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ABSTRACT

The use of spline basis functions in solving least squares
approximation problems is investigated. The question as to which are
appropriate basis functions to use is discussed along with the reasons
why the final choice was made. The Householder transformation method
for solving the fixed knot spline approximation problem is examined.
Descriptions of both an automatic procedure using function minimization
and an interactive procedure using a graphics terminal for solving the
variable knot spline approximation problem are given. In conclusion,

numerical results ﬁsing the interactive system are presented and analyzed.
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NOTATION

The following common notation is used throughout the thesis:

[n], [n,pp.-——-] refers to reference n in the bibliography;

x € [a,b] a <x <b;

x € (a,b) a < x < b;

s €'Cm[a,b] s has m continuous derivatives on [a,b];

dj

— s(x) is the j-th derivative of s with respect to x
dx J evaluated at §;

w'(x) is the first derivative of the function w with

respect to  X;

A= {Gi:i=l,2,...,k} is the set A with elements 61,62,.,.,6k;

{(xz,yz):£=l,2,,.,,n} _1S‘Fhe set of orderd. pairs (Xﬂ’yﬂ);

a is the vector a; that is, a = (. a; )
a
2
. a
\ o)
]Lg]l is the least squares norm of aj
min f(a) . is the minimum of the. function f with respect to
a .
2 a;
- max {c,d} is the maximum of ¢ and d;
T

Q is the transpose of the matrix Q .



Sectiqn 1

SPLINES IN INTERACTIVE APPROXIMATION

Polynomials are frequently desired as a set of basis functions
for approximation. Problems in obtaining accurate results with.the
standard set of basis functions {l,x,xz,...,xm} lead to the development
of orthogonal polynomials as the set of basis functions. The use of
orthogonal polynomials is a well-established technique in approximation.
Consequently, they have been studied in depth and are not discussed

further here.

Polynomials do have one disadvantage in approximation. That
is, their nature over the entire region of approximation is determined
by their behavior in only a small area of this region. Higher-order
polynomials do not alleviate this problem but merely impose more oscil-
latory behavior on the approximation. However, polynomial splines can

counteract this restrictive nature of polynomials.

Polynomial splines.consist of piecewise polynomials connected
at points known as knots over the region of .approximation. Each piecewise
polynomial determines the shape of the approximation in a small area
relatively independently of surrounding areas. The amount of dependence

is determined by imposing continuity requirements at the knots.

It is precisely the involvement of these knots that makes splines
ideally suited for:interactive approximation. Previously, automatic pro-

cedures involving the minimization of the least squares error were used
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to determine the best locations for the knots. »As the knots occur non-
linearly, appropriate initial guesses had to be made and there exists the
possibility that the proéedure would converge to a local minimum rather
than the global minimum. Such a local minimum ﬁight.not have been a

suitable approximation.

Graphical interaction.allows immediate contact with the solution
procedure. The 1ocationé of the knots cén be chosen visually and the
approximation attempted with this set can be observed. The interactive
procdedure enables poor initial estimates for the knot locations to be
eliminated. Also it allows for the manipulation of the knots until a
satisfactory approximation is obtained. Using the knots obtained from
the interactive proédedure as initial guesses, an automatic procedure should

converge rapidly to a suitable minimum.



" 'THE SPLINE REPRESENTATION PROBLEM

2.1 'Introduction -

There is no universally accepted representation for spline -
basis functions. There are several known representations each with its

own:particular adVaﬁfages;and”disadvantages.

Carasso and Laurent [4] discuss three methods of numerical con-
struction of splines - a projection method; a method of direct resolution
and a method using a basis. Of these, they recommend the use of a method
involving a basis.  With the choice of a reasonable basis, Carasso and
Laurent conclude that this method provides more accurate.results than the
projection method and three times less computation than the method of

direct resolution.

Greville [8] provides a comprehensive overview of basis functions
for splines. From the definition.of a spline function, he develops a
representation using truncated power functions (discussed in Section 2.4)
and one using Bwsplines (discussed in Section‘2.5), de Boor and Rice [5]
summarize these representations and also include a representation involving

piecewise continuous polynomials (discussed in Section 2.3).

Schultz [17] gives a general basis for B-splines, In [18],
Schultz describes the representation for cubic B-splines in more detail.
Tﬁe basis function resulting from applying the set of cubic B-splines to
the special case of uniformly spaced knots is stated. The derivation of

this result is given in detail in Section 2.6.



2,2 'Definition‘of a Spline Function

Although splines exist in engineering and drafting as a device
for curve smoothing,“theibasic mathematical formulationcof a spline
function comes from piecewise continuous polynomials. The mathematical

definition formalizes the engineering concept.

Definition 1§ A (polynomial) spline function of degree m on [a,b]

is a polynomial of degree. m which is in Cmyl[a,b] .

Although this definition incorporates the basic notion of a
spline function, it does not provide the essential components needed for
the use of splines in numerical problem-solving. For this purpose, the

following, more constructive definition of splines is better.

Definition 2{ Given a partition a = §, < 61 S e <8 <G, =D

then a (polynomial) spline function of degree m with

k internal knots 6., § §, on [a,b] is a

2,»’...’ k

function S(x) with the following properties:

l:

1. S(x) 1is a polynomial of degree m or less in

[8,s 8,4q1s 121, 2, iuy ks

2, S(x) and its derivatives of orders 1, 2, ..., m-l

are continuous everywhere.

v

Let A E‘{di ;1 =0, 1, ..., k¥l} be the set of knots and

S(x) %i{si(x) i 1= 0!.1,‘4-;;}k} ‘be the set of polynomials such that

Gi+l]'?for i=0, 1, v vy, k. The set S(x) must

satisfy the following continuity.conditions at the knots:

si(x) is in [Gi,



for i=1, 2, ...*k; j=0,1, ..., m =1,

2.3 Piecewise Continuous Polynomial Spline Representatdon

The piecewise continuous polynomial definition (2) can be
formulated into an approximation problem. Suppose that on each interval
[Gi,ﬁi+l]” for 1i=0,1, ..., k; the data is-approximated by a poly-

nomial of degree m or less. Given the set of coefficients

-{Cij :i=0,1, ..., k; j=1,1, ..., m} the problem is to find the
c..'s where
1]
v 3
S(x) = s;(x) = Z cg5(x=8,)
j=0
for §i < x i-di+1 where i=0,1, ..., k.

- This system results in (m+ 1)(k + 1) = mk + m + k + 1 unknowns
cij which is mk more than are required for a non-redundant spline
representation. Therefore it is only necessary to compute the set
‘{Cij :1=0. and j=0,1, ..., m and 1= 1, 2, «.., k and j = m} .

The remaining coefficients can be computed from the constraints derived

from the continuity conditions; that is
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This system is useful for approximation as it gives an explicit
representation for each piecewise polynomial between each knot pair. But
ldespite the fact that the basis functions are defined over a particular
knot interval, they must be computed over the entire interval. Also,
the 'system of eduations formed tend to be ill-conditioned; that is, the
resulting solution is not accurate. Since this representation is
identical to the mathematical representation between each knot pait,

ill-conditioning occurs for the same reason (as described in Section 2.4).

2.4 Mathematical Spline Representation

The standard representation of gplines is that of elementary
splines (alias truncated power functions). This representation is used
mainly in mathematical analysis. Most theorems involving spline functions
are derived. and pfdved using elementary splines as they are easy to

manipulate analytically.

Definition 3: An elementary spline function of degree m, yi , 1is

~defined by

ym for 'y >0

0 for y <0 .

Elementary splines give rise to a set of basis functions for

splines. In particular the set
{1, x, x° &, (x=6)" (x-6.)™ }
’ s y secy ’ 1+’ b K+

forms a set of basis functions for a spline of degree m . An example
of these basis functions for a cubic spline with four uniformly spaced

internal knots is given din Figure 1 .
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These basis functions can also be formulated into an approximation
problem., Given the set of coefficients {ai :i=1, 2, ..., m+ k + 1}

the problem is the determination of the ai's where

mt+1 i1 k m
S(x) = ) a;x + ). ai+m+l(x—5‘i)+ .
i=1 i=1

This system results in m + k + 1 unknowns - exactly the number needed
for a unique representation. .Therefore all the coefficients must be

computed.

Despite its simplicity the mathematical representation of
splines should never be used for computational purposes. Splines computed
by this method will produce.ill-conditioned systems of equations as
m+ k +1 increases. Intuitively,'a reason for this can be seen from
the example plotted in Figure 1, . Notice that the last basis function
(x—64)i is. zero nearly everywhere as well as being extremely small
relative to the other basis functions. Consequently it is possible to
produce a linear combination of. these basis functions which is almost
zero; that is, the se; of basis functions is almost linearly dependent.
Using this set will produce a system of linear equations for the épprox—
imation problem whose corresponding matrix is nearly singular. This
matrix will be ill-conditioned in most cases. Hence it is better to
choose basis functions which are more difficult to conceive analytically

but are motre stable computationally.
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2.5 B-spline Representation

In deriving a.set of basis functions which produce well- -
conditioned systems; one would like to satisfy these two criteria;

1. That the support (region in which the functional value
is nonszero) of the splines is finite;
2, That the .number of knot intervals involved in the support

is minimal (as small as possible).

To this end a set of basis functions is derived on the concept of

divided differences.

. Definition:4: The functional D  defined by

DE = £(8;, 8495 +ov Sipiy)
= £ s Spmn? 7 ECs e Siy)
Sitmir ~ 1

is the divided difference of f of order m+ 1.

The divided difference depends linearly on £(x) . Also, and more
important, the divided difference of o;der m+ 1 is zero for any

polynomial of degree m .
Now, for any function g, by the Lagrange interpolation formula,

, mEl - g(8,, )
88, Sy eeey Oy ) = 7y _T.Gsﬂ).
' - n=0"'"% “Yin’
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where w(x) = (x—di)'(x-61+1)'~*(xe6i+m+l) . In order. to define

B-splines ‘let the function g(6i+n) be the " (mt+l)st divided difference

of (6i+nex)$ . ‘Substituting for g, the Lagrange interpolation formula
~ gives m

. , - Am%l.gdi+n—x)+
285110+ St a0 wh(s,

g( -
1+n)

where w(x) 1s as previously defined.

Letting i range over -m to k gives exactly the number

of B-splines required to form a set of basis functions; that is

m+ k +1 functions. Thus, the'set't{si(x) i i= -my-m+ 1, ..., k}
where -
s. (x) = }mgl Eiliﬂ__lt'
* » ‘n=0 " (Gi+n)
with w(x) = (x—di)-(x—61+1)-~'(x—61+m+1) is precisely the set of

B-spline basis functions.

To complete the definition, this set requires the addition of

2m supplementary knots to the original knot set A = {5 .

1’ "’6k+l

These knots must be external to the original knot set with m knots

less than 60 and m knots greater than 6k+l . One possible method

of choosing these extra knots is the following:

5 o _ (ék+1 60) i
-i . Q k + 1
itk+l o kL K+ 1
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For B-splines it can:be shown that:

1. si(x) is strictly positive in [6ﬁ’dil ll];

2.. The support of si(x) is finite and restricted to.the
. interval [di’ai+m+1l;

37 Any spline S(x) can be uniquely represented as a linear

combination of
‘{si(x) ti=-m -m+ 1, ..., Kk} .

It is simple to formulate an approximation problem from
B-spline functions. Given the set of coefficients '{ai :i=-m, ..., k}

the problem is to find the ai's in

. k
Sx) = -.z aisi(x)
i=-m
where '{si(x) ti=-m -m+1, ..., k} is the set of basis functions

for B-splines. This system results in m + k + 1 unknowns as in the
mathematical system. There are no redundant parameters and hence all

the coefficients must be computed.

The system:of equations derived using B-splines remains wel}l-
conditioned as m + k + 1 increases. In fact, one can produce numerical
upper bounds on the condition number of the matrik of normal equations
for a uniformly spaced knot sét‘following the method described in
Schultz [18, pp. 70-72] . Alsé, because' the basis functions give minimal
support the’Sys;ems produced are banded with the band-width dependent on

the degree of the spline.
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2.6 Example of B-spline Representation

To give a concrete example of what B-spline basis functions
look like, consider the particular case of cubic splines on a uniform
partition. An explicit representation for the basis functions:

{si(x) :i=-3, -2, ..., k} can be developed in the following manner:

Given a uniform partition, the mesh length ‘is

1 : - _ i
h = Py and therefore the i-th. knot is. Gi‘— L.
for i=-3, -2, ..., k+ 3, k+ 4 . Thus
3
s (x) = % G
1]
i neg ¥ (éi+n)
for i =-3, -2, ..., k with
4
') = T (x-8,,.) .
§=0 i+]
j#n
Substituting for the knots gives
4
s.(x) = )
l n=0
_ % (i+n - (k1)) 1
- ~ ~ 3 + L] i-hl .
n=0 (k+1) '

w k+1
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Now

1
%1.
P
N
‘.:1
%?
(=N
N

Substituting back into si(x) :

(1+n—(k+1)x) kDY
n=0  (k + 1)°

]

si(X)

§ (i+n—(k+l)x)i
L 7
R e
1=0
i#n

(k+1) .

Expanding for n and j:

(et1)x)? -(i+1-(k+1)g)i

(-
(kt1) { 5% 6

si(X)

N (i+z-(kf1)£)i f€if3f(2+l)X)i
3

(1+4 (k+l)x)+ }o

-+ 2%

for i= -3, -2, ..., k.
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Letting x' = (k+l)kx = i -2 -gives’

I €30 I G e ) I €50 §
Si(x) = -(kf;) { i + i 3 + -7 ‘+ .
(A-x"); (2-x") 7
plr 7
and defining S(x") = si((k+1)x -1i-2)
o x' <=2
camn® e asn® e
6 4 6 24 — —
w3 3 3
YT o A-x")T o(2-xY) '
"4 "6 YT Thex 20
S(x") = . (ktl) g g
@A=x")" . @2=x") 1
- + 54 0 <x'<1
T T
G 1<x! <2
\ O '_ 2 i X' .

When the explicit representation is used on a uniform partition:
of [0,1] with four internal knots; the set '{si(x) 1 i=<=3, =2, ..., 4}

is as shown in Figure 2.

Equivalence of Spline Representations

Although B-splines provide a suitable method for solving spline
approximation problems the coefficients. obtained are not extremely useful.
In particular, .it is preferable to know the coefficients of the piece-

wise continuous polynomials .between adjacent knots than to know the
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coefficients of B—spline\basié functions; To this end, it is appropriate
to derive the unknown)setﬁof'the'pieceWise'COntinuOQSvpolynomial'coefficiep;s
He,, +i=0,1, ...; k;ij =0, 1, ;..;‘ﬁ}.'from the known values of the
B-spline CQefficien“ts"'{ai : i‘é 1, 2;1;.:; m+ k + 1} ;

Consider the functional value of the spline for each knot;
that is, at x = § |

i-

Case'I'; For piecewise continuous polynomials -

1 - . 1 d .
Ty T Sa & = T L Sx) |
N R o § 5. 3t ggd 5

Case II{ For B-splines

. . Kk
dJ ) "dJ .

—. SX)| . = —. z a,s, (x)
dx? s, ad pmm BTG
i i

k h|

d A

= . z a, —., s,(x)
L=-m ‘ dx3 £ Gi

Now
. . . N
ax? £ §. - dx? n=0 ‘w“(6£¥n)
i 8,
! o L
T _
_ 1 - d : m
- (Gﬂfn.—'x)+ ’S

n=0 (dﬂ%ﬁz dx?
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Differentiating with respect to x i

g )
o m | .
—., (&, =x), |
dd L4n t s
i
. Ty : _ m-j
(m:J) ! (d£+n_ -x)+
9

By equating the terms of the derivatives:

| K K
R a
Cij! ' 'j!f-ﬂz—m 2 d#j SK(X) S,

for i=1, 2, ..., k+1; =0, 1, ..., m.

1
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Section 3

THE LINEAR APPROXIMATION PROBLEM

3.1 Introduction

Several methods are known for solving linear approximation
problems. These methods can be applied to problems involving general
sets of basis functions. Spline approximation with a fixed knot set is

a particular application of the general problem.

de Boor .and Rice [5] describe an approximation method involving
orthogonal, projection. ' The basic idea is to minimize the error |]y—u||
of approximating. y by u by the orthogonal projection Py of y .
Py 1is best calculated using an orthdnormal.basis. Therefore, given a
general set of basis functions for the approximation, an orthonormal set
of basis functions must be derived. de Boor and Rice use a modified

Gram-Schmidt process to generate such a set of basis functions.

The most common technique used for.sédlving linear approximation
probléms is the method Qf:normal‘equations (desgfibed in Section 3.3). Patent
[13] discusses the general linear. least squares problem and linear least
squares .problem using splines in detail giving results concerning the
uniqueness of the solutdion and the symmetric and posifive definite prop-
erties of the associated least squares matrix.' Patent also includes a
program solving the spline approximtion problem with fixed knots. The
basis. functions used in generating the system of normal equations were

B-splines.
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Smith [19, .pp. 110-119].develops the method of normal equations
for the particular case of spline approximation. The particular set of
basis functions used are.the mathematical representation. The least

. squares matrix derived using these basis functions is given in full.

Golub [7] develops a method using Householder transformations
(described in Section 3.3). An Algol program based on this procedure for

a general set of basis functions is given in Businger and Golub [3].

Although a suitable set of basis functions is available which
prevents ill-conditioning as the number of knots increases, there is still
the problem of preventing ill-conditioning as the knots become nén-
uniformly spaced. The orthogonal projection method counteracts this
problem because the basis functions are orthonormalized before solution.
The method of normal equations frequentlyvproduces’ill—conditioned systems
as shown in the example cited in Golub [7]. Solving the spline approx-
imétion problem using normal equations on a non-uniformly knot set is
a prime example of this ill-conditioning. However, the method of
Householder transformations counteracts this problem because of the-
orthogonality of the transformations. Consequently, this method is

necessary for a stable solution to the spline approximation problem.

3.2 . Definition of the Linear Problem

All aspects of the linear problem are incorporated in the

following definition:
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Definition 5: Given a discrete set of data

{(xz,yz) : £ =1, 2, ..., n}

and a function

m
S(x) = ] a;s(®
i=1
where ‘{si(x) :i=1,2, ..., m} is a set of basis
functions and,'{ai :1i=1,2, ..., m} is a set of

unknown coefficients oédcurring linearly; the linear

approximation problem is to determine values for the
aiﬂs to produce the "best fit' of S(x) to the set

of data.

3.3 Solution of the Linear Problem

Most approximation problems consider the minimization of the
least squareé error as satisfying the "best fit" criteria. The part-
icular form of the least squares error used in this case is the square

of the least squares norm where:

Definition 6: Given a vector v = ;r vl‘
v
2

v >
L")
the least squares norm of v, ||v|]|, is
n
C Y vhE |
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Thus,  given the function - S(x) and.the'data'set'i{(xz,yz).; 2=1, 2, ..., n}
the solution of the'linear'problemLBeCOmes;thefminimization,of the least
squares error by the appropriate: choLce of the unknowns {ai tdi=1, 2, veey m} .
That is, by finding
Poly- b
min Iy a s (X )]
{a}z—_*" 1=1 ¢
The usual method of solution, that of normal equations, is -

developed in the .following way: .
In order to find the minimum

‘min . [y, =- a.s.(x,)]" .

{a;} £=1 £oogg T
differentiate the summation with respect to each of the parameters

'{ai :i=1, 2, ..., m} and set to zero. Thus

20T Iy, = T oas. )10
Baj‘ =1 £ i=1 1 i
n m
=-2 ) [yp - y a;s; (xﬁ)] . s, (Xﬁ)
1% =1
=0

for j

1, 2,. ..., m . Rearranging the terms gives

n

n ” -
 ;ai[£Zl?si(Xg) -,sj(XK)] L= "Kzlfyzsj(¥2) 

for j

1
}—\
N

-
=]
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Using the following changes;

1.
S = s,,:=
1]
for 1 =1, 2, ..., m a
2.. Denote by y the
X:yj =
for j =1, 2, oy M 3
3. Denote by a the
] .
ficients a = {a i=

the problem becomes one of finding the
Sa=y.

Another method of solving

n
min Z

_ [y, -
{a,} £=1 £
1

1

is by using orthogonal transformations.

changes:

1. Denote'byv»S, the n xm

is,

»)

=1

and

Denote by. $ the m x m matrix

n .
Sj (XK) ° Si(X/e)

nd j=1, 2, .. m

m—dimension vector

n .

and

m—dimension vector of unknown coef-

., m}

solution to the system of equations

aisi(xz)]2

This requires the following

matrix of function values; that

s, (xp)

i=1, 2,

.
b



- 23 -

2. Denote by y the n-dimension vector of ordinates

y = {Y£ L =1, 2" TP S: » and

3. Denote by a the m-dimension vector of unknown coef-

ficients

a = {ai'_:_=1ii‘~_'5:.=fi 12, oy m}

then the problem becomes to find

min ||y -sal]? .
a

Consider multiplying the previous equation by ‘an orthogonal
matrix: QT . Because multiplying by an orthogonal matrii does not
change the norm; the linear least squares problem remains the same. Thus
the problem becomes to find

. T..
min |[Q'y - Qsal|? .
a

)

Now consider QT to be a series of orthogonal transformations
which transforms QTS into an upper triangular‘matrix R . If such a
series can be found then the linear least squares problem reduces to
finding

. T 2
nn ||q%y - Ral % .
:

Since the zero part of R is independent of a; it is only necessary-

to solve the system Ra ='b ‘where bi = (QTz)i for i=1, 2, ..., m.

{
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. T . .
The remainder of Q'y . contains the least squares error; that is,

2 n T .2
[y -sall® = ] @wi -
i=mrHl

. \ . T .
There exists a series of orthogonal transformations Q° which
will reduce S to an upper triangular matrix known as Householder trans-

formations. They can be constructed as follows:

Given a vector v construct aAsymmetric orthogonal
matrix P such that Pv = w where w is a unit
vector:whose first element is- il]z}l and whose

remaining elements are zero.

Householder showed .that for any two vectors. v, w with _qg?z = E?ﬁi

there exists a symmetric orthogonal matrix P = 1 - 253?: such that
w = Pv . The symmetry and orthogonality of P is proven in Acton

[1, p. 327] .

The problem now is to determine the required vector u in
P . The method is described in ‘Actén [1, pp. 324-329] with slight.

modifications and the derived u is

(v |yl
1 V2 . 2 2
u o= % where K = 2L|XJ| + 2V1|IXJl .
v
\ n J

Two computational considerations come into effect when using

Householder transformations. The first is which sign to choose in
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computing u . The choice is to pick K2 such that

K = max(2]|v||? + 2v []3l] , 2l|v]]® - 2v, ] lv[ ]
N~—— N— S

V
= max{ K, . _ K, }

in order to avoid cancellation. Thus if v, > 0 choose  K_;

1 13 it

<0
vy 0 choose K2
The second consideration is the computation of Pv .

Rewriting

(T - 2w’y

L)
<
]

as

Iy - 2uu'y

o
<
I

v - u(2u'v)

the scalar 22?2 is computed first followed by the vector subtraction.
Hence the matrix P need never be formed explicitly. This method is

far more efficient than forming P and performing a matrix multiplication.

To manipulate Householder transformations to form the upper
triangular matrix consider applying P to the matrix S . This is
equivalent to applying. P to each colummn in S . That is, there is a

P suéh that P.S reduces columm 1 of S, w

1 1 Wy to

( 3
|y ||

0
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where yi is the transformed column 1 of S . ©Note that all the other

columns of S are altered by this transformation,

Similarly, there is a 'P2 . such that. P_,S .reduces column. 2

2
of S, Wos to

( A
: +
s ||
¥y = (.)
0
\ )
where yé is the transformed column 2 of S . However all other columns

of S are altered also. In particular, column 1 reverts back to non-

zero status which is not desirable.

Therefore, in order to preserve the zeroes in column 1 let

P2 be the Householder transformation which reduces column 2 of S, w

_2’
( 1 3
Y2
.
+| |w, ||
0
wy = :
0
\ J
where yé is the transformed column 2 of S and -wé is the first
element of yé » This transformation will leave column l'unchanged but

will alter all the remaining columns of S . Continuing the process

m times;. S can be reduced to an upper triangular matrix of the form
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: 1 1 1
) L 2 .
i”KzII W3 : "
0 o . *
m-1
. .. w
m
Pm “ % e P2PlS = 0o - - ~ ~ ® g il]l”mH
0 0
O . Y L] . 0 0

Thus in the linear least squares problem using QT = Pm oo P2Pl and

applying QT to S, QT reduces S to the upper triangular matrix R .

3.4 Solution of the Fixed Knot Problem

The fixed knot problem for splines is a particular application
of the general linear least squares problem. In the definition 5 for
the linear problem allow the functions si(x) to be the B;spline basis
functions with a fixed kﬁot set. This creates the fixed knot least
squares apprdkimation problem for splines. This problem can be solved
exactly like the general problem using Householder transformations.
However because-a particular basis set is being used a few computational

considerations come into effect.
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The‘first_of these is that of basis function evaluation.
Because the basis functions are evaluated often it is important that an
efficient method of computation belavailable;' In the‘fi#ed’knot case
the values of the basis function denominator uw‘(é)v'reméinRCQnstant
throughout all ¢omputations;-'TherEf0re it is advantageous to calculate

w"(x) dinitially and retain the values for future use.

‘Also, because the basis functions have minimal support it is
only necessary to computé a basis functional value if it is within the
range of support. Otherwise the functional value is 0 . It is possible
to calculate the function at all points without testing for the region
of support. This has two disadvantages. First it is more time—consﬁming
to calculate a value than to test for the range. Second because of
round-off error, the summation will be the order of machine accuracy

rather than zero.

The second computational consideration is the reduction of the
resulting least squares matrix S . Because the basis functions have
limited support the matrix S has a banded structure. This banded
structure is not the familar bandedness usually associated with matrices
but rather a sﬁecial structure depeqdent on the location-of the abscissa
point Xp If the data point Xp is outside the support region, that
is, %, ¢ [6i’ éi+m+l] fhen the Spq elgment of S8 will be 0.

Hence the matrix will have blocks of non-zero elements along the diagonal
where each non-zero blbck{bf"the'matrig is formed from the values of

kl& where §: ;xt <3

1 This special banded structure can be

itmtl. *
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used in the fixediknot approximation. Since the zeroes are unchanged
by manipulation by Householder transformations it is only necessary to
reduce the banded part of S .. This causes a considerable reduction

of computational effort.

The third computational consideration is the condition number
of the matrix. Since § 1is initially a non-square matri% it ié dif-
ficult to state anything about its condition number. However the ortho-
~gonal transformations do not affect the norm (and hence the condition
number) of S in any way. Thus, by determining the condition number
of the square upper triangular part of the'matrig R the condition of
S has effectively been. determined. The stipulation for a well-conditioned
matrix is that the condition number be less than m + k + 1 and that

the condition number for a given problem should remain independent of

the location of the knots.
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Section 4

'THE VARTABLE KNOT "APPROXTMATION PROBLEM

4.1 'Introduction

The'fi%ed'knot'problem'has,been'investigatedlthoroughly and
adeqUate;methods-egist‘for.itS'solution; The variable knot problem
involves choosing locations for the knots so- as to provide the "best
approximation” possiBle;' Because the knots occur non-linearly,. this

problem is more complex.

One alternative tobsolving.the~varia51efknot problem is to .
minimize the least squares error with respect to the knots. Another
alternative. is to position the knots visually to arrive at an approximation
which is reasonablé to the eye although not necessarily the "best" in the
least squares sense. This requires graphical interaction with the spline
approximation problem. By interaction a reasonable approximation can be
derived manually and good initial guesses for an automatic minimization

technique can be obtained.

de Boor and Rice [6] solve the variable knot problem by an auto-

matic technique. They minimize the least squares error in integral form

b . :
{J'»[y - $Gx,0) 1%
a
over all splines of degree m with k knots. The trapezoidal rule is
. used to obtain an approximation to this integral. A discrete Newton's

" method is applied to minimize each knot individually while the rest of
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the knots remain stationary. The knots are optimized by sweeping through
the knot set from right to.left and.refevaluating.the'fixed'kndt,problem

each time.

smith [19, p. 110-119] presents-.the use of splines in inter-
active data fitting. Although,he'does'not allow for the possibility of
respecifying certain knot locations; he does allow the possibility of
respecifying the entire knot seét and attempting the'fiéed knot problem

again.

4.2 Definition of the Variable Knot Problem

Whereas the linear least squares problem can be generalized to
any set of basis functions; the definition of the non-linear approximation

problem is restricted to spline -functions and is referred to as the vari-

able knot problem.

Definition 7: Given a discrete set of data
Axpsyp) =1, 2, ooy 0}
é set of knots in strictly increasing order
A = '_{ai PE=1, 2, e, k} 3

a set of spline basis functions -

'{,si.(X) s i=emy om+ 1, ..., k)3
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and a set.of linear coefficients

{a, : i ='-m, -mg+ l,=..‘,:k}"

1 o
- ko -
with SGa) = ] as GA)

i=-m

the variable knot problem is to determine values for

the set A to produce the "best fit" of S to the

set of data.

Note that in this case the unknown parameters are the knots - not the
linear-coefficientsf{ai :i=-m -m +“1; .;., k} . To be completely
correct both the coefficients and the knots should be evaluated simultan-
eously to produce the -''best fit"; This problem is much more difficult.
However, a feasible:alternative is for each knot set A, to pick the
coefficients '{ai t:i=-m.-m+1, ..., k} by solving the fixed knot

problem.

4.3 Solution of the Variable Knot Problem

In the introduction to this section two alternatives were
proposed for solving the variable knot problem: an. automatic.: procedure and
an interactive procedure. It is best to discuss these in the reverse

order since the first follows inherently from the second.

The use of interaction for solving spline approximation problems

can be summarized in the following steps:
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1. Read in the data set and graph it on a graphics terminal.

2. Specify an initial set of knots and overlay their location
on the x-axis.

3. Solve the fixed knot problem using this knot set and over-
lay the resulting spline curve.

4. Allow respecificatién of the location of any of the knots.

5. Recalculate the fixed knot problem using the new knot set
and. graph thg resulting spline approximation curve if it
is wanted.

6. -Allow the options of respecifying knots, changing the

number of knots, or optimizing the knot set.

This interactive procedure produces a reasonable fit much faster
than an automatic procedure. .For example, if the original knot set
gives a poor approximation, the situation can immediately be remedied
by manipulating the knot.set drastically as opposed to the more cautious
- procedures of automatic techniques. This approach allows an extremely
fast initial approach to a good fit. Then automatic-refinement could

use the resulting knot set to reach an optimal knot set quickly.

There are several possible approaches for positioning the knots.
de Boor and Rice [6, p. 12-18] present some of these for an automatic

procedure but variations seem suitable for interactive placement.

One possible approach suggested is that additional knots be
placed near the location of the maximum error. This seems reasonable
initially as it is usually desired to produce a better fit in that

. area. Eventually, ‘however, the data in that region will become inter-
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polated which is not the desired phenomenon. Also this procedure does
not compensate for the appropriate placement of fewer knots over the

entire range rather than the concentration of knots in one place.

Another possibility is to place 'knots at positions of rapid
change 'in the data. This allows the polynomial to determine its own
shape in the ‘interval nearly independently of the surrounding interval.
This is because at positions of rapid change, the highest order term of
the piecewise polynomial dominates. It is precisely this term that is
not included in the continuity constraints. This helps overcome one of
the basic problems with.polynomials - that their oscillatory nature makes

it difficult for .them to adequately approximate data.

With a graph of the data within reach it is possible to make
reasonable predictions about.knot placement. This is the greatest value
of graphical interaction - the data and the ability to manipulate the

approximation are directly at hand.

4.4 "Knot Optimization

Despite the fact that reasonable approximations can be made to
a set of data interactively, often a more formal fit criteria is desired.
This can be achieved by automatically refining the existing knot set locally
by minimizing the least squares error. Given the function S(x,A) and
the data set .{(Xﬂfyﬂ) : £ =1,2, ..., n} the solution of the variable
knot problem becomes the minimization of the least squares error over the-
_knot set A . That is, find

n

v k-

. . \ 2

min min . ) [y, - ) a,s.(x,,0)]° .
A {ayl £=1 £ i=-m * 1
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It -is not too crucial to obtain the global minimum in the
interactive case as a reasonable estimate of the knot set already exists.

The purpose of optimization is merely to refine this estimate.

The minimization method chosen is known as COMPLEX which. essen-
tiaily involves. reflecting the function around its centroid. The details
are not discussed here but are adequately described in Box [2]. Reasons
for choosing COMPLEX .involve the fact that it does not réquire derivatives

and that it will converge fairly rapidly towards the minimum.

COMPLEX contains one additioqal»feature. This is that con-
straints can be imposed on the function. These constraints can be
either explicit - meaning that the independent variable can be bounded
by -some function or constant; or implicit - meaning that the functional

value can be bounded by some function or constant.

In approximation using spline functions it is only necessary to
have explicit constraints to prevent the knots from coalescing. These
constraints involve keeping the knots separated by a certain distance.
How this distance is determined is partially dependent on the machine
precision and hence the matrix used for solving the fixed knot problem.
Because of machine precision the knots must be separated by a distance
as least as great as the machine accuracy. Otherwise the least squares

matrix will be singular.

More important, however, is the condition number of the matrix
used in the fixed knot problem. As two knots converge towards each other,
the two corresponding rows of the least.squares matrix become more linearly

dependent causing the condition number to rise. Therefore adequate con-
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straints must be put on the knots to prevent them from causing numerical
instabilities. For these reasons, the following constraint was. placed

on each.knot:

get h

[
g

K+l " 60 and constrain each knot Gi by

85_q + -0001+h < &, <& . - .0001h .
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NUMERICAL RESULTS

5.1 Introduction

There are three main areas where least squares approximation
can be used. These are: the approximation of mathematical functions;
the approximation of experimental data; and computer-aided design. In
the first of these spiines do not provide sufficient accuracy to warrant
- their use as functional approximations. In the second areassplines give
good results. In the third area splines are able to fit the contours

of a design extremely well because of their piecewise nature.

In order to demonstrate the possibilities of interactive
spline approximation three examples are given. The first example .fits
cubic splines to an interesting set of data mainly to demonstrate the
possibilities of the method. The second example fits a cubic spliné curve
to a data set gi&en in de Boor and Rice [5], [6] involving data from a
Titanium heat experiment. The final example is the approximation of the
outline of a Volkswagen. This result is merely intended to demonstrate
the. possibilities of splines in computer-aided design rather than having

any practical importance.’

"All examples were run on an Adage Graphics Terminal connected
to an IBM 360/67 duplex operating under MTS (Michigan Terminal System)
iqcated at the University of British Columbia. Hardcopy plots were

-obtained on a Calcomp plotter. Program listings and a user's guide are

presented in Appendices A and B respectively.
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The interactive system produces the following output:

1. Questions regarding what option the user would like are
printed on a conversational terminal. = An example of one
such session with the interactive system is giVen in
Appendix B.

2. A graph of the data points, knots and fitted curve are
produced on the graphics terminal.' This is identical to
the hardcopy that can be produced from it as, for example,
that of Figure 3.

3. A hardcopy plot of the graph can be produced upon.request.
This plot is identified:by a title specified as input . and
a run number 'n' which indicates that it is the n-th
hardcopy of the current terminal session.

4, A hardcopy printout as given in Table I which corresponds
to the .plot. It can be mafched to the plot by the title
and run number. The hardcopy printout contains the
following information:

the abscissae and ordinates of the data points (the
original input to the_system);

the fitted ordinates (the approximation to the

ordinates by the system);
the residuals (the difference between the ordinates
and. the fitted ordinates);

the least squares error (the square root of the sum

of the squares of the residuals);

the location of the knots 60, 61, cens 6k+1 and
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the coefficients of the piecewise continuous polynomial

{si(x) :1=0,1, ..., k} between each knot. That is,

- between knot pair [§,,8 1 the polynomial coefficient

i’74+1
is the value for c¢.. in
ij
v i
s;(x) = ) c..(x-26,),
i =0 ij i

5.2 Use of the System

+

To demonstrate the use of the interactive system a simple set
of 11 data points was chosen. As can be seen from the plot in Figure 3
(ignoring the fitted curve for the moment) the eye tends to approximate the

data with the following curve:

One would like to manipulate splines so that they also approximate this

-data with the above curve.



The first attempt was made to approximate the data with -
two uniformly spaced internal knots over ~[0,1] . As can be seen from
the plot in Figure 3 and least squares error of .1104, the result

wasninot suitable,

A second attempt was made by moving the two internal knots
further apart to .25 and .75 respectively. This resulted in the
approximation given in Figure 5 and Table I. The results are somewhat
worse than the previous approximapion (the least squares error was
.1574 as compared to .1104). . Consequently this approximation was

eldminated and the previous. uniformly spaced knot set retained.

Further attempts were made to produce a better approximation
by moving the fwo knots closer together. When it became apparent that
theileast squares error had beén reduced adequately with the knots
located at 14 and .6 respectively (plot aﬁd results not. given), these
values were given to the minimization,procedure to find the optimal knot
locations. The results are given in.Figure 4 and Table II. [The optimi-
zation was terminated by the constraints on the knots. ‘However, the
least squares. error was.reduced_sigﬁificantly (the final error was
.0544). Presumably:this is the best approximation possible with two

knots. .

The next step in the procedure would then be to increase the
number of knots to three. This was done and the initial results of
three uniformly spaced internal. knots: are shown in.Figure.5 and Table II.
The interesting thing to note is that the least squares error and approx-

imation are identical to that in Table I. This is because the third
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knot located at the point of symmetry is inert and does not contribute
to the approximation at all. Consequently the piecewise polynomial
between .5 and .75 is merely the polynomial between . .25 and .75

.shifted.

Since'it was useless to continue with three knots'the number
was increased to four. The initial approximation with four unifprm,
internal knots gave .the result in Figure 6. This result is better than
the optimized result with 2 knots (least squares error of .0247 as
compared.with .0544). But the curve in the end regions, although smaller,

contains more oscillations.

The next step is to vary the knots interactively. First,
adjustment of the first and last knots‘towards the boundaries produced
significantly better results. which termina;ed around .25 and .75
Next, adjustment of the second and third knots produced better results
continuougly. The movement of the two knots was finally terminated at
.49999 and .50001 as it was felt that they were coalescing too much
(although the condition number of the least squares matrix was still only
5.96 and remaining fairly constant). The results of this approximation
are spectacular. As can be seen from Table VI and Figure 7 the least

squares error was .0000043 and the plot resembles the one expected.

, It is interesting to note the similarity of the knot locatiomns

in Figures- 5 and 7. Although Figure 7 represents two nearly equal knots
at the center the difference in the: approximations obtained indicates
that it #$ not necessarily a good strategy to replace two coalescing knots

by one knot and reducing the order of the system by one.
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This example demonstrates the power of the interactive system
to approximate data. In particular, the results of the interactive
procedure on the four knot approximation produced such impressive results

that automatic refinement was. unnecessary.
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TEST DATA - 2 NON‘UNIFORM KNOTS . 1
ABSCISSAE ORDINATES FITTED ORCINATES RESILUALS

0.0
1.000000E~-01
2.000000E-01
3.000000E-01
4.000000E-01
5.000000E-01
6.000000E~01
7.000000E-01
" 8.000000E-01
9.000000E~-01
1.000000E 00

S OO0
s o ®
SoCo

1.000000E-01
5.000000E-01
9.000000E-01
1.000000E 0O
1.000000E 00
1.000000E 00
1.000000E 00

-7.871840E-03
3.829566E-02
-4.988915E-02
~-2.595019E-02
1.877502E-01
5.000004E-01
8.122501E-01
1.025949E 00
1.049888E 00
9.617022E-01
1.007872E 00

7.871840E-03
-3.829566E-02
4.,988915E-02
2.595019E-02
~8.775020E-02
-4.619360E-07
8.774978E-02
-2.594873E-02
~-4.988807E-02
3.829774E-02
=7.872522E-03

THE LEAST SQUARES ERROR IS  1.574225E-01
KNOT LOCATION PCLYNOMIAL POWER PCLYNOMIAL COEFFICIENT
0 0.0
0 ~7.871840E-03
1 1.979496E 00
2 -1.940852F 01
3 4.230307E 01
1 2.500000E-01 A - '
- 0 -6.504732E-02
1 2.070669F-01
2 1.231876E 01
3 -1.642503E 01
2 7.500000E-01 ,
0 1.065084E 00
1 2.070355E-01
2 -1.231879E 01
: 3 4.230357E 01
3 1.000000E 00

TEST DATA - 2 NON-UNIFORM KNOTS

Table T
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DATA - 2 KNOTS OPTINMIZED 2

TEST
ABSCISSAE ORDINATES FITTED ORDINATES RESILUALS
0.0 ‘ 0.0 ~7.379014E-03 7.379014E-03
1.000000E-01 ~ 0,0 2.207708E~02 -2.207708E-02
2.000000E~-01 0.0 -1.452189E-02 1.452189E-02
3.0C0000E-01 0.0 -1.511128E-02 1.511128E~02

4.,000000E-01 1.000000E-01 1.223733€-01 -2.237328E-02

5.000000E-01
6.000000E-01
7.000000E-01
8.0C0000E~-01
9,000000E-01

5.000000E-01
9.000000E-01
1.000000E 00
1.000000E 00

1.000000E 00 -

4,399992E-01
8.776275E-01
1.015110E 00
1.074520E 00

-9.779216E-01

8.030709E-07
2.2372U8E-02

-1.511062E~-02
-1.452056E-02

2.207839E-02

1.000000E 0O 1.000000E 0O 1.007378E 00 -7.378042E-03

THE LEAST SQUARES ERROR IS 5.543568E-02
KNOT LOCATION POLYNQOMIAL POWER POLYNOMIAL CCEFFICIENT
0 0.0 - '
0 -7.379014E-03
1 9.650481E-01
2 -8.405960E 00
3 1.701073E 01
A 4.999000E-01
: 0 4.994677E-01
1 5.313705E 00
2 1.710503E 01
3 -5.700724E 04
2 5.001000E-01
' 0 5.005385E-C1
1 5.31%3683E 00
2 ~1.710493E 01
3 1.701070E 01

3 1.000000E 00

TEST_DATA - 2 KNOTS OPTIMIZED

Table II
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TEST DATA - 3 UNIFORM KNOTS . 2
AESCISSAE ORDINATES FITTED ORUDINATES RESILCUALS

0.0

1.000000E-01
2.000000E-01
3.000000E-01
4,000000E-01
5.000000E-01
6.000000E-01
7.000000E-01
8.0C0000E-01
9.000000E-01
1.000000E 00

°
-
-

SCOoOCOo
(>N e No o]

1.000000E-01
5.000000E-01
9.000000E~-01
1.000000E 00
1.000000E 00
1.000000E 00
1.000000E 0O

-7.872656E-03
3.829633E-02
-4.988962E-02
-2.595067E-02
1.877483E-01
4.999984E-01
8.122493E-01
1.025949E 00
1.049888E 00
9.617013E-01
1.007872E 00

7.872656E-03
~3.829633E-02
4.988962E-02
2.595067E-02
-8.774823E-02
1.56U4622E-06
8.775061E-02
-2.594928E-02
-4.,988800E-02
3.829866E-02
~7.871866E-03

THE LEAST SQUARES ERROR IS 1.574225E-01

KNOT LOCATION POLYNCMIAL POWER POLYNOMIAL COEFFICIENT
0 0.0 :
: 0 -7.872656E-03
1 1.979532E 00
2 ~1.940877E 01
3 4,230345E 01
1 2.500000E-01 |
0 -6.504667E-02
1 2.070408E-01
2 1.231880E 01
3 -1.642502E 01
2 5.000000E-01
0 4.999984 E-0 1
1 3.286754E 00
2 5.340576 E-05
3 -1.642529E 01
3 7.500000E-01 ' -
. 0 1.065044E 00
1 2.070377E-01
2 -1.231889E 01
3 4.230394F 01

4 7.000000E 0O

TEST DATA - 3 UNIFORM KNOTS

Table III
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TEST DATA - 4 NON-UNIFORM KNOTS : . 1

ABSCISSAE CRDINATES FITTED ORDINATES RESIDUALS
0.0 . 6.0 3.961031E-08 -3,.961031E-08
1.000000E-01 0.0 =1.974404E-07 1.97440U4E~-07
2.000000E-01 0.0 2.697052E-07 -2.697052E~07
3.000000E-01 0.0 2,083834E-07 -2.083834E-07

4.,000000E~01
5.000000E~01
6,000000E-01
7.000000E-01
8.0C0000E~01
9.000000E-01
1.000000E 00

1.000000E-01
5.000000E-01
9.000000E-01
1.000000E 00
1.000000E 00
1.000000E 00
1.000000E 00

9.999895E-02
5.000019E-01
8.999965E~-01
1.000000E 00
9.999991E-01
9.999999E-01
9.999999E-01

1.032065E-06
-1.941880E-06
3.502471E-06
-4.593458E-07"
8.u458737E-07
7.450581E-08
1. 192093E~-07

THE LEAST SQUARES ERROR IS 4,266889E-06

KNOT LOCATION POLYNOMIAL POWER ~  POLYNOMIAL COEFFICIENT
0 0.0
0 3.961031E-08 .
1 ~1.450448E-02
2 2.175139E-01
3 ~7.249289E-01
1 2.500000E~01
0 -1.357395E-03 -
1 ~4.,168792E-02
2 ~3.261279E-01
3 © 3.405853E 01
2 4.999900E-01 ,
0 4.999400E-01"
1 6.180718E 00
2 2.521675E 01
» | 3 -8.394170E 05
3 5.000100E-01
0 5.000489E-01
1 6.180779E 00
2 -2.521672E 01
3 3.405827E 01
4 7.500000E-01 |
0 1.001356E 00
1 -4.164546E-02
2 3.259857E-01
3 -7.245331E-01
5 1.000000E 00

TEST DATA - 4 NON-UNIFORM KNOTS'

Table IV
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5.3 Titanium Heat. Data

de Boor and Rice [5], [6] presented a set of data obtained from
a heat experiment ihvolving Titanium. This data was used to demonstréte'
the fixed knot program using a knot set withAfive equally spaced knots
[5, p. 18] and the variable knot program which involved the optimization
of this fixed knot set. Further studies involved the optimization of

a non-uniform knot set containing five knots.

One éf the best ways to test a system is 'to try it on previously
done results and check the answers. Initially the interactive system
was aone with tﬁe uniform knot set specified in de Boor and Rice [5, p. 18].
The results and plot are given in Table V and Figure 8. These results
compare favorable with those in de Boor and Rice (the residual was 1.16
as compared to their 1.24). However, as can be seen from the plot,

the resulting approximation is none too satisfactory.

It is here that the power of the interactive system comes into
effect. After moving the knots so that the plot produced is more accurate,
better results are obtained. The results given in Table VI and Figure 9
indicate substantial improvement. The resulting knot set was used in an
initial guesssfor knot optimization giving final result shown in Table VII
and Figure 10. The reductign in the least squares error was substantial
(092 as compared to 1.16) largely because the interactive knot place-

ment allowed for the deriving of accurate starting values.
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TITANIUM HEAT DATA - 5 UNIFORM KNOTS

ABSCISSAE ORDINATES FITTEL ORCINATES RESILUALS
5.950000E 02 6.440000E-01 6.235025E-01 2.049747E-02
6.050000E 02 6.220000E-01 6.425120E-01 -2,051199E-02
6.150000E 02 6.380000E-01 6.516960E-01 -1.3696084E-02
6.250000E 02 6.490000E-01 6.534591E-01 -U4,459172E-03
6.350000E 02 6.520000E-01 6.502057E-01 1.794243E-03
6.450000E 02 6.390000E-01 6.443403E-01 -5.340301E-03
6.550000E 02 6.460000E-01 6.382672E-01 7.732764E-03
6.650000E 02 6.570000E-01 6.343911E-01 2.260887E-02
6.750000E 02 6.5200C0E-01 6.351163E-01 1.688367E-02
6.850000E 02 6.550000E-01 6.420718E-01 1.292809E-02
6.950000E 02 6.640000E-01 6.537848E-01 | 1,021518E-02
7.050000E 02 6.630000E-01 6.680065E-01 -5,006507E-03
7. 150000E 02 6.6300C0E-01 6.824884E-01 -1.9u48840E-02
7.250000E 02 6.680000E-01 6.949821E-01 -2.698214E-02
7.350000E 02 6.760000E-01 7.032389E-01 -2.723893E-02
7.450000E 02 6.760000E-01 7.050105E~-01 -2.901048E-02
7.550000E 02 6.860000E-01 6.980482E-01 -1.204824E-02
7.650000E 02 6.790000E-01 6.815894E-01 -2,.589412E-03
7.7500008 02 6.780000E-01 6.608155E-01 1. 718443 E-02
7.850000E 02 6.830000E-01 6.423933E-01 4.060671E-02
7.950000E 02 6.940000E-01 6.329899E-01 6.101005E-02
8.050000E 02 6.990000E-01 6.392726E-01 5.972740E~-02
8, 150000E 02 7.100000E-01 6.679080E-01 4,209192E-02
8.250000E 02 7.300000E-01 7.255636E-01 4.436404E-03
8.350000E 02 7.630000E~01 8.189063E-01 -5.590630E-02
8.450000E 02 8.120000E-01 9.505556E-01 -1.385556E-01
8.550000E 02 9.070000E-01 1.106939E 00 -1.999393E-01
8.,650000E 02 1.044000E 00 1.270436E 00 -2.264375E~01
8.750000E 02 "1.336000E 00 1.423430E 00 -8.743048E-02
8.850000E 02 1.881000E 00 1.548299E 00 3.326998E-01
8.,950000E 02 2.169000E 00 1.627424E 00 ~ 5.415753E-01
9.050000E 02 2.075000E 00 1.643184E 00 4.318160E-01
9.150000E 02 1.598000E 0O 1.583930E 00 1.406908E-02
9.250000E 02 1.211000E 00 1.461898E 00 -2.508975E-01
9.350000E 0z 9.160000E-01 1.295290E 00 -3.792901E-01
9.450000E 02 7.460000E-01 1.102311E 00 -3.563114E-01
9.550000E 02 6.720000E-01 9.011649E~01 =-2.291650E-01
9.650000E 02 6.270000E-01 . 7.100576E-01 -8,305758E-02
9,750000E 02 6.150000E-01 5.471910E-01 6.780899E-02
9.850000E 02 6.070000E-01 4,307705E-01 1. 762294E-01
9,.950000E 02 6.060000E-01 3.79C006E-01 2.269993E-01
1.005000E 03 6.090000E~01 4,022449E-01 2.067550E-01
1.015000E 03 6.030000E-01 4,.795058E-01 1.234941E-01
1.025000E 03 6.0100C0E-01 5.819451E-01 1.905493E-02
1.035000E 03 6.C30000E-01 6.807239E-01 -7.772392E-02
1.045000E 03 6.010000E-01 7.470052E-01 -1,460052E-01
1.055000E 03 6.110000E~01 7.519506E-01 -1.409506E~-01
1.065000E 03 6.010000E-01 6.667216E-01 -6.572163E-02
1.075000E 03 6.080000E-01 4.624799E-01. 1.455200E-01

THE LEAST SQUARES ERROR IS 1.157334E 00 _
KNOT LOCATION POLYNOMIAL POWER POLYNOMIAL COEFFICIENT

0 5.950000E 02



6.750000E

7.550000E

8.350000E

9.050000E

9.950000E

1.075000E

02

02

02

02

02

03

WK - O

|
w
~
|

WK O WA= O

WN SO WN=O

WK - O

6.235024E-01
2.472371E-03
-6.114945E-05
4.007443E-07

6.351163E-01
3,.827438E-0U
3.502920E-05
~3.747538E-07

6.980482E-01
-1.207871E-03
-5.49116,E-05

1.111178E-06

8.189063E~01
1.134087E-02
2.117710E-04
-2.936617E-06

1.643183E 00
-2.179519E-03
-4,049190E-04

3.0340U45E-06

3.790006E-01
-1.337562E-03

4,142732E-04
-4,806359E~-06

TITANIUM HEAT DATA - 5 UNIFORM KNOTS

Table V
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TITANIUM HEAT DATA - 5 NON-UNIFORM KNOTS

RESIDUALS

ABSCISSAE ORDINATES FITTED ORDINATES
5.950000E 02 6.480000E-01 6.252043E-01 1. 879563E~02
6.050000E 02 6.220000E~01 6.338547E-01 -1.185U82E-02
6.150000E 02 6.380000E-01 6.407921E-01 =-2.792177E-03
6.250000E 02 6.490000E-01 6.462172E-01 2.782739E-03
6.350000E 02 6.520000E-01 6.503309E-01 1.669100E-03
6.450000E 02 ~ 6.390000E-01 6.533335E-01 -1.433358E-02
6.550000E 02 6.460000E~01 6.554263E-01 -9,426299E-03
6.650000E 02 6.570000E-01 6.568095E~-01 1.904927E-04
6.750000E 02 6.520000E-01 6.576843E-01 ~5,684260E~03
6.850000E 02 6.550000E-01  6.582511E-01 =-3,251180E-03
6.950000E 02 6.640000E~01 6.587108E~01 5.289115E-03
7.050000E 02 6.630000E-01 6.592643E~01 3.735680E-03
7.150000E 02 6.630000E~-01 6.601120E-01 2.888002E-03
7.250000E 02 6.680000E-01 6.6145495-01 6.545052E-03
7,350000E 02 6.760000E~01 6.634936E-01 1.250640E-02
7.450000E 02 6.760000E-01 6.664289E~01 9.571020E~03
7.550000E 02 6.860000E-01 6.704616E-01 1.553836E-02
7.650000E 02 6.790000E~01 6.757923E-01 3.207672E-03
7.750000E 02 6.780000E-01 6.826219E~01 ~U4.621979E-03
7.850000E 02 6.830000E-01 6.911511E-01 ~8.151092E-03
7.950000E 02 6.940000E-01 7.0158078-01 -7.580712E-03
8.050000E 02 6.990000E-01 7.741112E-01 =-1.511123E-02
8. 150000E 02 7.100000E-01 7.289435E~01 -1.894355E-02
8.250000E 02 7.300000E~01 7.462784E-01 ~-1,627839E-02
8.350000E 02 7-630000E-01 7.663165E~-01 -3,316541E8-=03
8.450000E 02 8.120000E-01 7.908105E-01 2.118939E-02
8.550000E 02 9.070000E-01 "8,572057E-01 4.979425E-02
8.650000E 02 1.044000E 00 1.038639E 00 5.359702E-03
8.750000E 02 1.336000E 00 1.402930E 00 -6.693059E-02
8.850000E 02 1.881000E 00 1.859838E 00 2.116160E-02
8.950000E 02 2.169000E 00 2.161066E 00 7.933423E-03
9.050000E 02 2.075000E 00 2.06U4366E 00 1.063279E-02
9.150000E 02 1.598000E 00 1.624727E 00 =-2.672801E-02
9.250000E 02 1.211000E 00 1. 185819E 00 2.518102E-02
9.350000E 02 9.160000E~01 9.078093E-01.. 8.190691E-03
9.450000E 02 7.460000E~01 7.544307E-01 =-8,430697E-03
9.550000E 02 6.720000E-01 6.808758E-01 -8,875843E-03
9.650000E 02 6.270000E-01 6.,432318E-01 =-1.623188E-02
9.750000E 02 6.150000E-01 6.181573E-01 -3.157331E-03
9.850000E 02 6.070000E-01 6.028832E-Q1 4.116789E-03
9.950000E 02 6.060000E-01 5.955343E~01 1.046569E-02
1.005000E 03 6.090000E-01 5.942356E~01 1. 4764U2E-02
1.015000E 03 6.030000E~01 5.971119E-01 5.888034E~-03
1.025000E 03 6.010000E-01 6.022885E-01 -1,288563E-03
1.035000E 03 6.030000E-01 6.078902E-01 ~4.890207F-03
1.045000E 03 6.010000E-01 6. 120420E-01 -1.104198E-02
1.055000E 03 6.110000E-01 6.128688E-01 -1.868859E-03
1.065000E 03 6.010000E-01 6.084959E-01 ~7.495925E-03
1.075000E 03 6.080000E~-01 5.970479E-01 1.095206E-02
THE LEAST SQUARES ERROR IS 1. 142650E-01
KNOT LOCATION POLYNOMIAL POWER POLYNOMIAL COEFFICIENT

0 5.950000E 02



8.400000E

8.700000E

9.000000E

9.200000E

9.600000E

1.075000E

02

02

02

02

02

03

WKN = O WN 2O

WRNw O WK O

WA - O

6.252043E-01
9.573922E-04
-9.568968E-06
3.345709E-08

7.774121E-01
2.293389E-03
1.502197E-05
1.244829E-05

1.195837E 00
3.680510E-02
1.135369E-03

- ~-4,252815E-05

2,173558E 00
-9.898979E-03
-2.692169E-03

6.085630E-05

1.385562E 00
~4.455817E~-02
9.592120E~-04
-7.467897E-06

6.600300E-01
-3.667146E-03
6.306361E~-05
-3.125027E-07

TITANIUM HEAT DATA - 5 NON-UNIFORM KNOTS

Table VI
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TITANIUM HEAT DATA - 5 KNOTS OPTIMIZED

ABSCISSAE ORDINATES FITTED ORDINATES RESIDUALS
5.950000E 02 6.440000E-01 6.225190E-01 2. 148103E-02
6.050000E 02  6.220000E-01 6.327376E-01 =~-1,073763E-02
6.150000E 02 6.380000E-01 6.408629E-01 -2.862922E-03
6.250000E 02 6.490000E-01 6.471329E-01 1.867094E-03
6.350000E 02 6.520000E-01 6.517856E~-01 2.144140E-04
6.450000E 02 6.390000E-01 6.550590E-01 -1.605903E-02
6.550000E 02 6.460000E-01 6.571912E-01 -1.119116E-02
6.650000E 02 6.570000E-01 6.584202E-01 ~-1.420241E-03
6.750000E 02 6.520000E-01 6.589841E-01 -6.984055E-03
6.850000E 02 6.550000E-01 6.591210E-01 -4.,121054E-03
6.950000E 02 6.640000E~01 6.590686E-01 4.931286E-03
7.050000E 02 6.630000E-01 6.590654E-01 3.934622E-03
7.150000E 02 6.630000E-01 6.593490E-01 3.650941E-03
7.250000E 02 6.680000E-01 6.601578E-01 . 7.842168E-03
7.350000E 02 6.760000E-01 6.617296E-01 1. 427035E-02
7.450000E 02 6.760000E-01 6.6U43026E-01 1.169730E-02
7.550000E 02 6.860000E-01 6.681147E-01 1.788527E-02
7-650000E 02 6.790000E-01 6.734042E-01 5.595822E-03
7.750000E 02 6.780000E-01 6.804088E-01 ~-2.408907E-03
7.850000E 02 6.830000E-01 6.893667E-01 -6.366715E-03
7.950000E 02 6.940000E-01 7.005159E~-01 -6.515928E-03
8.050000E 02 6.990000E-01 7.180946E-01 -1.509461E-02
8.150000E 02 7.100000E~-01" 7.303407E-01 -2.034071E-02
8.250000E 02 7.300000E-01 7.494920E-01 -1.949206E-02
8.350000E 02 7.630000E-01 7.717870E-01 -8.786995E-03
8.450000E 02 8.120000E-01 7.992001E-01 1.279991E-02
8.550000E 02 9.070000E-01 8.665996E-01 4.040042E-02
8.650000E 02 1.044000E 0O 1.038002E 00 5.996864E-03
8.750000E 02 1.336000E 00 1.378159E 00 -4,215827E-02
8.850000E 02 1.881000E 00 1.851600E 00 2.939950E~-02
8.350000E 02 2.169000E 0O 2.178109E 00 -9.109914E-03
"9.050000E 02 2.075000E 00 2.067245E 00 7.754855E-03
9.150000E 02 1.598000E 00 1.616635E 00 =-1.863577E~02

"~ 9.250000E 02 1.211000E 00 1.193341E 00 1.765861E-02
9.350000E 02 9.160000E-01 9.150418E-01 9.581815E-04
9.450000E 02 7.460000E-01 7.509134E-01 -4,913419E-03
9.550000E 02 6.720000E-01 6.683230E-01 3.676936E-03
9.650000E 02 6.270000E-01 6.3U6373E-01 -7.637367E-03
9.750000E 02 6.150000E~-01 6. 188952E-01 -3.895170E-03
9.850000E 02 6.070000E-01 6.086131E~-01 -1.613097E-03
9.950000E 02 6.060000E-01 6.027005E-01 3. 299463E-03
1.005000E 03 6.0900C0E-01 6.002849E-01 8.755121E-03
1.015000E 03 6.030000E-01 6.003335E~-01 2.666444E-03
1.025000E 03 6.010000E-01 6.020537E-01 -1.053706E-03
1.035000E 03 6.030000E-01 6.044927E-01 -1.492694E-03
1.045000E 03 6.010000E-01 6.067377E-01 -5.737711E-03
1.055000E 03 6.110000E-01 6.078761E-01 3.123831E-03
1.065000E 03 - 6.010000E-01 6.069952E-01 -5.995244E-03
1.075000E 03 6.080000E-01 6.031824E-01 4.817545E-03

THE LEAST SQUARES ERROR IS 9.286332E-02
KNOT LOCATION POLYNOMIAL POWER POLYNOMIAL COEFFICIENT

0 5.950000E 02
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6.225189E-01

0
1 1.134473E-03
2 -1.165708E-05
3 3.967317E-08
8.395U486E 02
0 7.830166E-01
1 2.551379E-03
2 1.744409E-05
3 1.0808204E-05
8.733201E 02
0 1.306674E 00
1 4.082611E-02
2 - 1.115898E-03
3 ~-5.281300E-05
8.989514E 02
0 2.196890E 00
1 -6.059237E-03
2 ~2.945114E-03
e 3 6.665658E~-05
9.179270E 02
0 1.476898E 00
1 -4.582613E-02
2 8.494323E-04
3 -5.438899E-06
- 9.681765E 02
0 6.288878E-01
1 -1.658810E-03 "
-2 2.952565E-05
3 -1.521178E-07

1.075000E 03

TITANIUM HEAT DATA - 5 KNOTS OPTIMIZED

Table VII:
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5.4 The Bug

The use of spline approximation in computer-aided design
is a relatively unexplored area. The Volkswagen data presented in this
section demonstrates possible applications of splines in the area. Also

the approximation demonstrates the use of a large knot set.

The initial approximation of 18 equally spaced knots produced
a Volkswagen with a dented hood as can be seen in Figure 11. Inter-
active manipulation ef the knots produced the more reasonable resemblance
to a Volkswagen shown in Figure 12 and Table VIII.. Since the desired
results were based on representing the data accurately by sight rather

than minimizing the least squares error the knots were not optimized.
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THE BUG

ABSCISSAE ORDINATES FITTED OREINATES RESICUALS

3.500000E-01
3.525000E-01
3.55C000E-01
4.300000E-01
4.700000E-01
5.000000E-01
5.500000E-01
6.000000E-01
7.000000E-01
8.,000000E-01

3.000000E-01
4.000000E-01
5.500000E-01
6.500000E-01
8.000000E-01
9.500000E-01
1.060000E 00
1.200000E 00
1.250000E 00
1.290000E 00

4,035096E-01
4,113406E-01
4,192352E-01
6.758505E-01
8.169750E-01
9.183491E-01
1.06868CE 00
1.182031E 00
1.275474E 00
1.276578E 00

-1.035095E-01
-1.134065E-02

1.307648E-01

~2.585047E-02
~1.697499F-02

3.165080E-02

~-8.680243E-03

1.796837E-02

~-2.547405E-02

1.342188E-02

9.000000E-01
1.000000E 00
1.100000E 00
1.200000E 00
1.300000E 00
1.400000E 00
1.500000E 00
1.600000E 00
1.700000E 00
1.800000E 0O
1.900000E 00
2.000000E 00
2.100000E 00
2.200000E 00
2.300000E 00
2.400000E 00
2.500000E 00
2.600000E 00
2.700000E 00
2.800000E 00
2.9C0000E 00
3.000000E 00
3.100000E 00
3.200000E 00
3.350000E 00
3.400000E 00
3.500000E 00
3.600000E 0O
3.700000E 00
3.800000E 00
3.9000008 00
4.000000E 00
4.100000E 00
4.2C0000E 0O
4,300000E 00
4.400000E 00
4.500000E 00
L.600000E 0O
4,.700000E 00
4.800000E 00
4.900000E 00
5.000000E 00

1.300000E 00
1.430000E 00
1.500000E 00
1.560000E 00
1.620000E 00
1.675000E 00
1,720000E 00
1.750000E 00
1.780000E 00
1.810000E 00
1.840000E 00
1.860000E 00
1.890000E 00
1.915000E 00
1.930000E 00
1.950000E 00
1.960000E 00
1.970000E 00
1.980000E 00
1.990000E 00
2.000000E 00
2.005000E 00
2.005000E 00
2.005000E 00
2.005000E 00
2.100000E 00
2,250000E -00
2.430000E 00
2.600000E 00
2.750000E 00.
2,890000E 00
2.920000E 00
2.950000E 00
'2.970000E 00
3.000000E 00
3.020000E 00
3.040000E 00
3.050000E 00
3.055000E 00
3.065000E 00
3.075000E 00
©3.080000E 00

1.304118E.00
1.421022E 00
1.509212E 00
1.564281E 00
1.616894E 00
1.668297E 00
1.713498E 00
1.752367E 00
1.785924E 00
1.815188E 00
1.841183E 00
1.864781E 00
1.887129E 00
1.908055E 00
1.927378E 00
1.944908E 00
1.960458E 00
1.973843E 00
1.984876E 00
1.993369E 00
1.999138E 00
2.002012E 00
2.002145E 00
2.001301E 00
2.034211E 00
2.079496E 00
2.238708E 00
2.428134E 00
2.612069E 00
2.767555E 00
2.871636E 00
2.916960E 00
2.946946E 00 -
2.973553E 00
2.996966E 00
3.017381E 00
3.034980E 00
3.049955E 00
3.062496E 00
3.072790E 00
3.081028E 00
3.087397E 00

-4.118513E-03
8.977752E-03
-9.212483E-03
-4,281554E-03
3.105875E-03
6.702900E-03
6.501570E-03
-2.367944E-03
~5.924519E-03
-5.188584E-03
~1.182909E-03
-4.782557E-03
2.871351E-03
6.944049E-03
2.621699E-03
5.091667E-03
-4.580617E-04
-3.842760E-03
-4,.876371E-03
-3.369596E-03"
8.617891E-04
2.987819E-03
2.855293E-03
3.698572E-03
-2.921108E-02
2.050392E-02
1.129068E-02
1.865786E-03
-1.206875E~-02
-1.755604E=02
1.836338E-02
3.039550E-03
3.053293E-03
-3.552493E-03
3.032722E-03
2.619695E-03
5.019724E-03
4.446507E-05
~7.496823E~03
-7.791314E-03
~6.028723E-03
-7.396754E-03
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5.100000E 00 3.090000E 0O 3.092069E 00 ~-2,069191E-03
5.200000E 0O 3.100000E 00 3.095146E 00 4.853774E-03
5.300000E 00 3.100000E 00 3.096716E 00 3.283732E-03
5.400000E 00 3.1000008 0O 3.096868E 00 3.132608E-03
5.500000E 00 3.100000E 00 3.095680E 00 4.319567E-03
5.600000E 00 3.100000E 0O 3.093245E 00 © 6.755099E-03
5.700000E 00 3.100000E 00 3.089649E 00 1.035092E-02
5.800000E 00 3.090000E 00 3.084874E 00 5.025774E-03
5.900000E 00 3.080000E 00 3.079309E 00 6.905058E-04
6.000000E 00 3.070000E 0O 3.072740F 00 -2.739966E-03
6.100000E 00 3.060000E 0O 3.065260E 00 -5.259581E-03
6.200000E 00 3.050000E 0O 3.056500E 00 -6.500497E-03
6.300000E 00 3.040000E 00 3.046000E 00 -5.999859E-03
6,400000E 00 3.030000E 0O 3.033295E 00 ~3.295366E-03
6.500000E 00 3.010000E 00 3.017928E 00 ~-7.928025E-03
6.600000E 00 3.000000E 00 2.999435E 00 © 5.641840E~-04
6,700000E 00 2.980000E 00 2.,977354E 00 2.645336E-03
6.,800000E 00 2.950000E 00 2.951224F 00 -1.22u4987E-03
6.900000E 00 2.920000E 00 2.920587E 00 ~-5.867698E-04
7.000000E 00 2.890000E 00 2.884996E 00 5.003192E-03
7.100000E 00 2.850000E 00 2.844051E 00 5.948193E-03
7.200000€ 00 2,800000E 00 2.797825E 00 2.174579E~03
7.300000E 00 2.750000E 00 2.746466E 00 3.533684E-03
7.400000E 00 2.690000E €O 2.690125E 00 ~-1.264103E-04
7.500000E 00 2.630000E 00 2.628954E 00 1.045644E-03
7.600000E 00 2.560000E 00 2.563101E 00 -3.100801E-03
7.700000E 00 2.490000E 0O 2.492720E 00 =-2,719902E-03
7.800CC0E 0O 2.4200C00E €O 2.417955E 00 2.0442052-03
7.900000E 00 2.340000E 00 2.338963E 00 1.036749E-03
8.000000E 00 2,250000E 00 2.255881F 00 -5.881384E-03
8.100000E 00 2.160000E 00 ~ 2.169028E 00 -9.028815E-03
8.200000E 00 2,080000E 0O 2.079279E 00 7.202886E-04 .
8.300000E 900 2.000000E 00 1.,987667E 00 1.233252E-02
8.400000E 00 1.900000E 00 1.895224E 00 4,775889E~-03
8.500000E 00 1.805000E 00 1.802980E 00 2.018948E-03
8.600000E 00 1.7050C0E 00 1.710693E 00 -5.694207E-03
- 8,700000E 00 1.605000E 00 1.6130N8E 00 -8.008420E-~03
8.800000E 00 1.500000E 00 1.503284E 00 -3.283981E-03
- 8.900000E 00 1,375000E 00 1.374889E 00 1. 102020E- 04
9.000000E 00 1.240000E 00 1.221188E 00 1.881186E-02
9.100000E 00 1.030000E 00 1.038939E 00 -8.940164E-03
9.200000E 00 8.300000E-01 8.384878E-01 -8.487869E-03
9.300000E 00 6.400000E-01 6.335645E-01 6.435510E~03
9.400000E 00 4,450000E-01 4.379095E-01 7.090468E-03
9.500000E 00 2.500000E-01 2.652552E-01 -1,525517E-02
9.550000E 00 2.000000E-01 1.918465E-01 8.153468E-03
THE LEAST SQUARES ERROR IS 1.897547E-01

KNOT LOCATION POLINOMIAL POWER POLYNOMIAL COEFFICIENT
0 3.500000E-01
0 4,035096E-01
1 3.119434E 00
2 5.245779E 00
3 -2.106841E 01

1 6.000000E-01
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11

9.000000E~

1.000000E

1.200000E

1.400000E

2.000000E

3.000000E

3.200000E

3.400000E

3.500000E

3.900000E

01

00

00

00

00

00

00

00

00

00

W N O

WN O WN 2O WO W) - O W) O W - O WA - O WK O W N = O

WN-=O

1. 182031 00
1.792031E 00
-1.055562E 01
1.979568E 01

1.304118E 00
8.034888E-01
7.260439E 00
-3.605061E 01

1.421C21E 00
1.174047E 00

-3.554706E 00

6.331032& 00

1.56U4281E 00
5.119148E-01
2.439298E-01
-1.019521E 00

1.668296F 00
4.870993E-01
-3.677540E-01
1.702099E-01

1.864781E 00
2.299367E-01
-6.161657E-02

-3.110615E-02

2.002012E 00
1.324511E-02

-1.546146E-01

3,537191E-01

2.001300E 00
-6.130829E-013
5.760336E-02
9.639282E 00

2.079434E 00
1. 173615E 00
5.841224E 00
-1.655806E 01

2.238708E 00
1.845140E 00
8.737149E-01
-3.827115E 00

2.871635E 00
7.071088E-01
-3.718792E 00
1. 180118E 01



12

13

1L

15

16

17

18

19

4.000000E

5.000000E

6.000000E

7.000000E

8.000000E

8.500000E

9.000000F

9.550000E

00

(1

00

00

00

00

00

00

WK =0 WN - O W= O WA = O WK O

WN=O UJN.-AQ

THE BUG

Table VIII

2.916960F 00
3.173848E-01
-1.784239E-01
3.148174E-02

3.087396E 00
5.497074€-02
-8.398247E-02
1.435216E-02

3.072739E 00

. —6.993294E-02

-4.092169E-02
-7.690954E-02

2.884996E 00
~-3.825288E~-01
-2.716408E~01

2.506399E-02

2.255880E 00
-8.,505980E-01
-1.964577E-01

1.721067E-01

1.802979E 00
6.170338E-02
-1.105849E 00

1.221187E 00
-1.685660E 00
~1.597072E 00

2.289328E 00
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Section 6

_SUMMARY AND FUTURE POSSIBILITIES

. The results shown in the previous section provide a brief out-
look into the possibilities of .interactive least squares approximation
using spline functions., There remain, however, many problems and pos-

sibilities for further research in this area.

With regards to the basis functions; a.possibility is to find
more appropriate methods of choosing the external knots. Schultz [18,

p. 73] suggests choosing the external knots so that

For.the case of a uniform knot set this is equivalent. to the method
described in Section 2. However, for the nonjuniform knot- set the knot
spacing is different. Schultz's choice is poor when the boundary knot

and: first interior knot are coalescing as it causes high peaks in the basis
functions involving the external and boundary knots. This causes a sharp
increase in the.condition number of the least squares matrix - a situation

- which should be avéided.

The second possibility (interconnected with the first) is to
find optimal weights. for the basis functions involving the external
knots so as to reduce the condition number. At present the first and

. last basis funétion are arbitrarily multiplied by (m + 1) so as to
obtain an adequate portion of these basis functions when deriving the

least squares matrix. An interesting sutdy could be made of the-
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theoretical and practical importance of such weights for producing

good bounds for the norm of the least squares matrix.

A third possibility is to produce a more efficient method of
computing the B-spline basis functions using recursive formulae. These
methods are described in Lyche and Schumaker [10],_They provide sub-
stantial reductions in the time involved in evaluating the B-splines
as identical terms are not recomputed. Since the B-spline basis function
evaluatdon uses the most significant amount of time in the system;
derivation of an improved, more efficient algorithm for spline basis

function evaluation would be hi#ghly justified.

With regards to the fixed knot least squares problem; a
better estimate of the least squares norm might aid in the approximation .
process.: Both de Booraand Rice and Patent use an integral norm in their
approximation as opposed to_the discretized norm (sum of the squares
of the residuals) used in this system. de Boor and Rice [5], [6]
estimate the norm by the trapezoidal rule; hence, #n effect, obtaining
a linear interpolation between fitted data points. Patent [13] used
Filon quadrature (an interpolary quadrature), the theory of which is
discussed in his thesisﬁ Since the main interest of this system was
interactive approximation rather than least squares approximation, the

discretized norm was. ddequate.

With regards to the variable knot problemj better algorithms
are needed for the non-linear least squares problem. In particular, an

algorithm for the specific case of knot optimization would be useful.
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Also the possibility of keeping knots stationary while optimizing

other knots could be useful in the interactive case."

Interactiveatechniques are a vital asset to numerical compu-
tation. For too long, numerical analysts have been developing "black
box' algorithms in which numbers are read in and (hopefully) correct
answers are printed out. By interacting with the procedure, what is
happening to the solution can be observed immediately. Interaction
gives the ﬁower to interrupt the solution process and change the

starting conditions of the problem.

Part of the future of numerical computation depends on the
development of interactive methods. Hopefully, the use of an inter-
active approach rather than a "black box" approach will be valuable in

solving many numerical problems:
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Appendix A

PROGRAM LISTINGS

The following pages contain listings of the majority of the
program used. in the interactive spline approximation. The subroutines
consist of a main control routine.which calls the various subroutines

in the proper order.

As is_the\problem with most programs written for specific
hardware configurations most of the input/output subroutines are
machine dependent.  This program is no exception. However the subroutines
should not be difficult .to change to a system consisting of correspond-
. ing hardware; that is, a conversational terminal, a graphics terminal

and a plotter. The routines in question are:

1. INFREE - which is a free format input routine. All calls
to INFREE can be replaced by FORTRAN READ and FORMAT
statements.

2. The plot subroutines PLOT, SCALE, AXIS, SYMBOL and PLOTND
need only minor modifications from one plot system to
another., Note, however, that PSEND is a specific
subroutine for the graphics terminal which simply plots all
currently available plot information.

3. AGPLOT creates a Pardcopy of a plot currently being dis-
played on a graphics terminal. If such a routine is
unavailable this routine can be omitted. However this
causes the loss of the ability to keep the plot information

permanently.



-—75—

There is also one matrix manipulation subroutine which is not
- given in the program. The subroutine INVERT is used to obtain the
condition number of the matrix. However a similar subroutine is avail-

able almost. everywhere.

The code for the function minimization is also not given as
it was not written by the author. However a similar subroutine is

available in Richardson ‘and Kuester [15].
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\

Cohrkgokdedkae ok bk ok ok ok ok xr kk krkh xR g g hh phr Ak kb d e pkhphrE g
c* ' -
S Cx CONTROL ROUTTINE
C*¥ = e
C*
C*****#***####****#*****###*##*#####'*########*#‘######t**####**#*#**#*
DIMENSION X (200), Y(200), YF(200), RES(200)
DIMENSION A (200), DELTA (50)
INTEGER YES /'YES'/, NO /'NO'/, ANSWER /' v/

C #*% ENTER AND PLOT THE CATA POINTS
207 CALL DATAIN (X, Y, N)
205 CALL DATAPL (X, Y, XMIN, XMN, XMAX, CX, YMIN, LY, N)

C *=%¥% ENTER AND PLOT THE ORIGINAL KNCT SET
206 ERRORP = 1000. :
CALL KNOTIN (X, DELTA, M, N, MK, &206)
CALL KNOTPL (DELTA, XMIN, DX, YMIN, DY, M, HK)

C *%%x COMPUTE THE INITIAL SPLINE APPROXIMATION
CALL FIXED (X, Y, YF, RES, A, DELTA, ERRCR, ERRCRF, M, N, HMK)

C **%* PLOT THE SPLINE APPROXIMATION o
o CALL SPLNPL (A, DELTA, XMIN, XMN, XMAX, DX, YMIN, DY, M, MK)

C *%% ASK IF HARDCOPY OUTPUT IS WANTED
CALL SPLOUT (X, Y, YF, RES, A, DELTA, ERROR, N, M, MK)

C #**% ASK WHETHER OR NOT TO CONTINUE ITERATING
202 WRITE (6,600)
600 FORMAT ('6DO YOU WISH TO VARY THE KNOTS?)
" CALL INFREE (2058, ANSWER, 4)
IF (ANSWER.EQ.YES) GO TO 200
IF (ANSWER.EQ.NO) GO TO 201
WRITE (6,601)
601 FORMAT ('&PLEASE ANSWER YES OR no')
GO TO 202

C *%%x VARY THE KNOTS .
200 CALL CONTRL (X, Y, YF, RES, A, DELTA, ERROR, N, M, MK)
GO TO 202 ‘ ' .

- C #**%x . ASK WHETHER OR NOT TO OPTIMIZE THE RNOT SET
201 WRITE (6,602)
602 FORMAT ('6DO YOU WISH TO OPTIMIZE THE KNOT SET?)
CALL INFREE:- (2058, ANSWER, 4)
IF (ANSWER.EQ.YES) GO TO 203
IF (ANSWER.EQ.NG) GO TO 204
WRITE (6,601)
GO TO 201

C **x OPTIMIZE THE KNOT SET
203 CALL OPT (X, Y, YF, RES, A, DELTA, ERROR, N, M, HNK)



C ik
204
603

C *%x%
209
604

208
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ASK WHETHER OR NOT TO RESTART WITH A NEW KNOT SET
WRITE (6,603) ' A
FORMAT ('&DO YOU WISH TO RESTART WITH A NEW KNCT SET')
CALL INFREE (2058, ANSWER, H)
IF (ANSWER.EQ.YES) GO TO 205
IF (ANSWER.EQ.NO) GO TO 209
WRITE (6,601)
GO TO 204

ASK WHETHER OF NOT TO RESTART
WRITE (6,600)
FORMAT . (*€DO YOU WISH TO RESTART WITH A NEW DATA SET!')
CALL INFREE (2058, ANSWER, &)
IF (ANSWER.EQ.YES) GO TO 207
IF (ANSWER.EQ.NO) GO TC 208
WRITE (6,601)

GO TO 209 :
CALL PLOTHD N
STOP

END
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SUBROUTINE DATAIN (X, ¥, N)
C : .
(e 2 R X2 22 2 2 2R E 2 2R S R 2 R R R R PR R R R R 2SRRI R R F Y SEE S L
C*
C* INPUT QF DATA POINTS -
Cx*x o e e e = 4 o -
C*
2 S EE L 2 R R s R R R 2 2 R R P R YL S IR L)

DIMENSION X (1), Y (1)
C
C **%x READ IN THE NUMBER OF DATA POINTS

CALL INFREE (4, N)
C
C **x%x READ IN THE ABSCISSA AND ORDINATE VALUES

po 100 L=1,N -

CALL INFREE (20, X(L), Y(L))

100 CONTINUE
C
C /// DEBUGGING INFORMATION

WRITE (3,301) N
301 FORMAT (*OTHE ', I3, * DATA POINTS ARE:?')

- DO 400 L=1,N
. WRITE (3,300) X(L), Y (L)
400 CONTINUE
300 FORWAT (' ', 1P2E15.6)

RETURN

END
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SUBROUTINE KNOTIN (X, DELTA, M, N, MK, *)
C . .
(ot 2222223222 22222 RS2SR R i s R A0 s R 22323 R R 2R PR 22 2002 R s 2R RS
Cx*®
cx INPUT OF KNOT S ET
C%x = @ meccsrcrecccccrrcc e c e m—r e a——c———-
C*
C****#****#******#****#******###**#*#i#*#*#*##*#**#***#*****#####**#“#
DIMENSION X (1), DELTA (1)
c
C s*x REQUEST THE DEGREE OF THE SPLINE
WRITE (6,600)
600 FORMAT ('&DEGREE OF THE SPLINE?)
CALL INFREE (10, M)
c
C *%*x READ IN THE NUMBER OF KNOTS
WRITE (6,601) :
601  FORMAT ('&NUMBER OF KNOTS')
CALL INFREE (10, K)
C
C #*%* CALCULATE THE TOTAL NUMBER OF KNOTS
MK = M + K + 1
c
C *%%* CHECK FOR AN UNDERDETERMINED SYSTEM
IF (MK.LE.N) GO TO 200
WRITE (6,603) '
603  FORMAT ('OSYSTEM IS UNCERDETERMINED:?*/
* ' REDUCE DEGREE OF SPLINE OR NUMBER OF KNOTS') -
RETURN 1 ‘
c _
C *%* READ IN THE POSITION CF THE KNCTS
200 DO 100 I=1,K
IN =1 + M + 1
WRITE (6, 602) I
CALL INFREE (26, DELTA {INM))
100 CONTINUE _ :
602  FORMAT ('tPOSITION OF RNCT (', I2, ')')

C **%* CALCULATE THE POSITION OF THE SUPPLEMENTARY KNOTS
H= (X(N) - X(1)) / (K + 1)
M1 = B + 1
DO 101 I=1,M1
DELTA(I) = X(1
DELTA (MK+I) =
101  CONTINUE

RETURRN
END

) + (I - M1) * H
X(N) +# (I - 1) *H
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SUBROUTINE DATAPL (X, Y, XMIN, XMN, XMAX, [X, YMIN, CY, W)
i1t IR S LS s s R R R R R s R IR RS R RS E R S
Cx :
C* ' PLOT OF DATA POCINTS
(o e T e e
Cx ,
32T s R R 2 22 RS SRR SR R R 2RSS S SE R R S
CIMENSION X(1), Y (1)
DIMENSION XS (200), YS(200)
c
C *** RESET THE PLOTTER
CALL PLOT (15., 0., -3)

c
C **%x PROTECT THE ORIGINAL DATA POINTS
XMN = X (1) :
XMAX = X(N) ‘
po 100 L=1,N
XS(L) = X (L)
YS(L) = Y (L)
100  CONTINUE
C

C #**%* SCALE THE ABSCISSA AND ORDINATE VALUES
'~ CALL SCALE (XS, N, 10., XMIN, DX, 1)
CALL SCALE (YS, N, 10., YMIN, DY, 1)

C *%*% PLOT THE DATA POINTS

DO 101 L=1,N , .

\ CALL SYMBOL (XS(L)-.035, ¥YS(L)-.07, .14, *'+', 0., 1)

101  CONTINUE C ‘
C #%x% PLOT THE AXES

ORY = -YMIN / DY

IF (ORY.LT.O0.) ORY = O.

CALL AXIS (0., ORY, ' ', -1, 10., 0., XMIN, DX)

ORX = -XMIN ,/ DX '

IF (ORX.LT.0.) ORX = O. :

CALL AXIS (ORX, O., ' ', 1, 10., 90., YMIN, DY)

C *¥%* DISPLAY THE PLOT
CALL PSEND
RETURN
END
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SUBROUTINE SPLNPL (A, DELTA, XMIN, XMN, XMAX, DX, YMIN,
. # DY, M, MK)

C
(C 2 Ao o e ol e ok e e ok o oeole o o o ok o o ok ok ol b % 3B o b sk o ok 3k ok o o ok ok kol ol ok ol ok o e o oie ok oe ik ol ol ol ol o o o ok o ol ool ok ol ko ok o
C* ) :

C* PLOT OF SPLINE CURVE
C*¥ = e e
C*
Chkkkkbokkkgkkkkkhkoxghk ok fkgkhgkf kbbb hr kbbb hhh bbbk pkkik
DIMENSION A (1), DELTA (1)
COMMON /DW/ LOMEGA (50,5)
C
C #**% CALCULATE THE SPLINE FUNCTION CENCMINATOR
CALL OMEGA (DELTA, M, NK)

C

C *** RAISE THE PEN TO REPOSITION IT
IPEN = 3
X = XMN
XSTEP = .02 * DX : :
NP = 50 * INT ((XMAX - XMN) / DX + .5)
Lo 100 J=1,NP

C *%% CALCULATE THE SPLINE FUNCTION VALUE AT THE CURRENT X VALUE
DO 101 I=1,HMK
Y=Y + A(I) * SPLINE (DELTA, X, M, MK, I, 0)
101 CONTINUE '

C %*%** SCALE THE X AND Y VALUES
: XP = (X - XMIN) ,/ DX
YP = (Y - YMIN) , DY

C **% JF THE POINT JS WITHIN THE RANGE
IF ((YP.GT.10.5).0R. (YP.LT.-.5)) GO TO 200

C **% THEN PLOT 1IT
CALL PLOT (XP, YP, IPEWN)

IPEN = 2 =
GO TO 201
C .
C **%* OTHERWISE RAISE THE PEN
200 IPEN = 3
201 X = XMN + J * XSTEP
100 CONTINUE
c
C **%* DISPLAY THE SPLINE CURVE
CALL PSEND
RETURN

END
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SUBROUTINE KNOTPL (DELTA, XMIN, DX, YMIN, LY, M, MNK)

.C

ChRXEXEEDRES TR RKEFREIRF Rk RSP SShcxkkokkkhkkoc ko ko k ek h ok kg kg k%

C* _

C* PLOT OF K NOT S ET

C* =  secemmccec e ———

Cx ,

(2222222 2222222223322 2P 222233222222 RRERR 2 2RSSR 22222 2 3
DIMENSION DELTA (1)

c B
C *#** SCALE THE KNOT ORDINATE ONTO THE X-AXIS
YP = -YMIN / DY
IF (YP.LT.0.0) ¥P = 0.0
M2 = M + 2
O 100 I=HM2,MK
c

C *%%x SCALE THE KNOT
XP = (DELTA(I) - XMIN) / DX

C *%%* PLOT THE KNOT .
CALL SYMBOL (XP-00525' YP_.11S' 021' 'X', 0., 1)
100 CONTINUE :

C

C **% DISPLAY THE KNOTS
CALL PSEND '
RETURN

END
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SUBROUTINE FIXED(X, ¥, YF, RES, A, DELTA, ERROR, ERRORP, M, N, MK
C
C**********#***#**********#**#*#*##f##*##*##*#*###*##*#**##***##*#**t#*
C* .
C* F
C* LEAS
C*k g QL WM G M SN
C*
(2222232223223 2222222222232 2222 bRt 222 R R 20 R k]

CIMENSION X (1), Y(1), YF(1), RES(1), A(1), CELTA({1)

DIMENSION S (200,50)
C
C *%%* CALCULATE THE SPLINE FUNCTION DENOMINATOR

CALL OMEGA (DELTA, M, MK)
c ,
C *%%* FORM THE MATRIX OF SPLINE BASIS FUNCTION VALUES

DO 100 I=1,MK

DO 101 L=1,N
S(L,I) = SPLINE (DELTA, X(L), M, MK, I, 0)

101 CONTINUE .
100 CONTINUE

C /// DEBUGGING INFORMATION
WRITE (3,300)

300 FORMAT ('OAT ', 13X, 'THE HOUSEHOLDER MATRIX IS:?)
LO 400 L=1,N :

WRITE (3,301) X (L)

WRITE (3,302) (S(L,I), I=1,M4K)

400 ° CONTINUE :

301  FORMAT (' ', 1P8E15.6)

302  FORMAT (' ', 15X, 1P7E15.6)

C *%* TRANSFER Y INTO A
po 102 L=1,N
A(L) = Y (L)
102 CONTINUE

C /// DEBUGGING INFORMATION
. WRITE (3,303) .
303 FORMAT ('OTHE HOUSEHCLLCER VECTOR IS:?)
WRITE (3,301) (A(L), L=1,N)

C **% PERFORM THE HOUSEHOLDER TRANSFORMATIONS
CALL TRANS (S, A, N, HMK)

C *%% CALCULATE THE RESIDUALS AND LEAST SCUARES ERROR
ERROR = RESERR (X, Y, YF, RES, A, DELTA, N, M, HMK)
CALL ITER (ERRORP, ERROR)
RETURN
END
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FUNCTION RESERR (X, Y, YF, RES, A, DELTA, N, M, NK)
C
C o e ot oe ol o o o o o ol oo o o o e ol ol ok ok ok b o o 3 e o ol aoads ofe ok sl e o o o ok ok ok o o o ol o ok ol ok ok ok ot o e ok ok ok o ok ol ok R ok ok ok ok ok
Cx*
C* R E
C* : LEAST
cCx | eeemeec s cecc e e e e e c e e e e — - ——————
cx
C*****#*#**###****##****####**####****#**##****#**###*#*#*##**#*###*##*
DIMENSION X (1), Y (1), YF(1), RES (1), A(1), DELTA (1)
DOUBLE PRECISION DY, DRES, DERR
COMMON /DW/ DOMEGA (50,5)

C *%%* CALCULATE THE SPLINE FUNCTION DENCMINATOR
CALL OMEGA (DELTA, M, MK)

DERR = 0,DO

DO 100 L=1,N

C *%%x CALCULATE THE SPLINE FUNCTION VALUES AT THE EATA POINTS
' DY = 0.DO
LO 101 I=1,HK
DY = DY ¢+ A(I) * SPLINE (DELTA, X(L), M, MK, I, 0)
101 CONTINUE
YF (L) = DY

C #*** CALCULATE THE RESIDUALS
DRES = Y (L) - DY
RES (L) = DRES

C *%* CALCULATE THE LEAST SQUARES ERROR
CERR = DERR + DRES * DRES

100 CONTINUE

RESERR = DSQRT (DERR)

C /// DEBUGGING INFORMATION
WRITE (3,300) RESERR
300 FORMAT ('OTHE LEAST SQUARES ERROR IS ', 1PE15.6)
RETURN g
~ END
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SUBROUTINE CONTRL (X, Y, YF, RES, A, DELTA, ERRORP, N, M, MK)
C .
o Ty e T T T T T P SRR LA L L E RSP TR LR LR Y
Cc*
C*
C* VARIABLE KNOT COCHNTZROTL
C* e m e a e —————————————————————————
C* '
CHRREE IR R AR R R R RN R R R SR AN AR R RSB R BRI B KRR RS DB ER R PR RS R R R RS
DIMENSION X (1), Y(1), YF(1), RES(1), A(1), CELTA(1)
DIMENSION AP (200), DELTAP(50), RESP (200), YFP {200)
INTEGER YES /'YES'/, NC /'NO'/, ANSWER /' '/
MMK = MK + M + 1

C **% TRANSFER THE PREVIOUS KNOT SET .
DO 100 I=1,MMK
DELTAP (I) = DELTA (I)
100  CONTINUE ,
601  FORMAT ('S&PLEASE ANSWER YES OR NO')

C #**¥* OBTAIN WHICH KNOT TO VARY
200 CALL VARYIN (I)

C *%*x REPOSITION THAT KNOT
IM = I + M + 1 _
CALL VARYKT (DELTAP(IM), I)

C *%* ASK WHETHER OR NOT TO REPOSITION OTHER KNOTS .
204  WRITE (6,602) ' ‘
602 FORMAT ('6DO YOU WISH TO VARY ANOTHER KNOT?)
CALL INFREE (2058, ANSWER, 4)
IF (ANSWER.EQ.YES) GO TO 200
IF (ANSWER.EQ.NC) GO TO 203
WRITE (6,601)
GO TO 204
203  CONTINUE
C \
C /// DEBUGGING INPORMATION
WRITE (3,300)
300 FORMAT ('OTHE NEW KNOT SET IS:')
WRITE (3,301) (DELTAP(I), I=1,MHK)
301 - FORMAT (' ', 1P8E15.6)

C *#* RECALCULATE THE SPLINE APPROXIMATION )
CALL FIXED (X, Y, YFP, RESP, AP, DELTAP, ERROR, ERRORP, M, N, %MK)

C **%* ASK WHETHER OR NOT TO PLOT THE NEW APPROXIMATION
207 WRITE (6,603)
603  FORMAT ('&€DO YOU WISH TO SEE THE NEW APPROXIMATION')
CALL INFREE (2058, ANSWER, H)
IF (ANSWER.EQ.YES) .GO TO 205
IF (ANSWER.EQ.NO) GO TC 201
WRITE (6,601)
GO TO 207



205

C *¥x%x

206
604
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CALL DATAPL (X, Y, XMIN, XHN, XMAX, CX, YMIN, LY, N)
CALL KNOTPL (DELTAP, XMIN, DX, YMIN, DY, M, HMK)
CALL SPLNPL (AP, DELTAP, XMIN, XMN, XMAX, CX, YMIN, LY, M, MK)

DECIDE WHETHER OR NOT TO KEEP NEW APPRCXIMATION
WRITE (6,604) .
FORMAT ('6DO YOU WISH TO CONTINUE WITH THE NEW APPROXIMATION')

CALL INFREE (2058, ANSWER, 4)

C **x%
208
101
102

103

C #%x

C *¥x
209

201

IF (ANSWER.EQ.YES) GO TO 208
IF (ANSWER.EQ.NO) GO TO 209
WRITE (6,601)

GO TO 206

IF SO, RETAIN THE NEW VALUES
DO 101 I=1,HK

A(I) = AP(I)
CONTINUE
DO 102 I=1,MNK

DCELTA(I) = DELTAP (I)
CONTINUE
Lo 103 L=1,N

YF (L) = YFP(L)
RES(L) = RESP (L)
CONTINUE :

. ASK IF A HARDCOPY IS WANTED

CALL SPLOUT (X, Y, YF, RES, A, DELTA, ERROR, N, M, MK)
ERRORP = ERROR . "
GO TO 201 ' : - .

REPLOT THE OLD SPLINE
CALL DATAPL (X, Y, XMIN, XMN, XMAX, DX, YMIN, DY, N)

CALL KNOTPL (DELTA, XMIN, DX, YMIN, LY, M, HMK)
CALL SPLNPL (A, DELTA, XMIN, XMN, XMAX, DX, YMIN, DY, M, HK)
RETURN :
END
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SUBROUTINE VARYIN (I) :
C . :
C**#**#**}###*##tt***#*#*########*#*#**###*#***#########**####****#*#*#
C*
c*  INPUT OF VARIAEBLE KUNOT
Ck =  meeeccemssecce—co—-—me——o— o o e o i o v e
C*
C******************##****####**#**#####*#####*############*##****######
WRITE (6,600) '
600 FORMAT ('E&KNOT TO BE VARIED?)
CALL INFREE (10, I)
RETURN
END

SUBROUTINE VARYKT (DELTAI, I)
c
C***#***#***#*##*#*#######1#t*#*#*****#**********t****##**###******#***
Cc* _
c* VARIABTLE K NOT VALUE
c* ——————— - = R Am LS S S m S S SmmsTmm T
c*x , o
C*#*************#****#**#***#*#*#******#**###***#**#****#*##******##*#*

- WRITE (6,600) I ,

600 FORMAT ('E&NEW POSITION FOR KNOT (', I2, ')")

CALL INFREE (26, DELTAI)

RETURN

END
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SUBROUTINE ITER (ERRORP, ERROR)
C
R I R e T S SRR i I s IS T
C* |
c* ITERATION OUTPUT
C* e
c* | -
C % % fx ok o o o ook de e o ok o o odcookoode ale g o ok ok 3B b ok B ok ol ok ot o ok ol o ade e e ok ate o ok o ok o ok o oAk o o ol o o ok o ol o ol ok k ok ek ok ok
WRITE (6,600) ERRORP |
600  FORMAT ('OTHE LEAST SQUARES ERROR CF THE PREVIQUS !,
* *APPROXIMATION WAS ', 1PE15.6)
WRITE (6,601) ERROR
601  FORMAT (' THE LEAST SQUARES ERROR OF THE NEW °,
* *APPROXINATION IS ', 1PE15.6)
RETURN -
END
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SUBROUTINE SPLOUT (X, Y, YF, RES, A, LDELTA, ERROR, N, M, MK)
c ]
2222 SRR RS2SRRSR RRRR RSS2 22222222222 22222 R R 2R 2R R R 2
C* .
C* OUTPUT
C¥ = emmm————e—-
of o
(C 2 s o e o v o e ok e ok o o i ok o ok el e ode ode ode o ol e s ok ode e o e ol ok o ot o e o o ol o o o o o e ol o ok ok ol ol ol o ok ok Bl kOl ok Rk
DIMENSION X (1), Y(1), YF(1), RES(1), A(1), CELTA(1)
INTEGER YES /'YES'/, NO /'NO'/, ANSWER /' Y/
INTEGER TITLE(10), BLANK /! '/, NUH 1/

C #**% ASK WHETHER OR NOT TO RETAIN RESULTS
200  WRITE (6,600)
600  FORMAT ('&€DO YOU WISH TO RETAIN THE APPROXIMATION RESULTS')
CALL INFREE (2058, ANSWER, U4)
IF (ANSWER.EQ.YES) GO TO 201
IF (ANSWER.EQ.NO) GO TO 202
WRITE (6,601)
601 FORMAT ('&PLEASE ANSWER YES OR NO')
GO TO 200
c .
C *#*%* BLANK OUT THE TITLE
201 DO 101 I=1,10
TITLE(I) = BLANK
101  CONTINUE
C .
C **%* ASK FOR THE TITLE OF THE PLOT
WRITE (6,602)
602  FORMAT ('STITLE FOR PLOT‘)
CALL INFREE (2058, TITLE, 40)
C
C *%* HARDCOPY PRINTOUT
WRITE (8, 603) TITLE, NUM
603  FORMAT ('1', 10A4, 20X, 15)
WRITE (8, 604) :
604  FORMAT ('0', 5X, 'ABSCISSAE', 5X, 'ORCINATES', 3X,
* 'FITTED ORDINATES', 3X, 'RESIDUALS?')
C
C #**%x PRINT OUT THE DATA, FITTED RESULTS AND RESIDUALS
DO 100 L=1,HN -
WRITE (8, 605) X (L), Y (L), YF(L), RES(L)"
100 CONTINUE .
605  FORMAT (' ', 1P5E15.6)
C
C **x PRINT OUT THE LEAST SQUARES ERROR
WRITE (8,606) ERROR .
606 FORMAT ('OTHE LEAST SQUARES ERROR IS*', 1PE15.6)
c
C #%* CALCULATE THE POLYNOMIAL COEFFICIENTS
: CALL COEFF (X, Y, A, DELTA, N, M, MK)
C : ’
C **% PLOT A HARDCOPY OF THE APPRCXIMATION
CALL syMBOoL (1., 10., .14, TITLE, 0., 40)
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FNUM = NUH :
CALL NUMBER (9., 10., .14, FNOH, 0., -1)
CALL PSEND
C CALL AGPLOT (10.0, 60C00)
NUM = NUMN + 1
202 RETURN
- END
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SUBROUTINE NORM (S, ux)'
C
C*##*####*###*#**#####*#####*###*######*#**#****###*##*####t#*###*###**
Cx* . '
C* MATRTIX CONDITION NUMEPBER
C* e e i e e e 2 e =
C* A
C*#**********#*******#*#t#t*##*##’##ttt*##*###########**t#t#####***##t*#

CIMENSION S(200,50), ST(50,50)
c
C *%% SAVE THE ORIGINAL MATRIX

Do 100 I=1,MK

LO 100 L=1,MK
ST(L,I) = S(L,TI)

100 CONTINUE

C *%% JINVERT THE MATRIX AND CALCULATE ITS CONDITION NUMBER
s CALL INVERT (ST, MK, 50, DET, COHND)

C /// DEBUGGING INFORMATION
WRITE (3,300)
300 FORMAT ('OTHE INVERTED TRANSFORMED HOUSEHOLDER MATRIX IS:')
LO 400 I=1,MK
WRITE (3,301) (ST(L,I), L=1,MK)
WRITE (3,302)
400  CONTINUE
301 FORMAT (* ', 1P8E15.6)
302  FORMAT (' ')

C *#*%* PRINT OUT THE CONDITION NUMBER
WRITE (6,600) COND
600 FORMAT ('OTHE CONDITION NUMBER IS', 1PE15.6)
RETURN
_END
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SUBROUTINE TRANS (S, B, N, HMK)

C

e R R R Y I I T S R RS RS E R RS I ELIET

cx

C* " HOUSTEH

Cx CON

o e e———

Cx*

(2222222222222 RS2 R R 2 22222 2 R IR It R R P N R R R P S L SRR 2
DIMENSION S (200,50), V(200) '
CIMENSION B (1)

REAL KSQ

CRNBNATTION

C *** AUGMENT THE MATRIX S BY B
MK1 = MK + 1
DO 100 L=1,N .
S(L,MK1) = B(L)
100 CONTINUE

C *%x* PERFORM THE HOUSEHOLDER TRANSFORMS
o 101 I=1,HK

C **x TRANSFER CURRENT COLUMN OF HOUSEHOLDER MATRIX
DO 102 L=1,N
VL) = S(L,I)
102 CONTINUE

C **%x DERIVE HOUSEHOLDER TRANSFORMATION VECTOR
CALL UVEC (V, N, I, KSQ)

C *** PERFORM HOUSEHOLDER TRANSFORMATION ON THE VECTOR
CALL HOUSE (S, V, N, MK1, I, KSQ).

101  CONTINUE

C .

C /// DEBUGGING INFORMATION

: WRITE (3,300) :

300 FORMAT ('OTHE TRANSFORMED HOUSEHOLDER MATRIX IS:')

: CO 400 L=1,N ,
WRITE (3,301) (S(L,I), I=1,MK)
WRITE (3,302)

400 CONTINUE

301 FORMAT (' *, 1P8E15.6)

302  FORMAT (* V)

C #*#** CALCULATE THE CONDITICON NUMBER OF THE MATRIX
CALL NORM (S, MK)

C *%% PERFORM THE BACKWARDS SUBSTITUTION
CALL SOLVE (S, B, N, HK)
RETURN
END
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SUBROUTINE UVEC (V, N, I, KSQ)
.C :
o L T T PP PR PR S PR T T PR PP s
o
C* HOUSEHOLTDEHTR VECTOR
C*¥ = ememmemmmmem e e
C*
(o L e TP T Ty e
DIMENSION V(1) '
DOUBLE PRECISION DNORHM
REAL KSQ

C *%*% COMPUTE THE NORM OF V
DNORM = 0.DO
DO 100 L=I,N
DNORM = DNORM-+ V(L) * V(L)
100  CONTINUE
DNORM = DSQRT (DNORMN)

c
C *** CALCULATE THE COEFFICIENT

NSGN = 1

IF {V(I).LT.0.) NSGN = =1

KSQ = 2 * DNORM * (DNORM + NSGN * V(I))
c

C **% CREATE THE HOUSEHOLLCER VECTOR
V(I) = V(I) + NSGN * DNORH
RETURN"

END
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SUBROUTINE HOUSE (S, U, N, MK1, I, KSQ)

c )

G II 2222222 R 2RSS R R R RRRRR RS2SR R R 2R E R R R R R R R 2 0 80

cx* _ _

c* HOUSEHOLECER TRANST ECRMAMTTICHN

C* e =

c* -

ot 22222 2132222222222 2 3R SRR 22222 2R 22 2R R 22 2 R R a2 R 2 R X2
CIMENSION S(200,50), U(1)
REAL KSQ

C

C #*%% ' PERFORM HOUSEHOLDER TRANSFORMATIOR ON REQUIRED COLUMNS OF MATRIX
Lo 100 J=I,MK1

C :
C *%*% MULTIPLY THE TRANSPOSE OF THE VECTOR
C BY THE COLUMN OF THE MATRIX

UT = 0. -
Lo 101 L=1I,N
UT = UT + U(L) * S(L,J)
101 CONTINUE
. UT = 2. *# UT / KSOQ
c . .
C **x PERFORM THE HOUSEHOLDER TRANSFORMATION
0O 102 L=I,N
s{L,J) = S(L,J) - UT * U (L)
102 CONTINUE
100 CONTINUE . ,
RETURN ’ o -
END
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SUBROUTINE SOLVE (S, B, N, HNK)
C
C****##*##»*#**###***#***t*##t###?##*****#**#**#*###*###########*#***##*
C* .
c* BACKW®YARDS SUBSTITUTTIOH
CE = e e mmm e e e v e o e e e e e =
C* . _ :
2233222 E 2222222222222 222222222 s 22222 R 2R R ¢ 0
CIMENSION S(200,1), B(1)
. MKl = MK + 1
c
C *#*% COMPUTE THE FINAL ELEMENT
B(¥K) = S (MK,MK1) / S(MK,MNK)
IF (MK.EQ.1) GO TO 200
MKHM1 = MK - 1
DO 100 I=1,MKM1
MKI = MK - I -
B (MKI) = O.
MKI1 = MKI + 1
DO 101 J=MKI1, MK
B (MKI) = B(MKI) + B(J) * S (MKI,J)
101 CONTINUE
. B(MKI) = (S(MKI,MK1) - B(MKI)) / S (MKI,MKI)
100 CONTINUE ' o

C **%* TRANSFER THE REMAINING ELEMENTS INTO B

2000 IF (N.EQ.MK) GO TO 201 :
DO 102 L=MK1,N -

B(L) = S(L,MK1)

102 CONTINUE L

201 RETORN

END
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. _ .
SUBROUTINE OPT (X, Y, YF, RES, A, DELTA, EBRCRP, N, M, MK)
C . .
TCH ok ek ok kokok ko ek koo ko gk ok koo ok ok xRk kR ke kGRS
C*
C* OPTIMNIZATIOR OF KNOTS
CxX @  eesssccm e cccmemcm e m e mm e a e — . —————— -
cx
C*****#****##*****#*##****#***###########*######*#*#**###*##******##*#*
DIMENSION X (1), Y(1), YF(1), RES(1), A(1), CELTA(?)
DIMENSION AP (200), DELTAP(50), YFP (200), RESP (200)
CIMENSION P (50,75)
INTEGER YES /'YES'/, NO /'NO'/, ANSHER /' '/
EXTERNAL RESERR, GDELTA, HDELTA )

C *¥% TRANSFER KNOTS FOR OPTIMIZATION
MMK = MK + M + 1
DO 300 I=1,MHNK
DELTAP (1) = DELTA (I) -
300 CONTINUE

C #*% TRANSFER PARAMETERS FOR OPTIMIZATION
£EO 301 I=1,MK
AP(T) = A(I)
301 CONTINUE

C *%% TRANSFER THE KNOTS TO THE SIMPLEX
DO 102 J=1,HHK
P(J,1) = DELTAP(J)
102 CONTINUE .

C *%*%* CONPUTE THE NUMBER OF POINTS IN THE SIMPLEX
IF (MMK.GE.10) NPLUS = (3 * MBK + 1) / 2
IF (MMK.LT.10) NPLUS = 2 * MMK

C
C *%%x MINIMIZE THE LEAST SQUARES ERROR
CALL COMPLX (X, Y, YFP, RESP, AP, DELTAP, ERRORP,

# P, 50, MMK, NPLUS, MMK, M, N, MK, 1.3, -1,
# ~ 100, 100, 1, -.0001, RESERR, GLELTA,
3 HDELTA, GDELTA, &200, &200)

C
C *%*x RECALCULATE THE FIXED KNOT APPROXIMATION -
CALL FIXED (X, Y, YIFP, RESP, AP, DELTAP, ERROR, ERRCRP, M, N, HMK)
GO TO 207

C #** TIF KNOT OPTIMNIZATION FAILED, PRINT AN ERROR MESSAGE
200 WRITE (6,801) -
801  FORMAT ('OCPTIMIZATION FAILED. )

C #** ASK WHETHER OR NOT TO PLOT THE NEW APPROXIMATION

- 207 WRITE (6,603)

603 FORMAT ('&DO YOU WISH TO SEE THE NEW APPROXIHATION )
CALL INFREE (2058, ANSWER, U4)
IF (ANSWER.EQ.YES) GO TO 205
IF (ANSWER.EQ.NO) GO TO 201



601

205

C *%x

206
604

C %%
208
101

302

103

C *%%

C *%x%
209

201

’ . - 97 _. . B . . . . B el -

WRITE (6,601) -

FORMAT ('EPLEASE ANSWER YES OR NO')

GO TO 207 B .

CALL DATAPL (X, Y, XMIN, XMN, XMAX, DX, YMIN, DY, N)

CALL KNOTPL (DELTAP, XMIN, DX, YMIN, LY, M, MK)

CALL SPLNPL (AP, DELTAP, XMIN, XMN, XMAX, DX, YMIN, DY, M, MK)

' DECIDE WHETHFR OR NOT TO KEEP NEW APPROXIMATION

WRITE (6,604) '

FORMAT ('&DO YOU WISH TO CONTINUE WITH THE NEW APPROXIMATION')
CALL INFREE (2058, ANSWER, 4)

IF (ANSWER.EQ.YES) GO TO 208

IF (ANSWER.EQ.NO) GO TC 209

WRITE (6,601)

GO TO 206

IF SO, RETAIN THE NEW VALUES

DO 101 I=1,HK

A(I) = AP(I)
CONTINUE
DO 302 I=1,HHK

DELTA (I) = DELTAP (I)
CONTINUE
DO 103 L=1,N

YF(L) = YFP(L)

RES (L) = RESP (L)
CONTINUE

ASK IF A HARDCOPY IS WANTED
CALL sSpLOUT (X, Y, YF, RES, A, DELTA, ERROR, N, M, MK)
ERRORP = ERROR :
GO TOo 201

REPLOT THE OLD SPLIKE
CALL DATAPL (X, Y, XMIN, XMN, XMAX, [X, YWIN, DY, N)
CALL KNOTPL (DELTA, XMIN, DX, YMIN, DY, M, HMK)
CALL SPLNPL (A, DELTA, XMIN, XMN, XMAX, CX, YMIN, DY, M, HK)
RETURN
END
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FUNCTION GDELTA (T, M, MMK, J)
C
C#**#*‘******‘*###**#**####*ﬂ*####*##*#**####*##*#*####t**#*#*#t*#*##**
cx .
C* LOWER BOUND CONSTRAINT
C*¥ = e e em e
Cx
C**#****#*******#***********#**#**####***####*#*#*#‘**#####**#*####**##
DIMENSION T (1)
c
C *** SET THE LOWER BOUNDS ON THE KNOTS
-~ IF ((J.LE.M+1).0OR. (J.GT. (MMK- (M+1)))) GO TO 100
H = T (MMK- (M+1)) = T (M+1) ,
GDELTA = T(J-1) + .0001 * H
‘ GO TO 999 '
100  GDELTA = T (J)
999  RETURN
END

FUNCTION HDELTA (T, M, MMK, J)
c e
C****************#********#****#*#*#*****####**#***#**##***###***##*#**A
c* _
C* : UPPER BOUND CONSTRATINT
C¥X = e e e
cx :
Chpdked kb hokkokdkokkb kb dhhb bk kb kh kbbb dkbbhkhbkkkk
DIMENSION T (1)
C
C *%* SET THE UPPER BOUNDS ON THE KNOTS
IF ((J.LE.M+1) .0R. (J.GT. (MMK- (M+1)))) GO TG 100
H = T (MHK- (M+1)) = T (M+1)
HDELTA = T(J+1) - .0001 * H
GO TO 999
100  HDELTA = T(J)
999 - RETURN
END



Cc
C*
C*

Cx*
C*

C #%x

C *%x%

C *%x%

102
101

100
c

C *x%

800

104
103

801
802

*

SUBROUTINE

=99 -

COEFF (X, Y, A, DELTA, N, M, HK)

CCRRE R AR AR AR A AT R DX E IS I NN AR AR AR KRR R R RS G T E A AR AR RS ARG R R T R R

POLYNOMIAL COEFFICIENTS

- — D Y - D A T D A P W WD S WD R W W W —— - S D B W A D oy . o >

CRERRERE R R ERRE DR R R REE R R AR R AR XA R G R R F kR R bR F BRI KRR T LR ERA KK XX

CIMENSION X(1), Y(1), A(1), DELTA(1)
DIMENSION C(50,4)
COMMON /DW/ DOMEGA (50,5)

CALCULATE
CALL OMEGA

DETERMINE
K= MK - M
M1 =N + 1

DETERMINE
JFACT = 1
DO 100 J=1

Jl1 =

THE SPLINE DENOMINATOR
(DELTA, M, HK)
THE NUMBER OF PIECEWISE POLYNOMIALS
THE COEFFICIENTS OF THE PIECEWISE POLYNOMIALS
J -1
po 101 I=1,K

IM = I + M

C(I,J) = 0.0

LO 102 L=1,HK ,

C{I,J) = C(I,J) + A(L) * :
SPLINE (DELTA, CELTA(IM), H, MK, L, J1)

CONTINUE .
c(1,J) = C(I,J) ,/ JFACT

CONTINUE
JFACT = JFACT * J

CONTINUE

PRINT OUT THE COEFFICIENTS
WRITE (8,800)
FORMAT ('0 KNOT', 5X, 'LOCATION?®, 5X, 'POLYNOMIAL POWER?Y,

5X, 'POLYNOHIAL COEFFICIENT?)
po 103 I=1,K
IT=1I-1
IN=1+M
WRITE (8,801) I1, DELTA (IWY)
DC 104 J=1,M1
Jt1 = J - 1
_WRITE (8,802) J1, C(I,J)
CONTINUE
CONTINUE

MK1 = MK + 1
WRITE (8,801) K, DELTA (MK1)

FORMAT ('
FORMAT (*

RETURN
END

v, 14, 2%, 1PE15.6)
*, 30X, I1, 15X, 1PE15.6)



C
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FUNCTION SPLINE (DELTA, X, N, MK, I, J)

C*#*#*##**##*#******#**#5*#***#*****##&##############*#####*###########

C*
C*
C*
C*
C*

— . - —— Y W W WD > W - — -

C******#*****#*******#**#***********##*#**###***#*#**#**#*#*#*****####*

C *%¥%

C **%%

100

C *%x%

101
200

CIMENSION DELTA (1)

COMMON /DW/ DOMEGA (50,5)

DOUBLE PRECISION DSPLN, DX, DDELTA, DY
MCON = 1 ‘ :

My = N - J

DSPLN = 0.DO

CHECK IF THE POINT IS IN THE REGICN OF SUPPORT
M1 = M + 1
IF ((X.LT.DELTA(I)).OR.(X.GT.DELTA(I+H1))) Go TO 200

EVALUATE THE SPLINE AT THE GIVEN POINT
DX = X ' ,
M2 = M +°2 -
DO 100 L=1,M2
LL=1I+ L -1
DCELTA = DELTA (LL)
DY = DDELTA - DX
IF (DY.LE.0.DO) GO TO 100
DSPLN = DSPLN + DY ** MJ / DOMEGA (I,L)
CONTINUE
IF ((I.EQ.1).OR. (I.EQ.NK)) DSPLN = M1 * DSPLN

COMPUTE THE CONSTANT TERH
IF (J.EQ.0) GO TO 200

MJ1 = NI + 1

0O 101 L=MJ1,H

MCON = ~-MCON * L
CONTINUE
SPLINE = MCON * DSPLN
RETURN

END
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SUBROUTINE OMEGA (DELTA, M, MK)

. C ‘
C************************#**#****##*#**###*##t*##*#####t###*#*#*#**###t
C*

cs SPLINE PUNCTTION DENOMTINATOR

C* ) e St ot > e B e e e e i e 0 e " - - - - -

C*
C#*#***#*#****##*#***####t*t10##*#****###*#****##**####*##**#*##*****#** ‘
" DIMENSION DELTA (1)

COUBLE PRECISION DDELTA

COMMON /DW/ DOMEGA (50,5)

C *%% CALCULATE THE MATRIX OF VALUES FOR THE DENOMINATOR
C *%% OF THE SPLINE FUNCTION
M2 = M + 2
Lo 100 1=1,MK
DO 100 J=1,M2
COMEGA (I,J) = 1.
JI =1 + J ~ 1
DO 100 L=1,42 _
IF (L.EQ.J) GO TO 100
IL =1+ L - 1
DDELTA = DELTA (JJ) - DELTA(LL)
: : DCMEGA {(I,Jd) = DOMEGA(I,Jd) .* CCELTA
100 CONTINUE

C /// DEBUGGING INFORMATION o
WRITE (3,300) -
300 FORMAT ('OTHE BASIS FUNCTION DENOMINATOR VALUES ARE:‘)
LO 400 I=1,HK :
WRITE (3,301) (DOMEGA(I,J), J=1,H2)
400 CONTINUE
301  FORMAT (' *, 1PSE15.6)
RETURN
END
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Appendix B

INTERACTIVE SPLINE APPROXIMATION

Purpose

This system enables the use. to pefform least squares approx-
imations using spline functions. These approximations are performed
interactively with the aid of a graphics terminal. The approximations
are displayed immediately after computation and theuuser can respecify
knot locations and recalculate the fit. Features are included to

optimize the knot set and change the number of knots in the knot set.

Type of Routine

This is a. self-contained program written in FORTRAN IV.
How. to Use
To run this program under MTS at the Adage Graphics Terminal;

enter the command:

SRUN IRAM:SPLINE+AGT:BASIC 3=debugfile 4=datafile 8=printfile 9-plotfile

where

debugfile contains the debugging information. Uhless the system
runs into problems with the approximation this should be
set to *DUMMY* ..

dapafile is the_file containing the input data. The format is

described in Section A: Data Input Format.
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printfile is the file.containing the printed output from an approx-
imation corresponding to a plot.
plotfile is the file. containing the plot information to be retained

.for a hardcopy.

Upon completion of the.program a hardcopy of the printouts
and plots which were saved can be obtained by issuing the following
commands:

$COPY printfile *PRINT*
. SR PLOT:Q PAR=plotfile

v

where 'printfile' contains the print output described above and 'plotfile'

contains the plot information.

Description

A, Data Input Format

The data file has the following structure:
. The first line states the number of points in the first data set

follewed by data lines with:.the sequence
ABSCISSA ORDINATE.

The remaining data:sets follow with an identical format. The data
itself is in free-format providing that at least one blank delimits

each entry.
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B. Displays

Because of the interactive capabilities of the system, displays
play an integral part in the structure. Incorder to best describe the
flow of control through the system a sample run follows with comments

inserted to augment the display information.
Example: Demonstration run

$SIG IRAM 'DEMONSTRATION RUN'

PASSWORD

Signon infprmafion

$COMMENT LOAD GRAPH IF NECESSARY

SCOPY AGT:GRAPH > .AGTI

SCOMMENT SPLINE APPROXIMATION PROGRAM

$RUN IRAM:SPLINE+AGT:;BASIC 3=*DUMMY* 4=DATA 8=-PRINT 9=-PLOT
EXECUTION_BEGINS

(One data set from unit 4 is immediately read in. A plot of this set
appears on the graphics display.)

DEGREE OF THE SPLINE? 3

(The degree of the piecewise polynomials wanted is requested, most
frequently used degree is 3; that is, a cubic spline approximation.)
NUMBER OF KNOTS? 4

(The number of internal knots wanted is requested. Boundary knots

and supplementary knots are computed by the program.)
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POSITION OF KNOT ( 1)? .2
POSITION OF KNOT ( 2)? .4
POSITION OF KNOT ( 3)? .6
POSITION OF KNOT ( 4)? .8
(The location of the abscissa of each knot is requested. The knots must

be entered in a strictly increasing sequence. Immediately following the

input of all the knots the knot set is plotted along the x-axis.)
(A fixed knot least squares approximation is now computed. The resulting
spline function is overlaid on the graphics display).

THE LEAST SQUARES ERROR OF THE PREVIOUS APPROXIMATION WAS 1.000000E 03
(The initial least squares error is arbitrarily set t6 1000 since no
p;evious approximation was done.)

THE LEAST SQUARES ERROR OF THE NEW APPROXIMATION IS 1.537876E-02

DO YOU WISH TO RETAIN THE APPROXIMATION RESULTS? NO

(A message asking whether or not to keep a hardcopy of the present
approximation set isyprinted.)

DO YOU'WISH_TO VARY THE KNOT SET? YES

(A message asking whethef or not to reposition any of the knots is
printed.)

KNOT TO BE VARIED? 1

NEW POSITTONZFOR KNOT (1)? .3

DO YOU WISH TO VARY ANOTHER KNOT? YES

KNOT TO BE VARIED? 4

- NEW POSITION FOR KNOT ( 4)? .7

DO YOU WISH TO VARY ANOTHER KNOT? NO

(A fixed knot least squares. approximationtis computed using the new knot
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set. The resulting least squares error information is‘printed.)

THE .LEAST SQUARES ERROR.OF THE PREVIOUS APPROXIMATION WAS 1.537876E—03
THEILEAST'SQUARES'ERROR.OF“THE'NEW:APPROXIMATION;IS 9:576172E-03

DO YOU WISH TO SEE THE NEW APPROXIMATION? YES

(If the answer to this question is affirmative the new knot set and
spline curve replaces the one currently being displayed on the graphics
terminal,)

DO YOU WISH 'TO CONTINUE WITH THE NEW APPROXIMATION? YES

(The values of the new approximation are transferred to the proper
arrays.)

DO YOU WISH TO RETAIN THE APPROXIMATIQN RESULTS? YES

TITLE FOR PLOT? “TEST DATA"

(A title is printed on each graph and printout. These are also labelled
with a number whiéh is the number of hardcopies obtained thus far du;ing
the run. This method enables corresponding plots and printouts from a
particular run to be uniquely identified.)

DO YOU WISH TO VARY THE KNOT SET? - NO

DO YOU WISH TO OPTIMIZE THE KNOT SET? NO

(A request is printed'as to whether orunot to optimize the current knot
set, WARNING: optimization is time-consuming and expensiwve. It is
best done non-interactively.)

DO YOU WISH TO RESTART WITH A NEW KNOT SET? NO

(A request is issued whether or not to restart with an expanded or
contracted knot set. If the answer is affirmative the data set is
replotted and the program restarts from the beginning.)

DO YOU WISH TO RESTART WITH A NEW DATA SET? NO

(If the answer is affirmative, the program reads another data set from
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unit 4 and returns to the begiﬁning of the program).
PLOTTING WILL TAKE APPROX. 2*MINS 32 SECONDS

STOP O

EXECUTION TERMINATED

$CQPY'—PRINT'*PRINT*

SRUN PLOT:Q PAR=-PLOT

$SIG

C. Output

Approximation information corresponding to a plot is put in
a file. The format of each approximation printout is as follows:
TITLE NUMBER

ABSCISSAE ORDINATES FITTED ORDINATES RESIDUALS

for one data set

THE LEAST SQUARES. ERROR IS
KNOT LOCATION POLYNOMIAL POWER POLYNOMIAL COEFFICIENT
This prints the coefficients of every power for each piece-
wise polynomial between each knot patx. Plots obtained for the plotter

correspond to this. output. They can be matched by the title and label

number.

Ré8trictions

The number of data pdints must be less that 200 .
The degree of the spline msut be less than 3 .

The number of knots must be less that 42 .



