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Abstract 

Mammalian cells are being increasingly used to manufacture complex therapeutic proteins 

given their ability to properly fold and glycosylate these proteins. However, protein yields 

are low and process enhancements are necessary to ensure economically viable processes. 

Methods for yield improvement, bioprocess development acceleration and rapid quantifica­

tion and monitoring of cell metabolism were investigated in this study. Recognizing the 

adverse effect of high pCC>2 on cell growth, metabolism and protein productivity, a novel 

P C O 2 reduction strategy based on NaHC03 elimination was investigated that decreased 

.pC02 by 65 - 72%. This was accompanied by 68 - 123% increases in growth rate and 58 

- 92% increases in productivity. To enable rapid and robust data analysis from early stage 

process development experiments, logistic equations were used to effectively describe the k i ­

netics of batch and fed-batch cultures. Substantially improved specific rate estimates were 

obtained from the logistic equations when compared with current modeling approaches. 

Metabolic flux analysis was used to.obtain quantitative information on cellular metabolism 

and the validity of using the balancing method for flux estimation was verified with data 

from isotope tracer studies. Error propagation from prime variables into specific rates and 

metabolic fluxes was quantified using Monte-Carlo analysis which indicated 8 - 22% specific 

rate error for 5 - 15% error in prime variable measurement. While errors in greater metabolic 

fluxes were similar to those in the corresponding specific rates, errors in the lesser metabolic 

fluxes were extremely sensitive to greater specific rate errors such that lesser fluxes were 

no longer representative of cellular metabolism. The specific rate to metabolic flux error 

relationship could be accurately described by the corresponding normalized sensitivity co­

efficient. A framework for quasi-real-time estimation of metabolic fluxes was proposed and 

implemented to serve as a bioprocess monitoring and early warning system. Methods for 

real-time oxygen uptake and carbon dioxide production rate estimation were developed that 

enabled, rapid flux estimation. This framework was used to- characterize cellular response 

to pH and dissolved oxygen changes in a process development experiment and can readily 

be applied to a manufacturing bioreactor. Overall, the approaches for protein productivity 
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enhancement and rapid metabolism monitoring developed in this study are' general with 

potential for widespread application to laboratory and manufacturing-scale perfusion and 

fed-batch mammalian cell cultivations. 
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Chapter 1 

Introduction 

Protein biopharmaceuticals that are manufactured through modern molecular biology tech­
niques have, revolutionized the way many life threatening illnesses are treated. These prod­
ucts comprise a global annual market of $30 billion and this number is expected to increase 
exponentially in the future with about 500 products currently undergoing clinical evaluation 
[1] and thousands more being actively researched. The first biopharmaceutical to be ap­
proved was recombinant insulin in 1982 [2] and since then a total of 84 biopharmaceuticals 
were approved in the United States and the European Union by the year 2000 [3]. The 
most rapid increase was during the 2000 - 2003 period with a total of 64 products receiving 
regulatory approval [1]. 

Mammalian cells have played an increasingly important role in the development of new 
biopharmaceuticals over the past decade. For instance, 64% (21 out of 33) of the biopharma­
ceuticals that were approved between January 1996 and November 2000 were manufactured 
by mammalian cells [4]. This number is likely to increase in the future as mammalian cells 
have the ability to perform complex post-translational modifications which enable them to 
produce proteins that have the desired biological activity for therapeutic and diagnostic ap­
plications. Current products of mammalian cell culture include therapeutics in the form of 
recombinant proteins or antibodies, vaccines, tissue-replacement products, and diagnostic 
products such as monoclonal antibodies. 

Despite the advantages of post-translational modifications, mammalian cell culture has 
several challenges. Mammalian cell growth rates are typically an order of magnitude lower 
than bacterial cells and protein productivity is also low, typically; less than 0.1% of the 
total protein concentration in the cell [5]. This places an enormous burden on downstream 
protein concentration and purification steps. In addition to lower growth and productivity, 
mammalian cells have complex nutritional requirements and are sensitive to shear during 
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bioreactor cultivation. Significant progress has been made over the last two decades to 
address these limitations resulting in suspension cultivation using serum-free media. 

It is the general perception that the low hanging fruits in mammalian cell culture have 
been gathered. These include products with low dosage and high market value such as 
Erythropoietin (EPO) which generated worldwide annual revenues of $7 billion in 2002 [6]. 
Products of the future are likely to have dosage requirements that are orders of magnitude 
higher than those for E P O with substantially smaller revenues. Thus protein productivity 
increase along with reduction in the cost of goods will be an underlying theme for manu­
facturing the next generation of biopharmaceuticals. Robust cell line engineering coupled 
with bioprocess improvements can provide economically feasible manufacturing options. 

The first section of this study is introductory and presents an overview of mammalian 
cell metabolism (Chapter 2) and the methods used to determine intracellular fluxes from 
bioreactor experiments (Chapter 3). While metabolic flux analysis essentially involves the 
solution of mass balance expressions, a formal method of flux estimation was proposed only 
15 years ago while methods of flux estimation from labeled substrates, albeit mature, are 
still in late stages of development. The important features of both these flux estimation 
methods have been reviewed with an emphasis on error identification in input data and 
robust flux estimation. Each of the following chapters, structured like an article, includes 
an introductory review. 

The second section presents a detailed description of the dynamics of dissolved carbon 
dioxide in mammalian cell perfusion bioreactors. High values of dissolved carbon dioxide 
(pC02 > 200 mm Hg) are commonly encountered in high-density perfusion bioreactors 
and have been shown to adversely affect growth, metabolism, productivity and protein 
glycosylation. A robust method of reducing bioreactor pC02 by ~70% (final values close to 
70 mm Hg) has been proposed by eliminating NaHCOs from the medium and for bioreactor 
pH control (Chapter 4). This pC02 reduction was achieved with no changes to bioreactor 
operation and only a marginal increase in raw material cost while resulting in substantially 
increased specific protein productivity. Detailed oxygen and carbon dioxide mass balances 
were developed for a perfusion system that enabled the determination of oxygen uptake and 
carbon dioxide evolution rates (OUR and C E R , respectively) from which the respiratory 
quotient (RQ) was estimated (Chapter 5). While mammalian cell RQ's are typically close to 
unity, O U R and C E R are affected by bioreactor operating conditions and are also necessary 
for metabolic flux estimation. 

Robust methods of batch and fed-batch culture specific rate estimation along with a 
detailed analysis of error propagation during specific, rate and metabolic flux estimation 
in perfusion systems are presented in Section 3. Analytically differentiable logistic equa-
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tions were used to describe time profiles of cell density, nutrient, metabolite, and product 
concentrations in batch and fed-batch cultures resulting in robust specific rate estimates 
which were in most instances statistically superior to current specific rate estimation meth­
ods (Chapter 6). Error propagation from experimental measurements into specific rates 
and subsequently into metabolic fluxes was quantified using Monte-Carlo analysis (Chapter 
7). This analysis helped quantify the uncertainty inherent in metabolic flux estimates due 
to experimental measurement errors. This information was critical to meaningfully com­
pare flux data across different experimental conditions and for decoupling the effect on flux 
estimates of measurement error and cell physiology. 

Application of metabolic flux analysis to mammalian cell cultivation is presented in Sec­
tion 4. The use of 1 3 C labeled glucose for detailed flux estimation in a C H O perfusion culture 
is described in Chapter 8. The biomass hydrolysates from these experiments were analyzed 
by 2 D - N M R which allowed flux estimation in reversible and cyclical reactions, something 
not possible using the metabolite balancing approach. Besides providing a comprehensive 
description of C H O cell metabolism, the extended flux data set allowed validation of flux 
data obtained using the metabolite balancing approach. A framework for quasi-real-time 
metabolic flux estimation is presented in Chapter 9 that provides rapid quantification of 
cell physiology and metabolism in both process development and commercial bioreactors. 
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Chapter 2 

Overview of Cel lular Metabo l ism 

2.1 I n t r o d u c t i o n 

Before analyzing the fluxes through a metabolic network, the biochemical reactions that 
make up the metabolic pathway of interest must be identified. A recombinant mammalian 
cell converts nutrients (primarily glucose and glutamine) into energy, biomass and waste 
products along with production of the therapeutic protein of interest. Energy in a cell is 
present primarily in the form of adenosine tri-phosphate (ATP), while reducing power is,pro­
vided by the reduced forms of nicotinamide adenine dinucleotide (NADH) and nicotinamide 
adenine dinucleotide phosphate (NADPH) . Biosynthetic reactions use N A D P H while N A D H 
is used primarily for the production of ATP . Mammalian cell biochemistry has been the sub­
ject of extensive research and detailed information on cellular metabolism can be found in 
standard biochemistry textbooks [1]. Only a brief summary of the primary pathways of 
mammalian cells metabolism will be presented here along with the effect of environmental 
conditions on cell growth, metabolism and protein productivity. 

2.2 G l y c o l y s i s 

2.2.1 Overview of Glycolysis 

Glycolysis involves the degradation of a molecule of glucose through a series of enzyme-

catalyzed reaction resulting in two molecules of pyruvate 

Glucose + 2NAD++ 2ADP + 2P; —> 2Pyruvate + 2NADH + 2ATP + 2H + + 2H 2 0 

(2-1) 

5 
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This conversion of glucose to pyruvate occurs in ten steps (Figure 2.1), the first five of 
which constitute the preparatory phase where 2 molecules of A T P are used to convert 1 
molecule of glucose into 2 molecules of glyceraldehyde 3-phosphate. In the payoff phase that 
comprises the latter five reactions, 2 molecules of glyceraldehyde 3-phosphate are converted 
to 2 molecules of pyruvate resulting in the formation of 4 molecules of A T P and 2 molecules 
of N A D H . Since 2 molecules of A T P are used in the preparatory phase, the net A T P yield 
in glycolysis per molecule of glucose is 2. 

Glucose 

- A T P 

• A D P 

Glucose 6-phosphate 

Phosphoglucose 
isomerase 

Fructose 6-phosphate 

Phosphofructo- y~ 
kinase | ^ 

A T P 

A D P 

Dihydroxyacetone 
. phosphate 

Fructose 1.6-diphosphate 

: i •. 
Triose.phosphate \ ; isomerase 

Gtyceraldenyde 
3-phosphate 
dehydrogenase 

Glyceraldehyde 
3-phosphate 

N A D * + P. 

C N A D H + H* 

1,3-Diphosphoglycerate 
- A D P 

• Phosphogtycerate 
kinase 

• A T P 

3-Phosphoglycerate 

Phosphoglycero-
mutase 

2-Phosphoglycerate 

Phosphoenolpyruvate 

I ^ A D P 
Pyruvate kinase 

L A 

Pyruvate 

Figure 2,1: Conversion of glucose to pyruvate via the glycolytic pathway in mammalian cells. 

2.2.2 Energetics of Glycolysis 

The overall glycolytic reaction presented as Eq.(2..1) can be split into the exergonic and 

endergonic components which are the conversion of glucose to pyruvate and the formation 
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of A T P from A D P and P;, respectively 

Glucose + 2 N A D + —> 2Pyruvate + 2 N A D H + 2 H + ; AG?=-146 kJ /mol (2.2) 

2ADP + 2P; >2ATP + 2 H 2 0 ; AG^=61 kJ /mol ' ( 2 . 3 ) " 

It follows from Eqs. (2.2) and (2.3) that the overall standard free-energy change for glycol­
ysis is -85 kJ/mol . This large decrease in net free energy makes glycolysis in the cell an 
essentially irreversible process and the energy released in glycolysis is recovered as A T P 
with efficiencies greater than 60%. It is also important to note that only a small portion 
of the total available energy from glucose is released during glycolysis. The total standard 
free-energy changefor complete oxidation of glucose to C O 2 and H 2 O is -2,480 kJ /mol while 
that for the degradation of glucose to pyruvate is only -146 k J/mol. Thus only about 5% 
of the energy available from glucose is released during glycolysis. Pyruvate retains most of 
the chemical potential energy from glucose which is subsequently extracted by the oxidative 
reactions of the citric acid cycle and by oxidative phosphorylation. 

2.2.3 Regeneration of N A D + Consumed during Glycolysis 

It follows from Eq.(2.1) that glycolysis involves consumption of N A D + for the production of ' 
N A D H . Thus regeneration of N A D + is necessary to sustain glycolysis and this can happen in 
several ways in mammalian cells. One mechanism is the reoxidation of N A D H to N A D + by 
electron transfer through the respiratory chain located in the mitochondria. These electrons 
are then passed on through the respiratory chain to oxygen, the terminal electron acceptor 

2 N A D H + 2 H + + 0 2 — » 2 N A D + + 2 H 2 0 (2.4) 

Alternatively, the production of lactate from pyruvate can also serve as a mechanism for 

the production of N A D + 

Pyruvate + N A D H + H + —> Lactate + NAD+ , (2.5) 

2.2.4 Regulation of Glycolysis 

Glucose flux through glycolysis'^ regulated to achieve constant A T P levels and to maintain 

adequate amounts of glycolytic intermediates that are used for biosynthesis. Three enzymes 

- hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) are are considered 

to play a key role in controlling the glycolytic flux by regulating metabolite concentrations 
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such that balance between A T P production and consumption is maintained. 

2.2.4.1 Hexokinase 

Hexokinase catalyzes the first step of glycolysis where glucose is phosphorylated to glucose 

6-phosphate 
Glucose + A T P — G l u c o s e 6-phosphate + A D P + H + (2.6) 

Mammalian cells have several forms of hexokinase, all of which catalyze the above reac­
tion. Muscle hexokinase is allosterically inhibited by glucose 6-phosphate such that high, 
concentrations of glucose 6-phosphate temporarily and reversibly inhibit hexokinase. This 
reduces the rate of formation of glucose 6-phosphate from glucose and helps reestablish a 
steady state for the glycolytic flux. The hexokinase found in the liver is also referred to as 
glucokinase and is not inhibited by glucose 6-phosphate but instead is inhibited by fructose 
6-phosphate. 

2.2.4.2 Phosphofructokinase 

Phosphofructokinase (PFK) catalyzes the phosphorylation of fructose 6-phosphate to fruc­

tose 1,6-diphosphate. 

Fructose 6-phosphate + A T P —> Fructose 1,6-bisphosphate + A D P (2.7) 

This is often considered as the step that commits the cell to channeling glucose into gly­

colysis. P F K has in addition to its substrate binding sites, several regulatory sites where 

allosteric activators or inhibitors can bind. The activity of P F K is influenced by the con­

centrations of A T P , A M P , citrate, fructose 1,6-bihosphate and fructose 2,6-biphosphate. 

High A T P concentrations inhibit P F K by binding to an allosteric site thereby lowering the 

affinity of P F K for fructose 6-phosphate. This inhibition is relieved by an increase in the 

concentration of A D P and A M P which results from consumption of A T P . Citrate also serves 

as an allosteric regulator for P F K with high citrate concentration increasing the inhibitory 

effect of A T P . The most significant allosteric regulator of P F K is fructose 1,6-bihosphate 

which is not an intermediate in glycolysis. 
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2.2.4.3 Pyruvate Kinase 

Pyruvate kinase catalyzes the conversion of phosphoenolpyruvate (PEP) to pyruvate and is 
the last step in glycolysis 

P E P + A D P + H + —> Pyruvate + A T P (2.8) 

High A T P concentrations allosterically inhibit P K by decreasing its affinity for P E P as well 
as acetyl-CoA and long-chain fatty acids. Both acetyl-CoA and long-chain fatty acids are 
important fuels for the citric acid cycle and when these are present in high concentrations, 
A T P is readily produced by the citric acid cycle. Low A T P concentrations increase the 
affinity of P K for P E P resulting in the formation of A T P through substrate-level phospho­
rylation, thereby maintaining the steady-state concentration of ATP . 

2.3 Pentose Phosphate Pathway (PPP) 

2.3.1 Overview of PPP 

The primary function of the P P P is the generation of N A D P H and five carbon sugars. The 
P P P consists of an oxidative branch which produces N A D P H (Figure 2.2) and a nonox-
idative branch (Figure 2.3) that interconverts various sugars and connects the P P P to 
glycolysis. The overall reaction through the oxidative branch of the P P P is 

G6P + 2NADP+ + H 2 0 — • Ribose 6-phosphate + C 0 2 + 2 N A D P H + 2H+ (2.9) 

which results in the production of N A D P H , a reductant for biosynthetic reactions and ribose 

5-phosphate which is a precursor for nucleotide synthesis. 

2.3.2 Regulation of PPP 

The first step in the oxidative branch of the P P P is the dehydrogenation of glucose 6-

phosphate (Figure 2.2) and this reaction is essentially irreversible under physiological con­

ditions. Also, this reaction is frequently limiting and serves as the main control point in the 

P P P . In the nonoxidative branch of the P P P , all the reactions are readily reversible (Figure 

2.3) and the direction and magnitude of their fluxes are likely to be determined by simple 

mass action. The control of this branch however, is not explicitly known. It is likely that 

cellular demand for N A D P H and ribose 5-phosphate will determine the flux through the 

pentose phosphate pathway. 
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Glucose 6-phosphate 

glucose 6-phosphate .--NADP* 
dehydrogenase . f 

NADPH + H* 

6-Phosphoglucono-8-lactone 

Lactonase 
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dehydrogenase 

•H,0 

6-Phosphogluconate 

^-NADP* 

y NADPH + H* + CO, 

D-Ribulose 5-phosphate 

phosphopentose 
isomerase 

D-Ribose 5-phosphate 

Figure 2.2: The oxidative branch of the pentose phosphate pathway. 

2.4 Tricarboxylic Acid (TCA) Cycle 

2.4.1 Overview of the T C A Cycle 

The T C A cycle (Figure 2.4) has the dual role of generating energy in the form of A T P from 

the oxidation of carbon compounds and also of generating biosynthetic precursors for a wide 

variety of products. The pyruvate produced during glycolysis is converted to acetyl-CoA 

and CO2 through an oxidative decarboxylation reaction that is catalyzed by the pyruvate 

dehydrogenase complex which is made up of three distinct enzymes - pyruvate dehydro­

genase, dihydrolipoly transacetylase, and dihydrolipoly dehydrogenase. This conversion of 

pyruvate to acetyl-CoA and CO2 is an irreversible reaction. The acetyl-CoA formed above 

enters the T C A cycle where the first of eight reactions is the condensation of acetyl-CoA 

with oxaloacetate to form citrate under the action of citrate synthase (Figure 2.4). The 

overall reaction of the T C A cycle can be written as 

Acetyl-CoA + 2NAD+ + F A D + G D P + P ; + 2 H 2 0 

-* 2 C 0 2 + 3 N A D H + F A D H 2 + G T P + 2H+ + CoA (2.10) 
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Figure 2.3: The nonoxidative branch of the pentose phosphate pathway. 

2.4.2 Energetics of the T C A Cycle 

For one turn of the T C A cycle, two molecules of C O 2 are formed from the oxidation of 

isocitrate and a-ketoglutarate. The energy from these oxidation reactions is conserved in 

the reduction of three N A D + and one F A D molecule coupled with the production of one 

G T P molecule. While only one molecule of G T P is generated per turn of the T C A cycle, 

the oxidation steps of the T C A cycle (four in all) are electron sources. These electrons 

are transported to the respiratory chain via N A D H and F A D H 2 where additional A T P 

molecules are formed during oxidative phosphorylation. When coupled with glycolysis and 

assuming that both the pyruvate molecules are oxidized to C O 2 via the citric acid cycle, 

about 32 A T P molecules are generated per molecule of glucose. 

2.4.3 Regulation of the T C A Cycle 

The T C A cycle is controlled to meet the energetic needs of the cell in addition to precursors 

for biosynthesis. The most important regulation is via the N A D + / N A D H ratio with many 

reactions requiring N A D + as an electron acceptor and other being allosterically regulated 

by N A D + or N A D H . Concentrations of other substrates such as succinyl-CoA, oxaloacetate, 

A T P and A D P also serve to control the activity of the T C A cycle. The key enzymes that 
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F i g u r e 2 .4 : R e a c t i o n s o f t h e T C A c y c l e . 

control T C A cycle activity are pyruvate dehydrogenase complex (PDC), citrate synthase 

(CS), isocitrate dehydrogenase (ID) and a-ketoglutarate dehydrogenase. ' 

2.4.3.1 Pyruvate Dehydrogenase Complex 

The P D C catalyzes conversion of pyruvate into acetyl-CoA 

Pyruvate + CoA + N A D + . — • Acetyl-CoA + C 0 2 + N A D H + H + (2.11) ' 

The products of the above reaction, acetyl-CoA and N A D H are inhibitory to P D C and this 
inhibition is relieved by CoA and NAD+. Also, G T P inhibits P D C activity while A M P ac­
tivates it. P D C is also activated by phosphorylation which is simulated by high A T P / A D P , 
acetyl-Co A / C o A , and N A D H / N A D 4 " ratios. Dephosphorylation however increases the ac­
tivity of P D C . It appears that P D C is active when there is a need for acetyl-CoA, either 
for biosynthesis, or for the production of N A D H . 
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2.4.3.2 Citrate Synthase 

Citrate synthase (CS) catalyzes the first step of the T C A cycle where oxaloacetate and 

acetyl-CoA are converted to citrate 

Acetyl-CoA + oxaloacetate —> citrate + CoA (2-12) 

Activity of CS is strongly influenced by the concentrations of oxaloacetate and acetyl-CoA 
which are the reactants in the above reaction. The concentrations of these substrates vary 
with the metabolic state of the cell and hence affect the rate of citrate production. Succinyl-
CoA, N A D H , and N A D P H act as inhibitors by decreasing the affinity of CS for acetyl-CoA 

2.4.3.3 IsoCitrate Dehydrogenase 

Isocitrate dehydrogenase catalyzes the conversion of isocitrate to a-ketoglutarate 

Isocitrate + N A D ^ —> a-ketoglutarate + C 0 2 + N A D H + H + (2.13) 

The activity of isocitrate dehydrogenase is strongly affected by the N A D + / N A D H ratio 

and is allosterically activated by A D P . Increased A T P concentrations adversely affect the 

activity of isocitrate dehydrogenase. 

2.4.3.4 a-Ketoglutarate Dehydrogenase 

Conversion of a-ketoglutarate to succinyl-CoA is catalyzed by a-ketoglutarate dehydroge­

nase 

a-ketoglutarate + CoA + N A D 4 " — • Succinyl-CoA + N A D H + H + (2.14) 

The activity of this enzyme is inhibited by succinyl-CoA and N A D H , which are the products 

in the above reaction. A high A T P / A D P ratio is also known to inhibit a-ketoglutarate 

dehydrogenase. 

2.5 Glutamine Metabolism 

2.5.1 Overview of Glutamine Metabolism 

Glutamine is a major source of energy and nitrogen for mammalian cells. The anabolic 

reactions of glutamine typically take pace in the cytosol while the catabolism-of glutamine 
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occurs in the mitochondria. Detailed reviews on the metabolism of glutamine are available 
[2] and, given the dominant role that glutamine plays in catabolism, only this component 
will be discussed here. 

2.5.2 Catabolism of Glutamine 

The use of glutamine for energy production is also referred to as glutaminolysis and results 
in the production of pyruvate with the concomitant production of N A D H (Figure 2.5). 

Glutamine 
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N H , + N A D H 

^ R -OH 

glutamate transaminase 

^ - R - N H , 
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Figure 2.5: Reactions involved in glutamine catabolism. 

Glutamine is first converted to glutamate which subsequently is converted to a-ketoglutarate 
and enters the T C A cycle. While five carbon atoms enter the T C A cycle through a-
ketoglutarate, only two are removed as C 0 2 for each turn of the T C A cycle. The remaining 
carbon atoms are removed by the conversion of malate to pyruvate; a reaction that is 
catalyzed by the malic enzyme. The pyruvate formed can either be converted to lactate or 
it can enter the T C A cycle via acetyl-CoA. 
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Glutamine is first converted to glutamate in the following reaction 

Glutamine + H 2 0 — • Glutamate + N H j (2.15) 

Subsequent conversion of glutamate to a-ketoglutarate can occur through either glutamate 
dehydrogenase (GLDH) or via a transaminase reaction (Figure 2.5). Alanine transaminase 
and aspartate transaminase are abundant in most cells and are likely to be major contribu­
tors for the conversion of glutamate to a-ketoglutarate. In addition to the transamination 
reaction, glutamate can also be deaminated by G L D H as 

Glutamate + N A D ( P ) + — • a-ketoglutarate + N H j + N A D ( P ) H (2.16) 

and the a-ketoglutarate formed in the above reaction enters the T C A cycle. 
Of special interest is the conversion of malate to pyruvate through the action of the 

malic enzyme 

. Malate + N A D ( P ) + — • Pyruvate .+ C 0 2 + N A D ( P ) H (2.17) 

This action of the malic enzyme serves fo remove the excess carbons from the T C A cycle 

and also allows for complete oxidation of glutamine. 

2.6 Oxidative Phosphorylation 

In aerobic metabolism, oxidative phosphorylation is the final step in the energy production 

process. The electrons released during the T C A cycle are carried by the energy rich mole­

cules N A D H and F A D H 2 and are subsequently transferred to oxygen, the terminal electron 

acceptor. In mammalian cells, this process occurs in the mitochondria where the respiratory 

assemblies that carry out the electron transfer steps are located. The overall reaction can 

be written as 

N A D H + H+ + ~ 0 2 + (^j A D P + | ^ P- — • NAD+ + H 2 0 + (^j A T P 

(2.18) 

where ^ is the ratio of the number of A T P atoms formed per atom of oxygen. For mam­

malian this ratio is usually between two and three. 
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2.7 A n Integrated View of Cellular Metabolism 

As the primary role of metabolism is to produce and maintain biomass, cells consume 
nutrients to produce energy, reducing power and biosynthetic precursors. The primary 
pathways that form the core of mammalian cell metabolism are glycolysis, T C A cycle, 
pentose phosphate cycle, glutaminolysis and oxidative phosphorylation. Having examined 
these pathways individually, it is important to view them in an integrated fashion as their 
numerous connections and interactions contribute to the overall behavior of the bioreaction 
network. Glycolysis and the P P P are connected by glucose-6-phosphate as well as several 
other glycolytic intermediates. Also, glycolysis is connected to the T C A cycle through 
pyruvate. Glutamine, which is first metabolized to glutamate, enters the T C A cycle as a-
ketoglutarate. It is important to note that while the regulation of an individual enzyme can 
be evaluated fairly completely in vitro, understanding the role of regulation in the overall 
control of metabolism is extremely difficult. While significant progress has been made in 
trying to quantify the control of cellular metabolism through metabolic control analysis [3], 
much work still remains to be done. 

2.8 Environmental Effects on Cellular Metabolism 

Bioreactor operating conditions have a significant effect on the growth and productivity of 

mammalian cells. The most commonly monitored parameters during routine cell cultivation 

include nutrient and metabolite concentration, pH, dissolved oxygen and temperature. A l l 

of these parameters have been known to have a significant influence on cellular metabolism 

and a summary is presented in the following sections. 

2.8.1 Nutrients 

2.8.1.1 Glucose 

Glucose is the primary source of energy and carbon for mammalian cells while glutamine 

is a source of both nitrogen and energy. A key observation in the metabolism of glucose 

and glutamine is that their uptake rates are highly concentration dependent. Early inves­

tigations [2, 4, 5] have shown that at low glucose concentration, glutamine becomes the 

dominant source of energy. Also, glucose metabolism itself is a strong function of the glu­

cose concentration in the bioreactor. At high glucose concentrations, specific glucose uptake 

rates are higher with a majority of glucose converted to lactate and only a small portion 

entering the T C A cycle [5-7]. At low glucose levels, a majority of the glucose enters the 
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T C A cycle where it is completely oxidized to C O 2 . . This difference in glucose utilization 
patterns has been, used to optimize the operation of fed-batch bioreactors where glucose 
concentration was maintained at a minimum level to minimize the production of lactate 
[8, 9]. However, it is important to note that a reversal of cellular metabolism can occur 
when cells are reintroduced into a high glucose environment. For instance, an increase in 
the molar stoichiometric ratio of lactate to glucose from 0.05 to 1.8 was observed within a 
few hours of reintroducing glucose starved cells into a glucose rich environment [6]. . 

2.8.1.2 Glutamine 

Glutamine concentration also has an effect on the specific uptake rate of glutamine [10-13]. 
In continuous culture experiments with hybridoma cells, medium glutamine concentrations 
in the 0.5 - 2 m M range were limiting and were characterized by reduced rates of ammo­
nium and alanine production [10]. Specific ammonium production rates were almost 2-fold 
higher at elevated glutamine concentrations when compared with those under glutamine-
limiting conditions. Consumption rates of other amino acids decreased at higher glutamine 
concentration in the medium and it was hypothesized that their metabolic function was par­
tially replaced by glutamine. Glutamine uptake rates exhibited a Michaelis-Menten type 
relationship with the glutamine concentration for B H K cells in batch culture and the ki­
netic parameters were dependent on the glucose concentration in the medium as glutamine 
consumption rates were higher at low.glucose concentration [14]. However, no significant 
differences in the oligosaccharide structures of a human IgG-IL2 fusion protein were detected 
under glutamine limiting conditions [15]. . 

Metabolic flux analysis was used to investigate the metabolism of human 293 cells under 
low glutamine conditions [16]. At limiting amounts of glutamine, the consumption rates 
of other essential amino acids increased indicating that these could provide intermediates 
to the T C A cycle in the absence of glutamine. Replacement of glutamine with glutamate 
has also been proposed as a strategy to minimize ammonium accumulation [17] which is a 
consequence of both chemical decomposition of glutamine and the conversion of glutamine 
to glutamate. 

2.8.2 Metabolites 

2.8.2.1 Lactate 

A significant portion of glucose is converted to.lactate in cultured mammalian cells and 

high lactate concentrations are toxic to cells. Moreover, glucose conversion to lactate is 

energetically inefficient. A 20% reduction in hybridoma cell growth was observed at 10 m M 
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(0.9 g/L) lactate concentration [18] while a 50% reduction in hybridoma cell growth rate 
were observed at 22 m M [19], 40 m M [12, 20] and 55 m M [21] concentrations. As with other 
variables, the detrimental effects of lactate accumulation are cell line specific but concen­
trations in excess of 1 g /L have the potential to adversely affect growth and metabolism. 
Uptake rates of glucose and glutamine also decreased with increase in bioreactor lactate 
concentration (20 - 70 mM) while death, oxygen uptake and specific antibody production 
rates were not affected [21]. For C H O cells in batch culture, lactate concentrations in excess 
of 30 m M inhibited cell growth with 25% growth rate reduction at 60 m M lactate while no 
reduction was seen in specific productivity and glucose and glutamine uptake [22]. 

2.8.2.2 A m m o n i u m 

Ammonium in mammalian cell bioreactors is produced both from cellular metabolism and 
from the chemical decomposition of glutamine. Ammonium has significant effects on cellular 
metabolism [23] including reduction in cellular growth rates and decline in protein produc­
tivity along with alteration of protein glycosylation [24-29]. Reviews on the mechanism of 
ammonium inhibition are available [30, 31]. In contrast to lactate, ammonium can inhibit 
cellular growth at much lower concentrations. Growth of several cell lines was inhibited at 
2 m M ammonium concentration [18]. However, no inhibition was seen with hybridoma cells 
at 3 m M N H 4 C I concentration while significant growth inhibition was observed at 10 m M 
N H 4 C I [30]. As both lactate and ammonium can be toxic at elevated concentrations, it is 
desirable to keep their bioreactor concentrations as low as possible. 

2.8.2.3 Disso lved C a r b o n Diox ide 

Carbon dioxide is a product of cellular respiration and indirect sources include NaHCOs 

which is typically a buffer in the cultivation medium. If NaHCOs or N a 2 C 0 3 are used as 

base to neutralize cellular lactate, these will be additional C O 2 sources. Bioreactor C O 2 

concentration is measured as C 0 2 partial pressure ( p C 0 2 ) and the physiological range is 

30 - 50 mm Hg. Cell growth can be inhibited at p C 0 2 < 30 mm Hg while elevated p C 0 2 

has been implicated in reduced growth, metabolism and productivity in addition to adverse 

effects on glycosylation [32-43]. There is thus an optimial bioreactor p C 0 2 concentration 

close to the physiological range where bioreactor operation is desirable. 

For B H K cells in perfusion culture, a 40 to 280 mm Hg p C 0 2 increase resulted in 

30% growth rate and specific productivity decreases [40]. A 57% growth rate decrease 

was observed for C H O cells in perfusion culture under high glucose concentrations when 

the p C 0 2 was increased from 53 to 228 mm Hg [44]. The specific antibody productivity, 
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however, was almost unchanged [44]. Increasing pC02 from 36 to 148 mm Hg during 
perfusion cultivation decreased C H O cell density by 33% (reflecting reduced growth rate) 
and specific productivity by 44% [37]. Under glucose limiting conditions, for a similar 
p C 0 2 increase the growth rate decreased by 38% along with a 15% reduction in specific 
antibody productivity. The growth rate of NS/0 cells decreased when p C 0 2 increased from 
60 to 120 mm Hg [33]. Scale-up of a fed-batch process resulted in p C 0 2 values of 179 
± 9 mm Hg in a 1000 L bioreactor and a 40% decrease in specific productivity was seen 
under these conditions compared to a p C 0 2 value of 68 ± 13 mm Hg in a 1.5 L laboratory-
scale bioreactor [41]. Glucose consumption rates decreased in a dose-dependent fashion for 
hybridoma cells in T-25 flasks [35] with a 40% decrease observed when p C 0 2 increased from 
40 to 250 mm Hg. Similar observations were made for lactate production that decreased 
by 45% for the same p C 0 2 increase. Bioreactor pC02 control close to the physiological 
range is thus critical given the substantial impact on cell growth, metabolism and protein 
productivity. ' . • - .• 

2.8.3 Amino Acids 

Amino acid metabolism in mammalian cell cultures is significantly different from that in 

microbial cultures as mammalian cells are incapable of synthesizing 10 of the 20 standard 

amino acids. These 10 are referred to as essential amino acids implying that they must 

be present in the culture medium to promote cell growth and function. A list of essential 

and non-essential amino acids is presented, in Table 2.1. This representation, however, is 

for classical human nutrition and all 20 amino acids are present in mammalian cell culture 

media to promote cell growth and productivity. Amino acid catabolism will be examined 

first followed by an examination of, the pathways through which the nonessential amino 

acids are synthesized. 

2.8.3.1 A m i n o A c i d C a t a b o l i s m 

Only about 10 - 15% of energy is generated from amino acid catabolism (excluding gluta­

mine) indicating that these pathways are significantly less active compared with glycolysis 

and fatty acid oxidation. A l l products of amino acid catabolism enter the T C A cycle and a 

summary of the pathways is shown in Figure 2.6. Arganine, glutamine, histidine and pro­

line are first converted to glutamate through different pathways. Glutamate is subsequently 

converted to a-ketoglutarate either through transamination or deamination: Isoleucine, me­

thionine, threonine and valine are all first converted to propionyl-CoA which is subsequently 

converted to succinyl-CoA by the action of methylmalonyl-CoA mutase. Phenylalanine and 
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Table 2.1:, Essential and Nonessential Amino Acids for Mammalian Cell Metabolism , 

Essent ia l amino acids Nonessent ia l amino acids 
Arginine Alanine 
Histidine Asparagine 
Isoleucine Aspartate 
Leucine Cysteine 
Lysine Glutamate 

Methionine Glutamine 
Phenylalanine Glycine 

Threonine Proline 
Tryptophan Serine 

Valine Tyrosine 

tyrosine can enter the T C A cycle either through fumarate or acetyl-CoA. Asparagine is 
converted to aspartate by the action of asparaginase and aspartate undergoes transami­
nation with a-ketoglutarate yielding glutamate and oxaloacetate. A majority, (10) of the 
amino acids yield acetyl-CoA which subsequently enters the T C A cycle. Leucine, lysine, 
phenylalanine, tryptophan and tyrosine are first converted to acetoacetyl-CoA which is sub­
sequently cleaved to acetyl-CoA. Alanine, cysteine, glycine, serine and tryptophan are first. 
converted to pyruvate and then to acetyl-CoA. 

2.8.3.2 A m i n o A c i d Biosynthes is 

Of all the amino acids shown in Figure 2.6, the essential amino acids have to be supplied 

in the culture medium since they cannot be synthesized by the cells. Biosynthesis of only 

the non-essential amino acids is possible and an overview will be presented in this section. 

Alanine is produced by the transamination of pyruvate by alanine transaminase. The pro­

duction of asparagine is catalyzed by asparagine synthetase and deamination of asparagine 

catalyzed by asparginase results in the formation of aspartate. The sulfur, for cysteine 

comes from methionine, an essential amino acid and homocysteine is first produced. Homo­

cysteine condenses with serine to produce cystathionine, which is subsequently cleaved by 

cystathionase to produce cysteine and a-ketobutyrate. Glutamine is produced by amino­

transferase reactions, with a number of amino acids donating the nitrogen atom (Figure 

2.6). It can also be synthesized by the reductive animation of a-ketoglutarate catalyzed 

by glutamate dehydrogenase. Glutamine can be produced by the action of glutamine syn­

thetase or from glutamate by the direct incorporation of ammonia. Glycine is produced 

from serine in a one-step reaction catalyzed by serine hydroxymethyltransferase. 
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Figure 2.6: An overview of amino acid catabolism in mammalian cells. 

Glutamate is the precursor for proline synthesis while serine is produced from the 

glycolytic intermediate 3-phosphoglycerate. A n NADH-linked dehydrogenase converts 3-

phosphoglycerate into a keto acid, 3-phosphopyruvate, suitable for subsequent transami­

nation. Aminotransferase activity with glutamate as a donor produces 3-phosphoserine, 

which is converted to serine by phosphoserine phosphatase. Tyrosine is produced in cells 

by hydroxylating the essential amino acid phenylalanine with approximately half of the 

phenylalanine required going into the production of tyrosine. 

2.8.4 pH 

Bioreactor pH during mammalian cell cultivation is typically maintained close to neutral 

while optimal pH values for growth and protein production tend to be cell-line and product 

specific. For hybridoma cells in batch culture, maximum growth was seen at 7.4 and this 
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value decreased as the pH increased [45]. For hybridoma cells in batch culture, a decrease 
in bioreactor pH from 7.6 to 7.2 and subsequently to 6.8 decreased cell growth, glucose 
consumption and lactate production while glutamine uptake and ammonia production were 
not affected.by pH changes [30]. Similar reductions in glucose.uptake and lactate production 
rates at low bioreactor pH have been seen for hybridoma cells in batch and continuous 
culture [46] resulting in the substitution of glutamine for glucose .as the energy source. It 
has been shown that a decrease in bioreactor pH can reduce the intracellular pH (pHj) 
resulting in cytoplasmic acidification [47] which in turn is primarily responsible for the 
metabolism shifts in response to bioreactor p H changes. 

Changes to pFL; have significant implications for cell growth and,metabolism [48, 49]. 
Decrease in pEL; on the order of 0.2 units has been shown to significantly reduce the carbon 
flux through glycolysis [50-53]. One reason for this decrease is the strong dependence of 
the activity of the enzyme phosphofructokinase on pH^ [1]. Since changes to pH^ affect the 
ionization states of all peptides and proteins, pH^ is actively regulated [54, 55]. 

2.8.5 Dissolved Oxygen 

The concentration of dissolved oxygen is a key variable in mammalian cell cultivation and 

is often controlled at,a constant value in the vicinity of 50% air saturation. Oxygen is 

essential for A T P production through oxidative phosphorylation and is typically provided 

to the bioreactor using,an air-oxygen mixture. Given the low solubility of oxygen in cell 

culture media, efficient aeration strategies need to be employed, especially in high-density 

cultivation. . 

It was observed early on that cell growth is sub-optimal in the absence of dissolved 

oxygen control and controlling p 0 2 in the 40 - 100 mm Hg range (25 - 63% air saturation) 

resulted in maximum viable cell densities during batch cultivation of mouse LS cells [56]: 

Cell growth and maximum cell density, however, were significantly reduced at low (1%) and 

high (200%) D O concentrations [57]: Oxygen uptake rate was also lower at D O = 1% and 

this was attributed to oxygen-limiting conditions in the bioreactor. Glucose metabolism 

was also significantly affected by bioreactor DO concentration. At DO = 200%, only 60% 

of the glucose was converted to lactate when compared with 90% conversion- for all other. 

DO concentrations investigated (7.5, 20, 25, 60, 100%). Thus more glucose was drawn into 

the T C A cycle at DO = 200% which was also characterized by higher oxygen uptake rates. 

The lactate production rate was the highest at D O = 1% and decreased at higher D O 

values. High lactate production at low DO values is necessary to generate A T P from the 

conversion of glucose to lactate since there is a reduction in A T P production through the 
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T C A cycle. A build-up of pyruvate was also seen at DO = 1% indicating that the pyruvate 
flux into lactate was slower than the conversion of glucose to pyruvate, A n analysis of the 
enzyme levels at various DO concentrations indicated low levels of isocitrate dehydrogenase 
and aldolase, and high levels of lactate dehydrogenase at low D O concentration [58]. Thus 
low DO concentration caused a reduction in the levels of enzymes involved in terminal 
respiration while the levels of those in glycolysis and the hexose-monophosphate pathway 
were increased. 

The effect of dissolved oxygen concentration in the 0.1 - 100% air saturation range on 
hybridoma cell metabolism was examined in continuous culture [59]. Oxygen uptake rate 
was constant for D O in the 10 - 100% range but decreased by more than 50% when the 
DO dropped below 10%, suggesting oxygen limitation. Lactate production from glucose 
was higher at low DO concentrations while glutamine consumption decreased. In another 
study on hybridoma cells in continuous culture, cell growth was reduced both at DO < 5% 
and DO —• 100% air saturation [60]. Glucose consumption and lactate production increased 
when the D O was < 5% while there was a significant reduction in the oxygen uptake rate 
and these findings are similar to those reported in earlier studies. Glutamine consumption 
and ammonium production rates were also higher under low DO conditions, in contrast to 
the observations in Miller et al. [59]. Amino acid consumption rates increased sharply at 
low DO concentration while the specific antibody production rate was DO independent. 

Metabolic flux analysis has been applied to characterize the influence of D O on cell 
metabolism [61, 62]. For hybridoma cells in continuous culture [62], growth rate was not 
affected at DO values as low as 1% but was significantly reduced at DO = 0.1%. Glucose 
consumption and lactate production rates were significantly higher at DO = 0.1% as with 
previous studies. Metabolic flux analysis indicated that the fluxes of NAD(P)H-producing 
dehydrogenase reactions decreased under hypoxic conditions (low N A D ( P ) + / N A D ( P ) H ra­
tio) and increased at higher DO concentration (high N A D ( P ) + / N A D ( P ) H ratio). For hy­
bridoma cells in batch culture [61] there was no significant effect on metabolism when the 
D O was varied between 5 and 60% air saturation. At DO values of 1% and 0%, both oxygen 
uptake and carbon dioxide production rates were lower while those for glucose consump­
tion and lactate production increased. Glutamine consumption and ammonia production 
decreased at low D O while glutamate production was high. Metabolic flux analysis indi­
cated that the pyruvate flux into the T C A cycle was non-existent at D O = 0% and the flux 
through glutamate dehydrogenase was reversed at low D O resulting in increased glutamate 
production. The fraction of A T P from glycolysis increased from 34% at DO = 60% to 69% 
when the D O was 0% reflective of the increased rates of glucose and lactate metabolism at 
low DO. .. 



CHAPTER 2. OVERVIEW OF CELLULAR METABOLISM 24 

A l l the above studies suggest that there is a threshold DO concentration below which 
dramatic changes in growth and metabolism are seen. This value is typically 1% air sat­
uration or lower for most cell lines studied to date. It must however be noted that it is 
not clear if the D O was actually controlled at 1 and 0.1% saturation. D O probes are not 
characterized by that level of accuracy and it is possible that the cultivations were actually 
at even lower D O levels. D O concentrations greater than 100% also have the potential to 
adversely impact cellular metabolism clearly highlighting the need to control bioreactor DO 
concentration at lower levels. It is nonetheless important to note that D O concentrations 
in the 1 0 - 9 0 % range have minimal impact on cell metabolism and protein productivity 
thereby minimizing the impact of D O excursions associated with operational error in a 
manufacturing scenario. Controlling DO at a defined set-point is rather straightforward 
and this is typically done using a PID controller that regulates the flow of a mixture of 
oxygen and nitrogen/air into the system. 

2.8.6 Temperature 

Temperature is a key variable in mammalian cell cultivation and most bioreactors are typ­
ically operated close to the physiological value of 37 °C. While reduction in cell growth 
and metabolism at lower temperatures have been long recognized [63, 64], manipulating 
temperature to improve protein productivity is relatively recent. Temperature effects on 
specific protein productivity are cell line-specific since observations to date include increased 
[65-70], decreased [19, 31, .71, 72] or unchanged productivity [31, 73-76] upon temperature 
reduction. While the advantages associated with increased specific productivity are obvious, 
even unchanged specific productivity can be beneficial in both fed-batch and perfusion sys­
tems. Since lower temperatures are typically accompanied by reduced growth and metabolic 
rates, fed-batch cultivation times can be extended without large decreases in culture via­
bility. Along similar lines, perfusion rates can be reduced in perfusion cultivation reducing 
both medium usage and the volume of harvest generated. This concentrated harvest stream 
can significantly reduce the cost associated with subsequent protein purification operations. 

2.8.6.1 Effect of Temperature on Growth and Metabolism 

Both growth and metabolic rates are known to decrease sharply with temperature decreases. 

Reduction in growth rate is attributed to cell accumulation in the G0/G1 phase concomitant 

with a rapid reduction of cells in the S phase [66, 77, 78]. For B H K cells in batch culture, 

the growth rate was reduced by 25% when cultivation temperature was lowered from 37 to 

33 °G [73] while a more'dramatic decrease was seen for EPO-producing C H O cells in batch 



CHAPTER 2. OVERVIEW OF CELLULAR METABOLISM 25 

culture (0.029 ± 0.003 h " 1 at 37 °C; 0.016 ± 0.001 h r 1 at 33°C) [65]. Cell cycle analysis 
for C H O cells revealed that at 74 hours into the cultivation, the percentages of cells in the 
G0/G1 phase was 75.8, 62.8 and 47.3% at 30, 33 and 37 °C, respectively, while that, for 
the S phase were 11.6, 33.2 and 45.8%, respectively. Similar observations were made during 
batch cultivation of Ant i -4 - lBB producing C H O cells [79]. The growth rate decreased from 
0.022 ± 0.003 h 1 at 37°C to 0.014 ± 0.004 h _ 1 at 33 °C and the percentages of cells in 
the G0/G1 phase 78 hours into the cultivation were 64.9, 59.1 and 36% at 30, 33 and 37 
°C, respectively, while the S phase percentages were 17.4, 15.6 and 45.1%, respectively. 

Just as with growth rate, lower cultivation temperatures are associated with reduced 
glucose uptake and lactate production rates. For hybridoma cells in batch bioreactors, 
glucose uptake rate was reduced by 41% at 34 °C compared to 37 °C [19] while a 2-5 fold 
decrease was observed for hybridoma cells for temperature reduction from 39 to 33 °C [71]. 
For BHK-21 cells in batch culture, the specific, glucose uptake rate decreased from 0.58 
ng/cell-d at 37 °C to 0.45 ng/cell-d when the temperature was lowered to 33°C [73] while 
a 50% reduction in both glucose uptake and lactate production rates was seen for C H O 
cells in a packed bed reactor for a temperature reduction from 37 to 32 °C [70]. For E P O -
producing C H O cells in batch culture, there was no significant reduction in glucose uptake 
and lactate production rates for a temperature decrease from 37 to 33 °C [65] and similar 
observations were made for glutamine consumption and ammonium production. However, 
when the temperature was further lowered to 30 °C, glucose uptake and lactate production 
rates decreased by 44 and 56%, respectively (as compared to 37 °C) while the decreases in 
glutamine uptake and ammonium production were 47 and 36%, respectively. 

2.8.6.2 Effect of Tempera ture on O x y g e n U p t a k e R a t e 

A n Arrhenius-type relationship has been proposed to describe the dependence of oxygen 

uptake rate on temperature in the 6 - 37 °C range [80]. At temperatures close to 37 °C, 

every 1 °C drop in temperature was accompanied by approximately 10% reduction in the 

oxygen uptake rate [74] and an order of magnitude decrease in the oxygen uptake rate was 

seen for temperatures below 15 °C. For C H O cells in a packed bed reactor, a 4 - 5 fold 

decrease in oxygen uptake rate was seen when the temperature was reduced from 37 to 32 

°C [70]. For C H O cells in batch culture, a 50% reduction in oxygen uptake rate was seen 

when the temperature was reduced from 37 to 30 °C [77]. Temperature effects on oxygen 

consumption rate are thus consistent and follow an inverse relationship of the Arrhenius 

type. 
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2.8.6.3 Effect of Temperature on Cell Sensitivity to Shear 

There has been one report where the effect of temperature on shear sensitivity was studied 
for BHK-21 cells [81]: Cultivation temperatures in the 28 - 39 °C range were examined and 
an improvement in shear resistance was observed at lower temperatures. It was hypothesized 
that increased rigidity of the lipid bi-layer at reduced temperatures was contributing to the 
increased shear resistance. Cell morphology was also influenced by cultivation temperature 
and cells were more spherical at lower temperatures. However, temperature reduction is 
unlikely to be used with the sole objective of improving shear resistance properties in light of 
subsequent advances in the use of shear protectants [82]. Components such as pluronic F-68 
are routinely used in current cell cultivation media and provide adequate shear protection 
in serum-free media under a variety of agitation and oxygenation conditions. 

2.8.6.4 Implications for Bioprocess Optimization 

Reduced temperature cultivation has been suggested as a tool for increasing productivity in 
mammalian cell bioreactors. Higher productivity can be achieved rather easily when specific 
protein productivity is also higher at lower temperatures [65-70], and this has in one in­
stance been linked.to.increased transcription level of the protein of interest [65]. A biphasic 
cultivation method has been proposed to maximize protein productivity which includes an 
initial phase of fast cell growth at 37 °C followed by cultivation at reduced temperatures 
where specific productivity is higher [66-70]. The shift in cultivation temperature has typ­
ically been determined arbitrarily and a' model-based approach to cultivation temperature 
change has been proposed only recently [83]. Using simple Monod-type unstructured kinetic 
models to describe the dynamics of,cell growth and metabolism, a temperature shift after 
3 days of growth was found to result in optimal volumetric productivity, a 90% increase 
when compared with cultivation at 37 °C. 

The lower rates of metabolite production at reduced temperatures allow perfusion cul­
tivation at reduced perfusion rates since metabolite accumulation in the reactor is reduced. 
This lowers medium consumption thereby significantly reducing the cost of goods and also 
provides a harvest stream with increased product concentration that has positive implica­
tions for downstream purification operations. However, temperature shifts can potentially 
affect product quality [84, 85] and this must be taken into account before temperature-based 
bioprocess optimization is considered in both fed-batch and perfusion cultivations. 
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2.9 Conclusions 

The primary pathways that form the core of mammalian cell metabolism are glycolysis, 
T C A cycle, pentose phosphate cycle, .glutaminolysis and oxidative phosphorylation, and 
an overview of. these pathways has been presented. Published information on the effect of 
bioreactor operating conditions such as nutrient and metabolite concentration, pH, dissolved 
oxygen and temperature has been reviewed and this information can be useful during the 
optimization of perfusion systems for high density cultivation of mammalian-cells. 
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Chapter 3 

M e t h o d s f o r M e t a b o l i c F l u x 
E s t i m a t i o n 1 

3.1 Introduction 

Flux is denned as the rate with which material is processed through a bioreactidn pathway 
[1]. While a reaction flux does not contain information on the activity of enzymes in that 
particular reaction, it does contain information on the extent of involvement of the enzymes 
in that reaction. For this reason, it has been argued that metabolic fluxes constitute a 
fundamental determinant of cell physiology and metabolic flux estimation is, therefore, the 
preferred method for characterizing the physiological state of a cell [2]. Metabolic fluxes can 
be estimated either by applying mass balances across intracellular metabolites or through 
isotope mass balances across every carbon atom in the metabolic network. A n overview of 
these two flux estimation methods is presented in this chapter. 

3.2 Flux Estimation from Metabolite Balancing 

In the metabolite balancing approach, intracellular fluxes are estimated from experimentally 

measured extracellular rates [3-5]. Intracellular metabolites in the bioreaction network are 

identified and mass balance expressions are written around them resulting in a stoichiometric 

model of cellular metabolism. Specific uptake rates of key nutrients and specific production 

rates of some metabolites are experimentally measured and these constitute the input data 

'A version of this chapter has been accepted for publication. Goudar, C.T., Biener, R., Piret, J.M. and 
Konstantinov, K.B. (2006) Metabolic Flux Estimation in Mammalian Cell Cultures, In R. Portner, (ed.), 
Animal Cell Biotechnology: Methods and Protocols, 2"d ed., Humana Press, Totowa, NJ. 
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for flux estimation. Intracellular fluxes are subsequently computed from experimental data 
and the network stoichiometry using linear algebra. 

The earliest application of metabolite balancing to a fermentation process is for citric 
acid production by Candida lipolytica [6] and this approach was later used for validation 
of the bioreaction network of butyric acid bacteria [7, 8]. Metabolic flux analysis in its 
present form can be largely attributed to the seminal work on lysine fermentation [1] where 
metabolite balancing and extracellular fluxes were used to understand intracellular regu­
latory mechanisms during lysine production by Corynebacterium glutamicum. Metabolite 
balancing has since seen widespread application for bacterial, yeast and mammalian cell 
cultures. Mammalian cell applications include B H K [9, 10], C H O [4, 11, 12], hybridoma 
[3, 13-20] and human [21] pells. 

3.2.1 Theory 

Consider the reaction sequence A —•> B —> C where B is the intracellular metabolite. The 

mass balance expression for B can be written as 

— = rA - rc - fJ.B (3.1) 

where VA is the rate of formation of B from A, rc the rate of conversion of B to C and \iB 
the conversion of B to biomass. Substituting TB = r& — rc for the net formation rate of 

metabolite B, the above equation can be rewritten as 

^ = r B - ^ B (3.2) 

At low intracellular metabolite concentrations, the p,B term is small and can be neglected. 

For aerobic chemostat cultivation of S. cerevisiae at a dilution rate of O.l h _ l , the intra­

cellular concentrations of glycolytic pathway intermediates ranged between 0.05 - l.O /imol 

(g D W ) - 1 [22], resulting in 0.005 - 0.1 ^mol (g D W ) ~ 1 h ~ 1 fiB values. These values were 

much lower than the glycolytic fluxes that were ~1.1 mmol (g D W ) - 1 h - 1 , 4 - 6 orders of 

magnitude higher. A similar rationale can be applied to mammalian cells where intracel­

lular metabolite concentrations are similar to those in yeast but with reduced growth and 

metabolic rates [2] such that 

-aH=TB (3-3) 
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Invoking the steady-state, hypothesis which suggests that the magnitude of change in intra­

cellular, metabolite concentrations are negligible [20], we get 

rB,= 0 (34) 

which essentially states that the net rate of formation of intracellular metabolites in zero. 
For a bioreaction network with M intracellular metabolites we get 

r M = 0 (3.5) 

where T M is the vector of net metabolite formation rates. Mass transfer effects have not been 
included in the above derivation because substrate transfer from the cultivation medium into 
the celland availability of intracellular metabolites are not considered to be rate limiting. 

3.2.2 Flux Estimation Through Manual Substitution 

' m 4 

'ml m. 

rrv 

m 

rrv 

' m 3 

r a ' m 5 

' m 6 

Figure 3.1: A simplified bioreaction network consisting of 6 intracelllular metabolies (mi — ITIQ), 

5 measured extracellular rates ( r m i , r T O 3 rme) and 5 unknown intracellular fluxes 
(vi -1'5). 

The application of Eq.(3.5) for flux estimation is illustrated using the reaction network 

shown, in Figure 3.1. This network consists of 6 intracellular metabolites --(mi — me) and 

5 measured extracellular rates ( r m i , r m 3 — r m g ) that have been arbitrarily selected to have 

enough measurements to solve for the 5 unknown intracellular fluxes (v\ — vs.). Applying 
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Eq.(3.5) around metabolites mi — TTIQ results in the following mass balance expressions 

777,1 rmi-vi-v3 = 0 (3.6) 

777,2 V\ — V2 = 0. (3.7) 

777 3 V2 - rm3 - f 4 = 0 (3,8) 

777,4 ^ 3 - rmi - v5 = 0 (3.9) 

777 5 (3.10) 

me VA - rm6 = 0 (3.11) 

Estimating the unknown fluxes v\ — v$ from the above equations is straightforward. From 
Eq.(3.10), v5 = rm5 and vA = rm6 from Eq.(3.11). Thus v3 = r m 4 + rm5 from Eq.(3.9) 
and V2 = v\ = rm3 + rme from Eqs.(3.7) and (3.8). The solution for the above bioreaction 
network can thus be summarized as 

vi=rm3+rm6 (3.12) 

V2 = vi (3.13) 

V3=rmi +rm5 (3.14) 

• • ' V4 = rm6 (3.15) 

v5 = rm5 (3.16) 

3.2.3 Flux Estimation Through Linear Algebra 

The above approach of manual substitution works well for small bioreaction networks. For 

complicated networks that have multiple branch points and often include more than 30 

metabolites and reactions, manual estimation of fluxes becomes cumbersome. A n elegant 

alternative is to use matrix notation and linear algebra techniques for flux estimation. 

Eq.(3.5) can be written as 

r M = G T v - - 0 (3.17) 

where G r is the matrix containing the stoichiometric coefficients for the intracellular metabo­

lites and v is the vector of reaction rates that includes both the measured uptake and pro­

duction rates as well as the unknown intracellular fluxes. To solve Eq.(3,17), it is convenient 

to split the reaction rate vector v into two components, v m and v c for the measured and cal­

culated rates, respectively. If and are the corresponding splits in the stoichiometric 
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matrix, G, then Eq.(3.17) can be rewritten as 

G T v = Glvm + GTvc = 0 (3.18) 

from which v c can be estimated (assuming GT is a nonsingular square matrix) as 

. vc = - (Gjy1 Glvm (3.19) 

3.2.4 Application of the Matrix Approach for Flux Estimation 

The first step in application of the matrix approach to the reaction network shown in Figure 
3.1 involves construction of GT and v. The number of rows in G T equals the number of 
intracellular metabolites (6) and the number of columns equals the sum of the measured 
extracellular rates (5) and the number of unknown intracellular fluxes (5). G T is thus a 
6 x 10 matrix while v is a 10 x 1 column vector whose elements include the measured 
extracellular rates and unknown intracellular fluxes. Eq.(3.17) can be written as 

/ 1 0 0 0 
0 0 0 0 
0 ^ 1 0 0 
0 0 - 1 0 
0 0 0 - 1 

^ 0 - 0 0 0 

Multiplying the first row of GT with the elements of v results in r m i — vi — v% = 0 which is 

identical to Eq.(3.6) and is the mass balance expression for metabolite m i . Multiplications 

of rows 2 - 6 of GT with v results in the mass balance expressions for metabolites m,2 — TUQ 
making the representation in Eq.(3.20) identical to Eqs.(3.6-3.11). The compact represen­

tation in Eq.(3.20) becomes especially important for typical mammalian cell bioreaction 

networks that have more than 30 metabolites and reactions. 

. Eq.(3.20) can be split into the measured and unmeasured components according to 

( G T ) 5 x l 

0 
0 
0 
0 
0 

1 

0 
0 
0 
0 

0 
- 1 
1 

0 

0 

0 

- 1 

0 

0 
1 

0 
0 

0 
0 

- 1 

0 

0 
1 

o \ 
0 
0 

- 1 
1 
0 / 

( v ) l O x l 

' T713 

' m6 

Vl 

V2 

V3 

V ^ J 

/ o \ 

0 
0 
0 
0 

(3.20) 
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Eq.(3.18) 

) 
/ 1 0 0 0 ' 0 \ 

0 0 0 0 0 

0 - 1 0 0 0 
0 0 - 1 0 0 
0 0 0 - 1 0 

V 0 0 . 0 0 - 1 / 

( v m ) 

rmi ( rm, \ 

+ • 

V fm6 j 

( - 1 0 - 1 0 0 \ 
1 - 1 0 0 0 

0 1 0 - 1 0 
0 0 1 0 - 1 

0 0 0 0 1 

V 0 0 0 1 0 / 

(Vc] 

/ «1 \ 

V2 

V3 

V4, 

W J 

The vector of unknown fluxes, v c,*can now be estimated from Eq.(3.19) 

V 

0 0 0 0 \ 
0 0 0 0 0 
0 - 1 0 0 0 

0 0 - 1 0 0 

0 0 . o . - 1 0 

0 0 o - 1 I 

( v m ) 

r m 3 

V rm6 

/ o \ 

0 
0 
0 
0 

w 
(3.21 

(3.22) 

'c • When where (G^) ~ is the inverse (actually a pseudoinverse as G ^ is nonsquare) of 
experimentally measured extracellular rates are included in the v m vector, v c can.be readily 
calculated from the above equation. 

3.2.5 The Nature of Biochemical Networks 

It follows from Eqs. (3.17 - 3.19) and the above example that intracellular flux estimation 

is a simple 3 step process that first involves formulation of the stoichiometric matrix, GT, 
from the reaction network, followed by separation of G T into G ^ and GT and subsequent 

estimation of v c by matrix inversion. However, computational complexities can arise due 

to singularities in, Ĝ T depending upon the number of metabolite mass balances (m) and 

reactions (r) and three scenarios are possible 

1. Determined system (m = r) •>• . •'' 

2. Underdetermined system (m < r) ' . . . 

3. Overdetermined system (m > r) 

http://can.be
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Determined systems are computationally the simplest (assuming G T i s square and non-
singular) and usually have a unique solution that can be determined from Eq.(3.19). They 
have little practical utility since m 7̂  r for most biochemical networks. 

Underdetermined systems are more common because adequate experimental measure­
ments can often not be made. These systems are formulated as linear programming (LP) 
problems [5, 23-34] and do not have unique solutions suggesting flexibility in the intracel­
lular metabolic fluxes 

where Cj is the weight factor for flux v%. The choice of Cj determines the objective function 
to be minimized (or maximized) and it is critical that this be physiologically relevant. 
Choices can include maximization of growth rate or production of a particular metabolite 
and minimization of A T P production and nutrient uptake. Despite the possibility of an 
infinite number of solutions, the solution is confined to a feasible domain, a polyhedron, 
conceptualized as the metabolic genotype. The stoichiometric constraints of the system 
determine the feasible region and in two-dimensional space, these stoichiometric constraints 
are lines and are the boundaries of the feasible domain (plane). These systems are typically 
solved using the simplex method and the solutions occur at the extreme points of the feasible 
domain. Sensitivity analysis of the optimal solution can be analyzed using shadow prices 

where Z is the optimal value of the objective function and r-j the extracellular produc­
tion/consumption of metabolite i. This quantity helps determine the contribution (or lack 
thereof) of to the stated objective function and provides useful information for designing 
rational metabolic engineering strategies for maximizing/minimizing Z. A major disadvan­
tage of underdetermined systems is that the stated objective function may not reflect cell 
physiology. For instance, Bonarius et al, [3] used the minimum Euclidean norm constraint 
(minimize sum of flux values or the most efficient channeling of fluxes) for hybridoma cells 
in batch culture while experimental data indicated that cell physiology was more consistent 
with A T P and N A D H maximization constraints rather than the minimum Euclidean norm 
constraint. Nonetheless, this approach can provide very useful information helping target 
genetic engineering efforts to maximize the outcome of interest [5, 35]. 

Overdetermined systems have more metabolite mass balances than the number of re­
actions (m > r) and are preferred over determined and underdetermined systems because 
excess experimental data can provide improved estimates of the metabolic fluxes and can 

(3.23) 
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also be used to check the validity of the assumed biochemistry. The stoichiometric matrix, 
G^T is non-square for overdetermined systems and a pseudoinverse must be computed to 
determine v c . Singularities can arise when one or more rows in GT can be expressed as a 
linear, combination of the other rows, a condition referred to as linear dependency. These 
often result from parallel pathways in the network such as the transhydrogenase reaction 
for the interconversion of N A D H and N A D P H where the balances of the two cofactors 
are coupled resulting in linearly dependent stoichiometries. Flux estimation in overdeter­
mined systems along with methods of error analysis are presented in detail below since such 
systems usually provide the most robust flux estimates. 

3.2.6 Flux Determination in Overdetermined Systems 

Overdetermined systems are those in which additional experimental measurements are avail­
able and the degrees of freedom are > 0. For these systems, is not square and a 
pseudo-inverse of Gj is necessary to solve. Eq.(3.19) 

vc-~ (G '̂)* G^v,,, (3.25) 

where-(Gj?)* is the pseudo-inverse of GT. Substituting for v c from Eq.(3.25) in Eq.(3.18) 

results'in- ' 

v : ; - ' , : G ^ + G ; 7 { (G;O*G//,V„,} -o . (3.26) 

V,„{GL- G, /(G;O#G/,;}-O (3.27) 

which can be rewritten as 
, . Rv,„ - 0 (3,28) 

where R == G ^ — GT (GT)^ G ^ is called the redundancy matrix. The rank of R specifies 
the number of independent equations that must be satisfied by the measured and calculated 
rates.. As extra measurements are available in an overdetermined system, the matrix R has 
dependent rows. Eliminating the; dependent rows, Eq. (3.28) can be rewritten for only the 
independent .rows as 

R , . v m 0 (3.29) 

where R,. is referred to as the reduced redundancy matrix. In an ideal situation where 

experimental data are error free, the left hand side of Eq.(3,29) is exactly zero. However, all 
1 experimental data are characterized by measurement error,- 8, which relates the measured 
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and actual vm values as 
v m = v m + r5 (3.30) 

where v m is the measured value and v m the actual value resulting in the following modifi­

cation of Eq. (3.29) 
R r v m = e (3.31) 

where e is the residual vector. Substituting v m = v m + 5 from Eq.(3.30) into Eq.(3.29) 

results in 
Rr (v m + 5) = e (3.32) 

which simplifies to 
Kr6 = e (3.33) 

as R r v m = 0 (Eq.3.29). 
Under ideal conditions (with no error in the measured rates), 5 — 0, and Eq.(3.29) is 

valid. In the presence of measurement errors, however, the residual is not zero and it is 
possible to improve the measured rates such that the residual is minimized. The variance 
covariance matrix of the measured rates (F) is first determined by assuming that the error 
vector is normally distributed with zero mean 

E(5) = 0 (3.34) 

F = E ((v m - v m ) (v m - v r o f ) = E (55T) (3.35) 

It has been shown that the residuals are also normally distributed with zero mean [36] such 

that 
E (e) = 0 ' (3.36) 

tp = E(eeT) (3.37) 

where tp is the covariance matrix of the residuals. Substituting e = IC-S from Eq.(3.33), <p 

can be expressed in terms of Rr and F 

ip = HrFB4r (3.38) 

The minimum variance estimate of S is obtained by minimizing the sum of squared errors 

[36] 
' 6 = F R ^ - ! R,.v„, (3.39) 
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from which the improved v m estimates can be obtained 

v m = v m - 5 = ( I - F R * V - 1 R T . ) v m (3.40) 

where I is an identity matrix. 
Statistical hypothesis testing can be used to identify gross measurement errors by com­

puting a consistency index, h 
h = eT<f-1e (3.41) 

It has been shown that h follows a x2 distribution with the degrees of freedom equal to 

the number of redundant equations [36]. Hence the h value computed from Eq.(3.41) for 

any bioreaction network can be used to check the quality of experimental measurements. If 

h > x2 at a desired confidence level, it is an indication that either the measured values are 

in gross error or the assumed system biochemistry is incorrect. If excess measurements are 

present, h can be recalculated by eliminating a single measurement from the mass balances. 

If a dramatic reduction in h value is observed, it is likely that the eliminated measurement 

contained error. This process can be repeated for all the measured rates in the bioreaction 

network. Confidence can be placed in the unknown flux estimates only when h < x2 at the 

desired confidence level (usually 90 or 95 %). The concepts presented above will be applied 

to a simplified biochemical network for mammalian cell metabolism. 

Table 3.1: Reactions in the simplified bioreaction network of Figure 3.2 

G l c + 2 N A D + + 2 A D P + 2 P i —• 2Pyr+2NADH+2ATP+2H 2 0+2H+ 
Pyr+NADH+H+ -> Lac+NAD+ 
P y r + 4 N A D + + F A D + A D P + 3 H 2 0 + P 7 ; —-> 3 C 0 2 + 4 N A D H + F A D H 2 + A T P + 2 H + 

0.5O-2+2.5 ADP+2.5P,+NADH+3.5 H+ -> 2 . 5 A T P + N A D + + 3 . 5 H 2 0 
0.5O2+1.5 ADP.+1.5Pi+FADH"2+1.5 H+ --> 1 .5ATP+FAD + +2 .5H 2 0 

3.2.7 Flux Estimation in an Overdetermined System describing Mam­
malian Cell Metabolism 

Figure 3.2 shows a simplified bioreaction network that was originally proposed by Balcarcel 

and- Clark [37] for flux analysis from well plate cultivations where limited measurements 

were available and the corresponding reactions are shown in Table 3.1. Glycolytic reactions 

have been lumped into a single reaction (Glucose —> Pyruvate: flux v c l ) as have those for 

the T C A cycle (Pyruvate —> CO2; flux vC2)- Conversion of pyruvate to lactate is a dominant 

reaction in most mammalian cell culture and this has been included in the network (Flux 
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Glucose 

V m 1 

V 
Lactate * 

m2 

V m.4 

Glucose 

v 

V c2 

Glycolysis 

Lactate Pyruvate 

ATP v c3 TCA Cycle 

ATP C 0 2 

V m3 

CO. 

F i g u r e 3 . 2 : A simplified network for mammalian cell metabolism with lumped reactions for gly­
colysis and T C A cycle and those for lactate production and oxidative phosphorylation 
[37]. The network consists of 5 unknown intracellular fluxes (v c i-v c 5 ) and 4 extra­
cellular measured rates ( v m l - v m 4 ) . Fluxes v c 4 and v c 5 involve NADH and F A D H 2 , 
respectively (Table 3 .1 ) . 



CHAPTER 3. METHODS FOR METABOLIC FLUX ESTIMATION 46 

v C 3) along with the oxidative phosphorylation reactions (vC4 and v cs). Rates of glucose and 
oxygen consumption along with those for lactate and C O 2 production make up the measured 
extracellular rates. The network has a total of 4 measured extracellular rates ( v m i - v m 4 ) 
and 5 unknown intracellular fluxes that have to be estimated ( v c l - v C 5 ) . Balcarcel and Clark 
[37] also included total A T P production as another unknown flux (vcg) and considered the 
following 8 metabolites for writing the mass balance expressions: glucose, lactate, C O 2 , O2, 
pyruvate, N A D H , F A D H 2 and A T P resulting in a 8 x 10 stoichiometric matrix. The small 
size of this network makes it convenient for illustrating the concepts of consistency testing 
and gross error detection for overdetermined 

3.2.7.1 Determination of Intracellular 

Eq.(3.17) can be written for the network in F 

\ /8xl0 

/ -1 0 0 0 - 1 • o 1 • 0 0 
0 -1 0 0 0 1 0 0 
0 0 -1 0 0 0 3 0 
0 0 0 1 0 ., 0. 0 -0.5 

0 0 0 0 2 -1 -1 0 
0 0 0 0 2 -1 4 -1 
0 0 0 0 0 0 1 0 

v 0 0 0 0 2 0 1 2.5 

where the 8 rows of GT'represent the mass balance expressions for glucose, lactate, C O 2 , O2, 
pyruvate, N A D H , F A D H 2 and ATP , respectively,- columns 1-4 represent the 4 extracellular 

reactions whose rates are measured ( v m i - v m 4 ) and columns 5 -10 represent the 6 unknown 

intracellular fluxes ( v c i - v C 6) . Examination of some basic properties of G T is the first step 

towards determining the'unknown fluxes. The rank of GT was estimated to be 8 indicating 

all the 8 metabolites balance equations in G T were independent and could not be expressed 

as a linear combination of the other mass balance expressions. The condition number of G T 

was estimated as 7.6 and this low value indicates that estimated flux values are not overly 

sensitive to errors in the measured extracellular rates. Condition numbers < 100 have been 

considered acceptable for metabolic flux analysis [2]. 

Eq.(3.42) can be split into the measured and unmeasured components according to 

systems. 

Fluxes 

'igure 3.2 as 

0 
' 0 

0 
-0.5- 0 

0 0 
0 0 

- 1 0 

1.5 

0 \ 
0 
0 

1 

( v ) l O x l 

/ vmi \ 
Vm2 

%3 
Vm4 

VC1 

Vc2 

Vc3 

Vc4 

Vc5 

\ Vc6 J 

/ o \ 
0 
0 
0 
0 
0 
0 

(3.42) 
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Eq.(3.18), 

• (c 
/ -1 0 0 0 / - 1 0 0 0 0 0 

0 • -1 o' 0 ' ( V m ) o 1 0 0 ' , 0 0 

0 0 - 1 0 / " m i \ 0 0 3 •• 0 0 0 

Q 0' 0 - 1 Vm2 0 0 0 -0.5 -0.5 0 
0 0 ? 0 0 '0 ; % 3 2 - 1 - 1 0 0 0 

0 0, 0 V Vm4 J 2 —1 A - 1 0 0 

• o p ' 0 , 0 
0 0 X ,0 - 1 0 

V o . 0 • • o : ;o • / V 2 0 1 • 2.5 ' 1.5 - 1 / 

K ) 

/ Vcl \ 

VC2 

VC3 

VC4 

Vc5 

/ o \ 
0 
0 
0 
0 
0 
0 

v ° y 
(3.43) 

Using experimental'.values for the measured rates (CHO cells in perfusion culture), the 

vector of known rates is 
/ -1.4788 A 

1.7293 
5.8333 

y -5.1369 / 

and taking the pseudoinverse of results in 

(3.44) 

(. -0.3172 0.3414 0.0103 -0.1034 0.2897 0.0517 0.0517 0 

-0,3414 0.8293 -0.0052 0.0517 -0.1448 ' -0.0259 -0.0259 0 

-0.0034 -0.0017 0.2121 , -0.1207 -0.0621 0.0603 0.0603 0 

-0.2552 -0.1276 0.6931 -0.9310. 0.4069 -0.5345 0.4655 0 

0.0483 0.0241 . 0.0310 -0.3103 -0.1310 0.1552 -0.8448 0 

\ -1.2034 0.3983 2.0121 -3.1207 1.3379 -0.9397 0.0603 - 1 ) 
(3.45) 

Once v m and ( G ^ ) * are known, the unknown fluxes can be estimated from Eq.(3.19) as 

/ 1.6512 \ 

1.6431 

1.8592. 

8.9824 

1.7456 

\ 30.2361 J 

(3.46) 

While this completes the flux analysis, it is perhaps just as important to analyze the biore-
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action network for inconsistencies and to check for gross error in experimental data as shown 

in the subsequent sections. 

3.2.7.2 R e d u n d a n c y Ana lys i s and Gross E r r o r De tec t ion 

The above system has a total of 10 reaction rates (4 measured, 6 unknown) and 8 balances 
on pathway intermediates making it overdetermined with 2 degrees of freedom (Degrees 
of freedom = number of reaction rates - r ank(G r ) ) . The redundancy matrix, R , is first 
calculated as R = G ^ 

\ 

R = 

G c { G c ) # G 
T 
m 

(. -0.6828 -0.3414 -0,0103 0.1034 

-0.3414 -0.1707 -0.0052 0.0517 

-0.0103 -0.0052 -0.3638 -0.3621 

0.1034 0.0517 -0.3621 -0.3793 

-0.2897 -0.1448 -0.1862 -0.1379 

-0.0517 -0.0259 0.1810 .0.1897 

-0.0517 -0.0259 0.1810 0.1897 

V 0 .0 0 0 

(3.47) 

and the rank of R was calculated to be 2 and the reduced redundancy matrix R r was 

obtained from singular value decomposition (SVD) of R 

It— 
0.8099 0.4049 

-0.3679 -0.1839 

-0.2250 -0.3599 

-0.6745 -0.6131 
(3.48) 

Assuming 10% error in all the measured rates, the error vector, 5, can be written as 

/ 0.1479 \ 

0.1729 

0.5833 

0.5137 

(3.49) 

from which the variance covariance matrix, F, is computed using Eq.(3.35) 

/ 0.0219 0 0 " 0 \ 

0 ( 0.0299 0 0 

• 0 0 0.3403 0 

\ • 0 .. O ' O 0.2639 J 

(3.50) 
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It must be noted that the off-diagonal elements of F have been set to zero indicating that the 
measurements are uncorrected. This assumption may not be valid under all experimental 
conditions and methods to obtain representative F estimates are available [2]. The variance 
covariance matrix of the residuals, cp, can now be calculated from Eq.(3.38) as 

if = 
0.0707 

-0.1011 
-0.1011 
0.2579 

(3.51) 

Once cp is known, h can be estimated from Eq.(3.41) as 3.36. This h value must be compared 
with the x2 distribution with 2 degrees of freedom. From Table 3.2, the h value of 3.36 is 
lower than the x 2 distribution at a confidence level of 0.900 suggesting that the measured 
rates do not contain gross errors. . 

Table 3.2: Values of the chi 2 Distribution at varying Degrees of Freedom and Confidence Levels 

Degrees of freedom 
Confidence Level 

Degrees of freedom 0.500 0.750 0.900 0.950 0.990 
1 0.46 1.32 2.71 3.84 6.63 • 
2 1.39 2.77 4.61 5.99 9:21 
3 2.37 4.11 6.25 7.81 11.3 . 
4 3.36 5.39 7.78 9.49 13.3 
5 4.35 6.63 9.24 11.10 15.1 

Improved estimates of the measured rates can now be obtained from Eq.(3.40) 

V m = V„ 6 = 

( -1.4788 \ 
1.7293 
5.8333 

-5.1369 

/ 0.191 \ 
0.1306 
0.6090 

\ 0.0882 J 

( -1.6698 \ 
1.5987 
5.2243 

\ -5.2251 j 

(3.52) 

It has been shown that the above v m estimates have a smaller standard deviation than 

the measured values (vm) and are hence more reliable [36]. The differences between these 

two measured rate vectors is not substantial suggesting that the experimentally measured 

values are reasonably accurate. The unknown intracellular flux vector, v c, corrresponding 
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to the improved specific rate vector, v m , can now be computed as 

1.6701. \ 
1.5986 

1.7415 
(3,53) 

8.7078 
1.7417 

V 29.4638 J 

and the corresponding h value is 2.49 x 1 0 - 8 , significantly smaller than the 3.36 obtained 
using the experimentally measured rates. From a comparison of Eqs.(3.46) and (3.53), 
however, there is only a small change in the estimated intracellular fluxes after correcting the 
measured specific rates. This may not be the case when measured data are in considerable 
error. A computer program that performs the above calculations is presented in Appendix 
A. 

3.2.7.3 Error Diagnosis 

If h values greater than the x2 distribution (for instance, a value >10 in the above example) 
are obtained, it could be due to either systematic or large random errors in the measured 
rates. It becomes important to identify the error source and an elegant method has been 
proposed for such an analysis in overdetermined systems with at least 2 degrees of freedom 
[36]. In this iterative approach, one of the measured rates is eliminated and the remaining 
are used to compute the consistency index which is subsequently compared with the x 2 

distribution at one lower degrees of freedom. This process is repeated by sequentially elimi­
nating all the measured rates and the corresponding h values are recorded. If elimination of 
any single measured rate results in! a dramatic decreases in the h value, that measurement 
is likely to contain systematic errors. Once the measured rate in error has been identified, 
it can be corrected as illustrated in the following example. 

Let us assume that due to a measurement error, the C E R has been inaccurately de­
termined to be 7.2916 (25% error; actual value = 5.8333) and the other measurements are 
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(3.54) 

unaffected. The unknown flux vector is calculated from Eq.(3.19) as 

/ 1.6663 \ 
1.6355 
2.1684 
9.9932 
1.7902 

y 33.1703 J 

with a corresponding h value of 9.64 which is higher than the x 2 distribution even at a 
confidence level of 0.99. It is thus clear that errors exist in the measured rates. The h 
values obtained by eliminating one measured rate at a time are shown in Table 3.3. C E R 
elimination results in a significant reduction in h when compared with other specific rates 
indicating the presence of gross measurement error in C E R . This problem can be adressed 
by making additional (accurate) C E R measurements and if this not possible, experimental 
C E R data must not be used for flux estimation. 

T a b l e 3 . 3 : Values of h after Sequential Elimination of the Measured Rates 

Measurement E l i m i n a t e d h value 
None 9.64 

Glucose uptake rate 5.87 
Lactate production rate 5.87 

C O 2 production rate 1.59 
O2 consumption rate 8.21 

3.2.8 Summary of Flux Estimation in Overdetermined Systems 

When overdetermined systems are characterized by at least two degrees of freedom, the 

consistency of experimental data and the presence of gross measurement errors can by ana­

lyzed as illustrated in the above example. A schematic of this approach is shown in Figure 

3.3. The bioreaction network is first defined from which the stoichiometric matrix, G T , 

and the rate vector, v, are derived. The unknown intracellular fluxes are then determined 

from Eq.(3.25) through matrix inversion. The redundancy matrix, R , is then calculated 

as R = G ^ — Ĝ T ( G ^ ) * G ^ from which the reduced redundancy matrix R,. is derived by 

eliminating the dependent rows. The residual vector, e, is subsequently determined using 

R r and the measured rates (Eq.3.31). The variance-covariance matrix of the measured rates, 

F , is then estimated from the measured rate errors (Eq.3.35) following which the covariance 
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matrix of the residuals, <p, is estimated from I L and F (Eq.3.38). Finally, the consistency 
index, h, is estimated from ip and e (Eq.3.41) and compared with the x 2 distribution at the 
appropriate degrees of freedom. . 

If h < x2, then, no gross measurement errors are present and the assumed biochemistry 
is consistent. While the resulting fluxes constitute an acceptable solution, further improve­
ment in the flux estimates is possible by improving the measured rates (Eq.3.40) followed by 
flux estimation. In addition to improved flux estimates, this approach will also significantly 
reduce the h value as demonstrated in the above example. While flux improvements for an 
accurate data set may be marginal, it is still useful to refine the flux estimates as this step. 
requires minimal computational effort. For cases when h < x2, either the experimental data 
contain gross errors or the assumed biochemistry is incorrect. Presence of gross errors can 
be determined by sequentially eliminating a measurement followed by flux estimation and 
h determination. If elimination of any single measurement results in a significant decrease 
in h, then that measurement contains gross errors. If additional accurate measurements 
are not available for that specific rate, it must not be used for flux estimation. However, if 
this analysis indicates no. gross measurement error, then the likely source of high h is the 
bioreaction network. Appropriate.modification of the network can result in flux estimates 
such that h < x2-

3.3 Flux Estimation Using Isotopic Tracers 

In isotopic tracer experiments, the cultivation medium contains a labeled substrate (usually 
1 3 C glucose) that is stable and can be detected by N M R or G C - M S . Distribution of the label 

among the metabolites can be measured using either N M R or G C - M S and is a function of 

the intracellular metabolic fluxes. For simple biochemical networks, unknown intracellular 

fluxes can be directly determined by examining the fractional label enrichment either from 

transient intensity measurements or from experiments where both metabolic and isotopic 

steady states are reached. A n elegant method to analyze data from complex metabolic 

networks is by using atom mapping matrices (AMMs) which describe the transfer of carbon 

atoms from reactants to products [19]. The primary advantage of the A M M approach 

is the decoupling of the steady-state isotope balance equations from the reactions in the 

biochemical network. Detailed information on the A M M approach is presented below while 

information on other related approaches can be found elsewhere [38-47]. 
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Define Bioreaction 
Network 

Formulate stoichiometric 
matrix 

Estimate intracellular 
Fluxes 

Determine reduced 
redundancy matrix and 
covariance matrix of 
residuals 

Estimate h 

h<x

2 

Solution obtained 

h>x2 

Modify reactions in the 
Biochemical network 

No 

Gross error detection by 
sequential elimination of 
measured rates 

Yes 

Optional _ | Compute improved values! 
of measured rates 

Repeat measurements if 
Possible. Otherwise 
change experimental data 

Compute improved flux 
estimates (final solution) 

F i g u r e 3 . 3 : A n illustration.of the steps involved in overdetermined system flux estimation using 
the metabolite balancing approach. 

3.3.1 Atom Mapping Matrices for Flux Estimation 
1 3 C glucose is the. most commonly used labeled substrate in the investigation of mammalian 

cell metabolism. When cells consume glucose, the carbon label gets incorporated into 

the various metabolites and for a metabolite with n carbon atoms, 2 n isotope isomers 

(isotopomers) are possible. Table 3.4 shows the isotopomer distribution for a 3-carbon 

molecule along with their binary and decimal indexes. Information on the isotopomers 

is contained in the N M R spectrum from which it is possible to quantify their relative 

distribution. 

Consider a simple example where A and B (both 3-carbon molecules) react to form C 
(also a 3-carbon molecule) and xr, X2 and x% are the associated fluxes (Figure. 3.4). The 

mass balance expression for this simple reaction network is straightforward (x\ + X2 = X3) 
and isotopomer balances are necessary to determine the contributions from the isotopomers 

of A and B to the isotopomers of C. It follows from Table 3.4 that 8 isotopomers of A,B and 

C are possible since they all contain 3 carbon atoms. For instance, if the ith isotopomer of A 
and the jth isotopomer of B are transformed into the kth isotopopmer of C, the steady-state 
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T a b l e 3 . 4 : Isotopomer distribution for a 3-carbon molecule along with their binary and decimal 
indexes 
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isotopomer balance is 
xiA(i)+x2B(j) = x3C{k) (3.55) 

from which C (k) can be determined only if the other quantities are known. In the above 

balance,, the relationship between i, j and k was assumed and for complex metabolic net­

works, atom mapping matrices help define these relationships conveniently. A M M s describe 

the transfer of carbon items from the reactant to the product and are designated as [re-

actant > product] with the number of columns and rows equal to the number of carbon 

atoms in the reactant arid product, respectively [19]. If the ith. carbon in the product is 

derived from the jth carbon of the reactant, the element in the ith row and the jth column 

is 1 (this value is 0 otherwise). 

For the reaction network in Figure 3.4, two A M M s ([A > C] and [B > G]) must be 
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Figure 3 . 4 : A simple reaction network where molecule C is formed from molecules A and B. 

used to relate the reactant and product isotopomers. If carbon 1 of A becomes carbon 3 of 
C, carbon 2 of A becomes carbon 1 of C and carbon 3 of A becomes carbon 2 of C, then 
[A > C] can be written as 

/ 0 1 0 \ 
[A > C] = 0 0 1 (3.56) 

\ 1 o o ) 

and multiplying the A M M by a vector of the carbon atoms of A will result in the vector of 

carbon atoms for C 

( CL \ 0 1 0 
= | 0 0 1 

1 0 0 

fal \ 
U s / 

f a 2 \ 

A3 (3.57) 

It must be noted that the vector of carbon atoms in A is not unique and 8 combinations 

are possible (Table 3.4). Each of these 8 carbon, vectors of A will result in a corresponding 

carbon vector for C and this dependency is dictated by the A M M . If we consider the second 

index of A (i — 2), the index vector can be written as 

[i] = 
( 1 ^ 

0 
(3.58) 

The product vector [k] corresponding to the reactant vector [i] can be easily determined 

from the A M M 

/ 0 1 0 \ 
[k] = [A > C] [i] = (3.59) 
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indicating that A (1) = C (4). A complete mapping of k at all 8 values of i results in 

C(0) 

C(4) 

C ( l ) 

C(5) 

C(2) 

C(6) 

C(3) 

C(7) 

A(0) 

A ( l ) 

4(2) 
A(3) 

A(4) 

A(5) 

A(6) 

A(7) 

(3.60) 

(3.61) 

(3.62) 

(3.63) 

(3.64) 

(3.65) 

(3.66) 

(3.67) 

and a similar exercise can be done to develop the relationships between the isotopomers of 

where <g> is a mapping operator that helps generate all possible isotopomers of C from A and 
B. As metabolic fluxes are functions of the bioreaction network and isotopomer distribution, 
solution of the above equation followed by comparison with experimental N M R or G C - M S 
data in an iterative fashion (nonlinear least squares optimization) provides the desired flux 
estimates.. 

A n alternative to A M M s is isotopomer distribution analysis where steady-state iso­
topomer balances are formulated for every metabolite in the network which allows deter­
mination of the metabolic fluxes as function of the isotopomer population. This has some 
advantages over the use of A M M s and detailed information is available [39, 44, 46-49]. 

3.3.2 Overview of Flux Estimation from Isotope Tracer Studies 

For complex metabolic networks, flux estimation from N M R or G C - M S data is computation­

ally intensive and iterative because of the nonlinear relationship between the isotopomer 

balances and the the metabolic fluxes. A n overview of the flux estimation procedure is 

shown in Figure 3.5. The bioreaction network is first defined from which the metabolite 

and isotope balance equations are obtained. Either A M M s as described in the previous 

section or isotopomer mapping matrices can be used to formulate these equations. Once 

these equations are defined, an initial set of fluxes is assumed from which the metabolite 

isotopomer pools are calculated. This distribution of metabolite isotopomers helps predict 

reactant B and product C. Eq.(3.55) can now be written as 

x i [ A > C] ® A + x2[B > C] <g> B = x3C (3.68) 
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label enrichment, molecular weight distribution of the isotopomers (for G C - M S analysis) and 
the N M R fine structure. This theoretically predicted information (which is dependent on 
the assumed value of the fluxes) is subsequently compared with experimental G C - M S / N M R 
data and initial agreement is usually not satisfactory. The assumed flux values are refined 
and the calculation procedure is repeated until there is good agreement between theoretical 
and experimental data. 

Define Bioreaction 
Network 

Formulate 
1. Metabolite balances 
2. Isotope balances 

Assume fluxes and 
solve for metabolite 
Isotopomer pools 

Predict label enrichment, 
Isotopomer molecular 
weight distribution or fine 
structure of NMR 

Modify reactions in the 
Biochemical network 

No 

Gross error present in 
measurements 

Yes Repeat measurements if 
Possible. Otherwise 
change experimental data 

Compare with GC-MS / 
NMR data 

Good 

Agreement 

Gross error detection in 
measurements and 
assumed biochemistry 

Wo Solution obtained. Current] 
fluxes are the best-fit 
values 

Poor Agreement 

Refine initial flux 
estimates 

F i g u r e 3 . 5 : An overview of the flux estimation process for the isotope tracer approach. 

Error diagnosis is an important component of flux estimation from isotope tracer studies 

as for the metabolite balancing approach. If no gross errors are detected, the obtained flux 

values are reliable and can be considered representative of cell physiology. However, if 

gross errors are detected, they could either be due to measurement error or inappropriate 

assumptions regarding system biochemistry. Depending upon the source of gross error, the 

existing experimental data must be reviewed and new measurements should be made if 

possible or the biochemical network must be modified to reflect cell physiology. Once either 

of these adjustments is done, the entire process of flux estimation must be repeated. 
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3.4 Summary 

A n overview of the two methods of flux estimation has been presented. Metabolite bal­
ancing is more commonly used because of experimental and computational simplicity. For 
mammalian cell culture, experimental data necessary for flux estimation by metabolite bal­
ancing include cell growth, nutrient uptake and metabolite/product formation rates along 
with uptake/production rates,of amino acids. As these quantities are routinely measured 
in cell culture experiments, there is little need for additional measurements for flux es­
timation. The computational component of the metabolite balancing approach is simple 
and basic matrix manipulations are adequate for flux estimation. Overdetermined systems 
are preferable over determined and underdetermined systems as robust error diagnosis is 
possible in these systems, increasing the reliability of the flux estimates. 

The use of isotope tracers helps determine fluxes in reversible and cyclical reactions 
which is not possible using metabolite balancing. This improved flux resolution is obtained 
at the expense of significantly increased experimental, analytical and computational effort 
which limits widespread application of this approach. Direct application to laboratory and 
manufacturing-scale perfusion systems is virtually impossible given the cost associated with 
using labeled substrates. Isotope tracer studies thus have to be performed in scaled-down 
systems which to the extent possible must be metabolically representative of the larger 
bioreactors. Comparison of flux estimates from these isotope tracer studies with those 
from metabolite balancing will help validate the metabolite balancing approach that can 
subsequently be directly applied to large-scale systems. This leverages the advantages of 
both methods of flux estimation and application of this approach for perfusion cultivation 
of C H O cells is presented in Chapter 8. 
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Chapter 4 

p C C > 2 R e d u c t i o n i n P e r f u s i o n 
S y s t e m s 1 

4.1 Introduction 

Mammalian cells are being increasingly used to produce recombinant proteins, given their 

ability to properly fold and glycosylate these proteins. While the majority of current 

manufacturing-scale processes are fed-batch, perfusion cultures can be required, for in­

stance, when the product of interest is relatively unstable. The continuous nature of the 

perfusion process allows higher cell density cultivation, since toxic metabolites, such as lac­

tate and ammonium, do not accumulate in the bioreactor. Cell densities on the order of 

20 x 106 cells/mL can be maintained in the steady-state phase of perfusion cultivation for 

100 days or more [1, 2]. High cell density coupled with high perfusion rates yields high 

volumetric productivity from perfusion cultivation. 

High density perfusion cultivation, however, results in elevated bioreactor pC02, often 

on the order of 200 mm Hg [3, 4], significantly higher than physiological values (30 - 50 mm 

Hg). Elevated p C 0 2 has been implicated in reduced growth, metabolism and productivity 

in addition to adverse effects on glycosylation [3, 5-15]. As bioreactor pH during perfusion 

cultivation is controlled at a pre-defined set point, high p C 0 2 results in increased osmolality 

which can also negatively impact cell growth, metabolism and productivity [7, 8, 10, 16-21]. 

High p C 0 2 is a consequence of both the cellular metabolism and the NaHC03 that is widely 

used as a buffer in the medium. In addition, NaHC03 is often added as a base to neutralize 

' A version of this manuscript has been accepted for publication. Goudar, C.T., Matanguihan, R., Long, 
E., Cruz, C , Zhang, C , Piret, J .M. and Konstantinov, K . B . (2006) Decreased p C 0 2 accumulation by 
eliminating bicarbonate addition to high-density cultures. Biotechnology & Bioengineering. 
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the lactate produced by the cells. High p C 0 2 can also be a concern in late stage fed-batch 

cultivation but the problem is greater in perfusion bioreactors, as high pCG"2 values are 

maintained over the entire length of the production phase due to the typically higher cell 

concentration (Figure 4.1). 

Perfusion 

P e r f u s i o n h i g h p C 0 2 r e g i o n 

(> 2 0 0 m m H g ) 

vFed-Batch 

j Fed j - ba t ch h i g h p C 0 2 r e g i o n 

( > 1 0 0 m m H g ) 

Time (days) 100 

F i g u r e 4 . 1 : Bioreactor pCC>2 time profiles for mammalian cell cultivation in perfusion and fed-
batch bioreactors. Perfusion pCC>2 remains high throughout steady-state operation 
while high p C 0 2 can be a problem in late stages of fed-batch cultivation. 

There is clearly a need for bioreactor p C 0 2 reduction although there have been relatively 

few studies addressing p C 0 2 removal and control in mammalian cell bioreactors [3, 12, 13]. 

Stripping is an obvious p C 0 2 removal approach, but it has a limited impact in mammalian 

cell bioreactors. For C H O cells in a 500 L perfusion bioreactor, the ratio of oxygen and 

carbon dioxide transfer rates was 25:1 [3], thus much higher high gas flow rates would be 

necessary for adequate C O 2 stripping. There is an upper limit on sparging rates given the 

detrimental effects on cells [22, 23]. Macrosparging resulted in a significant p C 0 2 reduction 

for C H O cells in fed-batch culture [13], but the maximum cell density was not reported 

and it is unlikely that it was high enough to be relevant to perfusion cultivation. Changing 

an impeller position yielded a 2-fold increase in the p C 0 2 transfer rate [13], but such 

improvements cannot be expected in a well-mixed bioreactor. The inadequacy of stripping 

clearly indicates that a more attractive target to reduce bioreactor p C 0 2 could be reduction 

at the source rather than removal after p C 0 2 production and additions. 

Engineering cellular metabolism to reduce p C 0 2 production is not practical because 

cell lines are selected primarily on productivity and growth considerations. In fact, there 

are advantages to maintaining high rates of respiration to minimize lactic acid production. 
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The buffering components, on the other hand, offer the most potential for pCC>2 reduction 

and were the target of changes in this study. There have been some reports where reduced 

NaHCOa or NaHCC>3-free medium was used for mammalian cell cultivation [24-29], but 

pCG"2 reduction was not the primary objective in these studies and none were performed 

at manufacturing-scale. 

This study evaluates the biotic and abiotic contributions to bioreactor pCC>2 in a per­

fusion system, and from these results, derives a simple pCC>2 reduction strategy based on 

minimizing abiotic pCO"2 contribution. The validity of this approach was verified both in 

laboratory and manufacturing-scale perfusion systems. Changes in cell growth, metabolism 

and protein productivity associated with pC0"2 reduction were also evaluated. 

4.2 T h e o r y 

4.2.1 C 0 2 Dynamics in a Mammalian Cell Bioreactor 

Carbon dioxide produced by cells dissolves in the culture medium to form carbonic acid: 

C 0 2 ( g ) - C 0 2 ( a q ) (4.1) 

C 0 2 ( a q ) + H 2 0 - H 2 C O 3 (4.2) 

It is common practice [30] to combine the C 0 2 ( a q ) and H 2 C O 3 concentrations into H 2 C O 3 * 

(C0 2 (aq) ' + H2CO3' = H 2 C O 3 * ) . Further dissociation of H 2 C 0 3 * into H C O 3 and C O f can 

be written as: 

H 2 C O 3 * ^ H C O 3 + H+; Kx = IO" 6 ' 3 5 (4.3) 

H C O 3 ^ ' C O f + H + ; K2 = I O " 1 0 3 3 (4.4) 

where K\ and Ki are equilibrium constants under standard conditions (temperature = 25 

°C, ionic strength = 0). These must, however, be corrected to reflect cultivation conditions 

and K\ and K% were estimated to be IO"6 0 7 and IO' 1 0 0 4 , respectively, at 37 °C and 0.1 M 

ionic strength using the vant-Hoff and : Davies equations [31. 32]. Carbon dioxide produced 

by the cells thus exists as combination of H 2 C 0 3 * , H C 0 3 and CO3" whose relative amounts 
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at the cultivation pH of 6.8 were determined as: 

r+l2 

[ H + ] 2 + [H +] K{ + K\K\ 
H- l 

% o f H 2 C 0 3 * . = r , , 2 . L . „„„ 100 = 15.7% (4.5) 

% of H C O 3 = ( , 9

 [ H ] K ° l ) 100 = 84.3% (4.6) 
\ J H + ] 2 + Kl + K\Kl ) . 

% of CO3 = [ K ° K * •• ) 100 = 5 x 10-4% (4.7) 
\[H+}2 + Kl + KIK§ J 

Thus H C O 3 is the dominant species at pH 6.8 followed by H 2 C O 3 * while CO3" is virtu­
ally non-existent. Additional information on medium solution chemistry and associated 
computer programs are presented in Appendix B. 

4.2.2 Buffering Action of NaHC0 3 and N a 2 C 0 3 

The fate of added NaHC03, either through the medium or separately for pH control, is also 
governed by Eqs.(4.3) and (4.4). Complete dissociation of N a H C 0 3 results in the formation 
of N a + and H C 0 3 ions, of which a portion of the latter is converted to H 2 C O 3 * 

N a H C 0 3 -» Na+ + H C O 3 (4.8) 

H C 0 3 + H + <-» H 2 C O 3 * (4.9) 

The relative concentrations of H 2 C O 3 * and H C 0 3 at pH 6.8 are 15.7 and 84-3%, respectively 

(from Eqs. 4.5 and 4.6) such that 5.4 moles of N a H C 0 3 are required to neutralize 1 mole 

of H + in the bioreactor. 

If instead Na2C03 is used as the base for pH control, complete dissociation results in 

the formation of CO3", which is essentially all converted to HCO" 3 under culture conditions: 

N a 2 C 0 3 -» 2 N a + + C O | - (4.10) 

C O f + H + <-> HCO3 (4.11) 

The significantly enhanced buffering capacity of lNTa2Cd3 is due to Eq.(4.11) where 1 mole 

of N a 2 C 0 3 neutralizes 1 mole of H + . Futher conversion of HCO" 3 to H 2 C O 3 * proceeds 

according to Eq.(4.9) such that 0.85 moles of N a 2 C 0 3 are required to neutralize 1 mole of 

B.^ in the bioreactor. A 84% improvement in buffer capacity and a corresponding decrease 

in the abiotic contribution to bioreactor pCCh can thus be expected when N a H C 0 3 is 

replaced with N a 2 C 0 3 . 
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Medium with 
N a H C 0 3 buffer 

C 0 2 -> 
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c o 2 - » 

Base 
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t Headspace gas 
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C O . 

Cellular Respiration 

BIOREACTOR 
(pC0 2 > 225 mm Hg) 

C 0 2 -> 

Harvest + 
Bleed 

F i g u r e 4 . 2 : Calculated contributions from biotic (cellular respiration) and abiotic (medium and 
base NaHCOs) sources to bioreactor pCC>2 during perfusion cultivation of B H K cells. 

4.2.3 Contributors to Bioreactor p C 0 2 

Cellular respiration makes up the biotic component of bioreactor p C 0 2 (abiotic contributors 

are NaHC03 and Na 2 C0a) . For B H K cells in a perfusion bioreactor at 20 x 10 6 cells/mL, 

the carbon dioxide evolution rate was 8 pmol/cell-day, contributing 1.92 moles/day from 

cellular respiration to bioreactor p C 0 2 . Daily addition of 0.71 M NaHC03 as a base for pH 

control was 5 L , from which the contribution of the base was estimated as 3.57 moles/day. 

Medium (with 23.8 m M NaHCOs) how rate was 120 L/day resulting in a daily medium 

contribution of 2.86 moles. From the above data, the percentage contributions of cellular 

respiration, base, and medium to bioreactor p C 0 2 were 23, 43 and 34%, respectively (Figure 

4.2). Eliminating NaHC03 from the medium should thus reduce bioreactor p C 0 2 by 34% 

while replacing NaHCOs with N a 2 C 0 3 as the base should reduce bioreactor p C 0 2 by 36% 

(84% of 43). Overall, NaHCOs elimination from the medium and replacement with N a 2 C 0 3 

as base are expected to lower bioreactor p C 0 2 by 70% bringing it in the 60 - 80 mm Hg 

range, much closer to physiological values of 30. - 50 mm Hg. 
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4.3 Materials and Methods 

4.3.1 Cell Line, Medium and Bioreactor System 

Multiple perfusion B H K cell cultivations were performed with glucose and glutamine. as 
the main carbon and energy sources in a proprietary, medium formulation with either 2 
g /L NaHCC>3 or a.MOPS-Histidine mixture as the buffering component. Laboratory-scale 
experiments were conducted in 15 L bioreactors (Applikon, Foster City, CA) with a 12 
L working volume. .The temperature was maintained at 35.5 °C and the agitation at 70 ' 
rpm. The dissolved oxygen (DO) concentration was maintained at 50%. air saturation 
using oxygen-nitrogen mixture aeration through a silicone membrane. Bioreactor pH was 
maintained at 6.8 by the addition of either 0.71 M N a H C 0 3 or 0.57 M N a 2 C 0 3 . The 
bioreactors were inoculated at an initial cell density of approximately 1 x 106 cells/mL and,' 
with perfusion, the cells were allowed to accumulate up to a density of 20 x 106 cells/mL. 
Steady-state bioreactor cell density was maintained at this level by automatically discarding 
cells from the bioreactor based on optical density measurements [1]. Similar operating 
protocols and identical set points were maintained in the manufacturing-scale bioreactor. 
The effect of macrosparging on C 0 2 stripping was also examined in the manufacturing-scale 
bioreactor. 

4.3.2 Analytical Methods 

Samples from the bioreactor were taken daily for cell density and viability analysis using 

the C E D E X system (Innovatis, Bielefeld,'Germany). The samples were subsequently cen­

trifuged (Beckman Coulter, Fullerton, CA) and the supernatants were analyzed for nutrient 

and metabolite concentrations. Glucose, lactate, glutamine and glutamate concentrations 

were determined using a YSI Model 2700 analyzer (Yellow Springs Instruments, Yellow 

Springs, OH) while ammonium was measured by an Ektachem DT60 analyzer (Eastman 

Kodak, Rochester, N Y ) . The pH and D O were measured online using retractable electrodes 

(Mettler-Toledo Inc., Columbus, OH) and their measurement accuracy was verified through 

off-line analysis in a Rapidlab 248 blood gas analyzer (Bayer HealthCare, Tarrytown, 

N Y ) . The same instrument also measured the dissolved CO2 concentration. On-line mea­

surements of cell concentration were made with a retractable optical density probe (Aquas-

ant Messtechnik, Bubendorf, Switzerland), calibrated with the C E D E X cell concentration 

estimates..- . •• 
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4.3.3 Estimation of Specific Rates 

Growth rate, specific productivity, nutrient consumption and metabolite production rates 

were calculated from mass balance expressions across the bioreactor and cell retention device 

and details are presented in Appendix H . Since bioreactor cell density was held constant by 

bleeding cells from the bioreactor and death rates were not accounted for, the growth rate, 

\i (1/day), was a function of the bleed rate, Fb (L/day), and the viable cell density in the 

harvest stream, Xy (109 cells/L): 

n . fh fx»\ , i (dx$ 

where V is the bioreactor volume (L), Fh the harvest flow rate (L/day), Xy the bioreactor 

viable cell density (109 cells/L) and t the time (day). The specific consumption rates of 

glucose and glutamine were determined from the glucose and glutamine concentrations in 

the bioreactor: 

1 /Fm (Gm -- G) dG\ 
Q G = X B { v dFj ( 4 1 3 ) 

1 (Fm(Glnm-Gln) dGln . r i \ ( A . A s 
nam = J B { — - V a T ~ k G l n G l n ) { A M ) 

where Fm is the medium flow rate (L/day) qc and qain are the specific consumption rates 

of glucose and glutamine, respectively, (pmol/cell-day), Gm and Glnm their respective con­

centrations in the fed medium (mM) and G and Gin their bioreactor concentrations (mM). 

The kinetics of abiotic glutamine degradation were assumed to be first-order with a rate 

constant kcin that was estimated as 8.94 x IO"4 h" 1 ' [33]. Assuming the incoming medium to 

be free of lactate and ammonium, the specific production rates of lactate qi and ammonium 

qA were estimated as: 

q L = _ i _ . ±2Z^ + ^ ± (4.15) 
"• X " V. V dt) 

CA = 4 n ( ^ r i + ^-kGbiGln) .(4.16) 

where L and A are the bioreactor lactate and ammonium concentrations, respectively (mM). 

The expression for specific protein productivity is analogous to that for lactate production. 
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4.4 R e s u l t s 

4.4.1 Bioreactor pC0 2 before NaHC0 3 Elimination from Medium and 
" Base 

Figure 4.3 shows time profiles of viable cell density and bioreactor pC02 for B H K and C H O 
cells cultivated in manufacturing-scale perfusion reactors (100 - 500 L working volume). 
The medium for both cultivations contained 23.8 m M N a H C 0 3 while the base added to 
control pH was 0.71 M N a H C 0 3 for the B H K and 0.3 M NaOH for the C H O cultivation. 
In both cases, the bioreactors were inoculated at initial cell densities of ~1 x 106 cells/mL 
and the target steady-state cell density was 20 x 106 cells/mL (actual steady-state cell 
densities were 20.5 ± 1 . 6 x 106 cells/mL for the B H K and 21.2 ± 2.2 x 106 cells/mL for 
the C H O cultivation). Bioreactor pC02, in both cases, was ~70 mm Hg upon inoculation 
and this value increased over the cell accumulation phase, leveling out during steady-state 
cultivation. Average steady-state p C 0 2 values were 238 ± 16 for the B H K and 193 ± 13 
mm Hg for the C H O cultivation. Higher p C 0 2 values would have resulted for the C H O 
cells if N a H C 0 3 had been used in place of 0.3 M NaOH to control pH. The Figure 4.3 data 
illustrate the need for p C 0 2 reduction during perfusion cultivation of mammalian cells at 
high densities. 

4.4.2 pC0 2 Reduction Strategy 

A strategy that involved the alteration of medium and external base compositions was 

used for bioreactor p C 0 2 reduction. Candidates for N a H C 0 3 replacement included his-

tidine and iminodiacetic acid as complexing agents and 3 (N-morpholino) propanesul-

fonic acid (MOPS), N . N bis (2-hydroxyethyl) 2 aminoethanesulphonic acid (BES), N tris 

(hydroxymethyl) 2 aminoethanesulphonic acid (TES), tris (hydroxymethyl) aminoethane 

( T R I Z M A ) , N (2-hydroxyethyl) piperazine N 2 ethanesulfonic acid (HEPES) and Piper-

azine 1,4 bis(2-ethanesulfonic acid) (PIPES) as buffers [34]. Based on the favorable growth, 

viability and metabolism obtained with a MOPS-histidine mixture, this was selected as the 

replacement for N a H C 0 3 in the cultivation medium. The M O P S pKa of 7.2 suggested an 

effective pH buffering range of 6.5 - 7.9 to ensure robust buffering during B H K cultivation 

(pH set point = 6.8). Histidine also serves as a minor contributor to buffering under culture 

conditions (pKa = 6) but was primarily used to minimize precipitation in the medium feed 

line at the point of medium and base contact. This convergence of medium and base lines 

outside the bioreactor reduced localized areas of high pH in the bioreactor that result from 

direct base addition. Cell aggregation and death have been associated with direct base 
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Time (days) 

F i g u r e 4 . 3 : Time profiles of bioreactor pC02 and viable cell density for BHK and CHO cells in 
manufacturing-scale perfusion bioreactors. Bioreactor medium in both cases contained 
23.8 mM NaHC0 3 as the buffer. Base usage was 0.71 M NaHC0 3 for the BHK 
cultivation and 0.3 M NaOH for the CHO cultivation. 

addition and these problems are especially severe for perfusion systems given their long-

term operation [35]. The imidazole moiety in histidine is primarily responsible for metal ion 

binding with the unshared electron pair on N-3, the most energetically favored coordination 

site for metal ions [36, 37]. Multiple bioreactor experiments (data not shown) defined, for 

our cells, estimated concentration ranges for M O P S and histidine that provide the required 

buffering and complexing action without adversely affecting cell growth (Figure 4.4). Histi­

dine concentrations >10 m M were necessary to eliminate precipitation while concentrations 

>20 m M inhibited growth. M O P S did not inhibit the growth of the cells tested as long as 

the concentration was <30 m M . 

Results from B H K cells in perfusion culture at 12 L working volume where sequential 

medium and base modifications were made are shown in Figure 4.5. The highest bioreactor 

P C O 2 levels were observed when NaHC03 was present both in the medium and base (229 ± 

19 mm Hg) and these values decreased upon N a H C 0 3 elimination (Figure 4.5). Eliminating 

NaHC03 from the medium reduced bioreactor p C 0 2 to 150 ± 15 mm Hg, a 34.5% reduction 

close to the theoretically expected 34% reduction. When N a H C 0 3 was eliminated from both 

the medium and the base, the p C 0 2 was 96 ± 6 mm Hg, a 58.1% reduction, slightly lower 

than the expected 70%. This preliminary experiment confirmed that theoretically expected 
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F i g u r e 4 . 4 : Influence of M O P S and histidine concentrations on cell growth and precipitation in the 
medium feed line. Histidine in the 10-20 m M range and M O P S in the 10-30 m M range 
did not adversely influence cell growth and prevented precipitation in the medium feed 
line. 

pCC>2 reductions could be substantial and readily attained. 

4.4.2.1 Bioreac to r Ope ra t ion after N a H C O s E l i m i n a t i o n 

Additional experiments were performed to verify the extent of pC02 reduction that could 

be obtained by eliminating NaHC03 from the cultivation medium and base. Time profiles 

of bioreactor pC02 and viable cell density for 4. long-term B H K perfusion cultivations are 

shown in Figure 4.6. The MOPS-histidine mixture was used as the medium buffer while 

N a 2 C 0 3 was the external base. Overall, average pC02 values ranged from 68 - 85 mm Hg 

and were significantly lower than the ~230 mm Hg observed when N a H C 0 3 was present 

(Figures 4.3 and 4.5). Using a reference pC02 value of 229 mm Hg from phase A in Figure 

4.5, bioreactor pC02 reductions were 63, 70, 69 and 66%, respectively, for Figures 4.6a, 

4.6b, 4.6c and 4.6d, consistent with the theoretically expected 70% reduction. 

A 33-day manufacturing-scale experiment was also performed under NaHC03-free con­

ditions to check the transferability of results from laboratory-scale bioreactors. Time pro­

files of bioreactor p C 0 2 and viable cell density from the manufacturing-scale bioreactor are 

shown in Figure 4.7 along with their respective steady-state averages. The steady-state 

p C 0 2 average was 84 ± 7 mm Hg reflective of a 65% reduction compared to 238 ± 16 
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F i g u r e 4 . 5 : Average bioreactor pC02 for B H K cells in perfusion culture at 20 x 106 cells/mL. 
NaHCOs was present both in the medium and base for phase A and was replaced with 
N a 2 C 0 3 as the base for phase B . Phase C was NaHC03-free with MOPS-Histidine 
mixture replacing it in the medium and NaoCOa replacing it as the base. Bioreactor 
pCC>2 reductions were 34.5 and 58.1% for phases B and C, respectively, when compared 
with phase A . 

mm Hg that was observed when NaHCG"3 was present in both the medium and external 

base (Figure 4.3). Laboratory-scale p C Q 2 reductions (Figure 4.6) were thus reproducible 

at manufacturing-scale (Figure 4.7), 

4.4.3 Effect of Reduced pC0 2 on Growth, Metabolism and Productivity 

Figure 4.8 shows a comparison of normalized growth rate and specific protein productiv­

ity between the reference condition (pC02 ~230 mm Hg) and the low p C 0 2 cultivations 

from Figures 4.6 and 4.7. While both the specific growth rate and productivity averages 

were characterized by high standard deviations, results from a t-test (two-sided, assuming 

independent groups and unequal variances) indicated that growth rate and productivity in­

creases at reduced pCCh values were significant in all 5 cultivations (p<0.005). The growth 

rate increase ranged from 68 - 123% while that for productivity was 58 - 92% under reduced 

pCG-2. 

Glucose consumption and lactate production rates also increased (p<0.005) at reduced 

P C O 2 and ranged from 2 3 - 3 1 % and 39 - 69%, respectively (Figure 4.9). There were thus 
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F i g u r e 4 . 6 : Time profiles of pCC>2 and viable cell density for B H K cells in 15 L perfusion bioreactors 
when medium containing MOPS-histidine buffer (NaHCCvfree) was used along with 
0.57 M N a 2 C 0 3 as the base for pH control. Bioreactor pC02 and cell density values 
are shown are mean ± standard deviation for the steady-state phase of the cultivation. 

increases in cell growth, metabolism and protein productivity at reduced bioreactor p C C V 

Metabolic flux analysis was performed using a reduced metabolic model [38] employing 

experimentally measured cell-specific rates for glucose, lactate and oxygen. A l l fluxes were 

higher at reduced pCC>2 indicating a general increase in metabolic activity at pCC>2 values 

closer to the physiological range. Increase in the glycolytic and lactate fluxes were 35 - 57% 

and 37 - 62%, respectively, while those for the T C A cycle and oxygen consumption fluxes 

were 35 - 55% and 34 - 52%, respectively (Figure 4.10). The consistency index, h, for these 

data sets was between 0.03 and 2.23 suggesting no gross error in experimental data. 

4.5 Discussion 

We have demonstrated pCC>2 reduction on the order of 60 - 70% in high-density B H K 

cell perfusion cultures. This reduction was achieved by eliminating additions of NaHCOs 

from the medium and the pH control base. The robustness of this preventive approach was 

shown by the relatively stable steady-state pC02 profiles in perfusion runs (Figures 4.6 
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F i g u r e 4 . 7 : Time profiles of pCC>2 and viable cell density for B H K cells in a manufacturing-scale 
perfusion bioreactor when-medium containing M O P S - h i s t i d i n e buffer (NaHCC>3 - f ree) 
was used along with 0 .57 M Na2C03 as the base for pH control. Cell density and PCO2 values are shown are mean ± standard deviation for the steady-state phase 
of the cultivation. Bioreactor pC02 and viable cell density for N a H C 0 3 containing 
medium and base in an identical bioreactor are shown in Figure 4 . 3 . 

and 4.7) that together included over 400 days of bioreactor operation. Laboratory results 

were reproduced at the manufacturing scale, a major advantage as development work at 

this scale was minimized; It should be noted that there was no direct closed loop control of 

pCC>2 in any of these experiments. There was only an indirect control of bioreactor pCC>2 
since all bioreactors were operated at a constant cell specific perfusion rate. 

4.5.1 Comparison of Growth, Productivity and Metabolism with Previ­
ous Studies 

The general trends in growth rate and specific protein productivity upon pCC>2 reduction 

observed here are similar to reports for other cell lines in perfusion or fed-batch cultures, 

though with cell-to-cell variability. A B H K perfusion culture bioreactor with a 40 to 280 

mm Hg p C 0 2 increase had both the growth rate' and the specific productivity decrease by 

30% [12]. For C H O .cells in perfusion culture with a high glucose concentrations, the growth 

rate decreased by 57% when the p C 0 2 . was increased from 53 to 228 mm Hg, but the cell 

specific antibody productivity was almost unchanged [39]. Increasing pC02 from 36 to 148 
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F i g u r e 4 . 8 : Comparison of normalized growth rate and specific productivity under reference 
(NaHC03 - con t a in ing ) conditions with N a H C 0 3 - f r e e perfusion cultivations. Time pro­
files of bioreactor pCC>2 for the a to d 15 L bioreactors are shown in Figure 4.6 while 
that for the manufacturing-scale bioreactor is shown in Figure 4.7.' There was a sig­
nificant (p<0.005) increase in growth.rate and specific productivity upon NaHCOs 
elimination in all cases. 

mm Hg during perfusion cultivation decreased C H O cell density by 33% (reflecting reduced 

growth rate) and specific productivity by 44% [3]. Under glucose limiting conditions, for 

a similar p C 0 2 increase, the growth rate decreased.by 38% along with a 15% reduction in 

specific antibody productivity. 

The growth rate .of NS/0 cells decreased when p C 0 2 increased from 60 to 120 mm Hg 

[6]. Scale-up of a fed-batch process resulted in p C 0 2 values of 179 ± 9 mm Hg in a 1000 

L bioreactor and a 40% decrease in specific productivity was seen under these conditions 

compared to a p C 0 2 value of 68 ± 13 mm Hg in a 1.5 L laboratory-scale bioreactor [13]. 

Glucose consumption rates decreased in a.dose-dependent fashion for hybridoma cells in 

T-25 flasks [8] with a 40% decrease observed when the p C 0 2 increased from 40 to 250 mm 

Hg (osmolality held constant at 320 mOsm/kg). Similar observations were, made for lactate 

production that decreased by 45% for the same p C 0 2 increase. We have also observed 

increases in glucose consumption and lactate production rates at reduced P C O 2 (Figure 

4:9). 
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F i g u r e 4 . 9 : Comparison of normalized glucose consumption and lactate production rates under 
reference (NaHCCvcontaining) conditions with NaHCOa-free perfusion cultivations. 
Time profiles of bioreactor pCC-2 for the a to d 15 L bioreactors are shown in Figure 
4.6 while that for the manufacturing-scale bioreactor is shown in Figure 4.7. There was 
a significant (p<0.005) increase in glucose consumption and lactate production upon 
NaHC03 elimination in all cases. 

4.5.2 Impact of high pC0 2 on Osmolality 

High osmolality can be caused by high pC02 and while elevated osmolality has not been 

consistently shown to reduce growth rate and specific productivity, it has had a negative 

interaction effect when p C 0 2 values were also high [8, 10]. For C H O cell cultivation in 

6-well plates [10], growth rate and specific tissue plasminogen activator (tPA) productivity 

decreased 31% and 42%, respectively, when the p C 0 2 increased from 36 to 250 mm Hg 

(constant osmolality at 310 mOsm/kg). A n increase in osmolality from 310 to 376 mOsm/kg 

had no adverse impact on growth rate and tPA production for p C 0 2 values in the 36 - 250 

mm Hg range. The highest reduction in growth rate (53%) was seen when both p C 0 2 (250 

mm Hg) and osmolality values (376 mOsm/kg) were high. For C H O cells cultivated in 2 L 

batch bioreactors [21], the growth rate decreased, but only by 9% when the p C 0 2 increased 

from 50 to 150 mm Hg (osmolality controlled at 350 mOsm/kg) while a 60% reduction 

was reported when the osmolality increased from 316 to 450 mOsm/kg ( p C 0 2 at 38 mm 
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F i g u r e 4.10: Effect of bioreactor pCC>2 on key metabolic fluxes. The presentation is similar to that 
in Figures 4.8 and 4.9. The reference condition indicates high pCC>2, conditions 1 - 4 
are for low pCC>2 in 15 L bioreactors and condition 5 is low p C 0 2 in a manufacturing-
scale bioreactor. 

Hg). For hybridoma cells cultivated in T-25 flasks [8], high pC02 and osmolality reduced 
growth rate in a dose-dependent fashion. The growth rate decreased by about 40% when 
pCC>2 increased from 40 to 250 mm Hg (osmolality constant at 320 mOsm/kg) and a similar 
decrease was seen when the osmolality increased to 435 mOsm/kg (pCCV constant at 40 
mm Hg). Growth rate decreased by 84% for p C 0 2 and osmolality values of 195 mm Hg 
and 435 mOsm/kg, respectively, suggesting a negative interaction effect. By reducing'base 
addition, the pC02 reduction strategy proposed in this study also minimizes osmolality 
increases and the adverse effects associated with combined high pC02 and osmolality. • 

4.5.3 H i g h p C 0 2 and Intracel lular p H 

High pC02 has been reported to decrease intracellular pH (pHj) with significant implications 

for cell growth and metabolism [40, 41]. For hybridoma cells cultivated in T-25 flasks, a 

0.1 - 0.2 unit pHi reduction was observed at pC02 values higher than 140 mm Hg when 

compared with a 40 mm Hg control [8]. While pHj was not measured in this study, earlier . 

work from our laboratory with B H K cells in perfusion culture observed a 0.2 unit reduction 

in pHj when pC02 increased from 40 to 250 mm Hg [4]. Decreases in pH; on the order of 

0.2 units have been shown to significantly reduce the carbon flux through glycolysis [42-45]. 

One mechanism for this decrease is the strong dependence of phosphofructokinase activity. 
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on pH [46]. This is consistent with the 2 3 - 3 1 % increase in glucose consumption rates that 

were observed in this study at reduced p C 0 2 values. 

Since changes to pH^ affect the ionization states of all peptides and proteins, it is actively 

regulated [47, 48]. Under conditions of high external P C O 2 , diffusion into the cell followed 

by rapid conversion to H 2 C O 3 through the action of carbonic anhydrase can cause a decrease 

in pHj [49-51]. Cells try to maintain pH homeostasis through the action of acid extruders 

which include the vacuolar-type H + pump [41], the N a + / H + exchanger [52], the N a + driven 

C T / H C O 3 exchanger [51] and the electrogenic N a + / H C 0 3 cotransporter [53]. The extrusion 

of H + from cells and the intake of H C 0 3 require energy [47] resulting in an increased energy 

demand for maintenance. This could be partially responsible for the reduced growth rate 

at elevated p C 0 2 reported by most studies. 
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Figure 4.11: Time profiles of pCQ2 (Q) a n ( f viable cell density (•) for BHK cells in a 
manufacturing-scale perfusion bioreactor when medium containing MOPS-histidine 
buffer (NaHC0 3-free) was used along with 0.57 M Na 2C03 as the base for pH control 
and oxygen sparged at 0.015 vessel volumes/minute. These pC02 values can be di­
rectly compared with those in Figure 4.7 despite differences in cell density since both 
reactors were operated at identical cell specific perfusion rates. 

4.5.4 Closed-loop p C Q 2 Control , 

Figures 4.6 and 4.7 show pCC>2 spikes in the beginning of the experiments when cell con­

centrations were increasing from initial cell densities. Use of NaHC0 3 -free medium results 
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in low bioreactor p C 0 2 values, often less than 15 mm Hg. This will severely inhibit cell 
growth unless C O 2 is added to increase bioreactor pCG"2 to 40 mm Hg or higher. Since 
closed loop pCG"2 control was not employed, manual C O 2 addition was responsible for the 
variability in bioreactor pC02 during the cell scale-up phase. Closed loop pCG"2 control is 
currently being tested. 

Despite ~70% reduction in bioreactor p C 0 2 after medium and base changes (Figures 4.6 
and 4.7), the average values ranged from 68 to 85 mm Hg, still higher than the physiological 
range (30 - 50 mm Hg). While additional reduction is possible through NaOH pH control, 
medium precipitation and cell death associated with its use do not make this an attractive 
option for long-term cultivation. Stripping C O 2 with macrosparging reduced p C 0 2 in a 
manufacturing-scale bioreactor to 60 mm Hg (Figure 4.11), a 29% reduction when compared 
to non-sparged conditions (84 mm Hg in Figure 4.7). Thus, additional p C 0 2 reduction is 
possible with macrosparging and this approach is being investigated with the closed-loop 
bioreactor p C 0 2 control 

4.6 C o n c l u s i o n s 

We have presented a practical strategy for p C 0 2 reduction in high-density perfusion biore­

actors by eliminating NaHC03 from the medium and base used for pH control. This method 

reduces p C 0 2 at the source in contrast to stripping techniques that rely on C O 2 removal 

after it has been produced. By minimizing the indirect contributions to bioreactor P C O 2 , a 

63 - 70% pC02 reduction was achieved in laboratory-scale bioreactors and the results were 

reproduced at manufacturing-scale. Significant increases in cell growth, metabolism and 

protein productivity were obtained upon p C 0 2 reduction and these trends were consistent 

with other published studies. This approach can be readily implemented in established 

manufacturing processes since no changes to the bioreactor physical configuration or op­

erational parameters are necessary. It is robust because p C 0 2 reductions are guaranteed 

once medium and base changes are made. The general nature of this approach makes it an 

attractive option for P C O 2 reduction in fed-batch cultivations as well. 
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Chapter 5 

O U R a n d C E R E s t i m a t i o n i n 
P e r f u s i o n S y s t e m s 1 

5.1 Introduction 

Oxygen uptake and carbon dioxide evolution rates (OUR and C E R , respectively) provide 

useful information on cell metabolism and physiology. Reliable estimation of these rates is 

desirable as they are indicators of changes in cellular metabolic activity [1-8]. Oxygen up­

take data are an indicator of cell density and metabolic rates such as glucose consumption 

and on-line O U R measurements have been used to design feeding strategies and control 

bioreactor operation [9, 10]. O U R information is also necessary for bioreactor design and 

scale-up given the low solubility of oxygen. This is especially important for high density per­

fusion cultivations that have high oxygen transfer requirements. Moreover, O U R and C E R 

are required for metabolic flux analysis even in the simplest of mammalian cell bioreaction 

networks [11]. Robust O U R and C E R estimation is thus critical for bioprocess development 

and is also important for monitoring and diagnosing manufacturing bioreactors. 

The primary approaches that have been used for in-situ O U R estimation in mammalian 

cell cultures include the stationary liquid phase balance approach, the dynamic method, 

and the global mass balance (GMB) approach [6j. The stationary liquid phase balance 

approach requires knowledge of the volumetric oxygen transfer coefficient, k^a, for O U R 

estimation [1, 2]. However, for both sparged and membrane aerated bioreactors, kt,a can 

change over time making the stationary liquid-phase balance approach unsuitable for long 
1 A version of this chapter wi l l be submitted for publication. Goudar, C . T . , Piret, J . M . and Konstantinov, 

K . B . (2006). Estimating O U R and C E R in perfusion,systems using global mass balances and novel off-gas 
analyzers. 
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term perfusion cultivations. The dynamic method is the simplest and perhaps the most 
widely used method for estimating oxygen uptake rates [10, 12, 13]. This approach typically 
involves increasing the DO concentration in the bioreactor to 60% saturation and turning 
off the oxygen supply. The subsequent rate of DO decrease is a consequence of cellular 
consumption and provides the O U R estimate. Despite its simplicity, this method involves 
a perturbation that is undesirable. Moreover, for high cell density perfusion cultures, rapid 
oxygen consumption complicates application of this method. For B H K cells at densities of 
20 x 10 6 cells/mL, the time required for complete oxygen depletion when all supplies are 
cut off is on the order of 40 seconds resulting in unreliable O U R estimates from the dynamic 
method (DO probe response times are typically greater than 40 seconds). 

To overcome these limitations, an alternate O U R estimation approach was proposed 
where reactor contents were continuously drawn into an external loop and D O measurements 
were made at the outlet of the loop [14]. The difference between the D O levels in the 
reactor and at the outlet of the external loop helped determine OUR. This method required 
only a single additional D O measurement while no gas phase oxygen measurements were 
necessary making the process simple and robust. The G M B approach becomes attractive for 
O U R estimation when reliable gas phase oxygen measurements can be made as it does not 
require k^a determination and bioreactor, perturbation. Information on the gas flow rates 
and oxygen concentrations in the inlet and outlet streams is adequate for O U R estimation.. 

C E R estimation is more difficult than O U R because of the reversible dissociation of C 0 2 

into H 2 C O 3 , H C O 3 and C O 3 " in solution. The equilibria of these dissociation reactions are 
strong functions of pH, temperature and ionic strength that must be accounted for during 
C E R estimation. While there are several reports on C E R estimation in microbial systems 
[15-20], there are only a few in-mammalian cell chemostat and batch studies [1, 21, 22] 
and none in perfusion systems. The use of bicarbonate buffered medium in mammalian 
cells further complicates C E R estimation because this is a major additional abiotic C O 2 
component. 

In this study, we present methods to estimate O U R and C E R in mammalian cell perfu­
sion cultures using global mass balances. While measurement of oxygen and carbon dioxide 
concentrations in the inlet and outlet gas streams is necessary, k^a data are not required 
and no reactor perturbations are necessary. Our approach allows real-time O U R and C E R 
estimation that can also serve as indicators of cell density and nutrient consumption rates. 
Moreover, these data enable real-time estimation of metabolic fluxes providing useful in­
sights into cell metabolism and physiology that can be used in advanced control strategies 
for optimal bioreactor operation. 
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5.2 Theory 

5.2.1 OUR Estimation 

Under ideal conditions, both liquid and gas stream oxygen flows must be taken into account 
in the generalized mass balance approach. However, a combination of low oxygen solubility 
and high cell density make liquid stream oxygen contributions negligible (usually less than 
1%; Appendix E) and only gas phase oxygen balance equations are necessary for O U R esti­
mation. Under steady-state conditions, there is no accumulation of oxygen in the bioreactor 
and oxygen uptake by the cells is the difference between the oxygen concentrations in the 
inlet and outlet streams 

0 U R = ^ | 2 i ( O m _ o o ^ 1 0 3 ( 5 1 ) 

XVV • 

where O U R is the'cell specific oxygen uptake rate (pmol/cell-d), Ftotai is the total gas flow 
rate (L/d) , Xy the bioreactor viable cell density (109 cells/L), V the bioreactor volume (L) 
and 0 2

n and O™1 the inlet and outlet oxygen concentrations (mol/L), respectively. 

5.2.2 CER Estimation 

5.2.2.1 Bica rbona te Sys tem D y n a m i c s i n a M a m m a l i a n C e l l B io reac to r 

Carbon dioxide sources in a perfusion system include cellular respiration, bicarbonate 

buffered medium and sodium bicarbonate when used as a base for pH control. Carbon 

dioxide produced by the cells dissolves in water to form carbonic acid 

, ' co2 ( g ) ~co 2 ( a q ) f - . ; • : •; (5.2) 
C 0 2 ( a q j +. H 2 0 <- H 2 C 0 3 (5:3) 

It is common practice in solution chemistry to combine the aqueous concentration of car­

bon dioxide and carbonic acid such .that the above equation's can be replaced by a single 

expression . . . ' 

'••'062(g) + H 2 0 - ' ~ H2CO3*; • Kg = 10-1Ar. • / (5.4) 

where H 2 C 0 3 * = 'CO^aq) ' + H 2 C O 3 and Kg is the equilibrium constant under standard 

conditions (T — 25 °C and ionic strength' (I)' = 0). Further dissociation of H 2 C O 3 * to 

H C O 3 and subsequently to CO3" can be described as . 

H 2 C O 3 * ^ H C O 3 + H+; A"i = 10 ''• (5.5) 
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-10.33 H C 0 3 <-> C G f + H + ; K2 = 10-

where K\ and K2 are the equilibrium constants under standard conditions. 

90 

(5.6) 

Estimate medium ionic 
strength and calculate 

activity coefficients 

Compute rate constants 
K, and K 2 

Calculate Henry's constant 
for C 0 2 

Calculate [C0 2 ] T from 
bioreactor p C 0 2 

measurement 

Determine C 0 2 mass 
flow rates in liquid 
and gas streams 

Calculate C E R 

Figure 5.1: The steps involved in perfusion system CER estimation. 

For typical mammalian cell cultivations, however, the temperature is close to 37 °C and 
the ionic strength is ~0.1 M depending upon the composition of the medium. The rate 
constants must hence be corrected to reflect experimental conditions. The rate constants 
can be corrected for temperature using the Van't Hoff equation [23] 

K = Kr ,f exp 
(AH0 

Tr ref 

1_ 
.f 

(5.7) 

where K and Kref are the corrected and reference rate constants, respectively at temper­
atures T and Tref, AH0 the standard enthalpy change for the reaction, and R, the gas 
constant. The corrected equilibrium constants Kg, K\ and if2 were 10~ 6 - 3 0 and I O - 1 0 4 8 , 
respectively, at 37 °C and calculation details have been presented "in Appendix B . 

To account for ionic strength effects, the activity.coefficients were calculated using the 
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Davies equation which is valid for ionic strengths:<; 0.5 M 

log 7 ,= -Az2 11 - 0.2/1 (5.8) 

where 7 is the activity coefficient, A = 1.825 x 106 (eT)~3^2 is a'constant (e = 78.38 is 
the dielectric constant for water, T is the absolute temperature) and I the ionic strength. 
The ionic strength of the medium,used in this study was calculated as 0.115 M from,the 
Debye-Hiickei theory [24] 

i 
2. 

where C\ and z\ are charge and concentration of species i, respectively. The activity coeffi­
cients for / = 0.115 M were estimated from,Eq.(5.8) as 0.7747 and 0.3602, respectively, for 
species with charges 1 and 2. Incorporating the temperature corrected values of the equi­
librium constants, Eqs.(5.4) - (5.6) can be rewritten in terms of the species concentrations 
and activity coefficients as 

R = [H 2 C0 3 *] 7 H 2 C Q 3 * = ^ c T H i C O i l = iQ- - 1 - 6 0 (5.10) 
9 [•C°2(g)].7p0 2 ( g ! ' 9 7 C 0 2 ( g ) 

. . K l J £ ^ X r ! \ C ^ ] 7 H C ° 3 = ^ 7 H + ; y k C Q - ' = 1 0 - 6 - 3 0 •": ; (5.11) 
I . H 2 C O 3 J 7 H 2 C O 3 * 7 H 2 C O 3 * • • 

, • K ^ [Ht] 7 g , - [CO 2-] 7 c o j : - - = . 7H + 7coj: ^ 1 Q _ 1 0 , 4 8 

[ H C 0 3 ] 7 H C o 3 - . 7 H C O 3 . . . . 

where Kg, K\ and K% are the concentration based equilibrium constants and 7 the activ­

ity coefficients of the various species. Activity, coefficients for the charged species were 

calculated from the Davies equation (7g.+ ' = 7 H C 0 3 _ = 0.7746, 7co32- = 0.3602) and 

7C02(g> = 7 H 2 C 0 3 * w a s estimated as .1.03 as described in [25]. Substituting these values 

in Eqs.(5.10) - (5.12), the concentration based equilibrium constants Kg, K\ and K% were 

calculated as I O " 1 , 6 0 , 1 0 " 6 ' 0 7 and 1 0 ~ 1 0 : 0 4 , respectively. These values now incorporate both' 

temperature and ionic strength corrections and are representative of the system at 37 °C 

and 0.115 M ionic strength.'Temperature corrections alone resulted in-25.8, 12.2 and -

29.2% change in Kg, K{ and K^, respectively, while the combined effect of temperature 

and ionic strength were, -.25.8,, 90.5 and 96.8%, .respectively (Kg was not affected by ionic 

strength as seen from Eq.5.10.).' •.. ;. ,-. . 

It follows from the above discussion that the carbon dioxide produced by the cells does 

not exist just as a gas but also as H 2 C 0 3 * , HCO3 and CO|"- The relative concentrations 
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of these species are influenced primarily by bioreactor pH while temperature and medium 

ionic strength have minor effects as seen from the ionization fraction expressions 

% of H 2 C O 3 * . = 

% of HCOo = 

% of C O f = 

+ 12 

[H + 12 

+ 12 

+ [H +] K{ + K\K\ 

[H + ] K\ - ^ 
+ [ H + ] K f + K\Kl J 

_Km___\ 

x 100 

x 100 

x 100 

(5.13) 

(5.14) 

(5.15) 

At pH = 6.8, the cultivation pH in this study, the relative amounts of H 2 C O 3 * , H C 0 3 and 

COf in the medium were 15.69, 84.26 and 5 x 10" 4%, respectively. Thus H C 0 3 is the 

dominant species followed by H 2 C O 3 * while CO3" can be neglected. 

S t e a d y S t a t e s 

Figure 5.2: Cell density averages for the different experimental conditions during the course of the 
perfusion cultivation. For standard conditions, DO = 50%, T = 36.5 °C and pH = 6̂ 8. 

5.2.2.2 C 0 2 M a s s Ba lance Equat ions 

In a perfusion system, bioreactor pCC>2 is relatively constant suggesting no C O 2 accumula­

tion. The C O 2 produced by the cells is then simply the difference between the C O 2 leaving 
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and entering the system. 

C O 2 produced by cells = C 0 2 leaving the System - C 0 2 entering the System (5.16) 

with units of mol/d. Recognizing that C G 2 produced by the cells can exist as both H 2 CC>3* 
and HCO3, it is convenient to combine them while deriving mass balance expressions. 
The total C 0 2 concentration, [ C 0 2 ] T , is thus defined as [ C 0 2 ] T = [ H 2 C 0 3 * ] + [ H C 0 3 ] . 

Sources of [ C 0 2 ] T include bicarbonate-containing cultivation medium, base (NaHCOs or 
N a 2 C 0 3 ) or C 0 2 gas used for bioreactor.pH control, and cellular metabolism. Removal 
mechanisms for [ C 0 2 ] T include the harvest and cell bleed streams along with gaseous C 0 2 

stripping, either through sparging or membrane aeration. Eq.(5.16) can be rewritten to 
include contributions of the individual components to the inlet and outlet streams 

CER = { ^ } { ^ M [ C 0 2 j ^ + F f e a s J C 0 2 ] ^ e + F C 0 2 ( i r t ) } • (5.17) 

- { F H [ C 0 2 ] ? + Fbl.ed{C02}h^ed + FCo2(out)} 

where CER is the carbon dioxide evolution rate (pmol/cell-d), V the reactor volume (L), 

Xy the viable cell density in the bioreactor (IO 9 cells/L), F M , Fbase, E'H, Fueed the medium, 

base, harvest and bleed flow rates (L/d), respectively, [ C 0 2 ] ^ , [ C 0 2 ] ^ a s e , [ C 0 2 ] T and 

[C0 2])p l e e d the total C 0 2 concentration (mol/L) in the medium, base, harvest and bleed 

streams, respectively, and Fco2{in) and Fco2fout) the molar flow rates of C 0 2 (mol/d) in the 

inlet and outlet steams, respectively. 

Quantifying contributions from the medium and base on a mol/day basis is straightfor­

ward as their carbonate concentrations and flow rates are known. The flow rate of C 0 2 gas 

into the reactor will help determine the amount of C 0 2 gas added to the reactor (this is 

seldom done when bicarbonate-containing medium is used). To determine [ C 0 2 ] T removal 

from the harvest and cell bleed streams, the total C 0 2 concentration in the bioreactor must 

be known because C 0 2 concentrations in the harvest and bleed streams are similar to those 

in the bioreactor. Bioreactor C 0 2 concentration can be estimated from p C 0 2 measurements 

that are typically made using a blood gas analyzer 

rnr. 1 bioreactor J 1 , &l , K^K^ \ J pCQ2bioreactor \ ^ 1 8 ^ 
[ c ° 2 ] t - \ 1 + [ H V [ f T t j i ^ J 

- where [ C 0 2 J T ° R E A C T O R is the total C 0 2 concentration in the bioreactor (mol/L), pC02bioreactor 

the bioreactor p C 0 2 (mm Hg) and hco2 is the Henry's constant for C 0 2 (mm Hg-L/mol) 
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determined as 

101:3 * 22.395 

a 
7.500617 

a - a + bE+cT2 + dT3+ eT4 

(5.19) 

(5.20) 

with a = 1.72, 6 = -6.689 x 10~ 2, c = 1.618 x I O - 3 , d = -2.284 x I O - 5 and e = 1.394 x 

I O - 7 [26]. Once [ C 0 2 ] x ° r e a c t o r is determined, the harvest and cell discard flow rates can 

be used to determine [C02]T removal on a mol/day basis. Finally, measuring C O 2 gas 

concentration in the outlet gas will help determine [C02]T-.removal by stripping. The C E R 

is then estimated by substituting these values in Eq.(5.17). This C E R estimation procedure 

is summarized in Figure 5.1. 

Steady States 

Figure 5.3: Growth rate averages for the different experimental conditions during the course of the 
perfusion cultivation. For standard conditions, D O = 50%, T = 36.5 °C and.pH = 6.8. 

5.3 Materials and Methods 

5.3.1 Cell Line, Medium and Cell Culture System 

C H O cells were cultivated in perfusion mode-with glucose and glutamine as the main carbon 

and energy sources. Experiments were conducted in a 15 L bioreactor (Applikon, Foster 

City, C A ) with a 12 L working volume. The temperature was maintained at 36.5 °C and 
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the agitation at 40 R P M . Under standard conditions, the dissolved oxygen (DO) concen­
tration was maintained at 50% air saturation by sparging a mixture of oxygen and nitrogen 
(100 - 150 mL/min) through 0.5 spargers and the pH was maintained at 6.8 by the 
automatic addition of 0.3 M NaOH. The bioreactor was inoculated at an initial cell density 
of approximately 1.0 x 10 6 cells/mL and cells were allowed to accumulate to a steady-
state concentration of 20 x 10 6 cells/mL. The steady-state cell density was maintained by 
automatic cell bleed from the bioreactor. 

Time (minutes) 

•Figure 5.4: OUR estimation in the 2 L reactor by the dynamic method. DO data following inocu­
lation with cells from the 15 L perfusion bioreactor were used for OUR estimation by 
the dynamic method. 

Bioreactor DO, temperature and pH were varied during the course of the cultivation 

to determine the operating ranges for these variables. The low and high values for D O 

were 20% and 100%, respectively (set point = 50%) while those for pH were 6.6 and 7.0, 

respectively. The temperature set point was 36.5 °C and was varied between 30.5 - 37.5 °C 

during the course of the experiment. Bioreactor conditions were maintained at each of these 

altered conditions for 10 days and data from the last 4 days were considered representative 

of each experimental condition. O U R and C E R data presented in later sections are averages 

of these 4 days for each experimental condition. 

In addition to the above perfusion cultivation, a 2 L bioreactor was used for O U R 

estimation by the dynamic method. The reactor was initially filled with 1.9 L of fresh 

medium and was maintained at 36.5 °C, pH = 6.8, and D O concentration in the 75 -

85% range. The gas supply to the bioreactor was shut off and a 100 mL sample from 

the 15 L perfusion bioreactor (steady-state cell density of 20 x 10 6 cells/mL) was used to 
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inoculate the 2 L bioreactor at a cell density of ~1 x 10 6 cells/mL. The resulting decrease 
in D O concentration was monitored and this information was used to compute the OUR. 
A comparison was then made between O U R estimates from the mass balance method (in-
situ estimation in the perfusion bioreactor) and the dynamic method (in the external 2 
L bioreactor). The headspace volume was 100 mL such that surface aeration effects were 
minimal. 

I 5 

8 4 

-2= 3 

a 
O 2 

Dynamic Method 
Mass Balance Method 

A B C D E F 

Figure 5 . 5 : Comparison of O U R estimates from the dynamic method (external 2 L bioreactor) with 
those from the global mass balance method (in-situ estimation in the 15 L perfusion 
bioreactor). 

5.3.2 Analytical Methods 

Samples from the bioreactor were taken daily for cell density and viability analysis using 

the C E D E X system (Innovatis, Bielefeld, Germany). The samples were subsequently cen­

trifuged (Beckman Coulter, Fullerton, CA) and the supernatants were analyzed for nutrient 

and metabolite concentrations. Glucose, lactate, glutamine and glutamate concentrations 

were determined using a YSI Model 2700 analyzer (Yellow Springs Instruments, Yellow 

Springs, OH) while ammonium was- measured by an Ektachem DT60 analyzer (Eastman 

Kodak, Rochester, N Y ) . The pH and D O were measured online using retractable electrodes 

(Mettler-Toledo Inc., Columbus, OH) and their measurement accuracy was verified through 

off-line analysis in a Stat Profile 9 blood gas analyzer (Nova Biomedical, Waltham, M A ) . The 

same instrument also measured the'dissolved C O 2 concentration. On-line measurements of 

cell density were made with a' retractable optical density probe (Aquasant Messtechnik, 

Bubendorf, Switzerland), calibrated with C E D E X cell density measurements. Concentra-
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tions of oxygen and carbon-dioxide in the exit gas were measured using a MGA-1200 Mass 

Spectrometer (Applied Instrument Technologies, Pomona, C A ) . 
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Steady States 

Figure 5 . 6 : Average OUR estimates from the mass balance method for the 12 experimental con­
ditions in the perfusion cultivation. 

5.4 Results 

5.4.1 Cell Density and Growth Rate 

The perfusion cultivation comprised of 12 experimental conditions each of 10 day duration 

and average cell densities for each of these steady states are shown in Figure 5.2. The target 

cell density was 20 x 10 6 cells/mL with most values'very close to the target. The exceptions-

were the T = 30.5 °C and pH = 6.6 steady states where growth rates were much lower than 

at the other conditions (Figure 5.3). Temperature reduction caused an expected decline in 

growth rate as did pH reduction. No change in growth rate was seen when the DO was 

varied between 20 and 100%. Cell viability was greater than 95% in all cases (not shown). 
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F i g u r e 5.7: Average C E R estimates for the 12 experimental conditions in the perfusion cultivation. 

5.4.2 OUR and CER Estimation 

5.4.2.1 Comparison of Mass Balance and Dynamic O U R Estimates 

Two independent techniques were used for O U R estimation. In the M B approach, O U R 

was determined using Eq.(5.1) from the inlet and outlet gas stream oxygen concentrations. 

O U R estimation by the dynamic method was done off-line in a 2 L batch bioreactor using 

a sample from the perfusion bioreactor. A representative DO time profile in the 2 L batch 

reactor is shown in Figure 5.4 and DO data in the 60 - 30% range were used for O U R 

estimation. 

A comparison of O U R estimates from these two methods for six different samples is 

shown in Figure 5.5. O U R estimates from both methods were comparable with the maxi­

mum difference being 13.4%. Percentage differences in O U R estimates from these methods 

were computed based on the assumption that dynamic method estimates were accurate 

while those from the G M B were in error. This is a reasonable assumption given the sim­

plicity of the dynamic method. The mass balance approach requires accurate measurement 

of gas flow rates and gas phase oxygen concentrations that can introduce error in the O U R 

estimation process. However, despite these limitations, O U R estimates from the mass bal­

ance method were in close agreement with those from the dynamic method. 



CHAPTER 5. OUR AND CER ESTIMATION IN PERFUSION SYSTEMS 99 

1.4 r : 1 

1.2 j - • _ ' Z • 

1.01- rn r—i' r—j 

0 . 8 - J 

a 
CC. 

0 . 6 r -

0 . 4 ; ' -_ 

0 . 2 ; . . '• •' 

o.o r I I I I I I I i I I I I I I I I I I I I I I I I -
w o w 0 i - i - i n i n i n w i n <o h -
"O C\t T> O X> C\i O T3 h~' " " I « T « f f s 7 ^ ^ 
? Q E O ? I - I - I - ? I -
ro O TO ro 

55 co 55 55 

Steady States 

Figure 5.8: Respiratory quotient (RQ) estimates for the 12 experimental conditions in the perfusion 
cultivation. 

5.4.2.2 O U R , C E R and R Q at Varying Operating Conditions 

O U R values at different DO, temperature and pH set points are shown in Figure 5,6. The 

values are averages over their respective experimental conditions along with their'associated 

standard deviations. While O U R values were, mostly unchanged across most experimental 

conditions, they were lower at T = 30.5 °C and pH = 6.6 where an overall reduction in 

growth (Figure 5.3) and metabolism (not shown) were observed. The lowest C E R values of 

4.02 and 4.15 pmol/cell-d were also observed at T = 30.5 °C and pH = 6.6, respectively, 

while those at otlier set points were relatively similar (Figure 5.7). RQ values estimated 

from the average O U R and C E R values ranged from 0.96 - 1.18 (Figure 5.8) suggesting 

minimal impact of DO, temperature and pH set point changes on' RQ. 

5.5 Discussion 

5.5.1 OUR, CER and RQ Estimation 

We have presented methods to estimate O U R and C E R in mammalian cell perfusion systems 

using the global mass balance method. This approach does not require k^a data and no 

reactor perturbations are necessary. Composition and flow rates of the inlet and exit gas 

streams along with other routinely measured quantities are adequate for O U R and C E R 
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Table 5 . 1 : Published OUR values for mammalian cells 

O U R (pmol /ce l l -d) C e l l L i n e Reference 
3.6-8.64 Hybridoma [27] 

5.62 Hybridoma [28] 
1.2. Human diploid cells [29] 

4.56 - 9.6 Hybridoma • [2, 30-32] 
0.55 - 2.09 Hybridoma [4] 
7.92 - 8.88 Hybridoma [33] 

3.6 Hybridoma [13] 
5.26 - 9.74 Myeloma [14] 

11.04 Hybridoma [10] 
5.52-10.08 Hybridoma •[34]. 
10.1 •- 10.7 . Hybridoma [1] 
3.97 - 5.77 C H O This Study 

estimation. Real-time OUR, C E R and RQ estimations are possible (data could be generated 
every second if desired) because the required measurements and calculations can be rapidly 
performed. In addition to providing valuable information on cell metabolism, this enables 
real-time determination of metabolic fluxes providing additional insights into cell physiology. 

5.5.2 Comparison with Literature Data 

Changes to temperature and pH had the most effect on O U R and C E R while D O in the 

20 - 100% range had minimal effect (Figures 5.6 and 5.7). O U R values ranged from 3.97 

- 5.77 pmol/cell-d and the low values of 3.97 and 4.07 were at T = 30.5 °C and pH = 

6.6, respectively. Similar C E R trends were seen with values of 4.02 and 4.15 pmol/cell-

d at T = 30.5 °C and pH = 6.6, respectively (CER range was 4.02 - 6.36 pmol/cell-d). 

Published O U R values for mammalian cells are shown in Table 5.1 and are in the 0.55 -

10.7 pmol/cell-d range. Values for C H O cells obtained in this study were clustered in the 

middle of this range. C E R values for hybridoma cells in chemostat culture were in the 

9.9 - 11.1 pmol/cell-d range [1] while those in batch culture varied between 1.2 and 8.4 

pmol/cell-d [21]. Our values for C H O cells were lower than the hybridoma chemostat data 

and closer to those observed in the batch hybridoma cultivations. 

Despite significant changes to O U R and C E R at low temperature and pH, they were 

correlated such that RQ values-were relatively unchanged. R Q values were close to unity 

(0.96 - 1.18, Figure 5.8) under all experimental conditions and part of the variation was 

likely due to error in O U R and C E R estimates. For instance, a 10% error in O U R can cause 
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RQ to vary between 0.9 and 1.1 (neglecting C E R error). The maximum difference between 
mass balance and dynamic O U R estimates was 13.4% (Figure 5.5) indicating that O U R 
estimates could be associated with ~10% error. It is likely that errors of similar magnitude 
were associated with the C E R values and a combination of these errors could be responsible 
for RQ variation in the 0.96 - 1.18 range. It is unlikely that cell metabolism was responsible 
for RQ changes because 1 mol of N A D H accompanies 0.5 mol of C 0 2 production and this 
N A D H is oxidized by 0.5 mol of oxygen. While fatty acid synthesis can result in R Q values 
greater than unity [1], it is unlikely that fluxes through these reactions are significant enough 
to cause an RQ increase on the order of 20%. 

5.6 Conclusions 

We have presented methods to estimate OUR, C E R and RQ from mammalian cells in 
perfusion culture. These are based on global mass balance expressions and do not require 
k^a information and bioreactor perturbations. They are especially suited for perfusion 
systems where k^a values change over the course of the cultivation and the dynamic method 
is not applicable. O U R estimates from the global mass balance method were in good 
agreement with estimates from the dynamic method and the maximum difference was 13.4%. 
Accurate C E R estimation was possible by accounting for the dissociation of cellular C O 2 into 
H 2 C 0 3 , HCO3 and CO3" and the effect of temperature and ionic strength on the equilibria 
of the dissociation reactions. This C E R estimation method is general and works when 
bicarbonate is present both in the medium and base. Since all necessary measurements can 
be made on-line, real time O U R and C E R estimation is possible. In addition to providing 
information on cell physiology, these data can be used for real-time metabolic flux estimation 
resulting in improved understanding of cell metabolism. Since these advantages come at 
the expense of minimal analytical and computational effort, the O U R and C E R estimation 
strategies presented in this study should be useful both for bioprocess development and 
monitoring of manufacturing bioreactors producing licensed biotherapeutics. 
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C h a p t e r 6 

L o g i s t i c M o d e l i n g o f B a t c h a n d 
F e d - b a t c h K i n e t i c s 1 

6.1 Introduction 

There has been an increasing use of mammalian cell cultures for the manufacture of com­

plex therapeutic proteins. However, protein yields from mammalian culture are relatively 

low, requiring the optimization of cell lines, medium formulations and bioprocesses. These 

optimization efforts typically first involve evaluating non-instrumented batch cultivations 

(typically <100 mL working volume) in T-flasks, spinners or roller bottles where cell growth, 

metabolism and protein productivity are monitored over the course of the experiment. This 

provides information used, to select the cell lines and medium components that maximize 

protein yields. Further bioprocess optimization, in either fed-batch or continuous perfu­

sion cultivations, is mainly performed using laboratory-scale (>1 L) bioreactors. While 

maximizing specific protein productivity is often the primary, objective in laboratory-scale 

experiments, ensuring robust cell growth and metabolism are also important. All these vari­

ables^ of interest are quantified using cell specific rates that;, enable comparison of cell lines 

and cultivation conditions. Accurate estimation of specific rates is thus vital to meaningfully 

interpret results from bioprocess .optimization experiments. 

While specific rates for steady-state perfusion cultures are readily computed because 

of their' relatively time-invariant nature, analyzing the dynamic kinetics of batch and.fed-

batch cultures is more challenging. A conventional approach to model mammalian cells in 

.-A version of this/chapter h a s ' b e e n published: Goudar, C:T., Joeris, K. , Konstantinov, K. and Piret, 
J.M. (2005) Logistic equations effectively,model mammalian ceil batch and fed:batch kinetics by logically 
constraining the fit. Biotechnology, Progress, 21, 1109-1118. 
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batch and fed-batch cultures has been through the use of unstructured kinetic models or 
variations of the classical Monod equation [1-5], and reviews of these models are available 
[6, 7]. While unstructured kinetic models have adequately described experimental data, 
they are computationally not practical to implement as they involve nonlinear estimation 
of a large number of kinetic parameters from a system of differential equations. Unique 
estimation of the kinetic parameters in such systems is not always possible. Moreover, given 
the variety of unstructured kinetic models that have been used to describe mammalian cell 
cultures, comparisons between studies is complicated. Analytical solutions of the differential 
equations describing the state variables have also been used to estimate specific rates [8-
11]. These solutions, however, are derived under the assumption that the specific rates 
are constant as can be expected during the exponential growth phase. These have limited 
applicability to the other phases of batch and fed-batch cultures where specific rates are not 
constant. Specific rates in fed-batch cultures have also been estimated from the slope on 
plots of cumulative state variables (nutrient, metabolite or product) versus integral viable 
cell density [12, 13]. This approach provides an average estimate of the specific rate of 
interest over the exponential growth phase but additional linear or nonlinear fits need to be 
used for other cultivation phases. This need for multiple fits to describe the time course of 
a single variable makes this approach cumbersome and prone to error. 

A general approach that is applicable over the entire time course of cultures, is fitting 
polynomials to the data [14, 15]. This approach has been used both for batch and fed-batch 
cultivations and is attractive because it allows simplified computation of the time derivatives 
necessary to estimate cell specific rates. However, as time profiles of cellular, nutrient 
and product concentrations exhibit exponential behavior, they are difficult to describe by 
polynomials [16]. For instance, two polynomial functions were necessary to describe the 
time course of some state variables [14]. Moreover, polynomial fits are known to yield 
unrealistic trends, especially when the data include even a few outliers. 

Logistic equations have been successfully used to describe population dynamics in a 
variety of applications [17-23] but have not been reported to model experimental data from 
mammalian cell batch or fed-batch cultures. Most reported applications involve bacterial 
growth curves characterized by lag, exponential and stationary phases that are adequately 
described by the logistic growth equation. Mammalian cells in batch and fed-batch cultiva­
tions also exhibit, a sharp decline in cell density following the stationary phase, a behavior 
that cannot be described by the standard logistic growth equation. In addition, a decline in 
lactate concentration during later stages of fed-batch cultivation is also frequently observed 
[13, 24]. Alternate logistic formulations that incorporate both the ascending and descending 
components of cell growth are available [25]. 
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This study presents a method for modeling batch and fed-batch mammalian cell culture 
data using logistic equations. A n alternate logistic formulation was applied to cases where 
variables had both increasing and decreasing phases. Cell specific rates were readily obtained 
from the analytically differentiable logistic equations. A comparison was made between this 
logistic modeling approach and the polynomial fitting or the unstructured kinetic modeling 
approaches that are commonly used to describe batch and fed-batch data. 

6.2 Theory 

6.2.1 Calculation of Batch Culture Specific Rates 

Most batch kinetic studies have used discrete forms to compute specific rates. The wide­
spread use of this approach is primarily due to its simplicity as seen from the specific growth 
rate expression 

A Y 

where /J,' is the apparent specific growth rate (l/day) over an interval from t\ to t2, \i the 

actual specific growth rate (l /day), ko the specific death rate, (l /day), Xv the viable cell 

density (x 10 6 cells/mL), AXV = XV2 -XVl, t is time (day), A t = t2 — t\ and Xv = "2

 2

 V l . 
Thus AXV and A i represent the difference between successive viable cell density and time 

points-, respectively, while Xv is the arithmetic average of the consecutive cell density data 

points. A log-normal average can also be used for Xv during the exponential growth phase 

but this provides a. poor estimate for the average Xv in the decline phase. For intervals of 

constant apparent growth rate, a more accurate estimate of LL' can be obtained by combining 

multiple data points. However, when this constant growth rate ends and how the growth 

rate changes beyond that point remain difficult to accurately compute. 

The primary sources of carbon and energy in a typical mammalian cell culture medium 

are glucose and glutamine. The specific consumption rate of glucose can be calculated from 

Q C = _ J ^ L (6.2) 
^ XyAt ^ ' 

where qc is the specific glucose consumption rate (pmol/cell-day) and A G = G2 — G\ is 

the difference in glucose concentration over consecutive data points (mol/L). The primary 

known toxic metabolites of glucose and glutamine metabolism are lactate and ammonium, 
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respectively. These metabolite as well as protein production rates can be calculated from 

where qp is the specific production rate (pg/cell-day) and A P = P2•— Pi is the change in 

metabolite/product concentration over consecutive data points (g/L). 

6.2.2 Calculation of Fed-batch Culture Specific Rates 

Fed-batch cultivations typically, involve the periodic feeding of glucose, glutamine and other 

medium components. Hence nutrient mass balance expressions are modified to take the 

feeding into account while the expressions for Cell density, metabolites and products are 

essentially identical to those in a simple batch cultivation (when dilution effects can be 

neglected). For example, specific glutamine uptake rate in a continuously fed batch reactor 

can be described by 
AG In FGlnt , Gin ,n-tS 

• . • q a h ! ---x^Ai+V-x7 ' • : • (6;4). 

where..qcin is the specific glutamine uptake rate (pmol/cell-day), AGlh—.Gln2 — Gln\ the. 

change in glutamine concentration over consecutive data points (mol/L), F the glutamine 

feed rate (L/day), V the bioreactor working volume (L), Glnf the glutamine concentration 

in the feed (mol/L) and koin the first-order abiotic degradation constant for glutamine 

with values depending on the medium composition, temperature and culture pH [26], The 

last term in the right hand side of Eq.( 6.4) accounts for abiotic glutamine .degradation at 

cultivation temperature. 

6.2.3 A General Equation Describing the Dynamics of Batch and Fed-
batch Cultures 

The selection of final process parameters from optimization experiments' is derived mainly 

from comparisons of cell specific productivity and growth rate. Therefore; it is important 

to reliably estimate these rates'from sequential data points and Eqs.(6.1) - (6.4). However, 

this typically yields erratic time profiles since this method is sensitive to the measurement 

errors common in biological systems. Mathematical models that. describe the dynamics 

of cellular growth and protein production according to expected trends can provide more 

robust estimates of the cell specific variables of interest. Such models should more smoothly 

and logically fit the experimental data. For instance, to describe viable cell density (X) in 

batch and fed-batch systems requires initially, increasing and subsequently decreasing levels. 
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This cannot be fit by a simple exponential growth model (Eq.6.1) or by the commonly used 

logistic growth equation. It is proposed that a four-parameter generalized logistic equation 

(GLE) should be used to describe viable cell concentration [25]. 

• A 

exp (Bi) + C exp (-£>*). V ' J 

where A , B, C and D are non-negative model parameters that are specific to the data set 
being modeled. It is informative to relate the logistic equation parameters to correspond­
ing biological process parameters. The contribution of exp (Bt) is minimal in the growth 
phase and when set to zero, Eq.(6.5) reduces to an exponential growth equation with D as 
the specific growth rate. Similarly, neglecting contributions of C exp (—Dt) during the cell 
death phase reduces Eq.(6l5) to an exponential decay expression with B as the death rate. 
The parameters D and B thus represent the maximum growth rate, ^ m a x , and the maxi­
mum death rate, fcrfmax, respectively. These would be constant in the exponential growth 
and corresponding decline phases, respectively. Simulations were performed to test this 
hypothesis and Figure 6.1 illustrates sensitivity of the cell density curve to D and B and 
hence Mmax a n d kdm3uX values. As expected, changes to n m a x affect the exponential growth 
phase while the influence is negligible in the decay phase, especially for t > 1.5t m a x (Figure 
6.1a). Sensitivity to ^ m a x is minimal for t < 0 .5 t m a x while later portions of the cell density 
curve are significantly affected (Figure 6.1b). Eq.(6.5) can thus be written in terms of / i m a x 

and k.i ,. as 
A 

. (6 6) 
• e X P ( f a m „ * ) + C e X P (-^max*) •• 

The initial cell density, XQ, can be expressed in terms of A and C by setting t — 0 in 

Eq.(6.6). 

Setting the derivative of Eq.(6.6), ^ = 0 provides an equation for i m a x ! the time corre­

sponding to the maximum, cell density 

imax =- 7 ]• -An(^A (6,8) 
^ d m a x + Mmax V

 Kdma.x / 

A n estimate for X m a x , the maximum cell density attained during the cultivation, can be 

obtained from substituting Eq. (6.8) into Eq.(6.6) 

It must be noted that Eq.(6.5) could also fit' the successive ascending and descending 
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F i g u r e 6 . 1 : Sensitivity of the viable cell density curve to the logistic parameters- D (£im a x) and 
B (fcdmax)- Successive curves are for 25% decreased parameters compared to the previ­
ous curve. 

lactate concentrations often observed in fed-batch culture. Most other product and nutrient 

concentrations can be expected to monotonically increase or decrease, respectively, over the 

whole duration of the run (expect at times of fed-batch additions).' This suggests that 

simplified forms of Eq.(6.5) could effectively describe the concentrations of nutrients and 

products in batch or fed-batch cultivations. Setting B —> 0 in Eq.(6.5) results in the logistic 

growth equation (LGE) that can be used to describe a monotonically increasing product 

concentration, Pi . • • 
A 

. • " ' ' F ~ M - C e x p ( Dt) ( 6 ' 9 ) 

The parameter D is a rate constant for concentration increase and definitions of A and C 

can be obtained by setting ^ • = 0 and t -- 0 in Eq.(6.9), respectively . 

A = Prr C Pmax Pp 
Pn • 

(6.10) 
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where Pmax 

is the maximum value of P and PQ the initial value at t = 0. Using these 

definitions, the L G E can be rewritten to be consistent with other presentations in the 

literature [27] . 

P = - P o j P m a x (6.11) 
P0 + (Pmax - P 0 ) exp {-Dt) 

Setting D —* 0 in Eq.(6.5) results in the logistic decline equation (LDE) that can be used 
to describe any monotonically decreasing nutrient concentration, N: 

where B is a rate constant for concentration decrease and A and C are related to the initial 

nutrient concentration, iVo, as: 

N° = TTc • (6'13) 

Specific rates could be readily estimated from the logistic models as Eqs. (6.5), (6.9) and 

(6.12) are analytically differentiable: 

dX _ f DC exp {-Dt) - B exp (Bt) \ 
dt \ exp (St)+ C exp (-£>*) J { ' 1 

6.3 Materials and Methods 

6.3.1 Cell Line, Medium and Cell Culture System 

C H O cells were cultivated in batch mode with glucose and glutamine as the main carbon 

and energy sources in a proprietary medium formulation. Experiments were conducted 

in three 15 L bioreactors (Applikon, Foster City, C A ) with a 10 L working volume. The 

temperature was maintained at 36.5 °C and the agitation at 40 R P M . The dissolved oxygen 

(DO) concentration was maintained at 50% air saturation by sparging a mixture of oxygen 

and nitrogen (100 - 150 mL/min) through 0.5 /im spargers. The bioreactor was inoculated 

at an initial cell density of approximately 1.0 x 106 cells/mL and the pH was maintained 

at 6.8 by the automatic addition of 0.3 M NaOH. 
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6.3.2 Analytical Methods 

Samples from the bioreactor were taken daily for cell density and viability analyses using 
the C E D E X system (Innovatis, Bielefeld, Germany). The samples were subsequently cen­
trifuged (Beckman Coulter, Fullerton, CA) and the supernatants were analyzed for nutrient 
and metabolite concentrations. Glucose, lactate, glutamine and glutamate concentrations 
were determined using a YSI Model 2700 analyzer (Yellow Springs Instruments, Yellow 
Springs, OH) while ammonium was measured by an Ektachem DT60 analyzer (Eastman 
Kodak, Rochester. N Y ) . The pH and DO were measured online using retractable electrodes 
(Mettler-Toledo Inc., Columbus, OH) and their measurement accuracy was verified through 
off-line analysis in a Stat Profile 9 blood gas analyzer (Nova Biomedical, Waltham, M A ) . The 
same instrument also measured the dissolved C O 2 concentration. On-line measurements of 
cell density were made with a retractable optical density probe (Aquasant Messtechnik, 
Bubendorf, Switzerland), calibrated with heamocytometer counts of cell concentrations. 

6.3.3 Nonlinear Parameter Estimation 

The parameters A, B, C and D in Eqs.(6.5), (6.9) and (6.12) were estimated by minimizing 
the sum of squares error (SSE) between the experimental and model fit data. 

where (xmeas)i is the ith experimental x value and [xfit)i is the i model fitted x value 

in a total of j observations. Eq.(6.5) involved the sum of exponentials and was inherently 

unstable. Hence three different algorithms were used for nonlinear parameter estimation: 

the Levenberg-Marquardt method [28], the simplex approach [29] and the generalized re­

duced gradient method [30, 31]. The parameters used were those that resulted in the lowest 

values of the SSE defined in Eq.(6.17). The parameter standard errors and the correlation 

between parameters were estimated from the covariance matrix to help evaluate the quality 

of the model fit to the experimental data. When multiple models with different degrees of 

freedom were fitted to the same data set, the F test [32] was used to discriminate among 

the models. Computer programs for logistic modeling are presented in Appendix F and 

nonlinear parameter estimation details are provided in Appendix G. 

3 
(6.17) 
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6.4 Results and Discussion 

6.4.1 Biological Significance of the Logistic Parameters 

The exponential growth and death phases were defined as 0 < t < 0 . 5 £ m a x and 1.5£ m a x < 
t < 2 £ m a x , respectively, based on an examination of the cell density profiles from Figure 6.1. 
To verify these definitions, / i m a x and &d m a x were computed from all' the cell concentration 
data analyzed in this work and compared with the logistic parameters D and B. Excellent 
agreement between the maximum rates and the logistic parameters was seen in" all cases 
(Figure 6.2a, 6.2b) supporting the reformulation of Eq.(6.5) as Eq.(6.6). The utility of 
Eqs.(6.6) and (6.8) to predict the maximum cell density in batch and fed-batch cultures 
was verified by comparing Xmax values calculated from these equations with experimental 
data (Figure 6.2c). For all 15 data sets, experimentally observed maximum cell densities 
were accurately predicted by Eqs. (6.6) and (6.8) and the fitted logistic .parameters. 

(a) 

• / 

R 2 = 0.945 

Umax (1/<0 

2.0 

. o.o I •— >—-J ' 1 ' ' • 1 

0.0 0,4 0.8 1.2 1.6 2.0 

0 2 4 f> £ 10 12 14 
Experimental X m a x (106 cells/mL) 

Figure 6.2: Illustration, of the biological significance of the logistic parameters using 8 batch and 
7 fed-batch cell density data sets [1, 14, 33, 34]. 
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6.4.2 Description of Experimental Data from Batch Cultures 

The time profiles of CHO. cell density, nutrient and metabolite concentrations along with the 
logistic model fits are shown in Figure 6.3. The G L E was first used to describe all the state 
variables measured in this experiment. Subsequently, the L D E was used to describe the 
monotonically decreasing glucose and glutamine concentrations while the L G E was used to 
describe the increasing lactate and ammonium concentrations. Model discrimination using 
the F test indicated that the L D E and L G E fits were statistically superior to the G L E at 
the 95% confidence level for the nutrient and metabolite concentrations, respectively, and 
hence results from these equations are presented in Figure 6.3. The experimental data were 
well fitted by the models and the corresponding specific rates were calculated from Eqs. (6.1) 
- (6,3) using analytical derivatives of the logistic equations (Eqs.6.14 - 6.16). 

14 I • r -^ 1 ' 1 ' 1 ' 1 ' 1 0.6 

T i m e (days) , T i m e (days) 

Figure 6.3: Time profiles of cell density, nutrient and'metabolite concentrations for CHO cells in 
15 L batch culture. Experimental .data (•' • • o •); Logistic (GLE for cell density, LDE 

• for glucose and glutamine and LGE for lactate and ammonium) fit ( ); Logistic 
specific rate (—, — - — —): Discrete derivative-specific rate .(—•• •'— •'•). 
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It is remarkable that the model fit the data so well even though logistic models do not 
include independent terms for growth-related and maintenance-related metabolism. This 
could be in part due to the predominant effect of exponential cell growth compared to 
relatively gradual shifts over a batch culture of growth- or maintenance-related metabolic 
rates. From a practical standpoint, the use of a single equation and its reduced forms to 
describe all experimental measurements in batch (or fed-batch) cultivations adds to the 
simplicity of the proposed logistic approach. 

Time (days) Time (days) 

(C) 

1 0 ? 
E 

Time (days) 

Figure 6 .4 : Viable cell density, IgG, glutamine and'ammonium concentrations for hybridoma cells 
in 300 L batch culture [l]:.- The points.are experimental data and the solid lines are fits 
by the logistic equations (GLE for cell density, LDE for glutamine and L G E for IgG 
and ammonium).- Specific rates calculated from the logistic fits are shown as.dashed 
lines. 

Experimental data from batch cultivations are obtained from periodic samples whose 

concentrations are analyzed and then the data are converted to the corresponding derivatives 

to obtain specific rates. The logistic equations provided smooth and close fits to all of the 

concentration data, thereby yielding smooth logistic specific rate profiles (Figure 6.3). In 

contrast, specific rates obtained using discrete derivatives of the state variables were not 

smooth and were highly sensitive to outliers in experimental measurements. Though the 

discretely derived qgin values were acceptable, those for glucose and ammonium were in 
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gross error, primarily due to outliers in the experimental data. The ii' and specific lactate 
production rate, qit profiles were similar to those from the logistic fits, albeit not as smooth. 
In all cases besides qcin> physiologically' implausible oscillations were introduced by the 
discrete fit and not by the logistic fit. • . ' 

Table 6.1: Previously-published batch and fed-batch studies used to test the logistic modeling 
approach presented in this study 

Reference C e l l L i n e Bioreac tor T y p e M o d e l i n g A p p r o a c h 

[1] Hybridoma Stirred tank (300 L batch) Kinetic modeling 
[33] Hybridoma T-flask (100 mL batch) Kinetic modeling 
[14] B H K Spinner (500 mL batch) Polynomial fitting 
[15] Hybridoma Bench-top (2.4 L fed-batch) Polynomial fitting 
[34] C H O , Hybridoma Bench-top (0.7 L fed-batch) Discrete derivatives 

The more general utility of this logistic approach was further evaluated using data from 
published batch studies that investigated different cell lines (hybridoma and Baby Hamster 
Kidney) in bioreactors ranging from 150 cm 2 T-flasks to 300 L stirred tanks (Table 6.1). 
Two of these studies [1, 33] used Monod-type kinetics to describe the experimental data 
while experimental data were fitted by polynomial functions in the third [14]. Results from 
using the logistic equations to describe the data from two of these experiments are shown 
in Figures 6.4 and 6.5. The nutrient, metabolite and product concentrations were fit by the 
L D E and L G E models while the four-parameter G L E was necessary to describe the dynamics 
of viable cell concentration. In all cases, the experimental data were well described by the 
logistic equations and similar good fits were obtained for data from the third study (not 
shown). These results clearly indicate the applicability of the logistic models to describe 
experimental data obtained by multiple groups from batch reactors of varying sizes and cell 
types. • . . . 

6.4.3 Description of Experimental Data from Fed-Batch Cultures 

These logistic methods would be much more useful if they could be applied to fed-batch 

cultures that become the focus of later stages of development and manufacturing. However, 

it was a concern that periodic feeding of nutrients would distort the resulting profiles so 

that the logistic approach might ;not be suitable. Fed-batch data from two studies [15, 34] 

(Table 6.1) were analyzed using the logistic, equations.. In the first study [15], hybridoma 

cells were cultivated in a 2.4 L bioreactor with the feeding of glucose or glutamine or both. 

The second involved cultivation of tissue plasminogen activator (t-PA) producing C H O cells 
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Figure 6 .5 : Viable cell density, nutrient and metabolite concentrations for BHK cells in 500 mL 
batch culture [14]. The points are experimental data and the solid lines are fits'by the 
logistic equations (GLE for cell density, LDE for glucose and glutamine and LGE for 
lactate and ammonium). Specific rates calculated from the logistic fits are shown as 
dashed lines. 

in a 0.7 L bioreactor with glucose or amino acid feeding. 

Data from glutamine limited fed-batch hybridoma cultures are shown in Figure 6.6 along 

with corresponding logistic fits. A l l variables except glutamine (the nutrient that was fed) 

were fit well by the logistic equations. Time profiles of the-fed nutrient will depend strongly 

on the feeding strategy, often with concentrations at low values to minimize the production 

of metabolites [13, 35]. The logistic equations cannot be expected to effectively fit such fed-

nutrient profiles. A total of 20 data sets were analyzed from the C H O fed-batch cultivations 

[34] and representative cell density and t-PA concentration data under two different feeding 

conditions are shown in Figure 6.7. The logistic equations fit the data well as was true for 

the remaining 16 data sets (not shown). It should be noted that the 4-parameter G L E was 

used to describe t-PA concentration due to the declining trend later in the culture. Similar 
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F i g u r e 6 . 6 : Viable cell density, nutrient and metabolite concentrations for hybridoma cells.in glu­
tamine limited 2A L fed-batch culture [15]. The points; are experimental data and the 
solid lines are fits by the logistic equations (GLE for cell density, LDE for glucose and 
glutamine and L G E for lactate and ammonium). Specific rates calculated from the 
logistic fits are shown as dashed lines. 

declines have been observed for lactate concentration in fed-batch cultures [24] and in such 

instances, the G L E (as opposed to the L G E ) more effectively fits those experimental data. 

6.4.4 Comparison with Other Model ing Approaches 

Polynomial approximation and .unstructured. kinetic modeling are the primary methods 

currently used to fit data from batch and fed-batch experiments. Given the conceptual 

similarity between the logistic modeling approach presented in this study and polynomial 

approximation, it is important to compare their ability to describe mammalian cell culture 

data.. Polynomial approximation has limitations because exponential state variable time 

profiles are difficult to describe with polynomial functions [16]. The same 30 data sets from 

batch cultures were also analyzed using polynomial fitting and the inability to describe the 
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Figure 6.7: Viable cell density and t-PA concentration for CHO cells in 0.7 L fed-batch culture 
under two different feeding conditions [34], Glucose was fed at 4 pmol/cell-day for 
panels a- and b while amino acids were also fed for panels c and d. . The points are 
experimental data and the solid lines are fits by the logistic equations (GLE for both 
cell density and t-PA). Specific rates calculated from the logistic fits are shown as 
dashed lines. 

experimental data was quantified by the Eq.(6.17) sum of squares errors to compare with 

logistic fitting. Since increasing, the order of a polynomial function could result in a better 

fit to experimental data, polynomial functions with one additional parameter than the 

corresponding logistic equation were also evaluated. For instance, the viable cell density 

description using Eq.(6.5) has 4 parameters and this was compared with polynomials of 

orders 3 (4 parameters) and 4 (5 parameters). Comparisons between logistic equations 

and polynomials of the same order used the SSE values while comparisons between logistic 

equations and higher order polynomials were done using the F-test. The F-test determined 

if the higher order polynomial fit was indeed a closer representation at the 95 % confidence 

level. 

Of the 30 batch data sets examined using both the logistic and polynomial approaches, 

the polynomial approach was statistically superior in only. 3 instances. It is important to 

note that even in the few cases of statistical superiority for the polynomial fit, these did 
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F i g u r e 6.8: Comparison of qcin values from logistic (LDE) and polynomial fits for C H O cells in 
15 L batch culture. The polynomial fit to glutamine depletion data was statistically 
superior than the logistic fit for this data set. 

not necessarily yield improved specific rate estimates. Figure 6.8 shows specific glutamine 

consumption rates for C H O cells that was one of the above mentioned 3 cases where the 

polynomial fit was statistically superior to the logistic fit. A n examination of the specific rate 

data from the polynomial fit indicates that data after t = 9 days were negative, suggesting 

net glutamine production. This is not reflective of the biology and is an artifact due to an 

inflexion in the polynomial fit to the data at t = 9 days and beyond. The logistic modeling 

approach does not suffer from such errors. Instead the fits are constrained to the expected 

trends, monotonic in this case. 

Logistic and polynomial fits to the data from Dalili et al. [33] are shown in Figure 6.9 
as examples of the data sets where the logistic approach was statistically superior. Both 

polynomials grossly misrepresented the time course of viable cell density and no improve­

ment was obtained by increasing the order of the polynomial. Computation of growth rates 

from either of the polynomial fits would not be acceptable. Similar limitations, albeit to. a 

lesser extent, were seen for the IgG and glutamine data sets in Figure 6.9. The polynomial 

approach thus lacks generality and cannot be relied upon as a robust tool for specific rate 

estimation in batch cultures. 

Unstructured kinetic modeling involves the use of Monod-type equations and estimating 

a large number of kinetic parameters by nonlinear optimization in the system of differential 

equations. Two batch studies [1, 33], whose data were used in this study for verification 
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Figure 6.9: Comparison of logistic (GLE for cell density, L G E for IgG and LDE for glutamine) 
and polynomial fits for batch cultivation of hybridoma cells in 100 mL T-flasks [33]. 
(—: ) logistic fit; ( ) polynomial fit with the same number of parameters 
as the logistic fit; (—.. — ••) polynomial fit with one additional parameter (The two 
polynomial fits in panel c overlap). 

of the logistic approach, employed modified forms of the Monod equation in kinetic ex­

pressions to describe their experimental data. One used simpler kinetic expressions for 

glutamine limited cultures [33], requiring 8 parameters to be estimated while 13 parame­

ters were required for a more comprehensive kinetic model [1]. Estimating such a large 

number of kinetic parameters through nonlinear least squares from a system of nonlinear 

differential equations is not trivial and is unlikely to provide robust parameter estimates 

due to the strong correlation among the kinetic parameters. Moreover, the large variability 

in the kinetic models used [6, 7] makes it difficult to compare results from different studies 

employing this approach. 
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6.4.5 Computation of Integral Quantities 

The integral viable cell density is an important parameter for the characterization of batch 
and fed-batch cultures [36]. Since it corresponds to the area under the curve in a plot 
of viable cell density versus time, it can be computed by integrating Eq.(6.5). However, 
Eq.(6.5) cannot be analytically integrated because of the sum of exponential terms in the 
denominator and an approximation to this integral is presented in Appendix F . Alterna­
tively, a simple numerical technique, such as the trapezoidal or any higher-order quadrature 
rule [37], can be used to estimate the integral viable cell density from Eq.(6.5). 

6.4.6 Data for Estimation of Metabolic Fluxes 

A n original motivation for this work was in the context of metabolic flux analysis that is 
increasingly used to characterize cellular metabolism and physiology by estimating fluxes 
through the pathways of central carbon metabolism [38]. Input data for metabolic flux 
analysis include specific uptake and production rates in addition to cellular growth rate. 
The logistic equations presented in this study provide a practical means of more reliable 
specific rate estimation that should enable more robust metabolic flux computation in batch 
and fed-batch cultures. 

6.5 Conclusions 

The application of logistic equations for analyzing mammalian cell batch and fed-batch 

data has been illustrated. Though non-mechanistic in nature, these equations did provide a 

means to impose logical general constraints on the fitted profiles. Simplified logistic equa­

tion forms were selected based on expected monotonic or increasing followed by decreasing 

trends. Time profiles of cell density, nutrients and metabolites were well fitted by the logistic 

equations and time derivatives of these variables were readily computed, resulting in rapid 

estimation of specific rates. Besides providing valuable information on cellular physiology 

and metabolism, specific rates are precursors for metabolic flux estimation, thereby allowing 

improved use of information collected in batch and fed-batch cultivations. This functional 

representation also allowed for computation of integral viable cell density, an indicator of 

batch and fed-batch process performance. Another advantage of the logistic approach is its. 

general nature thereby increasing its applicability to a wide variety of experimental systems 

as shown in this study. This general nature coupled with the ability to rapidly obtain more 

robust specific rate estimates should make it an attractive alternative for describing the 

dynamics of mammalian cell growth and protein production in batch and fed-batch culture. 
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This philosophy of empirical modeling based oh constraining fits to expected trends could 

be extended to the derivation of other useful models where the complexity of systems makes 

mechanistic models impractical. . .< 
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C h a p t e r 7 

E r r o r i n Specific Rates and 
Metabo l ic F luxes 1 

7.1 Introduction 

Metabolic fluxes are considered a fundamental determinant of cell physiology [1] and metabolic 

flux analysis has been increasingly used to characterize the metabolism of mammalian cell 

cultures [2-8]. Flux data provide a quantitative description of the cellular response to 

changing environmental conditions, such as those encountered during bioprocess develop­

ment, and are hence useful for bioprocess optimization. The first step in metabolic flux 

estimation is the construction of a bioreaction network that describes the conversion of sub­

strates to metabolites and biomass. These bioreaction networks are typically simplified to 

enable flux estimation from available experimental data. For mammalian cells, these include 

the main reactions of central carbon and amino acid metabolism [5, 6, 9]. The unknown 

fluxes in the bioreaction network are subsequently estimated either using metabolite bal­

ancing [2, 3, 6, 8, 10-13] or isotope tracer techniques [9, 14-19]. In the metabolite balancing 

approach, fluxes are estimated by applying mass balances around the intracellular metabo­

lites using the measured extracellular rates as input data. The analytical and computational 

techniques associated with the metabolite balancing approach are relatively simple [1] and 

can be readily applied to most experimental systems. This approach, however, cannot deter­

mine fluxes in cyclic and bidirectional reactions. Additional shortcomings and approaches to 

overcome them have been discussed in detail [10, 20]. Despite these limitations, metabolite 

' A version of this chapter will be-submitted for publication. Goudar, C.T., Biener, R., Konstantinov, 
K . B . and Piret. J .M. (2006). Error propagation from prime variables into specific rates and metabolic fluxes 
for mammalian cells in perfusion culture. 
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balancing remains the method of choice for a majority of process development experiments 
and for all pilot and manufacturing-scale studies given the expense of the isotope tracing 
alternative. 

Information on the error associated with metabolic flux values obtained by the metabo­
lite balancing approach is critical to meaningfully interpret changes in cellular metabolism. 
As cell specific rates including growth, nutrient consumption and metabolite production 
comprise the input data for flux estimation, flux values can be strongly influenced by spe­
cific rate errors. Cell specific rates, however, are not experimentally measured but are 
calculated from measured prime variables including cell, nutrient, metabolite and product 
concentrations. Information on prime variable error is thus necessary to characterize their 
influence on specific rate error and ultimately on flux values. 

The need to have specific rate data with no gross measurement error has been long 
recognized and a framework has been proposed to check for the presence of gross errors 
[19, 21, 22]. However, error propagation from prime variables into metabolic fluxes has 
not been reported. This study is aimed at systematically characterizing error propagation 
from prime variables to metabolic fluxes for mammalian cells. Prime variable errors were 
first estimated and their propagation into specific rates and metabolic fluxes was quantified 
using a combination of experimental data and Monte-Carlo analysis. A n operating flux error 
region could be identified allowing more reliable interpretation of the calculated fluxes. 

7.2 Ma te r i a l s and M e t h o d s 

7.2.1 Cell Line, Medium and Cell Culture System 

C H O cells were cultivated in perfusion mode with glucose and glutamine as the main carbon 

and energy sources in a proprietary medium formulation. The bioreactor was inoculated 

at 0.92 x 10 6 cells/mL and cells were accumulated until the bioreactor reached 20 x 10 6 

cells/mL at which point the cell concentration was maintained constant by controlling the 

bleed stream from the bioreactor. Experiments were conducted in a 15 L bioreactor (App-

likon, Foster City, CA) with a 10 L working volume. Under standard operating conditions, 

the temperature was maintained at 36.5 °C and the agitation at 40 rpm. The dissolved 

oxygen (DO) concentration was maintained at 50% air, saturation by sparging a mixture of 

oxygen and nitrogen through 0.5 fim spargers. The bioreactor pH was maintained at 6.8 by 

the addition of 0.3 M NaOH. Temperature, DO and pH were varied during the course of 

the cultivation resulting in a total of 12 experimental conditions, each of 10 day duration 

to identify valid operating ranges for these variables. Data from the last 4 days of each ex-
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perimental condition were considered representative (variation < 15%) and used for specific 

rate and metabolic flux calculations: 

7.2.2 Analytical Methods 

Samples from the bioreactor were analyzed daily for cell concentration and viability using 
the Cedex system'(Innovatis, Bielefeld, Germany). The samples were subsequently cen­
trifuged (Beckman Coulter, Fullerton, CA) and the supernatant was analyzed for nutrient 
and metabolite concentrations. Glucose, lactate, glutamine and glutamate concentrations 
were determined using a YSI Model 2700 analyzer (Yellow Springs Instruments, Yellow 
Springs, OH) while ammonium was measured using an Ektachem DT60 analyzer (Eastman 
Kodak, Rochester, N Y ) . The pH and D O were measured online using retractable electrodes 
(Mettler-Toledo Inc., Columbus, OH) and their measurement accuracy was verified through 
off-line analysis in a Stat Profile 9 blood gas analyzer (Nova Biomedical, Waltham, M A ) . 
The same instrument also measured the dissolved C 0 2 concentration. On-line measure­
ments of cell concentration were made with a retractable optical density probe (Aquasant 
Messtechnik, Bubendorf, Switzerland) that was calibrated with cell concentrations esti­
mated using the Cedex system. Oxygen and carbon-dioxide concentrations in the exit gas 
were determined using a MGA-1200 Mass Spectrometer (Applied Instrument Technologies, 
Pomona, CA) 

7.2.3 Prime Variables and Specific Rates 

Errors in prime variable (cell concentration, product, glucose, glutamine, lactate, ammo­

nium and oxygen) measurements were estimated by analyzing multiple bioreactor samples 

with replicate numbers determined by power analysis A significance level of 0.05 was as­

sumed and the detectable difference was set equal to the assumed experimental error. The 

sample size was determined at a power value of 0.95. A total of 32 samples from 2 bioreac­

tors (16/bioreactor) were used for error estimation from the mean and standard deviation 

of the 16 measurements. 

Specific rate expressions were derived from mass balance equations for all prime variables 

of interest. Error in specific rates calculated from these equations were determined using 

the Gaussian approach [23], retaining only the first-order term in the Taylor series expansion 

Af (x1,x2,...xn) » 

where Af (x\,x2, ...xn) is the error in the function / , x\. x2, -.xn are the true values of the 

df 0 / 
dx2 

Ax2 + df 
dxn 

Axr, (7.1) 
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prime variables and A x i , Ax2, ..'.Axnthe measurement errors. Recognizing the truncation 
associated limitation of the Gaussian approach at high prime variable errors, a Monte-Carlo 
approach was also used for specific rate error estimation. Normally distributed noise with 
mean=0 and desired standard deviation was introduced in the prime variables and specific 
rates were computed. As most specific rates were functions of multiple prime variables, 
errors in each prime variable were changed one at a time to calculate the corresponding 
specific rate errors. This allowed comprehensive specific rate error characterization in a 
multidimensional grid over the desired range of prime variable errors. For each prime 
variable error value, 10,000 normally distributed random error values were generated and 
10,000 specific rates calculated. Thus the specific rate data reported from Monte-Carlo 
analysis are an average of 10,000 estimates. This procedure was repeated when all associated 
prime variables were in error. Additional details and computer programs are presented in 
Appendix G . 

7.2.4 M e t a b o l i c F l u x e s 

A biochemical network previously developed for C H O cells [8] was used in this study. This 
includes the major reactions of central carbon metabolism along with reactions for amino 
acid metabolism by an approach previously described in more detail [6, 8]. The stoichiomet­
ric matrix for this reaction network was of full rank and had a low condition number (69) 
indicating that flux estimates were not overly sensitive to specific rate variations. Metabolic 
fluxes were estimated using weighted least squares 

x = ( A 1 <.; ' A ) ! A ' f - ' r (7.2) 

where x is the flux vector, A the stoichiometric matrix, r the rate vector and tp the variance-

covariance matrix of r. The bioreaction network was characterized by two degrees of freedom 

and the two redundant measurements were used to test the consistency of the experimental 

data and the assumed biochemistry. The consistency index, h, was calculated for each of 

the 12 experimental conditions according to methods previously described [19, 21, 22] and 

was compared with y2 = 5.99 (95% confidence level for 2 degrees of freedom). 

To characterize error propagation from specific rates into metabolic fluxes, an initial 

metabolic flux vector was assumed and the corresponding specific rate vector was determined 

as r = A x . Subsequently, error was introduced in r using normally distributed noise 

with zero mean and standard deviation corresponding to the desired error level (0 - 25%). 

Initially, error was separately added to each element in r (10,000 points at each error 

magnitude) and the resulting flux vector was computed. The flux data were averaged 
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and compared with the error-free flux vector. The difference between these flux values was 
caused by the specific rate error and helped quantify error propagation from the specific rates 
into the metabolic fluxes. For a more realistic representation of experimental conditions, 
this procedure was repeated with all elements of the specific rate vector simultaneously in 
error. 

T i m e (Days ) 

Figure 7.1: Viable cell concentration ( O ) and viability (•) time profiles over the 12 conditions 
examined in this study. Under standard conditions, DO = 50%, T = 36.5 °C, pH = 
6.8 and the target cell concentration was 20 x 106 cells/mL for all conditions. 

7.3 Results and Discussion 

7.3.1 Perfusion Cultivation 

DO, temperature and pH set points were varied during the course of the cultivation resulting 

in a total of 12 experimental phases, each of. 10 day duration. Time courses of viable cell 

concentration and cell viability are shown in Figure 7.1. While the target cell concentration 

throughout the cultivation was 20 x 10 6 cells/mL, cell concentrations for T = 30.5 °C and pH 

= 6.6 were significantly lower due to-reduced growth rates. Cell viability was greater than 

90% throughout the experiment. Specific rates including growth, nutrient consumption and 

metabolite/product formation were calculated using the Table 7.1 equations. The average 

specific glucose consumption rates are shown in Figure 7.2. Changes to DO had no effect 
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on glucose consumption while temperature and pH reduction significantly lowered the cell 

specific glucose consumption rate. Glucose consumption increased at higher temperatures 

and pi I = 7. 

Table 7.1: Expressions for growth rate, specific productivity and specific uptake/production rates' 
of key nutrients and metabolites in a perfusion system • ' • • 

Specific Rate Expression 

specific growth rate u & + *k(*l\+ i (dXv\ . » - v + v [xv) + xv \ dt ) 

specific productivity 0 - l (Fmr , dF\ 
qP ~ xB v v ^ dt) 

specific glucose consumption rate • .. 1 C) dG\ 
- X (' { V dt ) , 

specific glutamine consumption rate 1 (Fm{Glnm-Gln) . dGln u _,', r i n \ 
QGln = X B ( ^ v dt KGln^lnJ 

specific lactate production rate. 'II- \>! \ \- dt ) 

specific ammonium production rate 

specific oxygen uptake rate 
i f Fgas(02in-O2out)\ 

io2 - xi< y v J 

Metabolic fluxes were computed using the average specific rates as inputs from the 

steady-state portion of each of the 12 experimental conditions, and are shown in Figure 7.3 

for experimental phase E (standard bioreactor conditions). The fluxes through glycolysis, 

the T C A cycle and oxidative phosphorylation were one to three orders of magnitude higher 

than those for amino acid biosynthesis and catabolism as were some fluxes for biomass 

synthesis. Similar observations on relative flux magnitudes were made for the 11 other 

experimental conditions (not shown). The actual flux values, however, did change between 

different experimental phases, especially when temperature and pH were varied. 

7.3.2 Prime Variable Error 

Errors in prime variable measurements were determined by analyzing multiple samples and 

the results are shown in Table 7.2. ;Glucose, lactate and glutamine measurements had errors 

close to 5% of the measured value, among the. lowest. The highest errors were 12.2 and 

10.4%, respectively, for ammonium and oxygen. Errors in the bioreactor volume and the 

harvest, cell discard and gas flow rates were assumed to be 5% based on manufacturer 

specifications. ;-''.• . - : » V ' ' • . " ' • • 
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A B C D E F G H I J K L 

E x p e r i m e n t a l C o n d i t i o n 

Figure 7.2: Average specific glucose consumption rates (mean ± standard deviation) for the 12 
experimental conditions in this study. More information about conditions A - L is in 
Figure. 7.1. 

7.3.3 Specific Rate E r r o r 

Mass balances around the bioreactor and cell retention device were used to obtain ex­

pressions for growth rate, specific productivity and specific uptake/consumption rates for 

nutrients and metabolites (Table 7.1). Since perfusion systems are typically operated at 

constant cell concentration and perfusion rates, the prime variables, would ideally be time 

invariant. However, imperfect cell concentration control and shifts in cellular metabolism 

require retention of the accumulation terms in the mass balance expressions. 

Table 7.2: Error in Prime Variable Measurements 

P r i m e Var iab le E r r o r (%) 
Bioreactor viable cell concentration (Xy) 8.9 
Harvest viable cell concentration (Xy) 7.9 
Product concentration (P) 8 
Glucose concentration (G) 4.9 
Glutamine concentration (Gin) 5.1 
Lactate concentration (L) 4.8 
Ammonium concentration (A) 12.2 
Oxygen concentration (O2) 10.4 
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Figure 7.3: Flux map for experimental condition E using the network of Nyberg et al [8]. Reaction 
numbers ( 1 — 33) and flux values (in parenthesis as pmol/cell-d) are also shown. 

7.3.3.1 Gaussian Error Estimation vs. Monte-Carlo Analysis 

Specific glucose consumption rate, qc, was used to compare the Gaussian and Monte-Carlo 

approaches for specific rate error estimation. The specific glucose consumption rate is a 

function of five prime variables, V, F'h,Gm,G, and Xy (Table 7.1) and is thus affected by 

error in all of them. For simplicity, however, the bioreactor volume, V, the harvest flow 

rate, Fh, and the glucose concentration in the medium, Gm, were assumed to be error-free 

for this comparison. The error in bioreactor glucose concentration was varied from 0 - 10% 

while that in bioreactor viable cell concentration, was varied from 0 - 20%. For each pair of 

G and Xy errors, the corresponding error in qc was calculated using both the Gaussian and 

Monte-Carlo approaches (Figure 7.4). For Xy error <8%, both the Gaussian and Monte-

Carlo approaches resulted in similar qc errors while the Gaussian approach underpredicted 

qc error at Xy error >8% for all G errors (Error estimates from the Monte-Carlo method 

are representative since no assumptions and approximations are made). Since Xy errors of 

8.9% (Table 7.2) and higher are commonly observed in practice, the Gaussian approach as 
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defined in Eq.(7.1) has limited utility. 

0 5 10 15 20 25 

X° E r r o r (%) 

Figure 7.4: Comparison of Gaussian and Monte-Carlo qg error estimates at 10% glucose error and 
0 - 2 0 % Xy error. Both the first and second order Gaussian qc errror estimates were 
lower than the Monte-Carlo error at higher Xy errors. 

This limitation of.the Gaussian approach is due the lack of higher-order terms in Eq.(7.1) 

Inclusion of the second-order term considerably increased the complexity of the Gaussian 

error expression with only a minor improvement in error prediction (Figure.7.4). For exam­

ple, a 10% error in G and a 20% error in Xy resulted in a 26.9% qc error by the Monte-Carlo. 

method while the corresponding Gaussian error estimates were 22.4 and 23.1%, respectively, 

using the first and second-order terms. While addition of third and higher order terms can 

further increase the accuracy of Gaussian error estimates, the resulting expressions are quite 

complex. The Monte-Carlo approach with its ability to accurately estimate error over any 

desired range without derivative computation is superior to the Gaussian approach and has 

been used to obtain the data presented in subsequent sections. 

7.3.3.2 E r r o r i n Specific G r o w t h R a t e 

The apparent specific growth rate, fi,. is a function of five prime variables (Table 7.1) and 

using values from Condition E , the dominant contributor is the cell bleed stream, followed 
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Figure 7.5: Error in a as a function of error in the 5 associated prime variables. Panel (a) is for 
V, Fd and F^ while panel (b) is for Xy and Xy. Panel (c) is when all prime variables 
are simultaneously ir> error (V, Fd and Fh at 5%; Xtf = 5 - 20 %; = 0 - 20 %). 

error legend for panel c: (•) 0 %; (b) 5 %; (•) 10 %; (•) 15 %; (A) 20 %. 

by the cell loss in the harvest 

0.60 

The bleed stream term makes up 82% of the growth rate while the remaining 18% is from 

the harvest stream term. The dXy has been set to zero to reflect an ideal steady-state with 

perfect cell concentration control. It is common to observe ~10% variation in cell density 

that can be more due to sampling and instrument error than a true change in cell density. 

Including this variation in the above expression will misrepresent contributions of the cell 

4.9 100/0.21 
To+"irJv^o" 

= 0.49 + 0.11 + 0.0 

•1 /o 
+ 20 1 

(7.3) 

(7.4) 
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bleed and harvest streams to growth rate. It is the term, however, that largely affects 
growth rate error as will be shown below. 

Figure 7.5 shows the error in JM as a function of errors in the 5 prime variables that make 
up the specific growth rate expression. The impacts of 0 - 10% error in V, Fb, and F^ are 
shown in Figure 7.5a (Xy and Xy were assumed error free) where the \x errors increased 
monotonically with those in V, Fb, or Fh- Errors in V had the highest impact on fj, and 
the average ^ error ratio was 1.03 (standard deviation of 0.01) suggesting a one-to-one 
relationship. The ^ a n d e r r o r ratios were 0.83 (SD = 3!3 x 10~3) and 0.17 (SD = 6.4 x 
1 0 - 4 ) , respectively, indicating lower sensitivity of fi to Fb and F'h errors.. This difference in 
error sensitivity is consistent with the relative prime variable contributions to the [i value. 
The fermentor volume, V, is in both the terms that contribute to \i in Eq.(7.3) resulting 
in the one-to-one error dependence. The bleed rate is present only in the first term that 
contributes 82% to the /i value, consistent with the ^ error ratio of 0.83. Errors in the 
harvest flow rate have the least impact because Fh is present only in the second term with 
a 18% contribution to fi, consistent with the •#- error ratio of 0.17. 

Impacts on \i errors from errors in bioreactor and harvest cell concentrations are shown 
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in Figure 7.5b (V, Ft,, and Fh were assumed to be error free). Cell concentration estimates 
are more prone to error as manual cell counting techniques continue to be widespread. 
While this has been alleviated with the advent of reliable automated cell concentration 
estimators, viable cell concentration in the harvest stream, Xy , is especially susceptible to 
experimental error as there are relatively few cells. However, given the minor contribution 
of the harvest stream term to the growth rate, a 20% error in Xy results in only 3.3% error 
in the corresponding ii estimate (Figure 7.5b). Errors in Xy however have a dramatic effect 
on the error in ii with the third term in Eq.(7.3) largely responsible for the strong influence 
of Xy error on \i. This was primarily due to the error associated with derivative estimation 
that is typically done by finite forward differences using Xy values from two consecutive 
days. More accurate derivative estimation approaches should be used to minimize the error 
in ii. Derivative computation using central differences resulted in a 50% reduction in ti 
errors (data not shown) and techniques such a splining could provide improved derivative 
estimates as well. 

Figure 7.5c shows the calculated error in IL when all the five prime variables are in 
error, reflective of experimental conditions. For a 5% error in V, and Fh and a 10% 
error in Xy and Xy (approximate conditions in this study), the corresponding /x error was 
24.4%, emphasizing the need for accurate cell concentration determination and subsequent 
derivative estimation. 

7.3.3.3 Error in Specific Uptake and Production Rates 

The Monte-Carlo approach was used to estimate error in nutrient consumption and metabo­

lite production rates from the Table 7.1 expressions. Wi th the exception of oxygen, these 

specific rates were functions of V, Fh, Xy and the corresponding nutrient/metabolite con­

centration while the oxygen uptake rate expression had Fo2 in place of Fh- A 5% error 

was assumed for V, Fh and Fo2 while Xy and the nutrient/metabolite concentration were 

evaluated over a 2 - 20 % error range. For each combination of Xy and nutrient/metabolite 

error, 10,000 specific rates were calculated and average error values are shown in Figure 7.6. 

For 0% error in Xy, error in all specific rates increased monotonically with error in the 

corresponding prime variable. For instance, the qc error was 7.3% at a 2% G error (V 
and Fh error = 5%, Xy error = 0%) and this value increased to 19.5% at a 20% G error. 

Increases in the Xy error caused an upward shift in the error profile while maintaining 

the monotonic dependence on the corresponding prime variable error. There were slight 

differences in the specific rate errors for their corresponding prime variables and this is due 

to differences in the.specific rate expressions (Table 7.1). Error profiles iox.qp and qA were 
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identical to those for qi. 

T a b l e 7 . 3 : Consistency index values for the 12 experimental conditions examined in this study 

E x p e r i m e n t a l C o n d i t i o n Bioreac tor Set Po in t s h 
.. A , .Standard 5.93 
• ,,. .- B . • • D O = 20% 2.54 

C ' Standard 4.64 
I) DO = 100% 3.08 
E Standard 1.59 
F T = 34.5°C 0.95 
G ' ; .• • - T = 32.5°C 0.80 
H T = 30.5°C 4.28 
I Standard 0.89 

T = 37.5°C 0.26 
K pH = 6.6 4.84 
L pH = 7.0 3.56 

Of all specific rates for the approximate conditions in this study (Table 7.2), the specific 
growth rate was characterized by the highest error with 5% errors in V, Fd and Fh and 10% 
errors in Xy and Xy resulting in a 24.4% error in ii (Figure 7.5). For a 5% measurement 
errors in glucose, lactate and glutamine concentrations, errors in their respective specific 
rates at a 10% X$ error were in the 12 - 14% range (Figure 7.6). The estimated error 
in oxygen uptake rate at a 10% Xy and oxygen errors was 16.1% (Figure 7.6). Overall, 
specific rate errors are ~10% with 5% errors in prime variables and 20 - 25% with 15% 
prime variable errors. (Figure 7.6). Thus the specific rate errors in a perfusion system 
can be expected to span a 10 - 25% range depending upon the accuracy of prime variable 
measurements. 

7.3.4 Error in Metabolic Fluxes 

Metabolic fluxes were computed for all 12 experimental conditions and the consistency of 

the experimental data was verified by calculating the consistency index, (h) values (Table 

7.3) using methods described earlier [6, 21]. The h values for all steady states passed the %2 

distribution test with a 95% confidence level (h < 5.99 for 2 degrees of freedom) indicating 

that the experimental data for all experimental conditions were consistent and unlikely to 

contain gross measurement errors. This observation coupled with the stoichiometirc matrix, 

A , being of full rank and having a low condition number clearly attest to the robustness of 

the bioreaction network and the quality of the experimental data. Experimental condition 
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E , where the bioreactor was operated under standard conditions (Table 7.3) was arbitrarily 
chosen to quantify the effect of specific rate errors on those in the metabolic fluxes. 
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Figure 7.7: Effect of specific rate error on the error in lower metabolic fluxes.. Panels (a)-(d) are 
for errors in the 5 greater specific rates while (e)-(h).are for errors'in lower specific 
rates (amino acid metabolism). : 

7.3.4.1 Lower M e t a b o l i c F luxes 

The effect of specific rate errors on the lower metabolic fluxes is shown in Figure 7.7. Panels 

a-d are for relatively greater specific rates while e-h are for amino acid metabolism (lower 

specific rates). Despite all 4 metabolic fluxes in Figure 7.7 being associated with the T C A 

cycle (Figure 7.3: threonine, valine and isoleucine are catabolized to SuCoA, asparagine is 

produced from oxaloacetate), they were greatly affected by the glucose uptake rate error. 

A 25% error in glucose uptake rate resulted in 60, 18, 103 and 54% errors, respectively 

(Figure 7.7a-d). The lactate production rate had a similar effect resulting in errors of 34, 
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10, 59 and 31%, respectively, (Figure 7.7a-d) for a 25% lactate production rate error. As 
expected, the Figure 7.7a-d fluxes were affected by errors in the oxygen uptake and carbon 
dioxide production rates given their close relation to the T C A cycle (threonine catabolism 
was less affected since this reaction does not directly involve O2 or CO2). A 25% error in 
the oxygen uptake rate resulted in respective errors of 26, 54, 387 and 228% while that in 
the CO2 production rate caused 10, 49, 349 and 291% errors, respectively, in the Figure 
7.7a-d fluxes. Thus errors in the greater specific rates very substantially influence the lower 
metabolic fluxes to the extent that the values are far from accurately representing cellular 
metabolism. 
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F i g u r e 7 .8: Effect of specific rate error (shown in each frame) on the error in 4 greater metabolic 
fluxes. Panels (a)-(d) are for errors in 5 larger specific rates while (e)-(h) are for errors 
in lower specific rates (amino acid metabolism). 

With the exception of the He —> SucCoA flux, errors in amino acid metabolic rates did 

not significantly affect the metabolic fluxes. Overall, the maximum flux error was less than 

2.5% even when the specific rate error was 25% (Figure 7.7e,f,h). As expected, the lie —> 



CHAPTER 7. ERROR IN SPECIFIC RATES AND METABOLIC FLUXES 143 

SucCoA flux was influenced by errors in isoleucine catabolism with a 25% error resulting in 
a 20% error in the flux (Figure 7.7g) and this dependence was true in all instances where 
the specific rate and flux were closely related. 

7.3.4.2 Grea te r M e t a b o l i c F luxes 

The effect of specific rate errors in the 5 - 25% range on the greater metabolic flux errors 
was examined for experimental condition E and data for four fluxes representing glycolysis, 
lactate production, the T C A cycle and oxidative phosphorylation are shown in Figure 7.8. 
While the influence of all 35 specific rates in the bioreaction network were examined, Figure 
7.8 shows representative results for the 5 greater specific rates (glucose, lactate, oxygen, 
carbon dioxide, B i o _ N A D H ; panels a-d) and 5 lower specific rates representing amino acid 
metabolism (serine, glycine, lysine, isoleucine, aspartate; panels e-h). As expected, specific 
rates that were not closely related to the flux had a lower impact on the flux error. For 
instance, a 25% error in glucose uptake rate caused 0.7, 1.4 and 2.7% errors, respectively, 
in Figures 7.8b-c while the error in Figure 7.8a was 23.6%. Similarly, a 25% error in lactate 
production rate caused errors of 0.92, 0.81 and 1.54%, respectively, in Figure 7.8a,c,d while 
that in Figure 7.8b was 24.8%. . 

Thus, errors in the greater specific rates had a significant effect on the errors in the 
most closely related fluxes. For instance, a 25% error in glucose uptake resulted in a 23.6% 
error in the Glc —> G C P flux (Figure 7.8a) and a similar dependence was seen between the 
error in the lactate production rate and the Pyr —> Lac flux (Figure 7.8b). The error in 
the T C A cycle flux, Q K G —> SuCoA, was most influenced by error in C O 2 production and 
oxygen uptake (Figure 7.8c) while that for oxidative phosphorylation was primarily affected 
by error in the oxygen uptake rate (Figure 7.8d). 

Errors in the amino acid metabolic rates, however, had minimal impact on the flux 
errors even when they were related to the flux. For instance, the specific production rates 
of serine and glycine (both synthesized from. G A P (Figure 7.3)), had a negligible impact on 
the glycolytic fluxes. A 25% error in serine or glycine production rates resulted in 2.34 x 
10~ 4 or 7.02 x 1 0 _ 4 % error, respectively, in the Glc -> G C P flux (Figure 7.8e). While lysine 
and isoleucine are catabolized to form AcCoA which enters the T C A cycle, their rate errors 
had little impact on the T C A cycle flux ( a K G —> SucCoA). A 25% error in their catabolic 
rates resulted in respective flux errors of 0.14 or 0.12% (Figure 7.8g). Aspartate is formed 
in the T C A cycle from oxaloacetate and a 25% error in aspartate production rate caused 
a 3.67 x 10~ 2% error in the cuKG —> SucCoA flux. Thus, errors from lower magnitude 
specific rates have negligible impact on the error in the greater metabolic fluxes even when 
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F i g u r e 7 . 9 : Flux error for greater (panel a) and lesser (panel b) fluxes when all specific rates in 
the bioreaction network have errors in the 5 - 25% range. The Thr —» SuCoA and Val 
—> SuCoA error profiles overlap in panel b. 

the specific rates and metabolic fluxes are related. . 

7.3.4.3 Ove ra l l F l u x E r r o r s i n Perfusion C u l t i v a t i o n 

Figures 7.7 and 7.8 and show flux error data when only one specific rate is in error. In a 

typical experiment, all specific rates have error and their combined influences on the flux 

error are shown in Figure 7.9. Specific rate errors in the 5 - 25% range were examined 

and when all specific rate errors were 15%, the greater flux errors ranged from 12.3% for 

aKG —>• SuCoA to 14.7% for Pyr —> Lac (Figure 7.9a). For the lesser fluxes, when the 

specific rate errors were 15%, the flux errors were between 46.9% (Thr —> SuCoA) and 

312.5% (He —> SuCoA) (Figure 7.9b). Hence lesser flux values can be extremely sensitive 

to specific rate errors making their accurate determination difficult even at relatively low 

prime variable and specific rate errors. This was despite using a robust bioreaction network 

with a stoichiometric matrix of full rank and low condition number. 
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F i g u r e 7.10: Absolute values of the maximum and minimum sensitivity coefficients for the 
metabolic model used in this study. For each of the 35 specific rates, there were 
33 sensitivity coefficients corresponding to the 33 fluxes (Figure 7.3) in the bioreac­
tion network. 

7.3.4.4 N o r m a l i z e d Sens i t iv i ty Coefficients for A n a l y s i s of M e t a b o l i c F l u x E r ­

rors 

The flux error data in Figures 7.7 and 7.8 were obtained from multiple simulations using 

the Monte-Carlo method. Although comprehensive, this approach is cumbersome to apply 

to new metabolic models and a generalized approach to quantify the relationship between 

specific rate and metabolic flux errors is desirable. The sensitivity matrix, S, provides a 

framework for such quantification and can be readily estimated from the stoichiometric 

matrix of the metabolic network [1] as 

S = ( A T A ) _ 1 A T (7.5) 

and the individual elements of S can be written as 

-h3 
dxj 

(7.6) 

where Sij is the sensitivity of the ith flux with respect to the jth rate. For the metabolic 

network examined in this study, S is a 33 x 35 matrix where the jth column contains 
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the sensitivities of the 33 fluxes to the jth rate. Figure 7.10 shows absolute values of the 
minimum and maximum flux sensitivities for each of the 35 specific rates. The minimum 
sensitivities ranged from 0.0009 - 0.0092 while the maximum values were in the 0.32 - 1.50 
range. Low sensitivity coefficients are favorable from an error analysis standpoint as the 
influence of specific rate errors on flux estimates is minimal. Even the maximum sensitivities 
.obtained were quite low, consistent with the low condition number (69) of the stoichiometric 
matrix, A . 

c c 
o o 

« o 

1.0 

0.'8 

0.6 

0.4 

0.2 

0.0 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

1.0 

0 .8 

0.6 

0.4 

0.2 

0.0 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

( a ) G / c - > G 6 P . 

I 
(e) Glc - > G6P 

(b) Pyr -> Lac (f) Pyr - > Lac 

JUL. 
. (c ) aKG - > SuCoA (g) aKG - > SuCoA mm 

"IT 
. ( d ) 0 2 - > 3 / < 7 Y > 

{b)02->3ATPm 

1.0e-3 

5 .0e -4 

0.0 

- 5 . 0 e - 4 

- 1 . 0 e - 3 • 

- 1 . 5 e - 3 

- 2 . 0 e - 3 

- 2 . 5 e - 3 

1 .2e-3 

8 . 0 e - 4 

4 .0e^t 

0.0 

^t .Oe^t 

2 e - 3 - • 

0 

- 2 e - 3 

- 4 e - 3 

1 e - 3 

0 

- 1 e - 3 

- 2 e - 3 

G l c L a c 0 2 C 0 2 B i o S e r G l y L y s lie A s p 

Speci f ic Rates 

Figure 7.11: Normalized sensitivity coefficients for the greater fluxes in the bioreaction network 
for .both greater (panels a-d) and lesser (panels e-h) specific rates. 

However, sensitivity coefficients as defined in Eq.(7.5) do not completely explain the 

relationship between specific rate and flux error. For instance, sensitivity coefficients for 

the O2 —> 3ATP flux are -1.354 and -0.587 for the oxygen uptake and glucose uptake rates, 
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respectively, a ratio of 2.3. Errors in the O2 —• 3ATP flux, however, are scaled differently 
since 25% errors in glucose and oxygen uptake rates result in flux errors of 21.39 and 2.7%, 
respectively, a ratio of 7.9. This discrepancy is due to the difference in the magnitudes of 
the oxygen and glucose uptake rates (-5.14 and -1.48 pmol/cell-d, respectively) which is 
not accounted for in Eq.(7.6). If the sensitivity coefficients -1.35 and -0.59 are multiplied 
by their respective specific rates of -5.14 and -1.48, the resulting values are 6.94 and 0.87 
with a ratio of 7.9 that is consistent with the flux error ratio and the results of Monte-Carlo 
analysis (Figure 7.8). 

A normalization of the Eq.(7.6) sensitivity coefficients is thus necessary for the resulting 
value to be representative of the error relationship between the specific rate and metabolic 
flux pair. This can be done by multiplying the right hand side of Eq.(7.6) with a ratio of 
the specific rate and metabolic flux 

where sf^ is the normalized sensitivity coefficient (NSC) for flux X{ with respect to rate rj (A 

similar approach is used to define the flux control coefficients in metabolic control analysis 

that describe the change in steady-state flux due to a change in enzyme activity [24]). For 

the O2 —> 3ATP flux, the normalized sensitivity coefficients from Eq.(7.7) were 0.849 and 

0.106 for oxygen uptake and glucose uptake, respectively. The ratio of these normalized 

sensitivity coefficients is 8 which is similar to the flux error ratio of 7.9 from Monte-Carlo 

analysis with a small difference due to round-off errors. Normalized sensitivity coefficients 

as defined in Eq.(7.7) thus provide accurate quantification of the dependence of metabolic 

flux error on specific rate error (this was verified for other flux-specific rate combinations). 

NSCs for the greater fluxes are shown for both greater and lesser specific rates in Figure 

7.11. For the Glc —> G6P flux, the NSC with respect to the glucose uptake rate from 

Eq.(7.7) was 0.923 indicating that a 1% error in glucose uptake rate would result in a 

0.923% error in the Glc —> G6P flux (Figure 7.11a). The flux to specific rate error ratio 

from Figure 7.8a was 0.940 ± 1.7 x 1 0 - 3 (average of 5 data points for the glucose uptake 

rate) verifying the ability of the NSC to accurately describe the specific rate and flux error 

relationship. NSCs for lactate, oxygen, C O 2 and biomass from Eq.(7.7) were 0.037, 0.027, 

0.011 and 0.003, respectively (error ratios from Figure 7.8b-d were identical), suggestive of 

their much lower impact on the Glc —> G6P flux. The highest NSC for the Pyr —> Lac 

flux was for lactate (0.99) while both oxygen and C O 2 were characterized by high NSCs for 

the a K G -> SucCoA flux (0.416 and 0.691, respectively). The 0 2 -> 3ATP flux was most 

affected by errors in the.oxygen, uptake rate and this dependence was characterized by a 

(7.7) 
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normalized sensitivity coefficient of 0.849 (Figure 7.11d). Normalized sensitivity coefficients 
with respect to amino acid metabolism were much smaller (Figure 7.11e-h) reflecting their 
minimal impact on the greater flux errors. 

While both Figures 7.8 and 7.11 provide very similar information on the specific rate 
and flux error relationship, Figure 7.11 data are easier to generate and are a more compact 
representation of error dependence. The sensitivity matrix can be readily estimated from 
the stoichiometric matrix using Eq.('7.5) and once metabolic fluxes are calculated using the 
experimentally measured specific rates (Eq.7.2), NSCs can be determined from Eq.(7.7). 
Moreover, a single number completely characterizes the specific rate and flux error relation­
ship. 

Figure 7.12: NSC variation with respect to glucose uptake rate during the course of an experiment. 
Data from this study are shown in panel a and those from Follstad et al. [6] in panel 
b. 
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7.3.4.5 V a r i a t i o n i n N o r m a l i z e d Sens i t iv i ty Coefficients 

It must be recognized that NSCs and hence specific rate-flux error relationships can change 
during the course of an experiment if either the specific rate or metabolic flux changes. This 
is not true of the conventional sensitivity coefficients that depend only upon the stoichiom-
etry of the bioreaction network (Eq.7.6). Figure 7.12a shows variation in the normalized 
sensitivity coefficients for the O2 —> 2ATP and SuCoA —> Fum fluxes with respect to glucose 
uptake rate for the 12 experimental conditions in this study. For both fluxes, the lowest 
values of the normalized sensitivity coefficients (0.218 and 0.139, respectively) were at T 
= 30.5 °C (condition H), where the flux values were the highest and the rate values were 
among the lowest. The opposite was true at pH = 7 (condition L) where flux values were 
the lowest and rate values were the highest (NSCs of 0.949 and 0:481). Thus during the 
course of a single experiment, the NSC for the O2 —> 2ATP flux with respect to glucose 
uptake rate ranged from 0.218 - 0.949, a 4.4-fold variation while a 3.4 increase was observed 
for the SuCoA —> Fum flux. The value of the O2 —> 2ATP flux was 4.4 times more affected 
by errors in glucose uptake rate at pH — 7 than at T = 30.5 °C while the SuCoA —> Fum 
flux was 3.4 more affected. 

Eq.(7.7) was also used to calculate NSCs for hybridoma cell cultivation in chemostat 
culture reported by Follstad et al, [6] at different dilution rates (Figure 7.12b). The dilution 
rates corresponding to steady states A - E were 0.04, 0.03, 0.02, 0.01 and 0.04 h r - 1 , respec­
tively, and significant changes in cellular metabolism were observed over the course of the 
experiment. The sensitivity coefficient for the Pyr —> AcCoA flux was 0.67 and the normal­
ized sensitivity coefficient for steady state A was 6.57 reflecting the 10-fold higher value of 
glucose uptake when compared to this flux. For steady states B - D, the Pyr—> AcCoA flux 
increased while the glucose uptake rate decreased resulting in significant reduction in the 
NSC. A n increase in the glucose uptake rate for steady state E was responsible for the slight 
increase in the NSC. Thus the Pyr —> AcCoA flux was most sensitive to glucose uptake rate 
errors in steady state A and this decreased by 6.5-fold for steady state D. Variations in 
the SuCoA —> Fum flux were primarily due to changes in the glucose uptake rate since the 
SuCoA —> Fum flux did not change much over the course of the cultivation while those for 
the Gin —> Glu flux were due to changes in both the flux and glucose uptake rate. Thus 
the flux and specific rate error relationship can change during the course of an experiment 
and NSCs under all experimental conditions must be calculated to rationally interpret the 
metabolic flux data. 
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7.4 C o n c l u s i o n s 

We have characterized error propagation from prime variables into specific rates and sub­
sequently into metabolic fluxes for mammalian cells in high cell concentration perfusion 
culture. Prime variable errors were in the 5 - 15% range resulting in a 10 - 25% error 
in specific rates. The effect of specific rate error on the flux error was a function of both 
the sensitivity of the flux with respect to the specific rate and relative magnitudes of the 
flux and the specific rate. The greater fluxes in the bioreaction network had errors that 
were comparable in magnitude to the related greater specific rate errors and were virtually 
unaffected by errors in the lower specific rates. Greater flux errors ranged from 12 - 15% for 
15% error in the greater specific rates suggesting that the 30% increase in T C A cycle fluxes 
reported in Chapter 9 are indeed representative of changes in cell metabolism. The lower 
fluxes, however, were extremely sensitive to errors in the greater specific rates making their 
accurate estimation difficult given analytical limitations in prime variable measurements. 
Often, errors were so large that the flux values grossly misrepresented cellular metabolism. 
The relationship between specific rate and flux error was accurately described by the nor­
malized sensitivity coefficient that could be readily calculated once the metabolic fluxes 
were estimated. We recommend normalized sensitivity coefficient calculation be an integral 
part of metabolic flux analysis as it describes the relationship between flux and specific rate 
error through a single numeric value. 
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8.1 Introduction 

Metabolic flux analysis is being increasingly used to characterize the metabolism of mam­

malian cells [1-13]. While both metabolite balancing and isotope tracer analyses have been 

used for flux estimation, the metabolite balancing method is considerably simpler both from 

experimental and analytical approaches. Extracellular uptake/production rates constitute 

the input data from which intracellular fluxes are estimated by simple matrix algebra [14]. 

Thus very few additional measurements are necessary and the associated computations can 

be readily performed: This approach, however, has limitations because fluxes in cyclical 

pathways such as the pentose phosphate pathway and those in reversible reactions cannot 

be determined (only the net flux in a reversible reaction may be calculated). 

These limitations can be overcome by isotope tracer studies using media containing a 

mixture of unlabeled and 1 3 C glucose and analyzing the isotope distribution in the metabo­

lites by G C - M S or N M R . Isotope distribution in the metabolites is a direct consequence 

of cell metabolism and analysis of this data provides additional constraints that increase 

the observability of the fluxes in the bioreaction network. Substantial progress has been 

made in the experimental and computational approaches for applying N M R spectroscopy 

to metabolic flux analysis [9, 15-29] with 2D [ 1 3 C, 1 H] correlation spectroscopy being the 

most widely adopted approach-for isotope tracer experiments. 

A major disadvantage of isotope tracer experiments is their cost since 1 3 C glucose makes 

' A version of this chapter wi l l be submitted for publication. Metabolic 'f lux analysis of C H O cells in 
perfusion culture by metabolite balancing and 2D [ 1 3 C , 'H] C O S Y N M R spectroscopy. 
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up a substantial portion of the medium glucose. They are seldom applied to laboratory-scale 
bioreactors and are typically performed at very small working volumes.in environments that 
may not be representative of bioreactor conditions. While such studies do provide valuable 
insight into cellular metabolism, the metabolic profile may not be representative of that in 
a laboratory or manufacturing-scale bioreactor. Metabolism can be scale-dependent, espe­
cially if conditions such as shear and mixing do not scale linearly. The metabolite balancing 
method, however, is essentially scale-independent since it does not require 1 3 C glucose and 
extracellular rates are typically measured in both laboratory and manufacturing-scale sys­
tems. 

For routine application of metabolite balancing to process development and manufactur­
ing bioreactors, validation with results from isotope tracer experiments is necessary. Upon 
favorable comparison of flux estimates from these two methods, metabolite balancing can 
then almost exclusively be used for flux estimation. When significant process modifications 
such as medium composition and cell line changes are made, a revalidation of the metabo­
lite balancing method may be necessary. Comparison of flux estimates from the metabolite 
balancing and isotope tracer method have been made for hybridoma cells in batch [15] and 
continuous culture [30] and for Aspergillus oryzae in a chemostat culture [21]. No such 
comparisons have been made for Chinese Hamster Ovary (CHO) cells in perfusion culture. 

This study presents a comparison of metabolic fluxes from the metabolite balancing 
and isotope tracer methods for C H O cells in perfusion culture. C H O cells were initially 
cultivated in a medium containing unlabeled glucose which was subsequently switched to 
a mixture of unlabeled and 1 3 C glucose. Once isotopic steady state was reached, biomass 
samples from the bioreactor were used for flux estimation by 2D [ 1 3 C, 1 H] N M R spectroscopy 
and these fluxes were compared with those obtained by the metabolite balancing method. 

8.2 Materials and Methods 

8.2.1 Cell Line Culture Medium and Bioreactor Operation 

C H O cells were grown in perfusion culture using a medium with 7 g /L glucose and 7 m M 

glutamine as the primary carbon and energy sources. A l l experiments were conducted in 

a 2.5 L bioreactor ( M B R Bioreactor A G , Switzerland) with a 2 L working volume and a 

heated water jacket. The bioreactor was.maintained at 36.5 °C, with agitation constant at 

70 rpm. Dissolved oxygen (DO) was maintained at 50% air saturation by sparging mixed 

oxygen and nitrogen. Bioreactor pH was maintained at 6.8 by the addition of 0.3 M NaOH. 

The bioreactor was inoculated at 8.53 x 10 6 cells/mL and cell concentrations during the 
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initial experimental phase'.(operation with "unlabeled, glucose) were maintained-at 10 x 10 6 

cells/mL by bleeding cells from the bioreactor. The perfusion rate during this phase was 
1.5 bioreactor volumes/day. Subsequently, a medium containing 1 3 C glucose was used (10%' 
uniformly labeled, 40% labeled in the 1 position and the remaining 50% unlabeled) for cell 
cultivation. In the 6 days following the'switch to 1 3 C glucose, the target, cell density was "10 
x 10 6 cells/mL at a perfusion rate of 1.5 bioreactor volumes/day. Subsequently cell bleed 
was stopped and the cell.density was allowed, to reach T 20 x 10 6 cells/mL. Samples and 
measurements from the last 2 days'of cultivation were used for metabolic flux analysis. 

8.2.2 Analytical Methods 

Samples from the bioreactor were taken for cell density and viability analyses using the 
C E D E X system (Innovatis, Bielefeld, Germany). The samples .were subsequently cen­
trifuged (Beckman Coulter, Fullerton, OA) and the supernatants were analyzed for nutrient 
and metabolite concentrations. Glucose, lactate, glutamine and glutamate concentrations 
were determined using a YSI Model 2700 analyzer (Yellow Springs Instruments, Yellow 
Springs, OH) while ammonium was measured by.an Ektachem DT60 analyzer (Eastman 
Kodak, Rochester, N Y ) . The pH and DO were measured online using retractable electrodes 

. (Mettler-Toledo Inc., Columbus, OH) and their measurement accuracy was verified through 
off-line analysis in a Rapidlab® 248 blood gas analyzer (Bayer HealthCare, Tarrytown, 
N Y ) . The same instrument also measured the dissolved CO2 concentration. Concentrations 
of oxygen and carbon-dioxide in the exit gas were measured using a MGA-1200 Mass Spec­
trometer (Applied Instrument Technologies, Pomona, C A ) . Amino acids were analyzed on 
a H P 1090 H P L C (Hewlett Packard, CA),using the AminoQuant protocol with pre-column 
derivitization by ortho-phthalaldehyde and 9-fluorenylmethyl chloroformate for.detection of 
primary and secondary amino acids, respectively. ' \ 

8.2.3 Sample Preparation for NMR Analysis 

The target biomass weight in samples for 2D-NMR"analysis was 150 mg and appropriate 

amounts of cell culture fluid (~15 m L at 20 x 10 6 cell/mL; 30 mL at 10 x 10 6 cell/mL) 

were drawn from the bioreactor into a 50 mL polypropylene centrifuge tube and the sample 

was centrifuged at 5000 g and 4 °C for 5 minutes. The supernatant was discarded and the 

cell pellet was resuspended in 30 mL of P B S buffer. Following subsequent centrifugation 

and supernatant discard, the cell pellet was freeze-dried and stored at -80 °C. For biomass 

hydrolysis, 10 mL of 6N HC1 was added to the freeze dried cells and the mixture was 

incubated at 105 °C for 24 hours. Following incubation, the mixture was filtered using a 



CHAPTER 8. METABOLIC FLUX ANALYSIS USING ISOTOPE TRACERS 157 

0.45 fim syringe filter and the filtrate was evaporated under nitrogen flux until the residual 

volume was 200 fiL. One mL of D2O was added and the mixture was again evaporated to 

200 fjL. D2O addition and evaporation was repeated two more times before the samples 

were analyzed by N M R . 

8.2.4 2D-NMR Analysis 

N M R measurements were performed at 500.16 MHz at 27 °C on a Bruker Avance 500 spec­
trometer (Bruker BioSpin GmbH, Silberstreifen, Germany). The [ 1 3 C, : H] C O S Y experi­
ment was the Heteronuclear Single Quantum Correlation (HSQC) sequence with gradients 
for artifact suppression. Folding in F l was used for reducing the sweepwidth. The carrier 
was set to 61 ppm for 1 3 C and 4.7 ppm for X H and the acquisition parameters were t i m a x 

= 480 ms and t2max = 221 ms. The window function used before Fourier transformation 
was a squared sine bell shifted by TT/2 in F l and in F2. 

8.2.5 Biochemical Network 

The biochemical network formulated in this study was based on mammalian cell metabolic 

models described in the literature [1, 11, 31, 32]. It includes glycolysis, pentose phosphate 

pathway (PPP) , T C A cycle, amino acid catabolism and oxidative phosphorylation. An­

abolic pathways include the biosynthesis of macromolecules (proteins, lipids, R N A , D N A 

and carbohydrates). The compartmentalization of animal cells is also considered in such a 

way that some processes occur only in the cytosol and mitochondria, respectively. The con­

sequence of this is that some metabolites occur in the model in a mitochondrial state (sub­

script " _ M " ) and a cytosolic state, e.g. acetyl-CoA, pyruvate, oxaloacetate, and malate. 

The recycle rate of the pentose phosphate pathway cannot be uniquely identified by 

measuring extracellular uptake and production rates alone. This is because the portion 

of the flux leaving glycolysis at glucose-6-phosphate to enter the P P P is cycled back to 

glycolysis at fructose-6-phosphate and glyceraldehyde-3-phosphate. The P P P recycle rate, 

however, can be measured from isotope analysis and this value was used in the stoichiomet­

ric model. The same was true for the anaplerotic fluxes in the T C A cycle. In the metabolic 

balancing model both pyruvate carboxylase and malic enzyme were assumed to be active. 

However, if decarboxylation of oxaloacetate also occurs, only the net flux can be calculated 

via metabolite balancing while the. isotope analysis can distinguish between these bidirec­

tional fluxes. The pyruvate carboxylase flux obtained from N M R analysis was used in the 

metabolite balancing model. 

Inputs for metabolite balancing were the extracellular uptake/production rates of glu-
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cose, lactate, all amino acids, OUR, C E R , and the specific growth rate. These coupled with 
the two fixed internal fluxes, P P P recycle rate and pyruvate carboxylase flux (obtained 
from isotope analysis by N M R ) comprised the 27 input variables resulting in 2 redundant 
measurements that allowed calculation of the consistency index and gross error detection 
(The stoichiometric model consisted of 62 intracellular metabolites and 87 internal fluxes 
resulting in 25 degrees of freedom). 
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Figure 8.1: Time profiles of viable cell density (•) and viability (O) for C H O cells in perfusion 
culture 

8.2.6 Metabolic Flux Analysis 

Fluxes in the metabolite balancing method were determined using weighted least squares as 

described in Chapter 3. The consistency index was computed to ensure no gross.experimen­

tal errors were present and since 2 redundant measurements were available, the impact of 

O U R and 'CER measurements on the consistency index was also analyzed. Estimating C E R 

in a perfusion system is not trivial (Chapter 5) and the possibility of measurement error in 

C E R was verified this way. Analysis of N M R data was based on the approach described in 

detail previously [18, 27-29]. .' • ': " . 
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Figure 8.2: Time profiles of bioreactor glucose (•) and lactate (O) concentrations along with their 
respective specific uptake and production rates over the course of the perfusion culti­
vation. 

8.3 Results 

8.3.1 Cell Density and Viability 

Time profiles of viable cell density and viability are shown in Figure 8.1. The bioreactor 

was inoculated at an initial cell density of 8.53 x 106 cells/mL and the target cell density 

was 10 x 106 cells/mL when the medium contained unlabeled glucose. While the average 

cell density with unlabeled glucose was 10.64 ± 2.26 x 10 6 cells/mL, the cell density control 

based on oxygen uptake rate was not very smooth in this initial portion of the experiment. 

Upon' switching to a medium containing a mixture of unlabeled and 1 3 C glucose on day 13, 

cell density control improved and the average value from days 14 - 19 was 11.74 ± 0.93 x 

10 6 cells/mL'. Cell bleed was stopped on day 19 and the cell density was allowed to reach 

20 x 10 6 cells/mL, reflective of conditions in a manufacturing bioreactor. The average cell 

density over the last 3 days of cultivation was 23.05 ± 0!52 x 10 6 cells/mL and data from 
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this time period were used for. metabolic flux analysis. The fermentor viability ranged from . 

81 - 91.6% over the 25 day cultivation period (Figure 8.1) 
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Figure 8.3: Time profiles of bioreactor glutamine (•) and ammonium (0) concentrations along with 
their respective specific uptake and production rates over the course of the perfusion 
cultivation. 

8.3.2 Glucose and Lactate Metabolism 

Bioreactor glucose and lactate concentrations along with their respective specific consump­

tion and production rates are shown in Figure 8.2. Decreasing glucose and increasing 

lactate concentration trends from days 1 9 - 2 5 were due to cell density increase over that 

period (Figure 8.1), effectively reducing the cell specific perfusion rate and hence nutri­

ent availability. The specific glucose consumption rate with unlabeled glucose was. 1.22 ± 

0.11 pmol/cell-d and increased to 1.66 ± 0.11 pmol/cell-d following the switch to labeled 

glucose. It is unlikely that this difference in glucose metabolism was due to the switch to 

labeled medium. In fact, the glucose uptake rate exhibited an increasing trend over the 

entire course of the experiment and.is perhaps reflective of changing cell metabolism or 
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selection of cells with altered metabolic characteristics by the cell retention device. It must 
be recognized that these metabolic changes do not affect, the flux comparisons presented in 
the subsequent sections because those calculations were performed on the same sample. No 
such changes were seen in lactate production with specific rates of 1.63 ± 0.25 and 1.66 ± 
0.17 pmol/cell-d for unlabeled and labeled glucose, respectively. , 

Figure 8.4: Metabolic fluxes estimated from analysis of N M R data. 

8.3.3 Glutamine and A m m o n i u m Metabolism 

Time profiles of glutamine and ammonium concentrations along with their respective specific 

consumption and production rates are shown in Figure 8.3. Changes in their concentrations 

from days 19 - 25 are a result of cell density increase (Figure 8.1) and do not necessarily 

indicate a shift in glutamine metabolism. While both glutamine uptake and ammonium 

production rates were lower at the end of the cultivation, especially from days 21 - 25, 

the average specific rates across the unlabeled and labeled glucose phases were very similar 



CHAPTER 8. METABOLIC FLUX ANALYSIS USING ISOTOPE TRACERS 162 

(0.32 ± 0.03 and 0.32 ± 0.04 pmol/cell-d for glutamine and 0.53 ± 0.07 and 0.50 ± 0.06 

pmol/cell-d for ammonium). 

Table 8.1: Comparison of Glycolytic Fluxes from the Isotope Tracer and Metabolite Balancing 
Methods 

React ion Isotope F l u x Balancing F l u x Difference 
(pmol/cell-d) (pmol/cell-d) (%) 

Glc -> G6P 1.69 1.73 2.53 
G6P - » F6P 0.93 1.00 7.83 
F6P -> 2 G A P 1.38 ' 1.44 4.30 
G A P .-• P G 2.98 3.07 2.86 
P G -y P E P 2.95 3.02 2.49 
P E P -> Pyr 2.95 3.02 2.49 
Pyr —> P y r _ M •1.46 1.83 25.2 
Pyr —> Lac 1.57 1.56 • 0.34 

8.3.4 Metabolic Fluxes 

The reactions in the bioreaction network along with metabolic fluxes estimated from N M R 

data analysis are shown in Figure 8.4. Metabolic fluxes were also calculated from the bal­

ancing method and the consistency index, h, associated with the flux estimates was 2.07 

suggesting the assumed biochemistry was acceptable and that there were no gross experi­

mental errors. A comparison of the flux estimates from the isotope tracer and metabolite 

balancing methods is made in Tables 8.1 - 8.4. The anaplerotic conversion of pyruvate 

to oxaloacetate in the mitochondria and the flux through the pentose phosphate pathway 

cannot be uniquely determined from the balancing method and their values (0.18 and 0.70 

pmol/cell-d) were taken from the N M R analysis. Glycolytic fluxes are compared in Table 

8.1 where there is close agreement (<8% absolute difference) between all fluxes except for 

Pyr —> Pyr _ M . Table 8.2 compares the T C A cycle fluxes where the maximum flux differ­

ence is 7.76% for the conversion of pyruvate to acetyl-CoA. Comparisons of fluxes in the 

pentose phosphate pathway and the oxidative phosphorylation reactions are shown in Table 

8.3 where the maximum flux difference is 5.09%. Much higher differences are seen for the 

fluxes related to amino acid metabolism (Table 4) and these are primarily because these 

fluxes, in most cases, are two orders of magnitude smaller than those in glycolysis, P P P 

and the T C A cycle. Small differences in these fluxes translate into the high percentage 

differences shown in Table 8.4. Overall, there was excellent agreement in flux estimates 

from metabolite balancing and isotope tracer analysis. . 
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Table 8.2: Comparison of T C A Cycle Fluxes from the Isotope Tracer and Metabolite Balancing 
Methods 

R e a c t i o n I s o t o p e F l u x 
( p m o l / c e l l - d ) 

B a l a n c i n g F l u x 
( p m o l / c e l l - d ) 

D i f f e r e n c e 
(%) 

P y r _ M + C 0 2 -> O A A _ M 0.18 0.18 -

P y r _ M -> A c C o A _ M + C 0 2 1.40 1.51 7.76 
A c C o A _ M + O A A _ M -> I c i t _ M 1.60 1.70 6.39 
I c i t _ M -+ a K G _ M + C 0 2 .1.22 1.19 . 2.25 
a K G _ M -> S u C o A _ M + C 0 2 . 1.23 , 1.24 0.55 

. ' S u C o A _ M - > S u c _ M 1.23 1.30 5.50 
S u c _ M —» F u m _ M 1.25 1.28 2.62 
F u m _ M -> M a l _ M 1.25 1.29 3.51 
M a l _ M O A A _ M 1.29 1.32 2.25 

8.4 Discussion 

8.4.1 Pentose Phosphate Pathway 

The P P P flux could not be identified by the balancing method and was set to 0.7 pmol/cell-

d from N M R analysis. Even, if the P P P was neglected for flux estimation by metabolite 

balancing, the impact on glycolytic fluxes would be minimal. However, since 14.9% of the 

total C 0 2 was produced in the P P P (Figure 8.4), it is likely that some of the C 0 2 producing 

fluxes in the T C A cycle would be overestimated to compensate for. that produced in the 

P P P . In our experiments, 41% of the glucose was metabolized through the P P P (Figure 8.4) 

and this number was 23% for hybridoma cells in chemostat culture [30]. For hybridoma cells 

in batch culture 9 - 10% of the glucose was metabolized in the P P P [15], For astrocytes and 

granule cells, the P P P flux was determined as 11 and 29%, respectively [33]. In addition 

to providing ribose-5-phosphate for the synthesis of the nucleotides and nucleic acids, the 

pentose phosphate pathway also generates reducing equivalents in the form of N A D P H for 

reductive biosynthesis reactions. It is possible that the high pentose phosphate flux observed 

in this study was to generate the N A D P H necessary to support rapid cell growth during 

the perfusion cultivation. 

The use of 1 3 C glucose provides evidence that the P P P is active for the C H O cells in 

this study. Alternatively, the feasibility of biochemical networks can be determined from 

the reaction free energies and an illustration of this approach for reactions in glycolysis 

is shown in Appendix I. However, intracellular concentrations of reactants and products 

are necessary to use this approach and this information is hot readily available limiting its 
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applicability. 

Table 8.3: Comparison of P P P , Lactate Production, Malic Enzyme and Oxidative Phosphorylation 
Fluxes from the Isotope Tracer and Metabolite Balancing Methods 

Reaction Isotope Flux 
(pmol/cell-d) 

Balancing Flux 
(pmol/cell-d) 

Difference 
(%) 

G6P -+ Rib5P + C 0 2 0.70 0.70 -

2Rib5P -> F6P + E4P 0.23 0.22 5.09 

Rib5P 4- E4P -> F6P +. G A P 0.23 0.22 5.09 

3 A D P + N A D H + 0 . 5 O 2 - * 3 A T P + N A D + 7.99 7.83. 2.05 
2 A D P + F A D H 2 + 0 . 5 O 2 - » 2 A T P + F A D 1.41 1.38 2.45 

8.4.2 Pyruvate Carboxylase Flux 

Conversion of pyruvate to oxaloacetate by the action of pyruvate carboxylase is a major 
anaplerotic reaction. It helps replenish T C A cycle intermediates that are used for synthesis 
of fatty acids and non-essential amino acids. While this pathway can be ignored in non-
growing cells [34], it can be expected to carry a substantial flux in actively growing cells. 
For the C H O cells in this study, the flux through this reaction was 12.8% of the pyruvate 
flux into the T C A cycle (Figure 8.4). 

8.4.3 Implications for Bioprocess Development 

We have seen good agreement in the metabolic fluxes calculated from metabolite balancing 

and isotope tracer analysis. They both indicated that ~50% of the glucose is converted 

to lactate with the remaining used for biomass synthesis and energy production. Fluxes 

through the P P P and the anaplerotic conversion of pyruvate to oxaloacetate could only be 

obtained by the isotope tracer method. However, eliminating them from the bioreaction 

network would have a low impact on the o.ther fluxes (<10% change) in the bioreaction 

network. The metabolite balancing method thus provides a representative and accurate 

depiction of C H O cell metabolism. This is further confirmed by the low consistency index 

(2.07) associated with the calculated metabolic fluxes. The bioreaction network formulated 

in this study can thus be used for routine monitoring of development and manufacturing 

bioreactors without the need for. frequent isotope labeling experiments. 
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Table 8.4: Comparison of Amino Acid fluxes from the Isotope Tracer and Metabolite Balancing 
Methods 

R e a c t i o n Isotope F l u x B a l a n c i n g F l u x Difference 
••, • (pmol /ce l l -d) (pmol /ce l l -d ) ( % ) 

Pyr + Glu -> A l a + a K G _ M 0.10 0.14 44.7 
O A A _ M + Glu - * Asp + a K G ^ M -0.18 -0.20 . 11.8 
O A A _ M + Gin -> Asn + a K G _ M 0.00 0.00 -

Glu a K G + NH4+ .-• • • 0.28 : 0.24 16.0 
Glu Pro 0.01 0.04 292 
P G + A l a -> Pyr + Ser 0.02 0.04 108 
Ser Gly -0.01 -0.02 132 
Val -> S u C o A _ M + C 0 2 0.02 0.01 48.5 
Leu -> 3 A C o A _ M 0.03 0.04 16.7 
Lys 2 A C o A _ M + 2 C 0 2 0.00 0.01 -

Met -> Cys 0.01 0.02 50.0 
Thr - » A C o A + Gly 0.03 0.03 2.67 
He - » A C o A _ M + S u c C o A _ M 0.04 0.04 11.0 
His -> Glu + NH4+ 0.02 0.01 31.0 
Gin - * Glu + NH4+ 0.16 0.14 9.81 
Arg + a K G _ M -> 2Glu 0.02 0.03 43.5 
Trp -> P y r _ M + 2 A C o A _ M + NH4+ 0.01 0.00 67.0 
Tyr -> 2 A C o A _ M + F u m _ M + C 0 2 0.01 0.01 13.0 
Phe - » 2 A C o A _ M + F u m _ M + C 0 2 0.00 0.00 -
Cys -»• P y r _ M + NH4+ 0.01 0.03 199 

8.5 Conclusions 

We have compared flux estimates from the metabolite balancing and isotope tracer methods 

for C H O cells in high-density perfusion culture. There was good agreement in the glycolytic, 

T C A cycle and oxidative phosphorylation fluxes from these methods with <8% difference for 

most fluxes. The percentage differences in the amino acid fluxes were high, primarily because 

these fluxes were typically two orders of magnitude lower than those in glycolysis and the 

T C A cycle and thus sensitive to small variations in the larger fluxes. Fluxes through the 

P P P and anaplerotic conversion of pyruvate to oxaloacetate could only be estimated by the 

isotope tracer method. While inclusion of these fluxes makes the bioreaction network more 

representative of cell metabolism, their omission will have a limited impact on other fluxes 

in the network (perhaps <10%). The similarity in flux estimates from these two methods is 

confirmation that fluxes from the metabolite balancing method are a good representation of 

cellular metabolism and can be routinely used to characterize cellular metabolism in process 
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development and manufacturing bioreactors. • 
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C h a p t e r 9 

Quasi Rea l T i m e Metabo l ic F l u x 
A n a l y s i s 1 

9.1 Introduction 

Mammalian cells are widely used for the production of therapeutic proteins that require 

their ability to effectively fold and glycosylate proteins. However, productivities from typ­

ical mammalian cell processes are low and a variety of approaches have been taken to 

overcome this limitation. These include bioprocess engineering of perfusion culture reactors 

to 20 x 10 6 cells/mL cell densities [1, 2|, and developing improved feeding strategies to 

optimize cellular metabolism [3, 4]. Another tool for productivity engineering is metabolic 

flux analysis (MFA) which determines carbon fluxes in the central carbon metabolism and 

related pathways [5-8]. M F A provides insights into cellular metabolism, especially under 

varied environmental bioreactor conditions, rapidly clarifying cellular responses to culture 

conditions that can influence productivities. 

Most studies on M F A use either the stoichiometric approach [9, 10] or the isotope tracer 

approach [11] to estimate intracellular fluxes. In these studies, metabolic fluxes are com­

puted off-line after analysis of nutrient and metabolite levels or isotopic tracer concentrations 

(i.e. hours or days). While this approach allows for quantification of metabolic fluxes in the 

chosen reaction pathway and provides information on cellular physiology and metabolism, 

its off-line nature limits the M F A impact, and can even slow down the rate of bioprocess 

diagnostics, decision-making and control. To fully realize the potential of M F A , real-time 
X A version of this chapter has been accepted for publication. Goudar, C.T., Biener, R., Zhang, C , 

Michaels, J.. Piret, J. and Konstantinov, K. (2006) Towards industrial application of real-time metabolic 
flux analysis for animal cell culture. Advances in Biochemical Engineering and Biotechnology. 
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metabolic flux information should be coupled with automated process control strategies to 
more rapidly optimize bioreactor operation. 

Early applications of on-line data for process optimization include analysis of stoichiom-
etry [12-14], heat balances [15], and respiratory quotient measurements [16]. It is now 
common practice to use information on stoichiometry as well as specific uptake and produc­
tion rates for on-line identification and control of bioprocesses [17]. However, this approach 
has not been reported using real-time information on the network of intracellular fluxes. 

In the present study, we present a framework for a quasi-real-time metabolic flux analy­
sis system and illustrate its application studying the metabolism of C H O cells in high 
cell-density perfusion culture. This was achieved through seamless integration of Lab V I E W 
(National Instruments, T X ) , the process monitoring and control environment, with M A T ­
L A B (Mathworks, M A ) for metabolic flux computation. Metabolic fluxes were computed 
for a 15 L bioreactor where glucose and glutamine concentrations were varied during the 
course of the experiment. Sensitivity analysis was performed on key metabolic fluxes to 
provide the basis for a discussion of the need for accurate and reliable on-line sensors. 

9.2 Framework for Q R T - M F A 

A schematic representation of the evolution of bioreactor monitoring and physiological state 

identification techniques is shown in Figure 9.1. The environment in the bioreactor is 

characterized by several key process variables including pH, temperature, dissolved oxygen 

concentration and the cell specific perfusion rate (CSPR) in addition to concentrations of 

carbon and energy sources such as glucose and glutamine and metabolites such as lactate 

and ammonia. Information bn cellular physiology and metabolism is obtained in the physi­

ological state identification step which can be further sub-divided into two categories which 

provide extracellular and intracellular information, respectively. Extracellular information 

includes specific nutrient uptake and metabolite production rates, and the specific growth 

rate of cells. This information comprises a portion of the state vector that describes the 

physiology of the cell and can be used to guide bioreactor operation [18]. However, the 

physiological state vector defined in this fashion is limited to extracellular information. The 

next logical step towards obtaining more information on cell physiology and metabolism is 

through the computation of intracellular fluxes. This upgrade of information content in the 

physiological state vector can help implement better control strategies that can result in 

improved bioreactor performance [19]. 

Our motivation for developing a framework that would enable metabolic flux calculation 

in quasi-real-time was to increase the quantitative information on cellular physiology and 
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Figure 9.1: Evolution of bioreactor monitoring and physiological state identification strategies from 
environment to intracellular fluxes 

metabolism to rapidly detect and understand shifts in cellular metabolism. There is a great 

deal of pressure in the biotechnology industry for rapid process development and optimiza­

tion. To achieve this objective, bioprocess development efforts need to be supported with 

rapid and high-quality information. Q R T - M F A should be one such source of information 

that could accelerate the development of diagnostic and process control strategies. 

A variety of factors were taken into consideration during the formulation of this frame­

work. Initial work was done with simple metabolic networks that were subsequently mod­

ified to incorporate additional reactions. This resulted in the development of a metabolic 

network model that could be readily modified and tested. Another important feature was 

the provision to include both on-line and off-line experimental data as inputs for the com­

putation of metabolic fluxes. While input data for Q R T - M F A would ideally be obtained 

on-line, this is difficult to achieve in practice, especially given the extensive number of an­

alytical tests needed. With.continued development of on-line analytical techniques [20], it 

should be possible in the future to obtain more analytical information in real-time. Given 

the large amount of metabolic flux data generated during long perfusion cultures (100 days 

or more), provisions were made to archive this information in a relational database manage­

ment system. This facilitated mining for correlations between experimental variables and 

key metabolic fluxes as well as the comparison of results to archived cultures. 
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9.3 Materials and Methods 

9.3.1 Cell Line, Culture Medium and Bioreactor Operation 

Chinese hamster ovary cells were grown in perfusion culture using a medium with either 4.5 
g /L glucose and 6 m M glutamine or with 6 g /L glucose and 8.mM glutamine (Table 9.1). A l l 
experiments were conducted in 15 L bioreactors ( M B R Bioreactor A G , Switzerland) with 
a 12 L working volume and a heated water jacket. The bioreactor was maintained at 37 
°C, with agitation constant at 40 rpm. Dissolved'oxygen (DO) was maintained at 50 % air 
saturation by sparging mixed oxygen and nitrogen. Bioreactor pH was maintained at 6.8 by 
the addition of 0.3 M NaOH. The bioreactor was inoculated at ~1.0 x 10 6 cells/mL and cell 
concentrations during the experiment were maintained between 10 and 30 x 10 6 cells/mL 
by automatically bleeding cells from the bioreactor based on optical density measurements. 
The bioreactor was operated in perfusion mode by continuously withdrawing reactor fluid 
and passing it through a cell separation device. The cells were recycled back to the bioreactor 
while the clarified liquid was harvested for subsequent purification steps to isolate the protein 
of interest. 

Table 9.1: Medium composition and dilution rate for the six operating conditions examined in this 
study 

State Glucose ( g / L ) G l u t a m i n e ( m M ) D i l u t i o n R a t e (vo l /d ) 
A •4.5 6 2 
B 6 .8 2 
C 6 8 • 1.5 
D 6 8 . 1 
E 4.5 6 1 
F 6. 8 2 

9.3.2 Analytical Methods 

Samples from the bioreactor and the -harvest stream were taken daily for cell density and 
viability analysis using a heamocytometer and the trypan blue dye-exclusion method, re­
spectively. Cell sizes were determined using a particle counter (Casy, Scharfe Systems, 
Germany). These samples were then centrifuged in a Beckman CS-6 centrifuge (Beckman 
Coulter, CA) and the supernatant analyzed for nutrient and metabolite concentrations. 
Glucose, lactate, glutamine and glutamate concentrations were determined using a YSI 
Model 2700 analyzer (Yellow Springs Instruments, OH) while ammonia was measured using 
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an Ektachem DT60 analyzer (Eastman Kodak, N Y ) . DO and pH were measured online using 
retractable Ingold electrodes (Ingold Electrodes, M A ) . The accuracy of these measurements 
was verified off-line using a Stat Profile 9 blood gas analyzer (Nova Biomedical, M A ) . The 
same instrument was also measured the dissolved C 0 2 concentration. On-line measurements 
of cell density were made with a retractable optical density probe (Aquasant Messtechnik, 
Switzerland) calibrated with cell density estimated by the heamocytometer. Amino acids 
were analyzed on a H P 1090 H P L C (Hewlett Packard, CA) using the AminoQuant protocol 
(Series II Operator's Handbook) with pre-column derivitization by ortho-phthalaldehyde 
and 9-fluorenylmethyl chloroformate for detection of primary and secondary amino acids, 
respectively. 

9.3.3 Estimation of Specific Rates 

A mass balance on viable cells in the bioreactor and the cell bleed system results in 

where \J! is the apparent specific growth rate (l /day), F^, the bleed rate (L/day), V, the 
bioreactor volume (L), F ^ , the harvest flow rate (L/day), Xy, the viable cell density in 
the harvest stream (x 10 6 cells/mL), Xy, the viable cell density in the bioreactor (x 10 6 

cells/L) and t is time (days). Specific nutrient uptake and metabolite production rates were 
computed from 

Cout are the bioreactor inlet and outlet concentrations (mol/L) of the nutrients or metabo­

lites. 

9.3.4 Estimation of Metabolic Fluxes 

with modifications to include reactions for all amino acids. It included a total of 65 reactions 

and 40 metabolites and the uptake/production rates of 27 of the metabolites were measured. 

The stoichiometric matrix was of full rank and the bioreaction network was characterized 

by 2 degrees of freedom and 2 redundant measurements. A series of mass balance equations 

(9.1) 

The bioreaction network used in the study was similar to the one proposed for C H O cells [5] 
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were written for each of the metabolites in the bioreaction network resulting in 

A'x = r (9.3) 

where A is the stoichiometric coefficient matrix, x, the vector of unknown metabolic fluxes, 
and r, the vector of uptake and production rates. Nutrient consumption and metabolite 
production rates were incorporated in r and intermediate metabolite production rates were 
assumed to be zero based on the pseudo-steady-state hypothesis [21]. As the stoichiometric 
matrix, A , was not square, and estimation of the metabolic flux vector, x, was done using 
the weighted least squares approach 

x = ( A T V _ 1 A ) _ 1 A T ^ " 1 r (9.4) 

where ip is the variance-covariance matrix associated with the rate vector r. Once the 
metabolic flux vector was estimated, the sensitivity of the metabolic fluxes to the measure­
ments was estimated from 

g = ( A T ^ - 1 A ) " 1 A ^ T 1 (9.5) 

9.3.5 C o m p u t e r I m p l e m e n t a t i o n 

To obtain metabolic flux estimates in a quasi-real-time fashion for on-line physiological 
state identification, the computation of metabolic fluxes was integrated with on-line data 
acquisition and process monitoring. A schematic of this approach is shown in Figure 9.2. 
Specifically, Lab V I E W (National Instruments, T X ) was used for on-line data acquisition 
and process control while all flux calculations were performed using FluxAnalyzer [22] in 
M A T L A B (Mathworks, Natick, M A ) . Seamless integration between these two environments 
allowed transfer of specific rate data from LabView to M A T L A B followed by subsequent 
transfer of the computed metabolic fluxes in the reverse direction. 

Information on cell density could be obtained in real-time from optical density mea­
surements and this information coupled with the bleed rate helped estimate the specific 
growth rate of the cells. Oxygen and carbon dioxide concentrations in the bioreactor were 
monitored in real-time as well as their concentrations in the inlet and exit gas streams. This 
information was used in global mass balance expressions that were developed for the perfu­
sion system to estimate the oxygen uptake rate (OUR) and carbon-dioxide evolution rate 
(CER) . Concentrations of glucose, lactate, ammonia and amino acids were estimated off-line 
using the analytical techniques described earlier. Given available labor and equipment, all 
these measurements could be performed within one hour. This combination of on-line and 
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Figure 9.2: Illustration of the framework for quasi real-time metabolic flux estimation 

off-line data were initially transferred to Lab V I E W and subsequent flux estimations that 
were performed using FluxAnalyzer were initiated from the Lab V I E W environment itself. 
This interface between Lab V I E W and M A T L A B was designed to approximate real-time 
M F A such that on-line information from new sensors could be seamlessly incorporated. Re­
sults of the computations included a table containing the fluxes for all the reactions in the 
bioreaction network along with a graphical depiction of the fluxes through the metabolic 
network. These metabolic fluxes were archived to observe trends of key metabolic fluxes 
over the course of the experiment. 

9.4 Results 

The framework presented above was applied to study the metabolism of C H O cells in per­

fusion culture at high cell densities. Medium composition and perfusion rates were modified 

to obtain 6 different states designated as A through F (Table 9.1). The resulting metabolic 

responses from the cells were subsequently quantified through metabolic flux analysis. The 

cells were exposed.to increasing amounts of glucose and glutamine when switched from 

state A to B . However, in C, D, and E, the cells were exposed to progressively decreasing 

amounts of glucose and glutamine. States F and B had identical feed medium composition 

and perfusion rates. This helped quantify the effect of lower nutrient concentration (in 

states B , C, and D) on cellular metabolism through a comparison of metabolic fluxes in 

states B and F. 



CHAPTER 9. QUASI-REAL-TIME METABOLIC FLUX ANALYSIS 177 

9.4.1 Cell Density, Glucose, and Lactate Concentrations 

Cell densities for states A through C were approximately 20 x 10 6 cells/mL while states E 
and portions of D were characterized by values in the 5 - 10 x 10 6 cells/mL range (Figure 
9.3). State F , which was identical to state B in terms of medium feed and dilution rate 
was characterized by cell densities between 10 and 30 x 10 6cells/mL. These changes in cell 
densities were a consequence of the changes made to the cell bleed set-point. The motivation 
for these changes was to investigate the performance of the process in the neighborhood of 
20 x 10 6 cells/mL, the standard operating cell density for this process. 

A j B i C j D j E j F 

T ime (days) 

Figure 9.3: Bioreactor viable cell density and glucose and lactate concentrations over the course 
of the experiment. Medium composition and perfusion rates of states A through F are 
defined in Table 8.1. [(•) bioreactor cell density; (o) glucose; (•) lactate]. 

9.4.2 Metabolic Fluxes at States A through F 

Recognizing the dynamic nature, especially of states D, E , and F , 4 - 6 data points towards 

the end of the 6 states A through F were used to compute extracellular rates using Eqs. (9.1) 

and (9.2). These calculated extracellular rates were averaged to obtain a single value for 

each state. This information was subsequently used to compute intracellular metabolic 

fluxes for states A through F from.Eq.(9.4). A plot of the pyruvate flux into the T C A 

cycle versus the pyruvate flux into lactate for each of the six states is shown in Figure 9.4. 

States A , B and C cluster in the region of high lactate and low T C A flux while states D, 

E and F lie in the region where the lactate flux is relatively lower and the T C A cycle flux 
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is correspondingly higher, indicative of a more efficient metabolic state. High values of 
the pyruvate flux into the T C A cycle flux are desirable as this results in the production 
of energy. Pyruvate flux to lactate is not desirable since lactate is a waste metabolite. It 
appears that as the cells progressed from state B to F, there was a shift in metabolism 
towards a more efficient state as seen from the increase in the pyruvate flux into the T C A 
cycle. 

4.0 r -—•—i—.—•—•—•—,—'—•—•—•—.—•— - i • 
C D 

Q. • r 
2.0 — : — • — 1 — ' — — = — • — ' — • — — 1 — ' — J 

1.0 1.5 2.0 

Pyruvate to Lactate Flux (pmol/celi/day) 

F i g u r e 9 .4 : Profile of the two pyruvate fluxes at states A through F 

Another approach to quantify the shift in metabolism due to changes in dilution rate is 

by examination of flux distribution around the pyruvate branch point [23]. Figure 9.5 shows 

a time course of the glycolytic flux plus the T C A cycle reflux divided by the inlet flux to 

the. T C A cycle around the pyruvate branch point. Low values of this ratio indicate more 

efficient cycling of the carbon flux from pyruvate while high values correspond to increased 

production of waste metabolites.such as lactate. It follows from Figure 9.5 that this ratio 

decreases with decreasing dilution rate suggesting a shift towards more efficient metabolism 

at lower dilution rates. 

A comparison of metabolic fluxes through the T C A cycle for states B and F that were 

characterized by the same medium composition and dilution rates revealed that the T C A 

cycle fluxes in state F were at least ,30 % higher than those in B . Hence, two different 

physiological states were observed under similar reactor operating conditions. No significant 

change in specific protein productivity was/observed during the course of the experiment 
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T i m e ( d a y s ) 

F i g u r e 9 . 5 : Metabolic flux distribution around the pyruvate branch point during the course of 
the experiment. Higher values are indicative of waste metabolism while low values 
correspond to increased carbon flux through the TCA cycle 

(data not shown). This has significant implications for reactor design and operation since 

lower production of waste metabolites such as lactate allow use of lower perfusion rates. This 

can translate into reduced medium costs and a more concentrated harvest stream thereby 

minimizing the volume of material that needs to be processed in subsequent purification 

steps. 

9.4.3 Sensitivity Analysis for the Practical Realization of QRT-MFA 

One approach to overcoming some limitations of metabolite balancing is through the ap­

plication of sensitivity analysis where information on the effects of measured variables on 

key metabolic fluxes can be quantified [19]. Sensitivities of the pyruvate kinase, pyruvate 

dehydrogenase and citrate synthase fluxes to the various uptake and production rates are 

shown in Figure 9.6 for states B and F. Glucose uptake rate, lactate production rate and 

oxygen uptake rate have the most significant impact on the above mentioned fluxes for 

both states B and F. For instance, a 1% change in O U R would cause a 1.5% change in the 

pyruvate dehydrogenase flux for state B . The glucose uptake rate had a significant influence 

on the pyruvate kinase and pyruvate dehydrogenase fluxes but only a minor effect on the 

T C A cycle flux. This sensitivity is similar to that of glutamine for the same fluxes. Once 



CHAPTER 9. QUASI-REAL-TIME METABOLIC FLUX ANALYSIS 180 

important metabolic fluxes are identified, the sensitivity of these fluxes to various input 
data can be estimated and this information can be used to rank the input measurements. 
A n important observation in this study was that most of the amino-acids had only a minor 
influence on the fluxes of central metabolism. Thus if only central metabolism fluxes are of 
interest, off-line analysis of amino-acids on a daily basis should be adequate for computing 
the metabolic fluxes with.reasonable accuracy. This is an important simplification for the 
practical realization of Q R T - M F A . 

• Pyruvate k i n a s e , E Pyruvate d e h y d r o g e n a s e B C i t r a t e synthase 
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1 
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Figure 9.6: Relative sensitivities of the calculated pyruvate kinase, pyruvate dehydrogenase, and 
citrate synthase .fluxes with respect to measured specific rates. Only those specific 
rates with relative sensitivities greater than 0.05 are shown 

9.5 Discussion 

9.5.1 Steady State Multiplicity 

Exposing the cells to progressively decreasing amounts of glucose and glutamine by varying 

either the medium composition or the perfusion rate caused a shift in metabolism, towards 

a more efficient state as seen by increased pyruvate flux to the T C A cycle coupled with 
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decreased lactate production. This manifested as a reduction in the pyruvate branch point 
flux ratio for the metabolically efficient state (F). Our observations on steady-state multi­
plicity are consistent with earlier chemostat studies where similar shifts in metabolism were 
observed at lower dilution rates [23-25]. 

Glucose and glutamine utilization characteristics of mammalian cells can be influenced 
by their respective concentrations [4, 26-28]. Generally, high concentrations of glucose 
result in increased glucose uptake rates with most of the glucose being converted to lactate. 
Even if this phenomenon is not accompanied by deceased specific protein productivities, it 
is undesirable because it will result in increased lactate concentration in the bioreactor that 
can adversely effect cell growth [29]. Reduced lactate levels in a perfusion system can be 
achieved either by a decrease in cell density or an increase in perfusion rate. However, neither 
of these changes is desirable. As protein production is directly linked to cell concentration, 
reduction in cell density will decrease protein production while increased perfusion rates will 
result in a more dilute harvest stream. This can greatly increase the fluid volume that, has to 
be processed in subsequent purification operations. Alternatively, if cellular metabolism can 
be altered to reduce lactate production when its accumulation is limiting, high cell densities 
can be maintained and perfusion rates can be lowered, resulting in harvest streams with 
higher protein concentrations. ' 

9.5.2 Quasi-Real-Time Metabolic Flux Analysis 

We have presented results on the shifts in metabolism of C H O cells in perfusion culture 

as a response to changes in experimental conditions. There exist several other avenues 

for the application of metabolic flux analysis at the bioprocess level and these include 

clone.selection, medium optimization and optimization of physical parameters such as pH, 

temperature, shear and D O among others. Moreover, metabolic flux analysis can also be 

. used in a process evaluation and control mode where changes to set-points can be made 

based on the estimates of some key metabolic fluxes. However, to fully realize the potential 

of metabolic flux analysis for these applications, there is a need for rapid evaluation of the 

fluxes, ideally, in an on-line fashion. This directly translates into a need for reliable on-line 

sensors for measuring concentrations of key nutrients, metabolites and amino-acids. 

9.5.3 Sensors for RT-MFA 

Based on results from the sensitivity analysis described above, on-line estimation of oxygen 

uptake as well as glucose and lactate concentrations should be given high priority because 

of the significant influence they exert on central metabolism fluxes. This can be followed 
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by glutamine and ammonia concentrations that are also usually measured in an off-line 
fashion. Given the rather complex nature of amino-acid analysis, on-line analysis should 
only be considered under special conditions when the application demands this information. 

Flow injection analysis has been used for real-time measurement of glucose and am­
monia [17] while real-time measurement of glucose and lactate has been demonstrated by 
automatically drawing samples from the bioreactor through a circulation loop followed by 
sample filtration to remove biomass and subsequent analysis using standard analyzers [30]. 
These approaches typically require the deployment of dedicated analyzers for each bioreactor 
which becomes impractical in a process development scenario where a number of bioreactors 
are operated simultaneously. Moreover, the presence of additional flow loops can increase 
the contamination risk, especially for perfusion systems given their long operation times. 

There has been progress in on-line estimation of glucose, lactate, glutamine, and am­
monia through the use of near-infrared (NIR) and mid-infrared (MIR) spectroscopic mea­
surements [31, 32]. However, these measurements were characterized by high standard 
errors which may limit their practical use in experiments such as those performed in this 
study. Specifically, the lowest standard errors in the NIR measurements for glucose, lac­
tate, glutamine and ammonia were 0.82, 0.94, 0.55, and 0.76 m M , respectively [31] while 
in the M I R measurements, standard errors for lactate measurements ranged from 1 to 3 
m M , and those for glucose were approximately 1 m M [32]. The average/concentrations 
of glucose, lactate, glutamine, and ammonia in this study were 4.03, 16.3, 2.74, and 3.4 
m M , respectively, requiring the use of more accurate methods of analysis. Conventional 
off-line analytical instruments such as the YSI 7100 M B S (YSI Inc., Yellow Springs, OH) 
with precision on the order of 0.11, 0.22, 0.1 and 0.1 m M for glucose, lactate, glutamine, 
and ammonia, respectively, are better suited for analysis where the concentrations of these 
nutrients and metabolites are low and when increased precision is desired. Thus despite the 
significant progress in bioprocess monitoring over the past few decades [20], there is still 
a need for reliable sensors that would allow for on-line estimation of the concentrations of 
key metabolites and amino acids. The applicability of new on-line sensors for real-time flux 
analysis is currently being investigated in our laboratory. 

9.5.4 Metabolite Balancing and Isotope Tracer Approaches as Applied 
to QRT-MFA 

As Q R T - M F A requires the rapid; analysis of experimental data for estimation of metabolic 

fluxes, it is not practical to use isotope tracer studies for estimating metabolic fluxes since 

this technique is laborious both from experimental and analytical standpoints. It is well 
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known that metabolite balancing alone is not sufficient to estimate all the intracellular 
metabolic pathway fluxes because the set of linear equations defined by these mass balances 
is underdetermined [11, 33, 34]. Some of these limitations can be overcome through the 
use of additional constraints such as including the mass balance expressions of the co-
metabolites A T P or N A D ( P ) H , assuming the irreversibility of certain reactions, or through 
the use of objective functions [35]. Moreover, the metabolite balancing technique can be 
augmented with a few carefully planned isotope tracer studies that could validate the use 
of nutrient and metabolite mass balances alone for the estimation of metabolic fluxes. 

9.5.5 Implementation of QRT-MFA in this Study 

A n intuitive and visual approach towards estimating metabolic fluxes was used in this study. 
Computation of metabolic fluxes was initiated from the process monitoring and control envi-
.ronment in Lab V I E W through a graphical user interface. The input information consisting 
of rates of growth, glucose and oxygen consumption, metabolite production, carbon-dioxide 
evolution and uptake/production rates of amino acids was provided. While there is a pro­
vision in the software to record and use this data in real-time, a combination of on-line and 
off-line data was currently used as illustrated in Figure 9.2. Subsequent metabolic flux cal­
culations were performed using FluxAnalyzer in the M A T L A B environment and the results 
displayed both in graphical and tabular format. The graphical display (Figure 9.7) showed 
the metabolic flux map along with values of key metabolic fluxes. Features of the graphical 
display include a distinction between computed fluxes and those obtained from experimen­
tal data, and lines in the metabolic map with thickness proportional to the magnitude of 
the flux. The tabular depiction lists the magnitude of the fluxes through all the reactions 
in the metabolic pathway and has a provision for normalizing these fluxes based on any 
nutrient/metabolite of choice. 

Seamless integration between the process monitoring and control environment (Lab-
V I E W ) and the flux analysis computing environment ( M A T L A B ) allowed easy access to 
metabolic flux information in addition to other commonly measured experimental variables 
such as pH, temperature and DO'along with some calculated variables such as cell growth 
rate, and specific uptake/production rates of key nutrients and metabolites. As perfusion 
experiments are often carried out over extended periods of time, this information can be 
archived allowing for trending of key metabolic fluxes. Thus, changes in cellular metabolism 
can be readily identified and once a cause-effect relationship has been established, this in­
formation can be used to make appropriate modifications to process conditions that will 
result in the desired improvement in the process. 
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Figure 9.7: Graphical representation of the results of metabolic flux analysis. Distinction is made 
between experimentally measured and calculated fluxes through use of color and the 
thickness of the flux lines correspond to the magnitude of the respective fluxes 

Currently, the time from sampling the bioreactor to obtaining all the necessary analytical 

data for computing the metabolic fluxes through a combination of on-line and off-line mea­

surements is approximately 1 hour. Hence there is a 1 hour delay in obtaining a metabolic 

snapshot of the bioreactor at any given time. This delay can be reduced significantly as more 

data become reliably available on-line thereby enabling the transition from quasi-real-time 

to real-time estimation of metabolic fluxes. 

9.5.6 Practical Implications of QRT-MFA 

Current industrial practice for cultivating mammalian cells in perfusion culture involves 

bioreactor operation at desired set points for process variables such as cell specific perfu­

sion rate, pH, temperature, and dissolved oxygen concentration. Process characterization 

involves off-line estimation of prime variables such as cell density, nutrient, metabolite and 

product concentrations. Control schemes are typically based on values of the prime vari-
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ables alone. For instance, the bioreactor cell density control loop maintains constant cell 
density by bleeding cells from the bioreactor. This can be readily accomplished as long there 
is an on-line indicator of cell density such as an optical density probe. Indirect indicators 
of cell density such as oxygen consumption rates could also be used for this purpose. It is 
important to note that current operational protocols do not rely on detailed information on 
cellular metabolism. . ; 

When metabolic fluxes can be estimated rapidly, a significant amount of quantitative 
information on cellular- metabolism becomes available which can be used in various process 
control loops to guide bioreactor performance in the desired direction. For instance, a 
decrease in the stoichiometric ratio between lactate production and glucose consumption 
from 1.36 mol/mol in normal culture to 0.04 mol/mol in a metabolically altered culture 
was seen where the amount of glucose available to hybridoma cells in fed-batch culture was 
reduced [24]. Based on their results,' the authors suggest initiation of cultivation in fed-
batch mode and exposing cells to reduced amounts of glucose so that lactate production is 
minimized resulting in very efficient, cellular metabolism as seen by increased flux through 
the T C A cycle. Once this shift in metabolism has occurred, the bioreactor can be operated 
in a continuous mode and the advantages of efficient metabolism can be leveraged. As seen 
earlier, reduced lactate yields from glucose allow operation at lower perfusion rates resulting 
in a concentrated protein stream for subsequent purification processes. 

For robust implementation of such a control strategy that is based largely on the 
metabolism of cells, it is necessary to obtain frequent snapshots of cellular metabolism that 
will provide valuable feedback on the efficacy of the process control strategy. In the initial 
fed-batch phase of the process, metabolic flux information would be necessary to follow 
the shift in metabolism from the high lactate producing state to one that is highly energy 
efficient as seen by increased flux through the T C A cycle. The feeding strategy for glucose 
could be based on the relative distribution of fluxes at the pyruvate branch point. During 
the next phase of the experiment where it is desired to maintain the efficient metabolic state 
of the cells, metabolic fluxes provide the information necessary to characterize the physi­
ological state of the cells. Again glucose feeding during the perfusion phase can be based 
on flux distribution at the pyruvate branch point. While it can be argued that the above 
control strategy can be based on glucose concentration alone, that would be representative 
of indirect control of cellular metabolism. Wi th rapid estimation of metabolic fluxes, it is 
possible to directly control cellular metabolism by feeding glucose at a rate that ensures a 
fixed distribution of fluxes at the pyruvate branch point. This concept of direct estimation 
and control of cellular metabolism in an industrial mammalian cell bioreactor is novel and 
more work is necessary to demonstrate the usefulness of this approach towards accelerated 
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process development and optimized bioreactor operation. 
Other applications of Q R T - M F A include medium optimization and clone selection that 

are usually labor-intensive and time consuming approaches. For both these applications, 
initial screening is usually done in a high throughput fashion followed by evaluation of a 
small subset of high performers in bioreactors. Traditionally, specific protein productivity. 
and cell growth rate and viability have been regarded as the most important indicators of 
cell performance and we believe that inclusion of metabolic fluxes in this selection criteria 
provides an extra line of evidence for selection of a particular medium formulation or clone. 

9.6 Conclusions 

We have presented a general framework for quasi-real-time estimation of metabolic fluxes 
in a perfusion bioreactor. The concept is general and as it relies on metabolite balancing 
alone, it can be readily applied to both laboratory and industrial-scale bioreactors of prac­
tically any configuration. The utility of this approach towards monitoring shifts in cellular 
metabolism was demonstrated using C H O cells cultivated in perfusion reactors where ex­
posure to lower nutrient concentrations shifted cellular metabolism towards a more efficient 
state as seen by increased flux into the T C A cycle. This new state was characterized by 
lower production of waste metabolites with significant implications for reactor design and 
operation. There exist several other scenarios such as clone selection; medium optimization, 
and bioreactor environment optimization, among others, where M F A can be applied to op­
timize the operation of mammalian cell bioreactors. While the framework provided in this 
study allows real-time computation of metabolic fluxes, it is limited by the lack of accurate 
and reliable sensors for on-line estimation of key nutrient and metabolite concentrations. 
Once such sensors become available, they will enable the full realization of metabolic flux 
analysis in real-time. This M F A implementation will substantially increase the quality 
of information obtained from experiments in process development bioreactors resulting in 
additional insights into cellular physiology and metabolism. This information can play a 
significant role in the design of operational strategies for the production bioreactor where 
the therapeutic protein will finally be made. 
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Conclusions 

The study of cell physiology and metabolism is the unifying theme in this work. Metabolic 

flux analysis was used to quantify cell metabolism and both the metabolite balancing and 

isotope tracer methods were evaluated (Chapters 2, 3, 7 - 9). This approach was used to 

study metabolism at high and low bioreactor pCO"2 concentrations and significant differences 

were observed (Chapter 4). Information on O U R and C E R was necessary for metabolic flux 

analysis and methods for estimating them in perfusion cultivations were developed (Chapter 

5). For reliable application of metabolic flux analysis to batch and fed-batch cultures, robust 

specific rates are necessary since these comprise the input data set. Current methods of 

specific rate estimation have multiple limitations and the logistic modeling framework was 

proposed to address these limitations (Chapter 6). 

Despite significant advances in the mammalian cell cultivation techniques, several chal­

lenges remain and some of them were addressed in this investigation. The adverse effects 

of high bioreactor pC02 on cell growth and protein productivity are well documented but 

controlling bioreactor pC02 closer to physiological levels is a challenge, especially in high-

density perfusion cultures. Examination of bioreactor p C 0 2 sources indicated that cellular 

C O 2 production accounted for ~25% of bioreactor p C 0 2 with the remaining due to NaHC03 

addition.to neutralize the lactate produced by the cells. A simple pC02 reduction strategy 

based on NaHC03 elimination was investigated and consistent p C 0 2 reduction on the order 

of 70% was achieved in multiple experiments. This was accompanied by 68 - 123% increase 

in growth rate and 58 - 92% increase in protein productivity. These results were repro­

duced at the manufacturing-scale confirming the robustness of this simple p C 0 2 reduction 

approach. In addition, this method of pC02 reduction is general and can be readily applied 

to fed-batch cultivations. 

Mass balance expressions for oxygen and carbon dioxide in a perfusion bioreactor were 
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developed enabling estimation of cell-specific oxygen uptake (OUR) and carbon dioxide 
evolution rates (CER). Speciation of C O 2 into H 2 C O 3 * and H C 0 3 was taken into account 
and the equilibrium constants were corrected for temperature and ionic strength effects 
to ensure accurate C E R estimation. Concentrations of oxygen and carbon dioxide in the 
exit gas stream were continuously monitored allowing real-time O U R and C E R estimation. 
In addition to providing useful information on cell physiology, this data enabled quasi-real-
time estimation of metabolic fluxes providing additional information on the cell physiological 
state. 

Recognizing the need for rapid and reliable modeling of data from early stage process 
development experiments, logistic equations were used to fit data from batch and fed-batch 
experiments. Since the logistic equations were analytically differentiable, derivatives and 
hence specific rates were readily computed. In contrast to other modeling approaches such 
as polynomial fitting and discrete derivative evaluation, logistic specific rates were smooth 
and logically constrained to the expected trends. The superiority of logistic modeling over 
current methods was demonstrated by examining 55 batch and fed-batch data sets spanning 
3 cell lines and 0.1 - 300 L reactor, volumes. This robustness coupled with simplicity of ap­
plication could make logistic modeling the method of choice for quantitatively characterizing 
batch and fed-batch data. 

Metabolic flux analysis was used to quantify cell physiology and metabolism in perfusion 
bioreactors. Metabolic models were developed for B H K and C H O cells and fluxes were es­
timated in quasi-real-time using a combination of on-line and off-line measurements by the 
metabolite balancing method. Reliability of the metabolic flux estimates by the metabo­
lite balancing method was ensured by comparison with data from isotope tracer studies. 
Routine monitoring of laboratory and manufacturing-scale bioreactors was possible using 
this method and this was also used to analyze transient changes in cell metabolism when 
bioreactor pH and DO were varied. This method of rapid flux analysis can also be used 
to analyze the impact of excursions in licensed manufacturing processes thereby helping 
product disposition. Discarding excursion-associated product is expensive and the impact 
of excursions are typically evaluated from a protein quality standpoint. Metabolic flux data 
will quantify the excursion impact on cell physiology and this information can augment 
protein quality data providing a more comprehensive view of the excursion impact. 



CHAPTER 10. CONCLUSIONS 193 

10.1 Extensions of This Study 

10.1.1 MFA Application to a Licensed Manufacturing Process 

Metabolic fluxes would be most useful if they could be linked to protein productivity and 
quality as they can serve as surrogates in quasi real-time. This is a challenging proposition 
and is further complicated by the low recombinant protein concentration in mammalian cell 
culture, often less than 0.1% of the total protein. Moreover, the pathways of central carbon 
metabolism (whose fluxes are estimated by metabolic flux analysis) may not necessarily be 
coupled with those of protein glycosylation which makes it difficult to establish direct flux 
- product quality correlations. However, if correlations between flux and product quality 
data are established from a large number of experiments, metabolic fluxes can be used 
to empirically predict product quality significantly enhancing the impact of metabolic flux 
analysis. Preliminary data (Appendix J) has indicated no adverse impact on protein quality 
from pH and DO changes and more detailed carbohydrate and associated analyses could 
be pursued to search for where flux analysis might be consistently correlated with quality 
changes. This would enable M F A to have a greater impact on mammalian cell process 
monitoring and control. 

10.1.2 Metabolite Profiling 

Metabolic flux analysis provides information on intracellular rates but not on the concen­

tration of intracellular metabolites. Information on intracellular metabolite concentrations 

enables improved characterization of the metabolic phenotype and can provide insight into 

the thermodynamic feasibility of reactions in the biochemical network (Appendix I). This ap-

' proach would be particularly useful if some intracellular metabolites could serve as markers 

for protein productivity and quality attributes such as glycosylation. Using a combination 

of G C - M S and L C - M S analysis several hundred intracellular metabolites can be identified in 

a high throughput fashion [1-5]. These techniques are new and can be expected to improve 

substantially in the near future resulting in reliable measurement of additional metabolites. 

Upon archival of such metabolomic data, statistical techniques can be used to classify ex­

periments based on intracellular metabolite concentrations. Ongoing experiments can be 

compared with these classifications to see if the experiment is in the desirable cluster and 

appropriate corrective action can be taken if necessary. 
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10.1.3 G S - M S for Isotope Tracer Studies 

Cell metabolism was characterized by a combination of metabolite balancing and isotope 
tracer analysis by N M R in this study. Albeit powerful, N M R analysis requires a substantial 
amount of labeled glucose in the cultivation medium making it expensive and subsequent 
sample analysis and flux computation are complicated. Some of these difficulties can be 
overcome by using G C - M S since the amount of labeled substrate in the medium can be 
reduced and sample analysis is easier [6-13]. It must however be recognized that G C - M S 
and N M R can be complementary techniques in some instances and the information from 
G C - M S analysis could be slightly different than that from N M R . Recent developments in 
the application of G C - M S for metabolic flux analysis coupled with lower G C - M S equipment 
costs should make this method more attractive for metabolic flux analysis. 

10.1.4 Flux Analysis from Transient Data 

Most isotope tracer experiments to date are based on the assumption that cells are at iso-
topic steady state. Thus, experiments with labeled substrate must be conducted for several 
days before a sample can be drawn for analysis, greatly increasing experimental costs. If 
transient data following the introduction of an isotope tracer could be used for flux analysis, 
it would greatly reduce the requirement of labeled substrate. Moreover, metabolic shifts in 
any experiment can be investigated by injecting a pulse of labeled substrate and analyzing 
a sample shortly thereafter. This approach, however, presents modeling and computational 
challenges because fractional enrichment of the isotope isomers is time dependent and must 
be described by a system of nonlinear differential equations [14]. It is likely that several 
thousand differential equations and hundreds of parameters will be necessary to describe a 
typical mammalian cell bioreaction network. Moreover, this system is likely to be stiff and 
very sensitive to parameter values which,would make their robust estimation very difficult. 
This problem is perhaps best addressed by first considering a very simple network for which 
analytical solutions of the differential equations are available. • This simplifies parameter 
estimation and can help establish the validity of flux estimation from transient data. The 
model can subsequently be extended to include additional reactions such that numerical 
solutions of the differential equations will become necessary. Extensive statistical testing 
w i l l be needed to prove that the resulting flux estimates are reliable and representative of 
cell metabolism. 
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10.1.5 Low CSPR Cultivation 

High throughput perfusion cultivation is especially attractive for unstable molecules because 
their residence time at cultivation temperature can be reduced by increasing the perfusion 
rate. While this is a major advantage, this mode of operation will not compare favorably 
with a fed-batch process for stable molecules because of low protein concentration in the 
harvest. If stable proteins are produced by cells with non-growth associated kinetics, sub­
stantial reduction of the perfusion rate is possible without compromising cell viability and 
protein productivity and.quality. Operation at these low perfusion rates combines the ad­
vantages of perfusion and fed-batch processes resulting in stable high product concentration 
over many months of operation. The conceptual framework of low perfusion rate cultivation 
and comparison with fed-batch cultivation has been developed and demonstrated for hy­
bridoma cells producing antibodies against tumor necrosis factor [15]. Application to other 
stable molecules will further illustrate the advantages of low perfusion rate cultivation. 
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Appendix A 

C o m p u t e r P r o g r a m f o r F l u x 
E s t i m a t i o n 

The steps involved in flux estimation by the metabolite balancing and isotope tracer meth­
ods have been presented in Chapter 3. The isotope tracer method requires sophisticated 

computational strategies while those for the metabolite balancing method are simple. The 
CR) 

following is a simple M A T L A B program that computes fluxes in the simplified bioreac­
tion network of Chapter 3. The program also performs redundancy and consistency analysis 
from which improved flux estimates can be obtained through modified (improved) specific 
rate data. 

mfa_balancing.m (Flux Estimation in Overdetermined systems) 
% mfa_balancing.m Computes Me t a b o l i c Fluxes f o r Mammalian C e l l s 
7, R e a c t i o n Network i s from B a l c a r c e l and C l a r k % (B.Prog.,19, 98-108 2003) 
°/0 Measurements i n c l u d e glucose, l a c t a t e , 02, and C02 

c l e a r a l l 

'/. 1. MATRIX DEFINITIONS 
°/0 S t o i c h i o m e t i r c Matrix, GT 

GT = [-1 0 0 0 -1 0 0 0 0 0; 0 -1 0 0 0 1 0 0 0 0; , .-. 
0 0 -1 0 0 0 3 0 0 0; 0 0 0 -1 0 0 0 -0.5 -0.5 0;... 
0 0 0 0 2 -1 -1 0 0 0; 0 0 0 0 2 -1 .4 -1 0 0; .. . 
0 0 0 0 0 0 1 0 -1 0; 0 0 0 0 2 0 1 2.5 1.5 - 1 ] ; 

°/0 rank and c o n d i t i o n number of GT 

197 
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rankGT = rank(GT); condGT = cond(GT); 

°/0 Rate Vector, v ' 
v = [-1.4788 1.7293 5.8333 -5.1369 0 0 0 0 0 0 ] ' ; 

°/„2. FLUX ESTIMATION 
% S e p a r a t i o n of G i n t o Gm and' Gc 
GmT = GT(:,1:4); GcT = GT(:,5:10); 

% S e p a r a t i o n of v i n t o vm and vc 
vm = v ( l : 4 , l ) ; vc = v(5:10., 1); 

°/0 Unknown Rate Vector (vc) E s t i m a t i o n 
vc = -pinv(GcT) *GmT*'vm; 

% 3. ERROR DIAGNOSIS 
% Redundancy Matrix 
R = GmT - GcT*pinv(GcT)*GmT; rankR = rank(R); 

°/0 Reduced redundancy m a t r i c 
Rr = [0.8099 0.4049 -0.2250 -0.3599 . 

-0.3679 -0.1839 -0.6745 .-0.6131]; 

% D e l t a , e and F e s t i m a t i o n 
measurement_error = 0 . l * o n e s ( l , 4 ) ' ; 
d e l t a = vm.*measurement_error; 
e l = Rr*vm; 
d e l t a l = d e l t a * d e l t a ' ; 
F = zeros(length(vm),length(vm)); 

f o r i=l:length(vm) F ( i , i ) = d e l t a l ( i , i ) ; end . 

°/0 Var-Cov Matrix of r e s i d u a l s and h e s t i m a t i o n 

t s i = Rr*F*Rr' 
h • = e l - * p i n v ( t s i ) * e l 

% Improved vm and vc estimates 
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vm_new = (eye(4) T F*Rr '* inv( t s i )*Rr )*vm 
vc_new = -pinv(GcT)*GmT*vm_new 



Appendix B 

Solution Chemistry in a Perfusion 

Bioreactor 

Accurate quantitative description of the solution chemistry in a perfusion bioreactor is es­

sential to meaningfully.interpret pCC>2 reduction due to.medium and base changes. Carbon 

dioxide and and lactic acid are products of cellular metabolism that reduce bioreactor pH. 

Base addition (usually NaOH, NaHC03 or Na2COa) becomes necessary to maintain biore­

actor pH at the predefined setpoint (typically close to neutral). The complex nature of 

the chemistry of C O 2 dissociation must be modeled to close the C O 2 mass balance in a 

perfusion reactor. Since carbon dioxide evolution rate and RQ calculations are performed 

using the C O 2 mass balance expression, C O 2 dynamics in the perfusion system must be 

accurately accounted for. While carbon dioxide dissociation dynamics play a central role, 

the roles of other acids and bases such as lactic acid and ammonia are also important and 

will be examined in this section. 

B . l C o m p u t e r Porgrams for Solu t ion C h e m i s t r y Ca lcu l a ­

t ions 

Perfusion bioreactors are operated at temperatures close to 37° C with medium ionic 

strengths in excess of 0.1 M due to the presence of salts such as NaCl . This complicates 

calculations because equilibrium constants must be corrected for temperature and ionic 

strength (most literature data-are at 25° C and zero ionic strength).. Computer programs 

were written to perfom these calculation and are described below. 

200 
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•B.l. l Temperature Correction for Equilibrium Constants 

Most equilibrium constants available in databases and textbooks are for standard temper­
ature (25° C) and these are not directly applicable to mammalian cell cultivations that are 
typically around 37° C. The Van't Hoff equation describes the temperature dependence of 
the equilibrium constant ' 

where K is the unknown equilibrium constant at temperature T, Kref the known equilibrium 
at the reference temperature, Trej (usually. 25° C), AH0 the standard enthalpy change for 
the reaction and i?,the gas constant. A l l other factors affecting the equilibrium constant 
are assumed to be constant at the two temperatures. For the conversion of'CG*2( g) to 
H 2 C 0 3 * , the Kref and Tref values are I O - 1 4 7 and 298 K , respectively and R is 1.98 x l O " 3 

kcal/(mole-K). The standard enthalpy change, AH0, can be estimated as 

AH° = fcvjl0) . - ( X > < ) (B .2) 
v-'—' /products V ' '—' / reactants 

where Vi is the stoichiometric coefficient and H® the enthalpy of formation of species i at 
25 °C and 1 atm pressure. Substituting -167, -94.05 and -68.32 kcal/mole for the H® values 
of H 2 C O 3 * , C0 2 ( g ) and H 2 O , respectively, Eq.(B.2) becomes . ' 

AiT° = ( - 1 6 7 ) p r o d u c t s - (-94.05 - 68 .32 ) r e a c t a n t s . - 4.63 kcal/mole ' . (B.3) 

Substituting for AH0, R, Kref and Tref in Eq.(B. l ) results in Kg = I O " 1 6 0 

For the dissociation of H 2 C O 3 * to H C 0 3 , the Kref and Tref values are I O - 6 3 5 and 298 

K , respectively and R is 1.98 x 10~ 3 kcal/(mole-K). The standard enthalpy change, AH0, 
can be estimated as 

A t f ° = (-165.18 + 0 ) p r o d u c t s - ( - 1 6 7 ) r e a c t a n t s = 1.82 kcal/mole (B.4) 

Substituting for AH°, R, Kref and Tref in Eq.(B. l ) results in K = I O - 6 3 0 . 

K ^ ^ { ( l O T ) t ^ - 3 i o ) } - 1 0 ^ ° ' / • < B ' 5 ' 
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For the dissociation of H C 0 3

 t o COf, AH0, can be estimated as 

AH0 = (-167 + 0 ) p r o d u c t s - ( - 161 .63 ) r e a c t a n t s = -5.37 kcal/mole (B.6) 

which upon substitution into Eq.(B. l ) results in K = I O - 1 0 4 8 . The temperature corrected 
(for 37 °C) equilibrium constants, Kg, Kx and K2 are thus-IO - 1- 6 0, I O - 6 3 0 and I O - 1 0 4 8 , 
respectively. The program vanthoff.m computes K from known values of Kref, AH0 and 
Tref using Eq. (B. l ) . 

Temperature Correction for Equilibrium Constants (vanthoff.m) 

7, USAGE: Type "vanthoff" at the Matlab command prompt 

I 
'/, PURPOSE: 
7, Computes e q u i l i b r i u m constant at a d e s i r e d temperature 
'/• l n ( k / k r e f ) = dHO/R [1/Tref - 1/T] OR 
'/. k = k r e f exp {dHO/R [1/Tref - 1/T]} 
°l> 

'/, INPUTS 
°/0 1. k r e f : E q u i l i b r i u m constant at the r e f e r e n c e temperature 
°/0 2. T r e f : Reference temperature (C) 
°/« 3. T : Temperature at which e q u i l i b r i u m constant i s d e s i r e d (C) 
% 4. dHO : Enthalpy change (KJ/mole) 

% OUTPUTS 

°/0 1. k: E q u i l i b r i u m constant at temperature T 

'/. '/. L a s t M o d i f i e d 07/10/2004 

'/. INPUT INFORMATION 

promptl = {'Reference (known) value of the e q u i l i b r i u m constant',... 
'Reference Temperature, ( C ) ' , . . . 
'Temperature at which e q u i l i b r i u m constant i s d e s i r e d , ( C ) ' , . . . 
'Change i n Enthalpy, (KJ/mole)'}; 

t i t l e l 
l i n e N o l 
input1 

= 'Input For the Vant Hoff Equation'; 

= l ; 

= i n p u t d l g ( p r o m p t l , t i t l e l , l i n e N o l ) ; 
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k r e f .'= str2num(input 1{1, 1>); 
t r e f c = str2num(inputl{2,1}); 
tnewc = str2num(inputl{3,1}); 
dhO = s t r 2 n u m ( i n p u t l { 4 , l } ) ; 

% CALCULATIONS 

k=fv a n t h o f f ( k r e f , t r e f c , t n e w c , d h O ) ; 

1 RESULT DISPLAY 

•dispC.The new value of the e q u i l i b r i u m constant is'') 
d i s p ( k ) 
B. l .2 Ionic Strength Calculation 

The ionic strength of a solution can be calculated as 

where C\ and z\ are charge and concentration of species i , respectively. Ideally all species in 

the medium must be accounted for to get a representative ionic strength estimate. While 

this can be cumbersome for a complex medium formulation, 3 - 5 species with the highest 

concentration are responsible for the bulk of the ionic strength and using them in Eq.(B.7) 

should be adequate for most practical purposes. 

Computing Ionic Strength of a Solution (ionicstrength.m) 

°/0 USAGE: Type " i o n i c s t r e n g t h " at the Matlab command prompt 

°/„ PURPOSE: 

% Computes I o n i c Strength of a system 

'/,% INPUTS 

1 
% 1. The no of s p e c i e s i n the system 
°/0 2. C o n c e n t r a t i o n and Charge of each s p e c i e s 

% 
% OUTPUTS 
% 1.. I o n i c Strength 
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'/. % Last M o d i f i e d 03/14/2004 

promptl = ('Please enter the number of s p e c i e s ' ) ; 
t i t l e l = 'Input For I o n i c s t r e n g t h c a l c u l a t i o n s ' ; 
l i n e N o l = 1 ; 

i n p u t l = i n p u t d l g ( p r o m p t l . t i t l e l , l i n e N o l ) ; 

nospecies = str2num(input1{1,1}); 

i n p s t r = i n p u t l { l , 1 } ; 

cone = i n p u t ( ' P l e a s e enter s p e c i e s c o n c e n t r a t i o n s . Eg [0.01;0.01]: ' ) ; 
charge = i n p u t ( ' P l e a s e enter s p e c i e s charges. Eg [1;2]: ' ) ; 

i f length(conc) ~= nospecies 
d i s p ( ' c o n c e n t r a t i o n values not c o n s i s t e n t with the number of s p e c i e s ' ) 
e l s e i f length(charge) "= nospecies 
d i s p C C h a r g e values not c o n s i s t e n t w i t h the number of s p e c i e s ' ) , 

e l s e 

i s t r e n g t h = f i o n i c s t r e n g t h ( c o n c , c h a r g e ) ; 
answer=['The I o n i c Strength i s '. n u m 2 s t r ( i s t r e n g t h , 4 ) ] ; 
disp(answer) 

end : 

B.1.3 Activity Coefficient Calculation 

Species activities are a function of solution ionic strength with unity activity coefficients 

at zero ionic strength. Thus species concentration and activity can be assumed to be 

equivalent in solutions with very low ionic strength. Ionic strengths of typical cell culture 

media are usually in exces of 0.1 M due to the presence of salts (especially NaCl) such 

that species activity coefficients are substantially different than 1. Activity coefficients 

can be calculated using the Debye-Huckel, extended Debye-Huckel, Guntelberg and Davies 

equations depending upon the solution ionic strength. The driver program is actcoeff.m 

where the user provides input data and chooses the appropriate activity coefficient equation. 

Activity coefficients are estimated in separate function files for each correlation^ Only the 
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Davies equation is presented .below as it is adequate to describe most mammalian cell culture 
systems. •" • 

Driver Program for Computing Activity Coefficients (actcoeff.m) 

°/0 USAGE: Type " a c t c o e f f " at the Matlab command prompt 

•/. v 
7. PURPOSE: 
% Computes A c t i v i t y C o e f f i c i e n t s based on Debye-Huckel, 

% Extended Debye-Huckel, Guntelberg, and Davies Equations. 

'/. ' 
% INPUTS 
°/0 A combination of 
% 1. I o n i c Strength 
°/0 2. Charge of the i o n 
% 3. Temperature 
°/0 4. Hydrated Ion s i z e 
'/. 
% OUTPUTS 

% 1. A c t i v i t y C o e f f i c i e n t 

% % Last M o d i f i e d 07/11/2004 
0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/ 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/̂  

°/0 Information on the a p p l i c a b i l i t y of the v a r i o u s C o r r e l a t i o n s 
selectl=menu('Choose an Equation t o C a l c u l a t e A c t i v i t y C o e f f i c i e n t s ' , . . . 

'Debye-Huckel Equation: (I < 0.01 M)',... 
'Extended Debye-Huckel Equation: (I < 0.1 M)',... 
'Guntelberg Equation: (I < 0.1 M)',... 

'Davies Equation: (I < 0.5 M)',... 

' A c t i v i t y C o e f f i c i e n t s f o r a N e u t r a l Species: (I < 5 M)'); 

°/ °/ V V V °/ V °/ V °/ V V °/ °/ V V °/ °/ V V °/ V °/ V °/ V °/ °/ °/ °/ °/ V °/ V V °/ °/ V V V V °/ °/ V °/ V °/ V °/ °/ 0 / 0 / c / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 

°/0 1. Debye-Huckel Equation 

i f select1==1 
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promptl = {'Ionic Strength','Charge of the Ion','Temperature, (C)'>; 
t i t l e l = 'Input For the Debye-Huckel Equation'; 
l i n e N o l = • 1; , 
i n p u t ! = i n p u t d l g C p r o m p t l ; t i t l e l , l i n e N o l ) ; 

i o n s t r = str2num(input1{1,1}); 
charge = str2num(inputl{2,1}); 
tempi = str2num(input1{3,1}); 

i f i o n s t r > 0.01; 
dispCWARNING: I o n i c S trength > 0.01 M ' ) 

d i s p ( ' A c t i v i t y c o e f f i c i e n t s w i l l not be accurate') 
end 

activity=fdebyehuckeKionstr,charge,tempi); 
answer=['The A c t i v i t y C o e f f i c i e n t i s ' n u m 2 s t r ( a c t i v i t y , 4 ) ] ; 
disp(answer) 

y y y 0/ 0/ y y y 0/ y 0/ y 0/HI ni DI 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ oy 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ o> 0/ 0/ y y y y y y y 0101 y y y y 

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy 

°L 2. Extended Debye-Huckel Equation 

e l s e i f selectl==2 . ' 

promptl = {'Ionic Strength','Charge of the Ion',... 
'Hydrated Ion S i z e (Angstroms)','Temperature, (C)'}; 

t i t l e l = 'Input For the Extended Debye-Huckel Equation'; 
l i n e N o l = 1; 
i n p u t l = i n p u t d l g ( p r o m p t 1 , t i t l e l , l i n e N o l ) ; 

i o n s t r .= s t r 2 n u m ( i n p u t l { l , 1 } ) : 
charge = str2num(inputl{2,1}); 
a = str2num(inputl{3,1>); 
tempi ==str2num (input 1{4,1}) ; 

i f i o n s t r > 0.1; 
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disp('WARNING: I o n i c S t r e n g t h > 0.1 M') 
d i s p ( ' A c t i v i t y c o e f f i c i e n t s w i l l not be accurate') 

end 

a c t i v i t y = f e x t d e b y e h u c k e l ( i o n s t r , c h a r g e , a , t e m p i ) ; 
answer=['The A c t i v i t y C o e f f i c i e n t i s ' n u m 2 s t r ( a c t i v i t y , 4 ) ] ; 
disp(answer) 

o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o™ 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/oA 

0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0 
/o/o/o/o/o/o/o/o/o/o/o/oAA/o/o/oA^ 

% 3. Guntelberg Equation 

e l s e i f selectl==3 

promptl = {'Ionic Strength','Charge of the Ion','Temperature, (C)'}; 
t i t l e l - 'Input For the Guntelberg Equation'; 
l i n e N o l = 1; 
i n p u t l = i n p u t d l g ( p r o m p t 1 , t i t l e l , l i n e N o l ) ; 
i o n s t r = s t r 2 n u m ( i n p u t l { l , 1 } ) ; 
charge = str2num(inputl{2,1}); 
tempi = str2num(inputl{3,1}); 

i f i o n s t r > 0.1; 
disp('WARNING: I o n i c S trength > 0.1 M') 
d i s p ( ' A c t i v i t y c o e f f i c i e n t s w i l l not be accurate') 

end 

a c t i v i t y = f g u n t e l b e r g ( i o n s t r , c h a r g e . t e m p i ) ; 

answer=['The A c t i v i t y C o e f f i c i e n t i s ' n u m 2 s t r ( a c t i v i t y , 4 ) ] ; 

disp(answer) 
0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/ 
/o/o/o/o/e/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/oA 

0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/ 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/oA 

% 4. Davies Equation 

e l s e i f selectl==4 
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promptl = {'Ionic Strength','Charge of the Ion','Temperature, (C)'} 
t i t l e l = 'Input For the Davies Equation'; 

l i n e N o l = 1; 
i n p u t l = i n p u t d l g ( p r o m p t l , t i t l e l , l i n e N o l ) ; 

i o n s t r = s t r 2 n u m ( i n p u t l { l , 1 } ) ; 
charge = str2num(inputl{2,1}); 
tempi = str2num(inputl{3,1}); 

i f • i o n s t r > 0.5; 
.dispCWARNING: I o n i c Strength > 0.5 M') 
d i s p ( ' A c t i v i t y c o e f f i c i e n t s w i l l not be accurate') 

end 

a c t i v i t y = f d a v i e s ( i o n s t r , c h a r g e , t e m p i ) ; 
ariswer=['The A c t i v i t y C o e f f i c i e n t i s ' n u m 2 s t r ( a c t i v i t y , 4 ) ] ; 
disp(answer) 

V V V V V V V V V V V V 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 6 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o 

0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ ni 010/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ oy 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 
A A / o A / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / ^ ^ oy 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 

0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0 A 
°/0 5. N e u t r a l Species 

e l s e i f selectl==5 
promptl = {'Ionic Strength'}; 
t i t l e l = 'Input For Computing A c t i v i t y C o e f f i c i e n t s f o r a N e u t r a l . 
Species'; 
l i n e N o l = 1; 

i n p u t l = i n p u t d l g ( p r o m p t l , t i t l e l , l i n e N o l ) ; . 

i o n s t r = s t r 2 n u m ( i n p u t l { l , 1 } ) ; 

i f I o n s t r > 5.0; 
disp('WARNING: I o n i c Strength > 5.0 M') 
d i s p ( ' A c t i v i t y c o e f f i c i e n t s w i l l not be accurate') 

end 
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a c t i v i t y = f n e u t r a l ( i o n s t r ) ; 
answer=['The A c t i v i t y C o e f f i c i e n t i s ' n u m 2 s t r ( a c t i v i t y , 4 ) ] ; 
disp(answer) 

°/ °/ °/ °/ V °/ °/ °/ °/ °/ °/ °/ °/ °/ V V V °/ °/ V °/ V V V V V V V V V V V °/ °/ °/ V V V V °/ °/ °/ °/ V V °/ °/ °/ V V V V V V V V V °/ °/ °/ V V V V V 

end 

Function File for the Davies Equation (fdavies.m) 

f u n c t i o n y = f d a v i e s ( i o n s t r , c h a r g e , t e m p i ) 

7. 

°/0 FDAVIES i a a f u n c t i o n f i l e t h a t t h a t computes the a c t i v i t y c o e f f i c i e n t 
% u s i n g the Davies equation 

'/. 
% f d a v i e s ( i o n s t r , c h a r g e ) computes a c t i v i t y c o e f f i c i e n t s at 25 C 
°/0 f d a v i e s ( i o n s t r , charge, tempi) computes a c t i v i t y c o e f f i c i e n t s at tempi C 

°/. Last M o d i f i e d 03/12/2004 

i f n a r g i n ==2 
temp2 = 273.15; 

e l s e i f n a r g i n ==3 
temp2=templ+273.15; 

e l s e 
d i s p ( ' I n a p p r o p r i a t e number of input arguements') 

end 

temp2 = templ+273.15; 
A = 1.825.*10."6.*(78.3808.*temp2)."(-1.5); 
a c t i v i t y = 10."(-A.*charge."2.*((ionstr."0.5./(1 + i o n s t r . " 0 . 5 ) ) . . . 

- 0 . 2 . * i o n s t r ) ) ; 

y = a c t i v i t y ; 

Function File for Neutral Species (fneutral.m) 

f u n c t i o n y = f n e u t r a l ( i o n s t r ) 

7. 
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% FNEUTRAL i a a f u n c t i o n f i l e t h a t t h a t computes the a c t i v i t y c o e f f i c i e n t 
% of a n e u t r a l s p e c i e s •• ' * ": 

7. 
f n e u t r a M i o n s t r ) r e t u r n s the a c t i v i t y c o e f f i c i e n t of a n e u t r a l s p e c i e s 

% at an i o n i c s t r e n g t h . o f i o n s t r 

7. S t a r t 06/23/1999; Last M o d i f i e d 03/12/2004 

a c t i v i t y = 1 0 . " (0.1. * i o n s t r ) ; -1 

y = a c t i v i t y ; 

B.1 .4 Ionization Fractions 

Ionization fractions provide information on the relative amounts of various species at any 
given p H 1 . For instance, C O 2 produced by the cells exists in solution as H 2 C O 3 * , H C 0 3 

and CO3" with their relative amounts dependent on solution pH. At a temperature of 37° C 
and a pH of 6.8 (typical cultivation condtions), H 2 C O 3 * , H C 0 3 and CO3" make up 15.69, 
84.26 and 5 x 10~ 4% of the total C O 2 in solution. This composition changes drastically with 
pH variation such that H 2 C O 3 * is the dominant species under acidic conditions and CO3" 

makes up the majority of the solution C O 2 under alkaline conditions. Estimating ionization 
fractions is cumbersome, especially when correction for temperature and ionic strength need 
to be made, and the following programs perform these calculations for monoprotic, diprotic 
and triprotic systems. 

Driver Program for Ionization Fraction Estimation (ionfrac.m) 

7o USAGE: Type " i o n f r a c " at the Matlab command prompt 

7. PURPOSE: 
7. Computes i o n i z a t i o n f r a c t i o n s f o r monoprotic, d i p r o t i c and t r i p r o t i c a c i d s 
7o under non-standard c o n d i t i o n s of temperature and i o n i c s t r e n g t h 

7, 
7. INPUTS 
7. 1. pH: System pH 
7o 3.. pKa: System pKa v a l u e ( s ) 

7, 

' S tumm, W . , and Morgan, J . J : (1996). Aquatic Chemistry, John Wiley and Sons, New York. 
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7. OUTPUTS 
% 1. aO,al: Monoprotic system i o n i z a t i o n f r a c t i o n s 
% 2. a0,al,a2: D i p r o t i c system i o n i z a t i o n f r a c t i o n s 
% 3. a0,al,a2,a3: T r i p r o t i c system i o n i z a t i o n f r a c t i o n s 

% L a s t Modified:' 7/11/2004 

a=menu('Choose an a c i d ' , ' M o n o p r o t i c ' , ' D i p r o t i c ' > ' T r i p r o t i c ' ) ; 

HI HI HI HI HI HI HI HI 010101 01 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/ 0/0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 01 01 01 HI HI HI HI HI HI 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/^ 

7. MONOPROTIC ACID 

i f a==l 

promptl = {'System pH',... 

t i t l e l = 'Input For Monoprotic System I o n i z a t i o n F r a c t i o n C a l c u l a t i o n ' ; 
l i n e N o l = 1; 

i n p u t l = i n p u t d l g ( p r o m p t l . t i t l e l , l i n e N o l ) ; . 

'System pKa at 25 C',... 
'New Temperature ( C ) ' , . . . 
'Enthalpy Change (KJ/mole)',... 
'Ionic S t rength (M)'}; 

dhOl 

ph 

p k a l s t d = 
tnew 

i o n s t r 

str2num(input1{1,1}); 
str2num(input1{2,1}); 
str2num(input1{3,1}); 
str2num(inputl{4,1}); 
str2num(input1{5,1}); 

p k a l f p k a l i t o c ( p k a l s t d , t n e w , i o n s t r , d h O l ) ; 

A = f i o n f r a c ( p h , p k a l ) ; 
d i s p C T h e i o n i z a t i o n f r a c t i o n s [aO, a l ] f o r the monoprotic system... 
are as f o l l o w s ' ) 
disp(A) 
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0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o 

% DIPR0TIC ACID .. . 

e l s e i f a==2 

promptl = {'System pH',... 
'Ionic Strength (M)',...' 
'System pKal at 25 C , . . . 
'System pKa2 at 25 C , . . . 
'New Temperature ( C ) ' , . . . 
'Enthalpy Change f o r f i r s t r e a c t i o n (KJ/mole)',... 
'Enthalpy Change f o r second r e a c t i o n (KJ/mole)'}; 

t i t l e l = 'Input For D i p r o t i c System I o n i z a t i o n F r a c t i o n C a l c u l a t i o n ' ; 
l i n e N o l = 1 ; 
i n p u t l = i n p u t d l g ( p r o m p t l , t i t l e l , l i n e N o l ) ; 

ph = s t r 2 n u m ( i n p u t l { l , 1 } ) ; 
i o n s t r = str2num(inputl{2,1}); 
p k a l s t d = str2num(input1{3,1}); 
pka2std = str2num(inputl{4,1}); 
tnew = str2num(inputl{5,1}); 
dhOl = str2num(input1{6,1}); 
dh02 = str2num(input1{7,1}); 

p k a l = f p k a l i t o c ( p k a i s t d , t n e w , i o n s t r , d h 0 1 ) ; 
pka2 = fpka2itoc(pka2std,tnew,ionstr,dh02); 

A=fionfrac(ph,pkal,pka2); 
d i s p C T h e i o n i z a t i o n f r a c t i o n s [aO, a l , a2] f o r the d i p r o t i c system... 
are as f o l l o w s ' ) 
disp(A) 

0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/6/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0 V 0 / 0 / 
/o/o/o/0/0 ZO/O/O/Q/Q/O/O/Q ZO/o/Q/o/o/O 
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I TRIPROTIC ACID 

e l s e i f a==3 

promptl = {'System pH',... 

' I o n i c S t rength (M) 
'System pKal at 25 C',... 
'System pKa2 at 25 C 
'System pKa3 at 25 C,... 
'New Temperature (C) 
'Enthalpy Change f o r FIRST r e a c t i o n (KJ/mole)',... 
'Enthalpy Change f o r SECOND r e a c t i o n (KJ/mole)',... 
'Enthalpy Change f o r THIRD r e a c t i o n (KJ/mole)'}; 

t i t l e l = 'Input For D i p r o t i c System I o n i z a t i o n F r a c t i o n C a l c u l a t i o n ' ; 

l i n e N o l = 1 ; 
i n p u t l = i n p u t d l g ( p r o m p t l . t i t l e l , l i n e N o l ) ; 

ph = str2num(input1{1,1}) 
i o n s t r = str2num(inputl{2,1}) 
p k a l s t d = str2num(inputl{3,i}) 
pka2std = str2num(inputl{4,1}) 
pka3std = str2num(inputl{5,1}) 
tnew = str2num(inputl{6,1}) 

dhOl = str2num(input1{7,1}) 
dh02 = str2num(inputl{8,1}) 
dh03 = str2num(inputl{9,1}) 

p k a l = f p k a l i t o c ( p k a l s t d , t n e w , i o n s t r , d h 0 1 ) ; 
pka2 = fpka2itoc(pka2std,tnew,ionstr,dh02); 
pka3 = fpka3itoc(pka3std,tnew,ionstr,dh03); 

A=fionfrac(ph,pkal,pka2,pka3); 

d i s p C T h e i o n i z a t i o n f r a c t i o n s f o r the t r i p r o t i c system... 

[aO, a l , a2, a3] are as f o l l o w s ' ) 
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d i s p ( A ) 
0/0/0/0/0/0/0/0/ 0/ 0/ 0/ 0/0/ 0/0/0/0/0/ 0/0/ 0/0/0/ 0/ 0/ 0/ 0/ 0/0/0/ 0/ 0/ 0/ 0/ 0/0/0/0/0/ 0/ 0/0/0/0/0/ V V °/ W V W V °/ V V ° / V 0 / W W V 
/o /o /o /o /o /o /o/o/o/o/o/o/o /o /o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o A 

end 

Function file for Ionization Fraction Calculation (fionfrac.m) 

f u n c t i o n y = fionfrac(ph,pkal,pka2,pka3) 

7. 
% FIONFRAC i a a f u n c t i o n f i l e t h a t computes i o n i z a t i o n f r a c t i o n s f o r 
-7o monoprotic d i p r o t i c and t r i p r o t i c systems 

7. 

7o f i o n f r a c ( p h , p k a l ) computes i o n i z a t i o n f r a c t i o n s f o r a monoprotic system 
7o f i o n f r a c ( p h , p k a l , p k a 2 ) computes i o n i z a t i o n f r a c t i o n s f o r a d i p r o t i c system 
7o fionfrac(ph,pkal,pka2,pka3) computes i o n i z a t i o n f r a c t i o n s f o r a t r i p r o t i c 
7o system 

•/.Last M o d i f i e d 03/05/2004 

i f n a r g i n ==2 
h=10.-(-ph); kal=10.~(-pkal); 
a0=h/(h+kal); al=kal/(h+kal); 
A=[a0,al] ; 

e l s e i f n a r g i n ==3 

h=10."(-ph); kal=10."(-pkal); ka2=10.~(-pka2); 

b=h"2+h*kal+kal*ka2; 

a0=h"2./b; al=h*kal/b; a2=kal*ka2/b; 
A=[aO,al,a2]; 

e l s e i f n a r g i n ==4 
h=10."(-ph); kal=10."(-pkal); ka2=10.*(-pka2); ka3=10.~(-pka3); 
c=h~3+h~2*kal+h*kal*ka2+kal*ka2*ka3; 
a0=h"3/c; al=h"2*kai/c; a2=h*kal*ka2/c; a3=kal*ka2*ka3/c; 
A= [aO, a l , a2, a3] : 

e l s e 
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d i s p ( ' I n a p p r o p r i a t e number of input arguements f o r computing... 
i o n i z a t i o n f r a c t i o n s ') ~ . 

end 

y=A; 
Correction of pkal for Temperature and Ionic Strength (fpkalitoc.m) 

f u n c t i o n y = f p k a l i t o c ( p k a l s t d , t n e w , i o n s t r , d h 0 1 ) 

7. 
7. FPKA1IT0C converts the Ka at standard c o n d i t i o n s to t h a t at a d e f i n e d 

% temperature 
% and i o n i c s t r e n g t h 

'/. 

% L a s t M o d i f i e d 07/11/2004 

k a l s t d = 1 0 " ( - p k a l s t d ) ; 

kaltemp = fvanthoff(kalstd,25.0,tnew,dhOl); 
a c t l = f d a v i e s ( i o n s t r , 1 , t n e w ) ; 
actneut = f n e u t r a l ( i o n s t r ) ; 
k a l i o n s t r = k a l s t d . * ( a c t n e u t . / ( a c t l . * a c t l ) ) ; 
p k a l . = - l o g l O ( k a l i o n s t r ) ; 
y = p k a l ; 

Correction of pka2 for Temperature and Ionic Strength (fpka2itoc.m) 

f u n c t i o n y = fpka2itoc(pka2std,tnew,ionstr,dh02) 

% 

% FPKA2IT0C converts the Ka2 at standard c o n d i t i o n s t o t h a t at a d e f i n e d 

% temperature 

7, and i o n i c s t r e n g t h 

7. 
7. L a s t M o d i f i e d 07/11/2004 

ka2std 
ka2temp 

act2 

= 10"(-pka2std); 
= fvanthoff(ka2std,25.0,tnew,dh02); 
= f d a v i e s ( i o n s t r , 2 , t n e w ) ; 
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k a 2 i o n s t r = ka2temp./act2; 
pka2 = - I o g l 0 ( k a 2 i o n s t r ) ; 

y = pka2; 

Correction of pka3 for Temperature and Ionic Strength (fpka3itoc.m) 

f u n c t i o n y = fpka3itoc(pka3std,tnew,ionstr,dh03) 

•/. 
% FPKA3IT0C converts the Ka3 at standard c o n d i t i o n s t o th a t at a d e f i n e d 
% temperature 
% and i o n i c s t r e n g t h 

•/. 

% L a s t M o d i f i e d 07/11/2004 

10~(-pka3std); 

fvanthoff(ka3std,25.0,tnew,dh03); 
f d a v i e s ( i o n s t r , l . t n e w ) ; 
f d a v i e s ( i o n s t r , 2 , t n e w ) ; 
f d a v i e s ( i o n s t r , 3 , t n e w ) ; 
k a 3 t e m p . * ( a c t 2 . / ( a c t l . * a c t 2 ) ) ; 
- I o g l 0 ( k a 3 i o n s t r ) ; 

y = pka3; 

B.1.5 pC-pH Diagrams 

pC-pH diagrams are a plot of the log of the species concentration as a function of system 

pH. They are an excellent visual representation of the relative amounts of various species 

at varying pH values and are an integral part of solution chemistry calculations. The 

programs below provide pC-pH diagrams for monoprotic, diprotic and triprotic systems for 

any temperature and ionic strength values. 

Driver Program for Construction of p C - p H Diagrams (pcphclosed.m) 

% USAGE: Type "pcphclosed" at the MatTab command prompt 

•/. 
% PURPOSE: 
% C o n s t r u c t s pC-pH diagrams f o r mono d i and t r i p r o t i c a c i d s i n c l o s e d 

ka3std 
ka3temp = 
a c t l 
act2 

act3 = 
k a 3 i o n s t r = 
pka3. 
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% systems. 

'/. 
y. INPUTS 

•/. 
% 1. The molar c o n c e n t r a t i o n 
'/, 2. System pKa(s) 
°/0 3. Temperatute 
°/0 4. I o n i c s t r e n g t h 

% 

% OUTPUTS 
°/„ 1. pC-PH diagram 

% Last M o d i f i e d 03/16/2004 

all=menu('Closed System pC-pH diagrams: Choose one of the f o l l o w i n g . . . 
options'', ... 
'Standard C o n d i t i o n s (Temperature = 25C; I o n i c Strength = 0 ) ' , . . . 
'Non-Standard C o n d i t i o n s ' ) ; 

11. STANDARD CONDITIONS 

i f a l l = = l 
al=menu('Closed System pC~pH diagrams: Choose one of the f o l l o w i n g . . . 
a c i d s ' , .... 
'Monoprotic A c i d at Standard C o n d i t i o n s (T= 25 C, 1=0)',... 
' D i p r o t i c A c i d at Standard C o n d i t i o n s (T= 25 C, 1=0)',... 
' T r i p r o t i c A c i d at Standard C o n d i t i o n s : T= 25 C, 1=0'); 

i f al==l 
promptl = {'Enter the Molar C o n c e n t r a t i o n ' , ' E n t e r the pKa'};. 
t i t l e l = 'Input For Monoprotic System'; 
l i n e N o l = 1 ; 
i n p u t l = i n p u t d l g ( p r o m p t l , t i t l e l , l i n e N o l ) ; 
c t o t = s t r 2 n u m ( i n p u t l { l , 1 } ) ; 
p k a l = str2num(inputl{2,1}); 
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al2=fpcphmonostd(ctot,pkal); 

e l s e i f al==2 

promptl = {'Enter the Molar C o n c e n t r a t i o n ' , ' E n t e r the p K a l ' , ' E n t e r . . . 
the pka2'>; ' 
t i t l e l = 'Input For D i p r o t i c System'; 
l i n e N o l = 1; 
i n p u t l = i n p u t d l g ( p r o m p t l . t i t l e l , l i n e N o l ) ; 
c t o t = s t r 2 n u m ( i n p u t l { l , 1 } ) ; 
p k a l = str2num(input1{2,1}); 
pka2 = str2num(inputl{3,1}); 

a l 2 = f p c p h d i s t d ( c t o t , p k a l , p k a 2 ) ; 

e l s e i f al==3 
promptl = {'Enter the Molar C o n c e n t r a t i o n ' , ' E n t e r the p K a l ' , . . . 
'Enter the pka2','Enter the pKa3'>; 
t i t l e l = 'Input For T r i p r o t i c System'; 
l i n e N o l = 1; 

i n p u t l = i n p u t d l g ( p r o m p t 1 , t i t l e l , l i n e N o l ) ; 
c t o t •= str2num(input1{1,1}); 
p k a l = str2num(inputl{2,1}); 
pka2 = str2num(inputl{3,1}); 
pka3 = str2num(inputl{4,1}); 

a l 2 = f p c p h t r i s t d ( c t o t , p k a l , p k a 2 , p k a 3 ) ; 

end 

% 2. TEMPERATURE AND IONIC STRENGTH CORRECTIONS 

e l s e i f all==2 
al=menu('Closed System pC-pH diagrams: Choose one of the... 
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f o l l o w i n g a c i d s ' , . . . 
'Monoprotic A c i d with Temperature and I o n i c S t r e n g t h . . . 
C o r r e c t i o n s ' , . . . 

' D i p r o t i c A c i d with Temperature and I o n i c S t r e n g t h . . . 
^Corrections' , . . . 
' T r i p r o t i c A c i d with Temperature and I o n i c S t r e n g t h . . . 
C o r r e c t i o n s ' ) ; 

i f al==l 

promptl = {'Enter the Molar C o n c e n t r a t i o n ' , ' E n t e r the pKa at 2 5 C 
'Enter the i o n i c S t rength'... 
'Enter the Temperature','Enter the enthalpy change... 
(dH, Kcal/M) of the r e a c t i o n ' } ; 

t i t l e l = 'Input For Monoprotic System'; 
l i n e N o l = l ; 
input1 = i n p u t d l g ( p r o m p t l , t i t l e l , l i n e N o l ) 
c t o t = s t r 2 n u m ( i n p u t l { l , 1 } ) ; 
pkal25 = str2num(inputl{2,1}); 
i o n s t r = str2num(inputl{3,1}); 
temp = str2num(input1{4,1}); 
d e l t a h =• str2num(input1{5,1}); ' 

al2=fpcphmonocor(ctot,pkal25,ionstr,temp,deltah); 

e l s e i f al==2 

promptl = {'Enter the'Molar C o n c e n t r a t i o n ' , ' E n t e r the pKal at 25C 
'Enter the pKa2 at 25C',... 

'Enter the i o n i c Strength','Enter the Temperature',... 
'Enter the enthalpy change (dH, Kcal/M) f o r the f i r s t . , 
r e a c t i o n ' . . . 
'Enter the enthalpy change (dH, Kcal/M) f o r the second, 
r e a c t i o n ' } ; 

t i t l e l = 'Input For D i p r o t i c System'; 



APPENDIX B. SOLUTION CHEMISTRY IN A PERFUSION BIOREACTOR 

l i n e N o l = 1 ; 
i n p u t l = i n p u t d l g ( p r o m p t l , t i t l e l , l i n e N o l ) ; 
c t o t = str2num(input1{1,1>) : 
pkal25 = str2num(inputl{2,1}) 
pka225 = str2num(inputl{3,1}) 
i o n s t r = str2num(input1{4,1}) 
temp = str2num(inputl-[5,1}) 
d e l t a h l = str2num(inputl{6,1}) 
deltah2 = str2num(input1{7,1}) 

a l 2 = f p c p h d i c o r ( c t o t , p k a l 2 5 , p k a 2 2 5 , i o n s t r , t e m p , d e l t a h l , d e l t a h 2 ) ; 

e l s e i f al==3 

promptl = {'Enter the Molar C o n c e n t r a t i o n ' , ' E n t e r the pKal at 25C 
'Enter the pKa2 at 25C','pKa3 at 25C',... 

'Enter the i o n i c Strength','Enter the Temperature',... 
'Enter the enthalpy change (dH, Kcal/M) f o r the f i r s t . , 
r e a c t i o n ' . . . 

'Enter the enthalpy change (dH, Kcal/M) f o r the second, 
r e a c t i o n ' . . . 

'Enter the enthalpy change (dH, Kcal/M) f o r the t h i r d . . 
r e a c t i o n ' } ; 

t i t l e l = 'Input For D i p r o t i c System'; 

l i n e N o l = l ; 
i nput1 = i n p u t d l g ( p r o m p t l , t i t l e l , l i n e N o l ) 
c t o t = str2num(input1{1,1}); 

pkal25 = str2num(inputl{2,1}); 

pka225 = str2num(input1{3,1}); 
pka325 = str2num(input1{4,1}); 

i o n s t r = str2num(inputl{5,1}); 
temp = str2num(inputl{6,1}); 
d e l t a h l = str2num(inputl{7,1}); 
deltah2 = str2num(inputl{8,1}); 
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deltah3 = str2num(inputl{9,1}); 

a l 2 = f p c p h t r i c o r ( c t o t , p k a l 2 5 , p k a 2 2 5 , p k a 3 2 5 , i o n s t r , t e m p , d e l t a h l , . . . 

d e l t a h 2 , d e l t a h 3 ) ; • . 

end 

end 

F u n c t i o n F i l e for M o n o p r o t i c Systems (fpcphmonocor.m) 

f u n c t i o n y = fpcphmonocor(ctot,pka25,ionstr,temp,deltah) 

% FPCPHMONOCOR i a a f u n c t i o n f i l e t h a t t h a t computes the pC-pH diagram 
% f o r a monoprotic a c i d at s p e c i f i e d temperature and i o n i c s t r e n g t h 
7 . 

°/„ fpcphmonocor(ctot,pka25,ionstr,temp,deltah) computes the pC-pH diagram 
7 f o r a monoprotic a c i d at temperature TEMP and i o n i c s t r e n g t h IONSTR 

7 . L a s t M o d i f i e d 03/16/2004 

7o Temperature C o r r e c t i o n s 
° / ° / ° / ° / ° / ° / ° / ° / ° / ° / ° / ° / V ° / ° / V V ° / ° / V V ° / V ° / ° / V V V V V V ° / V */ V V V V V V ° / " / V V V V ° / 0 / W W 0 / 0 / W W V 
/ o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o 

tempnew=temp+273.15; 

kwater=(10.~(-14)).*exp(6723.704.*((1./298.15)-(1./tempnew))); 
pkwnew=-logl0(kwater); 

ka25=10."(-pka25); 
kanew=fvanthoff(ka25,25,temp,deltah); 
pkanew=-logl0(kanew); 
° / V ° / ° / ° / ° / ° / ° / ° / ° / V ° / V ° / ° / V V ° / ° / V ° / ° / V V ° / ° / V ° / ° / V ° / ° / V ° / ° / ° / ° / V V V V V V V " / ° / ° / ° / ° / ° / ° / V V ° / ° / W W 
/o /o / o / o / o / o /o /o /o /o / o / o / o / o / o / o /o /o /o / o / o / o / o /o /o /o /o / o / o / o /o /o /o / o / o / o / o / o / o /o /o / o / o / o / o /o /o /o / o / o / o / o / o /o /o /o /o /o /o 

7 . COMPUTING ACTIVITY COEFFICIENTS 
o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / oy o / o / o / o / o / o / o / o / o / o y o / o / o / o / 0 / 0 / o / o / o / o / o / o / o y oy o / o / o / o / 0 / 0 / 
/ o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o 

7 . Species Charge = 1 
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c h a r g e 1 = 1 ; 
a c t = f d a v i e s ( i o n s t r , c h a r g e l , t e m p ) ; l o g a c t = l o g l O ( a c t ) ; 

•/.NEUTRAL SPECIES 
a c t n = f n e u t r a l ( i o n s t r ) ; 

0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 
/ o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / ^ 

7. [H+] CONCENTRATION 
° / ° / ° / ° / ° / ° / ° / ° / ° / ° / ° / ° / V ° / ° / " / V V V V ° / ° / V ° / V V V V ° / V ° / V ° / V V V V ° / ° / ° / V V V ° / V °/ 0 / 0 / 0 / W 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 
/ o / o / o / o / o / o / o / o / o / o / o A 

ph=linspace(0,14,141)'; h=10.~(-ph); logh=-ph; 
°/.[0H-3 CONCENTRATION 
logoh=ph-pkwnew-logact~logact; 
0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 
/ o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o 

•/„ AT NEW TEMPERATURE AND IONIC STRENGTH 
0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / o / o / o / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 
/ o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o 

o v e r a c t = ( a c t n . / ( a c t . * a c t ) ) ; 
kanewact=kanew.*overact; 
pkanewact=-loglO(kanewact); 

a=(ctot.*kanewact)./(h+kanewact); 

l o g a = l o g l 0 ( a ) ; 

ha=(ctot.*h):/(h+kanewact); 
logha=logl0(ha); 
0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 
/ o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o ' / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o 

spointxl=linspace(pka25,pka25,50)'; 
s p o i n t y l = l i n s p a c e ( 0 , - 1 4 , 5 0 ) ' ; 
spointx2=linspace(pkanewact.pkanewact,50)'; 

o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ . / o / . / o/ o/ o/ . / . / o/ o/ o / o / yiiH/«/o/yyyyotyyyyyyo/yyyyyyo/yciyyo/yy 
/ o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o 

°/o AT NEW TEMPERATURE AND IONIC STRENGTH 
plot( p h , l o g h , ' k J , p h , l o g o h , ' r ' , p h , l o g h a , ' b ' , p h , l o g a , ' m J . s p o i n t x l , . . . 
s p o i n t y 1 , ' b — ' , s p o i n t x 2 , s p o i n t y 1 , ' m — ' ) 
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a x i s ( [ 0 14 -14 0]) 
xlabel('pH') 
y l a b e K ' L o g C ) 
t i t l e C p C - p H diagram f o r [HA] < > [H+] + [A-]') 
l e g e n d C [H+] ',' [0H-] ', ' [HA] ', ' [A-] ', 'pKa(Std)', 'pKa(New)' ,-1) 
y y y y y y QI y y y y y y y y y y y o/ y y y y oi y y y y y y y y y y y HI y y y y y y y y oi y y yoi y y y y y y y y y y 

yl=pka25; 

disp('The pka at 25 C and 1=0 i s ' ) , d i s p ( y l ) 

y=pkanewact; 

disp('The new pka i s ' ) , d i s p ( y ) 

Funct ion Fi le for Diprot ic Systems (fpcphdicor.m) 

f u n c t i o n y = f p c p h d i c o r ( c t o t , p k a l 2 5 , p k a 2 2 5 , i o n s t r ) t e m p , d e l t a h l , d e l t a h 2 ) ; 
% 

7, FPCPHDICOR i a a f u n c t i o n f i l e t h a t t h a t computes the pC-pH diagram 
% f o r a d i p r o t i c a c i d at s p e c i f i e d temperature and i o n i c s t r e n g t h 
y. 
% f p c p h d i c o r ( c t o t , p k a l 2 5 , p k a 2 2 5 , i o n s t r , t e m p , d e l t a h l , d e l t a h 2 ) computes... 

% the pC-pH diagram 

% f o r a d i p r o t i c a c i d at temperature TEMP and i o n i c s t r e n g t h IONSTR 

'/„ L a s t M o d i f i e d 03/16/2004 

% TEMPERATURE CORRECTIONS 

/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/a/o/o/o/o 

tempnew=temp+273.15; 

kwater=(10.~(-14)).*exp(6723.704.*((1./298.15)-(1./tempnew))); 

pkwnew=-loglO(kwater); 

kal25=10."(-pkal25);" 
kalnew=fvanthoff(kal25,25,temp,deltahl); 
pkalnew=-loglO(kainew); 
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ka225=10.~(-pka225); 
ka2new=fvanthoff(ka225,25,temp,deltah2); 
pka2new=-logl0(ka2new); 
0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 

/o /o /o to /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o A 

7. COMPUTING ACTIVITY'COEFFICIENTS 
V °/ °/ V °/ °/ °/ °/ °/ °/ °/ °/ V °/ V V °/ °/ °/ °/ °/ V °/ °/ °/ °/ °/ °/ V V V °/ °/ V °/ °/ °/ °/ °/ °/ °/ V V V V °/ °/ V °/ V V V °/ V V V °/ °/ °/ 
• /o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o 
% Species Charge = 1 
c h a r g e 1 = 1 ; 
a c t l = f d a v i e s ( i o n s t r , c h a r g e l , t e m p ) ; l o g a c t l = l o g l O ( a c t l ) ; 

% Species Charge = 2 
charge2 = 2 ; 

act2=fdavies(ionstr,charge2,temp); I o g a c t 2 = l o g l 0 ( a c t 2 ) ; 

°/oNEUTRAL SPECIES 

a c t n = f n e u t r a l ( i o n s t r ) ; l o g a c t n = l o g l O ( a c t n ) ; 

°/, OVERALL ACTIVITIES 
o v e r a c t l = ( l / ( a c t l * a c t l ) ) ; o v e r a c t 2 = a c t n / ( a c t l * a c t l ) ; overact3=l/act2; 
0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 

/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/e/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o 
y. [H+] CONCENTRATION 
o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ <>/ o/ o/ o/ o/ o/ o/ o/ o/ oy o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ 0/ 0/ 0/ y 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ o/ o/ o/ o/ oy oy oy 
/ o / o /o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o 

'/. AT 25 C AND 1=0 

ph25=linspace(0,14,141)'; h25=10."(-ph25); logh25=-ph25; logoh25=ph25-14; 

% AT THE NEW TEMPERATURE 
ph=linspace(0,14,141)'; h=10.~(-ph); l o g h = l o g l 0 ( h ) ; 
oy o/ o/ o/ oy oy o/ o/ o/ o/ o/ o/ o/ o/ oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy.oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy 
/ o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o 

° / o [ O H - ] C O N C E N T R A T I O N 

logoh=ph-pkwnew-logact1-logact1; 
o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y o y 
/ o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o 
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1 CONCENTRATION BASED pKa's.AFTER ADJUSTMENTS FOR IONIC STRENGTH 
oy oy oy oy oy oy oy oy oy oy oy oy oy o/ o/ oy o/ oy y y oy oy y oy y y oy y y y y oy y oy oy oy <y y y y y y y y y y y y y y y y y y y y y y oy 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o A 

kalnewconc=kalnew.*overact2; 
pkalnewconc=-loglO(kalnewconc); 

ka2newconc=ka2new. *overact3 J; 
pka2newconc=-logl0(ka2newconc); 
oy oy oy oy oy oy o/ o/ o/ o/ oy oy oy oy oy oy oy oy oy oy y oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy o/ y y y y oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/oA^ 

°/„ ACID CONCENTRATIONS AT NEW TEMPERATURE AND IONIC STRENGTH 
oy oy oy oy oy oy oy oy oy oyoyoyoyoyoy oy oy oyoyoyoyoy oy oyoyoyoyoyoy oy oyoyoyoyoyoy oy oy yyy y y y oyoyoyoyoyoy oy oy oy oy oy o y 0 / 0 / 0 / 
/ o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / o / oAA /o / o / o / oAAA 

h 2 a = c t o t . / ( l + kalnewconc./h + (kalnewconc.*ka2newconc)./(h.~2)); 
Iogh2a=logl0(h2a); 

ha=ctot./(1+ h./kalnewconc + ka2newconc./h); 
logha=loglO(ha); 

a = c t o t . / ( l + h.~2./(kalnewconc.*ka2newconc)+ h./ka2newconc); 
lo g a = l o g l O ( a ) ; 
oyoyoyoyoyoy oyoyoyoyoy oyoyoyoyoy oyoyoyoyoy oyoyoyoyoy oyoyoyoyoyoy oyoyoyoyoy oyoyoyoyoy oyoyoyoyoyoy oyoyoyoyoy oyoyoyoyoyoy 
A / o / oA /oA /o / o / o / o / o / o / o / o / o / oA /o / o / o / o / o / o / o / oA 

% CONSTRUCTING pKa's 
o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o™ 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/oA 

s p o i n t x l = l i n s p a c e ( p k a l 2 5 , p k a l 2 5 , 5 0 ) ' ; 
spointx2=linspace(pka225,pka225,50)'; 
spointx3=linspace(pkalnewconc,pkalnewconc,50)'; 
spointx4=linspace(pka2newconc,pka2newconc,50)'; 
s p o i n t y l = l i n s p a c e ( 0 , - 1 4 , 5 0 ) ' ; 
0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/oA 

% PLOTS 
oy oyoyoyoyoy oyoyoyoyoy oyoyoyoyoyoy o/oy oyoyoyoyoy oyoyoyoyoy oyoyoyoyoy oyoyoyoyoy oyoyoyoyoy oyoyoyoyoy oyoyoyoyoy oyoyoyoyoy 
A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 

plot(ph,logh,'k',ph,logoh,'g ;,ph,logh2a,'r',ph,logha,'b',ph,loga,'m' 
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s p o i n t x l , s p o i n t y 1 , ' r — ' , s p o i n t x 2 , s p o i n t y 1 , ' g — ' , . . . 
s p o i n t x 3 , s p o i n t y 1,,'b—',spointx4,spointyl,'m—') 

a x i s ( [ 0 14 -14 0]) 
xlabel('pH') . ' . ' ; ' 
y l a b e K ' L o g C ) 

t i t l e ( ' p C - p H diagram f o r the D i p r o t i c A c i d [H2A]') 
legend('[H+]','[0H-]', '[H2A]','[HA-]' , ' [ A 2 - ] ' , ' p K a l ( s t d ) ' , ' p K a 2 ( s t d ) ' , . . . 
'pKal(new)','pKa2(new)',-1)• 
°/ °/ V V V V °/ °/ V °/ V V V V V V V V V V V V V °/ V V °/ V °/ V V V V V °/ °/ °/ °/ V V V °/ V V V V V °/ 0/W 0/ 0/ 0/ 0/ 0/ 0/w /o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o /o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o A 

yl=[pkal25, pka225]; 
d i s p C T h e pkas at 25 C and 1 = 0 are [pKal, pKa2] a r e ' ) ; 
d i s p ( y l ) ; 

y=[pkalnewconc, pka2newconc]; 
disp('The new pkas [pKal, pKa2] a r e ' ) ; 
d i s p ( y ) ; 

Funct ion Fi le for Triprot ic Systems (fpcphtricor.m) 

f u n c t i o n y = fp c p h t r i c o r ( c t o t , p k a l 2 5 , p k a 2 2 5 , p k a 3 2 5 , i o n s t r , t e m p , d e l t a h l , . . . 

d e l t a h 2 , d e l t a h 3 ) ; 

% 

% FPCPHTRICOR i a a f u n c t i o n f i l e t h a t t h a t computes the pC-pH diagram 

% for- a d i p r o t i c a c i d at s p e c i f i e d temperature and i o n i c s t r e n g t h 

7. ' 
7. f p c p h t r i c o r ( c t o t , p k a l 2 5 , p k a 2 2 5 , p k a 3 2 5 , i o n s t r , t e m p , d e l t a h l , d e l t a h 2 , d e l t a h 3 ) 

7« computes the pC-pH diagram 

7. f o r a t r i p r o t i c a c i d at temperature TEMP and i o n i c s t r e n g t h IONSTR 

7. L a s t M o d i f i e d 03/18/2004 

7. TEMPERATURE CORRECTIONS' 
o/ oy o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy 
/o/o/o/b /o/o /o/o /o/o /o/o /o/o /o/o /o/o /o/o /o/o /o/o /o/o /o/o /o/o /o/o /o/o /o/o /o/o /o/o /o/o /o/o /o/o /o/o /o/o /o/o /o/o /o/o/o/o/o 
tempnew=temp+273,15; 

kwater= (10. ~: (-14)) . *exp (6723.704. * ((1. /298.15) - (1. /tempnew))); 
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pkwnew=-loglO(kwater); 

kal25=10.~(-pkal25); 

kalnew=fvanthoff(kal25,25,temp,deltahl); 
pkalnew=-loglO(kalnew); 

ka225=10.-(-pka225); 
ka2new=fvanthoff(ka225,25,temp,deltah2); 
pka2new=-logl0(ka2new); 

ka325=10.~(-pka325); 
ka3new=fvanthoff(ka325,25,temp,deltah3); 
pka3new=-logl0(ka3new); 
°/ V V °/ V V °/ V V V V V V V V V °/ V V V °/ °/ °/ V V V °/ V °/"/ V V V V °/ °/ °/ °/ V V °/ V °/ °/ V V V V V °/ °/ V °/ °/ V V V V V 

°/o COMPUTING ACTIVITY COEFFICIENTS 
0/0/oy 0/oy 0/0/0/0/0/0/0/0/0/0/oy 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/oy oy oy 0/0/0/ /o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o 

% Species Charge = 1 
charge1 = 1 ; 
ac t l = f d a v i e s ( i o n s t r , c h a r g e 1 , t e m p ) ; l o g a c t l = l o g l O ( a c t l ) ; 

% Species Charge = 2 . . 
charge2 = 2; 

act2=fdavies(ionstr,charge2,temp); I o g a c t 2 = l o g l 0 ( a c t 2 ) ; 

% Species Charge = 3 
charge3 = 3 ; 

act3=fdavies(ionstr,charge3,temp); I o g a c t 3 = l o g l 0 ( a c t 3 ) ; 

"/.NEUTRAL SPECIES 

a c t n = f n e u t r a l ( i o n s t r ) ; l o g a c t n = l o g l O ( a c t n ) ; 

% OVERALL ACTIVITIES 
o v e r a c t l = a c t n / ( a c t l * a c t 2 ) ; overact2=l/act2; o v e r a c t 3 = a c t 2 / ( a c t l * a c t 3 ) ; 
oy oy oy oy oy oy oy oy oy oy 0/ 0/ 0/ 0/ 0/ oy oy oy yyyyyyyyyyyyyyyyyoiotyyyyyyyyyyyyototyit/'iiy y y y y 
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[H+] CONCENTRATION 
V V V V V V V V V V V V °/ V V V V °/ °/ °/ °/ V V V °/ V V V V V V V V V V V °/ V V V °/ °/ V V V V ° / 0 / 0 / 0 /v° / 0 / 0 / 0 / 0 / 0 / 0 / 0 / A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 

% AT THE NEW TEMPERATURE 
ph=linspace(0,14,141)'; h=10.~(-ph); logh=loglO(h); 

'/.[•H-] CONCENTRATION 
logoh=ph-pkwnew-logactl-logactl; 
o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o /o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/̂  

% CONCENTRATION BASED pKa's AFTER ADJUSTMENTS FOR IONIC STRENGTH 
0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0 
A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 

kalnewconc=kalnew.*overactl; 
pkalnewconc=-loglO(kalnewconc); 

ka2newconc=ka2new.*overact2; 

pka2newconc=-logl0(ka2newconc); 

ka3newconc=ka3new.*overact3; 
pka3newconc=-logl0(ka3newconc).; 

°/ V V V V V V V V V °/ V V V °/ V V °/ °/ V °/ V V °/ V °/ °/ V °/ V V V V V V V °/ V V V °/ V °/ °/ V V V V V V V V V V V V V V V 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/oA 

% ACID CONCENTRATIONS AT NEW TEMPERATURE .AND IONIC STRENGTH 
0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/ 
A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 

h 2 a = c t o t . / ( l + kalnewconc./h + (kalnewconc.*ka2newconc)./(h."2)); 

Iogh2a=logl0(h2a); 

ha=ctot./(1+ h./kalnewconc + ka2newconc./h); 

logha=loglO(ha); 

a = c t o t - / ( l + h."2./(kalnewconc.*ka2newconc) + h./ka2riewconc); 
lo g a = l o g l O ( a ) ; 
0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/ 
A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 

% ACID CONCENTRATIONS AT NEW TEMPERATURE AND IONIC STRENGTH 
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V V °/ °/ °/ V °/ V V °/ V V V V V V V °/ V V °/ V °/ °/ °/ °/ °/ °/ V °/ °/ °/ °/ °/ °/ °/ °/ V V V V V"/ V V V V V °/ V 1 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / A A A /o A /o /o A A A A AA A A A /o A AA A A /o /o A A A A A /o /o/o/o/o AA A A A AA A A A /o/o A AAA A /o /o /o/o A/o/o/o 

h 3 a = c t o t . / ( I + k a l n e w c o n c . / h + ( k a l n e w c o n c . * k a 2 n e w c o n c ) . / ( h . ~ 2 ) + . . . 

( k a l n e w c o n c . * k a 2 n e w c o n c . * k a 3 n e w c o n c ) . / ( h . ~ 3 ) ) ; 

I o g h 3 a = l o g l 0 ( h 3 a ) ; 

h 2 a = c t o t . / ( h . / k a l n e w c o n c + 1 + k a 2 n e w c o n c . / h + ( k a 2 n e w c o n c . * k a 3 n e w c o n c ) . . . 

. / ( h . ~ 2 ) ) ; 

I o g h 2 a = l o g l 0 ( h 2 a ) ; 

h a = c t o t . / ( ( h . ~ 2 ) . / ( k a l n e w c o n c . * k a 2 n e w c o n c ) + h . /ka2newconc + 1 + . . . 

k a 3 n e w c o n c . / h ) ; 

l o g h a = l o g l O ( h a ) ; 

a = c t o t . / ( ( h . ~ 3 ) . / ( k a l n e w c o n c . * k a 2 n e w c o n c . * k a 3 n e w c o n c ) + ( h . ~ 2 ) . / . . . 

(ka2newconc.*ka3newconc) + h . /ka3newconc + 1 ) ; 

l o g a = l o g l O ( a ) ; 
V V V V V V V V °/ V °/ V V °/ V °/ °/ °/ °/ V V V V °/ °/ °/ V V V V V V V V V V V V V V V V V V V V °/ V V V V V V V V V V V V 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o A 

'/. CONSTRUCTING p K a ' s 
0/ o/ o/ o/ 0/ o/ o/ 0/ 0/ 0/ 0/ 0/ oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy 
/o /o /o/o/o/o/o/o /o /o /o /o /o /o/o /o/o /o /o /o /o/o/o /o/o /o /o /o/o/o /o /o /o /o /o /o /o/o/o /o /o /o/o/o/o/o /o /o /o /o /o/o/o/o/o/o/o /o /o 

s p o i n t x l = l i n s p a c e ( p k a l 2 5 , p k a l 2 5 , 5 0 ) ' ; 

s p o i n t x 2 = l i n s p a c e ( p k a 2 2 5 , p k a 2 2 5 , 5 0 ) ' ; 

s p o i n t x 3 = l i n s p a c e ( p k a 3 2 5 , p k a 3 2 5 , 5 0 ) ' ; 

spo in tx4= l i n s p a c e ( p k a l n e w c o n c , p k a l n e w c o n c , 5 0 ) ' ; 

spo in tx5= l in space (pka2newconc ,pka2newconc ,50 ) ' ; 

s p o i n t x 6 = l i n s p a c e ( p k a 3 n e w c o n c , p k a 3 n e w c o n c , 5 0 ) ' ; 

s p o i n t y l = l i n s p a c e ( 0 , - 1 4 , 5 0 ) ' ; 
oyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyo/oyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoyoy 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o A A/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o 

°/0 PLOTS 
oyoy oy oy oy oy oy oyoy oyoyoyoyoyoy oy oyoyoyoyoyoy oy oy oyoyoyoyoy oy oy oy oy oy yyy y "/ oyoyoyoy oy oy oy oyoyoyoyoyoy oy oy oy oy oy oyoy 

A A A A A A AAA AA/o/o/o A A AA AA/o/o A A A AA/o/o A A A AA/o/o/o/oAA/o/o AA AA AAA/o/o/o A A A AA AA 

p l o t ( p h , l o g h , ' y ' , p h , l o g o h , ' m ' , p h , l o g h 3 a , ' c ' , p h , l o g h 2 a , ' r ' , p h , l o g h a , . . . 

' g ' , p h , l o g a , ' b ' , s p o i n t x l , s p o i n t y 1 , ' y — ' , s p o i n t x 2 , s p o i n t y 1 , ' m — ' , . . . 

s p o i n t x 3 , s p o i n t y 1, ' c — ' , s p o i n t x 4 , s p o i n t y 1 , ' r — ' , s p o i n t x 5 , s p o i n t y 1, g — ' , . . . 
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s p o i n t x 6 , s p o i n t y l , ' b — ' ) 
a x i s ( [ 0 14 -14 0]) • . 
xlabel( ' p H ' ) ' - ' 

y l a b e K ' L o g C ) 
t i t l e C p C - p H diagram f o r the T r i p r o t i c A c i d [H3A]') 
legend(' [H+] ' ,' [0H-] ', [H3A] >,' [H2A] ', > [HA-] ' , ' [A2-] ' , 'pKal ( s t d ) ' .... 
'pKa2(std)','pKa3(std)','pKal(new)', 'pKa2(new)', ]pKa3(new)',-1) 
o/ o/ o/ o/ o/ o/ o/ oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy 
/o /o /o /o /o /o /o /o/o/o/o/o/o/o /o /o /o/o/o/o /o 

yl=[pkal25, pka225, pka325]; 
d i s p C T h e pkas at 25 C and 1 = 0 are [pKal, pKa2, pKa3] a r e ' ) ; 
d i s p ( y l ) ; 

y=[pkalnewconc, pka2newconc, pka3newconc]; 
d i s p C T h e new pkas [pKal, pKa2, pKa3] a r e 5 ) ; 
d i s p ( y ) ; 



Appendix C 

pCC>2 Contributors in a Perfusion 
System 

C . l Acids, Bases and Buffering Action 

C . l . l Carbon dioxide 

Cells produce C O 2 that reduces culture pH and detailed information on C O 2 dynamics has 

been presented in Chapter 4. Figure C . l shows the pC-pH diagram for the carbonate system. 

At pH = 6.8, 85% of the C 0 2 exists as HCOj, with 15% as H 2 C 0 3 * and COjj' virtually 

non-existent. Thus a significant amount of the C O 2 produced by the cells is converted to 

H C O 3 and this conversion is accompanied by the release of H + that will reduce bioreactor 

pH in the absence of buffering ability., 

0 2 4 6 8 10 12 14 

pH 

Figure C.l: pC-pH diagram for the bicarbonate system. 

231 
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C.l.2 Lactic Acid 

Cells convert a significant amount of glucose to lactic acid which subsequently dissociates 

to lactate releasing a hydrogen ion 

C 3 H 6 0 3 <-> C 3 H 5 0 3 + H+; Kx = 1(T 3 - 8 6 (C. l ) 

The pC-pH diagram for lactate is shown in Figure C.2 from which it is clear that dissociation 
of lactic acid to lactate virtually proceeds to completion under culture conditions. Thus 
each mole of lactic acid produced by the cells results in the formation of an H + ion that 
must be neutralized either by the buffering action of the medium or by base addition. 

0 ii 1 1 1 . 1 . 1 1 1 1 1 1 1 1 1 1 ] 1 ! 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 • 

PH 

Figure C . 2 : pC-pH diagram for lactic acid. 

C. l .3 Ammonia 

Cellular conversion of glutamine to glutamate is accompanied by ammonia production and 

abiotic glutamine degradation also results in the formation of ammonia. Ammonia can take 

up a hydrogen ion forming ammonium 

N H 3 + H + ~ NH+; Kx = IO 9 - 2 5 6 (C.2) 

Figure C.3 shows concentration profiles of ammonia and ammonium as a function of pH. 

At pH = 6.8, >99% is present as ammonium with negligible amount present as ammonia. 

Conversion of ammonia to ammonium according to Eq.(C.2) essentially proceeds to. com­

pletion and helps neutralize some of the H + ions produced by the conversion of lactic acid 

to lactate. However, ammonia production alone cannot provide adequate buffering action 
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against lactic acid. For B H K cells in perfusion culture, the cell-specific lactate production 
rate was 5-6 fold higher than the total ammonia production rate (cell and glutamine degra­
dation combined) suggesting that additional buffering either through a medium component 
or base addition is necessary for pH control. • 

0 2 4 6 8 10 12 14 

p H 

Figure C.3: pC-pH diagram for ammonia. 

C.1.4 Base Addition 

The combination of C O 2 and lactate production results in an excess of H + ions that must 

be neutralized to maintain bioreactor pH at the set point. This is done using a combination 

of buffer in the cultivation medium and base for pH control. Sodium bicarbonate is most 

commonly used both in the medium and as base with N a 2 G O " 3 and NaOH the other choices 

for base. Elimination of NaHC03 will significantly reduce bioreactor pC02 (Chapter 4) and 

this is especially attractive for high-density perfusion systems. In the medium, NaHC03 

can be replaced by an organic buffer such as M O P S while Na2C03 and NaOH can be used 

as base for pH control. 



Appendix D 

Closed Loop pCC>2 Control 

Elimination of NaHCC>3 from the medium and base resulted in ~70% reduction in bioreactor 

pCC>2 such that the final bioreactor pCC>2 was 68 - 85 mm Hg (Chapter 4). Despite the 

absence of closed loop pCG"2 control, pCC>2 levels remained relatively steady over the course 

of a perfusion cultivation as the cell density was held constant. If further pCC>2 reduction 

and set point control are desired, a closed loop control strategy must be used. 

D . l p C 0 2 Control Strategy 

Reduction in bioreactor pCC>2 is possible by stripping with air, nitrogen or oxygen. A 25% 

pCO"2 reduction was seen in a manufacturing reactor when oxygen was sparged at 0.015 vvm 

(Chapter 4). There is an.upper limit.on the sparging rate because cell damage will occur at 

very high rates. Moreover, sparging will affect bioreactor dissolved oxygen whose set point 

control is of greater importance than pCC»2 control. Recognizing this interdependence of 

D O and pC02 we propose a cascade-control strategy based on manipulating gas flows for 

pC02 control in combination with DO and pH control (Figure D . l ) . 

The idea is to introduce a slow loop for pC02 control. When bioreactor pC02 exceeds 

the set-point, the total gas flow is increased to facilitate CO2 stripping and bring the pC02 

value closer to the set-point. As oxygen and nitrogen make up the total gas flow, any 

changes to this value will affect the bioreactor DO concentration. A cascade control loop 

is thus necessary to ensure that bioreactor DO is maintained at its set-point despite total 

gas flow changes associated with pC02 control. Given the rapid D O dynamics, a fast loop 

is necessary for DO control while a much slower loop will be adequate for pC02 control. If 

CO2 gas is used as an acid for. bioreactor pH control, the CO2 flow rate can be determined 

by the pC02 controller as well. 

234 
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set point 
pO, 
set point 

dCO„ 
Controller Controller 

* '— 

Total gas 
flow 

Slow Loop 

o. c 
® 

Fast Loop 

Fast Loop 

DO 

PC0S 

pH 

Figure D . l : Illustration of the p C 0 2 control strategy proposed in this study 

D.2 Results from p C 0 2 Control 

Bioreactor p C 0 " 2 reduction on the order of 15 - 20% were observed using the above strategy. 
When NaHCC>3 was present in both the medium and the base, bioreactor pCG"2 dropped 
from ~250 mm Hg to a value in the 200 - 210 mm Hg range. No beneficial metabolic and 
productivity responses were seen after this reduction. Upon NaHCC>3 removal from both 
the medium and base, bioreactor pCC>2 dropped from 84 mm Hg to 60 mm Hg bringing 
it closer to the physiological range of 30 - 50 mm Hg (Chapter 4). However, there were 
no changes in metabolism and productivity when bioreactor pCC>2 decreased from 84 to 60 
mm Hg. For the B H K cells examined in this study, it appears that benefits from closed 
loop pCG"2 control are minimal. A majority of the p C 0 2 reduction was due to NaHCC>3 

elimination that resulted in substantial productivity increases (Chapter 4). 



Appendix E 

RQ Estimation in Perfusion 
Systems 

E . l Liquid Stream Contributions to OUR 

Only gas phase contributions to O U R are accounted for in Eq.(5.1). The following analysis 
will show that the liquid stream contributions are negligible and Eq.(5.1) indeed provides 
accurate O U R estimates. Eq.(5.1) can be modified to include liquid streams 

O U R = Gas Stream Contributions + Liquid Stream Contributions (E. l) 

O U R = {F02Of- F020°2

ut} + { (FmCr + FbaseCfase + FrCj) - (wf + FrC\ + FhCf) } 

(E.2) 
where Fm, Fbase, Fr, Fj, Fh are the medium, base, recycle, cell discard and harvest flow 
rates, respectively (L/day), and Cf1; Cfase, C [ , Cf, Cf the oxygen concentrations in the 
medium, base, recycle, bioreactor and harvest, respectively (mol/L). Liquid stream flow 
rates in the above equation can be rewritten as 

Fm + Fbase = Fd + Fh = F' (E.3) 

Assuming that the medium and base streams are saturated with air (this was verified with 
p02 measurements in a blood gas analyzer) oxygen concentration in the liquid streams may 
be rewritten as 

Cf1 + C?ase = 2Cf • (E.4> 

236 
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when the D O concentration in the bioreactor is 50%. Substituting Eqs.(E.3) and (E.4) in 

Eq.(E.2) results in 

0\]R={Fo2Of-Fo2OTt} + {F'Cb

l+Fr{ci-Cf)} (E.5) 

Assuming a cell density of 20 x lO 6 cells/mL and an O U R of 5 pmol/cell-d, the daily con­
sumption of oxygen in a bioreactor with a 10 L working volume is 1 mol/day. For the 
experiments in this study, F' was approximately 35 L/day (30 L/day perfusion + 5 L/day 
cell discard) and C\ was 50% air saturation or 1.12 x 10"4 mol /L. The product F'Cf is thus 
3.9 x 10"3 mol/day which is only 0.39% of the daily consumption of oxygen. If no biological 
activity is assumed in the settler, C\ = C\ and the contribution of the Fr (Cf — Cf) term 
is zero. However, in reality, there is oxygen consumption in the settler and experimental 
data indicate that the p02 in the settler return stream (Cf) is approximately 10 mm Hg or 
1.3% air saturation. Since Cf is very small when compared to Cf, the contribution of the 
second term in the liquid stream can be readily approximated as FrC\ which corresponds 
to -1.34 x 10*2 mol/day or 1.34% of the daily consumption of oxygen. 

It is clear from the above analysis that the liquid stream, F'Cf, accounts for 0.39% of 
the O U R while the liquid stream, Fr (Cf — Cf), accounts for -1.34 %. Together, these two 
liquid streams account for only 1% of the oxygen consumption in the bioreactor. It is thus 
reasonable to conclude that there will be no significant loss in accuracy when Eq.(5.1) is 
used for O U R estimation. 

E . 2 k r , a E s t i m a t i o n f r o m O U R D a t a 

A n interesting feature of the mass balance approach is that while it does not require kj,a 
values for determining OUR, it actually allows k^a estimation once the O U R has been 
determined. A n expression for oxygen accumulation in the bioreactor may be written as 

Oxygen Accumulation = O T R - O U R (E.6) 

where O T R transfer rate defined as 

. O T R = kLa (C* - C f ) (E.7) 

where! C* is the oxygen concentration in equilibrium with the gas phase. Since bioreactor 
D O concentration is controlled at a predetermined set point (usually 50%), there is no 
accumulation of oxygen in the bioreactor. Thus O U R = O T R and kc,a.-can be determined 
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from 

h a = W^k) (E8) 

where C* = jj, p the oxygen partial pressure and H the Henry's constant. Since C\ is 

usually measured as % saturation, it can be converted to mol /L using 

0.209 P ^ = = 760. 
C\ (mol/L) = V , -J- 1 ' (E.9) 

E . 3 E f f e c t o f M e d i u m a n d B a s e C o m p o s i t i o n o n t h e E x i t G a s 

F l o w R a t e 

When carbonate species (NaHCC>3 or Na2CC>3) are present in the medium and base, they are 

an abiotic source of C O 2 production. Since both the medium and base enter the perfusion 

system as liquids, they make no C O 2 contributions to the inlet gas stream. They do, 

however, contribute CO2 to the exit gas stream which should result in an increase in the 

exit gas flow rate over the inlet gas stream. The O L T R and C E R mass balance expressions 

derived above assume identical inlet and exit gas stream flow rates and the error introduced 

by this assumption is examined in this section. Cellular C O 2 production does not cause a net 

increase in gas flow rates because it is a consequence of oxygen consumption. As mammalian 

cell RQ values are close to unity, oxygen uptake results in an equivalent amount (on a mole 

basis) of C O 2 production. 

E.3.1 Medium with 2 g/L NaHCO a and 6% NaHC0 3 as Base 

This combination represents the worst case scenario since abiotic C O 2 contribution from 

both the medium and base are the highest. This results in a bioreactor p C 0 2 of 225 mm 

Hg and a 5% C O 2 concentration in the exit gas at a C E R value of 4.89 pmol/cell-d. If we 

make a conservative assumption that all exit gas C O 2 is from the medium and base, the 

exit gas flow rate has to be 5% higher than the inlet stream. To get a true estimate of C O 2 

sources for the exit gas streams, cellular contribution must be accounted for. Using the 

C O 2 mass balance expressions developed in Chapter 5, the following inlet and outlet steam 

C O 2 compositions can be calculated 

The medium and" base streams make up 84% of the [CO ; >JT in the inlet stream and are 

thus, responsible for 84% of [CO2JT m the outlet stream as well. Since the C Q 2 flow rate in 

the exit stream in 5%, we expect to see a 4.2% increase in exit gas flow rate (84% of-5) when 

both the medium and base contain NaHCOs. While the error in gas flow measurement may 
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Table E . l : Carbon dioxide contributions from the inlet and outlet streams when both medium and 
base streams contain sodium bicarbonate 

Stream [ C 0 2 ] T (mol/d) % Contribution 
Inlet Streams 
Medium 3.45 38 
Base 4.18 46 
Cells 1.47 16 

Outlet Streams. 
Harvest 7.38 81 
Cell Discard . 0.25 3 
Exit Gas 1.47 16 

be > 4.2%, it is still important to correct the exit gas flow rate to minimize the error in 

O U R and C E R estimation. It must be noted that the exit gas stream carries 16% of [C02]T 

leaving the system reflective of the distribution between H2CO3* and H C 0 3 . This number 

is very close to the theoretically predicted value'of 15.69% from Eq.(5.13). 

E.3.2 Bicarbonate-free Medium and 6% N a 2 C 0 3 as Base 

This is a preferred combination' since CO2 contributions from the medium and base are 

minimized resulting in lower bioreactor p C 0 2 . Under these conditions, bioreactor pC02 is 

73 mm Hg at a C E R of 4.87 pmol/cell-d with 1.5% CO2 concentration in the exit gas.. The 

[C02]T concentrations in the inlet and outlet streams are 

Table E.2: Carbon dioxide contributions from the inlet and outlet streams with bicarbonate-free 
medium and sodium carbonate as base : 

Stream . [C0 2 ]T (mol/d) % Contribution 
Inlet Streams 
Medium 0 0 
Base • ••• 1.45 50 
Cells ; 1.46 50 

Outlet Streams 
Harvest • 2,39 . 8 2 
Cell Discard 0.08 3 
Exit Gas 0.44 15 

The base and cellular respiration contribute equally to [CO2JT m the inlet streams such 
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that half the C O 2 in the exit stream is from base addition. We should thus expect a 0.75% 
increase in the exit gas. flow rate (50% of 1.5) when the medium is bicarbonate-free and 
N a 2 C C > 3 is used as base. This increase is very small and can be neglected with minimal 
impact on O U R and C E R estimates. Just as the case with bicarbonate present both in 
the medium and base, the exit gas stream carried 15% of [ C O 2 ] , very close to the 15.69% 
theoretical prediction. 

E.4 Computer Programs for OUR and CER Estimation 

henryo2.m ( C o m p u t e s Henry's constant for o x y g e n at t h e d e s i r e d t e m p e r a t u r e ) 

f u n c t i o n y = henryo2(temp) 

%HENRY02 Computes Henry's constant f o r 02 at a d e s i r e d temperature 

% Return r e s u l t s i n mmHg-L/mole 

'/, Last M o d i f i e d : 07/31/04 

% Constants f o r Bunsen C o e f f i c i e n t s 

a = 4.9e-2; 

b = -1.335e-3; 

c = 2.759e-5; 

d = -3.235e-7; 

e = 1.614e-9; 

% C a l c u l a t i o n of Bunsen C o e f f i c i e n t 

a l p h a = a + b*temp + c*temp.~2 + d*temp.~3 + e*temp.~4; 

% C a l c u l a t i o n of Henry's Constant 

hdim = 273.15./(alpha.*(temp+237.15)); 

hkpalmole = (101.3*22.395)./alpha; 

hatmlmole = hkpalmole*0.009869233; 

hmmhglmole = hkpalmole*7.500617; 

y = hmmhglmole; 
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h e n r y c o 2 . m (Computes Henry's constant for C 0 2 at the desired tempera­

ture) 

f u n c t i o n y = henryco2new(temp) 
°/0HENRYC02 Computes Henry's constant f o r C02 at a d e s i r e d temperature 
°/0 Return r e s u l t s i n mmHg-L/mole 

1 L a s t M o d i f i e d : 01/29/04 

% C o e f f i c i e n t s of Power s e r i e s f o r Bunsen C o e f f i c i e n t s 
'/, (Eq.21 i n Schumpe et a l , (1982) Adv. Biochem. Eng. 24: 1-83) 
a =1.720; 
b = -6.689e-2; 
c = 1.618e-3; 
d = -2.284e-5; 
e •= 1.394e-7; 

% C a l c u l a t i o n of Bunsen C o e f f i c i e n t 
a lpha = a + b*temp + c*temp~2 + d*temp~3 + e*temp~4; 

°/0 C a l c u l a t i o n of Henry's Constant 
hdim . = 273.15/(alpha*(temp+237.15)); 

hkpalmole = (101.3*22.395)/alpha; 

hatmlmole = hkpalmole*0.009869233; 
hmmhglmole = hkpalmole*7.500617; 

70y = hmmhglmole; 

our.m (Computes O U R using global mass balances) 

'/„ OUR ESTIMATION IN PERFUSION SYSTEMS USING THE GLOBAL MASS BALANCE APPROACH 

°/0 Only gas phase c o n t r i b u t i o n s are used f o r OUR e s t i m a t i o n 

% SECTION 1: INPUT DATA . 

% 02 Flows (L/min) \./ 

o2prompt={'Inlet T o t a l Gas Flow Rate (L/min)',... 

' I n l e t 02 Flow Rate (L/min)',... 
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' 7 . 02 i n E x i t Gas ( 7 J ' . . . 

' B i o r e a c t o r V i a b l e C e l l D e n s i t y (xl0~6 c e l l s / m l ) ' , . . . 
' B i o r e a c t o r Volume (L)'}; 

o2def={'0.1','0.041','25.7','20','12'}; 

o2Title='Oxygen Flow Rate Data For OUR E s t i m a t i o n From G l o b a l Mass Balance' 

li n e N o = l ; 

o2input=inputdlg(o2prompt,o2Title,lineNo,o2def); 

s t r 2 d o u b l e ( o 2 i n p u t ( l ) ) ; 
s t r 2 d o u b l e ( o 2 i n p u t ( 2 ) ) ; 
s t r 2 d o u b l e ( o 2 i n p u t ( 3 ) ) ; 
s t r 2 d o u b l e ( o 2 i n p u t ( 4 ) ) ; 
s t r 2 d o u b l e ( o 2 i n p u t ( 5 ) ) ; 

gasflow 
o2 f l o w i n 
yo2 
f vcd 
v o l 

7. SECTION 2. CALCULATIONS 

7o Gas Phase C a l c u l a t i o n s 
7. I n l e t 
o 2 f l o w i n = o2flowin*60*24; 
o 2 f l o w i n = l*o2flowin/(0.08206*298.15); 

%(L/day) 
7. (moles/day) 

7. O u t l e t 
o2flowout 
o2flowout 
o2flowout 

(yo2/100)*gasflow; 

o2flowout*60*24; 

l*o2flowout/(0.08206*298.15); 

7, (L/min) 
7. (L/day) 
7o (moles/day) 

7. T o t a l Gas Flows 

t o t a l o 2 i n = o2flowin; 

t o t a l o 2 o u t = o2flowout; 

7« (moles/day) 

'/, (moles/day) 

7o G l o b a l Mass Balance • 

o u r l = o 2 f l o w i n - o2flowout; 

our2 = o u r l * l e l 2 / ( f v c d * l e 6 * v o l * 1 0 0 0 ) ; 

7o (moles/day) 

7 0(pM/cell-d) 



APPENDIX E. RQ ESTIMATION IN PERFUSION SYSTEMS 243 

7.3. RESULT DISPLAY 

disp('The OUR i n moles/day'), d i s p ( o u r l ) 
d i s p C T h e OUR i n p m o l e / c e l l / d a y 5 ) , disp(our2) 

ce r r .m (Computes C E R using global mass balances) 

7. CER ESTIMATION IN PERFUSION SYSTEMS USING A COMBINATION OF GAS AND 

% LIQUID PHASE MASS BALANCES 

% Program m o d i f i e d t o compute Real-time CER u s i n g data from Fermworks 

7. L a s t M o d i f i e d 09/22/2005 

c l e a r a l l 

7. SECTION 1: ONLINE VARIABLES FROM FERMWORKS 
pH_reactor = 6.8; 7. ( - ) 

temp_reactor = 35.5; 7. (O 
v o l _ r e a c t o r — 15; 7. (D 

flow_base = 2; 7, (L/day) 
flow_purge = 5; 7. (L/day) 
flow_harvest — 150; 7o L/day 

t o t a l _ g a s f l o w = 0.5; 7. (L/min) 
c o 2 _ f l o w i n = 0; 7. (L/min) 
cp2_out = 1.5; 7. ( 7 . ) 

7, SECTION 2: OFFLINE VARIABLES ENTERED INTO FERMWORKS 
pC02_reactor =72.7; 7. mm Hg 
vcd _ r e a c t o r = 20; % 10~6 cells/mL 

7. SECTION 3. CALCULATIONS 
7o Rate Constants C o r r e c t e d f o r temperature and i o n i c s t r e n g t h e f f e c t s 
k l = 10"(-6.07); 7. ( - ) 

k2 = 10~(-10.04); •*/. (-) 
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% Computing [C02]T c o n c e n t r a t i o n s (moles/L) 
'/. Medium: Determine [C02]T from [H2C03*] . 
hconc = 10~(-pH_reactor); % B i o r e a c t o r [H+] 
c o n v f a c t o r = 1 + kl./hconc + (kl.*k2)./hconc.~2; 
a=1.720; b=-6.689e-2; c= 1.618e-3; d=-2.284e-5; e=1.394e-7; 
temp = temp_reactor; 
alpha = a + b*temp + c*temp~2 + d*temp~3 + e*temp~4; 
hkpalmole = (101.3*22.395)/alpha; 
hmmhglmole = hkpalmole*7.500617; 

c l b i o r e a c t o r = c o n v f a c t o r .* (pC0$_{\text{2»$_reactor/hmmhglmole) ; 

°/„ Other [C02]T C a l c u l a t i o n s (moles/L) 
clpurge = c l b i o r e a c t o r ; 
c l h a r v e s t = c l b i o r e a c t o r ; 
clmedium = 0 ; % NaHC0$_{\text{3}}$-free medium 
cl b a s e = 0.723; % 6°/„ Na2C03 

% C a l c u l a t i o n of Liquid'Phase [C02]T Flows (moles/day) 

'/. I n l e t 
co2medium = flow_harvest*clmedium; 
co2base = flow_base*clbase; . 
i n l e t l i q u i d = co2medium + co2base; 
i n l e t f l o w s = [co2medium,co2base]'; 

% O u t l e t 
co2purge = f l o w _ p u r g e * c l b i o r e a c t o r ; 

co2harvest = f l o w _ h a r v e s t * c l h a r v e s t ; 

o u t l e t l i q u i d = co2purge .+ co2harvest; 

o u t l e t f l o w s = [co2purge,co2harvest]'; 

°/0 Gas Phase C a l c u l a t i o n s 
*/, I n l e t 
c o 2 f l o w i n = co2_flowin*60*24; 
c o 2 f l o w i n = l*co2flowin/(0.08206*298.15); 

%(L/day) 

%(moles/day) 
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'/. O u t l e t 
co2flowout = (co2_out/100)*total_gasflow; °/0(L/min) 
co2flowout = co2flowout*60*24;; % (L/day) 
co2flowout = l*co2flowout/(0.08206*298.15); . %(moles/day) 

% Combined Gas and L i q u i d Phase Mass Balance 
c e r l = (co2flowout - co2flowin) + ' ( o u t l e t l i q u i d - i n l e t l i q u i d ) ; % ( m o l e s / d a y ) 
cer2 = c e r l * l e l 2 / ( v c d _ r e a c t o r * l e 6 * v o l _ r e a c t o r * 1 0 0 0 ) ; °/0(pmole/cell/day) 

'/. SECTION 4. RESULT'DISPLAY " ' 

d i s p C T h e CER i n moles/day'), d i s p ( c e r l ) 
d i s p C T h e CER i n p m o l e / c e l l / d a y ' ) , d i s p ( c e r 2 ) 

d i s p C Medium Carbonate C e l l u l a r A c t i v i t y (moles/day)') 
sources = [co2medium, co2base, c e r l ] ; 
d i s p ( s o u r c e s ) 

dispC Harvest Purge Basket S t r i p p i n g (moles/day)') 

s i n k s = [co2harvest, co2purge, co2flowout]; 

d i s p ( s i n k s ) 
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Logistic Equation Modeling 

Detailed information of the analysis of data from mammalian cell batch cultures using 
logistic equations is presented in Chapter 6. Computer programs developed for this analysis 
can be classified into the following categories 

• Logistic equation simulation 

• Polynomial fitting of batch culture data 

• Nonlinear parameter estimation in logistic models 

F . l Logistic Equation Simulation 

Programs in this category provide a means of graphically visualizing time profiles of the 

dependent variable when the time vector and model parameters are known. 

F . l . l Generalized Logistic Equation 

The 4-parameter generalized logistic equation has been used to fit cell density as it can 

describe both the ascending and decending portions of the viable cell density profile in a 

batch culture.. The following programs compute the viable cell density and growth rate and 

also provide a graphical representation of the output 

7» gle'_simulation.m 
7. Simulates growth curves from the 4-parameter 
% g e n e r a l i z e d l o g i s t i c equation 
% Inputs: time range, model parameters 
% Outputs: v e c t o r s of dependent v a r i a b l e , i t s 

246 
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% d e r i v a t i v e , and the growth r a t e 
% Uses g l e _ e q u a t i o n f o r f u n c t i o n e v a l u a t i o n 

% Chetan Goudar 
% Last M o d i f i e d : 6/18/04 

% Model Parameters 
k= [0.03057 4.84939 0.92957 2.03765]; 
cl = k ( l ) ; d l = k( 2 ) ; c2 = k( 3 ) ; d2 = k( 4 ) ; 

% D e f i n i t i o n of the time v e c t o r 
tlow = 0 ; 
t h i g h = 1 1 ; 

t = l i n s p a c e ( t l o w , t h i g h , 5 1 ) ' ; 

% F u n c t i o n e v a l u a t i o n 
f v c d = g l e _ e q u a t i o n ( k , t ) ; 

7, D e r i v a t i v e and growth r a t e computaion 
ter m l = (c2/d2).*exp(-t./d2); 
term2 = ( c l / d l ) . * e x p ( t . / d l ) ; 
dydt = ( f v c d . ~ 2 ) . * ( t e r m l - term2); 
mu = dy d t . / f v c d ; 

subplot(2, 1 , 1 ) 

p l o t ( t , f v c d ) 

subplot(2,1,2) 
plot(t,mu) 
o/ HI at HI o/ o/ o/ o/ o/ o/ oy o/ o/ o/ o/ oy o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ oy HI y y a/ y 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ <y 0/ 0/ 0/ 0/ 0/ 0/ <y 0/ oy 0/ /o /o /o/o /o/o /o/o /o/o /o/o /o/o /o/o /o/o /o/o/o /o/o /o/o /o/o IHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIH 

f u n c t i o n y = g l e _ e q u a t i o n ( k , t ) 
% f u n c t i o n y = gle_equation.(k,time) 
7o E v a l u a t e s the 4-parameter g e n e r a l i z e d l o g i s t i c equation 
7o Inputs: model parameters, time v e c t o r 
7o Outputs: dependent v a r i a b l e v e c t o r 
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°/0 Chetan Goudar 

°/„ Last M o d i f i e d : 6 / 1 8 / 0 4 

c l = k ( l ) ; d l = k ( 2 ) ; c2 = k ( 3 ) ; d2 = k ( 4 ) ; 

x = l . / ( c l . * e x p ( t . / d l ) + c2.*exp(-t./d2)); 

y = x; 

F.1.2 Logistic Growth Equation 

The logistic growth equation has been used to describe variables that monotonically increase 
during cultivation. These include lactate, ammonium and the product concnetration. 

% lge_simulation.m 
% Simulates l o g i s t i c GROWTH curves 
% Inputs: time range, model parameters 
% Outputs: v e c t o r s of dependent v a r i a b l e and i t s d e r i v a t i v e s 
% Uses lge._equation f o r f u n c t i o n e v a l u a t i o n 

°/0 Chetan Goudar 

% L a s t M o d i f i e d : 6 / 1 8 / 0 4 

% Model Parameters 

k = [ 0 . 0 1 0 5 3 0 . 4 4 5 6 0 1 , 0 5 7 4 3 ] ; 

c l = k ( l ) ; c2 = k ( 2 ) ; d2 = k ( 3 ) ; 

°/0 D e f i n i t i o n of the Time Vector 

t l o w = 0 ; 

t h i g h . = 1 0 ; : 

t = l i n s p a c e ( t l o w , t h i g h , 5 0 ) ' ; 

% F u n c t i o n Computation ; 

y = l g e _ e q u a t i o n ( k , t ) . 

°/0 D e r i v a t i v e and S p e c i f i c Rate Computation 

ter m l = (c2/d2); . 
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term2 = e x p ( - t i / d 2 ) ; 
dydt = ( y . " 2 ) . * t e r m l . * t e r m 2 ; 
y HI HI HI HIy y y 0/ 01 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ y HI 0/ 0/ 0/ Hi HI HI <tl Hi y y y y y y y y y y y DI DI y y y y y y y y y y y y oi 0/DI Di Di Dt DI <ti 
IOIOIOIHIHIHIHIOIOIOIOIOIOIOIOIOIOIOIOIOIOIDIOIOU 

f u n c t i o n y = l g e _ e q u a t i o n ( k , t ) 

°L f u n c t i o n y = lge_equation(k,time) 
°A E v a l u a t e s the 3-parameter l o g i s t i c growth equation 
°/H Inputs: model parameters, time v e c t o r 
°/H Outputs: dependent v a r i a b l e v e c t o r 

°/H Chet an Goudar 
7. L a s t M o d i f i e d : 6/18/04 

c l = k ( l ) ; c2 = k ( 2 ) ; d2 = k ( 3 ) ; ' . 

x = l . / ( c l + c2.*exp(-t./d2)); 

y = x; 

F.1.3. Logistic Decline Equation 

The logistic decline equation has been used to describe the nutrients glucose and glutamine 

that monotonically decrease during cultivation. 

°/, lde_simulation.m .• 

°/0 Simulates l o g i s t i c DECLINE curves 

°/H Inputs: time range, model parameters 

°/o Outputs: v e c t o r s of dependent v a r i a b l e and i t s d e r i v a t i v e s 

°/o Uses l d e _ e q u a t i o n f o r f u n c t i o n e v a l u a t i o n 

% Chetan Goudar 

% L a s t m o d i f i e d : 6/18/04 

7o Model Parameters 

k=[0.07141 4.61711 0.00000]; 

c l = k ( l ) ; d l = k(2);; c2 .= k ( 3 ) ; . 

7H D e f i n i t i o n of the Time Vector 

tlow = 0; 
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t h i g h = 11; ' • 
t = l i n s p a c e ( t l o w , t h i g h , 5 1 ) ' ; 

°/0 F u n c t i o n Computation . . . . - , 
y = l d e _ e q u a t i o h ( k , t ) ; 

°/0 D e r i v a t i v e and S p e c i f i c Rate Computation 
ter m l = ( - c l / d l ) ; 
term2 = e x p ( t . / d l ) ; 
dydt = (y.~2).*terml.*term2; 
V °/ °/ °/ V V V V °/ °/ °/ °/ V °/ V V °/ °/ V °/ °/ V V V °/ °/ V V V V V V V V V V V V V °/ V V V °/ V V V V V V °/ V V V V V °l V 

f u n c t i o n y = l d e _ e q u a t i o n ( k , t ) 
°/0 f u n c t i o n y = lde_equation(k,time) 
°/0 E v a l u a t e s the 3-parameter l o g i s t i c d e c l i n e equation 
% Inputs: model parameters, time v e c t o r 
°/0 Outputs: dependent v a r i a b l e v e c t o r 

°/» Chetan Goudar 
% Last M o d i f i e d : 6/18/04 

c l = k ( l ) ; d l = k ( 2 ) ; c2 = k( 3 ) ; 
x = l . / ( c l . * e x p ( t . / d l ) + c2); 
y = x; 

F.2 Polynomial Fitting of Batch Culture Data 

The programs in this section describe the fitting of cell culture data to polynomial functions. 

This method is frequently used in the literature and is conceptually similar to the logistic 

approach in that a functional form is used to approximate experimental data. 

F.2.1 Fermentor Viable Cell Density 

Polynomials of order 3 and 4 (4 and 5 parameters, respectively) were used to fit viable cell 

density data so that a comparison could be made between fits from .the 4-parameter logistic 

equation. 
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rannnnx/.nyx/xm 
% vcd_po ly f i t .m 
% F i t s polynomials to v i a b l e c e l l densi ty data 
% Inputs: vcd vs . time data 
% Outputs: dependent v a r i a b l e , i t s d e r i v a t i v e s and growth ra te 

% Chetan Goudar 

% Last modif ied: 6/20/04 

c l e a r a l l 

% Experimental Data 

% Bayer CHO Data (1) 

%t = [0.010 0.938.2.000 2.826 4.097 5.010 6.035 6.989 7 . 9 1 7 ; . . 
% .8.122 9.826 10 .951] ' ; 
°/.x = [0.97 1.69 2.27 3.65 5.35 5.87 6.23 6.67 5.14 5.88 3.66 . . . 
°/„ 3.45] ' ; rsse = 1.6710; 

%•Bayer CHO Data (2) 

%t = [0.000 0.917 2.003 2.878 4.128 5.184 6.142 6.986 8 .038 . . . 

% 8.955 9 . 8 5 4 ] ' ; 

%x = [1.07.1.83 2.99 3.91 5.6 8.1 7.29 8.5 7.49 4.87 3 .83 ] ' ; 

% rsse = 2.3159; 

% Bayer CHO Data (3) 

°/.t = [0.000 1.104 2.042 3.003 4.035 5.080 5.962 7.021 8 . 0 3 1 . . . 

% 8.997 9.833 10 .969] ' ; 

yox = [1.13 2.12 3.35 5.01 8.12 9.1 12 11.72 8.15 7.88 6.32 4 . 4 2 ] ' ; 

"/rsse = 4.0789; 

'/, Bree et a l 

°/.t = [0.050 0.850 1.850 2.980 3.880 4.860 5.820 6.820 7 . 8 1 0 . . . 

% 8.800 9.800 10 .880] ' ; 

°/,x = [0.280 0.380 0.780 1.270 2.010 2.360 1.920 1.420 1.100. . . 

% 0.560 0.480 0 . 2 9 0 ] ' ; rsse = 0.0586; 
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7. D a l i l i et a l 
t = [0.029.0.429 0.666 1.557 1.888 2.440 2.971 3.456 3.963 4.518... 

4.969 5.536 6.651]'; 
x = [0.073 0.452 0.608 0.948 2.809 5.038 5.920 4.395 1.738 0.995... . 

0.175 0.001 0.141]'; rsse = 0.8051; 

7o L i n z et a l 
7.t = [0.088 0.891 1.446 1.964 2.474 2.895 3.989 4.932 5.454 6.499... 
7. 7.029] \; 
7.x = [0.283 0.346 0.913 1.036 1.502 1.705 1.526 1.690 1.611... 
7. 1.473 1.090] '; r s s e = 0.1595 

oy oy 0/ 0/ oy HI HI HI HI HI HI HI HI HI 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ oy oy 0/ 0/ 0/ 0/ 0/ 0/ 0/ <y 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ oy oy 0/ 0/ oy oy oy oy oy oy oy oy 
/oA/o/oA/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/oA 

7o Polynomial Generation 
p4 = p o l y f i t ( t , x , 3 ) ; 
p5 = p o l y f i t ( t , x , 4 ) ; 

7o Generating Curves from Polynomial F i t s 
x4 = p o l y v a l ( p 4 , t ) ; 
x5 = p o l y v a l ( p 5 , t ) ; 

7o P l o t t i n g the Data 
p l o t ( t , x , ' o ' , t , x 4 , t , x 5 ) 
legend('Experimental Data','Order 3 F i t ' , ' O r d e r 4 F i t ' , 0 ) 
t i t l e ( ' E x p e r i m e n t a l V i a b l e C e l l D e n s i t y Data and Polynomial F i t s ' ) 
xlabeK'Time (days)') 
y l a b e l C V i a b l e C e l l Density (x E06 c e l l s / m L ) ' ) 

% Computing RSSE Values 
r s s e 4 c = sum((x4-x)."2); 

rsse5'= sum( (x5-x). "2); 

r s s e d i s p l a y = [rsse r s s e 4 r s s e 5 ] ' 
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% C O M P U T I N G mu' V A L U E S 

°/„ f o r p4 

t f i n a l = 7 . 0 ; 

t l = l i n s p a c e ( 0 , t f i n a l , 5 0 ) ' ; 

x4a = p o l y v a l ( p 4 , t l ) ; 

a l = p 4 ( l ) ; a2 = p 4 ( 2 ) ; a3 = p 4 ( 3 ) ; 

d x d t 4 a = 3 * a l * ( x 4 a . ~ 2 ) + 2*a2 .*x4a + a3 ; 

mu4a = d x d t 4 a . / x 4 a ; 

dxd t4 = 3 * a l * ( x 4 . ~ 2 ) + 2*a2.*x4 + a3 ; 

%mu4 = d x d t 4 . / x 4 

% f o r p5 

t f i n a l = 7 . 0 ; 

t l = l i n s p a c e ( 0 , t f i n a l , 5 0 ) ' ; 

x5a = p o l y v a l ( p 5 , t l ) ; 

b l = p 5 ( l ) ; b2 = p 5 ( 2 ) ; b3 = p 5 ( 3 ) ; b4 = p 5 ( 4 ) ; 

d x d t 5 a = 3 * a l * ( x 4 a . ~ 2 ) + 2*a2 .*x4a + a3 ; 

mu5a = d x d t 5 a . / x 5 a ; 

F.2.2 Glucose 

Glucose concentration is fit using polynomials of order 2 and 3 and the results are compared 

with those from the 3-parameter logistic decline equation. 

7»yo%yoyoyoyoyoyo7o7o%7oyo7o/oyoyoyo7oyo o/oPROGRAM sTARTyoyo/ 0 /o/o/o/ /o/{/o/o/o// / / /o/o/o/o/o//o/^/^/{/o/o/o/o 

°/0 g l u c o s e _ p o l y f i t .m 

°/0 F i t s p o l y n o m i a l s t o g l u c o s e d a t a 

% I n p u t s : g l u c o s e v s . t ime d a t a 

% O u t p u t s : dependent v a r i a b l e , S S E 

°/« Che tan Goudar 
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% Last modi f ied : 6/20/04 

c l ea r a l l 
7, Experimental Data 
% Bayer CHO Data (1) 
°/.t = [0.01 0.94 2.00 2.83 4.10 5.01 6.03 6.99 7.92 8.72 9.83 1 0 . 9 5 ] ' ; 
%x = [62.05 61.90 57.36 53.02 46.77 41.01 36.94 33.49 31.52 3 0 . 0 3 . . . 
7.26.15 2 6 . 0 8 ] ' ; rsse = 31.7931; 

% Bayer CHO Data (2) 
7,t = [0.00 0.92 2.00 2.88 4.13 5.18 
7.x = [74.21 70.07 68.30 62.09 45.41 
y.3.09] ' ; rsse = 31.0813; 

6.14 6.99 8.04 8.95 9.85] ' ; 
30.43 20.37 16.32 10.30 5 . 5 0 . . . 

7. Bayer CHO Data (3) 
'/,t.= [0.000 1.104 2.042 3.003 4.035 5.080 5.962 7.021 8.031 8 . 9 9 7 . . . 
7.9.833 10.969] ' ; 
7„x = [70.758 70.284 66.701 62.123 52.451 43.706 27.389 20 .338 . . . 
%13.195 8 . 4 0 1 4 . 9 3 1 1 . 5 0 0 ] ' ; rsse = 25.5818; 

% L inz et a l 
t = [0.038 0.902 1.434 1.921 2.407 2.893 3.902 4.908 5.433 5 . 8 6 1 . . . 

6.385 7 .005 ] ' ; ; 
x = [9.084 8.016 6.797 5.164 3.669 2'.i73 0.973 0.185 0.067 0 . 0 8 4 . . . 

0'. 103 0.127] ' ; rsse = 0.1145; 

V °/ V °/ °/ °/ °/ °/ °/ °/ °/ °/ V V °/ °/ °/ °/ °/ °/ °/ °/ °/ °/ °/ °/ °/ °/ V °/ °/ V V V °/ °/ °/ °/ °/ °/ °/ °/ V V V V V °/ V °/ °/ V V V V V V V 7 °/ V V V V V V V V V /o A/o A/o A A/o/o/o A A/o/o/o/o/o/o A/o/o/o/o/o A 

7 Polynomial Generat ion 
p3 = p o l y f i t ( t , x , 2 ) ; 
p4 = p o l y f i t ( t , x , 3 ) ; 

7 Generat ing Curves from Polynomial F i t s 
x3 = p o l y v a l ( p 3 , t ) ; 
x4 = p o l y v a l ( p 4 , t ) ; 

http://%13.195
http://8.4014.9311.500%5d'
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•/, P l o t t i n g the Data 

p l o t ( t , x , ' o ' , t , x 3 , t , x 4 ) 

legend('Experimental Data','Order-2 F i t ' , ' O r d e r - 3 F i t ' ) 

t i t l e ( ' E x p e r i m e n t a l Glucose Data and-Polynomial F i t s ' ) 

x l a b e K'Time (days)') 

y l a b e l C G l u c o s e (mM)') 

% Computing RSSE Values 

r s s e 3 = sum((x3-x).~2); 

r s s e 4 = sum((x4-x).~2); 

r s s e d i s p l a y = [rsse rsse3 r s s e 4 ] ' 

yo%yoyo%yoyoyoyoyoyoyoyoyo/o/o/o%yo7oyo%PROGRAM END%y 0 %/o%y 0 yo/ 'o /oyoyoyo/ 0 yoyoyo/ / /{ /o^/o/o^/o/ / /^^/o/^^/o 

F .2.3 Glutamine 

Just as with glucose, glutamine concnetration data is fit with polynomials of order 2 and 3 
and the results are compared with those obtained from the logistic decline equation 

/O/O/O/O/O/O/O/O/^/O/^/^AVO/O/O/A/AVOPROGRAM S T A R T / t / o / o / o / t Z / l / o / l / D / o / l / o / l / l / l / l / l / D / o / l / o / l / l / l / o / D / o / o / l / o / D 

% g l u t a m i n e _ p o l y f i t . m 

'/, F i t s polynomials t o glutamine data 

% Inputs: glucose vs. time data 

Outputs: dependent v a r i a b l e , SSE 

% Chetan Goudar 

% Last m o d i f i e d : 6/20/04 

c l e a r a l l 

Experimental Data 

% Bayer CHO Data (1) 

°/„t = [0.010 0.938 2.000 2.826 4.097 5.010 6.035 6.989 7.917 8.722... 

*/. 9.826 10.951] '; 

°/.x = [13.766 11.472 9.901 7.747 5.366 4.034 3.077 2.645 2.715... 

'/. 2.593 2.094 2,245]'; r s s e = 3.4126; 

% Bayer CHO Data (2) 
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'/.t = [0 .000 0 .917 2 .003 2 .878 4 .128 5.184 6 .142 6.986 8 .038 8 .955 9 .854] 

' / .X = [14.130 12.103 9.968 7 .520 3 .572 1.444 0 .716 0 .951 0 .950 1 . 0 0 8 . . . 

'/. 0 .899] ' ; r s s e = 2 . 8 7 0 1 ; 

% Baye r CHO D a t a (3) 

%t = [0 .000 1.104 2 .042 3 .003 4 .035 5 .080 5 .962 7 .021 8.031 8 . 9 9 7 . : . 

°/0 9 .833 10.969] ' ; 

°/„x = [13.903 11.900 9.976 7 .843 5.234 2 .868 1.742 1.212 0 . 9 3 6 . . . 

1 0 .932 0 .943 0 . 8 2 5 ] ' ; r s s e = 1.7139; 

% Bree e t a l 

•/.t = [0 .07 0 .85 1.85 2 .96 3 .9 4 . 8 5 5 .82 6 .81 7 .8 8 .79 9 . 8 1 ] ' ; 

°/,x = [2 .65 2 .49 1.95 1.13 0 .67 0 . 0 9 ' 0 . 1 0 .05 0 .17 0 .11 0 . 0 8 ] ' ; 

°/.rsse = 0 .0765 ; 

'/, D a l i i i e t a l 

t = [0 .02 0 .45 0 .674 1.565 1.937 2 .934 3 .422 3 .896 4 .459 5 .615 6 . 6 2 3 ] ' ; 

x = [0 .498 0 .492 0 .394 0 .298 0 .193 0 .008 0 0 .006 0 .005 0 .009 0 . 0 0 7 ] ' ; 

r s s e = 0 . 0 0 4 9 1 ; 

°/0 L i n z e t a l 

y„t = [0 .095 0 .947 1.468 1.989 2 .462 2 .936 3 .883 4 .972 5 .445 5 . 9 6 6 . . . 

% 6 .392 7 . 0 5 5 ] ' ; 

°/„x = [4 .977 3 .954 3 .628 3 .116 2 .698 2 .326 2 .093 1.861 1.628 1 . 3 4 9 . . . 

°/. l ' !07 0 . 8 3 7 ] ' ; r s s e = 0 .2336 
0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/ 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/oA 

*/, P o l y n o m i a l G e n e r a t i o n 

p3 = p o l y f i t ( t , x , 2 ) ; 

p4 = p o l y f i t ( t , x , 3 ) ; 

"/ .Generating Curves from P o l y n o m i a l F i t s 

x3 = p o l y v a i ( p 3 , t ) ; 

x4 = p o l y v a l ( p 4 j t ) ; 

" / . P l o t t i n g the D a t a 
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p l o t ( t , x , ' o ' , t , x 3 , t , x 4 ) 
legend('Experimental Data','Order-2 F i t ' , ' O r d e r - 3 F i t ' , 0 ) 
t i t l e ( ' E x p e r i m e n t a l Glutamine Data and Polynomial F i t s ' ) 
x l a b e K ' T i m e (days)') 
y l a b e l ( ' G l u t a m i n e (mM)') 

% Computing RSSE Values 
r s s e 3 = sum((x3-x).~2); 
rs s e 4 = sum((x4-x)."2); 
r s s e d i s p l a y = [rsse r s s e 3 r s s e 4 r s s e 5 ] ' 

% Computing Degrees of Freedom 
d4 = n-4; 
d5 = n-5; 

% COMPUTING SIMULATED GLUTAMINE VALUES 
t f i n a l =7.0; 
t l = l i n s p a c e ( 0 , t f i n a l , 5 0 ) ' ; 
x3a = p o l y v a l ( p 3 , t l ) 
x4a = p o l y v a l ( p 4 , t l ) ; 

T7MH7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
JM* V /o /o /o /o /o /o /o /o /o /o/o /o /o /o /o /o /o /o /o /o /o /o /o /o/o/o/o/o/o/o/o/o/o/o 

0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ oy oy oy 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ • /o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o 

F . 2 . 4 Lactate 

The concnetration of lactate increases monotonically and polynomials of order 2 and 3 have 

been used to describe this profile. These are subsequently compared with results from the 

3-parameter logistic growth equation. 

/o/o/o/o/o/o/oA^A /̂f̂ Z/o/o/o//̂ AVoPROGRAM S T A R T^/I/I/I/I/I/I/I/O/D/I/O/D/Q/I/O/I/O/I/I/I/I/J/I/I/I/I/I/I/I/I/O 

% l a c t a t e _ p o l y f i t . m 
% F i t s polynomials t o l a c t a t e data 
7 Inputs: l a c t a t e vs. time data 
°/« Outputs: dependent v a r i a b l e , SSE 

7o Chet an Goudar 
7. L a s t modified; 6/20/04 
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c l e a r a l l 

°/o E x p e r i m e n t a l Da ta 

'/. Baye r CHO Da ta (1) 

°/„t = [0 .01 0 .94 2 .00 2 .83 4 . 1 0 5 .01 6 .03 6 .99 7 .92 8 .72 9 .83 10.95] 

°/.x = [0 .84 4 .87 10.92 15 .67 23 .22 26 .44 27 .56 28 .89 29 .11 3 0 . 6 7 . . . 

'/. 30 .00 3 0 . 5 6 ] ' ; r s s e = 5 .3675 ; 

'/. Baye r CHO Da ta (2) 

°/„t = [0 .00 0 .92 2 .00 2 .88 4 . 1 3 5 .18 6 .14 6 .99 8 .04 8 .95 9 . 8 5 ] ' ; 

%x = [0 .94 2 .79 5 .28 10 .13 19.78 24 .11 26 .22 28 .33 29 .22 3 1 . 5 6 . . . 

°/„ , 3 3 . 1 1 ] ' ; r s s e = 11 .9479 ; 

% B a y e r CHO Da ta (3) 

°/„t =. [0 .000 1.104 2 .042 3 .003 4 .035 5 .080 5 .962 7 .021 8.031 8 . 9 9 7 . . 

% 9 .833 1 0 . 9 6 9 ] ' ; 

'/.x = [1 .033 2 .956 4 .944 8.500 13.556 17.778 21 .333 23 .333 2 5 . 1 1 1 . . . 

°/ 026.000 26 ,889 2 6 . 3 3 3 ] ' ; r s s e = 0 .9818 ; 

% L i n z e t a l 

t = [0 .038 0 .902 1.434 1.921 2 .407 2 .893 3 .902 4 .908 5 .433 5 . 8 6 1 . . . 

6 .385 7 .005]> ; ". 

x = [0 .002 2 .098 4 ,457 7 .503 7 .521 9 .88 11.708 14.358 1 3 . 4 1 3 . . . 

13 .022 12.35 1 2 . 3 7 3 ] ' ; r s s e = 7 .0979 ; 

0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/oA 

% P o l y n o m i a l G e n e r a t i o n 

p3 = p o l y f i t ( t , x , 2 ) ; 

p4 = p o l y f i t ( t , x , 3 ) ; 

% G e n e r a t i n g Curves from P o l y n o m i a l F i t s 

x3 = p o l y v a l ( p 3 , t ) ; 

x4 = p o l y v a l ( p 4 j t ) c ; • 

P l o t t i n g the Da ta 

p l o t . ( t x , ' o ' , t , x 3 , t., x4). . 
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legend( 'Experimental Da ta ' , 'O rde r -2 F i t ' , ' O r d e r - 3 F i t ' , 0 ) 

t i t l e ( ' E x p e r i m e n t a l Lactate Data and Polynomial F i t s ' ) 

x l abe l ( 'T ime (days) ' )S 

y l a b e l C L a c t a t e (mM)') 

% Computing RSSE Values 
rsse3 = sum((x3-x).~2); 
rsse4 = sum((x4-x) ."2); 
r s sed i sp l ay = [rsse rsse3 r s s e 4 ] ' 

/o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o/o^fi'UvjrtHl 1 £iI>iUA A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 

F .2.5 Ammonium 

Polynomial fitting for the ammonium data set is similar to that for lactate given their 
similar monotonically increasing profiles 

/O/O/O/O/O/O/O/OAVO/A^ AVO/O/O/A^ A V o P R O G R A M START/Q/ 1/,/I/I/,/I/D/I/I/I/I/I/I/D/I/I/I/D/D/C/ 1/I/I/ 1/ I/ 1/I/O/O/D/D 

°/0 ammonium_polyf i t .m 
% F i t s polynomials to l a c t a t e data 
°/o Inputs: ammonium vs . time data 
7o Outputs: dependent v a r i a b l e , SSE 

% Chetan Goudar 

7, Last modif ied: 6/20/04 

c l ea r a l l 

°/0 Experimental Data 

7. Bayer CHO Data (1) 

7.t = [0.010 0.938 2.000 2.826 4.097 5.010 6.035 6.989 7.917 8 . 7 2 2 . . . 

7. 9-826 10.951] 

°/,x = [0.175 1.050 1.938 3.363 4.425 4.519 5.719 6.206 6.656 6 . 8 5 0 . . . 

°/o 7.400 6 .656 ] ' ; rsse*= 1.3834; 

% Bayer CHO Data (2) 

°/,t = [0.000 0.917 2.003 2.878 4.128 5.184 6.142 6.986 8.038 8 . 9 5 5 . . . 

'7. 9 . 8 5 4 ] ' ; 

7.x = [1.120 1.990 2.990 4.270 5.630 9.140 7.500 7.960 8.960 9 . 2 8 0 . . . 
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% 8 . 6 0 0 ] ' ; r s s e = 4 . 3 6 0 1 ; 

% Bayer CHO D a t a (3) 

*/.t = [0 .000 1.104 2 .042 3 .003 4 .035 5 .080 5 .962 7 .021 8.031 8 .997 

% 9 .833 1 0 . 9 6 9 ] ' ; 

'/.x = [0 .480 2 .060 4 .210 5.160 5 .460 7 .200 13.500 14.200 1 6 . 1 6 0 . . . 

% 17.360 17.560 1 9 . 3 6 0 ] ' ; r s s e = 12 .4441 ; 

°/0 Bree e t a l 

%t = [0 .07 1.84 2 .96 3 .87 4 .85 5 .82 6 .81 7 .82 8 .77 9 . 8 1 ] ' ; 

%x = [0 .78 1.28 1.71 2 .18 2 .65 2 .23 2 .45 2 .43 2 .44 2 . 6 5 ] ' ; 

7, r s s e = 0 .2278 ; 

% L i n z e t a l 

t = [0 .047 0 .852 1.42 1.894 2 .367 2 .983 3 .883 4 .972 5 .445 5 . 9 6 6 . . 

6 .44 7 . 0 0 8 ] ' ; 

x = [0 .279 0 .744 0 .977 1.256 1.488 1.721 2 .093 2 .326 2 . 8 3 7 . . . 

3 .349 3 .814 4 ] ; ; r s s e = 0 .3573 ; 

0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o 

°/0 P o l y n o m i a l G e n e r a t i o n 

p3 = p o l y f i t ( t , x , 2 ) ; 

p4 = p o l y f i t ( t , x , 3 ) ; 

% G e n e r a t i n g Curves from P o l y n o m i a l F i t s 

x3 = p o l y v a l ( p 3 , t ) ; 

x4 = p o l y v a l ( p 4 , t ) ; 

% P l o t t i n g t he Da ta 

p l o t ( t , x , ' o ' , t , x 3 , t , x 4 ) 

l e g e n d ( ' E x p e r i m e n t a l D a t a ' , ' O r d e r - 2 F i t ' , ' O r d e r - 3 F i t ' , 0 ) 

t i t l e ( ' E x p e r i m e n t a l Ammoniumn D a t a and P o l y n o m i a l F i t s ' ) 

x l a b e K ' T i m e ( d a y s ) ' ) 

y l a b e l ( ' A m m o n i a (mM)') 
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% Comput ing RSSE V a l u e s 

r s s e 3 = s u m ( ( x 3 ~ x ) . " 2 ) ; 

r s s e 4 = s u m ( ( x 4 - x ) . ~ 2 ) ; 

r s s e d i s p l a y = [ r s s e r s s e 3 r s s e 4 r s s e 5 ] ' . 

%/i%/i%%%%%%%5o%%/C%//%///PROGRAM E N D / O ^ / O Z / I / I / I / O / I / O / I / I / I / O / I / I / O / I / I / O / I / I / D / O / I / I / O / O / I / I / I / O / I / O 

F.2.6 Product 

Product concentration is described by polynomials of order 2 and 3 and these results are 

compared with those from the logistic growth equation. 

°/°/'L°/°L°LL°/a/°L/a/a/'/°/°LL/a/(>/ii/o%PROGRAM STARTLLLLLLLLLLLLLLLLLLLLLLLLLLL/«LLLL 

"L p r o d u c t _ p o l y f i t .m 

% F i t s p o l y n o m i a l s t o p r o d u c t d a t a 

% I n p u t s : p r o d u c t v s . t i m e d a t a 

% O u t p u t s : dependent v a r i a b l e , SSE 

% Che tan Goudar 

°/„ L a s t m o d i f i e d : 6 /20 /04 

c l e a r a l l 

% EXPERIMENTAL DATA 

% B a y e r CHOI D a t a (1) 

t = [0 .010 0 .938 2 .000 2 .826 4 .097 5 .010 6 .035 6.989 7 .917 8 . 7 2 2 . . . 

9 .826 1 0 . 9 5 1 ] ' ; 

x = [12.000 12.000 16.000 19.000 66 .000 51 .000 63 .000 95 .000 1 1 9 . 0 0 0 . . . 

150.000 194.000 1 8 2 . 0 0 0 ] ' ; r s s e = 1630 .66 ; 

1 Baye r CHO D a t a (2) 

%t = [0 .000 0 .917 2 .003 2 .878 4 .128 5.184 6 .142 6 .986 8 .038 8.955 9 . 8 5 4 ] ' ; 

°/.x = [6 .100 6 .100 10.800 24 .500 51 .400 74 .600 83 .200 87 .600 91 .100 

'/. 95 .500 9 6 . 6 0 0 ] ' ; r s s e = 4 2 . 2 2 2 9 ; 

% Bayer CHO D a t a (3) 

%t = [0 .000 i : 1 0 4 2 .042 3 .003 4 .035 5.080 5 .962 7 .021 8.031 8 .997 9 . 8 3 3 . . . 

°A 1 0 . 9 6 9 ] ' ; 
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Ix = [6.100 6.100 14.200 31.800 53.400 80.000 115.000 120.000 125.000. 
% 126.000 129.000 135.000 ] ' ; r s s e = 170.2958; 

'/, Bree et a l 
7,t = [0.02 0.83 1.82 2.93 3.85 4.82 5.8 6.81 7.82 8.82 9.83 10.91]'; 
7„x = [0.08 0.11 0.12 0.36 21.94 43.93 69.22 90.39 103.48 104.37 104.38 
'/„ 104.46]'; r s s e = 79.7789; 

% D a l i l i et a l 
•/,t = [0 0.398 0.681 1.531 1.918 2.942 3.448 3.928 4.453 5.588 6.665]'; 
%x = [0 0.526 0.671 1.746 2.675 6.382 7.525 6.393 5.83 6.553 5.995]'; 
°/„rsse = 2.6924 

o/o/o/o/o/o/o/o/o/o/oyo/oyo/o/o/o/o/o/o/o/o/o /o/o/o/o/o/o/o/o/o/o/o A 

% POLYNOMIAL GENERATION 
p3 = p o l y f i t ( t , x , 2 ) ; 
p4 = p o l y f i t ( t , x , 3 ) ; 

% GENERATING CURVES FROM POLYNOMIAL FITS 
x3 = p o l y v a l ( p 3 , t ) ; 
x4 = p o l y v a l ( p 4 , t ) ; 

°/„ PLOTTING THE DATA 
p l o t ( t , x , ' o ' ; t , x 3 , t , x 4 ) 
legend('Experimental Data','Order 2 F i t ' , ' O r d e r 3 F i t ' , 0 ) 
t i t l e ( ' E x p e r i m e n t a l T i t e r Data and Corresponding Polynomial F i t s ' ) 
xlabeK'Time (days)') 
y l a b e K ' T i t e r ( A r b i t r a r y U n i t s ) ' ) 
'/.ylabelC T i t e r (mg/L)') 

1 COMPUTING RSSE VALUES 
r s s e 3 = sum((x3-x).~2); • _ 
rsse 4 = sum((x4-x).~2); 
r s s e d i s p l a y = [rsse r s s e 3 r s s e 4 ] ' 
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'/, COMPUTING SIMULATED TITER VALUES 
t f i n a l =7.0; 
t l = l i n s p a c e ( 0 , t f i n a l , 5 0 ) ' ; 
x3a = p o l y v a l ( p 3 , t l ) ; 
x4a = p o l y v a l ( p 4 , t 1 ) ; 

7 COMPUTING DERIVATIVES 
a l = p 3 ( l ) ; a2 = p3(2); 
dxdt3a =-2*al.*x3a + a2; 

b l = p 4 ( l ) ; b2 = p4(2); b3 = p4(3); 
dxdt4a •= 3*bl*(x4a.~2); 
7 7 7 7 7 7 7 7 7 7 7 7 7 y 7 7 7 7 % 7 7 7 P R O G R A M E N D 7 7 7 7 7 7 7 7 7 7 7 7 h h / t i t 

F . 3 N o n l i n e a r P a r a m e t e r E s t i m a t i o n i n L o g i s t i c M o d e l s 

The generalized logistic equation and its reduced forms are nonlinear and an itereative 

approach is required to estimate their parameters. The following program describes fitting 

experimental data to the 4-parameter G L E and an identical approach can be used for the 

L G E and L D E . 

F.3.1 Generalized Logistic Equation 

7y.y.y.y.y.y.y.y.y.y.y.%%y.y.7y.y.y.y.yoPROGRAM sTARTy:/0y:/„y„y.y.y:/:/07y.%y„7%yoy;/:/0y0y.y„y.y.y,y„7y.y.y:/. 
'/, g l e _ f i t . m 
% F i t s VCD data t o the l o g i s t i c equation 
% Inputs: f v c d vs. time data, parameter estimates 
7 Outputs: best f i t parameters, f i t s t a s t i c s 

7 Chetan Goudar 
% Last m o d i f i e d : 6/20/04 

'/, USES c u r v e f i t l , g l e _ s o l u t i o n 
7 c u r v e f i t l uses c u b i c i l l , c u b i c i 3 1 , l s i n t l , s e a r c h q l 
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o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/̂  
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o 

'•/.INPUT. INFORMATION 
promptl = { ' d a t a f i l e : Name of f i l e c o n t a i n i n g experimental data'}; 
t i t l e l = 'Input f o r g l e _ f i t ' ; 
l i n e N o l = 1 ; 
i n p u t l = i n p u t d l g ( p r o m p t l , t i t l e l , l i n e N o l ) ; 
d a t a f i l e = num2str ( i n p u t l - [ l , 1}-); 

°/ °/ °/ °/ °/ °/ °/ °/ °/ °/ °/ °/ °/ V V V V V V °/ V"/ V V V V °/ V °/ °/ V °/ °/ °/ °/ °/ °/ V °/ °/ °/ V"/ V V °/ °/ V °/ V V V V V V V °/ °/ V V V °/ V V V V V °/ /o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o A 

7o READING EXPERIMENTAL DATA 
f i d = f o p e n ( d a t a f i l e , ' r ' ) ; 
A=fscanf (fid,'°/,e °/oe', [ 2 , i n f ] ) ' ; 
f c l o s e ( f i d ) ; 
t = A ( : , l ) ; 
fvcd=A(:,2); 
0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/̂  
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o A 

% NONLINEAR PARAMETER ESTIMATION -

°/0 I n i t i a l k i n e t i c parameter estimates 
kO=[l 1 1 1 ] ' ; ' 

d i s p ( ' I n i t i a l K i n e t i c Parameter Estimates') 
disp(kO') 

disp('Computing "Optimal" K i n e t i c Parameters. Please Wait') 

d i s p C ) 

°/0 O p t i m i z a t i o n 

[ k f i n a l , o p t i o n s , e r r o r , j a c ] = . . . 
c u r v e f i t l ( ' g l e _ s o l u t i o n ' , k O , t , f v c d ) ; 

i t e r s = o p t i o n s ( 1 0 ) ; 
d i s p C Number of I t e r a t i o n s ' ) 
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d i s p ( i t e r s ) 

1 1. GENERAL OUTPUT 
e r r o r ; . 
ymodel=fvcd+error; 
d i s p ( ' F i n a l Estimates of K i n e t i c Parameters') 
d i s p ( k f i n a l ' ) -

% 2. STATISTICAL OUTPUT 1 

ydata=fvcd; 
yfit=ymodel; . ' ' - " . • 
param=kfinal; 

% 2.1 RESIDUAL SUM OF SQUARES ERROR (rsse) 
e = y f i t - y d a t a ; 
rsse=e'*e; 
d i s p ( ' R e s i d u a l Sum of Squares E r r o r ' ) 
d i s p ( r s s e ) 

2.2 RESUDUAL MEAN SQUARE (rms) 
m= l e n g t h ( y f i t ) ; 
n=length(param); 

i f (m~=n) 

rms=rsse./(m-n); 
e l s e 

var=NaN; 
end 

d i s p ( ' R e s i d u a l Mean Square') 
disp(rms) 

°/. 2.3 COVARIANCE MATRIX (cm) 
xtx = j a c ' * j a c ; 
cm=inv(xtx); 

d i s p ( ' C o v a r i a n c e Matrix') 
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disp(cm) 

7. 2.4 VARIANCE INFLATION FACTOR (varinf) 

var inf = diag(cm);• '' , 

% 2.5 PARAMETER CORRELATION MATRIX, PCM.(pcm) 

pcm = cm. / sqr t (varinf * varinf ')•;. ; • ' ' . ' , 

d i sp ( 'Corre la t ion Matrix for Parameters ') 

disp (pcm) " '• '. 

% 2.6 STANDARD ERROR OF PARAMETERS (std) 

vcv=cm.*rms; 

std=sqrt(diag(vcv)); 

disp('Standard Error for Parameters ') 

d i sp(s td ' )" 

disp('95%. Confidence Interval for Parameters ') 

disp(2*std') 

% PLOTTING THE OUTPUT 

% 1. EXPERIMENTAL DATA vs MODEL PREDICIONS 

f igure, 

subplot(2,1,1) 

p l o t ( t , y m o d e l , t , y f i t , ' o ' ) 

x label ( 'Time' ) ;y label ( 'FVCD') 

legend('Model P r e d i c t i o n ' , 'Experimental data') 

t i t le ( 'Comparison of Experimental Data and Model F i t ' ) 

7. 2. RESIDUAL PLOT . . 

yzero=linspace(0,0,m); 

subplot,(2,l ,2) 

p l o t ( t , y z e r o , t , e r r o r , ' o ' ) 

x labe l ( 'Time' ) ; y l a b e l C E r r o r ' ) 

• t i t l e ('Residual''Plot';) 
V7VVVVV77VVVVVV°/°/VVVVVDDRPD AM T7MTW°/0/0/0/0/°/°/°/c/c/0/0/V°/ty0/0/0/0/°/0/°/0/°/V0/VVV0/0/0/0/ 
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F.4 Integral Viable Cell Density 

A n approximation to the integral viable cell density can be obtained by integrating Eq. (6.5) 

r ApDt 

JXdt = -£wH(t) (F.l) 
where 

f D B + 2D e ^ + ^ O 

is a hypergeometric function of the form F {a, b, c, zjwith the series expansion 

F{a,b,c,z} = Y,(a^jf^ .(F .3) 
k=0 wfc ' 



Appendix G 

Parameter Estimation in Logistic 
Equations 

Application of the logistic equations for describing batch and fed-batch data has been pre­
sented in Chapter 6. A l l 3 logistic equations (4 parameter generalized, logistic growth and 
logistic decline) are nonlinear with respect to their parameters requiring the use of nonlin­
ear least squares for parameter estimation. Since nonlinear least squares is iterative, initial 
parameter estimates are necessary. It is important the initial estimates be reasonably ac­
curate because the exponential terms in the logistic equations make the model sensitive to 
parameter variation. Since solution convergence during nonlinear parameter estimation is 
often influenced by the choice of initial estimates, a consistent method of initial parameter 
estimation is desirable. Methods to obtain initial parameter estimates are presented and 
a comparison between commonly used nonlinear parameter estimation algorithms is also 
made. 

G.l Initial Parameter Estimates 

Initial parameter estimates in nonlinear equations are typically obtained by a linear trans­
formation followed by linear least squares analysis. The 4-parameter generalized logistic 
equation describes cell density profiles in batch and fed-batch cultures 

X — CGI) 
• exp(Bt) + Cexp(-Dt) y ' ' 

where X, the cell density, is a nonlinear function of the unknown parameters A, B, C and 

D and t is time. Eq.(G. l ) can describe both the cell growth and death phases and can be 

268 
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modified to reflect only the growth phase as 

A 
X=Cexp(-Dt) ( G - 2 ) 

which can be rearranged as 

ln (X) = D i + ln (G.3) 

It follows from Eq.(G.3) that a plot of ln (X) versus t is linear with a slope of D and ln (^)as 

intercept. Eq.(G. l ) can be simplified to reflect only the death phase 

exp (Bt) 

which can be linearized as 
In (X) = -Bt + ln (A) (G.5) 

such that a.plot of ln(X) versus t has — B as slope and ln (A) as intercept. Thus initial 
estimates of A and B can be obtained from a plot of Eq.(G.5) and those for C and D from 
Eq.(G.3). 

The logistic growth equation describes monotonically increasing quantities such as lac­
tate, ammonium and product concentrations (P) in batch and fed-batch systems 

• P ° 1 + C e x p ( - D t ) .. < & 6 > 

Setting ^ = 0 results in A = Pmax, the maximum value of P such that Eq.(G.6) can be 
rewritten as 

l n ( P m a ^ ~ P ) =~ Dt + In (C) (G.7) 

Estimates of C and D can be obtained from the intercept and slope of Eq.(G.7). 
The logistic decline equation describes monotonically decreasing quantities such as glu­

cose and glutamine concentrations 

^ e x p ( - l ) + C ' ( a 8 ) 

and can be reduced to a form analogous to the logistic growth equation by substituting 

~Q ~ _/4_, —S = B , ~Q — C 
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Initial parameter estimates for the logistic decline equation can be obtained from an ex­

pression analogous to Eq.(G.7). 

_1 5 c i i i i i i i i i i i J 
0 1 2 3 4 5 6 

Time (days) 

Time (days) 

1.0 r—•—r1—•—r—•—i—1—i—1—i—1—r 

. 0 . 6 I- 1 
0 2 4 6 8 10 12 

Time (days) 

Figure G . l : Parameter estimation by the linear and nonlinear methods for cell density data of 
Bree et aL, (1988). 

G.2 Final Parameter Estimation 

A comparison was made between three commonly used nonlinear parameter estimation 

techniques. The Levenberg-Marquardt (LM) method requires gradient calculation and is the 

most widely used algorithm for nonlinear parameter estimation. The simplex method does 

not require derivatives and can sometimes be more robust than gradient-based methods. 

Most commercial nonlinear regression software use the Levenberg-Marquardt and Simplex 

methods. The generalized reduced gradient (GRG) method was also evaluated as it is used 

by the Solver utility in Microsoft Excel. Since Microsoft Excel is widely used to record 



APPENDIX G. PARAMETER ESTIMATION IN LOGISTIC EQUATIONS 271 

experimental data, success with the G R G method would greatly simplify analysis of batch 

and fed-batch data. 

4 6 8 10 12 14 

Time (days) 

5 
T -

0,8 

0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 

: — • — i — 1 — i — • 1 1 1 1 1 1 1—; 
— Linear Fit 

.... — - G R G Fit -
••• L M Fit 

i — ^ 

: ^ \ 
\ \ 

(b) 
. ..j , i , : 

4 6 8 10 12 14 

Time (days) 

F i g u r e G . 2 : Comparison of linear and 2 nonlinear fits to batch CHO cell density data. 

G.3 Generalized Logistic Equation 

The 4-parameter generalized logistic equation has been used to fit cell density data from 

multiple batch and fed-batch data sets (Chapter 6). A total of 16 cell density data sets 

were examined and the results are shown in Tables G l - G3. In 14 of the 16 data sets, 

estimates of parameters A, B, C and D by the L M method were different than those from 

the simplex and G R G methods (Parameter estimates from the simplex and G R G methods 

were virtually identical for all data sets). While a reduction in the residual sum of squares 

error (RSSE) was seen for all 3 nonlinear parameter estimation methods when compared 

to the initial estimates, RSSE values from the simplex and G R G methods were lower than 

those for the L M method. Based on this difference, we can conclude that the simplex and 

G R G methods better fit experimental cell density, data. It is important to note that the 

solutions converged for all 16 data sets examined indicating that the proposed linearization 

of the G L E resulted in representative initial parameter estimates. 

Figure G . l shows application of the nonlinear parameter estimation procedure to the 

cell density data in Bree et al., (1998). Linearized plots for the cell growth and death phases 

corresponding to Eqs. (G.3) and (G.5) are shown in Figures G . l a and G . lb , respectively, 

where-log-transformed experimental data are well described by the linear fits. Linear and 

nonlinear fits to experimental data are shown in Figure G . l c and clearly highlight the 
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superiority of the nonlinear fit. This is an important observation because the inadequacy of 
the linear fit in Figure G . l c is not evident in the linear fits to transformed data in Figure 
G . l a and G . l b (This general trend was true for all other data sets and is also reflected in 
the lower RSSE values for the nonlinear fits). Substantial differences in growth rate time • 
courses are seen (Figure G.ld) for the linear and nonlinear fits. The Figure G . l results 
cleary indicate that linearization alone will not provide satisfactory fits to experimental 
cell density data and improvement of these initial parameter estimates by nonlinear least 
squares is necessary. 

< 
l X CO 

< 
c 

Trans fo rmed Data 
Bes t Fit L ine 

2 4 6 8 10 12 

Time (days) 

E 
'E 
o 
E 
E 
< 

:—1 1—' 1 '—r 
[ (b) 

1 1 1 1 1 :—1 1—' 1 '—r 
[ (b) 

%// 
/ / 

• J K • Data -i 
-jm L inear Fit '-. 
I 
1 i 1 i J i l_ 

Nonl inear Fit i 
i . i . : 

4 6 8 10 12 

Time (days) 

F i g u r e G . 3 : Initial parameter estimation (panel a) and comparison of linear and nonlinear fits 
(panel b) to ammonium concentration data for CHO cells in batch culture. 

Parameter estimates from the L M method were in most cases different than those from 

the simplex and G R G methods (Tables G l - G3). The impact of these differences on 

the ability to describe experimental data is shown in Figure G.2 for C H O cells in batch 

culture The corresponding parameter estimates are in Table G l , C H O cells (C). While 

both nonlinear fits were substantial' improvements over the linear fit, the G R G fit was 

visually a slightly better fit to experimental data than the L M method (Figure G.2a). This 

is also reflected in the lower RSSE for the G R G method (4.08 versus 5.36; Table G l ) . 

G.4 Logistic Growth Equation 

The logistic growth equation describes monotonically increasing quantities such as ammo­
nium, lactate and product concentrations in batch and fed-batch cultures. Eq.(G.7) was 
used to obtain initial parameter estimates for 6 sets of ammonium concentration data which 
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1 1 ' I 7 
# T rans fo rmed Data 

Bes t Fit L ine 

2 4 6 8 

Time (days) 

. 16 

12 

8 

4 

0< 

: (b) 
T , - - I | i 

; 

• Da ta 
L inear Fit ; 
Non l inear Fit : 

i . i . i 
2 4 6 

Time (days) 

F i g u r e G . 4 : Initial parameter estimation (panel a) and comparison of linear and nonlinear fits 
(panel b) for lactate concentration data of Linz et al., (1997). 

were subsequently used as starting points for nonlinear parameter estimation. Unlike with 
the G L E , nonlinear parameter estimates from all 3 methods were identical and a compar­
ison with the initial estimates is shown in Table G4. A l l nonlinear fits had lower RSSE 
values than the corresponding linear fits suggesting improved description of experimental 
data (Table G4). A comparison of linear and nonlinear fits for C H O cells in batch culture 
is shown in Figure G-3. 

Trans fo rmed Da ta 
Bes t Fit L ine 

2 4 6 

Time (days) 

Nonl inear Fit 

2 4 6 8 

Time (days) 

F i g u r e G . 5 : Initial parameter estimation (panel a) and comparison of-linear and nonlinear fits 
(panel b) for product concentration data of Dalili et al., (1990), 

Lactate concentration data from 5 different studies were also described by the logistic 
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1 2 3 4 5 

Time (days) 

F i g u r e G . 6 : Initial parameter estimation (panel a) and comparison of linear and nonlinear fits 
(panel b) for glucose concentration data of Ljumggren and Haggstrom (1994). 

growth equation and estimates of A , C and D from the 3 nonlinear methods were identical 
(Table G5). Substantial RSSE reduction was seen for all data sets reflecting improved fits 
to experimental data. A plot of the linear fit to transformed lactate concentration data is 
shown in Figure G.4a and a comparison of linear and nonlinear fits to lactate concentration 
data is shown in Figure G.4b. 

Six product concentration data sets were also described by the logistic growth equation 
and the results as shown in Table G6. As with previous data from the L G E (Tables G4 
and G5), the nonlinear fits were characterized by substantially reduced RSSE and were 
better fits to experimental data. The linear fit to transformed product concentration data 
from Dalili et al., (1990) is shown in Figure G.5a and the linear and nonlinear fits to 
product concentration data in Figure G.5b. The nonlinear fit was clearly a much improved 
representation of the experimental data (Figure G.5b). 

G.5 Logistic Decline Equation 

Monotonically decreasing glucose and glutamine concentrations were described by the L D E 

and the inital parameter estimation method was identical to that for the L G E using modified 

parameter definitions (Eq. G.9). A total of 5 glucose concentration data sets were analyzed 

and the results are shown in Table G7 and Figure G.6. Parameter estimates from the 

Simplex and G R G methods were identical but different from the L M estimates. Both sets 

of estimates, however, had lower RSSE values than the corresponding linear fits (Table G7). 
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F i g u r e G . 7 : Initial parameter estimation (panel a) and comparison of linear and nonlinear fits 
(panel b) for glutamine concentration data of Bree et al., (1988). 

Six glutamine concentration data sets were also described by the L D E . As with the 
glucose data sets in Table G7, parameter estimates from the Simplex and G R G methods 
were identical and different from the L M method (Table G8). Both sets of estimates, 
however, were substantial improvements over the linear parameter estimates (Figure G.7). 

G.6 Conclusions 

A simple approach for fitting logistic equations to batch and fed-batch data was presented 

and verified. Linearized forms of the logistic equations were derived from which initial 

parameter estimates were obtained. These initial estimates were used as starting points 

for nonliner least squares and three commonly used algorithms were tested. For all 44 

data sets examined, the nonlinear parameter estimation algorithms converged on a solution 

suggesting that the logistic equations can be reliably used to describe experimental data. 

Parameter estimates from the Simplex and G R G methods were in most cases very similar 

but different than those from the L M method. In all cases, the Simplex/GRG estimates were 

characterized by lower RSSE values and hence were better fits to experimental data. For 

robust logistic modeling, we recommend initial parameter estimation using the linearization 

approaches presented in this sudy. These preliminary parameter estimates can be refined 

using either the Simplex or G R G methods resulting in robust fits "to experimental data from 

which specific rates can be determined. 
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Table G . l : Comparison of GLE Parameter Estimates for Cell Density Data from Linear and Non­
linear Parameter Estimation . •• '• 

D a t a Source Paramete r Paramete r E s t i m a t i o n M e t h o d 
Linear G R G L M Simplex 

Bree et al., (1988) A 18.52 30.13 29.39 30.13 
B 0.38 • 0.43 0.43 0.43 
C 64.78 140.52 139.43 140.53 
D 0.47 0.69 . 0.69 0.69 

RSSE 1.93 0.06 . 0.06 0.06. 

Dalili et al., (1990) A • 119.49 1708.69 124.59 1710.2 
B 1.09 1.7 0.98 1.7 
G 432.29 12166.06 649.08 12172.4 
D 1.09 1.54 1.56 1.54 

RSSE 21.20 0.81 4.0511 0.81 

Linz et al., (1997) A 4.36 3.02 3.03 3.02 
B 0.18 0.12 0.12 0.12 
C 18.97 15.93 15.93 15.93 
D 0.74 1.25 1.25 1.25 

RSSE 1.02 0.16 0.16 0.16 

C H O Cells (A) A . 21.35 32.7 22.19 32.71 
B . 0.17 0.21 0.17 • 0.21 
C 13.30 30.40 22.79 30.40 
D 0.23 0.49 0.56 0.49 

RSSE 38.43 1.67 1.81 1.67 

C H O Cells (B) A 70.80 334.46 70.28 335.00 
B 0.29. 0.45 0.28 0.45 
C 49.62 242.92 62.19 243.24 
D 0.34 0.37 0.48 0.37 

RSSE 25.99 2.32 3.19 2.32 

C H O Cells (C) A 56.77 119.13 60.37 115.46 
B 0.23 0.30 0.23 0.30 
C 35.14 99.07 59.95 94.46 
D 0.35 0.52 0.61 0.52 

RSSE 70.37 4.08 5.36 4.34 
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T a b l e G . 2 : Comparison of GLE Parameter Estimates for Cell Density Data from Linear and Non­
linear Parameter Estimation • . 

D a t a Source Paramete r Paramete r E s t i m a t i o n M e t h o d 
Linear G R G L M Simplex 

Dowd et al., (2000) A 49.29 38.21 46.44 35.32 
(Figure 4; batch data) B 1.06 1.00 1.03 0.98 

C 207.18 209.93 212.52 195.31 
. D 0.56 0.87 . 0.77 . 0.88 

RSSE 0.16 0.02 0.02 0.02 

Dowd et al., (2000) A 20.59 72.29 25.31 71.62 
;(Figure 5; batch data) B 0.75 1.00 0.77 1,00 

C 88.61 395.21 150.76 391.9 
D 0.68 0.86 0,97 0.86 , 

RSSE 0.38 0.01 0.02 0.01 

Dowd et al., (2000) A 1.91 2.81 2.68 2.81 
(Figure 2; 3 pmol case) B 0.13 ' 0.19 0.18 0.19. 

C 8.40 19.52 18.73 19:51 
D 0.45 o:96 0.98 0.96 

: RSSE 0.77 0.08 0.08' 0.08 

Dowd et al., (2000) A 3:75 . 6.82 . .5.18 6.83 
(Figure 2; 4 pmol case) B 0.24 0.32 ; 0.27 0.32 

C 16.01 37.62 29.75 37-62 
D 0.45 0.72 0.78 0.72 

RSSE 0.65 0.01 0.01 0:01 

Dowd etal . , (2000) A •• 9.70 13.02 9.73 13.02 
(Figure 2;'5 pmol case) B 0.43 . 0.48 0.43 0.48 

c 53.34 114.71 83.31 114:73 
D 0.49 • 0.80 0.81 0.80 

RSSE 0.47 0.20 0.20 0,20 

Dowd et al., (2000) • . A • . . . 4.41 9.53 5.98 9.60 
. (Figure 4; case E). B ..0.23. " 0.34 0.27 0.34 

15.88 . 57.16 33.99 57.36 
D 0. (3 . 0.77 0.82 : .: ° 77 • 

RSSE . 1.21 0.18 . 0.20 • 0 18 , 
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T a b l e G . 3 : Comparison of G L E Parameter Estimates for Cell Density Data from Linear and Non­
linear Parameter Estimation • 

D a t a Source Paramete r Paramete r E s t i m a t i o n M e t h o d 
Linear G R G L M Simplex 

Dowd et al., (2000) A 8.93 32.15 14.39 32.57 
(Figure 4; Case F) B 0.33 0.48 0.37 0.48 

C 20.80 107.47 52.91 108.81 
D 0.27 0.48 0.56 0.47 

RSSE 1.44 ' 0.08 0.10 • 0:08 

Dowd et al., (2000) • A . 3.73 21.48 7.58 21.7 
(Figure 4; Case G.) B 0.23 0.46 0.30 0.46 

C 8.74 95.18 34.05 96.03 
D 0.30 0.65 0.76 0.65 

RSSE 2.43 0.31 0,39 0.30 

Dowd et al., (2000) A • 14.72 . 26.38 20.83 26.53 
(Figure 5; fed-batch) B 0.29 0.38 0.34 0.38 

C 63.31 166.18 137.48 166.34 
D 0.72 0.98 1.03 0.99 

RSSE 3.11 0.07 0.08 . 0.07 

Ljumggren and Haggstrom (1994) A 3.29 5.68 4.12 6.92 
B 0.38 0.53 0.43 0.58 
C 22.29 61.43 41.68 63.68 
D 0.93 1:57 1.61 1.43' 

RSSE 0.80 0.01 0.01 0.01 
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T a b l e G . 4 : Comparison of L G E Parameters for Ammonium Concentration Data from Linear and 
Nonlinear Parameter Estimation 

D a t a Source Paramete r Paramete r E s t i m a t i o n M e t h o d 
Linear Nonlinear 

Bree et al., (1988) A 2.65 2.55 
C 1.86 2.94 
D 0.40 0.68 

RSSE 0.46 . 0.23 

Linz et a l , (1997) A 4.00 7.68 
c 9.95 •11.62 
D . 0.67 0.36 

RSSE 0,88 0.36 

C H O Cells (A) A 7.40 7.04 
C 9.88 8.87 
D 0.52 0.62 

RSSE 3.39 1.38 

C H O Cells (B) ' - A 9.28 8.98 
C 5.76 8.01 
D 0.52 0.71 

RSSE 6.99 . 4.36 

C H O Cells (C) A 19.36 20.05 
C 19.75 16.90 

0.57 0.52 
RSSE 12.97 12.44 

Ljumggren and Haggstrom (1994) A 3.59 4.51 
c 7.52 6.28 
D 1.45 0.89 

RSSE 0.76 . 0.26 
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T a b l e G . 5 : Comparison of L G E Parameters for Lactate Concentration Data from Linear and Non­
linear Parameter Estimation 

D a t a Source Parameter Parameter Est imat ion M e t h o d 
Linear Nonlinear 

Linz et al., (1997) A 14.36 13.04 
C 6.32 14.70 
D 0.79 1.38 

RSSE 17.81 7.10 

C H O Cells (A) A 30.67 29.89 
C 10.45 11.88 
D 0.71 0.91 

RSSE 38.77 5.37 

C H O Cells (B) ' A 33.11 31.42 
C 19.99 21.05 
D 0.69 0.81 

RSSE 34.76 11.95 

C H O Cells (C) A 26.89 26.75 
C 19.54 18.07 
D 0.71 0.71 

RSSE 1.66 0.98 

Ljumggren and Haggstrom (1994) A 4.00 3.84 
C 1.28 1.43 
D 1.44 1.92 

RSSE 0.20 0.09 
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Table G . 6 : Comparison of LGE Parameters for Product Concentration Data from Linear and Non­
linear Parameter Estimation 

D a t a Source Parameter Parameter Est imat ion M e t h o d 
Linear Nonlinear 

Bree et al., (1988) A 104.46 105.32 
C 5351.16 430.47 
D 1.64 1.17 

RSSE 303.67 79.78 

Dalili et al., (1990) A ' 7.53 6.51 
C 8.19 229.91 
D 0.72 2.77 

RSSE 20.50 2:69 

C H O Cells (A) A 194.00 •248.85. 
C 25.55 30.39 
D 0.50 0.43 

. RSSE 2503.83 1630.66 

C H O Cells (B) ' ' A ' . .96.60 94.46 
C 25.72 42.32 
D 0.81 0.95 

RSSE 75.19 42.22 . . . 

C H O Cells (C) A • 135.00 131.49 

c .26.32 53.34.. 
D 0.70 0.91 

RSSE. 472.59 170.30 . 

Dowd et a l , (2000) '•. A 130.71 130.51 

c 13.32 7.29 
D - 1.76 1.46 

RSSE . 119.08 23.26 . 
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Table G.7: Comparison of L D E Parameter Estimates from Linear and Nonlinear Parameter Esti­
mation for Glucose Concentration Data 

D a t a Source Parameter Parameter Est imat ion M e t h o d 
Linear GRG/Simplex L M 

Linz et al., (1997) A 107.01 145.44 111.99 
C 1.15 1.34 1.23 

. D 11.78 14.88 11.07 
RSSE 1.64 0.11 0.16 

C H O Cell (A) A 760.98 102.62 668.60 
C 0.30 0.12 0.29 
D 12.26 0.58 10.24 

RSSE. . 175.07 31.79 147.42 

C H O Cell (B) A 2430.98 .1545.57 2266.56 
C 0.68 0.64 0.70 
D 32.76 19.67 29.81 

RSSE 77.87 31.08 39.62 

C H O Cell (C) A 7485.01 2358.42 ' 6756.41 
= C 0.78 0.63 0.80 

D 105.78 31.79 96.46 
RSSE 142.19 . 25.58 74.41 

Ljumggren and Haggstrom (1994) A 82.58 36.63 76.26 
C 1.39 1.17 1.47 
D 15.82 5.83 13.87 

RSSE 0.75 0.16 0.35 
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Table G .8: Comparison of L D E Parameter Estimates from Linear and Nonlinear Parameter Esti­
mation for Glutamine Concentration Data 

D a t a Source Parameter Parameter Est imat ion M e t h o d 
Linear G R G / S i m p l e x L M 

Bree et al . , (1997) A 14.75 46.67 28.08 
C 0.65 1.07 0.93 
D 5.57 16.37 9.29 

R S S E 0.75 0.08 0.09 

D a l i l i et a l , (1990) A 1.34 21.41 6.42 
C 1.01 2.20 1.62 
D 2.69 43.39 11.74 

R S S E 0.08 0.00 0.01 

L i n z et al.,. (1997) A. 21.43 3.65 4,34 
C 0.43. 0.19 0.21 
D 4.31 : 0.28 0.14 

R S S E 1.39 0.21 0.22 . 

C H O C e l l (A) A 31.96. 12.27 16.38 
C 0.27 0.20 0.24 
D 2.32 0.13 ; 0.18 . 

R S S E 33.05 3.37 3.59 

C H O C e l l (B) A 60:29 125.42 63.2 
C 0.52 0.78 0.61 
D 4.27 7.99 3.40 

R S S E 20.32 2.87 3.72 

C H O C e l l (C) A 66.5,1 77.57 67.51 
C . . 0.47. o:58. 0,55 
D •4.78 4.57 3.81 

R S S E 14.90 1.71 1.76 



A p p e n d i x H 

Error in Specific Rates and 
Metabolic Fluxes 

Error propagation from prime variables into specific rates and subsequently into metabolic 
fluxes was analyzed in Chapter 7. For specific rates, these results were largely based on 
adding normally distributed error to the prime variables and determining their impact on 
specific rate errors. To characterize error propagation into metabolic fluxes, error was added 
to error-free specific rate values followed by flux estimation. Application of the Gaussian 
method for error estimation is illustrated using specific growth rate as an example and 
other specific rates can be similarly analyzed. Specific rate espressions are derived first and 
computer programs for error estimation by both the Gaussian and Monte-Carlo approaches 
are also presented in this Chapter. 

H . l Specific Growth Rate 

In a perfusion system, the bioreactor cell density is maintained at a constant value by 

offsetting cell growth with a combination of cell loss in the harvest stream (uncontrolled) 

and controlled bleeding of cells from the bioreactor. Cellular mass balances across the 

bioreactor and the cell retention device help quantify these dynamics and can be used to 

obtain an expression for specific growth rate. A schematic of the perfusion system is shown 

in Figure H . l . 

284 
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Figure H . l : Schematic of a perfusion system with the various flow streams and their respective 
viable cell concentrations. 

H . l . l Mass Balance on Viable Cells in the Bioreactor 

There are three inlet and two outlet streams for a typical perfusion bioreactor. The inlets 

include the cell retention device return stream. (Flow rate = Fr; Cell density = Xy), the 

inlet medium stream (Flow rate = Fm) and the base addition stream (Flow rate = Fbase). 

As base addition is typically a very small percentage of medium addition, these streams can 

be combined into a single stream; F (F.— Fm + Fbase) for convenience. The outlet streams 

include the cell bleed stream (Flow rate = Fb~, Cell density = Xy) and the cell retention 

device feed stream (Flow rate = F + Fr — Fb; Cell density = Xy*). The mass balance 

expression for viable cells in the bioreactor can now be written in terms of the following 

general expression 

Accumulation — Input — Output + Generation — Decay (H-l) 

V ^ = {(F)0 + (Fr)XK}-{(Fb)Xv

: + (F + Fr-Fb)XZ} + { (pV) X* } - {(kdV) X* } 

(H.2) 

where V is the bioreactor volume (L), Xy the viable cell density in the bioreactor (10 9 

cells/L), Xy the viable cell density in the return stream from the cellretention device (10 9 
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cells/L), jj- the specific growth rate (1/d) and kd the specific death rate (1/d). Eq.(H.2) can 

be rewritten as 

^ = ( f ) X v - + f ) ' X v + M Xv~ ^ X* (H-3) 

Combining the specific growth rate, LL, and the specific death rate, kd, an apparent 
growth rate / i ' (1/d) can be defined as 

/ / - A-,, (H.4) 

Eq.(H.4) can now. be rewritten in terms of the apparent growth rate 

, -1 dXg , (F\X§ 

Xy dt y v y y^y 

Eq.(H.5) has limited utility for specific growth calculations because the viable cell density 
in the return stream from the cell retention device, Xy, is not routinely measured. It is 
desirable to express Xy. in terms of experimentally measured quantities and this can be 
done by performing a mass balance on viable cells across the cell retention device. 

H.l.2 Mass Balances on Viable Cells in the Cell Retention Device 

Assuming no cell growth in the cell retention device, a generalized mass balance for viable 

cells can be written as 

0 = { ( F + F r - F b ) X y ! } - { ( F - F b ) X v

I + (Fr)Xv

!} (H.6) 

where Xy is the viable cell density in the harvest ( lO 9 cells/L). Eq.(H.6) can be rearranged 

to obtain an expression for Xy • 

Xv = Xv + { ^ ^ ) (Xv - Xv) (H-7) 

H.1.3 Expression for Apparent Specific Growth Rate 

Substituting Eq.(H.7) in Eq.(H.5) and simplifying results in the following expression for the 

apparent specific growth rate 

, Fb [ F h \ Xy • 1 dXy • 
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The apparent specific growth rate is now expressed in terms of the bioreactor volume, 
discard and harvest flow rates and the bioreactor and harvest cell densities. Estimating 
y! from Eq.(H.8) is straightforward as all these quantities are routinely measured during a 
perfusion cultivation. 

H.2 Specific Glucose Consumption 

Glucose is a major source of carbon and energy for mammalian cells and is a key component 
of cell culture medium. A mass balance for glucose in the bioreactor can be written following 
the general representation in Eq.(H.l) 

V^ = {(F)Grn + (Fr)G}-{(Fb)G + (F + Fr-Fb)G}-{{VXv

:)qG} (H.9) 

where G is the glucose concentration in the bioreactor (mol/L), Gm the glucose concentra­
tion in the medium and qo the specific glucose consumption rate (pmol/cell-d). Dividing 
throughout by V and simplifying, the specific glucose consumption rate can be computed 
using 

1 fF(Gm - G) dG\ 
q G = ^ { — - y ~dtl . ( H ' 1 0 ) 

H . 3 Specific Glutamine Consumption 

Glutamine is the second source of carbon and energy for the cells and is also present in cell 

culture medium. In addition to cell consumption, glutamine undergoes abiotic degradation 

at cell cultivation temperatures which must be taken into account while writing the mass 

balance expression . 

ydGln = {(F)Gl^ + fFr)Gln}_{(Fb)Gln + fF + Fr_Fb)Gln} 

-{(VX^)qGln-(VKGln)Gln) ( H . l l ) 

where Glnm and Gin are glutamine concentrations in the medium and bioreactor, respec­

tively (mol/L), qoin the specific glutamine consumption rate (pmol/cell-d) and Kclnthe 
first order rate constant for glutamine degradation (1/d).- Dividing throughout by V and 

simplifying, the specific glucose consumption rate can be expressed as 

1 jF(Glnm-Gln) dGln) ' • • 
..qGln = 'Mx~^v ;~.^r) ( H-1 2 ) 
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H.4 Specific Lactate Production 

The majority of lactate produced in mammalian cell culture is a result of glucose metabolism 

and a mass balance for lactate can be written as 

V1I = { { I ' V ) L } ~ { { F b ) L + (F + F r - F b ) L } + { (VXy1) qL) (H.13) 

where L is the lactate concnetration in the bioreactor (mol/L) and qL the specific lactate 
production rate (pmol/cell-d). Eq.(H.13) can be simplified to obtain an expression for qi 

1 [FL dL\ 

" = 3^{-r-+*} ( H 1 4 ) ' 
H.5 Specific Ammonium Production 

Ammonium is produced during the metabolism of glutamine to glutamate and also, during 

the abiotic degradation of glutamine resulting in the following mass balance expression 

V^dJ = { { F r ) A } ~~ { { F b ) A + (F + F r ~ A> + {(VXv) + {VKGln) Gin} (H.15) 

where A is the ammonium concnetration in the bioreactor (mol/L) and q& the specific 

ammonium production rate (pmol/cell-d) which can be estimated from 

1 ( F A dA • ^, ) / T T ^ = ̂ 1—+.--^^] , (H.16) 

H.6 Specific Productivity 

The mass balance for protein production can be writtten in an analogous fashion to those 

for lactate and ammonium production , 

V~aE = { ( ^ ) p} ~ UK) P + {F + Fr - Fb) P} + {{VX$) qP) (H.17) 

where P is the product concnetration (g/L) and qp the specific protein production rate that 

is commonly refered to as specific productivity (pg/cell-d). From Eq.(H.17), an expression 
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for specific productivity can be obtained as 

1 FP dP 
9P = x*.\ir+* 

H.7 Gaussian Method of Error Estimation 

(H.18) 

H.7.1 General Expression for Error 

Using only the first derivatives in the Taylor series expansion of a function / (xi,X2, •••xn), 
the error in / can be expressed in terms of that in the independent variables 

Af (xi,X2, •••Xn) « 
df 
dx\ 

df 
dxi 

Ax2 + df Axr (H.19) 

where Ax\, Ax2, ...Axn are the errors in x\,x2, ...xn, respectively. The standard deviation 

can be calculated from 

A / 2 = £ 
df 
dxi 

Axj (H.20) 

If the relative error of Xi is defined as rXi = ^r1, that for / can be derived as 

where / and the true values. 

df 
dx; 

(fxi -Xi) (H.21) 

H.7.2 Error Estimation in Specific Growth Rate 

The derivative in that expression can be estimated using finite forward differences 

dX$ vB YB 

A V ( j + l ) A V ( i ) 

d t j (i+i) . ~ 
•(H.22) 

where Xy^ and Xy^+1^ are bioreactor cell density measurements at.time and %+i), 

respectively. The relative error for the specific growth rate can now be written as 

+ + 4) (rxS-XV (H.23) 
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Using Fd = 6 L/day, Fh = 120 L/day, V — 12 L, Xy = 20 x 10 6 cells/mL and = 

0.2 x 10 6 cells/mL, yJ can be calculated from Eq.7.3 as 0.6 l/day. 

Substituting for V and F& "in Eq.(H:23), the relative error of Li' with respect to error in 

Fbis • . • 

(v̂f = ( ^ ) 2 K - ^ ) 2 = ( ? i ) W6)' (H.24) 

which simplifies to 
rv = (0.8333) rFb . (H.25) 

Eq.(H.23) can be simplfied to include only the effect of errors in harvest cell density on 

the apparent specific growth rate 

( V A ^ f = ( ^ ) (rXM.X^Y (H.26) 

which upon substitution and simplification results in 

r M = (0.1666) rXH (H.27) 

When bioreactor viable cell density data are in error Eq.(H.23) can be simplfied as 

which upon substitution and simplification results in 

r M =.(2.36) rXB (H.29) 

H.8 Computer Programs for Specific Rate Error Estimation 

H.8.1 Comparison of Gaussian and Monte-Carlo Methods 

A comparison of the Gaussian and Monte-Carlo methods indicated that the Gaussian 

method underpredicted specific rate errors when the prime variable errors were high. This 

was due to the truncation of higher order terms in the Gaussian method. While including 

these terms will improve accuracy, the expressions involving higher order terms are complex 

and difficult to use. The program compare_mc_gauss compares error estimates from these 

two methods. It calls separate function files to calculate the Gaussian error for differnt 

specific rates. 



APPENDIX H. ERROR IN SPECIFIC RATES AND METABOLIC FLUXES 291 

compare_mc_gauss.m (Compares error between Gaussian and Monte-Carlo 
Methods) 

/D/O/O/I/>/O/O/(/«/I/I/</I/O/D/I/I/I/I/O/O/OPROGRAM START^/I/JI/I^/I/I/O/I/I^/O/I/I/D'/I/I/O/O/I/I/O/O/O/I/I/I/I/O/O/O 

% compare_mc_gauss .m 
°/0 m - f i l e which compares the r e s u l t s of the gaussian e r r o r a n a l y s i s and 
% monte-carlo s i m u l a t i o n 

% Chetan Goudar 
% Last m o d i f i e d : 12/18/05 
0/0/0/0/0/0/0/0/0/0/0/0/07070/0/0/0/0/07 0/0/0/0/0/0/0/0/0/0/ yyyyziyyyyyi/yyyyyyyyyyyotyo/yyyyyyyyyyy 

c l e a r a l l 
f i g u r e 
h o l d on 

ERROR-FREE QUANTITIES 
•vf = 12; f h = 120.0; f v c d = 20; gm=1.0; gf=0.5; 

d t = l ; 
dgdt = (gf-0.5 ) . / d t ; 
c l = 1000/180; 
c2 = ( f h / v f ) * ( ( g m - g f ) / f v c d ) ; 
c3 = dgdt/fvcd; 
qg = c l * ( c 2 + c3); 

•/.-. ADDING ERRORS TO PRIME VARIABLES AND COMPUTING MU 
°/o S p e c i f y i n g magnitude of e r r o r s 
sdvf = 0.0*vf; 
r _ f h = 0.0; 
sd f h = r _ f h * f h ; 
y.sdfvcd = 0.0*fvcd; 
0/„sdg = 0.25*gm; 

'/. r _ g = 2.0; 
% r„.gm = 2.0; 
'/. sdg = r_g/100*gf; 
% sdgm = r_gm/100*gm; 
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°/0 E r r o r i n t r o d u c t i o n 

n=25000; 

pe r d i f f = o n e s ( n , 1 ) ; ^ i n c r e a s e s the c a l c u l a t i o n speed 
qgl=ones(n,1); /(increases the c a l c u l a t i o n speed 

°/,r_g = 0:2:10; 
r _ g = 0; 
r_gm = r _ g ; 
r_gm = r_gm*0; • 
r _ f v c d =0:2:20; 

f o r i l = l : l e n g t h ( r _ g ) 
sdg = r _ g ( i l ) / 1 0 0 * g f ; 
sdgm = r_gm(il)/100*gm; 

f o r i 2 = l : l e n g t h ( r _ f v c d ) 

s d f v c d = ( r _ f v c d ( i 2 ) / 1 0 0 ) . * f v c d ; 

f o r j = l : n 
v f l = .vf + r a n d n ( l ) . * s d v f ; ' 
f h i = f h +. r a n d n ( l ) .*sdfh; 
f v c d l = f v c d + r a n d n ( l ) . * s d f v c d : 

g f l = gf + r a n d n ( l ) . * s d g ; 
gf2 = gf + r a n d n ( l ) . * s d g ; 
gml =. gm + randn(l).*sdgm; 

'/,. Computation of qg 

d g d t l = ( g f l - g f 2 ) , / l ; 
c4 = ( f h l / v f l ) * ( ( g m l - g f l ) / f v c d l ) ; . 
c5 = d g d t l / f v c d l ; c 5 = 6 ; 

q g l ( j ) = c l * ( c 4 + c5); 
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% Computing d i f f e r e n c e s i n qg 
q g d i f f = a b s ( q g - q g K j ) ) ; 
p e r d i f f ( j ) . = ( q g d i f f . / q g ) * 1 0 0 ; ' 

end 

p e r d i f f ; 
a v g p e r d i f f = m e a n ( p e r d i f f ) ; 
av_qgl = mean(qgl); 
X d i s p ( a v g p e r d i f f ) 
% d i s p ( [ a v _ q g l , a v g p e r d i f f , s t d ( q g l ) / a v _ q g l * 1 0 0 ] ) 

r_qg_mc ( i 2)=std(qgl)/qg * 1 0 0 ; 

% d i s p ( [ a v _ q g l , a v g p e r d i f f , r _ q g _ m c ( i 2 ) ] ) 

end 

[d_qg,r_qg] = e r r _ q g ( q g , g m , g f , f h , v f , f v c d , r _ g ( i l ) / 1 0 0 , r _ g m ( i l ) / 1 0 0 , . . . 

r _ f h / 1 0 0 , r _ f v c d / 1 0 0 , d t ) ; 

plot(r_fvcd,r_qg_mc,r_fvcd,r_qg* 1 0 0 ) 

end 

x l a b e l O E r r o r i n XvF (%)') 
y l a b e K ' E r r o r i n q_{Glucose} (%)') 
t i t l e ( ' S p e c i f i c glucose consumption r a t e ' ) 
legend('Monte C a r l o Simulation','Gaussian E r r o r p r o p a g a t i o n ' ^ ) 

r _ f v c d ' 
r_qg_mc' 
r_gauss = 100*r_qg' . 
y o/ y y o/ y y y o/ y o/ y o/ o/ o/ y y y y o/ o/ oy 0/ 0/ y 0/ 0/ 0/ 0/ 0/ 0/ yyotyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyDiyctytii 

e r r _ m u . m (Func t ion file that computes g rowth rate error by the Gauss ian 

method) 

f u n c t i o n [d_mu,r_mu]=err_mu(mu,Fp,Fh,Vf,XvF,XvH,r_Fp,r_Fh,r_XvF,r_XvH,dt) 

I 
% E r r o r a n a l y s i s f o r the s p e c i f i c growth r a t e c a l c u l a t i o n 

• / . • • • 
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°/0mu (1/d) s p e c i f i c growth r a t e 
%Fp (1/d) Purge r a t e 
°/.Fh (1/d) Harvest r a t e 
°/0Vf (1) Fermentor volume 
°/oXvF ( l e 6 c e l l s / m l ) Fermentor v i a b l e c e l l d e n s i t y 
°/0XvH ( l e 6 c e l l s / m l ) Harvest v i a b l e c e l l d e n s i t y 
% r _ i r e l a t i v e e r r o r s 
%dt (d) sample time i n t e r v a l 

dFp=r_Fp*Fp; °/0(l/d) standard d e v i a t i o n purge r a t e 
dFh=r_Fh*Fh; % ( l / d ) standard d e v i a t i o n harvest r a t e 
dXvF=r_XvF*XvF; % ( l e 6 c e l l s / m l ) standard d e v i a t i o n f v c d 
dXvH=r_XvH*XvH; °/.(le6 c e l l s / m l ) standard d e v i a t i o n hvcd 

% E r r o r f o r s p e c i f i c growth r a t e 
d_mu = s q r t ( l / V f " 2 . * d F p . ~ 2 +. (XvH/XvF/Vf)"2.*dFh.~2 + (F h / V f / X v F ) ' 2 . * . . . 

dXvH."2 + '((Fh*XvH/Vf/XvF~2)~2 + 2/dt~2/XvF~2).*dXvF.~2); 
°/0 r e l a t i v e e r r o r f o r s p e c i f i c growth r a t e 
r_mu = 1/mu.* d_mu; 
o/o/o/o/o/o/o/o/o/o/o/oyo/o/o/o/oyo/o/o/o/o/o/o/o/o/o/o/o/o/o 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/̂  

e r r _ q g . m ( F u n c t i o n file t h a t computes glucose c o n s u m p t i o n r a t e e r r o r b y 
the G a u s s i a n m e t h o d ) 

f u n c t i o n [d_qG,r_qG]=err_qg(qG,G_medium,G_fermentor,Fh,Vf,XvF,r_G,... 

r.Gm.r.Fh.r.XvF.dt) 

% 
% E r r o r a n a l y s i s f o r the s p e c i f i c r a t e c a l c u l a t i o n 

% E r r o r f o r s p e c i f i c glucose consumption r a t e 

*/. ' 
°/,qG (pmole/cell/d) Glucose s p e c i f i c consumption r a t e 
yoG_medium (g/1) Glucose c o n c e n t r a t i o n medium 

7oG_fermentor ( g / D Glucose c o n c e n t r a t i o n fermentor 
°/,Fp (1/d) Purge r a t e 
"/.Fh (1/d) Harvest r a t e 
°/0Vf (1) Fermentor volume 
%XvF (le6 cells/ml.) Fermentor v i a b l e c e l l d e n s i t y 
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°/0r_i r e l a t i v e e r r o r s 

°/0dt (d) sample time i n t e r v a l 

dXvF=r_XvF*XvF; 

dFh=r_Fh*Fh; % ( l / d ) standard d e v i a t i o n harvest r a t e 

°/0(le6 c e l l s / m l ) standard d e v i a t i o n f v c d 

dG=r_G*G_fermentor; °/0(g/D standard d e v i a t i o n f o r b i o r e a c t o r glucose 
dGm=r_Gm*G_medium; % ( g / l ) standard d e v i a t i o n f o r medium glucose 

% E r r o r f o r s p e c i f i c glucose consumption r a t e (pmole/cell/d) 
d_qG = 1000/180*sqrt(((G_medium-G_fermentor)/XvF/Vf)"2.*dFh."2 ... 

+ ((Fh/Vf/XvF)~2 + 2/dt~2/XvF~2).*dG.~2 + ((Fh/Vf/XvF)~2).*... 
dGm.~2 + (Fh*(G_medium-G_fermentor)/Vf/XvF~2)~2.*dXvF.~2); 

7, d_qG = le3/180*sqrt(((G_medium-G_fermentor)/XvF/Vf)"2.*dFh."2 +... 
((Fh/Vf/XvF)"2).*dG.~2 + (Fh*(G_medium-G_fermentor)/Vf/XvF"2)"2.*dXvF. ~2) ; 
'/, r e l a t i v e e r r o r f o r s p e c i f i c glucose consumption r a t e 
r_qG = 1/qG * d_qG; 
01HI 010/0/0/0/0/0/HI HI HI HI 01010/0/0/0/HI 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/07 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/01010101010101010101010101 
/o /o /o /o A /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o A 

err qgln.m (Function file that computes glutamine consumption rate error 
by the Gaussian method) 

f u n c t i o n [d_qGln,r_qGln]=err_qgln(qGln,Gln_medium,Gln_fermentor,Fh,... 

Vf,XvF,r_Gln,r_Gln_m,r_Fh,r_XvF,dt) 

7, 

°/H E r r o r a n a l y s i s f o r the s p e c i f i c r a t e c a l c u l a t i o n 

% E r r o r f o r s p e c i f i c glutamine consumption r a t e 

% 

k=l; 7o(l/d) Glutamine decay r a t e 

/^qGln (pmole/cell/d) glutamine s p e c i f i c consumption r a t e 

yoGln_medium (mM) glutamine c o n c e n t r a t i o n medium 

7oGln._medium (mM) glutamine c o n c e n t r a t i o n fermentor 

7oFp (1/d) Purge r a t e 

7oFh (1/d) Harvest r a t e 

7oVf (1) Fermentor volume 

7»XvF ( l e 6 c e l l s / m l ) Fermentor v i a b l e c e l l d e n s i t y 

7 0 r _ i r e l a t i v e e r r o r s 
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%dt (d) sample time i n t e r v a l 

7. . ' ' 

dFh=r_Fh*Fh; '/,(!'/d) standard d e v i a t i o n harvest r a t e 
dXvF=r_XvF*XvF; % ( l e 6 c e l l s / m l ) standard d e v i a t i o n f v c d 
dGln=r_Gln*Gln_fermentor; %(mM) SD f o r b i o r e a c t o r glutamine 
dGln_m=r_Gln_m*Gln_medium; °/.(mM) SD f o r medium glutamine 

% E r r o r f o r s p e c i f i c glutamine consumption r a t e (pmole/cell/d) 
d_qGln = sqrt(((Gln_medium-Gln_fermentor)/XvF/Vf) " 2 .*dFh . ~ 2 . . . 

+ ((Fh/Vf/XvF)~2 + 2/dt~2/XvF~2 + (k/XvF)"2).*dGln.~2... 
+ • ((Fh/Vf/XvF)"2).*dGln_m.~2 + (((Fh*(Gln_medium-Gln_fermentor)... 
VVf/XvF~2)~2 + (k/XvF~2)~2)).*dXvF.~2); 
' / . r e l a t i v e e r r o r f o r s p e c i f i c glutamine consumption r a t e 
r_qGln = 1/qGln * d_qGln; 
0/0/0/0/0/0/0/0/0/0/0/0/0/ 0/ 0/0/0/0/0/0/ 0/ 0/0/ 0/0/0/ 0/ 0/ 0/0/0/0/0/0/0/0/ 0/ o / 0 / 0 / 0 / ' / °/ ° / 0 / 0 / W V V V 0/0/0/0/0/0/0/0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ °/<,/<>/0/ 
/ o / o / o / o / o / o / o / o / o / o / o / o / o / o / o A 

err_qlac.m (Function file that computes lactate production rate error by the 
Gaussian method) 

f u n c t i o n [d_qLac,r_qLac]=err_qlac(qLac,Lac_fermentor,Fh,Vf,XvF.., 
,r_Lac,r_Fh,r_XvF,dt) 

% 

°/0 E r r o r a n a l y s i s f o r the s p e c i f i c r a t e c a l c u l a t i o n 
°/0 E r r o r f o r s p e c i f i c l a c t a t e p r o d u c t i o n r a t e 

% 
%qLac (pmole/cell/d) l a c t a t e s p e c i f i c p r o d u c t i o n r a t e 
%Lac_fermentor (g/1) l a c t a t e c o n c e n t r a t i o n fermentor 
%Fh (1/d) Harvest r a t e 
%Vf (1) Fermentor volume 
°/oXvF (le6 c e l l s / m l ) Fermentor v i a b l e c e l l d e n s i t y 
°/0r_i r e l a t i v e e r r o r s 
°/0dt (d) sample time i n t e r v a l 

dFhFr_Fh*Fh; ° /o(l/d) standard d e v i a t i o n harvest r a t e 
dXvF=r_XvF*XvF; °/.(l.e6 c e l l s / m l ) SD fermentor v i a b l e c e l l d e n s i t y 
dLac=r_Lac*Lac..fermentor; y«(g/l) SD f o r l a c t a t e c o n c e n t r a t i o n 



APPENDIX H. ERROR JN SPECIFIC,RATES AND METABOLIC FLUXES 297 

% E r r o r f o r s p e c i f i c l a c t a t e p r o d u c t i o n r a t e (pmole/cell/d) 

d_qLac = l e 3 / 9 0 * s q r t ( ( L a c _ f e r m e n t o r / X v F / V f ) " 2 . * d F h . " 2 + . . . 

( ( F h / V f / X v F )~ 2 + 2 / d t ~ 2 / X v F ~ 2 ) . * d L a c . ~ 2 . . . 

+ ( F h * L a c _ f e r m e n t o r / V f / X v F~ 2 ) ~ 2 . * d X v F . - 2 ) ; 

d_qLac = l e 3 / 9 0 * s q r t ( ( L a c _ f e r m e n t o r / X v F / V f )~ 2 . * d F h .~ 2 + . . . 

( ( F h / V f / X v F ) - 2 ) . * d L a c . ~ 2 . . . 

+ ( F h * L a c _ f e r m e n t o r / V f / X v F~ 2 ) " 2 . * d X v F . " 2 ) ; 

'/, r e l a t i v e e r r o r f o r s p e c i f i c l a c t a t e p r o d u c t i o n r a t e 

r_qLac .= 1/qLac * d_qLac; 
0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/o/o/o/o/̂  
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/oA 

err_qnh3.m (Function file that computes ammonium production rate error 
by the Gaussian method) 

f u n c t i o n [ d _ q N H 3 , r _ q N H 3 ] = e r r _ q n h 3 ( q N H 3 , N H 3 _ f e r m e n t o r , F h , V f , X v F , . . . 

r _ N H 3 , r _ F h , r _ X v F , d t ) 

% 
% E r r o r a n a l y s i s f o r the s p e c i f i c r a t e c a l c u l a t i o n 

7 . 

7 0 q N H 3 (pmole/cell/d) ammonia s p e c i f i c p r o d u c t i o n r a t e 

7 o N H 3 _ f e r m e n t o r (mM) ammonia c o n c e n t r a t i o n fermentor 

7.Fh (1/d) Harvest r a t e 

7 o V f (1) Fermentor volume 

7 o X v F ( l e 6 c e l l s / m l ) Fermentor v i a b l e c e l l d e n s i t y 

7 0 r _ i r e l a t i v e e r r o r s 

7 o d t (d) sample time, i n t e r v a l 

dFh=r_Fh*Fh; 7 .(1/d) SD harvest r a t e 

dXvF=r_XvF*XvF; 7.(le6 c e l l s / m l ) SD fermentor v i a b l e c e l l d e n s i t y 

d N H 3 = r _ N H 3 * N H 3 _ f e r m e n t o r ; 7o(mM) SD f o r ammonia c o n c e n t r a t i o n 

7o E r r o r f o r s p e c i f i c ammonia p r o d u c t i o n r a t e (pmole/cell/d) 

d _ q N H 3 = s q r t ( ( N H 3 _ f e r m e n t o r / X v F / V f ) ~ 2 . * d F h . " 2 + . . . 

( ( F h / V f / X v F )~ 2 + 2 / d t - 2 / X v F ~ 2 ) . * d N H 3 . " 2 . . . 

+ ( F h * N H 3 _ f e r m e n t o r / V f / X v F " 2 ) " 2 . * d X v F . " 2 ) ; 

7o r e l a t i v e e r r o r f o r s p e c i f i c ammonia p r o d u c t i o n r a t e 

r _ q N H 3 = l / q N H 3 * d _ q N H 3 ; 
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err_qo2.m (Function file that computes oxygen uptake rate error by the 
Gaussian method) 

% E r r o r f o r s p e c i f i c oxygen uptake r a t e (pmole/cell/d) 
d_q02 = sqrt(((02_in-02_out)/XvF/Vf)"2.*dFg.~2 + (Fg/Vf/XvF)"2,*d02.~2 ... 

+ (Fg*(02_in-02_out)/Vf/XvF~2)~2.*dXvF.-2); 
7, r e l a t i v e e r r o r f o r s p e c i f i c oxygen uptake r a t e 
r_q02 = l/q02 * d_q02;, 

'o/o/o/o/o/o/o/o/o/o/o/o/o/o/oA^ 

err_qp.m (Function file that computes specific productivity error by the 
Gaussian method) 

• f u n c t i o n [d_qp,r_qp]=err„qp(qp,Titer,Fh,Vf,XvF,r_Titer,r_Fh,r_XvF,dt) 

f u n c t i o n [d_q02,r_q02]=err_qo2(q02,02_in,02_out,Fg,Vf,XvF,... 
r_02,r_Fg,r_XvF,dt) 

% E r r o r a n a l y s i s f o r the s p e c i f i c r a t e c a l c u l a t i o n 
% E r r o r f o r s p e c i f i c oxygen uptake r a t e 

% 
°/0q02 (pmole/cell/d) Oxygen uptake r a t e 
°/002_in (mM) 02 c o n c e n t r a t i o n fermentor i n l e t 
%02_out (mM) 02 c o n c e n t r a t i o n f e r m e n t o r ^ o u t l e t 
°/0Fg (1/d) A e r a t i o n r a t e 
°/0Vf (1) Fermentor volume 
°/„XvF ( l e 6 c e l l s / m l ) Fermentor v i a b l e c e l l d e n s i t y 
% r _ i r e l a t i v e e r r o r s 
°/0dt (d) sample time i n t e r v a l 

dFg=r_Fg*Fg; 
dXvF=r_XvF*XvF; 
d02=r_02*02_out; 

7.(1/d) SD a e r a t i o n r a t e 
7o(le6 c e l l s / m l ) SD fermentor v i a b l e c e l l d e n s i t y 
7o(mM) SD f o r 02 c o n c e n t r a t i o n 

7. ' 
°/„ E r r o r a n a l y s i s f o r the s p e c i f i c r a t e c a l c u l a t i o n 

7 ' 
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°/,qp ( p g / c e l l / d ) s p e c i f i c p r o d u c t i o n r a t e 
"/.Titer (mg/1) Product t i t e r 
'/.Fh (1/d) Harvest r a t e 
°/,Vf (1) Fermentor volume 

°/,XvF ( l e 6 c e l l s / m l ) Fermentor v i a b l e c e l l d e n s i t y 
°/,r_i r e l a t i v e e r r o r s 
•/,dt (d) sample time i n t e r v a l 

dFh=r_Fh*Fh; °/.(l/d) SD harvest r a t e 
dXvF=r_XvF*XvF; ." °/0(le6 c e l l s / m l ) SD fermentor v i a b l e c e l l d e n s i t y 
d T i t e r = r _ T i t e r * T i t e r ; %(mg/l) SD f o r product t i t e r 

% E r r o r f o r s p e c i f i c p r o d u c t i o n r a t e ( p g / c e l l / d ) 
d_qp = l e 6 * s q r t ( ( T i t e r / X v F / V f ) ~ 2 . * d F h . ~ 2 + (Fh/Vf/XvF)~2.*dTiter.~2 ... 

+ (Fh*Titer/Vf/XvF~2)~2.*dXvF.~2); 
% r e l a t i v e e r r o r s p e c i f i c p r o d u c t i o n r a t e 
r_qp = 1/qp * d_qp; 
0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/ 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o 

H.8.2 Specific Rate Error Estimation by the Monte-Carlo Method 

The inadequacies of the Gaussian method at high prime variable errors were apparent and 

the Monte-Carlo method was used to generate most of the data in Chapter 8. The following 

programs estimate specific rate errors by the Gaussian method. The magnitude of prime 

variable error can be specified and at every prime variable error combination, the programs 

compute the resulting specific rate error as a mean of 25000 values. 

main_qg.m (Computes glucose consumption rate error by the Monte-Carlo 
method) 

y.y.y.y.y.y.y.y.y:/;/.yoy.y:/.y.y.y:/.y:/.y.pROGRAM sTARTy.y.y.y.y:/:/:/.y.y:/:/.y;/oy:/:/.y.y.y.y.y.y.yoy;/oy:/:/.y.y.y. 

•/, mainqg_mc. m 

•/, C a l c u l a t e s e r r o r s i n qG u s i n g the Monte-Carlo Approach 

•/. Inputs: Prime V a r i a b l e s and e r r o r s p e c i f i c a t i o n s 

•/. Outputs: E r r o r i n qG 

•/, Chet an Goudar 

•/, Last m o d i f i e d : 1/30/05 
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0/0/0/0/0/0/oy 0/o/o/o/ o/o/o/o/o/o/o/ o/o/0/0/ °/ °/ V ° / 0 / 0 / 0 / v v V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V vvv /o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o 

c l e a r a l l ,.- . . 

°/0 1. Prime v a r i a b l e s t o be e r r o r f r e e 

Gm = 1 ; % (g/L) 
dt = 1 ; % (day) not r e a l l y a prime v a r i a b l e ! 

°/0 2. Prime v a r i a b l e s with e r r o r 

V =12; % (L) 
Fh = 120; % (L/day) 
G =0.5; ft'(g/L) 

XvF = 20; '/, ( l e 6 cells/mL) 

°/0 3. qG Computation 

c l = 1000/180; 

c2 = (Fh/V)*((Gm-G)/XvF); 

qG = c l * c 2 ; 

°/0 4. Computing e r r o r i n qG 

°/0 S p e c i f y i n g magnitude of r e l a t i v e e r r o r s 

r_V = ones(l,10)*5; 

r_Fh = ones(l,10)*5; 

r_G = 2:2:20; 

r_XvF = 0:5:20; 

sd_XvF = (r_XvF(5)/100)*XvF; '/„ must be changed 

n=25000; 

f o r i = l : l : 1 0 

sd_V = (r_V(i)/100)*V.; 
sd_Fh = ( r _ F h ( i ) / 1 0 0 ) * F h ; 

sd_G = (r_G(i)/100)*G; 

f o r j = l : n 



APPENDIX H. ERROR IN SPECIFIC RATES. AND METABOLIC FLUXES 301 

VI = V + ran d n ( l ) ..*sd_V; 
F h l = Fh + ran d n ( l ) . * s d _ F h ; 

Gl = G + randn(i).*sd_G; 
GO = G + randn(l).*sd_G; 
X v F l = XvF + randn(l).*sd_XvF; 

% Computation of qg 
d g d t l = = (G1-G0)./dt; 
c l = 1000/180; 
c4 = ( F h l /Vl)*(.(Gm-Gl)/XvFl); 
c5 = d g d t l / X v F l ; 
q G l ( j ) = c l * ( c 4 + c5); 

°/0 D i f f e r e n c e s i n qG 
q G d i f f = abs(qG-qGKj)) ; 
p e r d i f f ( j ) = (qGdiff./qG)*100; 
end 

a v g p e r d i f f ( i ) 
avg_qGl 
r_qG_mc(i) 
end 

m e a n ( p e r d i f f ) ; 
mean(qGl); 
(std(qGl)/avg_qGl)*100; 

7. 5. Output 
r_qG_mc' 
plot(r_G,r_qG_mc,'o-') 
0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/ 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/ 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o 

m a i n _ q g l n . m (Computes glutamine consumption rate error by the Monte -

Car lo method) 

o/ o/ o/ o/ o/ o/ o/ y y y y ot y ot ot ot ot ot ot ot ot ot -r 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/of nO/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/ 

to /o/o/o/o to to lo io to to lo to to to to to to to to to to to to lo lo lo to to /o/o/o 

% mainqgln_mc.m 
% C a l c u l a t e s e r r o r s i n qGln u s i n g the Monte-Carlo Approach 
% Inputs: Prime V a r i a b l e s and e r r o r s p e c i f i c a t i o n s 
°/0 Outputs: E r r o r i n qGln 
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'/.• Chet an Goudar 7/22/04 
% Last m o d i f i e d : 7/22/04 
o/otyyyyyyyyyyyyyyyyo/yo/Q/o/yyyyit/o/o/y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y 
A A A A A A A A / o / o A / o A A A / o A A A A A A / o / o A A A A A A A / o A / o A A A A / o / o A A A A A ^ 

c l e a r a l l 

°/0 1. E r r o r - f r e e prime v a r i a b l e s 
Glnm = 9 ; 1 (g/L) 
dt = 1; % (day) not r e a l l y a prime v a r i a b l e ! 

% 2. Prime v a r i a b l e s with e r r o r 
V = 12; '/. (L) 
Fh = 120; 7, (L/day) 
Gin = 4.5; '/. (g/L) 
XvF = 20; % (le6 cells/mL) 

7» 3. qGln Computation 
c l = l e 3 ; 
c2 = (Fh/V)*((Glnm-Gln)/XvF); 
c3 = (0.017/XvF)*Gln; 
qGln = c l * ( c 2 - c 3 ) 

7o 4. Computing e r r o r i n qGln 
7o S p e c i f y i n g magnitude of r e l a t i v e e r r o r s 
r_V = ones(l,10)*5; 

r_Fh = ones(l,10)*5; 

r _ G l n =2:2:20; 

r_XvF = 0:5:20; 

sd_XvF = (r_XvF(l)/100)*XvF; 

n=25000; 

f o r i = l : l : 1 0 

sd_V = (r _ V ( i ) / 1 0 0 ) * V ; 
sd_Fh = ( r ^ F h ( i ) / 1 0 0 ) * F h ; . ,. 
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sd_Gln.= ( r _ G l n ( i ) / 1 0 0 ) * G l n ; 

f o r j = l : n 
VI 
F h l 
G l n l 
GlnO 
XvF l 

= V + randn(l).*sd_V; , 
= Fh + ran d n ( l ) . *sd__Fh; 
= G i n + r a n d n ( l ) . * s d _ G l n ; 
= Gin + r a n d n ( l ) . * s d _ G l n ; 
= XvF + randn(l).*sd_XvF; 

% Computation of qGln 
d g d t l = (Gln l - G l n O ) . / d t ; 
c4 = ( F h i / V l ) * ( ( G l n m - G l n l ) / X v F l ) ; 
c5 = d g d t l / X v F l ; 
c6 =•(0.017/XvFl)*Glnl; 
q G l n l ( j ) = c l * ( c 4 + c5 - c6); 

°L D i f f e r e n c e s i n qGln 
q G l n d i f f = a b s ( q G l n - q G l n l ( j ) ) ; 

p e r d i f f ( j ) = (qG l n d i f f . / q G l n ) * 1 0 0 ; 
end 

a v g p e r d i f f ( i ) 
avg_qGlnl 
r_qGln_mc(i) 
end 

m e a n ( p e r d i f f ) ; 
mean(qGlnl); 
( s t d ( q G l n l ) / a v g _ q G l n l ) * 1 0 0 ; 

'/, 5. Output 
r_qGln_mc' 

plot(r_Gln,r_qGln_mc,'o-') 
0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/WO/0/0/0/0/0/0/0/ 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/oA 

main_qlac.m (Computes lactate production rate error by the Monte-Carlo 

method) 

0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ C/ r 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o-t" 

0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/ 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o 

7, mainqlac_mc .m 
7o C a l c u l a t e s e r r o r s i n qGln u s i n g the Monte-Carlo Approach 
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% Inputs: Prime V a r i a b l e s and e r r o r s p e c i f i c a t i o n s 
°L Outputs: E r r o r i n q l a c 

°/0 Chetan Goudar 
'/. Last m o d i f i e d : 1/30/05 
oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy oy 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o 

c l e a r a l l 

% 1. E r r o r - f r e e prime v a r i a b l e s 
dt = 1 ; % (day) not r e a l l y a prime v a r i a b l e ! 

°/0 2. Prime v a r i a b l e s with e r r o r < 
V = 12; % (L) 
Fh = 120; % (L/day) 
L =1.0; % (g/L) 
XvF = 20; 7. (Ie6 cells/mL) 

% 3. qL Computation 
c l =1000/90; 
c2 = (Fh*L)/(V*XvF); 
qL = c l * c 2 ; 

°/0 4. Computing e r r o r i n qL 
7o S p e c i f y i n g magnitude of r e l a t i v e e r r o r s 
r_V = ones(l,10)*5; 
r_Fh = ones(1,10)*5; 
r_L = 2:2:20; 

r_XvF = 0:5:20; 

sd.XvF = (r_XvF(5)7100)*XvF; ' 

n=25000; 

f o r i = l : l : 1 0 
sd_V (r_V(i) / 1 0 0 ) * V ; 
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sd_Fh = ( r _ F h ( i ) / 1 0 Q ) * F h ; 

sd_L = ( r _ L ( i ) / 1 0 0 ) * L ; 

f o r j = l : n •• 

VI = V + r a n d n ( l ) . * s d _ V ; 

F h l = Fh + r a n d n ( l ) . * s d _ F h ; 

L I = L + r a n d n ( l ) . * s d _ L ; 

LO = L + r a n d n ( l ) . * s d _ L ; 

X v F l = XvF + r a n d n ( l ) . * s d _ X v F ; 

°/0 Computa t ion o f q G l n 

d L d t l = ( L 1 - L 0 ) . / d t ; 

c 4 = ( F h l * L l ) / ( V l * X v F l ) ; 

c 5 = d L d t l / X v F l ; 

q L l ( j ) = c l * ( c 4 + c 5 ) ; 

°/o D i f f e r e n c e s i n q G l n 

q L d i f f = a b s ( q L - q L l ( j ) ) ; 

p e r d i f f ( j ) = ( q L d i f f . / q L ) * 1 0 0 ; 

end 

a v g p e r d i f f ( i ) = m e a n ( p e r d i f f ) ; 

a v g _ q L l = m e a n ( q L l ) ; 

r _ q L _ m c ( i ) = ( s t d ( q L l ) / a v g _ q L l ) * 1 0 0 ; 

end 

7 5 . Output 

r_qL_mc ' 

p l o t ( r _ L , r_qL_mc, ' ' o-') 
0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0 
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o 

main_qo2 .m (Computes oxygen uptake rate error by the Monte-Carlo method) 

7oyo7o7o7o7o7oyoyo7o7o%%yoyo7o/oyo%7oyo%PROGRAM sTARTyoyo%%yoyoyoyoyo7/o/o/o/o/oyo/g/{./o/o/{x/o/oLLLLLLLL 

°/c mainqgo2_mc .m 

% C a l c u l a t e s e r r o r s i n q02 u s i n g the M o n t e - C a r l o Approach 

°/0 I n p u t s : P r ime V a r i a b l e s and e r r o r s p e c i f i c a t i o n s 
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7, Outputs: E r r o r i n q02 

% Chetan Goudar 
°/„ Last m o d i f i e d : 2/03/05 
yyyyyyyoiyyyyyyy^iyyyyyyyyyyyyyyyyyyyyyyyyyyitiyy y y y y yyy y y y y y y y y y y y y y y 
In ID In /o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o /o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o A 

c l e a r a l l 

% 1. E r r o r - f r e e prime v a r i a b l e s 
o 2 i n = 9; % (g/L) 
o2out = 1; % (day) not r e a l l y a prime v a r i a b l e ! . 

°/0 2. Prime v a r i a b l e s with e r r o r 
V =12; °/0 (L) 
F02 =720; % (L/day) 
02in . = 4e-3;7. (M/L) 
02out = 2e-3; '/. (M/L) 
XvB = 20; 7o (le6 cells/mL). 

% 3. q02 Computation 
c l = F02*(02in - 02out)*1000; 
c2 = V*XvB; 
q02 = c l / c 2 

'/, 4. Computing e r r o r i n q02 
7o S p e c i f y i n g magnitude of r e l a t i v e e r r o r s 
r_V = ones(l,10)*5; 

r_F02 = ones(l,10)*5; 
r_02out =2:2:20; 
r_XvB = 0:5:20; 

sd_XvB = (r_XvB(5)/100)*XvB; . 

. n=25000; 

f o r i = l : l : 1 0 
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sd_V = (r_V(i)/100)*V; 

sd_F02 = (r_F02(i)/100)*F02; 

sd_02out = (r_02out(i)/100)*02out; 

for j=l:n 

VI = V + randn(l) .*sd_V; 

F021 = F02 + randn(l).*sd_F02; 

02outl = 02out + randn(l).*sd_02out; 

XvBl = XvB + randn(l).*sd_XvB; 

% Computation of qGln 

c l = F021*(02in-02outl)*1000; 

c2 = Vl*XvBl; 

q021(j) = c l / c 2 ; 

°/0 Differences i n qGln 

q02diff = abs(q02-q021(j)); 

p e r d i f f ( j ) = (q02diff./q02)*100; 

end 

avgperdif f ( i ) = mean(perdiff); 

avg_q021 = mean(q021); 

r_q02_mc(i) = (std(q021)/avg_q021)*100; 

end 

7. 5. Output 

r_q02^mc' 

plot(r_02out,r_q02_mc,'o-') 

H.9 Computer Programs for Metabolic Flux Error Estima­

tion 

To estimate error propagation from specific rates into metabolic fluxes, an error-free metabolic 

flux vector (x) is used to compute the corresponding error-free specific rate vector (r) when 

the stoichiometric matrix (A) is known (r = Ax). Subsequently normally distributed error 
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of known magnitude is added to the error-free specific' rate vector and flux calculations 

are performed. Comparison of these flux estimates with the known eror-free values helps 

quantify error propagation from specific rates into metabolic fluxes. The program below 

performs these calculations when all specific rates have the. same amount of error. The 

programs can be easily customized to assign different error values to the specific rates. 

hl5_mfaerrorall.m (Computes metabolic flux error by the Monte-Carlo method) 

/O/I/I/O/I/I/I/I/I/I/O/O/D/D/I/I/O/O/O/I/I/OPROGRAM S T A R T / i / o / . / o / . / . / i / i / i / i / . / . / i / . / c / i / . / . / . / o / . / . / t / i / i / . / i / o / i / i / : / ! 

% Computes e r r o r a s s o c i a t e d with metabolic f l u x e s t i m a t i o n 
% A l l s p e c i f i c r a t e s are i n e r r o r 
% E r r o r i s added t o e r r o r - f r e e s e p c i f i c r a t e s from which 
°/0 the corresponding metabolic f l u x e s are computed. 
% Model based on Nyberg et a l (B i o t e c h Bioeng, 62, 324-335 1999) 
% H15 Data are used f o r e r r o r e s t i m a t i o n 

c l e a r a l l 

% 1. GENERATION OF THE "ERROR-FREE" R VECTOR 
% S t o i c h i o m e t r i c Matrix 
A = importdata('nyberg_A.m'); 
AT = A>; 
rank_a = rank(A); cond_a = cond(A); 
smx = inv(AT*A)*AT; '/, S e n s i t i v i t y M a t r ix 

°/0 absolute s e n s i t i v i t y matrix 
smx_abs = abs(smx); 
low_sens = min(smx_abs)'; 
high_sens = max(smx_abs)'; 
mean_'sens = mean(smx_abs) '; 
xdata = l i n s p a c e d , 3 5 , 3 5 ) '; 

"/osemilogy (xdata, low_sens, xdata ,mean_sens, xdata, high_sens) 

°/0 Known Flux Vector 

x _ a l l . = importdata( •'hl5,_f lux_data.m'); 
x_known = x _ a l l ( : , 5 ) ; 7, Std. C o n d i t i o n s 3 
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% E r r o r - F r e e Rate Vector 
r _ t r u e = A*x_known; 
r _ e r r o r = r _ t r u e ; 

7, 2. INTRODUCTION OF ERROR IN SPECIFIC RATES 
e r r _ r =0.25; 
sd_r = e r r _ r . * r _ t r u e ; 

n=10000; 
p e r e r r o r = 0 ; 
x=ones(33,n); 

7. 3. FLUX AND ERROR COMPUTATION USING ERROR-CONTAINING SPECIFIC RATES 

7o F l u x Computation 

f o r i = l : n 
r _ e r r o r = r _ t r u e + (randn(35,1).*sd_r); 
x ( : , i ) = in v ( A T * A ) * A T * r _ e r r o r ; 

7o E r r o r i n Fluxes 
e r r o r = abs ( x ( : , i ) -x_.known); 
p e r e r r o r = p e r e r r o r + (error./x_known).*100; 
end 

7. AVERAGE ERRORS 
pererror_new = std(x')./x_known'*100; 
newerror = pererror_new' 



Appendix I 

Thermodynamic Analysis of 
Metabolic Pathways 

Analysis of the free energy changes associated with reactions in a biochemical network will 
provide information that can augment metabolic flux data. The free energy change, A G , 
for the reaction 

where A G 0 ' is the free energy changes under standard conditions (25 °C, 1 atm pressure), 

R the gas constant, T the absolute temperature a n d 7 s , 7c a n d 7D f n e activities of 

A, B, C and D. For a reaction at equilibrium, A G 0 ' = 0 and Eq.(1.2) reduces to 

where K is the equilibrium constant. A cell in a bioreactor, however, is an open system as 

it interacts with the cultivation medium by consuming nutrients and releasing metabolites 

resulting in nonequilibrium conditions. The simplification in Eq.(1.3) is hence not applica­

ble to cells cultivated in a bioreactor. It follows from Eq.(1.2) that reactant and product 

activities determine A G and hence the feasibility of biochemical reactions ( A G must be 

negative for a reaction to occur). 

aA + bB <—• cC + dD (1.1) 

can be determined as 

(1.2) 

(1.3) 

310 
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1.1 Theory of Thermodynamic Feasibility 

For single reactions, A G < 0 must be true for the reaction to occur. This is also true for 
metabolic pathways with multiple reactions where A G < 0 must be true for all reactions in 
the pathway. Thermodynamic bottlenecks in metabolic pathways can be identified based 
on reaction A G values and are referred to as localized bottlenecks (single reaction with 
A G > 0) or distributed bottlenecks (multiple reactions with A G > 0). When intracellular 
activities are known, it is desirable to evaluate the thermodynamic feasibility of reactions 
in the biochemical pathway of interest. A systematic method for such an evaluation has 
been proposed (Mavrovouniotis, 1993)1 and is described below. 

Consider a. biochemical network with the stoichiometry 

n 

. 5 > i i i 7 i = 0; j = \, ,J (1.4) 
• ' i=l 

where a is the stoichiometric coefficient, j the number of reactions in the network, n the 
number of species and 7 the species activity. The free energy change for reaction j can be 
written as 

n 

A G j = AGf + J2 a^RT ln (L5) 
. i=i 

During mammalian cell cultivation, the activities of nutrients and metabolites such as glu­
cose and lactate can be expected to change while those for cofactors such as A T P and 
N A D H are assumed to be constant due to cellular regulation. • These metabolites with 
constant activities are referred to as currency metabolites and can be grouped separately 

n—n' ' • ' 11' '• • . • 

A C . 7 = A G ? ' - £ « , ( « r h i ( - ) - £ « , , / ? J In ( 7 ; ) (1.6) 
i=l ' i=l • 

where n' is the number of non-currency metabolites whose activities are expected to change 
during the course.of a cultivation. Eq.(1.6) can be rewritten by combining the constant 
terms 

n' 

.AGj = AG0" + ^2 ajtiRT In ( 7 J (1.7) 
i=i 

„ n—n' 
where AG0 = AG°'-+ £ i i T l n ^ ) . 'For"the reaction network described by Eq.(1.4) to 

,i=i 

'Mavrovouniotis, M.L. (1993). Identification of localized and distributed bottlenecks in metabolic path­
ways. ISMB 9 3 : 273-283. . 
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be feasible, the following must, be true 

A G ? " 

RT . , 
1=1 

+ ^ a J , i l n ( 7 i ) < 0 (1.8) 

While activities of non-currency metabolites can vary, a range for this variation must be 
defined and the algorithm will determine if the pathway is thermodynamically feasible within 
these activity ranges. Denoting 7 | ™ n and 7 f i a x as the minimum and maximum activities, 
Eq.(1.8) can be rewritten to scale 7 i with the minimum concentration as 

- ^ r + £ a j t i ln ( 7 r ) + In J < 0 (1.9) 

which can be further modified to include 'jf13* 

A G ? " ^ • . s / ^ a x x l n ( - S b ) 
^ + y a, i In ( 7 f m ) + V a7- i In ) 7 ; a x ( < 0 (1.10) 

substituting 
A G 0 n 

^ = ^ T " + ^ a ^ l n ( 7 r i n ) ' ( L 1 1 ) 

i=l 
/-,max\. 

™;, i = « i . i k ( ^ J (L 1 2) 

hi ( ^ ) 

In (̂ 7 

Eq.(I.lO) can be rewritten as 

# j = + < 0 ( L 1 4 ) 
i=l 

such that i^j < 0 must be satisfied for thermodynamic feasibility and this is influenced by 

fi values. The range of / is determined by 7 i such that when 7 i = "yf1^, / = 1 and when 

7 i = 7 ™ m , / = 0. The maximum value of Hj is when 7 i = 7 ™ i n for all reacfants (/ = 0) 
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and 7̂  = -y?13* (/ = 1) for all products 

j,max — Wj,i > 0 (1.15) 

i=l 

Thus for any reaction j in the network, the scaled Gibbs free energy, Hj, varies between 
Hjtin\n and Hjjmayi depending upon the associated reactant and product activities. Since 
Hj < 0 must be true for the reaction to be feasible, it is obvious that the reaction is always 
feasible when Hjtmax < 0 and is always unfeasible when Hj^m\n > 0. Determination of the 
feasibility is not obvious when Hj}max > 0 and Hj,m-m < 0 because Hj can be either positive 
or negative under these conditions. 

It has been shown (Mavrovouniotis, 1993) that when two reactions that share a common 
metabolite are combined, the i^min of the resulting reaction will be greater and the Hmax 

will be lower than the linear combination of the individual reactions. Thus by successively 
combining reactions with Hjim3bX > 0 and Hjtm\n < 0, it is possible to ultimately determine 
their thermodynamic feasibility. 

1.2 Steps for Determining Reaction Thermodynamic Feasi-

The above concepts can be summarized in the following steps such that the thermodynamic 

feasibility of biochemical reactions can be determined using a computer program: 

2. Identify the currency and non-currency metabolites in the network 

3. Assign constant activity values to the currency metabolites based on published data 

4. Assign minimum and maximum activity values for all the non-currency metabolites 

from published data 

bility 

l . Formulate the bioreaction network of interest and obtain A G 0 ' values for all reactions 

5. 
AG 0 

Compute -pjjr-, hj, Wjj, Hj. j,max and Hj for all reactions in the network 
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6. Eliminate all reactions with Hj]max < 0 as they are always thermodynamically feasible 

7.. Classify all reactions with Hj:m[n > 0 as always thermodynamically' unfeasible 

8. For the remaining reactions ( i ^ , m a x > 0 and Hjimm < 0) construct a combination of 
two reactions that share a metabolite and go to step 5. If metabolites are not shared, 
this combination is not possible and the search must be stopped 

1.3 Application to Glycolysis 

Application of the above method to reactions in the glycolytic pathway is presented. A 
total of 11 reactions along with their standard free energies are shown in Table 1.1. The 
non-currency metabolites are ATP , A D P , N A D , Pj and N A D H with the rest being currency 
metabolites. 

Table 1.1: Glycolytic Reactions.and their Standard Free Energies 

# R e a c t i o n A G 0 ' ( K J / m o l ) 
1 Glc + ATP—> G6P + A D P -16.75 
2 G6P — F6P. 1.67 
2 F6P + A T P -» F D P + A D P • -14.24 
4 F D P -> D H A P + G A P . 23.99 
5 D H A P ^ G A P 7.66 
6 G A P + N A D + P i -» P G P + N A D H 6.28 
7 P G P + A D P 3PG + N A D H -18.84 • 
8 3PG -* 2PG 4.44 
9 2PG •> P E P 1.84 
10 P E P + A D P -» Pyr + A T P -31.4 
11 Pyr + N A D H .-• Lac + N A D -25.12 

Intracellular activities of both the currency and non-currency metabolites are necessary 

for determining thermodynamic feasibility. While some data are available for cultured 

mammalian cells, these represent a very small portion of the glycolytic metabolites. A 

more complete data set is available for the human erythrocyte (Table 1.2) and was used in 

the analysis. Among non-currency metabolites, concentrations of P G P and Lac were not 

available and were assumed to be 0.01 and 0.05 m M , respectively. For currency metabolites, 

concentrations of N A D and N A D H were not available and were assumed to be 4 and 0.2 

m M ; respectively. 

Lower and upper concentration limits must be defined for the non-currency metabolites 

before reaction feasibility can be determined. In the absence of extensive published data, 
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Table 1.2: Intracellular Metabolite and Cofactor Concentrations in' the Glycolytic Pathway for 
Human Erythrocyte . . 

M e t a b o l i t e Concen t ra t ion ( m M ) 
Glc . • : 5 

G6P 0.083 
F6P 0.014 
F D P 0.031 

D H A P 0.138 
G A P 0.019' 
P G P 0.010 
3PG 0.118 
2PG 0.030 
P E P 0.023 
Pyr 0.051 
Lac 0.050 

A T P 1.850 
A D P 0.138 
N A D 4.000 

Pi 1.000 
N A D H 0.200 

the range for Glc was set as 1 - 10 m M and those for all other non-currency metabolites 
as 0.01 - 0.2 m M . Results of the thermodynamic feasibility analysis are shown in Table 1.3 
and are valid only at the above concentration ranges. 

Reactions 1, 3, 7, 10 and 11 are always feasible since Hj<max < 0. Alternatively, reactions 
4 and 5 are always unfeasible [Hj,mm> 0) and can be classified as two localized bottlenecks. 
Further analysis of reactions 2,6,8 and 9 is necessary to determine if they are feasible or not. 
Reaction 2 must be feasible because both reactions 1 and 3 cannot be part of a distributed 
bottleneck (they are both always feasible). Reactions 5 and 6 can be combined to eliminate 
G A P 

D H A P + N A D + P; -> P G P + N A D H (1.17) 

with a new h value of 2,63. The Hm[n value for this combined reaction can be estimated as 

0.33 and since this value.is > 0, reaction 6 is unfeasible. Similarly, reactions 8 and 9 can be 

combined to eliminate 2PG 

3 P G - * P E P (1.18) 

with a h value of 2.53 from which the Hm{n is determined as 0.23. Reactions 8 and 9 thus 
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Table 1 . 3 : Results from Thermodynamics Feasibility Analysis on the Glycolytic Reactions 

Reaction # 
A G ° 

R T hj Hj^max. Hj^min Feasibility 
1 -9.35 -13.96 -10.96 -16.26 Yes 
2 . 0.68 0.68 3.67 -2.32 Yes 
3 -8.34 ' -8.34 -5.34 -11.33 . Yes 

• . 4 • 9.68 5.07 11.06 2.08 No 
5 3.09 3.09 6.09 0.10 • No 
6 -0.46 -0.46 2,53 -3.46 No • 
7 -5.00 -5.00 -2.01 -8.00 Yes 

8 1.79 1.79 4.79 -1.21 No 
9 0.74 0.74 3.74 -2.25 No ' 
10 -10.07 -10.07 '-7,08 -13.07 Yes . ' 
11 .-7.14 -7.14 -4.14 -10.13 Yes 

constitute a distributed bottleneck since Hm\n > 0 for the combined reaction'.. 
Thus 5 of the 11 reactions in glycolysis were determined to be thermodynamically un­

feasible for assumed metabolite and cofactor concentration ranges. While the standard free 
energies for these 5 reactions were also positive (Table 1.1), this need not be the case and 
usually the standard free energy provides very little information on reaction feasibility. 

1.4 B i o p r o c e s s I m p l i c a t i o n s 

With increased metabolite profiling and metabolomics research, additional data on metabo­

lite and cofactor intracellular activities will become available allowing reliable determination 

of pathway thermodynamic feasibility. In addition to providing data on thermodynamic fea­

sibility, the magnitude of A G is important because reactions with low A G proceed close 

to equilibrium while those with large negative A G values can be thought of as thermody­

namically irreversible. Combining metabolite concentration and reaction free energy data 

with metabolic fluxes will improve our understanding of cell physiological state and can aid 

bioprocess optimization efforts. 



A p p e n d i x J 

Flux Analysis for Bioprocess 
Development1 

J . l Introduction 

High density cultivation of mammalian cells on the order of 20 x IO 6 cells/mL or higher 

is possible in perfusion systems where cells are retained in a cell retention device and 

recycled back to the bioreactor [1, 2j. In contrast to transient fed-batch systems that 

experience substantial changes in nutrient and metabolite concentrations over the course of 

cultivation, perfusion reactors operate at quasi steady state with relatively constant nutrient 

and metabolite levels. Cell viability can be maintained high throughout the course of the 

cultivation and product concentration and quality are also typically consistent. 

Variables such as bioreactor pH and dissolved oxygen (DO) have set points that are 

established in process optimization experiments. While operation at these set points is 

desirable, process control systems are not ideal and small deviations around the set point 

are frequent. These fluctuations help define the normal operating range (Figure J . l ) which 

is typically set at 2 - 3 standard deviations of typical variations [3]. Occasionally, vari­

ables can drift outside the normal operating range and a maximum operating range must 

be defined over which product quality is not impacted. These subsequently become the 

variable-specifications and the process must be operated within these ranges for product 

release. When variables deviate from the maximum operating range, the product cannot 

be released unless comprehensive additional investigations confirm no adverse impact on 

' A version of this chapter wi l l be submitted for publication. Goudar, C . T . , Piret, J . M . and Konstanti-
nov, K . B . (2006). Applications of Q R T - M F A for mammalian- culture process development and commercial 

. manufacturing. . 
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product quality. Finally, there is an edge of failure outside which the process is severely 

compromised and from which recovery is usually not possible. 

Set point 

F i g u r e J . l : Ranges of variables such as pH and dissolved oxygen in a perfusion bioreactor. Adapted 
from [3]. 

Variable ranges and edges of failure must be established before the process is transferred 

to clinical material production and commercial manufacturing. Experiments to establish 

these ranges are typically performed in laboratory-scale bioreactors during late stage process 

development after variable set points have been established [3, 4]. The testing duration at 

variable range extremes must be determined and this is challening for' perfusion systems 

given their long operation times. Stabilization of cell growth and metabolism have been 

used as indicators of steady-state following a change [5] and for a perfusion system, these are 

often in excess of a week. Thus examination of multiple variable extremes requires extended 

cultivation times slowing down the process development and transfer process. Simultaneous 

examination of multiple effects is one approach to reducing development time and the effect 

of low glucose and high pCC>2 were concurrently examinedfor C H O cells in perfusion culture 

[6]. Another approach is scanning non-steady-state responses where it was shown that third 

day transient values were similar to those when pseudo-steady-state was reached '[7]. Given 

the substantial reduction in development time, a similar approach, was used in "this study 
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and variable extremes were evaluated over a period of 48 hours. 
Specific protein productivity and protein quality are the primary response parameters 

that are monitored when variable ranges are explored. Cell growth and specific nutrient 
consumption and metabolite production are also monitored at the range extremes and some 
changes in them are usually acceptable as long as product quality is not adversely impacted. 
The information content in these classical range finding studies can be enhanced with quan­
titative information on cell metabolism at the range extremes. Albeit of secondary impor­
tance when compared with product quality, improved understanding of the cell physiological 
state rovides additional evidence for establishing process ranges.; Moreover, if process devi­
ations outside the maximum operating range do occur, a detailed understanding of cellular 
metabolism can help investigations that'ultimately result in product release. 

Metabolic flux analysis provides a framework to obtain quantitative physiological in­
formation when nutrient and metabolite specific rate data are available [8]. Rapid flux 
estimation is possible through quasi real time, metabolic flux analysis (QRT-MFA) and is 
especially attractive because rapid feedback on cell metabolism can be used to character­
ize the transient phases that accompany variable changes. This improved understanding 
of metabolism can influence range selection as dramatic variations in the cell physiologi­
cal state are not desirable even if they are not accompanied by reduced productivity or 
deterioration of protein quality. 

The effect of pH or D O changes on cell metabolism and protein productivity were 
examined in this study which was aimed at exploring their edges of failure. The pH and 
D O set points were varied over the course of a perfusion cultivation and the resulting growth, 
metabolism and productivity responses were characterized. This information was used to 
determine if the operating ranges examined were indeed the maximum possible for this 
process. 

J . 2 M a t e r i a l s a n d M e t h o d s 

J.2.1 Cell Line, Medium and Cell Culture System 

B H K cells were cultivated in perfusion mode with glucose and glutamine as the main carbon 

and energy sources. Experiments were conducted in a 15 L bioreactor (Applikon, Foster 

City, C A ) with a 12 L working volume. The temperature was maintained at 35.5 °C and the 

agitation at 70 R P M . Under standard conditions, the dissolved oxygen (DO) concentration 

was maintained at 50% air saturation using an oxygen-nitrogen mixture that entered the 

bioreactor through a silicone membrane. The pH was maintained at 6.8 by the automatic 
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addition of 0.57 M Na2CO"3. The bioreactor was inoculated at an initial cell density of 11.7 
x 10 6 cells/mL and cells were allowed to accumulate to a steady-state concentration of 20 
x 10 6 cells/mL. The steady-state cell density was maintained by automatic cell bleed from 
the bioreactor. / 

Standard Conditions set point Standard Conditions 
(pH = 6.8; DO = 50%) change (pH = 6.8; DO = 50%) 

4-6 samples in the 1 4-6 1 4-6 samples in the 1 
first 2 days ! samples 1 first 2 days 1 

3 samples over the ! | 3 samples over the 1 
next 3 days 

•> • • i * • * • * • • • • i • • * • i • • • • i • • • • J • * • • * • 

next 3 days 1 

• • • i • • • • I • • • • * • • • • * • • • • ' 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Time (Days) 

F i g u r e J . 2 : Sequencing and sampling of the experimental procedure in this study. A total of 4 
set point changes (pH = 6.6 and 7.0; D O = 0 and 150%) were examined in a 38 day 
perfusion cultivation 

Once steady-state was reached, bioreactor pH and D O were varied to evaluate cellular 

responses to these changes. The low pH value was 6.6 and the high was 7.0 while D O values 

of 0 and 150% air saturation were investigated. Once a set point change was made, the 

reactor was operated under these altered conditions for 2 days and was sampled 4 - 6 times 

during this period to capture transient cellular response to set point change. This 2 day 

operation allowed approximately 2 population doubling times and was much longer than 

a typical excursion observed in a manufacturing system. The set points were then reset 

and the reactor was operated at standard conditions for 5 days. Multiple samples (usually 

4 - 6) were taken in the first 2 days followed by daily sampling. The 5 day standard 

condition cultivation allowed 5 doubling times and was followed by another 2 day period of 

set point change (Figure J.2). This process was repeated- until all experimental conditions 

were evaluated. 
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J.2.2 Analytical Methods 

Samples from the bioreactor were, taken for cell density and viability analysis using the 
C E D E X system (Innovatis, Bielefeld, Germany). The samples were subsequently cen­
trifuged (Beckman Coulter, Fullertori,'CA) and the supernatants were analyzed for nutrient 
and metabolite concentrations. Glucose, lactate, glutamine and glutamate concentrations 
were determined using a YSI Model 2700 analyzer (Yellow Springs Instruments, Yellow 
Springs, OH) while ammonium was measured by an Ektachem DT60 analyzer (Eastman 
Kodak, Rochester, N Y ) . The pH and DO were measured online using retractable electrodes 
(Mettler-Toledo Inc., Columbus, OH) and their measurement accuracy was verified through 
off-line analysis in a Rapidlab® 248 blood gas analyzer (Bayer HealthCare, Tarrytown, 
N Y ) . The same instrument also measured the dissolved C O 2 concentration. On-line mea­
surements of cell density were made with a retractable optical density probe (Aquasant 
Messtechnik, Bubendorf, Switzerland), calibrated with C E D E X cell density measurements. 
Concentrations of oxygen and carbon-dioxide in the exit gas were measured using a M G A -
1200 Mass Spectrometer (Applied Instrument Technologies, Pomona, C A ) . 

J.2.3 Specific Rate Estimation 

Growth rate, nutrient consumption, metabolite production and specific productivity were 
calculated from mass balance expressions across the bioreactor and cell retention device. 
Since bioreactor cell density was held constant by bleeding cells from the bioreactor and 
death rates not accounted for, the apparent growth rate, / i ( l /day), was a function of the 
bleed rate, Ft, (L/day), and the viable cell density in the harvest stream, Xy (106 cells/mL) 

where V is the bioreactor volume (L), Fh the harvest flow rate (L/day), Xy the bioreac-

consumption and lactate production were determined from their bioreactor concentrations: 

B 
(J.l) 

tor viable cell density (106 cells/mL) and t the time (day). The specific rates of glucose 

(J.2) 

(J.3) 
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V. ' 

where qg and qL are the specific glucose consumption and lactate production rates, respec­

tively, (pmol/cell-day), Gm the glucose concentration in the fed medium (mM), G and L 
their bioreactor concentrations (mM). The expression for specific protein productivity is 

analogous to that for lactate production. 

J.2.4 Metabolic Flux Estimation 

A biochemical network previously developed for hybridoma cell cultivation in 24 well plates 
[9] was used in this study. This is a simplified representation of metabolism and includes 
fluxes through glycolysis, the T C A cycle and oxidative phosphorylation. The stoichiometric 
matrix for this reaction network was of full rank with a low condition number of 7.6 indi­
cating that flux estimates were not overly sensitive to specific rate variations. Metabolic 
fluxes were estimated using weighted least squares -

x = ( A T t / ' - 1 A ) " " 1 ATtp~1r (J.4) 

where x is the flux vector, A the stoichiometric matrix, r the rate vector and ip the variance-

covariance matrix of r. 

0 I I I I . I I .1 i , [ i I , I I L I I 1 I , I 1 Q 
0 10 20 30 40 

T i m e (Days ) 

F i g u r e J . 3 : Time courses of bioreactor viable cell concentration (O) and viability (•) for conditions 
A - I in the 38 day perfusion cultivation. 
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J.3 Results 

J.3.1 Cell Growth and Viability 

Time courses of bioreactor viable cell density and viability are shown in Figure J.3 for 
experimental conditions A - I. The target cell density was 20 x 106 cells/mL and average 
cell densities were within 10% of the target for all conditions except when the D O was 150% 
(condition H). Increasing the D O to 150% caused a sharp decrease in growth rate lowering 
cell density to 12.4 x 10 6 cells / m L at the end of condition H . Cell growth recovered 24 
hours after reducing D O to the standard 50% in condition I, reaching a final value of 17.9 
x 10 6 cells/mL at day 38. Growth rate reductions on the order of 20 - 30% were also 
seen when the pH was reduced to 6.6 (condition B) but were not substantial enough to 
decrease bioreactor cell density. Despite the substantial reduction in growth at 150% D O , 
cell viability was not affected and was >95% over the entire length of the cultivation (Figure 
J.3). 

0 10 20 . 33 40 

T i m e (Days ) 

F i g u r e J . 4 : Time courses of bioreactor glucose (Q) and lactate concnetrations (•) for conditions 
A - I in the 38 day perfusion cultivation. 

J.3,2 Residual Glucose and Lactate Concentrations 

Reducing pH from 6.8 to.6:6. reduced1 lactate concentration from 1.61 ± 0.03 g / L (mean ± 

standard deviation for last 4 data points in condition A) to 0.76 ± 0.10 g / L towards the end 
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of condition B (Figure J.4). This was accompanied by a glucose concentration increase to 
3.0 ± 0.28 g / L from 1.88 ± 0 . 0 8 g /L . Lactate and glucose concentrations rapidly increased 
and decreased, respectively, when standard conditions (pH = 6.8) were restored (Condition 
C). Increasing pH from 6.8 to 7 in condition D increased lactate concentration from 1.43 ± 
0.09 to 1.95 ± 0.03 g /L while the associated glucose concentration decreased from 2.07 ± 
0.14 to 1.20 ± 0.11 g /L. Both changes were reversible when the pH was reduced to 6.8 in 
condition E . Reducing DO to 0% in condition F caused an increase in lactate concentration 
from 1.36 ± 0.04 g /L at the end of condition E to 1.62 ± 0.07 g /L at the end of condition F. 
This was accompanied by an increase in glucose concentration indicating increased glucose 
uptake and lactate production when oxygen was limiting. Increasing D O to 150% resulted 
in substantial decrease in the lactate concentration and this was primarily due to cell density 
reduction in condition H (Figure J.3). Glucose and lactate concentrations recovered after 
reducing D O to the standard 50% (condition I) but were still quite different from those at 
the end of condition G. It is possible that more time was necessary for the cells to reach a 
metabolic state similar to that in condition A , if this was at all possible. 

J.3.3 Effect of p H Changes on Metabolic Fluxes 

Time profiles of the glycolytic, lactate and T C A cycle fluxes are shown in Figure J.5a for 

conditions A - C. Substantial decreases are seen for all fluxes when the pH was reduced to 

6.6 (condition B) and the values recovered after the pH was increased to 6.8 in condition 

C. Average flux values from the last 4 data points of each condition and their associated 

standard deviations are shown in Figure J.5b. Results from a t-test indicated a statistically 

significant difference (p<0.05) for the glycolytic and T C A cycle fluxes across conditions A 

and C. Increasing pH to 7.0 in condition D resulted in flux increases (Figure J.6a) and this 

change was reversible once the pH was reduced to 6.8. Average flux values for conditions C 

- E are shown in Figure J.6b and there was no statistically significant difference (p<0,05) in 

all three fluxes across conditions C and E . Cellular metabolism, while substantially affected 

by pH increase, returned to levels prior to pH increase suggesting that pH increase over a 

48 hour period had no long-term impact on cell metabolism. 

Metabolic responses to pH changes were rapid. The bioreactor was sampled 23 hours 

after reducing pH to 6.6. by which time the glycolytic, lactate and T C A fluxes were down to 

3.1, 5,7 and 0.5 pmol/cell-d, respectively, from values of 6.5, 9.5 and 3.5 pmol/cell-d at the 

end of condition A (Figure J.5a). When the reactor was sampled 4 hours after increasing 

the pH to 6.8 (condition C) all 3 fluxes were substantially higher and continued to increase 

in the 24 hour period following the pH increase. Flux values stabilized in the subsequent 
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F i g u r e J . 5 : Effect of pH reduction on cell metabolism. Panel (a) contains time profiles of glycolytic 
(O)i lactate (•) and T C A cycle ( A ) fluxes for conditions A - C . Average flux values 
over the last 4 data points of each condition are shown in panel (b) along with their 
standard deviations. 

24 hours (Figure J.5a) and these were considered representative of condition C and used 

to compute the average values in Figure J.5b. Similar rapid metabolic responses were seen 

when the pH was increased to 7.0 followed by a decrease to 6.8 (Figure J.6a). A 48 hour 

period (~2 population doublings) was thus adequate for cell metabolism to adjust to the 

new pH set point. 

J.3.4 Effect of D O Changes on Metabolic Fluxes 

Reducing bioreactor D O to 0% (condition F) resulted in an increase in the glycolytic and 

lactate fluxes while the T C A cycle flux was substantially reduced (Figure J.7) There was 

a finite T C A cycle flux at 0% DO and this was because oxygen was still being supplied to 

the system at a rate that was lower than that required by the cells. The glycolytic and 

lactate fluxes decreased when the D O was increased back to the standard 50% (condition 

G) while that for the T C A cycle increased. There was no statistically significant difference 
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F i g u r e J . 6 : Effect of p H increase on cell metabolism.. Time profiles of of glycolytic (0)> lactate 
,(•) and TGA. cycle ( A ) fluxes are shown in panel (a) for conditions C - E. Average 

' • ;flux: values over the last 4 data points, of each condition are. shown in panel (b) along -
... with their standard deviations. . . . 

between conditions E arid G for the glycolytic and lactate fluxes. The T C A cycle fluxes for 

conditions E and G were however, significantly different. D O increase to 150% (condition. 

H) resultedin an increase in all 3.fluxes over the first 24 hours followed by n substantial 

decline-over the-next 24 hours (Figure J.8a). This decline extended well' into condition I. 

where the D O was reduced to 50%, ' .••"".'.'. - . ' . " - . ' . . 

Unlike other changes, the DO increase to 150% caused a substantial decrease in the 

growth, rate resulting in" a cell density decline (Figure J.3). The cell'density decline, in the 

second .half of. condition H and ;a gradual increase in condition I.is similar to the flux trends 

in Figure J.8a;. Flux recovery following'. 150% D O was the,slowest among the 4 set point 

changes examined and was also not complete.' There wasa statistically significant difference 

(p*<- 0.05) in all, 3:,flux averages for conditions G arid I (Figure'J.8b) indicating that a 5.'. 

day period, folloy/ing.a; D O ' set -pbint- of 150% was not adequate to restore cell metabolism 

to-, previous levels,;! W.-hile further cultivation: may have caused .metabolism to, reach levels 
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Time (Days) 

16 r 

Glycolytic Flux Lactate Flux TCA Cycle Flux 

F i g u r e J . 7 : Effect of DO decrease on cell metabolism. Time profiles of of glycolytic (O)i lactate 
(•) and T C A cycle ( A ) fluxes are shown in panel (a) for conditions E - G. Average 
flux values over the last 4 data points of each condition are shown in panel (b) along 
with their standard deviations. 

prior to D O increase, this was not verified in this study. 

J.3.5 Cell Size Variation 

Cell size was also affected by pH and D O changes (Figure J.9) with pH reduction to 6.6 re­

sulting in a diameter decrease over the first 24 hours that subsequently increased. Increasing 

pH to 7.0 resulted in a diameter increase which was lowered when the pH was reset to 6.8. A 

slight diameter decrease was seen at 0% DO while a substantial diameter increase (~2 LITO) 

was seen when the DO was increased to 150% (Figure J.9). Results from the Tukey-Kramer 

test indicated no significant difference (p<0.05) among the control conditions A , C, E and 

G (condition I was significantly different). Average diameter for condition B (pH=6.6) was 

not significantly different than conditions A and C while that for condition D (pH =. 7.0) 

was significantly different' from condition E but not condition C. Diameter change at 0% 

DO. (condition F) was not significantly different than standard conditions E and G while 



APPENDIX J. FLUX ANALYSIS FOR BIOPROCESS DEVELOPMENT 328 

. . .. 1 , 1 • 1 . J • 1 • 1 

• n G 

' 

: \ p\ (DO = 50%) 
(DO = 50%) -

1 
DO f/ 

: (a) 

' . . . . 1 . . . . 1 . , , , 

n\ 
» 

: 

26 28 30 32 34 - 36 38 40 

Time (Days) 

12 

Glycolytic Flux Lactate Fiux TCA Cycle Flux 

F i g u r e J . 8 : Effect of DO increase on cell metabolism. Time profiles of of glycolytic (Q), lactate 
(•) and TCA cycle ( A ) fluxes are shown in panel (a) for conditions G - I.. Average 
flux values over the last 4 data points of each condition are shown in panel (b) along 
with their standard deviations. 

the diameter at 150% DO (condition H) was significantly higher than standard condition 

G. Overall, pH and D O increases had the most impact on cell diameter and the increases 

in both cases were significant (p < 0.05) compared to one standard condition immediately 

before or after. 

J.3.6 Specific Productivity and Protein Quality 

Given the significant variation in ceil density, especially for conditions H and I (Figure 

J.3), product concentrations were normalized.to a cell density of 20 x 10 6 cells/mL and are 

shown in Figure J.10. For the most part, product concentrations were remarkably steady 

(assay variation is 10 - 15%) despite the substantial metabolic shifts over the course of the 

experiment (Figures J.5 - J.8). There was no statistically significant difference in product 

concentration (p < 0.05) between the control (condition A) and conditions B - I by the 

Dunnett's method. When all pairs were compared by the Tukey-Kramer method, condition 
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F i g u r e J . 9 : Effect of p H and D O changes on cell diameter. 

H (DO = 150%) was significantly different than conditions B , E , F , G and I. Since condi­

tion H was between the conditions G and I and was significantly lower than both of them, 

we can infer that exposure to 150% DO results in a statistically significant productivity 

decline. This deduction, however, is not definitive since there was no statistically signifi­

cant difference between condition H and condition A , the control at the beginning of the 

experiment. 

Figures J . l l - J.13 show protein western blots over the course of the experiment. The 

last two samples from each experimental condition were analyzed since they would be the 

most representative of each culture condition. For the standard conditions C, E , G and 

I that were each of 120 hour duration, the two samples were 116 and 120 hours following 

the switch to standard conditions while for the test conditions B , D, F and H , the samples 

were 44 and 48 hours following the transition. Similar banding patterns were seen for the 

standard and pH = 6.6 and pH = 7.0 conditions in Figure J . l l . Perhaps the only difference 

was the reduced intensity of the lower molecular weight band at pH = 7.0. Banding patterns 

at D O = 0% were also similar to the standard (Figure J.12) while the lower molecular.weight 

band intensity in standard condition sample E l was lower than that at DO = 0%. The 

effect of D O = 150% on protein quality is illustrated in Figure J.13 where condition H 

is compared with standard conditions G and I. The band intensities were the lowest for 

samples H I and H2 and this is because these lanes were loaded with ~30% less protein. 
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Figure J.10: Time profile of product concentration. 

While some degradation of the high molecular weight band was seen for all samples tested, 
similar degradation was also seen in the reference standard. (Figures J . l l - J.13). We 
can thus conclude that the pH and DO ranges examined had minimal impact on protein 
productivity and quality. This is a rather remarkable result given the substantial metabolic 
changes that resulted from pH and DO variations. 

J .4 Discussion 

J.4.1 Effect of pH on Metabolism 

Mammalian cell growth and metabolism are pH dependent. Reduction of bioreactor pH 

from 7.6 to 6.8 reduced hybridoma growth, glucose consumption and lactate production 

in batch culture [10] and similar results were also seen for both batch and continuous 

culture of hybridoma cells [11]. It has been shown that intracellular pH (pHj) is lowered 

when the extracellular (bioreactor) pH is reduced [12] and this cytoplasmic acidification can 

significantly alter metabolism. A pH; reduction of 0.2 units has been shown to significantly 

reduce the glycolytic flux [10, 13] consistent with the observations in this study (Figure 

J . 5 ) . • 
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Figure J . l l : Western blot for experimental conditions A - D . The last 2 samples from each exper­
imental condition were analyzed such that the two standard condition samples ( A l , 
A2 or C l , C2) were 116 and 120 hours after set point change while those for the test 
conditions ( B l , B2 or D l , D2) were after 44 and.48.hours. 

J.4.2 Effect of DO on Metabolism 

In most studies to date,, low DO (<1%) has been associated with decrease in cell growth 

and oxygen uptake while glucose uptake and lactate production rates were higher. For 

mouse LS cells in batch culture, oxygen uptake rate, cell growth and maximum cell density 

were lowest at DO = 1% while lactate production was the highest [14]. A n analysis of the 

enzyme levels at low DO concentration indicated low levels of isocitrate dehydrogenase and 

aldolase, and high levels of lactate dehydrogenase [15], indicating a decrease in enzymes 

involved in terminal respiration and an increase in those associated with glycolysis and 

the hexose-monophosphate pathway. For hybridoma cells in continuous culture, oxygen 

uptake rate decreased for D O < 10% and was relatively constant when DO was between 

10 and 100% [16]. Low DO concentration also resulted in higher glucose consumption and 

lactate production rates while glutamine consumption was reduced. In another hybridoma 

chemostat cultivation [17], DO <• 5% was accompanied by reduction in cell growth rate 

and oxygen uptake while glucose consumption and lactate production rates were higher. 

Metabolic flux analysis on hybridoma cells in continuous culture indicated a decrease in 

NAD(P)H-producing fluxes at low DO concentration [18]. Our observation of increased 

glycolytic and lactate fluxes and reduced T C A cycle fluxes at D O = 0% are thus consistent 

with those reported previously. 

While a few reports indicate high DO (>' 100%) tolerance of mammalian, cells [19-21], 
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F i g u r e J . 1 2 : Western blot for experimental conditions E and F . The last 2 samples from each 
experimental condition were analyzed such that the two standard condition samples 
( E l and E2) were 116 and 120 hours after set point change while those for the test 
conditions ( E l and F2) were after 44 and 48 hours. 

most other studies have observed reduced cell growth [15, 17, 22], High DO can enhance the 
formation of reactive oxygen species that can damage D N A , proteins and lipids, A gradual 
increase in D N A breakage was seen when hybridoma cells were exposed to 200 - 476% D O 
[23], It is possible that similar mechanisms were responsible for growth rate reduction and 
hence the substantial decrease in cell density when the D O was increased to 150% (Figure 
J.3). High DO however, did not cause a decrease in cell viability. 

J.4.3 QRT-MFA Application to Bioprocess Development 

The metabolic changes observed as a consequence of pH and DO variation provide additional 

information to establish operating ranges for these variables. While operating ranges are 

typically defined such that protein productivity and quality are not impacted, metabolic 

changes must also be considered and this data is obtained.from flux analysis. While minimal 

impact of pH changes on protein productivity and quality was detected (Figures J . 10 -

J.13), the metabolic changes were substantial (Figures J.5 -J.8) and must be considered for 

establishing pH and D O ranges. WThile the reversibility of the physiological state following 

a 48 hour exposure to the range extremes reduces the concern, a DO value of 150% cannot 

serve as a viable upper limit of the maximum operating range in a perfusion system given 

the substantial decrease in growth rate (This would limit the maximum cell density that 

can be achieved in a perfusion cultivation). Moreover, the-diameter increase at high DO. is 
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Figure J.13: Western blot for experimental conditions G - I. The last 2 samples from each exper­
imental condition'we're.analyzed such that the two standard condition samples ( G l , 
G2 or II, 12) were 116 and 120 hours after set point change while those for the test 
conditions (HI, H2) were after 44 and 48 hours. 

a stress response that is undesirable. Similarly, operation at 0% D O virtually shuts down 
the T C A cycle activity and cannot serve as a viable low limit for DO. Both 0 and 150% 
D O would classify as beyond the edges of failure despite minimal adverse effects on protein 
productivity and quality. It is very likely that long term exposure (>5 days) to these 
extreme D O values will adversely impact productivity and this will be verified in future 
investigations. 

The pH values of 6.6 and 6.8 can serve as maximum operating ranges instead of edges 
of failure. While growth rate did decrease at pH = 6.6, this reduction did not impact biore­
actor cell density. Reduction in glucose consumption and lactate production (Figure J.5) 
is desirable as long as this metabolic shift has no adverse impact on protein productivity 
and quality which was indeed the case (Figures'J-. 10 and J . l l ) . The increase in metabolic 
activity at pH = 7.0 has implications for medium design given the increased demand for 
nutrients and the high lactate production rate.could be a concern for low perfusion rate 
cultivations. However, these shifts do. not. classify pH 7.0 as an edge of failure but more 
as an upper limit of the maximum operating range. It must be recognized that long term 
cultivation at pH 6.6 and 7.0 and more detailed product quality analysis are necessary to 
ensure that the observations from this study can be reproduced ov.er extended cultivation 
times. Thus a combination of protein productivity and quality analysis coupled with in­
formation on the cell physiological state can help establish rational ranges for important 
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J . 5 C o n c l u s i o n s 

In an attempt to augment conventional variable range studies with physiological infor­
mation, metabolic flux analysis was used to characterize cell metabolism when bioreactor 
pH and DO were varied between 6.6 - 7.0 and 0 - 150%, respectively. While substantial 
metabolic changes were seen at these extreme conditions, the changes were reversible when 
these variables were restored to set points. The most adverse impact was seen at 150% 
D O with the largest growth rate reduction and the longest metabolic recovery time. For 
all other cases, metabolism recovered to levels prior to set point changes within 24 hours, 
and in most cases, there were no statistically significant metabolic changes before or after 
set point changes suggesting physiological state reversibility. Surprisingly, productivity and 
product quality were not affected despite the major central carbon metabolism changes. 
The exposure time to pH and D O extremes.in this study was 48 hours and extended expo­
sure could irreversibly affect metabolism and negatively impact productivity and product 
quality. Moreover, additional studies are required at intermediate variable values (for in­
stance DO in increments of 20% in the 10 - 130% range; pH in increments of 0.1 in the 6.5 -
7.1 range) to comprehensively map cellular response to variable changes. This information 
coupled with the findings from this study can help establish a maximum operating range for 
the perfusion process enabling smooth transfer to clinical manufacturing and commercial 
production. 
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