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Abstract

Mammalian cells are being increasinély used to manufacture complex therapeutic proteins
given their ability to properly fold and glycosylate these proteins. However, protein ylelds
are low and process enhancements are necessary to ensure economlcally viable processes.
Methods for yield improvement, bioprocess development acceleration and rapid quantifica-
tion and moﬁitoring of cell metabolism were investigéted' in this study. Récognizing the
adverse effect of high pCO2 on cell growth, metabolism an.d'protein productivity, a novel
pCO; reduction strategy based on NaHCOj elimination was investigated that decreased
pCO;3 by 65 — 72% This was accompanled by 68 — 123% increases in growth rate and 58
—92% increases in productivity. To enable rapid and robust data analysis from early stage
process development experiments, logistic equations were used to effectively describe the ki-
netics of batch and fed-batch cultures. Substantially improved specific rate estimates were
obtained from the logistic equations when compared with current modeling approaches
Metabolic flux analysis was used to.obtain quantitative information on cellular metabolism
and the validity of using the balancmg method for flux estimation was verified with data
from isotope tracer studies. Error propagation from prime variables into specific rates and
" metabolic fluxes was quantified using Monte-Carlo analysis which indicated 8 — 22% specific
rate error for.5 — 15% error in primé variable measurement. While errors in greater metabolic
fluxes were similar to those in the correspoﬁdiﬁg specific rates, errors in the lesser metabolic
fluxes were extremely sensitive to'g_rea'ter specific rate errors such that lesser fluxes were
no longer representative of cellular metabolism. The specific rate to metabolic flux error
relationship could he accurafel) described by the correspondmg normahzed sensitivity co-
efficient. A fr amework for qua51 -real- tlme estimation of metabolic fluxes was proposed and '
implemented to serve as a moprouass monitoring and early warning system. Methods for
real-time oxygeri uptake and carbon dioxide productlon rate estimation were developed that -
enabled. rapid flux estimation. This framework vs%as used ﬁobharacteriz_e cellular respornse
to 'pH and dissolved oxygen'éhanges in a ‘proces"s development experiment and can readily

be applied to a manufacturing bioreactor. Overall, the approaches.for protein productivity
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enhancement and rapid me,tabolism‘mohitoring developed in this study are general with

potential for widespread application to laboratory and manufacturing-scale perfusion and

fed-batch mammalian cell cultivations.
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Chapter 1
Introduction

Protein biopharmaceuti'céls that are manufactured through modern molecular biology tech-
niques have revolutionized the way many life threatening illnesses are treated. These prod-
“ucts comprise a giobal annual market of $30 billion and this number is expected to increase
exponentially in the future with about 500 products currently undergoing clinical evaluation
[1] and thousands more beirig actively 'researcheAd.‘ The first biopharmaceutical to be ap-
proved was recombinant insulin in 1982 [2] and since then a total of 84.biophérmace1iticals '
were approved in the United States and the European Union by the year 2000 (3] The
" most rapid increase was during the 2000 — 2003 period with a total of 64 products receiving
regulatdry approval [1]. - - '

Mammalian cells have played an increasingly important role in the development of new’
biopharmaceuticals over the past decade. For instance, 64% (21 out of 33) of the biopharma—:
ceuticals that were approved between January 1996 and November 2000 were manufactured
by mammalian cells [4]. This number is likely to increase in the future as mammalian cells
have the ability to perform complex post-translational modifications which enable them to
produce prbteins that have the desired biological activity for therapeutic and diagnostic ap-
plications. Current products of mammalian cell culture include therapeutics in the form of
recomb'inant proteins or antibodies, »vaccines,I tissue-replacement products, and diagnostic
products such as monoclonal antibodies.

Despite the advantageé of post—translafional modiﬁcAations, mammalian cell culture has
several challengesi Marnmalian cell ‘growth rates are typically an ord'er of magnitude lower
than bacterial cells a'undvprotei.n productivity is alsc low, typically;léss'than 0.1% of the
total protein Cohceﬁtration in the cell [5]. This places an enormous burden on downstream
protein concentration and purification st'eps'. In additiqn to lower growth and productivity,

mammalian cells have complex nutritional requiremients and are sénsitive to shear during
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bioreactor cultivation. Significant progress has been made over the last two decades to
address these limitations resulting in suspension cultivation usi'ng serum-free media.

It is the general perception that the-low hanging fruits in mammalian cell culture have
been gathered. These include products with low dosage and high‘ market value such as
Erythropoietin (EPO) which generated worldwide annual revenues of $7 billion in 2002 [6].

Products of the future are likely to have dosage requirements that are orders of magnitude

higher than those for EPO with substantially smaller revenues. Thus protein productivity

increase along with reduction in the cost of goods will be an underlying theme for manu-

facturing the next generation of biopharmaceuticals. Robust cell line engineering coupled

with bioprocess improvements c¢an provide economically feasible manufacturing options.

The first section of this study is introductory and presents an overview of mammalian

cell metabolism (Chapter 2) and the methods used to determine intracellular fluxes from
bioreactor experiments (Chapter 3). While metabolic flux analysis essentially involves the
solution of mass balance expressions, a formal method of flux estimation was proposed only
15 years ago while methods of flux estimation from labeled substrates, albeit mature, are
still in late stages of development. '(The important features of both these flux estimation

methods have been reviewed with an emphasis on error identification in input data and

robust flux estimation. Each of the followmg chapters, structured like an article, includes

an introductory review. :

The second section presents a detalled descrlptlon of the dynamlcs of dissolved carbon
dioxide in mammalian cell perfusion bioreactors. High values of dissolved carbon dioxide
(pCOg > 200 mm Hg) are commonly encountered in high-density perfusion bioreactors
and have been shown to adversely affect growth, metabolism, productivity and protein
glycosylation. A robust method of reducmg bioreactor- pCO2 by ~70% (final values close to
70 mm Hg) has been proposed by eliminating NaHCOj3 from the medium and for bioreactor

pH control (Chapter 4). This pC02 reduction was achieved with no changes to bioreactor

operation and only a marginal increase in raw material cost while resulting in substantially

increased specific protein productiyitjf. Detailed oxygen and -carbon dioxide mass balances -

carbon dioxide evolution rates (OUR and CER, respectlvely) from which the respiratory
'quotlent (RQ) was estimated (Chapter 5). While mammalian cell RQ’s are typlcally close to
_ umty, OUR and CER are affected by bloreactor operatlng conditions and are also necessary

for metabolic flux estimation. - , :
Robust methods of batch and fed-batch culture specific rate estimation along with a
detailed analysis of error propagation during specific rate and metabolic flux estimation

in perfusion' systems are presented in 'Sectiorl 3. Analytically 'différentiable logistic equa~

" were developed for a perfusion system that enabled the determination of oxygen uptake and
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tions were used to describe time profiles of cell density, nutrient, metabolite, and product
concentrations in batch and fed-batch cultures resulting in robust specific rate estimates
which were in most instances statistically superior to .current specific rate estimation meth-
ods (Chapter 6). Error propagation from experimental measurements into specific rates
and subsvequently into metabelic fluxes was quantified using Monte-Carlo analysis (Chapter
7). This analysis helped ‘quantify the uncertainty inherent in metabolic flux estimates due
to experimental measurement errors. This information was critical to meaningfully com-
pare flux data across different experimental conditions and for decoupling the effect on flux
estimates of measurement error and cell physiology.

Application of metabolic flux analysis to mammalian cell cultlvatlon is presented in Sec-
tion 4. The use of 13C labeled glucose for detailed flux estimation in a CHO perfusion culture
is described in Chapter 8. The biomass hydrolysates Vfrom. these experirhents were analyzed
by 2D-NMR which allowed flux estimation in reversible and cyelical reactions, something

not possible ueing the metabolite balancing approach. Besides providing a comprehensive

.desefip’cion of CHO cell metabolism, the extended flux data set allowed. validation of flux -

A data obtained using the metabolite balancing approach. A framework for- quasi-real-time

metabolic flux estimation is presented in Chapter 9 that provides rapid quantification of
cell physiology and metabolism in both process development and commercial bioreactors.
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Clhapter 2
Overview of Cellular Metabolism

2.1 Introduction

Before analyzing the fluxes through a metabolic network, the biochemical reactions that
make up the metabolic'pathway'of interest must be identified. A recombinant mammalian
cell converts nutrients (primarily glucose and glutamine) into energy, biomass and waste
products along with production of the therapeutic protein of interest. Energy in a cell is
Ppresent prifnarily in the form of adenosine tri-phosphate (ATP), while reducing power is pro-
vided by the reduced forms of nicotinamide adenine dinucleotide (NADH) and nicotinamide
adenine dinucleotide phosphate (NADPH). Biosynthetic reactions use NADPH while NADH
is used primarily for the production of ATP. Mammalian cell biochemistry has been the sub-
ject of extensive research and detailed information on cellular metabolism can be found in
standard biochemistry textbooks [1]. Only a brief summary of the primary pathways of -
| - mammalian cells metabolism will be presented here along with the effect of environmental

conditions on cell growth, metabolism and protein productivity.
2.2 Glycolysis

2.2.1 Overview of Glycolyéis

Glycolysis involves the degradation of a molecule of glucose through a series of enzyme-

catalyzed reaction resulting in two molecules of pyruvate

- Glucose + 2NADT 4 2ADP + 2Pi — 2Pyruvate'+ 2NADH + 2ATP + 2H' + 2H,0
(2.1)



CHAPTER 2. OVERVIEW OF CELLULAR METABOLISM

This conversion of glucose to pyruvate occurs in ten steps (Figure 2.1), the first five of
which constitute the preparatofy phase where 2 molecules of ATP are used to convert 1
molecule of glucose into 2 molecules of glyceraldehyde 3-phosphate. In the payoff phase that
comprises the latter five reactions, 2 molecules of glyceraldehyde 3-phosphate are converted
to 2 molecules of pyruvate resulting in the formation of 4 molecules of ATP and 2 molecules
of NADH. Since 2 molecules of ATP are used in the preparatory phase, the net ATP yield

in glycolysis per molecule of glucose is 2.

Aldolase *

Dihy&rbxyacetone

. phosphate

Figure 2.1: Conversion of glucose to pyruvate via the glycolytic patliway in mammalian cells.
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2.2.2 Energetics of Glycolysis

The_o\'ferall‘ glycolytic‘reactio\n. presented as Eq.(2.1) can be split into the exérgonic and

endergonic components which are the conversion of glucose to pyruvate and the formation
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of ATP from ADP and P;, respectively
Glucose + 2NADY — 2Pyruvate + 2NADH +2H*;  AG)=-146 k/mol * (2.2)

2ADP + 2P, — 2ATP + 2H;0; AGY=61kJ/mol ~  (2.3)

-1t follows from Eqs.(2.2) and (2.3) that the overall standard free-energy change for ‘glyc’ol—

ysis is 85 kJ/mol. This large decrease in net free energy makes glycolysis in the cell an : v
essentially irreversible process and the energy released in glycolysis is recovered as ATP
with efficiencies greater than 60%. It is also 1mportant to note that only a small portlon' o

of the total available energy from glucose is released during glycoly51s "The total standard .

free- energy change for complete oxidation of glucose to CO3 and HaO is —2,480 kJ/mol while
that for the degradation of glucose to pyruvate is only ~146 kJ/mol. Thus only about 5%
of the energy available from glucose is released during glycolysis Pyruvate retains most of -
the chemical potential energy from glucose which is subsequently extracted by the ox1dat1ve
reactions of the citric acid cycle and by oxidative phosphorylatlon

2.2.3 Regeneration of NAD+ Consumed durmg Glycolysis

1t follows from Eq. (2. 1) that glycolysis involves consumption of NAD+ for the productlon of

NADH. Thus regeneration of NAD i is necessary to sustain glycolysrs and this can happen-in

.several ways in mammalian cells. One mechanism is the reox1dat10n of NADH to NAD+ by

electron transfer through the respiratory chain located in the mltochondrla These electrons

are then passed on through the respiratory chain to oxygen, the termlnal electron acceptor .

2NADH + 9H* + 0y — 2NAD* + 2H,0 . - @4

Alternatlvely, the production of lactate from pyruvate can also serve as a mechamsm for“
the productlon of. NAD+ '

Pyruvate + NADH + H* — Lactate + NADJ’; E o (28)

- 2.2, 4 Regulation of Glycolysis

.Glucose flux through glycoly51s is regulated to achleve constant ATP levels and to maintain

adequate amounts of glycolytic intermediates that are used for biosynthesis. Three enzymes
- hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) are are considered
to play a key role in controlhng the glycolytlc ﬁux by regulatlng metabohte concentratlons.
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such that balance between ATP production and consumption is maintained.

2.2.4.1 Hexokinase

Hexokinase catalyzes the first step of glycolysis where glucose is phosphorylated to glucose
6-phosphate ’ '
Glucose + ATP — Glucose 6- phosphate + ADP + HT (2.6)

Mammahan cells have several forms of hexoklnase all of which catalyze the above reac-
tion. Muscle hexokinase is allosterlcallv inhibited by glucose 6-phosphate such. that high
concentrations of glucose 6- phosphate temporarlly and reversibly inhibit hexokinase. Th1s
reduces the rate of formation of glucose 6-phosphate from glucose and helps reestablish a
steady state for the glycolytic flux. The hexokinase found in the liver is also referred to as -
glucokinase and is not 1nh1b1ted by glucose 6-phosphate but instead is inhibited by fructose
6-phosphate.

2.2.4.2 PhosphofrucfoklnaSe‘

Phosphofructokinase (PFK) catalyzes the phosphorylation of fructose 6-phosphate to fruc-

tose 1,6-diphosphate

Fructose 6-phosphate + ATP — Fructose 1,6-bisphosphate + ADP (2.7)

This is often considered as the step that commits the cell to channeling glucose into gly-
colysis. PFK has in addition to its substrate binding sites, several regulatory sites where.
allosteric activators or inhibitors can bind. -The activity of PFK is influenced by the con- .
centrations of ATP, AMP, citrate, fructose 1,6—blhosphate and fructose 2,6-biphosphate.
High ATP concentrations inhibit PFK by binding to an allosteric site thereby lowering the
affinity of PFK for fructose 6-phosphate. -This inhibition is relieved by an increase in the
concentration of ADP and AMP which results from consumption of ATP. Citrate also serves
as an allosteric regulator for PFK'Wi_th high citrate concentration increasing the inhibitory
effect of ATP. The most significant allosteric regulator of PFK is fructose 1,6-bihosphate

which is not an intermediate in glycolysis.
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2.2.4.3 Pyruvate Kinase

Pyruvate kinase catalyzes the conversion of phosphoenolpyruvate (PEP) to pyruvate and is
the last step in glycoly31s

PEP + ADP + H* — Pyruvate + ATP (2.8)

High ATP concentrations allosterically inhibit PK by decreasing its affinity for PEP as well

as acetyl-CoA and long-chain fatty acids. Both acetyl-CoA and long-chain fatty acids are - -
important fuels for the citric acid cycle and when these are present in high concentrations,
ATP is readily produced by the c¢itric acid cycle. Low ATP concentrations increase the
affinity of PK for PEP resulting in the formation of ATP through substrate-level phospho-
vrylation, thereby maintaining the steady-state concentration of ATP.

2.3 Pentose Phosphate Pathway (PPP)
2.3.1 Overview of PPP

The primary function of the PPP is the generation of NADPH and five carbon sugars. The
PPP consists of an oxidative branch which produces NADPH (Figure 2.2) and a nonox-
idative branch (Figure 2.3) that interconverts various sugars and connects the PPP to

glycolysis. The overall reaction through the oxidative branch of the PPP is
G6P + 2NADP* + H,O — Ribose 6-phosphate + CO, + 2NADPH + 2H*  (2.9)

which results in the productlon of NADPH, a reductant for blosynthetlc reactions and ribose

5-phosphate which is a precursor for nucleotlde synthe51s

2.3.2 Regulation of PPP

The first step in the oxidative branch of the PPP is the dehydrogenation of glucose 6-
phosphate (Figure 2.2) and this reaction is essentially irreversible under physiological con-
ditions. Also, this reaction is fre(juently limiting and serves as the main control point in the
PPP. In the nonoxidative branch of the PPP, all the reactions are readily reversible (Figure
2.3} and the dlrectlon and magmtude of their ﬂuxes are likely to be determined by simple
mass action. The control of this branch however, is not explicitly known. It is likely that
‘cellular demand for NADPH and r1bose 5 phosphate W111 determine the flux through the
pentose phosphate pathway '
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Glucose 6-phosphate
glucose 6-phosphate ADP*
dehydrogenase

NADPH + H*
6-Phosphoglucono-3-lactone

Lactonase H,0
. H*

6-Phosphogluconate

. 6-phosphogluconate NADP
dehydrogenase .
: . NADPH + H™ + CO,

D-Ribulose 5-phosphate

. phosphopentose 1

isomerase

D-Ribose 5-phosphate

Figu‘re 2.2: The oxidative branch of the pentose phosphate pathway.

2.4 Tricarboxylic Acid (TCA) Cycle

2.4.1 Overview of the TCA Cycle

‘The TCA cycle (Figure 2.4) has the dual role of generating energy in the form of ATP from
the oxidation of carbon cdmpounds and also of generafing biosynthetic prepufsors for a wide
variety of products. The pyruvate produced during glycolysis is converted to acetyl-CoA
and CO, through an oxidative decarboxylation reaction that is catalyzed by the pyruvate
dehydrogenase éomplex which is made up of three distinct enzymes - pyruvate dehydro-
genase; dihydrolipoly transacetylase, and dihydrolipoly dehydrogenase. This conversion of
pyruvate to acetyl-CoA and .COs is an irreversible reaction. The acetyl-CoA formed above
enters the TCA cycle where the first of eight reactions is the condensation of acetyl-CoA
with oxaloacetate to form citrate under the action of citrate synthase (Figure 2.4). The

overall reaction of the TCA cycle can be written as

Acetyl-CoA + 2NAD™ + FAD + GDP + P; + 2H0
— 2C0, + 3NADH + FADH, + GTP + 2H' + CoA (2.10)
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oxidative reactions of pentose
phosphate pathway

4 \
D-Ribose =~ Sedoheptulose Fructose Glucose
5-phosphate . 7-phosphate ~ 6-phosphate 6-phosphate
epimerase >—< phosphohexose
transketolase transaldolase isomerase
' Xylulose Glyceraldehyde Erythrose
5-phosphate 3-phosphate 4-phosphate Fructose
. 6-phosphate

Xylulose Glyceraldehyde
5-phosphate 3-phosphate

~ Figure 2.3: The nonoxidative branch of the pentose phosphate pathway.

2.4.2 Energetics of the TCA Cycle

For one turn of the TCA cycle, two molecules of COy are formed from the oxidation of
isocitrate and a-ketoglutarate. The energy from these oxidation reactions is conserved in

the reduction of three NAD' and one FAD molecule coupled with the production of one
GTP molecule. While only one molecule of GTP: is generated per turn of the TCA cycle,
the oxidation steps of the TCA cyclex (four in.éll) are electron sources. These electrons
are transported to the respiratory chain via NADH and FADH; where additional ATP
molecules are formed during oxidative phosphorylation. When coupled with glycolysis and
assuming that both the pyruvate molecules are oxidized to COg via the citric acid cycle,

about 32 ATP molecules are generated per molecule of glucose.

2.4.3 Regulation of the TCA Cycle

The TCA cycle is controlled to meet the energetic needs of the cell in addition to precursors
for biosynthesis. The most important regulation is via the NAD*/NADH ratio with many
reactions requiring NAD™ as an electron acceptor and other being allosterically regulated
by NAD* or NADH. Concentrations of other substrates such as succinyl-CoA, oi(aloacetate,
ATP and ADP also servé to control the activity of the TCA cycle. The key enzymes that
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. complex
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Figure 2.4: Reactions of the TCA cycle.

control TCA cycle activity are pyruvate dehydrogenase complex (PDC), citrate synthase

. (C8), isocitrate dehydrogenase (ID) and a-ketoglutarate dehydrogenase. -

2.4.3.1 Pyruvate Dehydrogenase Complex

The PDC catalyzes conversion of pyruvate into acetyl-CoA

Pyruvate + CoA + NAD* — Acetyl-CoA + CO, + NADH + H* 211 ¢

The products of the above reaction, acetyl-CoA and NADH are ihhibito;y to PDC and this
inhibition is relieved by CoA and NAD™. Also, GTP inhibits PDC activity while AMP ac-
tivates it. PDC is also activated by phosphorylation which is simulated by high ATP/ ADP, =

acetyl-CoA/CoA,and NADH/NAD™ ratios. Dephosphorylation however increases the ac- :

tivity of PDC. It appears that PDC is active when there is a neéd‘ for Aaéetyl—CoA, either
for biosynthesis, or for the production of NADH. E
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2.4.3.2 Citrate Synthase

Cltrate synthase (CS) catalyzes the ﬁrst step of the TCA cycle where oxaloacetate and

‘acetyl-CoA are converted to citrate

Acetyl-CoA + oxaloacetate — citrate + CoA (2.12)

Activity of CS is strongly inﬂueﬁced by the concentrations of oxaloacetate and acetyl-CoA
which are the reactants in the above reaction. The concentrations of these substrates vary
with the metabolic state of the cell and hence affect the rate of citrate production. Succinyl-
CoA, NADH, and NADPH act as inhibitors by decreasing the affinity of CS for acetyl-CoA
2.4.3.3 IsoCitrate DehydrogehaSe

Isocitrate dehydrogenasé catalyzes the conversion of isocitrate to a-ketoglutarate
Isocitrate + NAD* — a-ketoglutarate + CO, + NADH + H* (2.13)

The activity of isoc_itrafe dehydroggznase is strongly affected by the NADT/NADH ratio
and is allosterically activated by'ADP. Increased ATP concentrations adversely affect the

- activity of isocitrate dehydrogenase.

2.4.3.4 a-Ketoglutarate Dehydrogenase

Conversion of a-ketoglutarate to succinyl-CoA is catalyzed by a-ketoglutarate dehydroge-

nase
a-ketoglutarate + CoA + NAD+ — Succinyl-CoA + NADH + H* (2.14)

The activity of this enzyme-is inhibited by succinyl-CoA and NADH, which are the products
in the above reaction. A high ATP/ADP ratio is also known to inhibit a- -ketoglutarate
dehydrogenase \ ' :

2.5 Glutamine Metabolism :
2.5.1 Overview of Glutamine Metabolism -

Glutamine is a major source of energy and nitrogen for mammalian cells. The anabolic

reactions of glutamine typically take pace in the.cytbsol while the catabolism-of glutamine
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occurs in the mitochondria. Detailed reviews on the metabolism of glutamine are available
[2] and, given the dominant role that glutamine plays in catabolism, only this component

will be discussed here.

2.5.2 Catabolism of Glutamine

The use of glutamine for energy production is also referred to as glutarﬁinolysis and results
in the production of pyruvate with the concomitant production of NADH (Figure 2.5).

Glutamine
glutéminase
: & NH,
Glutamate
. NAD' R-OH :
Lactonase > glutamate transaminase
_NH, + NADH R-NH,
’ a-Ketoglutarate
a-ketoglutarate /"~ NAD" + CoA
dehydrogenase -
complex NADPH + CO,
Succinyl CoA
succinly CoA P; +GDP
synthetase .
. GTP + CoA
Succinate
; ’ FAD
succinate
dehydrogenase C
FADH,
Fumarate
H,0
fumarase (
Malate -
. NAD(PY' .
malic enzyme o i
. NAD(P)H + CO,
Pyruvate

Figure 2.5: Reactions involved in glutamine catabolism.

Glutamine is first cOn'VertedﬁtQ ‘glutarﬁate which subsequently is converted to a-ketoglutarate
and enters the TCA cyclé’.‘ While ﬁvebcérb'on atoms enter the TCA cycle through o-
ketoglutarate, only two are removed as COjy for each turn of the TCA cycle. The remaining
.carbon atoms are remoyéd by t‘hé.con\‘fers'ion of malate to pyruvate; a reaction that is
catalyzed by the malic enéyihé’. The py'ruVat-e formed can either be converted to lactate or.

" it can enter the TCA cycle via acetyl-CoA.




CHAPTER 2. OVERVIEW OF CELLULAR METABOLISM ' 15
Glutamine is first converted to glutamate in the followinvg reaction
Glutamine + HyO — Glutamate + NH; L (215)

Subsequent conversion of glutamate to a-ketoglutarate can occur through either glutamate
dehydrogenase (GLDH) or via é transaminase reaction (Figure 2.5). Alanine transaminase
and aspartate transaminase are abundant in' most cells and are likely to be major contribu-
tors for the conversion of glutamate to a-ketoglutarate. In addition to the transamination

reaction, glutamat»e can also be deaminated by GLDH as
Glﬁtar_naté + NAD(P)* — a-ketoglutarate + NH} + NAD(P)H (2.16)

and the a-ketoglutarate formed in the above reaction enters the TCA cycle.
Of special interest is the conversion of malate to pyruvate through the action of the
malic enzyme '

~ Malate + NAD(P)* — Pyruvate + CO, + NAD(P)H (217)

This action of the malic enzyme serves to remove the excess carbons from the TCA cycle

and also allows for complete oxidation of glutamine.

2.6 Oxidative Phosphorylation

In aerobic metabolism, oxidative phosphdrylation is the final step in the energy production
process. The electrons released during the TCA cycle are carried by the energy rich mole-
cules NADH and FADH; and are subsequently transferred to oxygen, the terminal electron
acceptor. In mammalian cells, this process occurs in the mitochohdria where the respiratory
assemblies that carry out the election transfer steps are located. The overall reaction can
be written as '

Ll

0]

1 p | P ' P
Tz — —_\p. — + -
NADH + HT + 202+< )ADP-%—.(O) Py NAD™ + < >H20+ (

Jur

where g is the ratio of the number of ATP atoms formed per atom of oxygen. For mam-

malian this ratio is usually betweén two and three.
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2.7 An Integrated View of Cellular Metabolism

As the primary role of metabolism is to produce and maintain biomass, cells consume -
nutrients to produce energy, reducing power and biosynthetic precursors. The primary
pathways that form the core of mammalian cell metabolism are glycolysis, TCA cycle,
pentose phosphate cycle, glutaminolysis and oxidative phosphorylation. Having examined
these pathways individually, it is important to view them in an integrated fashion as their
numerous connections and interactions contribute to the overall behavior of the bioreaction
network. Glycolysis and the PPP are connected by glucose-6-phosphate as well as several
other glycolytic intermediates. .Also, glycolysis is connected to the TCA cycle through
pyruvate. Glutamine, which is first metabolized to glutamate, enters the TCA cycle as a-
ketoglutarate. It is important to note that while the regulation of an individual enzyme can
be evaluated fairly completely in vitro, understanding the role of regulation in the overall
control of metabolism is extremely difficult. While significant progress has been made in

trying to quantify the control of cellular metabolism through metabolic control analysis (3],

much work still remains to be done.

2.8 Environmental Effects Oﬁ Cellular Metabolism

Bioreactor operating conditions have a significant effect on the growth and productivity of
mammalian cells. The most commonly monitored parameters during routine cell cultivation
include nutrient and metabolite concentration, pH, dissolved oxygen and temperature. All -
of these parameters have been known to have a significant influence on cellular metabolism

and a summary is presented in the following sections.

2.8.1 Nutrients
2.8.1.1 Glucose

Glucose is the primary source of ehergy and carbon for mammalian cells while glutamine
is a source of both nitrogen and énérgy. A key observation in the metabolism of glucose
and glutamine is that their uptake rates are highly concentration dependent. Early inves-
tigations [2, 4, 5] have shown that at low glucose concentration, glutamine becomes the
dominant source of energy. Also, glucose metabolism itself is a strong function of the glu-
cose concentration in the bioreactor. At high glucose concentrations, specific glucose uptake
rates are higher with a majofity of glucose converted to lactate and only a small portion
entering the TCA cycle [5-7]. At low glucose levels, a majority of the glucose enters the
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TCA cycle where it is cOmpletely oxidized to COs.. This difference in glucose utilization
patterns has been. used to optimize the operation of fed- batch bioreactors where glucose
concentration was maintained at a minimum level to minimize the production of lactate
(8, 9]. Howevef, it-is 1mportant to note that a reversal of cellular metabolism can occur
when cells are reintroduced into a high glucose environment. For instance, an increase in-
the molar stoichiometric ratio of lactate to glucose from 0.05 to 1.8 was observed within a

few hours of reintroducing glucoée starved cells into a glucose rich environment 6]

2 8.1.2 Glutamlne

Glutamine concentration also has an effect on the spemﬁc uptake rate of glutarnlne [10 13]
In continuous culture experiments with hybridoma cells, medium glutamine concentrations
in the 0.5 — 2 mM range were lirniting and were _characterized by reduced rates of ammo-
nium and alanine production {10]. Specific ammonium production rates were almost 2-fold
higher at elevated glutamine concentrations when compared with those under: glutamine-
limiting conditions. Consumption rates of other amino acids decreased at higher'glutarnine '
concentration in the medium and it - was hypothesized that their metabohc function was par-
tially replaced by glutamine. Glutamine uptake rates exhibited a Michaelis- ‘Menten type
relationship with the glutamine concentration for BHK cells in batch culture’ and the ki-
netic parameters were dependent on the glucose concentration in the medium ‘as glutamine
consumption rates were higher at low glucose concentration [14]. However, no significant
differences in the oligosaccharide structures of a human IgG-11.2 fusmn proteln were detected
under glutamine limiting conditions [151 .

Metabohc flux analysis was used to mvestlgafe the metabohsm of human 293 cells under
- low glutamine conditions [16]. At limiting amounts of glutamine,’ the consumption rates
of other essential amino acids increased indicating that these conld provide intérmediates
to the TCA cycle in the absence of giu‘_camine. Replacement of glutamine with glutamate
- has also been proposed as a strategy to minimize ammonium accumulation [17] which is a
consequence of both chemical decomposition of glutamine and the conversion of glutamine

to glutamate..

2.8.2 Metabolites
2.8.2.1 Lactate

A 31gn1ﬁcant portion of glucose is converted to.lactate in culfured marnmahan cells and
high lactate concentrations are toxic to cells. Moreover, glucose convers1on to Iactate is

energetically inefﬁcient. A 20% feduction in hybridoma cell growth was observed at 10 rnM"
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(0.9 g/L) lactate concentration [18] while a 50% reduction in hybridoma cell growth rate
were observed at-22 mM [19], 40 mM [12, 20] and 55 mM [21] concentrations. As with other
variables, the detrimental effects of lactate accumulation are cell line specific but concen-
trations in excess of 1 g/ L have the potential to adversely affect growth and metabolism.
Uptake rates of glucose and glutamine also decreased with increase in bioreactor lactate
concentration (20 — 70 mM) while death, oxygen uptake and specific antibody production
rates were not affected [21]. For CHO cells in batch culture, lactate concentrations in excess
of 30 mM inhibited celi growth with 25% growth rate'réduption at 60 mM lactate while no

reduction was seen in specific 'productiyity and glucose and glutamine uptake [22].

2.8.2.2 Ammonium

Ammonium in mammalian cell bioreactors is produced both from ceilular metabolism and
from the chemical decomposition of glutamine. Ammonium has significant effects on cellular
metabolism [23] inclﬁding reduction in cellular growth rates and decline in protein produc-
tivity alohg with alteration of protein glycosylation [24—29]. Reviews on the mechanism of
ammonium inhibition are available [30, 31]. In contrast to lactate, ammonium can inhibit
cellular growth at much lowe_f concentrations. Growth of several cell lines was inhibited at
2 mM ammonium concentration [18]. However, no inhibition was seen with hybridoma cells
.at 3 mM NH4Cl concentration while significant growth inhibition was observed at 10 mM
NH,4Cl (30]. As both lactate and ammonium can be toxiciat elevated concentrations, it is

desirable to keep their bioreactor concentrations as low as possible.

2.8.2.3 Dissolved Cafbon Dioxide

Carbon dioxide is a product of cellular respiration and indirect sources include NaHCOj3
which is typically a buffer in the cultivation medium. If NaHCO3 or NapCOg3 are used as
base to neutralize cellular lactate, these will be additional CO sources. Bioreactor COs
concentration is measured as COj partial pressure (pCO2) and the physiological range is
30 - 50 mm Hg. Cell growth can be inhibited at pCOz < 30 mm Hg while elevated pCO
has been implicated in reduced growth, metabolism and productivity in addition to adverse
effects on glycosylation [32-43]. There is thus an optimial bioreactor pCO2 concentration
close to the physiological range where bioreactor operation is desirable.

For BHK cells in perfusion culture, a 40 to 280 mm Hg pCOs increase resulted in
30% grdwth rate and specific productivity decreases [40]. A 57% growth rate decrease
was observed for CHO cells in perfusibﬁ culture under high glucose concentrations when

the pCO3 was increased from 53 to 228 mm Hg [44]." The specific antibody productivity,
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however, was almost unchanged [44]. Increasing pCOz from 36 to 148 mm Hg during

- perfusion cultivation decreased CHO cell density by 33% (reflecting reduced growth rate)

and speeiﬁe produe_tivity' by 44% [37]. - Under glucose limiting conditions; for a similar
pCO i'nereasethe growth rate decreased by 38% along with a 15% reducti.on\i'n specific
antibody prodlicti\}ity. The growth rate of NS / 0 cells decreased when pCO; increased from
60 to 120 mm Hg [33]. Scale-up of a fed-batch process resulted in pCO; values of 179
+ 9 mm Hg in a 1000 L bioreactor and a 40% decrease in specific productivity was seen
under these conditions compared to a pCO; value of 68 + 13 mm Hgina 1.5 L laboratory-
scale bioreactor [41]. Glucose consumption rates decreased in a dose-dependent fashion for
hybridoma cells in T-25 flasks [35] with a 40% decrease observed when pCO3 increased from
40 to 250 mm Hg. Similar observations were made for lactate pfoduction that decreased
by 45% for the same pCO; increase. Bioreactor pCO2 control close to the physiological

. range is thus critical given the substantial impact on cell growth, metabolism and protein
“productivity. ' ' ‘ o

2.8.3 Amino Acids
Amino acid metabolism in mammalian cell cultures is significantly different from that in

microbial cultures as mammalian cells are incapable of synthesizing 10 of the 20 standard

amino acids. These 10 are referred to as essential amino acids implying that they must

be present in the culture medium to promote cell growth and function. A list of essential
and non-essential amino acids is presented in Table 2.1. This representation, however, is

for classical human nutrition and all 20 amino amds are present in mammahan cell culture

" media to promote cell growth and productivity. Amino acid catabolism will be examined

first followed by an examlnatlon of the pathways through which the nonesserntial ammo

acids are synthesized.

2.8.3.1 Aniino Acid Catabolism -

Only about 10 = 15% of energy is generated from amino acid catabolism (excluding gluta-
mlne) 1nd1cat1ng that these pathways are 51gn1ﬁcantly less active compared with glycolysis
and fatty acid oxidation. All product< of amino acid catabolism enter the TCA ¢ycle and a

summary of the pathways is shown in Figure 2.6. Arganine, glutamine, histidine and pro-

~ line are first: conver‘red to glutamate through different pathways. Glutamate is subsequently
’ converted to a ketoglutarate elther through transamination or deamination: Isoleucme me-
L thlomne threomne and valine are all first converted to propionyl-CoA which is subsequently

. converted to succmyl CoA by the actlon of methylmalonyl CoA mutase. Phenylalamne and
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Table 2.1:. Essential and Nonessential Amino Acids.for Mammalian Cell Metabolism

Essential amino acids | Nonessential amino acids
Arginine : Alanine
Histidine o Asparagine
Tsoleucine. ' Aspartate
Leucine : Cysteine

Lysine ° - Glutamate
Methionine Glutamine
Phenylalanine Glycine
Threonine - Proline
Tryptophan - Serine
Valine Tyrosine

tyrosine can enter the TCA cycle either through fumarate or acetyl-CoA. Asparégine is

converted to aspartate by the action of asparaginase and aspartate undergoes transami-

‘nation with a-ketoglutarate yielding glutamate and oxaloacetate. A majority (10) of the

amino acids yield acetyl-CoA which subsequently enters the TCA cycle. Leucine, lysine;
phenylalanine, tryptophan and tyrosine are first converted to acetoacetyl CoA which is sub- -
sequently cleaved to acetyl-CoA. Alanme, cysteine, glycine, serine and tryptophan are first

converted to pyruvate and then to acetyl-CoA.

2.8.3.2. Amino Acid Biosynthesis

Of all the amino acids shown in Figure 2.6, the essential amino acids have to. be ,svupplied

in the culture medium since they cannot be synthesized by the cells. Biosynthesis of only

the non-essential amino acids is possible and an overview will be preséhtgd in' this section.
Alanine is produced by the transamination of pyruvate by alanine tranéarﬁinase. The pro-
duction of asparagine is catalyzed by asparagine synthetase and deamination of asparagine
catalyzed by asparginase results in the formation of aspartate. The sulfur for cysteine
comes from methionine, an essential amino acid and homocysteine is first produced Homo-
cysteine condenses with serine to produce cystathionine, which is subsequently cleaved by
cystathionase to produce cysteine and a-ketobutyrate. Glutamine is produced by amino-
transferase reactions, with a mimber_ of amino acids donating the nit'roge'n atom (Figure
2.6). It can also be synthesized by the reductive amination of a—ketoglutarate catalyzed
by glutamate dehydrogenase. Glutamine can be produced by the action of glutamine syn-
thetase or from glutamate by the direct incorporation of ammonia. Glycine is produced

from serine in a one-step reaction catalyzed by serine hydroxymethyltransferase,
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Figure 2.6: An overview of amino acid catabolism in mammalian cells.

Glutamate is tfle precursbr;for vproline synthesis while serine is produced from the
glycolytic intermediate 3-phosphoglycerate. An NADH-linked dehydrogenase converts 3-
phosphoglycerate into a keto acid, 3-phosphopyruvate, suitable for subsequent transami-
nation. Aminotransferase activity with glutamate as a donor produces 3-phosphoserine,
which is converted to serine by phosphoserine phosphatase. Tyrosine is produced in cells
by hydroxylating the essential amino acid phenylalanine with approximately half of the

phenylalanine required going into the production gjf tyrosine.

2.8.4 pH

Bioreactor pH during mammalian cell cultivation is typically maintained close to neutral
while optimal pH values for growth and protein production tend to be cell-line and product

specific. For hybridoma cells in batch culture, maximum growth was seen at 7.4 and this
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value decreased as the pH increased [45]. For hybridoma. éells in batch culture, a decrease
in bioreactor pH from 7.6 to 7.2 and subsequently to 6.8 decreased cell growth, glucose
consumption and lactate production while glutamine uptake and ammonia production were

not affected by pH Chdnges [30]. Similar reductiOns in glucose uptake and lactate production

" rates at low bloreactor pH have been seen for hybrldorna cells in batch and contlnuous.'

“culture [46] resultlng in the substltutlon of glutamlne for glucose as the energy source. It

has been shown that a decrease in bioreactor pH can reduce the intracellular pH (pH;)

resulting in cytoplasmlc ac1d1ﬁcatlon [47] which in turn: is prlmarlly respon51ble for the

'metabolism shifts in response to bioreactor pH changes

Changes to pH; have significant- 1rnp11cat10ns for cell growth and  metabolism [48, 49]
Decrease in pH on the order of 0.2 units has been shown to 51gn1ﬁcantly reduce the carbon
flux through glycolysis [50-53]. One reason for this decrease is the strong dependence of
the activity of the enzyme phosphofructokinase on pH; [1]. Since changes to pH; affect the
ionization states of all peptides-and proteins, pH;-is actively regulated [54,_'55]. :

2. 8 5 Dissolved Oxygen

The concentratlon of dlssolved oxygen is a key Varlable in rnamrnahan cell cultivation and

"is often controlled at.a constant value in- the vicinity of 50% air saturatlon Oxygen is

essential for ATP productuon through oxidative phosphorylatlon and is typlcally provided

‘to the bloreactor _using an air-oxygen mixture. Given the low solublhty of oxygen in cell

culture media, efﬁ(nent aeration strategies need to be ernployed espec1ally in high- dens1ty
cultivation. - : o

It was observed early on that cell growth is sub-optimal in the absence of dissolved
oxygen control and controlling pOy in the 40 — 100 mm Hg range (25 - 63% air saturatlon).

resulted in maximum viable cell densities during batch cultivation of mouse LS cells [56]

* Cell growth and maximum cell density, however, were 31gn1ﬁcantly reduced at low (1%) and

high (200%) DO concentrations [57]. Oxygen uptake rate was also lower at DO = 1% and -

. this was attributed to oxygen- -limiting conditions in the bioreactor. Glucose metabolism
- was also significantly affected by bioreactor DO concentration. At DO = 200%, only 60% -

of the glucose was converted to lactate when compared w1th 90% conversioti- for all other:

DO concentrations investigated (7.5, 20, 25, 60, 100%). T-hus mo_re glucose: was drawn into

~ the TCA cycle at DO = 200% which was also characterized by higher oxygen'uptake rates. -

The lactate production ratenwas the highest at DO = 1% and decreased at higher DO

values. High lactate production &t low DO values is necessary to generate ATP from the

conversion of glucose to lactate since there is a reduction in .AT'P production through the
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TCA cycle. A build-up of pyruvate was also seen at DO = 1% indicating that the pyruvate
flux into lactate was slower than the conversion of glucose to pyruvate, An analysis of the
enzyme levels at various DO concentrations indicated low levels of isocitrate dehydrogenase
and aldolase, and high levels of lactate dehydrogenase at low DO concentration [58]. Thus
low DO concentration caused a reduction in the levels of enzymes involved in termirial .
respiration while the levels of those in glycolysis and the hexose-monophosphate pathway
were increased. ’

The effect of dissolved oxygen concentratlon in the 0.1 - 100% air saturation range on
hybridoma cell metabolism was exaniined in continuous culture [59]. .Oxygen uptake rate
was constant for DO in the 10— 100% range but decreased by more than 50% when the
DO dropped below 10%, suggesting oxygen limitation. Lactate productioﬁ frém .glucQse
was higher at low DO concentrations: while glutamine consumption decreased. In another
study on hybridoma cells in cbntin_uous culture, cell growth was reduced both at DO < 5%
and DO = 100% air saturation [60]. Glucose consumption and lactate production increased
when the DO was < 5% while there was a'significant reduction in the oxygen uptake rate
and these findings are similar to those reported in éarlier studies. Glutamine consumption
and ammonium production rates were also higher under low DO conditions, in contrast to
the observations in Miller et al. [59]. Amino acid consumption rates increased sharply at"
low DO concentration while the specific antibody production rate was DO independent.

Metabolic flux analysis has been appliéd to characterize the influence of DO on cell
metabolism [61, 62]. For hybridoma cells in continuous culture [62], growth rate was not
affected at DO values as low as 1% but was significantly reduced at DO = 0.1%. Glucose
consumption and lactate productlon rates were 51gn1ﬁcantly higher at DO = 0.1% as ‘with
previous studies. Metabolic flux analysis indicated that the fluxes of NAD(P)H—producmg
dehydrogenase reactions decre’aéed under hypoxic conditions (low NAD(P P)*/NAD(P)H ra- *
tio) and increased at higher DO concentratlon (high NAD( ) /NAD(P)H ratio). For hy-
. bridoma cells in batch culture [61] there was no significant effect on metabolism when the
DO was varied between 5 and 60% air Saturati_on. At DO values of 1% and 0%, both oxygen
uptake and carbon dioxide produ(itibn rates were lower while those for glucose consump-
tion and lactate productioﬁ .i_ncrea.sed. Glutamine consumption and ammonia production
decreased at low DO while glutbamate production was high. Metabolic flux analysis indi-
cated that the pyruvate flux into the TCA cycle was non-existent at DO = 0% and the flux
through glutamate dehydrogenase was reversed at low DO resultmg in increased glutamate -
production. The fraction of ATP: from glvcolvs1s increased from 34% at DO = 60% to 69%
when the DO was 0% vreﬁectlve. of the increased rates of glucose and lactate metabolism at
low DO.
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All-the above studies suggest thatlthere is a threshold DO concentration below which
dramatic changes in growth and metabolism are seen. This value is typically 1% air sat-
uration or lower for most cell lines studied to date. It must however be noted that it is
not clear if the DO was actually controlled at 1 and 0. 1% saturation. DO probes are not
characterized by that level of accuracy and it is possible that the cultlvatlons were actually
at even lower DO levels. DO concentrations greater than 100% also have the potent1al to
adversely 1mpact cellular metabollsm clearly highlighting the need to control bioreactor DO
‘ 'concentratlon at lower levelst It 1s.non_etheless importart to note that DO concentrations
in the 10— 90% range have minimal impact on cell metabolism and protein productivity
thereby ‘ininlmizing the impact of DO excursions: associated with operational error in a
manufaeturing scenario. 'Controlling DO at a defined set-point is rather straightforward
and this is typically done usmg a PID controller that regulates the flow of a mixture of
oxygen and nltrogen/ air into the system.

2.8.6 Temperature A

Temperature is a key variable in mammalian cell cultivation and most bioreactors are typ-

" ically operated close to the physiological .value of 37 °C. While reduction in cell growth

and metabolism at lower ‘temperatures- have been long recognized [63, 64], manipulating
temperature to improve protein productivity is relatively recent. Temperature effects on
: spec1ﬁc proteln productwlty are cell line-specific since observations to date include increased
[65-70], decreased (19, 31,71, 72] or unchanged productivity [31, 73-76] upon temperature
reduction ’ 'While the advantages aSSociated with increased speciﬁc preductivity are obvious,
even unchanged spec1ﬁc product1v1ty can be benefimal in both fed-batch and perfusion sys-
tems. Since lower temperatures are typlcally accompanied by reduced growth and metabolic
rates, fed-batch ‘cultivation times can be extended without large decreases in culture via-
'.vbi-l_ity. Along Similar lines, p'e'rfusi__on rates can be reduced in perfusion cultivation reducing
‘both medium usage and the volume of harvest generated. This eoncentr_ated harvest stream

can significantly reduce the cost associated with subsequent protein purification operations.

2..8.‘6.1 ' Effect of Temperature-ont vGrowth and Metabolism

Both growth and metabolic rate‘fs_“a'fe, known to declease sharply with ternperature decreases.
~ Reduction in 'growth rate is 'attrflbuted to cell accumulation in the GO/G1 phase concomitant
with a rapid reduction of cells in the S phase | (66, 77, 78]. For BHK cells in batch culture,

the growthi rate was reduced by 25% when cultlvatlon temperature was lowered from 37 to

33 °C [73] Whlle a more ‘dramatic decrease was seen for EPO- producmg .CHO cells in batch
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culture (0.029 + 0.003 h~! at 37 °C; 0.016 £ 0.001 h~! at 33°C) [65]. Cell cycle analysis
for CHO cells revealed that at 74 hours into the 'cultiVation, the percentages of cells in the
G0/G1 phase was 75.8, 62.8 and 47.3% at 30, 33 and 37 °C, respectively, while that. for
the S phase were 11.6, 33.2 and 45.8%, respectively. Similar observations were ma_de during
batch cultivation of Anti-4-1BB producing CHO cells [79]. The growth rate decreased from
0.022 + 0.003 h~! at 37°C to 0.014 + 0.004 h‘.1 at 33 °C and the percentages of cells in
the GO/G1 phase 78 hours‘into.the cultivation were 64.9, 59.1 and 36% at 30, 33 and 37
°C, respectively, while the S phase percentages were 17.4, 15.6 and 45.1%, respectively.

Just as with growth rate, lower cultivation temperatures are associated with reduced
glucose uptake and lactate 'production rates. For hybridoma cells in batch bioreactors,
glucose uptake rate was reduced by 41% at 34 °C compared to 37 °C [19] while a 2-5 fold
decrease was observed for hybridoma cells for temperature reduction from 39 to 33 °C [71].
For BHK-21 cells in batch culture, the specific. glucose uptake rate decreased from 0.58
ng/cell-d at 37 °C to 0.45 ng/cell-d when the temperature was lowered to 33°C [73] while
a 50% reduction in both glucose uptake and lactate production rates was seen for CHO
cells in a packed bed reactor for a temperature reduction from 37 to 32 °C [70]. For EPO-
producing CHO cells in batch culture, there was 1o significant reduction in glucose uptake
and lactate production rates for a temperature decrease from 37 to 33 °C [65] and similar
observations were made for glutamine consumption and ammonium production. However,
when the temperature was further lowered to 30 °C, glucose uptake and lactate production
rates decreased by 44 and 56%, respectively (as compared to 37 °C) while the decreases in
glutamine uptake and ammonium production were 47 and 36%, respecti{/ely.

2.8.6.2 Effect of ,Tempe.rature on Oxygen Uptéke Rate

An Arrhenius-type relationship has been proposed to describe the dependence of oxygen
uptake rate on temperature in the 6 — 37 °C range [80]. At temperatures close to 37 °C,
every 1 °C drop in temperatufe was accompanied by approximately 10% reduction in the
oxygen uptake rate [74] and an order of magnitude decrease in the oxygen uptake rate was
seen for temperatures below 15 °C. For CHO cells in a packed bed reector, a4 -5 fold
decrease in oxygen uptake rate was seen when the temperature was reduced from 37 to 32
°C [70]. For CHO cells in batch culture, a 50% reduction in oxygen uptake rate was seen

when the temperature was reduced from 37 to 30 °C [77]. Temperature effects on oxygen

consumption rate are thus consistent and follow an inverse. relationship of the Arrhenius

type.
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2.8.6.3 Effect of Telhperature on Cell Sensitivity to Shear

There has been one report where the effect of temperature on shear sensitivity was studied
for BHK-21 cells [81]. Cultivation temperatures in the 28— 39 °C range were examined and
an improvement in shear resistance was observed at lower temperatures. It was hypothesized
that increased rigidity of the lipid bi-layer at reduced temperatures was cohtributing to the
increased shear resistance. Cell morphology was also influenced by cultivation temperature
and cells were more spherical at lower temperatures. However, temperature reduction is
unlikely to be used with the sole ob jective of improving shear resistance properties in light of
subsequent ad\?a_nces in the use of shear protectants [{82]. Components such as pluronic F-68
are routinely used in current cell cultivation media and provide adequate shear protection

in serum-free media under a variety of agitation and oxygenation conditions.

2.8.6.4 Impli_cations for Bioprocess Optimization

Reduced temperature cultivafioﬁ has been d'é,u'ggested as a tool for increasing productivity in
mammalian cell bioreactors. Higher productivity can be achieved rather easily when specific
protein productivity is aléohigher at lower temperatures [65-70], and this has in one in-
stance been linked. to incredsed transcription level of the protein of interest [65]. A biphasic
cultivation methodlﬁas been proposed to maximize protein productivity which includes an
initial phase of fast cell growth at 37 °C followed by cultivation at reduced temperatures
where specific prodﬁctivity is higher [66—70]. The shift in cultivation temperature has typ-
ically been determined ar.bitr'érily and & model-based approach to cultivation temperature
change has been proposed only recently [83]. Using simpie Monod-type unstructured kinetic
models to describe the dynamlcs of. cell growth and metabolism, a temperature shift after
3 days of growth was found to result in optlmal volumetric productivity, a 90% increase
when compared with cultivation at 37 °C.

The lower rates of metabolite production at reduced temperatures allow perfusion cul-
tivation at reduced perfusion rates since metabolite accumulation in the reactor is reduced.
This lowers medium consumption thereby significantly reducing the cost of goods and also
provides a harvest stream with increased product concentration that has positive implica-
tions for downstream purification operations. However, temperature shifts can potentially
affect product quality [84, 85]‘_ and this must be taken into account before temperature-based

bioprocess optimization is considered in both fed-batch and perfusion cultivations.
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2.9 Conclusions ,

The prlrnary pathways that form the core of mammahan cell metabolism are glycoly51s

TCA cycle pentose phosphate cycle glutaminolysis and oxidative phosphorylatlon and

an overview of these pathways has been ‘presented. Published" 1nforrnat10n on_the effect of

bioreactor operating condltlons such as nutrient and metabolite concentratlon pH, dlssolvedv

oxygen and temperature has been reviewed and this information can be useful during the

optimization of perfusion systems for hlgh density cultivation of mammahan cells.
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Methods for ,Metabolic Flux
1

Estimation |

3.1 Introduction

Flux is defined as the rate with which material is processed through a bioreaction pathway
[1]. While a reaction flux does not contain information on the activity of enzymes in that
particular reaction, it does contain information on the extent of involvement of the enzymes
in that reaction. For this reason, it has been argued that metabolic fluxes constitute a
fundamental determinant of cell physiology and metabolic flux estimation is, therefore, the
preferred method for characterizing the physiological state of a cell [2]. Metabolic fluxes can
be estimated .either by applying mass balances across intracellular metabolites or through
isotope mass balances across every carbon atom in the metabolic network. An overview of

these two flux estimation methods is pfesented in this chapter.

3.2 Flux Estimation from Metabolite Balancing

. In the metabolite balancing approach, intracellular fluxes are estimated from experimentally
measured extracellular rates [3-5]. Intracellular metabolites in the bioreaction network are
identified and mass balance expressions are written around them resulting in a stoichiometric
model of cellular metabolism. Specific uptake rates of key nutrients and specific production

rates of some metabolites are experimentally measured and these constitute the input data

LA version of this chapter has been a'ééepted for publication. Goudar, C.T., Biener, R., Piret, J.M. and
Konstantinov, K.B. (2006) Metabolic Flux Estimation in Mammalian Cell Cultures, In R. Portner, (ed.),
Animal Cell Biotechnology: Methods and Protocols, 2" ed., Humana Press, Totowa, NJ.
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for flux estimation. Intracellular fluxes are subsequently computed from experimental data
and the network stoichiometry using linear algebra.

The earliest appliéation of metabolite balancing to a fermentation process is for citric
acid production by Candida lipolytica [6] and this approach was later used for validation
of the bidreaction network of butyric acid bacteria [7, 8]. Metabolic flux analysis in its
present form can be largély attributed to the seminal work on lysine fermentation [1] where
metabolite balancing and extracellular fluxes were used to understand intracellular regu-
latory mechanisms dui‘ing lysine production by Corynebacterium glutamicum. Metabolite
balancing has since seen widespread application for bacterial, yeast and mammalian cell
cultures. Mammalian cell applications include BHK [9, 10}, CHO [4, 11, 12], hybridoma
(3, 13-20] and human [21] cells.

3.2.1 Theory

Consider the reaction sequence A — B — C where B is the intracellular metabolite. The

mass balance expression for B can be written as

%5— =rs—1Cc — uB (3.1)
where r4 is the rate of formation of B from _A;'Tc the rate of conversion of B to C and uB
the conversion of B to biomass. Substituting ré = r4 — r¢ for the net formation rate of
metabolite B, the above equation can be rewritten as

' %tg— =rg— uB (3.2)
At low intracellular metabolite concentrations, the pB term is small and can be neglected.
For aerobic chemostat cultivation of S. cerevisiae at a dilution rate of 0.1 h™}, the intra-
cellular concentrations of glycolytic pathway intermediates ranged between 0.05 ~ 1.0 pmol
(g DW)~1 [22], resulting in 0.005 — 0.1 pumol (g DW)~*h~! uB values. These values were
much lower than the glycolytic fluxes that were ~1.1 mmol (g DW)~*h~%, 4 — 6 orders of
magnitude higher. A similar rationale can be applied to mammalian cells where intracel-
lular metabolite concentrations are similar to those in yeast but with reduced growth and
metabolic rates [2] such that -

dB
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Invoking the steady-state.hyp(')th‘esils‘which sugg:esn;ts that the maghitude of change in intra-
cellular metabolite. concentrations are negligible [20], we get o '

TB.‘AZ.’-Q.'.V o C (34)

which essentially states that the net rate of formation of intracellular metabolites in zero.

For a bioreaction network with M intracellular metabolites we get

v where ry is the vector of net métahoiite formation rates. Mass transfer effects have not been
in¢luded in the above derivation because substrate transfef from the cultivation medium into

the cell'and availability‘ of intracellular metabolites are not considered to be rate limiting.

3.2:2 Flux Estimation Through Manual Substitution

Fma
i
(' ‘ Vi ' Vs A . \ .
Fmt 1M | My | — | Ms Fms
. | . ‘
V1 v v ‘
m, | M3 | Mg > Tme
N )
s

Figure 3.1: A simplified bioreaction network consiéting of 6 intracelllular metabolies (my — mg),
5-measured extracellular rates (rmi1,7m3 = T'me) and 5 unknown intracellular fluxes
(1)1 - '1)5). - ‘ ) ’

The application of Eq.(3.5) for flux estimation is illustrated using the reaction network
‘shown in Figure 3.1. This network consists of 6 intracellular metabolites (my — mg) and .
5 measured extraceilular rates (Tml,?“ms — r,ﬁs) that have been ar_bitrarily selected to have

enough measurements lto’solve for the 5 unknown intracellular fluxes (711‘ —vs). Applying
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Eq.(3.5) around metabolites m; — mg results in the followiné; mass balance expressions

My Ty, — V1 — U3 =0 (3.6)
“mg vl — vy =0 (3.7)
ms V2 — Tmy — Vg =0 | v (3.8)
Mg V3 — Ty — U5 =0 (3.9)
ms @ V5 — Ty =0 ._ (3.10)
mMe @ Vg — Tmg = 0o . | (3.11)

Estimating the unknown fluxes vy — vs from the above equations is straightforward. From
Eq.(3.10), vs = 7, and vy = Ty from Eq.(3.11). Thus v3 = 7, + Tmg from Eq.(3.9)
and v = V] = Ty + T'me from Egs.(3.7) and (3.8). The solution for the above bioreaction

network can thus be summarized as

V1 = Tmg T Tmg (3.12)
vy = Uy (3.13)
U3 = Ty Timg o (3.14)
Vg = Tmg | (3.15)
U5 = Ty (3.16)

3.2.3 Flux Estimation Through Linear Algebra

The above approach of manual substitution works well for small bioreaction networks. For
complicated networks that have multiple branch points and often include more than 30
metabolites and reactions, manual estimation of fluxes becomes cumbersome. An elegant

alternative is to use matrix notation and linear algebra. techniques for flux estimation.

Eq.(3.5) can be written as

rm=GTv=0 o (3.17)

where GT is the matrix containing the stoichiometric cerfﬁcients for the intracellular metabo-
lites and v is the ‘vector of reaction rates that includes both the measured uptake and pro-
duction rates as well as the unknown intracellular fluxes. To solve Eq.(3.17), it is convenient
to split the reaction fate vector v into two components, v, and \)C for the measured and cal-
culated rates, respectively. If G,Tn and G are the corresponding splits in the stoichiometric
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' matrii, G, then Eq.(3.17) can be rewritten as

GTv=GLv, +Glv.=0 - (3.18)
from which v, can be estimated (assumirig GI is a nonsingular square matrix) as
: 1 v
ve=—(GT) ' Glvy (3.19)

3.24 Application of the Matrix Approach for Flux Estimation

The first step in application of the matrix épproach to the reaction network shown in Figure

3.1 involves construction of G7 and v. The number of rows in GT equals the number of

intracellular metabolites (6) and the number of columns equals the sum of the measured
extracellular rates (5) and the number of unknown intracellular fluxes-(5). G7 is thus a
6 x 10 matrix while v is a 10 x 1 column vector whose elements include the measured

extfacelllllar rates and unknown intracellular fluxes. Eq.(3.17) can be written as

. (V)IOX 1

: T'my
(GT)SXIO . 7”777'3
10 0 0 0 -1 0 -1 0 0 Timg 0
0 0-0 0 0 1 -1 0 0 O T 0
010 0 0 0. 1 0 -1 0 rmg | _ | O (3.20)
O 0 -1 0 0 0 0 1 0 -1 vy 0 4
00 0 =10 0 0 0 vy 0
000 0 0 -1 0 0 0 1 0 v3 0
| . o,
'U5.

Multiplying the first row of _GT with the elements of v results in 7y, _ v1 —v3 = 0 which is
identical to'Eq.(3.6) and is the mass balance expression for metabolite m;. Multiplications
of rows 2 — 6 of GT with v results in the mass balancé expressions for metabolites mg —me
making the represeh‘qatibnin Eq.(3.20) identiéal to Eqs.(3.6-3.11). The compact represen-
tation in Eq.(3.20) becomes éépeéially important fer typical mammalian cell bioreaction
networks that have more than 30 metabolites and reactions. ‘

. Eq.(3.20) can.be split into the measured and unmeasured components according to
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© Eq.(3.18)
4 (GR) - , (GT)
10 0 0 0 Cod /21 0 -1 0 o\ W 0
. v . i T'm, . : P U1
700 0 0 0 . -1 —-1"0 0 0 0
. Tms . U2
0 -1 0 0 0. ' 0 1 0O -1 0 , 0
e ‘ Tm4 + ) ’U3 —=
0O 0 -1 0 0 ‘ 0 0 1 0o -1 0
: Tms . : V4
0 0 0 -1 0 0 0 0 1 0
0 0 0 —1 0 0 0 1 0 )° 0
' ' _ (3.21)
The vector of unknown fluxes, v., can now be estimated from Eq.(3.19) : .
((GCT)‘l) . o (G%)
11 1 1 1 o1 (b o 0 00
3 3 2. 3 T3 32 .
~1 _1 2 _1 _1 2 00 0 0 O
. 73 3 3 3- 73 3 :
v | 21 212 2 0 -1 0 0 0 (3.22)
¢ 3 3 3 3 3 3 - 0 0 1 0 0 .
-1 11 _1 5 R '
6 8 .76 6. o
1 1 1 .15 _1i.g0 0 .01 0"

where (Gg)_l is tbe inverse (actually a pseudoinverse as GI is nonsquare) of GZ. When
~experimentally measured extracellular rates are included in the vm’\‘zector,‘ V. can be readﬂy, C

calculated from the above equation.

3.2. 5 V The Nature of Bioche’mi’cal Networks

It follows from Egs.(3.17 - 3. 19) and the above example that 1ntracellular ﬂux estimation -
is a simple 3 step process that first involves formulation of the st01ch10metr1c matmx GT _
from the reaction network followed by separatlon of GT into GT and GT and subsequent

~ estimation of v, by- ma‘mx inversion. However, computatlonal cornplexmes can arise due

to smgulamtles in, GF depending-upon the number of metabohte mass balances (m) ‘and

. reactions (r) and three scenarios are p0381ble
1. Determined system (m =r). '

- 2. Underdetermined system (m < )

3. Overdetermined system’ (m > )
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v D_e_termined systems are compﬁtétionally the simplest (assuming Gfis square and non-
singular) and usually have a unique solution that can be determined from Eq.(3.19). They
have little practical utility since m # 7 for most biochemical networks. |

Underdetermined systems are more common because adequate experimental meaéure—
ments can often not be made. These systems are formulated as linear programming (LP)
problems [5, 23-34] and do not have unique solutions suggesting flexibility in the intracel-
lular metabolic fluxes ’

‘"Minimize Z ¢;v; subject to GTv =0 (3.23)

where ¢; is the weight factor for flux v;. The choice of ¢; determines the objective function
to be minimized (or maximized) and it is critical that this be physiologically relevant.
Choices can include maximization of growth rate or production of a particular metabolite
and minimization of ATP production and nutrient uptake. Despite the possibility of an
infinite number of solutions, the solution is confined to a feasible domain, a polyhedron,
conceptualized as the metabolic genotype. The stoichiometric constraints of the system
determine the feasible region and in two-dimensional space, these stoichiometric constraints
are lines and are the boundaries of the feasible domain (plane). These systems are typically
solved using the simplex method and the solutions occur at the extreme points of the feasible

domain. Sensitivity analysis of the optimal solution: can be analyzed using shadow pricés

oz

Pi= 5, (3.24)

where Z is the optimal value of the objective function and r; the extracellular produc-
tion/consumption of metabolite 7. This quantity helps determine the contribution (or lack
thereof) of 7; to the stated objective function and provides useful information for designing
rational metabolicehgineering"strategies for maximiZing/ minimizing Z. A major disadvan-
tage of underdetermined systems is that the stated objective function may not reflect cell
physiology. For instance, Bonarius et al, 3] used the minimum Euclidean norm constraint
(minimize sum of flux values or the most efficient channeling of fluxes) for hybridoma cells
in batch culture while experimental data indicated that cell physiology was more consistent
with ATP and NADH maximization constraints rather than the minimum Euclidean norm
constraint. Nonetheless, this approach can provide very useful information helping target
genetic engineering efforts to maximize the outcome of interest [5, 35].

Overdetermined systems have more metabolite mass balances than the number of re-
actions (m > r) and are preferred over determined and underdetermined systems because

excess experimental data can provide improved estimates of the metabolic fluxes-and can
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. also be used to check the vahdlty of the assumed biochemistry. The stoichiometric matrix,

GTis non-square for overdetermlned systems and a pseudoinverse must be computed to
. , determine Ve. Smgularltles can arise when one or more rows in GT can be expressed as a
linear combination of the other rows; ’a' condition referred toas linear dependency. These

often result from parallel pathways in the network such as the transhydrogenase reaction
| for, the interconversion of NADH and NADPH where the ‘balances of the two cofactors
are coupled resultlng in linearly dependent storchlometrles Flux estimation in overdeter-
mlned systems along with methods of error analys1s are presented in detail below since such

systems usually prov1de the most robust flux estlmates

3 2.6 Flux Determlnatlon in Overdetermlned Systems

'Overdetermlned systems are those in Wthh addltlonal experlmental measurements are avail-

, “ able and .the degrees of freedom aré > 0. For these systems GT is not square and a

T pseudo-mverse of GT is necessary to solve. Eq (3:19) -

"V',.vc'z—‘(GZ")]GTvm | ; o @32

> ,where (GT) 1s the pseudo 1nverse of GT Substltutmg for vc from Eq.(3.25) in Eq (3 18)

e chm = GT {- (GT) Gﬁvm} —0 S (3.26)
vm{Gﬁ - GT (GCT)#VG%} =0 ‘ (3.27)
_iwhich can be rewritten as. N | | -'

DR Rv,, =0 : (3.28)

B where R GT GT (GT) GT is called the redundancy matrix. The rank of R specifies

- the number of 1ndependent equatrons that must be satisfied by the measured and calculated

‘rates. As extra measurements are available in an-overdetermined system, the matrix R has

dependent rows Ehmlnatmg the: dependent rows, Eq. (3.28) can be rewritten for only the

1ndependent rows ‘as

R,,v,‘n:o I ' (3.29)

‘ “f.rlwhere' RT‘ is referred to as the reduced redundancy matrlx In an ideal situation where

Lo experlmental data ate error free, the left hand side of Eq. (3 29) is exactly zero. However, all

exp_erlmental data.}are characterlze,d by measurement error, §, which relates the measured
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and actual v,, values as ‘ :

where V,, is the measured lvalue and v, the actual value resulting in the following modifi-
cation of Eq.(3.29) '

R, V,,=¢ v : (3.31)
where € is the residual vector. Substituting Vm = Vi + 6 from Eq.(3.30) into Eq.(3.29)
results in B :

R, (Vin +6) = € ' (3.32)
which simplifies to f
R.0=¢€ (3.33)

as R,vp, =0 (Eq.3.29). _

Under ideal conditions (with no error in the measured rates), § = 0, and Eq.(3.29) is
valid. In the presence of measurement errors, however, the residual is not zero and it is
possible to improve the measured rates such that the residual is minimized. The variance
covariance matrix of the measured rates (F) is first determined by assuming that the error

vector is 'normally distributed with zero mean
E()=0 ' (3.34)
F=E ((v"; V) (Vo — vm)T> = E (567) ‘ (3.35)

Tt has been shown that the residuals are also normally distributed with zero mean [36] such.
that - v ‘ :
E(e=0 o , -(3.36)

¢ =E (e”) (3.37)

where  is the covariance matrix of the residuals. Substitutihg e = R,6 from Eq.(3.33), ¢
can be expressed in terms of R, and F

o= R,FRT : (339)

The minimum variance estimate of § is obtained by minimizing the sum of squared errors
136] R
' 5 =FRIo 'RV (3.39)
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from which the improvéd v estimates can be obtained
Vi =V — b6 = (I -FRT¢7IR,) ¥y (3.40)

where I is an identity matrix. ,
Statistical hypothesis testing can be used to identify gross measurement errors by com-
puting a consistency index, h | ‘ " ‘

h=elple » ‘ (3.41)

It has been shown that h follows a x? distribution with the degrees of freedom equal to
“the number of redundant equations [36]. Hence the h value computed from Eq.(3.41) for
any bioreaction network can be used to check the quality of experimental measurements. If
h > x? at a desired confidence level, it is an: indication that either the measured values are
in gross error or the assumed system biochemistry is incorrect. If excess measurements are
present, h can be recalculated by eliminating a single measurement from thé mass balances.
If a dramatic reduction in £ value is observed, it is likely that the eliminated measurement -
contained error. This process can be repeated for all the measured rates in the bioreaction
network. Confidence can be placed in the unknown flux estimates only when h < x? at the
desired confidence level (usually 90 or 95 %). The concepts presented above will be applied

to a simplified biochemical network for mammalian cell metabolism.

Table 3.1: Reactions in the simplified bioreaction network of Figure 3.2

Glcr2NADT 1 2ADP12P; TS [ 2Pyr1ONADH42ATP 2H,01 20T
‘Pyr+NADH+H™ - - | = | Lac+NAD™
Pyr+ANAD¥ 1FADLADP13H;01P; | — | 3CO5+4NADH{FADH, + ATP2H"

0.505+2.5 ADP+2.5P;+NADH+3.5 HT | — | 2.5ATP+NAD™+3.5H,0
0.502+1.5 ADP+1.5P,+FADH,+1.5 HT | — | 1L.BATP+FAD"+2.5H,0

- 3.2.7 Flux Estimation in an Ovérdetermined System describing Mam-
malian Cell Metabolism ' '

F‘iguré 3.2 shows a simpliﬁed biofeaction network that was originally proposed by Balcarcel
and- Clark [37] for Aux anai'yéis from well plate cultivations where limited measurements
were available and the corresponding reactions are shown in Table 3.1. Glycolytic reactions
have been lumped into a single reaction (Glucose — Pyruvate; flux v.1) as have those for
the TCA cycle (Pyruvate - CO2, flux vcz) Conversmn of pyruvate to lactate is a dominant

reaction in most mammalian cell culture and this has been included in the network (Flux
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Glucose

Vimt |
7 Gese
| - Glucose

Vet | Glycolysis

Vi v | VCZ v _
- Lactate «---1---- Lactate «+— Pyruvate

Vea _» ATP v 4| TCA Cycle

O, 1> 0, A
K’ Vs ATP CO, /
| 4 Vms
co,

Figure 3.2: A simplified network for mammalian cell metabolism with lumped reactions for gly-
colysis and TCA cycle and those for lactate production and oxidative phosphorylation
[37]. The network consists of 5 unknown intracellular fluxes (v1-ves) and 4 extra-
cellular measured rates (Vim1-Vma). Fluxes veq and vgs involve NADH and FADH,,
respectively (Table 3.1). : '
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vcs) along with the oxidative phosphorylation reactions (ve4 and vs). Rates of glucose and
oxygen consumption along with those for lactate and COz production make up the measured
extracellular rates. The network has a total‘ of 4 measured extracellular rates (vimi-vma)
and 5 unknown intracellular fluxes that have to be estimated (vcl-vcsv). Balcarcel and Clark
[37] also included total ATP production as another unknown flux (ves) and considered the
following 8 metabolites for writing the mass balance expressions: glucose, lactate, CO2, O3,
pyruvate, NADH, FADH, and ATP resulting in a-8 x 10 stoichiometric matrix. The small
size of this network makes it convenient for illustrating the concepts of consistency testing

and gross error detection for overdetermined systems.

3.2.7.1 Determination of Intracellular Fluxes

Eq.(3.17) can be written for the network in Figure 3.2 as

{(V)10x1

(650 | Y
-1 0 0 0 -1-0""0 0 0 0 Uma 0
0 -1 0 0 0 1 0 0 0 0 Um3 0
0 0 =10 0 0 3 0 0 0 Vpma 0
0 0 0:1 0 .00 -05 —05 -'0 ff va | _ O (3.42)
0 0 00 2 -1 -1 0 0 0 Ve 0
0 0 0 0 2 -1 4 -1 -0 0 Ve3 0
0 0 0 0 .0 1 0 =1 0 Ved 0
0 0 0 0 2 -0 . 1 25 15 -1/| vs 0
- Uch

where the 8 rows of“G.T're'pr’esehﬁ the mass balance expressions for glucose, lactate, COz2, Oq,
pyruvate, NADH, FADH; and ATP, respectively,: columns 1 — 4 represent the 4 extracellular
reactions whose rates are measured (v.;1-Vima) and columns 5 — 10 represent the 6 unknown
intracellular fluxes (ve1-ves). Examination of some basic properties of GT is the first step
towards determining the unknown fluxes. The rank of GT was estimated to be 8 indicating
all the 8 metabolites balance equations in GT were independent and could not be expressed
as a linear combination of the other mass balance expressions. The condition number of GT
was estimated as 7.6 and this low value indicates that estimated flux values are not overly
sensitive to errors in the measured extracellular rates. Condition numbers < 100 have been
considered acceptable for metabolic flux a,nalysié 12].

Eq.(3.42) can be split into the measured and unmeasured components according to
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Eq.(3.18) N
(%), (@)

-1-0 0 0"\ ~1°0 0.0 0 0 (ve) 0
S0 =1 00 0 0 1:-0 0 .0 0 Ver 0
0 0 -1 0 Vi 0 0 3 "0 0 0 Vea 0
0 0 0 <1 || wme | [ 0 0 0 “05 -05 0 vs | _| 0
0 0 0 0| vms . 2 -1 =1 0" 0 0 Ved 0
000000 0\ vma 2° -1 4 -1 0 0 Ves 0
00 F0. 0 "0 0 1.0 -1 0 Ves 0
00700 2 0 1..25 15 -1 ’ 0
SRR , - (3.43)

i USiﬁg é‘xperirrientalivalues for the measured rates ‘(CHO cells in perfusion culture), the
~vector of kno'Wn'rates‘is
Tl T —1.4788.
o 17293 | .
Vg = L : s 3.44
o 58333 | - . (344
—5.1369
~ and "taking‘ the pse{ldoiﬁversé of GCT results‘ih _

.—0.3172 0.3414 . 0.0103 —0.1034 0.2897 . 0.0517  0.0517
—0,3414 0.8293 —0.0052 0.0517 .—0.1448 —0.0259 —0.0259
—0.0034 —0.0017 0.2121 = —0.1207 —0.0621 0.0603  0.0603
~0.2552 —0.1276 0.6931 - —0.9310. 0.4069 —0.5345 0.4655
0.0483 * 0.0241 . 0.0310 —0.3103 —0.1310 0.1552 —0.8448

~1.2034 0.3983 - 20121 —3.1207 13379 —0.9397 0.0603 1
| . (3.45)

Once v, and (GZ)# are known, the unknown fluxes can be estimated from 'Eq.(3.19) as.

o O O O ©

1.6512
1.6431 -
1.7456
30.2361 /

While this completes ‘t'he flux analysis, it is perhaps just as important to analyze the biore-
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action network for inconsistencies and to check for gross error in experimental data as shown

in the subsequent sections.

3.2.7.2 Redundancy Analysis and Gross Error Detection

The above system has a total of 10 reaction rates (4 measured, 6 unknown) and 8 balances
on pathway intermediates making it overdetermined with 2 degrees of freedom (Degrees
of freedom = number of reaction rates - rank(G7T)). The redundancy matrix, R, is first
calculated as R = G, — GT (GT)* GT, |

| —0.6828 —0.3414 —0,0103 0.1034
~0.3414 —0.1707 —0.0052 0.0517
—0.0103 —0.0052 —0.3638 —0.3621
0.1034  0.0517 —0.3621 —0.3793
~0.2807 —0.1448 —0.1862 —0.1379
—0.0517 —0.0259 0.1810 .0.1897
~0.0517 —0.0259 0.1810  0.1897
0 0 0 0

- (3.47)

and the rank of R was ‘calculated" to be 2 and the reduced redundancy matrix R, was -

obtained from singular value decomposition (SVD) of R.

0.8099  0.4049 —0.2250 -—0.3599
R, = (3.48)
—-0.3679 —0.1839 --0.6745 —0.6131
Assuming 10% error in all the measured fétes, the error vector, 6, can be written as
0.1479
101729 |
5=|" ' (3.49)
- 0.5833 :
0.5137 '
from which the variance cbvariance matrix, F, is computed using Eq.(3.35)
0029 0 0 0
02 1 .
p=| 0. 0029 0 0 (3.50)
-0 - .0 0.3403 0

0. 0 .0 02639
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It must be noted that the off-diagonal elements of F have been set to zero indicating that the
measurements are uncorrelated. This assumption mdy not be valid under all experimental
conditions and methods to obtain representative F estimates are available [2]. The variance

covariance matrix of the residuals, ¢, can now be calculated from Eq.(3.38) as’

0.0707 -0.1011 : .
o= - (3.51)
: —0.1011  0.2579
Once ¢ is known, h can be estimated from Eq.(3.41) as 3.36. This h value must be compared
with the x? distribution with 2 degrees of freedom. From Table 3.2, the h value of 3.36 is
lower than the x? distribution at a confidence level of 0.900 suggesting that the measured

rates do not contain gross errors.

Table 3.2: Values of the chi? Distribution at varying Degrees of Freedom and Confidence Levels

Confidence Level
Dégrees of freedom | 0.500 [ 0.750 | 0.900 [ 0.950 [ 0.990 | .

' ‘ 046 | 1.32 | 271 | 384 | 6.63 |
1.39 2.77 4.61 5.99 921 |
2.37 4.11 6.25 7.81 11.3 |-
3.36 5.39 7.78 9.49 13.3
4.35 6.63 9.24 | 11.10 15.1

ol ] ol o=

Improved estimates of the measured rates can now be obtained from Eq.(3.40)

—1.4788 0.191- ~1.6698
- 1.729 1306 15987 |- ’
G = T — § = s C(3.52)
: 5.8333 | 0.6090 5.2243 ,

—5.1369 0.0882 —5.2251

It has been shown that the above V., estimates have a smaller standard deviation than
the measured values (¥,,) and are hence more reliable [36]. The differences between these
two measured rate vectors is not substantial suggesting that the experimentally measured

values are reasonably accurate. The unknown intracellular flux vector, v, corrresponding
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to the improved specific rate vector, ¥,,, can now be computed as

1.6701
1.5986 ,
Ve = L7415 : - (3.53)
| 8.7078 , :

1.7417

29.4638

and the corresponding h value is 2.49 x 1078, significantly smaller than the 3.36 obtained
using the experimentally measured rates. From a comparison of Eqgs.(3.46) and (3.53),
however, there is only a small change in the estimated intracellular fluxes after correcting the
measured specific rates. This may not be the case when measured data are in considerable

error. A computer program that performs the above calculations is presented in Appendix -
A. - ' '

3.2.7.3 Error Diagnosis

If h values greater than the x? distribution (for instance, é, value >10 in the above example)
are obtained, it could be due to either systematic or large random errors in the measured
rates. It becomes important to identify the error source and an elegant method has been
proposed for such an analysis in overdetermined systems with at least 2 degrees of freedom
[36]. In this iterative approach, one of the measured rates is eliminated-and the remaining
are used to compute the consistency index which is subsequently eompared_with the x?
distribution at one lower degrees of freedom. This process is repeated by sequentially elimi-

nating all the measured rates and the cerresponding h, values are recorded. If elimination of
' any single measured rate results inia dramatic decreases in the h value, that measurement
is likely to contain systematic errors. Once the measured rate in error has been identified,
it can be corrected as illustrated in the following example.

Let us assume that due to a measurement error, the CER has been inaccurately de-

termined to be 7.2916 (25% error; actual val_ue = 5.8333) and the other measurements are o
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unaffected. The unknown flux vector is calcul_dted from Eq.(3.19) as

1.6663 -
1.6355
| 2.1684
Ve = 3.54
¢ 9.9932 (3:54)
1.7902

33.1703

with a corresponding h value of 9.64 which is higher than the x? distribution even at a
confidence level of 0.99. It is thus clear that errors exist in the measured rates. ‘The h
values obtained by eliminating one measured rate at a time are shown in Table 3.3. CER
elimination results in a significant reduction in h when compared with other specific rates
indicating the presence of gross measurement error in CER. This problem can be adressed
by making additional (accurate) CER measurements and if this not possible, experimental

CER data must not be used for flux estimation.

Table 3.3: Values of h after Sequential Elimination of the Measured Rates

Measurement Eliminated | hA value
" None . ' : 9.64
Glucose uptake rate 5.87
Lactate production rate 5.87
COq production rate 1.59
. Og consumption rate 8.21

3.2.8 Summary of Flux Estimation in Overdetermined Systems

When overdetermined systems are characterized by at least two degrees of freedom, the
consistency of experimental data 5nd the presence of gross measurement errors can by ana-
lyzed as illustrated in the above example. A schematic of this approach is shown in Figure
3.3. The bioreaction network is ﬁrst_ defined from which the stoichiometric matrix, GT,
and the rate vector, v, are derived. The unknown intracellular fluxes are then determined
from Eq.(3.25) through matrix inversion. The redundancy matrix, R, is then calculated
as R=GI - GT (Gg)# GT from which the reduced redundancy matrix R, is derived by
eliminating the dependent rows. The residual vector, €, is subsequently determined using
R, and the measured rates (Eq.3.31): The variance-covariance matrix of the measured rates,

F, is then estimated from the measured rate errors (Eq.3.35) following which the covariance
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matrix of the residuals, ¢, is estimated‘ from R, and F (Eq. 3. 38). Finally, the consistency
index; h is estimated from pand € (Eq 3 41) and compared with the x? drstrlbutlon at the

: approprlate degrees of freedom

' If h < X2 then no gross measurement errors are present and the assumed blochemlstry

' is- consrstent Whlle the resultmg ﬂuxes constltute an acceptable solution, further improve-
- ment in the flux estimates is possible by i 1mprov1ng the measured rates (Eq.3.40) followed by

flux estimation. In addition to improved flux estimates, this approach will also significantly

reduce the h value as demonstrated vin the above ‘example While flux improvements for an

: accurate data set may be margmal it is still useful to refine the flux estimates as this step.

requrres m1n1mal computational effort. For cases when h < x?2, either the experlmental data

" contain gross errors or the assumed biochemistry is incorrect. Presence of gross errors can

be determined by sequentrally ehmmatmg a measurement followed by flux estimation and

h determination, If ehmmamon of any single measurement results in-a significant decrease

. in A, then that measurement contains gross errors. If additional accurate measurements

are not available for that specific rate, it must not be used for fAlux estimation. However if

this analysis indicates no gross measurement, error, then the likely source of high h is the

"bioreaction network. Appropriate modification of the network can result in flux estimates

such that h < X2~

3.3 Flux Estlmatlon Us1ng Isotopic Tracers

In 1sotop1c tracer experrments the cultivation medium contains a labeled substrate (usually
13C glucose) that is stable and can be detected by NMR or GC-MS. Distribution of the label

among the metabolites can be measured using either NMR or GC-MS and is a functlon of

* the intracellular metabolic fluxes. For simple biochemical networks; unknown intracellular

fluxes can be directly determined by examining the fractional label enrichment either from
transient intensity measurements or from experiments where both metabolic and isotopic
steady states are reached. An elegant method to analyze data from complex metabolic
networks is by using atom mapping matrices (AMMs) which describe the transfer of carbon
atoms from reactants to products {19]. The primary advantage of the AMM approach
is the deCoupl_ing of the steady-state isotope balance equations from the reactions in the
biochemical network. Detailed information'on the AMM approach is presented below while

information on other related approacheés can be found elsewhere [38-47).
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Figure 3.3: An illustration of the steps involved in overdetermined system ﬂux estlmatlon usmg
the metabolite balancing approach.

3.3.1 Atom Mapping Matrices for Flux Estirhatiqn

BC glucose is the most cvo‘mmon‘ly used labeled substrate in the investigatiobn of mammalié,n
cell metabolism. When cells consume glucose, the carbon label gets incorporated into
the various metabolites and for a metabolite with n carbon atoms, 2" isotope isomers
(isotopomers) are possible. Table 3.4 shows the isotopomer distribution for a 3-carbon
molecule along with their binary and decimal indexes. Information on the isotopomers
is contained in the NMR spéetrum from which it is possible to -quantify> their relative
distribution. : o -

Consider a simple anmple where A and B (both 3-carbon molecules) react to form C
(also a 3-carbon molecule) and zy, zp and z3 are the associated fluxes (Figure. 3.4). ‘The
mass balance expression for thls simple reaction network is straightforward (z1 + 2o = z3)
and 1sot0p0mer balances are necessary to determine the contrlbutlons from the isotopomers

~of A and B to the isotopomers of C It follows from Table 3.4 that 8 1sotopomers of A,B and

C are p0551ble since they all contam '3 carbon atoms. For instance, if the 7" isotopomer of A -

and the 7" isotopomer of B are transformed into the k" isctopopmer of C, the steady-state
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Table 3.4: Isotopomer distribution for a 3-carbon molecule along with their binary and decimal

indexes

Carbon Atoms | Binary Index | Decimal Index | Index Vector

' 0

o—o—o0 | - 000 0 0.

1

oc—o—e 001 1 0

- 0

: 0

o—e—0 010 2 1

i 0

v ‘ 71

o—e—e 011 . 3 1

0

: 0

e—0—o0 - 100 4 0

' 1

e—0—e0 101 5 0

: ‘ .

0

o —9—0 110 6 1

1

e—90o—9 111 7 1

1

isotopomer balance is E :
x1A( i) +z2B (j) = z3C (k) ‘ (3.55)

from which C (k) can be determined only if the other quantities are known. In the above

balance,. the felationship between 7, j and k was assumed and for complex metabolic net-

‘ works, atom Iﬁapping matrices help define these relationships conveniently. AMMs describe

the transfer of carbon items from the reactant to the product and are designated as [re-
actant > product] with the nuriber of columns and rows equal to the number of carbon
atoms in the reactant and product, respectively | 19 If the it carbon in the product is
derived from the 3¢ carbon of the reactant the element in the #** row and the j** column
is 1 (this value is 0 otherw1se) '

For the reactlon network in Flgure 3.4, two AMM< ([A > C] and [B > C]) must be
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Figure 3.4: A simple reaction network where molecule C is formed from molecules A and B.

~used to relate the reactant and product isotopomers. If carbon 1 of A becomes carbon 3 of

C, carbon 2 of A becomes carbon 1 of C and carbon 3 of A becomes carbon 2 of C, then
[A > C] can be written as ’

| 01
A>Cl=|0 0 (3.56)
10

o = O

and multiplying the AMM by a vector of the carbon atoms of A will result in the vector of

carbon atoms for C

c 010 " ay - ay
co |=10 01 as | =] as , (3.57)
c3 1 0 0, as a

It must be noted that the vector of carbon atoms in A is not unique and 8 combinations
are possible (Table 3.4). Each of these 8 carbon vectors of A will result in a corresponding
carbon vector for C' and this dependency is dictated by the AMM. If we consider the second

index of A (i = 2), the index vector can be written as

1 .
i]=( o0 | _ (3.58)
0 ,

The product. vector {k] corresponding to the reactant vector [i] can be easily determined
from the AMM ’

o {010 1 0
Kl=[A>C][il=| 0.0 1 0o=1]0 (3.59)
' 100 0 1
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indicating that A (1) = C'(4). A complete mapping of k at all 8 values of 4 results in

C(0) = A0) (3.60)
c@)y = AQ) (3.61)
cl) = A@) (3.62)
C5) = A@B) | T (3.63)
Q) = A4) - (3.64)
C6) = A®) o . (3.65) -
©@3) = A6) (3.66)
C(7) = A7) ‘ ' (3.67)

and a similar exercise can be done to develop the relationships between the isotopomers of

- reactant B and product C. Eq.(3.55) can now be written as
21{A > C]® A + 23[B > C]® B = 23C | (3.68)

where ® is a mapping operator that helps generate. all possible isotopomers of C' from A and _
B. As metabolic fluxes are functions of the bioreaction network and isotopomer distribution,
solution of the above equation followed by comparison with experimental NMR or GC-MS
data in-an iterative fashion (nonlinear least squares optimization) provides the desired flux
estimates.. ' ‘

 An alternative to AMMs is isotopomer distribution analysis where steady-state iso-
topomer balances are formulated for every metabolite in the network which allows déter-
mination of the metabolic fluxes as function of the isotopomer population. This has some
advantages over the use of AMMs and detailed information is available [39, 44, 46-49].

3.3.2 Overview of Flux Estimation from Isotope Tracer Studies

For complex metabolic 'networks, flux estimation from NMR or GCfMS.data is computation-
ally intensive and iterative because of the nonlinear relationship between the isotopomer
balances and the the metabolic fluxes. An overview of the flux estimation procedure is
shown in Figure 3.5. The bioreaction network is first defined from which the metabolite
and isotope balance equations are obtained. Either AMMs as described in the previous
section or isotopdmer mapping rﬁatrié_es can be used to formulate these equations. Once
th_esé equations are defined, an initia} set of ,ﬂu.xes is assumed from which the metabolite

isotopomer pools are calculated. ThiS-distribution of metabolite isotopomers helps predict
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label enr1chment molecular weight dlstrlbutlon of the 1sotopomers (for GC-MS analysis) and
the NMR fine structure. This theoretically predicted information (which is dependent on
the assumed value of the fluxes) is subsequently compared with experimental GC-MS/NMR
data and initial agreeme‘nt is usually not satisfactory. The assumed flux values are refined
and the calculatlon procedure is repeated until there is good agreement between theoretical

and experlment al data

Vs

N Define Bioreaction L
Network
\. l J
( h .
Formulate Modify reactions in the
1. Metabolite baIances Biochemical network
\2' Isotope bialances y
4 N
Assume fluxes and
solve for metabolite N
L Isotopomer pools y
No
Predict label enrichment, . N - ~
Isotopomer molecular . Yes Repeat measurements if
weight distribution or fine ; ﬁ;zs:ufél;ggg{:sent n Possible. Otherwise
" structure of NMR -~ y L change experimental dati
. . &
. l : Yes
( N e N - - N
Compare with GC-MS / Good Gross error detection in No | Solution obtained. Current
P NMR data —’Lmeasurements and » fluxes are the best-fit
Agreement i i
q g assumed biochemistry ) Lvalues )
Poor Agreement
-
Refine initial flux
— estimates
\ i Y,

Figure 3.5: An overview of the flux estimation process for the isotope tracer approach.

Error diagnosis is an important component of flux estimation from isotope tracer studies
as for the metabolite balancing approach. If no gross errors are detected, the obtained flux
values are reliable and can be considered represeritative of cell physiology. However, if
gross errors are detected, they could either be due to measurement error or inappropriate
assumptions regarding system bioehemist_ry. Depending upon the source of gross error, the
existing experimental data must be reviewed and new measurements should be made if

possible.or the biochemical network must be modified to reflect cell physiology. Once either

of these adjustments is done, the entire process of flux estimation must be repeated.
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3.4 Summary -

An overview of the two methods of‘ﬂux estimation has been presented. Metabolite bal-

ancing is more commonly used because of experimental and computational simplicity. For

mammalian cell culture, experimental data necessary for flux estimation by metabolite bal-

ancing include cell growth, nutrient uptake and metabolite/product formation rates along

with uptake/ production rates. of amino acids. As these quantities are routinely measured

in cell culture experiments, there is little need for additional measurements for flux es-

timation. The computational component of the metabolite balancing approach is simple

and basic matrix manlpulatlons are adequate for ﬁux estlmatlon Overdetermined systems

are preferable over determined and underdetermlned systems as robust error diagnosis is .
possible in these systems, 1ncreasmg the rehablhty of the flux estimates.

The use of isotope tracers helps determine fluxes in reversible and cyclical reactions
which is not possible using metabolite bala‘néihg. This improved flux resolution is obtained
at the expense of significantly increased experimental, analytical and compﬁtational effort
which limits Wldespread application of this approach Direct apphcatlon to laboratory and
manufacturmg—scale perfusmn systems is virtually impossible given the cost associated with
using labeled substrates. Isotope tracer studies thus have to be performed in scaled-down
systems‘ which to the extent possible must be metabolicaﬂy representative of the larger
bioreactors. Comparison of flux estimates from these isotope tracer studies with those
from metabolite balancing will help validate the metabolite' balancing approach that can
subsequently be directly applied to large-scale systems. This leverages the advantages of
both methods of flux estimation and application of this approach for perfusion cultivation
of CHO cells is presented in Chapter 8.
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Chapter 4

pCOs Redﬁctfi-dn in Perfusibn
1 | | |

Systems

4.1 Introduction

Mammalian cells are being incfeasingly. used to produce recombinant proteins, given their -
ability to properly fold and glyéosylate these proteins. While the majority of current
rﬁami’facturing—scale processes are fed-batch, perfusion cultures can be required, for in-
stance, when the product of interest is relatiﬁ/ely unstable. The continuous nature of the
perfusion process allows higher cell density cultivation, since toxic metabolites, such as lac-
tate and ammonium, do not accumulate in the bioreactor. Cell densities on the order of -
20 x 10° cells/mL can be maintained in thevsteady-state phase of perfusion cultivation for
100 days or more [1, 2]. High cell density coupled with high perfusion rates. yields high
volumetric productivity from perfusion cultivation. ‘ ' - |
High density perfusion cultivation, however, results in elevated bioreactor pCO3, often
on the order of 200 mm Hg [3, 4], significantly higher than physiological values (30 - 50 mm .'
Hg). Elevated pCO; has been implicated in reduced growth,' metabolism and productivity |
in addition to adverse effects on glycosylation [3, 5-15]. As bioreactor pH during perfusion
cultivation is controlled at a pre-defined set point, high pCO3 results in increased osmolality
which can also negatively impact cell growth, metabolism and productivity (7,8, 10, 16-21]. .
High pCOQ is a consequence of both the cellular metabolism and the NaHC03 that is Widely

used as a buffer in the medium. In addition, NaHCOj is often added as a base to neutralize

YA version of this manuscript has been accepted for publication. (Goudar, C.T., Matanguihan, R., Long,
E., Cruz, C., Zhang, C., Piret, J.M. and Konstantinov, K.B. (2006) Decreased pCO, accumulation by
eliminating bicarbonate addition to high-density cultures. Biotechnology € Bioengineering.
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the lactate produced by the cells. High pCO, can also be a concern in late stage fed-batch
cultivation but the problem is greater in perfusion 'bioreactors, as high pCOg values are
maintained over the entire length of the production phase due to the typically higher cell - ‘
concentration (Figure 4.1). o o

Perfusion

20

Perfusion high pCO, region

I

N

Cell (> 200 mm Hg) |
: N
Density Fed.Batch 1
(109 ea-mate :
cells/mL) tbatch high pCO, region :
I

—

0 Time (days) - 00

Figure 4.1: Bioreactor pCO; time profiles for mammalian cell cultivation in perfusioﬁ and fed-
batch bioreactors. Perfusion pCO; remains high throughout steady-state operation
while high pCO, can be a problem in late stages of fed-batch cultivation.

There is clearly a need fof bioreactor pCO;4 reduction allthough there have been relatively
few studies addressing pCOg removal and control in mammalian cell bioreactors [3, 12, 13].
Stripping is an obvious pCO; removal approach, but it has é limited impact in mammalian
cell bioreactors. For CHO cells in a 500 L perfusion bioreactor, the ratio of oxygen and
carbon dioxide transfer rates was 25:1 [3], thus much higher high gas flow rates would be
necessary for adequate CO, stripping. There is an upper limit on sparging rates given the
detrimental effects on cells [22, 23]. Macrosparging resulted in a significant pCO2 reduction
for CHO cells in fed-batch culture [13], but the maximum cell density was not reported
and it is unlikely th_at it was high enough to be relevant to perfusion cultivation. Changing
an impeller position yielded a 9-fold increase in' the pCOy transfer rate [13], but such
improvements cannot be expected in a well-mixed bioreactor. The inadequacy of stfipping‘
clearly indicates that a more attractive target to reduce bioreactor pCOs could be reduction
at the source rather than removal after pCOs production and additions.

Engineering cellular metabolism to reduce pCO; production is not practical because
cell lines are selected primarily‘ on productivity and growth considerations. In fact, there

are advantages to maintaining high rates of respiration to minimize lactic acid production.
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The buffering components, on the other hand, offer the most potential for pCOq reduction
and were the target of changes in this study. 'There have been some reports. where reduced
NaHCOj3 or NaHCOj;-free medium was used for mammalian cell cultivation [24-29], but
pCOs reduction was not the primary objective in these studies and none were performed
at manufacturing-scale. v -

This study evaluates the biotic and abiotic contributions to bioreactor pCO3-in a per-
fusion system, and from'these resﬁlts, derives a simple pCO4 reduction strategy based on
minimizing abiotic pCO; contribution. The validity of this approach was verified both in
laboratory and manufacturing-scale perfusion.syétems. Changes in cell growth, metabolism

and protein productivity associated with pCO» reduction were also evaluated.

4.2 Theory

4.2.1 CO, Dynafnics in a Mammalian Cell Bioreactor

Carbon dioxide produéed by cells dissolves in the culture medium to form carbonic acid:

COQ(g) — COQ(dq) (41)
C02(3q>+HQO —  HyCOg3 (4.2)

It is common practice {30] to.combine the COgq(aq) and HoCOj3 concentrations into HyCO3*
(COg(aq) + H2CO3 = HgCOg*). Further dissociation of HyCO3* into HCOj and CO% can
be written as: '

H,CO3*  «  HCO; + H; Ky = 1063 (43)
HCO; « COY +HY; K, = 1071033 o (44)

where K1 and K> are equilibrium constants under standard conditions (temperature = 25
°C, ionic strength = 0). These must, however, be corrected to reflect cultivation conditions
and KY and K5 were estimated to be 10597 and 1071004 respectively, at 37 °C and 0.1 M
ionic strength using the. vant-Hoff and' Davies equations [31, 32]. Carbon dioxide produced

by the cells thus exists as combination of Hy CO3*, HCOj; and CO% whose relative amounts
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at the cultivation pH of 6.8.'wefe determined as:

o ] ) H+ 2
% of HoCOs* = =) [+ ] 100 = 15.7% (4.5)
, [H']* 4+ [H'] K¢ + K{K§
: . $ c o '
% of HCO; = +2[H | K 100 = 84.3% (4.6)
H*)® + K{ + KSK§ /. :
%dcﬁ4: +2Km5 100 = 5 x 10°4% (4.7)
- \[H*]® + K{ + K{K§ :

Thus HCO; is the dominant species at pH 6.8 followed by H,CO3* while CO?% is virtu-
ally non-existent. Additional information on medium solution chemistry and associated

computer programs are presented in -Appendix B.

4.2.2 Buﬂ'ering Action of NaHCQO3; and Na,CO;

The fate of added NaHCOj3, either through the medium or separately for pH control, is also
governed by Eqgs.(4.3) and (4.4). Complete dissociation of NaHCOj3 results in the formation
of Nat and HCOj ions, of which a portion of the latter is converted to H,COs3* '

NaHCO; — Na' + HCO; (4.8)
“HCO;5 + H* > HoCOg* - (4.9)

The relative concentrations of HyCO3* and HCOj; at pH 6.8 are 15.7 and 84.3%, respectively
(from Eqgs. 4.5 and 4.6) such that 5.4 moles of NaHCOg .are required to neutralize 1 mole
of H* in the bioreactor. ‘ : o

1If instead NayCOg is used as the base for pH coﬁfrol, complete dissociation results in
the formation of CO3", which is essentially all converted to HCO3 under culture conditions:

NayCO3 — 2Na® + CO¥ (4.10)
CO} +H* — HCO; | (4.11)

The significantly enhanced buffering capacity of Nag CO3 is due to Eq.(4.11) where 1 mole
of NapCO3 neutralizes 1 mole of HY. - Futher conversion of HCOj3; to HoCO3* proceeds
according to Eq.(4.9) such that 0.85 moles of NayCO3 are required to neutralize 1 mole of
H* in the bioreactor. A 84% \improveméﬁt in buffer capacity and a corresponding decrease

in the abiotic contribution to bioreactor pCO; can thus be expected when NaHCOj is
replaced with NayCOj. '
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Figure 4.2: Calculated contributions from biotic (cellular respiration) and abiotic (medium and
- base NaHCOj) sources to bioreactor pCO; during perfusion cultivation of BHK cells.

4.2.3 Contributors to Bioreactor pCO,

Cellular respiration makes up the biotic component of bioreactor pCOs (abiotic contributors
are NaHCO3 and NayCO3). For BHK cells in a perfusion bioreactor at 20 x 108 cells/mL,
the carbon dioxide evolution rate was 8 pmol/celLday, contributing 1.92 moles/day from
cellular respiration to bioreactor pCO;. Daily addition of 0.71 M NaHCOj3 as a base for pH
control was 5 L, from which the contribution of the base was estimated as 3.57 moles/day.
Medium (with 23.8 mM NaHCO3) flow rate was 120 L/day resulting in a daily medium
contribution of 2.86 moles. From the above data, the percentage contributions of cellular
respiration, base, and medium to bioreactor pCOy were 23, 43 and 34%, respectively (Figure
4.2). Eliminating NaHCOj; from the medium should thus reduce bioreactor pCO3 by 34%
while replacing NaHCO3 with Na2C03 as the base should reduce bioreactor pCOgy by 36%
(84% of 43). Overall, NaHCQOj3 elimination from the medium and replacement with Na;CO3
as base are expected to lower bioreactor pCOy by 70% bringing it in the 60 — 80 mm Hg

range, much c_loser to physiological values of 30 — 50 mm Hg.
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- 4,3 Materials and Methods :

4.3.1° Cell Llne, Med1um and Bloreactor System

Multiple .perfus1on BHK cell cultrvatrons were performed with gl’ucose'and‘ glutamine as
the main carbon and energy sources in a prOprietary medium formulation with either, 2
g/L Nchog or a.MOPS-Histidine‘mii’cture as the ‘buffering component. Laboratory-scale
experiments were conducted in 15 L bioreactors (Applikon, Foster City,‘CA) With.a 12

L working volume. The temperature was maintained at 35.5 oC'_and the agitation at 70"

. rpm. The dissolved _okygen ‘(DOV) concentration was maintained at 50% air saturation' '

_ using oxygen-nitrogen mixture aeration through -a silicone membrarie. Bioreactor pH was
~maintained at 6.8 by the addition of either: 0.71 M NaHCOs3 or 0.57 M Na2003 The

~ bioreactors were inoculated at an initial cell densrty of approximately 1 x 106 cells/ mL and T

‘with perfusmn ‘the cells were allowed to accumulate up to a density of 20 x 105 cells / mL.

Steady state bioreactor cell density was rnamtamed at this level by automatrcally d1scard1ng

) cells-from the bloreactor based on optical density measurements [1]. Similar operating -
4protocols and ldentlcal set pomts were malntamed in the manufacturlng—scale ‘bioreactor.

" The effect of macrospargmg on 002 strrpplng was- also exammed in the manufacturmg—scale'

broreactor

. 4. 3 2 Analytlcal Methods _

Samples from the broreactor were taken darly for cell den51ty and v1ab1hty analysrs usrng

the CEDEX system (Innovatls Blelefeld Germany) The samples were subsequently cen-

‘trifuged (Beckman Coulter, Fullerton, CA) and the supernatants were analyzed for nutrient

and metabolite concentrat1ons Glucose lactate glutamlne and glutamate coricentrations

were determined usmg 2 YSI Model 2700 analyzer (Yellow Sprlngs Instruments, Yellow

Sprmgs OH) while ammonlum was measured by an Ektachem DT60 ‘analyzer (Eastman

Kodak, Rochester, NY) The pH and DO were measured online using retractable electrodes '

(Mettler-Toledo Inc., Columbus, OH) and thelr measurement accuracy was verlﬁed through .

®

NY). The same instrument also measured the dissolved CO, concentration. On-line mea- .

248 blood gas- analyzer (Bayer . HealthCare, Tarrytown'

surements of cell concentration were made with a retractable optical dens1ty probe (Aquas—

ant Messtechnik, Bubendorf,. Swrtzerland), calibrated with the CEDEX cell concentratlon‘_ ._ L

v estlmates
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4.3.3 Estimation of Specific Rates

Growth rate, specific prddlictivity, nutrient consumption and metabolite production rates
were calculated from mass balance expressions across the bioreactor and cell retention device

and details are presented in Appendix H. Since bioreactor cell density was held constant by

bleeding cells from the bioreactor and death rates were not accounted for, the growth rate,

@ (1/day), was a function of the bleed rate, Fy, (L/day), and the viable cell density in the
harvest stream, X{7 (10° cells/L):

F, F, (XH 1 ( dxB - |
B BV 1 fedy) 4.12
# V+V<X5 TXE\ @ - e
where V is the bioreactor volume (L), F}, the harvest flow rate (L/day), X{ the bioreactor
viable cell density (10° cells/L) and t the time (day). The specific consumption rates of

glucose and glutamine were determined from the glucose and glutamine concentrations in

the bioreactor:

1 (Fp(Gm—~G) dG
_ _ % 41
e = XB ( v dt) (4.13)
1 (Fpn(Glnp — Gln) dGIn
= — — ko Gl 4.14) .-
qct X ( v a e G”) (4.14)

where F,,, is the medium flow rate (L/day) gc and ggin, are the specific consumption rates
of glucose and glutamine, respectively, (pmol/cell-day), G, and Gin,, their respective con-
centrations in the fed medium (mM) and G and Gin their bioreactor concentrations (mM).
The kinetics of abiotic glutaminé degradation were assumed to be first-order with a rate
constant kg, that was estimated as 8.94 x 10 h'! [33]. Assuming the incoming medium to -
be free of lactate and ammonium, the speéiﬁc production rates of lactate ¢z, and ammonium

g4 were estimated as:

1 [(F,L dL> | o
_ N _ 4.15
aw X{?(V’ “a) o (415
' 1 [F,A dA
1A Xg( v @ e G”) | (4.16)

where L and A are the bioreactor lactate and ammonium concentrations, respectively' (mM).

The expression for specific protein productivity is analogous to that for lactate production.
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4.4 Results

4.4.1 Bloreactor pCOz before NaHCOj3; Elimination from Medium and
" Base

Figure 4.3 shows time profiles-of viable cell density and bioreactor pCO; for BHK and CHO
cells cultivated in manufacturing-scale perfusion reactors (100 — 500 L wérking volurne).‘
The medium for both cultivations contained 23.8 mM NaHCOg3 while the base added to
control pH was 0.71 M NaHCO3 for the BHK and 0.3 M NaOH for the CHO cultivation.
In both cases, the bioreactors were inoculated at initial cell densities of 1 x 10° cells /mL
and the target steady-state cell density was 20 x 10° cells/mL (actual steady-state cell
densities were 20.5 + 1.6 x 10° cells/mL for the BHK and 21.2 + 2.2 x 106 cells/mL for
the CHO cultivation) Bioreactdr pCOa, in‘ both cases, was ~70 mm Hg upon inoculation
and this value increased over the cell accumulatlon phase, levehng out during steady—state
cultivation. Average steady—state pCO; values were 238 + 16 for the BHK and 193 £ 13
mm Hg for the CHO cultivation. Higher pCO, values would have resulted for the CHO
" cells if NaHCO3 had been used in place of 0.3 M NaOH to control pH. The Figure 4. 3 data.
illustrate the need for pCOg reductlon during perfusion cultlvatlon of mammalian cells at
_ hlgh densities.

4.4.2 pCO; Reduction Strategy

A strategy that involved the alteration of medium and external base compositions was
used for bioreactor pCO2 reduction. Candidates for NaHCO; replacement included his-
tidine and iminodiacetic acid as cg)mplexing agents and 3 (N-morpholino) propanesul-
~ fonic acid (MOPS), N.N bis (2-hydroxyethyl) 2 aminoethanesulphonic acid (BES), N tris
(hydroxymethyl) 2 aminoethanesulphonic acid (TES), tris (hydroxymethyl) aminoethane
(TRIZMA), N (2-hydroxyethyl) piperazine N 2 ethanesulfonic acid (HEPES) and Piper-
azine 1,4 bis(2-ethanesulfonic acid) (PIPES) as buffers [34]. Based on the favorable growth,
viability and metabolism obtained with a MOPS-histidine mixture, this was selected as the
réplacement for NaHCOg3 in the cultivation medium. The MOPS pK, of 7.2 suggested an
effective pH buffering range of 6.5 — 7.9 to ensure robust buffering during BHK cultivation
(pH set point = 6.8). Histidine also serves as ‘a minor contributor to buffering under culture
conditions (pK, = 6) but was primarily used to-minimize precipitation in the medium feed
line atv the point of medium and base contact. This convergernce of medium and base lines
outside the ,bioredct'or reduced localized areas of :high pH in the bioreactor that result from

direct base addition. Cell aggregation and death have been associated with direct base



¢t

CHAPTER 4. PCO; REDUCTION IN PERFUSION SYSTEMS 72

300

Bioreactor pCO, (mm Hg)

—@— BHK pCO2 .
—m— BHK viable cell density
—0O— CHO pC02

—— CHO viable cell density ]

L
Viable Cell Density (10° cells/mL)

10

P R

AN TPV R RIS R )
20 - 40 60 80 100

Time (days)

Figure 4.3: Time profiles of bioreactor pCO, and viable cell density for BHK and CHO cells in
. manufacturing-scale perfusion bioreactors. Bioreactor medium in both cases contained
23.8 mM NaHCOj; as the buffer. Base usage was 0.71 M NaHCO; for the BHK

cultivation and 0.3 M NaOH for the CHO. cultivation. '

addition and these problems'are especially severe for perfusion systems given their long-
term operation [35]. The imidazole moiety in histidine is primafily responsible for metal ion
binding with the unshared electron pair on N-3, the most energetically favored coordination
site for metal ions [36, 37]. Multiple bioreactor experiments (data not shown) defined, for
our cells, estimated concentration ranges for MOPS and histidine that provide the required
buffering and complexing action without adversely affecting cell growth (Figure 4.4). Histi-
dine concentrations >10 mM were necessary to eliminate precipitation while concentrations
>20 mM inhibited growth. MOPS did not inhibit the growth of the cells tested as long as
the concentration was <30 mM. ‘ .

Results from BHK cells in perfusion culture at 12 L working volume where sequential
medium and base modifications were made are shown in Figure 4.5. The highest bioreactor
pCO; levels were observed when NaHCO;; was present both in the medium and base (229 +
19.mm Hg) and these values decreased upbn NéHCOg éliminat_ion (Figure 4.5). Eliminating
NaHCO3 from the medium reduced bioreactor pCO; to 150 + 15 mm Hg, a 34.5% reduction
close to the theoretically expected 34% reduction. When .NaHCOg‘ was eliminated from both
the medium and the base, the pCO; was 96 + 6 mm Hg, a 58.1% reduction, slightly lower
than the expected 70%. This prelimiﬁary experiment confirmed that theoretically expected
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Flgure 4.4: Influence of MOPS and histidine concentrations on cell growth and precipitation in the
medium feed line: Histidine in the 10-20 mM range and MOPS in the 10-30 mM range

did not adversely mﬂuence cell growth and prcvented precipitation in the medium feed
line. .

pCOs reductions could be substantial and readily attained.

4.4.2.1 Bioreactor Operation after NaHCO3; Elimination

Additional experiments were performed to verify the extent of pCOs reduction that could
be obtained by eliminating NaHCO3 from the cultivation medium and base. Time profiles
of bioreactor pCO9 and viable cell -density for 4. long-term BHK perfusion cultivations are
shown in Figure 4.6. The MOPS—histivdine mixture was used as the medium buffer while
NayCO3 was the external base. Overall, average pCO, values ranged from 68 — 85 mm Hg
and were significantly lower than the “230 mm Hg observed when NaHCOj3; was present
(Figures 4.3 and 4.5). Using a reference pCO; value of 229 mm Hg from phase A in Figure
4.5, bioreactor pCO; reductions were 63, 70, 69 and 66%, respectively, for Figures 4.6a,
4.6b, 4.6¢ and 4.6d; consistent with the theoretically expected 70% reduction.

A 33-day manufacturing-scale experiment was also performed under NaHCO3-free con-

ditions to check the transferability of results from 1ab0fatory-scale bioreactors. Time pro-

" files of bioreactor pCO; and viable cell density from the manufacturing-scale bioreactor are

shown in Figure 4.7 along with their respective steady-state averages. The steady-state

pCO; average was 84 + 7 mm Hg reflective of a 65% reduction compared to 238 *+ 16
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Flgure 4 5: Average bioreactor pCOg for BHK cells in perfusmn culture at 20 x 10 cells/mL. .
NaHCOj; was present both in the medium and base for phase A and was replaced with
" NayCOj as the base for phase B. Phase C was NaHCOj;-free with MOPS-Histidine
mixture replacing it in the medium and NayCOj3 replacing it as the base. Bioreactor
pCO; reductions were 34.5 and 58.1% for phases B and C, respectlvely, when compared '
with phase A. .

‘mm Hg that was observed when NaHCOj; was present in both the medium and external

base (Figure 4.3). Laboratory-scale pCOz reductions (Figure 4.6) were thus reproducible

at manufacturing-scale (Figure 4.7).

4.4.3 Effect of Reduced pCO; on Growth, Metabolism and Productivity

Figure 4.8 shows a comparison of normalized growth rate and specific protein productiv-
ity between the reference condition (pCO, ~230 mm Hg) and the low pCO; cultivations
from Figures 4.6 and 4.7. While both the specific growth rate and productivity averages
were characterized by high standard deviations, results from a t-test (two-sided, assuming
independent groups and unequal variances) 1nd1cated that growth rate and product1v1ty in-
creases at reduced pCQO; values were 51gn1ﬁcant in all 5 cultivations (p<0.005). The growth
rate increase ranged from 68 123% wh11e that for product1v1ty was 58 92% under reduced

pCO,.

Glucose consumptlon and lactate productlon rates also mcreased (p<0.005) at reduced
pCO; and ranged from 23 — 31% and 39 - 69%, respectlvely (Figure 4. 9) There were thus
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Figure 4.6: Time profiles of pCO; and viable cell density for BHK cells in 15 L perfusion bioreactors
’ when medium containing MOPS-histidine buffer (NaHCOj3-free) was used along with
0.57 M NayCOj as the base for pH control. Bioreactor pCO;y and cell density values

are shown are mean =+ standard deviation for the steady-state phase of the cultivation.

increases in cell growth, metabolism and protein productivity at reduced bioreactor pCOs.

Metabolic flux analysis was performed using a reduced metabolic model [38] employing
experimentally measured cell-specific rates for glucose, lactate and oxygen. All fluxes were
higher at reduced pCO; indicating a general increase in metabolic activity at pCO2 values
closer to the physiological range. Increase in the glycolytic and lactate fluxes were 35 — 57%
and 37 — 62%, respectively, while those for the TCA cycle‘ and oxygen consumption fluxes
were 35 — 55% and 34 — 52%, respectively (Figure 4.10). The consistency index, h, for these

data sets was between 0.03 and 2.23 suggesting no gross error in experimental data.

4.5 Discussion

We have demonstrated pCOg reduction on the order of 60 — 70% in high—density BHK
cell perfusmn cultures. This reduction was achieved by eliminating additions of NaHCOj3
from the medium and the pH control base. The robustness of this preventive approach was

shown by the relatively stable =st'eady~state pCO; profiles in perfusion runs (Figures 4.6
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Figﬁre 4.7: Time profiles of_‘pCOg and viable cell density for BHK cells in ‘a manufacturing-scale

perfusion bioreactor when medium containing: MOPS-histidine buffer (NaHCOj3-free)
was used along with 0.57 M NayCOj as-the base for pH control. Cell density and
pCO; values are shown are mean =+ standard deviation for the steady-state phase
of the cultivation. Bioreactor pCOy and viable cell density for NaHCO3 containing
medium and base in an identical bicreactor are shown in Figure 4.3. -

and 4.7) that together included over 400 days of bioreactor operation. Laboratory results
were reproduced at the manufacturing scale, a majbr advantage as developmeht work at
this scale was minimized. It should be noted that there was no direct closed loop control of
pCO2 in any of these experiments. _There was only an indirect control of bioreactor pCO2

since all bioreactors were operated at a constant cell specific perfusion rate.

4.5.1 Comparison of :Growth, Productivity and Metabolism with Previ-
ous Studies '

~ The general trends in growth rate and specific protein productivity upon pCOg reduction

observed here are similar to.reports for other- cell lines in perfusion or fed-batch cultures,

o though with cell-to-cell variability. A BHK -perfusion culture bioreactor with a 40 to 280

mm Hg pCO; increase had both the growth rate'and the specific productivity decrease by
30% [12]. For CHO cells in perfusion culture with a high gluéoSe concentrations, the growth
rate decreased by 57% when the pCO,. Wwas increased from 53 to 228 mm Hg, but the cell
specific antibody produc_ti'Vit'yv was almost unchanged [39]. Increasing pCOs from 36 to 148
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Figure 4.8: Comparison of normalized growth rate and specific productivity under reference '
(NaHCOjz-containing) conditions with NalICOj-free perfusion cultivations. Time pro-
files of bioreactor pCO; for the a to d'15 L bioreactors are shown in Figure 4.6 while
‘that for the manufacturing-scale bioreactor is shown in Figure 4.7." There was a sig-
nificant (p<0.005) increase in growth rate and spec1ﬁc product1v1ty upon NaHCOg
ehmlnatlon in all cases. :

mm Hg during perfusion cultivation decreased CHO cell density by 33% (reflecting reduced
growth rate) and specific productivity by ’44% [3]. - Under glucose limiting conditions, for
- a similar pCOy increase, the growth rate decfeased_‘by ,38% along with a 15% reductien in
specific antibody productivity. : '

The growth rate of NS/0 cells decreased ‘when pCOg 1ncreased from 60 to 120 mm Hg
o [ ]. Scale-up of a fed-batch process resulted. i in pCO; values of 179 + 9 mm Hg in a 1000
L bioreactor and.a 40% decrease in specific productivity was seen under these conditions A
compared to a pCO; value of 68 + \13 mm Hg in a 15 L' laboratory-scale bioreactor [13].
- Glucose consumptlon rates decreased in a dose—dependent fashion for hybrldoma cells in
T-25 flasks [8] with a 40% decrease observed when the pCO; mcreased from 40 to 250 mm
‘Hg (osmolality held constant at 320 mOsm/Kg). Similar observations were made for lactate
production that decreased by 45% for the same pCO; increase. - We have also observed

incteases in glucose consumption_and lactete’preduct‘ion‘rates at reduced pCO; (Figure
4.9). | o | - |
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Figure 4.9: Comparison of normalized glucose consumption and lactate production rates under
reference (NaHCO3-containing) conditions with NaHCOj3-free perfusion cultivations.
Time profiles of bioreactor pCQO, for the a to d 15 L bioreactors are shown in Figure
4.6 while that for the manufacturing-scale bioreactor is shown in Figure 4.7. There was
a significant {p<0.005) increase in glucose consumption and lactate production upon
NaHCOj; elimination in all cases. '

4.5.2 Impact of high ‘pCOZ on Osmolality

High osmolality can be caused by high pCOy and while elevated osmolality has not been
consistently shown to reduce gfowth rate and specific productivity, it has had a negative
interaction effect when pCOs values were also high (8, 10]. For CHO cell cultivation in
6-well plates [10], growth rate and specific tissue plasminogen activator (tPA) productivity
decreased 31% and 42%, respectively, when the pCO; increased from 36 to 250 mm Hg

(constant osmolality at 310 mOsm/kg). An increase in osmolality from 310 to 376 mOsm/kg

had no adverse impact on growth rate and tPA production for pCO; values in the 36 — 250
mm Hg range. The highest reduction in growth rate (53%) was seen when both pCO2 (250
mm Hg) and osmolality values (376 mOsm/kg) were high. For CHO cells cultivated in 2 L
batch bioreactors [21], the growth rate decreased, but ‘only by 9% when the pCOs increased .
from 50 to 150 mm Hg"(osm'olality' controlled at 350 mOsrh/kg) while a 60% reduction
was reported when the osmolality ‘increased from 316 to 450 mOsm/kg (pCO; at 38 mm
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Figure 4.10: Effect of bioreactor pCO, on key metabolic fluxes. The presentation is similar to that
in Figures 4.8 and 4.9. The reference condition indicates high pCOy, conditions 1 -4
.are for low pCOg in 15 L bioreactors and cond1t1on 5 is low pCOs in a manufacturing-

" scale bloreactor : :

Hg). For hybridoma cellé cultivated in T-25 flasks [8], high pCO; and osmolality reduced
growth rate in a dose-dependent fashion. The growth rate decreased by about 40% when

pCO;, increased from 40 to 250 mm Hg ( osmolality constant at 320 mOsm/kg) and a similar

decrease was seen when the osmolality increased to 435 mOsm/kg (pCO; constant at 40 -
mm Hg). Growth rate decreased by 84% for p002 and osmolality values of 195 mm ‘Hg
and 435 mOsm/kg, respectlvely, suggesting a negatlve interaction effect. By reducmg base -
addition, the pCO2 reduction strategy proposed in this study also minimizes osmolality
* increases and the adverse effects assoc1ated with combined hlgh pCOq and osmolahty

4.5.3 High pCOy and Intracellular pH |

High pCO3 has been réportéd to decrease intracellular pH (pH;) with sigrliﬁcant irriplications
for cell growth and metabolism (40, 41]. For hybridoma cells cﬁltivated in'T-25 flasks, a
0.1 - 0.2 unit pH reduction was observed at pCOq values hlgher than 140 mm Hg when
- ‘compared with a 40 mm Hg control [8]. While pH; was not measured i in this study, earher .
* work from our laboratory with BHK cells in perfusion culture observed a 0.2 unit reduction
in pH; when pCO» increased from 40 to 250 mm Hg [4]. Decreases in pH on the order of
0.2 units have been shown to 51gn1ﬁcantly reduce the carbon flux through glycolys1s [42-45]. '

* One’ mechanism for’ this decrease is the stfrong dependence of phosphofructokinase activity .
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on pH [46]. This is consistent with the 23 — 31% increase in glucose consumption rates that
were observed in this study at reduced pCQ; values. _ ‘

Since changes to pH; affect the ionizafcion’ states of all peptides and proteins, it is actively
regulated [47, 48]. Under conditions of high external pCO2, diffusion into the cell followed
by rapid conversion to HoCOj3 through the action of carbonic anhydrase can cause a decrease
in pH; [49-51]. Cells try to maintain pH homeostasis through the action of acid extruders
which include the vacuolar-type HT pump [41], the Na™ /H* exchanger [52], the Na* driven
Cl'/HCOj3 exchanger [51] and the electrogenic Na™/ HCOj cotransporter [53]. The extrusion
of H* from cells and the intake of HCOg'require energy [47] resulting in an increased energy
demand for maintenance. This could be partially responsible for the reduced growth rate

at elevated pCO4 reported by most studies.
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Flgure 4.11: Time proﬁles of pCOz () and viable cell density (M) for BHK cells in a
manufacturing-scale perfusion bioreactor when medium containing MOPS-histidine
buffer (NaHCOj3-freé) was used along with 0.57 M NayCOgs as the base for pH control
and oxygen sparged at 0.015 vessel volumes/minute. These pCO, values can be di-
rectly compared with those in Figure 4.7 despite differences in cell density since both
reactors were operated at identical cell specific perfusion rates.

4.5.4 Closed-loop pCIOzv‘ Cﬂiontrol

Figures 4.6 and 4.7 show pCOQ splkes in the beglnmng of the experiments when cell con-
» centrations were 1ncreasmg from initial cell densities. Use of NaHCQ3-free mcdlum results
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in low bioreactor p002 values, often less than 15 mm Hg. This will severely inhibit cell
. growth unless CO, 'is added to increase bioreactor pCO3 to 40 mm Hg or higher. Since
closed loop pCOs control was not employed, manual CO» addition was responsible for the
variability in bioreactor pCO; durlng the cell scale -up phase Closed loop pCO; control is
currently being tested. '

Despite ~70% reduction in bloreactor pCOy after medium and base changes (Figures 4.6
- and 4.7), the average values ranged from 68 to 85 mm Hg, still higher than the physiological
range (30 — 50 mm Hg). While additional reduction is p0551b1e through NaOH pH control,
medium precipitation and cell death associated with its use do not make this an attractive
option for long-term cultivation. Stripping CO, with macrosparging reduced pCO2 in a
manufacturing-scale bioreactor to 60 mm Hg (Figure 4.11), a 29% reduction when compared
to non-sparged conditions (84 mm Hg in Figure 4.7). Thus, additional pCO2 reduction is
possible with macrosparging and this approach is being investigated with the closed-loop

bioreactor pCQOs control

4.6 Conélusions

We have presented a practical strategy for pCO, .reduction in high-density perfusion biore-
actors by eliminating NaHCO3 from the medium and base used for pH control. This method
~reduces pCOy at the source in contrast to stripping techniqués that rely on COy removal
after it has been producéd.. By minimizing the indirect contributions to bioreactor pCOy, a
63 — 70% pCO; reduction wés achieved in laboratory-scale bioreactors and the results were
reproduced at manufacturing-scale. Signiﬁéant increases in cell growth, metabolism and
protein productivity were obtained upon pCOz reduction and these trends were consistent
with other published studies. This approach can be readily implemenfed in- established
manufacturing processes since no changes to the bioreactor physical configuration or op-
erational parameters are necessa,ry' It is robust because pCO9 reductions are guaranteed
once medium and base changes are made The general nature of this approach makes it an
attractive option for pCOz reductlon in fed-batch cultivations as well.
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Chapter 5

OUR and CER Estimation in

Perfusion Systems!

. 5.1 Introduction

Oxygen uptake and carbon dioxide evolution rates (OUR and CER, respectively) provide
useful information on cell metabolism and physiology. Reliable estimation of these rates is
desirable as they are indicators of changes in cellular metabolic activity [1-8]. Oxygen up-
take data are ah indicator of cell density and metabolic rates such as glucose consumption
and on-line OUR measurements have been used to design feeding strategies and control
bioreactor operation [9, 10]. OUR information is also necessary for bioreactor design and
~ scale-up given the low solubility of oxygen. This is especially important for high density per-
fusion cultivations that have high oxygen transfer requirements. Moreover, OUR and CER
are required for metabolic flux analysis even in the simplest of mammalian cell bioreaction
networks [11]. Robust OUR and CER estimation is thus critical for bioprocess development
and is also'important for monitoring and diagnosing manufacturing bioreactors.

" The primary approaches that have been used for in-situ OUR estimation in mammalian’
cell cultures include the st‘a’ﬁi'onvary liqilid'phase balance approach, the dynamic method,
and the global mass balance (GMB) approach [6]. The stationary liquid 'phase balance
approach requires knowledge of the volumetric oxygen transfer coefficient, kya, for OUR
estimation [1, 2]. However, for both sparged and membrane aerated bioreactors, kza can

change over time making the ste_ttionary liquid -phase balance approach unsuitable for long

YA version of this chapter will be submitted for publication. Goudar, C.T., Piret, J.M. and Konstantinov,
K.B. (2006). Estimating OUR and CER in perfusion systems using global mass balances and novel off-gas
analyzers. ' o - . ' .
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term perfusion cultivations: The dynamic method is the simplest and perhaps the most
widely used method for estimating oxygen uptake rates [10, 12, 13]. This approach typically
involves increasing the DO concentration in the bioreactor to 60% saturation and turning
off the oxygen supply. The subsequent rate of DO decrease is a consequence of cellular
consumption and provides the OUR estimate. Despite its simplicity, this method involves
a perturbation that is undesirable. Moreover, for high cell density perfusion cultures, rapid
oxygen consumption complicates application of this method. For BHK cells at densities of
20 x 10° cells/mL, the time required for complete oxygen depletion when all supplies are
cut off is on the order of 40 seconds resulting in unreliable OUR, estimates from the dynamic
method (DO probe response times are typically greater than 40 seconds).

To overcome t.hese limitations, an alternate OUR estimation approach was proposed
where reactor contents were continuously drawn into an external loop and DO measurements
were made at the outlet of the loop [14]. The difference between the DO levels in the
reactor and at the outlet of the external loop helped determine OUR. This method required
only a single additional DO measurement while no gas phase oxygen measurements were
necessary making the process simple and robust. The GMB approach becomes attractive for
OUR estimation when reliable gas phase oxygen measurements can be made as it does not
require kya determination and bioreactor perturbation. Information on the gas flow rates
and oxygen concentrations in the inlet and outlet streams is adequate for OUR estimation..

CER estimation is more difficult than OUR because of the reversible dissociation of CO2
into HQCO;, HCOj3 and CO%‘ in solution. The equilibria of these dissociation reactions are
strong functions of pH, temperaturé and ionic strength that must be accounted.for during
CER estimation. While there are several reports on CER estimation in microbial systems
[15-20], there are only a few in-mammalian cell chemostat and batch studies [1, 21, 22]
and none in pérfusion systems. The use of bicarbonate buffered medium in mammalian
cells further complicates CER estimation because this is a major additional abiotic CO2
component. _ ‘ .

In this study, we present methods to estimate OUR and CER in mammalian cell perfu-
sion cultures using global mass balances. While measurement of oxygen and carbon dioxide
concentrations in the inlet and outlet gas streams is necessary, kra data are not required
and no reactor perturbations are necessary. Our approach- allows real-time OUR and CER
estimation that can also serve as indicators of cell density and nutrient consumption rates.
Moreover, these data enable real-time estimation of metabolic fluxes providing useful in-
sights into cell metabolism and physiology that can be used in advanced contrel strategies

for optimal bioreactor operation.
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5.2 Theory '

-5.2.1 OUR Est1mat10n

Under ideal conditions, both liquid and gas stream oxygen ﬂows must be taken into account
in the generalized mass balance approach. However, a combination of low oxygen solubility
and high cell density make liquid stream oxygen contributions negligible (usually less than
1%; Appendix E) and only gas phase oxygen balance equatlons are necessary for OUR esti-
mation. Under steady-state cond1t1ons there is no accumulation of oxygen in the bioreactor
and oxygen uptake by the cells is the 'difference between the oxygen concentrations in the

inlet and outlet streams

Fiotal s .
OUR = 24 (0ir _ 0gy10 (s
XB V( 0z*)10° | -6

where OUR is the cell specific oxygen uptake rate (pmol/ cell- d) Fiotal is'the total gas flow
rate (L/d), X3 the bioreactor v1able cell density (10° cells/L), V' the bioreactor volume (L)
and O%* and O™ the inlet and outlet oxygen concentrations (mol/L), respectively.

_ 5 2.2 CER Estimation
5.2.2.1 Blcarbonate System Dynamlcs in a Mammahan Cell Bloreactor 4

Carbon dioxide sources in a perfusmn system 1nclude cellular respiration, blcarbonate :
buffered medium and sodium bicarbonate when used as a base for pH control Carbon -

" 'd10X1de produced by the cells dissolves in water to form carbomc ac1d

| Oy = Oy | o (62)
COynqj + HoO & Hy,CO3 7 - . (53

- It is common practice in solution chemlStry to combine the aqerus COncen._tration of car- -
bon dioxide and ¢arbonic acid such _that the above equations can be replaced by a si-ngle
-expression o : - o ‘: " )
COQ(‘~ + H20 o H2003 P K= 10-147 ;g B (54)‘ .
1 where HyCOs* = COz(aq) + HQCO3 and K is the equlhbrlum constant under standard
cond1tlons (T =25 °C and ionic strength (I) = 0). Further dlssoc1atlon of HzCOg
‘HCOj3 and subsequently to CO?%" can be descr1bed as . ' ‘

H2cog.*HHCO;,"+ HY; K =107%% . (5.5)
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HCO; o COY+H*; Kp=10"108 (5.6)

Where K, and K5 are the equilibrium constants under standard conditions.

Estimate medium ionic
strength and calculate
activity coefficients

- Y . ~N
Compute rate constants
K;and K,

( : ; S ™
Calculate Henry's constant
for CO,

L_ )

-
Calculate [CO,]; from
bioreactor pCO,
measurement

3

Determine CO, mass w
flow rates in liquid
: L and gas streams

s y

- ~N
Calculate CER

. _/

Figure 5.1: The steps involved in perfusion system CER estimation.

For typical mammalian cell cultivations, .howevér, the temperature is close to 37 °C and
the ionic strength is 0.1 M depending upon the composition of the medium. The rate

constants must hence be corrected. to reflect experimental conditions. The rate constants

*  can be corrected for temperature using the Van’t Hoft equaﬁion (23]

em{(E)ED) e

where K and K¢y are the corrected and reference rate constants, respectively at temper-
atures T and Tr.p, AH % the standard ‘enthalpy change for the reaction, and R, the gas
constant. The corrected equlhbrlum constants Ky, Ky and Ky were 1076 30 and 10-10- 48

'respectlvely, at 37°°C and calculation details have been presented in Appendix B.

To account for ionic strength effects the activity. coefﬁments were caleulated using the
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Davies equation which is valivdfor iorric, streﬁéthsrié Ov.5v M- e

sl%yz—Af{liszay} ’,A'ﬂ l“ &s)

where 7y is the ectivityvcoefﬁcient, A= 1.825 x 106 (eT) 7%/ is a constant (¢ = 78.38 is
the dielectric constant for water, T' isxthe absolute temperature) and / the ionic strength.

The ionic strength of the medlum used in th1s study was calculated as 0.115 M from the
Debye—Huckel theory [24] - v - -
=3 Z CiZi2 ’ SRR (5.9)

where C; and 7; are charge and concentration. of‘species 1, respectively. The activity coeffi-

- cients for I = 0.115 M were estimated from Eq.(5.8) as 0. 7747 and 0.3602, respectively, for '
_ species with charges 1 and 2. Incorporating the temperature corrected values of the equi-

librium constants, Eqs.(5.4) - (5.6) can be rewritten in terms of the species concentrations

and activity coefficients as-

Ké _ [HzCOz l’YH2003 - KCVchog ' — 10160 ' o (5'10)
: lCOZ( )J’YCOZ 7o, 2(e) o '
[H+] [HCO3] | T ~
K-1 — J 7H 3! HCO3 Klw 10——6.50 . : (511)
] lHZCOB |7H2C03 o, ’YH2(303 ’ o .
5= IH _l"llH+ l(‘OSJ O% __ KC’YH ’YCOZ} ‘ 10—10.48 (512)
[HCO3]vHco; - © . THCO;

where K¢, K ¢ and K2 are the concentrat1on based equilibrium constants and 7 the actlv- :

ity coefficiénts of the various species. “Activity, coefficients for the charged species were . -
calculated from the Davies equation (yy+ ‘:"7HC‘03' = 0.7746, 76032 = 0.3602) and
VCOyg = THoCOy* WAS estlma‘red as 1.03 as described-in [25‘ Substltutlng ‘these values
in Egs.(5.10) - (5. 12) the concentramon based equilibrium constants K 5 Ki and K§ were

calculated as 107160 ; 107 6. 07 and 1071% 04 respectlvely These values now 1ncorporate both" .

temperature and ionic strength COITPCthI’lc and are representatwe of the system at 37 °C
and 0.115 M 1on1c strength Temperature correctlons -alone’ resulted in -25. 8 12. 2 and -
29. 2% change in Kg, K{ and K2, respectlvely, while the comblned effect of temperature
and- ionic strength were -25.8, 90.5 and 96. 8%, respectrvely (K ¢ was not affected by ionic
strength as seen from Eq 5. 10) ‘

- It follows from the above d1scussron that the carbon d10x1de produced by the cells does
not exist’ just as a gas but alsoas_‘HgCOg"?, HCOj3 and C02 . The relatwe concentrations
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of these species are inﬂuenqe_ﬁd ‘primarily by bioreactor pH while temperature and medium

ionic strength have minor effects as seen from the ionization fraction expressions

. o o +12 o :
%oszCOg*:< —— [fl ] — ) x 100 (5.13)
o \[HT]T+ [HT] KT+ KRG

: . Tt c - ’
% of HCO; = 5 [H+] Ki x 100 - (5.14)
.. [HT) + [HT]K] + K{K§ ). '

: ' KEKS -
% of CO5 = - 12 : 100 - (5.15
| orCs ([H+12_+[H+]K5+K5K§> X (5:19)

At pH = 6.8, the cultivation pH in this study, the relative-amounts of HoCO3*, HCO3 and
CO% in the medium were 15.69, 84.26 and 5 x.10_4%, respectively. Thus HCOj is the
dominant species followed by HgCOg* while CO% can be neglected.
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Figure 5.2: Cell density averages for the diffefen_t_ experimental conditions during the course of the
perfusion cultivation. For standard conditions, DO = 50%, T = 36.5 °C and pH = 6.8.

5.2.2.2 CO; Mass Balance Equationé

In a perfusion system, bioreactor pCOs is relatively. constant suggesting noCOg accumula-

tion. The CO, produced by the cells is then simply the difference between the COs leaving
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and entering the system.
CO3 produced by cells = CO; leaving the System - CO, entering the System (5.16)

with units of mol/d. Recognizing that CO; produced by the cells can exist as both HoCO3z*
and HCOg, it is convenient to combine them while deriving mass balance expressions.
The total CO5 concentration, [COs]r, is thus defined as [COz]r = [H2CO3*] + [HCO3].
Sources of {COz]r include bicarbonate- -containing cultivation medium, base (NaHCO3 or
NasCO3) or CO2 gas used for bloreactor pH control, and cellular metabolism. Removal
mechanisms for [CO3]r include the harvest and cell bleed streams along with gaseous COq
stripping, either through ~Sparging or membrane aeration. Eq.(5.16) can be.rewritten to

include contrlbutlons of the’ 1nd1v1dual componen’cs to the inlet and outlet streams

103
VXB

{FH [CO ] + Fbleed[CO21bleed + FCOZ(M‘)}

CER = { } {FM COQJM + Fhase[CO, % base | FCOmn)} ‘ (5.17)

where CER is the carbon dioxide evolution rate (pmol/cell-d), V the reactor volume (L),
Xg the viable cell density_in.the bioreactor (10° cells/L), Far, Foases Fo> Foiced the medium,
base, harvest and bleed flow rates (L/d), respectively, [COyM, [COqJb2¢, [COoJH and
[COQ]bleed the total COy concentration (mol/L) in the medium, base, harvest and bleed
streams, respectively, and Fco,,,, and Foo,,.. the molar flow rates of COq (mol/ d) in the
inlet and outlet steams, respectively.

_ Quantlfymg contributions froni the medium and base on a mol/day basis is straightfor—
ward as the_ir carbonate concentrations and flow rates are known. The flow rate of CO gas
into the reactor will help determine the amount of CO; gas added to the reactor (this is
seldom done when bicarbpn‘ate—containing medium is used). To determine [COs]r removal
from the harvest and cell bleed streams, the total COs concentration in the bioreactor must
be known because CO; concéntrations in the harvest and bleed streams are similar to those
in the bioreactor. Bioreactor CO4 concentration can be estimated from pCOy measurements ‘

that are typically made using a blood gas analyzer -

bioreactor _ - . K]C. i Kng pCO?bioreactor
COalz - {1 TET IH+]2 hcos (5-18)

- where [COgJbioreacter i the. total C02 concentratlon in the bioreactor (mol/L), pCOs,.. ...

the bioreactor pCO; (mm Hg) and hn02 is the Henry’s constant for COz (mm Hg-L/mol)
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determined as

hco, = <}9—3*a—395> 7.500617  (5.19)
o = a+bT+cT? +dTd +er o (5.20)

with a = 1.72, b = -6.689 x 10~2, ¢ = 1.618 x 1073, d = -2.284 x 10~ and e = 1.394 x
10~7 [26]. Once [COg]%ior_eaC!tOT- is determined, the harvest and cell discard flow rates can
be used to determine [COg]t removal on a mol/day basis. Finally, ‘measuring CO; gas
chcentravt_'ion. in the outlét gas will help determine [CO2)1 removal by stripping. The CER
is then estimated by substituting these values in Eq.(‘5.17)» This CER estimation procedur.e
is summarized in Figure 5.1.
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Figure 5.3: Grdwth rate averages for the di’fferentrexperimental conditions during the course of the
perfusion cultivation. For standard conditions, DO = 50%, T = 36.5 °C and pH = 6.8.

5.3 Materials and Methods
- 5.3.1 Cell Line, Medium and Cell Culture System

CHO cells were cultivated in pefquion«modé-with glucose and glutamine as the main carbon
and energy sources. Experi_ments were conducted in a 15 L bioreactor’ (Applikon, Foster v

City, CA) with a 12 L working vOl‘um_e.' The temperature was maintained at 36.5 °C and



CHAPTER 5. OUR AND CER ESTIMATION IN PERFUSION SYSTEMS 95

the agitation at 40 RPM. U‘nder‘standard conditions, the dissolved oxygen (DO) concen-
tration was maintained at 50% air saturation by sparging a mixture of oxygen and nitrogen
(100. - 150 mL/mih) through 0.5 pm ‘spargers and the pH was maintained at 6.8 by the
“automatic addition of 0.3 M NaOH. The bioreactor was inoculated at an initial cell density
of approximately 1.0 x 10° cells/mL and cells were allowed to accumulate to a steady-
state concentration'of' 20 x 10% cells/mL. The steady-state cell density was maintained by

a,utomatic cell bleed from the bioreactor.

100 e e
[ llnoculation with cells from ]
aocm perfusion bloreactor _
80 | .
SN 3
o 40 - 4
o F ]
20 .
ok ]

NP PN A I ] ) !

0 10 20 30. 40 50 60 70
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Figure 5.4: OUR estimation in the 2 L reactor by the dynamic method. DO data following inocu-
lation with cells from the 15 L perfusion bioreactor were -used for OUR estimation by
the dynamic method.

Bioreactor DO, temperaturé and pH were varied' during the course of the cultivation
to determine the operating ranges for these variables. The low and high values for DO
were 20% and 100%, respectively (set point = 50%) while those for pH were 6.6 and 7.0,
~ respectively. The temperature set point was 36.5 °C and was varied between 30.5 — 37.5 °C
during the course of the expériment. Bioreactor conditions were maintained at each of these
altered conditions for 10 days and data from the last 4 days were considered representative
of each experimental condition. OUR and CER data presented in later sections are averages
of these 4 days for each experimental condition.

In addition to the above perfusion cultivation, a 2 L bioreactor was used for OUR
estimation by the dynamic method. . The reactor was initially filled with 1.9 L of fresh
medium and was maintainéd‘ at ‘_36.5 °C; pH = 6.8, and DO concentration in the 75 —
85% range. The gas supply to the bioreactor was shut off and a 100 mL sample from
the 15 L perfusion bioreactor (steady-state cell density of 20 x 106 cells/mL) was used to

. *
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inoculate the 2 L-bioreactor at a cell density of 71 x 108 cells/mL. The resulting decrease
in DO concentration was monitored and this information was used to compute the OUR.
A comparison was then made between OUR estimates from the mass balance method (in-
situ estimation in the perfusion biereactor) and the dynamic method (in the external 2
L bioreactor). The headspace volume was 100 mL such that surface aeration effects were

minimal.

- [ wmmm Dynamic Method -
6 | 0—= Mass Balance Method =

- OUR (pM/cell-d)

Figure 5.5: Comparison of OUR estimates from the dynamic method (external 2 L bioreactor) with
those from the global mass balance method {in-situ estimation in the 15 L perfusion
. bioreactor).

5.3.2 Analytical Methods

Samples from the bioreact_or were taken daily for cell density and viability analysis using
the CEDEX system (Innovaﬁis, Bielefeld, Germany). The samples were subsequently cen-
. trifuged (Beckman Coulter, ;Fullerton, CA) and the supernatants were analyzed for nutrient
- and metabolite concentrations. Glucose, lactate, glutamine and glutamate concentrations
were determined using a YSI Model 2700 analyzer {Yellow Springs Instruments, Yellow
g Springe, OH) while ammonium was measured by an Ektachem DT60 analyzer (Eastman
Kodak, Rochester, NY). ‘The pH and DO were measured online using retractable electrodes
(Mettler Toledo Inc., Columbus, OH) and their measurement accuracy was verified through
- off-line analysis in a Stat Proﬁle 9'blood gas analyzer (Nova Blomedlcal Waltham, MA). The
same instrument also measured the dissolved €02 concentration. On-line measurements of
cell density were made with a retractable optlcal ‘density probe (Aquasant Messtechnik,
Bubendorf, Sw1tzerland), calibrated with CEDEX cell density measurements. Concentra—
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tions of oxygen and carbon-dioxide in the exit' gas were measured using a MGA-1200 Mass
Spectrometer (Applied Instrument Technologies, Pomona, CA).

OUR (pM/celi-d)
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Figure 5.6: Average OUR estimates from the mass balance method for the 12 experimental con-
ditions in the perfusion cultivation. '

5.4 - Results

5.4.1 Cell Density and Growth Rate

The perfusion cultivation comprised of 12 experimental conditions each of 10 day duration
and aver'age cell densities for each of these steady states are shown in Figure 5.2. The target
“cell density was 20 x 108 cells/mL with most Valués‘very close to the target. The exceptions- ’
were the T = 30.5 °C and pH = 6.6 steady states where growth rates were much lower than
at the other conditions (Figure 5.3,)._ Tempefature reduction caused an expected decline in

‘growth rate as did pH reduction. No change in growth rate was seen when the DO was

varied between 20 and 100%. Cell viability was greater than 95% in all cases (not shown).
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Figure 5.7: Average CER estimates for the 12 expéi"imental conditions in the perfusion cultivation.

5.4.2 OUR and CER Estimation
5.4.2.1 Comparison of M'ziss “Balance and Dynamic OUR Estimates

Two independent techniques were used for OUR estimation. In the MB approach, OUR
was determined using Eq.(5.1) from the inlet and outlet gas stream oxygen concentrations.
OUR estimation by the dynamic method was done off-line in a 2 L batch bioreactor using
a sample from the perfusioh bioreactor. A representative DO time profile in the 2 L batch
reactor is shown in Figure 5.4 and DO data in the 60 — 30% range were used for OUR
estimation. ' :

A comparison of OUR estimates from .these two methods for six different samples is
shown in Figure 5.5. OUR estimates from both methods were comparable with the maxi-
mum difference being 13.4%. Percentage differences in OUR estimates from these methods
were'computed based on the assumption that dynamic method estimates were accurate
while those from the GMB were in error. This is a reasonable assumption given the sim-
plicity of the dynamic method. The mass balance approach requires accurate measurement
of gas flow rates and gas phase oxygen concentrations that can introduce error in the OUR
estimation process. However, despite these limitations, OUR estimates from the mass bal-

ance method were in close agreement with those from the dynamic method.
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_Flgure 5. 8 ‘Respiratory quotient {RQ) estlmates for the 12 expenrnental condltlons in the perfusxon
cultivation. .

5.4.2.2 OUR, CER and RQ at Varylng Operatmg Condltlons

OUR values at dlfferent DO, temperature and pH set points are shown in Flgure 5 6. The
values are averages over their respectlve experlmental conditions along with their associated
-standard deviations. While OUR values were, mostly unchanged across most experimental
conditions, they were lower at T = 30. 5 °C and pH = 6.6 where an overall reductlon in
growth (Figure 5:3) and metabohsm (not shown) were observed The lowest CER values of
- 4.02 and 4.15 “pmol/ cell-d were also observed at T = 30.5 °C-and pH = 6.6, respectlvely,
"~ while those at other set points Were relatively similar (Flgure 5.7). RQ values estimated
from’ the average OUR and CE_R:va'lﬁes_ ranged from 0.96 .- 1.18 (Figure 5.8) éuggesting

* minimal impact of DO, temperature and pH set point changes on RQ.
- 5.5 Discussion

- 5.5.1 OUR, CER and RQ Estimation

We have presented mefhods to estimate OUUR and CER in mammalian cell perfusion systems
using the global mass balance method. This approach does not require kra data and no
reactor perturbatlons are necessary. Composition and flow rates of the inlet and exit gas

streams along with otlier routinely measured quantities are adequate for OUR_and CER
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Table 5n1:-Pub]ished OUR values for mammalian cells

OUR (pmol/cell-d) Cell Line Reference
3.6 - 864 . Hybridoma [27
562 Hybridoma [28
1.2 | Human diploid cells [29

456 - 9.6 Hybridoma 12, 30-32]

0.55 - 2.09 Hybridoma [4]
7.92 — 8.88 Hybridoma [33]
.36 . Hybridoma 13]
5.26 — 9.74 Myeloma 14]
11.04 - Hybridoma 10
5.52 - 10.08 Hybridoma 134]
10.1 - 10.7 - Hybridoma 1]

3.97-5.77 - CHO This Study

estimation. Real-time OUR, CER and RQ estimations are p0551b1e (data could be generated-

every second if desired) because the required’ measurements and calculatlons can be rapidly
performed. In addition to prov1d1ng valuable information on cell metabolism, this enables

real-time determination of metabolic fluxes providing additional insights into cell physiology.

5.5.2 Comparison with Literature Data

Changes to t'emperature and_'pH had the most effect on OUR and CER while DO in the
~ 20 - 100% range had minimal effect (Figures 5.6 and 5.7). OUR values ranged from 3.97
- 5.77 pmol/cell-d and the low values of 3.97 and 4.07 were'at T = 30.5 °C and pH =
6.6, respectively. Similar CER trends were seen with values of 4.02 and 4.15 pmol/cell-
d at T = 30.5 °C and pH = 6.6, respectively (CER range was 4.02 — 6.36 pmol/cell-d).
Published OUR values for mammalian cells are shown in Table 5.1 and are in the 0.55 -
10.7 pmol/cell-d range. Values for CHO cells obtained in this study were clustered in the
middle of this range. CER values for hybridoma cells in chemostat culture were in the
9.9 — 11.1 pmol/cell-d range [1] while those in batch culture varied between 1.2 and 8.4
pmol/cell-d [21]. Our values for CHO cells were lower than the hybridoma chemostat data
and closer to those observed in the batch hybridoma cultivations.

Despite significant Changes to OUR and CER at low temperature and pH they were
correlated such that RQ Values were relamvely unchanged. RQ values were close to unity
(0.96 - 1.18, Flgure 5.8) under all experimental conditions and part of the variation was

likely due to error in OUR and CER estimates. For instance, a 10% error in OUR can cause

R .
PV
. 4
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RQ to vary between 0.9 and 1.1 (neglecting CER error). The maximum difference between
mass balance and dynamic OUR estimates was 13.4% (Figure 5.5) indicating that OUR
estimates could be associated with ~10% error. It 15 likely that errors of similar magnitude
were associated with the CER, values and a combination of these errors could be responsible
for RQ variation in the 0.96 - 1.18 range. It is unlikely that cell metabolism was responsible
for RQ changes because 1 mol of NADH accompanies 0.5 mol of COz production and this
NADH is oxidized by 0.5 mol of oxygen. While fatty acid synthesis can result in RQ values
greater than unity [1], it is unlikely that fluxes through these reactions are significant enough

to cause ar_l' RQ increase on the order of 20%.

5.6 Conclusions

We. have presented methods to estimate OUR, CER and RQ from mammalian cells in
perfusion culture. These are based on global mass balance expressions and do not require
kra information and bioreactor perturbations. They are especially suited for perfusion
systems where kra values change over the course of the cultivation and the dynamic method
is not applicable. OUR estimates from the global mass balance method were in good
agreement with estimates from the dynamic method and the maximum difference was 13.4%.
Accurate CER estimation'Was possible by accounting for the dissociation of cellular CO; into
H,CO3, HCO; and CO% and the effect of temperature and ionic strength on the equilibria
of the dissociation reactions. 4T‘his CER estimation method is general and works when
bic_arbon.ate’is present both in the medium and_baée. Since all necessary measurements can
be made on-line, real time OUR, and CER estimation is possible. In addition to providing
information on cell physiology, these data can be used for real-time mé_tabolic flux estimation
resulting in improved undérstanding of cell metabolism. Since these advantages come at
the expense of minimal énalytical and computational effort, the OUR and CER estimation
strategies presented in this study should be useful both for bioprocess development and

monitoring of manufacturing bioreactors producing licensed biotherapeutics.
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Loglstlc Modehng of Batch and
Fed-batch Klnetlcs

61 Introduction

There has been an increasing use of mammalian cell cultures for the manufacture of com-
plex therapeutic proteins. However protein ylelds from mammalian culture are relatively
" low, requiring the optimization of cell lines, medium formulatlons and bloprocesses ‘These
optimization efforts typically first involve evaluating non-instrumented batch cultivations
(typically <100 mL workmg volume) in T-flasks, splnners or Toller bottles where cell growth '
metabolism and protein productlvrty are monitored over ‘the course of the experlment This
‘ provrdes information used. to select the cell lines and medlum components that maxmnze
protein ylelds Further bloprocess opt1m1zat1on in elther fed-batch or contmuous perfu-
" sion cult1vat1ons s marnly performed using laboratory-scale (>1 L) bioreactors. While
‘maximizing specific protein product1v1ty is often the prlmary obJect1ve in laboratory-scale
' experiments, ensuring robust cell growth and metabohsm are also 1mportant All these vari-
‘ables of interest are quantlﬁed using cell specific rates ‘that enable comparison of cell l1nes

and cultivation condltlons Accurate estlmatron of specrﬁc rates is'thus vital to meanmgfully_

I 1nterpret results from bloprocess optlmlzatlon experlments

While spec1ﬁc rates for steady—state perfusmn cultures are readlly computed because-

~ of their relatively t1me—1nvar1ant nature, analyzmg the dynamic klnetlcs of batch and fed-

; batch cultures is more challengmg A conventlonal approach to model mammalian cells in’ -~ ‘

‘ 1A version of -this: chapter has® been pubhshed Goudar C T, Joerls K., Konstantmov, K. and Prret

JM. (2005; Logistic equations eﬁ”ectwely model mammahan cell batch and fed batch kinetics by loglcally .

constraining the fit. Bwtechnology Progress, 21 1109-1118.
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~ batch and fed-batch cultures has been through“the use of unstructured kinetic models or
variations of the classical Monod equation [1w5]; and revieWs_ of these models are available
[6, 7]. While unstructured kinetic models have adequately described experimental data,
~ they are computationally not praétical to implement as they involve nonlinear estimation
of a large number of kinetic parameters from a system of differential equations. Unique
estimation of the kinetic parameters in such systems is not always possible. Moreover, given
the variety of unstructured kinetic models that have been used to describe mammalian cell
cultures, comparisons between studies is complicated. Anaiytical solutions of the differential
equations describing the state variables have also been used to estimate specific rates (8-
11]. These solutions,'however, are derived under the assumption that the specific rates .
- are constant as can be expected during the exponential growth phase. These have limited
applicability to the other phases of batch and fed-batch cultures where specific rates are not
constant. Specific rates in fed-batch cultures-have also been estimated from the slope on
plots of cumulative state variables (nutrient, metabolite or product) versus integral viable
cell density [12, 13]. This approach provides an average estimate of the spéciﬁc rate of
interest over the exponential growth phase but additional linear or nonlinear fits need to be
used for other cultivation phases. This need for multiple fits to describe the time course of
a single variable makes this approach cumbersome and prone to error.

A general approach that is applicable over the entire time course of cultures, is fitting
polynomials to the data [14, 15]. This approach has been used both for batch and fe‘_d-batch
cultivations and is attractive because it allows simplified computation of the time derivatives
necessary to estimate cell specific rates. However, as time profiles of cellular; nutrient
and product concentrations exhibit exponential béhavior, they are difficult to describe by
polynomials [16]. For instance, two polynomial functions were necessary to describe the
time course of some staté variables [14]. Moreover, polynofnial fits are known to yield
unrealistic trends, especially when the data include even a few outliers.

Logistic eduations have been successfully used to describe population dynamics in a .
variety of applications {17-23] but have not been reported'to model experimental data from
mammalian cell batch or fed-batch cultures. Most reported applications involve bacterial'
growth curves characterized by lag, exboﬁéntial and stationary phases that are adequately
described'%by the logistié_ grthh eqﬁatioh. Marrfmalian cells in batch and fed-batch cultiva-
tions also exhibit. a sharp decline in cell density fol.lowing the stafionary phase, a behavior
that cannot be described by the standard logistic growth équation. In addition, a decline in
lactate concentratiéh dﬁring later 'stagés of fed—'b"atch cultivation is also frequently observed
(13, 24]. Alternate logistic fofmulations that incorporate both the éLsCending and descending

components of cell growth are available [25],
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This study presents a method for modeling batch and fed-batch mammalian cell culture
data using logistic equations. An alternate logistic formulation was applied to cases where
variables-had both increasing and decreasing phases. Cell specific rates were readily obtained
from the analytically differentiable logistic equations. A cdmparison was made between this
logistic modeling approach and the polynomial fitting or the unstructured kinetic modeling
approaches that are commbnly used to describe batch and fed-batch data.

6.2 Theory

6.2.1 Calculation of Batch Culture Specific Rates

Most batch kinetic studies have used discrete forms to compute specific rates. The wide-
spread use of this approach is primarily due to its simplicity as seen from the specific growth

rate expression

_ AX,
T XAt

where 4/ is the apparent specific growth rate (1/day) over an interval from ¢; to t2, u the

/

p = (p~kp)

(6.1)

actual specific growth rate (1/day), kp the specific death rate. (1/day), X, the viable cell
Xug+Xv

density (x 10° cells/mL), AX, = X,, — Xy,, t is time (day), At = to—t; and X, = =2
Thus AX, and At re'preéent the difference between ‘successive viable cell density and time
points, respectively, while X, is the arithmetic average of the consecutive cell density data
points. A log-normal average can also be used for X, during the exponential growth phase
but this provides é,.poor_ estimate for the average X, in‘the decline phase. For intervals of
constant apparent growth rate, a more accurate estimate of 1/ can be obtained by combining
multiple data points. However, when this constant growth rate ends and how the growth
rate changes beyond that point remain difficult to accurately compute.

The primary sources of carbon and energy in a typical mammalian cell culture medium

are glucose and glutamine. The specific consumption rate of glucose can be calculated from

_AG
X, At

9 = (6.2)
where g¢ ‘is the specific glucose consumption rate (pmol/cell-day) and AG = G — Gy is
the difference in glucose concentration over consecutive data points (mol/L). The primary

known toxic metabolites of glucose and glutamine metabolism are lactate and ammonium,
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reSpeetively. These metabolite as well as protein production rates can be calculated from

AP
XAt

gp = : (6.3)
-where ¢p is the specific productlon rate (pg/ cell- day) and AP = P, — P is the change in

' metabohte/ product concentratlon over consecutlve data points (g/L).

6.2.2 Calcul_ation of Fed—bateh Culture Specific Rates

' Fed-batch cultivations typic_aliy: involve ‘the peri_'odic feeding o'f-glueose, Aglutamine and other
‘medium components. Herrce\ nutrient mass balance expressions are modified to take the

feeding into account while the expressions for cell density, metabolites and products are

- essentially identical to those in a simple batch cultivation (when dilution effects can be
. negiected). For example, specific glutamine uptake rate in a continuously fed batch reactor .
can be described by I . -
’ AGIn N FGlnf Gin

XAt VX, k,GlXU B (6:4)

where. ggin, is the specific glutamme uptake rate (pmol/cell- day) AG’ln ‘_Glng — Gin; the

-QGln' =

change in glutamine concentratron over consecutive data points (mol/ L) F the glutamine :
feed rate (L/day), V the bloreactor worklng volume (L), Glny the glutamine concentratron

in the feed (mol/L) and kg the first-order abiotic degradation constant for glutamme

- with values dependmg on the medium composition, temperature and culture pH [26]. T he '

- last term in the rrght hand srde of Eq.( 6. 4) accounts for abiotic glutamme degradatron at - .

cultlvatlon temperature .

6.2.3 A General Equatlon Descrlblng the Dynamlcs of Batch and Fed--
- batch Cultures - ' :

The selectron of ﬁnal process parameters from optlmlzatlon experlments is derived mamly" ‘
from comparisons of cell specrﬁc productrvrty and growth rate. Therefore it is 1mportant
to reliably estimate these rates from sequentlal data points and Egs.(6.1) — (6 4) However

this typicallv yields erratic time proﬁles since this method is sensitive to the measurermient

. errors common in biclogical systems Mathematlcal models that.describe the dynamlcs :

of cellular growth and protem productlon accordmg to expected trends can provide more
robust estimates of the cell spec1fic Yariables of interest. Such models should more smoothly'
and logically fit the experlmental data. For instance, to describe viable cell densrty (X) in

batch and fed-batch systems requlres m1t1a11y mcreasrng and subsequently decreasing levels.
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This cannot be fit by a simple exponential gfowth‘model (Eq.6.1) or by the commonly used

logistic growth equation. It is proposed that a four-parameter generalized logistic equation

(GLE) should be used to describe viable cell concentration [25].
exp (Bt) + Clexp (=Dt).

(6.5)

where A, B, C and D are non—negatlve model parameters that are specific to the data set
being modeled. It is informative to relate the logistic equation parameters to correspond-
ing biological process parameters. The contribution of exp (Bt) is minimal in the growth
phase and when set to zero, Eq.(6.5) reduces to an exponential growth equation with D as
the specific growth. rate. Similarly, neglecting contributions of C exp (—Dt) during the cell
death phase reduces Eq.(6.5) to an exponential decay expression with B as the death rate.
The parameters D and B thus represent the maximum growth rate, fin.y, and the maxi-
‘mum death rate, kq,,,., respectively. These would be constant in the exponential growth
and corresponding decline phases, respectively. Simulations were performed to test this
hypothesis and Figure 6.1 illustrates -sénsitivity of the cell densi‘g_y'curve'to D and B and
hence p,,,, and kg, values. As expected, changes to p,,, affect the exponential growth
phase while the influence is negligible in the decay phase, especially for ¢t > 1.5¢pmax (Figure
6.1a). . Sensitivity to kq___ is minimal for ¢t < 0.5tmax while later portions of the cell density
curve are 51gn1ﬁcant1y affected (Figure 6.1b). Eq.(6.5) can thus be written in terms of .,

and kdmax . ) 4
: eXp (-kdmaxt) + Cexp (—Mmaxt) ' .' B ( ) -

The initial cell density, Xo, can be expressed in terms of A and c by setting ¢ = 0 in-

Eq.(6.6) . ‘ - ‘
' A

Xo=—— 6.7

o=1io (67)

Setting ‘rhe derlvatlve of Eq.(6.6), &X & = 0 provides an equation for tmax, bhe time corre-

sponding to the maximum cell density

o 1 Cu -

ty = In ( max) ' 6.8

. max ' kdmax .+:u‘rnax \ kdmax ‘ ( )

An estlma're for Xmax, the maximum cell density attained durmg the cultivation, can be
ob‘ramed from substituting Eq. (6 8) into Eq.(6.6) A

It must be noted. that Eq.(6.5) Could also fit the successive asc ending ‘a‘nd ‘descending
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Figure 6.1: Sensitivity of the viable cell density curve to the logistic parameters. D (pt,,.,) and
' B (ka,,,)- Successive curves are for 25% decreased parameters compared to the previ-
‘ous curve. o -

lactate concentrations often observed in fed-batch culture. Most other produét and nutrient
concentrations can be expected to monotonically increase or decrease, respectively; over the
whole duration of the run (expect at times of fed-batch additions).” This suggests that
“simplified forms of Eq(65) could effectively describe the concentrations of nutrients and
pro»ducts' in batch or fed-batch cultivations. Setting. B — 0 in Eq.(6.5) r_esﬁlts in the logistic
growth equation (LGE) that can be used to describe a‘monotonic‘ally increasing product

concentration, P:

CP= —— ‘ (6.9
_ _ - 1+ Cexp(—Dt) ' (6.9)
The parameter D is a rate constant for concentration increase and definitions of A and C

can be obtained by setting —‘fi—tp‘ =0and t=0in Eq.(6.9), respectively

.sz-mx"'PO .

e (6.10)

'A:Pmax? C=
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where. Ppax 1s the maximum value 'of P and P, the initial value at ¢ = 0. Using these

definitions, the LGE can be rewritten to be consistent with other presentations in the

literature [27] . o
' . - PyPrmax.

B + (Pmax — Po) exp ( Dt)

Settlng D — 0 in Eq.(6.5) results in the logistic decline equation (LDE) that can be used

to describe any monotonlcally decreasing nutrient concentratlon N:

P=

(61)

A o

= 6.12
exp (Bt) + C (6.12)
where B is a rate constant for coricentration decreaée and A and C are related to the initial

nutrient concentration, Ny, as:

A
1+0C

Specific rates could be readily estimated from the logistic models as Eqgs. (6. 5) (6.9)‘ and

Ny = (6.13)

" (6.12) are analytically dlfferentlable

dX _ _ [ DCexp(—Dt)— Bexp (Bt)
dt { ~exp (Bt) + Cexp (—Dt) } (6.14)
% =PD (1'— —i—) , (6.15)
_ % = -NB <1 - %N) i | I (6.16)

6.3 Materials and Methods

6.3.1 Cell Line, Medium and Cell Culture System

CHO cells were cultivated in batch mode with glucose and glutamine as the main carbon
and energy sources in a proprietary medium formulation. Experiments were conducted
in three. 15 L bioreactors (Applikon.; Foster City, CA) with a 10 L working volume. The
temperature was maintained at 36.5 °C and the agitation at 40 RPM. The dissolved oxygen
(DO) concentration was maintained at 50% air saturation by sparging a mixture of oxygen
and nitrogen (100 - 150 mL/ mxn) through 0.5 um spargers. The bioreactor was inoculated

at an initial cell denclty of approx1mately 1.0 x 106 cells /mL and the pH was maintained
at 6.8 by the automatic addition of 0.3 M NaOH.
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6.3.2 Analytical Methods

Samples from the bioreactor were taken daily for cell density and viability analyses using
the CEDEX system (Innovatis, Bielefeld, Germany). The samples were subsequently cen-
trifuged (Beckmah Coulter, 'Fﬁllérton, CA) and the supernatants were analyzed for nutrient
and metabolite concentrations. Glucose, lactate, glutamine and glutamate concentrations
were determined using a YSI Model 2700 analyzer (Yellow Springs Instruments, Yellow
Springs, OH) while ammonium was measured by an Ektachem DT60 analyzer (Eastmah
Kodak, Rochester, NY). The ‘pH and DO were measured online using retractable electrodes
(Mettler-Toledo Inc., Columbus, OH) and their measurement accuracy was verified through
off-line analysis in a Stat Profile 9 blood gas analyzer (Nova Biomedical, Waltham, MA). The
same instrument also measured the dissolved CO, concentration. On-line measurements of
cell density were made with a retractable optical density probe (Aquasant Messtechnik,

Bubendorf, Switzerland), calibrated with heamocytometer counts of cell concentrations.

6.3.3 Nonlinear Parameter ‘Estimation

The parameters A, B, C and D in Egs.(6.5), (6.9) and (6.12) were estimated by minimizing
the sum of squares error (SSE) between the experimental and model fit data. |

j o
SSE = > _{(Zmeas); — (@ fit); ) (6.17)

=1

where (Zmeas); is the i experimental z value and (z ), is the 7" model fitted = value

i
in a total of j observations. Eq.(6.5) involved the_sum of exponentials and was inherently
unstable. Hence three different algorithms were used for nonlinear parameter estimation:
the Levenberg-Marquardt method [28], the simplex approach [29} and the generalized re-
duced gradient method [30, 31]." The parameters used were those that resulted in the lowest
values of the SSE defined in Eq.( 6.17). The parameter standard errors and the correlation
between pararﬁeters-were estimated from the covariance matrix to help evaluate the quality
of the model fit to the experimental data. When multiple models with different degrees of
freedom were fitted to the same data set, the F' test [32] was used to discriminate among
the models. Computer programs for logistic modeling are presented in'Appendix F and

nonlinear parameter estimation details are provided in Appendix G.
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6.4 Results and Dlscuss1on. |

6.4.1 Blologlcal Slgmﬁcance of the Logistic Parameters

The exponentlal growth and death phases were defined as 0 < t < 0.5¢max and 1. 5tmax <
t < 2tmax, respectively, based on an exammatlon of the cell density proﬁles from Figure 6.1.
To verify these definitions, i, and kg, were computed from all the cell concentratlon
data analyzed in this work and compared with the logistic parameters D and B. Excellent
agreement between the maximum rates and the logistic parameters was seen in all cases -
(Figure 6.2a, 6.2b) supp(‘)rtin"g the reformrrlation of Eq.(6.5) as Eq. (6.6). The utility of
'Eqgs.(6.6) and (6.8) to predict the maximum cell density in batch and- fed-batch cultures
was verified by comparlng Xmax values calculated from these equatlons with experlmental
_data (Figure 6.20) For all 15 data sets, experimentally observed maximum cell densities
were accurately predicted by Eqs.(6.6) and (6.8) and the fitted loglst_le parameters.
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Flgure 6. 2 Illustraflon of the blologlcal significance of the logistic parameters using 8 batch and
7 fed-batch cell densltv data sets [1, 14, 33 34]
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6.4.2 Des“cription of Ex‘p‘erimental Data from Batch <Cultures

The time broﬁles of CHO cell density, nutrient and metabolite concentrations along with the .
loglstlc model fits are shown in Flgure 6.3. The GLE was first used to descrlbe all the state
variables measured in this experiment. Subsequently, the LDE was used to describe the »
monotomcally decreasing glucose and glutamlne concentrations while the LGE was used to ™ -
describe the increasing lactate and ammonium concentrations. Model dlscnmmamon using
the F test indicated that the LDE‘and LGE fits were statistically superior to the GLE at
the 95%. confidence lleve‘l for :thé nutrient -and metabolite concentrations, respectively, and
hence results from these equ'at_io.n's are presented in Figure 6.3. The éxperimeﬁtal data were
well fitted by the models and thé corresponding specific rates were calculated from Eqs.(6.1)
- (6.3) using analytical derivatives of the logistic equations (Eqgs.6.14 - 6.16).
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Figure 6.3: Time profiles of cell density, nutrient and metabolite concentrations for CHO cells in .
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It is remarkable that the model fit the data eo well even though logietic models do. not
include independent terms for growth-related and maintenance-related metabolism. This
could be in part due to the predominant effect of exponeﬁtial cell growth compared to
relatively gradual shifts over a batch culture of growth- or maintenance—related' metabolic
rates. From a practical staﬁdpdint; the use of a single equation and its reduced forms to
describe all experimental measurements in batch (or fed-batch) cultivations adds to the

simplicity of the proposed 'Iogistie approach.
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Flgure 6.4: Vlable cell density, IgG glu‘ramme and ammonium concentratlons for hybrldoma cells
in 300 L batch culture {1].: The points, are experimental data and the solid lines are fits -
by the loglstlc equations (GLE for cell density, LDE for glutamine and LGE for IgG -
and amménium).- Specific rates calculated from the logistic fits are shown as dashed -
lines. : ‘

Experimental data from batch. cultivations are obtained from periodic samples whose
concentrations are analyzed and then the data are converted to the corresponding derivatives
to obtain specific rates. The loglstlc equations provided smooth and close fits to all of the
concentration data, thereby yielding smooth logistic specific rate profiles (Flgure 6.3). In
contrast, specific rates obtained using discrete derivatives of the state varl_a,bles were not
smooth and were highly sensitive to out].iefs in experimental measurements. Though the

discretely derived ggi, values were acceptable, those for ghicose and ammonium were in
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gross error, primarily due to outhers in the experlmental data. The p/ and specific lactate
- production rate, gz, proﬁles were similar to those from the logistic fits, albeit not as smooth.
In all cases besides ggm,, physiologically implausible oscillations were introduced by the
discrete fit and not by the logistic fit. - .

Table 6.1: Previously;published bét(:h and fed-batch studies used to test the logistic modeling
approach presented in this study

Reference Cell Line Bioreactor Type Modeling Approach
1] Hybridoma .- . | Stirred tank (300 L batch) Kinetic modeling
(33] Hybridoma T-flask (100 mL batch) . Kinetic modeling
[14] BHK Spinner (500 mL batch) Polynomial fitting
15 Hybridoma Bench-top (2.4 L fed-batch) Polynomial fitting
34 CHO Hybndoma Bench-top (0.7 L fed-batch) | Discrete derivatives

The more general utility of this :logistic approach was further evaluated using data from
pﬁblished batch studies that investigated different cell lines (hybridoma and Baby Hamster
Kidney) in bioreactors ranging from 150 ecm? T-flasks to 300 L stirred tanks (Table 6.1).
Two of these studies [1, 33] used Monod-type kinetics to describe the experimental data
while experimental data were fitted by polynomial functions in the third [14]. Results from
using the logistichequations to describe the data from two of these experiments are shown
in Figures 6.4 and 6.5. The hutrient, metabolite and product concentrations were fit by the
LDE and LGE models while the four-parameter GLE was necessary to describe the dynamics
of Viable cell concentration. In all cases, the experimental data were well described by the
logistic equations and similar ‘good fits were obtained for data from the third study (not
shown). These results clearly indicate the applicability of the logistic models to describe

experimental data obtained by multiple groups from batch reactors of varying sizes and cell

" types. -

6.4.3 Despr’ipt;loh of ’Experimental Data from Fed-Batch Cultures

These logisti.c methods would be much more useful if they could be applied to fed-batch
cultures that bec_omé the focus of later stages of development and manufacturing. However,
. it was a concern that periodic feeding of nutriénts would distort the resulting prbﬁles 80
that the logistic approach might-not be suitable. Fed-batch data from two studies {15, 34
(Table 6.‘1) were analyzed using the logistic equations. In the first study {15}, hybridoma
cells were cultivated in a 2.4 L bioreactor with the feeding of glucose or glutamine or both.

The second involved cuitivation of tissue plasminogen activator (t-PA) producing CHO cells
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logistic equations (GLE for cell density, LDE for glucose and glutamine and LGE for

lactate -and ammonium). Specific rates calculated from the logistic fits are shown as
dashed lines. '

in a 0.7 L bioreactor with glucose or amino acid feeding.

Data from glutamine limited fed-batch hybridoma cultures are shown in Figure 6.6 along
with corresponding logistic fits. All variables except glutamine (the nutrient that was fed)
were fit well by the logistic eqliations. Time profiles of the fed nutrient will depend strongly
on the feeding strategy, often with concentrations at low values to minimize the production
of metabolites [13, 35] . The logistic equations cannot be expected to effectively fit such fed-
nutrient profiles. A total of 20 data sets were analyzed from the CHO fed-batch cultivations
[34] and representative cell density and t<PA concentration data under two different feeding
conditions are shown in Figure 6.7. The logistic equations fit the data well as was true for
the remaining 16 data sets (not shown). It should be noted that the 4-parameter GLE.was

used to describe t-PA concentration due to the declining trend later in the culture. Similar
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Flgure 6.6: Viable cell dcns1ty, nutrient and metabohte concentrations for hybridoma cells in glu-
tamine limited 2.4 L fed-batch culture [15]. The points:are experimental data and the
solid lines are fits by the logistic equations (GLE for cell density, LDE for glucose and
glutamine and LGE for-lactate and ammonium). Specific rates calculated from the

- logistic fits are shown as dashed lines.

declines have been observed for iactate concentration in fed-batch cultures [24] and in such

instances, the GLE (as opposed to the LGE) more effectively fits those experimental data.

6.4.4 Comparison with Other ‘Modeling Approaches

Polynomlal approximation and unstructured kinetic modehng are the primary methods
currently used to fit data from batch and fed batch. experiments. Given the conceptual
s1m11ar1ty between the loglstlc modehng approach presented in this study and polynomial .
approximation, it is important to compare their ability to describe mammalian cell culture .

data. Polynomial approxunatlon has hmltd,tlons because exponential state variable time

- profiles are difficult to describe w1th polynomlal functions [16]. The same 30 data sets from

~ batch cultures were also analyzed using polynom1al fitting and the inability to describe the
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Flgure 6.7: Viable cell density and t-PAconcentration for CHO cells in 0.7 L fed- batch culture
under two different feeding conditions [34]. Glucose was fed at 4 pmol/cell-day for
panels a and b while amino acids were also fed for panels ¢ and d. The points are
experimental data and the solid lines are fits by the logistic equations (GLE for both
cell density and t-PA). Specific rates calculated from the logistic fits are shown as

* dashed lines. ' ' : ’

experimental data was quantified by the Eq.(6.17) sum of squares errors to compafe with -
logistic fitting. Since increasing the order of a polynomial f'unctionbcouhld result in a better
fit to experimental data, polynomial functions with one additional parameter than the |
corresponding logistic equation were also evaluated For 1nstance the v1able cell den31ty
description using Eq.(6.5) has 4 parameters and this was compared with polynomlals of
orders 3 (4 parameters) and 4 (5 parameters). Comparisons between logistic equations.
and polynomials of the same order used the SSE values while comparisons between logistic. '
equations and higher order polynomials were done using the F-test. The F-test determined
if the higher order polynomial fit was indeed a closer representation at the 95 % confidence
level. ' ' ‘ »

Of the 30 batch data sets exammed using both the logistic and polynomlal approaches,
the polynomial approach was statlstlcally superior in only: 3 instances. It is important to

note that even in the few ches of statistical superiority for the polynomial fit, these did -
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Figure 6.8: Comiparison of ggi, values from logistic (LDE) and polynomial fits for CHO cells in
15 L batch culture. The polynomial fit to glutamine depletion data was statistically
superior than the logistic fit for this data set.

not necessarily yield improved specific rate estimates. Figure 6.8 shows specific glutamine
consumption rates for CHO cells that was one of the above mentioned 3 cases where the
polynomial fit was statistically superior to the logistic fit. An examination of the specific rate
data from the polynomial fit indicates that data after ¢t = 9 days were negative, suggesting
net glutamine pfoduction. This is not reflective of the biology and is an artifact due to an
inflexion in the polynomial fit to the data at ¢ = 9 days and beyond. The logistic modeling
approach does not suffer from such errors. Instead the fits are constrained to the expected .
trends, monotonic in this case. ; ‘ .

Logistic and polynomial fits to the data ffom Dalili et al. [33] are shown in Figure 6.9
as examples of the data sets where the logistic approach was statistically superior. Both
pdlynomials grossly misrepresented the time cburse of viable cell density and no improve-
ment was obtained by increasing the order of the poliynomial. Computation of growth rates
from either of the polynomial fits would not be acceptable. Similar limitations, albeit to a
lesser extent, were seen for the IgG and glutamine data sets in Figure 6.9. The polynomial
approach thus lacks generahtv and cannot be rehed upon as'a robust tool for specific rate
estimation in batch cultures

- Unstructured kmetlc modelmg mvolves the use of Monod—type equations and estimating
a large number of kmetlc parameters by nonlinear optlmlzatlon in the system of differential

equations. Two batch studies [1, 33|, whose data were used in this study for verification
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as the logistic fit; (- — - ) polynomial fit with one additional parameter (The two
polynomial fits in panel ¢ overlap).

of the logistic approach, employed modified forms of the Monod -eqliation in kinetic ex-
pressions  to describe their experimental data. One used simpler kinetic expressions for
glutamine limited cultures [33], requiring 8 parameters to be estimated while 13 parame-

ters were requlred for a more comprehensive kinetic model [1]. Estimating such a large

~ number of kinetic parameters through nonlinear least squares from a system of nonlinear

differential equations is not trivial and is unlikely to provide robust parameter estimates
due to the strong correlation among the kinetic parameters. Moreover, the large variability

in the kinetic models used [6, 7] makes it difficult to compare results from different studies

employing this approach.
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6.4.5 Computation of Integral Quantities

The integral viable cell density is an important parameter for the characterization of batch
and fed-batch cultures [36]. Since it corresponds to the area under the curve in a plot
of viable cell density versus time, it can be computed by integrating Eq.(6.5). However,
Eq.(6.5) cannot be analytically integrated because of the sum of exponential terms in the
denominator and an approximation to this integrél is presented in Appendix F. Alterna-
tively, a simple numerical technique, such as the trapezoidal or any higher-order quadrature

rule [37], can be used to estimate the integral viable cell density from Eq.(6.5).

6.4.6 ‘Data for Esti_matiqn‘ of Metabolic Fluxes

-An original motivation for this work was in the context of metabolic flux analysis that is

increasingly used to characterize cellular metabolism and physiology by estimating fluxes

: through'the pathways of central carbon metabolism [38]. Input data for metabolic flux

analysis include specific uptake and production rates in addition to cellular growth rate.
The logistic equations presented in this study provide a practical means of more reliable
specific rate estimation that should enable more robust metabolic flux computation in batch
and fed-batch cultures.

6.5 Conclusions ‘

The application of logistic equations for analyzing mammalian cell batch and fed-batch
data has been illustrated. Though non-mechanistic in nature, these equations did provide a
means to impose logical general constraints on the fitted profiles. Simplified logistic equa-
tion forms were selected based on expected monotonic or increasing followed by decreasing
trends. Time profiles of cell density, nutrients and metabolites were well fitted by the logistic
equations and time derivatives of these variables were readily corn'puted, resulting in rapid
estimation of specific rates. Besides providing valuable information on cellular physiology
and metabolism, specific rates are pre_cursors for metabolic flux estimation, thereby allowing
improved use of information coilected in batch and fed-batch cultivations. This functional

representation also allowed for comput.étion of integral viable cell density, an indicator of

batch and fed-batch process perférmance. Another advantage of the logistic approach is its

general nature thereby increasing its applicability to a wide variety of experimental systems
as shown in this study. This general nature coupled with the ability to rapidly obtain more
robust -specific rate estimates should make it an attractive alternative for describing the
dynamics of mammalian. cell grthh and protein prod.uction in batch and fed-batch culture.
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Chapt‘e_r 7

Error in Spe¢iﬁc .Ra'tes and
| Metabolic Fluxes!

7.1 Introduction

Metabolic fluxes are considered.a fundamental determinant of cell physiology [1] and metabolic
flux analysis has been increasingly used to characterize the metabolism of mammalian cell
cultures [2-8]. Flux data provide a quantitative deséription of the cellular response to
changing environmental conditiohs, such as those encountered during bioprocess develop-
ment, and are hence useful for‘bio'process opfimizafion. The first step in metabolic flux
estimation is the construction of a bioreaction network that describes the conversion of sub-
strates to metabolites and biomass. These bioreaction networks are typically simpliﬁed to
enable flux estimation from available eiperimental data. For mammalian cells, these include
the main reactions of central carbon and amino acid metabolism [5, 6, 9]. The unknown
fluxes in the bioreaction network are subsequently estimated either using metabolite bal-
ancing [2, 3, 6, 8, 10-13] or isotope tracer techniques [9, 14-19]. In the metabolite balancing
approach, fluxes are estimated by applying mass balances around the intracellular metabo-
lites using the measured extfacel_lular rates as input data. The analytical and computational
techniques associated with thé metabolite balancing approach are relatively simple [1] and
can be readily applied to most experimental systems. This approach, however, cannot deter-
mine fluxes in cyclic and bidirectional reactions. Additional shortcomings and approaches to

overcome them have been discussed in detail [10, 20]. Despite these limitations, metabolite

'A version of this chapter? will be ‘slubrnitted for publication. Goudar, C.T., Biener, R., Konstantinov,
K.B. and Piret, J.M. (2006). Error propagation from prime variables into specific rates and metabolic fluxes
for mammalian cells in perfusion culture. : :
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balancing remains the method of éhoice for a majority of process development experiments
and for all pilot and manufacturing-scale studies given the expense of the isotope tr‘acing
alternative. | - v o -

Information on the error associated with metabolic flux values obtained by the metabo-
lite balancing apprdach is critical to méaningfully interpret changes in cellular metabolism.
As cell specific rates including growth,. nutrient consumption and metabolite production
comprise the input data for flux egtimation, flux values can be strongly influenced by spe-
cific rate errors. Cell specific rates, howevér, are nof_ experimentally measured but are
calculated from measured prirﬁe variables inc‘luding‘(‘:ell, nutrient, metabolite and product
concentrations. Information on prime variable error is thus necessary to characterize their
influence on specific rate error and ultimately on flux values.

The need to have specific rate data with no. gross measurement error has been long
recognized and a framework has been proposed to check for the presence of gross errors
(19, 21; 22]. However, error propagation from prime variables into rﬁetabolic fluxes has
not been reported. This study is aimed at systematically characterizing error propagation
from prime variables to metabolic fluxes for mammalian cells. Prime variable errors were
first estimated and their propagation into specific rates and metabolic fluxes was quantified
using a combination of experimental data and Monte-Carlo analysis. An 6perating flux error
region could be identiﬁéd allowing more reliable interpretation of the calculated fluxes.

7.2 Materials and Methods | v

7.2.1 Cell Line, Medium and Cell Culture System

CHO cells were cultivated in perfusion mode with glucose and glutamine as the main carbon
and ehergy sources in a proprietary medium formulation. The bioreactor was inoculated
at 0.92 x 108 cells/mL and cells were accumulated until the bioreactor reached 20 x 108
cells/mL at which point the cell concentration Wa'sv maintained constant by controlling the
bleed stream from the bioreactor. Experiments were conducted in a 15 L bioreactor (App-
likon, Foster City, CA) with al0L working volume. Under standard operating conditions,
the temperature was maintained at 36.5 °C and the agitation at 40 rpm. The dissolved
oxygen (DO) concentration was maintained at 50% air.saturation by sparging a mixture of
oxygen and nitrogen throuéh 0.5 pm spargers. The bioreactor pH was maintained at 6.8 by
the addition of 0.3 M NaOH. Temperature, DO and pH were varied during the course of

the cultivation resulting in a total of 12 experimental conditions, each of 10 day duration

to identify valid operating ranges for these variables. Data from the last 4 days of each ex-
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perimental condition were considered representative (variation < 15%) and used for specific

rate and metabolic flux calculations:

7.2.2 Analytical Methods

Samples from the biereactor were analyzed daily for cell concentration and viability using
‘the Cedek system ' (Innovatis, Bieléfeid; 'Germany). The samples were subsequently cen-
trifuged (Beckman Coulter, Fullerton, CA) and the supernatant was analyzed for nutrient
and metabolite concentrations. Glucose, lactate, glutamine and glutamate concentrations
were determined using a YSI Model 2700 analyzer (Yellow Springs Instruments, Yellow
Springs, OH) while ammonium was ‘measured using an Ektachem DT60 analyzer (Eastman
Kodak, Rochester, NY). The pH and DO were measured online using retractable electrodes
(Mettler-Toledo Inc., Columbus, OH) and their measurement accuracy was verified through
off-line analysis in a Stat Profile 9 blood gas analyzer (Nova Biomedical, Waltham, MA).
The same instrument also measured the dissclved CO3 concentration. On-line measure-
ments of cell concentration were made with a retractable optical density probe (Aquasant
Messtechnik, Bubendorf, Switzerland) that was calibrated with cell concentrations esti-
mated using the Cedex system. Oxygen and carbon-dioxide concentrations in the exit gas
were determined using a MGA-1200 Mass Spectrometer (Applied Instrument Technologies,
Pomona, CA)

7.2.3 Prime Variables and Specific Rates

Errors in prime variable (cell concentration, product, glucose, glutamine, lactate, ammo-
nium and oxygen) measureme_nts were estimated by analyzing multiple bioreactor samples
with replicate numbers determined by power analysis A significance level of 0.05 was as-
sumed and the detectable difference was set equal to the assumed experimental error. The
sample size was determined at a power value of 0.95. A total of 32 samples from 2 bioreac-
tors (16/bioreactor) were used for error estimation from the mean and standard deviation
of the 16 measurements. ’ '
Specific rate expressions were derived from mass balance equations for all prime variables
of interest. Error in specific rates calculated from these equations were determined using
the Gaussian approach [23] retaining only the first-order term in the Taylor series expansion

af | of

a ‘V
2|

d:m ‘

12

Af{z1,z2,.--2n)

Ln

AZ, (7.1)

where Af (21, z2,...xy ) is the error in the function f, z1,z2,...z, are the true values of the
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prime variables and Afl,.Afz, AZ, the measurement ve.rrors.v Recognizing the truncation -
associated limitation of the Gaussian approach at high prime ‘variable errors, a Monte-Carlo
approach was also used for specific rate error estimation. NormallyvdiStributed noise with
mean=0 and desired standard deviation was introduced in the prime variables and specific
rates were computed. As most specific rates were functions of multiple prime variables,
errors in each prime variable were chaﬁgéd one at a time to calculate the corresponding
“specific rate errors. This allowed . comprehensive specific rate error characterization in a
multldlmensmnal grld over the desired range of prime variable errors. “For each prime
variable error value, 10,000 normally distributed random error values were generated and
10,000 specific rates calculated. Thus the speciﬁc‘.rate data reported from Morite-Car_lo
analysis are an average of 10,000 estimates. This procedure was repeated when all associated
prime variables were in error. Additional details and computér programs are presented in

Appendix G.

- 7.2.4 Metabolic Fluxes

A biochemical network previously developed for CHO cells [8] was used in this study. This
includes the major reactions of central carbon metabolism along with reactions for amino
acid metabolism by an approach previously described in more detail [6, 8]. The stoichiomet- -
ric matrix for this reaction network was of full rank and had a low condition number (69)
1nd1cat1ng that flux estimates were not overly sensitive to specific rate Varlatlons ‘Metabolic

fluxes were estlmated using weighted least squares
(AT tATe ()

‘where x is the flux vector, A the stoichiometric matrix, r the rate vector and ¢ the variance-
~ covariance matrix of r. The bioreaction network was characterized by two degrees of'freedom_
and the two redundant measurements were used to test the consiSten'cy of the'eXperimental'
data'and the assumed blochemlstry The consistency index, h, was calculated for each of
the 12 experlmental conditions according to methods previously described [19, 21, 22] and
was compared with x? = 5.99 (95% confidence level for 2 degrees of freedom).

To characterize error propagation from specific rates into metabolic fluxes, an initial
* metabolic flux vector was assumed and the corresponding speciﬁc rate '_vector was determined
“as r = Ax. Subsequently, error was introduced in r using normally distributed noise
- with zero mean and standard deviation corresponding to the desired error level (0 — 25%).
Initially, error was separately.added to each element in r (10,000 poirits at each error

magnitude) and the resulting flux vector was computed. The flux data were averaged
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and compared with the error-free flux vector. The difference between these flux values was
" caused by the specific rate error and helped quantify error propagation from the specific rates
into the metabolic fluxes. For a more realistic representation of ekperimental,conditions,
this procedure was repeéted with all elements of the specific rate vector simultaneously in

error. .

...... T T T ) T
h - 100
30 |- ]
c L
o
= : -~ 80
g
€3 ? 9
o
S E 5 { =
= 20
g_(_n —603
O ] =
=° ] 0 5‘” Fel
= © s 5 g S
oc E = 8 1 5
bl | £ 35 s ~ 40
2 HRE g ~
2 . g
o 10 2| SIZ1S1ulololS o
= Sis|Slsivlg2|Biwlgl2 1
> | 2l [ BISISIRISInIwNy 120
ojSlo|Sin|n|uiSiunlx|
8ia|8la fliclgie B E)
gl o0 |d|C|6| ]| 5 ¥4
0 PRI PR IR P PP NP 1P PR 1O PR I

40 60 80 100 120 140
Time (Days)

Figure 7.1: Viable cell concentration () and viability (O) time profiles over the 12 conditions
examined in this study.. Under standard conditions, DO = 50%, T = 36.5 °C, pH =
6.8 and the target cell concentration was 20 x 10° cells/mL for all conditions.

7.3 Results and Driscussi(.)h

7.3.1 Perfusion Cultivation

o DO, terriperature and pH set points were varied during the course of the cultivation resulting
in a total of 12 experimental phases, each of 10 day duration. Time courses of viable cell
concentration and cell viability are shown in Figure 7.1. While the target cell concentration
throughout the cultivation was 20 x 106 cells/mL, cell concentrations for T = 30.5 °C and pH
= 6.6 were significantly lower due to reduced growth rates. Cell viability was greater than
- 90% throughout the experiment. Specific rates including growth, nutrient consumption and
metabolite/product formation were calculated using the Table 7.1 equations. The average.

specific glucose consumption rates are shown in Figure 7.2. Changes to DO had no effect
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‘on glucose consump‘cionwhile temperature and pH reduction significantly lowered'fhe cell

specific glucose consumption rate. Glucose consumption incréased at higher temperatures
and pH = 7. ' '

Table 7. 1: Expressions-for growth - rate specific product1v1ty and specific uptake/production rates‘
of key nutrients and metabohtes in a perfusion system : :

. Spec1ﬁ'c Rate ‘ _ o Expression

speciﬁcgrowth'rate"_ T 1 | :u;%+%<%)+yﬁ/§<%g>

' speciﬁc-productivity : L ap = XL‘?‘ (E?}E %‘)
speciﬁc gluCQSe consumption rate | g = X%z; (Fm—(ci}"l:‘c—) - %) A
specific glutamine_c‘c')nsumptionrate 4G :,Yl{?— <Fm(cl”‘}"_cln) dGl” - kdlh.Gln)
specific lactate production rate. - o= X—lB (F VL + —)
‘sp_eciﬁe ammonium production rate . g4 =7{1,—§- (El{'}— -|- kcin Gln)
'speciﬁc; dxygen_ uptake rate . ‘1@ = X%l/a' (Fgas(ozi{} _Ozm))

Metabohc ﬂuxes were computed using the average spec1ﬁc rates as inputs from the

steady—state portion of each of the 12 experimental conditions, and are shown in Frgure 7.3

* for experimental phase E (standard bioreactor condrtlons). The fluxes through glycoly_sls,,
- the TCA cycle and oxid'ative_ phospherylation were one to three orders of magnitude "hig”her

than those for amino acid biosynthesis and catabolism as were some fluxes for biomass

synthesis. Similar observations on relative flux ragnitudes were made for the 11 other

’experlmental conditions (not shown\ The actual flux values, however, did change between )

different experimental phases; espec1a11y. when temperature and pH were varied.

7 3. 2 Prlme Varlable Error

Errors in prime variable measurements were determlned by analyzmg multlple samples and
the results are shown in Table 7. 2 Glucose lactate and glutamine measurements had errors
close to 5% of the measured value, among the lowest. The highest errors were 12.2 and

10.4%, respectively, -for ammonium ‘and oxygen. Errors in the bioreactor volume and the

- harvest, cell dlscard and gas ﬂow rates were assumed to be 5% based on manufacturer

spemﬁcatlons
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Figure 7.2: Average specific glucose consumption rates (mean * standard deviation) for the 12
experimental conditions in this study. More information about conditions A ~ L is in
Figure 7.1. : ‘ : '

7.3.3 Specific Rate Error

Mass balances around the bioreactor and cell retention device were used to obtain ex-
pressions for growth rate, specific productivity and specific uptake/consumption rates for
nutrients and metabolites (Table 7.1)." Since perfusion systems are typically operated at
constant cell concentration and perfusion rat‘es, the prime variables. would ideally be time
invariant. However, imperfect’cell concentration control and shifts in cellular metabolism

require retention of the accumulation terms in the mass balance expressions.

e : Table 7.2¢ Error in Prime Variable Measurements

Prime Variable _ "Error (%)
Bioreactor viable cell concentration (X)) 8.9
Harvest viable cell concentration (Xy/) 7.9
Product concentration (P) L 8
Glucose concentration (G) 4.9
Glutamine concentration (Gin) - 51
Lactate concentration (L) o 4.8
Ammonium concentration (A) - : 12.2
Oxygen concentration (Os) _ 104
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Figure 7.3: Flux map for experimental condition E using the network of Nyberg et al [8]. Reaction
numbers (1 — 33) and flux values (in parenthesis as pmol/cell-d) are also shown.

7.3.3.1 Gaussian Error Estimation vs. Monte-Carlo Analysis

Specific glucose consumption rate, ¢z, was used to compare the Gaussian and Monte-Carlo
approaches for specific rate error estimation. The specific glucose consumption rate is a
function of five prime variables, V, Fy,, G, G, and X (Table 7.1) and is thus affected by
error in all of them. For simplicity, however, the bioreactor volume, V, the harvest flow
rate, Fy, and the glucose concentration in the medium, G,,, were assumed to be error-free
for this comparison. The error in bioreactor glucose concentration was varied from 0 — 10%
while that in bioreactor viable cell concentration, was varied from 0 — 20%. For each pair of
G and X 5 errors, the corresponding error in g was calculated using both the Gaussian and
Monte-Carlo approaches (Figure 7.4). For X{? error <8%, both the Gaussian and Monte-
Carlo approaches resulted in similar gc errors while the Gaussian approach underpredicted
qc error at X error >8% for all G errors (Error estimates from the Monte-Carlo method
are representative since no assumptions and approximations are made). Since X‘I/3 errors of

8.9% (Table 7.2) and higher are commonly observed in practice, the Gaussian approach as
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defined in Eq.(7.1) has limited utihty '
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- Figure 7 4: Comparison of Gaussian and Monte-Carlo qg error estimates at '10% glucose error and

0 -20% X & error. Both the first and second order Gau551an qG errror estimates were
lower than the Monte-Carlo error at higher X erTors.

This limitation of,the Gaussian approach is due the lack of higher-order terms in Eq(?l) '
Inclusion of the second-order term considerably increased theicomplexity of the Gaussian
error expressmn with only a minor 1mprovement in error: prediction (Figure 7.4). Fbr exam-
ple, a 10% error in G and a 20% error in X resulted in a 26.9% 9G error by the Monte-Carlo,
method while the corresponding Gaussian error estimates were 22.4 and 23.1%, respectively,
using the first and ‘second-order terms. While addition of third and higher order terms can

further increase the accuracy of Gaussian error estimates, the resulting expressions are quite

' Complex.' The Monte-Carlo 'ap'proac‘h with its.ability to accurately estimate error ox;er_ any

desired range without derivative computatibri is superior to the ‘Gaussian approach and has

“been used to obtain the data presented in subsequent sections. .

7.3.3.2. Error in Specific Growth Rate

The apparent specific growth rate, ﬂ,. is a function of five prime variables (Table 7.1) and

using values from Condition E, the dominant contributor is the cell bleed stream, followed
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Figure 7.5: Error in u as a function of error in the 5 associated prime variables. Panel (a) is for
V, F; and F}, while panel (b) is for X{/ and X{. Panel (c) is when all prime variables
are simultaneously ir error (V, Fy and F, at 5%; X# = 5-20 %; X8 =0-20 %).
X & error legend for panel c: (o) 0 %; (o) 5 %; (M) 10 %; (O) 15 %; () 20 %.

by the cell loss in the harvest

4.9 100 /0.21\ -1 [0
o= ﬁ*l—o(z—o)*%(i) 03
0.60 = 0.49+0.11+ 0.0 N (7.4)

The bleed stream term makes up 82% of the growth rate while the remaining 18% is from
the harvest stream term. The dX 5 has been set to zero to reflect an ideal steady-state with
perfect cell concentration control. It is common te observe ~10% variation in cell density

that can be more due to sampling and instrument error than a true change in cell density.

Including this variation in the above expression will misrepresent contributions of the cell
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B ' '
7 term, however, that»largely affects

|5

bleed and harvest streams to growth rate. It is the
growth rate error as will be shown below. ,

Figure 7.5 shows the error in s as a function of errors in the 5 prime variables that make -
up the specific growth rate expreésion. The impacts of 0 — 10% error in V, Fy, and Fj, are '
~ shown in Figure 7.5a (X{? and X{! were assumed error free) where the errors increased
. monotonically with those in V. Fy, or Fy,. Errors in V had the highest irﬁ‘pact on u and’
the average £ error ratio was 1.03 (standard-deviation of 0. 01) suggesting a one-to-one
relationship. The & and 4 error ratios were 0. 83 (SD = 3.3 x 1073) and 0.17 (SD = 6.4 x
107%), respectlvely, 1ndlcat1ng lower sensitivity of u to £y and F, errors.. This difference in
error sensitivity is consistent with the relative prime variable contributions to the u value.
The fermentor volume, V, is in both the terms that contribute to y in Eq.(7.3) resulting
in the one-to-one error dependerice.' The bleed rate is present only, in the first term that
contributes 82% to the i/alue consistent with the -’i error ratio of 0.83. Errors in the -
harvest flow rate have the least impact because ‘F}, is present only in the second term w1th
a 18% contribution to u, consistent with the -“‘I error ratio of 0.17.

40 s 40 BB
(a) (b) :
:\? 30 b ‘—‘_MA—‘/‘(A ] :\; 30 M_A/A—"k/
o =8 =
o * T
£ 207 D_D_nfD'{”D/D’D 1 £ ¢ DM/U’D/D/D/D/D
5 5
w 10} 1 o 1wf ]
0 ) 1 i 1 O I I 1 1
0 5 10 15 20 25 0 5 10 15 20 25
Error in G (%) Errorin L (%)
40 e T p— .
(c) _ (d)
gao—M‘- §30"._~.r‘—“‘/‘f ]
k- o~
5 ‘ -8
o o
£ IZO_DM 1 € 20'D__Q,,:,.43/‘3VD/D/D/D/D j
5 -. 5
& 10} L E o1l ]
0 A . - L 0 ; . . A
0 5 - 10 15 200 25 0 5 10 15 20 25
Error in Gin (%) R L Error in O, (%)

Figure 7.6: Errors in qG qr, 9Gin and q02 as functions of error in X and the corresponding prime
variable. X§ error Legend: (o) 0 %; (c)5 %; (M) 10 %; \D) 15 %; (A) 20 %.

" Impacts on p errors from errors in bioreactor and harvest cell concentrations are shown
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in Figure 7.5b (V, Fp, and F}, were assumed tolbe error free). Celvl concentration estimates
are more prone to error as manual.cell countihg techniques continue to be widespread.
While this has been alleviated with the advent of reliable automated cell concentration
. estimators, viable cell concentration in the harvest stream, X‘I}{ , is especially susceptible to
experimental error as there are relatively few cells. However, given the minor contribution
of the harvest stream term to the growth rate, a 20% error in X‘I}( results in only 3.3% error
in the corresponding p estimate (Figure 7.5b). Errors in X & however have a dramatic effect
on the error in y with the third term in Eq.(7 3) largely responsible for the strong influence
of X ‘1,3 error on 4. This was primarily due to the error associated with derivative estimation
that is typically done by finite forward differences using X"? values from two consecutive
days. More accurate derivative estimation approaches should be used to minimize the error
in p. Derivative computation using central differences resulted in a 50% reduction in
errors (data not shown) and techniques such a splining could provide improved derivative
estimates as well. o : v
Figure 7.5¢ shows the calculated error in p when all the five prime variables are in
error, reflective of experimental conditions. For a 5% error in V, F}, and Fj, and a 10%
error in X{? and X {,{ (approximate conditions in this study), the corresponding p error was
24.4%, emphasizing the need for accurate cell concentratidn determination and subsequent

derivative estimation.

7.3.3.3 Error in Specific Uptake and Production Rates

The Monte-Carlo approach was used to estimate error in nutrient consumption and metabo-
lite production rates from the Table 7.1 expféssions. With the exception of oxygen, these
specific rates were functions of V, F, X{? and fhe corresponding nutrient/metabolite con-
centration while the oxygen uptake rate expression had Fp, in place of Fj. A 5% error
was assumed for V, Fj, and Fp, while X and the nutrient/metabolite concentration were
evaluated over a 2 — 20 % error range. For each combination of X2 and nutrient/ metabolite
error, 10,000 specific rates were calculated and average error values are shown in Figure 7.6.
For 0% error in X{; , error in all specific rates increased monotonically with error in-the
corresponding prime variable. For instance, the qg error was 7.3% at a 2% G error (V
and F}, error = 5%, X& error-= 0%) and this value increased to 19.5% at a 20% G error.
Increases in the Xg error caused an upward shift in the error profile while maintaining
the monotonic dependence on the corresponding prime variable érrpr. There were slight

differences in the specific rate errors for their corresponding prime variables and this is due

to differences in the specific rate expressions (Table 7.1). Error profiles for gp and g4 were
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identical to thése for qr..

Table 7.3: Consistency index _valﬁés for the 12 experimentalA conditions examined in this study

Experimental Condition | Bioreactor Set Points | h
AL R .Standard 5.93
. B . ‘ .. DO = 20% 2.54

C Standard 4.64
D DO = 100% 3.08
E Standard 1.59
F T = 34.5°C 0.95
G~ T = 32.5°C 0.80
H - T =30.5°C 4.28
I Standard 0.89
J ‘T =37.5°C " 10.26
K pH = 6.6 4.84
L pH=7.0 3.56

Of all specific rates for the approximate conditions in this study (Table 7.2), the specific
growth rate was characterized by the highest error with 5% errors in V', Fy and Fj, and 10%
errors in X{f and X¥ resulting in a 24.4% error in p (Figure 7.5). For a 5% measurement
errors in glucose; lactate and glutamine concentratid_ns, errors in their respective specific
rates at a 10% X& error were in the 12 — 14% range (Figure 7.6). The estimated error
in oxygen uptake rate at a-10% X& and oxygen errors was 16.1% (Figure 7.6). Overall,
specific rate errors are “10% with 5% errors in prime variables and 20 — 25% with 15%
prime variable errors. (Figure 7.6). Thus the specific rate errors in a perfusion system
- can be expected to span a 10 —~ 25% range depending upon the accuracy of prime variable

measurements.

7.3.4 Error in Metabolic Fluxes

Metabolic fluxes were computed for all 12 ‘experimental conditions and the consistency of
the experimental data was verified by calculating the consistency index (h) values (Table
7.3) using methods described earlier [6, 21]. The h values for all steady states passed the X2
distribution test with a 95% confidence level (h < 5.99 for 2 degrees of freedom) indicating
that the experimental data for aH experimental conditions were consistent and unlikely to
contain gross measurement errors. This cbservation ‘coupled with the stoichiometirc matrix,
A, being of full rank and havirg a low condition number clearly attest to the robustness of

the ‘bioreaction network and the quality of the experimental data. Experimental condition
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E, A‘\ivher_e the ;bioreéctof was opérafed ii.nder standard conditions (Table 7.3) was arbitrarily -

 chosen to quantify the effect of specific raté errors on those in'the metabolic fluxes. -~
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'Flgure 7. 7 Effect of- specific rate error on the-error in lower metabohc fluxes.. Panels (a)-(d) are

for errors in the 5 greater specific rates while (e)-(h). are for errors in lower specific
rates (amino acid metabohsm) : S

~7.3v'4‘.‘1. Lower Metabolic F‘luxe.s

The effect of speéiﬁc rate errors on the ldwer metabolic fluxes is shown in Figure 7.7. Panels

| a-d are for relatlvely greater specific rates while e-h are for amino acid metabohsm (lower

specific rates) Desplte all 4 metabolic fluxes in Flgure 7.7 being associated with the TCA

' 'cycle (Flgure 7.3: threonme vahne and isoleucine are catabohzed to -SuCoA, asparagine is
- - produced from oxaloacetate) they were greatiy affected by the glucose uptake rate error.
"A 25% error in glucose uptake rate resulted in 60 18 103 and 54% errors, respectively -

(Figure ,7.7a—d) The la(,tate production rate had a- snmlar effect resultlng in errors of 34,
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10, 59 and 31%, respectively, (Figure 7.7a-d) for a 25% lactate production rate error. As
expected, the Figure 7.7a-d fluxes were affected by errors in the oxygen uptake and carbon
dioxide production rates given their close relation to the TCA cycle (threonine catabolism
was less affected since this reaction does not directly involve Oa or CO2). A 25% error in
the oxygen uptake rate resulted in fespective errors of 26, 54, 387 and 228% while that in
the CO, production rate caused 10, 49, 349 and 291% errors, respectively, in the Figure
7.7a-d fluxes. Thus errors in the greater specific rates very substantially' influence the lower
metabolic fluxes to the extent that the values are far from accurately representing cellular

metabolism.
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Figure 7.8: Effect of speciﬁc rate error (shown in each frame) on the error in 4 greater metabolic
fluxes. Panels (a)-(d) are for errors in 5 larger specific rates while (e)-(h) are for errors
in lower specific rates (amino acid metabolism). o

With the exception of the Ile — SucCoA flux, errors in amino acid metabolic rates did
_not significantly affect the metabolic fluxes. Overall, the maximum flux error was less than

2.5% even when the specific rate error was 25% (Figure 7.7e,fh). As expected, the Ile —
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SucCoA flux was influenced by errors in isoleucine catabolism with a 25% error resulting in
a 20% error in the flux (Figure 7.7g) and this dependence was true in all instances where

the specific rate and flux were closely related.

7.3.4.2 Greater Metabolic 'Fluxes

The effect of specific rate errors in'the 5 — 25% range on the greater metabolic flux errors
was examined for experimental condition E and data for four fluxes representing glycolysis,
lactate production, the TCA cycle and oxidative phosphorylation are shown in Figure 7.8.
While the influence of all 35 specific rates in the bioreaction network were examined, Figure
7.8 shows representative results for the 5 greater specific rates (glucose, lactate, oxygen,
carbon dioxide, Bio_ NADH; panels a-d) and 5 lower specific rates répresenting amino acid
metabolism (serine, glycine, lysine, isoleucine, aspartate; panels e-h). As expected, specific
rates that were not closely related to the flux had a lower impact on the flux error. For
instance, a 256% error in glucose uptake rate caused 0.7, 1.4 and 2.7% errors, respéctively,
in Figures 7.8b-c while the error in Figure 7.8a was 23.6%. Similarly, a 25% error in lactate
production rate caused errors of 0.92, 0.81 and 1.54%, respectively, in Flgure 7. Sa c¢,d while
that in Figure 7.8b was 24.8%. ’ .
Thus, errors in the greater specific rates had a 81gn1ﬁcant effect on the errors in the

most closely related fluxes. For instance, a 25% error in glucose uptake resulted in a 23.6%

~ error in the Gle — GCP flux (Figure 7.8a) and a similar dependence was seen between the

error in the lactate production rate and the Pyr — Lac flux (Figure 7.8b). The error in
the TCA cycle flux, aKG — SuCoA, was most influenced by error in COz production and
oxygen uptake (Figure 7.8c) while that for oxidative phosphorylation was primarily affected

by error in the oxygen uptake rate (Figure 7.8d).

" Errors in the amino acid'meta'bolic rates, however, had minimal impact on the ﬂﬁx
errors even when they were related to the flux. For instance, the specific production rates
of serine and glycine (both synthesized from GAP (Figure 7.3)),. had a negligible impact on
the glycolytic fluxes. A 25% error in serine or glycine production rates reSult_ed in 2.34 x
10~ or 7.02 x 10™*% error, respectively, in the Gle — GCP flux (Figure 7.8¢). While lysine
and isoleucine are catabolized to form AcCoA which enters the TCA cycle, their rate errors
had little impact on the TCA cycle flux (o KG — SucCoA). A 25% error in their catabolic
rates resulted in respective flux errors of 0.14 or 0.12% (Figure 7.8g). Aspartate is formed
in the TCA cycle’frc‘)m oxéiioacétate and a 25% error in aspartate production rate caused
a 3.67 x 10~ 2% error in the aKG — bucboA flux. Thus, errors from lower magnitude

specific rates have neghglble 1mpact on the error in the greater metabolic fluxes even when
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Figure 7.9: Flux error for greater (panel a) and lesser (panel b) fluxes when all specific rates in
the bioreaction network have errors in the 5 — 25% range. The Thr — SuCoA and Val
— SuCoA error profiles overlap in panel b. '

the specific rates and metabolic fluxes are related. .

7.3.4.3 Overall Flux Errors in Perfusion Cultivation

Figures 7.7 and '7,8 and show flux error data when only one specific rate is in error. In a
typical experiment, all specific rates have error-and their combined influences on the flux
error are shown in Figure 7.9. Specific rate errors in the 5 — 25% range were examined
and when all specific rate errors were 15%, the greatef flux errors ranged from 12.3% for
oKG — SuCoA to 14.7% for Pyr — Lac (Figure 7.9a). For the lesser fluxes, when the
specific rate errors were 15%, the flux errors were between 46.9% (Thr — SuCoA) and
312.5% (Ile — SuCoA) (Figure 7.9b). Hence lesser flux values can be extremely sensitive
to specific rate errors making their accurate determination difficult even at relatively low

prime variable and specific rate errors. This was despite using a robust bioreaction network

with a stoichiometric matrix of full rank and low condition number.
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Figure 7.10: Absolute values of the maximum and minimum sensitivity coefficients for the
metabolic model used in this study. For each of the 35 specific rates, there were
33 sensitivity coefficients corresponding to the 33 fluxes (Figure 7.3) in the bioreac-
tion network. '

7.3.4.4 Normalized Sensitivity Coeflicients for Analysis of Metabolic Flux Er-

rors

The flux error data in Figures 7.7 and 7.8 were obtained from fnultiple simulations using
the Monte-Carlo method. Although comprehensive, this approach is cumbersome to apply
to new metabolic models and a generalized approach to quantify the relationship between
specific rate and metabolic flux errors is desirable. The sensitivity métrix, S, provides a
framework for such quantification and can be readily estimated from the stoichiometric

matrix of the metabolic network [1] as
S = (ATA) " AT | (7.5)
and the individual elements of S can be written as
[ Oz;’ o
. ’L:J (d,rj > ’ . ( )

wheré s; ; is the sensitivity of the i** flux with respect to the j** rate. For the metabolic

network examined in this study, S is a 33 x 35 matrix where the j** column contains
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the sensitivities of the 33 fluxes to the jth rate. 'Figure 7.10 shows absolute values of the
| minimum and maximum fux senSitiyitie‘s for each of the 35 specific rates. The minimum
'senSitivitiés ranged from 0.0009 - 00092 while the maximum values were in the 0.32 - 1.50
range. Low sensitivity coefficients are favorablé from an error analysis standpoint as the
influence of specific rate errors on flux estimates is minimal. Even the maximum sensitivities
- obtained were quite low, consistent with the low condition number (69) of the stoichiometric

matrix, A.
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Figure 7.11: Normalized sensitivity coefficients for the greater fluxes in the bioreaction network
. for both greater (panels a-d) and lesser {panels e-h) specific rates.

However, sensitivity coefficients as defined in Eq.(7.5) do not completely explain the
relationship between specific rate and flux error. For instance, -sensitivity coefficients for
- the Oy — 3ATP flux are -1.354 and -0.587 for the oxygen uptake and glucose uptake rates,
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respectively, a ratio of 2.3. Errors in the O — 3ATP flux, however, are scaled differently
since 25% errors in glucose and oxygen uptake rates result in flux errors of 21.39 and 2.7%,
respectively, a ratio of 7.9. This discrepancy is due to the difference in the magnitudes of
the oxygen and glucose uptake rates (-5.14 and -1.48 pmol/cell-d, 'respectively) which is
not accounted for in Eq.(7.6). If the sensitivity coefficients -1.35 and -0.59 are multiplied
by their respective specific rates of -5.14 and -1.48, the resulting values are 6.94 and 0.87
with a ratio of 7.9 that is consistent with the flux error ratio and the results of Monte-Carlo .
analysis (Figure 7.8). , V. - '

A normalization of the Eq.(7.6) sensitivity coefficients is thus necessary for the resulting
value to be representative of the error relatioﬁship between the specific rate and metabolic
flux pair. This can be done by mﬁit'iplying the right hand side of Eq.(7.6) with a ratio of
the specific rate and metabolic lux

0x; \ 4
N ()2
Si5 (drj> p , _ (7.7) |

where sf?[j is the normalized sensitivity coeflicient (NSC) for flux x; with respect to rate r; (A
similar approach is used to define the flux control coefficients in metabolic control analysis
that describe the change in steady-state flux due tc a change in enzyme activity [24]). For
the Oz — 3ATP flux, the normalized sensitivity coefficients from Eq.(7.7) were 0.849 and
0.106 for oxygen‘ﬁptake and glucose uptake, respectively. The ratio of these normalized
sensitivity coefficients is 8 which is similar to the flux error ratio of 7.9 from Monte-Carlo
analysis with a small difference due to round-off errors. Normalized sensitivity coefficients
as defined in Eq.(7.7) thus provide accurate quantification of the dependence of metabolic
flux error on specific rate error (thié was verified for other flux-specific rate combinations).

NSCs for the greater fluxes are shown for both greater and lesser specific rates in Figure
7.11. For the Glc — G6P flux, the NSC with réépect to the glucose upfake rate from
Eq.(7.7) was 0.923 indicating that a 1% error in glucose uptake rate would result in a
0.923% error in the Gle — G6P flux (Figure 7.11a). The flux to specific rate error ratio
from Figure 7.8a was 0.940 + 1.7 x 1073 (avérage of 5 data points for the glﬁcose uptake
rate) verifying the ability of the NSC to accurafely describe the specific rate and flux error
relatioriship. NSCs for lactate, oxygén, CO4 and biomass from Eq.(7.7) were 0.037, 0.027,
0.011 and 0.003, respectively (error ratios from Figure 7.8b-d were identical), suggestive of
their much lower impact on the Glc"—k G6P flux. The highest NSC for the Pyr — Lac
flux was for lactate (0.99) while both oxygen and CO, were characterized by high NSCs for
the aKG — SucCoA ﬂux~(0.416-and 0.691, respectively), The Oy — 3ATP flux was most

affected by errors in the.oxygen. uptake rate and this dependence was characterized by a




CHAPTER 7. ERROR IN SPECIFIC RATES AND METABOLIC‘. FLUXES 148

normalized sensitivity coefficient of 0.849 (Figure 7.11d). Normalized sensitivity coeflicients
with respect to amino acid metabolism were much smaller (Figure 7.11e-h) reflecting their
minimal impact on the greater flux errors. - _ ’
While both Figufes 7.8 and 7.11 provide very similar information on the specific rate
and flux error relationship, Figure 7.11 data are easier to generate and are a more compact
representation of error dependence. The sensitivity matrix can be readily estimated from
the stoichiometric matrix using .Eq.('7.5) and once metabolic fluxes are calculated using the
experimentally measured specific rates (Eq.7.2), NSCs can be determined from Eq.(7.7).
Moreover, a single number completely characterizes the specific rate and flux error relation-

ship.
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Figure 7.12: NSC variation with réspéct to glucose uptake rate during the course of an experiment.
Data from this study are shown in panel a and those from Follstad et al. ‘[6] in panel
b. '
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7.3.4.5 Variation in Normalized SenSitivify Coefficients

It must be recognizéd that NSCs and hence specific rate-flux error relatiohships can change
during the course of an experiment if either the specific rate or metabolic flux changes. This
is not true of the conventional sensitivity coefficients that depend only upon the stoichiom-
etry of the bioreaction network (Eq.7.6). Figure 7.12a shows variation in the normalized .
sensitivity coefficients for the Oq — 2ATP and SuCoA — Fum fluxes with respect to glucose
uptake rate for the 12 experimentél conditions in this study. For both ﬂuxeé, the lowest
values of the normalized sensitivity coefficients (0.218 and 0.139, respectively) were at T
= 30.5 °C (condition H), where the flux values were the highest and the rate values were
among the lowesﬁ. The opposite was true at pH = 7 (conditioh L) where flux values were
the lowest and rate values were the highest (NSCs of 0.949 and 0:481). Thus during the
course of a single experiment,v the NSC for the Oy — 2ATP flux with respect to glucose
uptake rate ranged from 0.218 — 0.949, a 4.4-fold variation while a 3.4 increase was observed
for the SuCoA — Fum flux. The value of the Oy — 2ATP flux was 4.4 times more Vaffected
by errors in glucose uptake rate at pH = 7 than at T = 30.5 °C while the SuCoA — Fum
flux was 3.4 more affected.

Eq.(7.7) was also used to calculate NSCs for hybridoma cell cultivation in chemostat
culture reported by Follstad et al, [6] at different dilution rates (Figure 7.12b). The dilution
rates corresponding to steady states A — E were 0.04, 0.03, 0.02, 0.01 and 0.04 hr!, respec-
tively, and significant changes in cellular. metabolism were observed over the course of the
experiment. The sensitivity coefficient for the Pyr — AcCoA flux was 0.67 and the normal-
ized sensitivity coefficient for steady state A was 6.57 reflecting the 10-fold higher value of
glucose uptake when compared to this flux. For steady states B — D, the Pyr — AcCoA flux
increased while the glucose uptake rate decreased resulting in significant reduction in the
NSC. An increase in the glucose uptake rate for steady state E was responsible for the slight
increase in the NSC. Thus the Pyr — AcCoA flux was most sensitive to glucose uptake rate
errors in steady'state A and this decreased by 6.5-fold for steady state D. Variations in
the SuCoA — Fum flux were primarily due to changes in the glucose uptake rate since the
SuCoA — Fum flux did not change much over the course of the cultivation while those for
the Gln — Glu flux were due to changes in both the flux and glucose uptake rate. Thus
the flux and specific rate error rela_tioriship can chaﬁge during the course of an experiment

and NSCs under all experimental vconditions must be calculated to rationally interpret the

metabolic flux data.
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7.4 Conclusions

We have characterized error propagation from prime variables into specific rates and sub-
sequently into metabolic fluxes for rnammalian cells in high cell concentration perfusion
culture. Prime variable errors were in the 5 — 15% range resulting in a 10 — 25% error
in specific rates. The effect of specific rate error on the flux error was a function of both
the sensitivity of the flux with respect to the specrﬁc rate and relatlve magnitudes of the
flux and the specific rate. The greater fluxes in the bioreaction network had errors that
were comparable in magmtude to the related greater specific rate errors and were virtually
unaffected by errors in the lower specific rates. Greater flux errors ranged from 12 - 15% for
15% error in the greater specific rates suggesting that the 30% increase in TCA cycle fluxes
reported in Chapter 9 are indeed representative of changes in cell metabolism. The lower
fluxes, however, were extremely sensitive to errors in the greater specific rates making their
accurate estimation difficult given analytical limitations in prime variable measurements.
Often, errors were so large that the flux values grossly misrepresented cellular metabolism.
The relationship between specific rate and flux error was accurately described by the nor-
malized sensitivity coefficient that could be readily calculated once the metabolic fluxes
were estimated. We recommend normalized sensitivity coefficient calculation be an integral
part of metabolic flux analysis as it describes the relationship between flux and specific rate

error through a single numeric value.
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Chapter 8

Metabolic Flux Analysis using

Isotope Tracers? |

8.1 Introduction

Metabolic flux analysis is being increasingly used to characterize the metabolism of mam-
malian cells [1-13]. While both metabolite balancing and iéotope tracer analyses have been
used for flux estimat'ion, the metabolite balancing method is considerably simpler both from
experimental and vanalytical zipproaches. Extracellular uptake/production rates constitute
the input data from which intracellular fluxes are estimated by simple matrix algebra [14].
Thus very few additional measurements are necessary and the associated computations can
be readily performed. - This approach, however, has limitations because fluxes in cyclical
pathways such as the pentqse‘phosphate pathway and those in reversible reactions cannot
be determined (only the net flux in a reversible reaction may-be calculated).

" These limitations can be overcome by isotope tracer studies using media containing a
mixture of unlabeled and 13C glucose‘and analyzing the isotope distribution in the metabo-
lites by GC-MS or NMR. Isotope distribution in the metabolites is a direct consequence

of cell metabolism and analysis of this data provides additional constraints that increase

- the observability of the fluxes in-the bioreaction network. Substantial progress has been

made in the experimental and coniputatiohal approaches for applying NMR spectroscopy
to metabolic flux analysis [9, 15-29] with 2D [*3C,'H] correlation spectroscopy being the
most widely adopted approach-for 1sotope tracer experiments.

A major disadvantage of isotope tracer experiments is their cost since 13C glucose makes

'A version of this chapter will be submitted for publication. Metabolic flux analysis of CHO cells in
perfusion culture by metabolite balancing and 2D ['3C, 'H} COSY NMR spectroscopy.
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up a substantial portion of the medium glucose: They are seldom applied to laboratory-scale
bioreactors and are typically performed at very small working volumes'in environments that
may not be representative of'bioreactor_cqﬁditions.‘ While such studies do provide valuable
insight into cellular metabolism, the metabolic profile may not be representative of that in
a laboratory or manufacturing-scale bioreactor.  Metabolism can’ be scale-dependent, espe-
cially if conditions such as shear and mixihg do not scale linearly. The metabolite balancing
method, however, is essentlally scale independent since it does not require 13¢ glucose and
extracellular rates are typlcally measured in both laboratory and manufacturmg—scale Sys-
tems. '

For routine application of metabolite baiancing to process development and manufactur-
ing bioreactors, validation with results from isotope tracer experiments is necessary. Upon
favorable comparison of flux estimates from these two methods, metabolite balancing can
then almost excluswely be used for ﬂux estimation. When significant process modlﬁcatlons
such as medium composition and ‘cell line changes are made, a revalidation of the metabo-
lite balancing method may be necessary. Comparison of flux estimates from the metabolite
balancing and isotope tracer method have been made for hybridoma cells in batch [15] and
continuous culture [30] and for Aspergillus oryzae in a chemostat culture [21]. No such
comparisons have been made for Chinese Hamster Ovary (CHO) cells in perfusion culture.

This study presents a comparison of metabolic fluxes from the metabolite balancing
and isotope tracer methods for CHO cells in perfusion culture. CHO cells were initially
cultivated in a medium containing unlabeled glucose which was subsequently switched to
a mixture of unlabeled and 13Q glucose. Once isotopic steady state was reached, biomass
samples from the bioreactor were used for flux estimation by 2D [*3C,'H] NMR spectroscopy
and these fluxes were compared with those obtained by the metabolite baléncing method.

8.2 Materials and Methods

8.2.1 Cell Line Culture Medium and Bioreactor Operation

CHO cells were grown in perfusion culture using a medium with 7 g/ L glucose and 7 mM
glutamine as the primary carbon and energy sources. All experiments were conducted in
a 2.5 L bioreactor (MBR Bioreactor AG, Switzerland) with a 2 L working volume and a
heated water jacket. The bioreactor was maintained at 36.5 °C, with agitation constant at
70 rpm. Dissolved oxygen (DO) was maintained at 50% air saturation by sparging mixed
oxygen and nitrogén.- Bioréa’ctor pH was maintained at 6.8 by the addition of 0.3 M NaOH.

The bioreactor was inoculated at 8.53 x 10° cells/ mL_ and cell concentrations during the
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: ‘initial experlmental phase (operatlon w1th unlabeled glucose) were malntamed at 10 x 108

cells/mL by bleedlng cells from the. bioreactor: The perfusron rate durlng this phase was -
1.5 bioreactor volumes / day Subsequently, a medjum contamlng 13C glucose was used (10%"‘
uniformly labeled, 40% labeled in the 1 position. and the remaining 50% unlabeled) for cell
cultivation. In the 6 days followrng the sw1tch to 13C glucose, the target. cell density was 10

©X 106 cells/mL at a perfusion rate of 1.5 bioreactor ~volumes/day. Subsequently cell bleed
~was stopped and the cell. density was allowed. to reach. 720 x 108 cells/mL. Samples and _' '

measurements from the last 2 days of cultlvatlon were used for metabolic flux analys1s B

.8 2 2 Analytlcal Methods

U Samples from the b1oreactor were taken for cell dens1ty and Vlablhty analyses us1ng the

CEDEX system (Innovatis,” Blelefeld Germany) The samples _were subsequently cen-

- trifuged (Beckman Coulter, Fullerton, CA) and ’rhe supernatants were analyzed for nutrient. -
“and metabohte concentrations. Glucose lactate, glutamine and glutamate concentratlons

- were determmed using a YSI Model 2700 analyzer (Yellow Sprmgs Instruments Yellow

Springs, OH) while ammomum was measured by an Ektachem DT60 -analyzer (Eastman_: :

- Kodak, Rochester, NY). The pH and DO were measured online using retractable electrodes .
- (Mettler-Toledo Inc., Columbus, OH) and their measurement accuracy was verified through:

off-line .analysis in a Rapidlab® 248 blood gas analyzer (Bayer 'HealthCare"'Tarrytown '

,NY) The same instrument also measured the dissolved COq concentrat1on Concentratlons
" of oxygen and carbon—d10x1de in the ex1t gas were measured usmg a MGA 1200 Mass Spec— .
_trometer (Applied Instrument’ Technologies; Pomona CA) Ammo acids were analyzed on. .
a HP 1090 HPLC (Hewlett Packard CA) . using the AmlnoQuant protocol with pre-column N

derivitization by ortho-phthalaldehyde and-9- ﬁuorenylmethyl chloroformate for.detection of ‘

‘ 'prlmary and secondary amino acids, respectlvely

8. 2 3 Sample Preparatmn for NMR Analy51s

~ The target biomass welght in samples for 2D NMR analy31s was 150 mg and approprlate :
~ amounts of cell culture fluid - 15 mL at 20 x 106 cell/mL 30 mL at 10 x 106 cell/mL)

were drawn from the bioreactor into a 50 mL_ polypropylene centrlfuge tube and the sample

was centrifuged at 5000 g and 4 °C for 5 minutes. The supernatant was diScarded and the

- cell pellet was resuspended 1n 30 mL of PBS buffer. Following subsequent centrlfugatlon_’-

-and supernatant discard, the cell pellet was freeze-dried and' stored at -80°C. For biomass

hydrolysis, 10 mL of 6N HCl was added to the freeze drled cells and the: mlxture Was

incubated at 105 °C for’ 24 hours Followmg 1ncubatlon the mixture was ﬁltered using a -
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0.45 pum syringe filter and the filtrate was evaporatéd under nitrogen flux until the residual
volumeé was 200 pL. One mL of D20. was added and the mixture was again evaporated to
200 pL. D20 addition and evaporation was repeated two more times before the samples

were analyzed by NMR.

8.2.4 2D-NMR Analysis.

NMR lﬁeasurements were performed at 500.16 MHz at 27 °C on a Bruker Avance 500 spec-
trometer (Bruker BioSpin GmbH, Silberstreifen, Germany). The ['3C, 'H] COSY experi-
ment was the Heteronuclear Single Quantum Correlation (HSQC) sequence with gradients
for artifact suppression. Folding in F1 was used for reducing the sweepwidth. The carrier
was set to 61 ppm for 3C and 4.7 ppm for 'H and the acquisition parameters were timaz
= 480 ms and tomaz = 221 ms. The ilv_indow function used before Fourler transformation

was a squared sine bell shifted by 7r/ 2'in F1 and in F2.

8.2.5 Biochemical Netwofk,

The biochemical network formulated in this study was based on mammalian cell metabolic
models described in the literature [1, 11, 31; 32]. It includes glycolysis, pentose phosphate
pathway (PPP), TCA cycle, amino acid catabolism and oxidative phosphorylation. An-
abolic pathways include the biosynthesis of macro’lnblecules (proteins, lipids, RNA, DNA
and carbohydrates). The complartmentalization of animal cells is also considered in such a
way that some processes occur only in the cytoeol and mitochondria, respectivelyl The con-
sequence of this is that some metabolites occur in the model in a mitochondrial state (sub-
script “_M?”) and a cytosolic state, e.g. ‘acetyl-CoA, pyruvate, oxaloacetate, and malate.
The recycle rate of the pentose phosphate pathway cannot be uniquely identified by
measuring extracellular uptake and production rates alone "This is because the portion
of the flux leaving glycolysis at glucose-6- phOQpha’ce to enter the PPP is cycled back to
glycolysis at fructose-6-phosphate and glyceraldehyde-3-phosphate. The PPP recycle rate, .
however, can be measured from isotope analysis and this value was used in the stoichiomet-
ric model. The same was true for.' the anaplerotic fluxes in the TCA eycle. In the metabolic
balancing model both pyruvate carboxylase and malic enzyme were assumed to be active.

However, if decarbexylation of oxaloacetate also occu'rs" only the net flux can be calculated

'via metabolite balancing while the isotope analvsm can dlStlIlglllSh between these bidirec-

“tional fluxes. The pyruvate r‘arboxvlase ﬂux obtamed from NMR analysis was used in the

metabolite balanung model

Inputs for metabollte balancmg were bhe extracellular uptake/ productlon rates of glu—
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cose, lactate, all amino _aeids; OUR, CER, and the specific growth' rate. These coupled with
the two fixed internal fluxes, PPP fecyele rate and pyruvate ‘car'b_oxylase flux (obtained
from isotope analysis by NMR) comprised the 27 input variables resulting in 2 redundant
measurements that allowed calculation of the cons1stency index and gross error detection

(The stoichiometric model consisted of 62 1ntracellular metabolites and 87 internal fluxes

‘resulting in 25 degrees of freedom).
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Figure 8.1: Time profiles of viable, cell dens1ty (o) and viability (O) for CHO cells in perfusion
culture : - ' ‘ : '

8.2.6 Metabolic Flux Analysis

Fluxes in the metabolite balancing rhethod were determined using Weighted-leaet squares as
described in Chapter 3. The consistency index was computed to ensure no gross.experimen-
tal errors were present and since 2 redundant measurements ‘were available, the impact of

OUR and CER measurements on the con51stency index was also analyzed Estimating CER

~ina perfusion system is not- tr1v1a1 (Cnapter 5) and the possibility of measurement error in

CER was verified this way. Analys1s of NMR data was based on the approarh described -in
detail prev1ously [18, 27-29]. - ' : ’
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Figure 8.2: Time profiles of bioreactor glucose (o) and lactate (O) concentrations along with their
. respective specific uptake and production rates over the course of the perfusion culti-
vation. : '

8.3 Results

8.3.1 Cell Density and Viability

Time profiles of viable cell’den‘sity and viability are shown in Figure 8.1. The bioreactor
was inoculated at -an initial cell density of 8.53 x 108 cells/mL and the target cell density
was 10 x 10° cells/mL when the médium contained unlabeled glucose. While the average

cell density with unlabeled glucosé was 10.64 =+ 2.26 x 108 cells/mL, the cell density control

based on oxygen uptake rate was not very smooth in this initial portion of the experiment.

Upori switching to a medium (_:ontaining a mixture of unlabeled and 3C glucose on day 13,
cell density control improved and the average value from déys 14 - 19 was 11.74 =+ 0.93 x
108 cells/mL: Cell bleed was stopped on day 19 and the cell density was allowed to reach
20 x 10° cells/mL, reflective of conditions in a manufacturing bioreactor. T he average cell
density over the last 3 days of cultivation was 23.05 + 052 x 10° cells/mL and data from
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this time period were used for metabolic flux analysis. The fermentor viability ranged from .
81 — 91.6% over the 25 day cultivation period (Figure 8.1)
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Figure 8.3: Time profiles of bioreactor glutamine (e) and ammonium (O) concentrations along with
their respective specific uptake and production rates over the course of the perfusion
cultivation. :

8.3.2 Glucose and Lactate Metabolism

Bioreactor glucose and lactate concentrations along with their respective specific consump-
tion and production rates are shown in Figure 8.2. Decreasing glucose and increasing
lactate concentration trends from days 19 — 25 were due to cell density increase over that
period (Figure 8.1), effectively reducing the cell specific perfusion rate and hence nutri-
ent availability. The specific glucose consumption rate with unlabeled glucose was 1.22 +
0.11 pmol/cell-d and increased to 1.66 + 0.11 pmol/cell-d following the switch to labeled
glucose. It is unlikely that f_hi_s difference in _ghicose metabolism was due to the switch to
labeled medium. In fact, the glucose uptake rate exhibited an increasing trend over the

entire course of the experiment and is perhaps reflective of changing cell metabolism or
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selection of cells with altered metabolic characteristics by the cell retention device. It must
be recognized that these metabolic vcha‘nges do not affect. the Aux comparisons presented in
the subsequent sections because those calculations were performed on the same sample. No
such changes were seen in lactate production with specific rates of 1.63 4 0.25 and 1.66 =+

0.17 pmol/cell-d for unlabeled and labeled glucose, respectively.
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Figure 8.4: Metabolic fluxes estimated from analysislof NMR data.

8.3.‘3" : Glutamine and_Ammoniufn Metabolisfn_

Time profiles of glutamine and amrlno‘nium’concentrati.ons along with their respective specific

consumption and production rates are shown in Figure 8.3. Changes in their concentrations

“from days 19 — 25 are a result of cell density increase (Figure 8.1)Aand do not necessarily

indicate a shift in’glutamine metabolism. While both glutamine uptake and ammonium

~production rates were lower at the end of the cultivation, especially from days 21 -~ 25,

the average specific rates across the unlabeled and labeled glucose phases were very similar
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(0.32 £ 0.03 and 0.32 £ 0.04 ‘pmol/cell-d for glutamine and 0.53 + 0.07 and 0.50 + 0.06

pmol/cell-d for-ammonium).

Table 8.1: Comparison of Glycolytic Fluxes from the Isotope Tracer and Metabohte Balancmg

Methods
"Reaction Isotope Flux | Balancing Flux | Difference

(pmol/cell—d) (pmol/cell-d) (%)
Glc — G6P 1.69 1.73 . 2.53
.G6P — F6P .. 093 1.00 O 7.83
F6P — 2GAP |  1.38 144 4.30
GAP — PG . 298 : 3.07 o 2.86
PG — PEP ©2.95 - 3.02 2.49
PEP — Pyr 2.95 3.02 2.49
“Pyr — Pyr M T 1.46 1.83 25.2
Pyr — Lac .. Lo7 1.56 - . 0.34

8.3.4 Metabolic Fluxes

The reactions in the bioreaction network along with metabolic fluxes estimated from NMR,
data analysis are shown in Figure 8.4. Metabolic fluxes were also calculated from the bal-
ancing method and the consistency index, h, associated with the flux estimates was 2.07
suggesting the assumed biochemistry was acceptable and that there were no gross experi-
mental errors. A comparison of the flux estimates from the isotope tracer and metabolite
balancing methods is made in Tabl_eé 8.1 - 8.4. The an'aple.rotic conversion of pyruvate
to oxaloacetate in the mitochlvondria‘and the flux through the pentqse'phosph_ate pathway
cannot be uniquely determined from the balancing method and their values (0';18 and 0.70
‘pmol/cell-d) were taken from the NMR analysis. Glycolytic fluxes "are’compared in Table:
8.1 where there is close agreement (<8% absolute difference) betwe‘eh all fluxes except for
Pyr — Pyr ‘M. T@ble 8.2 compares the TCA cycle fluxes where the maximum flux differ-
ence is 7.76%.for the conversion of ‘pyruvate to acetyl-CoA. Comparisons of fluxes in the
pentose phosphate pathway and ‘phe oxidative phosphorylation reactions are shown in Table
8.3 where the maximum flux differenee is 5.09%. Much higher differences are seen for the
fluxes related to amino acid metabolism (Tabie 4) and these are primarily because these’
fluxes, in most cases, are two orders of magnitude smaller than those in glycolysis, PPP
“and the T'CA cycle. \mall dlfFerences in these ﬁuxes translate into the hlgh percentage
differences qhown in Table 8.4. Overa]l fheze was excellent agreemenf in flux estimates

from metaboute balancmg and 1sotope 1racer ar\alysm

4 A}
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Table 8.2: Comparison of TCA Cycle Fluxes from the Isotope Tracer and Metabohte Balancing

Methods
Reactlon v Isotope Flux | Balancing Flux | Difference
' (pmol/cell-d) | (pmol/cell-d)" (%)
Pyr M+ CO3; — OAA M : 0.18 0.18
Pyr M — AcCoA M + COq . 1.40 1.51° 7.76
AcCoA M + OAA_M — Lcit_M 1.60 1.70 6.39
Ieit M — oKG_ M+ COy- - | . 122 = 1.19 2.25
aKG M — SuCoA_M +.COy S 123 . . 1.24 _ 0.55
. SuCoA M — Suc_ M _ : 1.23 . 1.30 5.50
Suc. M — Fum_ M ’ 1.25 - 1.28 . 2.62
Fum M — Mal M 1.25 - 1.29 3.51
Mal M — OAA_M ' . 1.29 v 1.32 ' 2.25

8.4 Discussion

~.8.4.1 Pentose Phosphate Pathway

The PPP flux could not be identified by the balancing method and was set to 07 pmol/cell-
d from NMR analysis. Even if the PPP was neglected for flux estimation by metabolite
balancing, the impact on glycolytic fluxes would be minimal. However, since 14.9% of the .
total CO2 was produced in the PPP (Figure 8.4), it is likely that some of the CO2 producing -
fluxes in the TCA cycle would be overestimated to compensate for. that produced in the
PPP. In our experiments, 41% of the glucose was metabolized through the PPP (Figure 8.4)
and this number was 23% for hybrjdoma cells in chéemostat culture [30]. For hybridoma cells
in batch culture 9-- 10% of the glucose was metabolized in the PPP [15]. For astrocytes and
granule cells, the PPP flux was determined- as 11 and 29%, respectively [33]. In addition
to providing ribose-5-phosphate for the synthesis of the nucleotides and- nucleic acids, the
pentose phosphate pathway also generates reducing equivalehts in the form of NADPH for
reductive biosynthesis reactions. It ie'possible that the high pentose phosphate flux observed
in this study was to generate the NADPH necessary to support rapid cell growth during
the perfusion cultivation.

The use of 3C glucose provides evidence that the PPP is active for the CHO cells in
this study. Alternatlvely, the feasibility of biochemical networks can bé determined from
the reaction free energies and an 1llustrat10n of this approach for reactions in glycolysis

is shown in Appendlx I However 1ntracellular concentrations of reactants and products

are necessary to use this approach and this information is not readily -available limiting its
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Table 8.3: Comparison of PPP, Lactate Production, Malic Enzyme and Oxidative Phosphorylation
Fluxes from the Isotope Tracer and Metabolite Balancing Methods

Reaction : Isotope Flux | Balancing Flux | Difference
S (pmol/cell-d) | (pmol/cell-d) (%)
G6P — Rib5P + COy 0.70 0.70 —
2Rib5P — F6P + E4P ' 0.23 0.22 5.09
Rib5P + E4P — F6P + GAP ' 0.23 , 0.22 5.09
3ADP+NADH+0.502 — 3ATP+NADY 799 . 7.83. : 2.05
2ADP+FADH5+0:502 — 2ATP+FAD : 1.41 1.38 2.45

8.4.2 Pyruvate Carboxylase Flux

Conversion of pyruvate to oxaloacetate by the action of pyruvate Carboxylase is a major
anaplerotic reaction. It helps replenish TCA cycle intermediates that are used for synthesis
of fatty acids and non-essential amino acids. While this pathway can be ignored in non-
growing cells [34], it can be expected to carry a substantial flux in actively growing cells.
For the CHO cells in this study, the flux through this reaction was 12.8% of the pyruvate
flux into the TCA cycle (Figure 8.4).. '

8.4.3 Implications for Bioproc‘ess.Development

We have seen good agreement in the metabolic fluxes calculated from metabolite balancing
and isotope tracer analysis. They both indicated that ~50% of the glucose is converted
to lactate with the remaining used for biomass synthesis and energy production. Fluxes
through the PPP and the anaplerotic conversion of pyruvate to oxaloacetate could only be
obtained by the isotope tracer method.. However, 'eliminativng‘ them from the bioreaction
network would have a low impact on the other fluxes (<10% change) in the bioreaction
network. The metabolite balancing method thus provides a representative and accurate
depictioh of CHO cell metabolism. This is further confirmed by the low consistency index
(2.07) associated with the calculated - metabolic fluxes. The bioreaction network formulated

in this study can thus be used for routine monitoring of development and manufacturing

bioreactofs without the need for frequent isotope labeling experiments.
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Table 8.4: Comparison of Amino Acid fluxes from the Isotope Tracer and Metabolite Balancing

Methods
- Reaction , .| . Isotope Flux | Balancing Flux | Difference
: W (pmol/cell-d) | (pmol/cell-d) (%)
Pyr + Glu — Ala + aKG_M. 0.10 0.14 44.7
OAA_M + Glu — Asp + aKG_M | -0.18 -0.20 11.8
OAA M + Gln — Asn + aKG_M ©0.00 0.00 -
Glu — aKG + NH4* S o028 ) 0.24 16.0
Glu — Pro ' ' : - 0.01 : 0.04 292
PG + Ala — Pyr + Ser 0.02 0.04 108
Ser — Gly : -0.01 - -0.02 132
Val — SuCoA M + COy =~ - 0.02 0.01 48.5
Leu — 3ACoA M ‘ ©0.03 0.04 16.7
Lys — 2ACoA M + 2COq 0.00 0.01 -
Met — Cys ' : ) 0.01 - 0.02 50.0
Thr — ACoA + Gly - =~ ~ - 0.03 0.03 2.67
Ile = ACoA_M + SucCoA_M 0.04 . 0.04 11.0
His — Glu 4+ NH4™" : 0.02 ©0.01 ©31.0
Gln — Glu + NH4" 0.16 0.14 9.81
Arg + aKG_M — 2Glu 0.02 0.03 43.5
Trp — Pyr_M + 2ACoA M + NH4™ 0.01 0.00 67.0
Tyr — 2ACoA_M + Fum_M + CO2 0.01 0.01 13.0
Phe — 2ACoA_M + Fum_M + COq 0.00 0.00 -
Cys — Pyr_ M + NH4" 1 0.01 4 0.03 199

8.5 Conclusions .

We have compared flux estimates from the metabolite balancing and isotope tracer methods
for CHO cells in high-density perfusion culture. There was good agreement in the glycolytic,
TCA cycle and oxidative phosphorylation fluxes from these methods with <8% difference for
most fluxes. The percentage differences in the amino acid fluxes were high, primarily because
these fluxes were typically two orders of magnitude lower than those in glycolysis and the
TCA cycle and thus sensitive to small variations in the larger fluxes. Fluxes through the
PPP and anaplerotic conversion of pyruvate to oxaloacetate could only be estimated by the
isotope tracer method. While inclusion of these fluxes makes the bioreaction network more
representative of cell metabolism, their omission will have a limited impact on other fluxes
in the network (perhaps <10%). The similérity in flux estimates from these two methods is
confirmation that fluxes from the metabolite balancing method are a good representation of

cellular metabolism and can be routinely used to characterize cellular metabolism in process
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development and manufacturing bioreactors.
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Chapter 9

Quasi Real Time Metabolic Flux
Analysis1

9.1 Introduction

Mammalian cells are widély used for the production. of therapeutic proteins that require
their ability to effectively fold and glycosylate proteins. However, productivities from typ-
ical mammalian cell processes are low and a variety of approaches have been taken to
overcome this limitation. These include bioprocess engineering of perfusion culture reactors
to 20 x 106 cells/mL cell densities [1, 2], and developing improved feeding strategies to
optimize cellular métabolism»[B,‘ 4]. Another tool for productivity engineering is metabolic
flux analysis (MFA) which determines carbon fluxes in the central carbon metabolism and
related pathways [5-8]. MFA provides insights into cellular metabolism, especiélly under
 varied environmental bioreactor conditions, rapidly clarifying cellular responses to culture
conditions that can influence productivities. , '

Most studies on MFA use either the s,toichiome‘tri_c approach [9, 10] or the isotope tracer
approach [11] to estimate intracellular fluxes. In these studies, metabolic fluxes are com-
puted off-line after analysis of nutrient and metabolite levels or isotopic tracer concentrations
(i.e. hours or days). While this a;;proach allows for quantification of metabolic fluxes in the
chosen reaction pathway and provides information on cellular physiology and metabolism,
its off-line nature limits the MFA impact. and can even slow down the rate of bioprocess

- diagnostics, decision-making and control. To fully realize the potential of MFA, real-time

- YA version of this chapter has been accepted for publication. Goudar, C.T., Biener, R., Zhang, C.,
Michaels, J., Piret, J. and Konstantinov, K. (2006) Towards industrial application of réal-time metabolic
flux analysis for animal cell culture. Advances in Biochemical Engineering and Biotechnology.
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‘metabolic ﬂux 1nf0rmat10n should be coupled with automated process control strategies to
more rapidly optlmlze bloreactor operation.

Early apphcatlons of on-line data for process optlmlzatlon include analysis of stoichiom-
etry [12-14], heat balances [15], and respiratory quotient measurements [16]. It is now
common practice to use information on stoichiometry as well as specific uptake and produc-
tion rates for on-line identification and control of bioprocesses [17]. However, this approach
- has not been reported using real-time information on the network of intracellular fluxes.

In the present study, we present a framework for a qua51 real-time metabolic flux analy-
sis system and illustrate - 1ts_apphcat10n studying the metabolism of CHO cells in high
cell-density perfusion culture. This was achieved through seamless integration of LabVIEW
(National Instruments, TX), the process 'mohitoring and control environment, with MAT-
LAB (Mathworks, MA) for metabolic flux computation. Metabolic fluxes were computed
- for a 15 L bioreactor where glucose and glutamine concentrations were varied during the
course of ‘the expériment. Sehsitivity analysis was performed on key metabolic fluxes to

provide the basis for a discussion of the need for accurate and reliable on-line sensors.

9.2 Framework for QRT-MFA

A schematic representation of the evolution of bioreactor monitoring and physiological state
identification techniques is shown in Figure 9.1. The environment in the bioreactor is
characterized by several key process variables including pH, temperature, dissolved oxygen
concentration and_'the cell specific perfusion rate (CSPR) in addition to concentrations of
carbon and ehergy sources such as glucose and glutamine and metabolites such as lactate
and ammonia. Information on cellular physiology and metabolism is obtained in the physi-
ological state identification step which can be further sub-divided into two categories which
provide extracellular and intracellular infor.mati'on, respectively. Extracellular information
includes specific nutrient uptake and metabolite production rates, and the specific growth
rate of cells. This information comprises a portion of the étate vector that describes the
physiology of the cell and can be used to guide bioreactor operation [18]. However, the
physiological state vector defined in this fashion is limited to extracellular information. The
next logical step towards 'obtainihg more information on cell physiology and metabolism is
through the computation of intracellular fluxes. This upgrade of information content in the
physiological state vector can help‘ implement better control strategies that can result in
- improved bioreactor performance {19].

Our motivation for developing a framework that would enable metabolic flux calculation

in quasi—real-time,was to increase the quantitative information on cellular physiology and
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Figure 9.1: Evolution of bioreactor monitoring and physiological state identification strategies from
" environment to intracellular fluxes

~ metabolism to rapidly detect and understand shifts in cellular metabolism. There is a great

deal of pressure in the biotechnology industry for rapid process development and optimiza-
tion. To achieve this objective, bioprocess development efforts need to be supported with
rapid énd high-quality information. QRT-MFA should be one such source of information
that could accelerate the development of diagnostic and process control strategies

A variety of factors were taken into consideration durmg the formulation of this frame-
work. Initial work was done with simple metabolic networks that were subsequently mod-
ified to incorporate additional reactions. T his resulted in the development of a metabolic
network model that could bé readily modified and tested. Another important feature was
the provision to include both on-line and off-line experimenta1 data as inputs for the com-
putation of metabolic fluxes. While _input»data for QRT-MFA would ideally be obtained
on-line, this is difﬁ'cvult to achieve in practice, especially given the extensive number of an-
alytical tests needed. With.continued dev.eldpment of on-line analytical techniques [20], it
should be possible in the future bt_o obtain more analytical information in real-time. Given
the large amoun’a of metabolic flux data genera’ﬁed during long perfuéion cultures (100 days
or more), prdvisions were mmade foAa'rchive this information in a relational database manage-
ment system. Thls facilitated- mining for correlations between experlmental variables and

key metabohc ﬁuxes as WelJ as the comparlson of results to archlved cultures.
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9.3 Materials and Met.h'(_),ds

9.3.1 Cell Line, Culture Medium and Bioreactor Operation

Chinese hamster ovary cells Were grown in perfusion culture using a medium with either 4.5
g/L glucose and 6 mM glutamine or with 6 g/L glucose and 8 mM glutamine (Table 9.1). All
experiments were conducted in 15 L bioreactors (MBR Bioreactor AG, Switzerland) with
al2L wdfking volume and a heated water jacket. The bioreactor was maintained at 37

°C, with agitation constant at 40 rme Dissolved oxygen (DO) was maintained at 50 % air

saturation by sparging mixed oxygen and nitrogen. Bioreactor pH was maintained at 6.8 by .
the addition of 0.3 M NaOH. The bioreactor was inoculated at ~1.0 x 105 cells/mL and cell
concentrations during the experiment were maintained between 10 and 30 x 108 cells/mL
by automatically bleeding cells from the bioreactor based on optical density measurements.
The bioreactor was operated in perfusion mode by continuously withdrawing reactor fluid
and passing it through a cell separation device. The cells were recycled back to the bioreactor
while the clarified liquid was harvested for subsequent puriﬁcation steps to isolate the protein

of interest.

Table 9.1: Medium composition and dilution rate for the six operating conditions examined in this

~ study

State | Glucose (g/L) Glutamine (mM) | Dilution Rate (vol/d)
A 4.5 "6 2 '
B 6 8 ' 2
C 6 g - 15

D 6 8 1
E 4.5 6 1
F 6 8

- 9.3.2  Analytical Methods

Samples from the bloreactor and the harvest stream were taken daily for cell density and

" viability analy51s usmg a heamocytometer and the trypan blue dye-exclusion method, re-

spectively. Cell sizes were- determined using a particle counter (Casy, Schirfe Systems,
Germany). These Samples were then cenlrifuged in a’Beckman CS-6 centrifuge (Beckman
Coulter, CA) and the supernatant analyzed for nutrient and metabolite concentrations.
Glucose lactate glutamine and glutamate concentrations were determined using a YSI

Model 2700 analyzer (Yellow Springs Instruments, OH) while ammonia was measured using
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an Ektachem DT60 analyzer (Eastman Kodak, NY). DO and pH were measured online using
retractable Ingold electrodes (Ingold Electrodes, MA). The accuracy of these measurements
was verified off-line using a Stat Profile 9 blood gas analyzer (Nova Biomedical, MA). The
same instrument was also measured the dissolved COz concentration. On-line measurements
of cell density were made with a retractable optical density pr'obe (Aquasant Messtechnik,
Switzerland) calibrated with cell density estimated by the heamocytometer. Amino acids
were analyzed on a HP 1090 HPLC (Hewlett Packard, CA) using the AminoQuant protocol
(Series II Operator’s Handbook) with pre-columh'derivitiiaﬁion by ortho-phthalaldehyde
and 9-ﬂudrenylmet_hyl chloroformate for detection of primary and secondary amino acids,

respectively.

9.3.3 Estimation of Specific Rates

A mass balance on viable cells in the bioreactor and the cell bleed system results in

(9.1)

M=y ) xE

_FB (BNX 1 ax]
» XE  XB dt

where p/ is the apparent specific growth rate (1/day), Fp, the bleed rate (L/day), V, the

~ bioreactor volume (L), F},, the harvest flow rate (L/day), X, the viable cell density in

the harvest stream (x 10° cells/mL), X, the viable cell density in the bioreactor (x 10°
cells/L) and ¢t is time (days). Specific nutrient uptake and metabolite production rates were

computed from
Fr,

) = B in — You 2
q VX‘? (C C t)- (9 )

where g represents the specific uptake or production rate (mol/ 10%cells-day) and Cj, and

Cout are the bioreactor inlet and outlet concentrations (mol/L) of the nutrients or metabo-

lites.

- 9.3.4 Estimation of ].\/_Ietabolic Fluxes. .

‘The bioreaction network used in the study was similar to the one proposed for CHO cells (5]

with modifications to include reactions for all amino acids. It included a total of 65 reactions
and 40 metabolites and the uptake/production rates of 27 of the metabolites were measured.
The stoichiometric matrix was of full rank and the bioreaction network was characterized

by 2 degrees of freedom and 2 redundant measurements. A series of mass balance equations
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were written for each of the mé,t.abolites in the bioreaction network resulting in
Ax=r (9.3)

where A is the stoichiometric coefficient matrix, x, the vecto.r of unknown metabolic fluxes,
and r, the vector of uptake and production rates. Nutrient consumption and metabolite
production ratés were incorporated in r and intermediate metabolité production rates were
assumed to be zero based on the pseudo-steady-state hypothesis [21]. As the stoichiometric
matrix, A, was not square, and estimation of the metabolic flux vector, x, was done using

the weighted least squares approach
x=(ATy1A) T ATy Iy (9-4)

where 1 is the variance-covariance matrix associated with the rate vector r. Once the
metabolic flux vector was estimated, the sensitivity of the metabolic fluxes to the measure-

ments was estimated from
ox

or

(ATyp=1A) 7 Agp? (9.5)

9.3.5 Computer Implementation

To obtain metabolic flux estimates in a quasi-real-time fashion for on-line physiological
state identification, the computation of metabolic fluxes was integrated with on-line data
acquisition and process monitoring. A schematic of this approach is shown in Figure 9.2.
Specifically, LabVIEW (National Instruments, TX) was used for on-line data acquisition
and process control while all flux calculations were performed using FluxAnalyzer [22] in
MATLAB (Mathworks, Natick, MA). Seamless integration between these two environments
allowed transfer of specific rate data from LabView to MATLAB followed by subsequent
transfer of the computed metabolic fluxes in the reverse direction.

Information on cell density could be obtained in real-time from optical density mea-
surements and this information coupled with the bleed rate helped estimate the specific
growth rate of the cells. Oxygen and carbon dioxide concentrations in the bioreactor were
monitored in real-time as well as their concentrations in the inlet and exit gas streams. This
information was used in global mass balance expressions that were developed for the perfu-
sion system to estimate the oxygen uptake rate (OUR) and carbon-dioxide evolution rate
(CER). Concentrations of glucose, lactate, ammonia and amino acids were estimated off-line
using the analytical techniques described earlier. Given available labor and equipment, all

these measurements could be performed within one hour. This combination of on-line and
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Figure 9.2: Illustration of the framework for quasi real-time metabolic flux estimation

off-line data were initially transferred to LabVIEW and subsequent flux estimations that

“were performed using FluxAnalyzer were initiated from the LabVIEW environment itself.

This interface between LabVIEW and MAT LAB was designed to approximate real-time

- MFA such that on-line information from new sensors could be seamlessly incorporated. Re-

sults of the computations included a table containing the fluxes for all the reactions in the
bioreaction network along with a graphical depiction of the fluxes through the metabolic
network. These metabolic fluxes were archived to observe trends of key metabolic fluxes
over the course of the experiment. ‘ '
. : /

9.4 Results

The framework presented above was applied to study the metabolism of CHO cells in per-

- fusion culture at high cell densities. Medium composition and perfusion rates were modified

to obtain 6 different states designated as A through F (Table 9.1). The resulting metabolic
responses from the cells were subsequently quantified through metabolic flux analysis. The
cells were exposed.to increasing amounts of glicose and glutamine when switched from

state A to B. However, in C, D, and E, the cells were exposed to progressively decreasing

' amountSA of glucose and glutamine. States F and B had identical feed medium composition

and perfusion rates.  This helped quantify the effect of lower nutrient concentration (in
states B, C, and D) on cellular metabolism through a comparison of metabolic fluxes in
states B-and F. ' o '
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9.4.1 Cell Density, Glucose, and Lactate Concentrations -

Cell densities for states A through C were approximately 20 x 108 cells/mL while states E
and portions of D were characterized by values in the 5 — 10 x 10% cells/mL range (Figure
9.3). State F, which was identical t(')- state B in terms of medium feed and dilution rate
was characterized by cell densities between 10 and 30 x 108cells/mL. These changes in cell
densities were a consequence of the changes made to the cell bleed set-point. The motivation
for these changes was to Vinvestigate the performance of the process in the neighborhood of
20 x 10° cells/mL, the standard 'operatin'g éell ‘densit\y for this process. - ’

o

100 -

H
T

Viable Cell Density (_106 éellé/mL)

Glucose and Lactate Concentration (g/L)

o

Time (days)

Figure 9.3: Bioreactor viable cell density and glucose and lactate cdn_centrations over the course
-of the experiment. Medium composition and perfusion rates of states A through F are
defined in Table 8.1. [(e) bioreactor cell density; (o) glucose; (0) lactate].

9.4.2 Metabolic Fluxes at States A through F

Recognizing the dynamic nature, especially of states D, E, and F, 4 — 6 data points towards
the end of the 6 states A through F were used to compute extracellular rates using Eqgs.(9.1)
and (9.2). These calculated extracellular rates were averaged to obtain a single value for
each state. This information was subsequently used to compute intracellular metabolic
fluxes for states A through F frorr;,Eq.(9;4). A plot of the pyruvate flux into the TCA
cycle versus the pyruvate flux into lactate for-each of the six states is shown in Figure 9.4.
States A, B and C cluster in the region of high lactate and low TCA flux while states D,

E and F lie in the region where the lactate flux is relatively lower and the TCA cycle flux
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is correspondingly higher, indicative of a more efficient metabolic state. High values of
the pyruvate flux into the TCA cycle flux are desirable as this results in the production
of energy. Pyruvate flux to lactate is not desirable since lactate is a waste metabolite. It
appears that as the cells progressed fro_in state B to F, there was a shift in metabolism
towards a more efficient state as seen from the increase in the pyruvate flux into the TCA

cycle.

B
=)
]

o
n

N
)

Pyruvate flux ihto TCA cycle (pmol/cell/day)
w
o

N
o> -
L

1.0 15 - 20
Pyruvate to Lactate Flux (pmol/celi/day)

Figure 9.4: Profile of the two pyruvate fluxes at states A through F

Another approach to quantify the shift in metabolism due to changes in dilution rate is

by examination of flux distribution around the pyruvate branch point [23]. Figure 9.5 shows

. a time course of the gl'ycolytic flux plus the TCA cycle reflux divided by the inlet flux to

‘the, TCA cycle around the pyruvate branch point. Low values of this ratio indicate more

o efficient cycling of the carbon f‘ux from pyruvate while high values correspond to increased
- production of waste metabohtes such as lactate. It follows from Figure 9.5 that this ratio
o 'decreases with- decreasmg dllutlon rate Suggestmg a shift towards more efficient metabolism

o at lower dllutlon rates.

A comparlson of metabohc ﬂuxes through the TCA cycle for states B and F that were
characterlzed by the same medlum composmon and dilution rates revealed that the TCA

cycle ﬂuxes in state Fwere at least 30 % hlgher ‘than those in B. Hence, two different

‘ physmloglcal states were observed under sumlar reactor operatmg conditions. No significant

change in spec1ﬁc protem product1v1ty was, observed durlng the course of the experiment
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Figure 9.5: Metabolic flux distribution around the pyruvate branch point during the course of
the experiment. Higher values are indicative of waste metabolism while low values
correspond to increased carbon flux through the TCA cycle

(data not shown). This has significant implications for reactor design and operation since
lower production of waste metabolites such as la_ctate allow use of lower perfusion rates. This
can translate into reduced medium costs and a more concentrated harvest stream thereby
minimizing the volume of material that needs to be processed in subsequent purification

steps.

9.4.3 Sensitivity Analysis for the Practical Realization of QRT-MFA

One approach to overcoming some limitations of metabolite balancing is through the ap-
plication of sensitivity analysis where information on the effects of measured variables on
key metabolic fluxes can be quantified [19]. Sensitivities of the pyruvate kinase, pyruvate
‘dehydrogenase and citrate synthase fluxes to the various uptake and production rates are
shown in Figure 9.6 for states B and F. Glucose uptake rate, léctate production rate and
oxygen uptake rate have the most significant impact on the above mentioned fluxes for
both states B and F. For instance, a 1% change in OUR would cause a 1.5% change in the
pyruvate dehydrogenase flux for state B. The glucose uptake rate had a significant influence

on the pyruvate kinase'gind pyruvate dehydrogenase fluxes but only a minor effect on the

TCA cycle flux. This sensitivity'i_é similar to that of glutamine for the same fluxes. Once
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important metabolic fluxes are identified, the sensitix}ity of these fluxes to various input
data can be estimated and this information can be used to rank the input measurements.
An important observation in this study was that most of the amino-acids had only a minor
influence on the fluxes of central metabolism. Thus if only central metabolism fluxes are of
interest, off-line analysis of amino-.acids on a-daily basis should be adequate for computing
the metabolic fluxes with-reasonable accuracy. This is an important simplification for the
practical realization of QRT-MFA. ‘

[m] Pyn);/ate kinase ;3@ Pyruvate dehydrogenase WCitrate synthase

é State B

2

=

[}

=4

Q

[

¢ = N

& 2

5- e,

g 9% R
"@

Relative Sensitivities

Figure 9.6: Relative sensitivities of the calculated pyruvate kinase, pyruvate dehydrogenase, and
citrate synthase fluxes with respect to measured specific rates. Only those specific
rates with relative sensitivities greater than 0.05 are shown

9.5 Discussion

9.5.1 Steady State Multiplicityv

Exposing the cells to progressively decreasing amounts of glucose and glutamine by varying
either the medium composition or the perfusion rate caused a shift in metabolism towards

a more efficient state as seen by increased pyruvate flux to the TCA cycle coupled with
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decreased lactate productidn. This rrrani.fested as a reduction in the pyruvate branch point
flux ratio for the me_tabolically efficient state (F). Our observations on steady-state multi-
plicity are consistent with earlier chemostat studies where similar shifts in metabolism were
. observed at lower dilution rates [23-25]. _

Glicose and glutamine utilization characteristics of mammalian cells can be influenced
by their respective concentrations [4, 26-28]. Generally, high concentrations ofiglucose
result in increased glucose uptake rates with most of the glucose being converted to lactate.
Even if this phenomenon is th' accompanied by deceased specific protein productivities, it
is undesirable because it will result in increased lactate concentration in the bioreactor that
can adversely effect cell_growth [29]. Reduced lactate levels in a perfusion system can be
achieved either by a decrease in cell density or an increase in perfusion rate. HoWever, neither
- of these changes is desirable. As protein production is directly linked to cell concentration,
reduction in'cell density will decrease protein production while increased perfusion rates will
result in a.more dilute harvest stream. This can greatly increase the fluid volume that has to
be processed in subseque‘nt puriﬁcatiou operations. Alternatively, if cellular metabolism can
be altered te reduce lactate production when its aceumulation is limiting; high cell densities
can be malntalned and perfusmn rates can be lowered resulting in harvest streams with
. higher protem concentratlons '

9. 5. 2 Qua51-Real—T1me Metabohc Flux Analysis

,We have presented results on the shifts in metabolism of CHO cells in perfusmn culture
as a response to changes in experlmental conditions. There exist several other avenues
for the apphcatlon of metabolic flux analysis at the bioprocess level and these include
- clone selectlon medium. optlmlzatlon and optimization of phy51ca1 parameters such as pH,
temperature shear and DO among others. Moreover, metabolic Aux analysis can also be
-used in a process’ evaluatlon and control mode where changes to set- pomts can be made
based on the estimates of some key metabolic fluxes. However, to fully realize the potential
of metabohc flux analysis for these apphcatlons there is a need for rapld evaluation of the
fluxes; 1dea11y, in an on—hne fashion. This d1rectly translates into a need for reliable on-line

sensors for measurlng concentratlons of key nutrients, metabolites and amino-acids.

9.5.3 Sensors for RT—_MFA"

Based on results from the sensitivity analysis described above, on-line estimation of oxygen
uptake as well as glucose and- lactate concentrations should be given high priority because

of the signiﬁeant'inﬁuence they exert on . central metabolism fluxes. This can be followed
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by glutamine and ammonia coﬁcentfations that are also usually measured in an off-line
fashion. Given the rather compléx nature of amino-acid analysis, on-line analysis should
only be considered under special conditions when the application demands this information.
~ Flow injection analysis has been used for real-time measurement of glucose and am-
monia [17] while real-time measurement of glucose and. lactate has been demonstrated by
automatically drawing samples from the bioreactor through a circulation loop followed by

sample filtration to remove biomass and subsequent analysis using standard analyzers [30].

‘These approaches typically require the deployment of dedicated analyzers for each bioreactor

which becomes impractical in a process development scenario where a number of bioreactors
are operated simultanéously. Moreover, the presence of additional flow loops can increase
the contamination risk, especially for perfusion systems given their long operation times.
There has been progress in on-line estimation of glucose, lacfate, glutamine, and am-
monia through the use of near-infrared (NIR) and mid-infrared (MIR) spectroscopic mea-
surements [31, 32]. However, these measurements were characterized by high. standard
errors which may limit their practical use in experiments such as those performed in this
study. Specifically, the lowest standard errors in the NIR measurements for glucose, lac- '
tate, glutamine and ammonia Wére 0.82, 0.94, 0.55, and 0.76 mM, respectively [31] while
in the MIR measurements, standard errors for lactate measurements ranged from 1 to 3
mM, and those for glucose were approximately 1 mM [32]. The average concentrations
of glucose, lactate, glutamine, and ammonia in this study were 4.03, 16.3, 2.74, and 3.4
mM, respectiVely, requiriﬁg the use of more accurate methods of analysis. Conventional
off-line analytical instruments such as the YS'I 7100 MBS (YSI Inc., Yellow Springs, OH)
with preoision on the order of 0.11, 0.22, 0.1 and 0.1 mM for glucose, lactate, glutamine,
and ammonla respectively, are better suited for analysis where the concentrations of these
nutrients and metabohtes are low and when increased precision is desured Thus despite the
significant progress in bioprocess monitoring over the past few decades [20], there is still
a need for reliable sensors that would allow for on-line estimation of the concentrations of
key metabolites and amino acids. The applicability of new on-line sensors for real-time flux

analySis is currently being investigated in our laboratory.

9.5.4 Metabohte Balancmg and Isotope ’I‘racer Approaches as Applied
to QRT-MFA

As QRT-MFA requires the rapid, analy51s of experlmen‘ral data for estimation of metabohc
fluxes, it is not practical to use isotope tracer studles for estimating metabolic fluxes since

this technique is laborious both from experimental and analytical standpoints: It is well
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"known that metabolite - balancmg alone is not sufficient to estimate all the 1ntracellular
‘ ":metabohc pathway fluxes because the set of linear equations defined by these mass balances

"is underdetermined [11, 33, 34]. Some of these limitations can be overcome through the

. use .of additional constraints such as including the mass balance expressions of the co-

‘metabolites ATP or NAD(P)H,‘assuming the irreversibility of certain reactions, or through
the use of objective functions [35]. Moreover, the metabolite balancing technique can be
augmented with a few carefully planned isotope tracer studies that could validate the use -

of nutrient and metabolite mass balances alone for the estimation of metabolic fluxes.

9.5.5 Implementatlon of QRT MFA in this Study

An 1ntu1t1ve and visual approach towards estimating metabolic fluxes was used in this study.
Computatlon of metabolic¢ fluxes was initiated from the process monitoring and control envi-
-ronment in LabVIEW through a graphical user interface. The input information consisting
‘of rates of growth glucose and oxygen consumption, metabolite production, carbon-dioxide
evolution and uptake/ production rates of amino acids was provided. While there is a pro-
: _7v1s1on in the software to record’ and use this data in real-time, a combination of on-line and
off-line data was currently used as illustrated in Figure 9.2. Subsequent metabolic flux cal-
culations were performed using FluXAnalyzer in the MATLAB environment and the results
displayed both'in graphical and tabular format. The graphlcal display (Figure 9.7) showed
the metabolic ﬂux map along with values of key metabolic fluxes. Features of the graphical
display include a dlstlnctlon between computed fluxes and those obtained from experimen-
tal data and lines in the metabohc map with thickness proportional to the magnitude of
. the flux. The ‘tabular deplctlon hsts the magmtude of the fluxes through all the reactions
1n the metabolic pathway and has a provision* for normahzlng these fluxes based on any
nutrient/ metabolite of choice.

Seamless integration between the process monltormg and control environment (Lab-
VIEW) and the flux analysis computing environment (MATLAB) allowed easy access to
metabolic flux information in addition to other commonly measured experimental variables
such as pH, temperature and DO'along with some calculated variables such as cell growth
rate and specific uptake/ productlon rates of key nutrients and metabohtes As perfusion
experlments are often carried out over extended perlods of tlme this information can be
archived allowmg for- trendmg of key metabolic fluxes. Thus, changes in cellular metabolism
can be readily identified and once a cause-effect relatlonshlp has been established, this in-

formation can be used to make .appropriate’ modifications to process conditions that will

result ini the desired improvement in the process.
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IWNI%‘:

Figure 9.7: Graphical representation of the results of metabolic flux analysis. Distinction is made
between experimentally measured and calculated fluxes through use of color and the
thickness of the flux lines correspond to the magnitude of the respective fluxes

Currently, the time from sampling the bioreactor to obtaining all the necessary analytical
data for computing the metabolic fluxes through a combination of on-line and off-line mea-
surements is approximately 1 hour. Hence there is a 1 hour delay in obtaining a metabolic
snapshot of the bioreactor at any given time. This delay can be reduced signiﬁcéntly as more
data become reliably available on-line thereby énabling the transition from quasi-real-time

to real-time estimation of metabolic fluxes.

9.5.6 Practical Implications of QRT-MFA

Current industrial practice for cultivating mammalian cells in perfusion culture involves
bioreactor operation at desifed»set points for process variables such as cell specific perfu-
sion rate, pH, temperature, and dissolved oxygen concentration. Process characterization
involves off-line estimation of prime variables such as cell density, nutrient, metabolite and

_product concentrations. Control ‘schemes are typically based on values of the prime vari-
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ables alone. For instance; the bioreactor cell density control loop maintains constant cell
density by bleeding cells from the bioreactor. This can be readily accomplished as long there
is an on-line indicator of cell density such as an optical density probe. Indirect indicators
of cell density such as oxygen consumption rates could also be used for this purpose. It is
important to note that current operational protocols do not rely on detailed information on
cellular metabolism. a _ .

When metabolic 'ﬂuxes”can be estimated rapidly, a significant amount of quantitative
information on cellular metabolism becomes available which can be used in various process
control loops to guide bioreactor ‘performance in the desired direction. For instance, a
decrease in the stoichiorr_letrie ratio between lactate productioh and glucose consumption
from 1.36 mol/mol in normal culture to 0.04 mol/mol in a metabolically altered culture
was seen where the a,mou‘nt‘of glucose available to hybridoma cells in fed-batch culture was
reduced [24]. Based on their results, the authors suggest initiation of cultivation in fed-
batch mode and exposing cells to reduced amounts of glucose so that lactate production is
minimized resulting in very efficient. cellular metabohsm as seen by increased flux through
the TCA cycle. Once this shift in metabolism has occurred the bioreactor can be operated
in a continuous mode and the advantages of efficient metabolism can be leveraged. As seen
earlier, reduced lactate yields from glucose allow operation at lower perfusion rates resulting
in a concentrated protein stream for subsequent purification processes.

For robust implementation of such a control strategy that is based largely on the
metabolism of cells, it is necessary to obtain freqﬁent snapshots of cellular metabolism that
will provide valuable feedback on the efficacy of the process control strategy. In the initial

fed-batch phase of the process, metabolic flux information would be necessary to follow

‘the shift in metabolism from the high lactate producing state to one that is highly energy

efficient as seen by increased flux through the TCA cycle. The feeding strategy for glucose
could be based on the relative distribution of fluxes at the pyruvate branch point. During
the next phase of the experimentAwhere it is desired to maintain the efficient metabolic state
of the cells, metabolic fluxes provide the information necessary to characterize the physi-
ological state of the cells. Again glueose feeding 'du'ring the perfusion phase can be based
on flux distribution at the pyruvate branch point. While it can be ergued that the above
control strategy can be based on glucose concentration alone that Would be representative
of indirect control of cellular metabolism. With Tapid estimation of metabohc fluxes, it is
possible todlrectly control cellular metabolism by feeding glucose at a rate that ensures a
fixed distribution of fluxes at the pyruvate branch point. This concept of direct estimation
and control of cellular metabohsm in an 1ndustr1al mammalian cell bioreactor is novel and

more work is necessary to demonstrate the usefulness of EhlS app*oach towards accelerated
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" process development and optimized bioreactor operation.

 Other applications of QRT-MFA include medium optimization and cloné selection that
“are usually labor-intensive and time consuming approaches. For both these applications,
initial screening is usually done in a high throughput fashion followed by evaluation of a
small subset of high performers in bioreactors. Traditionally, specific protein productivity
and cell growth rate and Viability have been regarded as the most important indicators of
cell performance and we believe that inclusion of metabolic fluxes in this selection criteria

provides an extra line of evidence for selection of a particular medium formulation or clone.

9.6 Conclusions’

We have presented a ge’heral framework for quasi-real-time estimation of metabolic fluxes -
in a perfusion bioreactor. The concept is general and as it relies on metabolite balancing’
alone, it can be readily applied to both laboratory and industrial-scale bioreactors of prac-
tically any configuration. The utility of this approach towards mohitoring shifts in cellular
metabolism was demonstrated using CHO cells cultivated in perfusion reactors where ex-
posure to lower nutrient concentrations shifted cellular metabolism fowards a more efficient
state as seen by increased flux into the TCA cycle. This new state was characterized by
lower productlon of waste metabohtes with significant 1mphcatlons for reactor design and
operation. There exist several ofher scenarios such as clone selection; medium optimization,

and bioreactor environment optimization, among others, where MFA can be applied to op-
timize the operatioﬁ of mammalian cell bioreactors. While the framework provided in this
study aliows real-time computation of metabolic fluxes, it is limited by the lack of accurate
and reliable sensors for on-line estimation of key nutrient and metabolite concentrations.
"Once such sensors become available, they will enable the full realization of metabolic flux
analysis in real-time. This MFA implementation will substantially increase the quality
of information obtained from experiments in process development bioreactors resulting in
additional insights into cellular physiology and metabolism. This information can play a
significant role in the design. of operatlonal strategles for the production bioreactor where

the therapeutic protem will ﬁnally be made.

Bibliography

[1J Konstantinov, K.; Chubp@ S‘ Sajan, E.; Tsai, Y.; Yoon, S.; Golini, F. Real-time
biomass- concentratlon momtormg in animal- ceH cultures. Trends Biotechnol, 1994,
12(8) 324-33.



TR IEIN YOI AN TR T,y R T e A s

b

BIBLIOGRAPHY L 187

2]

3

4]

Trampler, F.; Sonderhoff, S.; " Pui, P Kilbufn D.; Piret, J. Acoustic cell filter-for high
density perfusion culture of hybrldoma cells. Bzo/ Technology, 1994, 12(3), 281-284.

Glacken, M.; Huang, C.; Sinskey, A. J Mathematlcal description of hybridoma culture
kinetics. III. Simulation of fed-batch reactors. J. Biotechnol., 1989, 10, 39-66.

Zhou, W. C.; Rehm, J.; Europa, A. F.; Hu, W. S. Alteration of mammalian cell

-metabolism by dynamic nutrient feeding. Cytotechnology, 1997, 24, 99—108.

Nyberg, G B.; Balcarcel, R. R Follstad, B. D.; Stephanopoulos G Wang, D. L
Metabolism of peptide amino, acids by Chinese hamster ovary cells grown in a complex
medium. Biotechnol Bioeng, 1999, 62(3), 324-35.

Bonarius, H.; de Gooijer, C.; Tramper, J.; Schmid, G. Determination of the respiration -

quotient in mammalian cell culture in bicarbonate buffered media. Biotechnol. Bioeng.,

- 1995, 45, 524-535.

[9]

(10]

(1]

12
13

[14]

_Stephanopoulos G.; Vallino, J. J. Network rlgldlty and metabolic engineering in
‘metabolite overproduc_:tlon. Science, 1991, 252(5013), 1675-1681.

Zupke, C.; Sinskey, A. J.; Stephanopoulos G. Intracellular Hux analysis applied to the

-effect of dissolved oxygen on hybrldomas Appl. Microbiol. Biotechnol., 1995, {4(1-2),

27 36.

Valline, J. J;,Stéphanopouios, G. Metabolic flux distributions in Corynebacterium
glutamicum during growth _ahd_ lysine: production. Biotechnol. Bioeng., 1993, 41 , 633-

646.

Varma, A.; Paisson‘, B. Met"aboli'c flux balancing: Basic concépts, écienti_ﬁc and prac-
tical use: Bio/Technology, 1994, 12, 994-998. - o '

Wiechert, W. 13C Metabolic Aux analysis. Metab. Eng., 2001, 3, 195-206.

Cooney, C.; Wang, H. Y ; Wang, D. 1. Computer-aided material balancing for predic-
tion of fermentation parameters. Biotechnol. Bioeng., 1977, 19, 55-67.

Wang, H.; Cooney, C.; Wang, D. Computer-aided baker’s yeast fermentations. Biotech-
nol. Bioeng., 1977, 19, 69-86. ' '

Wang, H.; Cooney, C Wang, D. I. Computer control of baker’s yeast production.
Bzotechﬂol Bioeng., 1979, 21 975-995.




: [15]

'[161

Y 3, B . e a
AR Y . RN
5 R R R
' el RS

BIBLIOGRAPHY o i L o . 188

Erickson, L. Application of mass-energy balarice in on—hne data analysis. Biotechnol.
Bioeng. Symp, 1979, 9, 48-60.

Spruytenburg, R.; Dunn, I.; Bourne, J. Computer control of glucose feed to a con-

o tlnuous culture of Sacchromyces cerevisiae using the resplratory quotient. Biotechnol.

[17]

g

'Bzoeng Symp, 1979, 9, 359.-

Herwig, C.; Marison, I; Stockar, U. .On-line stoichiometry and identiﬁcation of
metabolic state under' dynamic process conditions. Biotechnol. Bioeng., 2001, 75,

345-354.

Konstantinov, K. Monitoring and control of the phy51olog1cal state of’ cell cultures.

" Biotechnol. Bzoeng 1996 52( ) 271~ 289

[19l

- [20)

21

Stephanopoulos ‘G.; Aristodou, A; Nlelsen J. Metabolic Engineering. Prmczples and
Methodologzes Academic Press, San Dlego 1998.

Schugerl K. Progress in monitoring, modeling and control of bloprocesses durlng the
last 20 years J. Bzotechnol 2001, &;, 149-173.

Zupke C Stephanopoulos G. Intracellular ﬂux analy51s in hybrldomas using mass

" balances and In Vitro 13C NMR. Bzotechno‘l. .Bioeng., 1995, 45, 292-303.

[22]

4

s

[26]

Klarnt S.; Schuster, S.; Gilles, E. Calculability analysis in underdetermined metabolic
networks illustrated by a model of the central metabohsm in purple nonsulfur bacterra
Bzotechnol Bmeng 2002 77 734«751 ‘

-Follstad 'B.D,; Balcarcel R. R Stephanopoulos G Wang, D. I Metabohc flux

analysis of hvbrldoma continuous culture steady state mult1phc1ty Bzotechnol Bioeng,
1999, 63(6) 675-83. ' ' '

Europa, A F Gambhlr A Fu P. C.; Hu, W. S Multlple steady states with distinct
cellular metabohsm in contmuous culture of mammahan cells. Bzotechnol Bioeng, 2000,
67(1), 25— 34 B ' ' )

Cruz; H. J.; ’\/Iorelra J L; Carrondo M. J Metabohc shifts by nutrient mampulatlon»
in continuous cultures of BHK cells. Bzotechnol Bzoeng, 1999, 66(2), 104~ 13

Zhou W. C.; Rehm J.; Hu W S ngh viable cell concentration fed-batch cultures
of hybridoma, celis through on-hne nutrient feedmg Bzotechnol Bioeng., 1995, 46

- 579- b87



BIBLIOGRAPHY L S 189

[27]

[28]

[29]

- [30]

[31]

32]

Zielke, H.; Ozand, P.; Tildon, J.; Sevdalian, D.; Cornblath, M. Reciprocal regulation

~of glucose and. glutamine utilization by cultured human diploid fibroblasts. J. Cell.

Physiol., 1978, 95, 41-48.

Zielke, H, Zielke, C.;‘ Ozand, P. Glutamine: A major energy source for cultured
mammalian cells. Fed. Proc., 1984, 43, 121-125. '

Hassel, T.; Gleave, S.; Butler, M. Growth inhibition in animall cell culture: The effect
of lactate and ammonia. Appl. Biochem. Biotechnol., 1991, 30, 29-41.

Ozturk, S.; Thrift, J.; Blackie, J.; Naveh, D. Real-time monitoring and control of
glucose and lactate concentrations in a mammalian cell perfusion reactor. Biotechnol.
Bioeng., 1997, 53, 372-378.

Rhiel, M.; Cohen, M.;: Murhammer, D.; Arnold, M. Nondestructive near-infrared
spectroscopic measurement of multiple analytes in undiluted samples of serum-based
cell culture media. Biotechnol. Bioeng., 2002, 77, 73-82.

Rhiel, M.; Ducommun, P.; Bolzonella, I.; Marison, I.; von Stockar, U. Real-time in situ

monitoring of freely suspended and immobilized cell cultures based on mid-infrared

spectroscopic méasurements. Biotechnol: Bioeng., 2002, 77, 174-185.

[33]

Schmidt, K.; Marx, A.; de Graaf, A. A.; Wieéhert, W.; Sahm, H.; Nielséﬁ, J.; Villad-

sen,.J. 13C tracer experiments and metabolite balancing for metabolic flux analysis:

* Comparing two approaches. Biotechnol. Bioeng., 1998, 58, 254-257. ‘

Bonarius, H.; Houtman, J.; de Gooijer, C.; Tramper, J.; Schmid, G. Activity of

: glﬁtamate dehydrogenase is increased in ammonia-stressed hybridoma cells. Biotechnol

Bioeng, 1998, 57(4), 447-453.

Bonarius, H.; Schmid, G.; Tramper, J. Flux analysis of underdetermined metabolic

networks: the quest for the missing constraints. Trends Biotechnol., 1997, 15, 308-314.




| A, Part V

Conclusions and Future Work

190



Chapter 10
Conclusions

The study of cell physiology and metabolism is the unifying them.e in this’Work. Metabolic
~ flux analysis was used to quantify cell metabolism and both the rnetabolfte balancing and
isotope tracer methods were evaluated (Chapters 2, 3, 7 — 9). This approach was used to

study metabolism at high and low bioreactor pCOg concentratlons and 51gn1ﬁcant differences -

were observed (Chapter 4). Information on OUR and CER was necessary for metabolic flux
analysis and methods for estimating them in perfusion cultivations were developed (Chapter
5). For reliable apphcatlon of metabolic flux analysis to batch and fed- batch cultures, robust )
specific rates are necessary since these comprise the 1nput data set. Current methods of
specific rate estimation have multiple limitations and the logistic modehng framework was
- proposed- to address these limitations (Chapter 6). .

Despite significant advances in the mammalian cell cultivation technlques several chal-
lenges remain and some of them were addressed in this investigation. The adverse effects
of high bioreactor pCO2 on cell growth and protein productivity are well documented but
controlling bioreaetor pCOs closer to physiological levels is a challenge, especially in high-
density perfusion cultures. Examination of bioreactor pCO; sources indicated that cellular
COs production accounted for 25% of bioreactor pCOs with the remalmng due to NaHCO3
‘ .addltlon to neutralize the lactate produced by the cells. A simple pCO; reduction strategy
based on NaHCOj3 elimination was investigated and consistent pCOg Teduction on the order
of 70% was achieved in multiple experiments. This was accompanied by 68 — 123% increase
in growth rate and 58 - 92% increase in protein productixdty. These results were repro-
-duced at the manufaéturing-s‘cale conﬁrming the robustness of this simple pCO; reduction
' approach In addition, this method of pCOg reduction is general and can be readlly apphed
to fed- batch cultivations.

Mass balance expressions for oxygen and carbon dioxide in a perfnsion bioreactor were
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developed enabling estimation of céll—speciﬁc oxygen uptake (OUR) and carbon dioxide
evolution rates (CER). Speciation of CO; into HoCO3* and HCOj3 was taken into account
and the equilibrium constants were corrected for temperature and ionic strength effects
to ensure accurate CER estimation. Concentrations of oxygen and carbon dioxide in the
. exit gas stream were continuously monitored allowing real-time OUR and CER estimation.
In addition to providing useful information on cell physiology, this data eria_bled quasi-real-
time estimation of metabolic fluxes providing additional information on the cell physiological
state. |

Recognizing the need for rapid and reliable modeling of data from early stage process
development experiments, logistic equations were useci to fit data from batch and fed-batch
experiments. Since the logistic equatlons were analytlcally differentiable, derivatives and
hence specific rates were readily computed. In contrast to other modeling approaches such
* as polynomial fitting and discrete derivative evaluation, logistic specific rates were smooth
and logically constrained to the expected trends. The superiority of logistic modeling over
current methods was demonstrated by examining 55 batch and fed-batch data sets spanning
3 cell lines and 0.1 — 300 L reactor. 'volumes. This robustness coupled with si'mplicity of ap-
plication could make log1st1c modehng the method of choice for quantltatlvely characterizing
‘batch and fed-batch data. '

Metabolic flux analysis was used to quantify cell physiology and metabolism in perfusion
bioreactors. Metabolic models were deVeloped for BHK and CHO cells and fluxes were es-
timated in quasi-real-time using a combination of on-line and off-line measurements by the
metabolite balancing method. Reliability of the metabolic flux estimates by the metabo-
lite balancing method was ensured by comparison with data from isotope tracer studies.
Routine monitoring of laboratory and manufacturing-scale bioreactors was ’possible using
this method and this was also used to analyze transient c'hanges in cell metabolism when
bioreactor pH and DO were varied. This method of rapid flux analysis can also be used
to analyze the impact of ekéursioné in licensed manufacturing processes thereby helping
'product disposition. D1scard1ng excurs1on-assomated product is expenswe and the impact
of excursions are typically evaluated from a protein quahty standpomt Metabolic flux data
will quantify the excursion impact on cell physiology and this information can augment

protein quality data providing a_‘rriore conip_rehénsive view of theé excursion impact.
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10.1 Extensions of This Study
‘ ~10.1.1 MFA Applicétion to a Licensed Manufacturing Process

 Metabolic fluxes would be mosﬁ -useful if they could be linked to protein productivity and
quality as they can serve as surrbgates in quasi real-time. This is a challenging proposition
and is further complicated by the low recombinant protein concentration in mammalian cell
culture, often less than 0.1% of the total protein. Moreover, the pathways of central carbon
metabolism (whose fluxes are estimated by metabolic flux analysis) may not necessarily be
- coupled with those of protein glycosylation which makes it difficult to establish direct flux
. - product Quality correlationé. However, if correlations between flux and product quality
' data are esfablished from'/a large number of experiments, metabolic fluxes can be used
‘to empirically predict product qudlity signiﬁcantly-erihanéing the impact of metabolic flux
analysis. Preliminary data (Appendix J) has indicated no adverse impact on protein quality
from pH and DO changes and more detailed carbohydrate and associated analyses could
be pursued to search for where flux analysis might be corisistentlys correlated with quality
changes. “This would enable MFA to have a gréaﬁer impact on mammalian cell process

monitoring and control.

10.1.2 Metabolite Profiling

" Metabolic flux analysis provides information on intracellular rates but not on the concen-
tration of intracellular -metabolites. Information on intracellular metabolite concentrations
enables improved characterization of the ’métabolic phenotype and can provide insight into
the thermodynamic feasibility of reactions in the biochemical network (Appendix I). This ap-
“proach would be particularly useful if some intfacellu_lar metabolites could serve as markers
for protein -productivity‘and quality attributes such as glycosylation. Using a combination
of GC-MS and LC-MS analysis several hundred intracellular metabolites can be identified in
a high' throughput fashion [1-5]. These téchniqués are new and can be expected to improve
substantially in the near future resulfing in reliable measurement of additional metabolites.
Upon archival of such metabolomic data, statistical techniques can be used to classify ex-
periments based on intracéllular metabolite concentrations. Ongoing experiments can be
‘compared- with these classifications. to see if the experiment is in the desirable cluster and

appropriate corrective action can be taken if necéssary.

¢
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10.1.3 GS-MS for Isotope Tracer Studies.

Cell metabolism was characterized by a-combination of metabolite balancing and isotope
tracer analysis by NMR in this study. Albeit powerful, NMR, analysis requires a substantial -
amount of labeled glucdse in the cultivation medium making it expensive and subsequent
—sample aneﬂysis and flux comphtation are complicated. Some of these difficilties can be
overcome by using GC-MS since the amount of labeled substrate in the medium can be
reduced and sample analysis is easier [6-13]. It must however be recognized that GC-MS
and NMR can be complementary techhiques in some instances and the information from
GC-MS analysis could be slightly different than that ‘from NMR. Recent developments in
the application of GC-MS for metabolic flux analysis coupled with lower GC-MS equipment

costs should make this method more .éttractive for metabolic flux analysis.

10.1.4 Flux Analysis from Transient Data

Most isotope tracer experiments to date are based on the assumption that cells are at iso-
topic steady state. Thus, experiments with labeled substrate must be conducted for several
days before a sample can be drawn for analysis, greatly increasing experimental costs. If
transient data following the introduction of an isotope tracer could be used for flux analysis,
it would greatly reduce the requirement of labeled substrate. Moreover, metabolic shifts in
ény experiment can be investigated by injecting a pulse of labeled substrate and analyzing
" a sample shortly thereafter. This approach, however, presents modeling and computational -
challenges bécausé fractional enrichment of the isotope-isomers is time dependent and must
be described by a system of nonlinear differential equations [14]. It is likely that several
thousand differential equations and hundreds of parameters will be necessary to describe a
typical mammalian cell bioreaction network. Moreover, this system is likely to be stiff and
very sensitive to parameter values w'hicthQuld make their robust estimation very difficult.
This problem is perhaps best addressed by first considering a very simple network for which
aﬁalytical solutions of the differential equations are available. . This simplifies parameter
éstimation and can help establish the validity of flux estimation from transient data. The
model can subsequently be extended to include additional reactions such that numerical
solutions of the differential equations will become necessary. Extensive statistical testing

will be needed to prove that the resulting flux estimates are reliable and representative of

cell metabolism.
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10.1.5 Low CSPR Cultivation

High throughput pérfusion vculti\v/'at'ibon is especially attractive for unstable molecules because
their residence time at cultivation temperature can be reduced by increasing the perfusion
rate. While this is a major advantage, this mode of opération will not compare favorably
with a fed-batch process for stable molecules because of low protein concentration in the
harvest. If stable proteins are produced by cells with non-growth associated kinetics, sub-
stantial reduction of the perfusion rate is poss1ble without compromising cell viability and
protein productivity and quality. Operation at these low perfusion rates combines the ad-
vantages of perfusmn and fed—batch processes resultlng in stable high product concentration
over many months of operatlon The conceptual framework of low perfusion rate cultivation
and comparison with fed-batch cultivation has been developed and demonstrated for hy-
bridoma cells producing antibodies against tumor necrosis factor [15]. Application to other

stable molecules will further illustrate the ‘advantages of low perfusion rate cultivation.
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Appendix A

Computer Program for Flux

Estimation

The steps involved in flux estimation by the metabolite balancing and isotope tracer meth-
ods have been presented in Chapter 3. The isotope tracer method requires sophisticated
complitational strategies while those for the metabolite balancing method are simple, The
following is a simple MATLAB™ program that computes fluxes in the simplified bioreac-
tion network of Chapter 3. The program also performs redundancy and consistency analysis
from which improved flux estimates can be obtained through modified (improved) specific
rate data.

mfa_balancing.m (Flux Estimation in Overdetermined systems)

% mfa_balancing.m Computes Metabolic Fluxes for Mammalian Cells
% Reaction Network is from Balcarcel and Clark % (B.Prog.,19, 98-108 2003)

% Measurements include glucose, lactate, 02, and CO02
clear all

% 1. MATRIX DEFINITIONS
% Stoichiometirc Matrix, GT
GT=[-1000-100000;0-100010000;...
1 00-10003000;000-1000-0.5-0.50;..
00002-1-1000;00002-14-100;...
00000010-10;00002012.51.5-1];

% rank and condition number of GT
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rankGT =-rank(GT); condGT = coﬁd(GT)j

% Rate Vector, v
v = [-1,4788 1.7293 5.8333 -5.1369 0 0 0 0 0 0]’;

%2. FLUX ESTIMATION
% Separation of G into Gm and’ Gc
GmT = GT(:,1:4); GcT = GT(:,5:10);

% Separation of v into vm and vc
vm = v{1:4,1); vc = v(5:10,1);

% Unknown Rate Vector (Vc)‘Estimatipn!

vc = -pinv(GeT) *GmT+vm;

"% 3. ERROR DIAGNOSIS
»v % Redundancy Matrix E ‘
'R = GmT - GcT*pinv(GeT)*GmT; rankR = rank(R);

- % Reduced redundancy matric :
“Rr = [0.8099  0.4049 -0.2250 '—0.3599,
-0.3679 -0.1839° -0.6745 - -0.6131];

%.Delfa, e and F estimation

measurement_error = 0.1*ones(i,4)’;

delta = vm.*measﬁrement_error;'

el = Rr*vm;

deltal = deltax*delta’;

F = zeros(iength(vm);1ength(vm));

for -i=1:length(vm) F(i,i) =-deltal(i,i); end .

% Var-Cov Matrix of residuals and h estimation
tsi = Rr*F*Rr’ '

h = e1>*pinV(f$i)*e1

% Improved vm and vc estimates
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vn_new = (eye(4) - F*Rr’*inv(tsi)*Rr)*vm

-pinv (GeT) *GmT*vm_new

vec_new




Appendix B

Solutlon Chemlstry in a Perfusion

Bloreactor

Accurate quantitative description of the solution chemistry in a perfusion bioreactor is es-
sential to meaningfully interpret pCO; reduptipri due to, medium and base changes. Carbon
dioxide and and lactic acid are products of cellular metabolism that reduce bioreactor pH.
Base addition (usually NaOH, NaHCOg3 or NayCOg3) becomes necessary to maintain biore-
actor pH at the predefined setpoint (typically close to neutral). The complex nature of
the chemistry of COs dissociation must be modeled to close the CO9 mass balance in a
perfusion reactor. Since carbon dioxide evolution rate and RQ calculations are performed
using the CO2 mass balance expression, COy dynamics in the perfusion system must be
accurately accounted for. While carbon dioxide dissociation dynamics play a ceritral role,
the roles of other acids and bases such as lactic acid and ammonia are also important and

will be examined in this section.

B.1 Computer Porgrams for Solution Chemistry Calcula-

tions

Perfusion bioreactors are operated at temperatures close to 37°-C with medium ionic
strengths in excess of 0.1 M due to the presence of salts such as NaCl. This complicates
calculations because equilibfium constants must be corrected for temperature and ionic
strength (most literature data- are at 25° C and zero ionic strength).. Computer programs

were written to perfom these calculation and are described below.
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B.1.1 Temperature,Co'rrection for Equilibrium Constants

Most equilibrium constants available in databases and textbooks are for standard temper-
ature (25° C) and. these are not directly applicable to mammalian cell- cult‘ivations that are
typlcally around 37° C. The Van’t Hoff equation describes the temperature dependence of,.

the equilibrium constant

F (GO N

_ where K is the unknown equ111br1um constant at ternperature T, Kref the known equlhbrlum' S

at the reference temperature, Tr.f (usually 25° C), AH 0 the standard enthalpy change for ' '
the reaction and R the gas constant. All other factors affectlng the equilibrium constant
are assumed to be constant at the two temperatures. For the conversion of COyg) to -
HyCO3*, the Kref and T;..5 values are 10~ 147 and 298 K, respectlvely and R is 1.98'x-10~ 3
kcal/(mole-K). The standard enthalpy change, AH , can be estlmated as

=0 70 : s
_ R (B
<L viHl )products (Z viHl )reactants - ( 2)

~ where v; is the stoichiometric coefﬁcrent and H the enthalpy of formation of spec1es 1 at
25 °C and 1 atm pressure. Substituting -167, -94.05 and -68.32 kcal/ mole for the H values
of HyCO3*, COyy) and H,0, respectlvely, Eq. (B 2) becomes . ‘ :

AHO = (- 167) (<94.05 - 68.32)

reactants-

= 4.63 kcal/mole . (B.3)

products

Substltutlng for AH , R, Kref and Tref in Eq (B.1) results in K, = 107160
For the d1ssoc1atlon of H2C03* to HCOg3, the K, and Tmf values are 10~ 3 and 298
K, respectively and Ris 1. 98 x- 10 3 keal/ (mole—K). The standard enthalpy change, AHY,

can be estimated as
H' = (~165.18 + Oprodts (—167)enctants = 1-82 keal/mole  (B.4)

Substltutmg for AHO, R Kref and TTef in Eq. (B 1) results in K = 10630,

182 N/ 1IN e
K =107%% ) (s — == ) p=107%% " (B5
=10 eXp{(l 98 x 10~ 3) (298 310)} g | (B-5)
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For the dissociation of HCO3; to CO%, AH 0. can be estimated as

= —5.37 kcal/mole (B.6)

reactants

AH® = (-167 +0)

producté_

— (—161.63)

which upon substitution into Eq.(B.1) results in K = 1071048, The temperature corrected
(for 37 °C) equilibrium constants, 'Kg,‘Kl and K5 are thus 107160 107630 and 10-10-48,
respectively. The program vanthoff.m computes K from known values of K., AH 0 and
Trey using Eq.(B.1). |

Temperature Correction for Equilibrium Constants (vanthoff.m)

% USAGE: Type "vanthoff" at the Matlab command prompt

% PURPOSE:

% Computes equilibrium constant at a desired temperature
% ln(k/kref) = dHO/R [1/Tref - 1/T] OR

% k = kref exp {dHO/R [1/Tref - 1/T]}

% INPUTS

% 1. kref: Equilibrium constant at the reference temperature

% 2. Tref: Reference temperature (C)
%3. T : Temperature at which equilibrium constant is desired (©
% 4. dHO : Enthalpy change (KJ/mole)

% OQUTPUTS

% 1. k: Equilibrium constant at temperature T
% % Last Modified 07/10/2004

% INPUT INFORMATION

promptl = {’Reference (known) value of the equilibrium constant’, ...
h  ’Reference Temperature, (C)’;;.. .
’Temperature at which equilibrium constant is desired, ©?,...
’Change in Enthalpy, (KJ/mole)’};
titlel = ’Input For éﬁe Vant Hoff Equation’;
lineNol = 1; ) '
inputl = inpﬁtdlg(frompti,titlei,lineNol);



APPENDIX B. SOLUTION CHEMISTRY IN A PERFUSION BIOREACTOR 203

" kref - - str2num(inputi{1,1}) ;.

trefc = str2num(input1{2;1})§
tnewc = str2num(inputi1{3,1});

dho = str2num(input1{4,1});

% CALCULATIONS
k=fvanthoff (kref,trefc,tnewc,dhl);

% RESULT DISPLAY , _ _
~ disp(’The new value of the equilibrium constant is”)
disp (k) | | '

'B.1.2 Tonic Strength Céilculét_ion

- The ionic strength of a solution. can be calculated as

I:f%E:qﬁ S (B.7)

where C; and z; are charge and concentration. of species i, respectively. Ideally all species in -
the medlum must be. accounted for to get a representatlve ionic strength estimate. While
_this can be cumbersome for a complex mediuin formulation, 3 — 5 species with the highest - -
~ concentration are respon51b1e for the bulk of the ionic strength and using them in Eq.(B.7)
o vshould be adequate for most practical purposes.

Computlng Ionic Strength of a Solutlon (1on1cstrength m)

% USAGE: Type "ionicstrength" at the Matlab command prompt
% PURPOSE: ' ’ | |
h Computes Tonic Strength of a system
- "% INPUTS ‘ '
A
% 1. The no of species in the system
% 2. Concentration and Charge of eaoh species
% , Lo . .
Y. OUTPUTS
% 1. Ion1c Strength
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% % Last Modified 03/14/2004

promptl = (’Please enter the number of species’);
titlel = = ’Input For Ionic strength calculations’;
lineNol = 1; ‘ '

inputl = inputdlg(promptl,titlel,lineNol);
nospecies = str2num(inputi{i,1});

inpstr = inputi{1,1};.

concv= input (’Please enter species concentrations. Eg [0.01;0.01]: ’);

charge = input(’Please enter species charges. Eg [1;2]: ’);

if length(cohc) “= nospecies
disp(’concentration values not consistent with the number of species’)
elseif length(charge) ~= nospecies
disp(’Charge values not consistent with the number of species’).

else

istrength = fionicstréngth(conc,ché:ge);'
answer=[’The Ionic Strength is » num2str(istrength,4)];

~disp(answer)
end

B.1.3 Act'ivity- Coefficient Calculation

Species activities are a function of solution ionic strength with unity activity -coefficients
" at zero ionic strength. Thus species concentration and activity can be assumed to be
equivalent in solutions with very low ionic strength. Ionic strengths of typical cell culture
media are usually in exces of 0.1 M due to the presence of salts (especially NaCl) such
that species activity coefficients are substantially different than 1. Activity coefficients
can be calculated using the Debye-Huckel, extended Debye-Huckel, Guntelberg and Davies
equations depending upon the solution ionic strength. The driver program is actcoeff.m

where the user provides input data and chooses the appropriate activity coefficient equation.

Activity coefficients are estimated in separate function files for each correlation: Only the
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Davies equation is presented below as it is a;dequ_at'e to describe most mammalian cell culture

systems.

A
A
%
%
A

v

)

“t

A
h
b
b
h
h
b

h

Driver Program for Computing Activity Coefficients (actcoeff.m)

USAGE: Type "actcoéffﬂ at the Matlab command prompt

1

PURPOSE:
Computes Act1v1ty Coeff1c1ents based on Debye Huckel,
Extended Debye-Huckel, Guntelberg, and Davies Equations

INPUTS

A combination of

1. Ionic Strength

2. Charge of the ion
3. Temperature

4. Hydrated Ion size
OUTPUTS

1. Activity Coefficient

% Last Modified 07/11/2004

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

Information on the applicability of the various Correlations

selectl=menu(’Choose an Equation to Calculate Activity Coefficients’,

’Debye-Huckel Equation: (I < 0.01 M)’, _
' 'Extended Debye-Huckel Equation: (I < 0.1 M)’,
’Guntelberg Equation: (I <0.1M)°,
’Davies Equation: (I < 0.5 M)’,
’Activity Coefficients for a Neutral Species: (I < 5 M)’);

%%%%%%%%%%%%%%Z%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%1

. Debye-Huckel Equation

~ if selectl==
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{’Ionlc Strength’ ’Charge of the Ion’ ,’Temperature, 3}

pfomptl =

titlel = ’Input For the Debye Huckel Equatlon"
1ineN01 =1; ; :

inputl = iﬁputdig(promptl;titléi,liﬁéNol);
ionstr = = stf2num(input1{1,1});

charge = str2num(inputi{2,1}); "

templ = str2num(inputi{3,1});

1f ionstr > 0.01;
disp(® WARNING Ionic Strength > 0.01 M’)
disp(’Activity coefficients will not be accurate’)

-end

act1v1ty fdebyehuckel(lonstr charge, templ) ,
answer=["The Activity Coefficient is -’ num23tr(act1v1ty 1;
disp(answer) '

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%7%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 2. Extended Debye-Huckel Equation

elseif selectl==2 -

promptl = {’Ionic Strength’, ’Charge of the Ion shee .
’Hydrated Ion Size (Angstroms)’,’Temperature, (C)’};

tiflel; = ’Input For the Extended Debye Huckel Equation’ f
lineNol = 1; B '
inputl"'=>inputdlg(promptl,titlel,lineNol);

ionstr"_= Sfr2num(input1{1,1});

charge = str2nﬁm(ihput1{2,1});

a = str?num(inpufl{B,l});

templ ;fstrQnum(input1{4,$});'

if;ionstr,> 0.1;
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disp(’WARNING: Ionic Strength > 0. 1 M?)
dlsp(’Act1v1ty coefficients. will not be accurate’ )

- end

activity=fextdebyehuékel(ionstr,chérge,a,templ);
answer=[’The Activity Coefficient is num2str(activity,4)];
disp(answer) .

T T Tt T T T T o o T o o s o s o T A T T o T o T T e T A s e

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 3. Guntelberg Equation

elseif selectl1==3

promptl = {’Ionic Strength’,’Charge of the Ion’,’Temperature, (C)’};

titlel = ’Input For the Guntelberg Equation’;
lineNol = 1;

inputl = inputdlg(promptl,titlel,lineNol);
ionstr = str2num(inputi{1,1});

charge = str2num(inputi{2,1});

templ = = str2num(inputi{3,1});

if ionstr > 0.1;
disp(’WARNING: Ionic Strength > 0.1 M’)
disp(’Activity coefficients will not be accurate’)

end

activity=fguntélberg(ibnstr,charge,templ);
answer=[’The Activity Coefficient is ’ num2str(activity,4)];
disp(answer)

%%%%%%%%%7%%%%%%%%%%%%%7%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%2%%%%%%%%%%%%%%%%%%%%%7% R AR

% 4. Davies Equation

elseif selectl==
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prompt1 = {’Ionic Strength’,’Charge of the Ion’,’Temperature, (C)’};
titlel = ’Input For the Davies‘Equatioh’; :

lineNol = 1; S

inputl = inputdlg(promptil,titlel,lineNol);

ionstr = str2num(inputi{1,1});

charge = str2num(inputi{2,1});

templ =

str2num(inputi1{3,1});.

if- jonstr > 0.5;
dlsp(’WARNING Ionic Strength > 0.5 M’)
" disp(’Activity. coefflclents w1ll not be accurate )

end

activity=fdavies(ionstr,charge,templ);
_aniswer=[’The Activity Coefficient is ’ num2str(activity,4)];
' dlsp(answer)

_%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%7%%%%%%%%%%%%%%%%%7%%%%%%%%%
% 5. Neutral Spe01es

elseif selectl==5 , .
{’Ionic Strength’};

promptl =

titlel = ’Input For Computing Activity Coefficients for a Neutral..
Species’;

lineNol = 1; . o

inputl = inphtdlg(prompti,titlel,lineNel);"

ionstr = str2num(input1{1,1})f

1f ionstr > 5. 0
disp(’ WARNING: Tonic Strength > 5 oM )
dlsp(’Act1v1ty ‘coefficients will not be accurate’)

end
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activity=fneutral(ionstr);
‘answer=[’The Activity Coefficient is ’ num2str(activity,4)];
disp(answer) ' ' o

Tl Tt T T Tt T T T T T T s T T T o T e T o T o o o o T o o T o o o oo
end
Fuvnction.File for the Daviesvaquation (fdaviés.m)

function y = fdavies(ionstr,charge,templ)

o/o T .

% FDAVIES ia a function file that that computes thehaétivity coefficient
% using the Davies equation | ,

ho A

yA fdavies(ionstr,charge) computes activity coefficients at 25 C

% fdavies(ionstr,charge,templ) computes activity coefficients at.témpl c
% Last Modified 03/12/2004

if nargin ==
temp2 = 273.15;
elseif nargin ==
femp2=temp1+273.15;
else

disp(’Inappropriate numbér of input arguements’) .

end

temp2 = temp1+273.15;

A = 1.825.%10.76.%(78.3808.*temp2) .~ (-1.5); .
activity = 10." (-A.*charge."2.*((ionstr.~0.5./(1 + ionstr.~0.5))...

-0.2.*ionstr));

y=activity;

Function File for Neutral Species (fneutral.m)

function y = fneutral(ionstr) .

-
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h
A
A
b
h

h

FNEUTRAL ia a function filefthat that computes the activity coefficient

of a neutral species -’ *°

fneutral (ionstr) returns the activity coefficient of a neutral species

at an iomic strength.of ionstr -

Start 06/23/1999; Last Modified 03/12/2004

activity=10.7(0.1.*ionstr); ’

y=

activity;

B.1.4 Ionization Fractions

Ionization fractions provide information on the relative amounts of various species at any

given pH'. For instance, CO; produced by the cells exists in solution as HoCO3*, HCO;3

and CO% with their relative amounts dependent on solution pH. At a temperature of 37° C
and a pH of 6.8 (typical cultivation condtions), HoCO3*, HCOj3; and CO% make up 15.69,
84.26 and 5 x 1074% of the total COg in solution. This composition changes drastically with
pH variation such that HoCO3* is the dominant species under acidic conditions and CO%

makes up the majority of the solution CO2 under alkaline conditions. Estimating ionization

fractions is cumbersome, especially when correction for temperature and ionic strength need

to be made, and the following programs perform these calculations for monoprotic, diprotic

and triprotic systems.

b
h
h
h
h
A
b
h
h
b

Driver Program for Ionization Fraction Estimation (ionfrac.m)

USAGE: Type "ionfrac" at the Matlab command prompt

PURPOSE:
Computes ionization fractions for monoprotic, diprotic and triprotic acids

under non-standard conditions of temperature and jonic strength

INPUTS
1. pH: System pH
3. pKa: System pKa value(s)-

'Stumm, W., and Morgan, J. J: (1996). Aquatic Chemistry, John Wiley and Sons, New York.
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% OUTPUTS | ‘ |
% 1. a0,al: " Monoprotic system ionization fradtions
h 2. aO,algan ’ 'Diprdtic systemzioniZation fractions

% 3. a0,al,a2,a3: Triprotic system ioﬁization'fpactions
% Last Modified: 7/11/2004 -
a=menu(’Choose an acid’,’Monoproticf,’Diprotic’;’Tripfotic’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MONOPROTIC ACID

if a==1

promptl = {’System pH’,
’System pKa at 25 C’,
New Temperature (C)’,...
’Enthalpy Change (KJ/mole)’,
j?Ioniq‘Strength M}

titlel =>’Ihpﬁt For Monoprotic System Iohization'Fraction Calculation’;
lineNol = 1; N | B '
inputl =_inputdlg(promptl,titlei,lineNol);

ph = str2num(inputi{1,1});

pkaistd = str2num(input1{2,1});

trew .=.str2num(input1{3,1});

.dh01 = strénum(input1{4,1});
“ionstr = st;2num(ihput1{5,1});

pkai‘- =;fpkaiitoC(pkalstd,tnew,iohstr,dhOi);

A= flonfrar(ph pkal)

disp(’The 1on12at10n fractlons (a0, a1] for the monoprotlc system. .

are as follows’) ’

_‘disp(A)
%%%%%%%%%%7%%%%%%%%%%%%%%%%%A%%V%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% DIPROTIC ACID

elseii a==

promptl = {’System pH’,...
| ’Ionic Strength (M)’,...-
’System pKal at 25 C’,...
'System pKa2 at 25 C’,...
'New Temperature (C)’,... »
’Enthalpy Change for first.reaction (KJ/mole)’,...
5Entha1py Change for second reaction (KJ/mole)’};

titlel = ’Input For Diprotic System Ionization Fraction Calculation’;

lineNol = 1;

inputl = inputdlg(promptl,titlel,lineNol);
ph = str2num(inputi{1,1});
ionstr = str2num(inputi{2,1});

pkaistd = str2num(inputi{3,1});
pka2std = str2num(inputi{4,1});

tnew = stf2num(input1{5,1});
dho1 = str2num(inputi{6,1});
dh02 = str2num(input1{7,1});
pkal = fpkalitoc(pkalstd,tnew,ionstr,dh01);
pka2 . = fpkaQitoc(pkaZStd,tnew,iOnstr,dhO2);

A=fionfrac(ph,pkal,pka2);

212

disp(’The ionization fractions {a0, al, a2] for the diprotic system...

are as follows’)
disp(A) o . -
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

B A B AR A AR A AR AR L
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% TRIPROTIC ACID

elseif a==

promptl = {’System pH?,

titlel. =

‘lineNol =

inputl =

~ ph o
ionstr =
pkalstd =
pka2std =

.pka3dstd =
tnew . =
dho1 =
dh02 - =

pkal =
pka2 =
pka3 =

’Tonic Strength (M)’,

.’System pKal at 25 C’;.

’System pKa2 at 25 C’,

"'System pKeB at'25 c’,

'New Temperature 7,

.’Enthalpy Change- for FIRST reaction (KJ/mole)'
’Enthalpy Change ‘for SECOND reaction (KJ/mole)’
’Enthalpy Change for THIRD reaction (KJ/mole)’};

Input For Diprotic System Ionization Fraction Calculation’;

1;
inputdlg(prompti,titlel,lineNol);

str2num(input1{1,1});

str2num(input1{2,1});

str2num(input1{3,1});
str2nuh(input1{4,1});
str2num(input1{5,1});
str2nﬁm(input1{6,1});
str2num(input1{7,1});
str2num(input1{8,1});
st:2num(input1{9,1});

fpkalltoc(pkalstd tnew, 1onstr dh01);
fpka2itoc(pka2std,tnew, 1onstr dh02) ;
fpka31toc(pka38td,tnew,1onstr,dh03),

Afionfrac(ph,pkal,pka2,pka3);

disp(’The ionization fractions for'fhe‘triprotic system. ..

- [a0, al,

a2, a3] are as follows”)

213



APPENDIX B. SOLUTION CHEMISTRY IN A PERFUSION BIOREACTOR 214

disp(A) . ,
T o To o To o o T o o T o o T ot oo oo o oo oo o oo oo oo oo o oo oo o o oo T oo oo o o

end
Function ﬁle for Tonization Fraction Calculation (fionfrac.m)

function y = fionfrac(ph,pkal,pka2,pka3)

% FIONFRAC ia a function file that computes ionization fractioms for

% monoprotic diprotic and triprotic systems

"% fionfrac(ph,pkal) computes ionization fractions for a monoprotic system
% fionfrac(ph,pkal,pka2) computes ionization fractions for a diprotic system
yA fionfrac(ph,pkal,pka2,pka3)icomputes ionization fractions for a triprotic

% system
%Last Modified 03/05/2004

if nargin == .
h=10."(~-ph); kal=10."(-pkal);
a0=h/(h+kal); al=kal/(h+kal);
A=[a0,al]; e '

elseif.nargin == : .
h=10."(-ph); kal=10."(-pkal); ka2=iOm‘(-pka2);
b=h"2+h*kal+kal*ka2; - -
a0=h"2./b; al=h*kal/b; a2=kalxka2/b;
A=[a0,al,a2];

. elseif nargin == 4 o
h=10."(-ph); ka1=10.“(-pka1);.ka2=10.*(-pka2); ka3=10." (-pka3);
c=h~3+h"2xkal+h*kal*ka2+kal*ka2*ka3; ‘
a0=h"3/c; al=h"2xkal/c; a2=hxkal*ka2/c; a3=kalxka2*ka3/c;
A=[a0,al,a2,a3]:

else
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disp(’Inappropriate number of input arguements for computing...
ionization fractions °’)

end

y=A;
Correction of pkal for Temperature and Ionic Strength (fpkalitoc.m)

function y = fpkalitoc(pkalstd,tnew,ionstr,dhOl)
y .

"% FPKA1ITOC converts the Ka at standard conditions to that at a defined

==

% temperature

% and ionic strength

% .

% Last Modified 07/11/2004

kalstd = 10~ (-pkalstd);

kaltemp = fvanthoff(kalstd,25.0,tnew,dh01);
actl = fdavies(ionstf,l,tnew);

actneut = fneutfal(ionstr);

kalionstr = kalstd.*(actneut./(actl.*acti));
pkal. - = -loglO(kalionstr);

y = pkal;

Correction of pka2 for Temperature and Ionic Strength (fpka2itoc.m)

function y = fpkaQitoc(pkaQStd,tnew,ionstr,dhOQ)

A | .

% FPKA2ITOC converts the Ka2 at standard conditions to that at a defined
%, temperature '

% and ionic strength

% Last Modified 07/11/2004

ka2std = 10" (-pka2std);
ka2temp = fvanthoff(ka2std,25.0;tnew,dh02);
act2 =

fdavies(ionstr,2,tnew) ;
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ka2ionstr = ka2temp./act2;
pkéQ —loglO(ka21onstr)

y pka2;
Correction of pka3 for Temperature and Ionic Strength (fpka31toc m)

function y = fpka3itoc(pka33td,tnew,ionstr,dhOS)
% FPKA3ITOC converts the Ka3 at standard conditions to that at a defined
% temperature _ 4 o - ' o

% and ionic‘strength

Yy A :

% Last Modified 07/11/2004

 ka3std - =10"(-pka3std);
xa3temp = fvanthoff(ka3std,25.0,tnew;dh03);
act; = fdavies(ionstr,l,tneW);
act2 = fdavies(ionstr,2,tnew);
aet3 = fdavies(ionstr,S;tnew);

ka3ionstr = ka3temp.*(act2./(act1.*act2));

‘ pkaB, = -logl0O(ka3ionstr);

y = pka3;

B.1.5 pC-pH Diagrams

pC-pH diagrams are a plot of the log of the species concentration as a function of system

pH. They are an excellent visual representation of the relative amounts of various species

. at varying pH values and are an integral part of solution chemistry calculations. The

programs below provide pC-pH diagrams for monoprotic, diprotic and triprotic systems for

any temperature and ionic strength values.

Driver Program for Construction of pC pH Dlagrams (pcphclosed.m)

% USAGE: Type "pephcldsed" at the Matlab command'prompt

% PURPOSE:

% Constructs pC-pH diagrams for mono di and triprotie acids in closed
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% systems.
h

% INPUTS"
%
A
)
A
)
%
% OUTPUTS .

% 1. pC-PH diagram

. The molar concentration -
. System pKa(s)

. Temperatute

=W e

. Ionic strength

% Last Modified 03/167/2004

ali=menu(’Closed System pC-pH diagrams: Choose one of the following...
' options’,... .
’Standard Conditions (Temperature = 25C; Ionic Strength = 0)7,...

’Non-Standard Conditions ’);
% .1. STANDARD ‘CONDITIONS

if all== :

_a1=menu(’Closed System pC~pH‘diagrams: Choose one of the following...
~acids’ ' |

’Monoprotlc Acid at Standard Conditions (T= 25 C, I=0)’,

’Diprotic Ac1d at Standard Conditions (T= 25 C, I=0)’,

’Triprotic Acid at Standard Conditions: T= 25 C, I=0’);

if al==

promptl = {’Enter the Molar Concentratlon’ ’Enter the pKa'};.
‘titlel = ’Input For Monoprotlc System"

ilineNol =1; : o ,

inputl = inputdlg(pfomptl,titlél,lineNol);

ctot = str2num(input1{i;1});

‘pkal =

str2num(input1{2,1});
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a12=fpcphmonostd(ctot,pkal);

elseif al==2

promptl = {’Enter the Molar Concentration’,’Enter the pKal’,’Enter...
the pka2’}; ) ' -
titlel = ’Input For Diprotic System’;

“lineNo1l 1; '
inputdlg(promptl,titlel,lineNol);
ctot = str2num(input1{1,1}); | .
str2num(input1{2,1});

str2num(input1{3,1});

inputl

pkal
pka2

al2=fpcphdistd(ctot,pkal,pka2);

elseif al==3
promptl = {’Enter the Molar Concentration’,’Enter the pKal’,...
’Enter the pka2’,’Enter the pKa3’};

- titlel = ’Input For Triprotic System’;
lineNol = 1;
inputl = inputdlg(promptl,titlel,lineNol);

ctot -= str2num(inputi{1,1});
pkal = str2num(inputi{2,1});
" pka2 = str2num(inputi{3,1});
_Pka3 = str2num(inputi{4,1});

a12=fpcphtristd(ctot,pkal,pka2,pka3);

end

% 2. TEMPERATURE AND IONIC STRENGTH CORRECTIONS

elseif all==2

a1=menu(’Cloéed‘System pC—pHvaiagramsi Choose one of the...
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following acids’, ...
’Monoprotic Acid with Temperaturé and Ionic Strength...
Corrections’, ... .
’Diprotic Acid with Temperature and Ionic Sfrength...
Corrections’, ...
’Triprotic Acid with Temperature and Ionic Stfength..u

Corrections’);
if al==

promptl = {’Enter the Molar Conéentration’,’Enter the pKa at 25C’,...
’Enter the”ionic Strength’...
" ’Enter the Temperature’, ’Enter the enthalpy change. ..
(dH, Kcal/M) of the reaction*}; '

titlel = 3Input For Monoprotic System’;
lineNol = 1;

inputl = inputdlg(promptl,titlel,lineNol);
ctot = str2num(inputi{1,1});" |
pka125 = str2num(inputi{2,1});

ionstr = str2num(inputi{3,1});

temp = str2num(inpyt1{4,1});

deltah = stridum(inputi{s,1¥); "

a12=fpcphmonocor(ctot,pka125,ionstr,témp,deltah);
elseif al==2

promptl = {’Enter the Molar Concentration’,’Enter the pKal at 25C’,...
’Enter the pKa2 at 25C’,...
’Enter the ionic Strength’, ’Enter the Temperature’,...
’Enter the enthalpy change (dH, Kcal/M) for the first...
reaction’...
’Enter the enthalpy change (dH,‘Kcal/M) for the second...

reaction’};

titlel = ’Input For Diprotic System’;
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lineNol
inputl
" ctot
pkal2b
pka225
ionstr
temp
deltahl
deltah2

1;
inpufdlg(promptl;fitlel,lineNol);
str2num(inputi{1,1}); | k
str2num(input1{2,1});
str2num(input1{3,1});
str2num(input1{4,1});
str2num(input1{5,1});
str2num(input1{6,1});
str2num(input1{7,1});

a12=fpcphdicor(ctot,pka125,pka225,ionstr,temp,deltahl,deltah2);

elseif al==

promptl

titlel
lineNol
inputi
ctot
pkal2b
pka225
pka325
ionstr
temp
deltahil
deltah?2

3

= {’Enter the Molar Concentration’,’Enter the pKal at 25C’,...
’Enter the pKa2 at 25C’,’pKa3 at 25C°,...

’Enter the ionic Strength’,’Enter the Temperature’,.

’Enter the enthalpy change (dH, Kcal/M) for the first...
reaction’...

’Enter the enthalpy change (dH, Kcal/M) for the second...
reaction’...

'Enter the enthalpy change (dH, Kcal/M) for the third...

reaction’};

’Input For Diprotic System’;
1; '
inputdlg(prompti,titlel,lineNol);
str2num(inputi{1,1});
str2num(inputi1{2,1});
str2num(input1{3,1});
str2num(input1{4;1});
str2num(input1{5,1});
str2num(input1{6,1});
str2num(input1{7,1});
str2num(input1{8,1});
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deltah3 =.str2pﬁm(input1{§;1});'

alz= fpcphtr1cor(ctot,pka125 pka225, pka325 ionstr,temp, deltahl
deltah?2, deltahS)

end

end
Function File for Monoprotic Systems (fpcphmonocor.m)

function y = fpcphmonecor(ctot,pka25,ionstr,temp,deltah) .

% FPCPHMONOCOR ia a function file that that computes the pC pH dlagram ”

% for a monoprotic acid at spec1f1ed temperature and 1on1c strength

% fpcphmonocor(ctot,pka25,ionstr;temp,deltah) computes the pC—pHﬂdiagram

% for a monoprotic acid at temperature TEMP and ionic strength IONSTR

% Last Modified 03/16/2004

/A Temperature Corrections
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%7%%%%%%%%%%%%%%%%%%%%%%%%v
tempnew=temp+273. 15;

kwater=(10."(-14)). *exp(6723.704.%((1./298.15)- (1. /tempnew)))
pkwnew=-1logl0 (kwater) ;

ka25=10." (-pka25);
kanew=fvanthoff (ka25,25,temp,deltah) ;
pkanew=-log10 (kanew) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% COMPUTING ACTIVITY COEFFICiENTS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
"% Species Charge =
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~ chargel = 1;

act=fdavies(ionstr,bhafgel,temp); 1ogact=log10(act);A

%NEUTRAL SPECIES

actn=fneutra1(ionstf);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% [H+] CONCENTRATION

e e e o e e e e e o o o o e
ph=linspace(0,14,141)’; h=10.~(-ph); logh=-ph;

%[0H-1 CONCENTRATION

logoh=ph—pkwnew-ldgact~logact;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% AT NEW TEMPERATURE AND IONIC STRENGTH

o T o o o o o o oo oo oo o o T o T oo o e o oo T o
overact=(éctn./(act.*act));

kanewact=kanew. *overact;

pkanewact=-1og10(kanewact) ;

a=(ctot.*kanewact) ./ (h+kanewact) ;

loga=logl0(a);

ha=(ctot.*h);/(h+kanewéct);

logha=1log10(ha); ' _ .
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Z%%%Z%%%%%%%%%%%%%%%%%%%%%%%
spointx1=linspace(pkaéS,pka25,50)’;
spointyi=linspace(0,-14,50)";

spointx2=1inspace(pkanewatt,pkanewact,SO)’;

%%%%%%%%%%%%%%%%%%%%%%%%%Z%%%%%%%%%%%%%%%%%Z%%%%%%%%%%%%%%%

. % AT NEW TEMPERATURE AND IONIC STRENGTH
plot(ph,logh,’k’,ph,logqh;’r’,ph,logha,’b’,ph,loga,’m’,spointxl,...

spointyl, ’b--’,spointx2,spointyl, ’m--’)

222
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axis([0 14 -14 0])

xlabel(’pH’)

ylabel(’Log C’ )V ‘
title(’pC-pH dlagram for [HA] <----> [H+] + [A-]’)-

legend (’ [H+]’,’ [OH- ]’,’[HA]’,’[A 1, pKa(Std)’, pKa(New)’ —1)
o o o o oo o T o e o oo o oo T oo o T oo T oo o T T o T T e T s e T e

y1=pka25b;
disp(’The pka at 25 C and I=0 is’), disp(y1)
y=pkanewact;

disp(’The new pka is’), disp(y)

Function File for Diprotic Systems (fpcphdicor.m)

% .
» FPCPHDICOR ia a function file that that computes the pC-pH diagram

==

% for a diprotic acid at specified temperature and ionic strength’

h

=

% the pC-pH diagram
% for a diprotic ac1d at temperature TEMP and iomic strength IONSTR

% Last Modified 03/16/2004

% TEMPERATURE CORRECTIONS
%%%%%%%%A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
'tempnew—temp+273 15;

kwater=(10.7(-14)). *exp(6723 704.%((1./298. 15) (1. /tempnew)))
pkwnew=- log10(kwater) '

ka125=10. " (- pkai2s); A
kalnew=fvanthoff (kal25, 25 temp deltahl)
pkalnew=- 1og10(karnew)

A fpcphdicor(ctot,pka125,pka225,ionstr,temp;deltahl;deltah?) computes. ..

223

function y = fpcphdicor(ctot,pkal25,pka225,ionstr,témp,deltahl,deltah2);
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ka225=10. " (-pka225) ;
ka2new=fvanthoff (ka225,25, temp, deltah2)
pka2new=-log10(ka2new) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% COMPUTING ACTIVITY'COEFFICIENTS
.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Species Charge =

chargel = 1;

'act1=fdavies(ionstr,chargel,temp); logacti=logl0(actl);

- % Species Charge = 2
charge2 = 2;
act2=fdavies(ionstr,charge2,temp) ; 1ogact2=1og10(act2);

%NEUTRAL SPECIES
actn=fneutral (ionstr); logactn=logl0(actn);

% OVERALL ACTIVITIES
overact1=(1/(act1fact1)){'overact2=actn/(actl*actl); overact3=1/act2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% [H+] CONCENTRATION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% AT 25 C AND I=0

ph25=linspace(0,14,141)’; h25=10." (-ph25); logh25=-ph25; logoh25=ph26-14;

% AT THE NEW TEMPERATURE
ph=linspace(0,14,141)’; h=10."(-ph); logh=loglO(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%[OH-] CONCENTRATION
logoh:ph—pkwnew—logact1—1ogéct1;
L o A Y Y A Y Y Y Y Y Y Y S Y Y Y Y Y Y Y
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% CONCENTRATION BASED pKa'’s. AFTER ADJUSTMENTS FOR IONIC STRENGTH
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
kalnewconc=kalnew.*overact?2; )

pkalnewconcﬁ-loglo(ka;newconé);

ka2newconc=ka2new.*overad%SE ;
pka2newconc=-1logl0(ka2newconc) ;

L N O 8 O Y Y Y Y Y Y Y Y Y

% ACID CONCENTRATIONS AT NEW TEMPERATﬁRE AND IONIC STRENGTH

e e e e e e o e e e e e e e o ot e
h2a=ctot./(1 + kalnewconc./h + (kalnewconc.*ka2newconc)./(h."2));
logh2a=1og10(h2a); '

ha=ctot./(1+ h./kalnewconc + ka2newconc./h);

logha=log10(ha);

a=ctot./(1 + h."2./(kalnewconc.*ka2newconc) + h./ka2newconc);
loga=loglO(a);
Tttt Tt et T T T oot ho o oo o ot o e o Tt Vot ot o Voo o oo To o Voo oo Vot Fo e tofo oo

% CONSTRUCTING pKa’s
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
spointxl=linspace(pkal25, pka125 50)°
sp01ntx2—11nspace(pka225,pka225,50) ;
spointx3=linspace(pkalnewconc,pkalneﬁéonc,50)’;
spointx4=1inspace(pka2newconc,pka2neWconc,50)’;
spointyi=linspace(0,-14,50); |

e e e e e e o o e ot o o o o o e o o

% PLOTS
%%%%%%%%A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

lot(ph,logh,’k’,ph,logoh,’g’,ph,logh2a,’r’,ph,logha,’b’,ph,loga,’m’,...
p p g p g g ,P g‘ P g p g

225
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spointx1,spointyl, ’r—;’ spOintxZ spointyl ‘g7,

‘ spointx3,spointyl,, ’b--’ ,spointx4; sp01nty1 ‘m--")

axis([0 14 -14 01)

- xlabel(” pH’) .

" ylabel(’Log C’ )l _

title(’ ’pC-pH diagram for the Diprotic Acid [H2A]1’)

legend(’ [H+]’,’ [OH-]’, ’[H2A]’ > [HA-1",’ [A2-]",’pKal(std)’,’ pKa2(Std)’
‘pKal(new)’,”’ pKaQ(new)’ -1)-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%7%%%%%%%%%%

y1=[pka125, pka225] ;
disp(’The pkas at 25 C and I = 0 are [pKal, pKa2] are’);
disp(y1); ‘ ‘

" y=[pkalnewconc, pkaQnewconc];
disp(’The new pkas [pKal, pKa2] are’);
disp(y);
Function File for Triprotic Systems (fpcphtricor.m)

function y = fpcphtrlcor(ctot pkal25,pka225,pka325,ionstr temp deltahi
deltah2 deltah3);

v |

% FPCPHTRICOR ia a function file that that computes the pC-pH diagramb

/A fo;ﬁa diprotic acid at épecified temperature and ionic etrength"
% fpcphtricor(ctot, pka125 pka225 pka325,ionstr, temp, deltahl deltah2,deltah3)

% computes the pC-pH diagram
% for a triprotic acid at temperature TEMP and ionic strength IONSTR

% Last Modified 03/18/2004
- % TEMPERATURE CORRECTIONS
‘%%%%%%%%%%%%%%%%%%%%%%%%%%Z%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ltempnew?temp+273u15;

kwater=(10.7(-14)) . xexp(6723.704.%((1./298.15)-(1./tempnew))) ;
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pkwnew=-1log10 (kwater) ;

ka125=10." (-pkal25) ;
kalnew=fvanthoff (kal25,25,temp,deltahl);
pkalnew=-logl0(kalnew);

ka225=10. ~ (-pka225) ;
ka2new=fvanthoff(ka225,25,temp;deltah2);
pka2new=-log10(ka2new) ;

ka326=10." (-pka325);

ka3new=fvanthoff (ka325,25,temp,deltah3);
pka3new=-1og10(ka3new) ;

e e e et o e e e e ot o o e

% COMPUTING ACTIVITY COEFFICIENTS' .
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Species Charge = 1

chafgel = 1;

act1=fdavies(ionsﬁr,chargel,temp); logactl=loglO(actl);

% Species Charge = 2. .
charge2v= 2; . ,
act2=fdavies(ionstr,éharge?,temp); logact2=1logl0(act2);

% Species Charge = 3
charge3 = 3; '

act3=fdavies(ionstr,charge3,temp); logact3=logi0(act3);

JZNEUTRAL SPECIES

actn=fneutral (ionstr); logactn=loglO(actn);

% OVERALL ACTIVITIES

overactl=actn/(acti*act2); overact2=1/act2; overact3=act2/(acti*act3);

o e e e e e o o o o o e o o

227
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% [H+] CONCENTRATION .
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% AT THE NEW TEMPERATURE

ph=1inspace(0,i4,141)’; h=10."(-ph); iogh=1og10(h); '

%[0H-] CONCENTRATION
logoh=ph-pkwnew-logactl-logacti;
T T T o o T T o T e T ek o

% CONCENTRATION BASED‘pKa“s AFTER ADJUSTMENTS FOR IONIC'STRENGTH
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%.
kalnewconc=kalnew. *overactl;

pkalnewconc=-logl0(kalnewconc) ;

ka2Znewconc=kaZnew.*overact2;

pka2newconc=-1og10 (ka2newconc) ;

ka3newconc= ka3new *overactB

pka3newconc——log10(ka3newconc)
%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ACID CONCENTRATIONS AT NEW TEMPERATURE.ANDVIONIC STRENGTH
e e e e e e o e e ek o o e oo
h2a=ctot./(1 + kalnewconc./h + (kalnewconc.*ka2newconc)./(h.f2));
logh2a=1log10(h2a) ; |

ha=ctot./(1+ h./kalnewconc + kaZnewconc./h);
logha=logl0(ha); A

a=ctot./(1 + h»‘2./(kalnewconc.*ka2newcon¢) + hf/ka2newconc);
loga=logi0(a);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ACID CONCENTRATIONS;ATfNEW TEMPERATURE AND IONIC STRENGTH

228
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
h3a=ctot./(1 + kalnewconc./h + (kalnewconc.*ka2newconc)./(h.”2) + ...
(kalhéwconc.*ka2newconc.*ka3newconc)./(h.”S)); |

logh3a=logiO(hBé);

h2a=cfot./(h./ka1hewconc +'1 + ka2newconc./h + (ka2newconc.*ka3newconc)...
/(. 2)); ' '
logh2a=1log10(h2a);

ha=ctot./((h.“2)./(kalnewconc.*ka2newconc) + h./ka2newconc + 1 +...
ka3newconc./h) ; '
logha=logl0(ha) ;

a=ctot./((h."3)./(kalnewconc.*ka2newconc.*ka3newconc) + (h."2)./...
. (ka2newconc.*ka3newconc) + h /Ka3newconc + 1); "
loga=log10(a);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

h CONSTRUCTING pKa’s.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
spointxl=1linspace (pkal25,pkal25,50)’;
spo;ntx2—11nspace(pka225,pka225,50)’;
spoihti3=linspéce(pka325,pka325,50)’;
spointx4=1linspace(pkalnewconc,pkalnewconc,50)’;
spointx5=linspace(pka?newconc,pka2newcdnc;50)’;
spointx6=linspaée(pkaBnewconc pka3newconc,50) ’;
spointyl=linspace(0,-14;50)"; :
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% PLOTS :

e T o o e o o oo o o o oo oo e o o ot o o o o
plot(ph,logh,’y’{ph,logoh,’m’,ph,logh3a,5c’,ph,loghQa,’r’,ph,lqghé,...
’g’,ph,loga,’b’,spointxl,spointyl,’y--’,spointx2,spointyl,’m--’,

spointh,spointyi,’c-—’;spointx4,spointy1,’r——’,spointx5,spointy1,?g——’,
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spointx6,spointyl,’b--’)
axis([0 14 -14 0])
Xlabel(’pH’)'
ylabel(’Log C’)
title(’pC-pH diagram for the Trlprotlc Acid [HBA] )
legend (’ [H+]’,’[0H—]’,f[HBA]’,’[H2A]’,f[HA—]’,’[AQ—]’,’pKal(std)’,
’pKa2(std)’, ’pKa3(std)’, ’pKal(new)’,  ’pKa2(mew)’,’pKa3(new)’,-1)
Tl T T oo T T T ToToto o o oo T T To T o o o o o oo T To To o o oo o o To T o 2o s oo o o Jo T o o oo o o Fo o o o

y1=[pkal25, pka225, pka325]; '
disp(’The pkas at 25 C and I = 0 are [pKél, pKa2, pKa3] are’);
disp(y1);

y=[pkalnewconc, pka2newconc, pka3newconc];
disp(’ The new pkas [pKal pKa2, pKa3] are’);
disp(y);
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Appendix C

pCO- Contribut_or‘s in a Perfus’ion

System

C.1 Acids, Bases and Buffering Action
: C.l,i ~Carbon dioxide

Cells produce CO; that reduces culture pH and detailed information on CO2 dynamics has
been presented in Chapter 4. Figure C.1 shows the pC-pH diagram for the carbonate system.
At pH = 6.8, 85% of the CO; exists as HCO3 with 15% as HpCO3* and‘COg' virtually
non-existent. Thus a significant amount of the CO; produced by the cells is converted to
"HCOj and this conversion is accompanied by the release of H* that will reduce bioreactor

pH in the absence of buffering ability. .
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Figure C.1: pC-pH diagram foi* the bicarbonate system.
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C.1.2 Lactic Acid .

Cells convert a significant amount of glucose to lactic acid which subsequently dissociates

to lactate releasing a hyd-rogen ipn
C3HgO3 <« C3H503 + H+; K= 10386 (C.1)

The pC-pH diagram for lactate is shown in Figure C.2 from which it is clear that dissociation
of lactic acid to lactate virtually prdceeds to completion under culture conditions. Thus
each mole of lactic acid produced by the cells results in the formation of an H* ion that
must be neutralized either by the buffering action of the medium or by base addition.
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Figure C.2: pC-pH diagram for lactic acid.

C.1.3 Ammonia

Cellular conversion of glutamine to glutamate is accompanied by ammonia production and
abiotic glutamine degradation also results in the formation of ammonia. Ammonia can take

up a hydrogen ion forming ammonium
NH; + H o NH};  K; = 1092 A (C.2)

Figure C.3 shows concentration profiles of ammonia and ammonium as a function of pH.
At pH = 6.8, >99% is present as ammonium with negligible amount present as ammonia.
Conversion of ammonia to ammonium accdr’d'ing to Eq.(C.2) essentially proceeds to. com-
pletion ‘and helps neutralize some of the H* ions produced by the conversion of lactic acid

to lactate. However, ammonia production alone cannot provide adequate buffering action
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against lactic acid. For BHK cells in perf‘usi‘ori culture, the cell-specific lactate production
rate was 5-6 fold higher than the total ammonia production rate’ (cell and glutamine degra-
dation combined) suggesting that additional buffering either through a medlum component
or base addition is necessary for pH control.
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Figure C.3: pC-pH diagram for ammonia: ‘

C.14 Base Addition

The combination of CO and lactate production resultg in an excess of H+ ions that must
be neutralized to maintain bicreactor pH at the set point. This is done using a'combination
of buffer in the cultivation medium and base for pH control. Sodium bicarbonate is most
commonly used both in‘the medium and as base with NasCO3 and NaOH the other choices
for base. Elimination of NaHCO3 will significantly reduce bioreactor pCOg (Chapter 4) and
this is espeéially attractive for high-density perfusion systems. In the medium, NaHCOs3;
can be replaced by an organic buffer such as MOPS while Na;CO3 and NaOH can be used

as base for pH control.




Appendix D
Closed Loop pCOz Control

Elimination of NaHCO3 from the medium and base resulted in ~70% reduction in bioreactor
pCOy such that the final bio_reactor pCO; was 68 — 85 mm Hg (Chapter 4). Despite the
absence of closed loop pCO; control, pCOy levels remained relatively steady over the course‘
of a perfusion cultivation as the cell density was held constant. If further pCO3 reduction

and set point control are desired, a closed loop control strategy must be used.

D.1 pCO; Control Stfategy

Reduction in bioreactor pCOg is possible by stfipping with air, nitrogen or oxygen. A 25%
pCO2 reduction was seen in a manufacturing reactor when oxygen was sparged at 0.015 vvm

* (Chapter 4). Theréiis an‘upperll‘imitﬂ. on thé sparging rate because cell damage will occur at
very high rates. Moreover, Spargihg will affect bioreactor dissolved oxygen whose set point
control is of greater importance than pCOy control. Recognizing this interdependence of
DO and pCOs we propose a cascade-control strategy based on manipulating gas flows for
pCO; control in combination with DO and pH control (Figure D.1). -

The idea is to introduce a slow loop for pCOy control. When bioreactor pCOgq exceeds
the set-point, the total gas flow is increased to facilitate CO; stripping and bring the pCOq
value closer to the set-point. As oxygen ana' nitrogen make up the total gas flow, any
changes to this value will affect the bioreactor DO concentration. A cascade control loop
is thus necessary to ensure that bioreactor DO is maintained at its set?point despite total

.gas flow changes associated with pCOg control. Given the rapid DO dynamics, a fast loop
is necessary for DO control while a much slower loop will be adequate for pCO» control. If
CO3 gas is used as an acid for bioreactor pH control, the COy flow rate can be determined

by the pCOa2 controller as well.
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Figure D.1: Illustration of the pCOQ control strategy proposed in this study

D.2 Results from pCQO,; Control

~Bioreactor pCO; reduction on the order of 15 — 20% were observed using the above strategy.

When NaHCO3 was present in both the medium and the base, bioreactor pCOy dropped
from 7250 mm Hg to a value in the 200 - 210 mm Hg range. No beneficial metabolic and
productiifity responses were seen after this reduction. Upon NaHCOj3 removal from both
the medium and basé, bioreactor pCOy dropped from 84 mm Hg to 60 mm Hg bringing
it closer to the physiological range of 30 — 50 mm Hg (Chapter 4). However, there were
no changes in metabolism and prbductivity when bioreactor pCOg decreased from 84 to 60
mm Hg. For the BHK cells examined in this study, it appears that benefits from closed
loop pCOy control are minimal. A majority of the pCO2 reduction was due to NaHCOj3

elimination that resulted in substantial productivity increases (Chapter 4).



| Appendix E

RQ Estimation in Perfusion

Systems

E.1 Liquid Stream Contributions to OUR

Only gas phase contributions to OUR are accounted for in Eq.(5.1). The following analysis
will show that the liquid stream contributions are vneglig_ible and Eq.(5.1) indeed provides
accurate OUR estimates. Eq.(5.1) can be modified to include liquid streams

OUR = Gas Stream Contributions + Liquid Stream Contributions (E.1)

OUR = {Fp,0i"— Fo, o_g”t,}+{ (qum + FhaseC5e + FTC[> - (chl” +ECh+ th") }
where Fo, Fise, Fr, Fy, F}, are the mediufn, base, recycle, cell discard and harvest flow
rates, respectively (L/day), and C7™, C‘lbase, Cr, C}, C} the oxygen concentrations in the
medium, basé, recycle, bioreactor and harvest, respectively (mol/L). Liquid stream flow

rates in the above equation can’ be rewritten as
Fm+Fbasef_‘Fd+Fh=F/ (E:3)

Assuming that the medium and base streams are saturated with air (this was verified with
pO2 measurements in a blood gas analyzer) oxygen concentration in the liquid streams may

be rewritten as , ‘ .
CP + Cpase = 2C¢ o (E4)
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* when the DO concentration in the bioreactor is 50%. Substituting Egs.(E.3) and (E.4).in
Eq.(E.2) results in '

OUR = {Fo,08 — F52égut} + {F’C{’ +F, (C{ - C;’) } (E.5)

- Assuming a cell density of 20 x10° cells/mL and an OUR of 5 pmol/cell-d, the daily con-

sumption of oxygen in a bioreactor with a 10 L working volume is 1 mol/day. For the
experiments in this study, F’ was apprbximate_ly 35 L/day (30 L/day perfusion + 5 L/day
cell discard) and CP was 50% air saturation or 1.12 x 104 mol/L. The product F'C} is thus
3.9 x 10" mol/day which is only 0.39% of the daily consumption of oxygen. If no biological
activity is assumed in the settler, C] = Cf’ and the contribution of t-he F. (Cl’” - C’f) terrri
is zero. However, in reality, there is oxygen consumption in the settler and experimental
data indicate that the pOQ in the settler return étream (C]) is approkindately 10 mm Hg or
1.3% air sat.uration, Since -C] is very small when‘compared to Clb,_the contribution of the

“second term in the liquid stream can be readily approximated as FrClb which corresponds
to ~1.34 x 102 mol/day or 1.34% of the daily consumption of oxygen.

It is clear from the above analysis that the liquid stream, F’ Clb , accounts for 0.39% of
the OUR while the liquid stream, F,. (CT — C}), accounts for —1.34 %. Together, these two
liquid streams account for only 1% of the oxygen consumption in the bioreactor. It is thus
reasonable to conclude that there will be no significant loss in accuracy when Eq.(5.1) is
-used for OUR estimation. ’ ' ‘

E.2 k;a Estimation from OUR Data

. An interesting feature of the mass balance approaéh is that while it does not require kya
values for determining OUR, it actually allows kra estimation once the OUR has been

~determined. An expression for oxygen accumulation in the biorgaétor may be wri‘;ten as
| Ox.yg”en Accumulation = OTR - OUR | ' (E-.6)

where OTR transfer rate déﬁﬁéd as | N
OTR= kLa (C* -ct) | .'.('E‘.7)
where. C* is the oxygen co‘rhi‘céntrvat_ic‘_)‘n in eqvﬁ'ilib_:rigumA with the gas phase. Since bioreactor

DO concentration is controlled at a predetermined set point (usually 50%), there is no

accumulation of oxygen in the. bioreactor. Thus QUR = OTR ahd»kLa»can be determined
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from OUR

ko= —7T+ E.8

“Te-a) =

where C* = £,

usually measured as % saturation, it can be converted to mol/L using

p the oxygen partial pressure and H the Henry’s constant. Since Clb is

0.209 (Clb (% s&)t(;nation)) 760 .

H

c? (mol/L) = (E.9)

E.3  Effect of Medium and Base Composition on the Exit Gas
Flow Rate ‘

When carbonate species v(NaHCO;:, or NapCOj3) are present in the medium and base, they are
an abiotic source of COq ptoduction. Since both the medium and base enter the perfusion
system as liquids, they make no COy contributions to the inlet gas stream. They do,
however, contribute CO2 to the exit gas stream which should result in an increase in the
exit gas flow rate over the inlet gas stream. The OUR and CER mass balance expressions
derived above assume identical inlet and exit gas stream flow rates and the error introduced
by this assumption is examined in this section. Cellular CO3 production does not cause a net
increase in gas flow rates because it is a censequence of oxygen c‘onsyubmption. As mammalian
cell' RQ values are close to unity, oxygen uptake results in an equivalent amount (on a mole

basis) of CO2 production:

E.3.1 Medium with 2 g/L NaHCO; and 6% NaHCO3 as Base

This combination represents the worst case scenario since abiotic COq contribution from
both the medium and base are the highest. This results in a bioreactor pCOﬁ of 225 mm
Hg and a 5% COy concentration in the exit gas at a CER value of 4.89 pmol/cell-d. If we
make a conservative assumption that all exit gas CO; is from the medium and base, the
exit gas flow rate has to be'5% vhig"her than‘the inlet stream. To get a true estimate of COs
sources for the exit gas’ streams, cellular contribution must be accounted for. Using the
CQ-> mass balance expressions developed in Chapter 5, the following inlet and outlet steam
" COq comp051t10ns can be calculated ' ‘

" The medium and base streams make up 84% of the COQ]T in the inlet stream and are
thus responsible for 84_97 of [COgJT in the outlet stream as well. Since the CO, flow rate in

the exit stream in 5%, we expect to see a 4.2% increase in exit gas flow rate (84% of-5) when

both the medium and base'contain_ NaHCOj3. While the error in gas flow measurement may
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Table E.1: Carbon dioxide contributions from the inlet and outlet streams when both medium and
base streams contain sodium bicarbonate

Stream . . | [CO2]r (mol/d) | % Contribution
Inlet Streams ‘ :

Medium - 3.45 " 38

Base : - 4.18 : 46

| Cells 1.47 - 16

Outlet St;‘eams : .
_Harvest 7.38 81

Cell Discard . 025 3

Exit Gas ' 1.47 ) 16

be > 4.2%, it is still importé,nt; to correct the exit gas flow -rate to minimize the error in -
OUR and CER estimation. It must be noted that the exit gas stream carries 16% of [COa|T
leaving the system reflective of the distribution between HyCO3* and HCOg3. This number
is very close to the theoretically predicted value of 15.69% from Eq.(5.13).

E.3.2 Bicarbonate-free Medium and 6% Na,CO; as Base

This is a preferred combination’ sinc‘é COQ contributions from the medium and base are
minimized resulting in lower bioreactor pCOs. Under these conditions, bioreactor pCQOs is
73 mm Hg at a CER of 4.87 pmol/cell-d with 1.5% COq concentration in the exit gas.. The
[COQ]T concentratlons in the 1nlet and outlet streams are -

Table E.2: Carbon dioxide contrlbutmns from the inlet and outlet streams with bicarbonate-free
medium and sodlum carbonate as base - :

Stream [CO;]T (mol/d) | % Contribution

Inlet Streams
Medium 0 0
Base e 1450 50

Cells - |~ - 1.46 50

Outlet Streams N .
Harvest - . 239 82

Cell Discard 0.08 3

Exit Gas : 0.44 15

‘The base and cellular respiration contribute equally to [COg]r in the inlet streams such




APPENDIX E. RQ ESTIMATION IN PERFUSION SYSTEMS 240

that half the CO4 in the exit.‘strea'm is from base addition. We should thus expect a 0.75%
increase in the exit gas. flow rate (50% of 1.5) when the medium is bicarbonate-free and
NayCOs is used as base. This increase is very small and can be neglected with minimal
impact on OUR, and CER estimates. Just as the case with bicarbonate present both in
the medium and base, the exit gas stream carried 15% of [COy], very close to the 15.69%

theoretical prediction.

E.4 Compﬁter Programs for OUR and CER Estimation

henryo2.m (Computes Henry’s.constant for oxygen at the desired temperature)

function y = henryo2(temp) .
#HENRY02  Computes Henry’s constant for 02 at a desired temperature
%  Return results in mmHg-L/mole

%  Last Modified: 07/31/04

% Constants for Bunsen Coefficients

a = 4.9e-2; .
b =--1.335e-3;
¢ = 2.759e-5;
d = -3.23be-7;
e = 1.614e-9;

% Calculation of Bunsen Coefficient

alpha = a + b¥temp + cxtemp. 2 + d*temp."3 + extemp. 4;

% Calculation of Henry’s Constant

hdim = 273.15./(alpha.*(temp+237.15));
hkpalmole = (101.3%22.395)./alpha;
hatmlmole = hkpalmole*0.009869233;
hmmhgimole =

hkpalmole*7.500617; >

y = hmmhglmole;
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henryco2.m (Cdmputes Henryv’s‘ constant for '_COZ at the desired 'tempera-
ture) o ‘ ' '

function y = henrycanew(temp)
%HENRYC02 Computes Henry’s constant for CO2 at a de31red temperature
%  Return results in mmHg- L/mole '

yA Last‘Modifiéd: 01/29/04

% Coefficients of Power series for Bunsen Coefficients ‘
% (Eq.21 in Schumpe et al, (1982) Adv. Biochem. Eng. 24: 1-83)

a = 1.720;

b = -6.,689%e-2;
= 1.618e-3;.
= -2.284e-5;

1.394e-7;

% Calculation of Bumsen Coefficient

alpha = a + b*temp + c*temp”™2 + d*temp”3 + e*temp“4;

% Calculation of.Henry{s>ConStant _
273.15/ (alpha* (temp+237.15));

hdim . -
hkpalmole = (101.3%22.395)/alpha;
hatmlmole = hkpalmolex0.009869233;
hmmhglmole = hkpalmole*7.500617;

hy = hmmhglmole;

our.m (Computés OUR using global mass balances)

% OUR ESTIMATIDN IN PERFUSION SYSTEMS USING THE GLOBAL MASS BALANCE APPROACH

% Only gas phase contributions are used for QUR estimation

% SECTIDN 1: INPUT DATA

% 02 Flows (L/mln)

oZprompt ={’Inlet Total Gas Flow Rate (L/mln)’
’Inlet 02 Flow Rate (L/mln)’
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’% 02 in Exit Gas (4)7... -
’Bioreactor Viable Cell Density (x1076 cells/ml)’,...
'Bioreactor Volume (L)’}; .
02def={’0.1’,’0.041’,’25:7’,’20’,’12’};
02Title=’0Oxygen Flow Rate Data For OUR Estimation From Global Mass Balance’;
lineNo=1; -

o2input=inputdlg(o2prompt,02Title,lineNo,o02def);

gasflow

=" str2double (02input (1));
o2flowin = str2double(o2input(2));
yo2 : = str2double(o2input(3));
fved = str2double (02input(4));
vol = str2double(o2input(5));

% SECTION 2. CALCULATIONS -

% Gas Phase Calculations A

.tolowout

% Inlet , § :
o2flowin = onloﬁin*60*24; , ' %{(L/day)
02flowin = 1x02flowin/(0.08206%298.15); % (moles/day)
% Outlet
o2flowout = (y02/100)*gasflow; o %(L/min)
o2flowout = 02flowout*60%24; ' %(L/day)

= 1%62flowout/ (0.08206%298.15) ; % (moles/day)’

"% Total Gas Flows » _ ‘
totalo2in = o2flowin; ' %(moles/day)
totalo2out = o2flowout; ‘ ' ~ %(moles/day) -

% Global Mass Balance = ,
ourl = o2flowin - b2flowbnt; I %(moles/day)
our2 = ouri*lel2/(fvcd*1e6%vol*1000); ' %(pM/cell-q)
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%3. RESULT DISPLA?

disp(’The OUR in moles/day’), disp(ourl)
disp(’The OUR in pmole/cell/day’), disp(our2)

cerr.m (Computes CER using global mass balances)
% CER ESTIMATION IN PERFUSIDN SYSTEMS USING A COMBINATION OF GAS AND
% LIQUID PHASE MASS BALANCES _
% Program modified. to compute Real-time CER using data from Fermworks
% Last Modified 09/22/2005

clear all

% SECTION 1: ONLINE VARIABLES FROM FERMWORKS

pH_reactor =6.8; % (-)
temp_reactor = 35.5; % (C)
vol_reactor = 15; % (L)
flow_base = 2; % (L/day)
flow_purge = 5; % (L/day)
flow_harvest = 150; % L/day
total_gasflow. = 0.5; % (L/min)
co2_flowin - =05 % (L/min)
co2_out =1.5; % (W

% SECTION 2: OFFLINE VARIABLES ENTERED INTO FERMWORKS
72.7; % mm Hg
20; % 1076 cells/mL

pCO02_reactor

vcd_reactor

% SECTION 3. CALCULATIONS

% Rate Constants Corrected fdr'temperature and ionic strength effects
K1 10°(-6.07); % (=)

K2 10°(-10.04); % ()
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% Computing [CO2]T concentrations (moles/L)

% Medium: Determine [CO2]T from [H2CO03%] -

hconc = 10~ (-pH_reactor); Y% Bioreactor [H+]

convfactor = 1 + ki1./hconc + (kl.*k2)./hconc."2; o
a=1.720; b=-6.689%e-2; c= 1.618e-3; d=-2.284e-5; e=1.394e-7;

temp = temp_reactori

» alpha = a + b¥temp + c*temp™2 + dxtemp”3 + e*temp~4;

hkpalmole . = (101.3%22.395)/alpha;

hmmhglmole hkpalmolé*?.SOOSl?; ,
clbioreactor convfactor,*(pC0$;{\text{2}}$_reactor/hmmhglmole);

% Other [CO2]T Calculations (moles/L)

clpurge = clbioreactor;

clharvest = clbioreactor; ‘
clmedium =0; % NaHCO$_{\text{3}}$?free medium
clbase = |

0.723; % 6% Na2C03

% Calculation of Liquid’ Phase tCDQ]T Flows (moles/day)

% Inlet
co2medium = fléw_harvest*clmedium;
co2base = flow_base*cibase;
‘ inletliquid - = co2medium + co2base;
inletflows = [co2medium,co2base] ’;
h Outlet _ o
. co2purge = flow_purge*clbioreactor;
‘c02harvest = flow_harvest*clharvest;

oufletliquid = co2purge + coZharvest;

outletflows = [chpurge,co2harvest]’;

%.Gas Phase Calculations

% Inlet .
co2flowin = co2_flowin*60%24; ' %(L/day)
co2flowin = 1*co2flowin/(0.08206%298.15); % (moles/day)
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-

% Outlet _

co2flowout = (co2_out/100)*total_gasflow; %(L/min)
co2flowout = co2flowoﬁf*60*24g T - %(L/day)
co2flowout = 1*co2flowout/(0.08206%298.15); .  %(moles/day)

% Combined Gas and Liquid Phase Mass Balance

cerl = (co2flowout - coniowin)_+'(outietliquid - inletliquid);%(moles/day)

cerixlel2/(vcd_reactor*le6*vol_reactor*1000) ; "% (pmole/cell/day)

cer2
% SECTION 4. RESﬁﬁT:DISPLAY g

disp(’The CER in moles/day’), disp(cer?)
disp(’The CER in pmole/cell/day’), disp(cer2)

disp(’ Medium Carbonate  Cellular Activity (moles/day)’)
sources = [co2medium, co2base, cerl];

disp(sources)

disp(’ Harvest  Purge Basket Stripping (moles/day)’)

sinks = [co2harvest, c02purge, co2flowout] ;

disp(sinks)




Appe'ndix F
Logistic Equation Modeling

Detailed information of the analysis of data from mammalian cell batch cultures using
logistic equations is presented in Chapter 6. Computer programs developed for this analysis

can be classified into the following categories
e Logistic eQuation simulation
e Polynomial fitting of batch culture data,

e Nonlinear parameter estimation in logistic models

F.1 Logistic Equation Simulation

Programs in this category provide a means of graphically visualizing time profiles of the

dependent variable when the time vector and model parameters are known.

F.1.1 Generalized Logistic Equationﬁ

- The 4-parameter generalized logistic equation has been used to fit cell density as it can
describe both the ascending and decending portions of the viable cell density profile in a
batch culture.. The following programs Compute_the viable cell density and growth rate and

also provide a graphical representation of the oﬁtputl

 % gle_simulation.m

% Simulates growth curves from the 4-parameter
% generalized logistic equation

% Inputs: time range, model parameters

% Outputs: vectors of dependent variable, its

246
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% derivative, and the growth rate

% Uses gle_equation for function evaluation

% Chetan Goudar _
% Last Modified: 6/18/04

% Model Parameters _
k=[0.03057 4.84939 0.92957 2.03765]); -

el = k(1): di = k(2); c2 = k(3); d2 = k(4);

% Definition of the time vector

tlow = 0; .
thigh = 11;
t =.linspace(tlow,thigh,51)’;

% Function evaluation

fvcd = gle_equation(k,t);

% Derivative and growth rate computaion

‘terml = (c2/d2) .*exp(~t./d2);
term2 = (c1/d1).*exp(t./d1);

dydt = (fved.2).*(terml - term2);
mu = dydt./fvcd;

subplot(2,1,1)

plot(t,fvcd)

subplot(2,1,2)

plot(t,mu)

’ %%%%%ﬂ%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function y = gle_equation(k,t)

% function y = gle_equation(k,time)

" % Evaluates the 4~parameféf generalized logistic equation

% Inputs: model parameters, time vector

% Outputs: dependent variable vector

247
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% Chetan Goudar -
% Last Modified: 6/18/04

K(1); dl = k(2); c2 = k(3); d2 = k(4);
1./(cl.*exp(t./d1) + c2.*xexp(-t./d2));

y =%

cl

X

F.1.2 Logistic Growth Equation

248

The logistic growth equation has been used to describe variables that monotonically increase

during cultivation. These include lactate, ammonium and the product concnetration.

% lge_simulation.m
% Simulates logistic GROWTH curves

% Inputs: time range, model parameters

% Outputs: vectors of dependent variable and its derivatives

% Uses lge_equation for function evaluation

% Chetan Goudar
% Last Modified: 6/18/04

% Model Parameters
k=[0.01053 0.44560 1.05743]; -

1 =fk(1);.¢2 - k(2); d2 = k(é);

% Definition of the Time Vector
tlow=0;

‘thigh = 10;

t = linspace(tlow,thigh,SO)’;

v %‘Fuﬁétion‘Computation_:”

y = 1gefeqﬁation(k,t) .

% Derivative and Specific Rate Computation

‘terml = {(c2/d2);
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term?2
dydt

exp(~t./d2);
(y. ‘2) *terml.*term2;

N N A Y A Y Y Y S Y Y Y

function y = 1ge equation(k, t)

' F

function y = lge equation(k,time)
Evaluates‘the,B -parameter logistic growth equation
Inputs: model parameters, time vector ‘

Outputs:‘dependeht vVariable vector

Chetan Goudar

Last Modified: 6/18/04

k(1); ¢2 = k(2); d2 = k(3);
1./(cl + c2.xexp(-t./d2));

1.3 Logistic Decline Equation

The loglstlc dechne equation has been used to describe the nutrlents glucose and glutamme

that monotomcally decrease during cult1vat10n

%
%
y
h
% .

k=

lde_simulation.m . -

Simulates logistic DECLINE curves

Inputs: time.range; model pafameters‘

Outputs: vectors of dépendent Variable and. its derivatives -

Uses lde_équation for function evaluation

Chetan Goudar

- Last modified: 6/18/04

Model Parameters
[0.07141 4.61711 0.00000] ;

1= k(1); di = k(2); ¢2 = k(3);

b
tlow = 05

Definition of the Time Vector
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thigh = 11; .
t = linspace(tlow,thigh,51)’;
% Function Computatioﬁ i

y = lde_equatioﬂ(k}t);"’l

% Derivative and Specific Rate Computation

(-c1/d1); | -

exp(t./d1);

dydt = (y.‘2).*term1.*term2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Z%%%%%%%%%%%%%%%%%%%

terml

term?2

function y = lde_equation(k,t)

% function y = lde_equation(k,time)

% Evaluates the 3-parameter logistic decline equation
% Inputs: model parameters, time vector

% Outputs: dependent variable vector

% Chetan Goudar A
% Last Modified: 6/18/04

k(1); d1 = k(2); c2 = k(3);

cl =
x = 1./Ccl.*exp(t./dl) + c2);
y =%

F.2 Polynomial Fitting of Batch Culture Data

The programs in this section describe the fitting of cell culture data to polynomial functions.
This method is frequently used in the literature and is conceptually similar to the logistic

approach in that a functional form is used to approximate experimental data.

F.2.1 Fermentor Viable Cell Density

Polynomials of order 3 and 4 (4 and 5 parameters, respectively) were used to fit viable cell
density data so that a comparison could be made between fits from the 4-parameter logistic

equation.
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%%%%%%%%%%%%%%%%%x%%%%pRoGRAM_srART%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ved_polyfit.m ) V

% Fits polynomlals to v1ab1e cell den31ty data

% Inputs: vcd vs. time data

- % Outputs: depehdent variable, its derivatives and growth rate

A Chetan Goudar
Y Last modified:’ 6/20/04}

clear all
% Experimental Data

'A Bayer CHO Data (1) . .

% = {0.010 0. 938 2.000 2. 826 4 097 5. 010 6.035 6.989 7 917

A 8.722 9.826 10. 951]" c . :

%x [O 97 1.69 2.27 3.65 5.35 5.87 6. 23 6.67 5.14 5.88 3.66 ...
yA .3.45]°; ©  rsse = 1.6710;

%- Bayer CHO Data (2)

%t = [0. ooo 0. 917 2. 003 2.878 4.128 5.184 6. 142 6.986 8. 038.
b 8. 955 9. 854]"

xS = [1.07.1.83 2.99 3.91 5.68.17.29 8.5 7.49 4.87 3. 83]"
% . rsse = 2.3159;

% Bayer "CHO Data (3)

%t = [0.000°1.104 2.042 3.003 4.035 5. 080 5. 962 7.021 8.031.

% 8.997 9.833 10.969]); .

%x = [1.13 2.12 3.35 5.01 8.12 9.1 12 11.72 8.15 7.88 6.32 4;421’;
Yrsse = 4.0789; -

% Bree et al

A" [0.050 0.850 1.850 2.980 3.880 4. 860 5 820 6. 820 7.810.
h 8.800 9.800 10. 880] ’;

[0. 280 0.380 0.780 1.270 2 010 2.360 1.920 1.420 1.100.
%  0.560 0.480 0.290]’; rsse = 0.0586;
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h

%t

%x
%

.
A

p4
p5

h

x4
x5

A

pl
le
ti
x1

y1
VA

rs

rs

rs

Dalili et al

[0.029 0.429 0.666'1.557 1.888 2. 440 2.971 3.456 3. 963 4.518.
4.969 5.536 6. 651]"

[0.073 0.452 0.608 0.948 2.809 5.038 5.920 4.395 1.738 0.995... .
0.175 0.001 0.141]°; rsse = 0.8051;

Linz et al : ,

[0.088 0.891 1.446 1.964 2.474 2.895 3.989 4.932 5.454 6.499...
7.0201°; o
[O 283 0.346 0.913 1. 036 1.502 1 705 1.526 1.690 1. 611

1. 473 1. 090]’; rsse = 0.1595

Y A Y Y Y Y Y Y Y Y Y S Y Y Y
Polynomial Generatidn  .
= polyfit(t,x,3);

= polyfit(t,x,4);

Generating Curvés from Polynomial Fits

polyval(p4,t);

polyval(p5,t);

Plotting the Déta

ot(t,x,’o’,t,x4,t,x5)

gend(’Experimental Data’,’Order 3 Fit’,’Order 4 Fit’ O)
tle(’Experlmental Vlable Cell Den51ty Data and Polynomlal Fits’)
abel (’Time (days) ) '

abel(’Viable Cell Density (x E06 ce1ls/mL) )

Computing RSSE Values
sed: = sum((x4-x).72);

se5 = sum((x5-x).72); - - o

sedisplay = [rsse rSéé4‘rsse5]’
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yA COMPUTING mu’ VALUES
% for p4.
‘tfinal = 7.0;

1inspace(0,tfinal,50)’;
polyval(p4;t1);

t1

x4a

= p4(1); a2 = p4(2); a3 = p4(3);
dxdt4a = 3*a1*(x4a.”2) + 2*%a2.xxda + a3;
muda =4dxdt4a./x4a;

dxdtd = 3*ai*(x4.°2) + 2*a2.*x4 + a3;
ymuéd = dxdté./x4

% for pb
- tfinal = 7.0;

t1

linspace(0,tfinal,50)}’;

x5a 'polyval(p5;t1);

= p5(1); b2 = p5(2); b3 = p5(3); b4 = pb(4);
dxdtba = 3*alx(x4a.~2) + 2%a2.*xda + a3;
muba = dxdtba./x5a;
%%%%%%%%%%%%%%%%%%%%%%PROGRAM END%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

F.2.2 Glucose

Glucose concentration is fit using polynomials of order 2 an.d 3 and the results are compared

with those from the 3-parameter loglstlc decline equatlon

%%%%%%%%%%%%%%%%%%%%%%PROGRAM START%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% glucose_polyfit.m

% Fits polynomials to glucose data

% Inputs: glucose V3; time dataf-

% Outputs: dependent variable, SSE

% Chetan Goudar
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% Last modified: 6/20/04

clear all v

% Experimental Data

% Bayer CHO Data (1) . :

%t = [0.01 0.94 2.00 2.83 4.10 5.01 6.03 6.99 7.92 8.72 9.83 10.95]’;
%x = [62.05 61.90-57.36 53.02 46.77 41.01 36.94 33.49 31.52 30.03...
%26.15 26.08]’; rsse = 31.7931; S

% Bayer CHO Data (2) . -

%t = [0.00 0;92 2.00 2.88 4.13 5.18 6.14 6.99 8.04 8.95 9.85]’;

%x = [74.21 70.07 68.30 62,09 45.41 -30.43 20.37 16.32 10.30 5.50...
%3.09]7; rsse = 31.0813; :

% Bayer CHO Data (3) _

%.= [0.000 1.104 2.042 3.003 4.035 5.080 5.962 7.021 8.031 8.997...
%9.833 10.9691°; o |
%x = [70.758 70.284 66.701 62.123 52.451 43.706 27.389 20.338...
%13.195 8.401 4.931 1.500]’; - rsse = 25.5818; ‘

% Linz et al :

[0.038 0.902 1.434 1.921 2.407 2.893 3.902 4.908 5.433 5.861...

t =
6.385 7.005]"; B ; | , |
x = [9.084 8.016 6.797 5.164 3.669 2.173 0.973 0.185 0.067 0.084...

0.103 0.127]7; rsse = 0.1145;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Polynomial Generation
p3 = polyfit(t,x,2);

p4 = polyfit(t,x,3);

% Generating Curves from Polynomial Fits

x3 ?_polyvéltpS,t);

x4 = polyval(pd,t);



http://%13.195
http://8.4014.9311.500%5d'

APPENDIX F. LOGISTIC EQUATION MODELING 255

% Plotting the Data

plot(t,x,’0’,t,x3,t,x4)

legend(’Experimental Data’,’0Order-2 Fit’,’0Order-3 Fit’)
title(’Experimental Glucose Data andfPolyhoéial Fits’)
xlabel (’Time (days)’) ' |
ylabel(’Glucose (mM)’)

% Computing RSSE Values
rsse3 = sum(th-x).‘2);
rssed4 = sum((x4-x).72);
rssedisplay = [rsse rsse3 rsse4]’

TR PROGRAM. ENDII A

F.2.3 Glutamine

Just as with glucose, glutamine concnetration data is fit with polynomials of order 2 and 3
and the results are compared with those obtained from the logistic decline equation

I PROGRAM STARTIAIAMIAIAIIIIAIIBIIRINIAIININD
% glutamine_polyfit.m

% Fits polynomials to glutamine data

% Inputs: glucose vs. time data

% Outputs: dependent variable, SSE

% Chetan Goudar
% Last modified: 6/20/04

clear all

% Experimental Data

% Bayer CHO Data (1) _

%t = [0.010 0.938 2.000 2.826 4.097 5.010 6.035 6.989 7.917 8.722...
% 9.826 10.951]17; '

%x = [13.766 11.472 9.901 7.747 -5.366 4.034 3.077 2.645 2.715...

yA 2.593 2.094 2.245]°; . rsse = 3.4126;

% Bayer CHC Data (2)
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%t = [0.000 0.917 2.003 2.878 4.128 5.184 6.142 6.986 8.038 8.955 9.854]";
%x = [14.130.12.103 9.968 7.520 3.572 1.444 0.716 0.951 0.950 1.008...
% ©0.899]; © rsse = 2.8701;

% Bayer CHO Data (3) ,
% = [0.000 1.104 2.042 3.003 4.035 5. 080 5.962 7.021 8.031 8.997.
% - 9.833 10.969]";

%x = [13.903 11.900 9.976 7.843 5.234 2.868 1.742 1.212 0.936. ..
y/ 10.932 0.943 0.825]’; -~ rsse = 1.7139;

/ Bree et al :

yAS [0.07 0.85 1. 85 2.96 3.9 4.85 5.82 6.81 7.8 8.79 9. 81]7;
%X [2.65 2.49 1. 95 1 13 0.67 0.09° 0.1 0.05 0.17 0.11 0. 08]"
%rsse = 0. 0765

% Dalili et al

t [0.02 0.45 0.674 1.565 1.937 2.934 3.422 3.896 4.459 5.615 6.623]7;
X [0.498 0.492 0.394 0.298 0.193 0.008 0 0.006 0.005 0.009 0.007]’;
rsse =,O.CO491;

% Linz et al _

%t = [0.095 0. 947‘1.468 1.989 2.462 2.936. 3.883 4.972 5.445 5.966...

% 6.392 7.055]7;

hx [4 977 3.954 3. 628 3.116 2.698 2, 326 2.093 1.861 1.628 1 349.

Y% 1.07 0. 837]°; rsse = 0.2336
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Polynomial Generation
p3 = polyfit(t,x,2);
p4 = polyfit(t,x,3);

/Generatlng Curves from Polynomial Fits
x3 ’
x4

polyval(p3 t)

polyval(p4,t);

%Plotting the Data
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'plot(t,x,’o’,t,xB,t,x4)

legend (’Experimental Data’,’Order-2 Fit’,’Order-3 Fit’,0)

.title(’Experimental Glutamine Data and Polynomial Fits’)

xlabel(’Time (days)’)
ylabel(’Glutamine'(mM)’)

% Computing RSSE Values
rsse3 = sum((x3-x).°2);
rssed4 = sum((x4-x)."2);

rssedisplay = [rsse rsse3 rsse4 rsseb]’

% Computing Degrees of Freedom
d4 = n-4; '
d5 = n-5;

% COMPUTING SIMULATED GLUTAMINE VALUES
tfinal = 7.0;

tl = linspace(0,tfinal,50)’;
x3a = polyval(p3,tl)
x4a = polyval(p4,tl);

I PROGRAM. ENDYI b It

F.2.4 Lactate

The concnetration of lactate increases monotonically and polynomials of order 2 and 3 have

been used to describe this profile. These are subsequently compared with results from the

3-parameter logistic growth equation.

TR PROGRAM, STARTA A IA AN
% lactate_polyfit.m ' '

% Fits polynomials to lactate data

% Inpﬁts: lactate vs. time data

% Outputs: dependent variable, SSE

% Chetan Goudar
% Last modified: 6/20/04
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clear all

% Experimental Data

% Bayer CHO Data (1)

%t = [0.01 0.94 2.00 2.83 4 10 5.01 6. 03 6.99 7.92 8.72 9.83 10. 95]7;
%x = [0.84 4.87 10.92 15.67 23.22 26.44 27.56 28.89 29.11 30.67...

% . 30.00 30.56]’; rsse = 5.3675;

% Bayer CHO Data (2)

%t = [0.00 0.92'2.00 2.88 4.13 5.18 6.14 6.99 8.04 8.95 9.85]";
Yx = [0.94 2.79 5.28 10.13 19.78 24.11 26.22 28.33 29.22 31.56...
%  .33.111’; 1rsse = 11.0479;

% Bayer CHO Data (3)

%t = [0.000 1.104 2.042 3.003 4.035 5.080 5.962 7.021 8.031 8.997.
yA 9.833 10.969]; '

%x = [1.033 2.956 4.944 8.500 13.556 17.778 21.333 23.333 25.111...
%26.000 26.889 26:333]’; rsse = 0.9818;

%.Linz et al : »
[0.038 0.902 1.434 1.921 2.407 2.893 3.902 4.908 5.433 5.861..

t =
6.385 7.005]°;
x = [0.002 2.098 4.457 7.503 7.521 9.88 11.708 14.358 13.413...

13.022 12:35 12.373]7; rsse = 7.0979;
%%Z%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Z%%%%%%%%%%%%%%
yA Polynomial Generation

p3 = polyfit(t,x,2);
polyfit(t,x,B);

A Generatlng Curves from Polynomlal Fits

x3
x4

polyval(pB t);

polyval(p4;t);

% Plotting the Data
plot(t;x,’o?,t,x3,t,x4)(,bl
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legend (’Experimental Data’,’Order-2 Fit’,’Order-3 Fit’,0)
title(’Experimental Lactate Data and Polynomial Fits’)
xlabel(’Time (days)’)S o
ylabel(’Lactate (mM)f)

' %.Computing RSSE Values

sum( (x3-x) . ~2) ;
sum((x4-x).72);
-rssedisplay = [rsse rsse3 rsse4]’

WA IPROGRAM END%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

rsse3

rssed

F.2.5 Ammonium

Polynomial fitting for the ammionium data set is similar to that for lactate given their -

similar monotonically increasing profiles

Tl to oo Tolototo oo o oo T Toto 2o o PROGRAM - START A% % s toih oo fo ot to o oo foToto oo oo oo foTo oo o oo
% ammonium_polyfit.m v | ‘

% Fits polynomials. to lactate data

% Inputs: ammonium vs. time data

% Outputs: dependent variable, SSE '

% Chetan Goudar _
% Last modified: 6/20/04 .

clear all _

% Experimental Data

% Bayer CHO Data (1) ‘ 4 ;

ht [0 010 0.938 2.000 2 826 4 097 5!010 6.035 6.989 7.917 8.722...

[ ©9.826 10.951]7; -
%x = [0.175 1.050 1.938°3.363 4.425 4.519 5.719 6.206 6.656 6.850...
[ 7.400 6.656]7; - .  rsse'= 1.3834;

% Bayer CHO Data (2) ,
%t = [0.000 0.917 2.003 2.878 4.128 5.184 6.142 6.986 8.038 8.955. ..
% 9.854]17; . | " |

Jx = [1.120 1.990 2.990 4.270 5.630 9.140 7.500 7.960 8.960 9.280. ..
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% 8.600]’; rsse = 4.3601;

% Bayer CHO Data (3)
%t = [0.000 1.104 2.042 3 003 4.035 5. 080 5.962 7.021 8 031 8.997.

% 9.833 10.96917;
“x = [0.480 2.060 4.210 5.160 5.460 7. 200 13.500 14.200 16.160.

% 17.360 17.560 19.360]°; rsse = 12.4441;

% Bree et al

%t = [0.07 1.84 2. 96 3.87 4.85 5.82 6.81 7.82 8.77 9.81]";
%x = [0.78 1.28 1.71 2.18 2.65 2.23 2.45 2.43 2.44 2.65]’;
% rsse = 0.2278; , ’

% Linz et al

t = [0.047 0.852 1.42 1.894 2.367 2.983 3.883 4.972 5.445 5.966. ..
~ 6.44 7.008]7;
x = [0.279 0.744 0.977 1.256 1 488 1.721 2.093 2.326 2.837.
3.349 3.814 4]°; ‘rsse = 0.3573;

S

yA Polyﬁomial Generation
p3 = polyfit(t,x,2);
p4 = polyfit(t,x,3);

1

% Generating Curves from Polynomial Fits
x3
x4

polyval(p3,t);

polyval(p4,t);

% Plotting the Data

plot(t,x,’0’,t,x3,t,x4)

legend (’Experimental Data’,’Order-2 Fit’,’Order-3 Fit’ ,0)
title(’ Experlmentai Ammonlumn Data and Polynomial Fits’ )
xlabel (*Time (days)’)

ylabel(’Ammonla (mM) *)

260
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% Computing RSSE Values

suﬁ((xS—x).‘2);

sum((x4-x).72);

rssedisplay = [rsse rsse3 rsse4 rsse5]’

e e

rsse3

rssed:

F.2.6 Product

Product concentration is described by polynomials of order 2 and 3 and these results are

compared with those from the logistic growth equation.

LTI PROGRAM STARTYL LRI

% product_polyfit.m
% Fits polynomials to product data
. % Inputs: product vs. time data

A Outputs;;dependent variable, SSE

" % Chetan Goudar

% Last modified: 6/20/04

clear all
% EXPERIMENTAL DATA

% Bayer CHO1 Data (1)

t = [0.010 0.938 2.000 2.826 4 097 5. 010 6.035 6.989 7.917 8.722.
9. 826 10.951] 7 -
X = [12.0QO 12.000 16.000 19.000 66 OOO 51.000 63.000 95.000 119.000.

150.000 194.00C 182.000]’;’ rsse = 1630.66;

% Bayer CHO Data (2)

%t = [0.000 0.917 2.003 2.878 4.128 5.184 6.142 6.986 8.038 8.955 9.854]7;
%x = [6.100 6.100 10.800 24.500 51.400 74.600 83.200 87.600 91.100

% ~ 95.500 96. 600]’,r°se = 42.2229;

% Bayer CHO Data (3) | :
%t = 0.000 1.104 2.042 3.003 4.035 5.080 5.962.7.021 8.031 8.997 9.833...
%  10.969]7; '
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hx = [6.100 6.100 14.200 31.800 53.400 80.000 115.000 120.000 125.000. ..

.% 126.000 129.000 135.000 ]’; rsse = 170.2958;

% Bree et al _ , _
%t = {0.02 0.83 1.82 2.93 3.85 4.82 5.8 6.81 7.82 8;82 9.83 10.91]’;

%x = [0.08 0.11 0.12 0.36 21.94 43.93 69.22 90.39 103.48 104.37 104.38...

% 104.46]; ‘rsse = 79.7789;

% Dalili et al

%t = [0 0.398 0.681 1.531 1.918 2.942 3.448 3.928 4.453 5.588 6.665];
Yx = [0 0.526 0.671 1.746 2.675 6.382 7.525 6.393 5.83 6.553 5.995]’;
Yrsse = 2.6924 -

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%ﬁ%%%%%%%%%%%Z%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% POLYNOMIAL GENERATION

p3 = polyfit(t,x,2); .
p4 = polyfit(t,x,3);

% GENERATING CURVES FROM POLYNOMIAL FITS
x3
x4

polyval(p3,t);

polyval(p4,f);

% PLOTTING THE DATA

plot(t,x,’0’,t,x3,t,x4)

legend (’Experimental Data’,’Order 2 Fit’,’Order 3 Fit’,0)
title(’Experimental Titer Data and Corresponding Polynomial Fits’)
xlabel(’Time (days)Q) 4

ylabel(’Titer (Arbitrary Units)’).

_ %ylabel(’Titer (mg/L)’)

% CUMPUTING RSSE VALUES
sum( (x3-x) .72);
sun((x4-x)."2); -

rssedisplay = [rsse rsse3 rsse4]’

rsse3

rssed




APPENDIX F. LOGISTIC EQUATION MODELING | - 263

h

COMPUTING SIMULATED TITER VALUES

tfinal = 7.0; _
t1 = 1inspace(0,tfinal,50)’;

x3a

x4a

.
al

polyval(p3,tl);

polyval(p4,tl);

COMPUTING DERIVATIVES
= p3(1); a2 = p3(2);

dxdt3a = 2%al.*x3a + a?2;

bl

= p4a(1); b2 = p4(2); 53'= p4(3){

dxdtd4a = 3*bl*(x4a.”2); ' ‘ ,
e e o o e ROGRAM  END oo e o oo e o o e o e

F.3 Nonlinear Parameter Estimation in Logistic Models

The generalized logistic equation and its reduced formsare-nonlinear and an itereative

approach is required to estimate their parameters. The following program describes fitting

experimental data to the 4—parameter GLE and an identical approach can be used for the
LGE and LDE. '

F.3.1 .Generalized Logistic Equation

R PROGRAN, STARTIAII NIk

A
A
Y
Y

b
A

h
A

gle_fit.m o
Fits VCD data to the logistic equation
Inputs:‘fvcd vs. time data, parameter estimates

Outputs: best fit parameters, fit stastics

Chetan Goudar
Last modified: 6/20/04

USES curvefitl, gle_solution

curvefiti uses_cubicill,cubici31,lsint1,searchql
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Z%%%%%%%%%%%%%%%%%%%%%%%%%%%

%INPUT INFORMATION

promptl = {’datafile: Name of file containing experimental data’};
titlel = ’Input for gle_fit’;

lineNol = 1;. _ -

inputl = inputdlg(promptl,titlel,lineNol);‘

datafile = num2str(inputi{1,1});

' _%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% READING EXPERIMENTAL DATA

fid=fopen(datafile,’r’);

A=fscanf(fid,’%é‘%e’,[2,inf])’;

fclose(£id); |

t=A(:,1);

fved=A(:,2); ' 4 ' ‘
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Z%%%%%%Z%%%%%

% NONLINEAR PARAMETER ESTIMATION .

% Initial kinetic parameter estimates
k0=[1 1.1 11°;

disp(’Initial Kinetic Parameter Estimates’)

disp(k0’) _

disp(’Computing "Optimal" Kinetic Parameters. Please Wait’)
disp(’?) ‘

% Optimizatioh .
[kfinal,options,errbr,jéc]=..,'

' curvefitl(’gle_solution’,kO}t,fvcd);

iters=options(10);

disp(’Number of Iterations’)




APPENDIX F. LOGISTIC' EQUATION MODELING

disp(iters)

% 1. GENERAL QUTPUT .

error; | , .

ymodel=fvcd+errorf

disp(5Final Estimafes of Kinetic Parimeters’)
disp(kfinal’)

% 2. STATISTICAL OUTPUT
ydata=fvcd; '
yfit=ymodel;

param=kfinal; .

% 2.1 RESIDUAL SUM OF SQUARES ERROR (rsse)
e=yfit-ydata;
rsse=e’*e;'
disp(’Residual Sum of Squares Error’)

disp(rsse)

% 2.2 RESUDUAL MEAN SQUARE (rms)
m=length(yfit);
n=length(param) ;

if (m~=n)
rms=rsse./(m-n);
else
' var=NaN;
end .
disp(’Residual Mean Square’)

disp(rms)

h 2.3 COVARIANCE MATRIX (cm)
xtx=jac’*jac;
cm=inv(xtx);

disp(’Covériance Matrix’)

265
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e

disp(cm)

% 2.4 VARIANCE INFLATION FACTOR (varinf) -

varinf = dlag(cm)

% 2.5 PARAMETER CORRELATION MATRIX, PCM (pcm)
' pcm = cm. /sqrt(varlnf*varlnf’)
disp(’ Correlatlon Matrix for Parameters ’)

dlSp(pCm)

h 2g6 STANDARD ERROR OF PARAMETERS (Std)
. vcv=cm.*rms;
. std= sqrt(dlag(vcv))
disp(’Standard Error for Parameters. )
» dlsp(std’)
‘d1§p(’95%.Confidence Interval for_ParameterS").
- disp(2*std’) ' 4

Y PLOTTING THE OUTPUT
% 1. EXPERIMENTAL DATA vs MODEL PREDICIONS

figure. ‘

subplot(2,1,1)

plot (t,ymodel,t,yfit, ’d’)

xlabel(’Time’) ;ylabel(’FVCD”)

legend(’Model Predlctlon’; ’Experlmental data’)
title(’Comparison 6f_Exper1menta1 Data and Model Fit?)

% 2. RESIDUAL PLOT
yzero=linspace(0,0,m);
subplot(2 1,2)
~ plot(t, yzero,t ,eTTOr,’ 0’ )
ﬁ»fxlabel(’Tlme ); ylabel(’ Error’ )
' t1t1e( Residual Plot’)
"%%%%%%%%%%%%%%%%%%%%7%PRDGRAM END%%%%%%%%%%%%%%%%%V%%%%%%%%%%%%%%ﬂ%



APPENDIX F. LOGISTIC EQUATION MODELING 267

F.4 Integral Viable Cell Density

An approximation to the integral viable cell density can be obtained by integrating Eq.(6.5)

) AéDt . .
. — F.1
o [xe=TpEe (F.1)
where
D B+2D eBtD
Ht)=F — (F.2
®) {1’B+D’_B+D’. C (F-2)

is a hypergeometric function of the form F {a,b, ¢, z}with the series expansion

F{a,vb, c,z} = i (a) @E—EE' | | (F.3)
~ prd (c)y k! S




R RSP B
oS TN N ) e s
. PP RPRW IR K

Appendix G

Parameter ’Estimation_ in Logistic

Equations

Application of the logistic -équat'ions for describing batch and fed-batch data has been pre-

sented in Chapter 6. All 3 logistic equations (4 parameter generalized, logistic growth and

logistic decline) are nonlinear with respect to their parameters requiring the use of nonlin-

ear least squares for parameter estimation. Since nonlinear least squares is iterative, initial
parameter estimates are necessary. It is important the initial estimates be reasonably ac-
curate because the exponential terms in the logistic eQuations make the model sensitive to
parameter variation. Since solution convergence during nonlinear parameter estimation is
often influenced by the choice of initial estimates, a consistent method of initial pdrameter
estimation is desirable. Methods to obtain initial parameter estimates are presented and
a comparison between commonly used nonlinear parameter estimation algorithms is also

made.

G.1 Initial Parameter Estimates

Initial parameter estimates in nonlinear bequations -are typically obtained by a linear trans-

formation fbllowed by linear least squarés'analysis. The 4—pararrieter generalized logistic

. equation describes cell density profiles in batch and fed-batch cultures

| A
exp (Bt) + Cexp (- Dt)

(G.1)

where X, the cell density, is a nonlinear fungtio'n of the unknown parameters A, B, C' and

D and ¢ is time. Eq.(G.1)} can describe both the cell growth and death phases and can be

268
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modified to reflect only the growth phase as

A

= _ 2
X Cexp (—Dt) (G-2)

which can be rearranged as . ' '
In(X) =Dt +1In (g) o (G.3)

It follows from Eq.(G.3) that a plot of In (X) versus ¢ is linear with a slope of D and In (£)as
intercept. Eq.(G.1) can be simplified to reflect only the death phase

A
- 4
exp (Bt) (G4)
which can be linearized as .
' In(X) = —-Bt+1n(A4) : (G.5)

such that a.plot of in(X) versus ¢ has —B as slope and In (A) as intercept. Thus initial
estimates of A and B can be obtained from a'plot of Eq.(G.5) and those for C and D from
Eq.(G.3). ‘

The logistic growth equation describes monotonically increasing quantities such as lac-

- tate, ammonium and product concentrations (P) in batch and fed-batch systems

A

1y C exp (—Dt) (G.6)

P

Set’cihg%’t3 = .0 results in A = Ppax, the maximum value of P such that Eq.(G.6) can be
rewritten as ‘ - P ' P _ : o
' ' In <%> =-Dt+1In(C) - : (G
Estimates of C and D can be obtained from the intercept and slope of Eq.(G.7).
The logistic decline equation describes 'monotonic'ally'decreasing quantities such as glu-
‘cose and glutamine concentrations ‘ '
A o :

N= B+ C

(G.8)
and can be reduced to a form analogous to the logistic growth equation by substituting
u - . . .

5__‘4/’ -B=B,5=C

. Ab',
N A

(G.9)

N 1+.C’Qkp(fB’t)
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Initial parameter estimates for the logistic decline equation can be obtained from an ex-

pression analogous to Eq.(G.7).

15 T T T T T 10 T T ‘l T T

— @ Transformed Data (3 — [ b
2> 10— BestFitLine - .( ) 2 o05f (b
723 o s
0.5 B s
qc, g 00t 1
2 o0 ] Q t
@ - @ 05F .
o 05 1 77}
3 b
S 10t 1 g 10 F @ Transformed Data ]
' : : Best Fit Line
15 . N L 1 15 P B - 1 1 P
0 .1 ‘ 2 3 4 5 6 : 5 6 7 8 9 10 11 12
Time (days) o Time (days)
E 25 ————g— 0.8 ]
@ /‘\ (c) 06 F "~~~ —— LinearFit 3
g 20p /’ d\ 3 04} \\——— Nonlinear Fit }
ic_ 15F ! * 1 § 02¢ ' 3
- = E d
.‘? 1.0 F h g 0.0 F ( )'
2 02E 3
@ 05F —— Linear Fit . ' E
g —~--—Nonlinear Fit ] 04 . TTT ]
m 0.0 A 1 " 1 A 1 1 L _0.6 " L 1 L A L L
o 0. 2 4 6 8 10 12 0 2 4 6 8 10 12
Time (days) _ Time (days)

Figure G.1: Parameter estimation by the linear and nonlinear methods for cell density data of
Bree et al, (1988).

G.2 Final Parameter} Estimation

A comparison was made between three commonly used _nonlinear parameter estimation
techniques. The Levenberg-Marquardt (LM) method requires gradient calculation and is the
most widely used algorithm for nonlinear parameter estimation. The simplex method does
not require derivatives and can sometimes be more robust than gradient-based methods.
Most commerpialnonliﬁear regression software use the Levenberg-Marquardt and Simplex
methods. The generalized reduced gradient (GRG) method was also evaluated as it is used
by the Solver utility in Microsoft Excel. Since Microsoft Excel is widely used to record
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experimental data, success W1th the GRG method would greatly snnphfy analy51s of batch
and fed-batch data. ’

T T " ' 0.8 T T Rl " L T

g T Ly U

= 12F . @ 3 3 Linear Fit

L /i?\ : (a) ' 06 F-... ——— GRGFit 3
g 10F LY o -

. /® o\ o 0.4 ]
o 8¢ ,'. . e © ] 2}

< 6t ;o L) j. = o2t :
=2 = =t

2 4r Linear Fit i - 00 1
o ——— GRGFit i . P ]
E 2 2T e LM Fit - 0.2 ’

E X 0 1 - - i 1 |> . _0.4 E 1 1 Lo L 1
'U, 0 2 4 6 8 10 12 14 -~ 0 -2 4 6 -8 10 12 14

‘Time (days) = - - Time (days)

'Figu_ré G.2: Comparison of linear and 2 nonlinear fits to batch CHO cell density data.

G.3 ' Generalized Logistic Equation

The 4-parameter generalized logistic equation has been used to fit cell density data from
multiple batch and fed-batch data sets (Chapter 6). A total of 16 cell density data sets
‘were examined and the results are shown in Tables G1 — G3. In 14 of the 16 data sets,
: estiniatés of parameters 4, B, C and D by the LM method were different than those from
“the simplex and GRG methods (Parameter estimates from the simplex and GRG methods
were virtually identical for-all data sets). While a reduction in the residual sum of squares
" error (RSSE) was seen for all 3 nonlinear _parameter estimation methods when compared
" to the initial estimates, RSSE values from the simplex and GRG methods were lower than
those for the LM method. Based on this difference, we can conclude that the simplex and
GRG methods better fit experlmental cell den51ty data. It is important to note that the
solutions converged for all 16 data sets examined mdlcatmg that the proposed linearization
of the GLE resulted in representative initial parameter estimates. |

Figure G.1 shows applicatioh of the ndnlinéaf parameter estimation procedure to the
cell density data in Bree et al., (1998). Linearized plots for the cell growth and death phases
corresponding to Eqs.(G.3) and (G.5) are shown in Figures G.1la and G.1b, respectively,
where log-transformed experimental data are well described by the linear fits. Linear and

nonlinear fits to experimental data are shown in Figure G.1lc and clearly highlight the
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superiority of the nonlinear fit. This is an importaht observation because the inadequacy of
the linear fit in Figure G.1c is not evident in the linear fits to transformed data in Figure
G.laand G.1b (This general trend was true for all other data sets and is also reflected in

the lower RSSE values for the nonlinear fits). Sribstantial differences in growth rate time-

" courses are seen (Figure G.1d) for the linear and nonlinear fits. The Figure G.1 results

cleary indicate that hnearlzatlon alone will not provide satisfactory fits to experimental
cell den31ty data and 1mprovement of these initial parameter estrmates by nonhnear least

squares is necessary

N 4 6 T T v 1 71 L 8 T T T T T
' ® Transformed Data —~ 7F (b) @
T 4} @ BestFitLine - E 6 E 3
< = 5¢ 3

1 2 B E
§ 3 4 3
s ol g 3F E
= £ 2F ® Data 3
5 2} £ 1 —— Linear Fit 3
< 0? —-—= Nonlinear Fit 4 -
_4 N . 1 - L A 1 - 1 1
0 2 ‘ 4 6 8 10 12 0 2 4 6 - 8 10 12

Time (days) = : Time (days)

Figure G.3: Initial parameter estimation (panel a) and comparison of linear and nonlinear fits -
(panel b) to ammonium concentration data for CHO cells in batch culture.

Parameter estimates from the LM method were in most cases different than those from
the simplex and GRG methods (Tables G1 = G3). The impact of these differences on
the ability to describe experimental data is shown in Figure G.2 for CHO cells in batch
culture The corresponding parameter estimates are in Table G1, CHO cells (C). While
both nonlinear fits were substantia_l'i‘mproy'ements over the linear fit, the GRG fit was
visually’a slightly better fit to experimental data than the LM method (Figure G.2a). This
is also reflected in the lower RSSE for the GRG method (4.08 versus 5.36; Table G1).

G.4 Logistic Growth Equation

The logistic growth equatlon descrrbes monotonically i 1ncreasmg quantities such as ammo-
nium, lactate and product concentrations in batch and fed-batch cultures. Eq.(G.7) was

“used to obtain initial parameter estimates for 6 sets of ammonium concentration data which -
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2 j - T T M T — . 16
. @® . Transformed Data :
ey N Best Fit Line. - — 12 3
= : = .
a4 0 . £ 8
3 [ '
_IE “-“' 4
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= -2 oo . - @® Data
s o o - 9 —— Linear Fit
(a) , : ——— Nonlinear Fit
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Time (days) . Time (days)

Figure G.4: Initial parameter estimation (panel a) and comparison of linear and nonlinear fits
{panel b) for lactate concentration data of Linz et al., (1997).

were subsequently used as starting points’ for nonlinear parameter estimation. Unlike with
the GLE, nonlinear parameter estimates from all 3 methods were identical and a compar-
ison with the initial estimates is shown in Table G4. All nonlinear fits had lower RSSE
values than ‘the corresponding linear fits suggesting improved description of experimental
data (Table G4); ‘A comparison of linear and nonlinear fits for CHO cells in batch culture

is shown in Figure G.3.

4 : T T Y T ‘ . 8 | a T M T N T
@ Transformed Data 1 ' 4
2 _~ ——— Best Fit Line

Titer (mg/L)
FN

—— Linear Fit

Ln {(P,- P)/P} |

(a) : N - / —=—— Nonlinear Fit
4 L ‘i- POR C 0..9/ 1 N R
0 2 4 6 8 7 0 2 4 . 6 8
Time (days) - - Time (days)

Figure G.5: Initial pafameper estimafioﬁ (panel ‘a) and Comparisoﬁ of linear and nonlinear fits
(panel b) for product corcentration data of Dalili et al., (1990)

I

Lactate concentration data from 5 different studies were also described by the logistic
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Figﬁre G.6: Initial parameter estimation (panel a) and comparison of linear and nonlinear fits
(panel b) for glucose concentration data of Ljumggren and Héggstrom (1994).

growth equation and estlmates of A C and D from t;he 3 nonlinear methods were identical
(Table G5). Substantial RSSE reduction was seen for all data sets reﬁectmg improved fits
to experimental data. A plot of the linear fit to transformed lactate concentration data is
shown in Figure G.4a and a comparison of linear and nonlmear fits to lactate concentration
data is shown in Figure G.4b. '

Six product concentration data sets were also described by the logistic growth equation
and the results as shown in Table G6. As with previous data from the LGE (Tables G4
and G5), the nonlinear fits were characterized by substantially reduced RSSE and were

_better fits to experimental data. The linear fit to transformed product concentration data
from Dalili et al., (1990) is shown in Figure G.5a and the linear and nonlinear fits to
- product concentratlon data in Flgure G.5b. The nonlinear fit was clearly a much 1mproved

representatlon of the experimental data (Flgure G.5b).

G.5 Logistic Decline Equation

Monotonically decreasing glucose and glutamine concentrations were described by the LDE
and the inital parameter estimation method was identical to that for the LGE using modified

parameter definitions (Eq. G.9).‘ A total of 5 glucose concentration data sets were analyzed

and the results are shown in Table G7 and Figure G.6. Parameter estimates from the
Simplex and GRG methods were identical but different from the LM estimates. Both sets
of estimates, however, had lower RSSE values than the corresponding linear fits (Table G7).
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Figure G.7: Initial parameter estimation (panel a) and comparison of linear and nonlinear fits
(panel b) for glutamine concentration data of Bree et al., (1988).

Six glutamine concentration data sets were also described by the LDE. As with the
glucose data sets in Table G7, parameter estimates from the Simplex and GRG methods
were identical and different from the LM method (Table G8).

however, were substantial improvements over the linear parameter estimates (Figure G.7).

Both sets of estimates,

G.6 Conclusions

A simple approach for fitting logistic equations to batch and fed-batch data was presented
and verified. - Linearized forms of the logistic equations were derived from which initial
parameter estimates were obtained. These initial estimates were used as starting points
for nonliner least squares and three commonly used algorithms were tested. For all 44
data sets examined, the nonlinear parameter estimation algorithms converged on a solution
suggesting that the logistic equations can be reliably used to ‘describe experimental data.
Parameter estimates from the Simplex and GRG methods were in most cases very similar
but different than those from the LM method. In all cases, the Simplex/GRG estimates were
characterized by lower RSSE values and hence were better fits to éxperimental data. For
robust logistic modeling, we recommend initial parameter estimation using the linearization
approaches presented in this sudy. These preliminary parameter estimates can be refined
using either the Simplex or GRG methods resultingv in robust fits'to experimental data from

which specific rates can be determined.
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Table G 1: Comparlson of GLE Pa,ramcter Estimates for Ccll Dcn51ty Data from Linear and Non-
linear Parameter Estimation o .

.Data Source Parameter _Parameter Estimation Method
, ‘ Linear | GRG LM Simplex
Bree et al., (1988) A 18.52 30.13 29.39 | 30.13
' B 0.38 ©0.43 - 0.43 0.43
- C- 64.78 140.52 | 139.43 | 140.53
"D 047 0.69 . 0.69 0.69
RSSE 1.93 0.06 0.06 0.06
Dalili et al., (1990) A 119.49 | 1708.69 | 124.59 | 1710.2
' B - 1.09 17 0.98 1.7
- C 432.29 | 12166.06 | 649.08 | 12172.4
D 1.09 . 1.54 1.56 1.54
RSSE 21.20 0.81 4.0511 0.81
Linz et al., (1997) A 4.36 3.02 3.03 3.02
B 0.18 0.12 0.12 0.12
C 18.97 15.93 15.93 15.93
D 0.74 1.25 1.25 1.25
RSSE ©1.02 0.16 0.16 | 0.16
CHO Cells (A). A 21.35 32.7 22.19 32.71
: B 0.17 0.21 0.17 . 0.21
C 13.30 30.40 22.79 30.40-
D 0.23 0.49 0.56 0.49
RSSE 38.43 1.67 1.81 1.67
CHO Cells (B) A 70.80 | 334.46 70.28 | 335.00
‘ B 0.29. 0.45 0.28 0.45
C 49.62 242 .92 62.19 | 243.24
D 0.34 0.37 0.48 0.37
RSSE 2599 1 232 | 3.19 2.32
CHO Cells (C) A 56.77 119.13 60.37 | 115.46
- B 0.23 0.30 0.23 | 0.30
C 35.14 .1 99.07 59.95 94.46
D. 0.35 . 0.52 0.61 0.52
RSSE 70.37- 4.08 5.36 4.34
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Parameter

1.21

0.20

Data Source Parameter Estimation Method |
_ - Linear | GRG | 'LM | Simplex
Dowd et al., (2000) A 4929 | 3821 | 46.44 | 35.32
(Figure 4; batch data) B . 1.06 1.00 1.03 0.98
' - I C 207:18 | 209.93 | 212.52 .| 195.31
.. D 056 | 0.87 | 0.77 . 0.88
"RSSE 0.16 | 0.02 | .0.02 0.02
Dowd et al., (2000) A 2059 | 72.29 | 25.31 | 71.62 -
(Figure 5; batch data) B 0.75 1.00 0.77 | - 1.00
8 C 88.61 | 395.21 | 150.76 | 391.9
D 0.68 .| 086 | 097 0.86. .
RSSE 0.38 0.01 0.02 | .0.01 -
Dowd et al., (2000) A 1.91 |..2.81 268 | 281
(Figure 2; 3.pmol case) | - B - 0.13 ' 0.19 018 | 0.19°
C I ‘ . C 8.40 19.52 | 18.73 19:51
D . 0.45 0.96 098 | 0.96
RSSE - 0.77 U 08 | 0.08 0.08
‘Dowd et al., (2000) A 375 | 682 | 518 .| .6.83 °
/| (Figure 2; 4 pmol case). B 024 | 032} 027 | 032
' : : C 16.01 | 37.62 | 29.75 | . 37.62
D 045 | 0.72° | 078 | 072
- RSSE 0.65 0.01 | 001 0.01
Dowd et al., (2000) A 9.70 | 13.02 | 9.73 13.02
(Figure 2;'5 pmol case) B- 043 | 048 | 0.43 0.48
B "C | 5334 | 11471 | 8331 | 114.73
D - 0.49 0.80 0.81 0.80
RSSE 0.47 | 0.20 0.20° 0.20
Dowd et al., (2000) - - A 441 | 953 .| 5.98 9.60 -
(Figure 4; case E) - B .0.23 | 0.34 0.27 | 034
) S o - 15.88 | 57.16 | 33.99 | 57.36
D 043 . 077 4 082 | 077
SS 0.18 0:18

¢
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A Table G.2: Comparlson of GLE Parametet Estlmates for Cell Den81ty Data from Llnear and Non-
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Table G.3: Comparison of GLE Parameter Estimates for Cell Densmy Data from Lmear and Non-
linear Parameter Estimation

Data Source ' Parameter | Parameter Estimation Method
‘ Linear | GRG LM | Simplex

Dowd et al., (2000) A 8.93 32.15 | 14.39 32.57

(Figure 4; Case F) - B 0.33 0.48 0.37 0.48
C 20.80 | 107.47 | 52.91 108.81

D. 027 | 048 0.56 0.47

RSSE 1.44 | 0.08 0.10 - 0:08

Dowd et al., (2000) - A 0373 | 21.48 | 7.58 21.7

(Figure 4; Case G) B 0.23 0.46 0.30 0.46

' ' ' C 8.74 | 95.18 | 34.05 96.03

D 0.30 0.65 0.76 0.65

RSSE 2.43 031 | 039 | 030

Dowd et al., (2000) A 14.72 | 26.38 | 20.83 26.53

(Figure 5; fed-batch) B 0.29 - 0.38 0.34 0.38
: C 63.31 | 166.18 | 137.48 | 166.34

D 0.72 |-0.98 1.03 0.99

RSSE 3.11 0.07 0.08 .| 0.07

Ljumggren and Haggstrom (1994) A 3.29 -1 5.68 4.12 6.92

. B 0.38 0.53 | 043 0.58

C 22.29 | 61.43 | 41.68 63.68

D -1 0.93 1:.57 1.61 1.43°

- RSSE | 0.80 0.01 0.01 0.01
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Table G.4: Comparison of LGE Parameters for Ammonium Concentration Data from Linear and -
Nonlinear Parameter Estimation ' '

Data Source Parameter | Parameter Estimation Method

. » ' ‘ Linear Nonlinear
Bree et al., (1988) A - 2.65 2.55
C . 1.86 2.94
D 0.40 - 0.68
. RSSE 0.46 - 0.23
Tinz et al., (1997) A 4.00 T 7.68
~C "9.05 1162
D . | 067 "~ 0.36
RSSE | 0.88 v 0.36
CHO Cells (A) A 7.40 7.04
C 9.88 : 8.87
D 0.52 ‘ 0.62
RSSE 3.39 1.38
CHO Cells (B A - | 9928 | . 808
C 576 |- 8.01
D 0.52 0.71
RSSE - 6.99 .. 4.36
CHO Cells (C) A 19.36 720,05
‘ C 1975 | 16.90
D | 057 0.52

RSSE | 1297 - 12.44 -
Ljumggren and Higgstrom:(1994) | A 3.59 451
: : C 7.52 ' - 6.28
D 1.45 . 0.89
. " RSSE 0.76 . 026
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Table G.5: Comparison of LGE Parameters for Lactate Concentration Data from Linear and Non-
linear Parameter Estimation '

Data Source . Parameter | Parameter Estimation Method
: Linear Nonlinear
Linz et al., (1997) A 14.36 ' 13.04
C 6.32 14.70
D 0.79 1.38
RSSE 17.81 - . 7.10
CHO Cells (A) A 30.67 29.89
C '10.45 11.88
D 0.71 : 0.91
RSSE 38.77 -5.37
CHO Cells (B) A 33.11 31.42
C -19.99 21.05
D 0.69 0.81
RSSE 34.76 - 11.95
CHO Cells (C) A 26.89 26.75
‘ C - 19.54 18.07
D . 0.71 : 0.71
RSSE .1.66 : 0.98
Ljumggren and Héggstrom (1994) A 4.00 - - 3.84
C 1.28 1.43
D 1.44 1.92
RSSE 0.20 i 0.09
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Table G.6: Comparison of LGE Parametets for Product Concentration Data from Linear and Non-
linear Parameter Estimation : S '

Data Source Parameter | Parameter Estimation Method:
_ Linear - Nonlinear '
Bree et al., (1988) A 104.46 105.32 -
' ' C. 5351.16 430.47
D - 1.64 1.17
RSSE 303.67 - 79.78
Dalili et al., (1990) A 7.53 6.51
: C 1 819 22991
D~ 0.72 2.77
 RSSE 20.50 - 2:69
- CHO Cells (A) A 194.00 | -248.85 .
C 25.55 - °30.39
D 0.50 043
RSSE | 2503.83 7 1630.66
CHO Cells (B) A 96.60 | - . 9446
- C 25.72 ' 42.32
D | 0.81 09
. RSSE 75.19 ' 42.22
CHO Cells (C) A -+ 135.00 131.49-
- C .26:32 53.34" -
D - 0.70 | ©. 091
RSSE - 472.59- 170.30
Dowd et al., (2000) A -130.71 . 130.51
c 13.32 7.29
D - 1.76- 1.46
! - RSSE . | 119.08 - 23.26
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Table G.T: Comparison of LDE Parameter Estimates from Linear and Nonlinear Parameter Esti-
‘ mation-for Glucose Concentration Data

Data Source - Parameter | Parameter Estimation Method
: ’ Linear | GRG/Simplex LM
Linz et al., (1997) - S A 107.01 145.44 111.99
' C 1 1.15 1.34 1.23
D 11.78 14.88 11.07
RSSE 1.64 0.11 0.16
- | CHO Cell (A) A 760.98 102.62 668.60
o » : : ' C 0.30 0.12 0.29
D~ 12.26 0.58 10.24
RSSE. C175.07 31.79 147.42
CHO Cell (B) A 2430.98 1545.57 2266.56 -
C. 0.68 -.0.64 0.70
D 32.76 19.67 29.81
RSSE 77.87 31.08 39.62
CHO Cell (C) A 7485.01 2358.42 - 6756.41
' : C 0.78 0.63 - 0.80
D 105.78 31.79 96.46
“RSSE | 142.19 . 25.58 74.41
Ljumggren and Haggstrom (1994) A 82.58 36.63 76.26
C 1.39 1.17 1.47
D . 15.82 5.83 13.87

“RSSE 0.75 016 035
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Table G.8: Comparison of LDE Parameter Estimates from Linear and Nonlinear Parameter Esti-
mation for Glutamine Concentration Data '

Data Source Parameter | Parameter Estimation Method |
' o Linear | GRG/Simplex LM
| Bree et al., (1997) A 14.75 46.67 28.08
C 0.65 1.07 093
D 3.97 16.37 9.29
RSSE 0.75 0.08 0.09
Dalili et al., (1990) A 1.34 21.41 T 6.42
C 1.01 220 1.62
D 2.69 - 43.39 11.74
RSSE 0.08 000 = |} 001
Linz et al., (1997) A 21.43 3.65 . 4.34
: c - 0.43 0.19 ‘ . 0.21
D 431 0.28 0.14
RSSE 1.39 0.21 : 0.22" .
CHO Cell (A) A 31.96, 12.27 16.38
' ' C 0.27 0.20 0.24
D 2.32 013 - 0.18 .
‘RSSE 33.05 337 3.99
CHO Cell (B) A 60.29 125.42 63.2
- : C 0.52 0.78 0.61
D 427 | 799 : 3.40 -
RSSE -20.32 287 3.72
- CHO Cell (C) - A 166.51 77.57 | 67.51
: c . - 047 | 0.58, 0.55
D -4.78 - 4.57 3.81
RSSE 14.90 171 - 1.76
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Appendix H |

Error in Specific ‘RAté_s and
Metabolic Fluxes

Error propagation from prime variables into specific rates and subsequently into metabolic
fluxes was analyzéd in Chapter 7. For speciﬁé rates, these results were largely based on
adding normally distributed error to the primé'yariables and determining their impact on
- specific rate errors. To characterize error propagation into metabolic fluxes, error was added
to error-free specific rate values followed by flux estimation. Application of the Gaussian
method for error estimation is illustrated using specific grow_th rite as an example and
other specific rates can be similarly analyzed: Specific rate esprgssidné are derived first and
computer programs for error estimation by' both the Gaussian and Monte-Carlo approaches'

are also presented in this Chapter.

H.1 Specific Growth Rate

In a perfusion system, the bioreactor cell density is maintained at a constant value by
offsetting cell growth with a combination of cell loss in the harvest stream (uncontrolléd) ,
and controlled bleeding of cells from the bioreactor. Cellular mass balances across the
bioreactor and the cell retention device help quantify these dynamics. and can be used to
obtain an expression for specific growth rate. A schematic of the perfusion system is shown

in Figure H.1.

284
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Medium B _ ‘ |
+ Base o F+F.-Fy, X,/ ‘ - To Harvest
/J\ ' ‘ ~ Drums
~ F-Fp X2
F=F_ +F,., Bioreactor
_ Cell
——| Retention
\__/ Device
xs : [
Cell Bleed Fn Xy

Figure H.1: Schematic of a perfusion system with the various flow streams and their respective
viable cell concentrations. '

H.1.1 Mass Balance on Viable Cells in the Bioreactor

There are three inlet and two outlet streams for a typical perfusion bioreactor. The inlets
include the cell retention device return stream (Flow rate = F; Cell density = X"}}), the
inlet medium stream (Flow rate = F;;,) and the base addition stream (Flow rate = Fygse).
As base addition is typically a very small percentage of medium addition, these streams can
be combined‘ into a single stream; F' (F .= Fp, + Fpgse) for convenience. The outlet streams
include the cell bleed stream (Flow rate = Fj; Cell density = X{; ) and the cell retention
device feed stream (Flow rate = F + F, — Fy; Cell density = X{f}). The mass balance
expression for viable cells in the bioreactor can now be written in terms of the following

general expression

Accumulation = Input — Output + Generation — Decay (H.1)

dxg

- =)0+ (B) XTL={(F) X7 + (F + Fr = ) X@ }+{(uV) X7} - {(kaV) X7}

(H.2)

where V' is the bioreactor volume (L), X{? the viable cell density in the bioreactor (10°

cells/L), X the viable cell density in the return stream from the cell retention device (10°
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cells/L), p the specific growth rate (1 /d) and kd the spec1ﬁc death rate (1/d). Eq.(H.2) can
be rewritten as :

%f.; <F7> Xg_<§ | i)xvﬂ )XVB"—(MX? | (H.3)

Combining the specific growth rate, u, and the spemﬁc death rate; kd, an apparent
growth rate ' (1/d) can be deﬁned as

W=p—ky ' , (H.4)
Eq.(H.4) can now, be rewritten in terms of the apparent growth rate

1 dX§  (FNXJ  (F
v XR

r R By o
L X7 dt V)(XV XV), (H.5)..

Eq.(H. 5) has hmlted utlhty for spemﬁc growth calculatlons because the viable cell density -
in the return stream from- t_he cell retention device, XV, 1s»not routinely measured. It is
desirable to express X{}. in termsof experimentally measured quantities and this can be

done by performing a mass balance on viable ceﬁs_ across the cell retention device. -

H.1.2 Mass Balances on Viable Cell_e in the Cell Retention Device

- Assuming no cell growth in the cell retention device, a generalized mass balance for viable

cells can be written as
0={(F+F - )XV} {(F - F) X{f + () XU} (H.6)

where X{7 is the viable cell density in the harvest (109 cells/L). Eq.(H.6) can be rearranged
to obtain an expression for XV :
F-F\ ,up .
XE=xF+ (-F——E) (X% - x¢7) (H.7)
' . T : _ .

H.1.3 Expression for Apparent Specific Growth Rate

.Substltutlng Eq.(H.7) in Eq. (H.5) and 31mphfy1ng results in the following expresswn for the

apparent specific growth rate

R, BN\ XH 1 dXE S
i) 1 dxy . (HS8
W=+ V) B+ 7 di , : )
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The apparent specific growth rate is now ‘expressed in terms of the bioreaetor volume,
discard and harvest flow rates and the bioreactor and harvest cell densities. Estimating
p' from Eq.(H.8) is straightforward as all these quantities are routinely measured during a

perfusion cultivation.

H.2 Specific 'Gluco'se' Consumption

Glucose is a major source of carbon and energy for mammalian cells and is a key componerit
of cell culture medium. A mass balance for glucose in the bloreactor can be written following

the general representation in Eq (H.1)

V% = {_(F)_Gm +(F) G}~ {(F) G+ (F+ F. — F) G} — ((VXE)qa} (H.9)

where G is the glucose concentration in the bioreactor (mol/L), Gy, the glucose concentra-
tion in the medium and g¢ the specific glucose consumplfcion rate (pmol/cell-d). Dividing

throughout by V and simplifying, the specific g»lucose’consumption rate can be computed

1 (F(Gn—-G) dG )
IQG—.X{?{ v dt}. (H.10)

using

H.3 Specific Glutamine Consumption

Glutamine is the second source of carbon and energy for the cells and is also present in cell
culture medium. In addition to cell consumption, glutamine undergoes abiotic degradation
at cell cultivation temperatures which must be taken into account while writing the mass

balance expression

dGln
dt

— {(F)Glny + (F,) Gin} - {(Fy) Gln + (F + Fy — ) Gin}
_{(VX\l?) qGin — (VKGln) Gln} E - (H.ll)

v

where Glny, and G /n are glutamine concentrations in the medium and bioreactor, respec-
tively (mol/L), ggi. the specific ‘glutamine consumption rate ( pmol/cel'l d) and K, the
first order rate constant for glutamine degradatlon (1/d): D1v1d1ng throughout by V and

sunphfylng the specific glucose consumptlon rate can be expressed as

(H.12)

1 { (G’nm—('ln) dGln}

AGin = XB

|4 oo dt
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H.4 Specific Lactate Production

The majority of lactate produced in mammalian cell culture is a result of glucose metabolism

and a mass balance for lactate can be written as

vi = (R L) - (P)L+(F+Fr—F) L} + {(VXE) 1) (H13)

where L is the lactate concnetration in the bioreactor (mol/L) and ¢, the specific lactate
production rate (pmol/cell-d). Eq.(H.13) can be simplified to obtain an expression for gy,

- 1 (FL dL ‘ | ' |
_ S _ - (H.14)"
I Xg{v-+_dt} : - (B

H.5 Specific Ammonium Production

Ammonium is produced during the metabolism of glutamine to glutamate and also during

the abiotic degradation of glutamine resulting in the following mass balance expression
dA N g N v S (B . ' |
VE‘:, {(Fr) A} - {\Fb)'A + (F + F. — Fb) A} + {(‘/ XV) qA +'(VKG2n) Gln} (H'15)

where A is the ammonium concnetration in the bioreactor (mol/L) and qA'ythe specific

ammonium production rate (pmol/cell-d) which can be estimated from
1 (FA dA

= —— ——— L K n 7 - H16

i ’X{?{V T e Gl”’}._:_ (H.16)

H.6 Specific Productivity

The mass balance for protein production can be writtten in an analogous fashion to those

for lactate and ammonium production

| vcfd—f = {(F) P}~ {(F) P+ (F + F, ~ F,) P} + {’(VX5) ap} (H.17)

‘where P is the product concnetration (g/L) and qp the specific protein production rate that

is commonly refered to as specific productivity (pg/cell-d). From Eq.(H.17), an expression
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for specific productivity can be obtained as

1 (FP aP) ’ '
gp = — i H.1
e {7+ %) 19

H.7 Gaussian Me_thod of Error Estimation
H.7.1 General Expression for Error

Using only the first derivatives in the Taylor series expansion of a function f (z1,z2,...Tn),

the error in f can be expressed in terms of that in the independent variables -

| of

n H.1
ot Az (H.19)

Af (11:1, zo, .’L’n) =~

-0
A 1+‘ A$2+l—f-
§ dzy,

where Az, Axa,...Az, are the errors in zi, 332, ..Tn, respectively. The standard deviation

can be calculated from )

A',af

AAf2 - Z diBi

If the relative error of z; is defined as 14, = = that for f can be derived as

1

Az? (H.20)

(rgc1 z;)? . (H.21)

of
Tff) Z%dxl

where f and Z; are the true values.

H.7.2 Error Estimation in Specific Growth Rate
The derivativé in that expfession can be estimated using finite forward differences

B " yB B ' : '
(ng) _ Xy ~ Xv) ‘ (H.22)
d Jgey gy Tte

where X Vi) and X V(j+1) are bibreactor cell density measurements at.time t(;) and ¢(;1),

respectlvely The relative error for the spemﬁc growth rate can now be written as

8 1 2 _ F 2 B 9
(ut)' = () CrR)+ (ﬁ“) (rxg-X¥)

/

. Z 2 . L : . -

[ RXY ) R (2,)2' 2

+ + =) (rya X2 (H.23)
(V(X5)2 (b — tp) " \ XV (g X0)
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Using F,; = 6 L/day, F}, = 120 L/day, V = 12 L, XB = 20 x 106 cells/mL and X{ =
0.2 x 10° cells/mL, u’ can be calculated from Eq.7.3 as 0.6 1/day.

Substituting for V and F} in Eq.(H:23), the relative error of u' with respect to error in
F is ' ‘

2 2
N2 1 ~ 2 1
(TM./,(,I) = (V) (’f‘Fb.Fb)_ = <1—2-) (pr.6)2 (H24)
which simp‘liﬁes to ‘ ‘
ry=(0.8333)rs (H.25)

Eq.(H.23) can be simplfied to include only the effect of errors in harvest cell density on

the apparent specific growth rate
_N2 Fh 2 oH 2 X
which upon substitution and simplification results in
ry = (0.1666) TxH (H.27)
When bioreactor viable cell density data are in error Eq.(H;23) can be simplfied as

- 2 '
_ FhXH 1 2 2 =B 2
(T‘u.p,')2 = ( 14 2) + (——-) TxB. Xy (H.28)
V(XF) (b41) — tp)* \ XV ( Y )

which upon substitution and simplification results in

r, =.(2.36) TXE o (H.29)

H.8 Computer Programs for Specific Rate Error Estimation

H.8.1 Comparison of Gaussian and Monte-Carlo Methods

A comparison of the Gaussian ahd Monte-Carlo methods indicated that the Gaussian
method underpredicted specific rate errors when the prime variable errors were high. This
was due to the truncation of higher order terms in the Gaussian method. While including
these terms will improve accuracy, the expressions involving higher order terms are complex
and difficult to use. The program compare _mc_ gauss compares error estimates from these
two methods. It calls separate function files to calculate the Gaussian error for differnt

specific rates.
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compare_mc;gauss.m (Compares error bet‘ween‘ Gaussian and Monte-Carlq '
Methods) ‘ '

kA Ik kA PROGRAM - STARTA%%%A%%%%%%%%%%%%%%%%%%%%%%%%%%%

% compare_mc_gauss.m _ '
% m-file which compares - the results of the gaussian error analy51s and

% monte- carlo 31mulat10n

% Chetan Goudar
% Last modified: 12/18/05
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

figure

hold on

%, ERROR-FREE QUANTITIES

vf = 12; fh = 120.0; fvcd = 20; gn=1.0; gf=0.5;

dt=1; ‘

dgdt = (gf-0.5)./dt;

cl = 1000/180;

c2 = (fh/vE)*((gn-gf)/fvcd) ;
c3 = dgdt/fved;

qg = clx(c2'+ c3);

% ADDING ERRORS TO PRIME VARIABLES AND COMPUTING MU

yA Specifyihg'magnitude of errors

sdvf = 0.0x*vf;
r_fh = 0.0;
sdfh = r_fhx*fh;

" Ysdfved = O.b*fvcd;

%sdg = 0.25%gm;

% r.g = '

% r_gm = 2.0; .

% sdg = r_g/100%gf;

% sdgm = r_gm/100%gm;
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%-Errorvintroduction>'
n=25000; ' ‘
perdiff=ones(n,1); %increases the calculation speed

ggl=ones(n,1); Yincreases the‘qalculationAspeed

hr.g - = 0:2:10;

r_g = 0;

r_gm- =r_g;

r_gm = r_gmx0;
r_fvcd;=

0:2:20;

for il=1:length(r_g)
sdg = r_g(il)/100%gf;
- sdgm = t_gm(il)/100%gm;

for i2=1:length(r;fvcd) :
sdfved = (r_fvecd(i2)/100) . *xfved;

for j=i:n ‘ ’
vﬁfl = vf + randn(1).*sdvf; "
fhl = = fh + randn(1).*sdfh;
fvedl = fvcd + randn(1).*sdfved;
gfl = gf + randn(1) . *sdg;
gf2 = gf + randn(1).*sdg;
gt =

~gm + randn(1).*sdgm;

%.Computation of qg f“

dgdt1l = (gfl-gf2)./1; o
c4 = (fn1/vi1l)*((gmi-gf1)/fvedl);
cb = dgdtl/fvcdl;cﬁ?b; '

agl(i) = clx(ca + c8);

. 292
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% Computing differences in qg
qgdiff = abs(qg-qgl(j));
perdiff(j) .= (qgdiff./qg)*100;

end

perdiff;

avgperdiff'= mean (perdiff) ;

av_qgl = mean(qgl);

%disp(avgperdiff) _
%disp([av_qgl,avgperdiff,std(qgl)/av_qgl*iOO])
r_qg_mc(i2)=std(qgl)/qg*100;
%disp([av_qgl,avgperdiff,r_qg_mc(i2)]1)

end

[d_qg.r_qgl = err_qgl(qg,gm,gf,fh,vf,fved,r_g(i1)/100,r_gm(i1)/100,...
r_fh/100,r_£fvecd/100,dt);

plot(r_fved,r_qg_mc,r_fvecd,r_qg*100)

end

xlabel(’Error in XvF (%)?)
ylabel (’Error in q_{Glucose} (%)’)
title(’Specific glucose consumption rate’)

legend(’Monte Caflo~Simulation’,’GaUSsian Error propagation’;2)

r_fvcd’

r_qg_mc’ _

r_gauss = 100*r_qg’ 'iﬂ o . v ,

e e e ke o o oo o
err _mu.im (Function file that computes growth rate error by the Gaussian

method) '

function {d_mu,r_mu]=eff_mu(mu,Fp,Fh,Vf,XVF,XVH,r_Fp,r_Fh,r_XvF,r_XvH,dt)
t - -
% Error analysis for the‘specific growth rate calculation

A
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%mu (1/d) specific growth rate

%Fp (1/d) Purge rate ’

. %Fh (1/d) Harvest rate

%#VE (1) Fermentor volume

%XvF (1e6 cells/ml) Fermentor viable cell den31ty
%XvH (1e6 cells/ml) Harvest viable cell density
%r_i relative errors

%dt (d) sample time interval

-dFp=r_Fp*Fp; %#(1/d) standard deviation purge rate

dFh=r_Fhx*Fh; 4 %(1/d) standard deviation harvest rate
"dXvF=r_XvF*XvF; %(1e6 cells/ml) §tandard deviation fvcd
dXvH=r_XvH*XvH; %#(1e6 cells/ml) standard deviation hvcd

&

% Error for specific growth rate

d_mu = sqrt(1/vf-2. *de’”Q + (XvH/XvF/Vf) 2.*dFh."2 + (Fh/Vf/XvF) 2.%,
dXvH. 2 + ((Fh*XvH/VE/XvE"2)"2 + 2/dt"2/XvF~2) .*dXvF. 2)

% relative error for specific growth rate

romu = 1/mu.* d_mu;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

err _qg.m (Functlon file that computes ‘glucose consumptlon rate error by
the Gaussian method)-

function [d_qG,r_qGl=err_qg(qG,G medlum G_fermentor,Fh,Vf,XvF,r_G,
r_Gm,r_Fh,r_XvF, dt) T

A , : A

% Error analysis for the.spécific rate calculation

% Error for specific glucose consumption rate

%#9G (pmole/cell/d) Glucose specific consumption rate
%G_medium (g/1) Glucose concentration medium
#G_fermentor (g/1) Glucose concentration fermentor
_%Fp (1/d) Purge rate '

%Fh (1/d) Harvest rate

%#VE (1) Fermentor volume _

%XvF (1e6 cells/ml) Fermentor viable cell.density

¢
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%r_i relative errors

%dt (d) sample time interval

dFh=r_Fh*Fh;  %(1/d) standard deviation harvest rate
dXvF=r_XvF*XvF; %(1e6 cells/ml) standard deviation fvcd
dG=r_G*G_fermentor; %(g/l) standard deviation for bioreactor glucose

dGm=r_Gm*G_medium; %(g/1) standard deviation for medium glucose

% Error for specific glucose consumption rate (pmole/cell/d)
d.qG = 1000/180*sqrt (((G_medium-G_fermentor)/XvF/VE)"2.*dFh."2 ...
+ ((Fh/VE/XvF)~2 + 2/4t~2/XvF~2) .*dG."2 + ((Fh/VE/XvF)"2).*...
dGm." 2 + (Fh*(G_medium-G_fermentor)/VE/XvF~2)"2.*dXvF."2);
% d_qG = 1e3/180*sqrt (((G_medium-G_fermentor)/XvF/VE)~2.*dFh."2 +...
((Fh/VEf/XvF)~2) .*dG. 2 + (Fh*(G_medium-G_fermentor)/VEf/XvF"2)"2.*dXvF. 2);
% relative error for specific glucose consumption rate
r_qG = 1/9G * d_gG;
Tl Tt T T T Tttt to o o o o o o oo o o o o o o o o o o o T o T o T T T T o T T o T o o o o o fo o oo oo oo o o o o o o

err _qgln.m (Function file that computes glutamine consumption rate error
by the Gaussian method)

function [d_qGln,r_qGlnl=err_qgln(qGlin,Gln_medium,Gln_fermentor,Fh,...
Vf,XvF,r_Gln,r_Gln_m,r_Fh,r_XvF,dt)
" .
% Error analysis for the specific rate calculation
%» Error for specific glutamine consumption rate
% ‘ .
h |
k=1; ' %(1/&) Glutamine decay rate
~ %qGln (pmole/cell/d) glutamine specific consumption rate
%Gln_medium (mM) glutamine concentration medium
%Gln_medium (mM) glutamine concentration fermentor
%Fp. (1/d) Purge rate |
“Fh (1/d) Harvest rate
%Vf (1) Fermentor volume
%XvF (1e6 cells/ml) Fermentor viable cell density

Yr_i relative errors




%
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%dt (d) sample time“iﬁteryaix
dFh=r_Fh*Fh; S %(/d) standafd déviation'harvest‘rate-

dXvF=r_XvF*XvF; %(1e6 célls/ml).stahdard deviation fvecd
dGln=r_Gln*Gln_fermentor; %(mM) SD for bioreactor glutamine

dGln_m=r_ Gln_m*Gln_medium; %(mM) SD for medium glutamine

% Error for specific glutamine consumptioﬁ’fate (pmole/cell/d)
d_quﬁ = sqrt(((Gin_medium-Gln_férmentor)/XVF/Vf)“2.*th.”2 .

+ ((Fh/VE/XvF)"2 + 2/dt"2/XvF~2 + (k/XvF)"2).*dGln."2...
+ ((Fh/V£/XvF)~2) .*dGln_m. 2 + (((Fh*(Gln medium-Gln_fermentor).. .

VE/XVFT2) "2 + (k/XVF"2)"2)) .*dXvF."2);

% relative error for specific glutamine consumption rate

r_qGln = 1/qGln * d_qgGln;

o o o oo oo o oo oo o o o oo o o oo oo o oo o o T oo o T o T s T e
err _qlac.m (Function file that computes lactate production rate error by the

Gaussian method)

function [d_qLac,r_qLac]=erf_qlac(qLac,Lac_fermentor,Fh,Vf,XvF...
,r;Lac,r_Fh,r_XvF,dt)
% ‘ '

% Error analysis for the specific rate calculation

% Error for specific lactate production rate

o

halac (pmole/cell/d) -lactate specific production rate-
%Lac_fermentor (g/l) lactate concentration fermentor
#Fh (1/d) Harvest rate

%VE (1) Fermentor volume

%XvF (le6 cells/ml) Fermentor viable_celi density
%r_i relative errors

%dt_(d) sample time intérvalv

. th;r_Fh*Fh; %(1/d) standard deviation harvest rate

dXvF=r_ XvF*XvF; %(1le6 cells/ml) SD fermentor viable cell density

dLac=r_Lac*Lac_fermentor; %(g/l) SD for lactate concentration
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% Error for specific'iactate production rate (pmole/cell/d)
d_qlac. = 1e3/90*sqrt((Lac_fermehtor/XvF/Vf);2.*th.‘2 ...
((Fh/VE/XVF)~2 +2/dt~2/XvF~2) .*dLac."2 ...
+ (Fh*Lac_fermentor/VE/XvF~2) "2.*dXvF."2);
d_qlac = 1e3/90*sqrt((Lac_fermentor/XvF/Vf)‘2.*th.‘2 +o
((Fh/V£f/XvF)"2) .*dLac."2 ...
' + (Fh*Lac_fermentor/Vf/XvF“Q)“2.*dXvF.“2);
% relative error for specificAlactate-production rate
r_qlac = 1/qlac * d_glac; |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%Z%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

err _gnh3.m (Function file that computes ammonium production rate error
by the Gaussian method) ‘

function [d_gNH3,r_gNH3]=err_qnh3(qNH3,NH3_fermentor,Fh,Vf,XvF, ...
'r_NH3,r_Fh,r_XvF,dt)

yA

% Error analysis for the specific rate calculation

% . | | .

%gNH3 (pmole/celi/d)’ammonié_specific production rate
%NH3_fermentor (mM) ammonia concentration fermentor
%Fh (1/d) Harvest rate

#VE (1) Fermentor volume .

%XvF (le6 cells/ml) Fermentor viable cell density
Yr_i relative errors ' ' '

#dt (d) sample timé.intefval.

dFh=r_Fh*Fh; " %(1/d) SD harvest rate

dXvF=r_XvF*XvF; %(1e6 cells/ml) SD fermentor viable cell density
dNH3=r_NH3*NH3_fermentor; %(mM) SD for ammonia concentration

% Error for specific ammonia production rate-(pmble/celi/d)
d_gNH3 = sqrt ((NH3_fermentor/XvF/Vf)~2.*dFh. 2 +...
((FR/VE/XVF)~2 + 2/dt~2/XvF~2) .*dNH3.°2 ...

+ (Fh*NH3_fermentor/VE/XvF-2)"2.%dXvF."2);
% relative error for specific ammonia production rate
r_qNH3 = 1/qNH3 * d_qNH3; |
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Z%%%

'err_qbz.m (Function file that computes oxygen uptake rate error by the

Gaussian method)

function [d_q02,r_q02l=err_qo2(q02,02_in,02_out,Fg,Vf,XvF,...
r_O2,r_Fg,r_XvF,dt)_

% _

% Error analysis for the specific rate calculation
% Error for spe;ific oxygen uptake rate ‘
Y :

' %q02 (pmole/cell/d) Oxygen uptake rate

%02_in (mM) 02 concentration fermentor inlet
%02_out (mM) 02 concentration fermentor 'outlet

%Fg (1/d) Aeration rate

%VEf (1) Fermentor volume »
%XvF (1e6 cells/ml) Fermentor viable cell density
%r_i relative errors '

ydt (d) sample time interval

dFg=r_FgxFg; R ACYLY) SD.aeration rate ‘
dXvF=r_XvF*XvF; %(1e6 cells/ml) SD fermentor viable cell density
d02=r_02%02_out; %(mM) SD for 02 concentration

% Error forlépecific oxygen.uptake rate (pmole/cell/d)
d_q02 = sqrt(((02_in-02_out)/XvF/Vf)~2.*dFg. 2 + (Fg/Vf/XvF)"2.*d02.72 ...
+ (Fgx(02_in-02_out)/Vf/XvF~2) ~2.*dXvF."2);
% relative error for specific oxygen uptake rate
r_q02 = 1/q02 * d_q02;. | ‘
%%%%Z%%%%%%%%%%%%%%%%%%Z%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

err_qp.m (Function file that computes 'specific productivity error by the

3 Gaussian method)

-function {d;qp,r_qu=errnqp(qp,Titer,Fh,Vf,XVF,r_Titer,r_Fh,r_XvF,dt)
y B
% Error analysis for the specific rate calculation

h




=
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%ap (pg/cell/d) spec1f1c productlon rate

hTiter (mg/l) Product titer.

 %Fh (1/d) Harvest rate

%Vf (1) Fermentor volume |

%XvF (le6 cells/ml) Fermentor v1able cell den51ty
%r_i relative errors -

%dt (d) sample time interval

dFh=r_Fh*Fh; '%(1/d) SD harvest rate

dXvF=r_XvF*XvF; _ %(le6 cells/ml) SD fermentor viable cell density
dTiter=r_Titer*Titer; %(mg/1) SD for product titer

% Error for specific prddﬁction rate (pg/cell/d) )
d_gp = 1é6*sqrt((Titer/ka/Vf)"2.*th.”2 + (Fh/VE/XvF)~2.*dTiter."2 ...
+ (Fh*Titer/VE/XvF~2)"2.*dXvF."2);
% relative error spec1flc productlon rate.
r_qp = 1/9p * d_qp; o :
%%%%%%%%%%7%%%%%%%%%%%Z%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%7%%%%%%%%

H.8.2 Speciﬁc Rate _Errqr Estimation by the Monte-Carlo Method

" The inadequacies.of the Gaussian method at high prime variable errors were apparent and
the Monte-Carlo method‘was used to generate most of the data in Chapter 8. The following
programs estimate specific rate errors By the Gaussian method. The magnitude of prime
variable error can be spec1ﬁed and at every prime variable error combination, the programs
compute the resulting specific rate error as a mean of 25000 values.
. main_qg.m (Computes glucose consumption rate error by the Monte-Carlo
method) ‘ J

Tl b I T T Toto ol oo kPROGRAM - START bl h b to o lolootaa ooroto o otetotodtototoototototo
% mainqg;mc.m ' _ _

% Calculates errors in qG_uSing.thé Monte-Carlo Approach

% Inputs: Prime Variables and error speéifications

% Outputs: Error in qG

% Chetan Goudar
% Last modified: 1/30/05
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Tt T T T o o T T Tl o st T T T o o o T T oo o o T T o oo o 1o 7o oo oo o oo oo oo o o oo oo oo oo o o

-

clear all

% 1. Prime variables to be error free -
Gm =1; % (g/L)
dt =1; % (day) not really a prime variable!

% 2. Prime variables with error
v o =12; % (L

Fh 120; % (L/day)

¢ =0.5; % (g/L)

XvF = 20; % (1le6 cells/mL)

% 3. qG Computation

cl = 1000/180; -

c2 = (Fh/V)*((Gm-G) /XvF) ;
qG cl*c2;

% 4. Computing error in qG

% Specifying magnitude of relative errors
r_.V = ones(1,10)*5;

r_Fh ones(1,10)%5;

r_G 2:2:20;

r_XvF 0:5:20;

sd_XvF = (r_XvF(5)/100)*XvF; % must be changed
n=25000;

for i=1:1:10
© sdV
sd_Fh
sd_G

(r_V(i)/100)*V;
(x_Fh{i)/100)*Fh;
(r_G(i)/lOQ)*G;

for j=1:n
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Vi =V + randn(1).*sd_V;
'Fhl = Fh + randn(1).*sd_Fh;
G1 = G-+‘randh(i);*sd_G;
G0 =G * randn(1).xsd_G;
XvF1 = XvF +_randn(r).*sd_XvF;

% Computation of qg o

dgdtl . = (G1-GO)./dt;

cl = 1000/180;

c4 = (Fh1 /V1)*((Gm-G1)/XvF1);
cb = dgdt1/XvF1;

qG1(j)- = cix(c4 + c5);

% Differences in qG

qGdiff = abs(qG-qG1(j});
perdiff(j) = (qGdiff./qG)*100;

~end '
avgperdiff (i) = mean(pefdiff);.
avg_qG1 = mean(qG13‘ _ .
r_qG_mc(i) = (std( qG1)/avg qG1)*100;
end

.%v5. Uﬁtput'

r_qG_mc’

.plot(r_G,r_qG_mc, o—’)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

main_qgln.m (Computes glutamine consumption rate errqr .by the Monte-
Carlo method) o ‘

%%%%%%%%%%%%%%%%%%%%%%FROGRAM START%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
yA mainggln_mc.m

yA Calculates errors in qun u51ng the Monte- Carlo Approach.

% Inputs: Prime Variables and error spe01f1cat10ns ;

% Outputs: Error in qGln



APPENDD(H.ERRORINSPECEWJRATESAﬁMIMETABOLK?FLUXES

% Chetan Goudar 7/22/04
% Last modified: 7/22/04 _ ‘
%%%%%%%%Z%%Z%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all
% 1. Error-free prime variables

Glnm = 9; % (g/L)
dt

1; % (day) not really a prime variable!

% 2. Prime variables with error

v =12; % (L)
~Fh = 120; % (L/day)
Gln = 4.5; % (g/L)

20;

==

XvF , (1e6 cells/mL)

% 3. qGln Computation
cl = 1le3;

c2 = (Fh/V)*((Glom-Gln)/XvF);
c3 = (0.017/XvF)*Gln;
qGln = c1%*(c2-c3)

% 4. Computing error in qGln

yA Specifyihg magnitude of relative errors

r_.V = ones(1,10)*5;
r Fh = 6nes(1,10)*5;
r_Gln = 2:2:20;
r_XvF = 0:5:20;

sd_XvF = (r_XvF(1)/100)*XvF;

n=25000;

for i=1:1:10 _ S
. sd_V = (r_V(i)/lOO)*V;.
sd_Fh = (r_Fh(i)/100)*Fh; _ .
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sd_Gln = (r_Gln(i)/100)*Gln;

fof j=1:n _ :
Vi =V + randn(1).*sd.V;
Fh1 = Fh + randn(1).*sd_Fh;
Glnl = Gln + randn(l).*sd_Gln;
Gln0 = Gln + randn(l).*sd_Gln;
XvF1 = XvF + randn(1).*sd_XvF;

% Computation of qGln

dgdtl = (Gln1-G1lnO)./dt;

c4 = (Fh1/V1)*((Glnm-Gln1)/XvF1);
ch = dgdt1/XvF1;

c6 . = (0.017/XvF1)*Glni;
qQGlni(j) = ci*(c4 + cb - c6);

% Differences in qGln

qGlndiff = abs(qGln-qGlni(j));
perdiff(j) = (qGlndiff./qGln)*100;
end
avgperdiff (i) = mean(perdiff);
avg_qGlnt = mean(qGlnl);
'r_qGln_mc(i) = (std(qGln1)/avg_qGln1)*100;
% 5. Output

r_qGln_mc’
plot(r_Gln,r qun me, 0=7)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

main qlac m (Computes lactate productlon rate error by the Monte—Carlo
Inethod)

'%%%%%%%%%%%%%%7%%%%%%APROGRAM START%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% mainglac_mc.m

A Calculates errors in qun us1ng the ‘Monte-Carlo Approach
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% Inputs: Prime Variables and error specifications

% Outputs: Error in qlac

% Chetén Goudar

% Last modified: 1/30/05
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

% 1. Error-free prime variables

dt. =1; % (day) not really a prime variable!

% 2. Prime variables with error - -

v = 12; yANCH I

Fh = 120; % (L/day)

L =1.0; % (g/L)

XvF = 20; ‘% (1e6 cells/mL)

Z 3. gL Computation

c1 . =.1000/90;
c2 = (FhxL)/(V*XvF);
L =

cl*xc2;

% 4. Computing error in gL

% Specifying magnitude of relative errors

r_ V = ones(1,10)*5;

r_Fh = ones(1,10)*5;

r L = 2:2:20;

r_XvF = 0:5:20;

sd_XvF = (r_XvF(5)/100)*XvF;
n=25000;

for i=1:1:10

sd V= (r_V(i)/100)*V;
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sd_Fh = (r_Fh(i)/100)Fh;
sd_L = (r_L(i)/100)*L;
for j=1:n s ) .
Vi = V + randn(1).*sd_V;
Fhi = Fh + randn(1).*sd_Fh;
L1 =L + randn(l).*sd_L;
LO = L + randn(1).*sd_L;
XvF1 '= XvF + randn(1).*sd_XvF;

% Computation of qGln

dLdt1 = (L1-L0)./dt;
c4 = (Fh1x*L1)/(V1*XvF1);
c5 = dLdt1/XvF1;

= clx(c4 + cB);

qL1(j)

% Differences in qGln

qLdiff = abs(qL-qL1(j));

perdiff(j) = (qLdiff./qL)*100;

end

avgperdiff (i) = mean(perdiff);

avg_qL1 = mean(qL1);

r_qL_mc(i) = (std(qL1)/avg_qgL1)*100;
end

% 5. Output

r_qL_mc’

plot(r_L,r_qL_mc,’o0-")

ot T T T oot o T o o o o o o o oo o o T o o oo o o T T o o o o T o oo o o T o oo o o T T oo o o oo o o oo
main_qo2.m (Computes oxygen uptake rate error by the Monte-Carlo method)

Tt T Tt o e o T o e o To oo e To o PROGRAM  START AL h o lo oo o Tototo o o o Toto o o ot o o fo b oo o Fo o oo

% mainqgo2_mc.m ‘

% Calculates errors in q02 using the Monte-Carlo Approach

% Inputs: Prime Variables and error specifications
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% Outputs: Errér iniq02

% Chetan Goudar
% Last modified: 2/03/05
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all
% 1. Error-free prime variables
o02in  =9; % (g/L)

o2ut ‘= 1; % (day) not really a prime variable!.

% 2. Prime variables with error

v . o=12; % (L

FO2 = 720; % (L/day)
02in . = 4e-3;% (M/L)
02out = 2e-3; - % (M/L).

"XvB = 20; % (le6 cells/mL).

% 3. q02. Computation

cl = F02x(02in - O2out)*1000
c2 = VxXvB;

q02. = c1/c2

% 4. Computing error in q02

yA Spec1fy1ng magnitude of relative errors

S r. vV = ones(1,10)*5;
r_F02 = ones(1,10)*5;
r_02out = 2:2:20;
r_XvB = 0:5:20;
sd_XvB = (r_XvB(5)/100)*XvB;

. n=25000; -

for i=1:1:10
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(r_V(i)/100)+V;

sd_V

'Sd_F02 = (r_F02(i)/100)*F02;

sd_02out = (r_02out(i)/100)*020ut;
for j=1:n

Vi =V + randn(1l) .*sd_V;

F021 = F02 + randn(1).*sd_F02;

02outl = 02out + randn(1).*sd_02out;

XvB1 XvB + randn(1).*sd_XvB;

% Computation of qGln

cl = F021*(02in-020ut1)*1000;
c2 = V1%XvB1;
= c1/c2;

q021(j)

% Differences in qGln
q02diff = abs(q02-q021(j));

© perdiff(j) = (q02diff./q02)*100;

‘end

avgperdiff(i) = mean(perdiff);

avg_q021 = mean(q021);
r_q02_mc(i) = (std(q021)/avg_q021)*100;

énd

% 5. Output .
r_q02 mc’
plot(r_02out,r_q02_mc,’o—’)
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H.9 Computer Programs for Metabolic Flux Error Estima-

tion

‘To estimate error propagation frO}n'speciﬁé rates into metabolic fluxes, an error-free metabolic
flux vector (x) is used te compute the corresporiding error-free specific rate vector (r) when

the stoichiometric matrix {A) is known (r = Ax). Subsequently normally distributed error
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of known magnitude is added to the error-free specific’ rate vector and flux calculations
are performed. Comparison of these flux estimates with the known eror-free values helps

quantify error propagation from specific rates into metabolic fluxes. The program below

performs these calculations when all specific rates have the same amount of error. The

programs can be easily customized to assign different error values to the specific rates.

h15_mfaerrorall.fn (Computes metabolic flux error by the Monte-Carlo method)

U PROGRAM. STARTYGA IR IR
% Computes error associated with metabolic flux estimation

% All specific rates are in error

% Error is added to error-free sepcific rates from which

% the corresponding metabolic fluxes are computed.
% Model based on Nyberg et al (Biotech Bioeng, 62, 324-335 1999)

%'H15 Data are used for error estimation
clear all

% 1. GENERATION OF THE "ERROR-FREE" R VECTOR
% Stoichiometric Matrix

A= importdata(’nyberg_A.m’);

AT = A7, '

rank_a = rank(A); cond_a = cond(A);

- smx = inv(AT*A)*AT; 7, Sensitivity Matrix

% absolute sensitivity matrix
smx_abs = abs(smx);

low_sens = min(smx_abs)’;

high_sens = max(smx_abs)’; .

mean_sens = mean(smx_gbs)’;
xdata = linspace(1,35,35)’;

%semilogy(xdata,low_sens,xdata,mean_sens,xdata,high_sens)

% Known Flux Vector

- x_all = imporpdatai?h15ff1ux_data.m’);

x_known = x_all(:,5); 7% Std. Cohditions 3



APPENDIX H. ERROR IN SPECIFIC RATES AND METABOLIC FLUXES - 309
% Efror—Free‘Rate Veétor‘
r_true = A*x_known;

r_error ='r_true;

% 2. INTRODUCTION OF ERROR IN SPECIFIC RATES

err_r = 0.25; »
sd_r = err_r.*r_true;
n=10000; B . L

pererror = 0;

x=ones (33,n);

% 3. FLUX AND ERROR COMPUTATION USING ERROR-CONTAINING SPECIFIC RATES

% Flux Computation

for i=1:n

r_error = r_true + (randn(35,1).*sd_r); -

inv(AT*A)#AT*r;error;

x(:,1)
% Error in Fluxes
error = abs(x(:,i)-x_known);
pererror = pererror + (error./x_known).*100;

end

% AVERAGE ERRORS

pererror;new = std(x’)./x_known’*100;

newerror = pererror_new’ .
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Appendix 'I

Thermodynamic Analysis of
Metabolic Pathways

Analysis of the free energy changes associated with reactions in a biochemical network will
provide information that can augment metabolic flux data. The free energy change, AG,
for the reaction ' '

aA+bB «— cC+dD (I.1)
can be determined as
o vel®lypl®
AG = AG + RT In T lale b ) (12)
’ [val®lvsl

where AGY is the free enefgy changes under standard conditions (25 °C, 1 atm pressure),
R the gas constant, T the absolute temperature and v4,vp,7c and vp the activities of
A, B,C and D. For a reaction at equilibrium, AGY = 0 and Eq.(I.2) reduces to
e d
AGY = _RTIn <[’Yc] [vp

[u]ﬂ[vB]b) = ~RTIn(K) (1.8)

where K is the equilibrium constant. A cell in a bioreactor, however, is an open system as
it interacts with the cultivation medium by consuming nutrients and releasing metabolites
resulting in nonequilibrium conditions. The simplification in Eq.(I1.3) is hence not applica-
ble to cells cultivated in a bioreactor. It follows from Eq.(I.2) that reactant and product
activities determine AG and hence the feasibility of biochemical reactions (AG must be

negative for a reaction to occur}.

; 310
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L1 Theory of Thermodynamlc Fea51b111ty

For single reactlons AG < 0 must be true for the reactlon to occur. ‘This is also true for
metabolic pathways with multlple reactlonb where AG < 0 must be true for all reactions in
the pathway. Thermodynamlc bottlenecks in metabolic pathways can be identified based
on reaction AG values and are referred to as localized bottlenecks (single reaction with
AG >.0) or distributed b_ottlén_ecks (multiple reactions with AG > 0). When intracellular
_activities are knbwn it is désirable to evaluate the thermodyn'amic feasibility of reactions
“in the: biochemical pathway of interest. A systematic method for such an evaluatlon has
been proposed (Mavrovouniotis, 1993)! and is described below.
Consider a.biochemical network with the stoichiometry

. S »
Zaj,ﬂ’i =0; -~ Jj=1...,J P w4y

Where'a is the stoichiometric coefficient, j-the number of réactions in the n.etwork,v n the
, riu_mber of species anbd»'y the species activity. The free energy change for reaction j can be
written as ' : R
AG; = AGY +Za”RTln (7). - - (15)
=l
During mammalian cell cultivation, the activities of nutrients and metabolites such as glu-
cose and lactate can be expected to change while those for cofactors such as ATP and
NADH  are assumed t0 be\co_nstant due to cellular regulation. - These metabolites with

constant activities are referred to as currency metabolites and can be'grouped"separately

/

AG; = AG°’+ Za“RTln () +ZaﬂRTln(7l) O (Le)

soa=1 =1 -

where 7/ is the number of non-currency metabolites whose activities are expected to change

~during the course of a cultivation. Eq.(I.6) can be rewritten by combining the constant

terms :
n/
AG;=AGY +) aiRTIn(y;) h (1.7)
= L o .
n-n' -
' where AGO = AGOI + Z RT'In ( ’y,\ For the reaction network described by Eq.(L. 4)
. i=1 .

]Mavrovouniotis M.L. (1993) Identiﬁcation of localized and di.stributed bottlenecks in metabolic path-
ways. ISMB 93: 273-283. : < - e
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be vf_easible, the fdllowing must, be true

+ Z ajil : ' | (I8)

. )
While activities of non-currency metabolites can vary, a range for this variation must be

defined and the algorifhm will determine if the pathway is thermodynamically feasible within

min max

these activity ranges. Denoting -; and % as the minimum and maximum activities,

Eq.(1.8) can be rewritten to scale «; with the minimum concentration as

AOO "’

+ Zaj, mm + Za]’ In ( mln) <0 ' V (19)

which can be further modiﬁed to include rygrax

AGO n’ max In —Zf;ﬁ
+ Z a]v mm Z a] i ( m1n> 1 (;:ﬂz> <0 (110)
_ ' | (72“““)
substituting
. ' AGQ” n’ A . A
hy = = + ) asaln (47°") (L1
Coa=l
max \. .
Wyi = a’len (’Ymin> (112)
Yi : (
i) 113
f] max \ ( * )
v
Eq.(I1.10) can be rewritten as
. o :
Hj=hj+Y wjifi <0 (1.14)

such that H. ; < 0 must be satisfied fbr thermodynamic feasibility and this is influeniced by
-fi‘v_alues. The range of f is determined by 7, such that when 7; = m‘”‘, f =1 and when

v, = yPn f =0. The max‘imufh value of H; is when ; = v for all reac_tants (f=0)
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and v, ="Y§“a‘x (f - 1) for all products
Hjmax = hj + Z wji; o Wi >0 (1.15)
Lo =1 . .

Conversely, H; is minimufn when v; = y*** for all reactants (f = 1)'and"yi = ymin (f = ()

for all products _ _ _
o
Hjmin =hj+ Y wjs  wji <0 : (1.16)
i=1 : o
Thus for any reaction j in the network, the scaled Gibbs free energy, Hj, varies between
Hjmin and Hj max depending upon the associated reactant and product activities. Since
Hj; < 0 must be true for the reaction to be feasible, it is obvious that the reaction is always
feasible when H;max < 0 and is always unfeasible when Hj min > 0. Determination of the
feasibility is not obvious when Hjmax > 0 and Hjmin < 0 because H; can be either positive
or hegative under these conditions.

It has been shown (Mavrovouniotis, 1993) that when two reactions that share a common

" metabolite are combined, the H, of the resulting‘ reaction will be greater and the Hyax

will be lower than the linear combination of the individual reactions. Thus by successively
combining reactions with Hj max > 0 and Hjmin < 0, it is possible to ultimately determine
their thermodynamic feasibility.

1.2 Steps for Determining Reaction Thermodyhamic Feasi-
bility | |

" The above concepts can be Summarizgd in the following steps such that the thermodynamic

feasibility of biochemical reactions can be determined using a computer program:

1. Formulate the bioreaction netwotk of interest and obtain AGY values for all reactions
2. Identify the currency and non-currency metabolites in-the network -
3. Assign constant ac{tivity y@luels to fh_e cvurr.e‘h(_:y metabolites based on published data

4. Assign minimﬁm and maximum activity values for all the non-currency metabolites
from published data

N . A_GQ// | v | ’ . : -. .

5. Compute ‘fﬁqlﬂ"a h,j,_ Wi, Hjmax and Hjmin for all reactions in the network
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6. Eliminate all reactions with H jmax < 0 as they are always thermodynamically feasible
7. :leassify all reaetions with Hj min > 0 as always ;thermodynamically‘ unfeasible

8. For the remaining re_actiohs (Hjmax > 0 and Hj min < 0) construct a combination of
two reactions that share a metabolite and go to step 5. If metabolites are not shared,

this combination is not possible and the search must be stopped

1.3 Application to Glycolysis' |

Application of the above method to reactions in the glycolytic pathway is presented. A
total of 11 reactlons along with. thelr standard free energies are shown in Table I.1. The
non-currency metabolites are ATP, ADP, NAD P; and NADH with the rest being currency

metabolites.

Table 1.1: Glyeolytic Reactioﬁs.'and their Standard Free Energies

# Reaction AGY (KJ/mol)
1 | Gle + ATP — G6P + ADP _ -16.75
2 | G6P — F6P ] 1.67
2 | F6P + ATP — FDP + ADP - -14.24
4 | FDP — DHAP + GAP, 23.99
5 | DHAP — GAP 7.66
6 | GAP + NAD + Pi — PGP + NADH 6.28
7 | PGP + ADP — 3PG + NADH - -18.84
8 | 3PG — 2PG 4.44
9 | 2PG - PEP R 1.84
10 | PEP + ADP — Pyr + ATP -31.4
11 | Pyr + NADH — Lac + NAD -25.12

Intracellular activities of both the currency and non-currency metabolites are necessary
for determining thermodynamic feasibility. While some data are available for cultured
mammalian cells, these represent a very small portion of the glycolytic metabolites. . A
more complete data set is available for the human erythrocyte (Table 1.2) and was used in
the analysis. Among non—cufrericy metabolites, concentrations of PGP and Lac were not
available and were assumed to be 0.01 and 0.05 mM, .respectively For currency metabolites,
concentrations of NAD and NADH were not available and were assumed to be 4 and 0.2
mM, respectively. '

Lower and upper concentration limits must be deﬁned for the non-currency metabolites

before reaction feasibility can be determined. In the absence of extensive published data,
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Table 1.2: Intracellular Metabolite and Cofactor Concentrations in the Glycolytic Pathway for
Human Erythrocyte . . o : :

Metabolite | Concentration (mM)
GIC. o : ‘ 5 .
G6P . 0.083
F6P ' ©0.014
FDP - 0.031

DHAP 0.138
.GAP : 0.019°
PGP 0.010
3PG - 0.118
2PG 0.030
PEP 0.023
Pyr 0.051
Lac 0.050
ATP : 1.850
ADP -0.138
NAD 4.000
P; : 1.000

-NADH | 0.200

the range for Glc was set as 1 — 10 mM and those for all other non-currency metabolites
as 0.01 - 0.2 mM. Results of the thermodynamic feasibility analysis are shown in Table 1.3
and are valid only at the above concentration ranges. |

Reactions 1, 3, 7, 10 and 11 are always feasible since H. j,max < 0. Alternatively, reactions
4 and 5 are always unfeasible (H min > 0) and can be classified as two localized bottlenecks.
Further analysis of reactions 2, 6, 8 and 9 is hecessary to determine if they are feasible or not.
Reaction 2 must be feasible because both reactions 1 and 3 cannot be part of a distributed
bottleneck (they are both always feasible). Reactions 5 and 6 can be combined to eliminate
GAP
' DHAP + NAD + P; —» PGP + NADH (1.17)
with a new h value of 2.63. The H;nin value for this combined reaction can be estimated as
0.33 and since this value.is > 0, reaction 6 is unfeasible. Similarly, reactions 8 and 9 can be

combined to eliminate 2PG _ ~
3PG — PEP : (1.18)

with a h value of 2.53 from which the Hmin is determined as 0.23. Reactions 8 and 9 thus
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Table 1.3: Results frorn Thermodynamics Feasibility Analysis on the Glycolytic Reactions

Reaction # A—g%q—, | hj Hjmax | Hjmin | Feasibility
1 | -0.35 |-13.96 | -10.06 | -16.26 | Yes
2 0.68 0.68 3.67 -2.32 ~ Yes
3 -8.34 | -8.34 -5.34 | -11.33 . Yes
4 9.68 | 5.07 |“11.06 2.08 No

5 3.09 | 3.09 6.09 0.10 “No

6 -0.46 | -0.46 2.53 -3.46 No

7 -5.00 | -5.00 -2.01 -8.00 Yes

8 179 | 179 | 479 | -1.21 No

9 074 0.74 -3.74 -2.25 No

10 -10.07 | -10.07 | -7.08 | -13.07 - Yes .
11 -7.14 | -7.14 -4.14 | -10.13 |  Yes

constltute a distributed bottleneck since Hmin > 0 for the combined react1on

Thus 5 of the 11 reactions in glycoly51s were determined to be thermodynamlcally un-
feasible for assumed metabohte and cofactor concentratlon ranges. While the standard free
energies for these 5 reactions were also posmve (Table 1.1), this need not be the case and
usually the standard free energy provides very little informatlon on reaction feasibility.

1.4 Bioprocess Implications

With increased metabohte profiling and metabolomics research, additional data on metabo-

lite and cofactor intracellular activities will become available allowing reliable determination

. of pathway thermodynamlc fea81b1hty In addition to providing data on thermodynamic fea-

" sibility, the magmtude of AG is important because reactions with low AG proceed close

to equilibrium while those with large negative AG values can be thought of as thermody—
namlcally irreversible. Combmmg metabolite concentration and reaction free energy data
with metabolic fluxes will i improve our understandlng of cell physmloglcal state and can aid ‘

bioprocess optimization efforts.
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Flux Analy51s for Bloprocess

Development1

J.1 Introduction

High density cultivation of mammalian cells on the ordef of 20 x»,lO6 cells/mL or higher

is possible in perfusion systems where cells are retained in a cell retention device and

_ r'eoycled back to the bioreactor {1, 2. In contrast to transient fed-batch systems that

experlence substantial changes in nutrlent and metabolite concentrations over the course of

‘cultlvatlon perfusion reactors operate at qua81 steady state with relatlvely constant nutrient

‘and ‘metabolite levels. Cell viability can be maintained high throughout the course of the

cultivation and product concentration and quality are also-typically consistent.

Variables such as bioreactor pH and dissolved oxygen (DO) have set points that are
established in process optimization experiments. While operation at these set points is
desirable, process control systems are not ideal and small deviations around the set point

are freqﬁent These fluctuations help define the normal operating range (Figure J.1) which

i is typlcally set at 2 — 3 standard deviations of typical variations [3]. Occasionally, vari-

ables can drift outside the normal operating range and a maximum operating range must

~'be defined over which product_ quality is not impacted. These subsequently become the

- ‘variable. specifications and the process must be operated within these ranges for product

release. When variables deviate from the maximum operating range, the product cannot

be released unless Comprehenswe addltlonal 1nvest1gat10ns confirm no adverse impact on

TA version of this chapter will be submltted for pubhcatlon Goudar, C.T., Piret, .J.M. and Konstanti-
nov, K.B. (2006)." Applications of QRT MFA for mammalian- culture process developmont and commercial

. manufacturlng

317
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product quality. Finally, th_eré is an edge of failure outside which the process is severely

compromised and from which recdvéry is usually not possible.

| Set point

Normal Operating
Range ‘

Maximum Operating
Range

Edge of Failure >

Figure J.1: Ranges of variables such as pH and dlSSOlVPd oxygen in a perfusion bloreactor Adapted
from [3]. :

Variable ranges and edges of failure must be established before the p'rocess‘ is transferred
to clinical material production and commercial manufacturing. Experiments to establish
these ranges are typically performed in laboratory-scale bioreactors during late stage process
development after variable set points have been established [3, 4]. The tesﬁing duration at
variable range extremes must be determined and this is challening for'perfusion systems
given their long operation times. -Stabilization of cell growth and metabolism have been
used as indicators of steady-state following a change [5] and for a perfusion system, these are
often in excess of a week. Thus exarnination of multiple variable extremes requires extended
cultivation times slowing down the process development and transfer_ process. Simultaneous
exaniin'ation of mﬁltiple effects is _one'approaich to reducing development time and the effect
of low glucose and high pICOg,. were cbncurrén,tly eic_afninedfor- CHO cells in perfusion culture
[6]. Another apprba(‘h ig scanning non—sfeédy state responses where it was shown that third
day transient values were snmlnr to those when pseudo-steady-state was reached {7]. Given

the subcta,ntla,l ra:duc’rlon in development time, a similar approach was uspd in ‘this study ‘
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and variable extremes were evaluated over a peilod of 48 hours.

Specific proteln productivity and protein quahty are the primary response parameters

" that are monitored when variable ranges are explored. Cell growth and specific nutrient

consumption-and metabolite production are also monitored at the range extremes and some
changes in them are usually- acceptable as long as’ product quality is not adversely impacted.
The information content in these classical range finding studies can- ‘be enhanced with quan-
titative information on cell metabolism at tne range extremes. Albeit of secondary impor—‘
tance when compared with product quality, improved understanding of the cell physiological
state rovides additional evidence for establishing process ranges.: Moreover, if process devi-
ations out51de the maximum- operatlng range do occur, a detailed understanding of cellular
metabolism can help investigations that ultimately result in product release. _

Metabolic flux analysis provides a framework to obtain quantitative physiological in-
formation when nutrient and metabolite specific rate data are available [8]. Rapid flux
estimation is possible through Qua'si real time metabolic flux analysis (QRT-MFA) and is
especiaily attractive because rapid feedback on cell metabolism can be used to character-
ize the transient phases that accompany variable changes. This improved understanding
of metabolism can 1nﬁuence range selection as dramatic variations in the cell physiologi-.
cal state are not des1rable even if they: are not accompanied by reduced productivity or
deterioration of protein quahty '

The effect of pH or DO changes on cell metabolism and protein productivity were
examined in this study which was aimed at- explorlng their edges of failure. The pH and
DO set points were varied over the course of a perfusion cultivation and the resulting growth,
metabolism and productivity responses were characterized. This information was used to
determine if the operating ranges ex‘arhined were indeed the maximum possible for this

process.

J.2° Materials and Methods

J.2.1 Cell Line, Medium and Cell Culture System

BHK cells were cultivated in perfusion mode with glucose and glutamine as the main carbon

and energy sources. Experiments were conducted in a 15 L bioreactor (Applikon, Foster
| City, CA) with a 12 L working volume. The temperature was maintained at 35.5 °C and the
agitation at 70 RPM. Under standard conditions, the dissolved oxygen (DO) concentration

was maintained at 50% air saturation using an oxygen-nitrogen mixture that entered the

bioreactor through a silicone membrane. The pH was maintained at 6.8 by the automatic
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addition of 0.57 M NagCOg3. ‘The bioreactor was inoculated at an initial cell density of 11.7
x 10% cells/mL and cells were allowed to accumulate to a steady-state concentration of 20
x 10° cells/mL. The steady-state cell density was maintained by automatic cell bleed from

the bioreactof. » - H

| | |

Standard Conditions : set point: Standard Conditions :
(PH=6.8,D0=50%) | change | (pH=6.8;D0=50%) |
| | |

| 1 |

| | |

| | |

| | |

| | |

| | |

| | |

| ] |

b | |

4-6 sampies in the | 46 | 46samplesinthe |
first 2 days - : samples I first 2 days :
3 samples over the | | 3 samples overthe |
next 3 days i E next 3 days :
ST IV SYYTI SRTTE RURTE CRTTE SUNTI FENTE FUTTY SOV FUUt nery

0 1 2 3 4 5 6 7 8 9 10 11 12
Time (Days)

Figuxje’ J.2: Sequencing and sampling of the experimental procedure in this study. A total of 4
set point changes (pH = 6.6 and 7.0; DO = 0 and 150%) were examined in a 38 day
perfusion cultivation

Once steady-state was reached, bioreactor pH and DO were varied to evaluate cellular
responses to these changes. The low pH value was 6.6 and the high was 7.0 while DO values
of 0 and 150% air saturation were investigated. Once a set point change was made, the
reactor was operated under these altered conditions for 2 days and was sampled 4 - 6 times
during this period to capture transient cellular response to set point change. This 2 day
operation allowed approximately 2 population doubling times and was much longer than
a typical excursion observed in a manufacturing system. The set points were then reset
and the reactor was operated at standard conditions for 5 days. Multiple samples (usually
4 - 6) were taken in the first 2 days followed by daily sampling. The 5 day standard
condition cultivation allowed 5 doubling times and was followed by another 2 day period of
set point change (Figure J.2). This process was repeated until all experimental conditions

were evaluated.
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J.2.2 Analytical Methods

Samples from the bioreactor were. taken for cell density and viability analysis using the

. CEDEX system (Innovatis, Bielefeld, 'Germany), The 'sample,s were subsequently cen-

trifuged (Beckman Coulter, F“ulleftbn’, CA)' and the supernatants were analyzed for nutrient
and metabolite concentrations. Glucose, lactate, glutamine and glutamate concentrations
were determined using a-YSI Model 2700 -analyzer (Yellow Springs Instruments, Yellow
Springs, ’OH)‘while ammonium was rheaeured by an Ektachem DT60 analyzer (Eastman.
Kodak, Rochester, NY). The pH and DO were measured online using retractable electrodes
(Mettler-Toledo Inc., Columbus, OH) and their measurement accuracy was verified through
off-line analysis in a Rapidlab® 248 blood gas- analyzer (Bayer HealthCare, Tarrytown, .

NY). The same instrument also measured the dissolved CO; concentration. On-line mea-

surements of cell density were made w1th a retractable optical density probe (Aquasant
Messtechnik, Bubendorf, Switzerland), calibrated with CEDEX cell density measurements.
Concentrations of oxygen and carbon-dioxide in the exit gas were measured using a MGA-

1200 Mass ‘Spectromete'r (Applied Instrument Technologies, Pomona, CA).

J.2.3 Specific Rate Estimation

Growth rate, nutrient consumption, metabolite production and specific productivity were

. calculated from mass balance ekpressions across the bioreactor and cell retention device.

Since bioreactor cell density was held constant by'bleeding cells from the bioreactor and
death rates not accounted for, the apparent growth rate, p (1/day), was a function of the
bleed rate, Fy \L / day) and the v1ab1e cell density in the’ harvest stream, X{7 (106 cells/ mL)

(J.1).

F,, , (Fh> X# 1 dxg
%

L EETT xZ XB Tat

where V is the bioreactor volume (L), F}, the harvest flow rate (L/’day), X8 the bioreac-
tor viable cell density (10° cells/mL) and ¢ the time (day). The specific rates of glucose

consumption and lactate production were determined from their bioreactor concentrations:

L1 Fh(Gm— ') dG :
amy 2
= XB{ v dt} : - (3.2
1 (RL _dL\
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Iy

where g¢ and gy, are the specific glucose cons_umption and lactate production rates, respec-

tively, (pmol/cell-day), Gn, the glucose concentration in the fed medium (mM), G and L

their bioreactor concentrations (mM). The expression for specific protein productivity is

analogous to that for lactate production.

J.2.4 Metabolic Flux Estimation

A biochemical network previously developed for hybridoma cell cultivation in 24 well plates
{9] was used in this study. This is a simplified representation of metabolism and includes
fluxes through glycolysis, the TCA cycle and oxidative phosphorylation. The stoichiometric-

matrix for this reaction network was of full rank with a low condition number of 7.6 indi-

‘cating that flux estimates were not overly sensitive to specific rate variations. Metabolic

fluxes were estimated using weighted least squares - -
x=(ATeTA) T AT (3:4)

where x is the flux vector, A the stoichiometric matrix, r the rate vector and 1)-the variance-

covariance matrix of r.
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Figure J.3: Time courses of bioréactoi“\'fiablé cell concentration () and viability (L) for conditions
‘A — T in the 38 day perfusion cultivation.




APPENDIX J. FLUX ANALYSIS FOR BIOPROCESS DEVELOPMENT 323

J.3 Results

J.3.1 Cell Growth and Viability -

Time courses of bioreactor viable cell density and viability are shown in Figure J.3 for
experimental conditions A — I. The target cell density was 20 x 10° cells/mL and average
cell densities were within 10% of the target for all conditions except when the DO was 150%
(condition H). Increasing the DO to 150% caused a sharp decrease in growth rate lowering
cell density to 124 x 108 celis /mL at the end of condition H. Cell growth recovered 24
hours after reducing DO to the standard 50% in condition I, reaching a final value of 17.9
x 108 cells/mL at day 38. Growth rate reductions on the ofder of 20 - 30% were also
seen when the pH was reduced to 6.6 (condition B) but were not substantial enough to
decrease bioreactor cell density. Despite the substantial reduction in growth at 150% DO,
cell viability was not affected and was >95% over the entire length of the cultivation (Figure
J.3).

150% |

6.6
0% -

S O==Q) BpH=66 1
"‘ D ani SN = ad R
(' ¢: Standard Conditions |
i

7.0

D: pH
F: DO

A~
PRI R S T

G: Standard Conditions _|

@)
o, H:DO

. A: Cell Accumulation |
E: Standard Conditions |

Glucose/Lactate Concentration (g/L)
N
{: Standard Conditions

o100 . 200 .30 40
Time (Days)

Figure J.4: Time courses of bioreactor glucose ({)) and lactate concnetrations (00) for conditions '
A - T in the 38 day perfusion cultivation.

J.3.2 Residual Glucose and Lactate Concentrations

Reducing pH from 6.8 to_6;6, reduced lactate concentration frqrri 1.61 + 0.03 g/L (mean =+ -

standard deviation for last 4 data points in condition A) to 0.76 + 0.10 g/L towards the end
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of condition B (Figure J. '4) ' This w’as accompanied by a glucose concentration increase to
3.0 £ 0.28 g/L from 1.88 £+ 0. 08 g/L. Lactate and glucose concentrations rapidly increased

and decreased, respectively, when standard conditions (pH = 6.8) were restored (Condition
- C). Increasing pH from 6.8 to 7 in condltion D increased lactate concentration from 1.43 +
0.09 to 1.95 £ 0.03 g/ L while the assoc1ated glucose concentration ‘decreased from 2.07 +
0.14 to 1.20 + 0.11 g/L. Both changes were reversible when the pH was reduced to 6.8 in
condition E. Reducing DO to 0% in condition F caused an increase in lactate concentration
from 1.36 & 0.04 g/L at the end of condition E to 1.62 # 0.07 g/L at the end of condition F.
This was accompanied by an increase in glncose concentration indicating increased glucose
uptake and lactate production when oxygen was limiting. Increasing DO to 150% resulted
in substantial decrease in the lactate concentration and this was primarily due to cell density
reduction in-condition H (Figure J.3). Glucose and lactate concentrations recovered after
reducing DO to the standard 50% (condition I) but were still quite different from those at
~ the end of condition G. It is possible that more time was necessary for the cells to reach a
metabolic state similar to that incoﬁndition A, if this was at all possible. "

J.3.3 Effect of pH Changes on Metabclic Fluxes

Time profiles of the glycolytic, lactate and T-CA‘ cycle fluxes are shown in Figure J.5a for
conditions A - C. Substantiai decreases are seen ‘for’all fluxes when the pH was reduced to -
6.6 (condition B) and the values recovered after the pH was increased to 6.8 in condition
C. Average flux values from- the last 4 data points of each condition and their associated
standard deviations are shown in Figure J.5b. Results from a t-test indicated a statistically
significant difference (p<0.05) for the glycolytic and TCA cycle fluxes across conditions A
and C. Increasing pH. to 7.0 in condition D resulted in flux increases (Figure J.6a) and this
change was reversible once the pH was reduced to 6.8. Average flux values for conditions C
- E are shown in Figure J.6b and there was no statistically significant difference (p<0.05) in
all three fluxes across conditions C and E. Cellular metabolism, while substantially affected
by pH increase, returned to levels prior to pH increase suggesting that pH increase over a
48 hour perlod had no long—term impact on cell metabolism.

Metabolic responses to pH changes were rapid. The bioreactor was sampled 23 hours
after reducing pH to 6.6 by which time the glycolytic, lactate and TCA fluxes were down to
3.1, 5.7 and 0.5 pmol/cell-d, respectively, from values-of 6.5, 9.5 and 3.5 'pmol/ cell-d at the
end of condition A (Figure J.5a). When the reactor was sampled 4 hours after increasing '

~ the pH to 6.8 (condition C) all 3 fluxes were substantially higher and continued to increase

in the 24 houi_f period following the pH increase. Flux values. stabilized in the subsequent
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Figure J.5: Effect of pH reduction on cell metabolism. Panel (a) contains time profiles of glycolytic

(O), lactate (O) and TCA cycle (A) fluxes for conditions A — C. Average flux values
over the last 4 data points of each condition are shown in panel (b) along with their
standard deviations. .

24 hours (Figure J.5a) and these were considered representative of condition C and used
to compute the average values in Figure J.5b. Similar rapid metabolic responses were seen
when the pH was increased to 7.0 followed by a decrease to 6.8 (Figure J.6a). A 48 hour
period (T2 population doublings) was thus adequate for cell metabolism to adjust to the

new pH set point.

J.3.4 Effect of DO Changes on Metabolic Fluxes

Reducing bioreactor DO to 0% (condition F) resulted in an increase in the glycolytic and
lactate fluxes while the TCA cycle flux was substantially reduced (Figure J.7) There was
a finite TCA cycle flux at 0% DO and this was because oxygen was still being sﬁpplied to
the system at a rate that was lower than that réquired by the cells. The glycolytic and
lactate fluxes decreased when the DO was increased back to the standard 50% (condition

G) while that for the TCA cycle increased. There was no statistically significant difference
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. Flgure J 6: Effect of pH 1ncrease on cell metabohsm Tlme proﬁles of of glycolytlc (), lactate -
. (33) ‘and TCA cycle (&) ﬁuxes are shown in panel (a) for conditions C - E. Average

- - flux values over the last 4 data pomts of each condltlon are shown in panel (b) along -~
‘ with thelr standard devratlons : : : o o

B between condltlons E and G for the glycolyt1c and lactate ﬂuxes The TCA cycle fluxes for
"-condltrons E and G were however srgnrﬁcantly different. DO increase to 150% (condltlon

H) resulted in an 1ncrease in all 3. fluxes over the first 24 hours followed by ar substantlal '

~ decline over the: next. 24 hours (Flgure J. 8a) Thrs dechne extended well 1nto cond1t1on T
;‘_wheretheDOwasreducedt050% By T \ ', e

 Unlike other changes the DO 1ncrease to 150% caused a substantlal decrease in’ the L

. growth rate resultlng in"a cell densrty dechne (F1gure J 3) The cell densrty decllne in the"'

- second half of cond1t1on H and a gradual 1ncrease 1n cond1t10n I is sunllar to the ﬂux trends -

B in Flgure J:8a. Flux recovery followrng 150% DO was the slowest among the 4 set. po1nt ‘

changes exammed and was also not complete There was a stat1st1cally srgnlﬁcant dlfference §

(p < 0.05). in all 3 flux averages for condltlons G and I (Flgure J. 8b) 1ndlcat1ng that ab
o day perlod followrng a DO set pomt of 150% was not adequate to restore cell metabollsmb

| to prevrous levels Whlle further cultrvatlon may have caused metabohsm to reach levels'_' K
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Figure J.7: Effect of DO decrease on cell metabolism. Time profiles of of glycolytic (), lactate
(O) and TCA cycle (A) fluxes are shown in panel (a) for conditions E — G. Average
flux values over the last 4 'data points of each condition are shown in panel (b) along
with their standard dev1at10ns

prior to DO increase, this was not verified in this stlidy.

J.3.5 Cell Size Variation

Cell size was also affected by pH and DO changes (Flgure J.9) with pH reductlon t0 6.6 re-
sulting in a diameter decrease over the ﬁrst 24 hours that subsequently increased. Increasing
pH to 7.0 resulted in a‘diameter increase which was lowered when the pH was reset to 6.8. A
slight diameter decrease was seen at 0% DO while a substantial diameter increase (2 pm)
was seen when the DO was 'in'creas.ed to 150% (Figure J.9). Results from the Tukey-Kramer
test indicated ne sign‘ﬁc.ant'diffefehce (p<0.05) among the control conditions A, C, E and
"G (condition I was &gmﬁcaqtly dlfferent) Average diameter for condition B (pH 6.6) was
not significantly different than condmons A and C while that for condition D (pH = 7.0)
was significantly different from condition E but not condition C. Diameter change at 0%
DO. (condition F) was not- SLgmﬁcantly dlfferent than standard conditions E and G while
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Figure J.8: Effect of DO increase on cell metabolism. Time profiles of of glycolytic (), lactate

() and TCA cycle (A) fluxes are s_hown in panel (a) for conditions G — 1. Average
flux values over the last 4 data points of each condition are shown in panel (b) along
with their standard deviations.

the diameter at 150% DO (condition H) was Signiﬁéantly higher than standard condition
G. Overall, pH and DO increases had the most .impact on cell diameter and the increases
in both cases were significant (p < 0.05) compared to one standard condition immediately
before or after. - |

J.3.6 . Specific Productivity and Protein Quality

Given the significant variation in cell density, especially for conditions H and I (Figure
J.3), product concentrations were normalized to a cell density of 20 x 108 cells/mL and are
shown in Figure J.10. For the mos:t part, product concentrations were remarkably steady
(assay variation is 10 — 15%) despite the substantial metabolic shifts over the course of the
experiment (Figures J.5 - J 8) There was no statistically significant difference in product

concentration (p < 0.05) _betwéen the control (condition A) and conditions B~ I by the

Dunnett’s method. When all pairs were compared by the Tukey-Kramer method, condition
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Figure J.9: Effect of pH and DQ changes on cell diameter.

H (DO = 150%) was significantly different than condifions B,E,F,Gandl Since condi-
tion H was between the conditions G and I and was ,signiﬁcantlly lower than both of them,
‘we can infer that exposure to 150% DO results in a statistically significant productivity -
decline. This deduction, however, is not definitive since there was no statistically signifi-
cant difference between condition H and condition A, the control at the beginning of the
experiment. ' B _ '

Figures J.11 - J.13 show protein western blots over the course of the experiment. The
last two samples from each experimental condition were analyzed since they would be the
most representative of each culture condition. For the standard conditions C, E, G and-
I that were each of 120 hour .'duration, the two samples were 116 and 120 hours following
" the switch to standard conditions while for the test conditions B, D, F and H, the samples
were 44 and 48 hours following the transition. Similar banding patterns were seen for the
standard and pH = 6.6 and pH = 7.0 conditions in Figure J.11. Perhaps the only difference
was the reduced intensity of the lower molecular weight band at pH = 7.0. Banding patterns
at DO = 0% were also similar to the standard (Figure J.12) while the lower molecular weight
band intensity in standard condition sample E1 was lower than that at DO = 0%. The
effect of DO = 150% on protein. quality is-illustrated in Figure J.13 where condition H -
is corh.pared with sténdar_d conditions G and I. The band intensities were the lowest for .

samples H1 and H2 and this_is because these lanes were loaded with ~30% less protein.
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Figure J.10: Time profile of product concentration.

While some degradation of the high molecular weight band was seen for all samples tested,
similar degradation was also seen in the reference standard. (Figures J.11 - J.13). We
can thus conclude that the pH and ADO ranges examined had minimal impact on protein
productivity and quality.A This is a rather'remarkablev result given the substantial metabolic

changes that resulted from pH and DO variations.

J.4 Discussion . -

J.4.1 Effect of pH on Metabohsm

Mammalian cell growth and metabolism are pH dependent. - Reductlon of bioreactor pH
from 7.6 to 6.8 reduced hybridoma growth, glucose consumption and lactate production
in batch culture [10] and similar results were also seen for both batch and continuous
culture of hybridoma cells [11]. It has been shown that intracellular pH (pH;) is lowered
when the extracellular (bioreactor) pH is reduced [12] and this cytoplasmic acidification can
significantly alter metabolism. A pH; reduction of 0.2 units has been shown to significantly
reduce the glycolytic flux [10 13] consistent w1th the observations in this study (Figure
J.5). ‘



APPENDIX J. 331

5]
:‘v
IS
2

)
x.

Flgure J.11: Western blot for experlmental conditions A — D. The last 2 samples from each exper-
imental condition wete analyzed such that the two standard condition samples (Al,
A2 or C1, C2) were 116 and 120 hours after set point change whllc those for the test
condltlons (B1, B2 or D1, D2) were after 44 and 48 hours.

J.4.2 Effect of DO on Metabolism

In most studies to date, low DO (<1%) has been associated with decrease in cell growth
and oxygen uptake while glu‘covse uptake and lactate production rates were higher. For
mouse LS cells in batch culture, oxygen uptake.rate, cell growth and maximum. cell density
were lowest at DO = 1% while lactate production: was the highest {14]. An anaﬂysis of the
enzyme levels at low DO concentration indicated low levels of isocitrate dehydrogenese and
aldolase, and high levels of lactate dehydrogenase [15], indicating a decrease in enzymes
involved in terminal respiration and an increase in those associated with glycolysis and '
~ the hexose—monbphosp‘hate pathway. For hybridoma cells in continuous culture, oxygeh
uptake rate decreased for DO < 10% and was relatively constant when DO ‘was between
10-and 100% [16]. Low DO concentration also resulted in higher glucose consumption and
lactate productlon rates Whlle glutamlne consumptlon was reduced. In another hybridoma

chemostat cultlvatlon il

1, DO < 5% was accompanied by reduction in cell growth rate
and oxygen uptake while glucbse cons’u_mptior‘f and lactate production rates were higher.
Metabolic flux analysis-eﬁ hybridoma eeHs in continuous culture indicated a decrease in
NAD(P)H-producing fluxes at low DO concentration [18]. Our observation of increased
glycolytic and lactate ﬂuxes and redueed TCA f,yde fluxes at DO = 0% are thus cons1stent
with those reported previously.

Whl]e a few reports mdlcate hlgh DO (> 100%) tolerance of mammalian Pells [19 21],



Voo
v

332

Figure J.12: Western blot for experimental conditions E and F. The last 2 samples from each
experimental condition were analyzed such that the two standard condition samples
(E1 and E2) were 116 and 120 hours after set point change while those for the test

ondmons (F1 and F2}) were after 44 and 48 hours. :

most other studies have observed reduced cell growth [15, 17, 22]. High DO can enhance the
formation of reactive oxygen species that can damage DNA, proteins and lipids. A gradual
increase in DNA breakage was seen when hybridoma cells were exposed to 200 -'476% DO
[23] It is possible that similar mechanisms were responsible for growth rate reduction and
hence the substantial decrease in cell density when the DO was increased to 150% (Flgure

J.3). ngh DO however, d1d not cause a decrease 1n cell v1ab1]1ty

J.4.3 QRT-MFA Application to Bioprocess Development

The metabolic changes observed as a consequence of pH and DO variation provide additional

" information to establish operating ranges for these variables. While ;operating ranges are

typically defined such that protein productivity and quality are not impacted, metabolic
changes must also be considered and this data is obtained from flux analysis. While minimal
impact of pH changes on protein productivity and quality was detected (Figures J.10 -
J.13), the metabolic changes were substantial (Figures J.5 —J.8) and must be considered for
establiéhing‘ pH and DO ranges. ‘While the reversibility of the physiological state following
a 48 hour exposure to the range extremes reduces the concern, a DO value of 150% cannot
serve as a. viable upper hmlt of the maximum operating range in a perfusion system given
the substantial decrease in growth rate (This would limit the maximum cell density that

can be achieved in a perfusion cultivation). Moreover, the-diameter increase at high DO is
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Figure J.13: Western blot for experimental conditions G — I. The last 2 samples from each exper-
imental condition ‘were analyzed such that the two standard condition samples (G1,
G2 or 11, I2) were 116 and 120 hours after set point change while those for the test
conditions (H1, H2) were after 44 and 48 hours.

a stress response that is undesirable. Similarly, operation at 0% DO virtually shuts down
the TCA cycle activity and cannot serve as a viable low limit for DO. Both 0 and 150%
DO would classify as beyond the edges of failure deSpite minimal adverse-effects on protein
productivity and quality. It is very likely that long term exposure (>5 days) to these
extreme DO values will adversely"impact. productivity and this will be verified in future:
investigations. | ' _ ' ‘ '

The pH values of 6.6 and 6.8 can serve as maximum operating ranges instead of edges
of failure. While growth rate did decrease at pH = 6.6, this reduction did not impact biore-
actor cell density. Reduction in glucose consumption and lactate production- (Figure J.5)

1s desirable as long as this metabolic shift has no adverse impact on protein productivity
and quality which was indeed the case .(Figures"J»nl() and J.11). The increase in metabolic
activity at pH = 7.0 has im’plicatiohé for mediurh‘design given the increased demand for
nutrients and the high lactate production rate could be a concern for low perfusion rate
cultivations. However, these éhifts do. not. classify pH 7.0 as an edge. of failure but more
as an upper limit of the maximufﬁ"opefating range. It must be recognized that long term
cultivation at pH 6.6 and 70and more detailed product quality analysis are necessary to
ensure that the 'obseryat_ionsf'f_rorﬁ this.study ca’n"be reproduced over extended cultivation

times. Thus a cqmbinéﬂpion of prbféin product_iv’i’ty and quality analysis- éoupled with in-

formation on the cell phy’Siolog;ical'_ state can help establish rational ranges for important
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process variables in a perfusion cultivation.

J.5 ConelusiOns .

In an attempt to augment conventional variable range studies with physiological infor-
mation, metabolic flux analysis was used to characterize cell metabolism when bioreactor
pH and DO were varied be_tWeeﬁ 6.6 — 7.0 and 0 — 150%, respectively. While substantial
metabolic changes were seen at these extreme conditions, the changes were reversible when
these variables. were restored to .se_t points. The most adverse impact was seen at 150%
DO with the largest growth rate reduction and the longest metabolic recovery time. For
all other cases, metabolism recovered t,oy levels prior to set poinf changes within 24 hours,
and in most cases, there were no statistically signiﬁcant metabolic changes before or after
set point changes suggesting physiological state reversibility. Surprisingly, productivity and
product quality were not affected despite the major central carbon metabolism changes.
The exposure time to pH and DO extremes.in this study was 48 hours and extended expo-
sure could irreversibly affect metabolism and negatively impact productivity and product
quality. Moreover, additional studies are required at intermediate variable values (for in-
stance DO in increments of 20% in the 10 - 130% range; pH in increments of 0.1 in the 6.5 —
7.1 range) to compiiehensivelfmaﬁeelluiar‘response to variable changes. This information
coupled with the ﬁndinge‘ from this study can help establish a maximum operating range for
the perfusioh process enabling.'sm'ooth t'rzin'svfer't(') clinical fnanufracturing‘and commercial

production.
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