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Abstract

A generalized mathematical model is developed to describe the transport of fluid and plasma
proteins or other macromolecules within the interstitinm. To account for the effects of plasma
profein exclusion and interstitial swelling, the interstitium is treated as a multiphase deformable
porous medium. Fluid flow is assumed proportional to the gradient in fluid chemical potential
and therefore depends not only on the local hydrostatic pressure but also on the local plasma
protein concentrations through appropriate colloid osmotic pressure relationships. Plasma pro-
tein transport is assumed to occur by restricied convection, molecular diffusion, and convective
dispersion.

A simplified version of the model is used to investigate microvascular exchange of fluid and a
single ‘aggregate’ plasma protein species in mesenteric tissue. The interstitium is approximated
by a rigid, rectangular, porous slab displaying two fiuid pathways, only one of which is available
to plasma proteins.

The model is first used to explore the effects the interstitial plasma protein diffusivity, the
tissue hydraulic conductivity, the restricted convection of plasma proteins, and the mesothelial
transport characteristics have on the steady-state distribution and transport of plasma proteins
and flow of fluid in the tissue. The simulations predict significant convective plasma protein
transport and complex fluid flow patterns within the interstitium. These flow patterns can
produce local regions of high fluid and plasma protein exchange along the mesothelium which
might be erroneously identified as ‘leaky sites’. Further, the model predicts significant inter-
stitial osmotic gradients in some instances, suggesting that the Darcy expression invoked in a
number of previous models appearing in the literature, in which fluid flow is assumed to be
driven by hydrostatic pressure gradients alone, may be inadequate.

Subsequent transient simulations of hypoproteinemia within the model tissue indicate that



the interstitial plasma protein content decreases following this upset. The simulations there-
fore support (qualitatively, at least) clinical observations of hypoproteinemia. Sim;llations of
venous congestion, however, demonstrate that changes in the interstitial plasma protein con-
tent following this upset depends, in part, on the relative sieving properties of the filtering and
draining vessels. For example, when the reflection coefficients of these two sets of boundaries are
similar, the interstitial plasma protein content increases with time due to an increased plasma
protein exchange rate across the filtering boundaries and sieving of interstitial plasma proteins
at the draining boundaries. (This effect is supported by the clinical observation that interstitial
plasma protein content in liver increases during venous congestion.) As the reflection coefficient
of the draining boundaries decreases relative to that of the filtering boundaries, there is a net
loss of plasma proteins from the interstitium, resulting in a decrease in the total interstitial
plasma protein content over time (i.e., the familiar ‘plasma protein washout’). Further, the
‘model predicts increased fluid transfer from the interstitium to the peritoneum during venous
congestion, supporting the clinical observation of ascites.

Finally, the model is used to study the effects of interstitial plasma protein convection and
diffusion, plasma protein exclusion, and the capillary transport properties on the transit times
of two macromolecular tracers representative of albumin and 4-globulin within a hypothetical,
one-dimensional tissue. As was expected, the transit times of each of the tracers through the
model tissue varied inversely with the degree of convective transport. Increasing the interstitial
diffusivity of the albumin tracer also led to a moderate decrease in the transit time for that
tracer. The capillary wall transport properties, meanwhile, had only a marginal effect on
the transit time for the range of capillary permeabilities and reflection coefficients considered.
However, these properties (and, in particular, the reflection coefficient) had a more pronounced
effect on the ultimate steady-state concentration of the tracer in the outlet stream.

It was the interstitial distribution volume of a given tracer that had the greatest impact on
the time required for the outlet tracer concentration to reach 50 % of its steady-state value.

This was attributed to the increased filling times associated with larger interstitial distribution
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volumes. These findings suggest that the ‘gel chromatographic effect’ observed in some tissues

could possibly be explained on the basis of varying distribution volumes.
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Chapter 1

Introduction

The systemic blood circulation consists of a complex network of vessels that form a closed loop,
passing through the various body tissues before completing the circuit. Blood, driven by the
pumping action of the heart, travels through a set of small, permeable blood vessels where it
exchanges fluid and solutes, including the plasma proteins, with the surrounding tissue. Fluid
and solutes are drained from the tissue spaces by an additional circulatory system, called the
lymphatics. This exchange is essential both for providing nutrients to the tissue cells and for
removing metabolic wastes from the cells’ environment. Further, the exchange of fluid and
plasma proteins between the blood, the tissue space and the lymph plays an essential part in
balancing fluid within the body. ‘

The various physiological elements involved in the exchange of materials within tissues
constitute the microvascular ezchange system. A disturbance to the system, be it from an
extrinsic source (such as a burn or hemorrhage) or an intrinsic one (such as venous congestion
or hypoproteinemia), compromises the health and well-being of the individual. For example,
following a burn, large quantities of fluid may shift from the blood stream to the tissues. The
resultant loss of blood volume can be life threatening. A fundamental understanding of the
forces and mechanisms governing exchange is therefore of interest to physiologists and clinicians
alike.

During exchange, fluid and plasma proteins encounter three principle resistances: the cap-
illary wall and basement membrane, the tissue space (i.e., the interstitium), and the lymphatic
wall. These are the major barriers encountered during the transfer of materials from the blood

stream to the lymphatic circulation.



Chapter 1. Introduction 2

To describe the mechanisms governing mass exchange within the microvascular exchange
system and, ultimately, to predict its response to physiological upsets, the transport character-
istics of each of the resistances must be known. Due to the complexity of the system, and as
a complement to experimental studies, mathematical models have been developed to describe
microvascular exchange. Much of the effort has been directed to modelling the transport prop-
erties of the capillary wall (see, for example, {30, 31, 58, 71, 75, 81] ). However, over the years
researchers have identified the interstitium as another important component of the microvas-
cular exchange system. General models of this system must therefore include mathematical
descriptions of the interstitium and its physicochemical properties.

Two basic modelling approaches have been adopted. In the first of these, the microvascular
exchange system is reduced to a set of subsystems, or compartments. Material is exchanged be-
tween compartments according to the driving forces. present (such as differences in fluid chemical .
potential or solute concentration between compartments) and the transport properties of the
intervening boundary. Each compartment is assumed to be homogeneous; i.e., spatial hetero-
geneities in the material properties of that part of the system represented by the compartment
are not accounted for. Furthermore, the compartment is assumed to be well-mixed, so that
incoming material is instantaneously dispersed throughout its entire volume. Therefore, the
solute concentrations, fluid pressures, and fluid volume associated with a given compartment
represent average quantities.

Because of the we]l;nxixed assumption invoked in compartmental models, the driving forces
for mass exchange between compartments will, in general, differ from the local driving forces
found in the real system. This limits the model’s ability to simulate the real system, particularly
under transient conditions. In addition, compartmental models tell us nothing about mass
transport within an individual compartment and its effect on the overall behavior of the system.
However, the assumption of a well-mixed, homogeneous compartment simﬁliﬁes the modelling
problem immensely, because it reduces the number of parameters needed to characterize the

system (since the transport properties of the compartment itself are neglected), and because
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it simplifies the mathematical description of the system. Hence, complex phenomena, such as
tissue swelling, can be included fairly easily in these models. For these reasons compartmental
models are frequently used to simulate whole organ and body fluid and plasma protein exchange
under both normal and pathological states {108, 18, 14, 3. 70].

Recent advances in microfluorometry, electron microscopy and digital image analysis now
permit much more detailed experimental studies of interstitial fluid and protein transport than
were previously possible [61, 40, 115], including measurements of interstitial plasma protein
gradients. Mathematical models of interstitial transport are therefore required to interpret this
expanding body of experimental data. The requisite model must include mathematical descrip-
tions of the physicochemical properties of the interstitium, such as plasma protein exclusion
and interstitial swelling characteristics, which impact on fluid and protein transport. It must
also be able to predict possible variations in the distribution of fluid pressure and protein within
the interstitial space [40, 61, 110. Compartmental models are incapable of this. Such detailed
descriptions are only possible with a distributed (i.e., spatially varying) model of interstitial
transport.

Unlike compartmental models, the distributed models of the microvascular exchange system
do not assume that the various body compartments are well-mixed so that, in principle at least,
these models more closely describe the real system. Distributed models can therefore be used
to investigate the influence of mass transport within a given compartment (such as the blood
or the interstitial space) on microvascular exchange. In addition, since the distributed models
eliminate the artificial dispersion caused by the well-mixed assumption, they better describe
transient processes.

The advantages associated with the distributed models are not without their costs. First,
these models require far more detailed information about the structure, transport properties
and spatial distribution of the various compartments. This leads naturally to a larger number
of system parameters which need to be quantified, such as the interstitial hydraulic conduc-

tivity, plasma protein effective diffusivity, and capillary vessel diameter. More ofien than not,
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many of these quantities must be estimated due to a lack of experimental data. In such in-
stances it is necessary to conduct numerical experiments to determine the sensitivity of the
model’s predictions to the values assumed for the estimated parameters. Given the degree of
uncertainty associated with these estimates, the results from distributed models are more often
qualitative than quantitative. Despite these limitations, distributed models provide a powerful
tool for investigating the mechanisms governing interstitial transport and their influence on
microvascular exchange.

A number of distributed models have already been proposed to describe fluid and/or protein
transport within the interstitium. These models vary both in detail and in complexity. Blake
and Gross [22] and Fleischman et al. [36] investigated fluid exchange within idealized tissues
consisting of ordered arrays of capillaries. In both cases the interstitial space was treated
as an isotropic, homogeneous, rigid porous medium. In addition; interstitial fluid flow was
described by a form of Darcy’s Law in which the authors assumed that the local fluid flux
is proportional to the local gradient in hydrostatic pressure. Hence both models neglect the
influence of osmotic pressure gradients on local fluid movement. Furthermore, neither model
considers protein tra.nsp-ort within the interstitium.

" Several investigators have addressed protein transport through the interstitial space. For
example, Baxter et al. [7] assumed that protein transport occurs strictly by diffusion. Convec-
tive contributions were not accounted for. Fry [43] considered both convection and diffusion in
his model of interstitial transport of multiple protein species. However, Fry’s model requires
prior knowledge of the fluid velocities throughout the interstitial space. Furthermore, it makes
no attempt to describe the effect of interstitial swelling on protein transport.

Salathé and Venkataraman [87] presented equations to describe both fluid and protein trans-
port within the interstitium. Again, fluid flow was assumed proportional to the gradient in
hydrostatic pressure. The equation of protein transport included both convective and diffusive
terms. However, their model does not distinguish between those regions of the interstitium

which are accessible to protein and those from which protein is excluded. Hence, their model
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neglects the intrinsic heterogeneities within the interstitium resulting from plasma protein ex-
clusion. Furthermore, the model is limited to steady-state conditions. It is therefore incapable
of predicting the time-dependent response of the interstitial fluid and protein distributions to
é variety of systemic perturbations.

Each of the models cited above provides insights into various aspects of interstitial transport.
However, in each case the mathematical model is limited in scope. The objective of the present
work, therefore, is to develop a more general mathematical model which describes the combined
effects of interstitial swelling and plasma protein exclusion on the transient re-distribution
of fluid and any number of macromolecular species within the interstitium. Local fluid flow
is related to the gradient in total fluid chemical potential rather than hvdrostatic pressure
alone. Thus fluid movement is linked to gradients in solute concentration through associated
colloid osmotic pressure gradients. Protein transport occurs by convective, dispersive and
diffusive mechanisms, thereby providing further linkage between fluid and solute behavior.
As a consequence, thé equations governing fluid and protein movement within the deforming
interstitium must always be solved as a coupled set rather than as the independent equations
often assumed in previous analyses.

This dissertation is divided into sever remaining chapters. Chapter 2 provides an overview
of the physiology of the microvascular exchange system. In Chapter 3, the general model of
interstitial transport is developed. Chapter 4 applies a simplified version of the general model
to investigate the mechanisms governing the steady-state exchange of fluid and macromolecules
within mesenteric tissue. In Chapter 5, the analysis is extended to transient conditions and
considers the response of the model system to two specific systemic perturbations. Chapter 6
adds a further dimension to the problem by investigating the simultaneous transport of multiple
plasma protein species through the interstitium. Finally, Chapters 7 and 8 summarize the

findings and ramifications of the dissertation and recommend several additional studies.



Chapter 2

Physiological Overview of the Microvascular Exchange System

Fluid and various solute species contained within blood are transported to the body tissues
and organs via a complex network of vessels forming the systemic blood circulation. Upon
entering a specific organ, blood passes through a system of small, permeable blood vessels that
constitute the microcirculation (see Figure (2.1)). It is here that nutrients and metabolic wastes
exchange between the blood and the tissues cells. In addition, fluid and various macromolecules
(in particular, the plasma proteins) are transported across the walls of the exchange vessels to
enter the surrounding tissue space called the interstitium.

The blood capillaries are the principal vessels responsible for exchange between the blood
and the interstitium. However, the blood vessels supplying the capillaries, namely the arterioles,
and those which drain the capillary bed, i.e., the venules, are also known to participate in the
exchange process [82]. The exchange vessels are of minute dimensions; capillary diameters, for
example, average 6 um in humans [46).

In addition to the blood vasculature, the body contains another circulatory network, called
the lymphatic system, that drains fluid and solutes from the interstitial space. The lymphatic
vessels return material to the systemic circulation, emptying into the venous portion of the
latter network in the vicinity of the heart [46).

The exchange vessels of the blood vasculature (namely, the arterioles, the capillaries and
the venules), the interstitium, and the tissue drainage system (such as the terminal lymphatic
vessels) constitute the microvascular exchange system. Based on this anatomical definition, the
microvascular exchange system can be viewed as a series of resistances that fluid and solutes

encounter in their journey from blood to lymph. These resistances may be loosely defined
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Figure 2.1: The network of permeable vessels constituting the microcirculation.
Blood enters via the arteriolar vessel (A). A portion of this is drawn into the
terminal arteriole (TA), passes through the network of capillaries (C), is taken
up by the terminal venule (TV), and returned to the venule (V). During this time
fluid and solutes, including plasma proteins, leak from the blood to the surrounding
tissue spaces [109].
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as the capillary wall and basement membrane, the interstitium, and the wall of the terminal

lymphatic vessel. A discussion of each of these three components follows.

2.1 The Capillary Wall and Basement Membrane

2.1.1 General Description

The capillary wall is composed of a single laver of flattened endothelial cells that rest on
a specialized region of the interstitial matrix call the basement membrane or basal lamina
[90, 13]. The latter structure consists largely of specialized forms of collagen that are not to
be found elsewhere within the interstitial mafrix {13] (see Section 2.2.1 for a further discussion
of collagen). The basal lamina carries a net negative charge. It is believed to both provide
mechanical support to the endothelial cells and to act as an additional transport barrier {112].
Together, the capillary wall and basal lamina act as a semi-permeable membrane that separates
the blood and the interstitial compartments. Fluid and solutes selectively pass from the blood
to the interstitium, driven by the local differences in the hydrostatic pressures, colloid osmotic
pressures, and solute concentrations between the two compartments.

The endothelial cell consists’ of the aqueous cytoplasm of the cell interior surrounded by
a plasma membrane, the latter being comprised largely of lipids and protein. Within the
cytoplasm are small spherical bodies 60 to 80 nm in diameter, called plasmalemmal vesicles
[90]. These appear open on the luminal (blood) and interstitial surfaces of the cell and as
free bodies within the cytoplasm [112]. The vesicles are thought to play a role in the transfer
of macromolecules across the endothelial barrier. Several mechanisms have been suggested,
including the shuttling of material from the luminal surface to the interstitial side by individual
vesicles. It is also postulated that several vesicles may fuse to form temporary water channels
across the width of the cell (see Figure (2.2)). Evidence suggests that vesicular uptake of
macromolecules is selective [112]. For example, vesicles found in the microvessels of adipose
tissue will take up native ferritin, but not native albumin, although the latter is smaller.

The outer surface of the endothelial cells are covered with delicate, negatively charged fibers,
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Figure 2.2: This figure depicts vesicular transport pathways within a cross-section of
an endothelial cell resting on the basement membrane below. Proposed vesicular
transport mechanisms include the formation of temporary fluid channels due to
fusion of several vesicles bridging the endothelial cell (modified after [103}]).

thought to be glycosaminoglycans, that form a coat 10 to 20 nm thick [90]. This felt-like cover
also lines the inner surface of the vesicles. It is thought to serve as an additional diffusion
barrier, repelling like-charged particles such as the red blood cells.

Adjacent endothelial ce11§ meet at intercellular clefts that are typically 10 to 20 nm wide
[44]. In all tissues except the brain, the intercellular clefts and plasmalemmmal vesicles provide
the major transport pathways for water and macromolecules [83]..- However, certain portions
of the clefts may be sealed due to contacting of apposing cells. In the case of the capillaries
of the brain, the contacting cells fuse, eliminating the cleft altogether. Such seals prohibit
the transport of larger molecules through intercellular junctions, confining exchange along this
pathway to water, salts, and other small molecules [32].

Individual capillary vessels fall into one of three classifications, depending on the structural
characteristics of their endothelia: namelyv continuous, fenestrated, or discontinuous capillaries.

Continuous vessels are commmon to the microvascular beds of the lung, the nervous system,
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skeletal muscle, and skin, among others [90]. As the name implies, the endothelia of these
vessels form a continuous layer 0.2 to 0.3 um thick, interrupted only by the intercellular clefts.
The basement membrane is likewise continuous.

Fenestrated vessels are characterized by the presence of disk shaped regions, typically 60
to 80 nm in diameter, located on the vessel wall. These regions, called fenestrae, are due
to an attenuation of the endothelial cell to a thickness of 6 to 8 nm [90]. The attenuated
cellular matter forms a diaphragm, the structure of which differs from the rest of the cell
membrane in that it is thought to be composed largely of hydrophilic elements [112]. In some
cases, such as the glomerular capillaries of the kidney, the fenestrae lack diaphragms altogether.
The basement membrane of fenestrated vessels is continuous. The enhanced permeability of
these vessels to plasma proteins suggests that the fenestrae provide a major pathway for the
transport of macromolecules across the capillary wall [84]. Fenestrated vessels are fourd within
the microvasculature of the pancreas, the endocrine glands, and the gastrointestinal tract.

Discontinuous vessels, also called sinusoids, are identified by large gaps in the endothelial
layer and basement membrane. Fenestrae hundreds of nm in diameter may also be present [90].
While their structure would suggest that discontinuous vessels are highly permeable to various
plasma proteins, lymph composition from tissues containing these vessels indicates that sieving

of certain plasma protein species occurs even here [93].

2.1.2 Transport Pathways Across the Capillary Barrier

Several transport pathways have been identified for passage of fluid and various solute species

across the capillary wall. These are summarized below [84]:

1. through the cell itself which includes two layers of cell membrane and the intervening

cytoplasm;

2. within the endothelial cell membrane by lateral diffusion through intercellular junctions

or lipid phase vesicular channels;
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3. through interendothelial junctions in the aqueous extracellular phase (these pathways con-
sist both of highly restrictive channels that are virtually impermeable to plasma proteins

and less restrictive channels that permit exchange of these macromolecules);

4. via endothelial cell fenestrae; and

wn

. by vesicular transport, which includes shuttling of material within individual vesicles (i.e.,
transcytosis) and the fusion of several vesicles to formm temporary fluid filled channels

across the cell.

These pathways are illustrated in Figure (2.3).

(1)  (2) (3aab)(5a) (5b) (4a) (4b)

-Figure 2.3: This figure illustrates a cross-sectional slice of the capillary wall. Trans-
port pathways across the capillary wall include direct routes across the cell (1),
through the cell membrane (2), via intercellular pathways (3), across fenestrae (4),
and via vesicular mechanisms (5a, 5b) (modified after [31]).

Transport directly through the cell matter is limited to the diffusion of water and small
lipid soluble molecules. Convective transport of fluid along this path is negligible [84]. In all
likelihood virtually all respiratory gases are exchanged directly through the cell. In addition,

substantial amounts of fatty acids and other lipids cross the capillary wall. However, these
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substances cannot penetrate the cell cytoplasm and are therefore limited to transport through
the cell membrane and lipid vesicles.

Finally, the lipid insoluble materials, including small ions and the plasma proteins, are
limited to the paracellular pathways (i.e., across open fenestrae, in fluid filled vesicles and across
aqueous vesicular channels, and via interendothelial junctions). The permeability of these
substances decreases with increasing molecular size, suggesting that these pathways display
sieving characteristics [84]. Charge may also play a role in determining solute permeability.
For example, the capillaries of the brain are more permeable to transferrin than to albumin,
although transferrin is a larger molecule [83]. Transferrin, however, carries a smaller net negative

charge.

2.1.3 Quantifying Transport Across the Capillary Wall

1

We have seen that the capillary wall offers several different routes for the transport of material.
While attempts have been made to delineate between these different pathways (see, for example,
(83]), transcapillary exchange is typically quantified using exﬁress'ioﬁs analogous to those for
porous membranes. These describe mass exchange rates in terms of both the principal driving
forces present a.nd lumped parameters that characterize transcapillary resistance.

Fluid is driven across the capillary wall by differences in the effective fluid chemical potential
from one side of the barrier to the other. This driving force can be resolved into two principal
.components: a hydrostatic pressure difference and an osmotic pressure difference. The latter
reflects the reduction in fluid chemical potential due to the presence of solute species within
the fluid. The osmotic pressure of a particular solute species is typically a nonlinear function
of the solute concentration. Each solute species present in the plasma and interstitial fluid can
potentially influence fluid exchange across the capillarvy wall.

In fact, the degree to which a particular solute species alters transcapillary fluid exchange
depends on the ease with which the given solute crosses the capillary wall. Only those solutes

to which the capillary wall is impermeable exert their entire osmotic pressure. The effective
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osmotic pressure of those solutes that can penetrate the capillary barrier varies inversely with
the solute’s permeability.

The fraction of the total osmotic pressure of a solute species i that acts on the capillary
membrane is represented by the reflection coefficient for that solute species, ;. A ¢ of 0
indicates that the solute’s permeability across the capillary wall is equal to that of water [80].
If the membrane is completely impermeable to a given solute, o equals 1. Most small lipid-
insoluble solutes, such as NaCl, have reflection coefficients below 0.1, while ¢ for most plasma
proteins approaches 0.9 - 1.0 [80]. Further, since the capillary wall is very permeable to these
small solutes and ions, any differences in their osmotic pressures across the membrane are
quickly dissipated [71]). It is the plasma proteins, then, that contribute most to the overall
osmotic driving force for fluid exchange across the capillary wall.

If we treat the array of plasma proteins as an aggregate species exerting an overall osmotic
pressure of II and having an effective reflection coefficient of ¢, then the fluid flux across the

capillary wall, jy, is given by the Starling equation [81]:
Jv=1Lp [Pp B [Pim}b - (Hp B [Hm}b)] v (2.1)

where Ly is the hydraulic conductance of the capillary membrane, and PP and [P™], are
the hydrostatic pressure in the plasma and in the interstitial space adjacent the boundary,
respectively. IIP and [Him]b denote the plasma protein osmotic pressures in the plasma and in
the interstitial space adjacent the capillary wall, respectively.

We will now turn to the exchange of plasma proteins across the capillary wall. Again, for
convenience, we will limit the discussion to a single (possibly ‘aggregate’) species. More detailed
discussions can be found in any one of many reviews on the subject [80, 82, 84, 31, 71, 93, 75,
58]. Assuming that plasma protein convection and diffusion occur along the same paracellular
pathways, the exchange of these substances is described by the nonlinear flux equation (see, for

example, [71]): )

[Cp _ [Cint}b B e—Pc!r

=, (2.2)

js = j\,(l - 0') 11 — e_Pc.z
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where j; is the local flux of plasma proteins from blood to tissue, CP and [Ci’“]b are the plasma
protein concentrations in the plasma and the interstitial plasma protein distribution volume

adjacent the boundary respectively, and where Pe is a modified Peclet number, defined as

Pe = —(1 — U)Jv.

. (2.3)

D refers here to the permeability of the capillary wall to the plasma proteins. The modified
Peclet number indicates the relative contributions of convection and diffusion to the total ex-
change of plasma proteins. As Pe approaches oo, the exchange is dominated by convection. A
Pe of 0, on the other hand, indicates purely diffusive exchange. Equations (2.2) and (2.3) have
been used to describe transcapillary macromolecular exchange in a range of tissues (see, for

example, [80]).

2.2 The Interstitium

2.2.1 Structure and Composition

The interstitium has been likened to a three-dimensional meshwork of fibrous elements em-
bedded in a gel-like substance, referred to as ground substance, created by soluble polymers
in an aqueous solution [26, 53] (see Figure (2.4)). The interstitium is therefore a composite
of elements, each element contributing to the overall behavior of this medium. The principal
components determining the gross characteristics of the interstitium include the following: col-
lagen, elastin, the glycosaminoglycan and proteoglycan elements, and the interstitial plasma

proteins. Each of these will now be discussed briefly.

Collagen Collagen is the primary structural protein of the body [57]. It is formed from
a precursor molecule, procollagen, that consists of three extended polypeptide chains wound
to form a triple helix [4]. The helical configuration is stabilized by interchain hydrogen and
covalent bonds [57]. The procollagen molecules combine to form the collagen monomer, a

rod-like molecule 300 gm long and having a diameter of approximately 1.5 nm [26]. The
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Figure 2.4: An artist’s concept of the interstitium shows the fibrous collagen mesh-
work [13].
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monomers spontaneously form aggregates through covalent bonding and crosslinks [57], yielding

the collagen fibrils. The fibrils further combine to give collagen fibers (Figure (2.3)).
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Figure 2.5: The hierarchy of collagen elements is shown above. Procollagen combines
to give the collagen monomers that aggregate to give collagen fibrils which, in turn,
combine to yield the collagen fiber (modified after [26]).

Numerous distinct collagen types have been identified within the interstitia of various tissues
[5, 13]. The extent to which a particular collagen type is found within the interstitium varies
from tissue to tissue. Each of the coliagen types, however, forms molecules of similar structure
and dimensions.

Collagen is polyampholytic; that is, it is capable of bearing both positive and negative
charges. The former are due to amino groups present in collagen, while the latter are attributed
to carboxyl groups [57]. However, at physiological pH most of these are neutralized, so that
collagen bears only a slight positive charge.

Functionally, collagen fibers provide tensile strength to the tissue, resisting changes in tissue
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volume when stressed along the longitudinal axis of the fiber [4;. This is due to the covalent
cross-linkages that form between collagen molecules [26]. By forming a meshwork, the fibers
tend to immobilize the polymers responsible for the interstitial gel (i.e., the glycosaminoglycans
and proteoglycans) [26]. Finally, collagen is partly responsible for the excluding properties of

the interstitium [13], to be discussed later.

Elastic Fibers While collagen fibers impart tensile strength to a tissue, elastic fibers provide
it with elasticity [13]. Elastic fibers occur in small quantities (relative to collagen content) in
most interstitia, with the possible exception of certain specialized tissues such as the greater
arteries [53] that display a high degree of elasticity.

Elastic fibers consist of two principal components: an amorphous mass of elastin surrounded
by microfibrils of protein [13]. Elastin is one of the most apolar proteins known [67], providing
it with a hydrophobic nature [13].

At physiological pH, elastic fibers contain approximately 0.56 ml of water per ml of elastin
[13]. Most of this water is likely accessible to small molecules and ions, such as sucrose, urea,
sodium, and chloride. Larger molecules, such as the plasma proteins, however, are thought to

be excluded from this fluid space.

Glycosaminoglycans and Proteoglycans Glycosaminoglycans are linear polymer chains
of disaccharide units common to all tissues [4]. Essentially all of the charge groups associated
with these polymers are ionized at physiological pH [57]. Glycosaminoglycans therefore at-
tract counterions, thereby creating a Donnan distribution of mobile ions that exert an osmotic
pressure [4].

One of the most prevalent of the glycosaminoglycans is hyaluronate. In its hydrated state,
hyaluronate forms an unbranched, random coil that occupies a solvent domain some 1000 times
greater than the polymer volume {4]. Further, the mutual repulsion of negative charges present

along the hyvaluronate chains tends to expand the coil [13].  Therefore, even at concentrations
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as low as 0.1 percent by weight, hyaluronate molecules become entangled [4]. It is the entan-
glement of hyaluronate and other glycosaminoglycans and proteoglycans that gives the ground
substance its gel-like properties. Gersh and Catchpole [47] also identified ‘water-rich, colloid
poor’ regions within .the interstitial matrix, leading some to postulate the existence of free fluid
channels within the interstitium (see, for example {104]). However, the original study made no
mention of such continuous structures; rather, the authors simply identified heterogeneities in
glycosaminoglycan distribution within the matrix [4]. Other early ultrastructural studies have
identified transient, submicroscopic fluid vacuoles within the interstitium, but later studies have
not confirmed their existence [4]. In fact, the preparative procedures used in many of these
studies are known to extract ground substance [53], suggesting that the ‘free fluid phase’ may
well be an a.rtifact of these early experiments. However, as Aukland and Nicolaysen [4] point
out, this does not preclude the possibility of heterogeneities within the interstitial gel, due to
local rarefactions in polysaccharide content, that might provide preferential channels for fluid
and solute transport. '

Except for hyaluronate, glycosaminoglycans exis’-c in vivo not as free polymers, but covalently
bound to a protein core {13]. Such structures are termed proteoglycans. These can further bind
to hyaluronate molecules to form proteoglycan aggregates, having molecular weights in excess of
2 x108 Daltons. At physiological pH, proteoglycans display a high charge density [13]. These
structures are also known to bind to collagen [26].

The glycosaminoglycan and proteoglycan elements contribute to the interstitium’s resistance
to bulk fluid movement [13]. Their water retaining properties also enhance the stability of
collagen-glycosaminoglycan solutions, resisting volume changes under compression [26]. This
has been demonstrated experimentally using prepared solutions of collagen and hyaluronate,
for example. In vitro mixtures of thermally precipitated collagen and hyaluronate produce

structures that resist compression during centrifugation [13].

The Interstitial Plasma Proteins Plasma proteins represent a broad group of macro-

molecules. Various types of these are traunsported across the endothelial membrane into the
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interstitium. They range in size, displaying Stokes’ radii anywhere from 1 to 11 nm [13]. At
physiological pH, most plasma proteins carry a net negative charge [13].

Interstitial plasma proteins exert an osmotic pressure that is a nonlinear function of plasma
protein concentration. However, the major part of the osmotic pressure is due to a single species
— albumin {13].

Albumin is the most plentiful of the plasma proteins, constituting approximately 60 % of
the serum protein content in humans [46]. It has a molecular weight of 6.6 x10% Daltons and
a Stokes’ radius of 3.5 nm [13]. With an isoelectric point at a pH of 4.7, albumin bears a net
negative charge at physiological pH. Experimental studies of extravascular albumin indicate that
significant quantities of this protein lie outside of the blood stream, largely in the interstitia of
muscle and skin [13]. This suggests that the interstitium may act as a reservoir for osmotically

active macromolecules [13].

2.2.2 Volume Exclusion within the Interstitium

As mentioned earlier, the various components of the interstitium, particularly the glycosamino-
glycans, occupy a volume in solution that far exceeds the volume of the polymers themselves.
Even at low concentrations, the solvent domains associated with these polymers overlap to cre-
ate a meshwork of molecular dimensions [53]. A given interstitial solute species will distribute
throughout only those spaces in the meshwork that have dimensions larger than the solute itself.
The remaining regions of the meshwork are inaccessible to the solute. As a consequence, the
space available to certain interstitial solutes (i.e., the solute’s distribution volume) is consider-
ably less than the total interstitial fluid volume. This phenomenon has been termed volume
exclusion.

The glycosaminoglycans have traditionally been identified as the principal components re-
sponsible for the exclusion of plasma proteins from regions of the interstitium [4]. The fraction
of total fluid volume inaccessible tc plasma proteins in hyaluronate solutions, for example, can

be significant, even at low concentrations. A 0.5 % by weight solution of hyaluronate excludes
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albumin from 25 % of the solution space. As the hyaluronate concentration is raised to 1.5 %
by weight, the excluded volume increases to 75 % of the solution volume [13]. However, because
of its abundance relative to the glycosaminoglycans in certain tissues such as dermis, collagen
may well be the major source of plasma protein exclusion in some instances [13].

Exclusion bears upon the processes within the interstitial space. It is the effective concen-
tration of a given solute species (i.e., the concentration based on the solute’s distribution volume
rather than the total fluid volume) that determines its chemical activity, which in turn affects
chemical equilibria, osmotic properties, solubilities, and driving forces for diffusion within the
system [27].

By treating the interstitial solute species as spheres contained in a random meshwork of rods,

Ogston and co-workers [72] developed the following equation to calculate volume exclusion:

fe=1— e"[(r-+rf)/rf]2Vfcf’ (2.4)

where fe is the excluded volume fraction, r; and ry are the solute radius and radius of the rods
making up the meshwork, respectively, V¢ is the partial specific volume of the rod material, and
Cr is the mass concentration of rods in the system. This analysis would suggest that exclusion
increases with increased concentration of excluding species (i.e., the rods) and increased solute
radius, but decreases with increasing rod diameter. Similar expressions have been developed
for single rod-sphere and sphere-sphere systems (see {13] for details).

The above analysis of exclusion considers only geometric factors. However, since the gly-
cosaminoglycans are negatively charged, electrostatic effects may also play a role in determining
the exclusion properties of specific tissue-solute systems. This may be true, in particular, for
tissues such as cartilage that display a high interstitial charge density [53]. In fact, the exclusion

of low molecular weight anionic tracers has been demonstrated, but the effect is unpredictable

[4]-
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2.2.3 Characterizing Interstitial Swelling

The glycosaminoglycans and the collagen fibers are the principal components within the in-
terstitium that determine the mechanical properties of connective tissues [4, 53, 117, 89]. It
is generally thought that the glvcosaminoglycan element provides the tissue with its swelling
tendency by virtue of its osmotic activity. As a polymer solution, the glycosaminoglycans (and
their aggregates) exert an osmotic pressure that tends to imbibe fluid. The charged groups
associated with the polymers create a mutual repulsive force that may further tend to expand
the network [4]. The stiff collagen meshwork, on the other hand, imparts rigidity to the tissue,
acting to limit volume changes within the interstitium.

The relative influences of the glycosaminoglycans and of the collagen on tissue hydration are
well demonstrated experimentally. Degradation of the collagen by chemical treatment causes
umbilical cord to swell [63]. Destruction of hyaluronate in swollen tissue, on the other hand,
leads to a reduction in tissue hydration [53]. Theoretical interpretations of the swelling process,
however, are clouded in controversy (see, for example, [53, 89, 107]). Much of the confusion
seems to lie in the delineation of the various forces acting on the system into the mechanical
components responsible for deformation (i.e., the mechanical stresses within the system) and
tile forces responsible for fluid exchange within the system (namely differences in fluid chemical
potential between vascular and tissue compartments).

Typically, the swelling properties of a tissue are characterized by an experimentally deter-
mined relationship between the equilibrium tissue hydration and the interstitial fluid pressure,
i.e., the tissue compliance relationship. The interstitial fluid pressure within a tissue is mea-
sured at various states of hydration using microneedles, wicks, or implanted capsules. The
major problem in such experiments lies with interpreting the reading provided by the pressure
measuring device (see, for example, [107]). Again, there seems to be a great deal of confu-
sion regarding whether such devices measure an‘equjvalent interstitial fluid chemical potential,
which would include both hyvdrostatic and colloid osmotic pressures, or whether they isolate

the hydrostatic component. A fundamental understanding of the cperation of these pressure
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Figure 2.6: This figure shows the general trend in the change in interstitial fluid vol-
ume (IFV), given along the x-axis, following a change in interstitial fluid pressure,
shown on the y-axis (modified after [5] ) . '

measuring devices within tissues is therefore needed before tissue hydration data can be reliably
interpreted.

The general shape of the pressure-volume curves typical of tissues is given in Figure (2.6).
Generally, the change in tissue hydration per unit change in interstitial fluid pressure is low
at the lower tissue hydrations, increasing as the tissue becomes swollen. The high resistance
to tissue hydration in the initial part of the curve suggests a mechanism to ward off edema
formation. Specifically, a small change in interstitial hvdration is accompanied by a substantial
increase in the interstitial fluid pressure. According to the Starling equation (see Eq. (2.1)),
this increase in interstitial fluid pressure reduces the driving force for fluid transport from the

blood to the tissue space, thereby reducing the threat of severe tissue swelling [13].
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2.3 The Lymphatic System

2.3.1 General Description

In contrast to the abundance of data on the exchange vessels of the blood vasculature, there
appears to be a dearth of information regarding the operation of the lymphatic network. Several
reviews [4, 117, 77, 49] are available in the literature, however, and the reader is referred to
these for more detailed discussions of this system. Only a brief description will be provided
here that focuses on the withdrawal of interstitial fluid and plasma proteins by the permeable
vessels of the lymphatic network.

Lymphatic vessels occur in most tissues; exceptions include the brain, the retina, and bone
marrow [5]. Unlike the arterio-venous blood system, the lymphatic network typically begins
with bulbous terminal lymphatic vessels located in close proximity to the blood capillaries.
These bulbous structures are typically 20 to 80 ym in diameter, although they can reach
diameters of 720 urﬁ m— some tissues (e.g., the bat wing) {49]. The terminal lymphatic vessels
are unevenly distributed within the microcirculation, being more prominent at the venous side of
the microvascular bed where the blood vessels are most permeable [77]. Further, they occur less
frequently than the blood capillaries [5]. Figure (2.7) illustrates the structure and orientation
of these vessels within the microcirculation.

Fluid and solutes that have been withdrawn from the tissue space are carried along the
lymphatic network via collecting vessels. These empty their contents into the left and right
subclavial veins [46), thereby returning fluid and solutes to the blood circulation. In the average
human, an estimated 25 % to 50 % of the total circulating plasma proteins are returned to the
blood circulation along this route on a daily basis, while 2 to 4 liters of fluid enter the Ivmphatics

from the interstitial space each day [46].
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Figure 2.7: The lymphatic vessels within the bat wing are illustrated above in solid
black. The system begins with the bulbous terminal lymphatic vessels, located
close to the blood capillaries. These drain into collecting vessels that eventually
return fluid and solutes to the blood vasculature (modified after [49]).
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2.3.2 The Terminal Lymphatic Vessels

The terminal lymphatic vessels are responsible for draining fluid and solutes from the interstitiai
space. The wall of the terminal lymphatic vessel is similar to that of the blood capillary in
that it consists of a single layer of flat endothelial cells [77]. However, it differs from the
capillary wall in several respects [49]. First, the interendothelial junctions appear more loose,
the cells overlapping each other at times. The basement membrane is poorly developed or
absent altogether. Furthermore, while the endothelial cells of the terminal lymphatic vessels
contain vesicles, fenestrae have not been observed. The terminal lymphatics display irregular
geometries with bulbous sacs and constricted regions along the vessel length. The vessels are
easily collapsed, making pressure measurements within terminal lymphatics difficult {77].

The wall of the terminal lymphatic vessel is anchored to the surrounding interstitial matrix
by fine strands of reticular fibers and collagen [49] (see Figure (2.8)). It is thought that the
anchoring filaments aid in the withdrawal of fluid from the interstitial space. As fluid accumu-
lates within the tissue spaces, the tissue expands, placing the anchoring filaments under tension.
This tensile stress keeps the lymphatic vessel from collapsing under the increased tissue fluid
pressure associated with the accumulation of fluid there. The terminal lymphatic is then able
to withdraw fluid and solutes from the interstitium [49, 77).

Interstitial fluid is thought to cross the terminal lymphatic wall via diffusion through the
endothelial cell, by vesicular pathways, and through the intercellular junctions [49]. The relative
importance of these pathways in lymphatic filling is, as yet, unknown. A number of theories for
the filling of the terminal lymphatic vessels have been proposed, including vesicular, osmotic
pressure ciriven, and hydraulic (i.e., hydrostatic pressure) driven mechanisms. To date, there is
little to no experimental evidence to support the first two hypotheses [5]. However, it has been
demonstrated experimentally that lymph flow increases with increased interstitial fluid pressure
in a number of tissues, including dog hindpaw, the small intestine, the liver, the myocardium,
and rat kidney {5]. Hence, it is frequently assumed that the rate of lymph formation in the

terminal vessel is a direct function of the local tissue fluid pressure (see, for example, 108, 14]).
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Figure 2.8: The structure of the terminal lymphatic vessel is shown, illustrating the
anchoring filaments that serve to keep the vessel patent under increased tissue fluid
pressure [49].
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In the absence of injury, tissue swelling, or muscular activity, the intercellular junctions
are typically closed. However, given any of these circumstances, the junctions open to permit
large particles to pass through [49]. Experiments with labelled particles suggest that both
intercellular junctions and vesicular mechanisms serve as routes for macromolecules, although
the relative importance of these two pathways is debated [49]. However, it is typically assumed
that the composition of lymph in the terminal lymphatic vessel is 1-;he same as the interstitial
fluid in the adjacent tissue space [117].

The walls of most collecting lymphatic vessels contain smooth muscle [5]. The collecting
vessels propel fluid and solutes along the network in response to both extrinsic forces (such as
limb movements, respiratory pressure variations, and massage) and spontaneous, coordinated
‘contractions of the muscle within the vessel walls [49]. The intrinsic contractile behavior of the
lymphatic vessels appears driven by the increased stress (hoop pressure) within the vessel walls

~that accompanies the uptake of fluid from the surrounding interstitial space. The amplitude of
the contraction is proportional to the degree of wall stretch [77].

Lymph flow within the collecting vessels remains uni-directional by virtue of one-way valves
found within the vessels [77]. These valves occur in abundance along the lymphatic network;
the average spacing between valves ranges from 2.3 mm to 4.0 mm in the upper arm in humans,
for example [49]. The valves of the larger vessels can withstand back-pressures as high as 60

mmHg [77], far above typical pressure drops reported within the lymphatic network (see [49]).
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Formulation of the General Model of Interstitial Transport

3.1 A Continuum Representation of the Interstitium

At the microscopic level, the transport of fluid and plasma proteins through the interstitium
represents an extremely complex process. Fluid and plasma proteins interact as they traverse
the interstitial space along tortuous pathways. Furthermore, plasma proteins may encounter
barriers resulting from electrostatic forces and/or the architectural configuration of various
structural components, such as hyaluronate, proteoglycans, collagen, and elastin, all of which
exclude proteins from regions of the interstitium. These structural components deform under
a complex set of forces as the tissue hydration changes.

A detailed description of interstitial transport is impractical. Instead, we adopt the concept
of a continuum to represent the interstitium (see [106, 8, 28] for details). Here each principle
phase, such as fluid or structural elements, is represented by a hypothetical continuum which
is distributed throughout the interstitium. The properties of these continua, as well as the pro-
cesses occurring within them, represent spatial averages of the properties and processes found
at the microscopic level. The characteristic dimension of the elementary volume over which this
averaging procedure takes place is large relative to the microscopic dimensions (represented,
for example, by the diameter of a collagen fiber bundle), yet small relative to the characteristic
dimension of the system as a whole (such as the total distance traversed by fluid and plasma
proteins in their journey from the blood to the lymphatic circulations). The resulting averaged
properties are assigned to the point about which the elementary volume is centered. The vol-
ume is then centered about an adjacent point, and the averaging process is performed again.

The procedure is repeated throughout the domain, transforming the complex, heterogeneous

28
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system into a hypothetical continuum to which the laws of differential calculus apply. The
averaging process introduces parameters associated with the continuum, such as the intersti-
tial fluid conductivity, the effective protein diffusivities, and the excluded volume fractions.
These represent the averaged effects of the complex structure and molecular interactions at the
level of the microscale. The parameters are then used to describe interstitial transport when
approximating the real system by the continuum.

The principle of spatial averaging is applied here to analyze the transient flow and distri-
bution of fluid and any number of macromolecular species through the interstitium, which is
treated as an isotropic, deformable porous medium. Since crystalloid solutions are exchanged
rapidly, compared to fhe plasma proteins [71], any disturbances to the system with respect
to small ion distribution is likely dissipated quickly. Therefore, interstitial gradients in small
ion concentrations and the influence of tissue cells on fluid exchange will be neglected here.
Hence the analysis cannot describe hypertonic fluid resuscitation, for example. Since the to-
-tal plasma protein concentration in plasma is small (6 gm/dl in humans [46]), the interstitial
fluid and plasma proteins form a dilute, incompressible solution. The solid components of the
intersﬁtium are also considered incompressible. Hence interstitial deformation results from the
spatial reorientation (e.g. bending) of the solid elements relative to each other. Exclusion is
accounted for by assigning different distribution volume fractions to the various plasma protein
species. These distribution volume fractions are functions of the solid phase volume fraction,
and therefore vary with interstitial hydration. Fluid and protein transport parameters may
vary between individual distribution volume fractions and with interstitial hydration.

In the remainder of this section we present mathematical descriptions of each of the following

aspects of the interstitial continuum:

1. plasma protein exclusion and its effect on local protein partitioning, colloid osmotic pres-

sures, and fluid chemical potential;

2. the relationship between fluid transport and fluid chemical potential; and
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3. protein transport mechanisms within the interstitium.

These relationships are then used in the following section to develop the mass balance equations
which govern the time-dependent distributions of solids, fluid and protein species in a deforming

interstitium.

3.1.1 Plasma Protein Partitioning within the Interstitium: Exclusion

Plasma protein exclusion in tissues can be substantial; for example, albumin is excluded from 60
percent of the total interstitial volume in canine smooth muscle [13]. Because of exclusion, the
effective concentration of an interstitial plasma protein species (i.e., its mass per unit volume of
available space) is higher than its concentration based on the total fluid volume. The effective
concentration plays an important role in interstitial fluid and protein transport because it
determines the protein osmotic pressures, convective protein fluxes, and the diffusional driving
force within the interstitium [27]. A complete description of interstitial transport must therefore
include a treatment of exclusion and its effect on local plasma protein distribution and fluid
chemical potential. We will now discuss how the principle of volume averaging can be employed
to describe exclusion of multiple solute species.

| Figure (3.1) is a schematic diagram of a typical elementary volume centered about some
point within the interstitium, over which the averaging process has been performed. The volume

element contains m protein species and m+3 distinct volume fractions:

1. a total mobile fluid volume fraction (n°);

2. m volume fractions corresponding to the distribution volume fractions for each of the m

protein species (n¥, k = 1,2,..m);

3. asolid phase volume fraction (n®) comprised of structural elements such as collagen, gly-
cosaminoglycans, proteoglycans, and elastin, which form the solid skeleton of the porous

structure; and
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4. an immobile water volume fraction consisting of water trapped and/or bound to the solid

phase (ni™).

The immobile fluid phase will, in general, depend on the amount and composition of the

solid phase. For a given tissue, then, n'™ will be a function of n®:
n'™ = F*(n®), ' (3.1)

where F* is an empirical function relating the two volume fractions. If, for example, we assume
that the immobile fluid is largely made up of the intrafibrillar water of collagen and that the
collagen is uniformly distributed throughout the solid phase, then n™ is directly proportional
to the solid phase volume fraction:

n™ = §* - n®, (3.2)

where 8~ is an experimentaily determined constant of proportionality. The remaining distribu-

tion volume fractions are indexed such that
n’°>n'>n®> .. >0™!>n" (3.3)
. We also define a set of incremental volume fractions, §n*, where
én¥ =n* - n**! k=0,1,2,..,m- 1. (3.4)

That is, the incremental volume fraction §n* represents the difference between the distribution
volume fractions of species k and species k+1. Note that, by this definition, én™ equals n™.
As we will see shortly, these incremental volume fractions are needed to describe the plasma
protein and fluid pressure distributions within the volume element.

The total excluded volume for é given protein species depends on the amount of interstitial
solid components present in the elementary volume [53]. Therefore the fraction of total mobile

and immobile fluid from which plasma protein species k is excluded, n®*, is a function of n®:

n* = F*n®), k=1,2,...,m, (3.5)
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Figure 3.1: Elementary volume of interstitium before (A) and after (B) volume aver-
aging. The various incremental volume fractions, 6ni, distribution volume fractions,
nl, solid phase volume fraction, n®, and immobile fluid phase volume fraction, ni™m,
are associated with the point, P, in the continuum about which the elementery
volume is centered. The heterogeneous interstitium is thereby transformed into a

multiphase continuum.
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where F¥ is an empirical function for the kth protein species. By definition, the sum of the
distribution volume fraction and the excluded volume fraction for species k must equal the total

fluid volume fraction (i.e., 1 — n®). That is,

n* =1-n®— n% (3.6)
It therefore follows from Egs. (35) and (3.6) that
n* = 1 - n* — F¥(n®), (3.7)
while from Eqgs. (3.4) and (3.7) we have
fn* = F**1(n*) — PX(n®), k= 1,..,m — 1. (3.8)

Hence all pertinent fluid volume fractions (nk,énk,n"'k, and nim) may be expressed in terms of
n® for a given tissue using Eqs. (3.1), (3.5), (3.7), and (3.8).

To describe fluid and protein transport through the interstitium, we must make some as-
sumptions regarding the distribution oi; proteins and the variation of fluid chemical potential
throughout the incremental volume fractions within the elementary volume. Consider first the
d{stﬁbution of plasma proteins within the volume element. The incremental volume fraction
én° contains no protein (see Figure (3.1)). Each subsequent incremental volume fraction con-
tains an additional protein species. Let C*! represent the concentration of protein species k
in én!. Assuming that, for each volume element, the protein has a uniform concentration C*

within its distribution volume n¥*, then

Ckl=Ck, 1>k, (3.9)
and

cHl =0, 1<k (3.10)

Hence only one value, Ck, is needed to describe the local concentration of protein species k
throughout all of the incremental volume fractions in the elemental volume which are accessible

to that species.
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Assuming an isothermal system free of external forces, the chemical potential of the fluid
in én!, g4l , is 62
Wy = pf + VP 4 RT - In (1 XL,) (3.11)

where p=f is the reference chemical potential, equal to the chemical potential of the pure fluid
at standard conditions, V1 and P! are the fluid’s partial molar volume and hydrostatic pressure
in én!, respectively, R is the universal gas constant, T is the absolute temperature, v, is the
activity coefficient for the fluid, and X!, is the mole fraction of fluid in &n'. For dilute solutions,
variations in V1 are negligible. Using the Gibbs-Duhem relation, the chemical potential can be

- expressed alternatively in terms of hydrostatic and colloid osmotic pressures [117] as
- 1
phy = i+, (P‘ -y nk) ,1=1,2,...m, (3.12)
k=1

where V 1 has been replaced by V,,, the molar volume of pure fluid, due to the assumption of

a dilute solution.

The colloid osmotic pressure exerted by plasma protein species k in én!, II¥!, is a function

of the protein concentration in énl, i.e.,
e = GR(CkY, ' (3.13)

where Gk is the colloid osmotic pressure relationship for plasma protein species k. By virtue of

Egs. (3.9), (3.10) and (3.13),

ol =1k, 1>k, (3.14)
and
nl=o, 1<k , (3.15)
In 6n° we have
pl = el 4V, (PO - HO) (3.16)

where PC is the hydrostatic pressure in én°, and II° is the sum of any additional osmotic

terms associated with §n°, such as Donnan and polysaccharide osmotic pressure contributions.
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If the relative amounts of these osmotically active components are known, then II° can be
determined through an appropriate osmotic relationship. Assuming that the fluid throughout

the elementary volume is in thermodynamic equilibrium, it follows that
PP-TM°=P' -I'=P’-I'-’ = . =P - Y TI*. (3.17)
k=1

Hence the fluid hydrostatic pressure in any of the incremental volume fractions may be expressed
in terms of a single hydrostatic px;essure (P™) and the various osmotic pressures (II¥, k =
0,1,2,...m).

The concepts and definitions presented here are best illustrated with a simple example.
Consider an elementary volume of interstitium containing a single plasma protein species k,
as shown in Figure (3.2A). By definition, the sum of the solid phase volume fraction, n®, the
excluded volume fraction, n°, and the plasma protein’s distribution volume fraction, n¥, equals
1. Since we are considering only a single plasma protein species, it follows from Eq. (3.4) that én*
equals n¥. Also, since we have assumed local thermodynamic equilibrium within the elementary
volume, the sum of the hydrostatic and colloid osmotic pressures in the distribution volume,
Pk — II*, equals the sum of pressures in the excluded volume, P° — II°. |

- Figure (3.2B) shows the same elementary volume following an increase in hydration accom-
panying, for example, an increase in local fluid hydrostatic pressure. If we assume that the
local concentration in protein species k remains the same, then the local fluid chemical poten-
tial in n¥*, P¥ — IT*, will increase. Since the fluid within the volume is in local thermodynamic
equilibrium, P? — II° will also increase by the same amount. Since the hydration has increased,
the local solid phase volume fraction is reduced. This results in a reduction in the excluded
volume fraction as well, since the latter depends only on the amount of solid phase present in
the volume. Consequently, the volume available to the plasma proteins 'increases, so that nk
increases. We will now discuss how such a change in tissue hydration may be described in more

rigorous terms.
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Figure 3.2: An elementary volume of interstitium containing a single plasma protein
species k before (A) and after (B) an increase in local hydration. Following hydra-
tion, the local solids phase volume fraction, n®, decreases, resulting in a decrease

in the excluded phase volume fraction,

, as well. By definition, the fraction of

total fluid available to the plasma proteins, n¥, increases.
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3.1.2 Tissue Strain, Volumetric Dilation, and Tissue Compliance

Changes in interstitial hydration result from a net flow of fluid into or out of the interstitium.
Swelling is therefore linked to the forces governing fluid exchange, including interstitial hy-
drostatic and colloid osmotic pressures. As interstitial solid components deform there is an
accompanying change in the solid stress. The system maintains mechanical equilibrium by
a concomitant change in the hydrostati.c pressure of the interstitial fluid [53, 89, 117]. This
change in hydrostatic pressure, together with the change in interstitial hydration and possi-
ble net exchange of plasma proteins, alters the driving forces for fluid exchange. Interstitial
swelling therefore involves a complex set of coupiéd processes that depend on the mechanical
characteristics and transport properties of the microvasacular exchange system.

A rigorous examination of swelling in a porous medium requires a complete description of
the stress distribution throughout the medium, together with constitutive relationships between
solid stress and deformation. This type of analysis has been used to describe fluid movement
in deformable porous rocks [19, 28]. To apply the principles underlying this theory to biolog-
ical systems in turn requires detailed information regarding the mechanical properties of the
interstitium and its boundaries. Such information is not available for most tissues. Therefore a
siinpier — albeit less rigorous — approach is adopted which follows the method 'ﬁsed by Terzaghi
(98] to analyze land subsidence following the removal of large volumes of groundwater [28].
The method assumes that the local deformation at any point in the interstitium is a function
of the local fluid hydrostatic pressure (see [89]). The problem of swelling then reduces to de-
termining the distribution of fluid pressure within the interstitium. This is accomplished by
solving the set of transport equations which are developed in Section 3.2. Fatt and Goldstick
[35] and Friedman [41] have used similar approaches to study swelling in corneal stroma. In
these cases, however, swelling is linked to a ‘swelling pressure’, rather than the hydrostatic fluid
pressure. In addition, their analyses are limited to a‘single dimension. The present analysis ap-
plies to the case of isotropic, three—-dimensional swelling in which the influence of shear stresses

is neglected. As such it represents only a first approximation to the complete description of
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Figure 3.3: Linear deformation of a differential segment, dx;, by an amount dUj.

The following discussion is limited to the case of small deformations described by classical
elastic theory. Therefore the equations do not apply, for example, to the development of se-
vere edema. We begin with a brief description of deformation theory. Let dU; represent the
deformation in the x; direction of a small element of initial length dx; (see Figure (3.3)). By
deﬁm'tion, the local solid strain in the x; direction, €1, is equal to the change in length of the

element divided by its initial length, i.e.,

du,

€ = —.
6x1

(3.18)

Similar equations apply for the strains in the x; and x3 directions. The local volumetric dilation,

€v, of an infinitesimal volume element, dV°, undergoing deformation is defined as

dv! — aqve

& T TTave

(3.19)

where dV?! is the volume of the deformed element (see Figure (3.4)). For small strains, €, is

equal to the sum of the individual linear strains [102]:

3
€ =) € (3.20)
1=1
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That is,

BU; )
€y, = E{;) (3'21)

where the right hand side of Eq. (3.21) is written in tensor notation (see {99]).
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Figure 3.4: Volumetric dilation of a differential volume element from an unstrained
volume, dV?®, to a strained volume, dV1,

To relate the volumetric dilation, €., to the local fluid hydrostatic pressure we begin with
Terzaghi’s concept of effective stress, which forms the basis for describing deformation in porous
media {19, 59, 101, 67]. The total stress is set equal to the sum of the local fluid pressure and

an effective stress responsible for the deformation of the solid skeleton as follows [102}:
oy = of — Péy, © (3.22)

where oj; and aﬁﬁ are the components of the total stress tensor and the effective stress ten-
sor, respectively, P denotes the local hydrostatic fluid pressure, and §;; is the Kronecker delta

function (see [99]). The negative sign in front of the pressure term results from defining the
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pressure as positive in compression, while the remaining stresses are defined as positive in ten-
sion. Furthermore, Eq. (3.22) assumes that the pressure in the fluid creates a normal stress
of equal magnitude in the solid skeleton, and that both the fluid and the solid skeleton are
incompressible. The effective stress then represents the additional stress within the solid phase
that causes the solid components to reorient themselves relative to each other, resulting in the
deformation of the medium.

If, for the small range of volume changes considered, we neglect any changes in the overall
stress in the system which might occur, for example, due to changes in the applied stresses at
the interstitial boundaries, then

Aoft = APS;. (3.23)

Equation (3.23) implies that the local volumetric dilation is a function only of the local hydro-
static pressure within the system.
This function is provided by the interstitial compliance, €, [4] defined here as

_Av

oF) = -5

(3.24)

where AV is the change in the interstitial fluid volume, relative to a reference volume, in re-
sﬁonse to a change in fluid hydrostatic pressure, relative to the corresponding reference pressure.
The compliance can be expressed in terms of thé volumetric dilation, €, by dividing Eq. (3.24)
by the reference volume. Then, in the limit of infinitesimal volumes, the specific compliance,

Q, is
de,

Q(P) =3P

. (3.25)

In the multiphase system proposed here the question arises as to which of the m+1 hydro-
static pressures (corresponding to the m+1 incremental fluid volume fractions) are to be used
in the compliance relationship. Following Lewis and Schrefler [67], the average local hydrostatic

pressure,
m

1 .
Pov = =5 )" 6a® - P, (3.26)
k=0
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will be used. The exact form of Eq. (3.26) will depend on the experimental method used to
measure interstitial fluid pressures when determining the compliance of a given tissue. For
example, the average pressure given above assumes that the measuring device (such as a mi-
cropipette) cannot distinguish between the hydrostatic pressures in the various fluid phéses,
and hence yields a composite value.

Together, Eqgs. (3.21), (3.25) and (3.26) define the relationship between the local hydrostatic
pressures in each of the incremental volume fractions, the local linear strains, and the local vol-
umetric dilation. These equations will be used when developing expressions for the distribution
of fluid pressure and v.arious plasma protein species within the deformable imterstitial space.

To determine the geometry of the deformed medium, it is necessary to calculate the linear
displacements, U;, 1 = 1,2, 3, throughout the interstitial space as functions of the local average
hydrostatic pressure. The spatial components of the deformed medium are then evaluated from'

these displacements, i.e.,

% = % + Ui(x;), : (3.27)

where x! is the x; location after deformation of a point that was originally positioned at x;. Hence
U;(xi) represents the total displacement of a point from its original (unstressed) position, x;.

The displacements are found by introducing the solid displacement potential, ®, where [59]

¢

= - (3.28)
® is therefore related to e, by (see Eq. (3.18))
02%

5 = o (3.29)

Upon determining the local average fluid pressure from the transport equations and Eq. (3.26),
the volumetric dilation, €,, the displacement potential, ®, and the individual local solid phase
displacements, Uj, are calculated from Egs. (3.23), (3.29), and (3.28) respectively. The deformed

geometry of the interstitial space is then calculated using Eq. (3.27). Together, these equations

describe the local interstitial deformation associated with variations in local fluid hydration.
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3.1.3 A Constitutive Relationship between Fluid Flow and Fluid Chemical Po-

tential

At low Reyﬁolds numbers, the creeping flow of a homogeneous Newtonian fluid through an
isotropic porous medium is described by Darcy’s Law:

‘ oP
ox;’

o, = —K° (3.30)

where jai is the total local volumetric fluid flux in the x; direction, K° is the hydraulic conduc-
tivity of the porous medium-fluid system, and P is the fluid hydrostatic pressure. The hydraulic
conductivity is a function of the structure of the porous medium and the absolute viscosity,
i, of the fluid. However, the specific hydraulic conductivity, K’, equal to K/u, is a material
property of tﬂe porous medium and therefore does not depend on the type of fluid flowing
within the system [31, 66, 60].
. In deforming porous media, ja,i represents the fluid flux relative to the moving solids [20].
‘It is related to the absolute fiuid flux, q?,,i (where q?,i is the fluid flux relative to stationary
coordinates), and the local solid phase velocity, vs; (taken with respect to the same set of
stationary coordinates), by

qg;i = j(v)v; +n°- Vsi (3.31)
where, as before, n° is the mobile fluid volume fraction.

In the case of solutions, the presence of solutes influences the flux of solvent. This interac-
tion is described by the phenomenological relationships of irreversible thermodynamics. These
felations}ﬁps, which have been used to quantify mass exchange across the vascular wall, relate
the fluid flux to the colloid osmotic pressure and hydrostatic pressure driving forces present in
the system. The exact way in which the colloid osmotic and hydrostatic pressures within the
interstitial space affect the local interstitial fluid flux remains unresolved. However, as a start-
ing point, it is assumed here that the local fluid flux through an incremental volume fraction is
proportional to the local gradient in fluid chemical potential there, i.e.,

Othw

Eas (3.32)

ug
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While Eq. (3.32) is a postulate only, it should provide a satisfactory first approximation for
quantifying the effect of colloid osmotic pfessure gradients on the solvent flux. This dependence
of fluid flux through a porous medium on the gradient in fluid chemical potential was first
proposed by Biot [21], and has been suggested by several researchers to describe interstitial fluid
transport [57, 26, 69]. However, Eq. (3.32) dbes not consider the influence of solute mobility in
determining the effective colloid osmotic pressure driving fluid within the interstitium. It will
therefore most likely over-estimate the effect of colloid osmotic pressure gradients on fluid flow.
Further research is needed to determine the influence of osmotic pressures on interstitial fluid
flow and, hence, the appropriate form of Eq. (3.32).

Since we have assumed local thermodynamic equilibrium with respe-ct to the fluid chemical
potential in each of the incremental volume fractions, the total local fluid flux for our sysfem is

a m
0 _ 170 m _ k
o =K 5 (P S I ) (3.33)

k=1

Equation (3.33), because it incorporates’ colloid osmotic effects in the fluid flow relationship,
represents a more general version of Eq. (3.30). The assumption of local thermodynamic equi-
librium in fluid chemical potential implies that the local driving force for fluid flow in each
of the incremental volume fractions within an elementary volume of interstitium is tile same.

That is
Op _ Oww _  _ Ou%
0x; O0x;, T 0x

The local fluid flux associated with the distribution volume fraction n*, expressed in terms of

(3.34)

hydrostatic and colloid osmotic pressure gradients, is then

k k 4 & k

jo, = — K — | P — ey, 3.35

o (- S (039)
where j,’f,i is the local fluid flux and K* is the hydraulic conductivity associated with the dis-

tribution volume fraction of protein species k. It follows from Egs. (3.34) and (3.35) that the

fraction of the total volumetric fluid flux that is associated with the distribution volume fraction

n¥ is
. K* .
B = o e (3.36)
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In general, K°, and hence K*, will vary with interstitial hydration (see, for example, [53]). For
a discussion of interstitial hydraulic conductivity and its dependence on hydration and on solid
phase composition, the reader is referred to the recent review by Levick [66]. The local fluid
flux through any of the protein distribution volume fractions can then be calculated using Eqgs.
(3.33) and (3.36).

3.1.4 Protein Transport Mechanisms within the Interstitium

The transport of a solute through a porous medium occurs via convective and diffusive mech-
anisms. The relative contributions of these two processes to the overall solute flux will depend
on the fluid velocities within the medium and the system’s transport properties with respect to
that particular solute. When modelling the interstitial transport of plasma proteins it is often
assumed tha;t molecular diffusion dominates {38, 65,.7]. However, given the comparatively high
hydraulic conductivity of certain tissues, such as tumours [61], cases may exist in which convec-
tive transport plays an important role. In addition, convective transport in porous media can
result in mechanical dispersion which, while bearing a resemblance to diffusion, is .dependent on
the solute convective vélocities [8]. A general description of interstitial protein transport must
consider the possible contributions of each of these mechanisms to the overall protein flux.

Molecular diffusion is the result of random thermal motions of the solute. When coupled
with convective transport, the diffusive flux represents the solute flux relative to the convective
component. In a porous medium the apparent diffusive flux of the solute is somewhat hindered,
due to both the increased pathlength of the tortuous channels that the scﬂute must follow and
the reduced cross-sectional area available to the solute due to the presence of the solid matrix
[88].

In dilute solutions, interactions between solute molecules are negligible [91]. The local

diffusive flux of protein species k through the interstitium is then described by Fick’s Law:

8Ck
i =n"-Dg

- (3.37)
eff BXi \Q J

where jlc(ia is the diffusive flux of protein species k in the x; direction. The effective molecular
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diffusion coefficient, Dlgﬁ-, is typically less than the protein’s free diffusion coefficient, reflecting
the hindering effects of the matrix components. Therefore, as interstitial hydration increases,
Di‘ﬂ- a.pproaphes the free diffusion coefficient {53, 4, 27]. Comparison of the diffusion of plasma
proteins and various dextrans within tissues suggests that charge and molecular size also play
a major role in determining the effective diffusivity of individual macromolecular species [61].

The local convective velocity of an interstitial plasma protein may be somewhat less than the
local fluid velocity, due to the hydrodynamic interaction between the protein molecule and the
solid matrix {92, 87, 61]. This phenomenon has been analyzed, from a theoretical standpoint,
for the case of neutrally buoyant spheres travelling through narrow cylindrical channels (e.g.
[23, 31]). The extent to which a particle is hindered (given by the ratio of the local pa.rticle.
velocity to the local fluid velocity, v*) depends both on the position of the particle relative to
the wall and the ratio of the particle radius to the channel radius, A [23].

Brenner and Gaydos [23] estimate the mean velocity of particles in the channel for cases
where A is less than or equal to 0.2. Their analysis reveals two opposing effects. Omn the
one hand, the velocity ratio v* decreases with increasing particle radius, due to hydrodynamic
interaction. However, the larger particles are also restricted, due to steric exclusion, to the
more central portions of the flow field where the local fluid velocities are higher. For this range
of A, Brenner and Gaydos predict mean particle velocities that are greater than the mean fluid
velocity within the channel, even though the local particle velocities are always less than the
local fluid velocities. N

Because of the complex geometry of the interstitium, the extent to which this type of inter-
action influences interstitial protein transport is unknown. Based on the foregoing discussion
however, we assume that the mean convective velocity of protein species k in the x; direction,
f’lc‘i, is related to the mean interstitial fluid velocity within the protein’s distribution volume,
f'};,i , by

T = gReE (3.38)

where the fluid and protein velocities are defined relative to the solid phase velocity. The
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convective hindrance of the protein, £¥, is less than or equal to 1. Since £* is a function of A,
it will vary with interstitial hydration. The mean interstitial fluid velocity in the x; direction is

related to the fluid filux through the distribution volume, j“,‘vi, by
Vo= =5 (3.39)

The total convective flux of protein species k in the x; direction, jlc‘i, relative to the moving
solid phase is
k k ¢k =k k
Jc;:n .6 .vwi'C 3 (3'40)

which states that the convective solute flux is equal to the net fluid flux through the protein’s

k. gk ) times the protein’s convective hindrance (¢¥) and the

distribution volume fraction (n
local protein concentration (C¥). This expression can be rewritten in terms of the total fluid

flux, j3,, relative to the solid phase by noting that

- K* |
nk- vk = < - (3.41)
Equation (3.40) then becomes
. Kk | .
Jlé. = [ﬁkﬁ] 3 CX, (3.42)

where the bracketed term may be identified as the retardation factor, RY, [92, 61] associated
with protein species k.

In light of the preceding discussion, it does not necessarily follow that the mean convective
velocity of the protein m exceeds the mean velocity of some larger protein n. According to Egs.
(3.38) and (3.41), the ratio of these two velocities depends on the quantity (£™K™n®)/(£2K™n™).
This suggests a new, alternative mechanism for the ‘gel chromatographic effect’ where the
mean transit time through the interstitium for larger protein molecules is less than that for
smaller proteins [104]. This mechanism is quite different from the one proposed by Watson and
Grodins [104], who divided the interstitial space into a ‘gel phase’, in which proteins move by
restricted diffusion, and a ‘free fluid phase’, in which proteins are transported by convection

and free diffusion. In their model the smaller proteins, which access a greater percentage of
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the gel phase, are retarded compared to the bigger proteins, which are largely restricted to the
free fluid channels. Equations (3.38) and (3.41) together suggest that protein exclusion in a
continuum may be sufficient to account for the gel chromatographjc effect without introducing
open channels in the description of the interstitium.

The contribution of mechanical dispersion to the total interstitial plasma protein flux has
neither been addressed experimentally nor theoretically. The mechanical dispersive flux arises
from variations in the true microscopic convective velocity of the protein from the mean con-
vective velocity given by Eq. (3.38). This includes the phenomeénon of Taylor dispersion [96, 97]
which results from local velocity profiles within a given chanmel, and the fact that the protein,
because of its finite size, cannot access the entire channel cross-section [23]. Mechanical disper-
sion in porous media also results from deviations in the microscopic flow paths of the solute
particles from the direction of bulk convective flow [8). Like diffusion, mechanical dispersion
tends to spread an advancing solute front. It is therefore generally assumed that the mechanical

dispersive flux obeys Fick’s Law (see Anderson for details [1]):

ack

: k gk

g = —nfoE
¥ 0%

(3.43).
where j]x;d; is the flux of protein species k in the x; direction resulting from mechanical dispersion,
aﬁd 19}3- is the protein’s coefficient of mechanical dispersion, a second rank tensor. In general,
the dispersive flux is some fraction of the total convective flux. It is therefore significant only
when the magnitude of the convective protein flux is large compared to the diffusive flux.
Mechanical dispersion is a function of both the local convective protein velocity and the
structure of the porous medium. The latter effect is characterized by a set of parameters, the
longitudinal and transverse dispersivities (a1 and a;). For a.n. isotropic medium, 19% is related

to the components of the mean protein convective velocity and the dispersivities by (8]

=k
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c
where |¥X| is the magnitude of the mean convective velocity of the protein, i.e.,

=)+ @)+ ()] (5.49
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While the dispersivities depend on the medium’s pore geometry, no analytical expressions
exist to link these parameters to other appropriate material properties, such as the solid phase
volume fraction and the medium’s hydraulic conductivity. Hence, in practical applications, the
dispersivities are adjusted to give the best possible agreement between experimental observa-
tions and model predictions [1]. Since the dispersivities reflect, for example, the tortuosity of
the pathways available to the various plasma protein species, they will vary with tissue hy-
dration. Furthermore, since the pathways for different protein species will vary as a result of
exclusion, the dispersivities may also be expected to vary amongst protein species.

The sum of the diffusive flux (Eq. (3.37)), the convective flux (Eq. (3.42)), and the mechan-
ical dispersive flux (Eq. (3.43)) gives the total protein flux at any point within the interstitium,
relative to the moving solid phase. Equations (3.37), (3.42), and (3.43) will be used in Section
3.2.3 to develop expressions- for the transient distributions of the various macromolecular species

within the interstitial space.

3.2 Mass Balance Equations for Solid, Fluid, and Solute Species

In the previous section we developed mathematical expressions for the flow of solid, fluid and
pi‘otéin species within a deformable interstitium. We will now develop the equations that
describe the transient distribution of these phases within the interstitium. The equations de-
scribing fluid transport through a porous medium subject to small defoﬁnations have been
a;iiﬁied in a number of fields, including groundwater hydrology and soil mechanics [19, 8, 101].
The equations are based on differential mass balances for the solid and fluid pha.ses, combined
with an appropriate description of deformation. A similar approach is adopted here. Likewise,
the equations describing the distribution of various plasma protein species within the interstitial
space are based on differential mass balances on ea_xch of the protein species contained within
the interstitium. Because of the linkages existing between the fluid flux and the protein os-
motic pressures, between the convective protein flux and the fluid flux, and between the various

transport properties and the tissue hydration, the material balances result in a set of coupled
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partial differential equations which must be solved simultaneously. We will now consider each

of the material balances individually.

©

3.2.1 Material Balance on the Solid and Immobile Fluid Phases

The solid and immobile fluid phases have mmch the same impact on mass flow within the
interstitium in that they both reduce the volume available to mobile fluid and plasma proteins.
Furthermore, given that the immobile fluid phase volume fraction is a function of the solid phase
volume fraction, it is convenient to consider the two as a single composite phase (n® + F*(n®))
when carrying out mass balances on the various components within the interstitium.
Assuming that the density of the solid phase is constant, a material balance on the solid

and immobile fluid phases within a differential volume of interstitium gives

O* +F*) _ 8"+ F] - vs)
T T ox : (3.46)

where [n® + F°] - v, is the net flux of the éomposite phase, per unit volume, at a point within
the interstitium. Equation (3.46) states that the net rate of change in the composite phase
volume per unit volume of interstitium at some point is equal to the net flux of the phase at
that point. The solid phase velocity, vs,, relative to a fixed coordinate system, is related to the

solid displacement in the x; direction, Uj, by [101]

Ve = 63153_ (3.47)
Since the volumetric dilation, €, is equal to dU;/dx;, then
Ov, e,
g ; 3.48
ax%; ot ( )

The local solid phase velocity can therefore be related to the local average hydrostatic pressure
through the compliance relationship (Eq. (3.25)). Together, Egs. (3.46) and (3.48) describe the
distribution of solid material and immobile fluid in response to variations in the local average

hydrostatic pressure.
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3.2.2 Material Balance on the Fluid Phase

Consider the flow of fluid-protein solution within the interstitium. For dilute solutions, varia-
tions in density can be neglected. Furthermore the volumetric flux of solution is approximately
equal to the total solvent fiux, q?vi. A material balance on the total fluid-protein mixture within
a differential volume of interstitium then gives

o°  dqu,
ot - 6)(;'

(3.49)

The total mobile fluid volume fraction, n°, can be rewritten in terms of the solid phase

volume fraction, i.e.,

n’ =1-n®— F5(n®). (3.50)

Furthermore, the total solvent flux relative to fixed coordinates, qai, may be expressed in terms
of solvent flux relative to the solid phase, j?v;: the solid phase velocity, v,,, and n® using Egs.
(3.31) and (3.50), i.e.,

qai =i +(1~n* - F(n%)) - v,,. (8.51)

The second term of Eq. (3.51) represents the flux of mobile water at the solid phase velocity.

Equation (3.49) can now be expressed in terms of j?,i, n®, F*, and v, using Eq. (3.51) to give

(e +F*)  O(m® +F]-vy)] , vy O,

at ox; Ix; 0x;

= 0. (3.52)

Since the solid phase and immobile fluid phases are conserved, the sum in square brackets is
zero (see Eq. (3.46)). Also, the second term in Eq. (3.52) is equal to d¢,/8t, so that Eq. (3.52)

becomes
Oey 0%,

_5{—-6)(;

(8.53)
which states that the rate of volumetric dilation at a given point in the interstitium is equal to
the net rate of fluid inflow to that point.

Finally, using the expressions for jj. and e, developed earlier (see Eqgs. (3.33), (3.24) and

(3.25)), Eq. (3.53) can be rewritten in terms of the local average hydrostatic pressure and the
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local fluid chemical potential to give
hod aPav a 0 5 = k
= — ™ I . .
i (K - (P k; )) (3.54)

3.2.3 Material Balance on Protein Species k

The net rate of increase in the mass of protein species k contained in a differential element
within the interstitium is equal to the net diffusive, dispersive and convective flows of protein

into the element. In a fixed coordinate reference frame

a(nkck) a k . k ack a i X k- k
e = | |95 + D6 ) (jm*v, + Y] C¥) (3.55)

where ——nk(19§ 4-Dk-6;)0C*/8x; is the total dispersive and diffusive flux, n*v,, C¥ is the convec-
tive protein flux at the solid phase velocity, and R}fj?viCk is the additional convective protein
flux due to the motion of the fluid relative to the solid phase. R_}‘ is the retardation factor for
protein species k, defined in Section 3.2.2.

Equation (3.55) is combined with the equation for volumetric dilation (Eq. (3.48)) to give

BC) | e | B*CK)  O(RESCH)
ot +n*C bt T Vs 9x; + Ox;
(9 k . k 'g BCk _ -
_ 6xi (n [19:; - Deﬂ-&Jj 8_.5) =0 (306)

Equation (3.56) may be interpreted as follows. The first term represents the net rate of change
in protein content, per unit volume of interstitium, within the element. The second term
represents the change in protein content associated with deformation within the interstitium.
The third term represents the net convective flow of protein, at the solid phase velocity, out of
the element, while the fourth term is the remaining convective flow associated with the solute
motion relative to the solid phase. The final term represents the net dispersive and diffusive

flows leaving the element.

3.2.4 Summary of Governing Equations

Table (3.1) summarizes the equations describing fluid, solids, and protein transport in a deform-

ing interstitium. Alongside are listed the primary dependent variables obtained as the solution
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of each equation. The equations and dependent variables are grouped into one of three cate-
gories: those describing interstitial deformation, those describing interstitial fluid transport and
distribution, and those pertaining to solute transport and distribution within the interstitium.

The first category includes equations for the conservation of solid phase and local solid phase
velocity (Eqs. (3.46) and (3.47)), relationships linking the geometry of the deformed interstitium
to the local volumetric dilation (Egs. (3.27) and (3.28)), and constitutive relationships express-
ing volumetric dilation as a function of the local average hydrostatic pressure (Egs. (3.25) and
(3-26)). The second category consists of an equation for the conservation of fluid mass within
the system (Eq. (3.54)), expressions relating local fluid fluxes to gradients in local fluid hydro-
static and colloid osmotic pressures (Eq. (3.35)), and colloid osmotic relationships (Eq. (3.13).
The final category is comprised of the conservation equations for the various protein species
(Eq. (3.56)), expressions linking each of the distribution volume fractions to the solid phase
volume fraction (Eq. (3.7)), and relationships used to define the various protein and fluid fluxes
and velocities (Egs. (3.36), (3.37), (3.38), (3.39) and (3.43)).

Together these equations form a coupled system that must be solved simultaneously. For
example, the total local volumetric fluid flux, ja,i, is a function of the local colloid osmotic
pressures, II¥, k = 1,2, ...m, and hence the local concentrations of the various plasma protein
species, C*, k = 1,2,...m. In the next three chapters, we demonstrate how the method of Finite
Elements can be used to solve sets of coupled equations, based on those shown in Table (3.1),

for a number of simplified circumstances.
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Table 3.1: Summary of the model equations.

LOCATION IN TEXT

Eq. (3.46), Sec. 3.2.1
Eq. (3.47), Sce. 3.2.1
Eq. (3.28), Sec. 3.1.2
Eq. (3.29), Sec.3.1.2
Eq. (3.25), Sec.3.1.2
Eq. (3.26), Sec. 3.1.2
Eq. (3.17), Sec. 3.1.1

I29. (3.51), Sec. 3.2.2
Eq. (3.13), Sec 3.1.1
Fq. (3.33), Sec. 3.1.3

Eq. (3.6), Sec. 3.1.1
Eq. (3.56), Sec. 3.2.3
Eq. (3.44), Sec. 3.1.4
Eq. (3.39), Sec. 3.1.4
Eq. (3.38), Sec. 3.1.4
Eq. (3.36), Sec. 3.1.3
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3.3 Concluding Remarks

In the preceding two sections, mathematical relationships were developed to describe the tran-
sient flow and distribution of fluid and plasma proteins within the interstitium, resulting in a
system of coupled, nonlinear partial differential equations which must be solved simultaneously
(see Table (3.1)). Despite the complexity of the model, it is limited in several respects. First,
the description of interstitial deformation applies to small strains only (on the order of ten
percent). The model is therefore unsuitable for analysing extreme cases of edema formation.
However, the model could be expanded to consider large deformations by introducing a more
general and, as a result, a more complex finite deformation theory (e.g., [21]). Furthermore,
the model uses a compliance relationship to characterize deformation, which assumes that any
change in volume is a function of the hydrostatic pressure within the system. This neglects the
influence of shear stresses on deformation. However, we are interested primarily in the effect
of volume changes on the various transport properties and material characteristics of the inter-
stitial space (such as the hydraulic conductivity, effective diffusivities, and various distribution
volume fractions), rather than a description of the deformed geometry of the interstitium. We
therefore consider this approach a reasonable first approximation to the complete theory devel-
of)ed by Biot {19]. A more detailed analysis of deformation would require additional information
about the material properties of the various interstitial components, such as their stress-strain
characteristics.

Fluid flow within the interstitium is assumed to be proportional to the gradient in fluid
chemical potential alone, thus neglecting any coupling between fluid flow and solute chemical
potential, for example. The theory presented here could easily be modified to include these
additional effects, given better information about the nature of fiuid transport in the intersti-
tium. Previous models of interstitial fluid transport have considered the effect of hydrostatic
pressure gradients only [22, 36, 87]. Therefore, because it includes the influence of colloid os-
motic as well as hydrostatic pressure gradients, the interstitial fluid flux representation given

here is considered to be more general than that offered by any previous interstitial transport
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models. However, further research in the area of fluid flow within osmotically active, partially
restricting matrices (such as the interstitium) is needed.

Despite its limitations, the model describes the combined effects of a number of interstitial
properties (such as exclusion and swelling characteristics) and transport mechanisms (such as
protein convection, diffusion, and dispersion) on interstitial fluid and plasma protein transport.
It therefore provides a far more comprehensive description of interstitial transport than has
been offered by any of the previous models. The model can be used to study numerous aspects
of interstitial transport over a wide range of physiological conditions. When combined with
mathematical descriptions of fluid and protein exchange across the capillary wall and, where
appropriate, the lymphatic wall, the model provides a tool to investigate (the sensitivity of
the microvascular exchange system to any number of parameters characterizing its transport
behaviour. The next three chapters give examples of the model’s utility in this respect by
investigating fluid and plasma protein exchange, both in mesentery and a hypothetical tissue,

under steady-state and transient conditions and for a number of systemic upsets.



Chapter 4

Steady-State Exchange in Mesenteric Tissue

In the previous chapter we presented a general mathematical model describing the transport
and distribution of fluid and macromolecules within the interstitium, which is treated as a mul-
tiphase, deforming porous medium. In this chapter, a simplified version of the model, in which
the interstitium is approximated as a rigid porous medium containing a single plasma protein
species, is combined with mathematical descriptions of transport across the interstitial bound-
aries to study steady-state fluid and protein exchange within the mesentery. The mesentery
was selected both for its simple geometry and because a number of its transport parameters
have been measured. Furthermore, the mesentery remains a popular tissue for experimental
studies of microvascular exchange [30] and interstitial .transport (115, 40).

The mesentery consists of a thin sheet of loose connective tissue, the upper and lower
surfaces of which are bounded by a serous membrane (the mesothelium) made of a single layer
of epithelial cells [50]. In some respects, then, fluid and plasma protein exchange across the
mesothelium may resemble that of the capillary wall. While it is generally accepted that fluid
and plasma proteins are able to cross this boundary and enter the surrounding peritoneal
fluid [60, 37], the mesothelium’s exchange properties remain poorly defined. Therefore, one
objective of this study is to explore the potential influence of the mesothelium on the steady-

state exchange of fluid and a single plasma protein species within the mesentery. Three scenarios

are considered:
1. the mesothelium is impermeable to fluid and proteins;
2. the mesothelium’s transport properties are identical to those of the capiliarv wall; and
3. the resistance of the mesothelium to fluid and plasma protein exchange is substantially

56
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lower than that of the capillary wall.

These three cases were selected so as to encompass a wide range of mass transport character-
1stics.

We also investigate the sensitivity of microvascular exchange in the mesentery to a select
number of interstitial parameters, namely the tissue hydraulic conductivity, the protein effective
diffusion coefficient and the protein convective hindrance. The possible influence of dispersion
on interstitial transport is not considered in this study. (In fact, the effects of mechanical
dispersion on mass exchange within this model tissue are tentatively in Appendix C.) The
model equations are recast in dimensionless form. This reduces the number of interstitial
parameters that must be varied from the three listed above to two equivalent dimensionless

groups. A brief description of the model follows.

4.1 Defining the System

Figure (4.1) is a schematic diagram of a cross-sectional portion of mesenteric tissue of uniform
thickness. For simplicity we will assume that the conditions in the tissue are independent of the
z-direction, thereby limiting the flow field to the two remaining dimensions. The interstitium
is bounded left and right by arteriolar and venular capillaries respectively. It is assumed that
the tissue thickness, H, is small relative to the distance, L, separating the vessels, so that the
system can be approximated by the two-dimensional rectangular domain shown in Figure (4.2).
In addition, the hydrosiatic pressure and plasma protein concentration in each of the vessels
are assumed uniform along the vascular walls. The upper and lower boundaries of Figure (4.1)
represent the mesothelial layers. For simplicity, and for lack of additional information, it is
assumed that the peritoneal fluid is well-mixed, semi-infinite in extent, and subject to a uniform
hydrostatic pressure along the length of the mesothelium.

The following notation will apply in the remainder of the paper. A superscript ‘0’ denotes
a quantity associated with the total mobile fluid phase (defined below), while a superscript

‘1’ identifies a parameter associated with the accessible volume phase (also defined below).
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Figure 4.1: Schematic diagram of a cross-sectional slice of mesentery. The shaded
area represents the region of interest.



Chapter 4. Steady-State Exchange in Mesenteric Tissue

H/2

Arteriolar-end
capillary 0
boundary

- Peritoneal fluid

Mesothelial boundary

S===—cIssssl

I T 1 1 T 3

1
1 1 1 1 1 1

Finite element grid

t
—
1

T 1
1 1 1 1 1 1 T

-H/2

Mesothelial boundary

Peritoneal fluid

59

Venular-end
capillary
boundary .

L

Figure 4.2: Schematic diagram of the tissue segment studied. The system is assumed
symmetric about the x-axis; hence only the upper half of the tissue is modelled.
The finite element grid is superimposed on this portion of tissue. The aspect ratio
(H/L) is 0.1. For simplicity, the curvature associated with the vessels’ walls is

neglected.
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Parameters associated with the arteriolar capillary, the venular capillary, and the mesothelium

{

are identified by superscripts ‘art’, ‘ven’, and ‘mes’, respectively. Finally, a superscript ‘b’
will be used to identify parameters associated with a general permeable boundary or with the
well-mixed fluid on the luminal side of the boundary.

The mathematical description of interstitial transport developed in the previous chapter is

applied here, along with these additional simplifying assumptions.

1. Since detailed information on the swelling properties of mesentery is unavailable, it is
assumed that the tissue behaves as a rigid porous medium. Furthermore, for lack of
additional information, the material properties of the tissue are considered to be spatially

invariant.

2. In this study we are not concerned with the relative transport rates of individual plasma
protein species within the interstitium. Therefore, the array of interstitial plasma pro-
tein specie_s is treated as a single aggregate displaying averaged properties. In fact, sev-
eral steady-state simulations were performed to investigate the effects of treating the
plasma and interstitial fluid as aqueous solutions containing two different osmotically ac-
tive plasma proteins representative of albumin and globulin. The results of that study,
not presented here, identified albumin as the dominant osmotically active plasma protein,
when these species are present in physiological concentrations. These findings substanti-
ate the notion that albumin is the major contributor to the colloid osmotic driving forces

within tissues.

3. In light of assumption 2, the interstitium contains two distinct mobile fluid phases, only
one of which is accessible to proteins (see Figure (4.3)). The accessible volume fraction
is denoted by n', while the total mobile fluid volume fraction is represented by n°. In
addition to the two mobile fiuid phases, the interstitium contains a ‘solid’ phase, n®,
composed of elements such as hyaluronate. elastin, collagen and proteoglvcans, and an

immobile fluid phase, n™. It is recognized that, under some conditions, hyaloronate
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may be mobile [5]. However, provided that the relative amount of mobile hyaloronate
is small, and assuming that interstitial hyaloronate lost to the circulation is replaced,
so that the physicochemical properties of the tissue does not change, it is reasonable to
neglect movement of this component. Further, the intrafibrillar water of the collagen is
included in the immobile phase, due to the comparatively low hydraulic conductivity of

the intrafibrillar spaces [66].

4. The total interstitial hydraulic .conductivity, K°, is divided between the accessible fluid
phase and the excluded mobile fluid phase according to their proportionate share of the

total mobile fluid volume. Hence,
K! = — -K° (4¢.1)

Equation (4.1) therefore neglects any variations in flow resistance between the accessible
fluid phase pathways and the pathways of the excluded fluid phase. Given further in-
formation about the relative resistances of these two pathways, an alternative expression

relating K! to K° can be substituted for Eq. (4.1).

5. Interstitial protein transport occurs via molecular diffusion and restricted convection only;
i.e., mechanical dispersion is not considered. This represents a significant limitation only

in convectively dominant problems.
6. Body forces, such as gravity, are neglected.
7. The system is at steady-state.

Since the tissue is assumed rigid, a material balance on the fluid within a differential volume

of interstitial space gives (see Eq. (3.53) in Chapter 3)

8% " i,

st g =0 (4.2)

~ where jg,i is the local total fluid flux in the x; direction. This fluid flux is related to the gradient

in hydrostatic pressure in the accessible fluid phase, P!, and the gradient in plasma protein
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Figure 4.3: A schematic diagram of an elementary volume of interstitium illustrating
the different volume fractions associated with any one point in the continuum
representation of the interstitial space. :
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osmotic pressure, II!, according to Eq. (3.33) in Chapter 3. That is,

o(p' — 1)

-0 0
. =-K
Jwi 9x;

. (4.3)

The local protein osmotic pressure depends on the local plasma protein concentration in the

accessible volume, C!, according to a polynomial relationship:
2 3
I = 4;-C' + 4, (C7) + 45 (C1) (4.4)

Substituting Eq. (4.3) in Eq. (4.2) gives

o} (P -11') o¥(P'-TY)
0z? + Oy?

= 0. (4.5)

The local flux of plasma proteins within the interstitial space consists of a convective com-
ponent, j.;, and a diffusive component, jg,. The first of these is given by Eq. (3.42) in Chapter
3:

. K! .
Jog = E . Eﬁ .J?"i . C]’ (46)

where ¢ is the convective hindrance. The diffusive flux is defined by Eq. (3.37) in that same

chapter:
: ocCt

ig. = —n'Deg——. 4.7

A material balance on the plasma proteins within a differential volume of interstitium then

gives (see Eq. (3.56) in Chapter 3)

(4.8)

o FO] B[00, 00 |
0x2 Oy? o

n! Dy [—— + Ko Jwy i " Jwy By

The first term in Eq. (4.8) represents the net diffusive flux of plasma proteins at a point within
the interstitium, per unit volume of interstitial space. The second term is the net convective
protein flux, per unit volume of interstitium, at that point. Since the system is at steady-state,
the net accumulation of plasma proteins at the point (the right-hand side of Eq. (4.8)) is zero.
Boundary conditions are needed to complete the description of fluid and protein exchange.

Their forms depend on the physical nature of the boundaries themselves. We will consider three
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boundary types in our system: a symmetry boundary (i.., from (0,0) to (0,L) in Figure (4.2))

an impermeable boundary (ie., from (0,H/2) to (L,H/2), corresponding to the case where
the mesothelium is treated as an impermeable barrier), and the permeable boundaries (i.e.,
from (0,0) to (0,H/2) and from (L,0) to (L,H/2), corresponding to the arteriolar and venular
capillary walls, respectively, and from (0,H/2) to (L,H/2), for those cases where the mesothelium
is permeable).

In the case of a symmetry boundary, the gradients in plasma protein concentration and fiuid

chemical potential normal to the boundary are zero. That is,

1_ M [ 1 _1m
AT [T w9
x Jb L y b
and
8C!] Kl
[-g_bwﬁ _-b?]b-ly =0, (4.10)

where 1, and 1y are the x and y components of the unit outward normal to the boundary (see
Figure (4.4)), and where [-], implies an interstitial quantity evaluated at a point along the
boundary.
At an impermeable boundary the fluid flux and plasma protein flux normal to the boundary
are zero. That is,
i), b+ [, b= (4.11)
and

(Bax)b + liee o) - L 4 (fay b + lie, J6) -1y = 0. (4.12)

Upon substituting Egs. (4.3), (4.6), and (4.7) into these last two expressions, Egs. (4.11) and

(4.12) reduce to Eqgs. (4.9) and (4.10), respectively, cited for the symmetry boundary.
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Permeable
boundary
segment

Accessible volume

-
-

Adjacent boundary.~ ‘[Ho]
! b

~"Excluded volume
Adjacent boundary

Figure 4.4: An elementary volume representing a point in the interstitial continuum
adjacent a permeable boundary. The fluid film of infinitesimal thickness is in local
equilibrium with the fluid in the accessible space at that point in the continuum.
The vectors lx and ly represent the x and y components of the unit outward normal,
n.
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Fluid flow across a permeable boundary is described by Starling’s Law. This is equated to
the total fluid flux to the boundary from within the interstitium to give

, (18P~ 1Y) o(PY — II*) _
(g ) ).

(], 7o (), 69

where Lg and o® are the hydraulic conductivity and reflection coefficient, respectively, of the
boundary, while P® and hi represent the hydrostatic and colloid osmotic pressures on the
luminal side of the boundary.

Plasma protein exchange across a permeable boundary obeys the nonlinear flux equation -
[76, 71]. Equating the plasma protein flux across the boundary with the sum of the diffusive

and convective protein fluxes through the available space to the boundary then gives
0] . 071 7). b) [C], - CPel~Fe) _
(B2, 1 ], 0) - (1= o) - (EmB ) -

i 1
! ‘Deg ({ﬂc_} S+ [(')i} . 1}_) -
Ox |, oy |,

w6 g (0, wr ), 1) [, (419

where CP is the plasma protein concentration on the luminal side of the boundary, and where

Pe, the local Peclet number for the boundary, is defined by

(£ et 2], 1) ()
Db ’

Pe = (4.15)

DP represents the boundary’s permeability to plasma proteins.

The boundary conditions defined by Eqs. (4.13) and (4.14) assume that a thin fluid film
exists between the boundary and the interstitial space (see Figure (4.4)) . This fluid is in local
equilibrium with the interstitial fluid within the perivascular region of the accessible space, and
is therefore at a hydrostatic pressure [P'], and protein concentration [C!]y. By this assumption
we circumvent the need to distinguish between the transport properties of the boundary segment

exposed to the accessible space from those of the boundary segment exposed to the excluded
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space. It therefore represents a mathematical convenience rather than a physiological condition.
However, since it is impossible to distinguish between these two segments when measuring the
transport parameters for a given permeable boundary, Eqgs. (4.13) and (4.14) are considered
reasonable approximations to the conditions prevailing in vivo .

In the case of m different plasma protein species, it is assumed that the fluid film is in
equilibrium with the material contained in the distribution volume m. Hence, the thin film
concentration of each plasma protein species is equal to the concentration within that protein’s
distribution volume, C¥. The mathematical formulation is therefore consistent with the fact that
it is the distribution volume concentration of a plasma protein species, and not the concentration
based on the total fluid volume, that determines, for example, the interstitial osmotic pressure
influencing fluid exchange across the capillary wall [26].

To minimize the number of independent parameters that must be evaluated in the numerical
simulations, the equations governing fluid and protein transport are recast in dimensionless
form. This is accomplished by introducing the following nondimensional parameters: P =
P/p=t, C = C/C*, IT = II/P**, £ = x/L, § = y/L, H = H/L, a = (K°- P>*)/D,
B =K'/K° 32, = §%L/Des, ja, = iaL/(DerC™™), jo = joL/(DerC™), Ay = Ay - C=*/P>,
Ay = A, - (C*)2/Pot, Ay = Ay~ (C*)3/P> LE = (LB- L)/K°, and D® = (D®- L)/Des.

The governing equations and auxiliary relationships then take the following form.

1. Fluid transport within the interstitium:

a2(pr — 1t 52 (P! — m?
( 7= ) + ( 572 ) =0, (4.16)
=4, C'+A,- (61)2 +Ag- (61)3, (4.17)
- je. = —aa(L&;ﬂQ (4.18)

2. Plasma protein transport within the interstitium:

c 8¢ o 80 L, a8 |
L i - — . R L - el e . 9"
n { real - J £-8 [wa 55 Juy 5 } 0, (4.19]
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jo =€-B8-3% - C, (4.20)
. aCt
jo =~ B (4.21)

The boundary conditions are rewritten in dimensionless form as follows.

1. Conditions at a symmetry boundary or impermeable boundary:

o(P? - 1 o(pr -
{ ( d% ) b‘1x+-—( 3y ) b'l.v:07 (4.22)
[8_01] ¥ _QC_I} P (4.23)
oz |, T |9y, ¥ '
2. Fluid flow across a permeable boundary:
_ [_(P-_“> - [8(Plfnl> b=
0% oy ;
b b
iy ([P, - PP - " ([ﬁl]b~11'b)). (4.24)

3. Protein transport across a permeable boundary:

] ] &1 _ Ebel-Pe?)
- (1, e ) (Eh2e) -

+ (!f’ ~ﬁ<£-él}h - n'- [%C‘—ll b) 1y, (4.25)
Pe® = (1 - Uh) . ([j?v‘]b ‘ le;—b {je‘"Jb ] ly) ) (4.26)

Equations (4.16) to (4.26) fully describe the system.

4.2 Case Studies

Values for the various system parameters are reported in Table (4.1), while Table (4.2) lists

values for the corresponding dimensionless parameters used in the numerical simulations. The
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values presented in Table (4.1) were drawn from the literature, where available. However,
several of the variables had to be estimated, including the permeabilities of the vascular walls,
D= and D'®", the plasma protein reflection coefficients, o®' and ¢'*®, the immobile fluid
volume fraction, n'™, and the accessible volume fraction, n'. In addition, values for the tissue
dimensions, H and L, the mesothelial transport parameters, and the peritoneal fluid properties
were assumed.

The permeabilities D** and D" were assigned values of 2.4 x 10~ cm/s and 3.6 x 107°
cm/s, respectively, which lie within the range of capillary permeabilities to albumin reported for
a variety of tissues (see {83]). Furthermore, these values were selected so that the ratio D= /Dven
equaled the ratio L;“ /Ly reported for mesentery [39]. The protein reflection coefficients for
the arteriolar and venular capillaries were both allotted a value of 0.85, which falls within the
normal range reported for continuous capillaries (see [83)).

It was assumed that the principal component of the immobile fluid volume was the in-
trafibrillar water of the collagen. The immobile volume fraction was then calculated assuming
that the specific volume of intrafibrillar water equalled 1.14 cm®/gm of collagen [66], and that
the volume fraction of collagen in mesentery equalled that found in subcutaneous tissue. This
yielded a value of 0.128 for ™. The accessible fluid volume fraction was assigned a value of
0.68, which lies within the range reported for albumin in skin (see [18]). Since , by definition,
the sum of n®, n"™ and n° equals 1.0 (see Figure (4.3)), a value of 0.089 for n® [66] implies that
n° equals 0.783.

H was assumed to equal 3 x10~% cm, which is the same order of magnitude as the mi-
crovessels. L was assigned a value of 3 x1072 e¢cm. The peritoneal fluid was assumed to be at
atmospheric pressure, with a plasma protein content of 0.015 gm/cm®. The transport param-
eters L', D™, and ¢™ were varied to simulate three different boundary conditions along
the mesothelium. In boundary condition 1, L7** and D™ were set to zero, thus describing an
impermeable boundary. In boundary condition 2, L7, D™, and o™ were set equal to the

corresponding parameters for the arteriolar capillary. Finally, in boundary condition 3, LY
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and D™ were assigned values 100 times greater than LI" and D®7, respectively, while o™
was assigned a value of zero, thereby reducing substantially the resistance of the mesothelium,
compared to the resistances of the other two permeable boundaries.

According to Egs. (4.18), and (4.20), the dimensionless parameters { and o are key to
characterizing the interstitial transport of fluid and plasma proteins. The first of these, the
convective hindrance, is a measure of the local convective velocity of the solute relative to the
local fluid velocity (see Chapter 3). The parameter a, on the other hand, is a measure of
the resistance of the interstitium to plasma protein diffusion, relative to its resistance to fluid
flow. Together, these two parameters determine the relative role of convection and diffusion in
transporting plasma proteins through the interstitium.

A series of numerical simulations were performed to investigate the coupled effects of £ and
a on microvascular exchange within the model tissue for each of the three mesothelial boundary
conditions outlined above. For each boundary condition, £ was assigned values of 1.0, 0.5, and
0.0, while a was given values of 9.117, 0.9117, and 0.09117, resulting in a 3 x 3 x 3 factorial

study. The results of the study are presented in Section 4.4.

4.3 Numerical Procedure

A form of the Finite Element Method using isoparametric elements {59] was used to solve the
system of coupled partial differential equations presented in Section 4.1. The interstitial space
was first divided into a set of rectangular subdomains of variable dimensions (see f‘iéure (4.2)).
To enhance the accuracy of the solution, the element size was reduced in the vicinity of the
interstitial boundaries, where fluid pressure and solute concentration gradients were typically
greatest. Associated with each element were eight nodes representing discrete locations within
the domain. The dependent variables, P! and C!, were approximated in each element by a set
of biquadratic interpolating functions, which in turn depended on the nodal values of P! and

C!. By following the Galerkin procedure [59], the partial differential equations were reduced to

a set of coupled algebraic expressions for these nodal values (see Appendix B for details). The
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Parameter Value Tissue Source
Ay 2.8 x 10° dyne — cm/gm plasma [64]
A, 2.1 x 10°® dyne — cm?/gm? plasma [64]
Aj 1.2 x 107 dvne ~ cm®/gm? plasma [64]
ct 0.06 gm/cm?® human serum [46]
Cmes 0.015 gm/cm? - Assumed
Cven 0.06 gm/cm?® human serum - [46]
Dart 2.4 x 1078 cm/s - See text
Dmes 0-24x10"%cm/s - See text
Dve= 3.6 x 1678 cm/s - See text
H 3.0x 1073 cm - Assumed
K° 3.1 x 1072 cm*/(dyne — s) mesentery [111] in {66]
L 3.0x 1072 cm - Assumed
L 1.35 x 107% cm®/(dyne — s) mesentery {39]
Loes 0~ 1.35 x 107% cm®/(dyne — s) - See text
L= 2.02 x 1079 cm®/(dyne - ) mesentery [39]
n! - Deg 6.8 x 1078 cm?/s mesentery [38]
ni™ 0.128 subcutaneous See text
n° 0.089 subcutaneous (66}
n! 0.68 rabbit skin [86] in [13]
part 2.942 x 10* dyne/cm? mesentery [63]
pmes 0.0 dyne/cm? - Assumed
pyen 1.667 x 10* dyne/cm? mesentery [63]
= 2.707 x 10* dyne/cm? - Eq. (4.4) in text
I 0.472 x 10* dyne/cm? - Eq. (4.4) in text
IIves 2.707 x 10* dyne/cm? - Eq. (4.4) in text
ot 0.85 - See text
o 0-0.85 - See text
o' .85 - See text
£ 00-1.0 - See text

Table 4.1: Values of model parameters

assumed in the simulations.
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Parameter Value
Ay 0.571
A, 0.261
A, 0.881
Cart 1.0
Cmes 0.25
Cven 1.0
Dert 0.0072
Dmes 0. -0.72
Dven 0.0180

H 0.1
Lett 13.06
Lmes 0. - 1306.
i;fn 19.55
n™ 0.128

ns 0.089
n! 0.68
pert 1.00
pmes 0.00
pven 0.57

a 0.09117 - 9.117

B 0.87
I1ert 0.92
[]mes 0.16
IIven 0.92
oot 0.85
omes 0.00 - 0.85
oven 0.85

¢ 0.0 - 1.0

Table 4.2: Values of dimensionless. parameters assumed in the simulations.
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system of algebraic equations was then solved using a banded matrix technique [100].

Because of their coupled nature, the fluid and protein material balance equations were solved
iteratively. An initial guess of C! was used to calculate the local gradients in plasma protein
osmotic pressure, by differentiating Eq. (4.17). The hydrostatic pressure distribution was then
calculated using Eq. (4.16) and its corresponding boundary conditions. Using this solution
of P! and Eq. (4.18), the local fluid fluxes throughout the interstitial space were determined.
An updated estimate of C! was then obtained by solving Eq. (4.19), subject to the assigned
concentration boundary conditions.

The iteration procedure was terminated when one of the following two criteria was met.

1. The change in the value of the dependent variables at each node during successive itera-

tions satisfied the conditions

Pl — P! . N ’
S MR R P (4.27)
P} rnax
and
e I ]
W 77l 1073, (4.28)
C} max

where 9;; denotes value of some variable ¢ at node j, calculated in the ith iteration, and

where 1 max represents the maximum nodal value of ¥ from that iteration.
2. The total number of iterations exceeded 200.

In the latter case convergence was not achieved to within the specified tolerance, and the
solutions were rejected. Under-relaxation techniques [24] were used where needed to achieve
convergence. As an additional check of the numerical solution’s accuracy, overall material
balances were performed around the boundaries of the system. In all cases, the total inflow of
fluid and plasma proteins equalled the total outflow, tc within .005 percent. Finally, numerical
tests were performed to determine the sensitivity of the solution to grid size. Incre:axsing the
grid density from 501 to 971 elements produced less than one percent change in the calculated
fluid and protein exchanges across each of the permeavle boundaries. Thus, all of the results

presented in the next section were produced with a grid having 501 elements.
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4.4 Results and Discussion

The large number of simulations performed makes it impractical to discuss each one in detail.
Instead the following discussion focuses on selected examples of how the model can be used to
investigate microvascular exchange in this system. The discussion is divided into fou;' parts.
In the first part we demonstrate with a specﬁﬁc example how the model can be used to predict
fluid and plasma protein flow patterns and piasma protein transport mechanisms within the
interstitium. The second part discusses the influence of £, a. and the mesothelial transport
properties on the net fluid exchange across each of the permeable boundaries while the third
part considers the influence of these parameters on net plasma protein exchange across the
boundaries. In the final section we discuss the effects of £, a. and the mesothelial transport

parameters on plasma protein distribution and transport within the interstitial space.

4.4.1 A Specific Case of Interstitial Transport

The analysis of fluid and plasma protein transport within the interstitium is complex, due to
the coupled nature of the transport equations and the nonlinear effects arising from the osmotic
activity of the interstitial plasma proteins. In the following discussion we will seek a mechanistic
interpretation of the model predictions for the specific case where £ equals 0.5, a equals 9.117,
and the mesothelial transport propefties are described by boundary condition 2. However,
this interpretation is only possible with the detailed description of interstitial fluid and plasma
protein flow patterns and plasma protein distribution afforded by the model itself; the results
are not intuitively obvious.

The solution of Egs. (4.16) and (4.19), with the appropriate auxiliary equations and bound-
ary conditions, yields the steady-state distributions of both the dimensionless hydrostatic pres-
sure, P!, and the dimensionless plasma protein concentration, C?, throughout the interstitial
space. Combining this information with the expressions for the local interstitial fluid flux (Eq.
(4.18)), the local convective protein flux (Eq. (4.20)j and the local diffusive protein flux (Eq.

(4.21)) gives a complete description of fluid and plesma protein transport within the modelled
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interstitium.
Figure (4.5) presents plots of the distribution in the interstititum of the dimensionless hy-
drostatic pressure and the dimensionless total plasma protein concentration, Ct, where

1
~ n =1

C :—(1_—115)'0, (429)

i.e., the plasma protein concentration based on the total fluid volume. C* represents the concen-
tration that would be calculated, for example, from measurements of fluid and plasma protein
content within the interstitium using ultraviolet absorbance techniques. Figure (4.5) also con-
tains a plot of the distribution of P! —IT*, which is a measure of the local fluid chemical potential
(see Eq. (3.12) in Chapter 3). In each plot the x/L axis corresponds to the symmetry boundary
in Figure (4.2), while the y/L axis lies on the arteriolar capillary wall.

The concentration plot reveals a local ridge of high plasma protein content near the arteriolar
capillary, and a trough near the venular capillary corresponding to a local region of low plasma
protein concentration. As we will see, the profile is a direct consequence of the transport of
fluid- and plasma proteins from the arteriolar end of the interstitium into the peritoneal fluid
and the entry of fluid and proteins from the peritoneum to the interstitium at the venular end
of thé system, together with the sieving properties of the mesothelium. Pmes — gmes . Jymes g
a measure of the driving force for fluid exchange at the mesothelium. Its value lies between
Part — ot J1a and PVeR—gVer.I1Ven | Therefore, fluid entering the interstitium from the arteriolar
capillary is drawn to the mesothelium due to the lower chemical potential of the peritoneal fluid,
carrying with it plasma proteins. The plasma proteins are sieved at the mesothelium where their
concentration builds up. At the venular end of the system, fluid is drawn into the interstitium
from the peritoneum and then removed from the interstitium by the venular capillary. Again
proteins are sieved at the mesothelium so that the fluid—plasma protein solution entering the
interstitium is diluted somewhat, causing the local washout of proteins seen in the surface plot.
Interstitial plasma proteins carried by the fluid to the venular capillary once again build up due
to thé sievingv properties of this boundary. Hence, the peritoneum acts here as both an infinite

source and an infinite sink for fluid and plasma proteins. A substantial portion of the fluid and
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) (i)

(i)

Figire 4.5: Surface plots of the distribution of (i) dimensionless total concentration,
(i1) dimensionless hydrostatic pressure, and (iii) dimensionless fluid chemical po-
tential (expressed as an equivalent pressure, P1 — II'} in the interstitium, for the
case where £ = 0.5, a = 9.117, and the mesothelial transport properties are defined
by boundary condition 2. The x/L axis represents the symmetry boundary, while
the y/L axis lies on the arteriolar-end capillary boundary. Note that the tissue’s
aspect ratio, H, is exaggerated in these figures to provide greater detail.



Chapter 4. Steady-State Exchange in Mesenteric Tissue 77

plasma proteins entering the interstitium from the arteriolar capillary are transported into the
peritoneum at the arteriolar end of the system. Some fraction of this re-enters the interstitium in
the vicinity of the venular capillary, bypassing the central region of the interstitium altogether.

The local gradient P! — II! gives the driving force for fluid flow within the interstitium.
Comparing the surface plots of P! and P! — IT* (Figures (4.5) (ii) and (iii), respectively), it is
clear that the colloid osmotic pressure contributes significantly to the overall driving force for
interstitial fluid transport. The local ridge of high plasma protein concentration in the vicinity
of the arteriolar capillary creates a local minimum in fluid chemical potential there, while the
region of low plasma protein content produces a local maximum in fluid chemical potential
in the vicinity of the venular capillary. Therefore, while the gradients in fluid hydrostatic
pressure would suggest a flow of fluid from the arteriolar end of the system to the venular end,
the gradients in fluid chemical potential produce a complex recirculating flow pattern. This is
illustrated in Figure (4.6) (i). However, since the fluid chemical potential varies only marginally
in the central regions of the interstitium, the fluid flow associated with the recirculation is
comparatively small. It is also apparent from these surface plots that, for this case at least, the
gradients in the y-direction are small compared to those in the x-direction, indicating that the
mesentery acts here as a one-dimensional tissue. In fact, this is investigated for all of the cases
considered here in detail in Appendix A and taken advantage of in subsequent chapters.

The convective plasma protein flux pattern follows that of the fluid. However, the diffusive
flux pattern must be calculated from the plasma protein concentration distribution using Eq.
(4.21). The latter pattern, illustrated in Figure (4.6) (ii), reveals that the diffusive protein flux
also recirculates. However, the diffusive flux often occurs in a direction opposite to the local
convective plasma protein flux, particularly in the vicinity of the capﬂlary boundaries. The sum
of these two flow patterns gives the net protein flow pattern within the interstitium shown in
Figure (4.6) (iii). The combined convective and diffusive patterns produce a net flow of plasma
proteins from the arteriolar end of the system to thelvenular end. Note that the plasma protein

transport characteristics could have been presented in terms of local Peclet numbers, given by
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Figure 4.6: Flux patterns for the case where £ = 0.5, a = 9.117, and the mesothelial
transport properties are defined by boundary condition 2. Plot (i) shows the fluid
flux pattern, or equivalently, the convective plasma protein flux pattern within
the interstitial space. Plot (ii) is the diffusive flux, and plot (iii) illustrates the
total (convective plus diffusive) plasma protein flux. The arrows show the local
directions of the fluxes at the positions corresponding to their origins and their
lengths are proportional to the magnitudes of the local flux vectors. Note that the
tissue aspect ratio, H, is exaggerated in these figures to provide greater detail.
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the ratio of the magnitude of the local convective flux to the magnitude of the local diffusive
flux. However, the Peclet number fails to account for direction. Therefore, in Figure (4.6), we
have chosen to present the predicted flux patterns.

The opposing effects of the convective and diffusive plasma protein fluxes on the net protein
transport are further illustrated in plots (iii) and (iv) of Figure (4.7). These panels of Fig-
ure (4.7) show, respectively, the local interstitial convective and diffusive plasma protein fluxes
normal to the mesothelial boundary as a function of position, X, along the mesothelium. At the
arteriolar end of the boundary the convective flux transports plasma proteins to the mesothe-
lium from within the interstitium, while the diffusive flux draws protein from the mesothelial
boundary into the adjoining interstitial space. These trends are reversed near the venular end
of the mesothelium. The lack of convective and diffusive protein transport to the mesothelium
in the central portions of the boundary implies that these fluxes run parallel to the boundary in
this region. The sum of the local convective and diffusive plasma protein fluxes normal to the
mesothelium gives the net protein flux crossing the boundary, as a function of position % (see
Figure (4.7) (ii)). For this particular case the magnitude of the normal interstitial convective
- plasma protein flux to the mesothelium is greater than that of the normal interstitial diffusive
flux of plasma proteins from that boundary, resulting in a net transport of plasma proteins into
the peritoneum. Associated with this steady-state condition, and as a result of the resistance
~ of the mesothelial barrier to plasma protein transport, there is local high concentration of in-
terstitial plasma proteins near the arteriolar end of the system, and a local dilution of plasma
proteins near the venular end. .

From the above example it is clear that transport within the system can be complex. In
some cases this yields surprising behavior that could be subject to misinterpretation. Consider,
for example, the fluid and plasma protein exchange across the mesothelial boundary when its
transport properties are defined by boundary condition 2, with £ = 1.0, and a = 9.117. Panels
(i) and (ii) of Figure (4.8) show these fluxes as a function of X. Despite uniform mesothelial

transport properties, there is a localized region of high fluid and plasma protein exchange,



Chapter 4. Steady-State Exchange in Mesenteric Tissue 80

5
l 1 1
|||l ¢ |||'l - - - - -

.‘llh. o . a4

SRR °|||""-"

-5 -5 v
7] 10 ° 1
DIMENSIONLESS DISTANCE N DIMENSIONLESS DISTANCE

- - - e

DIMENSIONLESS FLUID FLUX
o
DIMENSIONLESS SOLUTE FLUX
(-]

CONVECTIVE SOLUTE FLUX
DIFFUSIVE SOLUTE FLUX

' Figure 4.7: Panels (i) and (ii) represent local dimensionless fluid fluxes and plasma
protein fluxes crossing the mesothelium, as a function of position along the bound-
-ary, when £ = 0.5, a = 9.117, and the mesothelial transport properties are given
by bouridary condition 2. Panels (iii) and (iv) show the local dimensionless con-
vective protein flux and the local dimensionless diffusive protein flux reaching the
mesothelium from within the adjacent regions of the interstitium. The sum of
(iii) and (iv) yields the net protein flux crossing the mesothelium (panel (ii)). A
negative value represents a flux directed into the interstitial space, while a positive

quantity denotes a flux directed into the peritoneal fluid.
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located at approximately X = 0.2, that could be erroneously interpreted as a ‘leaky site’ in the

mesothelial layer.

4.4.2 Fluid Exchange across the Boundaries of the Interstitium

Table (4.3) lists the average fluid fluxes crossing each of the permeable boundaries for the various
cases studied. Note that, with £ = 1, a = 9.117, and the mesothelial transport properties defined
by boundary condition 3, the simulation failed to converge to the required tolerances. Hence,
no numerical results are reported for this case. (In fact, in this case the solution suffered from
oscillations from one iteration to the next, suggesting that alternate choices for the relaxation

parameters could possibly alleviate the problem.)

£ ! ‘Boundary Condition 1 Boundary Condition 2 Boundary Condition 3
Art  Ven Mes Art  Ven  Mes Art Ven Mes
1.0 0.09117 -0.04 0.04 — -0.22 0.06 0.01 -0.31  0.09 0.01
1.0 09117 -0.40 040 — -230 0.63 0.08 -2.87 0.65 0.11
1.0 9117 -449 449 — -25.16 6.84 0.92 No Convergence
0.5 0.09117 -0.04 004  — -0.22 0.06 0.01 -0.31  0.09 0.01
0.5 09117 -0.37- 0.37 — -226 0.61 0.08 -2.87 0.66 0.11
0.5 9117 -430 4.30 — -2490 6.46 0.92 -26.14 247 1.18
. 0.0 0.09117 -0.03 0.03 — -0.22 0.06 0.01 -0.31  0.09 0.01
0.0 0.9117 -0.34 0.34 — -221  0.60 0.08 -2.86 0.66 0.11
0.0 9.117 -242 242 — -20.20 5.70 0.72 -25.58 292 1.13

Table 4.3: Average dimensionless fluid fluxes across permeable boundaries. A nega-
tive value indicates a flux entering the interstitium, while a positive value denotes
a flux leaving the interstitial space.

As seen in Table (4.3), an increase in a led consistently to an increase in the net fluid
exchange across each of the permeable boundaries. For example, increasing o from 0.9117
to 9.117, with £ equal to 0.5 and the mesothelial transport properties given by boundary
condition 2, increases the fluid exchange across each of the permeable boundaries by an order
“of magnitude.

It should be noted that o, which is defined as K°P®' /D g, was increased by increasing the
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Figure 4.8: Comparison of the local dimensionless fluid fluxes and plasma protein
fluxes as a function of position along the mesothelium for various values of £, assum-
ing a = 9.117, and the mesothelial transport prcperties are defined by boundary
condition 2. In panels (i) and (ii) £=1.0, in panels (iii) and (iv) £=0.5, and in panels
(v) and (vi) £=0.0.
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value of K®. Furthermore, I.,g is defined as LSL /K°. To maintain I:g constant, Lg was increased
by a proportionate amount. The increase in fluid exchange accompanying an increase in « is
therefore attributed to the enhanced fluid transport properties of both the interstitium and the
permeable boundaries.

As previously mentioned, the fluid exchange rate within the system depends on the values
of P® and II®, which are the driving forces, as well as the transport propertieé of each of the
permeable boundaries. While £ affects the plasma protein transport mechanisms within the
interstitium it does not influence the transport properties of the permeable boundaries, nor
does it alter the fluid chemical ﬁotential in the blood or the peritoneal fluid. In these cases,
where the principé.l resistances to fluid flow are at the boundaries, a change in £ generally had
only a marginal effect on the net fluid exchange to or from the interstitium. However, £ did
influence substantially the distribution of fluid flux crossing the mesothelium, since it affected
the distribution of interstitial plasma proteins and therefore the distribution of interstitial fluid
chemical potential. This is illustrated in panels (i), (iii), and (v) of Figure (4.8), which show the
distribution of fluid fluxes crossing the mesothelium when £ equals 1.0, 0.5, and 0.0, respectively,
for the case where a equals 9.117 and the mesothelial transport properties are defined by
boundary condition 2.

Enhancing the transport characteristics of the mesothelium typically led to a moderate
increase in fluid exchange across the arteriolar capillary, due to the increased capacity for the
system to exchange fluid with the peritoneum. Consider, for example, the case where £ = 0.5,
and a = 0.9117. Altering the mesot}iéhal transport properties from those given by boundary
condition 2 to those of boundary condition 3 increased the fluid flux across the arteriolar

capillary from 2.26 to 2.87.

4.4.3 Plasma Protein Exchange across the Interstitial Boundaries

Table (4.4) reports the average plasma protein fluxes across the permeable boundaries for each

of the 26 successful simulations. The enhanced fluid exchange associated with an increase
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in a produced a concomitant increase in the convective plasma protein exchange across the

permeable boundaries, thereby increasing the total exchange of plasma proteins within the

system.
13 a Boundary Condition 1 Boundary Condition 2 Boundary Condition 3
Art Ven Mes Art Ven Mes Art Ven Mes
1.0 0.09117 -0.005 0.005 — -0.034 0.000 0.002 -0.046 0.001 0.002
1.0 09117 -0.060 0.060 — -0.345 0.069 0.014 -0430 0.029 0.020
1.0 9.117 -0.673 0.673 — -3.774  0.3%6 0.169 No Convergence
0.5 0.09117 -0.005 0.005 — -0.034 -0.000 0.002 -0.046 -0.001 0.002
0.5 09117 -0.056 0.056 — -0.339 0.064 0.014 -0430 0.029 0.020
0.5 9117 -0.645 0.645 — -3.736 0.512 0.161 -3.920 0.130 0.189
0.0 0.09117 -0.005 0.005 — -0.034 -0.000 0.002 -0.046 0.001 - 0.002
0.0 09117 -0.051 0.051 — -0.332 0.060 0.014 -0430 0.028 0.020
0.0 9.117 -0.364 0.364 — -3.030 0.433 0.130 -3.840 0.144 0.184

Table 4.4: Average dimensionless plasma protein fluxes across permeable bound-
aries. A negative value indicates a flux entering the interstitium, while a positive
value denotes a flux leaving the interstitial space.

Material balances dictate that the net amount of plasma proteins éntering the venular capil- .
lary and the peritoneum must equal the net amount of plasma proteins entering the interstitium
from the arteriolar capillary. In general the exchange of plasma protein across the arteriolar
capillary was predominantly convective. Since £ had negligible effect on the net fluid influx
across the arteriolar boundary, it had little impact on the net amount of plasma proteins en-
tering the system. However, since { had a strong influence on the distribution of fluid flux
crossing the mesothelium, it also influenced the distribution of plasma protein fluxes crossing
that boundary (see panels (ii), (iv), and (vi) of Figure (4.8)).

The influence of the mesothelium on net plasma protein exchange paralleled its influence
on net fluid exchange across each of the permeable boundaries. For example, a change from
boundary condition 2 to boundary condition 3, with £ = 0.5 and a = 0.9117, increased plasma
protein exchange across the arteriolar capillary from 0.339 to 0.430. Again, this behavior

is attributed to the increased capability of the interstitium to exchange material with the
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peritoneumn.

4.4.4 Interstitial Plasma Protein Convection, Diffusion, and Distribution

According to Eq. (4.20), interstitial plasma protein convection is directly proportional to the
interstitial fluid flux available to transport proteins, as well as the local concentration of plasma
proteins within the interstitium. Plasma protein diffusion, on the other hé.nd, is proportional
to the local gradient in plasma protein concentration (see Eq. (4.21)). Therefore, the influence
of £, a, and the mesothelial transport properties on protein convection and diffusion within the
interstitium will depend upon the effect of these parameters on each of the interstitial fluid flux,
the local interstitial plasma protein concentration, and the interstitial plasma protein gradients.

Consider first the influence of the parameters on convective plasma protein transport. Since
an increase in a typically enhanced fluid flow through certain regions of the interstitium (par-
ticularly in the vicinity of the arteriolar capillary), such a change promoted protein convection
there. Likewise, reducing the resistance of the mesothelium to fluid and protein exchange in-
creased fluid transport through these regions of the interstitial space. However, such a change
also tended to decrease the average value of C* within the entire interstitium (see Table (4.5));
1.e., as the resistance and plasma protein sieving properties of the mesothelium were decreased,
the interstitial fluid composition approached that of the peritoneal fluid. For example, a change
from boundary condition 2 to boundary condition 3, holding £ and a constant at 0.5 and 0.9117
respectively, reduced the average value of C* within the interstitium from 0.54 to 0.18. (It is
worth noting that those mean dimensionless interstitial concentrations in the range of 0.31
to 0.37 predicted by a number of the simulations agree closely with the typical value of 0.33
reported by Drake and Gabel [45].) The overall influence of the mesothelium on plasma pro-
tein convection therefore depended on the relative magnitudes of the two opposing effects of
increased fluid flow and reduced interstitial plasma protein concentration. Finally, while £ had
only a limited influence on the magnitude of net exchange of fluid between the interstitium

and the vascular system, it determined the degree of convective hindrance for plasma protein
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transport (see Eq. (4.20)). It therefore played a key role in determining the degree of plasma

protein convection within the interstitium.

£ a Boundary Boundary Boundary
Condition 1 Condition 2 Condition 3

1.0 0.09117 0.74 0.31 0.19

1.0 09117 0.61 0.55 0.18

1.0 9.117 0.24 0.37 No Convergence
0.5 0.09117 0.74 0.31 0.19

0.5 0.9117 0.69 0.54 0.18

05 9117 0.42 0.54 0.19

0.0 0.09117 0.75 0.31 0.19

0.0 0.9117 0.77 0.53 0.18

0.0 9117 0.95 0.52 0.20

Table 4.5: Mean values for the total plasma protein concentration, Ct, for each of
the simulations.

The plot of C* (Figure (4.5) (i)) reveals comparatively small gradients in the § direction.

This suggests that averaging tl.le concentration in this dimension will still provide a reasonable
_picture of the plasma protein distribution within the interstitium. Furthermore, a j-averaged

profile approximates more closely the plasma protein distributions obtained experimentally
using, for example, ultraviolet light absorbance techniques [40, 115]. We will therefore refer to
these averaged profiles in our discussion of diffusion within the interstitial space.

The y-averaged plasma protein concentration profile of each of the 26 cases is given in
Figﬁré (4.9). A single plot is reported for each of the nine possible combinations of ¢ and
mesothelial boundary conditions. Each plot contains up to three curves corresponding to the
three values of a considered. Comparing plot (ii) to plot (iii), for example, it is evident that
enhancing the transport properties of the mesothelium reduced the plasma protein concentra-
tion gradients within the central regions of the interstitium, suggesting reduced diffusion there.
In Figure (4.9) (ii), with a equal to 9.117, the high convective flux of plasma proteins encoun-

tered a barrier at the mesothelium, creating a local buildup of proteins that promoted diffusion
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towards the central portions of the interstitial space. As the mesothelium became more per-
meable to fluid and proteins, the plasma protein buildup was eliminated, and the diffusive flux
was reduced, producing the corresponding profile in plot (iii).

A decrease in a promoted plasma protein diffusion relative to convection within the inter-
stitium, since a is a measure of the resistance of the interstitium to diffusion relative to its
resistance to fluid flow. Furthermore, a reduction in a resulted in less protein exchange across
the permeable boundaries, as discussed earlier. The enhanced protein diffusivity, relative to
_ fluid conductivity, and the reduced quantity of plasma proteins entering the interstitium caused
a flattening of the interstitial plasma protein concentration profiles in all of the plots.

With £ equal to zero, interstitial plasma protein transport was limited to diffusion alone
(see Eq. (4.21)), so that the protein concentration profiles were often altered substantially from
those in which protein convection occurred. For example, the local buildup of plasma proteins
due to the high convective plasma protein flux to the mesothelium discussed earlier (see plots
(ii) and (iv)) is absent in plot (viii) where plasma protein transport is by diffusion only.

It is not generally possible, however, to identify the dominant transport mechanism on the
basis of the averaged concentration profile alone. Compare, for example, the curves in plot (vi),
corresponding to a value of 0.5 for £ to the curves in plot (ix) in which £ equals 0.0. The curves
closely resemble one another. However, in the former case, the ratio of the average interstitial
plasma protein convective flux in the  direction to the diffusive flux in that direction ranges
from 1.52 to 2.34 in the vicinity of the arteriolar capillary, indicating significant plasma protein
convection in this region for all values of o considered (see Table (4.6)). In plot (ix), however,
interstitial plasma protein transport is by diffusion alone.

Based on the above discussion, it is clear that no single parameter can be identified that
fully characterizes fluid or plasma protein transport within the interstitium. It is the com-
bined influence of the various transport parameters that determine the relative importance of

interstitial plasma protein convection to diffusion. This is illustrated in Table (4.6). No clear
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Figure 4.9: The thickness-averaged dimensionless total concentration, Ct/C¥, as a
function of position, x/L. The nine plots correspond to the nine different combina-
tions of boundary conditions (columns) and values of { (rows) studied. Each plot
contains up to three curves corresponding to the three values of a considered (i.e.,
the solid line corresponds to a equal to 0.09117, the dotted line corresponds to «
equal 0.9117, and the chain-dot line corresponds to a equal to 9.117).
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I3 a Boundary Condition 1 Boundary Condition 2 Boundary Condition 3
Art Ven Mes Art  Ven Mes Art  Ven Mes
1.0 0.09117 -122 -1.21 — -1.69 -0.99 -226 -3.54 -0.97 23.22
1.0 09117 -1.35 -l1.21 — -1.34 -1.21  -134 -7.89 -1.21 5.73
1.0 9117 -64.51 -1.21 — -2.711 -1.21 -1.23 No Convergence
0.5 0.09117 -1.55 -1.53 — -5.28 -0.98 9.16 234 -0.93 0.92
0.5 09117 -1.67 -1.53 — -1.89 -1.53  -1.98 1.52 -1.53 0.75
0.5 9117 -9.22  -1.53 — -2.30 -1.53  -1.62 1.80 -1.53 0.71

Table 4.6: Ratio of average plasma protein convection to average plasma protein
diffusion normal to each of the permeable boundaries, evaluated in the intersti-

tial space adjacent the respective boundaries. A negative values indicates that
convection and diffusion are in opposite directions.

trend appears rela.ting the ratio of convective to diffusive protein transport to a, the mesothe-
lial transport properties, and non-zero values of £. However, the data reported in Table (4.6)
emphasize the importance of convection in the model’s prediction of interstitial plasma protein
transport for all cases in which £ is non-zero.

Finally it is noted that, under certain circumstances, the local concentration of interstitial
plasma proteins in the accessible space, C!, exceeded that in the blood. Consider, for example,
the case where =9.117, £=1.0, and the mesothelial transport properties are given by boundary
condition 2. The buildup of plasma proteins at the mesothelium discussed earlier caused C* to
reach a value of 0.8 at 5{:0.2, \&hjch corresponds to a value of 1.07 for C!. A more dramatic
concentrating effect was observed for the case where the mesothelium was assumed impermeable,
a equalled 9.117, and ¢ equaled 0 (corresponding to diffusion only within the interstitium). In
this case the large convective flux of plasma proteins crossing the arteriolar capillary caused a
buildup of protein in the interstitial space, until the plasma protein gradient was sufficient to

transport proteins by diffusion at the same rate as they entered the interstitium at the arteriolar

" capillary.
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4.4.5 Comparison of Model Predictions to Experimental Data

To date, there is little experimental data in the literature describing the distribution of native
interstitial plasma proteins within a specific tissue. Recently, however, Friedman and Witte
[40] measured the interstitial plasma protein concentration profile in rat mesentery. We will
therefore refer to this data set in the following discussion. Furthermore, B.J. Barber of the
University of Wisconsin has improved on the technique used by Friedman and Witte and is
currently using it to determine plasma protein content and distribution within mesentery. It is
therefore expected that even better data will be available in the near future.

Friedman and Witte employed ultraviolet light absorbance techniques and fluorescent tracers
to determine local interstitial plasma protein content and interstitial fluid content, respectively,
as a function of position in the ileal mesentery of the rat. A segment of the tissue bounded by
arteriolar and venular microvessels was selected for study, where the distance separating the
two vessels was approximately 295 pm.

The experimental determination of the local interstitial plasma I;rotein content was based
on the fact that aromatic amino acids have maximum light absorption at a wavelength of 280
nm and negligible absorption at 320 nm. Therefore, by performing two measurements of light
absorbance using these wavelengths, the authors were able, in principle, to distinguish between
the absorbance due to the interstitial plasma proteins the absorbance associated with other non-
specific material. Local fluid volume was determined by measuring the light intensity from the
fluorescent tracers (in this case, sodium and FITC-dextran) that distribute rapidly throughout
the entire interstitial fluid volume. From the measurements of local plasma protein content and
fluid content, and employing some simplifying assumptions regarding the geometry of the tissue
-(e.g., that the thickness of the mesenteric tissue segment is constant), the authors estimated
the variation in the local concentration of interstitial plasma proteins (i.e., Ct) with position.
The results of the experimental study are presented in Figure (4.10). Due to the considerable
scatter in the data, the authors calculated two profiles based on ihe upper and lower limits

in the scatter, as well as an average profile lying between these two limits. The top graph of



Chapter 4. Steady-State Exchange in Mesenteric Tissue 91

Figure (4.10) shows upper and lower bounds of the concentration profile associated with local
fluctuations in the measurements, while the bottom graph plots the mean value of these two
curves.

The boundary parameters and interstitial transport parameters of the model were adjusted
to obtain a reasonable fit between the model predictions of C' and the mean concentration
profile shown in Figure (4.10). This was done for two different scenarios: one in which it was
assumed that interstitial plasma protein transport occurs by diffusion alone (ie., £ equal to
0), and one in which both convection and diffusion take place (i.e., a non-zero value for £). In
both cases, the i)axameter values were determined by trial-and-error using only a few iterations.
A rigorous least-squares fit was not attempted. Hence, it is conceivabe that other choices of
parameters might lead to even better agreement between model predictions and experimental
data.

With £ equal to zero, a reasonable match between the model predictions and experimental
data was obtained by adjusting the following parameters as stated, keeping the other variables
at their baseline values: L;"“ = 1.5 x 107%cm?®/(dyne-s), Ly = 3.0 x 10~ 8cm?/(dyne-s), L2 =
1.0 x 10~ %m3/(dyne-s), o** = 0.85, ¢¥*® = 0.80, ¢™= = 0.70, P¥* = 2.207 x 10%dyne/cm?,
Cmes = 3.0 gm/dl, K° = 3.0 x 10~ c¢m*/(dyne-s), and Deg = 2.0 X 10~ 7cm?/s. L& and Ly™
are therefore somewhat higher than reported for mesentery, but not outside the general range
of values reported in the literature [71]. A similar profile could also be obtained assuming
¢ equalled 0.35 and the assigning these same parameters the following values: L;“ =14x
10~8%cm®/(dyne-s), L3*™ = 1.6 x 10~%cm?/(dyne-s), L2 = 5.0x 10~°cm?®/(dyne-s), o™ = 0.75,
o' = 0.70, o™ = 0.51, P¥® = 2.207 x 10*dyne/cm?, C™* = 3.6 gm/dl, K° = 3.0 x
10~ cm?*/(dyne-s), and Deg = 1.0 x 10~ 7ecm?/s. Again, while L™ and LY™ are elevated, they
remain within the range reported in the literature. The arteriolar and venular capillary reflection
coefficients, meanwhile, are somewhat lower than reported in the literature for mesentery. But
again, the values lie within the range reported for single capillaries in frog mesentery, for

example [71). The resulting profiles for these two cases are compared to the experimental data
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Figure 4.10: The upper graph shows the maxima and minima associated with the ex-
perimental determination of interstitial plasma protein concentration distribution
in rat mesentery by Friedman and Witte [40]. The lower graph plots the average
between these two.
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in Figure (4.11).
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Figure 4.11: The model predictions of C! assuming ¢ is zero (solid line) and assum-
ing £ is 0.35 (dotted line) are compared here to the mean concentration profile
determined by Friedman and Witte.

In both cases, fluid and plasma proteins enter the interstitial space from the two vascular
compartments and leave the interstitium via the mesothelium. Clearly, when £ is zero, all
plasma protein transport is by diffusion alone. However, when £ is 0.35, there is substantial
convective transport of plasma proteins within the interstitium. For example, the ratio of

convection to diffusion at the arteriolar, venular and mesothelial boundaries is 3.36, 2.56, and
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1.63 respectively. It is also interesting to note that neither of these scenarios agrees with
Friedman’s and Witte’s interpretation of the data. These authors assumed that fluid and
plasma proteins entered the interstitium across the arteriolar wall, some of the proteins then
crossing the mesothelium to cause the local gradient in concentration near that vessel. However,
in contrast to the model predictions, they further assumed that proteins were transported by
convection to the venular vessel where they were reabsorbed into the blood.

It is clear from Figure (4.11) that reasonable agreement between experimental data of Fried-
man and Witte and model predictions is possible assuming drastically different interstitial
plasma protejxx transport mechanisms. In both cases, however, the hydraulic conductivities
of the vascular boundaries had to be increé.sed by an order of magnitude, while decreasing
the reflection coefficients for these vessels somewhat, to match the experimental data. More
importantly (and contrary to opinions expressed by some [115, T4]), it is-evident from this ex-
ample that, without reasonable estimates of the transport properties of arteriolar, venular and
mesothelial boundaries, one cannot draw definitive conclusions regarding interstitial plasma

protein transport mechanisms from concentration profiles in mesentery.

4.5 Concluding Remarks

In the preceding sections we applied a simplified version of the general model of interstitial
transport developed in Chapter 3 to study the influence of a number of transport parameters
on microvascular exchange in mesentery. The analysis was limited in several respects. First,
the simplified model failed to account for possible deformation resulting from pressure gradients
within the interstitium. The extent to which this limits the analysis depends on the deformation
characteristics of the mesentery, which remain poorly defined. Second, the study focussed
on steady-state exchange only. Since the model considered only a single ‘average’ plasma
protein species; it neglected the possible influence of several distinct plasma protein species
on the overall exchange of fluid and proteins in the system. Thirdly, values for a number of

the model parameters were unknown and had to be estimated from the best available data.
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Finally, the largest fluid and plasma protein fluxes occurred in the vicinity of the arteriolar and
venular capillaries, which were approximated by rectangular boundaries. The vessels’ curvature
may have to be considered to provide a more accurate description of fluid and plasma protein
exchange in these regions.

The findings of the study are therefore hypothetical. However, several points are noted

which warrant further attention. These are summarized below.

1. A recent experimental study of the movement of labelled albumin in rat mesentery sug-
gests that convection plays a significant role in interstitial plasma protein transport
[115, 74]. Our numerical investigation further suggests this even at reduced values of
convective hindrance, {. Hence, diffusion models [38, 7] may represent an oversimplifica-
tion of interstitial plasma protein transport in this tissue. However, the model also shows
that steady-state interstitial plasma protein concentration profiles alone yield insufficient
information to determine the principal mechanisms of plasma protein transport within the
interstitium. In some cases where plasma protein transport was predominantly convective,
the profiles are virtually indistinguishable from those in which plasma protein transport is
purely diffusive. These p;oﬁles are strongly influenced by the transport properties of the
mesothelium, for example. Further information about the mesothelium’s exchange char-
acteristics, as well as other system parameters, is needed to interpret interstitial plasma

protein distribution data (see, for example, [40]).

2. Because it is influenced by osmotic as well as hydrostatic pressure gradients, the hydrody-
namics within the interstitium can be quite complex, culminating, for some circumstances,
in the recirculation of fluid within the interstitium. The hydrodynamics, in combination
with the sieving properties of the bounding walls, can also result in irregularities in the
distribution of filuid and plasma protein fluxes crossing a permeable boundary, such as
the mesothelium, even when the boundary’s transport properties are uniform. This could

lead to the erroneous identification of ‘leaky sites’ within the system.
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3. The colloid osmotic pressure gradients exert a strong influence on the flux patterns within
the interstitium, suggesting that the Darcy expression evoked in a number of previous
models [22, 36, 87}, which considers hydrostatic gradients only, is inadequate for describing

interstitial fluid transport.

The model presented here can be adapted readily to simulate microvascular exchange in a
variety of tissues. The changes might include, for example, the addition of a lymphatic vessel
as an interstitial boundary, the inclusion of multiple plasma protein species in the analysis,
and extension to transient conditions. In fact these changes are incorporated into the model
formulation in subsequent chapters. In this way the model provides a powerful tool to investi-
gate microvascular exchange under transient conditions and for other tissue systems, providing

insights into the behavior of the system that may not be identified readily in laboratory studies.



Chapter 5

Transient Exchange in Mesentery Following a Systemic Upset

In the previous chapter we studied the steady-state exchange of fluid and plasma proteins
within a segment of mesentery as a function of interstitial transport mechanisms (i.e., restricted
convection and molecular diffusion) and the transport properties of the mesothelial layer. In this
chapter we will extend the analysis to consider the transient behavior of the system following
a systemic perturbation. Specifically, we will look at exchange within the mesenteric slab in
response to two different upsets: a sustained reduction in plasma protein concentration in the
blood (i.e., hypoproteinemia), and a sustained elevation in systemic blood pressure (i.e., venous
congestion). As before, the system response to these perturbations will be investigated as a
function of mesothelial transport properties and interstitial transport mechanisms. Since the
tissue segment is assumed to be rigid, however, edema formation will not be addressed here.
The remaining portion of this chapter is divided as follows. In Section 5.1 we present the
transient version of the system equations. Section 5.2 specifies the cases making up the study,
while Section 5.3 cutlines the numerical procedures employed in the simulations. A discussion
of the results is found in Section 5.4. Finally, Section 5.5 summarizes the findings of the

nvestigation.

5.1 The Governing Equations

In Chapter 4 the mesentery was treated as a two-dimensional, rectangular slab. The results
of that study suggested that, in many cases at least, the two—dimensional tissue could be
adequately approximated by an equivalent one-dimensional system. This suspicion was fur-

ther substantiated by a series of numerical experiments in which the simulations performed
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in Chapter 4 were repeated assuming a one-dimensional mesentery. The development of the
one—dimensional equations and the results of that analysis are presented in Appendix A. Based
on those findings, all subsequent simulations have assumed the one-dimensional geometry.
Consider first the material balance equation for the interstitial fluid. Since the tissue is
assumed to be rigid and the fluid is incompressible, the local interstitial fluid flux adjusts in-
stantaneously to any changes that occur in the interstitial colloid osmotic pressure distribution.
Hence, the interstitial fluid mass balance equation is the same as for the steady-state case. That
is, the sum of the net local efflux of interstitial fluid, per unit volume of interstitium, and the
net loss of interstitial fluid to the peritoneum, per unit volume of interstitinum, must equal zero.

Hence, for the one-dimensional mesentery we have

di® 2
v 2w o, 5.1

where j2 is the local interstitial fluid flux at some point x in the system, H is the tissue thickness,
and j* is the local fluid ﬁux» crossing either of the two mesothelial boundaries at that same
point. (By virtue of the symmetry of the system, the fluid fluxes across the upper and lower
mesothelial boundaries are identical.)

- The local interstitial fluid flux is given by the extended Darcy expression:

(P! - 1Y)

d
j% = -K° Fra— (5.2)

where, as before, the colloid osmotic pressure, II!, is related to the local interstitial plasma
protein concentration, C?, via a third-order polynomial. The fluid exchange rate between the

interstitium and the peritoneum, meanwhile, is described by Starling’s Law:
joe= = e [P - pe - g (I - 1)) (5.3)

Substituting Eqs. (5.2) and (5.3) into Eq. (5.1) gives the final form of the fluid mass balance

equation: .
dz(P1 — Hl) 2L;nes .1 mes mes 1 1"ncs =
= ~ T [P - P — g (1 - )| = 0. (5.4)
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A material balance on the plasma proteins within a differential volume of interstitium under

transient conditions gives the following:

dC 2 lmcs 1
£B |35 & CECW | TN e

act . ,8C
+.]s n W (5'5)

where j° is given by the nonlinear flux equation, i.e.,

[C! — C™Sexp(—Pe™*))
1= exp(—Pem=)]
Pe being the modified Peclet number given by Eq. (4.15) of Chapter 4. Substituting Eq. (5.6)

J:ncs — (1 _ a,mes) ‘JI;ICS .

(5.6)

into Eq. (5.5) then gives

act 2 1 ,d2C?
EAlw gy —gl | TVt
2 €5\ :mes [Cl Cmcsexp(_Pemts)] _ laCl
T H (1= (1 — exp(—Pem™ss)] BT (57)

‘The first set of terms of Eq. (5.7) found within the square brackets represents the net
convective efflux of plasma proteins from a point within the interstitium, per unit volume of
interstitial space, while the second term is the net diffusive efflux of proteins, per unit volume
of interstitium (mechanical dispersion effects are neglected here). The third term represents the
net Joss of plasma proteins to the peritoneal fluid (j*), per unit volume of interstitium. The
sum of these three terms equals the local net rate of decrease in interstitial plasma proteins per
unit volume of interstitium, given by the right-hand-side of the equation.

Equations (5.4) and (5.7) must be combined with the pertinent set of boundary and initial
conditions. The boundary conditions at the arteriolar and venular capillaries remain unchanged
from the steady-state analysis, and so are given by Egs. (4.13), (4.14), and (4.15) of Chapter 4.
The initial conditions, meanwhile, can be calculated by solving the steady-state versions of the
transport equations using appropriate boundary conditions.

The interstitial fluid and plasma protein mass balance equations are cast in dimensionless
form using the same set of dimensionless groups as before, along with the dimensionless time,

t, equal to t Deg/L2. The fluid mass balance equation then becomes
d?(P! — )

= %1‘, [P - B - gme (T - )] = 0. (5.8)
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The plasma protein mass balance equation, meanwhile, is given by

o dC' 2 o - az¢
- . .0 * —— — e jmes - 1 — 1 * —
9 ] Cl _ Cmesexp(_l')emcs)
+=-(1—0™F) je. [ - } =0, (5.9)
H [1 - exp(—Pemﬁ)] -
where Pe™®s s given by Eq. (4.26), and where jmes s
R il R At L 16l T _ (5.10)

This completes the mathematical formulation of the transient mass balance equations.

5.2 Case Studies

As was mentioned at the beginning of this chapter, two systemic perturbations were simmlated,
namely the case of sustained hypoproteinemia and that of sustained venous congestion. These

two upsets are discussed below.

Hypoproteinemia Hypoproteinemia is characterized by a drop in the plasma protein con-
centration within the blood. In the simulations presented here, it was assumed that C*=* and
Cven fell instantaneously to 50 % of their original value (that is, from 6 gm/dl to 3 gm/dl).
C™, on the other hand, was kept at its original value of 1.5 gm/dl. While an instantaneous
drop in plasma protein content is not representative of a typical pathological state, it does
provide a reasonable starting point for simulating the effects of a injection of saline into the
vascular system, for example, provided that the time course for the injection is mmch shorter

than the response time of the system.

Venous Congestion The arteriolar and venular capillary pressures can be related to the
venous and arterial blood pressures ( PYEN and PART  respectively) through the following

resistance relationships [108]:

part — pVEN | | (PART _ PVEN) 7 (5.11)
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pven — pVEN |, (PART _ PVEN) ’ (5.12)

where ky and ky are the fractions of the systemic resistances associated with the branch of the
blood vasculature from the arteriolar end of the network to the heart and from the venular end
of the network to the heart, re;pectively. Given that, in the simulations, P** equals 2.942 x10*
dyne/cm? (22 mmHg) while P¥** equals 1.667 x10* dyne/cm? (12.5 mmHg), and assuming that
PART and PVEN are 1.337 x10° dyne/cm? (100 mmHg) and 1.605 x10* dyne/cm? (12 mmHg),
respectively, [108], then k; becomes 0.1136 while k, assumes a value of 0.0057.

During venous congestion, PVEN js elevated. This results in an increase in both P®* and
P¥e® according to Egs. (5.11) and (5.12). In the venous congestion case studies it is assumed
that PVEN increases to 3.342 x10* dyne/cm? (25 mmHg), raising P** and P**® to 4.4825 x10%
dyne/cm? (33.52 mmHg) and 3.400 x10* dyne/cm? (25.43 mmHg), respectively. Hence the
arteriola.r capillary pressure increases by 52 % of its original value, while the venular capillary
pressure increases by 103 % of its baseline value. Again, it is assumed that these shifts in hydro-
static pressures occur instantaneously, so that the simulations provide only a first approximation

to the onset of venous congestion.

C(Smputer Simulations The three different mesothelial boundary conditions described in
Chapter 4 were simulated to determine the influence of this boundary on the transient response
of the system to each of the two systemic perturbations cited above. In addition, the plasma
protein convective hindrance was varied to consider two extreme cases of interstitial plasma
protein transport: pure diffusion (£ equal to 0), and full convection (£ equal to 1). All other
system parameters were maintained at their baseline values during the simulations. Hence a,
for example, remained 0.9117. These alterations in £ and the mesothelial transport properties
resulted in a 2 x 3 factorial study for each of the perturbations considered.

Finally, it is noted that the initial conditions of each of the simulations were calculated
from the steady-state moael, assuming pre-perturbation conditions, while the final steady-

state conditions were determined using the same model and assuming the perturbed conditions
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prevailed.

5.3 Numerical Procedures

As before, the finite element method was used to reduce the fluid mass balance equation to a set
of coupled, algebraic expressions that could be solved iteratively using matrix techniques. The
interstitial plasma protein mass balance equation, however, contains both spatial and temporal
terms. In this case the finite element method was applied to the spatial terms of the equation,
while a Crank-Nicolsen finite difference scheme was used to approximate the temporal term. A
detailed discussion of this combined technique, as it applies to the plasma protein mass balance
equation, can be found in Appendix B. |

The interstitial plasma protein concentration distribution and the intérstitial hydrostatic
pressure field were determined using the following iterative procedure. A fully explicit finite
difference formulation was used to obtain a first estimate of the plasma protein concentration
distribution at some time At after initiation of the system upset, using the specified initial con-
ditions. This initial estimate of C! was used to update the hydrostatic pressure distribution, P,
using the finite element formulation. Having an estimate of both C! and P! at the new time,.
the Crank-Nicolsen finite difference scheme could then be used during subsequent iterations at
this same time step to obtain new estimates of C! at At. Upon each iteration, the appropriate
finite element matrices and vectors were revised to reflect the updated estimates of the plasma
protein concentration distribution and hydrostatic pressure field. The iterative procedure was
repeated until the convergence requirements outlined in Section 4.3 of Chapter 4 were met.
This overall process was repeated at each new time step to determine the plasma protein con-
centration distrib.ution and hydrostatic pressure field as functions of space and time. Typically,
the system required less than 10 iterations to achieve convergence at any one time-step.

The simulation specifications were as follows. The domain was divided into 25 quadratic
elements (i.e., each element contained 3 nodes) to give a total of 51 nodes within the one-

dimensional tissue space. This choice of step size was based on the favourable results of the
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one-dimensional simulations performed in Appendix A. Lagrange basis functions were used to
approximate the spatial variations of C! and P!. The initial time-step size was chosen so that
the Courant number did not exceed a specified value (see Section B.4 in Appendix B for details).
For a number of cases, the value of the initial Courant number was varied over a range of values
from 0.0001 to 0.01 to assure a consistent estimate of the dependent variables. The validity
of the transient simulations was further confirmed by allowing selected simulations to reach
steady—state. These estimates of the new system steady—state conditions were then compared
to the steady-state conditions calculated by the one—dimensional steady-state simulator. In all

cases, the two predictions showed excellent agreement.

5.4 Results and Discussion

We will now consider, individually, the results of the transient simulations of hypoproteinemia
and venous congestion. In each case we will address tﬁe effects of the mesothelial transport
properties and the interstitial tramsport mechanisms on the transient exchange of fiuid and
plasma proteins within the system, as well as their effect on the distribution of interstitial

plasma proteins over time. .

5.4.1 Transient Exchange in Sustained Hypoproteinemia

The transient exchange rates of fiuid and plasma proteins and the changes in interstitial plasma
protein distribution within the mesenteric tissue segment following a drop in the vascular plasma
protein content are all affected by the transport properties of the mesothelial layer and the
mechanisms governing interstitial plasma protein transport. However, before discussing how
these factors Muence the behavior of the system during hypoproteinemia, it seems appropriate
to consider briefly the effect that this perturbation has on the overall driving forces for fluid

and plasma protein exchange within the system.
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The Effect of Hypoproteinemia on Luminal Driving Forces

The overall driving forces for the exchange of fluid and plasma proteins within the model
tissue consist of the differences in the effective fluid chemical potential and plasma protein
concentration, respectively, between each of three luminal fluids in the system (i.e., the arteriolar
capillary fluid, the venular capillary fluid, and the peritoneal fluid). Clearly, a drop in plasma
protein content in the blood reduces the overall driving force for diffusive exchange of plasma
proteins in the system. Likewise, this reduction in vascular protein content would tend to
reduce the net convective exchange of plasma proteins, since less protein would accompany the
fluid transported across the vascular boundaries. However, the convective transport of plasma
proteins, and hence the total exchange of proteins, also depends on the total volume of fluid
exchanged between the various luminal compartments. Hence, we must also consider how the
lower vascular plasma protein concentration impacts on the driving forces for fluid exchange
within the tissue segment.

The dimensionless effective fluid chemical potential of the luminal fluid associated with a
permeable bouxida.ry b, ﬂgﬁ, is given by PP ob ITP. Following a drop in protein concentration in
the plasma, the effective plasma protein osmotic pressure, o® TP, decreases by an equal amount
in both the arteriolar and the venular capillary. The effective coloid osmotic pressure of the
peritoneal fluid, however, remains unchanged. Hence, following the drop in plasma protein
concentration in the blood, 2F increases from 0.218 to 0.692, 4'S® increases from -0.215 to
0.259, and gZf° remains -0.136 for boundary condition 2 and 0 for boundary condition 3.

The overall driving force for the exchange of fluid from one luminal compartment to another
is given by the difference in the effective fluid chemical potential between the two compartments.
Table (5.1) lists these for the various pairs of compartments. The following general observations

are made.

1. While both 2 and lf” increase, the difference between the two, i2F — fi’§", remains

unchanged from pre-perturbation to post-perturbation in all cases.
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State Boundary Condition 1 Boundary Condition 2 Boundary Condition 3
Ay — A fog — AR AR - Ay B - A R A R -AE AR -eE
Pre-Upset 0.433 0.433 0.354 -0.079 0.433 0.218 -0.215
Post-Upset 0.433 0.433 0.828 0.395 0.433 0.692 0.259

Table 5.1: Fluid chemical potential differences between the various luminal com-
partments before and after the initiation of hypoproteinemia.

2. The magnitude of a2f — gZF* increases in all cases where the mesothelium is permeable.

3. piF — % also increases in all cases where the mesothelium is permeable. Furthermore,

s — figg: changes from a negative value to a positive value in each of these cases.

We will return to these general observations in later discussions of fluid and plasma protein

exchange during hypoproteinemia.

Mass Exchange Assuming an Impermeable Mesothelial Layer

Fluid Exchange = The transient fluid exchange rates across the arteriolar boundary, for those
cases in which the mesothelium is impermeable, are illustrated in Figure (5.1). Since the tissue
segment and fluid are both incompressible, the fluid exchange at the venular boundary is equal
in magnitude to that at the é.rteriola.r boundary, and hence is not shown. The net driving
force for fluid exchange within the system is pet — g, As mentioned earlier, this quantity
remains unaffected by the drop in vascular plasma protein content. In addition, because the
mesothelium is impermeable, fluid entering the interstitium from one vascular compartment
must pass through the entire interstitial space before re—éntering the blood at the other end of
the tissue segment. Therefore, the overall effective hydraulic resistance of the system remains
consﬁmt and equal to the sum of the two vascular wall resistances and the total resistance
. associated with the interstitial space.

Given this, one would expect no change in fluid exchange within the system following the
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Figure 5.1: The average transient fluid flux across the arteriolar capillary wall fol-
lowing hypoproteinemia is shown assuming an impermeable mesothelium and (i) ¢
equal to unity, and (ii) £ equal to zero. In both cases the fluid flux is normalized

with respect to its initial value prior to the upset. The dotted line represents the
new steady-state value in each case.
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drop in systemic plasma protein concentration, provided that the transcapillary fluid exchange
and interstitial fluid flux were both independent of interstitial colloid osmotic pressures. The
transient -changes in fluid exchange within the tissue segment must therefore reflect the varia-
tions in the interstitial osmotic pressure distribution, and hence the interstitial plasma protein
distribution, with time.

For the case where ¢ is unity, the system experiences a marginal increase in fluid exchange
shortly after the drop in vascular plasma protein concentration. (At t equal to 0.1, or 15 minutes
after initiation. of hypoproteinemia, the dimensionless fluid flux crossing the arteriolar boundary
has increased in magnitude by only a factor of 1.004, from -0.3982 to -0.3999.) This is illustrated
in panel (i) of Figure (5.1), which shows the transient flux across this boundary, normalized
with respect to its value prior to the onset of hypoproteinemia. The marginal rise in fluid
exchange rate is attributed to the increase in ﬁg., which is only partially offset by a concomitant
increase in P!. The effective interstitial osmotic pressure at the boundary, o -II**, meanwhile,
is still near its pre-upset value since insufficient time has elapsed to significantly reduce the
concentration of interstitial plasma proteins there. Hence, the arteriolar fluid exchange rate,
given by Starling’s Law, is slightly greater following the upset. Subsequently, as the local plasma
protein content near the boundary decreases with time, the dimensionless fluid flux across this
boundary also declines so that, at t of 5.0 (i.e., 12.5 hours), it is -0.3836. This represents 48.4
% of the total drop that occurs before the system reaches its new steady-state value of 0.3662.

When £ is zero, the transient fluid exchange within the system follows a different pattern
(see panel (ii) of Figure (5.1)). Again, there is a marginal increase in the fluid exchange rate
across the arteriolar boundary (i.e., at t equal to 0.1 units, the dimensionless fluid flux has
increased in magnitude from 0.3378 to 0.3400). However, in this case the magnitude of the
Mensioﬂess fluid flux across this boundary continues to increase with time until it reaches
a new steady-state value of 0.3462, which represents a 2.5 % increase over the initial value of
0.3378. At t equal 5.0, the arteriolar fluid flux has undergone 59.5 % of the total increase from

initial to final steady-state conditions, indicating that the relaxation time for this case may be
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somewhat less than, though of the same order of magnitude as, that when £ equals one.

The fact that the the fluid exchange rate within the system increases with time when £ is
zero, but decreases with time when £ is one, indicates that, with an impermeable mesothelium,
the interstitial plasma protein transport mechanisms play a significant role in determining the
transient fluid exchange within the model system follcwing the onset of hypoproteinemia. As
mentioned earlier, this can only be attributed to differences between the transient adjustments

in the interstitial colloid osmotic pressure distributions for the two cases.

Plasma Protein Exchange and Interstitial Plasma Protein Distribution The tran-
sient plasma protein exchange between the vascular and interstitial compartments is coupled
to the fluid exchange between these via the convective transport of the macromolecules across
the vascular boundary. In addition, plasma proteins enter the interstitium from the vascular
compartment by diffusion. The relative importance of these two transport mechanisms depends
on the magnitude of the fluid flux across a given permeable boundary, the degree of sieving at
the boundary, and the differences in plasma protein concentration on either side of the bound-
ary. Assuming that convection dominates, the total plasma protein flux across a permeable
boundary b from vascular to interstitial compartments, expressed as a dimensionless quantity,
is equal to (1 — ;Tb) -3% - CP. Likewise, if the exchange is from the interstitium to the vascular
compartment and assuming that convection dominates;, the plasma protein flux is given by
(1= %) 3 - [C1s.

Figures (5.2) (i) and (ii) illustrate the fra.nsient plasma protein exchange across the arteriolar
and venular capillaries assuming £ equal to 1 and £ equal to 0, respectively. In each case the
flux is normalized with respect to its value prior to the upset. Consider first the case where £
equals 1. During the entire'transient phase and subsequent steady-state, the plasma protein
transport from the arteriolar capillary to the interstitium is predominantly convective. Hence
the transient flux of plasma proteins across this bounda.ry follows the general trend of the
transient fluid flux profile there. However, the former profile is further characterized by a

dramatic reduction in the plasma protein exchange rate immediately after the perturbation,
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due to the reduced vascular concentration of plasma proteins.

At the venular boundary, convective plasma protein exchange likewise dominates during the
transient period and the subsequent new steady-state. However, since the interstitial plasma
protein concentration near the boundary is greater than the vascular plasma protein concentra-
tion during the transient period, the plasma protein flux across the venular boundary exceeds
the plasma protein flux across the arteriolar boundary. This results in a net exchange of plasma
proteins from the interstitium to the blood and subsequent reduction in interstitial plasma pro-
tein content. Furthermore, while the dimensionless arteriolar plasma protein exchange rate is
only 4.7 % greater than the steady-state value at t of 5.0, the venular exchange rate is still 66.3
% greater than its steady-state value. The length of the transient period is therefore determined
by the time required to remove the excess plasma proteins from the interstitial space by way
of the venular capillary. This is further illustrated in the transient interstitial plasma protein
distributions shown in the left panel of Figure (5.3).

Within thé interstitium itself, both convection and diffusion play significant roles during the
entire transient period. For example, the ratio of convection to diffusion within the interstitial
space adjacent the arteriolar boundary varies from -1.15 to -1.33 from a f of 0.1 units to the
new steady-state. The negative values for these ratios indicate that diffusion and convection
occur in opposite directions.

When £ is 0, plasma protein exchange across the arteriolar and venular capillaries is, like-
wise, predominantly convective. The arteriolar plasma protein exchangg rate drops slightly
belc;w, and then slowly rises to, the ultimate steady-state value so that:,‘ at t equal 5.0, the
dimensionless arteriolar plasma protein exchange rate is approximately 1 % less than at steady-
state. Meanwhile, the dimensionless plasma protemm flux across the venular boundary first rises
above its initial value of 0.0507, then steadily decreases until reaching a new steady-state value
of 0.0260. By t equal 5.0, the venular plasma protein exchange rate is approximately 69 %
greater than the final steady-state value. The length of the transient period when £ is zero is

therefore close to that when £ is one.
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Figure 5.2: The average transient plasma protein flux across the arteriolar and venu-
lar capillary walls following hypoproteinemia is shown assuming an impermeable
mesothelium and (i) £ equal to unity, and (ii) £ equal to zero. In both cases the
protein flux is normalized with respect to its initial value prior to the upset. The
dotted line in each case represents the new steady-state value.
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Figure 5.3: The transient total dimensionless plasma protein concentration distribu-

tions (Ct) following hypoproteinemia and assuming an impermeable mesothelium
are shown for (i) the case where ¢ is 1 (left panel) and (ii) for the case where {
is 0 (right panel). In each case the solid line represents the initial condition, the
dotted line is at t equal 0.5, the chain-dot line is at t equal 2.5, the dashed line
corresponds to t equal 5.0, and the chain-dash line represents the final steady-state
condition.



Chapter 5. Transient Exchange in Mesentery Following a Systemic Upset 112

Because the plasma protein content in the blood decreases following the onset of hypopro-
teinemia, the rate of plasma protein exchange across the arteriolar capillary drops. Meanwhile,
the interstitial plasma protein concentration adjacent the venular boundary is near its initial
condition. The net exchange rate across the venular boundary therefore exceeds the exchange
across the arteriolar boundary during the course of the transient period so that, once again,
there is a net loss of plasma proteins from the interstitium to the blood. This is reflected in
the concentration profiles in the right panel of Figure (5.3). However, unlike the case where £
is one, the fluid exchange rate within the system remains elevated above its initial condition

despite the washout of plasma proteins from the interstitinm.

Mass Exchange Assuming Mesothelial Transport Properties Similar to Those of
the Vascular Walls

In these simulations, it is assumed that the mesothelial transport properties are identical to
those of the arteriolar capillary wall. Since the mesothelium is permeable, fluid and plasma
proteins may be exchanged between the arteriolar capillary and the peritoneum, the venular
capillary and the peritoneum, and the arteriolar and venular capillaries. In addition, the over-
all effective resistance of the tissue segment to mass exchange depends on the flow patterns
within the interstitium itself, since fluid and plasma proteins are able to bypass regions of the
interstitium via the peritoneum.

In fact, the steady-state analysis of Chapter 4 suggests that, when the mesothelium is
permeable, the majority of fluid and plasma proteins exchanged between the various luminal
compartments passes through only a small portion of the interstitial space. Further, intersti-
tial fluid and plasma proteins located in the central portions of the tissue segment need only
travel a short distance to reach the mesothelial surface. Hence, when all bounding surfaces are
permeable, the system can achieve its new steady-state following the onset of hypoproteinemia

much more quickly here than for those cases in which the mesothelial layer is impermeable.
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Fluid Exchange In the previous discussion of luminal driving forces it was noted that, fol-
lowing the drop in vascular plasma protein concentration, g2f — g%F* and gl§" — AfF® both
increase in magnitude, suggesting that the fluid exchange between these respective compart-
ments should increase following the systemic upset. In addition, it was noted that a'§" — g
changes from a negative quantity to a positive one, which would imply a reversal in the direction
of fluid exchange between the venular capillary and the peritoneum. In fact these trends- are
observed both when § is zero and when £ is one, as discussed below.

Consider first the case in which the convective hindrance, £, is unity. Initially following the
drop in vascular protein, there is a substantial increase in the rate of fluid exchange across each
of the three permeable boundaries (see Table (5.2)). Further, the fluid exchange rate across the
venular capillary changes direction, so that the vessel moves from a state of fluid re-absorption
to one of fluid filtration. Likewise, the direction of the mesothelial fluid flux near the venular
boundary changes direction, as shown in Figure (5.4). The system has reached steady-state

with respect to fluid exchange by t equal 3.0 units (i.e., 7.5 hours), as illustrated in Figure (5.5).

£ Period Boundary Condition 2 Boundary Condition 3
Art Ven Mes Art Ven Mes

1.0  Pre-Upset -2.387 0.656 0.087° -3.551 0.762 0.139
1.0 Post-Upset -5567 -3.2563 0.441 -8.600 -6.243 0.742
1.0 Steady-State -5.527 -3.247 0.439 -8.305 -5.238 0.677

0.0  Pre-Upset -2313 0.632 0.084 -3.570 0.803 0.138
0.0 Post-Upset -5.439 -3.187 0431 -8.630 -6.273 0.745
0.0 Steady-State -5.444 -3.180 0431 -8.319 -5.263 0.679

Table 5.2: The average transient fluid fluxes across the permeable boundaries fol-
lowing hypoproteinemia, for the mesothelial boundary conditions 2 and 3. In each
case the table reports the flux prior to the upset (‘pre-upset’), at t equal 0.001
post-upset (‘post-upset’), and at the new system steady-state (‘steady-state’). A
negative flux indicates a flow into the interstitium.

Upon examining the distribution of P! — IT* at t equal 2.5 (see Figure (5.6)), it is clear that
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Figure 5.4: The dimensionless transient fluid flux distribution across the mesothe-
lium following hypoproteinemia, assuming mesothelial transport properties equal
to those of the arteriolar capillary and a £ of 1, are shown at the pre-perturbation
state (panel (i)), and at a t of 0.001 (panel (ii)), 0.05 (panel (m)), 0.5 (panel (iv)),
and at the final steady-state (panel (v)).
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Figure 5.5: The average transient fluid fluxes across the permeable boundaries fol-
lowing hypoproteinemia, assuming mesothelial transport properties equal to those
of the arteriolar capillary and a £ of 1, are shown in the three panels above. Panel
(i) shows the fluid flux across the arteriolar capillary, panel (ii) corresponds to
the fluid flux across the venular capillary, and panel (iii) represents the net fluid
flux across the mesothelium. In each case the fluxes are normalized with respect
to their respective pre-perturbation values. The dotted line represents the new
steady-state value in each case.



Chapter 5. Transient Exchange in Mesentery Following a Systemuc Upset 116

0.25
_
=
=
Z
=
e
o
a.
-
<1,
14
=
=
€I
S
a 000
)
P |
=
[0p]
n
[£2]
.|
=z
Q
[/p]
Z.
=]
=
a
—0.25

0.0 1.0
DIMENSIONLESS DISTANCE

Figure 5.6 The dimensionless interstitial fluid chemical potential distribution
(P! — 1I') is shown at t equal 2.5 following hypoproteinemia for the case where
the mesothelial transport properties equal those of the arteriolar capillary and € is
1.
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the majority of interstitial fluid flow occurs in the regions near the blood vessels; the central
regions of the tissue space are relatively quiescent. Movement of fluid within the interstitial
space near the vessels is towards the central regions of the tissue. Conservation of fluid mass,
meanwhile, is satisfied by alocal, concomitant exchange of fluid across the mesothelial boundary.

The transient fluid exchange within the system for the case where £ equals 0 is much the
same as when £ is one. There is a rapid increase in fluid exchange across each of the permeable
boundaries immediately following the onset of hypoproteinemia, as shown in Table 5.2. Again,
the venular capillary shifts from a state of fluid re-absorption to one of fluid filtration. Further,
the transient fluid flux distribution across th.e mesothelial boundary parallels that for £ equal
to one, and so is not shown. However, the fluid fluxes reach their new steady-state values by t

equal 1.0 (i.e., 2.5 hours), indicating a shorter transient period than that found when £ is one.

Plasma Protein Exchange and Interstitial Plasma Protein Distribution When £ is
equal to one, the plasma protein transport acros.s;ach of the permeable boundaries is predomi-
nantly convective. Therefore, since both the arteriolar and venular capillaries are filtering fluid,
the plasma protein exchange rates across these boundaries follow the respective transient fluid
fluxes. For example, the plasma protein flux across each of these boundaries reaches a new
steady-state value at the same time as the fluid fluxes. However, since the vascular plasma
protein content is lower subsequent to the perturbation, the increase in the plasma protein
fluxes across these boundaries is not as pronounced as increase in the fluid exchange rates (see
Table (5.3)).

The exchange rate of plasma proteins across the mesothelium is also enhanced following the
onset of hypoproteinemia. Again, since the exchange is largely convective, the plasma protein
flux distribution across the mesothelium is qualitatively the same as the fluid flux distribution.
The transient plasma protein fluxes across each of these boundaries is illustrated in Figure (5.7).
In this case, the system reaches a new steady-state by a dimensionless time of 3.0.

Since, during the transient period, the total efflux of plasma proteins across the mesothelium
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¢ Period Boundary Condition 2 Boundary Condition 3
Art Ven Mes Art Ven Mes

1.0 Pre-Upset -0.358 0.072 0.014 -0.533 0.762 0.025
1.0  Post-Upset -0.417 -0.244 0.049 -0.645 -0.468 0.148
1.0 Steady-State -0.415 -0.244 0.033 -0.623 -0.393 0.051

0.0  Pre-Upset -0.347 0.063 0.014 -0.535 0.036 0.025
0.0 Post-Upset -0.408 -0.239 0.049 -0.647 -0.471 0.151
0.0 Steady-State -0.408 -0.239 0.032 -0.624 -0.395 0.051

Table 5.3: The average transient plasma protein fluxes across the permeable bound-
aries following hypoproteinemia, for the mesothelial boundary conditions 2 and 3.
In each case the table reports the flux prior to the upset (‘pre-upset’), at t equal
0.001 post-upset (‘post-upset’), and at the new system steady-state (‘steady-state’).
A negative flux indicates a flow into the interstitium.

exceeds the influx of protein across the other two boundaries, there is a net loss of plasma pro-
teins from the interstitium to the peritoneum: This is to be expected for the following reasons.
Prior to the onset of hypoproteinemia, the net plasma protein transport into the system is zero
because steady-state conditions prevail. Immediately following the upset, there is increased
fluid exchange from the blood to the interstitium. The concentration of plasma proteins within
the fluid is more dilute, however, so that convective transport of plasma proteins across the
vascular boundaries does not increase in proportion to the increased fluid fluxes. At the same
time, the fluid exchange from the interstitium to the peritoneum increases by an amount equal
to the increase in fluid exchange across the blood vessels. This increases the convective trans-
port of plasma proteins from the interstitium to the peritoneum. However, the interstitial fluid
crossing the mesothelium has virtually the same plasma protein concentration as that prior
to the onset of hypoproteinemia, so that the increase in plasma protein exchange across this
boundary is substantial. Since the vascular fluid replacing the interstitial fluid is somewhat
diluted, compared to the conditions before the upset, there is a net loss of plasma proteins from

the interstitial space. Furthermore, plasma protein exchange across the mesothelium does not
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reach its new steady-state value until the wash-out of interstitial plasma proteins is complete.

The transient dimensionless plasma protein distributions assuming £ is one are shown in
the left panel of Figure (5.8). By a dimensionless time of 0.001, the profile has been altered
substantially in the region of the venular blood vessel, so that the gradient in interstitial plasma
protein concentration changes direction following the shift from plasma protein re-absorption to
filtration at that boundary. Furthermore, by this time there is a slight increase in the local in-
terstitial plasma protein concentration near the arteriolar and venular capillaries. This appears
to be similar, qualitatively, to the buildup of plasma proteins seen in several of the steady-state
cases of Chapter 4 and is presumably due to the same effects, namely the combination of signif-
icant convective plasma protein transport within the interstitinm and the sieving of proteins at
the mesothelium. However, these local maxima in interstitial plasma protein concentration are
soon dissipated as interstitial plasma proteins continue to be lost to the peritoneum. (Compare,
for example, the profiles at a t of 0.001 and 0.05.) It is still conceivable that, in some circum-
stances, irregularities in the mesothelial fluid and plasma protein flux distribitions, similar to
those discussed in Chapter 4, might occur as transient phenomena during hypoproteinemia.

As Figure (5.6) showed, convective transport of plasma proteins is directed towards the
central regions of the tissue, with the largest convective velocities occurring near the blood
vessels. Based on the concentration gradients of Figure (5.8); then, plasma protein convection
and diffusion continue to oppose one another in the vicinity of the vascular boundaries during
the entire transient phase. Furthermore, there is very little plasma protein .tra.nsport in the
central portions of the tissue throughout that period. The fact that diffusion and convection
oppose one another may offer one explanation for the longer transient period of fluid exchange
when £ is one, compared to that when £ is zero.

The overall transient exchange of plasma proteins within the system when the interstitial
convective hindrance of zero is much the same as for the case where £ is unity (see Table (5.3)).
Once again, the plasma protein transport across each of the boundaries is largely convective.

The transient distributions of dimensionless plasma protein fluxes across the mesothelium are



Chapter 5. Transient Exchange in Mesentery Following a Systemic Upset 120

DIMENSIONLESS SOLUTE FLUX

&

|
&
™

(-]
[2)
[-]

DIMENSIONLESS TIME DIMENSIONLESS TIME DIMENSIONLESS TIME

Figure 5.7: The average transient plasma protein fluxes across the permeable bound-
aries following hypoproteinemia, assuming mesothelial transport properties equal
to those of the arteriolar capillary and a £ of 1, are shown in the three panels
above. Panel (i) shows the protein flux across the arteriolar capillary, panel (ii)
corresponds to the protein flux across the venular capillary, and panel (iii) rep-
resents the net protein flux across the mesothelium. In each case the fluxes are
normalized with respect to their respective pre-perturbation values. The dotted
line represents the new steady-state value in each case.
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Figure 5.8: The transient dimensionless total plasma protein concentration distribu-
tions (Ct) following hypoproteinemia and assuming that the mesothelial transport
properties are equal to those of the arteriolar capillary are shown for (i) the case
where ¢ is 1 (left panel) and (ii) for the case where £ is 0 (right panel). In each
case the solid line corresponds to the initial condition, the dotted line is at t equal
0.001, the chain-dot line is at t equal 0.05, the dashed line corresponds to t equal
0.5, and the chain-dash line represents the final steady-state condition.
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similar here to the case where £ is one and so are not shown.

The transient distribution of interstitial plasma proteins assuming § is zero is illustrated
in the right panel of Figure (5.8). Since the venular boundary shifts from a re-absorbing to a
filtering one, and since the only means of interstitial plasma protein transport is by diffusion,
the gradient is forced to reverse directions immediately following the onset of the perturbation.
Further, because the plasma protein exchange across the permeable boundaries is largely con-
vective, there is a net loss of plasma proteins from the interstitium to the peritoneum, for the
same reasons given when £ is one. The mean interstitial plasma protein concentration therefore
decreases with time, as illustrated in Figure (5.8).

It is clear from these results that, although the transient variations in the interstitial plasma
protein distributions depend strongly on the value of £ assumed, the overall transient exchange
of fluid and plasma proteins within the system does not. This further emphasizes the fact that,
when the mesothelium is permeable, the interstitium contributes less to the overall resistance
within the system, so that the interstitial plasma protein transport mechanisms have less impact

on the behavior of the system as a whole.

Mass Exchange Assuming a Highly Permeable Mesothelium

In the final set of simulations of hypoproteinemia, it is assumed that the mesothelial transport
properties are given by boundarv condition 3 of Chapter 4; that is, the mesothelium is much

more permeable than the capillary walls and offers no sieving of proteins (™ is zero).

Fluid Exchange Once again, the simulations suggest that the transient fluid exchange within
the model mesenteric tissue is affected little by the interstitial plasma protein transport mech-
anisms (see Table (5.2)). Further, the general trends are similar to those found when the
mesothelial transport properties mimic the arteriolar capillary, except that the fluxes are typi-
cally an order of magnitude larger and the time to reach steady-state is an order of magnitude
smaller. The reduced time for the transient is attributed to the lower mass transfer resistance

of the mesothelial layer. Hence, following an initial increase immediately after the onset of
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hypoproteinemia, fluid exchange across each of the boundaries declines slightly over time to
reach a new steady-state value by a t of 0.5 (i.e., 1.25 hours). ‘

The dimensionless fluid flux distribution across the mesothelial boundary for the case where
€ is one is shown in Figure (5.9). Figure (5.9) shows that the majority of the fluid exchange
across the mesothelium occurs in close proximity to the blood vessels. However, although it is
not apparent in the figure, there is some exchange in the central portions of the tissue segment
as well. Again, the trend is virtually identical when £ is zero.

Following the drop in vascular plasma protein content, theﬁ, the interstitial fluid flow is
directed towards the central regions of the tissue, independent of the value of £. Again, the fluid

material balance constraints are met by the appropriate fluid exchange across the mesothelium.

Plasma Protein Exchange and Interstitial Plasma Protein Distribution Since plasma
protein transport is largely convective, the transients follow the fluid flux behavior, except that
the increase in protein exchange across the arteriolar bouﬁdary is limited by the fact that the
filtering fluid contains less plasma proteins following the upset. Again, the transient plasma
protein exchange across the permeable boundaries is affected only marginally by the transport
mechanisms within the interstitial space.

Both when £ is one and when £ is zero, plasma proteins leave the interstitium by way
of the mesothelial boundary. Since the exchange across this boundary is largely convective,
the distribution of the plasma protein flux across the mesothelium follows closely the fluid flux
profile, and so is not shown here. The transient distribution of plasma proteins for the two values
of £ investigated are shown in Figure (5.10). In both cases the massive plasma protein fluxes
across the mesothelium in the vicinity of the blood vessels reduce the plasma protein content in
those regions. This causes the local depletion of interstitial plasma proteins in the vicinity of the
arteriolar and venular boundaries over time, so that diffusive transport tends to move interstitial
plasma proteins from the central regions of the tissue towards the vascular boundaries. For
the case where £ is one, this is counteracted in part by a convective flux of plasma proteins

towards the central portions of the tissue. However, when plasma protein transport is limited to
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Figure 5.9: The dimensionless transient fluid flux distribution across the mesothe-
lium following hypoproteinemia, assurning the mesothelial transport properties are
given by boundary condition 3 and £ equals 1, are shown at the pre-perturbation
state (panel (i)), and at a t of 0.001 (panel (ii)), 0.05 (panel (iii)), 0.5 (panel (iv)),
and at the final steady-state (panel (v)).
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Figure 5.10: The transient dimensionless total plasma protein concentration distri-
butions (Ct) following hypoproteinemia and assuming a highly permeable mesothe-
lium (boundary condition 3) are shown for (i) the case where £ is 1 (left panel) and
(ii) for the case where £ is 0 (right panel). The solid line corresponds to the initial
condition, the dotted line is at t equal 0.001, the chain-dot line corresponds to t
equal 0.05, the dashed line is at t equal 0.5, and the chain-dash line corresponds

to the final steady-state conditions.
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diffusion, the interstitial plasma protein concentration distribution undergoes further alterations
so that, by the time the system has reached its new steady-state, there is a net diffusion of
interstitial plasma proteins from the vascular boundaries towards the center of the interstitial
space in the regions adjacent the blood vessels. Because the magnitude of the shift is small and
limited to the region adjacent the capillary walls, it is not apparent in Figure (5.10).

Once again the interstitial plasma protein content decreases following hypoproteinemia,
both when £ is one and when £ is zero. This occurs for the same reasons presented earlier when
‘discussing plasma protein excﬁange assuming the mesothelial transport properties equal those

of the arteriolar capillary wall.

Summary of Hypoproteinemia Simulations

In all cases considered here, the onset of hypoproteinemia led to a washout of interstitial plasma
proteins. The transient behavior of the system during the washout, however, depended on the
transport properties of the mesothelium and, to a lesser degree, on the interstitial plasma
protein transport properties. When the mesothelium is assumed to be impermeable, fluid and
plasma proteins must traverse the entire interstitial length in their journey from the arteriolar
end of the system to the venular end. However, when it is assumed that the mesothelium is
permeable, the distance travelled by material leaving the interstitium is reduced substantially.
As a result, the response time of the model system to hypoproteinemia varied inversely with
the permeability of the mesothelial layer.

Further, when the mesothelium is impermeable, the interstitium represents a substantial
portion of the total resistance to mass exchange within the system. Hence, the behavior of
the systermn as a whole is influenced to a great degree by the conditions prevailing within the
interstitial space. For example, in this case the transient changes to the interstitial coloid
osmotic pressure distribution had a significant effect on the transient fluid exchange within the
tissue segment. The transient fluid exchange across the boundaries qf the system therefore

varied according to changes in the interstitial plasma protein distribution, which depended
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further on the interstitial plasma protein transport properties.

However, when the mesothelium is assumed to be permeable, the behavior of the system
with respect to mass exchange is dominated by the transport properties of this boundary. In
addition, the interstitial plasma protein transport mechanisms have less impact on the transient

distribution of interstitial plasma proteins as the transport properties of the mesothelium are

enhanced.

5.4.2 Transient Exchange During Sustained Venous Congestion

In this set of simulations, the system response to sustained venous congestion is studied as a
function of the mesothelial transport properties and interstitial transport mechanisms outlined
in the investigation of hypoproteinemia. Once again, it is instructive to consider first the effect
that venous congestion has on the driving forces for fluid and plasma protein exchange between

the luminal compartments.

The Effect of Venous Congestion on the Luminal Driving Forces

During venous congestion, the venous pressure rises, resulting .in an increase in hydrostatic
pressure throughout the microcirculation. However, according to Egs. (5.11) and (5.12), the
incremental increases in arteriolar and venular capillary pressures are not equal. In fact, the
arteriolar pressure increases by 1.538 x10* dyne/cm? (11.5 mmHg), while the venular pressure
rises by 1.725 x10* dyne/cm? (12.9 mmHg). The hydrostatic pressure of the peritoneal ﬁujd;
meanwhile, is assumed to remain at 0 dyne/cm?.

Since the vascular plasma protein content is unchanged following the perturbation; the
effective fluid chemical potential in each of the two blood vessels of the tissue segment incfeases
according to the change in the hydrostatic pressures. The effective chemical potential of the
peritoneal fluid is unaffected by the systemic disturbance. Further, the driving force for diffusive
plasma protein exchange between the various luminal compartments is unchanged following

venous congestion.
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State Boundary Condition 1 Boundary Condition 2 Boundary Condition 3
Aoy —Agg Aeg - AL Ry - B RIF - AE B CAP BE AR AP -AR
Pre-Upset 0.433 0433 0.354 -0.079 0.433 0.218 . -0.215
Post-Upset 0.370 0.370 0.602 0.232 0.370 0.738 0.368

Table 5.4: Fluid chemical potential differences between the various luminal com-
partments before and after the initiation of venous congestion.

Table (5.4) lists the differences in effective fluid chemical potential for the various pairs of

compartments both before and after the onset of venous congestion. The following general

observations are made.

1. While in all cases both 27 and Y§" increase, the difference between the two, i2f — Aig",

decreases.
2. %% — %S increases in all cases where the mesothelium is permeable.

3. The magnitude of A7§" — fzg" also increases in all cases where the mesothelium is perme-
able. Furthermore, g'§" — %" changes from a negative value to a positive value in each

of these cases.

We will return to these general observations in later discussions of fluid and plasma protein

exchange during venous congestion.

Mass Exchange Assuming an Impermeable Mesothelium

Fluid Exchange Based on the information of Table (5.4), the fluid exchange rate within the
system for this set of mésothelial boundary conditions is expected to decline fb]]owing the onset
of venous congestion, since g2F — fiif® decreases with the increase in systemic blood pressure.
In fact this trend is observed, both for the case of £ equal to one and for the case where £ is

Z€ro.
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Figure 5.11: The average transient fluid flux across the arteriolar capillary wall
following venous congestion is shown assuming an impermeable mesothelium and
(i) € equal to unity, and (ii) £ equal to zero. In both cases the fluid flux is normalized
with respect to its steady-state value prior to the upset. The dotted line represents
the new steady-state value in each case.
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With £ equal to one, the dimensionless fluid flux across the arteriolar capillary wall drops
from its pre-upset value of -0.3982 to 86 % of that (i.e., -0.3422) by t equal 0.1 (i.e., 15 minutes).
This flux declines further with time to -0.3401, then gradually increases to its new steady-state
value of -0.3423 (see panel (i) of Figure (5.11)).

The transient fluid excha.n’ge within the system when £ is zero somewhat different. Again,
by a t of 0.1, the dimensionless arteriolar fluid flux has dropped from its original value of -
0.3378 to 85 % of that (i.e., -0.2879). However, by a t of 0.5 (i.e., 1.25 hours), this flux has
risen slightly to -0.2884 and, by steady-state, has reached -0.2885. Hence, in this case fluid
exchange within the system is very close to its steady-state by 1.25 hours (see panel (ii) of
Figure (5.11)). Note that, when £ is zero, the interstitial plasma protein distribution remains
virtually unchanged following the onset of venous congestion (see Figure (5.13)). Since the
interstitial plasma protein washout is less here than when £ is one, the system response time is

shorter.

Plasma Protein Exchange and Interstitial Plasma Protein Distribution Consider
first the case where £ is one. Plasma protein transport across the arteriolar and venular bound-
aries is predominantly convective during the transient period and subsequent steady-state. The
rate of plasma protein exchange across the arteriolar boundary therefore closely follows the fluid
flux pattern there. Shortly after the perturbation, the dimensionless plasma protein flux across
this boundary drops ﬁoﬁ its original value of -0.05973 to 86 % of that, or -0.0512. It declines
further to -0.509, then slowly rises to eventually reach its new steady-state value of -0.0514. At
the venular end, the dimensionless plasma protein flux drops from 0.05973 to approximately 83
% of that, or 0.0498 shortly after the onset of venous congestion. By t equal to 0.5, the protein
flux has dropped to 0.0497. From this point it rises slowly to achieve the steady-state value of
0.0514. This is illustrated in panel (i) of Figure (5.12).

These transients have the following effect on the interstitial plasma protein concentration
distribution. Under the initial conditions, interstitial plasma protein diffusion is from the venu-

lar boundary towards the arteriolar boundary, as illustrated in the left panel of Figure (5.13).



Chapter 3.

10

DIMENSIONLESS SOLUTE FLUX

09

08

10
5
)
m
5
—
(@]
n

é 09
Z
S
198}
Z
BycS|
=
()]

08

ART

00

50

i

00

DIMENSIONLESS TIME

50

10

09

08

10

09

08

Transient Exchange in Mesentery Following a Systemic Upset 131

VEN

00

50

11

00

50

DIMENSIONLESS TIME

Figure 5.12: The average transient plasma protein flux across the arteriolar and
venular capillary walls following venous congestion is shown assuming an imper-
meable mesothelium and (i) £ equal to unity, and (ii) £ equal to zero. In both cases
the protein flux is normalized with respect to its steady-state value prior to the
upset. The dotted line in each case represents the new steady-state value.
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Figure 5.13: The transient dimmensionless total plasma protein concentration distribu-
tions (C') following venous congestion and assuming an impermeable mesothelium
are shown for (i) the case where £ is 1 (left panel) and (ii) for the case where ¢
is 0 (right panel). In each case the solid line represents the initial condition, the
dotted line is at t equal 0.1, the chain-dot line is at t equal 0.5, the dashed line
corresponds to t equal 5.0, and the chain-dash line represents the final steady-state
condition.
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Since fluid flows from the arteriolar capillary to the venular capillary, interstitial plasma pro-
tein convection and diffusion are in opposite directions throughout the tissue space. As the
fluid flow through the system decreases following the onset of venous congestion, so does the
convective transport of plasma proteins through the interstitial space. With the decrease in
convective plasma protein transport, diffusion within the interstitium tends to diminish the
gradient in interstitial plasma protein concentration. Hence the interstitial plasma protein con-
centration near the arteriolar wall increases while the plasma protein concentration near the
venular boundary decreases.

Now the transport of plasma proteins into the system across the arteriolar boundary is
largely convective, so that it is approximately equal to (1 — ¢®) .32 . C*t. By the time the
system achieves a new steady-state, this influx of plasma proteins must be balanced by the
efflux of proteins at the venular boundary. This latter quantity is approxﬁrmtely equal to
(1 — 0®) - 3% - [C')ven, Where [C'lven is the interstitial plasma protein concentration in the
accessible space adjacent the venular boundary. Since ¢® equals V", [_Cl]\,cn must eventually
equal the plasma protein concentration in the arteriolar vessel to satisfy continuity. Hence the
plasma protein concentration in that region eventually increases to its original value, as seen in
the left panel of Figure (5.13).

When £ is zero, convective plasma protein exchange across the permeable boundaries domi-
nates once again. Hence, the trends in the transient dimensionless plasma protein fluxes follow
the variations in dimensionless fluid exchange. Specifically, the dimensionless protein flux across
the arteriolar boundary drops from -0.0507 to -0.0432 by a t of 0.1 units. This flux then in-
creases slowly with time to eventua.lly reach the steady-state value of -0.0433. At the venular
boundary, the dimensionless plasma protein flux drops from 0.0507 to 0.0434 by t equal to 0.1
units, and continues to drop, albeit slowly, to eventually reach the steady-state value of 0.0433
(see panel (ii) of Figure (5.12)).

The onset of venous congestion has a marginal effect on the interstitial plasma protein

distribution when interstitial plasma protein transport is restricted to diffusion only (see the
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right panel of Figure (5.13)). The drop in transcapillary transport of plasmz; proteins into the
interstitium at the arteriolar end of the system results in the net loss of plasma proteins from
the interstitium via the venular capillary. Since this reduction in plasma protein transport into
the system is sustained, the net diffusive flux of plasma proteins through the interstitium must
drop as the system approaches its new steady-state. Hence, the interstitial plasma protein
concentration gradient must be slightly less under the new steady-state conditions, compared
to the initial state. However, by the time the system has reached steady-state, comservation of
plasma proteins within the system dictates that [Cl]‘ml equal C**. The interstitial plasma pro-
tein concentration adjacent the arteriolar boundary therefore increases to satisfy the constraints
imposed by continuity and the fact that diffusion of interstitial plasma protein transport is less

under the new steady-state conditions.

Mass Exchange Assuming Mesothelial Transport Properties Similar to Those of
the Vascular Walls

Fluid Exchange The shifts in the effective chemical potential of the various luminal ﬁujds
following venous congestion suggest that subsequent fluid exchange between the blood and the
péritoneum should increase and that fluid flow across the venular capillary wall should change
direction. In fact, this is observed both when £ is one and when it is zero (see Table (5.5)).

Figure (5.14) shows the transient fluid exchange across the three permeable boundaries
following venous congestion and assuming that ¢ is unity. The fluid fluxes increase dramatically
following the onset of venous congestion, then continue to rise more slowly, so that the system
achieves steady-state -by a t of 5.0. However, when £ is zero, the system reaches steady-state
with respect to fluid exchange almost imme-dia:tely after the onset of the perturbation.

The transient distribution of fluid exchange across the mesothelial boundary is qualitatively
the same as shown in Figure (5.4), both when £ is one and when it is zero. Fluid exchange
across the mesothelium in the vicinity of the venular capillary shifts direction so that, following

the onset of venous congestion, fluid is transported from the interstitium to the peritoneum
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Figure 5.14: The average transient fluid fluxes across the permeable boundaries
following venous congestion, assuming mesothelial transport properties equal to
those of the arteriolar capillary and a £ of 1, are shown in the three panels above.
Panel (i) shows the fluid flux across the arteriolar capillary, panel (ii) corresponds
to the fluid flux across the venular capillary, and panel (iii) represents the net fluid
flux across the mesothelium. In each case the fluxes are normalized with respect
to their respective pre-perturbation values. The dotted line represents the new
steady-state value in each case.
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13 Period Boundary Condition 2 Boundary Condition 3
Art Ven Mes Art Ven Mes

1.0 Pre-Upset -2.387 -0.656 0.087 -3.551 -0.762 0.139
1.0 Post-Upset -5.857 -4.13¢ 0.500 -9.232 -8.070 0.865
1.0 Steady-State -5.971 -4.278 0.513 -9.143 -7.347 0.825

0.0  Pre-Upset -2.313 0.632 0.084 -3.570 0.803 0.138
0.0 Post-Upset -5.720 -4.048 0.488 -9.259 -8.100 0.868
0.0 Steady-State -5.708 -4.024 0.487 -9.153 -7.364 0.826

Table 5.5: The average transient fluid fluxes across the permeable boundaries follow-
ing venous congestion, for the mesothelial boundary conditions 2 and 3. In each
case the table reports the flux prior to the upset (‘pre-upset’), at t equal 0.001
post-upset (‘post-upset’), and at the new system steady-state (‘steady-state’). A
negative flux indicates a flow into the interstitium.

along the entire length of the mesothelial boundary.

Plasma Protein Exchange and Interstitial Plasmna Protein Distribution Table (5.6)
lists the transient plasma protein fluxes across each of the three boundaries following venous
congestion. Figure (5.15), meanwhile, shows the dimensionless plasma protein flux across the
tﬁree boundaries as a function of time and assuming that £ is one. Because the plasma pro-
tein exchange across the boundaries is predominantly convective, the transient plasma protein
exchange parallels the transient fluid exchange behavior. However, as this figure illustrates,
the relative changes in protein fluxes across the permeable boundaries are more dramatic than
the relative changes in fluid exchange rates. Further, the transient behavior assuming ¢ is zero
is qualitatively the same as when £ is >one, except that the length of the transient period is
somewhat shorter.

Both when ¢ equals zero and when it equals one, the time needed for the mesothelial
boundary to achieve ste‘ady-state with respect to plasma protein exchange is longer than the
period required for the other two boundaries. Since the arteriolar and venular capillaries filter

fluid and plasma proteins following the upset, and since the transport of proteins across these
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Figure 5.15: The average transient plasma protein fluxes across the permeable
boundaries following venous congestion, assuming mesothelial transport proper-
ties equal to those of the arteriolar capillary and a £ of 1, are shown in the three
panels above. Panel (i) shows the protein flux across the arteriolar capillary, panel
(ii) corresponds to the protein flux across the venular capillary, and panel (iii)
represents the net protein flux across the mesothelium. In each case the fluxes are
'normalized with respect to their respective pre-perturbation values. The dotted
line represents the new steady-state value in each case.
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Figure 5.16: The transient dimensionless total plasma protein concentration distri-
butions (ét) following venous congestion and assuming mesothelial transport prop-
erties equal to those of the arteriolar capillary are shown for (i) the case where ¢
is 1 (left panel) and (ii) for the case where £ is 0 (right panel). In each case the
solid line represents the initial condition, the dotted line is at t equal 0.001, the
chain-dot line is at t equal 0.05, the dashed line corresponds to t equal 0.5, and
the chain-dash line represents the final steady-state condition.
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£ Period Boundary Condition 2 Boundary Condition 3
Art Ven Mes Art Ven Mes

1.0 Pre-Upset -0.358 0.072 0.014 -0.533 0.762 0.025
1.0 Post-Upset -0.878 -0.620 0.059 -1.385 -1.210 0.188
1.0 Steady-State -0.896 -0.604 0.077 -1.371 -1.102 0.124

0.0 Pre-Upset -0.347 0.063 0.014 -0.535 0.036 0.025
0.0 Post-Upset -0.858 -0.607 0.055 -1.389 -1.215 0.192
0.0 Steady-State -0.856 -0.604 0.073 -1.373 -1.105 0.124

Table 5.6: The average transient plasma protein fluxes across the permeable bound-
aries following venous congestion, for the mesothelial boundary conditions 2 and 3.
In each case the table reports the flux prior to the upset (‘pre-upset’), at t equal
0.001 post-upset (‘post-upset’), and at the new system steady-state (‘steady-state’).
A negative flux indicates a flow into the interstitium.

boundaries is largely convective, the length of the transient associated with plasma protein
exchange is approximately equal to that for fluid exchange. However, as indicated in the
plasma protein distributions of Figure (5.16), a considerable increase in the total interstitial
plasma protein content occurs following the initiation of venous congestion. This filling period
is much longer than the time required for the fluid exchange rates within the system to adjust.
Further, plasma protein exchange across the mesothelial boundary cannot reach steady-state
until the interstitial plasma protein concentration distribution stabilizes.

The left-hand panel of Figure (5.16) shows the transient distributions of the dimensionless
interstitial plasma protein concentration assuming £ is equal to one. In this case, there is
a local buildup of interstitial plasma proteins in the vicinity of the arteriolar and venular
vessels shortly after the onset of venous congestion, similar to the buildup observed during
the early stages of hypoproteinemia. This is likely due to the same causes cited in that case,
namely the combination of plasma protein convection within the interstitium and sieving at the
mesothelial boundary. Furthermore, since interstitial fluid flow is directed towards the center

of the tissue, interstitial plasma protein convection and diffusion generally act in Spposite

directions, as evidenced by the interstitial plasma protein concentration graﬂjents of the left
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panel of Figure (5.16). When £ is zero, the gradient near the venular boundary changes direction
following the perturbation (see the right panel), reflecting the shift in plasma protein exchange
- across that boundary.

In contrast to the situation during hypoproteinemia, we have already noted that the inter-
stitial plasma protein content following venous congestion increases with time for both values
of £ (see Figure (5.16)). This occurs for the following reason. The average plasma protein
concentration in the interstitium prior to the upset is less than that in the serum. Following
the perturbation, the convective flux of plasma proteins from the blood into the interstitium
rises. The convective flux of plasma proteins from the interstitium to the peritoneum likewise
increases. However, since the sieving properties of the three boundaries are the same (i.e.,
6t = gV® = ™), and since the interstitial plasma protein concentration is less than that
of the serﬁm, the concentration of plasma proteins in the incoming fluid is higher than that of
the fluid leaving the interstitium. In addition, since the rate of fluid flow into the interstitium
equals the rate of fluid flow out of the interstitium at all times (because the interstitium is

rigid), the convective flow of proteins into the tissue space must then exceed the convective flow

of proteins out of the interstitium, thereby increasing the interstitial plasma protein content.

Mass Exchange Assuming a Highly Permeable Mesothelium

Fluid Exchange The data of Table (5.4) suggest that the fluid exchange within the system
should increase following the onset of venous congestion. In fact, as illustrated in Table (5.5),
this is true for both values of { investigated. The normalized transient fluid fluxes across the
permeable boundaries are illustrated graphically in Figure (5.17) for the case where £ is one. A
similar pattern is seen when £ is zero, except that, once again, the transient period is somewhat
shorter when plasma protein transport occurs by diffusion alone.

The transient distribution of fluid fluxes across the mesothelium is qualitatively the same
as that of Figure (5.9), both when £ is one and when it is zero. Therefore, the fluid flow across

the mesothelium in the vicinity of the venular capillary changes direction so that, following
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Figure 5.17: The average transient fluid fluxes across the permeable boundaries
following venous congestion, assuming a highly permeable mesothelium (boundary
condition 3) and a £ of 1, are shown in the three panels above. Panel (i) shows
the fluid flux across the arteriolar capillary, panel (ii) corresponds to the fluid flux
across the venular capillary, and panel (iil) represents the net fluid flux across the
mesothelium. In each case the fluxes are normalized with respect to their respective
pre-perturbation values. The dotted line represents the new steady-state value in
each case.
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the onset of venous congestion, fluid movement is from the interstitium to the peritoneum.
Furthermore, interstitial fluid flow is directed from the vascular boundaries towards the center

of the tissue segment in both cases.

Plasma Protein Exchange and Interstitial Plasma Protein Distribution The ex-
change of plasma proteins across the various boundaries is largely convective for both values of
€. Hence, the transient behavior of the system with respect to plasma protein exchange follows
its pattern of fluid exchange. Further, the transient distribution of plasma protein fluxes across
the mesothelium is qualitatively the same as that shown in Figure (5.9). Figure (5.18) shows
the normalized transient plasma protein exchange across thé three boundaries for a £ of one. In
each case, there is an initial rise in the plasma protein flux, followed by a decay in the exchange
rate. A similar behavior is observed when £ is zero, except that, once more, the length of the
transient period is shorter.

The transient plasma protein distribution for the two values of { are shown in Figure (5.19).
Whereas, when the mesothelium behaves as a sieviﬁg boundary the interstitial plasma protein
content increases following venous congestion (see Figure (5.16)), in this case the mean intersti-
tial plasma protein content decreases with time. Following the onset of venous congestion, the
fluid exchange across the vascular boundaries increases, so that the convective flux of plasma
proteins also increases. However, as fluid enters into the interstitium from the vascular com-
partments, plasma proteins are sieved. In contrast, the fluid crossing the mesothelial boundary
is not filtered so that, as the fluid flux across the mesothelium increases, there is a net loss
of plasma proteins from the interstitium to the peritoneal fluid. This demonstrates that the
sieving properties of the drainage system within a tissue (m this case, the mesothelium) play
a major role in determining the ratio of interstitial plasma protein concentration to vascular
plasma protein concentration.

Once again the simulations suggest that, when both interstitial plasma protein convection
and diffusion occur, they oppose one another. The comparatively high interstitial plasma

protein content initially found in the vicinity of the venular boundary is soon depleted, as
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Figure 5.18: The transient plasma protein fluxes across the permeable boundaries
following venous congestion, assuming a highly permeable mesothelium (boundary
condition 3) and a £ of 1, are shown in the three panels above. Panel (i) shows the
protein flux across the arteriolar capillary, panel (ii) corresponds to the protein flux
across the venular capillary, and panel (iii) represenis the net protein flux across the
mesothelium. In each case the fluxes are normalized with respect to their respective
pre-perturbation values. The dotted line represents the new steady-state value in
each case.
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Figure 5.19: The transient dimensionless total plasma protein concentration distribu-
tions (C!) following venous congestion and assuming a highly permeable mesothe-
lium (boundary condition 3) are shown for (i) the case where £ is 1 and (ii) for the
case where £ is 0. In each case the solid line represents the initial condition, the
dotted line is at t equal 6.001, the chain-dot line is at t equal 0.005, the dashed line
corresponds to t equal 0.01, and the chain-dash line represents the final steady-state
condition.
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the venular capillary shifts from a re-absorbing to a filtering vessel. When interstitial plasma
protein transport is limited to diffusion, there is a change in gradient in interstitial plasma
protein concentration some distance from the venular boundary shortly after the perturbation
begins. This is due to the increased protein exchange from the interstitium to the peritoneum
there. However, adjacent the venular capillary wall, plasma protein diffusion is directed into the
interstitium, due to the transfer of proteins the from blood to the interstitium at that boundary.
Since this shift in the interstitial plasma protein concentration gradient occurs over a very short

distance just outside of the venular boundary, it is not discernable in Figure (5.19).

Summary of Venous Congestion Simulations

As in the case of hypoproteinemia, the length of the transient period varied inversely with the
permeability of the mesothelial layer. Further, when it is assumed that the mesothelium is
impermeable, the transient behavior of the fluid and plasma protein fluxes entering and leaving
the system are strongly influenced by the interstitial plasma protein transport mechanisms and
by the transient distribution of plasma proteins within the interstitial space. Once again, this
is due to the greater role that the interstitium has here in determining the overall resistance of
the system.

In contrast to the simulations of hypoproteinemia, however, some of the simulations of
venous congestion predicted an increase in the interstitial plasma protein content with time. A
determining factor for this behavior appears to be the plasma protein sieving properties of the
filtering boundary relative to the sieving properties of the draining boundary. This provides a
possible explanation for the differences in the interstitial plasma protein content within selected

tissues observed in clinical settings during venous congestion, and is discussed further below.

5.4.3 Clinical Observations of Hypoproteinemia and Venous Congestion

According to the simulations presented above, the rate of fluid exchange within the model tissue

segment typically increases following hypoproteinemia. However, because of the reduced plasma
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protein content in the filtering fluid, the net rate at which plasma proteins enter the interstitial
space is less than that prior to the upset. This causes a ‘washout’ of plasma proteins from the
interstitium and leads to a somewhat reduced interstitial plasma protein content by the time
the system has achieved a new steady-state. These findings are in keeping with the clinical
observations reported by Witte and co-workers [114]. The authors state that hypoproteinemia
is followed by a lowering of interstitial plasma protein content.

The simulations of venous congestion revealed several interesting phenomena that might
shed further light on clinical observations of this state. Clinical data show that, in most pe-
ripheral tissues, the plasma protein concentration in lymph decreases with the onset of venous
congestion, suggesting that the interstitial plasma protein concentration likewise drops [113].
Witte and co-authors attribute the washout of plasma proteins to the increased filtration rates
that accompany an elevation in systemic pressure. However, the simulations presented hére
demonstrate that an increased filtration rate does not assure washout of plasma proteins from
the interstitium of mesentery, for example. On the contrary, the majority of the simulations
predicted an increase in interstitial plasma protein content within the model tissue. Only in
thése cases in which the sieving of proteins at the draining boundary (e.g., the mesothelium)
was less than the sieving at the filtering boundaries did the interstitial plasma protein content
decrease following venous congestion.

The simulations suggest that it is the relative sieving properties of the draining and filtering
boundaries, and not simply the filtration rate, that determines whether plasma protein washout
occurs. Since it is generally thought that the terminal lymphatics do not sieve proteins to any
great extent [77], it follows that, in most tissues, we would expect a decrease in plasma protein
content to accompany enhanced filtration, as seen clinically. The notion that the relative sieving
properties are important in determining changes in interstitial plasma protein content is further
supported by the fact that the plasma protein content in hepatic lymph (and so, presumably,
the plasma protein content in the interstitium of the liver) increases under venous congestion

[114]. Since the exchange vessels of the liver are sinusoids, far less sieving occurs across the
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vascular walls in this tissue, so that the sieving properties of the filtering and the draining
boundaries are similar.

One other characteristic of venous congestion is the accumulation of fluid in the pleural
cavity. This pathological state is called ascites [61]. The increased fluid exchange across
the mesothelium predicted by the model seems to support this clinical observation. Further,
the simulations indicate that this increase accompanies a shift from fluid re-absorption to fluid
filtration at the venular capillary, due to the increase in hydrostatic pressure in that vessel. This
sﬁggests that there may be some limiting value for venular hydrostatic pressure, corresponding

. to the shift in the direction of transcapillary fluid flux there, that leads to ascites.

5.5 Concluding Remarks

In this chapter we studied the response of the model tissue segment to two systemic pertur-
bations, namely hypoproteinemia and venous congestion. Since the simplified version of the
model employed in these simulations does not include all of the features of the microvascular
. exchange system (for example, interstitial swelling is neglected) the results are, at best, quali-
tative. However, the simulations reveal several interesting features of the model microvascular

ekcha.nge system. These are summarized below.

1. When the mesothelium is permeable; the trends in fluid and plasma protein exchange
following a systemic perturbation can be anticipated by considering the effect that the
given upset has on the effective chemical potential of the luminal fluids. In such instances
the interstitium may not be the major resistance within the system. However, when the
mesothelium is impermeable, fluid and plasma proteins must cross the entire interstitial
space in their journey from the filtering vessel to the re-absorbing vessel, so that the
interstitium comprises a large fraction of the system’s total resistance to mass exchange.
In these cases the distribution of interstitial plasma proteins plays a greater role in de-
termining the overall behavior of the model tissue. Further, the length of the transient

period following an upset is typically shorter for those cases in which the mesothelium is
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permeable.

2. Following hypoproteinemia, the interstitial plasma protein content of the tissue segment
typically decreases with time, due to a decrease in plasma protein exchange across the
vascular boundaries and an increase in the total rate of fluid exchange within the system.

This is in keeping with qualitative clinical observations.

3. Following venous congestion, the fluid exchange rate and plasma protein exchange rate
within the system both typically increase. However, the change in interstitial plasma
_protein content depends, in part, on the relative sieving properties of the filtering and
draining boundaries. When the reflection coefficients of these two sets of boundaries
are similar, the interstitial plasma protein content increases due to the increased protein
exchange rate across the filtering boundaries and sieving of interstitial plasma proteins at
the draining boundaries. As the reflection coefficient of the draining boundaries decreases
relative to that of the filtering boundaries, there is a net loss-of plasma proteins from
the interstitial space, resulting in a decrease in total interstitial plasma protein content
over time. These results are supported by the clinical observation that interstitial plasma
protein content in the liver increases during venous congestion. Sincerthjs tissue is serviced
by sinusoids, the sieving properties of the filtering blood vessels and the draining lymphatic
vessels are similar. (It should be noted, however, that both the filtering and draining
vessels of the liver offer little sieving of plasma proteins.) In addition, the model predicts
an increase in fluid transfer from the mesentery to the peritoneal fluid, supporting the

clinical observation of ascites formation.

The trends in system behavior predicted by the simplified model are, for the most part,
in keeping with the limited number of clinical observations associated with hypoproteinemia
and venous congestion discussed here. Furthermore, the simulations provide a clearer picture
of the relationship between the vascular wall transport properties, the interstitial transport

properties, and the transient behavior of the system as a whole following these upsets.



Chapter 6

A Preliminary Study of Tracer Transport through the Interstitium

6.1 Introduction

Thus far we have considered the transport of a single, aggregate plasma protein species through
the interstitium of a model tissue. In fact, numerous types of macromolecules are exchanged
between the blood and the interstitium under normal conditions. In addition, certain clinical
procedures, s\uch as chemotherapy, involve the exchange of small quantities of foreign substances
between the blood stream and a particular organ or tissue. The exchange of multiple solute
species within the microcirculation is therefore of interest to physiologists and clinicians alike.

This chapter presents a study of the relative exchange rates of two different macromolecular
tracers representing albumin and v — globulin within a hypothetical, one-dimensional tissue.
Specifically, the study investigates the time required for the concentration of the tracer in the

outlet stream to reach 50 % of its steady-state value, subsequent to its introduction in the blood

at a dimensionless concentration of 0.01, as a function of the following:
1. the transport properties of the capillary wall to the tracer,
2. the transport properties of the tracer through the interstitial space, and
3. the interstitial distribution volume of tracer.

The results of the study suggest that the distribution volume of a particular solute species
can play a major role in determining its rate of transport through the interstitium. Further, the
exclusion properties of the interstitium can create conditions for a ‘gel-chromatographic effect’,

whereby larger macromolecules pass through the interstitial space more quickly than smaller

149
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macromolecules. (This mechanism is to be distinguished from the ‘free-fluid phase — gel phase’
mechanism proposed by Watson and Grodins (104] that lacks substantial structural evidence.)

The chapter is divided into five remaining sections. Section 6.2 describes the model tissue
segment and the equations applying to the transient movement of a solute species through
that tissue segment. Section 6.3 outlines the particular numerical experiments constituting
the study, while Section 6.4 outlines the numerical procedures employed to solve the relevant
mathematical expressions. The results of the study are then discussed in Section 6.5. Finally,
Section 6.6 summarizes the ramifications of these findings to the interpretation of transient

tracer experiments and the delivery of substances to specific tissue sites.

6.2 Defining the System

Consider a flat, thin, sheet-like tissue analogous to the mesenteric tissue of Chapter 4 and
bounded left and right by a blood capillary and a terminal lymphatic vessel, ;espectively.
- It is assumed that the upper and lower surfaces of the tissue are impermeable and that the
intervening interstitium is both homogeneous and isotropic. Furthermore, the tissue properties
and conditions are considered uniform in the direction parallel to the vessels’ axes, so that the
model tissue can be treated as a one-dimensional system.

Contained within the tissue is an aggregate plasma protein species representative of the
various osmotically active plasma protein species found in vivo. These display the same char-
acteristics as the aggregate plasma proteins of Chapters 4 and 5. It is further assumed that, at
some time t,, a macromolecular tracer is introduced into the blood vessel. Since this macro-
molecule is present in minute quantities only (i.e., one percent of the total plasma protein
concentration), its contribution to the system osmotic pressure is negligible and therefore it
does not alter the exchange of fluid or the exchange of aggregate plasma protein species within
the system. Given this, the interstitial fluid flux depends only on the local gradient in fluid
hydrostatic pressure, P!, and aggregate protein osmotic pressure, II', according to Eq. (5.2).

The fluid material balance is then given by Eq. (5.4), with the added constraint that L3 is
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zero. With these assumptions, the transient tracer distribution problem is uncoupled from the
steady-state problem of fluid and aggregate plasma protein transport.

The material balance expression for the aggregate plasma protein species is therefore given
by the steady-state version of Eq. (5.7), assuming further that j2**° (given by Eq. (5.6)) is zero.
Meanwhile, the transient distribution of interstitial tracer concentration, C2, is described by
an analogous form of Eq. (5.7), assuming once more that no exchange of tracer occurs across
the upper and lower surfaces of the tissue segment. Furthermore, since the tracer’s osmotic
pressure is negligible compared to that of the aggregate plasma protein species, then the fluid
chemical potential in the tracer’s distribution volume is equal to P! — II!.

The exchanges of fluid and solutes across the capillary wall are described by the same set of
boundary conditions as presentéd in Chapter 4 (see Egs. (4.13), (4.14), and (4.15)). However,
the conditions prevailing at the lymphatic vessel warrant some discussion.

It is typically assumed (3, 14, 70, 108] that, under normal conditions, the flow of fluid across

the lymphatic wall is proportional to the interstitial hydrostatic fluid pressure, P!. That is,

[jS,Lym =Ly ([él]lym - Plym) ’ ' (6.1)

where L;ym -P¥™ is some reference lymph drainage rate. This type of relationship can be viewed
as a specific form of the Starling relationship in which the reflection coefficient of the lymphatic
wall, o'¥™, is zero. If we further assume, for simplicity, that the hydrostatic pressure within the

lymphatic vessel,PY™ is zero, we then have

2], =1 [P, 6

ym
Solutes, meanwhile, are assumed to cross the lymphatic wall by unhindered convection [3, 14, 75,
108]. The valve-like behavior of the overlapping endothelial cells of the lymphatic wall prevents
back-flow of solutes from the lymph to the tissue space. Hence, assuming that a thin fluid film
separates the lymphatic wall and the interstitium (analogous to that at the vascular boundary),

the rate of exchange of aggregate proteins across the vessel wall ([jl], ), for example, is

TN 6

Hym
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A similar expression applies for the exchange of a particular tracer species 2, namely,

I I (6.4

An alternative boundary condition for the exchange of a given solute species k at the lym-

phatic vessel wall might be

= B o e ©9

where i‘—; . [Ck] is equivalent to the average plasma protein concentration based on the total

i
mobile fluid volyunrlne fraction. In this fashion, Eq. (6.5) eliminates the ‘thin film’ assumption.
However, since all previous simulations used the thiﬁ film approach, it is retained here as well.
The dimensionless form of the mass balance equations can be found in Chapters 4 and
5. Note that the tracer mass balance equation is non-dimensionalized with respect to the
parameters for the aggregate plasma protein species. For example, the dimensionless diffusivity
of tracer species k is n* - DX;/D1;. The dimensionless forms of Egs. (6.2) and (6.3), meanwhile,

are, respectively,

- [%—H—l)} . = i, [131] o (6.6)
and
N N (< (6.7)

where I:g’m = Lg’mL /K°. As before, all pressures and concentrations are normalized with
respect to P=* and C1®* (the arteriolar concentration of the aggregate plasma protein species),
respectively. Equations (6.6) and (6.7) are combined with the appropriate dimensionless forms
of the aggregate plasma protein mass balance equation, the tracer mass balance equation, the
fluid mass balance equation, the capillary wall boundary conditions, and the initial conditions
to describe the movement of both the aggregate plasma protein species and the tracer through

the interstitium.
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6.3 Case Studies

In order to carry out the numerical simulations, the various model parameters must first be
assigned values. These parameters can be divided into three groups: those parameters charac-
terizing fluid and aggregate plasma protein exchange across the capillary wall and the transport
of these materials through the interstitium; those parameters characterizing the transcapillary
exchange and interstitial transport of the tracers;. and the parameters characterizing mass ex-
change across the lymphatic wall.

The' first group of parameters were assigned the same set of values as in the steady-state
analysis of fluid and aggregate plasma protein exchange in mesentery (see Table (4.1) in Chap-
ter 4), assuming further that the aggregate protein convective hindrance, £, equalled 0.5. The
properties of the aggregate plasma protein species are therefore close to, but not identical with,
the values described below for the albumin tracer.

The following tracer parameters were assumed. The capillary wall permeabilities to the
albumin and globulin tracers, D**®® and D8P assumed values of 2.4 x 10~% cm/s and
1.39 X 1078 cm/s respectively. These values fall w1thm the range reported in the literature for
these two species [83]. The values of the reflection coefficients for the albumin tracer and the
globulin tracer, ¢ and 089", were 0.89 and 0.91 respectively, based on data reported for dog
hindpaw [82]. The distribution volume fractions assumed for the two tracers, meanwhile, were
0.68 and 0.5, respectively, based on rabbit skin data [13]. The effective interstitial diffusivity
of the albumin tracer, D2, assumed a value of 1.0 X 10~7 cm?/s, based on the data of Fox and
Wayland [38]. Since no value was available for the interstitial diffusivity of globulin, D&:”, this
parameter was assigned a value such that DP /Dﬂ;‘)b equalled D22l /Dartigled  Thig yielded a
ngb of 0:58 x 107 cm?/s.

The product £* - 8% for the albumin and globulin tracers was varied over a range of values
by establishing first the lower limits for ¢ and A* individually. The lower limit for €5 was
~ arbitrarily set equal to 0.25. The lower limit for 8%, meanwhile, was set equal to the ratio nk /n°,

thereby assuming that the flow conductivity of the interstitial space was uniformly distributed
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throughout the various mobile fluid volume fractions. Under this assumption the regions of the
interstitial space accessible to the macromolecular tracers were no more conductive to fluid than
the excluded regions of the interstitium. On this basis, a lower limit for §%-£* of 0.21 for albumin
and 0.16 for globulin was determined. However, in all likelihood, macromolecules excluded from
portions of the interstitial matrix will be limited to pathways of higher conductivity, leading to
somewhat larger values of 8% - ¢¥. Hence, additional values of 8* - £¥ equal to 0.5 and 0.9 were
assumed for each of the two tracers during the sensitivity analyses discussed below.

According to Eqs. (6.2) and (6.3), mass exchange across the lymphatic vessel wall is charac-
terized by a single parameter — the lymphatic hydraulic conductance, Lg’m. Since no information
could be found in the literature to quantify Lg’m, a set of simulations was first performed to
investigate the influence of this parameter on the exchange of fluid within the system. Increas-
ing Lg’m from 1.35 x 10~° cm®/(dyne-s) to 1.35 x 10~7 em®/(dyne-s) caused the fluid exchange
rate within the system to increase by less than 7 %, indicating that fluid flow was relatively
insensitive to the value of Lg’m in this range. The lymphatic hydraulic conductance was there-
fore arbitrarily assigned a value of 1.35 x 10~° cm3/(dyne-s), equal to the value applied to the
arteriolar boundary.

Having established the reference values for the model parameters, a series of numerical
simulations was performed to investigate the effect of several system parameters on the transport
rates of the albumin and globulin tracers through the model tissue. These system parameters

are summarized below:
1. the transport characteristics of the capillary wall to each of the two tracers;
2. the interstitial distribution volume fraction of the globulin tracer; and
3. the diffusivity of the albumin tracer. '

In each case, the product 8% - €¥ of the tracer was varied over the range of values described
earlier to provide a factorial design. In all, 21 transient simulations were performed, as well as

21 corresponding steady-state runs.
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6.4 Numerical Procedures

A numerical procedure similar to that reported in Chapter 5 that combined the finite element
and finite difference methods was used here to solve for the transient distribution of tracer
throughout the interstitium. Again, the interstitium was divided into 25 elements and 51 nodal
points. The initial time step size was determined by specifying an initial Courant number
of 0.05. As a further check of the validity of the numerical solution, one of the simulations
was repeated assuming an initial Courant number of 0.025, thereby doubling the number of
time steps performed during the run. As a result, the dimensionless time taken for the tracer
concentration at the lymphatic vessel to reach 50 % of its steady-state value, tzqe, changed by
less than .05 %. In another test, the initial Courant number was reduced from 0.05 to 0.01,
resulting in a 5-fold increase in the number of time steps taken during the simulation. The

reduced time step produced no significant change in the model predictions.

6.5 Results and Discussion

This section is divided into three parts. The first discusses the effect of the capillary wall
transport properties on the transport rates of the globulin and albumin tracers, assuming
various values of 8% . ¢* for these macromolecules. The second part considers the effect of the
globulin interstitial distribution volume on the transport of that tracer for different values of
B8lob . ¢8lob  Rinally, the third part of this section discusses the effect of interstitial diffusivity

on the transport rate of the albumin tracer as a function of g2 . galb,

6.5.1 The Effect of Capillary Boundary Conditions on Tracer Transit Time

The first set of simulations explored the combined effect of the 8% - £€¥ and the capillary wall
transport properties on the exchange of each of the two tracers. Two 2 x 3 factorial studies
were performed in which each tracer was subjected to first the globulin boundary conditions

and then the albumin boundary conditions for each value of 8% £X considered. (Recall that the
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albumin boundary condition corresponds to a reflection coefficient of 0.89 and a permeability,
D=, of 2.4 x 1078 cm/s at the capillary wall, while the globulin boundary condition implies a

reflection coefficient of 0.91 and a permeability of 1.39 x 1078 cm/s.)

Tracer Boundary Condition §£-8 Steady-State
: Outlet Concentration

0.16 0.00091

Globulin Globulin 0.50 0.00091
0.90 0.00091

0.16 0.00113

Globulin Albumin 0.50 0.00113
: 0.90 0.00113

0.21 0.00113

Albumin Albumin 0.50 0.00113
0.90 0.00113

0.21 0.00091

Albumin Globulin 0.50 0.00091
0.90 0.00091

Table 6.1: The effect of capillary wall boundary conditions on the steady-state con-
centration of the tracers in the outlet (lymphatic) stream.

Table (6.1) presents the steady-state dimensionless concentrations for the albumin and the
globulin tracers in the lymphatic vessel (i.e., their plasma/lymph ratios) as functions of 8- £ and
the capillary wall boundary conditions. Recall that thg outlet concentration in the lymphatic
vessel equals the interstitial concentration within the tracer’s distribution volume in the vicinity
of the lymphatic vessel. It is clear from Table (6.1) that the steady-state concentration of a

tracer is determined by the boundary conditions at the capillary wall, and not the transport
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mechanisms within the interstitial space. In fact, the outlet concentration is determined largely
by the capillary wall reflection coefficient since, in the simulations presented here, the principle
mechanism for the transcapillary exchange of tracer is convective transport. Hence, the influx
of some tracer k into the system is proportional to (1 — o*). Under steady-state conditions
and for this model tissue, then, the flux of tracer across the lymphatic vessel wall must also be
proportional to (1 — o¥), so that the outlet stream composition is determined by the degree of
sieving at the capillary wall. -

Table (6.2) presents the dimensionless time required for the tracer’s outlet stream concen-
tration to reach 50 % of its steady-state value, tzqo, as a function of 8- £ and the capillary wall
reflection coefficient for both the globulin tracer and the albumin tracer. The breakthrough
curves associated with these simulations are shown in Figure (6.1). In each case tgqy decreases
with increasing 8- £, due to the enhanced convective transport of the tracer accompanying such
an increase. In addition, when the capillary wall is assigned the more permeable (albumin)
transport prop-erties, the time required for each tracer to reach 50 % of its steady-state value
decreases marginally (i.e., by less than 0.5 %) in each case. Hence, the capillary transport prop-
erties exert a stronger influence on the ultimate steady-state outlet concentration than on the
transit times through the interstitium, for the range of permeabilities and reflection coeflicients
considered here.

Of greater significance is the difference in transit times between the albumin and globulin
tracers. In all cases, the globulin tracer reaches 50 % of its steady-state value in a significantly
shorter time than the albumin tracer, even when both tracers are subject to the same boundary
conditions (and hence achieve the same ultimate outlet concentrations), and despite the fact that
the globulin interstitial diffusivity is less than that of albumin. For example, when 8- is 0.90 and
assuming globulin boundary conditions, the tgoy for the globulin tracer is 1.636, compared to a
tsoy of 2.115 for the albumin tracer. Therefore, only two model parameters remain to account
for this difference in transit times: the tracer distribution volume and interstitial diffusivity.

These are investigated separately below.
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Figure 6.1: The breakthrough curves for various values of 8-£ are shown (I) for glob-
ulin, assuming globulin boundary conditions; (II) for globulin, assuming albumin
boundary conditions; (III) for albumin, assuming albumin boundary conditions;
and (IV) for aibumin, assuming globulin boundary conditions. In each case the
top (chain-dot) curve corresponds to f3- £ equal to 0.90, the middle (dotted) curve
corresponds to - £ equal to 0.50, and the lower (solid) curve corresponds to §-¢
equal to 0.16 for globulin and 0.21 for albumin.
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Tracer &8 tso% ts0%
Assuming Albumin B.C. Assuming Globulin B.C.

0.21 2.355 2.349
Albumin 0.50 2.254 2.247
0.90 2.119 2.115
0.16 2.064 2.057
Globulin  0.50 1.853 1.849
0.90 1.639 1.636

Table 6.2: Transit times of Albumin and Globulin tracers as functions of §-{ and
the capillary wall transport properties. '

6.5.2 The Effect of Tracer Distribution Volume on Globulin Transit Times

Table (6.3) shows the t;gy for the globulin tracer assuming a distribution volume of first 0.50 and
then 0.68, and compares these values to the tzqy for albumin (which has a distribution volume
of 0.68). In each case globulin boundary conditions prevail. The breakthrough curves for these
cases are illustrated in Figure (6.2). The increase in globulin distribution volume results in a
dramatic increase in the transit time for that tracer. In fact, when both the globulin tracer’s
distribution volume and - ¢ equal those of the albumin tracer, the tggy for the globulin tracer
exceeds the tggy for the albumin tracer, due to the globulin tracer’s lower interstitial diffusivity.
Assuming a f - £ of 0.50, for example, the tygy for globulin increases by 29 %, from 1.853 to
2.394, as the tracer’s distribution volume is raised from 0.50 to 0.68. This is to be compared
to the tzqy of 2.247 for the albumin tracer at the same - £ and a distribution volume of 0.68.

The rise in transit time accompanying the increase in distribution volume is attributed to

the increased capacity of the interstitium to contain the given tracer. Altering the distribution

volume from 0.50 to 0.68 represents a 36 % increase in the interstitial volume available to the

globulin tracer. It is not surprising, then, that an increase in the distribution volume leads to a
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E - B {50% E50% E50%
n8l°b = 0.50 n®°P = (.68 Albumin Tracer

0.16 2.064 2.607 2.355"
0.50 1.853 2.394 2.254
0.90 1.639 2.177 2.119

* evaluated at 8- £ = 0.21

Table 6.3: The effect of interstitial distribution volume on the transit time of a glob-
ulin tracer through the interstitium. The last column of values presents the transit
times for the albumin tracer assuming the same capillary boundary conditions as
those for the globulin tracer, and assuming that the distribution volume of the
albumin tracer equals 0.68.

concomitant rise in the length of the transient for a given tracer, since the tracer must fill the
available interstitial space before steady-state conditions prevail. '

This finding offers an alternative mechanism for the ‘gel chromatographic effect’ discussed
in Chapter 3. Recall that some experimental data suggests that, in certain instances, larger
probes pass through the interstitial space more rapidly than smaller ones [48]. To date, only one
paper has addressed this phenomenon from a theoretical standpoint [104]. In that work, the
authors assumed that the interstitium contained a ‘free-fluid phase’, in which macromolecules
moved by cdnvection and diffusion, and a ‘gel phase’, in which the transport of macromolecules
was limited to restricted diffusion alone. Assuming, then, that the larger molecules were limited
to the free-fluid phase while smaller molecules penetrated both phases, the transit time through
the interstitium for the smaller tracer could conceivably exceed that of the larger probe.

As was mentioned in Chapter 2, the concept of continuous, distinct free-fluid and gel phases
lacks solid evidence. Macromolecular exclusion, on the other hand, is well documented (see,
for example, [13]). Hence this latter mechanism for the ‘gel chromatographic effect’ requires no

additional assumptions regarding the structure of the interstitium, and so is preferred over the



Chapter 6. A Preliminary Study of Tracer Transport through the Interstitium 161

‘gel phase — free-fluid phase’ mechanism of Watson and Grodins {104]. It is also conceivable that
variations in the convective hindrances for various macromolecular species may, under certain
conditions, create conditions for the gel chromatographic effect, as described in Chapter 3.

Again, this mechanism does not rest on a ‘gel phase — free-fluid phase’ model of the interstitium.

6.5.3 The Effect of Interstitial Diffusivity on Albumin Transit Times

Finally, consider the effect of interstitial diffusivity on the transit time of the albumin tracer
through the interstitium. Table (6.3) presents tgoy for the various values of 8 - £, assuming
three different values of D2®: 0.58 x 10~7 cm?/s (i.e., equal to Dfﬁ?b), 1.0 x 10~7 cm?/s, and

1.5 x 107 cm?/s. The breakthrough curves are shown in Figure (6.3).

E - B E50% E50% 'Eso%
Dt = 0.58 x 1077 cm?/s D%P = 1.00 x 107 cm?/s D2 = 1.50 x 10~7 cm?/s

0.21 2.564 2.349 2.246
0.50 2.389 2.247 2174

0.90 2.173 2.115 ' 2.081

Table 6.4: The effect of interstitial diffusivity on the transit time of an albumin
- tracer through the interstitium.

In general, varying the interstitial diffusivity according to these amounts had only a small

to moderate effect on the value of tggy for the albumin tracer. For example, increasing the

diffusivity from 0.58 x10~7 cm?/s to 1.0 x1077 cm2/s, assuming a 8- £ of 0.50, reduced f5q9, by
less than 6 %. Further increases in the tracer diffusivity had an even less pronounced effect on
the transit time of the macromolecule. For example, increasing the diffusivity of the albumin
tracer from 1.0 x 107 ¢cm?/s to 1.5 x10~7 cm?/s, at a B - € of 0.50, only dropped tsgy by
an additional 3.2 %. This trend was observed for all values of 3 - £ considered in the study.

Furthermore, even at the higher diffusivity, the transit time for the albumin tracer exceeded
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the transit time for the globulin tracer for all values of 8- £ investigated. Within the limits of
this study, then, it appears that interstitial diffusion has less impact on the transit time of an

interstitial macromolecule than does the interstitial distribution volume of that species.
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Figure 6.2: The breakthrough curves for various values of 8-¢ and globulin boundary
conditions are shown (i) for albumin; (ii) for globulin, assuming a distribution vol-
ume of 0.50; and (iii) for globulin, assuming a distribution volume of 0.68. In each
case the top (chain-dot) curve corresponds to 3-{ equal to 0.90, the middle (dotted)
curve corresponds to - equal to 0.50, and the lower (solid) curve corresponds to
B - £ equal to 0.16 for globulin and 0.21 for albumin.
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Figure 6.3: The breakthrough curves for albumin, assuming various values of 8- ¢,

are shown for (i)

alb __
Deﬂ' -

0.58 x 10~7 cm?/s, (ii) D2 = 1.00 x 107 cm? /s, and (iii)

D:lﬂt-’ = 1.50 x 10”7 cm?/s. In each case the top (chain-dot) curve corresponds to
B - £ equal to 0.90, the middle (dotted) curve corresponds to 8- £ equal to 0.50, and

the lower (solid) curve corresponds to 8- £ equal to 0.16 for globulin and 0.21 for
albumin.



Chapter 6. A Preliminary Study of Tracer Transport through the Interstitium 165

6.6 Concluding Remarks

This chapter presented the results of a preliminary study that investigated the effects of intersti-
tial convection and diffusion, interstitial distribution volume, and capillary transport properties
on the transit times of two macromolecular tracers representative of albumin and 4 — globulin

for a specific set of interstitial fluid flow conditions. The findings are summarized below.

1. As to be expected, the transit time of the tracers varied inversely with the degree of

convective transport within the interstitium.

2. Increasing the interstitial diffusivity of the albumin tracer also led to a moderate decrease

in the transit time for that tracer.

3. The capillary transport properties had only a marginal effect on the transit times of
the tracers, for the range of capillary permeabilities and reflection coefficients consid-
ered. However, these properties (and, in particular, the reflection coefficient) had a more

pronounced effect on the ultimate steady-state concentration in the outlet stream.

4. The interstitial distribution volume of a given tracer had the greatest influence on the
time required to achieve steady-state. This is attributed to the increased filling times
associated with the larger interstitial distribution volumes. These findings suggest that
the ‘gel chromatographic effect’ [48] observed in some tissues could possibly be explained
on the ba.sis of varying distribution volumes, rather than the hypothetical ‘gel phase -
free-fluid phase’ model proposed by Watson and Grodins [104].

Clearly, much more experimental and theoretical research is needed before the interstitial
transport of multiple tracer species can be well characterized. However, this study suggests that
the relative transport rates of different macromolecules is governed by a number of interstitial
properties, including the interstitial distribution volume. This may ultimately bear clinical

import, particularly in the use of macromolecular carriers for drug delivery.



Chapter 7

Summary of Conclusions

In this dissertation, mathematical relationships are developed to describe the transient flow and
distribution of fluid and various macromolecular solute species within the interstitium, yielding a
system of coupled, nonlinear partial differential equations. The resultant mathematical model
describes the combined effects of a number of interstitial properties (such as exclusion and
swelling characteristics) and transport mechanisms (such as solute convection, diffusion, and
dispersion) on mass transport within the interstitium.

Despite the complexity of the model, it is limited in several respects. First, the description of
interstitial deformation applies to small strains only (on the order of ten percent), and so is not
suited to analyzing extreme cases of edema formation. Further, the model uses a compliance
relationship to characterize swelling which assumes that any change in volume is a function |
of the interstitial hydrostatic pressure. It therefore neglects the influence of shear stresses on
interstitial deformation. However, since the model concerns itself primarily with the effect that
swelling has on the various transport properties and material characteristics of the interstitial
space (such as the hydraulic conductivity, effective diffusivities, and various distribution volume
fractions), rather than a descriptic.)n‘ of the deformed geometry of the interstitium, this approach
provides a reasonable first approximation to the complete theory of deformation for porous
systems developed by Biot [19]. The use of Biot’s theory to describe interstitial swelling must
await further experimentation to quantify the material properties of the various interstitial
components.

Interstitial fluid flow is assumed to be proportional to the gradient in fluid chemical poten-

tial alone, thus neglecting any coupling between fluid flow and solute chemical potential, for

166



Chapter 7. Summary of Conclusions 167

example. However, the theory developed here could be modified to include thesé additional
effects, given better information about the nature of fluid transport within the interstitium.
Further research in the area of fluid flow within osmotically active, partially restricting matri-
ces is therefore needed. However, because the interstitial fluid flow expression presented here
includes the influence of colloid osmotic as well as hydrostatic pressure gradients, it is considered
more general than that offered in previous models (87, 36, 22].

Despite these limitations, the model of Chapter 3 provides a far more comprehensive de-
scription of interstitial transport than that offered by any of the previous models to appear in
the literature. Its strength lies in the general, self-consistent, and self-contained nature of the
mathematical formulation. It therefore provides a framework in which to further understand
the interstitium and its role in microvascular exchange.

Subsequent chapters of the digsertation have used simplified versions of the general model
to conduct theoretical investigations of microvascular exchange under normal and pathological
states. In Chapter 4, for example, the model is used to describe the steady-state exchange
of fluid and plasma proteins in mesenteric tissue, which is treated as a two-dimensional, rigid
system. This tissue was selected both for its simple geometry and because it is a popular tissue
for experimental studies of interstitial transport and microvascular exchange. The array of
plasma protein species found in vivo was approximated by a single, ‘aggregate’ species that
displayed average properties.

The simulations of Chapter 4 indicate that convective transport of plasma proteins is sig-
nificant, even at reduced values of convective hindrance, £. This supports a recent study of the
movement of labelled albumin in rat mesentery suggesting that convection plays a significant
role in interstitial plasma protein transport within that tissue [74]. However, the simulations
also show that exact nature of interstitial plasma protein transport cannot be determined from
protein distributions alone.

The model predictions also reveal that the hydrodynamics within the interstitial space can
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be complex, resulting, for example, in the development of fluid recirculation patterns. The hy-
drodynamics can also lead to irregularities in the distribution of fluid and plasma protein fluxes
across a permeable boundary, such as the mesothelium, even when the boundary’s transport
properties are uniform. This behavior, which is strongly influenced by the transport properties
of the mesothelial layer, could lead to the erroneous identification of ‘leaky sites’ within the
system.

Finally, the model predicts significant interstitial osmotic pressure gradients in some in-
stances, suggesting that the Darcy expression evoked in a number of previous models |22, 36, 87],
that considers hydrostatic gradients only, is inadequate for describing interstitial fluid transport.

The analysis of Chapter 4 is extended to transient perturbations in Chapter 5. Again, a
rigid model of mesenteric tissue is used although, in this case, the two-dimensional tissue is
replaced by a one-dimensional analogue. Two systemic perturbations are considered: namely
hypoproteinemia and venous congestion.

The simulations of Chapter. 5 demonstrate that, assuming a permeable mesothelium, the
trends in fluid and plasma protein exchange can be anticipated by considering the effect that a
particular upset has on the effective chemical potential of the luminal fluids. In these instances
the interstitium is not the major resistance within the system, due to by-passing. However, when
the mesothelium is impermeable, fluid and plasma proteins must cross the entire interstitial
space in their journey from the filtering vessel to the re-absorbing vessel, so that the interstitium
comprises a large fraction of the system’s total resistance to mass exch_g.pge. In these cases
the distribution of interstitial plasma proteins plays a greater role in determining the overall
behavior of the system.

The simulations indicate further that, following hypoproteinemia, interstitial plasma protein
content decreases, while the rate of fluid exchange within the tissue increases. This is in keeping
(qualitatively, at least) with clinical observations of hypoproteinemia. In the case of venous
congestion, however, the change in interstitial plasma protein content depends, in part, on the

relative sieving properties of the filtering and draining vessels. When the reflection coefficients
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of these two sets of boundaries are similar, the interstitial plasma protein content increases
due to the increased plasma protein exchange rate across the filtering boundaries and sieving
of interstitial plasma proteins at the draining boundaries. This effect is further supported by
the clinical observation that interstitial plasma protein content in liver increases during venous
congestion. Since this tissue is serviced by sinusoids, the sieving properties of the filtering blood
vessels and the draining lymphatic vessels are similar. The simulations also predict that, as
the reflection coefficient of the draining boundaries decreases relat.ive to that of the filtering
boundaries, there is a net loss of plasma proteins from the interstitium, resulting in a decrease
in the total interstitial plasma protein content over time (i.e., the familiar ‘plasma protein
washout’).

In Chapter 6 a one-dimensional model of a hypothetical tissue was used in a preliminary
study investigating the effects of interstitial plasma protein convection and diffusion, plasma
protein exclusion, and the capillalry transport properties on the transit times of two macro-
molecular tracers representative of albumin and y-globulin. As was expected, the transit times .
of each of the tracers through the model tissue varied inversely with the degree of convective
transport. Increasing the interstitial diffusivity of the albumin tracer also led to a moderate
décrease in the transit time for that tracer. The capillary wall transport properties, meanwhile,
had only a marginal effect on the transit time for the range of capillary permeabilities and
reflection coefficients considered. However, these properties (and, in particular, the reflection
coefficient) had a more pronounced effect on the ultimate steady-state concentration of the
tracer in the outlet stream.

It was the interstitial distribution volume of a given tracer that had the greatest impact on
the time required for the outlet tracer concentration to reach 50 % of its steady-state value. .
This was attributed to the increased filling times associated with larger interstitial distribution
volumes. These ﬁndingé suggest that the ‘gel chromatographic effect’ [48] observed in some
tissues could possibly be explajned on the basis of varying distribution volumes, rather than

the hypothetical ‘gel phase - free fluid phase’ model proposed by Watson and Grodins [104].
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Finally, in Appendix C, we investigate the possible influence of mechanical dispersion on
mass exchange within the model tissue. While it influenced the distribution of intersﬁtial
plasma proteins to some extent, mechanical dispersion had less impact on the overall exchange
of fluid and plasma proteins within the system.

Clearly, much more experimental and theoretical research is needed before the interstitial
transport of fluid and multiple solute species can be well chéracterized. waever, it is hoped that
the work presented here offers some further insight into the mechanisms governing interstitial
transport and microvascular exchange. Continued research in this area will not only contribute
to a fundamental understanding of the operation of the microvascular exchange system, but will

assist clinicians in developing more effective techniques for fluid resuscitation and drug delivery.



Chapter 8

Recommendations

In the preceding chapters we investigated the combined effects of a number of system parameters
(such as the interstitial hydraulic conductivity, the interstitial plasma protein diffusivity, and
the plasma protein convective hindrance) on the steady-state and transient exchange of fluid
and various plasma protein species within a model tissue representative of mesentery. However,
many questions regarding the nature of the interstitium and its influence on mass exchange
within tissues remain unanswered. These include, among others, the effect of interstitial swelling
on microvascular exchange and the nature of interstitial fluid flow. To address these and other

questions, the analysis presented in this dissertation might be extended to include the following.

1. The equations describing interstitial deformation should be incorporated into the numer-
ical simulations to include the influence of tissue swelling on microvascular exchange.
Alternate expressions suitable for large changes in interstitial hydration should be sought

out and applied, where possible.

2. The analysis of mass exchange in mesentery should be extended to other tissue mod-
els. Such models would include, for example, a more rigorous description of lymphatic

drainage.

3. The effect of local gradients in interstitial colloid osmotic pressure én local interstitial
fluid flow should be investigated, possibly by introducing an ‘effective interstitial reflection
coefficient’ analogous to the capillary wall reflection coefficient into the extended Darcy
flux expression. However, a rigorous theoretical description of interstitial fluid flow is to

be desired over the introduction of an arbitrary parameter such as this.
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4. Finally, the preliminary study of the transient movement of multiple tracer species through
the interstitium should be expanded to consider other species having a broader range of

solute transport characteristics.



Nomenclature

SYMBOL  DESCRIPTION UNITS

A;,i=1,2,3 first, second, and third virial coefficients of colloid F.Li/M
osmotic pressure relationship for aggregate plasma protein species

Cb plasma protein concentration of luminal fluid associated M/L3

with boundary b

Ckd local concentration of plasma protein species k in incremental M/L3
volume fraction 1 (én')
Ck local concentration of plasma protein species k in species’ M/L3
distribution volume fraction (n*)
Cr Courant number
D permeability of membrane boundary to aggregate plasma ~ L/6
protein species'
Dy local dispersion coefficient of interstitial plasma protein species k L2/6
Dk: local effective diffusion coefficient of interstitial plasma protein species k L?/6
Fk function relating excluded volume fraction for plasma protein species
k to the solid volume fraction (n®)
F* function relating the immobile fluid phase volume fraction to
the solid volume fraction (n®)
Gk function relating the osmotic pressure of plasma protein species k
(T1*) to its concentration (Ck)
H mesentery thickness L
Hef effective resistance thickmess for one-dimensional mesentery L
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Nomenclature

SYMBOL

&

Jwi

KO
K’

DESCRIPTION

local convective flux of protein species k in x; direction, relative
to moving solids

local diffusive flux of protein species k in x; direction, relative
to convective flux

local mechanical dispersive flux of protein species k in x; direction,
relative to convective flux

transcapillary plasma protein flux

total local flux of plasma protein species k in x; direction,
transcapillary fluid flux

local volumetric fluid flux in x; direction through distribution
volume of protein species k, relative to the moving solids

local total volumetric fluid flux in x; direction, relative to
méving solids

local non-specific fluid flux in x; direction, relative to moving
solids

local interstitial hydraulic conductivity associated with distribution
volume of protein species k

local total interstitial hydraulic conductivity

local interstitial specific hydraulic conductivity

distance separating arteriolar and venular capillaries

hydraulic conductance of membrane boundary

xjth component of outward normal, n, of boundary

maximum dimension of finite element

unit outward normal of boundary

local distribution volume fraction of protein species k

local excluded volume fraction of protein species k
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UNITS
M/(L?-9)

M/(L%-6)
M/(L?-6)
M/(L?- 6)
M/(L?-6)
L/6

L/6

L/6

L/6
L*/(F - 6)
L*/(F - 0)
LZ

L
L3/F- 6



Nomenclature

SYMBOL

k
Rf

tot
Ri?

tot
Rd

DESCRIPTION

local total mobile fluid volume fraction

local immobile fluid volume fraction

local solid phase volume fraction

local fluid hydrostatic pressure in incremental volume fraction 1 (6n')
average local hydrostatic fluid pressure

Peclet number

local total volumetric fluid flux in x; direction, relative to
stationary coordinates

universal gas constant

retardation factor of plasma protein species k

effective hydraulic resistance of in y direction

for one-dimensional mesentery

effective diffusive resistance of in y direction

for one-dimensional mesentery

absolute temperature

time

time for breakthrough curve of species k to reach 50 %
of its steady-state value

local solid phase displacement in x; direction

partial molar volume of fluid in incremental volume fraction 1 (6n')
molar volume of pure fluid

local mean convective velocity of protein species k in x; direction,
relative to solid phase velocity (vs;)
local solid phase velocity

local superficial convective solute velocity
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UNITS

F/L?
F/L?

L/6

F/(MOL - T)

§-F/L3

6/L

L3/MOL
L3/MOL
L/6

L/6
L/8
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SYMBOL DESCRIPTION UNITS

Ved local superficial dispersive solute velocity L/6
w’rﬁi local mean fluid velocity in x; direction through distribution volume L/6

of protein species k, relative to solid phase velocity (vs;)
v ratio of particle velocity to local fluid velocity, for arbitrary spherical L/6

particle travelling in cylindrical channel

x4 local fluid mole fraction in incremental volume fraction 1 (én')

X; local spatial coordinate L
x! local spatial coordinate of deformed medium L
a ratio of interstitial resistance to plasma protein diffusion to

interstitial resistance to fluid flow (K°P®*/D.g)

a}‘ longitudinal dispersivity of protein species k in interstitium

ak transverse djsl;ersivity of protein species k in interstitium L

B* ratio of hydraulic conductivity in distribution volume k
to total interstitial hydraulic conductivity (K*/K°)

B ratio of immobile fluid phase volume fraction to solid phase volume
fraction (n'™/n®)

Tw fluid phase activity cc?efﬁcient

A difference sign

&5 Kronecker delta function

6n! incremental volume fraction 1

€ local solid strain in the x; direction

€y local volumetric dilation of interstitium

19%3 local coefficient of mechanical dispersion for protein species k L%/

A ratio of particle diameter to channel diameter for arbitrary

spherical particle travelling in cylindrical channel



Nomenclature

SYMBOL

Hw
He
B
£k
Hk,l

Hk

[T

DESCRIPTION

effective fluid chemical potential of luminal fluid associated with
boundary b

general solvent chemical potential

local chemical potential of fluid in incremental volume fraction 1 (6n')
reference fluid chemical potential

local convective hindrance of protein species k

local osmotic pressure of protein species k in incremental volume
fraction 1 (6n!)

local osmotic pressure of protein species k averaged over its
distribution volume fraction (n¥)

reflection coefficient of membrane boundary b

component of total stress tensor in interstitium

component of effective stress tensor in interstitium

finite element weighting function

solid displacement potential function

finite element basis function

interstitial compliance function

specific interstitial compliance function

interstitial quantity evaluated at boundary b

Superscripts and Subscripts

alb
anal
art

b

albumin
analytical solution of dependent variable
arteriolar capillary

unspecified permeable boundary
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UNITS
F /L2

F.L/MOL
F-L/MOL
F-L/MOL

F/L?

F/L?



Nomenclature -

Superscripts and Subscripts

glob
grid
int

lym

mes

sirmul
tot

ven

globulin

finite element grid quantity

interstitium

lymphatic

mesothelium

plasma

numerical simulation solution of dependent variable
total ‘effective’ quantity for one-dimensional mesentery
venular capillary

dimensionless quantity (see text for specific definitions)
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Appendix A

One Dimensional Approximation to the Two Dimensional Model Mesentery

A.1 Introduction

The mathematical model developed earlier to describe interstitial transport and microvascular
exchange in mesentery treats the tissue as a two—dimensional structure. However, the fact
that the distance separating the arteriolar and venular vessels is an order of magnitude greater
than the tissue thickness provokes the question: can the behavior of the tissue segment be
adequately described by a one-dimensional model. As initial evidence that this in fact is the
case, one need only examine the surface plots of interstitial fluid pressure and interstitial plasma
protein concentration from the two—dimensional simulation presented earlier (see Figure (4.5) of
Chapter 4). In this case the gradients in the transverse (y) direction are insignificant compared
to those in the longitudinal (x) direction. However, this represents the results of only one of
26 simulations. Hence a detailed study was undertaken to determine under what conditions a
one—dimensional description of the system would prove adequate.

The presentation will take the following form. In Section A.2 the mathematical expressions
describing interstitial fluid and plasma protein transport are developed. These equations, along
with the various boundary conditions, are then cast in dimensionless form. Section A.3 describes
the simulations performed in this study, while Section A.4 outlines the numerical procedures
used. In Section A.5 the results of the study are presented and the ramifications discussed.
Section A.6 summarizes the work. We will now develop the one—dimensional model of interstitial

transport in mesentery.
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A.2 One-Dimensional Approximations to the Two—Dimensional Equations

Consider the steady flow of fluid and plasma proteins through a thin, two—dimensional seg-
ment of mesenteric tissue (see Figure (4.1) of Chapter 4). The interstitium is assumed to be
homogeneous and isctropic. In addition, it is assumed that variations in the y—direction can
be neglected, so that the analysis is reduced to one spatial dimension. We will now develop ex-
pressions for the conservation of fluid mass and plasma protein content within the interstitium,

given this simplification.

A.2.1 Conservation of Fluid Mass

Jus - bx
. :0
H I bx A
jg‘f -6x

Figure A.1: A schematic diagram of a one-dimensional segment of mesenteric tissue
of thickness H and differential length éx showing the various fluid fluxes.

Figure (A.1) is a schematic diagram of a differential element of interstitium of length éx and
thickness H. The upper and lower boundaries of the element consist of segments of mesothelium
that are permeable to both fluid and plasma proteins. Let j?vx be the fluid flux in the x—direction
at some position x in the interstitium. Furthermore, let j5<* represent the fluid flux crossing

either of the two mesothelial segments and entering the peritoneum at that same point. A
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material balance on the fluid within the volume element gives
He [, -8, - 252 dx=0. (A.1)
Rearranging Eq. (A.1) and taking the limit as éx — 0 gives
dj¢ 2

a5 + " iweE =0 (A.2)

The local fluid flux is related to the local hydrostatic and colloid osmotic pressures in the
available space, P! and II' respectively, via an extended Darcy relationship:

d(p! - 1)
-0 0

=K'= =7 A.

j = (A.3)
The fluid exchange rate between the interstitium and the peritoneum, meanwhile, is described

by Starling’s Law:
= e [P e oo (1 o) (r

Substituting Egs. (A.3) and (A.4) into Eq. (A.2) then gives

&*(p-m') 2Lg=
dx? " THKO

[Pt — P — omes (0 — 1) | = 0. (A.5)

‘Equation (A.5) provides an expression for the hydrostatic pressure distribution in the ac-
cessible space as a function of the interstitial material properties, the mesothelial boundary
parameters, and the interstitial colloid osmotic pressure distribution. This latter distribution
can be related to the plasma protein distribution in the accessible space through a colloid

osmotic relationship. It is assumed here that
2 3
I = A; (C) + A, (CY) " + A5 (CF)7, (A.6)

where Aj, Ao, and A3 are constants.

A.2.2 Conservation of Interstitial Plasimna Proteins

Consider once more a differential element of interstitiuin (see Figure (A.2)). Letj., represent

the convective flux of plasma proteins through the accessible space and in the x—direction at
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Figure A.2: A schematic diagram of a one-dimensional segment of mesenteric tissue
of thickness H and differential length §x showing the various plasma protein fluxes.

some point x in the interstitium. Let jq, be the dispersive flux of plasma proteins through that
space and in the x—direction at that same point. Finally, le.t jo* be the local flux of plasma
proteins from the accessible space to the peritoneum crossing one of the mesothelial segments
at that point.

A material balance on the plasma proteins within the differential element under steady—state
conditions gives

H - [ia, = Japen +iex = denses] = 2732 - 8x = 0. (A7)

In the limit, as éx — 0, Eq. (A.7) becomes

d(.]c + Jd) 2 :mes __
& +H e =0. (A.8)

The local convective flux, j, is related to the local fluid flux, j%, by
je=¢-B-J%-Ch (A.9)

The local dispersive flux, jq, is given by Fick’s Law:

d 1
ja=-n* Dy S C (a0)
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where the coefficient of mechanical dispersion, Dg, is (see Appendix C)
. - '0
Dqg = %w—l -1 + Deg. (A.ll)

Finally, we will assume that the flux of plasma proteins crossing each of the mesothelial bound-

ary segments, j°°, is given by the nonlinear flux equation. That is,

[Cl _ Cmcsex.p(_Pemes )]

e = (1= ome) g S (412)
where
Pe™ = (L—Um—a)‘]x‘:":s— (A.13)
Drmes
Equation (A.8) then becomes
¢.p. 30w -C) (jeéj'{cl) —nl-% (Dd . %Cl) +13{ (1= g™es). jmes. [Cl[zf’:;e(x_l’l();f:;ﬁ)] = 0. (A.14)

That is, the sum of the net convective plasma protein flux per unit volume of iﬁterstitium, the
net dispersive flux of plasma proteins per unit volume of interstitium, and the net exchange of
plasma proteins between the interstitium and the peritoneum, per unit volume of interstitium,
equals zero at steady-state.

The differential in the convective term may be expanded as follows:

djw - C1 _ o dCT o diw

Similarly, the diffusive term may be expanded to give

d dc? dDg dC? d2Ct
&(Dd' dx>- & ax TP (4.16)
However, Dq may be related to the fluid flux, j%, via Eq. (A.11), so that
. 8- ;0

dx nl! dx
Equation (A.17) further assumes that £, 8, n?, Des, and o are all spatially invariant. However,
according to Eq. (A.2) dj%/dx is equal to —2j2*/H. Hence Eq. (A.15) becomes

w2 50 TY ol 2 smes 1
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Substituting Eq. (A.18) into the convective term of Eq. (A.14) and Eq. (A.17) in the diffusive

term, the final form of the solute transport equation becomes

o dC' 2 . 2C' £/ dlR] 4c
. ) 0 v _ ZrMiimes{ 1 A wi
2 mes \:mes [Cl - Cmcsexp(_Pems)] -
+ H . (1 -0 )Jw [1 — e (_Pemes)] =0. (Alg)

A.2.3 Boundary Conditions

A complete description of fluid and plasma protein transport within the interstitium requires
expressions for fluid and plasma protein exchange at each of the arteriolar and venular capillar-
ies. These boundary conditions are the same as those for the two—dimensional system analyzed

earlier. That is,

I [ ) R e
and - ' . .
Cl}, — CPexp(-Pe
L S e L
where '
peo = L= iy b (A.22)

Db ’
and where [-]p, represents an interstitial parameter evaluated at a point adjacent to the boundary

b.

A.2.4 Non-Dimensional Form of the Equations

The set of coupled, ordinary differential equations developed above can 't;e recast in dimen-
sionless form by introducing the following dimensionless parameters: P = P/P=t C = C/C®",
T =1/P*, £ = x/L, H = H/L, a = (K- P*)/Deq, § = K'/K®, 7 = (€Ba))/(Ln’), J5, =
J%L/Degr, Ja = jaL/(DerC™), je = jcL/(DeaC™), ju=* = j=L/Desr, & = /L, Da = Da/Des,
Ay = Ay Cot/Pet Ay = Ay - (C*)2/P, Ay = Ag - (C*)*/P*, LE = (L} - L)/K°, and

D® = (D®-L)/Deg. The equations then take the following form.
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1. Fluid Transport within the Interstitium:

Lttt O Zige [P - e e (- )] =0, (A2
i =4 (0") +4,(¢)" +4: (¢")°, (A.24)
i = —ad(Pld; ) (A.25)

2. Plasma Protein Transport within the Interstitium:

- - %0 -
€8 jg.%_%.jgms.cl} —nl. [f)d. ddzg +.,.d(l§| . dd(;l +
9 ey mes [Cl — Cm“exp(—f’ema)] B
+ 7 (1— ™). j= [1 - exp(—Pem”)] =0, (A.26)
je=¢-8-35-C, (A.27)
ja=-n'-Da- %’ (A.28)
o = a e [PY - P g (I - )] (A-29)
3. Boundary Conditions:
8] gy (e, pe- o (], -1), o
.. : ( Cl| — CPexp _Pe’

e +3a], = (1-0%) - [i2], e | (]1"_ - (—P(e")) )) (A31)
Pe” = (1~ Ub)-' ], (A.32)

Equations‘(A.23) through (A.32) fully describe the system.
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A.2.5 Influence of the 1-D Approximation on Characterizing the Mesothelial

Transport Properties

The equations developed earlier provide a one—dimensional approximation to the two—dimensional
equations describing fluid and plasma protein transport within a segment of mesenteric tissue.
The validity of this simplification rests on the assumption that variations in the transverse
(y) direction are negligible. However, a further consequence of this simplification is that the
resistance of the interstitium to fluid and plasma protein transport in the transverse direction
is ignored. This presents no real problem, provided that the permeable boundaries, and not
the interstitium, are the major sources of resistance to mass exchange. However, should the
interstitial resistance to fluid and plasma protein transport be significant, the hydraulic conduc-
tance and permeability of the mesothelial layer, L7"® and D™ respectively, must be reduced
in the one-dimensional case to account for the contribution of the interstitium to the overall
resistance of the system in this direction.

Let Hff be the effective thickness of the interstitium which contributes to the overall re-
sistance to transport in the transverse direction. Given the symmetry of the system about
the longitudinal axis of the interstitium, then H/2, the half-thickness of the tissue, serves as
an upper bound to H*. However, Hf will in fact depend on the hydrodynamics within the
tissue itself. For example, should the majority of fluid and plasma proteins be transported
within a fraction of the total tissue thickness, H*¥ will be less than H/2. The magnitude of H
can therefore only be determined by first investigating mass transport in the two-dimensional
system.

Suppose that the effective tissue thickness is known. The resistance of the interstitium to

fluid flow, Ri™, is then given by
Hcﬁ'

nt __
Rw - Ko)

(A.33)

where K is the hydraulic conductivity of the interstitial space. The resistance of the mesothelial
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layer, R7*, on the other hand, is
1
RY® = — (A.34)

~ Tmes"®
LP

The total resistance to fluid flow in the transverse direction is given by the sum of these two:
Rit = RX* + RT™. (A.35)

The total hydraulic conductivity of the system in the transverse direction, Li*, is then given
by .
1

Ly = f- (A.36)

The same argument can be applied to the resistance to protein diffusion in the transverse

direction. For example, the resistance of the interstitium to plasma protein diffusion, Rg‘t is

RiM = Rl (A.37)
d - nl Dd, .

where, as before, Dgq is the dispersion coefficient. The resistance associated with the mesothelial

boundary, meanwhile, is

1
i = =—. A.
RY Dmes . (A.38)
The total resistance to diffusion, RY* is then
R = Rift 4 R, (A.39)

while the system’s total transverse permeability to plasma proteins, D', is given by

1
tot
D = -

(A.40)

Since the dispersion coefficient is linked to the fluid flow, the interstitial resistance to diffusion
will vary with the hydrodynamics of the interstitium. If mechanical dispersion is negligible
compared to molecular diffusion, Dy can be replaced by Dz in Eq. (A.37). (Note that, in the
numerical analysis that follows, mechanical dispersion is neglected so that Dg reduces to D,

the coefficient of molecular diffusion.)
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The above analysis fails to consider the additional effect of convective retardation on the
plasma protein transport properties of the mesothelium in the one—dimensional approximation.
Presumably, the influence of the retardation factor can be accounted for by adjusting the
reflection coefficient of the mesothelium. The exact way in which this can be described is
unclear. Initially, one might assume that if £ - 8 is less than (1 — ¢™), the former replaces the
latter. However, this fails to consider the possibility of a change in plasma protein transport
mechanisms at the boundary itself. In the extreme case, 6™ and { might both equal 0.
Hence, plasma protein transport would be restricted to diffusion alone in the interstitium,
while considerable convective transport might take place across the mesothelial layer. The
matter of adjusting 0™ in the one-dimensional case will therefore be left unresolved at this

time.

A.3 Case Studies

The various parameters associated with the .one—dimensiona.l model were assigned the same
values as those used in the two-dimensional simulations. A 3 x 3 x 3 factorial study was
performed as before, with a varying as 0.09117, 0.9117, and 9.117, £ assuming values of 1.0, 0.5,
a.ﬁd 0.0, and where the mesothelial transport properties varied according to boundary condition
1, boundary condition 2, and boundary condition 3 outlined previously (see Chapter 4).

Four additional simulations were perfofmed to study the influence of the interstitial resis-
tance in the transverse direction, discussed in Section A.2, on microvascular exchange in the
tissue segment. In these latter simulations a assumed a value of 9.117 and the mesothelial
transport properties were defined by boundary condition 3 — the mesothelium’s most perme-
able state. £ was assigned values of 0.5 and 0.0. (An £ value of 1.0 was not considered since no
two—dimensional simulation was available for comparison.) Two values of He were considered:
1.5x 1072 cm (ie., %he tissue half-thickness) and 1.5 x 10™* cm. These corresponded to a total

hydraulic conductivity in the y-direction, Ly, of 2.04 x 107 cm?®/(dyne-s) and 1.79 x 1077
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cm®/(dyne-s), respectively, while the total transverse plasma protein permeability, D**!, as-
sumed values of 2.28 X 107® cm/s and 2.39 x 10~® cm/s, respectively. These ‘effective values’

of hydraulic conductivity and permeability were then used to characterize the mesothelium.

A.4 Numerical Procedures

The numerical procedure used to solve the two—dimensional problem was applied to the one-
dimensional system as well. Again, the finite element method was emploved, with second-
order Lagrange polynomials serving as basis functions. The tissue domain was divided into 25
elements resulting in a system of 51 nodal points. Nodal values of P! and C! were determined
iteratively. A tolerance of 10~ served as the criterion for convergence (see Section 4.4 of
Chapter 4 on numerical procedures for the two—dimensional simulations for details).

Global material balances on fluid and plasma protein exchange were performed to verify the

numerical solution. In all cases the material balances were accurate to within 0.005 percent.

A.5 Results and Discussion

A.5.1 General Comparison of the 1-Dimensional and 2-Dimensional Simulations

Panels i through ix of Figure (A.3) yield the profiles of the total plasma protein concentration,
Ct, as a function of position % for each of the 27 1-dimensional simmlations. Recall that the
total concentration is related to the concentration in the accessible space, C2, by

1
- n =1

Ct = '(T-:n—s) . ) (A41)

where n! and n® are accessible phase volume fraction and the solid phase volume fraction,
respectively. Each panel of Figure (A.3) contains three curves corresponding to the three
values of a considered, as in the concentration plots from the' 2-dimensional simulations (see
Figure (4.9) of Chapter 4). In each case H*¥ is assumed to be zero. Comparing the curves from
the 1-dimensional simulations to the corresponding curves from the 2—dimensional simmlations,

it is clear that, for the most part, the curves closely resemble one another.
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Figure A.3: The dimensionless total concentration, Ct, as a function of dimension-
less position, X. The nine plots correspond to the nine different combinations of
boundary conditions (columns) and values of { (rows) studied. Each plot contains
three curves corresponding to the three values of a considered (i.e., the solid line
corresponds to a equal to 0.09117, the dotted line corresponds to a equal 0.9117,

and the chain-dot line corresponds to a equal to 9.117).
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!

One exception to this is the case where £ equals 1.0, e is 9.117, and the mesothelial transport
properties are defined by boundary condition 2. The plot from the 1-dimensional simulation
reveals a sharper peak in the total concentration than the corresponding curve from the 2-
dimensional simulation. This discrepancy is attributed largely to the finer grid density, and
hence the greater definition, in the 1-dimensional simulation. At the very least, the two curves
show good qua]jtative agreement. The similarity is further substantiated when we consider the
distribution of fluid and solute fluxes crossing the mesothelium predicted by the two simulations.
Panel i of Figure (A.4) corresponds to the 1-dimensional simulation, while panel ii corresponds
to the 2-dimensional simulation.

Other significant differences in the concentration profiles predicted by the 1-dimensional
and 2—-dimensional simulations are restricted to those cases for which the mesothelial transport
properties are given by boundary condition 3. The differences are most pronounced in the
vicinity of the arteriolar and venular walls when a is 9.117. However, these discrepancies will
be fully addressed in Section A.5.2.

The average fluid and solute fluxes across each of the permeable boundaries predicted by
the 1-dimensional simulations are compared to those from the 2-dimensional simwulations in
Table A.1 and Table A.2, respectively. With exception of those simulations associated with
boundary condition 3, the 1-dimensional model predictions and 2—dimensional model predic-
tions are in close agreement. Consider, for example, the fluxes across the arteriolar wall for
boundary condition 1 and 2. In all cases the fluid and solute fluxes predicted by the two models
agreed to within 6.6 percent of each other, and generally agreed to within 4.6 percent. Simi-
larly, the ratio of the average convective protein flux to the average diffusive protein flux in the
vicinity of the arteriolar wall differed by no more than 4.6 percent (see Table A.3). A compar-
ison of the one-dimensional and two-dimensional model predictions assuming the mesothelial

boundary condition 3 follows.
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Figure A.4: The mesothelial fluid and plasma protein flux distributions, assum-
ing £ is 1.0, o is 9.117, and the mesothelial transport properties are given by
boundary condition 2, are shown for the one-dimensional model (panels i) and the
two-dimensional model (panels ii).
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13 a Boundary Condition 1 Boundary Condition 2 Boundary Condition 3
Art Ven Mes Art Ven Mes Art Ven Mes

1.0 0.09117 -0.04 0.04 — -0.22  0.06 0.01 -0.31  0.09 0.01
1.0 009117 -0.40 040 — -2.30 0.63 0.08 -2.87 0.65 0.11
1.0 9117 -449 449 — -25.16 6.84 0.92 No Convergence
0.5 0.09117 -0.04 0.04 — -0.22  0.06 0.01 -0.31  0.09 0.01
0.5 09117 -0.37 0.37 — -2.26 0.61 0.08 -2.87 0.66 0.11
0.5 9117 -4.30 4.30 — -2490 6.46 0.92 -26.14 2.47 1.18
0.0 0.09117 -0.03 0.03 — -0.22  0.06 0.01 -0.31 0.09 0.01
0.0 09117 -0.34 0.34 — -2.21  0.60 0.08 -2.86 0.66 0.11
0.0 9117 -242 242 — -20.20 5.70 0.72 -25.58 2.92 1.13
3 a Boundary Condition 1 Boundary Condition 2 Boundary Condition 3

Art Ven Mes Art Ven Mes Art Ven Mes

1.0 0.09117 -0.04 0.04 — -0.23 0.06 0.01 -0.38 0.12 0.01
1.0 09117 -0.40 040 — -2.39  0.66 0.09 -3.55 0.76 0.14
2 1.0 9117 -4.49 449 — -26.83 7.03 0.94 -33.06 2.25 1.54
0.5 0.09117 -0.04 0.04 — -0.23  0.06 0.01 -0.38  0.12 0.01
0.5 09117 -0.37 0.37 — -2.35  0.64 0.09 -3.56 0.78 0.14
05 9117 -4.30 4.30 — -25.64 6.69 0.95 -33.17 247 1.53
0.0 0.09117 -0.03 0.03 — -0.23  0.06 0.01 -0.38 0.12 0.01
0.0 09117 -0.34 0.34 — -2.31  0.63 0.08 -3.57 0.80 0.14
0.0 9117 -242 242 — -21.53 6.05 0.77 -33.23 3.19 1.50

Table A.1: The upper table presents the average dimensionless fluid fluxes across the
various permeable boundaries assuming a two-dimensional model of the mesentery.
The same data is shown in the lower table for the case of a one-dimensional model
of the tissue segment. A negative value indicates a fluid flux entering the interstitial
space, while a positive value denotes a flux leaving the interstitium.
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¢ a Boundary Condition 1 Boundary Condition 2 Boundary Condition 3
Art Ven Mes Art Ven Mes Art Ven Mes

1.0 0.09117 -0.005 0.005 — -0.034 0.000 0.002 -0.046 0.001 0.002
1.0 09117 -0.060 0.060 — -0.345 0.069 0.014 -0.430 0.029 0.020
1.0 9117 -0.673 0.673 — -3.774 0396 0.169 No Convergence

0.5 0.09117 -0.005 0.005 — -0.034 -0.000 0.002 -0.046 -0.001 0.002
0.5 09117 -0.056 0.056 — -0.339 0.064 0.014 -0.430 0.029 0.020
05 9.117 -0.645 0.645 — -3.736 0.512 0.161 -3.920 0.130 0.189
0.0 0.09117 -0.005 0.005 — -0.034 -0.000 0.002 -0.046 0.001 0.002
0.0 09117 -0.051 0.051 — -0.332 0.060 0.014 -0.430 0.028 0.020
0.0 9.117 -0.364 0.364 — -3.030 0433 0.130 -3.840 0.144 0.184
£ a Boundary Condition 1 Boundary Condition 2 Boundary Condition 3

Art Ven Mes Art Ven Mes Art Ven Mes

1.0 0.09117 -0.005 0.005 — -0.035 0.000 0.002 -0.058 0.001 0.003
1.0 0.9117 -0.060 0.060 — -0.358 0.072 0.014 -0.533 0.034 0.025
1.0 9117 -0.673 0.673 — -3.874 0395 0174 -4.959 0120 0.242
0.5 0.09117 -0.005 0.005 — -0.035 0.000 0.002 -0.058 -0.001 0.003
0.5 09117 -0.006 0.056 — -0.353 0.067 0.014 -0.534 0.035 0.025
0.5 9117 -0.645 0.645 — -3.846 0521 0.166 -4976 0130 0.242
0.0 0.09117 -0.005 0.005 — -0.035 0.000 0.002 -0.058 0.001 0.003
0.0 09117 -0.0561 0.051 — -0.347 0.063 0.014 -0.536 0.036 0.025
0.0 9117 -0.364 0.364 — -3.229 0.445 0.139 -4.985 0.164 0.241

Table A.2: The upper table presents the average dimensionless plasma protein
fluxes across the various permeable boundaries assuming a two-dimensional model
of the mesentery. The same data is shown in the lower table for the case of a
one-dimensional model of the tissue segment. A negative value indicates a protein
flux entering the interstitial space, while a positive value denotes a flux leaving the
interstitium.
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¢ a Boundary Condition 1 Boundary Condition 2 Boundary Condition 3
Art Ven  Mes Art Ven Mes Art  Ven Mes

1.0 0.09117 -122 -1.21 — -1.69 -099 -226 -3.54 -097 23.22
1.0 09117 -135 -1.21 — -1.34 -121  -134 -7.89 -1.21 5.73
1.0 9.117 -64.51 -1.21 — -2.71 -121 -1.23 No Convergence
0.5 0.09117 -1.55 -1.53 — -5.28 -0.98 9.16 234 -0.93 0.92
0.5 09117 -1.67 -1.53 — -1.89 -153 -1.98 1.52  -1.53 0.75
05 9117 -9.22  -1.53 — -2.30 -1.63  -1.62 1.80 -1.53 0.71
£ a  Boundary Condition 1 Boundary Condition 2 Boundary Condition 3

Art Ven Mes Art Ven Mes Art Ven Mes

1.0 0.09117 -1.22 -1.21 —_ -1.68 -1.01 — -3.61 -1.06 —
1.0 09117 -135 -l1.21 — -1.33 -1.21 — -891 -1.21 —
1.0 9117 -6546 -1.21 — -2.60 -1.21 — 10.69 -1.21 —
0.5 0.09117 -155 -1.53 — -5.05 -1.01 — 225 -111 —
05 09117 -1.67 -1.53 — -1.88 -1.53 — 1.34 -1.53 —
0.5  9.117 -921  -1.53 — -2.21 -1.53 — 0.95 --1.53 —

Table A.3: The upper table presents the ratios of the average dimensionless convec-
tive plasma protein flux to the average dimensionless diffusive protein flux across
the various permeable boundaries assuming a two-dimensional model of the mesen-
tery. The same data is shown in the lower table for the case of a one-dimensional
model of the tissue segment. A negative value indicates that the two protein fluxes
are in opposite directions.
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A.5.2 Effect of Hf on Exchange in the 1-D Simulations

The results from the 27 simulations suggest that the 1-dimensional model is, under most cir-
cumstances, a reasonable approximation to the 2-dimensional formulation. Notable exceptions
are those cases in which the mesothelial transport properties are given by boundary condi-
tion 3. Here the 1-dimensional simulations predict substantially higher fluxes across each of
the permeable boundaries when compared to the 2-dimensional simulations. Four additional
simulations were therefore performed to evaluate the effect of the interstitial matrix resistance
on mass exchange for those cases in which the mesothelium was most permeable. In these
simulations a was set equal to 9.117, since the differences between the 2—dimensional and the
1-dimensional simulations were greatest under these conditions. Two values of £ were consid-
ered: namely 0.5 and 0.0. A £ value of 1.0 was not included in the study since the corresponding
2-dimensional simulation failed to converge to a solution. For each value of £ two simulations
were performed in which H¥ assumed values of 1.5 x 10~3 ¢m and 1.5 x 104 cm. Together
with the initial 1-dimensional simulations, in which H*¥ was zero, this gave a total of three
cases with H ranging from zero to the tissue half-thickness. The results of these predictions
were then compared with the corresponding 2-dimensional simulations.

- In general, an increase in H*® was accompanied by a substantial decrease in the local
dimensionless fluid and plasma protein fluxes across the mesothelium. This is illustrated in
Figure (A.5), where { equals 0.5, and Figure (A.6), in which £ equals 0.0. Panels i through
iii of these figures plot the local dimensionless fluid and plasma protein ﬂuies as a function of
position, %, for H*f equal to 0 cm, 1.5 x 10™% c¢m, and 1.5 x 10~2 cm, respectively. Consider,
for example, those cases where { equals 0.5. The maximum dimensionless fluid flux drops
from approximately 116 to something less than 25 as H increases from 0 to 1.5 x 103 cm.
In addition, the fraction of the mesothelial surface over which fluid and plasma proteins are
exchanged increases with HY. A similar trend is observed for those simulations in which &
equals 0. The reduced fluxes and greater portion of mesothelial surface area active in exchange

associated with increased H*T both compare more favorably with the 2-dimensional predictions.
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This is shown for the case where £ equals 0.5 in panels i and ii of Figure (A.7).

The average dimensionless fluid and plasma protein fluxes across the permeable boundaries,
assuming various values of H*f and ¢ equal to 0.5, are compared to the 2-dimensional simulation
in the upper data of Table (A.4). Similar data for the case where £ equals 0 are given in the lower
set of panels of Table (A.4). Again, the data suggest that the interstitial matrix contributes
significantly to the overall resistance when the mesothelium assumes its most permeable state
and a equals 9.117. Consider, for example, the case where £ equals 0.5. When H is zero, the
average dimensionless fluid flux across the arteriolar vessel, 3:“, is approximétely 27 percent
higher than that predicted by the 2—dimensional simulation. This increased influx of fiuid into
the intérstitium is attributed to the enhanced capacity of the system to exchange material with
the peritoneum, due to the elimination of the interstitial resistance in the transverse direction.
This effect is also reflected in the average fluid flux across the mesothelium when H is zero,
which is approximately 53 percent higher than the mesothelial fluid flux associated with the
2-dimensional simulation. . V

The enhanced fluid exchange is accompanied by a concomitant increase in plasma protein
exchange in the system. Again iassuming ¢ equals 0.5 and HF is zero, the plasma protein
fluxes across the arteriolar wall and the mesothelium are 27 percent and 28 percent higher,
respectively, than the fluxes predicted in the 2-dimensional simulation.

The situation is reversed when we assume a value of 1.5x 1072 cm for H*. In this case the 1-
dimensional simulations underestimate 33,“ and j’vf,‘“ by 16 percent and 19 percent, respectively,
suggesting that the effective thickness of the interstitium is something less than the tissue
half-thickness. A similar conclusion may be drawn from the solute flux data since, with a
H of 1.5 x 1073, the 1-dimensional simulation underestimates j** and j™ by 16 percent
and 17 percent, respectively. Furthermore, since a value of 1.5 x 10~* em for H? again leads
to an overestimate of the various fluxes across the arteriolar and mesothelial boundaries, it is
concluded that the effective thickness lies between this and 1.5 x 1072 cm.

Finally, it is observed that the 1-dimensional model’s prediction of the relative importance
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Figure A.5: This figure illustrates the effect of varying Hef on the fluid and plasma
protein flux distribution across the mesothelium in the one-dimensional model of
mesentery, assuming £ equal to 0.5. Panel i assumes Hefl is 0 cm, Panel ii assumes
Hefl equals 1.5 x 10~% cm, and panel iii assumes Hef' equals 1.5 x 1073 cm. Panel

iv provides the results from the 2-dimensional model.
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Figure A.6: This figure illustrates the effect of varying H®T on the fluid and plasma
protein flux distribution across the mesothelium in the one-dimensional model of
mesentery assuming £ equal to 0. Panel i assumes Hefl is 0 cm, Panel ii assumes
Hefl equals 1.5 x 10~ c¢m, and panel iii assumes Hef equals 1.5 x 10~3 e¢m. Panel
iv provides the results from the 2-dimensional model.
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Figure A.7: This figure compares the fluid and plasma protein flux distributions
across the mesothelium for the one-dimensional model (left column) and the
two-dimensional model (right column) assuming £ equal to 0.5 (panels i) and ¢
equal to 0 (panels ii) and with Heff equal to 1.5 x 1073 cm.
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He? jat jyem jmes  jat jven  Jmes  jart ffart  jven /jven
0.0 -33.17 247 153 -4976 0.130 0.242 0.95 -1.53
1.5x10"% -2929 250 1.34 -4.393 0.132 0.213 1.10 -1.53
1.5 x 1078 -2169 253 0.96 -3.254 0.132 0.156 1.41 -1.53
2-D -26.14 247 1.18 -3.920 0.130 0.189 1.52 -1.53
Hef jet juem jmes  jet  jven  jmes  jart jan  jven /jven
0.0 23323 3.19 150 -4985 0.164 0.241 0.0 0.0
1.5%x107% -2023 315 1.30 -4.385 0.160 0.211 0.0 0.0
1.5x107% -21.56 3.08 0.92 -3.233 0.151 0.154 0.0 0.0
2-D -25.58 292 1.13 -3.840 0.144 0.184 0.0 0.0

Table A.4: The upper table presents the effect of H®f on the the average fluid and
plasma protein fluxes across the permeable boundaries for the case where ¢ is 0.5.
The same data are shown for { equal to 0 in the lower table.
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of convection to diffusion within the interstitial space depends, in part, on the value of HeT
assumed. With £ equal to 0.5 and an H*® of zero, the ratio of the average convective flux of
proteins to the average diffusive flux adjacent the arteriolar vessel, 2 /33’*, is 0.95. When H‘ﬁ
is increased to 1.5 x 1073 cm, thé ratio of convection to diffusion also increases to 1.41. The
2—dimensional simulation predicts a ratio of 1.52. This effect is further illustrated in panel i
of Figure (A.8), which plots the total interstitial plasma protein concentration as a function
of & for the various values of H*. From this figure it is clear that the concentration gradient
adjacent the arteriolar vessel increases with decreasing H*f, implying more diffusion in that
region as H approaches zero. This may be explained by the following. As H* decreases, the
rate of plasma protein exchange between the interstitium and the peritoneum is enhanced near
the arteriolar wall (see panels i, ii, and iii of Figure (A.5)). This greater rate of protein depletion
near the wall increases the concentration gradient there, which in turn enhances diffusion. The
same phenomenon is seen in the case where £ is 0, as shown in panel ii of Figure (A.8). While in
each case the profile associated with an H*# of zero follows closely the y-averaged concentration |
profile from the 2—dimensional simulation in the central portions of the tissue, it deviates from
the 2-D profile in the vicinity of the arteriolar and venular boundaries, where the majority of
the mass exchange occurs. On the other hand, the concentration profile associated with an H
of 1.5 x 1073 cm, while it never coincides with the 2-D profile, follows more closely the trend
of latter curve in the vicinity of the arteriolar and venular capillaries, and therefore provides a

more accurate description of the plasma protein transport processes there.

A.6 Concluding Remarks

In the preceding sections we developed a one-dimensional model of interstitial transport and
microvascular exchange in mesentery and compared the model predictions to-those based on a
two—dimensional representation of the tissue. In general it was found that the one-dimensional
simulations were in close agreement with the two—dimensional simulations, suggesting that the

one—dimensional model was an adequate approximation of the real system.
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Figure A.8: The upper panel (i) shows the effect of varying Hef on the dimensionless
interstitial plasma protein distribution (C' assuming an ¢ of 0.5. The same data
is illustrated in panel (ii) for the case where { equals 0. In each plot, the solid
line represents the results from the two-dimensional simulation, the dotted line
assumes HeM is 1.5 x 103 cm, the chain-dotted line assumes Hef is 1.5 x 10~ cm,
and the dashed line assumes Hef is 0.
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Notable exceptions to this were those cases in which the mesothelium assumed its most
permeable state. Under these conditions the interstitium contributed significantly to the overall
resistance to mass transport in the transverse direction. Hence the one-dimensional simulations
tended to over—estimate the amount of fluid and plasma proteins exchanged within the tissue.
However, it was also shown that the interstitial resistance could be accounted for, at least in
part, by reducing the hydraulic conductance and permeability of the mesothelium. An ‘effective
thickness’, H®, was proposed as one method of characterizing the interstitium’s contribution
to the overall resistance in the transverse direction.

Finally, given the general effectiveness of the one—dimensional model to describe the system’s
behavior under steady—state conditions, and the substantial savings in computational effort it
offers over the two—dimensional model, the one—dimensional model is used in the transient anal-
ysis presented in Chapters 5 and 6. Further, since the analysis of these chapters is qualitative,
and since the the one-dimensional simulations are, for the most part, in close agreement to the
two dﬁnensional predictions, no attempt is made in the simulations of Chapters 5 and 6 to

adjust the mesothelial resistances to account for the interstitial resistance.



Appendix B

An Overview of the Combined Finite Element — Finite Difference Technique

B.1 Introduction

The tra.nsieht one—dimensional solute mass balance equation developed in Appendix A repre-
sents the most general partial differential equation we'will consider, in that it contains both
spatial and temporal terms. This equation has therefore been selected to provide an example
of the numerical procedures used in this research to solve the system of equations describing
microvascular exchange in the model tissue.

In dimensionless form, the transient form of the solute mass balance equation for a single

solute species is

ox H
el ) g
z (e I

The solution to Eq. (B.1) is obtained numerically using a combined finite element - finite

0 0C 2. - . 92C! 8Dy 8!
. -0____-:11&5. 1] _ 1 d
Eﬂ[Jw ] C} n{Dd6i2+8i 05;]

(B.1)

difference scheme. This approach has been used to solve, for example, problems of consolidation
and solute transport in porous media [67, 42]. The original partial differential equation is
reduced to a set of time—dependent ordinary differential equations by applying the finite element
method of weighted residuals to the spatial components of the partial differential equation. (The
selective appiication of the finite element procedure to the spatial elements of the equation is
referred to in the literature as the partial discretization method , or Kantorovich’s method
i116).) This set of coupled ordinary differential equations is then reduced to a set of coupled

algebraic expressions by applying a semi-implicit finite difference scheme to the time derivatives.

217
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The system of simultaneous algebraic equations can then be solved using appropriate matrix
techniques.

The sequential applications of the finite element procedure and the finite difference technique
to the solute mass balance equation are discussed in detail in Sections B.2, B.3, and B.4. For
more information on the techniques and their application to transport problems, the reader
may refer to any number of sources in the literature (see, for example, [67, 42, 59, 116]).

Finally, in Section B.5 we discuss briefly, by way of two examples, some of the techniques
used to validate the simulator.

B.2 Solving for the Spatial Variation in Concentration Using Finite Elements

The finite element method partitions the domain (in this case, the mesenteric tissue segment)
into a set of connected subregions, the so—called finite elements of the system (see, for exam-
ple, Figure (4.2) of Chapter 4). Each element contains a number of nodes representing discrete
locations within the domain. Associated with each node j is a basis function, ¢;, that takes on a
value of 1 at node j and is zero at all other nodes within the system. The value of the basis func-
tions elsewhere in the domain depend only on position (in fact, the basis functions are typically
pélynomja.l relationships in the spatial coordinates). The basis functions are combined with the
nodal values of the dependent variable (e.g., the dimensionless plasma protein concentration,
C!) to create a continuous approximation to the dependent variable throughout the region.
Specifically, the approximating function C! to the interstitial plasma protein concentration C!
is

C =3 ¢;-C, (B.2)
j=1 ‘

where C} is the value of C! at node j, and where m is the total number of nodes in the system.
Since the plasma protein concentration varies with time, the nodal values CJ1 will vary with
time as well. However, they represent constant coefficients with respect to the spatial variation
of Ct.

The dependence of the basis functions on position is known a priori. However, we must
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determine thé m nodal values of C! before the interstitial plasma protein distribution is known.
These are calculated as follows. First, the piecewise approximating function C! is substituted
into Eq. (B.1). Since C! is only an approximation to the true function ¢!, C! will not, in
general, satisfy the differential equation completely. Rather, there will be some residual error,

€(%), associated with the approximation. That is, assuming the temporal variation of C! is

known,
e=¢ 8 [:?V%C;_l _ 3335 ) Cl] ! []-)da(;}gl . 3;;1 8621]
9 o o [Cl ~ Cmesexp (—f’em)] Tl -
AR R ey ) R (B3)

To minimize the residual error, the nodal values C} are chosen such that the weighted integral of
€ over the entire domain D is zero for m different choices of weighting functions, ¢;,i=1,2,...,m.

That is,
/ G-€dx=0,i=1,2,...,m. . (B.4)
D

Hence the solution of the system of m equations represented by Eq. (B.4) yields the m nodal

values of C! which minimize the error associated with the piecewise approximating function,

Cl.
The choice of weighting functions, ¢;, is arbitrary; however, each weighting function must
be independent of the others. In the Galerkin procedure (used in this research) the weighting

function ¢; is set equal to the basis function ¢;. The set of weighted residual equations then

becomes
_ 000 2. . . 920! 9D4 8C!
. . Y  fimes ALl 1
/1>¢‘{5ﬂ[wai T C} n[Ddaiz+ai 3i]+
9 [Cl — C™=exp (—Pe

s

es\ mes )] acl ¥ — =
+= (1= ™) o [1 - (—?em“)] +n! 5 (&=0i=12.,m (B5)

Since C? is only C° continuous in D (i.e., the derivatives of C! are not necessarily contin-

uous), and to facilitate the introduction of the boundary conditions into the weighted residual
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expressions, we reduce the second—order dispersive term in Eq. (B.5) to a first—order term and

a boundary integral using Green’s Second Theorem:
- 6201 d(¢i Da) Dd 0C1
/ #:Dg = dD = / ¢1Dd 1, dB - / - . (B.6)

where 14 is the direction cosine of a unit outward normal to the boundary, B. Note that, for the
one—dimensional system, Green’s Second Theorem is equivalent to integration by parts since
the boundary integral reduces to an evaluation of the integrand at the domain’s two end-points.

The second term on the right-hand-side of Eq. (B.6) can be expanded as follows:

1
dD+/ B, 34:0C" 4y (B.7)
D

d(¢1 Dd) acl dDd 601
/D / FTy dx 0%

dx d&x 8%
Substituting Eqs. (B.6) and (B.7) into Eq. (B.5) yields the ‘weak form’ [116] of the weighted
residual equations:
o Lymes Dy — =
hlodes e - gm0 en e

Y T

2 mes \ “mes
7T T g e )] T

1
/¢,1’)d@- 1,dB,i=1,2,.. m (B.8)

Based on the definition of C' (see Eq. (B.2)), Eq. (B.8) can be written in matrix form as

1
M. dC +A-Cl=b, (B.9)
dt
where
M;;; =/D¢i'¢j dx, (B.10)
Cl =03}, (B.11)
d¢J 2 mcs d¢l %
{ { & [ ¢J] 3% a&
3 . mcs mes ¢j di B 12
H( )Jw [1 —exp (_Pemcs)] }} 3 ( - )
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and

Cmesexp (— Pe™

o aCl 2 mes \ Tmes a) s 1
bi—/Bd?iDdg-lde-’r/Dd?i[ﬁ(l—U )iw dx. (B.13)

The boundary conditions are incorporated into the finite element expressions as follows. We

have at each vascular boundary the condition

al! . . Cl| - CPe —-Peb
[*ﬁdaa%-kﬁﬂjgcl]b-lx:(l—ab)-[.i?,]b'lx([ ](li_expx(;fb)) ). (e

Rearranging Eq. (B.14) and substituting into the boundary integral term gives

ac?
/B¢i [deﬁ—_] -1,dB =

o] (6 B — 1 + Chexp (—Peb)
fee el e, e ey | e )

dB. (B.15)

The A matrix is then adjusted to include those components of the boundary integral that
contain C! (i.e., the first term in the right-hand-side integral), while the remaining terms are
retained in the expression for the b vector. That is, the boundary contributions Afj and b}’

are introduced into the A matrix and b vector where

- 1
SR R C e G ] o 1 LT

and
o CPexp (~Pe"
bP = -/B¢i [Jw]b.lx (1 - ab) [1 - exf (Pe"))] dB. (B.17)

We are now left with the task of representing the temporal derivative in the matrix Eq. (B.9)

using the finite difference method. This will be discussed in the next section.

B.3 Solving for the Temporal Variation in Concentration Using Finite Differences

As we have seen, the finite element method reduces the second order p.d.e. (Eq. (B.1)) to a

set of first order o.d.e.’s in the nodal values of C!. We are now free to apply a finite difference
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scheme to Eq. (B.9) to approximate the time differential. The semi-implicit method will be
presented here (for more information on this technique see, for example [59]).

Let 6 be a parameter bounded by {0,1]. Let k and k+1 be adjacent finite difference time
levels. Then the value of C! at time level k + 6 is

. 1k+6 -1k .k
(A& =0 [a-&] 4o [a-61T. (B.18)
Similarly, if the b vector varies with time
b*+ = (1- 6)-b* +6-b*+. (B.19)
The temporal derivative at time level k + 6 is
. 1k+1 . 1k
- 1k+6 1 _[em
Lo B €] _ ] (B.20)
dt At ’

where At is the finite difference time step.
Substituting Egs. (B.18), (B.19), and (B.20) into Eq. (B.9) gives the semi—implicit-ﬁnite
difference form of the matrix equation: '

M

= ([Cl]k“ - [(‘:l]k) + ([1 —6)- A% [61]" 40 Ak [c‘:l]k“) = 0-b*1 4 (1 - 6)-b.

(B.21)
When 6 is equal to 0, Eq. (B.21) reduces to the fully explicit form, while a 6 value of 1 transforms
Eq. (B.21) to the fully implicit scheme. A 6 of 0.5 represents the Crank—Nicolson form of the
finite difference method. The Crank-Nicolson method was used in the transient simulations of
Chapters 5 and 6.

B.4 Guidelines for Selecting Grid and Time Step Sizes

In general, numerical techniques for solving partial differential equations, be they finite element
or finite difference schemes, are subject to some numerical error. For example, when the con-
vective component of the local solute flux is significant relative to the dispersive flux, the finite

element method suffers from spatial oscillations when estimating the solute concentration in
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the vicinity of the advancing front [59]. These oscillations can be reduced by using a finer grid.
For this reason, and to assure an accurate solution to the model equations in general, tests were
performed in each of the numerical studies to confirm that the grid size was sufficiently small.

Guidelines have been established for selecting grid size as a function of the local convective
velocity and dispersion coefficient for a limited number of problems [59]. These guidelines are
expressed in terms of a local grid Peclet number, Pe®¢, where

Da

Pesid = , (B.22)

and where ¥, is the local superficial convective velocity of the solute within an element, Al is
the maximum dimension of the element, and Dg is the dispersion coefficient. The superficial
convective velocity is related to the convective solute flux, jc, by

_ e

=&

Vsc

(B.23)

It has been found that, when using linear basis functions at least, the spatial oscillations
previously mentioned are virtually non-existent provided Pe®d is less than 2. The maximum
grid Peclet number was therefore monitored in all simulations as a further check of numerical
accuracy.

The criterion for selecting the time step size utilizes the local grid Courant number, Cré9,

where
Vec At
Al

Creid — , (B.24)

and where At is the time step size. Since, for our system, the superficial dispersive velocity is
frequently of the same order of magnitude as the superficial convective velocity, Vs, in Eq. (B.24)
is replaced by the total superficial solute velocity, V.4 + V. The superficial dispersive velocity

is related to the dispersive flux, jg by

_ Ja
=&
According to Huyakorn and Pinder [59], the local grid Courant number should not exceed

(B.25)

Vsd

1. (A value greater than 1 would imply that a solute particle passes through an entire element
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in less time than the time step size. The simulation would therefore be unable to describe
the transient interactions occurring within that element due to the presence of that solute
particle from one time interval to the next.) In fact, in this research, the maximum Crfd was
assigned an initial value much less than one (see appropriate sections on numerical procedures

for details), and monitored during the course of the simulations.

B.5 Validation of Simulator

To assure an accurate numerical solution to a given problem, the computer program itself must
be validated. One source of validation for steady-state simulations is through a global material
balance (see, for example, Chapter 4). For transient problems the simulation can be run until
the system achieves steady-state (see Chapter 5 for an example of this approach). This final
solution can then be compared to the solution obtained using the steady-state simulator.

As further validation, the governing equations and boundary conditions can be simplified,
by a judicious choice of system parameters, to a point where an analytical solution is possible.
The computer predictions are 'then compared to the analytical solution. Clearly, this latter
validation procedure must consider all of the features of a given model equation. For example,
sifnplifying the steady-state plasma protein transport equation to a simple diffusion equation
does not validate that part of the simulator responsible for the convection term. However, in
some cases it is not possible to retain all of the salient features of the differential equation and
still obtain an analytical solution. In such instances the validation procedure must be conducted
in stages, considering the various terms within the equation one at a time. In fact, this procedure
was used to test the ability of the simulator to accurately determine a solution to the fluid and
plasma protein mass balance equations under steady-staté and transient conditions. In the

following pages we will demonstrate the process by way of some examples.
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B.5.1 Validation of the Fluid Mass Balance Equation and Starling Boundary Con-

ditions in a One-Dimensional Mesentery

Recall from Appendix A that the dimensionless fluid mass balance equation for the one-

dimensional model of the mesentery is A

dz(pl _ ﬁl)

o~ L= [P - P o (10 - ) =, (B.26)

where the local interstitial colloid osmotic pressure, II1, is related to the local interstitial plasma

protein concentration, C!, by a third-order polynomial:
- - /s < /21\2 - (=q\3 . ‘
' = 4, (C') + 4, (C) + 45 (C1). (B.27)

The boundary condition at a vascular wall b, meanwhile, is given by Starling’s Law so that

[_ d(Pld; ﬁl)L 1 =1k ([f)l]b _pb_gb ([ﬁl}b _ ﬁb)) . (B.28)

Equation (B.26) can be simplified as follows. Assume first that C! equals % throughout the
interstitial space. Assume further that A; and A, are identiéa]ly equal to zero. It then. follows
that

I = Az -=°. (B.29)

If we also assume that P™ and IT™ are zero, then Eq. (B.26) reduces to

azpt 2 Lme P! oo 2LDme L
5T = =6A3%— I;’ co™= L Ag - %5, (B.30)
The boundary condition, meanwhile, becomes
dp? ib(In1 5b bz =113 _ fb
- [g]b-lx:Lp([P}b—P — o® [A5 - ([5]y) -n]). (B.31)

By virtue of the simplifying assumptions %, C!, II' and dII'/dx are all zero at the arteriolar

capillary wall. Hence, at this boundary we have

] (e, - ). o
art
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To simplify the problem we further assume that the interstitial pressure, P!, is a specified

constant, K, at the venular end of the system (i.e., at X = 1). That is,

] =k (B.33)

3R H [gmes ], 5 4 g™ A5 53 B.34
L;)ncs b
where
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The analytical equation given above was used validate the numerical solution to the fluid

mass balance equation assuming a Starling boundary condition at the arteriolar wall. Let the

relative error, €%, between the simulation estimate of P! at some point %;, i)iixnul,i’ and the
analytical solution at that point, f’imﬂ'i, be defined as
51 _p1
Gml _ Psimul,i. Panu.l,x (B 37)
' 1 b) .
Pana.l,mnx
where f’}md ey is the maximum value of P* within the domain. Then the maximum relative er-

ror associated with the numerical solution of the problem described above was less than 0.001%
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with 50 finite elements. Similar approaches were used to validate the numerical solutions to
the Starling boundary condition at the venular capillary wall, the steady-state solute mass bal-
ance equation, and the nonlinear flux boundary conditions for solute exchange at the arteriolar

and venular boundaries. In each case the numerical and analytical solutions were in excellent

agreement.

B.5.2 Validation of the Transient Solute Mass Balance Equation in a One-Dimensional

Mesentery

Having validated the spatial components of the program, we are left with testing the simula-
tor’s ability to accurately predict temporal variations in the distribution of interstitial plasma
proteins. Again, this is acheived by simplifying the governing equation to a point where an
analytical solution to the problem is attainable.

In this case, it is assumed that 5& is constant and that j’;‘“ and j’s““’s are both zero. It then
follows that dj° /dx is zero and that, according to Eq (A.17), dDg4/dx is also zero. Equation (B.1)

then becomes

aC? - 9°C? =0 0C?
_ 1%y 1 0 OV )
n E n Ddaiz +£ﬂ.]wai$ (B38)
where D4, a constant, is given by
0 =~
Dgq = M—Jrﬂ + 1. (B39)
n

We will assume further that the interstitial solute concentration at the arteriolar wall is
equal to some constant, Ky, for all time. Likewise, the solute concentration at the venular
wall remains constant and, in this case, zero for all time. With the added assumption that the

interstitial space initially contains no solute, the solution to Eq. (B.38) is [8]

.. Ko 5_ B3 § £830% g4 83§ :
C'=—erfc | —F=—| +exp| Tz | efc| —F=—]1|. (B.40)
2 92/Dqg i n' Dy 924/Dy i

Equation (B.38) was also solved numerically by the combined finite element — finite difference

technique outlined earlier, using a grid of 25 elements, an initial Courant number of 0.1, and
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a Crank-Nicolson time stepping procedure (corresponding to a 6 equal to 0.5). After 160 time

steps the relative error associated with the numerical solution was less than 0.0025%.



Appendix C

A Preliminary Study of Interstitial Plasma Protein Dispersion

C.1 Introduction

In the analyses presented in Chapters 4, 5, and 6, the interstitial transport of plasma proteins
was limited to restricted convection and molecular diffusion. However, as was discussed in
Chapter 3, the convective transport of a solute through a porous medium can give rise to
mechanical dispersion which, through a convective process at the microscopic level, appears
similar to molecular diffusion at the macroscale. The extent to which mechanical dispersion
affects the overall transport of a solute within the interstitium will depend on several factors,
mncluding the structure of the interstitial matrix and the magnitude of the convective velocity
of the solute relative to its diffusive velocity. To date there is nothing reported in the literature
that investigates the possible ramifications of mechanical dispersion on the interstitial transport
aﬁd exchange of macromolecules or other solute species. Hence, in the following sections we will
take a cursory look at the possible effects of this phenomenon on the steady-state interstitial
transport and microvascular exchange of an aggregate plasma protein species within a one-

dimensional model tissue representative of mesentery.

C.2 Defining the System

Recall from Chapter 3 that the coeflicient of mechanical dispersion for some interstitial solute

species k, 195, is related to the three principle components of the local convective velocity of the

solute by

{,k

gk
9 = af [¥5) & + (af - ai‘) llf'klcj' (C.1)
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As Eq. (C.1) indicates, 19§ is a second-order tensor. The longitudinal and transverse dispersiv-
ities, a3 and a;, meanwhile, are functions of the interstitial matrix structure and have units of
length.

The dispersivities are typically fitted parameters [1]. In geologic formations, which can
extend for many hundreds or thousands of meters, o1 may vary from 3 m to 200 m [1]. ay,
meanwhile, is generally 1/10 to 1/100 the magnitude of a;. Unfortunately, it is not yet pos-
sible to accurately estimate the magnitude of the dispersivities from measured properties of a
porous 'structure. Hence, there are no correlations to predict the value of the dispersivities in
tissues. One can only infer from the data for geological formations that the dispersivities will
be somewhat less than the overall dimensions of the system.

Confining ourselves to the steady-state version of the one-dimensional model of the mesen-
tery first developed in Appendix A and considering an aggregate plasma protein species only,

then the coefficient of mechanical dispersion reduces to a scalar quantity given by

¥ = oq|¥, (C.2)
where

. EB

Ve = o (C.3)

The total dispersive flux of interstitial plasma proteins is given by Fick’s Law, with the
coeflicient of total dispersion given by the sum ¥ + D.g. The relative importance of the me-
chanical dispersive coniﬁénent compared to molecular diffusion will depend on the magnitude
of the local convective velocity, ¥., and the structure of the interstitial matrix, characterized
by o in the one-dimensional system considered here. It follows from Eqgs. (C.2) and (C.3) that
the mechanical dispersive flux is zero when one or more of a, £, and j% are zero.

The dimensionless form of the longitudinal dispersivity, &;, is a;/L for the case of the one-
dimensional model. The dimensionless coefficient of mechanical dispersion, ¥, is then defined
as & £ B }%/n'. These expressions are combined with the appropriate forms of fluid and

plasma protein mass balance equations and auxiliary equations (see Appendix A) to describe
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the dispersive and convective fluxes of interstitial plasma proteins within the one-dimensional

tissue model under steady-state conditions.

C.3 Case Studies

According to Eqé. (C.2) and (C.3), the coefficient of mechanical dispersion is directly propor-
tional to the interstitial plasma protein convective hindrance, £, and the longitudinal dispersiv-
ity, ay. A series of numerical simulations were performed to investigate the coupled effects of
§ and &) on the exchange and interstitial distribution of the aggregate plasma‘protein species
for each of the three mesothelial boundary conditions outlined in Chapter 4. The interstitial
plasma protein convective hindrance assumed values of 1.0 and 0.5, while the dimensionless
longitudinal dispersivity was assigned values of 0.0, 0.01, 0.1, and 1.0. The ratio of interstitial
hydraulic conductivity to interstitial plasma protein diffusivity, a, meanwhile, was assigned its
intermediate value of 0.9117. All other system parameters were kept at their baseline values
(see Table (4.2) for details). This resulted in a 2 X 4 x 3 factorial study.

As discussed further in this appendix, convective dispersion had very little effect on the
system behavior when o equalled 0.9117. Since increasing « results in a concomitant increase
in- the fluid exchange within the system, and hence enhanced convective transport of interstitial
plasma proteins at any given nonzerc value of £, the same factorial set of numerical simulations
outlined above was répeated at an elevated value of a (i.e., 9.117). In total, then, 48 simulations

were carried out in the study.

C.4 Numerical Procedure

Based on the previous simulations of Appendix A, the one-dimensional tissue space was divided
into a set of 25 elements and 51 nodal points. The steady-state values of C! and P! were then
determined using the iterative procedure outlined in Chapter 4 assuming a tolerance of 107
and limiting the total number of iterations to 999. In all cases it was necessary to use under-

relaxation techniques [24] to assure convergence within the specified number of iterations. The
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under-relaxation parameter assumed values between 0.1 and 0.2 in all cases.
As a further check of the numerical solution, overall material balances were performed
around the boundaries of the system. In all cases, the total inflow of fluid and plasma proteins

equalled to total outflow, to within 0.002 %.

C.5 Results and Discussion

Figure C.1 shows the effect of £, a; and the mesothelial boundary conditions assuming « is equal
to 0.9117. It is clear from this figure that, for these conditions, mechanical dispersion has no
significant effect on the interstitial plasma protein concentration profiles. The most significant
variation is found when £ equals one and the mesothelium is assumed to be impermeable. In
this case, the enhanced dispersion associated with increased values of &; tended to reduce the
gradient in the interétitia.l plasma protein distribution. However, in all cases varying &; from 0
to 1 had only a marginal effect on the interstitial transport and microvascular exchange of fluid
and plasma proteins within the model tissue.

Given these results, a similar set of numerical simulations was performed assuming that
o equalled 9.117. The findings from these simulations are illustrated in Figure (C.2). To
bé expected, the increase in djspersive transport of interstitial plasma proteins associated with
increasing values of &; yields reduced gradients in the plasma protein concentration distribution
within the interstitium. This reduction in the protein concentration gradient is particularly
well llustrated in the case where £ is 1 and the mesothelial transport properties are defined
by boundary condition 2. The sharp increase in the interstitial plasma protein concentration
found in the vicinity of the arteriolar vessel is nearly obliterated as &; increases from 0 to 1.
As a result, the ifregula.r fluid flux distribution across the mesothelial layer associated with no
mechanical dispersion and discussed in detail in Chapter 4 is eliminated as the longitudinal
dispersivity achieves a value of 1.

Table (C.1) summarizes the effect of varying & on the rate of fluid exchange across each of
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Figure C.1: The dimensionless interstitial plasma protein distribution is shown for
the various cases where a equals 0.9117. The solid line represents the distribu-
tion assuming &; equal to 1.0, the dotted line corresponds to & equal 0.1, the
chain-dotted line represents the distribution assuming @; equal to 0.01, and the

dashed line corresponds to an a; of 0.0.
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Figure C.2: The dimensionless interstitial plasma protein distribution is shown for
the various cases where a equals 9.117. The solid line represents the distribu-
tion assuming &) equal to 1.0, the dotted line corresponds to &) equal 0.1, the

chain-dotted line represents the distribution assuming & equal to 0.01, and the
dashed line corresponds to an & of 0.0.
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the permeable boundaries. With a equal to 9.117, the rate of fluid exchange across the arte-
riolar boundary, for example, typically increased slightly with decreased dispersion. However,
the increase in the rate of fluid exchange across this boundary as & varied from 1 to 0 was
less than 10 % for all values of £ and all mesothelial boundary conditions considered in this
study. Moreover, for those cases in which the mesothelium was most permeable (i.e., boundary
condition 3), the fluid exchange rate across the arteriolar capillary varied by less than 1.2 %.
These results emphasize further that, for the conditions assumed in this study, the net rate of
fluid exchange within the system is determined primarily by the chemical potential of the lumi-
nal fluids and the transport pbroperties of the permeable boundaries, and not by the interstitial

plasma protein transport mechanisms.

13 o Bounda-ry Condition 1 Boundary Condition 2 Boundary Condition 3
Art  Ven Mes Art Ven Mes Art  Ven Mes

1.0 1.00 -4.15 4.15 — -23.70  6.55 0.86 -33.45 2.78 1.53
1.0 010 -4.47 447 — -25.38 6.90 0.92 -33.12 213 1.55
1.0 0.01 -449 449 — -25.86 7.01 0.94 -33.07 222 1.54
1.0 0.00 -4.49 449 — . -2583 7.03 094 -33.06  2.25 1.54
0.5 1.00 -3.99 3.99 — -23.60 6.43 0.86 -33.47 2.95 1.52
0.5 010 -4.26 4.26 — -24.65 6.61 0.90 -33.27 251 1.54
0.5 001 -429 429 — -25.48 6.68 0.94 -33.19 247 1.54
0.5 0.00 -434 4.34 — -25.64 6.69 0.95 -33.17 247 1.54

Table C.1: The average dimensionless fluid fluxes across each of the permeable
boundaries as a function of §, the mesothelial boundary conditions and &;, assuming
a equals 9.117. A negative value indicates a flux entering the interstitial space,
while a positive value denotes a flux leaving the interstitium.

Since the rate of plasma protein exchange across the permeable boundaries is largely con-
vective, the average plasma protein fluxes across the boundaries for the various cases follow
the same behavior as the fluid fluxes. The results are summarized in Table (C.2). Again, the
change in plasma protein exchange rate across the arteriolar capillary is never more than 10 %

as &; is varied from 0 to 1 and, in most cases, is much less.
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13 oy  Boundary Condition 1 Boundary Condition 2 Boundary Condition 3
Art  Ven Mes Art  Ven Mes Art  Ven Mes

1.0 1.00 -0.62 0.62 — -3.56° 0.58 0.15 -5.01 0.15 0.24
1.0 0.10 -0.67 0.67 — -3.81 (.46 0.17 -4.97 0.11 0.24
1.0 0.01 -0.67 0.67 — -3.88 0.40 0.17 -4.96 0.12 0.24
1.0 0.00 -0.67 0.67 — -3.87 0.39 0.17 -4.96 0.12 0.24
0.5 1.00 -0.60 0.60 — -3.54 0.55 0.15 -5.02 0.15 0.24
0.5 010 -0.64 0.64 — -3.70- 0.52 0.16 -4.99 0.13 0.24
0.5 0.01 -0.64 0.64 — -3.82  0.52 0.17 -4.98 0.13 0.24

0.5 0.00 -0.64 0.64 — -3.85 0.52 0.17 -4.98 0.13 0.24

Table C.2: The average dimensionless plasma protein flux across each of the per-
meable boundaries as a function of ¢, the mesothelial boundary conditions and &,
assuming a equals 9.117. A negative value indicates a flux entering the interstitial
space, while a positive value denotes a flux leaving the interstitium.

While varying & from 0 to 1 had little effect on the net rates of fluid and plasma protein
exchange across the permeable boundaries, it did alter substantially the relative roles of plasma
protein convection and dispersion within the regions of the interstitium adjacent the boundaries.
The results are reported in Table (C.3). The most dramatic effect is seen when it is assumed
that the mesothelium.is impermeable (i.e., boundary condition 1). In this case, the ratio of

interstitial plasma protein convection to dispersion adjacent the arteriolar boundary decreases

in magnitude by a factor of 44 (i.e, from -65.44 to -1.48).

C.6 Concluding Remarks

In summary, when the interstitial hydraulic conductivity and interstitial plasma protein diffu-
sivity assume their baseline values (corresponding to an a of 0.9117), mechanical dispersion has
only a marginal effect on the exchange of fluid and plasma proteins within the model tissue.
As the interstitial hydraulic conductivity is increased relative to the interstitial plasma protein

diffusivity, however, mechanical dispersion does have a noticeable, albeit small, effect on the
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£ a; Boundary Condition 1 Boundary Condition 2 Boundary Condition 3
Art Ven Mes Art Ven Mes Art Ven Mes

1.0 1.00 -148 -1.21 — -1.26 -1.21 -1.25 -16.73 -1.21 5.35
1.0 010 -892 -1.21 — -142 -1.21 -1.24 -10.67 -1.21 5.91
1.0 0.01 -4818 -1.21 — -2.17 -1.21 -1.23 -10.56 -1.21 5.78
1.0 0.00 -6544 -1.21 — -2.60 -1.21 -1.23 -10.68 -1.21 5.71
0.5 1.00 -2.08 -1.53 — -1.67 -1.53 -1.65 091 -1583 071
0.5 010 -548 -1.53 — -1.84 -1.53 -1.63 091 -153 0.74
0.5 0.01 -862 -1.53 — -2.12  -1.53 -1.63 094 -153 0.74
0.5 000 -9.21 -1.53 — -2.21 -1.53  -1.63 095 -1563 0.74

Table C.3: The ratio of the average dimensionless convective plasma protein flux to
the average dimensionless dispersive flux normal to each of the permeable bound-
aries as a function of £, the mesothelial boundary conditions and &;, assuming o
equals 9.117. A negative value indicates that convection and dispersion are in
opposite directions.

rates of fluid and plasma protein exchange within the system. Further, the relative rates of in-
terstitial plasma protein convection and dispersion are altered substantially, thereby modifying
the distribution of plasma proteins within the interstitium.

The results of the study, though limited in scope, suggest that, for the conditions presented
hére, mechanical dispersion likely has only a marginal effect on the rates of fluid and plasma
protein exchange within the model tissue. However, much more research is needed before any
general conclusions can be drawn regarding the nature and importance of mechanical dispersion

in tissues.
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Appendix D

Program Listings

Parameter List for Steady-State and Transient Simulators

ke 2k 3 3k 3K ok 3k 2k o ok 2 ok e e e 3k ok e 2k ok 3k o 3k 3k 3k ok ok ok a3k 3k ok ok 3k 3k 3k 3k ok 3k ok 2 3 3k ok ok ok ok 3k ok sk ok ok ko ok 3k ok ok ok ok ok ok ak ko ok k ok

*
*
*
%*

A LIST OF THE PROGRAM VARIABLES FOR THE SIMULATORS MES8SNOD.FOR,
MESDISP.FOR, MES2P.FOR, TRANS.FOR, AND TRANS2P.FOR

LR K 2% 2

2k o 3 3 3 3k 3 3 Sk ok >k o 3k 3k e 3k 3k e ok 3k Sk 3k ok 3 o 3 2k A o 2k 3k 3k 2 ok 3 3 3k 3k ok e ok 3k 3k ok 3k ok 3k ok ok ok Sk Ak sk ok ok ok ok sk 3k sk ok Kk ok Kk ok %k

0 3k ok o ok 3 o 3 o ok e 3 3k o ok 3k 3 3 ok 3 o ok 3k 3k ok 3k 3k ok ok k ok

*GRID AND TOLERANCE PARAMETERS =*
s sk ok ook ok ok ok o sk ok sk ok o ok 3k ok o ok ok ok ok o ok ok ke ok

: INITIAL COURANT NUMBER

INITIAL TIME STEP SIZE

: X-INCREMENTS BETWEEN XNODES

¢ Y-INCREMENTS BETWEEN NODES

: MAXTMUM LOCAL DISPERSION COEFFICIENT

: TOLERANCE FOR ITERATIVE IMPROVEMENT FOR MATRIX SOLVER DGBAKD

(DGBND1)

: ELEMENT LOCATION OF MAXIMUM DISPERSION COEFFICIENT

MAXIMUM NUMBER OF ITERATIONS FOR CONVERGENCE OF POLD,'COLD‘

MAX: MAXIMUM NUMBER OF TIME STEPS

BCTIME:
CFLUX:
COLD:
COLDT:
DFLUX:
ELOC:

: ELEMENT LOCATION OF THE MAXIMUM GRID PECLET KNUMBER

: NUMBER OF NODES IN THE Y DIRECTION (M=1 FOR 1-D MODEL)
: NUMBER OF NODES IN THE X DIRECTION

: TOTAL NUMBER OF NODES

IF 0, DO NOT ECHO INPUT DATA

: NUMBER OF ELEMENTS IN THE X DIRECTION
: NUMBER OF ELEMENTS IN THE Y DIRECTION
: TOTAL NUMBER OF ELEMENTS IN GRID (NEX+NEY)

MATRIX CONTAINING KEODE REFERENCES FOR A GIVEN FINITE ELEMENT
RELAXATION PARAMETER FOR PRESSURE DISTRIBUTION

RELAXATION PARAMETER FOR PROTEIN DISTRIBUTIOKN

MAXIMUM GRID PECLET NUMBER

: TIME STEP ACCELERATIOF FACTOR
: SEMI-IMPLICIT FACTOR (THETA=0.5

~ CRANK-NICOLSON FINITE DIFF)
CONVERGENCE TOLERARCE FOR THE PROTEIN DISTRIBUTION
CONVERGENCE TOLERANCE FOR THE PRESSURE DISTRIBUTION

: VECTOR OF X COORDINATES OF NODAL POINTS

VECTOR OF Y COORDINATES OF NODAL POINTS

ook ok ok ok ok ok ok o ok K 3k ok ok Kk oKk ok

* MATRIX VARIABLES
sk ok ok ok sk ok o ok K 3 ok ok ok ok K K KK ok

*

THETA*SOLUTB + (1-THETA)*SBOLDT - (1-THETA)#*SCOLDT

MATRIX OF LOCAL CONVECTIVE INTERSTITIAL PROTEIN FLUXES

VECTOR CONTAIRING PREVIQUS ESTIMATE OF PROTEIN DISTRIBUTION
PROTEIN DISTRIEUTION FROM PREVIOUS TIME STEP

MATRIX OF LOCAL DIFFUSIVE INTERSTITIAL PLASMA PROTEIN FLUXES
COORDINATE LOCATION OF IKTERSTITIAL FLUXES (FFLUX,CFLUX,DFLUX)

238



Appendix D. Program Listings

FFLUX:
FLUID:
FLUIDB:

(HOLD,

HOLDS,
IPERM,
IPERMS,
RES,

MATRIX OF LOCAL INTERSTITIAL FLUID FLUXES
FINITE ELEMENT MATRIX (IN VECTOR FORM) FOR PRESSURE FIELD EQ.
FINITE ELEMENT B VECTOR FOR PRESSURE FILED EQ.

STORAGE VECTORS FOR MATRIX SOLVER DGBAND (DGBND1)

RESS:)

POLD:
QFC,Qsc,QcC:

QFvV,Qsv,QCv:
QFM,QSM,QCM:
SBOLDT:

SCOLDT:

VECTOR CONTAINIEG PREVIOQUS ESTIMATE OF PRESSURE DISTRIBUTION
VECTORS CONTAINIRG FLUID FLUXES, PLASMA PROTEIN FLUXES, AND
CONVECTIVE PROTEIN FLUXES ACROSS EACH ELEMENT CONSTITUTING
ARTERIOLAR CAPILLARY WALL

AS ABOVE, BUT FOR THE VENULAR CAPILLARY BOUNDARY

AS ABOVE, BUT FOR THE MESOTHELIAL BOUNDARY

PLASMA PROTEIR B VECTOR AT OLD TIME STEP

SOLDT*COLDT

SOLDT:

FINITE ELEMENT MATRIX (IN VECTOR FORM) FOR PRESSURE FIELD EQ.

FROM PREVIOUS TIME

SOLUTE:
STNEW:

TCOLDT:

STEP
FINITE ELEMENT MATRIX (IN VECTOR FORM) FOR PROTEIN FIELD EQ.
T/DELT + THETA*SOLUTE
T: TIME STEP MATRIX
TDT*COLDT

T IN VECTOR FORM

TDT: T/DELT

3 3k 3k ok 3k 3 3k ok 3k K o ok ok 3k %k ok %k oK 3k 3 3k 3 3k ok ok 3k ok 3k ok %k K 3k ok 3k ok sk ok ok ok ok ok Kk ok

*

INTERSTITIAL PARAMETERS *

Sk o o ok ok ok ok o o ok o ok ok ok 3k ok ko ok ok ok ok ok ok ok ok ok sk ok sk ok o ok ok ok sk ok ok

AK:
AL:
ALPHL:
LPHT:

A
ADS1,B0S1,C0S1:
AOSM,BOSM, COSM:

BETA:
cC,Cv,CM:

CDC,CDV,CDM:

CONC,CONV,CONM:
DDC,DDV,DDM:

DEFF:

PERMC,PERMV ,PERMM:

PC,PV,PHM:

PDC,PDV,PDM:
PIC,PIV,PIM:

RET:

SIGC,SIGV,SIGM:

YL:
YYL:

TOTAL INTERSTITIAL HYDRAULIC CONDUCTIVITY, KO

LENGTH OF TISSUE SEGMENT IN X DIRECTION

DIMENSIONLESS LONGITUDINAL DISPERSIVITY

DIMENSIONLESS TRANSVERSE DISPERSIVITY

gﬁgﬁlﬂ COEFFICIENTS FOR OSMOTIC PRESSURE RELATIONSHEIP IN
VIRIAL COEFFICIERTS FOR INTERSTITIAL OSMOTIC RELATIONSHIP
RATIO OF Ki/KO

CONCENTRATION OF PLASMA PROTEINS IN ARTERIOLAR CAPILLARY,
VENULAR CAPILLARY, AND PERITONEAL FLUID, RESPECTIVELY
DIMENSIONLESS PLASMA® PROTEIN CONCENTRATION IN ARTERIOLAR
CAPILLARY, VENULAR CAPILLARY, AND PERITONEAL FLUID,
RESPECTIVELY

HYDRAULIC CONDUCTANCE OF ARTERIOLAR CAPILLARY, VENULAR
CAPILLARY, AND MESOTHELIAL LAYER, RESPECTIVELY
DIMENSIONLESS PERMEABILITY OF ARTERIOLAR CAPILLARY, VENULAR
CAPILLARY, AND MESOTHELIUM, RESPECTIVELY

EFFECTIVE DIFFUSIVITY OF INTERSTITIAL PLASMA PROTEINS
PERMEABILITY OF ARTERIOLAR CAPILLARY, VENULAR CAPILLARY,
AND MESOTHELIUM, REPSECTIVELY

FLUID PRESSURE IN ARTERIOLAR CAPILLARY, VENULAR
CAPILLARY, AND MESOTHELIUM, RESPECTIVELY

DIMENSIONLESS FLUID PRESSURE IN ARTERIOLAR CAPILLARY,
VENULAR CAPILLARY, AND MESOTHELIUM, RESPECTIVELY

COLLOID OSMOTIC PRESSURE IN ARTERIOLAR CAPILLARY, VENULAR
CAPILLARY, AND MESOTHELIUM, RESPECTIVELY

: DISTRIBUTION VOLUME OF INTERSTITIAL PLASMA PROTEINS
: TOTAL MOBILE INTERSTITIAL FLUID VOLUME FRACTION

PIDC,PIDV,PIDM:

INTERSTITIAL SOLIDS PHASE VOLUME FRACTION

DIMENSIONLESS COLLOID OSMOTIC PRESSURE IN ARTERIOLAR
CAPILLARY, VENULAR CAPILLARY, AND MESOTHELIUM, RESPECTIVELY
INTERSTITIAL PLASMA PROTEIN CONVECTIVE RINDRANCE
REFLECTION COEFFICIERT OF ARTERIOLAR CAPILLARY, VENULAR
CAPILLARY, AND MESOTHELIUM, RESPECTIVELY

TISSUE THICKNESS

DIMERSIONLESS TISSUE THICKNESS

3K 2 oK K 3K ok 3 K 3k o ok ok ok ok ok ok %k K ak dk dk ak ok 3k ok o ok K 3k 3k ok ok ok 3k ok ke ok ok ok 3k ok ok 3 3 ok ok 3k 3k 3k 3k 3K Ak 3ok %k Xk ok ok sk 3K 3k ok ok ok ok ok Kk ok K kK

* KOTE:

IN THE CASE OF MULTIPLE SOLUTE SPECIES (I.E.,

MES2P.FOR AND *
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* TRANS2P.FOR), PARAMETERS AFFILIATED WITH INDIVIDUAL SOLUTES *

* ARE DISTINGIUSHED BY RUMBERS 1 AND 2 (E.G., SIGM1 AND SIGM2). #*
ok ok 6 3 oK ok ko ok ok ok ok oK ok ok ok ok ok ok ok oK o ok ok K ok sk K o oK K o o ok ok oKk oK oK o ok 3 Kok o oK K 3 36 oKk o K ok ok oK o oK K ok ok ok o ok ok ok ok oK ok ok

Two Dimensional Simulator: MESSNOD.FOR

THIS PROGRAM MODELS THE STEADY TRANSPORT OF FLUID AND PROTEIN
TERQUGH THE INTERSTITIAL SPACE OF THE MESENTERY. IT ASSUMES
THAT THE TISSUE BEHAVES AS A RIGID POROUS MEDIUM. 1IT IS
FURTHER ASSUMED THAT THE FLUID PRESSURE IN TEE EXCLUDED

SPACE IS IN EQUILIBRIUM WITH THAT IN THE AVAILABLE SPACE.

.
[

lelolelelelele] U

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION HOLD(2000),IPERM(2000),RES(2000),B0LDS(2000),
#RESS(2000) , IPERMS(2000) ,GAUS(4) ,W(4)
COMMON/BLK1/NODEL(600,8) ,XNOD(2000) ,YNOD(2000)
COMMON/BLK2/DX(41),DY(41)

COMMON/MATBAL/QFC(40) ,Qcc(40),QSC{40) ,QFV(40),QCV(40),Qsv(40),
#QFM(40) ,QCM(40) ,QSM(40)

COMMON/FLUMAT/FLUID(210000)
COMMON/OLD/POLD (2000) ,COLD (2000)
COMMON/SOLB/SOLUTB§20003

COMMON/FLUB/FLUIDB(2000

COMMON/SOLMAT/SOLUTE (210000)
COMMON/0SMOT/AQSM,BOSM, COSM
COMMON/TISDAT/AK ,DEFF,ALPHL ,ALPHT ,PHIA,PEIT,RET,SIGT
COMMON/CAPDAT/PC,CC
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM, PDC,PDV,PDM, PIDC,PIDV,PIDN,
#SIGC,SIGV,SIGM,CDC,CDV,CDM
COMMON/FLUXES/FFLUX(600,2) ,CFLUX(600,2) ,DFLUX(600,2),
#ELOC(600,2) ’

DATA T1,T2,T3,T4,T5,T6,T7,T8,TS/9%0.D0/

DATA W/.347854845137454D0, .652145154862546D0,
#.652145154862546D0, . 347854845137454D0/

" DATA GAUS/-.861136311594053D0,-.339981043584856D0,
#.339981043584856D0, .861136311594053D0/

SET MARKER AND TOLERANCE VALUES

READ(5,504) OMEGAF ,OMEGAC , TOLP,, TOLC , PECMAX , EPS
READ(5,550) IMAX, ITER,NECHO, N, ¥
550 FORMAT(5I3)
NEX=(N-1)/2
NNUM=NEX+1
NEY=(M-1)/2

NEXY=NEX*NEY
KT=NEX*(3*+NEY+2)+2+NEY+1
LUB=3*NEY+4

ICOUNT=0

READ IN THE DATA FROM EXTERNAL FILE

DO 1 I=1,NNUM
READ(5,501) DX(I)

501 FORMAT(E12.6)

1 CONTINUE

YLL=0.DO
DO 2 J=1,MNUM
KEAD(5,501) DY(J)
YLL=YLL+DY(J)

2 CONTINUE

ann
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READ(5,502) AOSM,BOSM,COSM,AK,PC,PEIA,PHIT,RET,PHIS
READ(5,504) ALPHL,ALPHT,AL ,DEFF,SIGT,CC '
READ(5,504) CONC,CONV,CONM,PERMC,PERMV,PERMM
READ(5,504) DDC,DDV,DDM,SIGC,SIGV,SIGM
READ(5,504) C€DC,CDV,CDM,DLC,DLV,DLM

READ(5,506) PDC,PDV,PDM

READ(5,506) AO0S1,B0S1,COS1

YL=YLL*AL

PIDC=CDC*§A0$1+CDC*EBOSl+CDC*C051§2
PIDV=CDV*({A0S1+CDV*(B0S1+CDV*C0S1

PIDM=CDM* { A0S1+CDM* (BOS1+CDM*COS1

PV=PDV*PC

PM=PDM*PC

CV=CDV*CC

CM=CDM*CC

502 FORMAT(S8E10.4
503 FORMAT(5E10.4
504 FORMAT(6E10.4
506 FORMAT(3E10.4

DO 21 I=1,NT

READ(5,505) POLD(I),COLD(I)
505 FORMAT(2E10.4)
21 CONTINUE

ECEO DATA IF NECHO N.E. O

IF(NECHO.EQ.0) GO TO 999
PRINT OUT INPUT DATA

WRITE(6,611)
611 FORMAT(1X,’STEADY-STATE FLUID PRESSURE AND SOLUTE COECERTRATION’

#)
WRITE(6,667) .
667 FORMAT(1X,’PROFILES FOR TWO DIMENSIONAL TISSUE SYSTEM’,//)
WRITE(6,612)
WRITE(6,612)

.612 FORMAT(//,1X,’ ’

#,//)
WRITE(6,660)
660 FORMAT(1X,’INPUT PARAMETERS®)
WRITE(6,612)
WRITE(6,613)
613 FORMAT(1X,’1. GRID DATA:’,//)
WRITE(6,614)NEX,DX(2)
614 FORMAT(1X,’NUMBER OF ELEMENTS IN X-DIRECTION:’,1X,I2,/,1X,
#’SMALLEST X INCREMENTS:’,19X,E10.4,/)
WRITE(6,615)NEY,DY(2)
615 FORMAT(1X,’NUMBER OF ELEMENTS IN Y-DIRECTION:’,1X,I2,/,1X,
#'SMALLEST Y INCREMENTS:®',19X,E10.4,/)
WRITE(6,616)NT,NEXY
616 FORMAT(1X,’TOTAL NUMBER OF NODES:®,10X,I4,/,1X,
#'TOTAL NUMBER OF ELEMENTS:’,6X,I4)
WRITE (6,612)
WRITE(6,617) TOLP,TOLC,IMAX,OMEGAF,OMEGAC,PECMAX
617 FORMAT(1X,’2. CONVERGEHCE CRITERIA:’,//,1X,’PRESSURE TOLERANCE:’
#,17X,E10.4,/,1X,°SOLUTE TOLERANCE:’,20X,E10.4,/,:X,
#'MAXIMUM NUMBER OF LOOP ITERATIONS:’,2X,I3,/,1X,
#’PRESSURE RELAXATION PARAMETER:’,6X,Ei10.4,/,1X,
#'SOLUTE RELAXATION PARAMETER:’,9X,E10.4,/,1X,
#°MAXIMUM DESIRED GRID PECLET NUMBER:’,1X,E10.4)
WRITE(6,612)
PIC=PIDC*PC
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PIV=PIDV*PC
PIM=PIDM*PC

WRITE(6,618) AL,YL,CC,CV,CM,PC,PV,PM,PIC,PIV,PIM,AK,DEFF,SIGT
618 FORMAT(1X,’3. DIMENSIONAL INPUT PARAMETERS:’,//,1X,
#’TISSUE X-DIMENSION (CM):’,21X,E10.4,/,1X,
#’TISSUE Y-DIMENSION (CM):’,21X,E10.4,/,1X,

#°CAP. PROTEIN CONC. (GRAMS/DL):’,14X,E10.4,/,1X,
#’VEN. PROTEIN CONC. (GRAMS/DL):’,14X,E10.4,/,1X,
#?MES. PROTEIN CONC. (GRAMS/DL):’,14X,E10.4,/,1X,
#°CAP. DYN. PRESSURE (DYN/CM**2):?,14X,E10.4,/,1X,
#'VEN. DYN. PRESSURE (DYN/CM**?):’,14X,E10.4,/,1X,
#'MES. DYN. PRESSURE (DYN/CM*%2):’,14X,E10.4,/,1X,
#°CAP. OSM. PRESSURE (DYN/CM*#2):*,14X,E10.4,/,1X,
#’VEN. OSM. PRESSURE (DYN/CM*x2):?',14X,E10.4,/,1X,
#°MES. OSM. PRESSURE (DYN/CM**2):',14X,E10.4,/,1X,

#’TISSUE FLUID CONDUCTIVITY (CM**4/(DYN SEC):? 2x E10.4,/,1X,
#’TISSUE SOLUTE DIFFUSIVITY (CM#*%2/SEC):’,7X, E10. 4 /,1X,
#’TISSUE REFLECTION COEFFICIENT:’,lSX,E10.4)
WRITE(6,653) RET
653 FORMAT(1X,’RETARDATION FACTOR:’,26X,E10.4)
WRITE(6,626) CONC,CONV,CONM,PERMC,PERMV,PERMM
626 FORMAT(1X,’CAP. CONDUCTIVITY (CM**3/(DYN-S));’,11X,E10.4,/,1X,
#'VEN. CORDUCTIVITY (CM**3/(DYE-S)):’,11X,E10.4,/,1X,
#'MES. CONDUCTIVITY (CM**3/(DYE-S)):’,11X,E10.4,/,1X,
#°CAP. PERMEABILITY (CM/S):’,21X,E10.4,/,1X,
#'VEN. PERMEABILITY (CM/S):’,21X,E10.4,/,1X,
#’MES. PERMEABILITY (CM/S):?,2iX,E10.4)
WRITE(6,612)
WRITE(6,619)PDC,PIDC,PDV,PIDV,PDM,PIDN
619 FORMAT(1X,’4. DIMENSIONLESS INPUT PARAMETERS:’,//,1X,

#éPRESSURE" ,6X, ’DYNAMIC’,5X,’0SMOTIC’,//,1X, CAPILLARY:’ ,BX,
#E10.4

#2X,E10.4,/,1X, JVENULE: ’ ,8%X,E10.4,2X,E10.4,/,1X, ’MESOTHELIUNM: ’,
#3X,E10.4,2X, E10. 4,//)
mxm(s,ezo)cnc,cnv,cnn
620 FORMAT(1X,’CONCENTRATIONS:’,//,1X,’CAPILLARY:’,5X,E10.4,/,1X,
#?VENULE:’,9X,E10.4,/,1X, ’MESOTRELIUM: * ,1X,E10.4,//)
WRITE(6,621)SIGC,SIGV,SIGM
621 FORMAT(1X,’REFLECTION COEFFICIENTS:’,//,1X,’CAPILLARY:’,5X%,
#E£10.4,/,1X,'VENULE:',9X,E10.4,/,1X, 'MESOTHELIUM: > ,1X,E10.4,//)
WRITE(6,622)DLC,DLV,DLM
622 FORMAT(1X,’VESSEL FLUID CONDUCTANCES:?,//,1X,’CAPILLARY:’,5X,
#E£10.4,/,1X, VENULE: ’ ,9%X,E10.4,/,1X, ’MESOTHELIUM" 1X,E10.4,//)
WRITE(G 625)AOSM BOSM COSM

625 FORMAT(lX JVIRIAL CUEFFICIEHTS ’,//,1X,?AOSM:*,1X,E10.4,/,1X,

#'BOSM:’,1X,E10.4,/,1X,°COSH:?,1X, E10 4 //)
WRITE(6,623)DDC,DDV,DDM
623 FORMAT(1X,’VESSEL SOLUTE PERMEABILITIES:’,//,1X,'CAPILLARY:’,5X,
#E10.4,/,1X,*VENULE:’,9X,E10.4,/,1X, ’MESOTHELIUM: ’ ,1X,E10.4,//)
WRITE(6,624)PHIT,PHIA,PEIS
624 FORMAT(1X,’TOTAL TISSUE FLUID VOLUME FRACTION:’,2X,E10.4,/,1X,
#’SOLUTE DISTRIBUTION VOLUME FRACTION:’,1X,E10.4,/,1X,
# TOTAL SOLIDS VOLUME FRACTIOK:’,8X,E10.4,///)

999 CALL GRID(NEX,NEY)
INITIALIZE FLUID VECTOR
CALL SETMAT(NEX,NEY,O0,PEC,IEL]
ADJUST FLUID VECTOR TO FIT BOUNDARY CONDITICNS
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100

CALL ASTAR(NEX,NEY,O)
CALL VSTAR(NEX,NEY,O)
CALL MESTAR(NEX,NEY,O)

ENTER ITERATION LOOP, CHECK COUNTER VALUE

ICOUNT=ICOUNT+1
IF(ICOUNT.GT.IMAX)GO TO 200

INITIALIZE FLUIDB VECTOR AKND ADJUST TO FIT BOURDARY CORDITIONS
CALL SETMAT(NEX,NEY,1,PEC,IEL)

CALL ASTAR(NEX,NEY,1)
CALL VSTAR(NEX,NEY,1)
CALL MESTAR(NEX,NEY,1)

SOLVE THE FLUID SYSTEM

EP=EPS
CALL DGBAND(FLUID,FLUIDB,NT,LUB,LUB,ICOUNT,IPERM,DET,JEXP,HOLD,
#RES,ITER,EP)

DETERMINE THE MAXIMUM CHANGE IR P FROM ONE ITERATION TO THE NEXT
AND UPDATE POLD USING A RELAXATION PROCEDURE. PDIFMX WILL BE
COMPARED TO TOLP TO ESTABLISH CONVERGENCE

PMAX=0.DO

PDIFMX=0.DO

DO 3 I=1,NT

IF(DABS(FLUIDB(I)).GT.PMAXg PMAX=DABS(FLUIDB(I))
TEST=DABS(FLUIDB(I)-POLD(I))

IF(TEST.GT.PDIFMX) PDIFMX=TEST
POLD(I)=(OMEGAF)*(FLUIDB(I)~-POLD(I) }+POLD(I)
CONTINUE

PDIFMX=PDIFMX/PMAX

NOW INITIALIZE SOLUTE AND SOLUTB. STORE MAX. GRID PECLET
gg¥g§¥I3§sPECLET. ADJUST SOLUTE AND SOLUTB TO SUIT BOUNDARY

CALL SETMAT(NEX,NEY,2,PEC,IEL)
PECLET=PEC

IELE=IEL

CALL SETMAT(NEX,NEY,3,PEC,IEL)
CALL PATART(NEX,NEY)

CALL PATVEN(NEX,NEY)

CALL PATMES(NEX,NEY)

SOLVE THE SYSTEM OF EQUATIONS FOR TEBE SOLUTE FLOW EQUATION

EP1=EPS
CALL DGBND1(SOLUTE,SOLUTB,NT,LUB,LUB,1,IPERMS,DET, JEXP,HOLDS,
#RESS, ITER,EP1)

DETERMINE THE MAXIMUM CHANGE IN CALCULATED CONCENTRATION FROM
ONE ITERATION TO THE NEXT, AND UPDATE COLD USING A RELAXATION
PROCEDURE. CDIFMX WILL BE COMPARED TO TOLC TO ESTABLISH
CONVERGENCE

CMAX=0.DO

CDIFMX=0.D0

DO 4 I=1,NT

IF(DABS(SOLUTB(I)).GT.CMAX) CMAX=DABS(SOLUTB(I))
TEST=DABS (SOLUTB(I)-COLD(I))
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IF(TEST.GT.CDIFMX) CDIFMX=TEST
COLD(I)=(0OMEGAC)*(SOLUTB(I)-COLD(I))+COLD(I)
CONTINUE

4
CDIFMX=CDIFMX/CMAX
c
C CHECK TO SEE IF FURTEER ITERATION IS REQUIRED
c
IFgPDIFHX.GT.TOLP; GO TO 100
IF(CDIFMX.GT.TOLC) GO TO 100
c
GO TO 300
c
C MAXIMUM NUMBER OF ITERATIONS REACHED. PRINT OUT WARNING.
c

200 ICOUNT=ICOUNT-1
WRITE(6,600) ICOUNT
600 FORMAT(//,1X,’WARNING. CONVERGENCE CRITERIA NOT MET AFTER’,
#1X,I3,1X,’ITERATIONS?)
WRITE(6,601) PDIFMX,CDIFMX
601 FORMAT(//,1X,’MAXIMUM FRACTIONAL CHANGE IN P’,2X,
#’MAXIMUM FRACTIONAL CHANGE IN C’,//,11X,E9.4,22X,E9.4,//)

300 IF(PECLET.LT.PECMAX) GO TO 400
WRITE(6,603) PECLET,IELE
603 FORMAT(//,’WARNING. GRID PECLET NUMBER EQUALS’,1X,E9.4,3X,
#'ELEMENT LOCATION:’,1X,I4)

400 WRITE(6,604) ICOUNT
604 FORMAT(’1?,//,’STEADY-STATE SOLUTION ACHIEVED AFTER’,1X,I3,1X,
#°ITERATIONS:?)
WRITE(6,670) PECLET,IELE
670 FORMAT(//,1X,’MAXIMUM GRID PECLET NUMBER:’,1X,E9.4,3X,
#’ELEMENT LOCATION:’,1X,I4)
WRITE(6,601)PDIFMX,CDIFMX
WRITE(6,605)
605 FORMAT(//,1X,’X POSITION’,2X,’DYN. PRESS’,2X,’0SM. PRESS’,2X,
#°TOT. PRESS’,2X,”AVAIL. CONC.’,2X,°TOTAL CONC.',//)

WRITE(7,701)NEX,NEY
701 FORMAT(1X,I2,1X,I2)

(@]

C
C CALCULATE THE Y-AVERAGED PROTEIN CONCENTRATION, CAV, PRESSURE,
g PAV, ARD PROTEIN OSMOTIC PRESSURE,PIAV
X=0.D0O
c DO 5 I=1,REX
C IDENTIFY X-COORDINATE FOR AVERAGED QUANTITIES
C
X=X+DX(I)
PAV=0.D0O
PIAV=0.DO
c CAV=0.D0
C ENTER LOOP FOR INTEGRATION, IDENTIFYING APPROPRIATE BASIS FUNCS
C
DO 6 IT=1,4
T=GAUS(IT)
Bl=ET-1.DO;*T*.5DO
B7=(T+1.D0)*T*.5D0
B8=1.DO-T*T
NOW IFTEGRATE IN THE Y-DIRECTION, ELEMENT BY ELEMENT
DO 7 J=1,HEY

IDENTIFY THE ELEMENT NUMBER, EL

ann aan
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NEL=(I-1)*NEY+J
CALCULATE C(S,T)

CST=B1*COLD(NODEL (NEL,1))+B7*COLD(NODEL(NEL,7))+
# B8+COLD (NODEL(NEL,8))
PAV=PAV+(B1*POLD(NODEL(NEL,1) )+B7*POLD(NODEL(KEL,7))+
# B8+POLD (NODEL (NEL,8) ) )*W(IT)*DY(J+1)*.5D0
CAV=CAV+CST*W(IT)*DY(J+1)*.5D0
PIAV=PIAV+CST*(AOSM+CST*(BOSM+CST*COSM) ) *W(IT)*DY(J+1)*.5D0
7 CONTINUE
6 CONTINUE
CAV=CAV/YLL
C1=CAV+PHIA/(1.DO-PHIS)
PAV=PAV/YLL
PIAV=PIAV/YLL
PTOT=PAV-PIAV
WRITE(6,606) X,PAV,PIAV,PTOT,CAV,C1
606 FORMAT(1X,E9.3,2X,E10.4,2%,E10.4,2X,E10.4,2X,E10.4,3X,E10.4)
WRITE(7,606) X,Ci,PAV,PIAV,PTOT,CAV
5 CONTINUE

AND FINALLY WE CONSIDER THE VENULAR BOUNDARY

X=X+DX(NEX+1)

CAV=0.DO

PAV=0.DO

PIAV=0.DO

DO 8 IT=1,4

T=GAUS(IT)

B3=(T-1.D0)*T*.5D0

B4=1.DO-T*T

B5=(T+1.D0)*T* ,5D0
DO 9 J=1,NEY
FEL=(NEX-1)*KEY+J
CST=B3*COLD(NODEL(NEL,3))+B4*COLD{(NODEL(NEL,4))+

[elele]

anon

# B5*COLD (NODEL(REL,5))
PAV=PAV+(B3*POLD (NODEL (NEL, 3) )+B4*POLD(NODEL (NEL,4) )+
# B5+POLD (NODEL(NEL,5) ) )*W(IT)*DY(J+1)*.5D0

PIAV=PIAV+(CST*(AODSM+CST*(BOSM+CST*COSM) ))*W(IT)*DY(J+1)*.5D0
CAV=CAV+CST*W(IT)*DY(J+1)*.5D0

9 CONTINUE

8 CONTINUE

(@]

PAV=PAV/YLL

PIAV=PIAV/YLL

CAV=CAV/YLL

C1=CAV*PHIA/(1.DO-PHIS)
PTOT=PAV-PIAV

WRITE(6,606) X,PAV,PIAV,PTOT,CAV,C1
WRITE(7,606) X,C1,PAV,PIAV,PTOT,CAV

WRITE(6,607)
607 FORMAT(’1’,//,1X,’MASS BALANCE DATA’///) )

CALL MASFC(NEX,NEY)
CALL MASFV(NEX,NEY)

c CALL MASFM(NEX,NEY)
CALL MASSC(NEX,NEY)
CALL MASSV(NEX,NEY)

C CALL MASSM(NEX,NEY)
DO 10 I=1,NEY
T1=T1+QFC(I)
T2=T2+QSC(I)
T3=T3+QFV(I)
T4=T4+QSV(I)
T7=T7+QCC(I)
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c
C
c
c

c
c

‘0 T8=T8+QCV(I)
WRITE(6,612)
DO 11 I=1,NEX
T5=T5+QFM(I)
T6=T6+QSM(I)
T9=T9+QCM(I)
CONTINUE

WRITE(6,608)
608 FORMAT(///,1X,’NET DIMENSIONLESS FLUID FLOWS’)
TF=T1+T3+T5
WRITE(6,609) T5,T1,T3,TF
609 FORMAT(//,1X,’MES:’,1X,E12.4,/,1X,’CAP:’,
#£12.4,/,1X,’VER:’,1X,E12.4,/,1X,?TOT: ?,1X,E12.4)
WRITE(6,661)
661 FORMAT(///,1X,’NET DIMENSIONLESS SOLUTE FLOWS®)
TS=T2+T4+T6
WRITE(6,609)T6,T2,T4,TS
WRITE(6,662)
662 FORMAT(//,1X,’CONVECTIVE COMPONENTS OF DIMENSIONLESS SOLUTE
#FLOWS?)
TC=T8+T9+T7
WRITE(6,610) T9,T7,T8,TC
610 FORMAT(//,1X,’MES:’,1X,E12.4,/,1X,’CAP:’,1X,E12.4,/,1X, VEN: ",
#1X,E12.4,/,1X,'TOT:’,1X,E12.4)

WRITE OUT TEE MESOTEBELIAL FLUID FLUXES TO DEVICE 7

QFMAX=0.D0
QSMAX=0.D0
QSMIN=0.DO
QFMIN=0.DO
QCSMIN=0.DO
QCSMAX=0.DO
X=DX (1)
D0 12 I=1,NEX
IP=I+1
X=X+DX§IP)*.5DO
QF=QFM(I)/DX(IP)
IF(QF.GT.QFMAX) QFMAX=QF
IF(QF.LT.QFMIN) QFMIN=QF
QS=QSM(I)/DX(IP)
IF(QS.GT.QSMAX) QSMAX=QS
IF(QS.LT.QSMIN) QSMIN=QS
QC=QCM(I)/DX(IP)
IF(QC.LT.QCSMIN) QCSMIN=QC
IF(QC.GT.QCSMAX) QCSMAX=QC
WRITE(7,702) X,QF,QS,QC

02 FORMAT(1X,E10.4,1X,E10.4,1X,E10.4,1X,E10.4)
X=X+DX(IP)*.5D0

11

12 CONTINUE

WRITE FLUX DATA FOR 2-D PLOTS

CALL FLUX(NEX,REY)

NEL=NEX*NEY

DO 156 I=1,REL

WRITE(7,705) ELOC(I,1),ELOC(I,2),FFLUX(I,1),FFLUX(I,2),
#CFLUX(I,1),CFLUX(I,2),DFLUX(I,1),DFLUX(I,2)

705 FORMAT(8(1X,E10.4))
15 CONTINUE

NOW WRITE THE CONTOUR INFORMATION TO DEVICE 7
CMIN=0.DO

CMAX=0.DO
DO 13 I=1,NT
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703

13

704

PI=COLD(I)*(ACSM+COLD(I)* (BOSM+COLD(I)*COSM))
C=COLD(I)*PHIA/(1.DO-PHIS)

WRITE(7, 703)XNOD(I) YNOD(I),C,POLD(I),PI
FORMAT(iX E10.4,1X,E10.4, 3(1X E12.6))
IFgC.GT.CMAX% CMAX=C

IF(C.LT.CMIN) CMIN=C

CONTINUE

WRITE(7,704) CMIN,CMAX,QFMIN,QFMAX,QSMIN,QSMAX,QCSMIN,QCSMAX
FORMAT(1X,E7.2,1X,E7.2,1X,E7.2,1X,E7.2,1X,E7.2,1X,E7.2,1X ,E7.2,
#1X,E7.2)

STOP

END

SUBROUTIRE GRID(NEX,NEY)

THIS SUBROUTINE ESTABLISHES A RECTANGULAR GRID CORSISTING OF
EIGHT-NODE ISOPARAMETRIC ELEMENTS.

IMPLICIT REAL*8(A-E,0-2)
COMMON/BLK1/NODEL(600,8) ,XNOD(2000) , YNOD(2000)
COMMON/BLK2/DX(41) ,DY(41)

THE TOTAL NUMBER OF NODES IS GIVEN BY NEX*(3*NEY+2)+2*NEY+1,
WHERE NEX IS THE TOTAL NUMBER OF ELEMENTS IN THE X DIRECTION
AND NEY IS THE TOTAL IN THE Y DIRECTIOK.

X=0.DO

DO 1 I=1,NEX

X=X+DX(I)
IP=I+1
DXH=DX(IP)#*.5D0
Y=0.DO

DO 2 J=1,NEY

Y=Y+DY(J)

JP=J+1

DYH=DY(JP)*.5DO

IT=(I-1)*NEY+J
NODEL(IT,1)=(3*NEY+2)*(I-1)+2*J-1
NODEL(IT,2)=RODEL(IT,1)+2*NEY+2-]
NODEL(IT,3)=NODEL(IT,2)+NEY+J
NODEL(IT,4)=NODEL(IT,3)+1
NODEL(IT,5)=NODEL(IT,4)+1
NODEL(IT,6)=NODEL(IT,2)+1
NODEL(IT,7)=NODEL(IT,1)+2
NODEL(IT,8)=NODEL(IT,1)+1

XNOD(NODEL(IT,1))=X
YNOD(NODEL(IT,1))=Y
XNOD(NODEL(IT,2))=X+DXH
YNOD(NODEL(IT,2))=Y
XNOD(NODEL(IT,3))=X+DX(IP)
YNOD (NODEL(IT,3))=Y
XNOD(NODEL(IT,4))=X+DX(IP)
YNOD(NODEL(IT,4))=Y+DYH
XNOD (NODEL(IT,5))=X+DX(IP)
YNOD(NODEL(IT,5))=Y+DY(JP)
XNOD(NODEL(IT,6))=X+DXH
YNOD(NODEL(IT,6))=Y+DY(JP)
XNOD(NODEL(IT,7))=X
YNOD(NODEL(IT,7))=Y+DY(JP)
XNOD(KODEL(IT,8))=X
YNOD(NODEL(IT,8))=Y+DYH

CONTIKNUE
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CONTIRUE
RETURN
END

SUBROUTINE SETMAT(NEX,NEY,IND,PE,IPEC)

THIS SUBROUTINE INITIALIZES THE STIFFNESS MATRICES FOR THE
FLUID FLOW AND PROTEIN TRANSPORT EQUATIONS, CONVERTING THE
BANDED MATRICES TO VECTOR EQUIVALENTS WHEICH STORE ONLY THE
BANDS OF THE MATRICES. AN ELEMENT LOCATION (I,J) IS PLACED
IN THE VECTOR LOCATION (K) WHERE K=(3+«LUB)*J+I-LUB, AND
LUB IS THE HALF BANDWIDTH OF THE MATRIX (EXCLUDING THE
DIAGONAL). LUB IS RELATED TO NEY BY LUB=3+*KEY+4.

IMPLICIT REAL*8(A-E,0-Z)
COMMON/BLK1/NODEL(600,8) ,XNOD(2000) , YROD(2000)
COMMON/BLK2/DX(41),DY(41)
COMMON/FLUMAT/AF§2IOOOO§

COMMON/SOLMAT/AS (210000
COMMON/TISDAT/AK ,DEFF, AL ,AT,PHIA,PEIT,RET,SIGT
COMMON/0SMOT/A0,B0,CO

CDMMON/CAPDAT/PC,CC

COMMON/0LD/POLD(2000) ,COLD(2000)
conMoN/FLUB/Bngooog

COMMON/SOLB/BS (2000

DIMENSION GAUS(4),w(4),B(8),DBS(8),DBT(8),DBX(8),DBY(8),
#AJAC(2,2),AJACIN(2,2)

DATA NGAUS/4/

DATA W/.347854845137454D0,.652145154862546D0,
#.652145154862546D0, .347854845137454D0/

DATA GAUS/-.861136311594053D0,-.339981043584856D0,
#.339981043584856D0, .861136311594053D0/

DATA NGAUS/3/

DATA W/0.5555555555556D0,0.8888888888889D0,0.5555555555556D0/
DATA GAUS/~-0.774596669241483D0,0.D0,0.774596669241483D0/

DATA NGAUS/2/
DATA W/1.0D0,1.0D0,0.D0/

DATA GAUS/-0.577350269189626D0,0.577350269189626D0,0.D0/
ZERO APPROPRIATE ARRAY

IF(IND.EQ.3)GO TO 998

IF(IND.NE.2)GOD TO 900
DO 80 I=1,210000
AS(I)=0.DO

CONTINUE

PE=0.D0O

GO TO 101

IF(IND.FE.O) GO TO 901
DO 91 1=1,210000
AF(I)=0.DO

CONTINUE

GO TO 101

DO 82 I=1,2000

BF(1)=0.D0
CORTINUE
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c CARRY OUT THE INTEGRATION ELEMENT BY ELEMENT. INTEGRATION IS
C ACCORDING TO A THREE POINT GAUSS QUADRATURE.
c
101 LUB=3%*NEY+4
LP=3%LUB
NEL=NEX*NEY
o
C ENTER LOOP WEICH EVALUATES INTEGRAND AT APPROPRIATE (S,T)
C POINTS FOR GAUSS QUADRATURE.
o
DO 1 II=1,NGAUS
S=GAUS(II)
o
D0 2 JJ=1,NGAUS
T=GAUS(JJ)
DEFINE THE BASIS FUNCTIONS AND THEIR S AND T DERIVATIVES,
EVALUATED AT THE QUADRATURE POINTS
B(1)=(S-1.D0)*(1.DO-T)*(1.D0+S+T)*.25D0
B(2)=(1.D0-S*S)*(1.D0-T)*.5D0
B(3)=(1.D0+S)*(T-1.D0)*(1.DO~-S+T)*.25D0
B(4)=(1.DO-T*T)*(1.D0+S)*.5D0
B(5)=(1.D0+5)*(1.DO+T) *(T+S5-1. DO)=*.25D0
B(6)=(1.D0-S*S)*(1.D0+T)*.5D0
B(7)=(5-1. DO)*(1 DO+T)*(1.D0+S-T)*.25D0
B(8)=(1.DO-T*T 51 .D0-S)*.5D0
DBS(1)=(1.DO-T)*(T+2. DO*S; .25D0
DBT(1)=(1.D0-S)*(S+2.D0*T)*.25D0
DBS(2)=S#*(T-1. Dog
DBT(2 =§S*S 1.D0)*.5D0
DBS(3)=(1.D0~ T)*g DO*S—Tg*.QSDO
DBT(3 =§1 .D0+8)*(2.D0*T-S)*.25D0
DBS(4)=(1.DO-T*T)*.5D0
DBT(4)=~T*(1.D0+S)
DBS(5 =§1.DO+T§*(2.DO*S+T;*.25
DBT(5)=(1.D0+S)*(2.DO*T+5)*.25
DBS(6)=-5%(1.D0+T)
DBT(6)=(1.D0O-S*S)*.5D0
DBS(7)= 1.D0+T3*(2.D0*S—Tg*.2SDO
DBT(7)=(1.D0-5)*(2.D0*T-S)*,25D0
DBS(8)=(T*T-1. Do; .5DO
DBT(8 -T*(s 1.DO
C
C NOW CONSIDER EACH ELEMENT ONE BY OKE
c
DO 110 ITX=1,NEX
DO 100 ITY=1,NEY
IT=(ITX-1)*NEY+ITY
C
o WE NOW CALCULATE THE JACOBIAN MATRIX, AJAC, ITS DETERMINANT,
C DETJ, AND ITS INVERSE AJACIN.
C
C
AJAC(1,1)=0.D0
AJAC(2,1)=0.DO
AJAC(1,2)=0.DO
AJAC(2,2)=0.D0
C

DO 3 JAK=1,8

AJAC(1,1)=AJAC(1,1)+DBS(JAK)+XNOD(NODEL(IT, JAK))

AJAC(1,2)=AJAC(1,2)+DBS(JAK)*YNOD(NODEL(IT,JAK))

AJAC(2,1)=AJAC(2,1)+DBT(JAK)*XNOD(NGDEL(IT, JAK))

AJAC(2,2)=AJAC(2,2)+DBT(JAK)*YNOD(NODEL (IT, JAK))
3 CONTINUE

DETJ=AJAC(1,1)*AJAC(2,2)-AJAC(1,2)*A_JAC(2,1)
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C CHECK TO SEE IF THE DETERMINANT IS ZERO

IF(DETJ.GT.1.D-16) GO TO 777
WRITE(6,601) IT

601 FORMAT(1X,’DETERMINANT=0 AT ELEMENT’,1X,I4)
STOP

777 AJACIN(1,1)=AJAC(2,2)/DETJ
AJACIN(1,2)=-AJAC(1,2)/DETJ
AJACIN(2,1)=-AJAC(2,1)/DETJ
AJACIN(2,2)=AJAC(1,1)/DETJ

WE CAN NOW CALCULATE D(B(I))/DX AND D(B(I))/DY, EVALUATED AT
(x(s,T),Y(S,T)), USING JACIN

DO 4 I=1,8

DBX(I)=DBS(I)*AJACIN(1,1)+DBT(I)*AJACIN(1,2)

DBY(I)=DBS(I)*AJACIN(2,1)+DBT(I)*AJACIN(2,2)
4 CONTINUE

DETERMINE WHICH MATRIX IS TO BE EVALUATED
IF(IND.EQ.0)GO TO 902

WE NOW HAVE SUFFICIENT INFORMATION TO DETERMINE QX,QY, AND C,
ALL EVALUATED AT (S,T). THIS INFORMATION WILL BE USED TO
CALCULATE AF.

CST=0.DO
DPX=0.D0
DPY=0.D0
DCX=0.D0
DCY=0.DO

DO 5 J=1,8

DPX=POLD(NODEL(IT,J))*DBX(J)+DPX
DPY=POLD(NODEL(IT,J))*DBY(J)+DPY
DCX=COLD(NODEL(IT,J))*DBX(J)+DCX
DCY=COLD(NODEL(IT,J))*DBY(J)+DCY

CST=COLD(NODEL(IT,J))*B(J)+CST
5 COKTINUE

anoan

a0 o

DPIX=DCX*EAO+CST*$2.DO*BO+3.DO*CO*CST;g*SIGT
DPIY=DCY*(AO+CST*(2.D0*B0+3.DO*CO*CST) )*SIGT

IF IND EQUALS 1, THEN EVALUATE BF VECTOR
IF(IND.NE.2)GO TO 903

QXST=-AK*PC*PHIA/ (DEFF*PHIT)*RET*(DPX-DPIX)
QYST=-AK*PC*PHIA/ (DEFF*PHIT)*RET*(DPY-DPIY)

a oo

NOW CALCULATE THE DISPERSION COEFFICIENTS DXX,DXY,DYY, WHERE
DXX=(AL*QX**2/QMAG+AT*QY**2/QMAG) +PHIA, ETC

QMAG=DSQRT(QXST*QXST+QYST*QYSf)
CHECK TO SEE IF QMAG IS NONZERO

IF(QMAG.GT.1.D-10)GO TO 500
DXX=PHIA

DXY=0.DO

DYY=PHIA

GO TO 600

500 DXX=(AL*QXST*QXST+AT*QYST*QYST)/QMAG+PHIA
DXY=(AL-AT)*QXST*QYST/QHAG

OO0 oaaaan
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DYY=(AL*QYST*QYST+AT*QXST*QXST) /QMAG+PEIA

an

600 DO 6 M=1,8
MM=NODEL(IT,M)

DO 7 ¥=1,8
NN=NODEL(IT,N)

CONVERT INDEX(M,N) TO X BY FORMULA K=LP*N+M-LUB
AND THEN DETERMINE AS(X)

K=LP*NN+MM-LUB

AS(K)=AS(K)+(DBX (M) *(DXX*DBX (N)
#DBY (M) *(DXY*DBX(N)+DYY*DBY(N) 3+
#(QXST*DBX (N)+QYST*DBY (X)) *B(M))

7 CONTINUE
6 CONTINUE

NOW CALCULATE THE LOCAL GRID PECLET NUMBER EVALUATED AT (S,T),
ARD COMPARE TO PE

QMAX=DMAX1(QXST,QYST)
DIFMIN=DMIN1(DXX,DYY)
DLMAX=DMAX1(DX(ITX+1),DY(ITY+1))
PEST=DLMAX*QMAX/DIFMIN
IF(PEST.LT.PE)GO TO 100
PE=PEST

IPEC=IT

GO TO 100
CALCULATE AF

a aaan

+DXY*DBY () )+
*W(II)*W(JJ)*DETJ

a
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902 DO 8 M=1,8
MM=NODEL(IT,M)

c
DO 9 RN=1,8
) NN=NODEL(IT,N)
C
K=LP*NN+MM-LUB
AF(K)= AF(K)+(DBX{(M)*DBX(N)+DBY(M)*DBY(N))*W(II)*W(JJ)*DETJ
C

9 CONTINUE
8 CONTINUE

GO TO 100
CALCULATE BF

903 DO 10 M=1,8
MM=NODEL(IT,M)

BF (MM)=BF (MM) + (DBX (M) *DPIX+DBY (M) *#DPIY)*W(JJ)*W(II)*DETJ
10 CONTINUE
100 COXNTINUE
110 CONTINUE

2 CONTINUE
1 CORTINUE

999 DO 93 I=1,2000
BS(I)=0.DO

aaa QO
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CONTINUE

RETURN
END

SUBROUTINE ASTAR(NEX,NEY,IND)

THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO SUIT THE
BOUNDARY CONDITION Jv=Lpc*(P-Pc-sigc*(Pi~Pic)) AT THE CAPILLARY
WALL. IF IED=0 THEN THE AF VECTOR IS ADJUSTED.

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION B(3),INDEX(3),GAUS(3),W(3)
COMMON/BLK1/NODEL (600,8) ,XNOD(2000) , YNOD (2000)
COMMON/BLK2/DX(41) ,DY(41)
COMMON/FLUMAT/AF(210000)

COMMON/FLUB/BF (2000)

COMMON/0OLD/POLD(2000) ,COLD{2000)
COMMON/0SMOT/A0,B0,CO

COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM, PDC,PDV,PDM,PIDC,PIDV,PIDM,
#S1GC,SIGV,SIGM,CDC,CDV,CDM

DATA W/0.5555555555556D0,0.8888888888889D0,0.5555555555556D0/
DATA NGAUS,GAUS/3,-.774596669241483D0,0.D0, .774596669241483D0/

DEFINE PARAMETERS FOR INDEXING AF VECTOR

LUB=3*NEY+4
LP=3*LUB

CONSIDER THE CAPILLARY WALL, ELEMENT BY ELEMENT.

DO 1 IT=1,NEY
IP=IT+1

ENTER LOOP FOR GAUSS QUADRATURE INTEGRATION. IDENTIFY T VARIABLE
DO 2 M=1,KGAUS
T=GAUS (M)

DEFINE BASIS FUNCTIONS B(1)=B1, B(2)=B7, B(3)=B8, EVALUATED
AT (-1,T)

ET—I.DO;*T*.SDO

B(1
Bg2§ T+1.D0)*T*.5D0
B(3)=1.DO-T#*T

SEE IF AF VECTOR IS TO BE ADJUSTED
IF(IND.EQ.0)GO TO 100
ADJUST TEE BF VECTOR

C=COLD(NODEL(IT,1))*B(1)+COLD(NODEL(IT,7))*B(2)+
#COLD (NODEL(IT,8))*B(3)

PI=C*(AO+C*(BO+C*C0O))

BF(NODEL(IT,1))=BF(NODEL(IT,1))+B(1)*DLC*¥(M)*DY(IP)*.5D0*(PDC
# +SIGC*(PI-PIDC))

BF(NODEL(IT,?))=BF(NODEL(IT,7))+B(2)*DLC*H(M)*DY(IP)*.5DO*(PDC
# +SIGC*(PI-PIDC))

BF (NODEL(IT,8))=BF(NODEL(IT,8))+B(3)*DLC*W(M)*DY(IP)=.5D0*(PDC
# +SIGC*(PI-PIDC))
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GO TD 2
ADJUST THE AF VECTOR

100 INDEX(1)=NODEL(IT,1)
INDEX(2)=NODEL(IT,7)
INDEX(3)=NODEL(IT,8)

DO 3 I=1,3

DO 4 J=1,3

K=LP*INDEX(J)+INDEX(I)-LUB

AF (K)=AF (K)+B(I)*B(J)*W(M)*DY (IP)*.5DO*DLC
CONTINUE

CONTINUE

CORTINUE
CONTINUE

RETURN
END

anan

=N Wi

SUBROUTINE VSTAR(NEX,NEY,IRD)

THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO SUIT THE
BOUNDARY CONDITION Jv=Lpc*(P-Pv-sigv#(Pi~Piv)) AT THE VENULAR
WALL. IF IND=0 THEN TEE AF VECTOR IS ADJUSTED.

IMPLICIT REAL*8(A-E,0-Z)

DIMENSION B(3),INDEX(3),GAUS(3),%W(3)
COMMON/BLK1/NODEL(600,8) , XNOD(2000) , YNOD (2000)
COMMON/BLK2/DX (41),DY(41)
COMMON/FLUMAT/AF(210000)

COMMON/FLUB/BF (2000)

COMMON/OLD/POLD(2000) ,COLD(2000)
COMMON/OSMOT/A0,B0,CO

COMMON/WALL/DLC, DLV DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM,
#SIGC,SIGV,SIGH, CDC CDV ¢

DATA W/0.55555655555556D0,0.8888888888889D0,0.5555555555556D0/
DATA NGAUS,GAUS/3,-.774596668241483D0,0.D0, . 774596669241483D0/

DEFINE PARAMETERS FOR IEDEXING AF VECTOR

LUB=3*NEY+4
LP=3*LUB

CONSIDER THE VENULAR WALL, ELEMENT BY ELEMENT.

DO 1 ITT=1,NEY

g‘-(NEX-l)*NEYi-I'I‘I‘

ENTER LOOP FOR GAUSS QUADRATURE INTEGRATION. IDENTIFY T VARIABLE
DO 2 M=1,NGAUS

T=GAUS(M)

DEFINE BASIS FUNCTIONS B(1)=R3, B(2)=B4, B(3)=B5, EVALUATED
AT (1,T)

gT—i.DOg*T*.SDO
T+1.D0)*T*.5D0

B(1
B(3 .
B(2)=1.DO-T=*T

SEE IF AF VECTOR IS TO BE ADJUSTED
IF(IND.EQ.0)GO TO 100

aaOan O
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ADJUST THE BF VECTOR

C=COLD (NODEL(IT,3) )*B(1)+COLD(NODEL(IT,4))*B(2)+
#COLD(NODEL(IT,5))*B(3)

PI=C*(A0+C*(BO+C*CO))

BF (NODEL(IT,3))=BF (NODEL(IT,3))+B(1)*DLVW(¥)*DY(IP)*.5D0*(PDV
# +SIGV*(PI-PIDV))

BF(NODEL(IT,4))=BF(NODEL(IT,4))+B(2)*DLV*W(M)*DY(IP)*.5D0*(PDV
# +SIGV*(PI~-PIDV))

BF(NODEL(IT,5))=BF(NODEL(IT,5))+B(3)*DLV*W(M)*DY(IP)*.5D0*(PDV
# +SIGV*(PI-PIDV))

GO TO 2
ADJUST THE AF VECTOR

INDEX(1)=NODEL(IT,3)
INDEX(2)=NODEL(IT,4)
INDEX(3)=NODEL(IT,5)

DO 3 I=1,3
DO 4 J=1,3

LP*INDEX(J)+INDEX(I) LUB
éF(K)N%E(K)+B(I)*B(J)*W(H)*DY(IP)* .EDO*DLV
CONTINUE

CONTINUE
CONTINUE

RETURN

END

SUBROUTINE MESTAR(KEX,NEY,IND)

THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO SUIT THE

BOUNDARY CONDITION Jv=Lpc*(P-Pm-sigm*(Pi-Pim)) AT THE MESOTHEL.

WALL. IF IND=0 THEN THE AF VECTOR IS ADJUSTED.

IMPLICIT REAL*8(A-E,0-Z)

DIMENSION B(3),INDEX(3),GAUS(3),W(3)
COMMON/BLK1/NODEL(600,8) , XNOD(2000) , YNOD (2000)
COMMON/BLK2/DX(41) ,DY(41)

COMMON/FLUMAT/AF (210000)

COMMON/FLUB/BF{2000)
COMMON/0OLD/POLD (2000) ,COLD (2000)
COMMON/0OSMOT/A0,B0,CO

COMMON/WALL/DLC,DLV,DLM,DDC,DDV ,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM,

#SIGC,SIGV,SIGM,CDC,CDV,CDM

DATA W/0.5555555555556D0,0.8888888888889D0,0.5555555555556D0/
DATA NGAUS,GAUS/3,-.774596669241483D0,0.D0,.774596669241483D0/

DEFINE PARAMETERS FOR INDEXING AF VECTOR

LUB=3*NEY+4
LP=3*LUB

CONSIDER THE MESOTHELIAL WALL, ELEMENT BY ELEMENT.
DO 1 ITT=1,NEX

IP=ITT+1
IT=ITT*KNEY

254
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ENTER LOOP FOR GAUSS QUADRATURE INTEGRATION. IDERTIFY S VARIABLE
DO 2 M=1,NGAUS
S=GAUS(M)

DEFINE BASIS FUNCTIONS B(1)=B5, B(2)=B6, B(3)=B7, EVALUATED
AT (s,1)

gs—i.Dog*s*.SDo

B(3
Bgl% S+1.D0)*S*,.5D0
B(2)=1.D0-S*S

SEE IF AF VECTOR IS TO BE ADJUSTED
IF(IND.EQ.0)GO TO 100
ADJUST THE BF VECTOR

CST=COLD(NODEL(IT,5))*B(1)+COLD(NODEL(IT,6))*B(2)+
#COLD(NODEL(IT,7))*B(3)

PIST=A0*CST+BO*CST*CST+CO*CST*CST*CST

BF(NODEL(IT,5))=BF(NODEL(IT,5))+
#B(1) *DLM*DX (IP) #W (M) * . 5DO* (PDM+SIGM* (PIST-PIDM))

BF(NODEL(IT,6))=BF(NODEL(IT,6))+
#B(2)«DLM*DX (IP)*W(M) * . 5DO* (PDM+SIGM* (PIST-PIDM))

BF(NODEL(IT,7))=BF(NODEL(IT,7))+
#B(3)*DLM*DX (IP)*W(M)*.5D0* (PDM+SIGM* (PIST-PIDM))

GO TO 2
ADJUST THE AF VECTOR

100 INDEX(1)=NODEL(IT,5)
INDEX(2)=NODEL(IT,6)
INDEX(3)=NODEL(IT,7)

D0 3 I=1,3

DO 4 J=1,3

K=LP*INDEX(J)+INDEX(I)-LUB
AF(K)=AF(K)+B(I)*B(J)*W (M) *DX(IP)*.5DO*DLM
CONTINUE

CONTINUE

CONTINUE
CONTINUE

RETURN
END
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SUBROUTINE PATART(NEX,NEY)

THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO SUIT TEE
gggiINEAR FLUX BOUNDARY CONDITION AT THE CAPILLARY

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION B{(3),INDEX(3),GAUS(3),W(3)
COMMON/BLK1/NODEL(600,8) ,XNOD(2000) , YNOD(2000)
COMMON/BLK2/DX(41),DY(41)

COMMON/SOLMAT/AS(210000)

COMMON/SOLB/BS(2000)

COMMON/OLD/POLD(2000) ,COLD(2000)

COMMON/0SMOT/A0,B0,C0
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDH,

aqQaaaaa o
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#SIGC,SIGV,SIGM,CDC,CDV,CDM
COMMON/TISDAT/AX ,DEFF ,AL,AT,PEIA,PHIT,RET,SIGT
COMMON/CAPDAT/PC,CC

DATA W/0.5555555555556D0,0.8888888888889D0,0.5555555555556D0/
DATA NGAUS,GAUS/3,-.774596669241483D0,0.D0, .774596669241483D0/

DEFINE PARAMETERS FOR INDEXING AF VECTOR

LUB=3*NEY+4
LP=3*LUB

CONSIDER THE CAPILLARY WALL, ELEMENT BY ELEMENT.

DO 1 IT=1,NEY
IP=IT+1

ENTER LOOP FOR GAUSS QUADRATURE INTEGRATICN. IDERTIFY T VARIABLE
DO 2 M=1,NGAUS
T=GAUS (M)

DEFINE BASIS FUNCTIONS B(1)=B1, B(2)=B7, B(3)=B8, EVALUATED
AT (-1,T)

gT-l.DOg*T*.SDO

B(1
B§2§ T+1.D0)*T*.5D0
B(3)=1.DO-T*T

INDEX(1)=NODEL(IT,1)
INDEX(2)=NODEL(IT,7)
INDEX(3)=NODEL(IT,8)

CALCULATE c(S,T), PI(S,T) AND Q(S,T)

CST=0.D0
QST=0.DO
DO 3 I=1,3
CST=CST+COLD§INDEX(I;g*BgIg
QST=QST+POLD(INDEX(I))*B(I
CONTINUE

PIST=CST*(AO+CST*(BO+CST*CO)g'
QST=(QST-PDC-SIGC*(PIST-PIDC) )*( AK*PC*DLC) /DEFF
F=PHIA/PHIT

PEC=QST*(1.D0-SIGC)/DDC

CHECK TO SEE IF COKNVECTIVE COMPONENT DOMINATES

IFéPEC.GT.I70.DO)G0 TO 101
IF(PEC.LT.-170.DO)GO TO 102

CHECK TO SEE IF CORVECTIVE COMPONENT IS SIGHIFICANT

TEST=1.D0-DEXP(-PEC)
IF(DABS(TEST).LT.1.D-10) GO TO 100

ADJUST THE AS VECTOR AND BS VECTOR

DO 4 I=1,3
DO 5 J=1,3
K=LP*INDEX(J)+INDEX(I)-LUB
AS(K)=AS(X)-
#  (RET*F-(1.DO-SIGC)/TEST)*QST*B(I)*B(J)*DY(IP)*.5D0=W (M)
CONTINUE
BS(INDEX(I))=BS(INDEX(I))+
#B(I)*QST*(1.D0-SIGC)*CDC*DEXP(-PEC)/TEST*DY (IF)*.500*%W{¥)
CONTINUE
GO TO 2
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ADJUST AS AND BS FOR CASE WHERE SOLUTE FLUX IS PREDOMINANTLY
DIFFUSIVE

100 DO 6 I=1,3
DO 7 J=1,3
K=LP#INDEX(J)+INDEX(I)-LUB
, éSé%’ =AS(K)+(DDC-F#RET*QST) *B(I)*B(J)*DY (IP)*.5D0O*¥ (M)
BS(INDEX(I))=BS(INDEX(I))+B(I)*DDC*CDC*DY (IP)*.5DO*W(M)
6 CONTINUE

GO TC 2

ADJUST AS AND BS FOR CASES WHERE CONVECTIVE TRANSPORT DOMINATES
101 DO 8 I=1,3
Do 8 J=1,3
K=LP*INDEX(J)+INDEXEI)-LUB
AS(K)=AS(K)-(RET*F~(1.D0~SIGC) )*QST*B(I)*B(J)*DY(IP)*.5D0O*W(M)
9 CONTINUE
8 CONTINUE

GO TO 2

102 DO 10 I=1,3

DO 11 J=1,3

K=LP*INDEX(J)+INDEX(I)-LUB

AS(K)=AS (K)-RET*F*QST*B(I)*B(J)*DY(IP)*.5DO*W (M)

CONTINUE
BS(INDEX(Ig)=BS(INDEX(I;)-
#(1.DO-SIGC)*QST*CDC*B (I)*DY (IP)*.5D0*W (M)
0 CONTINUE

aonon
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CONTINUE
CONTINUE

RETURN
END

N

SUBROUTINE PATVEN(FNEX,NEY)

THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO SUIT THE
gg{%INEAR FLUX BOUNDARY CONDITION AT THE VERULAR

IMPLICIT REAL*8(A-H,0-2)

DIMENSION B(3),INDEX(3),GAUS(3),W(3)

COMMON/BLK1/NODEL(600,8) ,XNOD(2000) ,YNOD (2000)

COMMON/BLK2/DX(41) ,DY(41)

COMMON/SOLMAT/AS(210000)

COMMON/SOLB/BS (2000)

COMMON/0OLD/POLD(2000) ,COLD (2000)

COMMON/0SMOT/A0,B0,CO

COMMON/WALL/DLC ,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM,
#SIGC,SIGV,SIGM,CDC,CDV,CDM

COMMON/TISDAT/AK ,DEFF,AL,AT,PHIA,PEIT,RET,SIGT

COMMON/CAPDAT/PC,CC

DATA W/0.5555555555556D0,0.8888888888889D0,0.5555555555556D0/
DATA NGAUS,GAUS/3,-.774596669241483D0,0.D0, .774596669241483D0/

DEFINE PARAMETERS FOR INDEXING AF VECTOR

LUB=3*NEY+4
LP=3*LUB

CONSIDER TEE CAPILLARY WALL, ELEMENT BY ELEMENT.

DO 1 ITT=1,NEY
IP=ITT+1

aoaoann
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100
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101

IT=(NEX-1)*NEY+ITT

ENTER LOOP FOR GAUSS QUADRATURE INTEGRATION. IDENTIFY T VARIABLE
DO 2 M=1,NGAUS

T=GAUS(M)

DEFINE ?ASIS FUNCTIONS B(1)=B3, B(2)=B4, B(3)=BS, EVALUATED
AT (1,T

B(1 =ET—1.DO;*T*.5DO
B(3)=(T+1.D0)*T*.5D0
B(2)=1.DO-T*T

INDEX(1)=KODEL(IT,3)
INDEX(2)=NODEL(IT,4)
INDEX(3)=NODEL(IT,5)

CALCULATE c(S,T), PI(S,T) AND Q(S,T)
CST=0.D0

CST=CST+COLD (INDEX(I))*B(I
QST‘QST+POLD51NDEX§I§§ §I§
CONTINUE

PIST=CST*(AO+CST*(B0+CST*CO)3
QST=(QST-PDV-SIGV*(PIST-PIDV))* (AK*PC*DLV) /DEFF
F=PEIA/PHIT

PEC=QST*(1.D0-SIGV)/DDV

CHECK TO SEE IF CONVECTIVE COMPONENT DOMINATES

IFEPEC.GT.l?O.DO)GO TO 101
IF(PEC.LT.-170.D0)G0 TO 102

CHECK TO SEE IF CONVECTIVE COMPONENT IS SIGNIFICARNT

TEST=1.DO-DEXP(~PEC)
IF(DABS(TEST).LT.1.D-10) GO TO 100

ADJUST THE AS VECTOR AND BS VECTOR
DO 4 I=1,3
DO 5 J=1,3
X= LP*INDEX(J)+INDEX(I) LUB
AS(K)=AS(K)-
(RET*F—(l DO-SIGV)/TEST)*QST*B(I)*B(J)*DY(IP)*.5D0*W (M)

Bs(INDEx(I))-Bs(INDEx(I))+
#B(I)*%%%*(l .DO-SIGV)*CDV*DEXP (-PEC)/TEST*DY (IP)*.5DO*W (M)

GO TO 2

ADJUST AS AND BS FOR CASE WHERE SOLUTE FLUX IS PREDOMINANTLY
DIFFUSIVE

DO 6 I=1,3
DO 7 J-1 3
K= LP*INDEX(J)+INDEX(I)-LUB
ég§¥%=A5(K)+(DDV—F*RET*QST)*B(I)*B(J)*DY(IP)*.5DO*W(M)

NUE
BS(INDEX(I))=BS(INDEX(I))+B{I)+*DDV*CDV*DY(IP)=.5DO*W (M)
CONTINUE

GO TO 2
ADJUST AS AND BS FOR THE CASE WHERE CONVECTION DOMINATES
DO 8 I=1,3
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DO & J=1,3
K= LP*INDEX(J)+INDEX§I)—L
AS(K)=AS(K)-(RET*F-(1.D0-SIGV))*QST*B(I)*B(J)*DY(IP)*.5D0*W(M)
9  CONTINUE
8 CONTINUE
GO TO 2
C
102 DO 10 I=1,3
DO 11 J21,3
K= LP*INDEX(J)+INDEX(I)—LUB
AS(K)=AS(X)-RET*F*QST*B(I)*B(J)*DY(IP)*.5D0*W (M)
11 CONTINUE
BS(INDEX(I))‘BS(INDEX(I))-
(1.DO-SIGV)*QST*CDV*B(I)*DY(IP)*.5D0*¥ (M)
c 10 CONTINUE
2 CONTINUE
1 CONTINUE
C
RETURN
END
C
c SUBROUTINE PATMES(NEX,NEY)
C THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO SUIT THE
c NONLINEAR FLUX BOUNDARY CONDITION AT THE MESOTHELIAL
o WALL.
c

anon

aQanon

OO0 O OO0

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION B(3),INDEX(3),GAUS(3),W(3)

COMMON/BLX1/NODEL(600,8) , XNOD(2000) , YNOD (2000)

COMMON/BLK2/DX(41) ,DY(41)

COMMON/SOLMAT/AS (210000)

COMMON/SOLB/BS(2000)

COMMON/0LD/POLD(2000) , COLD (2000)

COMMON/OSMOT/A0,BO,CO

COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM, PDC, PDV, PDM, PIDC,PIDV,PIDM,
#SIGC,SIGV,SIGM,CDC,CDV,CDM

COMMON/TISDAT/AK ,DEFF, AL, AT,PHIA,PHIT,RET,SIGT

COMMON/CAPDAT/PC,CC

DATA W/0.5555555555556D0,0.8888888888889D0,0.5555555555556D0/
DATA NGAUS,GAUS/3,-.774596669241483D0,0.D0, .774596669241483D0/

DEFINE PARAMETERS FOR INDEXING AF VECTOR

LUB=3*NEY+4
LP=3+LUB

CONSIDER THE MESOTHELIAL WALL, ELEMENT BY ELEMENT.

DO 1 ITT=1,NEX

IP=ITT+1

IT=ITT+NEY

ENTER LOOP FOR GAUSS QUADRATURE INTEGRATION. IDESTIFY S VARIABLE
DO 2 M=1,NGAUS

S=GAUS (M)

DEFINE BASIS FUNCTIONS B(1)=B5, B(2)=B6, B(3)=B7, EVALUATED
AT (S,1)

B(3 =§S—1.DO;*S*.SDO
B(1)=(S+1.D0)*S*.5D0
B(2)=1.D0-S#*5S
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INDEX(1)=NODEL(IT,5)
INDEX(2)=NODEL(IT,6)
INDEX(3)=NODEL(IT,7)

CALCULATE ¢(S,T), PI(S,T) AND Q(S,T)

CST=0.D0
QST=0.DO
DO 3 I=1,3
CST=CST+COLD$INDEX§I§g*BgI;
QST=QST+POLD (INDEX(I) )*B(I
CONTIHUE

PIST=CST*(AO+CST*(B0+CST*CO)g
QST=(QST~PDM~SIGM*(PIST-PIDM))* (AK*PC*DLM) /DEFF
F=PHIA/PHIT

PEC=QST*(1.D0O-SIGM)/DDM

CHECK TC SEE IF CONVECTION DOMINATES

IF%PEC.GT.170.DO)GO TO 101
IF(PEC.LT.-170.D0)G0 TO 102

CHECK TO SEE IF CONVECTIVE COMPONENT IS SIGNIFICANT

TEST=1.D0-DEXP(-PEC)
IF(DABS(TEST).LT.1.D-10) GO TO 100

ADJUST TEE AS VECTOR AND BS VECTOR

DO 4 I=1,3
DO 5 J=1,3
K=LP*INDEX (J)+INDEX(I)-LUB
AS(X)=AS(X)~
#  (RET*F-(1.D0-SIGM)/TEST)*QST*B(I)*B(J)*DX(IP)*.5DO*W (M)
5 CONTINUE
BS(INDEX(I))=BS(INDEX(I))+
#B(I)*QST*(1.D0-SIGM)*CDM*DEXP (-PEC) /TEST*DX{IP)*.5D0*W (M)
0102
2

ADJUST AS AFD BS FOR CASE WHERE SOLUTE FLUX IS PREDOMINANTLY
DIFFUSIVE

100 DO 6 I=1,3
DO 7 J=1,3
K=LP*INDEX(J)+INDEX(I)-LUB
AS(K)=AS(K)+(DDM~F*RET*QST)*B(I)*B(J)*DX(IP)*.5D0*W (M)

COBRTINUE
BS(INDEX(I))=BS(INDEX(I))+B(I)+*DDM*CDM*DX(IP)*.SDO*W (M)
6 CONTIEUE

GO TO 2

ADJUST AS AFD BS FOR CASES WHERE CONVECTION DOMINATES

i01 DO 8 I=1,3
DO 9 J=1,3
K=LP*INDEX(J)+INDEXEI)—LUB
AS(K)=AS(X)~-(RET*F-(1.DO-SIGM))*QST*B(I)*B(J)*DX(IP)*.5D0*W (M)
8 CONTINUE
8 CONTINUE

GO TO 2

102 DO 10 I=1,3
DO 11 J=1,3
K=LP*INDEX (J)+INDEX(I)-LUB
AS(K)=AS(K)-RET*F*QST*B (I)*B(J)*DX (IP)*.5D0O*W (M)

CONTINUE
BS(INDEX(I))=BS{INDEX(I))-
# (1.DO-SIGM)*QST*CDM*B(I)*DX(IP)*.5D0*W (M)

[e1eXe]

aanon aQaoan

aQan eXele]

ann O

11
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c 10 CONTINUE

aon

[eXeNelelel

aQanon

aan

Qoo a aoaa

CONTINUE
CONTINUE

RETURN
ERD

SUBROUTINE MASFC{NEX,NEY)

THIS SUBROUTINE CALCULATES THE FLUID FLUX ACROSS THE CAPILLARY
WALL, STORING IT IN QFC(NEY), AS WELL AS THE CONVECTIVE FLUX
OF PROTEIN TO THE WALL FROM THE INTERSTITIUM (QSC(REY)).

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION B(3),INDEX(3),GAUS(3),W(3)

COMMON/BLK1/NODEL(600,8) ,XNOD(2000) , YNOD(2000)

COMMON/BLK2/DX(41),DY(41)

COMMON/SOLMAT/AS(210000)

COMMON/SOLB/BS (2000)

COMMON/0LD/POLD(2000) , COLD (2000)

COMMON/0SMOT/40,B0,CO

COMMON/WALL/DLC,DLV,DLM,DDC,DDV ,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDH,
#SIGC,SIGV,SIGM,CDC,CDV,CDM

COMMOKR/TISDAT/AK ,DEFF,AL,AT,PHIA,PHEIT,RET,SIGT

COMMON/CAPDAT/PC,CC

COMMON/MATBAL/QFC(40),QCC(40),QsSC(40),QFV(40),QCV(40),QSV(40),
#QFM(40),QCH(40),QSM(40)

DATA W/0.5555555555556D0,0.8888888888889D0,0.5555555555556D0/
DATA NGAUS,GAUS/3,-.774596669241483D0,0.D0, .774596669241483D0/

CONSIDER THE CAPILLARY WALL, ELEMENT BY ELEMENT.

F=PHIA/PHIT
DO 1 IT=1,NEY
IP=IT+1

ENTER LOOP FOR GAUSS QUADRATURE INTEGRATION. IDENTIFY T VARIABLE
DO 2 M=1,NGAUS
T=GAUS(M)

DEFINE BASIS FUNCTIONS B(1)=B1, B(2)=B7, B(3)=B8, EVALUATED
AT (-1,T)

B%l%:gT—l.DO;*T*.SDO

B(2)=(T+1.D0)*T*.5D0
B(3)=1.DO-T*T

INDEX(1)=NODEL(IT,1)
INDEX(2)=NODEL(IT,7)
INDEX(3)=NODEL(IT,8)

CALCULATE c€(S,T), PI(S,T) AND Q(S,T)

€ST=0.DO

QST=0.D0

DO 3 I=1,3

CST=CST+COLD(INDEX§I§3*B(Ig

QST=QST+POLD( INDEX(I))*B‘I

CONTINUE

PIST=CST*(AO+CST*(BO+CST*CO)g
QST=(QST-PDC-SIGC*(PIST-PIDC) )+ (AK*PC*DLC) /DEFF

NOW CALCULATE THE CONVECTIVE FLUX OF PROTEIN, QCC, iND THE
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FLUID FLUX, QFC, BOTHE INTEGRATED OVER THE ELEMENTAL BOUNDARY

QFC(IT)=QFC(IT)+QST*DY(IP)*.5D0*W (M)
QCC(IT)=QCC(IT)+QST*RET*F*CST*DY(IP)*.5D0*W(M)

CONTINUE
CONTINUE
RETURN
END

SUBROUTINE MASFM(NEX,NEY)

THIS SUBROUTINE CALCULATES THE FLUID FLUX ACROSS THE MESOTHEL.
WALL, STORING IT IN QFM(NEY), AS WELL AS THE CONVECTIVE FLUX
OF PROTEIN TO THE WALL FROM THE INTERSTITIUM (QSM(NEY)).

IMPLICIT REAL*8(A-H,0-2Z)

DIMENSION B(3),INDEX(3),GAUS(3),W(3)
COMMON/BLK1/NODEL(600,8) ,XNOD(2000) , YNOD(2000)
- COMMON/BLK2/DX(41),DY(41)

COMMON/SOLMAT/AS (210000)

COMMON/SOLB/BS(2000)
COMMON/OLD/POLD(2000) ,COLD (2000)
COMMON/0SMOT/A0,B0,CO

COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DD¥M,PDC,PDV,PDM,PIDC,PIDV,PIDH,
#SIGC,SIGV,SIGM,CDC,CDV,CDM

COMMON/TISDAT/AK ,DEFF,AL,AT,PEIA,PHIT,RET,SIGT

COMMON/CAPDAT/PC,CC

COMMOR/MATBAL/QFC(40),QCC(40),Q5€(40),QFV(40),QCV(40),QsSV(40),
#QFM(40),0CM(40),QSM(40)

DATA W/0.5555555655556D0,0.8888888888889D0,0.5555555555556D0/
DATA NGAUS,GAUS/3,-.774596669241483D0,0.D0,.774596669241483D0/

CONSIDER THE MESOTHELIAL WALL, ELEMENT BY ELEMENT.

F=PHIA/PRIT

DO 1 ITT=1,NEX
IT=NEY*ITT
IP=ITT+1

ENTER LOOP FOR GAUSS QUADRATURE INTEGRATION. IDENTIFY T VARIABLE
DO 2 M=1,NGAUS
S=GAUS (M)

DEFINE ?ASIS FUNCTIONS B(1)=B5, B(2)=B6, B(3)=B7, EVALUATED
AT (5,1

B(3 =ES—1.DO§*S*.5DO
B(1 S+1.D0)*S* .5D0
B(2)=1.D0-Sx*5

INDEX (1)=NODEL(IT,5)
INDEX(2)=NODEL(IT,6)
INDEX (3)=NODEL(IT,7)

CALCULATE C(S,T), PI(S,T) AND Q(S,T)

CST=0.D0

QST=0.D0

DO 3 I=1,3
CST=CST+COLD(INDEX(I;g*E§I;
QST=QST+POLD (INDEX(I))*B(I
CONTINUE
PIST=CST*(A0+CST*(BO+CST*CO)g
QST=(QST-PDM-SIGM*(PIST-PIDM))* (AK*PC*DLM)/DEFF
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NOW CALCULATE THE CONVECTIVE FLUX OF PROTEIN, QCM, AND THE
FLUID FLUX, QFM, BOTH INTEGRATED OVER THE ELEMENTAL BOUNDARY

QFM{ITT)=QFM(ITT)+QST*DX(IP)*.5D0*W (M)
QCM(ITT)=QCM(ITT)+QST*RET*F*CST*DX(IP)*.5D0*W(M)

CONTINUE
CONTINUE
RETURN
END

SUBROUTINE MASFV(NEX,NEY)

THIS SUBROUTINE CALCULATES THE FLUID FLUX ACROSS THE VENULAR
WALL, STORING IT IN QFV(NEY), AS WELL AS THE CONVECTIVE FLUX
OF PROTEIN TO THE WALL FROM THE INTERSTITIUM (QSV(NEY)).

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION B(3),INDEX(3),GAUS(3),W(3)

COMMON/BLK1/NODEL(600,8) ,XNOD{2000) , YROD(2000)

COMMON/BLK2/DX(41) ,DY(41)

COMMON/SOLMAT/AS(210000)

COMMOK/SOLB/BS (2000)

COMMON/0LD/POLD (2000) ,COLD(2000)

COMMON/0OSMOT/A0,B0,CO

COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDN,
#SIGC,SIGV,SIGM,CDC,CDV,CDM

COMMON/TISDAT/AK,DEFF,AL,AT,PHIA,PEIT,RET,SIGT

COMMON/CAPDAT/PC,CC

COMMON/MATBAL/QFC(40),QCC(40),Q5C(40),QFV(40),QCV(40),Qs5V(40),
#QFM(40) ,QCM(40),QSM(40)

DATA W/0.5555555555556D0,0.8888888888889D0,0.5555555555556D0/
DATA NGAUS,GAUS/3,-.774596669241483D0,0.D0, .774596669241483D0/

CONSIDER THE VENULAR WALL, ELEMENT BY ELEMENT.

F=PHIA/PHIT

bo 1 ITT=1,NEY
IT=(NEX-1)*NEY+ITT
IP=ITT+1

ENTER LOOP FOR GAUSS QUADRATURE INTEGRATION. IDENTIFY T VARIABLE
DO 2 M=1,NGAUS
T=GAUS (M)

DEFINE BASIS FUNCTIONS B(1)=B3, B{(2)=B4, B(3)=B5, EVALUATED
AT (1,T)

B(1 =§T—1.D03*T*.5DO
B(3)=(T+1.D0)*T*.5D0
B(2)=1.DO-T*T

INDEX(1)=NODEL(IT,3)
INDEX(2)=NODEL(IT,4)
INDEX(3)=NODEL(IT,5)

CALCULATE c(S,T), PI(S,T) AND Q(S,T)
CST=0.D0

DO 3 I=1,3 -
CST=CST+COLD§INDEX§I§g*BEIg
QST=QST+POLD(INDEX(I))=*B(I
CONTINUE
PIST=CST*(A0+CST*(BO+CST*C0))
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QST=(QST-PDV-SIGV*(PIST-PIDV))* (AK*PC*DLV)/DEFF

c
C NOW CALCULATE THE CONVECTIVE FLUX OF PROTEIN, QCV, AND THE
c FLUID FLUX, QFV, BOTH INTEGRATED OVER THE ELEMENTAL BOUNDARY
C
QFV(ITT)=QFV(ITT)+QST*DY(IP)*.5D0O*W(M)
c QCV(ITT)=QCV(ITT)+QST*RET*F*CST*DY(IP)*.5DO*W (M)

2 CONTINUE

1 CONTINUE
RETURN
END

SUBROUTINE MASSC(NEX,NEY)

THIS SUBROUTINE CALCULATES THE PROTEIN FLUX ACROSS TEHE
CAP%LLARY WALL, STORING THE INTEGRATED FLUX IN THE VECTOR
Qsc(40).

IMPLICIT REAL#*8(A-H,0-Z)

DIMENSION B(3),INDEX(3),GAUS(3),W(3)
COMMON/BLK1/NODEL(600,8) ,XNOD(2000) , YROD(2000)
COMMON/BLK2/DX(41) ,DY(41)

COMMON/SOLMAT/AS(210000)

COMMON/SOLB/BS (2000)

COMMON/O0LD/POLD(2000) ,COLD (2000)

COMMON/0SMOT/A0,B0,CO
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM, PIDC,PIDV,PIDN,
#SIGC,SIGV,SIGM,CDC,CDV,CDM

COMMON/TISDAT/AK ,DEFF,AL,AT,PEIA,PHIT,RET,SIGT
COMMON/CAPDAT/PC,CC
COMMON/MATBAL/QFC(40),QCC(40),QSC(40),QFV(40),QCV(40),QSV(40),
#QFM(40),QCH(40),QSM(40)

DATA W/0.5555555555556D0,0.8888888888889D0,0.5555555555556D0/
DATA NGAUS,GAUS/3,-.774596669241483D0,0.D0, .774596669241483D0/

CONSIDER THE CAPILLARY WALL, ELEMENT BY ELEMENT.

DO 1 IT=1,KEY
IP=IT+1

QOO O

anon

ENTER LOOP FOR GAUSS QUADRATURE INTEGRATION. IDENTIFY T VARIABLE
DO 2 M=1,RGAUS
T=GAUS (M)

DEFINE BASIS FUNCTIONS B(1)=B1, B(2)=B7, B(3)=B8, EVALUATED
AT (-1,T)

B(1 §T—1.DO;*T*.5DO
B(2)=(T+1.D0)*T=*.5D0
B(3)=1.DO-T*T

INDEX(1)=FODEL(IT,1)

INDEX(2)=FODEL(IT,7)
INDEX(3)=NODEL(IT,8)

CALCULATE c(S,T), PI(S,T) AND Q(S,T)
€ST=0.D0

Qo O a0a

ana

CST=CST+éOLD(IHDEX§Igg*B(Ig
QST=QST+POLD (INDEX(I))*B(I
CONTINUE

PIST=CST*(AO+CST*(B0+CST*CO);
QST=(QST-PDC~-SIGC*(PIST-PIDC))* (AK*PC+DLC) /DEFF
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PEC=QST*(1.D0-SIGC)/DDC
CHECK TO SEE IF CONVECTION DOMINATES

IF&PEC.GT.170.DO)GO TO 101
IF(PEC.LT.-170.D0)G0 TO 102

CHECK TO SEE IF CONVECTIVE COMPONENT IS SIGNIFICANT

TEST=1.D0-DEXP(-PEC)
IF(DABS(TEST).LT.1.D-10) GO TO .100

CALCULATE THE INTEGRATED FLUX ALONG THE ELEMENTAL BOUNDARY

QSC(IT)=QSC(IT)+
#§1 .DO-SIGC)*QST* (CST-CDC*DEXP (-PEC) ) /TEST*DY (IP)*W(M)*.5D0

VRITE(G 600) IND,M,QST,PEC,IT,QSC(IT)
600 FORHAT(lX ’CONDITION’ I2, 1X M=?,12,1X,°QST=?,F14.7,1X,’PEC=",
#F14.7,1X,’QSC(’,I2,’)=’,F14.7)

G0 TO 2
CASE WHERE CORVECTIVE TRANSPORT IS INSIGNIFICANT
100 QSC(IT)=QSC(IT)+DDC*(CST-CDC)*DY(IP)#*.5D0*W (M)
Vg?T%(S 600) IND,M,QST,PEC,IT,QSC(IT)
GO TO 2
101 Qgg(IT) =QSC(IT)+(1.DO-SIGC)*QST*CST*DY (IP)*.5DO*W (M)
¥RITE(6,600) IND,M,QST,PEC,IT,QSC(IT)
GO TO 2 .
102 %%ggiT)=QSC(IT)+(1.DO—SIGC)*QST*CDC*DY(IF)*.SDO*W(M)
¥RITE(6,600) IND,M,QST,PEC,IT,QSC(IT)

2 CORTIRUE
1 CONTIRUE

ano ann

aan

ann 0O

c

RETURKN

END
c
c SUBROUTINE MASSV(NEX,NEY)
C THIS SUBROUTINE CALCULATES THE PROTEIN FLUX ACROSS THE
C VENULAR WALL, STORING TEE INTEGRATED FLUX IN THE VECTOR
g Qsv(40).

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION B(3),INDEX(3),GAUS(3),W(3)
COMMOR/BLX1/NODEL (600,8) ,XNOD(2000) , YROD(2000)
COMMOKE/BLK2/DX(41) ,DY(41)

COMMON/SOLMAT/AS(210000)

COMMON/SOLB/BS(2000)

COMMOR/0LD/POLD (2000) ,COLD (2000)

COMMON/0SMQT/A0,B0,CO

COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM, PDC,PDV,PDM,PIDC,PIDV,PIDN,
#SIGC,SIGV,SIGM,CDC,CDV,CDM
COMMON/TISDAT/AK,DEFF,AL,AT,PHIA,PHIT,RET,SIGT
COMMON/CAPDAT/PC,CC
COMMON/MATBAL/QFC(40),QCC(40),QSC(40),QFV(40),QCV(40),QSV(40),
#QFM(40),QCM(40),0QSM(40)

DATA W/0.5555555555556D0,0.8888888888889D0,0.5555555555556D0/



Appendix D. Program Listings- 266

DATA NGAUS,GAUS/3,-.774596669241483D0,0.D0, .774596669241483D0/
CONSIDER THE VENULAR WALL, ELEMENT BY ELEMENT.
DO 1 ITT=1,REY

IT= (NEX*l)*NEY+ITT
IP=ITT

ann

ENTER LOOP FOR GAUSS QUADRATURE INTEGRATION. IDENTIFY T VARIABLE
DO 2 M=1,NGAUS
T=GAUS (M)

DEFINE BASIS FUNCTIONS B(1)=B3, B{(2)=B4, B(3)=B5, EVALUATED
AT (1,T)

B(1 gT—i.DOg*T*.SDO
B(3)=(T+1.D0)*T*.5D0
B DO-T*T

OO0 O 000

ni

INDEX(1)=NODEL(IT,3)
INDEX(2)=NODEL(IT,4)
INDEX(3)=NODEL(IT,5)

CALCULATE C(S,T), PI(S,T) AND Q(S,T)

CST=0.D0

QST=0.D0 -

DO 3 I=1,3
CST=CST+COLDEINDEXEI§g*B(I;
QST=QST+POLD(INDEX(I))*B(I
CONTINUE

PIST=CST*(AO+CST*(BO+CST*CO)g
QST=(QST-PDV-SIGV*(PIST-PIDV))*(AK*PC*DLV)/DEFF
PEC=QST*(1.D0~SIGV)/DDV

CHECK TO SEE IF CONVECTION DOMINATES

IF(PEC.GT.170.D0)G0 TO 101
IF(PEC.LT.-170.D0)G0 TO 102

anon

aan

CHECK TO SEE IF CONVECTIVE COMPONENT IS SIGNIFICANT

TEST=1.DO-DEXP (~PEC)
IF(DABS(TEST).LT.1.D-10) GO TO 100

CALCULATE THE INTEGRATED FLUX ALONG THE ELEMENTAL BOUNDARY

QSV(ITT)=QSV(ITT)+
#(%DD? SIGV)*QST*(CST-CDV+DEXP (~PEC))/TEST*DY (IP)*.5D0*W (M)

WRITE(6,600) IND,M,QST,PEC,ITT,QSV(ITT)
600 FORMAT(iX,’CONDITION ’,I2,1X,’M=’,I2,1X,’QST=’,Fi4.7,1X,’PEC=’,
#F14.7,1X,°QSV(’,12,7)=" ,F14.7)

GO TO 2

CASE WHERE CONVECTIVE TRANSPORT IS INSIGNIFICANT
100 QSVSITT)=QSV(ITT)+DDV*(CST—CDV)*DY(IP)*.5DO*W(M)

%g?%%(G,GOO) IND,M,QST,PEC,ITT,QSV(ITT)

GO TO 2
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101 QSV(ITT)=QSV(ITT)+(1.DO-SIGV)*QST*CST*DY(IP)*.5D0*W (M)
IND=3
WRITE(6,600) IND,M,QST,PEC,ITT,QSV(ITT)
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GO TO 2

102 QSV(ITT)=QSV(ITT)+(1.DO-SIGV)*QST+CDV*DY(IP)*.5D0*W(¥)
IND=4
WRITE(6,600) IND,M,QST,PEC,ITT,QSV(ITT)

2 CONTINUE
1 CONTINUE

RETURN
END

SUBROUTINE MASSM(NEX,FEY)

THIS SUBROUTINE CALCULATES THE PROTEIN FLUX ACROSS TEE
MES?TH?LIAL WALL, STORING THE INTEGRATED FLUX IN THE VECTOR
QsM(40).

IMPLICIT REAL*8{A-H,0-Z)

DIMENSION B(3),INDEX(3),GAUS(3),W(3)
COMMON/BLK1/NODEL(600,8) ,XNOD(2000) , YNOD(2000)
COMMON/BLK2/DX(41),DY(41)

COMMON/SOLMAT/AS(210000)

COMMON/SOLB/BS (2000)

COMMON/0OLD/POLD(2000) ,COLD (2000)

COMMON/OSMOT/A0,BO,CO
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM,
#SIGC,SIGV,SIGM,CDC,CDV,CDM
COMMON/TISDAT/AK ,DEFF, AL ,AT,PHIA,PHIT,RET,SIGT
COMMON/CAPDAT/PC,CC
COMMON/MATBAL/QFC(40) ,QCC(40),QSC(40) ,QFV(40),QCV(40),0QSV(40),
#QFM(40) ,QCM(40) ,QSM(40)

DATA W)O.5555555555556D0,0.8888888888889D0,0.5555555555556D0/
DATA NGAUS,GAUS/3,-.774596669241483D0,0.D0, .774596669241483D0/

CONSIDER THE VENULAR WALL, ELEMENT BY ELEMEET.
DO 1 ITT=1,REX

IT=NEY*ITT
IP=ITT+1

annaan
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ENTER LOOP FOR GAUSS QUADRATURE INTEGRATIOE. IDENTIFY S VARIABLE
DO 2 M=1,NGAUS
S=GAUS(M)

DEFINE BASIS FUNCTIONS B(1)=B5, B(2)=B6, B(3)=B7, EVALUATED
AT (5,1)

B(3 §S—1.D0;*S*.SDO
B(1)=(S+1.D0)*5%*.5D0
B(2)=1.D0-S*S

INDEX(1)=NODEL(IT,5)
INDEX(2)=NODEL(IT,6)
INDEX(3)=NODEL(IT,7)

CALCULATE C(S,T), PI(S,T) AND Q(S,T)
CST=0.D0

DO 3 I=1,3
CST=CST+COLD§INDEXEI3g*Bglg
QST=QST+POLD(INDEX(I))*B(I
CONTINUE

PIST=CST* (AO+CST*(BO+CST*CO))

anonoa 0 a0
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QST=(QST-PDM-SIGM* (PIST-PIDM) ) * (AK*PC*DLM) /DEFF
PEC=QST*(1.D0-SIGK)/DDM

CHECK TO SEE IF CONVECTION DOMINATES

IFgPEC.GT.170.DO)GO TO 101
IF(PEC.LT.-170.D0)G0 TO 102

CHECK TO SEE IF CONVECTIVE COMPONENT IS SIGHIFICANT

TEST=1.DO-DEXP(-PEC)
IF(DABS(TEST).LT.1.D-10) GO TO 100

CALCULATE THE INTEGRATED FLUX ALONG THE ELEMENTAL BOUNDARY

QSM(ITT)=QSM(ITT)+
#(1.D0-SIGM)*QST+(CST-CDM*DEXP (-PEC))/TEST*DX(IP)*¥(M)*.5D0

GO TO 2
CASE WHERE CONVECTIVE TRANSPORT IS INSIGNIFICAKRT
100 QSM(ITT)=QSM(ITT)+DDM*(CST-CDV)*DX(IP)*.5D0*W(M)
GO TO 2
101 QSM{ITT)=QSM(ITT)+(1.DO-SIGM)*QST*CST*DX(IP)*W(M)*.5D0
GO TG 2
102 QSM(ITT)=QSM(ITT)+(1.DO-éIGM)*QST*CDM*DX(IP)*.SDO*W(M)

2 CONTINUE

1 CONTINUE
RETURN -
END -
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SUBROUTINE FLUX(NEX,NEY)

THIS SUBROUTINE CALCULATES THE FLUID FLUXES AND CONVECTIVE
AS WELL AS DISPERSIVE PROTEIN FLUXES IN EACH ELEMENT,

STORING THEM IN VECTORS FFLUX(NEL,2), CFLUX(NEL,2) AND
DFLUX(NEL,2), RESPECTIVELY. THE (X,Y) COORDINATES CORRESPONDIKG

TO THESE FLUXES ARE STORED IN ELOC(NEL,2). EOTE THAT THE FLUXES
ARE CALCULATED AT THE MIDPOINT OF EACH ISOPARAMETRIC ELEMENT
(THAT IS, AT (S,T)=(0,0)).

IMPLICIT REAL*8(A-H,0-Z)
COMMON/BLX1/HODEL(600,8) , XNOD(2000) , YNOD (2000)
COMMON/TISDAT/AK ,DEFF,AL,AT,PHIA,PHIT,RET,SIGT
COMMON/0SMOT/A0 ,BO,CO

COMMON/CAPDAT/PC,CC

COMMON/OLD/POLD (2000) , COLD (2000)
COMMON/FLUXES/FFLUX (600,2) ,CFLUX(600,2) ,DFLUX(600,2),
#ELOC(600,2)

DIMENSION GAUS(4),W(4),B(8),DBS(8),DBT(8),DBL(8),DBY(S8),
#AJAC(2,2) ,AJACIN(2,2)

DATA NGAUS/4/

DATA W/.347854845137454D0, .652145154862546D0,
#.652145154862546D0, . 347854845137454D0/
DATA GAUS/-.861136311594053D0,-.339981043584856D0,
#.339981043584856D0, .861136311594053D0/
DATA NGAUS/3/

DATK W/0.5555555555556D0,0.8888888888889D0,0.5555555555556D0/
DATA GAUS/-0.774596669241483D0,0.D0,0.774596669241483D0/

DATA NGAUS/2/

aoonoaoaaan
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DATA ¥/1.0D0,1.0D0,0.D0/
DATA GAUS/-0.577350269189626D0,0.577350269188626D0,0.D0/

CARRY OUT THE EVALUATION ELEMENT BY ELEMENT. FLUXES ARE
EVALUATED AT (S,T)=(0,0).

NEL=NEX*NEY
F=PHIA/PHIT

DEFINE THE BASIS FUNCTIONS AKND TEEIR S AND T DERIVATIVES,
EVALUATED AT TEE QUADRATURE POIRT (0,0)

$=0.D0
T=0.DO

anaonoon
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S-1.D0)*(1.D0-T)*(1.DO+S+T)=*.25D0
1.D0-S*S)*(1.DO-T)*.5D0
.DO+S)*(T-1.D0)*(1.D0-S+T)*.25D0
DO~-T#*T)*(1.D0+S)*.5D0
1. DO+S)*(1 DO+T)*(T+S~1.D0)*.25D0
1.D0-S*S)*(1.D0+T)*.5D0
S~ 1.D0)*(1.D0+T)*(1.DO+S-T)*-25DO
1.DO-T*T)*(1.D0-S)*,.5D0
El DO-T)*(T+2. DO*S;* .25D0
1.D0-5)*(S+2.DO*T)*,25D0
S*(T-1. DO;
gS*S 1.D0)=*.5D0

ek
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1.DO- Tg g DO*S-T%*.25DO
1.D0+S)*(2.D0*T-5)*.25D0
i

-T% +
E1.D0+T§*§2.D0*S+T;*.2s
1.D0+S)*(2.DO*T+S)* .25
-S*(1.D0+T)
§1.DO-S*S)*.5DO

B WWRINI I 0 a g

1.D0+T)*g2.DO*S-Tg*.25DO
DBT(7 1.D0-S)*(2.DO*T~S)*.25D0
DBS(8)=(T*T-1 DO;* B8DO
DBT(8)=T*(5-1.D0

NOW CONSIDER EACH ELEMENT ONE BY OKE
DO 100 IT=1,NEL

WE NOW CALCULATE THE JACOBIAN MATRIX, AJAC, ITS DETERMINANT,
DETJ, AND ITS INVERSE AJACIN.

anoaona oon

A7AC(1,1)=0.DO
£34C(2,1)=0.D0O
AJAC(1,2)=0.DO
AJAC(2,2)=0.D0

DO 3 JAK=1,8

AJAC(1,1)=AJAC(1,1)+DBS({JAK)+*XNOD(NODEL(IT,JAK))
AJAC(1,2)=AJAC(1,2)+DBS(JAK)*YNOD(NODEL(IT,JAK))
KJAC(2,1)=AJAC(2,1)+DBT(JAK)*XNOD(NODEL(IT,JAK))

AJAC(2,2)=AJAC(2,2)+DBT(JAK)*YNOD(NODEL(IT,JAK))
CONTINUE

DETJ=AJAC(1,1)=AJAC(2,2)-AJAC(1,2)*AJAC(2,1)

AJACIN(1,1)=A34C(2,2)/DETJ
KJACIN(1,2)=-£3AC(1,2)/DETJ
AKJACIN(2,1)=-43AC(2,1)/DETJ
KIACIN(2,2)=AJ4C(1,1)/DETJ

WE CAN NOW CALCULATE D(B(I))/DX AND D(B(I))/DY, EVALUATED AT
(x(s,T),¥(s,T)}, USING JACIN

Qw
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DO 4 I-1,8
DBX(I)=DBS(I)*AJACIN(1,1)+DBT(I)*AJACIN(1,2)
DBY(I)=DBS(I)*AJACIN(2,1)+DBT(I)*AJACIN(2,2)
CORTINUE

WE NOW HAVE SUFFICIENT INFORMATION TO DETERMINE QX,QY,C,DC/DX,
DC/DY, AND THE LOCATION IN (X,Y) "COORDINATES, ALL CORRESPONDING
TO VALUES AT (S,T)=(0,0)

CST=0.D0
DPX=0.D0
DPY=0.D0
DCX=0.D0
DCY=0.D0
XEL=0.DO
YEL=0.DO

Do 5 J=1,8
DPX=POLD(NODEL(IT,J))*DBX(J)+DPX
DPY=POLD(NODEL(IT,J))*DBY(J)+DPY
DCX=COLD(NODEL(IT,J))*DBX(J)+DCX
DCY=COLD(NODEL(IT,J))*DBY(J)+DCY
CST=COLD(NODEL(IT,J))*B(J)+CST
XEL=XEL+XNOD(NODEL(IT,J))*B(J)
YEL=YEL+YNOD(NODEL(IT,J))*B(J)
5 CONTINUE

DPIX=DCX*(A0+CST*(2.DO*BO+3.DO*CO*CST;g*SIGT
DPIY=DCY*(AO+CST*(2.D0*B0+3.D0*CO*CST) ) *SIGT

FFLUX(IT,1)=-AK*PC/(DEFF)*(DPX-DPIX)
FFLUX(IT,2)=-AK*PC/ (DEFF)*(DPY-DPIY)
ELOC(IT,1)=XEL
ELOC(IT,2)=YEL

QXST=FFLUX(IT,1)*F+*RET
QYST=FFLUX(IT,2)*F*RET

NOW CALCULATE THE DISPERSION COEFFICIENTS DXX,DXY,DYY, WHERE
DXX=(AL*QX**2/QMAG+AT*QY**2/QMAG)+PHIA, ETC

QMAG=DSQRT (QXST*QXST+QYST*QYST)
CHECK TO SEE IF QMAG IS NONZERO

IF(QMAG.GT.1.D-10)GO0 TO 500
DXX=PHIA

DXY=0.D0O

DYY=PHIA

GO TO 600

500 DXX=(AL+*QXST*QXST+AT*QYST*QYST)/QMAG+PEIA
DXY=(AL-AT)*QXST*QYST/QMAG
DYY=(AL*#QYST*QYST+AT+QXST+QXST)/QMAG+PEIA

600 DFLUX(IT,1)=-(DXX*DCX+DXY*DCY)
DFLUX(IT,2)=-(DXY*DCX+DYY*DCY)
CFLUX(IT,1)=QXST*CST
CFLUX(IT,2)=QYST*CST

100 CONTINUE
RETURN
END

[sTeReNele]
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SUBROUTINE DGBRD: (4, B, N, ML, NU, LT, IP, DET, NCN1,
1 BB, RZ, ITRi, EPS1)

C
C ROUTINE SOLVES SYSTEM OF LINEAR EQNS. AX=B WHERE A IS A GENERAL
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BAND MATRIX. METHOD USED IS GAUSSIAN ELIMINATION WITH PARTIAL
PIVOTING. OPTION OF ITERATIVELY IMPROVING SOLUTION IS AVAILABLE.
UPPER BAND WIDTH OF MATRIX INCREASES DUE TO INTERCHANGES BY
AMOUNT ML. ROUTINE REQUIRES BAND ELEMENTS OF MATRIX TO BE STORED
BY COLUMN IN A ONE DIMENSIONAL ARRAY. EACH COLUMN IS OF LENGTH
2*ML+NU AND BAND IS TO BE STORED IN ELEMENTS ML+1 TO 2+ML+NU OF

EACH COLUMN. ELEMENTS 1 TO ML OF COLUMN ARE SET TO ZERO BY GBARD.

IF MATRIX IS SYMMETRIC USER MAY SPECIFY LOWER BAND ONLY IN
ELEMENTS ML+NU+1 TO 2*ML+NU OF EACH COLUMN AND GBAND WILL
GENERATE REMAINING ELEMENTS. (IF THIS IS DESIRED, SET LT=-1 ON
FIRST CALL TO GBAND.)

A = 1 DIMENSIONAL ARRAY CONTAINING MATRIX OF COEFFICIENTS.

B = 1 DIMENSIONAL ARRAY CONTAINING RIGHT HAND SIDE VECTORS.
ON EXIT, B WILL CONTAIN THE SCLUTION VECTOR X.

N = ORDER OF MATRIX

ML = LENGTH OF LOWER BAND gEXCLUDING DIAGDNAL;

{'[1'1 = LENGTH OF UPPER BAND (EXCLUDING DIAGONAL

ABSELT;=1 IF ONLY 1 B VECTOR OR IF 1ST OF SEVERAL.

ABS(LT),=1 FOR SUBSEQUENT B VECTORS.
(NOTE. LT=+1 IF FULL BAND WIDTH GIVEN, LT=-1 IF LOWER BAND
ONLY OF SYMMETRIC MATRIX GIVEN.)

IP = INTEGER ARRAY CONTAINING INTERCHANGE INFORMATION.

DET = DETERMINANT OF A = DET*(10%*NCN) WHERE 1.D-15<|DET|<1.D+15.
IF DET=0.0 MATRIX IS SINGULAR AND ERROR RETURN TAKEN.

BB, RZ = ARRAYS REQUIRED FOR IMPROVEMERT OPTION. CAN BE REAL#*8

VARIABLES IF OPTION NOT REQUIRED.

ITER = 0 IF IMPROVEMENT NOT REQUIRED, OTEERWISE ITER= NO. OF
ITERATIONS OR CYCLES.

EPS - CONVERGENCE CRITERION.

MODIFIED TO DO ITERATIVE IMPROVEMENT (FORMERLY AVAILABLE ONLY
WITHE TEE SINGLE PRECISION VERSION). MIKE PATTERSON - KOV, 1980
IMPLICIT REAL*8 (A H 0-Z)
COMMON /GBANDS$/
DIMENSION A(1), B(N), IP(N), BB(N), RZ(K)
COMPLEX+#16 DSUMM, QADDQ, QMULD
REAL*8 QRNDQ
TO ASSIGN LOGICAL UNITS 84 AND 95 ONLY ONCE:
LOGICAL ASSIGN /F/, YES /T/
STATEMENT FUNCTION TO CALCULATE POINTERS INTO A:
IFE(I, J) =1+ (J - 1)+LC + I - J +

NCH=NCN1
ITR=ITR1
EPS=EPS1
ITER = ITR

LCH = NU + 2*ML
LC = LCM + 1
NLC = NxLC
NUM = NU + ML
GENERATE REMAINING ELEMENTS OF SYMMETRIC MATRIX
IF (LT .NE. -1) GO TO 120
NN =¥ -1
DO 110 I = 1, NN
IFI = IFN(I, I)
IFJ = IFI
II = 1
IML = MINO(I + ML, N)
DO 100 J = II, IML
IFI = IFI + 1
IFJ = IFJ + LCM

100 A(IFJ) = A(IFI)
110 CONTINUE
120 IF (ITER .EQ. 0) GO TO 140

C

ASSIGN UNITS 94 AND 95 IF THEY HAVE NOT ALREADY BEEN ASSIGNED:
IF (ASSIGN) GO TO 125
CALL FTNCMD (’ASSIGN 94=-GBAND94;’)
CALL FTNCMD (’ASSIGN 95=-GBANDSS;®)
ASSIGKN = YES

271
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1256 REWIND 94
REWIND 85
DO 130 I =1, N )
130 BB(I) = B(I)
140 IF (IABS(LT) .NE. 1) GO TO 280
IP(N) =1

IF (ML .EQ. 0) GO TO 160
C SET ELEMENTS 1 - ML OF EACH COLUMN TO ZERO
DO 160 I =1, N
IFK = (I - 1)xLC
DO 160 J = 1, ML
IFK = IFK + 1
150  A(IFK) = 0.0DO
160 IF (ITER .NE. 0O) CALL DWR1i (A, NLC, 94)
DET = 0.0DO

NCN = 0
IF (ML .EQ. 0) GO TO 230
C LU DECOMPOSITION
DO 220 K = 1, N
IFK = IFN(X, K)
IF (X .EQ. N) GO TO 210
KP =K + 1
KPM = MINO(K + ML, N)
MINO(K + NUM, N)

IFK
IFI

IFK
DO 170 I = KP, KPM
IFI = IFI + 1
%F (?ABS(A(IFI)) .LE. DABS(A(IFM))) GO TO 170

IFM = IFI
170 CONTINUE
IP(K) = M
T = A(IFM)
IF (M .NE. K) IP(N) = -IP(N)
AéIFM = A(IFK)
ACIFK) = T
IF (T .EQ. 0.0D0) GO TO 260
0T = 1.0DO/T
IK = IFK
DO 180 I = KP, KPM
i IX = IK + 1
180 A(IK) = -A(IK)*0T
KJ = IFK
MJ = IFM
DO 200 J = KP, XPHN
KJ = KJ + LCM
MJ = MJ + LCM
T = A(MD)
AgMJ = A(KJ)
AKI) = T
IF (T .EQ. 0.0D0) GO TO 200
IK = IFK
IJ = KJ
DO 190 I = KP, KPM
IK = IK + 1

IJ + 1
190 A(IJ) = A(I3) + A(IK)*T
200 CONTINUE
210 IF (A(IFK) .EQ. 0.0D0) GO TO 260
220  CONTINUE
230 IFK = IFN(1i, 1)
DET = A(IFK)
DO 250 K = 2, ¥
IFK = IFK + LC
DET = DET*A(IFK)
IF (DET .EQ. 0.0D0) GO TO 260
IF (DABS(DET) .GT. 1.D-15) GO TO 240
DET = DET*1.D+15
NCE = NCN - 15
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GO TO 250
240 IF (DABS(DET) .LT. 1.D+15) GO TO 250
DET = DET*1.D-15
NCN = NCN + 15
250  CONTINUE
DET = DET*IP(N)
GO TO 280
260 DET = 0.0D0
WRITE (6, 270) K
270  FORMAT (’0% DGBND1 - matrix is singular. ?/

1 ?  Error occurred in attempt to find’, I5, *th pivot.’)

RETURN
280 CALL DsOLVi (4, B, IP, N, ML, NU)
IF (ITER .EQ. 0) RETURN

ITERATIVE IMPROVEMENT

RESIDUALS (R) = AX-B ARE FOUND AND STORED IN ARRAY RZ USING
EXTENDED PRECISION ARITHMETIC. SYSTEM AZ=R IS SOLVED AND NEW
SOLUTION =X+Z IS STORED IN ARRAY B. ABOVE STEPS REPEATED UNTIL
1) MAX(Z)/MAX(X) < EPS OR

2) NO. OF CYCLES > ITER OR

3) IMPROVEMENT STARTS TO DIVERGE.

ROUTINE THEN RETURNS AFTER SETTING EPS=MAX(Z) (FOR (1)) OR
%ggriﬁg %g§§~MAx(z) AND PRINTING APPROPRIATE ERROR MESSAGE (FOR

anonoaanaananan

IF (IABS(LT) .EQ. 1) CALL DWR1 (A, NLC, 95)
XNORM = 0.0DO
DO 290 K = 1, X
2900  XNORM = DMAXl(XNORM, DABS(B(K)))
IF (XNORM .LE. 0.0DO) RETURN
_ZX = 1.D+60
ID = 0
DO 340 L = 1, ITER
REWIND 94
CALL DRE1 (A, NLC, 94)
DO 310 K =1, N
DSUMM (0.D0, 0.DO)
KPM = MAXO(K - ML, 1)
KPN = MINO(X + KU, W)
IFK = IFN(K, KPM)
DO 300 J = KPM, KPN
C DSUMM = DSUMM + A(IFK)*B(J)
C USING EXTENDED PRECISION:
DSUMM = QADDQR(DSUMM, QMULD(A(IFK), B(J)))

300 IFK = IFK + LCM
RZ(K) BB(X) - QRNDQ(DSUMM)
310 CONTINUE
REWIND 95

CALL DRE1 (4, NLC, 95)
CALL DSOLV1 (A RZ IP, N, ML, XU)

ZNORM = 0.0DO
DO 320K =1, N
ERZ = RZ(K)
ZNORM = DMAX1(ZNORM, DABS(ERZ))
320 B(K) = B(K) + ERZ
IF gzuonn .GT. ZX) GO TO 330
IF ((ZNORM - EPS*XNORM) .LT. 0.0DO) GO TO 390
ZX = ZNORM
GO TO 340
330 IF (ZNORM .GT. 10.0D0#ZX) GO TO 360
ID = LD + 1

IF (LD GE 3) GO TG 360
340 CONTINUE
L = ITER
WRITE (6, 350)
350 FORMAT (’0x DGBND1- Iterative improvement did not converge’/)
GO TO 380
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360 WRITE (6, 370)
370  FORMAT (’0% DGBND1 - Iterative improvement is diverging.’/)
380 EPS = -ZNORM

NITER = L

RETURN

390 EPS = ZNORM
NITER = L
RETURN
END

SUBROUTINE DSOLV: (A, B, IP, N, ML, KU)

THEIS ROUTINE COMPUTES THE SOLUTION OF A SYSTEM AFTER GBAND EHAS
DECOMPOSED MATRIX A INTO A LOWER TRIANGULAR MATRIX L AND AN
UPPER TRIANGULAR MATRIX U.

IMPLICIT REAL*8 (A-H, 0-Z)

DIMENSION A(1), B(N), IP(N)

IFN(I, J) = 1 4+ (J - 1)*LC + I ~ J + NUM
LCM = 2+ML + NU

anaaan

IC = LCK + 1
NUM = NU + ML
M =R -1

C SOLVE FOR Y
IF (ML .EQ. 0) GO TO 110
DO 100 K = 1, MN

KP = K + 1

M = IP(XK)

T = B(M)

BEMg = B(K)

B(K) =T

KPM = MINO(X + ML, N)

IFK = IFN(K, K)
DO 100 I = KP, KPM
IFK = IFK + 1
100 B(I) ; B(I) + A(IFK)x*T

C SOLVE X
1 IFK = IFN(H, N)
0 KB = 1,
KM = N - KB
K=KM+ 1
B(K) = B(K)/A(IFK)
IFK = IFK - LC
T = -B(X)

KMN = MAXO(1, K - ML - RU)
KML = IFN(KMN, K)
DO 120 I = KMN, KM

B(I) = B(I) + A(KML)*T

KML = KML + 1
B(1) = B(1)/A(NUM + 1)
RETURN

END

SUBROUTIRE DWR1 (4, N, LU)

REAL*8 A(N)
WRITE (LU) A
RETURN

END
SUBROUTINE DRE1 (4, N, LU)
REAL*8 A(N)

READ (LU) A

RETURN

END )
.3 One-Dimensional Simulator: MESDISP.FOR

THIS PROGRAM SIMULATES BOTH CONVECTIVE AND DISPERSIVE PLASMA
PROTEIN TRANSPORT THROUGH MESENTERY DURING STEADY-STATE

[eXele] U
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[elele]

aaa

550

[elele]

501

an
[u

ana

507
502
503
504
506

505
21

CONDITIONS. THE MESENTERY IS TREATED AS A 1-DIMENSIONAL
RECTANGULAR SLAB.

IMPLICIT REAL*8(A-H,0-2)

DIMENSION HOLD(1001),IPERM(1001),RES(1001),HOLDS(1000),
#RESS(1001) , IPERMS(1001)

COMMON/BLK1/NODEL(500,3) ,XNOD(1001)

COMMON/BLK2/DX (1001)

COMMON/MATBAL/QFC,QCC,0SC,QFV,QCV,QSV,QFM,QCM,QSN, QFMi(SOO)
# qcm1(soo) QSMI(SOO)

COMMON/FLUMAT/FLUID(20000)

COMMOR/QLD/POLD(1001) ,COLD{1001)

COMMON/SOLB/SOLUTBélOOlg

COMMON/FLUB/FLUIDB(1001

COMMON/SOLMAT/SOLUTE (20000)

COMMON/0SMOT/AOSM,BOSM, COSM

COMMON/TISDAT/AX ,DEFF,ALPHL,PHEIA,PHIT,RET,SIGT,BETA

COMMON/CAPDAT/PC,CC

COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDN,
#SIGC,SIGV,SIGM,CDC,CDV,CDM,YYL

COMMOK/MAXDAT/DISPMX , IDISP

SET MARKER AND TOLERANCE VALUES

READ (5,504 )0OMEGAF ,OMEGAC, TOLP , TOLC ,PECMAX ,EPS
READ(5,550) IMAX,ITER,NECHO,N

FORMAT(413)

NEX=(N-1)/2

LUB=2

ICOUNT=0

READ IF THE DATA FROM EXTERNAL FILE

DO 1 I=1,N
READ(5,501) DX(I)
FORMAT(E12.6)
CONTINUE

v

READ(5,502) AOSM,BOSM,COSM, AK,PC,PHIA,PHIT,RET,PHIS
READ(5,507) ALPHL,AL,DEFF,SIGT,CC,YYL,BETA
READ(5,504) CONC,CONV,CONM,PERMC,PERMV,PERMM
READ(5,504) DDC,DDV,DDM,SIGC,SIGV,SIGM
READ(5,504) CDC,CDV,CDM,DLC,DLV,DLM
READ(5,506) PDC,PDV,PDM

READ(5,506) AO0S1,B0S1,C0S1

YL=YYL*AL

PIDC=CDC*(A0S1+CDC*(BOS1+CDC*COS1
PIDV=CDV+(AQ0S1+CDV*(BOS1+CDV*COS1
PIDM=CDN=*(AD0S1+CDM+*(BOS1+CDM*COS1

PV=PDV=*PC

PM=PDM*PC

CV=CDV*CC

CM=CDM*CC

FORMAT(7E10.4
FORMAT(9E10.4
FORMAT(5E10.4
FORMAT(6E10.4
FORMAT(3E10.4

DO 21 I=1,N

READ(5,505) POLD(I),COLD(I)
FORMAT(2E10.4)

CONTINUE
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ECHO DATA IF NECHO N.E. 0
IF(NECEO.EQ.0) GD TO 999
PRINT OUT INPUT DATA

WRITE(6,611)
611 FORMAT(1X,’STEADY-STATE FLUID PRESSURE AND SOLUTE CONCENTRATION’

#)
WRITE(6,667)
667 FORMAT(1X,’PROFILES FOR OKE DIMENSIONAL TISSUE SYSTEM',//)
WRITE(6,612)
WRITE(6,612)
612 FORMAT(//,1X,? !
#,//)
WRITE(6,660)
660 FORMAT(1X,’INPUT PARAMETERS’)
WRITE(6,612)
WRITE(6,613)
613 FORMAT(1X,’1. GRID DATA:’,//)
WRITE(6,614)NEX,DX(2)
614 FORMAT(1X,’NUMBER OF ELEMENTS:’,1X,I2,/,1X,
#'SMALLEST X INCREMEKT:’,19X,E10.4,/)
WRITE(6,616)N
616 FORMAT(1X,’TOTAL KNUMBER OF NODES:’,10X,14,/)
WRITE (6,612)
WRITE(6,617) TOLP,TOLC,IMAX,OMEGAF,OMEGAC,PECMAX
617 FORMAT(1X,’2. CONVERGENCE CRITERIA:’,//,1X,’PRESSURE TOLERANCE:’
#,17X,E10.4,/,1X,’SOLUTE TOLERANCE:’,20X,£10.4,/,1X,
#MAXIMUM NUMBER OF LOOP ITERATIONS:’,2X,I3,/,1X,
#'PRESSURE RELAXATION PARAMETER:’,6X,E10.4,/,1X%,
#°SOLUTE RELAXATION PARAMETER:’,9X,E10.4,/,1X,
#'MAXIMUM DESIRED GRID PECLET NUMBER:’,1X,E10.4)
WRITE(6,612)
PIC=PIDC*PC
PIV=PIDV*PC
PIM=PIDM*PC

WRITE(6,618) AL,YL,CC,CV,CM,PC,PV,PM,PIC,PIV,PIN¥,AK,DEFF
618 FORMAT(1X,’3. DIMENSIONAL INPUT PARAMETERS:’,//,1X,
#’TISSUE X~DIMERSIOR (CM):’,21X,E10.4,/,1%,
#°TISSUE Y-DIMEKRSION (CM):’,21X,E10.4,/,1X,

#'CAP. PROTEIN CONC. (GRAMS/DL):’,14X,E10.4,/,1%,
#'VEN. PROTEIN CONC. (GRAMS/DL):’,14X,E10.4,/,1I,
#’MES. PROTEIN CONC. (GRAMS/DL):’,14X,E10.4,/,1X,
#CAP. DYN. PRESSURE (DYN/CM*%2):’,14X,E10.4,/,1X,
#'VEN. DYN. PRESSURE (DYN/CM*%2):’,14X,E10.4,/,1X,
#’MES. DYN. PRESSURE (DYN/CM**2):’,14X,E10.4,/,1X,
#'CAP. 0SM. PRESSURE (DYN/CM*%2):’,14X,E10.4,/,1I,
#>VEN. OSM. PRESSURE (DYN/CM**2):’,14X,E10.4,/,1X,
#’MES. OSM. PRESSURE (DYN/CM*%2):’,14X,E10.4,/,1J,

#'TISSUE FLUID CONDUCTIVITY (CM*x4/(DYN-SZC):®,2%,E10.4,/,1X,

#'TISSUE SOLUTE DIFFUSIVITY (CM*%2/SEC):’,7X,E10.4)
WRITE(6,626) CONC,CONV,CONM,PERMC,PERMV,PERMM

626 FORMAT(1X,’CAP. CORDUCTIVITY (CM*+3/(DYE-S));’,11X,E10.4,/,1X,

#'VEN. CONDUCTIVITY (CM**3/(DYN-S)):’,11%,E10.4,/,1X,

#’MES. CONDUCTIVITY (CM**3/(DYN-S)):’,11X,E10.4,/,1X,

#’CAP. PERMEABILITY (CM/S):’,21X,E10.4,/,1X,

#’VEN. PERMEABILITY (CM/S):?,21X%,E10.4,/,:X,

#’MES. PERMEABILITY (CM/S):’,21X%,E10.4)
WRITE(6,612)
WRITE(6,653) SIGT,RET, BETA ALPHL

653 FORMAT(lX 'DIMENSIONLESS INPUT PARAMETERS:?,//,:X,
#'TISSUE REFLECTIONW COEFFICIENT:’,15X,E10.4,/,
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#1X,’RETARDATION FACTOR:’,26X,E10.4,/,1X,
#’HYDRAULIC CONDUCTIVITY RATIO, BETA:’,15X,E10.4,/,1X,
#?DIMENSIONLESS DISPERSIVITY:’,21X,E10.4)
WRITE(6,619)PDC,PIDC,PDV,PIDV,PDM,PIDM
619 FORMAT(//,1X,
géﬁgEiSURE:’,6X,’DYNAMIC’,SX,’OSHOTIC’,//,1X,’CAPILLARY:’,5X,
-t
#2X,E10.4,/,1X,*VENULE: *,8%,E10.4,2X,E10.4,/, 1X, HESOTHELIUM: ’,
#3X,E10.4,2X,E10.4,//)
WRITE(6,620)CDC,CDV,CDM
620 FORMAT(1X,’CONCENTRATIONS:’,//,1X,’CAPILLARY:®,5X,E10.4,/,1X,
#°’VENULE:’,9X,E10.4,/,1X, ’MESOTHELIUM: ’ ,1X,E10.4,//)
WRITE(6,621)SIGC,SIGV,SIGM
621 FORMAT(1X,’REFLECTION COEFFICIENTS:’,//,1X,’CAPILLARY:’,5X,
#E£10.4,/,1X,'VENULE:’,9X,E10.4,/,1X, MESOTHELIUM: > ,1X,E10.4,//)
WRITE(6,622)DLC,DLV,DLM
622 FORMAT(1X,’VESSEL FLUID CONDUCTANCES:’,//,1X,’CAPILLARY:’,5X,
#E£10.4,/,1X,’VENULE:’,9X,E10.4,/,1X, MESOTHELIUM:*,1X,E10.4,//)
WRITE(6,625)A0SM,BOSK, COSM
625 FORMAT(1X,’VIRIAL COEFFICIENTS:*,//,1X,’'A0SM:?,1X,E10.4,/,1X,

#'BOSM:?,1X,E10.4,/,1X,’COSM: ’ ,1X,E10.4,//)
WRITE(6,623)DDC,DDV,DDM

623 FORMAT(1X,’VESSEL SOLUTE PERMEABILITIES:’,//,1X,’CAPILLARY:’,5X,

#E10.4,/,1X,’VENULE:’ ,9X,E10.4,/,1X, "MESOTHELIUM: ’ ,1X,E10.4,//)
WRITE(6,624)PHIT,PHIA,PHIS
624 FORMAT(1X,’TOTAL TISSUE FLUID VOLUME FRACTION:®,2X,E10.4,/,1X,
#?SOLUTE DISTRIBUTION VOLUME FRACTION:’,1X,E10.4,/,1X,
#’TOTAL SOLIDS VOLUME FRACTION:’,8X,E10.4,///)

999 CALL GRID(NEX)
INITIALIZE FLUID VECTOR
CALL SETMAT(NEX,0,PEC,IEL,VELMX)
ADJUST FLUID VECTOR TO FIT BOUNDARY CONDITIONS

CALL ASTAR(NEX,0)
CALL VSTAR(NEX,0)

ENTER ITERATION LOOP, CHECK COUNTER VALUE

100 ICOUNT=ICOUNT+1
IF(ICOUNT.GT.IMAX)GC TO 200

INITIALIZE FLUIDB VECTOR AND ADJUST TO FIT BOUNDARY CONDITIONS

CALL SETMAT(NEX,1,PEC,IEL,VELMX)

CALL ASTAR(REX,1)
CALL VSTAR(NEX,1)

SOLVE THE FLUID SYSTEM
EP=EPS

CALL DGBAND(FLUID,FLUIDB,N,LUB,LUB,ICOUNT,IPERY,DET,JEXP,HOLD,
#RES,ITER,EP)

DETERMINE TEE MAXIMUM CHANGE IN P FROM ORE ITERATION TO THE NEXT

AND UPDATE POLD USING A RELAXATION PROCEDURE. PDIFMX WILL BE
COMPARED TO TOLP TO ESTABLISH CONVERGEKCE

PMAX=0.D0

277



Appendix D. Program Listings

aaaon anonaan

aoonaaann

ano

OO0 O

PDIFMX=0.DO
DO 3 I=1,N
IF(DABS(FLUIDB(I)).GT.PMAX% PMAX=DABS(FLUIDB(I))
TEST=DABS(FLUIDB(I)-POLD(I))
IF(TEST.GT.PDIFMX) PDIFMX=TEST
- POLD(I)=(OMEGAF)*(FLUIDB(I)-POLD(I))+POLD(I)
3 CONTINUE
PDIFMX=PDIFMX/PMAX

NOW INITIALIZE SOLUTE AND SOLUTB. STORE MAX. GRID PECLET
ggMB%%IgﬁéPECLET. ADJUST SOLUTE AND SOLUTB TO SUIT BOUNDARY
ND

CALL SETMAT(NEX,2,PEC,IEL,VELMX)
PECLET=PEC

IELE=IEL

CALL PATART(NEX,0)

CALL PATVEN(NEX,O)

SOLVE THE SYSTEM OF EQUATIONS FOR THE SOLUTE FLOW EQUATION

EP1=EPS
CALL DGBND1(SOLUTE,SOLUTB,%,LUB,LUB,1,IPERMS,DET, JEXP ,HOLDS,
#RESS,ITER,EP1)

DETERMINE THE MAXIMUM CHANGE IN CALCULATED CONCENTRATION FROM
ONE ITERATION TO THE NEXT, AND UPDATE COLD USINKG A RELAXATION
PROCEDURE. CDIFMX WILL BE COMPARED TO TOLC TO ESTABLISH
CONVERGENCE

CMAX=0.DO

CDIFMX=0.DO

DO 4 I=1,N

IF(DABS(SOLUTB(I)).GT.CMAX; CMAX=DABS(SOLUTB(I))
TEST=DABS(SOLUTB(I)-COLD(I))

IF(TEST.GT.CDIFMX) CDIFMX=TEST
COLD(I)=(OMEGAC)*(SOLUTB(I)-COLD(I))+COLD(I)
CONTIRUE

CDIFMX=CDIFMX/CMAX

CHECK TO SEE IF FURTHER ITERATION IS REQUIRED

IFEPDIFMX.GT.TOLP% GO TO 100
IF(CDIFMX.GT.TOLC) GO TO 100

GO TO 300
MAXIMUM NUMBER OF ITERATIONS REACHED. PRINT OUT WARNING.

200 ICOUNT=ICOURT-1
WRITE(6,600) ICOURT
600 FORMAT(//,1X,’WARNING. CONVERGENCE CRITERIA KOT MET AFTER’,
#1X,13,1X,? ITERATIONS?)
WRITE(6,601) PDIFMX,CDIFMX
601 FORMAT(//,1X,’MAXIMUM FRACTIONAL CHARGE IN P’,2X,
#°MAXIMUM FRACTIONAL CHANGE IN C°,//,11X,E9.4,22X,ES.4,//)

300 IF(PECLET.LT.PECMAX) GO TO 400
WRITE(6,603) PECLET,IELE
603 FORMAT(//,’WARNING. GRID PECLET NUMBER EQUALS’,1X,ES.4,3X,
#’ELEMENT LOCATION:’,1X,I4)

400 WRITE(6,604) ICOUNT
604 FORMAT(’1’,//,’STEADY-STATE SOLUTION ACHEIEVED AFTER’,1X,I3,1X,
#’ ITERATIONS:’)
WRITE(6,670) PECLET,IELE,DISPMX,IDISP
670 FORMAT(//,1X,’MAXIMUM GRID PECLET NUMBER:’,1X,E9.4,2X,
#’ELEMENT LOCATION:’,1X,I4,/,1X,’MAXIMUM DISPERSION COEFF:’,
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#1X,E9.4,° ELEMENT LOCATION:’,1X,I4)
WRITE(6,601)PDIFMX,CDIFMX
WRITE(6,605)
605 FORMAT(//,1X,’X POSITION’,2X,’DYNF. PRESS’,2X,’'0SM. PRESS’,2X,
#’TOT. PRESS’,2X,’AVAIL. COKC.’,2X,’TOTAL CONC.’,//)

X=0.DO

DO &5 I=1,N

X=X+DX(I)
PI=COLDEI§*(AOSM+COLD(I)*(BOSM+COLD(I)*COSM))
C1=COLD(I)*PHIA/(1.DO-PHIS)

PTOT=POLD(I)-PI

WRITE OUT PROFILE DATA TO DEVICES 6 AND 7

anan

WRITE(6,606) X,POLD(I),PI,PTOT,COLD(I),C1
WRITE(7,606) X,POLD(I),PI,PTOT,COLD(I),C1
606 FORMAT(1X,E9.3,4(2X,E10.4),3X,E10.4)
5 CONTINUE

WRITE OUT MESOTHELIAL FLUX DATA TO DEVICE 7

CALL MASBAL(NEX)

DO 6 I=1,NEX

I2=2%1

X=XNOD(I2)

WRITE(7,702) X,QFM1(I),QSMi(I),QCM1(I)
702 FORMAT(4(2X,E10.4))

aan

c6 CONTINUE

C
WRITE(6,607)

c 607 FORMAT(’1’,//,1X,?MASS BALANCE DATA’///)
WRITE(6,608)

608 FORMAT(///,1X,’NET DIMENSIONLESS FLUID FLOWS?’)
TF=QFC+QFV+QFM*2.D0
WRITE(6,609) QFM,QFC,QFV,TF
609 FORMAT(//,1%,’MES:?,1X,E12.4,/,1X,’CAP:?,
- #E12.4,/,1X,°VEN:’,1X,E12.4,/,1X,’TOT:?,1X,E12.4)
WRITE(6,661)
661 FORMAT(/// 1X, ’NET DIMENSIONLESS SOLUTE FLOWS?)
TS=QSC+QSV+QSM*2.
WRITE(6,609)QSM, QSC Qsv,Ts
WRITE(6,662)
662 FORMAT(//,1X,’CONVECTIVE COMPONENTS OF DIMENSIONLESS SOLUTE
#FLOWS?)
TC=QCM*2 .DO+QCC+QCV
WRITE(6,610) QCM,QCC,QCV,TC
610 FORMAT(//,1X,’MES:’,1X,E12.4,/,1X,?CAP:?,1X,E12.4,/,1X,?VEN:"’,
#1X,E12.4,/,1X,?TOT:?,1X,E12.4)

WRITE(6,663)
663 FORMAT(//,1X,’ERROR IN GLOBAL MATERIAL BALANCES?’)
EFLU=TF/QFC
ESOL=TS/QsC
WRITE(6,664) EFLU, ESOL
664 FORMAT(// 1%, ’FLUID BALANCE:®,1X,E12.4,/,1X, ’SOLUTE BALANCE:’,
#1X,E12.4)

WRITE(6,665)
665 FORMAT(//,1X,’RATIO OF CONVEC. TO DIFF. FLUXES AT BOUNDARIES’)
PECC=QCC/ (QSC-QCGC) :
PECV=QCV/(QSV-QCV)
PECM=QCM/ (QSM-QCM)
WRITE(6,668) PECM,PECC,PECV
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668 FORMAT(//,1X,’MES:’,1X,E12.4,/,1X,°CAP:?,1X,E12.4,/,1X,?VEN:’,

#1X,E12.4)
STOP
END

c SUBROUTINE MASBAL(NEX)

C THIS SUBROUTINE PERFORMS A MATERIAL BALANCE ON THE SYSTEM FOR

g BOTH FLUID AND PLASMA PROTEINS.

IMPLICIT REAL*8(A-H,0-Z)

COMMON/MATBAL/QFC,QCC,QSC,QFV,QCV,QSV, QFM,QCM, QSM, QFM1(500) ,
# QcM1(500),QsM1(500)

COMMON/OLD/POLD(1001),COLD(1001)

COMMON/BLX1/NODEL(500,3) ,XEOD(1001)

COMMOK/0SMOT/A0,BO,CO

COMMON/TISDAT/AK ,DEFF,AL,PHIA,PHIT,RET,SIGT,BETA

COMMON/CAPDAT/PC,CC

COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDN,
# SI1GC,SIGV,SIGM,CDC,CDV,CDX,DH

DIMENSION GAUS(4),¥(4),B(3)

DATA NGAUS/4/

DATA W/.347854845137454D0, .652145154862546D0,
#.652145154862546D0, . 347854845137454D0/

DATA GAUS/-.861136311594053D0,-.339981043584856D0,

¢ #.339981043584856D0, .861136311594053D0/

g FIRST, CALCULATE THE NET FLOWS ACROSS THE ARTERICLAR WALL
PIC=COLD(1)*(A0+COLD(1)#*(BO+COLD(1)*C0))
QFC=DH*AK*PC/DEFF*DLC* (POLD(1)-PDC-SIGC*(PIC-PIDC))
QCC=BETA*QFC*COLD (1)*RET :

PECC=(1.D0-SIGC)*QFC/ (DDC*DH)
IFéPECC.GT.iOO.DO)GO' TO 110
IF(PECC.LT.-100.D0)G0 TO 120
TEST=1.D0-DEXP(-PECC)
IF (DABS(TEST) .LT.1.D-10)G0 TO 130
SgcTél .DO-SIGC)*QFC*(COLD(1)~CDC*DEXP (-PECC) ) /TEST
110 QSC=QFC*(1.DO-SIGC)*COLD(l)
: GO TO 200
120 ggcT(1 .DO-SIGC)*CDC*QFC

130 QsC= DH*DDC*(COLD(l) CDC)
NOW FOR THE VENULAR WALL

200 N=NEX*2+1
PIV=COLD (N)*(A0+COLD(N)*{B0+COLD(N)#*C0))
QFV=DH*AK*PC/DEFF*DLV* (POLD(N)-PDV-SIGV*(PIV-PIDV))
QCV=BETA*QFV*COLD (¥) *RET
PECV={1.D0O-SIGV)*QFV/(DDV*DH)

IF§PECV.GT.100.DO)G0 TO 210

IF(PECV.LT.-100.D0)GO TO 220
TEST=1.DO-DEXP(-PECV)
IF(DABS(TEST).LT.1.D-10)G0 TO 230
ng (1. DO SIGV)*QFV*(COLD(N)-CDV+DEXP (-PECV) ) /TEST
GO TO 30

210 Aggv QFV*(l DO-SIGV)*COLD(N)

220 st-(1 DO SIGV)*CDV*QFV
GO TO 300

230 QSV=DH*DDV*(COLD(N)-CDV)

AWD FINALLY, THE MESOTEELIAL LAYER
CONSIDER THE MESOTHELIAL WALL, ELEMENT BY ELEMENT.
300 QSM=0.DO

ann

anooan
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QCM=0.DO
QFM=0.D0

DO 400 I=1,NEX

QSM1(1)=0.D0

QFM1(I)=0.D0

QCM1(1)=0.DO
400 CONTINUE

DO 1 II=1,NGAUS

S=GAUS(II)
DO 2 I=1,NEX
X1=XNOD{NODEL(I,1))
X2=XNOD(NODEL(1,2))
X3=XNOD(NODEL(I,3))
S2=(2.D0*X2-(X14X3))/(X3-X1)

B(1)=(S-52)*(S-1.D0)/(2.D0*(S2+1.D0))
B(2 S+1.D03*€S—1.DO)/(S2*SZ-1.DO)
B(3)=(S+1.D0)*(S-52)/(2.D0*(1.D0-52))
DX=(X3-X1)*.5D0

CALCULATE c(S), PI(S), AND P(S)

€S=0.D0

PS=0.D0

DO 3 IT=1,3

CS=CS+COLD(NCDEL(I,IT))*B(IT)

PS=PS+POLD (NODEL(I,IT))*B(IT)
3 CONTINUE

PIS=CS*(AO+CS* (BO+CS*CO))

CALCULATE THE FLUXES

FLOW=AK*PC/DEFF*DLM* (PS—PDM-SIGM* (PIS-PIDM) ) *W(II)*DX
QFM=QFM+FLOW

QFM1(I)=QFM1(I)+FLOW/(X3-X1)

QCM=QCM+FLOW*#CS*BETA*RET
QCM1(I)=QCM1(I)+FLOW*CS*BETA/(X3-X1)*RET

DETERMINE VWHICH FORM OF THE NONLINEAR FLUX EQN. IS TO BE USED.

QS=FLOW/(W(II)*DX)
PECM=0QS*(1.DO-SIGH)/DD¥
IF(PECM.GT.100.D0)GO TO 410

"Hn

anon

aaa

anan

IF(PECM.LT.-100.D0)G0  TO 420
TESTM=1.DO-DEXP(-PECM) :
IF(DABS(TESTM) .LT.1.D-10)GO0 TO 430

USE THE FULL EXPRESSION
SFLOW=FLDW*(1.D0-SIGM) = (CS-CDM*DEXP (-PECM) ) /TESTM

QSM=QSM+SFLOW
QSM1(I)=QSM1(I)+SFLOW/(X3-X1)
GO TO 2

[o1eXe!

410 SFLOW=FLOW#*(1.D0-SIGM)*CS
QSM=QSM+SFLOW
QSM1(I)=QSM1(I)+SFLO¥/(X3-X1)
GO T0 2

420 SFLOW=FLOW*(1.D0-SIGM)*CDM
QSM=QSM+SFLOW
QSM1(I)=QSM1(I)+SFLOW/(X3-X1)
GO TO 2

430 SFLOV=DDM* (CS-CDM) *DX*W (II)

281
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QSM=QSM+SFLOW
QSM1(I)=QSM1(I)+SFLOW/(X3-X1)
CONTINUE .

CONTINUE
RETURN
END

=N

SUBROUTINE GRID(NEX)

THIS SUBROUTINE CALCULATES THE SPATIAL LOCATION OF THE NODES
FOR EACH ELEMERT, ALONG WITH THE NODES ASSOCIATED WITH A
GIVER ELEMERNT.

IMPLICIT REAL*8(A-H,0-Z)
COMMON/BLK1/NODEL(500,3), XNOD(1001)
CGMMON/BLK2/DX(1001)

=1
DO 1 I=1,KREX

NODEL(I, 1)—K
NODEL(I,2)=K+1
NODEL(I,3)=K+2

[elelelele]

X=0.D0
NP=2*NEX+1
DO 2 I=1,NP
X=X+DX(I)
XNOD(I)=X

2 CONTINUE
RETURN

END
SUBROUTINE VSTAR(NEX,IND)

THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO ACCOUNT FOR THE
STARLING BOUNDARY CONDITION AT THE VENULAR WALL.

IMPLICIT REAL*8(A-H,0-Z)

COMMON/BLK1/NODEL(500,3), XNOD(1001)

COMMON/FLUMAT/AF (20000)

COMMON/FLUB/BF(1001)

COMMON/OLD/POLD(1001) ,COLD(1001)

COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM, PDC, PDV,PDM,PIDC,PIDV,PIDM,
# SIGC,SIGV,SIGM,CDC,CDV,CDM,DE

COMMON/OSMOT/40,B0,CO

M=NEX*2+1

LUB=2

LP=3%LUB
IF(IND.EQ.1)GO TO 100
K=LP*M+M-LUB
AF(X)=AF(K)+ DLV

GO TO 900

100 PI=COLD(M)*(A0+COLD(M)*(BO+COLD(M)*C0))
BF(M)=BF(M)+DLV*(PDV+SIGV*(PI-PIDV))

900 RETURN
END
SUBROUTINE ASTAR(NEX,IND)

anan O

THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO ACCOUNT FOR THE
STARLING BOUNDARY CONDITION AT THE ARTERIOCLAR WALL.

IMPLICIT REAL*8(A-H,0-Z)
COMMON/BLK1/NODEL (500,3), XNOD(1001)
COMMON/FLUMAT/AF (20000)
COMMON/FLUB/BF(1001)

Qo
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COMMON/OLD/POLD(1001) ,COLD(1001)
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM, PDC,PDV,PDM,PIDC,PIDV,PIDH,

# SIGC,SIGV,SIGM,CDC,CDV,CDM,DE

c COMMOK/0SMOT/40,B0,C0

LUB=2

LP=3*LUB

IF(IND.EQ.1)GO TO 100

K=LP+1-LUB

AF(K)=AF(X)+ DLC
c GO TO 900

100 PI=COLD(1)*(A0+COLD(1)*(BO+COLD(1)*C0))
BF(1)=BF(1)+DLC*(PDC+SIGC*(PI-PIDC))

900 RETURK
END

SUBROUTINE PATART(NEX,IND)

THIS SUBROUTINE ADJUSTS THE AS AND BS VECTORS TO ACCOUNT FOR THE
PATLAK BOUNDARY CONDITION AT THE ARTERIOLAR WALL.

IMPLICIT REAL*8(A-H,0-2)

COMMOK/BLK1/NODEL(500,3), XNOD(1001)

COMMOR/SOLMAT/AS(20000)

COMMOK/SOLB/BS{1001)

COMMOKF/OLD/POLD(1001) ,COLD(1001)

COMMOKN/TISDAT/AK,DEFF,AL,PHIA,PEIT,RET,SIGT,BETA

COMMOK/CAPDAT/PC,CC

COMMOK/¥ALL/DLC,DLV ,DLM,DDC,DDV ,DDM, PDC, PDV,PDM,PIDC,?IDV,PIDM,
# SIGC,SIGV,SIGM,CDC,CDV,CDM,DE

COMMOK/0SMOT/A0,B0,CO

LUB=2
LP=3+LUB
K=LP+1-LUB

PI=COLD(1)*(A0+COLD(1)*(BO+COLD(1)*C0))
QART=AK*PC/DEFF*DLC*(POLD(1)-PDC-SIGC*(PI-PIDC))
PEC=(1.D0-SIGC)/DDC*QART

DETERMINE WHICH FORM OF THE FLUX EXPRESSION APPLIES

IFéPEC.GT.lO0.0DOgGO TO 100
IF(PEC.LT.-100.D0)G0 TO 200
TEST=1.D0-DEXP (-PEC)
IF(DABS(TEST).LT.1.D-10)G0 TO 300

AS(K)=AS(K)-QART*(RET*BETA-(1.D0-SIGC)/TEST)
gg(%%=%%g1)+(1.DO-SIGC)*QART*CDC*DEXP(—PEC)/TEST

Qoo

aan

100  AS(X)=AS(K)-QART*(BETA*RET-(1.D0-SIGC))
GO TO 900

200 AS(K)=AS(K)-QART*BETA*RET
BS(1)=BS(1)-(1.D0-SIGC)*QART*CDC
GO TO 900

300 AS(K)=AS(X)-QART*BETA*RET+DDC
BS(1)=BS(1)+DDC*CDC

900 RETURH
SUBROUTTH“ PATVEN(NEX,IND)

THIS SUBROUTINE ADJUSTS THE AS AND BS VECTORS TO ACCOUNT FOR THE
PATLAX BOUNDARY CONDITION AT THE VERULAR WALL.

[eXelele]
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100

200

300
900
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IMPLICIT REAL*8(A-E,0-2) )
COMMON/BLX1/NODEL(500,3), XNOD(1001)
COMMON/SOLMAT/AS (20000)

COMMON/SOLB/BS(1001)

COMMON/OLD/POLD(1001) ,COLD(1001)
COMMON/TISDAT/AK,DEFF ,AL,PBEIA,PHIT,RET,SIGT,BETA
COMMON/CAPDAT/PC,CC

COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDN,
#

SIGC,SIGV,SIGM,CDC,CDV,CDM,DE
COMMON/0SMOT/A0,B0,CO

LUB=2

LP=3*LUB
NP=2*NEX+1
K=LP=*NP+NP-LUB

QART=AK*PC/DEFF*DLV* (POLD (NP)~PDV-SIGV*(PI-PIDV))
PEC=(1.D0-SIGV)/DDV*QART

DETERMINE WHICE FORM OF THE FLUX EXPRESSION APPLIES

IF%PEC.GT.lO0.0DO;GO TO 100
IF(PEC.LT.-100.D0)G0 TO 200
TEST=1.D0-DEXP(-PEC)
IF(DABS(TEST).LT.1.D-10)G0 TO 300

AS(X)=AS(K)-QART*(RET*BETA-(1.D0O-SIGV)/TEST)

BS(RP)=BS(¥P)+(1.D0-SIGV)*QART*CDV*DEXP(-PEC)/TEST
GO TO 900

AS(K)=AS(K)-QART*(BETA*RET-(1.D0-SIGV))
GO TO 900

AS(K)=AS(K)-QART*BETA*RET
BS(¥P)=BS{NP)~(1.D0O-SIGV)*QART*CDV
GO TO 900

AS(X)=AS(K)-QART*BETA*RET+DDV
BS(NP)=BS(NP)+DDV*CDV
RETURN

END

SUBROUTINE MATPLY(A,A1,B,C,NP)

THIS SUBROUTINE MULTIPLIES A MATRIX A BY A VECTOR B AND SCALAR At
TO GIVE VECTOR C. MATRIX A IS STORED AS A VECTOR, WHERE MATRIX
ELEMENT A(I,J) IS STORED AS A(IJ), IJ=3*LUB*J+I-LUB, AND WHERE
LUB IS THE NUMBER OF OFF DIAGONAL BANDS. FOR THIS SUBROUTIKE,

IT IS ASSUMED THAT THE BANDWIDTE IS §, SO THAT LUB=2.

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION A(20000), B(NP), C(NP)
LUB=2

LP=3*LUB

DO 1 I=1,RP
C(I)=0.DO
CONTINUE

K=2

DO 2 I=1,2

K=K+1
DO 3 J=1,K
I1J=LP*J+I-LUB
C(I)=C(I)+A(IJ)*41*B(J)
CONTINUE

CONTINUE
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NPM=FP-2

K=0

DO 4 I=3,NPM

K=K+1

KP=K+4
DO 5 J=K,KP
1J=J+LP+I-LUB
C(I)=C(I)+A(IJ)*B(J)*A1
CONTINUE

CONTINUE

NPM=FP-1

K=NP-4

DO 6 I=NPM,NP

K=K+1
DO 7 J=K,NP
1J=LP*J+I~LUB
C(I)=C(I)+A(TIJ)*A1*B(J)
CONTINUE

CONTINUE

i
SUBROUTINE SETMAT(NEX,IND,PE,IPEC,VELMAX)
THIS SUBROUTINE INITIALIZES THEE VARIOUS VECTORS ASSQOCIATED

WITHE SOLUTE AND FLUID TRANSPORT EQUATIONS, AF(K), BF(I), AS(X),

AND BS(I). NOTE THAT PARAMETER XL IS THE REFERENCE LENGTH
USED TO NONDIMENSIONALIZE THE EQUATIONS. IN THIS CASE
XL IS TEE LENGTH OF THE MESENTERIC SLAB.

IMPLICIT REAL*8(A-H,0-Z)

COMMON/BLK1/NODEL (500, 3) ,XNOD(1001)

COMMUN/FLUHAT/Afézoooog

COMMON/SOLMAT/ AS (20000

COMMON/TIME/T (20000

COMHOH/FLUB/BFElOOl

COMMON/SOLB/BS (1001

COMMOR/TISDAT/AK ,DEFF,AL,PHIA,PHIT,RET,SIGT,BETA

COMMON/0SMOT/A0,BO,CO

COMMON/CAPDAT/PC,CC

COMMON/OLD/POLD(1001) ,COLD(1001)

COMMON/WALL/DLC DLV ,DLM,DDC,DDV ,DDM, PDC, PDV,PDM, PIDC,PIDV,PIDM,
#SIGC,SIGV,SIGM,CDC,CDV, DM, D

COMMON/MAXDAT/DISPHX , IDISP

DIMEHSIOF GAUS(4),W(4),B(3),DB(3)

DATA NGAUS/4/

DATA W/.347854845137454D0, .652145154862546D0,
#.652145154862546D0, . 347854845137454D0/

DATA GAUS/-.861136311594053D0,-.339981043584856D0,
#.339981043584856D0, .861136311594053D0/

DATA GAUS/

DATA W/

DATA NGAUS/3/

DATA GAUS/

DATL W/

DISPMX=0.D0

ALPHA=AK*PC/DEFF

PE=0.D0

VELMAX=0.DO

ZERO THE APPROPRIATE ARRAY AND INITIALIZE

IF(IND.EQ.1)GD TOD 800
IF(IND.EQ.2)GD TO 900
IF(IFD.EQ.3)GD TG 950
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ZERD THE AF VECTOR

DO 700 I=1,20000
AF(I)=0.D0
CONTINUE

.GO TO 100

ZERD THE BF VECTOR

DO 801 I=1,1001
BF(I)=0.DO
CONTINUE

GO TO 100

ZERO THE T MATRIX

DO 951 I=1,20000
T(I)=0.DO
CONTINUE

GO TO 100

ZERO THE AS AND BS VECTORS

DO 901 I=1,20000
AS(I)=0.DO
CONTINUE

DO 902 I=1,1001
BS(I)=0.DO
CONTINUE

BEGIF THE GAUSS INTEGRATICN, ELEMENT BY ELEMENT

LUB=2 .
LP=3*LUB

EVALUATE THE INTEGRAND AT THE APPROPRIATE QUADRATURE POINT, S.

DO 200 II=1,NGAUS
S=GAUS(II)

IRITIALIZE THE APPROPRIATE ARRAY, ELEMENT BY ELEMENT.

DO 300 I=1,NEX

CALCULATE VALUE OF BASIS FUNCTIONS AND DERIVATIVES AT THE

QUADRATURE POINT

X1=XNOD(NODEL(I,1))
X2=XNOD(NODEL(I,2))
X3=XNOD(NODEL(I,3))

S§2=(2.D0*X2~-(X1+X3) )/ (X3-X1)

S-52)*(5-1.D0)/(2.D0*(S2+1.D0))
S+1.D0;*§S—1.DO)/(S2*S2-1.DO)
$-52)/(2.D0*(1.D0-52))
DB§1§=(2.DO*S—S2-1.DO)/(2.D0*(S2+1.DO))

i

B(1
33

5+1.D0)=*

DB(2
DB(3

DX=(X3-X1)*.5D0
CALCULATE THE T VECTOR

IF(IND.FE.3) GO TO 101
DO 952 M=1,3
MM=NODEL(I,M)
DO 953 N=1,3
NN=NODEL(I,X)

=2.D0*S/(52*S2-1.D0)
=(2.D0%5-52+1.D0)/(2.D0*(1.D0-52))

286
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K=LP*NN+MM-LUB
T(X)=T(K)+PEIA*B(M)*B(N)*DX*W(II)
953 CONTINUE
952 CONTINUE
GO TO 300

NOW CALCULATE c(S), DC/DS, PI(S), DPI/DS

101 €5=0.DO
DCS=0.D0
DO 301 IT=1,3
CS=CS+COLD{NODEL(I,IT))*B(IT)
DCS=DCS+COLD(NODEL(I,IT))*DB(IT)
301 CONTINUE

PIS=CS*(AO0+CS*(BO+CS*CO))
DPIS=(A0+2.DO*BO*CS+3.D0*CS*CS*CO)*DCS

DETERMINE WEHICH VECTOR IS TO BE INITIALIZED

IF(IND.EQ.1)GO TO 500
IF(IND.EQ.2)GO TO 600

INITIALIZE THE FLUID VECTOR

DO 401 M=1,3
MM=NODEL(I,M)
DO 402 ¥N=1,3
NN=NODEL(I,N)

[eXole]

anon

aan

K=LP*NN+MM-LUB
AF(K)=AF (K)+(B(M)*B(N)*2.DO*DLM/DHE*DX+DB (M) *DB(N) /DX)*W(II)
402 CONTINUE
401 CONTINUE
GO TO 300

INITIALIZE THE FLUID B VECTOR

500 DO 501 M=1,3
MM=NODEL(I,M)
BF (MM)=BF (MM) + DB(M)*DPIS/DX+B(M)*2 DO*DLM/DE*DX* ( PDM+SIGM*
# (PIS - PIDM)))*W(II)
501 CONTINUE
GO TO 300

aan

INTTIALIZE THE SOLUTE VECTORS, BS AND AS. fIRST CALCULATE VS,
QMES, ARD THE DISPERSION CUEFFICIENT DISP.

600 DPS=0.DO
PS=0.D0O
DO 601 IT=1,3
DPS=DPS+POLD (NODEL(I,IT))*DB(IT)
PS=PS+POLD(NODEL(I,IT))*B(IT)
601 CONTINUE

VS=-ALPHA* (DPS-SIGT*DPIS)/DX*RET*BETA/PHIA
QFMES=ALPHA*DLMx (PS-PDM-SIGM*(PIS-PIDM))
DISP=DABS(VS)*AL+1.D0

IF(DISP.LT.DISPMX) GO TO 650

DISPMX=DISP

IDISP=I

CALCULATE THE MAXIMUM LOCAL SOLUTE VELOCITY, VELMAX

650 IF(DABSECS;.LT.l.D-Sg VELS= DABSEVS)*PHIA
IFgDABS CS).GT.1.D-5) VELS=DABS(VS-(DISP*DCS/DX)/CS)*PHIA
IF(.5DO*VELS/DX.GT.VELMAX) VELMAX=.5DO*VELS/DX

c CALCULATE THE GRID PECLET NUMBER, AND SEE IF IT EXCEEDS

Qoo

aan
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THE LIMIT

PEST= DABS(PHIA*VS)*(XS-Xl)/DISP
IF(PEST.LT.PE)GO TO 609

PE=PEST

IPEC=I

aon

NOW DETERMINE WHICH FORM OF TBE NONLINEAR FLUX EXPRESSION
IS TO BE USED TO CALCULATE SOLUTE FLUX ACROSS MESOTHELIUM.

609 PEC=QFMES*(1.D0-SIGM)/DDM

IFgPEC .GT.100.D0)G0 TG 610
IF(PEC.LT.-100.D0)G0 TO 620
TEST=1.DO-DEXP(-PEC)
IF(DABS(TEST).LT.1.D-10)G0 TO 630

CASE 1: USE THE FULL NONLINEAR FLUX EXPRESSION

DO 602 M=1,3
MM=NODEL(I,M)
DO 603 N=1,3
NN=NODEL(I,N)
K=LP*NN+MM-LUB
AS(K)=AS(K)+(B(M)*DB(F)*VS+«PEIA+DB(M)*DB(N)*DISP*PHIA/DX
# +B(M)*B(N)*2.DO*QFMES/TEST/DE* (1.D0-SIGM) *DX
# ~2.D0/DE*QFMES+RET*BETA*B (M) *B(N)*DX)*W(II)

CONTINUE
BS(MM)=BS(MM)+B(M)*2.D0/DH*(1.D0-SIGM) *QFMES*CDM*DEXP (~-PEC) /TEST
# *DX*W(II)
602 CONTINUE
GO TO 300

CASE 2: PEC APPROACHES INFINITY

610 DO 611 M=1,3
MM=NODEL(I,M)
DO 612 §=1,3
NN= NDDBL(I N)
K=LP*NN+
AS(K)-AS(K)+(B(M)*DB(N)*VS*PHIA+DB(M)*DB(H)*PHIA*DISP/DX

Ooaan

aonn

603

[e1eXe]

# +B(M)*B(N)*2.D0/DH* (1.DO~-SIGM)*QFMES*DX
# -QFMES*RET*BETA*B(M) *B(N)*DX*2.D0O/DE)*¥(II)
612 CONTINUE
611 CONTINUE
GO TG 300

CASE 3: -PEC APPROACHES INFINITY

620 DO 621 M=1,3
MM=NODEL(I,M) .
DO 622 K=1,3
NN=NODEL(I, N) -
K=LP*NN+MM-LUB
AS(K)-AS(K)+(B(M)*DB(N)*VS*PHIA+DB(H)*DB(H)*PHIA*DISP/DX
# -2.D0/DHE*BETA*RET*QFMES*B(N)*B (M) *DX) *¥ (II)
622 CONTINUE
BS (MM)=BS(MM)-2.D0/DH*(1.D0~-SIGM)*QFMES*CDM*DX*¥(II)*B(M)
621 CONTINUE
GO TO 300

a0non

CASE 4: PEC APPROACHES 0

630 DO 631 M=1,3
MM=NODEL(I,M)
DO 632 N=1,3
NN=NODEL(I,N)
K=LP*NN+MM-LUB
AS{(K)=AS(K)+(B(M)*DB(N)*VS*PHIA+DB(M)*DB(K)*PEIA*DISP/DX
# +2.D0/DH*DDM*B (M) *B (1) *DX

[eXele]
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632
631

300
200

-2.DO/DH+RET*BETA*DX*B (M) *B(N)*QFMES) *W(II)

CONTINUE
BS(MM)=BS(MM)+2.DO/DH*DDM*B (M) *CDM*DX*W(II)
CONTINUE

CONTINUE
CONTINUE

RETURN
END

SUBROUTINE DGBND: (A, B, N, ML, NU, LT, IP, DET, NCN1,
1 BB, RZ, ITR1, EPS1)

ROUTINE SOLVES SYSTEM OF LINEAR EQNS. AX=B WHERE A IS A GENERAL
BAND MATRIX. METHOD USED IS GAUSSIAN ELIMINATION WITH PARTIAL
PIVOTING. OPTION OF ITERATIVELY IMPROVIRG SOLUTION IS AVAILABLE.
UPPER BAND WIDTH OF MATRIX INCREASES DUE TO INTERCHANGES BY
AMOUNT ML. ROUTINE REQUIRES BAND ELEMENTS OF MATRIX TO BE STORED
BY COLUMN IN A ONE DIMENSIONAL ARRAY. EACH COLUME IS OF LENGTH
2+«ML+NU AND BAND 1S TO BE STORED IN ELEMENTS ML+1 TO 2*ML+NU OF
EACH COLUMN. ELEMENTS 1 TO ML OF COLUMN ARE SET TO ZERO BY GBAND.
IF MATRIX IS SYMMETRIC USER MAY SPECIFY LOWER BAND ONLY IN
ELEMENTS ML+NU+1 TO 2*ML+NU OF EACH COLUMN AND GBAND WILL
GENERATE REMAINIFRG ELEMENTS. (IF THIS IS DESIRED, SET LT=-1 ON
FIRST CALL TO GBAND.)
1 DIMENSIONAL ARRAY CORTAINING MATRIX OF COEFFICIENTS.
1 DIMENSIONAL ARRAY CONTAINING RIGHT HAND SIDE VECTORS.
ON EXIT, B WILL CONTAIN THE SOLUTION VECTOR X.
ORDER OF MATRIX .
LENGTH OF LOWER BAND EEXCLUDING DIAGONAL;
LENGTE OF UPPER BAND (EXCLUDING DIAGONAL
ABSéLTg=1 IF ONLY 1 B VECTOR OR IF 1ST OF SEVERAL.
ABS(LT),=1 FOR SUBSEQUENT B VECTORS.
(NOTE. LT=+1 IF FULL BAND WIDTE GIVEN, LT=-1 IF LOWER BAND
ONLY OF SYMMETRIC MATRIX GIVEN.)
IP = INTEGER ARRAY CONTAINING INTERCHANGE INFORMATION.
DET = DETERMINANT OF A = DET*(10**NCN) WHERE 1.D-15<|DET|<1.D+15.
IF DET=0.0 MATRIX IS SINGULAR AND ERROR RETURN TAKEN.
BB, RZ = ARRAYS REQUIRED FOR IMPROVEMENT OPTION. CAN BE REAL*8
VARIABLES IF OPTION NOT REQUIRED.
ITER = 0 IF IMPROVEMENT NOT REQUIRED, OTHERWISE ITER= NO. OF
ITERATIONS OR CYCLES.
EPS - CONVERGENCE CRITERION.

MODIFIED TO DO ITERATIVE IMPROVEMENT (FORMERLY AVAILABLE ONLY
WITE THE SINGLE PRECISION VERSIOK). MIKE PATTERSON - NOV, 1980
IMPLICIT REAL#8 (A-H, 0-Z)
COMMON /GBAND$/ RITER
DIMENSION A(1), B(N), IP(N), BB(N), RZ(N)
COMPLEX*16 DSUMM, QADDQ, QMULD
REAL*8 QRND
TO ASSIGN LOGICAL UNITS 94 AND 95 ONLY ONCE:
LOGICAL ASSIGE /F/, YES /T/
STATEMENT FUNCTION TO CALCULATE POINTERS INTO A:
IFN(I, J) =1+ (J - 1)*LC + I - J + NUM

HE8f= ws

NCN=NCN1
ITR=ITR1
EPS=EPS1
ITER = ITR

LCM = NU + 2*ML
LC = LCHM + 1
NLC = NxLC
NUM = RU + ML :
GENERATE REMAINING ELEMENTS OF SYMMETRIC MATRIX
IF (LT .NE. -1) GO TO 120
NN =F§ -1
DO 110 T = 1, NK
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IFI = IFN(I, I)
IFJ = IFI
ITI=1I+1

IHL = MINO(I + ML, M)
DO 100 J = II, ML
IFI = IFI + 1
IFJ = IFJ + LCM
100 A(IF]) = A(TFI)
110 CONTINUE
120 IF (ITER .EQ. 0) GO TO 140
C ASSIGN UNITS 94 AND 95 IF THEY HAVE NOT ALREADY BEEN ASSIGRED:
IF (ASSIGN) GO TD 125
CALL FTNCMD (’ASSIGN 94=-GBAND94;’)
CALL FTNCMD (’ASSIGN 95=-GBAND95;’)
ASSIGN = YES
125 REWIND 94
REWIND 95
DO 130 I =1, XN

130  BB(I) = B(Ig
140 %g((§ABS(LT .NE. 1) GO TO 280
IF (ML .EQ. 0) GO TO 160
C SET ELEMENTS 1 ~ ML OF EACH COLUMN TO ZERO
DO 150 I = 1, N
IFK = (I - 1)*LC
DO 150 J = 1, ML
IFK = IFK + 1
150  A(IFK) = 0.0DO
160 IF (ITER .NE. 0) CALL DWR1 (4, NLC, 94)
DET = 0.0DO
NCN = 0
IF (ML .EQ. 0) GO TO 230
C LU DECOMPOSITION
DO 220 K = 1, N
IFK = IFN(K, K)
IF (K .EQ ¥) GO TO 210
KP = K +
MINO(K + ML, N)
= MINO(K + NUM, N)

IFK
IFI = IFK
DO 170 I = KP, KPM
IFI = IFI + 1
ﬁF (?ABS(A(IFI)) .LE. DABS(A(IFM))) GO TO 170
IFM = IFI
170 CONTINUE
IP(K) =
T = A(IFM)
IF (M .FE. K) IP(N) = -IP(N)
A§IFM = A(IFK)
A(IFK) =T
IF (T .EQ. 0.0D0) GO TO 260
0T = 1.0DO/T
IK = IFK
DO 180 I = KP, KPM

IK = IK + 1
180 A(IK) = -A(IK)*0T
KJ = IFK

MJ = IFM
DO 200 J = KP, KPN
KJ = KJ + LCM
MJ] = MJ + LCM
T = A(MJ)
AEMJ = A(KJ)
AKI) = T
IF (T .EQ. 0.0D0) GO TO 200
IK = IFK
IJ = KJ

kL
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DO 190 I = KP, KPM

IK = %K + 1
190 A(IJ) = A(IJ) + A(IK)*T
200 CONTINUE
210 IF (A(IFK) .EQ. 0.0D0) GO TO 260
220  CONTINUE
230 - IFK = IFN(1, 1)
DET = A(IFK)
DO 250 K = 2, K
IFK = IFK + LC
DET = DET*A(IFK)
IF (DET .EQ. 0.0DO) GO.TO 260
IF (DABS(DET) .GT. 1.D-15) GO TO 240
DET = DET#*1.D+15
NCN = NCN - 15
GO TO 250
240 IF (DABS(DET) .LT. 1.D+15) GO TO 250

DET = DET*1.D-15
NCN = NCN + 15
250 CONTINUE
DET = DET*IP(N)
GO TO 280
260 DET = 0.0DO
WRITE (6 270) K
270  FORMAT (0% DGBED1 - matrix is singular. ?/

1 ’ Error occurred in attempt to find’, IS5, ’th pivot.’)
RETURN

280 CALL DsOLVi (a, B, IP, N, ML, NU)
IF (ITER .EQ. O) RETURN

ITERATIVE IMPROVEMENT

RESIDUALS (R) = AX-B ARE FOUND AND STORED IN ARRAY RZ USING

EXTENDED PRECISION ARITHMETIC. SYSTEM AZ=R IS SOLVED AND NEW

SOLUTION =X+Z IS STORED IN ARRAY B. ABOVE STEPS REPEATED UNTIL
MAX(Z)/MAX(X) < EPS OR

2 NO. OF CYCLES > ITER OR

3) IMPROVEMENT STARTS TO DIVERGE.

ROUTINE THEN RETURNS AFTER SETTING EPS=MAX(Z) (FOR (1)) OR

%5§T£%% %g?;-MAX(Z) AND PRINTING APPROPRIATE ERROR MESSAGE (FOR

anoaaaaaoOOanOan

IF (IABS(LT) .EQ. 1) CALL DwWR1 (A, NLC, 95)
XNORM = 0.0DO
DO 280 K = 1, N

290  XNORM = DMAX1(XNORM, DABS(B(X)))
IF (XNORM .LE. 0.0DO) RETURN

zx = é .D+60

DD 340 L = 1, ITER
REWIND 94
CALL DRE1 (A, NLC 94)
DO 310 K = 1,

DSUMM = (0. DO 0.D0)
KPM = MAXO(K - ML, 1)
KPN = MINO(K + NU, N)
IFK = IFN(X, KPM)
DG 300 J = KPH, KPN
C DSUMM = DSUMM + A(IFK)*B(J)
C USING EXTENDED PRECISION:
DSUMM = QADDQ(DSUMM, QMULD(A(IFK), B(J)))
300 IFK = IFK + LCM
RZ(K) = BB(K) - QRNDQ(DSUMM)
310 CONTINUE
REWIND 95
CALL DRE1 (4, KLC, 95)
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CALL DSOLVi (4, RZ, IP, N, ML, NU)
ZNORM = 0.0D0
DO 320 K = 1, N

ERZ = RZ(X)
ZNORM = DMAX1(ZNORM, DABS(ERZ))
320 B(K) = B(K) + ERZ
E NORM .GT. ZX) GO TO 330
IF (ZNORM - EPS*XNORM) .LT. 0.0DO) GO TO 390
ZX = ZNORM
GO TO 340
330 {g (zggan .GT. 10.0D0*ZX) GO TO 360

IF (LD .GE. 3) GO TO 360
340  CONTINUE
L = ITER
WRITE (6, 350)
350 FORMAT (’0* DGBFD1- Iterative improvement did mnot converge®'/)
GO TO 380
360 WRITE (6, 370)
370 FORMAT (’0+ DGBED1 - Iterative improvement is diverging.’/)
380 EPS = -ZNORM
NITER = L

RETURN

390 EPS = ZHORM
NITER = L
RETURN

END
SUBROUTINE DsOLVi (4, B, IP, N, ML, KU)

THIS ROUTIFNE COMPUTES THE SOLUTION OF A SYSTEM AFTER GBAND HAS
DECOMPGSED MATRIX A INTO A LOWER TRIANGULAR MATRIX L AND AN
UPPER TRIANGULAR MATRIX U.

IMPLICIT REAL*8 (A-H, 0-Z)

DIMENSION A(1), B(E¥), IP(H)

IFE(I, J) =1 + (J - 1)*LC + I - J + NUM
LCM = 2«ML + NU

anaaan

0 TO 110

G
DO 1, MR
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KMN = MAXO(1, K - ML - NU)
KML = IFR(XME, K)
DO 120 I = KMN, KM

B(I) = B(I) + A(KML)#T

KML
B(1) B(1)/A(NUM + 1)
RETURN

END
SUBROUTINE DWR1 (A, N, LD

120
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60
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REAL*8 A(N)
WRITE (LU) A
RETURN

END
SUBROUTINE DRE1 (4, N, LU)
REAL*8 A(N)

READ (LU) A

RETURN

END

One-Dimensional Transient Simulator: TRANS.FOR

THIS ROTUINE CALCULATES THE TRANSIENT PRESSURE AND CONCENTRATION
PROFILE WITHIN MESENTERIC TISSUE. THE TISSUE IS APPROXIMATED
BY A ONE-DIMENSIONAL SLAB.

IMPLICIT REAL*8(A-H,0-Z)

INTEGER ELPEC

DIMENSION HOLD(1001),IPERM(1001),RES(1001),HOLD1(1000),
#RES1(1001) ,IPERM1(1001),TDT(20000) ,COLDT(1001) ,DTIME1(100),
#SBOLDT(1001) ,SOLDT(20000) ,BCTIME(1001) ,STNEW(20000),
#TCOLDT(1001) ,SCOLDT(1001)

COMMON/BLK1/NODEL(500,3) ,XNOD(1001)

COMMON/BLK2/DX(1001)
COMMON/MATBAL/QFC,QCC,QSC,QFV,QCV,QSV,QFM,QCH, QSM, QFM1(500) ,
# QCcM1(500) ,QSM1(500)
COMMON/FLUMAT/FLUID{20000)

COMMON/OLD/POLD(1001) ,COLD(1001)

COMHON/SOLB/SOLUTB&lOOig

COMMON/FLUB/FLUIDB(1001

COMMON/TIME/ T(20000)

COMMON/FMAX/FLUXMX

COMMON/SOLMAT/SOLUTE(20000)

COMMON/OSMOT/AOSM, BOSM, COSM
COMMON/TISDAT/AK ,DEFF,ALPHL ,PHIA,PHIT,RET,SIGT,BETA
COMMON/CAPDAT/PREF , CREF
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDM,
#SIGC,SIGV,SIGM,CDC,CDV,CDM,YYL

COMMON/MAXDAT/DISPMX,IDISP

SET MARKER AND TOLERANCE VALUES

READ(5,504)0MEGAF ,OMEGAC, TOLP, TOLC ,PECMAX ,EPS
READ(5,507)IMAX,ITER,NECHO,NP, ITMAX
READ(5,504) THETA,TTOL,COUR,BETA,TFACT, TIMMAX
READ(5,508) K

DO 60 I=1,K

READ(5,501) DTIME1(I)

CONTINUE

KK=2

NEX=(®P-1)/2

LUB=2

NDIM=EP*(3+LUB+1)

READ IN THE DATA FROM EXTEREAL FILE
DO 1 I=1,NP

READ(5,501) DX(I)
CONTINUE

READ(5,502) AOSM,BOSM,COSM, 4X,PREF,PHIA,PHIT,RET,PHIS
READ(5,504) ALPHL,AL,DEFF,SIGT,CREF,YYL
READ(5,504) CONC ,CONV,CONM, PERMC, PERMV , PERMM
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READ(5,504) DDC,DDV,DDM,SIGC,SIGV,SIGM
READ(5,504) CDC,CDV,CDM,DLC,DLV,DLM
READ(5,506) PDC,PDV,PDM

READ(5,506) AO0S1,B0S1,CDSt
YL=YYL*AL
PIDC=CDC+*(A0S1+CDC*(BOS1+CDC*C0S1
PIDV=CDV+*(ADS1+CDV*(B0OS1+CDV*COS1
PIDM=CDM=*(AOS1+CDM*(B0OS1+CDM*COS1
PC=PDC*PREF

PV=PDV*PREF

PM=PDM*PREF

CC=CDC*CREF

CV=CDV*CREF

CM=CDM*CREF

a0

DO 21 I=1,NP
READ(4,405) POLD(I),COLD(I)
COLDT(I)=COLD(I)

21 CONTINUE

501 FORMAT(E12.6)

502 FORMAT(9E10.4

503 FORMAT(5E10.4

504 FORMAT(6E10.4

405 FORMAT(2(1X,E17.10))
506 FORMAT(3E10.4)

507 FORMAT(5I4)

508 FORMAT(I3)

ECHO DATA IF NECHO N.E. O
IF(NECHO.EQ.0) GO TO 999
PRINT QUT INPUT DATA

WRITE(6,600)
600 FORMAT(1X,’TRANSIENT FLUID PRESSURE AND SOLUTE CONCENTRATION’

#)
. WRITE(6,601)
601 FORMAT(1X,’PROFILES FOR ONE DIMENSIONAL TISSUE SYSTEM’,//)

o oo

WRITE(6,602)
WRITE(6,602)
602 FORMAT(//,1X,’ s
#,//)
WRITE(6,603)
603 FORMAT(1X,’INPUT PARAMETERS’)
WRITE(6,602)
WRITE(6,604)
604 FORMAT(1X,’1. GRID DATA:’,//)
WRITE(6,605)NEX,DX(2)
605 FORMAT(1X,’NUMBER OF ELEMENTS:’,1X,I2,/,1X,
#’SMALLEST X INCREMENT:’,19X,E10.4,/)
WRITE(6,606)NP
606 FORMAT(1X,’TOTAL NUMBER OF NODES:’,10X,I4,/)
WRITE (6,602)
WRITE(6,607) TOLP,TOLC,ITMAX,OMEGAF,OMEGAC,PECHMAX
607 FORMAT(1X,’2. CONVERGENCE CRITERIA:’,//,1X,?PRESSURE TOLERANCE:’
#,17X,E10.4,/,1X,’SOLUTE TOLERANCE:’,20X,E10.4,/,1X,
# MAXIMUM NUMBER OF LOOP ITERATIONS:’,2X,I3,/,1X,
#?PRESSURE RELAXATION PARAMETER:’,6X,E10.4,/,1X,
#’SOLUTE RELAXATION PARAMETER:’,9X,E10.4,/,1X,
# MAXIMUM DESIRED GRID PECLET NUMBER:’,1X,E10.4)
WRITE(6,608) IMAX,TFACT,COUR,THETA
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608 FORMAT(/,1X,’MAXIMUM NUMBER OF TIME STEPS:’,2X,15,/,1X,
#'TIME STEP ACCELERATION FACTOR:’,6X,E10.4,/,1X,
#'INITIAL COURANT NUMBER:’,14X,E10.4,/,1X,
#'SEMI-IMPLICIT PARAMETER THETA:’,7X,E10.4)

WRITE(6,602)

PIC=PIDC*PREF
PIV=PIDV*PREF
PIM=PIDM*PREF

WRITE(6,609) AL,YL,CC,CV,CM,PC,PV,PM,PIC,PIV,PIM,AK,DEFF
609 FORMAT(1X,’3. DIMENSIONAL INPUT PARAMETERS:?,//,1X,
#'TISSUE X-DIMENSION (CM):’,21X,E10.4,/,1X,
#’TISSUE Y-DIMENSION (CM):’,21X,E10.4,/,1X,
#°CAP. PROTEIN CONC. (GRAMS/DL):’,14X,E10.
#’VEN. PROTEIN CORC. (GRAMS/DL):’,14X,E10.
#'MES. PROTEIN CONC. (GRAMS/DL):’,14X,E10.
#'CAP. DYN. PRESSURE (DYN/CM*%2):’,14X,E10.
#'VEN. DYN. PRESSURE (DYN/CM**2):’,14X,E10.
#°MES. DYN. PRESSURE (DYN/CM**2):’,14X,E10.
#'CAP. OSM. PRESSURE (DYN/CM#*2):’,14X,E10.
#’VEN. OSM. PRESSURE (DYN/CM*%2):’,14X,E10.
#’MES. OSM. PRESSURE (DYN/CM*#*2):’,14X,E10. 1X,
#'TISSUE FLUID CONDUCTIVITY (CMx*4/(DYN-SEC):?® 2x ,E10.4,/,1X,
#’TISSUE SOLUTE DIFFUSIVITY (CM**2/SEC):’,7X,E10.4)
WRITE(6,611) CONC,CONV,CONM,PERMC,PERMV,PERMM
611 FORMAT(1X,’CAP. CONDUCTIVITY (CM**3/(DYN-S));’,11X,E10.4,/,1X,
#°VEN. CONDUCTIVITY (CM**3/(DYN-S)):’,11X,E10.4,/,1X,
#'MES. CONDUCTIVITY (CM**3/(DYN-S)):’,11X,E10.4,/,1X,
#2CAP. PERMEABILITY (CM/S):’,21X,E10.4,/,1X,
#’VEN. PERMEABILITY (CM/S):’,21X,E10.4,/,1X,
#°MES. PERMEABILITY (CM/S):’,21X,E10.4)
WRITE(6,602)
WRITE(6,653) SIGT,RET,BETA,ALPHL
653 FORMAT(1X,’4. DIMENSIONLESS INPUT PARAMETERS:?,//,1X,
#'TISSUE REFLECTION COEFFICIENT:®,15X,E10.4,/,1X,
#'RETARDATION FACTOR:’,26X,E10.4,/,1X,
#?HYDRAULIC CONDUCTIVITY -RATIO, BETA:’,15X,E10.4,/,1X,
#’DIMENSIONLESS DISPERSIVITY:?,21X,E10.4)
WRITE(6,612)PDC,PIDC,PDV,PIDV,PDM,PIDM
612 FORMAT(//,1X,
zéE%EESURE:’,GX,’DYNAMIC’,SX,’OSMOTIC’,//,1X,’CAPILLARY:’,5X,

#2X,E10.4,/,1X, ’VENULE:’,8X,E10.4,2X,E10.4,/,1X, MESOTHELIUN: *,
#3X,E10.4,2X,E10.4,//)
wRITE(e 613)CDC CDV,CDM
613 FORMAT(lX » CONCENTRATIONS : ° ,//,1X, CAPILLARY:® ,5X,E10.4,/,1X,
#’VENULE:’,9X,E10.4,/,1X, MESOTHELIUM: ’ ,1X,E10. 4 //)
WRITE(6,614)SIGC,SIGV,SIGM
614 FORMAT(1X,’REFLECTION COEFFICIENTS:’,//,1X,’CAPILLARY:’,5X,
#£10.4,/,1%,’VENULE:?,9X,E10.4,/,1X, I MESOTHELIUM: ° ,1X, E10 4 //)
WRITE(G 615)DLC DLV, DLM
615 FORMAT(lX 'VESSEL FLUID CONDUCTANCES:’,//,1X,’CAPILLARY:’,5X,
#E10.4,/,1X,’VENULE:’,9X,E10.4,/,1X,’MESDTHELIUM:’,1X,E10.4,//)
WRITE(6,616)A0SM,BOSM,COSM
616 FORMAT(1X,’VIRIAL COEFFICIENTS:’,//,1X,’A0SM:’,1X,E10.4,/,1X,
#°BOSM:’,1X,E10.4,/,1X,°C0OSM:*,1X,E10.4,//)
WRITE(6,617)DDC,DDV,DDM
617 FORMAT(1X,’VESSEL SOLUTE PERMEABILITIES:’,//,1X,’CAPILLARY:’,5X,
#£10.4,/,1X,*VENULE:®,9X,E10.4,/,1X, ’MESOTHELIUM: * ,1X,E10.4,//)
WRITE(6,618)PEIT,PHIA,PHIS
618 FORMAT(1X,’TOTAL TISSUE FLUID VOLUME FRACTION:’,2X%,E10.4,/,1X,
#'SOLUTE DISTRIBUTION VOLUME FRACTION:’,1X,E10.4,/,1X,
#°TOTAL SOLIDS VOLUME FRACTION:®,8X,E10.4,///)
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C
999 THETAM=1.DO-THETA

anoa ann

elelelnie]

anaa

Q

Q anoan

Qo

aan

100

TIME1=DTIME1(1)
IFLAG=0

ESTABLISHE THE GRID
CALL GRID(NEX)

CALCULATE THE T VECTOR AND THE FLUID VECTOR, ADJUSTIEG THE LATTER
TO FIT THE BOUNDARY CONDITIONS

CALL SETMAT(NEX,3,PEC,IEL,VELMAX)
CALL SETMAT(NEX,0,PEC,IEL,VELMAX
CALL ASTAR(NEX,O0) ’
CALL VSTAR(NEX,0)

CALCULATE THE SOLUTE VECTORS FROM THE STEADY-STATE DATA. THESE
WILL SERVE TO GIVE A FIRST ESTIMATE OF THE CONCEETRATION AT THE
NEXT TIME STEP BY USING A FULLY EXPLICIT FORM TGO START WITH.

CALL SETMAT(NEX,2,PEC,IEL,VELMAX)
CALL PATARTéNEXg

CALL PATVEN(NEX

PECLET=PEC

ELPEC=IEL

DMX=DISPMX

ID=IDISP

DELT=COUR/VELMAX

SET THE SOLDT AND SBOLDT VECTORS EQUAL TO THE STEADY-STATE
VECTORS ABOVE

DO 2 I=1,NDIM
SOLDT(1)=SOLUTE(I)
CONTINUE

DO 3 I=1,NP
SBOLDT(I)=SOLUTB(I)
CONTINUE

CHECK TBAT THE MAXIMUM NUMBER OF TIME STEP ITERATIONS HAVE EOT
BEEN EXCEEDED.

ICOUNT=0
TIME=0

ITSOL=1
ICOUNT=ICOUNT+1

DETERMINE TOTAL ELAPSED TIME

NITER=0

DTINV=1.DO/DELT
TIME=TIME+1.DO/DTINV
IFgICOUNT.GT.IHAX; GO TO 900
IF(TIME.GT.TIMMAX) GO TO 810

DO 4 I=1,NDIM

TDT(I)=T(I)*DTINV

CONTINUE

DETERMINE THE AS VECTOR AND BS VECTOR FOR TEE EIPLICIT SCHEME

CALL MATPLY(T,DTINV,COLDT,TCOLDT,NP)
CALL MATPLY(SOLDT,1.D0,COLDT,SCOLDT,NP)
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anon

200

anaaan

aoonnn

anann

anon

anan

cna

DO & I=1,NP
BCTIME(I)=TCOLDT(I)+SBOLDT(I)-SCOLDT(I)
CONTINUE

DETERMINE THE INITIAL GUESS FOR CNEW, UPDATIEG KEITER

NITER=NITER+1
EP=EPS
IF(NITER.GT.ITMAX)GO TO 901

DETERMINE WHETHER THIS IS THE FIRST PASS, AND HENCE USE TEE
FULLY EXPLICIT FORM OF THE SOLUTE TRANSPORT EQ., OR IF IT IS
%SEBBSEQUENI PASS, IN WHICE CASE A SEMI-IMPLICIT SCHEME IS

IF(NITER.EQ.1) CALL DGBAWD(TDT,BCTIME,NP,LUB,LUB,1,IPERM,DET,
# JEXP,HOLD,RES, ITER,EP)

IF(NITER.GT.1) CALL DGBAND(STNEW,BCTIME,NP,LUB,LUB,1,IPERM,DET,
# JEXP,HOLD,RES,ITER,EP)

DETERMINE THE MAXIMUM CHARGE IN C FROM ONE ITERATION TO THE
NEXT, USING A RELATATION PROCEDURE. CDIFMX WILL BE COMPARED
TO CTOL TO ESTABLISE CONVERGENCE FOR TIME STEP ICOUNT.

CMAX=0.D0

CDIFMX=0.DO

DO 6 I=1,NP

IF(DABS(BCTIME(I)).GT.CHAX% CMAX=DABS(BCTIME(I))
TEST=DABS(BCTIME(I)-COLD(I))

IF(TEST.GT.CDIFMX) CDIFMX=TEST
COLD(I)=0MEGAC*(BCTIME(I)-COLD(I))+COLD(I)
CONTINUE

. CDIFMX=CDIFMX/CMAX

NOWw INITIALIZE THE FLUID B VECTOR AND SOLVE FOR THE PRESSURE
DISTRIBUTION AT THIS NEW TIME STEP

CALL SETMAT(NEX,1,PEC,IEL,VELMAX)
CALL ASTAR(NEX,1)
CALL VSTAR(NEX,1)

SOLVE FOR THE NEW PRESSURE

EP=EPS
CALL DGBND1(FLUID,FLUIDB,NP,LUB,LUB,ITSOL,IPERM1,DET,JEXP,
#HOLD1,RES1,ITER,EP)
ITSOL=ITSOL+1

CHECK TO SEE IF THE SOLUTION HAS CORVERGED

PMAX=0.DO

PDIFMX=0.DO

DO 7 I=1,NP

IF(DABS(FLUIDB(I)).GT.PMAX% PMAX=FLUIDB(I)
TEST=DABS(FLUIDB(I)-POLD(I))
IF(TEST.GT.PDIFMX) PDIFMX=TEST

POLD (I)=0MEGAF*(FLUIDB(I)-POLD(I))+POLD(I)
CONTINUE

PDIFMX=PDIFMX/PMAX
CHECK FOR CONVERGENCE

IFEPDIFMX.GT.TOLPg GO TO 300
IF(CDIFMX.LT.TOLC) GO TO 301
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RESET THE SOLUTE MATRIX, SET THE NECESSARY VECTORS FOR A SEMI-
IMPLICIT SCHEME

300 CALL SETMAT(NEX,2,PEC,IEL,VELMAX)
CALL PATARTENEX;

anon

CALL PATVEN(NEX
PECLET=PEC

BCTIME(I)=TBETA*SOLUTB(I)+TCOLDT(I)+THETAM*SBOLDT(I)-
# THETAM*SCOLDT(I)
8 CONTIRUE

DC 9 I=1,NDIM
STREW(I)=T(I)*DTINV+THETA*SOLUTE(I)
9 CONTINUE
GO TO 200

RESET MATRICES FOR NEXT TIME STEP

301 DO 10 I=1,NP
SBOLDT(I)=SOLUTB(I)
COLDT(I)=COLD(I)

10 CONTINUE

DO 11 I=1,NDIM
SOLDT(I)=SOLUTE(I)
11 CONTINUE

DETERMINE IF THE SOLUTION SHOULD BE PRINTED OUT.
IF DELT HAS BEEN SET TO (TIME1-TIME), RESET DELT
TO DTHOLD, I.E., TO THE LAST VALUE OF DELT BEFORE
SETTING IT TO TIMEi-TIME

IF(IFLAG.EQ.0)GO TO 400
DELT=DTHOLD
IFLAG=0
400 DELT=DELT*TFACT
IFgDABS(TIHE-TIMEig .'L'I'.T'I‘OLg GO TG 800
IF(DABS(TIME-TIME1) .GT.DELT) GO TO 100
DTHOLD=DELT
IFLAG=1
DELT=DABS (TIME-TIME1)
619 FORMAT(//,1X,’NUMBER OF TIME STEPS:’, I4,1X,
#’REPRESENTING A CUMMULATIVE TIME OF °,F10.7,/,1X,
#'NUMBER OF ITERATIONS REQUIRED FOR CONVERGENCE:’,1X,I3,/,1X,
#*MAXIMUM COURANT NUMBER:’,F10.7,/,1X,
#’MAXIMUM GRID PECLET NUMBER:’,F10.7,1X,’AT ELEMENT’,1X,I4,/,1X,
#’MAXIMUM DISPERSION COEFFICIENT:’,1X,E9.4,1X,’AT ELEMENT’,1X,I4)
WRITE(6,602)
GO TO 100

PRINT OUT THE SOLUTION AT TIMEi TO DEVICE 6 ARD 7

800 WRITE(6,619) ICOUNT,TIME,EITER,COUR,PECLET,ELPEC,DMX,ID
WRITE(6,620)

620 FORMAT(//,1X,’POSITION’,1X,’AVAIL. CONC.’,1X,°TOTAL CONC.’,

#%xé’ggnao. PRESS.’,1X, °’OSMOTIC PRESS.’,1X,’TOTAL PRESS.?)

DO 12 I=1,HP
POSM=COLD(I§*(AOSM+COLD(I)*(BOSH+COSM*COLD(I)))
PTOT=POLD§I -POSM
CTOT=COLD(I)*PHIA/(1.DO-PHIS)
X=X+DX(I)
WRITE(6,621) X,COLD(I),CTOT,POLD{I),POSM,PTOT
WRITE(7,621) X,POLD(I),POSM,PTOT,COLD(I),CTOT

anon

aoaaan

ann
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621 FORMAT(2X,F6.4,3X,F9.6,4X,79.6,3X,F9.6,5X,F9.6,6X,F9.6)
12 CONTINUE

CALL MASBAL(NEX)

DO 20 I=1,NEX

I2=2+1

X=XNOD(I2)

WRITE(7,702) X,QFM1(I),QsSM1(I),QCM1(I)
702 FORMAT(4(2X,E10.4))
20 CONTINUE

WRITE(6,622)
622 FORMAT(’1’,//,1X,’MASS BALANCE DATA’,///)
WRITE(6,623)
623 FORMAT(///,1X,’NET DIMENSIONLESS FLUID FLOWS?’)
WRITE(6,624) QFC,QFV,QFM
624 FORMAT(//,1X,’ART:’,1X,E12.4,/,1X,’VEN:?,1X,E12.4,/,1X,
#'MES:?,1X,E12.4)
WRITE(6,625)
625 FORMAT(///,’NET DIMENSIONLESS SOLUTE FLOWS®)
WRITE(6,624) QSC,QSV,QSM
WRITE(6,626)
626 FORMAT(//,1X,’CONVECT. COMPONENTS OF DIMENSIONLESS SOLUTE FLOW’)
WRITE(6,624) QCC,QCV,QCM
PECC=QCC/(QSC-Qcc)
PECV=QCV/(QSV-QCV)
PECM=QCM/ (QSM-QCHM)
WRITE(6,627)
627 FORMAT(//,1X,’RATIO OF CONVECTION TO DIFFUSION AT BOUNDARIES’)
WRITE(6,624) PECC,PECV,PECM
TIME1=TIME1+DTIME1(KK)
KK=KK+1
WRITE(6,602)
GO TO 100

PRINT OUT ERROR THAT CONVERGENCE WAS NOT ACEIEVED

901 ICOUNT=ICOURT-1
- NITER=NITER-1
WRITE(6,628) NITER,TIME,ICOUNT,PECLET,IEL,COUR
628 FORMAT(//,1X,’CONVERGENCE NOT ACHEIVED AFTER’,I4,’ ITERATIONS.?,
#/,’TIME OF FAILURE:’,F10.6,3X,
#’NUMBER OF SUCCESSFUL TIME STEPS BEFORE FAILURE:’,I5,/,
#1X,MAXIMUM GRID PECLET NUMBER IS’,1X,F7.4,1X,’AT ELEMENT’,I4,/,
#1X, ’MAXIMUM COURANT NUMBER IS ’,F10.7)
GO TO 920
900 WRITE(6,629) TIME
620 FORMAT(//,1X,’MAXIMUM NUMBER OF TIME STEPS ACHIEVED AT TIME’,
#E10.4) :
GO TO 920
910 WRITE(6,630) TIMMAX, ICOUNT
630 FORMAT(//,1X,’MAXIMUM TIME OF’,1X,E10.4,’ EXCEEDED AFTER °’,I4,
# ' TIME STEPS’)

920 STOP

END

SUBROUTINE MATPLY(4,A1,B,C,NP)
THIS SUBROUTINE MULTIPLIES A MATRIX A BY A VECTOR B AND SCALLAR 41
TO GIVE VECTOR C. MATRIX A IS STORED AS A VECTOR, WHERE MATRIX
ELEMENT A(I,J) IS STORED AS A(IJ), IJ=3*LUB*J+I-LUB, AND WHERE
LUB IS THE NUMBER OF OFF DIAGONAL BANDS. FOR THIS SUBROUTIEE,

IT IS ASSUMED THAT THE BANDWIDTH IS 5, SO THAT LUB=2.

IMPLICIT REAL*8(4-H,0-Z)
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DIMENSION A(20000), B(NP), C(NP)
LUB=2
LP=3*LUB

DO 1 I=1,NP
€(I)=0.DO
CONTINUE

K=2

D0 2 I=1,2

K=K+1
DO 3 J=1,K
1J=LP*J+I-LUB
C(1)=C(I)+A(IJ)*A1%B(J)
CONTINUE

CONTINUE

NPM=NP-2

K=0

DC 4 I=3,NPM

K=K+1

KP=K+4
DO 5 J=K,KP
1J=J+LP+I-LUB
C(I) =C(I)+A(1J)*B(J)*A1

NTINUE

CONTINUE

NPM=NP-1

K=NP-4

DO 6 I=NPM,NP

K=K+1
DO 7 J=K,NP
I1J=LP*J+i-LUB
C(I)=C(I)+A(II)*A1+B()
CORTINUE

CONTINUE

RETURN
END

SUBROUTINE MASBAL(NEX)

THIS SUBROUTINE PERFORMS A MATERIAL BALANCE ON THE SYSTEM FOR
BOTH FLUID AND PLASMA PROTEIKS.

IMPLICIT REAL*8(A-H,0-Z)
COMMON/MATBAL/QFC,QCC,QSC,QFV,QCV,QSV,QFM,QCM,QSH,QFM1(500) ,

# QCM1(500),QSM1(500)

COMMON/OLD/POLD(1001) ,COLD(1001)
COMMON/BLK1/NODEL(500,3) ,XNOD(1001)
COMMON/OSMOT/A0,B0,CO
COMMON/TISDAT/AK ,DEFF, AL ,PHIA,PHIT,RET,SIGT,BETA
COMMON/CAPDAT/PC,CC
COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDN,
# SIGC,SIGV,SIGM,CDC,CDV,CDM,DH
DIMENSION GAUS(4),W(4),B(3)

DATA NGAUS/4/

DATA W/.347854845137454D0, .652145154862546D0,
#.652145154862546D0, . 347854845137454D0/

DATA GAUS/-.861136311594053D0,~.339981043584856D0,
#.339981043584856D0, .861136311594053D0/

FIRST, CALCULATE THE NET FLOWS ACROSS THE ARTERIOLAR WALL

PIC=COLD(1)*(A0+COLD(1)*(BO+COLD(1)*C0))
QFC=DH*AK*PC/DEFF*DLC*(POLD(1)~-PDC-SIGC*(PIC-PIDC))
QCC=BETA*QFC*COLD (1)*RET
PECC=(1.D0~-SIGC)=*QFC/(DDC*DH)

300
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110
120
130

200

210
220
230

300

400

IF%PECC.GT.lOO.DO)GO TO 110

IF(PECC.LT.-100.D0)G0 TO 120

TEST=1.DO-DEXP (-PECC)

IF(DABS(TEST).LT.1.D-10)G0 TO 130

ggcT(12%% SIGC)*QFC*(COLD(1)~CDC*DEXP(-PECC))/TEST
QSC=QFC*{1.D0-SIGC)*COLD(1)

GO TO 200

QSC=(1.D0~SIGC)*CDC*QFC

GO TO 200

QSC=DE*DDC*(COLD{1)-CDC)

NOW FOR THE VENULAR WALL

N=NEX#2+1

PIV=COLD(N)*{AO+COLD (N)*(BO+COLD(N)*C0))

QFV=DH*AK*PC/DEFF*DLV*(POLD (N)-PDV-SIGV*(PIV-PIDV))

QCV=BETA*QFV*COLD(N)*RET

PECV=(1.D0-SIGV)*QFV/(DDV*DEH)

IFEPECV.GT.lOO.DO)GO TO 210

IF(PECV.LT.-100.D0)GD TO 220

TEST=1.DO-DEXP(-PECV)

IF(DABS(TEST) LT.1.D-10)G0 TO

ggvig1éo% SIGV)*QFV*(COLD(N)- CDV*DEXP( PECV))/TEST
0

Qsv= QFV*(l DO-SIGV)*COLD(N)

GO TO

Qsv=(1. DO SIGV)*CDV*QFV

GO TO 300

QSV=DH*DDV* (COLD (N)~-CDV)

AND FINALLY, THE MESOTEELIAL LAYER
CONSIDER THE MESOTHELIAL WALL, ELEMEET BY ELEMENT.

QSM=0.D0
QCM=0.D0
QFM=0.D0

DO 400 I=1,NEX
QsSM1(I)=0.D0O
QFM1(I)=0.DO
QCM1(I)=0.DO
CONTINUE

DO 1 II=1,NGAUS

S=GAUS(II)
DO 2 I=1,NEX
X1=XNOD(NODEL(I,1))
X2=XNOD(NODEL(I,2))
X3=XNOD (NODEL(I,3))
S2=(2.D0*X2-(X1+X3))/(X3-X1)

B(1)=(S-52)*(S-1.D0)/(2.D0*(S2+1.D0))
g§§§_§s+1.nog*gs—1.Do)/(sz*sz-1.Do)
DX=(X3-X1)*.5D0

S+1.D0)*(S-52)/(2.D0*(1.D0-52))
CALCULATE C(S), PI(S), AND P(S)
CS=0.D0
PS=0.D0
DO 3 IT=1,3

CS= CS+COLD(NODEL(I ‘IT))*B(IT)
PS=PS+POLD(NCDEL(I,IT))*B{IT)

CONTINUE
PIS=CS*(A0+CS*(BO+CS*C0O))
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CALCULATE THE FLUXES

FLOW=AK*PC/DEFF*DLM* (PS-PDM-SIGM* (PIS-PIDM))*W{(II)*DX
QFM=QFM+FLOW

QFM1(I)=QFM1(I)+FLOW/(X3-X1)

QCM=QCM+FLOW*CS+BETA*RET
QCM1(I)=QCM1(I)+FLOW*CS*BETA/ (X3-X1)*RET

DETERMINE WHICH FORM OF THE NONLINEAR FLUX EQN. IS TO BE USED.

QS=FLOW/{W(II)#*DX)
PECM=QS*(1.D0-SIGM) /DDM
IF&PECM.GT.lOO.DO)GO TO 410
IF(PECM.LT.-100.D0)GO TO 420
TESTM=1.DO-DEXP (-PECM)
IF(DABS(TESTM).LT.1.D-10)GO TO 430

USE THE FULL EXPRESSION
SFLOW=FLOW*(1.D0-SIGM)* (CS—-CDM+DEXP(-PECM) ) /TESTM

QSM=QSM+SFLOW
QSM1(1)=QsM1(I)+SFLOW/(X3-X1)
GO TO 2

anon Qoo

ann

410 SFLOW= FLOW*(l DO-SIGM)*CS
QSM=QSM+SFLOW
QSM1(T)=QSM1(I)+SFLOW/(X3-X1)
GO TO 2

420 SFLOW= FLOW*(l DO-SIGH) *CDM
QSM=QSM+SFL
QsM1(I)= QSM1(I)+SFLOH/(X3 X1)
GO TO 2

430 SFLOW=DDMx* (CS-CDM) *DX*W(II)
QSM=QSM+SFLOW
QSM1(I)=QSM1(I)+SFLOW/(X3-X1)
CORTIRUE

1 CORTIRUE
RETURN

EXD
SUBROUTINE GRID(NEX)

THIS SUBROUTINE CALCULATES THE SPATIAL LOCATION OF THE NODES
FOR EACH ELEMENT, ALONG WITH THE KNODES ASSOCIATED WITH A
GIVEN ELEMENT.

IMPLICIT REAL*8(A-E,0-Z)
COMMON/BLK1/NODEL(500,3), XNOD(1001)
COMMON/BLK2/DX{1001)

K=1
DO 1 I=1,NEX
NODEL(I,1)=K
NODEL(I,2)=K+1
NODEL(I,3)=K+2
K=K+2

1 CONTINUE

X=0.D0
NP=2*NEX+1
DO 2 I=1,NP
X=X+DX(I)
XNOD(I)=X

2 CONTINUE
RETURN
END

[elelelele!
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SUBROUTINE VSTAR(NEX,IND)

THIS SUBROQUTINE ADJUSTS THE AF AND BF VECTORS TO ACCOUNT FOR THE
STARLING BOUNDARY CONDITION AT TEZ VENULAR WALL.

IMPLICIT REAL#*8(A-H,0-Z)

COMMON/BLK1/NODEL(500,3), XNOD(1001)

COMMON/FLUMAT/AF(2000O)

COMMON/FLUB/BF (1001)

COMMON/0LD/POLD(1001) ,COLD(1001)

COMMON/WALL/DLC,DLV,DLM,DDC,DDV,DDM, PDC, PDV,PDM, PIDC,PIDV,PIDN,
# SIGC,S1Gv,SIGM,CDC,CDV,CDM,DE

COMMON/0OSMOT/A0,B0,CO

M=NEX*2+1

LUB=2

LP=3*LUB
IF(IND.EQ.1)GO TO 100
K=LP*M+M-LUB

AF(K)=AF (K)+ DLV

GO TO 900

100 PI=COLD(M)*(A0+COLD(M)*(BO+COLD(M¥)*C0))
BF{(M)=BF (M) +DLV* (PDV+SIGV*(PI-PIDV))

C
900 RETURN
END

annn

SUBROUTINE ASTAR(NEX,IND)

THIS SUBROUTINE ADJUSTS THE AF AID BF VECTORS TO ACCOUNT FOR THE
STARLING BOUNDARY CORDITION AT T==Z ARTERICLAR WALL.

IMPLICIT REAL*8(A-E,0-Z)

COMMON/BLK1/NODEL(500,3), XNOD(1001)

COMMON/FLUMAT/AF (20000)

COMMON/FLUB/BF(1001)

COMMON/OLD/POLD(1001) ,COLD(1001)

COMMON/WALL/DLC,DLV, DLM DDC,DDV,DDH, PDC PDV PDM,PIDC,PIDV,PIDM,
# SIGC SIGV SIGM CDC CD”

COMMON/0SMOT/ A0, BO co

LUB=2

LP=3*LUB
IF(IND.EQ.1)GO TO 100
K=LP+1-LUB
AF(K)=AF(K)+ DLC

GO TO 900

100 PI=COLD(1)*(A0+COLD(1)*(BO+COLD(1)*C0))
BF(1)=BF (1) +DLC*(PDC+SIGC*(PI-PIDC))

900 RETURN
END
SUBROUTINE PATART(NEX)

THIS SUBROUTINE ADJUSTS THE AS AYD BS VECTORS TO ACCOUNT FOR THE
PATLAK BOUNDARY CONDITION AT THE ARTERIGEAR WALL.

IMPLICIT REAL*8(A-H,0-Z)

COMMON/BLK1/NODEL(500,3), XNOD(1201)

COMMON/SOLMAT/AS (20000)

COMMON/SOLB/BS(1001)

COMMON/0LD/POLD(1001),COLD(1001)

COMMON/TISDAT/AK ,DEFF,AL,PHIA,PRIT,RET,SIGT,BETA

COMMON/CAPDAT/PC,CC

COMMON/WALL/DLC,DLV,DLM,DDC,DDV,D2M,PDC,PDV,PDM,PIDC,PIDV,PIDH,
# SIGC,SIGV,SIGM,CDC,CDV,CDX,DE

COMMON/0SMOT/A0,BO,CO

[elelee]

elolole]
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LUB=2
LP=3*LUB

c K=LP+1-LUB
PI=COLD(1)*(A0+COLD(1)*(BO+COLD(1)*C0))
QART=AK*PC/DEFF*DLC*(POLD(1)-PDC-SIGC*(PI-PIDC))

c PEC=(1.D0-SIGC)/DDC*QART

g DETERMINE WHICH FORM OF THE FLUX EXPRESSION APPLIES
IF&PEC.GT.iO0.0DogGO TO 100
IF(PEC.LT.-100.D0)G0 TO 200
TEST=1.D0-DEXP(-PEC)

c IF(DABS(TEST).LT.1.D-10)G0 TO 300
AS(K)=AS(K)-QART*(RET+BETA-(1.D0-SIGC)/TEST)
BS(1)=BS(1)+(1.D0-SIGC)*QART*CDC*DEXP(-PEC)/TEST

c GO TO 900

100 AS(X)=AS(K)-QART*(BETA*RET-(1.D0-SIGC))

c GO TO 900

200 AS(K)=AS(K)-QART*BETA*RET
BS(1)=BS(1)-(1.D0-SIGC)*QART*CDC
GO TO 900

300 AS(K)=AS(K)-QART*BETA*RET+DDC
BS(1)=BS(1)+DDC*CDC
900 RETURN

END
SUBROUTINE PATVER(NEX)

TEIS SUBROUTINE ADJUSTS THE AS AND BS VECTORS TO ACCOUNT FOR THE
PATLAK BOUNDARY CONDITIOR AT THE VENULAR WALL.

IMPLICIT REAL*8(A-H,0-Z)

COMMON/BLK1/NODEL(500,3), XNOD(1001)

COMMON/SOLMAT/AS(20000)

COMMON/SOLB/BS(1001)

COMMON/0LD/POLD(1001),COLD(1001)

COMMON/TISDAT/AX ,DEFF,AL,PHIA,PHIT,RET,SIGT,BETA

COMMON/CAPDAT/PC,CC

COMMON/WALL/DLC,DLV ,DL¥,DDC,DDV,DDM,PDC,PDV,PDM,PIDC,PIDV,PIDN,
# SIGC,SIGV,SIGM,CDC,CDV,CDM,DHE

COMMON/OSMOT/A0,BO,CO

LUB=2
LP=3*LUB
NP=2*NEX+1
K=LP+NP+NP-LUB

PI=COLD(NP)*(AO+COLD€NP)*EBO+COLD(NP)*CO))
QART=AK*PC/DEFF*DLV* (POLD(¥P)-PDV-SIGV*(PI-PIDV))
PEC=(1.D0-SIGV)/DDV*QART

C DETERMINE WHICH FORM OF THE FLUX EXPRESSION APPLIES

aQaanon

IF%PEC.GT.iO0.0DogGO TO 100
IF(PEC.LT.-100.D0)GD TO 200
TEST=1.D0-DEXP(-PEC)
IF(DABS(TEST).LT.1.D-10)G0 TO 300

AS(K)=AS(K)-QART* (RET*BETA-(1.D0-SIGV)/TEST)

BS(NP)=BS{NP)+(1.D0-SIGV)*QART*CDV*DEXP (-PEC)/TEST
GO TO 900

100  AS(K)=AS(K)-QART*{BETA*RET-(1.D0O-SIGV))
GO TO 900
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c
200

300
900

anNnanooaan

anaan

ano

ana

700

800
801

AS(K)=AS(K)-QART*BETA*RET
BS(NP)=BS(NP)-(1.DO-SIGV)*QART*CDV
GO TO 900

AS(K)=AS(X)-QART*BETA*RET+DDV
BS (NP )=BS(NP)+DDV*CDV
RETURN

END
SUBROUTINE SETMAT(NEX,IND,PE,IPEC,VELMAX)

THIS SUBROUTINE INITIALIZES THE VARIOUS VECTORS ASSOCIATED

WITH SOLUTE AND FLUID TRANSPORT EQUATIONS, AF(X), BF(I), AS(K),
AND BS(I). NOTE THAT PARAMETER XL IS THE REFERENCE LENGTH

USED TO NONDIMENSIONALIZE THE EQUATIONS. IN THIS CASE

XL IS THE LENGTE OF THE MESENTERIC SLAB.

IMPLICIT REAL*8(A-H,0-Z)
COMMON/BLK1/NODEL(500,3) ,XN0OD(1001)
CDMMON/FLUMAT/AF§20000;
COMMON/SOLMAT/AS (20000
COMMON/TIME/T (20000
COMMON/FLUB/BF§1001
COMMON/SOLB/BS{1001
COMMON/TISDAT/AK ,DEFF,AL,PHIA,PHIT,RET,SIGT,BETA
COMMON/OSMOT/4A0,B0,CO

COMMON/CAPDAT/PC,CC

COMMON/OLD/POLD(lOOi) COLD(1001)

COMMON/WALL/DLC,DLV, DLM DDC,DDV,DDM, PDC,PDV, PDM, PIDC PIDV,PIDM,

#SIGC,SIGV,SIGM, CDC CDV CDM DH

COMHON/MAXDAT/DISPMX IDISP

DIMENSION GAUS(4),W(4),B(3),DB(3)
DATA NGAUS/4/
DATA W/.347854845137454D0, .652145154862546D0,

#.652145154862546D0, 347854845137454D0/

DATA GAUS/—.861136311594053DO,-.339981043584856D0,

#.339981043584856D0, .861136311594053D0/

DATA GAUS/

DATA W/

DATA NGAUS/3/
DATA GAUS/

DATA W/
DISPMX=0.D0
ALPHA=AK*PC/DEFF
PE=0.D0O
VELMAX=0.D0O

ZERO THE APPROPRIATE ARRAY AND INITIALIZE

IF(IND.EQ.1)GD TO 800
IF(IND.EQ.2)GO TO 900
IF(IND.EQ.3)GD TO 950

ZERO THE AF VECTOR

DO 700 I=1,20000
AF(1)=0.DO
CONTINUE

GO TO 100

ZERO THE BF VECTOR

DO 801 I=1,1001
BF(I)=0.DO
CONTINUE

GO TO 100
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Qo0

ana

Qo aan

aQan a

QO

950
951

900

901

902

100

953
952

101

ZERO THE T MATRIX

DO 951 I=1,20000
T(I)=0.DO
CONTINUE

GO TO 100

ZERO THE AS AND BS VECTORS
DO 801 I=1,20000
AS(1)=0.DO

CONTINUE

DO 902 I=1,1001

BS(I)=0.DO

CONTINUE

BEGIN THE GAUSS INTEGRATION, ELEMENT BY ELEMENT

LUB=2 »
LP=3*LUB

EVALUATE THE INTEGRAND AT THE APPROPRIATE QUADRATURE POINRT, S.

DO 200 II=1,NGAUS
S=GAUS(II)

INITIALIZE TEE APPROPRIATE ARRAY, ELEMENT BY ELEMENRT.
DO 300 I=1,NEX

CALCULATE VALUE OF BASIS FUNCTIONS AND DERIVATIVES AT THE
QUADRATURE POINT

X1=XNOD(NODEL(I,1))
X2=XNOD(NODEL(I,2))
X3=XNOD(NODEL(I,3))

S2=(2.D0*X2-(X1+X3))/(X3-X1)

B(1)=(5-S2)*(S-1.D0)/(2.D0*(S2+1.D0))
B(2 s+1,Dog*gs—1.no)/(sz*sz—1.Do)
B(3)=(S+1.D0)*(S-52)/(2.D0*(1.D0-S2))
DB§1§=(2.DO*S-S2—1.DO)/(2.DO*(S2+1;DO))

DB(2)=2.D0*S/(S2*52-1.D0)
DB(3)=(2.D0*S-S2+1.D0)/(2.D0*(1.D0-S2))

DX=(X3-X1)*.5D0
CALCULATE THE T VECTOR

IF(IED.¥E.3) GO TO 101

DO 952 M=1,3

MM=NODEL (I, M)
DO 953 §=1,3
NN=NODEL(I,N)
K=LP+NN+MM-LUB
T(K)=T(K)+PHIA*B(M)*B(N)*DX*W(II)
CONTINUE

CONTINUE
GO TO 300

NOW CALCULATE c¢(S), DC/DS, PI(S), DPI/DS

C5=0.D0

DCS=0.D0

DO 301 IT-1,3
CS=CS+COLD(NODEL(I,IT))*B(IT)
DCS=DCS+COLD(NODEL(I,IT))*DB(IT)
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301 CONTINUE

PIS=CS* (A0+CS*(BO+CS*C0))
DPIS=(A0+2.D0*B0O*CS+3.D0*CS*CS*CO)*DCS

DETERMINE WHICH VECTOR IS TO BE INITIALIZED

IF(IND.EQ.1)GO TD 500
IF(IND.EQ.2)GO TO 600

INITIALIZE THE FLUID VECTOR

DO 401 M=1,3
MM=NODEL(I,M)
DO 402 N=1,3
NN=NODEL(I,N)
K=LP*NN+MM-LUB
AF(X)=AF (K)+(B(M)*B(XN)+2.DO*DLM/DE*DX+DB(M)*DB(N)/DX)*W(II)
402 CONTINUE
401 CONTINUE
GO TO 300

INITIALIZE THE FLUID B VECTOR

anon

anaoa

ano

500 DO 501 M=1,3
MM=NODEL(I,M)
BF(MM)”BF(MM)+ DB(M)*DPIS/DX+B(H)*2 DO*DLM/DH*DX* (PDM+SIGM*
(PIS - PIDM)))*W(II)
501 CONTINUE
GO TO 300

INITIALIZE THE SOLUTE VECTORS, BS AND AS. fIRST CALCULATE VS,
QMES, AND THE DISPERSION COEFFICIENT, DISP.

600 DPS=0.DO
PS=0.D0
Do 601 IT=1,3
DPS=DPS+POLD(NODEL(I,IT))*DB(IT)
PS=PS+POLD(NODEL(I,IT))*B(IT)
601 CONTINUE

aaonaoa

C.
VS=-ALPHA* (DPS-SIGT*DPIS)/DX*RET*BETA/PHIA
QFMES=ALPHA*DLM* (PS-PDM-SIGM* (PIS-PIDM))
DISP=DABS(VS)*AL+1.DO
IF(DISP.LT.DISPMX) GO TO 650
DISPMX=DISP
IDISP=I
C
g CALCULATE THE MAXIMUM LOCAL SCLUTE VELOCITY, VELMAX
650 IF DABSECS;.LT.I.D—S; VELS=DABS§VS)*PHIA
IF(DABS(CS).GT.1.D-5) VELS=DABS(VS~(DISP*DCS/DX)/CS)*PHIA
IF(.5DO*VELS/DX.GT.VELMAX) VELMAX=.5DO*VELS/DX
C
c CALCULATE THE GRID PECLET NUMBER, AKD SEE IF IT EXCEEDS
C TEE LIMIT
c .
PEST=DABS(VS)*(X3~X1)/DISP
IF(PEST.LT.PE)GO TO 609
PE=PEST
IPEC=I
c
C NOW DETERMINE WHICE FORM OF THE NONLINEAR FLUX EXPRESSION
C IS TO BE USED TO CALCULATE SOLUTE FLUX ACROSS MESOTHELIUM.
¢ :

609 PEC=QFMES*(1.D0-SIGM)/DDM
IF(PEC.GT.100.D0)GO TO 610
IF(PEC.LT.-100.D0)GO TO 620
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TEST=1.DO-DEXP(-PEC)
IF(DABS(TEST).LT.1.D-10)G0 TO 630

CASE 1: USE TEE FULL NONLINEAR FLUX EXPRESSION

DO 602 M=1,3
MM=NODEL(I,M)
DO 603 ¥=1,3
NN=NODEL(I,¥)
K=LP*NN+MM-LUB
AS(K)=AS(K)+(B(M)*DB(N)*VS*PHIA+DB(M)*DB(N)*DISP*PHIA/DX
# +B(M)*B(N)*2.DO*QFMES/TEST/DH#*(1.D0-SIGM)*DX
# -2.DO/DBE*QFMES*RET*BETA*B (M) *B(N)*DX)*W(II)

CONTINUE
BS(MM)=BS(MM)+B(M)*2.D0/DH*(1.D0-SIGM) *QFMES*CDM*DEXP{-PEC) /TEST
# *DX*W(II)
602 CONTINUE
GO TO 300

CASE 2: PEC APPROACHES INFINITY

610 DO 611 M=1,3
MM=NODEL.(I,M)
DO 612 §=1,3
NN=NODEL(I,K)
K=LP*NN+MM-LUB
AS(X)=AS(K)+(B(M)*DB(N)*VS*PHIA+DB{M)*DB(N)*PHIA*DISP/DX
# +B(M)*B(N)*2.D0/DH*(1.D0-SIGH)*QFMES*DX
# —-QFMES+RET*BETA*B(M) *B(N)*DX*2 .DO/DH) *W(II)
612 CONTINUE
611 CONTINUE
GO TO 300

CASE 3: -PEC APPROACHES INFINITY

620 DO 621 M=1,3
MM=NODEL(I,M)
DO 622 ¥=1,3
NN=NODEL(I,N)
K=LP*NN+MM-LUB
AS(K)-AS(K)+(B(M)*DB(N)*VS*PHIA+DB(H)*DB(N)*PHIA*DISP/DX
. # -2.D0/DB*BETA*RET*QFMES*B (N ) *B(M)*DX) *W(II)
622 CONTINUE
BS(MM)=BS(MM)-2.DO/DH*(1.DO-SIGM) *QFMES*CDM*DX*W (II)*B(M)
621 CONTIKUE
GO TO 300

CASE 4: PEC APPROACHES O

630 DD 631 M=1,3
MM= NODEL(I n)
632 §=1,3
NN NODEL(I, H)
K=LP*NN+MM-LUB
AS(X)=AS(K)+(B(M)*DB(N)*VS*PHIA+DB(M)*DB(¥)*PHIA*DISP/DX
+2.DO/DH*DDM*B (M) *B(N) *DX
-2.DO/DE*RET*BETA*DX+B(M)*B(N)*QFMES)*W(II)

CONTINUE
BS(MM)=BS(MM)+2.DO/DE*DDM*B (M) *CDM*+DX*W (II)
CONTIRUE

ann

603

Qoo
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632
631

300 CONTINUE

200 CONTINUE
RETURK
END

SUBROUTINE DGB§¥D: (%, B, N, ML, NU, LT, IP, DET, NCNi,
1 BB, RZ, ITR1, EPS1)

308
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Qa0 QOO0 000N

OOOO

ROUTINE SOLVES SYSTEM OF LINEAR EQNS. AX=B WHERE A IS A GENERAL
BAND MATRIX. METHCD USED IS GAUSSIAN ELIMINATION ¥ITH PARTIAL
.PIVOTING. OPTION OF ITERATIVELY IMPROVING SOLUTICY IS AVAILABLE.
UPPER BAND WIDTE OF MATRIX INCREASES DUE TO INTERCEANGES BY
AMOUNT ML. ROUTINE REQUIRES BAND ELEMENTS OF MATRIX TO BE STORED
BY COLUMN IN A ONE DIMENSIONAL ARRAY. EACH COLUME IS OF LENGTH
2*ML+NU AND BARD IS TO BE STORED IN ELEMENTS ML+1 TO 2*ML+NU OF
EACH COLUMN. ELEMENTS 1 TO ML OF COLUMN ARE SET TO ZERO BY GBAND.

IF MATRIX IS SYMMETRIC USER MAY SPECIFY LOWER BAED ONLY IN

ELEMENTS ML+NU+1 TO 2*ML+NU OF EACH COLUMN AND GBAND WILL

GENERATE REMAINING ELEMENTS. (IF THIS IS DESIRED, SET LT=-1 ON

FIRST CALL TO GBAND.)

1 DIMENSIONAL ARRAY CONTAINING MATRIX OF COEFFICIENTS.

1 DIMENSIONAL ARRAY CONTAINING RIGHT HAND SIDE VECTORS.

ON EXIT, B WILL CONTAIN THE SOLUTION VECTOR X.

ORDER OF MATRIX

LENGTH OF LOWER BAKRD gEXCLUDING DIAGOKAL;

LENGTH OF UPPER BAND (EXCLUDING DIAGONAL

ABSgLTg=1 IF ONLY 1 B VECTOR OR IF 1ST OF SEVERAL.

ABS(LT),=1 FOR SUBSEQUENT B VECTORS.
(NOTE. LT=+1 IF FULL BAND WIDTH GIVEN, LT=-1 IF LOWER BAND
ONLY OF SYMMETRIC MATRIX GIVEN.)

IP = INTEGER ARRAY CONTAINING INTERCHANGE INFORMATIOK.

DET = DETERMINANT OF A = DET*(10**NCE) WEERE 1.D-15<|DET|<1.D+15.
IF DET=0.0 MATRIX IS SINGULAR AND ERROR RETURK TAKEN.

BB, RZ = ARRAYS REQUIRED FOR IMPROVEMENT OPTION. CAF BE REAL=*8

VARIABLES IF OPTION NOT REQUIRED.

ITER = 0 IF IMPROVEMENT NOT REQUIRED, OTEERWISE ITER= KO. OF
ITERATIONS OR CYCLES.

EPS - CONVERGENCE CRITERION.

MODIFIED TO DO ITERATIVE IMPROVEMENT (FORMERLY AVAILABLE ONLY
WITE THE SINGLE PRECISION VERSION). MIKE PATTERSOF - NOV, 1980
IMPLICIT REAL*8 (A-H, 0-Z)
COMMON /GBAKD$/ NITER
DIMENSION A(1), B(K), IP(N), BB(N), RZ(N)
COMPLEX*16 DSUMM, QADDQ, QMULD
REAL*8 QRNDQ
TO ASSIGN LOGICAL UNITS 94 AND 95 ONLY ONCE:
LOGICAL ASSIGN /F/, YES /T/
STATEMENT FUNCTION TO CALCULATE POINTERS INTO A:
IFN(I, J) =1+ (J - 1)*LC + I - J + NUM

"y

HEfz we

"nnu

NCN=KCN1
ITR=ITR1
EPS=EPS1
ITER = ITR

LCM = NU + 2*ML
IC = LCM + 1
FLC = N=*LC
NUM = NU + ML
GENERATE REMAINING ELEMENTS OF SYMMETRIC MATRIX
IF (LT NE --1) GO TO 120
NN = 1
DO 110 1= 1, NN

11 I+

IML = MIN O(I + ML, N)

DO 100 J = II, ML
IFT = IFI + 1

IFJ = IF] + LCM

100 A(IFJ) = A(TIFI)
110 CONTINUE
120 IF (ITER .EQ. 0) GO TO 140

c

ASSIGN UNITS 94 AND 95 IF THEY HAVE NOT ALREADY BZEFR ASSIGNED:
IF (ASSIGN) GO TO 125
CALL FTNCMD (’ASSIGN 94=-GBAND94;’)
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CALL FTNCMD (’ASSIGN 95--GBANDOS;®)
ASSIGN = YES
125  REWIND 94
REWIND 95
DO 130 I =1,
130 BB(I) = g
140 IF (IABS(LT . 1) GO TO 280

IP(N)
IF (ML .EQ o) GO TO 160
C SET ELEMENTS 1 - ML OF EACH COLUMN TO ZERO
DO 1560 I = 1, X
IFK = (I - 1)*LC
DO 160 J = 1, ML
IFK = IFK + 1
150  A(IFK) = 0.0DO
160 IF (ITER .NE. 0) CALL DWRt (4, NLC, 94)
DET = 0.0DO
NCN = ©
IF (ML .EQ. 0) GO TO 230
C LU DECOMPOSITION
DO 220 K = 1, K
IFK = IFN(K, K)
IF (X .EQ.1 ¥) GO TO 210

KP = K +

KPM = MINO(X + ML, X)
KPN = MINO(K + NUM, N)
M=K

IFM = IFK

IFI IFK

DO 170 I = KP, KPM

IFI = IFI + 1

ﬁF (DABS(A(TFI)) .LE. DABS(A(IFM))) GO TC 170

170 CONTINUE
. IP(K) =

T = A(IFM)
IF (M .NE. K) IP(N) = -IP(K)
AEIFM = A( FK)

IF (T EQ 0.0D0) GO TO 260
0T = 1.0DO/T
IK = IFK
DO 180 I = KP, KPM
IK = IK + 1
180 A(IK) = -A(IK)=*OT
KJ = IFK
MJ = IFM
DO 200 J = KP, KPH
KJ = XKJ + LCM
MJ = MJ + LCM
T = A(MJ)
AéMJ = A(KI)
ACK3 T
%ﬁ (T EQ 0.0D0) GO TO 200
1J = KJ
DO 190 I = KP, KPM
IK = IK + 1
IJ =13+ 1
190 A(I1) = A(IJ) + A(IK)=*T
200 CONTINUE
210 IF (A(IFK) .EQ. 0.0D0) GO TO 260
220  CONTINUE
230 IFK = IFN(1, 1)
, DET = A(IFK)
DO 250 K = 2, N
IFK = IFK + LC
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DET = DET*A(IFK)
IF (DET .EQ. 0.0DO) GO TO 260
IF (DABS(DET) .GT. 1.D-15) GO TO 240
DET = DET*1.D+15
NCN = RCN - 15
GO TO 250
IF (DABS(DET) .LT.
DET = DET*1.D-15
NCN = NCN + 15
CONTINUE
DET = DET*IP(N)
GO TO 280
DET = 0.0DO
WRITE (6, 270) K
FORMAT (0% DGBND1 - matrix is singular.
1 H

240 1.D+15) GO TO 250

250

260

270
RETURN
CALL DSOLV1 (A, B, IP, N, ML, NU)
IF (ITER .EQ. O) RETURN

ITERATIVE IMPROVEMENT

280

EXTENDED PRECISION ARITHMETIC.
SOLUTION
1) MAX(Z)/MAX(X) < EPS OR
2) NO. OF CYCLES > ITER OR
3) IMPROVEMENT STARTS TO DIVERGE.

(2) axD (3))

aaaaaanaaannn

IF (IABS(LT) .EQ.
XNORM = 0.

DO 290 X = 1, N

XNORM = DMAX1(XNORM, DABS(B(X)))
IF (XNORM .LE. 0.0DO) RETURN-
E% = 1 D+60

DO 340 L = 1, ITER
REVIND 94
CALL DRE1 (A, NLC, 94)
DO 310 K = 1, N
DSUMM = (0.DO, 0.DO)
KPM = MAXO(K - ML, 1)
KPN = MINO(X + NU, N)
IFK = IFN(K, KPM)
DO 300 J = KPM, KPN
Cc DSUMM = DSUMM + A(IFK)*B(J)
C USING EXTENDED PRECISION:
DSUMM = QADDQ(DSUMM
300 IFK = IFK + LCM
310

280

RZ(X) = BB(X) - QRNDQ(DSUMM)
CONTINUE
REWIND 95
CALL DRE1 (4, NLC, 95)
CALL DSOLVi (4, RZ, IP, N, ML, HU)

ZNORM = 0.0DO
DO 320K = 1, N
ERZ = RZ(X)
ZNORM = DMAX1(ZNORM, DABS(ERZ))
B(X) = B(K) + ERZ
IF gznonm .GT. ZX) GO TO 330
(ZNORM - EPS*XNORM)
ZX = ZNORM
GO TO 340

320

330 IF (ZNORM .GT. 10.0D0*ZX) GO TO 360

Error occurred in attempt to find’, IS5,

QMULD (A (IFK),

311

'/
’th pivet.?’)

RESIDUALS (R) = AX-B ARE FOUND AND STORED IN ARRAY RZ USING
SYSTEM AZ=R IS SOLVED AND NEW
=X+Z IS STORED IN ARRAY B. ABOVE STEPS REPEATED UNTIL

ROUTINE THEN RETURNS AFTER SETTING EPS=MAX(Z) (FOR (1)) OR
SETTING EPS=-MAX(Z) AND PRINTING APPROPRIATE ERROR MESSAGE (FOR

1) CALL DWR1 (4, NLC, 895)

B(3)))

.LT. 0.0D0) GO TO 390
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LD = 1D + 1
IF (LD .GE. 3) GO TO 360
340 CONTINUE
L = ITER
WRITE (6, 350)
350  FORMAT (’0* DGBND1- Iterative improvement did not converge'/)
GO TO 380
360 WRITE (6, 370)
370 FORMAT (’0% DGBND1 - Iterative improvement is diverging.’/)
380 EPS = -ZNORM
NITER =

RETURN

390 EPS = ZNORM
NITER = L
RETURN

END
SUBROUTINE DsOLV1 (A, B, IP, N, ML, NU)

THIS ROUTINE COMPUTES THE SOLUTION OF A SYSTEM AFTER GBAND HAS
DECOMPOSED MATRIX A INTO A LOWER TRIANGULAR MATRIX L AND AN
UPPER TRIANGULAR MATRIX U.

IMPLICIT REAL*8 (A-H, 0-2Z)

DIMENSION A(1), B(N), IP(N)

IFF(I, J) = 1 + (J - 1)*Lc + I - J + NUM
LCM = 2#ML + KU

aaQnonon

LC = LCM + 1
NUM = NU + ML
ME =N -1

C SOLVE FOR Y
IF (ML .EQ. 0) GO TO 110

DO_100 K= 1,
KP = K + 1
M = IP(K)
T = B(M)
Bgng = B(K)
B(K) = T
KPM = MINO(K + ML, K)
IFK = IFN(X, K)
DO 100 I = XP, KPM
IFK = IFK + 1
100 (I) = B(I) + A(IFK)*T

B(I) = B(I) % A(KML)#T
120 KML = KML +
B(1) = B(1)/A(NUM + 1)
RETURN

END

SUBROUTINE DWR1 (A, N, LU)
REAL*8 A(N)

WRITE (LU) A

RETURN

EBD

SUBROUTINE DRE1 (4, N, LU)
REAL*8 A(N)

READ (LU) A

RETURN

END
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Two Protein Steady-State Simulator: MESDISP2.FOR

THIS PROGRAM SIMULATES BOTH CONVECTIVE AND DISPERSIVE PLASMA
PROTEIN TRANSPORT THROUGH MESENTERY DURING STEADY-STATE
CONDITIONS. THE MESENTERY IS TREATED AS A4 1-DIMENSIONAL
RECTANGULAR SLAB.

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION HOLD(1001),IPERM(1001),RES(1001),HOLD1(1000),
#RES1(1001) ,IPERM1(1001) ,HOLD2(1001) ,RES2(1001) ,IPERM2(1001)

COMMON/BLK1/NODEL(500,3) ,XNOD(1001)

COMMON/BLK2/DX(1001)

COMMON/MATBAL/QFC,QCC1,Q5C1,QCC2,Q5C2,QFV,QCV1,QSV1,QCv2,Q5vV2,
#QFM,QCM1,QSM1,QCM2,QSM2,QFM1(500) ,QCM11(500) ,QSM11(500),
#QCM12(500) ,QSM12(500)

COMMON/FLUMAT/FLUID (20000)

COMMON/OLD/POLD(1001) ,COLD1(1001) ,COLD2(1001)

COMMON/SOLB/SOLB1(1001) ,S0LB2(1001)

COMMON/FLUB/FLUIDB%lOOl)

COMMON/SOLMAT/SOL1

20000) ,S0L2(20000)

COMMON/0SMOT/A1,B1,C1,42,B2,C2 _

COMMON/TISDAT/AK,DEFF1,ALPHL1,PHET1,PHIT,RET1,SIGT1,BETAl,
#DEFF2,ALPHL2,PHI2,RET2,SIGT2,BETA2

COMMON/CAPDAT/PREF ,CREF

COMMON/¥WALL/DLC,DLV,DLM,DDC1,DDV1,DDM1,PDC,PDV,PDM,PIDC1,
#PIDV1,PIDM1,PIDC2,PIDV2,PIDM2,SIGC1,SIGV1,SIGM1,CDC1,CDV1,CDM1,
#YYL,DDC2,DDV2,DDM2,SIGC2,SIGV2,SIGM2,CDC2,CDV2,CDM2

COMMON/MAXDAT/DIS1MX,DIS2MX,IDISP1,IDISP2

SET MARKER AND TOLERANCE VALUES

READ(5,504)0MEGAF ,0MEGAC, TOLP, TOLC,PECMAX ,EPS
READ(5,550) IMAX, ITER,NECHO,R

FORMAT(413)

NEX=(N-1)/2

LUB=2
ICOUNT=0

READ IN THE DATA FROM EXTERNAL FILE

DO 1 I=1,K
READ(5,501)

DX(I)

FORMAT(E12.6)

CONTINUE

READ(5,502)
READ(5,504)
READ(5,507)
READ(5,507)
READ(5,504)
READ(5,504)
READ(5,504)
READ(5,504)
READ(5,506)
READ(5,506)
READ(5,506)
READ(5,506)
YL=YYL*AL

41,B1,C1,AK,PREF,PHI1,PHIT,RET1,PHIS
A2,B2,C2,PHI2,RET2,BETA2
ALPHL1,AL,DEFF1,SIGT1,CREF,YYL,BETA1
ALPHL2,DEFF2,5IGT2,PERMC2,PERMV2,PERMM2
CONC,CONV ,CONM,PERMC1,PERMV1 ,PERMM1
DDC1,DDV1,DDM1,SIGC1,SIGV1,SIGM]
DDC2,DDV2,DDH2,SIGC2,SIGV2,SIGM2
CcbC1,CDVi,CDM1,DLC,DLV,DLH
CDC2,CDV2,CDM2

PDC,PDV,PDM

A0S1,B0S1,C0S1

A0S2,B0S2,C0S2

BO0S2+CDC2%C0S2

PIDC1=CDC1*(A051+CDC1*gBOSl+CDC1*COSl

PIDC2=CDC2*(A0S2+CDC2*
PIDV1=CDVix*
PIDV2=CDV2%*
PIDM1=CDM1*(AOS1+CDM1%*

AQS2+CDV2*

B0S2+CDV2*C0S2
BOS1+CDM1*C0OS1

AOSl+CDV1*EBOSl+CDV1*COSi

PIDM2=CDM2* (A0S2+CDM2* (BOS2+CDM2*C0OS2
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PC=PDC*PREF
PV=PDV*PREF
PM=PDM*PREF
CC1=CDC1*CREF
CV1=CDV1*CREF
CM1=CDM1+CREF
CC2=CDC2*CREF
CV2=CDV2*CREF
CM2=CDM2*CREF

502 FORMAT(SE10.4
503 FORMAT(G6E10.4
504 FORMAT§6E10.4
506 FORMAT(3E10.4

DO 21 I=1,K
READ(5,505) POLD(I),COLD1(I),COLD2(I)
505 FORMAT(3E10.4)
21 CONTINUE
ECHO DATA IF NECHO N.E. O
IF(NECHO.EQ.0) GO TO 999
PRINT OUT INPUT DATA

WRITE(6,611)

507 FDRMAT§7E10.4

611 FORMAT(1X,’STEADY-STATE FLUID PRESSURE AND SOLUTE CONCENTRATICN®

#)
WRITE(6,679)

679 FORMAT(1X,’PROFILES FOR ONE DIMENSIONAL TISSUE SYSTEM’,//)

WRITE(6,612)
WRITE(6,612)
612 FORMAT(//,1X,?

#,//)
WRITE(6,660)
660 FORMAT(1X,’INPUT PARAMETERS’)
WRITE(6,612)
WRITE(6,613)
613 FORMAT(1X,’1. GRID DATA:’,//)
WRITE(6,614)NEX,DX(2)
614 FORMAT(1X,’NUMBER OF ELEMENTS:’,1X,I2,/,1X,
#?SMALLEST X INCREMENT:’,19X,E10.4,/)
WRITE(6,616)N
616 FORMAT(1X,’TOTAL NUMBER OF NODES:’,10X,I4,/)
WRITE (6,612)
WRITE(6,617) TOLP,TOLC,IMAX,OMEGAF,OMEGAC,PECMAX
617 FORMAT(1X,’2. CONVERGENCE CRITERIA:’,//,1X,’PRESSURE
#,17X,E10.4,/,1X,’SOLUTE TOLERANCE:’,20X,E10.4,/,1X,
#’MAXIMUM NUMBER OF LOOP ITERATIONS:’,2X,I3,/,iX,
#'PRESSURE RELAXATION PARAMETER:’,6X,E10.4,/,1X,
#’SOLUTE RELAXATION PARAMETER:’,9X,E10.4,/,1X,
#’MAXIMUM DESIRED GRID PECLET NUMBER:’,1X,E10.4)
WRITE(6,612)

PIC1=PIDC1*PREF
PIV1i=PIDV1*PREF
PIM1=PIDM1*PREF
PIC2=PIDC2*PREF
PIV2=PIDV2*PREF

PIM2=PIDM2*PREF
WRITE(6,618) AL,YL,CC1,CV1i,CM1,CC2,CV2,CH2,

TOLERANCE:?

314
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#PC,PV,PM,PIC1,PIV1,PIM1,PIC2,PIV2,PIM2,AK

618 FORMAT(1X,’3. DIMENSIONAL INPUT PARAMETERS:’,//,1X,
#'TISSUE X-DIMENSION (CM):’,21X,E10.4,/,1X,
#’TISSUE Y-DIMENSION (CM):’,21X,E10.4,/,1X,

#?CAP. PROTEIN1 CONC. (GRAMS/DL):’,14X,E10.4,/,1X,
#°VEN. PROTEIN1 CONC. (GRAMS/DL):’,14X,E10.4,/,1X,
#'MES. PROTEIN1 CONC. (GRAMS/DL):’,14X,E10.4,/,1X,
#°CAP. PROTEIN2 CONC. (GRAMS/DL):’,14X,E10.4,/,1X,
#'VEN. PROTEIN2 CONC. (GRAMS/DL):’,14X,E10.4,/,1X,
#°MES. PROTEIN2 CONC. (GRAMS/DL):?,14X,E10.4,/,1X,
#?CAP. DYN. PRESSURE (DYN/CM##2):’,14X,E10.4,/,1X,

#'VEN. DYE. PRESSURE (DYH/CM*%2):’,14X,E10.4,/,1X,

#°MES. DYN. PRESSURE (DYN/CM*%2):’,14X,E10.4,/,1X,
#°CAP. OSMi. PRESSURE (DYN/CM*%2):’,14X,E10.4,/,1X
#'VEN. OSM1. PRESSURE (DYN/CM*%2):’,14X%,E10.4,/,1X
#'MES. OSM1i. PRESSURE (DYN/CM*x2):’,14X,E10.4,/,1X,
#?CAP. OSM2. PRESSURE (DYN/CM*%2):',14X,E10.4,/,1X,
#’VEN. OSM2. PRESSURE (DYN/CM*x2):’,14X,E10.4,/,1X,
#°MES. 0OSM2. PRESSURE (DYH/CM#**2):’,14X,E10.4,/,1X,
#'TISSUE FLUID CONDUCTIVITY (CM**4/(DYN SEC): 3 ,2X%, E10. 4)
WRITE(6,698) DEFF1,DEFF2
698 FORMAT(lX,
#TISSUE SOLUTE1 DIFFUSIVITY (CM**2/SEC):’,7X,E10.4,/,1X,
#’TISSUE SOLUTE2 DIFFUSIVITY (CM**2/SEC):’,7X,E10.4)
#ggigs(s ,626) CONC,CONV,CONM,PERMC1,PERMV1, PERMMi PERMC2,PERMV2,
626 FORMAT(1X,’CAP. CONDUCTIVITY (CM**3/(DYN-S));’,11X,E10.4,/,1X,
#*VEN. CONDUCTIVITY (CM**S/(DYN—S)):’,11X,E10.4,/,1X,
#'MES. CONDUCTIVITY (CM**3/(DYE-S)):’,11X,E10.4,/,1X,
#°CAP. PERMEABILITY (cM/s):?,21X,E10.4,/,1X
#°VEN. PERMEABILITY (cM/s):?,21X,E10.4,/,1X,
- #?MES. PERMEABILITY (cM/s):?,21X,E10.4,/,1X,
#7CAP. PERMEABILITY (cM/s):?,21X,E10.4,/,1X,
#'VEN. PERMEABILITY (cM/s):?,21%,E10.4,/,1X,
#°MES. PERMEABILITY (cM/s):?,21X,E10.4)
WRITE(6,612)
WRITE(6,653) SIGT1,RET1,BETA1,ALPHL1,SIGT2,RET2,BETA2,ALPHL?
653 FDRMAT(lx,’DIMENSIOHLESS INPUT PARAMETERS:?,//,1X,
#*TISSUE REFLECTION COEFFICIENT 1:’,15X,E10.4,/,
#1X, RETARDATION FACTOR 1:°,26X,E10.4,/,1X,
#?HYDRAULIC CONDUCTIVITY RATIO, BETA1:’,15X,E10.4,/,1X,
#’DIMENSIONLESS DISPERSIVITY 1:?,21X,E10.4,/,1X,
#'TISSUE REFLECTION COEFFICIENT 2:’,15X,E10.4,/,
#1X,’RETARDATION FACTOR 2:°,26X,E10.4,/,1X,
#HYDRAULIC CONDUCTIVITY RATIO, BETA2:’,15X,E10.4,/,1X,
#DIMENSIONLESS DISPERSIVITY 2:’,21X,E10.4)
WRITE(6,619)PDC,PIDC1,PIDC2,PDV,PIDV1,PIDV2,PDM,PIDK1,PIDM2
619 FORMAT(// 1%,
#*PRESSURE: ’ ,6X, *DYNAMIC?,5X, OSMOTIC1?,5X, 'OSMOTIC2?
#//,1X, ’CAPILLARY:’,SX, E10.4,2X,E10.4,2X,E10.4,
#/,1X,’VENULE:’,8X,E10.4,2X,E10.4,2X,E10.4,/,1X,’MESOTHELIUM:’,
#3%X,E10.4,2%,E10.4,2X,E10.4,//)
WRITE(6,620)CDC1,CDC2,CDV1,CDV2,CDM1,CDM2
620 FORMAT(1X,’CONCENTRATIONS: PROTEIN1  PROTEIN2’,
#//,1%,CAPILLARY:’,6X,E10.4,1X,E10.4,/,1X,
#'VENULE:’,10X,E10.4,1X,E10.4,/,1X, 'MESOTHELIUM: ’ ,2(11,E10.4),//)
WRITE(6,621)SIGC1,SIGC2,SIGV1,SIGV2,SIGM1,SIGM2
621 FORMAT(1X,’REFLECTION COEFFICIENTS: PROTEIN1  PROTEIR2’,
#//,1%,CAPILLARY:’,15%,E10.4,1X,E10.4,/,1X, "VENULE: ’, 19X,
#E£10.4,1X,E10.4,/,1¥, MESOTHELIUM: * ,13X,E10.4,1X,E10.4,//)
WRITE(6,622)DLC,DLV,DLM
622 FORMAT(1X,’VESSEL FLUID CONDUCTANCES:’,//,1X,’CAPILLARY:’,5X,
#E10.4,/,1X,’VENULE:’ ,9X,E10.4,/,1X, >MESOTHELIUM: ’ ,1%,E10.4,//)

N RN
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WRITE(6,625)A1,B1,C1,42,B2,C2
625 FORMAT(1X,’VIRIAL COEFFICIENTS:’,//,1X,’41:?,1X,E10.4,/,1X,
#'B1:7,1X,E10.4,/,1X,°C1:’,1X,E10.4,/,1X,°42:°,1X,E10.4,/,1X,
#'B2:7,1X,E10.4,/,1%,°C2:?,1X,E10.4,//)
WRITE(6,623)DDC1,DDC2,DDV1,DDV2,DDM1,DDM2
623 FORMAT(1X,’VESSEL SOLUTE PERMEABILITIES: PROTEIN1 PROTEIN2’
#,//,1X,’CAPILLARY:*,19X,E10.4,1X,E10.4,/,1X, *VENULE? ,22X,E10.4,
#1X,E10.4,/,1X,’MESOTHELIUM: ?,17X,E10.4,1X,E10.4,//)
WRITE(6,624)PHIT,PHI1,PHI2,PHIS
624 FORMAT(1X,’TOTAL TISSUE FLUID VOLUME FRACTIOK:’,2X,E10.4,/,1X,
#7SOLUTE 1 DISTRIBUTIOF VOLUME FRACTION:’,1X,E10.4,/,1X,
#'SOLUTE 2 DISTRIBUTION VOLUME FRACTION:’,1X,E10.4,/,1X,
#'TOTAL SOLIDS VOLUME FRACTION:®,8X,E10.4,///)

999 CALL GRID(NEX)
INITIALIZE FLUID VECTOR
CALL SETMAT(NEX,0,PE1,IE1,VELMX1,PE2,I1E2,VELMX2)
ADJUST FLUID VECTOR TO FIT BOUNDARY CONDITIOHS

CALL ASTAR(NEX,0)
CALL VSTAR(NEX,0)

ENTER ITERATION LOOP, CHECK COUNTER VALUE

100 ICOUNT=ICOURT+1
IF(ICOUNT.GT.IMAX)GO TO 200

INITIALIZE FLUIDB VECTOR AND ADJUST TO FIT BOUNDARY CONDITIORS
CALL SETHAT(NEX,1,PE1,IE1,VELMX1,PE2,TE2,VELMX2)

.CALL ASTAR(NEX,1)
CALL VSTAR(NEX,1)

SOLVE THE FLUID SYSTEM

EP=EPS
CALL DGBAND(FLUID,FLUIDB,N,LUB,LUB,ICOUET,IPERM,DET,JEXP,HOLD,
#RES, ITER,EP)

DETERMINE THE MAXIMUM CHANGE IN P FROM ORE ITERATION TO THE KEXT
AND UPDATE POLD USING A RELAXATION PROCEDURE. PDIFMX WILL BE
COMPARED TO TOLP TC ESTABLISH CORVERGENCE

PMAX=0.DO
PDIFMX=0.DO
DO 3 I=1,H
IF(DABS(FLUIDB(I)).GT.PMAX% PMAX=DABS(FLUIDB(I))
TEST=DABS(FLUIDB(I)-POLD(I))
IF(TEST.GT.PDIFMX) PDIFMX=TEST
POLD(I)=(OMEGAF)#*(FLUIDB(I)-POLD(I))+POLD(I)
3 CONTINUE
PDIFMX=PDIFMX/PMAX

NOW INITIALIZE SOLUTE AND SOLUTB. STORE MAX. GRID PECLET
NUMBER IN PECLET. ADJUST SOLUTE AND SOLUTE TO SUIT BOUNDARY
CONDITIONS

CALL SETMAT(NEX,2,PE1,IE1,VELMX1,PE2,IE2,VELMX2)
PEC1=PE1
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TEL1=IE1
PEC2=PE2
IEL2=1IE2
CALL PATARTENEX;
CALL PATVEN(NEX

SOLVE THE SYSTEM OF EQUATIONS FOR THE SOLUTE FLO¥ EQUATION

EP1=EPS

CALL DGBND1(SOL1,SOLB1,N,LUB,LUB,1,IPERM1,DET,JEXP,HOLD:,
#RES1,ITER,EP1)

EP2=EPS

CALL DGBND1(SOL2,SOLB2,N,LUB,LUB,1,IPERM2,DET,JEXP,HOLD2,
#RES2,ITER,EP2)

DETERMINE THE MAXIMUM CHANGE IN CALCULATED CONCENTRATIOH FROM
ONE ITERATION TO THE NEXT, AND UPDATE COLD USING A RELAXATION
PROCEDURE. CDIFMX WILL BE COMPARED TG TOLC TO ESTABLISH
CONVERGENCE

CMAX1=0.D0O
CDMX1=0.D0O
CHAX2=0.D0
CDMX2=0.D0
DO 4 I=1,N
IF(DABS(SOLB1(I)).GT.CMAX1) CMAX1=DABS(SOLB1(I))
TEST1=DABS(SOLB1(I)~-COLD1(I))
IF(TEST1.GT.CDMX1) CDMX1=TEST1 '
COLD1(I)= (OMEGAcg*(SOLBl(Ig COLD1(I))+COLD1(I)
IF(DABS(SOLB2(I)).GT.CHMAX2) CMAX2=DABS(SOLB2(I))
TEST2=DABS(SOLB2(I)-COLD2(I))

- IF(TEST2.GT.CDMX2) CDMX2=TEST2
COLD2(I)=(0OMEGAC)*(SOLB2(I)~COLD2(I))+COLD2(I)
CONTINUE

CDMX1=CDMX1/CMAX1
CDHX2=CDMX2/CHMAX2

CHECK TO SEE IF FURTHER ITERATION IS REQUIRED

IF(PDIFMX.GT.TOLP) GO TO 100
IF(CDH¥%1.GT.TOLC) GO TO 100
IF(CD¥X2.GT.TOLC) GO TO 100

GO TC 300
MAYIMUM KNUMBER OF ITERATIONS REACHED. PRINT OUT WARNINKG.

200 ICOUKT=ICOUNT-1
WRITE(6,600) ICOUNT

600 FORMAT(//,1X,’WARNING. CONVERGENCE CRITERIA NOT MET AFTEER’,
#1X,I3,1X,’ ITERATIONS?)
WRITE(6,601) PDIFMX,CDMX1i,CDMX2

601 FORMAT(//,1X,?MAX. FRAC. CHANGE IN P’,2X,
#'MAX. FRAC. CHANGE IN C1°,2X,
#'MAY. FRAC. CHANGE IN C2’,
#//,6%,£9.4,14X,E9.4,14X,E9.4, //)

300 IF(PECl.LT.PECMAX; GO TO 400
IF(PEC2.LT.PECHAX)GO TO 400 -
WRITE(€,603) PEC1,IEL1,PEC2,IEL2
603 FORMAT(//,1X,’VARNING. PROTEIN 1 GRID PECLET NUMBER EQUALS’,
#1X,E9.4,3X,ELEMENT LOCATION:?,1X,I14,//,1X,
#’PROTEIN 2 GRID PECLET NUMBER EQUALS’,1X,ES.4,3X,

>

#'ELEMENT LOCATION:?,1X,I14,//)

400 WRITE(6,604) ICOUNT
604 FORMAT(’1’,//,’STEADY-STATE SOLUTION ACHIEVED AFTER’,1Y,I3,1%,
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#)ITERATIONS:?)
WRITE(6,670) PECi{,IEL1,DIS1MX,IDISP1,PEC2,IEL2,DIS2MX,IDISP2
670 FORMAT(//,1X,’MAXIMUM GRID PECLET1 NUMBER:’,1X,E9.4,3X,

#’ELEMENT LOCATION:’,1X,I4,/,1X,’MAXIMUM DISPERSION COEFF1:’,

#1X,E9.4,’ ELEMENT LOCATION:’,1X,I4,
#/,1X,’MAXIMUM GRID PECLET2 NUMBER:’,1X,E9.4,3X,

#'ELEMENT LOCATION:?,1X,I4,/,1X,’MAXIMUM DISPERSION COEFF2:’,

#1X,E9.4,7 ELEMERT LOCATION:?,1X,I4)
WRITE(6,601)PDIFMX,CDMX1,CDMX2

WRITE(6,605)

605 FORMAT(//,1X,’X POSITION’,2X,’DYN. PRESS®,2X,’0SM. PRESS’,2X,

#?AVAIL. CONC1’,2X,’TOTAL CONC1’,2X,’AVAIL. CORC2’,2X,
#TOTAL CONC2?,//)

X=0.D0

DO 5 I=1,N

X=X+DX(I)

PI= c0LD1§I)*(A1+c0LD1E 3 EB1+COLD1(I;*C1g%
# +COLD2(I)*(A2+COLD2(I)#*(B2+COLD2(I)*C2
CONI=COLD1§I§*PH11/§1.DO—PHIS§
CON2=COLD2(I)*PEI2/(1.DO-PHIS

WRITE OUT PROFILE DATA TO DEVICES 6 AND 7

VRITE(6,606) X,POLD(I),PI,COLD1(I),CON1,COLD2(I),CON2
WRITE(7,606) X,POLD{I),PI,COLD1(I),CON1,COLD2(I),CON2
WRITE(4,401) POLD(I),COLD1(I),COLD2(I)

606 FORMAT(1X,E9.3,6(2X,E10.4))

401 FORMAT(3(1X,E14.7))

5 CONTINUE

WRITE OUT MESOTEELIAL FLUX DATA TO DEVICE 7

CALL MASBAL(NEX)

DG 6 I=1,NEX

12=2+1

X=XNOD(I2)

WRITE(7,702) X,QFM1(I),QSM11(I),QCM11(I),QSM12(I),QCH12(I)
702 FORMAT(6(2X,E10.4))
6  CONTINUE

YRITE(6,607)
607 FORMAT(’1’,//,1X,’MASS BALANCE DATA’///)

WRITE(6,608)
608 FORMAT(///,1X,’KET DIMENSIONLESS FLUID FLOWS’)
TF=QFC+QFV+QFM+2.D0
WRITE(6,608) QFC,QFV,QFM,TF
609 FORMAT(//,1X,’CAP:’,1X,E12.4,/,1X, ’VEK:’
#E12.4,/,1X, ’MES:’,1X,E12.4,/.1X,?TOT: ?,1X,E12.4)
WRITE(6,661)
661 FORMAT(///,1X,’HET DIMENSIONLESS SOLUTE FLOWS: SOLUTE1?)
TS1=QSC1+Q5V14QSH1%2.D0
WRITE(6,609)QSC1,QSV1,QSM1,TS1
WRITE(6,662)
662 FORMAT(//,1X,’CONVECTIVE COMPONENTS OF DIMENSIONLESS SOLUTE
#FLOWS: SOLUTE1’)
TC1=QCM1*2.DO+QCC1+QCV1
WRITE(6,610) QCC1,QCV1,QCH1,TC1

610 FORMAT(//,1X,’C&P:’,1X,E12.4,/,1X,’VEN:’,1X,E12.4,/,1X, 'MES: ",

#1X,E12.4,/,1X%,°TOT:’,1X,E12.4)

WRITE(6,663)

663 FORMAT(///,1X,’EET DIMENSIONLESS SOLUTE FLOWS: SOLUTE2’)
TS2=QSC2+QSV2+QSM2*2.D0

318
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WRITE(6,609)QSC2,QSV2,Q5M2,TS2
WRITE(6,664)
664 FORMAT(//,1X,’CONVECTIVE COMPONENTS OF DIMENSIONLESS SOLUTE
#FLOWS: SOLUTE2?)
TC2=QCM2%2 . DO+QCC2+QCV2
WRITE(6,629) QCC2,QCV2,QCH2,TC2
629 FORMAT(//,1X,’CAP:’,1X,E12.4,/,1X,’VEN:’,1X,E12.4,/,1X, HES:",
#1X,E12.4,/,1X,’TOT:?,1X,E12.4)

WRITE(6,669)
669 FORMAT(//,1X,’ERROR IN GLOBAL MATERIAL BALANCES’)
EFLU=TF/QFC
ESOL1=TS1/QSC1
ESOL2=TS2/QSC2
WRITE(6,665) EFLU, ESQL1,ESOL2

665 FORMAT(//,1X,’FLUID BALANCE:’,1X,E12.4,/,1X,?SOLUTE 1 BALANCE:’,

#1X,E12.4,/,1X,’SOLUTE 2 BALANCE:’,1X,E12.4)

WRITE(6,666)
666 FORMAT(//,1X,

#’RATIO OF CONV. TO DIFFUS. FLUXES AT BOUNDARIES: SOLUTE 1°)

IF(DABS(QSC1-QSV1).LT.1.D-9) THEN

PECC1=999 .999D0

ELSE

PECC1=QCC1/(QSC1-QCC1)

ENDIF

IF(DABS(QSV1-QCV1).LT.1.D-9) THEN

PECV1=9899.999D0

ELSE

PECV1=QCV1/(QSV1i-QCV1)

ENDIF

IF(DABS(QSM1-QCM1) .LT.1.D-9) THEN
PECM1=999.999D0

ELSE
PECH1=QCM1/(QSM1-QCM1)
ENDIF

WRITE(6,667) PECC1i,PECV1,PECH1
667 FORMAT(//,1X,’CAP:?,1X,E12.4,/,1X,’VEN:?,1X,E12.4,/,1X,7HES:?,
#1X,E12.4)

WRITE(6,668)
668 FORMAT(//,1X%,
#'RATIO OF CONV. TO DIFFUS. FLUXES AT BOUKDARIZS: SOLUTE 2?)

IF(DABS(QSC2-QCC2) .LT.1.D-9) THEN
PECC2=999.999D0

ELSE
PECC2=QCC2/(QSC2-QCC2)
ENDIF

IF(DABS(QSV2-QCV2) .LT.1.D-9) THEN
PECV2=999.999D0

ELSE

PECV2=QCV2/{QSV2-QCV2)

ENDIF

IF(DABS(QSH2-QCM2) .LT.1.D-9) THEN
PECM2=999.999D0

ELSE

EECM2 =QCH2/(QSM2~ QCM2)

WRITE(6,667) PECC2,PECV2,PECHM2
STOP

END

SUBROUTIRE MASBAL(NEX)

THIS SUBROUTINE PERFORMS A MATERIAL BALANCE O THE SYSTEM FGR
BOTH FLUID AND PLASMA PROTEINS.

IMPLICIT REAL#*8(4-H,0-Z)
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110
120
130

101

111
121
131

200

COMMON/MATBAL/QFC,QCC1,QSC1,QCC2,QSC2,QFV,QCV1,QSV1,QCvV2,qsv2,
#QFM,QCM1,QSM1,QCHM2,QSM2, QFM1(500) ,QCH11(500) ,QSM11(500),
#QCM12(500) ,QSM12(500)

COMMON/0OLD/POLD(1001) ,COLD1(1001) ,COLD2(1001)

COMMON/BLK1/NODEL(500,3) ,XNOD(1001)

COMMON/OSMOT/A1,B1,C1,A2,B2,C2

COMMON/TISDAT/AK,DEFF1,AL1,PHEI1,PHIT,RET1,SIGT1,BETAL,

# DEFF2,AL2,PHI2,RET2,SIGT2,BETA2
COMMON/CAPDAT/PC, CREF
COMMON/WALL/DLC,DLV,DLM,DDC1,DDV1,DDM1,PDC,PDV,PDM,PIDC1,PIDV1,

#PIDM1,PIDC2,PIDV2,PIDM2.SIGC1,SIGV1,SIGM1,CDC1,CDV1,CDM1,DH,

# DDC2,DDV2,DDM2,SIGC2,SIGV2,SIGM2,CDC2,CDV2, CDM2
DIMENSION GAUS(4),¥(4),B(3)

DATA NGAUS/4/

DATA W/.347854845137454D0, .652145154862546D0,
#.652145154862546D0, .347854845137454D0/

DATA GAUS/-.861136311594053D0,-.339981043584856D0,
#.339981043584856D0, .861136311594053D0/

FIRST, CALCULATE THE NET FLOWS ACROSS THE ARTERIOLAR WALL

PIC1=COLD1§13*(A1+COLD1§13*€81+COLD1§13*C1g)
PIC2=COLD2(1)*(A2+COLD2(1)*(B2+COLD2(1)*C2))
QFC=DH*AK*PC/DEFF1+DLC*(POLD(1)-PDC-SIGC1*(PIC1-PIDC1)-
# SIGC2+*(PIC2-PIDC2))
QCC1=BETA1*QFC*COLD1(1)*RET1
QCC2=BETA2*QFC*COLD2(1)*RET2
PECC1=(1.D0-SIGC1)*QFC/(DDC1*DK)
IFSPECCl .GT.100.D0)G0 TO 110
IF(PECC1.LT.~100.D0)G0 TO 120
TEST=1.DO-DEXP( -PECC1)
IF(DABS(TEST).LT.1.D-10)G0 TO 130
SSC%E(lb%O—SIGC1)*QFC*(COLDi(1)—CDC1*DEXP(—PECC1))/TEST
1
Qsci1= QFC*(l DO-SIGC1)*COLD1(1)
GO TO 101
QsC1= (1 DO-SIGC1)*CDC1*QFC
GO TO 101
QSCl—DH*DDCl*(COLDl’i) CDC1)

PECC2=(1.D0~SIGC2)*QC/{DDC2+DE)

IF(PECC2.GT.100.D0)G0 TO 111

IF(PECC2.LT.~-100.D0)GD0 TO 121

TEST=1.DO-DEXP{-PECC2)

IF(DABS(TEST).LT.1.D-10)G0 TO 131

ggc%o(éogg SIGC2)*QF»*(COLD2(1) CDC2+DEXP(~ PECC?))/TEST
QSC2=QFC*(1.D0-SIGC2)*COLD2(1)

GO TO 200

0SC2=(1.D0-SIGC2)*CDC2+QFC

GO TO 20

0
QSC2=DE*DDC2*(COLD2(1)-CDC2)
NO¥ FOR THE VERULAR WALL

N=REX*2+1
PIVi= COLDI(N)*(A1+COLD1(N)*§B1+COLD1(N)*C1§
PIV2=COLD2(N)*(42+COLD2(¥)*(B2+COLD2(N)*C2))

QFV=DH*AK*PC/DEFF1*DLV* (POLD(N)-PDV-SIGV1*(PIV1-PIDV1) -
# SIGVZ*(PIVQ-PIDV2);

QCV1=BETA1*QFV*COLD1(N)*RET1

QCV2=BETA2*QFV=COLD2(HN)*RET2
PECV1=(1.D0-SIGV1)*QFV/(DDV1#DE)

IF(PECV1.GT.100.D0)G0 TO 210

IF(PECV1.LT.~-100.D0)GO0 TO 220

TEST=1.DO-DEXP(-PECV1)

IF(DABS(TEST).LT.1.D-10)G0 TO 230
QSV1i=(1.DO-SICV1)*QFV*(COLD1(N)-CDV1+DEYP(~PECV1))/TEST
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230
201

211
221
231
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300

401

anon

aan

GO TO 201
QSV1i=QFV*(1.D0~SIGV1)*COLD1(N)
GO TO 201

QSV1=(1.D0-SIGV1)*CDV1*QFV
GO TO 201
QSV1=DH*DDV1*(COLD1(N)-CDV1)

PECV2=(1.D0-SIGV2)*QFV/(DDV2+DE)
IFéPECV2.GT.100.DO)GO T0 211
IF(PECV2.LT.-100.D0)G0 TO 221
TEST=1.D0-DEXP (-PECV2)
IF(DABS(TEST).LT.1.D-10)G0 TO 231
QSV%B(l.DO—SIGVZ)*QFV*(COLD2(H)-CDV2*DEXP(—PECV2))/TEST
GO 300
QSV2=QFV*(1.D0-SIGV2)*COLD2(X)

GO TO 300
QSV2=(1.DO-SIGV2)*CDV2+QFV

GO TO 300

QSV2=DE*DDV2# (COLD2(N)-CDV2)

AND FINALLY, THE MESOTHELIAL LAYER
CORSIDER THE MESOTHELIAL V¥ALL, ELEHMENT BY ELEMENT.

QSH1=0.D0
QCH1=0.DO
QSM2=0.D0
QCK2=0.D0
QFH=0.D0

DO 401 I=1,NEX
QSH11(1)=0.D0
QFM1(I)=0.DO
QCM11(1)=0.D0
QSM12(I1)=0.D0
QCM12(I)=0.D0
CONTINUE

DO 1 II=1,NGAUS

S=GAUS(II)
DO 2 I=1,HEX
X1=XNOD(KODEL(I,1))
X2=XNOD(KODEL(I,2))
X3=XNOD(NODEL(I,3))
$2=(2.D0*X2-(X1+X3))/(I3-X1)

B(1)=(S-52)*(S-1.D0)/(2.D0*(S2+1.D0))
B s+1.Dog*ss—1.Do)/(32*52—1.Do)
B(3)=(S+1,D0)*(S-52)/(2.D0*(1.D0-52))
DX=(X3-X1)#*.5D0

CALCULATE €(S), PI(S), AKD P(S)

C€S1=0.D0

CS2=0.D0

PS=0.D0O

DO 3 IT=1,3
CS1=CS1+COLD1(NODEL(I,IT))*B{IT)
CS2=CS2+COLD2(NODEL(I,IT))*B(IT)
PS=PS+POLD(HODEL(I,IT))*B(IT)
CONTINUE
PISl=CSi*(A1+C51*gBi+c51*C1g)
PIS2=CS2% (42+CS2*(B2+CS2%C2))

CALCULATE THE FLUXES
FLOW=AK*PC/DEFF1*DLH*(PS-PDM-SIGM1* (PIS1-PIDM1)

- SIGH2%(PIS2-PIDM2))#*W(II)*DX
QFM=QFM+FLOY

321
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410
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500

ana

510

520

530

QFM1(I)=QFM1(I)+FLOW/(X3-X1)
QCM1=QCM1+FLOW+CS1+BETA1*RET1
QCM2=QCHM2+FLOW*CS2*BETA2*RET2
QCM11(I)=QCM11(I)+FLOW*CS1#BETA1/(X3-X1)*RET1
QCM12(1)=QCM12(I)+FLOW*CS2+BETA2/ (X3-X1)#RET2

DETERMINE VWHICH FORM OF THE NONLINEAR FLUX EQN. IS TO BE USED.

QS=FLOW/ (¥ (II)*DX)
PECM1=QS+(1.D0-SIGM1)/DDM1
IF(PECM1.GT.100.D0)GO TO 410
IF(PECM1.LT.-100.D0)GC_ TO 420
TESTM=1.DO-DEXP(-PECM1)
IF(DABS(TESTM).LT.1.D-10)G0 TO 430

USE THE FULL EXPRESSION

SFLOW1=FLOW#*(1.D0-SIGM1)*(CS1-CD¥1*DEXP(-PECM1) )/TESTH
QSHM1=QSM1+SFLOW1

QSM11(I)=QSM11(I)+SFLOW1/(X3-X1)
GO TO 500

SFLOW1=FLOW*(1.D0-SIGH1)*CS1
QSM1=QSM1+SFLOW1
QSM11(I)=QSM11(I)+SFLOW1/(X3-X1)
GO TO 500

SFLOW1=FLOW+*(1.D0-SIGM1)*CDM1
QSM1=QSH1+SFLOW1
QSM11(I)=QSH11(I)+SFLOW1/(X3-X1)
GO TO 500

SFLOW1=DDM1*(CS1-CDM1)*DX+W(II)
QSHM1=QSM1+SFLOW1
QSM11(I)=QSH11(I)+SFLOW1/(X3-X1)

PECM2=QS*(1.D0-SIGM2)/DDM2
IFgPECH2.GT.100.D0)GO TO 510
IF(PECHM2.LT.-100.D0)GO_ TO 520
TESTHM=1.D0O-DEXP(-PECM2)
IF(DABS(TESTM).LT.1.D-10)G0O TO 530

USE THE FULL EXPRESSION

SFLOW2=FLOW#*(1.D0-SIGM2)* (CS2-CDH2+DEXP(-PECM2) ) /TESTH
QSM2=QSH2+SFLOW2

QSM12(1)=QSM12(I)+SFLOW2/ (X3-X1)

GO TO 2

SFLOW2=FLOW#*(1.D0-SIGM2)*CS2
QSM2=QSH2+SFLOW2
QSM12(1)=QSH12(1)+SFLOW2/(X3-X1)
GO TO 2

SFLOW2=FLOW*(1.D0-SIGM2)*CDM2
(QSM2=QSH2+5FLOW2
QSM12(I)=QSH12(I)+SFLOW2/(X3-X1)
GO TO 2

SFLOW2=DDHM2* (CS2-CDM2) *DX+W(II)
QSM2=QSkK2+SFLOW2
QSM12(1)=QSM12(I)+SFLOW2/ (X3-X1)

CONTINUE

COETINUE
RETURN

EHD

SUBROUTINE GRID(KEX)
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THIS SUBROUTINE CALCULATES THE SPATIAL LOCATION OF THE NODES
FOR EACH ELEMENT, ALONG WITH THE NODES ASSOCIATED WITH A
GIVEN ELEMENT.

IMPLICIT REAL*8(A-H,0-Z)
COMMON/BLK1/NODEL(500,3), XNOD(1001)
COMMON/BLX2/DX(1001)

K=1
DO 1 I=1,HEX
NODEL(I,1)=K
NODEL(I,2)=K+1
NODEL(I,3)=K+2
K=K+2

1 CONTINUE

X=0.D0

NP=2*NEX+1
DO 2 I=1,KP
X=X+DX(I)
XNOD(I)=X

2 CONTINUE
RETURN
END

SUBRQUTINE VSTAR(NWEX,IHND)

elelnle]

THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO ACCOUNT FOR THE
STARLING BOUNDARY CONDITION AT THE VENULAR WALL.

IMPLICIT REAL*8(A-H,0-Z)
COMMON/BLK1/KODEL(500,3), XNOD(1001)
COMMON/FLUMAT/AF(20000)

COMMON/FLUB/BF(1001)

COMMON/OLD/POLD(1001) ,COLD1(1001),C0LD2(1001)
COMMON/WALL/DLC,DLV,DLM,DDC1,DDV1,DDM1,PDC,PDV,PDH,PIDC1,PIDV1,
#PIDHl PIDC2, PIDV2 PIDM2 SIGC1 SIGVI SIGMl CDC1 CDV1 CDM1,DH,

DDC2, DDV2 DDM2 SIGC2 SIGV2 SIGN2 CDC2 CDV2 couz

COHMON/OSMOT/AI Bl Ci, A2 B2,C2

. HM=REZ*2+1
LUB=2
LP=3*LUB
IF(IND.EQ.1)GO TO 100
K=LP*M+M-LUB
AF(K)=AF(X)+ DLV
GO TO 900

anon

PI2=COLD2(M)*(A2+COLD2(M)*(B2+COLD2(M)*C2
BF (M)=BF (M) +DLV*(PDV+SIGV1*(PI1-PIDV1)+SIGV2*(PI2-PIDV2))

900 RETURN
END
SUBROUTINE ASTAR(NEX,IND)

100 PII=CDLD1EM;*(A1+COLD12H3*€B1+CDLD1gMé*Clgg

THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO ACCOURT FOR THE
STARLING BOURDARY CONDITION AT THE ARTERIOLAR WALL.

IMPLICIT REAL*8(4-E,0-Z)
COMMON/BLX1/NODEL(500,3), XNOD(1001)
COMMON/FLUMAT/AF (20000)
COMMON/FLUB/BF(1001)
COMMON/OLD/POLD(1001),C0LD1(1001),COLD2(1001)
COMMON/WALL/DLC,DLV,DLM,DDC1,DDV1,DDM1,PDC,PDV,PDM,PIDC1,PIDV1,
#PIDM1,PIDC2,PIDV2,PIDM2,SIGCi,SIGV1,SIGM1,CDC1,CDV1,CDM1,DH,
# DDC2,DDV2,DDK2,SIGC2,SIGV2,SIGM2,CDC2,CDV2,CDM2

aAannn
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COMMON/OSMOT/A1,B1,C1,A2,B2,C2

C
LUB=2
LP=3*LUB
IF(IND.EQ.1)GO TO 100
K=LP+1-LUB
AF(K)=AF(K)+ DLC

c GO TO 900

100 P11=COLD1§1g*EA1+COLD1213*EB1+COLD1£1 *Clg;
PI2=COLD2(1)*(A2+COLD2(1)*(B2+COLD2(1)*C2
c BF(1)=BF (1)+DLC*(PDC+SIGC1*(PI1-PIDC1)+SIGC2*(PI2-PIDC2))
900 RETURN
END

c SUBROUTINE PATART(NEX)

C THIS SUBROUTINE ADJUSTS THE AS AND BS VECTORS TO ACCOUNT FOR THE

g PATLAK BOUNDARY CONDITION AT THE ARTERIOLAR WALL.
IMPLICIT REAL#*8(A-H,0-Z)

COMMON/BLK1/NODEL(500,3), XNOD(1001)

COMMON/SOLMAT/AS1(20000) ,AS2(20000)

COMMON/SOLB/BS1(1001),BS2(1001)

COMMON/OLD/POLD(1001),C0LD1(1001),C0LD2(1001)

COMMON/TISDAT/AK ,DEFF1,ALPHL1,PHI1,PHIT,RET1,SIGT1,BETAL,
#DEFF2,ALPHL2 ,PHI2,RET2,SIGT2,BETA2

COMMON/CAPDAT/PC,CREF

COMMON/WALL/DLC,DLV,DLM,DDC1,DDV1,DDM1,PDC,PDV,PDH,PIDC1,
#PIDV1 ,PIDM1,PIDC2,PIDV2,PIDM2,SIGC1,SIGVL,SIGM1,CDC1,CDV1,CDM1,
#DH,DDC2,DDV2,DDM2,SIGC2,SIGV2,SIGM2,CDC2,CDV2,CDM2

c _COMMON/OSMOT/Al,Bl,C1,A2,B2,C2 e
LUB=2
LP=3*LUB

c K=LP+1-LUB
P11=COLD1E1;*£A1+COLD1213* B1+COLD1§1§*C13§
PI2=COLD2(1)*(A2+COLD2(1)*(B2+COLD2(1)*C2
QART=AK*PC/DEFF1*DL.C*(POLD(1)-PDC-SIGC1*(PI1-PIDC1)~-

#SIGC2*(PI2—PIDC2§)

c © PEC1=(1.D0O-SIGC1)/DDC1#*QART

g DETERMINE WHICH FORM QF THE FLUX EXPRESSION APPLIES
IF&PECl.GT.lO0.0DO%GO TO 100
IF(PEC1.LT.-100.D0)G0 TO 200
TEST=1.D0-DEXP(-PEC1)

c IF(DABS(TEST).LT.1.D~10)G0O TO 300
AS1(K)=AS1(X)-QART*(RET1*BETA1-(1.D0-SIGC1)/TEST)
BS1(1)=BS1(1)+(1.D0-SIGC1)*QART*CDC1*DEXP(-PEC1)/TEST

c GO TO 900

100 AS1(K)=AS1(X)-QART*(BETA1*RET1-(1.D0-SIGC1))
GO TO 900
C

200 AS1(K)=AS1(X)-QART*BETA1+*RET1
BS1(1)=BS1(1)-(1.D0-SIGC1)*QART*CDC1
GO TO 900

300 AS1(K)=AS1(X)- QART*BETAi*RET1+DDC1
BS1(1)=BS1(1)+DDC1*CDC1

900 PEC2=(1.D0-SIGC2)/DDC2%QART
DETERMINE WHICH FORM OF THE FLUX EXPRESSION APPLIES

IF(PEC2.GT.100.0D0)GO TO 101
IF(PEC2.LT.-100.D0)G0 TO 201

ana O
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TEST=1.D0-DEXP(-PEC2)
IF(DABS(TEST).LT.1.D-10)G0 TO 301

C
AS2(X)=AS2(K)-QART*(RET2+BETA2-(1.D0-SIGC2)/TEST)
BS2(1)=BS2(1)+(1.D0~SIGC2)*QART*CDC2*DEXP(~PEC2) /TEST
GO TO 901

C

101 AS2(K)=AS2(K)-QART*(BETA2*RET2-(1.D0-SIGC2))

GO TO 901

C

201  AS2(K)=452(K)-QART*BETA2%RET2
BS2(1)=BS2(1)~-(1.D0-SIGC2)*QART*CDC2
GO TO 901

301  AS2(K)=AS2(K)-QART*BETA2+RET2+DDC2
BS2(1)=BS2(1)+DDC2*CDC2

an

901 RETURN
END
SUBROUTINE PATVEN(KEX)

THEIS SUBROUTINE ADJUSTS THE AS AND BS VECTORS TO ACCOUNT FOR THE
PATLAK BOUNDARY CONDITION AT THE VENULAR WALL.

IMPLICIT REAL*8(A-H,0-Z)

COMMON/BLK1/NODEL(500,3), XNOD(1001)

COMMON/SOLMAT/AS1(20000) ,AS2(20000)

COMMON/SOLB/BS1(1001) ,BS2(1001)

COMMON/OLD/POLD(1001) ,COLD1{1001) ,COLD2(1001)

COMMON/TISDAT/AX ,DEFF1,ALPHL1,PHI1,PRIT,RETY,SIGT1,BETAL,
#DEFF2,ALPHL2,PHI2,RET2,SIGT2,BETA2

COMMON/CAPDAT/PC,CREF

COMMOR/WALL/DLC,DLV,DLM,DDC1,DDV1,DDM1,PDC,PDV,PDM,PIDC1,
#PIDV1,PIDM1,PIDC2,PIDV2,PIDM2,SI1GC1,SIGVL,SIGM1,CDC1,CDV1,CDNM1,
#DH,DDC2,DDV2,DDM2,51GC2,SIGV2,SIGM2,CDC2,CDV2,CDM2

COMMON/OSMOT/A1,B1,C1,42,B2,C2

LUB=2

 LP=3+LUB
NP=2+NEX+1
K=LP*NP+NP-LUB

PI1=COLD1(NP%*EA1+COLD1€NP3*§B1+COLD1(NP;*Cigg
PI2=COLD2(NP)*(A2+COLD2(KP)*(B2+COLD2(KP)*C2

QART=AK*PC/DEFF1*DLV#*(POLD (NP )-PDV-SIGV1*(PI1-PIDV1)~
#SIGV2*(PI2-PIDV2;)
PEC1=(1.D0-SIGV1)/DDV1*QART

DETERMINE WHICH FORM OF THE FLUX EXPRESSION APPLIES

IFéPECl.GT.lO0.0DOgGO TO 100
IF(PEC1.LT.-100.D0)GO TO 200
TEST=1.D0-DEXP(-PEC1)
IF(DABS{TEST).LT.1.D-10)G0 TO 300

AS1(X)=AS1(X)~QART*(RET1*BETA1-(1.DO-SIGV1)/TEST)

BS1(NP)=BS1(NP)+(1.D0O-SIGV1)+*QART*CDV1*DEXP(~PEC1)/TEST
GO TO 900

100  AS1(K)=AS1(K)-QART*{BETA1*RET1-(1.D0-SIGV1))
GO TO 800

200 AS1(K)=AS1(X)-QART*BETA1*RET1
BS1(NP)=BS1(NP)-(1.DO-SIGV1)*QART*CDV1
GO TO 900

[e1elele]

anon

300 AS1(X)=AS1(X)-QART*BETA1*RET1+DDV1
BS1(NP)=ES1(NP)+DDV1*CDV1
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900

ana O

101

201

301

9801

NeleleleNelele!

PEC2=(1.D0~SIGV2)/DDV2*QART
DETERMINE WHICH FORM OF THE FLUX EXPRESSION APPLIES

IF§PEC2.GT.100.0DO§GO TO 101
IF(PEC2.LT.-100.D0)G0 TO 201
TEST=1.DO-DEXP(-PEC2)
IF(DABS(TEST).LT.1.D-10)GO TO 301

AS2(K)=AS2(K)-QART*(RET2*BETA2-(1.D0-SIGV2)/TEST)
Bg2%gP)=BS2(NP)+(1.DO—SIGVZ)*QABI*CDV2*DEXP(—PECZ)/TEST
G 901

AS2(K)=AS2(K)-QART*(BETA2+RET2-(1.D0-SIGV2))
GO TO 901

AS2(K)=AS2(K)-QART+BETA2+RET2
BS2(NP)=BS2(NP)-(1.D0-SIGV2)*QART*CDV2
GO TO 901

4S2(K)=AS2(X)-QART*BETA2+RET24DDV2
BS2(HWP)=BS2(NP)+DDV2*CDV2

RETURN
END

SUBROUTINE MATPLY(A,A1,B,C,NP)
THIS SUBROUTINE MULTIPLIES A MATRIX A BY A VECTOR B AED SCALAR A1l
TO GIVE VECTOR C. MATRIX A IS STORED AS A VECTOR, WHERE MATRIX
ELEMENT A(I,J) IS STORED AS A(IJ), IJ=3+LUB*J+I~-LUB, AND WHERE
LUB IS THE NUMBER OF OFF DIAGORAL BAEDS. FOR THIS SUBROUTIEE,

IT IS ASSUMED TBAT THE BANDWIDTH IS 5, SO THAT LUB=2.

IMPLICIT REAL*8(A-H,D-2Z)
EégEgSIOH 4(20000), B(XWP), C(FNP)

LP=3+LUB
DO 1 I=1,NP

- €(1)=0.DO

CONTIKNUE

K=2

DO 2 I=1,2

K=K+1
DO 3 J=1,K
IJ=LP*J+I-LUB
C(I)=C(I)+A(13)*a1%«B(I)
CONTINUE

CONTINUE

NPM=NP-2
K=0
DO 4 I=3,NPH
K=K+1
KP=K+4
DO 5 J=K,KP
I1J=J*LP+I-LUB

C(I)=C(I)+A(IJ)*B(J)*A1
CONTINUE
CONTINUE

NPM=NP-1
K=NP-~4
DO 6 I=NPM,NP
K=K+1

DO 7 J=K,NP
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[eleNelele!

[eX¥oXelele]

[eXeXe! aoaaon

anon

700

800
801

I1J=LP*J+I-LUB
C(I)=C(I)+A(I3)*A1*B(J)
CONTINUE

CONTINUE

i
SUBROUTINE SETMAT(NEX,IND,PE1,IPEC1,VMAX1,PE2,IPEC2,VMAX2)

THIS SUBROUTIKE INITIALIZES THE VARIQUS VECTORS ASSOCIATED
WITH SOLUTE AND FLUID TRANSPORT EQUATIONS, AF(K), BF(I), AS1(X),

AS2(1),BS1(I), BS2(I).

IMPLICIT REAL*8(A-H,0-Z)

COMMON/BLK1/KODEL(500,3) ,XNOD(1001)

COMMON/FLUMAT/AF(2000O)

COMMON/OLD/POLD(1001),C0OLD1(1001),COLD2(1001)

COMMOW/SOLB/BS1(1001) ,BS2(1001)

COMMON/FLUB/BF(1001)

COMMON/SOLMAT/AS1(20000) ,452(20000)

COMMON/0SMOT/A1,B1,C1,42,B82,C2

COMMON/TISDAT/AK DEFFl AL1 PH11 PHIT,RET1,SIGT1,BETAL,
#DEFF2,AL2,PHI2, RET2,SIGT2,BETA2

COHMON/CAPDAT/PC CREF

COMMON/WALL/DLC,DLV,DLM,DDC1, DDVi DDM1,PDC,PDV,PDH,PIDC1,
#PIDV1,PIDM1,PIDC2,PIDV2,PIDKS,SIGCT,SIGV1,S1GM1,cDC1,CDV],CDM1,
#DA ,DDCG2,DDVS, DDN2 . SIGC2 , SIGV2,SIGK2,CDC2, CDV2, CDH2

COMMOK/TIME/T (20000)

COMMON/MAXDAT/DMX1,DMX2,IDISP1,IDISP2

DIMENSION GAUS(4),¥(4),B(3),DB(3)

DATA RGAUS/4/

DATA W/.347854845137454D0, .652145154862546D0,
#.652145154862546D0, . 347854845137454D0/

DATA GAUS/-.861136311594053D0,~.339981043584856D0,
#.339981043584856D0, .861136311594053D0/

DATA GAUS/

DATA

DATA4 NGAUS/S/

DATA GAUS/

. DATA W/

DMX1=0.DO
DMX2=0.D0O
ALPHA=AK*PC/DEFF1
PE1=0.D0
VHMAX1=0.DO
PE2=0.DO
VMAX2=0.DO

ZERO THE APPROPRIATE ARRAY AND IRITIALIZE

IF(IND.EQ.1)GO TO 800
IF(IND.EQ.2)GO TO 900
IF(IND.EQ.3)GO TO 950

ZERO THE AF VECTOR

DO 700 I=1,20000
AF(1)=0.DO
CORTIRUE

GO TO 100

ZERO THE BF VECTOR

DO 801 I=1,1001
BF(1)=0.D0
CONTINUE

GO TO 100
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C

C ZERO THE T MATRIX
C

950 DO 951 I=1,20000

T(I)=0.DO

951 CONTINUE
c GO TO 100
C ZERO THE AS AND BS VECTORS
c .

900 DO 901 I=1,20000
ASlgIg=O.D0
AS2(I)=0.D0

-901 CONRTINUE

DO 802 I=1,1001
B51513=0.D0
BS2(1)=0.DO

902 CONTIRUE

anon

BEGIN THE GAUSS INTEGRATIOR, ELEMENT BY ELEMENT

100 LUB=2
LP=3*LUB

ana

DO 200 II=1,NGAUS
S=GAUS(II)

INITIALIZE THE APPROPRIATE ARRAY, ELEMENT BY ELEMENT.
DO 300 I=1,NEX

CALCULATE VALUE OF BASIS FUNCTIONS AND DERIVATIVES AT THE
QUADRATURE POINT

X1=XNOD(NGCDEL(I,1))
X2=XNOD(NODEL(I,2))
X3=XNOD(NODEL(I,3))

QAo OO0

S2=(2.D0*X2-(X1+X3))/(X3-X1)

B(1)=(5-52)*(S-1.D0)/(2.D0*(52+1.D0))

B(2)= S+1.D03 S-1.D0)/(S2%52-1.D0)

B 3 =(5+1.D0)*(5-52)/(2.D0*(1.D0-S2))

. DB(1)=(2.D0*5-52-1. DO)/(2 DO*(S2+1.D0))

DB 2 =2.D0*S/(S2%52-1.D0)
DB(3)=(2.D0*5-S2+1.D0)/(2.D0*{1.D0-52))

DX=(X3-X1)*.5D0
CALCULATE THE T VECTOR

IF(IND.NE.3) GO TO 101
DO 952 M=1,3
MM=NODEL(I,H)
DO 953 §=1,3
NN=NODEL(I,N)
K=LP*NN+MM-LUB
T(K)=T(K)+B(M)*B(N)*DX+W(II)
953 CONTINUE
952 CONTINUE
GO TO 300

NOW CALCULATE Ci(S), DcCi1/DsS, PIi(S), DPI1/DS,C2(S),...
101 CS1=0.DO

aan Q

ann

EVALUATE THE INTEGRARD AT THE APPROPRIATE QUADRATURE POINT, S.

328
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€S2=0.D0

DCS1=0.D0

DCS2=0.D0

DO 301 IT=1,3

CS1=CS1+COLD1(NODEL(I,IT))*B(IT)

CS2=CS2+COLD2(NODEL(I,IT))*B(IT)

DCS1=DCS1+COLD1(NODEL(I,IT))*DB(IT)

DCS2=DCS2+COLD2(NODEL(I,IT))*DB(IT)
301 CONTINUE

PISl=CSl*EAl+CSl*$Bi+CSl*C133
PIS2=CS2*(A2+CS2*(B2+CS2*C2

DPIS2=§A2+2.DO*B2*CS2+3.DO*CS2*CS2*C2;*DCS2
DPIS1=(A1+2.D0¥B1*CS1+3.D0*CS1*CS1*C1)*DCS1

DETERMINE WEICH VECTOR IS TO BE IRITIALIZED

IF(IFD.EQ.1)GO0 TO 500
IF(IND.EQ.2)GO TO 600

INITIALIZE THE FLUID VECTOR

DO 401 M=1,3
MM=NODEL(I,HM)
DO 402 B=1,3
NK=NODEL(I,N)
K=LP*NN+HH-LUB
AF(K)=AF(K)+(B(M)*B(N)*2.DO*DLM/DE+DX+DB(M)*DB(K) /DX)*¥(II)
402 CONTINUE
401 CONTIKUE
GO TO 300

anon

anon

IRITIALIZE THE FLUID B VECTOR

500 DO 501 M=1,3
MM=HODEL(I,H)
BF (MM) =BF (MM)+(DB(M) *(DPIS1*SIGT1+DPIS2*SIGT2)/DX+B(M)*
z%SDgzg%§/DB*DX*(PDH+SIGH1*(PISI - PIDM1)+SIGM2*(PIS2-PIDM2)
*
501 CONRTIRUE
- GO TO 300

anon

INITIALIZE THE SOLUTE VECTORS, BS AND AS. fIRST CALCULATE VS1,VS2
QMES, AND THEE DISPERSIOR COEFFICIENTS, DISP1 AND DISP2.

600 DPS=0.D0
PS=0.D0
DO 601 IT=1,3
DPS=DPS+POLD(NODEL(I,IT))*DB(IT)
PS=PS+POLD(KODEL(I,IT))*B(IT)
601 CONTINUE

aonaan

VSl=—ALPHA*(DPS—SIGTi*DPISl—SIGT?*DPIS2;/DX*RETI*BETAI/PHIl
VS2=-4LPHA*(DPS-SIGT1*DPIS1~-SIGT2*DPIS2) /DX*RET2+«BETA2/PHI2
QFMES=ALPHA*DLM* (PS-PDH-SIGH1+(PIS1-PIDM1)~-SIGH2*(PIS2~PIDHK2))
DISP1=DABS(VS1)*4L1+1.DO
IF(DISP1.LT.DMX1) GO TO 655
DHMX1=DISP1
IDISP1=I
655 DISP2=DABS(VS2)*AL2+DEFF2/DEFF1
IF(DISP2.LT.DMX2) GO TO 656
DHX2=DISP2
IDISP2=1

CALCULATE THE MAXIMUM LOCAL SOLUTE VELOCITY, VELMAX
656 IF(DABS?CSlg.LT.l.D—S; VELS1=DABS(VS1)*PHI1

IF(DABS(CS1).GT.1.D-5) VELS1=DABS(VS1-(DISP1*#DCS1/DX)/CS1)=PHI1
IF(DLRS(CS2).LT.1.D~5) VELS2=DABS(VS2)*PHI2

aon

329
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IF(DABS(CS2).GT.1.D-5) VELS2=DABS(VS2-(DISP2+DCS2/DX}/CS2)+*PHI2
IF .5D0*VELSl/DX.GT.VHAX1g VMAX1=.5D0*VELS1/DX
.SDO+VELS2/DX.GT.VMAX2) VMAX2=.3DO*VELS2/DX

CALCULATE THE GRID PECLET NUMBER, AND SEE IF IT EXCEEDS
THE LIMIT

PEST1=DABS(VS1)*(X3-X1)/DISP1
IF(PEST1.LT.PE1)GO TO 609
PE1=PEST1
IPEC1=1

609 PEST2=DABS(VS2)#*(X3-X1)/DISP2
IF(PEST2.LT.PE2)GO TG 610
PE2=PEST2
IPEC2=1

NOW DETERMINE WHICH FORM OF THE NOHLINEAR FLUX EXPRESSION
IS TO BE USED TO CALCULATE SOLUTE FLUX ACROSS MESOTHELIUM.

(211!

leleleleke]

610 PEC1=QFMES*(1.D0-SIGM1)/DDM1
IFgPEc1.GT.1oo.no)Go TO 611
IF(PEC1.LT.-100.D0)G0 TO 620
TEST=1.DO-DEXP(-PEC1)
IF(DABS(TEST).LT.1.D-10)G0 TO 630

C CASE 1: USE THE FULL NONLINEAR FLUX EXPRESSION

DO 602 M=1,3
MM=HODEL(I,M)
DO 603 K=1,3
NH=NODEL(I,N)
K=LP*NN+MM-LUB
AS1(K)= ASl(K)+(B(M)*DB(N)*VSl*PHI1+
DB(M)*DB(N)*DISP1*PHI1/DX
# +B(M)*B(N)*2.DO*QFMES/TEST/DH*(1.D0-SIGM1)*DX
# -2. DO/DH*QFMES*RETI*B"TAI*B(M)*B(N)*DX)*W(II)
603 CONTINUE
BSl(MH) BSI(MM)+
B(M)*2.D0/DH*(1.D0-SIGM1)*QFMES*CDM1*DEXP(-PEC1) /TEST
a *DX*W(II)
602 - CONTINUE
GO TO 640

CASE 2: PEC APPROACHES INFINITY

611 DO 612 M=1,3
MM=NODEL(I,M)
DO 613 ¥=1,3
NN=NODEL(I,N)
K=LP*NN+HMM-LUB
£S1(K)=AS1(K)+
(Bg ;*DB(N)*VSl*PHIl+DB(H)*DB(H)*PHII*DISPI/DX
M)*B(H)*2.DO/DE*(1.DO-SIGM1)*QFMES*DX
~QFMES#RET1*BETA1*B(H) *B(N) *DX#2.DO/DH) *W(IT)
613 CONTINUE
612 CORTIHUE
GO TO 640

C CASE 3: -PEC APPROACHES INFIRITY

ann

#*

620 DO 621 M=1,3
MK=NODEL(I,HM)
DO 622 N=1,3
RN=RODEL(I,N)
K=LP*NN+MHM-LUB
£S1(K)=AS1(K)+
# (B(M)*DB(N)*VS1*PHEI1+DE (M) *DB(N)*PHI1*DISP1/DX
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622
621

aQat

630

632
631
640

aaon

642

ana

650

652
651

aQao

660

# -2.D0/DH*BETA1#+RET1+QFMES*B(N)*B(M) *DX) *¥(II)

CONTINUE
BS1(KM)=BS1(MM)-2.DO/DH*(1.DO-SIGM1)*QFMES*CDM1+DX+W(II)*B(M)
CORTIRUE
GO TO 640

CASE 4: PEC APPROACHES O

DO 631 M=1,3
MM=NODEL(I,M)
D0 632 N=1,3
NN=NODEL(I,N)
K=LP*NN+MM-LUB
AS1(X)=AS1(K)+
(B(M)*DB(N)*VS1*PHI1+DB(M)*DB(N)*PHI1*DISP1/DX
+2.DO/DH*DDM1#B(M)*B(H)*DX
-2.DO/DH*RET1*BETA1+DX*B (M) *B (H)*QFMES) *¥ (I1)

CONTINUE
BS1(MM)=BS1(MM)+2.DO/DH+DDM1*B(M) *CDH1*DX*W(II)
CORTINUE

PEC2=QFMES*(1.D0-SIGM2)/DDM2
IFEPEC2.GT.100.DO)GO TO 650
IF(PEC2.LT.-100.D0)G0 TO 660
TEST=1.D0-DEXP(~PEC2)
IF(DABS(TEST).LT.1.D-10)G0 TO 670

CASE 1: USE THE FULL NONLINEAR FLUX EXPRESSICN

DO 641 M=1,3
M= FODEL(I, M)
DO 642 N=1,3
NN=NODEL(I, N)
K=LP*NN+MM-LUB
AS2(K)=AS2(X)+(B(M)*DB(N)*VS2+PHI2+
DBE ;*DB(N)*DISPZ*PHI2/DX
M) *B(N)*2.DO*QFMES/TEST/DH*(1.D0-SIGM2)+DX
-2.D0/DH*QFMES*RET2+BETA2+B(M)*B(N)*DX)*¥ (II)
CONTINUE
BS2(MM)—BS2(HM +
B(M)*2.D0O/DH*(1.D0-SIGHM2) *QFMES*CDM2*DEXP (~-PEC2) /TEST
# *DX*W(II)

HHR

®*RBH

* CONTINUE

GO TO 300
CASE 2: PEC APPROACHES IRFINITY

DO 651 M=1,3
MH=NODEL(I,H)
DO, 652 N=1,3
FN=NODEL(I,N)
K=LP*NH+MM-LUB
AS2(K)=AS2(K)+
(BgMg*DB(N)*VS2*PHI2+DB(H)*DB(H)*PHI2*DISP2/DX
M)*B(N)*2.DO/DH*(1.D0-SIGH2) +QFMES*DX
~QFMES*RET2+BETA2+B(M) *B(N) *DX+2.D0/DH) *W (II)
CONTINUE
CONTINUE
GO TO 300

CASE 3: -PEC APPROACEES INFINITY

B e 3

DO 661 M=1,3
K¥H=NODEL(I,M)
DO 662 N=1,3
NN=KODEL(I,N)
K=LP*NN+MM-LUB
AS2(K)=AS2(K)+
(B(M)*DB(N)*VS2+PHI2+DB (M) *«DB (¥ ) «PEI2*DISPF2/DX
-2 .DO/DH+BETA2+RET2*QFHES#B (H) *B (M) *DX ) *w(II)

H* 4
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662
661

anon

670

672
671

300
200

CONTINUE
BS2(MM)=BS2(MH)-2.DO/DH*(1.DO-SIGM2)*QFMES*CDM2+DX*W(II)*B(M)
CONTINUE

GO TO 300

CASE 4: PEC APPROACHES 0

DO 671 M=1,3
MM=NODEL(I,M)
D0 672 N=1,3
NN=NODEL(I,N)
K=LP*NN+MM-LUB
AS2(K)=AS2(K)+
(B(M)*DB(N)*VS2+PHI2+DB (M) *DB(N) *PHI2*DISP2/DX
+2.DO/DHE*DDM2*B (M) *B (N) *DX
~2.DO/DH*RET2+BETA2*DX*B(M)*B(N)*QFMES) *¥W(II)
CONTINUE

BS2(MM)=BS2(MM)+2.DO/DH*DDM2*B (M) *CDM2*DX*W (II)
CONTINUE

3t

CONTINUE
CORTINUE

OOOQOOAQNO0NO O NANOONNaO NN NnNO0O

RETURN
END

SUBROUTINE DGBND! (4, B, ¥, ML, NU, LT, IP, DET, NCH1,
1 BB, RZ, ITR1, EPS1)

ROUTINE SOLVES SYSTEM OF LINKEAR EQNS. AX=B WHERE A IS A GENERAL
BAND MATRIX. METHOD USED IS GAUSSIAN ELIMINATIOR WITH PARTIAL
PIVOTIRG. OPTION OF ITERATIVELY IMPROVING SOLUTION IS AVAILABLE.
UPPER BAND WIDTH OF MATRIX INCREASES DUE TO INTERCHANGES BY
AMOUNT ML. ROUTINE REQUIRES BAND ELEMENTS OF MATRIX TO BE STORED
BY COLUMN IN A ONE DIMENSIONAL ARRAY. EACH COLUMK IS OF LENGTH
2+«ML+NU AND BAND IS TO BE STORED IN ELEMENTS ML+1 TO 2+«ML+KU COF
EACH COLUMN. ELEMENTS 1 TO ML OF COLUME ARE SET TO ZERO BY GBAND.
IF MATRIX IS SYMMETRIC USER MAY SPECIFY LOWER BAND ONLY IN
ELEMEETS HKL+NU+1 TO 2+ML+NU OF EACE COLUMN AND GBAND WILL
GENERATE REMAINING ELEMENTS. (IF THIS IS DESIRED, SET LT=-1 ON
FIRST CALL TO GBAND.)
= 1 DIMENSIONAL ARRAY CONTAINING MATRIX OF COEFFICIENTS.

B = 1 DIHENSIONAL ARRAY CONTAINING RIGHT HAND SIDE VECTORS.

OF EXIT, B WILL CONTAIN THE SOLUTION VECTOR X.
ORDER OF MATRIX

ML = LENGTH OF LOWER BAND éEXCLUDING DIAGONAL;
WU = LENGTE_OF UPPER BAND (EXCLUDING DIAGONAL
LT =

ABSELT3=1 IF ONLY -1 B VECTOR OR IF 1ST OF SEVERAL.

ABS(LT),=1 FOR SUBSEQUENT B VECTORS.
(NOTE. LT=+1 IF FULL BARD WIDTH GIVEN, LT=-1 IF LOWER BAND
ONLY OF SYMMETRIC MATRIX GIVEN.)

IP = INTEGER ARRAY CONTAINING INTERCHANGE INFORMATION.

DET = DETERMINAHNT OF A = DET*(10#*NCN) WHERE 1.D-15<|DET|[<1.D+15.
IF DET=0.0 MATRIX IS SINGULAR AND ERROR RETURN TAKEH.

BB, RZ = ARRAYS REQUIRED FOR IMPROVEMEKT OPTION. CAN BE REAL#8

VARIABLES IF OPTION NOT REQUIRED.

ITER = 0 IF IMPROVEHEHRT HUT REQUIRED, OTHERWISE ITER— RO. OF
ITERATIORS OR CYCLES

EPS - CONVERGENCE CRITERION.

MODIFIED TO DO ITERATIVE IMPROVEMENT (FORMERLY AVAILABLE ONLY
WITH THE SINGLE PRECISION VERSION). MIKE PATTERSON - NGV, 1980
IMPLICIT REAL#*8 (A-H, 0-Z)
COMMON /GBAND$/ NITER
DIMENSION A(1), B(NW), IP(N), BB(N), RZ(N)
COMPLEX*16 DSUMM, QADDQ, QMULD
REAL*8 GQRNDQ
TO ASSIGN LOGICAL UNITS 94 AND 95 ONLY ONCE:
LOGICAL ASSIGH /F/, YES /T1/
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C STATEMENT FUNCTION TO CALCULATE POINTERS INTO A:
IFN(I, J) =1+ (J - 1)xLCc + I - J + NUM

C

C
NCN=NCN1
ITR=ITR1
EPS=EPS1
ITER = ITR

C

LCM = NU + 2+ML
LC = LCH + 1
NLC = N+LC
= NU + HL
c GENERATE REMAINING ELEMENTS OF SYMMETRIC MATRIX
IF (LT .NE. -1) GO TO 120
NN = N - 1
DO 110 I = 1, NN
IFI = IFN(I, 1)
IFJ = IFI
II =1+ 1
IML = MINO(I + ML, N)
DO 100 J = II, IML

IFI = IFI + 1
IFJ = IFJ + LCM
100 A(IF]) = A(IFI)

110 CONTINUE

120 IF (ITER .EQ. 0) GO TO 140

C ASSIGH UNITS 94 AND 95 IF THEY BAVE KOT ALREADY BEEW ASSIGNED:
IF (ASSIGN) GO TO 125
CALL FTHCMD (’ASSIGN 94=-GBANDS4;’)
CALL FTHCHMD (’ASSIGN 95=-GBANDS5;°)
ASSIGR = YES

125 REWIND 94
REWIND 95
DO 130 I = 1, N

130 BB(I) = B(I g

140 IF (IABS(LT .NE. 1) GO TO 280

IP(N)
IF (ML EQ o) GO TO 160
C SET ELEMENTS ML OF EACHE COLUMN TO ZERO

DO 150 I = 1 N
IFK = (I - 1)*LC
DO 150 J = 1, ML
IFK = IFK + 1
150  A(IFK) = 0.0DO
160 IF (ITER .NE. 0) CALL DWR1 (A, NLC, 94)
DET = 0.0DO
NCN = 0O
IF (ML .EQ. 0) GO TO 230
C LU DECOMPOSITION
DO 220 K = 1, X
IFK = IFN(X, K)

IF (X .EQ. W) GO TO 210
KP = K + 1

KPM = MINO(K + ML, K)
KPN MINO(K + NUM, N)

IFM IFK
IFI IFK

DO 170 I = KP, KPM

IFTI = IFI + 1

IF (DABS(A(IFI)) .LE. DABS(A(IFH))) GO TO 170
M =1

IFM = IFI
170 CONTIHUE

IP(K) =
T = IFM)
IF (M .NE. K) IP(N) = -IP(N)
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180

190
200
210
220
230

240

250

2€0
270

280

aoaOOOOOOOOO0n

290

A(IFK)
A(IFK

=T

IF (T .EQ. 0.0DO) GO TO 260
OT = 1.0DO/T
IK = IFK
DO 180 I = KP, KPM

IK = IK + 1
A(IK) = -A(IK)=*0OT
KJ = IFK

MJ = IF¥

DO 200 J = KP, KPN
KJ + LCH

MJ + LCM

(MJ)
A€MJ = A(XJ)
A(KJ) =T
IF (T .EQ. 0.0D0) GO TO 200
IK = IFK
1J = KJ
DO 190 I = KP, KPH
IK = JK + 1
1J =13 + 1
A(I) = A(1J) + A(IK)*T
CONTINUE
IF (A(IFK) .EQ. 0.0D0) GO TO 260
CONTINUE
IFK = IFN(1, 1)
DET = A(IFK)
DO 250 K = 2, N
iFK = IFK + LC
DET = DET*A(IFK)
IF (DET .EQ. 0.0D0) GO TO 260
IF (DABS(DET) .GT. 1.D-15) GO TO 240
DET = DET*1.D+15
NCH = RCN - 15
GO TO 250
IF (DABS(DET) .LT. 1.D+15) GO TO 250
DET = DET*1.D-15
HCKN = NCN + 15
CONTINUE
DET = DET*IP(N)
GO TG 280
. DET = 0.0DO
WRITE (6, 270) K
FORMAT (°0* DGBND1 - matrix is singular. ?/
1 4 Error occurred in attempt to find’, I5, ’th pivot.’)

A%IFMg

RETURN
CALL DSOLV1 (A, B, IP, N, ML, NU)
IF (ITER .EQ. O) RETURN

ITERATIVE IMPROVEMENT
RESIDUALS (R) = AX-B ARE FOUND AND STORED IN ARRAY RZ USING
EXTENDED PRECISION ARITHMETIC. SYSTEM AZ=R IS SOLVED ARD REW
SOLUTION =X+Z IS STORED IN ARRAY B. ABOVE STEPS REPEATED UNTIL
(1) MAX(Z)/MaX(X) < EPS OR
gz NO. OF CYCLES > ITER OR
3) IMPROVEMENT STARTS TO DIVERGE.
ROUTIHE THEN RETURNS AFTER SETTING EPS=MAX(Z) (FOR (1)) OR
%ggrigg %g§§—MAx(z) AND PRINTING APPROPRIATE ERROR MESSAGE (FOR

IF (IABS(LT) .EQ. 1) CALL D¥R1 (4, KNLC, 895)
XNORM = 0.0DO

DO 200 K =1, N

XNORM = DMAX1(XWORM, DABS(B(X)))
IF (XNORM .LE. 0.0DO) RETURK

ZX = 1.D+60

LD 0

DO 340 L = 1, ITER
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REWIND 94
CALL DRE1 (A, NLC 94)
DO 310 K = 1, N
DSUMM = (0.DO, 0.DO)
KPM = MAXO(X - ML, 1)
KPN = MINO(K + NU, N)
IFK = IFN(K, XPM)
DO 300 J = KPM, KPN
C DSUMM = DSUMM + A(IFK)*B(J)
C USIKG EXTENDED PRECISION:
DSUMM = QADDQ(DSUMM QMULD(A(IFK), B(J)))

300 IFK = IFK + LCM
RZ(K) = BB(K) - QRNDGQ(DSUEM)
310 CONTINUE
REWIND 95

CALL DRE1 (4, NLC, 95)

CALL DSOLVi (A4, RZ, IP, N, ML, NU)
ZHORM = 0.0DO

DO 320K =1, N

ERZ = RZ(K)
ZNORM = DMAX1(ZNORM, DABS(ERZ))
320 B(X) = B(X) + ERZ
IF EZNORM .GT. ZX) GO TO 330
IF ((ZNORM - EPS*XNORM) .LT. 0.0DO) GO TO 390
ZX = ZNORM
GO TO 340
330 IF (ZHORM .GT. 10.0D0*ZX) GO TO 360
LD = LD + 1

IF (LD .GE. 3) GO TO 360
340 EONT%NUE
WRITE (6, 350)
350  FORMAT (’0* DGBHD1- Iterative improvement did not converge’/)
GO TO 380
360 WRITE (6, 370)
370  FORMAT (’0* DGBNDi - Iterative improvement is diverging.’'/)
380 EPS = -ZNORM
NITER = L

RETURN

390 . EPS = ZNORM
KITER = L
RETURN
END

SUBROUTINE DSOLV1 (4, B, IP, K, ML, RU)

THIS ROUTINE COMPUTES THE SOLUTION OF A SYSTEM AFTER GBAND HAS
DECOMPOSED MATRIX A INTO A LOWER TRIANGULAR MATRIX L AKD AN
UPPER TRIANGULAR MATRIX U.

IMPLICIT REAL*8 (A-H, 0-Z)
DIMENSION A(1), B(N), IP(N)
IFN(I, J) =1 + (J - 1)*LC + I - J + KUH
LCM = 2*HML + NU
LC = LCM + 1
NUM = NU + ML
N = N - 1
SOLVE FOR Y
IF (ML .EQ. 0) GO TO 110
DO 100 X = 1,
KP = K + 1
M
T
Bgm
B(X T
KPM = MINO(K + ML, W)
IFK = IFN(K, X)
DO 100 I = KP, KPH

[eXelelele]

inn
[os R |
i~
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100

IFK = IFK + 1
B(I) = B(I) + A(IFK)*T

C SOLVE FOR X

110

120

o

annaann U

IFK = IFN(N, H)
DO 120 KB = 1, MN

KM = N - KB

K =XKHM + 1
B(K) = B(X)/A(IFK)

IFK - LC

T = -B(X)

KMN = MAXO(1, K - ML - NU)

KML = IFN(KMN, K)

DO 120 I = KMN, KM

B(I) = B(I) + A(KML)=*T

KML = KML + 1
B(1) = B(1)/A(NUM + 1)
RETURN
END
SUBROUTINE DWR1 (4, N, LU)
REAL*8 A(H)

WRITE (LU) A
RETURN

END

SUBROUTINE DRE1 (&, N, LU)
REAL*8 A(N)

READ (LU) A

RETURN

END

Two Protein Transient Simulator: TRANS2P.FOR

TEIS PROGRAM SIMULATES BOTE CONVECTIVE AKRD DISPERSIVE PLASMA
PROTEIN TRANSPORT THROUGH MESERTERY DURING TRANSIENT
CORDITIONS FOR TWO PLASMA PROTEIN SPECIES.

THE MESENTERY IS TREATED AS A 1-DIMENSIONAL

RECTANGULAR SLAB.

IMPLICIT REAL*8(A-H,0-Z)

- DIMERSIORN HOLD(1001),IPERM(1001),RES(1001),H0LD1(1000),

#RES1(1001) ,IPERM1(1001) ,HOLD2(1001) ,RES2(1001) ,IPERM2(1001),
#RES3(1001),IPERM3(1001) ,HOLD3(1001) ,DTIME1(100),TDT1(20000),
#TDT2(20000) ,COLDT1(1001),COLDT2(1001) ,SBOLD1(1001),

#SBOLD2(1001),SOLDT1(20000) ,SOLDT2(20000) ,BCTIM1(1001),
#BCTIM2(1001) ,STNEW1(20000) ,STEEW2(20000) ,TCOLD1(1001),
#TCOLD2(1001),SCOLD1(1001),SCOLD2(1001)

COMMON/FLUX/FLUXMX

COMMON/BLK1/NODEL(500,3) ,XNOD(1001)

COMMOE/BLK2/D%(1001) _

COMMON/MATBAL/QFC,QCC1,QSC1,QCC2,Q5C2,QFV,QCV1,QSV1,QCV2,Q5V2,
#QFM,QCM1,QSM1,QCH2,QSM2,QFM1(500) ,QCM11(500) ,QSH11(500),
#QCHM12(500) ,QSM12(500)

COMMON/FLUMAT/FLUID(20000)

COMMON/0LD/POLD(1001) ,COLD1(1001),COLD2(1001)

COMMON/TIME/T(20000)

COMMON/SOLB/SOLB1(1001),S0LB2(1001)

COMMON/FLUB/FLUIDB(1001)

COMMON/SOLMAT/S0L1(20000) ,S0L2(20000)

COMMON/0SMOT/A1,B1,C1,A2,B2,C2

COMMON/TISDAT/AK,DEFF1,ALPEL1,PEI1,PHEIT,RET1,SIGT1,BETAL,
#DEFF2,ALPHL2,PHI2,RET2,SIGT2,BETA2

COMMON/CAPDAT/PREF, CREF

COMMON/¥WALL/DLC,DLV,DLM,DDC1,DDV1,DDM1,PDC,PDV,PDM,PIDC1,

#PIDV1,PIDH1,PIDC2,PIDV2,PIDM2,SIGC1,SIGV1,SIGH1,CDC1,CDV1,CDM1,

#YYL,DDC2,DDV2,DDM2,51GC2,SIGV2,SIGH2,CDC2,CDV2,CDM2
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ann

anon

anon

COMMON/MAXDAT/DISMX1,DISMX2,IDISP1,IDISP2
SET MARKER AND TOLERANCE VALUES

READ(5,504)0MEGAF ,OMEGAC, TOLP, TOLC ,PECMAX ,EPS
READ(5,509)IMAX,ITER,NECHO,N, ITMAX

READ(5,503)
READ(5,508)
DO 1 I=1,K
READ(5,501)
CONTINUE

KK=2
NEX=(N-1)/2
LUB=2

THETA,TTOL,COUR, TFACT, TIMMAX
K

DTIME1(I)

NDIM=N+(3+LUB+1)

READ IN THE DATA FROM EXTERNAL FILE

DO 2 I=1,N
READ(5,501)
CONTINUE

READ(5,502)
READ(5,504)
READ(5,507)
READ(5,507)
READ(5,504)
READ(5,504)
READ(5,504)
READ(5,504)
READ(5,506)
READ(5,506)
READ(5,506)
READ(5,506)
YL=YYL*AL

PIDC1=CDC1*
PIDC2=CDC2*
PIDV1=CDVix
PIDV2=CDV2*

" PIDM1=CDM1*

501
502
503
504
506
506
507
508
509

PIDM2=CDM2*
PC=PDC*PREF
PV=PDV*PREF
PH=PDM*PREF

DX(I)

At,B1,C1,AK,PREF,PHI1,PHIT,RET1,PHIS
A2,B2,C2,PHI2,RET2,BETA2

ALPHL1,AL ,DEFF1,SIGT1,CREF,YYL,BETA1
ALPHL2,DEFF2,SIGT2,PERMC2, PERMV2, PERMN2
CONC,CONV,CONM, PERMC1 , PERMV1 , PERMM1
DDC1,DDV1,DDM1,SIGC1,SIGV1,SIGM1
DDC2,DDV2,DDM2,SIGC2,SIGV2,SIGH2
€DC1,CDV1,CDM1,DLC,DLV,DLM
CDC2,CDV2,CDM2

PDC,PDV,PDM

A0S1,B0S1,C0S1

A0S2,B0S2,C0S2

ADS14CDC1* BOSi+CDCl*COSig
A0S2+CDC2* (BOS2+CDC2#C0S2
A0S1+CDV1%(BOS1+CDV1+C0S1)
ADS2+CDV2* (BOS2+CDV2+C0S2
A0S1+CDM1*(B0OS1+CDM1%C0OS1
ADS2+CDM2* (BOS2+CDH2*COS2

CC1=CDC1*CREF
CV1=CDV1i*CREF
CM1=CDM1*CREF
CC2=CDC2*CREF
CV2=CDV2*CREF
CH2=CDM2*CREF

FORMAT(E12.6
FORMAT%QEIO.
SE10.
FORHAT§6E10.
3E10.
FORHAT%BElO.

FORMAT
FORMAT
FORMAT

FORHAT(I2)
FORMAT(5I5)

DO 3 I=1,N

7E10.

ET NN

READ(4,*) POLD(I),COLD1(I),COLD2(I)

COLDTl(I)=COLD121;
COLDT2(I)=COLD2

I
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an aoon

3 CONTINUE

ECHO DATA IF NECHO R.E. O
IF(NECHO.EQ.0) GO TO 999
PRINT OUT INPUT DATA

WRITE(6,600)

WRITE(S, 602)
VRITE(6,602)

602 FORMAT(//,1X,’
#,//)

WRITE(6,603)

WRITE(6,602)
WRITE(6,604)

600 FORMAT(1X,?TRANSIENT FLUID PRESSURE AND SOLUTE CONCENTRATIOR’

#)
WRITE(6,601)
601 FORMAT(iX,’PROFILES FOR ONE DIMENSIONAL TISSUE SYSTEM?,//)

603 FORMAT(1X,?INPUT PARAMETERS’)

604 FORMAT(1X,?1. GRID DATA:?,//)
WRITE(6,605)NEX,DX(2)
605 FORMAT(1X, 'NUMBER OF ELEMENTS:?,1X,12,/,1X,
#?SMALLEST X INCREMENT:’,19X,E10.4,/)
WRITE(6,606)N
606 FORMAT(1X,’TOTAL NUMBER OF NODES:’,10X,I4,/)
WRITE (6,602)
WRITE(6,607) TOLP,TOLC,ITMAX,OMEGAF,OMEGAC,PECHAX
607 FORMAT(1X,’2. CONVERGENCE CRITERIA:’,//,1X,’PRESSURE TOLERANCE:’
#,17X,E10.4,/,1X,?SOLUTE TOLERANCE:’,20X,E10.4,/,1X,
#°MAXIMUM -NUMBER OF LOOP ITERATIONS:’,2X,I3,/,1X,
#?PRESSURE RELAXATION PARAMETER:’,6X,E10.4,/,1X,
#’SOLUTE RELAXATION PARAMETER:’,9X,E10.4,/,1X,
#MAXIMUM DESIRED GRID PECLET NUMBER:’,1X,E10.4)
WRITE(6,608) IMAX,TFACT,COUR,THETA
608 FORMAT(/,1X,’MAXIMUM NUMBER OF TIME STEPS:’,2X,I6,/,1X,
#°TIME STEP ACCELERATION FACTOR:’,6X,E10.4,/,1X,
#'INITIAL COURANT NUMBER:’,14%,E10.4,/,1X,
#'SEMI-IMPLICIT PARAMETER THETA:’,7X,E10.4)
WRITE(6,602)
PIC1=PIDC1*PREF
PIV1=PIDV1*PREF
PIM1=PIDM1*PREF
PIC2=PIDC2*PREF
PIV2=PIDV2*PREF
PIM2=PIDM2*PREF

WRITE(6,609) AL,YL,CC1,CV1i,CM1,CC2,CV2,CH2,
#PC,PV,PM,PIC1,PIV1,PIM1,PIC2,PIV2,PIN2,AK
609 FORMAT(1X,’3. DIMENSIONAL INPUT PARAMETERS:’,//,1X,
#'TISSUE X-DIMENSION (CH):’,21X,E10.4,/,1X,
#'TISSUE Y-DIMENSION (CM):’,21X,E10.4,/,1X,

#'CAP.
#'VEN.
#'MES.
#7CAP.
#'VEN.
#7MES.
#7CAP.
#VEN.
#'MES.

“#7CAP.

Nl

PROTEIN1 CONC. (GRAMS/DL):’,14X,E10.4,/,1X,
PROTEIN1 CONC. (GRAMS/DL):’,14X,E10.4,/,1X,
PROTEIN1 COEC. (GRAMS/DL):’,14X,E10.4,/,1X,
PROTEIN2 CONC. (GRAMS/DL):’,14X,E10.4,/,1X,
PROTEIE2 CONC. (GRAMS/DL):’,14X,E10.4,/,1X,
PROTEIN2 CONC. (GRAMS/DL):’,14X,E10.4,/,1X,

DYN. PRESSURE (DYN/CM#*%2):?, 14x E10. 4, / 1X,
DYN. PRESSURE (DYN/CHM*%2):’,14X,E10.4,/,1X,
DYN. PRESSURE (DYN/CH**Z):’,14X,E10.4,/,1X,
OSM1. PRESSURE (DYN/CM*%2):?,14X,E10.4,/,1X,
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#'VEN. OSM1. PRESSURE (DYN/CM=+2):’,14X,E10.4,/,1X,
#'MES. OSM1. PRESSURE (DYK/CM=+2):’,14X,E10.4,/,1X,
#'CAP. OSM2. PRESSURE (DYN/CH=+2):’,14X,E10.4,/,1X,
#'VEN. OSM2. PRESSURE (DYN/CM=+2):’,14X,E10.4,/,1X,
#’MES. 0OSM2. PRESSURE (DYN/CH=+2):’,14X,E10.4,/,1X,
#'TISSUE FLUID CONDUCTIVITY (CM**4/(DYN-SEC):’,2X,E10.4)
WRITE(6,610) DEFF1,DEFF2
610 FORMAT(1X,
#'TISSUE SOLUTE1 DIFFUSIVITY (CM**2/SEC):’,7X,E10.4,/,1X,
#'TISSUE SOLUTE2 DIFFUSIVITY (CM*#2/SEC):’,7X,E10.4)
#§§§§§§6,611) CONC,CONV,COKM,PERMC1, PERMV1, PERMM1,PERMC2 , PERMV2,
611 FORMAT(1X,’CAP. CONDUCTIVITY (CM*+3/(DYN-S));’,11X,E10.4,/,1X,
#'VEN. CONDUCTIVITY (CM++3/(DY§-S)):’,11X,E10.4,/,1X,
#'MES. CONDUCTIVITY (CM#+3/(DYN-S)):’,11X,E10.4,/,1X,
#’CAP. PERMEABILITY 1 (CM/S):?,21X,E10.4,/,1X,
#'VEN. PERMEABILITY 1 (CM/S):7,21X,E10.4,/,1X,
#'MES. PERMEABILITY 1 (CM/S):?,21X,E10.4,/,1X,
#'CAP. PERMEABILITY 2 (CM/S):*,21X,E10.4,/,1X,
#'VEN. PERMEABILITY 2 (CM/S):’,21X,E10.4,/,1X,
#'MES. PERMEABILITY 2 (CM/S):’,21X,E10.4)
WRITE(6,602)
WRITE(6,612) SIGT1,RET1,BETA!,ALPHL1,SIGT2,RET2,BETA2,ALPHL?
612 FORMAT(1iX,’'DIMENSIONLESS INPUT PARAMETERS:’,//,1X,
# TISSUE REFLECTION COEFFICIENT 1:’,15X,E10.4,/,
#1X, ’RETARDATION FACTOR 1:’,26%,E10.4,/,1X,
#'HYDRAULIC CONDUCTIVITY RATIO, BETA1:’,15X,E10.4,/,1X,
#'DIMENSIONLESS DISPERSIVITY 1:’,21X,E10.4,/,1X,
#'TISSUE REFLECTION COEFFICIENT 2:’,15X,E10.4,/,
#1X, RETARDATION FACTOR 2:',26X,E10.4,/,1X,
# HYDRAULIC CONDUCTIVITY RATIO, BETA2:’,15X,E10.4,/,1X,
#’DIMENSIONLESS DISPERSIVITY 2:’,21X,E10.4)
WRITE(6,613)PDC,PIDC1,PIDC2,PDV,PIDV1,PIDV2,PDM,PIDN1,PIDM2
613 FORMAT(//,1X,
#’PRESSURE: ’,6X, 'DYNAMIC?,5X, *0SMOTIC1’,5X, ?OSMOTIC2?,
#//,1X,’CAPILLARY:* ,5X, E10.4,2X,E10.4,2X,E10.4,
#/,1X,VENULE:’,8X,E10.4,2%,E10.4,2X,E10.4,/,1X, "MESOTHELIUM: ’,
#3X,E10.4,2X,E10.4,2X,E10.4,//)
WRITE(6,614)CDC1,CDC2,CDV1,CDV2,CDM1,CDM2
614 FORMAT(1X,’CONCENTRATICHS: PROTEINi  PROTEIN2’,
#//,1X,'CAPILLARY:’,6X,E10.4,1X,E10.4,/,1X,
#’VENULE:’,10X,E10.4,1X,E10.4,/,1X, "MESOTHELIUM: * ,2(1%,E10.4) ,//)
WRITE(6,615)SIGCt,SIGC2,SIGV1,SIGV2,SIGH1,SIGM2
615 FORMAT(1iX,’REFLECTION COEFFICIENTS: PROTEIN1  PROTEIN2’,

NN - s

#//,1X,?CAPILLARY:? ,15X,E10.4,1X,E10.4,/,1X, "VENULE:’ , 19X,
#E10.4,1X,E10.4,/,1X, ’MESOTEELIUM: ’,13X,E10.4,1X,E10.4,//)
WRITE(6,616)DLC,DLV,DLY
616 FORMAT(1iX,’VESSEL FLUID CONDUCTANCES:’,//,1X,’CAPILLARY:’,5X,
#E10.4,/,1X,’VENULE:’,9%,E10.4,/,1X, 'MESOTHELIUM: ’ ,1X,E10.4,//)
WRITE(6,617)A1,B1,C1,42,B2,C2
617 FORMAT(1X,’VIRIAL COEFFICIEETS:’,//,1X,’Al1:’,1X,E10.4,/,1X,
#'B1:’,1X,E10.4,/,1X,’C1:’,1%,E10.4,/,1X, ’A2:’,1X,E10.4,/,1X,
#'B2:’,1Y,E10.4,/,1X,°C2:?,1X,E10.4,//)
WRITE(6,618)DDC1,DDC2,DDV1,DDV2,DDM1,DDH2
618 FORMAT(1X,’VESSEL SOLUTE PEEMEABILITIES: PROTEIN1  PROTEIN2’
#,//,1X,?CAPILLARY:?,19%,E10.4,1X,E10.4,/,1X, "VENULE’ ,22%,E10.4,
#1X,E10.4,/,1X, ’MESOTHEELIUK:’,17X,E10.4,1X,E10.4,//)
WRITE(6,619)PHIT,PHI1,PHI2,PEIS
619 FORMAT(1X,’TOTAL TISSUE FLUID VOLUME FRACTION:’,2X,E10.4,/,1X,
#’SOLUTE 1 DISTRIBUTIOF VOLU¥E FRACTIOH:’,1X,E10.4,/,1X,
#'SOLUTE 2 DISTRIBUTIOE VOLUME FRACTION:’,1X,E10.4,/,1Z,
#'TOTAL SOLIDS VOLUME FRACTION:’,8X,E10.4,///)
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[elele} AN QO

[eleleigiely]

anaa

aaon

aoOn OoOaan

999

100

THETAM=1.DO-THETA
TIME1=DTIME1(1)
IFLAG=0

ESTABLISH THE GRID
CALL GRID(NEX)
INITIALIZE FLUID VECTOR ARD T VECTOR

CALL SETMAT(NEX,0,PE1,IE1,VELMX1,PE2,IE2,VELMX2)
CALL SETMAT(NEX,3,PE1,IE1,VELMX1,PE2,IE2,VELMX2)

ADJUST FLUID VECTOR TO FIT BOUNDARY CONDITIOKNS

CALL ASTAR(NEX,0)
CALL VSTAR(NEX,0)

CALCULATE THE SOLUTE VECTORS FROM THE STEADY-STATE DATA. THESE
WILL SERVE TO GIVE A FIRST ESTIMATE OF THE CONCERTRATION AT
THE NEXT TIME-STEP BY USING A FULLY EXPLICIT FORM TO BEGIN

THE SIMULATION.

CALL SETMAT(NWEX,2,PE1,IE1,VELMX1,PE2,IE2,VELMX2)
CALL PATART§NEX)

CALL PATVEN(NEX)

PEC1=PE1

PEC2=PE2

IPEC1=IE1

IPEC2=1E2

DMX1=DISMX1

DMX2=DISMX2

ID1=IDISP1

ID2=IDISP2

VMAX=VELMX2

IF(VELMX1.GT.VELMX2) VMAX=VELMX1
DELT=COUR/VMAX

SET TEE SOLDT1, SOLDT2, SBOLDi, AND SBOLD2 VECTORS EQUAL
TO THE STEADY-STATE VECTORS ABOVE

DO 4 I=1,NDIH

SOLDT1513=SOL1§I§
SOLDT2(1I)=S0L2(1
CONTINUE

DO 5 I=1,NP
SBOLD1§I§=SOLBI(I)
SBOLD2(I)=SOLB2(I)
CONTINUE

CHECK THAT THE MAXIMUM NUMBER OF TIHE STEPS HAS KOT BEEH
EXCEEDED

ICOUNT=0
TIME=0
ITSOL=1

ENTER ITERATIOH LOOP, CHECK COUNTER VALUE

ICOUNT=ICOUNT+1
DETERMIRE THE TOTAL ELAPSED TIME

NITER=0

DTINV=1.DO/DELT
TIME=TIME+1.DO/DTINV
IF(ICOUNT.GT.IHAX) GO TO 900
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ana

anan

200

A aoaon

aonooaan

[elekele!

IF(TIME.GT.TIMMAX)GO TO 910

DO 6 I=1,NDIM
TDT1§I;=T§I§*PHII*DTINV
TDT2(I)=T(I1)+PEI2*DTINV
CONTINUE

DETERMINE THE AS AND BS VECTORS FOR THE EXPLICIT SCHEME

CALL MATPLY(TDT1,1.DO,COLDT1,TCOLD1,N)
CALL MATPLY(TDT2,1.DO,COLDT2,TCOLD2,N)
CALL MATPLY(SOLDT1,1.DO,COLDT1,SCOLD1,K)
CALL MATPLY(SOLDT2,1.D0,COLDT2,SCOLD2,N)

DO 7 I=1,N
BCTIMI§I§=TCOLDIEI§+SBOLD1(I;—SCOLDIEI;
BCTIM2(I)=TCALD2(I)+SBOLD2(I)-SCOLD2(I
CORTINUE

DETERMINE THE INITIAL GUESS FOR CHNE¥, UPDATING NITER

NITER=NITER+1
EP=EPS
IF(HNITER.GT.ITMAX)GO TO 901

DETERMINE WHETHER THIS IS THE FIRST PASS, AND HEKNCE
USE THE FULLY EXPLICIT SCHEME FOR THE SOLUTE TRANSPORT

- EQUATIONS. I¥ THE CASE OF SUBSEQUENT PASSES, USE THE

SEHI-IMPLICIT SCHEME

IF(NITER.EQ.1) CALL DGBAND(TDT1,BCTIM1,N,LUB,LUB,1,IPERM1,DET,
#JEXP,HOLD1,RES1,ITER,EP)

EP=EPS

IF(NITER.EQ.1) CALL DGBAND(TDT2,BCTIM2,N,LUB,LUB,1,IPERM2,DET,
#JEXP ,HOLD2,RES2,ITER,EP)

IF(NITER.GT.1) CALL DGBAND(STNEW1,BCTIM{,N,LUB,LUB,1,IPERM1,DET,
#%%XgéEOLDl,RESI,ITER,EP)

IF(NITER.GT.1) CALL DGBAND(STNEW2,BCTIM2,K,LUB,LUB,1,IPERM2,DET,

- #JEXP,HOLD2,RES2,ITER,EP)

DETERMINE THE MAXIMUM CHARGE IN C1 AND C2 FROM ONE ITERATION
TO THE NEXT USING A RELAXATION PROCEDURE. CDIFMX WILL BE
COHMPARED TO TOLC TO ESTABLISH CONVERGENCE FOR TIME STEP ICOUNT

CHAX1=0.DO

CHMAX2=0.DO

CDMX1=0.D0

CDMX2=0.D0

DO 8 I=1,N

IF(DABS(BCTIM1(I)).GT.CMAX1) CMAX1=DABS(BCTIM1(I))
TEST1=DABS(BCTIM1(I)-COLD1(I))

IF(TEST1.GT.CDMX1) CDMX1=TEST1
COLD1(I)=0MEGAC*(BCTIM1(I)~COLD1(I))+COLD1(I)
IF(DABS(BCTIK2(I)).GT.CMAX2) CMAX2=DABS(BCTIN2(I))
TEST2=DABS (BCTIM2(I)-COLD2(I))

IF(TEST2.GT.CDMX2) CDMX2=TEST2

COLD2 (I )=0MEGAC*(BCTIM2(I)-COLD2(I))+COLD2(I)
CONTINUE

CDHX1=CDMX1/CMAX1

CDMX2=CDHX2/CHAX2

ROW INITIALIZE THE FLUID B VECTOR AND SOLVE FOR THE PRESSURE
DISTRIBUTION AT THIS NEW TIME STEP

CLLL SETMAT(NEX,1,PE1,IE1,VELMX1,PE2,IE2,VELMX2)
CALL ASTAR(NEX,1)
CALL VSTAR(NEX,1)
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EP=EPS

CALL DGBND1(FLUID,FLUIDB,N,LUB,LUB,ITSOL,IPERM3,DET,JEXP,
#HOLD3,RES3,ITER,EP)

ITSOL=ITSOL+1

CHECK TO SEE IF THE SOLUTION HAS CONVERGED

PMAX=0.D0

PDIFMX=0.D0

DO 9 I=1,K

IF(DABS(FLUIDB(I)).GT.PMAxg PMAX=DABS (FLUIDB(I))
TEST=DABS (FLUIDB(I)-POLD(I))

IF(TEST.GT.PDIFMX) PDIFMX=TEST
POLD(I)=0MEGAF*(FLUIDB(I)-POLD(I))+POLD(I)

CONTINUE
PDIFMX=PDIFHMX/PHMAX
CHECK FOR CORVERGENCE

IF(PDIFMX.GT.TOLP)GO TO 300
IF(CDHX1.GT.TOLC;GO TO 300
IF(CDMX2.LT.TOLC)GO TO 301

RESET THE SOLUTE MATRICES, SET THE NECESSARY VECTORS FOR THE
SEMI-IMPLICIT SCHEME

300 CALL SETMAT(NEX,2,PE1,IE1,VELMX1,PE2,IE2,VELMX2)
CALL PATARTgNEXg
CALL PATVEN(NEX
PEC1=PE1
PEC2=PE2
IEL1=IE1
IEL2=1E2
COUR1=VELMX1*DELT
COUR2=VELMX2*DELT
DMX1=DISMX1
DMX2=DISHX2
IDi=IDISP1

ana

aan

anan

ID2=IDISP2

. DO 10 I=1,N
BCTTM1(I) =THETA#*SOLB1(I)+TCOLD1(I)+THETAM*SBOLD1(I)-
THETAM*SCOLD1(I)
BCTIMZ(I)-THETA*SOLB2(I)+TCOLD2(I)+THETAM*SBOLD2(I)-
THETAM*SCOLD2(I)
10 COHTINUE

DO 11 I=1,NDIM

STHEHIglg=TEI;*PHI1*DTINV+THETA*SOL1§I;

STREW2(I)=T(I)*PHI2*DTINV+THETA*SOL2(I
11 CORTINUE

GO TO 200

RESET MATRICES FOR NEXT TIME STEP

301 DO 12 I=1,N
SBOLDlgI =S0LB1(I
SBOLD2(I)=SOLB2(I
COLDTléI =COLD1(I
COLDT2(I)=COLD2(I

12 COHTINUE

DO 13 I=1,NDIM

SDLDTlEIg=SOL1(I§

SOLDT2(I)=S0L2(1
13 CONTINUE

DETERMINE IF THE SOLUTION SHOULD BE PRINTED OUT. IF DELT
HAS BEEKN SET TO (TIME1-TIME), RESET DELT TO DTEOLD, I.E.,

aaon

[eXele]
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400

800

620

621

622
14

702
15

623

624

TO THE LAST VALUE OF DELT BEFORE SETTING IT TO TIME1-TIME.

IF(IFLAG.EQ.0)GO TO 400

DELT=DTHOLD

JFLAG=0

DELT=DELT*TFACT
IFgDABSéTIME—TIMEl;.LT.TTOL;GO TO 800
IF(DABS(TIME-TIME1).GT.DELT)GO TO 100
DTHOLD=DELT

IFLAG=1
DELT=DABS(TIME-TIME1)
GO TO 100

PRINT OUT THE SOLUTION AT TIME1 TO DEVICE 6 AND 7

WRITE(6,602)

WRITE(6,620) ICOUNT,TIME,NITER,COUR1,PEC1,IEL1,DMX1,ID1,COUR2,
# PEC2,IEL2,DMX2,ID2

FORMAT(//,1X,’NUMBER OF TIME STEPS:’,I7,1X,/,1X,
#REPRESENTING A CUMNULATIVE TIME OF °,F10.7,/,1X,
#'NUMBER OF ITERATIONS REQUIRED FOR CONVERGENCE:’,1X,I4,/,1X,
#’MAXIMUM COURANT NUMBER FOR SOLUTE 1:’,1X,F10.7,/,1X,
#’MAXIMUM GRID PECLET NUMBER FOR SOLUTE 1:’,1X,F10.7,1X,
#’AT ELEMENT’,1X,I14,/,1X,
#'MAXTMUM DISPERSION COEFFICIENT FOR SOLUTE 1:’,1X,F10.7,1X,
#'AT ELEMENT’, 1X,I4,/,1X,

#'MAXTMUM COURART NUMBER FOR SOLUTE 2:7,1%,F10.7,/,1X,
#’MAXIMUM GRID PECLET NUHBER FOR SOLUTE 2:°,1X,F10.7,1X,
#’AT ELEMENT’,1X,I14,/,1
# MAXINUM DISPERSIOHN COEFFICIENT FOR SOLUTE 2:’,1X,F10.7,1X,
#’AT ELEMENT’, 1X,I4)

WRITE(6,621)

FORMAT(//,1X,’X POSITIOR’,2X,’DYN. PRESS?,2X,’0SM. PRESS’,2X,
#?AVAIL. CONC1’,2X,’TOTAL CONC1?,2X,?AVAIL. CONC2?,2X,

#'TOTAL CONC2°,//)

X=0.DO

DO 14 I=1,N

X=X+DX(I)

PI= COLDl(Ig*(A1+COLD1(I§ $B1+COLD1(I;*C1§§
# +COLD2(I)#*(A2+COLD2(I)*(B2+COLD2(I)*C2
CON1=COLD1§Ig*PHIi/21.DO-PHIS)
CON2=COLD2(I)+*PHI2/(1.DO~PHIS)

WRITE OUT PROFILE DATA TO DEVICES 6 AND 7

WRITE(6,622) X,POLD(I),PI,COLD1(I),CON1,COLD2(I),CON2
WRITE(7,622) X,POLD(I),PI,COLD1(I),CON1,COLD2(I),CON2
FORMAT(1X,E9.3,6(2X,E10.4))

CONTIRUE

WRITE OUT MESOTHELIAL FLUX DATA TO DEVICE 7

CALL MASBAL(NEX)

DO 15 I=1,NEX

12=2%1

X=XN0OD(12)

WRITE(7,702) X,QFM1(I),QSM11(I),QCM11(I),QSM12(I),QCH12(I)
FORMAT(6(2X E10.4))

CONTINUE

WRITE(6,623)

FORMAT(®1°,//,1X,?MASS BALAKCE DATA’///)
WRITE(6,624)

FORMAT(///,1X,’NET DIMENSIONLESS FLUID FLOWS’)
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WRITE(6,625) QFC,QFV,QFM
625 FORMAT(//,1X,’ART:’,1X,E12.4,/,1X,’VEN:?,
#E12.4,/,1%,7MES:?,1X,E12.4)
VRITE(6,626)
626 FORMAT(///,1X,’NET DIMERSIONLESS SOLUTE FLOWS: SOLUTE1’)
WRITE(6,625)QSC1,QSV1,QSM1
WRITE(6,627)
627 FORMAT(//,1X,’CONVECTIVE COMPONENTS OF DIMENSIONLESS SOLUTE
#FLOWS: SOLUTE1’)
WRITE(6,625) QCC1,QCV1,QCHM1

¥RITE(S6,628)

628 FORMAT(///,1X,’FET DIMENSIONLESS SOLUTE FLOWS: SOLUTE2’)
WRITE(6,625)QSC2,QSV2,QSH2
WRITE(6,629) _

629 FORMAT(//,1X,’COEVECTIVE COMPONENTS OF DIMENSIONLESS SOLUTE
#FLOWS: SOLUTE2?)
WRITE(6,625) QCC2,QCV2,QCH2

WRITE(6,630)
630 FORMAT(//,1X,
#RATIO OF CONV. TO DIFFUS. FLUXES AT BOUNDARIES: SOLUTE 1?)
IF(DABS(QSC1-QCC1).LT.1.D-9) THEN
PECC1=999.999D0
ELSE
PECC1=QCC1/(QsSC1-Qcc1)
ENDIF

IF(DABS(QSV1-QCV1i).LT.1.D-9) THEH
PECV1=999.999D0

ELSE
PECV1=QCV1/(QsSV1-QCVi)
ENDIF

IF(DABS{QSM1-QCK1).LT.1.D-9) THEHN
PECM1=899.999D0

ELSE

PECH1=QCM1/(QSM1~-QCHM1)

ENDIF

WRITE(6,625) PECC1,PECV1,PECH1

WRITE(6,631)
631 FORMAT(//,1X,
#’RATIC OF CONV. TO DIFFUS. FLUXES AT BOUNDARIES: SOLUTE 27)
IF(DABS(QSC2-QCC2).LT.1.D-9) THEN
PECC2=999.999D0
ELSE
PECC2=QCC2/(QSC2-QCC2)
ENDIF

IF(DABS(QSV2-QCV2).LT.1.D-9) THEN
PECV2=998.999D0

ELSE -
PECV2=QCV2/(QSV2-QCV2)

ENDIF

IF(DABS(QSM2-QCM2) .LT.1.D-9) THEN
PECHM2=999 . 999D0

ELSE

PECM2=QCM2/ (QSK2-QCH2)

EXDIF

WRITE(6,625) PECC2,PECV2,PECH2-
TIME1=TIME1+DTIME1 (KK)

=KK+1
YRITE(6,602)
GO TO 100

MAXIMUM NUMBER OF ITERATIONS REACHED. PRINT OUT WARNIKG.

901 ICOUNT=ICOUNT-1
NITER=NITER-1



Appendix D. Program Listings 345

WRITE(6,632) HRITER,TIME,ICOUNT
632 FORMAT(//,1X,’WARNING. CONVERGENCE CRITERIA NOT MET AFTER’,
#1X,16,1X,’ ITERATIONS?,/,1X,
#'TIME OF FAILURE:’,1X,F10.6,3X,
#'NUMBER OF SUCCESSFUL TIME STEPS BEFORE FAILURE:?,1X,I7)

WRITE(6,633) PDIFMX,CDMX1,CDMX2
633 FORMAT(//,1X,’MAX. FRAC. CHANGE IR P’,2X,
#'MAX. FRAC. CHANGE IN C1’,2X,
#’MAX. FRAC. CHANGE IN C27,
#//,6X,E9.4,14X,E9.4,14X,E9.4,//)
WRITE(6,634) PEC1,IEL1,COUR1,PEC2,IEL2,COUR2
634 FORMAT(1X,’MAXIMUM GRID PECLET KUMBER FOR SOLUTE 1:’,1X,F7.4,
#' AT ELEMENT °,I5,/,1X,’COURANT HUMBER FOR SOLUTE 1:’,1X,F10.7,
#/,1X,’MAXIMUM GRID PECLET NUMBER FOR SOLUTE 2:°,1X,F7.4,
#éOA%DEgggEHT »,15,/,1X,°COURANT NUMBER FOR SOLUTE 2:',1X,F10.7)
900 WRITE(6,635) TIME
635 FORMAT(//,1X,’MAXIMUM NUMBER OF TIME STEPS ACHEIVED AT TIME’,
#£10.4)
GO TQ 920
910 WRITE(6,636) TIMMAX,ICOUNT
636 FORMAT(//,1X,’MAXIMUM TIME OF ’,E10.4,1X,’EXCEEDED AFTER °’,
#17,° TIME STEPS’)
920 STOP
END

SUBROUTINE MASBAL(NEX)
C THIS SUBROUTINE PERFORMS A MATERIAL BALANCE ON THE SYSTEM FOR

C BOTH FLUID AND PLASMA PROTEINS.

IMPLICIT REAL*8(A-H,0-Z)
COMMON/MATBAL/QFC,QCC1,QSC1,QCC2,Q5C2,QFV,QCV1,QSV1,QCV2,Q5V2,

#QFM,QCM1,QSM1,QCHM2,QSM2,QFM1(500) ,QCM11(500),QSM11(500),

#QCM12(500) ,QSM12(500)

COMMON/0LD/POLD(1001) ,COLD1(1001) ,COLD2(1001)
COMMON/BLK1/NODEL(500,3) ,XNOD(1001)
COMMON/OSMOT/A1,B1,C1,A2,B2,C2

. COMMON/TISDAT/AK,DEFF1,AL1,PHI1,PHIT,RET1,SIGT1,BETAL,

# DEFF2,AL2,PHI2,RET2,SIGT2,BETA2
COMMON/CAPDAT/PC,CREF
COMMON/WALL/DLC,DLV,DLM,DDC1,DDV1,DDM1,PDC,PDV,PDK,PIDCT,PIDVY,

#PIDM1,PIDC2,PIDV2,PIDM2,5IGC1,SIGV1,SIGH1,CDC1,CDV1,CDH1,DE,

# DDC2,DDV2,DDM2,S16C2,SIGV2,SIGH2,CDC2,CDV2,CDM2
DIMENSION GAUS(4),W(4),B(3)

DATA NGAUS/4/
DATA W/.347854845137454D0, .652145154862546D0,

#.652145154862546D0, . 347854845137454D0/

DATA GAUS/-.861136311594053D0,-.339981043584856D0,

#.339981043584856D0, .861136311594053D0/

C
C FIRST, CALCULATE THE NET FLOWS ACROSS THE ARTERIOLAR WALL
C

PIC1=COLD1(1§*$A1+COLD1 1)*(B1+COLD1(1§*C1§ ‘
PIC2=COLD2(1)#*(42+COLD2(1)*(B2+COLD2(1)*C2
QFC=DH*AK*PC/DEFF1*DLC*(POLD(1)-PDC-SIGC1*(PIC1-PIDC1)-
# SIGC2*(PIC2-PIDC2))
QCC1=BETA1*QFC*COLD1(1)*RET1
QCC2=BETA2*QFC*COLD2(1)*RET2
PECC1=(1.D0-SIGC1)*QFC/(DDC1*DH)
IF(PECC1.GT.100.D0)GO TO 110
IF(PECC1.LT.-100.DO)G0 TO 120
TEST=1.DO-DEXP(-PECC1)
IF(DABS(TEST).LT.1.D-10)G0 TGO 130 _
Q5C1=(1.D0-SIGC1)*QFC*(COLD1(1)-CDC1*DEXP(-PECC1))/TEST
GO TO 101
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110
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130
101

111
121
131

200

210
220
230
201

211
221
231

300

0SC1=QFC*(1.D0-SIGC1)*COLD1(1)
GO TO 101
QSC1=(1.D0-SIGC1)*CDC1*QFC

GO TO 101
QSC1=DH+DDC1#*(COLD1(1)-CDC1)

PECC2=(1.D0-SIGC2)*QFC/(DDC2*DH)
IF(PECC2.GT.100.D0)G0 TO 111
IF(PECC2.LT.—100.DO)G0 TO 121
TEST=1.DO~DEXP(~-PECC2)
IF(DABS(TEST).LT.1.D-10)GO TO 131
0SC2=(1.D0-SIGC2)*QFC*(COLD2(1)~CDC2+DEXP(-PECC2) ) /TEST
GO TO 200
QSC2=QFC*(1.DO—SIGC2)*COLD2(1)

GO TO 200

Qsc2= (1 D0-SIGC2)*CDC2*QFC

G0 TO

QSC2—DH*DDC2*(COLD2(1) cDC2)

HOW FOR THE VENULAR WALL

N=NEX*2+1
PIV1=COLD1gNg*€A1+CDLD1(N§*€81+COLD1§H3*C1§§
PIV2=COLD2(N)*(A2+COLD2(N)*(B2+COLD2(HN)*C2
QFV=DH*AK+PC/DEFF1*DLV*{POLD (N)-PDV-SIGV1ix(PIV1-PIDV1) -
# SIGV2*(PIV2-PIDV2))
QCV1=BETA1*QFV*COLD1(N)*RET1
QCV2=BETA2*QFV*COLD2(N)*RET2
PECV1=(1.D0-SIGV1)*QFV/(DDV1*DH)
IF(PECV1.GT.100.D0)GO TO 210
IF(PECV1.LT.-100.D0)GO TO 220
TEST=1.D0-DEXP(-PECV1)
IF(DABS(TEST).LT.1.D-10)G0 TO
ggv% (édDO SIGVl)*QFV*(COLDl(N) CDV1*DEXP(-P¢CV1))/TEST
Qsvi= QFV*(l DO-SIGV1)*COLD1(N)
GO TO 201
QSV1=(1.D0-SIGV1)*CDV1+QFV
GO TO 201
QSV1=DH+DDV1+*(COLD1(KN)~-CDV1)

PECV2=(1.D0-SIGV2)*QFV/(DDV2*DH)
.IFEPECV2.GT.100.DO)G0 TO 211

IF(PECV2.LT.~100.D0)G0 TO 221
TEST=1.D0O-DEXP(-PECV2)
IF(DABS(TEST).LT.1.D-10)G0 TO 231
ggv%z(%bgP-SIGV2)*QFV*(COLD2(N)—CDV2*DEXP(—?ECV2))/TEST

QSV2=QFV*(1.D0-SIGV2)*COLD2(N)
GO TO 300
QSv2=(1.D0-SIGV2)*CDV2*QFV

GO TO 300
QSV2=DH*DDV2x*(COLD2(N)-CDV2)

LND FINALLY, THE MESOTHELIAL LAYER
CONSIDER THE MESOTHELIAL WALL, ELEMERT BY ELEMERT.

0SH1=0.DO
QCH1=0.DO
QSM2=0.D0

QCM2=0.DO
QF¥=0.D0

DO 400 I=1,NEX
QSM11(I)=0.DO
OFM1(1)=0.DO
QCH11(I)=0.DO
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410
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QsM12(1)=0.D0
QCH12(I)=0.D0
CONTINUE

DO 1 II=1,NGAUS
S=GAUS(II)
DO 2 I=1,KEX
X1=XNOD(NODEL(I,1))
X2=XKOD(KODEL(I,2))
X3=XNOD(NODEL(I,3))
S2=(2.D0*X2~(X1+X3))/(X3-X1)

B(1)=(S-52)*(S-1.D0)/(2.D0*(S2+1.D0))
B(2§=§S+1.Dog*és—l.DO)/(S2*52—1.DO)
B(3)=(S+1.D0)*(5-52)/(2.D0*(1.D0-52))

DX=(X3-X1)*.5D0
CALCULATE c€(S), PI(S), AND P(S)

€S1=0.D0

€S2=0.D0

PS=0.D0

DO 3 IT=1,3

€S1=CS1+COLD1 (NODEL(I,IT))*B(IT)
€S2=CS2+COLD2(NODEL(I,IT))*B(IT)
PS=PS+POLD (NODEL(I,IT))+*B(IT)
CONTINUE
pIs1=c51*gA1+cs1*§31+c51*c1gg
PIS2=CS2#(A2+CS2+(B2+CS2+C2

CALCULATE THE FLUXES

FLOW=AK*PC/DEFF1+DLM* (PS-PDM—-SIGM1+(PIS1-PIDH1)
— SIGM2*(PIS2-PIDM2))*W(II)*DX
QFM=QFM+FLOW
QFM1(I)=QFM1(I)+FLOW/(%3-X1)
QCM1=QCM1+FLOW*CS1+BETA14RET1
QCM2=QCM2+FLOW*CS2+BETA2+RET2
'QCM11(I)=QCM11(I)+FLOW*CS1*BETA1/(X3-X1)+RET1
QCM12(I)=QCM12(I)+FLOW*CS2*BETAL2/ (X3-X1) #+RET2

. DETERMINE WHICH FORM OF THE HOKLIE=:Z FLUX EQK. IS TO BE USED.

QS=FLOW/(W(II)*DX)
PECM1=QS*(1.DO-SIGM1)/DDH1
IF%PECMI.GT.lOO.DO)GO TO 410
IF(PECM1.LT.-100.D0)GO_ TO 420
TESTM=1.DO-DEXP(-PECM1)
IF(DABS(TESTH).LT.1.D-10)GO TO 430

USE THE FULL EXPRESSION

SFLOW1=FLOW*{1.D0-SIGM1)#*(CS1-CDM1*DEXP(-PECH1))/TESTH
QSM1=QSHM1+SFLOW1

QSM11(I)=0QSH11(I)+SFLOW1/(X3-X1)

GO TD 500

SFLOW1=FLOW*(1.DO-SIGHK1)*CS1
QSM1=QSH1+SFLOW1
QSH11(I)=QSM11(I)+SFLOW1/(X3-X1)}
GO TO 500

SFLOW1=FLOW*(1.DO~SIGM1)=*CDM1
QSM1=QSM1+SFLOW1
QSM11(I)=QSM11(I)+SFLOW1/(X3-11)
GO TO 500

SFLOW1=DDH1*(CS1-CDM1)*DX*W(IT)
QSM1=QSM1+SFLOW1

347
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QSM11(I)=QSM11(I)+SFLOW1/(X3-X1)

500 PECM2=0QS*(1.D0-SIGM2) /DDM2
IFEPECM2.GT.100.DO)GU TO 510
IF(PECM2.LT.-100.D0)GO  TO 520
TESTM=1.D0-DEXP (~PECH2)
IF(DABS{TESTM).LT.1.D-10)G0O TO 530

C .

g USE THE FULL EXPRESSION
SFLOW2=FLOW#(1.D0-SIGM2)*(CS2-CDM2*DEXP (-PECH2) ) /TESTH
QSM2=QSM2+SFLOW2
QSM12(I)=QSM12(I)+SFLO¥2/(X3-X1)

c GO TO 2

510 SFLOW2=FLOW*(1.D0O-SIGH2)*CS2
QSM2=QSM2+SFLOW2
QSM12(I)=QSM12(I)+SFLOW2/(X3-X1)
GO TO 2

C

520 SFLOW2=FLOW# (1 .D0-SIGM2) *CDH2
QSM2=(QSM2+SFLOW2
QSM12(I)=QSM12(I)+SFLO¥2/(X3-X1)
GO TO 2

C .

530 . SFLOW2=DDM2*(CS2-CDM2)*DX*¥(II)
QSM2=QSM2+SFLOW2
QSM12(I)=QSM12(I)+SFLOW2/(X3-X1)

C

2 CONTINUE

1 CONTINUE

RETURN
END
SUBROUTINE GRID(NEX)

c

C THIS SUBROUTINE CALCULATES THE SPATIAL LOCATION OF THE NODES

C FOR EACH ELEMENT, ALONG WITE THE NODES ASSOCIATED VITE A

g GIVEN ELEMENT.

IMPLICIT REAL#*8(A-H,0-Z)
- COMMON/BLK1/NODEL(500,3), XNOD(i001)

c COMMON/BLK2/DX(1001)

K=1

DO 1 I=1,NEX
NODEL(I,1)=K
NODEL(I,2)=K+1
NODEL(I,3)=K+2
K=K+2

1 CONTINUE

X=0.DO
NP=2*NEX+1
DO 2 I=1,KP
X=X+DX(I)
XHOD(I)=X

2 CONTIHUE
RETURN
END

SUBROUTINE VSTAR(NEX,IND)

THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO ACCCUNT FOR THE
STARLING BOUNDARY CONDITIOE AT THE VERULAR WALL.

IMPLICIT REAL#*8(A-H,0-2)
COMMON/BLK1/NODEL(500,3), XNOD(1001)
COMMON/FLUMAT/AF (20000)

aononn O
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100

900

anaon

900

100

COMMON/FLUB/BF (1001)
COMMON/OLD/POLD(1001) ,COLD1(1001),COLD2(1001)
COMMON/WALL/DLC,DLV,DLM,DDC1,DDV1,DDM1,PDC,PDV,PDN,PIDC1,PIDVI,

#PIDM1,PIDC2,PIDV2,PIDM2,SIGC1,SIGV1,SIGM1,CDC1,CDV1,CDM1,DH,
# bDC2,DDV2,DDM2,SIGC2,SIGV2,SIGH2,CDC2,CDV2,CDM2
COMMON/0SMOT/A1,B1,C1,A2,B2,C2

M=NEX*2+1

LUB=2

LP=3*LUB

IF(IND.EQ.1)GO TO 100

K=LP*M+M-LUB

AF(K)=AF(K)+ DLV

GO TO 800

PIi=COLD1EH§*§A1+COLD1gMg*§B1+COLD1EM *Cigg
PI2=COLD2(M)*(A2+COLD2(M)*(B2+COLD2(M)*C2
BF(M)=BF(M)+DLV+(PDV+SIGV1*(PI1-PIDV1)+SIGV2*(PI2-PIDV2))
RETURN

#
#

END
SUBROUTINE ASTAR(NEX,IND)

THIS SUBROUTINE ADJUSTS THE AF AND BF VECTORS TO ACCOUET FOR THE

STARLING BOUNDARY CONDITIOH AT THE ARTERIOLAR WALL.

IMPLICIT REAL*8(A-H,0-Z)

COMMOK/BLK1/NODEL(500,3), XHOD(1001)

COMMON/FLUMAT/AF (20000)

COMMON/FLUB/BF{1001)

COMMON/OLD/POLD(1001),C0LD1(1001),COLD2(1001)

COMMON/WALL/DLC,DLV,DLM,DDC1,DDV1,DDM1,PDC,PDV,PD¥,PIDC:,PIDV1,

PIDM1,PIDC2,PIDV2,PIDM2,SIGC1,SIGV1,SIGM1,CDC1,CDV1,CDX1,DH,
DDC2,DDV2,DDH2,SIGC2,SIGV2,SIGM2,CDC2,CDV2, CDM2

COMMON/0SMOT/A1,B1,C1,42,B2,C2

LUB=2

LP=3+LUB
IF(IND.EQ.1)GO TO 100
K=LP+1-LUB
AF(K)=AF(K)+ DLC

GO TO 900

PI2=COLD2(1)*(A2+COLD2(1)*(B2+COLD2(1)*C2
BF(1)=BF{(1)+DLC*(PDC+SIGC1*(PI1-PIDC1)+SIGC2*(PI2-PIDC2})

RETURK
END

PIi=COLD1gig*(A1+COLD1(1§;(Bl+COLD1§1§*C1g

'SUBROUTINE PATART(NEX)

#

#
::

TEIS SUBROUTINE ADJUSTS THE AS AND BS VECTORS TO ACCOUNT FOR THE

PATLAK BOUNDARY CONDITIOE AT THE ARTERIOLAR WALL.

IMPLICIT REAL*8(A-H,0-Z)

COMMOH/BLK1/NODEL(500,3), XNOD(1001)
COMMON/SOLMAT/AS1(20000) ,452(20000)
COMMON/SOLB/BS1(1001),BS2(1001)
COMMO¥/0LD/POLD(1001),C0LD1(1001) ,COLD2(1001)
COMMON/TISDAT/AK,DEFF1,ALPEL1,PHIt ,PHIT,RET1,SIGTL,BETAL,
DEFF2,ALPHL2,PHI2,RET2,5I1GT2,BETA2

COMMON/CAPDAT/PC,CREF
COMMON/WALL/DLC,DLV,DLH,DDC1,DDV1,DDM1,PDC,PDV,PDM,PIDC:,
PIDVY,PIDM1,PIDC2,PIDV2,PIDM2,51GC1,SIGV1,SIGM1,CDC1,CD+1,CDML,
DH,DDC2,DDV2,DDM2,S1GC2,SIGV2,SIGM2,CDC2,CDV2,CDK2
COMMON/0OSMOT/A1,B1,C1,A2,B2,C2
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anon

100

200

300

900

[elele NSS!

101

201
301

901

annan

LUB=2

LP=3*LUB

K=LP+1-LUB
PIi=COLD1§1;*§A1+COLD1513*(B1+COLD1€1§*C1g3
PI12=COLD2(1)*{(A2+COLD2(1 1)*C2

*EBZ+COLD2
QART=AK+PC/DEFF1*DLC* (POLD(1)-PDC-SIGC1*(PI1-PIDC1)-
#SIGC2*(PI2—PIDC2;)
PEC1=(1.D0-SIGC1)/DDC1*QART

DETERMINE WHICH FORM OF THE FLUX EXPRESSIOK APPLIES

IFgPECLG’l‘.lO0.0Dogco TO 100
IF(PEC1.LT.-100.D0)G0 TO 200
TEST=1.DO-DEXP(-PEC1)
IF(DABS(TEST).LT.1.D-10)G0 TO 300

AS1(K)=AS1(K)-QART+(RET1*BETA1-(1.D0-SIGC1)/TEST)

BS1(1)=BS1(1)+(1.D0-SIGC1)*QART*CDC1*DEXP(-PEC1)/TEST
GO TO 800

AS1(X)=AS1(K)-QART*(BETA1*RET1-(1.D0-SIGC1))
GO TO 800

AS1(X)=AS1(X)-QART*BETA1*RET1
BS1(1)=BS1(1)-(1.D0-SIGC1)*QART*CDC1
GO TO 900

AS1(K)=AS1(K)-QART+BETA1+RET1+DDC1
BS1(1)=BS1(1)+DDC1*CDC1

PEC2=(1.D0-SIGC2)/DDC2+QART
DETERHMINE WHICH FORM OF THE FLUX EXPRESSIOR APPLIES

IF%PEC2.GT.100.0DO§GO TO 101
IF(PEC2.LT.-100.D0)GO TO 201
TEST=1.DO-DEXP(-PEC2)
IF(DABS(TEST).LT.1.D- 10)GO TO 301

A4S2(K)=AS2(K)-QART*(RET2+BETA2-(1.D0-SIGC2) /TEST)
BS2%E)ZBS2(1)+(1.DO-SIGC2)*QART*CDC2*DEXP(-PEC2)/TEST
GO 01

AS2(X)= ASZ(K) QART*(BETA2#RET2-(1.D0-SIGC2))
GO TO 901

AS2(X)=AS2(K)-QART+*BETA2+RET2

282(1)3852(1) (1.D0-SIGC2)*QART*CDC2

£S2(X)=AS2(K)-QART*BETA2*RET2+DDC2
BS2(1)=BS2(1)+DDC2+CDC2

RETURN
END
SUBROUTINE PATVEE(REX)

THIS SUBROUTIKRE ADJUSTS THE AS ARD BS VECTORS TO ACCOUNT FOR THE
PATLAK BOUNDARY CONDITION AT THE VEHULAR WALL.

IMPLICIT REAL*8(4-H,0-Z)
COMHMON/BLK1/KODEL(500,3), XHNOD(1001)
COMMON/SOLMAT/AS1(20000) ,4S52(20000)
COMMON/SOLB/B51(1001),BS2(1001)
COMMO¥/0LD/POLD(1001) ,COLD1(1001),COLD2(1001}

COMMON/TISDAT/AX,DEFF1,ALPEL1,PHI1,PHIT,RET1,SIGT1,BETAL,
#DEFF2,ALPHL2,PHI2,RET2,SIGT2,BETA2
COMMON/CAPDAT/PC,CREF
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COMMOR/WALL/DLC,DLV,DLM,DDC1,DDV1,DDM1,PDC,PDV,PDM,PIDC1,
#PIDV1,PIDM1,PIDC2,PIDV2,PIDM2,51GC1,SIGV1,SIGM1,CDC1,CDV1,CDMY,
#DH,DDC2,DDV2,DDM2,51GC2,SIGV2,SIGH2,CDC2,CDV2,CDM2

COMMON/OSMOT/A1,B1,C1,A42,B2,C2

LUB=2
LP=3*LUB
NP=2+NEX+1
K=LP*NP+NP-LUB

PI1=C0LD1gnpg*(A1+C0LD1§NP3*(B1+CULD1énpg*c1;3
PI2=COLD2(NP)#*(A2+COLD2(NP)* (B2+COLD2(NP)*C2
QART=AK*PC/DEFF1*DLV#* (POLD (NP )-PDV-SIGV1*(PI1-PIDV1)~
#SIGV2*(PI2—PIDV2;)

PEC1=(1.D0-SIGV1)/DDV1*QART

DETERMINE WHICH FORM OF THE FLUX EXPRESSION APPLIES

IF(PECi.GT.iO0.0DO;GO TO 100
IF(PEC1.LT.~100.D0)G0 TGO 200
TEST=1.DO-DEXP(-PEC1)
IF(DABS(TEST).LT.1.D-10)G0O TQ 300

AS1(K)=AS1(X)~-QART*(RET1#BETA1-(1.D0O-SIGV1)/TEST)

BS1(NP)=BS1(NP)+(1.D0-SIGV1)*QART*CDV1*DEXP(-PEC1)/TEST
GO TO 900

100 AS1(X)=4S1(K)-QART*(BETA1#RET1-(1.D0-SIGV1))
GO TO 900

200 AS1(K)=AS1(K)-QART+BETA1*RET1
BS1(WP)=BS1(NP)-(1.D0-SIGV1)*QART*CDV1
GO TO 800

300 AS1(XK)=AS1(K)-QART*BETA1*RET1+DDV1
BS1(NP)=BS1(NP)+DDV1*CDV1

900 PEC2=(1.D0-SIGV2)/DDV2+QART

[eXele!]

DETERMINE WHICH FORHM OF THE FLUX EXPRESSION APPLIES

- IF(PEC2.GT.100.0D0)G0 TO 101
IF(PEC2.LT.-100.D0)GO0 TO 201
TEST=1.D0-DEXP(~PEC2)
IF(DABS(TEST).LT.1.D-10)G0 TGO 301

452(K)=AS2(X)-QART*(RET2*BETA2-(1.D0-SIGV2)/TEST)
gg2%g?)=BS2(NP)+(1.DO-SIGV2)*QART*CDVZ*DEXP(—PEC2)/TEST
801

101  AS2(K)=AS2(K)-QART*(BETA2+RET2-(1.D0-SIGV2))
GO TO 901

oan O

201 AS2(K)=AS2(K)-QART*BETA2+*RET2
BS2(NP)=BS2(KP)-(1.D0-SIGV2)=*QART*CDV2
GO TO 801

301 AS2(K)=AS2(K)-QART*BETA2+RET2+DDV2
BS2(NP)=BS2(NP)+DDV2+CDV2

901 RETURK
EHD
SUBROUTINE MATPLY(A,A1,B,C,HP)

THIS SUBROUTINE MULTIPLIES & MATRIX A BY A VECTOR B AND SCALAR Al
TO GIVE VECTOR C. MATRIX £ IS STORED AS A VECTOR, WHERE MATRIX
ELEMENT A(I,J) IS STORED AS 4(IJ), I1J=3%LUB*J+I-LUB, AND WHERE
LUB IS THE NUMBER OF OFF DIAGONAL BANDS. FOR THIS SUBROUTIHNE,

IT IS ASSUMED THAT THE BAND¥IDTH IS 5, SO THAT LUB=2.

el Nolele]
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[eleNelele]

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION A(20000), B(NP), C(WP)
LUB=2

LP=3*LUB

DO 1 I=1,KNP
€(I)=0.DO
CORTINUE

K=2

DO 2 I=1,2

K=K+1
DO 3 J=1,K
IJ=LP*J+1I-LUB
C(I)=C(I)+A(IJ)*a1*B(J)
CONTINUE

CORTINUE

NPM=NP-2

K=0

DO 4 I=3,NPM

K=K+1

KP=K+4
DO 5 J=K,KP
IJ=J+LP+I-LUB
C(I)=C(I)+A(IJ)*B(I)*A1
CONTINUE

CONTINUE

NPM=NP-1

K=NP-4

DO 6 I=NPHM,NP

K=K+1
DO 7 J=K,NP
IJ=LP*J+I~-LUB
C(I)=C(I)+A(IJ)*A1*B(J)
CONTINUE

CONTINUE

RETURN
EX

" SUBROUTINE SETMAT(NEX,IND,PE1,IPEC1,VMAX1,PE2,IPEC2,VHAX2)

THIS SUBROUTINE INITIALIZES THE VARIOUS VECTORS ASSOCIATED
WITE SOLUTE AND FLUID TRANSPORT EQUATIORS,

£52(1),BS1(I), BS2(I).
IMPLICIT REAL*8(A-H,0-Z)

COMMON/BLK1/RODEL(500,3) ,XHOD(1001)

COMMON/FLUKMAT/AF (20000)

COMMOR/0LD/POLD{1001),COLD1(1001),COLD2(1001)

COMMON/SOLB/BS1(1001) ,BS2(1001)
COMMON/FLUB/BF (1001)

COMMON/SOLMAT/AS1(20000) ,452(20000)

COMMON/0SHMOT/A1,B1,C1,A2,B2,C2

COMMON/TISDAT/AX ,DEFF1,AL1,PEI1,PEIT,RET1,SIGT1,BETAL,

#DEFF2,AL2,PHI2,RET2,SIGT2,BETA2
COMMON/CAPDAT/PC,CREF

COMMOK/WALL/DLC,DLV,DLM,DDC1,DDV1,DDM1,PDC,PDV,PDM,PIDCI,
#PIDV1,PIDM1,PIDC2,PIDV2,PIDM2,SIGC1,SIGV1,SIGM1,CDC1,CDVL,CDM1,
#DH,DDC2,DDV2,DDH2,51G6C2,SIGV2,SIGH2,CDC2,CDV2,CDK2

COMMON/TIME/T(20000)

- COMMON/MAXDAT/DMX1,DMX2,IDISP1,IDISP2

DIMENSION GAUS(4),¥(4),B(3),DB(3)
DATA NGAUS/4/

DATA ¥/.347854845137454D0, .652145154862546D0,
#.652145154862546D0, .347854845137454D0/

AF(X), BF(I), AS1(X),
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DATA GAUS/-.861136311594053D0,-.339981043584856D0,
#.339981043584856D0, .861136311594053D0/
DATA GAUS/

DATA W/

DATA NGAUS/3/

DATA GAUS/

DATA W/

DMX1=0.D0O

D¥X2=0.D0O

ALPHA=AK*PC/DEFF1

PE1=0.D0O

VMAX1=0.DO

PE2=0.D0

VMAX2=0.D0

aonoaaon

ZERO THE APPROPRIATE ARRAY AND INITIALIZE

IF(IND.EQ.1)GO TO 800
IF(IND.EQ.2)GO TO 900
IF(IND.EQ.3)GO TO 850

ZERO THE AF VECTOR

DO 700 I=1,20000
AF(I)=0.D0O

700 CONTINUE
GO TO 100

ZERO THE BF VECTOR

800 DO 801 I=1,1001
BF(1)=0.D0

801 CONTINUE
GO TO 100

ZERO THE T MATRIX

950 DO 951 I1=1,20000
T(I)=0.DO

851 CONTINUE
GO T0 100

ZERO THE AS AKD BS VECTORS

800 DO 901 I=1,20000
A51513=O.DO
452(I1)=0.D0

901 CONTINUE

DO 902 I=1,1001
BSIEIg=O.DO
BES2(I)=0.D0

902 CONTIKNUE

anon anon [elelg] aqQaan

aoa

BEGIN THE GAUSS INTEGRATION, ELEMENT BY ELEMENT

100 LUB=2
LP=3*LUB

aaon

anon

EVALUATE THE INTEGRAKD AT THE APPROPRIATE QUADRATURE POINT, S.

DO 200 II=1,NGAUS
S=GAUS(II)

INITIALIZE THE APPROPRIATE ARRAY, ELEMENT BY ELEMENT.
DO 300 I=1,NEX

aa aoon

CALCULATE VALUE OF BASIS FUNCTIONS AND DERIVATIVES AT THE
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ana O

aaon

ann

[eleXe]

ano

963
952

101

301

402
401

500

QUADRATURE POINT

X1=XNOD(NODEL(I,1))
X2=XNOD(NODEL(I,2))
X3=XNOD(NODEL(I,3))

$52={2.D0*X2-(X1+X3))/(X3-X1)

B(1)=(S-52)*(S-1.D0)/(2.D0*(S2+1.D0))
B(2)= S+1.DO;*gS—l.DO)/(S2*S2—1.DO)
B(3)=(S+1.D0)=*(S-S2)/(2.D0*(1.D0-S2))
DB(1)=(2.D0*S~52-1.D0)/(2.D0*(S2+1.D0))
DB(2)=2.D0*S/(S2*52-1.D0)
DB(3)=(2.D0%*5-52+1.D0)/(2.D0*(1.D0-52))

DX=(X3-X1)*.5D0
CALCULATE THE T VECTOR

IF(IND.NE.3) GO TO 101

DO 952 M=1,3

MM=NODEL(I,M)
DO 953 N=1,3
NN=NODEL(I,N)
K=LP+NN+MM-LUB
T(K)=T(K)+B(M)*B(N)*DX*W(II)
CONTINUE

CONTINUE

GO TO 300

NOW CALCULATE cCi(S), DC1/DS, PIi(S), DPIi/DS,c2(S),...

CS1=0.D0

CS2=0.D0

DCS1=0.D0

DCS2=0.D0

DO 301 IT=1,3
CS1=CS1+COLD1(NODEL(I,IT))*B(IT)
€S2=CS2+COLD2(NODEL(I,IT))*B(IT)
DCS1=DCS1+COLD1(NODEL(I,IT))*DB(IT)
DCS2=DCS2+COLD2(NODEL(I,IT))*DB(IT)
CONTINUE

PISI=CSl*éAl+CSl*(Bl+CSl*C1gg
PIS2=CS2#(A2+CS2*(B2+CS2*C2

DPIS2=§A2+2.DO*B2*CS2+3.DO*CS2*CS2*C2;*DCS2
DPIS1=(A1+2.D0*B1*C51+3.D0*CS1*CS1*C1)+*DCS1

DETERMINE WHICH VECTOR IS TO BE INITIALIZED

IF(IND.EQ.1)GO TO 500
IF(IND.EQ.2)GO TO 600

INITIALIZE THE FLUID VECTOR

DO 401 M=1,3

MM=KODEL(I,M)
DO 402 K=1,3
HN=NODEL(I,H)
K=LP*NN+MM-LUB
AF(K)=AF(K)+(B(M)*B(N)*2.DO*DLM/DH*DX+DB(M)*DB(N) /DX)*¥(II)
CONTINUE

CONTINUE

GO TO 300

INITIALIZE THE FLUID B VECTGK

DO 501 M=1,3
MM=NODEL(I,H)

F
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BF (MM)=BF (MM)+(DB(M)* (DPIS1*SIGT1+DPIS2*SIGT2)/DX+B(H)*
#2 . DO*DLM/DH*DX* (PDM+SIGM1*(PIS1 - PIDM1)+SIGM2#(PIS2-PIDM2)

#))*9(11)
501 CONTINUE
GO TO 300
C
C INITIALIZE THE SOLUTE VECTORS, BS AND AS. fIRST CALCULATE VSi,VS2
c QMES, AND THE DISPERSION COEFFICIENTS, DISP1 AND DISP2.
c

600 DPS=0.DO
PS=0.D0O
DO 601 IT=1,3
DPS=DPS+POLD(NODEL(I,IT))=*DB(IT)
PS=PS+POLD(NODEL(I,IT))*B(IT)
601 CONTINUE

V51=—ALPHA*EDPS-SIGTl*DPIS1—SIGT2*DPIS2§/DX*RETi*BETAi/PHIl
VS2=-ALPHA*(DPS-SIGT1*DPIS1-SIGT2*DPIS2)/DX+RET2*BETA2/PHI2
QFMES=ALPHA*DLM* (PS-PDM~-SIGM1*(PIS1-PIDH1)-SIGM2*(PIS2-PIDH2))

DISP1=DABS(VS1)#*AL1+1.D0

IF(DISP1.LT.DMX1) GO TO 655

DMX1=DISP1

IDISP1=1I
655 DISP2=DABS(VS2)*AL2+DEFF2/DEFF1

IF(DISP2.LT.DMX2) GO TO 656

DMX2=DISP2

IDISP2=I

CALCULATE THE MAXIMUM LOCAL SOLUTE VELOCITY, VELMAX
656 IFEDABS%CSIE.LT.l.D—S% VEL51=DABS€VSI)*PHII

aan

IF(DABS(CS1).GT.1.D-5) VELS1=DABS(VS1-(DISP1+DCS1/DX)/CS1)=*PHI1
IFEDABS CS2).LT.1.D-5 VELSQ=DABS§VS2)*PHI2
IF(DABS(CS2).GT.1.D-5) VELS2=DABS(VS2-(DISP2+DCS2/DX)/CS2)*PHI2
IF(.5DO*VELS1/DX.GT.VMAX1) VMAX1=.E8DO*VELS1/DX
IF(.5DO*VELS2/DX.GT.VMAX2) VMAX2=.5DO*VELS2/DX

CALCULATE THE GRID PECLET NUMBER, AND SEE IF IT EXCEEDS
TEE LIMIT

PEST1=DABS(VS1)*(%3-X1)/DISP1
IF(PEST1.LT.PE1)G0 TO 609
 PE1=PEST1

IPEC1=1

609 PEST2=DABS(VS2)*(X3-X1)/DISP2
IF(PEST2.LT.PE2)G0 TO 610
PE2=PEST2
IPEC2=1

ananon

RO¥ DETERMINE WHICH FORM OF THE NOWLINEAR FLUX EXPRESSION
IS TO BE USED TO CALCULATE SOLUTE FLUX ACROSS MESOTHELIUM.

anooann

610 PEC1=QFMES*(1.D0-SIGM1)/DDM1
IF(PEC1.GT.100.D0)GO TO 611
IF(PEC1.LT.-100.D0)GD TO 620
TEST=1.DO-DEXP (-PEC1) ’
IF(DABS(TEST).LT.1.D-10)G0 TO 630

C4SE 1: USE THE FULL NONLINEAR FLUX EXPRESSION

DO 602 M=1,3
MH=NODEL(I,H)
DO 603 K=1,3
NN=NODEL(I,¥)
K=LP*NN+MNM-LUB
AS1(X)=AS1(X)+(B(M)*DB(N)*VS1+PHI1+
DB(H)*DB(X)*DISP1*PHI1/DX
+B(H)*B(N)*2.DO*QFMES/TEST/DH#(1.D0-SIGH1)*DX
-2.DO/DH*QFMES*RET1*BETA1*B (M) *B(H)+DX )} *W(II)

[elele]

E- s X 2]



Appendix D. Program Listings

603

602

ano

611

613
612

ann

620

622
621

aan

630

632
631
640

anon

642

CONTINUE
BS1(MM)= Bs1( M)+
# B(M)*2.DO/DH=(1.D0- SIGMI)*QFHES*CDH +DEXP(-PEC1)/TEST
# «DX*W(II)
CONTINUE
GO TO 640

CASE 2: PEC APPROACHES INFINITY

DO 612 HK=1,3
MM=NODEL(I,M)
DO 613 ¥N=1,3
NN=NODEL(I,N)
K=LP*NN+MM-LUB
AS1(K)=AS1{K)+
(B(M)*DB(N)*VS1+PHI1+DB(M) *DB(N)*PHEI1+DISP1/DX
+B(M)*B(})*2.DO/DHE*(1.DO-SIGH1) *QFMES*DX
—QFHMES*RET1+BETA1*B(M)*B(N)*DX+2.DO/DH)*W(II)
CONTINUE
CONTINUE
GO TO 640

CASE 3: -PEC APPROACHES INFINITY

DO 621 M=1,3
HM=NODEL(I,¥)
DO 622 R=1,3
N¥=NODEL(I,N)
K=LP*NKN+MM-LUB
AS1(X)=AS1(X)+
(B(M)*DB(E)*VS1+PHI1+DB(M)*DB(N)*PHI1*DISP1/DX
~2.DO/DE+BETA1+RET1*QFHES*B (¥ ) *B(M}+DX)*¥ (II)
CONTINUE

#
#

%

. BS1(MM)=BS1(MM)-2.DO/DE=(1.D0-SIGH1)*QFMES=CDM1+DX*¥(II)*B(M)

CONTIRUE
GO TO 640

CASE 4: PEC APPROACHES 0

DO 631 M=1,3
MM= NODEL(I M)
632 N=1,3
NN NODEL(I,N)
K=LP*NN+MH-LUB
AS1(X)=AS1(K)+
# (B(M)*DB(E)*VS1*PHI1+DB(¥)=DB{N)*PHI1*DISP1/DX
# +2.D0/DE*DDH1+B(H) *B{l ) *DX
# -2.D0/DB+RET1+BETA1*DX*B (M) *B(N)*QFHES ) *W(II)

CONTINUE
BS1(MM)=BS1(MM)+2.DO/DH=DDM1*B(M) *CDM1+DX*¥(II)
CONTINUE

PEC2=QFMES*(1.D0-SIGM2)/DDHK2
IF(PEC2.GT.100.D0)G0 TC 650
IF(PEC2.LT.-100.D0)GO TO 660
TEST=1.D0-DEXP(-PEC2)
IF(DABS(TEST).LT.1.D~10)G0 TO 670

CASE 1: USE THE FULL EOBLINEA&R FLUX EXPRESSION

DO 641 M=1,3
MM=NODEL(I,M)
DO 642 N=1,3
NN=NODEL(I,N)
K=LP+NN+MM-LUB
AS2(K)=4S2(K) +(B(M) *DB(N) *VS2+PEI2+ .
DB(M)*DB(K)*DISP2+PHI2/DX )
+B(M) *B(E)*2.DO*QFHES/TEST/DE* (1 .DO- sxcxz)cnx
-2.D0/DH*QFMES*RET2+BETA2#B (¥) #B(N ) #DX) *W (I1)
CONTINUE

#H R
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Bsz(MM) BS2(MM)?
B(M)*2.D3/DH*(1.D0~-SIGM2) *QFMES*CDM2+DEXP (-PEC2) /TEST
# *DX*W(I1)
641 CONTINUE
GO TO 300

CASE 2: PEC APPROACHES INFINITY

650 DO 651 M=1,3
MM=NODEL(I,M)
DO 652 F=1,3
NN=NODEL(I,N)
K=LP*NE+MM-LUB
AS2(K)=AS2(K)+

anon

# (BéH;*DB(N)*VS2*PHI2+DB(M)*DB(H)*PHI2*DISP2/DX
# +B(M)*B(N)*2.D0/DH#*(1.D0-SIGM2)*QFMES*DX
# ) -QFMES*RET2#BETA2*B (M) *B(H ) *DX#2 .DO/DH) *W(II)
652 CONTINUE
651 CONTIRUE
GO TO 300

CASE 3: -PEC APPROACHES INFIRITY

660 DO 661 M=1,3
MM=NODEL(I,M)
DO 662 E=1,3
NN=NODEL(I,N)
K=LP*NN+HM-LUB
AS2(K)=4S2(K)+
# (3(M)*DB(H)*VS2+PHEI2+DB(M)*DB(N) *PHI2*DISP2/DX
# -2.D0/DH+BETA2+RET2*QFMES+B (N ) *B (M) +DX) *W(II)
662 CONTINUE
BS2(MM)=BS2(MH)-2.D0/DH*(1.D0-SIGHM2) +QFMES+CDM2+DX*+¥ (II)*B (M)
661 CONTINUE
GO TO 300

Qoo

CASE 4: PEC APPROACHES 0

670 DO 671 M=1,3
MM=NODEL(I,M)

DO 672 E=1,3

NN=NODEL(I,N)

K=LP*NK+¥M-LUB

AS2(K)=£S2(K)+

(3(M)*DB(N)*VS2+PHI2+DB (M) *DB(N)*PEI2*DISP2/DX
+2.DO/DE+DDM2+B (M) *B (N) DX
-2.DO/DE*RET2+BETA2*DX*B (¥) B (N) *QFMES) +W(II)

672 CONTINUE

BS2(MM)=BS2(MM)+2.DO/DH+DDM2+B (H) *CDH2+DX*W(II)
671 COKRTINUE

300 CONTINUE

200 CONTINUE
RETURN
END

SUBROUTINE DGBED1 (A, B, W, ML, BU, LT, IP, DET, RCNi,
1 BB, RZ, ITR1, EPS1)

ROUTINE SOLVES SYSTEM OF LINEAR EQNS. £Y=B WHERE A IS A GEHERAL
BAND MATRIX. METEOD USED IS GAUSSIAN ELIMINATION WITH PARTIAL
PIVOTING. OPTION OF ITERATIVELY IMPROVIEG SOLUTIOR IS AVAILABLE.
UPPER BARD VIDTH OF MATRIX INCREASES DUE TO INTERCHANGES BY
AMOUNT ML. ROUTIEE REQUIRES BAND ELEMENTS OF MATRIX TO BE STORED
BY COLUME IN A OK:Z DIMENSIONAL ARRAY. EACH COLUMN IS OF LENGTE
2+«ML+NU AND BARD IS TO BE STORED IN ELEHMEETS ML+1 TO 2*ML+KU OF
EACH COLUMN. ELEMEETS 1 TO ML OF COLUMN ARE SET TO ZERO BY GBAKD.
IF MATRIX IS SYMMETRIC USER HAY SPECIFY LOWER BAND OKLY INH
ELEMENTS ML+NU+1 30 2*ML+NU OF EACH COLUMY AND GBANRD WILL

aon

#* R
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FIRST CALL TO GBAKD.)

ABS%LT3=1 IF ONLY 1 B VECTOR OR IF 1ST OF SEVERAL.
ABS(LT),=1 FOR SUBSEQUENT B VECTORS.

ONLY OF SYMMETRIC MATRIX GIVEN.)
IP = INTEGER ARRAY CONTAINING INTERCHANGE INFORMATION.

IF DET=0.0 MATRIX IS SINGULAR AND ERROR RETURN TAKEN.
VARIABLES IF OPTION NOT REQUIRED.

ITERATIORS OR CYCLES.
EPS - CONVERGENCE CRITERION.

anoaaaaaaaaaoaaaaaannnn

IMPLICIT REAL#*8 (A-H, 0-2Z)
COMMON /GBAND$/ NITER
DIMENSION A(1), B(N), IP(N), BB(N), RZ(N)
COMPLEX*16 DSUMM, QADDG, QKULD
REAL*8 QRNDQ
C TO ASSIGN LOGICAL UNITS 94 AND 95 ONLY ONCE:
LOGICAL ASSIGW /F/, YES /T/
C STATEMENT FUNCTION TO CALCULATE POIRTERS INTO A:
IFN(I, J) = 1 + (J - 1)*LC + I - J + NUK
C
C

NCN=HCF1
ITR=ITR1
EPS=EPS1
ITER = ITR

LCM = NU + 2xML
LC = LCM + 1
NLC = Nx*LC
NUM = RU + ML
C GENERATE REMAINING ELEMENTS OF SYMMETRIC MATRIX
IF (LT .NE. -1) GO TO 120
NN =KF -1
DO 1i0 I = 1, NN
IFI = IFN(I, I)
IFJ = IFI

II = I +
ML = HINO(I + ML, ¥)
‘DO 100 J = II, IHL
IFI = IFI + 1
IFJ = IFJ + LCH
100 A(IF)) = A(IFI)
110  CONTINUE
120 IF (ITER .EQ. 0) GD TO 140

C ASSIGN UNITS 94 AND 95 IF THEY HAVE NOT ALREADY BEEN ASSIGNED

IF (ASSIGN) GO TO 128
CALL FTNCHD (’ASSIGN 94=-GBAKDS4;’)
CALL FTKRCHMD {(’ASSIGHN 95=—GBAHD95;’)
ASSIGE = YES :

125 REWIND 94
REWIND 85
DO 130 I = 1, N

130 BB(I) = B(I)

140 IF (IABS(LT) .NE. 1) GO TO 280

IP(N) =1
IF (ML .EQ. 0) GO TO 160

C SET ELEMERTS 1 - ML OF EACE COLUKN TO ZERO
DO 150 I = 1, K

GENERATE REMAINING ELEMENTS. (IF THIS IS DESIRED, SET LT=-1 ON

A = 1 DIMENSIONAL ARRAY CONTAINING MATRIX OF COEFFICIENTS.
B = 1 DIMENSTONAL ARRAY CORTAINING RIGET HAND SIDE VECTORS.
ON EXIT, B WILL CONTAIN THE SOLUTION VECTOR X.

N = ORDER OF MATRIX
ML = LENGTH OF LOWER BAND éEXCLUDING DIAGDNAL;
Eg = LENGTH OF UPPER BAND (EXCLUDING DIAGONAL

(NOTE. LT=+1 IF FULL BAND WIDTE GIVEN, LT=-1 IF LOWER BAWD

DET = DETERMINANT OF A = DET*(10%+NCN) WHERE 1.D-15<|DET|<1.D+15.
BB, RZ = ARRAYS REQUIRED FOR IMPROVEMENT OPTION. CAN BE REAL*8
ITER = 0 IF IMPROVEMENT KOT REQUIRED, OTHERWISE ITER= RO. OF

MODIFIED TO DO ITERATIVE IMPROVEMEHNT (FORMERLY AVAILABLE ONLY
¥ITH THE SINGLE PRECISION VERSION). MIKE PATTERSON - NOV, 1980
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IFK = (I - 1)*LC
DO 150 J = 1, ML
IFK = IFK + 1
150 A(IFK) = 0.0DO
160 IF (ITER .HE. 0) CALL DWR1 (A, NLC, 94)
DET = 0.0DO
NCH = 0
IF (ML .EQ. 0) GO TO 230
C LU DECOMPOSITION

DO 220 K =1, X
IFK = IFH(K, K)
IF (K .EQ. N) GO TO 210
KP =K + 1

KPM = MINO(K + ML, N)
KPN = MIBO(K + NUM, N)
M=K

IFM = IFK

IFI = IFK

DO 170 I = KP, KPM
IFI = IFI + 1
ﬁF (gABS(A(IFI)) .LE. DABS(A(IFM))) GO TO 170

IFM = IFI
170 CONTIKUE
IP(K) = H
T = A(IFM)
IF (M .FE. K) IP(N) = -IP(N)
A(IFM% = A(IFK)
ACIFK) = T
IF (T .EQ. 0.0D0) GO TO 260
OT = 1.0DO/T
IX = IFK
DD 180 I = XP, KPM
IK = IK + 1
180 A(IK) = -A(IK)*0T
KJ = IFK
MJ = IFK
DO 200 J = KP, KPN
KJ = KJ + LCH
MJ + LCM
T = A(HT)
A(MI ACKT)
A(KJ T _
IF (T .EQ. 0.0D0) GO TO 200
IK = IFK
IJ = KJ
DO 190 I = KP, KPH
IK = IK + 1
IJ =13+ 1
190 A(IJ) = A(TJ) + A(IK)=T
200 CONTIKUE
210 IF (A(IFK) .EQ. 0.0DO) GO TO 260
220  CONTINUE
230 IFK = IFH(1, 1)
DET = A(IFK)
DO 250 K = 2, N
IFK = IFK + LC
DET = DET*A(IFK)
IF (DET .EQ. 0.0DO) GO TO 260
IF (DABS(DET) .GT. 1.D-15) GO TO 240
DET = DET*1.D+15
NCK = HCH - 15
G0 TO 250
240 IF (DABS(DET) .LT. 1.D+15) GO TO 250
DET = DET*1.D-15
NCH = KCE + 15
250  CONTINUE
DET = DET+IP(N)
GO TO 280
260 DET = 0.0DO

=
(&)
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WRITE (6, 270) K
270  FORMAT (°0* DGBFD1 - matrix is singular. ?/
1 ’  Error occurred in attempt to find’, IS5, ’th pivot.?’)

RETURN
280 CALL DSOLV1 (4, B, IP, N, ML, NU)
IF (ITER .EQ. O) RETURN

ITERATIVE IMPROVEMENT

RESIDUALS (R) = AX-B ARE FOUND AND STORED IN ARRAY RZ USING
EXTENDED PRECISION ARITHMETIC. SYSTEM AZ=R IS SOLVED AND KEW
SOLUTION =X+Z IS STORED IN ARRAY B. ABOVE STEPS REPEATED UNTIL
1) MAX(Z)/MAX(X) < EPS OR

2) KO. OF CYCLES > ITER OR .

3) IMPROVEMENT STARTS TO DIVERGE.

ROUTINE THEN RETURNS AFTER SETTIRG EPS=MAX(Z) (FOR (1)) OR
%E?TING %P?)—MAX(Z) AND PRINTING APPROPRIATE ERROR MESSAGE (FOR
2) AWD (3

Ao nn

IF (IABS(LT) .EQ. 1) CALL DWR1 (4, NLC, 95)
XNORM = 0.0DO
DO 290 K = 1, §
290  XNORM = DMAX1(XNORM, DABS(B(K)))
IF (XNORM .LE. 0.0DO) RETURN
ZX = 1.D+60
ID = 0
DO 340 L = 1, ITER
REVIND 94
CALL DRE1 (A, NLC, 94)
DO 310 K = 1, K
DSUMH = (0.DO, 0.DO)
KPM = MAXO(K - ML, 1)
KPN = MINO(X + XU, N)
IFK = IFN(K, KPM)
DO 300 J = KPH, KPW
c DSUMM = DSUMM + A(IFK)+*B(J)
C USING EXTENDED PRECISION:

DSUMY = QADDQ{DSUMM, QMULD(A(IFK), B(J)))

300 IFK = IFK + LCH
RZ(K) = BB(X) - QRNDQ(DSUMHM)
310 . CONTINUE
REWIND 95

CALL DREt (A, HLC, 95)

CALL DSOLV1 (4, RZ, IP, K, ML, NU)
ZNORM = 0.0DO

DO 320K =1, ®

ERZ = RZ(K)
ZNORM = DMAX1(ZNORM, DABS(ERZ))
320 B(K) = B(K) + ERZ
IF gznoan .GT. ZX) GO TO 330
IF ((ZNORM - EPS*XNORM) .LT. 0.0D0) GO TO 390
ZX = ZNORM
GD TD 340
330 IF (ZHNORM .GT. 10.0D0*ZX) GO TO 360
ID = LD + 1

IF (LD .GE. 3) GO TO 360
340 CONTINUE
L = ITER
WRITE (6, 350) '
350 FORMAT (’0+ DGBND1- Iterative improvement did not comverge’/)
GO TO 380
360 WRITE (6, 370)
370 FORMAT (’0* DGBND1 - Iterative improvement is diverging.?’/)
380 EPS = -ZNORM
NITER = L
RETURK
390 EPS = ZNORM
NITER = L
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RETURN
END
SUBROUTINE DSOLV1 (A, B, IP, N, ML, KU)

UPPER TRIANGULAR MATRIX U.

IMPLICIT REAL*8 (A-H, 0-Z)
DIMENSION A(1), B(N), IP(N)
IFN(I, J) =1+ (5 - 1)*LC + I - J + NUM
LCH = 2*ML + NU
LC = LCH + 1
NUM = NU + ML
ME = N -1
SOLVE FOR Y

IF (ML .EQ. 0) GO TO 110
DO 100 K = 1, MHN

KP = K + 1

[eXeloloXe]

M=
T =
B(M
B(K
KPH
IFK

IFK
100 B(I) = B(I) + A(IFK)*T
C SOLVE FOR X
110 IFK = IFN(H, N)
DO 120 KB =1, MN
KM = KB

M
B(K) = B(K)/A(IFK) )
IFK = IFK - LC
T = -B(K)
KMN = MAX0(1, K - ML - KU)
KML = IFN(KMN, X)
DO 120 I = KHN KM
B(I) = B(I) + A(KML)=*T
120 KML = KML + 1
B(1) = B(1)/A(NUM + 1)
RETURN

- END
SUBROUTINE DWR1 (4, ¥, LU)
REAL*8 A(N)

YRITE (LU) A

RETURN

END

SUBROUTINE DRE1 (A, N, LU)
REAL*8 A(N)

READ (LU) A

RETURN

END

THIS ROUTINE COMPUTES THE SOLUTION OF A SYSTEM AFTER GBAND HAS
DECOMPOSED MATRIX A INTO A LOWER TRIANGULAR MATRIX L AND AN

361



