iterative improvement did not converge'/) 
GO TO 380 
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360 WRITE (6, 370) 
370 FORMAT ('0* DGBND1 - Iterative improvement is diverging.'/) 
380 EPS = -ZNORM 

NITER = L 
RETURN 

390 EPS = ZNORM 
NITER = L 
RETURN 
END 
SUBROUTINE DS0LV1 (A, B, IP, N, ML, NU) 

C 
C THIS ROUTINE COMPUTES THE SOLUTION OF A SYSTEM AFTER GBAND HAS 
C DECOMPOSED MATRIX A INTO A LOWER TRIANGULAR MATRIX L AND AN 
C UPPER TRIANGULAR MATRIX U. 
C 

IMPLICIT REAL*8 (A-H, 0-Z) 
DIMENSION A(l), B(N), IP(N) 
IFN(I, J) = 1 + (J - 1)*LC + I - J + NUM 
LCM = 2*ML + NU 
LC = LCM + 1 
NUM = NU + ML 
MN = N - 1 

C SOLVE FOR Y 
IF (ML .EQ. 0) GO TO 110 
DO 100 K = 1, MN 
KP = K + 1 
M = IP(K) 
T = B(M) 
B(M) = B(K) 
B(K) = T 
KPM = MIN0(K + ML, N) 
IFK = IFN(K, K) 
DO 100 I = KP, KPM 

IFK = IFK + 1 
100 B(I) = B(I) + A(IFK)*T 
C SOLVE FOR X 
110 IFK = IFN(N, N) 

DO 120 KB = 1, MN 
KM = N - KB 
K = KM + 1 
B(K) = B(K)/A(IFK) 
IFK = IFK - LC 
T = -B(K) 
KMN = MAX0(1, K - ML - NU) 
KML = I FN (KMN, K) 
DO 120 I = KMN, KM 

B(I) = B(I) + A(KML)*T 
120 KML = KML + 1 

B(l) = B(1)/A(NUM + 1) 
RETURN 
END 
SUBROUTINE DWR1 (A, N, LU) 
REAL*8 A(N) 
WRITE (LU) A 
RETURN 
END 
SUBROUTINE DRE1 (A, N, LU) 
REAL*8 A(N) 
READ (LU) A 
RETURN . 
END 

D.3 One-Dimensional Simulator: MESDISP.FOR 
C 
C THIS PROGRAM SIMULATES BOTH CONVECTIVE AND DISPERSIVE PLASMA 
C PROTEIN TRANSPORT THROUGH MESENTERY DURING STEADY-STATE 
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C CONDITIONS. THE MESENTERY IS TREATED AS A 1-DIMENSIONAL 
C RECTANGULAR SLAB. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION HOLD(lOOl).IPERM(lOOl),RES(1001).HOLDS(IOOO), 
#RESS(1001),IPERMS(1001) 
COMMON/BLK1/NODEL(500,3),XNOD(1001) 
C0MM0N/BLK2/DX(1001) 
COMMON/HATBAL/QFC,OCC,OSC,qFV,QCV,QSV,QFM,QCM,QSM,QFM1(500), 
# QCMK500) ,QSM1(500) 
C0MM0N/FLUMAT/FLUID(20000) 
COMMON/OLD/POLD(1001).COLD(lOOl) 
COMMON/SOLB/SOLUTB(1001) 
COMMON/FLUB/FLUIDB(1001) 
COMMON/SOLMAT/SOLUTE(20000) 
COMMON/OSMOT/AOSM,BOSM,COSM 
COMMON/TISDAT/AK,DEFF,ALPHL,PHIA,PHIT,RET,SIGT,BETA 
COMMON/CAPDAT/PC,CC 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM, 
#SIGC,SIGV,SIGM,CDC,CDV,CDM,YYL 
COMMON/MAXDAT/DISPMX,IDISP 

C 
C SET MARKER AND TOLERANCE VALUES 
C 

READ(5,504)OMEGAF,OMEGAC,TOLP,TOLC,PECMAX,EPS 
READ(5,550)IMAX,ITER,NECHO,N 

550 F0RMAT(4I3) 
NEX=(N-l)/2 
LUB=2 
ICOUNT=0 

C 
C READ IN THE DATA FROM EXTERNAL FILE 
C 

DO 1 1=1,N 
READ(5,501) DX(I) 

501 F0RMAT(E12.6) 
1 CONTINUE 
C , 
C 

READ(5,502) AOSM,BOSM,COSM,AK,PC,PHIA,PHIT, RET,PHIS 
READ(S,507) ALPHL,AL,DEFF,SIGT,CC,YYL,BETA 
READ(5,504) CONC,CONV,CONM,PERMC,PERMV,PERMM 
READ(5,504) DDC,DDV,DDM,SIGC,SIGV,SIGM 
READ(5,504) CDC,CDV,CDM,DLC,DLV,DLM 
READ(5,506) PDC.PDV.PDM 
READ(5,S06) A0S1,B0S1,C0S1 
YL=YYL*AL 
PIDC=CDC*(A0S1+CDC*(B0S1+CDC+C0S1)) 
PIDV=CDV*CA0S1+CDV*(B0S1+CDV*C0S1)5 
PIDM=CDM*(AOS1+CDM*(BOS1+CDM*C0S1)) 
PV=PDV*PC 
PM=PDM*PC 
CV=CDV*CC 
CM=CDM*CC 

507 FORMAT(7E10.4) 
502 FORMAT(9E10.4) 
503 F0RMAT(5E10.4) 
504 F0RMAT(6E10.4) 
506 F0RMAT(3E10.4) 

DO 21 1=1,N 
READ(5,505) POLD(I),COLD(I) 

505 F0RMAT(2E10.4) 
21 CONTINUE 
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C 
C 
C 
C 
C 

ECHO DATA IF NECHO N.E. 0 
IF(NECHO.EQ.O) GO TO 999 
PRINT OUT INPUT DATA 
WRITE(6,611) 

611 FORMAT(IX,'STEADY-STATE FLUID PRESSURE AND SOLUTE CONCENTRATION' 
#) 
WRITE(6,667) 

667 FORMAT(IX,'PROFILES FOR ONE DIMENSIONAL TISSUE SYSTEM',//) 
WRITE(6,612) 
WRITE(6,612) 

612 FORMAT(//,IX,' ' 
#,//) 
WRITE(6,660) 

660 FORMAT(IX,'INPUT PARAMETERS') 
WRITE(6,612) 
WRITE(6,613) 

613 F0RMAT(1X,'1. GRID DATA:',//) 
WRITE(6,614)NEX,DX(2) 

614 FORMAT(IX,'NUMBER OF ELEMENTS:',IX,12,/.IX, 
#'SMALLEST X INCREMENT:'.19X.E10.4,/) 
WRITE(6,616)N 

616 FORMAT(IX,'TOTAL NUMBER OF NODES:',10X,14,/) 
WRITE (6,612) 
WRITE(6,617) TOLP,TOLC,IMAX,OMEGAF,OMEGAC,PECKAX 

617 F0RMAT(1X,'2. CONVERGENCE CRITERIA:',//,IX,'PRESSURE TOLERANCE:' 
#,17X,E10.4,/,1X,'SOLUTE TOLERANCE:',20X,E10.4,/,1X, 
#'MAXIMUM NUMBER OF LOOP ITERATIONS:',2X,I3,/,IX, 
#'PRESSURE RELAXATION PARAMETER:'.6X.E10.4,/,IX, 
#'SOLUTE RELAXATION PARAMETER:',9X,E10.4,/,IX, 
#'MAXIMUM DESIRED GRID PECLET NUMBER:',1X.E10.4) 
WRITE(6,612) 
PIC=PIDC*PC 
PIV=PIDV*PC 
PIM=PIDM*PC 

AL,YL,CC,CV,CM,PC,PV,PH,PIC,PIV,PIK,AK,DEFF 
DIMENSIONAL INPUT PARAMETERS:',//,IX, 

(CM):',21X,E10.4,/,1X, 
(CM):',21X,E10.4,/,17., 

WRITE(6,618) 
'618 F0RMAT(1X,'3 

#'TISSUE X-DIMENSION 
#'TISSUE Y-DIMENSION 
#'CAP. PROTEIN CONC. 

PROTEIN CONC. 
PROTEIN CONC. 
DYN. PRESSURE (DYN/CM**2) 
DYN. PRESSURE (DYN/CM**2) 
DYN. PRESSURE 
OSM. PRESSURE 
OSM. PRESSURE 
OSM. PRESSURE 

#'VEN. 
#'MES. 
#'CAP. 
#'VEN. 
#'MES. 
#'CAP. 
#'VEN. 
#'MES. 

(GRAMS/DL) 
(GRAMS/DL) 
(GRAMS/DL) 

,14X,E10.4,/,iX, 
,14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 

(DYN/CM**2): 
(DYN/CM**2); 
(DYN/CM**2): 
(DYN/CM**2): 

#'TISSUE FLUID CONDUCTIVITY (CM**4/(DYN-SEC):',2X,E10.4,/,IX, 
#'TISSUE SOLUTE DIFFUSIVITY (CM**2/SEC):'.7X.E10.4) 
WRITE(6,626) CONC,CONV,CONM,PERMC,PERMV,PERMM 

626 FORMAT(IX,'CAP. CONDUCTIVITY (CM**3/(DYE-S));',11X,E10.4,/,IX, 
#'VEN. CONDUCTIVITY (CM**3/(DYN-S)):',11X,E10.4,/,IX, 

(CM**3/(DYN-S)) :' ,117.,E10.4,/,1X, #'MES. CONDUCTIVITY 
#'CAP. PERMEABILITY (CM/S) 
#'VEN. PERMEABILITY (CM/S) 
#'MES. PERMEABILITY (CM/S) 
WRITE(6,612) 
WRITE(6,653) SIGT,RET,BETA,ALPHL 

653 F0RMAT(1X,'DIMENSIONLESS INPUT PARAMETERS:',//,IX, 
#'TISSUE REFLECTION COEFFICIENT:',15X,E10.4,/, 

,21X,E10.4,/,1X, 
',21X,E10.4,/,1X, 
'.21X.E10.4) 
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#1X,'RETARDATION FACTOR:',26X,E10.4,/,1X, 
#'HYDRAULIC CONDUCTIVITY RATIO, BETA:',15X,E10.4,/,1X, 
#'DIMENSIONLESS DISPERSIVITY:'.21X.E10.4) 
WRITE(6,619)PDC,PIDC,PDV,PIDV,PDM,PIDM 

619 F0RMAT(//,1X, 
#'PRESSURE:',6X,'DYNAMIC,5X,'OSMOTIC,//,IX,'CAPILLARY:',5X, 
#E10.4, 
#2X,E10.4,/,1X,'VENULE:',8X.E10.4,2X.E10.4,/.IX,'MESOTHELIUM:', 
#3X,E10.4,2X,E10.4,//) 
WRITE(6,620)CDC,CDV,CDM 

620 FORMAT(IX,'CONCENTRATIONS:',//,IX,'CAPILLARY:',5X,E10.4,/,IX, 
#'VENULE:',9X,E10.4,/,1X,'MESOTHELIUM:',1X,E10.4,//) 
WRITE(6,621)SIGC,SIGV,SIGM 

621 FORMAT(IX,'REFLECTION COEFFICIENTS:',//,IX,'CAPILLARY:',5X, 
#E10.4,/.IX,'VENULE:'.9X.E10.4,/,IX,'MESOTHELIUM:'.1X.E10.4,//) 
WRITE(6,622)DLC,DLV,DLM 

622 FORMAT(IX,'VESSEL FLUID CONDUCTANCES:',//,IX,'CAPILLARY:',5X, 
#E10.4,/,1X,'VENULE:',9X,E10.4,/,1X,'MESOTHELIUM:'.1X.E10.4,//) 
WRITE(6,625)AOSM,BOSM,COSM 

625 FORMAT(IX,'VIRIAL COEFFICIENTS:',//,IX,'AOSM:',IX,E10.4,/.IX, 
#'BOSM:',1X,E10.4,/,1X,'COSM:'.1X.E10.4,//) 
WRITE(6,623)DDC,DDV,DDM 

623 FORMAT(IX,'VESSEL SOLUTE PERMEABILITIES:',//,IX,'CAPILLARY:',5X, 
#E10.4,/,1X,'VENULE:',9X,E10.4,/,1X,'MESOTHELIUM:',1X.E10.4,//) 
WRITE(6,624)PHIT,PHIA,PHIS 

624 FORMAT(IX,'TOTAL TISSUE FLUID VOLUME FRACTION:',2X,E10.4,/.IX, 
#'SOLUTE DISTRIBUTION VOLUME FRACTION:',IX,E10.4,/,IX, 
#'TOTAL SOLIDS VOLUME FRACTION:',8X,E10.4,///) 

C 
C 
C 

999 CALL GRID(NEX) 
C 
C INITIALIZE FLUID VECTOR 
C 

CALL SETMAT(NEX,0,PEC,IEL,VELMX) 
C 
C ADJUST FLUID VECTOR TO FIT BOUNDARY CONDITIONS 
C 

CALL ASTAR(NEX.O) 
CALL VSTAR(NEX,0) 

C 
C ENTER ITERATION LOOP, CHECK COUNTER VALUE 
C 
C 
100 IC0UNT=IC0UNT+1 

IF(ICOUNT.GT.IMAX)GO TO 200 
C 
C 
C INITIALIZE FLUIDB VECTOR AND ADJUST TO FIT BOUNDARY CONDITIONS 
C 

CALL SETMAT(NEX,1,PEC,IEL,VELMX) 
C 

CALL ASTAR(NEX.l) 
CALL VSTAR(NEX,1) 

C 
C SOLVE THE FLUID SYSTEM 
C 

EP=EPS 
CALL DGBAND(FLUID,FLUIDB,N,LUB,LUB,ICOUNT,IPERM,DET,JEXP,HOLD, 
#RES,ITER,EP) 

C 
C DETERMINE THE MAXIMUM CHANGE IN P FROM ONE ITERATION TO THE NEXT 
C AND UPDATE POLD USING A RELAXATION PROCEDURE. PDIFMX WILL BE 
C COMPARED TO TOLP TO ESTABLISH CONVERGENCE 
C 

PMAX=0.D0 
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PDIFMX=O.DO 
DO 3 1=1,N 
IF(DABS(FLUIDB(I)).GT.PMAX) PMAX=DABS(FLUIDB(I)) 
TEST=DABS(FLUIDB(I)-POLD(I)) 
IF(TEST.GT.PDIFMX) PDIFMX=TEST 
POLD(I)=(OMEGAF)*(FLUIDB(I)-POLD(I))+POLD(I) 

3 CONTINUE 
PDIFMX=PDIFMX/PMAX 

C 
C NOW INITIALIZE SOLUTE AND SOLUTB. STORE MAX. GRID PECLET 
C NUMBER IN PECLET. ADJUST SOLUTE AND SOLUTB TO SUIT BOUNDARY 
C CONDITIONS 
C 

CALL SETMAT(NEX,2,PEC,IEL,VELMX) 
PECLET=PEC 
IELE=IEL 
CALL PATART(NEX.O) 
CALL PATVEN(NEX.O) 

C 
C 
C SOLVE THE SYSTEM OF EQUATIONS FOR THE SOLUTE FLOW EQUATION 
C 

EP1=EPS 
CALL DGBND1(SOLUTE,SOLUTB,H,LUB,LUB,1,IPERMS,DET,JEXP,HOLDS, 
#RESS,ITER,EP1) 

C 
C DETERMINE THE MAXIMUM CHANGE IN CALCULATED CONCENTRATION FROM 
C ONE ITERATION TO THE NEXT, AND UPDATE COLD USING A RELAXATION 
C PROCEDURE. CDIFMX WILL BE COMPARED TO TOLC TO ESTABLISH 
C CONVERGENCE 
C 
C 

CMAX=O.DO 
CDIFMX=O.DO 
DO 4 1=1,N 
IF(DABS(SOLUTB(I)).GT.CMAX) CMAX=DABS(SOLUTB(I)) 
TEST=DABS(SOLUTB(I)-COLD(I)) 
IF(TEST.GT.CDIFMX) CDIFMX=TEST 
COLD(I)=(OMEGAC)*(SOLUTB(I)-COLD(I))+COLD(I) 

4 CONTINUE 
CDIFMX=CDIFMX/CMAX 

C 
C CHECK TO SEE IF FURTHER ITERATION IS REQUIRED 
C 

IF(PDIFMX.GT.TOLP) GO TO 100 
IF(CDIFMX.GT.TOLC) GO TO 100 

C 
GO TO 300 

C 
C MAXIMUM NUMBER OF ITERATIONS REACHED. PRINT OUT WARNING. 
C 
200 ICOUNT=ICOUNT-1 

WRITE(6,600) ICOUNT 
600 FORMAT(//.IX,'WARNING. CONVERGENCE CRITERIA NOT MET AFTER', 

#1X,13,IX,'ITERATIONS') 
WRITE(6,601) PDIFMX,CDIFMX 

601 FORHAT(//,IX,'MAXIMUM FRACTIONAL CHANGE IN P\2X, 
#'MAXIMUM FRACTIONAL CHANGE IN C,//,11X.E9.4,22X,E9.4,//) 

C 
300 IF(PECLET.LT.PECMAX) GO TO 400 

WRITE(6,603) PECLET,IELE 
603 FORMAT(//,'WARNING. GRID PECLET NUMBER EQUALS',1X.E9.4,3X, 

#'ELEMENT LOCATION:',1X,14) 
C 
400 WRITE(6,604) ICOUNT 
604 FORMAT('1',//,'STEADY-STATE SOLUTION ACHIEVED AFTER',IX,13,IX, 

#'ITERATIONS:') 
WRITE(6,670) PECLET,IELE.DISPMX,IDISP 

670 FORMAT(//,IX,'MAXIMUM GRID PECLET NUMBER:',IX,E9.4,3X, 
#'ELEMENT LOCATION:',IX,14,/,IX,'MAXIMUM DISPERSION COEFF:', 
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#1X,E9.4,' ELEMENT LOCATION:',IX,14) 
WRITE(6,601)PDIFMX,CDIFMX 
WRITE(6,605) 

605 FORMAT(//,IX,'X POSITION',21,'DYN. PRESS',2X,'OSM. PRESS',2X, 
#'TOT. PRESS',2X,'AVAIL. CONC.',2X,'TOTAL CONC.',//) 

C 
X=O.DO 
DO 5 1=1,N 
X=X+DX(I) 
PI=COLD(I)*(AOSM+COLD(I)*(BOSM+COLD(I)*COSM)) 
C1=C0LD(I)*PHIA/(1.DO-PHIS) 
PTOT=POLD(I)-PI 

C 
C WRITE OUT PROFILE DATA TO DEVICES 6 AND 7 
C 

WRITE(6,606) X.POLD(I),PI,PTOT,COLD(I),C1 
WRITE(7,606) X,POLD(I),PI,PTOT,COLD(I),C1 

606 F0RMAT(1X,E9.3,4(2X,E10.4),3X,E10.4) 
5 CONTINUE 
C 
C WRITE OUT MESOTHELIAL FLUX DATA TO DEVICE 7 
C 

CALL MASBAL(NEX) 
DO 6 I=1,NEX 
12=2*1 
X=XN0D(I2) 
WRITE(7,702) X.QFMl(I),QSM1(I),QCM1(I) 

702 F0RMAT(4(2X,E10.4)) 
6 CONTINUE 
C 
C 

WRITE(6,607) 
607 FORMATCl',//,lX,'MASS BALANCE DATA'///) 

C 
WRITE(6,608) 

608 F0RMAT(///,1X,'NET DIMENSIONLESS FLUID FLOWS') 
TF=QFC+QFV+QFM*2.DO 
WRITE(6,609) QFM.QFC.QFV.TF 

609 FORMAT(//,IX,'MES:',1X,E12.4,/,1X,'CAP:', 
#E12.4,/,1X,'VEN:',1X,E12.4,/,1X,'TOT:'.1X.E12.4) 
WRITE(6,661) 

661 FORMAT(///,IX,'NET DIMENSIONLESS SOLUTE FLOWS') 
TS=QSC+QSV+QSM*2.D0 
WRITE(6,609)QSM,QSC,QSV,TS 
WRITE(6,662) 

662 FORMATC//,IX,'CONVECTIVE COMPONENTS OF DIMENSIONLESS SOLUTE 
#FLOWS') 
TC=QCM*2.DO+QCC+QCV 
WRITE(6,610) qCM.qCC.QCV.TC 

610 FORMATC//,IX,'MES:',IX,E12.4,/,IX,'CAP:',1X,E12.4,/,1X,'VEN:', 
#1X,E12.4,/,1X,'T0T:'.1X.E12.4) 

C 
WRITE(6,663) 

663 FORMAT(//,IX,'ERROR IN GLOBAL MATERIAL BALANCES') 
EFLU=TF/qFC 
ESOL=TS/qSC 
WRITE(6,664) EFLU, ESOL 

664 FORMATC//,IX,'FLUID BALANCE:',IX,E12.4,/,IX,'SOLUTE BALANCE:', 
#1X,E12.4) 

C 
WRITE(6,665) 

665 FORMATC//.IX,'RATIO OF CONVEC. TO DIFF. FLUXES AT BOUNDARIES') 
PECc=qcc/(qsc-qcG) 
PECv=qcv/(qsv-qcv) 
PECM=qcM/(qsM-qcM) 
WRITEC6,668) PECM,PECC,PECV 
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668 FORMATC//,IX,'MES:',1X,E12.4,/,1X,'CAP:',1X,E12.4,/,1X,'VEN:', 
#1X,E12.4) 
STOP 
END 
SUBROUTINE MASBAL(NEX) 

C 
C THIS SUBROUTINE PERFORMS A MATERIAL BALANCE ON THE SYSTEM FOR 
C BOTH FLUID AND PLASMA PROTEINS. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
COMMON/MATBAL/QFC, OCC, QSC, qFV, QCV, QSV, QFM, qCM, qSM, qFMl (500 ) , 
# qcMi(500),qsMiC50o) 
C0MM0N/0LD/P0LD(1001),C0LD(1001) 
COMMON/BLK1/NODEL(500,3).XNOD(lOOl) 
COMMON/OSMOT/AO,BO,CO 

COMMON/TISDAT/AK,DEFF,AL,PHIA,PHIT,RET,SIGT,BETA 
COMMON/CAPDAT/PC,CC 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM, 
# SIGC,SIGV,SIGM,CDC,CDV,CDM,DH 
DIMENSION GAUS(4),W(4),B(3) 
DATA NGAUS/4/ 
DATA W/.347854845137454D0,.652145154862546D0, 
#.652145154862546D0,.347854845137454D0/ 
DATA GAUS/-.861136311594053D0,-.339981O43584856D0, 
#.339981043584856DO,.861136311594053D0/ 

C 
C FIRST, CALCULATE THE NET FLOWS ACROSS THE ARTERIOLAR WALL 
C 

PIC=COLD(1)*(AO+COLD(1)*(BO+COLD(1)*C0)) 
qFC=DH*AK*PC/DEFF*DLC*(POLD(l)-PDC-SIGC*(PIC-PIDC)) 
qCC=BETA*qFC*COLD(1)*RET 
PECC=(1.DO-SIGC)*QFC/(DDC+DH) 
IF(PECC.GT.100.D0)G0" TO 110 
IF(PECC.LT.-100.DO)G0 TO 120 
TEST=1.DO-DEXP(-PECC) 
IF(DABS(TEST).LT.1.D-10)G0 TO 130 
QSC=(1.DO-SIGC)*qFC*(COLD(1)-CDC*DEXP(-PECC))/TEST 
GO TO 200 

110 qSC=qFC*(l.DO-SIGC)*COLD(l) 
GO TO 200 

120 qSC=(l.DO-SIGC)*CDC*qFC 
GO TO 200 

130 QSC=DH*DDC*(C0LD(1)-CDC) 
C 
C NOW FOR THE VENULAR WALL 
C 
200 N=NEX*2+1 

PIV=COLD(N)*(A0+C0LD(N)*(BO+COLD(N)*C0)) 
QFV=DH*AK*PC/DEFF*DLV*(POLD(N)-PDV-SIGV*(PIV-PIDV)) 
QCV=BETA*QFV*COLD(N)*RET 
PECV=(1.DO-SIGV)*QFV/(DDV*DH) 
IF(PECV.GT.100.DO)GO TO 210 
IFCPECV.LT.-100.DO)GO TO 220 
TEST=1.DO-DEXP(-PECV) 
IF(DABS(TEST).LT.1.D-10)G0 TO 230 
qSV=(1.DO-SIGV)*QFV*(COLD(N)-CDV*DEXP(-PECV))/TEST 
GO TO 300 

210 QSV=QFV*(1.D0-SIGV)*C0LD(N) 
GO TO 300 

220 QSV=(1.DO-SIGV)*CDV*QFV 
GO TO 300 

230 QSV=DH*DDV*(COLD(N)-CDV) 
C 
C AND FINALLY, THE MESOTHELIAL LAYER 
C 
C CONSIDER THE MESOTHELIAL WALL, ELEMENT BY ELEMENT. 
C 
300 QSM=O.DO 
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QCM=O.DO 
QFM=0.DO 

C 
DO 400 1=1,NEX 
QSM1(I)=0.D0 
qFMl(I)=0.D0 
QCM1(I)=O.DO 

400 CONTINUE 
C 

DO 1 11=1,NGAUS 
S=GAUS(II) 

DO 2 1=1,NEX 
X1=XN0D(N0DEL(I,1)) 
X2=XN0D(N0DEL(I,2)) 
X3=XN0D(N0DEL(I,3)) 
S2=(2.D0*X2-(X1+X3))/(X3-X1) 

C 
B(1)=(S-S2)*(S-1.D0)/(2.D0*(S2+1.D0)) 
B(2)=(S+l.DO)*(S-l.D0)/(S2*S2-l.DO) 
B(3)=(S+1.D0)*(S-S2)/(2.D0*(1.D0-S2)) 
DX=(X3-X1)*.5D0 

C 
C CALCULATE C(S), PI(S), AND P(S) 
C 

CS=0.D0 
PS=O.DO 
DO 3 IT=1,3 
CS=CS+COLD(NODEL(I,IT))*B(IT) 
PS=PS+POLD(NODEL(I,IT))*B(IT) 

3 CONTINUE 
PIS=CS*(AO+CS*(BO+CS*CO)) 

C 
C CALCULATE THE FLUXES 
C 

FLOW=AK*PC/DEFF*DLM*(PS-PDM-SIGM*(PIS-PIDM))*W(II)*DX 
QFM=QFM+FLOW 
QFM1(I)=QFM1(I)+FLOH/(X3-X1) 
qCM=QCM+FLOW*CS*BETA*RET 
qCMl(I)=qCMl(I)+FLOW*CS*BETA/(X3-X1)*RET 

C 
C DETERMINE WHICH FORM OF THE NONLINEAR FLUX EON. IS TO BE USED. 
C 

QS=FLOW/(W(II)*DX) 
PECM=qS*(1.DO-SIGM)/DDM 
IF(PECM.GT.100.D0)G0 TO 410 

IF(PECM.LT.-100.DO)GO TO 420 
TESTM=1.DO-DEXP(-PECM) 
IF(DABS(TESTM).LT.1.D-10)GO TO 430 

C 
C USE THE FULL EXPRESSION 
C 

SFLOW=FLOW*(1.DO-SIGM)*(CS-CDM*DEXP(-PECM))/TESTM 
qSM=qSM+SFLOW 
qSMl(I)=qSMl(I)+SFLOW/(X3-X1) 
GO TO 2 

c 
410 SFL0W=FL0W*(1.DO-SIGM)*CS 

qSM=qSM+SFLOW 
QSMl(I)=qSMl(I)+SFLOW/(X3-X1) 
GO TO 2 

C 
420 SFL0W=FL0W*(1.DO-SIGM)*CDM 

0SM=qSM+SFLOW 
qSMl(I)=QSM1CI)+SFL0W/(X3-X1) 
GO TO 2 

C 
430 SFLOW=DDM*(CS-CDM)*DX*W(II) 
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QSM=qSM+SFLOW 
QSMl(I)=qSMl(I)+SFLOW/(X3-X1) 

2 CONTINUE 
1 CONTINUE 

RETURN 
END 

SUBROUTINE GRID(NEX) 
C 
C THIS SUBROUTINE CALCULATES THE SPATIAL LOCATION OF THE NODES 
C FOR EACH ELEMENT, ALONG WITH THE NODES ASSOCIATED WITH A 
C GIVEN ELEMENT. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
C0MM0N/BLK1/N0DEL(500,3), XNOD(lOOl) 
C0MM0N/BLK2/DX(1001) 

C 
K=l 
DO 1 1=1,NEX 
N0DEL(I,1)=K 
N0DEL(I,2)=K+1 
N0DEL(I,3)=K+2 
K=K+2 

1 CONTINUE 
C 

X=O.DO 
NP=2*NEX+1 
DO 2 1=1,NP 
X=X+DX(I) 
XNOD(I)=X 

2 CONTINUE 
RETURN 
END 

C 
SUBROUTINE VSTAR(NEX.IND) 

C 
C THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO ACCOUNT FOR THE 
C STARLING BOUNDARY CONDITION AT THE VENULAR WALL. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
C0MM0N/BLK1/N0DEL(500,3), XNOD(lOOl) 
COMMON/FLUMAT/AF(20000) 
COMMON/FLUB/BF(1001) 
C0MM0N/0LD/P0LD(1001),C0LD(1001) 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM, 
# SIGC,SIGV,SIGM,CDC,CDV,CDM,DE 
COMMON/OSMOT/AO,BO,CO 

C 
M=NEX*2+1 
LUB=2 
LP=3*LUB 
IF(IND.EQ.1)G0 TO 100 
K=LP*M+M-LUB 
AF(K)=AF(K)+ DLV 
GO TO 900 

C 
100 PI=COLD(M)*(A0+C0LD(M)*(BO+COLD(M)*CO)) 

BF(M)=BF(M)+DLV*(PDV+SIGV*(PI-PIDV)) 
C 
900 RETURN 

END 
SUBROUTINE ASTAR(NEX,IND) 

C 
C THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO ACCOUNT FOR THE 
C STARLING BOUNDARY CONDITION AT THE ARTERIOLAR WALL. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
C0MM0N/BLK1/N0DEL(500,3), XNOD(lOOl) 
COMMON/FLUMAT/AF(20000) 
C0MM0N/FLUB/BF(1001) 
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C0MM0N/0LD/P0LD(1001),COLD(1001) 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDH,PIDC,PIDV,PIDM, 
# SIGC.SIGV,SIGH,CDC,CDV.CDM.DH 
COMMON/OSMOT/AO,BO,CO 

C 
LUB=2 
LP=3*LUB 
IF(IND.EQ.1)G0 TO 100 
K=LP+1-LUB 
AF(K)=AF(K)+ DLC 
GO TO 900 

C 
100 PI=COLD(1)*(AO+COLD(1)*(BO+COLD(1)*C0)) 

BF(1)=BF(1)+DLC*(PDC+SIGC*(PI-PIDC)) 
C 
900 RETURN 

END 
SUBROUTINE PATART(NEX,IND) 

C 
C THIS SUBROUTINE ADJUSTS THE AS AND BS VECTORS TO ACCOUNT FOR THE 
C PATLAK BOUNDARY CONDITION AT THE ARTERIOLAR WALL. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
C0MM0N/BLK1/N0DEL(500,3), XNOD(lOOl) 
COMMON/SOLMAT/AS(20000) 
COMMON/SOLB/BS(1001) 
C0MM0N/OLD/P0LD(1001).COLD(lOOl) 
COMMON/TISDAT/AK,DEFF,AL,PHIA,PHIT,RET,SIGT,BETA 
COMMON/CAPDAT/PC,CC 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,?IDV,PIDM, 
# SIGC,SIGV,SIGM,CDC,CDV,CDM,DH 
COMMON/OSMOT/AO,BO,CO 

C 
LUB=2 
LP=3*LUB 
K=LP+1-LUB 

C 
PI=COLD(1)*(AO+COLD(1)*(BO+COLD(1)*C0)) 
QART=AK*PC/DEFF*DLC*(POLD(1)-PDC-SIGC*(PI-PIDC)) 
PEC=(1.D0-SIGC)/DDC*QART 

C 
C DETERMINE WHICH FORM OF THE FLUX EXPRESSION APPLIES 
C 

IF(PEC.GT.100.0D0)G0 TO 100 
IF(PEC.LT.-100.D0)G0 TO 200 
TEST=1.DO-DEXP(-PEC) 
IF(DABS(TEST).LT.1.D-10)GO TO 300 

C 
AS(K)=AS(K)-QART*(RET*BETA-(1-DO-SIGC)/TEST) 
BS(1)=BS(1)+(1.DO-SIGC)*QART*CDC*DEXP(-PEC)/TEST 
GO TO 900 

C 
100 AS(K)=AS(K)-QART*(BETA*RET-(1.DO-SIGC)) 

GO TO 900 
C 
' 200 AS(K)=AS(K)-QART*BETA*RET 

BS(1)=BS(1)-(1.DO-SIGC)*QART*CDC 
GO TO 900 

C 
300 AS(K)=AS(K)-QART*BETA*RET+DDC 

BS(1)=BS(1)+DDC*CDC 
900 RETURN 

END 
SUBROUTINE PATVEN(NEX,IND) 

C 
C THIS SUBROUTINE ADJUSTS THE AS AND BS VECTORS TO ACCOUNT FOR THE 
C PATLAK BOUNDARY CONDITION AT THE VENULAR WALL. 
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IMPLICIT REAL*8(A-H,0-Z) 
C0MM0N/BLK1/HODEL(500,3), XHOD(1001) 
COMMON/SOLMAT/AS(20000) 
COMMON/SOLB/BS(1001) 
C0MM0N/0LD/P0LD(1001),COLD(1001) 
COMMON/TISDAT/AK,DEFF,AL,PHIA,PHIT,RET,SIGT,BETA 
COMMOH/CAPDAT/PC,CC 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM, 
# SIGC,SIGV,SIGM,CDC,CDV,CDM,DH 
COMMON/OSMOT/AO,BO,CO 

C 
LUB=2 
LP=3*LUB 
NP=2*NEX+1 
K=LP*NP+NP-LUB 

C 
PI=COU)(NP)*(AO+COLD(NP)*(BO+COLD(NP)*CO)) 
qART=AK*PC/DEFF*DLV*(POLD(NP)-PDV-SIGV*(PI-PIDV)) 
PEC=(1.DO-SIGV)/DDV*QART 

C 
C DETERMINE WHICH FORM OF THE FLUX EXPRESSION APPLIES 
C 

IF(PEC.GT.100.0D0)G0 TO 100 
IF(PEC.LT.-100.D0)G0 TO 200 
TEST=1.DO-DEXP(-PEC) 
IF(DABS(TEST).LT.1.D-10)G0 TO 300 

C 
AS(K)=AS(K)-QART*(RET*BETA-(1.DO-SIGV)/TEST) 
BS(NP)=BS(NP)+(1.DO-SIGV)*QART*CDV*DEXP(-PEC)/TEST 
GO TO 900 

C 
100 AS(K)=AS(K)-QART*(BETA+RET-(1.DO-SIGV)) 

GO TO 900 
C 
200 AS(K)=AS(K)-QART*BETA*RET 

BS(NP)=BS(NP)-(1.D0-SIGV)*QART*CDV 
GO TO 900 

C 
300 AS(K)=AS(K)-QART*BETA*RET+DDV 

BS(NP)=BS(NP)+DDV*CDV 
900 RETURN 

END 

SUBROUTINE MATPLY(A,A1,B,C,NP) 
C 
C THIS SUBROUTINE MULTIPLIES A MATRIX A BY A VECTOR B AND SCALAR Al 
C TO GIVE VECTOR C. MATRIX A IS STORED AS A VECTOR, WHERE MATRIX 
C ELEMENT A(I,J) IS STORED AS A(IJ), IJ=3*LUB*J+I-LUB, AND WHERE 
C LUB IS THE NUMBER OF OFF DIAGONAL BANDS. FOR THIS SUBROUTINE, 
C IT IS ASSUMED THAT THE BANDWIDTH IS 5, SO THAT LUB=2. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION A(20000), B(NP), C(NP) 
LUB=2 
LP=3*LUB 

C 
DO 1 1=1,NP 
C(I)=0.D0 

1 CONTINUE 
C 

K=2 
DO 2 1=1,2 
K=K+1 

DO 3 J=1,K 
IJ=LP*J+I-LUB 
C(I)=C(I)+A(IJ)*A1*B(J) 

3 CONTINUE 
2 CONTINUE 
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C 
NPM=NP-2 
K=0 
DO 4 1=3,NPM 
K=K+1 
KP=K+4 

DO 5 J=K,KP 
IJ=J*LP+I-LUB 
C(I)=C(I)+A(IJ)*B(J)*A1 

5 CONTINUE 
4 CONTINUE 
C 

NPM=NP-1 
K=NP-4 
DO 6 I=NPM,NP 
K=K+1 

DO 7 J=K,NP 
IJ=LP*J+I-LUB 
C(I)=C(I)+A(IJ)*A1*B(J) 

7 CONTINUE 
6 CONTINUE 
C 

RETURN 
END 
SUBROUTINE SETMAT(NEX,IND,PE,IPEC,VELMAX) 

C 
C THIS SUBROUTINE INITIALIZES THE VARIOUS VECTORS ASSOCIATED 
C WITH SOLUTE AND FLUID TRANSPORT EQUATIONS, AF(K), BF(I), AS(K), 
C AND BS(I). NOTE THAT PARAMETER XL IS THE REFERENCE LENGTH 
C USED TO NONDIMENSIONALIZE THE EQUATIONS. IN THIS CASE 
C XL IS THE LENGTH OF THE MESENTERIC SLAB. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
C0MM0N/BLK1/N0DEL(500,3).XNOD(lOOl) 
COMMON/FLUMAT/AF(20000) 
COMMON/SOLMAT/AS(20000) 
C0MM0N/TIME/T(20000) 
COMMON/FLUB/BF(1001} 
COMMON/SOLB/BS(1001) 
COMMON/TISDAT/AK,DEFF,AL,PHIA,PHIT,RET,SIGT,BETA 
COMMON/OSMOT/AO,BO,CO 
COMMON/CAPDAT/PC,CC 
COMMON/OLD/POLD(1001),COLD(1001) 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM, 
#SIGC,SIGV,SIGM,CDC,CDV,CDM,DH 
COMMON/MAXDAT/DISPMX,IDISP 

C 
DIMENSION GAUS(4),W(4),B(3),DB(3) 
DATA NGAUS/4/ 
DATA W/.34785484S137454D0,.6S2145154862546D0, 
#.652145154862546D0,.347854845137454D0/ 
DATA GAUS/-.861136311594053D0,-.339981043584856DO, 
#.339981O43584856D0,.861136311594053D0/ 

C DATA GAUS/ 
C DATA W/ 
C DATA NGAUS/3/ 
C DATA GAUS/ 
C DATA W/ 

DISPMX=O.DO 
ALPHA=AK*PC/DEFF 
PE=O.DO 
VELMAX=O.DO 

C 
C ZERO THE APPROPRIATE ARRAY AND INITIALIZE 
C 

IF(IND.EQ.1)G0 TO 800 
IF(IND.EQ.2)G0 TO 900 
IF(IND.EQ.3)G0 TO 950 

C 
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C ZERO THE AF VECTOR 
C 

DO 700 1=1,20000 
AF(I)=0.D0 

700 CONTINUE 
-GO TO 100 

C 
C ZERO THE BF VECTOR 
C 
800 DO 801 1=1,1001 

BF(I)=O.DO 
801 CONTINUE 

GO TO 100 
C 
C ZERO THE T MATRIX 
C 
950 DO 951 1=1,20000 

T(I)=0.D0 
951 CONTINUE 

GO TO 100 
C 
C ZERO THE AS AND BS VECTORS 
C 
900 DO 901 1=1,20000 

AS(I)=O.DO 
901 CONTINUE 

C 
DO 902 1=1,1001 
BS(I)=0.D0 " 

902 CONTINUE 
C 
C BEGIN THE GAUSS INTEGRATION, ELEMENT BY ELEMENT 
C 
100 LUB=2 . 

LP=3*LUB 
C 
C EVALUATE THE INTEGRAND AT THE APPROPRIATE QUADRATURE POINT, 
C 

DO 200 II=1,NGAUS 
S=GAUS(II) 

C 
C INITIALIZE THE APPROPRIATE ARRAY, ELEMENT BY ELEMENT. 
C 

DO 300 1=1,NEX 
C 
C CALCULATE VALUE OF BASIS FUNCTIONS AND DERIVATIVES AT THE 
C QUADRATURE POINT 
C 

X1=XN0D(N0DEL(I,1)) 
X2=XN0D(N0DEL(I,2)) 
X3=XN0D(N0DEL(I,3)) 

C 
S2=(2.D0*X2-(X1+X3))/(X3-X1) 

C 
B(1)=(S-S2)*(S-1.D0)/(2.D0*(S2+1.D0)) 
B(2)=(S+1.D0)*(S-1.D0)/(S2*S2-1.D0) 
B(3)=(S+1.D0)*(S-S2)/(2.D0*(1.D0-S2)) 
DB(1)=(2.D0*S-S2-1.D0)/(2.D0*(S2+1.D0)) 
DB(2)=2.D0*S/(S2*S2-1.D0) 
DB(3)=(2.D0*S-S2+1.D0)/(2.D0*(1.D0-S2)) 

C 
DX=(X3-X1)*.5D0 

C 
C CALCULATE THE T VECTOR 
C 

IF(IND.NE.3) GO TO 101 
DO 952 M=l,3 
MM=NODEL(I,M) 

DO 953 N=l,3 
NN=NODEL(I,N) 
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K=LP*NN+MM-LUB 
T(K)=T(K)+PHIA*B(M)*B(N)*DX*W(II) 

953 CONTINUE 
952 CONTINUE 

GO TO 300 
C 
C NOW CALCULATE C(S), DC/DS, PI(S), DPI/DS 
C 
101 CS=O.DO 

DCS=O.DO 
DO 301 IT=1,3 
CS=CS+COLD(NODEL(I,IT))*B(IT) 
DCS=DCS+COLD(NODEL(I,IT))*DB(IT) 

301 CONTINUE 
C 

PIS=CS*(AO+CS*(BO+CS*CO)) 
DPIS=(A0+2.DO*B0*CS+3.D0*CS*CS*C0)*DCS 

C 
C DETERMINE WHICH VECTOR IS TO BE INITIALIZED 
C 

IF(IND.EQ.1)G0 TO 500 
IF(IND.EQ.2)G0 TO 600 

C 
C INITIALIZE THE FLUID VECTOR 
C 

DO 401 M=l,3 
MM=NODEL(I,M) 

DO 402 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+MM-LUB 
AF(K)=AF(K)+(B(M)*B(N)*2.D0*DLM/DH*DX+DB(M)*DB(N)/DX)*W(II) 

402 CONTINUE 
401 CONTINUE 

GO TO 300 
C 
C INITIALIZE THE FLUID B VECTOR 
C 
500 DO 501 M=l,3 

MM=NODEL(I,M) 
BF(MM)=BF(MM)+(DB(M)*DPIS/DX+B(M)*2.D0*DLM/DH*DX*(PDM+SIGM* 
# (PIS - PIDM)))*W(II) 

501 CONTINUE 
GO TO 300 

C 
C INITIALIZE THE SOLUTE VECTORS, BS AND AS. fIRST CALCULATE VS, 
C QMES, AND THE DISPERSION COEFFICIENT, DISP. 
C 
600 DPS=0.D0 

PS=O.DO 
DO 601 IT=1,3 
DPS=DPS+POLD(NODEL(I,IT))*DB(IT) 
PS=PS+POLD(NODEL(I,IT))*B(IT) 

601 CONTINUE 
C 

VS=-ALPHA*(DPS-SIGT*DPIS)/DX*RET*BETA/PHIA 
QFMES=ALPHA*DLM*(PS-PDM-SIGM*(PIS-PIDM)) 
DISP=DABS(VS)*AL+1.D0 
IF(DISP.LT.DISPMX) GO TO 650 
DISPMX=DISP 
IDISP=I 

C 
C CALCULATE THE MAXIMUM LOCAL SOLUTE VELOCITY, VELMAX 
C 
650 IF(DABS(CS).LT.l.D-5) VELS=DABS(VS)*PHIA 

IF(DABS(CS).GT.l.D-5) VELS=DABS(VS-(DISP*DCS/DX)/CS)*PHIA 
IF(.5D0+VELS/DX.GT.VELMAX) VELMAX=.5D0*VELS/DX 

C 
C CALCULATE THE GRID PECLET NUMBER, AND SEE IF IT EXCEEDS 
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C THE LIMIT 
C 

PEST=DABS(PHIA*VS)*(X3-X1)/DISP 
IF(PEST.LT.PE)GO TO 609 
PE=PEST 
IPEC=I 

C 
C NOW DETERMINE WHICH FORM OF THE NONLINEAR FLUX EXPRESSION 
C IS TO BE USED TO CALCULATE SOLUTE FLUX ACROSS MESOTHELIUM. 
C 
609 PEC=QFMES*(1.D0-SIGM)/DDM 

IF(PEC.GT.100.D0)G0 TO 610 
IF(PEC.LT.-100.D0)G0 TO 620 
TEST=1.DO-DEXP(-PEC) 
IF(DABS(TEST).LT.1.D-10)G0 TO 630 

C 
C CASE 1: USE THE FULL NONLINEAR FLUX EXPRESSION 
C 

DO 602 M=l,3 
MM=NODEL(I,M) 

DO 603 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+MM-LUB 
AS(K)=AS(K)+(B(M)*DB(N)*VS*PHIA+DB(M)*DB(N)*DISP*PHIA/DX # +B(M)*B(N)*2.DO*QFMES/TEST/DH*(1.DO-SIGM)*DX 

# -2.DO/DH*QFMES*RET*BETA*B(M ) *B ( N ) *DX ) *W (11) 
603 CONTINUE 

BS(MM)=BS(MM)+B(M)*2.D0/DH*(l.D0-SIGM)*qFMES*CDM*DEXP(-PEC)/TEST 
# *DX*W(II) 

602 CONTINUE 
GO TO 300 

C 
C CASE 2: PEC APPROACHES INFINITY 
C 
610 DO 611 M=l,3 

MM=NODEL(I,M) 
DO 612 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+MM-LUB 
AS(K)=AS(K)+(B(M)*DB(N)*VS*PHIA+DB(M)*DB(N)*PHIA*DISP/DX 

# +B(M)*B (N)*2.DO/DH*(1.DO-SIGM)*QFMES*DX 
# -QFMES*RET*BETA*B(M)*B(N)*DX*2.DO/DE)*W(II) 

612 CONTINUE 
611 CONTINUE 

GO TO 300 
C 
C CASE 3: -PEC APPROACHES INFINITY 
C 
620 DO 621 M=l,3 

MM=NODEL(I,M) 
DO 622 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+MM-LUB 
AS(K)=AS(K)+(B(M)*DB(N)*VS*PHIA+DB(M)*DB(N)*PHIA*DISP/DX 

# -2.DO/DH*BETA*RET*QFMES*B(N)*B(M)*DX)*W(II) 
622 CONTINUE 

BS(MM)=BS(MM)-2.D0/DH*(1.D0-SIGM)*QFMES*CDM*DX*W(II)*B(M) 
621 CONTINUE 

GO TO 300 
C 
C CASE 4: PEC APPROACHES 0 
C 
630 DO 631 M=l,3 

MM=NODEL(I,M) 
DO 632 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+MM-LUB 
AS(K)=AS(K)+(B(M)*DB(N)*VS*PHIA+DB(M)*DB(E)*PHIA*DISP/DX 

# +2.D0/DH*DDM*B(M)*B(N)*DX 
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# -2.DO/DH*RET*BETA*DX*B(M)*B(N)*QFMES)*W(II) 
632 CONTINUE 

BS(MM)=BS(MM)+2.DO/DH*DDM*B(M)*CDM*DX*W(II) 
631 CONTINUE 
C 
300 CONTINUE 
200 CONTINUE 

RETURN 
END 

C 
SUBROUTINE DGBND1 (A, B, N, ML, NU, LT, IP, DET, NCN1, 
1 BB, RZ, ITR1, EPS1) 

C 
C ROUTINE SOLVES SYSTEM OF LINEAR EONS. AX=B WHERE A IS A GENERAL 
C BAND MATRIX. METHOD USED IS GAUSSIAN ELIMINATION WITH PARTIAL 
C PIVOTING. OPTION OF ITERATIVELY IMPROVING SOLUTION IS AVAILABLE. 
C UPPER BAND WIDTH OF MATRIX INCREASES DUE TO INTERCHANGES BY 
C AMOUNT ML. ROUTINE REQUIRES BAND ELEMENTS OF MATRIX TO BE STORED 
C BY COLUMN IN A ONE DIMENSIONAL ARRAY. EACH COLUMN IS OF LENGTH 
C 2*ML+NU AND BAND IS TO BE STORED IN ELEMENTS ML+1 TO 2*ML+NU OF 
C EACH COLUMN. ELEMENTS 1 TO ML OF COLUMN ARE SET TO ZERO BY GBAND. 
C IF MATRIX IS SYMMETRIC USER MAY SPECIFY LOWER BAND ONLY IN 
C ELEMENTS ML+NU+1 TO 2*ML+NU OF EACH COLUMN AND GBAND WILL 
C GENERATE REMAINING ELEMENTS. (IF THIS IS DESIRED, SET LT=-1 ON 
C FIRST CALL TO GBAND.) 
C A = 1 DIMENSIONAL ARRAY CONTAINING MATRIX OF COEFFICIENTS. 
C B = 1 DIMENSIONAL ARRAY CONTAINING RIGHT HAND SIDE VECTORS. 
C ON EXIT, B WILL CONTAIN THE SOLUTION VECTOR X. 
C N = ORDER OF MATRIX 
C ML = LENGTH OF LOWER BAND (EXCLUDING DIAGONAL) 
C NU = LENGTH OF UPPER BAND (EXCLUDING DIAGONAL) 
C LT = ABS(LT)=1 IF ONLY 1 B VECTOR OR IF 1ST OF SEVERAL. 
C ABS(LT),=1 FOR SUBSEQUENT B VECTORS. 
C (NOTE. LT=+1 IF FULL BAND WIDTH GIVEN, LT=-1 IF LOWER BAND 
C ONLY OF SYMMETRIC MATRIX GIVEN.) 
C IP = INTEGER ARRAY CONTAINING INTERCHANGE INFORMATION. 
C DET = DETERMINANT OF A = DET*(10**NCN) WHERE 1.D-15<|DET|<1.D+1S. 
C IF DET=0.0 MATRIX IS SINGULAR AND ERROR RETURN TAKEN. 
C BB, RZ = ARRAYS REQUIRED FOR IMPROVEMENT OPTION. CAN BE REAL*8 
C VARIABLES IF OPTION NOT REQUIRED. 
C ITER = 0 IF IMPROVEMENT NOT REQUIRED, OTHERWISE ITER= NO. OF 
•C ITERATIONS OR CYCLES. 
C EPS - CONVERGENCE CRITERION. 
C 
C MODIFIED TO DO ITERATIVE IMPROVEMENT (FORMERLY AVAILABLE ONLY 
C WITH THE SINGLE PRECISION VERSION). MIKE PATTERSON - NOV, 1980 

IMPLICIT REAL*8 (A-H, 0-Z) 
COMMON /GBAND$/ NITER 
DIMENSION A(l), B(N), IP(N), BB(N), RZ(N) 
COMPLEX*16 DSUMM, QADDQ, QMULD 
REAL*8 QRNDQ 

C TO ASSIGN LOGICAL UNITS 94 AND 95 ONLY ONCE: 
LOGICAL ASSIGN /F/, YES IT/ 

C STATEMENT FUNCTION TO CALCULATE POINTERS INTO A: 
IFN(I, J) = 1 + (J - 1)*LC + I - J + NUM 

C 
C 

NCN=NCN1 
ITR=ITR1 
EPS=EPS1 
ITER = ITR 

C 
LCM = NU + 2*ML 
LC = LCM + 1 
NLC = N*LC 
NUM = NU + ML 

C GENERATE REMAINING ELEMENTS OF SYMMETRIC MATRIX 
IF (LT .NE. -1) GO TO 120 
NN = N - 1 
DO 110 I = 1, NN 
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IFI = IFN(I, I) 
IFJ = IFI 
II = I + 1 
IML = MINO(I + ML, N) 
DO IOO J = II, IML 

IFI = IFI + 1 
IFJ = IFJ + LCM 

100 A(IFJ) = A(IFI) 
110 CONTINUE 
120 IF (ITER .Eq. 0) GO TO 140 
C ASSIGN UNITS 94 AND 95 IF THEY HAVE NOT ALREADY BEEN ASSIGNED 

IF (ASSIGN) GO TO 125 
CALL FTNCMD ('ASSIGN 94=-GBAND94;') 
CALL FTNCMD ('ASSIGN 95=-GBAND95;') 
ASSIGN = YES 

125 REWIND 94 
REWIND 95 
DO 130 I = 1, N 

130 BB(I) = B(I) 
140 IF (IABS(LT) .NE. 1) GO TO 280 

IP(N) = 1 
IF (ML .Eq. 0) GO TO 160 

C SET ELEMENTS 1 - ML OF EACH COLUMN TO ZERO 
DO 150 I = 1, N 

IFK = (I - 1)*LC 
DO 150 J = 1, ML 

IFK = IFK + 1 
150 A(IFK) = O.ODO 
160 IF (ITER .NE. 0) CALL DWR1 (A, NLC, 94) 

DET = O.ODO 
NCN = 0 
IF (ML .EQ. 0) GO TO 230 

C LU DECOMPOSITION 
DO 220 K = 1, N 

IFK = IFN(K, K) 
IF (K .EQ. N) GO TO 210 
KP = K + 1 
KPM = MINO(K + ML, N) 
KPN = MINO(K + NUM, N) 
M = K 
IFM = IFK 
IFI = IFK 
DO 170 I = KP, KPM 

IFI = IFI + 1 
IF (DABS(A(IFI)) .LE. DABS(A(IFM))) GO TO 170 
M = I 
IFM = IFI 

170 CONTINUE 
IP(K) = M 
T = A (IFM) 
IF (M .NE. K) IP(N) = -IP(N) 
A(IFM) = A(IFK) 
A(IFK) = T 
IF (T .EQ. O.ODO) GO TO 260 
OT = l.ODO/T 
IK = IFK 
DO 180 I = KP, KPM 

IK = IK + 1 
180 A(IK) = -A(IK)*OT 

KJ = IFK 
MJ = IFM 
DO 200 J = KP, KPN 

KJ = KJ + LCM 
MJ = MJ + LCM 
T = A(MJ) 
A(MJ) = A(KJ) 
A(KJ) = T 
IF (T .EQ. O.ODO) GO TO 200 
IK = IFK 
IJ = KJ 
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DO 190 I = KP, KPM 
IK = IK + 1 
IJ = IJ + 1 

190 A(IJ) = A(IJ) + A(IK)*T 
200 CONTINUE 
210 IF (A(IFK) .Eq. O.ODO) GO TO 260 
220 CONTINUE 
230 IFK = IFN(1, 1) 

DET = A(IFK) 
DO 250 K = 2, N 

IFK = IFK + LC 
DET = DET*A(IFK) 
IF (DET .Eq. O.ODO) GO.TO 260 
IF (DABS(DET) .GT. l.D-15) GO TO 240 
DET = DET+l.D+15 
NCN = NCN - 15 
GO TO 250 

240 IF (DABS(DET) .LT. l.D+15) GO TO 250 
DET = DET*1.D-15 
NCN = NCN + 15 

250 CONTINUE 
DET = DET*IP(N) 
GO TO 280 

260 DET = O.ODO 
WRITE (6, 270) K 

270 FORMAT ('0* DGBND1 - matrix is singular. '/ 
1 ' Error occurred in attempt to find', 15, 'th pivot.') 
RETURN 

280 CALL DS0LV1 (A, B, IP, N, ML, NU) 
IF (ITER .Eq. 0) RETURN 

C 
C ITERATIVE IMPROVEMENT 
C RESIDUALS (R) = AX-B ARE FOUND AND STORED IN ARRAY RZ USING 
C EXTENDED PRECISION ARITHMETIC. SYSTEM AZ=R IS SOLVED AND NEW 
C SOLUTION =X+Z IS STORED IN ARRAY B. ABOVE STEPS REPEATED UNTIL 
C (1) MAX(Z)/MAX(X) < EPS OR 
C (2) NO. OF CYCLES > ITER OR 
C (3) IMPROVEMENT STARTS TO DIVERGE. 
C ROUTINE THEN RETURNS AFTER SETTING EPS=MAX(Z) (FOR (1)) OR 
C SETTING EPS=-MAX(Z) AND PRINTING APPROPRIATE ERROR MESSAGE (FOR 
C (2) AND (3)) 
C 
C 

IF (IABS(LT) .Eq. 1) CALL DWR1 (A, NLC, 95) 
XNORM = O.ODO 
DO 290 K = 1, N 

290 XNORM = DMAX1(XNORM, DABS(B(K))) 
IF (XNORM .LE. O.ODO) RETURN 
ZX = l.D+60 
LD = 0 
DO 340 L = 1, ITER 
REWIND 94 
CALL DRE1 (A, NLC, 94) 
DO 310 K = 1, N 
DSUMM = (O.DO, O.DO) 
KPM = MAXO(K - ML, 1) 
KPN = MINO(K + NU, N) 
IFK = IFN(K, KPM) 
DO 300 J = KPH, KPN 

C DSUMM = DSUMM + A(IFK)*B(J) 
C USING EXTENDED PRECISION: 

DSUMM = qADDq(DSUMM, qMULD(A(IFK), B(J))) 
300 IFK = IFK + LCM 

RZ(K) = BB(K) - qRNDO(DSUMM) 
310 CONTINUE 

REWIND 95 
CALL DRE1 (A, NLC, 95) 
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CALL DS0LV1 (A, RZ, IP, N, ML, NU) 
ZNORM = O.ODO 
DO 320 K = 1, N 
ERZ = RZ(K) 
ZNORM = DMAX1(ZNORM, DABS(ERZ)) 

320 B(K) = B(K) + ERZ 
IF (ZNORM .GT. ZX) GO TO 330 
IF ((ZNORM - EPS*XNORM) .LT. O.ODO) GO TO 390 
ZX = ZNORM 
GO TO 340 

330 IF (ZNORM .GT. 10.0D0+ZX) GO TO 360 
LD = ID + 1 
IF (ID .GE. 3) GO TO 360 

340 CONTINUE 
L = ITER 
WRITE (6, 350) 

350 FORMAT ('0* DGBND1- Iterative ijnprovement did not converge'/) 
GO TO 380 

360 WRITE (6, 370) 
370 FORMAT ('0* DGBND1 - Iterative improvement is diverging.'/) 
380 EPS = -ZNORM 

NITER = L 
RETURN 

390 EPS = ZNORM 
NITER = L 
RETURN 
END 
SUBROUTINE DS0LV1 (A, B, IP, N, ML, NU) 

C 
C THIS ROUTINE COMPUTES THE SOLUTION OF A SYSTEM AFTER GBAND HAS 
C DECOMPOSED MATRIX A INTO A LOWER TRIANGULAR MATRIX L AND AN 
C UPPER TRIANGULAR MATRIX U. 
C 

IMPLICIT REAL*8 (A-H, 0-Z) 
DIMENSION A(l), B(N), TP(N) 
IFN(I, J) = 1 + (J - 1)*LC + I - J + NUM 
LCM = 2*ML + NU 
LC = LCM + 1 
NUM = NU + ML 
MN = N - 1 

C SOLVE FOR Y 
IF (ML .EQ. 0) GO TO 110 
DO 100 K = 1, MN 
KP = K + 1 
M = IP(K) 
T = B(M) 
B(M) = B(K) 
B(K) = T 
KPM = MINO(K + ML, N) 
IFK = IFN(K, K) 
DO 100 I = KP, KPM 

IFK = IFK + 1 
100 B(I) = B(I) + A(IFK)*T 
C SOLVE FOR X 
110 IFK = IFN(N, N) 

DO 120 KB = 1, MN 
KM = N - KB 
K = KM + 1 
B(K) = B(K)/A(IFK) 
IFK = IFK - LC 
T = -B(K) 
KMN = MAX0(1, K - ML - NU) 
KML = IFN(KMN, K) 
DO 120 I = KMN, KM 

B(I) = B(I) + A(KML)*T 
120 KML = KML + 1 

B(l) = B(1)/A(NUM + 1) 
RETURN 
END 
SUBROUTINE DWR1 (A, N, LU) 
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REAL+8 A(K) 
WRITE (LU) A 
RETURN 
END 
SUBROUTINE DRE1 (A, N, LU) 
REAL*8 A(N) 
READ (LU) A 
RETURN 
END 

D.4 One-Dimensional Transient Simulator: T R A N S . F O R 

c 
C THIS ROTUINE CALCULATES THE TRANSIENT PRESSURE AND CONCENTRATION 
C PROFILE WITHIN MESENTERIC TISSUE. THE TISSUE IS APPROXIMATED 
C BY A ONE-DIMENSIONAL SLAB. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
INTEGER ELPEC 
DIMENSION HOLD(lOOl),IPERM(1001).RES(lOOl).HOLDl(lOOO), 
#RES1(1001),IPERM1(1001),TDT(20000),C0LDT(1001).DTIMEl(lOO), 
#SB0LDT(1001),S0LDT(20000).BCTIME(lOOl),STNEW(20000), 
#TCOLDT(1001),SC0LDT(1001) 
C0MM0N/BLK1/N0DEL(500,3).XNOD(lOOl) 
C0MM0N/BLK2/DX(1001) 
COMMON/MATBAL/QFC,QCC,QSC,QFV,QCV,QSV,QFM,QCM,QSM,QFM1(500), 
# QCM1(500),QSM1(500) 
COMMON/FLUMAT/FLUID(20000) 
C0MM0N/0LD/P0LD(1001),COLD(1001) 
COMMON/SOLB/SOLUTB(1001) 
COMMON/FLUB/FLUIDB(1001) 
COMMON/TIME/ T(20000) 
COMMON/FMAX/FLUXMX 
COMMON/SOLMAT/SOLUTE(20000) 
COMMON/OSMOT/AOSM,BOSM,COSM 
COMMON/TISDAT/AK,DEFF,ALPHL,PHIA,PHIT,RET,SIGT,BETA 
COMMON/CAPDAT/PREF,CREF 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM, 
#SIGC,SIGV,SIGM,CDC,CDV,CDM,YYL 
COMMON/MAXDAT/DISPMX, IDISP 

C 
C SET MARKER AND TOLERANCE VALUES 
C 

READ(5,504)OMEGAF,OMEGAC,TOLP,TOLC,PECMAX,EPS 
READ(5,507)IMAX,ITER,NECHO,NP,ITMAX 
READ(5,504) THETA,TTOL,COUR,BETA,TFACT,TIMMAX 
READ(5,508) K 
DO 60 1=1 ,K 
READ(5,501) DTIMEl(I) 

60 CONTINUE 
C 

KK=2 
NEX=(NP-l)/2 
LUB=2 
NDIM=NP*(3*LUB+1) 

C 
C READ IN THE DATA FROM EXTERNAL FILE 
C 

DO 1 1=1,NP 
READ(5,501) DX(I) 

1 CONTINUE 
C 
C 

READ(5,502) AOSM,BOSM,COSM,AK,PREF,PHIA,PHIT,RET,PHIS 
READ(5,504) ALPHL,AL,DEFF,SIGT,CREF,YYL 
READ(5,504) CONC,CONV,CONM,PZRMC,PERMV,PERMM 
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READ(5,504) DDC,DDV,DDM,SIGC.SIGV,SIGH 
READ(5,504) CDC.CDV.CDH.DLC.DLV.DLH 
READ(5,506) PDC,PDV,PDM 
READ(5,506) AOSl.BOSl.COSl 
YL=YYL*AL 
PIDC=CDC*(A0S1+CDC*(B0S1+CDC*C0S1)) 
PIDV=CDV*(A0S1+CDV*(B0S1+CDV*C0S1)) 
PIDH=CDM*(A0S1+CDM*(B0S1+CDM*C0S1)) 
PC=PDC*PREF 
PV=PDV*PREF 
PM=PDM*PREF 
CC=CDC*CREF 
CV=CDV*CREF 
CM=CDM*CREF 

C 
C 
C 
C 

DO 21 1=1,BP 
READ(4,405) POLD(I),COLD(I) 
COLDT(I)=COLD(I) 

21 CONTINUE 
C 
501 F0RMAT(E12.6) 
502 F0RMATC9E10.4) 
503 FORMATl5E10.4) 
504 F0RMATC6E10.4) 
405 F0RMAT(2(1X,E17.10)) 
506 F0RMAT(3E10.4) 
507 F0RMATC5I4) 
508 FORMAT(13) 

C 
C ECHO DATA IF NECHO N.E. 0 
C 

IF(NECHO.EQ.O) GO TO 999 
C 
C PRINT OUT INPUT DATA 
C 

WRITE(6,600) 
600 FORMAT(IX,'TRANSIENT FLUID PRESSURE AND SOLUTE CONCENTRATION' 

#) 
WRITE(6,601) 

601 FORMAT(IX,'PROFILES FOR ONE DIMENSIONAL TISSUE SYSTEM',//) 
WRITE(6,602) 
WRITE(6,602) 

602 FORMAT(//,IX,' _ » 
#,//) ~ " 
WRITE(6,603) 

603 FORMAT(IX,'INPUT PARAMETERS') 
WRITE(6,602) 
WRITE(6,604) 

604 F0RMAT(1X,'1. GRID DATA:',//) 
WRITE(6,605)NEX,DX(2) 

605 FORMAT(IX,'NUMBER OF ELEMENTS:',IX,12,/,IX, 
#'SHALLEST X INCREMENT:'.19X.E10.4,/) 
WRITE(6,606)NP 

606 FORMAT(IX,'TOTAL NUMBER OF NODES:',10X,14,/) 
WRITE (6,602) 
WRITE(6,607) TOLP,TOLC,ITMAX,OMEGAF,OMEGAC,PECMAX 

607 F0RMAT(1X,'2. CONVERGENCE CRITERIA:',//,IX,'PRESSURE TOLERANCE:' 
#,17X,E10.4,/,1X,'SOLUTE TOLERANCE:',20X,E10.4,/,IX, 
#'MAXIHUH NUHBER OF LOOP ITERATIONS:',2X,13,/.IX, 
#'PRESSURE RELAXATION PARAMETER:',6X,E10.4,/.IX, 
#'SOLUTE RELAXATION PARAMETER:',9X,E10.4,/,IX, 
#'MAXIMUM DESIRED GRID PECLET NUMBER:',IX,E10.4) 
WRITE(6,608) IHAX,TFACT,COUR,THETA 
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608 FORMAT(/,IX,'MAXIMUM NUMBER OF TIME STEPS:',2X,I5,/,1X, 
#'TIME STEP ACCELERATION FACTOR:'.6X.E10.4,/,IX, 
#'INITIAL COURANT NUMBER:',14X,E10.4,/,1X, 
#'SEMI-IMPLICIT PARAMETER THETA:'.7X.E10.4) 
WRITE(6,602) 
PIC=PIDC*PREF 
PIV=PIDV*PREF 
PIM=PIDM*PREF 
WRITE(6,609) AL,YL,CC,CV,CM,PC,PV,PM,PIC,PIV,PIM,AK,DEFF 

609 FORMAT(IX,'3. DIMENSIONAL INPUT PARAMETERS:',//,IX, 
#'TISSUE X-DIMENSION (CM):',21X,E10.4,/,1X, 

(CM):',21X,E10.4,/,1X, #'TISSUE Y-DIMENSION 
#'CAP. PROTEIN CONC. (GRAMS/DL) 
#'VEN. PROTEIN CONC. (GRAMS/DL) 
#'MES. PROTEIN CONC. (GRAMS/DL) 
#'CAP. DYN. PRESSURE (DYN/CM**2) 
#'VEN. DYN. PRESSURE (DYN/CM**2) 
#'MES. DYN. PRESSURE (DYN/CM**2) 
#'CAP. OSM. PRESSURE (DYN/CM**2) 
#'VEN. OSM. PRESSURE (DYN/CM**2) 
#'MES. OSM. PRESSURE (DYN/CM**2) 
#'TISSUE FLUID CONDUCTIVITY 
#'TISSUE SOLUTE DIFFUSIVITY 

',14X,E10.4,/,1X, 
',14X,E10.4,/,1X, 
',14X,E10.4,/,1X, 
',14X,E10.4,/,1X, 
',14X,E10.4,/,1X, 
',14X,E10.4,/,1X, 
',14X,E10.4,/,1X, 
',14X,E10.4,/,1X, 
',14X,E10.4,/,1X, 

(CM**4/(DYN-SEC):',2X,E10.4,/,1X, 
(CM**2/SEC):'.7X.E10.4) 

WRITE(6,611) CONC,CONV,CONM,PERMC,PERMV,PERMM 
611 FORMAT(IX,'CAP. CONDUCTIVITY (CM**3/(DYN-S));',11X,E10.4,/,1X, 

#'VEN. CONDUCTIVITY (CM**3/(DYN-S)):',1IX,E10.4,/,IX, 
#'MES. CONDUCTIVITY (CM**3/(DYN-S)):',11X,E10.4,/,1X, 
#'CAP. PERMEABILITY (CM/S):'.21X.E10.4,/,IX, 
#'VEN. PERMEABILITY (CM/S):'.21X.E10.4,/,IX, 
#'MES. PERMEABILITY (CM/S):',21X,E10.4) 
WRITE(6,602) 
WRITE(6,653) SIGT,RET,BETA,ALPHL 

653 F0RMAT(1X,'4. DIMENSIONLESS INPUT PARAMETERS:',//,IX, 
#'TISSUE REFLECTION COEFFICIENT:'.15X.E10.4,/,IX, 
#'RETARDATION FACTOR:',26X,E10.4,/,1X, 
#'HYDRAULIC CONDUCTIVITY RATIO, BETA:',15X.E10.4,/,1X, 
#'DIMENSIONLESS DISPERSIVITY:',21X,E10.4) 
WRITE(6,612)PDC,PIDC,PDV,PIDV,PDM,PIDM 

612 F0RMAT(//,1X, 
#'PRESSURE:',6X,'DYNAMIC',5X,'OSMOTIC',//,IX,'CAPILLARY:',5X, 
#E10.4, 
#2X,E10.4,/,1X,'VENULE:',8X,E10.4.2X.E10.4,/,IX,'MESOTHELIUM:', 
#3X,E10.4,2X,E10.4,//) 
WRITE(6,613)CDC,CDV,CDM 

613 FORMAT(IX,'CONCENTRATIONS:',//,IX,'CAPILLARY:',5X,E10.4,/,IX, 
#'VENULE:',9X,E10.4,/,IX,'MESOTHELIUM:',IX,E10.4,//) 
WRITE(6,614)SIGC,SIGV,SIGM 

614 FORMAT(IX,'REFLECTION COEFFICIENTS:',//,IX,'CAPILLARY:',5X, 
#E10.4,/,IX,'VENULE:',9X,E10.4,/,1X,'MESOTHELIUM:',1X,E10.4,//) 
WRITE(6,615)DLC,DLV,DLM 

615 FORMAT(IX,'VESSEL FLUID CONDUCTANCES:',//,IX,'CAPILLARY:',5X, 
#E10.4,/,IX,'VENULE:',9X,E10.4,/,IX,'MESOTHELIUM:',IX,E10.4,//) 
WRITE(6,616)AOSM,BOSM,COSM 

616 FORMAT(IX,'VIRIAL COEFFICIENTS:',//,IX,'AOSM:',IX,E10.4,/,IX, 
#'BOSM:',1X,E10.4,/,1X,'COSM:',1X,E10.4,//) 
WRITE(6,617)DDC,DDV,DDM 

617 FORMAT(IX,'VESSEL SOLUTE PERMEABILITIES:',//,IX,'CAPILLARY:',5X, 
#E10.4,/,IX,'VENULE:',9X,E10.4,/.IX,'MESOTHELIUM:',1X.E10.4,//) 
WRITE(6,618)PHIT,PHIA,PHIS 

618 FORMAT(IX,'TOTAL TISSUE FLUID VOLUME FRACTION:',2X,E10.4,/,IX, 
#'SOLUTE DISTRIBUTION VOLUME FRACTION:',IX,E10.4,/,IX, 
#'TOTAL SOLIDS VOLUME FRACTION:',8X,E10.4,///) 
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C 
c • 
c 
999 THETAM=1.DO-THETA 

TIME1=DTIME1(1) 
IFLAG=0 

C 
C ESTABLISH THE GRID 
C 

CALL GRID(NEX) 
C 
C CALCULATE THE T VECTOR AND THE FLUID VECTOR, ADJUSTING THE LATTER 
C TO FIT THE BOUNDARY CONDITIONS 
C 

CALL SETMAT(NEX,3,PEC,IEL,VELMAX) 
CALL SETMAT(NEX,0,PEC,IEL,VELMAX) 
CALL ASTAR(NEX.O) 
CALL VSTAR(NEX.O) 

C 
C CALCULATE THE SOLUTE VECTORS FROM THE STEADY-STATE DATA. THESE 
C WILL SERVE TO GIVE A FIRST ESTIMATE OF THE CONCENTRATION AT THE 
C NEXT TIME STEP BY USING A FULLY EXPLICIT FORM TO START WITH. 
C 

CALL SETMAT(NEX,2,PEC,IEL,VELMAX) 
CALL PATART(NEX) 
CALL PATVEN(NEX) 
PECLET=PEC 
ELPEC=IEL 
DMX=DISPMX 
ID=IDISP 
DELT=COUR/VELMAX 

C 
C SET THE SOLDT AND SBOLDT VECTORS EQUAL TO THE STEADY-STATE 
C VECTORS ABOVE 
C 

DO 2 I=1,NDIM 
SOLDT(I)=SOLUTE(I) 

2 CONTINUE 
C 

DO 3 1=1,NP 
SBOLDT(I)=SOLUTB(I) 

3 CONTINUE 
C 
C CHECK THAT THE MAXIMUM NUMBER OF TIME STEP ITERATIONS HAVE BOT 
C BEEN EXCEEDED. 
C 

ICOUNT=0 
TIME=0 

C 
ITSOL=l 

IOO IC0UNT=IC0UNT+1 
C 
C DETERMINE TOTAL ELAPSED TIME 
C 

NITER=0 
DTINV=1 .'DO/DELT 
TIME=TIME+1.DO/DTINV 
IFCICOUNT.GT.IMAX) GO TO 900 
IF (TIME. GT. TIMMAX) GO TO 910 

C 
DO 4 I=1,NDIM 
TDT(I)=T(I)*DTINV 

4 CONTINUE 
C 
C DETERMINE THE AS VECTOR AND BS VECTOR FOR THE EXPLICIT SCHEME 
C 

CALL MATPLY(T,DTINV,COLDT,TCOLDT,NP) 
CALL MATPLY(SOLDT,1.DO,COLDT,SCOLDT,NP) 
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C 
DO 5 1=1,NP 
BCTIME(I)=TC0LDT(I)+SB0LDT(I)-SCOLDT(I) 

5 CONTINUE 
C 
C DETERMINE THE INITIAL GUESS FOR CNEW, UPDATING NITER 
C 
200 NITER=NITER+1 

EP—EPS 
IF(NITER.GT.ITMAX)GO TO 901 

C 
C DETERMINE WHETHER THIS IS THE FIRST PASS, AND HENCE USE THE 
C FULLY EXPLICIT FORM OF THE SOLUTE TRANSPORT EQ., OR IF IT IS 
C A SUBSEQUENT PASS, IN WHICH CASE A SEMI-IMPLICIT SCHEME IS 
C USED. . 
C 

IF(NITER.EQ.l) CALL DGBAND(TDT,BCTIME,NP.LUB,LUB,l.IPERM.DET, 
# JEXP,HOLD,RES,ITER,EP) 

C 
IF(NITER.GT.l) CALL DGBAND(STNEW,BCTIME,NP,LUB,LUB,l.IPERM.DET, 
# JEXP,HOLD,RES,ITER,EP) 

C 
C DETERMINE THE MAXIMUM CHANGE IN C FROM ONE ITERATION TO THE 
C NEXT, USING A RELATATION PROCEDURE. CDIFMX WILL BE COMPARED 
C TO CTOL TO ESTABLISH CONVERGENCE FOR TIME STEP ICOUNT. 
C 

CMAX=0.D0 
CDIFMX=0.D0 
DO 6 1=1,NP 
IF(DABS(BCTIME(I)).GT.CMAX) CMAX=DABS(BCTIME(I)) 
TEST=DABS(BCTIME(I)-COLD(I)) 
IF(TEST.GT.CDIFMX) CDIFMX=TEST 
COLD(I)=OMEGAC*(BCTIME(I)-COLD(I))+COLD(I) 

6 CONTINUE 
. CDIFMX=CDIFMX/CMAX 

C 
C NOW INITIALIZE THE FLUID B VECTOR AND SOLVE FOR THE PRESSURE 
C DISTRIBUTION AT THIS NEW TIME STEP 
C 
C 

CALL SETMAT(NEX,1,PEC,IEL,VELMAX) 
CALL ASTAR(NEX.l) 
CALL VSTAR(NEX.l) 

C 
C SOLVE FOR THE NEW PRESSURE 
C 

EP=EPS 
CALL DGBND1 (FLUID, FLUIDB, NP. LUB, LUB, ITSOL, IPERK1,DET, JEXP, 
#H0LD1,RES1,ITER,EP) 
ITS0L=ITS0L+1 

C 
C CHECK TO SEE IF THE SOLUTION HAS CONVERGED 
C 

PMAX=0.D0 
PDIFMX=O.DO 
DO 7 1=1,NP 
IF(DABS(FLUIDB(I)).GT.PMAX) PMAX=FLUIDB(I) 
TEST=DABS(FLUIDB(I)-POLD(I)) 
IF(TEST.GT.PDIFMX) PDIFMX=TEST 
POLD(I)=OMEGAF*(FLUIDB(I)-POLD(I))+POLD(I) 

7 CONTINUE 

PDIFMX=PDIFMX/PMAX 
C 
C CHECK FOR CONVERGENCE 
C 

IF(PDIFMX.GT.TOLP) GO TO 300 
IF(CDIFMX.LT.TOLC) GO TO 301 

C 
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C RESET THE SOLUTE MATRIX, SET THE NECESSARY VECTORS FOR A SEMI-
C IMPLICIT SCHEME 
C 
300 CALL SETMAT(NEX,2,PEC,IEL,VELMAX) 

CALL PATART(NEX) 
CALL PATVEN(NEX) 
PECLET=PEC 
ELPEC=IEL 
COUR=VELMAX*DELT 
DMX=DISPMX 
ID=IDISP 
DO 8 1=1,NP 
BCTIME(I)=THETA*SOLUTB(I)+TCOLDT(I)+THETAM*SBOLDT(I) -
# THETAM*SCOLDT(I) 

8 CONTINUE 
C 

DO 9 I=1,NDIM 
STNEW(I)=T(I)*DTINV+THETA*SOLUTE(I) 

9 CONTINUE 
GO TO 200 

C 
C RESET MATRICES FOR NEXT TIME STEP 
C 
301 DO 10 1=1,NP 

SBOLDT(I)=S0LUTB(I) 
COLDT(I)=COLD(I) 

10 CONTINUE 
C 

DO 11 I=1,NDIM 
SOLDT(I)=SOLUTE(I) 

11 CONTINUE 
C 
C DETERMINE IF THE SOLUTION SHOULD BE PRINTED OUT. 
C IF DELT HAS BEEN SET TO (TIME1-TIME), RESET DELT 
C TO DTHOLD, I.E., TO THE LAST VALUE OF DELT BEFORE 
C SETTING IT TO TIME1-TIME 
C 

IF(IFLAG.EQ.0)G0 TO 400 
DELT=DTHOLD 
IFLAG=0 

400 DELT=DELT*TFACT 
IF(DABS(TIME-TIME1).LT.TTOL) GO TO 800 
IF(DABS(TIME-TIME1).GT.DELT) GO TO 100 
DTHOLD=DELT 
IFLAG=1 
DELT=DABS(TIME-TIME1) 

619 FORMAT(//,IX,'NUMBER OF TIME STEPS:', 14,IX, 
#'REPRESENTING A CUMMULATIVE TIME OF ',F10.7,/,1X, 
#'NUMBER OF ITERATIONS REQUIRED FOR CONVERGENCE:',1X,I3,/,IX, 
#'MAXIMUM COURANT NUMBER:',F10.7,/,IX, 
#'MAXIMUM GRID PECLET NUMBER:'.F10.7.1X,'AT ELEMENT',IX,14,/,IX, 
#'MAXIMUM DISPERSION COEFFICIENT:',IX,E9.4,IX,'AT ELEMENT',IX,14) 
WRITE(6,602) 
GO TO 100 

C 
C PRINT OUT THE SOLUTION AT TIME1 TO DEVICE 6 AND 7 
C 
800 WRITE(6,619) ICOUNT,TIME,NITER.COUR,PECLET,ELPEC.DMX,ID 

WRITE(6,620) 
620 FORMAT (//.IX,'POSITION'.IX,'AVAIL. CONC.', IX,'TOTAL CONC, 

#1X,'HYDRO. PRESS.'.IX, 'OSMOTIC PRESS.',IX,'TOTAL PRESS.') 
X=O.D0 
DO 12 1=1,NP 
POSM=COLD(I)*(AOSM+COLD(I)*(BOSM+COSM*COLD(I))) 
PTOT=POLD(I)-POSM 
CTOT=COLD(I)*PETA/(1.DO-PHIS) 
X=X+DX(I) 
WRITE(6,621) X,COLD(I),CT0T,POLD(I),P0SM,PT0T 
WRITE(7,621) X,POLD(I),POSM,PTOT,COLD(I),CTOT 
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621 F0RMAT(2X,F6.4,3X,F9.6,4X,F9.6,3X,F9.6,5X,F9.6,6X,F9.6) 
12 CONTINUE 

C 
CALL MASBAL(NEX) 

C 
DO 20 1=1,NEX 
12=2*1 
X=XN0D(I2) 
WRITE(7,702) X.qFMl(I),QSM1(I),QCM1(I) 

702 F0RMAT(4(2X,E10.4)) 
20 CONTINUE 

C 
WRITE(6,622) 

622 FORMATCl',//,lX,'MASS BALANCE DATA',///) 
WRITE(6,623) 

623 FORMAT(///.IX,'NET DIMENSIONLESS FLUID FLOWS') 
WRITE(6,624) QFC,QFV,QFM 

624 F0RMAT(//,1X,'ART:',1X,E12.4,/,1X,'VEN:',1X,E12.4,/,1X, 
#'MES:',1X,E12.4) 
WRITE(6,625) 

625 FORMAT(///,'NET DIMENSIONLESS SOLUTE FLOWS') 
WRITE(6,624) qsc.qsv.qsM 
WRITE(6,626) 

626 FORMAT(//,IX,'CONVECT. COMPONENTS OF DIMENSIONLESS SOLUTE FLOW') 
WRITE(6,624) qcc.qcv.qcM 
PECC=qcc/(QSC-qcc) 
PECV=qcv/(QSV-qcv) 
PECM=qcM/(qsM-qcM) 
WRITE(6,627) 

627 FORMAT(//.IX,'RATIO OF CONVECTION TO DIFFUSION AT BOUNDARIES') 
WRITE(6,624) PECC.PECV.PECM 
TIME1=TIME1+DTIME1(KK) 
KK=KK+1 
WRITE(6,602) 
GO TO 100 

C 
C PRINT OUT ERROR THAT CONVERGENCE WAS NOT ACHIEVED 
C 
901 IC0UNT=IC0UNT-1 

NITER=NITER-1 
WRITE(6,628) NITER,TIME,ICOUNT,PECLET,IEL,COUR 

628 FORMAT(//.IX,'CONVERGENCE NOT ACHEIVED AFTER',14,' ITERATIONS.', 
#/,'TIME OF FAILURE:',F10.6,3X, 
#'NUMBER OF SUCCESSFUL TIME STEPS BEFORE FAILURE:',15,/, 
#1X,'MAXIMUM GRID PECLET NUMBER I S ' , 1 X . F 7 . 4 , I X , ' A T ELEMENT',14,/, 
#1X,'MAXIMUM COURANT NUMBER IS ' .F10.7) 
GO TO 920 

900 WRITE(6,629) TIME 
629 FORMATC//,IX,'MAXIMUM NUMBER OF TIME STEPS ACHIEVED AT TIME', 

#E10.4) 
GO TO 920 

910 WRITE(6,630) TIMMAX, ICOUNT 
630 FORMAT(//.IX,'MAXIMUM TIME OF'.1X.E10.4,' EXCEEDED AFTER ',14, 

# ' TIME STEPS') 
920 STOP 

END 
C 

SUBROUTINE MATPLY(A,A1,B,C,NP) 
C • 
C THIS SUBROUTINE MULTIPLIES A MATRIX A BY A VECTOR B AND SCALAR Al 
C TO GIVE VECTOR C. MATRIX A IS STORED AS A VECTOR, WHERE MATRIX 
C ELEMENT A(I,J) IS STORED AS A(IJ), IJ=3*LUB*J+I-LUB, AND WHERE 
C LUB IS THE NUMBER OF OFF DIAGONAL BANDS. FOR THIS SUBROUTINE, 
C IT IS ASSUMED THAT THE BANDWIDTH IS 5, SO THAT LUB=2. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
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DIMENSION A(20000), B(NP), C(NP) 
LUB=2 
LP=3*LUB 

C 
DO 1 1=1,NP 
C(I)=O.DO 

1 CONTINUE 
C 

K=2 
DO 2 1=1,2 
K=K+1 

DO 3 J=1,K 
IJ=LP*J+I-LUB 
C(I)=C(I)+A(IJ)*A1*B(J) 

3 CONTINUE 
2 CONTINUE 
C 

NPM=NP-2 
K=0 
DO 4 1=3,NPM 
K=K+1 
KP=K+4 

DO 5 J=K,KP 
IJ=J*LP+I-LUB 
C(I)=C(I)+A(IJ)*B(J)*A1 

5 CONTINUE 
4 CONTINUE 
C 

NPM=NP-1 
K=NP-4 
DO 6 I=NPM,NP 
K=K+1 

DO 7 J=K,NP 
IJ=LP*J+I-LUB 
C(I)=C(I)+A(IJ)*A1*B(J) 

7 CONTINUE 
6 CONTINUE 
C 

RETURN 
END 

C 
SUBROUTINE MASBAL(NEX) 

C 
C THIS SUBROUTINE PERFORMS A MATERIAL BALANCE ON THE SYSTEM FOR 
C BOTH FLUID AND PLASMA PROTEINS. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
COMMON/MATBAL/QFC,QCC,QSC,QFV,qCV,QSV,QFM,qCM,qSM.qFMl(500), 
# qCMl(500),qSMl(500) 
C0MM0N/0LD/P0LD(1001).COLD(lOOl) 
C0MM0N/BLK1/N0DEL(500,3),XN0D(1001) 
COMMON/OSMOT/AO,BO,CO 
COMMON/TISDAT/AK,DEFF,AL,PHIA,PHIT,RET,SIGT,BETA 
COMMON/CAPDAT/PC,CC 
COMMON/WALL/DLC, DLV, DLM, DDC, DD V, DDM, PDC, PDV, PDM, PIDC, PIDV, PIDM, 
# SIGC.SIGV.SIGM.CDC.CDV.CDM.DH 
DIMENSION GAUS(4),W(4),B(3) 
DATA NGAUS/4/ 
DATA W/.347854845137454D0,.652145154862546D0, 
#.652145154862546D0,.347854845137454D0/ 
DATA GAUS/-.861136311594053D0,-.339981043584856D0, 
#.339981O43584856D0,.861136311594053D0/ 

C 
C FIRST, CALCULATE THE NET FLOWS ACROSS THE ARTERIOLAR WALL 
C 

PIC=COLD(1)*(AO+COLD(1)*(BO+COLD(1)*C0)) 
QFC=DH*AK*PC/DEFF*DLC*(POLD(1)-PDC-SIGC*(PIC-PIDC)) 
QCC=BETA*qFC*COLD(l)*RET 
PECC=(1.DO-SIGC)*QFC/(DDC*DH) 
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IF(PECC.GT.100.DO)GO TO 110 
IF(PECC.LT.-100.D0)G0 TO 120 
TEST=1.DO-DEXP(-PECC) 
IF(DABSCTEST).LT.1.D-10)G0 TO 130 
QSC= C1.DO-SIGC)*QFC*(COLD(1)-CDC*DEXP C-PECC))/TEST 
GO TO 200 

110 QSC=qFC*Cl.DO-SIGC)*COLD(l) 
GO TO 200 

120 qSC=(l.DO-SIGC)*CDC*qFC 
GO TO 200 

130 qSC=DE*DDC*CCOLDCD-CDC) 
C 
C NOW FOR THE VENULAR WALL 
C 
200 N=NEX*2+1 

PIV=COLD CN)* CAO+COLD CN)* CBO+COLD(N)*C0)) 
qFV=DH*AK*PC/DEFF*DLV*(POLD(N)-PDV-SIGV*CPIV-PIDV)) 
qCV=BETA*qFV*COLD CN)*RET 
PECV=Cl.DO-SIGV)*qFV/(DDV*DH) 
IFCPECV.GT.100.D0)G0 TO 210 
IFCPECV.LT.-100.DO)GO TO 220 
TEST=1.DO-DEXP C-PECV) 
IFCDABSCTEST).LT.1.D-10)G0 TO 230 
qSV= C1.DO-SIGV)*qFV* CCOLD CN)-CDV+DEXP C-PECV))/TEST 
GO TO 300 

210 qSV=qFV*Cl.DO-SIGV)*COLD(N) 
GO TO 300 

220 qSV=Cl.DO-SIGV)*CDV*qFV 
GO TO 300 

230 qSV=DH*DDV*CCOLD(N)-CDV) 
C 
C AND FINALLY, THE MESOTHELIAL LAYER 
C 
C CONSIDER THE MESOTHELIAL WALL, ELEMENT BY ELEMENT. 
C 
300 qSM=O.DO 

qCM=O.DO 
qFM=O.DO 

c 
DO 400 1=1,NEX 
qsMiCD=o.DO 
QFM1(I)=0.D0 
QCM1CD=0.D0 

400 CONTINUE 
C 

DO 1 II=1,NGAUS 
S=GAUS(II) 

DO 2 1=1,NEX 
X1=XN0DCN0DEL(I,D) 
X2=XN0D(N0DEL(I,2)) 
X3=XNODCN0DEL(I,3)) 
S2=(2.D0*X2-(X1+X3))/(X3-X1) 

C 
BCl)=CS-S2)*CS-l.D0)/C2.D0*(S2+l.D0)) 
B(2)=(S+1.D0)*(S-1.D0)/(S2*S2-1.D0) 
BC3)=CS+l.D0)*(S-S2)/C2.D0*Cl.D0-S2)) 
DX=CX3-X1)*.5D0 

C 
C CALCULATE CCS), PICS), AND PCS) 
C 

CS=O.DO 
PS=O.DO 
DO 3 IT=1,3 
CS=CS+COLD(NODEL(I,IT))*B(IT) 
PS=PS+POLD(NODEL(I,IT))*B(IT) 

3 CONTINUE 
PIS=CS*(AO+CS*(BO+CS*CO)) 
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C 
C CALCULATE THE FLUXES 
C 

FLOW=AK*PC/DEFF*DLM*(PS-PDM-SIGM*(PIS-PIDM))*W(II)*DX QFM=QFM+FLOW 
QFM1(I)=QFM1(I)+FLOW/(X3-X1) 
qCM=QCM+FLOW*CS*BETA*RET 
QCM1(I)=QCM1(I)+FLOW*CS*BETA/(X3-X1)*RET 

C 
C DETERMINE WHICH FORM OF THE NONLINEAR FLUX EqN. IS TO BE USED. C 

qS=FLOW/(W(II)*DX) 
PECM=qS*(l.DO-SIGM)/DDM 
IF(PECM.GT.lO0.D0)GO TO 410 
IF(PECM.LT.-100.DO)GO TO 420 
TESTM=1.DO-DEXPC-PECM) 
IFCDABSCTESTM).LT.l.D-10)GO TO 430 

C 
C USE THE FULL EXPRESSION 
C 

SFLOW=FLOW* (1.DO-SIGM)*( CS-CDM*DEXP ( -PECM ) ) /TESTM 
QSM=qSM+SFLOW 
qSMl(I)=qSMl(I)+SFL0W/(X3-Xl) 
GO TO 2 

C 
410 SFL0W=FL0W*(1.DO-SIGM)*CS 

QSM=qSM+SFLOW 
QSM1CI)=qSMl(I)+SFLOW/(X3-X1) 
GO TO 2 c 

420 SFL0W=FL0W*(1.D0-SIGM)*CDM 
qSM=qSM+SFLOW 
qSMl(I)=QSMl(I)+SFL0W/(X3-Xl) 
GO TO 2 

C 
430 SFLOW=DDM*(CS-CDM)*DX*W(II) 

qSM=qSM+SFLOW 
qSMlCl)=QSM1(I)+SFLOW/(X3-X1) 

2 CONTINUE 
1 CONTINUE 

RETURN 
END 
SUBROUTINE GRID(NEX) 

C 
C THIS SUBROUTINE CALCULATES THE SPATIAL LOCATION OF THE NODES 
C FOR EACH ELEMENT, ALONG WITH THE NODES ASSOCIATED WITH A 
C GIVEN ELEMENT. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
C0MM0N/BLK1/N0DEL(500,3), XNOD(lOOl) 
C0MM0N/BLK2/DX(1001) 

C 
K=l 
DO 1 1=1,NEX 
N0DEL(I,1)=K 
N0DEL(I,2)=K+1 
N0DEL(I,3)=K+2 
K=K+2 

1 CONTINUE 
C 

X=O.DO 
NP=2*NEX+1 
DO 2 1=1,NP 
X=X+DX(I) 
XNOD(I)=X 

2 CONTINUE 
RETURN 
END C 
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SUBROUTINE VSTAR(NEX,IND) 
C 
C THIS SUBROUTINE ADJUSTS THE AF AID BF VECTORS TO ACCOUNT FOR THE 
C STARLING BOUNDARY CONDITION AT TES VEEULAR WALL. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
C0MM0N/BLK1/N0DEL(500,3), XNOD(lOOl) 
COMMON/FLUMAT/AF(20000) 
COMMON/FLUB/BF(1001) 
COMMON/OLD/POLD(1001).COLD(lOOl) 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM, 
# SIGC,SIGV,SIGM,CDC,CDV,CDM,DE 
COMMON/OSMOT/AO,BO,CO 

C 
M=NEX*2+1 
LUB=2 
LP=3*LUB 
IF(IND.EQ.1)G0 TO 100 
K=LP*M+M-LUB 
AF(K)=AF(K)+ DLV 
GO TO 900 

C 
100 PI=COLD(M)*(AO+COLD(M)*(BO+COLD(M)*C0)) 

BF(M)=BF(M)+DLV*(PDV+SIGV*(PI-PIDV)) 
C 
900 RETURN 

END 
SUBROUTINE ASTAR(NEX.IND) 

C 
C THIS SUBROUTINE ADJUSTS THE AF ATO BF VECTORS TO ACCOUNT FOR THE 
C STARLING BOUNDARY CONDITION AT TEE ARTERIOLAR WALL. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
C0MM0N/BLK1/N0DEL(500,3), XNOD(lOOl) 
COMMON/FLUMAT/AF(20000) 
COMMON/FLUB/BF(1001) 
COMMON/OLD/POLD(1001).COLD(lOOl) 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM, 
# SIGC,SIGV,SIGM,CDC,CDv,CDM,DE 
COMMON/OSMOT/AO,BO,CO 

C-
LUB=2 
LP=3*LUB 
IF(IND.Eq.l)GO TO 100 
K=LP+1-LUB 
AF(K)=AF(K)+ DLC 
GO TO 900 

C 
100 PI=COLD(1)*(AO+COLD(1)*(BO+COLD(1)*C0)) 

BF (1)=BF(1)+DLC*(PDC+SIGC*(PI-PIDC)) 
C 
900 RETURN 

END 
SUBROUTINE PATART(NEX) 

C 
C THIS SUBROUTINE ADJUSTS THE AS AID BS VECTORS TO ACCOUNT FOR THE 
C PATLAK BOUNDARY CONDITION AT THE ARTERIOLAR WALL. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
C0MM0N/BLK1/N0DEL(500,3), XNOD(lOOl) 
COMMON/SOLMAT/AS(20000) 
COMMON/SOLB/BS(1001) 
C0MM0N/0LD/P0LD(1001).COLD(lOOl) 
COMMON/TISDAT/AK,DEFF,AL,PHIA,PHIT,RET,SIGT,BETA 
COMMON/CAPDAT/PC,CC 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,D3M,PDC,PDV,PDM,PIDC,PIDV,PIDM, 
# SIGC,SIGV,SIGM,CDC,CDV,CDM,DE 
COMMON/OSMOT/AO,BO,CO 

C 
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LUB=2 
LP=3*LUB 
K=LP+1-LUB 

C 
PI=COLD(1)*(AO+COLD(1)*(BO+COLD(1)*CO)) 
QART=AK*PC/DEFF*DLC*(POLD(1)-PDC-SIGC*(PI-PIDC)) 
PEC=(1.DO-SIGC)/DDC*0ART 

C 
C DETERMINE WHICH FORM OF THE FLUX EXPRESSION APPLIES 
C 

IF(PEC.GT.100.0DO)GO TO 100 
IF(PEC.LT.-100.D0)G0 TO 200 
TEST=1.DO-DEXP(-PEC) 
IF(DABS(TEST).LT.1.D-10)G0 TO 300 

C 
AS(K)=AS(K)-QART*(RET*BETA-(1-DO-SIGC)/TEST) 
BS(1)=BS(1)+(1.DO-SIGC)*QART*CDC*DEXP(-PEC)/TEST 
GO TO 900 

C 
100 AS(K)=AS(K)-QART*(BETA+RET-(1.DO-SIGC)) 

GO TO 900 
C 
200 AS(K)=AS(K)-QART*BETA*RET 

BS(1)=BS(1)-(1.DO-SIGC)*QART*CDC 
GO TO 900 

C 
300 AS(K)=AS(K)-QART*BETA*RET+DDC 

BS(1)=BS(1)+DDC*CDC 
900 RETURN 

END 
SUBROUTINE PATVEH(NEX) 

C 
C THIS SUBROUTINE ADJUSTS THE AS AND BS VECTORS TO ACCOUNT FOR THE 
C PATLAK BOUNDARY CONDITION AT THE VENULAR WALL. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
COMMON/BLK1/NODEL(500,3), XNOD(lOOl) 
COMMON/SOLMAT/AS(20000) 
COMMON/SOLB/BS(1001) 
COMMON/OLD/POLD(1001).COLD(lOOl) 
COMMON/TISDAT/AK,DEFF,AL,PHIA,PHIT,RET,SIGT,BETA 
COMMON/CAPDAT/PC,CC 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM, 
# SIGC,SIGV,SIGM,CDC,CDV,CDM,DH 
COMMON/OSMOT/AO,BO,CO 

C 
LUB=2 
LP=3*LUB 
NP=2*NEX+1 
K=LP*NP+NP-LUB 

C 
PI=COLD(NP)*(AO+COLD (NP)*(BO+COLD(NP)*C0)) 
QART=AK*PC/DEFF*DLV*(POLD(NP)-PDV-SIGV*(PI-PIDV)) 
PEC=(1.DO-SIGV)/DDV*QART 

C 
C DETERMINE WHICH FORM OF THE FLUX EXPRESSION APPLIES 
C 

IF(PEC.GT.100.0D0)G0 TO 100 
IF(PEC.LT.-100.DO)GO TO 200 
TEST=1.DO-DEXP(-PEC) 
IF(DABS(TEST).LT.1.D-10)G0 TO 300 

C 
AS(K)=AS(K)-QART*(RET+BETA-(1.DO-SIGV)/TEST) 
BS(NP)=BS(NP)+(1.DO-SIGV)*QART*CDV*DEXP(-PEC)/TEST 
GO TO 900 C 

100 AS(K)=AS(K)-qART*(BETA*RET-(l.DO-SIGV)) 
GO TO 900 
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C 
200 AS(K)=AS(K)-QART*BETA*RET 

BS(NP)=BS(NP)-(1.DO-SIGV)*QART*CDV 
GO TO 900 

C 
300 AS(K)=AS(K)-QART*BETA*RET+DDV 

BS(NP)=BS(NP)+DDV*CDV 
900 RETURN 

END 
SUBROUTINE SETMAT(NEX,IND,PE.IPEC,VELMAX) 

C 
C THIS SUBROUTINE INITIALIZES THE VARIOUS VECTORS ASSOCIATED 
C WITH SOLUTE AND FLUID TRANSPORT EQUATIONS, AF(K), BF(I), AS(K), 
C AND BS(I). NOTE THAT PARAMETER XL IS THE REFERENCE LENGTH 
C USED TO NONDIMENSIONALIZE THE EQUATIONS. IN THIS CASE 
C XL IS THE LENGTH OF THE MESENTERIC SLAB. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
COMMON/BLK1/NODEL(SOO,3).XNOD(lOOi) 
COMMON/FLUMAT/AF(20000) 
COMMON/SOLMAT/AS(20000) 
COMMON/TIME/T(20000) 
COMMON/FLUB/BF(1001) 
COMMON/SOLB/BS(1001) 
COMMON/TISDAT/AK,DEFF,AL,PHIA,PHIT, RET,SIGT,BETA 
COMMON/OSMOT/AO,B0,CO 
COMMON/CAPDAT/PC,CC 
COMMON/OLD/POLD(1001),COLD(1001) 
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM, 
#SIGC,SIGV,SIGM,CDC,CDV,CDM,DH 
COMMON/MAXDAT/DISPMX,IDISP 

C 
DIMENSION GAUS(4),W(4),B(3),DB(3) 
DATA NGAUS/4/ 
DATA W/.347854845137454D0,.652145154862546D0, 
#.652145154862546D0,.347854845137454D0/ 
DATA GAUS/-.861136311594053D0,-.339981043584856DO, 
#.339981043584856D0,.861136311594053D0/ 

C DATA GAUS/ 
C DATA W/ 
C DATA NGAUS/3/ 
C DATA GAUS/ 
C DATA W/ 

DISPMX=0.DO 
ALPHA=AK*PC/DEFF 
PE=O.DO 
VELMAX=O.DO 

C 
C ZERO THE APPROPRIATE ARRAY AND INITIALIZE 
C 

IF(IND.EQ.1)G0 TO 800 
IF(IND.EQ.2)G0 TO 900 
IF(IND.EQ.3)G0 TO 950 

C 
C ZERO THE AF VECTOR 
C 

DO 700 1=1,20000 
AF(I)=O.DO 

700 CONTINUE 
GO TO 100 

C 
C ZERO THE BF VECTOR 
C 
800 DO 801 1=1,1001 

BF(I)=O.DO 
801 CONTINUE 

GO TO 100 C 
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C ZERO THE T MATRIX 
C 
950 DO 951 1=1,20000 

T(I)=0.D0 
951 CONTINUE 

GO TO 100 
C 
C ZERO THE AS AND BS VECTORS 
C 
900 DO 901 1=1,20000 

AS(I)=O.DO 
901 CONTINUE 

C 
DO 902 1=1,1001 
BS(I)=O.DO 

902 CONTINUE 
C 
C BEGIN THE GAUSS INTEGRATION, ELEMENT BY ELEMENT 
C 
100 LUB=2 

LP=3*LUB 
C 
C EVALUATE THE INTEGRAND AT THE APPROPRIATE QUADRATURE POINT, 
C 

DO 200 II=1,NGAUS 
S=GAUS(II) 

C 
C INITIALIZE THE APPROPRIATE ARRAY, ELEMENT BY ELEMENT. 
C 

DO 300 1=1,NEX 
C 
C CALCULATE VALUE OF BASIS FUNCTIONS AND DERIVATIVES AT THE 
C qUADRATURE POINT 
C 

X1=XN0D(N0DEL(I,1)) 
X2=XN0D(NODEL(1,2)) 
X3=XN0D(N0DEL(I,3)) 

C 
S2=(2.D0*X2-(X1+X3))/(X3-X1) 

C 
B(1)=(S-S2)*(S-1.D0)/(2.D0*(S2+1.D0)) 
BC2)=(S+1.D0)*(S-1.D0)/(S2*S2-1.D0) 
B(3)=(S+1.D0)*(S-S2)/(2.D0*(1.D0-S2)) 
DB(1)=(2.D0*S-S2-1.DO)/(2.DO*(S2+1.DO)) 
DB(2)=2.D0*S/(S2*S2-1.DO) 
DB(3)=(2.D0*S-S2+1.D0)/(2.D0*(1.D0-S2)) 

C 
DX=(X3-X1)*.5D0 

C 
C CALCULATE THE T VECTOR 
C 

IF(IND.NE.3) GO TO 101 
DO 952 M=l,3 
MM=NODEL(I,M) 

DO 953 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+MM-LUB 
T(K)=T(K)+PHIA*B(M)*B(N)*DX*W(II) 

953 CONTINUE 
952 CONTINUE 

GO TO 300 
C 
C NOW CALCULATE C(S), DC/DS, PI(S), DPI/DS 
C 
101 CS=O.DO 

DCS=O.DO 
DO 301 IT=1,3 
CS=CS+COLD(NODEL(I,IT))*B(IT) 
DCS=DCS+COLD(NODEL(I,IT))*DB(IT) 
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301 CONTINUE 
C 

PIS=CS*(AO+CS*(B0+CS*C0)) 
DPIS=(AO+2.D0*B0*CS+3.DO*CS*CS*C0)*DCS 

C 
C DETERMINE WHICH VECTOR IS TO BE INITIALIZED 
C 

IF(IND.EQ.l)GO TO 500 
IF(IND.Eq.2)G0 TO 600 

C 
C INITIALIZE THE FLUID VECTOR 
C 

DO 401 M=l,3 
MM=NODEL(I,M) 

DO 402 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+MM-LUB 
AF(K)=AF(K)+(B(M)*B(N)*2.D0*DLM/DH*DX+DB(M)*DB(N)/DX)*W(II) 

402 CONTINUE 
401 CONTINUE 

GO TO 300 
C 
C INITIALIZE THE FLUID B VECTOR 
C 
500 DO 501 M=l,3 

MM=NODEL(I,M) 
BF(MM)=BF(MM)+(DB(M)+DPIS/DX+B(M)*2.D0*DLM/DH*DX*(PDM+SIGM* 
# (PIS - PIDM)))*W(II) 

501 CONTINUE 
GO TO 300 

C 
C INITIALIZE THE SOLUTE VECTORS, BS AND AS. fIRST CALCULATE VS, 
C QMES, AND THE DISPERSION COEFFICIENT, DISP. 
C 
600 DPS=0.D0 

PS=0.D0 
DO 601 IT=1,3 
DPS=DPS+POID (NODEL(I,IT))*DB(IT) 
PS=PS+POLD(NODEL(I,IT))*B(IT) 

601 CONTINUE 
C 

VS=-ALPHA*(DPS-SIGT*DPIS)/DX*RET*BETA/PHIA 
QFMES=ALPHA*DLM*(PS-PDM-SIGM*(PIS-PIDM)) 
DISP=DABS(VS)*AL+1.D0 
IF(DISP.LT.DISPMX) GO TO 650 
DISPMX=DISP 
IDISP=I 

C 
C CALCULATE THE MAXIMUM LOCAL SOLUTE VELOCITY, VELMAX 
C 
650 IF(DABS(CS).LT.l.D-5) VELS=DABS(VS)*PHIA 

IF(DABS(CS).GT.l.D-5) VELS=DABS(VS-(DISP*DCS/DX)/CS)*PHIA 
IF(.5D0*VELS/DX.GT.VELMAX) VELMAX=.5D0*VELS/DX 

C 
C CALCULATE THE GRID PECLET NUMBER, AND SEE IF IT EXCEEDS 
C THE LIMIT 
C 

PEST=DABS(VS)*(X3-X1)/DISP 
IF(PEST.LT.PE)GO TO 609 
PE=PEST 
IPEC=I 

C 
C NOW DETERMINE WHICH FORM OF THE NONLINEAR FLUX EXPRESSION 
C IS TO BE USED TO CALCULATE SOLUTE FLUX ACROSS MESOTHELIUM. 
C 
609 PEC=QFMES*(1.DO-SIGM)/DDM 

IF(PEC.GT.100.D0)G0 TO 610 
IF(PEC.LT.-100.D0)G0 TO 620 
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TEST=1.DO-DEXP(-PEC) 
IF(DABS(TEST),LT.l.D-10)GO TO 630 

C 
C CASE 1: USE THE FULL NONLINEAR FLUX EXPRESSION 
C 

DO 602 M=l,3 
MM=NODEL(I,M) 

DO 603 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+MM-LUB 
AS(K)=AS(K)+(B(M)*DB(N)*VS*PHIA+DB(M)*DB(N)*DISP*PHIA/DX 

# +B(M)*B(N)*2.DO*PFMES/TEST/DH*(1.DO-SIGM)*DX 
# -2.DO/DH*QFMES*RET*BETA*B(M)*B(N)*DX)*W(II) 

603 CONTINUE 
BS(MM)=BS(MM)+B(M)*2.D0/DH*(i.D0-SIGM)*QFMES*CDM*DEXP(-PEC)/TEST 
# *DX*W(II) 

602 CONTINUE 
GO TO 300 

C 
C CASE 2: PEC APPROACHES INFINITY 
C 
610 DO 611 M=l,3 

MM=NODEL(I,M) 
DO 612 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+MM-LUB 
AS(K)=AS(K)+(B(M)*DB(N)*VS*PHIA+DB(M)*DB(N)*PHIA*DISP/DX 

# +B(M)*B(N)*2.DO/DH*(1.DO-SIGM)*QFMES*DX 
# -QFMES*RET*BETA*B(M)*B(N)*DX*2.DO/DH)*W(II) 

612 CONTINUE 
611 CONTINUE 

GO TO 300 
C 
C CASE 3: -PEC APPROACHES INFINITY 
C 
620 DO 621 M=l,3 

MM=NODEL(I,M) 
DO 622 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+MM-LUB 
AS(K)=AS(K)+(B(M)*DB(N)*VS*PHIA+DB(M)*DB(N)*PHIA*DISP/DX 

# -2.D0/DH*BETA*RET*QFMES*B(N)*B(M)*DX)*W(II) 
622 CONTINUE 

BS(MM)=BS(MM)-2.DO/DH*(1.DO-SIGM)*qFMES*CDM*DX*W(II)*B(M) 
621 CONTINUE 

GO TO 300 
C 
C CASE 4: PEC APPROACHES 0 
C 
630 DO 631 M=l,3 

MM=NODEL(I,M) 
DO 632 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+MM—LUB 
AS(K) =AS (K)+(B(M)*DB(N)*VS*PHIA+DB(M)*DB(N)*PHIA*DISP/DX 

# +2.D0/DH*DDM*B(M)*B(N)*DX 
# -2.DO/DH*RET*BETA*DX*B(M)*B(N)*QFMES)*W(II) 

632 CONTINUE 
BS(MM)=BS(MM)+2.D0/DH*DDM*B(M)*CDM*DX*W(II) 

631 CONTINUE 
C 
300 CONTINUE 
200 CONTINUE 

RETURN 
END 

SUBROUTINE DGBHD1 ( A , B, N, ML, NU, LT, IP, DET, NCN1, 
1 BB, RZ, ITR1, EPS1) 
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C ROUTINE SOLVES SYSTEM OF LINEAR EQNS. AX=B WHERE A IS A GENERAL 
C BAND MATRIX. METHOD USED I S GAUSSIAN ELIMINATION WITH PARTIAL 
C PIVOTING. OPTION OF ITERATIVELY IMPROVING SOLUTION IS AVAILABLE. 
C UPPER BAND WIDTH OF MATRIX INCREASES DUE TO INTERCHANGES BY 
C AMOUNT ML. ROUTINE REQUIRES BAND ELEMENTS OF MATRIX TO BE STORED 
C BY COLUMN IN A ONE DIMENSIONAL ARRAY. EACH COLUMN IS OF LENGTH 
C 2+ML+NU AND BAND IS TO BE STORED IN ELEMENTS ML+1 TO 2*ML+NU OF 
C EACH COLUMN. ELEMENTS 1 TO ML OF COLUMN ARE SET TO ZERO BY GBAND 

C I F MATRIX I S SYMMETRIC USER MAY SPECIFY LOWER BAND ONLY IN 
C ELEMENTS ML+NU+1 TO 2*ML+NU OF EACH COLUMN AND GBAND WILL 
C GENERATE REMAINING ELEMENTS. ( I F THIS I S DESIRED, SET LT=-1 ON 
C FIRST CALL TO GBAND.) 
C A = 1 DIMENSIONAL ARRAY CONTAINING MATRIX OF COEFFICIENTS. 
C B = 1 DIMENSIONAL ARRAY CONTAINING RIGHT HAND S I D E VECTORS. 
C ON EX I T , B WILL CONTAIN THE SOLUTION VECTOR X. 
C N = ORDER OF MATRIX 
C ML = LENGTH OF LOWER BAND (EXCLUDING DIAGONAL) 
C NU = LENGTH OF UPPER BAND (EXCLUDING DIAGONAL) 
C L T = ABS(LT)=1 I F ONLY 1 B VECTOR OR I F 1ST OF SEVERAL. 
C ABS(LT),=1 FOR SUBSEQUENT B VECTORS. 
C (NOTE. LT=+1 I F FULL BAND WIDTH GIVEN, LT=-1 I F LOWER BAND 
C ONLY OF SYMMETRIC MATRIX GIVEN.) 
C I P = INTEGER ARRAY CONTAINING INTERCHANGE INFORMATION. 
C DET = DETERMINANT OF A = DET*(10**NCN) WHERE l.D-15<|DET|<l.D+15. 
C I F DET=0.0 MATRIX I S SINGULAR AND ERROR RETURN TAKEN. 
C BB, RZ = ARRAYS REQUIRED FOR IMPROVEMENT OPTION. CAN BE REAL*8 
C VARIABLES I F OPTION NOT REQUIRED. 
C ITER = 0 I F IMPROVEMENT NOT REQUIRED, OTHERWISE ITER= ND. OF 
C ITERATIONS OR CYCLES. 
C EPS - CONVERGENCE CRITERION. 
C 
C MODIFIED TO DO ITERATIVE IMPROVEMENT (FORMERLY AVAILABLE ONLY 
C WITH THE SINGLE PRECISION VERSION). MIKE PATTERSON - NOV, 1980 

IMPLICIT REAL*8 (A-H, 0-Z) 
COMMON /GBAND$/ NITER 
DIMENSION A ( l ) , B ( N ) , I P ( N ) , B B ( N ) , RZ(N) 
C0MPLEX*16 DSUMM, QADDQ, QMULD 
REAL*8 QRNDQ 

C TO ASSIGN LOGICAL UNITS 94 AND 95 ONLY ONCE: 
LOGICAL ASSIGN /F/, YES /T/ 

C STATEMENT FUNCTION TO CALCULATE POINTERS INTO A: 
I F N ( I , J ) = 1 + ( J - 1)*LC + I - J + NUM 

C 
C 

NCN=NCN1 
ITR=ITR1 
EPS=EPS1 
ITER = ITR 

C 
LCM = NU + 2*ML 
LC = LCM + 1 
NLC = N*LC 
NUM = NU + ML 

C GENERATE REMAINING ELEMENTS OF SYMMETRIC MATRIX 
I F (LT .NE.--1) GO TO 120 
NN = N - 1 
DO 110 I = 1, NN 

I F I = I F N ( I , I ) 
I F J = I F I 
I I = I + 1 
IML = MINO(I + ML, N) 
DO 100 J = I I , IML 

I F I = I F I + 1 
I F J = I F J + LCM 

100 A ( I F J ) = A ( I F I ) 
110 CONTINUE 
120 I F (ITER .EQ. 0) GO TO 140 
C ASSIGN UNITS 94 AND 95 I F THEY HAVE NOT ALREADY BEEU ASSIGNED: 

I F (ASSIGN) GO TO 125 
CALL FTNCMD ('ASSIGN 94=-GBAND94;') 
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CALL FTNCMD ('ASSIGN 95=-GBAND95;') 
ASSIGN = YES 

125 REWIND 94 
REWIND 95 
DO 130 I = 1, N 

130 BB(I) = B(I) 
140 IF (IABS(LT) .NE. 1) GO TO 280 

IP(N) = 1 
IF (ML .EQ. 0) GO TO 160 

C SET ELEMENTS 1 - ML OF EACH COLUMN TO ZERO 
DO 150 I = 1, N 

IFK = (I - 1)*LC 
DO 150 J = 1, ML 

IFK = IFK + 1 
150 A(IFK) = O.ODO 
160 IF (ITER .NE. 0) CALL DWR1 (A, NLC, 94) 

DET = O.ODO 
NCN = 0 
IF (ML .EQ. 0) GO TO 230 

C LU DECOMPOSITION 
DO 220 K = 1, N 

IFK = IFN(K, K) 
IF (K .EQ. N) GO TO 210 
KP = K + 1 
KPM = MINO(K + ML, N) 
KPN = MINO(K + NUM, N) 

M = K 
IFM = IFK 
IFI = IFK 
DO 170 I = KP, KPM 

IFI = IFI + 1 
IF (DABS(A(IFI)) .LE. DABS(A(IFM))) GO TO 170 
M = I 
IFM = IFI 

170 CONTINUE 
IP(K) = M 

T = A(IFM) 
IF (M .NE. K) IP(N) = -IP(N) 
A(IFM) = A(IFK) 
A(IFK) = T 
IF (T .EQ. O.ODO) GO TO 260 
OT = l.ODO/T 
IK = IFK 
DO 180 I = KP, KPM 

IK = IK + 1 
180 A(IK) = -A(IK)*OT 

KJ = IFK 
MJ = IFM 
DO 200 J = KP, KPN 

KJ = KJ + LCM 
MJ = MJ + LCM 
T = A(MJ) 
A(MJ) = A(KJ) 
A(KJ) = T 
IF (T .EQ. O.ODO) GO TO 200 
IK = IFK 
IJ = KJ 
DO 190 I = KP, KPM 

IK = IK + 1 
IJ = IJ + 1 

190 A(IJ) = A(IJ) + A(IK)*T 
200 CONTINUE 
210 IF (A(IFK) .EQ. O.ODO) GO TO 260 
220 CONTINUE 
230 IFK = IFN(1, 1) 

DET = A(IFK) 
DO 250 K = 2, N 

IFK = IFK + LC 
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DET = DET*A(IFK) 
IF (DET .Eq. O.ODO) GO TO 260 
IF (DABS(DET) .GT. l.D-15) GO TO 240 
DET = DET*1.D+15 
NCN = NCN - 15 
GO TO 250 

240 IF (DABS(DET) .LT. l.D+15) GO TO 250 
DET = DET*1.D-15 
NCN = NCN + 15 

250 CONTINUE 
DET = DET*IP(N) 
GO TO 280 

260 DET = O.ODO 
WRITE (6, 270) K 

270 FORMAT ('0* DGBND1 - matrix is singular. '/ 
1 ' Error occurred in attempt to find', 15, 'th pivot.') 
RETURN 

280 CALL DS0LV1 (A, B, IP, N, ML, NU) 
IF (ITER .EQ. 0) RETURN 

C 
C ITERATIVE IMPROVEMENT 
C RESIDUALS (R) = AX-B ARE FOUND AND STORED IN ARRAY RZ USING 
C EXTENDED PRECISION ARITHMETIC. SYSTEM AZ=R IS SOLVED AND NEW 
C SOLUTION =X+Z IS STORED IN ARRAY B. ABOVE STEPS REPEATED UNTIL 
C (1) MAX(Z)/MAX(X) < EPS OR 
C (2) NO. OF CYCLES > ITER OR 
C (3) IMPROVEMENT STARTS TO DIVERGE. 
C ROUTINE THEN RETURNS AFTER SETTING EPS=MAX(Z) (FOR (1)) OR 
C SETTING EPS=-MAX(Z) AND PRINTING APPROPRIATE ERROR MESSAGE (FOR 
C (2) AND (3)) 
C 
C 

IF (IABS(LT) .Eq. 1) CALL DWR1 (A, NLC, 95) 
XNORM = O.ODO 
DO 290 K = 1, N 

290 XNORM = DMAX1(XNORM, DABS(B(K))) 
IF (XNORM .LE. O.ODO) RETURN 
ZX = l.D+60 
LD = 0 
DO 340 L = 1, ITER 
REWIND 94 
CALL DRE1 (A, NLC, 94) 
DO 310 K = 1, N 
DSUMM = (O.DO, O.DO) 
KPM = MAXO(K - ML, 1) 
KPN = MINO(K + NU, N) 
IFK = IFN(K, KPM) 
DO 300 J = KPM, KPN 

C DSUMM = DSUMM + A(IFK)*B(J) 
C USING EXTENDED PRECISION: 

DSUMM = QADDQ(DSUMM, QMULD(A(IFK), B(J))) 
300 IFK = IFK + LCM 

RZ(K) = BB(K) - QRNDQ(DSUMM) 
310 CONTINUE 

REWIND 95 
CALL DRE1 (A, NLC, 95) 
CALL DS0LV1 (A, RZ, IP, N, ML, NU) 
ZNORM = O.ODO 
DO 320 K = 1, N 
ERZ = RZ(K) 
ZNORM = DMAX1(ZNORM, DABS(ERZ)) 

320 B(K) = B(K) + ERZ 
IF (ZNORM .GT. ZX) GO TO 330 
IF ((ZNORM - EPS*XNORM) .LT. O.ODO) GO TO 390 
ZX = ZNORM 
GO TO 340 

330 IF (ZNORM .GT. 10.0D0+ZX) GO TO 360 
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LD = ID + 1 
IF (ID . GE. 3) GO TO 360 

340 CONTINUE 
L = ITER 
WRITE (6, 350) 

350 FORMAT ('0* DGBND1- Iterative improvement did not converge'/) 
GO TO 380 

360 WRITE (6, 370) 
370 FORMAT ('0* DGBND1 - Iterative improvement is diverging.'/) 
380 EPS = -ZNORM 

NITER = L 
RETURN 

390 EPS = ZNORM 
NITER = L 
RETURN 
END 
SUBROUTINE DS0LV1 (A, B, IP, N, ML, NU) 

C 
C THIS ROUTINE COMPUTES THE SOLUTION OF A SYSTEM AFTER GBAND HAS 
C DECOMPOSED MATRIX A INTO A LOWER TRIANGULAR MATRIX L AND AN 
C UPPER TRIANGULAR MATRIX U. 
C 

IMPLICIT REAL+8 (A-H, 0-Z) 
DIMENSION A(l), B(N), IP(N) 
IFN(I, J) = 1 + (J - 1)*LC + I - J + NUM 
LCM = 2*ML + NU 
LC = LCM + 1 
NUM = NU + ML 
MN = N - 1 

C SOLVE FOR Y 
IF (ML .EQ. 0) GO TO 110 
DO 100 K = 1, MN 
KP = K + 1 
M = IP(K) 
T = B(M) 
B(M) = B(K) 
B(K) = T 
KPM = MINO(K + ML, N) 
IFK = IFN(K, K) 
DO 100 I = KP, KPM 

IFK = IFK + 1 
100 B(I) = B(I) + A(IFK)*T 
C" SOLVE FOR X 
110 IFK = IFN(N, N) 

DO 120 KB = 1, MN 
KM = N - KB 
K = KM + 1 
B(K) = B(K)/A(IFK) 
IFK = IFK - LC 
T = -B(K) 
KMN = MAX0(1, K - ML - NU) 
KML = IFN(KMN, K) 
DO 120 I = KMN, KM 

B(I) = B(I) + A(KML)*T 
120 KML = KML + 1 

B(l) = B(1)/A(NUM + 1) 
RETURN 
END 
SUBROUTINE DWR1 (A, N, LU) 
REAL*8 A(N) 
WRITE (LU) A 
RETURN 
END 
SUBROUTINE DRE1 (A, N, LU) 
REAL*8 A(N) 
READ (LU) A 
RETURN 
END 
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D.5 Two Protein Steady-State Simulator: MESDISP2.FOR 

c 
C THIS PROGRAM SIMULATES BOTH CONVECTIVE AND DISPERSIVE PLASMA 
C PROTEIN TRANSPORT THROUGH MESENTERY DURING STEADY-STATE 
C CONDITIONS. THE MESENTERY IS TREATED AS A 1-DIMENSIONAL 
C RECTANGULAR SLAB. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION HOLD(lOOl).IPERM(lOOl),RES(1001).HOLDl(lOOO), 
#RES1(1001).IPERMl(lOOl),H0LD2(1001),RES2(1001),IPERM2(1001) 
C0MM0N/BLK1/N0DEL(500,3).XNOD(lOOl) 
C0MM0N/BLK2/DX(1001) 
COMMON/MATBAL/QFC,QCC1,QSC1,QCC2,QSC2,QFV,QCV1,QSV1,QCV2,QSV2, 
#QFM,QCM1,qSMl,QCM2,qSM2,qFMl(500),QCM11(500),qSMll(500), 
#qCM12(500),qSM12(500) 
COMMON/FLUMAT/FLUID (20000) 
C0MM0N/0LD/P0LD(1001),C0LD1(1001),C0LD2(1001) 
C0MM0N/S0LB/S0LBK1001) ,S0LB2(1001) 
COMMON/FLUB/FLUIDB(1001) 
C0MM0N/S0LMAT/S0L1(20000),S0L2(20000) 
C0MM0N/0SM0T/A1,BI,CI,A2,B2,C2 
COMMON/TISDAT/AK,DEFF1,ALPHLl,PHI1.PHIT.RETl,SIGTi.BETAl, 
#DEFF2,ALPHL2,PHI2.RET2,SIGT2,BETA2 
COMMON/CAPDAT/PREF,CREF 
COMMON/WALL/DLC,DLV,DLM,DDC1,DDV1,DDM1,PDC,PDV,PDM,PIDC1, 
#PIDV1.PIDMl.PIDC2.PIDV2,PIDM2,SIGC1.SIGVl.SIGMl,CDC1,CDV1,CDM1, 
#YYL,DDC2,DDV2,DDM2,SIGC2,SIGV2,SIGM2,CDC2,CDV2,CDM2 
C0MM0N/MAXDAT/DIS1MX.DIS2MX,IDISP1,IDISP2 

C SET MARKER AND TOLERANCE VALUES 
C 

READ(5,504)OMEGAF,OMEGAC,TOLP,TOLC,PECMAX,EPS 
READ(5,550)IMAX,ITER,NECHO,N 

550 F0RMAT(4I3) 
NEX=(N-l)/2 
LUB=2 
ICOUNT=0 

C . 
C READ IN THE DATA FROM EXTERNAL FILE 
C 

DO 1 1=1,N 
READ(5,501) DX(I) 

501 F0RMAT(E12.6) 
1 CONTINUE 

READ(5,502) Al,B1,CI,AK,PREF,PHI1.PHIT.RETl,PHIS 
READ(5,504) A2,B2,C2,PHI2,RET2,BETA2 
READ(5,507) ALPHLl.AL.DEFFl.SIGTl,CREF,YYL,BETAl 
READ(5,507) ALPHL2,DEFF2,SIGT2,PERMC2,PERMV2,PERMM2 
READ(5,504) CONC,CONV,CONM,PERMC1,PERMV1,PERMM1 
READ(5,504) DDC1,DDV1,DDM1.SIGCl,SIGVl,SIGMl 
READ(5,504) DDC2,DDV2,DDM2,SIGC2,SIGV2,SIGM2 
READ(5,504) CDC1,CDV1,CDM1,DLC,DLV,DLM 
READ(5,506) CDC2,CDV2,CDM2 
READ(5,506) PDC,PDV,PDM 
READ(5,506) AOSl.BOSl.COSl 
READ(5,506) A0S2.B0S2.C0S2 
YL=YYL*AL 
PIDC1=CDC1*(A0S1+CDC1*(B0S1+CDC1*C0S1) 
PIDC2=CDC2*(A0S2+CDC2*(B0S2+CDC2*C0S2) 
PIDV1=CDV1*(A0S1+CDV1*(B0S1+CDV1*C0S1) 
PIDV2=CDV2*(A0S2+CDV2*(B0S2+CDV2*C0S2) 
PIDM1=CDM1*(A0S1+CDM1*(B0Sl+CDMl*C0Sl) 
PIDM2=CDM2*(A0S2+CDM2*(B0S2+CDM2*C0S2) 
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PC=PDC*PREF 
PV=PDV*PREF 
PM=PDM*PREF 
CC1=CDC1*CREF 
CV1=CDV1*CREF 
CM1=CDM1*CREF 
CC2=CDC2*CREF 
CV2=CDV2*CREF 
CM2=CDM2*CREF 

C 
C 
C 
507 F0RMAT(7E10.4) 
502 F0RMAT(9E10.4) 
503 FORMAT(SE10.4) 
504 F0RMAT(6E10.4) 
506 F0RMAT(3E10.4) 

C 
DO 21 1=1,H 
READ(5,505) POLD(I),C0LD1(I),C0LD2(I) 

505 F0RMAT(3E10.4) 
21 CONTINUE 

C 
C ECHO DATA IF NECHO N.E. 0 
C 

IF(NECHO.Eq.O) GO TO 999 
C 
C PRINT OUT INPUT DATA 
C 

WRITE(6,611) 
611 FORMAT(IX,'STEADY-STATE FLUID PRESSURE AND SOLUTE CONCENTRATION' 

#) 
WRITE(6,679) 

679 FORMAT(IX,'PROFILES FOR ONE DIMENSIONAL TISSUE SYSTEM',//) 
WRITE(6,612) 
WRITE(6,612) 

612 F0RMAT(//,1X,' ' 
#,//) 
WRITE(6,660) 

660 FORMAT(IX,'INPUT PARAMETERS') 
WRITE(6,612) 
WRITE(6,613) 

613 F0RMAT(1X,'1. GRID DATA:',//) 
WRITE(6,614)NEX,DX(2) 

614 FORMAT(IX,'NUMBER OF ELEMENTS:',IX,12,/,IX, 
#'SMALLEST X INCREMENT:',19X.E10.4,/) 
WRITE(6,616)N 

616 FORMAT(IX,'TOTAL NUMBER OF NODES:',10X,14,/) 
WRITE (6,612) 
WRITE(6,617) TOLP,TOLC,IMAX,OMEGAF,OMEGAC,PECMAX 

617 FORMAT(IX,'2. CONVERGENCE CRITERIA:',//,IX,'PRESSURE TOLERANCE:' 
#,17X,E10.4,/,1X,'SOLUTE TOLERANCE:',20X,E10.4,/,1X, 
#'MAXIMUM NUMBER OF LOOP ITERATIONS:',2X,13,/,IX, 
#'PRESSURE RELAXATION PARAMETER:',6X,E10.4,/.IX, 
#'SOLUTE RELAXATION PARAMETER:',9X,E10.4,/.IX, 
#'MAXIMUM DESIRED GRID PECLET NUMBER:'.1X.E10.4) 
WRITE(6,612) 
PIC1=PIDC1*PREF 
PIV1=PIDV1*PREF 
PIM1=PIDM1*PREF 
PIC2=PIDC2*PREF 
PIV2=PIDV2*PREF 

PIM2=PIDM2*PREF 
C 

WRITE(6,618) AL,YL,CC1,CV1,CM1,CC2,CV2,CM2, 
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#PC,PV,PM,PIC1,PIV1,PIM1,PIC2,PIV2,PIM2,AK 
618 F0RMAT(1X,'3. DIMENSIONAL INPUT PARAMETERS 

#'TISSUE X-DIMENSION (CM):',21X,E10.4,/,1X, 
#'TISSUE Y-DIMENSION (CM):'.21X.E10.4,/,IX, 
#'CAP. PROTEIN1 CONC. 

CONC. 
CONC. 
CONC. 
CONC. 
CONC. 

'.//.IX, 

#'VEN. 
#'MES. 
#'CAP. 
#'VEN. 
#'MES. 
#'CAP. 
#'VEN. 
#'MES. 
#'CAP. 
#'VEN. 
#'MES. 
#'CAP. 
#'VEN. 
#'MES. 

PROTEIN1 
PROTEIN1 
PR0TEIN2 
PR0TEIN2 
PR0TEIN2 
DYN. PRESSURE 
DYN. PRESSURE 
DYN. PRESSURE 
OSM1. PRESSURE 

PRESSURE 
PRESSURE 
PRESSURE 
PRESSURE 

OSM1. 
OSM1. 
0SM2. 
0SM2. 
0SM2. 

(GRAMS/DL): 
(GRAMS/DL): 
(GRAMS/DL): 
(GRAMS/DL): 
(GRAMS/DL): 
(GRAMS/DL): 

(DYN/CM**2):' 
(DYN/CM**2):' 
(DYN/CM**2):' 
(DYN/CM**2): 
(DYN/CM**2): 
(DYN/CM**2): 
(DYN/CM**2): 
(DYN/CM**2): 
(DYN/CH**2): 

,14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 
14X,E10.4,/,1X, 
14X,E10.4,/,1X, 
14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 

(CM**4/(DYN-SEC):•.2X.E10.4) 
698 

PRESSURE 
#'TISSUE FLUID CONDUCTIVITY 
WRITE(6,698) DEFF1.DEFF2 
FORMAT(IX, 
#'TISSUE SOLUTE1 DIFFUSIVITY (CM**2/SEC):',7X,E10.4,/,1X, 
#'TISSUE S0LUTE2 DIFFUSIVITY (CM**2/SEC):'.7X.E10.4) 
WRITE(6,626) CONC,CONV,CONM,PERMC1,PERMV1,PERMM1,PERMC2,PERMV2, 
#PERMM2 

626 FORMAT(IX,'CAP. CONDUCTIVITY (CM**3/(DYN-S));',11X.E10.4,/,IX, 
#>VEN. CONDUCTIVITY (CM**3/(DYN-S)):',11X,E10.4,/,IX, 

(CM**3/(DYN-S)):',11X.E10.4,/,IX, #'MES. 
#'CAP. 
#'VEN. 
#'MES. 
#'CAP. 
#'VEN. 
#'MES. 

CONDUCTIVITY 
PERMEABILITY 
PERMEABILITY 
PERMEABILITY 
PERMEABILITY 
PERMEABILITY 
PERMEABILITY 

1 (CM/S):',21X,E10.4,/,1X, 
1 (CM/S):',21X,E10.4,/,1X, 
1 (CM/S):',21X,E10.4,/,1X, 
2 (CM/S):',21X,E10.4,/,1X, 
2 (CM/S):',21X,E10.4,/,1X, 
2 (CM/S):',21X,E10.4) 

WRITE(6,612) 
WRITE(6,653) SIGTl,RET1,BETAl,ALPHLl,SIGT2,RET2,BETA2,ALPHL2 

653 FORMAT(IX,'DIMENSIONLESS INPUT PARAMETERS:',//,IX, 
#'TISSUE REFLECTION COEFFICIENT 1:',15X.E10.4,/, 
#1X,'RETARDATION FACTOR 1:'.26X.E10.4,/,IX, 
#'HYDRAULIC CONDUCTIVITY RATIO, BETAl:',15X.E10.4,/,IX, 
#'DIMENSIONLESS DISPERSIVITY 1:',21X,E10.4,/,1X, 
#'TISSUE REFLECTION COEFFICIENT 2:'.15X.E10.4,/, 
#1X,'RETARDATION FACTOR 2:',26X,E10.4,/,1X, 
#'HYDRAULIC CONDUCTIVITY RATIO, BETA2:',15X,E10.4,/,1X, 
#'DIMENSIONLESS DISPERSIVITY 2:'.21X.E10.4) 
WRITE(6,619)PDC.PIDCl.PIDC2,PDV.PIDVl.PIDV2,PDM,PIDMl,PIDM2 

619 FORMAT(//,IX, 
#'PRESSURE:',6X,'DYNAMIC,5X,'OSMOTIC1',5X,'0SM0TIC2', 
#//,lX,'CAPILLARY:',5X, ElO.4.2X.E10.4.2X.E10.4, 
#/,IX,'VENULE:',8X,E10.4,2X,E10.4,2X,E10.4,/,1X,'MESOTHELIUM:', 
#3X,E10.4,2X,E10.4,2X,E10.4,//) 
WRITE(6,620)CDC1,CDC2,CDV1,CDV2,CDM1,CDM2 

620 F0RMAT(1X,'CONCENTRATIONS: PR0TEIN1 PR0TEIN2', 
#//,lX,'CAPILLARY:',6X,ElO.4,IX,ElO.4,/.IX, 
#'VENULE:',10X,E10.4,1X,E10.4,/,1X,'MESOTHELIUM:',2(11,ElO.4),//) 
WRITE(6,621)SIGC1,SIGC2,SIGVl,SIGV2,SIGMl,SIGM2 

621 FORMAT(IX,'REFLECTION COEFFICIENTS: PR0TEIN1 PR0TEIN2', 
#//,IX,'CAPILLARY:',15X,ElO.4,IX,ElO.4,/,IX,'VENULE:',19X, 
#E10.4,1X,E10.4,/,1X,'MESOTHELIUM:',13X,E10.4,1X,E10.4,//) 
WRITE(6,622)DLC,DLV,DLM 

622 FORMAT(IX,'VESSEL FLUID CONDUCTANCES:',//,IX,'CAPILLARY:',5X, 
#E10.4,/,1X,'VENULE:1,9X,E10.4,/,IX,'MESOTHELIUM:',1X.E10.4,//) 
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WRITE(6,625)A1,B1,C1,A2,B2,C2 
625 FORMAT(IX,'VIRIAL COEFFICIENTS:',//,lX,'Al:'.1X.E10.4,/.IX, 

#'B1:',1X,E10.4,/,1X,'CI:',1X,E10.4,/,1X,'A2:',1X.E10.4,/,IX, 
#'B2:',1X,E10.4,/,1X,'C2:',1X,E10.4,//) 
WRITE(6,623)DDC1,DDC2,DDV1,DDV2,DDM1,DDM2 

623 FORMAT(IX,'VESSEL SOLUTE PERMEABILITIES: PROTEIN1 PR0TEIN2' 
#,//,IX,'CAPILLARY:'.19X.E10.4,1X.E10.4,/,IX,'VENULE',22X.E10.4, 
#1X,E10.4,/,1X,'MES0TBELIUM:',17X,E10.4,1X,E10.4,//) 
WRITE(6,624)PHIT,PHI1,PHI2,PHIS 

624 FORMAT(IX,'TOTAL TISSUE FLUID VOLUME FRACTION:'.2X.E10.4,/,IX, 
#'SOLUTE 1 DISTRIBUTION VOLUME FRACTION:',IX,ElO.4,/,IX, 
#'SOLUTE 2 DISTRIBUTION VOLUME FRACTION:',IX,ElO.4,/.IX, 
#'TOTAL SOLIDS VOLUME FRACTION:'.8X.E10.4,///) 

C 
C 
C 

999 CALL GRID(NEX) 
C 
C INITIALIZE FLUID VECTOR 
C 

CALL SETMAT(NEX,0,PE1,IE1,VELMX1,PE2,IE2,VELMX2) 
C 
C ADJUST FLUID VECTOR TO FIT BOUNDARY CONDITIONS 
C 

CALL ASTAR(NEX.O) 
CALL VSTAR(NEX,0) 

C 
C ENTER ITERATION LOOP, CHECK COUNTER VALUE 
C 
C 

100 IC0UNT=IC0UNT+1 
IF(ICOUNT.GT.IMAX)GO TO 200 

C 
C 
C INITIALIZE FLUIDB VECTOR AND ADJUST TO FIT BOUNDARY CONDITIONS 
C 

CALL SETMAT(HEX,1,PE1,IE1,VELMX1,PE2,IE2,VELMX2) 
C 

.CALL ASTAR(NEX.l) 
CALL VSTAR(HEX,1) 

C 
C SOLVE THE FLUID SYSTEM 
C 

EP=EPS 
CALL DGBAND (FLUID, FLUIDB, N,LUB, LUB, ICOUNT, IPERM,DET, JEXP,HOLD, 

#RES,ITER,EP) 
C 
C DETERMINE THE MAXIMUM CHANGE IN P FROM ONE ITERATION TO THE NEXT 
C AND UPDATE POLD USING A RELAXATION PROCEDURE. PDIFMX WILL BE 
C COMPARED TO TOLP TO ESTABLISH CONVERGENCE 
C 

PMAX=0.DO 
PDIFMX=O.DO 
DO 3 1=1,N 
IF(DABS(FLUIDB(I)).GT.PMAX) PMAX=DABS(FLUIDB(I)) 
TEST=DABS(FLUIDB(I)-POLD (I)) 
IF(TEST.GT.PDIFMX) PDIFMX=TEST 
POLD(I)=(OMEGAF)*(FLUIDB(I)-POLD(I))+POLD(I) 

3 CONTINUE 
PDIFMX=PDIFMX/PMAX 

C 
C NOW INITIALIZE SOLUTE AND SOLUTB. STORE MAX. GRID PECLET 
C NUMBER IN PECLET. ADJUST SOLUTE AND SOLUTB TO SUIT BOUNDARY 
C CONDITIONS 
C 

CALL SETMAT(NEX,2,PEI,IE1,VELMX1,PE2,IE2,VELMX2) 
PEC1=PE1 
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IEL1=IE1 
PEC2=PE2 
IEL2=IE2 
CALL PATART(NEX) 
CALL PATVEN(NEX) 

C 
C 
C SOLVE THE SYSTEM OF EQUATIONS FOR THE SOLUTE FLOW EQUATION 
C 

EPl=EPS 
CALL DGBND1(SOLI,SOLB1,N,LUB,LUB,1,IPERM1,DET,JEXP,HOLD1, 
#RES1,ITER,EP1) 
EP2=EPS 
CALL DGBND1(S0L2,S0LB2,N,LUB,LUB,1,IPERM2,DET,JEXP,H0LD2, 
#RES2,ITER,EP2) 

C 
C DETERMINE THE MAXIMUM CHANGE IN CALCULATED CONCENTRATION FROM 
C ONE ITERATION TO THE NEXT, AND UPDATE COLD USING A RELAXATION 
C PROCEDURE. CDIFMX WILL BE COMPARED TO TOLC TO ESTABLISH 
C CONVERGENCE 
C 
C 

CMAXl=O.DO 
CDMXl=O.DO 
CMAX2=0.D0 
CDMX2=O.D0 
DO 4 1=1,N 
IF(DABS(S0LB1(I)).GT.CMAX1) CHAX1=DABS(S0LB1(I)) 
TEST1=DABS(SOLB1(I)-COLD1(I)) 
IF(TESTl.GT.CDMXl) CDMX1=TEST1 
COLDl(I)=(OMEGAC)*(SOLBl(I)-COLDl(I))+COLDl(I) 
IF(DABS(S0LB2(I)).GT.CMAX2) CMAX2=DABS(S0LB2(I)) 
TEST2=DABS(SOLB2(I)-COLD2(I)) 
IF(TEST2.GT.CDMX2) CDMX2=TEST2 
C0LD2(I)=(0MEGAC)*(S0LB2(I)-C0LD2(I))+C0LD2(I) 

4 CONTINUE 
CDHX1=CDMX1/CMAX1 
CDHX2=CDMX2/CMAX2 

C 
C CHECK TO SEE IF FURTHER ITERATION IS REQUIRED 
C 

IF(PDIFMX.GT.TOLP) GO TO IOO 
IF(CDKXl.GT.TOLC) GO TO 100 

' IF(CDKX2.GT.T0LC) GO TO 100 
C 

GO TO 300 
C 
C MAXIMUM NUMBER OF ITERATIONS REACHED. PRINT OUT WARNING. 
C 

200 IC0UNT=IC0UNT-1 
WRITE(6,600) ICOUNT 

600 FORMAT(//.IX,'WARNING. CONVERGENCE CRITERIA NOT MET AFTER', 
#1X,13,IX,'ITERATIONS') 
WRITE(6,601) PDIFMX,CDMX1.CDMX2 

601 F0RHAT(//,1X,'MAX. FRAC. CHANGE IN P',2X, 
#'MAX. FRAC. CHANGE IN C1',2X, 
#'MAX. FRAC. CHANGE IN C2', 
#//,6X,E9.4,14X,E9.4,14X,E9.4,//) 

C 
300 IF(PECl.LT.PECMAX) GO TO 400 

IF(PEC2.LT.PECHAX)G0 TO 400 
WRITE(6,603) PEC1 ,IEL1,PEC2,IEL2 

603 FORMAT(//.IX,'WARNING. PROTEIN 1 GRID PECLET NUMBER EQUALS', 
#1X,E9.4,3X,'ELEMENT LOCATION:',1X,I4,//,IX, 
#'PROTEIN 2 GRID PECLET NUMBER EQUALS',IX,E9.4,3X, 

#'ELEMENT LOCATION:',IX,14,//) 
C 
400 WRITE(6,604) ICOUNT 
604 FORMATC'1',//,'STEADY-STATE SOLUTION ACHIEVED AFTER',17.,13,IX, 
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#'ITERATIONS:') 
WRITE(6,670) PEC1,IEL1,DIS1MX,IDISP1,PEC2,IEL2,DIS2MX,IDISP2 

670 FORMAT(//,IX,'MAXIMUM GRID PECLET1 NUMBER:',1X,E9.4,3X, 
#'ELEMENT LOCATION:',IX,14,/,IX,'MAXIMUM DISPERSION C0EFF1:', 
#1X,E9.4,' ELEMENT LOCATION:',IX,14, 
#/,IX,'MAXIMUM GRID PECLET2 NUMBER:'.1X.E9.4.3X, 
#'ELEMENT LOCATION:',IX,14,/,IX,'MAXIMUM DISPERSION C0EFF2:', 
#1X,E9.4,' ELEMENT LOCATION:',1X,I4) 
WRITE(6,601)PDIFHX,CDMX1,CDMX2 

C 
WRITE(6,605) 

605 F0RMAT(//,1X,'X POSITION',2X,'DYN. PRESS',2X,'OSM. PRESS',2X, 
#'AVAIL. CONCl',2X,'TOTAL C0NC1',2X,'AVAIL. C0NC2',2X, 
#'TOTAL C0NC2',//) 

C 
X=O.DO 
DO 5 1=1,N 
X=X+DX(I) 
PI=COLD1(I)*(A1+COLD1(I)*(B1+COLD1(I)*C1)) 
# +C0LD2(I)*(A2+C0LD2(I)*(B2+C0LD2(I)*C2)) 
C0N1=C0IJJ1(I)*PHI1/(1.DO-PHIS) 
C0N2=C0LD2(I)*PEI2/(1.DO-PHIS) 

C 
C WRITE OUT PROFILE DATA TO DEVICES 6 AND 7 
C 

WRITE(6,606) X,POLD(I),PI.C0LD1(I),C0N1,C0LD2(I),C0N2 
WRITE(7,606) X.POLD(I),PI,C0LD1(I),C0N1,C0LD2(I),C0N2 
WRITE(4,401) P0LD(I),C0LD1(I),C0LD2(I) 

606 F0RMAT(1X,E9.3,6(2X,E10.4)) 
401 F0RMAT(3(1X,E14.7)) 
5 CONTINUE 
C 
C WRITE OUT MESOTHELIAL FLUX DATA TO DEVICE 7 
C 

CALL MASBAL(NEX) 
DO 6 1=1,NEX 
12=2*1 
X=XN0D(I2) 
WRITE(7,702) X.QFMl(I),QSM11(I),QCM11(I),QSM12(I),QCM12(I) 

702 F0RMAT(6(2X,E10.4)) 
6 . CONTINUE 
C 
C 

WRITE(6,607) 
607 FORMATOl'.//.IX,'MASS BALANCE DATA'///) 

C 
WRITE(6,608) 

608 FORMAT(///.IX,'NET DIMENSIONLESS FLUID FLOWS') 
TF=QFC+QFV+QFM*2.DO 
WRITE(6,609) QFC.qFV.QFM.TF 

609 F0RMAT(//,1X,'CAP:',1X.E12.4,/,IX,'VEN:', 
#E12.4,/,1X,'MES:',1X,E12.4,/,1X,'T0T:',1X,E12.4) 
WRITE(6,661) 

661 FORMAT(///.IX,'NET DIMENSIONLESS SOLUTE FLOWS: S0LUTE1') 
TS1=QSC1+QSV1+QSM1*2.DO 
WRITE(6,609)qSCl,QSV1,qSMl,TS1 
WRITE(6,662) 

662 FORMAT(//,IX,'CONVECTIVE COMPONENTS OF DIMENSIONLESS SOLUTE 
#FLOWS: S0LUTE1') 
TCi=qcMi*2.DO+qcci+qcvi 
WRITE(6,610) QCCl.qCVl.qCMl.TCl 

610 F0RMAT(//,1X,'CAP:',1X.E12.4,/,IX,'VEN:',1X.E12.4,/,IX,'MES:', 
#1X,E12.4,/,1X,'T0T:'.1X.E12.4) 

C 
WRITE(6,663) 

663 FORMAT(///,IX,'NET DIMENSIONLESS SOLUTE FLOWS: S0LUTE2') 
TS2=QSC2+QSV2+QSM2*2.DO 
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WRITE(6,609)QSC2,QSV2,QSM2,TS2 
WRITE(6,664) 

664 FORMATC//,IX,'CONVECTIVE COMPONENTS OF DIMENSIONLESS SOLUTE 
#FLOWS: S0LUTE2') 
TC2=QCM2*2.D0+QCC2+QCV2 
WRITE(6,629) qCC2,QCV2,qCM2,TC2 

629 FORMAT(//,IX,'CAP:',1X.E12.4,/,IX,'VEN:•,1X.E12.4,/,IX,'MES:', 
#1X,E12.4,/,1X,'T0T:'.1X.E12.4) 

C 
WRITE(6,669) 

669 FORMAT(//,IX,'ERROR IN GLOBAL MATERIAL BALANCES') 
EFLU=TF/QFC 
ESOLl=TSl/qSCl 
ES0L2=TS2/qSC2 
WRITE(6,665) EFLU, ESOL1.ES0L2 

665 FORMAT(//,IX,'FLUID BALANCE:',1X,E12.4,/,IX,'SOLUTE 1 BALANCE:', 
#1X,E12.4,/,1X,'SOLUTE 2 BALANCE:',IX,E12.4) 

C 
WRITE(6,666) 

666 FORMATC//,IX, 
#'RATIO OF CONV. TO DIFFUS. FLUXES AT BOUNDARIES: SOLUTE 1') 
IF(DABSCQSCl-QSVl).LT.l.D-9) THEN 
PECC1=999.999D0 
ELSE 
PECC1=QCC1/CQSC1-QCC1) 
END IF 
IFCDABS(qSVl-qCVl).LT.l.D-9) THEN 
PECV1=999.999D0 
ELSE 
PECVi=qcvi/cqsvi-qcvi) 
ENDIF 
IFCDABS(qSMl-qCMl).LT.l.D-9) THEN 
PECM1=999.999D0 
ELSE 
PECMi=qcMi/(qsMi-qcMi) 
ENDIF 
WRITEC6.667) PECC1.PECVl,PECM1 

667 FORMATC//,IX,'CAP:',1X,E12.4,/,1X,'VEN:',1X,E12.4,/,1X,'MES:', 
#1X,E12.4) 

C 
WRITEC6,668) 

668 FORMATC//.IX, 
#'RATIO OF CONV. TO DIFFUS. FLUXES AT BOUNDARIES: SOLUTE 2') 
IFCDABSCqSC2-qCC2).LT.l.D-9) THEN 
PECC2=999.999D0 
ELSE PECC2=qcc2/(qsc2-qcc2) 
ENDIF 
IFCDABSCQSV2-QCV2).LT.l.D-9) THEN 
PECV2=999.999D0 
ELSE PECV2=qcv2/Cqsv2-qcv2) 
ENDIF 
IF(DABS(QSH2-qCM2).LT.l.D-9) THEN 
PECM2=999.999D0 
ELSE 
PECM2=qCM2/(QSM2-qCM2) 
ENDIF 
WRITEC6,667) PECC2,PECV2,PECM2 
STOP 
END 
SUBROUTINE MASBAL(NEX) 

C 
C THIS SUBROUTINE PERFORMS A MATERIAL BALANCE ON THE SYSTEM FOR 
C BOTH FLUID AND PLASMA PROTEINS. 
C 

IMPLICIT REAL*8CA-H,0-Z) 
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COMMON/MATBAL/QFC,QCC1,QSC1,QCC2,QSC2,QFV,QCVl,QSV1,QCV2,QSV2, 
#qFH,QCMl,QSMl,QCM2,QSM2fQFMl(500),QCH11(500),qSMll(500), 
#QCM12(500),qSM12(500) 
COMMON/OLD/POLD (IOO1),COLD1(1001),C0LD2(1001) 
COMMON/BLK1/NODEL(500,3),XNOD(1001) 
COMHOH/OSMOT/A 1,B1,CI,A2,B2,C2 
COMMON/TISDAT/AK .DEFF1, AL1, PHI 1, PHIT, RET1, SIGT1, BETA1, 
# DEFF2,AL2,PHI2,RET2,SIGT2,BETA2 
COMMON/CAPDAT/PC,CREF 
COMMON/WALL/DLC,DLV,DLM,DDC1,DDV1,DDM1,PDC,PDV,PDM,PIDC1,PIDV1, 
#PIDM1.PIDC2.PIDV2.PIDM2.SIGCl.SIGVl.SIGMl,CDC1,CDV1,CDM1,DH, 
# DDC2,DDV2,DDM2,SIGC2,SIGV2,SIGM2,CDC2,CDV2,CDM2 
DIMENSION GAUS(4),W(4),B(3) 
DATA NGAUS/4/ 
DATA W/.3478S484S137454D0,.6521451S4862546D0, 
#.6S2145154862546D0,.347854845137454D0/ 
DATA GAUS/-.861136311594053D0.-.339981043584856D0, 
#.339981043584856D0,.861136311594053D0/ 

C 
C FIRST, CALCULATE THE NET FLOWS ACROSS THE ARTERIOLAR WALL 
C 

PIC1=C0LD1(1)*(A1+C0LD1(1)*(B1+C0LD1(1)*C1)) 
PIC2=C0LD2(1)*(A2+C0LD2(1)*(B2+C0LD2(1)*C2)) 
qFC=DH*AK*PC/DEFFl*DLC*(POLD(l)-PDC-SIGCl*(PICl-PIDCl)-
# SIGC2*(PIC2-PIDC2)) 
qCCl=BETAl*QFC*COLDl(1)*RET1 
QCC2=BETA2*qFC*C0LD2(1)+RET2 
PECC1=(1.D0-SIGC1)*QFC/(DDC1*DH) 
IF(PECC1.GT.100.D0)G0 TO 110 
IF(PECC1.LT.-100.D0)G0 TO 120 
TEST=1-DO-DEXP(-PECCl) 
IF(DABS(TEST)-LT.1.D-10)G0 TO 130 
qSCl=(l.DO-SIGCl)*QFC*(COLDl(l)-CDCl*DEXP(-PECCl))/TEST 
GO TO 101 

110 qSCl=qFC*(l.DO-SIGCl)*COLDl(l) 
GO TO 101 

120 QSCl=(l.DO-SIGCl)*CDCl*qFC 
GO TO 101 

130 qSCl=DH*DDCl*(COLDl(l)-CDCl) 
C 
101 PECC2=(1.D0-SIGC2)*QFC/(DDC2*DH) 

• IF(PECC2.GT.100.D0)C-0 TO 111 
IF(PECC2.LT.-100.D0)G0 TO 121 
TEST=1.DO-DEXP(-PECC2) 
IF(DABS(TEST).LT.1.D-10)G0 TO 131 
qSC2=(1.D0-SIGC2)*qFC*(C0LD2(1)-CDC2+DEXP(-PECC2))/TEST 
GO TO 200 

111 qSC2=qFC*(1.D0-SIGC2)*C0LD2(1) 
GO TO 200 

121 qSC2=(l.D0-SIGC2)*CDC2*QFC 
GO TO 200 

131 qSC2=DH*DDC2*(C0LD2(l)-CDC2) 
C 
C NOW FOR THE VENULAR WALL 
C 
200 N=NEX*2+1 

PIV1=COLD1(N)*(A1+COLD1(N)*(B1+COLD1(N)*C1)) 
PIV2=C0LD2(N)*(A2+C0LD2(N)*(B2+C0LD2(N)*C2)) 
qFV=DH*AK*PC/DEFFl*DLV*(POLD(N)-PDV-SIGVl*(PIVl-PIDVl) 
# SIGV2*(PIV2-PIDV2)) 
qCVl=BETAl*QFV*COLDl(N)*RETl 
QCV2=BETA2*QFV*C0LD2(N)*RET2 
PECV1=(1.D0-SIGV1)*QFV/(DDV1*DH) 
IF(PECV1.GT.100.D0)G0 TO 210 
IF(PECV1.LT.-100.D0)G0 TO 220 
TEST=1.DO-DEXP(-PECV1) 
IF(DABS(TEST).LT.1.D-10)G0 TO 230 
qSVl=(l.DO-SIGVl)*qFV*(COLDl(N)-CDVl*DEXP(-PECVl))/TEST 
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GO TO 201 
210 qSVl=QFV*(l.D0-SIGVl)*C01Dl(K) 

GO TO 201 
220 QSV1=(1.DO-SIGV1)*CDV1*OFV 

GO TO 201 
230 QSV1=DH*DDV1*(C0LD1(N)-CDV1) 
C 
201 PECV2=(1.D0-SIGV2)*QFV/(DDV2*DH) 

IF(PECV2.GT.100.D0)G0 TO 211 
IFCPECV2.LT.-100.DO)GO TO 221 
TEST=1.DO-DEXP(-PECV2) 
IF(DABS(TEST).LT.1.D-10)G0 TO 231 
QSV2=(1.D0-SIGV2)*QFV*(C0LD2(N)-CDV2*DEXP(-PECV2))/TEST 
GO TO 300 

211 QSV2=QFV*(1.D0-SIGV2)*C0LD2(H) 
GO TO 300 

221 QSV2=(1.D0-SIGV2)*CDV2*QFV 
GO TO 300 

231 qSV2=DH*DDV2*(C0LD2(N)-CDV2) 
C 
C AND FINALLY, THE MESOTHELIAL LAYER 
C 
C CONSIDER THE MESOTHELIAL WALL, ELEMENT BY ELEMENT. 
C 
300 qSHl=O.DO 

qCMl=O.DO 
qSM2=0.D0 
qCM2=0.D0 
qFM=O.DO 

c 
DO 401 1=1,NEX 
QSM11(I)=0.D0 
qFHl(I)=O.DO 
qCMll(I)=O.DO 
qSM12(I)=0.D0 
qCM12(I)=0.D0 

401 CONTINUE 
C 

DO 1 II=1,NGAUS 
S=GAUS(II) 

DO 2 1=1,NEX 
X1=XN0D(NODEL(1,1)) 
X2=XN0D(N0DEL(I,2)) 
X3=XN0D(N0DEL(I,3)) 
S2=(2.D0*X2-(X1+X3))/(X3-Xl) 

C 
B(1)=(S-S2)*(S-1.D0)/(2.D0*(S2+1.D0)) 
B(2)=(S+1.D0)*(S-1.D0)/(S2*S2-1.D0) 
B(3)=(S+1.D0)*(S-S2)/(2.D0*(1.D0-S2)) 
DX=(X3-X1)*.5D0 

C 
C CALCULATE C(S), PI(S), AND P(S) 
C 

CS1=0.D0 
CS2=0.D0 
PS=O.DO 
DO 3 IT=1,3 
CS1=CS1+C0LD1(N0DEL(I,IT))*B(IT) 
CS2=CS2+C0LD2(NODEL(I,IT))*B(IT) 
PS=PS+POLD(NODEL(I,IT))*B(IT) 

3 CONTINUE 
PIS1=CS1*(A1+CS1*(B1+CS1*C1)) 
PIS2=CS2*(A2+CS2*(B2+CS2*C2)) 

C 
C CALCULATE THE FLUXES 
C 

FL0W=AK*PC/DEFF1*DLM*(PS-PDM-SIGM1*(PIS1-PIDM1) 
# - SIGM2*(PIS2-PIDK2))*W(II)*DX 

qFM=QFM+FL01-J 
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QFH1(I)=QFM1(I)+FL0W/(X3-X1) 
qCMl=qCMl+FLOW*CSl*BETAl*RETl 
QCM2=QCK2+FL0W*CS2*BETA2*RET2 
qCMll(I)=qCMll(I)+FL0W*CSl*BETAl/(X3-Xl)*RETl 
qCH12(I)=QCH12(I)+FL0W*CS2*BETA2/(X3-Xl)*RET2 

C 
C DETERMINE WHICH FORM OF THE NONLINEAR FLUX EqN. IS TO BE USED. 
C 

QS=FLOW/(W(II)*DX) 
PECMl=qS*(l.DO-SIGMl)/DDMl 
IF(PECMl.GT.100.DO)GO TO 410 
IF(PECM1.LT.-100.DO)GO TO 420 
TESTM=1.DO-DEXP(-PECM1) 
IF(DABS(TESTM).LT.1.D-10)G0 TO 430 

C 
C USE THE FULL EXPRESSION C 

C 

SFL0W1=FL0W*(1.D0-SIGM1)*(CS1-CDM1*DEXP(-PECM1))/TESTH qSMl=qSMl+SFLOWl 

QSMll(I)=QSM11(I)+SFL0W1/(X3-X1) 
GO TO 500 

410 SFLOW1=FLOW*(1.DO-SIGM1)*CS1 
qSMl=qSMl+SFLOWl 
qSMll(I)=QSMll(I)+SFL0Wl/(X3-Xl) 
GO TO 500 

C 
420 SFL0W1=FL0W*(1.D0-SIGM1)*CDM1 

qSMl=qSMl+SFLOWl 
qSMl1(I)=QSM11(I)+SFL0W1/(X3-X1) 
GO TO 500 

C 
430 SFL0W1=DDM1*(CS1-CDM1)*DX*W(II) 

QSMl=qSHl+SFLOWl 
qSMll(I)=qSHll(I)+SFL0Wl/(X3-Xl) 

c 
500 PECM2=qS*(l.D0-SIGM2)/DDM2 

IF(PECM2.GT.100.D0)G0 TO 510 
IF(PECH2.LT.-100.DO)GO TO 520 
TESTM=1.DO-DEXP(-PECM2) 
IF(DABS(TESTM).LT.1.D-10)G0 TO 530 

C 
C USE THE FULL EXPRESSION 
C 

SFL0W2=FL0W*(1.DO-SIGM2)*(CS2-CDM2*DEXP(-PECH2))/TESTM 
qSM2=qSM2+SFL0W2 
qSM12(I)=QSM12(I)+SFL0W2/(X3-X1) 
GO TO 2 

c 
510 SFLOW2=FL0W*(l.D0-SIGM2)*CS2 

qSM2=qSM2+SFL0W2 
QSM12(I)=qSM12(I)+SFL0W2/(X3-X1) 
GO TO 2 

C 
520 SFL0W2=FL0W*(1.D0-SIGM2)+CDH2 

qSM2=qSM2+SFL0W2 
qSM12 CI)=qSM12(I)+SFL0W2/(X3-X1) 
GO TO 2 

C 
530 SFL0W2=DDH2*(CS2-CDM2)*DX*W C11) 

QSM2=qSM2+SFL0W2 
QSM12(I)=0SM12(I)+SFL0W2/(X3-X1) 

C 
2 CONTINUE 
1 CONTINUE 

RETURN 
END 
SUBROUTINE GRID(NEX) 
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C THIS SUBROUTINE CALCULATES THE SPATIAL LOCATION OF THE NODES 
C FOR EACH ELEMENT, ALONG WITH THE NODES ASSOCIATED WITH A 
C GIVEN ELEMENT. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
COMMON/BLK1/NODEL(500,3), XNOD(1001) 
C0MM0N/BLK2/DX(1001) 

C 
K=l 
DO 1 1=1,NEX 
N0DEL(I,1)=K 
N0DEL(I,2)=K+1 
N0DEL(I,3)=K+2 
K=K+2 

1 CONTINUE 
C 

X=0.D0 
NP=2*NEX+1 
DO 2 1=1,NP 
X=X+DX(I) 
XHOD(I)=X 

2 CONTINUE 
RETURN 
END 

C 
SUBROUTINE VSTAR(NEX,IND) 

C 

C THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO ACCOUNT FOR THE 
C STARLING BOUNDARY CONDITION AT THE VENULAR WALL. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
C0MM0N/BLK1/N0DEL(500,3), XNOD(lOOl) 
COMMON/FLUMAT/AF(20000) 
C0MM0N/FLUB/BF(1001) 
COMMON/OLD/POLD(1001).COLDl(lOOl),C0LD2(100l) 
COMMON/WALL/DLC,DLV.DLM.DDCl,DDV1,DDM1,PDC,PDV,PDM.PIDCl.PIDVl, 
#PIDM1.PIDC2.PIDV2.PIDM2,SIGC1,SIGV1.SIGMl,CDC1,CDV1,CDH1,DH, 
# DDC2,DDV2,DDM2,SIGC2,SIGV2,SIGM2,CDC2,CDV2,CDM2 
C0MM0N/0SM0T/A1,B1,C1,A2,B2,C2 

C 
. M=NEX*2+1 
LUB=2 
LP=3*LUB 
IF(IHD.EQ.1)G0 TO 100 
K=LP*M+M-LUB 
AF(K)=AF(K)+ DLV 
GO TO 900 

C 
100 PI1=C0LD1(M)*(A1+C0LD1(M)*(B1+C0LD1(M)*C1)) 

PI2=C0LD2(M)*(A2+C0LD2(M)*(B2+C0LD2(M)*C2)) 
BF(M)=BF(M)+DLV*(PDV+SIGV1*(PI1-PIDV1)+SIGV2*(PI2-PIDV2)) 

C 
900 RETURN 

END 
SUBROUTINE ASTAR(NEX,IND) 

C 
C THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO ACCOUNT FOR THE 
C STARLING BOUNDARY CONDITION AT THE ARTERIOLAR WALL. 
C 

IMPLICIT REAL*8(A-E,0-Z) 
COMMON/BLK1/NODEL(500,3), XNOD(lOOl) 
C0HM0N/FLUMAT/AF(20000) 
COMMON/FLUB/BF(1001) 
COMMON/OLD/POLD(1001),C0LD1(1001),C0LD2(1001) 
COMMON/WALL/DLC,DLV,DLM.DDCl,DDV1.DDM1,PDC,PDV,PDM,PIDCl,PIDVl, 
#PIDM1,PIDC2,PIDV2,PIDM2,SIGC1,SIGV1,SIGMl,CDC1,CDV1,CDH1,DH, 
# DDC2,DDV2,DDM2,SIGC2.SIGV2,SIGM2,CDC2,CDV2,CDM2 
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C0MM0N/0SM0T/A1,Bl,C1,A2,B2,C2 
C 

LUB=2 
LP=3*LUB 
IF(IND.EQ.1)G0 TO 100 
K=LP+1-LUB 
AF(K)=AF(K)+ DLC 
GO TO 900 

C 
100 PI1=C0LD1(1)*(A1+C0LD1(1)*(B1+C0LD1(1)*C1)) 

PI2=C0LD2(1)*(A2+C0LD2(1)*(B2+C0LD2(1)*C2)) 
BF(1)=BF(1)+DLC*(PDC+SIGC1*(PI1-PIDC1)+SIGC2*(PI2-PIDC2)) 

C 
900 RETURN 

END 
SUBROUTINE PATART(NEX) 

C 
C THIS SUBROUTINE ADJUSTS THE AS AND BS VECTORS TO ACCOUNT FOR THE 
C PATLAK BOUNDARY CONDITION AT THE ARTERIOLAR WALL. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
C0MM0N/BLK1/N0DEL(500,3), XNOD(lOOl) 
COMMON/SOLMAT/AS1(20000),AS2(20000) 
COMMON/SOLB/BSK1001) ,BS2(100l) 
C0MM0N/0LD/P0LD(1001),C0LD1(1001),C0LD2(1001) 
COMMON/TISDAT/AK,DEFF1,ALPHLl,PHI1.PHIT.RETl,SIGTl,BETAl. 
#DEFF2,ALPHL2,PHI2,RET2,SIGT2,BETA2 
COMMON/CAPDAT/PC,CREF 
COMMON/WALL/DLC,DLV,DLM,DDC1,DDV1,DDM1,PDC,PDV,PDM,PIDC1. 
#PIDV1,PIDMl.PIDC2.PIDV2.PIDM2.SIGCl,SIGVl,SIGMl,CDC1,CDV1,CDM1, 
#DH,DDC2.DDV2,DDM2,SIGC2,SIGV2,SIGM2,CDC2,CDV2,COM2 
COMMON/OSMOT/Al.B1,C1,A2,B2,C2 

C 
LUB=2 
LP=3*LUB 
K=LP+1-LUB 

C 
PI1=C0LD1(1)*(A1+C0LD1(1J*(B1+C0LD1(1)*C1)) 
PI2=C0LD2(1)*(A2+C0LD2(1) *(B2+C0LD2(1)*C2)) 
QART=AK*PC/DEFF1*DLC*(P0LD(1)-PDC-SIGC1*(PI1-PIDC1)-
#SIGC2*(PI2-PIDC2)) 
PEC1=(1.D0-SIGC1)/DDC1*QART 

C 
C DETERMINE WHICH FORM OF THE FLUX EXPRESSION APPLIES 
C 

IF(PEC1.GT.100.0D0)G0 TO 100 
IF(PEC1.LT.-100.DO)GO TO 200 
TEST=1.DO-DEXP(-PECl) 
IFCDABS(TEST).LT.1.D-10)G0 TO 300 

C 
AS1(K)=AS1(K)-QART*(RET1*BETA1-(1.D0-SIGC1)/TEST) 
BS1(1)=BS1(1)+(1-DO-SIGC1)*QART*CDC1*DEXP(-PEC1)/TEST 
GO TO 900 

C 
100 AS1CK)=AS1(K)-QART*(BETA1*RET1-(1.D0-SIGC1)) 

GO TO 900 
C 
200 AS1(K)=AS1(K)-QART*BETA1*RET1 

BS1(1)=BS1(1)-(1.D0-SIGC1)*QART*CDC1 
GO TO 900 

C 
300 AS1CK)=AS1CK)-QART*BETA1*RET1+DDC1 

BS1(1)=BS1(1)+DDC1*CDC1 
C 
900 PEC2=(1.D0-SIGC2)/DDC2*QART 
C 
C DETERMINE WHICH FORM OF THE FLUX EXPRESSION APPLIES 
C 

IF(PEC2.GT.lOO.OD0)G0 TO 101 
IF(PEC2.LT.-100.D0)G0 TO 201 
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TEST=1.DO-DEXP(-PEC2) 
IF(DABS(TEST).LT.1.D-10)G0 TO 301 

C 
AS2(K)=AS2(K)-QART*(RET2*BETA2-(1.D0-SIGC2)/TEST) 
BS2(1)=BS2(1)+(1.D0-SIGC2)*QART*CDC2*DEXP(-PEC2)/TEST 
GO TO 901 

C 
101 AS2(K)=AS2(K)-QART*(BETA2*RET2-(1.D0-SIGC2)) 

GO TO 901 
C 
201 AS2(K)=AS2(K)-QART*BETA2*RET2 

BS2(1)=BS2(1)-(1.D0-SIGC2)*qART*CDC2 
GO TO 901 

C 
301 AS2(K)=AS2(K)-QART*BETA2*RET2+DDC2 

BS2(1)=BS2(1)+DDC2*CDC2 
C 
C 
901 RETURN 

END 
SUBROUTINE PATVEN(NEX) 

C 
C THIS SUBROUTINE ADJUSTS THE AS AND BS VECTORS TO ACCOUNT FOR THE 
C PATLAK BOUNDARY CONDITION AT THE VENULAR WALL. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
C0MM0N/BLK1/N0DEL(500,3), XNOD(lOOl) 
C0MM0N/S0LMAT/AS1(20000),AS2(20000) 
C0MM0N/S0LB/BS1(1001),BS2(100l) 
C0MM0N/0LD/P0LD(1001),C0LD1(1001),C0LD2(1001) 
COMMON/TISDAT/AK,DEFF1.ALPHLl,PHI1.PHIT.RETl,SIGTl,BETAl, 
#DEFF2,ALPHL2,PHI2,RET2,SIGT2,BETA2 
COMMON/CAPDAT/PC CREF 
COMMON/WALL/DLC,DLV,DLM,DDC1,DDV1,DDM1,PDC,PDV,PDM,P IDC1, 
#PIDV1,PIDMl.PIDC2.PIDV2.PIDM2.SIGC1.SIGVl,SIGMl,CDC1.CDV1,CDM1, 
#DH,DDC2,DDV2.DDM2,SIGC2,SIGV2,SIGM2,CDC2,CDV2,CDM2 
C0MM0N/0SM0T/A1,BlfCl,A2,B2,C2 C 
LUB=2 
LP=3*LUB 
NP=2*NEX+1 
K=LP*NP+NP-LUB 

C 
PI1=C0LD1(NP)*(A1+C0LD1(NP)*(B1+C0LD1(NP)*C1)) 
PI2=C0LD2(NP)*(A2+C0LD2(NP)*(B2+C0LD2(NP)*C2)) 
QART=AK*PC/DEFF1*DLV*(P0LD(NP)-PDV-SIGV1*(PI1-PIDV1)-
#SIGV2*(PI2-PIDV2)) 
PEC1=(1.D0-SIGV1)/DDV1*QART 

C 
C DETERMINE WHICH FORM OF THE FLUX EXPRESSION APPLIES 
C 

IF(PEC1.GT.100.0DO)GO TO 100 
IF(PEC1.LT.-100.DO)GO TO 200 
TEST=1.DO-DEXP(-PEC1) 
IF(DABS(TEST).LT.1.D-10)G0 TO 300 

C 
AS1(K)=AS1(K)-QART*(RET1*BETA1-(1.D0-SIGV1)/TEST) 
BS1(NP)=BS1(NP)+(1.D0-SIGV1)*QART*CDV1*DEXP(-PEC1)/TEST 
GO TO 900 

C 
100 AS1(K)=AS1(K)-QART*(BETA1+RET1-(1.D0-SIGV1)) 

GO TO 900 
C 
200 AS1(K)=AS1(K)-QART*BETA1*RET1 

BS1(NP)=BS1(NP)-(1.D0-SIGV1)*QART*CDV1 
GO TO 900 

C 
300 AS1(K)=AS1(K)-QART*BETA1*RET1+DDV1 

BS1(NP)=BS1(NP)+DDV1*CDV1 
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c 
900 PEC2=(1.D0-SIGV2)/DDV2*QART 
C 
C DETERMINE WHICH FORM OF THE FLUX EXPRESSION APPLIES 
C 

IF(PEC2.GT.100.0DO)GO TO 101 
IF(PEC2.LT.-100.D0)G0 TO 201 
TEST=1.DO-DEXP(-PEC2) 
IF(DABS(TEST).LT.1.D-10)G0 TO 301 

C 
AS2(K)=AS2(K)-QART*(RET2*BETA2-(1.D0-SIGV2)/TEST) 
BS2(NP)=BS2(NP)+(1.D0-SIGV2)*QART*CDV2*DEXP(-PEC2)/TEST 
GO TO 901 

C 
101 AS2(K)=AS2(K)-QART*(BETA2*RET2-(1.D0-SIGV2)) 

GO TO 901 
C 
201 AS2(K)=AS2(K)-QART*BETA2*RET2 

BS2(NP)=BS2(NP)-(l.D0-SIGV2)*QART*CDV2 
GO TO 901 

C 
301 AS2(K)=AS2(K)-QART*BETA2*RET2+DDV2 

BS2(NP)=BS2(NP)+DDV2*CDV2 
C 
901 RETURN 

END 
SUBROUTINE MATPLY(A,A1,B,C,NP) 

C 
C THIS SUBROUTINE MULTIPLIES A MATRIX A BY A VECTOR B AND SCALAR Al 
C TO GIVE VECTOR C. MATRIX A IS STORED AS A VECTOR, WHERE MATRIX 
C ELEMENT A(I,J) IS STORED AS A(IJ), IJ=3*LUB*J+I-LUB, AND WHERE 
C LUB IS THE NUMBER OF OFF DIAGONAL BANDS. FOR THIS SUBROUTINE, 
C IT IS ASSUMED THAT THE BANDWIDTH IS 5, SO THAT LUB=2. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION A(20000), B(NP), C(NP) 
LUB=2 
LP=3*LUB 

C 
DO 1 1=1,NP 

C(I)=0.D0 
1 CONTINUE 
C 

K=2 
DO 2 1=1,2 
K=K+1 

DO 3 J=1,K 
IJ=LP*J+I-LUB 
C(I)=C(I)+A(IJ)*A1*B(J) 

3 CONTINUE 
2 CONTINUE 
C 

NPM=NP-2 
K=0 
DO 4 I=3,NPM 
K=K+1 
KP=K+4 

DO 5 J=K,KP 
IJ=J*LP+I-LUB 

C(I)=C(I)+A(IJ)*B(J)*A1 
5 CONTINUE 
4 CONTINUE 
C 

NPM=NP-1 
K=NP-4 
DO 6 I=NPM,NP 
K=K+1 

DO 7 J=K,NP 
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IJ=LP*J+I-LUB 
C(I)=C(I)+A(IJ)*A1*B(J) 

7 CONTINUE 
6 CONTINUE 
C 

RETURN 
END 
SUBROUTINE SETMAT(NEX,IND,PEI,IPEC1,VMAX1,PE2,IPEC2,VMAX2) 

C 
C THIS SUBROUTINE INITIALIZES THE VARIOUS VECTORS ASSOCIATED 
C WITH SOLUTE AND FLUID TRANSPORT EQUATIONS, AF(K), BF(I), AS1(K), 
C AS2(I),BS1(I), BS2(I). 
C 

IMPLICIT REAL*8(A-H,0-Z) 
COMMON/BLK1/NODEL(500,3).XNOD(lOOl) 
COMMON/FLUMAT/AF(20000) 
C0MM0N/0LD/P0LD(1001).COLDl(lOOl),C0LD2(1001) 
COMMON/SOLB/BSKlOOl) ,BS2(100l) 
COMMON/FLUB/BF(1001) 
C0MM0N/S0LMAT/AS1(20000),AS2(20000) 
COMMON/OSMOT/A1,B1,C1,A2,B2,C2 
COMMON/TISDAT/AK,DEFF1,AL1,PHI1.PHIT.RETl.SIGTl ,BETA1, 
#DEFF2,AL2,PHI2,RET2,SIGT2,BETA2 
COMMON/CAPDAT/PC CREF 
COMMON/WALL/DLC,DLV,DLM.DDCl.DDV1,DDM1,PDC.PDV,PDM,PIDCl, 
#PIDV1.PIDMl.PIDC2.PIDV2.PIDM2.SIGC1.SIGVl,SIGMl.CDC1,CDV1,CDM1, 
#DH.DDC2,DDV2.DDM2.SIGC2,SIGV2,SIGM2,CDC2,CDV2,CDH2 
COMMON/TIME/T(20000) 
C0MM0N/MAXDAT/DMX1,DMX2,IDISP1,IDISP2 

C 
DIMENSION GAUS(4),W(4),B(3),DB(3) 
DATA NGAUS/4/ 
DATA W/.347854845137454D0,.6S214S1S4862546D0, 
#.652145154862546D0,.347854845137454D0/ 
DATA GAUS/-.861136311594053D0,-.339981043584856D0, 
#.339981043584856D0,.861136311594053D0/ 

C DATA GAUS/ 
C DATA W/ 
C DATA NGAUS/3/ 
C DATA GAUS/ 
C . DATA W/ 

DMX1=0.D0 
DMX2=0.D0 
ALPHA=AK*PC/DEFF1 
PE1=0.D0 
VMAX1=0.D0 
PE2=0.D0 
VMAX2=0.D0 

C 
c 
C ZERO THE APPROPRIATE ARRAY AND INITIALIZE 
C 

IF(IND.EQ.1)G0 TO 800 
IF(IND.EQ.2)G0 TO 900 
IF(IND.Eq.3)G0 TO 950 

C 
C ZERO THE AF VECTOR 
C 

DO 700 1=1,20000 
AF(I)=O.DO 

700 CONTINUE 
GO TO 100 

C 
C ZERO THE BF VECTOR 
C 
800 DO 801 1=1,1001 

BF(I)=O.DO 
801 CONTINUE 

GO TO 100 
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C ZERO THE T MATRIX 
C 
950 DO 951 1=1,20000 

T(I)=O.DO 
951 CONTINUE 

GO TO 100 
C 
C ZERO THE AS AND BS VECTORS 
C 
900 DO 901 1=1,20000 

AS1(I)=0.D0 
AS2(I)=0.D0 

901 CONTINUE 
C 

DO 902 1=1,1001 
BS1(I)=0.D0 
BS2(I)=0.D0 

902 CONTINUE 
C 
C BEGIN THE GAUSS INTEGRATION, ELEMENT BY ELEMENT 
C 
100 LUB=2 

LP=3*LUB 
C 
C EVALUATE THE INTEGRAND AT THE APPROPRIATE QUADRATURE POINT, S. 
C 

DO 200 II=1,NGAUS 
S=GAUS(II) 

C 
C INITIALIZE THE APPROPRIATE ARRAY, ELEMENT BY ELEMENT. 
C 

DO 300 1=1,NEX 
C 
C CALCULATE VALUE OF BASIS FUNCTIONS AND DERIVATIVES AT THE 
C QUADRATURE POINT 
C 

X1=XN0D(N0DEL(I,1)) 
X2=XN0D(N0DEL(I,2)) 
X3=XN0D(N0DEL(I,3)) 

S2=(2.D0*X2-(X1+X3))/(X3-X1) 
C 

B(1)=(S-S2)*(S-1.D0)/(2.D0*(S2+1.D0)) 
B(2)=(S+1.D0)*(S-1.D0)/(S2*S2-1.D0) 
B(3)=(S+1.D0)*(S-S2)/(2.D0*(1.D0-S2)) 
DB(l)=(2.D0*S-S2-l.D0)/(2.D0*(S2+l.D0)) 
DB(2)=2.D0*S/(S2*S2-1.D0) 
DB(3)=(2.D0*S-S2+1.D0)/(2.D0*(1.D0-S2)) 

C 
DX=(X3-X1)*.5D0 

C 
C CALCULATE THE T VECTOR 
C 

IF(IND.NE.3) GO TO 101 
DO 952 M=l,3 
MM=NODEL(I,M) 

DO 953 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+MM-LUB 
T(K)=T(K)+B(M)*B(N)*DX*W(II) 

953 CONTINUE 
952 CONTINUE 

GO TO 300 
C 
C NOW CALCULATE Cl(S), DC1/DS, PIl(S), DPI1/DS,C2(S),... 
C 

101 CS1=0.D0 
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CS2=0.D0 
DCS1=0.D0 
DCS2=0.D0 
DO 301 IT=1,3 
CS1=CS1+C0LD1(N0DEL(I,IT))*B(IT) 
CS2=CS2+C0LD2(N0DEL(I,IT))*B(IT) 
DCS1=DCS1+C0LD1(NODEL(I,IT))*DB(IT) 
DCS2=DCS2+C0LD2(NODEL(I,IT))*DB(IT) 

301 CONTINUE 
C 

PIS1=CS1*(A1+CS1*(B1+CS1*C1)) 
PIS2=CS2* ( A2+CS2* (B2+CS2*C2)) 
DPIS2= (A2+2.D0*B2*CS2+3.D0*CS2*CS2*C2)*DCS2 
DPIS1=(A1+2.D0*B1*CS1+3.D0*CS1*CS1*C1)*DCS1 

C 
C DETERMINE WHICH VECTOR IS TO BE INITIALIZED 
C 

IF(IND.Eq.l)GO TO 500 
IF(IND.EQ.2)G0 TO 600 

C 
C INITIALIZE THE FLUID VECTOR 
C 

DO 401 M=l,3 
MH=NODEL(I,M) 

DO 402 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+HH-LUB 
AF(K)=AF(K) + (B(M)*B(N)*2.D0*DLM/DH*DX+DB(M)*DB(N)/DX)*W(II) 

402 CONTINUE 
401 CONTINUE 

GO TO 300 

C 
C INITIALIZE THE FLUID B VECTOR 
C 

500 DO 501 M=l,3 
MH=HODEL(I,H) 
BF(MM)=BF(MH)+(DB(M)*(DPIS1*SIGT1+DPIS2*SIGT2)/DX+B(M)* 
#2.D0*DLM/DH*DX*(PDM+SIGM1*(PIS1 - PIDH1)+SIGM2*(PIS2-PIDM2) 
#))*W(II) 

501 CONTINUE 
GO TO 300 

C 
C INITIALIZE THE SOLUTE VECTORS, BS AND AS. fIRST CALCULATE VS1.VS2 
C QHES, Aim TEE DISPERSION COEFFICIENTS, DISP1 AND DISP2. 
C 
600 DPS=O.DO 

PS=O.DO 
DO 601 IT=1,3 
DPS=DPS+POLD(NODEL(I,IT))*DB(IT) 
PS=PS+POLD(NODEL(I,IT))*B(IT) 

601 CONTINUE 
C 

VS1=-ALPEA*(DPS-SIGT1*DPIS1-SIGT2*DPIS2)/DX*RET1*BETA1/PHI1 
VS2=-ALPHA*(DPS-SIGT1*DPIS1-SIGT2*DPIS2)/DX*RET2*BETA2/PHI2 
QFHES=ALPEA*DLM*(PS-PDM-SIGH1*(PIS1-PIDK1)-SIGM2*(PIS2-PIDM2)) 
DISP1=DABS(VS1)*AL1+1.D0 
IF(DISPl.LT.DMXl) GO TO 655 
DMX1=DISP1 
IDISP1=I 

655 DISP2=DABS(VS2)*AL2+DEFF2/DEFF1 
IF(DISP2.LT.DMX2) GO TO 656 
DHX2=DISP2 
IDISP2=I 

C 
C CALCULATE TEE MAXIMUM LOCAL SOLUTE VELOCITY, VELMAX 
C 
656 IF(DABS(CSl).LT.l.D-5) VELS1=DABS(VS1)*PBI1 

LF(DABS(CS1).GT.l.D-5) VELS1=DABS(VS1-(DISP1*DCS1/DX)/CS1)*PEI1 
IF(DAES(CS2).LT.l.D-5) VELS2=DABS(VS2)*PHI2 
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IF(DABS(CS2).GT.1.D-5) VELS2=DABS(YS2-(DISP2+DCS2/DX)/CS2)*PHI2 
IF(.5D0*VELS1/DX.GT.VMAX1) VMAX1=.5D0*VELS1/DX 
IF(.5D0+VELS2/DX.GT.VMAX2) VMAX2=.5DO*VELS2/DX 

C 
C CALCULATE THE GRID PECLET NUMBER, AND SEE IF IT EXCEEDS 
C THE LIMIT 
C 

PEST1=DABS(VS1)*(X3-X1)/DISP1 
IF(PEST1.LT.PE1)G0 TO 609 
PE1=PEST1 
IPEC1=I 

609 PEST2=DABS(VS2)*(X3-X1)/DISP2 
IF(PEST2.LT.PE2)G0 TO 610 
PE2=PEST2 
IPEC2=I 

C 
C NOW DETERMINE WHICH FORM OF THE NONLINEAR FLUX EXPRESSION 
C IS TO BE USED TO CALCULATE SOLUTE FLUX ACROSS MESOTHELIUM. 
C 
C 
610 PEC1=QFMES*(1.D0-SIGM1)/DDM1 

IF(PEC1.GT.100.D0)G0 TO 611 
IF(PEC1.LT.-100.D0)G0 TO 620 
TEST=1.DO-DEXP(-PEC1) 
IF(DABS(TEST).LT.1.D-10)G0 TO 630 

C CASE 1: USE THE FULL NONLINEAR FLUX EXPRESSION 
C 

DO 602 M=l,3 
MM=NODEL(I,M) 

DO 603 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+MM-LUB 
AS1(K)=AS1(K)+(B(M)*DB(N)*VS1*PHI1+ 

# DB(M)*DB(N)*DISP1*PBT1/DX 
# +B (M) *B (N)*2.DO+QFHES/TEST/DH*(1.DO-SIGMl)*DX 
# -2.D0/DH*QFMES*RET1*BETA1*B(M)*B(N)*DX)*W(II) 

603 CONTINUE 
BS1(MH)=BS1(MM)+ 

# B(M)* 2.DO/DH*(1.DO-SIGM1)*QFHES*CDM1*DEXP C-PEC1)/TEST 
# *DX*WCII) 

602- CONTINUE 
GO TO 640 

C 
C CASE 2: PEC APPROACHES INFINITY 
C 
611 DO 612 M=l,3 

MM=NODEL(I,M) 
DO 613 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+MM-LUB 
AS1(K)=AS1(K)+ 

# (B(M)*DB(N)*VS1*PHI1+DBCM)*DB(N)*PHI1*DISP1/DX 
# +B(M)*B(N)*2.D0/DH*Cl.DO-SIGMl)*QFMES*DX 
# -QFMES*RET1*BETA1*B(M)*B(N)*DX*2.D0/DH)*W(II) 

613 CONTINUE 
612 CONTINUE 

GO TO 640 
C 
C CASE 3: -PEC APPROACHES INFINITY 

C 
620 DO 621 M=l,3 

MH=NODEL(I,M) 
DO 622 N=l,3 
NH=NODEL(I,N) 
K=LP*NH+MM-LUB 
AS1(K)=AS1(K)+ 

# (B(M)*DB(N)*VS1*PHI1+DB(M)*DB(N)*PHI1*DISP1/DX 
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# -2.D0/DH*BETAl*RETl*qFMES*B(N)*B(M)*DX)*W(II) 
622 CONTINUE 

BSl(MM)=BSl(MM)-2.D0/DH*(l.D0-SIGMl)*qFMES*CDMl*DX*W(II)*B(H) 
621 CONTINUE 

GO TO 640 
C 
C CASE 4: PEC APPROACHES 0 
C 
630 DO 631 M=l,3 

MM=NODEL(I,M) 
DO 632 N=l,3 
NN=HODEL(I,N) 
K=LP*NN+MM-LUB 
AS1(K)=AS1(K)+ 

# (B(M)*DB(N)*VS1*PHI1+DB(M)*DB(N)*PHI1*DISP1/DX 
# +2.D0/DH*DDM1*B(M)*B(N)*DX 
# -2.D0/DH*RETl*BETAl*DX*B(M)*B(N)*qFMES)*V(II) 

632 CONTINUE 
BS1(MM)=BS1(MM)+2.D0/DH*DDM1*B(M)*CDK1*DX*W(II) 

631 CONTINUE 
C 
640 PEC2=qFMES*(l.D0-SIGM2)/DDH2 

IF(PEC2.GT.100.D0)G0 TO 650 
IF(PEC2.LT.-100.D0)G0 TO 660 
TEST=1.DO-DEXP(-PEC2) 
IF(DABS(TEST).LT.1.D-10)G0 TO 670 

C 
C CASE 1: USE THE FULL NONLINEAR FLUX EXPRESSION 
C 

DO 641 M=l,3 
KM=NODEL(I,H) 

DO 642 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+MH-LUB 
AS2(K)=AS2(K) + (B (M) *DB (H)*VS2*PHI2+ 

# DB(M)*DB(N)*DISP2*PHI2/DX 
# +B(M)*B(N)*2.DO*qFMES/TEST/DH*(1.D0-SIGM2)*DX 
# -2.D0/DH*qFMES*RET2+BETA2 *B (M) *B ( N ) *DX ) *W (11) 

642 CONTINUE 
BS2(MH)=BS2(MH)+ 
# B(M)*2.D0/DH*(l.D0-SIGM2)*qFHES*CDM2*DEXP(-PEC2)/TEST 
# *DX*W(II) 

641 • CONTINUE 
GO TO 300 

C 
C CASE 2: PEC APPROACHES INFINITY 
C 
650 DO 651 M=l,3 

KK=NODEL(I,H) 
DO 652 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+MM-LUB 
AS2(K)=AS2(K)+ 

# (B(M)*DB(N)*VS2*PHI2+DB(M)*DB(N)*PHI2*DISP2/DX 
# +B(M)*B(N)*2.DO/DH*(1.D0-SIGM2)*qFHES*DX 
# -qFMES*RET2*BETA2*B(M)*B(N)*DX*2.D0/DH)*W(II) 

652 CONTIirOE 
651 CONTINUE 

GO TO 300 
C 
C CASE 3: -PEC APPROACHES INFINITY 
C 
660 DO 661 M=l,3 

KH=HODEL(I,M) 
DO 662 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+HM-LUB 
AS2(K)=AS2(K)+ 

# (B(M)*DB(N)*VS2*PHI2+DB(M)*DB(H)*PHI2*DISP2/DX 
# -2.D0/DH*BETA2*RET2*qFHES*B(H)*B(M)*DX)*W(II) 
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662 CONTINUE 
BS2(MM)=BS2(MM)-2.D0/DH*(l.D0-SIGM2)*qFMES*CDM2*DX*W(II)*B(M) 

661 CONTINUE 
GO TO 300 

C 
C CASE 4: PEC APPROACHES 0 
C 
670 DO 671 M=l,3 

MM=NODEL(I,M) 
DO 672 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+MM-LUB 
AS2(K)=AS2(K)+ 

# (B(M)*DB(N)*VS2*PHI2+DB(M)*DB(N)*PHI2*DISP2/DX 
# +2.D0/DH*DDM2*B(M)*B(N)*DX 
# -2.D0/DH*RET2*BETA2*DX*B(M)*B(N)*qFMES)*W(II) 

672 CONTINUE 
BS2(MM)=BS2(MM)+2.D0/DH*DDM2*B(M)*CDM2*DX*W(II) 

671 CONTINUE 
C 
300 CONTINUE 
200 CONTINUE 

RETURN 
END 

C 

SUBROUTINE DGBND1 (A, B, N, ML, NU, LT, IP, DET, NCN1, 
1 BB, RZ, ITR1, EPS1) 

C 
C ROUTINE SOLVES SYSTEM OF LINEAR EONS. AX=B WHERE A IS A GENERAL 
C BAND MATRIX. METHOD USED IS GAUSSIAN ELIMINATION WITH PARTIAL 
C PIVOTING. OPTION OF ITERATIVELY IMPROVING SOLUTION IS AVAILABLE. 
C UPPER BAND WIDTH OF MATRIX INCREASES DUE TO INTERCHANGES BY 
C AMOUNT ML. ROUTINE REqUIRES BAND ELEMENTS OF MATRIX TO BE STORED 
C BY COLUMN IN A ONE DIMENSIONAL ARRAY. EACH COLUMN IS OF LENGTH 
C 2*ML+NU AND BAND IS TO BE STORED IN ELEMENTS ML+1 TO 2+ML+NU OF 
C EACH COLUMN. ELEHENTS 1 TO ML OF COLUMN ARE SET TO ZERO BY GBAND. 
C IF MATRIX IS SYMMETRIC USER MAY SPECIFY LOWER BAND ONLY IN 
C ELEMENTS ML+NU+1 TO 2*ML+NU OF EACH COLUMN AND GBAND WILL 
C GENERATE REMAINING ELEMENTS. (IF THIS IS DESIRED, SET LT=-1 ON 
C FIRST CALL TO GBAND.) 
C A = 1 DIMENSIONAL ARRAY CONTAINING MATRIX OF COEFFICIENTS. 
C B = 1 DIMENSIONAL ARRAY CONTAINING RIGHT HAND SIDE VECTORS. 
C ON EXIT, B WILL CONTAIN THE SOLUTION VECTOR X. 
C N = ORDER OF MATRIX 
C ML = LENGTH OF LOWER BAND (EXCLUDING DIAGONAL) 
C NU = LENGTH OF UPPER BAND (EXCLUDING DIAGONAL) 
C LT = ABS(LT)=1 IF ONLY-1 B VECTOR OR IF 1ST OF SEVERAL. 
C ABS(LT),=1 FOR SUBSEqUENT B VECTORS. 
C (NOTE. LT=+1 IF FULL BAND WIDTH GIVEN, LT=-1 IF LOWER BAND 
C ONLY OF SYMMETRIC MATRIX GIVEN.) 
C IP = INTEGER ARRAY CONTAINING INTERCHANGE INFORMATION. 
C DET = DETERMINANT OF A = DET*(10**NCN) WHERE 1.D-15<IDETI<1.D+15. 
C IF DET=0.0 MATRIX IS SINGULAR AND ERROR RETURN TAKEN. 
C BB, RZ = ARRAYS REqUIRED FOR IMPROVEMENT OPTION. CAN BE REAL*8 
C VARIABLES IF OPTION NOT REqUIRED. 
C ITER = 0 IF IMPROVEMENT NOT REqUIRED, OTHERWISE ITER= NO. OF 
C ITERATIONS OR CYCLES. 
C EPS - CONVERGENCE CRITERION. 
C 
C MODIFIED TO DO ITERATIVE IMPROVEMENT (FORMERLY AVAILABLE ONLY 
C WITH THE SINGLE PRECISION VERSION). MIKE PATTERSON - NOV, 1980 

IMPLICIT REAL*8 (A-H, 0-Z) 
COMMON /GBANDS/ NITER 
DIMENSION A(l), B(N), IP(N), BB(H), RZ(N) 
C0MPLEX*16 DSUMM, QADDq, QMULD 
REAL*8 qRNDQ 

C TO ASSIGN LOGICAL UNITS 94 AND 95 ONLY ONCE: 
LOGICAL ASSIGN /F/, YES /!/ 
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C STATEMENT FUNCTION TO CALCULATE POINTERS INTO A: 
IFN(I, J) = 1 + (J - l)*LC + I - J + NUM 

C 
C 

NCN=NCN1 
ITR=ITR1 
EPS=EPS1 
ITER = ITR 

C 
LCM = NU + 2*ML 
LC = LCM + 1 
NLC = N*LC 
NUM = NU + ML 

C GENERATE REMAINING ELEMENTS OF SYMMETRIC MATRIX 
IF (LT .NE. -1) GO TO 120 
NN = N - 1 
DO 110 I = 1, NN 

IFI = IFN(I, I) 
IFJ = IFI 
II = I + 1 
IML = HINO(I + ML, H) 
DO 100 J = II, IML 

IFI = IFI + 1 
IFJ = IFJ + LCM 

100 A(IFJ) = A(IFI) 
110 CONTINUE 
120 IF (ITER .EQ. 0) GO TO 140 
C ASSIGN UNITS 94 AND 95 IF THEY HAVE NOT ALREADY BEEN ASSIGNED 

IF (ASSIGN) GO TO 125 
CALL FTNCMD ('ASSIGN 94=-GBAND94;') 
CALL FTNCMD ('ASSIGN 95=-GBAND95;') 
ASSIGN = YES 

125 REWIND 94 
REWIND 95 
DO 130 I = 1, N 

130 BB(I) = B(I) 
140 IF (IABS(LT) .NE. 1) GO TO 280 

IP(N) = 1 
IF (ML .EQ. 0) GO TO 160 

C SET ELEMENTS 1 - ML OF EACH COLUMN TO ZERO 
DO 150 I = 1, N 

IFK = (I - 1)*LC 
DO 150 J = 1, ML 

IFK = IFK + 1 
150 A(IFK) = O.ODO 
160 IF (ITER .NE. 0) CALL DWR1 (A, NLC, 94) 

DET = O.ODO 
NCN = 0 
IF (ML .EQ. 0) GO TO 230 

C LU DECOMPOSITION 
DO 220 K = 1, N 

IFK = IFN(K, K) 

IF (K .EQ. N) GO TO 210 
KP = K + 1 
KPM = MINO(K + ML, N) 
KPN = MINO(K + NUM, N) 
M = K 
IFM = IFK 
IFI = IFK 
DO 170 I = KP, KPM 

IFI = IFI + 1 
IF (DABS(A(IFI)) .LE. DABS(A(IFH))) GO TO 170 
M = I 
IFM = IFI 

170 CONTINUE 

IP(K) = M 
T = A(IFM) 
IF (M .NE. K) IP(N) = -IP(N) 
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A(IFM) = A(IFK) 
A(IFK) = T 
IF (T .EQ. O.ODO) GO TO 260 
OT = 1.OD0/T 
IK = IFK 
DO 180 I = KP, KPM 

IK = IK + 1 
180 A(IK) = -A(IK)*OT 

KJ = IFK 
MJ = IFM 
DO 200 J = KP, KPN 

KJ = KJ + LCM 
MJ = MJ + LCM 
T = A(MJ) 
A(MJ) = A(KJ) 
A(KJ) = T 
IF (T .Eq. O.ODO) GO TO 200 
IK = IFK 
IJ = KJ 
DO 190 I = KP, KPM 

IK = IK + 1 
IJ = IJ + 1 

190 A(IJ) = A(IJ) + A(IK)*T 
200 CONTINUE 
210 IF (A(IFK) .Eq. O.ODO) GO TO 260 
220 CONTINUE 
230 IFK = IFN(1, 1) 

DET = A(IFK) 
DO 250 K = 2, N 

IFK = IFK + LC 
DET = DET*A(IFK) 
IF (DET .EQ. O.ODO) GO TO 260 
IF (DABS(DET) .GT. l.D-15) GO TO 240 
DET = DET*1.D+15 
NCN = NCN - 15 
GO TO 250 

240 IF (DABS(DET) .LT. l.D+15) GO TO 250 
DET = DET*I.D-15 
NCN = NCN + 15 

250 CONTINUE 
DET = DET*IP(N) 
GO TO 280 

260 . DET = O.ODO 
WRITE (6, 270) K 

270 FORMAT (50* DGBND1 - matrix is singular. '/ 
1 ' Error occurred in attempt to find', 15, 'th pivot.') 
RETURN 

280 CALL DS0LV1 (A, B, IP, N, ML, NU) 
IF (ITER .Eq. 0) RETURN 

C 
C ITERATIVE IMPROVEMENT 
C RESIDUALS (R) = AX-B ARE FOUND AND STORED IN ARRAY RZ USING 
C EXTENDED PRECISION ARITHMETIC. SYSTEM AZ=R IS SOLVED AND NEW 
C SOLUTION =X+Z IS STORED IN ARRAY B. ABOVE STEPS REPEATED UNTIL 
C (1) MAX(Z)/MAX (X) < EPS OR 
C (2) NO. OF CYCLES > ITER OR 
C (3) IMPROVEMENT STARTS TO DIVERGE. 
C ROUTINE THEN RETURNS AFTER SETTING EPS=MAX(Z) (FOR (1)) OR 
C SETTING EPS=-MAX(Z) AND PRINTING APPROPRIATE ERROR MESSAGE (FOR 
C (2) AND (3)) 
C 
C 

IF (IABS(LT) .Eq. 1) CALL DWR1 (A, NLC, 95) 
XNORM = O.ODO 
DO 290 K = 1, N 

290 XNORM = DMAX1(XNORM, DABS(B(K))) 
IF (XNORM .LE. O.ODO) RETURN 
ZX = l.D+60 
LD = 0 
DO 340 L = 1, ITER 
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REWIND 94 
CALL DRE1 (A, NLC, 94) 
DO 310 K = 1, N 
DSUMM = (O.DO, O.DO) 
KPM = MAXO(K - ML, 1) 
KPN = MINO(K + NU, N) 
IFK = IFN(K, KPM) 
DO 300 J = KPM, KPN 

C DSUMM = DSUMM + A(IFK)*B(J) 
C USING EXTENDED PRECISION: 

DSUMM = QADDQ(DSUMM, QMULD(A(IFK), B(J))) 
300 IFK = IFK + LCM 

RZ(K) = BB(K) - QRNDQ(DSUMM) 
310 CONTINUE 

REWIND 95 
CALL DRE1 (A, NLC, 95) 
CALL DS0LV1 (A, RZ, IP, N, ML, NU) 
ZNORM = O.ODO 
DO 320 K = 1, N 
ERZ = RZ(K) 
ZNORM = DMAX1(ZNORM, DABS(ERZ)) 

320 B(K) = B(K) + ERZ 
IF (ZNORM .GT. ZX) GO TO 330 
IF ((ZNORM - EPS+XNORM) .LT. O.ODO) GO TO 390 
ZX = ZNORM 
GO TO 340 

330 IF (ZNORM .GT. 10.0D0+ZX) GO TO 360 
LD = LD + 1 
IF (LD .GE. 3) GO TO 360 

340 CONTINUE 
L = ITER 
WRITE (6, 350) 

350 FORMAT ('0* DGBND1- Iterative improvement did not converge'/) 
GO TO 380 

360 WRITE (6, 370) 
370 FORMAT ('0* DGBND1 - Iterative improvement is diverging.'/) 
380 EPS = -ZNORM 

NITER = L 
RETURN 

390 EPS = ZNORM 
NITER = L 
RETURN 
END 

SUBROUTINE DS0LV1 (A, B, IP, N, ML, NU) 
C 
C THIS ROUTINE COMPUTES THE SOLUTION OF A SYSTEM AFTER GBAND HAS 
C DECOMPOSED MATRIX A INTO A LOWER TRIANGULAR MATRIX L AND AN 
C UPPER TRIANGULAR MATRIX U. 
C 

IMPLICIT REAL*8 (A-H, 0-Z) 
DIMENSION A(l), B(N), IP(N) 
IFN(I, J) = 1 + (J - 1)*LC + I - J + NUM 
LCM = 2*ML + NU 
LC = LCM + 1 
NUM = NU + ML 
MN = N - 1 

C SOLVE FOR Y 
IF (ML .EQ. 0) GO TO 110 
DO 100 K = 1, MN 
KP = K + 1 
M = IP(K) 
T = B(M) 
B(M) = B(K) 
B(K) = T 
KPM = MINO(K + ML, N) 
IFK = IFN(K, K) 
DO 100 I = KP, KPM 
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IFK = IFK + 1 
100 B(I) = B(I) + A(IFK)*T 
C SOLVE FOR X 
110 IFK = IFN(N, N) 

DO 120 KB = 1, MN 
KM = N - KB 
K = KM + 1 
B(K) = B(K)/A(IFK) 
IFK = IFK - LC 
T = -B(K) 
KMN = MAXO(l, K - ML - NU) 
KML = IFN(KMN, K) 
DO 120 I = KMN, KM 

B(I) = B(I) + A(KML)*T 
120 KML = KML + 1 

B(l) = B(1)/A(NUM + 1) 
RETURN 
END 
SUBROUTINE DWR1 (A, N, LU) 
REAL*8 A(N) 
WRITE (LU) A 
RETURN 
END 
SUBROUTINE DRE1 (A, N, LU) 
REAL*8 A(N) 
READ (LU) A 
RETURN 
END 

D.6 Two Protein Transient Simulator: TRANS2P.FOR 
c 
C THIS PROGRAM SIMULATES BOTE CONVECTIVE AND DISPERSIVE PLASMA 
C PROTEIN TRANSPORT THROUGH MESENTERY DURING TRANSIENT 
C CONDITIONS FOR TWO PLASMA PROTEIN SPECIES. 
C THE MESENTERY IS TREATED AS A 1-DIMENSIONAL 
C RECTANGULAR SLAB. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION HOLD(1001),IPERM(1001),RES(1001),HOID1(1000), 
#RES1(1001),IPERM1(1001),H0LD2(1001),RES2(100l),IPERM2(1001), 
#RES3(1001),IPERM3(1001),H0LD3(1001).DTIMEl(100),TDT1(20000), 
#TDT2(20000),C0LDT1(1001),C0LDT2(1001).SBOLDl(lOOl), 

#SB0LD2(1001),S0LDT1(20000),S0LDT2(20000),BCTIM1(1001), 
#BCTIM2(1001),STNEW1(20000),STNEW2(20000).TCOLDl(lOOl), 
#TC0LD2(1001).SCOLDl(lOOl),SC0LD2(1001) 
COMMON/FLUX/FLUXMX 
COMMON/BLK1/NODEL(500,3),XNOD(1001) 
C0MM0N/BLK2/DX(1001) 
COMMON/MATBAL/QFC,QCC1,QSC1,QCC2,QSC2,QFV,QCV1,QSV1,QCV2,qSV2, 
#QFM,QCM1,qSMl,qCM2,qSM2,qFMl(500),qCMll(500),qSHl1(500), 
#qCM12(500),qSM12(500) 
COMMON/FLUMAT/FLUID(20000) 
C0MM0N/0LD/P0LD(1001).COLDl(lOOl),C0LD2(1001) 
COMMON/TIME/T(20000) 
COMMON/SOLB/SOLB1(1001),S0LB2(1001) 
C0MM0N/FLUB/FLUIDB(1001) 
C0MM0H/S0LMAT/S0L1(20000),S0L2(20000) 
C0MM0N/0SM0T/A1,B1,C1,A2.B2,C2 
COMMON/TISDAT/AK.DEFF1.ALPHLl,PHI1.PHIT.RETl,SIGTl,BETAl, 
#DEFF2,ALPHL2,PHI2,RET2,SIGT2,BETA2 
COMMON/CAPDAT/PREF,CREF 
COMMON/WALL/DLC,DLV,DLM,DDC1,DDV1,DDM1,PDC,PDV,PDM.PIDCl, 
#PIDV1,PIDMl,PIDC2,PIDV2,PIDM2,SIGC1,SIGVl,SIGMl,CDC1,CDV1,CDM1, 
#YYL,DDC2,DDV2,DDM2.SIGC2,SIGV2.SIGM2,CDC2,CDV2,CDM2 
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C0MM0N/MAXDAT/DISMX1,DISMX2,IDISP1,IDISP2 
C 
C SET MARKER AND TOLERANCE VALUES 
C 

READ(S,504)OMEGAF,OMEGAC,TOLP,TOLC,PECMAX,EPS 
READ(5,509)IMAX,ITER,NECHO,N,ITMAX 
READ(5,503) THETA,TTOL,COUR,TFACT,TIMMAX 
READ(5,508) K 
DO 1 1=1,K 
READ(5,501) DTTMEl(I) 

1 CONTINUE 
C 

KK=2 
NEX=(N-l)/2 
LUB=2 
NDIM=N*(3*LUB+1) 

C 
C READ IN THE DATA FROM EXTERNAL FILE 
C 

DO 2 1=1,N 
READ(5,501) DX(I) 

2 CONTINUE 
C 
c 

READ(5,502) Al,B1,CI,AK,PREF,PHI1.PHIT.RETl.PHIS 
READ(5,504) A2,B2,C2,PHI2,RET2,BETA2 
READ(5,507) ALPHLl,AL,DEFF1,SIGTl,CREF,YYL,BETAl 
READ(5,507) ALPHL2,DEFF2,SIGT2,PERMC2,PERMV2,PERMM2 
READ(5,504) CONC,CONV,CONM,PERMC1,PERMV1,PERMM1 
READ(5,504) DDC1,DDV1,DDM1.SIGCl,SIGVl,SIGMl 
READ(5,504) DDC2,DDV2,DDM2,SIGC2,SIGV2,SIGM2 
READ(5,504) CDC1,CDV1,CDM1,DLC,DLV,DLM 
READ(S,506) CDC2,CDV2,CDM2 
READ(5,506) PDC,PDV,PDM 
READ(5,506) A0S1,B0S1.C0S1 
READ(5,506) A0S2.B0S2.C0S2 
YL=YYL*AL 
PIDC1=CDC1*(A0S1+CDC1*(B0S1+CDC1*C0S1)) 
PIDC2=CDC2*(A0S2+CDC2*(B0S2+CDC2*C0S2)) 
PIDV1=CDV1*(A0S1+CDV1*(B0S1+CDV1*C0S1)} 
PIDV2=CDV2*(A0S2+CDV2*(B0S2+CDV2+C0S2)) 

" PIDM1=CDM1*(A0S1+CDM1*(B0S1+CDM1*C0S1)) 
PIDM2=CDM2*(A0S2+CDM2*(B0S2+CDM2*C0S2)) 
PC=PDC*PREF 
PV=PDV*PREF 
PM=PDM*PREF 
CC1=CDC1*CREF 
CV1=CDV1*CREF 
CM1=CDH1*CREF 
CC2=CDC2*CREF 
CV2=CDV2*CREF 
CM2=CDM2*CREF 

C 
C 
C 
501 F0RMAT(E12.6) 
502 F0RMAT(9E10.4) 
503 F0RMAT(5E10.4) 
504 F0RKAT(6E10.4) 
505 F0RMAT(3E10.4) 
506 F0RHAT(3E10.4) 
507 F0RMAT(7E10.4) 
508 F0RHAT(I2) 
509 F0RMAT(5I5) 

C 
DO 3 1=1,N 
READ(4,*) POLD(I),C0LD1(I),C0LD2(I) 
C0LDT1(I)=C0LD1(I) 
C0LDT2(I)=C0LD2(I) 
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CONTINUE 

ECHO DATA IF NECHO N.E. 0 
IF(NECHO.EQ.O) GO TO 999 
PRINT OUT INPUT DATA 

WRITE(6,600) 
600 FORMAT(IX,'TRANSIENT FLUID PRESSURE AND SOLUTE CONCENTRATION' 

#) 
WRITE(6,601) 

601 FORMAT(IX,'PROFILES FOR ONE DIMENSIONAL TISSUE SYSTEM',//) 
WRITE(6,602) 
VJRITE(6,602) 

602 FORMAT(//.IX,' ' 
#,//) 
WRITE(6,603) 

603 FORMAT(IX,'INPUT PARAMETERS') 
HRITE(6,602) 
WRITE(6,604) 

604 FORMAT(IX,'1. GRID DATA:',//) 
WRITE(6,605)NEX,DX(2) 

605 FORMAT(IX,'NUMBER OF ELEMENTS:',IX,12,/,IX, 
#'SMALLEST X INCREMENT:',19X,ElO.4,/) 
WRITE(6,606)N 

606 FORMAT(IX,'TOTAL NUMBER OF NODES:',10X,14,/) 
WRITE (6,602) 
WRITE(6,607) TOLP ,TOLC,ITMAX,OMEGAF,OMEGAC,PECMAX 

607 FORMAT(IX,'2. CONVERGENCE CRITERIA:',//,IX,'PRESSURE TOLERANCE 
#,17X,E10.4,/,IX,'SOLUTE TOLERANCE:',20X,E10.4,/,IX, 
#'MAXIMUM NUMBER OF LOOP ITERATIONS:',2X,13,/,IX, 
#'PRESSURE RELAXATION PARAMETER:',6X,E10.4,/,IX, 
#'SOLUTE RELAXATION PARAMETER:',9X,ElO.4,/,IX, 
#'MAXIMUM DESIRED GRID PECLET NUMBER:',IX,ElO.4) 
WRITE(6,608) IMAX,TFACT,COUR,TEETA 

608 FORMAT(/,IX,'MAXIMUM NUMBER OF TIME STEPS:'.2X.I6,/,IX, 
#'TIME STEP ACCELERATION FACTOR:',6X,ElO.4,/.IX, 
#'INITIAL COURANT NUMBER:',14X.E10.4,/,IX, 
#'SEMI-IMPLICIT PARAMETER THETA:'.7X.E10.4) 
WRITE(6,602) 
PIC1=PIDC1*PREF 
PIV1=PIDV1*PREF 
PIM1=PIDM1*PREF 
PIC2=PIDC2*PREF 
PIV2=PIDV2*PREF 
PIM2=PIDM2*PREF 
WRITE(6,609) AL.YL.CCl,CV1,CM1,CC2,CV2,CH2, 
#PC,PV,PH,PIC1,PIV1,PIM1,PIC2,PIV2,PIM2,AK 

609 F0RMAT(1X,'3. DIMENSIONAL INPUT PARAMETERS:',//,IX, 
#'TISSUE X-DIMENSION (CM):'.21X.E10.4,/,IX, 
#'TISSUE Y-DIMENSION 
#'CAP. PROTEIN1 CONC 
#'VEN. PROTEIN1 CONC 
#'MES. PR0TEIN1 CONC 
#'CAP. PR0TEIH2 CONC 
#'VEN. PR0TEIN2 CONC 
#'MES. PR0TEIN2 CONC 
#'CAP. DYN. PRESSURE 
#'VEN. DYN. PRESSURE 
#'MES. DYN. PRESSURE 
"#'CAP. 

(CM):',21X,E10.4,/,1X, 
(GRAMS/DL): 
(GRAMS/DL): 
(GRAMS/DL): 
(GRAMS/DL): 
(GRAMS/DL): 
(GRAMS/DL): 

(DYN/CM**2):' 
(DYN/CM**2):' 
(DYN/CH**2):' 

0SM1. PRESSURE (DYN/CM**2): 

,14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 
14X,E10.4,/,1X, 
14X,E10.4,/,1X, 
14X,E10.4,/,1X, 
,14X,E10.4,/,1X, 
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#'VEN. 0SM1. PRESSURE (DYN/CM-*2):',14X,E10.4,/,IX, 
#'MES. 0SM1. PRESSURE (DYN/CM**2):',14X,E10.4,/,IX, 
#'CAP. 0SM2. PRESSURE (DYN/CM»*2):',14X.E10.4,/,IX, 
#'VEN. 0SM2. PRESSURE (DYN/CM**2):',14X.E10.4,/,IX, 
#'MES. 0SM2. PRESSURE (DYN/CM«*2):',14X,E10.4,/,1X, 
#'TTSSUE FLUID CONDUCTIVITY (CM**4/(DYN-SEC):'.2X.E10.4) 
WRITE(6,610) DEFF1.DEFF2 

610 FORMAT(IX, 
S'TISSUE S0LUTE1 DIFFUSIVITY (CM**2/SEC):',7X,E10.4,/,1X, 
#'TISSUE S0LUTE2 DIFFUSIVITY (CM**2/SEC):',7X,E10.4) 
WRITE(6,611) CONC,CONV,C05M,PERMC1,PERHV1,PERMM1,PERMC2,PERMV2, 
#PERMM2 

611 FORMAT(IX,'CAP. CONDUCTIVITY (CM**3/(DYN-S));',11X.E10.4,/,IX, 
#'VEN. CONDUCTIVITY (CH**3/(DYN-S)):',11X,E10.4,/,1X, 
#'MES. CONDUCTIVITY (CH**3/(DYN-S)):',11X.E10.4./.1X, 
#'CAP. PERMEABILITY 1 (CM/S):',21X,E10.4,/,1X, 
#'VEN. PERMEABILITY 1 (CM/S):',21X,E10.4,/,1X, 
#'MES. PERMEABILITY 1 (CM/S):',21X,E10.4,/,1X, 
#'CAP. PERMEABILITY 2 (CM/S):',21X,E10.4,/,1X, 
#'VEH. PERMEABILITY 2 (CM/S):',21X,E10.4,/,1X, 
#'MES. PERMEABILITY 2 (CM/S):'.21X.E10.4) 
WRITE(6,602) 
WRITE(6,612) SIGT1,RET1,BETA1,ALPHL1,SIGT2,RET2,BETA2,ALPHL2 

612 FORMATdX,'DIMENSIONLESS INPUT PARAMETERS:',//,IX, 
#'TISSUE REFLECTION COEFFICIENT 1:',15X,E10.4,/, 
#IX,'RETARDATION FACTOR 1:',26X,E10.4,/,IX, 
#'HYDRAULIC CONDUCTIVITY RATIO, BETA1:',1SX,E10.4,/,1X, 
#'DIMENSIONLESS DISPERSIVITY 1:',21X,E10.4,/,1X, 
#'TISSUE REFLECTION COEFFICIENT 2:',15X.E10.4,/, 
#1X,'RETARDATION FACTOR 2:'.26X.E10.4,/,IX, 
#'HYDRAULIC CONDUCTIVITY RATIO, BETA2:',1SX,E10.4,/,1X, 
#'DIMENSIONLESS DISPERSIVITY 2:'.21X.E10.4) 
WRITE(6,613)PDC,PIDCl,PIDC2.PDV,PIDVl,PIDV2,PDM,PIDH1.PIDM2 

613 F0RMAT(//,1X, 
#'PRESSURE:',6X,'DYNAMIC',5X,'0SM0TIC1',5X,'0SM0TIC2', 
#//,lX,'CAPILLARY:',5X, ElO.4,2X,ElO.4,2X,ElO.4, 
#/,lX,'VENULE:',8X,ElO.4,2X,ElO.4,2X.E10.4,/.IX,'MESOTHELIUM:', 
#3X,E10.4,2X,E10.4,2X,E10.4,//) 
WRITE(6,614)CDC1,CDC2,CDV1,CDV2,CDM1,CDM2 

614 F0RMAT(1X,'CONCENTRATIONS: PR0TEIN1 PR0TEIN2', 
#//,IX,'CAPILLARY:',6X,E10.4,11,ElO.4,/,IX, 
#'VENULE:',10X,E10.4,IX,ElO.4,/,IX,'MESOTHELIUM:',2(1X,E10.4),//) 
WRITE(6,615)SIGC1,SIGC2,SIGV1,SIGV2,SIGMl,SIGM2 

615 F0RMAT(1X,'REFLECTION COEFFICIENTS: PR0TEIN1 PR0TEIN2', 

#//,lX,'CAPILLARY:',15X,ElO.4,IX,ElO.4,/,IX,'VENULE:',19X, 
#E10.4,1X.E10.4,/,IX,'MESOTHELIUM:',13X.E10.4,IX,E10.4,//) 
WRITE(6,616)DLC,DLV,DLM 

616 FORMATdX,'VESSEL FLUID CONDUCTANCES:',//,IX,'CAPILLARY: ' ,57., 
#E10.4,/,1X,'VENULE:',9X,ElO.4,/,IX,'MESOTHELIUM:',IX,ElO.4,//) 
WRITE(6,617)A1,B1,C1,A2,B2,C2 

617 FORMATdX,'VIRIAL COEFFICIENTS: ' ,//,IX,'Al: * ,IX.E10.4,/,IX, 
#'B1:',IX,ElO.4,/,IX,'CI:',IX,ElO.4,/.IX,'A2:',IX,ElO.4,/,IX, 
#'B2:',1X,E10.4,/,1X,'C2:',IX,ElO.4,//) 
WRITE(6,618)DDC1,DDC2,DDV1,DDV2,DDM1,DDH2 

618 FORMATdX,'VESSEL SOLUTE PERMEABILITIES: PR0TEIN1 PP.0TEIH2' 
#,//,IX,'CAPILLARY:',19X,E10.4,1X,E10.4,/,1X,'VENULE',227.,ElO.4, 
#1X,ElO.4,/.IX,'MESOTHELIUM:',17X,E10.4,1X,E10.4,//) 
WRITE(6,619)PHIT,PHI1,PHI2,PEIS 

619 FORMATdX,'TOTAL TISSUE FLUID VOLUME FRACTION:',2X,ElO.4,/.IX, 
#'SOLUTE 1 DISTRIBUTION VOLUKE FRACTION:',IX,ElO.4,/,IX, 
#'SOLUTE 2 DISTRIBUTION VOLUKE FRACTION:',IX,ElO.4,/,IX, 
#'TOTAL SOLIDS VOLUME FRACTION:',8X,ElO.4,///) 
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C 
C 
999 THETAM=1.DO-THETA 

TIME1=DTIME1(1) 
IFLAG=0 

C 
C ESTABLISH THE GRID 
C 

CALL GRID(NEX) 
C 
C INITIALIZE FLUID VECTOR AND T VECTOR 
C 

CALL SETMAT(NEX,0,PEI,IE1,VELMX1,PE2,IE2,VELMX2) 
CALL SETMAT(NEX,3,PEI,IE1,VELMX1,PE2,IE2,VELMX2) 

C 
C ADJUST FLUID VECTOR TO FIT BOUNDARY CONDITIONS 
C 

CALL ASTAR(NEX.O) 
CALL VSTAR(NEX.O) 

C 
C CALCULATE THE SOLUTE VECTORS FROM THE STEADY-STATE DATA. THESE 
C WILL SERVE TO GIVE A FIRST ESTIMATE OF THE CONCENTRATION AT 
C THE NEXT TIME-STEP BY USING A FULLY EXPLICIT FORM TO BEGIN 
C THE SIMULATION. 
C 

CALL SETMAT(NEX,2,PE1,IE1,VELMX1,PE2,IE2,VELMX2) 
CALL PATART(NEX) 
CALL PATVEN(HEX) 
PEC1=PE1 
PEC2=PE2 
IPECl=IEl 
IPEC2=IE2 
DMX1=DISMX1 
DMX2=DISMX2 
ID1=IDISP1 
ID2=IDISP2 
VMAX=VELMX2 
IF(VELMX1.GT.VELMX2) VMAX=VELMX1 
DELT=COUR/VMAX 

C 
C SET THE SOLDT1, S0LDT2, SBOLD1, AND SB0LD2 VECTORS EQUAL 
C TO THE STEADY-STATE VECTORS ABOVE 
C 

" DO 4 I=1,NDIM 
SOLDTl(I)=SOLl(I) 
S0LDT2(I)=S0L2(I) 

4 CONTINUE 
C 

DO S 1=1,NP 
SBOLDl(I)=SOLBl(I) 
SB0LD2(I)=S0LB2(I) 

5 CONTINUE 
C 
C CHECK THAT THE MAXIMUM NUMBER OF TIME STEPS HAS NOT BEEN 
C EXCEEDED 
C 

ICOUNT=0 
TIME=0 
ITSOL=l 

C 
C ENTER ITERATION LOOP, CHECK COUNTER VALUE 
C 
c 
100 IC0UNT=IC0UNT+1 

C 
C DETERMINE THE TOTAL ELAPSED TIME 
C 

NITER=0 
DTINV=1.DO/DELT 
TIME=TIME+1.DO/DTINV 
IF(ICOUNT.GT.IMAX) GO TO 900 
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IF(TIME.GT.TIMMAX)GO TO 910 
C 

DO 6 I=1,NDIM 
TDT1(I)=T(I)*PHI1*DTINV 
TDT2(I)=T(l)*PHI2*DTINV 

6 CONTINUE 
C 
C DETERMINE THE AS AND BS VECTORS FOR THE EXPLICIT SCHEME 
C 

CALL MATPLY(TDT1,1.DO.COLDTl.TC0LD1,N) 
CALL MATPLY(TDT2,1.DO,C0LDT2,TC0LD2,N) 
CALL MATPLY(S0LDT1,1.DO,CQLDT1.SC0LD1,N) 
CALL MATPLY(S0LDT2,1.DO,C0LDT2,SC0LD2,N) 

C 
DO 7 1=1,N 
BCTIMl(I)=TCOLD1(I)+SB0LD1(I)-SC0LD1(I) 
BCTIH2(I)=TC0LD2(I)+SB0LD2(I)-SC0LD2(I) 

7 CONTINUE 
C 
C DETERMINE THE INITIAL GUESS FOR CNEW, UPDATING NITER 
C 

200 NITER=NITER+1 
EP=EPS 
IF (NITER. GT. ITMAX) GO TO 901 

C 
C DETERMINE WHETHER THIS IS THE FIRST PASS, AND HENCE 
C USE THE FULLY EXPLICIT SCHEME FOR THE SOLUTE TRANSPORT 
C EQUATIONS. IN THE CASE OF SUBSEQUENT PASSES, USE THE 
C SEMI-IMPLICIT SCHEME 

C 
IF(NITER.EQ.l) CALL DGBAND(TDT1,BCTIM1,N,LUB,LUB,1.IPERM1,DET, 

#JEXP,H0LD1,RES1,ITER,EP) 
EP=EPS 
IF(NITER.EQ.l) CALL DGBAND(TDT2,BCTIM2,N,LUB,LUB,1,IPERM2,DET, 

#JEXP,H0LD2,RES2,ITER,EP) 
IF(NITER.GT.l) CALL DGBAND(STNEW1,BCTIM1,N,LUB,LUB,1,IPERM1,DET, 

#JEXP,HOLD1, RES1,ITER,EP) 
EP=EPS 
IF(NITER.GT.l) CALL DGBAND(STNEW2,BCTIM2,N,LUB,LUB,1,IPERM2,DET, 

-#JEXP,H0LD2,RES2,ITER,EP) 
C 
C DETERMINE THE MAXIMUM CHANGE IN CI AND C2 FROM ONE ITERATION 
C TO THE NEXT USING A RELAXATION PROCEDURE. CDIFMX WILL BE 
C COMPARED TO TOLC TO ESTABLISH CONVERGENCE FOR TIME STEP ICOUNT 
C 

CHAX1=0.D0 
CMAX2=0.D0 
CDMX1=0.D0 
CDMX2=0.D0 
DO 8 1=1,N 
IF(DABS(BCTIM1(I)).GT.CMAX1) CMAX1=DABS(BCTIM1 (I) ) 
TEST1=DABS(BCTIM1(I)-C0LD1(I)) 
IF(TESTl.GT.CDMXl) CDMX1=TEST1 
COLD1(I)=OMEGAC*(BCTIM1(I)-COLD1(1))+COLD1(1) 
IF(DABS(BCTIK2(I)).GT.CMAX2) CMAX2=DABS(BCTIM2(I)) 
TEST2=DABS(BCTIM2(I)-C0LD2(I)) 
IF(TEST2.GT.CDMX2) CDMX2=TEST2 
C0LD2(I)=0MEGAC*(BCTIM2(I)-C0LD2(I))+C0LD2(I) 

8 CONTINUE 
CDHX1=CDMX1/CMAX1 
CDMX2=CDMX2/CHAX2 

C 
C HOW INITIALIZE THE FLUID B VECTOR AND SOLVE FOR THE PRESSURE 
C DISTRIBUTION AT THIS NEW TIME STEP 
C 

CALL SETMAT(HEX,1,PE1,IE1,VELMX1,PE2,IE2,VELMX2) 
CALL ASTAR(NEX.l) 
CALL VSTAR(NEX.l) 
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C 
EP=EPS 
CALL DGBND1(FLUID,FLUIDB,N,LUB,LUB,ITSOL,IPERM3,DET,JEXP, 
#H0LD3,RES3,ITER.EP) 
ITSOL=ITSOL+l 

C 
C CHECK TO SEE IF THE SOLUTION HAS CONVERGED 
C 

PMAX=O.DO 
PDIFMX=O.DO 
DO 9 1=1,N 
IF(DABS(FLUIDB(I)).GT.PMAX) PMAX=DABS(FLUIDB(I)) 
TEST=DABS(FLUIDB(I)-POLD(I)) 
IF(TEST.GT.PDIFMX) PDIFMX=TEST 
POLD(I)=OMEGAF*(FLUIDB(I)-POLD(I))+POLD(I) 

9 CONTINUE 
PDIFMX=PDIFMX/PMAX 

C 
C CHECK FOR CONVERGENCE 
C 

IF(PDIFMX.GT.TOLP)GO TO 300 
IF(CDMX1.GT.T0LC)G0 TO 300 
IF(CDMX2.LT.T0LC)G0 TO 301 

C 
C RESET THE SOLUTE MATRICES, SET THE NECESSARY VECTORS FOR THE 
C SEMI-IMPLICIT SCHEME 
C 
300 CALL SETMAT(NEX,2,PE1,IE1,VELMX1,PE2,IE2,VELMX2) 

CALL PATART(NEX) 
CALL PATVEN(NEX) 
PEC1=PE1 
PEC2=PE2 
IEL1=IE1 
IEL2=IE2 
C0UR1=VELMX1*DELT 
C0UR2=VELMX2*DELT 
DMX1=DISMX1 
DMX2=DISMX2 
ID1=IDISP1 
ID2=IDISP2 

C 
- DO 10 1=1,N 
BCTIM1(I)=THETA*SOLB1(1)+TC0LD1(I)+THETAM*SB0LD1(I)-
# THETAM*SC0LD1(I) 
BCTIM2(I)=THETA*S0LB2(I)+TC0LD2(I)+THETAM+SB0LD2(I)-
# THETAM*SC0LD2(I) 

10 CONTINUE 
C 

DO 11 I=1,NDIM 
STNEW1(I)=T(I)*PHI1*DTINV+THETA*S0L1(I) 
STNEW2(I)=T(I)*PHI2*DTINV+THETA*S0L2(I) 

11 CONTINUE 
GO TO 200 

C 
C RESET MATRICES FOR NEXT TIME STEP 
C 
301 DO 12 1=1,N 

SB0LD1(I)=S0LB1(I) 
SB0LD2(I)=S0LB2(I) 
C0LDT1(I)=C0LD1(I) 
C0LDT2(I)=C0LD2(I) 

12 CONTINUE 
C 

DO 13 I=1,NDIM 
S0LDT1(I)=S0L1(I) 
S0LDT2(I)=S0L2(I) 

13 CONTINUE 
C 
C DETERMINE IF THE SOLUTION SHOULD BE PRINTED OUT. IF DELT 
C HAS BEEN SET TO (TIME1-TIME), RESET DELT TO DTHOLD, I.E., 
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C TO THE LAST VALUE OF DELT BEFORE SETTING IT TO TIME1-TIME. 
C 

IF(IFLAG.EQ.O)GO TO 400 
DELT=DTHOLD 
IFLAG=0 

400 DELT=DELT*TFACT 
IF(DABS(TIME-TIHE1).LT.TT0L)G0 TO 800 
IF(DABS(TIME-TIMEl).GT.DELTjGO TO 100 
DTHOLD=DELT 
IFLAG=1 
DELT=DABS(TIME-TIME1) 
GO TO 100 

C 
C PRINT OUT THE SOLUTION AT TIME1 TO DEVICE 6 AND 7 
C 
800 WRITE(6,602) 

WRITE(6,620) ICOUNT,TIME,NITER,C0UR1,PEC1,IEL1,DMX1,ID1,C0UR2, 
# PEC2.IEL2.DMX2.ID2 

620 FORMATC//,IX,'NUMBER OF TIME STEPS:',17,IX,/,IX, 
#'REPRESENTING A CUMMULATIVE TIME OF '.F10.7./.1X, 
#'NUMBER OF ITERATIONS REQUIRED FOR CONVERGENCE:',IX,14,/,IX, 
#'MAXIMUM COURANT NUMBER FOR SOLUTE 1:',1X.F10.7,/,IX, 
#'MAXIMUM GRID PECLET NUMBER FOR SOLUTE 1:',1X,F10.7,1X, 
#'AT ELEMENT' IX 14 / IX 
fl'MAXIMUM DISPERSION COEFFICIENT FOR SOLUTE 1:',1X.F10.7,IX, 
#'AT ELEMENT', IX,14,/,IX, 
#'MAXIMUM COURANT NUMBER FOR SOLUTE 2:',1X.F10.7,/,IX, 
#'MAXIMUM GRID PECLET NUMBER FOR SOLUTE 2:',1X.F10.7,IX, 
#'AT ELEMENT',IX,14,/,IX, 
S'MAXIHUM DISPERSION COEFFICIENT FOR SOLUTE 2:',1X.F10.7,1X, 
#'AT ELEMENT', IX,14) 

C 
WRITE(6,621) 

621 FORMATC//,IX,'X POSITION',2X,'DYN. PRESS',2X,'OSM. PRESS',2X, 
#'AVAIL. C0NC1',2X,'TOTAL C0NC1',2X,'AVAIL. C0NC2',2X, 
#'TOTAL C0NC2',//) 

C 
X=O.DO 
DO 14 1=1,N 
X=X+DXCD 
PI=C0LD1(I)*CA1+C0LD1CI)*(B1+C0LD1CI)*C1)) 
# +C0LD2 CI)* CA2+C0LD2 CI) * (B2+C0LD2 CI)*C2)) 
C0N1=C0LD1CI)*PHI1/(1.DO-PHIS) 
C0N2=C0LD2CI)*PHI2/C1.DO-PHIS) 

C 
C WRITE OUT PROFILE DATA TO DEVICES 6 AND 7 
C 

WRITEC6.622) X.POLDCD,PI.COLDlCD,C0N1.C0LD2CD,C0N2 
WRITEC7.622) X.POLD(I),PI,C0LD1(I),C0N1,C0LD2(I),C0N2 

622 F0RMATClX,E9.3,6C2X,E10.4)) 
14 CONTINUE 
C 
C WRITE OUT MESOTHELIAL FLUX DATA TO DEVICE 7 
C 

CALL MASBALCNEX) 
DO 15 1=1,NEX 
12=2*1 
X=XN0DCI2) 
WRITEC7.702) X,QFM1(I).QSMllCD.QCMllCD.QSH12CD.QCM12CD 

702 FORMATC6C2X,ElO.4)) 
15 CONTINUE 
C 
c 

WRITEC6,623) 
623 FORMATC'l',//,lX,'MASS BALANCE DATA'///) 

C 
WRITE(6,624) 

624 FORHAT(///,IX,'NET DIMENSIONLESS FLUID FLOWS') 
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WRITE(6,625) QFC,QFV,QFM 
625 F0RMAT(//,1X,'ART:',IX,E12.4,/,IX,'VEN:', 

#E12.4,/,1X,'MES:'.1X.E12.4) 
WRITE(6,626) 

626 F0RMAT(///,1X,'NET DIMENSIONLESS SOLUTE FLOWS: SOLUTEl') 
WRITE(6,625)QSC1,QSV1,qSMl 
WRITE(6,627) 

627 FORMAT(//,IX,'CONVECTIVE COMPONENTS OF DIMENSIONLESS SOLUTE 
SFLOWS: SOLUTEl') 
WRITE(6,625) QCC1,QCV1,QCM1 

C 
WRITE(6,628) 

6 2 8 F0RMAT(///,1X,'NET DIMENSIONLESS SOLUTE FLOWS: S0LUTE2') 
WRITE ( 6,625 ) QSC2, qSV2, QSM2 
WRITE(6,629) 

629 FORMAT(//,IX,'CONVECTIVE COMPONENTS OF DIMENSIONLESS SOLUTE 
#FLOWS: SOLUTE2') 
VJRITE(6,625) qCC2,qCV2,qCH2 

C 
WRITE(6,630) 

630 FORMAT(//.IX, 
#' RATIO OF CONV. TO DIFFUS. FLUXES AT BOUNDARIES: SOLUTE 1 ' ) 
IF(DABS(qSCl-qCCl).LT.l.D-9) THEN 
PECC1=999.999D0 
ELSE 
PECci=qcci/(QSCi-qcci) 
E N D I F 
IF(DABS(qSVl-qCVl).LT.l.D-9) THEN 
PECV1=999.999D0 
ELSE 
PECVi=qcvi/(qsvi-qcvi) 
ENDIF 
I F ( D A B S(qSMl-qCMl) . L T.l.D - 9 ) THEN 
PECM1=999.999D0 
E L S E 
PECMi=qcMi/(qsMi-qcMi) 
ENDIF 
WRITE(6,625) PECC1.PECVl.PECH1 

C 
WRITE(6,631) 

6 3 1 F0RMAT ( / / ,1X, 
#'RATIO OF CONV. TO DIFFUS. FLUXES AT BOUNDARIES: SOLUTE 2') 
IF(DABS(qSC2-qCC2).LT.l.D-9) THEN 
PECC2=999.999D0 
ELSE 
PECC2=qcc2/(qsc2-qcc2) 
ENDIF 
IF(DABS(qSV2-QCV2).LT.l.D-9) THEN 
PECV2=999.999D0 
E L S E 
PEcv2=qcv2/(qsv2-qcv2) 
ENDIF 
IF(DABS(qSM2-qCM2).LT.l.D-9) THEN 
PECM2=999.999D0 
E L S E 
PECM2=qCM2/(qSM2-qCM2) 
ENDIF 
WRITE(6,625) PECC2,PECV2,PECM2 

C 
TIME1=TIME1+DTIME1(KK) 
KK=KK+1 
WRITE(6,602) 
GO TO 100 

C 
C MAXIMUM NUMBER OF ITERATIONS REACHED. PRINT OUT WARNING. 
C 

9 0 1 I C 0 U N T = I C 0 U N T - 1 
NITER=NITER-1 
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WRITE(6,632) NITER,TIME.ICOUNT 
632 FORMAT(//.IX,'WARNING. CONVERGENCE CRITERIA NOT MET AFTER', 

#1X,16,IX,'ITERATIONS',/,lX, 
#'TIME OF FAILURE:',IX,F10.6.3X, 
#'NUMBER OF SUCCESSFUL TIME STEPS BEFORE FAILURE:',1X,I7) 

C 
WRITE(6,633) PDIFMX,CDMX1.CDHX2 

633 FORMATC//,IX,'MAX. FRAC. CHANGE IN P',2X, 
#'MAX. FRAC. CHANGE IN C1',2X, 
#'MAX. FRAC. CHANGE IN C2\ 
#//,6X,E9.4,14X,E9.4,14X,E9.4,//) 
WRITE(6,634) PEC1,IEL1,COUR1,PEC2,IEL2,C0UR2 

634 FORMATCIX,'MAXIMUM GRID PECLET NUMBER FOR SOLUTE 1:',1X,F7.4, 
#' AT ELEMENT ',15,/,IX,'COURANT NUMBER FOR SOLUTE 1:'.1X.F10.7, 
#/,IX,'MAXIMUM GRID PECLET NUMBER FOR SOLUTE 2:',1X,F7.4, 
#' AT ELEMENT ',15,/,IX,'COURANT NUMBER FOR SOLUTE 2:',1X.F10.7) 
GO TO 920 

900 WRITE(6,635) TIME 
635 FORMATC//,IX,'MAXIMUM NUMBER OF TIME STEPS ACHEIVED AT TIME', 

#E10.4) 
GO TO 920 

910 WRITEC6.636) TIMMAX,ICOUNT 
636 FORMATC//,IX,'MAXIMUM TIME OF ',ElO.4,IX,'EXCEEDED AFTER ', 

#17,' TIME STEPS') 
920 STOP 

END 
SUBROUTINE MASBALCNEX) 

C 
C THIS SUBROUTINE PERFORMS A MATERIAL BALANCE ON THE SYSTEM FOR 

C BOTH FLUID AND PLASMA PROTEINS. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
COMMON/MATBAL/QFC,QCC1,QSC1,QCC2,QSC2,QFV,QCV1,QSV1,QCV2,QSV2, 
#QFM,QCM1,QSM1,QCM2,QSM2,QFM1(500),QCM11C500),qSMll(500), 
#QCM12(500).QSM12C500) 
C0MM0N/0LD/P0LDC1001).COLDlClOOl).C0LD2C1001) 
COMMON/BLK1/NODELC500,3),XNODC1001) 
C0MM0N/0SM0T/A1,BI,CI,A2,B2,C2 

. COMMON/TISDAT/AK.DEFF1,AL1,PHI1,PHIT,RET1.SIGTl.BETA!, 
# DEFF2,AL2,PHI2,RET2,SIGT2,BETA2 
COMMON/CAPDAT/PC,CREF 
COMMON/WALL/DLC,DLV,DLM,DDC1,DDV1,DDM1,PDC,PDV,PDM,PIDCl,PIDVl, 
#PIDM1,PIDC2,PIDV2,PIDM2,SIGC1.SIGVl,SIGMl,CDC1,CDV1,CDH1,DH, 
# DDC2,DDV2,DDM2.SIGC2.SIGV2,SIGM2,CDC2,CDV2.CDM2 
DIMENSION GAUSC4),W(4),BC3) 
DATA NGAUS/4/ 
DATA W/.347854845137454D0,.652145154862546D0, 
#.652145154862546D0,.347854845137454D0/ 
DATA GAUS/-.861136311594053D0,-.339981043S84856D0, 
#.339981043584856D0,.861136311594053D0/ 

C 
C FIRST, CALCULATE THE NET FLOWS ACROSS THE ARTERIOLAR WALL 
C 

PICl=COIJ}lCl)*Ul+COLDl(l)*CBl+COIJJlCl)*Cl)) 
PIC2=C0LD2 (1) * ( A2+C0LD2 CD* ( B2+C0LD2 (1) *C2 ) ) 
QFC=DH*AK*PC/DEFFl*DLC*CPOLDCl)-PDC-SIGCl*(PICl-PIDCl)-
# SIGC2*CPIC2-PIDC2)) 
QCC1=BETA1*QFC*C0LD1(1)*RET1 
QCC2=BETA2*QFC*C0LD2 C1)*RET2 
PECC1=C1.D0-SIGC1)*QFC/(DDC1*DH) 
IF(PECC1.GT.100.D0)G0 TO 110 
IFCPECCl.LT.-100.D0)G0 TO 120 
TEST=1.DO-DEXPC-PECC1) 
IFCDABS(TEST).LT.1.D-10)G0 TO 130 
QSCl=(l.D0-SIGCl)*qFC*(C0LDl(l)-CDCl*DEXPC-PECCl))/TES7 
GO TO 101 
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110 QSC1=QFC*(1.D0-SIGC1)*C0LD1(1) 
GO TO 101 

120 QSC1=(1.D0-SIGC1)*CDC1*QFC 
GO TO 101 

130 qSCl=DH*DDCl*(COLDl(l)-CDCl) 
"lOl PECC2=(1.D0-SIGC2)*QFC/(DDC2*DH) 

IF(PECC2.GT.100.DO)GO TO 111 
IF(PECC2.LT.-100.DO)GO TO 121 
TEST=1.D0-DEXPC-PECC2) 
IF(DABS(TEST).LT.1.D-10)G0 TO 131 
QSC2=(1.D0-SIGC2)*QFC*(C0LD2(1)-CDC2*DEXP(-PECC2))/TEST 
GO TO 200 

111 QSC2=QFC*(1.D0-SIGC2)*C0LD2(1) 
GO TO 200 

121 QSC2=(1.D0-SIGC2)*CDC2*QFC 
GO TO 200 

131 QSC2=DH*DDC2*(C0LD2(1)-CDC2) 
C 
C HOW FOR THE VENULAR WALL 
C 
200 N=NEX*2+1 

PIV1=C0LD1(N)*(A1+C0LD1(N)*(B1+C0LD1(H)*C1)) 
PIV2=C0LD2(N)*(A2+C0LD2(N)*(B2+C0LD2(N)*C2)) 
QFV=DH*AK*PC/DEFFl*DLV*(POLD(N)-PDV-SIGVl*(PIVl-PrDVl) 
# SIGV2*(PIV2-PIDV2)) 
QCVl=BETAl*qFV*COLDl(N)*RET1 
qCV2=BETA2*qFV*C0LD2(N)*RET2 
PECV1=(1.D0-SIGV1)*QFV/(DDV1*DH) 
IF(PECV1.GT.100.DO)GO TO 210 
IF(PECV1.LT.-100.D0)G0 TO 220 
TEST=1.DO-DEXP(-PECV1) 
IF(DABS(TEST).LT.1.D-10)G0 TO 230 
qSVl=(l.DO-SIGVl)*qFV*(COLDl(N)-CDVl*DEXP(-PECVl))/TEST 
GO TO 201 

210 qSVl=qFV*(l.DO-SIGVl)*COLDl(N) 
GO TO 201 

220 qSVl=(l.DO-SIGVl)*CDVl*qFV 
GO TO 201 

230 qSVl=DH*DDVl*(COLDl(N)-CDVl) 
C 
201 PECV2=(1.D0-SIGV2)*qFV/(DDV2*DH) 

. IF(PECV2.GT.100.DO)GO TO 211 
IF(PECV2.LT.-100.D0)G0 TO 221 
TEST=1.DO-DEXP(-PECV2) 
IF(DABS(TEST).LT.1.D-10)G0 TO 231 
qSV2=(l.D0-SIGV2)*qFV*(C0LD2(N)-CDV2*DEXP(-?ECV2))/TEST 
GO TO 300 

211 QSV2=qFV*(l.D0-SIGV2)*C0LD2(N) 
GO TO 300 

221 0SV2=(l.DO-SIGV2)*CDV2*qFV 
GO TO 300 

231 QSV2=DH*DDV2*(C0LD2(H)-CDV2) 
C 
C AND FINALLY, THE MESOTHELIAL LAYER 
C 
C CONSIDER THE MESOTHELIAL WALL, ELEMENT EY ELEMENT. 
C 
300 0SM1=0.D0 

QCH1=0.D0 
qSM2=0.D0 

qCM2=0.D0 
qFM=O.DO 

c 
DO 400 1=1,NEX 
qSMll(I)=0.D0 
OFM1(I)=O.DO 
qCMll(I)=0.D0 
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qSM12(I)=0.D0 
QCM12(I)=0.D0 

400 CONTINUE 
C 

DO 1 11=1,NGAUS 
S=GAUS(II) 

DO 2 1=1,NEX 
X1=XN0D(N0DEL(I,D) 
X2=XN0D(N0DEL(I,2)) 
X3=XN0D(N0DEL(I,3)) 
S2=(2.D0*X2-(X1+X3))/(X3-X1) 

C 
B(l)=(S-S2)*(S-l.DO)/(2.D0*(S2+l.DO)) 
B(2)=(S+1.D0)*(S-1.D0)/(S2*S2-1.D0) 
B(3)=(S+1.D0)*(S-S2)/(2.D0*(1.D0-S2)) 
DX=(X3-Xl)*.SD0 

C 
C CALCULATE C(S), PI(S), AND P(S) 
C 

- CS1=0.D0 
CS2=0.D0 
PS=0.D0 
DO 3 IT=1,3 
CS1=CS1+C0LD1(N0DEL(I,IT))*B(IT) 
CS2=CS2+C0LD2(NODEL(I, IT) ) *B (IT) 
PS=PS+POLD(NODEL(I,IT))*B(IT) 

3 CONTINUE 
PIS1=CS1*(A1+CS1*(B1+CS1*C1)) 
PIS2=CS2*(A2+CS2*(B2+CS2*C2)) 

C 
C CALCULATE TEE FLUXES 
C 

FL0W=AK*PC/DEFF1*DLM*(PS-PDM-SIGK1*(PIS1-PIDH1) 
# - SIGM2*(PIS2-PIDM2))*W(II)*DX 

QFM=qFH+FLOW 
QFM1(I)=qFM1(I)+FLOW/(X3-X1) 
QCMl=qCMl+FLOW*CSl*BETAl*RETl 
qCM2=qCM2+FL0W*CS2*BETA2*RET2 
qCMll(I)=qCMll(l)+FL0H*CSl*BETAl/(X3-Xl)*RETl 
QCM12(I)=qCM12(I)+FL0W*CS2*BETA2/(X3-Xl)*RET2 

C 
C . DETERMINE HEICH FORM OF THE NONLINEAR FLUX EqN. IS TO BE USED. 
C 

qS=FLOW/(W(II)*DX) 
PECMl=qS*(l.DO-SIGMl)/DDHl 
IF(PECM1.GT.100.D0)G0 TO 410 
IF(PECM1.LT.-100.D0)G0 TO 420 
TESTM=1.DO-DEXP(-PECM1) 
IF(DABS(TESTM).LT.1.D-10)G0 TO 430 

C 
C USE THE FULL EXPRESSION 
C 

SFL0W1=FL0W*(1.D0-SIGM1)*(CS1-CDM1*DEXP(-PECM1))/TESTM 
QSMl=qSMl+SFLOWl 
qSMll(I)=QSMll(I)+SFL0V!l/(X3-Zl) 
GO TO 500 

C 
410 SFL0W1=FL0W*(1.D0-SIGM1)*CS1 

QSM1=QSM1+SFL0W1 
qSMll(I)=qSMll(I)+SFL0Hl/(X3-Xl) 
GO TO 500 

C 
420 SFL0VJ1=FL0W* (1 .D0-SIGM1) *CDM1 

QSM1=QSM1+SFL0W1 
qSMll(I)=qSMl1(I)+SFLOW1/(X3-X1) 
GO TO 500 

C 
430 SFL0W1=DDH1*(CS1-CDM1)*DX*W(II) 

QSM1=QSM1+SFL0W1 
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QSM11(I)=QSM11(I)+SFL0W1/(X3-X1) 
C 
500 PECM2=QS*(1.D0-SIGM2)/DDM2 

IF(PECM2.GT.100.D0)G0 TO 510 
IF(PECM2.LT.-100.DO)GO TO 520 
TESTM=1.DO-DEXP(-PECM2) 
IF(DABS(TESTM).LT.1.D-10)G0 TO 530 

C 
C USE THE FULL EXPRESSION 
C 

SFL0W2=FL0W*(1.D0-SIGM2)*(CS2-CDM2*DEXP(-PECH2))/TESTM 
qSM2=QSM2+SFL0W2 
qSM12(I)=qSM12(I)+SFL0W2/(X3-X1) 
GO TO 2 

C 
510 SFL0W2=FL0W*(1.D0-SIGM2)*CS2 

qSM2=qSM2+SFL0W2 
qSM12(I)=qSM12(I)+SFL0W2/(X3-X1) 
GO TO 2 

C 
520 SFL0W2=FL0W*(1.D0-SIGM2)*CDH2 

qSM2=qSM2+SFL0W2 
qSM12(I)=qSM12(I)+SFL0W2/(X3-X1) 
GO TO 2 

C 
530 SFL0W2=DDM2*(CS2-CDM2)*DX*W(II) 

QSM2=qSM2+SFL0W2 
qSM12(I)=QSM12(I)+SFL0W2/(X3-X1) 

C 
2 CONTINUE 
1 CONTINUE 

RETURN 
END 
SUBROUTINE GRID(NEX) 

C 
C THIS SUBROUTINE CALCULATES THE SPATIAL LOCATION OF THE NODES 
C FOR EACH ELEMENT, ALONG WITH THE NODES ASSOCIATED WITH A 
C GIVEN ELEMENT. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
C0MM0N/BLK1/N0DEL(500,3), XHOD(lOOl) 
C0MH0N/BLK2/DX(1001) 

C 
K=l 
DO 1 1=1,NEX 
N0DEL(I,1)=K 
N0DEL(I,2)=K+1 
N0DEL(I,3)=K+2 
K=K+2 

1 CONTINUE 
C 

X=O.DO 
NP=2*NEX+1 
DO 2 1=1,NP 
X=X+DX(I) 
XNOD(I)=X 

2 CONTINUE 
RETURN 
END 

C 
SUBROUTINE VSTAR(NEX.IND) 

C 
C THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO ACCOUNT FOR THE 
C STARLING BOUNDARY CONDITION AT THE VENULAR WALL. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
COMMON/BLK1/NODEL(500,3), XNOD(lOOl) 
C0MM0N/FLUMAT/AF(20000) 
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COMMON/FLUB/BF(1001) 
COMMON/OLD/POID(1001).COLBl(lOOl),C0LD2(1001) 
COMMON/WALL/DLC,DLV,DLM,DDC1,DDV1,DDM1,PDC,PDV,PDM,PIDC1,PIDV1, 
#PIDM1,PIDC2,PIDV2,PIDM2,SIGCl,SIGVl,SIGMl,CDC1,CDV1,CDM1,DH, 
# DDC2,DDV2,DDM2.SIGC2,SIGV2,SIGM2,CDC2,CDV2,COM2 
COMMON/OSMOT/Al,B1,C1,A2,B2,C2 

C 
M=NEX*2+1 
LUB=2 
LP=3*LUB 
IF(IND.EQ.1)G0 TO 100 
K=LP*M+M-LUB 
AF(K)=AF(K)+ DLV 

. GO TO 900 
C 
100 PI1=C0LD1(M)*(A1+C0LD1(M)*(B1+C0LD1(M)*C1)) 

PI2=C0LD2(M)*(A2+C0LD2(M)*(B2+C0LD2(M)*C2)) 
BF(M)=BF(M)+DLV*(PDV+SIGV1*(PI1-PIDV1)+SIGV2*(PI2-PIDV2)) 

C 
900 RETURN 

END 
SUBROUTINE ASTAR(NEX,IND) 

C 
C THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO ACCOUNT FOR THE 
C STARLING BOUNDARY CONDITION AT THE ARTERIOLAR WALL. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
C0HM0N/BLK1/N0DEL(S00,3), XNOD(lOOl) 
COMMON/FLUMAT/AF(20000) 
COMMON/FLUB/BF(1001) 
COMMON/OLD/POLD(1001),C0LD1(1001),C0LD2(1001) 
COMMON/WALL/DLC,DLV,DLM,DDC1,DDV1,DDM1,PDC,PDV,PDM,PIDC1,PIDV1, 
#PIDM1,PIDC2,PIDV2,PIDM2,SIGCl,SIGVl,SIGMl,CDC1,CDV1,CDH1,DH, 
# DDC2,DDV2,DDH2,SIGC2,SIGV2,SIGH2,CDC2,CDV2,CDM2 
COMMON/OSMOT/A1,B1,C1,A2,B2,C2 

C 
LUB=2 
LP=3*LUB 
IF(IHD.Eq.l)GO TO 100 
K=LP+1-LUB 
AF(K)=AF(K)+ DLC 
GO TO 900 

C 
100 PI1=C0LD1(1)*(A1+C0LD1(1)*(B1+C0LD1(1)*C1)) 

PI2=C0LD2(1)*(A2+C0LD2(1)*(B2+C0LD2(1)*C2)) 
BF(1)=BF(1)+DLC*(PDC+SIGC1*(PI1-PIDC1)+SIGC2*(PI2-PIDC2)) 

C 
900 RETURN 

END 
SUBROUTINE PATART(NEX) 

C 
C THIS SUBROUTINE ADJUSTS THE AS AND BS VECTORS TO ACCOUNT FOR THE 

C PATLAK BOUNDARY CONDITION AT THE ARTERIOLAR WALL. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
COMMOH/BLK1/NODEL(500,3), XNOD(lOOl) 
COMMOH/SOLMAT/AS1(20000),AS2(20000) 
C0MM0N/S0LB/BS1(1001),BS2(1001) 
C0MM0H/0LD/P0LD(1001),C0LD1(1001),C0LD2(1001) 
COMMON/TISDAT/AK.DEFF1,ALPHLl,PHI1,PHIT,RET1,SIGTl,BETAl, 
CDEFF2,ALPHL2,PHI2.RET2,SIGT2,BETA2 
COMMON/CAPDAT/PC,CREF 
COMMON/WALL/DLC,DLV,DLM,DDC1,DDV1,DDM1,PDC,PDV,PDM,P IDC1, 
#PIDV1,PIDMl.PIDC2.PIDV2.PIDM2,SIGCl,SIGVl,SIGMl,CDC1,CDVl,CDM1, 
SDH,DDC2,DDV2,DDM2,SIGC2,SIGV2,SIGM2,CDC2,CDV2,CDK2 
C0MM0N/0SM0T/A1,B1,C1,A2,B2,C2 

C 
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LUB=2 
LP=3*LUB 
K=LP+1-LUB 

C 
PI1=C0LD1(1)*(A1+C0LD1(1)*(B1+C0LD1(1)*C1)) 
PI2=C0LD2(1)*(A2+C0LD2(1) *(B2+C0LD2(1)*C2)) 
QART=AK*PC/DEFF1*DLC*(P0LD(1)-PDC-SIGC1*(PI1-PIDC1)-
#SIGC2*(PI2-PIDC2)) 
PEC1=(1.DO-SIGC1)/DDC1*QART 

C 
C DETERMINE WHICH FORM OF THE FLUX EXPRESSION APPLIES 
C 

IF(PECl.GT.100.0DO)GO TO IOO 
IF(PEC1.LT.-100.D0)G0 TO 200 
TEST=1.DO-DEXP(-PECl) 
IF(DABS(TEST).LT.1.D-10)G0 TO 300 

C 
AS1(K)=AS1(K)-QART*(RET1*BETA1-(1.D0-SIGC1)/TEST) 
BS1(1)=BS1(1)+(1.D0-SIGC1)*qART*CDCl*DEXP(-PEC1)/TEST 
GO TO 900 

C 
100 AS1(K)=AS1(K)-QART*(BETA1*RET1-(1.D0-SIGC1)) 

GO TO 900 
C 
200 AS1(K)=AS1(K)-QART*BETA1*RET1 

BSl(l)=BSl(l)-(l.DO-SIGCl)*qART*CDCl 
GO TO 900 

C 
300 ASl(K)=ASl(K)-qART*BETAl*RETl+DDCl 

BS1(1)=BS1(1)+DDC1*CDC1 
C 
900 PEC2=(1.D0-SIGC2)/DDC2*QART 
C 
C DETERMINE WHICH FORM OF THE FLUX EXPRESSION APPLIES 
C 

IF(PEC2.GT.100.0D0)G0 TO 101 
IFCPEC2.LT.-100.DO)GO TO 201 
TEST=1.DO-DEXP(-PEC2) 
IF(DABS(TEST).LT.1.D-10)G0 TO 301 

C 
AS2(K)=AS2(K)-QART*(RET2*BETA2-(1.D0-SIGC2)/TEST) 
BS2(1)=BS2(1)+(1.D0-SIGC2)*qART*CDC2*DEXP(-PEC2)/TEST 

- GO TO 901 
C 
101 AS2(K)=AS2(K)-QART*(BETA2+RET2-(1.D0-SIGC2)) 

GO TO 901 
C 
201 AS2(K)=AS2(K)-QART*BETA2*RET2 

BS2(1)=BS2(1)-(1.D0-SIGC2)*qART*CDC2 
GO TO 901 

C 
301 AS2(K)=AS2(K)-QART*BETA2*RET2+DDC2 

BS2(1)=BS2(1)+DDC2*CDC2 
C 
C 
901 RETURN 

END 
SUBROUTINE PATVEN(NEX) 

C 
C THIS SUBROUTINE ADJUSTS THE AS AND BS VECTORS TO ACCOUNT FOR THE 
C PATLAK BOUNDARY CONDITION AT THE VENULAR WALL. 
C 

IMPLICIT REAL*8(A-H,0-Z) 
C0MH0N/BLK1/NODEL(500,3), XNOD(lOOl) 
C0MM0N/S0LMAT/AS1(20000),AS2(20000) 
COMMON/SOLB/BSKlOOl) ,BS2(1001) 
COMHON/OLD/POLD(1001),C0LD1(1001),C0LD2(100l) 
COMMON/TISDAT/AK.DEFFl.ALPHLl.PHIl.PHIT.RETl.SIGTl.BETAl, 
#DEFF2,ALPHL2,PHI2,RET2,SIGT2,BETA2 
COMMON/CAPDAT/PC,CREF 
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COMMON/WALL/DLC,DLV,DLM.DDCl ,DDV1,DDM 1,PDC ,PDV,PDM,PIDCl, 
#PIDV1 .PIDMl .PIDC2.PIDV2 .PIDM2.SIGC1 .SIGVl,SIGMl ,CDC1 ,CDV1 ,CDM1, 
#DH,DDC2.DDV2.DDM2,SIGC2,SIGV2,SIGM2,CDC2,CDV2,CDM2 
COMMON/OSMOT7Al,B1,C1,A2,B2,C2 

C 
LUB=2 
LP=3*LUB 
NP=2*NEX+1 
K=LP*NP+NP-LUB 

C 
PI1=C0LD1(NP)*(A1+C0LD1(NP)*(B1+C0LD1(NP)*C1)) 
PI2=C0LD2(NP)*(A2+C0LD2(NP)*(B2+C0LD2(NP)*C2)) 
qART=AK*PC/DEFFl*DLV*(POLD(NP)-PDV-SIGVl*(PIl-PIDVl)-
#SIGV2*(PI2-PIDV2)) 
PEC1=(1.D0-SIGV1)/DDV1*QART 

C 
C DETERMINE WHICH FORM OF THE FLUX EXPRESSION APPLIES 
C 

IF(PECl.GT.lOO.0DO)G0 TO IOO 
I F ( P E C I . L T . - I O O . D O ) G O TO 200 
TEST=1.DO-DEXP(-PECl) 
IF(DABS(TEST).LT.1.D-10)GO TO 300 

C 
AS1(K)=AS1(K)-QART*(RET1*BETA1-(1.D0-SIGV1)/TEST) 
BS1(NP)=BS1(NP)+(1.D0-SIGV1)*QART*CDV1*DEXP(-PEC1)/TEST 
GO TO 900 

C 
100 AS1(K)=AS1(K)-QART*(BETA1*RET1-(1.D0-SIGV1)) 

GO TO 900 
C 
200 AS1(K)=AS1(K)-QART*BETA1*RET1 

BSl(NP)=BSl(NP)-(l.DO-SIGVl)*QART*CDVl 
GO TO 900 

C 
300 AS1(K)=AS1(K)-QART*BETA1*RET1+DDV1 

BS1(NP)=BS1(NP)+DDV1*CDV1 
C 
900 PEC2=(l.D0-SIGV2)/DDV2*QART 
C 
C DETERMINE WHICH FORM OF THE FLUX EXPRESSION APPLIES 
C 

• IF(PEC2.GT.100.0D0)G0 TO 101 
IF(PEC2.LT.-100.D0)G0 TO 201 
TEST=1.D0-DEXP(-PEC2) 
IF(DABS(TEST).LT.1.D-10)G0 TO 301 

C 
AS2(K)=AS2(K)-QART*(RET2*BETA2-(1.D0-SIGV2)/TEST) 
BS2(NP)=BS2(NP)+(1.D0-SIGV2)*QART*CDV2*DEXP(-PEC2)/TEST 
GO TO 901 

C 
101 AS2(K)=AS2(K)-QART*(BETA2*RET2-(1.D0-SIGV2)) 

GO TO 901 
C 
201 AS2(K)=AS2(K)-QART*BETA2*RET2 

BS2(NP)=BS2(NP)-(l.D0-SIGV2)*QART*CDV2 
GO TO 901 

C 
301 AS2(K)=AS2(K)-QART*BETA2*RET2+DDV2 

BS2(NP)=BS2(NP)+DDV2+CDV2 
C 
901 RETURN 

END 
SUBROUTINE MATPLY(A,Al,B,C.HP) 

C 
C THIS SUBROUTINE MULTIPLIES A MATRIX A BY A VECTOR B AND SCALAR Al 
C TO GIVE VECTOR C. MATRIX A IS STORED AS A VECTOR, WHERE MATRIX 
C ELEMENT A(I,J) IS STORED AS A(IJ), IJ=3*LUB*J+I-LUB. AND WHERE 
C LUB IS THE NUMBER OF OFF DIAGONAL BANDS. FOR THIS SUBROUTINE, 
C IT IS ASSUMED THAT THE BANDWIDTH IS 5, SO THAT LUB=2. 
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c 
IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION A(20000), B(NP), C(NP) 
LUB=2 
LP=3*LUB 

C 
DO 1 1=1,NP 
C(I)=O.DO 

1 CONTINUE 
C 

K=2 
DO 2 1=1,2 
K=K+1 

DO 3 J=1,K 
IJ=LP*J+I-LUB 
C(I)=C(I)+A(IJ)*A1*B(J) 

3 CONTINUE 
2 CONTINUE 
C 

NPM=NP-2 
K=0 
DO 4 1=3,NPM 
K=K+1 
KP=K+4 

DO 5 J=K,KP 
IJ=J*LP+I-LUB 
C(I)=C(I)+A(IJ)*3(J)*A1 

5 CONTINUE 
4 CONTINUE 
C 

NPM=NP-1 
K=NP-4 
DO 6 I=NPM,NP 
K=K+1 

DO 7 J=K,NP 
IJ=LP*J+I-LUB 
C(I)=C(I)+A(IJ)*A1*B(J) 

7 CONTINUE 
6 CONTINUE 
C 

RETURN 
END 
SUBROUTINE SETMAT (NEX, IND, PEI, IPEC1, VMAX1, PE2, IPEC2, VMAX2 ) 

C 
C THIS SUBROUTINE INITIALIZES THE VARIOUS VECTORS ASSOCIATED 
C WITH SOLUTE AND FLUID TRANSPORT EQUATIONS, AF(K), BF(I), AS1(K), 
C AS2(I),BS1(I), BS2(I). 
C 

IMPLICIT REAL*8(A-H,0-Z) 
COMMON/BLK1/NODEL (500,3),XN0D(1001) 
COMMON/FLUMAT/AF(20000) 
C0MM0N/0LD/P0LD(1001).COLDl(lOOl),C0LD2(1001) 
COHMON/SOLB/BSKlOOl) ,BS2(100l) 
COMMON/FLUB/BF(1001) 
C0MH0N/S0LMAT/AS1(20000),AS2(20000) 
C0MM0N/0SM0T/A1,B1,C1,A2,B2,C2 
COMMON/TISDAT/AK ,DEFF1, AL1 ,PHI1 .PHIT.RETl .SIGTl, BETA1, 
#DEFF2,AL2,PHI2, RET2,SIGT2.BETA2 
COMMON/CAPDAT/PC,CREF 
COMMON/WALL/DLC, DLV,DLM.DDCl,DDV1,DDM1,PDC,PDV,PDM,PIDCl, 
#PIDV1,PIDM1,PIDC2.PIDV2,PIDM2,SIGC1.SIGV1,SIGMl,CDC1,CDV1,CDM1, 
#DH,DDC2,DDV2,DDM2,SIGC2,SIGV2,SIGM2,CDC2, CDV2,CDM2 
COMMON/TIME/T(20000) 

• C0MM0N/MAXDAT/DMX1,DMX2,IDISP1,IDISP2 
C 

DIMENSION GAUS(4),W(4),B(3),DB(3) 
DATA NGAUS/4/ 
DATA W/.347854845137454D0,.6S2145154862546D0, 
#.652145154862S46D0,.347854845137454D0/ 
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DATA GAUS/-.861136311594053D0,-.339981043584856D0, 
#.339981043584856D0,.861136311594053D0/ 

C DATA GAUS/ 
C DATA W/ 
C DATA NGAUS/3/ 
C DATA GAUS/ 
C DATA W/ 

DMX1=0.D0 
DMX2=0.D0 
ALPHA=AK*PC/DEFF1 
PE1=0.D0 
VMAX1=0.D0 
PE2=0.D0 
VMAX2=0.D0 

C 
C 
C ZERO THE APPROPRIATE ARRAY AND INITIALIZE 
C 

IF(IND.EQ.l)GO TO 800 
IF(IND.E0.2)GO TO 900 
IF(IND.EQ.3)G0 TO 950 

C 
C ZERO THE AF VECTOR 
C 

DO 700 1=1,20000 
AF(I)=O.DO 

700 CONTINUE 
GO TO 100 

C 
C ZERO THE BF VECTOR 
C 
800 DO 801 1=1,1001 

BF(I)=O.DO 
801 CONTINUE 

GO TO 100 
C 
C ZERO THE T MATRIX 
C 
950 DO 951 1=1,20000 

T(I)=O.DO 
951 CONTINUE 

GO TO 100 
C 
C ZERO THE AS AND BS VECTORS 
C 
900 DO 901 1=1,20000 

AS1(I)=0.D0 
AS2(I)=O.D0 

901 CONTINUE 
C 

DO 902 1=1,1001 
BS1(I)=0.D0 
BS2(I)=0.D0 

902 CONTINUE 
C 
C BEGIN TEE GAUSS INTEGRATION, ELEMENT BY ELEMENT 
C 
100 LUB=2 

LP=3*LUB 
C 
C EVALUATE TEE INTEGRAND AT TEE APPROPRIATE QUADRATURE POINT, 
C 

DO 200 11=1,NGAUS 
S=GAUS(II) 

C 
C INITIALIZE TEE APPROPRIATE ARRAY, ELEMENT BY ELEMENT. 
C 

DO 300 1=1,NEX 
C 
C CALCULATE VALUE OF BASIS FUNCTIONS AND DERIVATIVES AT TEE 
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C QUADRATURE POINT 
C 

X1=XN0D(N0DEL(I,D) 
X2=XN0D(N0DEL(I,2)) 
X3=XN0D(N0DEL(I,3)) 

C 
S2=(2.D0*X2-(X1+X3))/(X3-X1) 

C 
B(1)=(S-S2)*(S-1.D0)/(2.D0*(S2+1.D0)) 
B(2)=(S+1.D0)*(S-1.D0)/(S2*S2-1.D0) 
B(3)=(S+1.D0)*(S-S2)/(2.D0*(1.D0-S2)) 
DB(l)=(2.D0*S-S2-l.D0)/(2.D0*(S2+l.D0)) 
DB(2)=2.D0*S/(S2*S2-1.D0) 
DB(3)=(2.D0*S-S2+1.D0)/(2.D0*(1.D0-S2)) 

C 
DX=(X3-Xl)*.SD0 

C 
C CALCULATE THE T VECTOR 
C 

IF(IND.NE.3) GO TO 101 
DO 952 M=l,3 
HM=NODEL(I,M) 

DO 953 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+MM-LUB 
T(K)=T(K)+B(M)*B(N)*DX*W(II) 

953 CONTINUE 
952 CONTINUE 

GO TO 300 
C 
C NOW CALCULATE C1(S), DC1/DS, PI1(S), DPIi/DS,C2(S),... 
C 

101 CS1=0.D0 
CS2=0.D0 
DCS1=0.D0 
DCS2=0.D0 
DO 301 IT=1,3 
CS1=CS1+C0LD1(N0DEL(I,IT))*B(IT) 
CS2=CS2+C0LD2(N0DEL(I,IT))*B(IT) 
DCS1=DCS1+C0LD1(N0DEL(I,IT))*DB(IT) 
DCS2=DCS2+C0LD2(N0DEL(I,IT))*DB(IT) 

301 " CONTINUE 
C 

PIS1=CS1*(A1+CS1*(B1+CS1*C1)) 
PIS2=CS2*(A2+CS2*(B2+CS2*C2)) 
DPIS2=(A2+2.D0*B2*CS2+3.D0*CS2*CS2*C2) +DCS2 
DPIS1=(A1+2.D0*B1*CS1+3.D0*CS1*CS1*C1)*DCS1 

C 
C DETERMINE WHICH VECTOR IS TO BE INITIALIZED 
C 

IF(IND.EQ.1)G0 TO 500 
IF(IND.EQ.2)G0 TO 600 

C 
C INITIALIZE THE FLUID VECTOR 
C 

DO 401 M=l,3 
MM=NODEL(I,M) 

DO 402 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+MM-LUB 
AF(K)=AF(K)+(B(M)*B(N)*2.D0*DLM/DH*DX+DB(M)*DB(N)/DX)*W(II) 

402 CONTINUE 
401 CONTINUE 

GO TO 300 
C 
C INITIALIZE THE FLUID B VECTOR 
C 
500 DO 501 M=l,3 

MM=NODEL(I,M) 
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BF(MM)=BF(MM)+(DB(M)*(DPIS1*SIGT1+DPIS2*SIGT2)/DX+B(M)* 
#2.D0*DLM/DH*DX*(PDM+SIGM1*(PIS1 - PIDM1)+SIGM2*(PIS2-PIDM2) 
#))*W(II) 

501 CONTINUE 
GO TO 300 

C 
C INITIALIZE THE SOLUTE VECTORS, BS AND AS. fIRST CALCULATE VS1.VS2 
C QMES, AND THE DISPERSION COEFFICIENTS, DISP1 AND DISP2. 
C 
600 DPS=0.D0 

PS=O.DO 
DO 601 IT=1,3 
DPS=DPS+POLD(NODEL(I,IT))*DB(IT) 
PS=PS+POLD(NODEL(I,IT))*B(IT) 

601 CONTINUE 
C 

VS1=-ALPEA*(DPS-SIGT1*DPIS1-SIGT2*DPIS2)/DX*RET1*BETA1/PHI1 
VS2=-ALPHA*(DPS-SIGT1*DPIS1-SIGT2*DPIS2)/DX*RET2*BETA2/PHI2 
QFNES=ALPEA*DLM*(PS-PDM-SIGM1*(PIS1-PIDM1)-SIGM2*(PIS2-PIDH2)) 
DISP1=DABS(VS1)*AL1+1.D0 
IF(DISPl.LT.DMXl) GO TO 655 
DMX1=DISP1 
IDISP1=I 

655 DISP2=DABS(VS2)*AL2+DEFF2/DEFF1 
IF(DISP2.LT.DMX2) GO TO 656 
DHX2=DISP2 
IDISP2=I 

C 
C CALCULATE THE MAXIMUM LOCAL SOLUTE VELOCITY, VELMAX 
C 
656 IF(DABS(CS1).LT.l.D-5) VELS1=DABS(VS1)*PEI1 

IF(DABS(CS1).GT.l.D-5) VELS1=DABS(VS1-(DISP1*DCS1/DX)/CS1)*PEI1 
IF(DABS(CS2).LT.l.D-5) VELS2=DABS(VS2)*PHI2 
IF(DABS(CS2).GT.l.D-5) VELS2=DABS(VS2-(DISP2*DCS2/DX)/CS2)*PHI2 
IF(.5D0*VELS1/DX.GT.VMAX1) VMAX1=.5D0+VELS1/DX 
IF(.5D0*VELS2/DX.GT.VMAX2) VMAX2=.5D0+VELS2/DX 

C 
C CALCULATE THE GRID PECLET NUMBER, AND SEE IF IT EXCEEDS 
C TEE LIMIT 
C 

PEST1=DABS(VS1)*(X3-X1)/DISP1 
IF(PEST1.LT.PE1)G0 TO 609 
PE1=PEST1 
IPEC1=I 

609 PEST2=DABS(VS2)*(X3-X1)/DISP2 
IF(PEST2.LT.PE2)G0 TO 610 
PE2=PEST2 
IPEC2=I 

C 
C NOW DETERMINE WEICH FORM OF THE NONLINEAR FLUX EXPRESSION 
C IS TO BE USED TO CALCULATE SOLUTE FLUX ACROSS MESOTHELIUM. 
C 
C 
610 PEC1=QFMES*(1.D0-SIGM1)/DDM1 

IF(PEC1.GT.100.D0)G0 TO 611 
IF(PEC1.LT.-100.D0)G0 TO 620 
TEST=1.DO-DEXP(-PEC1) 
IF(DABS(TEST).LT.1.D-10)G0 TO 630 

C 
C CASE 1: USE THE FULL NONLINEAR FLUX EXPRESSION 
C 

DO 602 M=l,3 
MH=NODEL(I,M) 

DO 603 H=i,3 
NN=NODEL(I,N) 
K=LP*NN+MH-LUB 
AS1(K)=AS1(K)+(B(M)*DB(N)*VS1*PEI1+ 

# DB(M)*DB(K)*DISP1*PHI1/DX 
# +B(H)*B(N)*2.DO*QFMES/TEST/DH*(1.D0-SIGM1)*DX 
# -2.D0/DH*qFMES*RETl*BETAl*B(M)*B(N)+DX)*W(II) 
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603 CONTINUE 
BS1(MM)=BS1(MM)+ 
# B(H)*2.DO/DH*(1.D0-SIGM1)*QFHES*CDH1*DEXP(-PEC1)/TEST 
# *DX*W(II) 

602 CONTINUE 
GO TO 640 

C 
C CASE 2: PEC APPROACHES INFINITY 
C 
611 DO 612 K=l,3 

MM=NODEL(I,M) 
DO 613 N=l,3 
NN=HODEL(I,N) 
K=LP*NN+MH-LUB 
AS1(K)=AS1(K)+ 

# (B(M)*DB(N)*VS1*PBI1+DB(M)*DB(N)*PHI1*DISP1/DX 
# +B(M)*B(H)*2.DO/DH*(l.D0-SIGKl)*QFMES*DX 
# -qFHES*RETl*BETAl*B(H)*B(N)*DX*2.D0/DH)*W(II) 

613 CONTINUE 
612 CONTINUE 

GO TO 640 
C 
C CASE 3: -PEC APPROACHES INFINITY 
C 
620 DO 621 M=l,3 

HM=NODEL(I,M) 
DO 622 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+MM-LUB 
AS1(K)=AS1(K)+ 

# (B(H)*DB(N)*VS1*PHI1+DB(M)*DB(N)*PHI1*DISP1/DX 
# -2.D0/DH*BETA1*RET1*QFMES*B(H)*B(M)*DX)*W(II) 

622 CONTINUE 
. BS1(MM)=BS1(MM)-2.D0/DE*(1.D0-SIGH1)*QFMES-CDM1*DX*W(II)*B(M) 

621 CONTINUE 
GO TO 640 

C 
C CASE 4: PEC APPROACHES 0 
C 
630 DO 631 H=l,3 

HH=NODEL(I,M) 
DO 632 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+MH-LUB 
AS1(K)=AS1(K)+ 

# (B(H)*DB(B)*VS1*PEI1+DB(K)*DB(N)*PEI1*DISP1/DX 
# +2.D0/DE*DDM1*B(M)*B(N)*DX 
# -2.D0/DH*RET1*BETA1*DX*B(H)*B(N)*QFMES)*W(II) 

632 COMINUE 
BSl(MH)=BSl(MM)+2.D0/DH*DDMl*B(H)*CDMl*DX*y(II) 

631 CONTINUE 
C 
640 PEC2=QFMES*(1.D0-SIGK2)/DDM2 

IF(PEC2.GT.100.D0)G0 TO 650 
IF(PEC2.LT.-100.D0)G0 TO 660 
TEST=1.DO-DEXP(-PEC2) 
IF(DABS(TEST).LT.1.D-10)G0 TO 670 

C 
C CASE 1: USE TBE FULL NONLINEAR FLUX EXPRESSION 
C 

DO 641 H=l,3 
HM=NODEL(I,M) 

DO 642 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+MH-LUB 
AS2(K)=AS2(K)+(B(H)*DB(N)*VS2*PEI2-

# DB(H)*DB(N)*DISP2*PBI2/DX & 
# +B(H)*B(H)*2.DO*QFHES/TEST/DB*(1.D0-SIGH2)*DX 
# -2.D0/DB*QFMES*RET2*BETA2*B(H)*B(N)*DX)*W(II) 

642 CONTINUE 
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BS2(MM)=BS2(MM)+ 
# B(M)*2.DD/DH*(1.D0-SIGM2)*QFMES*CDM2*DEXP(-PEC2)/TEST 
# *DX*W(II) 

641 CONTINUE 
GO TO 300 

C 
C CASE 2: PEC APPROACHES INFINITY 
C 
650 DO 651 M=l,3 

MM=NODEL(I,M) 
DO 652 N=l,3 
NN=NODEL(I,N) 
K=LP*NN+HM-LUB 
AS2(K)=AS2(K)+ 

# (B(M)*DB(N)*VS2*PHI2+DB(M)*DB(N)*PHI2*DISP2/DX 
# +B(M)*B(N)*2.DO/DH*(l.D0-SIGM2)*QFMES*DX 
# -QFMES*RET2*BETA2*B(H)*B(N)*DX*2.D0/DH)*W(II) 

652 CONTINUE 
651 CONTINUE 

GO TO 300 
C 
C CASE 3: -PEC APPROACHES INFINITY 
C 
660 DO 661 M=l,3 

MM=NODEL(I,M) 
DO 662 E=l,3 
NN=NODEL(I,N) 
K=LP*NH+KM-LUB 
AS2(K)=AS2(K)+ 

# (3(H)*DB(H)*VS2*PHI2+DB(K)*DB(N)*PHI2*DISP2/DX 
# -2.D0/DH*BETA2*RET2*QFMES*B(N)*B(M)*DX)*W(II) 

662 CONTINUE 
BS2(MM)=BS2(MM)-2.D0/DH*(1.D0-SIGM2)*QFHES*CDM2*DX*W(II)*B(H) 

661 CONTINUE 
GO TD 300 

C 
C CASE 4: PEC APPROACHES 0 
C 
670 DO 671 M=l,3 

MM=NODEL(I,M) 
DO 672 B=l,3 
NN=NODEL(I,N) 
K=LP*NN+HM-LUB 
AS2(K)=AS2(K)+ 

# (3(M)*DB(N)*VS2*PHI2+DB(H)*DB(N)*PHI2*DISP2/DX 
# +2.D0/DH*DDM2*B(M)*B(N)*DI 
# -2.D0/DH*RET2*BETA2*DX*B(K)*B(N)*QFMES)*W(II) 

672 CONTINUE 
BS2(MM)=BS2(MM)+2.D0/DH*DDM2*B(M)*CDM2*DX*W(II) 

671 CONTINUE 
C 
300 CONTINUE 
200 CONTINUE 

RETURN 
END 

C 
SUBROUTINE DGBND1 (A, B, N, ML, NU, LT, IP, DET, NCN1, 
1 BB, RZ, ITR1, EPS1) 

C 
C ROUTINE SOLVES SYSTEM OF LINEAR EQNS. AX=B WHERE A IS A GENERAL 
C BAND MATRIX. METHOD USED IS GAUSSIAN ELIMINATION WITH PARTIAL 
C PIVOTING. OPTION OF ITERATIVELY IMPROVING SOLUTION IS AVAILABLE. 
C UPPER BAND WIDTH OF MATRIX INCREASES DUE TO INTERCHANGES BY 
C AMOUNT ML. ROUTINE REQUIRES BAND ELEMENTS OF MATRIX TO BE STORED 
C BY COLUMN IN A ONE DIMENSIONAL ARRAY. EACH COLUMN IS OF LENGTH 
C 2*ML+NU AND BAND IS TO BE STORED IN ELEMENTS ML+1 TO 2*ML+NU OF 
C EACH COLUMN. ELEMENTS 1 TO ML OF COLUMN ARE SET TO ZERO BY GBAND. 
C IF MATRIX IS SYMMETRIC USER MAY SPECIFY LOWER BAND ONLY in 
C ELEMENTS ML+NU+1 TO 2*ML+NU OF EACH COLUMN AND GBAND WILL 
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C GENERATE REMAINING ELEMENTS. (IF THIS IS DESIRED, SET LT=-1 ON 
C FIRST CALL TO GBAND.) 
C A = 1 DIMENSIONAL ARRAY CONTAINING MATRIX OF COEFFICIENTS. 
C B = 1 DIMENSIONAL ARRAY CONTAINING RIGHT HAND SIDE VECTORS. 
C OH EXIT, B WILL CONTAIN THE SOLUTION VECTOR X. 
C N = ORDER OF MATRIX 
C ML = LENGTH OF LOWER BAND (EXCLUDING DIAGONAL) 
C NU = LENGTH OF UPPER BAND (EXCLUDING DIAGONAL) 
C LT = ABS(LT)=1 IF ONLY 1 B VECTOR OR IF 1ST OF SEVERAL. 
C ABS(LT),=1 FOR SUBSEQUENT B VECTORS. 
C (NOTE. LT=+1 IF FULL BAND WIDTH GIVEN, LT=-1 IF LOWER BAND 
C ONLY OF SYMMETRIC MATRIX GIVEN.) 
C IP= INTEGER ARRAY CONTAINING INTERCHANGE INFORMATION. 
C DET = DETERMINANT OF A = DET*(10**NCN) WHERE 1.D-15<|DET|<1.D+15. 
C IF DET=0.0 MATRIX IS SINGULAR AND ERROR RETURN TAKEN. 
C BB, RZ = ARRAYS REQUIRED FOR IMPROVEMENT OPTION. CAN BE REAL*8 
C VARIABLES IF OPTION NOT REQUIRED. 
C ITER = 0 IF IMPROVEMENT NOT REQUIRED, OTHERWISE ITER= NO. OF 
C ITERATIONS OR CYCLES. 
C EPS - CONVERGENCE CRITERION. 
C 
C MODIFIED TO DO ITERATIVE IMPROVEMENT (FORMERLY AVAILABLE ONLY 
C WITH THE SINGLE PRECISION VERSION). MIKE PATTERSON - NOV, 1980 

IMPLICIT REAL*8 (A-H, 0-Z) 
COMMON /GBAND$/ NITER 
DIMENSION A(l), B(H), IP(N), BB(N), RZ(N) 
COMPLEX*16 DSUMM, QADDQ, QMULD 
REAL*8 QRNDQ 

C TO ASSIGN LOGICAL UNITS 94 AND 95 ONLY ONCE: 
LOGICAL ASSIGN /F/, YES 111 

C STATEMENT FUNCTION TO CALCULATE POINTERS INTO A: 
IFN(I, J) = 1 + (J - 1)*LC + I - J + NUM 

C 
C 

NCN=NCN1 
ITR=ITR1 
EPS=EPS1 
ITER = ITR 

C 
LCM = NU + 2*ML 
LC = LCM + 1 
NLC = N+LC 
NUM = NU + ML 

C GENERATE REMAINING ELEMENTS OF SYMMETRIC MATRIX 
IF (LT .NE. -1) GO TO 120 
NN = N - 1 
DO 110 I = 1, NN 

IFI = IFN(I, I) 
IFJ = IFI 
II = I + 1 
IML = MINO(I + ML, N) 
DO 100 J = II, IML 

IFI = IFI + 1 
IFJ = IFJ + LCM 

100 A(IFJ) = A(IFI) 
110 CONTINUE 
120 IF (ITER .EQ. 0) GO TO 140 
C ASSIGN UNITS 94 AND 95 IF THEY HAVE NOT ALREADY BEEN ASSIGNED: 

IF (ASSIGN) GO TO 125 
CALL FTNCMD ('ASSIGN 94=-GBAND94;') 
CALL FTNCMD ('ASSIGN 95=-GBAND95;') 
ASSIGN = YES 

125 REWIND 94 
REWIND 95 
DO 130 I = 1, N 

130 BB(I) = B(I) 
140 IF (IABS(LT) .NE. 1) GO TO 280 

IP(N) = 1 
IF (ML .Eq. 0) GO TO 160 

C SET ELEMENTS 1 - ML OF EACH COLUMN TO ZERO 
DO 150 I = 1, N 



Appendix D. Program Listings 359 

IFK = (I - 1)*LC 
DO 150 J = 1, ML 

IFK = IFK + 1 
150 A(IFK) = O.ODO 
160 IF (ITER .HE. 0) CALL DWR1 (A, NLC, 94) 

DET = O.ODO 
HCN = 0 
IF (ML .EQ. 0) GO TO 230 

C LU DECOMPOSITION 

DO 220 K = 1, N 
IFK = IFH(K, K) 
IF (K .EQ. N) GO TO 210 
KP = K + 1 
KPM = MINO(K + ML, N) 
KPN = HINO(K + NUM, N) 
M = K 
IFM = IFK 
IFI = IFK 
DO 170 I = KP, KPM 

IFI = IFI + 1 
IF (DABS(A(IFI)) .LE. DABS(A(IFM))) GO TO 170 
M = I 
IFM = IFI 

170 CONTINUE 
IP(K) = H 
T = A(IFM) 
IF (M .NE. K) IP(N) = -IP(N) 
A(IFM) = A(IFK) 
A(IFK) = T 
IF (T .EQ. O.ODO) GO TO 260 
OT = l.ODO/T 
IK = IFK 
DO 180 I = KP, KPM 

IK = IK + 1 
180 A(IK) = -A(IK)*OT 

KJ = IFK 
MJ = IFM 
DO 200 J = KP, KPN 

KJ = KJ + LCM 
MJ = MJ + LCM 
T = A(HJ) 
A(MJ) = A(KJ) 
A(KJ) = T 
IF (T .EQ. O.ODO) GO TO 200 
IK = IFK 
IJ = KJ 
DO 190 I = KP, KPM 

IK = IK + 1 
IJ = IJ + 1 

190 A(IJ) = A(IJ) + A(IK)*T 
200 CONTINUE 
210 IF (A(IFK) .EQ. O.ODO) GO TO 260 
220 CONTINUE 
230 IFK = IFN(1, 1) 

DET = A(IFK) 
DO 250 K = 2, N 

IFK = IFK + LC 
DET = DET*A(IFK) 
IF (DET .EQ. O.ODO) GO TO 260 
IF (DABS(DET) .GT. l.D-15) GO TO 240 
DET = DET*1.D+1S 
NCN = HCH - 15 
GO TO 250 

240 IF (DABS(DET) .LT. l.D+15) GO TO 250 
DET = DET*1.D-15 
NCN = NCN + 15 

250 CONTINUE 
DET = DET*IP(N) 
GO TO 280 

260 DET = O.ODO 
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WRITE (6, 270) K 
270 FORMAT ('0* DGBND1 - matrix is singular. '/ 

1 1 Error occurred in attempt to find', 15, 'th pivot.') 
RETURN 

280 CALL DS0LV1 (A, B, IP, N, ML, NU) 
IF (ITER .EQ. 0) RETURN 

C 
C ITERATIVE IMPROVEMENT 
C RESIDUALS (R) = AX-B ARE FOUND AND STORED IN ARRAY RZ USING 
C EXTENDED PRECISION ARITHMETIC. SYSTEM AZ=R IS SOLVED AND NEW 
C SOLUTION =X+Z IS STORED IN ARRAY B. ABOVE STEPS REPEATED UNTIL 
C (1) MAX(Z)/MAX(X) < EPS OR 
C (2) NO. OF CYCLES > ITER OR 
C (3) IMPROVEMENT STARTS TO DIVERGE. 
C ROUTINE THEN RETURNS AFTER SETTING EPS=MAX(Z) (FOR (l)) OR 
C SETTING EPS=-MAX(Z) AND PRINTING APPROPRIATE ERROR MESSAGE (FOR 
C (2) AND (3)) 
C 
C 

IF (IABS(LT) .EQ, 1) CALL DWR1 (A, NLC, 95) 
XNORM = O.ODO 
DO 290 K = 1, N 

290 XNORM = DMAX1(XNORM, DABS(B(K))) 
IF (XNORM .LE. O.ODO) RETURN 
ZX = l.D+60 
LD = 0 
DO 340 L = 1, ITER 
REWIND 94 
CALL DRE1 (A, NLC, 94) 
DO 310 K = 1, N 
DSUMM = (O.DO, O.DO) 
KPM = MAXO(K - ML, 1) 
KPN = MINO(K + NU, N) 
IFK = IFN(K, KPM) 
DO 300 J = KPM, KPN 

C DSUMM = DSUMM + A(IFK)*B(J) 
C USING EXTENDED PRECISION: 

DSUMM = QADDQ(DSUMM, QMULD(A(IFK), B(J))) 
300 IFK = IFK + LCM 

RZ(K) = BB(K) - qRNDQ(DSUMM) 
310 CONTINUE 

REWIND 95 
CALL DRE1 (A, NLC, 95) 
CALL DS0LV1 (A, RZ, IP, N, ML, NU) 
ZNORM = O.ODO 
DO 320 K = 1, N 
ERZ = RZ(K) 
ZNORM = DMAX1(ZNORM, DABS(ERZ)) 

320 B(K) = B(K) + ERZ 
IF (ZNORM .GT. ZX) GO TO 330 
IF ((ZNORM - EPS*XNORM) .LT. O.ODO) GO TO 390 
ZX = ZNORM 
GO TO 340 

330 IF (ZNORM .GT. 10.0D0*ZX) GO TO 360 
LD = LD + 1 
IF (LD . GE. 3) GO TO 360 

340 CONTINUE 
L = ITER 
WRITE (6, 350) 

350 FORMAT ('0* DGBND1- Iterative improvement did not converge'/) 
GO TO 380 

360 WRITE (6, 370) 
370 FORMAT ('0* DGBND1 - Iterative improvement is diverging.'/) 
380 EPS = -ZNORM 

NITER = L 
RETURN 

390 EPS = ZNORM 
NITER = L 
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RETURN 
END 
SUBROUTINE DS0LV1 (A, B, IP, N, ML, NU) 

C 
C THIS ROUTINE COMPUTES THE SOLUTION OF A SYSTEM AFTER GBAND HAS 
C DECOMPOSED MATRIX A INTO A LOWER TRIANGULAR MATRIX L AND AN 
C UPPER TRIANGULAR MATRIX U. 
C 

IMPLICIT REAL*8 (A-H, O-Z) 
DIMENSION A ( l ) , B(N), IP(N) 
IFN(I, J) = 1 + (J - 1)*LC + I - J + NUM 
LCM = 2*ML + NU 
LC = LCM + 1 
NUM = NU + ML 
MN = H - 1 

C SOLVE FOR Y 
IF (ML .EQ. 0) GO TO 110 
DO 100 K = 1, MN 
KP = K + 1 
M = IP(K) 
T = B(M) 
B(M) = B(K) 
B(K) = T 
KPM = MIN0(K + ML, N) 
IFK = IFN(K, K) 
DO 100 I = KP, KPM 

IFK = IFK + 1 
100 B(I) = B(I) + A(IFK)*T 
C SOLVE FOR X 
110 IFK = IFN(N, N) 

DO 120 KB = 1, MN 
KM = N - KB 
K = KM + 1 
B(K) = B(K)/A(IFK) ' 
IFK = IFK - LC 
T = -B(K) 
KMN = MAXO(1, K - ML - NU) 
KML = IFN(KMN, K) 
DO 120 I = KMN, KM 

B(I) = B(I) + A(KML)*T 
120 KML = KML + 1 

B ( l ) = B(1)/A(NUM + 1) 
RETURN 
• END 
SUBROUTINE DWR1 (A, N, LU) 
REAL*8 A(N) 
WRITE (LU) A 
RETURN 
END 
SUBROUTINE DRE1 (A, N, LU) 
REAL+8 A(N) 
READ (LU) A 
RETURN 
END 


