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Abstract 

The dynamics of voidage signals in bubbling fluidised beds are investigated both 

experimentally and numerically. Experimental voidage signals were obtained by using an 

optical fibre probe at different positions in a freely bubbling fluidised bed of diameter of 

150 mm. Numerical simulated voidage signals were also predicted using the Cliff and 

Grace bubble coalescence model. 

Analysis of the experimental signals demonstrates that deterministic chaos can 

arise in bubbling fluidised beds. Voidage signals collected at different geometrical 

positions indicate that bubble size and frequency influence the chaotic characteristics o f 

the voidage signals. In the bottom, the voidage signals were generally more chaotic than 

in the top section, while near the bed surface, with voidage signals becoming less chaotic 

because of the bubble coalescence which has already occurred. 

The numerical study used the three-dimensional version of the bubble coalescence 

model to simulate optical probe signals in a gas-solid fluidised bed. These predictions 

demonstrate that deterministic chaos can arise from non-linear bubble interactions in 

bubbling fluidised beds. It is found that both bubble frequency and initial bubble size 

influence the chaotic characteristics of the simulated voidage fraction signal, with bubble 

frequency having a stronger effect than the initial bubble size. 
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Chapter 1 

Bubbling Fluidized Beds and Their Properties 

The introduction of gas from the bottom of a column containing solid particles via 

a gas distributor can cause the particles to be fluidized. As shown in Figure 1.1, with 

increasing gas velocity, several f low patterns/regimes have been identified (i.e., fixed bed, 

delayed bubbling or particulate fluidization, bubbling fluidization, slugging fluidization, 

turbulent fluidization, fast fluidization and dilute pneumatic conveying). 

PNEUMATIC 
CONVEYING 

pELAYED ' V " 
BUBBLING AGGREGATIVE FLUIDIZATION' 

INCREASING U, < 

Figure 1.1 Flow patterns in gas-solids fluidized beds (Grace, 1986) 

1.1. Bubbles in Fluidized Beds 

In a bubbling gas fluidized bed, the superficial gas velocity is between the minimum 

bubbling velocity and the minimum slugging velocity. A dense bubbling fluidized bed 
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contains regions of low solids density, usually called voids or bubbles. The surrounding 

region of higher density is called the emulsion or dense phase. Voids form at or near the 

distributor, grow mostly by coalescence, and rise to the surface. The top surface of a 

bubbling fluidized bed is well defined, with bubbles breaking through periodically. There 

are irregular pressure fluctuations of appreciable amplitude, caused by bubble formation, 

passage and bursting, as well as by surging of the bed surface. 

In many ways, a bubbling fluidized bed behaves like a bubble column where gas 

bubbles rise through a liquid of low viscosity. The shapes of bubbles are generally 

spherical-cap as in liquids where surface tension forces are relatively small. For both 

systems, bubbles tend to coalesce to give large bubbles. The interaction of a chain of 

bubbles leads to a higher rise velocity in both cases. Wal l effects act to retard bubbles in 

fluidized beds as in liquids. Experiments in bubbling fluidized beds indicate that most gas 

in excess of that needed to just fluidize the bed passes through the bed as bubbles and that 

the emulsion phase remains close to that at minimum fluidizing conditions. Unlike gas-

liquid systems, there is convective flow(often called throughflow) of gas through the 

bubbles in fluidized beds, this being made possible by the permeable nature of the dense 

phase and the pressure gradient across the bubbles. 

The rise velocity of single bubbles in fluidized beds has been measured 

experimentally ( e.g. Davidson et. al., 1959; Harrison and Leung, 1962; Rowe et. al., 

1965; Toei et. al., 1965) and is often expressed as 

ubr = on\\(gdb)m ( i ) 
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where db is the diameter of sphere having the same volume as the spherical-cap bubble and 

where wall effects are negligible. The rise velocity of bubbles depends on the same factors 

as for spherical-cap bubbles in liquids. 

For bubbles in freely bubbling fluidized bed, the bubble velocity can be expressed 

approximately by 

Ub = Uo ~U

mf + Ubr (2) 

where the (u 0 -u„ i f ) accounts approximately for bubble interactions. As a first 

approximation the emulsion is often treated as a liquid of low or negligible viscosity. The 

so-called "two -phase theory of fluidization" is often commonly assumed, which says that 

the excess gas above that required for minimum fluidization travels through the bed as 

bubbles. The voidage of a bed, not counting the bubbles, remains close to Smf. A t minimum 

fluidizing conditions, the solids are nearly quiescent. At higher gas velocities the rising 

bubbles cause churning and mixing of solids. 

Davidson and Harrison (1963) developed a model which accounted for the 

movement of both gas and solids and the pressure distribution about rising bubbles in two-

and three-dimensional beds. Collins (1965) and Stewart (1968) assumed kidney-shaped 

bubbles with indented bases with properties otherwise similar to those of the bubbles 

studied by Davidson and Harrison (1963). Jackson (1971) retained the spherical bubble, 

but allowed the voidage of the emulsion phase to vary. Murray (1965) developed a 

somewhat more rigorous model. Stewart (1968) summarized and commented on these 

studies. 
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The particle motion generated by bubbles causes rapid solids mixing, temperature 

uniformity and high heat transfer. These are valuable properties of industrial gas fluidized 

beds. Thus the distribution of bubbles in the fluidized beds is of considerable practical 

interest. It is well known, particularly for Geldart (1973) Group B materials, that bubble 

coalescence causes bubbles to migrate inward from the walls of the bed, and to set up 

regions of high bubble activity associated with characteristic particle circulation patterns. 

The origins of the non-uniformity in bubble flow have been identified and explained by 

Grace and Harrison (1968). 

1.2. Simulation of Bubbling Fluidized Beds Hydrodynamics 

In order to simulate bubble distribution in fluidized beds, it is essential to consider 

not only the particle motion around a single bubble and a small number of interacting 

bubbles, but also the behavior of a large number of bubbles over a period of time which is 

much longer than the inverse of the bubble frequency. As well, some features are 

identified as particularly important, such as bubble interaction and coalescence, the size 

and frequency of bubbles formed at the gas distributor, the maximum stable bubble size 

and bubble splitting. 

1.2.1 Bubble interactions 

Bubble interactions are of key importance in determining such factors as bubble 

growth, interphase mass transfer, and lateral motion of particles and gas. To a first 

approximation, the motion of each bubble in an interacting pair can be obtained by 



superposition, taking the vector sum of the rise velocity in isolation and the velocity at the 

position of the nose caused by the other bubble (Clift & Grace 1970, 1971). For relatively 

short-range interactions, the velocity field caused by each bubble, outside its own 

boundary and its wake, can be represented as a first approximation by a doublet. The : 

wake is assumed to be stagnant relative to the bubble with which it is moving. These 

approximations lead to a reasonable description of the trajectories of coalescing bubbles 

and of the boundaries of the region within which a smaller following bubble overtakes a 

larger one ( Clift & Grace 1971; Clift & Grace 1974). This approach has been extended to 

bubble chains (Clift & Grace 1972) and to freely bubbling beds ( Johnsson et. al. 1974; 

Nguyen et. al. 1976; Farokhalee et. al. 1989) and can be used to simulate the development 

of bubble populations in fluidized beds, given the initial distribution at the grid. 

When two bubbles interact and coalesce, the volume of the resulting composite 

bubble formed is generally larger than the sum of the volumes of the original pair. This 

growth is associated with the fact that bubbles in fluidized beds have permeable 

boundaries. It also implies a net transfer of gas from the dense phase to the bubble phase. 

Recent work by Yates and Cheesman (1992) has provided a possible new insight into why 

this growth of coalescence occurs. Using X-ray observations to measure voidage 

variations around bubbles in a Geldart group A material in a three-dimensional bed, they 

showed that the voidage is somewhat higher in the wake and much higher in a "shell" 

surrounding the bubble, reaching 0.7 at the bubble surface. The gas volume in the "shell" 

can be larger than in the "visible" bubble. They showed that, i f the thickness and voidage 

profile in the "shell" are independent of bubble size, and if the total gas volume associated 

5 



with the bubbles is conserved on coalescence, the new composite bubble grows by an 

amount which is fully consistent with experimental observations. 

1.2.2 Distribution of Gas between Phases 

The two-phase theory proposed by Toomey and Johnstone (1952), postulating that 

the gas in excess of that required for incipient fluidization enters the bubble phase, may be 

written as 

U ~ Umf =GBI A (2) 

where U= superficial gas velocity 

Umf= superficial gas velocity at minimum fluidization 

G B = "visible" gas flow, i.e. f low due to translation of voids 

A= bed cross-sectional area 

However, it is well documented that the visible bubble flow rate is, in practice, less 

than (U-Umf) (e.g., see Nguyen and Leung, 1972; Grace and Clift, 1974; Yates and 

Rowe, 1983; Valenzuela and Glicksman, 1985; Olowson and Almstedt, 1992). Three 

possible reasons for the deficiency in bubble flow rate have been identified ( Grace and 

Clift, 1974): 

1. interstitial gas flow in the particulate phase greater than its value at minimum 

fluidization; 

2. gas "throughflow" within the bubbles probably enhanced by bubble interactions 

3. regions of high interstitial voidage convected with the bubbles. 
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1.2.3. Maximum Stable Bubble Size 

Rowe (1971) observed that the roof of a rising bubble sometimes develops a 

downward cusp, which then tends to grow rapidly, causing the bubble to split vertically. 

When this knifing or curtain action slices off a small daughter bubble, the latter is usually 

reabsorbed almost immediately by the larger bubble. When the two bubbles formed are of 

nearly equal size, the larger one often first grows at the expense of the smaller one, which 

is then absorbed by the larger bubble. In some cases, the faster-rising larger bubble is able 

to pull away from the smaller bubble, leaving two discrete bubbles. In beds of fine 

particles, recoalescence is less frequent than in large particle beds. 

Toei et al. (1967) measured the frequency of bubble splitting in two-dimensional 

beds of uniform particles ranging in size from 210 to 360 pm (Umf=3-10 cm/s) and 

concluded that the frequency of splitting is inversely proportional to Umf, ranging from 3 

to 20 s"1, and is almost independent of bubble size. In this study, the bubble frequency was 

3 to 20 s"1 and the bubble diameter ranged from 3 to 13 cm. 

One consequence of coalescence and splitting is that a maximum stable bubble size 

may be present in the bed. Since bubble splitting is more frequent in Geldart type A solids 

than in beds of larger particles, the maximum bubble size is larger in beds of coarse 

particles than in beds of fine particles. 
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1.3. Conclusion 

Key properties of bubbling fluidized beds are summarized based on the literature. 

In Chapter 4 these findings are used in developing a "discrete-bubble Langrangian model" 

to simulate the dynamic character of bubbling fluidized bed hydrodynamics with 

reasonable computer machine time. 
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Chapter 2 . 

Introduction to Deterministic Chaos 

2 . 1 Linear and Non-Linear Systems 

In geometry, linearity refers to Euclidean objects: lines, planes, (flat) three-

dimensional space, etc. These objects appear the same no matter how we examine them. A 

non-linear object, a sphere for example, looks different on different scales—when looked at 

closely enough it looks like a plane, while from a far enough distance it looks like a point. 

In algebra, linearity is defined in terms of functions that have the property f(x+y) = 

f(x)+f(y) and f(ax) = af(x), where a is constant. Non-linear is defined as the negation of 

linear. This means that the change in f(x+y) may be out of proportion to the change in 

input x or y. The result may be more than linear, as when a diode begins to pass current, 

or less than linear, as when finite resources limit Malthusian population growth. In such 

cases the fundamental simplifying tools of linear analysis are no longer available. 

Linearity is rather special, and few, i f any, real systems are truly linear. Some 

problems are profitably studied as linear approximations to the real situation. For example, 

Hooke's law, the linear law of elasticity (strain proportional to stress) is approximately 

valid for small amplitude motion of a pendulum implying that its period is independent of 

amplitude. However, as the amplitude increases the period also increases, a fundamental 

effect of non-linearity in the pendulum equations. 
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Non-linear systems exhibit surprising and complex effects that would never be 

anticipated by a scientist trained only in linear techniques. Prominent examples include 

turbulence, bifurcation and chaos. Non-linearity has its most profound effects on dynamic 

systems. 

Further, while scientists can enumerate linear objects, non-linear ones are non-

denumerable, and, as yet, mostly unclassified. Scientists currently have no general 

techniques (and very few special ones) for telling whether a particular non-linear system 

will exhibit the complexity of chaos, or the relative simplicity of order. Since they cannot 

yet subdivide non-linear science into proper subfields, non-linear science exists as a whole. 

Non-linear science has applications to a wide variety of fields, from mathematics, 

physics, biology, and chemistry, to engineering, economics, and medicine. This is one of 

its most exciting aspects—that it brings researchers from many disciplines together with a 

common language. 

A non-linear system is one whose time evolution equations are non-linear: that is, 

the dynamic variables describing the properties of the system (for example, position, 

velocity, acceleration, pressure, etc.) appear in the equations in a non-linear form, e.g. as 

products or raised to powers other than one. 

2.2. Non-Linearity and Chaos 

Sudden and dramatic changes in non- linear systems may give rise to the complex 

behaviour called chaos. The noun chaos is used to describe the time behaviour of a system 
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when that behaviour is aperiodic and is apparently random or "noisy". Many textbooks 

(e.g. Hilborn, 1990) have been written in recent years providing general descriptions of 

chaotic systems and their characterisation. In general, three ingredients are needed to 

determine the behaviour of a system: 

1. time-evolution equations; 

2. values of the parameters describing the system; 

3. initial conditions. 

A system is said to be deterministic i f knowledge of the time-evolution equations, the 

parameters that describe the system and the initial conditions are sufficient in principle to 

determine completely the subsequent behaviour of the system. The obvious problem is 

how to reconcile this underlying determinism with the apparent randomness and 

unpredictability of chaotic systems. 

Traditional scientists and engineers see most real systems like fluidised beds as 

having complex and random like behaviour. They try to explain some types of behaviour 

either on the basis of "noise" or based on "complexity". The noise argument implies that 

complex behaviour is due to the influence of uncontrolled outside effects. According to 

the complexity argument, most real systems are made of billions of small units, like 

particles, atoms and molecules, and it is not surprising that this leads to fluctuations and 

randomness in the overall behaviour of the system. Sometimes scientists explain that these 

complex systems have many degrees offreedom. The meaning of this notion is explained 

below. 
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2 . 2 . 1 A Model of Convecting Fluids: The Lorenz Model 

In the early sixties, a meteorologist named Edward Lorenz experimented with 

computer simulations of weather on a relatively primitive computer, His program used 

twelve recursive equations to simulate rudimentary aspects of weather; he entered 

several variables into his program each time he ran it, and watched to see what types 

of weather patterns such initial conditions would generate. Lorenz tried to recreate an 

interesting weather pattern, one he had seen previously, by re-entering the values the 

computer had previously calculated and reported. However, when he ran the program 

again, his results were different from the initial run. After checking the two plots, 

however, he realized his "error"; on his previous computer printout, the one he had 

used to enter the initial conditions into the computer for the second trial run, the 

figures were printed with three significant digits. In the program, all values were 

calculated to six significant digits. Lorenz had assumed that the difference, only one 

part in a thousand, would be inconsequential; however, due to the recursive nature of 

the equations, little errors would first cause tiny variations, which would then affect 

the next calculation a bit more, etc., which would affect the output of the next run 

even more. The final result of a long string of recursive calculations would lead to a 

weather pattern totally different from the expected values. 

The term "sensitive dependence on initial conditions" was coined to describe the 

phenomenon that small changes in a recursive system can drastically change the results 

of running that system. A term Lorenz coined to describe sensitive dependence on 
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initial conditions is the "butterfly effect." This is another thought experiment which is 

hardly testable: imagine that there exist two earths, so that an incorporeal observer 

could compare events on one earth to another. N o w imagine that both earths are 

identical except for one fact; in one, a butterfly flaps its wings somewhere in South 

America, and in the other, this butterfly remains still. One might think that such a small 

discrepancy between the two earths would be inconsequential; after all, nobody was 

there, nobody could even notice the butterfly's wings flapping, and air currents would 

be affected only in a minor way by such a miniscule event. 

After a period of time which is impossible to calculate, however, the weather 

patterns of the two earths would be totally different. Why? Because of the difference 

caused by the flap of one butterfly's wings! The miniscule event affected air currents 

around that butterfly in a very miniscule fashion, true; but those tiny air currents 

affected in turn slightly larger air currents, which affected still larger air currents, and 

the small difference in air flow between the two earths exponentially increases to 

become a large difference. The wind patterns on the two earths, which started out 

otherwise identical and had every reason to remain identical in a nice deterministic 

manner, would now be different in every way. Eventually, as time multiplies the 

differences between the two earths, completely different weather patterns would 

emerge, all because of the fact that on one of the earths a butterfly in South America 

decided to flap its wings, while on another of the earths, the same butterfly did not. 

The differences might not cause any major catastrophic events immediately; 

the thought experiment does not suggest that murdering a butterfly could cause a 
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hurricane in a few minutes or a tornado in a few hours. However, the air currents and 

wind patterns would be different. 

It is thus completely impossible, even in theory, to perform long-term weather 

prediction in any accurate manner. Unless a computer could be constructed which 

could monitor each individual atom on earth, even the smallest undetected anomaly 

could affect the weather in profound ways. 

Edward Lorenz's weather model involved 12 differential equations. He decided 

to look for complex behavior in a simpler set of equations. To do so he looked toward 

the phenomenon of rolling fluid convection. The physical model is simple: place a gas 

in a solid rectangular box with a heat source on the bottom. He simplified governing 

equations from fluid dynamics and heat transfer and ended up with a set of three 

nonlinear equations: 

dX/dt = P * (Y - X ) (1) 

dY/dt = R * ( X - Y - X Z ) (2) 

dZ/dt = X Y - B Y (3) 

Where X , Y and Z are the coordinate function of an element of fluid. Here P is the Prandtl 

number representing the ratio of the fluid viscosity to its thermal conductivity, R 

represents the difference in temperature between the top and bottom of the system, and B 

is the ratio of the width to height o f the box used to hold the system. The values Lorenz 

used are P = 10, R = 28, B = 8/3. 



On the surface these three equations seem simple to solve. However, they 

represent an extremely complicated dynamical system. If one plots the results in three 

dimensions, Figure 2 .1, called the Lorenz attractor, is obtained. 

(X_plot, Y_plot, Z_plot) 

Figure 2 . 1 . Lorenz attractor 
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2.2.2.Logistic M A P (Devaney, 1989). 

The so-called Logistic equation is used in biology to model animal populations. 

The equation is 

Xn+l=cXn(l-Xn) (4) 

where X is the population (between 0 and 1) and c is a growth constant.The subscript 

denotes generation. Iteration of this equation yields the period doubling route to chaos. 

Note the period means the years the population repeats. For c between 1 and 3, the 

population settles to a fixed value. A t c=3, the period doubles to 2; one year the 

population is very high, causing a decline to a low population the next year, leading to a 

high population the following year. At c=3.45, the period doubles again to 4, meaning the 

population has a four year cycle. The period keeps doubling, faster and faster, at 3.54, 

3.564, 3.569, and so forth. At c=3.57, chaos occurs; the population never settles to a 

fixed period. For most c values between 3.57 and 4, the population is chaotic, but there 

are also periodic regions. For any fixed period, there is some c value that wil l yield that 

period. The bifurcation diagram of the logistic difference equation is shown below in 

Figure 2.2. 

2.3. Reasons for Quant i fy ing Chaot ic Behaviour 

Reasons for quantifying chaotic behaviour are as follows (Hilborn, 1990): 

1. The quantifiers may help distinguish chaotic behaviour from noisy behaviour; 
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2. The quantifiers may help determine how many variables are needed to model 

the dynamics of the systems; 

3. The quantifiers may help us sort systems into universality classes; 

4. Changes in the quantifiers may be linked to important changes in system 

behaviour, such as changes in flow regime. 

Steady state values of pn 

Value of r 

BIFURCATION DIAGRAM 
Pn+l=rpn(1-pn) 
S ta r t i ng va lue p = .02 

p„ converges to a limit 

(r = 2.50) 

Figure 2.2. Bifurcation diagram of logistic difference equation 

17 



There are two different, but related, types of quantification or description. One is a 

dynamic (time-dependent) description. The other is a geometric description. Both are 

discussed and used in this thesis to explore bubbling fluidisation systems. 

2.4. Time Series Analysis 

Time series analysis is the application of dynamical systems techniques to a data 

series, usually obtained by "measuring" the value of a single observable variable as a 

function of time. The major tool is "delay coordinate embedding" which creates a phase 

space portrait from a single data series. It seems remarkable at first, but one can 

reconstruct a picture equivalent (topologically) to the full Lorenz attractor in three-

dimensional space by measuring only one of its coordinates, say x(t), and plotting the 

delay coordinates (x(t), x(t+x), x(t+2x)) for a fixed value of x. 

The idea of using derivatives or delay coordinates in time series modelling is not 

new. It goes back at least to the work of Yule who used an autoregressive (AR) model to 

make a predictive model for the sunspot cycle. A R models are nothing more than delay 

coordinates used with a linear model. Delays, derivatives, principal components, and a 

variety of other methods of reconstruction have been widely used in time series analysis 

since the early 1950s, and are described in several hundred books. The new aspects raised 

by dynamic systems theory are : (i) a geometric view of temporal behaviour, and (ii) the 

existence of "geometric invariants", such as dimensions and Lyapunov exponents. The 



central question is not whether delay coordinates are useful for time series analysis, but 

rather whether reconstruction methods preserve the geometry and the geometric invariants 

of dynamical systems. 

Some common methods and numerical algorithms of time series analysis are as 

follows: 

2.4.1. T ime History 

Time history is a common way to classify a system: Unlike a periodic or 

quasiperiodic signal that features regularity, a chaotic signal exhibits irregularity with 

respect to time. A chaotic signal with different time resolutions is such that successive 

magnification will uncover more and more details about the fluctuating signals. This means 

that chaotic signals for different time scales exhibit self-similarity. However, since the 

irregularity can also be due to randomness, distinction between chaotic and random signals 

can be realised by fractal dimension analysis, as discussed below. 

2.4.2. Strange Att ractor 

Phase space is the collection of possible states of a dynamic system. A phase space 

can be finite (e.g. for the ideal coin toss we have two states -heads and tails), countably 

infinite (e.g. state variables as integers), or uncountably infinite (e.g. state variables as real 

numbers). Implicit in this notion is that a particular state in phase space specifies the 
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system completely; it is all we need to know about the system to have complete 

knowledge of the immediate future. Thus the phase space of the planar pendulum is two-

dimensional, consisting of the position (angle) and angular velocity. According to Newton, 

specification of these two variables uniquely determines the subsequent motion of the 

pendulum. 

Note that i f we have a non-autonomous system, where the map or vector field 

depends explicitly on time (e.g. a model for plant growth depending on solar flux), then 

according to our definition of phase space, we must include time as a phase space 

coordinate—since one must specify a specific time (e.g. 3 P M on Tuesday) to know the 

subsequent motion. Thus dz/dt = F(z,t) is a dynamical system in the phase space consisting 

of z and t. 

The path in phase space traced out by a solution of an initial value problem is 

called an orbit or trajectory of the dynamical system. If the state variables take real values 

in a continuum, the orbit of a continuous-time system is a curve, while the orbit of a 

discrete-time system is a sequence of points. 

A strange attractor is the limit set o f a chaotic trajectory. A strange attractor is 

topologically distinct from a periodic orbit or a limit cycle. A strange attractor can be 

considered a fractal attractor. A n example of a strange attractor is the Henon attractor. 

Consider a volume in phase space defined by all the initial conditions a system may 

have. For a dissipative system, this volume shrinks as the system evolves in time 

(Liouville's Theorem). If the system is sensitive to initial conditions, the trajectories of the 

points defining initial conditions move apart in some directions, closer together in others, 
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but there wil l be a net shrinkage in volume. Ultimately, all points lie along a fine line of 

zero volume. This is the strange attractor. A l l initial points in phase space which 

ultimately land on the attractor form a Basin o f Attraction. A strange attractor results i f a 

system is sensitive to initial conditions and is not conservative. 

In practice experiments are commonly done with single-variable time series 

measurements made at evenly spaced time intervals. Reconstruction of an attractor from 

such a single-variable time series using the time delay method provides a way to 

investigate the real multi-dimensional system in nature. 

2.4.3. Autocorrelation Function 

The autocorrelation function, sometimes called the correlation function, can be 

defined as 

1 N-T 

r W = ^ (5) 

The autocorrelation function is obtained by multiplying each x(t) by x (t- x) and summing 

the result over all data points. The sum is then plotted as a function of time delay x. This 

gives a measure of how strongly data points are correlated with neighbouring points. The 

value of x at which the autocorrelation function remains essentially zero is defined as the 

correlation time. Highly random data have no correlation, and for these data the 

correlation function drops abruptly to zero, implying a small correlation time. Highly 
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correlated data on the other hand have an amplitude that decreases only slowly. Chaotic 

data tend to show little correlation except when the time delay is very small. 

2.4.4. Fracta l Dimension 

The fractal dimension describes the complexity of a chaotic attractor, and, in 

principle, provides a measure of the freedom of the system or the least number of 

independent variables needed to describe the dynamics on the attractor (Barnsley, 1988; 

Parker and Chua, 1989; Moon, 1992; Mullin,1993). 

2.4.4.1.Definitions and Box Count ing Method 

Among many definitions of fractal dimension, there are three in common usage -

capacity, information and correlation dimensions. These fractal dimensions can be 

calculated by the Box-Counting method. In a d-dimensional state space where the 

attractor lies, the box counting method works to cover the attractor with d-dimensional 

hypercubes of linear size r. The minimum number of hypercubes, N(r), needed to cover the 

attractor is then counted. Naturally, N(r) increases as r is decreased. From the limit as r 

tends to zero, we have the following definitions: 

c a p ~<> l n ( l / r ) v ' 
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2>-ln# 
Di = l i m - ^ - (7) 

r-*° Inr w 

Af(r) 
2 

D c = l im—^ (8) 

Here pi is the relative frequency (or probability) with which a typical trajectory enters the 

ith volume element, i.e. p;=N;/N. Clearly, the capacity dimension D c a p , is a purely 

geometric measure of the attractor, while the other two dimensions, D i and D c , account 

for the non-uniform distribution of the attractor in the phase space. Differences occur 

between these three dimensions, but we always have D c a p > D i > D c . Two methods have been 

developed (Grassberger and Procaccia, 1983a; Badii and Politi, 1985) to calculate fractal 

dimensions in the case where a 2-dimensional phase space is considered: 

Method of Grassberger and Procaccia(1983a) 

This method is the most widely used algorithm for calculating the correlation 

dimension. In this approach, a vector with M elements is first determined as follows: 

x(t,), x(t1+r), x(t i + 2 r), X 0-i+(d-l ) r ) 

x = x(t,) = • x(tj), x(tj+r), x(tj+2r), . . . X(tj+(d-l)r) (9) 

x(tM)_ 
x(tM), x(tM + r), x(tM + 2 r), X 0 - M + ( d - ! ) r ) 
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The M points can be determined either randomly or successively beginning with a 

starting point. Then the distances between pairs of points, say 5ij= 

calculated using the maximum norm 

x-x, are 

<?,=||X(0-X(r,)|| 

= maxfl*(0-x(fy)|, \x(ti+r)-x(tJ+t)\, |x(fl+(,_1)T) - x ' t M , _ ^ } 

(10) 

The correlation dimension is D c then defined as 

C(r) oc rD< 01) 

where the correlation function, C(r), is given by 

i M 

C(r) = l im [YHJr - X, - X. (12) 

and Hf is the Heaviside function defined by 

Hf(x) = 
1 for x > 0 

0 for x < 0 
(13) 

The correlation integral C(r) may be considered as the probability that two points 

on the attractor lie within a cell of size r. Since 8ij=6ji, calculations for only M ( M - l ) / 2 

pairs (i=l, M ; j= l , M-i) are needed. Hence 
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2 M M-i 
C(r) = l im 

-*«> M(M - 1 ) 
(14) 

i=l ;=1 

Note that equation (9) is only valid for r reasonably small compared to the dimensions of 

the attractor, but large enough to reduce the contribution of instrumental uncertainty. 

Grassberger et al. (1991) provide a list of practical issues that have to be dealt with when 

devising an algorithm for the calculation of the correlation integral. 

Summation over all pairs (i, j) increases the statistical accuracy of C(r). Calculation 

(Bai et. al., 1997) has shown that a very reasonable average can be obtained if M is taken 

as 100 points or so, resulting in considerable economy of computation time. In our 

approach, all pairs i, j were considered and M=1000 was usually used. To increase the 

statistical accuracy, an average C(r) corresponding to a specific distance r is usually based 

on 5x10 6 to 5x10 7 calculated distances. Repeated selection of the vector on the attractor 

gave a standard deviation of the values of less than 1%. Finally, the correlation dimension 

can be determined from the slope of the linear portion of the log-log plot of C(r) versus r 

with a correlation coefficient higher than 0.98. 

Method of Badii and Politi (19851 

A n alternative method, called the nearest-neighbour method was proposed by 

Badii and Politi (1985, 1987). In this approach, a central point X . is selected on the 
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reconstructed attractor. A subset of k points, denoted X}. (j=l, 2 , k and k<N), is also 

chosen at random from the original set of N points. W e then define 5i as the single 

minimum of the distances from Xj to X}, i.e. the distance to the nearest neighbour: 

5, = min Xt - Xj (15) 

To obtain a statistically useful value of the minimum distance, this calculation is repeated 

for 2000 sets of randomly selected central points from which an average value of 5 is 

obtained. The dimension of the attractor is then obtained from 

For the same data, the correlation dimension obtained by the nearest neighbour method 

should be consistent with that obtained by the correlation integral method. The method of 

Badii and Politi (1985) gives more extensive linear portions than that of Grassberger and 

Proccaccia (1983 a), thus improving the reliability of obtaining slopes and hence D c . 

Moreover, the Badii and Politi (1985) method requires less computation time than that of 

Grassberger and Proccaccia (1983 a). 

Suppose we have measured a time series of N points (xi, x 2 , . . . ,x N), where N is 

typically of order 104 to 105. From this time series the attractor is reconstructed using 

delay time coordinates based on Takens' theorem (1981). To determine the Lyapunov 

log£ = -—-logk (16) 
c 
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exponents, one can conceptually imagine a reference trajectory in phase space. As the 

initial condition, for an arbitrary point on this trajectory, 

X i = X i ( ' o ) = { x r > x ; + r . x

I + 2 r . •••> x

I + ( d - i ) r } 0?) 

while for a point on a trajectory (preferably the nearest neighbour) 

Xj = Xj(r0) = {x j ; x j + r , x j + 2 r , x j + ( d . ] ) r j (18) 

The two points are initially close to one another in phase space. When the time advances 

t e t=kAt to ti=to+tet (where At is the sampling time interval and k is an integer number), 

X;(t\) = Xj(/0 + tet) = Xj+k = : | x i + k , x i + k + r , x i + k + 2 r , x i + k + ( d _ n r | (19) 

and 

Xj(^|) = Xj(?0 + tet) — Xj+k =|xj+k, X j + k + r , X j + k + 2 r , X j + k + ( d . 1 ) r | (20) 

The distance between these two points, 5jj(t,), is calculated based on equation (16). 

<w=|*,('i )-*,(',)| 
1/2 (21) 

For a chaotic attractor, the distance grows exponentially with time, i.e., 

W = <W2A(',"') (22) 
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Hence 

X= l i m — ^ l o g 2 ^ ^ - ( 2 3 ) 

Base 2 is used instead of e so that the Lyapunov exponent has units of bits per unit time 

(i.e. bits/s). It is clear that one measurement is insufficient since the divergence of chaotic 

orbits can only be locally exponential. Instead the calculations must be averaged over 

different regions of phase space. This average can be represented by 

— m t ^ - t ^ & ( 2 4 ) 

If the time evolves along the trajectory sequentially, we have m(t k-t k.i)=tm-t0 and equation 

(24) becomes 

m lm l0 k=l °ij(lk-lJ 

In practice, we have a finite time series. The use of a finite number of experimental data 

points does not allow us to probe the desired infinitesimal length scales of an attractor. 

However, for the practical case of limited data one can estimate the Lyapunov exponent 

A,et for a specific selected evolution time tet. 

Practical methods for estimating Lyapunov exponents from a time series are 

available in the literature (Sano and Sawada, 1985; Wol f et al., 1985; Sato et al., 1987; 
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Zeng et al., 1991, 1992; Parlitz, 1992;). Wo l f et al. (1985) also provided a computer 

programs for calculating the Lyapunov exponent corresponding to a fixed time evolution 

tet=kAt. The calculation is initiated by carrying out an exhaustive search of the data file to 

locate the nearest neighbor to the first point (the fiducial point). The distance, 8y(to), 

between the current pair of points is next calculated. The current pair of points is then 

propagated k steps (each of step length te t) through the attractor, and its final separation, 

5ij (ti), is computed. The logarithm of the ratio o f the final to the initial separation o f this 

pair updates a running average rate of orbit divergence. When 5 y (ti) becomes too large, 

i.e. the growth departs from exponential behaviour, a replacement step is attempted. In 

this step, the program looks for a new nearest data point, 5 y(ti), as the "new" initial 

condition. If more than one candidate point is found, the point defining the smallest 

angular change, G(ti), is used for replacement. If an adequate replacement point cannot be 

found, the points that were being used are retained. This procedure is repeated until the 

reference trajectory has traversed the entire data file, at which point we estimate 

1 8 (I ) 

K = — L - Z l o § 2 (26) 

where m is the total number of replacement steps and the time step, te t=tn-tn-i, is held 

constant. In practice, maximizing the evolution time is highly desirable as it both-reduces 

the frequency with which orientation errors are made and greatly diminishes the cost of 

calculations. To find an adequate evolution time, a series of calculations is recommended 
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for various evolution times. A constant Xv i.e. the largest Lyapunov exponent of the 

attractor, is approached as tet is increased beyond 500 to 700. Hay et al. (1995) suggested 

the following empirical function to determine the Lyapunov exponent: 

K=J- + *>x (27) 

However, this method depends greatly on the distribution of data points calculated, as 

they give different weights to the parameter fitting. Therefore, it is generally reasonable to 

find Xi by averaging values of Xei obtained at large tet. 

2.5. Previous Appl icat ion of Deterministic Chaos Theory to Flu id ized Beds 

The theoretical foundations of chaos are on a firm footing. Chaotic behavior has 

been studied by analytical, computational, and experimental means. Manifestations of 

chaos involve a wide range of systems: mechanical, electrical, and optical devices, 

hydrodynamic processes of various length scales, transport processes, biological and 

chemical reactions, etc. However, the findings have often been a posteriori, i.e., explaining 

observed complex behavior and demonstrating that the roots of the complexity can be 

traced back to a deterministic explanation. 
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Despite these advances, applications of the concepts of chaos to engineering and 

design of new processes and products are very few. Nevertheless, the theoretical concepts 

can lead to new applications of interest in chemical engineering. For example, Ottino 

(1992) improved the basic understanding of stirring and mixing by means of chaos theory. 

Some of the basic developments are ready for implementation in practical situations. The 

most obvious possibilities are the use of basic concepts for the design of new mixing 

devices. Chang and Sen (1992) applied chaos to the improvement of mixing and heat 

transfer. They used a mathematical model to find the optimal forcing frequency of mixing 

equipment for maximization of chaotic enhancement. 

The application of deterministic chaos theory to fluidized beds has been pioneered 

by several research groups (e.g. Daw et al., 1990; Daw and Halow, 1991, 1992, 1993; 

Skrzycke et al., 1993; Schouten and van den Bleek et al., 1991, 1992; Schouten et al., 

1992; van der Stappen et al., 1993a, 1993b, 1994; van den Bleek and Schouten, 1993a, 

1993b; Tarn and Devine, 1991; Hay et al., 1995). Although Tam and Devine (1990) were 

unable to identify a saturation dimension with increasing embedding dimension up to 12, 

other researchers have established that gas-solids fluidized beds are deterministic chaotic 

systems, at least for some operating conditions. This opens up the possibility of extracting 

important information, previously unknown about fluidized beds, by employing chaotic 

time series analysis. Such information might also be useful for monitoring, control, design 

and scale-up of fluidized bed reactors. In this section, possible applications of deterministic 

chaos to fluidization are discussed briefly. 
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2.5.1. Fluidization regime identification 

In addition to conventional measures used to distinguish between flow regimes 

such as the standard deviation and probability distribution of absolute or differential 

pressure fluctuations, flow characteristics of different fluidization regimes can potentially 

be recognized by chaos analysis. Experimental and modeling work have been performed to 

classify the fluidization regimes using deterministic chaos analysis (e.g. Schouten et al., 

1992; Skrzycke et al.,1993). For steady state operation of a packed bed, it is expected that 

the correlation dimension based on voidage fluctuations should be zero because of the 

absence of solids motion and hence of voidage variations. Above the point of minimum 

fluidization, the correlation dimension increase with increasing superficial gas velocity, 

suggesting an increased degree of complexity and possibly chaos. Daw and Halow (1991) 

analyzed the bubbling and slugging regimes based on bubble-bubble interactions. The 

correlation dimension based on differential pressure fluctuation signals ranged from 2.5 to 

2.8. Skrzycke et al. (1993) found that the local level of chaos in a fluidized bed reaches a 

minimum just beyond a regime transition. For example, minima in Lyapunov exponent 

(Bai et al., 1996) were found at the transition from bubbling to turbulent fluidization. The 

correlation dimension based on pressure fluctuation measurements has been found to 

range from 2 to 5 in bubbling and slugging fluidized beds (Schouten and van den Bleek et 

al., 1991, 1992; Schouten et al., 1992; van den Bleek and Schouten, 1993; Hay et al., 

1995). In a two-dimensional phase space, Bai et al. (1996) found that the capacity 

dimension exhibits a minimum at the onset of the turbulent fluidization regime. 
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2.5.2. Characterization of hydrodynamic structure 

The hydrodynamics of fluidized beds have been extensively investigated using 

conventional statistical tools such as probability distribution, standard deviation and F F T 

spectrum. These tools, however, provide no time-dependent information. In contrast, 

chaos analysis focuses on the dynamic behavior of fluidized beds, thereby providing a 

powerful tool to explore the underlying structure . 

Previous studies have demonstrated that the dynamic behavior of fluidized beds, as 

expressed by the correlation dimension, is dependent on operating variables such as the 

gas velocity, particle properties, column diameter and bed depth (van der Stappen et al., 

1993; Skrzycke et al., 1993). Phase-space trajectories have characterized aspects of 

bubble behaviour such as bubble formation, breakup and coalescence in bubbling and 

slugging beds (Daw and Halow, 1993). The bubble properties are also reflected by the 

correlation dimension (Daw and Halow, 1991; van den Stappen et al., 1993, 1995; Hay et 

al., 1995 ). 

Chaotic analysis may also permit detection of underlying flow structures from 

temporal data, this being impossible using conventional statistical means. Superposition of 

chaotic signals may occur, reflecting separate processes co-existing in the system (Franca 

et al., 1991; Izrar and Lusseyran, 1993; Bai et al., 1996). In general, the gas-solids flow in 

low- and high-velocity fluidized beds is extremely heterogeneous. Low-velocity fluidized 

beds (bubbling and slugging flow regimes) consist of two distinct phases, a dense emulsion 

phase and a dilute void phase (Grace, 1984), while particles in high velocity (fast fluidized) 
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beds can be considered to exist in two distinguishable forms, as dispersed particles and as 

clusters (Grace, 1990). The flow patterns o f the characteristic two phases should be 

distinguishable from experimental pressure fluctuation signals. Properties o f the two 

phases, including their relative fluctuating magnitudes, complexities and sensitivities to 

initial conditions, can then be resolved by chaotic analysis ( Ba i et al., 1996). Studies (Bai 

et al., 1996) have shown that the dense emulsion phase should generate small scale rapid 

oscillations, thereby yielding a higher correlation dimension and a quicker rate of 

information loss. The motion of the bubble phase results in large-scale low-frequency 

pressure fluctuations, producing a lower correlation. 

2.5.3. Flu id izat ion Qual i ty Cont ro l 

Deterministic chaos analysis provides information on dynamic fluidized beds 

including the number of degrees of freedom and sensitivity to changes of initial conditions. 

This assists in monitoring the "quality" of fluidization by specifying the number of 

variables required to characterize the system, and allowing the operating conditions to be 

adjusted to improve operations. There are two possible strategies for controlling the 

chaotic behaviour of fluidized beds: global control and high-speed control. The basic 

approach in global control is to monitor time-averaged properties over tens of seconds or 

minutes of the phase-space trajectories reconstructed from one variable (e.g. pressure). 

Once desired limits of the time-averaged chaotic properties are known (e.g., dimension, 

principal component eigenvalues, or general appearance of the visualized trajectory), 

action can be taken to maintain the fluidization system within the desired range by 
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adjusting critical operating variables that define the dynamic state o f the fluidized bed. 

Such a global control system has been demonstrated in laboratory simulations of a batch 

fluidized bed reactor processing Geldart group D (i.e. relatively coarse) uranium particles 

(Daw and Halow, 1993), who found that the second principal component o f the pressure 

drop signal provided a quantitative indicator of fluidization quality that very quickly (e.g. 

in less than 5-10 seconds) detects changes in fluidization behaviour due to gas flow 

disturbances, particle attrition or changes in gas and particle properties. Using the 

resulting deviation of the eigenvalue from a set point as an error signal, it was shown that 

a PI controller could provide a continuously updated correction signal to the control 

valve. High-speed control focuses on short-time-scale behaviour. By constantly and 

promptly updating the information on the current state of the system, it should be possible 

to make relatively accurate short-term predictions of the fluidization state. The key is the 

ability to make extremely rapid (e.g. milliseconds) updates on the current dynamic state, 

predictions about its future course, and decisions regarding the appropriate control 

perturbations. Such capabilities should soon be within the range of computers and 

analytical algorithms. Tests should be carried out to test such control strategies and to 

compare them with more conventional techniques. 

3 5 



2.5.4. F lu id ized Bed Scale-Up 

The scaling laws of fluidized beds have been extensively investigated (e.g. 

Glicksman, 1984, 1988; Glicksman et al., 1994). These scaling laws have been developed 

based on fundamental or empirical hydrodynamic models. (For a detailed description, see 

Gogolek and Grace, 1995). Schouten and van den Bleek (1991) noted that these scaling 

laws do not include time-dependent information on fluidized bed hydrodynamics, van den 

Bleek and Schouten (1993) suggested that i f two beds are properly scaled, the rate of 

information change in both systems must be the same. A major advantage of this approach 

is that the same particles can be used in small and large columns. Thus difficulties of 

finding proper particles or fluids in previous scaling laws are avoided. 

Although a large volume of research has been done since the end of the last 

decade, a very interesting topic opened by Bai et al.(1996) has not yet been settled. From 

the discovery of double-sloped correlation integral curves of pressure signals obtained 

from fluidized beds first noted by Tam and Devine (1992), Bai et al. suggested that 

fluidized beds are high dimensional multi-fractal dynamic systems. Because the gas-solids 

flow in gas fluidized beds is heterogeneous, bubbling fluidized beds usually consist of two 

distinct phases, a dense emulsion phase and a dilute bubble phase. These two phases make 

separate and distinguishable contributions to the pressure fluctuation signals. The dense 

emulsion phase should generate small scale rapid oscillations, thereby yielding a higher 

correlation dimension and a quicker rate of loss of information. On the other hand, the 

motion of the bubble phase results in large scale low-frequency pressure fluctuations, 
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producing a lower correlation dimension. More direct proof is needed to support this 

suggestion. 

Further research would be simplified i f pressure fluctuations could be separated 

into two parts, one corresponding to the dense phase and the other to the dilute phase. 

Time series analysis of those separated signals could help to validate this suggestion. 

However, because of the complexity of fluidized systems, pressure fluctuation separation 

is very difficult. 

Some important features of pressure and voidage measurements are summarised in 

Table 2.1. 

2.6 Scope of Remainder of Thesis 

In the present research project, experimental and predicted void data generated 

from fluidised beds are used to explore the structure of chaotic hydrodynamics of fluidised 

beds. 

In the work described in this dissertation, experimental voidage data were 

collected using optical fibre probes and investigated using deterministic chaos theory. 

Local voidage signals can be divided into two parts, one corresponding to the bubble 

phase, and the other to the dense phase. This bipartite nature of voidage signals is an 

advantage over pressure signals for research on fluidised bed chaotic hydrodynamics. The 

experimental work is described in Chapter 3. 

In addition to the experimental work, simulation of three-dimensional fluidised 

beds using the coalescence model of Clift and Grace (1970, 1971, 1972) has been used to 
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predict time series voidage data. The idea is to show whether chaotic behaviour can be 

predicted based on the behaviour of bubbles in fluidized beds. Details of these simulations 

are given in Chapter 4. 

Conclusions and recommendations for future work are summarised in Chapter 5. 
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Table 2.1 Relative advantages and disadvantages of voidage and pressure 

measurements 

P R E S S U R E 

• sensors available for a wide range of 

operating conditions (including high 

temperature and pressure) 

• sensors commercially available 

• produce global information about 

bubbles in fluidized bed 

• high response frequency 

• smooth, continuous time signals 

• physical interpretation difficult 

• choice between absolute pressure and 

differential pressure; latter gives 

information which is more localized 

V O I D A G E 

• optical probes have been developed 

for cold models only 

• probes are commercially available 

• local information only 

• very rapid response rate 

• signals are 'binary' in dense beds or 

spiky for small measuring volumes 

• information depends on measurement 

volume, which is usually very small 
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Chapter 3. 

Deterministic Chaos Analysis of Experimental Voidage Signals in a Freely Bubbling 

Fluidised Bed 

3.1 Introduction 

A number of experimental parameters have been utilised to show chaotic 

phenomena in fluidised beds including pressure and voidage fluctuations. A comparison of 

the pros and cons of voidage signals and pressure signals was provided in Chapter 2. 

Fluidised beds are known to behave as chaotic systems for most operating conditions. 

Different signals show different, but related, chaotic phenomena. Most previous research 

on deterministic chaos in fluidised beds has been based on pressure signals. The work 

presented in this chapter focuses on voidage signals obtained from an optical fibre probe in 

a freely bubbling fluidised bed. According to previous work in our laboratory (Zhou, 

1994) the particles are large enough to give a linear relationship between the optical fibre 

probe output and local voidage. The overall hydrodynamics of freely bubbling fluidised 

beds of Geldart Class B particles can be predicted with reasonable accuracy. Voidage 

signals from optical fibre probes are very localised signals and can be used to show 

localised chaotic behaviour at different positions in freely bubbling fluidised beds. In this 

chapter, localised chaotic behaviour is reported and related to the overall chaotic 

hydrodynamics of fluidised beds. 

Optical fibre signals have the advantage that they can be divided into two parts 

corresponding to the emulsion phase and the dense phase. Time series analysis of both 



these reconstructed signals helps to understand the chaotic structure o f bubbling fluidised 

beds. 

3.2. Experimental Equipment and Probe Calibration 

A Plexiglas column was used to collect voidage signals. The column has an ID of 

150 mm and an overall height of 1.0 m. A P M M A (polymethylmethyl acrylate) plate 

covered with fine screen was employed as the gas distributor with 109 holes of 3.2 mm in 

diameter uniformly distributed over the plate, giving an open area ratio of 3%. A n optical 

fibre probe was inserted at various heights along the column with its tip located at the axis 

of the column. 

Glass beads (provided by Manus Industries) of sizes between 60 to 80 U.S. mesh 

(i.e. 200 to 270 urn) and particle density 2470 kg/m 3 were used as the bed material. 

Broken or angular particles comprise not more than 3% by count. According to the 

powder classification of Geldart (1973), these materials are typical Class B particles. The 

fluidizing gas is compressed air at atmospheric temperature and pressure. A l l 

measurements were carried out at a superficial gas velocity of 0.2 m/s, a static bed height 

of 230 mm and an expanded bed depth of 310 mm. The minimum fluidisation velocity is 

0.1 m/s, while the voidage at minimum fluidisation is 0.41. 

Reflection type optical fiber probes have been used previously in our laboratory 

(e.g. He., 1994; Zhou, 1994; Pianrosa, 1996; Issangya et. al., 1996). The principle o f 

operation was described by Qin and L iu (1982). The probe is composed of two bundles o f 

0.015 mm diameter fibres arranged layer by layer, with alternate layers used for light 

projection and light reception. Visible light projected from the light source to the fluidised 

bed through half the fibres is reflected by particles and received by the receiving fibres. 
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The light signals are then converted to electrical signals by a photomultiplier. A n amplifier 

raises the resulting signal to the voltage range of 0-5 V after which it is recorded by a 

personal computer via a D A S - 8 AID converter using Labtech Notebook software. 

The accuracy of optical fibre probe data relies upon the precision of the 

calibration. Various methods have been utilised. Matsuno et. al. (1983) calibrated their 

probe in a stream of glass beads falling from a vibrating sieve and estimated the 

concentration of the particles passing in front o f the probe from the measured particle flux 

and particle velocity, assuming the latter to be equal to the single particle terminal falling 

velocity. This method is only valid for dilute systems. They found a linear relationship 

between voidage and the output of the fibre optical probe. Qin et. al.(1982) found similar 

results. However, Issangya and Bai (1996) found that there is a non-linear relationship for 

particles of the order of 100 urn in diameter or smaller. It has been reported that the 

linearity of the relationship is dependent on the size of the particles (Lischer and 

Lounge,1992; Yamzaki et. al., 1992; Werther et al., 1993), with the relationship being 

linear for particles larger than about 200 urn. The shape, colour and surface characteristics 

of particles play a role in this relationship also. Round and clear particles like glass beads 

are more likely to have a linear relationship, while amorphous particles are likely to show 

nonlinear relationship between particle concentration and reflected light intensity. 

In view of the different calibration results discussed above and the probable 

dependence of the signal intensity on both the fluid and solids properties, Issangya et al. 

(1996) developed a method to calibrate optical fibre probes. The equipment is shown in 

Figure 3.1. Particles are made to fall from an incipiently fluidised hopper through a short 

piece of tube in the centre of a punched plate distributor covered with fine wire mesh via 
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Equipment used for calibration of fibre optic/ momentum probe 

500 mm 

100 mm 

100 mm 

2 m 

5 "OD 

3" ID 

_screw (50 mm long) 
Air 

slide valve 1 
slide valve 2 

Balance 

screw 1/4" hole 

total 3 unformly distributed 

SLIDE VALVE 

2" 

mnJL front view 

d3/16" thick 

Notes: 
1. Al l materials are plexiglass except plate of slide valve 
2. distance between the two valves depends on the size of pressure tap 
3. dimensions can be modified upon discussion 

Figure 3.1 Optical fibre probe calibration equipment proposed by Issanga et. al. (1996) 

a 12 mm ED tube where they fall into a collection vessel. Once a steady flow is ensured, 

the signal from the optical fibre probe, inserted in the tube 1.5 m from the top, is recorded 

at 200 H z for a duration of 30 s. Then the two slide plates are closed simultaneously to 
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trap the small volume of solids surrounding the probe. Weighing these particles allows the 

corresponding solids concentration to be calculated. Because the glass beads fill the tube 

when the solids volumetric concentration is high, the manually controlled slide valves 

cannot be operated smoothly, promptly and simultaneously as needed for accurate 

measurement. Therefore calibration can only be achieved for intermediate and low solid 

concentrations. A n extra point at 0.41 voidage is achieved by inserting the optical probe 

into a loose packed bed. The resulting calibration is shown in Figure 3.2. 

From Figure 3.2, a linear relationship between particle concentration and the 

optical fibre probe signal is observed as a reasonable approximation for medium and low 

2 
>-

V o i d a g e 
F i g u r e 3. 2 C a l i b r a t i o n c u r v e f o r o p t i c a l f i b e r p r o b e 

solid concentrations. From the above literature review, the linear relationship is expected 

to extend right to the high solids concentrations corresponding to minimum fluidisation. 

Hence a linear relationship is applied to the complete voidage range of interest (i.e. from 

S m f t O l ) 
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3.3 Experimental Voidage Distribution for a Freely Bubbling Fluidised Bed 

When the fluidised bed was operated at a superficial air velocity of 0.2 m/s, a 

characteristic bubbling regime was achieved. The static bed height is 230mm. The 

expanding bed height is 270mm. Small bubbles were generated from the distributor and 

i • i > r 

Radial posi t ion r/R 
Figure a 6 Radial voidage profi I es at U=0.2m/s for di f ferent bed height 

coalesced with each other to produce larger bubbles. The non-uniformity of bubble 

distribution can be quantified by optical fibre probe with simplicity, accuracy 

and low cost. A l l the information registered by optical fiber probe relates to very local 

voidage fluctuations. 

Figures 3.3, 3.4 and 3.5 are plots of optical fiber probe signals at different heights 

and radial positions in the bubbling fluidised bed. Figure 3.6 plots the local time-mean 

voidage from the optical fibre probe at different heights and radial positions. It clearly 

shows that the bubble distribution in this free bubbling fluidised bed is non-uniform. At 
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bottom, bubbles are distributed relatively uniformly along the radius. A s they coalescence, 

they migrate towards the axis of the fluidised bed as in earlier studies (e.g. Grace and 

Harrison, 1968) 

3.4 Deterministic Analysis of Optical Fibre Signals 

Optical fibre probe signals were sampled at a frequency of 200 H z frequency for 

periods of 100 seconds. This sampling frequency and quantity of data are sufficient to 

yield reliable results, as discussed below. Although the optical fibre probe measuring 

systems is subject to a pulse noise which affects the measurements, the signals were 

sampled directly without any filter in order to improve the accuracy. Before performing 

any deterministic chaos analysis, however, numerical data smoothing was applied for noise 

reduction. 

3.4.1. Analysis conditions 

In order to obtain reliable deterministic analysis results from optical fibre probe 

signals, the selection of parameters is critical. The key parameters are the embedding 

dimension, time delay, number of sample points and length of analysis vector. 

In principle, a reconstructed attractor can be obtained for any sufficiently large 

embedding dimension d and almost any time delay x. However, i f d is chosen too large, 

noise in the data tend to decrease the density of the points defining the attractors, making 

it harder to find replacement points. Noise, an infinite dimensional process, unlike the 

deterministic component of the data, fills each available phase dimension in a 

reconstructed attractor. Increasing d beyond what is minimally required has the effect of 
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unnecessarily increasing the level of contamination of the data and the computation time. 

Experience shows that the appropriate value is about twice the dimension of the attractor. 

This value becomes 8-15 for pressure signals obtained from fluidised beds that have a 

correlation dimension ranging from 3 to 7. Bai et. al.(1997) have shown that an 

appropriate value of embedding dimension can be selected as the value beyond which the 

determined correlation dimension attains a constant value. 

Some care is required in choosing the time delay for accurate estimation of the 

chaotic invariants. In general, excessively large time delays effectively result in 

uncorrelated points within a vector, thereby giving properties of stochastic time series. 

When the time delay is chosen too small, all subsequent points within a vector are highly 

correlated, and the attractor is stretched out along the diagonal in the pseudo-state space. 

In this respect, the time delay at which the autocorrelation function first attains a minimum 

or crosses zero can be considered an appropriate time delay for reconstructing the 

attractor. In this work, the time delay is chosen as the time at which the autocorrelation 

function decreases by 80%. This choice gives us similar results as the first zero-crossing. 

Theoretically, the number of data points required in the calculations is proportional 

to 10 d / 2 (where d is the dimension of the attractor). Experience has shown that 5,000 to 

10,000 points are sufficient for fluidized bed signals (Bai et. al.,1997). In this work, the 

number of data points was selected as 10,000. The length of the vector should be large for 

the calculation. Experience has indicated that when the length of the vector is greater than 

100, reliable results are achievable. The length in this work was chosen as 400. 

In order to show chaotic phenomena from the localised optical fibre probe in the 

fluidised bed, the optical fibre probe was placed at different positions. This allows 
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comparison of the information among these signals. The locations and designations are 

listed in Table 3.1. 

Table 3.1. Optical fibre probe sample locations in the free bubbling fluidised bed 

and their codes (U=0.2 m/s, H=270 mm) 

Z=height center 1/2 radius 3/4 radius 

55 mm OL1 O L 2 OL3 

110 mm OM1 O M 2 OM3 

220 mm OH1 O H 2 OH3 

Figure 3.7 plots the autocorrelation function for case O M 1 . The time delay is 

chosen as the time at which the autocorrelation function decreases by 80%, which is about 

20. 
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Figure 3.8 Phase space plot for case OM1 

A phase space plot for case OM1 is shown in Figure 3.8. The derivatives are 

assumed to be given by half the difference between the data points adjacent to each point 

divided by the s interval The strange attractor is revealed in the phase space plot. The 

correlation dimension for case OM1 is shown in Figure 3.9. When the embedding 

dimension increases from 23 to 27, the correlation dimension is virtually the same. This 

means that for the time delay 10, the embedding dimension of 23 is saturated. 

Lyapunov exponents o f optical fibre signals collected at different locations in a 

fluidised bed are listed in Table 3.2. Based on this result, in the high bubble frequency 

region, i.e. the bottom section of the bed, the Lyapunov exponent of the voidage signal 

is bigger than in the low bubble frequency region, found in the top section near 

the wall. In other words, the region with many bubbles is more chaotic than the region 

with few bubbles. On the other hand, in the region where the bubbles tend to be large, i.e. 

in the center of the top section, the Lyapunov exponent is close to the Lyapunov exponent 
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of voidage signals collected where bubbles tend to be small, i.e. the bottom section of the 

bed. This indicates that bubble size has only a weak influence on the Lyapunov exponent. 

Table 3.2. Lypunov exponents of optical fibre signals collected at different locations in a 

fluidised bed for U=0.2 m/s, H=270 mm 

Z=height, mm center 1/2 radius 3/4 radius 

55 0.75 0.70 0.66 

110 0.66 0.62 0.60 

220 0.64 0.55 0.40 

3.5 Deterministic chaos analysis of re-constructed optical fibre signals 

Double slope curves for the correlation dimension have been obtained in both 

pressure and voidage signals. Pressure signals can be depicted as superimposed signals. 

Voidage signals are collected by probes that alternatively see the bubble and dense phases 

Although pressure and voidage signals have different physical meanings, both originate 

from two-phase -bubble and particle phase. 

The voidage signal can be divided into two parts, one corresponding to the bubble 

phase, and the other corresponds to the dense phase. 

Figure 3.10 is autocorrelation function figure for superimposed signals of Lorenz 

attractor and Logistic Map, with the time delay chosen as 1. When the embedding 

dimension is increased from 1 to 5, 9, and 14, a double slope curve appears as illustrated 

in Figures 3.11, 3.12, and 3.13. This demonstrates that a double slope correlation 

dimension curve can be detected from the signal from two superimposed independent 

chaotic signals. For the gas fluidisation case, double slope correlation dimension curves 

possibly originate from the interaction of two phases (bubble and particulate). 

In order to further analyse the chaotic structure of voidage signal, the voidage is 

divided into two parts corresponding to the bubble phase and dense phase for dynamic 

analysis. The cut-off point is selected at voidage 0.42, which corresponds to a voltage 
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output of 4.1 V for the fibre probe equipment. The results are shown in Figures 3.14 and 

3.15 for sampling point O M 1 . Figure 3.14 presents the correlation integrals for a 

reconstructed optical fiber probe signal, assuming that all dense phase voidages are equal 

to the voidage at minimum fluidisation. Only one slope is shown in Figure 3.14. Figure 

3.15 plots the corresponding correlation integrals assuming that all bubble phase voidages 

are equal to 1. The correlation integrals curve is then seen to show jumps, related to the 

reassignment of a discrete voidage of 1 to all voidages greater than 0.42. Clearly the 

assumption commonly made in bubble models that there are only two voidages (that at 

minimum fluidization and unity) is oversimplified. 

3.6 Summary 

In this chapter, it is demonstrated that voidage time series from a bubbling fluidised 

bed demonstrate chaotic properties. Furthermore, it is shown that the signal can be divided 

into two portions, one part corresponding to periods when the probe is immersed in the 

bubble phase and the other when it is in the dense phase. 
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Chapter 4 

Bubble Coalescence Simulation Based on Clift and Grace Model and Dynamic 

Behaviour Analysis 

4.1 Introduction 

As outlined in Chapter 2, recent experimental studies suggest that the dynamics of 

gas fluidised beds are determined by deterministic chaos. In this chapter, we demonstrate 

that deterministic chaos in bubbling fluidised beds can arise from non-linear bubble-bubble 

interactions. Starting from the Clift-Grace bubble coalescence model, a three-dimensional 

bubbling fluidised bed model is constructed that exhibits characteristic features of 

deterministic chaos. 

4.2 Modelling of Three-Dimensional Bubbling Fluidised Bed 

It has been found experimentally that an isolated bubble in a fluidised bed rises 

with nearly the same velocity as a large bubble of the same volume ascending through a 

liquid of low viscosity, the general relationship being the equation of Davies and Taylor 

(1950). 

uA=Kjg~^ (1) 

where UA~ the rise velocity for an isolated bubble, 

g= the acceleration due to gravity, 

a= the bubble radius of curvature at the nose 
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Equation (1) was originally derived for bubbles rising in liquids, assuming that the flow at 

the front of the bubble is incompressible and irrotational and that the pressure is constant 

over the bubble surface. The liquid at the nose of the bubble is stagnant relative to the 

bubble. The theoretical values for the constant K are 2/3 for three-dimensional and 0.5 for 

two-dimensional bubbles. 

There is experimental evidence for three-dimensional fluidised beds, that K is not 

constant (Rowe, 1971) but varies with material and particle size. The average value is 

around 0.95, and almost all values lie within 15% of this value for the materials and sizes 

investigated. Rowe suggested that the best correlation for K is 

^ = 1 . 3 4 ^ + 0 . 3 1 (2) 

where voidage at minimum fluidisation. 

The condition of constant pressure at the bubble surface used by Davies and 

Taylor applies equally in fluidised beds and controls bubble shape and velocity, both for 

isolated and interacting bubbles. This condition has been used to develop a model for 

predicting the motion of interacting bubbles in a fluidised bed (Gi f t and Grace, 1970). In 

this derivation a single doublet in uniform flow was used to represent each bubble in the 

potential flow equations. This method does not give spherical or circular shapes for 

interacting bubbles, but it has been shown for a vertical row of bubbles in two and three 

dimensions that the deviations are small and qualitatively in agreement with the distortions 

observed experimentally, i.e. the trailing bubble and doublet become elongated. Thus it is 

not necessary to represent the bubbles by completely spherical or circular shapes in order 

to predict their movement. 
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Gi f t and Grace showed that each bubble velocity could be predicted as the vector 

sum of the rise velocity in isolation and the velocity at the nose caused by each other 

bubble as predicted by potential flow with each bubble represented by a doublet. This is 

the basis used to formulate the model which allows us to predict the motion of interacting 

bubbles: "The velocity o f a bubble in a fluidised bed may be approximated by adding to its 

rise velocity in isolation the velocity which the continuous phase would have at the 

position of the nose if the bubble were absent". 

The theoretical justification of the basic postulate is limited to the two-dimensional 

case, but the model was shown experimentally to also be applicable in three dimensions. 

Comparison with experimental results for selected bubble configurations, bubble pairs in 

vertical alignment, bubble pairs in oblique alignment and vertical bubbles (Gift and 

Grace, 1970, 1971, 1972) has shown excellent agreement with experimental data for both 

two- and three-dimensional bubbles. 

In using the model it is necessary to calculate the velocity of the particulate phase 

at the nose each bubble due to the motion of all other bubbles present. It has been shown 

that an isolated bubble can be treated approximately as a circular (2-D) or spherical (3-D) 

cap with an enclosed wake of particles completing the circle or sphere and travelling with 

the bubble. Rotational flow is assumed to be confined to the wake, with the motion 

outside the bubble and its wake well approximated by potential flow around a cylinder or 

sphere. A s in the derivation of the model, the potential flow approximation is used here to 

calculate velocities of the particulate phase due to interacting bubbles. 

The equations derived from the model and the representation of coalescence are 

treated in detail below. For the two-dimensional case, the predictions from the model are 
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compared with experimental results. The three-dimensional case is treated and predictions 

compared to experimental results from the literature. 

The Clift-Grace coalescence model was initially developed for a two-dimensional 

bed, and this treatment was then extended to three-dimensional beds by Johnsson (1973) 

and Johnsson et al (1974). The development follows the same pattern as in the two-

dimensional case. 

The rise velocity for a single bubble in isolation and the interaction coefficients are 

different in three dimensions, but the logic concerning coalescing bubbles is the same in 

both cases and the control criteria for two dimensions can be used directly, 

a) Bubble Interaction 

i) The rise velocity of a bubble in isolation, u A , is calculated from the Davies-Taylor 

equation (1) using the theoretical isolated bubble three-dimensional value for K instead of 

equation (2), because equation (1) has already been shown to give good predictions of the 

motion of bubble pairs and bubble chains, while equation (2) was an average value for 

interacting bubbles, i.e. inappropriate for the detailed model: 

uA = 0.67VP^ (3) 

ii) The velocity of the particulate phase caused by the motion of all other bubbles, 

evaluated at the position of the nose of the bubble in question, but with that bubble absent, 

is calculated from potential f low theory assuming that each bubble is represented oy a 

doublet. The velocity is split into one vertical component q, and two horizontal velocity 

components, p and a.The velocity components for the particulate phase at the nose of 

bubble i caused by bubble j are: 
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9v=rVUJ+t(fVJ+l9WJ (4) 

P o = t U U J + S V V J + m V W J (5) 

crij=lijuj+mijvj+nijwj * (6) 

where qij =vertical particulate phase velocity at the nose of bubble i caused by 

bubble j 

Pi, =horizontal particulate phase velocity in the y-direction at the nose of bubble i 

caused by bubble j 

Oy =horizontal particulate phase velocity in the z-direction at the nose of bubble i 

caused by bubble j 

Uj ^vertical instantaneous velocity of bubble j 

Vj =horizontal instantaneous velocity of bubble j in the y-direction 

Wj=horizontal instantaneous velocity of bubble j in the z-direction 

Here x,y and z are Cartesian co-ordinates of the bubble centre, with x directed vertically 

upwards; r,j, Sy, n U i ty, 1^ m yare interaction coefficients depending on the size and position of 

bubbles i and j as defined in Table 4.1 

The instantaneous velocity components for bubble i can now be calculated by 

summation: 

N 

N 

V 2>y ( 8 ) 

N 

W .=!>.> (9) 
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T A B L E 4.1 

Interaction Coefficients for the Prediction of Bubble Mot ion in Three Dimensions 

(adapted from Johnsson, 1973) 

fy = a)(2X2 -Y2 -Z2)lAB 

stj - a*(2Y2 - X2 - Z2) I AB 

nij=a)(2Z2 -X2 -Y2)l AB 

tv = 3a)XYIAB 

lv =3a].XZ/AB 

mv=3a*YZ/AB 

where 

X = xt+ at - x. 

Z = z i - zj 

AB = 2(X2 +Y2+Z2f2 

The bubble trajectories can then be found by integration of the three differential equations: 

dxi dyi dzt 

a- = "':*- = v' :*- = "'' <I0> 
Equations (7) to (10) cover the case where no wake entry has occurred. If the nose of 

bubble i has entered the wake of bubble j , we have simply: 
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Ui = UAi +Uj 

v, = vj 

(11) 

(12) 

(13) 

4.2.1.Coalescence 

As in the two-dimensional case and as proposed by Clift and Grace (1972) , the following 

assumptions are made at the instant of coalescence: 

i) Bubble volumes are either additive upon coalescence, or the total volume increases by 

10-15%; increases of this magnitude have been seen in practice (Grace and Venta, 1973). 

ii) Bubbles are close to vertical alignment when coalescing. 

iii) uAj is equal to the rise velocity of the composite bubble, and the interaction 

coefficients Sji nji tjj lji and nij; are all zero. 

iv) The time for completion of coalescence is 1.8 a/uAj-

4.2.2 Numerical Solution 

a) General Method 

The numerical solution is carried out as in the two-dimensional case, the only 

difference being that N bubbles give 3N linear equations in three dimensions, rather than 

2 N as in two dimensions. The solution is straightforward since the coefficent matrix has 

the largest elements along the main diagonal. Hence a simple iterative procedure can be 

used. The Gauss-Seidel method is used to calculate the velocities. The position of each 

bubble as a function of time is then obtained by integrating the 3 N differential equations 



simultaneously by the Kutta-Merson process. The integration step is chosen to be small 

enough to ensure that the check on bubble coalescence between steps is carried out at 

convenient intervals to prevent unrealistic situations, such as bubbles enclosing other 

bubbles. 

b) Wal l Effect 

Image bubbles were used to represent the walls of a square column. Two 

simulations were run with nine bubbles in the bed. In one case no image bubbles were 

included, while in the other image bubbles were included for all bubbles whose centres 

were less than two bubble radii from the walls: in this case five image bubbles were 

present. The largest effect was observed for the vertical velocity; one bubble was retarded 

slightly to 98.5% of the original velocity, while the effect on horizontal velocities was 

completely negligible. Consequently the wall effect on bubble velocities was assumed to be 

negligible and the image bubbles were omitted in the simulations. This was fortunate 

because it enables simulation in beds of circular cross-section also, without additional 

difficulties. 

c) Boundary Condition 

The boundary condition at the gas distributor (i.e. at the base of the bed) is usually 

taken as bubbles of uniform size, evenly-spaced in time, randomly distributed over the bed 

cross-section, but totally inside the bed, i.e. no bubble centre is closer than one bubble 

radius to the outer wall of the column. In the square bed the random distribution was 

obtained by picking both horizontal co-ordinates randomly. For the bed of circular cross-

68 



section the procedure was the same, but the position of each bubble was tested to see if it 

was inside the circle of radius R-rb0, where rb0 is the initial bubble radius. If not , it was 

discarded and a new bubble tried, 

d) Further Computational Details 

Bubbles were taken out of the bed at the top when their centres passed the level of 

the expanded bed height. If a bubble happened to pass through the wall during an 

integration step, it was put back into the bed after the step. This could happen because of 

the neglect of the wall in the simulation for high bubble concentrations. The horizontal 

positions and size of each bubble were recorded at given levels. This computer program is 

given in the Appendix. This program is derived from that of Johnsson (1973) for a Fortran 

M S Power Station compiler with an improved random number generator. 

4.3. Signal Simulation 

The bubble information was used to determine the average voidage at selected 

positions in the bed. Observation "windows" were defined as horizontal circles. The 

instantaneous voidage fraction at each location is then determined after each time step by 

considering the array o f bubbles at that instant as predicted by numerical solution of the 

differential equations for the bubbles, as discussed above. 

The voidage fraction calculated in this manner led to predicted time series 

measurements for each window, corresponding to what a stationary observer or voidage 

sensor should see at that position. 

Obviously, the area of the "window" has some influence on the nature of the 

voidage fraction. It has been found empirically that the most useful windows have 

diameters which are 0.5 to 10 times the bubble diameter. 
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4.4. Chaos Analytical Method 

4.4.1 Phase-Space Plots 

A phase-space plot is a graph in which the derivative X ' is plotted versus X at each 

data point in order to reveal the topology of the solution. For this purpose, the derivatives 

are assumed to be given by half the difference between the data points adjacent to each 

point divided by the X interval. Periodic data should appear as a closed curve on such a 

plot. With the special embedding method, chaotic data often appear in the form of a 

strange attractor having a fractal structure with a fractional dimension. 

4.4.2 Lyapunov Exponent 

The Lyapunov exponent is a measure of the exponential rate at which nearby 

trajectories diverge in phase space. Chaotic orbits have at least one positive Lyapunov 

exponent, while for periodic orbits, all Lyapunov exponents are negative. The Lyapunov 

exponent is zero near bifurcation points. In general, there are as many exponents as there 

are dynamical equations. The most positive exponent is chosen as the Lyapunov exponent. 

4.4.3. Autocorrelation Function 

The autocorrelation function, sometimes called the correlation function, is 

obtained by multiplying each X(t) by X(t-x) and summing the result over all data points. 

The sum is then plotted as a function of time delay x. This gives a measure o f how 

dependent data points are on their neighbours. The value of x at which the correlation 

function remains small is defined as the correlation time. Highly random data have no 
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correlation, and for these data the correlation function drops abruptly to zero, implying a 

small correlation time. Highly correlated data have a correlation amplitude that decreases 

only slowly with time. Chaotic data tend to show little correlation except when the time 

delay is small. 

4.4.4 Correlation Dimension 

With each pass through the data, a new data point is taken, and a hyperdimensional 

sphere of embedding dimension d and radius r is centered on that point. The fraction of 

subsequent data points in the record within that sphere is then calculated for various 

values of r, and a plot is made of the log of this number versus the log of the radius. The 

correlation dimension is taken as the average slope of the cumulative curve over the 

middle one-quarter of the vertical scale, while the error is taken as half the difference 

between the maximum and minimum slope over the same range. 

4.5 Sample Results And Discussion 

Because this model does not have any way of predicting bubble splitting, it is not 

possible to use it to simulate the bubble column used in the experiments reported in 

Chapter 3. Instead, the initial conditions were set as: 

The initial conditions were set as: 

initial bubble diameter = 10 mm 

bubble generation frequency = 100 H z 

column diameter = 500 mm 

static bed height = 1 m 
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time step = 0.05 s 

A "window" of diameter 10 mm was positioned with its center on the axis at 

height of 0.5 m above the distributor. The overall number of time steps of the computer 

run is 10,000, which required about 30 minutes to obtain results on a Pentium 100 H z 

computer. The simulated real time is 500 seconds. The program created time series data of 

bubble size, radial position and axial position. The voidage fraction is achieved by 

numerically calculating the area of three-dimensional bubbles in the fluidised bed cut by 

the horizontal window. The voidage of the cut area of the bubbles in the window is 

assumed to be l , while the remaining part of the window is assumed to have voidage of 

Smf. The average voidage fraction of the window is then assumed to be like the voidage 

signal obtained by an optical probe in the fluidised bed. The data are then used to remap 

the time series measurement into a phase or state. 

The phase space plot of the simulated voidage fraction signal is shown in Figure 

4.1. It is clear that a strange attractor reveals in the phase space plot. 

The correlation function is shown in Figure 4.2. For time delay 0.05, embedding 

dimension 5 and 9, a single slope correlation integer is shown. 
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de/dt 



-5 -4 -3 -2 -1 
ln(r) 

0 1 2 

Figure 4 2. Correlation integrals for simulated voidage fraction signal ( x=0.05) 

The correlation dimension for the time series is Dc=2.1 for the embedding 

dimension of 9. 

The largest Lyapunov exponent is equal to 0.182. 

A second set of conditions was also investigated: 

initial bubble diameter =15 n m 

bubble generation frequency = 100 H z 

column diameter = 500 mm 

static bed height = 1 m 
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time step = 0.05 s 

A n imaginary "window" of the same size with diameter 10 mm was again 

positioned centred on the axis at a height of 0.5 m above the distributor. 10,000 time steps 

of the computer run were taken, resulting in an overall simulated time of 500 seconds. The 

program converged and created time series data of bubble size and position. The resulting 

correlation function is shown in Figure 4.3. 
-5 -4 -3 -2 -1 0 1 2 

| I 1 I 1 1 ' 1 > 1 1 1 1 1 1 1 

I 1 1 1 1 1 i I i I 
-5 - 4 - 3 - 2 - 1 0 1 2 -

l n ( r ) 

Figure 4 3. Correlation function figure for simulated voidage fraction signal ( x=0.05) 

The resulting correlation dimension for the time series is given by D c=2.3 while the 

embedding dimension is 9. 

The Lyapunov exponent is equal to 0.196. 

The third set of conditions was set as: 

initial bubble diameter = 10 mm 

bubble generation frequency = 120 H z 
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column diameter = 500 mm 

static bed height = 1 m 

time step = 0.05 s 

The same "window" was positioned at the same position as in the first two cases. 

Also the total number of time steps of the computer (10000), and the total simulated time 

(500 s) were as before. The program again converged and created a time series data of 

bubble size and position. Figure 4.4 gives the correlation function from the predicted 

signal for two values of the embedding dimension, d. 

• 6 - 4 - 3 - 2 - 1 0 1 2 
"1 ' I 1 I 1 1 > 1 1 1 ' 1 1 1 

I n ( r ) 
Figure 4 4. Correlation function figure for simulated voidage fraction signal (7=0.05) 

The correlation dimension for the time series is D c=2.8 while the embedding 

dimension is 9. 

The Lyapunov exponent is equal to 0.252. 

76 



The above three simulations, summarised in Table 4.2, demonstrate that dynamic 

chaos dominated this simulated 3-dimensional fluidised bed. B y comparing these three se 

of results, it can be seen that both bubble frequency and initial bubble size influence the 

chaotic characteristics o f the simulated voidage fraction signal, but bubble frequency 

appears to play a stronger role than the initial bubble size. 

.2 Summary of results of numerical simulation using three-dimensional 
bubble coalescence model. 

Simulation 1 Simulation 2 Simulation 3 
Column diameter, mm 500 500 500 
Static bed height, m 1 1 1 
Initial bubble diameter, mm 10 15 10 
Bubble generation frequency, 
H z 

100 100 120 

Time step, s 0.05 0.05 0.05 
Figure showing correlation 4.2 4.3 4.4 
function 
Correlation dimension, D 2.1 2.3 2.8 
Lyapunov exponent, X 0.182 0.196 0.252 
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Chapter 5 

Conclusions and Recommendations 

5.1 Conclusion 

Recent research suggests that the dynamics o f gas fluidised beds are dominated by 

deterministic chaos. This thesis investigates the chaotic phenomena by examining 

experimental voidage signals from an optical fibre probe in a freely bubbling fluidised 

bed and simulated voidage fractions in a bubbling fluidised bed, predicted based on the 

three-dimensional version of the Clift and Grace bubble coalescence model 

It is shown that a bubbling fluidised bed can behave as a multi-fractal dynamic 

system. Two-slope correlation integral curves derived from experimental voidage signals 

possibly arise from superposition of the two curves corresponding to the bubble and 

dense phase. 

Voidage signals collected at different positions show that the bubble size and 

frequency influence the chaotic characteristics of the voidage signal. In the bottom 

section, the voidage signals generally are more chaotic than in the top section. In 

addition, near the axis of the top sections, voidage signals are less chaotic because of 

bubble coalescence. 

Simulated voidage fraction signals derived from the bubble coalescence also show 

chaotic characteristics, in qualitative agreement with experimental results. Both the 

experiments and numerical simulation indicate that the bubble frequency influences 

chaotic characteristics more strongly than the bubble size. Voidage signals from regions 

of high bubble frequency region are more chaotic than those in regions where there is 
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little coalescence. The initial size of bubbles appears to have only a weak influence on the 

signal's chaotic characteristics 

5.2 Recommendations 

Though some progress in understanding the fundamentals of the chaotic structure 

of voidage signals in bubbling fluidised beds has been made in this study, more research 

is required both experimentally and theoretically to completely understand the chaotic 

behaviour of voidage signals. 

The influence of the non-linear relationship between voidage and experimental 

voltage optical fibre probe output for small particles on the derived signal chaotic 

characteristics is unknown. Research is needed to reach a conclusion as to whether the 

non-linear output influences chaotic index of signals, and i f it does have an influence, 

how strong the influence is. 

The multi-fractal chaotic structure assumption needs more direct proof. The 

numerical box counting method needs careful review to make sure that the double slope 

correlation integral curve is consistent and sufficient to support this assumption. 

In order to explore the elementary form of deterministic chaos in bubbling 

fluidised beds, further effort is needed to assume every point in a bubbling fluidised bed 

to consist of either void (bubble) or particulate phase. Imaginary optical fibre probes 

would then be positioned in the bed at different locations. A set of time series voidage 

values would then be generated. Because the output wi l l be an analogue signal, far more 

data points wi l l be needed to explore the dynamics of the simulated signals. 

Bubble splitting needs to be added to the Cliff-Grace model. 
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N O M E N C L A T U R E 

A constant, -

A bed cross-sectional area, m 2 

Cd(r) correlation integral corresponding to a specific embedding dimension, -

C w (r) correlation integral corresponding to a cutoff parameter W, -

d embedding dimension, -

db radius of bubble, m 

D c correlation dimension of attractor, -

Dcap capacity dimension of attractor, -

Di information dimension of attractor, -

f frequency, s"1 

G B visible gas flow in the bubble phase, m 3/s 

K Kolmogorov entropy, -

k number of data points of a subrecord, -

M order of nearest neighbor or vector of time series, -

m number of time steps, -

N number of data points, -

r distance, m 

r0 specific distance beyond which two nearby trajectories separate, -

R range of cumulative time series, -

t time, s 

tac correlation time, -

tc characteristic time scale, -

tet evolution time, -

U superficial gas velocity, m/s 

Umf superficial gas velocity at minimum fluidisation, m/s 

U m b superficial gas velocity at minimum bubbling point, m/s 

Ubr rise velocity of isolated bubble, m/s 

X variable, -



Y variable, -

z axial coordinate, m 

X reconstructed vector, -

5 nearest neighbour distance, -

Sij distance between points Xt and X j , -

9 dimensionless radial coordinate, -

a standard deviation, -

X time delay, -

K largest Lyapunov exponent, -

Xet Lyapunov exponent corresponding to evolution time t et, -

y autocorrelation function, -

Ymax maximum value of autocorrelation function, -



REFERENCES 

Albano, A . M , Muench, J . , Schwartz, C , Mees, A . I. and Rapp, P. E., Singular-value 
decomposition and the Grassberger-Procaccia algorithm, Phys. Rev. A, 38, 3017-3026, 
1988. 

Albano, A . M , Passamente, A . and Farrell, M . E., Using higher-order correlations to 
define an embedding window; Physica D, 54, 85-97 1992. 

Aleksic, Z . , 1991, Estimating the embedding dimension, Physica D, 52, 362-368. 

Badii, R. and Polit i, A . , 1985, Statistical description of chaotic attractors: the dimension 
function, / . Stat Phys., 40, 725-750. 

Bai , D., B i , EC. T. and Grace, J. R., Chaotic behavior of fluidized beds based on pressure 
and voidage fluctuations, A I C h E J. , 43, 1357-1361 (1997). 

Bai , D., Issangya, A . I., L im, K. S. and Grace, J. R., Gas fluidized beds: high-dimensional 
and multifractal dynamic systems? AIChE Annual Meeting, November 10-16, 
Chicago, 1996. 

Barnsley, M . , Fractals Everywhere, Academic Press, San Diego, C A , 1988. 

Ben Mizrachi, A . , Procaccia, I. and Grassberger, P., Characterization of experimental 
(noisy) strange attractors, Phys. Rev A, 29, 975-977, 1984. 

Bouillard, J. X . and Miller, A . L., Experimental investigations of chaotic hydrodynamic 
attractors in circulating fluidized beds, Powder Technoi, 79, 211-215., 1994. 

Clift R. and Grace J.R., 1970, Bubble interactions in fluidised beds, Client Eng. Prog. 
Symp. Ser., 66, No . 105, 14-27. 

Clift R. and Grace J R . , 1971, Coalescence of bubbles in fluidised beds, AIChE Symp. 
Ser., 67, No . 116, 23-33. 

Clift R. and Grace J.R., 1972, Coalescence of bubble chains in fluidised beds Trans. Inst. 
Chem. Eng, 50, No.4, 364-371. 

Clift R. and Grace J.R., Continuous bubbling and slugging , Chapter 3 in Fluidization, 2nd 
ed., J.F. Davidson, R. Clift and D. Harrison.,eds., Academic Press., London, 1985. 

Collins R., The Rise Velocity of Davidson's Fluidization Bubble, Chem, Eng. Sci., 20, 
788(1965). 

82 



Davidson J.F. and Harrison D., Fluidized Particles, Cambridge Univ. Press.,Cambridge, 
1963. 

Davidson J.F., Paul R.C. , Smith M . J.S., Duxburg H.A., The rise of bubbles in a fluidised 
beds, Trans. Inst. Chem. Eng., 37, 323 (1959). 

Davidson, J.F, Harrison D. and Guedes de Carvalho, J.R.F., On the liquid like behaviour 
of fluidised beds., Ann. Rev. Fluid Mech., 9,55 -86. 

Davies R . M . and Taylor G.I., Proc. Roy. Soc, A 2 0 0 , 375 (1950). 

Daw, C. S. and J. S. Halow, Characterization of voidage and pressure signals from 
fluidized beds using deterministic chaos theory, Proc. 11th International Fluidized 
Bed Combustion Conference, A S M E , 2 , 777-786, 1991. 

Daw, C. S. and Halow, J. S., Modeling deterministic chaos in gas-fluidized beds, AIChE 
Symp. Ser., 88, No.289, 61-69., 1992. 

Daw, C. S. and Halow, J. S., Evaluation and control of fluidization quality through chaotic 
time series analysis of pressure drop measurements, AIChE Symp. Ser., 89(296), 103-
122., 1993. 

Daw, C. S., Lawkins, W. F., Downing, D. J. and Clapp, N. E., Chaotic characteristics of a 
complex gas-solids flow, Phys. Rev., A, 41, 1179-1181, 1990. 

Devaney R. L., A n Introduction to Chaotic Dynamical Systems, Addison- Wesley, 1989. 

Drahos, J . , Bradka, F. and Puncachar, M . , Fractal behaviour o f pressure fluctuations in a 
bubble column, Chem. Eng. Sci., 47, 4069-4075, 1992. 

Fan, L. T., Kang, Y . , Neogi, D. and Yashima, M . , 1993, Fractal analysis of fluidized 
particle behaviour in liquid-solid fluidized beds, AIChE J., 39, 513-517. 

Fan, L. T., Neogi, D., Yashima, M . and Nassar, R., 1990, Stochastic analysis of a three-
phase fluidized bed: fractal approach, AIChE J., 36, 1529-1535. 

Farmer, J. D. and Ott, E., 1983, The dimension of chaotic attractors, Physica D, 7, 153-
180. 

Feder, J . , 1988, Fractals, Plenum, New York. 

Franca, F., Acikgoz, M . , Lahey Jr, R. T. and Clausse, A . , 1991, The use of fractal 
techniques for flow regime identification, Int. J. Multiphase Flow, 17, 545-552. 

Fraser, A . M . and Swinney, H. L., 1986, Independent coordinates for strange attractors 
from mutual information, Phys. Rev. A., 33, 1134-1140. 

8 3 



Geldart, D., The size and frequency of bubble in two- and three- dimensioned gas fluidised 
beds, 1970, Powder Technology, 4, 41 

Geldart, D., 1973, Types of gas fluidisation, Powder Technology, 7, 285-292. 

Glicksman. L. R., 1984, Scaling relationships for fluidized beds, Chem. Eng. Sci., 39, 
1373-1379. 

Glicksman. L. R., 1988, Scaling relationships for fluidized beds, Chem, Eng. Sci., 43, 
1419-1421. 

Glicksman, L. R., Hyre, M . R. and Farrell, P. A . , 1994, Dynamic similarity in fluidization, 
Int J. Multiphase Flow, 20, 331-386. 

Gogolek, P. E. and Grace, J. R., 1995, Fundamental hydrodynamics related to pressurized 
fluidized bed combustion, Prog. Energy Combust. Sci., 21, 419-451. 

Grace, J. R., 1984, Recent Advances in Engineering Analysis of Chemically Reacting 
Systems, L. K. Doraiswamy (Ed.), pp.237-235, Wiley Eastern, New Delhi. 

Grace, J. R., 1990, High-velocity fluidized bed reactors, Chem. Eng. Sci., 45, 1953-1966. 

Grace J. R. and Clift R. 1974, On the two-phase theory of fluidization, Chem. Eng. Sci., 

29, 327-334, (1974). 

Grace, J.R. and Harrison, D,1968, The distribution of bubbles within a gas-fluidised bed, 
Instn, Chem. Engrs. Symp. Ser. No . 30, 105-113. 

Grace, J.R. and Venta, J (197#) Volumes Changes accompanying bubble splitting in 
fluidised beds, Can. J. Chem. Eng., 51, 110-111. 

Grassberger, P. and Procaccia, I., 1983a, Estimation of the Kolmogorov entropy from a 
chaotic signal, Phys. Rev., A, 28, 2591-2593. 

Grassberger, P. and Procaccia, I., 1983b, Measuring the strangeness of strange attractors, 
Physica D, 9, 189-208. 

Grassberger, P., Schreiber, T. and Schaffrath, C , 1991, Nonlinear time sequence analysis, 
Int J. Bifurcation and Chaos, 1, 521-547. 

Halow, J. S. and Daw, C. S., 1994, Characterizing fluidized-bed behaviour by 
decomposition of chaotic phase-space trajectories, AIChE Symp. Ser., 90(301), 69-91. 

Hammel, S. M . , 1990, A noise-reduction method for chaotic systems, Phys. Lett A, 148, 
421-428. 

Harrison D. and. Leung L .S , The rate of rise of bubbles in fluidized beds, Trans. Inst 
Chem. Eng., 39, 409 (1961); 40, 146-151 (1962) 

84 



Hay, J. M . , Nelson, B. H. , Briens, C. L. and Bergougnou, M . A . , 1995, The calculation of 
the characteristics of a chaotic attractor in a gas-solid fluidized bed, Chem. Eng. Sci., 
5 0 , 373-380. 

He, Y . , Hydrodynamic and scale-up studies of spouted beds, PhD Thesis, University of 
British Columbia, 1995. 

Hilborn, R. C , 1994, Chaos and nonlinear dynamics: an introduction for scientists and 
engineers, Oxford University Press, New York. 

Issangya, A . , Bai . , D., B i , H.-T., L im, K. S., Zhu, J . -X . and Grace, J. R , Axial solids 
holdup profiles in a high-density circulating fluidized bed, in Circulating Fluidized 
Bed, Technology V , M . Kwauk and J. L i , eds., Science Press, Beijing, pp.60-65, 1997. 

Izrar, B. and Lusseyran, F., 1993, Chaotic behaviour of an annular film of liquid 
unstabilized by an interfacial shear stress, Instabilities in Multiphase Flows (Edited by 
G. Gouesbet and A . Berlemont), pp. 1-15, Plenum Press, New York. 

Jackson R.,1963, Bubble velocity in fluidised beds Trans. Inst. Client Eng., 4 1 , 22-28. 

Johnsson, J.E. , Bubble distribution in fluidised bed, M.Eng. Thesis, McG i l l University, 
1973. 

Johnsson, J .E. , Gi f t , R. and Grace J. R., 1974, Prediction of bubble distributions in a 
freely-bubbling two-dimensional fluidised beds, Instn. Chem, Engrs. Symp. Ser., 
No.38, 85. 

Kennel, M . B. and Isabelle, S., 1992, Method to distinguish possible chaos from colored 
noise and to determine embedding parameters, Phys. Rev. A, 4 6 , 3111-3118. 

Kennel, M . B., Brown, R. and Abarbanel, H. D. I., 1992, Determining embedding 
dimension for phase-space reconstruction using a geometrical construction, Phys. Rev. 
A, 4 5 , 3403-3411. 

Kostelich, E. J. and Schreiber, T., 1993, Noise reduction in chaotic time-series data: a 
survey of common methods, Phys. Rev. E, 4 8 , 1752-1763. 

Kostelich, E. J. and Swinney, H. L., 1987, Practical considerations in estimating dimension 
from times series data, in Chaos and Related Nonlinear Phenomena, Plenum, New 
York. 

Kostelich, E. J. and Yorke, J. A . , 1988, Noise reduction in dynamical systems, Phys. Rev. 
A, 3 8 , 1649-1652. 

Kostelich, E. J. and Yorke, J. A . , 1990 Noise reduction in dynamical systems, Physica D, 
4 1 , 183-196. 

85 



Lacy, C. E. , Sheituch, M . and Dukler, A . E., 1991, Methods of deterministic chaos 
applied to the flow of thin wavy films, AIChE J., 37, 481-489. 

Liebert, W . and Schuster, H . G. , 1988, Proper choice of the time delay for the analysis of 
chaotic time series, Phys. Lett A, 142, 107-111. 

Lischer, D. J. and M . Y . Louge, Optical fiber measurements of particle concentration in 
dense suspensions: calibration and simulation, Appl. Optics, 31(24), 5106-5113 (1992). 

Luewisuthichat, W., Tsutsumi, A . and Yoshida, K., 1995, Fractal analysis of particle 
trajectories in three-phase systems, Trans. IChentE, 73 (Part A ) , 222-227'. 

Matsuno, Y . , H. Yamaguchi, T. Oka, H. Kage and K. Higashitani, The use of optic fiber 
probes for the measurement of dilute particle concentrations. Calibration and 
application to gas-fluidized bed carryover, Powder Technol., 36,215-221 (1983). 

Moon, F.C., 1992, Chaotic and Fractal Dynamics, John Wiley & Sons Inc., New York. 

Mull in, T., 1993, Nature of Chaos, Oxford Science Publications, Oxford. 

Murray J.D., On the mathematics of fluidization, / . Fluid Mech., 22, 57-80 (1965) 

Nguyen, X . T. and Leung, L. S. ,A note on bubble formation at an orfice in a fluidized 
Bed, Chem. Eng. Sci., 27, 1748-1750 (1972). 

Olofsen, E., Degoede, J. and Heijungs, R., 1992, A maximum likelihood approach to 
correlation dimension and entropy estimation, Bull. Math. Bio., 54, 45-58. 

Olowson P. A . and Almstedt A.E.,Hydrodynamics of a Bubbling Fluidized Bed, Client 
Eng. Sci., 47,357-366 (1992). 

Parker T. S. and Chua, L. O., 1989, Practical Numerical Algorithms for Chaotic 
Systems, Springer-Verleg, New York. 

Parlitz, U. , 1992, Identification of true and spurious Lyapunov exponents from time series, 
Int J. Bif. Chaos, 2, 155-165. 

Pence, D. V . , Beasley, D. E. and Riester, J. B., 1995, Deterministic chaotic behaviour of 
heat transfer in gas fluidized beds, J. of Heat Transfer, 117, 465-472. 

Pianarosa, D, Hydrodynamic studies of spouted and spout-fluid beds, M A S C Thesis, 
University of British Columbia, 1996 

Rowe P.N. , in Fluidization, J.F. Davidson and D. Harrison, eds., 121, Academic Press, 
London, 1971 

Rowe P.N, Partridge B A , Trans. Inst. Chem. Eng., 43, T157(1965) 

Sano, M . and Sawada, Y . , 1985, Measurement of the Lyapunov spectrum from chaotic 
time series, Phys. Rev. Lett., 55, 1082-1085. 

86 



Sato, S., Sano, M . and Sawada, Y . , 1987, Practical methods of measuring the generalized 
dimension and the largest Lyapunov exponent in high dimensional chaotic systems, 
Prog. Theor. Phys., 77, 1-5. 

Schouten, J. C. and van den Bleek, C. M . , 1991, Chaotic behaviour in a hydrodynamic 
model of a fluidized bed reactor, in Proc. 11th International Fluidized Bed 
Combustion Conference, pp.459-466, A S M E , New York. 

Schouten, J . C. and van den Bleek, C. M . , 1992, Chaotic hydrodynamics of fluidization: 
consequences for scaling and modeling of fluidized bed reactors, AIChE Symp. Ser., 
88, No.289, 70-84. 

Schouten, J. C , Takens F. and van den Bleek, C. M . , 1994, Maximum-likelihood 
estimation of the entropy of an attractor, Phys. Rev. E, 49, 126-129. 

Schouten, J. C , van der Stappen, M . L. M . and van den Bleek, C. M . , 1992, Deterministic 
chaos analysis of gas-solids fluidization, in Fluidization VII (Ed. by O. E. Potter and 
D. J. Nicklin), pp. 103-111, Engineering Foundation, New York. 

Schreiber, T. and Grassberger, P., 1991, A simple noise reduction method for real data, 
Phys. Lett. A, 160, 411-418. 

Skrzycke, D. P., Nguyen, K. and Daw, C. S., 1993, Characterization of the fluidization 
behaviour of different solid types based on chaotic time series analysis of pressure 
signals, in Proc. of 12th International Fluidized Bed Combustion Conference, Vo l .1 , 
pp. 155-166, A S M E , New York. 

Stewart P.SB, Iso la ted Bubbles in a Fluidized Beds - Theory and Experiments, Trans. 
Inst. C h e m . Eng. , 46, T60-T66 (1968) 

Takens, F. 1981, in Lecture Notes in Mathematics, Vol.898, Springer, New York. 

Tarn, S. W. and Devine, M . K., 1991, Is there a strange attractor in a fluidized bed? in 
Measures of Complexity and Chaos (Ed. by N . B. Abraham, A . M . Albano, A. 
Passamante and P. E. Rapp), pp. 193-197, Plenum Press, New York. 

Toei R , 1967, in Proc. Int Symp. On Fluidization, A A . H Drinkenburg, ed., p.271-278, 
Netherlands Univ. Press, Amsterdam 

Theiler, J . , 1986, Spurious dimension from correlation algorithms applied to limited time-
series data, Phys. Rev. A, 34, 2427-2432. 

Tsuji, Y . , Morikawa, A . and Shiomi, H., 1984, L D V measurement of an air-solid two 
phase flow in a vertical pipe, J. FluidMech., 139, 417. 

Valenzuela J.A. and Glicksman L.R., Gas flow distribution in a bubbling fluidized bed, 
Powder Tech., 44, 103-113 (1985) 

87 



van den Bleek C. M . and Schouten, J. C , 1993a, Can deterministic chaos create order in 
fluidized-bed scale-up? Chem. Eng. Sci., 48, 2367-2373. 

van den Bleek, C. M . and Schouten, J. C , 1993b, Deterministic chaos: a new tool in 
fluidized bed design and operation, Chem. Eng. J., 53, 75-87. 

van der Stappen , M . L. M . , Schouten, J. C , and van den Bleek, C. M . , 1993b, 
Application of deterministic chaos theory in understanding the fluid dynamic behaviour 
of gas-solids fluidization, AIChE Symp. Ser., 89, No.296, 91-102. 

van der Stappen, M . L. M . , Schouten, J. C. and van den Bleek, C. M . , 1993a, 
Deterministic chaos analysis of the dynamical behaviour of slugging and bubbling 
fluidized beds, in Proc. 12th International Fluidized Bed Combustion Conference, 
Vol .1 , pp. 129-140, A S M E , New York. 

van der Stappen, M . L. M . , Schouten, J. C. and van den Bleek, C. M . , 1994, Application 
of deterministic chaos analysis to pressure fluctuation measurements in a 0.96 m 2 C F B 
riser, in Circulating Fluidized Bed Technology IV (EA. by A . A . Avidan), pp.55-60, 
A IChE , New York. 

van der Stappen, M . L. M . , Schouten, J. C. and van den Bleek, C. M . , 1995, Chaotic 
hydrodynamics and scale-up of gas-solids fluidized beds, Fluidization VIII Preprints, 
pp.625-632. 

Werther, J . , Fluid mechanics of large-scale C F B units, in Circulating Fluidized Bed 
Technology IV, A. A. Avidan (ed.), 1-14 (1994). 

Wolf, A . , Swift, J. B., Swinney, H. L. and Vastano, J. A . , 1985, Determining Lyapunov 
exponents from a time series, Physica D, 16, 285-317. 

X ia , Y . , Zheng, C. and L i , H., 1992, Characterizing fast fluidization by optic output 
signals, Powder Technol., 72, 1-6. 

Yamazaki, H. , K. Tojo and K. Miyanani, Measurement of local concentration in a 
suspension by an optical method, Powder Technol., 70, 93-96 (1992). 

Yates, J .G. and Cheesman, D J , Voidage variations in the regions surrounding a rising 
bubble in a fluidized bed, AIChE Symp. Ser., No. 289, 88, 34-39 (1992). 

Yates, J .G. and Rowe, P.N. , The effect of pressure on the flow of gas in fluidized beds of 
fine particles, Chem. Eng. Sci., 38, 1935 -1945(1983). 

Zeng, X . , Eykholt, R. and Pielke, R. A . , 1991, Estimating the Lyapunov exponent from 
short time series of low precision, Phys. Rev. Lett., 66, 3229-3232. 

Zeng, X . , Pielke, R. A . and Eykholt, R., 1992, Extracting Lyapunov exponent from short 
times series of low precision, Mod Phys. Lett. B, 6, 55-75. 

88 



Appendix 

3-DIMENSIONAL FLUIDISED BED SIMULATION: 
F o r t r a n Computer Code 

(adapted from Johnsson, 1973) 

C BUBBLE COALESCENCE SIMULATION IN FLUIDIZIED BED 
DIMENSION A(1000,1000), Y(1000), DY(1000), R(1000) 
COMMON /DEP/Y/YATC/A/GRAD/DY/RAD/R 
DIMENSION CLEV(6),NUM(6) 
COMMON /CLE/CLEV/NUM8/NUM 

C A: COEFFIENT MATRIX 
C Y: CARTECISIAN COORDINATES OF BUBBLE CENTER 
C DY: VELOCITY COMPONENTS 
C R: BUBBLE RADII 

C N: BUBBLES GIVEN IN 3-DIMENSION SIMULATION 

C o p e n ( u n i t = 2 , f i l e = ' s i m l . d a t ' , s t a t u s = 1 unknown 1) o p e n ( u n i t = 2 , f i l e = ' s i m l l . d a t ' , status='unknown') 
o p e n ( u n i t = 4 , f i l e = 1 s i m l 2 . d a t ' , status='unknown') 
open(unit=5, f i l e = 1 s i m l 3 . d a t 1 , status='unknown 1) 
o p e n ( u n i t = 3 , f i l e = 1 i n i l . d a t ' , s t a t u s = ' o l d ' ) 
WRITE(*,*)' INPUT ARGUMENTS FOR MERSON' 
READ(3,*) X1,DELX1,DX1,DXMIN1,T0LKM1 
WRITE(*,*)' BED HEIGHT AND WIDTH 1 

READ(3,*) BEDH,BEDW 
WRITE(*,*) 1 INPUT RECORD LEVEL' 
READ(3,*) (CLEV(K),K=l,6) 

101 FORMAT(8F10.5) 
1011 FORMAT(6F10.5) 

WRITE(*,*) 'INPUT BUBBLE SIZE AND FRQUENCY' • 
READ (3,*) RM,LOOP 
WRITE(*,*) 1 INPUT ARGUMENTS FOR SIDI' 
READ (3,*) ABC,NIK 

102 FORMAT(F10.2,15) 
WRITE(6,201) X1,DELX1,DX1,DXMIN1,T0LKM1 

201 FORMAT('ARGUMENTS FOR MERSON',/,' XI',F10.5,'DELX1=',Fl0.5 
$ ,'DX1=',F10.5,'DXMIN1=',F10.5,'TOLKMNl=',F10.5) 

WRITE(6,301) BEDH,BEDW 
301 FORMAT(2X,'BED HEIGHT,CM=',F6.2,'BED WIDTH,CM=',F6.2) 

WRITE(6,302) 
302 FORMAT('HEIGHT OF RECORDING LEVELS') 

WRITE(6,303) (CLEV(K),K=l,2) 
303 F0RMAT(1X,2F8.2) 

WRITE(6,304) RM,LOOP 
304 FORMAT('ARGUMENTS FOR SUBROUTINE BEDBO',/,'INITIAL BUBBLE 

$ SIZE,CM=',F6.2,180,'FREQUENCY PARAMETER=',14) 
WRITE(6,305) ABC,NIK 

305 FORMAT('ARGUMENTS FOR SUBROUTINE SIDI: ABC=',F10.2,/'NUMBER 
$ OF STEPS IN MAIN PROGRAM: NIK=', 15) 

IB=0 
N=0 
DO 5 1=1,6 

5 NUM(I)=0 
DO 40 1=1,NIK 

C BOUNDARY CONDITION AND BUBBLE SIZE AND POSITION AT X = 0 
CALL BOUNDC(N,RM,BEDW,LOOP) 
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C RECORD BUBBLES PASSING GIVEN LEVELS 
CALL CLEVS(N,XI,ABC,RM) 

C WHEN A BUBBLE LEAVES THE BED, DECREASE N BY 3 
CALL OUTBED(N,BEDH,RM) 

C FORCE OUT OF BED BUBBLE (THROUGH THE WALL ) BACK INTO THE BED 
CALL BUBOUT(N,BEDW,RM) 

C CONTROL OF COALESCENCE 
CALL COALES(N,X1,RM) 
CALL BUBOUT(N,BEDW, RM) 
NK=N 
CALL MERSON(XI,DELX1,DX1,DXMIN1,TOLKM1,NK,*100,*200,*300) 

100 CONTINUE 
IB=IB+1 
IF(IB.LT.5) GOTO 10 
IB=0 
CALL SKRIV(N,X1) 
GOTO 10 

200 WRITE(2,450) XI 
450 FORMAT(IX,'no convergence i n Merson INDEP. VAR.=',F10.5, 

$ ' v a l u e o f Y=') 
CALL SKRIV(NK,X1) 
GOTO 20 

300 CONTINUE 
CALL SKRIV(NK,X1) 
GOTO 20 

10 CONTINUE 
40 CONTINUE 
20 CONTINUE 

C C a l c u l a t e b u b b l e d i s t r i b u t i o n 
C CALL SIDI(XI,RM,BEDH,BEDW) 

STOP 
END 

SUBROUTINE OUTBED(N,BEDH,RM) 
C PURPOSE: When a bu b b l e l e a v e s t h e bed, t h e r e m a i n i n g bubble 
C a r e r e o r d e r e d and the number o f e q u a t i o n s i s d e c r e a s e d by 3 

DIMENSION Y(1000),DY(1000),R(1000),INTG(6,500) 
COMMON /DEP/Y/GRAD/DY/RAD/R/INDIC/INTG 
NP=N 
DO 10 1=1,N,3 

40 IF(Y(I).LT.BEDH/RM) GOTO 10 
NP=NP-3 
IF(I.GT.NP) GOTO 15 
DO 20 J=I,NP 
K=J+3 
Y(J)=Y(K) 

20 DY(J)=DY(K) 
DO 25 J=1,NP,3 
K=J+3 
R(J)=R(K) 
DO 30 L=l,6 

30 INTG(L,J)=INTG(L, K) 
25 CONTINUE 

GOTO 40 
15 CONTINUE 
10 CONTINUE 

N=NP 
RETURN 
END 
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SUBROUTINE COALES(N,XI,RM) 
C Purpose: A f t e r c o a l e s c e n c e has o c c u r e d , the bubbles a r e 
C renumbered, t h e r e c o r d i n g i s c o n t r o l l e d , t h e number o f 
C e q u t i o n s i s de d u c t e d by 3 f o r each c o a l e s c e n c e . New p o s i t i o n s 
C and s i z e s o f bu b b l e s a r e c a l c u l a t e d . 

DIMENSION Y(1000),DY(1000), R(1000),INTG(6,500),ASTRID(6, 1000) 
$ ,AJAN(6, 1000),AKAREN(6, 1000),CLEV(6),NUM(6) ,XX(6) 

COMMON /DEP/Y/GRAD/DY/RAD/R/INDIC/INTG 
COMMON /AST/ASTRID/AJA/AJAN/AKA/AKAREN/CLE/CLEV/NUMB/NUM/XXX/XX 
NP=N 
DO 10 1=1,N,3 
11=1+1 
12=1+2 
IF(R(I).LT.0.0001) GOTO 10 
DO 20 J=1,N,3 

80 I F (R(J).LT.0.0001) GOTO 20 
IF(I.EQ.J) GOTO 20 
J1=J+1 
J2=J+2 

C C o a l e s c e n c e c r i t e r i a 
I F ( A B S ( Y ( I ) + R ( I ) - Y ( J ) - R ( J ) ) . L T . 0 . 5 * ( R ( I ) + R ( J ) ) ) GOTO 90 
I F ( A B S ( Y ( I ) - Y ( J ) ) . G T . 0 . 5 * ( R ( I ) + R ( J ) ) ) GOTO 20 

90 I F ( ( Y ( I l ) - Y ( J l ) ) * * 2 + ( Y ( I 2 ) - Y ( J 2 ) ) * * 2 . G T . ( R ( I ) + R ( J ) ) * * 2 ) GOTO 20 
C RECORD COALESCENCE BUBBLE 

IF ( ( Y ( J ) + R ( J ) ) . G T . ( Y ( I ) + R ( I ) ) ) GOTO 30 
DO 15 K=l,6 
IF((Y(I)+R(I)).LT.CLEV(K)/RM) GOTO 26 
IF(I N T G ( K , J ) . E Q . l ) GOTO 15 
IF(NUM(K).LT.1) XX(K)=X1 
NUM(K)=NUM(K)+1 
ASTRID(K,NUM(K))=Y(J1) 
AJAN(K,NUM(K))=Y(J2) 
AKAREN(K,NUM(K))=R(J) 
IF(K.NE.4) GOTO 15 
WRITE(2,100) Y ( J 1 ) , Y ( J 2 ) , R ( J ) , X 1 

100 FORMAT(4F10.4) 
15 CONTINUE 
30 DO 25 K=l,6 

IF(Y{J)+R(J).LT.CLEV(K)/RM) GOTO 26 
IF(INTG(K,I).EQ.1) GOTO 25 
IF(NUM(K).LT.l) XX(K)=X1 
NUM(K)=NUM(K)+1 
ASTRID(K,NUM(K))=Y(I1) 
AJAN(K,NUM(K))=Y(12) 
AKAREN(K,NUM(K))=R(I) 
IF(K.NE.4) GOTO 25 
WRITE(2,100) Y ( I 1 ) , Y ( I 2 ) , R ( I ) , X 1 

25 CONTINUE 
26 CONTINUE 
C New bub b l e s i z e s and p o s i t i o n s 

RK=R(I) 
RL=R(J) 
R(I) = (R(I)**3+R(J)**3)**0.333333*1.05 
R(J)=0. 
IF(Y(I)+RK.GT.Y(J)+RL) GOTO 35 
Y(I)=Y(J)+RL-R(I) 
GOTO 4 5 

35 Y(I)=Y(I)+RK-R(I) 
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45 Y(I1)=(RK**3*Y(I1)+RL**3*Y(J1))/(RK**3+RL**3) 
Y(I2)=(RK**3*Y(I2)+RL**3*Y(J2))/(RK**3+RL**3) 

C Decrease number o f e q u a t i o n s by 3 
NP=NP-3 
IF(J.GT.NP) GOTO 55 
DO 4 0 M=J,NP 
K=M+3 
Y(M)=Y(K) 

40 DY(M)=DY(K) 
DO 50 M=J,NP,3 
K=M+3 
R(M)=R(K) 
DO 60 L=l,6 

60 INTG(L,M)=INTG(L, K) 
50 CONTINUE 
55 CONTINUE 

N3=NP+1 
R(N3)=0. 
GOTO 80 

2 0 CONTINUE 
10 CONTINUE 

N=NP 
RETURN 
END 

SUBROUTINE CLEVS(N,XI,ABC,RM) 
C Purpose: T h i s s u b r o u t i n e r e c o r d b u b b les which have p a s s e d 
C g i v e n l e v e l s . INTG keeps t r a c k on bubbbles r e c o r d e d a l r e a d y . 
C I f INTG(1,4)=0, bubble 4 i s not r e c o r d e d a t l e v e l 1. 
C I f INTG(1,4)=1, b u b b l e 4 i s a l r e a d y r e c o r d e d a t l e v e l 1. 

DIMENSION Y(1000), R(1000),ASTRID(6,1000),AKAREN(6,1000), 
$ AJAN(6,1000),CLEV(6),NUM(6),XX(6),NUMX(6),INTG(6,500) 

COMMON /DEP/Y/RAD/R/AST/ASTRID/AJA/AJAN/AKA/AKAREN/CLE/CLEV/ 
$ NUMB/NUM/XXX/XX/NUMBX/NUMX/INDIC/INTG 

DO 10 1=1,N,3 
DO 15 J=l,6 
IF(Y(I)+R(I).LT.CLEV(J)/RM) GOTO 10 
I F ( I N T G ( J , I ) . E Q . l ) GOTO 15 
IF(NUM(J).LT.l) XX(J)=X1 
NUM(J)=NUM(J)+1 
K=I + 1 
L=I+2 
ASTRID(J,NUM(J))=Y(K) 
AJAN(J,NUM(J))=Y(L) 
AKAREN(J,NUM(J))=Y(L) 
AKAREN(J,NUM(J))=R(I) 
INTG(J,I)=1 
IF(X1-ABC.LT.0.5) NUMX(J)=NUM(J) 

C NEXT RUN OF THE UPPER PART OF THE BED 
C P o s i t i o n s time and s i z e a r e punched when bubbles pass l e v e l 4 
C i n the bed, they can be used as boundary c o n d i t i o n s f o r the 

IF(J.NE.4) GOTO 15 
WRITE(2,100) Y ( K ) , Y ( L ) , R ( I ) , X I 

100 FORMAT(4F10.4) 
15 CONTINUE 
10 CONTINUE 

RETURN 
END 
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SUBROUTINE BUBOUT(N,BEDW,RM) 
C Purpose: BUBBLES WHO PASSED THE WALL BY MISTAKE ARE PUT 
C BACK INTO THE BED 

DIMENSION Y(1000),R(1000) 
COMMON /DEP/Y/RAD/R 
DO 10 1=1,N,3 
J=I + 1 
K=I+2 
IF(Y(J)**2+Y(K)**2.LT.(BEDW/(2.*RM)-1.)**2) GOTO 10 
IF(Y(J).GT.O.) GOTO 15 

15 Y(J)=Y(J)+0.1*R(I) 
16 IF(Y(K).GT.O.) GOTO 17 

Y(K)=Y(K)+0.1*R(I) 
GOTO 10 

17 Y(K)=Y(K)-0.1*R(I) 
10 CONTINUE 

RETURN 
END 

SUBROUTINE MART(N,T) 
C PURPOSE CALCULATION OF COEFFICIENT MATRIX A 

DIMENSION A(1000,1000), Y(1000), R(1000) 
COMMON /MATR/A/DEP/Y/RAD/R 
IF(T.GT.0.0001) GOTO 10 
DO 5 1=1,150 

5 A ( I , I ) = 1 . 
DO 6 1=1,147,3 
J=I+1 
K=I+2 
A(I,J)=0.0 
A(I,K)=0.0 
A(J,I)=0.0 
A(J,K)=0.0 
A(K,I)=0.0 

6 A(K,J)=0.0 
10 NK=N+1 
C L a s t column i n the m a t r i x 

DO 7 1=1,N,3 
J=I+1 
K=I+2 
A(I,NK)=SQRT(R(I)) 
A(J,NK)=0.0 

7 A(K,NK)=0.0 
DO 15 1=1,N,3 
11=1+1 
12=1+2 
DO 20 J=1,N,3 
J1=J+1 
J2=J+2 
IF(I.EQ.J) GOTO 20 

C C o n t r o l when bubble I e n t e r e d wake o f bubble J 
C = ( Y ( J ) - Y ( I ) ) * * 2 + ( Y ( J l ) - Y ( I l ) ) * * 2 + ( Y ( J 2 ) - Y ( I 2 ) ) * * 2 
B=(R(J)+R(I))**2 
IF(C.GT.B) GOTO 30 

I F ( Y ( I ) . G T . Y ( J ) ) GOTO 21 
C Set up c o e f f i c e n t m a t r i x when bubble I has e n t e r e d wake o f 
C bubble J 

A ( I , J ) = - l . 
• A(I,J1)=0. 

9 3 



A ( I , J 2 ) = 0 . 
A ( I I , J ) = 0 . 
A ( I 1 , J l ) = - 1 . 
A (I1,J2)=0. 
A ( I 2 , J ) = 0 . 
A ( I 2 , J 1 ) = 0 . 
A ( I 2 , J 2 ) = - l . 
DO 25 K=1,N,3 
IF(K.EQ.I) GOTO 25 
IF(K.EQ.J) GOTO 25 ; • 
L=K+1 
M=K+2 
A(I,K)=0. 
A ( I , L ) = 0 . 
A(I,M)=0. 
A(I1,K)=0. 
A(I1,L)=0. 
A(I1,M)=0. 
A(I2,K)=0. 
A(I2,L)=0. 
A(I2,M)=0. 

25 CONTINUE 
GOTO 15 

21 CONTINUE 
C s e t up c o e f f i c e n t s m a t r i x when bubble J has p e n e t r a t e d bubble I 
to 
C a c e r t a i n degree 

D=Y(I)-Y(J) 
E=R(I)+R(J)-SQRT(R(I)*R(J) ) 
IF(D.GT.E) GOTO 30 
A(I,NK)=SQRT((R(I)**3+R(J)**3)**.3333) 
A ( I , J ) = 0 . 
A ( I , J l ) = 0 . 
A ( I , J 2 ) = 0 . 
A ( I 1 , J ) = 0 . 
A(I1,J1)=0. 
A(I1,J2)=0. 
A ( I 2 , J ) = 0 . 
A(I2,J1)=0. 
A(I2,J2)=0. 
GOTO 20 

30 CONTINUE 
C Set up c o e f f i c e n t m a t r i x f o r the g e n e r a l case, where the bubble 
C a r e o u t s i d e t h e wake o f each o t h e r 

X I = Y ( I ) + R ( I ) - Y ( J ) 
YI=Y(I1)-Y(J1) 
ZI=Y(I2)-Y(J2) 
AB= (SQRT(XI**2+YI* * 2+ZI**2))**5* 2 . 
A ( I , J)=-1.*R(J)**3* ( 2.*XI**2-YI * * 2-ZI * * 2 )/AB 
A(I,J1)=-3.*R(J)**3*XI*YI/AB 
A ( I , J 2 ) = - 3 . *R(J)**3*XI*ZI/AB 
A ( I 1 , J ) = A ( I , J l ) 
A ( I I , J1)=-1.*R(J)**3*(2.*YI**2-XI**2-ZI**2) /AB 
A( I I , J 2 ) = - 3 . * R ( J ) * * 3 * Z I * Y I / A B 
A(12,J)=A(I,J2) 
A ( I 2 , J 1 ) = A ( I 1 , J 2 ) 
A ( I 2 , J 2 ) = - 1 . * R ( J ) * * 3 * ( 2 . * Z I * * 2 - X I * * 2 - Y I * * 2 ) / A B 

20 CONTINUE 
15 CONTINUE 

RETURN 
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END 

SUBROUTINE SIDI(TR,RM,BH,BW) 
purp o s e : C a l c u l a t e b u b b l e s i z e d i s t r i b u t i o n and s p a t i a l 
d i s t r i b u t i o n a t g i v e n l e v e l above t h e boundary c o n d i t i o n 
DIMENSION ASTRID(6, 1000),AKAREN(6, 1000),AJAN(6, 1000) , CLEV(6), 
NUM (6),XX(6),NUMX(6),BFQ(6),SD(10),SDC(10),SDA(11),SDP(10), 
BMV(6),FLOW(6),BMQ(6),FLOWQ(6),BMD(6) 
DIMENSION SM(6), NUMBT(5), BS(5),BSP(5),UMBT(5) 
DIMENSION AJAA(6,1000)/ ASTRAA(6,1000) 
COMMON /AST/ASTRID/AJA/AJAN/AKA/AKAREN/CLE/CLEV/NUMB/ 
NUM/XXX/XX/NUMBX/NUMX 

DO 10 1=1,6 
NU=NUM(I) 
DO 5 J=1,NU 
AKAREN ( I , J) = AKAREN ( I , J) *RM 
ASTRID(I,J)=ASTRID(I, J)*RM 
AJAN ( I , J) =AJAN ( I , J) *RM 
TREAL=(TR-XX(I))/(0.67*SQRT(981.*RM)) 
C a l c u l a t e bubble f r e q u e n c y , BFQ(bubbles per second) 
BFQ(I)=NUM(I)/TREAL 
A r t h e m e t i c mean s i z e , d i a m e t e r 
SUM=0. 
DO 20 J = l , NU 
SUM=SUM+AKAREN(I, J ) * 2 . 
BMD(I)=SUM/NUM(I) 
A r t h e m e t i c mean s i z e , volume 
SUM1=0. 
DO 30 J=1,NU 

SUM1=SUM1+1.33333*3.1416*AKAREN(I,J)**3 
BMV(I)=SUM1/NUM(I) 
V i s i b l e gas f l o w 
FLOW(I)=SUMl/(TREAL*BW**2*3.1416)*4. 
Frequency PER/cm**2 
BMQ(I)=BFQ(I)/BW**2*4./3.1416 
Gas flow, v o l u m e t r i c 
FLOWQ(I)=SUM1/TREAL 
C a l c u l a t e s i z e d i s t r i b u t i o n based on bubble d i a m e t e r 
DIT=BW/20.-0.000001 
D=-0.000001 
J=0 
K=l 
DI=D+0.000001 
D=DI+DIT 
SD(K)=0. 
DO 50 L=1,NU 
IF(AKAREN{I, L) .GT.D) GOTO 50 
IF (AKAREN(I,L).LT.DI) GOTO 50 
SD(K)=SD(K)+AKAREN(I,L)*2. 
J=J+1 
CONTINUE 
K=K+1 
IF(NUM(I).GT.J) GOTO 51 
C a l c u l a t e b u bble s i z e d i s t r i b u t i o n p e r c e n t a g e 
k=k-l 
kp=k 
DO 60 L=1,K 

SDP (L)=SD(L)* 100./SUM 
CALCULATE CUMULATIVE SIZE DISTRIBUTION 



CUM=0. 
DO 70 L=1,K 
CUM=CUM+SDP(L) 

70 SDC(L)=CUM 
K=K+1 

C INTERVALS FOR SIZE DISTRIBUTION 
DO 80 L=1,K 

80 SDA(L)=(L-1)*BW/10. 
K=K-1 

C CALCULATE SPATIAL SIZE DISTRIBUTION, DIMENSIONLESS DISTANCE 
DO 90 L=1,NU 
AJAA(I,L)=AJAN(I,L)/BW*2. 

90 ASTRAA(I,L)=ASTRID(I,L)/BW*2. 
C INTERVALS 

DO 95 L=l,6 
95 SM(L)=(L-1)*0.2 
C BUBBLE FLOW AND FREQUENCY DISTRIBUTION ON INTERVALS 

D=0. 
TAB=0. 
TUB=0. 
DO 61 K=l,5 
TAL=0. 
NUMBT(K)=0. 
D=D+0.2 
DI=D-0.2 
DO 62 L=1,NU 
IF(ASTRAA(I,L)**2+AJAA(I,L)**2.GT.D**2) GOTO 62 
IF (ASTRAA(I,L)**2+AJAA(I ,L)**2.LT.DI**2) GOTO 62 
TAL=TAL+AKAREN(I,L)**3*1.33333*3 .1416 
NUMBT(K)=NUMBT(K)+1 

62 CONTINUE 
BS(K)=TAL/((D**2-DI**2)*(BW/2.)**2*TREAL) 

UMBT(K)=NUMBT(K)/(D**2-DI**2) 
TAB=TAB+BS(K) 
TUB=TUB+UMBT(K) 

61 CONTINUE 
DO 63 K=l,5 
BSP(K)=BS(K)/TAB*100. 

63 UMBT(K)=UMBT(K)/TUB*100. 
C OUTPUT OF RESULTS 

WRITE(2,200) CLEV(I),BH,BW,NUM(I) 
200 FORMAT('1','Height above t h e d i s t r i b u t o r cm" 

$ , ' d e v ' , f 8 . 2 / ' T o t a l bed h e i g h t , cm',5x, 
$ 'bedh=', F8.2/2x,'bed w i d t h cm','cw=', 
$ F8.2/ 'number o f b u b b l e s ' n * , 1 8 / / / ) 

WRITE(2,215) 
215 FORMAT('0',' c a l c u l a t e d p o s i t i o n s and s i z e s ' ) 

WRITE(2,230) (ASTRTD(I,J) , J=1,NU) 
WRITE(2,230)(AJAN(I,J),J=1,NU) 
WRITE(2,230) (AKAREN(I,J) , J=1,NU) 

230 FORMAT(IX,21F6.1) 
WRITE(2,265) BFQ(I),BMV(I) ,FLOWQ(I) 

265 FORMAT('1 bubble f r e q u e n c y , BFQ=',f8.2,4x,'bubble mean s i z e 
cm** 3 

$ BM=',F8.2,'bubble mean flow, cm**3/sec BF=',F8.2,//) 
WRITE(2,2 66) BMQ(I),BMD(I),FLOW(I) 

2 66 FORMAT('bubble f r e q u e n c y , p e r cm**2', f8 . 3 , ' b u b b l e mean 
diameter, 

$ cm',F8.3,'bubble mean flow,cm/sec=',f8.3,//) 
WRITE(2,235) 
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FORMAT(IX,'size o f d i s t r i b u t i o n ' ) 
w r i t e ( 2 , 2 4 0 ) 
f o r m a t ( ' s i z e range cm=','bubble diam,cm', 

$ 'bubble diam p e r c e n t a g e ' , ' c u m u l a t i v e p e r c e n t a g e ' ) 
DO 97 L=1,KP 
M=L+1 
WRITE(2,245) SDA(L),SDA(M),SD(L),SDP(L),SDC(L) 
FORMAT(F6.2, '- 1, F6.2, F8.2,F8.2, F8 . 2) 
WRITE(2,250) 
FORMAT(//'spatial d i s t r i b u t i o n , h a l f t h e bed',/) 
WRITE(2,255) 
FORMAT('position r a n g e ' , ' v i s . b u b b l e f l o w ' , 

$ 'bubble f l o w p e r c e n t a g e ' , ' b u b b l e f r e q u e n c y p e r c e n t a g e ' 
DO 96 L=l,5 
I1=L+1 
WRITE(2, 260) SM(L),SM(I1),BS(L),BSP(L),UMBT(L) 
FORMAT(F6.2, '- ' , F6 . 2, F8.2, F8.2,F8.2) 
CONTINUE 

RETURN 
END 

SUBROUTINE BOUNDC(N,RM,BEDW,LOOP) 
EXTERNAL RN1,RN2 
DIMENSION Y(1000), R(1000), DY(1000) 
COMMON /DEP/Y/RAD/R/GRAD/DY 
DIMENSION INTG(6,500) 
COMMON /INDIC/INTG 
IF(N.EQ.O) RX=5 
IF(N.EQ.O) RY=10 
DO 10 J=l,LOOP 
N1=N+1 
N2=N+2 
N3=N+3 

C 30 CALL RN0(RX) 
C CALL RNO(RY) 
C JX=JY 

30 YFL=RN1(RX) 
XFL=RN2(RY) 
Y(N1)=0. 
Y(N2)=YFL*(BEDW/RM-2.)-BEDW/2./RM+1. 
Y(N3)=XFL*(BEDW/RM-2.)-BEDW/2./RM+1. 
I F (Y(N2)**2+Y(N3)**2.GT.(BEDW/2/RM-1)**2) GOTO 30 
R(N1)=1. 
DY(N1)=SQRT(R(N1)) 
DY(N2)=0. 
DY(N3)=0. 
DO 20 L=l,6 

20 INTG(L,N1)=0 
10 N=N3 

RETURN 
END 

SUBROUTINE MERSON(X,DELX,DX,DXMIN,TOLKM,N,*,*,*) 
DIMENSION Y(1000) ,YOLD(1000) ,FK(5, 1000),DY(1000) 
COMMON /DEP/Y/GRAD/DY 
TOLA=5.*TOLKM 
TOLB=TOLA/32. 
FINTS=DELX/DX+0.5 
INTS=IFIX(FINTS) 
IF(INTS.LT.1) INTS=1 
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DX=DELX/INTS 
FMULT=DX/3. 
GOTO 4 

C e r r o r check 
1 IF(ERR.GT.TOLA) GOTO 20 

IF(ERR.LT.TOLB) GOTO 21 
C i n t e r g r a t i o n s a t i s f a c t o r y : c a l c u l a t e new p o i n t s 

3 DO 2 1=1, N 
2 Y(I)=YOLD(I)+0.5*FK(1,1)+2.0*FK(4,I)+0.5*FK(5,I) 

IF(INTS.EQ.1)RETURN 1 
6 INTS=INTS-1 

C p r e s e r v e c u r r e n t v a l u e 
4 XOLD=X 
DO 5 1=1,N 

5 YOLD(I)=Y(I) 
IHALF=0 
GOTO 9 

C e r r o r e x c e s s i v e : h a l v e s t e p 
20 DX=0.5*DX 

IF(DX.LT.DXMIN) GOTO 19 
INTS=INTS+INTS 
IHALF=1 
GOTO 8 

C s t e p l e n g t h t o o s m a l l : i n t e r g r a t i o n f a i l s 
19 X=XOLD 

DO 23 1=1,N 
23 Y(I)=YOLD(I) 

RETURN 2 
C e r r o r s m a l l : s t e p l e n g t h may be i n c r e a s e d i f p o s s i b l e 
C check i f s t e p p r e v i o u s l y h a l v e d ( p r e v e n t s c y c l i n g ) 

21 IF(IHALF.EQ.1) GOTO 3 
C check i f INTS even 

IDUBLE=INTS/2 . 
IF(IDUBLE*2.EQ.INTS) GOTO 22 

C not p o s s i b l e : INTS odd 
GOTO 3 

C double s t e p l e n g t h 
22 INTS=IDUBLE 

DX=2.*DX 
C go back t o l a s t p o i n t , i n t e r g r a t e w i t h new DX 

8 FMULT=DX/3. 
DO 7 1=1,N 

7 Y(I)=YOLD(I) 
X=XOLD 

C main i n t e g r a t i o n p r o c e s s s t a r t s here 
C advance X by DX 

9 CALL DERIVS(X,N,*99) 
DO 18 IS=1,5 
GOTO (31,30,32,33,30), IS 

31 X=X+FMULT 
GOTO 30 

32 X=X+FMULT*0.5 
GOTO 30 

33 X=XOLD+DX 
C update Y ( I ) 

30 DO 10 1=1,N 
FK(IS,I)=FMULT*DY(I) 
GOTO(11,12,13,14,10),IS 

C p r e d i c t o r a t (X+DX/3.) 
11 Y(I)=YOLD(I)+FK(l,I) 
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GOTO 10 
C c o r r e c t o r f o r (X+DX/3.) 

12 Y(I)=YOLD(I)+0.5*(FK(1,I)+FK(2,I)) 
GOTO 10 

C advance t o (X+DX/2.) 
13 Y(I)=YOLD(I)+0.375*FK(1,I)+1.125*FK(3,I) 

GOTO 10 
C advance t o (X+DX) 

14 Y(I)=YOLD(I)+1.5*FK(l,I)-4.5*FK(3,I)+6.*FKi<i,I) 
10 CONTINUE 

IF(IS.EQ.5) GOTO 16 
C e v a l u a t e d e r i v a t i v e 

CALL DERIVS(X,N,*99) 
GOTO 18 

C on l a s t i n t e g r a t i o n , e v a l u a t e e r r o r 
16 ERR=0.0 

DO 17 1=1,N 
EI=ABS(FK(1,1)-4.5*FK(3,1)+4 .0*FK(4 ,1)-0.5*FK(5,1) ) 
IF(ERR.LT.EI). ERR=EI 

17 CONTINUE 
18 CONTINUE 

GOTO 1 
9 9 RETURN 3 

END 

SUBROUTINE DERIVS(XL,NL, *) 
DIMENSION A(1000,1000), DY(1000) 
COMMON/MATR/A/GRAD/DY 
INTEGER GUF 

C nmax i s maximal number o f i n t e r a t i o n 
NMAX=100 

C emax i s maximal e r r o r i n convergence t e s t 
EMAX=0.05 

C c o e f f i c e n t s from s u b r o u t i n e MART 
CALL MART(NL,XL) 
NL1=NL+1 

C i t e r a t i o n b e g i n s 
DO 10 NM=1,NMAX 
GUF=1 
DO 11 1=1,NL 
DYP=DY(I) 
DY(I)=A(I,NL1) 

C c a l c u l a t e new v a l u e s 
DO 12 J=1,NL 
IF(I.EQ.J) GOTO 12 
IF(ABS(A(I,J)).GT.100000.) GOTO 20 
IF(ABS(DY(J)).GT.10.) GOTO 21 
DY(I)=D Y ( I ) - A ( I , J ) * D Y ( J ) 

12 CONTINUE 
C convergence t e s t 

IF(ABS(DYP-DY(I) ) .LE.EMAX) GCTO 11 
GUF=2 

11 CONTINUE 
IF(GUF.EQ.2) GOTO 10 
GOTO 13 

10 CONTINUE 
C i f no convergence w r i t e c u r r e n t v a l u e s o f DY and stop 

WRITE'(2, 300)NM 
RETURN 1 

20 WRITE(2, 400)1, J \ 
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RETURN 1 
21 WRITE(2,500)J 

RETURN 1 
13 CONTINUE 

300 FORMAT('no convergence i n G a u s s - S e i d e l , number o f i t e r a t i o n s = ' , 1 5 
$ , ' c u r r e n t v a l u e s o f Y,R and DY 1) 

400 FORMAT(' A ( I , J ) i s t o o h i g h , I,J=',2I5) 
500 FORMAT(' DY(J) i s too h i g h , J=',I5) 

RETURN 
END 

SUBROUTINE SKRIV(N,X1) 
DIMENSION Y(1000),DY(1000) ,R(1000) 
COMMON /DEP/Y/GRAD/DY/RAD/R 

C WRITE(2,400) XI 
400 FORMAT('value o f i n d e p . v a r . T=' , F10.5,//) 

WRITE(2,410) (Y(K),K=1,N) 
410 FORMAT(4X,3F10.5) 

WRITE(4,411) (R(K),K=1,N,3) 
411 FORMAT(3X, F10.5) 

C WRITE(2,412) (DY(K),K=l,N) 
412 FORMAT)'DY(I) 1, 3F10.5,3X,3F10.5) 

WRITE(5,413) N 
413 FORMAT(IX, 13) 

RETURN 
END 

FUNCTION RN1(R) 
S=65536. 
U=2053. 
V=13849. 
M=R/S 
R=R-M*S 
R=U*R+V 
M=R/S 
R=R-M*S 
RN1=R/S 
RETURN 
END 

FUNCTION RN2(R) 
S=65536. 
U=2053. 
V=13849. 
M=R/S 
R=R-M*S 
R=U*R+V 
M=R/S 
R=R-M* S 
RN2=R/S 
RETURN 
END 
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