
C.I 

A COMPARISON OF SOLUTION METHODS 

FOR THE CHEMICAL EQUILIBRIUM PROBLEM 

by 

MARGARITA M. RUDA 

Li e . en Quimica, Universidad de Buenos Aires,Argentina, 1973 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 
THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF APPLIED SCIENCE 
in 

.THE FACULTY OF GRADUATE STUDIES 
(Department of Chemical Engineering) 

We accept t h i s thesis as conforming to the 
required standard 

THE UNIVERSITY OF BRITISH COLUMBIA 
22 A p r i l 1982 

Q Margarita M. Ruda, 1982 



In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the 
requirements for an advanced degree at the University 
of B r i t i s h Columbia, I agree that the Library s h a l l make 
i t f r e e l y available for reference and study. I further 
agree that permission for extensive copying of t h i s thesis 
for scholarly purposes may be granted by the head of my 
department or by his or her representatives. I t i s 
understood that copying or publication of t h i s thesis 
for f i n a n c i a l gain s h a l l not be allowed without my written 
permission. 

Department of CH4EM l&A-L. £A>G I MEE & /A/£ 

The University of B r i t i s h Columbia 
1956 Main Mall 
Vancouver, Canada 
V6T 1Y3 

Date ^OGUc.T v 5 / IQPZ 

DE-6 (3/81) 



i i 

ABSTRACT 

This thesis deals with computing the equilibrium composition 

of a multiple species reacting mixture. When pressure and 

temperature are constant and the system i s ideal, t h i s i s the 

chemical equilibrium problem. 

It i s possible to approach this problem as the minimization 

of a non-linear objective function subject to linear equality 

constraints. The objective function represents the Gibbs' free 

energy of the system; the constraints refer to the conservation 

of the elements. Such a formulation corresponds to a "dual 

geometric program" which i s related to another optimization 

problem known as the "primal geometric program". In those 

chemical equilibrium problems with many species, the "primal 

geometric programming" formulation includes less variables and 

constraints ( inequality ones) than the dual formulation. 

We f i r s t compared the primal and dual formulations of the 

chemical equilibrium problem. Both formulations were solved 

with a Generalized Reduced Gradient code on seven examples. 

The primal formulation proved to be 30% faster than the dual for 

middle-sized problems (up to six simultaneous reactions). The 

code f a i l e d when trying to solve a dual problem of 24 species 

and 4 elements.; but thi s same problem was ea s i l y solved when 

formulated as a primal geometric program. 

As the geometric programming theory includes s e n s i t i v i t y 

analysis, and we . were, also interested in the e f f e c t s of small 

changes of pressure and temperature on the optimal solution, we 

compared s e n s i t i v i t y analysis with re-optimization of the 



p r o b l e m . S e n s i t i v i t y a n a l y s i s p r o v e d t o be b e t w e e n 30% t o 50% 

f a s t e r t h a n r e - o p t i m i z a t i o n . I t a l s o y i e l d e d a c c u r a t e r e s u l t s 

f o r t h e more a b u n d a n t s p e c i e s when r e l a t i v e l y s m a l l c h a n g e s o f 

t e m p e r a t u r e a n d p r e s s u r e were o p e r a t e d . H o w e v e r , t h e 

e q u i l i b r i u m c o n c e n t r a t i o n s o f t r a c e s p e c i e s h a r d l y m a t c h e d t h o s e 

c a l c u l a t e d by r e - o p t i m i z a t i o n . 

F rom t h e s e r e s u l t s we recommend t h e u s e o f t h e p r i m a l 

f o r m u l a t i o n a n d o f r e - o p t i m i z a t i o n t o s o l v e t h e c h e m i c a l 

e q u i l i b r i u m p r o b l e m , a n d we p r e s e n t a c o m p u t e r c o d e t h a t h a s 

b e e n t e s t e d on a v a r i e t y o f e x a m p l e s . 
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CHAPTER I: INTRODUCTION 

The problem of finding the chemical composition of a reacting 

mixture when i t reaches equilibrium has been c a l l e d the 

"chemical equilibrium problem" (Dantzig et a l . , 1958). In thi s 

problem, two thermodynamic variables, pressure and temperature, 

are fixed. Throughout th i s thesis,we w i l l assume that the 

system i s id e a l . 

Knowing the composition at equilibrium is important in 

applied f i e l d s as diverse as chemical reactors design, 

development of rocket propellants, evaluation of explosives or 

biochemistry. When few reactions take place,the calculations 

needed are quite t r i v i a l . They become very cumbersome, however, 

when there is a large number of chemical species and 

simultaneous reactions . If these calculations have to be 

repeated for s l i g h t changes in the fixed conditions ( i . e . , 

pressure and temperature), the problem can be quite impossible 

to solve in a reasonable period of time. A d i g i t a l computer i s 

then required. 

This thesis aims at producing a general computer program to 

solve the chemical equilibrium problem for ideal systems of many 

chemical species. To avoid re-solving the problem when small 

changes in pressure and temperature need to be considered, the 

program should also be capable of performing s e n s i t i v i t y 

analysis. Eventually, t h i s program w i l l be used for simulation 

and design of chemical reactors, mainly for gaseous reactions. 

To achieve our goal, we needed to address the following 
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points: i) the mathematical formulation of the problem, i i ) t h e 

numerical method of solution, and i i i ) the s i m p l i c i t y of the 

program for the user. In that order we now proceed. 

The mathematical formulation of the problem has to be general 

enough to apply to a wide range of examples. The chemical 

equilibrium problem has been posed in many ways, a l l of them 

mathematically equivalent a l b e i t numerically d i f f e r e n t . Van 

Zeggeren and Storey (1970) c l a s s i f i e d these formulations as the 

"free energy minimization" approach and the "equilibrium 

constant" method. The former i s an optimization problem with a 

non-linear objective function and linear equality constraints. 

The l a t t e r can be derived from the condition of minimum Gibbs 

free energy of the system, but consists of a set of simultaneous 

non-linear equations to be solved. 

Passy and Wilde (1968) found a relationship between the 

chemical equilibrium problem and Geometric Programming, a 

mathematical programming technique (GP hereinafter). The "free 

energy minimization approach" can be regarded as a "dual GP" 

problem to which corresponds a related "primal GP" formulation. 

The "primal GP" formulation has a smaller dimension than the 

"dual GP", and has been succesfully used to solve examples of 

the chemical equilibrium problem (Passy and Wilde, 1970; Dembo, 

1976; Lidor, 1975). 

The numerical method of solution i s of course related to the 

mathematical formulation of the problem; however, the same 

formulation can be solved using d i f f e r e n t numerical methods. 

The selection of the numerical method of solution i s important 
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for the computational effectiveness of our code. In other 

words, we want to produce accurate results fa s t . Both the 

primal GP and dual GP formulations present numerical 

d i f f i c u l t i e s . There i s not enough computer evidence in the 

l i t e r a t u r e as to which method of solving the chemical 

equilibrium problem performs better. In t h i s work we s h a l l 

compare the perfomances of the primal and the dual GP 

formulations when solving the chemical equilibrium problem. A 

general purpose non-linear optimization code, which can handle 

both formulations, seems appropiate to make that comparison 

possible. 

GP theory provides ways of performing s e n s i t i v i t y analysis. 

This is p a r t i c u l a r l y useful to us since we are interested in 

comparing i t s speed and accuracy with that of actually re­

solving the problem. The results of the comparisons (primal 

vs. dual and s e n s i t i v i t y analysis vs. repeating the method) 

w i l l permit us to choose the more appropiate mathematical 

formulation and numerical method of solution for a f i n a l 

computer code to solve the chemical equilibrium problem. 

We f i n a l l y come to the question of s i m p l i c i t y . We want to 

avoid the user's tendency to err while inputing data. The 

amount of information needed to run the program should be 

reduced to a minimum. A subroutine to calculate a f i r s t 

s t a r t i n g point for the optimization i s therefore necessary. 

The remainder of the thesis is organized as follows. Chapter 

II presents the d i f f e r e n t mathematical formulations of the 

chemical equilibium problem . Chapter III reviews and discusses 
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the l i t e r a t u r e on the subject. Chapter IV deals with the 

d i f f i c u l t i e s found in trying to set up the programs, while 

Chapter V describes the programs actually written for the 

proposed comparisons. Chapter VI presents and discusses the 

results obtained with our programs in a series of examples taken 

from the l i t e r a t u r e . F i n a l l y , conclusions and recommendations 

are included in Chapter VII. 
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CHAPTER I I : MATHEMATICAL FORMULATIONS OF THE PROBLEM 

This chapter w i l l serve as a means of defining the problem, 

as well as introducing the nomenclature. It i s based on a 

l i t e r a t u r e review, and i t i s organized as follows. Section 1 

deals with the thermodynamic relations that describe the 

chemical equilibrium problem. In section 2 we introduce the two 

t r a d i t i o n a l mathematical formulations known as the "Gibbs free 

energy minimization method" and the "equilibrium constant 

method" (Van Zeggeren and Storey,1970). In section 3 we present 

the geometric programming theory, and we discuss the 

relati o n s h i p between th i s mathematical programming technique and 

the chemical equilibrium problem. In section 4 we discuss the 

basis for s e n s i t i v i t y analysis in geometric programming. 

Thermodynamic relations 

The thermodynamic basis of the "chemical equilibrium problem" 

has been extensively discussed in many textbooks (Denbigh, 1966, 

Kirkwood and Oppenheim, 1961). We w i l l review the thermodynamic 

relations that w i l l allow us to formulate mathematically our 

problem. 

When temperature (T) and pressure (P) are chosen as 

independent variables for a thermodynamic system, the 

appropriate fundamental r e l a t i o n that completely describes the 

system i s the one expressing the Gibbs free energy (G) in terms 

of P,' T, and the composition variables. We w i l l assume a system 
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of K phases and N c h e m i c a l s p e c i e s ; each c h e m i c a l s p e c i e s i s 

p o t e n t i a l l y p r e s e n t i n each phase. Then, 

G = G(T,P, 6j k ) 2.1 

where 

6 j = number of moles of s p e c i e s j i n phase k 

S i n c e Gibbs f r e e energy i s an e x t e n s i v e p r o p e r t y , we can r e w r i t e 

eq. 2.1 as : 

N 
E 
j = 1 

G - E 6 j k 2 • 2 

where the c h e m i c a l p o t e n t i a l i s an i n t e n s i v e p r o p e r t y d e f i n e d 

as f o l l o w s : 

M j k - ) 2 - 3 

O 6 j K T , P , 6 L K 

I f we n e g l e c t a l l i n t e r a c t i o n s among the phases, each phase 

c o n t r i b u t e s a d d i t i v e l y t o the Gibb s f r e e energy of the system. 

Then, 
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K 
G = E Gk ( T , P , 6 j k ) 2.4 

k=1 

Where 

Gk = Gibbs free energy of phase k 

Let us now take a look at the functional form of the chemical 

p o t e n t i a l . The chemical potential of the species j in the phase 

k can be written in the following form: (Denbigh, 1966) 

„ J l t (T,P,6 J l c ) = „ J k
0 (T,P)+RT In a j < 2.5 

where 

M j 1 < :
0 (T,P)= reference value for the chemical potential of 

the species j in the phase k. 

R = universal gas constant 

a j K = a c t i v i t y of species j . 

We w i l l now assume that each phase is an ideal mixture. 

Moreover, we w i l l consider each species as belonging to one 

phase; i f one species belongs to more than one phase, i t w i l l be 

given a d i f f e r e n t number. Hence, k i s no longer needed as a 

subscript for the number of moles. In real l i f e , our problem i s 

r e s t r i c t e d to : 

a) gaseous reactions, 

b) reactions in pure condensed phases, 

c) some b i o l o g i c a l models. 
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With these assumptions, the a c t i v i t y of one species in the 

gaseous phase is equal to the molar fraction of t h i s species in 

the gas phase, times the t o t a l pressure. For the ideal 

condensed phases, the a c t i v i t y equals the molar f r a c t i o n . In 

equations, i f we define 

= I 
jek 2.6 

Then the molar fraction of species j , Xj i s : 

Xj = 6 , / X Y 2.7 

and, for an ideal gas phase 

= Xj P/1 atm. 2.8 

for pure condensed phases 

a, = Xj 2.9 

we can rewrite equation 2.5 for the gas and for the pure 

condensed phases 
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u j (T,P) = K J 0 (T) + RT In P + RT In (6j / X k ) 2.10 

V J (T,P) = „j 0 (T,P)+ RT In (6j / U K ) 2.11 

where the superscript 0 refers to standard state. For the gas, 

i t is the chemical potential of the species j as an ideal gas, 

at zero pressure. For the condensed phases, i t i s usually the 

chemical potential of the pure species j in the condensed phase 

at the same T and P. 

We w i l l now define the free energy c o e f f i c i e n t s Cj as: 

Cj = ( MJ° (T) /RT) + In P/1 atm. 2.12 

for the gas phase, and 

Cj = Mj° (T,P) / RT 2.13 

for the condensed phases. Replacing equations 2.10, 2.11, into 

2.2, dividing by R T , and using 2.12 and 2.13, we get a 

convenient formulation of the Gibbs free energy for an ideal 

system of N species and K ideal phases, at T and P constant. 

N 
G/RT = E 6j 

j = 1 
(In 6j + Cj) 

K 
I Xt; In X.« 
k=1 

2.14 

We have now a working equation that describes Gibbs free 
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energy in terms of the number of moles of the species present at 

equilibrium, the t o t a l number of moles per phase, the 

temperature, pressure, and the "free energy c o e f f i c i e n t s " Cj 

Let us consider now the equilibrium conditions. The condition 

for equilibrium in a closed system described by Gibbs free 

energy (G) i s that G i s a minimum. For the ideal case of 

equation 2.14, this minimum exists and is unique. (Denbigh, 

1966). The fact that G is a minimum at equilibrium implies that 

the variations of G produced by independent variations must be 

zero. But not a l l the variations in the number of moles are 

independent. They must s a t i s f y the requirement that the t o t a l 

mass of each element is d i s t r i b u t e d among the d i f f e r e n t chemical 

species (Zeleznik and Gordon, 1968). We need a mathematical 

description of these constraints. 

Formulations of the chemical equilibrium problem 

The free energy minimization method 

The "free energy minimization " method i s just the 

mathematical formulation of the equilibrium conditions stated 

above. We s t i l l have to formulate the constraints, since the 

Gibbs free energy is described by equation 2.14. To do that, we 

define the "exponent matrix" AA . It is an M x N matrix, where 

M i s the number of elements in the system, and N is the number 

of chemical species in the system. Each column of the matrix 

corresponds to the chemical formula of one species: AAi,j gram 

atoms of the element i are present in one mole of species j . 



11 

If the system contains Bi gram atoms of element i , then the 

conservation of elements can be written as: 

K 
E E AAi j 6j = Bi i = 1 ,M 2 .15 
k=1 jek 

If ionization i s considered, the conservation of charge can be 

also expressed as in equation 2.15 ; charge i s considered to be 

the M+1 element, with zero amounts; the corresponding row in the 

exponent matrix i s the charge of each species. 

Besides the conservative constraints, we have N p o s i t i v i t y 

constraints, since the number of moles of a chemical species i s 

either p o s i t i v e or zero. They are: 

6 j ^ 0 j = 1,N 2.16 

Combining the equations 2.14, 2.15, and 2.16, we have the "Gibbs 

free energy minimization " formulation of the chemical 

e q u i l i l b r i u m problem. We w i l l c a l l this formulation Problem A. 

•v. 
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Problem A 

Min G/RT 
N 
E 

K 
6 j ( I n 6 j + Cj) - E X. K I n X t< 

j = 1 k=1 

s. to: K 
E E 
k=1 jek 

AAij 6j = Bi i = 1 , M 

> 0 j =1 ,N 2.17 

In short , Problem A i s an optimization problem of: 

a) non linear objective function of N variables (the number of 

chemical species present at equilibrium). 

b) M linear equality constraints (number of elements). 

c) N p o s i t i v i t y conditions. 

In spite of Gibbs developing his theory in the past century, 

i t was not u n t i l recently that Problem A could be solved 

e f f i c i e n t l y by computer optimization techniques. Among the 

d i f f i c u l t i e s , the constraints are equality ones; the objective 

function i s convex for ideal systems, but i t is non-

di f f e r e n t iable i f one of the species i s zero, and i t i s not 

defined in such a case; the dimension of the problem is the 

number of species present at equilibrium, which can be a large 

number. The main advantage of Problem A is i t s s i m p l i c i t y of 

formulation; the only data needed are the exponent matrix , the 

amount of elements (B vector) and the free energy c o e f f i c i e n t s 

C, determined by the working pressure and temperature. 
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Reducing the free energy minimization problem 

Problem A was too large to be solved when computers were not 

available; stoichiometry was used to simplify numerically the 

problem. The idea was to write some species (constituents) as a 

function of others (components) (Brinkley, 1946). A system of 

many constituents was regarded as being formed by the components 

through a set of simultaneous l i n e a r l y independent chemical 

reactions. Just how many of these reactions should be 

considered, or which should be the components, has been the 

object of much research for the case of many constituents 

(Denbigh, 1966; Schubert and Hoffmann, 1976; Waller et a l • 

1980). 

A well posed chemical equilibrium problem should have a l l i t s 

proposed species greater than zero at equilibrium; also the 

balances (eq. 2.15) should form a set of linear equations with 

rank = M. If this i s the case, there exists a matrix U c a l l e d 

the stoichiometric matrix, with dimensions N x D , and rank D, 

where D= N-M , is the number of independent chemical reactions. 

The stoichiometric matrix i s such that, in matrix notation, 

AA.U = 0 2.18 

Then the composition of each species can be written as a linear 

combination of D independent parameters r c a l l e d the extent of 

the reactions. That i s , 



1 4 

6j (r) 
D 

= 6j° + E Ujd r d j = 1 ,N 2.19 
d=1 

where 
6j 0 = i n i t i a l amount of species j 

Also see that: 

d 6 j 
) = Ujd 
T,P 

2.20 

which i s the t r a d i t i o n a l way of defining the extent of reaction. 

To calculate the stoichiometric matrix i s easy when few 

reactions take place but i t is not so for the case of many 

reactions. Some systematic ways of c a l c u l a t i n g i t from the mass 

balances have been developed l a t e l y (Schneider & R e k l a i t i s , 

1975). In fact, any solution of the homogeneous system of 

equations formed by setting the B vector equal to zero in 

equation 2.15, is a stoichiometric matrix , even i f i t does not 

look so nice to a chemist. (Aris, 1970). The selection of the 

components is the more d i f f i c u l t task in a l l the systematic 

procedures. The best way to do i t is to choose as components 

those species present in greater quantities at equilibrium, 

which is most of the time d i f f i c u l t to know beforehand. Isomers 

also present d i f f i c u l t i e s ( C a v a l l o t t i et a l . , 1980). 

If the number of moles of the species are written as in 

equation 2.18, then the free energy of the system can be stated 

as a reduced problem of D variables, (the extents of each 

reaction ) with D p o s i t i v i t y constraints. To simplify the 
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expression resulting by replacing 2.18 in 2.14 and 2.15, we 

introduce the following constant terms: 

N 
E 6f Cj 
j = 1 

•In Ko = 2.21 
R T 

N 
E Ujd Cj 
j = 1 

•In Kd = 2.22 
R T 

We now define: 

X k(r) = X k° + E rd X K d k = 1,K 
d=1 

2.23 

° " E 6 J ° j C k 
k = 1 ,K 2.24 

X KJ = E Ujd 
j€k 

d = 1,D k = 1,K 2.25 

After some algebra we get the reduced free energy 

minimization formulation, which we w i l l c a l l Problem B. 
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Problem B 

D 
Min G/RT = - In Ko + I r6 ln Kd + 

d=1 .:-
N K 
E (r) ln 6 j ( r ) - E X. K(r)ln X. K( r) 
j = 1 k=1 

s. to 
D 

(r) = 6 j 0 + E r j Ujd > 0 
d=1 j : = 1 ,N 

Problem B is an optimization problem, with 

a) non-linear objective function of D variables, which are the 

extents of each independent reaction. 

b) N p o s i t i v i t y conditions, one per species present at 

equilibrium. 

In t h i s formulation, the number of variables i s smaller than in 

the previous one; but when N>2M , this advantage is not so 

important. The objective function i s s t i l l undefined and non 

d i f f e r e n t i a b l e when a variable is equal to zero. The set of 

stoichiometric c o e f f i c i e n t s has to be calculated before the 

optimization procedure. 

Formulation of the equilibrium constant method 

Problems A and B are two forms of the optimization approach 

to the chemical equilibrium problem. In order to derive the 

"equilibrium constant" approach, we w i l l consider Problem B and 

the conditions for optimality. If G is a minimum at 
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equilibrium, with pressure and temperature constant, then the 

gradient of G has to be zero at t h i s point. Taking the gradient 

of G, expressed as a function of the extents of reactions, and 

setting i t equal to zero, we get a set of D non-linear equations 

in D unknowns. These equations are the well known "mass action 

law". 

"Problem C" below states the equations. 

Problem C for gaseous phase • • 

Kd = exp 

E Ujd Cj 
jek 

Kd = exp 
RT 

n 
jek 

( 6j° + 
D 
E 
d=1 

Ujd r d ) 
P 

Ujd 

n 
jek 

E (6,° 
jek 

D 
+ E 

d=1 
Ujd rd ) 

k = 1 d=1 ,D 
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Problem C for condensed phases 

K = exp 

E Ujd Cj 
jek 

RT 

n 
j€k 

k = 2 , K d = 1 ,D 

D 
( 6 j ° + E Ujd r 6 ) 

d=1 

D 
E (6j 0 + E Ujd r d ) 
jek d=1 

Ujd 

2 . 2 8 

Stoichiometric c o e f f i c i e n t s are needed in Problem C. Once the 

set of reaction variables r that s a t i s f i e s the equations i s 

known, the number of moles present at equilibrium i s calculated 

through equations 2 . 1 9 . Problem C involves solving a system of 

non linear equations. This is a t o t a l l y d i f f e r e n t numerical 

approach than problems A and B, although the mathematical 

formulations have been shown to be equivalent. 

Almost a l l formulations of the chemical equilibrium problem 

in the l i t e r a t u r e f a l l into Problems A, B, or C, with some 

algebraic modifications. There i s s t i l l a d i f f e r e n t 

formulation, and to introduce i t we need some background on the 

mathematical programming technique known as Geometric 

Programming. 
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Geometric programming theory 

Geometric Programming is the mathematical formulation of a 

special kind of optimization problem. It involves the 

minimization of a posynomial (positive polynomial) objective 

function g , subject to inequality constraints that are also 

posynomials. The problem described i s c a l l e d a "primal problem" 

; the primal function g belongs to the Euclidean space R+m there 

exists a related "dual" maximization problem, involving a 

function v that belongs to the dual space R+n. The function v 

has the form of a product of non-linear terms, and has M+1 

linear constraints. It has been found that the constrained 

maximum value of v is equal to the constrained minimum value of 

g (Duff i n , Petersen and Zener, 1966). We w i l l now present the 

equations that exemplify a l l t h i s . A Primal Geometric Program 

is of the form: 

Pr imal GP 

Min g„ (t) 

s. to 

g K (t) < 1 
t i >o 

k=1 ,K 
i = 1 ,M 

where 
9K.(t) = I C j 

jek 

M 
n t L Ai j 
i = 1 

k = 0,K 
j = 1 ,N 

The corresponding maximizing Dual Geometric Program (Dual GP) i s 
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as follows: 

Dual GP 

N 
Max v(6) = n 

j = 0 
(cj / 

6j K 
) n 

k = 1 

s. to 

E 6 J = 1 
jeO 

normality 
condition 

N 
E A i j 6J 
j = 0 

= 0 i = 1 ,M orthogonality 
condi t ions 

6j > 0 j = 0,N p o s i t i v i t y 
conditions 

where X.k = E 6 j 
jek k = 1 ,K 

The r e l a t i o n between the primal and dual problems i s c a l l e d 

the "geometric inequality" and states: 

g (t) > min g(t) = max v(6) ^ v(6) 2.31 

When the equality holds at the optimum (*), the primal and the 

dual variables are related through the following set of 

equations (Duff'in, Petersen & Zener, 1966) : 
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M 
In cj + E A i j In t * = In (6j* g c ( t * ) ) jek = 0 2.32 

i = 1 

M 
In C j + E A i j In t* = In ( 6 j * / k K* ) jek = 1,N 2.33 

i = 1 

If in the primal problem the constraints are active, and i f i t 

is solved by means of a Lagrangian technique, there is a 

rela t i o n s h i p between the Lagrange m u l t i p l i e r for the constraint 

and the corresponding t o t a l number of moles of the phase : 

X k = n K / g o 2.34 

where nx = Lagrange m u l t i p l i e r of the k-primal constraint 

We w i l l now summarize some important aspects: 

a) Each primal variable is associated to one of the orthogonal 

conditions in the dual. 

b) Each primal constraint is associated to one of the X values. 

c) Each primal term is associated to one dual variable. 

d) The posynomial terms in the primal objective function 

correspond to the dual variables subject to the normality 

condit ion. 

We w i l l not go any further into Geometric Programming theory 

for the moment; we w i l l discuss instead the rel a t i o n s h i p between 
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Geometric Programming and the chemical equilibrium problem. 

Analogies between GP and the chemical equilibrium problem 

In 1968 Passy and Wilde found that the chemical equilibrium 

problem, stated as our Problem A , could be regarded as a dual 

geometric program. Problem A was a l g e b r a i c a l l y transformed 

through the following d e f i n i t i o n s to f i t into the standard 

formulation of a dual geometric program. 

60 = 1 

c j = exp(-Cj) 

c 0 = 1 
-Bi = Aio 

Since exp(-G/RT) is a monotonic function, finding i t s maximum 

is equivalent to minimizing the negative of the function; taking 

logarithms, we have: 

Min (G/RT) = Max exp(-.G/RT) 2.39 

The Dual GP chemical equilibrium problem is then: 

2.35 

2.36 

2.37 

2.38 
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Chemical equilibrium as a dual GP 

Max v = exp(-G/RT) = 
N 
n 
j = 

(cj / 6 3 
0 

6 j 
) 

K kK 

n X f e 

k=1 

s. to 
60 = 1 

normality 
condit ion 

N 
Z A i j 6j = 
j = 0 

= 0 i = 1 ,M orthogonality 
conditions 

6j >- 0 j = 0,N p o s i t i v i t y 
conditions 

where 
X K = Z 6j 

jek 
k = 1 ,K 

If we maximize the logarithm of the previous problem, we 

obtain a "transformed dual" formulation which is similar to our 

"Problem A". The matrix A is the augmented exponent matrix 

(AA); 6 0 is a dummy species. 
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Transformed dual GP 

Max In v 
N 

= Min G/RT = E 
j=o 

K 
I X K In X« 
k=l 

(In 6j + Cj) -

s. to 
6 0 = 1 

normality 
condition 

N 
E A i j 6J = 0 
j = 0 

i = 1 ,M orthogonality 
conditions 

where 

6j ^ 0 

X < = E 6J 
jek 

j 

k 

= 0,N 

= 1 ,K 

p o s i t i v i t y 
conditions 

From the theory of Geometric Programming, to the previous dual 

problem corresponds the following primal problem: 

Chemical equilibrium as primal GP 

M Aio 
Min go(t) = n ti 

i=1 
s. to 

g * ( t ) = E c-
jek 

M A i j 
n t i < 1 k = 1 ,K 

i = 1 

ti ^ 0 i = 1 ,M 

where Aio=-Bi 
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To the "transformed dual" corresponds a "transformed primal" 

formulation; we define Z = ln t and then: 

Transformed primal 

M 
Min ln g 0 ( t ) = Min h(Z) = E Aio Zi 

i = 1 

s. to M 
E exp(Cj + E A i j Zi) < 1 k = = 1,K 
j ek i = 1 

The primal GP chemical equilibrium problem i s a new formulation 

of the problem, with: 

a) minimization of a non-linear objective function of M 

variables (the number of elements) 

b) K non-linear inequality constraints, one per phase. The 

constraints are active at the optimum. Each term of the 

constraints is equal to the molar fr a c t i o n of the corresponding 

species in the phase; hence the constraints state that the 

summation of the molar fractions per phase has to be one at 

equilibrium. The t o t a l number of moles per phase can be 

calculated from eqn. 2.34 

The transformed primal involves: 

a) minimization of a linear objective function of M variables 

b) K non-linear inequality constraints, with the same physical 

meaning as in the primal problem. If the transformed primal i s 

solved using the Lagrange m u l t i p l i e r s technique, each Lagrange 
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m u l t i p l i e r i s equal to the t o t a l number of moles in that phase. 

The reduced dual 

The same methods described before to derive Problem B from 

Problem A are used in the Geometric Programming theory. Problem 

B i s thus equivalent to a "Reduced Dual Geometric Program" , 

except for some changes in nomenclature. These changes are 

shown in Table 11 — 1. 

Summary of the mathematical formulations 

Table II-2 summarizes the most important features of the 

mathematical formulations of the chemical equilibrium problem. 

We w i l l now take a look at one convenient derivation from the 

Geometric Programming theory : the post-optimal analysis known 

as s e n s i t i v i t y analysis. 

S e n s i t i v i t y analysis 

A l l the formulations of the chemical equilibrium problem are 

depending on the free energy c o e f f i c i e n t s C, the exponent matrix 

AA and the vector of the quantity of the elements, B. The 

exponent mateix w i l l not change i f the model i s well formulated. 

The free energy c o e f f i c i e n t s w i l l probably vary with the source 

from where they are obtained, but more important for p r a c t i c a l 

purposes is their v a r i a t i o n with the temperature and pressure of 

the system. The B vector may vary with d i f f e r e n t i n i t i a l 

compositions, for example. 
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Table 11 — 1 . A p a r a l l e l between Geometric Programming and 
Chemical Equilibrium nomenclatures. 

Symbol Chemical 
Nomenclature 

GP 
Nomenclature 

r 

6 

k = 0 

6o 

Ujd 

Kd 

Extent of reaction 

Number of moles of 
species j 

Not defined 

Not defined 

Stoichiometric 
coef f ic ients 

Equilibrium 
constant for the 
d reaction 

Basic variable 

Dual variable 

Corresponds to 
primal objective 
funct ion 

Normality 
condition 

N u l l i t y 
vectors 

Basic 
constant 

S e n s i t i v i t y analysis is just a way of evaluating the changes 

in the equilibrium Gibbs free energy and in the composition, 

when any of the parameters mentioned above i s changed, without 

act u a l l y re-solving the optimization problem. The method 

involves a numerical c a l c u l a t i o n of the p a r t i a l derivatives at 

the optimum, that i s , the truncation of a Taylor series expanded 

around an already found optimum. Of course, i f the variations 

in the parameters are large enough, the problem has to be re­

solved . 

The problem of obtaining a set of s e n s i t i v i t y equations has 

been approached in two ways in the l i t e r a t u r e . Both approaches 
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Table II-2. A summary of the more important c h a r a c t e r i s t i c s 
of the formulations of the chemical equilibrium problem. 

Name of the Eqn. Type of Number of Number and Need 
formulation numerical variables type of stoich. 
in t h i s work solution constraints coeff. 

Problem A 

Problem B 

Problem C 

GP dual and 
transformed 
dual 

GP reduced 
dual 

GP primal 

2.17 Optimization N 

2.26 Optimization 

2.27 System of D D 
2.28 nonlinear unknowns 

equat ions 
2.40 Optimization N+1 
2.41 

2.26 Optimization D 

2.42 Optimization M 

GP transformed 2.43 Optimization M 
primal 

M linear 
eq. const. 
N p o s i t i v i t y 
conditions 

D nonlinear 
iheq. const. 

No 

M+1 linear 
eq. const. 
N p o s i t i v i t y 
conditions 

D nonlinear 
constraints 

Yes 

Yes 

No 

Yes 

K nonlinear No 
ineq. const. 
M p o s i t i v i t y 
conditions 

K non linear No 
ineq. const. 

Eqn.:equation, stoich. coeff.: stoichiometric c o e f f i c i e n t s , . 
eq.:equality, ineq.: inequality, const.: constraints, N: number 
of species, M: of elements, K : of phases, D: of reactions. 

d i f f e r from the numerical point of view. 

The f i r s t approach was stated in appendix B of Duffin, 

Petersen and Zener's book (1966). They work with the Reduced 

Dual GP (eqn. 2.26). The Jacdbian matrix of the transformation 
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from the r variables to the Kd "variables"(matrix J) is formed 

as follows : 

N K 
Jqs(6) = E (Ujq Ujs /6j *) " Z U K q X K S /\K*) 2.44 

j=1 k=1 

where 

q,s = 1,D 

X M = E Ujq 2.45 
jek 

X K S = E Ujs 2.46 
jek 

Xfc* = E 6j * 2.47 
jek 

Duff in et a l . (1966) proved that the matrix J is also the 

Hessian matrix for the function In v r e l a t i v e to the basic 

variables r (extents of reactions). So, i f the reduced dual GP 

equivalent to the Problem B i s solved by any method^involving 

derivatives, the matrix J i s readily a v a i l a b l e . The matrix J 

evaluated at the optimum point is used both to introduce 

c r i t e r i a for the existence of derivatives and to derive 

expressions for these derivatives. The d i f f e r e n t i a l changes are 

approximated l i n e a r l y . 

Dinkel and Lakshmanan (1976, 1977) used these expressions in 

the case of the chemical equilibrium problem when P, T, and the 

amount of elements changed. They applied their results to two 

examples, the problems 3 and 5 of appendix B. They also 
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suggested the use of an incremental procedure in order to 

control the error produced by the linear approximation of the 

d i f f e r e n t i a l changes. The expressions they obtained are as 

follows: 

The expressions are v a l i d i f J i s non singular at the optimum. 

As seen from equations 2.48 and 2.49, the inversion of the 

matrix J evaluated at the optimum i s a necessary step to perform 

s e n s i t i v i t y analysis with this approach. When the number of 

reactions D is not very large, t h i s is not a problem; but as the 

dimension of the matrix increases, so do the rounding errors and 

the time that is consumed in the inversion. 

The second approach taken was related to Generalized 

Geometric Programming. This is an extension of the Geometric 

Programming theory to "generalized polynomials", that i s 

polynomials with some negative terms. These researchers also 

t r i e d to obtain expressions for numerical derivatives, but their 

approach was s l i g h t l y d i f f e r e n t than the previous one 

(Rijckaert, 1974) . The M+1 dual constraints were written in 

e x p l i c i t form, over the N+1 variables , as well as the D 

Av 
v* 

2.48 

2.49 
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"equilibrium conditions" and the K equations r e l a t i n g X to the 

summation of the number of moles in each phase. A l l t h i s i s 

equivalent to writing the Kuhn Tucker conditions for the dual GP 

chemical equilibrium problem. They wrote the N+1+K set of 

equations for the optimum and for a small perturbation of the 

optimum. Each equation in the perturbed set was subtracted from 

the corresponding one in the optimal set, and a Taylor's 

approximation series was used to l i n e a r i z e the equations. The 

f i n a l system of N+K+1 linear equations in N+K+1 unknowns( the 

variations in the number of moles) i s as follows: 

A 6 0 = 0 2.50 

K N 
E E A i j A6j = 0 
k=0 j=0 

i = 1 ,M 2.51 

E A6 0 " A X K = 0 
jek 

k = 1 ,K 2.52 

K K 
E E (Ujd/6j*) A6 - E (Ujd /X ,< * ) A X K 
k=0 jek k=0 

K N 
= E E Ujd(ln C J - ln cj*) 

k=0 j=1 
d = 1,D 2.53 

For any changes in the free energy c o e f f i c i e n t s , only the 
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right hand side of eq. 2.53 changes. For any changes in the B 

vector, only the f i r s t column of eq. 2.51 changes. No 

inversion of a matrix i s required, but the dimensions of the 

system are much larger than in the f i r s t approach. 
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CHAPTER I I I : LITERATURE REVIEW 

This review of the l i t e r a t u r e i s organized in three sections. 

F i r s t we take a look at the l i t e r a t u r e on general methods of 

solution for the chemical equilibrium problem. In the second 

section, we focus on the computer codes available for solving 

geometric programs. The t h i r d section deals with the geometric 

programming approach to the chemical equilibrium problem. 

General aspects of the problem 

In the previous chapter we have presented d i f f e r e n t 

formulations of the chemical equilibrium problem. They are a l l 

mathematically equivalent, but di f f e r e n t numerical methods of 

solution are used for each case. The methods of solution f a l l 

into two main categories: 

a) optimization methods 

b) solution of non-linear systems of equations. 

The problem now seems to be reduced to a choice of a 

mathematical formulation and a numerical method of solution. 

The l i t e r a t u r e on the possible combinations i s very wide; an 

extensive review was conducted by Van Zeggeren and Storey (1970) 

and by Zeleznik and Gordon (1968). However, the problem is not 

yet s e t t l e d ( C a v a l l o t t i et a l . , 1980). 

Two factors should be pondered when judging the goodness of a 

solution method: the purpose of the calculations, and the means 

that are available to carry them on. We are not as much 
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interested in the best solution for one s p e c i f i c case, as we are 

in a method f l e x i b l e enough to accommodate a wide range of 

chemical equilibrium examples. The calcu l a t i o n s w i l l be 

performed by a d i g i t a l computer. At the moment, there are two 

general computer codes available commercially that solve the 

chemical equilibrium problem. They belong to the RAND 

Corporation (1965,1970) and to the NASA (1971) respectively. We 

w i l l b r i e f l y describe their methods. 

The RAND method 

RAND researchers devised the f i r s t version of the RAND 

program in 1958 (Dantzig, Johnson, White and De Howen, 1958). 

The program was revised and completed by R.J.Clasen, N. 

Shapiro, M. Shapley and others over a period of 15 years. 

The chemical equilibrium problem i s formulated as a 

minimization of the Gibbs free energy subject to mass balance 

constraints. The formulation is similar to Problem A of Chapter 

II in t h i s thesis; i t deals with an ideal gas phase and pure 

condensed phases. 

The solution i s obtained in two steps. The " f i r s t order 

method" provides a f i r s t set of composition values through a 

si m p l i f i c a t i o n of the problem to a line a r program. The "second 

order method" uses the previous set of values as a f i r s t guess. 

The Gibbs free energy i s approximated at t h i s point using a 

second order Taylor's series. Then, the problem i s transformed 

to an unconstrained optimization, using Lagrange m u l t i p l i e r s . A 

f i n a l set of equations i s then solved using the Newton-Raphson 
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technique. 

The RAND program has proved successful over a number of years 

in solving the chemical equilibrium problem. The main 

disadvantages, however, are: 

a) slow convergence when many trace species are included in the 

model 

b) i n a b i l i t y to handle cases where the number of moles of a 

species i s zero. 

The NASA method 

The f i r s t NASA programs to calculate chemical equilibrium 

composition were based on the "chemical equilibrium constant" 

formulation. The method was f i r s t devised by Huff (1951) and 

was later modified by Zeleznik and Gordon (1960,1962). However, 

in 1971, they changed the method to a free energy minimization 

procedure;the reasons given for the change included ( NASA , 

Manual Report,1971): 

a) more bookkeeping necessary for the equilibrium constant 

method. 

b) numerical d i f f i c u l t i e s with the use of components (compared 

with keeping a l l the variables as such). 

c) more d i f f i c u l t y in extending the generalized method for non-

ideal equations (but s t i l l the program handles only ideal gases 

and pure condensed phases). 

It was shown by Gautam and Sei.der (1979) that the RAND and 

NASA methods,although derived d i f f e r e n t l y , give nearly i d e n t i c a l 

equations and are both implementations of Newton's method. The 
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NASA code calculates thermodynamic derivatives as well as the 

chemical composition. 

We have already stated that the chemical equilibrium problem 

can be regarded as a geometric program. Let us now look at some 

algorithms devised to solve geometric programming problems. 

Algorithms to solve geometric programs 

Many algorithms to solve geometric programs have been 

proposed in the l i t e r a t u r e . A summary of some of these can be 

found in Bleightler and P h i l l i p s ' book(l976). We may c l a s s i f y 

the algorithms in three groups. 

a) algorithms that solve the primal geometric program (GP), 

b) algorithms that solve the dual GP, 

c) general non-linear optimization methods that can be applied 

to solve either the primal or the dual GP. 

For the general case, i t i s not possible to predict i f the 

dual or the primal problem are easier to solve. Empirical 

evidence based on computational comparison i s needed. Some 

comparisons among codes were performed by Dembo (1978),Sarma, 

Martens et a l (1978) and by Gochet, Loute and Solow (1978). We 

w i l l give a brief description of some of the GP and general 

purpose optimization codes compared and we w i l l then try to 

summarize the conclusions of the papers mentioned above. 
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Algorithms that solve the primal 

The primal GP was stated in equation 2.29 (chapter I I ) . The 

chemical equilibrium problem as a primal GP was described by 

equation 2.42. .. ; 

If we minimize instead the logarithm of the objective 

function, and i f we make the transformation of variables z = ln 

t, then the problem becomes a convex program. The t's have to 

be positive,but the z's are unrestricted in sign. The resulting 

problem is c a l l e d the transformed primal problem,and was 

s p e c i f i e d in equation 2.43 for the chemical equilibrium problem. 

Another way of solving the primal is via separable 

programming techniques; t h i s formulation increases the 

dimensionality of the problem from M to N. 

Based on the previous formulations, the algorithms that solve 

the primal can be c l a s s i f i e d in three groups. 

1) Condensation : the primal geometric programming i s solved 

d i r e c t l y by condensation or l i n e a r i z a t i o n of 

posynomial functions (cutting planes algorithms). A well known 

code based on t h i s approach i s GGP. Written by Dembo (1974), i t 

is based on a Kelley's cutting plane algorithm. 

2) Kuhn-Tucker conditions for optimality. The Kuhn Tucker 

conditions for primal geometric programming are solved 

i t e r a t i v e l y , using a condensation technique. One code based on 

th i s approach i s GPKTC, written by Rijckaert and Martens (1976). 

This method is e s s e n t i a l l y equivalent to a Newton-Raphson 

algorithm for the Kuhn-Tucker conditions expressed in terms of 

the variables z=ln t. The.code FP from Gochet, Loute and Solow, 
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i s based on the same approach 

3) Separable Programming. A good code based on thi s formulation 

is DAP, by G.V.Reklaitis ; he uses the d i f f e r e n t i a b l e algorithm 

of Wilde and Bleightler (Dembo, 1978). 

Algorithms that solve the dual 

The dual geometric programming (DGP) is the l i n e a r l y 

constrained, non-linear programming problem stated on equation 

2.30 (chapter I I ) ; equation 2.40 for the case of chemical 

equi1ibr ium. 

Taking logarithms of the objective function, the problem i s 

transformed to a concave objective function to be maximized, 

subject to a linear equality constraints. For the chemical 

equilibrium, that transformation i s seen in equation 2.41. 

The reduced dual geometric program (RDGP) i s obtained by 

eliminating M+1 basic variables from the program DGP and 

expressing them in terms of D= N+1-(M+1) nonbasic variables (see 

eqn. 2.26, 2.27 and 2.28 on chapter II) most of the algorithms 

that solve the dual make use of the reduction of dimensionality 

that the RDGP problem provides. 

The main problems related to solving the dual are (Gochet, 

Louter, and Solow, 1974): 

a) non d i f f e r e n t i a b i l i t y of the objective function with respect 

to the dual variables where they take on the value zero. 

b) the dimensionality of the dual problem w i l l always be larger 

than that of the primal, except for cases with N<2M solved using 

the reduced dual GP. 
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c) dual variables have to be determined with higher accuracy i f 

primal variables are to be calculated from them. 

The algorithms that solve the dual problem are based on the 

following p r i n c i p l e s : 

1) Linear approximation methods The dual program in i t s 

logarithmic form i s approximated at a s p e c i f i c point by a linear 

program (LP). The solution of the LP provides a d i r e c t i o n for 

improving the value of the objective function. The step i s 

provided by a l i n e minimization. One code that follows t h i s 

approach i s LAM, from Rijckaert and Martens (1978): the LP 

routine i s based on the Revised Simplex Method with product form 

of the inverse. The l i n e minimization is based on cubic 

interpolation. 

2) Separable programming. After a logarithmic transformation, 

the dual objective function is separable and can be approximated 

by a piecewise linear function. One code that follows t h i s 

approach i s SP, by Rijckaert and Martens (1978) 

3) Gradient projection methods. This approach combined the 

gradient projection method due to Rosen with a variable metric 

method in order to approximate the inverse of the Hessian of the 

objective function. One example i s the code VMP (Sargent and 

Murtagh, 1973). 

4) Newton-Raphson. The Kuhn-Tucker conditions for the reduced 

dual geometric program result in a system of non linear 

equations that are solved using a Newton-Raphson technique (see 

the s i m i l a r i t i e s with the "equilibrium constant" approach in the 

chemical equilibrium problem). Many codes are based on t h i s 
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approach, l i k e NEWTGP by J. Bradley (1973) (that code has the 

cap a b i l i t y of performing s e n s i t i v i t y a n a l y s i s ) , GEOGRAD by 

Dinkel and Kochenberger (1974), and NRF by Rijckaert and 

Martens, (1978). 

5) Other methods 

The code GOMTRY by Blau and Wilde (1971) solves the Kuhn Tucker 

conditions for the separable dual program ; the code CSGP by 

Beck and Ecker (1978) applies the concave simplex method to the 

dual; the code MCS introduces a modification to CSGP that allows 

for blocks of variables to go to zero simultaneously. 

General purpose non-linear optimization algorithms 

Many important algorithms for solving non-linear programs 

have been developed and refined in the last 10 years 

(Lasdon,1981). The more successful are : 

1) Penalty function methods. The essential idea i s to transform 

the general non-linear problem into a sequence of unconstrained 

problems. The more robust code i s : SUMT ( C a r r o l l , 1959, Fiacco 

and Mc Cormicke, 1966). The objective function and inequality 

constraints can be non-linear functions but i f there are 

equality constraints they have to be li n e a r . Hence the code may 

be used to solve either the primal or the dual GP (Himmelblau, 

1972). Another code , CONMIN, transforms a non-linear program 

with inequality constraints into an unconstrained problem using 

a penalty function method, and then the unconstrained problem i s 

solved by Fletcher and Powell's algorithm (Haarhof and Buys, 

1970). 
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2) Generalized Reduced Gradient methods(GRG). The GRG algorithm 

uses the linear equality constraints to accomplish the 

equivalent of al g e b r a i c a l l y eliminating an equal number of 

dependent variables from the problem. This reduces the problem 

to one with exclusively decision variables. This reduction 

a f f e c t s the evaluation of the gradient. The reduced gradient is 

the gradient of the objective function with respect to the 

independent variables, subject to moving the independent 

variables in such a way that the equality constraints are 

s a t i s f i e d (Westerberg, 1981). The reduced gradient i s used to 

determine the dir e c t i o n of search. Hence, when GRG solves the 

dual GP problem, i t r e a l l y works with the "reduced dual 

problem", although the user should present the dual GP in i t s 

standard form. 

When dealing with inequality constraints, GRG converts them 

into e q u a l i t i e s by introducing slack variables. If the 

constraints are non lin e a r , they are replaced by their second-

order Taylor series approximates expanded at the point of 

inter e s t . So GRG may also be used to solve the primal problem. 

UBC has a 1975 version of the code available. 

3) Succesive Linear Programming (SLP). The Successive Linear 

Programming codes l i n e a r i z e any non-linear objective or 

constraint functions around a point, and then use the resulting 

linear program using e f f i c i e n t LP codes as subroutines. Some 

codes have been proposed by G r i f f i t h and Stewart (1961) and by 

Busby (1974) 
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Computational experience on GP codes and general non-linear 

codes for GP 

To decide which is the best algorithm to solve geometric 

programs would involve trying a l l of them on a wide variety of 

examples; the algorithms should be c o d i f i e d by the same 

programmer, and they should be run with the same compiler on the 

same computer. The evaluation can then be made on the basis of 

time. This approach, however , seems quite impractical. The 

number of proposed algorithms is quite large; so i s the range of 

problems to be tested. To be able to compare codes in d i f f e r e n t 

computers and with d i f f e r e n t compilers, standard times were 

defined. They refer to the execution time of the problem 

divided by the time required to execute C o l v i l l e ' s timing 

program (Himmelblau, 1972). They s t i l l vary with the 

programmer, and sometimes with the compiler, and they are not 

always used in the l i t e r a t u r e . 

We w i l l now show the code comparisons done by a series of 

authors on d i f f e r e n t examples of geometric programs. We w i l l 

focus on their conclusions when solving geometric programs that 

are also chemical equilibrium problems. 

Sarma, Martens, R e k l a i t i s and Rijckaert (1978) tested 5 

algorithms to solve 16 GP problems . The codes were: SUMT on 

primal, GGP on primal, CSGP on dual, MCS on dual,and DAP on 

transformed primal. The basis for each code was given in the 

previous section in this chapter. GGP got the best results as 

for CPU times. SUMT had the largest times. They concluded that 

there was no d e f i n i t e evidence that solving the dual GP was 
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computationally more a t t r a c t i v e than solving the primal as has 

been stated by Duff in and Petersen (1967). 

Rijckaert and Martens (1978) also performed computational 

comparisons on GP algorithms. They t r i e d 16 GP codes ( a l l the 

ones we have mentioned before and three more) and one general 

purpose non-linear program, CONMIN , on 24 problems . Their 

problem 4 i s an scaled version of a primal chemical equilibrium 

as stated in Dembo (l976)--see prob.4, appendix B. On this 

p a r t i c u l a r problem the results of CPU times of the best 

algorithms are reported in table 111 — 1. 

Table 111-1. Best CPU times (in sec.) for the algorithms 
compared by Rijckaert and Martens (1978) on the chemical 
equilibrium problem. 

Problem GPKTC GGP NRF CONMIN 
(primal) (primal) (red. dual) (primal) 

Problem 4 1.0 5.82 7.73 12.73 

For the general case, in t h i s comparison, GGP was the best code. 

But GPKTC worked better for the chemical equilibrium problem. 

Dembo(l978) compared six GP codes and five general non-linear 

optimization codes on 8 problems. Problems 1A and 1B of his 

series are, respectively, the unsealed and scaled versions of 

the primal chemical equilibrium problem (prob. 4, appendix 
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B),already compared by Rijckaert and Martens. The results for 

the scaled problem are shown in table I I I - 2 . 

Table I I I - 2 . Best standard times (in sec.) for the algorithms 
compared by Dembo (1978) on the chemical equilibrium problem. 

Problem GPKTC GGP GEOGRAD GRG 
(primal) (primal) (dual) (primal) 

Problem 1B .0554 .271 .0565 .0560 

The time relationship between GPKTC and GGP i s similar, but 

not exactly the same as in the previous comparison. There i s 

not much difference between GPKTC , the dual-based GP code 

GEOGRAD , and the general- purpose non-linear code GRG . Only 

GPKTC performed in the badly scaled problem. 

Gochet,Loute and Solow (1974) t r i e d one GP algorithm for 

solving the primal (FP), one GP algorithm for solving the dual 

(CSGP modified) and GRG on the primal GP on 16 problems. 

Problems 3 and 8 of their set are examples of the chemical 

equilibrium problem. Problem 3 i s our problem 1 in Appendix B. 

It has 3 elements, 10 species and one phase; problem 8 has 6 

elements, 16 species and 3 phases. The results are shown in 

table 111-3 . 
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Table III-3 . Best CPU times (in sec.) for the algorithms 
compared by Gochet, Loute and Solow (1974) on two chemical 
equilibrium problems. 

Problem CSGP FP GRG 
(dual) (primal) (primal) 

3 1.68 .98 2.90 
8 4.55 4.36 3.34 

On the smaller problem, the primal based GP code was faster. 

GRG performed better on the bigger problem. Another conclusion 

of their work was that the application of GRG to the primal t-

form of geometric programs was more e f f i c i e n t than using the In-

transformed variables. This conclusion was v a l i d when the 

number of primal variables was less than 5. 

Ratner, Lasdon and Jain (1978) compared the perfomance of GRG 

on the Dembo set of problems (1976) with that of Dembo's code. 

They also compared GRG on the 24 problems given by Rijckaert and 

Martens with the best times given in their paper. Standard 

times were used as a comparison. They reproduced the results on 

Dembo's paper already mentioned. They also pointed out the 

s e n s i t i v i t y of GRG to some tolerances that affect i t s 

perfomance. They are the tolerances for the objective function 

(stopping c r i t e r i a ) and for binding constraints, and the use of 

quadratic or tangent approximations of the i n i t i a l values of the 

basis. 

F i n a l l y , Eckes,Gochet and Smeers (1978) discussed the 

d i f f i c u l t i e s of solving the dual GP with GRG. They modified GRG 
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using Beck and Ecker modification for the concave simplex in 

CSGP to account for the n o n - d i f f e r e n t i a b i l i t y of the objective 

function at a point where some of the variables are zero, and to 

allow for some variables to become zero at optimality. The 

modified GRG was compared with the CSGP code. Half the number 

of iter a t i o n s were needed with GRG than with the CSGP in most of 

the cases. 

From these results, we may conclude that: 

a) It i s not always clear when the dual or the primal GP should 

be used. 

b) For general cases, the best GP codes seem to be GGP (primal) 

and CSGP (dual). However, for the chemical equilibrium problem, 

GPKTC (primal) and GEOGRAD (dual) give better results in terms 

of time. 

c) The general purpose non linear code GRG compares well with 

the best GP codes when solving geometric programming problems, 

s p e c i f i c a l l y chemical equilibrium's scaled primal. The code can 

be used to solve either the primal or the dual GP . 

d) In a general case, GRG seems to work better when solving 

primal geometric programs on the t-variables. However, the GP 

primal codes that performed better on the chemical equilibrium 

problems worked with transformed primal variables. 
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Geometric programmminq and the chemical equilibrium problem 

As we pointed out in the previous chapter, the chemical 

equilibrium problem reduces to a special case of geometric 

programming (GP). If we translate into GP nomenclature the 

t r a d i t i o n a l ways of formulating the chemical equilibrium 

problem, we can see that they a l l attempt to solve a dual GP, 

either as a problem with a l l i t s variables e x p l i c i t or as a 

reduced problem . 

Passy and Wilde. (1968) devised a primal algorithm to solve 

the chemical equilibrium problem with only one ideal phase. It 

involved the formation of an unconstrained problem using 

Lagrange's method. They t r i e d i t on a hydrazine combustion 

problem with one ideal phase, 10 species and 6 elements (see 

problem 1 , appendix C). The algorithm worked with the primal 

variables t, which were scaled between 0 and 1. The objective 

function was elevated to the one tenth. 

The RAND corporation model of the chemistry of the human 

respiratory system was used as a test problem by Dembo in a set 

of problems intended to compare GP codes (Dembo, 1976). We saw 

the results in the previous section. B l e i g h t l e r and P h i l l i p s 

give.an extense discussion of t h i s p a r t i c u l a r problem solved by 

GGP (1976). 

Dinkel and Lakshmanan (1975,1977) were interested on 

s e n s i t i v i t y analysis applied to the chemical equilibrium 

problem. They solved the dual problem using Dinkel and 

Kochenberger's GP algorithm (GEOGRAD code). 

F i n a l l y Lidor (1975) devised a modification of the GGP 
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algorithm to solve the primal chemical equilibrium problem. He 

worked with the transformed primal variables z= In t, and used a 

Zangwill's cutting plane algorithm. His code includes the 

generation of a f i r s t starting point. He t r i e d the algorithm on 

seven chemical equilibrium test problems, but his CPU timings 

compared disfavourably to the RAND code. The RAND method, as we 

pointed out e a r l i e r in thi s chapter, i s b a s i c a l l y a dual-based 

algorithm, and the RAND code has been perfected over many years. 

The question remains as i f Lidor's code was slow because of the 

algorithm i t s e l f , or because of i t s implementation. 
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CHAPTER IV: WRITING THE PROGRAM—PRELIMINARIES 

In order to write a general computer program to solve the 

chemical equilibrium problem we had to decide which mathematical 

formulation and which numerical technique of solution should be 

used. As for a mathematical formulation, we decided to use the 

geometric programming approach, because i t provided a new form 

of presenting the problem (the primal formulation), and i t gave 

the basis for a s e n s i t i v i t y analysis. We wanted to compare the 

primal and dual formulations of the geometric program, since no 

d e f i n i t e conclusions about the superiority of either one could 

be drawn from the l i t e r a t u r e . 

The dual GP is equivalent to the t r a d i t i o n a l free energy 

minimization approach to the chemical equilibrium problem. The 

dual variables have a straightforward physical meaning: they are 

the number of moles of the species present at equilibrium. The 

disadvantages are the bigger dimensionality of the dual, the 

n o n - d i f f e r e n t i a b i l i t y of the objective function at zero ,and the 

numerical problems that result when one variable tends to zero 

(Gochet et a l . , 1 9 7 4 ) . 

The primal problem has less variables and few constraints. 

The constraints are highly non-linear, but they are inequality 

ones, and they are active at the optimum. Two related problems 

remain: the scaling of the problem and the finding of a f i r s t 

primal s t a r t i n g point. 

We decided to try one computer code that could be used for 

both the primal and the dual formulations, in order to compare 
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the two cases. GRG had^ been proven in the l i t e r a t u r e as 

comparable, i f not better than most general-purpose GP codes. 

It could also be applied on the dual and the primal problems. A 

1975 version of the code was available at UBC (Wales, 1977) and 

could be used as a self-contained program and as a subroutine. 

We decided to use GRG as our comparison code. 

In t h i s preliminary part of the work we were concerned with 

the accuracy of the r e s u l t s . We had to determine the best 

conditions for GRG to get results comparable to the l i t e r a t u r e . 

The general scaling of the problems was a d i f f i c u l t task, and 

three d i f f e r e n t versions of solving i t were t r i e d . A l l this was 

performed with GRG as a self-contained program. 

The rest of the chapter i s organized in the following way. 

In the f i r s t two sections we respectively repeat the chemical 

equilibrium formulations that we used, and give a detailed 

description of GRG. The t h i r d section deals with the scaling 

problem. The forth section states the working parameters for 

GRG. In the next section we present the method used to generate 

a s t a r t i n g point. The steps taken for performing s e n s i t i v i t y 

analysis are shown in the l a s t section. 
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Mathematical formulations 

For convenience we s h a l l repeat here the mathematical 

formulations of the primal and the dual chemical equilibrium 

problems as we used them. They correspond to equations 2.40, 

2.41, 2.42 and 2.43 of chapter II. For programming reasons, we 

incorporated the normality condition to the exponent matrix and 

to the B vector, and wrote the B vector e x p l i c i t l y . A l l 
e 

subscripts are shifted one unit; A11=B1=1, Ai1=0 for a l l i , 

A1j=0 for a l l j>1 

Dual problem 

Min (-v) 
N+1 

exp(G/RT) = n ( C J / 6j ) 
j = 1 

6j K ] 
n X k 

k=1 

s. to 
N+1 
E A i j 6j = Bi 
j = 1 

i = 1,M+1 

6j £ 0 j = 1,N+1 4.1 



Transformed dual 

N+1 
Min (-In v) = G/RT = E 6; (In 6 - + Cj) -

j = 1 
K 
I X. Kln X K 
k=1 

s. to 
N+1 
E A i j 6J = = Bi i = 1,M+1 
j=1 

- 6j£ 0 j •• = 1,N+1 

Primal problem 

M 
Min g 0 ( t ) = n t i . 

i = 1 

-Bi+1 

s. to 

g K ( t ) = E c j 
J €k 

M Ai-M^j 
n t; . < 1 k = 
i = 1 

= 1 ,K 

tj >> o i = = 1 ,M 
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Transformed primal 

M 
Min In g c ( t ) = h (Z) = = E -Bi+1 Zi 

i=1 

s. to 
M 

E exp(Cj + E Ai + 1 , j Zi) <? 1 k = = 1 ,K 
jek i = 1 

GRG. Description of the code 

The program for the GRG code available at UBC was written at 

Cleveland State University. The.manual UBC GRG, written by K. 

Wales (1977) is largely taken from Cleveland State University 

technical memorandum C1S-75-02 (1975). We s h a l l repeat here 

some of the more important features of this code. 

Stating the problem with GRG 

Warning: the nomenclature used by GRG clashes with ours. Later 

in t h i s chapter we include a table to compare them (Table IV-3) 

GRG solves constrained optimization problems stated as 

follows: 
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Min g M + 1 ( x ) 

s. to 
9f = 0 i = = 1,NEQ 

o -< g UB w + r ) i = = NEQ+1, M 

LBi X UBi i = = 1,N 

Where: 

x = (x.,, ... x N) vector of N real variables. 

G = (g 1 , ... gM̂ .^) vector of real continuous functions of x , 

linear or non-linear. 

9-1 • • • 9uE<a equality constraints. 

g N e „ + 1 ••• 9M inequality constraints. 

g M 4^ objective function. 

LBi lower bound on x; i = 1,.. N 

UBi upper bound on x i = 1,.. N 

UB upper bound on the inequality constraint q ; i = NEQ + 1, M 

Description of the algorithm 

We w i l l now give a brief description of the algorithm. 

M slack variables are added to the constraints of problem 

( 4 . 5 ) . The previous N variables are c a l l e d natural variables. 

Assume x i s a feasible point, and NB of the constraints are 

binding at x . Two sets of variables are distinguished in the 

GRG algorithm, provided there i s no degeneracy : the NB basic 

variables (dependent) and the non-basic variables which are the 

N-NB remaining natural variables and the M slack variables 
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associated with the binding constraints. 

The binding constraints can be written as 

G (Y,Z)= 0 4.6 

where Y i s the vector of the NB basic variables and Z is the 

vector, of non-basic variables. Then the binding constraints may 

be solved for Y in terms of Z, y i e l d i n g a function Y(Z), v a l i d 

for a l l Y,Z close to the f i r s t feasible point. This reduces the 

objective function to a function of only the Z variables, F(Z) 

which i s c a l l e d the reduced objective. The gradient of F(Z) is 

c a l l e d the reduced gradient. The o r i g i n a l problem is now a 

reduced problem. 

Min F (Z) 

s. to 
LB <̂ Z ̂  UB 4.7 

Where LB and UB are respectively the lower and upper bounds for 

Z, and the vanishing of the reduced gradient is sought. 

GRG solves (4.5) (with the slack variables) by solving a 

sequence of (4.7) reduced problems. Each problem i s solved by a 

gradient type unconstrained non-linear optimization method. The 

reduced gradient gives a search d i r e c t i o n d for a one 

dimensional linear subsearch as to minimize F(Z+ ad) with 

respect to a . A set of f i n a l equations is solved using 

Newton's method. 
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If Newton does not converge, GRG reduces a and t r i e s again. 

Otherwise the search i s finished. If Newton converges, but a 

basic variable v i o l a t e s the bounds, a new set of basic variables 

is determined and the solution of a new problem s t a r t s . The 

search may continue u n t i l the objective i s found larger than the 

one in the previous i t e r a t i o n . Then a quadratic interpolation 

is done to the three o values bracketting the minimum, and the 

objective i s evaluated at t h i s point. 

If the i n i t i a l x does not s a t i s f y the constraints, GRG 

optimizes a "Phase 1" objective which i s the sum of the 

constraints v i o l a t i o n s , in order to obtain a f i r s t feasible 

point. 

Use of GRG 

GRG can be used as a self-contained program or as a 

subroutine. The self-contained program was used in the 

preliminary stages of this work. Details on the use of GRG can 

be taken from the UBC-GRG writeup (Wales, 1977). 

Some parameters have to be s p e c i f i e d for GRG to work. The 

values of these parameters depend on the mathematical 

formulation of the problem, on the scaling of the problem, and 

on the accuracy required for the solution, and w i l l be discussed 

l a t e r . Running GRG as a self-contained program , these 

parameters are prompted by the user in a terminal on 

conversational mode. The objective function and the constraints 

are calculated by a subroutine named GCOMP, provided by the user 



57 

in a f i l e attached to input unit 5. 

The scaling problem 

The fact that the chemical equilibrium i s an i l l - c o n d i t i o n e d 

problem was pointed out by many authors (Beightler and P h i l l i p s , 

1976; Dembo, 1976; Lidor, 1975). One d i f f i c u l t y i s the huge 

value of the GP objective function; the range of the primal 

variables at the optimum i s quite wide. The free energy 

c o e f f i c i e n t s also vary a l o t between species. 

Table IV-1 exemplifies the need for a scaling with some 

problems from the l i t e r a t u r e . 

A l l the figures in table IV-1 are from the l i t e r a t u r e or they 

were calculated from l i t e r a t u r e data. 

Problem 1 was solved in the l i t e r a t u r e (Passy and Wilde, 

1968) as a primal problem. The t variables were scaled so that 

their values at the optimum had a range of 100 between the lower 

and the higher values. No comments were made in the l i t e r a t u r e 

on the logic of the scaling. 

Problem 4 is one of Dembo's test problems for evaluating 

geometric programming codes. GRG could not solve the unsealed 

version when using the t variables. The problem was scaled by 

Dembo, and i t s results were reproduced by us, star t i n g from a 

point :closer to the optimum than t h e i r s . The transformed primal 

problem could be solved unsealed. 

The sources of problems 2,6 and 7 did not specify the value 

of the objective function, which we calculated from their 

composition and free energy data. Problem 5 was solved in the 
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l i t e r a t u r e as a dual GP, using the logarithm of the objective 

funct ion. 

As a f i r s t approach, we t r i e d to reproduce the problems from 

table IV-1 using GRG. We succeeded in the scaled and 

transformed problems, but not on the unsealed versions of the 

primal or dual geometric programs. See appendix B for our 

re s u l t s . 

Attempts to solve the scaling problem 

From what we could see in the l i t e r a t u r e , the attempts done 

to scale the primal problem were: 

a) when working with the primal variables t, the objective 

function was elevated to an exponent so as to diminish i t s 

absolute value, and the primal variables were scaled in obscure 

ways so that they would f a l l within a close range from their 

optimum value. 

b) when working with the transformed primal variables Z, there 

was no scaling problem. The objective function corresponded to 

the standard Gibbs free energy of the system and the transformed 

primal problem was a convex program. As can be observed in 

table IV-1, the range of variation of the transformed primal 

variables i s not too wide. 

We t r i e d both schemes a) and b) on problems 5 and 6, running 



T a b l e IV-1 . C h a r a c t e r i s t i c s of the Chemical E q u i 1 i b r i u m Problem' 

PROBLEM 
NUMBER 

SPECIES, 
ELEMENTS, 
PHASES. 

OBJECTIVE FUNCTION @ OF TIMUM RANGE OF VARIABLES <a OPTIMUM PROBLEM 
NUMBER 

SPECIES, 
ELEMENTS, 
PHASES. V * V • 0 1 1 n v t * * Zt 6* 

1 10. 3, 1 6.2904 E20 1 .61431 47.8907 5.61 E-5 
?2.47 E-7 

-9.7882 
-15.214 

1.48 E-1 
6.93 E-4 

2 4 . 3 , 1 1.9699 E39 2.47141 90.4788 4.93 E-2 
2.86 E-14 

-5.3120 
-33.488 

2.48 E-1 
2.52 E-1 

3 5 , 3 . 1 2.9231 E34 2.21136 79.3605 4.25 EO ' 
1.49 E-10 

-.85543 
-24.927 

1.72 E-1 
5.79 EO 

4 30,12, 3 7.8257 E796 9.30969 E7 1834.91 6.51 E-1 
1.19 E-9 

-.42960 
-20.552 

6.60 E-21 
28.9 E'1„ 

5 10, 4, 1 5.2990 E377 2.38365 E3 777.638 1.10 E-5 
1.80 E-9 

-11.415 
-20.127 

4.40 E-4 
19.9 E1 

6 8 , 4 , 1 1.4576 E52 3.3281 120.111 5.84 E-3 
3.32 E-20 

-5.1423 
-44.851 

1.4 1 E-4 
1.88 EO 

7 24, 4, 1 1.4448 E52 3.32352 120.102 6.07 E-3 
3.32 E-20 

-5.1037 
-44.852 

5.77 E-22 
1.88 EO 

1 The sou r c e d a t a f o r t h i s t a b l e a r e i n Appendix B 
* v = exp (G/RT) 
** t = p r i m a l v a r i a b l e s 
t Z = Int 
* 6 = dual v a r i a b l e s (number of moles) 
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GRG as a self-contained program. When using the primal 

variables t , the objective function was elevated to 0.01 and 

the primal variables t were scaled based on a primal s t a r t i n g 

point close to the optimum. After the scaling, the variables 

were a r b i t r a r i l y bounded between 0 and 500. 

When using the transformed primal variables Z, we were faced 

with the problem of f i x i n g the boundaries for these variables. 

We put zero as upper bound for a l l the variables. The 

tranformed primal objective function is linear on the Z 

variables; each Z can be regarded as the contribution of the 

associated element to the t o t a l free energy of the system 

(Zeleznik and Gordon, 1968). Therefore, i f Zi i s equal to zero 

that means that the element i is not contributing to the t o t a l 

free energy of the system, regardless of the amount of element 

i . This i s quite an u n r e a l i s t i c situation i f the model i s well 

posed, and so zero looks l i k e an appropiate upper bound for the 

Z variables. 

The lower bound i s not so ea s i l y determined. A fixed large 

negative number l i k e -100 i s one p o s s i b i l i t y , but this approach 

has some problems: i t does not account for cases when Z is below 

that boundary and the range may be too wide for some variables. 

Also, in the evaluation of the terms of the primal constraints 

we can have exponentials of too large negative numbers, which 

are undefined. 

A second p o s s i b i l i t y to determine general lower bounds for 

the transformed primal variables is to calculate a fixed 

percentage of a f i r s t good s t a r t i n g point and use i t as a 
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boundary. But then there i s the question of how big t h i s 

percentage should be; we t r i e d a few numbers, and found 

variations from problem to problem. 

The t h i r d p o s s i b i l i t y i s to add a fixed negative number to a 

good sta r t i n g point. If we choose -30, that i s equivalent of a 

range of 10 1 3 in the untransformed primal variables t. If we 

choose -20, the range i s 10 8. We chose -30 a r b i t r a r i l y and i t 

worked well in a l l our examples . This selection of a boundary 

is then strongly dependent on the f i r s t s tarting point. Using 

an aproximation of the problem to a linear program allowed us to 

obtain dual starting points that are quite close to the optimal 

values. The corresponding primal points can be calculated from 

the dual. A description of the procedure is done later in t h i s 

chapter. See Chapter VI for the results of the closeness of 

these points to the optimum values. 

Comparison between scaling the primal and using the transformed  

primal 

Table IV-2 shows the results of a comparison between the two 

procedures explained in the previous section. The problems No. 

5 and 6 of table IV-1 were scaled, and also posed as transformed 

primal problems. Both problems have 4 primal variables, and 

according to the l i t e r a t u r e ( Gochet et a_l. , 1974) for general 

GP the problem posed as t variables should be solved more 

e f f i c i e n t l y by GRG than the transformed one. The number of 

i t e r a t i o n s and of function evaluations needed to go from the 

same star t i n g point to the .same optimum were computed with both 
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Table IV-2. Performances of the scaled primal problem and the 
ln-transformed primal with GRG (*) 

Problem Scaled Ln-transformed 
Iterations F. evaluations Iterations F. evaluations 

5 (**) 7 51 5 46 
g (*** ) 20 240 13 183 

Notes: 

(*) GRG parameters: EPSTOP=EPNEWT=EPSBOUND=ESPIV= 10"6 

(**) Scaling: objective function elevated to .01 ; y1= 11.105 

y2 = t2. 106 , y3 = t3 . 106 , y4 = t4 . 105 

Starting point : Z1=-11 . 42, Z2 = -20.13, Z3 = -15.86, Z4 = -11.63 
Optimum : Z1=- 1 1 .4315, Z2 = -20.13541, Z3 = -15.8013, 
Z4=-11.6964 

(***) Scaling: objective function elevated to .01 ; y1=t1.l0 
y2=t2. 10 2 3 , y3=t3. 107 , y4=t4 . 105 

Starting point: Z1=-4.35, Z2 — 51.6, Z3 = -16.3, Z4=-11.9 
Optimum: Z1=-4.3370, Z2=-52.2190, Z3=-15.9968, 
Z4 = - 1 1 .9352 

methods. The same tolerances were used in a l l cases. 

It took GRG less i t e r a t i o n s and function evaluations to solve 

the transformed primal, the opposite of what the l i t e r a t u r e said 

for general GP . We believe t h i s is due to the p a r t i c u l a r i l l -

conditioning of the chemical equilibrium problem, and therefore 

should need a special scaling for each example. From here on, 

we w i l l use the words "primal" and "transformed primal" 

i n d i s t i n c t l y , and we w i l l always refer to the ln-transformed 

problem.. 

For the dual problem, we found no special computing 

advantages for either using the objective function as in a 
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standard geometric program (but elevated to a certain exponent), 

or minimizing the negative logarithm of that function. The 

second approach was a t t r a c t i v e because then the objective 

function represented the Gibbs free energy of the system divided 

by R and by T, same as in the transformed primal, and as in the 

t r a d i t i o n a l "free energy minimization method". For the rest of 

the thesis , whenever "dual problem" is mentioned, we w i l l be 

ref e r r i n g to equations 4.2. 

Determination of working parameters for GRG 

GRG needs as an input a series of control cards that have to 

be provided by the user. We determined some of them from 

l i t e r a t u r e values; some others through numerical experience. 

The res u l t i n g values may not be the best for a s p e c i f i c problem; 

however, they allowed us to obtain results similar to the 

l i t e r a t u r e in a l l cases. Table IV-3 explains the meaning of the 

key words and exemplifies the values used in our programs. 

A dual sta r t i n g point 

A sta r t i n g point for the dual problem is quite 

straightforward, since the dual variables are the number of 

moles of the chemical species. When using GRG as a s e l f -

contained program, we usually started with a point close to the 

l i t e r a t u r e optimum, and then we changed i t at random. 

For the user's convenience, the f i n a l code should include the 

generation of a st a r t i n g point. The NASA code uses an equal 



TABLE IV-3. Parameters for GRG 

GRG Transformed DUAL 

PARAMETERS PRIMAL 

N < 100 
(Number of 
var iables) 

M + 1 
(Number of 
elements + 1) 

N + 1 
(Number of 
spec ies + 1) 

M < 100 
(number of 
constraints) 

K . 
(number of 
phases) 

M + 1 
(number of 
elements + 1) 

NEQ 
(number of 
equality 
constraints) 

o N + 1 
(number of 
elements + 1) 

LBV 
(lower bound 
on variables 

Starting 
point +(-30) 

E-2 4 
(E-10 - E-30) 
- t r i e d -

UBV 
(upper bound 
on variables) 

0 40 

UBC 
(upper bound 
on inequality 
constraint) 

1 0 

X 
( i n i t i a l vector 
of variables) 

Generated 
with LIPSU2 
and SINGV 

Generated 
with LIPSU2 

EPNEWT 
(tolerance 
for equality and 
binding 
constraints) 

E-6 
(very important 
for accuracy) 

E-6 
(very important 
for accuracy) 

EPSBOUND 
(tolerance for 
var iables 
@ bounds) 

E-6 E-6 

//cont inues 



/ / / T a b l e . I V - 3 (continued) 

GRG Transformed DUAL 

PARAMETERS PRIMAL 

EPSTOP E-6 E-6 
(tolerance - for 
objective function 
stopping c r i t e r i a ) EPSPIV 

E-6 E-6 
(tolerance for 
pivot element 
in the basis) 

QUAD used used 
(quadrat ic • -important- -important-
extrapolation 
for estimating 
i n i t i a l basic • 

variables) 

PRINTCTL. 2 2 
• (control for s e l f - for s e l f -
amount of contained contained 
output) program;1 for program;1 for 

subrout ine 'subroutine 
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d i s t r i b u t i o n of species for that purpose. The RAND code 

approximates the dual problem to a linear program to obtain a 

f i r s t point. Lidor (1975), did a di f f e r e n t approximation than 

the NASA , and obtained another linear program for his starting 

point routine. Lidor compared his results to those of the RAND 

code, and got points closer to the optimum. We decided to 

implement Lidor's approach. 

His formulation of the linear program (LP) i s as follows: 

LP approximation of the dual 

N N 
Min f = = E Cj yj + € E Cj 

j = 1 j = 1 

s. to 
N 
E A i j yj + £ = Bi i = 1 ,M 
j = 1 

£ > « 

Yj > 0 j = 1,N 

Then: 

<5j = yj + t 4.9 

To solve the linear program, we used subroutine LIPSUB from 

UBC (Patterson, 1979) on the program LIPSU2 . The following 

steps were followed: 
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1) Read C, A and B. 

2 Set the tableau in the manner spec i f i e d by the UBC routine 

LIPSUB . 

3) C a l l LIPSUB . It solves the linear program using a primal-

dual algorithm. 

4) The results (the y variables and z ) are used to calculate 

the dual st a r t i n g point with equation 4.9. 

Calculation of primal variables from the dual ones 

The primal starting point i s more d i f f i c u l t to v i s u a l i z e and 

is more c r i t i c a l than the dual. We already mentioned that we 

are defining the lower bounds of the primal variables as a 

certain function of their s t a r t i n g value. Since we already have 

a program to generate a dual starting point, i t sounds 

reasonable to transform this point to primal variables. 

For a geometric program at the optimum , the primal and dual 

variables are related as follows: 

M 
E A i j Zi = Cj + In (6jA k) 

i = 1 

where 

There are M variables and N equations. In reacting chemical 

equilibrium problems, N>M and we have an overdetermined system 

of linear equations. The e q u a l i t i e s hold only at the optimum; 

j = 1,N 4.10 

k = 1 ,K 
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this i s a nuisance i f we are interested in the starting point 

which is not normally the optimum. 

A linear least squares approach should be the best solution. 

We t r i e d subroutine DBEST from UBC with very good r e s u l t s . It 

decomposes the transpose of our A matrix (the exponent matrix) 

following a Gram-Schmidt orthogonalization. The problem was 

that the UBC subroutine was limited to cases with less than 30 

species, so we t r i e d another method. 

Subroutine DSLVD from UBC (UBC MATRIX, 1980) uses a singular 

value decomposition to solve overdetermined systems of linear 

equations. The transpose of the matrix A i s decomposed as 

follows: 

A' = U I V' 4.11 

where 
U, V = orthogonal matrices 

E =diagonal matrix of the singular values of A' 

The solution of the system of equations A'Z = b is the vector Z 

Z = V E + U' b 4.12 

Where E + is the pseudoinverse of E. 

We implemented the program SINGV as follows: 

1) The exponent matrix A, the free energy c o e f f i c i e n t s matrix C, 

the dual sta r t i n g point and the values of M and N are read. 
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o 

2) C a l l subroutine DLSVD from UBC. It calculates the matrices 

V, E and U'b. 

3) Calculate E + and V E +. 

3) subroutine DGMULT from UBC i s c a l l e d to multiply V E + and U'b 

and obtain the vector Z, which i s actually the vector of the 

transformed primal variables z. 

S e n s i t i v i t y analysis 

As we already discussed elsewhere (chapter I I ) , there are two 

approaches in the l i t e r a t u r e to s e n s i t i v i t y analysis in 

geometric programming. Both approaches are mathematically 

equivalent but the f i r s t involves the inversion of a matrix and 

the second solves a system of linear equations. 

We chose the combustion of propane (problem 5) as a means of 

comparison between the two approaches, because : 

a) It was used by Dinkel and Lakshmanan in their paper on 

s e n s i t i v i t y analysis for the chemical equilibrium problem. They 

used the method of the inversion of the Jacobian (Dinkel and 

Lakshmanan, 1977). 

b) i t i s a "middle s i z e " problem within the l i t e r a t u r e . It 

involves six simultaneous reactions ; the dimension of the 

matrix to be inverted in the Jacobian approach is DxD, where D 

is the number of independent reactions . When D= 1 or 2, there 

is no doubt that t h i s method w i l l be faster than solving an 

equivalent system of N+K+1 by N+K+1 linear equations, where N= 

number of species, K is the number of phases. We showed before 

(Chapter II) that D=N-M; i f we assume N=3, M=2, K=1, we have a 5 
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x 5 system of equations to be solved vs. elevating a number to -

1. In the combustion of propane example, D=6, N=10, M=4, K=1 

and then the comparison is between a 6 x 6 matrix to be 

inverted, or a 12 x 12 system of l i n e a r equations to be solved. 

For the purpose of the comparison the stoichiometric 

c o e f f i c i e n t s used were the ones calculated by Dinkel and 

Lakshmanan (1977). We w i l l now explain a systematic procedure 

to obtain these c o e f f i c i e n t s from the exponents matrix AA. 

Calculation of stoichiometric c o e f f i c i e n t s 

A systematic method to construct a maximal set of l i n e a r l y 

independent chemical reactions from the exponent's matrix AA i s 

as follows: ( C a v a l l o t t i |et a l , 1979) 

a) Given the matrix AA, factorize i t into two matrices E and F, 

where E i s an MxM matrix of rank M, and F has dimensions MxD, so 

that, in m a t r i t i a l notation: 

AA = | E | F | 

In chemical language, that is equivalent to reacc'ommodating the 

matrix AA, so that the f i r s t M columns correspond to the key 

components; the matrix F i s the matrix of the constituents. 

b) Reduce the factorized matrix by a Gauss Jordan procedure 

u n t i l i t becomes 

AA = | I | H | 

where I i s the MxM identity matrix. 

c) Form the array : 



71 

U = 
-H 

I 

Where I i s now the DxD identity matrix, and U stands for the NxD 

matrix of stoichiometric c o e f f i c i e n t s for the D reactions. With 

thi s construction, the product of matrices AA.U = 0 , which was 

the condition . required for the stoichiometric matrix (see 

chapter I I ) . 

Comparison between the two methods of s e n s i t i v i t y analysis 

We implemented Dinkel and Lakshmanan's method in the program 

JOTA (appendix B). The method based on the solution of the 

linear system of equations i s contained in program NPLUSK 

(appendix B). We w i l l now describe both algorithms. 

a) Algorithm of program JOTA 

1) read optimal composition at optimum temperature and pressure 

(data from the l i t e r a t u r e ) , stoichiometric c o e f f i c i e n t s , t o t a l 

number of moles in the phase, free energy c o e f f i c i e n t s at the 

optimal and at the perturbed T,P. 

2) form the J matrix according to equations 2.44, 2.45, 2.46, 

2.47. 

3) the J matrix i s inverted by the UBC subroutine INV (UBC 

Matrix, 1979). The execution time to invert the matrix i s 

printed. 

4) for the new set of free energy c o e f f i c i e n t s , the new 

composition and free energy are computed using equations 2.49 
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and 2.48, and .these values are printed. 

B) Algorithm of program NPLUSK 

1) read same data as in JOTA . 

2) the matrix to be solved i s posed at the optimal conditions of 

P, T, and composition. The equations 2.50 to 2.53 are used for 

this purpose. 

3) the right-hand side vector i s also calculated for the 

perturbed condition. 

4) the system of equations i s solved by UBC subroutine DSLIMP 

(see UBC MATRIX, 1979). The execution time for the performance 

of DSLIMP i s printed. 

5) the new composition values are printed. 

In table IV-4, we can see that both programs y i e l d figures 

for composition comparable to those obtained in the l i t e r a t u r e 

for s e n s i t i v i t y analysis, but the execution time for the JOTA 

program was a thousand times longer. As a consequence of t h i s , 

we decided to incorporate the NPLUSK program as a subroutine of 

our main program in order to perform s e n s i t i v i t y analysis (see 

Chapter 5). 

When the free energy c o e f f i c i e n t s of the species change, only 

the right hand side of the system of equations needs to be 

recalculated. Since the matrix of the equations i s solved by 

DSLIMP, i t is very easy to make a new perturbation and resolve 

the system, for the matrix i s stored . It i s not the same when 

the amounts of elements are changed. In thi s case, the f i r s t 

column of the matrix has to be recalculated. No attempts were 
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Table IV-4. Two approaches to s e n s i t i v i t y analysis. Composition 
values for problem 5 * , at two thermodynamic conditions, using 
optimization. Composition at the perturbed condition, calculated 
with two methods of S.A. Execution times for the two methods. 

Spec ies Start 
T=2200 K 
P=40 at. 

Perturbat ion 2500 K , P = 50 at. 

Optimiz.* S.A. * JOTA ** 
t=2.24008 s 

NPLUSK *** 
t=0.00161 s 

H2 .02007 .05492 .04020 .04020 .04017 
H .00065 .00433 .00189 .00189 .00189 
OH .01500 .05579 .03534 .03534 .03532 
H20 3.9719 3.9150 3.9412 3.9412 3.9412 
CO .08160 .24835 .17378 .17379 .17267 
C02 2.9184 2.7516 2.8262 2.8262 2.8263 
N2 19.987 19.959 19.971 19.972 19.972 
NO .02668 .08618 .05680 .05679 .05679 
02 .03358 .09614 .06954 .06954 .06955 
O .00044 .00356 .00137 .00139 .00138 

T= temperature, K= Kelvin, P= pressure, at.= atmospheres, 
SA.= s e n s i t i v i t y analysis, Optimiz.= optimization, 
t= execution time, s= seconds. 
* Dinkel and Lakshmanan, 1977. 
** JOTA : S.A. program based on inverting the Jacobian. 
*** NPLUSK : S.A. program that solves a system of linear 

equations. 

done on solving t h i s case. 

From the data in table IV-4 we can see that the re l a t i v e 

errors of the composition calculated by s e n s i t i v i t y analysis, 

are quite large. These errors are r e l a t i v e to the value of the 

composition as calculated by a new optimization. The errors 

also vary from species to species. 

Almost a l l papers on s e n s i t i v i t y analysis in GP (Rijckaert, 

1974; Dinkel and Lakshmanan, 1975,1977) propose an incremental 

procedure to diminish these errors. An evaluation of the size 

of the increment • was done on the example No. 5, and is 
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e x p l a i n e d i n Chapter VI. 

S e n s i t i v i t y a n a l y s i s seems a f a s t e r way to solve the chemical 

e q u i l i b r i u m problem i n a region c l o s e to a known optimun, than 

r e o p t i m i z a t i o n i t s e l f . J u s t how much f a s t e r i t can be, with 

s i m i l a r accuracy, has not yet been s t a t e d . We t r i e d to compare 

the s e n s i t i v i t y a n a l y s i s procedure vs. r e o p t i m i z a t i o n , and the 

r e s u l t s and c o n c l u s i o n s are i n Chapter VI. 

Co n c l u s i o n s of t h i s chapter 

The c o n c l u s i o n s of these p r e l i m i n a r y s t u d i e s a r e : 

1) GRG s o l v e s both p r i m a l and dual GP chemical e q u i l i b r i u m 

problems, provided there i s a s c a l i n g , or a l o g a r i t h m i c 

t r a n s f o r m a t i o n . I t i s more e f f e c t i v e i f ( i ) the p r i m a l i s posed 

as a problem of the transformed p r i m a l v a r i a b l e s Z= In t , ( i i ) 

the l o g a r i t h m of the dual o b j e c t i v e f u n c t i o n i s o p t i m i z e d . 

2) The working parameters f o r GRG were s t a t e d . 

3) A program to generate dual s t a r t i n g p o i n t s was w r i t t e n . 

4 ) A program to c a l c u l a t e p r i m a l p o i n t s from the dual ones was 

implemented. 

5) S e n s i t i v i t y a n a l y s i s f o r the v a r i a t i o n s of the f r e e energy 

c o e f f i c i e n t s on the dual v a r i a b l e s was performed f a s t e r by 

s o l v i n g a system of l i n e a r equations r a t h e r than by i n v e r t i n g 

the Hessian matrix. The problem t r e a t e d had a degree of 

d i f f i c u l t y ( number of independent r e a c t i o n s ) equal to s i x . 

6) For s e n s i t i v i t y a n a l y s i s we need the s t o i c h i o m e t r i c 

c o e f f i c i e n t s f o r the r e a c t i o n s . A l i t e r a t u r e based systematic 

procedure to o b t a i n them from the exponents matrix was 



75 

e x p l a i n e d . 
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CHAPTER V: DESCRIPTION OF THE PROGRAMS 

Diagrams 

We w i l l present here the diagrams of the four computer 

programs that were w r i t t e n . The idea was to compare pr i m a l vs. 

dual perfomance, and s e n s i t i v i t y a n a l y s i s vs. r e ­

o p t i m i z a t i o n . The diagrams are q u i t e rough; a more d e t a i l e d 

e x p l a n a t i o n of each subroutine w i l l be given i n the f o l l o w i n g 

s e c t i o n s of t h i s chapter. 

Program COMP 1 so l v e s the p r i m a l transformed problem with 

GRG. Program COMP 2 so l v e s a l s o the p r i m a l , and performs 

s e n s i t i v i t y a n a l y s i s as w e l l . Program COMP 3 s o l v e s the dual 

and f i n a l l y program COMP 4 s o l v e s the dual and performs 

s e n s i t i v i t y a n a l y s i s . 

The programs are w r i t t e n i n FORTRAN IV . A l l subroutines are 

r e l a t e d through l a b e l l e d COMMON b l o c k s . Each subroutine c a l l s 

at l e a s t one subroutine from UBC (except f o r subroutine FREEN ). 

The programs were run on an AMDAHL 470 V/8 computer, using 

the Michigan Terminal System. They were compiled with IBM 

FORTRAN com p i l e r s G and H at l e v e l 21.8. Data were read from a 

f i l e a t t a c h e d to input u n i t 5. 
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PROGRAM COMP1 

READ DATA 

SUBROUTINE FREEN 
C a l c u l a t e s f r e e energy c o e f f i c i e n t s 

at d i f f e r e n t T and P 

TIME = O.DO 

FIX T and P 

SUBROUTINE L I P S U 2 
p r o v i d e s dual s t a r t i n g p o i n t 

SUBROUTINE SINGV 
c a l c u l a t e s p r i m a l v a r i a b l e s 

from dual 

GRG 
s o l v e s the o p t i m i z a t i o n 

problem (GCCOMP) 

CALCULATE dual v a r i a b l e s 
from the optimal p r i m a l 

WANT VAR 

.T AND/OR P? 

-VARY T,P. 
-GET new f r e e energy c o e f f , 
-USE optimum as s t . Point 

' PRINT 
RESULTS/ 



PROGRAM COMP2 

READ DATA 

SUBROUTINE FREEN 
C a l c u l a t e s f r e e energy c o e f f i c i e n t s 

at d i f f e r e n t T AND P 

TIME = O.DO 
1 

FIX T AND P 

WANT VARY 

T AND/OR P? 

SUBROUTI 
Provides dual 

WE LIPSU2 
s t a r t i n g point 

SUBROUTINE SINGV 
C a l c u l a t e s p r i m a l v a r i a b l e s 

from dual ones 

GRG 
Solves the o p t i m i z a t i o n 

problem 

CALCULATE du 
from the op 

a l v a r i a b l e s 
t i m a l p r i m a l 

YES 

-VARY T and P. 
-GET new fr e e energy c o e f f . 

SUBROUTI] 
Performs Sensi 

WE NPLUSK 
t i v i y A n a l y s i s 

'PRINT RESULTS/ 
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PROGRAM COMP3 

READ DAT 

SUBROUTINE FREEN 
C a l c u l a t e s f r e e energy c o e f f i c i e n t s 

at d i f f e r e n t T AND P 

TIME = 0.D0 

FIX T AND P 

SUBROUTIb 
Provides dual s 

IE LIPSU2 
s t a r t i n g p o i n t 

GF 
Solves the c 

Problem ( 

IG 
>ptimization 
GCCOMP) PRINT 

'RESULTS/ 

WANT VARY 

^ P AND/OR T? 

T 
YES 

-VARY P,T. 
-GET new f r e e energy c o e f f 
-USE Optimum as s t . Point 

NO TIME; 

STOP 
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PROGRAM COMP4 

READ DATA/ 

SUBROUTINE FREEN 
C a l c u l a t e s f r e e energy c o e f f i c i e n t s 

at d i f f e r e n t T AND P 

TIME = O.DO 

FIX T AND P 

SUBROUTIls 
p r o v i d e s dual £ 

IE LIPSU2 
s t a r t i n g p o i n t 

GF 
Solves t 

opt i m i z a t ic 

IG 
.he dual 
>n problem 

YES 

-VARY T, P. 
-GET new fr e e energy c o e f f 

SUBROUTINE NPLUSK 
Performs s e n s i t i v i t y a n a l y s i s 

NO TIME/ 

STOP 

PRINT RESULTS 
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Input needed. Examples 

For any of the programs mentioned above, the user should 

p r o v i d e : 

a) c o n t r o l c a r d s : 

N+1= number of spe c i e s present at e q u i l i b r i u m +1 

M+1= number of elements +1 

K= number of phases 

NN= number of times P and/or T are v a r i e d . 

NE= 1 i f the f r e e energy c o e f f i c i e n t s are a v a i l a b l e as such; i f 

they have to be c a l c u l a t e d from the Gordon and Mc. Bride 

c o e f f i c i e n t s , use any other i n t e g e r . 

NF=1 i f the dual s t a r t i n g p o i n t r o u t i n e i s to be used. 

Otherwise, use another i n t e g e r . 

b) f r e e energy data: f r e e energy c o e f f i c i e n t s matrix C or 

temperature c o e f f i c i e n t s matrix S f o r the Gordon and Mc. Bride 

polynomials, NASA SP-3001. 

c) exponent matrix A. An example of i t s c o n s t r u c t i o n w i l l 

f o l l o w . 

d) amount of elements :vector B. 

e) s t o i c h i o m e t r i c c o e f f i c i e n t s f o r the r e a c t i o n s i f C0MP2 or 

C0MP4 are to be used (matrix U) 
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e) dual s t a r t i n g p o i n t i f a v a i l a b l e . 

We s h a l l now g i v e two examples of the i n p u t . 

Example 1• CH4-Water gas r e a c t i o n  

P r e l i m i n a r y data: 

-Reaction of 2 moles of CH4 and 3 moles of water 

-Reach e q u i l i b r i u m at T= 1000K, P= 1atm. 

-Species present at e q u i l i b r i u m = CO, C02, H20, H2,CH4 

- I d e a l i t y assumed 

-One phase (gas) 

-Free energy c o e f f i c i e n t s a v a i l a b l e from the l i t e r a t u r e f o r one 

set of T,P c o n d i t i o n s . 

-Do not have a s t a r t i n g p o i n t . 

Input 

a) C o n t r o l c a r d s : 

N+1 = 6 ( 5 s p e c i e s +1 ) 

M+1 = 4 (3 elements +1) 

K = 1 (1 phase) 

NN = 1 (one thermodynamic s t a t e ) 

NE = 1 (the f r e e energy c o e f f i c i e n t s are data) 

NF = 1 (no s t a r t i n g p o i n t i s provided) 

b) Free energy c o e f f i c i e n t s : 

C i s a 6x1 matrix, as f o l l o w s : 
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0.0 dummy 
-24.025 CO 
-47.413 C02 

C = -23.067 H20 
0.0 H2 
2.0847 CH4 

The f i r s t c o e f f i c i e n t corresponds to the n o r m a l i t y c o n d i t i o n . 

The r e s t of the c o e f f i c i e n t s are the Gibbs f r e e energy of 

formation from i t s elements at temperature = 1000K f o r each 

s p e c i e s , d i v i d e d by R (the u n i v e r s a l gas constant) and by the 

temperature, and added to the lo g a r i t h m of the pressure (1 

atm.), s i n c e there i s only gas phase. 

c) Exponents matrix : 

For computing purposes , we added the nor m a l i t y c o n d i t i o n to the 

exponents matrix AA d e s c r i b e d i n the previous c h a p t e r . Hence 

the new matrix A i s a (4 x 6) matrix c o n s t r u c t e d i n the 

f o l l o w i n g way: 

A ( 1 , 1) = 1.DO 

A ( 1, j ) = O.DO j=2,N+1 

A ( i , 1) = 0.DO i = 2,M+1 

the remaining of each column accounts f o r the formula of each 

chemical s p e c i e s . The f i n a l matrix looks l i k e t h i s : 

dummy CO C02 H20 H2 CH4 
1 0 0 0 
0 1 1 0 

A= 0 0 0 2 
0 1 2 1 

0 0 dummy 
0 1 C 
2 4 H 
0 0 0 

d) Vector of amount of elements B 
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Since we s t a r t e d with 2 moles of CH4 and 3 moles of H20, 2 atom-

grams of C, 14 of H and 3 of 0 should be conserved throughout 

the r e a c t i o n s . Hence the B vecto r w i l l be: 

1 dummy 
B= 2 C 

1 4 H 
3 0 

e) s i n c e we only have one set of thermodynamic data, we are not 

concerned with s e n s i t i v i t y a n a l y s i s and C0MP2 and C0MP4 should 

not be a p p l i e d . 

f) we do not have a s t a r t i n g p o i n t to enter here. The programs 

w i l l generate one. 

g) i f we want to c o n s i d e r the formation of s o l i d C, then the 

c o n t r o l cards and the exponents matrix should be modified as 

f o l l o w s : 

For k=1, j var i e s between 1 and 6; for k = 2, j = 7 

Dummy CO C02 H20 H2 CH4 C 
1 0 0 0 0 0 0 Dummy 
0 1 1 0 0 1 1 C 
0 0 0 2 2 4 0 H 
0 1 2 1 0 0 0 0 

The B v e c t o r remains as be f o r e . The C matrix has to i n c o r p o r a t e 

the f r e e energy c o e f f i c i e n t f o r carbon (0) as C(7,1) 



85 

Example 2. Claus Furnace r e a c t i o n  

P r e l i m i n a r y data : 

- P a r t i a l l y r e a c t e d mixture of 0.1 moles S02, 0.2 moles H2S, 0.8 

moles H20 and 1.88 moles of N2 ( i n e r t ) 

-Reach e q u i l i b r i u m composition at P = 1 atm., and 9 d i f f e r e n t T 

from 550 K to 1000 K (50 K i n t e r v a l s ) 

-Species present at e q u i l i b r i u m : S02, H2S, H20, S2, S4, S6, S8, 

N2. 

- I d e a l i t y assumed. 

-Elements : S, 0, H, N 

-One phase (gas) 

-Temperature c o e f f i c i e n t s f o r thermodynamic f u n c t i o n s of Gordon 

and Mc. B r i d e 

-Want to compare s e n s i t i v i t y a n a l y s i s versus r e - o p t i m i z a t i o n . 

I nput 

a) C o n t r o l c a r d s : 

N+1 = 9 (8 s p e c i e s ) 

M+1 = 5 (4 elements) 

K = 1 (one phase) 

NN = 9 (nine T,P c o n d i t i o n s ) 

NE= 2 ( f r e e energy c o e f f i c i e n t s should be c a l c u l a t e d ) 

NF =1 the s t a r t i n g p o i n t should be c a l c u l a t e d w i t h i n the 

program. 

b) matrix of Gordon and Mc.Bride c o e f f i c i e n t s . M atrix S i s an 

( N x 7) matrix each row of the matrix corresponds to the seven 
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c o e f f i c i e n t s of the Gordon and Mc.Bride polynomials f o r a 

chemical s p e c i e s . The dummy s p e c i e s 1 i s not i n c l u d e d , so that 

the s p e c i e s here are s h i f t e d by one u n i t when compared to t h e i r 

numeration i n matrix A. With these data the subroutine FREEN 

w i l l c a l c u l a t e the matrix C. ' •-" 

c) Exponents matrix . Matrix A i s as f o l l o w s : 

dummy S02 H2S H20 S2 S4 S6 S8 N2 
1 0 0 0 0 0 0 0 0 dummy 
0 1 1 0 2 4 6 8 0 S 
0 2 0 1 0 0 0 0 0 0 
0 0 2 2 0 0 0 0 0 H 
0 0 0 0 0 0 0 0 2 N 

d) Vector of elements content . The B ve c t o r i s as f o l l o w s : 

e) Matrix of s t o i c h i o m e t r i c c o e f f i c i e n t s : Since we want to 

apply s e n s i t i v i t y a n a l y s i s , we need to pro v i d e the matrix of 

s t o i c h i o m e t r i c c o e f f i c i e n t s U . I t i s a (N+1 x D) matrix ; each 

column c o n t a i n s the s t o i c h i o m e t r i c c o e f f i c i e n t of the spe c i e s 

d e s c r i b e d by the row number f o r the D independent r e a c t i o n s . To 

the dummy spe c i e s corresponds a s t o i c h i o m e t r i c c o e f f i c i e n t equal 

to zero. If M+1 i s the rank of the matrix A, then D=N - M. In 

t h i s case D= 4 . 

The U matrix i s b u i l t i n the f o l l o w i n g way : 

1.0 
0.3 
1 .0 
2.0 
3.76 

dummy 
S 
0 
H 
N 
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- i ) take matrix A, without the f i r s t row and column (they 

correspond to the n o r m a l i t y c o n d i t i o n of the geometric program). 

Exchange column 4 and 8, and p a r t i t i o n the r e s u l t i n g matrix so 

that 

1 1 0 0 4 6 8 2 
2 0 1 0 0 0 0 0 
0 2 2 0 0 0 0 0 
0 0 0 2 0 0 0 0 

- i i ) work with elementary matrix o p e r a t i o n s to get 

1 0 0 0 4/3 6/3 8/3 2/3 
0 1 0 0 8/3 12/3 16/3 4/3 
0 0 1 0 -4/3 -6/3 -8/3 -2/3 
0 0 0 1 0 0 0 0 

- i i i ) form the s t o i c h i o m e t r i c matrix. Interchange the rows 4 

and 8 to get the o r i g i n a l set of s p e c i e s . 

-4/3 -6/3 -8/3 -2/3 
-8/3 -12/3 -16/3 -4/3 
4/3 6/3 8/3 2/3 
0 0 0 1 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 0 

To o b t a i n the U matrix f o r our programs , a f i r s t row of zeroes 

should be added. If we m u l t i p l y t h i s U matrix by 3, the set of 

independent r e a c t i o n s i s : 

S02 + 2 H2S = 3/j Sj + H20 j = 2, 4, 6, 8. 

Any other combination of r e a c t i o n s can be used, provided they 
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are l i n e a r l y independent. 

C a l c u l a t i o n of f r e e energy c o e f f i c i e n t s 

Subroutine FREEN c a l c u l a t e s the f r e e energy parameters of 

each s p e c i e s at a s p e c i f i e d T and P. It uses the polynomial 

approximation to the Gibbs f r e e energy determined by Gordon and 

Mc. B r i d e (1971). The polynomials are as f o l l o w s : 

> j 0 ( T ) / RT = S j , (1 - In T) - S j 2 T/2 - S j 3 T 2 /6 -

Sj , T 3 /1 2 - Sj 5 T 4 ./20 + 

S j 6 A - S j 7 5.1 

Where S i s a Nx7 matrix of the Gordon and Mc. Bri d e 

c o e f f i c i e n t s f o r the N s p e c i e s . Then the f r e e energy 

c o e f f i c i e n t s are c a l c u l a t e d through the d e f i n i t i o n s : 

C j l = /"-J(T) / RT + l n P 5.2 

f o r gases and 

C j l = Gj(T) / RT 5.3 

fo r condensed phases. 

The s u b s c r i p t 1 r e f e r s to the number of times T and P are 

v a r i e d . 

A l l the in f o r m a t i o n needed by the r o u t i n e , and produced by 
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i t , i s handled by means of l a b e l l e d COMMON b l o c k s . When other 

sources of fr e e energy data are a v a i l a b l e , the programs s k i p 

subroutine FREEN and read the matrix C s u p p l i e d by the user. 

Subroutine LIPSU2 . A dual s t a r t i n g p o i n t . 

If a good f i r s t guess of the composition i s a v a i l a b l e , the 

programs may take t h i s guess as a s t a r t i n g p o i n t . If t h i s i s 

not the case, the programs generate a dual s t a r t i n g p o i n t 

c a l l i n g the subroutine LIPSU2 . Th i s subroutine i s almost 

i d e n t i c a l to the program LIPSU2 e x p l a i n e d i n the previous 

chapter. The subroutine o b t a i n s the data from the main program 

through l a b e l l e d COMMON blocks and i t se t s the ta b l e a u i n the 

manner s p e c i f i e d by the UBC r o u t i n e LIPSUB . LIPSUB i s then 

c a l l e d and i t s o l v e s the LP using a p r i m a l - d u a l a l g o r i t h m . The 

r e s u l t s are s t o r e d i n the COMMON block FX. The main program 

then uses t h i s i nformation to c a l c u l a t e the dual s t a r t i n g p o i n t . 

Subroutine SINGV 

Subroutine SINGV transforms dual v a r i a b l e s i n t o p r i m a l ones. 

It i s very s i m i l a r to the program of the same name d e s c r i b e d on 

chapter 4 . The reading and output are re p l a c e d by l a b e l l e d 

COMMON b l o c k s . 
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Using GRG as a subroutine 

GRG i s c a l l e d from the main program as three s u b r o u t i n e s from 

UBC. GRGIN reads the c o n t r o l cards d e s c r i b e d i n chapter IV. 

GRG2 c a l l s the o p t i m i z a t i o n s u b r o u t i n e . The value of the 

o b j e c t i v e f u n c t i o n and of the v a r i a b l e s at the optimum are 

arguments of GRG2. GREG p r i n t s the Lagrange m u l t i p l i e r s of the 

b i n d i n g and e q u a l i t y c o n s t r a i n t s , and the c h a r a c t e r i s t i c s of the 

o p t i m i z a t i o n such as number of i t e r a t i o n s , number of f u n c t i o n 

e v a l u a t i o n s , e t c . 

G i v i n g input to GRG 

To read the c o n t r o l cards needed for the o p t i m i z a t i o n , 

subroutine GRGIN does i t from a f i l e a t t a c h e d to the l o g i c u n i t 

5 . That i n t r o d u c e s two problems : 

a) The main program reads i t s own data from a d a t a f i l e attached 

to the input u n i t 5 . 

b) Some of the parameters that should be s p e c i f i e d in the 

c o n t r o l cards are c a l c u l a t e d in the f i r s t p art of the program, 

l i k e the s t a r t i n g p o i n t and the boundaries. Hence the c o n t r o l 

cards cannot be s e t t l e d i n advance. 

To solve these two p o i n t s , a s c r a t c h f i l e -DATA i s c r e a t e d from 

the main program. Input u n i t 5 i s r e a s s i g n e d to -DATA . The 

c o n t r o l cards are then w r i t t e n i n t o -DATA using the i n f o r m a t i o n 

a v a i l a b l e i n the main program , with the r e q u i r e d format. 
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Subroutine GCOMP 

GRG2 i s now ready to perform the o p t i m i z a t i o n . I t needs to 

evalu a t e the o b j e c t i v e f u n c t i o n and l e f t - h a n d s i d e s of the 

c o n s t r a i n t s f o r the given values of the v a r i a b l e s x . To do 

t h a t , i t c a l l s subroutine GCOMP. The form of t h i s subroutine 

w i l l depend on the mathematical f o r m u l a t i o n of the problem we 

are d e a l i n g with, but the v a r i a b l e s have to be c a l l e d x. 

Subroutine GCOMP gets the needed data through l a b e l l e d COMMON 

bl o c k s . 

For the dual case, the problem of logarithms with zero or 

negative arguments i s avoided by d e f i n i n g the l o g a r i t h m i c 

f u n c t i o n as equal to a very l a r g e negative number when negative 

or zero v a r i a b l e s are encountered i n the search. A l s o , the 

lower bound of the v a r i a b l e s i s set to a very low va l u e . A f t e r 

the o p t i m i z a t i o n i s f i n i s h e d , any number of moles smaller than 

the i n v e r s e of the Avogadro's number i s set to zero by the main 

program. 

In the pri m a l problem, the e x p o n e n t i a t i o n of very l a r g e 

negative numbers may occur, and t h i s i s a l s o undefined. We do 

not allow the lower boundaries of the pri m a l v a r i a b l e s to go 

below the d e f i n e d r e g i o n . 

To d e l e t e s p e c i e s from the model, the corresponding column of 

the exponent matrix i s set to zero. For the pr i m a l problem, 

that means that the molar f r a c t i o n of the corresponding s p e c i e s 

i s one. To av o i d the problem, we d e f i n e d DEXP(0)=0 when Aij=0. 
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Output from GRG 

The amount of output produced by GRG i s c o n t r o l l e d by the 

keyword PRINTCTL=number which should be s p e c i f i e d i n a c o n t r o l 

c a r d . When PRINTCTL=0, no i n f o r m a t i o n i s output. When i t i s 

set equal to 1, the r e s u l t s are p r i n t e d ; when working at a 

t e r m i n a l , the user i s prompted to w r i t e the word GO a f t e r the 

i n i t i a l c o n d i t i o n s f o r each o p t i m i z a t i o n are s e t . Succesive 

i n f o r m a t i o n on the p r o g r e s s i o n of the o p t i m i z a t i o n i s p r i n t e d 

when PRINTCTL values range from 2 to 4. The input l i n e s are 

echoed by d e f a u l t . If t h i s i s not d e s i r e d , NOECHO has to be 

s p e c i f i e d i n a c o n t r o l c a r d . 

The v a l u e s of the o b j e c t i v e f u n c t i o n and of the v a r i a b l e s at 

the optimum i s a l l the i n f o r m a t i o n needed from GRG when s o l v i n g 

the dual problem. They are arguments of GRG2 , hence f o r t h i s 

case we can a v o i d any p r i n t e d output from GRG i f d e s i r e d . When 

s o l v i n g the p r i m a l , we need a l s o the Lagrange m u l t i p l i e r s f o r 

the b i n d i n g c o n s t r a i n t s (they are the t o t a l number of moles f o r 

each c o n s t r a i n t when s o l v i n g the transformed p r i m a l problem), 

and they are not a v a i l a b l e as arguments. We had to get them 

through a r a t h e r t w i s t e d way. 

The main program c r e a t e s a s c r a t c h f i l e -GRGOUT, and the 

output u n i t 6 i s reassigned to t h i s f i l e . Subroutine GRGEG, 

from UBC, w r i t e s the output from the o p t i m i z a t i o n i n t o -GRGOUT, 

provided PRINTCTL i s set to a value d i f f e r e n t than zer o . 

Subroutine SKIP then scans through -GRGOUT u n t i l i t f i n d s the 

expr e s s i o n "Lagrange m u l t i p l i e r s " . At t h i s p o i n t , the main 

program reads the values of the m u l t i p l i e r s from the next l i n e 
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on the output s c r a t c h f i l e , and c a l c u l a t e s the number of moles 

f o r each s p e c i e s . -GRGOUT i s rewound a f t e r each o p t i m i z a t i o n . 

L i s t i n g the f i l e a l lows us to compute the number of i t e r a t i o n s 

and of f u n c t i o n e v a l u a t i o n s of the l a s t run. 

Performing s e n s i t i v i t y a n a l y s i s 

Subroutine NPLUSK i s very s i m i l a r to program NPLUSK d e s c r i b e d 

in chapter IV. The input of data i s done through l a b e l l e d 

COMMON b l o c k s . The s t o i c h i o m e t r i c c o e f f i c i e n t s have to be 

p r o v i d e d by the user, s i n c e we d i d not implement a subroutine to 

c a l c u l a t e them from the exponents matrix, as e x e m p l i f i e d e a r l i e r 

t h i s chapter ( s e c t i o n 5.2.) 

Subroutine NPLUSK formulates the l i n e a r system of equations 

from the data a v a i l a b l e . The r i g h t hand s i d e of the equations 

v a r i e s with pressure and temperature, and i s r e c a l c u l a t e d each 

time these c o n d i t i o n s change, but the l e f t hand sid e remains the 

same. Subroutine DSLIMP from UBC solves the system of 

e q u a t i o n s . 

Output from the programs 

If the keyword PRINTCTL i s set equal to 1, the output of the 

programs c o n t a i n s : 

a) Matrix of f r e e energy c o e f f i c i e n t s ( i f a p p l i c a b l e ) . 

b) Dual s t a r t i n g p o i n t . 

c) Primal s t a r t i n g p o i n t ( i f a p p l i c a b l e ) . 

d) Input f o r GRG 
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e) Pressure and temperature 

f) Number of moles of the s p e c i e s present at e q u i l i b r i u m at the 

prev i o u s P and T. 

g) T o t a l number of moles per phase at these c o n d i t i o n s . 

h) Corresponding molar f r a c t i o n s 

P o i n t s d) through h) are repeated f o r the d i f f e r e n t T and P 

v a l u e s . Point d) i s only repeated when there i s no s e n s i t i v i t y 

a n a l y s i s , f o r programs COMP1 and COMP3. At the end, the 

execution time i s p r i n t e d . 
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CHAPTER VI: RESULTS AND DISCUSSION 

The four computer programs d e s c r i b e d i n Chapter V were t r i e d 

on three problems : 5, 6 ,6B and 7 of. Appendix C. We c o u l d thus 

compare the perfomances of dual vs. p r i m a l f o r m u l a t i o n s , 

s e n s i t i v i t y a n a l y s i s vs r e - o p t i m i z a t i o n . The r e s u l t s are 

presented and d i s c u s s e d i n the present Chapter. 

T h i s Chapter i s organized i n four s e c t i o n s . In s e c t i o n one 

we t r y to evaluate the perfomance of the s t a r t i n g p o i n t r o u t i n e 

by comparing the p o i n t s generated by the r o u t i n e to the optimum 

v a l u e s . In the second s e c t i o n we compare the pri m a l and dual 

problems. In s e c t i o n three we compare s e n s i t i v i t y a n a l y s i s and 

r e - o p t i m i z a t i o n . In s e c t i o n four we de a l with the e f f e c t s of 

i n c o r p o r a t i n g new sp e c i e s to a chemical e q u i l i b r i u m model. 

E v a l u a t i o n of the s t a r t i n g p o i n t r o u t i n e 

If the user does not have a good f i r s t guess, a s t a r t i n g 

p o i n t i s c a l c u l a t e d w i t h i n our programs. The c a l c u l a t i o n of a 

dual s t a r t i n g p o i n t i s based on approximating the dual problem 

to a l i n e a r program. The method d e s c r i b e d by L i d o r (1975) i s 

used, and i t i s implemented i n subroutine LIPSU 2. An account 

of the method, and of the subroutine LIPSU 2 was made i n 

Chapters IV and V. When a pri m a l s t a r t i n g p o i n t i s needed, the 

dual s t a r t i n g p o i n t i s determined as above, and then i t i s 

transformed to a pri m a l p o i n t . Subroutine SINGV, d e s c r i b e d i n 

Chapter IV, performs t h i s task. 
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Table VI-1 shows the values of the s t a r t i n g p o i n t s c a l c u l a t e d 

by the programs f o r problems 5 and 6, and t h e i r optimum values . 

We w i l l now d i s c u s s the r e s u l t s of Table VI-1. 

a) The values of the o b j e c t i v e f u n c t i o n s at the s t a r t i n g p o i n t s 

are w i t h i n 2-4% of the optimal v a l u e s , which looks l i k e a q u i t e 

good approximation. 

b) The dual v a r i a b l e s of the s p e c i e s that are present i n 

g r e a t e r amounts at e q u i l i b r i u m are determined w i t h i n 10-20% of 

t h e i r optimal v a l u e . The r e s t of the v a r i a b l e s are wide a p a r t . 

The s t a r t i n g p o i n t r o u t i n e only g i v e s an estimate of as many 

s p e c i e s as the rank of the exponent matrix A, which should be M 

in a w e l l posed model. These s p e c i e s correspond to the b a s i c 

v a r i a b l e s of the l i n e a r program, and most of the time the dummy 

sp e c i e s introduced i n the l i n e a r program to account fo r non-

l i n e a r i t i e s i s one of the b a s i c v a r i a b l e s . The r e s t of the 

s p e c i e s are given a f i x e d p o s i t i v e number, r e g a r d l e s s of t h e i r 

r e l a t i v e importance. So, i f the problem we are d e a l i n g with has 

one or two s p e c i e s present as t r a c e q u a n t i t i e s , the s t a r t i n g 

p o i n t does not allow us to d i s t i n g u i s h them from other secondary 

s p e c i e s . See problem 6 in t a b l e VI -1. As a consequence, the 

goodness of the s t a r t i n g p o i n t w i l l depend s t r o n g l y on the 

s p e c i f i c problem. 

c) The p r i m a l v a r i a b l e s f a l l w i t h i n 1.5% to 50% of t h e i r 

o ptimal v a l u e s . Again, the range i s a c h a r a c t e r i s t i c of the 

p a r t i c u l a r problem. 

d) The p r i m a l s t a r t i n g p o i n t s c a l c u l a t e d with t h i s method are 
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Table VI-1. E v a l u a t i o n of the s t a r t i n g p o i n t r o u t i n e s . 
Composition, o b j e c t i v e f u n c t i o n and pri m a l c o n s t r a i n t values at 
the s t a r t i n g p o i n t and at optimum f o r problems 5* and 6**. 

Prob. N. of moles Z G/RT P. const. 

S.P. Opt. S.P. Opt. S.P./ Opt. S.P./ Opt. 

5* 3. 
3. 
3. 
5.5 
3. 
3. 
21.5 
3. 
5.25 
3. 

.0204 

.0007 

.01 53 
3.973 
.0819 
2.918 
19.98 
.0269 
.0338 
.0005 

-1 0.0606 

-22.3678 

-13.5499 

-11.581 9 

-11.4153 

-20.1267 

-15.8052 

-11.6971 

746.3633 

777.6382 

230.6 

1.00001 

6** .2 
.3 
1 . 
.2 
.2 
.2 
.2 
1 .98 

.0003 

.0006 

.9989 
E-9 
E-9 
.0005 
.0371 
1 .880 

-1.4607 

-66.8466 

-18.0296 

-11.9268 

-2.7906 

-66.4363 

-18.6591 

-11.7611 

148.1885 

150.8133 

49210. 

1.0000 

* D i n k e l and Lakshmanan, 1977. P= 40 a t . T = 2200 K 
** Bonsu, 1981. P= 1 a t . T=355 K 
N. = Number Z = ln-t r a n s f o r m e d p r i m a l v a r i a b l e s 
G/RT = O b j e c t i v e f u n c t i o n S.P. = S t a r t i n g p o i n t 
Opt. = optimum P. Const. = pri m a l c o n s t r a i n t 

i n f e a s i b l e . In f a c t , the valu e s of the pri m a l c o n s t r a i n t s at 

the s t a r t i n g p o i n t s are q u i t e f a r apart from t h e i r optimal 

v a l u e s . GRG takes care of the i n f e a s i b i l i t y of the pri m a l 

s t a r t i n g p o i n t by o p t i m i z i n g the sum of the c o n s t r a i n t 

v i o l a t i o n s i n a "Phase I" procedure. We found that the 

combination of our s t a r t i n g p o i n t procedure p l u s GRG 's "Phase 



98 

I" produced b e t t e r r e s u l t s than a random p o i n t . The s t a r t i n g 

p o i n t r o u t i n e s performed w e l l i n problems 5,6,6B,7 (Appendix B) 

however, i f a b e t t e r s t a r t i n g guess i s a v a i l a b l e , the user i s 

encouraged to av o i d the s t a r t i n g p o i n t r o u t i n e . B e t t e r guesses 

shorten computation time • 

Pr i m a l - d u a l comparisons 

To compare the primal and dual f o r m u l a t i o n s of the chemical 

e q u i l i b r i u m problem,we used the codes COMP1 and COMP2 d e s c r i b e d 

i n the pr e v i o u s chapter. The problems t e s t e d were 5,6,6B, and 7 

from appendix B. The value s of the o b j e c t i v e f u n c t i o n s and 

composition obtained are i n appendix B. The execution times are 

in t a b l e VI-2. . 

Table VI-2. Execution times ( i n sec.) of primal and dual 
codes fo r a f i x e d P and T. 

Problem Species Elements Primal Dual 
(sec . ) (sec .) 

5 10 4 .1265 .1612 
6 8 4 .1342 .1695 
6b 8 4 .1355 .1720 
7 24 4 .5886 f a i l e d 

To e v a l u a t e the r e l a t i v e e f f e c t i v e n e s s of programming codes 

we need some c r i t e r i a . Himmelblau (1972) proposed and d i s c u s s e d 

s e v e r a l e v a l u a t i o n c r i t e r i a . We w i l l repeat them here, and 
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then we w i l l t r y to see how these c r i t e r i a apply to our problem. 

The c r i t e r i a are as f o l l o w s : i ) s i z e of the problem, i i ) time 

r e q u i r e d to introduce data i n t o the program , i i i ) s i m p l i c i t y of 

the computer program, i v ) success i n s o l v i n g r e a l world problems 

most of the time, v) accuracy of the r e s u l t s , v i ) time. 

The s i z e of the problem favours the p r i m a l over the dual 

f o r m u l a t i o n f o r the chemical e q u i l i b r i u m problem with many 

r e a c t i o n s . The time r e q u i r e d to introduce data i n t o the program 

i s the same f o r both the pri m a l and dual problems. The dual 

program i s more simple to implement than the p r i m a l , because i t 

does not need subroutines SINGV and SKIP . The p r i m a l c o u l d be 

s i m p l i f i e d i f the subroutine GRG 2 would have the Lagrange 

m u l t i p l i e r s f o r the p r i m a l c o n s t r a i n t s as arguments, thus 

subroutine SKIP can be avoided. 

As f o r " s o l v i n g r e a l - l i f e problems most of the time", the 

pr i m a l always d i d so. The dual f a i l e d when t r y i n g a problem 

with 24 v a r i a b l e s (problem 7). The problem had many t r a c e 

v a r i a b l e s , which were sent to the lower boundaries a f t e r a few 

i t e r a t i o n s and would not move t h e r e a f t e r . Making the values of 

the boundaries smaller d i d not improve the s i t u a t i o n . A new 

computer code, r e c e n t l y a v a i l a b l e at UBC , MINOS, i s based on an 

a l g o r i t h m s i m i l a r to GRG f o r the case of l i n e a r e q u a l i t y 

c o n s t r a i n t s . Murtagh and Saunders (1978) c l a i m that MINOS 

so l v e d a badly s c a l e d dual chemical e q u i l i b r i u m problem of 45 

v a r i a b l e s . We d i d not t r y t h i s code ,though. 

The s t a r t i n g p o i n t and the r e q u i r e d accuracy of the s o l u t i o n 

i n f l u e n c e g r e a t l y on the computation time. Since the p r i m a l 
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s t a r t i n g p o i n t i s c a l c u l a t e d from the d u a l , we are almost sure 

that our comparison between the pr i m a l and the dual f o r m u l a t i o n s 

w i l l not be a f f e c t e d by the s t a r t i n g p o i n t . T h i s i s only a good 

approximation because the r e l a t i o n s between p r i m a l and dual 

v a r i a b l e s that we used i n subroutine SINGV only h o l d as 

e q u a l i t i e s at the optimum p o i n t . As f o r the accuracy of the 

s o l u t i o n , we used the same parameters i n GRG f o r the pr i m a l and 

dual problems. The r e s u l t s were comparable with the l i t e r a t u r e , 

and between the two codes, w i t h i n .2%. For the pri m a l problem 

the accuracy f o r the composition values was determined by the 

t o l e r a n c e of the c o n s t r a i n t ( EPNEWT ). The p r i m a l c o n s t r a i n t s 

s t a t e t hat the sum of the molar f r a c t i o n of the spe c i e s present 

at a p a r t i c u l a r phase should be one at e q u i l i b r i u m . A value of 

EPNEWT of 10 " 6 i m p l i e s that the absolute e r r o r s of the molar 

f r a c t i o n s of each s p e c i e s w i l l be of t h i s order of magnitude. 

That means that the r e l a t i v e e r r o r s f o r the s p e c i e s present i n 

t r a c e c o n c e n t r a t i o n s w i l l be q u i t e important. We can change the 

value of EPNEWT to improve the accuracy; i n f a c t we t r i e d up to 

a value of 1 0 " 1 0 f o r problem 7. S t i l l , f o r t h i s p a r t i c u l a r 

problem, the c o n c e n t r a t i o n of the sp e c i e s d i f f e r as much as 

1 0 2 2 . We do not think i t i s p o s s i b l e to o b t a i n such accuracy at 

the moment; we are al r e a d y working with double p r e c i s i o n . 

Besides, we are i n t e r e s t e d on a code that may solve a wide 

v a r i e t y of examples, r a t h e r than produce the best s o l u t i o n f o r a 

p a r t i c u l a r problem. The in c r e a s e i n accuracy a l s o means 

i n c r e a s i n g the execution time. 

We have shown that our pri m a l and dual codes both s t a r t from 
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approximately the same po i n t and get the same r e s u l t s . The time 

i n v e s t e d i n that procedure i s an important c r i t e r i o n of the 

e f f e c t i v e n e s s of a code. Time r e f e r s e i t h e r to the number of 

f u n c t i o n e v a l u a t i o n s or to the execution time. In our case, 

there i s no p o i n t in comparing the number of f u n c t i o n 

e v a l u a t i o n s , s i n c e the mathematical f o r m u l a t i o n s f o r the 

problems are q u i t e d i f f e r e n t . We have to compare execution 

times. 

The e x e c u t i o n times i n t a b l e VI-2 are not s t a n d a r i z e d , s i n c e 

we were concerned only with the comparison between our codes. 

Care was taken to run a set of p r i m a l - d u a l problems one a f t e r 

the o t h e r , i n order to av o i d t i m e - s h a r i n g problems. The p r i m a l 

f o r m u l a t i o n proved to be between 23 and 39% f a s t e r than the dual 

f o r the case of m i d d l e - s i z e problems (8-10 s p e c i e s ) . 

S e n s i t i v i t y a n a l y s i s and r e - o p t i m i z a t i o n 

To be abl e to evaluate the performance of the s e n s i t i v y 

a n a l y s i s , we compared the codes COMP1 and COMP2 (primal with and 

without s e n s i t i v i t y a n a l y s i s ) and COMP3 and COMP4 (dual with and 

without s e n s i t i v i t y a n a l y s i s ) . We t e s t e d the codes on problems 

5 and 6. Problem 5 had been used i n the l i t e r a t u r e as an 

example f o r s e n s i t i v i t y a n a l y s i s ( D i n k e l and Lakshmanan, 1977), 

but only the accuracy of the method had been d i s c u s s e d . We 

repeated t h e i r composition v a l u e s (see chapter I V ) . The f r e e 

energy data f o r problem 6 are c a l c u l a t e d from the Mc Bri d e and 

Gordon c o e f f i c i e n t s ( NASA , 1971) as a f u n c t i o n of temperature. 

That allowed us to vary the temperature at small i n t e r v a l s , and 
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to compare the e f f e c t of these v a r i a t i o n s on the accuracy of the 

r e s u l t s and on the execution times. 

Table VI-3. Execution times for s e n s i t i v i t y a n a l y s i s (S.A.) 
and r e - o p t i m i z a t i o n (R.O) 

Problem Species N. of T R. 0. S. A. Form. S t . 
Elements P, T (K) T i m e ( s e c ) T i m e ( s e c ) 

cond. 

5 10/4 5 - .9673 .4357 D .44 
5 10/4 5 - .7299 .2885 P .50 
6 8/4 9 50 1.4361 .3144 P .51 
6 8/4 9 50 1.8665 . 4661 D .44 
6 8/4 9 1 0 1.2710 .3011 P .47 
6 8/4 9 5 1.2243 .3235 P .42 
6 8/4 9 1 1.0373 .3226 P .35 

T i n t e r v a l s of temperature between two o p t i m i z a t i o n s , at P=1at. 
fo r problem 6. in problem 5, T and P v a r i e d . 
P= p r i m a l D= dual Form.= f o r m u l a t i o n cond.= c o n d i t i o n s . 
St= (R.O time / SA. t i m e ) / n. of P, T c o n d i t i o n s ) 

We w i l l use the same comparison c r i t e r i a mentioned b e f o r e . 

The s i z e of the problem i s s m a l l e r f o r s e n s i t i v i t y a n a l y s i s , 

s i n c e i t s o l v e s a system of l i n e a r equations .instead of using a 

n o n l i n e a r o p t i m i z a t i o n method. S e n s i t i v i t y a n a l y s i s needs 

e i t h e r more time to i n t r o d u c e data, or more programming, because 

of the s t o i c h i o m e t r i c c o e f f i c i e n t s f o r the r e a c t i o n s . Re-

o p t i m i z a t i o n i s e a s i e r to program : i t i s only q u e s t i o n of 

adding a DO loop to the o p t i m i z a t i o n program. 

Let us take a look at the accuracy of the s e n s i t i v i t y 
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a n a l y s i s . We w i l l r e f e r the composition values obtained by 

s e n s i t i v i t y a n a l y s i s to the values c a l c u l a t e d by the 

o p t i m i z a t i o n procedure. The l a t t e r compare w e l l with the 

l i t e r a t u r e . We w i l l d e f i n e now % r e l a t i v e e r r o r of sp e c i e s j 

as: 

% € j = { ( 6 j * - 6j 1 ) / 6j *} 100 6.1 

Where, 

%€: : percentage e r r o r i n the dete r m i n a t i o n with 

s e n s i t i v i t y a n a l y s i s of the number of moles of species j , 

r e f e r r e d to r e - o p t i m i z a t i o n 

6 j 1 : number of moles of s p e c i e s j c a l c u l a t e d by 

s e n s i t i v i t y a n a l y s i s 

6 j * : number of moles of s p e c i e s j c a l c u l a t e d by r e ­

o p t i m i z a t i o n ) 

The values c a l c u l a t e d by r e - o p t i m i z a t i o n are, of course, 

s u b j e c t to e r r o r s . We have d i s c u s s e d i n the p r e v i o u s s e c t i o n 

that the ab s o l u t e e r r o r i n the dete r m i n a t i o n of the molar 

f r a c t i o n s by o p t i m i z a t i o n was around 10~ 6. That means a 

c o n s i d e r a b l e r e l a t i v e e r r o r f o r s p e c i e s present as t r a c e s . 

In f i g u r e 1, we p l o t t e d % e r r o r vs v a r i a t i o n of temperature 

fo r problem 6. The s p e c i e s number 4 was present i n small 

q u a n t i t i e s . Changing the temperature 10K introduced an e r r o r of 

18% when using s e n s i t i v i t y a n a l y s i s as compared to a new 



F i g u r e 1. % E r r o r v s . V a r i a t i o n o f T e m p e r a t u r e F o r P r o b l e m 6 
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o p t i m i z a t i o n . I f we c a l c u l a t e the e r r o r f o r a s p e c i e s present 

in g r e a t e r q u a n t i t i e s , ( l i k e the summation of s p e c i e s 4 to 8, 

which corresponds to t o t a l sulphur) the value of the e r r o r w i l l 

be around .2% , s i m i l a r to the u n c e r t a i n t y of our method. For a 

v a r i a t i o n of 100K, the e r r o r f o r s p e c i e s 4 i s around 95%, while 

the summation of spe c i e s 4 to 8 only has 4% e r r o r . 

The v a l u e s mentioned above f o r the e r r o r s are v a l i d only f o r 

t h i s s p e c i f i c problem. The f r e e energy c o e f f i c i e n t s vary i n a 

d i f f e r e n t way f o r d i f f e r e n t s p e c i e s i n d i f f e r e n t thermodynamical 

c o n d i t i o n s . However, we can assume that the magnitudes of the 

e r r o r s are more i n f l u e n c e d by the r e l a t i v e importance of the 

sp e c i e s than by the r e l a t i v e changes of the f r e e energy 

c o e f f i c i e n t s . T h i s i s shown i n Table VT-4 . We can see there 

that f o r a s i m i l a r v a r i a t i o n i n the f r e e energy c o e f f i c i e n t s 

(water and S02) the s p e c i e s with lower c o n c e n t r a t i o n (S02) has 

33% e r r o r when determined with s e n s i t i v i t y a n a l y s i s , vs. .2% 

e r r o r f o r the water. D i v i d i n g the temperature v a r i a t i o n i n 

smaller i n t e r v a l s doesn't seem to have great e f f e c t when the 

t o t a l v a r i a t i o n of the fr e e energy c o e f f i c i e n t s i s below 10%. 

It does reduce the e r r o r of S2, which has a t o t a l v a r i a t i o n of 

the Cj of 41.6%. Thus, as f a r as accuracy i s concerned, we 

conclude that the s e n s i t i v i t y a n a l y s i s method should only be 

used when we are not concerned with the accuracy of the sp e c i e s 

present i n small q u a n t i t i t e s , and when the v a r i a t i o n of the f r e e 

energy c o e f f i c i e n t s are of the order of 10% or l e s s . 

Table VI-3 shows the execution times f o r s o l v i n g problems 5 

and 6 with the four programs COMP1, COMP2, COMP3 and COMP4 
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Table VI"4. S e n s i t i v i t y a n a l y s i s . E f f e c t of the number of 
temperature increments on the composition, f o r a t o t a l v a r i a t i o n 
of temperature of 50 K. Problem 6* 

Spec i e s x j % C j * * % E r r o r (re j f e r r e d to opt: imization) Spec i e s x j % C j * * 

1 i n c . 5 i n c . 10 i n c . 

N2 
H20 
S02 
S2 

.64411 

.34154 

.00049 
2.e-8 

.54 
8.1 
7.9 
41 .6 

.0001 

.23 
33.0 
85.2 

.00001 

.24 
30.4 
74. 1 

.00001 

.12 
30.2 
73.0 

* Bonsu, 1981 
% C j * * % v a r i a t i o n of the f r e e energy c o e f f i c i e n t s f o r each 

s p e c i e s , from 410 K ( b a s i s ) to 460 K. 
i n c . i n c r e m e n t s of temperature. Xj= molar f r a c t i o n at e q u i l i b r i u m 

d e s c r i b e d i n the previous s e c t i o n . To t r y to account f o r the 

d i f f e r e n t number of P and T c o n d i t i o n s c o n s i d e r e d i n the two 

problems, we d e f i n e d a r a t i o St as f o l l o w s : 

St = (time f o r R.O. / time f o r S.A)/ n.of P,T c o n d i t i o n s 

where R.O. stands for r e - o p t i m i z a t i o n , and S.A. f o r s e n s i t i v i t y 

a n a l y s i s . 

The St r a t i o g i v e s a rough idea of the r e l a t i v e speed of the 

s e n s i t i v i t y a n a l y s i s method . We can thus say, very 

approximately, that the s e n s i t i v i t y a n a l y s i s method i s between 

35% to 50% f a s t e r than the o p t i m i z a t i o n per number of d i f f e r e n t 

thermodynamic c o n d i t i o n s . 

For problem 6 we see that the times f o r the p r i m a l r e -
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o p t i m i z a t i o n s are sh o r t e r f o r sm a l l e r v a r i a t i o n s of temperature. 

T h i s can be e x p l a i n e d by the f a c t t h a t , f o r any new 

o p t i m i z a t i o n , GRG uses the p r e v i o u s optimal v a l u e s as s t a r t i n g 

points.- When the temperature d i f f e r e n c e s are s m a l l , the optimal 

values vary very l i t t l e . 

So f a r , the d e c i s i o n of i n c o r p o r a t i n g a subroutine to perform 

s e n s i t i v i t y a n a l y s i s to the f i n a l program, w i l l depend on a 

trade between l o s s of accuracy and gain of speed. The l o s s of 

accuracy seems q u i t e b i g , and i t i s not e a s i l y p r e d i c t e d . The 

gain of speed i s not very i m p r e s s i v e . 

F i n a l l y , one comment. So f a r we used the s e n s i t i v i t y 

a n a l y s i s r o u t i n e with s t o i c h i o m e t r i c c o e f f i c i e n t s provided by 

the user. To in c r e a s e the s i m p l i c i t y of the program to the 

user, the code should a l s o have a subroutine to c a l c u l a t e these 

s t o i c h i o m e t r i c c o e f f i c i e n t s , u s i n g the f i r s t o p t i m i z a t i o n 

r e s u l t s to chose the key components. But t h i s c a l c u l a t i o n w i l l 

need some time; and the d i f f e r e n c e s i n CPU times between 

s e n s i t i v i t y a n a l y s i s and r e - o p t i m i z a t i o n w i l l be s m a l l e r . 

E f f e c t s of i n c o r p o r a t i n g new s p e c i e s to a chemical e q u i l i b r i u m 

model 

Problems 6B and 7 are c l o s e l y r e l a t e d . Problem 6B d e s c r i b e s 

the o x i d a t i o n of H2S i n a Claus r e a c t o r with 100% s t o i c h i o m e t r i c 

a i r . E i g h t s p e c i e s are assumed to be present at e q u i l i b r i u m . 

Problem 7 i s the. same case, with 24 sp e c i e s p r e s e n t . The 

r e s u l t s of s o l v i n g the p r i m a l of both problems are shown i n 

Appendix B f o r one value of temperature and Pressure. The 
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r e s u l t s agree with the l i t e r a t u r e in each case. A l s o , the 

t h e o r e t i c a l composition was checked a g a i n s t experimental values 

i n the l i t e r a t u r e . We observe the same d i s c r e p a n c i e s , s i n c e our 

problems agree with t h e i r t h e o r e t i c a l v a l u e s . 

Both problems, 7 and 6B, have the same q u a n t i t y of pr i m a l 

Table VT-5. E f f e c t s of adding new sp e c i e s to a model i n 
the o b j e c t i v e f u n c t i o n and in the t o t a l number of moles, f o r 
d i f f e r e n t temperatures. 

Temperature 

(K) 

Problem 6b Problem 7 Temperature 

(K) G/RT ' X. G/RT X. 

600 247.24402 6. 09281 247.17428 6. 08926 
650 241.51526 6. 1 3869 241.46424 6. 1 3431 
700 236.86576 .6. 20562 236.83423 6. 20244 
750 233.11049 6. 30549 233.10187 6. 31 000 
800 230.12108 6. 44289 230.13785 6. 45207 

X : T o t a l number of moles (1 phase, gas) 
G/RT: O b j e c t i v e f u n c t i o n . 

v a r i a b l e s . So, f o r the pri m a l problems, we have the same 

o b j e c t i v e f u n c t i o n but the c o n s t r a i n t w i l l have t r i p l e d the 

number of terms. For the dual problem, there are three times 

more v a r i a b l e s i n problem 7, but we w i l l have the same number of 

c o n s t r a i n t s as bef o r e . We a l r e a d y mentioned that GRG f a i l e d 

when t r y i n g t h i s dual problem. 

Table VT-5 shows how the o b j e c t i v e f u n c t i o n and the t o t a l 

number of moles change with temperature f o r both problems. We 



109 

Table VI-6. Adding new sp e c i e s to a model: e f f e c t s on the 
execution time 

Problem Execution time * Execution time* 
(sec.) Tolerances= E-6 (sec.) Tolerances= E-10 

6b 1.6384 
7 4.2558 5.9839 
6 1.4361 
7 mod** 4.1532-

* Over 9 d i f f e r e n t P and T c o n d i t i o n s 
** Problem 7 was m o d i f i e d to have the same amount of elements 

as problem 6. 

can see that the values are s i m i l a r ; the o b j e c t i v e f u n c t i o n of 

problem 7 i s smal l e r than that of problem 6B. F i g u r e s 2 and 3 

present the v a r i a t i o n with T of the composition of the two 

problems at a range of temperatures. By watching the two 

f i g u r e s , we can see that the s p e c i e s present in bigger 

q u a n t i t i e s remain in approximately the same composition i n both 

cases. The main d i f f e r e n c e s arose from the s u l f u r compounds. 

I t i s not only a q u e s t i o n of not i n c l u d i n g s p e c i e s ; the free 

energy c o e f f i c i e n t s f o r S4 was d i f f e r e n t i n the two examples. 

The r e s t of the s p e c i e s were not important i n the range of 

temperatures c o n s i d e r e d . The computation times f o r nine 

d i f f e r e n t values of P and T are presented i n t a b l e VI-6. The 

execution time for the problem with 24 s p e c i e s i s 30% higher 

than f o r the problem with 8 s p e c i e s , based on a "per 

o p t i m i z a t i o n " b a s i s . When s o l v i n g problem 7 on the same 

c o n d i t i o n s as above, but i n c r e a s i n g the accuracy of the pri m a l 





F i g u r e 3. C o m p o s i t i o n vs. Temperature For Problem 7 

T C K ) 



1 12 

Table VI-7. Adding new s p e c i e s to a model: e f f e c t s on the 
composition. Problems 6 and 7, same i n i t i a l composition, T=600K 
and P=1 atm. 

Spec i e s Molar f r a c t i o n s Spec i e s Molar f r a c t ions Spec i e s 

Prob. 6 Prob.7 

Spec i e s 

Prob.6 Prob.7 

S02 .0112133 .0116286 H2 - .0000069 
H2S .0224051 .0232480 H - E-1 9 
H20 .3173050 .3163954 SO - E-1 1 
S2 .0003625 .0003916 OH - E-20 
S4 .0000480 E-22 S03 - E-1 3 
S6 .0057975 .0034403 SN - E-1 9 
S8 .0040892 .0040944 S20 - .0000425 
N2 ..6387804 .6387978 NO - E-22 
NH3 - E-1 0 S3 - .0000425 
S - E-1 5 S5 - .0003127 
SH - E-1 2 S7 - .0016156 
0 - 0 02 - 0 

prob. 6 : problem 6 of Appendix B. 
prob. 7 : problem 7 of Appendix B. 

c o n s t r a i n t from 10" 6 to 10 " 1 0 , the execution time i n c r e a s e d to 

5.9839, 16% more on a per o p t i m i z a t i o n b a s i s . 

Since problem 6 and 6B only d i f f e r e d on the amount of a i r 

used (the B v e c t o r of amount of elements), we compared problem 6 

with problem 7 mo d i f i e d so that the i n i t i a l c o n d i t i o n s of 

.problem 7 were the same as f o r problem 6. The r e s u l t s are in 

t a b l e VI-7 f o r T=600K and P= 1at. We observed the same type of 

v a r i a t i o n s as with problems 6B and 7 (unmodified): s l i g h t l y l e s s 

value of the o b j e c t i v e f u n c t i o n when more s p e c i e s are added to 

the model ; no a p p r e c i a b l e v a r i a t i o n on the composition of the 

s p e c i e s present i n g r e a t e r amounts. 
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CHAPTER V I I : CONCLUSIONS AND RECOMMENDATIONS 

Conclusio n s 

When s o l v i n g the chemical e q u i l i b r i u m problem with the 

computer code G e n e r a l i z e d Reduced Gr a d i e n t , we found: 

1) GRG cannot so l v e the pr i m a l geometric programming fo r m u l a t i o n 

of the problem d i r e c t l y . E i t h e r a s c a l i n g of the v a r i a b l e s and 

of the o b j e c t i v e f u n c t i o n ,or a l o g a r i t h m i c t r a n s f o r m a t i o n has 

to be performed before using GRG. We found that GRG needs l e s s 

i t e r a t i o n s and f u n c t i o n e v a l u a t i o n s to s o l v e the l o g a r i t h m i c -

transformed problem, than to sol v e the s c a l e d v e r s i o n . We 

worked with the transformed p r i m a l t h e r e a f t e r . 

2) When s o l v i n g the dual geometric programming with GRG, the 

o b j e c t i v e f u n c t i o n needs to be s c a l e d , or the lo g a r i t h m of the 

o b j e c t i v e f u n c t i o n should be minimized. We d i d not f i n d any 

p a r t i c u l a r computational advantage f o r any of the two 

approaches, but we chose the l a t t e r to compare the r e s u l t s to 

those of the transformed p r i m a l . 

3) In both the pri m a l and the dual f o r m u l a t i o n s , the o b j e c t i v e 

f u n c t i o n i s not very s e n s i t i v e to changes i n the v a r i a b l e s . Two 

val u e s of the o b j e c t i v e f u n c t i o n may d i f f e r in t h e i r n i n t h 

s i g n i f i c a n t f i g u r e , yet the v a r i a b l e s d i f f e r i n t h e i r s i x t h 

s i g n i f i c a n t f i g u r e . 
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4) The accuracy of the p r i m a l s o l u t i o n depends mainly on the 

t o l e r a n c e s f o r the c o n s t r a i n t s . At the optimum, each c o n s t r a i n t 

accounts f o r the summation of the molar f r a c t i o n s of each 

s p e c i e s present i n the phase d e s c r i b e d by the c o n s t r a i n t . The 

ab s o l u t e e r r o r of the c o n s t r a i n t equals to the summation of the 

ab s o l u t e e r r o r of each term. Hence any s p e c i e s whose molar 

f r a c t i o n i s smaller than the t o l e r a n c e of the c o n s t r a i n t w i l l be 

su b j e c t to e r r o r s . 

5) The accuracy of the dual v a r i a b l e s depends on the t o l e r a n c e s 

f o r the c o n s t r a i n t s ( c o n s e r v a t i o n of elements) and on the 

accuracy of the t o t a l amount of each element. 

6) GRG so l v e s the pri m a l problem 30% f a s t e r than the d u a l , f o r 

problems with s i x r e a c t i o n s . GRG f a i l e d to so l v e the dual of a 

l a r g e problem, with twenty r e a c t i o n s . Adding new sp e c i e s to a 

model i s more e a s i l y done with the pri m a l f o r m u l a t i o n . The only 

advantage of the dual seems to be that i t i s more easy to 

implement than the p r i m a l . We concluded that the pri m a l i s 

s u p e r i o r to the dual when both are sol v e d with the GRG code. 

7) The method to perform s e n s i t i v i t y a n a l y s i s suggested by 

D i n k e l and Lakshmanan (1977) proved a thousand times slower than 

the method d e r i v e d by R i j c k a e r t (1974). Both methods were t r i e d 

on a chemical e q u i l i b r i u m problem with s i x r e a c t i o n s . We used 

the R i j c k a e r t ' s method from then on. 
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8) S e n s i t i v i t y a n a l y s i s was between 30% to 50% f a s t e r than 

r e o p t i m i z a t i o n , per number of pressure and temperature changes. 

However, the r e s u l t s obtained with s e n s i t i v i t y a n a l y s i s showed 

d i s c r e p a n c i e s when compared to the o p t i m i z a t i o n ones. " The 

e r r o r s were more s e r i o u s f o r the l e s s important s p e c i e s . ' I t i s 

our o p i n i o n that the computational speed gained with s e n s i t i v i t y 

a n a l y s i s does not compensate f o r the l o s s of accuracy of the 

r e s u l t s . 

Recommendations 

Based on the c o n c l u s i o n s s t a t e d above, i t i s recommended the 

use of the code COMP1, l i s t e d on Appendix C. I t i s a p r i m a l 

based code, and i t does not perform s e n s i t i v i t y a n a l y s i s . 

I t i s a l s o recommended that f u r t h e r r e s e a r c h should be 

c a r r i e d on with a b e t t e r implementation of GRG f o r h a n d l i n g 

l a r g e dual problems. Murtagh and Saunders (1978) c l a i m that 

t h e i r code MINOS can do so. 
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NOMENCLATURE 

aj = A c t i v i t y of s p e c i e s j . 

A = Augmented exponents matrix. 

AA = Exponents matrix. A A i j atom grams of element i are 
present i n one mole of s p e c i e s j . 

Bi = Amount of atom grams of element i . 

Cj = Free energy c o e f f i c i e n t of sp e c i e s j . For gases, 
Cj = >j°(T)/RT + In P/1 atm. ; f o r condensed phases, 
Cj = /4.j»(T,P)/RT 

cj = Geometric program (GP) c o e f f i c i e n t s ; Cj = exp(-Cj) 

D = Number of independent chemical r e a c t i o n s . 

g 0 = Primal GP o b j e c t i v e f u n c t i o n . 

g K = Primal GP c o n s t r a i n t s . 

G = Gibbs f r e e energy. Gj = Molar Gibbs f r e e energy. 

h = O b j e c t i v e f u n c t i o n of the transformed p r i m a l GP. 
h = In g G = G/RT 

I = I d e n t i t y matrix. 

J = Hessian of In v. 

K = Number of phases at e q u i l i b r i u m . 

Kd = E q u i l i b r i u m constant f o r r e a c t i o n d. 

M = Number of elements. 

N = Number of chemical s p e c i e s at e q u i l i b r i u m . 

P = Pressure. 

rj = Extent of r e a c t i o n d. 

R = U n i v e r s a l gas con s t a n t . 

Sj = Vector of Gordon and McBride c o e f f i c i e n t s f o r 
sp e c i e s j 

t; = Primal v a r i a b l e a s o c i a t e d with element i 

T = Temperature. 

Ujd = S t o i c h i o m e t r i c c o e f f i c i e n t of sp e c i e s j f o r 
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r e a c t i o n d. 

v = Dual GP o b j e c t i v e f u n c t i o n . -In v = G/RT 

Xj = Molar f r a c t i o n of s p e c i e s j at e q u i l i b r i u m . 

y = V a r i a b l e of the l i n e a r program approximation to 
the dual GP. 

Zi = Ln-transformed p r i m a l v a r i a b l e . Z = l n t 

GREEK LETTERS: 

a = Parameter i n uni d i m e n s i o n a l search f o r GRG. 

6j = Number of moles of s p e c i e s j . 

6 j 0 = I n i t i a l number of moles of sp e c i e s j . 

%e = P e r c e n t u a l e r r o r of the composition determined by 
s e n s i t i v i t y a n a l y s i s , r e f e r r e d to r e - o p t i m i z a t i o n . 

\ K= T o t a l number of moles i n phase k. 

tij - Chemical p o t e n t i a l of s p e c i e s j in phase k. 
0 = Reference chemical p o t e n t i a l . 

FlK = Lagrange m u l t i p l i e r f o r the k-primal c o n s t r a i n t . 
When s o l v i n g the transformed p r i m a l problem, 

n * = X-K 

e. = V a r i a b l e of the l i n e a r program approximation to 
the dual GP. I t accounts f o r n o n - l i n e a r i t i e s . 
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PROGRAM JOTA 
C 
C 
C 
C THIS PROGRAM PERFORMS SENSITIVITY ANALYSIS BY INVERTING THE 
C JACOBIAN MATRIX 
C 
C 

IMPLICIT REAL*8 (A-H,0-Z) 
DIMENSION DA(20,20),DT(20,20),I PERM(40) 
DIMENSION U(20,20),DELT(20),C(20),C1(20),SUM(20,20) 
DIMENSION SUMA(20),SUMB(20),SUMC(20) 

C READ THE DATA 
READ (5,10) N,NDIMA,NDIMT 

10 FORMAT (313) 
READ (5,20) N1,N2,OPTIM 

20 FORMAT ( 213,F10.0) 
READ (5,30) (DELT(I),1=1,N2) 

30 FORMAT (6F10.0) 
READ (5,40) (C(I),1=1,N2) 

40 FORMAT (6F10.0) 
READ (5,50) (C1(I),1=1,N2) 

50 FORMAT (6F10.0) 
READ (5,60) ((U(I,J),J=1,N2),1=1,N) 

60 FORMAT (12F4.0) 
C FORM THE J MATRIX 

DO 9 I=1,N 
DO 9 J=1,N 
SUM(I,J)=0.D0 
DO 8 K=1,N1 

8 SUM(I,J)=SUM(I,J)+U(I,K)*U(J,K)/DELT(K) 
WRITE (6,200) I,J,SUM(I,J) 

200 FORMAT (' I=',I4,' J=',I4,' SUM(I,J)=',G20.12) 
DA(I,J)=SUM(I,J)-U(I,N2)*U(J,N2)/DELT(N2) 

9 CONTINUE 
C WRITE THE J MATRIX 

WRITE (6,70) 
7 0 FORMAT (' MATRIX J') 

WRITE (6,80)((DA(I,j),J=1,N),1=1,N) 
80 FORMAT (1X,6G14.6) 
C CALCULATE THE TIME 

TIME=SCLOCK(0.0) 
C CALCULATE THE INVERSE 

CALL INV(N,NDIMA,DA,I PERM,NDIMT,DT,DDET,JEXP,DCOND) 
C WRITE THE EXECUTION TIME 

WRITE (6,900) TIME 
900 FORMAT (' EXECUTION TIME IS',F10.5) 

IF (DDET) 1,2,1 
C WRITE THE INVERSE 
1 WRITE (6,90) DCOND 
90 FORMAT (' COND NO.=',G20.12,' INVERSE') 

WRITE (6,100)((DT(I,J),J=1,N),1=1,N) 
100 FORMAT (1X,6G14.6) 
C CALCULATE THE NEW OPTIMUM 



SUMD=0.DO 
DO 3 1=1,N1 

3 SUMD=SUMD+DELT(I)*(C1(I)-C(l)) 
OPTIM=OPTIM+SUMD 

C WRITE THE NEW OPTIMUM 
WRITE (6,120) OPTIM 

120 FORMAT (' NEW OPTIM.=',6G14.6) 
C CALCULATE THE NEW SOLUTION 

DO 12 1=1,N2 
SUMC(I)=0.D0 
DO 11 L=1,N 
SUMA(L)=0.D0 
DO 21 K=1,N 
SUMB(K)=0.D0 
DO 22 J=1,N1 

22 SUMB(K)=SUMB(K)+U(K,J)*(C1(J)-C(J)) 
21 SUMA(L)=SUMA(L)+DT(L,K)* SUMB(K) 
11 SUMC(I)=SUMC(I)+SUMA(L)*U(L,I) 
12 DELT(I)=DELT(I)+SUMC(I) 
C WRITE THE NEW SOLUTION 

WRITE (6,130) 
130 FORMAT (' NEW SOLUTION') 

WRITE (6,140) (DELT(I),1=1,N2) 
140 FORMAT (1X,6G14.6) 

STOP 
2 WRITE (6,110) 
110 FORMAT (' INVERSION FAILED') 

STOP 
END 
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Program NPLUSK 
C 
C 
C 
C THIS PROGRAM PERFORMS SENSITIVITY ANALYSIS BY SOLVING A 
C SYSTEM OF LINEAR EQUATIONS 
C 
c 

IMPLICIT REAL*8 (A-H,0~Z) 
DIMENSION DA(12,12), DT(12,12), DB(12), DX(12), 
1 DRZ(12), IPERM(24), A(12,12), DELT(12) 
DIMENSION C(12), C I ( 1 2 ) r U(12,12), SUM(12),V(12) 
READ (5,10) N1,K,M 

10 FORMAT (313) 
READ (5,20) N,NDIMAT,N2 

20 FORMAT (313) 
DEPS=1.D-14 

C READ IN DATA TO FORM THE (N1+KXN1+K) MATRIX 
READ (5,30) ((A(I,J),J=1,N),1=1,M) 

30 FORMAT (12F4.0) 
READ (5,40) (DELT(I),1=1 , N ) 

40 FORMAT (6F10.0) 
READ (5,50) (C(I),1=1,N) 

50 FORMAT (6F10.0) 
READ (5,60) (C1(I),I=1,N) 

60 FORMAT (6F10.0) 
READ (5,70) ((U(I,J),J=1,N),1=1,N2) 

70 FORMAT (12F4.0) 
NRHS=1 
ITMAX=14 

C FORM THE FINAL MATRIX 
C FIRST THE NORMALITY CONDITION 

DA(1,1)=1.DO 
DO 1 J=2,N 

1 DA(1,J)=0.D0 
C NOW THE ORTHOGONALITY COND. 

DO 2 1=1,M 
DO 2 J=1 ,N 
L= 1 + 1 

2 DA(L,J)=A(I,J) 
C NOW,SUMMATION OF NUMBER OF MOLES 

DO 4 1=1,2 
L=I+M+1 
DA(L,1)=0.D0 
DO 5 J=2,N1 

5 DA(L,J)=1.D0 
6 DA(L,N)=-1.DO 
4 CONTINUE 
C NOW, THE EQUILIBRIUM CONDITIONS 

DO 7 1=1,N2 
DO 7 J=1,N 
L=I+M+1+K 

7 DA(L,J)=U(I,J)/DELT(J) 
C NOW CALCULATE THE RIGHT HAND SIDE VECTOR 
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M3=1+M+K 
DO 8 1 = 1 R M 3 

8 D B ( I ) = 0 . D 0 
DO 11 1 = 1 , N 2 
SUM(I)=0.D0 
DO 9 J = 1 , N 1 

9 S U M ( I ) = S U M ( I ) + U ( l , J ) * ( C 1 ( J ) - C ( J ) ) 
L=I+M+1+K 

11 D B ( L ) = S U M ( I ) 
C W R I T E T H E DA M A T R I X AND T H E DB V E C T O R 

W R I T E ( 6 , 8 5 0 ) 
8 5 0 FORMAT (' M A T R I X OF C O E F F I C I E N T S * ) 

W R I T E ( 6 , 9 0 ) ( ( D A ( I , J ) , J = 1 , N ) , 1 = 1 , N ) 
90 FORMAT ( 1 X , 6 G 1 2 . 6 ) 

W R I T E ( 6 , 9 5 0 ) 
9 5 0 FORMAT (' B V E C T O R ' ) 

W R I T E ( 6 , 1 0 0 ) ( D B ( I ) , 1 = 1 , N ) 
100 FORMAT ( 1 X , 6 G 1 2 . 6 ) 
C C A L C U L A T E T H E T I M E OF E X E C U T I O N 

T I M E = S C L O C K ( 0 . 0 ) 
C S O L V E T H E S Y S T E M 

C A L L D S L I M P ( D A , D T , D B , D X , D R Z , I P E R M , N , N D I M A T , D E P S , N R H S , I T M A X ) 
T I M E = S C L O C K ( T I M E ) 

C W R I T E T H E E X E C U T I O N T I M E 
W R I T E ( 6 , 8 0 0 ) T I M E 

8 0 0 FORMAT (' E X E C U T I O N T I M E I S ' , F 1 0 . 5 ) 
C W R I T E OUT R E S U L T S 

W R I T E (6,goo-
goo FORMAT (' V A R I A T I O N OF NUMBER OF M O L E S ' ) 

W R I T E ( 6 , 1 1 0 ) ( D X ( I ) , 1 = 1 , N ) 
1 1 0 FORMAT ( 1 X , 6 G 1 4 . 6 ) 
C C A L C U L A T E T H E NEW NUMBER OF M O L E S 

DO 15 I = 1 , N 
15 V ( I ) = D X ( I ) + D E L T ( l ) 

W R I T E ( 6 , 1 2 0 ) 
1 2 0 FORMAT (' S O L U T I O N ' ) 

W R I T E ( 6 , 1 3 0 ) ( V ( I ) , 1 = 1 , N ) 
13 0 FORMAT ( 1 X , 6 G 1 4 . 6 ) 

S T O P 
E N D 
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Program C0MP1 
C 
C 
C THIS PROGRAM SOLVES THE PRIMAL GP FOR THE CHEMICAL EQUILIBRIUM 
C PROBLEM. IT CALLS SUBROUTINE LIPSU2 TO GET A FIRST DUAL POINT 
C FOR THE OPTIMIZATION. THEN IT CALLS SUBROUTINE SINGV WHICH 
C CALCULATES THE FIRST PRIMAL STARTING POINT. SUBROUTINES GRGIN, 
C GRG2 AND GRGEG, FROM UBC,SOLVE THE OPTIMIZATION PROBLEM. 
C SUBROUTINE GCOMP CALCULATES THE OBJECTIVE FUNCTION AND THE 
C CONSTRAINTS, AND IS CALLED FROM GRG. THE PROCEDURE IS 
C REPEATED FOR DIFFERENT TEMPERATURES AND PRESSURES. 
C SUBROUTINE FREEN CALCULATES THE FREE ENERGY COEFFICIENTS 
C (G/RT), USING THE DATA FROM GORDON AND MC. BRIDE 
C 
C 
C 

IMPLICIT REAL*8 (A-H fO-Z) 
LOGICAL*1 BLANK /' '/, SEMIC /';'/ -

C DIMENSION STATMENTS . LABELLED COMMONS ARE USED. 
C N=NUMBER OF CHEMICAL SPECIES +1 
C M=NUMBER OF CHEMICAL ELEMENTS (ATOMS) + 1 
C K=NUMBER OF PHASES .. 
C NN= NUMBER OF DIFFERENT TEMP. AND PRESSURE CONDITIONS. 
C NE=1 IF THE FREE ENERGY COEFFICIENTS ARE ALREADY AVAILABLE. 
C IF THEY ARE TO BE CALCULATED BY THE GORDON AND MC.BRIDE 
C COEFFICIENTS, USE ANY OTHER INTEGER. 
C NF=1 IF THE DUAL STARTING POINT ROUTINE IS TO BE USED. 
C OTHERWISE, EQUAL NF TO ANY OTHER INTEGER, AND PROVIDE 
C A DUAL STARTING POINT. DON'T FORGETTHAT 
C THE FIRST DUAL VARIABLE IS DUMMY AND EQUAL TO 1.D0. 
C A(I,J),I=1,M,J=1,N = EXPONENTS MATRIX. A(1,J) CORRESPONDS 
C TO THE NORMALITY CONDITION 
C C(JJ,L),JJ=1,N, L=1,NN FREE ENERGY COEFFICIENTS OF SPECIES J J 
C T,P=EQUILIBRIUM TEMPERATURE AND PRESSURE 
C X(I)=Z(I,1),I=1,M-1 TRANSFORMED PRIMAL VARIABLES.FOR 
C SUBROUTINE LIPSU2,X(J),J=1,N+1, CORRESPOND TO THE VARIABLES 
C LINEAR PROGRAM. 
C XNEW(J),J=2,N =NUMBER OF MOLES OF SPECIES J ; XNEW(1)=1.D0 
C IS A DUMMY VARIABLE TO ACCOUNT FOR THE NORMALITY CONDITION. 
C XMF(J)=M0LAR FRACTION OF SPECIES J,.J=2, 3, N. 
C XLAG(I),I=1,K = LAGRANGE MULTIPLIER OF CONSTRAINT I 
C S(J,L),J=1,N-1,L=1,7 COEFFICIENTS FOR GORDON & MC.BRIDE 
C POLYNOMIALS TO CALCULATE THE FREE ENERGY COEFFICIENTS. 
C B(I),I=2,M = VECTOR OF AMOUNTS OF ELEMENT I.B(1)=1, DUMMY. 
C F = OBJECTIVE FUNCTION. 

COMMON/AX/A(10,30) 
COMMON/BX/B(10) 
COMMON/CX/C(30, 10) 
COMMON/DX/N,M/HX/K,NN/GX/F/XL/L 
COMMON/EX/T(30),P(30) 
COMMON/FX/X(31)/ZX/Z(10,5) 
DIMENSION XMF(30),VL(30),VH(30) 
COMMON/XNE/XNEW( 3 1 ) /SX/'S (30,10) 
DIMENSION XLAG(10),SUMC(30) 
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C 
C READ IN DATA 
C 

READ(5,10) N,M,K,NN,NE,NF 
10 FORMAT (615) 
C 
C CALCULATE FREE ENERGY COEFFICIENTS BY GORDON AND MC.BRIDE 
C 

IF (NE.EQ.1) GO TO 13 
SX =550.DO 

C 
C CALCULATE THE TEMPERATURE AT FIXED INTERVALS. 
C 

DO 20 L=1,NN 
SX=SX +5.D1 
T(L)=SX 

20 P(L)=1.D0 
N1=N-1 
READ (5,40) ((S(I,L),L=1,7),I=1,N1) 

40 FORMAT (5G13.7) 
CALL FREEN 
GO TO 400 

13 READ (5,311) (T(L),L=1,NN) 
C 
C IF THE C(I,L) MATRIX IS AVAILABLE BY OTHER SOURCES THAN 
C GORDON & MC.BRIDE, READ NOW TEMPERATURE, PRESSURE, AND THE 
C C(I,L) MATRIX. 
C 

READ (5,311) (P(L),L=1,NN) 
READ (5,311) ((C(I,L),L=1,NN),I=1,N) 

311 FORMAT (5F10.0) 
C 
C READ THE EXPONENT MATRIX AND THE B VECTOR. 
C 
400 READ (5,50) ((A(I,J),J=1,N),I=1,M) 
50 FORMAT (9F4.0) 

READ (5,60) (B(I),1=1,M) 
60 FORMAT (5F10.0) 
C 
C PUT NF=1 IF YOU WANT THE PROGRAM TO CALCULATE A DUAL STARTING 
C POINT. OTHERWISE, IT WILL NOW READ YOUR FIRST DUAL GUESS. 
C 

IF (NF.EQ.1) GO TO 500 
READ (5,511) (XNEW(J),J=1,N) 

511 FORMAT (5F10.0) 
TIME=SCLOCK(0.) 
GO TO 600 

500 TIME=SCLOCK(0.) 
C 
C CALLS SUBROUTINE LIPSUB2.IT PROVIDES A STARTING POINT FOR THE 
C DUAL PROBLEM. 

CALL LIPSU2 
XNEW(1)=1.D0 
DO 100 J=2,N 
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100 XNEW(J) = X(J - 1) + X(N) 
WRITE (6,12) (XNEW(J),J=1,N) 

12 FORMAT (' FIRST DUAL POINT 1/1X,6G16.8) 
C 
C SUBROUTINE SINGV WILL NOW TRANSFORM THE DUAL VARIABLES INTO 
C PRIMAL ONES. 
C 
600 CALL SINGV 

M1=M-1 
WRITE (6,16) (Z(I,1) ,1 = 1 ,M1) 

16 FORMAT (' FIRST PRIMAL STARTING POINT' ,4G16.8 ) 
DO 11 1=1,M1 

11 X(I)=Z(I,1) 
DO 202 L=1,NN 
CALL FTNCMD('ASSIGN 5=-DATA;') 
CALL FTNCMD ('ASSIGN 7=*SINK*;') 

C OPTIMIZATION IS PERFORMED FOR NN DIFFERENT P AND T CONDITIONS 
C A SCRATCH FILE IS CREATED TO WRITE DOWN.THE DATA NEEDED FOR 
C THE UBC SUBROUTINES GRGIN AND GRG TO PERFORM THE OPTIMIZATION 
C 
C FIRST ARE THE CONTROL CARDS 
C 

IG=0.D0 
WRITE (5,15) Ml,K,IG 

15 FORMAT (316) 
C 
C NOW WRITE THE LOWER BOUNDS OF THE VARIABLES.WE ADD -30 TO THE 
C PRIMAL STARTING POINT. 
C 

WRITE (5,25) 
25 FORMAT ('LBV=') 

DO 115 1=1,M1 
115 VL(I)=X(I)-3.D1 

WRITE (5,35) (BLANK,I,VL(I),I=1,M1),SEMIC 
35 FORMAT (6(A1,I3,G10.2)) 
C NOW WRITE THE UPPER BOUNDS OF THE VARIABLES.WE SET THEM AS 0.0 
C 

WRITE (5,55) 
55 FORMAT ('UBV=') 

DO 12 5 I=1,M1 
125 VH(I)=0.D0 

WRITE (5,35) (BLANK,I,VH(I),I=1,M1),SEMIC 
C 
C PRIMAL CONSTRAINTS. IF THERE ARE MORE THAN ONE, THE FORMAT 
C SHOULD BE :FORMAT('UBC= 1 I.DO 2 1.D0 K 1.DO ;') 
C 

WRITE (5,66) 
66 FORMAT('UBC= 1 1.DO ;') 

WRITE (5,65) 
65 FORMAT ('QUAD') 
C 
C EPNEWT IS THE TOLERANCE FOR THE PRIMAL CONSTRAINTS.THE ACCURACY 
C OF THE RESULTS IS VERY SENSITIVE TO THIS VALUE. 
C 
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WRITE (5,75) 
75 FORMAT ('EPNEWT=1.D~10') 

WRITE (5,85) 
C 
C EPSTOP IS THE TOLERANCE FOR THE OBJECTIVE FUNCTION 
C 
85 FORMAT ('EPSTOP=1.D-6') 

WRITE (5,95) 
95 FORMAT ('EPSBOUND=1.D-6') 

WRITE (5,105) 
105 FORMAT ('EPSPIV=1.D-6') 

WRITE (5,61) 
C 
C PRINTCTL MAY BE SET AT HIGHER VALUES (UP TO 4) FOR MORE 
C INFORMATION ON THE OPTIMIZATION PROGRESS. 
C 
61 FORMAT (' PRINTCTL=1') 

WRITE (5,107) 
107 FORMAT('X=') 

WRITE (5,109) (X(I) ,1=1,M1) 
109 FORMAT (6G18.6) 

WRITE (5,108) 
108 FORMAT ('OPTIMIZE*/'GO'/'STOP * ) 

REWIND 5 
C NOW GRGIN CAN READ INPUT FROM -DATA;GRG2 AND GRGRES WILL 
C THEIR OUTPUT INTO THE SCRATCH FILE -GRGOUT 

CALL FTNCMD('ASSIGN 6=-GRGOUT;') 
CALL GRGINU1 ,&2) 
CALL GRG2(X,F,&1) 
CALL GRGRES 
DO 22 1=1,M1 

22 Z(I,L)=X(I) 
GO TO 2 

1 WRITE (7,3) 
3 FORMAT (' GRG HAS FAILED') 

GO TO 202 
2 REWIND 6 
C 
C SUBROUTINE SKIP READS THE LAGRANGE MULTIPLIERS FOR EACH PRIMAL 
C CONSTRAINT. THEY ARE THE NEGATIVE OF THE TOTAL NUMBER OF MOLES 
C IN EACH CONSTRAINT. 
C 

CALL SKIPU202) 
READ (6,26) (XLAG(I),I=1,K) 

26 FORMAT (1X,1 OF 13.0) 
WRITE (7,205) T ( L ) , P ( L ) , F 

205 FORMAT ('T(K)=',F10.0,'P(AT)=',F10.0,'OBJ.F=',G16.8) 
WRITE (7,215) 

215 FORMAT (' MOLAR FRACTIONS') 
DO 33 J=2,N 
SUMC(J)=0.D0 
DO 31 1=1,M1 
11=1+1 

31 SUMC(J).= SUMC(J)+A(II , J ) * X ( I ) 



IF (SUMC(J).GE.0.D0) GO TO 34 
R=DEXP(SUMC(J)-C(J,L)) 
GO TO 33 

34 R=0.D0 
33 XMF(J)=R 

WRITE (7 , 235) (XMF(J),J = 2,N) 
235 FORMAT (1X,6G16.8) 

WRITE (7,238) (XLAG(I),I=1,K) 
238 FORMAT (' TOTAL NUMBER OF MOLES',G16.8) 

WRITE (7,239) 
239 FORMAT ('NUMBER OF MOLES') 

DO 237 J=2,N 
237 . XNEW(J)=-XLAG(1)*XMF(J) 

WRITE (7,240) (XNEW(J),J=2,N) 
240 FORMAT (1X,6G16.8) 
202 CONTINUE 
23 TIME=SCLOCK(TIME) 

WRITE (7,19) TIME 
19 FORMAT (' EXECUTION TIME =',F6.4) 

STOP 
END 

C 
C SUBROUTINE LIPSU2 CALCULATES A DUAL STARTING POINT 
C BY APPROXIMATING THE DUAL PROBLEM TO A LINEAR PROGRAM. 
C THE LINEAR PROGRAM ISTHEN SOLVED BY SUBROUTINE 
C LIPSUB FROM UBC. 
C 

SUBROUTINE LIPSU2 
IMPLICIT REAL*8 (A-H,0~Z) 
DIMENSION TABLO(30,30),NVIN(30),NVOUT(30),BBOBJ(20), 
1 UBOBJ(20),BRHS(20),UBRHS(10) 
COMMON/AX/A(10,30) 
COMMON/BX/B(10) 
COMMON/CX/C(30,10)/GX/OPTIM 
COMMON/DX/NVARS,NCONST 
COMMON/FX/X(31) 
N1=NVARS-1 
M1=NCONST-1 
NEQUAL=M1 
MAXIM=0 
IFOBJ=0 
IFRHS=0 
NCOLS=NVARS+1 
NROWS=NCONST+1 

C ZERO THE TABLEAU 
DO 200 J=1,NCOLS 
DO 2 00 1=1,NROWS 

200 TABLO(l,J)=0.D0 
C FIRST ROW IN THE TABLEAU IS THE OBJECTIVE FUNCTION 

SUM=0.D0 
DO 101 J=1,N1 
JJ=J+1 
TABLO(1,J)=C(JJ,1) 

101 SUM=SUM+TABLO(1,J) 



TABLO(1,NVARS)=SUM 
TABLO(2,NVARS)=-1.DO 
TABLO(2,NCOLS)=-.0001 DO 
DO 203 I=2,NCONST 
DO 202 J=1,N1 

202 TABLO(I + 1, J) = A(I, J + 1) 
TABLO(I + 1, NVARS) = 1.DO 

203 TABLO(I + 1, NCOLS) = B ( l ) 
2 60 NLVARS = NVARS 

CALL LIPSUB(TABLO, 30, NCONST, NLVARS, NEQUAL, MAXIM, 
1 IFOBJ, IFRHS, TOL, NVIN, NVOUT,BBOBJ, 
2 UBOBJ, BBRHS, UBRHS, &540) 
NP1=NLVARS+1 
OPTIM =TABLO(1,NP1) 
IF (MAXIM.NE.1) OPTIM=-OPTIM 
DO 12 1=1,NVARS 

12 X(I)=0.D0 
DO 13 I=2,NROWS 
J = NVIN(I) 

13 X(J)=TABL0(I,NP1) 
WRITE (6,320) (X(J),J=1,NVARS) 

320 FORMAT (1X,5G18.6) 
RETURN 

540 WRITE (6,560) 
560 FORMAT ('0DUAL STARTING POINT ROUTINE FAILED') 

DO 580 1 = 1 , NVARS 
580 X(I) = 10.0D0 

RETURN 
END 

C 
C SUBROUTINE GCOMP CALCULATES THE VALUES OF THE OBJECTIVE 
C FUNCTION AND OF THE CONSTRAINTS 
C 

SUBROUTINE GCOMP(G,X) 
IMPLICIT REAL*8 (A~H,0"Z) 
COMMON/AX/A(10,3 0)/BX/B(10)/CX/C(30,10)/DX/N,M/XL/L 
COMMON/HX/K,NN 
DIMENSION G(1),X(1),SUMF(5),XF(30),XMF(30) 
DO 10 I=1,K 
SUMF(I)=0.DO 
DO 20 J=2,N 
XF(J)=0.D0 
DO 30 11 = 2,M 
11=11-1 

30 XF(J)=XF(J)+A(II,J)*X(I1) 
IF (XF(J).GE.0.D0) GO TO 40 
XMF(J)=XF(J)-C(J,L) 
R=DEXP(XMF(J)) 
GO TO 20 

40 R=0.D0 
20 SUMF(I)=SUMF(I)+R 
10 G(I)=SUMF(I) 

SUM=0.D0 
DO 50 J=2,M 



JJ=J-1 
50 SUM=SUM+B(J)*X(JJ) 

G(K+1) = -SUM 
RETURN 
END 

C 
C SUBROUTINE SINGV CALCULATES A FIRST STARTING POINT 
C FOR THE PRIMAL PROBLEM.IT SOLVES AN OVERDETERMINED 
C SYSTEM OF EQUATIONS 'THAT RELATES PRIMAL AND DUAL VARIABLES. 
C THE METHOD USED IS A SINGULAR VALUE DECOMPOSITION. 
C 

SUBROUTINE SINGV 
IMPLICIT REAL*8(A-H fO-Z) 
DIMENSION A(30,30),V(30,30),S(30) 
COMMON/AX/AD(10,30)/CX/C(30,10)/XNE/XNEW(31)/DX/N1,M1 
COMMON/ZX/X(10,5)/HX/K,NN 
NP=1.D0 
N=N1-1 
M=M1-1 
MNP=M+NP 
NDIMAU=30 
NDIMV=30 
DO 10 I=1,N 
11=1+1 
DO 10 J=1,M 
JJ=J+1 

10 A(I,J)=AD(JJ,II) 
SUMX=0.D0 
DO 12 J=2,N1 

12 SUMX=SUMX+XNEW(J) 
DO 11 I=1,N 
11=1+1 
DO 11 J=M1,MNP . 
IF (XNEW(II).LE.O.DO) XNEW(II)=1.D-16 

11 A(I,J)=C(11,1 )+DLOG(XNEW(II))-DLOG(SUMX) 
WRITE (6,14) ((A(I,J),J=1,MNP),1=1,N) 

14 FORMAT (1X,5G18.6) 
CALL DSLSVD(A,S,V,NDIMAU,NDIMV,N,M,NP,&140) 
EPS=1.D-6 
SS=S(1)*EPS 
DO 60 J=1,M 
IF (S(J).LT.SS) GO TO 70 
DO 50 1=1,M 

50 V (I , J) = V (I , J) /S (J) 
60 CONTINUE 

J=M+1 
GO TO 90 

70 WRITE (6,80) ((V(l,K),1=1,M),K=J,M) 
80 FORMAT (1X,4G13.5) 
90 IF (J.GT.M) GO TO 120 

DO 110 K=J,M 
DO 110 1=1,M 

110 V(I,K)=0.D0 
120 MP1=M+1 
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CALL DGMULT(V,A(1,MP1),X,M,M,NP,NDIMV,NDIMAU,10) 
RETURN 

140 WRITE (6,150) 
150 FORMAT (' ERROR RETURN FROM DSLSVD') 

STOP 
END 

C 
C SUBROUTINE SKIP WILL READ THE LAGRANGIAN MULTIPLIERS 
C FOR THE PRIMAL CONSTRAINTS AS PRINTED BY GRG IN THE SCRATCH 
C FILE -GRGOUT. 
C 

SUBROUTINE SKIP(*) 
LOGICAL* 1 RECORDO50) 
INTEGER*2 LEN 
LOGICAL EQCMP 

100 CALL READ(RECORD,LEN,0,LNR,6,&200) 
IF (LEN .LT. 70 .OR. LEN .GT. 75) GO TO 100 
IF (EQCMP (21, RECORD, '0LAGRANGE MULTIPLIERS')) RETURN 
GO TO 100 

200 RETURN 1 
END 

C 
C SUBROUTINE FREEN CALCULATES THE FREE ENERGY PARAMETERS 
C FROM THE GORDON AND MC.BRIDE POLYNOMIALS COEFFICIENTS. 
C 

SUBROUTINE FREEN 
IMPLICIT REAL*8 (A-H,0-Z) 
COMMON/CX/C(30,10)/SX/S(30,10) 
COMMON/DX/N,M/HX/K,NN 
COMMON/EX/T(30),P(30) 
DO 10 L=1,NN 
C(1,L)=0.DO 
N1=N-1 
DO 10 J=1,N1 
JJ=J+1 

10 C(JJ,L)=S(J,1)*(1.D0-DLOG(T(L)))~S(J,2)*T(L)/2.D0-
1 (S(J,3)*T(L)**2.D0)/6.D0 -(S(J,4)*T(L)**3.DO)/1.2D1 
2 -(S(J,5)*T(L)**4.D0)/2.D1+S(J,6)/T(L)-S(J,7) 
3 +DLOG(P ( D ) 
WRITE(6,11) ((C(J,L),J=1,N),L=1,NN) 

11 FORMAT ('MATRIX OF FREE ENERGY COEFICIENTS',/,1X,4F12.7) 
RETURN 
END 
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Program C0MP2 
C 
C 
C 
C THIS PROGRAM SOLVES THE PRIMAL GP FOR THE CHEMICAL EQUILIBRIUM 
C PROBLEM. IT CALLS THE SUBROUTINE LIPSU2 TO GET A FIRST DUAL 
C POINT FOR THE OPTIMIZATION. THEN IT CALLS SUBROUTINE SINGV E 
C WHICH CALCULATES THE CORRESPONDING PRIMAL 
C STARTING POINT. SUBROUTINES GRGIN AND GRG2, FROM UBC, 
C SOLVE THE OPTIMIZATION PROBLEM.SUBROUTINE GCOMP CALCULATES THE 
C OBJECTIVE FUNCTION AND THE CONSTRAINTS, AND IS CALLED FROM GRG. 
C SUBROUTINE FREEN CALCULATES THE FREE ENERGY COEFFICIENTS (G/RT) 
C USING THE DATA FROM GORDON AND MC.BRIDE. 
C A SENSITIVITY ANALYSIS OF THE DUAL VARIABLES IS PERFORMED BY 
C SUBROUTINE NPLUSK 
C 
C 

IMPLICIT REAL*8 (A-H,0-Z) 
LOGICAL*1 BLANK /' '/, SEMIC /';'/ 

C DIMENSION STATMENTS . LABELLED COMMONS ARE USED. 
C N=NUMBER OF CHEMICAL SPECIES +1 
C M=NUMBER OF CHEMICAL ELEMENTS (ATOMS) + 1 
C K=NUMBER OF PHASES 
C NN= NUMBER OF DIFFERENT TEMP. AND PRESSURE CONDITIONS. 
C NE=1 IF THE FREE ENERGY COEFFICIENTS ARE ALREADY AVAILABLE. IF 
C THEY ARE TO BE CALCULATED BY THE GORDON AND MC.BRIDE 
C COEFFICIENTS, USE ANY OTHER INTEGER . 
C NF=1 IF THE DUAL STARTING POINT ROUTINE IS TO BE USED. 
C OTHERWISE, EQUAL NF TO ANY OTHER INTEGER, 
C AND PROVIDE A DUAL STARTING POINT. DON'T FORGETTHAT 
C THE FIRST DUAL VARIABLE IS DUMMY AND EQUAL TO 1.D0. 
C A(l,J),I=1,M,J=1,N = EXPONENTS MATRIX. A(J,1) CORRESPONDS 
C TO THE NORMALITY CONDITION. 
C C(JJ,L),JJ=1,N, L=1,NN FREE ENERGY COEFFICIENTS OF SPECIES J J 
C T,P=EQUILIBRIUM TEMPERATURE AND PRESSURE 
C X(I)=Z(I,1),I=1,M-1 TRANSFORMED PRIMAL VARIABLES. FOR 
C SUBROUTINE LIPSU2,X(J),J=1,N+1, CORRESPOND TO THE VARIABLES OF 
C THE LINEAR PROGRAM. 
C XNEW(J),J=2,N =NUMBER OF MOLES OF SPECIES J ; XNEW(1)=1.D0 IS A 
C DUMMY VARIABLE CORRESPONDING TO THE NORMALITY CONDITION. 
C XMF(J)=M0LAR FRACTION OF SPECIES J 
C XLAG(I),1=1,K = LAGRANGE MULTIPLIER OF CONSTRAINT I 
C S(J,L),J=1,N-1,L=1,7 COEFFICIENTS FOR GORDON & MC.BRIDE 
C POLYNOMIALS 
C U(I,J) 1=1,N-M, J=1,N IS THE MATRIX OF STOICHIOMETRIC COEFFICIE 
C B(I),I=2,M = VECTOR OF AMOUNTS OF ELEMENT I.B(l)=1, DUMMY. 
C F = OBJECTIVE FUNCTION. 

COMMON/AX/A(10,30) 
COMMON/BX/B(10) 
COMMON/CX/C(30, 1 0) 
COMMON/DX/N,M/HX/K,NN/GX/F/XL/L 
COMMON/EX/T(30),P(30) 
COMMON/FX/X(31)/ZX/Z(10,5) 
DIMENSION XMF(30),VL(30),VH(30) 



COMMON/XNE/XNEW(31)/SX/SUMX/SUX/S(30,10)/UX/U(30,30) 
DIMENSION XLAG(10),SUMC(30) 

C 
C READ IN DATA 
C 

READ(5,10) N,M,K,NN,NE,NF 
10 FORMAT (615) 
C 
C CALCULATE FREE ENERGY COEFFICIENTS BY GORDON AND MC.BRIDE 
C 

IF (NE.EQ.1) GO TO 13 
SX =550.DO 

C 
C CALCULATE THE TEMPERATURE AT FIXED INTERVALS. 
C 

DO 20 L=1,NN 
SX=SX +5.D1 
T(L)=SX 

20 P(L)=1.D0 
N1=N-1 
READ (5,40) ((S(I,L),L=1,7),I=1,N1) 

4 0 FORMAT (5G13.7) 
CALL FREEN 
GO TO 400 

13 READ (5,311) (T(L),L=1,NN) 
C 
C IF THE C(I,L) MATRIX IS AVAILABLE BY OTHER SOURCES THAN 
C GORDON & MC.BRIDE, READ NOW TEMPERATURE, PRESSURE, AND THE 
C C(I,L) MATRIX. 
C 

READ (5,311) (P(L),L=1,NN) 
READ (5,311) ((C(I,L),L=1,NN),I=1,N) 

311 FORMAT (5F10.0) 
C 
C READ THE EXPONENT MATRIX AND THE B VECTOR. 
C 
400 READ (5,50) ((A(I,J),J=1,N),I=1,M) 
50 FORMAT (13F4.0) 

READ (5,60) (B(I),1=1,M) 
60 FORMAT (5F10.0) 
C 
C READ THE MATRIX OF STOICHIOMETRIC COEFFICIENTS. 
C 

N2=N-M 
READ (5,70) ((U(I,J),J=1,N),1=1,N2) 

7 0 FORMAT (10F4.0) 
C 
C PUT NF=1 IF YOU WANT THE PROGRAM TO CALCULATE A DUAL STARTING 
C POINT. OTHERWISE, IT WILL NOW READ YOUR FIRST DUAL GUESS. 
C 

IF (NF.EQ.1) GO TO 500 
READ (5,511) (XNEW(J),J=1,N) 

511 FORMAT (5F10.0) 
TIME=SCLOCK(0.) 
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GO TO 600 
500 TIME=SCLOCK(0.) 
C 
C CALLS SUBROUTINE LIPSUB2.IT PROVIDES A STARTING POINT FOR THE 
C DUAL PROBLEM. 

CALL LIPSU2 
XNEW(1)=1.DO 
DO 100 J = 2,N 

100 XNEW(J) = X(J - 1) + X(N) 
WRITE (6,12) (XNEW(J),J=1,N) 

12 FORMAT (' FIRST DUAL POINT'/1X,6G16.8) 
C 
C SUBROUTINE SINGV WILL NOW TRANSFORM THE DUAL VARIABLES INTO 
C PRIMAL ONES. 
C 
600 CALL SINGV 

M1=M-1 
WRITE (6,16) (Z(I,1),1=1,M1) 

16 FORMAT (' FIRST PRIMAL STARTING POINT',4G16.8) 
DO 11 1=1,M1 

11 X(I)=Z(I,1) 
CALL FTNCMD('ASSIGN 5=-DATA;') 
CALL FTNCMD ('ASSIGN 7=*SINK*;*) 

C OPTIMIZATION IS PERFORMED FOR NN DIFFERENT P AND T CONDITIONS 
C A SCRATCH FILE IS CREATED TO WRITE DOWN THE DATA NEEDED FOR THE 
C UBC SUBROUTINES GRGIN AND GRG2 TO PERFORM THE OPTIMIZATION 
C 
C FIRST ARE THE CONTROL CARDS 
C 

IG=0.D0 
WRITE (5,15) M1,K,IG 

15 FORMAT (316) 
C 
C NOW WRITE THE LOWER BOUNDS OF THE VARIABLES.WE ADD -30 TO THE 
C PRIMAL STARTING POINT. 
C 

WRITE (5,25) 
25 FORMAT ('LBV=') 

DO 115 1=1,M1 
115 VL(I)=X(I)-3.D1 

WRITE (5,35) (BLANK,I,VL(I),I=1,M1),SEMIC 
35 FORMAT (6(A1,I3,G10.2)) 
C NOW WRITE THE UPPER BOUNDS OF THE VARIABLES.WE SET THEM AS 0.0 
C 

WRITE (5,55) 
55 FORMAT ('UBV=') 

DO 125 1=1,M1 
125 VH(I)=0.D0 

WRITE (5,35) (BLANK,I,VH(I),I=1,M1),SEMIC 
C 
C PRIMAL CONSTRAINTS. IF THERE ARE MORE THAN ONE, THE FORMAT 
C SHOULD BE : FORMAT('UBC= 1 1.D0 2 1.DO K 1.DO ;') 
C 

WRITE (5,66) 
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66 FORMAT('UBC= 1 1.DO ;') 
WRITE (5,65) 

65 FORMAT ('QUAD') 
C 
C EPNEWT IS THE TOLERANCE FOR THE PRIMAL CONSTRAINTS.THE ACCURACY 
C OF THE RESULTS IS VERY SENSITIVE TO THIS VALUE. 
C 

WRITE (5,75) 
75 FORMAT ('EPNEWT=1.D~10') 

WRITE (5,85) 
C 
C EPSTOP IS THE TOLERANCE FOR THE OBJECTIVE FUNCTION 
C 
85 FORMAT ('EPSTOP=1.D-6') 

WRITE (5,95) 
95 FORMAT ('EPSBOUND=1.D"6') 

WRITE (5,105) 
105 FORMAT ('EPSPIV=1.D-6') 

WRITE (5,61) 
C 
C PRINTCTL MAY BE SET AT HIGHER VALUES (UP TO 4) FOR MORE 
C INFORMATION ON THE PROGRESS OF THE OPTIMIZATION. 
C 
61 FORMAT (' PRINTCTL=1') 

WRITE (5,107) 
107 FORMAT('X=') 

WRITE (5,109) (X(I),1=1,M1) 
109 FORMAT (6G18.6) 

WRITE (5,108) 
108 FORMAT ('OPTIMIZE'/'GO'/'STOP') 

REWIND 5 
C NOW GRGIN CAN READ INPUT FROM -DATA;GRG2 AND GRGRES WILL WRITE 
C THEIR OUTPUTS INTO THE SCRATCH FILE -GRGOUT 

CALL FTNCMD('ASSIGN 6=~GRGOUT;') 
CALL GRGINU1 ,&2) 
CALL GRG2(X,F,&1) " 
CALL GRGRES 
GO TO 2 

1 WRITE (7,3) 
3 FORMAT (' GRG HAS FAILED') 

GO TO 202 
2 REWIND 6 
C 
C SUBROUTINE SKIP READS THE LAGRANGE MULTIPLIERS FOR EACH PRIMAL 
C CONSTRAINT. THEY ARE THE NEGATIVE OF THE TOTAL NUMBER OF 
C MOLES IN EACH CONSTRAINT. 
C 

CALL SKIP(&202) 
READ (6,26) (XLAG(I),1=1,K) 

26 FORMAT (IX,1 OF 13.0) 
WRITE (7,205) T ( L ) , P ( L ) , F 

205 FORMAT ('T(K)=',F10.0,'P(AT)=',F10.0,'OBJ.F=',G16.8) 
WRITE (7,215) 

215 FORMAT (' MOLAR FRACTIONS') 
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DO 33 J=2,N 
SUMC(J)=0.DO­
DO 31 1=1,M1 
11=1+1 

31 SUMC(J)=SUMC(J)+A(II,J)*X(I) 
IF (SUMC(J).GE.O.DO) GO TO 34 
R=DEXP(SUMC(J)-C(J,L)) 
GO TO 33 

34 R=0.D0 
33 XMF(J)=R 

WRITE (7,235) (XMF(J),J = 2,N) 
235 FORMAT (1X,6G16.8) 

WRITE (7,238) (-XLAG(I),I=1,K) 
238 FORMAT (' TOTAL NUMBER OF MOLES 1 ,G16.8) 

WRITE (7,239) 
239 FORMAT ('NUMBER OF MOLES') 

DO 237 J=2,N 
237 XNEW(J)=-XLAG(1)*XMF(J) 

WRITE (7,240) (XNEW(J),J=2,N) 
240 FORMAT (1X,6G16.8) 

XNEW(1)=1.D0 
SUMX=-XLAG(1) 
CALL NPLUSK 
GO TO 23 

23 TIME=SCLOCK(TIME) 
WRITE (7,19) TIME 

19 FORMAT (' EXECUTION TIME =',F6.4) 
STOP 
END 

C 
C SUBROUTINE LIPSU2 CALCULATES A DUAL STARTING POINT APPROXIMATIN 
C THE DUAL PROBLEM TO A LINEAR PROGRAM.THE LINEAR PROGRAM IS 
C SOLVED BY SUBROUTINE LIPSUB FROM UBC. 
C 

SUBROUTINE LIPSU2 
IMPLICIT REAL*8 (A-H,0-Z) 
DIMENSION TABLO(30,30),NVIN(30),NVOUT(30),BBOBJ(20), 
1 UBOBJ(20),BRHS(20),UBRHS(10) 
COMMON/AX/A(10,30) 
COMMON/BX/B(10) 
COMMON/CX/C(30,10)/GX/OPTIM 
COMMON/DX/NVARS,NCONST 
COMMON/FX/X(31) 
N1=NVARS-1 
M1=NCONST-1 
NEQUAL=M1 
MAXIM=0 
IFOBJ=0 
IFRHS=0 
NCOLS=NVARS+1 
NROWS=NCONST+1 

C ZERO THE TABLEAU 
DO 200 J=1,NCOLS 
DO 200 1=1,NROWS 
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200 TABLO(I,J)= 0.DO 
C FIRST ROW IN THE TABLEAU IS THE OBJECTIVE FUNCTION 

SUM=0.D0 
DO 101 J=1,N1 
JJ=J+1 
TABLO(1,J)=C(JJ, 1 ) 

101 SUM=SUM+TABLO(1 , J) 
TABLO(1,NVARS)=SUM 
TABLO(2,NVARS)=-1.DO 
TABLO(2,NCOLS)=-.0001 DO 
DO 203 I=2,NCONST 
DO 202 J=1,N1 

202 TABLO(I + 1, J) = A ( I , J + 1 ) 
TABLO(I + 1, NVARS) = 1.D0 

203 TABLO(I + 1, NCOLS) = B ( l ) 
260 NLVARS = NVARS 

CALL LIPSUB(TABLO, 30, NCONST, NLVARS, NEQUAL, MAXIM, 
1 IFOBJ, IFRHS, TOL, NVIN, NVOUT,BBOBJ, 
2 UBOBJ, BBRHS, UBRHS, &540) 
NP1=NLVARS+1 
OPTIM =TABLO(1,NP1) 
IF (MAXIM.NE.1) OPTIM=-OPTIM 
DO 12 1=1,NVARS 

12 X(I)=0.D0 
DO 13 I=2,NROWS 
J = NVIN(I) 

13 X(J)=TABLO(l,NP1 ) 
WRITE (6,320) (X(J),J=1,NVARS) 

320 FORMAT (1X,5G18.6) 
RETURN 

540 WRITE (6,560) 
560 FORMAT ('0DUAL STARTING POINT ROUTINE FAILED') 

DO 580 I = 1, NVARS 
580 X(I) = 10.0D0 

RETURN 
END 

C 
C SUBROUTINE GCOMP CALCULATES THE VALUES OF THE OBJECTIVE FUNCTIO 
C AND OF THE CONSTRAINTS 
C 

SUBROUTINE GCOMP(G,X) 
IMPLICIT REAL*8 (A-H,0~Z) 
COMMON/AX/A(10,30)/BX/B(10)/CX/C(30,10)/DX/N,M/XL/L 
COMMON/HX/K,NN 
DIMENSION G(1),X(1),SUMF(5),XF(30),XMF(30) 
DO 10 I=1,K 
SUMF(I)=0.D0 
DO 20 J=2,N 
XF(J)=0.D0 
DO 30 11=2,M 
11=11-1 

30 XF(J)=XF(J)+A(II,J)*X(I1) 
IF (XF(J).GE.0.D0) GO TO 40 
XMF(J)=XF(J)-C(J,L) 
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R=DEXP(XMF(J)) 
GO TO 2 0 

40 R=0.D0 
20 SUMF(I)=SUMF(I)+R 
10 G(I)=SUMF(I) 

SUM=0.DO 
DO 50 J=2,M 
JJ=J-1 

50 SUM=SUM+B(J)*X(JJ) 
G(K+1) = -SUM 
RETURN 
END 

C 
C SUBROUTINE SINGV CALCULATES A FIRST STARTING POINT FOR THE PRIM 
C PROBLEM.IT SOLVES AN OVERDETERMINED SYSTEM OF EQUATIONS THAT 
C RELATES PRIMAL AND DUAL VARIABLES. 
C THE METHOD USED IS A SINGULAR VALUE DECOMPOSITION. 
C 

SUBROUTINE SINGV 
IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION A(30,30),V(30,30),S(30) 
COMMON/AX/AD(10,3 0)/CX/C(30,10)/XNE/XNEW(31)/DX/N1 ,M1 
COMMON/ZX/X(10,5)/HX/K,NN 
NP=1.DO 
N=N1-1 
M=M1- 1 
MNP=M+NP 
NDIMAU=30 
NDIMV=30 
DO 10 I = 1 , N 
11=1+1 
DO 10 J=1,M 
JJ=J+1 

10 A(I,J)=AD(JJ,II) 
SUMX=0.D0 
DO 12 J=2,N1 

12 SUMX=SUMX+XNEW(J) 
DO 11 I=1,N 
11=1+1 
DO 11 J=M1,MNP 
IF (XNEW(ll).LE.0.D0) XNEW(11) = 1 .D-16 

11 A(I,J)=C(II,1)+DLOG(XNEW(II))-DLOG(SUMX) 
WRITE (6,14) ((A(I,J),J=1,MNP),1=1,N) 

14 FORMAT (1X,5G18.6) 
CALL DSLSVD(A,S,V,NDIMAU,NDIMV,N,M,NP,£c1 40) 
EPS=1.D-6 
SS=S(1)*EPS 
DO 60 J=1,M 
IF (S(J).LT.SS) GO TO 70 
DO 50 1=1,M 

50 V(I,J)=V(I,J)/S(J) 
60 CONTINUE 

J=M+1 
GO TO 90 
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70 WRITE (6,80) ((V(I,K),1=1,M),K=J,M) 
80 FORMAT (1X,4G13.5) 
90 IF (J.GT.M) GO TO 120 

DO 110 K=J,M 
DO 110 I = 1 , M 

110 V(I,K)=0.D0 
120 MP1=M+1 

CALL DGMULT(V,A(1,MP1),X,M,M,NP,NDIMV,NDIMAU,10) 
RETURN 

140 WRITE (6,150) 
150 FORMAT (' ERROR RETURN FROM DSLSVD') 

STOP 
END 

C 
C SUBROUTINE SKIP WILL READ THE LAGRANGIAN MULTIPLIERS FOR 
C THE PRIMAL CONSTRAINTS AS PRINTED BY GRGEG 
C IN THE SCRATCH FILE -GRGOUT. 
C 

SUBROUTINE SKIP(*) 
LOGICAL*1 RECORDO50) 
INTEGER*2 LEN 
LOGICAL EQCMP 

100 CALL READ(RECORD,LEN,0,LNR,6,&200) 
IF (LEN .LT. 70 .OR. LEN .GT. 75) GO TO 100 
IF (EQCMP (21, RECORD, '0LAGRANGE MULTIPLIERS')) RETURN 
GO TO 100 

200 RETURN 1 
END 

C 
C SUBROUTINE FREEN CALCULATES THE FREE ENERGY PARAMETERS FROM 
C THE GORDON AND MC BRIDE COEFFICIENTS. 
C 

SUBROUTINE FREEN 
IMPLICIT REAL*8 (A-H,0~Z) 
COMMON/CX/C(30,10)/SUX/S(30,10) 
COMMON/DX/N,M/HX/K,NN 
COMMON/EX/T(30),P(30) 
DO 10 L=1,NN 
C(1,L)=0.DO 
N1=N-1 
DO 10 J=1,N1 
JJ=J+1 

10 C(JJ,L)=S(J,1)*(1.D0-DLOG(T(L)))-S(J,2)*T(L)/2.D0~ 
1 (S(J,3)*T(L)**2.D0)/6.D0 -(S(J,4)*T(L)**3.DO)/1.2D1 
2 -(S(J,5)*T(L)**4.D0)/2.D1+S(J,6)/T(L)-S(J,7) 
3 +DLOG(P ( D ) 
WRITE(6,12) 

12 FORMAT ('MATRIX OF FREE ENERGY COEFFICIENTS') 
WRITE(6,11) ((C(J,L),J=1,N),L=1,NN) 

11 FORMAT (1X,4F12.7) 
RETURN 
END 

C 
C SUBROUTINE NPLUSK PERFORMS SENSITIVITY ANALYSIS SOLVING A SYSTE 
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C SYSTEM OF LINEAR EQUATIONS WITH SUBROUTINE DSLIMP(FROM UBC).THE 
C U(I,J) THAT IS , THE STOICHIOMETRIC COEFFICIENTS FOR THE 
C REACTIONS THAT TAKE PLACE, ARE PROVIDED BY THE USER. 
C 

SUBROUTINE NPLUSK 
IMPLICIT REAL*8 (A-H,0~Z) 
COMMON/AX/A(10,3 0)/BX/B(10)/XNE/DELT(31)/UX/U(30,30) 
COMMON/CX/C(30,10)/DX/N1,M/HX/K,NN/EX/T(3 0),P(3 0)/SX/SUMX 
DIMENSION DA(50,50), DT(50,50), DB(50), DX(50), 
1 DRZ(50), IPERMO00) 
DIMENSION SUM(30),V(30),SUMB(30) 
N=N1+K 
NDIMAT=50 
N2=N1-M 
DEPS=1.D-8 
ITMAX=0 

C NOW WE NEED TO FORM THE (N1+KXN1+K) MATRIX 
DO 83 1=1,N 
DO 83 J=1,N 

83 DA(I,J)=0.D0 
C NORMALITY AND ORTHOGONALITY CONDITIONS 

DA(1,1)=1.D0 
DO 84 1=2,M 
DO 84 J=2,N1 
DA(I,1)=-B(l) 

84 DA(I,J)=A(I,J) 
C NOW, SUMMATION OF NUMBER OF MOLES 

DO 4 I=1,K 
LL=I+M 
DO 5 J=2,N1 

5 DA(LL,J)=1.DO 
4 DA(LL,N)=-1.DO 
C NOW, EQUILIBRIUM CONDITIONS 

DO 8 1=1,N2 
SUMB(I)=0.D0 
DO 7 J=1,N1 
LL=M+K+I 
DA(LL,J)=U(I,J)/DELT(J) 

7 SUMB(I)=SUMB(I)+U(I,J) 
8 DA(LL,N)=SUMB(I)/SUMX 
C NOW CALCULATE THE RIGHT HAND SIDE VECTOR 

DO 95 L=2,NN 
M3= M+K 
DO 10 1=1,M3 

10 DB(I)=0.D0 
DO 11 1=1,N2 
SUM(I)=0.D0 
DO 9 J=1,N1 

9 SUM(I)=SUM(I)-U(l,J)*(C(J,L)-C(J, 1 )) 
LL=I+M+K 

11 DB(LL)=SUM(I) 
NRHS=L-1 

C SOLVE THE SYSTEM 
CALL DSLIMP (DA, DT,DB,DX,DRZ , I PERM, N , NDIMAT, DEPS ,-NRHS , ITMAX) 



C WRITE OUT RESULTS 
WRITE (7,900) 

900 FORMAT (' VARIATION OF NUMBER OF MOLES') 
WRITE (7,110) (DX(I),1=1,N) 

110 FORMAT (1X,6G14.6) 
C CALCULATE THE NEW NUMBER OF MOLES 

DO 15 I=1,N 
15 V(I)=DX(I)+DELT(l ) 

W=P(L) 
Z=T(L) 
WRITE (7,120) W,Z 

120 FORMAT (' P=',F10.0,' T(KELVIN) = ',F10.0,1X,'SOLUTION * ) 
WRITE (7,130) (V(I),I=1,N) 

130 FORMAT (1X,6G16.8) 
95 CONTINUE 

RETURN 
END 
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Program COMP3 
C 
C 
C 
C THIS PROGRAM SOLVES THE DUAL G.P. FOR THE CHEMICAL EQUILIBRIUM 
C PROBLEM. IT CALLS THE SUBROUTINE LIPSU2 TO GET A FIRST POINT 
C FOR THE OPTIMIZATION. THEN IT CALLS SUBROUTINES GRGIN AND GRG2 
C WHICH SOLVE THE PROBLEM ITSELF.SUBROUTINE GCOMP CALCULATES THE 
C OBJECTIVE FUNCTION AND THE CONSTRAINTS, AND IS CALLED FROM 
C SUBROUTINE GRG2.SUBROUTINES GRGIN AND GRG2 ARE FROM UBC. 
C THE PROCEDURE IS REPEATED FOR DIFFERENT TEMPERATURES AND 
C PRESSURES. 
C SUBROUTINE FREEN CALCULATES THE FREE ENERGY COEFFICIENTS (G/RT) 
C USING THE DATA FROM GORDON & MC.BRIDE 
C 
c 

IMPLICIT REAL*8 (A-H ,0-Z) 
LOGICAL*1 BLANK /» */, SEMIC /';'/ 

C DIMENSION STATMENTS . LABELLED COMMONS ARE USED. 
C N=NUMBER OF CHEMICAL SPECIES +1 
C M=NUMBER OF CHEMICAL ELEMENTS (ATOMS) + 1 
C K=NUMBER OF PHASES 
C NN= NUMBER OF DIFFERENT TEMP. AND PRESSURE CONDITIONS. 
C NE=1 IF THE FREE ENERGY COEFFICIENTS AT TEMPERATURE T ARE 
C AVAILABLE. IF THEY HAVE TO BE CALCULATED BY 
C THE GORDON AND MC.BRIDE POLYNOMIALS, SET NE EQUAL TO 
C ANY INTEGER DIFFERENT THAN ONE. 
C NF=1 IF THE PROGRAM HAS TO PROVIDE A FIRST STARTING POINT. 
C IF YOU PROVIDE THE FIRST STARTING POINT, SET NF EQUAL TO 
C ANY OTHER INTEGER. 
C A(I,J),1=1,M,J=1,N = EXPONENTS MATRIX.A(1,1)=1 CORRESPONDS 
C TO THE NORMALITY CONDITION. 
C C ( J , L ) , J=1,N, L=1,NN = FREE ENERGY COEFFICIENTS OF SPECIES J 
C AT T(L) ,P(L) .SET C ( 1 , D = 0 . 
C T,P=EQUILIBRIUM TEMPERATURE AND PRESSURE. 
C XNEW(J),J=2,N = NUMBER OF MOLES OF SPECIES J AT EQUILIBRIUM. 
C FOR F=1, XNEW =1 (DUMMY SPECIES CORRESPONDING TO THE NORMALITY 
C CONDITION) 
C X(J),J=1,N = FOR SUBROUTINE LIPSU2, CORRESPONDS TO THE LINEAR 
C PROGRAM VARIABLES. FOR GRG, DUAL VARIABLES, EQUAL TO XNEW(j). 
C XMF(J),J=2,N MOLAR FRACTION OF SPECIES J 
C S(J,L) J=1,N-1, L=1,7 = COEFFICIENTS FOR GORDON AND MC.BRIDE 
C POLYNOMIALS FOR SPECIES J+1. 
C B(I),I=2,M VECTOR OF AMOUNTS OF ELEMENT I, THAT ARE CONSERVED. 
C B(1)=1, DUMMY. 
C F= OBJECTIVE FUNCTION. 
C 
c 

COMMON/AX/A(10,30) 
COMMON/BX/B(10) 
COMMON/CX/C(30, 10) 
COMMON/DX/N,M/HX/K,NN/GX/F/XL/L 
COMMON/EX/T(30),P(30)/SX/S(30,10) 
COMMON/FX/X(31) 
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DIMENSION XMF(30),H(30),Q(30) 
DIMENSION XNEW(31) 

C 
C READ IN DATA 
C 

READ(5,10) N,M,K,NN,NE,NF 
10 FORMAT (615) 
C . :, K 
C CALCULATE FREE ENERGY COEFFICIENTS BY GORDON AND MC.BRIDE 
C 

IF (NE.EQ.1) GO TO 13 
C 
C CALCULATE THE TEMPERATURE AT FIXED INTERVALS. 
C 

SX=55.D1 
DO 20 L=1,NN 
SX=SX+50.D0 
T(L)=SX 

20 P(L)=1.DO 
N1=N-1 
READ (5,40) ((S(I,L),L=1,7),I=1,N1) 

40 FORMAT (5G13.7) 
CALL FREEN 
GO TO 400 

C 
C IF THE C(I,L) MATRIX IS AVAILABLE BY OTHER SOURCES OTHER 
C THAN GORDON AND MC.BRIDE, READ TEMPERATURES, PRESSURES, & 
C THE C(I,L) MATRIX. 
C 
13 READ (5,311) (T(L),L=1,NN) 

READ (5,311) (P(L),L=1,NN) 
READ (5,311) ((C(I,L),L=1 ,NN),I=1,N) 

311 FORMAT (5F10.0) 
C 
C READ THE EXPONENT MATRIX AND THE B VECTOR 
C 
400 READ (5,50) ((A(I,J),J=1,N),1=1,M) 
50 FORMAT (13F4.0) 

READ (5,60) (B(I),1=1,M) 
60 FORMAT (5F10.0) 

IF (NF.EQ.1) GO TO 500 
C 
C IF YOU HAVE A GOOD STARTING POINT, THE PROGRAM SHOULD READ IT N 
C OTHERWISE, IT CALCULATES ITS OWN STARTING POINT. 
C 

READ (5,510) (XNEW(J),J=1,N) 
510 FORMAT (5F10.0) 

TIME=SCLOCK(0.) 
GO TO 600 

500 TIME=SCLOCK(0.) 
C CALLS SUBROUTINE LIPSUB2.IT PROVIDES A STARTING POINT FOR THE 
C OPTIMIZATION ROUTINE. 

CALL LIPSU2 
XNEW(1)=1.D0 
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DO 100 J=2,N 
100 XNEW(J) = X ( J - 1) + X(N) 

WRITE (6,12) (XNEW(J),J=1,N) 
12 FORMAT (' FIRST STARTING POINT'/1X,6G16.8) 

DO 200 L=1,NN 
C OPTIMIZATION IS PERFORMED FOR NN DIFFERENT P AND T CONDITIONS 
C A SCRATCH FILE IS CREATED TO WRITE DOWN THE DATA NEEDED FOR THE 
C UBC SUBROUTINES GRGIN AND GRG2 TO PERFORM THE OPTIMIZATION 

CALL FTNCMD('ASSIGN 5=~DATA;') 
C 
C FIRST COME THE CONTROL CARDS. 
C 

WRITE (5,15) N,M,M 
15 FORMAT (316) 
C 
C NOW WRITE THE LOWER BOUNDS FOR THE VARIABLES. 
C 

WRITE (5,25) 
25 FORMAT ('LBV=') 

DO 115 I=1,N 
115 H(l)=1.D-60 

WRITE (5,35) (BLANK,I,H(l),I=1,N),SEMIC 
35 FORMAT (6(A1,1 3,G10.2)) 
C 
C NOW, THE UPPER BOUND FOR THE VARIABLES. 
C 

WRITE (5,55) 
55 FORMAT ('UBV=') 

DO 125 1=1,N 
125 Q(I)=40.D0 

WRITE (5,35) (BLANK,I,Q(l),I=1,N),SEMIC 
WRITE (5,65) 

65 FORMAT ('QUAD') 
C 
C EPNEWT IS THE TOLERANCE FOR THE CONSTRAINTS. 
C 

WRITE (5,75) 
7 5 FORMAT ('EPNEWT=1.D-6') 
C 
C EPSTOP IS THE TOLERANCE FOR THE OBJECTIVE FUNCTION. 
C 

WRITE (5,85) 
85 FORMAT ('EPSTOP=1.D-6') 

WRITE (5,95) 
95 FORMAT ('EPSBOUND=1.D-6') 
C 
C EPSPiV SHOULD BE OF THE ORDER OF THE LOWER BOUNDARY. 
C 

WRITE (5,105) 
105 FORMAT ('EPSPIV=1.D-16') 
C 
C PRINTCTL MAY BE SET AT HIGHER VALUES (UP TO 4) FOR MORE 
C INFORMATION ON THE PROGRESS OF THE OPTIMIZATION. IF 'NOECHO' 
C IS WRITEN ON FILE -DATA JUST BEFORE THE CONTROL.CARDS, AND 
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C IF PRINTCTL =0, NO OUTPUT IS WRITTEN FROM GRG. 
C 

WRITE (5,61) 
61 FORMAT (' PRINTCTL=1 1) 

DO 101 I=1,N 
101 X(I)=XNEW(I) 

WRITE (5,107) 
107 FORMAT(' X= ') 

WRITE (5,109) (X(I),I=1,N) 
109 FORMAT (6G18.6) 

WRITE (5,108) 
108 FORMAT ( 1OPTIMIZE 1/'GO'/'STOP') 

REWIND 5 
C NOW GRGIN CAN READ INPUT FROM -DATA;GRG WILL WRITE ITS OUTPUT 
C INTO THE SCRATCH FILE -GRGOUT. 

CALL GRGINU1 ,&2) 
CALL GRG2(XNEW,F,&1) 
GO TO 2 

1 WRITE (6,3) 
3 FORMAT (' GRG HAS FAILED') 
2 WRITE (6,205) T ( L ) , P ( L ) , F 
205 FORMAT ('T(K)=',F10.0,'P(AT)=',F10.0,'OBJ.F=',G16.8) 

WRITE (6,215) 
215 FORMAT ('NUMBER OF MOLES') 

WRITE (6,225)(XNEW(I),1=1,N) 
225 FORMAT (1X,6G16.8) 

SUM=0.D0 
DO 8 J=2,N 

8 SUM= SUM+XNEW(J) 
WRITE (6,235) SUM 

235 FORMAT (' TOTAL NUMBER OF MOLES=',G16.8) 
DO 9 J=2,N 

9 XMF(J)=XNEW(J)/SUM 
WRITE (6,245) (XMF(J),J = 2,N) 

245 FORMAT (1X,' MOLAR FRACTIONS',1X,6G16.8) 
200 CONTINUE 

GO TO 23 
23 TIME=SCLOCK(TIME) 

WRITE (6,19) TIME 
19 FORMAT (' EXECUTION TIME =',F6.4) 

STOP 
END 

C 
C SUBROUTINE LIPSU2 CALCULATES A STARTING POINT APPROXIMATING THE 
C DUAL PROBLEM TO A LINEAR PROGRAM. THE LINEAR PROGRAM IS SOLVED 
C BY SUBROUTINE LIPSUB FROM UBC. 
C 

• SUBROUTINE LIPSU2 
IMPLICIT REAL*8 (A-H,0"Z) 
DIMENSION TABLO(30,30),NVIN(30),NVOUT(30),BBOBJ(20), 
1 UBOBJ(20),BRHS(20),UBRHS(10) 
COMMON/AX/A(10,30) 
COMMON/BX/B( 1 0) 
COMMON/CX/C(30,10)/GX/OPTIM 
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COMMON/DX/NVARS,NCONST 
COMMON/FX/X(31) 
N1=NVARS-1 
M1=NCONST-1 
NEQUAL=M1 
MAXIM=0 
IFOBJ=0 
IFRHS=0 
NCOLS=NVARS+1 
NROWS=NCONST+1 

C ZERO THE TABLEAU 
DO 200 J=1,NCOLS 
DO 200 1=1,NROWS 

200 TABLO(I,J) = 0.DO 
C FIRST ROW IN THE TABLEAU IS THE OBJECTIVE FUNCTION 

SUM=0.D0 
DO 101 J=1,N1 

. JJ=J+1 
TABLO(1,J)=C(JJ,1) 

101 SUM= SUM+TABLO(1 ,J) 
TABLO(1,NVARS)=SUM 
TABLO(2,NVARS)=~1.DO 
TABLO(2,NCOLS)=-.0001DO 
DO 203 1=2,NCONST 
DO 202 J=1,N1 

202 TABLO(I + 1, J) = A ( l , J + 1) 
TABLO(I + 1, NVARS) = 1.D0 

203 TABLO(I + 1, NCOLS) = B ( l ) 
260 NLVARS = NVARS 

CALL LIPSUB(TABLO, 30, NCONST, NLVARS, NEQUAL, MAXIM, 
1 IFOBJ, IFRHS, TOL, NVIN, NVOUT,BBOBJ, 
2 UBOBJ, BBRHS, UBRHS, &540) 
NP1=NLVARS+1 
OPTIM =TABLO(1,NP1) 
IF (MAXIM.NE.1) OPTIM=-OPTIM 
DO 12 1=1,NVARS 

12 X(I)=0.D0 
DO 13 I=2,NROWS 
J = NVIN(I) 

13 X(J)=TABL0(I,NP1) 
WRITE (6,320) (X(J),J=1,NVARS) 

320 FORMAT (1X,5G18.6) 
RETURN 

540 WRITE (6,560) 
560 FORMAT (' STARTING POINT ROUTINE FAILED') 

DO 580 1 = 1 , NVARS 
580 X(I) = 10.0D0 

RETURN 
END 

C 
C SUBROUTINE GCOMP CALCULATES THE VALUES OF THE OBJECTIVE 
C FUNCTION AND OF THE CONSTRAINTS. 
C 

SUBROUTINE GCOMP(G,X) 
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IMPLICIT REAL*8 (A-H,0~Z) 
COMMON/AX/A(10,30)/BX/B(10)/CX/C(30,10)/DX/N,M/XL/L 
DIMENSION G(1),X(1),SUM(30) 
DO 20 1=1,M 
SUM(I)=0.D0 
DO 10 J=1,N 
IF (A(I,J) .LE. O.DO) X(J)=0.D0 

10 SUM(I)=SUM(I)+A(l,J)*X(J) 
20 G(I)=SUM(I)-B(l) 

M1=M+1 
DELT=0.DO 
DO 30 1=2,N 

30 DELT=DELT+X(I) 
SUMAC DO 
DO 40 1=1,N 
DLX = -1.E50 
IF (X(I) .GT. 0.0D0) DLX = DLOG(X(l)) 

40 SUMA=SUMA+X(I )*(DLX + C ( I , D ) 
DLD = -1.E40 
IF (DELT .GT. 0.0D0) DLD = DLOG(DELT) 
G(M1)=SUMA-DELT*DLD 
RETURN 
END 

C 
C SUBROUTINE FREEN CALCULATES FREE ENERGY PARAMETERS 
C 

SUBROUTINE FREEN 
IMPLICIT REAL*8 (A-H,0"Z) 
COMMON/CX/C(30,10)/SX/S(30,10)/DX/N,M/HX/K,NN 
COMMON/EX/T(30),P(30) 
DO 10 L=1,NN 
C(1,L)=0.D0 
N1=N-1 
DO 10 J=1,N1 
JJ=J+1 

10 C(JJ,L)=S(J,1)*(1.D0-DLOG(T(L)))-S(J,2)*T(L)/2.D0-
1 (S(J,3)*T(L)**2.D0)/6.D0-(S(J,4)*T(L)**3.D0)/1.2D1 
2 -(S(J,5)*T(L)**4.D0)/2.D1+S(J,6)/T(L)-S(J,7) 
3 +DLOG(P(D) 
WRITE (6,7) 

7 FORMAT (' MATRIX OF FREE ENERGY COEFFICIENTS') 
WRITE(6,11) ((C(J,L),J=1,N),L=1,NN) 

11 FORMAT (1X,4F12.7) 
RETURN 
END 



APPENDIX B: EXAMPLES 



154 

PROBLEM 1: HYDRAZINE COMBUSTION Passy and Wilde,1968 

Species = 10 Elements = 3 Phases = 1 

G/RT = 47.8907 (1) Temperature= 3500 K 
G/RT = 47.8907 (2) Pressure= 51.2 atm. 

i Elements Bi Zi (1) Zi (2) 

1 H 2.0 -9. 78896 -9.78903 
2 O 1 .0 -15 .2128 -15.2127 
3 N 1 .0 -13 .1000 -13.1000 

j Spec i e s cj 6 j (1 ) 6 j (2) 

2 H -6 .089 4.06 E-2 3.78 E-2 
3 H2 -17 . 1 64 1 . 48 E-1 1 .47 E-1 
4 H20 -34 .054 7.83 E-1 7.85 E-1 
5 N -5 .914 1 .41 E-3 1 . 24 E-3 
6 N2 -24 .721 4.85 E- 1 4.86 E-1 
7 NH -14 .986 6.93 E-4 6.06 E-4 
8 NO -24 .100 2.72 E-2 2.43 E-2 
9 O -10 .708 1 .79 E-2 1.81 E-2 
1 0 02 -26 .662 3.73 E-2 3.80 E-2 
1 1 OH -22 . 1 79 9.69 E-2 9.74 E-2 

T o t a l number of moles = 1 . 638 (1) 
T o t a l number of moles = 1 . 63799 (2) 
Summation of molar f r a c t i o n s at optimum (1) = 0.995586 
Summation of molar f r a c t i o n s at optimum (2) = 1.000001 

NOTES: 
(1) = Passy and Wilde, 1968 
(2) = T h i s t h e s i s 
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PROBLEM 2 : METHANE AND WATER REACTION Perry, 1968 

Species = 5 

G/RT = 79.3605 (1) 
G/RT = 79.3605 (2) 

Elements = 3 Phases = 1 

Temperature = 1095 K 
Pressure = 1 atm. 

Elements Bi Zi ( 1 ) Zi(2) 

1 
2 
3 

C 
H 
0 

2.0 
14.0 
3.0 

-24.9739 
-0.7922 
-0.2007 

-24.9738 
-0.7922 
-0.2007 

Spec i e s Cj 6 j ( D 6 j ( 2 

2 
3 
4 
5 
6 

CO 
C02 
H20 
H2 
CH4 

-24.025 
-47.413 
-23.067 
0.0 
2.0847 

51 74 
3107 
861 2 
7942 
, 1 722 

,5174 
,31 07 
,861 3 
,7943 
, 1 722 

X. T o t a l number of moles = 8.6558 ( 1 ) 
V T o t a l number of moles = 8.6559 (2) 
Summation of molar f r a c t i o n s at optimum 
Summation of molar f r a c t i o n s at optimum 

1.0000 (1) 
1.0000 (2) 

Notes: 
(1) = Perry,1968 
(2) = T h i s t h e s i s 



PROBLEM 3 : WATER GAS REACTION D i n k e l and Lakshmanan,1975 

Species = 4 Elements = 3 Phases = 1 

G/RT = 90.4788 (1) 
G/RT = 90.4789 (2) 

Temperature = 1000 K 
Pressure = 1 atm. 

Elements B i Zi (1) Zi (2) 

C 
0 
H 

1 .0 
2.0 
2.0 

N.A 
N.A 
N.A 

-5.31206 
-33.4888 
-9.09497 

Spec i e s Cj 6 j (1) 6 j (2) 

2 
3 
4 
5 

CO 
H20 
C02 
H2 

•37.4239 
•50.3023 
•70.8924 
•1 6.7936 

.505025 

.505025 

.494975 

.494975 

505044 
505088 
494978 
494978 

X T o t a l number of moles = 3.000000 (1) 
X T o t a l number of moles = 3.000088 (2) 
Summation of molar f r a c t i o n s at optimum 
Summation of molar f r a c t i o n s at optimum 

1.000000 (1) 
1.000031 (2) 

Notes: 
(1) = D i n k e l and Lakshmanan, 1975 
(2) = T h i s t h e s i s . 



157 

PROBLEM 4 : RESPIRATORY SYSTEM Dembo, 1976 

Species =31 

G/RT = (1) 
G/RT = 90.4789 (2) 

Elements =12 Phases = 3 

Temperature = N.A. 
Pressure = N.A. 

T h i s problem was solved with the untransformed pr i m a l 
v a r i a b l e s t , s c a l e d as in the r e f e r e n c e . 

Elements B i s c a l e d t i (1) s c a l e d t i 

1 
2 
3 
4 
5 
6 
7 
8 
9 
1 0 
1 1 
1 2 

02 
CO 2 
N2 
H+ 
OH-
C l -
Na + 
K+ 
HB1-
HPp-
HPr-
Z (cha 

4, 
4, 

rge) 

0013317 
0022709 
0024855 
67 
671973 
008140 
008092 
005 
000909 
00088 
001 19 
0 

2.517968 
2.539194 
7.657035 
1.221926 

467072 
291600 
283088 
781697 

1.787073 
2.001670 

496106 
449689 

6, 
6, 

508494. 
525456 
664300 
1 93585 
645168 

1.314099 
4.384049 
2.651293 
1.761015 
2.017308 

487580 
408977 

6, 
6, 

k j Species Cj 6 j (1) 6 j ( 2 ) 

2 02 -10.89 4.46 E-3 4.40 E-3 
3 C02 - 7.69 1 .83 E-3 1.81 E-3 
4 N2 -11.49 2.47 E-2 2.45 E-2 
5 H20 -36.44 2.02 E-3 2.00 E-3 
6 02 0 7.32 E-5 7.05 E-5 
7 C02 0 7.37 E-4 7.10 E-4 
8 N2 0 2.22 E-4 2.15 E-4 
9 H+ 0 2.24 E-8 3.35 E-8 
10 OH- 0 3.43 E-7 2.15 E-7 
1 1 CL- 0 5.83 E-2 5.69 E-2 
1 2 Na + 0 8.09 E-2 1.23 E-1 
1 3 H20 -39.23 2.89 E+1 2.80 E+1 
1 4 HC03- -21 .20 1 .40 E-2 8.74 E-3 
15 H2C03- 0 6.72 E-21 6.48 E-21 
16 C03- 6.25 2.18 E-5 8.80 E-6 
1 7 HPp- 0 8.75 E-3 5.67 E-3 
18 02 0 4.52 E-5 4.73 E-5 
19 C02 0 4.55 E-4 4.76 E-4 
20 N2 0 1 .37 E-4 1 .44 E-4 
21 H+ 0 2.13 E-8 2.25 E-8 
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PROBLEM 4 : RESPIRATORY SYSTEM Continued 

k j Spec i e s Cj 6 j (1) 6 j (2) 

3 22 OH- 0 1 .38 E-7 1 .44 E-7 
23 C l - 0 2.34 E-2 2.48 E-2 
24 K+ 0 5.00 E-2 5.00 E-2 
25 H20 -39.23 1 .78 E+1 1 .87 E+1 
26 HC03- -21.20 5.64 E-3 5.86 E-3 
27 H2C03 0 4.15 E-21 4.35 E-21 
28 C03- 6.25 5.69 E-6 5.89 E-6 
29 HB1 0 3.10 E-3 3.31 E-3 
30 HB102- -16.23 8.74 E-3 9.34 E-3 
31 HPr- . 0 1 .20 E-2 1 .22 E-2 

X, T o t a l number of moles, phase 1 = N.A. (1) 
X ^ T o t a l number of moles, phase 2 = N.A. (1) 
X ^ T o t a l number of moles, phase 3 = N.A. (1) 
X, T o t a l number of moles, phase 1 = .032700 (2) 
X 2 T o t a l number of moles, phase 2 = 28.1013 (2) 
X 3 T o t a l number of moles, phase 3 = 15.8586 (2) 
Summation of molar f r a c t i o n s , phase 1 = 1.000000 (2) 
Summation of molar f r a c t i o n s , phase 2 = 1.000014 (2) 
Summation of molar f r a c t i o n s , phase 3 = .999991 (2) 

Notes: 
(1) = Dembo, 1976 
(2) = T h i s t h e s i s 
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PROBLEM 5 : COMBUSTION OF PROPANE (1) 

Species =10 

G/RT = 777.6387 ( 1 ) 
G/RT = 777.6387 (2) 

Elements = 4 Phases 1 

Temperature = 2200 K 
Pressure = 40 atm. 

Elements Bi Zi (1) Z i (2) 

1 H 8.0 N.A. -11.4153 
2 C 3.0 N.A. -20.1267 
3 O 10.0 N.A. -15.8052 
4 N 40.0 N.A. -11.6971 

j Spec i e s cj 6 j (1) 6 j 

2 H2 -15.6191 .0200735 .0204434 
3 H -.7824 .0006540 .0006811 
4 OH -19.7527 .0154000 .0152673 
5 H20 -36.7180 3.9718994 3.971582 
6 CO -30 .1221 .0815971 .0819268 
7 C02 -49.5104 2.9184028 2.9180737 
8 N2 -23.0912 19.9866573 19.986533 
9 NO -20.5868 .0266857 .0269337 
10 02 -24.9310 .0335845 .0338415 
1 1 O -4.7912 .0004428 .000459 

X. T o t a l number of moles = 27.0553973 (1) 
X T o t a l number of moles = 27.057600 (2) 
Summation of molar f r a c t i o n s at optimum = 1.000001 (2) 

Notes: 
(1) = D i n k e l and Lakshmanan, 1977 
(2) = T h i s t h e s i s 
N.A. = Not a v a i l a b l e 
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PROBLEM 6 : CLAUS FURNACE 1 Bonsu, 1981 

Species = 8 Elements = 4 Phases = 1 

G/RT = N.A. (1) Temperature = 800K 
G/RT = 110.48998 (2) Pressure = 1 atm. 

i Elements Bi Z i (1) Zi (2) 

1 S 0.3 N. A. -7.01247 
2 0 1.0 N. A. -36.5171 
3 H 2.0 N. A. -12.6496 
4 N 3.760 N. A. -12.3856 

j Spec i e s Cj X j (1) x j (; 
2 S02 -76.38437 .02568 .02565 
3 H2S -29.34294 .05136 .05139 
4 H20 -60.55412 .28304 .28304 
5 S2 -9.51304 0.01098 0.01098 
6 S4 -19.09567 0.00013 0.00013 
7 S6 -33. 14049 .00013 .00013 
8 S8 -43.41504 .00000 .00000 
9 N2 -24.30711 .62868 .62869 

X. T o t a l number of moles at e q u i l i b r i u m = N.A. (1) 
X T o t a l number of moles at e q u i l i b r i u m = 2.99003 (2) 
Summation of molar f r a c t i o n s at optimum = 1.00001 (1) 
Summation of molar f r a c t i o n s at optimum = 1.000001 (2) 

Notes: 
(1) = Bonsu, 1981 
(2) = T h i s t h e s i s . 
N.A. = Not a v a i l a b l e . 

The r e f e r e n c e g i v e s the composition in molar f r a c t i o n s . 
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PROBLEM 6B :CLAUS FURNACE 1 M c G r e g o r , 1978 

Species = 8 Elements = 4 " Phases = 1 

G/RT = N.A. (1) Temperature = 800K 
G/RT = 230.12109 (2) Pressure = 1 atm. 

Elements Bi Zi (1) Zi (2) 

1 S 2.0 N.A. -6.28329 
2 0 2.0 N.A. -36.6006 
3 H 4.0 N.A. -12.7332 
4 N 3.76 N.A. -12.4229 

Spec i e s Cj Xj (1) Xj (2) 

2 
3 
4 
5 
6 
7 
8 
9 

S02 
H2S 
H20 
S2 
H2 
S6 
S8 
N2 

•76. 
•29. 
•60, 
-9, 
-16, 
-32, 
-43, 
-24, 

38437 
34294 
55412 
51 304 
96621 
48436 
75302 
3071 1 

0455 
0908 
2192 
0483 
0002 
0112 
001 1 
5833 

04505 
09009 
21922 
04783 
00020 
,01130 
,00120 
,5831 1 

X. T o t a l number of moles at e q u i l i b r i u m = N.A. (1) 
X. T o t a l number of moles at e q u i l i b r i u m ^ 6.44320 (2) 
Summation of molar f r a c t i o n s at e q u i l i b r i u m = 1.0001 (1) 
Summation of molar f r a c t i o n s at e q u i l i b r i u m ^ 1.000001 (2) 

Notes: 
(1) McGregor, 1978 
(2) T h i s t h e s i s . 
The r e f e r e n c e g i v e s the composition i n molar f r a c t i o n s . 
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PROBLEM 7 : CLAUS FURNACE 2 Bennett,1979 

Species =24 Elements = 4 

G/RT = N.A. (1) 

G/RT = 230.13785 

Phases = 1 

Temperature = 800K 

Pressure = 1 atm. ) 

i Elements Bi Zi (1 ) Zi (2) 

1 S 2.0 N.A. -6.28617 
2 0 4.0 N.A. -36.6064 
3 H 4.0 N.A. -12.7318 
4 N 7.52 N.A. -12.4236 

j Spec i e s Cj Xj (1) Xj (2) 

2 S02 -76.38437 . 4440 E-1 
3 H2S -29.34294 .9010 E-1 
4 H20 -60.55412 .21 97 E 0 
5 S2 -9.51304 N.A. .4692 E-1 
6 S4 21.72258 .4424 E-20 
7 S6 -32.48436 .5339 E-2 
8 S8 -43.75302 .14 50 E-2 
9 N2 -24.30711 .5827 E 0 
1 0 NH3 -31.83038 .6922 E-8 
1 1 S 20.62205 .2060 E-1 1 
1 2 SH -2.09771 .4484 E-7 
1 3 H2 -16.96626 .2040 E-3 
1 4 H 18.08661 . 41 28 E-1 3 
1 5 SO -27.24001 . 1 593 E-6 
1 6 HO -17.51132 . 1 506 E-1 3 
1 7 S03 -92.84698 .7925 E- 1 0 
18 SN 11.90983 .5036 E-1 3 
19 S20 -42.68584 .1514 E-2 
20 NO -13.05837 .2386 E-1 5 
21 S3 -13.37118 .41 39 E-2 
22 S5 -24.89094 . 1 445 E-2 
23 S7 -37.89094 .2186 E-2 
24 0 -17. 17544 .4394 E-23 
25 02 -25.98145 . 1983 E-22 

X T o t a l number of moles at e q u i l i b r i u m = 6 . 4 5 0 0 (1) (3) 
X T o t a l number of moles at e q u i l i b r i u m = 6 . 4 5 2 0 7 ( 2 ) 
Summation of molar f r a c t i o n s at e q u i l i b r i u m = N.A. (1) 
summation of molar f r a c t i o n s at equilibrium=1 . 0 0 0 0 0 01 (2) 
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PROBLEM 7 : CLAUS FURNACE 2 Continued 

Notes: 
(1) = Bennett, 1979 
(2) = T h i s t h e s i s . 
(3) = C a l c u l a t e d from Table 6-1 , p.141 ,Bennett,1979 

Moles of product formed at 800 K from 100 moles of SH2 
238 moles of a i r : 

Species Moles of product (1) Moles of product (2) 

H2 
H2S 
S02 
N2 
H20 
Sj 

.06 .010 
29. 1 6 
1 4.54 

187.91 
70.46 
19.52 

29.063 
14.323 

187.976 
70.864 
1 9.821 

Others 
T o t a l 

.85 
322.50 

.545 
322.602 

No t e s * 
(1) Table 6-1, p. 141 , Bennett, 1979 
(2) T h i s t h e s i s . 


