A COMPARISON OF SOLUTION METHODS
FOR THE CHEMICAL EQUILIBRIUM PROBLEM
by

MARGARITA M. RUDA

Lic. en Quimica, Universidad de Buenos Aires,Argentina, 1873

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF APPLIED SCIENCE .
in
.THE FACULTY OF GRADUATE STUDIES
(Department of Chemical Engineering)

We accept this thesis as conforming to the
required standard

THE UNIVERSITY OF BRITISH COLUMBIA
22 April 1982

(:) Margarita M. Ruda, 1982

-



In presenting this thesis in partial fulfilment of the
requirements for an advanced degree at the University

of British Columbia, I agree that the Library shall make
it freely available for reference and study. I further
agree that permission for extensive copying of this thesis
for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is
understood that copying or publication of this thesis

for financial gain shall not be allowed without my written

permission.

Department of CHEM/ICAL ENGCINEERING

The University of British Columbia
1956 Main Mall |

Vancouver, Canada

V6T 1Y3

pate AVGUST 3/ 1092

DE-6 (3/81)



1i

ABSTRACT |

This thesis deals with computing the equilibrium composition
of a multiple species reacting mixture. When pressure and
temperature are constant and the system is ideal, this is the
chemical equilibrium problem.

It is possible to approach this problem as the minimization
of a non-linear objective function subject to linear equality
constraints. The objective function represents the Gibbs' free
energy of the system} the constraints refer to the conservation
of the -elements. Such a formulation corresponds to a "dual
geometric program" which 1is related to another optimization
problem known as theA "primal geometric program". In those
chemical equilibrium problems with many species, the "primal
geometric programming" formulation includes less variables and
constraints ( inequality ones) than the dual formulation.

We first compared the primal and dual formulations of the
chemical equilibrium problem. Both formulations were solved -
with a Generalized Reduced Gradient code on seven examples.
The primal formulation proved to be 30% faster than the dual for
middle-sized problems (up to six simultaneous reactions). The
code failed when trying to solve a dual problem of 24 species
and 4 elements.; but this same problem was easily solved when
formulated as a primal geometric program.

As the geometric programming theory includes sensitivity
analysis, and we . were also interested in the effects of small
changes of pressure and temperature on the optimal solution, we

compared sensitivity -analysis with re-optimization of the
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problem. Sensitivity analysis proved to be between 30% to 50%
faster than re-optimization. It also yielded accurate results

for the more abundant species when relatively small changes of
temperature and pressure were operated. However, the
equilibrium concentrations of trace species hardly matched those
calculated by re-optimization.

From these resu{ts we recommend the wuse of the primal
formulation and of re-optimization to solve the chemical
equilibrium problem, and we present a computer code that has

been tested on a variety of examples.
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CHAPTER I: INTRODUCTION

The problem of finding the chemical composition of a reacting
mixture when it reaches equilibrium has been called the

"chemical equilibrium problem" (Dantzig et al., 1958). 1In this
problem, two thermodynamic variables, pressure and temperature,
are fixed. Throughout this ‘thesis,we will assume that the
system is ideal.

Knowing the composition at equilibrium 1is important in
applied fields aé diverse as chemical reactors design,‘
development of rocket propellants, evaluation of explosives or
biochemistry. When few reactions take place,the calculatioﬁs
needed are quite trivial. They become very cumbersome,.however,
when there 1is a 1large number of chemical species and
simultaneous reactions . If these calculations have to be
repeated for slight changes in the fixed conditions (i.e.,
pressure and temperature), the problem can be quite impossible
to solve in a reasonable period of time. A digital computer 1is
then required.

This thesis aims at producing a general computer program to
solve the chemical_equilibriuh problem for ideal systems of many
chemical species. To avoid re-solving the problem when small
:éhanges in pressure and temperature need to be considered, the
program should also be capable of performing sensitivity
analysis. Eventually, this program will be used for simulation

and design of chemical reactors, mainly for gaseous reactions.

To achieve our goal, we needed to address the following



points: i) the mathematical formulation of the problem, ii)the
numerical method of solution, and iii) the simplicity of the
program for the user. 1In that order we now proceed.

The mathematical formulation of the problem has to be general
enough to apply to a wide range of examples. The chemical
equilibrium problem has been posed in many ways, all of them
mathematically equivalent albeit numerically different. Van
Zeggeren and Storey (1970) classified these formulations as the
"free energy minimization" approach and the "equilibrium
constant"” method. The former is an optimization problem with a
non-linear objective function and linear equality constraints.
The latter can be derived from the condition of minimum Gibbs
free energy of the system, but consists of a set of simultaneous
non-linear equations to be solved.

Passy and Wilde (1968) found a relationship between the
chemical equilibrium problem and Geometric Prbgramming, a
mathematical programming technique (GP hereinafter). The "free
energy minimization approach" can be regarded as a "dual GP"
problem to which corrésponds a related "primal GP" formulation.
The "primal GP" formulation has a smaller dimension than the
"dual GP", and has been succesfully used to solve examples of
the chemical equilibrium problem (Passy and Wilde, 1970; Dembo,
1976; Lidor, 1975).

The numerical method of solution is of course related to the
mathematical formulation of the problem; however, the same
formulation can be solved wusing different numerical methods.

The selection of the numerical method of solution 1is important



for the computational effectiveness of our code; In other
words, we want to produce accurate results fast. Both the
primal GP and dual GP formulations present numerical
difficulties. There is not énough computer evidence 1in the
literature as to which method of solving the chemical
equilibrium problem performs better. In this work we shall
compare the perfomances of the primal and the dual GP
formulations when solving the chemical equilibrium problem. A
general purpose non-linear optimization code, which can handle
both formulations, seems appropiate to make that comparison
possible.

GP theory provides ways of performing sensitivity analysis.
This is particularly useful to us since we are interested in
comparing its speed and accuracy with that of aétually re-
solving the problem. The results of the comparisons (primal
vs. dual and sensitivity analysis vs. repeating the method)
wiil permit us to choose the more appropiate mathematical
formulation and numerical method §f solution for a final
computef code to solve the chemical équilibrium problem.

We finally come to the question of simplicity. We want to
avoid the wuser's tendency to err while inputing data. The
amount of information needed to run the program should be
reduced to a minimum. A subroutine to <calculate a first
starting point for the optimization is therefore necessary.

The remainder of the thesis is organized as follows. Chapter
II presents the different mathematical formulations of the

chemical equilibium problem . Chapter III reviews and discusses



the literature on the subject. Chapter IV deals with the
difficulties found in trying to set up the programé, while
Chapter V describes the programs actually written for the
proposed comparisons. Chapter VI presents and discusses the
results obtained with our programs in a series of examples taken
from the literature. Finally, conclusions and recommendations

are included in Chapter VII.



CHAPTER II: MATHEMATICAL FORMULATIONS OF THE PROBLEM

This chapter will serve as a means of defining the problem,
as well as introducing the nomenclature. It is based on a
literature review, and it is organized as follows. Section 1
deals with the thermodynamic relations that describe the
chemical equilibrium problem. 1In section 2 we introduce the two
traditional mathematical formulations known as the "Gibbs free
energy minimization method"” and the "equilibrium constant
method" (Van Zeggeren and Storey,1970). 1In section 3 we present
the geometric programming theory, and we discuss the
relationship between this mathematical programming technique and
~the chemical equilibrium problem. 1In section 4 we discuss the

basis for sensitivity analysis in geometric programming.

Thermodynamic relations

The thermodynamic basis of the "chemical equilibrium problem"
has been extensively discussed in many textbooks (Denbigh, 1966,
Kirkwood and Oppenheim, 1961). We will review the thermodynamic
relations that will allow us to formulate mathematically our
problem, |
| When temperature (T) and pressure (P) are chosen as
independent variables for a thermodynamic system, the
appropriate fundamental relation that completely describes the
system is the one expressing the Gibbs free energy (G) in terms

of P, T, and the composition variables, We will assume a system



of K phases and N chemical species; each chemical species is

potentially present in each phase. Then,

G = G(T,P, 6;,) 2.1
where

6;x = number of moles of species j in phase k

Since Gibbs free energy is an extensive property, we can rewrite

eq. 2.1 as :

()]
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(W -4
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N

where the chemical potential is an intensive property defined

as follows:

o G
v = (S
aéjK T,P,6L«
If we neglect all interactions among the phases, each phase
contributes additively to the Gibbs free energy of the system.

Then,
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Where

Gk = Gibbs free energy of phase k

Let us now take a look at the functional form of the chemical
potential. The chemical potential of the species j in the phase

k can be written in the following form: (Denbigh, 1966)

wi (T,P,650) = wj;° (T,P)+RT 1ln a;, 2.5
where
w;c° (T,P)= reference value for the chemical potential of
the species j in the phase k.
R = universal gas constant'

a;« = activity of species j.

We will now assume that each phase is an ideal mixture.
Moreover, we will consider each species as belonging to one
phase; if one species belongs to more than one phase, it will be
given a different number. Hence, k is no longer needed as a
subscript for the number of moles. 1In real life, our .problem is
restricted to :

a) gaseous reactions,
b) reactions in pure condensed phases,

c) some biological models.



With these assumptions, the activity of one species in the
gaseous phase is equal to the molar fraction of this species in
the gas phase, times the total pressure. For the ideal
condensed phases, the activity equals the molar fraction. 1In

equations, if we define

Ay = L6
jek 2.6

Then the molar fraction of species j, Xj is:

Xj = 6; /.x K 2.7
and, for én ideal gas phase

a; = Xj P/1 atm. 2.8
for pure condensedvphases

a; = Xj _ _ 2.9

we can rewrite equation 2.5 for the gas and for the pure

‘condensed phases



. (T,P) ¥; © (T) + RT In P + RT 1n (& / Xy ) 2.10

J

wy; (T,P) = »;° (T,P)+ RT 1n (&6; / (xy ) 2.11
where the superscript ° refers to standard state. For the gas,
it is the chemical potential of the species j as an ideal gas,
at zero pressure. For the condensed phases, it is usually the
. chemical potential of the pure species j in the condensed phase
at the same T and P. |

We will now define the free energy coefficients Cj as:

cj = ( w? (T) /RT) + 1n P/1 atm, 2.12
for the gas phase, and

Cj = w? (T,P) / RT 2.13
for the condensed phases. Replacing equations 2.10, 2.11, into
2.2, dividing by R T , and wusing 2.12 and 2.13, we get a

convenient formulation of the Gibbs free energy for an ideal

system of N species and K ideal phases, at T and P constant.

N .
G/RT =t 6; (ln 6; + Cj) - e 1In ak 2.14
J

o1

xR
I

We have now a working équation that describes Gibbs free
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energy in terms of the number of moles of the species present at
equilibrium, the total number of moles per phase, the
temperature, pressure, and the "free energy coefficients" Cj .
Let wus consider now the equilibrium conditions. The condition
for eqguilibrium in a closed system described by Gibbs free
energy (G) 1is that G 1is a minimum. For the ideal case of
equation 2.14, this minimum exists and 1is unique. (Denbigh,
1966). The fact that G is a minimum at equilibrium implies that
the wvariations of G produced by independent variations must be
zero., But not all the variations in the number of moles are
independent. They must satisfy the requirement that the total
mass of each element is distributed among the different chemical
species (Zeleznik and Gordon, 1968). We need a mathematical

description of these constraints.

Formulations of the chemical equilibrium problem

The free energy minimization method

The "free energy minimization " method 1is just the
mathematical formulation of the equilibrium conditions stated
above. We still have to formulate the constraints, since the
Gibbs free energy is described by equation 2.14. To do that, we
define the "exponent matrix" AA . It is an M x N matrix, where
M is the number of elements in the system, and N is the number
of chemical species in the system. Each column of the matrix
corresponds to the chemical formula of one species: AAi,j gram

atoms of the element 1 are present in one mole of species j.
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'If the system contains Bi gram atoms of element i, then the

conservation of elements can be written as:

K
b £ AAij 6; = Bi - i=1,M 2.15
k=1 jek . '

If ionization is considered, the conservation of charge can be
also expressed as in équation 2.15 ; chafge is considered to be
the M+1 element, with zero amounts; the corresponding row in the
exponent matrix is the charge of each species.

Besides the conservative constraints, we have N positivity
constraints, since the number of moles of a chemical species is

either positive'or zero. They are:
65 2 0 j =1, N , 2.16
Combining the equations 2.14, 2.15, and 2.16, we have the "Gibbs

free energy minimization " formulation =~ of the  chemical

equililbrium problem. We will call this formulation Problem A.
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Problem A
N K
Min G/RT = £ &; (ln 65 + Cj) - L Xy 1ln X\«
j=1 k=1
s.to: K
X L AAij 65 = Bi 1= 1, M
k=1 jek
& >0 j =1,N 2.17

In short , Problem A is an optimization problem of:

a) non linear objective function of N variables (the number of
chemical species present at equilibrium).

b) M linear equality constraints (number of elements).

c) N positivity conditions.

In spite of Gibbs developing his theory in the past centurf,
it was. not wuntil recently that Problem A could be solved
efficiently by computer optimization techniques. Among the
difficulties, the constraints are equality ones; the objective
function 1is convex for ideal systems, but it is non-
differentiable if one of the species is zero, and it is not
defined in such a case; the dimension of the problem 1is the
number of species present at equilibrium, which can be a large
number. The main advantage of Problem A is 1its simplicity of
formulation; the only data needed are the exponent matrix , the
amount of elements (B vector) and the free energy coefficients

C, determined by the working pressure and temperature.
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Reducing the free energy minimization problem

Problem A was too large to be solved when computers were not
available; stoichiometry was used fo simplify numerically the
problem. The idea was to write some species (constituents) as a
function of others (components) (Brinkley, 1946). A system of
many constituents was regarded as being formed by the components
through a set of simultaneous 1linearly independent chemical
reactions. Just how many of these reactions should be
considered, or which should be the components, has been the
object of much research for the case of many constituents
.(Denbigh, 1966; Schubert and Hoffménn, 1976; Waller et al.
1980).

A well posed chemical equilibrium problem should have all its
proposed species greater than =zero at equilibrium; also the
balances (eqg. 2.15) shoula form a set of linear equations with
rank. = M. If this is the case, there exists a matrix U called
the stoichiometric matrix, with dimensions N x D , and rank D,
where D= N-M , is the number of independent chemical reactions.

The stoichiometric matrix is such that, in matrix notation,
AA.U = 0 2.18
Then the composition of each species can be written as a linear

combination of D independent parameters r called the extent of

the reactions. That is,
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D
6; (r) = 6;° + ¢ Ujd ry j = 1,N 2.19
d=1
where
6 ° = initial amount of species j
Also see that:
J 8 : .
- ) = uja 2.20
Jra T,P

which is the traditional way éf defining the extent of reaction.
To calculate the stoichiometric matrix 1is easy when few
reactions take place but it 1is not so for the case of many
reactions. Some systematic ways of calculating it from the mass.
balances have been developed lately (Schneider & Reklaitis,
1975). In fact, any solution of the homogeneous system of
equations formed by setting the B vector equal to zero 1in
equation 2.15, is a stoichiometric matrix , even if it does not
look so nice to a chemist. (Aris, 1970). The selection of the
components is the more difficult task in all the systematic
procedures. The best way to do it is to <choose as components
those species present 1in greater -quantities at equilibrium,
which is most of the time difficult to know beforehand. Isomers

also preéent difficulties (Cavallotti et al.

, 1980).

If the number of moles of the species are written as in
equation 2.18, then the free energy of the system can be stated
as a reduced problem of D wvariables, (the extents of each

reaction ) with D positivity constraints. To simplify the
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‘expression resulting by replacing 2.18 in 2.14 and 2.15, we

introduce the following constant terms:

N
L 60 Cj
j=1
-ln Ko = 2.21
RT
N
L Ujd Cj
j=1
-ln K4 = 2.22
RT
We now define:
D
X(r) = X% + £ ry Med k = 1,K 2.23
d=1
A = 65° k = 1,K 2.24
jek
\kd = I Ujd d=1,D k=1,K 2.25
jek

After some algebra we get the reduced free energy

minimization formulation, which we will call Problem B.
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Problem B
D
Min G/RT = - 1n Ko + [ ry; ln K4 +
d=1 o
N K
£ 6;(r) In 65(r) - £ xe(r)ln xu(r)
J=1 k=1
s. to
D
6;(r) = 6;°+ L ry Ujd =20
d=1 j = 1,N | 2.26

Problem B is an optimization problem, with
a) non-linear objective function of D variables, which are the
extents of each independent reaction.

b) N positivity conditions, one per species present at

equilibrium,

In this formulation, the number of variables is smaller than 1in
the previous one; but when N>2M , this advantage is not so
important. The objective function is still undefined and non
differentiable when a variable is eqﬁal to zero. The set of
stoichiometric coefficients has to be calculated before the

optimization procedure.

Formulation of the equilibrium constant method

Problems A and B are two forms of the optimization approach
to the chemical equilibrium problem. In order to derive the
"equilibrium constant" approach, we will consider Problem B and

the conditions for optimality. If G |is a minimum at
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equilibrium, with pressure and temperature constant, then the
gradient of G has to be zero at this point. Taking the gradient
of G, expressed as a function of the extents of reactions, and
setting it equal to zero, we get a set of D non-linear equations
in D unknowns. These equations are the well known "mass action
law".

"Problem C" below states the equations.

Problem C for gaseous phase:
L Ujd Cj
jek
Kd = exp - =
‘ RT
D - Ujd
( 650 + Ujd rd)
d=1
= nn P
‘ jek D
L (6;° + r Ujd r,)
ek d=1
k =1 d=1,D 2.27
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Problem C for condensed phases
L Ujd Cj
jek
K = exp - =
RT
D Ujd
( 6;° + ¢ Ujd ry)
d=1
= n
jek D
3 (6;° + £ Ujd rg)
jek d=1
k =2,k d=1,D 2.28
Stoichiometric coefficients are needed in Problem C} Once the

set of reaction variables r that satisfies the equations is
known, the number of moles present at equilibrium is calculated
through equations 2.19. Problem C involves solving a system of
non linear equations. This is a totally different numerical
app:oach' than problems A and B, although the mathematical
formulations have been shown to be equivalent.

Almost all formulations of the chemical equilibrium problem
in the 1literature fall into Problems A, B, or C, with some
algebraic modifications. There is still a different
formulation, and to introduce if we need some background on the
mathematical programming technique known as Geometric

Programming.
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Geometric programming theory

Geometric Programming 1is the mathematical formulation of a
special kind of optimization problem. It involves the
minimization of a posynomial (positive polynomial) objective
function g , subject to inequality constraints that are also
posynomials. The problem described is called a "primal problem”
; the primal function g belongs to the Euclidean space R+m there
exists a related "dual" maximization problem, involving a
function v that belongs to the dual space R+n. The function v
has the form of a product of non-linear terms, and has M+1
linear constraints. It has been found that the éonstrained
maximum wvalue of v is equal to the constrained minimum value of
g (Duffin, Petersen and Zener, 1966). We will now present the
equations that exemplify all this. A Primal Geometric Program

is of the form:

Primal GP
Min go. (t)
s. to

g« (t) <1 k=1,K

te 20 i=1,M
where M

gelt) = ¢ ¢c; M t¢ Aij k=0,K

jek i=1 j=1,N 2.29

The corresponding maximizing Dual Geometric Program (Dual GP) is



as follows:

20

Dual GP
N
Max v(8) =1 (c3 / 63)
3=0
s. to
L 63 =1
je0
N
£ Aij 65 =0 =
3=0
6J > O =
where Ak = L 63
jek =

6j

o x
"
V
x

normality
condition

1,M orthogonality
conditions

0,N positivity
conditions

The relation between the primal and dual problems

the "geometric inequality" and states:

g (t) > min g(t) =

max v(s)

> v(s)

is called

When the equality holds at the optimum (*), the primal and the

dual variables are

‘related

through

the

equations (Duffin, Petersen & Zener, 1966) :

following

set of
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M
In c; + £ Aij 1In t¥ = 1n (6;% go(t*)) Jek = 0  2.32
i

M
In ¢; + £ Aij 1ln t¥* In (&5*%/ X&) jek =1,N 2.33
1 .

I1f in the primal problem the constraints are active, and if it
is solved by means of a Lagrangian technique, there 1is a
felationship between the Lagrange multiplier for the constraint

and the corresponding total number of moles of the phase :

A = Te /9o 2.34

where NIk = Lagrange multiplier of the k-primal constraint

We will now summarize some important aspects:

a) Each primal variable is associated to one of the orthogonal
conditions in the dual.

b) Each primal constraint is associated to one of the )\ values.
c) Bach primal term is associated to one dual variable.

d) The posynomial terms in the primal objective function

correspond to the dual variables subject to the normality

condition.

We will not go any further into Geometric Programming theory

for the moment; we will discuss instead the relationship between
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Geometric Programming and the chemical equilibrium problem.

Analogies between GP and the chemical equilibrium problem

In 1968 Passy and Wilde found that the chemical equilibrium
problem, stated as our Problem A , could be regarded as a dual
geometric program. Problem A was algebraically transformed
through the following definitions to fit into the standard

formulation of a dual geometric program.

60 = 1 2,35
c; = exp(-Cj) , 2.36
Co = 1 2.37
-Bi = Aio 2.38

Since exp(-G/RT) is a monotonic function, finding its maximum
is equivalent to minimizing the negative of the function; taking
logarithms, we have:

Min (G/RT) = Max exp(-G/RT) 2.39

The Dual GP chemical equilibrium problem is then:



Chemical equilibrium as a dual GP

N 6
Max v = exp(-G/RT) =1 (c;/6;)
3=0

s. to

60 = 1

N

I Aij 65 = 0 i=1,M

j=0

6; >0 j = 0,N
where

A = L 63 k = 1,K

jek

Ak
L
-1

R

normality
condition

orthogonality
conditions

positivity
conditions

If we maximize the logarithm of the

previous problem,

23

we

obtain a "transformed dual" formulation which is similar to our

"Problem A". The matrix A is the augmented exponent matrix

(AA); 6o is a dummy species.
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Transformed dual GP
N T
Max 1ln v = Min G/RT = 6;(1ln 6; + Cj) - = =
K
z XK ln XK
k=1
s. to "normality
o = 1 condition
N
£ Aij 65 =0 i = 1,M orthogonality
j=0 conditions
65 2 0 j = 0,N positivity
conditions
where
A = £ &5 k = 1,K
jek
From the theory of Geometric Programming, to the previous dual

problem corresponds the following primal problem:

Chemical equilibrium as primal GP

M Aio
Min go(t) = n t¢
1

I
—

s. to

i=1

where Aio=-Bi

2.42
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To the "transformed dual" corresponds a "transformed primal"

formulation; we define Z = 1In t and then:

Transformed primal

M
Min 1n go(t) = Min h(2) = £ Aio Zi
i=1

s. to M
L exp(Cj + £ Aij Zi) < 1 k = 1,K
jek i=1 2.43

The ﬁrimal GP chemical equilibrium problem is a new formulation
of the problem; with:

a) minimization of a non-linear objective function of M
variables (the number of elements)

b) K non-linear inequality constraints, one per phase. The
constraints are active at the optimum. Each term of the
constraints is equal to the molar fraction of the corresponding
species in the phase; hence the constraints state that the
summation of the molar fractions per phase has to be one at
equilibrium. The total number of moles per phase can be
calculated from eqn. 2.34

The transformed primal involves:
a) minimization of a linear objective function of M variables
b) K non-linear inequality constraints, with the same physical
meaning as in the primal problem. 1If the transformed primal 1is

solved wusing the Lagrange multipliers technique, each Lagrange



26

multiplier is equal to the total number of moles in that phase.

The reduced dual

The same methods described béfore'to derive Problem B from
Problem A are used in the Geometric Programming theory. Problem
B -is thus equivalent to a "Reduced Dual Geometric Program" ,
except for some changes 1in nomenclature. These changes are

shown 1in Table II-1.

Summary of the mathematical formulations

Table 1I-2 summarizes the most important features of the
mathematical formulations of the chemical equilibrium problem.

We will now take a look at one convenient derivation from the
Geometric Programming theory : the post-optimal analysis known

as sensitivity analysis.

Sensitivity analysis

All the formulations of the chemical equilibrium problem are
depending on the free energy coefficients C, the e#ponent matrix
AA and the vector of the quantity of the elements, B. The
exponent matrix will not change if the model is well formulated.
The free energy coefficients will probably vary with the source
from where they are obtained, but more important for practical
purposes is their variation with the temperature and pressure of
the system. The B vector may vary with different initial

compositions, for example.
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Table II-1. A parallel between Geometric Programming and

Chemical Equilibrium nomenclatures.

Chemical
Nomenclature

GP
Nomenclature

ujd

Kd

Extent of reaction

Number of moles of
species j

Not defined
Not defined

Stoichiometric
coefficients

. Equilibrium

constant for the
d reaction

Basic variable

Dual variable
Corresponds to
primal objective

function

Normality
condition

Nullity
vectors

~ Basic

constant

Sensitivity analysis is just

in the

equilibrium Gibbs

a way of evaluating the

when any of the parameters mentioned above is changed,

actually

involves a numerical calculation of the partial

re-solving the optimization problem. The

changes

free energy and in the composition,

without

method

derivatives at

the optimum, that is, the truncation of a Taylor series expanded

around an already found optimum.

Of course,

in the parameters are large enough, the problem has to

solved.

The

problem

if the variations

be re-

of obtaining a set of sensitivity eguations has

been approached in two ways in the literature. Both -approaches
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Table II-2. A summary of the more important characteristics
of the formulations of the chemical equilibrium problem.

Type of
numerical
solution

Number of
variables

Number and Need
type of stoich.
constraints coeff,

Name of the ‘Egn.

formulation

in this work

Problem A 2.17

Problem B 2.26

Problem C 2.27
2.28

GP dual and 2.40

transformed 2.41

dual

GP reduced 2.26

dual

GP primal 2.42

GP transformed 2.43
primal

Optimization

Optimization

System of D
nonlinear
equations

Optimization

Optimization

Optimization

Optimization

D
unknowns

N+1

M linear No
eg. const.

N positivity
conditions

D nonlinear Yes
ineqg. const.

- Yes
M+1 linear No
eqg. const.

N positivity
conditions
D nonlinear Yes

constraints

K nonlinear No
ineg. const.

M positivity
conditions

K non linear No
ineqg. const.

Egn.:equation, stoich. coeff.: stoichiometric coefficients, .

eqg.:equality,

of species, M: of elements, K :

ineqg.: inequality, const.: constraints, N: number
of phases, D: of reactions.

differ from the numerical point of view,.

The first

approach

was

Petefsen and Zener's book (1966).

stated’ in

They work

appendix

B of Duffin,

with- the Reduced

Dual GP (egn. 2.26). The Jacobian matrix of the transformation
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from the r variables to the Kd "variables"(matrix J) is formed

as follows :

N K
Jgs(6) = £ (Ujg Ujs /6;*%) = I (hgq hgs /Ae*) 2.44
j=1 k=1
q,s = 1,D
where :
qu = ¥ qu 2.45
jek
Axs = L Ujs 2.46
ek
XK* = L 6_;* 2.47
jek

Duffin et al. (1966) proved that the matrix J 1is also the
Hessian matrix for the function 1ln v relative to the basic
variables r (extents of reactions). So, if the reduced dual GP
equivalent to the Problem B is solved by any method involving
derivatives, the matrix J is readily available. The ‘matrix J
evaluated at the optimum point is wused both to introduce
criteria for the existence of derivatives and to derive
expressions for these derivatives. The differential changes are
~approximated linearly.

Dinkel and Lakshmanan (1976, 1977) used these expressions in
the case of theichemical equilibrium problem when P, T, and the
amount of elements changed. They applied their results to two

examples, the problems 3 and 5 of appendix B. They also
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suggested the use of an incremental procedure 1in order to

control the error produced by the linear approximation of the

differential changes. The expressions they obtained are as
follows:

AV N Ac

— I 6% 2.48

v* j=1 o

AC;
qu——f)g 2.49
1 C;

The expressions are valid if J is non singular at the optimum.
As seen from equations 2.48 and 2.49, the inversion of the
matrix J evaluated at the optimum is a necessary step to berform
sensitivity analysis with this approach. When the number of
reactions D is not very large, this is not a problem; but as the
dimension of the matrix increases, so do the rounding errors and
the time that is consuméd in the inversion.

The second approach taken was related to Generalized
Geometric Programming. This is an extension_ of the Geometric
Programming theory to "generalized polynomials", that is
polynomials with some negative terms. These researchers also
tried to obtain expressions for numerical derivatives, but their
approach was slightly different than the previous one
(Rijckaert, 1974) . The M+1 dual constraints were written in

explicit form, over the N+1 variables ., as well as the D
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"equilibrium conditions" and the K equations relating X to the
summétion of the number of moles in each phase. All this is
equiyalent'to writing the Kuhn Tucker conditions for the dual GP
chéﬁiééi*équilibrium problem. They wrote the N+1+K set of
eqﬁéffé%é for the optimuh and for a small perturbation of the
optimum. Each equation in the perturbed set was subtracted from
the corresponding one in the optimal set, and a Taylor's
approximation series was used to linearize the equgtions. The
final system of N+K+1 linear equations in N+K+1 unknowns( the

variations in the number of moles) is as follows:

A s, =0 2.50
K N
L I Aij a6; =0 i=1,M 2.51
k=0 3=0
I ASo - Ak =0 k = 1,K 2.52
jek
K K
) £ (Ujd/s&3%) a6 - ¢ (Ujd/xe*) Axg
k=0 jek k=0 :

K N . ’

= ¢ [ Ujd(ln c; - 1n c;*)
k=0 j=1 _
d = 1,D 2.53

For any changes in the free energy coefficients, only the
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right hand side of eq. 2.53 changes. For any changes in the B
vector, only the first column of eq. 2.51 changes. No
inversion of a matrix is required, but the dimensions of the

system are much larger than in the first approach.
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CHAPTER III: LITERATURE REVIEW

This review of the literature is organized in three sections.
First we take a 1look at the literature on general methods of
solution for the chemical equilibrium problem. In the second
section, we focus on the computer codes available for solving
geometric programs. The third section deals with the geometric

programming approach to the chemical equilibrium problem.

General aspects of the problem

In the previous chapter we have presented different
formulations of the chemical equilibrium problem. They are all
mathematically equivalent, but different numerical methods of
solution are used for each case. The methods of solution fall
into two main categories:

a) optimization methods
b) solution of non-linear systems of équations.

The problem now seems to be reduced to a choice of a
mathematical formulation and a numerical method of solution.
The literature on the possible combinations is very wide; an
extensive review was conducted by Van Zeggeren and Storey (1970)
and by Zeleznik and Gordon (1968). However, the problem is not
yet settled (Cavallotti et al., 1980).

Two factors should be pondered when judging the goodness of a
solution method: the purpose of the calculations, and the means

that are available to carry them on. We are not as much
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interested in the best solution for one specific case, as we are
in a method flexible enough to accommodate a wide range of
chemical equilibrium examples. The calculations will be
performed by a digital computer. At the moment, there are two
general computer codes available commercially that solve the
chemical equilibrium problem. They belong to the RAND
Corporation (1965,1970) and to the NASA (1971) respectively. We

will briefly describe their methods.

The RAND method

RAND researchers devised the first version of the RAND
program in 1958 (Dantzig, Johnéon, White and De Howen, 1958).
The program was revised and completed by R.J.Clasen, N.
Shapiro, M. Shapley and others over a period of 15 years.

The chemical equilibrium problem 1is formulated as a
minimization of the Gibbs free energy subject to mass balance
constraints. The formulation is similar to Problem A of Chapter
II in this thesis; it deals with an ideal gas phase and pure
condensed phases.

The solution is obtained in two steps. The "first order
ﬁethod" provides a first set of composition values through a
simplification of the problem to a linear program. The "second
order method" uses the previous set of values as a first guess.
The Gibbs free energy is approximated at this point using a
second order Taylor's series. Then, the problem is transformed
to an unconstrained optimization, using Lagrange multipliers. A

final set of equations is then solved using the Newton-Raphson
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technique.

The RAND program has proved successful over a number of years
in solving the chemical equilibrium problem. The main
disadvantages, however, are:

a) slow convergence when many trace species are included in the
model
b) inability to handle cases where the number of moles of a

species is zero.

The NASA method

The first NASA programs to calculate chemical equilibrium
composition were based on the "chemical equilibrium constant"”
formulation. The method was first devised by Huff (1951) and
was later modified by Zeleznik and Gordon (1960,1962). However,
in 1971, they changed the method to a free energy minimization
procedure;the reasons given for the change 1included ( NASA ,
Manual Report,1971): |

a) more bookkeeping necessary for the equilibrium constant
method.

b) numerical difficulties with the use of components (compared
with keeping all the variables as such).

c) more difficulty in extending the generalized method for non-
ideal equations (but still the program handles only ‘ideal gases
and pure condensed phases). |

It was shown by Gautam and Seider (1979) that the RAND and
NASA methods,although derived differently, give nearly identical .

equations and are both implementations of Newton's method. The
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NASA code calculates thermodynamic derivatives as well as the
chemical composition.

We have already stated that the chemical equilibrium problem
can be regarded as a geometric program. Let us now look at some

algorithms devised to solve geometrié programming problems.

Algorithms to solve geometric programs

Many algorithms to solve geometric programs have been
proposed in the literature. A summary of some of these can be
found in Bleightler and Phillips' book(1976). We may classify
the algorithms in three groups.

a) algorithms that solve the primal geometric program (GP),

b) algorithms that solve the dual GP,

c) general non-linear optimization methods that can be applied
to solve either the primal or the dual GP.

For the general case, it is not possible to predict 1if the
dual or the primal problem are easier to soive. Empirical
evidence'Based on computational comparison 1is needed. Some
comparisons among codes were performed by Dembo (1978),Sarma,
Martens et al (1978) and by Gochet, Loute and Solow (1978). We
‘will give a brief description of some of the GP and general
purpose optimization codes compared and we will then try to

summarize the conclusions of the papers mentioned above.
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Algorithms that solve the primal

The primal GP was stated in equation 2.29 (chapter II). The
chemical equilibrium problem as a primal GP was déscribéd"by
equation 2.42. | .‘v .

If we minimize instead the 1logarithm of the obﬁééﬁive
function, and if we make the trahsformafion of variables z = 1n
t, then the problem becomes a convex program. The t's have to
be positive,but the z's are unrestricted in sign. The resulting
problem is célled the transformed primal problem,and  was
specified in equation 2.43 for the chemical equilibrium problem.

Another way of éolving the primal 1is via separable
programming techniques; this formulation increases the
dimensionality of the problem from M to N. | ‘

Based on ‘the prévious formulations, the algofithms thaﬁ solve

the primal can be classified in three groups.

1) Condensation : the primal geometric programming is solved

directly by condensat{on or linearization - of
posynomial functions (cutting planes algorithms). A well known
code based on this approach is GGP. Written by Dembo (1974), it
is based on a Kelley's cutting plane algorithm.

'~ 2) Kuhn-Tucker conditions for optimality. The Kuhn  Tucker

conditions for primal geometric programming are solved
iteratively, using a condensation technique. One code based on
this approach is GPKTC, written by Rijckaert and Martens (1976).
This method 1is essentially equivalent to a Newton-Raphson
algorithm for the Kuhn-Tucker conditions expressed in terms of

the variables z=1ln t. The.code FP from Gochet, Loute and Solow,



38

is based on the same approach

3) Separable Programming. A good code based on this formulation

is DAP, by G.V.Reklaitis ; he uses the differentiable algorithm

of Wilde and Bleightler (Dembo, 1978).

Algorithms that solve the dual

The dual geometric programming (DGP) is the linearly
constrained, non-linear programming problem stated on equation
2.30 (chapter II); -equation 2.40 for the case of chemical
equilibrium,

Taking logarithms of the objective function, the problem is
transformed to a concave objective function to be maximized,
subject to a linear equality constraints. For the chemical
equilibrium, that transformation is seen in equation 2.41.

The reduced dual geometric program (RDGP) 1is obtained by
eliminating M+1 basic variables from the program DGP and
expressing them in terms of D= N+1-(M+1) nonbasic variables (see
egqn. 2.26, 2.27 and 2.28 on chapter II) most of the algorithms
that solve the dual make use of the reduction of dimensionality
that the RDGP problem provides.

The main problems related to solving the dual are (Gochet,
Louter, and Solow, 1974):

a) ‘non differentiability of thé objective function with respect
to the dual variables where they take on the value zero.

b) the dimensionality of the dual problem will always be larger
than that of the primal, except for cases with N<2M solved using

the reduced dual GP.
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c) dual variables have to be determined with higher accuracy if
primal variables are to be calculated from them.

The algorithms that solve the dual problem are based on the
following principles:

1) Linear approximation methods The dual program in its

logarithmic form is approximated at a specific point by a linear
program (LP). The solution of the LP provides a direction for
improving the wvalue of the objective function. The step is
provided by a line minimization. One <code that follows this
approach is ©LAM, from Rijckaert and Martens (1978): the LP
routine is based on the Revised Simplex Method with product form
of the inverse. The 1line minimization 1is based on cubic
interpolation. |

2) Separable programming. After a logarithmic transformation,

the dual objective function is separable and can be approximated
by a piecewise linear function. One code that follows this
approach is SP, by Rijckaert and Martens (1978)

3) Gradient projection methods. This approach combined the

gradient projection method due to Rosen with a variable metric
method in order to approximate the inverse of the Hessian of the
objective function. One example is the code VMP (Sargent and
Murtagh, 1973).

4) Newton-Raphson. The Kuhn-Tucker conditions for the reduced

dual geometric program result in a system of non linear
equations that are solved using a Newton-Raphson technique (see
the similarities with the "equilibrium constant" approach in the

chemical equilibrium problem). Many codes are based on this
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approach, like NEWTGP by J. Bradley (1973) (that code has thé
capability of performing sensitivity analysis), GEOGRAD by
Dinkel and Kochenberger (1974), and NRF by Rijckaert and
Martens, (1978).

5) Other methods

The code GOMTRY by Blau and Wilde (1971) solves the Kuhn Tucker
conditions for the separable dual program ; the code CSGP by
Beck and- Ecker (1978) applies the concave simplex method to the
dual; the code MCS introduces a modification to CSGP that allows

for blocks of variables to go to zero simultaneously.

General purpose non-linear optimization algorithms

Many important algorithms for solving non-linear programs
have been developed and refined 1in the 1last 10 years
(Lasdon,1981). The more successful are :

1) Penalty function methods. The essential idea is to transform

the general non-linear problem into a sequence of unconstrained
problems. The more robust code is: SUMT (Carroll, 1959, Fiacco
and Mc Cormicke, 1966). The objective function and 1inequality
constraints can be non-linear functions but if there are
equality constraints they have to be linear. Hence the‘code may
be used to solve either the primal or the dual GP (Himmelblau,
1972). Another code , CCNMIN, transforms a non-linear program
with inequality constraints iﬁto an unconstrained problem wusing
a penalty function method, and then the unconstrained problem is
solved by Fletcher and Powell's algorithm (Haarhof and Buys,

1970).
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2) Generalized Reduced Gradient methods(GRG). The GRG algorithm

uses the linear equality constraints to accomplish the
equivalent of algebraically eliminating an equal number of
dependent variables from the problem. This reduces the problem
to one with exclusively decision variables. This reduction
affects the evaluation of the gradient. The reduced gradient is
the gradient of the objective function with respect to the
independent variables, subject to moving the independent
variables in such a way that the equality constraints are
satisfied (Westerberg, 1981). The reduced gradient is used to
determine the direction of search. Hence, when GRG solves the
dual GP problem, it really works with the "reduced dual
problem", although the user should present the dual GP in its
standard form.

When dealing with inequality constraints, GRG converts them
into equalities by introducing slack variables. If the
constraints are non linear, they are replaced by their second-
order Taylor series approximates expanded at the point of
interest. So GRG may also be used to solve the primal problem.
UBC has a 1975 version of the code available.

3) Succesive Linear Programming (SLP). The Successive Linear

Programming codes  linearize any non-linear objective or
constraint functions around a point, and then use the resulting
linear pfogram using efficient LP codes as subroutines. Some
codes have been proposed by Griffith and Stewart (1961) and by

Busby (1974)
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Computational experience on GP codes and general non-linear

codes for GP

To decide which 1is the best algorithm to solve geometric
programs would involve trying all of them on a wide variety of
examples; the algorithms should be codified by the same
programmer, and they should be run with the same compiler on the
same computer. The evaluation can then be made on the basis of
time. This approach, however , seems quite impractical. The
number of proposed algorithms is quite large; so is the range of
problems to be tested. To be able to compare codes in different
computers and with different compilers, standard times were
defined. They refer to the execution time of the problem
diviaed by the time required to execute Colville's timing
program (Himmelblau, 1972). They still wvary with the
programmer, and sometimes with the compiler, and they are not
always used in the literature.

We will now show the code comparisons done by a series of
authors on different examples of geometric programs. We. will
focus on their conclusions when solving geometric programs that
are also chemical equilibrium problems.

Sarma, Martens, Reklaitis and Rijckaert (1978) tested 5
algorithms to solve 16 GP problems‘. The codes were: SUMT on
primal, GGP on primal, CSGP on dual, MCS on dual,and DAP on
trénsformed primal. The basis for each code was given in the
previous section in this chapter. GGP got the best results as
for CPU times. SUMT had the largest times. They concluded that

there was no definite evidence that solving the dual GP was
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computationally more attractive than solving the primal as has
been stated by Duffin and Petersen (1967).

Rijckaert and Martens (1978) also performed computational
comparisons on GP algorithms. They tried 16 GP codes (all the
ones we have mentioned before and three more) and one general
purpose non-linear program, CONMIN , on 24 problems . Their
problem 4 is an scaled version of a primal chemical equilibrium
as stated in Dembo (1976)--see prob.4, appendix B. On this
particular problem the results of CPU times of the best

algorithms are reported in table III-1.

Table III-1, Best CPU times (in sec.) for the algorithms
compared by Rijckaert and Martens (1978) on the chemical
equilibrium problem.

Problem GPKTC - GGP NRF CONMIN
(primal) (primal) (red. dual) (primal)

Problem 4 1.0 - 5.82 7.73 12.73

For the general case, in this comparison, GGP was the best code.
But GPKTC worked better for the chemical equilibrium problem.
Dembo(1978) compared six GP codes and five general non-linear
optimization codes on 8 problems. Problems 1A and 1B of his
series are, respectively, the unscaled and scaled versions of

the primal chemical equilibrium problem (prob. 4, appendix
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B),already compared by Rijckaert and Martens. The results for

the scaled problem are shown in table III-2,

Table III-2. Best standard times (in sec.) for the algorithms
compared by Dembo (1978) on the chemical equilibrium problem.

Problem GPKTC GGP GEOGRAD GRG
(primal) (primal) (dual) (primal)
Problem 1B  .0554 271 .0565 .0560

The time relationship between GPKTC and GGP is similar, but
n&t exactl§. the same as in the previous comparison. There is
not much difference betwéen GPKTC , the dual-based GP code
GEOGRAD , and the general- purpose non-linear code GRG . Only
GPKTC performea in the badly scaled problem.

Gochet,Loute and Solow (1974) tried one GP algorithm for
solving the primal (FP), one GP algorithm for solving the dual
(CSGP modified) and GRG on the primal GP on 16 problems.
Problems 3 and 8 of their set are examples of the chemical
. equilibrium problem. Problem 3 is our problem 1 in Appendix B.
‘It has 3 elements, 10 species and one phase; problem‘s,has 6
elements, 16 species and 3 phases. The results are shown in

table III-3.
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Table III-3 . Best CPU times (in sec.) for the algorithms
compared by Gochet, Loute and Solow (1974) on two chemical
equilibrium problems.

Problem CSGP FP GRG
(dual) (primal) (primal)
3 1.68 .98 2.90
8 4.55 4,36 3.34

On ‘the smaller problem, the primal based GP code was faster.
GRG performed better on the bigger problem. Another conclusion
of their work was that the application of GRG to the primal t-
form of geometric programs was more efficient than using the 1ln-
transformed variables. This conclusion was wvalid when the
number of primal variables was less than 5.

Ratner, Lasdon and Jain (1978)-éompared the perfomance of GRG
on the Dembo set of problems (1976) with that of Dembo's code.
They also compared GRG on the 24 problems given by Rijckaert aﬁd ‘
Martens with the best times given in their paper. Standard
times were used as a comparison. They reproduced the results on
Dembo's paper already mentioned. They also pointed out the
senéitivity of GRG to some tolerances that affect its
perfomance. They are the tolerances for the objective function
(stopping criteria) and for binding constraints, and the use of
quadratic or tangent approximations of the initial values of the
basis.

Finally, vEckes,Gochet and Smeers (1978) discussed the

difficulties of solving the dual GP with GRG. They modified GRG
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using Beck and Ecker modification for the concave simplex in
CSGP to account for the non-differentiability of the objective
function at a point where some of the variables are zero, and to
allow for some variables to become =zero at optimality. The
modified GRG was compared with the CSGP code. Half the number
of iterations were needed with GRG than with the CSGP in most of
the cases. |

From these results, we may conclude that:

a) It is not always clear when the dual or the primal GP should

be used.

b) For general cases, the best GP codes seem to be GGP (primal)
and CSGP (dual). However, for the chemical equilibrium problem,
- GPKTC (primal) and GEOGRAD (dual) give better results in terms

of time.

c) The general purpose non linear code GRG compares well with
the best GP codes when solving geometric programming problems,
specifically chemical equilibrium's scaled primal. The code can

be used to solve either the primal or the dual GP .

d) In a general case, GRG seems to .work better when solving
primal geometric programs on the t-variables. However, the GP
primal codes that performed better on the chemical equilibrium

problems worked with transformed primal variables.
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Geometric programmming and the chemical equilibrium problem

As we pointed out 1in the previous chapter, the chemical
equilibrium problem reduces to a special case of geometric
programming (GP). If we translate 1into GP nomenclature the
traditional ways of formulating the " chemical equilibrium
problem, we <can see that they all attempt to solve a dual GP,
either as a problem with all its variables explicit or as a
reduced problem .

Passy and Wilde (1968) devised a primal algorithm to solve
tﬁe chemical equilibrium problem with only one ideal phase. It
involved the formation of an unconstrained problem wusing
Lagrange's method. They tried it on a lhydrazine combustion
problem with bne ideal phase, 10'species and 6 elements (see
problem 1 , appendix C). The algorithm worked with the primal
variables t, which were scaled between 0 and 1. The objective
function was elevated to the one tenth.

The RAND corporation model of the chemistry of the human
respiratory system was used as a test problem by Dembo in a set
of problems intended to compare GP codes (Dembo, 1976). We saw
the results 1in the previous section. Bleightler and Phillips
give.an extense discussion of this particular problem solved by
GGP (1976).

Dinkel and Lakshmanan (1975,1977) were intefested on
sensitivity analysis applied to the chemical equilibrium
problem. They solved the dual problem wusing Dinkel and
Kochenberger's GP algorithm (GEOGRAD code).

Finally Lidor (1975) devised a modification of the GGP
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algorithm fo solve the primal chemical equilibrium problem. He
worked with the transformed primal variables z= 1ln t, and used a
Zangwill's cutting plane algorithm. His code includes the
generation of a first starting point. He tried the algorithm on
seven chemical equilibrium test problems, but his CPU timings
compared disfavourably to the RAND code. The RAND method, as we
pointed out earlier in this chapter, is basicallyv a dual-based
algorithm, and the RAND code has been perfected over many years.
The question remains as if Lidor's code was slow because of the

algorithm itself, or because of its implementation.
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CHAPTER IV: WRITING THE PROGRAM--PRELIMINARIES

In order to write a general computer program to solve the
chemical equilibrium problem we had to decide. which mathematical
formulation and which numerical technique of solution should be
used. As for a mathematical formuiation, we decided to use the
geometric programming approach, because it provided a new form
of presenting the problem (the primal formulation), and it gave
the basis for a sensitivity analysis. We wanted to compare the
primal and duai formulations of the geometric program, since no
definite <conclusions about the superiority of either one could
be drawn from the literature.

The dual GP is equivalent to the traditional free energy
minimization approach to the chemical equilibrium problem. The
dual variables have a straightforward physical meaning: they are
the number of moles of the species present at equilibrium. The
disadvantages are the bigger dimensionality of the duél, the
non—differenfiabifity of the objective function at zero ,and the
numerical problems that result when one variable tends to =zero
(Gochet et al. , 1974).

The primal problem has less variables and few constraints.
The constraints are highly non-linear, but they are 1inequality
ones, and they are active at the optimum. Two related problems
remain: the scaling of the problem and the finding of a first
primal starting point.

We decided to try one computer code that could be used for

both the.primal and the dual formulations, in order to compare
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the two cases., GRG had been proven in the literature as
comparable, if not better than most Vgeneral—purpose GP codes.
It could also be applied.on the dual and the primal problems. A
1975 version of the code was available at UBC (Wales, 1977) and -
could be used as a self-contained program and as a subroutine.
We decided to use GRG as our comparison code.

In this preliminary part of the work we were.concerned.with
the accuracy of the results. We had to determine the best
conditions for GRG td get results comparable to the literature.
The general scaling of the problems was a difficult task, and
three different versions of solving it were triéd. All this was
performed with GRG as a self-contained program.

The rest of the chapter is organized in the following way.
In the first two sections we respectively vrepeat the chemical
equilibrium formulagions that we wused, and give a detailed
description of GRG. The third section deals with the scaling.
problem. The forth section states the working‘parameters for
. GRG. In the next section we present the method used to generate
a starting point. The steps taken for performing sensitivity

analysis are shown in the last section.
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Mathematical formulations

For convenience we shall repeat here the mathematical
formulations of the primal and the dual chemical equilibrium
problems as we used them. They correspond to equations 2.40,
2.41, 2.42 and 2.43 of chapter II. For programming reasons, we
incorporated the normality condition to the exponent matrix and
to the B vector, and wrote the B vector explicitly. All

subscripts are shifted one unit; A11=Bi=1, Ai1=0 for all i,

A1j=0 for all j>1

Dual problem

N+1 65 K Ak
Min (-v) = exp(G/RT) =10 (c;/63) I r\e
j=1 k=1
s. to
' N+1
r Aij &; = Bi i= 1,M+1
J:




Transformed dual

N+1
Min (-ln v) = G/RT = £ 6;(1ln 6, + Cj) -
j=1
K
r XKln )
k=1
s.to
N+1
I Aij 65 = Bi i = 1,M+1
J:
652 0 j o= 1,N+1
Primal problem
M -Bi+1
Min go(t) =m0 te
1=1
s. to
' M Ai+]
gelt) = ¢ c5 0 -t < 1 1,K
ek i=1
t' >/ 0

52
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Transformed primal

M
Min 1n gg(t) = h (2) = £ -Bi+1 Zi
. i=1
s. to
- M
£ exp(Cj + r Ai+1,j Zi) € 1 k = 1,K
jek i=1 ‘ 4.4

GRG. Description of the code

The program for the GRG code available at UBC was written at
CleQeland State University. The manual UBC GRG, written by K.
Wales (1977) is largély taken féom Cleveland State University
technical memorandum C1S-75-02 (1975). We shall repeat here

some of the more important features of this code.

Stating the problem with GRG

Warning: the nomenclature used by GRG clashes with ours. Later
in this chapter we include a table to compare them (Table IV-3)

GRG solves constrained optimization problems stated as

follows:
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Min gM+4(x)
S. to
g;(x) =0 i = 1,NEQ
0 £ gi< UBy,;) i = NEQ+1, M
LBi £ x £ UBi i=1,N 4.5
Where:
x = (x,, ... Xy) vector of N real variables,
G = (g4, «+. Gusa) vector of real continuous functions of x ,
linear or non-linear.
g, ««+ 9yea €Quality constraints.
Inegaq =00 IM inequality constraints.
dmaq Objective function.
LBi lower bound on x; 1 = 1,.,. N
UBi upper bound on x; i 1,.. N
UB upper bound on the inequality constraint g; i = NEQ + 1, M

Description

of the algorithm

We will now

M slack

(4.5). The

Assume x i

binding at x .

GRG

variables (dependent) and the non-basic variables which are

N-NB

algorithm,

remaining

give a brief description of the algorithm.

variables are added to the constraints of problem

previous N variables are called natural variables.

s a feasible point, and NB of the constraints are

Two sets of variables are distinguished in the

provided there is no degeneracy : the NB basic

the

natural variables and the M slack variables
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associated with the binding constraints.

The binding constraints can be written as
G (Y,2)=0 4.6

where Y is the vector of the NB basic variables and 2 1is the
vector. of non-basic variables. Then the binding constraints_may
be solved for-Y in terms of Z, yielding a function ¥(z), valid
for all Y,Z close to the first feasible point. This reduces the
objective function to a function of only the Z variables, F(Z)
which 1is called the reduced objective. The gradient of F(Z) is
called the reduced gradient. The original problem is now a

reduced problem.

‘Min F (2)

s. to
LB

/A
N
/A

UB 4.7

‘'Where LB and UB are respectively the lower and upper bounds for
Zz, and the vanishing of the reduced gradient is sought.

GRG solves (4.5) (with the slack variables) by solving -a
sequence of (4.7) reduced problems. Each problem is solved by a
gradient type unconstrained non-linear optimization method. The
reduced gfadient gives a search direction d for a one
dimensional linear subsearch as to minimize F(Z+ ad) with
respect to . A set of final equations is solved using

Newton's method.
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If Newton does not converge, GRG reduces o and} tries again.
Otherwise the search 1is finished. If Newton converges, but a
basic variable violates the bounds, a new set of basic variables
is determined and the solution of a new problem starts. The
search may continue until the objective is found larger than the
one in the previous iteration. Then a quadratic interpolation
is done to the three a values bracketting the minimum, and the
objective is evaluated at this point.

If the 1initial x does not satisfy the constraints, GRG
optimizes a "Phase 1" objective which 1is the sum of the
constraints violations, in order to obtain a first feasible

point.

Use of GRG

GRG can be wused as a self—contained program oOr as a
subroutine. - ' The self-contained program was used in the
preliminary stages of this work. Details on the use of GRG can
bé taken from the UBC-GRG writeup (Wales,’1977).

Some parameters have to be specified for GRG to work. The
values of these parameters depend on the mathematical
formulation of the problem, on the scaling of the problem, and
‘on the accuracy required for the solution, and will be discussed
later. Running GRG as a self-contained program , these
parameters are prompted by the user in a terminal "on

conversational mode. The objective function and the constraints

are calculated by a subroutine named GCOMP, provided by the user
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in a file attached to input unit 5.

The scaling problem

The fact that theiéme{;al equilibrium is an ill-conditioned
problem was pointed Qﬁt:by many authors (Beightler and Phillips,
1976; Dembo, 1976; Lidor, 1975). One difficulty is the huge
value of the GP objective function; the range of the primal
variables at the optimum 1is quite wide. The free energy
coefficients also vary a lot between species.

“Table IV-1 exemplifies the need for a scaling with some
problems from the literature.

All the fiqures in table IV-1 are from the literature or they
weré calculated from liferature data.

ProblemA 1 was sblved in the literature (Passy and Wilde,
1968) as a primai prdblem. The f variables were scaled so that
their values at the optimum had a range of 100 between the lower
and the higher values. No comments were made in the literature
on the logic of the scaling.

Problem 4 is one of ADembo‘s test problems for evaluating
geometric programming codes. GRG could not solve the unscaled
version when using the t variables. The problem was scaled by
Dembo, and 1its results were reproduced by us, starting from a
point :closer to the optimum than theirs. The transformed primal
problem could be solved unscaled.

The sources of problems 2,6 and 7 did not specify the wvalue
of the objectivé function, which we «calculated from their

composition and free energy data. Problem 5 was solved in the
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literature as a dual GP, using the logarithm of the objective
function.

As a first approach, we tried to reproduce the problems from
table IvV-1 using GRG. Wé succeeded 1in the scaled and
transformed problems, but not on the unscaled versions of the
primal or dual geometric programs. See appendix B for our

results.

Attempts to solve the scaling problem

From what we could see in the literature, the attempts done

to scale the primal problem were:

a) when working with the primal variables t, the objective
function was elevated to an exponent so as to diminish its
absolute value, and the primal variables were scaled in obscure
ways so that they would fall within a close range from their

optimum value.

b) when working with the transformed primal variables Z, there
was no scaling problem. The objective function corresponded to
the standard Gibbs free energy .of the system and the transformed
primal problem was a convex program. As can be observed in
table IV-1, the range of variation of the transformed primal

variables is not too wide,

We tried both schemes a) and b) on problems 5 and 6, running



Table IV-1. Characteristics of the Chemical Equilibrium Problem!

@ OPTIMUM

RANGE OF VARIABLES @ OPTIMUM

PROBLEM | SPECIES, OBJECTIVE FUNCTION
NUMBER ELEMENTS, .
PHASES. v Cvrot in v T Zt
1 10, 3, 1 | 6.2904 E20 .61431 47.8907 | 5.61 E-5 | -9.7882 | 1.48 E-1
. 2.47 E-7 | -15.214 | 6.93 E-4
2 4, 3, 1 1.9699 E39 L4714 90.4788 | 4.93 E-2 | -5.3120 | 2.48 E-1
: . . 2.86 E-14| -33.488 | 2.52 E-1
3 5, 3, 1 | 2.9231 €34 .21136 79.3605 | 4.25 EO'| -.85543 | 1.72 €-1
' S 1.49 E-10| -24.927 | 5.79 EO
4 30.12. 3 | 7.8257 €E796| 9.30969 E7 .| 1834.91 | 6.51 E-1 | -.42960 | 6.60 E-21
S 1.19 E-9 | -20.552 | 28.9 E1,
5 10, 4., 1 | 5.2090 €377| 2.38365 E3 | 777.638 | 1.10 E-5 | -11.415 | 4.40 E-4
: . 1.80 €E-9 | -20.127 | 19.9 E1
6 8, 4, 1 1.4576 ES52 .3281 120.111 | 5.84 E-3 | -5.1423 .41 E-4
32.32 E-20! -44.851 88 EO
7 24, 4, 1 1.4448 E52 .32352 120.102 | 6.07 E-3 | -5.1037 .77 E-22
3.32 E-20| -44.852 | 1.88 EO
The

exp (G/RT)
primal variabtes
Int

dual variables (number of moles)

source data for this table are in Appendix B

65
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GRG as a self-contained program. When wusing the primal
variables t , the objective function was elevated to 0.01 and
the primal variables t were scaled based on a primal starting
point <close to the optimum. After the scaling, the variables
were arbitrarily bounded between 0 and 500.

When using the transformed primal vériables Z, we were faced
with the problem of fixing the boundaries for these variables.

We put zero as upper bound for all the variables. The
tranformed primal objective function 1is 1linear on the yA
variables; each Z can be regarded as the contribution of the
associated element to the total free energy of the system
(Zeleznik and Gordon, 1968). Therefore, if Zi is equal to zero
that means that the element 1 is not contributing to the total
free energy of the system, regardless of the amount of element

i. This is quite an unrealistic situation if the model is well
posed, and so zero looks like an appropiate upper bound for the
Z variables.

The lower bound is not so easily determined. A fixed large
negative number like -100 is one possibility, but this approach
has some problems: it does not account for cases when Z is below
that boundary and the range may be too wide for some variables.
Also, in the evaluation of the terms of the primal constraints
we can have exponentials of too large negative numbers, which
are undefined.

A second possibility to determine general lower bounds for

the transformed primal variables 1is to calculate a fixed

percentage of a first good starting point and use it as a
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boundary. But then there 1is the question of how big this
percentage should be; we tried a few numbers, and found
variations from problem to problem.

The third possibility is to add a fixed negative number to a
good starting point. If we choose -30, that is equivalent of a
range of 10 '3 in the untransformed primal variables t. 'If we
choose -20, the range is 10 8., We chose -30 arbitrarily and it
worked well in all our examples . This selection of a boundary
is then strongly dependent'on the first starting point. Using
an aproximation of the problem to a linear program allowed us to
obtain dual starting points that are quite close to the optimal
values. The corresponding primal points can be calculated from
the dual. A description of the pfocedure is done later in this
chapter. See Chapter Vi for the results of "the closeness of

these points to the optimum values.

Comparison between scaling the primal and using the transformed

primal

Table 1IV-2 shows the results of a comparison between the two
procedures explained in the previous section. The problems No.
5 and 6 of table IV-1 were scaled, and also posed as transformed
primal problems. Both problems have 4 primal variables, and
according to the literature ( Gochet et al. , 1974) for generalv
GP the problem posed as t variables should be solved more
efficiently by GRG than the transfofmed one. The number of
iterations and of function evaluations needed to go from the

same starting point to the .same optimum were computed with both
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Table IV-2. Performances of the scaled primal problem and the
In-transformed primal with GRG (*)

Problem Scaled Ln-transformed
Iterations F. evaluations Iterations F. evaluations

5 (*%) 7 51 5 46
6 (**x) 20 240 13 183
Notes:

(*) GRG parameters: EPSTOP=EPNEWT=EPSBOUND=ESPIV= 10-¢

(**) Scaling: objective function elevated to .01 ; yl=t1.10°%
y2 = t2. 10¢ , y3 = t3 . 10¢ , y4 = t4 ., 10°
Starting point : 21=-11,42, Z2=-20.13, 23=-15.86, Z4=-11.63
Optimum : 21=-11.4315, 22=-20,13541, Z3=-15.8013,
Z4=-11.6964
(***) Scaling: objective function elevated to .01 ; y1=t1.10
y2=t2. 1023 , y3=t3. 107 , y4=t4 ., 10°
Starting point: Z1=-4.35, Z2=-51.6, Z3=-16.3, Z4=-11.9
Optimum: Z1=-4.3370, Z2=-52.2190, Z3=-15.9968,
Z4=-11.9352.

methods. The same tolerances were used in all cases.

It took GRG less iterations and function evaluations to solve
the transformed primal, the opposite of what the literature said
for general GP . We believe this is due to the particular 1ill-
conditioning of the chemical equilibrium problem, and therefore
should need a special scaling for each example. From here on,
we "will wuse the words "primal" and "transformed primal"
indistinctly, and we will always refer to the 1ln-transformed
problem._ -

For the dual problem, we found no special computing

advantages for either using the objective function as 1in a
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standard geometric program (but elevated to a certain exponent),
or minimizing the negative logarithm of that function. The
second approach was attractive because then the objective
function represented the Gibbs free energy of the system divided
by R and by T, same as in the transformed primal, and as in the
traditional "free energy minimization method". For the rest of
the thesis , whenever "dual problem" is mentioned, we will be

referring to equations 4.2,

Determination of working parameters for GRG

GRG needs as an input a series of control cards that have to
be provided by the wuser. We determined some of them from
literature values; some others through numerical experience.
The resulting values may not be the best for a specific problem;
however, they allowed wus to obtain results similar to the
literature in all cases. Table IV-3 explains the meaning of the
key words and exemplifies the values used in our programs.

-

A dual starting point

A starting point for the dual problem is quite
straightforward, since the dual variables are the number of
moles of the chemical species. When wusing GRG as a self-
contained program, we usually started with a point close to the
literature optimum, and then we changed it at random.

For the user's convenience, the final code should include the

generation of a starting point. The NASA code uses an equal



TABLE 1V-3, Parameters for GRG

GRG

Transformed DUAL
PARAMETERS PRIMAL
N £ 100 M + 1. N + 1

(Number of
variables)

M < 100
(number of
constraints)

NEQ
(number of
eguality
constraints)

LBV
. (lower bound
. on variables
" UBV . .
(upper bound
on variables)

UBC
(upper bound
on inequality
constraint)

X
(initial vector
of variables)

EPNEWT
(tolerance

for equality and

binding
constraints)

EPSBOUND
(tolerance for
variables
@ bounds)

(Number of
elements + 1)

K . .
(number of
phases)

0

'Starting ' L
point. +(-30) -

.. 0

Generated

with LIPSU2
and SINGV

E-6

" (very important

for accuracy)

(Number of
species + 1)

M+ 1
(number of
elements + 1)
N + 1
(number of
elements + 1) .

E-24

- (E-10 - E-30)
‘—“tried-

- 40

Generated
with LIPSU2

E-6
(very important
for accuracy)

//continues
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///Table 1V-3 (continued)

subroutine

GRG ’ Transformed DUAL
PARAMETERS PRIMAL

EPSTOP E-6 E-6
(tolerance for
objective function
stopping criteria) EPSPIV B
o - E-6 E-6
(tolerance for ' '
pivot element
in the basis)

- "QUAD " . 7 _used . used
..(quadratic @ . . -important- . ~important- -
extrapolation - = . C :

~for estimating.

-initial basic
variables)

. PRINTCTL. . 2 . 2

* (control - for self- for self-
amount of contained _ contained
output) program; 1 for program;1 for

"subroutine
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distribution of species for that purpose. The RAND code
approximates the dual problem to a linear proéram to obtain a
first point. Lidor (1975), did a different approximation than
the NASA , and obtained another linear program for his starting
point routine. Lidor compared his results to those of the RAND
code, and got points closer to the optimum. We decided to
implement Lidor's approach. |

His formulation of the linear program (LP) is as follows:

LP approximation of the dual
N N
Min £ = ¢ Cyy; +etL C3
Jj=1 J=1
s. to
N
r A1jJ y; * & = Bl 1 = 1,M
J:
£ > €
y; =0 j = 1,N 4.8
Then:
6; = y; * & 4.9

To solve the linear program, we used subroutine LIPSUB from
UBC (Patterson, 1979) on the program LIPSU2 ., The following

steps were followed:



67

1) Read C, A and B.

2 Set the tableau 1in the manner specified by the UBC routine
LIPSUB .

3) Call LIPSUB . It solves the linear program using a primal-
.dual algorithm.

4) The results (the y variables and & ) are used to calculate

the dual starting point with equation 4.9.

Calculation of primal variables from the dual ones

The primal starting point is more difficult to visualize and
is more critical than the dual. We already mentioned that we
are defining the lower bounds of the primal variables as a
certain function of their starting value. Since we already have
a program to generate a dual starting point, it sounds
reasonable to transform this point to primal variables.

For a geometric program at the optimum , the primal and dual

variables are related as follows:

M
£ Aij Zi = Cj + 1n (6;/x¢) j=1,N 4.10
i=1
where
Ag = L. 6 k = 1,K

Jek

There are M variables and N equations. In reacting chemical
equilibrium problems, N>M and we have an overdetermined system

of 1linear equations. The equalities hold only at the optimum;

"0
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this is é nuisance if we are interested in the starting point
which is not normally the optimum.

A linear least squares approach should be the best solution.
We tried subroutine DBEST from UBC with very good results. It
decomposes the transpose of our A matrix (the exponent matrix)
following a Gram-Schmidt orthogonalization. The problem was
that the UBC subroutine waé limited to cases with less than 30
species, so we tried another method.

Subroutine DSLVD from UBC (UBC MATRIX, 1980) uses a singular
value decomposition to solve overdetermined systems of linear
equations. The transpose of the matrix A 1is decomposed as

follows:

A' =U L V' 4.11

where
U, V = orthogonal matrices

£ =diagonal matrix of the singular values of A'

The solution of the system of equations A'Z = b is the vector Z

Z =V I*U'Db 4.12

Where r* is the pseudoinverse of E.
We implemented the program SINGV as follows:
1) The eprnent_matrix A, the free energy coefficients matrix C,

the -dual starting point and the values of M and N are read.



69
Q
2) Call subroutine DLSVD from UBC. It calculates the matrices
V, £ and U'b.
3) Calculate i* and V L+,
3) subroutine DGMULT from UBC is called to multiply V £* and U'b
and obtain the vector Z, which is actually the vector of the

transformed primal variables z.

Sensitivity analysis

As we already discussed elsewhere (chapter II), there are two
approaches in the literature to sensitivity analysis in
geometric programming. Both approaches are mathematically
equivalent but the first involves the inversion of a matrix and
the second solves a system of linear equétions.

We chose the combustion of propane (problem 5) as a means of
comparison between theitwo approaches, because
a) It was wused by Dinkel and Lakshmanan in their paper on
sensitivity analysis for the chemical equilibrium problem. They
used the method of the inversion of the Jacobian (Dinkel and
Lakshmanan, 1977).

b) it is a ™"middle size" problem within the literature. It
involves six simultaneous reactions ; the dimension of the
matrix to be inverted in the Jacobian approach is DxD, where D
is the number of independent reactions . Wﬁen D= 1 or 2, there
is no doubt that this method will be faster than solving an
equivalent system of N+K+1 by N+K+1 linear equations, where N=
number of species, K is the number of phases. We showed before

(Chapter I11) that D=N-M; if we assume N=3, M=2, K=1, we have a 5
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x 5 system of equations to be solved vs. elevating a number to -
1. In the combustion of propane example, D=6, N=10, M=4, K=1
and then the comparison is between a 6 x 6 matrix to be
inverted, or a 12 x 12 system of linear equations to be solved.
For the purpose of the comparison the stoichiometric
coefficients used were the ones calculated by Dinkel and
Lakshmanan (1977). We will now explain a systematic procedure

to obtain these coefficients from the exponents matrix AA.

Calculation of stoichiometric coefficients

A systematic method to construct a maximal set of linearly
indepeﬁdent chemical reactions from the exponent's matrix AA is
as follows: (Cavallotti |et al , 1979)

a) Given the matrix AA, factorize it into two matrices E and F,
where E is an MxM matrix of rank M, and F has dimensions MxD, so
that, in matritial notation:

AA = | E | F |
In chemical language, that is equivalent to reaccommodating the
matrix AA, so that the first M columns correspond to the key
components; the matrix F is the matrix of the constituents.

b) Reduce the factorized matrix by a Gauss Jordan procedure
until it becomes

AA = | I | H |

where I is the MxM identity matrix.

c) Form the array :
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Where I is now the DxD identity matrix, and U stands for the NxD
matrix of stoichiometric coefficients for the D reactions. With
this construction, the product of matrices AA.U = 0 , which was
the conditiqn. required for the &stoichiometric matrix (see

chapter II).

Comparison between the two methods of sensitivity analysis

We implemented Dinkel and Lakshmanan's method 1in the program
JOTA (appendix B). The method based on the solution of the
linear system of equations is contained 1in program NPLUSK

(appendix B). We will now describe both algorithms.

a) Algorithm of program JOTA

1) read optimal composition at optimum temperature and pressure
(data from the literature), stoichiometric coefficients, total
number of moles 1in the phase, free energy coefficients at the
optimal and at the perturbed T,P.
"2) form the J matrix according to equations 2.44, 2.45, 2.46,
2.47,

3) the J matrix 1is inverted by the UBC subroutine INV (UBC
Matrix, 1979). The execution time to invert the matrix 1is
printed.

4) for the new set of free energy coefficients, the new

composition and free energy are’computed using equations 2.49
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and 2.48, and .these values are printed.

B) Algorithm of program NPLUSK

1) read same data as in JOTA .

2) the matrix to be solved is posed at the optimal conditions of
P, T, and composition. The equations 2.50 to 2.53 are used for
this purpose.

3) the right-hand side vector 1is also calculated for the
perturbed condition,

4) the system of equations is solved by UBC subroutine DSLIMP
(see UBC MATRIX, 1979). The execution time for the performance
of DSLIMP is printed.

5) the new composition values are printed.

In table 1IV-4, we can see that both programs yield figures
for composition comparable to those obtained in the literature
for sensitivity analysis, but the execution timé for the JOTA
program was a thousand times longer. As a consequence of this,
we decided to incorporate the NPLUSK program as a subroutine of
our main pfogram in order to perform sensitivity énalysis (see
Chapter 5).

When the free energy coefficients of the species change, only
the right hand side of the system of equations needs to be
recalculated. Since the matrix of the equations 1is solved by
DSLIMP, it 1is very easy to make a new perturbation and resolve
the system, for the matrix is stored . It is not the same when
the amounts of elements are changed. In this case, the first

column of the matrix has to be recalculated. No attempts were
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Table IV-4. Two approaches to sensitivity analysis. Composition
values for problem 5 * , at two thermodynamic conditions, using
optimization. Composition at the perturbed condition, calculated
with two methods of S.A. Execution times for the two methods.

Species |Start Perturbation ¢ T = 2500 K , P = 50 at.
T=2200 K |—=————== = e
P=40 at. Optimiz.* | S.A. * JOTA ** NPLUSK ***

: - t=2.24008 s|t=0.00161 s

H2 .02007 .05492 .04020 .04020 .04017

H .00065 .00433 .00189 00189 .00189

OH .01500 ' .05579 .03534 .03534 .03532

H20 3.9719 3.9150 3.9412 3.9412 3.9412

CO .08160 .24835 .17378 .17379 17267

COo2 2.9184 2.7516 | 2.8262 2.8262 2.8263

N2 19.987 19.959 19.971 19.972 19.972

NO .02668 .08618 .05680 .05679 .05679

02 .03358 .09614 .06954 06954 .06955

0 .00044 00356 .00137 .00139 .00138

= temperature, K= Kelvin, P= pressure, at.= atmospheres,

SA.= sensitivity analysis, Optimiz.= optimization,

t= execution time, s= seconds.’

* Dinkel and Lakshmanan, 1977.

** JOTA : S.A. program based on inverting the Jacobian.

*** NPLUSK : S.A. program that solves a system of linear
equations. »

‘done on solving this case.

From the data in table 1IV-4 we can see that the relative
errors of the composition calculated by sensitivity -analysis,
are quite large. These errors are relative to the value of the
composition as calculated by a new optimization. The errors
also vary from species to species.

Almost all papers on sensitivity analysis in GP (Rijckaert,
1974; Dinkel and Lakshmanan, 1975,1977) propose an incremental
procedure to diminish these errors. An evalua;ion of the size

of the increment . was done on the example No. 5, and is
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explained in Chapter VI,

Sensitivity analysis seems a faster way to solve the chemical
equilibrium problem in a region close to a known optimun, than
reoptimization itseif. Just how much faster it can be, with
similar accuracy, has not yet been stated. We tried to compare
the sensitivity analysis procedure vs. reoptimization, and the

results and conclusions are in Chapter VI.

Conclusions of this chapter

The conclusions of these preliminary studies are:
1) GRG solves both primal and dual GP chemical equilibrium
problems, provided there 1is a scaling, or a logarithmic
transformation. It is more effective if (i) the primal is posed
as a problem of the transformed primal variables Z= ln t, (ii)
the logarithm of the dual objective function 1is optimized.
2) The working parameters for GRG were stated.
3) A program to generate dual starting points was written.
4) A program to calculate primal points from the dual ones was
implemented.
5) Sensitivity analysis for the variations of the free energy
coefficients on the dual variables was performed faster by
solving a system of linear equations rather than by inverting
the Hessian matrix. The problem treated had a degree of
difficulty ( number of independent reactions) equal to six.
6) For sensitivity analysis we need the stoichiometric
coefficients for the reactions. A literature based systematic'

procedure to obtain them from - the exponents matrix  was



explained.
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CHAPTER V: DESCRIPTION OF THE PROGRAMS

Diagrams

We will present here the diagrams of the four cohputer
programs that were written. The idea was to compare primal vs.
dual perfomanée, ~and sensitivity analysis vs. re-
optimization. The diagrams are quite rough; a more detailed
explanation of each subroutine will be given in the following
sections of this chépter.

Program COMP 1 solves the primal transformed problem with
GRG. Program COMP 2 solves also the 'primal, and perférms
sensitivity analysis as well. Program COMP 3 solves' the dual
and finally program COMP 4 solves the dual and performs
sensitivity analysis.

The programs are written in FORTRAN IV . All subroutines are
related through labelled COMMON blocks. Each subroutine calls
at least one subroutine from UBC (except for subroutine FREEN ).

The programs were run on an AMDAHL 470 V/8 computer, using
the Michigan Terminal System, They were compiled with IBM
FORTRAN compilers G and H at level 21.8. Data were read from a

file attached to input unit 5.



PROGRAM COMP1

J/READ DATA/

l

SUBROUTINE FREEN

Calculates free energy coefficients

at different T and P

l

TIME = 0.D0
|

FIX T and P

l

SUBROUTINE LIPSU2
provides dual starting point

l

SUBROUTINE SINGV
calculates primal variables
from dual

GRG
solves the optimization
problem (GCCOMP)

I

CALCULATE dual variables
from the optimal primal

.

WANT VAh\'

NO

77

PRINT
RESULTS

TIME

T AND/OR P2
™~

YES

-VARY T,P.
-GET new free energy coeff.
-USE optimum as st. Point

{ STOP |



PROGRAM COMP2

//READ DATA//
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SUBROUTINE FREEN

Calculates free energy coefficients

at different T AND P

|

TIME = 0.DO

l
FIX T AND P

|

SUBROUTINE LIPSU2
Provides dual starting point

l

SUBROUTINE SINGV
Calculates primal variables
from dual ones

l

GRG
Solves the optimization
problem

1

CALCULATE dual variables
from the optimal primal

. PRINT
| RESULTS

WANT VARY

\\\\g;ﬁﬁgiOR %3/////
'/

YES

——— NO ——/ TIME

{ STOP)

-VARY T and P.
-GET new free energy coeff.

|

SUBROUTINE NPLUSK
Performs Sensitiviy Analysis

[

/éRINT RESULT /




PROGRAM COMP3

//;EAD DAT§//

SUBROUTINE FREEN

at different T AND P

Calculates free energy coefficients

TIME

]
o
g
o

FIX T AND P

SUBROUTINE LIPSU2

Provides dual starting point

GRG
Solves the optimization

79

Problem (GCCOMP)

C

WANT VARY\\\\\\\

NO

PRINT
RESULTS

*~._ P AND/OR T?
S~

.

YES

-VARY P,T.
-GET new free energy coeff.
-USE Optimum as st. Point

@
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PROGRAM COMP4

//;EAD DAT%//

SUBROUTINE FREEN
Calculates free energy coefficients
at different T AND P

TIME

"

o
o
o

FIX T AND P

SUBROUTINE LIPSUZ2 ..
provides dual starting point

GRG
Solves the dual
optimization problem PRINT

/RESULT

NO / TIM%/

T

-VARY T, P.
~-GET new free enerqgy coeff.

SUBROUTINE NPLUSK
Performs sensitivity analysis

1

//ERINT RESULTS//
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Input needed. Examples

For any of the programs mentioned above, the wuser should

provide:

a) control cards:
N+1= number of species present at equilibrium +1
M+1= number of elements +1
K= number of phases
NN= number of times P and/or T are varied.
NE= 1 if the free energy coefficients are available as such; if
they have to be <calculated from the Goraon and Mc. Bride
coefficients, use any other integer.
NF=1 if the dual starting point routine 1is to be used.

Otherwise, use another integer.

b) free energy data: free energy coefficients matrix C or
temperature coefficients matrix S for the Gordon and Mc. Bride

polynomials, NASA SP-3001.

c) exponent matrix A. An example of its construction will

follow.
d) amount of elements :vector B.

e) stoichiometric coefficients for the reactions if COMP2 or

COMP4 are to be used (matrix U)



e) dual starting point if available.

We shall now give two examples of the input.

Example 1. CH4-Water gas reaction

Preliminary data:

-Reaction of 2 moles of CH4 and 3 moles of water

-Reach equilibrium at T= 1000K, P= latm.

-Species present at equilibrium = CO, CO2, H20, H2,CH4
-Ideality assumed

-One phase (gas)

-Free energy coefficients available from the literature for
set of T,P conditions.

-Do not have a starting point.

Input

a) Control cards:

N+1 = 6 ( 5 species +1 )

M+1 = 4 (3 elements +1)

K = 1 (1 phase)

NN = 1 (one thermodynamic state)

NE = 1 (the free energy coefficients are data)

NF = 1 (no starting point is provided)
b) Free energy coefficients :

C is a 6x1 matrix, as follows:

82

one
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0.0 dummy
-24.025 co
-47,413 Cco2
Cc = -23.067 H20
0.0 H2
2.0847 CH4

The first coefficient corresponds to the normality condition.
The rest of the coefficients are the Gibbs free energy of
formation from its elements at temperature = 1000K for each
species, divided by R (the universal gas constant) and by the
temperature, and added to the 1logarithm of the pressure (1
atm.), since there is only gas phase.

é) Exponents matrix :

For computing purposes , we added the nbrmality condition to the
exponents matrix AA described in the previous chapter. Hence
the new matrix A is a (4 x 6) matrix constructed in the
following way: |

a (1, 1) =1.D0

A (1, 3)

0.DO j= 2,N+1
A (i, 1) = 0.DO i= 2,M+1
the remaining of each column accounts for the formula of each

chemical species. The final matrix looks like this:

dummy CO CO2  H20 H2 CH4
1 0 0 0 0 0 dummy
0 1 1 0 0 1 c
A= 0 0 0 2 2 4 H
0 1 2 1 0 0 0

d) Vector of amount of elements B :
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Since we started with 2 moles of CH4 and 3 moles of H20, 2 atom-

grams of C, 14 of H and 3 of O should be conserved throughout

the reactions. Hence the B vector will be:

1 dummy
2 Cc
14 H
3 0

e) since we only have one set of thermodynamic data, we are not
concerned with sensitivity analysis and COMP2 and COMP4 should

not be applied.

£) we do not have a starting point to enter here. The programs

will generate one.

g) if we want to consider the formation of solid C, then the

control cards and the exponents matrix should be modified as

follows:

K=2 . For k=1, j varies between 1 and 6; for k=2, j=7

Dummy CO Ccoz2 H20 H2 CH4 C
1 0 0 0 0 0 0 Dummy
0 1 1 0 0 1 1 C
A = 0 0 0 2 2 4 0 H
0 1 2 1 0 0 0 o)

The B vector remains as before. The C matrix has to incorporate

the free energy coefficient for carbon (0) as C(7,1)
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Example 2. Claus Furnace reaction

Preliminary data :

-Partially reacted mixture of 0.1 moles SO2, 0.2 moles H2S, 0.8
moles H20 and 1.88 moles of N2 (inert)

-Reach equilibrium composition at P = 1 atm., and 9 different T
from 550 K to 1000 K (50 K intervals)

-Species present at equilibrium: SO2, H2S, H20, S2, S4, S6, S8,
NZ2.

~Ideality assumed.

-Elements : S, O, H, N

-One phase (gas)

-Temperature coefficients for thermodynamic functions of Gordon
and Mc. Bride

~-Want to compare sensitivity analysis versus re-optimization.

Input

a) Control cards:
N+1 = 9 (8 species’
M+1 = 5 (4 elements)
K = 1 (one phase)
NN = 9 (nine T,P conditions)
NE= 2 (free energy coefficients should be calculated)
NF =1 the starting point should be calculated within the
program.
b) matrix of Gordon and Mc.Bride éoefficients. Matrix S is an

( N x 7) matrix each row of the matrix corresponds to the seven
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coefficients of the Gordon and Mc.Bride polynomials for a
chemical species. The dummy species 1 is not included, so that
the species here are shifted by one unit when compared to their
numeration in matrix A. With thésé;aéta*the subroutine FREEN
will calculate the matrix C.  9}¥ﬁ“‘. |

c) Exponents matrix . Matrix A is as follows :

dummy SO2 H2S H20 S2 S4 6 S8 N2
1 0 0 0 0 0 0 0 0 dummy
0 1 1 0 2 4 6 8 0 S
0 2 0 1 0 0 0 o 0 O
0 0 2 2 0 0 0 0 0 H
0 0 0 0 0 0 0 0 2 N

d) Vector of elements content . The B vector is as follows:

dummy

WK = O~
OO WO
ZInOoOwn

e) Matrix of stoichiometric coefficients: Since we want to
apply sensitivity analysis , we need to provide the matrix of
stoichiometric coefficients U . It is a (N+1 x D) matrix ; each
column contains the stoichiometric coefficient of the species
described by the row number for the D independent reactions. To
the dummy species corresponds a stoichiometric coefficient equal
to zero. If M+1 is the rank of the matrix A, then D=N - M, 1In

this case D= 4 .

The U matrix is.built in the following way :
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-i) take matrix A, without the first row and column (they
correspond to the normality condition of the geometric program).

Exchange column 4 and 8, and partition the resulting matrix so

that
1 1+ 0 0 4 6 8 2
2 0 1+ 0 O O O O
0 2 2 0 0O 0 0 O
0 0 0 2 0 O O O

-ii) work with elementary matrix operations to get

0 4/3 6/3 8/3 2/3
0 8/3 12/3 16/3 4/3
0 -4/3 -6/3 -8/3 -2/3
1 0 0 0 0

OO O—
OO —= 0O
O -—=-00

-iii) form the stoichiometric matrix. Interchange the rows 4

and 8 to get the original set of species.

-4/3 -6/3 -8/3 -2/3
-8/3 -12/3 -16/3 -4/3
4/3 6/3 8/3 2/3

OO0 —-0O
OO - 00
O—- 000
QOO0 —

To obtain the U matrix for our programs , a first row of zeroes
should be added. 1If we multiply this U matrix by 3, the set of
independent reactions is:

SO2 + 2 H2S = 3/§ Sj + H20 i =2, 4,6, 8.

Any other combination of reactions can be wused, provided they
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are linearly independent.

Calculation of free energy coefficients

Subroutine FREEN calculates the free energy parameters of
each species at a specified T and P. It uses the polynomial
approximation to the Gibbs free energy determined by Gordon and

Mc. Bride (1971). The polynomials are as follows:

i®(T) / RT = S35 (1 - 1nT) - S5, T/2 - S;3 T? /6 -

Sja T3 /12 - S_I5 Tu /20 +

S;¢ /T - S;s 5.1
" Where S is a Nx7 matrix of the Gordon and Mc. Bride
coefficients for the N species. Then the free energy

coefficients are calculated through the definitions:

#

.0
Cjl M#(T) / RT + 1n P 5.2

for gases and

Cjl = Gj(T) / RT 5.3

fn

for condensed phases.

The subscript 1 refers to the number of times T and P are

varied.

All the information needed by the routine, and produced by



89
it, is handled by means of labelled COMMON blocks. When other
sources of free energy data are available, the programs skip

subroutine FREEN and read the matrix C supplied by the user.

Subroutine LIPSU2 . A dual starting point.

If a good first guess of the composition 1is available, the
programs may take this guess as a starting point. If this is
not the case, the programs generate a dual starting point
calling the subroutine LIPSU2 . This subroutine is almost
identical to the program .LIPSU2 explained 1in the previous
chapter. The subroutine obtains the data from the main program
through labelled COMMON blocks and it sets the tébleau in the
manﬁer specified by the UBC routine LIPSUB . LIPSUB is then
called and it solves the LP using a primal-dual algorithm. The
results are stored 1in the COMMON block FX. The main program

then uses this information to calculate the dual starting point.

Subroutine SINGV '

Subroutine SINGV transforms dual variables into primal ones.
It 1is very similar to the program of the same name described on
chapter 4. The reading and output are replaced by labelled

COMMON .blocks.
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Using GRG as a subroutine

GRG is called from the main program as three subroutines from
UBC. GRGIN reads the control cards described in chapter 1IV.
GRG2 calls the optimization subroutine. The value of the
objective function and of the wvariables at the optimum are
arguments of GRG2. GREG prints the Lagrange multipliers of the
binding and equality constraints, and the characteristics of the
optimization such as number of iterations, number of function

evaluations, etc.

Giving input to GRG

To read the control cards needed for the optimization,
subroutine GRGIN does it from a file attached to the logic unit
5. That introduces two problems':

a) The main program reads its own data from a datafile attached
to the input unit 5.

b) Some of the parameters that should be specified in the
control cards are calculated in the first part of the program,
like the starting point and the boundaries. Hence the control
cards cannot be settled in advance.

To solve these two points, a scratch file -DATA is created from
the main program. Input unit 5 is reassigned to -DATA . The
control cards are then written into -DATA using the information

available in the main program , with the required format.
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Subroutine GCOMP

GRG2 1is now ready to perform the optimization. It needs to
evaluate the objective function and left-hand sides of the
constraints for the given values of the variables x . To do
that, it calls subroutine GCOMP. The form of this subroutine
will depend on the mathematical formulation of the problem we
are dealing with, but the variables have to be called x.
Subroutine GCOMP gets the needed data thfough labelled COMMON
blocks.

For the dual case, the problem of logarithms with zero or
negative arguments 1is avoided by defining the 1logarithmic
function as equal to a very large negative number when negative
or =zero variables are encountered in the search. Also, the
lower bound of the vafiables is set to a very low value. After
the optimization 1is finished, any number of moles smaller than
the inverse of the Avogadro's number is set to zero by the main
program,

In thev primal problem, the expdnentiétion of very large
negative numbers may occur, and this is also undefined. We do
not allow the 1lower boundaries of the primal variables to go
below the defined region.

To delete species from the model, the corresponding column of
the exponent matrix is set to zero. For the primal problem,
that means that the molar fraction of the corresponding species

is oné. To avoid the problem, we defined DEXP(0)=0 when Aij=0.
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Output from GRG

The amount of output produced by GRG 1is <controlled by the
keyword PRINTCTL=number which should be specified in a control
card. When PRINTCTL=0, no information is output. When it 1is
set equal to 1, the results are printed; when working at a
terminal, the user is prompted to write the word GO after the
initial conditions for each optimization are set. Succesive
information on the progression of the optimization 1is printed
when PRINTCTL values range from 2 to 4. The input lines are
echoed by default. If this is not desired, NOECHO has to be
specified in a control card. |

The values of the objective function and of the variables at
the optimum is all the information needed from GRG when solving
the dual problem. They are arguments of GRGZ2 , henée for this
case we can avoid any printed output from GRG if desired. When
solving the primal, we need also the Lagrange multipliers for
the binding constraints (they are the total number of moles for
each constraint when solving the transformed primal problem),
and they are not available as arguments. We had to get them
through a rather twisted way.

The main program creates a scratch file -GRGOUT, and the
output unit 6 is reassigned to this file. Subroutine GRGEG,
from UBC, writes the output from the optimization into -GRGOUT,
provided PRINTCTL is set to a value different than zero.
Subroutine SKIP then scans through -GRGOUT until it finds the
expression "Lagrange multipliers". At this point, the main

program reads the values of the multipliers from the next line
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on the output scratch file, and calculates the number of moles
for each species. -GRGOUT is rewound after each optimization.
Listing the file allows us to compute the number of iterations

and of function evaluétions of the last run.

Performing sensitivity analysis

Subroutine NPLUSK is very similar to program NPLUSK described
in chapter IV, The 1input of data is done through labelled
COMMON blocks. The stoichiometric coefficients have to be
provided by the user, since we did not implement a subroutine to
calculate them from the exponents matrix, as exemplified earlier
this chapter (section 5.2.)

Subroutine NPLUSK formulates the linear system of equations
from the data available. "The right hand side of the eguations
variés with pressure and temperature, and is recalculated each
time these conditions change,‘but the left hand side remains the
same. Subroutine DSLIMP from UBC solves the system of

equations.

Qutput from the programs

If the keyword PRINTCTL is.set equal to 1, the output of the
programé contains :
a) Matrix of free energy coefficients (if applicable).
b) Dual starting point.
c) Primal starting point (if applicable).

d) Input for GRG
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e) Pressure and temperature

f) Number of moles of the species present at equilibrium at the

previous P and T.

g) Total

number of moles per phase at these conditions.

h)Corresponding molar fractions

Points d)
values.
analysis,

execution

through h) are repeated for the different T and P
Point d) is only repeated when there is no sensitivity
for programs COMP! and COMP3. At the end, the

time is printed.
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CHAPTER VI: RESULTS AND DISCUSSION

The four computer programs described in Chapter V were tried
on three problems : 5, 6 ,6B and 7 of Appendix C. We could thus
compare the perfomances of dual vs. primal formulations,
sensitivity analysis vs re-optimization. The results are
presented and discussed in the present Chapter.

This Chapter is organized in four sections. in section one
we try to evaluate the perfomance of the starting point routine
by comparing the points generated by the routine to the optimum
values. In the second section we compare the primal and dual
problems. In section three we compare sensitivity analysis .and
re-optimization. In section four we deal with the effécts of

incorporating new species to a chemical equilibrium model.

Evaluation of the starting point routine

I1f the user does not have a good first guess, a starting
point 1is calculated within our programs. The calculétion of a
dual starting point is based on approximating the dual problem
to a linear program. The method described by Lidor (1975) is
used, and it is implemented in subroutine LIPSU 2. An account
of the method, and of the subroutine LIPSU 2 was made in
Chapters IV and V. When a primal starting point is needed, the
dual starting point is determined as above, and then it is
transformed to a primal point. Subroutine SINGV, described in

Chapter IV, performs this task.



Table VI-1 shows the values of the starting points calculated
by the programs for problems 5 and 6, and their optimum values .

We will now discuss the results of Table VI-1,

a) The values of the objective functions at the starting points
are within 2-4% of the optimal values, which looks like a guite
good approximation.

b) The dual variables of the species that are present in
-greater amounts at equilibrium are determined within 10-20% of
their optimal value. The rest of the variables are wide apart.
The starting point routine only gives an estimate of as many
species as the rank of the exponent matrix A, which should be M
in a Qell posed model. These species correspond to the basic
variables of the linear program, and most of the time the dummy
species introduced in the linear program to account for non-
linearities is one of the baéic variables. The rest of the
species are given a fixed positive number, regardless of their
relative importance. So, if the problem we are dealing with has
one or two species present as trace quantities, the starting
point does not allow us to distinguish them from other secondary
species. See problem 6 in table VI -1. As a consequence, the
goodness of the starting point will depend strongly on the
specific problem.

c) The primal variables fall within 1.5% to 50% of their
optimal values. Again, the range is a characteristic of the
particular problem.

d) The primal starting points calculated with this method are



97

Table VI-1. Evaluation of the starting point routines.
Composition, objective function and primal constraint values at
the starting point and at optimum for problems 5% and 6**,

Prob.| N. of moles Z G/RT P. const.
S.P.| Opt S.P. Opt. S.pP./ Opt.| S.P./ Opt.

5% 3. .0204 -10.0606 -11.4153 746.3633(  230.6
3. .0007 '
3. .0153 ~-22.3678 -20.1267
5.5 3.973 777.6382 1.00001
3. .0819 -13.5499 -15.8052
3. 2.918
21.5 19.98 -11.5819 -11.6971
3. .0269
5.251 .0338
3. .0005

6** W2 .0003 ~-1.4607 -2.7906 148.1885 49210.
.3 .0006
1. .9989 -66.8466 -66.4363 150.8133 1.0000
.2 E-9
.2 E-9 -18.0296 -18.6591
.2 .0005
.2 .0371 -11.9268 -11.7611
1.98| 1.880

* Dinkel and Lakshmanan, 1977. P= 40 at. T = 2200 K
** Bonsu, 1981. P= 1 at. T=355 K

N. = Number Z = ln-transformed primal variables
G/RT = Objective function §S.P. = Starting point
Opt. = optimum P. Const. = primal constraint

infeasible. 1In fact, the values of the primal constraints at
the starting points are quite far apart from their optimal
values. GRG takes care of the inféasibility of the primal
starting point by optimizing the sum of the constraint
violations in a "Phase 1I" ©procedure. We found that the

combination of our starting point procedure pius GRG 's "Phase




98

I" produced better results than a random point. The starting
point routines performed well in problems 5,6,6B,7 (Appendix B)
however, if a better starting guess is available, the wuser is
encouraged to avoid the starting point routine. Better guesses

shorten computation time .

Primal-dual comparisons

To compare the primal and dual formulations of the chemical
equilibrium problem,we used the codes COMP! and COMP2 described
in the previous chapter. The problems tested were 5,6,6B, and 7
from appendix B. The values of the objective functions and
composition obtained are in appendix B. The execution times are

in table VI-2. .

Table VI-2. Execution times (in sec.) of primal and dual
codes for a fixed P and T. :

Problem Species Elements Primal Dual
(sec.) (sec.)
5 10 4 .1265 L1612
6 8 4 . 1342 .1695
6b 8 4 . 1355 .1720
7 24 4 .5886 failed

To evaluate the relative effectiveness of programming codes
we need some criteria. Himmelblau (1972) proposed and discussed

several evaluation criteria . We will repeat them here, and
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then we will try to see how these criteria apply to our problem.
The <criteria afe as follows: i) size of the problem, ii) time
required to introduce data into the program ,iii) simplicity of
the computer program, iv) success in solving féal'@orld problems
most of the time, v) accuracy of the results, 6f5%Eiﬁe.

The size of the  problem favours the primai over the dual
formulation for the chemical» equilibrium problem with many
reactions. The time required to introduce data into the program
is the same for both the primal and dual problems. The dual
program is more simple to implement than the primal, because it
does not need.subrouéines SINGV and SKIP . The primal could be
simplified if the subroutine GRG 2 would have the Lagrange
multipliers for the primal  constraints as arguments, thus
subroutine SKIP can be‘avoided.v |

‘ As for "solving real-life problems most of .the time", the
primal always did so. The dual failed when trying a problem
with 24 variables (problem 7). The problem had many trace
variables, which were sent to the lower boundafies after a few
iterations and would not move thereafter. Making the values of
the boundaries smaller did not improve the situation. A new
computer code, recently available at UBC ,.MINOS, is based on an
algorithm similar to GRG for the case of linear -equality
constraints. Murtagh and Saunders (1978) claim that MI&OS
solved a badly scaled dual chemical equilibrium problem of 45
variables. We did not try this code ,though.

The starting point and the required accuracy of the solution

influence greatly on the computation time. Since the primal
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starting point 1is calculated from the dual, we are almost sure
that our comparison between the primal and the dual formulations
will not be affected by the starting point. This is only a good
approximation because the relations between primal and dual
variables that we wused 1in subroutine SINGV only hold as
equalities at the optimum point. As for the accuracy of the
solution, we used the same parameters in GRG for the primal and
dual problems. The results were comparable with the literature,
and between the two codes, within .2%. For the primal problém
the accuracy for the composition values was determined by the
tolerance of the constraint ( EPNEWT ). The primal constraints
staﬁé that the sum of the molar fraction of the species present -
at a particular phase should be one at equilibrium. A value of
EPNEWT of 10 -¢ implies that the absolute errors of the molar
fractions of each species will be of this order of magnitude.
That means that the relative errors for the species present in
trace concentrations will be quite important. We can change the
value of EPNEWT to improve the accuracy; in fact we tried up to
a value of 10-'° for problem 7. Still, for this particular
problem, the concentration of the species differ as much as
1022, We do not think it is possible to obtain such accuracy at
the moment; we are already working with double precision.
Besides, we are interested on a code that may solve a wide
variety of examples, rather than pfoduce the best solution for a
particular problem. The 1increase in accuracy also means
increasing the execution time.

We have shown that our primal and dual codes both start from
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approximately the same point and get the same results. The time
invested in that procédure is an important criterion of the
effectiveness of a code. Time refers either to the number of
function evaluations or to the execution time. In our case?
there is  no point in comparing the number of function
evaluations, since the mathematical formulations for the
broblems are quite different. We have to compare execution
times.

The execution times in table VI-2 are not sfandarized, since
we were concerned only with the comparison between our codes.
Care was taken to run a set of primal-dual . problems one after
the other, in order to avoid time-sharing problems. The primal
formulation proved to be between 23 and 39% faster than the dual

for the case of middle-size problems (8-10 species).

Sensitivity analysis and re—optimization

To be able to evaluate the performance of the sensitivy
analysis, we compared the codes COMP1 and COMP2 (primal with and
without sensitivity anélysis) and COMP3 and COMP4 (dual with and
without sensitivity analysis). We tested the codes on problems
5 and 6. Problem 5 had been used 1in ‘the 1literature as an
example for sensitivity analysis (Dinkel and Lakshmanan, 1977),
~but only the accuracy of the method had been discussed. We
repeated their composition values (see chapter IV). The free
energy data for problem 6 are calculated from the Mc Bride and
Gordon coefficients ( NASA , 1971) as a function of temperature.

That allowed us to vary the temperature at small intervals, and
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to compare the effect of these variations on the accuracy of the

results and on the execution times.

Table VI-3. Execution times for sensitivity analysis (S.A.)
and re-optimization (R.O)

Problem Species N. of T R. O. S. A. Form. St.
Elements P, T (K) Time(sec.) Time(sec.)
cond. ’

5 10/4 5 - .9673 .4357 D .44

5 10/4 5 - .7299 .2885 P .50

6 8/4 9 50 1.4361 .3144 P .51

6 8/4 9 50 1.8665 .4661 D .44

6 8/4 9 10 1.2710 .3011 p .47

6 8/4 9 5 1.2243 .3235 P .42

6 _ 9 1 1.0373 .3226 P .35

T intervals of temperature between two optimizations, at P=lat.
for problem 6. in problem 5, T and P varied.
P= primal D= dual Form.= formulation cond.= conditions.
St= (R.O time / SA. time)/ n. of P, T conditions)

We will use the same comparison criteria mentioned before.
The size of the problem is smaller for sensitivity analysis,
since it solves a system of linear equations .instead of using a
nonlinear optimizatién method. Sensitivity analysis needs
" either more time to introduce data, or more programming, because
of the stoichiometric coefficients for the reactions. Re-
optimization is easier to program : it is only question of
adding a DO loop to the optimization program.

Let us take a look at the accuracy of the sensitivity
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analysis. We will refer the composition values obtained by
sensitivity analysis to the values calculated by the
optimization procedure. The latter compare well with the

literature. We will define now % relative error of species J

as:

%e; = {(6;*% - 6;') / 5%} 100 6.1
Where,

%e; ¢ percentage error in the determination with

sensitivity analysis of the number of moles of species j,
referred to re-optimization

6; ' :+ number of moles of species Jj calculated by
sensitivity analysis

&;% : number of moles of species Jj calculated by re-

optimization )

The }values calculated by re-optimization are, of course,
subject to errors. We have discussed in the previous section
that the absolute error 1in the determination of the molar
fractions by optimization was around 10-°¢, That means a
considerable relative error for species present as traces.

In figure 1,.we plotted % error vs variation of Eemperature
for problem 6. The species number 4 was present in small
quantities. Changing the temperature 10K introduced an error of

18% when wusing sensitivity analysis as compared to a new
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optimization. If we calculate the error for a species present
in greater quantities, (like the summation of species 4 to 8,
which corresponds to total sulphur) the value of the error will
be around .2% , similar to the uncertainty of our method. For a
variation of 100K, the error for species 4 is around 95%, while
the summation of species 4 to 8 only has 4% error.

‘The values mentioned above for the errors are valid only for
this specigic problem. The free energy coefficients vary in a
different way for different species in different thermodynamical
conditions. However, we can assume that the magnitudes of the
errors are more influenced by the relative importance of the
species than by the relative changes of the free energy
coefficients. This 1is shown in Table VI-4 . We can see there

that for a similar variation in the free -energy coefficients

(water and SO2) the species with lower concentration (S02) has

33% error when determined with sensitivity analysis, vs. . 2%
error for the  water. Dividing the temperature variation in

smaller intervals doesn't seem to have great effect when the
total wvariation of the free energy coefficients ié below 10%.
It does reduce the error of S2, which has a total wvariation of
the Cj of 41.6%. Thus, as far as accuracy is concerned, we
conclude that the sensitivity analysis method should only be
used when we are not concerned with the accuracy of the species
present in small quantitites, and when the variation of the free
energy coefficients are of the order of 10% or less.

Table VI-3 shows the execution times for solving problems 5

and 6 with the four programs COMP1, COMP2, COMP3 and COMP4
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Table VI-4. Sensitivity analysis. Effect of the number of

temperature increments-on the composition,

of temperature of 50 K. Problem 6*

* Bonsu,

8Ci*x g

1981

% Error (referred to optimization)
1 inc 5 inc. 10 inc.
.0001 .00001 .00001
.23 .24 12
33.0 30.4 30.2
85.2 74.1 73.0

for a total variation

variation of the free energy coefficients for each

species,
inc.=increments of temperature. Xj= molar fraction at equilibrium

from 410 K (basis) to 460 K.

described in the previous section.

different

number

of

To try to

account

for the

P and T conditions considered in the two

problems, we defined a ratio St as follows:

St =

where R.O.

analysis.

The

sensitivity

(time for R.O. / time for S.A)/ n.of P,T conditions

approximately,

35% to 50% faster than the optimization per number of

that

analysis

stands for re-optimization, and S.A.

method .

thermodynamic conditions,

For

problem

6 we

see that

We

the

can

for

thus

sensitivity

St ratio gives a rough idea of the relative speed of the

say, very

the sensitivity analysis method is between

different

times for ‘the primal re-
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optimizations are shorter for smaller variations of temperature.
This can be explained by the fact that, for any new
opt}mization, GRG uses the previous optimal values as starting
éGiﬁtsf* When the temperature differences are small, the optimal
;Slﬁég Qary very little .

" so far, the decision of incorporating a subroutine to perform
sensitivity analysis to the final program, will depend on a
trade between 1loss of accuracy and gain of speed. The loss of
accuracy seems quite big, and it is not easily predicted. The
gain of speed is not very impressive.

Finally, one comment. So far we wused the sensitivity
analysis routine with stoichiometric coefficients providéd by
the  user. To increase the simplicity of the program to the
uséf, the code should also have a subroutine to calculate these
stoichiometric coefficients, using the first optimization
results to chose the key components. But this calculation will
‘need some time; and the differences in CPU times between

sensitivity analysis and re-optimization will be smaller.

Effects of incorporating new species to a chemical equilibrium

model

Problems 6B and 7 are closely related. Problem 6B describes
the oxidation of H2S in a Claus reactor with 100% stoichiometric
air, Eight species are assumed to be present at equilibrium.
Problem 7 is the. same <case, with 24 species present. The
results of solving_.the primal of both problems are shown in

Appendix B for one value of temperature and Pressure. The
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results agree with the literature 1in each case. Also, the
theoretical composition was checked against experimental values
in the literature. We observe the same discrepancies, since our
problems agree with their theoretical values.

Both problems, 7 and 6B, have the same quantity of primal

Table VI-5. Effects of adding new species to a model in
the objective function and in the total number of moles, for
different temperatures.

Temperature Problem 6b Problem 7
(K) G/RT" N G/RT N
600 247.24402 6.09281 247.17428 6.08926
650 241.51526 6.13869 241.46424 6.13431
700 236.86576 | .6.20562 236.83423 6.20244
750 233.11049 6.30549 233.10187 6.31000
800 230.12108 6.44289 230.13785 6.45207

A : Total number of moles (1 phase; gas)
G/RT: Objective function.

variables. So, for the primal problems, we have the same
objective function but the constraint will have tripled the
number of terms. For the dual problem, there are three times
more variables in problem 7, but we will have the same number of
constraints as before. We already mentioned that GRG failed
when trying this dual problem.

Table VI-5 shows how the objective function and the total

number of moles change with temperature fdr both problems. We
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Table VI-6. Adding new species to a model: effects on the
execution time

Problem Execution time * Execution time*
(sec.) Tolerances= E-6 (sec.) Tolerances= E-10
6b 1.6384 -
7 4,2558 5.9839
6 1.4361 ’ -
7 mod¥** 4,1532-

¥ QOver 9 different P and T conditions
** Problem 7 was modified to have the same amount of elements
as problem 6.

can see that the values are similar; the objective function of
problem 7 is smaller than that of problem 6B. Figures 2 and 3
present the variation with T of the composition of the two
problems at a range of temperatures. By watching the two
figures, we <can see that the species present 1in bigger
quantities remain in approximately the same composition in both
cases. The main differences arose from the sulfur compounds.
It is not only a question of not including species; the free
energy coefficients for S4 was different in the two examples.
The rest of the species were not important in the range of
temperatures considered. The computation times for nine
different values of P and T are presented in table VI-6. The
execution time for the problem with 24 species is 30% higher
than for the problem with 8 species, based on a "per
optimization" basis. When solving problem 7 on the same

conditions as above, but increasing the accuracy of the primal
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Table VI-7. Adding new species to a model: effects on the
composition., Problems 6 and 7, same initial composition, T=600K
and P=1 atm.

Species Molar fractions Species Molar fractions

Prob. 6 Prob.7 Prob.6 Prob.7
502 .0112133 .0116286 H2 - .0000069%
H2S .0224051 .0232480 H - E-19
H20 .3173050 .3163954 SO - E-11
S2 .0003625 .0003916 OH - E-20
S4 .0000480 E-22 S03 - E-13
S6 . 1.0057975 .0034403 SN - E-19
S8 .0040892 .0040944 S20 - .0000425
N2 .6387804 .6387978 NO - E-22
NH3 - E-10 - 83 - .0000425
S - E-15 S5 - .0003127
SH - E-12 S7 - .0016156
0 - 0 02 - 0

prob. 6 : problem 6 of Appendix B.
: problem 7 of Appendix B.

constraint from 10-% to 10 ~'°, the éxecution time increased to
5.9839, 16% more on a per optimization basis.

Since problem 6 and 6B only differed on the amount of air
used (the B vecéor of amount of elements), we compared problem 6
with problem 7 modified so that the 1initial conditions of
.problem 7 were the same as for problem 6. The results are in
table VI-7 for T=600K and P= 1at. We observed the same type of
variations as with problems 6B and 7 (unmodified): slightly less
value of the objective function when more species are added to
the model ; no appreciable variation on the composition of the

species present in greater amounts.
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CHAPTER VII: CONCLUSIONS AND RECOMMENDATIONS

Conclusions

When solving the chemical equilibrium problem with the

computer code Generalized Reduced Gradient, we found:

1) GRG cannot solve the primal geometric programming formulation
of the problem directly. Either a scaling of the variables and
of the objective function ,or a logarithmic transformation has
to be performed before using GRG. We found that GRG needs less
iterations and function evaluations to solve the logarithmic-
transformed problem, than to solve the scaled version,. We

worked with the transformed primal thereafter.

2) When solving the dual geometric programming with GRG, the
objective function needs to be scaled, or the logarithm of the
objective function should be minimized. We did not find any
particular computational advantage for any of the two
approaches, but we chose the latter to compare the results to

those of the transformed primal.

3) In both the primal and the dual formulations, the objective
function is not very sensitive to changés in the variables. Two
values of the objective function may differ in their ninth
significant figure, yet the variables differ in their sixth

significant figure.
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4) The accuracy of the primal solution depends mainly on the
tolerances for the constraints. At the optimum, each constraint
accounts for the summation of the molar fractions of each
species present in the phase described by the constraint. The
absolute error of the constraint eqﬁals to the summation of the
absolute error of each term. Hence any species whose molar
fraction is smaller than the tolerance of the constraint will be

subject to errors.

5) The accuracy of the dual variables depends on the tolerances
for the constraints (conservation of elements) and on the

accuracy of the total amount of each element.

6) GRG solves the primai problem 30% faster than the dual,for
problems with six reactions. GRG failed to solve the dual of a
large problem, with twenty reactions. Adding new species to a
model is more easily done with the primal formulation. The only
advantage of the dual seems to be that it is more easy to
implemeﬁt than the primal. We conciuded that the primal is

superior to the dual when both are solved with the GRG code.

7) The method to perform sensitivity analysis suggested by
Dinkel and Lakshmanan (1977) proved a thousand times slower than
the method derived by Rijckaert (1974). Both methods were tried
on a chemical equilibrium problem with six reactions. We used

the Rijckaert's method from then on.
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8) Sensitivity analysis was between 30% to 50% faster than
reoptimization, per numbef of pressure and temperature changes.
However, the results obtained with sensitivity analysis showed
discrepancies when compared to the optimization oﬁéé.’><The
errors were more serious for the less important speciééi'{it-is
our opinion that the computational speed gained with sehsiﬁivity
analysis does not compensate for the loés of accuracy of the

results.

Recommendations

Based on the concluéions stated above, it is recommended the
use of the code COMP1, listed on Appendix C. It is a primal
based code, and it does not perform seﬁsitivity anélysis.-ﬁ

It 1is -also -fecommended that fﬁrther fesearch should be
carried on with a better implementation of GRG for ‘Handling
large dual problems. Murtagh and Saunders (A978) claim that

their code MINOS can do so.
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AA

Bi

Cj

Jo
g«

NOMENCLATURE
Activity of species j.
Augmented exponents matrix.

Exponents matrix. AAij atom grams of element i are
present 1n one mole of species j.

Amount of atom grams of element i.

Free energy coefficient of species j. For gases,

Cj = #“(T)/RT + 1n P/1 atm. ; for condensed phases,
Cj = p;°(T,P)/RT

Geometric program (GP) coefficients; c; = exp(-Cj)
Number of independent chemical reactions.

Primal GP objective function.

Primal GP constraints.

Gibbs free energy. Gj = Molar Gibbs free energy.

Objective function of the transformed primal GP.
h =1n go= G/RT

Identity matrix.

Hessian of 1n v.

Number of phases at equilibrium.
Equilibrium constant for reaction d.
Number of elements.

Number of chemical species at equilibrium.
Pressure.

Extent of reaction d.

Universal gas constant.

Vector of Gordon and McBride coefficients for
species j

Primal variable asociated with element i

'Temperature.

Stoichiometric coefficient of species j for
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reaction d.
Dual GP objective function. -ln v = G/RT
Molar fraction of species j at equilibrium.

Variable of the linear program approximation to
the dual GP.

Ln-transformed primal variable. Z = 1n t

GREEK LETTERS:

¢ = Parameter in unidimensional search for GRG.
6; = Number of moles of species j.
6;° = Initial number of moles of species j.

%e = Percentual error of the compositidn determined by

sensitivity analysis, referred to re-optimization.

A= Total number of moles in phase k.
u;= Chemical potential of épecies j in phase k.
o -

u;® = Reference chemical potential.

Nx= Lagrange multiplier for the k-primal constraint.

When solving the transformed primal problem,

¢ = Variable of the linear program approximation to

the dual GP. It accounts for non-linearities.
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APPENDIX A: COMPUTER PROGRAMS



PROGRAM JOTA

JACOBIAN MATRIX

OO0

IMPLICIT REAL*8 (A-H,0-1)
DIMENSION DA(20,20), DT(20 20), IPERM(40)

DIMENSION U(20, 20) DELT(ZO) c(2o) ,C1(20),suM(20,20)

DIMENSION SUMA(20),SUMB(20),SUMC(20)
C READ THE DATA
READ (5,10) N,NDIMA,NDIMT
10 FORMAT (313)
READ (5,20) N1,N2,0PTIM
20 FORMAT (213,F10.0)
READ (5,30) (DELT(I),I=1,N2)
30 FORMAT (6F10.0)
READ (5,40) (c(1),I=1,N2)
40 FORMAT (6F10.0)
READ (5,50) (Ci1(I),I=1,N2)
50 FORMAT (6F10.0)
READ (5,60) ((u(1,J),Jd=1,N2),I=1,N)
60 FORMAT (12F4.0)
C FORM THE J MATRIX
DO 9 I=1%,N
Do 9 J=1,N
SUM(I,J)=0.D0
DO 8 K= 1,N1
8 SUM(I,J)=SUM(I,J)+U(I,K)*U(J, K)/DELT(K)
WRITE (6,200) 1,d, SUM(I J)

200 FORMAT (' I=',I4,' J=',I4,' SuM(1,J)="',G20.

DA(I,J)=SUM(I,J)-U(I1,N2)*U(J,N2)/DELT(N2)
9 CONTINUE
C WRITE THE J MATRIX
WRITE (6,70)
70 FORMAT (' MATRIX J')
WRITE (6,80)((pa(1,J),J=1,N),I=1,N)
80 FORMAT (1X,6G14.6)
C CALCULATE THE TIME
TIME=SCLOCK(0.0)
C CALCULATE THE INVERSE

CALL INV(N,NDIMA,DA,IPERM,NDIMT,DT,DDET,JEXP,DCOND)

C WRITE THE EXECUTION TIME
WRITE (6,900) TIME
900 FORMAT (' EXECUTION TIME IS',F10.5)
IF (DDET) 1,2,1
-C WRITE THE INVERSE
1 WRITE (6,90) DCOND
90 FORMAT (' COND NO.=',G20. INVERSE')
WRITE (6,100)((DT(1, J) J—1 ) I=1,N)
100 FORMAT (1x 6G14.6)
C CALCULATE THE NEW OPTIMUM

THIS PROGRAM PERFORMS SENSITIVITY ANALYSIS BY INVERTING THE

12)
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SUMD=0.D0

DO 3 I=1,N1
SUMD=SUMD+DELT(I)*(C1(I)-C(1))
OPTIM=OPTIM+SUMD

C WRITE THE NEW OPTIMUM

120

WRITE (6,120) OPTIM
FORMAT (' NEW OPTIM.=',6G14.6)

C CALCULATE THE NEW SOLUTION

22
21
11
12

DO 12 I=1,N2

SUMC(I)=0.DO0

DO 11 L=1,N

SUMA(L)=0.D0

DO 21 K=1,N

SUMB(K)=0.D0

DO 22 J=1,N1
SUMB(K)=SUMB(KR)+U(K,J)*(C1(J)-C(J))
SUMA(L)=SUMA(L)+DT(L,K)*SUMB(K)
SUMC(I)=SUMC(I)+SUMA(L)*U(L,I)
DELT(I)=DELT(I)+SUMC(I)

C WRITE THE NEW SOLUTION

130

140

2
110

WRITE (6,130)

FORMAT (' NEW SOLUTION')

WRITE (6,140) (DELT(I),I=1,N2)
FORMAT (1X,6G14.6)

STOP

WRITE (6,110)

FORMAT (' INVERSION FAILED')
STOP

END
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Program NPLUSK

THIS PROGRAM PERFORMS SENSITIVITY ANALYSIS BY SOLVING A
SYSTEM OF LINEAR EQUATIONS

IMPLICIT REAL*8 (A-H,0-2Z)
DIMENSION DA(12,12), DT(12,12), DB(12), DX(12),
1 DRZ(12), IPERM(24), A(12,12), DELT(12)
DIMENSION C(12), C1(12), U(12,12), suM(12),v(12)
READ (5,10) N1,K,M
FORMAT (313)
READ (5,20) N,NDIMAT,6N2
FORMAT (3I3)
DEPS=1,D-14
READ IN DATA TO FORM THE (N1+KXN1+K) MATRIX
READ (5,30) ((a(1,J),J=1,N),I=1,M)
FORMAT (12F4.0)
READ (5,40) (DELT(I),I=1,N)
FORMAT (6F10.0)
READ (5,50) (c(1),I=1,N)
FORMAT (6F10.0)
READ (5,60) (c1(1),I=1,N)
FORMAT (6F10.0) .
READ (5,70) ((u(1,J),J=1,N),I=1,N2)
FORMAT (12F4.0)
NRHS=1
ITMAX=14
FORM THE FINAL MATRIX
FIRST THE NORMALITY CONDITION
DA(1,1)=1.D0
DO 1 J=2,N
DA(1,J)=0.D0
NOW THE ORTHOGONALITY COND.

DO 2 I=1,M
DO 2 J=1,N
L= I+1

DA(L,J)=A(I,Jd)
NOW, SUMMATION OF NUMBER OF MOLES
DO 4 I=1,2
L=1+M+1
DA(L,1)=0.D0
DO 5 J=2,Ni
DA(L,J)=1.D0
DA(L,N)=-1.D0
CONTINUE
NOW, THE EQUILIBRIUM CONDITIONS
DO 7 I=1,N2
DO 7 J=1,N
L=1+M+1+K
DA(L,J)=U0(1,J)/DELT(J)

NOW CALCULATE THE RIGHT HAND SIDE VECTOR
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M3=1+M+K
DO 8 I=1,M3
8 DB(I)=0.D0
DO 11 I=1,N2
SUM(I)=0.D0
DO 9 J=t1,
9 SUM(I)= SUM(I)+U(I J)*(C1(J) C(J))
L=I+M+1+K
11 DB(L)=SUM(I)
C WRITE THE DA MATRIX AND THE DB VECTOR
WRITE (6,850)
850 FORMAT (' MATRIX OF COEFFICIENTS')
WRITE (6,90) ((pA(1,J),3=1,N),I=1,N)
90 FORMAT (1X,6G12.6)
WRITE (6,950)
950 FORMAT (' B VECTOR')
WRITE (6,100) (DB(I),I=1,N)
100 FORMAT (1X,6G12.6)
C CALCULATE THE TIME OF EXECUTION
TIME=SCLOCK(0.0)
C SOLVE THE SYSTEM
CALL DSLIMP(DA,DT,DB,DX, DRZ IPERM,N,NDIMAT,DEPS,NRHS, I TMAX)
TIME= SCLOCK(TIME)
C WRITE THE EXECUTION TIME
WRITE(6,800) TIME
800 FORMAT (' EXECUTION TIME IS ',F10.5)
C WRITE OUT RESULTS
WRITE (6,900)
900 FORMAT (' VARIATION OF NUMBER OF MOLES')
WRITE (6,110) (DX(I),I=1,N)
110 FORMAT (1X,6G14.6)
C CALCULATE THE NEW NUMBER OF MOLES
DO 15 I=1,N

15 V(I)=DX(I)+DELT(I)
WRITE (6,120)
120 FORMAT (' SOLUTION')

WRITE (6,130) (V(I),I=1,N)
130 FORMAT (1X,6G14.6)

STOP

END
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Program COMPI1

THIS PROGRAM SOLVES THE PRIMAL GP FOR THE CHEMICAL EQUILIBRIUM
PROBLEM., IT CALLS SUBROUTINE LIPSU2 TO GET A FIRST DUAL POINT
FOR THE OPTIMIZATION. THEN IT CALLS SUBROUTINE SINGV WHICH
CALCULATES THE FIRST PRIMAL STARTING POINT. SUBROUTINES GRGIN,
GRG2 AND GRGEG, FROM UBC,SOLVE THE OPTIMIZATION PROBLEM.
SUBROUTINE GCOMP CALCULATES THE OBJECTIVE FUNCTION AND THE
CONSTRAINTS, AND IS CALLED FROM GRG. THE PROCEDURE IS

REPEATED FOR DIFFERENT TEMPERATURES AND PRESSURES.

SUBROUTINE FREEN CALCULATES THE FREE ENERGY COEFFICIENTS
(G/RT), USING THE DATA FROM GORDON AND MC. BRIDE

IMPLICIT REAL*8 (A-H,0-2)

LOGICAL*1 BLANK /' '/, SEMIC /';'/ .
DIMENSION STATMENTS . LABELLED COMMONS ARE USED.
N=NUMBER OF CHEMICAL SPECIES +1
M=NUMBER OF CHEMICAL ELEMENTS (ATOMS) + 1
K=NUMBER OF PHASES .
NN= NUMBER OF DIFFERENT TEMP. AND PRESSURE CONDITIONS.
NE=1 IF THE FREE ENERGY COEFFICIENTS ARE ALREADY AVAILABLE.
IF THEY ARE TO BE CALCULATED BY THE GORDON AND MC.BRIDE
COEFFICIENTS, USE ANY OTHER INTEGER.
NF=1 IF THE DUAL STARTING POINT ROUTINE IS TO BE USED.
OTHERWISE, EQUAL NF TO ANY OTHER INTEGER, AND PROVIDE
A DUAL STARTING POINT. DON'T FORGETTHAT
THE FIRST DUAL VARIABLE IS DUMMY AND EQUAL TO 1.DO.
a(1,J3),1=1,M,J=1,N = EXPONENTS MATRIX. A(1,J) CORRESPONDS
TO THE NORMALITY CONDITION :
c(JJ,L),JdJ=1,N, L=1,NN FREE ENERGY COEFFICIENTS OF SPECIES JJ
T,P=EQUILIBRIUM TEMPERATURE AND PRESSURE
X(1)=2(1,1),1I=1,M-1 =TRANSFORMED PRIMAL VARIABLES.FOR
SUBROUTINE LIPSU2,X(J),J=1,N+1, CORRESPOND TO THE VARIABLES
LINEAR PROGRAM,
XNEW(J),J=2,N =NUMBER OF MOLES OF SPECIES J; XNEW(1)=1.D0
IS A DUMMY VARIABLE TO ACCOUNT FOR THE NORMALITY CONDITION.
XMF (J)=MOLAR FRACTION OF SPECIES J, J=2, 3, N.
XLAG(I),I=1,K = LAGRANGE MULTIPLIER OF CONSTRAINT I
s(J,L),J=1,N-1,L=1,7 =COEFFICIENTS FOR GORDON & MC.BRIDE
POLYNOMIALS TO CALCULATE THE FREE ENERGY COEFFICIENTS.
B(I),I=2,M = VECTOR OF AMOUNTS OF ELEMENT I.B(1)=1, DUMMY.
F = OBJECTIVE FUNCTION,

COMMON/AX/A(10,30)

COMMON/BX/B(10)

COMMON/CX/C(30,10)

COMMON/DX/N, M/HX/K NN/GX/F/XL/L

COMMON/EX/T(30), p(30)

COMMON/FX/X(31)/ZX/Z(10,5)

DIMENSION XMF(30),VL(30),VH(30)

COMMON/XNE /XNEW(31)/SX/S(30,10)

DIMENSION XLAG(10),SUMC(30)
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o
C READ IN DATA
C
READ(5,10) N,M,K,NN,NE,NF
10 FORMAT (61I5)
C

C CALCULATE FREE ENERGY COEFFICIENTS BY GORDON AND MC.BRIDE
C
IF (NE.EQ.1) GO TO 13

SX =550.D0
o
C CALCULATE THE TEMPERATURE AT FIXED INTERVALS.
C ,
DO 20 L=1,NN
SX=SX +5.D1
T(L)=SX
20 P(L)=1.D0
N1=N-1

READ (5,40) ((s(1,L),L=1,7),I=1,N1)
40 FORMAT (5G13.7)
CALL FREEN
GO TO 400
13 READ (5,311) (T(L),L=1,NN)
o
C IF THE C(I,L) MATRIX IS AVAILABLE BY OTHER SOURCES THAN
C GORDON & MC.BRIDE, READ NOW TEMPERATURE, PRESSURE, AND THE
C C(I,L) MATRIX.

C

READ (5,311) (P(L),L=1,NN)

READ (5,311) ((c(1,L),L=1,NN),I=1,N)
311 FORMAT (5F10.0)
C X
C READ THE EXPONENT MATRIX AND THE B VECTOR.
C _ '
400 READ (5,50) ((a(1,3),Jd=1,N),I=1,M)
50 FORMAT (9F4.0)

READ (5,60) (B(I),I=1,M)
60 FORMAT (5F10.0)
C

C PUT NF=1 IF YOU WANT THE PROGRAM TO CALCULATE A DUAL STARTING
C POINT. OTHERWISE, IT WILL NOW READ YOUR FIRST DUAL GUESS.
C

IF (NF.EQ.1) GO TO 500

READ (5,511) (XNEW(J),J=1,N)
511 FORMAT (5F10.0)
TIME=SCLOCK(O0.)
GO TO 600
500 TIME=SCLOCK(0.)

C
C CALLS SUBROUTINE LIPSUB2.IT PROVIDES A STARTING POINT FOR THE
'C DUAL PROBLEM.

CALL LIPSU2

XNEW(1)=1.D0

DO 100 J=2,N
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100 XNEW(J) = X(J - 1) + X(N)
WRITE (6,12) (XNEW(J),J=1,N)
12 FORMAT (' FIRST DUAL POINT'/1X,6G16.8)
C
C SUBROUTINE SINGV WILL NOW TRANSFORM THE DUAL VARIABLES INTO
C PRIMAL ONES.

C
600 CALL SINGV

M1=M-1

WRITE (6,16) (z(I1,1),I=1,M1)
16 FORMAT (' FIRST PRIMAL STARTING POINT',b4G16.8)

" DO 11 I=1,M1

11 X(1)=2(1,1)

DO 202 L=1,NN

CALL FTNCMD('ASSIGN 5=-DATA;')

CALL FTNCMD ('ASSIGN 7=*SINK*;')
C OPTIMIZATION IS PERFORMED FOR NN DIFFERENT P AND T CONDITIONS
C A SCRATCH FILE IS CREATED TO WRITE DOWN.THE DATA NEEDED FOR
C THE UBC SUBROUTINES GRGIN AND GRG TO PERFORM THE OPTIMI ZATION
o
C FIRST ARE THE CONTROL CARDS
C

1G=0.D0

WRITE (5,15) M1,K,IG
15 FORMAT (316)

C
C NOW WRITE THE LOWER BOUNDS OF THE VARIABLES.WE ADD -30 TO THE
C PRIMAL STARTING POINT.
C : ‘
WRITE (5,25)
25 FORMAT ('LBV=")
DO 115 I=1,M1
115 VL(I)=X(1)-3.D1
WRITE (5,35) (BLANK,I,VL(I),I=1,M1),SEMIC
35 FORMAT (6(A1,13,G10.2))
C NOW WRITE THE UPPER BOUNDS OF THE VARIABLES.WE SET THEM AS 0.0
C
WRITE (5,55)
55 FORMAT ('UBV="')
DO 125 I=1,M1
125 VH(I)=0.DO
WRITE (5,35) (BLANK,I,VH(I),I=1,M1),SEMIC

C
C PRIMAL CONSTRAINTS. IF THERE ARE MORE THAN ONE, THE FORMAT
C SHOULD BE :FORMAT('UBC= 1 1.D0 .2 1.DO K 1.DO ;')
C
WRITE (5,66)
66 FORMAT('UBC= t 1.D0O ;')
WRITE (5,65)
65 FORMAT ('QUAD')
C

C EPNEWT IS THE TOLERANCE FOR THE PRIMAL CONSTRAINTS.THE ACCURACY
C OF THE RESULTS IS VERY SENSITIVE TO THIS VALUE.
C
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WRITE (5,75)
75 FORMAT ('EPNEWT=1.D-10")
WRITE (5,85)
C
C EPSTOP IS THE TOLERANCE FOR THE OBJECTIVE FUNCTION
¢ : .

85 FORMAT ('EPSTOP=1.D-6"')
: WRITE (5,95)
95 FORMAT ('EPSBOUND=1.D-6")

WRITE (5,105)
105 FORMAT ('EPSPIV=1.D-6"')
WRITE (5,61)
C
C PRINTCTL MAY BE SET AT HIGHER VALUES (UP TO 4) FOR MORE
C INFORMATION ON THE OPTIMIZATION PROGRESS.
C
61 FORMAT (' PRINTCTL=1"')
WRITE (5,107)
107 FORMAT('X=")
WRITE (5,109) (X(I1),I=1,M1)
109 FORMAT (6G18.6)
WRITE (5,108)
108  FORMAT ('OPTIMIZE'/'GO'/'STOP')
REWIND 5
C NOW GRGIN CAN READ INPUT FROM -DATA;GRG2 AND GRGRES WILL
C THEIR OUTPUT INTO THE SCRATCH FILE -GRGOUT
CALL FTNCMD('ASSIGN 6=-GRGOUT;"')
CALL GRGIN(&1,&2)
CALL GRG2(X,F,&1)
CALL GRGRES
DO 22 I=1,M1
22 z(1,L)=X(1)
GO TO 2
WRITE (7,3)

) ~—

FORMAT (' GRG HAS FAILED')

GO TO 202
2 REWIND 6
C
C SUBROUTINE SKIP READS THE LAGRANGE MULTIPLIERS FOR EACH PRIMAL
C CONSTRAINT. THEY ARE THE NEGATIVE OF THE TOTAL NUMBER OF MOLES
C IN EACH CONSTRAINT.
C

CALL SKIP(&202)
READ (6,26) (XLAG(I),I=1,K)
26 FORMAT (1X,10F13.0)
WRITE (7,205) T(L),P(L),F
205 FORMAT ('T(K)=',F10.0,'P(AT)=',F10.0,'OBJ.F=",G16.8)
WRITE (7,215)
215 FORMAT (' MOLAR FRACTIONS')
DO 33 'J=2,N
SUMC(J)=0.D0
DO 31 I=1,M!
II=1+1
31 SUMC(J)=SUMC(J)+A(II,J)*X(I)



IF (SUMC(J).GE.0.DO) GO TO 34
R=DEXP(SUMC(J)-C(J,L))
GO TO 33
34 R=0.DO0
33 XMF (J)=
WRITE (7,235) (XMF(J),J=2,N)
235 FORMAT (1X,6G16.8)
WRITE (7,238) (XLAG(I),I=1,K)
238 FORMAT (' TOTAL NUMBER OF MOLES',G16.8)
WRITE (7,239)
239 FORMAT ('NUMBER OF MOLES')
DO 237 J=2,N
237 . XNEW(J)=-XLAG(1)*XMF(J)
‘ WRITE (7,240) (XNEW(J),J=2,N)
240 FORMAT (1X,6G16.8)
202 CONTINUE
23 TIME=SCLOCK(TIME)
WRITE (7,19) TIME
19 FORMAT (' EXECUTION TIME =',6F6.4)
STOP
END

SUBROUTINE LIPSU2 CALCULATES A DUAL STARTING POINT

BY APPROXIMATING THE DUAL PROBLEM TO A LINEAR PROGRAM.
THE LINEAR PROGRAM ISTHEN SOLVED BY SUBROUTINE

LIPSUB FROM UBC.

OO0 0

SUBROUTINE LIPSU2

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION TABLO(30, 30) NVIN(30),NVOUT(30),BBOBJ(20),
1 UBOBJ(20), BRHS(ZO) UBRHS(10)
COMMON/AX/A(10, 30)
COMMON/BX/B(10)
COMMON/CX/C(30,10)/GX/OPTIM
COMMON /DX /NVARS , NCONST
COMMON/FX/X(31)
N1=NVARS-1
M1=NCONST~1
NEQUAL=M1
MAXIM=0
IFOBJ=0
IFRHS=0
NCOLS=NVARS+1
NROWS=NCONST+ 1

C ZERO THE TABLEAU
DO .200 J=1,NCOLS
DO 200 I=1,NROWS

200 TABLO(I1,J)=0.D0

C FIRST ROW IN THE TABLEAU IS THE OBJECTIVE FUNCTION

SUM=0.D0
DO 101 J=1,N1
JJ=J+1

TABLO(1,J)=C(JJ,1)
101 SUM=SUM+TABLO(1,J)

133
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TABLO( 1,NVARS)=SUM

TABLO(2,NVARS)=-1.D0

TABLO(2,NCOLS)=~-.0001D0

DO 203 I=2,NCONST

DO 202 J=1,Ni
202 TABLO(I + 1, J) = A(1, J + 1)

TABLO(I + 1, NVARS) 1.D0
203 TABLO(I + 1, NCOLS) B(I)
260 NLVARS = NVARS

CALL LIPSUB(TABLO, 30, NCONST, NLVARS, NEQUAL, MAXIM,

1 IFOBJ, IFRHS, TOL, NVIN, NVOUT,BBOBJ,

2 UBOBJ, BBRHS, UBRHS, &540)

NP1=NLVARS+1

OPTIM =TABLO(1,NP1)

IF (MAXIM.NE.1) OPTIM=-OPTIM

DO 12 I=1,NVARS
12 X(1)=0.D0

DO 13 I=2,NROWS

J = NVIN(I)
13 X(J)=TABLO(I,NP1)

WRITE (6,320) (X(J),J=1,NVARS)
320 FORMAT (1X,5G18.6)

RETURN
540 WRITE (6,560)
560 FORMAT ('ODUAL STARTING POINT ROUTINE FAILED')

DO 580 I = 1, NVARS -
580 X{(I) = 10.0DO

RETURN

END

C
C SUBROUTINE GCOMP CALCULATES THE VALUES OF THE OBJECTIVE
C FUNCTION AND OF THE CONSTRAINTS '
C .
SUBROUTINE GCOMP(G,X)
IMPLICIT REAL*8 (A-H,0-2)
COMMON/AX/A(10,30)/BX/B(10)/CX/C(30,10)/DX/N,M/XL/L
COMMON /HX /K , NN
DIMENSION G(1),X(1),SUMF(5),XF(30),XMF(30)
DO 10 I=1,K
SUMF(1)=0.D0
DO 20 J=2,N
XF(J)=0.D0
DO 30 I11=2,M
I1=I1-1 '
30 XF(J)=XF(J)+A(I1,J)*X(I1)
IF (XF(J).GE.0.DO) GO TO 40
XMF (J)=XF(J)-C(J,L)
R=DEXP(XMF(J))
GO TO 20
40 R=0.DO0
20 SUMF (I)=SUMF(I)+R
10 G(I)=SUMF(I)
SUM=0.D0
DO 50 J=2,M
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JJ=J-1
SUM=SUM+B(J) *X(JJ)
G(K+1) = -SUM
RETURN

END

SUBROUTINE SINGV CALCULATES A FIRST STARTING POINT

FOR THE PRIMAL PROBLEM.IT SOLVES AN OVERDETERMINED

SYSTEM OF EQUATIONS “THAT RELATES PRIMAL AND DUAL VARIABLES.
THE METHOD USED IS A SINGULAR VALUE DECOMPOSITION.

SUBROUTINE SINGV

IMPLICIT REAL*8(A-H,0-2)

DIMENSION A(30,30),v(30,30),5(30)
COMMON/AX/AD(10,30)/CX/C(30,10)/XNE/XNEW(31)/DX/N1,M1
COMMON/ZX/X(10,5) /HX/K,NN

NP=1.D0

N=N1-1

M=M1-1

MNP=M+NP -

NDIMAU=30

NDIMV=30

DO 10 I=1,N

II=I+1

DO 10 J=1,

JJ=J+1

A(I,J)=AD(JJ, II)

SUMX=0.D0

DO 12 J=2,Nt

SUMX=SUMX+XNEW(J)\

DO 11 I=1,N
II=I+1
DO 11 J=M1,MNP

iF (XNEW(II) LE.0.DO) XNEW(II)=1.D-16
A(1,J3)=C(II, 1) +DLOG (XNEW(I1)) DLOG(SUMX)
WRITE (6, 14) ((A(1,J3),d=1,MNP),I=1,N)
FORMAT (1x 5G18.6)

CALL DSLSVD(A S,V,NDIMAU,NDIMV,N,M,NP,&140)
EPS=1.D-6

SS=S(1)*EPS

DO 60 J=1,M

IF (S{(J).LT.SS) GO TO 70

DO 50 I=1,M

v(1,3)=v(1,3)/S(J3)

CONTINUE

J=M+1

GO TO 90

WRITE (6,80) ((V(I,K),I=1,M),K=J,M)
FORMAT (1X,4G13.5)

IF (J.GT.M) GO TO 120

DO 110 K=J,M

DO 110 I=1,M

V(I,K)=0.D0O

MP1=M+1
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CALL DGMULT(V,A(1,MP1),X,M,M,NP,NDIMV,NDIMAU, 10)
RETURN
140 WRITE (6,150)
150 FORMAT (' ERROR RETURN FROM DSLSVD')
STOP
END

SUBROUTINE SKIP WILL READ THE LAGRANGIAN MULTIPLIERS
FOR THE PRIMAL CONSTRAINTS AS PRINTED BY GRG IN THE SCRATCH
FILE -GRGOUT.

QOO0

SUBROUTINE SKIP(*)
LOGICAL*1 RECORD(150)
INTEGER*2 LEN
LOGICAL EQCMP
100 CALL READ(RECORD,LEN,O0,LNR,6,&200)
IF (LEN .LT. 70 .OR. LEN .GT. 75) GO TO 100
IF (EQCMP (21, RECORD, 'OLAGRANGE MULTIPLIERS')) RETURN
GO TO 100
200 RETURN 1
END
C
C SUBROUTINE FREEN CALCULATES THE FREE ENERGY PARAMETERS
C FROM THE GORDON AND MC.BRIDE POLYNOMIALS COEFFICIENTS.
C
SUBROUTINE FREEN
IMPLICIT REAL*8 (A-H,0-2Z)
COMMON/CX/C(30,10)/SX/S(30,10)
COMMON /DX /N ,M/HX /K, NN
COMMON/EX/T(30),P(30)
DO 10 L=1,NN
c(1,L)=0.D0
N1=N-1
Do 10 J=1,N1
JJI=J+1
10 c(JJ,L)=s(J,1)*(1.0D0-DLOG(T(L)))-S(J,2)*T(L)/2.DO-
1 ($(J,3)*T(L)**2.D0)/6.D0 -(S(J,4)*T(L)**3,D0)/1.2D1
2 -(s(J,5)*T(L)**4,D0)/2.D1+5(J,6)/T(L)-S(J,7)
3 +DLOG(P(L))
WRITE(6,11) ((c(J,L),Jd=1,N),L=1,NN)
11 FORMAT ('MATRIX OF FREE ENERGY COEFICIENTS',/,1X,4F12.7)
RETURN
END
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Program COMP2

THIS PROGRAM SOLVES THE PRIMAL GP FOR THE CHEMICAL EQUILIBRIUM
PROBLEM. IT CALLS THE SUBROUTINE LIPSU2 TO GET A FIRST DUAL
POINT FOR THE OPTIMIZATION. THEN IT CALLS SUBROUTINE SINGV E
WHICH CALCULATES THE CORRESPONDING PRIMAL

STARTING POINT. SUBROUTINES GRGIN AND GRG2, FROM UBC,

SOLVE THE OPTIMIZATION PROBLEM.SUBROUTINE GCOMP CALCULATES THE
OBJECTIVE FUNCTION AND THE CONSTRAINTS, AND IS CALLED FROM GRG.
SUBROUTINE FREEN CALCULATES THE FREE ENERGY COEFFICIENTS (G/RT)
USING THE DATA FROM GORDON AND MC.BRIDE.

A SENSITIVITY ANALYSIS OF THE DUAL VARIABLES IS PERFORMED BY
SUBROUTINE NPLUSK

IMPLICIT REAL*8 (A-H,0-2)

LOGICAL*1 BLANK /' '/, SEMIC /';'/
DIMENSION STATMENTS . LABELLED COMMONS ARE USED.
N=NUMBER OF CHEMICAL SPECIES +1
M=NUMBER OF CHEMICAL ELEMENTS (ATOMS) + 1
K=NUMBER OF PHASES
NN= NUMBER OF DIFFERENT TEMP. AND PRESSURE CONDITIONS.
NE=1 IF THE FREE ENERGY COEFFICIENTS ARE ALREADY AVAILABLE. IF
THEY ARE TO BE CALCULATED BY THE GORDON AND MC.BRIDE
COEFFICIENTS, USE ANY OTHER INTEGER .
NF=1 IF THE DUAL STARTING POINT ROUTINE IS TO BE USED.
OTHERWISE, EQUAL NF TO ANY OTHER INTEGER,
AND PROVIDE A DUAL STARTING POINT. DON'T FORGETTHAT
THE FIRST DUAL VARIABLE IS DUMMY AND EQUAL TO 1.DO.
a(1,J3),1=1,M,J=1,N = EXPONENTS MATRIX. A(J,1) CORRESPONDS
TO THE NORMALITY CONDITION. ‘
c(JJg,rL),JJ=1,N, L=1,NN FREE ENERGY COEFFICIENTS OF SPECIES JJ
T,P=EQUILIBRIUM TEMPERATURE AND PRESSURE
X(1)=2(1,1),1=1,M-1 =TRANSFORMED PRIMAL VARIABLES. FOR
SUBROUTINE LIPSU2,X(J),J=1,N+1, CORRESPOND TO THE VARIABLES OF
THE LINEAR PROGRAM.
XNEW(J),J=2,N =NUMBER OF MOLES OF SPECIES J; XNEW(1)=1.D0 IS A
DUMMY VARIABLE CORRESPONDING TO THE NORMALITY CONDITION.
XMF (J)=MOLAR FRACTION OF SPECIES J
XLAG(I),I=1,K = LAGRANGE MULTIPLIER OF CONSTRAINT I
$(J,L),Jd=1,N-1,L=1,7 =COEFFICIENTS FOR GORDON & MC.BRIDE
POLYNOMIALS ,
u(1,J) 1=1,N-M, J=1,N IS THE MATRIX OF STOICHIOMETRIC COEFFICIE
B(I),I=2,M = VECTOR OF AMOUNTS OF ELEMENT I.B(1)=1, DUMMY.
F = OBJECTIVE FUNCTION.

COMMON/AX/A(10,30)

COMMON/BX/B(10)

COMMON/CX/C(30,10)

COMMON/DX/N,M/HX /K ,NN/GX/F/XL/L

COMMON/EX/T(30),P(30)

COMMON/FX/X(31)/2X/2(10,5)

DIMENSION XMF(30),VL(30),VH(30)
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COMMON/XNE /XNEW(31) /SX/SUMX/SUX/S(30,10) /UX/U(30,30)
DIMENSION XLAG(10),SUMC(30)
C
C READ IN DATA
C
READ(5,10) N,M,K,NN,NE,NF
10 FORMAT (61I5)
C
C CALCULATE FREE ENERGY COEFFICIENTS BY GORDON AND MC.BRIDE
C
IF (NE.EQ.1) GO TO 13

SX =550.D0
C
C CALCULATE THE TEMPERATURE AT FIXED INTERVALS.
¢ !
DO 20 L=1,NN
SX=8X +5,D1
T(L)=SX
20 P(L)=1.D0
N1=N-1

READ (5,40) ((s(1,.),L=1,7),I=1,N1)
40 FORMAT (5G13.7)

CALL FREEN
GO TO 400
13 READ (5,311) (T(L),L=1,NN)
C .
C IF THE C(I,L) MATRIX IS AVAILABLE BY OTHER SOURCES THAN
C GORDON & MC.BRIDE, READ NOW TEMPERATURE, PRESSURE, AND THE
C C(1I,L) MATRIX.
C
READ (5,311) (P(L),L=1,NN)
READ (5,311) ((c(1,L),L=1,NN),I=1,N)
311 FORMAT (5F10.0)
C
C READ THE EXPONENT MATRIX AND THE B VECTOR.
¢ :
400 READ (5,50) ((a(1,J),J=1,N),I=1,M)
50 FORMAT (13F4.0)

READ (5,60) (B(I),I=1,M)
60 FORMAT (5F10.0)
C .
C READ THE MATRIX OF STOICHIOMETRIC COEFFICIENTS.
C

N2=N-M
READ (5,70) ((u(1,J),J=1,N),I=1,N2)
70 FORMAT (10F4.0)

C
C PUT NF=1 IF YOU WANT THE PROGRAM TO CALCULATE A DUAL STARTING
C POINT. OTHERWISE, IT WILL NOW READ YOUR FIRST DUAL GUESS.
o
IF (NF.EQ.1) GO TO 500
READ (5,511) (XNEW(J),J=1,N)
511 FORMAT (5F10.0)
TIME=SCLOCK(0.)
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GO TO 600
500 TIME=SCLOCK(O0.)
¢ _
C CALLS SUBROUTINE LIPSUB2.IT PROVIDES A STARTING POINT FOR THE
C DUAL PROBLEM.

CALL LIPSU2

XNEW(1)=1.D0

DO 100 J=2,N

100 XNEW(J) = X(J - 1) + X(N)

WRITE (6,12) (XNEW(J),J=1,N)
12 FORMAT (' FIRST DUAL POINT'/1X,6G16.8)
C

C SUBROUTINE SINGV WILL NOW TRANSFORM THE DUAL VARIABLES INTO
C PRIMAL ONES.

C
600 CALL SINGV
M1=M-
WRITE (6,16) (z(1,1),I=1,M1)
16 FORMAT (' FIRST PRIMAL STARTING POINT',4G16.8)
DO 11 I=1,M1
11 X(1)=2(1,1)
CALL FTNCMD('ASSIGN 5=-DATA;')
CALL FTNCMD ('ASSIGN 7=*SINK*;')
C OPTIMIZATION 1S PERFORMED FOR NN DIFFERENT P AND T CONDITIONS
C A SCRATCH FILE IS CREATED TO WRITE DOWN THE DATA NEEDED FOR THE
C UBC SUBROUTINES GRGIN AND GRG2 TO PERFORM THE OPTIMIZATION
C
C FIRST ARE THE CONTROL CARDS
C
1G=0.DO0
WRITE (5,15) M1,K,IG
15 FORMAT (316)

o
C NOW WRITE THE LOWER BOUNDS OF THE VARIABLES.WE ADD -30 TO THE
C PRIMAL STARTING POINT.
C
WRITE (5,25)
25 FORMAT ('LBV="')
DO 115 I=1,M1
115 VL(I)=X(1I)-3.D1
WRITE (5,35) (BLANK,I,VL(I),I=1,M1),SEMIC
35 FORMAT (6(A1,13,G10.2))
C NOW WRITE THE UPPER BOUNDS OF THE VARIABLES.WE SET THEM AS 0.0
C
WRITE (5,55)
55 FORMAT ('UBV=')
DO 125 I=1,M1
125 VH(I1)=0.DO
WRITE (5,35) (BLANK,I,VH(I),I=1,M1),SEMIC

C

C PRIMAL CONSTRAINTS. IF THERE ARE MORE THAN ONE, THE FORMAT
C SHOULD BE : FORMAT('UBC= 1 1.D0O 2 1.DO K 1.D0 ;')

C

WRITE (5,66)
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66 FORMAT('UBC= 1 1.D0 ;')
WRITE (5,65)
65 FORMAT ('QUAD')
C
C EPNEWT IS THE TOLERANCE FOR THE PRIMAL CONSTRAINTS.THE ACCURACY
C OF THE RESULTS IS VERY SENSITIVE TO THIS VALUE.
C
WRITE (5,75)
75 FORMAT ('EPNEWT=1.D-10")
WRITE (5,85)
C
C EPSTOP IS THE TOLERANCE FOR THE OBJECTIVE FUNCTION
o

85 FORMAT ('EPSTOP=1.D-6"')
WRITE (5,95)
95 FORMAT ('EPSBOUND=1.D-6"')

WRITE (5,105)
105 FORMAT ('EPSPIV=1.D-6')
WRITE (5,61)
o
C PRINTCTL MAY BE SET AT HIGHER VALUES (UP TO 4) FOR MORE
C INFORMATION ON THE PROGRESS OF THE OPTIMIZATION.
- C
61 FORMAT (' PRINTCTL=1"')
WRITE (5,107)
107 FORMAT('X=")
WRITE (5,109) (X(1),I=1,M1)
109 FORMAT (6G18.6)
WRITE (5,108)
108 FORMAT ('OPTIMIZE'/'GO'/'STOP')
REWIND 5
C NOW GRGIN CAN READ INPUT FROM -DATA;GRG2 AND GRGRES WILL WRITE
C THEIR OUTPUTS INTO THE SCRATCH FILE -GRGOUT :
CALL FTNCMD('ASSIGN 6=-GRGOUT;')
CALL GRGIN(&1,&2)
CALL GRG2(X,F,&1)
CALL GRGRES
GO TO 2
WRITE (7,3)
FORMAT (' GRG HAS FAILED')
GO TO 202
REWIND 6

W —

SUBROUTINE SKIP READS THE LAGRANGE MULTIPLIERS FOR EACH PRIMAL
CONSTRAINT. THEY ARE THE NEGATIVE OF THE TOTAL NUMBER OF
MOLES IN EACH CONSTRAINT.

aOO0O00ON

CALL SKIP(&202)
READ (6,26) (XLAG(I),I=1,K)
26 FORMAT (1X,10F13.0)
WRITE (7,205) T(L),P(L),F
205 FORMAT ('T(K)=',F10.0,'P(AT)=',F10.0,'OBJ.F="',G16.8)
WRITE (7,215) :
215 FORMAT (' MOLAR FRACTIONS')
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DO 33 J=2,N

SUMC(J)=0.D0

DO 31 I=1,M1

II=I+1

SUMC (J)=SUMC(J)+A(I1,J)*X(I)
IF (SUMC(J).GE.0.D0O) GO TO 34
R=DEXP(SUMC(J)-C(J,L))

GO TO 33

R=0.D0

XMF (J)=R

WRITE (7,235) (XMF(J),J=2,N)
FORMAT (1X,6G16.8)

WRITE (7,238) (-XLAG(I),I=1,K)
FORMAT (' TOTAL NUMBER OF MOLES',G16.8)
WRITE (7,239)

FORMAT ('NUMBER OF MOLES )

DO 237 J=2,N
XNEW(J)~—XLAG(1)*XMF(J)

WRITE (7,240) (XNEW(J),J=2,N)
FORMAT (1X,6G16.8)
XNEW(1)=1.D0

SUMX=-XLAG(1)

CALL NPLUSK

GO TO 23

TIME=SCLOCK(TIME)

WRITE (7,19) TIME

FORMAT (' EXECUTION TIME =',F6.4)
STOP :

END

SUBROUTINE LIPSU2 CALCULATES A DUAL STARTING POINT APPROXIMATIN
THE DUAL PROBLEM TO A LINEAR PROGRAM.THE LINEAR PROGRAM IS
SOLVED BY SUBROUTINE LIPSUB FROM UBC.

SUBROUTINE LIPSU2

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION TABLO(30, 30) NVIN(30),NVOUT(30),BBOBJ(20),
1 UBOBJ(20), BRHS(20) UBRHS(10)
COMMON/AX/A(10,30)

COMMON/BX/B(10)
COMMON/CX/C(30,10)/GX/OPTIM
COMMON /DX /NVARS ,NCONST
COMMON/FX/X(31)

N1=NVARS~1

M1=NCONST-1

NEQUAL=M1

MAXIM=0

IFOBJ=0

IFRHS=0 -

NCOLS=NVARS+1

NROWS=NCONST+1

C ZERO THE TABLEAU

DO 200 J=1,NCOLS
DO 200 I=1,NROWS
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200 TABLO(I,J)=0.D0
C FIRST ROW IN THE TABLEAU IS THE OBJECTIVE FUNCTION
SUM=0.D0
DO 101 J=1,N1
JJ=J+1
TABLO(1,J)=C(3J,1)
101 SUM=SUM+TABLO(1,J)
TABLO( 1,NVARS)=SUM
TABLO(2,NVARS)=-1.D0
TABLO(2,NCOLS)=-.0001D0
DO 203 I=2,NCONST
DO 202 J=1,N1
202 TABLO(I + 1, J) = A(I, J + 1)
TABLO(I + 1, NVARS)
203 TABLO(I + 1, NCOLS)
260 NLVARS = NVARS
CALL LIPSUB(TABLO, 30, NCONST, NLVARS, NEQUAL, MAXIM,
1 IFOBJ, IFRHS, TOL, NVIN, NVOUT,BBOBJ,
2 UBOBJ, BBRHS, UBRHS, &540)

n o
o
o

NP1=NLVARS+1
OPTIM =TABLO(1,NP1)
IF (MAXIM.NE.1) OPTIM=-OPTIM
DO 12 I=1,NVARS
12 X(1)=0.DO
DO 13 I=2,NROWS
J = NVIN(I)
13 X(J)=TABLO(I ,NP1)
WRITE (6,320) (X(J),J=1,NVARS)
320 FORMAT (1X,5G18.6)
RETURN
540 WRITE (6,560)
560 FORMAT ('ODUAL STARTING POINT ROUTINE FAILED')

DO 580 I = 1, NVARS
580 X(I) = 10.0DO0

RETURN

END

C
C SUBROUTINE GCOMP CALCULATES THE VALUES OF THE OBJECTIVE FUNCTIO
C AND OF THE CONSTRAINTS :
C
SUBROUTINE GCOMP(G,X)
IMPLICIT REAL*8 (A-H,0-Z)
COMMON/AX/A(10,30)/BX/B(10)/CX/C(30,10)/DX/N,M/XL/L
COMMON/HX/K , NN ‘
DIMENSION G(1),X(1),SUMF(5),XF(30),XMF(30)
DO 10 I=1,K
SUMF(I)=0.D0
Do 20 J=2,N

XF(J)=0.D0
DO 30 II=2,M
I1=I1-1

30 XF(J)=XF(J)+A(II,J)*X(11)
IF (XF(J).GE.0.DO) GO TO 40
XMF (J)=XF(J)-C(J,L)
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R=DEXP(XMF (J))

GO TO 20

R=0.D0
SUMF(I)=SUMF(I)+R
G(I)=SUMF(I)
SUM=0.D0

DO 50 J=2,M
JJ=J-1
SUM=SUM+B(J)*X(JJ)
G(K+1) = -SUM
RETURN

END

SUBROUTINE SINGV CALCULATES A FIRST STARTING POINT FOR THE PRIM
PROBLEM,IT SOLVES AN OVERDETERMINED SYSTEM OF EQUATIONS THAT
RELATES PRIMAL AND DUAL VARIABLES.

THE METHOD USED IS A SINGULAR VALUE DECOMPOSITION.

a0

10

12

50

SUBROUTINE SINGV

IMPLICIT REAL*8(A-H,0-2)

DIMENSION A(30,30),v(30,30),5(30)
COMMON/AX/AD(10,30)/CX/C(30,10)/XNE/XNEW(31)/DX/N1,M1
COMMON/ZX/X(10,5) /HX/K,NN

NP=1.D0

N=N1-1

M=M1-1

MNP=M+NP

NDIMAU=30

NDIMV=30

DO 10 I=1,N

II=I+1

DO 10 J=1,M

JJ=J+1 :

A(I,J)=AD(JJ,I1)

SUMX=0.DO0

DO 12 J=2,N1

SUMX=SUMX+XNEW(J)

DO 11 I=1,N

II=1+1

DO 11 J=M1,MNP

IF (XNEW(II).LE.0.DO) XNEW(II)=1,D-16
A(I,J)=C(II,1)+DLOG(XNEW(II))-DLOG(SUMX)
WRITE (6,14) ((A(1,J),J=1,MNP),I=1,N)
FORMAT (1X,5G18.6)

CALL DSLSVD(A,S,V,NDIMAU,NDIMV,N,M,NP,&140)
EPS=1.D-6

SS=S(1)*EPS

DO 60 J=1,M

IF (S(J).LT.SS) GO TO 70

DO 50 I=1,M

v(1,J3)=v(I,J)/S(J)

CONTINUE

J=M+1

GO TO 90
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70 WRITE (6,80) ((V(I,K),I=1,M),K=J,M)
80 FORMAT (1X,4G13.5)
90 IF (J.GT.M) GO TO 120
DO 110 K=J,M
DO 110 I=1,M
V(I,K)=0.DO
120 MP1=M+1
CALL DGMULT(V,A(1,MP1),X,M,M, NP,NDIMV,NDIMAU, 10)
RETURN
140 WRITE (6,150)
150 FORMAT (' ERROR RETURN FROM DSLSVD')
STOP ' :
END

SUBROUTINE SKIP WILL READ THE LAGRANGIAN MULTIPLIERS FOR
THE PRIMAL CONSTRAINTS AS PRINTED BY GRGEG
IN THE SCRATCH FILE -GRGOUT.

eXeXkeXeXe!

SUBROUTINE SKIP(*)
LOGICAL*1 RECORD(150)
INTEGER*2 LEN
LOGICAL EQCMP
100 CALL READ(RECORD,LEN,0,LNR,6,&200)
IF (LEN .LT. 70 .OR. LEN .GT. 75) GO TO 100
IF (EQCMP (21, RECORD, 'OLAGRANGE MULTIPLIERS')) RETURN
GO TO 100
200 RETURN 1
END
C .
C SUBROUTINE FREEN CALCULATES THE FREE ENERGY PARAMETERS FROM
C THE GORDON AND MC BRIDE COEFFICIENTS.

C

SUBROUTINE FREEN

IMPLICIT REAL*8 (A-H,0-2)

COMMON/CX/C(30,10)/SUX/S(30,10)

COMMON /DX /N, M/HX /K, NN

COMMON/EX/T(30),P(30)

DO 10 L=1,NN

c(1,L)=0.DO0

N1=N-1

DO 10 J=1,N1

JJ=J+1
10 C(JJ,L)=S(J,1)*(1.D0-DLOG(T(L)))-S(J,2)*T(L)/2.D0-

1 (s(J,3)*T(L)**2.,D0)/6.D0 -(S(J,4)*T(L)**3.D0)/1.2D1

2 -(s(J,5)*T(L)**4,D0)/2.D1+S(J,6)/T(L)-S(J,7)

3 +DLOG(P(L))

WRITE(6,12)
12 FORMAT ('MATRIX OF FREE ENERGY COEFFICIENTS')

_ WRITE(6,11) ((c(J,L),J=1,N),L=1,NN)

11 FORMAT (1X,4F12.7)

RETURN

END
C

C SUBROUTINE NPLUSK PERFORMS SENSITIVITY ANALYSIS SOLVING A SYSTE
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C SYSTEM OF LINEAR EQUATIONS WITH SUBROUTINE DSLIMP(FROM UBC).THE
C U(I,J) THAT IS , THE STOICHIOMETRIC COEFFICIENTS FOR THE
C REACTIONS THAT TAKE PLACE, ARE PROVIDED BY THE USER.
C
SUBROUTINE NPLUSK
IMPLICIT REAL*8 (A-H,0-2Z)
COMMON /AX/A(10,30)/BX/B(10)/XNE/DELT(31) /UX/U(30,30)
COMMON/CX/C(30,10)/DX/N1,M/HX/K,NN/EX/T(30),P(30)/SX/SUMX
DIMENSION DA(50,50), DT(50,50), DB(50), DX(50),
1 DRZ(50), IPERM(100)
DIMENSION SUM(30),v(30),SUMB(30)
N=N1+K
NDIMAT=50
N2=N1-M
DEPS=1.D-8
ITMAX=0
C NOW WE NEED TO FORM THE (N1+KXN1+K) MATRIX
DO 83 I=1,N
" DO 83 J=1,N
83 DA(I,J)=0.DO
C NORMALITY AND ORTHOGONALITY CONDITIONS
DA(1,1)=1.D0
DO 84 I=2,M
DO 84 J=2,Nt
DA(I,1)=-B(I)
84 DA(1I, J) =A(1,J)
C NOW, SUMMATION OF NUMBER OF MOLES
DO 4 I=1,K
LL=I+M
DO 5 J=2,N1
5 DA(LL,J)=1.D0
4 DA(LL,N)=-1.D0
C NOW, EQUILIBRIUM CONDITIONS
DO 8 I=1,N2
SUMB(1)=0.D0
DO 7 J=1,N1
LL=M+K+I
DA(LL,J)=0(1,J)/DELT(J)
7 SUMB(I)=SUMB(I)+U(I,J)
8 DA(LL,N)=SUMB(I)/SUMX
C NOW CALCULATE THE RIGHT HAND SIDE VECTOR
DO 95 L=2,NN
M3= M+K
_ DO 10 I=1,M3
10 DB(I)=0.D0
DO 11 I=1,N2
SUM(1)=0.D0"
DO 9 J=1,N1
9 SUM(I)=SUM(I)-U(I,J)*(c(J,L)-C(J,1))
LL=I+M+K '
11 DB(LL)=SUM(I)
NRHS=L-1
C SOLVE THE SYSTEM
CALL DSLIMP(DA,DT,DB,DX,DRZ, IPERM,N,NDIMAT,DEPS NRHS, ITMAX)
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C WRITE OUT RESULTS
WRITE (7,%00)
900 FORMAT (' VARIATION OF NUMBER OF MOLES')
WRITE (7,110) (DX(I),I=1,N)
110 FORMAT (1X,6G14.6)
C CALCULATE THE NEW NUMBER OF MOLES
DO 15 I=1,N
15 V(I)=DX(I)+DELT(I)
wW=P(L)
Z=T(L)
WRITE (7,120) W,2Z
120 FORMAT (' P=',F10.0,' T(KELVIN)=',F10.0,1X,'SOLUTION")
WRITE (7,130) (v(1),I=1,N})
130 FORMAT (1X,6G16.8)
95 CONTINUE
RETURN
END
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Program COMP3

THIS PROGRAM SOLVES THE DUAL G.P, FOR THE CHEMICAL EQUILIBRIUM
PROBLEM. IT CALLS THE SUBROUTINE LIPSU2 TO GET A FIRST POINT
FOR THE OPTIMIZATION. THEN IT CALLS SUBROUTINES GRGIN AND GRG2
WHICH. SOLVE THE PROBLEM ITSELF.SUBROUTINE GCOMP CALCULATES THE
OBJECTIVE FUNCTION AND THE CONSTRAINTS, AND IS CALLED FROM
SUBROUTINE GRG2.SUBROUTINES GRGIN AND GRG2 ARE FROM UBC.

THE PROCEDURE IS REPEATED FOR DIFFERENT TEMPERATURES AND
PRESSURES.

SUBROUTINE FREEN CALCULATES THE FREE ENERGY COEFFICIENTS (G/RT)
USING THE DATA FROM GORDON & MC.BRIDE

IMPLICIT REAL*8 (A-H,0-2)
LOGICAL*1 BLANK /' '/, SEMIC /';'/
DIMENSION STATMENTS . LABELLED COMMONS ARE USED.
N=NUMBER OF CHEMICAL SPECIES +1
M=NUMBER OF CHEMICAL ELEMENTS (ATOMS) + 1
K=NUMBER OF PHASES
NN= NUMBER OF DIFFERENT TEMP. AND PRESSURE CONDITIONS.
NE=1 IF THE FREE ENERGY COEFFICIENTS AT TEMPERATURE T ARE
AVAILABLE. IF THEY HAVE TO BE CALCULATED BY
THE GORDON AND MC.BRIDE POLYNOMIALS, SET NE EQUAL TO
ANY INTEGER DIFFERENT THAN ONE.
NF=1 IF THE PROGRAM HAS TO PROVIDE A FIRST STARTING POINT.
IF YOU PROVIDE THE FIRST STARTING POINT, SET NF EQUAL TO
ANY OTHER INTEGER.
A(1,J),1=1,M,J=1,N = EXPONENTS MATRIX.A(1,1)=1 CORRESPONDS
TO - THE NORMALITY CONDITION, ‘
c(J,L), J=1,N, L=1,NN = FREE ENERGY COEFFICIENTS OF SPECIES J
AT T(L),P(L).SET C(1,L)=0.
T,P=EQUILIBRIUM TEMPERATURE AND PRESSURE.
XNEW(J),J=2,N = NUMBER OF MOLES OF SPECIES J AT EQUILIBRIUM.

FOR F=1, XNEW =1 (DUMMY SPECIES CORRESPONDING TO THE NORMALITY
CONDITION)
X(J),J=1,N = FOR SUBROUTINE LIPSU2, CORRESPONDS TO THE LINEAR

PROGRAM VARIABLES. FOR GRG, DUAL VARIABLES, EQUAL TO XNEW(J).
XMF(J),J=2,N MOLAR FRACTION OF SPECIES J

S(Jg,L) J=1,N-1, L=1,7 = COEFFICIENTS FOR GORDON AND MC.BRIDE
POLYNOMIALS FOR SPECIES J+1.

B(1),I=2,M VECTOR OF AMOUNTS OF ELEMENT I, THAT ARE CONSERVED.
B(1)=1, DUMMY.

F= OBJECTIVE FUNCTION.

COMMON/AX/A(10,30)
COMMON/BX/B(10) ,
COMMON/CX/C(30,10)
COMMON/DX/N,M/HX/K ,NN/GX/F /XL /L
COMMON/EX/T(30),P(30)/SX/S(30,10)
COMMON/FX/X(31) '
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DIMENSION XMF(30),H(30),0(30)
DIMENSION XNEW(31)

C .

C READ IN DATA

C .
READ(5,10) N,M,K,NN,NE,NF

10 © FORMAT (6I5) L

C S

C CALCULATE FREE ENERGY COEFFICIENTS BY GORDON AND MC.BRIDE
C S
IF (NE.EQ.1) GO TO 13

C
C CALCULATE THE TEMPERATURE AT FIXED INTERVALS.
c 4
'SX=55.D1
DO 20 L=1,NN
SX=SX+50.D0
T(L)=SX
20 P(L)=1.D0
N1=N-1

READ (5,40) ((s(1,L),L=1,7),I=1,N1)
40 FORMAT (5G13.7)

CALL FREEN
GO TO 400
C : - _
C IF THE C(I,L) MATRIX IS AVAILABLE BY OTHER SOURCES OTHER
C THAN GORDON AND MC.BRIDE, READ TEMPERATURES, PRESSURES, &
C THE C(I,L) MATRIX.
o _ .
13 READ (5,311) (T(L),L=1,NN)
READ (5,311) (P(L),L= ,NN)
READ (5,311) ((c(1,L),L=1,NN),I=1,N)
311 FORMAT (5F10.0) '
C .
C READ THE EXPONENT MATRIX AND THE B VECTOR
C
400 READ (5,50) ((Aa(1,J),3=1,N),I=1,M)
50 FORMAT (13F4 0)

READ (5,60) (B(I),I=1,M)
60 FORMAT (5F10.0)
IF (NF.EQ.1) GO TO 500
o ' -
C .IF YOU HAVE A GOOD STARTING POINT, THE PROGRAM SHOULD READ IT N
C OTHERWISE, IT CALCULATES ITS OWN STARTING POINT.
C .
READ (5,510) (XNEW(J),Jd=1,N)
510 FORMAT (5F10.0)

TIME=SCLOCK(0.)

GO TO 600
500 TIME=SCLOCK(0.)
C CALLS SUBROUTINE LIPSUB2.IT PROVIDES A STARTING POINT FOR THE
C OPTIMIZATION ROUTINE.

CALL LIPSU2

XNEW(1)=1.D0
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DO 100 J=2,N

100 XNEW(J) = X(J - 1) + X(N)
WRITE (6,12) (XNEW(J),J=1,N)
12 FORMAT (' FIRST STARTING POINT'/1X,6G16.8)

DO 200 L=1,NN
C OPTIMIZATION IS PERFORMED FOR NN DIFFERENT P AND T CONDITIONS
C A SCRATCH FILE IS CREATED TO WRITE DOWN THE DATA NEEDED FOR THE
C UBC SUBROUTINES GRGIN AND GRG2 TO PERFORM THE OPTIMIZATION
CALL FTNCMD('ASSIGN 5=-DATA;')
C
C FIRST COME THE CONTROL CARDS.
C
WRITE (5,15) N,M,M
15 FORMAT (316)
C
C NOW WRITE THE LOWER BOUNDS FOR THE VARIABLES.
¢ _
WRITE (5,25)
25 FORMAT ('LBV="')
DO 115 I=1,N
115 H(I)=1.D-60
WRITE (5,35) (BLANK,I,H(I),I=1,N),SEMIC
35 FORMAT (6(A1,13,G10.2)) ’
C
C NOW, THE UPPER BOUND FOR THE VARIABLES.
C
WRITE (5,55)
55 FORMAT ('UBV="')
DO 125 I=1,N
125 Q(1)=40.D0 .
WRITE (5,35) (BLANK,I,Q(I),I=1,N),SEMIC
WRITE (5,65)

65 FORMAT ('QUAD')
C
C EPNEWT IS THE TOLERANCE FOR THE CONSTRAINTS.
C
WRITE (5,75)
75 FORMAT ('EPNEWT=1.D-6")
C

C EPSTOP IS THE TOLERANCE FOR THE OBJECTIVE FUNCTION.
C
WRITE (5,85)

- 85 FORMAT ('EPSTOP=1.D-6")
WRITE (5,95)
95 FORMAT ('EPSBOUND=1.D-6")
C

C EPSPIV SHOULD BE OF THE ORDER OF THE LOWER BOUNDARY.
c _

WRITE (5,105)
105 FORMAT ('EPSPIV=1.,D-16")
C N
C PRINTCTL MAY BE SET AT HIGHER VALUES (UP TO 4) FOR MORE
C INFORMATION ON THE PROGRESS OF THE OPTIMIZATION. IF 'NOECHO'
C IS WRITEN ON FILE -DATA JUST BEFORE THE CONTROL.CARDS, ‘AND
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C IF PRINTCTL =0, NO OUTPUT IS WRITTEN FROM GRG.

C
WRITE (5,61)

61 FORMAT (' PRINTCTL=1"')
DO 101 I=1,N

101 X(I1)=XNEW(I)

WRITE (5,107)
107 FORMAT('X=")
WRITE (5,109) (X(1),I=1,N)
109 FORMAT (6G18.6)
WRITE (5,108)
108 FORMAT ('OPTIMIZE'/'GO'/'STOP')
REWIND 5
C NOW GRGIN CAN READ INPUT FROM -DATA;GRG WILL WRITE ITS OUTPUT
C INTO THE SCRATCH FILE -GRGOUT.
CALL GRGIN(&1,&2)
CALL GRG2(XNEW,F,&1)
GO TO 2
1 WRITE (6,3)
3 FORMAT (' GRG HAS FAILED')
2 WRITE (6,205) T(L),P(L),F
205 FORMAT ('T(K)=',F10.0,'P(AT)="',F10.0,'OBJ.F=",G16.8)
WRITE (6,215)
215 FORMAT ('NUMBER OF MOLES')
WRITE (6,225) (XNEW(I),I=1,N)
225 FORMAT (1X,6G16.8)
SUM=0.D0
DO 8 J=2,N
8 SUM=SUM+XNEW(J)
WRITE (6,235) SUM
235 FORMAT (' TOTAL NUMBER OF MOLES=',G16.8)
~ DO 9 J=2,N
9 XMF (J)=XNEW(J) /SUM
WRITE (6,245) (XMF(J),J=2,N)
245 FORMAT (1X,' MOLAR FRACTIONS',1X,6G16.8)
200 CONTINUE

. GO TO 23
23 TIME=SCLOCK(TIME)
WRITE (6,19) TIME
19 FORMAT (' EXECUTION TIME =',F6.4)
STOP
END

SUBROUTINE LIPSU2 CALCULATES A STARTING POINT APPROXIMATING THE
DUAL PROBLEM TO A LINEAR PROGRAM. THE LINEAR PROGRAM IS SOLVED
BY SUBROUTINE LIPSUB FROM UBC.

OO000

SUBROUTINE LIPSU2

IMPLICIT REAL*8 (A-H,0-2Z)

DIMENSION TABLO(30,30),NVIN(30),NVOUT(30),BBOBJ(20),
1 UBOBJ(20),BRHS(20) ,UBRHS(10)
'COMMON/AX/A(10,30)

COMMON/BX/B(10)

COMMON/CX/C(30,10) /GX/OPTIM
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COMMON/DX/NVARS ,NCONST
COMMON/FX/X(31)
N1=NVARS-1

M1=NCONST-1

NEQUAL=M1

MAXIM=0

IFOBJ=0

IFRHS=0

NCOLS=NVARS+1
NROWS=NCONST+1

C ZERO THE TABLEAU

200

DO 200 J=1,NCOLS
DO 200 I=1,NROWS
TABLO(I,J)=0.D0

C FIRST ROW IN THE TABLEAU IS THE OBJECTIVE FUNCTION

101

202

203
260

i2

13
320

540
560

580

C

SUM=0.DO0
DO 101 J=1,N1

- JJ=J+1

TABLO(1,J)=C(JJ,1)

SUM=SUM+TABLO(1,J)

TABLO(1,NVARS)=SUM

TABLO(2,NVARS)=-1.D0

TABLO(2,NCOLS)=-.0001D0

DO 203 I=2,NCONST

DO 202 J=1,Nt

TABLO(I + 1, J) = A(I, J + 1)

TABLO(I + 1, NVARS)

TABLO(I + 1, NCOLS)

NLVARS = NVARS

CALL LIPSUB(TABLO, 30, NCONST, NLVARS, NEQUAL, MAXIM,
IFOBJ, IFRHS, TOL, NVIN, NVOUT,BBOBJ,
UBOBJ, BBRHS, UBRHS, &540)

NP 1=NLVARS+1
OPTIM =TABLO(1,NP1)

IF (MAXIM.NE.1) OPTIM=-OPTIM
DO 12 I=1,NVARS '
X(1)=0.D0

DO 13 I=2,NROWS
J = NVIN(I)
X(J)=TABLO(I,NP1)

WRITE (6,320) (X(J),J=1,NVARS)
FORMAT (1X,5G18.6)
RETURN

WRITE (6,560)

FORMAT (' STARTING POINT ROUTINE FAILED')
DO 580 I = 1, NVARS

X(I) = 10.0DO

RETURN

END

C SUBROUTINE GCOMP CALCULATES THE VALUES OF THE OBJECTIVE
C FUNCTION AND OF THE CONSTRAINTS.

C

SUBROUTINE GCOMP(G,X)
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IMPLICIT REAL*8 (A-H,0-2)
COMMON/AX/A(10,30)/BX/B(10)/CX/C(30,10)/DX/N,M/XL/L
DIMENSION G(1),X(1),SUM(30)
DO 20 I=1,M
SUM(1)=0.D0
Do 10 J=1,N
‘ 1F (A(1,J) .LE. 0.D0) X(J)=0.DO
10 SUM(I)=SUM(I)+A(I,J)*X(J)
20 G(I)=SUM(I)-B(I)
M1=M+1
DELT=0.D0
DO 30 I=2,N
30 DELT=DELT+X(I)
SUMA=0.D0
DO 40 I=1,N
DLX = -1.E50
IF (X(I) .GT. 0.0DO) DLX DLOG(X(1))
40 SUMA=SUMA+X(I)*(DLX + C(I,L))
DLD = -1,E40
IF (DELT .GT. 0.0D0) DLD
G(M1)=SUMA-DELT*DLD
RETURN
END

DLOG(DELT)

C .
C SUBROUTINE FREEN CALCULATES FREE ENERGY PARAMETERS
C
SUBROUTINE FREEN
IMPLICIT REAL*8 (A-H,0-2) -
COMMON/CX/C(30,10)/SX/S(30,10)/DX/N,M/HX/K,NN
COMMON/EX/T(30),P(30)
DO 10 L=1,NN
c(1,L)=0.D0
N1=N-1
DO 10 J=1,N1
JJ=J+1
10 C(JJ,L)=S(J,1)*(1.D0-DLOG(T(L)))-s(J,2)*T(L)/2.D0-
1 (S(J3,3)*T(L)**2.D0)/6.D0-(S(J,4)*T(L)**3.D0)/1.2D1

2 -(s(J,5)*T(L)**4.D0)/2.D1+S(J,6)/T(L)~-S(J,7)
3 +DLOG(P(L))
WRITE (6,7)

7 FORMAT (' MATRIX OF FREE ENERGY COEFFICIENTS')
WRITE(6,11) ((c(J,L),Jd=1,N),L=1,NN)

11 FORMAT (1X,4F12.7)
RETURN

END
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APPENDIX B: EXAMPLES



PROBLEM 1: HYDRAZINE COMBUSTION Passy and Wilde, 1968

Species = 10 Elements = 3 Phases = 1
G/RT = 47.8907 (1) Temperature= 3500 K
G/RT = 47.8907 (2) Pressure= 51.2 atm.
i Elements Bi zi (1) zi (2)
1 H 2.0 -3,78896 -9,78903
2 0 1.0 -15,2128 -15.2127
3 N 1.0 -13.1000- -13,1000
ko Species cj 6 3 (1) , &5 3
i 2 H -6.089 4.06 E-2 3.78
3 H2 -17.164 1.48 E-1 1.47
4 H20 -34.054 7.83 E-1 7.85
5 N -5.914 1.41 E-3 - 1.24
6 N2 -24.721 4,85 E-1 4,86
7 NH -14.986 6.93 E-4 6.06
8 NO -24.100 2.72 E-2 2.43
S 0 -10.708 1.79 E-2 1.81
10 02 -26.662 3.73 E-2 3.80
11 OH ~22.179 9.69 E-2 9.74
X Total number of moles 1.638 (1)

nu

x Total number of moles 1.63799 (2)
Summation of molar fractions at optimum (1)
Summation of molar fractions at optimum (2)

0.995586
1.000001

OTE

Passy and Wilde, 1968

N
(
( This thesis

1w

T
1)
2)
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PROBLEM 2 :

METHANE AND WATER REACTION Perry,

Species = 5

G/RT
G/RT

A Total number of moles
A» Total number of moles
Summation of molar fractions at optimum
Summation of molar fractions at optimum

w N —

Y WN

o

79.3605 (1)
79.3605 (2)

Elements

oxnn

Species

Cco
Cco2
H20
H2
CH4

es:
Perry, 1968
This thesis

Elements = 3

155

1968

Phases = 1

Temperature = 1095 K
Pressure = 1 atm.
Bi zi(1) 2i(2)
2.0 -24.,9739 -24.9738
14.0 -0.7822 -0.7922
3.0 -0.2007 -0.2007
Cj s (1) & j(2
-24.025 1.5174 1.5174
-47.413 .3107 .3107
-23.067 .8612 .8613
0.0 5.7942 5.7943
2.0847 .1722 .1722
= 8.6558 (1)
= 8.6559 (2)
= 1.0000 (1)
= 1.0000 (2)
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PROBLEM 3 : WATER GAS REACTION Dinkel and Lakshmanan, 1975

Species = 4 Elements = 3 Phases = 1
G/RT = 90.4788 (1) Temperature = 1000 K
G/RT = 90.4789 (2) Pressure = 1 atm.
i Elements Bi zi (1) zi (2)
1 C 1.0 N.A -5.31206
2 0 2.0 N.A -33.4888
3 H 2.0 N.A -9.09497
k9 Species Cj 6 3 (1) 6 j (2)
1 2 CO -37.4239 .505025 .505044
3 H20 -50.3023 .505025 .505088
4 Co2 -70.8924 .494975 .494978
5 H2 -16.7936 .494975 .494978

x Total number of moles 3.000000 (1)
A Total number of moles 3.000088 (2)
Summation of molar fractions at optimum
Summation of molar fractions at optimum

1.000000 (1)
1.000031 (2)

nou

Notes:
(1) Dinkel and Lakshmanan, 1975
(2) This thesis.

fnon



PROBLEM 4 :

Species =31

G/RT
G/RT

This

variables t,

N—=OCOWOJOUIxWN = -

N=20WVWO~JOUId WN

—_ o

13

(1)

Elements =12

90.4789 (2)

problem

Elements

02
Co2
N2
H+
OH-
Cl-
Na+
K+
HB1l-
HPp-
HPr-

was

Bi

.0013317

.0022709
.0024855

4.67

4,671973
.008140
.008092
.005
.000909%
.00088
.00119

Z(charge) 0

Species

02
Co2
N2
H20
02
Co2
N2

H+
OH-
CL-
Na+
H20
HCO3-
H2CO03-
co3-
HPp-
02
CO2
N2

H+

€3

-10.89
- 7.69
-11.49
-36.44

oo

OO OO0

-39.23
-21.20

6.25

QOO OO

solved with

scaled as in the reference.

2,13

RESPIRATORY SYSTEM Dembo, 1

the

scaled t

2.517968
2.539194
7.657035
1.221926
7.467072
1.291600
4,283088
2.781697
1.787073
2.001670
6.496106

-6.449689

& 3 (

4.46
1.83
2.47
2.02
7.32
7.37
2.22
2.24
3.43
5.83
8.09
2.89
1.40
6.72
2.18
8.75
4.52
4.55
1.37

| A T N AR N N BN S

mooDDEOODOEEEOHnEDEORE
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976

Phases = 3

Temperature = N.A.
Pressure = N.A.

untransformed primal

i (1) scaled ti
2.508494.
2.525456
7.664300
1.193585
7.645168
1.314099
4.384049
2.651293
1.761015
2.017308
6.487580
6.408%77
1) & 3(2)
3 4.40 E-3
3 1.81 E-3
2 2.45 E-2
3 2.00 E-3
5 7.05 E-5
4 7.10 E-4
4 2.15 E-4
8 3.35 E-8
7 2.15 E-7
2 5.69 E-2
2 1.23 E-1
1 2.80 E+1
2 8.74 E-3
21 6.48 E-21
5 8.80 E-6
3 5.67 E-3
5 4,73 E-5
4 4,76 E-4
4 1.44 E-4
8 2.25 E-8



PROBLEM 4 : RESPIRATORY SYSTEM Continued

3 22
23
24
25
26
27
28
29
30
31

X\, Total
Xy Total
\; Total
X, Total

x, Total

\; Total

Species

OH-
Cl-
K+

H20

HCO3-
H2CO3

CO3-
HB1

HB10O2-

HPr-

number
number
number
number
number
number

of
of
of
of
of
of

C3

OO0

-39.23
-21.20

6.25
~-16.23

moles,
moles,
moles,
moles,
moles,
moles,

phase
phase
phase
phase
phase
phase

Summation of molar fractions,
Summation of molar fractions,
Summation of molar fractions,

A/\z
N — O
S s (T

(]
nwnwn

Dembo,

1976

This thesis

]

1.38
2.34
5.00
1.78
5.64
4.15
5.69
3.10
8.74
1.20

WHN =W —
L1 | I TR B

phas
phas
phas
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j (1) 6 j (2)

1.44
2.48
5.00
1.87
5.86
4.35
5.89
3.31
9.34
1.22

[ S |

||

1
NWWONW—=NNN

nEEoEHEDEEOREE

N
N
N

oo e

(1)
. (1)
. (1)
.032700 (2)
28.1013 (2)
15.8586 (2)

e 1 = 1.000000 (2)
e 2 = 1.000014 (2)
e 3 = ,999991 (2)

b+l
NWWOANW—-=MNDNI

|

moEEEHEEEE N
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PROBLEM 5 : COMBUSTION OF PROPANE (1)

Species =10 Elements = 4 Phases = 1
G/RT = 777.6387 (1) Temperature = 2200 K
G/RT = 777.6387 (2) Pressure = 40 atm.
i Elements Bi zi (1) . zi (2)
1 H 8.0 N.A. -11.4153
2 C 3.0 N.A,. -20.1267
3 0 10.0 N.A. ~-15.8052
4 N 40.0 N.A. -11.6971
k3 Species Cj & 3 (1) 6 j . (2)
i 2 H2 -15.6191 .0200735 .0204434
3 H -.7824 .0006540 .0006811
4 OH -19.7527 .0154000 .0152673
5 H20 -36.7180 3.9718994 3.971582
6 CO -30.1221 .0815971 .0819268
7 CO2 -49.,5104 2.9184028 2.9180737
8 N2 -23.0912 19.9866573 19.986533
9 NO -20.5868 .0266857 .0269337
10 02 -24.9310 .0335845 .0338415
1" 0] -4.,7912 .0004428 .000458

A Total number of moles = 27.0553973 (1)
A Total number of moles = 27.057600 (2)
Summation of molar fractions at optimum = 1.000001 (2)

Notes:

Dinkel and Lakshmanan, 1977
(2) This thesis

N.A. = Not available

———
N’
nu
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PROBLEM 6 : CLAUS FURNACE 1 Bonsu, 13981

Species = 8 Elements = 4 Phases = 1
G/RT = N.A. (1) Temperature = 800K
G/RT = 110.48998 (2) Pressure = 1 atm.
i Elements Bi zi (1) zi (2)
i S 0.3 N.A. -7.01247
2 0] 1.0 N.A, -36.5171
3 H 2.0 N.A. -12.6496
4 N 3.760 N.A,. -12.3856
k3 Species oy Xj (1) Xj (2)
1 2 S02 -76.38437 .02568 .02565
3 H2S -29.34294 .05136 .05139
4 H20 -60.55412 .28304 .28304
5 S2 -9.51304 0.01098 0.01098
6 S4 -19.098567 0.00013 0.00013
7 Sé6 -33.14049 .00013 .00013
8 S8 -43.41504 .00000 .00000
9 N2 -24.30711 .62868 .62869

A Total number of moles at equilibrium =

N.A. (1)
A Total number of moles at equilibrium = 2.99003 (2)
Summation of molar fractions at optimum = 1.00001 (1) -
Summation of molar fractions at optimum = 1.,000001 (2)

Notes
(1) Bonsu, 1981

(2) This thesis.

N.A. = Not available.
The reference gives the composition in molar fractions.
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PROBLEM 6B :CLAUS FURNACE 1 Mc.Gregor, 1978

Species = 8 Elements = 4 . Phases = 1
G/RT = N.A. (1) - - Temperature = 800K
G/RT = 230.12109 (2) - Pressure = 1 atm.

i Elements Bi zi (1) zi (2)

1 S 2.0 N.A. -6.28329

2 0 2.0 N.A. -36.6006

3 H 4.0 N.A. -12.7332

4 N 3.76 N.A. -12.4229
kK j Species Cj Xj (1) Xj (2)
12 SO2 -76.38437 .0455 .04505

3 H2S -29.34294 .0908 .09009

4 H20 -60.55412 .2192 .21922

5 S2 -9,51304 .0483 .04783

6 H2 -16.96621 .0002 .00020

7 S6 -32.48436 L0112 .01130

8 S8 -43.,75302 L0011 .00120

9 N2 -24.30711 .5833 .58311

A Total number of moles at equilibrium = N.A. (1)

A Total number of moles at equilibrium = 6.44320 (2)
Summation of molar fractions at equilibrium = 1,0001 (1)
Summation of molar fractions at equilibrium = 1.,000001 (2)

Notes:

(1) McGregor, 1978

(2) This thesis. _

The reference gives the composition -in molar fractions.



PROBLEM 7 : CLAUS FURNACE 2 Bennett, 1979

Species =24
G/RT = N.A. (1)
G/RT = 230.13785

i Elements

1 S

2 0]

3 H

4 N
k3 Species
1 2 S02

3 H2S

4 H20

5 S§2

6 sS4

7 S6

8 S8

9 N2

10 NH3

11 S

12 SH

13 H2

14 H

15 SO

16 HO

17 SO3

18 SN

19 S20

20 NO

21 S3

22 S5

23 - s7

24 0

25 02

A Total number of moles at equilibrium
A Total number of moles at equilibrium

Elements =

N RN
. . . .
QOO

C3

-76.38437
-29.34294
-60.55412

-9.51304

21.,72258
-32.48436
-43.75302
-24.30711
-31.83038

20.62205

-2.09771
-16.96626

18.08661
-27.24001
-17.51132
~92.84698

11.380983
-42.68584
-13.05837
-13.37118
-24.89094
-37.89094
-17.17544
-25.98145

Phases = 1
Temperature = 800K

Pressure = 1 atm.

Zi (1) zi (2)

-6.28617
-36.6064
-12,7318
-12.4236

zZz=z
>

* e e e

X3y (1) Xj (2)

.4440 E-
.9010 E-
.2197 E
.4692 E-
.4424 E-
.5339 E-
.1450 E-
.5827 E
.6922 E-
.2060 E-
.4484 E-
.2040 E-
.4128 E-
.1593 E-
.1506 E-
.7925 E-
.5036 E-
.1514 E-
.2386 E-
.4139 E-
. 1445 E-
.2186 BE-
.4394 E-
.1983 E-

6.4500 (1)
6.45207(2)

Summation of molar fractions at equilibrium = N.A. (1
summation of molar fractions at equilibrium=1.0000001 (2)

162

O :

1

wow w

w

1
1
0
1
2
2
2
0
8
1
7
3
1
6
1
1
1
2
1
2
2
2
2
2

3
2
(3)
)
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PROBLEM 7 : CLAUS FURNACE 2 Continued

Bennett, 1979
This thesis.
Calculated from Table 6-1 , p.141 ,Bennett,1979

AAAZ

wN -0
S’ e S T

[t
nunnuw

Moles of product formed at 800 K from 100 moles of SH2
238 moles of air :

Species Moles of product (1) Moles of product (2)
H2 .06 .010
H2S 29.16 | 29.063
S02 ) 14.54 : 14,323
N2 187.91 187.976
H20 70.46 70.864
S3 19.52 19.821
Others : .85 .545
Total 322.50 322.602

Notes :

(1) Table 6-1, p. 141 , Bennett, 1979
(2) This thesis.



