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ABSTRACT

This study is made up of three parts viz;

1. For a process which can adequétely be modelled as second—order
overdamped with pure delay, design techniqueés are presented for choosing
the loop gain and sampling rate of the proportional, feedback, sampled-
data controller.b Control of an experimental higher—ordef system is used
to verify these suggested designs.

2. Discrete control algorithms, suitable for progfamming in a
direct digital control computer, are presented. Digital compensation
algorithmé are derived to yleld thédretically a response with finite
settlinéltime, when the system is sfep forced in either set point.or
load. The utility of the prdposed designs is experimentally verified by
‘Aapplication to. a higher order (heater—heap exéhange)’progess'whose dy-
vnamiés can be'deécribed,as fodftﬁ ordef ovefdampéd wi;h‘bure dead time.

3. Fiaally, this study. is concerned with the problem of designing -
an adaptive controller for a.class of siﬁgié—input single-output time-—
in&ariant linear discrete systems mbdeled‘as seCoﬁd—order overdémped
with pure deléy. : |

In each case the effect of using either a»zefo—ordef hold or
half-order hold as the sﬁoothing deyice was gonsidered. In every case
the systgm with half-order hold gave better transient responses than

systems with zero-order hold and better stability conditions.
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CHAPTER 1

INTRODUCTION

_Control may be defined as the organisation of activity for a
purpose. .If one defines a system as an identifiable entity and auto-
matic as meaning self-acting, then an automatic control system is a
self-acting indentifiable entity in which the activity is organised for
some purpose. According to this definition, the first‘automatic control
systémS'were living orgahisms, but today‘in addition té living things
there are organisatioﬁs pf living things and systems devised by living
-things,Aall of‘whiqh-are'automatic syétems. Thus an amogbé is ég auto-
bhmatic control éystem and so is a modern political state or an industrial
corpofationf ﬁegardless of their great diversity all control systems -
h;yéhfivé_ghafég;gris£icg in commdﬁéiviz: _alllcdntrqllsystems-are tiﬁe o
Vafying systémé, éﬁd théir téméofai behaviouf ié é measure of their
perfofmance; they all ingest signals, aigest_signals, manipulate and
~generate éignais; their design and analysis must.involve a holistic or
system approach; mos t contrql systems must involve siénal feédback and
fiﬁallyvany control systeﬁ containing feedback circuits has the possibi-
lity of becoming unstable even though‘eaéh of the elements comprising
the system is itself quité stable and incapable of‘runaway.

Control systems  for the CheﬁicalvEngineer can pe broken into many

parts to simplify their presentation. The most common classifications

are open loop, closed loop, set point, averaging, cascade, and



optimising.62 In open loop control, there is no feedback from output to
input; The ratioing of tﬁo flows is often accomplished by an open-loop
system. The most common kind of closed-loop control is regulatory
control, where one is primarily interested in holding a particular
process variable within narrow limits. Most flow and temperature
control.systems fall within this group, as do endpoint control systems,
which make use of analyzers. . Averaging level control is one of the most
common types. In these confrol systems the level in a tank betweeﬁ
process units is aliowed to vafy in order.tb make up for differences in
flow between one unit and the next. In most cases, the control simply
prevgnts the tanks from flowing over; or running.dry. ?Cascade éontrol :
' §ystems ate.very po@ular in the industries. The primary purpose of

control is to eliminate the effects of minor disturbances. Optimising

(édaptive)»cdntrgl systems Vary,the‘éet points, flow fétios, etc. as”fhe__u"

éonditioAs in fhe.piant vary.
The procesé to be contr&iled must supply One‘with a variable that
is either directly or indirectly indicative of the quality of the
prdbess that one wishes to control. It must.also supply a quantity that
“can be varied in-ordér to effect the desired control.  Both of these,
the measurement of the measured variable,.and the change of manipulated
~variable, have certain speed requirements. They must both be capaﬁle of
being accomplished fast enough to effect the desired control. Without
this, the controller will be incapable of doing its job regardless of
how expensive, exotic and complex it may be.
Essentially, automatic (process) control can be divided into two

major classes, — the continuous (analog) system and the sampled-data



(discrete) system. A sampled-data control system is one in which the
control signal in a certain portion of the system is supplied
intermittently at a constant rate. In this control system the data
signai at one or more points is a sequence of/pulses which are modulated
in accordance with the cdntinuous function of the signal from which the
 samp1es are taken. It is assumed that these pulses convey adequately
all the essential information contained in the continuous function.

The design of a process control system generally involves three
sfeps: identification of the process, stochastic analysis, and compen-
sator design. The identification requires a strict délimitatioq of thét

part of the physical universe which is under consideration, aund the

N

relevant concept is the phermodynamic principle of states, according to
'which'all properties 6f'a system aré fi#éd.when a cértéin.few.bropgftiés
'of~tﬁe éystem are fixed. "In most pfécessgé_accpréﬁe_idgﬁtificagion i$  'i
.'farely ﬁoésible d;e.to anefﬁainty'OE thé précéss measﬁféméﬁté;.bin. |
addition, many feedback qﬁantities are based on saﬁpléd data.;ysﬁems
(analyzers, chromatographs, etc.) and 1aboratdry tests.. The sampling
systems have themselves inherent ervror. }MOreOQer, identification
through a deferministic model does nét take into account disturbance
inputs. These inpupé are heuristic in nature and directly affect the

‘18 If for no other reason, these

acéuracy of the control system.’
unpredictable loaa changes require some form of feedback action or model
adaptation.or both. To model these uncertainties, the use of stochastic
estimation analysis is always suggested. The realm of the approagh is

based upon the theory of probability and statistics. Tt is assumed that

the disturbance inputs as well as the sensor errors can be approximated



by the random process known as Gaussian white noise. This means that,

mathematically the random processes have a mean value of zero, they are

independent of each other, and they have known covariance matrices.

In the wider concept of compensator design, six criteria must be

satisfied for effective control:

(1)

(11)

(iii)

26

Ability to maintain the controlled variable at a given set

‘point. This most essential requirement of process control

is often the‘most difficult to fulfill as it creates
mathematical difficulties for most of the optimization
algorithms proposed thus far. ’

Set-point chaﬁges éhould be fast and smooth. As the ovér-
all system may be slow and complex, it is‘important for

the operator to be able to perform individﬁél~set—point:-

f changes as fast as pdssible;‘.Howevef, ainimum time res—

’ ponse often leads to large excursions in the system tran-

sient response, which is in contrast to a smooth response
(or low overshoot) which has a significant advantage.

Asymptotic stability and satisfactory performance for a

wide range of frequencies: The total system (not neces-

sarily the controller)‘should obviously be asymptotically

stable to be suitable for operator control. This condi-

-tion should be achieved even though the process parameters

may change within a range of system parameter values.
Furthermore, the closed-loop transfer function frequency
response should not have peaks indicating strong

amplification of certain input signals. This means-that



(iv)

(v)

R can.bé_sucteséfullyAmodeled as a.series of three stirred

" tanks. However; a desigh‘of an'optimél_controller for

jparameters: In a real control situation the parameters of

the maximum amplification in the transfer function from

disturbance input to process output shbuldvbe low.

The controller'should be designable with a minimum of
information wiﬁh respect to the nature of the input and
the structure of the system. In many cases of process
control, a rather imprecise knowledge of tﬁe nature of>the
disturbances and their variation with time’is_known. It
is being suggested that care‘should‘be taken that the
control action achieved in theory is not strongly ﬂepen—
dent on that éart of the model which‘is inaccurate.
Coﬁsider, for example, a distributed—parameterbsystem (as
for example, a heat exchanger), which features both mixing.

proceséés and transport:delays. For mixing studies, it.

.

three stirred tanks hight lead.to a controller Qﬁich
combiﬁes derivatiVe action with a very high gain. While
thisAwillvfdnEtion well in three stirred tanks, -it will
lead to instability.in the real system due to the finite
time lags fnvolved. |
The controller.should be insensitive to chéﬁge in system.
‘ N
the éystem and noise parameters are not accurately known
and, in éddition, often change with time. The controller
must Be able to héndle reasonable changes, with a suffi-

cient stability margin. The reason for this requirement



(vi)

i

is twofold. First, the throughput through process equip-—
ment changes due to varying overall needs of the plants.
That means in a process with a time lag the controller
must be able to perform while the actual time constants of
the system change, and these changes are in no way negli-
gible. The second reason is due to the assumption made of
linear system equations whiéh.are often a iinearizat%en
around a steady state and when the éteady state set—point
is changed these linearized system parameters may change
signifipantly.. |

Excessive control action_should be avoided: There are.two

main reasons for limiting the control effort. The first

is mathematical. When dealing with a linear problem it is
- often common -to neglect one important hoqflineariﬁy,‘the

finite limits on the magnitudé‘bf_allowed control

signals. To avoid errors, reasonable limits on magnitude
of control must be placed or the nonlinearity should be

accounted for in the deéign.

During the pdst three decades, attention has been placed on the

design of controllers that can operate at varying process conditions

giving rise to an optimum result. This modern control theory (optimal

control) has been mostly applied to adaptive control. Adaptive control

implies the ability of a control system to change its own parameters in

response to a measured change in operating conditions. These control

systems are distinguished by their ability to compensate automatically



for either changes in the system input, such as a change in the signal-
to-noise ratio, or changes in the system parameters, such as a change
due to envirommental variations. In recent years, a number of methods
for adaptive control system design have been suggested. According to
the way that adaptive behaviour is achieved, adaptive control systems
méy be divided into input—sensing adaptation, plant-sensing adaptation,
and performance-criterion-sensing adaptation; alternately, they may be
classified mainly as passive adaptation, system-parameter adaptation,
and system’characteristic adaptation. Control systems with passive
adaptation achieve adapfive beha?iour without system parameter changes,
but rather through design for operation over wide variations in environ-
‘:iment. Examples of control systeﬁs of this nature are the conventional
.fegdback systehs and the conditional feedﬁack systems.. Conprol systems
with.system¥paramet¢r adaptati§n édjust their.parameters in achrdgﬁce
witﬁ input-signél:chafaéteristics or meaéurements of the system vari;
ables. Control systems with gystem—characteristic adaptation achieve
‘adaptive behavioﬁr thfough measurement of transfer characteristics. A
useful approach to the design of adaptive control systems generally |
involve three basic principles:
(i) provision of a means for continuous ﬁeasuremeht of system
dynamic performance;
(11) continubus evaluation of the dynamic performance on the
basis of some predetermined criterion; and
(1iii) continuous re-adjustment of systeh parameters for optimum

operation by using the measured and evaluated results.



CHAPTER 2

LITERATURE REVIEW

In the evaluation of a control system, two questions have to be
considered: whether the control system is stable, and whether or not
the quality of control attained is good.’ Quaiity of control involves
the ability of the control system to damp out quickly the effect of a
disturbance on the plant. Unlike stability, quality is not a well
defined concept and many different criteria have been'suggested and used
for. it by control s&stem designers. The controller setting that causes
deadbeat performance after stepforcing has been widely used in the
literature (Callandet et 3£;7 Ziegler and Nichols;75,01denboutg'and
éartorius;52 end Wolfe72) as one criterion for optimum'quality control.
Deadbeat return (performance), sometlmes known as crltical damplng, is
“the.fastest p0551b1e response of. the controlled varlable Wthh 1nvolves
no nndershoot and/ot overshoot of ‘the steady state value. Deadbeat -
performance.is notvreStricted.to stepforcing inputs out includes the
response to paraoolic inouts witn minimum-squared error restrictions on

h7“ used time

raﬁ} and step responses‘(Pokoski and ?_ierre).s6 Yin—Shu
polynomial forcing'inputs in his design. Chien E£<3£.8 considered this
criterion along with one which.requires 20% undershoot. Cohen and
Coon,9 and ReamS? foundicontroller settings by specifying the subsidence
ratio of the fundémentai'comoonent in the closed—loop transient
.response. The minimization of the integral square of the controlled

variable from zero to infinity as a function of the controller para-—

meters was suggested by Hazebroek and van der Waerden,22 and Wescott.69



70

Wills postulated that the integral of either the absolute value of the

controlled variable or the absolute value of the controlled variable
multiplied by time should be minimized as a function of the controller
parameters. It is worth noting that all the integral criteria can only

be used in cases where integral control is involved, otherwise the cri-
teria will.give risé to divergent controller modes which may result in
unstable control systems.

In all of the above mentioned studies, with-the exception of that
of Wills, the plant step (transient) response was simulate& by eithef a
delayed ramp function or the response of a first-order transfer stage
plus a deadtime; McAvoy and Johnson"? used an underdamped second-order
.stage plus deadtime,‘which according tb them, is more realistic than the
"dther twd;’since it accounts for the inertié present in physical systems‘
Aaﬁd_iﬁlalioﬁs a more fléxible‘mapghing of the plant's chgraéféristics,;
33 | |

Latour et al., used an overdamped second-order model plus deadtime.

This model has been used to represent the dynamic response of liquid-

liquid and gas—-liquid extractors (Biery and Boylan;5 Gray and Pradoszo),

mixing in agitated vessels (Marr and Johnspﬁ37),’some heat exchangers

35

(Hougen)za, distillation columns (Lupfer and Parsons; Moczeck et

Sproul and Gersterez), and some chemical reactors (Lapse,32

al.,
.34 . .39 59
Lupfer and Oglesby; Mayer and Rippel; Roquemore and Eddey~”).
All the aforementioned models have been applied to continuous
(analog) control systems. With the increase in the use of digital comp-
uters for controlling process systems, study of sampled-data control

systems and design of direct digital control —- which means putting the

computer and process together so that the process reports to the
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computer and the computer issues commands to the process —— algorithms
have presented ihteresting and chalienging problems. Several authors
have presented direct digital algorithams for lumped-parameter systems
(Mosler gglgl.,us Moore SE.EL"EH Luyben.,36 Dahlinl3). Most of these
published control algorithms used.a first-order plus»deadtime transfer
stage model and a sampler plus a zero-order hold as the smoothiﬁg
device. |

A lot of papers have appeared on continuous feedback control of

distributed parameter systems. Koppel27

considered continuous nonlinear
feedbéck control of tubular chemical reactors and heat exchangers.
Koppel_g&_gl.,za reported theoretical and éxperimental results on two-
point linear control'ofra flow—-forced heat exchanger and extended the
pfinciplé cp other parametrically fotced dist:ibuted parameter systems:(
'Pérésgb;;ég_élf,ss reborted;on-an-élgpfith@_yﬁich they‘considered SQ— . 
perior to-c0nveﬁtional Ziegler—Nichols settingé frém eXpefiméﬁtal Study
of‘féed forward éomputer control of a flow-forced heaf exchanger. In
their paper Seinfeld Eg_gl.so showed useful results on.éffset and
stabilify of a flow-forced isothermal tubular reactor system under
proportional feedback, feedforward, and optimal_controls; They stated
that the system is stable, irrespective of the value of the proportional‘
gain. Oscillations in outlet concentration increased as the propor-
tional gain was increased§ however, there was an upper limit on the gain
because of the physical requirement that the.velocity should be greater
than zero. Very few researchers have worked on feeéback sa@pled—data

S4

. . 1
control of distributed-parameter systems (Palas; Hasson 35_51.,2

49y

Matharasan, et al.



11

The stability of sampled-data syétems containing delay time has

ot Truxa1,67'Tsypkin.68 They showed that, "for a

been verified by Tou,
given system and sampling rate, the ultimate loop gain is observed to
increaée initially as delay time 1s added to the systém. This ultimate
géin pass;s through a maximum and then decreases as the ambunt_of delay
time in the system is further increased.” These invgstigators examined
sfstems containing no hold circuit after the sampler, bug this unexpec-—
ted phenomenon has been shown by Mosler 35_31347 to exisé in the
presence of hold (zero—orderS.A It has been proposed thét,'below the
maximum gain, addition of delay timé séabilizes the loop, since the
_ ultiméte gainvié increaéed.IB» This proposai has been proved to be-in
- error by Mosler g£&3£f47 Buckley6 and Kou29 examingd systems for ghich
" the delay-;ime is'equal'to-aq integfal nqﬁber of sampling periods and
 then;desiéﬁedf§ digitgllcqmpepsétor'such théE_the:settiing time for the
6;£put'§eduencé ét.the ;améling instants'ié-miniﬁiééd for a given éiésé
of disturbances. |

Several altérnétiye métho&s for tuning continuous controllers of
processes characterized by a single tihe constanf and delay haveAbeen
published by some aﬁthors (9, 10, 11, 39, 76). Mosier EE 3l.q7 extended
this work into the samﬁled4data domain by offering a systematic proce—'
dure for choosing the gain and sampiing rate of a sampled-data, propor-
tional controller, uéing a zero—order hold. Their method is limited to
processés which méy be adequately described as first-order with delay.
They also showed that in the absence of load disturbances extremely

"slow” sampling intervals can be used and a decay ratio of four to one

can still be obtained. Allen, P.! confirmed this finding. Soliman and
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A1—Shaikh61 showed that by using a first—order with delay, that it is
possible to estimate the bounds on the values of the controller con-
stants. It is worth mentioning that the frequency and duration of samp-
ling is no longer as éritical as it used to be sihce the introduction of
microcomputers and microprocessors in process control.

Choosingva suitable sampling inferval for direct digital control
is an important additional variable. A simple rule to follow would be
to sample sufficiently quickly to ensure that the sampled part of the
control loop béhaves like - a continuoué system. Yetter and Saunders’ >
studied a number of systems and found that for the continuous case the
closed loop cycled with a period between iO’seconds and 640 seconds for
95% of the types of loops génefaily found.in chemical processes. They
‘showed that fo satisfy the requirement meﬁtioned above the sampling
liperiéd must.be bné eighth of the loop~§ériod.' Th;s.mean$ that'the
évailébie‘SAmpiing périods muét Be in tﬁe‘raﬁge of one'sécohd;to 80
secondé. The application of this procedure fof determining the required

sampling rate, involves some information on the dynamics as well as

off-line simulation tests. FEckman, Bublitz and Holben,15

carried out
simulation studies on four different control loops which had time
constants considered to bevtypical of flow, pressure, temperature, and
composition loops. They recommended thé following sampling rates: Flow

loops: O0.ls; Pressure loops: 1.0s; Temperature: 10s; Composition:

60s.

2.1 Adaptive Direct Digital Control

The control of an unknown linear, time-invariant plant has
remained an open question for a long time and in recent years many

attempts have been made to resolve it by Landau,30 Astrom and
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Wittenmark;2 Monopoli;L'3 Feuer and Morse;17 Narendra and Valavani.50
The methods used for the resolution of the adaptive cqntrol problem can
be broadly classified as: |

(i) 1indirect control and

(ii) direct control methods.
In the first group, the parameters and/or state variables of the unknown
process are estimated and in turn, used to adjust controller para-
meters. These control systems are sometimes referred to as self—tuniné
regulators in the literature. In the direct control there is no éxpli—
ci£’identification of the plant but thé control parameters are adjusted
so that the error between the process output and that of a reference‘
. model (known as the desired output) tends to zero asymptotically. Di-
 rect control_syétems have also>been ca11ed>ﬁodei‘réfereﬁée ada§ti§e ébnf
‘itr01;n The.algebrais'andvanalytical_diffiéul;iesvaséééiatea}wiﬁh:tﬁéi
-é;ntfdl probleﬁ ére common to b;fhiapp;o;cﬁéﬁ aﬁd héve beeﬁ.diéc;ssed'by
Narendra and:Valavani.5l» In the indifécﬁ cbntrol pféblem, the observer
plays a central and.importanf role. The process parameters ére éontinu;
ously estimated and used to determine the control paramé;ers of the sys—
tem. - The ratiénale behind suéh an adjustment is that,;when the identi—
fication parameters tend to their true values the control parameters
will appfoaéh the desired values, for which the transfer function of the
feedback loop will match that of a specified reference model. Narendra -
and Valavani51 ha&e shown that the above approach, in genéral, leads to
non-linear stability problems which are intractable. The principal dif-
‘ficulty in such cases arises when attempting to relate estimates of the

identification parameters to those of the control parameters.



14

CHAPTER 3

RESEARCH OBJECTIVES

Modern control systems often include in the loop a digital compu-
ter for processing the output measurements of the process, and syntheéi—
zing the optimal control law. Development of a mathematical model for
the plant is often the first step undertaken in the design of the
B controller. The mathematical model is usually obtained after a careful
study and thorough understanding of thé underlying physical phenomena,
and, in many cases, turns out to be high order, nonlinear and/or |
stochastic in nature.

Many industrial control systems musﬁ effectively cope with
systéms wbésé operating characteristicsbchangélwith operating_level .
(they are nonliheaf) gnd_in @dst éaseslit is.oftéq very;difficulﬁ té"
détérﬁine thé;éééuéi ﬁatdfé of the.ﬁbn—lineaf'fuﬁction; Since usually
the original mathematical model of the blant is complex, or of high
order, the requirementé on the meﬁory sizeband the speed of tﬁe control
computer can be very demanding. Coése;uehtly, attémpﬁs are often made
to obtaiﬁ a low order'modeliwhich represents the plant with some.
accuracy.

In particular it has been found that high ordér overdamped
systems, as often encountered in chemicéi process control, can be
represented to a fair accuracy by a second orher model containing dead
time or trénsportation lag (Coughanour;11 Cox;12 Gallierlg). The simple
principle behind this structure, 1is that a portion of the phase lag in
the system due to large numbers of poles can be lumped into a single

pure time delay. It is worth noting that this time delay gives an extra
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degree of freedoﬁ without increasing the order of the model. Conse—
quently, computation and synthesis of the optimal control law for this
second order model 1s a relatively simple task. Furthermore, if such av
model can be determined and updated on line as the process evolves, an
adaptive controller can be easily synthesized and interfaced betﬁeen the
plant outbut and the control input. This model has Been used with
analog cbntrollers. The desire of this study is to extéﬁd the use of
the modei into the sampled-data domain of digital adaptive control wﬁere
the model parameters are digitally updated at extended time periods.

Usually a smoothing device follows a digital computer in the
control léop and the most popular of these devices is the zéro-order
hold.' Aécordiﬁg to Kuo, B.C(zg, the amplitude of a zero—order hold
drops off rapidly at léw'frequencies and the.ampli;ude characteristics
of a first-order hold exhibits an oﬁershoot which gréatly enhances
iﬁstabilit? of the sysfem./”In the‘wdrk reﬁortéd'in this_thesis a frac-
~ tional o;der ﬁold_(l/z-order) which.hag éh amplitude éhafacfériétiq thét
~fallsvbetween thé zero-order and the firsf—ofdgr ;héractéristics and 1is.
believed to comé:close t; approximating aﬂ'ideal‘filter iesponsg is
.used. A comﬁérison of the reéponse-with‘zero—order hold and half-order
hold will be carriéd out to illustrate the characteristic of each.

" This work is divided into three péfts viz (i).Analysis of'propor—.
tional control for sampled-data control of a class of stable processes:
(ii) Design of digital compensators~for the control system and (iii)
Adaptive control of the system. In all the three parts, the control
systems with zero-order and half-order holds are éonsidered. Also

experimental verification of the theoretical results is carried out.
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(i) Analysis of proportional control of the sampled—-data system:
The analysis of proportional control for sampled-data control of a class
of stable processes using a secgnd—order overdamped plus dead time'stage
function model requires the determination of the stability range of the
proportional controller. Since no known work has.been published on this
area, the efficiency of using a half-order hold insfead of a zero—order
hold, -- which 1is easier to apply -- , as.de;ermined on the result of -
the performance criterion, is verified. The relative effects of the
process time constants and dead time on the étability of the process are
also-determined.

Critgria which are often used for judging good closéd loop per-
aformance are, maximum overshoot, decay fatio, settling time and the
integral of some func;ion of-theberrdr.A'Maximum allowable overshoot is

{qot particulariy-usefﬁlrcriéefiéﬁifor.éﬁfgméti¢-ffOCééses sincé it
b'jéiQst‘involves exciting ﬁhe systeﬁ-up fo the threshold of sgability.'
'The decay ratio énd éhe integral of some function of the error have been

used by some workers.“s,11 The éum of the modulﬁs of the error or the
sum squaredAcan easily-be determined, beééuse the.error is calculated
during the normal control calculations. - The error équared gives more
weight to the larger deviations than the mon1us Qf the error, though
small deviations can more readily be tolerated. The decay ratio which
is commonly used in control designs ié not, at least-theoretically suit-
able for second-order overdamped models since overdamped systems
theoretically do not overshoot.

A new performance index defined as the ratio of error first
moment to error secénd moment is uséd to derive anleffectiQe control

algorithm for a specified response. This criterion is mathematically
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less complex to apply than minimisation of én error integral. As is
shown later on, there exists a relationship between this performancé
measure and the one—quarter decay ratio index. Also this new perfomance
ériterion is a geﬁeralised algorithm index for any second-order system.
For an underdamped second-order system, the perféfﬁance index

N-1

I e(4iT)
_1=0

N~-1
z ez(iT)
i=0

¢

is negative, while it 1is positive fqr an overdamped system.. At steady
vstate oscillation the performance index ¢ is equal to zero. The error
is défined as the'déviation between the desired setpoint and the éctual
Qalue at aﬁy instant of sampling. This error summation is performed
from zero time to N éémpling'fimes,'where N is sufficientl& large to’
allow the system to attain steady state conditions.. The éerformance_
index computed in #his way is probably.gr¢3tef thén:ghé'trUe devia;ion,‘
~-~ since the grfor is only‘evaluatéd at‘the_sémple-intervéi>4;; if‘the.
system is stable. The use ofAthis perfOtﬁénceuindéi, to esfiﬁatg_loop
gain will be shown fot pfoportional_diréét>digi§alAcdntrbi pf a heat
exchange process. . | . |

In this study the mbdern.controlbtheory method (state variable
approacﬁ) is used and gynchroﬁous»sampling is assumed.' In the actual
coﬁtrol loops this ﬁay onl& be an approxiﬁation because the output from
"the computer is delayed by the computing time, but as this is small
compared to. the smallest possible time used, the assumption is

reasonable.
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(1i) Digital Control Compensators: This deals with the development
of discrete control algorithms, which are suitable for programming in a
direct digital computer. In all, three algorithms are developed, two of
them are optimum controls, — one 1s derived on the basis of dead beat
performance, while the other is formulated from optimum state feedback
control law with inaccessibie states; the iﬁaccessible states are deter-
}mined from an analytical predictor algorithm and not calculated from
estimates of measured output — , the last is an improved form of
proportional control algorithm where the predicted state values-are used
'instead of the actual measured values for the control. Each of these
control algérithms was tested on a heat transfer procesé with zero-order
- and half-order holds as smoothing devices.
»(iii) Adaptive Control: Model reference adaptive'control (MRAC) is
quﬁoséﬁjas.the bésis' for,thegadaptive procedure,_bécausé the_conﬁrol
system ;o Se adapged.is of high order while a second;brder modél is ﬁéed
viﬁ tﬂe algorithm formulation.' This adaptive control scheme.is consi-
defed to be an especially efficient mgthod that has.been widely noted in
reviews (Donaldson, D.D.>E£.3£.;1q Landau, I.D.;31 Beck, M.S.s); There
are many variations within fhe 'MRAC' category which céh be'investiga;
ted. The model reference characterization is appealing with respect to
" the unit operations type of process involving flowing fluids, such as
the heater—heat exchanger system. Detailed knowledge about the struc— .
ture of signal flow and the time constants is usually lacking for these
processes. Consequently, adaptive control methods could be useful in
offsetting the effects of inaccurate process information. 1In addition,

extensions of the model reference concept to the estimation of state

variables for more advanced control schemes could also be possible.
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Since in Chemical Engineering controi of slow time-constant vary-
ing high order processes is common, an algorithm was sought which could
have general application. To handle signal degradation caused by large
sample times a half-order hold was tested. To match process of high
order a model made of an overdamped second order 1ag>e1ement and trans-
port lag where the delay time is any multiple of sampling time —-— was
used; As far as is known this model has not been tested for direct
digital adaptive control. It is worth noting that some workers have
used tnis model but.restricted themselves to using a dead time value
equal to an integral multiple of the sampiing time.'

The final part of the study involved the experimental‘verifica-
tion of these techniques and algorithms on a heater-heat enchanger
~ control system. The control effectiveness reSulting from the loop gain
and sampling rate of the proportional, feedback sampled—data controller_
._selected from the performance crlterlon of the transient response was- .
 invest1gated. For each of the remaining three controllers, operating
conditions for the heater-heat exchanger control system were changed to
‘simulate tﬁo different.process dynanic changes.‘ Theee cases included:
(i) step change in outlet set point and (iij step cnange_in load |
variable (steam pressure).

The criteria to be used in the comparison of the two control sys-—
tems, —— zero-order hold and half-order — , for good_eontrol quality
are: (i) the speed at which steady state is attained -and (ii) the
behaviour at steady state conditions. The control system thatvattains
steady state condition faster and with less steady state oscillation
will be deemed as the better control system. It should be noted that no
attempt will be made to specially tune any of the control systems

" thereby eliminating any bias towards a specific control.
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CHAPTER 4

SAMPLED — DATA PROPORTIONAL CONTROL OF A
CLASS OF STABLE PROCESSES

i

4.1 Analysis of System

Consider a simplified sampled—déta feedback control. system as
shown in Fig. 4.1, where Ge(s) is.the Laplace transférm of the propor-
tional controller transfgr function; Gp(s) 1is the process transfer func-
tion and H(s) is the‘hold (smoothing device) transfer function.

Two condiﬁions>will be invesigated viz

(i) when the process transfef function is second-order over&émped
plus a hold (zero or half*ofder) ana
(ii) when it 1$ second-o;der’ovefdamped plus dead time pius a

hpld>(either a zero-order or half-order). o

4.1;1 Overdampéd Secqnd—brdervsysfem.With‘Zero-Order-Hold

‘Consider a Sampled—daté feedback control system as shown in Fig.
4.1, 1t is assumed that the measured variable is sampled every T units
of time, and that the‘resulting values appear at the output of a zero-
order hold circuit, such that thé input, C(t), and output, Cc(t), of the
samplé—and—hold device are related as shown in Fig 4.2. The transfer
function of the hold circuit is generally.given és

1 - e—Ts A

S

Ho(s) = 4.1)

Note that the impulse-modulated sample and the hold circuit H
(6)’ shown in Fig. 4.1, are merely a mathematically convenient repre-

sentation of the input-output relation of Fig. 4.2.
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Fig. 4.1 - Block diagramvdffsampled—data feedback contrdl_system.
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Fig. 4.2 - Input.and output of sample and zero-order hold.
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It is assumed that the control system 1is synchronously sampled,
and that the value of the calculated proportioﬁal gain is indicative of
the degree of stability of the system. The overall transfer function is

given as

cey = KA = Y
(s) = s (s+61)(s+62)

(4.2)

where 0; = 1/1;; 8, = 1/1,; 6 = 6,6, and.Tl,'Té are the first and second
time constants of the conérolled system reépectively.

As has been stated earlier on, state variable approach will be used in
the calculations.

The first step towards obtaining a set of first—-order
differential equations to describe the dynamics of ;he system and hence
the.state'variable fbrﬁdlation is drawing of a signal flow graph. . This

.'diagtam'(signal flow graph)'ié_ﬁade up of nodes and directed 1ineé-‘.
signifyingbdirecfioﬁ of iﬁfofmation flow. Aﬁ é#amp}é is showﬂ in Figs
4.3. |

The relatibnship existing bet&een an inpu;-node and an output

38

node is derived by the application of Mason's gain'formula.?\This'

formula gives directly .the overall transmittance from an input node to

an output node. That is,

! . ZTiAi _ ' ‘
_ out _ .
T = 7 = x (4.3)

Where Ti is the gain (transmittance) of the i th forward path
from the input node Y, to the output node Y , and A is the
. Tin out
determinant of the graph, which is defined as A = 1 - (sum of all indi-

vidual loop gains) + (sum of gain products of all combinations of two
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non toucﬁing loops) - (sum.of gain products of all combinations of three
non touching loops) + ....
Ai = Determinant of graph in which all loops that touch the i th
forward path are set equal to zero.

A forward path 1s any path which goes from the input node to the
output node along which no node is passed through more than once. A
‘loop is any patﬁ which originates and terminates at thé same node along
which no node is passed through more than once. Touching loops are
loops which have‘one or more nodes in‘coﬁmon. Similarly, a loop which
touches the i th forward path is one that has one or more nodes in
common with the path.

Transform the plant's transfer function into a secoﬁd-order
differential equation and from tyis pdint reduce the system to a set of
first—-order differential equations.' That is,

dC, 8.+0.) 3% + 6. 6.c=xo ' | (h.8)
) 19, 1% .
dt : . dt_ ' - . :

If the ‘hold [H(t)]ris introduéed,infb équation (4.4), the éeéond—drder:

différential equation becomes S I -

.2 - : o . .
d—g + e3§9- + 6C = K6h(t) : ' (4.5)
dt”  Tdt ’ :
= . = = = e
~ where 63 61 + 62, where 91 1/11, 62, 1/_T2 and 6 61 5
Let C =X, and ¢ = xl = X, : | _ .(4.6)

Therefore equation (4.5) reduces to

)‘(2 = - 8,X, - 6X; + K6h(t) | | 4.7)
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~
U

O : ‘ . O
Input Node - Output Node

Fig., 4.3 - Typical signal flow gfaph. |
?X-|(kT)

Ys*

_ ‘ ' ) s

-0

TN

Fig. Lib - S..ilgnal.- flow diagran_f of ,Equatibn' (4.8a).

OXZ’(KT)

\vs_‘
0—5—9— s Xo(s) X1(8)
H(s). 0, -

Fig. 4.5 - Signal flow diagram of Equation (4.8b).
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A
Laplace transforming equations (4.6) and (4.7) givés‘
S, () = X, (£g) = X,(s) | | (4.82)
SXZ(S) - Xz(toj = -63X2(s) - 6X1(s) + KB6H(s) (4.8b)

where Xl(to) and XZ(tO) are the initial state values of state variables

X1 and XZ'

The signal flow diagram for equation (4.8a) is given in Fig. 4.4
The signal flow diagram for equation (4.8b) is as shown in Fig. 4.5.
Combining equations (4.8a) and (A.Sb) hence their respective

signal graphs gives the signal flow diagram of Fig. 4.6.

-~ The error signal at time t = kT is

e(kT) = r(kT) - C(kT) r(kT) - X (kT) , (4.9

Combining equations (4 8a), (4 8b) and (4 9) gives the overall control
_ system signal flow diagram as shown in fig. 4 7. | N | “

Mason s gain formula is then applied to give the. set of fitst
order differential equationa in Laplace transform form. |

There are two loops in the system and are given as

: 2
. Ll = -63/5 - and -L2 = —Q/s

Since there are no non touching'loops, the determinant & of signal graph:

is
A=1- (L1+L2)
2 E
s + s6, + 90 (s+8,)(s+6,)
3 1 2 .
= 5 or 5 (4.11)

S ]
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Fig. 4.6 - Signal flow diagram of'equations (4.8a) and (4.8b) combined.

r(xT)

=B,

Fig. 4.7 — Control system signal flow diagram.
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The transfer function relating the input Xl(kT) to the output

Xl(s) is ¢11(s).and consists of two parts:

11 _ _ Ko
(11)- T, = 3

1_1,
/S

1 (4.12)

(i) T

. 1 '
The forward path T The loop is then set equal

1-is touched by loop L

2°
to zero.

s+ 0

Thus, Ai =1 + Ll ie. S_3

11 .
The forward path T1 , Is touched by loops L1 and LZ’ thus L1 = L2 =0

1. . _
and Ai =1 - 0. Hence, the transfer relating the input Xl(kT) and the

:.output Xl(s) is

T Al ' T"AV“V .. (S+e ) N
1 _ lAl z 3 _ K6 (4.14)
‘ L (s+61)(s+62) - s(s+61)(s+62),t o -

'
1
A

- 9y,0(8) =

vThe.tradsfér'function felating the input X2(kT) and the output
X1(s) is ¢12(s). - This is given as: the transmittance is Tp = l/s2 and
LAy = 1, since the path is tduched'by loops L} and Lp. The transfer

function relating the input Xo(kT) and the output X;(s) is then given by

| _ | |

The: transfer function relating the input X)(kT) and the output

. : TéAé T;A;
XZ(S) is ¢2l(s), that is ¢21(s) is made up of ——7§~~+-——K— 3
-K© ] ,
where Té = but the path is touched by L1 and LZ’ hence A3 = 1;
s
L1 e L1 X
T, = - — and A, = 1 since the path 1is touched by L1 and L2'

3 2 3
s
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Thus ¢21(S) = - (s+el)(s+92) - (S+91)(S+62)

(4.16)

The transfer function relating the input X2(kT) to the output
X2(s) is given as

T4A4 s

09p(8) = —x— = (s+6,)(s%0,)

(4.17)

where the transmittance T, = 1/s and 4, = 1; since L; = L, = 0.

The transfer function relating the input r(kT) to the output X (s) 1s

T _A
: _ K6 _ 575
’ ¢1(s) - s(s+61)(s+92) h A (4.18)
h h | i ' T, = K9 dA.=1; L, =L, =0
where the trénsm ttance T, = —3 and 4, = 15 L, =L, =

/ The transfer function relating the input r(kT) to the output X3(s) is

' T A _
_ Ko _ 66 )
¥p(s) T (s¥8)(s%0,) T B ((4:19)
K8 .
where the transmittance T6 = — and A6 = 1.
s

Therefore the set of first-order differential equations in Laplace

transform is

s + 9, K6 1 KO
(s+81)(s+62) s(s+81)(s+82) (s+01)(s+62) s(s+91)(s+62)
X(s)= E CX(KT)+ r(kT) -
| - K6 ) . s K6
(s+91)(s+92) (s+9i)(s+92) (s+91)(s+92) (s+91)(s+92)

Due to the time delay tp = kT which exists in the control system because
of the presence of the sample and hold, after obtaining the inverse

Laplace transform of equation (4.20), the time t is réplaced by t — kT.
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Inverse Laplace transforming gives

x(t)=

0 * 5 * 6 *
-0t -0, ¢t -6t
2 1. 2
- R(1 + a3e + a,e )]
_ezt*
Y(14+K)
— o 6 =
-u.t -9,t
1 : 2
K[1+a3e + ae ]
o r(XT)
6 * .B *
» -0.t -6,t
Ka6(e 1 - e 2 )
T2 8783 0,088y
i -8 -
Q E L 1 = L I ] = 82
6 8,6 7 6,-6,° 8~ §-0

* *
-0t -6 t
(e 1 —e 2
5
—elt* _62t*
(x7e +(18e
(4.21)



Thus

X(K+1T)=

c(t) = [1 0] x (KT)

The stability conditions are determined from the

where

Let P1

- K(1l+a

e © )(14K)

-0
2T
e .

and P

€ 2

3

e
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T; e—elT+a e—ezT -K(1+a e—elT+a (e—eAT)] o (e_elT-e—ezT;
1 2 3 4 5
' X(KT)+
-8, T -6,T ' -6, T ~-6,T
1 2 1 2
-a6(e -e  )(14K) ase +a8e
-0,T -0,T
1 2
K[1+a3e + ae ]A
r(KT) (4.22)
-6_T -6_T
Ka6(e L e 2 )

relation det{zI-Q] = O

_-61T+a —94'1‘)] . (e-‘-elT_e_‘"ezT)
€ A S e _
S (4.23)
o -e,T -8, T| -
'“29l'1,+“8e.‘2 
-0.T -8.T 0. T =0T
toe '4 Y] - ag (e 1 -e 2 )
=0
-6 T -6 T
Z - [oge Ly age 2']
(4.24)

The determinant and hence the character-

istic equation of the control system becomes °
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— —

zZ - [alP1 + asz - K(1+a3P1+a4P2)] - aS(Pl—PZ)

a6(P1—P2)(1+K) : Z—[a7P1+a8P2]

(4.25)

e pu—

That is, applying Jury's stability criterion gives

Condition I: a; + a; +apg >0

- - o (P —p 12
[ (a1+a7)P1 (a2+q8)P2+(a7P1+a8P2)(a1P1+a2P2)+a5a6(P1 PZ) ]

K >
2
[(1+a3P1+a4P2)(1-a7P1-a8P2) + a5a6(P -Pl)z]

(4.26)

Condition II: ap - a; +ag > O

§ _ . o \21
<> [1+(a1+a7)P1+(a2+a8)P2+(a7P1+a8P2)(a1P1+a2P2)+a5a6(P1 PZ) ]

[(1+a

3P1+a4P2)(1+a7P1+a8P2) - a5a6(Pl—P2) ] (4.27)

. Condition IIT: ag - ap < O

‘< . [1'(a7P1+a8P2)(a1P1+a2P2) a5a6(P1 P2) ] -

) [asaé(Pl-P2)2.— (d7P1+a8Pé)(1+a3Pl+a4P2)] f‘ | - ' (4.28).
Figure 4.8 is the étability constraint of'ﬁhe'control system as a. func-
tion of sampling time for>four'different time coqstaht ratios, that is-
the ratio of second time constant t@ first time constant. The effective
or limiting stability constréiﬁt shown in Figure 4.8 is equation (4.27).
fhe stability rénge of the control system increaées with increaée
in time constant ratio buf decreases with increased saﬁpling peripd,
Fig. 4.8. Tﬁis trend has been suggested by other wofkers. Increase in
sampling time introduces large instability to the system but with a

smaller sampling time the sampled data system approaches that of
, : .
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12

=2-8

S -
Sampling Time, Sec-

Fig. 4.8 - Stability constraint of sampled-data second order system with

no dead time as a function of sampling rate for various ratios
of the time constants (zero—order hold)..
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continuous (analog) control system. Although it is a well known fact
- that all proportionally controlled first and second-order systems are
stable in the continuous time domain, regardless of loop, this is not

true for second-order systems in the sampled data domain.

4.1.2 Second-Order Overdamped System With Half-Order Hold

Consider now the procéss with é half-order hold as the smdothing
device.. From discussions given in the control literature, the amplitude
characterisfic of a zero—order hold drops off rapidly at low frequencies

and amplitude characteristic of first—order hold exhibits an overshoot

- before cutting off sharply.29

An amplitude characteristic which falls
Between the zero-order and the first-order characteristics is being
suggested to come close té approximating an ideal filter response. This
fiiter charateristic couid be ;ealized‘by use of a ffactional—order

_h.g;d‘," in‘»vtr:h}is_.study a ‘hal'f—o‘rde'r hold is used. Fig. 4.9 is the input

andoutputof ;a{xﬁpief'aﬁd ho‘l‘d'.'_-fo'r‘t.hé- half-order hold circult.

: fheAfransfer functio; of half-order hold is‘given (see Appendix 1
for'der;vétidn) as | b |

' _ —Ts\ - ~Ts
Hy jp(e) = (1 - 1/2e Ts)(1—-%—) + 1/2T(l—§—)2 (4.29)

- The impulse—hodulatgd sampling and hold circuit H(s), shown in
Fig. 4.1 is merely a mathematicaily convenient representation of the
input-output respoﬁse of Fig. 4.9. Almost all the digital computers
used in industriél coﬁtrol systems.have built-in zero—order hold
circuigs. A half-order hold méy be expressed as a function of a
zero-order hold. Equation (4.29) can be expressed as

[(Ts + (Ts+l)(l-e '°)]

_ 2Ts

Hl/Z(S) = Ho(s) s (4.30)
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1 - e—Ts

where Hp(s) = (zero—order hold)

Expanding the e_TS in the paranthesis up to Tzs2 term, assuming T3s3 is

negligible, reduces equation (4.30) to

Ts ;
) ‘ (4.31)

4+ 5Ts,,1 -~ e
H. ,,(8) = ( ) (
1/2 ‘4 + 4Ts s

The overall transfer function of the control system is now given as
~Ts
K(4+5Ts) ) (l-e
(4+4Ts) (s+61)(s+92) s

) (4.32)

G(s) =»H(S)Gc(s)Gp§s) =

/

where 6) = 1/1), 6, = /1; and 6 = 6;6,; also T},T; are as before. The
signal flow diagram of equation (4.32) 1s shown in Fig. 4.10.
Applicatidn of Mason's gain formula gives

) ' '

‘ . o + Y (KT) (4.33)
Xy (s) » ' -¢§1(S) 939 (8) || Xy (KT) ¥, (s)

,berivafion of-equatién-(4.33) and paréﬁetef definitidnsvére shown in
Appendix 2.

There exist; a timé delay tg = kT due to the zero—order hold
present in the control system. After tﬁe in#erse Laplaée traﬁéform~is
obtained, t is replaced 5y t—KT.

X, (t) 01, (E%) 9, (e%) | X (RDY| | wI(e%)
Thus, - | + r(RT)  (4.34)

Xz(t) ¢él(t*) ¢é2(t*) XZ(KT) Wé(t*)

where t* = t - KT. The value of the output at the sampling instants is
obtained by letting t = (K+L)T, in which case t* = t - KT = (K+1) T - KT

= T. Therefore equation (4.34) becomes



A ' :

Zero-Order Hold _\

T 2T 3T 4T
~ TIME

Fig.. 4.9 - Input and output of sample and hold of half-order. -

9¢



Fig. 4.10 - Signal flow graph of equation (4.33).
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—

X, (k+1) $1,(0) o1, (™| | X &) V(T
- 1+ r(KT) (4.35)
X, (k+1) 050D 4 (M| | XD ¥3(T)

The characteristic equation of the control system is given as
—_l -—h !

Z = ¢§,(T) $15(T)
=0 (4.36)

- $5,(D) Z = 45,(T)

Stability conditions are determined by applying Jury's stability test

and are gilven as:

K > — (4.3
(1 + 0, + Q) <
K <= (4.38)
(Q5.+ Q6 - Q7 )
g~ e
K< _ : S . L (4.39)

Fig. 4.11 ié the stability constfaint of the control system.aé a func—.
tion of sampiing time for- four different‘time‘cénétént fatios.' The
representation is that of equation (4.39) singe it is the effeqtive
stability constraint on the system. Just as in,the césé.of zeto—hold,
the stability of the control system increases with increase in time
constant ratios ﬁhile it decreases with increase in sampling time. 1In
all conditionmns (increase in time constant ratio and increase sampling
.time) the value of the‘proportional gain for the system with half-order
“hold in the circuit is greater than that with zero-order hold in the

circuit.
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Ay =12
=28

-
o

TN
N

4 b

-

5 3 3 5
Sampling Time |

Fig. 4.11 - Stability constraint of sampled-data second order system
with no dead time as a function of sampling rate for
various ratios of time constant 2 to time constant 1
(Half-order hold).
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4.1.3 Control System With Dead Time

When a delay time is included in the system, the process transfer
function becomes

~T
fe s

(s+61)(s+62) (4.40)

GP(S) =

Time delay is a dynamic characteristic that can be represented, when it
occurs in a path containing sampling and holding; by adding this time
‘delay to the existing delay caused by the preseﬁce of a hold in the
circuit. In other words, there will result a forward gﬁift of T = AT;
whepe T is the sampliﬁg‘time and A is any nﬁmber, in the output
response; that 1is, at ény instant of sampling, the odtput response will
be equal to the,résponse at (i-A)T. Table 4.1 is a typical response

condition.

Sémpling instants : aT"' 7: 2r }'3T : o . .| owNT

Reéponsé equivalént . - : o
to sampling at - (1-M)T (2-M)T . (3-MT o e e (N-8)T

Table 4.1 - Output response of process with dead time component

It is obserQable from Table 4.1, that many situations exist. I1f
-A is an ihtegral>mu1tiple of the sampling time, the output responsé will
be zero for all sampling instants less than or equal to A (if the ‘
initial éystem condition is zero), Eut if A is a fraction of the
sampling time, the value at thé first'sampling time is equal to that of
(1-A)T sampling instant. The third case is when A is both an integral
and fractional multiple of the sampling rate; the output response is a
combination of the above two conditions. For simplicity of analysis,

the dead time is added to the delay due to the hold. The total delay
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time in the control system is t = (K+A)T, where KT is the delay caused
by the hold in the circuit. The process equations describing the
control system will be same as those for the circuit with no dead time
but the inverse Laplace transform will be different, since the delay

time will be added in the overall time delay.

4.1.3a Control System with Dead Time for Zero-Order Hold Circuit

The overall traﬁsfer function for the control system is given as
-1s ~Ts
G(s) = KBe “(l-e )/s(s+61)(s+62) _ (4.41)

The state differential equations in Laplace transform is
, s+e3 ) KO 1
8 0 ] 0 ] ]
(ST 1) (s 2} s(s+9,)(st%)  (s+9,)(s+5,)

x(s) = | ' o | X(to) +
-K6 _ ) e s .
(s+9,)(s#9,) (sf?l)(Sfez) _(sfel)KSfez)

ke | |
s(sfel)(s+62) 1 ; . _ -
. , r(to) » N P>

| K8
(s+6,)(s+6,)

Taking the inverse Laplace transform of equation (4.42) gives

X(t)=

—a6(e - e Y(1 + K) ‘ a_e +a_e
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o ¢t —92t+
K[1+a3e + ae ]
X(tg) + -r(tyg) (4.43)
-91t+ -92t+
Ka6(e - e )

where t* = ¢ —'(K+A)T and T is the sampling time.

The pfocess dead time A can be broken down into A = (j+S8)T where
j is the integral multiple of the sampling time part of the process dead
time and § is the fractional part. Thus, for the condition
f = (K+j+1)T, tt = (1-8)T =,V° Hence the sampled—-data state equations

in the transformed state space 1is

XK A+ j A1) = X(L + 1) =

TR A A {64V 8,7 -0,V
[ale . +0.2e_ .—K(1+a3e +a4e : )] (!S(e -e . )
X(KT)+
-6,V -6V -0,V -0,.V{ -
1 2 1 2
—a6(e - e Y(1 + K) ase +a8e
-9V -0,V
K(1 + aze + a,e )
r(KT) _ ‘ (4.44)
Y —62V
KG6(e - e ) |
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The characteristic equation is

pec(zd™ 1 - o(My)] = 0 (4.45)

v v
MYCOTEEMNS)

where ¢(V) =

v v
(D (™

See Appendix 4 for parameter definitions.

That is,

Z‘z(j+1)—Zj+1[¢\171(V)+¢‘2,2(V)]‘+ [q);-’l(v) ¢ZZ(V)_¢1’2(V) ¢>‘2’1(V)] = 0 (4.46)

. Equation (4.46) shows that there are an infinite number of.cases that
can gxist‘depending on the\value'of the integér 3. fhe constraints on..
 the_id9p gain.of‘ﬁhis‘qontfolgéampleq system ére.detérmined anglytically_
-‘beiéw“féf twélééSes j>= 0; 1-, i;é.ibhg T <”2T;  %Husfaadiﬁngéad.time,~
to the-system-and/or inc?éasing the sampling réte increa;es the order of °
thé characteristic equatioﬁ, The stability anélyéis beéomes
algebraically more involved as j increases. However, the samplea dété

stability limit approaches the continuous stability limit for systems

with large amounts of delay time relative to the,sampiing period.

Case 1l: j =0 (0 < t < T), equation (4.46) becomes

2 v - - v \Y A v v _ :
27 = 2(hy) Fbpp) by 0y Tbpp by 5O (4-47)
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Applying Jury's stability criterion on equation (4.47)

- ' 1
(1 A1 + AZ)

K > e
(A3 = Ay)

(1 + A! +.A).

1
K < T -
- v -
K < ffz——-jii—
(A, = &)
K>0

.

(See Appendix 4 for parameter definitions)

(4.48)

(4.49)

(4.50)

(4.51)

A1l the above four conditions must be satisfied to ensure the

stability of the system. A typical case of these conditions is shown in

Fig. 4.12, where the ultimate stabilityilimit is plotted against delay

time (0 < 1 < T) for gdnstant'sémpling»time, The amount of delay which

maximizes<the’u1timate stabilityllimit for constant sampling rate T is -

defined as T . For t < T , equation (4.49) places the severest
T max max o , : .

constraint on the ultimate stability limit; for T > Tmax’ equation

(4.50) constrains. The correct value of .T < is determined by the

intersection of these~twd constraints.

Case iI: j =1 (T < 1< 2T) equation (4.46) becomes
4 2 v v v v v v

2o Zlbgy Fdyy 1 F by by T 0y 99 =0

The stability constraints are

- 1

1 A2
T [

A6 + A4

K <

(4.52)

(4.53)
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101

T] = 12 5.0271 secs

T = 2 Secs

|
|
|

03'm 06 09 12 15
Dead Time, Sec; T

ca. S : ' .
Fig. 4.12 - The stability boundary of a sampled-data system with zero-
order hold as a function of dead time.
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Aé -1
KL —F—F (4.54)
A6 + A4

The other two constraints involve higher orders of K.

4.1.3b Analysis of System with Deadtime for Half-Order Hold

Time delay is a dynamic characteristic that can be represented
when 1t occurs in a path containing sampling and hold in the control
 circuit. For simplicity in analysié, the dead time 1is added to the‘
delay due to the zero—order hold. The overéll control system transfer

function

L +5Ts. 1 - e IS e 'S

G(s) = k8 (—772)( = ) 5 F 6,)(s + 8,)

(4.55)

. The signal flow graph of equation (4.55) is as shown in Fig. 4,10.' The  _
state differential equatioﬁs'in Laplécé tfansform afé:
' “vi | ! ' N __—v N
¢11(8) 915(s) | b1(s)
X(s) = - X(tg) + r(tg) 7 (4.56)

e (e 9 (s) vt (s)
: ’21 ’ 22 ) 2

The inverse Laplace transform is

— — — -

Ly Ve .y .V : vV
o1, eV et vy

X(t) = : X(to) + | r(tp) (4.57)

INCOSEONOS
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where t' = t = (K+ A)T and T is the sampling time.

Assuming that the process dead time A can be broken down into‘

A = (j+8)T, where j is the integer multiple of sampling times of the
process deadltime and § is the fractional part. Since the output
responsé at timés less than or equal to jT is zero, the condition

t = (K+1+ j)T is used. Thus for this case

v

t = (K+3+1)T, t = (1=8)T = VT » (4.58)

Hence the sampled-data state equations in the transformed state space

are

91, D) 1, (VT) ¥, (VT)
'X(K+j+1)' '=  \X(KT) + o T(KT) "-(4.59)'
05,0 o] v,

The_characteristic'equétion is set to zero, i.e.

Det[zi™ 1 - ¢(vm)) =0 | (4.60)
where o
61,(VD) o1, (D)
¢(VT) =
431 (VD) #22 7).

Therefore, the characteristic equation is

22 23y oy, )+ 810 (7T 0y, (VT)=,, (VT) 41, (VT) = 0

(4.61)
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As can be seen in Equation (4.61) there are an infinite number of cases
that can exist depending on the value of integer j. The constraints on
the loop gain of this sampled data control system are determinéd analy-
tically below for the two cases j =0, 1, 1.e. 0 < T < 2T. Thus adding
dead time to the system and/or increasing the sampling rate increases
the order of thé characteristic equation:\ Tﬁe stability analysis
becomes algebraically more involved as i incfeases. However, the
sampled data stébility limit approaches the continuous stability limit.

for systems with large amounts of delay time relative to the sampling

period.

Case I: j=0((0 <1< 7T);
2 - ' ] : ] ' o - ot ' ‘ = .
‘Applying Jﬁry's‘stability criterion to equation (4.62) gives the stabi-

lity limits as:

(1-0-q o
K > e —r w3y o
@) |
-(1 + Q) + Q) |
K < - — (4.64)
@+ - Q)
SR .
K AT AT .65
P
In addition, for stability K > O (4.66)

All the above four conditions must be satisfied to ensure the
stability of the system. A typical case of these conditions is shown in

Fig. 4.13, where the proportional gain is plotted against delay time
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(0 < T < T) for constant sampling time. The amount of delay which maxi-
mizes the limiting proportional gain for constant sampling rate T is

defined as T . For 1 <1 , equation (4.64) places the severest
max max _

constraints on the limiting proportional gain; for T > Tmax’ equation

(4.65) constraint. The correct value of Tmaxis determined by the

intersection of these two constraints. As with the case of zero—order
hold, the limiting proportional gain increases with increase in dead

time until the T ax is reached, after which the proportional gain

decreases, increase in sampling time also decreases the proportional
gain. 1In all the conditions, investigated, the control system with
half-order hqld gave higher values of the proportional gain than that of
control system with zero-ordér hold. | |
Case 2: j =1 (T <1< 2T)

The characteristic equation becomes

42 | - ' | N
2 - 2°[6],(VD)+05, (VD] + 43,(VD)8}, (VD) = 65, (VD41 (VD) = 0
. . . , - T - (4.67)-
_.Using:Jury's stability aﬁalysis,'fhe'constraints'dﬁ K are
(1 - Qg |
K¢ o0 4.6
CE (4.68)
(1 + Q)
(4.69)

K@=

4,2 Transient Response of System

The response of the second-order system to a step change in set

point was investigated. Criteria which are often used for judging good
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15T 5.027 secs.

2 Secs.

Bk
1]

|
1

03 t» 06 09 12 15
Dead Time Sec; T

Fig. 4.13 - The stability boundary of a sampled-data system with half-
order hold as a function of dead time.
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closed loop performance have been discussed in Chapter 3. A new

performance index defined as

(4.70)

is used to estimate an optimum loop gain value for the proportional

controller. ¥For a minimum steady state error response, the  performance

index ¢, should be greéter than 1.

The transient response of the control system is derived as a
solution to the state difference equations in matrix form. For a system
with a set of first-order difference equations in matrix—form which is

given as

X(n+l) = AX(n) + br(n) S S o (4.71)

y = C¢'X(n)

wheée the sémpling time T has beeﬁ dropped-for,éoﬁveniépcé; énd7CT:-'

is the céefficient of the output;..Ihe‘SOIgtioﬂ to thermodé1;'equati§h ':

(4.71), i§ given in matrix.fofm asn‘ o - | |
X(n) = A"X(0) + izo AV ey S  (4.72)

where A" = Z-I{Z(ZI"A)-l} : ”

The transient response is

n-1
y(n) = cr[a"x(0) + £ AP"I7E g | (4.73)
1=0 .
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The error response is the difference between the desired response and
the actual response and 1s given as

e(n) = r(n) - y(n)  (4.733)
The relationship between this performance index and the one-quarter
decay ratio criterion is shown in Append;x 3.

4.2.1 Transient Response of Second-Order Overdamped with
' Zero-Order Hold

Consider the process shown in Fig. 4.1, but with a process
dynamics of a second-order overdamped transfer function and a zero-order
hold in the circuit. The overall transfer function is

-Ts

_ 81 -e 9 | S
. G(s) = s(s+0,) (50, : | | o N (4.74)

' Figure 4.14 is the signal flow graph of the control system.

The set of first—order difference equations is

-8.T- - =0T . -8 T  -8,T : -6.T -6,T
1 2 1 2 1 2
[ale +a2e (1+a3e _ +a4e )] Gs(e -e ) _
X(XF1T)= : _ ' - xxTHy+
20 _elT_ —62T) : i —61T+a. —62T
6 (e e A 7€ . 8e
[ -6, 7T —ezf
1+a3e + aae
r(KT) , (4.75)
-6,T  =6,T ‘ . :
a6(e - e )

C(X+1T) = [1 O] x (KT)
Parameters are as defined for equation (4.22). The general
solution to the matrix difference equation (Equation 4.75) for step

input change is
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T=0.5s
50;
<. =138
‘Cz: 3.1s
40
QO
m .
.8 T=0-7s
530 -
—11s

20

Transie

107

2 4 6 8 10

Sampling Interval, N

-

Fig. 4.15 - Open loop transient response of uncompensated sampled-data
second-order process with no dead time for a unit step change
for different sampling rates (zero-order hold).



N N
01171701272
X(nT) =
N N
| %15¥1*%16"2
N-1-1 N-1-1
6 0
N-1 [P11"1 0 12"z
i=0 N-1-1i N-1-1
0 0
1571 Tie"

16 2
See parameter definitions i

If the states are initially

+a

(1+a 4

3F1

,‘X(nT)“=

(1+a3P1+a

a6(P1—P2)

a-(P =P )
6 1 2

Thérefore, the traunsient re
N-1
c(nT) =L {([l+a,p +
1=0 3'1

P.+a,P

([1+asP,+a,P,

4 N
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N N
8137110147,
X(0) +
N N
8 7Y1%%1872
N-1-1 N-1-1
0 0
1371 s 1+a,P, +o, P,
(4.76)
N-1-1 N-1-1
0 b -
1711 1872 ®6(P1=P5)

n Appendix 4.

at rest, then Equation (4.76) reduces to

N-1-1 N-1-1

Pp)(8ypyy — Yy - )
C N-1-1,. N-1-1
UG T T O
o N-1-1,.  N-1-1L.
(Op3¥y = 8, )
(4.77)
 N-1-1 -1-
6 v e YT
17 1 18 2
sponée'is given as
| N-1-1
4Po10 103 7P DY T
N-1-1
16, ,+a 0, [P =P, 1Y, } (4.78)
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S

Fig. 4.14 - Signal flow graph of equation (4.74).

- G

Fig. 4.16 - Control system with proportional controller.

K
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Fig. 4.15 is the closed loop- transient response of the control system as
é function of sampling interval for various sampling times. Introduc-
tion of a proportional controller in the feedback loop results in Fig.
4.16, and the error response is_r(nT) - C(nT).
The error resbonse of the control system with the addition of the

proportional controller for a unit step change in setpoint is

N-1 N-1-1
e(nT) =1 -K I {([1+a3p1+q4pz]ell+a6el3[p1-P2])]y1 +

i=0

' N-1-1
([1+aqP +a,P, 10, +a 8., [P =P, ])Y, ] (4.79)
The amount of loop gain K is estimated from the performance criterion.

That 1is,

N-1
)
1=0

. | o N-1-1.
{([1+a3P1+a4;>2]ell+a6el3[P1-P2])y1 +

] | N-1-1
[ (1+a,P +a,P, 16, +a 6 ,[P. =P, ])Y 1.
o = 37174727 12" 6141 27072 i (4.80)

N o Nt - N-1-1
E [k, I {([1+u3P1+a4P2]611+a6613[P1-PZ])Y1 +

1 1=0

N-1-1,.2
([1+a P +o, P, )0, +a 6., [P, -P,]1)Y, }]j

Therefore, the optimum value of the proportional controller, Kc

should satisfy the condition

T 2
D,- /DZ + 4D1D3 < K, < D, + /Dz + 4D1D

3
2D1 : 2D1

(4.81)
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secs

3
1

= 3.1 secs
. M

R.eégonse

.5 secs © -
- = 0.7 secs
= 0.9 secs

= 1.1 secs

Transient
Qo
1S

= 0.01921

= 0.03401

Q
A

- = 0.07132

= 0.16183

+ i
¥

2 4 6 8 10
Sampling interval, N

Fig. 4.17 - Closed loop transient response of proportionally controlled
sample-data second-order process with zero-order hold for a
unit step change for different sampling.

~
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o
d
-»()'E} C
9 b ¢ Equivalent to 1/4 decay ratio
c. ' '
e} 3 71 = 1.3 secs
Q N . .
8 06 T = 3.1 secs .
o g : Ka = 0.0231
Kb = 0.04091
- .
5 KC‘= 0.08579
2 04 K. = 0.19458
& d
| 4
- Ta = 0.5 secs

. T, = 0.7 secs
T = 0.9 secs

T, = 1.1 secs

+ +

* 2 4 6 8 10
Sampling interval, N

Fig. 4.18 - Closed-loop transient response of proportionally controlled
sampled-data second-order overdamped process with zero-order
hold and no dead time for a unit step change for different
sampling rates. ‘



Table 4.2 - Loop gain as a fﬁnétioh of sampling time for the two performance

indices:’ (pontrol system with zero-order hold)
Time Constant 1 = 1.3;
Time Constant 2 = 3.1
=3 ° ¢ = 1/4 decay ratio
Sampling Time Loop_Gaiﬁ Response at’l2th.Sampling Loop Gain’ Response at 12th Sampling__
0.5 secs 0.01921 .0;98136 | 0.02310 1.18033
0.7 secs 0.03401 _1.01366 0.0409 1.21910
0.9 secs 0.07132 -1.06803 0.08579 1.28438
1.1 secs 0.16183. 1.16441 0.19458 1.40005

6%
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See Appendix 4 for parameter definitions.

The transient response of the control system with proportional
controller is shown in Fig. 4.17 for a performance indéx $ = 3 and
various sampling periods. An equivalent performance index to
one-quarter decay ratio is used for fhe transient response of Fig.
4.18. For all the tested sampling rates, the one;quarter decay ratio
equivalenée gave a poorer response than that of performance index ¢ =
3. For both performance indices, an increase in sampling time results
in an increase in loop gain and hence less stability margin.' Table 4.2
list the values of loop gain and response after 12 sampling times for.

the two cases shown in Figs 4.17 and 4.18.

4.2.2 Transient-Responée of Second-Order Overdamped With
: Half-Order Hold

Consider the process shown in Fig 4.1 but with a process dynamics
‘of a seéondjorder overdamped transfer function and a Halffdrdep in the

circuit. The overall transfer function is

_ 4 + 5Ts (1 - e ) ] .
G(s) = 7% %7s s (5F03(s70,) - (4.82)

and the set of first-order difference equations is

‘iv iv | iv
X Gty o1 (T 4y, (M| (X G0 ey 7
= + r(k) (4.83)
iv iv iv -
X, (iet1) $51(T) 4 (D [X,00] 19,7 ()
c(k) = [1 0] x(k)
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T: 0.5s

155()_ ' | - T= (D{?S

T=0-9s
"
e
. = 1-1s
o
& |
=100 R
| ws13s
T—3_=3'1S - ’

Transient

50

-

Sampling Interval, N
Fig. 4.19 - Open loop transient response of sampled-data second-order

process with no dead time for different sampling rates
(half-order hold).
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The general solution to equation (4.83) is

N N N
%1111 Y oY s T % N-1

x(nT) = x(0) + )
N N N N 1=0

%5711 Y %6712 %7711 T %812

N-1-1i N-1-1i N-1-1 N-1-1

a a iv
11711 T %22 3711t %12 vy (D
| (4.84)
YN—l-l + a YN—l‘i a YN—l—i +a YN-l—i w;V(T)

“15'11 16712 %171 18712

1f the states are initially at rest, the particular solution becomes

N-1-1 ON-1-1 N-1-1 N-1-1

- iv
, NoLoJog Yy e o sy T oYy, ¥ (D
x(nT). ‘z )
i=0 N 1-1 + N—l -1 o 'YN~1—1 ¥+ o YN—1—1 ¢;V(T)

“15711 ' 16 Y12 17 '11 18'12

- -and the transient .response is

c(nT) = J {a11 Viry + ay (T)} N 1-4
i=0

+{912w§V<T>+a wz v L f]
(4.86)
The transient response of the system is as shown in Fig. 4.19 for
various éampling rates. |
Infroduction of a proportional controller in thebfeedback loop,
gives an error response at any instant of

Y a0 (D 1Y) T e e, ul (e 03 V(D DY Tzl ')

(4.87)

(O
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0.5‘secs
0.7 secs
= 0.9 secs

I.1secs -

@
&

Response

I.B'éecs ;Tl.

3.1 secs

3.0769 x-107%

1.68954 x 1073

Transient
Q
H

1.35124 x 1072

1.0781 x 1071

o
»]\3

-’

3 4 6 8 10
Sampling Interval, N '

Fig. 4.20 - Closed loop transient response of a proportionally controlled
sampled-data second-order overdamped process with no dead
time for different sampling time (half-order hold).
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The amount of the loop gain K 1s estimated from the performance

criterion. That is . 0

N-1
¢ = I e(jT)
j=0
N-1
I e2(31)
3=0
Hence,
N N-1 1v 1v N-1-1 iv 1v N-1-1
R jio{[“n"’l (Trtoy 3% (D 1Yy ) +log, ¥ T (Day, 4, (D 1v, 1
"X N-1 iv iv N;l—i iv iv N-1-1,.2
jﬁln-k -fo{[“n‘”l (o a4, (D17 Hlog, b (D4e, 6 (DY), 1
3 : (4.88)
Therefore the loop gain is given by
D.. + VD2, + 4D..D :
g o 21 gé 11731 | | O ey

11 -

See appendix 2 for.parameter définition;

Hence, “the sampling rate is a free parameter, and for any
sampling period, there exists a loop gain such that tﬁe yerformance
index is ¢. The transient responses of the coﬁfrol syst;m with the
-corresponding 1oop.gains is shown In Fig. 4.20 for performance indéx
¢ = 3 and for various sampling times. The trend ofxtﬁe transient
response for the various sampling rates indicates that a decrease in the
sampling time results in a reduced deviation from set point before

steady state 1s attained. Thus, increasing sampling time decreases the

stability margin of the system since high loop gain values mean low
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stability margin. For all conditions considered, the céntrol system
with half-order hold gave better transient response and attained steady
state conditions faster than did the control system with zero—order
hold. This suggests that the half-order hold is a better ideal filter
approximation than is the zero—order hold. The equivalent one-quarter
decay ratio performance ‘index gave a poorer transient response as shown
in Fig 4.21. Also the control system with half-order hold is more
étable than the system with zero-order hold with both performance
indices as measured by the values of the loop gain. Tablé 4.3.sﬁows a
typical loop gain variatién for the control system with half-order hold

and for the two performance indices.

4.2.3 Second-Order Overdamped Plus Dead Time
Addition of delay time to the second-order dynamics givés a

process transfer function

T gmts , : L
1 27 .
where jT < T < (+1)T , J=0,1,2,3,....

ane againlthe type of reépoﬁse is second-order ovérdamped, but
the outputs-are delayed by the dead time and occur at sampling ianstants
~ plus the dead.time. To analyse the outputs of the transient response,
the same approach used 1n the case of secdnd—order overdamped with no
delay is utiliéed, with the minor modification of adding the dead time
to the hold delay. The output signal will be delayed by an amount T
such that the outﬁuts will occur at the instants of sampling the delayed

output signal. From equations (4.46) and (4.61) the order of the

e



Table 4.3

- Loop gailn as a function of sampling time for the two performance

indices: (control system with half-order hold)

Time Constant 1 = i.3;
Time Constant 2 = 3.1
6 =3 - B ¢ = 1/4 decay ratio
Sampling Time Loop Gain Respoﬁse at'12£h Sampling Loop Gain Response at 12th Sampling

0.5 secs 13.0769 x 107" 0.99249 3.7318 x 10" 1.08243
0.7 secs 1.68954 x 1073 0.99571 2.04911 x 1073 1.08391
0.9 secs 1.35124 x 1072 0.99550 1.6388 x 10~2 1.08608
1.1 secs 1.0781 x 10~} 0.99823 1.26744 x 10~} 1.08938

99
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¢ Equivalent to 1/4 decay ratio
71 = 1.3 secs
T, = 3.1 secs
T = 0.5 secs
a SE
_Tb = Qf? secg
T = 0.9 secs
c .
» Td = l.; éecs
K = 3.7318 x 107"
a
K = 2.04911 x 1073
K, = 1.6388 x 10”2
Ky = 1.26744 x 107}
| Sampling Interval, N

4.21 - Closed loop transient response of a proportionally controlled
sampled-data second order overdamped process with no dead time
for different sampling rates (half-order hold). '
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characteristic equations is seen to be 2(j+l). Thus for j > 0 — 1i.e.,
T > T — the analysis will be extremely difficult by analytical
techniques.

‘4.2.4 Control Systém With Zero—-Order Hold

The overall transfer function is

. 5 e—Ts 1 - e-Ts
6(8) = v y(sto.y T (4.91)
1 2
The set of first-order difference equations of the above transfer
function is
vi vi . vi
$17(T) 615D fx, (e 0o
x[(k+3=1)T] = h , + , R (4.92)
vi vi 5 :
857 (V) 6, IV | [ %, (kT) vy (V)

cl[Ge+i)T] = [1 0] x [(k+3)T]
‘where V = (1-8)T.
' The transient response is.given'és'(éSsu@e initiai*stateé are attrest)“'

N-1

ctorin) = 1 Hag '+ agi OB s (oo + st bt
i=0 ' : X3 o
: (4;93)

Paraméter definitions in appendix 4.

When a proportional controllef is added to the feédback loop, and
the performance criterion is applied, the desigﬁ loop gain is
determined. Table 4.4 shows the loop gain as a function of number of
samplings used for various values of performance i;dex and sampling
tates for the control system. As can be seen from the table, an
increase in the performance index results in a decrease in stability.

-~

Also as the number of sampling intervals used in the performance index,
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Table 4.4 - Loop gain as a function of number of sampling
intervals used for various performance index
values and sampling time (zero—order hold)

Sampling Time = 1.5 secs; Process Time Constants = 5.027
Desired Steady State Value = 1; Process Dead Time = 7.4
Performance ‘ No. of Sémpling Transient Response
Index Loop Gain Intervals Used at Steady State
0.3827 6 0.32207 .
0.19791 8 . 0.25146
1.0
0.11460 10 : 0.20395
0.7126 12 . ~ 0.16985
. ©1.17431 6 ‘ . 0.98804
0.76279 } 8 0.96917
1.5 :
0.53336 _ 10 ©0.94921
0.39002 12 10.92967
1.41954 6 C1.19437
L 0.92370 | 8- ] o 17361
2.0 - ~ : ‘ -
' 0.64683 10 . 1.15115
0.47357 ' 12 o 1.12882
1.54883 6 1.30315
1.0084 8 1.28122
2.5
0.70647 ' © 10 1.25728
0.51743 12 1.23335
1.62974 6 ' 1.37123
1.06134 8 : 1.34849
3.0 : : i : _
0.74371 10 1.32356
0.54480 12 1.2985¢




Sampling Time

= 2 secs;

70

Process Time Constants = 5.027

Desired Steady State Value = 1; Process Dead Time = 7.4
Performance : No. of Sampling Transient Response
Index Loop Gain - Intervals Used at Steady State
0.43035 6 0.31606
0.21978 8 0.24679
1.0 .
0.12601 10 0.20020
0.07764 12 0.16671
1.33077 6 "'0.97733
0.85394 8 0.95890
1.5 :
0.59129 10 0.93938
0.42855 12 0.92014
1.60876 6 - 1.18149
o 1.03414 - .8 1.16125
2.0~ : - — =
' '0.71713 © 10 1.13930
0.52038 12 ©1.11731
1.75532 6 1.28913
1.12899 8 1.26776
2.5
0.78327 10 1.24437
0.56858 12 1.22080
1.84703 6 1.35648
1.18828 8 1.33433
3.0 — -
0.82457 10 1.30999
0.59866 12 1.28538
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Sampling Time = 3 secs; Process Time Constants = 5.027

Desired Steady State Value = 1; Process Dead Time = 7.4
Performance » No. of Sampling Transient Response
Index Loop Gain Intervals Used at Steady State
0.50224 6 ‘ ' 0.31037
0.25410 : 8 0.24265
1.0 '
0.14490 10 0.19715
0.08895 : 12 ‘ 0.16441
1.56500 : 6 : 0.96712
10.99457 8 . 0.94973
1.5 ‘
0.68455 10 0.93137
0.49391 12 0.91312
1.89203 - | . - 6 1 1.16921
e 120452 | o8 7 1.15021
2.0, —_— 4
‘ 0.83028 . - 0. - 1.12965
'0.59978. | . 12 ~1.10884
2.06443 o 6 © 1.27575
1.31502 .8 1.25573
2.5 —
0.90686 | 10 ' 1.23385
- 0.65534 12 0 1.21156
2.17230 6 ‘ 1.34241
.+ 1.38408 8 ‘ 1.32168
3.0 ‘
0.95468 10 1.29891
0.69001 12 1.27566
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Fig. 4.22 - Transient response of uncompensated zero-order hold control system.
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N, increases the system becomes more stable as measured by the low loop
gain values but the error (deviation from desired value of 1) decreage.
Fig. 4.22 is a typicalltransient response (equation 4.93) of the
uncompen§ated control system as a function of sampling interval. The
proportional controlled system transient response is shown in Fig. 4.23
as a function of the sampling interval with performance index as
parameter. Increase in performance index reduces steady state error
until a point is reached after which the error increases. Also increase

in performance index decreases the stability of the control system.

4.2.5 Control System With Half-Order Hold

With the addition of the dead time, the overall process transfer

" function with half order hbld becomes

~Ts -Ts
S E4+stsl -0 8 -
'G‘S)"E.urs_J, s R -0
’Thé‘Set:bf fifst;6raef difference equationé'of‘edﬁation.(4.94) is
b T Y
' _¢11(V) ¢12(V) wl(V> : .
X[ (k+3+)T] = x(kT) + ] (k) , (4.95)
+ o+ + .
0,0V 40 (M 12140

(See Appendix 2 for details and parameter definition)

c[Gers]Ty = [1 0] x [(k¥)T] ; where V = (1-8)T

The transient response is given as (assume initial states are zero)

‘ N-1 o oy
claspr)- T [Ing#}m + by AT + log¥lD) + o Iy ™)
i=0 > _

(4.96)

When a proportional controller is added to the feedback loop, and the
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Table 4.5 - Loop gain as a function of number of sampling
intervals used for various performance index

values and sampling time (half-order hold)

Process Time Constants = 5.027
Process Dead Time = 7.4

Sampling Time = 1.5 secs
Desired Steady State Value = 1;

Performance No. of Sampling Transient Response
Index Loop Gain Intervals Used at Steady State
1.49164 x 10™2 6 0.17013
4.07075 x 102 8 0.12699
1.0 -
1.21437 x 1073 10 0.10128
3.808 x 107" 12 0.08423
.6.01111 x 1072 6 0.68561
2.11693 x 1073 8 0.66040
1.5
7.72897 x 107 10 0.64463
2.8658 x 107" 12 0.63386
7.28172 x 1072 6 0.83053
2.56944 x 1071 8 0.80157
2.0 _
| 9.39432 x 10~ 10 - 0.78353
©3.48692 x 107" 12 0.77124
7.95029 x 1072 6 0.90679
2.80706 x 10~2 8 0.87570
2.5
1.02675 x 10™2 10 0.85636
3.81223 x 10~* 12 0.84319
8.36811 x 10~2 6 0.95444
2.95539 x 10~2 8 0.92197
3.0
1.08121 x 10~2 10 0.90178
4.01498 x 10" 12 0.88804
9.4321 x 10~%2 6 1.2131
3.0187 x 1072 8 1.1042
4.0 e
1.63432 x 107° 10 1.0346
4
5.19831 x 10 12 1.0021




Sampling Time = 2 secs;
Desired Steady State Value = 1;
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Process Time Constants = 5.027
Process Dead Time = 7.4

r~Pérformance No. of Sampling Transient Respohse
Index Loop Gain Intervals Used at Steady State
7.66176 x 10~2 6 0.17133
3.64853 x 1072 8 0.12768
Ho 1.90363 x 10~ 10 0.10173
1.04544 x 1073 12 0.08453
3.07823 x 107} 6 0.68833
1.8928 x 1072 8 0.66239
e 1.20918 x 107° 10 0.64617
7.8545 x 107" 12 0.63511
3.72881 x 107! 6 0.83381
2.29736 x 1072 8 0.80397
2.0 AR ‘ :
: 1.46971 x 10 10 0.78539
9.55674 x 10~ 12 0.77275
4.07114 x 107} 6 0.91036
, 2.50981 x 10~} 8 0.87831
2 1.60631 x 1072 10° 0.85839
1.04483 x 1073 12 0.84485
4.28508 x 107! 6 0.95820
2.64241 x 1071 8 0.92472
>0 1.6915 x 1072 10 0.90391
1.1004 x 1073 12 0.88978
4.68201 x 107! 6 1.2321
2.8434 x 107} 8 1.1356
4.0 5
1.9003 - x 10~ 10 11.0632
1.16831 x 10~ 12 1.0042




Sampling Time

= 3 secs;

Desired Steady State Value = 1;
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Process Time Constants = 5.027
Process Dead Time = 7.4

Performance No. of Sampling | Transient Response
Index Loop Gain Intervals Used at Steady State
1.88962 x 10~} 6 0.17217
1.22913 x 10-1 8 0.12818
1.0 :
8.82331 x 102 10 0.10205
6.69777 x 10~3 12 0.08476
7.57575 x 10~} 6 0.69024
6.36551 x 10~2 8 0.66382
1.5
5.59645 x 1071 10 0.64730
5.02585 x 10~° 12 0.63604
9.17672 x 10~V 6 0.83611
7.72597 x 10~2 8 0.80569
2.0 : S
' 6.80216 x 107> .10 0.78675
6.11502 x 10=° 12 ©0.77388
1.00192 6 0.91287
8.44039 x 10~! 8 0.88019
2.5 . ' -
7.43438 x 1072 10 0.85988
6.68548 x 10~° 12 1 0.84607
1.05456 6 0.96084
8.88633 x 10~! 8 0.92670
3.0
7.82866 x 1072. 10 0.90548
3
7.04104 x 10~ 12 0.89107
1.13627 6 1.3675
8.99741 x 10~} 8 1.2003
4.0 .
7.97865 x 10~ 10 1.0856
7.15603 x 10~ 12 1.0473
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performance index applied, the design loop gain is calculated. Table
4.5 shows the loop gain as a function of numbef of samplings used for
various values of performance index and sampling rates for the control
system. Increase in performance index decreases stability as measured
by the value of the loop gain, =-- small loop gain values implies more
stability —-. All the trends observed in the case of the control syshem
wifh zero—order are repeated here. Fig. 4.24 is a typical response
[equation (4.96)] of the uncompensated system as a function of sampling
intefval. The proportional controlled system transient response is
shown in Fig. 4.25 as ‘a function of the sampling interval with
performance index as_a parameter. Increase in performance index reduces
steady state error and also decreases the stahility margin of the
_eontrol system.

. Common to both control'systems (system with zero-order’hold and
'szstem with half—ordeh hold) is the increase in’ loop gain and hence lese .
stabilit} as the value of the performance index is increased. This is
also true for increase in sampling_time.' Also the error, —-— deviation
from thevdesired steady state value of 1 --, decreases wihh incheased
valne'of performance index but increeses with increased number of
samplings usedvandisampling time. In all the conditions tested, the
control system with half-order hold gave better transient response and
is more stable than the system with zero—order hold. An interesting
feature nbserved from the analysis of the transient response of the two
control systems is'theit behaviour with different perfnrmance index
values. The best transient response and hence minimum erroh response

occurs at a'performance l1adex of 1.5 * 0.25 for the control system with .
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zero-order hold, while for the system with half-order hdld, the best
response occurs at ¢ = 3.0 * 0.25. Also the system with half-order hold
attains steady state conditions faster than that of the zerb-order hold

system;

4.3 Experimental Equipment

The designs suggested above were tested experimentally using the
equipment shown schematically in Fig. 4.26. The system consists of a
heating tank of about 0;08327m3V(22 gals.) capacity connected through
1.9cm (3/4 inch) pipe of length 0.762m (2 1/2 feet) to a U-tube shell
and tube exchanger. The heat exchanger shell is 0.914m (3 feet) long
~and 20.32cm ( 8.inches) in diameter and is made of 6 inch §chedu1e 40
ifén pipe. There ;re 18 — 1¢27cm (1/2 inch) outside diameter copper
tubes of length 76.2cm (30 inches) in the tgbe compartment of the heat
,exchépger (éee appendix 13 for‘hea; exchange diégramj. The heét: |
’ e¥¢ﬁahéér is coﬁnéctéd aé_avfeedﬁagkvloop to the ﬁeating tank_throgéh é""
1;27cm (1)2vinch) copper pilpe énd a recircﬁlating éﬁﬁp;_ Alsd on tﬁié
fgédback loop is a by pass thét is controlled manually through a |
géfe—val?e. The heating tank (drum) has a copper héating coil through
which steam from the main line in thejlaboratory is used to heat the
water in the tank. The steam flow rate is controlled by a gate valve
that is mangally controlled. Five copper—constantan 'ﬁngrounded'
ghermocouples are placed as shown in the diagram. Water is heated in-
the drum by steam and flows through the.connecting pipe, where one of
the thermocouples 1s located, into the shell side of the heat
exchanger. It {s assumed that the water temperature at this connecting
pipe is the same as that in the tank. .The hot water in the shell is
used to heat the coolant water in the tubes. The outlet shell water is

returned to the tank through the recirculating pump and an 'MK 315'
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Fig. 4.26 - Schematic Diagram of Equipment
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paddle wheel flow sensor which measures the flow rate and transmits a
flow signal to an 'MK 314' signal conditionmer. This conditioner
converts the signal to voltages and transmits it to the digital computer
through a 'Miniac' analog computer for voltage scale down. The PDP8
digital computer reads this voltage in machine units which in turn is
converted to flow rate values by a control program logic. Another |,
- '"MK315' paddle wheel flow sensor is placed at the tube water inlet
position. This sensor measures the flow rate of water which flows
through the control valve. The thermocouples transmit temperature
-readings in voltage to five (one for each thermocouple) '"Model 199 Omega
digftal temperature indicators' that are mounted on a vertical panel to
-enable a visual inspection of the temperature profile in the control
aystem. Voltages proportional to temperature are sent from the
temperature indicator to the digital computer (PDP8) through the Miniac
analog computer. ‘In the analog computer, the voltages are magnified ten
times to reduce the error in the A/D converter._ . |

~ The control system conaists of a PDP8 digita;'éomputer which ,
samples the inletfoutlet water temperatures,‘andiwatervflom.ratea and_<
manipufates the control valve to'obtain the desired outlet'water‘
temperature. The computer is interfaced to the control valve through an
operational amplifier. The voltage signal is 'power amplified' to 24
volts and sent out in square wave form to a power—current converter,
this then transmits the current signal.to a current_to air pressure
converter which then drives an air-to-close 'Foxboro' control valve
positioned at the water inlet tube of the heat exchanger. All through
this study, it has been assumed that the dynamics of the control valve,
thermocouples and flow sensors are negligible compared to the process

dynamics.
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4.4 System Identification and Initialization

4.4.1 Identification.By Graphical Methods

The control system as‘de3cribed abdve was used in the
identification and initialization process. In this stage of the study
the air that controis the valve wés cut off making fhe loop an open
one. Under this condition, water was allowed to flow through the tube
and out to the drain continuously, while the heating tank was filled and
the recirculating pump was used to circulate the water from the drum
through the heat exchanger shgll and back to the heating tank. This
sityation was allowed;tb continue until steady state in temperature ;s
observed from the digital temperature indicators was attained. Then a
10%Z increase in steam pressure, manually set by turning the steam valve
on the mainliﬁe was effectgd.' A sampling timg of ;ne second was used to
datalog the temperature ptofile of the outlet cﬁbe water. Due to £he
'excessive.noise in thé>system,fthe‘teﬁperature response was filtered.
Thisvﬁaévdéhé by ; pfogram thch'averagea'the teﬁperéturé ffom fifteen
vmeasufements taken atlequél times calculated fér each saﬁpling rate. 1In
this case fifteeh measurements were averaged in one second, the average
was filtered by multiplying it by a weighting fac;or and added to a
weighted value of the previous filtered response. The relationship used
in this algoritﬁm (temperature response datalog) is gi&en‘as

T(J) = ale(J) + (l—af)f(J—l) (4.97)

where T(J) is the jth filtered response; Tl(J) is the averaged
temperature, T(J-1) is the previous (J-1)th filtered response

af is the weighting factor.
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The @ used in this work was 0.4. Both the number of
samplings summed up and averaged and the weighting factor were
determined by trial and error, comparing the printed responses with that
6bserved on the. digital temperature indicator. The process reaction
curve is shown in Fig. 4.27.
Since there is no priér knowledge of the control system dynamics

and hence transfer function, an approximate transfer function was

63

obtained by the method of Strejc. The control system approximate

transfer function was determined to be

e-0.8734s
Gp(s) = AR

e (4.98)
(4.2s5+1)

This was then modified-to a second-order system with a transfer function
" of

6 (o) = e 749/ (6.85+1)2 | o S (4.99)

 See App¢ndix_5 for details .~

4.4.2 ﬁQuasilinearization Method

| This.metﬂod has been known to give better parameter vélues than
graphical methole.‘ A better approximation of the sécond—order transfer
function parameters Qas calculated by quasilinearization method. The
basic assumptions necessary for the formulation of the identification
aigorithm used in this sﬁudy_are constaﬁt dead time (or negligible
variation in it), constant values for sampling time, filtering time and
weighting facfor for filtering the measured temperatﬁre response. The
quasilineariéation method (Eveleigh, V.W.le) identifies T; in the

second-order overdamped plus dead time transfer function by solving for
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successive soiutions of the transfer function linearized with respect to
variations in the unknown parameters. The above algorithm was used with
Runge-kutta 4th order formula to estimate the time constant of the
process (see appendix 6 for details) and it was found to be 5.0271. The
same dead time as determined by the graphical method was used again
since the linearization method employed here requires the computation of

the derivative

3
3. (t=T) = =(£-T)

The process reaction response used in this determination was generated
by a step input which does not yield sufficient information to calculate

the delay time.

4.5 Experimental Result

The suggested design, using the new performancevindéx?definition,
~was tested. A 50% proportiona; band about the éet point was impdsed.on
the controlle?f\ A propoftiona1 con£tol algorithm for -the hélf—brdef"
.hbid circuit was programméd into the PDPS.aigital‘éomputéff‘.Thén
switches for the'cifculatiﬁg éump, coﬁtfol valve and digital temperature
indicators were set on. The cold water from the ﬁab was allowed to flow
through Ehe-valve and into the heat exchaqéér.tube. The whole system
was left at this condition for about‘five minutes in order to attain
steady state. A step chaqge in the lqad variable (steam pressure) was
manually imposed:.on the heating drum—heat exchanger control sysfem.

Due to excessive noise pgesent in the system, the single-
exponential filtering equation was again used to smoothen the measured
_outlet temperature response. The single-exponential filtering equation

is given as
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DP(J) = afDl(J) + (l—af) DP(J-1) (4.100)

where DP(J) is the smoothened temperature at instant J, DP(J-1) is the
previous smoothened temperature and D1(J) is the average actual tempera-
ture after fifteen sampling times. The af is the filter factor and

is equal to 0.4.

The control algorithm is written in such a way that the valve is
only activated or moved after fifteen sampling measurements. For the
control system with half-order hold.the actual temperature printout is
calculated from the relation

DK(J) = DP(J-1) + 0.5[DP(J—1) + DP(J-2) |*(t-T)/T (4.101)
where DK(J) 1is the calculated output response at instant J, DP(J-1) and
DP(J-2) are the actual smoothened output temperature-for the previous |

: and penultimate periods response.respectively. A half-order hold uses
".the two, previous responses to determine the new response. Fig. 4 28a,b
and 4. 29a b~ are thertransient responses and manipulated variable .
responses respective;y for the control system with half—order hold for
. L ' ]
two different values of performance index. Figs. 4.30a,b and 4.31a,b
are‘the same conditions for the control system with zero-order hold.
‘These resnlts confirm what has Been shown theoretically to be true that
.the half-order hold circuit aiways results in better responses than that
of zero;order hold. The criterion used to arrive at this conclusion is
the less oscillatory nature of the temperature and manipulated variable
responses of the half-order hold control'system.than that of zero-order
hold control_system. Hence the possibility of the half-order hold
control system exceeding threshold stability condition is greatly

minimised. Also the system with half order hold attained steady state

conditions faster than those of zero order hold.
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CHAPTER 5

DIGITAL COMPENSATION DESIGN

Discrete control algorithms, suitable for programming in a direct
digital control computer are now derived. Three compensation design
algorithms viz: deadbeat performance or minimal prototype design
(Bergen and Ragazzini);'+ improved proportional controller (Moore
)66

Eglgl)hq and optimum feedback control (Tou, J.T. are formulated and

experimentally verified.

5.1 Deadbeat (Minimal Prototype) Performance Design

Many special purpose algorithms, both continuous and discrete,

”-_Afor lumped parameter systems have been published in the control litera-

. ’ »
ture.Most of these works have dealt with first order plus dead time
model systems. In an earlier paper, Moslerigglgigs,reported‘on mihimalv

prbfdtjpe algorifhmsvfor'this:tyﬁe‘of'System-j_Shunta and L{been608 géve

minimal prototype and miniﬁum squared error designs for a proceés with

inverse response behaviour. Also Luyben, W.L.36a presented damping

coefficient design charts for sampled data control of a first—order
process with dead time. Several workers, Gupta, S.C. and C.W. Ross;20a
Hartwigsén, C.C. et gi;zob Morley, R.A. and C.M. Cundell*"? and

Thompson,A63a have reported the use Qf'discrete versions of conventional
© control algorithms. The éerformance of these .systems under éomphter
control 1s of course limited to that which is obtainable from their
continuous—data analogs. Although the responses of these special

purpose algorithms are excellent for the specific tasks for which they
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are designed, their performance often deteriorates under undesigned load
condition or parameter shifts. In this study a generalized, —- single
algorithm that can apply t® setpoint and load changes —-, direct digital
control algorithm is designed for a second-order overdamped process with.
dead time using either a zero-order hold or half-order hold as smoothing
device. |

A direct digital control computer is normally used to control a
number of process loops on a time-shared basis. In this study'a typical
loop is considered, and other loops in the overall control system can be
treated in a similar manner. At the end of each sampling period for
this particular loop, the-computer samples the output of the loop and
compares it with the desired setpoint value to form a value for the
error. The computer then calculates a new value for the manipulated
variable. The manipulated variable of the loop is ‘held constant at the
- value calculated by the computer until the loop is sampled again. ~The-
computer memory 1s used to store sequentially past values of the error
and manipulated variable. Note that only a small’number of the uost
recent values, as defined by the_algorithm, are retained in the
computer.

The control algorithm utilizes a.linear combination of the past
history of the system in forming a new value for the manipulated vari-
able. The absolute position u(t) of the final control element is deter-
mined from the formula

u(nT) =
i

I o~ R

ge [(n-1)T] - E h.u[(n-3)T] , (5.1)
0 =1 J -

Equation (5.1) gives the value at which u(t) is to be held constant

during the entire (n+l)st sampling period, that is, u(t) = u(nT) for
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nT < t < (n+l)T. T is the sampling time and the g's and h's in equation

(5.1) are all constants. In this algorithm only the (K+l1) most recent

values of the error and the p most recent values of the manipulated

variable need be stored. The design objective is to determine suitable

values of {gi}, and {hj}. The deadbeat performance index design by the

-method of transition state matrix is used. The requirements of the

deadbeat performance criterion for the control system are:

&

e

(i1)

(iii)

The compensation algorithm must be physically realizable,
which implies that the order of the numerator should be less
than or equél‘to that of the denominator.

The output of the system should héve zero steady state error
at the sampling points.

The final output should equal the input in a minimum number

of Sampling‘periods.

HchVer,@for applicatiohs of digital ¢omﬁensation to feal.- 

systems, several additional constraints are included:

(iv)

(v)

(vi)

The digital coﬁpensation élgorithm shoﬁld be open-loop
stable. |

Unstable or nearly unstable pole-zero cancellations should be
ayoided, since exéét cancellation in real processes'is
impossible, and the resulting closed—lQop system may: be
unstable or excessively éscillétory.

The dé;ign should consider the entire response of the system

to eliminate hidden oscillations (intersampling ripple).
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(vii) 1In addition to the system responding optimally to a given.
test inpu;, it should perform satisfactoriiy for other
possible inputs and disturbénces.

These extra constraints are required inorder to ensure that the
proposed compensation algorithms perform satisfactorily on real
systems. To meet these requirements, the resuvlting control system may
respond with a settling time longer than the deadbeat performance
settling time. However, the idea of finite settling timé is used only &
as a theoretical performance criterion. Ih real systems, as with the
case in tﬁis study, wﬁére_modeling error, noise, and momentary diSthb—
ancés are present, it is not possible to bring the state‘of the system
completely to resﬁ. This does not negage ;he value of the theoreticai
concept of finite settling time, because systems designed to meet this

.ﬁheoretical requirement gi&e sﬁtisfagtory performancé in réalvtesps a;,

_is observed in this study.

5.1.1 Development of Algorithm

- The compensator design.précedure is knownvés.the variable-gain
approach due to Tou, J.T.SS‘ The basic princiéle uqderlying this
approéch is the assumption thét the desired digitalICOﬁtroller can be
treated as a variable~gain elemént.Kn,'which will have different valueg
during differeant sampling periods; Thé inpdt fo the variable-gain
element Kn is the coﬁtrol.signai u, and the output is assumed to be uje
At any instant t ;.nT+; tﬁe input and output of the variéble—gain

element are related through a constant multiplying factor Kv, that is

ul(nT+) = Kv u(nTt) : (5.2)
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where Kv is the gain constant of the variable-gain element during the
(n+l)st sampling period. See Appendix 7 for tﬁeory.

Let the deadtime T be any multiple of the sampling time. The design of
the required digital compensation will depend only on the response of
the system at instants of sampling plus deadtime. Therefore, it will be
necessary to verify that the system does have satisfactory intersampling
| behaviour. At least two methods exist for determining the presence of
~hidden oscillafions (tﬁat is, intersample fipple). One classical tech-
nique is to analyze thé system by the modified Z-transform after the
compensator D(Z) has been designed. The entire response can then be
verified to have finite settling time. A second method is to determine
the cor:eSponding respoﬁse of the manipulate& variable M(Z). For

1inéar, time-invariant, overdémped processes, 1f the fesponsé of the
closed-loop'system has zero steady staté error at sampling plus deadtime
ihstan?s, and ifvthe manipulated_variable élso has a finite seftl%ng
tiﬁe, then if i§ éssured that no-hiddeﬁ oscillatioﬁs_égist beqéuse’ﬁhe
system is réceiving cénstant 1nput.:5It is-notvngcessérf tofﬁsé-éhe
modified Z-transform on the manipulatgd vériable, Becaﬁéé itlis'a pieée;:A
wise constant signal and its valhe§ at éaméliné plus delay time iﬁstanté'
completely descriﬁe its'reponSe. If the- same system respénds with.A
finite settling time;'but the'manipﬁlated variable continues'to‘oscil—.
late, the>response of the system mustlbbviously have an intersampling

ripple.

5.1.2 Compensator Design for System with Zero-Order Hold

The first step towards obtaining a set of first-order differen—

tial equations to describe the dynamics of the system and hence the



'Fig. 5.1 - State-variable diagram of control system with zero-order hold.

- 201 -
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state variable formulation is to draw a block diagram fof the control
system. This diagram is made up of integrators and constants. Consider
the control system of Fig. 4.1 and remove the controller, the overall
transfer funcfion becomes

8 e—Ts 1 - e—Ts _
(s ¥ 6,)(s + 6)) 5 | (5.3)

G(s) =

The state-variable diagram of Equation (5.3) is shown in Fig. 5.1 for a

unit step change.h The dotted line represents'the future position of the

‘ 1
compensator.

The state vector V is defined as

. r
' X3 .
V="1X o (5.4a)
u . .

~ 'and the initial state vectors are

1
o o1 0. o e
V() = 0 (5.4Db)
. 0 ’
while after the step change the state vectors bécéme
1
0 ‘ .
v(ahy ‘= | 0 7 o , (5.4¢)
1 : '
where A is the deadtime.
From Fig. 5.1 the first-order differential equations dre:
dv ” :
vy (5.5)

dt
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0 0 00

0-8;1 6
where A =

0 0 -6, 8

0O 0 0 O

and the state transition difference equations are

V(R F BT = BU(m ¥ BT) ' : (5.6)
1 0 0 0
1o 1 0 0
whe’re B = -
00 10
1-1.0 0

fhe soluﬁion-to the differential equations by state transition ﬁatrix

méthod'is :_ . - .
'1 V(t)f%'¢(X) vCA+)_ j',v'f'.';   f.f¢'§““3f7?)- =>f 51'7(5;75:7"'

where A - tv— (n;+‘A)T B | | | “

Note that ¢(A) is the overall transition matrix and is given as

s = L [s1-A) T

Thus,
1 0 0 0
—elk —le ~62X —-6_ A -0, A
0 e bl(e -e ) b2+b3e +b4e
(X)) = : . (5.8)
—GZA -0 A
0 0 e 91(1 - e )
0 0 0 1
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See Appendix 8 for details of derivation and parameter definition.
If it is assumed that the digital compensator is a variable-gain

element K , which implies that the value of K varies from one period to
n n

another, and let this compensator be introduced into the control loop as
shown in Fig. 5.1; then at any instant t = (n + A)T', the input and

output of the variable-gain element are related through a constant

multiplying factor K, that is, u;[(n + ATH) = Knu[(n + AT+]. For the

condition t = n+ j+ 1 T, the A in the transition matrix becomes
A=+ i+ 1DT-(a+ j+8)T=(1-98T-=7V.
(where j is the integral multiple of sampling time part of the process

delay).

. Hence the transition matrix is given as

: Lo L
_ -eiv "‘ :;élv -6, - -8V ;626
0 e bi(e , .-e ) [bé+bée' +bLe ]Kn
6 (M) =] 'V V (5.9).
0 0 e‘62 vei(l—e-ez K
0 0 0 1

Thus, equation (5.7) can be written as

Vi(n + j + 1)T] = ¢ﬁ(V)BV[(n + jT] (5.10)
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From equation (5.10) when n=0

1
-6,V -6,V
[b' + b'e + b'e X
V(I#IT) = ¢ (VIBV(J) = (5.11)
6. (1 - -BZV)K
1 € o
B 1
and when n=1
V(2 + )T] = ¢,(V)BV(I+]iT) =
-6,V ;elv -6,V 1 -6,V -6V 07
' ] ' (X - -
{e (b2+b3e +b4e )Ko + b1 1(1 e (e e )Ko +
: -6_V -9_V -6V -0V -9V -6V
1 2 1 2 2 -2
' ' ' ‘ -(h! i 1o - 0 -
K (by+ble — +bje ©)[1 (b2+p3e +bje )Ko]} e (me’ TR
-6,V = -8,V -8,V » -8V -0V .. :
_ 20 T2 e 2 yr1—(ptante L oape. 2
{ele S (e 7K +.91(1‘e )[1_(b2+b3e " +bje X IK, }
-8V -8,V ’
- 14h! 1 ‘
1 (b2+b3e _ +b4g X

C o (s.12)

Since the process has been assumed to‘be-é'segond—order-éysﬁem, the
following condition must be'satisfied_for“dead beat performance, i.e.
system responds to a stepwise input in the quickest manner without.

overshoot.

8

— -0V -0V -0V ' -8 Y., -8V -8V
X1(2+jT) = e (bé+b§e +bLe )Ko + biel(l—e Y(e - )K0
-6,V -6,V -0,V -0,V
+(b'+b'e +b'e Y[1-(b'+b'e +b'e X K = 92 (5.13)
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—62V —GZV —62V —61V —62V
¥ 3 = - - - 1TH? ' =
X2(2+JT) ele (1-e )Ko+91(1 e | )[1 (b2b3e +b/e )KO]K1 )

4 1

(5.14)

Equations (5.13) and (5.14) are solved simultaneously for Ko and'K1

-8,V -0,V -0,V
[62(1-e ) - (bé+b§e +be )] :
; (5.15)
° -6.Y -6.V -9_V -9V - -8,V

(l-e 2 (e 1 -e 2 )[(bé+b5e 1 +ble 2 )+bi61(1fe 2 )]

A

-6V -0V

[1-e 2 (1-e 2 ,

K1 = . (5.16)
‘ —OZV ’ -6,V -0,V

(l-e )[1—(bé+b§e _ +b£e X ]

For simplicity in analysis; it is assumed that all the delay
effects in the control system are encountered in the compensator such

that-thévoutpﬁt from it, is a delayéd.éignal.' Thus, instead of having

» tﬁe.output signai’be u) (nT), an output signal of uj(n+jT) is derived..
The relationship between the input and output signals to and from the
cémpensator is

ur[(n+))] = K_ u(aT) - (5.17)

Also required for deadbeat performance is that the output from the
variable~gain element after the second-sampling plus deadtime instant
should be held constant at 1/6; Equation (5.11) gives u(0%*) = 1, thus

w1 (3TH = K
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From Equation (5.12),

+ —61V —62V
= - l 1 = . ’
u(T ) 1 (b2+b3e +b£e )Ko Al (5.18)
and
b1 = +y o | '
ul[(1+J)T ] = Klu(T ) lel (5.19)

~ Thus, the Z-transform of the output sequence from the digital

compensator (variable-gain element Kn) may be expressed as

S| -1 -2 -3
ul(Z) = Z [Ko + KIAIZ + AZZ + AZZ + ee] . (5.20)
- which reduces to

-3 : -1 -2

A [Ko + (Kixl-Ko)z’ o+ (Az - Klkl)z ]
uy (2) = : =) — (5.21)

ad-z)
But the Z-transform of the input signal to Kn is

_ ;~u(Z)A=.1.+'A1;_ , (5.22).

Thus, the-pulsé tradéfer function of the desired digital controller ié
given by

-1 ' -2 '
MERIZ T+ O, KADZTTT M(2)
- T3 = (5.23)
u(z) . : (I +22 )1 -2) E(Z)

~ | iy .
ul(Z) _ VA [Ko + (K

Equation (5.23) is a generalised compensator algorithm for the control
systém with zero—-order hold irrespective of the value of the deadtime.

The three important cases are as follows:

Case I: No dead time (T = 0)

In this case j and 6 are zero, thus V = T.
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TRANSIENT RESPONSE OF COMPENSATED SYSTEM:

transfer function becomes

-1
1
1

-2

2% 1
=

- Az

[Ko + v Z + v

D(Z) =

[1+ v,2

where Yl =KA -K Y2 = Az - K, A

(o)

A schematic diagram of the system controlled by the digital

1%13 Y3 <

Therefore,

Al -1

the compensator

(5.24)

computer is shown in Fig. 5.2 At each sampling instant, the digital

controller samples the error signal e(t).

The controller operates on

this sampled value e*(t) and the previous sampled values to obtain an

'output m*(t). This value of m*(t) is then retained until a new value is

'computed at the next sampling instant.

,The signal flow diégram of the control system is shown in Fig.

vA5}3.: The state diffefential equationsﬂin matrix form arevgiven as: o

X, (s) i ¢'1'1,(S) $1,(s) ¢'1'3(S). 0 X, (KT)

X, (s) 931(8) 435(8) 935(s) O |} X, (KT)

X3(K+1) K, 0 0 1 XB(KT)

x4(13+1) —K3 0 Al Y x4(1<'r) |
where K2 = Yl - K0Y3; K3 = Yz + KoYl - Y3K2.

parameter definitions).

—

1 uce
v5(s)

K

(See Appendix 8 for

r(KT)
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» ‘ ' o
r» + -et e(t!‘, D(2) Im'gt) H(S) m) (s+e1)6+eq C) N

Fig. 5.2 - Schematic block diagram of control system with digital
controller.

-1)(1(k)

."

-

Xk v

s | s’ |
" : @ X8

Fig. 5.3 - Signal flow graph of control system with digital controller
(zero-prder hold).
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(72)
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Q. _ |
E 30 .11 = 1.3 sects
N - 12 = 3.1 secs
T = 0.5.secs

N
Q

Transient

10;

4 6 8 10 12

Sampling interval, N

Fig. 5.4 - Open loop transient of uncompensated control system with
zero—-order hold.
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T2 1.3 secs

7, = 3.1 secs

o , o
: (é) _-64. . T_ = 0.5 secs

. Ei: S - Set Point = 1.0
oc

: E I4"‘ v
°
&
c ;
3] i
}—

+— -+ 3
L] L

2 4 6 8 10

Sampling Interval, N

Fig. 5.5 - Open loop transient'response of compensated control system with
zero—-order hold.
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The transient response of the digitally compensated second-order
overdamped process with zero-order hold and no dead time is derived from,
the solution of Equation (5.25), noting that the output C(nT) is equal
to X1(nT). Figs. 5.4 and 5.5 are the transient responses of both the

uncompensated and compensated system respectively.Case II: Dead time T

w

= mT, where 0 < m < 1.

This condition results in j = 0 and V = V; and

1y (A, = KA 772

a -z hHa+azh

K, + (KA =K )z

D(Z) = (5.26)

Case III: Dead time T = (j + m)T where 0 < m < 1; and V =V,
This results in

- -2
2 ~ KAz ]
s

2

_j _ ...1
2R+ (KA - KDZ + (A

1 -zHa +a

D(Z) = C(s.27y

3;1.3 Compensator Design for System with Half—Order.Hold_

Consider the control system of Fig. 4.1 and remove. the

controller, the overall transfer function becomes:

TS

4+ 5Ts. 1 — e IS fe”
¥

6 = G T TE e G A ey (5.28)

- The state-variable diagram of Equation (5.28) 1is as shown in Fig. 5.6

for a unit step change. The dotted line represent the future position
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Fig. 5.6 - State-variable dié

T

gram by cascade programming method.
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The state vector V is defined as

and the initial state vectors are

v(a) =

v(at) =

(5.29a)

(5.29b)

(5.29¢)

(5.30)



where A =

and the state transition equations are (5.31)

g Vi(a ¥ )T

- where B =

0 0
_.61 1
0 -8,
0 0

BV[(n + 4)]
0 0
1 0
0o 1
.-1 0

116

~1/5T

-1/5T .

-1/T

and A is the total process dead time. °

(5/4)6

(5/4)0

(5/4)8

As has been stated earlier on, the solution to the differential

equations (5.30) by state transition matrix method is V(t) =-¢(}) v(ah

(5.7).



Thus,
1
0
$(A) =1 0
0
0

where a = 1/T; aj)

1/5T; apy = (5/4)8.

-6
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A

b0y (V)

See Appe

; _
$,5(0)
-8\
2
-e ) $55(2)
~a)
2521me )
1
(5.32)

ndix 9 for parameter

definitions. ApplYing the same procedure used in the zerb—order hold

case gives

——

6 (V) =

v
)

]
$24(V) %2550
~a¥ 87
-t - '
%le me Ty 935K)
-aV -aV
a 1 _ a 1
e azz(l e )Kn
0 1
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Thus, equation (5.7) can be written as

Vi(n + 1+ HT] = ¢ (VBV[(n + H)T] (5.10)

From equation (5.10), when n = 0

- _
95Ky
V[(1_+ PDT] = ¢O(V)BV(J) = ¢35Ké | (5.34)
[ - -aVv '
%1 — e IR}
1
_whgn.n =1 -
V@ + DT] = 6 (MBI + PT] =
B _ ;elv -8,V -8,9 1 . -av - 7
{095kt e~ Hajle " —e T oygRimdyan,(lme Ko, (1mg, KK}
-8 VvV - ' l -3V —av -6 v

Tl Attt - - 1 - ' '
e " dgKimagaj,(Ime d(e me K ROy (1-0, K Ky

a7 —a¥ ~aVv

a! — 1 al — —_ .l '
29 (1-e )KO+ 22(1 e (1 ¢25K0)h1

L ¢25K0

' , | ' (5.35)
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Since the process is a second-order system, the following conditions
must be satisfied for dead-beat performance, i.e. system responds to a

stepwise input in the quickest manner without overshoot.

-61V : —91V BZV ' -aV
= ' - - -
Xl[(2+j)T] ¢25Koe. +ai¢35(e e )Ko ¢24aéz(1 e )K$+
- YR = .
¢25(1 ¢25K0)K1 1 | (5.36)
-0,V -8V 8,V -aV
. - [} 1 - -— 1
_Xl[(2+J)T] ¢35Koe +a6a22(e e Y(1-e )Ko +
- "K' = .37
¢35(1 ¢25Ko) 1 0 | (5.37)

Equations (5.36) and (5.37) are solved simul&aneously for K; and Ki.

\ -6,V -0,V | ) -a¥ -6,V
Ko = t35/lle  me " )(8y50q5%a d35)toyqugupy(ize e ) -
o -eiv : o S o
L0350, (Tme T YT o (5.38)
: ., =a¥_ -8 V. oy =8V '
R} = [agas,kl(e @me " ') = ¢y Kle 1/ 645 (1=, cK!) (5.39)

, For4simpliciﬁy in analysis, it is being assuﬁed that all fhe
delay effects in the control system'are concentrated intthe compensator
such that the output from it is a‘delaygd.signal. Thus} instead of
having the output signal be u)}(nT), aﬁ output signal of u)[(nt+j)T] 1is
derived. The relationship between the input and output signals to and
from the compensator 1is given as

ur[(n + T] = K'u(aT) - (5.40)
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Equation (5.34) gives u(0%) = 1, thus u)(jTH) = K

From Equation (5.35),

+ = — 3
u(T%) = 1 - ¢, K! =8 (5.41)
and ul[(1+j)r+] = ’iu(th) = K] (1-¢,cK!) = K18, (5.42)
X (24 DT = e &al (1-e 2K + o (1-e"2"y(1-¢. K'IK! = B (5.43)
3herd . 22 o 22 257071 2 -

It should be noted that deadbeat performance requires zero input to the
third integrator for t > (2+j)T. To satisfy this requirement on the

third integrator, the output of the variable-gain element K; must be

-

mdintained at B, after the second sampling plus deadtime period. Thus
the Z-transform of the output sequence from the digital compensator

(variable-gain element K;) may be expressed as

w,(2).= 2, [KOA+ Klslz o+ szz,_.+.§zz’ .f ceed] e :FS.AA).
* which reduces to ' o o 9
_s IR+ (RB.-K )Z = + (B,-KIB,)Z 7]
Ul(z) =771 _o 11 "o - 2 171 (5.45)
(L -z 7) ’
But the Z-transform of tHe input signal to K; is
u(z)y =1 + BlZ ' ) (5.46)

Thus, the pulse transfer function of the desired digital controller is

given by

' ' i -1 e =2

_ - (5.47)
(1 -z +sz7h '
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Equation (5.47) is the generalised compensator algorithm irrespective of

the value of the deadtime. The three prominent cases are as follows:

Case I: No dead time (t = 0)
In this case j and 8 are zero, thus V=T

TRANSIENT RESPONSE OF COMPENSATED SYSTEM: Therefore the compensator

transfer function becomes

[K' + 832_1 + 842_2]
D(zZ) = ) - (5.48)
[L+ 82 - 8,2 ]
” v = 1 _A [ = - v = - '
wheTe 83 ; Klsl Ko, B4 32 K161 and B5 Bl 1

A ééhematic diagram of the system controlled by the digital computer is
shown in Fig. 5.7. At each sampling ihstant, the digital controller
sampleé theverrbrAsignal e(t). Thé_cdntrqiler qpérates'on ;his ;ampled
e*(t) éndvthe prgvious sampled.valuésigoiobtain ?n output‘m*(f).b Thié_
valﬁe.éfvm*(t)'ié'ihen rétained dﬁtil‘a ﬁéw valgé'ié céﬁputédréf the
next‘sampling instant.

The signal flow diagram of the éontrol system is éhown in FigL

5.8. The state differentiél.equations in matrix form are given as (see

Appendix 9 Eor,parametef definition).
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T Yoy 'y
rt) 3 ea, €'e) @_rr_ugHold mt) (ﬁ%?()s ?e)(sq C(t)_>

Fig. 5.7 - Schematic block diagram of system with digital controller.
X (k)

S—I
4

S-—‘
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. —Z&—Qﬁ"} So S St S
k) e ® LX)
T =)

¥ig. 5.8 - Signal flow graph of control system with digital controller (half-order)
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150

T1 1.3 secs

T, = 3.1 secs

H
I

0.5 secs

-+

oot

" Response

Transient

4+

50t

2 4 6 8 10
Sampling Interval, N

Fig. 5.9 - Open loop transient response of uncompensated control system
with half-order hold.
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71 = 1.3 secs

Ty 3.1 secs

T 0.5 secs

Response

: Set'Point % 1

Transient

— e -}
v A ¥ T

4 6 8 10

Sampling Interval, N

Fig. 5.10 - Open loop transient response of compensated control system
with half-order hold.
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X, (s) -_¢;1(s) 0,()  01.(s) O X, (KT) v (s)

X, (s) $50(8) 0y (s)  byu(s) 0 |[x, kD) {¥5(s) |
= : + Y(XT)

X3(K+1) —h1 0 0 1 X3(KT), hl

X, (K+1) ~h, 0 B, -B5 [|X,(XT) h,

=8, - K'B_; =B, +K'B - .
whete h1 Bzv oBS’ h2v, 64 081 BShl

The transient'response of the digitally compensatedlsecond—order
overdampgd process with no. deadtime is derived.from the solutidn of
ﬁquation (5.49), noting that the output C(nT) is équai to X1(nT).

L Figs. 5.9'and'SQIOJayé.tﬁé'tfaﬁéiéﬁti?eébohéés.ofxthé unc6ﬁpen§éte&.anq

compensated system reSpectivelyal_g

Case II: Dead T = AT, where'Q <A< 1.

This condition leads to j = 0, and V = V,.and

_ -1 =2
[K' + (R!B,-K")z "+ (B,-K'B. )z 7]
D(Z) = o 171 o_1 2 -i 1 (5.50)
(1 -z )(} + BIZ )
Case IIT: Dead time T.= (J+A)T 'where 0 < A <1
This vresults in
. [K' + (K!B —K')Z—l + (B,-K'B )z—z]
D(Z) = 773 o 171 o 2 171 (5.50)

(1 -2+ 827
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EXPERIMENTAL RESULT: In evaluating any proposed control algorithm, the
closed loop system should perform satisfactorily in the presence of
modeling error and noise which inevitably occur in real systems. The
digital compensation of Equations (5.23) andr(5.51) for control system
with zero-order hold and half-order hold respectively were tested
gxpefimentally. Due to the excessive noise present in the system, the
output temperature response was averaged after fifteen measurements and
filtered using the single-exponential filter equation as has been
explained in Chapter 4. Figs. 5.1la,b; 5.12a,b, 5.13a,b and 5.14a,b are
the transient and manipulated variable responses for step.changes in the
load variable (steam pressure) and set—point respectively for control
systems with_zero—-order hold and half-order hoid.v Though, it was not
possible to bring the state of the system completely to rest after two
éampling plus dead timé peribds; this does hot negate';he value of the .
theoretiéalléoncépt of“finite'settliﬁg-ﬁime"because“sysfe@s'ﬂesigned‘éd'
neet thiS'requirement-fheoretically as observed in this:work, givé
satisfactory performance in realiteéts.. In the two conditions tested
the system with half-order hold gave better responses than_those of
system with zero-order hpld. This is in agreement with what %és been

. suggested in the 1iterature29 since the half-order hold is a better
approximation to an ideal filter than zero-order hold. What looks 1like
ripples in the manipuléted variéble responsés of the two systems may bhe

due to the process noise in the control system.
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Fig. 5.1la - Transient respohse ofia”digitally controlled closed loop sampled-data system
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5.2 Application of Combined Optimum Control and
Prediction Theory to Direct Digital Control

The dynamics of chemical process, as distinguished from those of
mechanical or. electrical systems, are characterized by large time con-
stants, distributed parameters, and often time sluggish response.
Although the criterion for optimum control in the chemical industry is
generally maximum profit, a criterion of minimum steady state error
would seem to be almost equivalent and may clearly be more convenient
. and simplier for analysis. The optimum feedback control law gives the
manipulated variable as a function of state output.

In the control of many industrial processes transport lag has a
sigﬁificant effect on the performance of the control algorithm. Common
also, is the fact that the state variables of these systems are not per-—
'fgctly known, but instead noisy measurements of a subset. of theﬁ are |
7';;Vai1ab1e.  Furthermore, there is often substantial ptoéesé ﬁoise'pré-

i sénﬁ,v‘This paft,df tﬁe étu&y develoﬁsia hethodélogy'fS:;the éomﬂinédi
bptimum control and prediction of a class ﬁf‘these systems using either
‘a zero—hold.order or half-ofder-hold as the.smoothiﬁg device.‘ Combined
contrblband prediction theory ié applied to second-order plus dead Eime
approximétions of higher order overdamped systems.' For example, in a
distiliation éolumn,-the transfer function between feedrate and overhead
composition can accurately be represented by this approximation. Also,
'a heater—heat exchange? system can be apprdximated.by this model.. For
these systems, the combined control and prediction algorithm may be used

as a direct replacement for conventional direct digital control. Using

combined control and prediction, optimum control of noisy systems can be
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achieved within realistic operating constraints. This section describes
the implementation of combined contfol and prediction to single input -
single output systems which may be approximated with the second-order
plus deadtime representation. The dynamic programming-method66 is
employed for the derivation of optimum feedback control law. See

Appendix 10 for details of theory.5.2.1 Analysis and Design of Control

System with Zero—-Order Hold

The control system overall transfer function is

-Ts

G(s) = (1L — e °) 6e "°/s(s + 8,)(s + 6,) "~ (5.52)

The state—variable diagram of thé control system for a step change is
given in Fig. 5.15. The existence of transportation lag and process
noise makes the measurement of an accurate value of the one state
 variab1e ﬁhich is accessible for direct measurement véry questionable.
Thetefbfe.anvanalytiCa}.pfedictor is,intpoduced-into'ajfeedbéék loop,
‘ such,that the ﬁredicted state vari#ble Qalues at time t.+ 0.5+ j + 8T
in the future is Qsed in the minimization process'instéad of actual
values. The time used in the prediction includes, t, the future time;
0.5T which is the time suggested by Murril, P.W.He, to represeﬁt the
dynamic efféct of the interface betweén the discrete and contindous
parts of the control system; plus (j + S)T the process deadtime.

The set of first-order differential equations is

X' = AiX + D'u (5.53)

where X = [C X X2 r]; D' = [0 01 0]

1
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and
0 6 1 0
Ai - 0 —81 1 0
-6
0 0 2 0
0 0] 0 0

It is assumed here that the effect of the process deadtime is eliminated
by using the predicted state—~variable values in future time which
includes the deadtime. The perfbrmance criterion requires that

e - rx)12
1

. JN=

[ 3¢ B

K
be minimised. Equation (5.53) is solved by state transition matrix

method to giﬁe
X(t) = ¢;(T)X(to).+ fg ¢'(T,X)D' u(A)dA_ ' | ml. - (5;54) 

_ll
g

' The performance index can be expressed as

Min J_ = I X"(K) Q'X(K) .. : N (5.55)°
N - _
K=1 ’
1 0 0 -1
0 0 0 0
where Q' =
‘ 0 0 0 0
-1 0 0 1

is a weighting factor, positive definite symmetric matrix chosen in such

a way as to give more significance to the measurable state variables.
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Fig. 5.15 - State-variable diagram of’control‘system by iterative
programming method.
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Fig. 5.16 - State-variable diagram of control system with analytical
’ predictor.
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The choice of a positive definite matrix guarantees the uniqueness and
linearity of the control law and the asymptofic stability of the control
system for a controllable process. The state transition equation in
discrete form describing the control process is

X[(K + 1)T] = ¢1(TIX(K) + G'(T)u(K) ' (5.56)

where G'(T)

[gi(T) gé(T) gé(T) 0] is estimated from f¢{(T,A)de,

since u(KT) is assqmed to be a piecewise constant input. See Appendix
11 for parameter definition.

By a dynamic programming method and for a control system with
accessible state variables for direct measurement, the optimum law is

given as

ul(K) = B'X(K) | ' | - (5.57)

~

where B' = [6'(Do'eMI T e metet(ny . (5.57a)
»Siﬁce Xl(K)'and kz(K) gre>pot diré¢t1ynméaéu#aﬁié,‘tﬁ¢"SOidtid£féBbvé,?k'.
Equétiﬁn.(5.57) is ﬁéf‘céﬁplete, and é.ﬁethod fér the estimation of
these state-variables must be applied. Normally the.states can be
determined from.fhe»Vélues of the directly measuraBle'state but dueito
the existence ofjthe transport 1ég and excessive proceés noise, a
prediétor is used instead'of‘an estimator. The difference between a
predictor and an eétimator‘is that the former pred;cts future values of
the state variables while the estimator uses the past measurements to
calculate the values of the state ;ariables.

With the addition of the analytical predictor in the feedback

loop, the state-variable diagram of the control system is shown in Fig.

5.16.
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The predictor algorithm must therefore calculate a control action

at time, t, on the basis of an output Xp’ predicted for time

t + T(0.5 + j + 8). Equation (5.53) is solved to give the predicted
state variable values. The output state variables predicted at time

t + T(0.5 + j + §) are given as

n ™.
~~
=

= —A" [} " —_n" '
Xp (1 AI)D u, + A 1(1 Bl)D

U] (5.58)

" ”" j ” )
AT By t-jT—T 1%t

(See Appendix 11 for parameter definition)

5.2.2 Analysis and Design of Control System with Half-Order Hold

Control of single manipulated input- single controlled output
. processes is considered where dynamics may be represented by a transfer
'function of the form

C(S) _Be - o o : S R
u(s) (s +6 )(s + 0 ) o o (5.59)

A unity process gain with no loss of generality is assumed. C(s)
and u(s) are the normalised, transformed process output and input vari-
ables. The control System overall transfer function is approximated by

4 + 5Ts ge 'S - e TS

) = (4 + 4Ts) (s + 6 )(s + 0 ) ( s

G(s ) | (5.60)

The state-variable diagram of the control system for step change is
given in Fig. 5.17. |

Because pf the availability of only one state-variable for direct
measurement, process deadtime and presence of_process noise which cannot

be effectively determined or eliminated, an analytical predictor is
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introduced into a feedback ioop. The predicted state variable values at
time t + (6.5 + j + 8)T in the future are used in the minimization
process instead of actual values. The set of first—order differential

equations is

X = AX + Du . (5.61)

where X = [C Xl X, X3 r]; D=[0001 0] and

0 0 1 _ -ali 0
0 -6, 1 -a 0
. 11
A= 0 0 -62 ~ajl 0
0 0 0 -aj] . 0
0 0 0 0 0
a = (574)8; éllAf_I/ST; azilf }/I

'Thé-perfdrmance;1ndéx féquires-thaf.

J, =
Nk

R

[CK) = £(K)]%
1 )

be minimised. Eqﬁation (5.61) is solved by a state transition matrix

method. The performance criterion can be expressed as -

N : .
Min J_ = I X'(K)QX(K) » ' (5.62)

N ‘
K=1

1 0 0 0 -1

0 0 0 0 0

where Q = 0 0 o 0 -0

0 0 0 0 0

-1 0 0 0 1
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bThe state transition equation, in discrete form, describing the control
process is

X(K + 1) = ¢(TIX(K) + G(T)u(K) (5.63)
where G(T) = [g1(T) go(T) g3(T)‘g4(T) 0] is‘estimated from f¢(T,A)DdA,
since u(K) is assumed to be a piece wise constant input. See Appendix
11 for parameter definition.

For a control system with accessible state variable for direct
measurement and by a dynamic programming method, the optimum feedback

control law is given as
u®(K) = BX(K) | - ' (5.64)

where B = [G'(T)QG(T)] ™ G'(T)Qé(T) (5.64a)
| Equation (5.64) is not a complete solutién of the optimum control
p;oblem, since XI(K),_XZ(K) and X3(K), the state-variables, are not
‘égceésible for]direét @eaéurement.v An analytical predicfof‘is
x iﬁ£f;dQ§edfiﬁtdIé‘féedbaék looﬁ ﬁdVEétimatévtﬁevinaccéssible Statg
Qariabies; The state;vafiable diagraﬁ of the control system ié given in

. Fig. 5.18.The predictor algorithm is given as

(Bi—l

1

™

- (1o _ Ire1-
xp (1 A)Dut+A(1 31)D )+ABl[(1 C)Dut_. +CX

rortOX ] (5.65)

. Ye-iT

(See Appendix 11 for parameter definition).

IMPLEMENTATION: The implementation of combined opgimum feedback péntrol

and prediction is as follows: |
(i) Calculation of optimum Gain: The optimum gain is precompu-

ted for both control systems; Equatiohs (5.57a) and (5.64a). Equations

(5.57a) and (5.64a) show that the optimum gain is a function of the
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weighting matrix Q' and Q. The necessary requirements for the selection
of the weighting matrix are that, it should be positive definite
symmetric so that the contrdl law is unique and linear. This condition
also guérantees the asymptotic stability of the control system; the
second requirement is that the values.of Q' or Q should be such that
more>weight is given to all directly measurable state variables.

(ii) Prediction Matrices: The predictidn matriceé are computed
off-line. The procesé deadtime should be  broken down into its integral
and fractional components with respect. to the sampling time. With these
off~line calculated values, the on-line prediction equation (5.58)vor
(5.65), is used to estimate the states. Note that the states are
assumed to be initially at rest.

(iii)‘ Control Equation: The optimalvfeedbéékAcontfol (Equations
| L(5.57) and (5.64) 1is applied.at the preséﬁt time t = kT'aﬁd stored as

first element in the manipulative 'u' vector.

3 EXPE,R;IMEN'.fAL REsULis': Th'e'_- combined’ o.p'ﬁ‘i.rﬁa'l.-'ér}c.l‘ predlctlonalgorlthms of. -
"Eahations (5.57) énd (5.58),ior (5.64)Aénd.(5.64):for controi Syétem
with either a‘zerb—order'hold of_half—order:hold‘respectively_were
tested experimentally. Due to -the excessive noise preseng in the
system, the output temperature response was averaged after fifteen
measurements and filtered gsing ;he‘singlefgxponential eqﬁation as has
been described in Chapter 4. TFigs. 5.19a,b; 5.20a,b; 5.21la,b and
5.22a,b are the Fransient and manipulated Variagle'responées for step
changes in the load Qa?iable (steam pressure) and setboint respectively

for control system with zero-order hold or half-order hold. A compari-

son of the two control systems shows that the system with half-order
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hold has the best transient response and less oscillation or variation

in the response of the manipdlated variable.

5.3 Improved Proportional Controller’

In the process industry the commonest control equipment is the
analog computing element which exerts continuous control action (u)
based on the instantaneous difference between the desired condition and
the actual condition. Electronic or pneumatic controllérs, using
'froportional, Proportiqnal—lntegral, or Proportional-Intergral-
Derivative élgorithms are standard instruments in virtuaily all process
plants. Efforts in digital control still rely heavily on numerical
épproximations of analog algorithms. This ﬁréctice may result in
degréded performance.' Control degradation in.a sampled-data system can
be.undérstood by considerihg the interaction~between a digital computer
 énd[a;qgntinﬁous pf9cesé.  The dypamiq efféct of the.interfacg between
 t£e aisérété andfconfinubusféysﬁems is.éimiiar to thaf §f'pQre deadfime
or transportétiqn lag, equal fo half the samﬁling time."8

A digitalvalgdfithm which eliminates the efféct of deadtime is
not penalizéd bx sampling. This can be aécomplished by including an
analytical predictor in the control process, to estimate the value of .
the process 6utput ét time équél to half thelsampling time plus deadtime
in the future. Corrective actibn.is then based on the predicted rather

"

than the aétual_output. This approach suggested by Moore gglgl;q is

used to derive a simple proportional control algorithm for the system.

’
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5.3.1 Improved Proportional Controller of System with Zero—Order Hold

The overall transfer function is

(1 - e-Ts ee—rs

s ) (s + 61)(s + 62) (5.66)

G(s) =

The state-variable diagram by the iterative programming method is given
in Fig. 5.23.

The set of first—order differential equatiens descfibing the control

\-

system is
X =FX+Eu o - (5.67)
C=x .
-6, 1 4!
‘ where F = and E | [6 6:]

The effecf of‘the”tdtal delay ;imq in the confrol system, fé.
:wdéiay dﬁé Fo §hé hqld'and prdcess'transééf;aﬁionilag -f,;13'elimihafed.,Q_-
b-5y usiﬁé3a ffbbofﬁi&nallcoﬁ:rbliér'that operafes>05 £he.errbr'bét§éeﬂ }::
.tﬁe desired value and the predicted value from the analyfical predictor.
‘That fs, w=K (r-c) ~ .‘ R T
The solufion‘to equétion (5.67) by ;tate-transition matrix method»is
x(t) = d)(t’to) X (t:o) +' fttzo(p(t’)\)Eud)\' ' . (5.69'5 ‘
If the assumption that u(t) is approximately constant from one éampling

period to another, that is jT < T < (j+1)T, is made, then u(t) can be

brought out of the integral sign. Thus, equation (5.69) becomes

k| .
_ _ _ i-1 j _ _
x_ = (; F))Ev, + F, (1-F,)E ZI(F2 v_sp) + FF5 [0 FR)EV . qp* Fyx, ]

p i
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Fig. 5.23 - State—variéble_diagfam of control system and predictor.
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where
- -8 -6
61T/2 - 1T/2__e 2T/2
e 1 :
F = 3 a = 1/(6 -0 )
1 —92T/2 1 2 1
0 e
- — |— . —
-91T -GlT —92T —915T _ —616T —626T
e a (e -e ) e a. (e -e )
1 1t
F, = ; F, =
2 -62T 3 —GZGT
0 e . 0 ‘e
Note that jT is the integral multiple of the sampling time part of the

process dead time and 8T is the fractional component.

But C_=]10]x 5.71
oo lrol (5.71)
:Thus, the proportional controller algorithm is given as
S T TEER_(er) (T T PR L (Fy u )
. L C 1 B =1
- F Fj[ E(1-F )u_ F ] (5.72)
1 : 377 ¢-3T-T 3¢t )

5.3.2 Improvéd Probortional Controller Of System With Half-Order Hold

The control system overall transfer function is

4 + 5Ts_,1 - e_TS

= (4~+\4Ts)( s

-Ts
0 e

(s+61)(s+82)

G(s) ) (5.73)
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The state-variable diagram is as shown in Fig 5.24.

The set of first—order différential sequations for the control system is

x = Hx + qu _ ,
c=[1 o 0]x (5.74)
,’_ )
B T
where H = | 0 —92 —a; and q=]aaa]
0 0 -a,

[
[

(5/4)9;v a; = 1/5T; a, = 1/T

As in the case of the control system with zero—-order hold, the
.effect of the delay is eliminated by using a‘propbrtional controller

that operates on the error between desired value and the predicted value

from the predictor. The predicted states are

e L i e f-, 1=l A e e e 1
R ;(; Hl)qut +A31(1_H2)q i=1.(H2. “teic)'+.d1“2[(¥=53)?“tfjr-r + Haxc],
| . | | | - (5.75)
where
6 -8 -6 -8 -a -8
A A A A
12 o 12 "af2 ) o VLI St YE R S Y4 ]
1 2 3 4%
- -8 -a
A
Hl = O e 2}‘2 Q ( 2;2 - e 2’}‘2 )
! 5
—d, .
B 0 %272
o = 170026 ); | N o _a(6,-0.+1)/a -0 )(8,-0_);
1 - 2778 | %o T TAYTRTETHM87R )BT )5
L = ~a(8,-a,+1)/(8,-a, )0, - 3 = =a/(8,-6.)(a,0,);
a3 = malfy-a, 17327477 % = 78l (0;70,)(a,26,);
A
a

= -a
5 1/(a2-62)
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Fig. 5.24 - State-variable diagram‘df control system with analytical predictor.
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e‘elT OLA(e-.elT - e—ezT) [a e—olT + aA —azT + aA - T]
1 3¢ 4%
_e T .
2 A 2 2
H2 = |0 e as(e e )
-a,T
_9 0 e 2
and
—_6 5 6. 67 -8 o7 -8 6 a6 -8 67
e P A 2 Y R T A e
e 1 (e e 9€ 3 4
-9 87 A -8 5T —a_ 0T
H3 =10 e “5(8 - e )
—a25T
. 0 0 e

But u = X (r-c )
. ¢ p

~Substituting the value of Cp and rearranging givés the control algorithm'r

as
S sy _
g = c . = H, (15H)q i'(Hl_lu' o
[T + aR_(T-H)] ‘"t et i
- j _ S
o [ Q(1-fdu g+ Hyx ]} (5.76)

172

5.3 Experimental Results

The improvéd proportional contrqllef.equatibns (5.72) and (5.76)
for the two control systems were experimentally verified. Due to the
noise in the process, the output temperature response was averaged after
fifteen'measureménts and filtered using thé single—exponential equation
as has been described in Chapter 4. Tﬁe same proportional gain values
for the normal or conventional proportional controllers (see Chaptef 4)-

were used. Figs. 5.25a,b and 5.26 a,b are typical transient and
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manipulated variable responses respectively for the two control

systems. As is seen there is a marked improvement over the results in

figs. 4.31a,b and 4.29a,b.
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CHAPTER 6

ADAPTIVE CONTROL

Controllers are linéar elements that are often required to
operate in non-linear systéms. Thus they cannot be expected to provide
optimqm performance over a wide range of system-operating'coﬁditions.
However, through a linear representation of the non-linear system a
controller can be designed with adaptive féZtures that do provide opti-

mum compensation for the transient system requirements. In general

terms, an ideal adaptive controller would, based on measurements of only

e

the input and output variables of a totally unknown plant, ensure that

‘the plant's output converges to a desired value as specified by the
. ) \

operétor. This controller would imply good servo control, that is,

'response to changes in plant's éetpoint, plus good reguiatory cpn;rol;

that.is,vrejection or compensation for the effect of ~external .disturb-

ahces. The adaptive algorithnms in most of the adéptive controllérs

develbped_recentiy are based on one of the search étrategies or a stabi-

lity énalysis that guarantees global asymptotic stability of the
complete closed loop system. - Also in most adaptive.algo;ighmé thg
controller is required to con;inuousl? test'and_ppdate the sysfem para-
meters. This has the disadvantage of requiring 1arge~memdry storage
capacity and thus increased.cost of operation. Since thé majority of
system'dynamics 60und in-chemical, petroleum, and other continuous
process industries are slowly time varyiﬁg, it is unnecessary to have
continuous updating of system parameters. In this study the system

parameters are updated periodically.
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A direct digital control computer can periodically test plant

dynamics and tune parameters of the control algorithm. Fig. 6.1 shows

an approach to accomplishing self-tuning of the system. In the control

algorithm, the computer is expected to internally disconnect the feed-

back, thereby making the process open looped. It then carries out the

following steps:

(1)

-perturbations'of the outpuﬁ would be a minimum and the B

It pulses the prbcess. In a pulse test, the prinéﬁpal re-

- quirements are that. the system be driven sufficiently hard

so that the dynamics of the system are excited but not so

“hard that the capacity of the system to respond is exceed-

ed. In applying the bulse method compromises are made,

parﬁicularly in selecting the pﬁlse height and width. For

| example, if the width of the input pulse is long compared

with the responsé; the dynamics of the system are only mod-

efately excited; hence, the high frequency responses are

‘suppressed, obécuréd, or‘non;existénty Ideally, it would

appear that the smaller the input pulse the better, for then
system would tend towards linear behaviour. Howeﬁer, the
presence of noise necessitates the production of a response

which is discernible from the interferences.

While the distufbingvpulse excites the systembwith all

frequenéies at once, the amplitude of the exciting frequencies contained

in a pulse are not necessarily constant. In fact, except for an impulse
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function (one that differs from zero for only an infinitesimal period of
time), the amplitude of the harmonic content diminishes monotonically
with frequedcy. Depending upon the shape of the pulse, amplitude
functions may or may not diminish to zero. . Those which do may increase
again and exhibit another zero at a higher.frequency. Pulse shabes and
the location of their first zeros are important criteria for evaluating
their usefulness as pulsing functions. For a given pulse.width T,
a rectangular pulse has the smallest useful harmonic coﬁtent. In this

study a smooth pulse given in Equation (6.1) is used.

f£(t) ='K[l - cos(2—t/Tp)] (6.1)

This type of pulse has been suggested by ﬁougen EE.EL‘ZH to
"éxygpd the useful harmonig_cbntent considerably.
| tii) The computer identifies.the process ia the form of a second-
érder plus‘deadtime fit, and.finallyv
v ,(iii) galculates the contfoiler séttingé for the deadbeat pérform—
iahcéic;itérion”compensator altégd§ desigﬁed in'ChapféQFS.l

\

The direct digital controi coﬁbuter—ideﬁtifies overall process
dynamics through the same actuator and sensér dynamics that iﬁs control
action sees. This is a distinct advantage over'éttaching special
sensors to the control loop. for performing dyn%mic analysis and control

synthesis. It is assumed that the pulsing inputs fi(t) to the process

are noise free since these values are internally computed and applied.

Only the process response, the outlet temperature, contains noise. Some
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function‘(one that differs from zero for only an infinitesimal period of
time), the amplitude of the harmonic content diminishes monotonically
with frequency. Depending upon the shape of the pulse, amplitude
functions may or may not diminish to zero. Those which do may increase
again and exhibit another zero at a higher frequency. Pulse shapes and
the location of ;heir first zeros are important criteria for evaluating
their usefulness as pulsing funétions. For a given pulse width Tp’
a rectangular pulse has the smallest useful harmonic éontent. In this
'study a smooth pulse given in Equation (6.1) is used..

f(t) = K[1 - cos(th/Tp)] ' (6.1)

This tybe of pulse has been suggested by Hougen g&_gl.zu to
extend the.useful harmonic content‘considérébly.
(ii) The computer identifies the process iﬁ_the fo;m of a second-
: order plus deadtime fit, and finally |
: (111)-:célQQiatelehe‘contfoiier ééffiﬁéé féfféaéadeédgg;t:péff&?ﬁ;k'

ance cfiterion compensator already designed in Chapter 5.

The direct digital control cémputer identifies overall process
dynamics through thg same actuafor and'sensor dynamics that its control
action seés. This.is a distinct advantage over attaching speéial
sensors to the control loop for performing dynamic analysis and control

synthesis. It is assumed that the pulsing inputs fi(t) to the process

are noise free since these values are internally computed and applied.

Only the process response, the outlet temperature, contains noise. Some
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other possible néise sources include: other process input, internally
generated noise, and measurement noise. The problem then 1Is to charac-
terizeathe process from these 1nput-output sequences. A moment method
as éuggested by Michelsen EE.Elful in which noise effect on the process

characterization is small was used.

6.1 Parameter Estimation by a Modified Moments Method

- The transfer function of any stable linear, any dimensional sys-

tem can be evaluated by numerical integration of its experimental trans-

" ient response to an arbitrary pulse forcing function. The experiment-

ally determined, normalised transient response Ci(t) and Co(t) are

converted into moments of the form

n dn

ds

Mn,s

f: C(t)exp(-st) tdt = (-1) (T(s)) - (6.2)

where C (s) f:_C(t)exp(-st)dt_ . ' B c S
The Laplace transforms and their derivatives afe related to tﬁe'system .

transfer function, G, through the relations:

~ C (s) o R Co '
G = =1 | Lo - o (6.3)
c.(s) ' ' : , :
1
' el o : o .
g— - () . : (6.4)
C(s) |i
" G2 T(s) T'(s).2|°
[ ( G ) — - (_ ) i (6.5
(s) C(s)
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or, in general

a e at Ts). |° |
— P =5 & (6-6)
as"™ G as™ C(s) 1

The right hand sides of Equations (6.3 to (6.6) are evaluated by

computing the moments Mn,s’ and G and its derivatives are thus
determined for an arbitrary number of s-values. The model transfer
functionbhas been chosen as ..

» . ‘ e-TS '
S G(s) = —— s ' (6.7)

2
(Tls + 1)
where T is the deadtime and T; the process time constant.

'~ The parameters T and T} are determined from the following

relations: (Note: -that the moments are calculated using a fixed

. s=value).
InG=-ts - 2 In(T3s + 1) R (6.8)
LR O S ey
T = G D B I L C o 69y
2
2 2T
G"” G' 1
(= - () = —5 (6.10)
G G (Tls+1)
-G' . G"” G'. 2
Let uy = =g and u, = (g7 - (F)
Solving equations»(6.9) and (6.10) with these substitutions gives
| 1/2
Y2
T, = (6.11)
L (1.414 - sul/?

2v)

‘u
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and

ul(t.s+l) - 271
171 NS | , .
T = (Tls+1) | (6.12)

Evaluation of T and TI thus requires the calculation of at least two

moments M™% for each transient response. Parameter evaluation for a
model containing r parameters requires calculation of at least r
moments. It is normally advantageous to compute a larger number of
moments and evaluate the parameters by statistical analysis, because the
validity of the system model may thereby be assessed. This is nof
necessary iﬁ this case since the model\haé been proved earlier on to be
cogrect.

- The main advantages of the outlined method compared with the
ﬁﬁrmaliy used method of central moments are: (i) the validity of the
inodel may easily be aésessed, and (i1) The sensitivity to experimental
.-errors'in fhe'deteymination of the tfansient responses is_greatly
;?eAQCéd,vprpvidéd'gﬁitable.§¥vélueé are used._'fheloptimum Sjvglue;is
'dégéfminéd ffom'thevnoise.sehsitivity_functidn;

Fig. 6.2 is thevnoise sensiti&ity as a fuhcfioﬁ of s for il = 5.027,
T = 7.4 and unit step input. See appendix 12 for details of derivatiqn.
In the central moment method, the s-value is élways taken to be
zero'but as the noise sensiFivity analyéis shows,.(Fig. 6.2); as the
s—value is increased from 0O to l,‘the noise intensity decreases until a
minimum is_reachéd-ét‘an S—yalue of one. Since this mimimum occurs for
both time constant and dead time it is advisable to use a>s—value of 1.
Noise has a great degrading efféct on processes, more over high noise

effects leads to greater model error which will result in poor control

of the system.
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6.2 Compensator Design

The control algorithm utilizes a linear combination of the past
history of the system in forming a new value for the manipulated
variable. The absolute position of the final control element is

determined from the formula
'

u(nT) =

i ~10

N o~ 5

gie[(n-i)T] -

h a[(a-3)T] (6.13)
0 i J '

i 1
quuation (6.13) gives the value ét which u(t) is to be held constant
during the entire (n+l)st sampling period, that is, u(t) = u(nT) for

n/T < t < (n+tl)T. T is the sampling period and the gi's and hj's in

“éqﬁépion (6.13) are all constants. In tHis algorithm only the (k+1)
moét recenf values of the ervor and the p most recent values of the
manipulated vgriable need'bé sto:ed. The design objéctive i; to
determiﬁg suitabie valueé of {gi}, and‘{hj}; ’

Ihese constants héve alréady beeh célculaﬁédtin<éhaétér15 éhd“éré_givén ;7
las: v .
(a) For control_system with zero-order hold

‘ [k, + (KX K2 b (kA yz 2]

p(z) = 8(z)  M(z) _ 3 0 110 : 2 1.1 (5.27)

. u(Z). E(z) (1+x1z—1)(1-z—1)

(b) TFor control system with half-order hold

' 1tq _wt -1 ! -2 :
(2) -3 [ko + (K{B <Kz~ + (B,~k{B,)z ] .
z % = S (5.51)
(1~=z )(1+Blz )

=

D(z) =

m

See chapter 5 for details.
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6.3 Implementation and experimentél result

(i) The first step in the implementation of the adaptive

control is initialization of the model parameters off-line. With some

modification in the programming of the algorithm it is poséible to

initialize the model pa:ameters on-line using the estimation subroutine
of the algorithm.

(ii) Program the manipulated variéble position algorthm of
equations (5.27) andi(5.51) fof the two control systems respectiveiy in

their discrete time form. '

(iii) - The model parameter estimation subprogram should include

~the pulsing function given in equation (6.1). When the computer

_éontroller ié'internally disconnected, the manipulated valve is made to

track equation (6.1). During.this pulsing time, the outlet water
temperature is internally datalogged and used-in the modified moments'
method as, has been discussed earlier;oﬁ to'estimate_ﬁhe,parameter

values. This parameter estimation may be performed.continuously, that

" is, after every sampling ahd manipulated valve move or after some time.

interval that may be held constant as in this'sfudy, decreased or
increased as the operator seems necessary.

The above adaptive designs were éxperimentally tested on the

heater-hear exchanger control system described in chapter 4. A 50%

"proportional band about the set point was imposed on the controller.

Due to the noise present in the system, the single—exponential filtering
equation was used to smoothen the measured outlet temperature response.

No filtering was used in the pulse temperature datalog program since it



—h
W

’//‘//&——¥//‘\\v”“‘*\\._—*//ﬂ”‘\\s

7

-
N

wm Updating Point

« Experimental

1_ Initial Points {'} = T2 - 2:0271 secs
1 : _ = 7.4 secs
T = 0.5 secs

COnLrolle"d Temperature "C
o
N\

-

- Time Min.

Fig. 6.3a - Adaptive control respor{se of a sampled-data system with zero-order hold.

9.1



m3/s

Initial Points {1}

Flowrate
o)
)

Water
Q

w Updating Point

* Experimental

= 15 = 5,0271 secs
T

= 7.4 secs

3
I

0.5 secs

| Time Min.

Fig. 6.3b - Manipulated variable response of sampled-data system with zero-order hold

adaptive controller.

t

LLT



178
is assumed that the process noise 1is negligible because it is internally
generated. Figs. 6.3a,b and 6.4a,b are typical adaptive control

responses for the controlled temperature and manipulated variable for a

control system with zero-order hold and half-order hold respectively.
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CHAPTER 7

DISCUSSION AND CONCLUSION

7.1 Discussion

7.1.1 Analysis of proportional control

In the stability analysis of the control system under

investigation, the value of the limiting proportional gain is a measure

._of the degree of stability of the system. In the analysis of the

TR TG et -

second-order overdamped system,‘—— that is, model with no transport lag
--, increase in sampling time results in decreased stability of the
control system irrespective of the smoothing device employed. This is
expected since longer sampling periods imply a greater deviation from
the continuous system state. This observation has been made by many
other workers.zg,“7 bl In both cases (control system with zero—order
hold and control system with half-order hold) increase in. the ratio of
the time constants results in increased stability. This trend isb
expected because, as has been reported in control literatures,ll_su
multiplicity of poles or zeros always introduces greater instability to.»

a control system. It is a common practice in the design of compensators

“for control systems to place the poles far apart from each other. This

will definitely lead to increased difference between the time constants
and bence increase their ratio. As has been stated in the main study,
although all proportionally controlled first and second-order systems
are stable in the continuous domain, regardless of the value of the 1loop

gain. This is not true for a second-order system in the sampled data

domain, irrespective of the smoothing device used.
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For a second-order plus dead time overdamped system with either a
zero—order hold or half-order hold, the stability increases with

increased dead time until a maximum is reached and thereafter the

stability decreases. In all the cases considered, —— Fig. 4.12 and 4.13

are typical stability boundary conditions for the two control systems

——, the points of maximum stébility for the two control systems occur at

approximately tﬁe same dead time value. This is expected from equation

‘(4.55) where the haif-order“circuit gain is just that of a zero-order

hold circuit gain multiplied bx\a positive fagtor greater than one.
This amplification results in greater operating proportional gain
range. Hence, for all the conditions tested the control system with
half-order hold is more stable than the cbntrol system wifh zero—order
hold.

In the transient response analysis of the two control systems,

. the new performance criterion gave a more stable and better response for

" the system than the one-quarter decay ratio iﬂdex.75' This 1is expected,

since a secdnd—ofder‘oyerdamped.system, at ieast theofeticélly, does;n9t 
overshoot. The existence of an dvershOOt is the ﬁndérlying assumption ‘
Qf the.one—quarter-decay ratio.critérion. Irrespective of the
performance criteria.used, increaée in‘sampliﬁg time intrdduces greater
instability to the contfol systems.

For thg new performance index used, increase in the number of
sampling Intervals used increaéés the étability of the control systems.
This 1is expected since for any sampling time, the amount of time given
for the controi system to attain steady state conditions is dependent on
the number of sampling intervals employed. A shorter time will impose

greater constraint on the control system and hence will introduce
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instability. A detrimental aspect of a larger imposed settling time is
the production of a sluggish response which results in greater steady
state error. Thus an optimum number of sampling intervals of 8 was used
in the experimental tests. For compariéon purposes, the performance
index ¢ was increased from 1 to 3, while in one case ¢ was increased to
4. Increase in ¢ brings aboﬁt greater instability to the systéms. Also
the error response decréases with increased ¢ until a minimum is-
reached; —— for control system with zero-order hold, ¢ ='1.5 and for the
half-order system ¢ = 3 —, after which the error response increases
with increase ¢. ~(See Tables 4.4 and 4.5). In all the conditions
tested, the control system with half—brdef hold gavé better responses
for both theoretical and experimental verifications than the>control

. system with zero-order hold. (See Figs. 4.28 to 4.31).

_7;1.2 Compensator.Design

‘;.Of the three cdmpénsétors; the algorithm derivéd from the
:déadBeat-perférméncé'brinciﬁle-gave ghe Sesf_traﬁSient fésponseé;_>This
..may be aue to the cbﬁstféints df'stability, fastest responée and-
setfling time, -and zero steady state error used in the derivation.
Although the stability'of the compénsated control system is a
prerequisite for the application of any compensator to a control system
and must be used in the derivation of the algoriﬁhm; the other
constraint of error minimisation imposed on the combined optimum control
and prédictor codpenSator does not always guarantee zero steady state
error, siﬁce the minimum may not be zero. This may explain why the dead

beat performance compensator gave the best response. Also the
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inaccessibility of some of the states in the optimum control which led
to the use of a predictor may contribute to its poorer response as
compared to that of deadbeat performance. The worst response was given
by the impro#ed proportional controller which made use of predicted
output response instead of actual measured values in its corrective
response. This is expected; after all a zero steady state error
response ié not a constraint on its formulation but an objective.
Despite its poor response wﬂén compared to the other two, it still gave
a better response than the conventional proportional controller (Figs.
5.25 to 5.26 and 4.28 to 4.31).

Even though, it was not possiblevto bring the state of the
systems, -- for the deadbeat performance-compensator --, completely to
rest after two sampling plus dead time periods, this does not negate the
valﬁe of the theoretical concept of finite settling time, because
éystems designed to meet this réquirement theofgtically; as -shown in

this study,'givé satisfactory performance in real ;ests,A'

7.1.3 Adaptive Control

'The good response of the adaptive control'system used in this .

study has demonstrated that 1t is not necessary to continuously update

model parameter values in most equipment found in the chemical and

pétrochemical industries. .As has been stated in this study, the
periodic updating of parameters has the added advantage of requiring
less computer memory. Also, this study has illustrated the possibility
of using pulse tests fo; on-line parameter estimation. -

The trend of the experimental transient responses all through

this study confirms the assumption that any high order system can be
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approximated by a second-order overdamped plus dead time model. During
the experimental verification a sample averaging method was applied to
reduce and in some cases eliminate the excessive noise in the process.
Each of the fifteen sampling measurements for any particular sampling

time, is summed up and the average 1s taken, and the single-exponential

filter is applied to it to give the response.

7.2 Conclusion v =

For sampied—data systemsiwﬁicﬁ can be adequately modeled as over-
damped second-order plus dead éime with either a zero-order hold or
half-order hold as the smoothing device, a systematic design procedure
has been given for choosing the loop gain and sampling rate of a
bsampled—data feedback>cqntroller using a new performance index. This
éype of controller is simple to set and implement. A domparétivé study
»wés carried out on the relativg efficiencles of fhe new performance

- index and the normally used one of, one-—quarter decay ratio index. The

new performance index gave better responses than the one-quarter decay .

réfio criterion. This may be;duéito the assuﬁption of an overdémped
second-order model for this'wérk.- If.fhé recommended settings are used;_
a reiatively small amount_of,information is needed for satisfactory
_ control. This‘is-of significant impoftancé for control when the
measurement is difficult and./or expeﬁsive, and when informationv
channels may be limited, as_in this case when a small digital computer
is used.

Satisfactory performanée of the proposed algorithms has been
demonstrated when applied to thg heater—heat exchanger system with

higher order dynamics. The resulting model error may‘be the reason why
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the control éystem did not have finite settling time for the deadbeat
performance criterion compensator. However, finite settling time is
only a theoretical criterion. Of all the tﬁree compensator designs the
deadbeat performance criterion gave the best response while the simple
feedback proportional controller gave the worst.

An adaptive control scheme has been developed which can be
applied to a wide class of single lnput-single output plants. Any of
the control algorithms can be used but in the experimental verification
only‘the deadbeat performance criterion was teéfed. The adaptive
control scheme used here depends on a linear gecond—order overdamped
model with a time delay in' the process. The method for détermining such
a model from finite time input-output operating data of the ﬁlant was
‘discussed. A pdlée methqd was developed for on line updating of the
model parameters. It is also observed that»incfeased sampling periods

degrades the response of the control system.

7.3 Recommendation .

1The given>re$bohses'in this work'are tHdse of cémpensaforsbde-‘
signed as secénd—ordgr plus'dead.time model controlling a fourth order
plus“dead time model. It is recommended that an actgal second-order
plus dead time control system be'tried fqlverify how‘effgctive the'com—
pensatofs are. A comparative study of_these compensators with continu-
ous or analog controls viz proportional, proportional*interg:al, ana
proportional-intergral-derivative compensators should be carried out.
The equipment has been built such that multivariate control is bossible,

so, since this work dealt with only single input-single output system;
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it is suggested that a multivariate control compensator be tried out on
the equipment. The versatility of the compensators should be investiga-
ted with other than temperature response ioops; And finally the effect
of varying the coefficient of the zero-order hold to give different

holds should be investigated.
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NOMENCLATURE
c(t) Assumed process response with no hold
Co(t) Assumed process response with hold
DP(J-1), DP(J-2) '~ Actual smoothened output temperature for the
previous and penultimate periods respectively
. " for control system with half-order hold
DK(J) Calculated output temperature at J-th instant

for control system with half-order hold

ssrmeismmmm- G, G, G" : Model transfer function and its first and
C second derivatives
8y Error coefficents of deadbeat performance
compensator
hj o Manipulated fesponse coefficient of deadbeat

performance compensator

'Hqgs) » :  Laplace transform of zero—o?de; hold
1/2(5) » Lap}ace transform of ﬁelf—order held»

JN ' . Performance critefion for oﬁtimum.coetroi
j‘; '. ' 'Integrai multiple of sampling time part. of

model dead time

K . o Proportional gaiﬁ

K , K 'Ko, K! Ké, K; Variable—-gain elements of deadbeat performance

° v R compensators
qQ,qQ’ o Weighting matriees for optimum control
s ‘ ‘ " Laplace transform operator
T . ) Sampling time
T - Pulse function period

T(J) ’ J-th smoothened temperature
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T(J-1) (J-1)-th smoothened temperature

Tl(J) J-th averaged temperature

u, uy Input, output of variable-gain compensator
respectively :

¢ Performance Index

¢, $(X), &(T), ¢'(T) Transition-state matrices

af Filrer weighting factor

Decay ratio ' L

£
§ . : Fractional multiple of sampling time component
of process dead time.

Aa,b,c,d ' Ratio of model first time constant to second

time constant.

A, Ai Determinants used in Mason's formula

V.= (Q1-8)T - . Effective time used in the transition matrices
T, (j+6)T, A ) " Model dead time -

11;12 . Model time constants

The following parameters are defined.in 5.3

~ ~n - ~ ~

E’ F’ Fl’ F2’ F3’ H’ HI)HZ, H3’ q, a'l’ az’ (!3'., al” as

The following parameters are defined in appendix 2:

\ . . n | | .' \J '
bl) b2!b3) b4’ Dll’ D21) D31’ Q3’ Q[" Qs’ Q6’ Q7, Q3) Q4’ QS, Q6’ Q7

R

9 ®1» %10 %120 %130 %4 %150 %16 470 %180 Y110 Y12

11° Y122 Y310 Y320

'
+
$1,(8), 81,(8), 83,08, 83,(s),  1,(V), 61,(N), 63.(V), 65,(7),

$11(T), $13(T), 31 (T), 653 (T), ¥ (), %(V), ¥'(D), ¥;'(T)

&
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The following parameters are defined in appendix 4:

Al, A, A}, A}, Al, A!, D., D P

al’ 32) 33» 34, 12 90 B3 By Bey Bey Uy Vg D3’ PZ’ «a

1’ 1’ az’ a3’

o a ) 0 6 6 6 0.

¢ 6> %70 %> %110 %120 P13 Pra B0 Cig Oy70 Bige Yio Yoo Yoo

4, as’

Yags V(D5 y(8), W] ¥(N, (D, ¥ (D,

011085 15(2)5 451(8), by5(8), 61(D), 45T, 451(N, 43(N, $17(D)

‘

85T, 637(T), (V) -

The following parameters are defined in appendix 8:

1 1 , " 0" "
1, 2) b3’ b4’ K_O"K]." Kz’ K3) A1’ Az) Y3’ ¢11(S), ¢12(s)’ ¢13(S))

¢§1(s)5 ¢§2(S), ¢;3(s), ¢{(s§’ v (s)-

The following parameters are defined in appendix'9; o

2, a;, a?l, h» by, K, K], ai,‘aé,'aé, @, ag, aé,~a;;_aé, a§; inf'

B 83’

1> B

] ' [ .v ‘v ' ' . v ] gV '
110 %120 %130 %140 %150 %160 %170 %187 %190 %200 %217 %222 2°

Bys Bss Wi V35 0015 Ops €13 0515 455, 954

The following parameters are defined in appendix 11: .

A, Ay, Al A, B, B, B', B

” | ] ‘.
1’ 1) C’ Cl) D) D ’ JN’ ¢ (T)

1
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APPENDIX I

HALF-ORDER HOLD TRANSFER FUNCTION DERIVATION

The output waveform of a zero—order hold has a zero slope between
two consecutive sampling periods. Also its frequency characteristic
shows a rapid attenuation for iow-frequency signals. In other words,
the zero-order-hold circuit holds the measured response of the system at
any sampling instant at that level until.the next sampling instant.

A first order hold exhibits an impuise response that has a constant
slope'between two consecutive sampling instants, which 1s determined by'
the values of the two preceding samples. Thus, the first—order hold
1estimates the response over the sampling interval from K to K+1 as a

ramp with the slope. determined by the signal values at time K and K—l.'

~,It is conceivable that better response characteristics may be obtainedaf"‘>

from a half order hold which has an‘impulse response with constantv
slope between;two consecutive sampling ‘instants, and which lies midway
between the impdlse responses of HO and Hl as shown in Fig. Al.l. The
estimationIOf the new response_meaSUrements is as described for
first-order hold but with a ramp slope of 1/2. The impulse response of

the half-order hold can be represented as a series of step and ramp

functions. That is

H1/2‘= 1+ %f)u(t)‘— %—u(t—T) - %—(t—T) u(t-T) +

l-u(t =2T) + &= 1 (t 2T) u(t 2T) (Al.1)
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Fig. Al.l1 - Impulse response of half-order hold.
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The Laplace transform gives

o) = ety oy

s 2Ts 2s

Rearranging gives

0 p(8) = (1 - (1/2)e"5Ty(

199

1 -sT 1 -2Ts
e — e 9
Ts 2s 2Ts
~Ts ‘
1 -e ' 1 -Ts
5 ) + 5 (; e



Fig. A2.1 - Signal flow diagram.

00¢
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APPENDIX 2

STATE VARTABLE DERIVATION AND PARAMETER DEFINITIONS FOR
CONTROL SYSTEM WITH HALF-ORDER HOLD

The overall transfer function is

5Ts,,1 - e—TS K8

4+
6 = GEd T G )G T o)

(A2.1)

To determine the state equations, Mason's gain formula is applied.

There are three loops in the diagram and are given as:

-0
. - 3. = 8. =L
_ L= =7 3= - (a2.2)
& S .

Loops L;, L3 and Ly, L3 are non touching loops, thus the determinant of
the signal flow graph is given'aS'

A= l - (L +L, ) + (L

2 3 )

That is;

[T33+52(T63+1)'+ s(T8+8,) + 0] :
A = —-  (A2.3)
Ts

The transfer function relation the input XI(KT) to the output Xl(s) is
o l(s) and is composed of three parts derived from three_forward'paths
(a), (b), (c). The transmittance of Fforward path (a) from Xl(KT) to

1/s. Path (a) is touched by loop L

E i o= 1 > th
Xl(s) is T1 X therefore the
determinant of the process becomes
Ts + T6 + 1 : '
v — - + = e .
bl =1 = (Ly + Ly ( T ) , (A2.4)



1202

Thus,

s(Ts + T6 + 1)
[Ts3+s2(T63+1) + s(T6+93) + 98]

'A‘
1M1 Cw
A = ¢11(S) (A2.4a)

The transmittance (path (b)) from Xl(KT) to Xl(s)-is

b
Ts
this path is touched by all loops, thus Ay = 1.
Therefore,
. TUAY , '
1 -K8 .
= = ¢11(s) (A2.4D)

.s[Ts3+sz(T63+l) + s(T9+83)+8]
. The transmittance from XI(KT) to Xl(s) (path c)'is

- -5K8

e T""_‘=
T3
1The path'isvtoubhed»by‘all loops, thus‘Ai'{-é'l
Therefore,
T"'A"" .
G L
b= KT EHEO) (A2.4¢)

4[Ts3+52(T63+1) + 5(T6+6,)+6]
Hedce, the overall transfer function reiating the input XI(KT) to the
output Xl(s) is ¢i1(s) which is the sum of equations (A2.4a), (A2.4b)

and (A2.4c). That is,

$1,(s) = % () + §7(s) + 817 (s) (A2.5)

The transfer function relating the input Xz(KT) to -the output Xl(s)



is ¢{2(s). There is only‘one forwar
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d path (d) in this case. The trans-

This path is touched by two

mittance of the forward path is Ty = 1/32.
oops Ly, L,; thus, 4,, = —= .
T. A
Therefore 12 12 _ (Ts+1)

[T33+32(T63+1) +

The transfer function

e .
¢21(s) énd }s made up

of three paths b, ¢ and d.

= 91,(8) (A2.6)

s(T0+6,) + 8]

relating the input x)(kT) to the output x,(s) is

The transmittance of

. -K0 ) .
path b is Té = —53-.' This path is touched by all the loops hence
Ts /
A= 1.
B 1 Therefore
T A}
. . ~K6 ’
L. o K = $%,(s) (A7.22)
; [Ts +s7(TO,+1) + s(T6+6,) + 6] - ' . .
The transmittance of path c is Ty T 5 the path is touched by all .
- ' 4s ' . :
the loops, thus Aéi = 1.
T"A" .
Therefore —- 2L = —5KT0s = 831(s) (A2.7b)

4[T33+52(T83+l) +

TI!Y

The transmittance of path d is 2

thus A"' = —'—I‘—S_-fi.
Ts

L; and Ly, 21

s(T6+6,) + 8]

D@

T
s

; the path is touched by loops
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That is,

[Ts3+sz(T63+1) + s(T9+63) + 8]
A = - R (A2.3)
Ts

The transfer function relation the input Xl(KT) to the output Xl(s) is
¢11(s) and is composed of three parts derived from three -forward paths
(a), (b), (c). The transmittance of forward path (a) from Xl(KT) to

therefore the

Xl(s) is Ti = 1/s. Path (a) is touched by loop L2,
determinant of the process becbmes
. Ts +TO + 1. | |
| — = —— ) ' .
Alv 1 (L1 f L3) ( " Ts } (A2.4)
Therefore,
Lo 21 21 _ 0w =8(Ts + 1) P L N
A = = ¢21_(§).- (A2f7c)

[.Ts3+sz(T63+1) + s(T6+0,)+6]
The overall transfer function relating the input XI(KT) to the output
XZ(S) is
' ' = 4% " ts : i
The transfer function relating the input XZ(KT) to the.output Xz(s) is

¢é?(s) and the transmittance is given as T22 = 1/s and the path is -

L

touched by loops L, and L,, thus

1

Ts + 1

A22 = et Thergfore,



T22 A22

A

The transfer function relating the input r(XT) to

205

s(Ts + 1)

[Ts

3

+sz(T63+1) + s(T6+63)+6]

P'(s) and is made up of two paths:
1

TIA'

383
A
and
’ T38;
3

K0

s[T53+sz(T63+1) + s(T6+63)+6]

S5KTO

4[Ts3+sz(T93+1) + s(T9+63)+6]

" The overall transfer function is

() = ¥(s) + ¥, (s)

,Thé transfer‘functionvrelating the input r(KT) to

:;_compoSEd of 'two paths viz:

T,

A

and

424

>|

K8

[Ts

3

+32(T63+1) + s(Te+e3)+e]

5KT®Os

4[Ts

3

+52(Te3+1) + s(T6+6,)+6]

(A2.9)

the output Xi(s) is

= wf(s) (A2.10a)
= w{(s> (A2.10b)
.(A2.11)

the output XZ(S) is

w;(s)'  (A2412a)

¢§($) (A2.12b)

The overall transfer function relating the input r(KT) to the output

XZ(S) is

¢é(S) = ¢é(5) + ¢£(S)

(A2.13)
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Therefore, the set of first order differential equations expressed in

matrix form is

— - —

— N |-

¢1,(s) $12(8) | X,(KT) b (s) .
X(s) = ' + r(KT) (A2.14)
95,0 95, C [} X, (KT) | ¥a(s)

Due to the preéence of sample and hold, there is a time delay
tg = KT in the control system; after obtaining the inverse Laplace
transform, the time t is‘replaced by t = KT. The first step in
determining the iﬁverse.Laplace transform of equation (A2.14) is to find

the factors of the main determinant. That is,

Crs 4 s%(To, + 1) +s(TO 0 + 0 [

~where 6, = (T6

. + 1)/T; 8 = (?e +0,)/ T; 6, = 0/T

3 6
* The cubic fuﬁction Equation (A2.15a) is reduced to the form

y3 + Vy + w by performing the substitution s = (y - 64/3). The three

roots of the reduced Qubié function as given by Cardan are

yp = Q +0,)5 5, = - (1/2)[=(Q +Q,) + 3 (Q - Q,)1];

vy = = (1/2)[=(q; +Q,) = V3 (Q - Q,)1] where
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2 3

I w V' .1/241/3,

o =[5+ G+ 15
2 .3

_[mw W V' 1/241/3,

Q,=[Z- g+ 1" (A2.16)
and

= 1203 - 96, 6. + 276.1/27: V = (36. - 62)/3

W—[ 6] ’ - 5 4)

4 475

Since the system is assumed to be overdamped, the roots should be real

and hence the condition

2
7 3

<3

<0

T

“should be sétisfied. ATherefore, tHe solutions to the unreduced cubic

:Eqﬁatiéﬂ (AZ.iSa) are :

S1 71 T 64/3; 52 7 7 “'?4/3; S3 7 Y3 7 ea/3v (A2-17)
The ma jor determinant is then given as

(s‘+‘sl)fs 4 sz)(s'f 5,) .  (A2.17a)
Ai1= —sl(-T$14T8fl5/(§2—sl)(s3—sl); Bi1= —sz(—T52+T82+l)/(sl—sz)(s3—sz)

v _ Ta. _ _ . * = -
Cll 53( T53+I‘6+-l)/(s1 53)(52 s3), D 8/315253
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AT = 8/s;(sy=8))(s3=s1); B} = 0/s,(s;~5,)(s;57s,)

C£1= 9/33(31—53)(52-53); A{Z = (1 - Tsl)/(sz—sl)(s3-sl)

B..= (1 - Tsz)/(sl—sz)(s3—sz); ~BY (1 - TSB)/(SI_SB)(SZ_SB)

12 12
try o - . "|=_. —_ -
A11 5T6/4(s sl)(s3 Sl)’ Bll 5T6/4 (s1 sz)(s3 52)

Cl!'==-5T6/4 (s =S4 )(s,-

1 9 3) A' =—9/(s -8, )(s -s, ); B! 2?/(s -s )(s )

=Sesl/4(sz—s1)(s3-sl); B215852/4(sl-32)(53-32)

- Ay

Cyp=8/(s;783)(sym85)5 Ay
| Cpy = S0s3/4 (578105753 RSIE = 0(Tsy =1 )/ (5,75, (5375,
Bii'=.Q(Tsé;l)/(sl‘sz)(s3'sz);’. Cap’ = O(Tsy™ )(51'53)(Sé*33) -
e e
Aczz ='sv3('lT*°‘3+ 1)/k51's3)(527;3)? Dy11708/8182853 A =8/s () Si)(ss'sé
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111 111 111=5Te(4(52'51)(s3'31)

2

BI11=5T6/4(31—52)(53—52); Qill=5T8/4(sl—s3)(52-33); Al = 6/(52'81)(83-51)

)

« B2 = 8/(31—32)(53-32); C2 = 6/(51—53)(52-53); A2 =—5T651/4(s2—sl)(s3f51
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BE = -5T652/4(si—52)(s3—sz); CE = —5Tes3/4(sl—s3)(sz—s3)
Pi = exp(—slT); Pé = exp(—szT); Pé = exp(—s3T)
¢11("§) = KD+(A] +KA'1'1+KA"’)P'+(B' KBy +KBI 1" )PIH(CH HKC] 4KCI )Py
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| wlgT) B KDll +K(Aill 111)P' + K(Bi11+B£11)P' + K(Cill ill)Pé
wz(T) = K(Aé+A'2')Pi+ K(ﬁ2'+B'2')Pé + K(Cé+C£)P§
BT 11P1+Bi1P2+Ci1 é J’_""’zz(T)[1 } (A11P1+Bi1 Pa+Cyy P3)]

Q4 q)lz(T)[A"'P]'_+Béi'P2+Cé{'P ]; Q5=D+(A' +A"')P +(B +B|'1)P'+(C +C|'|)P'

Qg 6,5 (T0s3 Q= 4, (D [(A3, 445 PI+(BY, 435 IP3H(C), €5, P ]

'
,Pl1

—.V" v = ._V. '.=' -
exp(vs1 T); Plz exp( s, T); P13 exp( §2VT)

' = kbl AT " KR ' + 4KB''! ' + 4RC ! '
o 1(OT) Kka(A11+KA11KA11 )P (B +KB11 KB )P (C +KC11 Kcll )P

A P! +B P! _+4C

v = v (Y = + '
12070 = A1aP 1 "2 120 P13’ 45 (TD) = AypP B22P12+C22P13
| —_ Tt \] L A ] LR A ] t " 1
¢21(VT) (A21 +KA21+KA )P +(B +KB21+KB )P (C +KC21 l)Pl3
(Vv — + 1 + A 1 1
BT = KDy HRCAL) HAT ) O HK(BY BT P +K(C111 111)P13
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APPENDIX 3

RELATIONSHIP BETWEEN ¢ AND DECAY RATIO INDEX

Let & be the decay ratio, defined as the ratio of the
overshoot/undershoot at one sampling instant to the overshoot/undershoot in
the succeeding sampling time. That is

C(iT) - C(=) C(*®) = C(iT)

* = C(aT) - C(=) or C(®) = C(nT)

(A3.1)

where C(iT) is the output response value at the sampling instant where an
overéhpot or undershobf occurred and C(nT) ié the hext sampling point where
. " : .
an overshoot or undershoot resulted. C(«) is the system output response at
an'infinitevsampling point. For a unit step input change, C(«). tends to
 uﬁity. If it is.assumed>th?t there is overshoot 6r-undershqot at each
béémpliﬁthimg,then for_N Saﬁpling points;.ﬁhevtotal efror exptessedﬁin'te;ms.
?:fbf.ﬁhe &ecayffétio_énd fﬁe fiﬁal erfshooE éf:unAefShsétwis givéh.as - =
N-1 2 —N-2
o 7]

T oe(iT) = [c{@-DT} - coT) ][I + T+ & + oennnsn. +

(A3.2)
i=0 .

Equation A3.2 is a geometric series with first term C(N-1T) -~ C(N) and

geometric progression ratio of a. Expressing in short form gives

N-1 : : 1 - —N—l:'
Y e (it) = [c{(-1)T} - c(nr)] z (A3.3)
i=0. 1 -«
Aléo for the condition
N-1 _ =2(N-1)
I e2¢ir) = [coviTy - conry )P 1 -« ]

i=0 —2
Qa



213

Therefore, the ratio becomes

N-1

) e(iT) : _

=0 _ (143)

Nil o2emy [l DT} - cam] a+ N-1y
1=0

But since N has been taken to be a function of the settling time,

overshoot or undershoot [C(N—lT) - C(NT)] has already been specified.

!

v . (1 @)
Thus ¢ = —— (A3.5)
o (1+EN—1)

is ,the felationship between ¢ and the decay ratio index.

the
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APPENDIX 4

PARAMETER DEFINITIONS FOR CONTROL SYSTEM WITH ZERO—-ORDER HOLD

A\l | 1 ! 2 - 1 .l L8]
. (BJ+B;) + V(BJ+B,)" ~ 4(B]B;+BIBI)
1 2

t 1] —_ t 1 2 -— | ] \i t

Yy ° 7
-6 T -6,T -6 T -6,T -6, T ~6,T
v = - ' = -
1 o e + a,e (1+a3e + e ); 82 qs(e e )
-6, T =0,T -6 T -6.T -6.T -6,T
| - iy | - = =
_33 206(3 e )s 84 ae + age ; P1 e ; P2 e
s - T "B, s - Yo T By o - By By 0 - By
11 Yl‘- Y2 12 Y2 - Yl 13 71 Y2 14 Y2 - Yl 15 Yl
B, . = P3 L = A _ B!
o S E R A T
N N1 Neloi
p, = I [ 1 {[Q+ayp +oyp))0), + 0 8,5(p -py) Iy
j=1 i=0 . '
e _ N-1-1112
+ [ragp e py)0), + a8y, (7o) Iy
N N-1 : N-1-1
D, = (26-1) ] [ ] {[(lragp +oyp, )8 ) + o8 3(p =py) |7y
j=1 i=0
' . N-1-1i
+{ (tagp +a,py) )0 ) + o0y, (o =0y ]y, T
-6,V -6, -6,V -8,V
= - . v = ) - K . <+
Dy N(¢-1); ¢11(V) @ e + aye : k(l+a3e t e )
6V -0V 0.V -8V

0L =ae T ome P54y (D) = ma(dHO(e T - T
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v 2 2 1 8
¢, ,(V) = aje + age y o, = - sy &, - 3y 0y = ’
22 7 8 e A T e A B N N

. = 8 Co o L . -0 _ % . = %

4T (6,0 %5 T -6 % T8 -6 %7 T8, -6 %8 -9,
. ey ey

€ P11 7 ¢ » Pp T €

' + + . Al =
Ay = aypyy ¥ Py TPy Fagpy,y 5 Ay = (agpy hagpy ) (aypyytaspy,)

B ' ' 2
' = — . ' = -
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Ay = (Thagpy 4o p) o )0 p) FogPyp+l) 5 Ag = (ogpy ¥agPy 5 (1 aspy o pyy)
. -8V - -8V . -6V . -8,V
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6.V =0V v -av
. Lo 1 e 2 )
A age ome Ty = 2egte Fome B
R AR RIS R
by, (V) = e o+ age ;b () = (1 + age + e 7))
. . -8,V -0,V
WM sae T ote %)
" o Qi vi vi vi 2 vi vi vi vi
Yor = Loy (D%, (O Ve (D)5 (D = 4o (Méyy () = 01,(1 1 (M }]/2
vi vi P PPN Vi, oo vi vi, o Vi |
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APPENDIX 5

SYSTEM IDEDNTIFICATION AND INITIALIZATION
IDENTIFICATION BY GRAPHICAL METHOD

The control system as described in section 4.3 is used in the
identification and initialization process. In this stage of the study the
air that conﬁrols the valve 1s cut off so that the valve is no more
manipulated. At this condition, water is allowed to flow through thé‘tube
and out to the drain continﬁously, while the heéting tank is filled and the
recircgiating pump used to circulate the water from the drum through the
heat exchaﬁger.shell and back to the heating tank. This situation ‘is
-alioﬁed to continue until steady state in temperature as observed from the
digital temperature indicator_is attained. ‘Then a ten percentage incréase
ip sﬁeam bressure, manually set by turning the steam Qalve_on the maiﬁ line,
"';?SléfféQCed.:,A éampiing ;ime:OfV1.secqnd‘ié_used tondétalog the:tgmpera?ure,_fx
é%gfiié. Due.to»tﬁe.éicéssive ﬁbise inrﬁhé system,”the.teﬁberagﬁgé‘regpdase
is filtered._ The datalog program reduires‘that the temperature response,
(which is the tempefature of water at the outlét of the heat exchager tube),
be summed up fof fifteen samplings and the average used. This averaged
value is filtered by mﬁltiplying with a weightiﬁg féctor and added to a
weighted value of.the preyioué filtered response. The relationship used in
- this algorithm (temperature response datalog) is given as

T(J) = afT‘i(J)'+ (l—af) T(J-1) o v (A5.1)

where T(J) is the J-th filtered response

Ti(J) is the J-th (present) averaged temperature
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T(J-1) is the previous (J-1) filtered response temperature

af is the weighting factor

The af used in this work is 0.4. Both the number of samplings summed

up and averaged and the weighting factor are determined by trial and error

and comparing the printed responses with that ohserved_on.the digital

. temperature indicator. The response of the control system for an open loop

te percentage steam pressure change 1s shown in Table AS5.1.

The “"process reaction curve” is shown in Fig. AS5.1l.

Since there is no prior knowledge of the cont£01 system's transfer
function, an approximate transfer function is obtained by the method of
Strejc.63 This method is based;on thé fact that the step change response of
a system comprising ﬂ time constants can be validly approximated by a
transfer function containing n times the same time constant. In most céses;
thé expreséion of the‘apprpxigateAtransfer functién_is combined with.a‘deiay

time (distance velocity lag) in order to increase the accuracy of}the

apﬁroximation. The general form of the transfer function is

Ke.—Ts } - _ o
G (s) = = o o (a5.2)
p (t,s+1) : .

The transient response of the control system 1s represented in Fig.

A5.2. The method of analysis requires the knowledge of the point of

inflexion P. A téngent to the response curve 1s drawn through this point

and extrapolated to both the horizontal axis and the horizontal line joining

through 13 C as shown in the figure. Thus by setting the response deviation
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Table A5.1 - "Transient Response”
Deviation From Initial
Time in Seconds Temperature °C Point
0 12 0
15 12.4378 0.4378
30 12.8209 0.8209
60 12.99320 0.99320
75 13.10150 1.10150
90 13.27170 1.27170
105 13.3787 1.3787
135_ 13.51770 1.51770
150 - 13.69870 1.6987
j '1165' o | 13.903 . 1.903
e eom EEERTTE
210 14.2684 2.2684‘
240 14.49980 2.4998
255 14.66620 2.6662
300 14.81210 2.81210




Fig. A5.1 - Process reaction curve for a 10% step change in steam pressure.
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from the initial temperature (12 C) to zero, the value of T is obtained.
u

Bydincreasing the deviation ¢i to 1 (13 C), the value of T, is determined,

b

then Ta is calculated as"[‘a = Tb - Tu. The table drawn up by V. Strejc

(Table A5.2), directly affords the order 'm' of the transfer function as
dependent upon the value of Tu/Ta. This result can also be verified by using

\J \J

the deviation response (wi) value or the ratio Te/Ta. For the value of 'n
thus obtained. Table A5.2 gives.pairs of values which enable a direct

‘calculation to be made of the time constant T by using the ratio Tu/Ta and

1)

Ta/T,‘or vice versa.
. If the Tu/Ta value gives a ratio that does not correspond to an

integral 'n' value hut fall between two consecutive values, take the lower
integral n of these two values. .This simplification is taken into account
" by introducing a dead time into the expression of thé transfer function.
The actual value of the ratio Tu/Ta,.corresponding to the process reaction
curve was calculated, but -the approximation caused a lower value of this

ratio to be selected. Knowledge of these two ratios permits the calculation

of 1. . The absolute value of Ta is'not'affected by the dead time. It is

thus possible to write

T T +t

CONEEN G-
a real a table
(A5.3)
Tu _Tu N
(7 = () + o

a real a table a



“"TABLE OF COEFFICIENTS" (V. STREJC)63

222

TABLE A5.2

n To/T | T /T | T /Ta Td/T v, T /T | T /T,
1 1 0 0 0 0 1
2 2.718 | 0.282 | 0.104 -| 1 .264 2.00 | 0.736
3 3.695 | 0.805 | 0.218 2 .323 2.500 | 0.677
4 4.463 | 1.425 | 0.319 3 .353 2.888 | 0.647
5 5.119 | 2.100 | 0.410 4 .371 3.219 | 0.629
6 5.699 | 2.811 | 0.493 5 .384 3.510 | 0.616
7. |6.226 | 3.589 | 0.570 6 .394 3.775 | 0.606
f}g- v6.711 .4.307  0.642 7 401 | 4.018 | 0.599
o | 766 5.081\” 0.709 8 407 4.245 | 0.593 "
10 7.590 | 5.869 | 0.773 9 413 4.458  0.587
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It is thus sufficient to multiply the difference between the two

ratios by Ta in order to obtain the value of T. If the system possesses a

natural dead time, which was neglected when the origin of the curve for the
analysis was chosen, the value of the natural dead time is added to the
calculated value of T to give the effective dead time. All the coefficients

of the approximate transfer function are then determined. (the value of

constant K can always be reduced to unity by choosing a suitable unit).

For this study T = 6.33; T 18.67; T = 12
u a e
0 | | ,
‘ The ratio T 6.33 T 12

u_»56. = . _€
T  18.67 0.339; T 18.67

= 0.6427 and wl at P = 0.357
a A

']

From Table A5.2, these ratios fall between n = 4 and n = 5. Choosing

"n = 4, the dead time is calculated from equation A5.3.

That is _ -
.‘T;)real f.(f;?table : T;
0.339 - 0.319 = —
a

But T_ = 18.67. Therefore T = 0.02(18.67) = 0.3734

T .
Also from Table 6; the ratio Tg-for n =4 is 4.463
Ta
Therefore T = K63 4.183248 = 4.2

From Fig. A5.2, K = 1. : .
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Since it is not possible to determine the natural dead time due to
the method formulated for datalogging the response, a dead time of 0.5
secs. 1s assumed ffom pfevious observation. Thus the effective dead time is
(0.3734+0.5) = 0.8734 secs. The approximate transfer function of control

process is
6(s) = =—rp _ © (A5.4)

A useful gfaphical method of analyzing the response of a system
having two time constants is the Oldenbourg and Sartoriu553 method. This
method also depends on locating the inflexion point and the slope of the

.curve at this point. More convenient for analysis are the quantities TA and
'»Tc shown>in Fig. A5.3. In the Oldenbourg and Sartorius diagram Fig. A5.4

the ratio Tc/TA is used as the intercept on each éxis‘ofjthgisffaight lihe.f'"
' The straight Iine-intéfsects the curve at_two points, if the ratio Tc/TA is

greater than 0.73, either of the intersection points can be use to calculate

the two time constants T1 and Tz.' Their graph Fig. AS5.4 cdvers the whole

1 to T2 from infinity to unity. Their response

range of possible ratios of T
' {

curve was derived from an actual second-order process. When the ratio of

Ta/Tc is 0.73, the straight line Tc/TA = Tl/TA + T2/TA is tangential to

their curve and thus T1 = TZ. As is observed from Fig. A5.3, the ratio of

Tc/TA for the control system is less than 0.73 (0.6427) which also is

expected for a higher order process as shown earlier on. In order to model

the control process to a second-order case, the two time constants are set
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Fig. A5.4 — Oldenbourg and sartorius diagram for equivalent time
constants from process reaction curve for second-order

process.
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equal to each other. The method of calculating the time constant ignores
that part of the reaction curve which precedeé point A in Fig. A5.3. An
appreciable time has actually elapsed before point A is reached. This is
shown in the smoothed reaction curve of Fig. A5.5. The flat secfion of
Fig. A5.5 is not necessarily caused by dead time alone. To determine
process parameters, the following steps are performed;

(i) The time constant Tl’ T2 are set equal to each other and equal to

0. .
365TA

where TA= 18.67 (see Fig. A5.3)

thus T, = T, = 0.365(18.67) = 6.81455 6.8

“(ii) Set Ti Fig. A5.5 equal to O.365Ta = 6.8

(i1i) Measure Tp from Fig. A5.5. That is, Tp = 14.2

V&

:1(iV): The deadftimefTD is ca1cu1ated,_as\ L. .,  . 4
T =T - T ; 14.2 - 6.8 = 7.4
D . p i . ,

Thus, the transfer function of the process as a second-order plus dead time

\
model is

—7.45 ‘ S .
5 , (A5.5)
(6.8s+1) ‘

G(s)‘ = L
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APPENDIX 6

- IDENTIFICATION BY QUASILINEARIZATION METHOD

The basic assumptions necessary for the formulation of the
identification algorithm used in this study are constant dead time (or
negligible variation in it), constant values for sampling time, filtering
.time and weighting factor for filtering the.measured‘teéperature_response.
The quasilidearization methpd (Eveleigh,_V.W)16 identifies T in the
second-order overdamped plus dead time transfer function by solving for
sutcessive solutions of the transfer function linearized with respect to

variation in the unknown parameter. For a given input [r(k)] the model

" output is forced to fit the ohserved output in a least square error sense.

The differential form of the transfer‘function is given as

2 ' _ . .
204y 984 ey = r(e-ty | (46.1)
1 2 1 dt .
where Tl ='fp'roc:;ass' time constant
T = dead time
c(t) = response or butput

This can be expfessed in the form of a set of first-order linear

differential equations with ¢ = x. as

1\.
17 %
. ~1 2 1
= —— - . - 2
Xy Tz X ?Ixz + Tzr(t T) _ (A6.2Dh)

1 L
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Let T; be treated as an additional state

differental equation

Xq =T = 0
Expressing

x = Ax + Br(t-t) - x(t ) =

T
where x = (x; X, X,);

1 72 73 _
o A= :

Equatioh A6.3 can be represented as

1’ -2’

% ees

fi(x, r, t) i =

Let it be assumed that fi and its

continuous

variable with the linear

(A6.2¢)

equations (A6.2a), (A6.2b) and (A6.2c) in matrix form gives

x° P (A6.3)
-4y
B = {-8] ; T
0 2
0= T
1

N (A6.3a)

derivatives relative to x and r are

functions of x and r. Also let %(t),andlg(t)vdenote a nominal

control input and the.correéponding output response, reSpectively and known

dver'thq'intef9a1 [to, tf]f Expanding‘eQﬁatign‘(A6.3q) ip:Taylor_sefieé

about the measured Q(t) provides the eQuatioﬁé defining changes from the

ﬁbminal trajectory in terms of changes in initial state and control over

the interval as

3f:

4

N of, N _ |
8k = )] z—08x.+ ] = 98r, + R,/(x, r, t) (A6.3b)
where 8x, = x, - Q 8r, = r, - % ;s 6x, = x, - i
3% T % O TN T M OXgp TR X

Ri(x, r, t) includes all terms involving higher-order derivatives and are

made negligible by taking sufficiently small values of 8x and 8r. The

partial derivatives in equation (A6,3b) are evaluated along the nominal
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trajectory and are thus generally dependent upon t. Disregarding the

Ri(x, r, t) term in (A6.3b) and recognizing that the input is a step change,

the linearized equation of (A6.3) about the past tréjectory is

where H is defined later on.

(1)

(i1)

(1ii)

(iv)

(v)

(vi)

i

[}
o
©»
b
O
a}

i
o

(A6.4)

[ -

The computational procedure involves the following steps:

s

A : A )
r(t) and x(t) are recorded over a time period T. Note that r(t) and

-~
{

ﬁ(t) are the measured input and output responses. .
The model equations, -- equations (A6.2a), (A6.2b) and (A6.2¢) are

programmed in the cdmputer.

’

' o
Guess starting conditions x as near the true value as possible,

otherwise convergence becomes. a problem. These.iﬁitial values can be

. obtained from least squaré estimates, or through phyéiéal knowledge

of the process. In this study the initial value used is that

obtained earlier on by graphical analysis.

With these initial vaIues,:numerically‘intégrate‘equation’A6.3, use

o A, ' o
this value and the input r(t-T) to minimize the function

t+T Ao _
Jy = jto ¥ Omxg) de | | o (A6.5)

The model equations of (A6.2) are liﬁearized about the trajectory

obtained in stepr(iv).

The effects of change in x° upon system responses are obtained by

solving the linearized equations derived in step (v) computationally.
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(vii) The linearized solutions are weighted by an arbitrary constant

matrix Q and JN is expressed as a general function of Q.

(viii) J,, is minimized relative to Q, to determine the desired parameter

N
changes on the next iteration. (It should be remembered that these
changes are based upon a first—order system linearization and afe
not , in general, the exacf changes required).

(ix) The process is repeated, if necessary, until successive adjﬁstmenﬁs

provide negligible improvements in JN.

(x) The resulting model parameters‘are read out as the desired plant

identification .

¢

‘The linearization about the past.trajectory gave equation (A6.4),

that is
§x =H8x ; 6r =0 (A6.4)"
GHi_* : .
where the elements of matrix H are hij = (FE—) and "*" means that the state
' ‘ ' h|

variables are evaluated on the past trajectory. The component of the

function H are

— — 2 2. N
hi =%, 3 h2 = -0 X - 64x2 + 07 r(t-1) ; h3 =0 (A6.6)
2 1, 2
But 6 = = 3 64 =3 in terms of the state vector, x. Therefore the
. % 3 .
3
elements of H are
* * * * 2 x
h,, =0 ; h, =13 h,=0;h,, ==6.; h,=-0 3

11
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h23 = 20 X + 20 X, = 207 r(t-t) = ¢ (A6.7)
* * *
Pyp =05 B3y =05 035 =0
Thus
0 1 0 - R ——
H=|-62 -8, v
0 0O o0
'Solving equation (A6.4) by state transition method gives
8x(t) = ¢(t, £ )6x° ; ér = 0 (A6.8)
- where ¢(t, té) is determined by solving the .relation
ble, £)) = BOE) ¢t £)) 5 8(e, ) =1 .  (A6.8a)

Since equation (A6.8a) shows thaf_H is a function of time, the equation -can

. be.soived correctly by making the approximation @(t, to) = ¢(éfto); where .

¢(t—to) is the transition matrix for_the‘cbnstant'coefficieht linear

. . : *
differential equation over the interval t -t = At and h,,, are
_ : n+l n ij's
evaluated at x(tn). Hence
o(t) = H-o(t) 5 ¢(t ) =1 ' ' (46.8b)

Laplace transforming (A6.8b) gives ¢(s) = (SI—H)_1 $(o). Inverting results
into the relation

=T ¢ 5 ¢ =¢(0) =1 : (A6.8c)



-1 -1 -
where T =L [(s1 H ) ] and H = H(t )
That is
s+94 1 v
(s40)2  (s48)2  g(s+8)?
| | . o .
(ST-H ) te 1= 2 - 2 L )
(s+6) (s+6) (s+6)
0 .0 i/s’
Thus .
o0t 4 ete-et L
Tn = [-0 te-et e—gt - Bte—et
' 0 0
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iz(l-e-et
0

Yte

,+6te

-0tn

1

-0tn

(A6.8d)

—

y|

(A6.8e).

It should be borne in mind that Tn varies as t changes, since the'x'st

will be assuming new values for each éhénge in ;." Thé yélﬁes'¢(th);éerve as

the initial conditions for_the(computa;ipn.bf ¢n;1'ovef the interval

A
t n+l

- tn'- This process is repeated over the interval of integration

to obtain the trajectory.j The response of the model to initial conditions

[o]

x + GXO is

xi(x°+6x°)

B3

3
xi(xo) + X

6x° o, %
Py
.1 4 13

1

where the ¢ij's are from equation (A6.8c).

(A6.9)
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Let the performance index be, minimize

3
v [x, %) + ) 6x° %1% at (46.10)

1 =1 3

[
-4
[}
—
ot
o
I~ Ww

Where t0 and T are the start and duration, respectively, of the

observation interval; the Wi's are weighting factorsy—generally held

are model responses to observed input

constant and assumed known; “the xi

A -
r(t-1); and X, are observed values of the system state. The weighting

factors Wi corresponding to unavailable (or unmeasured) elements of state

are set equal to zero.
Partial differentiating equation (A6.10) with respect to 6x0j and

aJ : " ' .
setting 5353n= 0; gives a set of 3 algebraic equations of the form

I~ -

0= [T

0. i

' 3 . : - .
. yi[xi(x ) +;k21 8%, 04, -_xi]¢ijd§ o .(Aé.ll)u

But since there is-only qne'output, (A6.11) ‘reduces to

t+T

: 3 . .
_ o o ‘. o _ A4 :
0 = ft 2 [xl(x >+ ) 83 6y, - xl] ¢ 54t (A6.11a)
o k=1 S i
That is, by setting ¥. = 1 and ¥, = ¥, = 0 because the states are not

1 2 3

directly measurable. xl(xo) is the model responée and is given‘as
X, = X, o ' (A6.11Db)

from equation (A6.3).
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Numerically integrating (A6.11a) by Runge-Kutta 4—th order formula

given as

Ah .
X 41 T X, + E—(Kn1+2Kn2+2Kn3+Kn4) (A6.11c)

where Ah is the integration grid size and

— = 0
Knl = f(tn, xn) XZ(xn)
_ 1 ' 1 - o, . Ah
an = f(tn + iiAh, X + E—Ah) = x2(xn) + i—-knl
(A6.12)
T 1 ‘ 1 - oy , 4h
hn3_— f(tn + > Ah, X + 5 Ah) = XZ(Xn) + > an
. : _ 0
Kn4 = f(tn~+ Ah, X + Ah) = XZ(Xﬁ) + Ah Kn3
" Th i = x, (x> + Bh ok b2k K A6.12
us at any time t, Xabl *2 Xn) 6 ( nl n2 n3 n4) ( ': a?;

where the Kn's are as -defined in equation (A6;12) substituting equation

7JJ(A6ﬁL1c) fof-ki'in edﬁétion (A6.1la), alizthe.terms in”the equation a;e  B

o Y . . _ .
known except &% . Thus, (A6.1la) is a linear equation with one unknown, -
Pt o5

which is solved for Gxi'as
EotT o A | 5T 0 ’ ;

- f% [ &%) = x Joy [ Jae - ft’o OPENCACE (A6.13)

and
t +T
[0 [x,x® - AT 6, ]ac
. e 1 1 13 : )
6x° = P : (A6.13a)
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The next computer iteration is made based upon the revised initial

conditions, or
o : '
x = x + 6x (A6.13b)

The entire process is repeated based upon these new initial conditions. The
iterative process is terminated when improvements become negligible.

Using initial state values of X, = 0; Xy = 0 and Xq = 6.0, the above

algorithm was programmed and run in the PDP8 digital computer. This method
gave a time constant of 5,02710 with an integration grid size of 1. The
same dead time value as determined in the graphical method was used since

the linearization used in this method requires the computation of the

. ar(t-T1
derivative 5;( ) = —-r(t-T1). The process reaction response used in this

determination was generated by a step input which does not yield sufficient

information to calculate the delay time.
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APPENDIX 7

THEORY OF VARIABLE GAIN METHOD OF DESIGN®®

Let the desired digital controller as shown in Fig. A7.1 be ‘treated -

as a variable—-gain element X which takes on different values from one

i)

sampling time to another. The input to the variable-gain element’Kiis the

control signal u, and the output is assumed to be u At. any sampling

1
R + ’ : .
instant t = nT , the input and output of the variable—-gain element are

related through a constant multiplying factor Kn; that is

ul(nT+j = Knu(nT+) _ (A7.1)

where k . is the gain constant of the variable-gain element during the
. a _

st .
(n+1) sampling period.
" .+ . Based upon the_abqve~éuggestion; theftransition matrix $ ofhthe .
system is expfessedvas a_function,df the variable-gain Kn and‘has.differén;
values at different sampling iunstants. It has been shown by Tou, J.T,65

that the state—-transition equations for a linear system are given by

v(aT ) = BV(nT) - | | _ | o O (a7.2)
v (a+1)T] = $(T) V(aT') | - ' | (A7.3)
v[ (n+1)T]. = ¢(:)'BV(nT) : ' (A7.4)

Thus, when n = 0

v(0'y = BV(0) | | (A7.5)
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and at t = T

V(T) = ¢O(T) BV (o) | (A7.6)

Vhere V(o) is the given (or derived from state variable diagram) initial
‘state vectof. Since the transition matrix'¢0(T) is a function of the gain
' conétant Ko éf the variable—gain element during the first sampling period,
the state vector V(T) at t =.T is aiso a function of Kj. Once V(T) is
determined from equation (A7.6) in terms of Ko, the state-vector V(T+) can
readily be found from the stéte—variable diagram of the system or by use of
eqdation (A7.2).' It follows from eduation (A7.3) that the state vector

V(2T) is given by
V(2T) = ¢,(T) v(Tt) . (A7.7)

where the transition matrix ¢,(T) is a function of the gain constant Kl of

" ‘the variable-gain element during-the sécond sampling period, and the state

- vector V(T) is a' function of Kg. -Thué,'thg state vector V(2T) is a func-

tion of both Kg and X). Once V(2T) is fouﬁd,'the state vector V(2TH)
foilows from equation (A7.2). The state vector V(2TY) is also a function of
both Kp and K.

With the same reasoning, at t = jT, the state vector is given by
. : . + ‘
v(iT) = ¢-j_1(T)_ v((3-1) T ) (A7.8)
where the transition matrix ¢j_1(T) is a function of the gain constant Kj__1

of the variable-gain element during the j-th sampling period, and the state

vector v[(j—l)T+] is a function of the gain constants KO’ Kl’ K2, N Kj—Z'
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Hence the state vector v(jT) is a function of the gain constants KO’ Kl, KZ’

s Kj_2 and Kj—l'
The pulse-transfer function D(z) of the digital controller can be

expressed in terms of the various gain constants K, of the variable-gain

i
elements as follows:

Beginning with

+ + ’
u(o ) = r(o ) . / (A7.9)
4 -
+ .
then _ ul(o+) = Kou(o ) = Kor(o+) _ . (A7.10)
_ + +, - - '
similarly, ul(T ) = Klu(T ) : . (A7.11)
+ + ’ +
where u(T ) is obtained from v(T ) = Bv(T) = B¢°(T) v(o ) (A7.12)
_ , r
Since u(T+) is defined as an element'of‘V,>wheré V=1x]
u .
.
Similarly,
ul(ZTf) - glu(2T+) (A7.13).

where_u(2T+) is derived from

v(eth B¢1(T) v(thH (A7 .14)

v(2Th

Bé, (T) Bo,(T) V(O+) '  (A7.14a)

In general,

ul(jT+) = Kju(jT+) . : (A7.15)
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where u(jTt) is determined from

vEITh = B (1) V(DT (A7.16)

v(3iTh)

Bé. . (T) Bb. (T)evn....Bb (T) V(OF) (A7.17)
j-1 i-2 0

The z-transform for the control sequence u(jTt) is

u(z) =

u(§THz (A7.18)
j .

lt~13

0
and also the z-transform of the sequence uj(JT') is given as
n ‘ . .
w (z) =} K,u(jTHz ? (A7.19)

”,

the pulse-transfer function D(z)_is'the ratio

n ’ .
by~ J

4y (@) .EO k,u(3Tz

- _ 4

D(z) = O

= - - (A7.20)
z u(jT+)z_J_

o T

Thus, fhe deSign reduces to the'determina;ibn of the»vafious-géin o

constants K, of the variable—gain'element._~Once thé_gain>conétants X . are

found, the desired digital countroller is derived. .The gain coﬁstants k. are
. . ; j

evaluated from thg performance specificatibns. For a'de#dbeat.performance,
the féllowing conditions muét be satiéfied._ The‘output_response is always-
less than the input signal fér't < pf, where T is the.sampling period. " The
system error is zero for t > pT. Thése conditions are satisfied if

xl(pT) = }(pT)' : : (A7.21)
x, (pT) = xB(bT) = 