
DESIGN OF DECOUPLING CONTROL AND TIME-DELAY 

COMPENSATION FOR A CFSTR 

By 

L I A N G C H E N 

B. Eng., U N I V E R S I T Y OF S H A N G H A I T E C H N O L O G Y , 1982 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

M A S T E R O F A P P L I E D S C I E N C E 

in 

THE FACULTY OF GRADUATE STUDIES 

DEPARTMENT OF BIO-RESOURCE ENGINEERING 

We accept this thesis as conforming 

to the required standard 

THE UNIVERSITY OF BRITISH COLUMBIA 

A U G U S T , 1990 

© L I A N G C H E N , 1990 



In presenting this thesis in partial fulfilment of the requirements for an advanced 

degree at the University of British Columbia, I agree that the Library shall make it 

freely available for reference and study. I further agree that permission for extensive 

copying of this thesis for scholarly purposes may be granted by the head of my 

department or by his or her representatives. It is understood that copying or 

publication of this thesis for financial gain shall not be allowed without my written 

permission. 

Department 

The University of British Columbia 
Vancouver, Canada 

DE-6 (2/88) 



Abstract 

This thesis is concerned with the design of a decoupling compensator and a time-delay 

compensator for a nonisothermal continuous flow stirred tank reactor (CFSTR). 

An expression for the analysis of interaction of the two-variable CFSTR was theoretically 

derived by using the relative gain method (RGM). For the purpose of improving the 

stability of the decoupling control system, undercompensation for a decoupled CFSTR 

system was suggested and the robustness test of such undercompensation decoupler to the 

modelling error was studied. On the other hand, the proposed time-delay compensation 

method, unlike conventional Smith's scheme, can rely on the basic property of gain-

invariant time-delay. The stability of this time-delay compensation method is not affected 

by the CFSTR control system time-variant time-delay, while its compensation structure 

has the same features as the Smith compensator. 

The design of a decoupler and that of a time-delay compensator are independent of each 

other. All compensation structures are physically realizable. 

The theoretical results are supported by simulation. Simulation results for a CFSTR 

demonstrate that the undercompensation decoupling control can tolerate a relatively wide 

modelling error and reduce the sensitivity of the CFSTR process to parameter variations 

and unwanted disturbances. Also, simulation results show that the proposed time-delay 

compensator can provide an improvement over the conventional Smith compensator. 
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Chapter 1 

Introduction 

1.1 Motivation of the Present Work 

A control system is required on a continuous-flow stirred tank reactor (CFSTR) with 

irreversible, exothermic reactions to ensure that it operates under steady-state conditions. 

Figure 1.1 illustrates a typical CFSTR control system. When the effluent concentration is 

not controlled the regulation of the reactor temperature is a single dimensional problem, 

while the regulation of both reactor temperature and effluent concentration is a multi

dimensional one. The conventional control approach for a single variable linear system 

without time-delay; using standard type controllers and parameter tuning by rules of 

thumb and experience from similar processes, works quite well in many cases. However, 

for a CFSTR process with 

• interactive behaviour 

• time-delay behaviour 

• nonlinear behaviour 

it is frequently quite difficult and time consuming to find the appropriate structure and 

the correct parameters for the controllers if good control performance is required. 

The main difficulty in the design of a multivariable control configuration is that individ

ual controllers cannot behave optimally because of control loop interaction. In fact, the 

controllers in multiloops tuned by classical control techniques cannot overcome internal 

1 



C: effluent concentration of reactant A 
d: inlet concentration of reactant A 
Fc: coolant flow rate measuring device 
Fq: reactant flow rate measuring device 
lc'- concentration set point 
IT'- temperature set point 
Q: volumetric flow rate 

Qc: coolant flow rate 

Rc'. coolant flow rate controller 
Rc- concentration controller 
Rq'. reactant flow rate controller 
RT- temperature controller 

t: time 
T: temperature in a reactor 

Tcin '• inlet temperature of coolant 
Ti~. inlet temperature of reactant A 

Figure 1.1: Conventional control loops of a CFSTR. 
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disturbances arising from this interaction behaviour. In Figure 1.1, the reactor tempera

ture is controlled by the flow of coolant while the effluent concentration is controlled by 

the inlet flow rate. The distinctive feature of the dynamics of a CFSTR is characterized 

by nonlinear interaction behaviour between the temperature control loop and the con

centration control loop and time-delay behaviour because of the measuring delay of the 

feedback variable. 

From the standpoint of process control, the CFSTR poses a considerable challenge to a 

designer owing to this sort of behaviour. In recent years, there has been an extensive 

interest in adaptive control systems that automatically adjust the controller settings to 

compensate for unanticipated changes in the process. Such an adaptive control system 

requires an on-line digital computer to do some complicated computation. With the 

evolution of digital control computers, much better designs can be produced without any 

consideration for hardware realizability. This, in part, has spurred research and develop

ment to evolve advanced control strategies for process systems. In spite of the flexibility 

offered by the general structure of digital computers, most process industrial loops are 

still controlled by conventional controllers ( Mendoza-Bustos, 1990 ). In fact, in many 

practical applications, the advanced control system for a small scale subclass process 

is not always feasible due to the high cost of a computer system or sophistication not 

accessible to nonexperts. The large number of conventional controllers used routinely for 

process control may be regarded as an experimental evidence of their usefulness. The 

reason for their extensive use may lie in the fact that a trained operator can quickly mas

ter the controller's behaviour. This is why classical control theory is still going strong. 

In most chemical processes, control schemes should be kept as simple as possible, even 

at the expense of some performance. Simpler controllers tend to be easier to adjust by 

trial and error, easier for the operations and maintenance personnel to understand, and 

less sensitive to process parameter changes. For the same reasons, three questions about 
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the CFSTR process control should be answered. They are: 

• What is an easy way of avoiding the problem of the interaction between the tem

perature control loop and the concentration control loop and ensuring the stability 

of a decoupling system if modelling error occurs? 

• Can a time-delay compensator be designed to achieve robust adaptation? 

• What can be used as a physically realizable decoupling compensator and time-delay 

compensator? 

This thesis intends to focus on the measurement of interaction, design of a decoupling 

compensator and the analysis of modelling error. It will also present two physically 

realizable models for both decoupling compensation and time-delay compensation, which 

are simple to understand and implement, while possessing a sound fundamental basis. 

The basic assumption behind this approach is that the success of a model in engineering 

has always depended on the valid use of approximations and assumptions to reduce the 

complexity of the real world to simple and manageable mathematical abstractions; and 

CFSTR process control is no exception in this respect. 

Therefore, the message of the present work is that applicable and simple methods should 

be sought in an effort to develop a suitable CFSTR controlled model. 

1.2 Objectives of the Present Work 

1.2.1 Interaction Analysis and Decoupling 

Basic control studies of a CFSTR are usually based on mass and energy balance equa

tions, which are coupled and nonlinear. Generally speaking, interactive multivariable 

systems should be decoupled in order to avoid difficulties in control. However, two prob

lems may arise. Firstly, an ideal decoupling design is by no means a panacea. In fact, 
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adding a decoupler requires more components, more attention, and tends to be less re

liable. Secondly, even if a decoupling design is necessary, the process deviations from 

the decoupled model may lead to unstable control. Therefore, every effort for improving 

system performance should be made to keep the CFSTR control system as simple as 

possible. 

One area which is still poorly understood is the source of interaction of a CFSTR. To 

effectively design a CFSTR process control system, the designer must have a basic un

derstanding of (1) interaction analysis of a multivariable system, (2) the relevant factors 

that affect degree of interaction and (3) the relationship between the decoupling design 

and degree of interaction. 

Therefore, one of studies presented here is an attempt to determine the relationship be

tween the degree of interaction and the process parameters, and to design a decoupling 

compensator for a CFSTR process with strong interaction. 

1.2.2 Time-delay Compensation 

Another troublesome area encountered in CFSTR process control is the handling of mea

surement characterized by time-delay. The control of time-delay processes is usually 

carried out using a conventional Smith compensator (Smith, 1959). This compensator is 

sometimes adequate for successful control. But, in fact, the Smith compensator suffers 

from two shortcomings. Firstly, its robustness is not very good and is sensitive to the 

deviation from the mathematical model. Secondly, the compensator is physically irreal-

izable. 

For most processes, a "reasonable time-delay compensator" with some "good" values 

for the model parameters is employed for control purposes. The mismatch between the 

mathematical model and the true process can lead to serious stability problems for CF

STR process control, especially when measurement feedback delay is uncertain. Thus, 
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another objective of this thesis is the design of a simple and tractable robust strategy for 

the time-delay compensation that takes care of model uncertainty. This is of paramount 

importance for the design of a good and efficient control system for a CFSTR process. 

In order to fulfill the above objectives, classical control theory, based on the Laplace 

transform as its main analytical tool, will be considered as a very effective method for 

system analysis in CFSTR process control. 
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1.3 Summary 

This thesis is organized in the following manner. 

• The motivations and objectives of this research are briefly described in Chapter 1. 

• A literature review about interaction analysis, decoupling in general and the time-

delay compensator is given in Chapter 2. 

• Mathematical models for the CFSTR which include a linearized interaction model 

and a time-delay model are described in Chapter 3. 

• In Chapter 4, the relative gain method (RGM) for interaction analysis is introduced 

and a study on interaction of the CFSTR is given. 

• Chapter 5 deals with a decoupling design and contains some results from the sim

ulation. 

• Chapter 6 is concerned with the design of a physically realizable time-delay com

pensator. 

• The conclusions and suggestions are presented in Chapter 7. 

• The appendices contain the Taylor expansion for a two-variable system, the Laplace 

transform pairs, the derivation of a closed-loop transfer function with a time-delay, 

the property of the relative gain for 2 x 2 system, the transfer of dimensionless vari

ables, the solution of a standard second-order system, the derivation of a physically 

realizable time-delay compensation model, and the simulation data. 



Chapter 2 

Literature Review 

2.1 Introduction 

This thesis is concerned with the design of a two-variable CFSTR process control sys

tem using physically realizable control algorithms. Two passes will be made through the 

literature. In the first pass, attention will be paid to the theory of both multivariable 

control and time-delay control, or, more precisely, the development of a decoupled control 

system and a time-delay compensation system. During the second pass, a brief review of 

CFSTR process control will be presented. The former problem is a problem of control 

theory, and the latter falls under the heading of applications of control theory. 

2.2 Literature on Interaction Analysis and Decoupling Control 

There have been many studies on multivariable process control systems. For reviews, 

the reader may refer to Lloyd (1973), Fossard (1977), Tung and Edgar (1982), Tzafestas 

(1984), Sinha (1984), Vidyasagar and Kimura (1986), Marino et al. (1987), O'Reilly 

(1987) and Shen and Lee (1988). The present review on multivariable process control is 

confined to the measure of the interaction and to decoupling theories. 

The earliest study of both interaction analysis and the decoupling of designs seems to have 

been by Boksenbom and Hood (1949). They introduced the matrix analysis method in 

the analysis of multivariable control systems and proposed the notion of non-interactive 

8 
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control, namely decoupled control. In spite of many studies on interaction analysis, no 

successful study of the measure of interaction appeared until Bristol (1966) introduced 

the relative gain method (RGM), popularized by Shinskey (1979). They defined a de

coupling sensitivity. This sensitivity indicates how much error in a decoupler gain can 

be tolerated by a decoupled control system. An important feature of the RGM is that 

it is independent of the controller design, and less information about the control theory 

is required. Thus, a designer does not have to carry out detailed control system designs 

for processes. 

The output feedback control problem for weakly coupled linear systems has been studied 

by Petkovski and Rakic (1979) using a series expansion approach. Basically, their study 

is an effective method for analyzing a weakly coupled linear system. Manousiouthakis 

et al. (1986) extended the RGM to cases in which more than SISO (single-input single-

output) controllers were considered and they developed the application of the RGM to 

the multivariable system. They call their approach " the block RGM ". In another study, 

Yu and Luyben (1986) described a method for determining the structure, variable pair

ing, and tuning of multiloop SISO controllers in a multivariable-process environment by 

using a negative RGM. The basic idea of Yu's method was to produce a stable, workable 

and simple SISO system. This idea today is still valid for most control system designs. 

Most research in multivariable control has been concerned with the decoupling of inter

active loops using specially designed networks, with emphasis on the servo problem of 

decoupling the loops for changes in set point. Among the approaches to the decoupled 

control problem, three schemes have been recognized to be in a common framework: 

1. The diagonal matrix method proposed and developed by Kavanagh (1958). The 

idea was to design a controller which produced an overall diagonal transfer function 



Chapter 2 Literature Review 10 

matrix. If such a controller could be found, then the problem of multivariable 

control system design could be reduced to a number of single loop designs which 

could be carried out by the well-established classical control methods. 

2. The state variable method employed by Falb (1967) and Gilbert (1969). This 

method was given a significant boost in the early 1970's by Wonham (1970), Francis 

(1975) and Wonham (1979). They showed that many of the standard problems of 

multivariable system design could be solved by this means in an abstract state-space 

setting. 

3. Multivariable adaptive control algorithms, which appeared approximately 15 years 

ago, are still based on rudimentary theory. There have been a number of schools of 

study on such multivariable control theory. The research efforts have been vigorous. 

Several papers, for example Wolovich and Falb (1976), Elliot and Wolovich (1984), 

McDermott and Mellichamp (1984), Dickmann and Sivan (1985), Narendra (1986) 

and Chien et al. (1987), have been published. 

The original idea of the interactor matrix was proposed by Wolovich and Falb 

(1976) . The interactor matrix is a canonical model which can ensure the use of the 

minimum order of predictors for multivariable systems with time-delay. McDermott 

and Mellichamp (1984) studied a decoupling pole-placement self-tuning controller 

for MIMO processes with open-unstable behaviour. This approach is based on 

the concept of state. Some helpful discussions on stability robustness have been 

made by Dickmann and Sivan (1985). They arrived at the conclusion that the 

decoupling structure can improve system robustness. Chien (1987) discussed a new 

algorithm for a self-tuning controller with time-delay compensation (STC-TDC) 

for multivariable decoupling control problems. This approach employed multiple 

single-input/single-output self-tuning controllers but with a classical decoupling 
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scheme incorporated. Simulation studies utilizing two distillation column models 

showed that the controller could provide good control performance. 

In general, the state variable method and adaptive control algorithms belong in the mod

ern control category. 

2.3 Literature on Time-delay Compensation Control 

Time-delay is recognized as the most difficult dynamic element naturally occurring in 

processes (Shinskey; 1988). It is well known for the delay-free case that the use of nega

tive feedback not only modifies system dynamics but also makes the system performance 

less sensitive to changes in process parameters. An ideal time-delay compensator was 

described by Smith (1957, 1958 and 1959). Smith proposed a compensation technique 

to eliminate the delay term in the closed-loop characteristic equation, which is known 

world-wide as the Smith Predictor. However, at an early date, Buckley (1964) pointed 

out that if the process deviates from the model, then Smith's time-delay compensator can 

lead to unstable or at least poorer control than is, generally achievable with a standard 

proportional plus integral controller. Again, Palmor (1980) noticed and explained in dif

ferent ways that performance improvements by the Smith method can be very sensitive 

to model error, which means its robustness is very poor. 

Over the last 10 years, there has been a dramatic change in the design of time-delay 

compensators. Vogel and Edgar (1980) used a digital control method for time-delay 

compensation. This method, which is based on the digital control process, can improve 

the robustness of a time-delay system. Also, Vogel and Edgar (1980) developed the 

SISO adaptive time-delay compensator using Dahlin's control algorithm in the Smith 
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predictor structure. Lee and Lu (1984) proposed coefficient assignments which belong 

to the state-space feedback compensator. A modified Smith predictor was reported by 

De (1985) which is, in theory, physically realizable. Chandra et al. (1985) provided an 

ideal adaptive control method for time-delay compensation. Agamennoni et al. (1987) 

concentrated on an adaptive control scheme for a single-input single-output process with 

delays by using the Smith method with a dynamic filter to improve the dynamic perfor

mance of the control system. 

More recently, a methodology for the identification of multivariable processes was devel

oped by Shanmugathasan and Johnston (1988) that can achieve a higher level of con

trollability by considering a generalized multidelay compensator (GMDC). A simple heat 

recovery network provided a practical example of the application of Shanmugathasan's 

method. This method yielded a consistently better closed-loop response than existing 

compensators. 

Annraoi and Ruth (1989) designed a new modified Smith predictor for unstable processes 

with time-delay, but the problem of physical realizability has not been discussed. 

Liu (1989) presented a state-space method for multivariable decoupling with simultane

ous time-delay compensation. The importance of the state vector is that, in the case 

of a deterministic system free of all unpredictable random effects, all future states are 

completely determined by an initial state and inputs to the system. 

All these works, no doubt, are important contributions to the input-output decoupling 

problem and process time-delay compensation. However, the design of advanced control 

algorithms usually requires the measurement of system states. In many practical ap

plications, this is not feasible due to either the high cost of states measurement or the 

inaccessibility for measurement of some of the system states. On the other hand, if the 

application of a digital computer is not considered, hardly any modern control algorithms 
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are possible in industrial environments. 

2.4 Literature on the CFSTR Process Control 

A study of the CFSTR process control was reported by Nakanishi and Nanbara (1981), 

who used a feedforward/feedback control system for both reactor temperature control and 

effluent concentration control. They also considered decoupling design in the feedforward 

loop and used a time-domain's multivariable Smith predictor in the feedback loop. Sim

ulations confirmed that the dynamic characteristics of CFSTR with time-delays in the 

control variables could be improved. 

Mukesh and Cooper (1983) gave a brief review of the CFSTR control and used a partial 

simulation technique to study the dynamic behaviour of a CFSTR. Their study also in

volved the development of software for the simulation and control of a CFSTR system 

using a digital computer. 

Bartusiak et al. (1986) studied a nonlinear control structure for a CFSTR, and pointed 

out that a nonlinear controller could provide a better servo and regulatory response rela

tive to linear temperature controllers tuned at different temperatures within the range of 

operating conditions. In fact, this method indicates that to some extent control system 

has good robustness. 

Nakanishi and Ohtani (1986) pointed out that the traditional procedure [Foster and 

Stevens, 1967; Bruns and Bailey, 1977; Ray, (1982)] based on a linear, time-invariant, 

delay-free model of the reactor dynamics cannot be justified for a practically useful con

trol system design of a nonisothermal CFSTR with time-delay. They studied the effects 

of time-delay, interaction and nonlinearity involved in the mass balance and heat balance 

equations of CFSTR dynamics. For the purpose of improving the control performance 
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of the decoupling control system, a feedback control system with a Smith compensator 

was designed for an incompletely decoupled CFSTR. They gave little information on 

robustness. 

Kantor (1988) also studied a finite-state nonlinear observer and a nonlinear state feedback 

controller for an exothermic stirred-tank reactor operated in continuous mode. Simula

tion results showed that good performance of CFSTR process control could be obtained, 

but the effects of modelling error were not studied. 

Another control scheme using internal model control (IMC) was studied by Calvet and 

Arkun (1988). They applied IMC theory to a model of a CFSTR with a single first-

order exothermic reaction. This CFSTR simulation example illustrated the power of the 

nonlinear system design with an IMC structure for disturbance rejection and set-point 

tracking. Throughout their paper, nonlinear dynamic models were assumed to be avail

able; robustness considerations, with regard to model errors, were not addressed. 

More detailed studies of CFSTR process control have been the subject of extensive dis

cussions [See, e.g. Douglas (1972), Seborg and Edgar (1981), Stephanopoulos (1984), and 

Cinar et al. (1986)]. Nowadays, more effort is being invested in the design of adaptive 

control techniques with improved robustness properties, and some successful applications 

have already been reported, as for example, in temperature control systems for chemical 

reactors (Amhren, 1977 and MacGregor et al., 1984). Seborg et al. (1986) reported 

several applications of adaptive control in the chemical process control field. 

A review by Schnelle and Richards (1986) gave a comprehensive list of references, includ

ing difficult problems of industrial reactor control. 

From the above review, some conclusions can be drawn regarding the CFSTR process 

with decoupling as well as time-delay behaviour: 
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1. Theoretically, advanced multivariable adaptive control techniques for the CFSTR 

process have been made possible, using digital computer-based systems, though 

they are still being developed. Practically, many chemical processes involve com

plex reactions or transport operations that almost defy modelling of the adaptive 

structure. On the other hand, in process control, a universal complaint is the in

ability to measure key process variables, such as reaction rate. Therefore, although 

significant advances have been made in hardware design, the control algorithms 

used in conventional controllers are still not dying, in spite of all the advances 

made in control theory. 

2. From a practical point of view, the most spectacular developments in recent years 

have been in robustness analysis. Information on physically realizable as well as 

robust control algorithms for decoupling design and time-delay compensation of 

the CFSTR process is somewhat scarce; there are only a few published articles. 

3. Although all of the above approaches have the potential for better performance, 

some of tuning methods are usually not easy, causing difficulties in practice. It is 

fair to say that modern control algorithms may be used, but they usually require 

a great deal of effort by very skilled personnel and the support of an on-line com

puter system. As mentioned above, the major recent change in the process control 

field is the appearance and not very rapid acceptance by the user of direct digital 

control systems based on microprocessors. Therefore, physically realizable control 

algorithms will remain an exciting and practically important area of research for 

many years to come. 

Based on the above evidence, a good robust, physically realizable decoupling control 

structure as well as a time-delay compensator for the CFSTR process will constitute the 
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main content of the present work. 



Chapter 3 

Mass Balance and Energy Balance for a CFSTR 

3.1 Basic Mathematical Equations Describing a CFSTR 

The continuous-flow stirred tank reactor consists of a well-stirred tank into which there 

is a steady flow of reacting material, and from which the reacted material passes continu

ously. Deriving a reasonable mathematical model is the most important part of the entire 

analysis and control of such a CFSTR. The two basic mathematical equations required 

to describe CFSTR performance are a macroscopic mass balance and an energy balance. 

3.1.1 Mass Balance Equation 

Since the CFSTR contents are completely uniform with perfect mixing, a mass balance 

for the rate of change in the mass of reactant A within the reactor can be expressed as 

= Q(t)Ci(t)-Q(t)C{t) + V[t£j&] 
net ' * ' ' * ' d t 

(2) (3) 
(3.1) 

reaction 

(1) (<) 
where 

V=reactor volume 

C(i)=concentration of reactant A in reactor 

Q(t)=volumetric flow rate 

C;(£)=inlet concentration of reactant A 

£=time 

The respective terms are as follows: 

17 
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(1) net rate of change in the mass of reactant A within the reactor, 

(2) rate of increase in the mass of A due to its presence in the influent, 

(3) rate of decrease in the mass of A due to removal in the effluent, 

(4) rate of decrease or increase in the mass of A due to the reaction of A in the reactor. 

The last term on the right-hand side of Equation 3.1 will be assigned a negative value if it 

is assumed that the reaction of A within the reactor results in a decrease in the quantity 

of A. If the reaction of A within the reactor results in an increase in the quantity of A, 

a positive value should be assigned to this term. 

3.1.2 Energy Balance Equation 

In an energy balance over a volume element of a chemical reactor, kinetic and potential 

terms may usually be neglected relative to the heat of reaction and other heat transfer 

terms. Assume no density changes and that specific heat does not change with composi

tion. So, the energy balance for the fluid includes energy lost to a cooling coil and heat 

release by an exothermic chemical reaction. It is 

Vp^^dT = Q{t)PJ<T.m-Q{t)Pjc,T{t) + (-AH)V [ ^ ] ±h[T(t)} (3.2) 
reaction 

m (2) ' * ( 4 ) 
( 1 ) (3) 

where 

p̂ =fluid density of the reacting mixture 

cp=specific heat of the reacting mixture 

T(2)=temperature in the reactor 

Ti(£)=inlet temperature 

Aif=heat of reaction (by thermodynamic convention, AH < 0 for exothermic reactions, 

so that a negative sign is attached to the heat generation term.) 

The respective terms are as follows: 
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(1) accumulation of total energy, 

(2) the heat removed from the system through the difference in temperature between 

inlet and outlet streams, 

(3) heat generated by reaction, 

(4) h[T(t)] represents external heat addition or removal from the reactor. 

Heat Removal Driving Force: An energy balance for the heat transfer fluid gives 

and the heat transfer rate between the heat transfer fluid and the reactor is 

where 

Aî =heat exchange surface 

U=overall heat transfer coefficient 

Tc(£)=average coolant temperature 

(5c(£)=coolant flow rate 

/>c=fluid density of coolant 

cc=specific heat of fluid of coolant 

Tc;n(£)=inlet temperature of coolant 

Tcout(t)=out\et temperature of coolant 

Eliminating Tcout(t) from Equation 3.3 and Equation 3.4 gives 

h[T(t)} = Qc{t)Pccc[Tcout(t) - Tcin(t)} (3.3) 

h[T(t)} = AKU[T(t) - Tc(t)} = AKU[T(t) -
Tcin(t) + Tcout(t) 

2 
(3.4) 

h[T(t)] = AKU[T(t) -
Tcin(t) + Qc(t)pcCc 

+ Tcin{t) 
(3.5) 

2 
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Rearranging, we get 

h[T(t)] = 
2AKUPcccQc{t)[T{t) - Ttin(t)] 

AKU + 2PcccQc(t) 

Substituting Equation 3.6 into Equation 3.2, we have 

(3.6) 

VpjCy 
dT(t) 

dt 
g(r)p / C p[r,(i) - T(t)} 

+(-AH)V [^1] 
reaction 

2AKUPcccQc(t)[T(t) - Tcin(t)} 
AKU + 2PcccQc(t) 

(3.7) 

Reaction Rates: As is well known, chemical reactions may be classified in one of the 

following ways: 

(1) on the basis of the number of molecules that must react to form the reaction product, 

(2) on a kinetic basis by reaction order, or reaction mechanism. 

In control of the CFSTR, the latter classification is needed to describe the kinetics of the 

reaction process and to model the dynamic characteristics of the system. The relationship 

among rate of reaction (r), concentration of reactant (C), and reaction order (n) can be 

simply given by the expression 

dC(t) 
dt 

= KCn{t) 
reaction 

n = 0 

n = 1 

n = 2 
(3.8) 

where K is the reaction-rate constant which is a function of temperature. Arrhenius pro

posed that the effect of temperature on the reaction-rate constant in a chemical reaction 

may be described by Equation 3.9: 
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K = j4 Pe l~*w (3.9) 

where Ar is the frequency factor, E is the activation energy of the reaction, R is the ideal 

gas constant, and T is the absolute temperature of the reacting mixture. 

Now, substituting Equation 3.9 into Equation 3.8, and then substituting Equation 3.8 

into both Equation 3.1 and Equation 3.7, we have 

= Q(t)[Ci(t) - C(t)] - VArCn{t)e[-*rh] 

V P f c p ^ - = Q(t)pfcp[Ti(t) - T(t)] 

+(-AH)VATCn(t)e[-^]  

2AKUpcccQc(t)[T(t)-Tcin(t)) 
AKU + 2PcccQc(t) 

(3.10) 

(3.11) 

or 
= ^{Ci(t) - C(*)l - A,C(t)e^' (3.12) 

| (-AH)ArCn(t)el-mv] 

Pjcp 

2AKUPcccQc(t)[T{t)-Tcin{t)] 
Vpfcp[AKU + 2PcccQc(t)) 

3.2 Transfer Function Representation of the CFSTR Response 

(3.13) 

Controller design is not based on specific physical or chemical behavior, but on a set 

of Laplace transformed differential equations called transfer functions. In fact, trans

fer functions can only be used to characterize the input-output relationships of linear 
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systems. It is a well-known fact that many relationships among chemical processes are 

not linear. In fact, a careful study of chemical systems reveals that even so-called "lin

ear systems" are really linear only in a limited operating ranges. For this system mass 

balance Equation 3.12 and energy balance Equation 3.13 are nonlinear due to the reac

tion rate term (Equation 3.8). In general, in solving a new problem, a simplified model 

should be built so that a general feeling can be got for the solution. A more complete 

mathematical model may then be built and used for a more complete analysis. Local 

linearization appears to be reasonable since most chemical processes are operated at a 

constant steady-state condition for extended periods of time. Disturbances and changes 

from normal operating conditions will occur, but they usually have a low amplitude. 

This section presents a linearization technique applicable to the nonlinear equations of 

a CFSTR. In order to obtain a linear mathematical model for Equations 3.12 and 3.13, 

the following assumptions are made : 

(1) the variables deviate only slightly from the normal steady-state operating conditions; 

(2) all initial conditions are zero; 

(3) the output variables (or controlled variables) are C(t) and T(t), the input variables 

are Q(t) and Qc{t), and the disturbance variables are C,-(2) and T,-(i); 

(4) the inlet heat transfer fluid temperature Tc,-„(i) has been controlled, i.e., Tc,„(r.) = 

Tc,-n=constant. 

If the normal steady-state operating condition of the CFSTR corresponds to C 0 , Qo, T 0, 

and Qco, and steady-state values of the disturbance variables are defined as C,o and T;0, 

then Equation 3.12 and Equation 3.13, which are quadratic functions respectively, may 

be expanded into a Taylor series about these points ( see Appendix A ) and the higher-

order terms may be neglected. The linear mathematical model of nonlinear Equation 

3.12 in the neighborhood of the normal operating condition is then given by 
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dAC±t) = ^m[Ci0-CQ} + ^[ACi(t)-AC(t)}-AKC^-K0nCr1^C(t) 

Cio — Co 

where 

V 
'•AQ(t) 

-[^ + KQnCrl]^C(t) 

RTQ 

+ y A C , ( 0 (3-14) 

KQ = Are rTO 

For Equation 3.13, similarly 

i^B = ^ W 1 T j o _ r o l + ^ | A r j W _ A T ( i ) 1 

| (-AH)jAKCS + K0nCS-1AC(t)} 

PICP 
2AKUPcc AKUAQc{t)(T0 - Tcin) QcpATjt) 

VPfcp

 1 {AKU + 2PcccQc0y AKU + 2pcccQc0 

+ (-AH)K0nCS-\c{t) 

PfCP 
(-AH)CSEKQ _ 2AKUPcccQe0 _ Q o ] A T ( )  

+ l p^RT* VPfcp(AKU + 2PcccQc0) V1 U 

. 2A2

KU2PCCc(TQ — Tdn) w Q /.\ 
[VpJcp(AKU + 2PcccQc0yi V c U 



Chapter 3. Mass Balance and Energy Balance for a CFSTR 24 

For simplicity, let 

<*o = y (3.16) 

a ^ ^ + KonCr1 (3.17) 

«=W (3-18) 

«a = f (3.19) 

h = (3.20) 

= 1 A J 7 1 C 0 " ^ 0 2AKUPeccQd0 Qo . . 
P l pjCyRTo2 Vpfcp(AKU + 2PcccQc0)+ V { ' ] 

p2=\AHlK0nCr ( 3 2 2 ) 

Pf°P 

_ 2A\U*Pccc{T0-Tcin)  
P 3 VPfcp(AKU + 2PcccQd0y 

Thus, Equation 3.14 and Equation 3.15 may be rewritten as 

dAC(t) dt + axAC{t) = a0AQ(t) - a2AT(t) + a3ACi(t) (3.24) 

+ pxAT(t) = -p0AQ(t) - p2AC(t) - p3AQc(t) + a 3AT,(*) (3.25) 

Note here that the Laplace transform of a increment function will be defined by L[Af(t)] = 

F(s). 

Then, taking Laplace transform of each term in both Equation 3.24 and Equation 3.25, 

we obtain 

(s + a1)C(s) = a0Q{s)-a2T(s) + a3Ci(s) (3.26) 

(s + p1)T{s) = -POQ(S) - p\C{s) - /33Qc(s) + a 3T,(s) (3.27) 
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To simplify the mathematical expressions of the system equations, it is advantageous to 

use matrix notation. For theoretical work, the notational simplicity gained by matrix 

operations is most convenient and is, in fact, essential for the analysis and synthesis of 

a multivariable system. Therefore, Equations 3.26 and 3.27 can be described in matrix 

form by 

(a + Cti) Q 2 ' C(s) ' ct0 0 " Q(s) ' C * 3 0 ' d{s) ' " Q(s) ' 
+ 

' d{s) ' 

T(s) . - f t - f t . . Qc(s) . 0 C * 3 . Us) . 
(3.28) 

Then, by premultiplying by the inverse of the matrix in Equation 3.28, we obtain 

C(s) 

T(s) 

where 

s + 0i - a 2 

-02 s + Of! a 0 0 ' Q(s) ' ct3 0 ' C,-(*) ' 
< 

' Q(s) ' 
+ 

' C,-(*) ' 

. - f t - f t . . Qc{»). 0 a 3 * 

P(s) 

+ 

<*o(s + 00 + a2ft a2ft Q(s) 

-ao02 - 0o(s + c*0 -ftf> + a0 J [ Qc(s) 

az(s + 00 -a 2 G!3 

-a302 0:3(5 + ax) 

P(s) = s2 + (a* + 00̂  + alP\ - a2ft 

' Ci(s) ' 

4 

(3.29) 

(3.30) 

P(s) is the open-loop characteristic equation of the CFSTR system. According to Routh's 

stability criterion, all the coefficients in the characteristic equation must be positive. So, 

Qi0i > OJ202 (3.31) 
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Figure 3.2 shows the open-loop model for the CFSTR in block diagram form. Figure 

3.3 indicates the block diagram of the closed-loop control of the CFSTR. Also, Equation 

3.29 can be expressed as 

Gn(s) G12(s) 1 [ Q(s) 

G21(s) G22(s) J [ Qc(s) 

where 

" G(s) ' 

T(s) 
+ 

Dn(s) D12{s) 

D21(s) D22(s) 
(3.32) 

G l l ( 5 ) = P(s) 
(3.33) 

Gu(s) = p { s ) (3.34) 

° 2 1 { S ) = P(s) 
(3.35) 

GM = p { s ) (3.36) 

D l l { 3 ) = P(s) 
(3.37) 

Dn(s)= p ( s ) 
(3.38) 

n 1 \ "302 
^ 2 l ( 5 ) - P(s) 

(3.39) 

DM - p ( s ) (3.40) 

3.3 Time-delay Behaviour of the CFSTR Control System 

Figure 1.1 illustrates a CFSTR in which the contents are mechanically agitated. The es

sential feature is the assumption of complete uniformity of concentration and temperature 

throughout the reactor. So, the CFSTR represents the extreme case of back mixing or 

longitudinal dispersion. More specifically, the vessel will have a characteristic throughput 

time t and there will be a characteristic time for mixing, £ m , x . If the process time-delay is 
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Figure 3.2: (a) Block diagram representing Equation 3.29. (b) A simple representation of 
(a). Gij and Dij are transfer functions of each channel; A'tJ and J,j are the stead v-state 
gains of each channel; and are the dynamic gains of each channel. 



Chapter 3. Mass Balance and Energy Balance for u CFSTR 28 

Figure 3.3: Closed-loop control system for the CFSTR, 
point and IT is the temperature set point. 

Ic is the concentration set 
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considered, the mass balance and energy balance are described as distributed parameter 

equations, which is beyond the scope of this study. So, consider the case i n which r m , x 

is much smaller than t, thus C F S T R then has perfectly mixed characteristics. O n the 

one hand, the mixing time tmix can be assumed to be small for an ideal C F S T R , but, on 

the other hand, the time-delay behaviour for a closed-loop control system can st i l l occur 

because the time-delay of a measuring device is unavoidable even if i m , x be zero, that is 

to say, a sensor's response is also a function of time. Therefore, from the point of view of 

process control theory, the feedback delay also implies that the C F S T R control system 

has time-delay behaviour. 

Time-delay is defined as the time interval between the init iat ion of an action and the 

first observation of a result. It is caused by transportation of material from the point 

of manipulation to the point of detection. The concentration control loop w i l l contain a 

time-delay, since the ions or molecules which are sensed by the measuring device must 

be transported to that point by a flowing stream. Like concentration control, the tem

perature control loop also has time-delay because heat is transferred both by convection 

and by conduction, and it is impossible to transport heat from the wall of the vessel to 

the temperature sensor in zero time. 

Time-delay can be measured and expressed in Laplace transform form shown i n Appendix 

B . There is no attenuation or filtering for time-delay behaviour. Since time-delay does 

not change the magnitude or form of the signal, its gain is unity, and may be left out of 

any gain-product calculation. 

The feedback process containing time-delay produces no immediately observable effect; 

hence control action of the C F S T R is unavoidably delayed. For this reason, consider 

that the time-delay behaviour occurs i n the feedback channel. Thus, the familiar mass 

control loop and energy control loop must next be modified to include the time-delay. 

This modification is shown in Figure 3.4 by the transport lag elements i n both feedback 
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loops. Finally, the closed-loop transfer function whose block diagram is shown in Figure 

3.4 is expressed as: 

Gcn(s) Gci2(s) " Ic(s) ' 
+ 

' Ct(s) ' 

C(s)' . Gc21(s) G c 2 2(s)_ IT(s) _ 
+ 

. Dc2i(s) E>C22(s) _ 

Pc{s) 
(3.41) 

T(s) 

where 

Gen(s) = [1 + e-TT3RT(s)G22(s)]Rc(s)G11(s) - e-TTaRc(s)RT(s)Gl2(s)G2x(s) (3.42) 

Gcii(s) = [1 + e-TT'RT(s)G22(s)]RT(s)G12{s) - e-rT3R2

T(s)G12(s)G22(s) (3.43) 

Gc2i(s) = [1 + e-TcaRc(s)G11(s)}Rc(s)G21(s) - e-^R2

c(s)G11(s)G2i(s) (3.44) 

GC22(s) = [1 + e-^aRc(s)G11(s)}RT(s)G22(s) - e-^aRc(s)RT(s)G12(s)G2i(s) (3.45) 

P c(s) = [l+e-TcaRc(s)G11(s)][l+e-TTaRT(S)G22(s)}-e-^+T^ 

(3.46) 

rc is the time-delay of concentration feedback, 

rx is the time-delay of temperature feedback, 

Rc(s) is the transfer function of effluent concentration controller, 

RT(S) is the transfer function of reactor temperature controller, 

Ic(s) is the concentration set point, 

IT(S) is the temperature set point. 

Details for Equations 3.42, 3.43, 3.44, 3.45 and 3.46 are provided in Appendix C. 

Clearly, if the decoupling design and time-delay compensation are not considered, Equa

tion 3.41 will result in a complex control algorithm. 



Figure 3.4: Closed-loop control system for the C F S T R with time-delay 
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Determination of Interaction Degree of Two Control Loops 

4.1 Interaction Behaviour of a CFSTR 

It is important for a CFSTR control system designer to be aware of the effects of the 

parasitic modes of the system even though they are not explicitly modelled. A related 

effect occurs when simplified models are used to design controllers for complex systems 

in which several variables are to be controlled. When a change in one loop's manipulated 

variable causes a change in some other loop's controlled variable, the control loops are 

said to be coupling. If, in addition to the coupling from the first loop to the second loop, 

there is coupling from the second loop back to the first loop, then interaction exists. 

In the CFSTR of Figure 1.1, the reactor temperature T(t) and effluent concentration 

C(i) are used as the controlled variables while the cooling water flow rate Qc(t) and 

stream flow rate Q(t) are manipulated variables to regulate T(t) and C(t), respectively. 

Equations 3.26 and 3.27 form the basic model of a CFSTR process control system. At 

first glance, Equation 3.26 seems to be uncoupled from the heat exchanger system, but 

the temperature variable in Equation 3.27 is a function of concentration C(t), coolant 

flow rate Qc(t), and initial temperature T,(t). Therefore the input variables, Qc(t) and 

T{(t) for the reactor temperature subsystem appear in the mass balance Equation 3.26. 

Stephanopoulos (1984) has described interaction for a CFSTR in dynamic operation. 

The concentration feedback control loop can compensate for changes which are caused 

by variations in either inlet concentration C,(r) or the desired effluent concentration C(t), 

32 



Chapter 4. Determination of Interaction Degree of Two Control Loops 33 

or both of them. The controller Rc in the feedback control will regulate for these changes 

by manipulating the feed flow rate. However, this change in the feed rate also disturbs 

the reactor temperature. The temperature feedback control loop attempts to compensate 

for the change in temperature by varying the coolant flow rate, which in turn effects the 

effluent concentration. On the other hand, attempts to compensate for changes in feed 

temperature or the desired set point of reactor temperature, may also causes the effluent 

concentration to vary. Then the concentration loop attempts to compensate for the 

change in effluent concentration by varying the feed rate, which in turn disturbs the 

reactor temperature. This interaction can cause oscillations and even instability. 

4.2 Bristol Method 

4.2.1 Introduction 

The control loops of a CFSTR control system can not be considered separately because 

of the existence of coupling. Thus setting the controller's parameters to produce good 

control always becomes a difficult problem. Interaction analysis can help provide answers 

to the following questions: 

(1) Can the degree of interaction be determined analytically? 

(2) Is there any possibility that the interaction can be neglected? or, can a CFSTR be 

designed to be easily controllable ? 

(3) What is an ideal or simplified decoupling control design? 

(4) What is the effect if the decoupling model is in error? 

4.2.2 Definition of the Relative Gain 

By for the most important, practical, and widely used interaction analysis technique is 

the relative gain array (RGA) proposed by Bristol (1966) who offered an attractive means 
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of avoiding complex analysis of a multivariable system. The chief advantages of the RGA 

approach are that it is easy to use and only requires a crude process model, namely, the 

process gains which can be determined from steady-state information. Before taking up 

the subject of the RGA analysis for the CFSTR system, it is necessary to review some 

definitions of the RGA. 

Bristol defined a set of open-loop gain coefficients F{j and closed-loop gain coefficients 

Sij for a multivariable system, where subscript i refers to the controlled variable and 

subscript j to the manipulated variable. Now, consider a 2 x 2 system (see Figure 4.5), 

the definitions of Fij are as follows: 

F\2 — 

F21 = 

F22 = 

dM2 

dY2 

dY2 

dMo 

M2=conatant 

Mi=constant 

M2=constant 

Ml =constant 

(4.47) 

(4.48) 

(4.49) 

(4.50) 

where Mj is a manipulated variable and Y{ is a controlled variable. 

The definition of Sij is the open-loop gain evaluated with all other controlled variables 

constant (see Figure 4.6). Expressions are as follows: 

S\2 — 

S21 = 

8Yi 
dM2 

dY2 

Yi=con3tant 

Y2=constant 

Yl=constant 

(4.51) 

(4.52) 

(4.53) 
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S22 — m_ 
dM2 

Yi=constant 

(4.54) 

The relative gain for the assumed pairing is defined as the ratio 

A12 

A21 

A22 

(4.55) 
Sn 

(4.55) 

(4.56) 
S12 

(4.56) 

F21 (4.57) 
S21 

(4.57) 

F22 (4.58) 
S22 

(4.58) 

Mo 

G\2 

G22 G22 

Figure 4.5: Open-loop of a 2 x 2 system, G,j is the transfer function of each channel. 
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So, the relative gain is often written as 

8Yi 
dMJ \M=constant 
dYi 

Y ^constant 

Fa 
(4.59) 

Xij in this case is the measure of interaction of four channels in a 2 x 2 system. Arrange 

the four relative gains into a matrix form, which is known as the relative gain array 

(RGA). 

Y1 

Y2 

Mx M2 

An A12 

A21 A22 

(4.60) 

One property of the relative gain array is the relative gains in each column and row add 

up to unity (See Appendix D), that is 

An + A12 = 1 

A21 + -̂ 22 = 1 

1̂1 + 2̂1 = 1 

A12 + A 2 2 = 1 
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Figure 4.6: Determination of closed-loop gain for a 2x2 system, /^and R2 are controllers. 
Ii and I2 are set-points, (a) Determination of Sn and S12; (b) Determination of S2i and 
S22- ' 
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4.2.3 Interpretation of the Relative Gain Value 

The relative gain An represents all the information about the interaction in a 2 X 2 

interacting process. If A n is known, the other three relative gains can be determined. 

This is an important property of the relative gain matrix for a 2 x 2 system (Details are 

provided in Appendix D), 

An can take on any value. 

• If An < 0, then Mi cause a strong negative effect on Y\. In this case, the interaction 

effect is very dangerous. 

• If An = 0, then Y\ does not respond to M\ and M\ should not be used to control 

• If An = 0.5, then interaction between the two loops is the same. 

• If An = 1> then a 2 x 2 system has two noninteracting control loops, i.e. either 

loop does not affect the other loop. 

• If An >̂ 1, then both variables cannot be controlled at the same time. 

In order to understand the value of An as a measure of interaction in a 2 x 2 system, 

Shinskey ( 1979 and 1988 ) presented several figures for different values of An which 

illustrate the change of the system's dynamic characteristics in open and closed loop step 

response due to an interaction effect. These figures are duplicated as Figure 4.7, Figure 

4.8, Figure 4.9, and Figure 4.10. Experience has shown that if An falls between 0.7 and 

1.5 (McAvoy, 1983), then the channel M\ —• Y\ (or M2 —• Y2) is influenced only slightly 

by other channels, that is to say, the interaction can be neglected. 
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time 

Figure 4.8: Step response of loop 1 closed for a 2x2 system with A n = 
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0 time 

Figure 4.10: Step response of loop 1 closed for a 2x2 system with A n = 
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4.3 Determination of the RGA for the CFSTR 

4.3.1 Determination of the Open-loop Gain Coefficient of the CFSTR 

The open-loop gain coefficient is nothing else but the steady-state gain K~ij of the chan

nel (a manipulated variable —»• a controlled variable) when only this channel is under 

operation and other channels are open. So, 

for Q(t) -> C(t) 
dC_ 
dQ Qc=constant ~ a 2 & 

(4.61) 

for Qc(t) -> C(t) 
dC 
dQc Q=constant - Q2^2 

(4.62) 

for Q(t) - T{t) 
dT 

F n ~ d Q Qc=constant <*& ~ 
(4.63) 

for Qc(t) -» T(t) 

F22 = 
dT 
dQc 

Oil 03 

Q=constant 
(4.64) 

By the principle of superposition, the system output is a sum of all input effects. So, 

writing Equations 4.61, 4.62, 4.63, and 4.64 in matrix form gives 

' dC ' ' Fn F12' ' dQ ' 

dT _ F21 F22 dQc 

(4.65) 
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4.3.2 Determination of the Closed-loop Gain Coefficient of the CFSTR 

From the definitions given in Equations 4.51, 4.52, 4.53, and 4.54, the method for deter

mining the closed-loop gain coefficients is easier said than done. For most processes, to 

measure a gain in one channel while the other channel outputs always remain constant 

is out of the question. The study reported in this section is an attempt to determine the 

closed-loop gain coefficients from the open-loop gain coefficients. 

From Figure 4.11, consider a change in the manipulated variable Q(t) which is the com

pound result of effects from changes in the controlled variables C(i) and T(t), then 

dQ = LndC + L12dT (4.66) 

Figure 4.11: Determination of the manipulated variable Q(i) from controlled variables 
C(t) and T(t). 
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Similarly, Qc(t) is also the compound result of changes to C(t) and T(t) (See Figure 

4.12). Then 

dQc = L21dC + L22dT (4.67) 

where Lu, Li2, L2\ and L22 are assumed channel gains. The d quantities refer to the 

value of the increment. 

Figure 4.12: Determination of the manipulated variable Qc(t) from controlled variables 
C{t) and T{t). 
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If dT = 0, we have 
dC 
dQ 

DC 

If dC = 0, we have 
dT 
dQ 

dT 

Tzzconstant 

T=constant 

C=constant 

dQc 

1 
Ln  

1 

L21 

1 

L12 

1 
L22 

C=constant 

Equations 4.68, 4.69, 4.70, and 4.71 are just the definitions of the closed-loop 

ficients. By the principle of superposition, the matrix form of Equations 4.68, 

and 4.71 is as follows: 
" dQ ' ' Ln L\2 ' dC ' 

_dQc L21 L22 dT 

(4.68) 

(4.69) 

(4.70) 

(4.71) 

gain coef-

4.69, 4.70 

(4.72) 

Eliminating dQ and dQc from Equation 4.65 and 4.72 gives 

' dC ' ' Fn F,2 ' ' Ln L\2 ' de' 
dT _F21 F22 L21 L22 dT 

(4.73) 

So 

^ 1 2 ' ' Ln L\2 1 0 

_ ^21 F22 _ L21 L22 _ 0 1 
(4.74) 

Solving for TJn, Li2, L2\, and L22 from Equation 4.74 

F22 
Ln = 

L\2 = -

F11F22 — F12F21 

^12 
F\\F22 — F12F21 

(4.75) 

(4.76) 
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Ln = - 2 1 (4.77) 

L22 = F p

 F n

F (4.78) 
-T11-T22 — -^12-^21 

Therefore, the closed-loop gain coefficients are 

S n = 1 = FUF22-F12F21 ( 4 ? 9 ) 

Ln r22 

1 FnF22 - ^12^21 , . o n ^ S12 = — = (4.80) 
L2i t2\ 

o 1 FUF22 - F i 2 F 2 i 
S21 = — = - (4.81) 

s ^ = 1 = FllF22-Fl2F2l { 4 8 2 ) 

L22 rn 

Then, A n which is defined as the relative gain of channel Q(t) —» C(t) is found to be: 

\ - i n . - FnF22 

<->ll ^11-^22 — -^12^21 

Now, substituting Equations 4.61, 4.62, 4.63, and 4.64 into Equation 4.83, we get 

A _ -(ftoffi + a2A))o:i/?3  
1 1 [-("oft + <*2A)K/?3] + [^A^oA. + c*iA))] 

_ Qi(a 0 /3i + Q 2 / ? Q ) 

«o(ai^i - "2^2) 
ctQCtiPi + aiQC20o /A QA\ 

= a T (4-84) 

Now, a simple yet important expression for the analysis of interaction of CFSTR has 

been derived as Equation 4.84. It has been shown how that the relative gain value An 

depends on the process parameters. 

At first glance, the relative gain value A n is seen to be greater than or equal to one 

because all parameters (o,- and /?,) are greater than zero and and 0*2/6*2 are subject 

to the inequality (Equation 3.31) constraint. 

An interaction analysis is presented in which the relative gain value An is a function of 
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both the system design parameters and the process parameters which influence to a large 

degree the interaction between the two control loops. The next section will illustrate 

two examples which indicate that the relative gain of a CFSTR responds to the system 

design parameters and to the process parameters. 

4.4 Illustrative Examples 

Example 1: As an example of a nonisothermal CFSTR, consider the design given by 

Douglas (1965, 1972). The values of the design parameters are given in Table 4.1 (page 

50). Despite the fact that this does not correspond to a case where there is an optimum 

noninteracting design for a two-variable control system, it does provided a set of classical 

parameters for a general study. 

According to Table 4.1 and Equations 3.16, 3.17, 3.18, 3.19, 3.21, and 3.22, the parameters 

ao, ai , ai, 0o5 0i) and 02 can be found as 

ax = —— + 0.4145 = 0.4245 

27000 x 15.31 x 10"5 x 28000 x 0.415 2 x 10 x 5 10 
= 0.129 1.987 x 460.912 1000(10 + 2 x 5) 1000 

02 = 27000 x 0.415 = 11205 

then 

A i i 
QI(QQA + QaA)) 
<*o(o;i/?i - a202) 
0.4245(6.347 x 1Q-6 x 0.129 + 4.215 x 10~6 x 0.1109) 
6.347 x 10"6(0.4245 x 0.129 - 4.215 x 10"6 x 11205) 

= 11.3 
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Evidently, the calculation of A u is not difficult. In this example, A n is much greater 

than one. Therefore, when the designer is confronted with the control of both the efflu

ent concentration and the reactor temperature, he or she should introduce a design of 

decoupling control. 

Example 2: Another example is quoted from Nakanishi and Ohtani (1986). The design 

specifications for steady-state operation of their CFSTR are given in Table 4.2. In this 

case, the average coolant temperature is given as 301°K, while the inlet coolant tempera

ture was not given. Assuming the average coolant temperature T c t n = 20°C — 293.15°/^, 

the relative gain may be calculated. 

ao = o "!n°I = 1965 
2 x 10 -3 

<*i = o 1 0,! , + 0.186 = 0.0236 2 x IO - 3 

1.07 x 0.0186 x 9.41 x 104 

2 8.314 x 336.12 

336.1 -301 

4.18 x 104 x 1.07 x 9.41 x 104 x 0.0186 
^ ~ 103 x 4.18 x 8.314 x 336.12 

2 x 5.67 x 103 x 1.78 x IO"7 

2 x 103(5.67 x 10-3 + 2 x 103 x 4.18 x 1.78 x 10-7) 
10"s 

+ 2 x IO"3 

= 0.0202 

then 

4-18 x 10' X 0.0186 
H 2 1000 x 4.18 

_ ai(a 0 f t + a2Po) 
1 1 ao(aift - a 2 f t ) 
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0.0236(1965 x 0.0202 + 0.00199 x 17550) 
1965(0.0236 x 0.0202 - 0.00199 x 0.1864) 

= 8.5 

Relatively speaking, although An in this case is smaller than the one in the previous 

example, its value is still greater than 1.5. For the decoupling compensation design (see 

Chapter 5), we will find that the smaller A n , the better the compensation performance. 

4.5 A Few Comments on Interaction Analysis 

The purpose for deriving Equation 4.84 was to obtain an exposition and overview of the 

interaction analysis from the process designer's point of view; that is to say, Equation 

4.84 gives an expression with which the interaction in the C F S T R control process can be 

calculated. It is a simple algebraic operation for a process designer to find the degree of 

interaction by substituting all the system parameters into Equation 4.84. If the relative 

gain value is greater than 1.5, it means the interaction between the temperature control 

loop and concentration control loop cannot be neglected. Thus decoupling will be nec

essary. On the other hand, it is important to realize that Equation 4.83 and Equation 

4.84 are merely two different ways of expressing precisely the same relations, one using 

open-loop gains, the other the system parameters. Equation 4.83 has practical signif

icance because the relative gain can be determined directly from measurements of all 

the open-loop gains and a designer needn't have any knowledge of the C F S T R process 

parameters. 

Except for certain applications where any interaction cannot be tolerated, it is desirable 

that the degree of interaction be sufficiently small, or the relative gains ( A n and A22) of 

the main channels should tend to one. For a C F S T R process, a desirable relative gain 

value must fall within the range from 0.7 to 1.5. In fact, as was mentioned previously, 

the relative gain value for a C F S T R is always greater than or equal to one for all system 
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parameters. System parameters and design parameters in general are constrained by 

process demand. Therefore, a desired relative gain value and the needed process design 

parameters sometimes conflict with each other. In other words, there is only limited pos

sibility that while designing a CFSTR process, a designer can pay attention to reducing 

the interactive control behaviour by changing the design parameters within the limits of 

the design objectives. Therefore, it should be emphasized here that the system design, 

which can deal with the reduction of interaction in the control of a CFSTR, rather than 

with the decoupling design, depends on the process properties with respect to the process 

design requirements. 

Derivation of the relative gain Equation 4.84 represents a first step in the study of in

teraction analysis of a CFSTR. Decoupling conditions and decoupling stability will be 

studied in the next chapter. 
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Parameter Description Nominal value Unit 

V Volume of reactor 1000 cm3 

Ti Inlet temperature of feed 350 K 

T 
-1 cm 

Inlet temperature of coolant 340 K 

Ar Frequency factor 7.86xl012 s-1 

n Reaction order 1 

E Activation energy 28000 cal/mol 

-AH Heat of reaction 27000 calf mol 

R Gas constant 1.987 calf (mol • K) 

AKU Heat transfer conductance 10 cal/(s • K) 

Pc Fluid density of coolant 1.0 kg/cm3 

cc 
Specific heat of fluid of coolant 1.0 cal/(kg • K) 

PJ Fluid density of feed 1.0 kg/cm3 

CP Specific heat of fluid of feed 1.0 cal/(kg • K) 

CiQ Steady-state inlet concentration of feed 0.0065 mol/dm3 

Co Steady-state effluent concentration of feed 15.31xl0"5 mol/dm3 

To Steady-state temperature in reactor 460.91 K 

Qo Steady-state feed flow rate 10 cm3 js 

QcO Steady-state coolant flow rate 5 cm3/s 

Table 4.1: Steady-state operation condition of a CFSTR, copied from Douglas (1965). 
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Parameter Description Nominal value Unit 

V Volume of reactor 2 x IO - 3 m3 

Ti Inlet temperature of feed 301 K 

T 
x cin 

Inlet temperature of coolant 293.15 K 

Ar 
Frequency factor 7.86xl012 s-1 

n Reaction order 1 

E Activation energy 9.41 x 104 kj/kmol 

-AH Heat of reaction 4.18 x 104 kJ/kmol 

R Gas constant 8.314 kJ/(kmol-K) 

AKU Heat transfer conductance 5.67 x 10~3 kJ/(s • K) 

Pc Fluid density of coolant 1 x 103 kg/m3 

Cc 
Specific heat of fluid of coolant 4.18 U/{kg • K) 

Pf Fluid density of feed 1 x 103 kg/m3 

cp Specific heat of fluid of feed 4.18 U/(kg • K) 

Cio Steady-state inlet concentration of feed 5 kmol/m3 

Co Steady-state effluent concentration of feed 1.07 kmol/m3 

T0 
Steady-state temperature in reactor 336.1 K 

Qo Steady-state feed flow rate 1 x IO"5 m3/s 

QcO Steady-state coolant flow rate 1.78 x IO"7 m3/s 

Table 4.2: Steady-state operation condition of a CFSTR, copied from Nakanishi and 
Ohtani (1986). 
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Decoupling Design for the CFSTR 

5.1 Introduction 

The aim of the decoupling design is to find a compensation network for overcoming the 

interaction naturally existing in the C F S T R process. If perfect decoupling is achieved, 

a change in set point for one variable will only effect the controlled variable associated 

with that set point, and all other controlled variables will be unaffected. The theoretical 

problems associated with the decoupling design are usually solved by the diagonal matrix 

method. On the other hand, there are two kinds of schemes for the decoupling config

uration. One is the ideal decoupling design in which the decoupled system is just the 

original system without coupling channels. Another is the simplified decoupling design. 

Generally speaking, the advantage of simplified decoupling is that the decouplers are al

ways physically realizable. In this chapter, the ideal decoupling design will be discussed 

briefly because it has been tried with some chemical process simulations and has proven 

to be very sensitive to modelling errors ( Weischedel and McAvoy, 1980; and McAvoy, 

1981.). 

In this chapter attention will be paid to both simplified decoupling design and the mod

elling error analysis by applying the relative gain method. 

52 
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5.2 Ideal Decoupling Design 

The fundamental problem in designing multivariable feedback controllers lies in the in

teractions which occur between the various input and output variables. If a system had 

no coupling between variables and the number of control variables equalled the number 

of outputs to be controlled, then the system in the transform domain would have a diag

onal open-loop transfer function. Ideal decoupling design permits a decoupled process to 

behave as if the original interaction channels were not present, i.e., the response of each 

control loop is independent of all other control loops. Figure 5.13 shows a block diagram 

for the ideal decoupling of a CFSTR control system. 

The open-loop transfer matrix relating [ C(s) T(s) ] - 1 and [ Mc(s) Mx(s) ] _ 1 is 

C(s) 

A*) 

Gu(s) G12(s) Nu(s) N12(s) Mc(s) 

G2i{s) G22(s)\ [ N21(s) N22(s) J [ MT(s) 

G11(a)N11{s) + G12(s)N21(s) Gu(a)N13(s) + G12(s)N22(s) 

G21(s)Nn(s) + G22(s)N21(s) G21(s)N12(s) + G22(s)N22(s) 

Mc(s) 

MT(s) 

(5.85) 

where Nn{s), Ni2(s), N2i(s) and N22(s) are decoupling compensators; Mc(s) and MT{S) 

are output variables of the controller Rc(s) and the controller RT(S), respectively. 

For ideal noninteraction, define 

G11(s)N11(s) + G12(s)N21(s) = C7n(s) 

G21(s)N11(s) + G22(s)N21{s) = 0 

Gu{s)Nu(s) + G12(s)N22(s) = 0 

G21(s)N12(s) + G22(s)N22(s) = G22{s) 

(5.86) 

(5.87) 

(5.88) 

(5.89) 
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Figure 5.13: A block diagram for ideal decoupling system of the CFSTR. Nn(s), N12(s), 
N2i{s) and N22(s) are decoupling compensators. 

Equation 5.86 and Equation 5.87 can be rewritten in matrix form as 

then 

(5.90) 
Gn(«) GM ' ' Nn(s) ' ' Gn(s) ' 

GM G22(s) N2l(s) 0 

G22(s) -GM 
-G21(s) G„(a) 

NM 

For Equation 5.88 and Equation 5.89, similarly, 

' Gn(s) ' Gn(s)GM 
0 -Gn(s)GM . 

2{s)G2l{s) G11(s)GM-Gl2(s)GM 
(5.91) 

GM GM NM ' 0 

GM G22(s) NM G22(s) 
(5.92) 
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then 

G22(s) -G12(s) 0 

N12(s) ' . -G21(s) Gn(s) . G22(s) 

N22(s) . G11(s)G22(s) - G12 (s)G21(s) 

-G12(s)G22(s) 

G11{s)G22{s) 

Gn(s)G22(s)-G12(s)G21(s) 

(5.93) 

Therefore 

Nu(s) = N22(s) 

N12(s) = 

N2l(s) = 

Gn(s)G22(s) 
Gn(s)G22(s) - Gl2(s)G21(s) 

G12(s)G22(s) 
G11{s)G22(s)-G12{s)G21{s) 

Gn(s)G21(s) 

(5.94) 

(5.95) 

Gu(s)G22(s) - G12(s)G21(s) ( 5 - 9 6 ) 

Obviously, not only are four compensators needed for ideal decoupling, but also their 

structures are not simple, and they may be very difficult to design. In many cases, they 

are not physically realizable if the model order is high. For this reason, another basic 

approach to algorithmic decoupling design will be discussed in the next section, namely 

simplified decoupling. 

5.3 Simplified Decoupling Design 

If both Equation 5.87 and Equation 5.88 can be satisfied, the transfer function matrix 

in Equation 5.85 can still be a diagonal matrix. Thus, the system is uncoupled since the 

controller's output variable Mc(s) has no effect on the controlled variable T(s) and the 

other controller's output variable MT(S) has no effect on the controlled variable C(s), 

either. Therefore, the process will be decoupled. The conditions for simplified decoupling 

are as follows: 

G21(s)Nu(s) + G22(s)N21(s) = 0 

G11(s)N12(s) + G12(s)N22(s) = 0 
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Figure 5.14: A block diagram for a simplified decoupling system of a C F S T R 

Now, letting 

Nn(s) = N22(s) = 1 (5.97) 

and by defining N\2(s) and N2\(s) as 

* , ( . ) = (5-98) 

only two decoupling compensators are needed. Figure 5.14 shows the block diagram for 

a simplified decoupling system of a CFSTR. 

Substitute Equations 3.33 and 3.34 into Equations 5.98 and substitute Equations 3.35 

and 3.36 into Equation 5.99, and rearrange to obtain 

* M - a T H & 3 a i < 5 ' 1 0 1 ) 
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the two steady-state gains of Ni2(s) and N2i(s) are identified as ki2 and k2i, then 

*»=- ""wl»° - -k • - S T O O ( 5 - 1 0 2 ) 

^22 CtlP3 

For the concentration main channel Mc(s) —* C(s), we have 

Gn(s) + G12(s)N21(s) = [ _ ] [ _ _ _ _ _ _ ] 

(s + cti)[ct0(s + px) + ct2p0} - a2[a0p2 + Pojs + ai)] 
P(s)[(s + ai)] 

a0[s2 + (ai + /?i)s + apSi - Q2/32] 

5 +Cti 
(5.104) 

and for temperature main channel Mr(s) —» T(s), we have 

G21(s)N12(s) + G22(s) - -[ ^ ]W + A ) + - 2 / 5 o ] + P(s) 

-a 2 / 3 3 [a 0 / 3 2 + Pojs + Qi)] + p3{s + cti)[ao(s + Pi) + mPo] 
'P{s)[a0(s + p1) + a2p0] 

a0p3[s2 + (cv! + + ai^! - a2p2] 
P(s)[cx0(s + PJ) + a2p0] 

(5.105) a0p3 
<*o(s + Pi) + CX2P0 

From Equations 5.100, 5.101, 5.102 and 5.103 just derived, a block diagram of a CFSTR 

can be drawn, as shown in Figure 5.15(a). Simplification of this block diagram results in 

Figure 5.15(b). 
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a 

Mc 
a 0 

s + « i 

— — 

a0{s+ (3}) + a2/3Q 

b 

Figure 5.15: (a) A block diagram of a decoupled C F S T R system, (b) A 
with superficial noninteractive behaviour. 
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5.4 Analysis of Modelling Error by the R G M 

As described above, classical decoupling design requires that the dynamics of the CFSTR 

process be known, either in terms of differential equations or transfer functions. However, 

in many cases, detailed dynamic studies are not feasible, or they may not be worthwhile 

because of uncertainty regarding the proper form of the objective function to be used 

in designing the decoupling network or controller action. For this reason, improving the 

robustness of the decoupling system will play an important part in a CFSTR process 

control design. It should be pointed out that the relative gain method is still applicable 

to the analysis of the decoupling system design. Now, consider the open-loop gain coef

ficients Fijd of the decoupled CFSTR system, as shown in Figure 5.16. 

c Mc 

Mr 

FUd FUd 

F2u 

Fnd 

F22d 

1 + 

+ 

Kl2 

K22 K22 

Figure 5.16: (a) The open-loop gain coefficients F^d of the decoupled CFSTR system, 
(b) The steady-state gain of each element in the open-loop decoupled CFSTR system. 
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for Mc{t) -> C(t) 

for Mc{t) -> T(t) 

for MT(t) -» C(*) 

for Mr(r) -+ T(t) 

Fiw = Ku + hiKi2 = Fu + k21F12 (5.106) 

^12d = K21 + fc2l#22 = ^21 + ^21^22 (5.107) 

F2U = K12 + k12Kn = F12 + k12Fn (5.108) 

F22d = K22 + k12K21 = F22 + k12F21 (5.109) 

According to Equation 4.83, the relative gain of the decoupled system of the CFSTR, 

which is identified as And, can be inferred as follows: 

FiuF22d 
And = F\\dF22d — F12dF21(i 

1 
1 -

1 

(Fu+fc2li ;i2)(F22+fcl2F2l) 

(5.110) 

Obviously, if 

k12 = (5.111) 
Fi n 

k2l = (5.112) 
^22 

then And = 1; this is a perfect noninteracting system. 

Consider the "worst case" possibility, which can drive the system out of control, that 

is to say, And —* oo. Clearly, the condition which And tends to infinity is when the 

denominator of Equation 5.110 tends to zero, or 

(F21 + k21F22)(F12 + kl2Fn) 
(Fn + knF12)(F22 + k12F21) 

1 (5.113) 
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From Equation 5.111 and Equation 5.112, if 

k12k2i = 1 (5.114) 

then substituting above Equation 5.114 into the denominator of Equation 5.110, we get 

F\2F2i + ki2FnF2i + h\Fi2F22 + ki2k2iFuF22 

^12^21^12-^21 + &12 ̂ 11-^21 + hiFi2F22 + FUF22  

F\2F2\ + k\2F\\F2\ + k2\F\2F22 + FnF22 

Fi2F2\ + ki2FuF2i + k21Fi2F22 + FUF22 

1 

= 0 (5.115) 

So, the relative gain \ U a - —> oo. It should be noted that although, in theory, the interac

tive behaviour of a CFSTR can be compensated for by the diagonal matrix method, in 

practice, the modelling error can still make the decoupled system deviate from the opti

mal state so that the CFSTR process goes out of the control. Therefore, it is necessary 

to improve the decoupling design in order to make the system performance more stability. 

(F21 + k21F22)(F12 + k12Fu) 
(Fn + k21F12)(F22 + kl2F21) 

= 1-

5.5 Error, System Stability, and Robustness 

The aim of stability analysis is to find bounds on the decoupling modelling error that 

leads to divergence of the CFSTR process. Let tx and e2 be two compensation factors for 

decoupling elements iV12 and JV21, respectively. The modelling compensation factors rep

resent the errors associated with the model mismatch between the interactive behaviour 

of the CFSTR and the decoupler. Rewriting Equation 5.111 and Equation 5.112 as 

fci2 = - e i § ^ (5.116) 

hx = -zJ^Jr (5.H7) 
f22 
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If ej = e2 = 1, this is the condition for perfect decoupling. 

If fci2&2i = 1, then 

eie2 = — — (5.118) 
^12-^21 

and the CFSTR system is out of control because A11(f —• oo. This is the condition 

which indicates that both the effluent concentration variable and the reactor temperature 

variable cannot be controlled at the same time. As mentioned in Chapter 4, the original 

relative gain value of the CFSTR process is 

•^11-^22 
A n = ~p p WW ~ i (5.119) 

i'11i>22 ~ ^12^21 1 -
Substituting Equation 5.118 into Equation 3.119, we obtain 

An = jw^: (5-12°) 
eie2 

Therefore 

eie2 = (5.121) 
A n — 1 

Equation 5.121 indicates that under the unstable condition, the modelling compensation 

factors depend on the original relative gain value. As is well known, a model of a realistic 

CFSTR process is seldom completely known and, if known, it is seldom linear. Local 

linearization, as described in Chapter 3, forms the basis for most of the currently applied 

control theory; but unfortunately, it allows good performance only for small departures 

of the operating variables from their nominal trajectories. In most cases, the main reason 

for the control problems associated with an unstable process is uncertainty which can 

lead to modelling error. Uncertainty in a CFSTR process model may have three origins. 

(1) There are always parameters in the linear model which are only known approximately. 

(2) The parameters in the linear model may vary due to nonlinearities or changes in the 

operating conditions. 
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(3) Outside disturbances can effect the process parameters. 

Therefore, from the viewpoint of control engineering, the decoupling design should con

sider that the error in the original relative gain value, An can vary within the limits of 

the objective conditions. Now, consider two different cases: overcompensation and un

dercompensation. To simplify the algebra and avoid complicated computations, let the 

two compensation factors be the same, i.e., e\ = e2 = e. Thus, for overcompensation, the 

compensation factor e is greater than one; and for undercompensation, the compensation 

factor e is less than one. 

5.5.1 Overcompensation of Interaction 

In this case, substituting Equation 5.116 and Equation 5.117 into Equation 5.110, then 

the relative gain And can written 

A - l.Tl ^ i ( l - e ) 2 

d * / [ ( ^ n - ^ e ) ( F 2 2 - ^ e ) J 

/ r FnF12F21F22(l - e)2 

/ L (FnF22 - F12F21e)2 

FUF22(1 - e)2 

From Equation 5.119, we have 

= W - F P cV] ( 5 ' 1 2 2 ) 

~p p = 1 - T ~ ( 5 - 1 2 3 ) r\\r22 A n 

Now, substituting Equation 5.123 into Equation 5.122, we get 

A ' " = 1 / [ 1 - ( l ^ § ^ ] ( 5 ' 1 2 4 ) 

Clearly, the relative gain of the decoupled system is a function of both the original rel

ative gain of the CFSTR process and the modelling compensation factor. Considering 

that under the overcompensation e is greater than one, the family of curves And obtained 

from Equation 5.124, with various values of both A n and e is shown in Figure 5.17 and 
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Figure 5.18 (See Table H.3, H.4, and H.5). It is important to note that once the theo

retical relative gain An, which is a unique value in design, is determined from Equation 

4.84, the relative gain And of the decoupled system is only a function of the compen

sation factor e because e, in practice, can be regulated. As shown in Figure 5.18, the 

overcompensated system, with e around 1.10, will be unstable when the original relative 

value of An is greater than about 5.65. If, as an Example 1 in Chapter 4, the original 

relative gain An of the CFSTR is around 11.3, the compensation factor e must be less 

than 1.03. When the compensation factor e is less than 1.02, relatively speaking, the 

overcompensated system has good performance if the original value of An is less than 

16.95. 

From the foregoing analysis, it can be seem that if the original relative gain A n is much 

greater one, the overcompensation factor must be smaller for good compensation per

formance. In other words, if the overcompensation factor is too large, it is difficult to 

obtain good decoupling. When An is near the unstable boundary condition the decoupled 

CFSTR process can experience a nonlinear, divergent change. In short, the overcompen

sation of an interacting system which has a large An may lead to unstable or poorer 

control than when this system is controlled without a decoupler. 

5.5.2 Undercompensation of Interaction 

Equation 5.124 is also true for the analysis of undercompensation. In this case, assume 

that the undercompensation factor falls between 0.90 and 0.99 (See Figure 5.17). With 

changes in the undercompensation factor, the relative gain of the decoupled system, with 

a known original relative gain, can deviate from the desirable value as well. The devia

tion from the desirable value, however, is basically proportional to the original relative 

gain value over a wide range, and the rate of deviation is not very sensitive to the com

pensation factor e. The important point is that there are not any nonlinear divergent 
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phenomena. Consider Example 1 in Chapter 4, the original relative gain value is about 

11.3, the biggest deviation value for the decoupled CFSTR process, when the undercom

pensation factor is 0.9, is about 1.39 (See Table H.3). Therefore, the undercompensated 

system, which can tolerate a relatively wide undercompensation range, performs better 

than with overcompensation under the same original relative gain value. 

5.5.3 Stability Analysis 

In the above studies, it was found that although the absolute deviation of the compen

sation factors from unity in the two cases are the same, the effect of the value of the 

relative gain of the decoupled CFSTR system are quite different. Overcompensation will 

probably lead to instability, while undercompensation can hardly be made unstable. The 

reason is that in Equation 5.121, if eie2 is greater than one, the value of the right-side of 

this equation probably equals the product of e\ and e2 since An always is greater than 

one. On the contrary, if the product of t\ and e2 is less than one, then Equation 5.121 

is never satisfied. Therefore, a significant improvement in the decoupled control system 

robustness can be obtained if the decouplers, N\% and iV2i, always work under a condition 

of undercompensation. It is conceivable that if the product of e\ and e2 is less than one, 

that Equation 5.121 becomes 

eie 2<l ^ A n > 1 A i i> l (5.125) 
An — 1 

Equation 5.125 essentially gives a bound on the decoupling stability condition. This 

condition is simple and physically realizable. 
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5.5.4 An Illustrative Example 

Assuming that each parameter in the CFSTR model process has a increment or a decre

ment, there will be thousands of combinations possible. It is therefore difficult to simulate 

all these combinations. As an example of the robustness test, one case will be studied in 

which it is assumed that the main channel of the concentration control loop, in practice, 

may be disturbed independently from outside so that the open-loop gain deviates from 

the theoretical value Fn. Now, consider the practical open-loop gain F n , which is given 

by 

A i = dFu (5.126) 

where d, which should be greater than zero, is the deviation factor. 

The practical relative gain becomes 

X » = ! L F „ (5-127) 

Substituting Equation 5.119 into Equation 5.127, we get 

1 
1 - 3 ( 1 - * ) 

d\n 
d\u - An + 1 

or 

And = 1/[1 

(5.128) 

d = ( 1 ~ ^ l l ) A n (5.129) 
(1 - Aii)An 

The practical relative gain of the decoupled system becomes 

x _ 1 / r i + hiF22)(F12 + k12dF11) 
Alld - 1/1 - , r . w r , , - jp J (5.1JUJ 

(dtu + k,2lti2)(F22 + ^2^21) 

Substituting Equations 5.116, 5.117 and 5.129 into 5.130, we have 

F12F21(1 - e)(l - ed) . W i - ^ e ) ( F 2 2 - ^ e ) J 
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- i / f 1
 F"F"(l ~ e ) ( 1 ~ ed) 1 

n wS- e)(S- e) 
(1 _ e ) [ I _ e f i ^ A u ] 

In Equation 5.131, the theoretical relative gain An is 11.3, and it is assumed that the 

practical relative gain can be changed between 5 and 25. Figure 5.19 and Figure 5.20 show 

a comparison between overcompensation and undercompensation. It is found that the 

An is very sensitive to the changes in the overcompensation factor. If An changes because 

of a ±20% change in An, the overcompensation factor must fall between 1 and 1.03 in 

order to keep Xiu < 1.4 (See Table H.6), while the undercompensation factor can vary 

between 0.90 and 1 for equivalent control stability. Therefore, undercompensation has 

good robustness. The primary purpose of using undercompensated decouplers is to reduce 

the sensitivity of the CFSTR process to parameter variations and unwanted disturbances. 

For the decoupling design, the undercompensation factors must be selected very carefully 

so that the CFSTR system can operate under undercompensated conditions. Figure 5.21 

shows a block diagram of an undercompensated decoupled CFSTR system. The result 

of this compensator design is that a 2 x 2 CFSTR system has effectively become two 

separable single control loops. However, if time-delay behaviour occurs in each feedback 

channel, an unstable CFSTR system is still probable. Time-delay compensation for a 

CFSTR process will be studied in the next chapter. 



Figure 5.17: The relative gain XJU versus the compensation factor e 
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Figure 5.18: The relative gain XUd versus the overcompensation factor e 



Figure 5.19: Xnd versus An with e > 1. 
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Compensator Process 

Figure 5.21: A block diagram of an undercompensated, decoupled CFSTR system 



Chapter 6 

Design of Time-delay Compensation 

6.1 Introduction 

By the careful design of a decoupling system, a two-variable C F S T R process has been 

separated into two single-variable control loops. As pointed out in Section 2.2, for the 

delay-free case, the use of negative feedback can make the system performance less sen

sitive to changes in process parameters. However, when the C F S T R process exhibits a 

time-delay in the control loop, this process is still not a simple one, that is to say, the 

time-delay can effect system performance and it can even lead to instability, while the 

conventional controllers cannot minimize the delay effect at all. Therefore, it is necessary 

to study time-delay compensation for the stable operation of a C F S T R . The following 

sections will be concerned with discussion of the C F S T R process with and without a 

time-delay, an ideal and nonideal Smith compensator, and a simple and physically real

izable time-delay compensator. As mentioned in Chapter 2, problems involved with the 

sensitivity analysis of the Smith compensator have been reported in the last 20 years. So, 

the effect of a nonideal Smith compensator, i.e., the modelling error, will be presented 

briefly, while this chapter will concentrate on studying a simple and physically realizable 

time-delay compensator. 

In general, the concentration control loop of the C F S T R has a bigger time-delay than the 

temperature control loop has. In the light of this, the time-delay compensation for the 

concentration control is considered in detail and the result for the temperature control 

73 
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it can be deduced easily by analogy. 

6.2 Control of the Concentration Process without a Time-delay 

In analyzing practical processes, it is often desirable to change the units of a variable or 

to normalize a given variable. The results in terms of normalized dimensionless variables 

are useful because they can be applied directly to different systems having similar mathe

matical equations. Appendix E provides an outline of the derivation of the dimensionless 

variables for concentration control. 

Figure 6.22 shows the block diagram of the concentration control system without time-

delay. For simplicity and insight, the controller KQ is considered to have proportional 

control action. The open-loop transfer function between the manipulated Q(s) and con

trolled variables C(s) is 

g j f l = G u ( 5 ) = _ i*L_ = (6.132) 

where |J- is the dimensionless open-loop gain, and 4^ is the time-constant of the system. 

Figure 6.22: Concentration control system without time-delay 
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The closed-loop transfer function between the set point Ic(s) and the controlled 

variable C(s) is 

C(s) _ KcGlx{s) _ Kc& Kc&o 
Ic(s) l + KcGn(s) l + Kc-gfr s + fa + Kc&o) 

where Kc is the amplifier gain or proportional sensitivity. 

(6.133) 

Unit-step Response of the System: Since the Laplace transform of the unit-step 

function is j , substituting Ic{s) = j into Equation 6.133, we obtain 

s s + [cti + Kca0) 

I < C & ° ^ 1 - . - . , , * ,, , J (6-134) 
OL\ + Kcc\0 s s + (c*i + KCOCQ) 

Consider Example 1 in Chapter 4, where do = 0.41456 and di = 0.4245 (See Appendix 

E) and taking the inverse Laplace transform of Equation 6.134, we obtain 

di + Kc&o 
0.41456/̂ c r. _ -(0.4245+0.41456ATc)t ] (6.135) 

0.4245 + 0AU56KC

1 

Equation 6.135 states that initially the output variable C(t) is zero and finally it be-
c o m e s

 o,4245+o546i456A-c

 o r u n i t y i f ° - 4 1 4 5 6 ^ c > 0.4245. As seen from Equation 6.135, the 

steady-state is reached mathematically only after an infinite time. In practice, however, 

a reasonable estimate of the response time is the length of time the response curve needs 

to reach the 4% line of the final value, or four time constants. Note that a discrepancy 

between a set-point and a practical value is always of occurrence with proportional con

trol. By regulating Kc, the system response can be improved. The concentration control 

system without time-delay is always stable for all values of Kc- Figure 6.23 shows that 

the bigger Kc, the better the response curve. 
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0 1 2 3 4 5 6 7 8 9 10 11 12 time 

Figure 6.23: Unit-step response curves of the concentration control system without 
time-delay 
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6.3 Control of the Concentration with a Time-delay 

Figure 6.24 illustrates a practical concentration control system with a measurement, time-

delay. The closed-loop transfer function is 

C(s) = KcGnjs) 
Ic(s) 1 + Kce-T^GU(S) 

1 + Kc-^-e-To 

_ Kc&o  

Usually, e~Tc" can be approximated by 

e 2 

1 + ?fs 
2-TCS 

(6.136) 

(6.137) 
2 + TCS 

Equation 6.137 is the Fade approximation which is reasonablely accurate for many pur

poses. 

Figure 6.24: Control of the concentration process with measuring time-delay 
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Substituting Equation 6.137 into Equation 6.136, we get 

C{s) = KCCCQ 

lc(s) s + a1 + KoM^S) 
Kcd0(2 + TCS) (6.138) 

TCS2 + (2 + ctxTc - Kca0TC)s + 2(di + Kc&o) 

The characteristic equation of the closed-loop system can be obtained by setting the 

denominator of Equation 6.138 equal to zero. As is well-known, the stability of a system 

is independent of the input excitation, and the characteristic equation determines system 

stability. Obviously, the coefficients in the characteristic equation of the closed-loop 

system may be less than zero when Kc is sufficiently large. For stability, all coefficients in 

the characteristic equation of second-order systems must be positive. Therefore, although 

the amplifier gain Kc of a first-order system can be set at a high value in the absence 

of time-delay, it cannot be set too high if time-delay is present. According to the Routh 

criterion, we have 

2 + cVc - KC&QTC > 0 (6.139) 

or 

Kc < — (6.140) 
OCQTC 

For the system considered here, the value of the amplifier gain Kc must be less than 
2 t o r J C ^ o r s^able operation. Nevertheless, the smaller Kc> the poorer is the response of 

the system. 

Equation 6.138 is a second-order system. Its standard analytical solutions are provided 

in Appendix F. The dynamic behavior of second-order systems can then be described in 

terms of two parameters £ and u>n. 

By defining the undamped natural frequency un and the damping factor £ as 

.2 2(&l + Kc&o) u- = — _ (6.141) 
rc 
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and 

^ _ 2 + diTC — KC&QTC 1 _ 2̂ + dire - KcapTc ^ TC 

2TC U.. 

Equation 6.138 can be rewritten as 

C(s) 

2TC 

(2 + TCS) 

2(dx + Kca0) 
(6.142) 

Ic(s) s2 + 2+aiTc-KcaoTc S + 2(ai+Kcc<o) 

(6.143) 
TCU>1 s2 + 2£uns + u* 

The parameters un and £ are very important for characterizing a system's response. 

Note from Equation 6.143 that un is the radian frequency of oscillation when £ = 0. As 

£ increases in value from 0, the oscillation decays and becomes more damped. When 

£ > 1, oscillation does not occur. For a standard second-order system which is shown in 

the square brackets of Equation 6.143, as t —> oo, its steady-state value under a unit-step 

input tends to one. Now, the steady-state value of the concentration control system 

depends on the closed-loop gain 2 J f g f ° . Notice that the ultimate response, after t —• oo, 

never reaches the desired set point. There is always a discrepancy called offset which is 

equal to 

offset = (set point) — (ultimate value of the response) (6.144) 

The final value theorem (See Appendix B) provides a convenient way to find the steady-

state performance of a system, thus 

offset = - lim C(t)\dosed 

—loop 

t—•CO 

- lim sC(s)\dosed-loop 

- lims/c(-s)h j cGn( )— , 
,-,0 ° W L 1 + Kce-rc'Gnis)1 

- l im . 
w ai+s 

Kc&o 
d x + Kc6c0 

Kc^ 

(6.145) 

file:///dosed-loop
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So 

offset Min. l - ( 

l - ( 

1 

d i + KCOCQ 

Kc&o 
&i + KCOLQ 

Kc—Max. 

K„ 2_ , i L 
A c - A 0 r c

 + d 0 

= < 

2d1 + f 

2 ( r c d ! + 1) 

0 if TC = 0 

0.5 if T C d i > 1 

(6.146) 

Clearly, the bigger the time-delay, the bigger the offset, but the maximum offset tends 

to a limit of 0.5. The simulation results are shown in Figure 6.25 and Figure 6.26. 

Kc 
= 3.2 

Kc 
= 3.0 

Kc = 2.8 

1 2 3 4 5 10 15 time 
Figure 6.25: Unit-step response curves of the concentration control system with measur
ing time-delay, rc = 2 sec. 
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C(t) 

time 

0 1 2 3 4 5 10 time 

Figure 6.26: Unit-step response curves of the concentration control system with measur
ing time-delay. r c = 0.2 sec. (a) the amplifier gains are 5 and 10. (b) the amplifier gain 
is 15. 
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6.4 Control of the Concentration Process with a Smith Compensator 

Figure 6.27 shows a block diagram of the concentration control loop with a Smith com

pensator (Smith, 1957). The basic idea of the Smith scheme is very simple, namely let 

the closed-loop characteristic equation of a time-delay system which contains an inten

tional time-delay model be equal to a new characteristic equation without the time-delay 

factor. From Figure 6.27, the transfer function of the closed-loop is as follows 

C(s) _ KcGn(s) 
Ic(s) 1 + Kc[G.(s)H.(s) + e-*c'Gu{s)] 

where Ga(s)Ha(s) is an intentional model. 

(6.147) 

MC 

\NC 

~ T c s r G>(s) J 

Smith Compensator 

-TCS 

G n 
C 

Nc Hs{s) = 1 - e Gs(s) = G u ( s ) M, c 

Figure 6.27: (a) Control of the concentration process with the Smith compensator, (b) 
A block diagram of the Smith compensator. 
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For the Smith compensator, substituting H3(s) = 1 — e~TcS and Ga(s) — Gn(s) into 

Equation 6.147, we have 

C(s) KcGn(s) 
Ic(s) 1 + Kc[Gn(s)(l - e-c) + e-^Gn(s)} 

KcGnjs) 
(6.148) 

l + KcGn(s) 

So, Equation 6.148 is the same as Equation 6.133, which is for the delay-free case. 

However, it is universally accepted that the block Hs(s) is physically irrealizable because 

of the transcendental function e~Tc". On the other hand, if the real transfer function 

deviates from the theoretical model, then the characteristic equation of the closed-loop 

becomes 

l + Kc[G11(s)(l-e-Tc3s) + e-*c"Gn(s)] = Q (6.149) 

where e~TCSGu(s) is the real process. Many researchers have pointed out that the per

formance of the Smith scheme is very sensitive to the accuracy with which actual pro

cess time-delay is identified. For extensive discussions of the modelling error of Smith's 

scheme, see Buckley (1964), Marshall (1979), Palmor (1980) and Stephanopoulos (1984). 

6.5 A Physically Realizable Time-delay Compensator 

One of the most important qualitative properties of a control system is its stability. One 

feature of the ideal Smith's scheme is that the time-delay factor e~Tc" can be eliminated 

in the system characteristic equation by subtraction, i.e., if the Smith model and process 

control model are in exact agreement, the term in square brackets of Equation 6.149 

becomes CTII(S). However, in practical situations, the time-delay of a feedback analyzer 

is time-variant. So, an improperly designed control system can lead to system instability, 

mistrust by operators and maintenance headaches. In order to improve the stability of 

the time-delay compensator, a proposed compensation scheme is presented in Figure 
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Time-delay Compensator 

Figure 6.28: A physically realizable time-delay compensator 

6.28 to eliminate the effect of time-delay through division. The transfer function of 

Figure 6.28 between C(s) and Ic(s) is 

. C(s)_ = KcG11(s)[l + G1(s)G2(s)}  
Ic(s) [1 + Gi(s)G 2(s)] + KcGxis^l + G 2 ( s ) e - ^ G n ( s ) ] 

KcGxl{s) 

i-rixc^iKS) I + G J ( s ) G 2 ( S ) 

The detailed derivation of Equation 6.150 is shown in Appendix G. 

As mentioned before, the magnitude of e - T c S is always unity. So, if 

| G 2 ( 5 ) C - T " G „ ( 5 ) | < 1 

(6.150) 

then 

|G i ( s )G 2 ( 5 ) | < 1 

C(s) KcGu(s) 
Ic(s) ~ l + KcG^s) 

(6.151) 

(6.152) 

(6.153) 
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When Gi(s) — Gxx(s), Equation 6.153 is the same as Equation 6.148 which is for the 

perfect Smith compensator. 

6.5.1 Stability Analysis 

For Gn(s) = let Gi(s) = Kx and G2(s) = K2, then Equation 6.150 becomes 

C(s) = Ko-fe 
I c { s ) 1 I K, .1' 1 + K ^ ^ 

(l + KxK2)Kc^-a 

where 

For stability, 

1 + KXK2 + KCKX[\ + K2{%%)(&;)} 
(1 + KXK2)KCO:O(2 + TCS) 

a2s2 + axs + a0 

a0 = 2[(1 + tfi#2 + KiKc)ax + KxK2Kca0] 

ax = (1 + tfitfa + KXKC)(2 + Tc&x) - KxK2KCTCa0 

a2 = TC{1 + K1K2 + KXKC) 

(1 4- KXK2 + KXKC)(2 + TCax) - KxK2KCTCa0 > 0 

or 
(1 + KXK2)(2 + rcax) > KiKc(K2Tcao - 2 - TCax) 

Obviously, if K2TC&0 — 2 — TCOLX > 0, then 

(l-rKxK2)(2 + TCax) 
Kc< 

if K2Tca0 — 2 — Tcotx < 0, then 

Kc> 

Kx(K2TCa0 - 2 - TCax) 

{l-rKxK2)(2 + rcax) 
Kx(K2TCa0 - 2 - TCax) 

(6.154) 

(6.155) 

(6.156) 

(6.157) 

(6.158) 

(6.159) 

(6.160) 

(6.161) 
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Notice that the right-side of Equation 6.161 is less then zero. Therefore, the value of the 

amplifier gain Kc, which is always greater than zero, is not constrained at all, that is to 

say, for all values of Kc, the concentration control system is stable. 

On the other hand, in order to satisfy Equations 6.151, 6.152 and 6.161, the conditions 

are 

K2TCC\0 - 2 - rcdi < 0 (6.162) 

K ' * \ m ( 6 - 1 6 4 ) 

For chemical processes, the system frequency u>, in general, is very low. So, Equation 

6.163 becomes 

K2 < . » ? i (6.165) 
a 0 

In practice, assuming K\ = 4̂- = 0.976 (see Appendix E) and K2 is less than one tenth 

of the magnitude of Gn(s), we get 

tf2 = 0 . l ^ = 0 . 1 - ° ^ ^ « 0 . 1 (6.166) 
a0 0.41456 

Thus, Equations 6.151, 6.152 and 6.161 are satisfied. The transfer function of the con

centration control system becomes 

C(s) fefr Kc&o 
Ic(s) 1 + KcKx {l + KcKJi&i + s) 

For a unit-step input, we get 

(6.167) 

C M - I ( i + W * , + ,) ( 6 - 1 6 8 ) 

The time-domain solution of Equation 6.168 is 

C(t) = u (1 - e " * 1 ) (6.169) (1 + KcKxjdx 
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and 

5—0 
offset = 1 — lim sC(s)\cioted ;oop 

= 1 limsJc(a)[ 
s—»0 

KcGu(s) 
i _L K r (^i+^2g~Tc"gn(')^ 
1 + KCUi{s) l+K2Gl(a)' 

1 + KCK1- ^ 

= 1 -

= 1 

«*1 1 + ^ 2 ^ 

l + Kcfx 

Kc—*oo 
(6.170) 

Figure 6.29 shows the unit-step response of Equation 6.153. 

t 



Figure 6.29: The unit-step response of the concentration control loop with a physically 
realizable time-delay compensator. Kc — 100, Kx — 0.976 and Ki = 0.1. 
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6.5.2 A Few Comments on the Control Mechanism 

1. The time-delay compensation of Figure 6.7 possesses two advantages. The first of 

these is that of avoiding the solution of the transcendental function e~Tca which is 

physically irrealizable, and the second is the inherent stability of the compensation 

structure which can withstand a time-variant time-delay. 

2. The present method virtually retains the benefits of feedforward control. The out

put of the controller is through both the process model G\\(s) and the feedforward 

model G\(s) without a time-delay factor. The dynamic response error of the system 

can be reduced by comparing the input Ic(s) and the output of feedforward model 

Gi(s) (see Figure 6.28). 

3. Basically, the measuring delay can be reduced, but it can not be totally eliminated 

hy G2(s). When the system reaches a steady-state, the difference between the 

process output and the feedforward model output can improve the steady-state 

response of the system, i.e., the offset will tend to zero. 

4. In practice, Gi(s) may be a process model Gn(s) or any other compensator, such 

as a lead compensator or a lag compensator or a lag-lead compensator. Also, C?2(s) 

may have any structure, but the magnitude of LT2(-S) must be small in order to 

satisfy Equations 6.151, 6.152 and 6.162. 



Chapter 7 

Conclusions and Suggestions 

7.1 Conclusions 

1. A measure of the interaction of the two-variable CFSTR control system has been 

derived and is given in Equation 4.84, which can provide information on interaction 

for a process designer before setting up a two-variable CFSTR system. Once the 

process parameters and design parameters are known, in theory, the relative gain 

value of the interaction can be calculated easily from Equation 4.84. If the relative 

gain value is greater than 1.5, then a decoupling design should be considered. 

If the relative gain value is less than 1.5 and tends to 1, then the two-variable 

CFSTR control system can be regarded as two single control loops, that is to say, 

the interaction between the concentration loop and the temperature loop can be 

neglected. 

2. For the simplified decoupling design of a CFSTR process, the modelling error can 

probably cause an unstable behaviour. Nevertheless, if the simplified decoupled 

CFSTR system can work with undercompensation, the control system gives good 

stability. It is worth stressing that the product of two compensation factors (ei and 

e2) must be less than one for the CFSTR system not to have nonlinear divergence. 

In a practical design, the compensation factors (e\ and e2) can be considered as 

two proportional amplifiers which are physically realizable. 

3. Generally speaking, if the time-delay value is greater than one tenth of the system 

90 
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time-constant, time-delay compensation is necessary. As in Example 1 of Chapter 

4, when a time-delay (TC) is 0.2 (sec), which is less than one tenth of the sys

tem time-constant (^ = 2.36 sec), Figure 6.26 shows that the concentration loop 

may work under the high-gain amplification, but rather grudgingly. In order to 

compensate a big time-variant time-delay, the compensation scheme of Figure 6.28 

is proposed which can rely on the basic property of gain-invariant time-delay. In 

other words, the compensation structure only depends on the magnitude of both 

Gn(s) and G\(s), no matter how big the control system time-delay is. Stability 

analysis indicates that if K2 < 2~e

T|"' (See Equation 6.161), for all values of Kc 

the concentration control system is stable. Besides the compensation structure of 

Figure 6.28 is easily physically realizable, and it has the same features as the Smith 

compensator when Gi(s) = Gn(s). 

4. The scheme of Figure 6.28 hold true for the temperature control loop time-delay 

compensation. The design procedures for the temperature loop are analogous to 

those for the concentration loop time-delay compensation. 

5. Figure 7.30 shows an overall decoupling compensator and time-delay compensator 

for a two-variable CFSTR control system, which has thus been made to react 

like two separate delay-free single control loops. All compensation structures are 

physically realizable. 

7.2 Suggestions 

This study of a two-variable CFSTR system is relatively abstract and some questions 

still remain unanswered. To reach wide acceptance for practical use, further research 

needs to be carried out covering: 
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1. Equation 4.84 gives a theoretical analysis of the interaction whereas the practical 

significant interaction analysis should rely on Equation 4.83 which comes directly 

from the definition of the interaction. Therefore, the relative gain from measuring 

the response of a real CFSTR system should be obtained for comparison with a 

theoretical value. 

2. As mentioned in Section 6.5.2., both Gi(s) and G2(s) models can have different 

kinds of structures. Which structures is better for the system's dynamic perfor

mance? This should be studied further. 

3. The strongly nonlinear process compensation and disturbance rejection should re

ceive further attention to assure that the CFSTR system can be operated over a 

wider range. 



c effluent concentration of reactant A Q volumetric flow rate 
Ci inlet concentration of reactant A Qc coolant flow rate 
Fc coolant flow rate measuring device Rc coolant flow rate controller 
F, reactant flow rate measuring device Rc concentration controller 

Gic concentration process compensator Rq reactant flow rate controller 
GiT temperature process compensator RT temperature controller 
G2c concentration time-delay compensator t time 
GIT temperature time-delay compensator T temperature in a reactor 

IT temperature set point T • inlet temperature of coolant 
lc concentration set point Ti inlet temperature of reactant A 

N12,N21 decoupling compensator 

Figure 7.30: An overall control system of the C F S T R with decoupling compensation and 
time-delay compensation. 
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Notation 

Roman 
Reference or Equation 

Coefficient 6.155~ 6.157 

AK 
Heat exchange surface 3.4 

AT Frequency factor 3.9 

C Effluent concentration of reactant A 3.1 

Specific heat of coolant 3.3 

ct Inlet concentration of reactant A 3.1 

Steady-state inlet concentration 3.14 

Co Steady-state concentration operating condition 3.14 

cp Specific heat of reacting mixture 3.2 

d Deviation factor 5.126 

dij Dynamic gains of disturbance channel Fig. 3.2 

Dcij Closed-loop transfer function of disturbance channel 3.41, Appendix C 

Transfer function of disturbance channel 3.32, 3.37- 3.40 

e Compensation factor pp.63, 5.122 

e; Compensation factor 5.116, 5.117 

e-rc* Laplace transform of concentration feedback time-delay Fig. 3.4, Appendix B 

e~rTs Laplace transform of temperature feedback time-delay Fig. 3.4, Appendix B 

E Activation energy 3.9 

Fc Coolant flow rate measuring device Fig. 1.1 

Fc 
Feedback parameter Fig. 6.28, Appendix G 

100 



Notation 101 

Uncertain open-loop gain 5.126 

Fii Open-loop gain coefficient between M; and Y\ 4.47- 4.50 

Fijd Open-loop gain coefficient of decoupled system 5.106- 5.109 

Fq 
Reactant flow rate measuring device Fig. 1.1 

F(s) Laplace transform of f(t) or Af(t) 3.26, 3.27, Appendix B 

9ij Dynamic gain of a 2 x 2 system Fig. 3.2 

Gx 
Process compensator Fig. 6.28, 6.150 

G\c Concentration process compensator Fig. 7.30 

GiT Temperature process compensator Fig. 7.30 

G2 
Time-delay compensator Fig. 6.28, 6.150 

G2c Concentration time-delay compensator Fig. 7.30 

G2T Temperature time-delay compensator Fig. 7.30 

Gcij Process closed-loop transfer function 3.14, Appendix C 

Gij Process open-loop transfer function 3.32- 3.36 

G, Smith compensation of process 6.147, Fig. 6.27 

h[T{t)) Heat addition or removal from a reactor 3.2 

Hs 
Smith compensation of time-delay 6.147, Fig. 6.27 

Ii Set point or input variable Fig. 4.6 

lc Concentration set point Fig. 1.1, 3.41 

IT Temperature set point Fig. 1.1, 3.41 

Jij Steady-state gain of disturbance channel Fig. 3.2 

kij Gain of compensator 5.102, 5.103, Fig. 5.16 

K Reaction-rate constant 3.8 

Ka Steady-state gain of a 2 x 2 system Fig. 3.2, Fig. 5.16 

K, Gain of process compensator pp.85, 6.154 

K2 Gain of time-delay compensator pp.85, 6.154 
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Kc 
Amplifier gain Fig. 6.22 

L{-) Notation of Laplace transform Appi endix B 

LU 
Channel gain from C to Q Fig. 4.11, 4.66 

L\2 Channel gain from T to Q Fig. 4.11, 4.66 

L21 Channel gain from C to Qc Fig. 4.12, 4.67 

L22 Channel gain from T to Qc Fig. 4.12, 4.67 

Mc Manipulated variable of concentration Fig. 5.13 

Mi Manipulated variable Fig. 4.5 

MT Manipulated variable of temperature Fig. 5.13~5.15 

n Reaction order 3.8 

Nc Output of Smith compensator Fig. 6.27 

Decoupling compensator 5.85: , Fig. 5.13 

Pi Coefficient App endix F 

P(s) Open-loop characteristic equation of a CFSTR 3.30 

Closed-loop characteristic equation of a CFSTR 3.46: , Appendix C 

Q Volumetric flow rate 3.1 

Coolant flow rate 3.3 

QcO Coolant flow rate steady-state operating condition 3.15 

Q 0 
Reactant flow rate steady-state operating condition 3.14 

r Rate of reaction 3.8 

R Gas constant 3.9 

Ri Controller Fig. 4.6 

Rc Coolant flow rate controller Fig. 1.1 

Rc Concentration controller Fig. 1.1, pp.28 

Rq Reactant flow rate controller Fig. 1.1 

RT Temperature controller Fig. 1.1, pp.28 
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s Complex variable of Laplace transform Appendix B 

Sij Closed-loop gain coefficient 4.51~ 4.54 

t Time 3.1 

Tc Average coolant temperature 3.4 

T Temperature in a reactor 3.2 

T{ Inlet temperature of reactant A 3.2 

Tcin Inlet temperature of coolant 3.3 

Tcout Outlet temperature of coolant 3.3 

Tio Steady-state inlet temperature 3.15 

T 0 Steady-state temperature operating condition 3.14 

U Overall heat transfer coefficient 3.4 

V Reactor volume 3.1 

Y Output variable Appendix F 

Yj Output variable Fig. 4.5 

Greek 

d 0 Transformed coefficient 6.132, Appendix E 

c\i Transformed coefficient 6.132, Appendix E 

cti Coefficient 3.16~3.19 

ft Coefficient 3.20-3.23 

d Increment pp.43 

pc Fluid density of coolant 3.3 

Pj Fluid density of reacting mixture 3.2 

A Increment PP-22, pp.23, Appendix A 

AH Heat of reaction 3.2 

Tc Concentration feedback time-delay PP-28, Appendix C 
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Temperature feedback time-delay pp.28, Appendix C 

An Uncertain relative gain 5.127 

And Uncertain relative gain of a decoupled system 5.130 

Xij Relative gain between Mj and V} 4.55~ 4.58 

Xijd Relative gain of decoupled system 5.110 

i Damping factor 6.142, Appendix F 

System frequency pp.86, 6.165 

Ud Damped natural frequency Appendix F 

Undamped natural frequency 6.141, Appendix F 



Appendix A 

The Taylor Series Expansion for a System with Two Dependent Variables 

Consider a nonlinear system whose output y is a function of two dependent inputs xi 

and X 2 , so that 

y = f{x1,x2) (A.171) 

In order to obtain a linear approximation to this nonlinear system, we may expand 

Equation A.171 into a Taylor series about the normal operating point y0, x 2 f l . Then 

Equation A.171 becomes 

V = /(zi,22) 

= f(xllt,x2l<) + [ ,df 
dx-L 

(xi - XU) 

« 1 = XU 

*2 = 2=2,, 

+ 
6f_ 
dx2 

(x2 - X2l,)\ 

Xi — Xi(l 

X2 = 22„ 

+ higher-order terms (A.172) 

Near the normal operating point, the higher-order terms may be neglected. The linear 

mathematical model ofjthis nonlinear system in the neighborhood of the normal operat

ing condition is then given by 
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Lettting 

y = f(x1,x2) % f(xu,x2ll) 

df + dxi 
2=1 = I i , , 

2 2 = X 2 l l 

+ 5/ 
dx 2 

(*2 - 352,,) 

331 = ^ l o 

^2 = X2f) 

(A.173) 

5/ 
dxi 

2=2 =
 x2„ 

(A.174) 

K2 = 
df 
dx'. 

x i — xi<, 

X2 ~
 x2(l 

(A.175) 

A x j — Xi — 

A x 2 = x2 - x2(t 

A y = y -2 /o 

(A.176) 

(A.177) 

(A.178) 

So 

A y % i f i A a j j + K2Ax2 
(A.179) 



Appendix B 

Laplace Transformation 

B.l Delay Function 

In order to obtain the Laplace transform of the delay function f(t — r), f(t) is assumed 

to be zero for t < 0 or f(t — r) = 0 for t < r. Then, for 0 < t < r. we have 

F(s) = / f(t-r)e-^-T)dt 
Jo 

/ f(t~r) 
Jo — e e~stdt 

Thus, 
r°° 

L[f(t -T)]= f(t - r)e-Hdt - e-T'F(s) 
Jo 

(B.180) 

(B.181) 

This last equation states that the time-delay of function f(t) by r corresponds to the 

multiplication of the F(s) by e~Ta. 

B.2 Final Value Theorem 

If /(t) and df(t)/dt are Laplace transformable, if hm t _ 0 o /( i) exits, then let s approach 

zero in the equation for the Laplace transform of the derivative of f(t), or 

hm r 
«—OJQ 

e~stdt = nm\sF(s) - /(0)1 
s—*0 

(B.182) 

Since lim<,-*0e *' = 1, we obtain 

d 
r 
Jo 

dt fit) 
dt = /(oo) - /(0) = hm sF(s) - /(0) (B.183) 
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So, 

/(oo) = Hm/( i ) = JimsF(s) (B.184) 

t 



Appendix C 

Derivation of the Closed-loop Transfer Function for the CFSTR with 

Time-delay 

For Figure 3.4, we have 

C{s) 

T(s) 

+ 

Gu(s) G12(s) 

G21(s) G22(s) 

Gn(s) Gl2(s) 

G21(s) G22(s) 

Du(s) D12(s) 

D2i(s) D22{s) 

+ 
Q(s) 

[ Qc(*) 

Rc{s) 0 
0 RT(s) 

' CM 

_ Us) 

Dlx{s) Dl2(s) j I" d(s) 

D21{s) D22{s) \ [ Ti{s) 

' " Ic(s)-e-Tc'C(s)~ 

IT(S) - e-^'T(s) 

Rc{s)Gn(s) RT{S)G12{S) I 
Rc{s)G21{s) RT(S)G22(S) I lT(s) 

Du{s) Dii(s) 

D21(S) D22{S) Ti(s) 

0 

0 

e"TT* 

C(s) 

T(s) 

(C.185) 

For simplicity, letting 

[G][R] 
Rc(s)Gu(s) RT(s)G12(s) 

Rc(s)G2l(s) RT(s)G22(s) 

Ic(s) 

IT(s) 

(C.186) 

(C.187) 
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- T C * 

[£] = 
o 

[Yi\ 

[U] 

C(s) 

T(s) 

Du{s) D12{s) 

D21(s) D22{s) 

Ci(3) 

1 0 

0 1 

Then, Equation C-185 can be rewritten as 

[Y] = [G}[R}{[1] - [E}[Y]} + [D}^ 

(C.188) 

(C.189) 

(C.190) 

(C.191) 

(C.192) 

(C.193) 

or 

[Y] = ([U} + [G][R)[E])-1([G)[R][I] + [D][Yi\) 

Expanding Equation C-194, we get 

C(s) 

T(s) 

Gcll(s) Gc12(s) 

Gc2i(s) Gc22(s) h i s ) 

+ 

Pcis) 

Dcii(s) D c i 2 (s) 

Dc2i{s) Dc22(s) 

Cii*) 

Tii») 

(C.194) 

(C.195) 

where 

GcU(s) = [1 + e-^'RT(s)G2i(s)]Rc{s)G11(s) - e~r^Rc(s)RT{3)Gl2(s)G21{s) (C.196) 

Gcl2{s) = [1 + e-^'RT{s)G22{s)}RT{s)G12(s) - e-^'RT{s)G12(s)G22{s) (C.197) 
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Gc2i(s) = [1 + e-Tc'Rc(s)G11(s)]Rc(s)G21(s) - e-Tc3R2

c(s)G11(s)G21(s) (C.198) 

Gc22{s) = [1 + e-rc3Rc(s)Gn{s)]RT(s)G22(s) - e-TC3Rc(s)RT(s)G12(s)G21(s) (C.199) 

Dcll = [1 + e-rT3RT{s)G22{s))D11{s) - e-TT3RT(s)G12(s)D21(s) (C.200) 

Dcl2 = [1 + e-TT3RT(s)G22(s)]D12(s) - e ^ ' R ^ G ^ s ) ^ * ) (C.201) 

£>c21 = [1 + e-^ ai? c(s)Gii(3)]D 2 1( 5) - e- T c a i l c ( 5 )G 2 1 ( 5 )Z) u ( 5 ) (C.202) 

DC22 = [1 + e - T C 5 ^ ( s ) G „ ( 3 ) p 2 2 ( 5 ) - e- T c s i? c ( 5 )G 2 1 ( 5 ) J D 1 2 ( 5 ) (C.203) 

Pc(5) = [ l+e - T ^i? c ( 5 )G n (3 ) ] [ l+e - T ^il T ( 5 )G 2 2 (5 ) ] -e-( T c + ^^ 

(C.204) 



Appendix D 

An Important Property of the Relative Gain for a 2 x 2 system 

Bristol (1966) pointed out that the rows and columns of the RGA sum to 1.0. Therefore, 

for a 2 x 2 system, we have 

An + A12 = 1 

A21 4- A22 = 1 

An + A21 = 1 

A12 "I" A22 — 1 

thus 

An = A 22 

A12 — A21 — 1 — A 11 

So, the relative gain array (RGA) becomes 

Y2 

M a M 2 

An A 1 2 

A21 A22 

A/j M 2 

Y2 

An 

1 - A n 

1 - A n 
(D.205) 

Needless to say, the main channels (Mi —-> Y\ and M2 —» Y~2) have the same relative gain. 
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Appendix E 

Dimensionless Variable Transformation 

Consider 
C(s) a0 (E.206) 

Mc{s) s + ay V 

the differential equation form of Equation E-206 is 
d A ° ^ + a x AC(«) = a o A M c ( 0 (E.207) 

dt 

where C(-) is the output variable and Mc(-) is the manipulated variable (See Equation 

5.104), which are not the same dimension. 

Letting 

(7(0 = ^ (E.208) 

M c ( t ) = M £ f f l (E.209) 
1*1 Cmax 

where Cmax and Mcmax are the assumed maximum value of the output variable and the 

manipulated variable, respectively. 

Dividing Equation E-207 by Cmax, we get 
d & l + a i ^ l = ̂ -AMcit) = ^^Ma(t) (E.210) 

or 

where d 0 = °"^ C m f i ; c and d a = a a . 

So, 
• C(s) I _ d 0 

rdiC(t) = d0Mc(t) (E.211) 

M C ( 5 ) U 5 + dj 
(E.212) 
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Appendix: Dimensionless Variable Transformation 114 

For the convenience of expression (see Equation 6.132), we still write Equation E.212 as 

C(s) do 
dimensionless ^ * Mc(s) 

Assuming Cmax = 1-3 and Mcmax = 1-3, then 

CioMcmax 6.347 x 10~6 x 1.3 x 10 
a0 1.3 x 15.31 x lO"5 

c?! = Q l = 0.4245 

0.41456 (E.213) 

(E.214) 



Appendix F 

The Standard Solution of a Second-order System 

Consider a second-order system as 

Y(s) UJ. 2 
I (a) s2 + 2&ns + UJ* 

For a unit-step input, Y(s) can be written 

Y(s) 
UJI 

If 0 < i < 1, then 

Y(t) = 1 - e-^lcosiujjt) + -^J=sin(ujdt)} t > 0 

where OJJ = ujn^Jl — £2. 

If £ = 1, then 

Y(t) = 1 - e-"- f(l +ujnt) t>0 

If £ > 1, then 

UJ e~Pli e~P7t 

^Vf - 1 Pi Vi 

where P l = (P + v / F ^ l K and p 2 = (( - VF^) UJR. 

0 
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Appendix G 

Derivation of the Transfer Function for a Time-delay Compensation System 

For the system block diagram shown in Figure 6.28, the Mc(s) and Ic{s) are related as 

follows: 

Mc(s) = Kc(s)[Ic(s) - Fc(s)] (G.220) 

and 

Fc(s) = G1(s){G2(s)[e-TcaC(s) - Fc(s)} + Mc(s)} (G.221) 

Solving Fc(s) from above equation gives 

[Mc(s) + G2(8)e-^'C(3)]G1{s) 
F C { S ) ~ l + G1(s)G2(s) ( G - 2 2 2 ) 

So 

or 

Mc(s) - Kc(s){Ic(s) _ _ _ } (Q.223) 

M ,,x _ Kc(s){Ic(s)[l + G1(s)G2(s)} - GMGMe-^'Cjs)}  
C { ) ~ , 1 + G1(s)G2(s) + G1(s)Kc(s) ( G - 2 2 4 ) 

and then 

C(s) = Gu(s)Mc(s) 

Kc(s)Gu(s){Ic(s)[l + Gl(s)G2(s)} - G1(s)G2(s)e-^'C(s)} 
l + G1(s)G2(s) + G1(s)Kc(s) 

Finally, the transfer function of the closed-loop system is 

C(s) = KcWGMll + GMGtjs)]  
Ic(s) 1 + G1(s)G2(s) + Kc(s)Gi(s) + Kc(s)G1(s)G2(s)G11(s)e-^ 

Kc(s)G11(s) 
l+G2(s)e-Tc*Gu(s) 

(G.225) 

1 + ^ ( ^ ( 3 ) ^ = ^ -
(G.226) 
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Appendix H Simulation Data 

No. e Xnd No. e Xiu No. e And 

1 0.0000 11.30 21 1.0463 11.34 41 1.0483 -13.28 

2 0.1000 9.42 22 1.0464 12.40 42 1.0484 -11.88 

3 0.2000 7.84 23 1.0465 13.69 43 1.0485 -10.73 

4 0.3000 6.49 24 1.0466 15.03 44 1.0486 -9.78 

5 0.4000 5.34 25 1.0467 17.36 45 1.0487 -8.98 

6 0.5000 4.33 26 1.0468 20.08 46 1.0488 -8.30 

7 0.6000 3.45 27 1.0469 23.86 47 1.0489 -7.70 

8 0.7000 2.68 28 1.0470 29.42 48 1.0490 -7.19 

9 0.8000 1.99 29 1.0471 38.48 49 1.0500 -4.22 

10 0.9000 1.39 30 1.0472 55.80 50 1.0600 -0.53 

11 1.0000 1.00 31 1.0473 102.17 51 1.1000 -0.0008 

12 1.0200 1.08 32 1.0474 629.73 52 1.2000 -0.32 

13 1.0300 1.28 33 1.0475 -149.74 53 1.3000 -0.72 

14 1.0400 2.17 34 1.0476 -66.61 54 1.4000 -1.09 

15 1.0420 2.76 35 1.0477 -42.71 55 1.5000 -1.45 

16 1.0440 4.06 36 1.0478 -31.36 56 1.6000 -1.78 

17 1.0450 5.52 37 1.0479 -24.74 57 1.7000 -2.09 

18 1.0460 9.05 38 1.0480 -20.39 58 1.8000 -2.37 

19 1.0461 9.69 39 1.0481 -17.32 59 1.9000 -2.64 

20 1.0462 10.45 40 1.0482 -15.04 60 2.0000 -2.89 

Table H.3: The relative gain A u j versus the compensation factor e, A n = 1 
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Appendix: Taylor Series Expansion 

No. e Xiu No. e And No. e And 

1 0.0000 5.65 21 1.1020 91.50 41 1.1400 -0.31 

2 0.1000 4.80 22 1.1021 138.18 42 1.1500 -0.18 

3 0.2000 4.08 23 1.1022 283.51 43 1.1600 -0.11 

4 0.3000 3.46 24 1.1023 -5096.36 44 1.1700 -0.06 

5 0.4000 2.93 25 1.1024 -254.25 45 1.1800 -0.03 

6 0.5000 2.46 26 1.1025 -130.14 46 1.1900 -0.01 

7 0.6000 2.06 27 1.1026 -87.35 47 1.2000 -0.005 

8 0.7000 1.70 28 1.1027 -65.68 48 1.3000 -0.07 

9 0.8000 1.39 29 1.1028 -52.58 49 1.4000 -0.21 

10 0.9000 1.14 30 1.1029 -43.81 50 1.5000 -0.36 

11 1.0000 1.00 31 1.1030 -37.53 51 1.6000 -0.51 

12 1.0600 1.22 32 1.1040 -15.24 52 1.7000 -0.65 

13 1.0800 1.74 33 1.1050 -9.43 53 1.8000 -0.79 

14 1.0900 2.70 34 1.1060 -6.76 54 1.9000 -0.91 

15 1.0920 3.12 35 1.1070 -5.22 55 2.0000 -1.03 

16 1.0940 3.74 36 1.1080 -4.23 56 

17 1.0960 4.76 37 1.1090 -3.53 57 

18 1.0980 6.74 38 1.1100 -3.01 58 

19 1.1000 12.18 39 1.1200 -1.07 59 

20 1.1010 21.20 40 1.1300 -0.54 60 

Table H.4: The relative gain X n d versus the compensation factor 
A n =0.5x 11.3 = 5.65 



Appendix: Simulation Data 

No. e And No. e And No. e And 

1 0.0000 16.95 21 1.0307 46.23 41 1.3000 -1.43 

2 0.1000 14.04 22 1.0308 110.38 42 1.4000 -2.02 

3 0.2000 11.61 23 1.0309 -272.38 43 1.5000 -2.57 

4 0.3000 9.54 24 1.0310 -60.43 44 1.6000 -3.08 

5 0.4000 7.76 25 1.0320 -6.45 45 1.7000 -3.55 

6 0.5000 6.21 26 1.0330 -3.20 46 1.8000 -3.98 

7 0.6000 4.86 27 1.0340 -2.03 47 1.9000 -4.39 

8 0.7000 3.66 28 1.0350 -1.43 48 2.0000 -4.77 

9 0.8000 2.60 29 1.0360 -1.07 49 

10 0.9000 1.67 30 1.0370 -0.83 .50 

11 1.0000 1.00 31 1.0380 -0.66 51 

12 1.0200 1.30 32 1.0390 -0.53 52 

13 1.0220 1.45 33 1.0400 -0.43 53 

14 1.0240 1.69 34 1.0500 -0.07 54 

15 1.0260 2.14 35 1.0600 -0.002 55 

16 1.0280 3.25 36 1.0700 -0.01 56 

17 1.0300 9.49 37 1.0800 -0.05 57 

18 1.0302 12.17 38 1.0900 -0.09 58 

19 1.0304 17.12 39 1.1000 -0.15 59 

20 1.0306 29.37 40 1.2000 -0.79 60 

Table H.5: The relative gain And versus the compensation factor 
A n = 1.5 x 11.3 = 16.95 
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An Xiu{e = 1.045) A u d (e = 1.042) A l l d (e = 1.04) \ u d { e = 1.03) Aiw(e = 1.01) 

5 8.6 4.1 3.1 1.6 1.08 

6 8.1 3.8 2.9 1.6 1.07 

7 7.6 3.6 2.8 1.5 1.06 

8 7.2 3.4 2.6 1.5 1.05 

9 6.7 3.2 2.5 1.4 1.04 

10 6.2 3.0 2.4 1.4 1.03 

11 5.7 2.8 2.2 1.3 1.02 

12 5.3 2.6 2.1 1.2 1.01 

13 4.8 2.4 1.9 1.2 0.99 

14 4.3 2.2 1.8 1.1 0.98 

15 3.9 2.0 1.6 1.1 0.97 

16 3.4 1.8 1.5 1.0 0.96 

17 2.9 1.6 1.3 0.9 0.95 

18 2.5 1.4 1.2 0.9 0.94 

19 1.9 1.2 1.0 0.8 0.93 

20 1.5 1.0 0.9 0.8 0.92 

21 1.0 0.8 0.7 0.7 0.91 

22 0.5 0.6 0.6 0.7 0.89 

23 0.1 0.4 0.4 0.6 0.88 

24 -0.4 0.2 0.3 0.6 0.87 

25 -0.8 -0.04 0.1 0.5 0.86 

Table H.6: A l l d versus A n with e > 1 
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An Aiw(e = 1.1) A n d(e = 1.07) \lU(e = 1.05) A i w (e = 1.048) A u d(e = 1.047) 

5 0.016 -0.41 -6.38 -30.2 51.7 

6 0.013 -0.37 -6.40 -28.4 48.7 

7 0.011 -0.33 -5.97 -26.6 45.8 

8 0.008 -0.29 -5.55 -24.8 42.8 

9 0.005 -0.25 -5.12 -23.0 39.8 

10 0.003 -0.21 -4.69 -21.0 36.8 

11 0.000 -0.17 -4.27 -19.4 33.8 

12 -0.003 -0.13 -3.84 -17.6 30.8 

13 -0.005 -0.09 -3.41 -15.8 27.8 

14 -0.008 -0.05 -2.99 -14.1 24.8 

15 -0.011 -0.01 -2.56 -12.3 • 21.8 

16 -0.013 0.03 -2.13 -10.5 18.8 

17 -0.016 0.07 -1.71 -8.6 15.8 

18 -0.019 0.11 -1.28 -6.8 12.8 

19 -0.021 0.15 -0.85 -5.1 9.8 

20 -0.024 0.19 -0.43 -3.3 6.8 

21 -0.027 0.23 0.00 -1.5 3.8 

22 -0.029 0.26 0.43 0.3 0.8 

23 -0.032 0.30 0.85 2.09 -2.2 

24 -0.035 0.34 1.28 3.88 -5.2 

25 -0.037 0.38 1.71 5.69 -8.2 

Table H.7: A l l d versus A n with e > 1 



Appendix: Simulation Data 

An And(e = 0.8) An^e = 0.9) An<f(e = 0.95) And(e = 0.99) 

5 1.2 0.9 0.91 0.95 

6 1.3 1.0 0.94 0.96 

7 1.4 1.0 0.98 0.97 

8 1.6 1.2 1.02 0.98 

9 1.7 1.2 1.06 0.99 

10 1.8 1.3 1.09 0.99 

11 1.9 1.4 1.13 1.01 

12 2.1 1.4 1.17 1.02 

13 2.2 1.5 1.21 1.03 

14 2.3 1.6 1,25 1.03 

15 2.5 1.6 1.28 1.04 

16 2.6 1.7 1.32 1.05 

17 2.7 1.8 1.36 1.06 

18 2.9 1.9 1.39 " 1.07 

19 3.0 1.9 1.44 1.08 

20 3.1 2.0 1.47 1.09 

21 3.2 2.1 1.51 1.09 

22 3.7 2.1 1.55 1.11 

23 3.5 2.2 1.58 1.12 

24 3.6 2.3 1.62 1.13 

25 3.8 2.3 1.66 1.17 

Table H.8: A l l d versus A n with e < 1 



Appendix: Taylor Series Expansion 123 

t C ( < ) A ' C = I O C(t)/<c=ioo t C ( 0 K C = I C ( Z ) A - C = I O C(t)Kc=W0 

0.0 0.000 0.000 0.000 4.0 0.477 

0.1 0.040 0.333 0.975 4.2 0.480 

0.2 0.076 0.543 0.989 4.4 0.482 

0.4 0.141 0.761 0.990 4.6 0.484 

0.6 0.195 0.849 0.990 4.8 0.485 

0.8 0.242 0.884 0.990 5.0 0.487 0.907 0.990 

1.0 0.281 0.898 0.990 6.0 0.491 0.907 0.990 

1.2 0.314 0.903 7.0 0.493 0.907 0.990 

1.4 0.341 0.906 8.0 0.493 0.907 0.990 

1.6 0.365 0.907 9.0 0.494 0.907 0.990 

1.8 0.385 0.907 10.0 0.494 0.907 0.990 

2.0 0.402 0.907 0.990 11.0 0.494 0.907 0.990 

2.2 0.416 12.0 0.494 0.907 0.990 

2.4 0.428 

2.6 0.438 • 

2.8 0.447 

3.0 0.454 0.907 0.990 

3.2 0.460 

3.4 0.466 

3.6 0.470 

3.8 0.474 

4.0 0.477 0.907 0.990 

Table H.9: Unit-step response of the concentration control system without time-delay 
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t C{t)Kc=2.8 C(t)*c=3 C(t)Kc=z.2 
t C(t)Kc =2.8 C(t)tfc=3 C{t)Kc=3.2 

0.0 0.00 0.00 0.00 6.0 0.73 0.82 1.13 

0.2 0.28 0.32 0.35 7.0 0.76 0.85 1.02 

0.4 0.53 0.62 0.71 8.0 0.75 0.75 0.62 

0.6 0.74 0.89 1.04 9.0 0.73 0.70 0.52 

0.8 0.92 1.11 1.33 10.0 0.73 0.72 0.75 

1.0 1.05 1.28 1.56 11.0 0.73 0.76 0.92 

1.2 1.13 1.40 1.71 12.0 0.73 0.76 0.83 

1.4 1.18 1.46 1.79 13.0 0.73 0.75 0.68 

1.6 1.20 1.46 1.80 14.0 0.73 0.74 0.67 

1.8 1.18 1.43 1.74 15.0 0.73 0.74 0.77 

2.0 1.14 1.35 1.61 16.0 0.73 0.75 0.82 

2.2 1.09 1.25 1.44 17.0 0.73 0.75 0.77 

2.4 1.02 1.13 1.23 18.0 0.73 0.74 0.72 

2.6 0.95 1.00 1.01 19.0 0.73 0.74 0.73 

2.8 0.89 0.88 0.79 20.0 0.73 0.74 0.77 

3.0 0.82 0.76 0.58 

4.0 0.63 0.46 0.11 

5.0 0.65 0.61 0.60 

Table H.10: Unit-step response of the concentration control system with measuring 
time-delay. 
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t C( i ) f tT C =10 C ( * ) A - C = I 5 t C(t)Kc=5 C(t) Kc=io C(t)Kc=ls 

0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 2 . 4 0 . 8 2 0 . 9 4 0 . 8 9 

0 . 1 0 . 8 2 2 . 5 1 . 0 1 

0 . 2 0 . 5 9 1 . 1 2 1 . 5 8 2 . 6 0 . 8 2 0 . 8 9 1 . 0 6 

0 . 3 1 . 8 5 2 . 7 1 . 0 4 

0 . 4 1 . 0 6 1 . 5 4 1 . 5 5 2 . 8 0 . 8 2 0 . 8 8 0 . 9 6 

0 . 5 0 . 9 4 2 . 9 0 . 8 8 

0 . 6 1 . 1 4 1 . 0 1 0 . 4 2 3 . 0 0 . 9 1 0 . 8 4 

0 . 7 0 . 2 8 3 . 1 0 . 8 7 

0 . 8 0 . 9 8 0 . 5 7 0 . 5 4 3 . 2 0 . 9 3 0 . 9 3 

0 . 9 0 . 9 9 3 . 3 0 . 9 8 

1 . 0 0 . 7 9 0 . 7 2 1 . 3 4 3 . 4 0 . 9 1 1 . 0 0 

1 . 1 1 . 4 0 3 . 5 0 . 9 8 

1 . 2 0 . 7 2 1 . 0 4 1 . 1 8 3 . 6 0 . 9 0 0 . 9 4 

1 . 3 0 . 8 6 3 . 7 0 . 9 0 

1 . 4 0 . 7 6 1 . 0 7 0 . 6 3 3 . 8 0 . 9 0 0 . 8 9 

1 . 5 0 . 6 1 3 . 9 0 . 9 1 

1 . 6 0 . 8 3 0 . 8 9 0 . 7 8 4 . 0 0 . 9 1 0 . 9 4 

1 . 7 1 . 0 2 4 . 1 0 . 9 7 

1 . 8 0 . 8 6 0 . 8 0 1 . 1 7 4 . 2 0 . 9 1 0 . 9 7 

1 . 9 1 . 1 6 4 . 3 0 . 9 5 

2 . 0 0 . 8 6 0 . 8 8 1 . 0 2 4 . 4 0 . 9 1 0 . 9 3 

2 . 1 0 . 8 6 4 . 5 0 . 9 1 

2 . 2 0 . 8 4 0 . 9 6 0 . 7 6 4 . 6 0 . 9 0 0 . 9 1 

2 . 3 0 . 7 8 4 . 7 0 . 9 2 

Table H.ll: Unit-step response of the concentration control system with measuring 
time-delay. 
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C(t)Tc=0.2 C ( 0 v i C(t)Tc=2 C(t)Eq.6.169 

0 0.00 0.00 0.00 0.00 0.00 

1 0.37 0.38 0.38 0.38 0.34 

2 0.60 0.61 0.62 0.63 0.56 

3 0.75 0.76 0.77 0.79 0.70 

4 0.84 0.85 0.86 0.89 0.80 

5 0.89 0.90 0.92 0.95 0.86 

6 0.93 0.94 0.94 0.98 0.90 

7 0.95 0.96 0.97 0.99 0.93 

8 0.97 0.97 0.98 1.00 0.94 

9 0.98 0.98 0.98 1.00 0.96 

10 0.98 0.98 0.99 1.00 0.96 

11 0.98 0.99 0.99 1.00 0.97 

12 0.99 0.99 0.99 1.00 0.97 

13 0.99 0.99 0.99 1.00 0.97 

14 0.99 0.99 0.99 0.99 0.97 

15 0.99 0.99 0.99 0.99 0.98 

16 0.99 0.99 0.99 0.99 0.98 

17 0.99 0.99 0.99 0.99 0.98 

18 0.99 0.99 0.99 0.99 0.98 

19 0.99 0.99 0.99 0.99 0.98 

20 0.99 0.99 0.99 0.99 0.98 

Table H.12: The unit-step response of the concentration control loop with a physically 
realizable time-delay compensator. Kc = 100, K\ = 0.976 and K2 = 0.1. 


