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ABSTRACT

Natural convection in  two-dimensional irregular
cavities was simulated by numerically solving the
steady-state conservation equations written in terms of
stream function, vorticity and temperature dependent
variables and for a general orthogonal coordinate system. It
was assumed that the Boussinesqg approximations were valid,
that the fluid was Newtonian and that the properties other
than density were constant. The wuse of orthogonal
coordinates and the above set of dependent variables was
found to have several advantages over the use of Cartesian
or non—orthogonai systems and the set of primitive dependent
variables (velocities, pressure and temperature). The
body-fitted orthogonal coordinate system was numerically
generated by means of the weak constraint method of Ryskin
and Leal [26]. Special forms of the Wood and second-order
vorticity boundary conditions were derived for a general
two-dimensional body-fitted orthogonal coordinate system.
Finite difference techniques were wused to solve the
reéulting set of diffefential equations.

The effects of the mapping characteristics, the
vorticity boundary conditions and the finite difference grid
size on the accuracy of the natural convection solution were
investigated first. For the cavity geometries studied, it
was observed that, except for grid boundary conditions which
led to undesirable grids, most combinations of grid and

vorticity boundary conditions gave results of acceptable
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accuracy (relative error less than one percent) as long a; a
sufficiently fine grid size (28x28 or finer) was employed.
The effects of the cavity geometry and the Rayleigh
number on natural convection were investigated in Part 1I1I.
It was found that increasing the Rayleigh number always
acted to enhance bofh the natural convection circulation and
the heat transfer rate, a result which was easily explained
by examining the source term of the momentum equation. The
effect of the cavity geometry was more complex but these
results could also be interpreted by examining the influence
of the cavity shape in 1impeding or enhancing fluid
circulation and the opposing effects of the distance between
isothermal walls on conductive and convective heat transfer.
The possibility of using a similar numerical procedure
to simulate a melting or a freezing process was investigated
in Part III. Numerical predictions of the circulating flow
in the liquid phase of an ice forming process were obtained
by digitizing the photographic image of a real ice interface
and wusing the true non-linear relationship between density
and temperature for water at low temperature. The numerical
results were in reasonable agreement with the flow

visualization experiments carried out by Eckert [42].
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I. INTRODUCTION

Natural convection 1is a topic which has received
growing attention in the last few decades. It is a subject
of interest for both engineers and physicists. Natural
convection takes place in many geophysical phenomena and has
numerous engineering applications. Recently, the most
important engineering applications of natural convection
have been related either to the design of solar collectors
for passive heating or to the storage of solar energy by
phase change materials.

Natural convection 1is promoted by the presence of a
density gradient in a body force field. The density gradient
is usually due to a temperature difference, and the body
force is often gravity.

Natural convection can be investigated theoretically by
solving simultaneously the mass, momentum and energyv
conservation equations. Because these eguations are strongly
coupled and are nonlinear, their solution generally requires
the application of numerical methods. In only a few very
siﬁple cases, the numerical approach can be replaced by an
analytical approach.

Experimental and numerical studies of natural
convection have been carried out for many geometries, but it
is the one-dimensional 1isothermal flat plate and the
two-dimensional rectangular cavity which have received the
most attention. The rectangular cavity consists of two

opposing 1isothermal walls at different temperatures and two



adiabatic walls which complete the enclosure (Fig. 1). Eéch
Irectangular cavity problem is specified by four independent
variables: the Rayleigh and Prandtl numbers (calculated with
respect to a characteristic length, usually taken to be the
length of the adiabatic wall; the characteristic temperature
difference, Th-TC; and the properties evaluated at a fluid
reference temperature, usually the average temperature of
the cavity), the cavity aspect ratio (length of the
1sothermal wall divided by the length of the adiabatic wall)
and the angle of tilt.

Natural convection in two-dimensional nonrectangular
cavities (other than axisymmetric cylindrical cavities) has
hardly been investigated. The natural convection in the
liquid phase of a melting or freezing process taking place
in a vertical rectangular cavity creates a nonrectangular
enclosure of particular interest. Most of the numerical
studies of natural convection in nonrectangular enclosures
have wused either the finite element method or the finite
difference method in combination with a nonorthogonal
trahsformation to solve the conservation equations.

Recentlf, Ryskin and Leal [26] have developed a new
method for numerically generating body-fitted orthogonal
coordinates which are better suited to the finite difference
method. As well as producing orthogonal grids, the method
allows very flexible control over the spacing of grid 1lines
as well as nodal correspondence at boundaries between

contiguous solution domains. Its ability to map irregular



Figure 1. Two-dimensional rectangular cavity.
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cavities is shown in Fig. 2. Some of the differ;nt
characteristics which can be imposed on ,the mapping are
shown in Fig. 3. This new mapping procedure has ﬁever been
used before to study natural convection in nonrectangular
enclosures.

The primary objective of the present thesis 1is to
develop a general procedure for using numerically generated
body-fitted orthogonal coordinate transformations to solve
problems of natural convection in nonrectangular cavities.
The cavities considered here are those that are 1likely to
arise 1in phase change situations and can be seen as
extensions of the vertical square enclosure problem. In the
main part of the work, two general <cavity shapes are
investigated. Both enclosures have nonflat right walls which
are analytically defined by the cosine functions: one cavity

employs a half cycle, i.e.

X=1+A-(A COS(7Y)) 0<=Y<=1 (1)
while the other uses a full cycle, i.e.

X=1+A-(A COS(27Y)) 0<=Y¥<=1 (2)

For convenience, these two types of cavities are referred to
as C1 and C2, respectively, and are shown in Fig. 4.
Natural convection 1in such deformed cavities is

affected by five independent variables; the Rayleigh and



Figure 2. Body-fitted orthogonal grids genérated by the weak
constraint method of Ryskin and Leal [26] for several
different irreqular cavities.
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Figure 3. Three different body-fitted orthogonal grids
generated by the weak constraint method of Ryskin and
Leal [26] for a single irregular cavity.
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Figure 4. General shape of cavity types Ci! (a) and C2 (b).
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‘Prandtl numbers (calculated with respect to the 1length :of
the cavity bottom wall; the characterjistic temperature
difference, Th—TC; and the properties evaluated at the fluid
reference temperature, (Th—TC)/Z), the dimensionless
amplitude (amplitude divided by length of the bottom wall),
the aspect ratio (length of the left wall divided by the
length of the bottom wall) and the angle of tilt. The
independent variable values which are investigated are
presented in Table 1. Only two parameters are varied in the
present study: the Rayleigh number and the dimensionless
amplitude. The Prandtl number, the cavity aspect ratio and
the angle of tilt remain constant.

The method of Ryskin and Leal [26] is used to generate
a two-dimensional body-fitted orthogonal coordinate system.
The steady-state mass, momentum and energy conservation
equations, written in terms of the stream function,
vorticity and temperature dependent variables, are then
solved 1in transformed coordinates using a finite difference
method. The analysis assumes that the Boussinesq
approximations are valid, that the fluid properties other
than density are constant, and that the fluid is Newtonian.

The study is subdivided into three parts. The objective
of the first part is to determine the effects of the mapping
characteristics (which are described in a later chapter),
the vorticity boundary conditions (either Wood or second
order) and the finite difference grid size on the accuracy

of the numerical results. For this purpose, only the most



Table 1. Independent variables considered f :
types C1 and C2. ere or the cavity

Rayleigh | Prandtl Dimensionless Cavity Cavity
Number Number Amplitude Aspect Angle of
Ratio Tilt
(Degree)
0 1 -0.150 1 0
1000 -0.075
3000 0.000
10000 0.075
30000 0.150
100000
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extreme cases are considered. Thus, only the most distoried
cavities of types C1 and C2 are used. A moderate Rayleigh
number of 10000 is employed because it ensures that both the
conductive and convective heat transfer modes are involved.
From the results of these simulations, the best set of
mapping characteristics and vorticity boundary conditions is
determined for each extreme case. Also, an optimum finite
difference grid size is selected which yields reasonable
numerical error with minimal computational cost.

In the second part, the optimal conditions selected 1in
the first section are wused to thoroughly investigate the
effects of dimensionless amplitude and Rayleigh number on
the heat transfer by natural‘convection in cavity types Ci
and C2. As well as generating flow maps and temperature
distributions for .each case, local and average Nusselt
numbers are also calculated and compared with standard
correlations for rectangular cavities.

The objective of the third part is to demonstrate the
applicability of the numerical procedure to real phase
chénge problems. Several different quasi-steady flow
patterns which occur during ice formation are simulated and
compared to available experimental stream-line photographs

taken by Eckert [42].



II. LITERATURE REVIEW

‘

A. NATURAL CONVECTION NEAR A VERTICAL ISOTHERMAL FLAT PLATE.

For this simple case, an analytical solution of the
conservation equations is made possible by assuming that the
fluid is Newtonian, that a 1laminar boundary-layer exists,
that the Boussinesq approximations are valid and that the
fluid properties other than density are constant. Under
these conditions a similarity transformation can be applied
which reduces the set of partial differential equations to a
pair of ordinary differential equations [30,32,33]). Also,
similarity profiles can be used in conjunction with the
integral method to approximately solve the conservation
equations [30,31]. The temperature and velocity results from
the analytic theory are found to be in good agreement with
experimental measurements [30]. However, thé experimental
average Nusselt numbers are slightly higher than those
predicted analytically. The éifferences in the average
Nusselt numbers are larger for both small and large Rayleigh
nuﬁbers. At low Rayleigh numbers, the discrepancies between
predicted and experimental average Nusselt numbers are
likely due to the increasing inaccuracy of the
boundary-layer assumptions., At high Rayleigh numbers, the
differences are attributed to the development of’turbulence.
The analytical average Nusselt number is correlated to the

Rayleigh number by an equation of the form

11
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_ b
Nux,ave—a(Rax) (3)
whére
h X
Nu =—2ve (4)
X,ave
kOD
_ 2 3 -
Ra =gB . p% x*(T Tm)Cpm/umkm (5)

and x is the distance along the plate in the flow dffection.
The value of the coefficient a in Eg. 3 is weakly dependent
on the Prandtl number, and the value of the coefficient b is
equal to 0.25 for the 1laminar boundary-layer regime. For
Prandtl number approaching 0 and Prandtl numbers larger than

100, Eg. 3 becomes, respectively,

- 025
Nux,ave—O.B(PrRax) (6)

and
Nu =0.67(Ra )0 2° (7)

X,ave

where Pr is the Prandtl number.

B. NATURAL CONVECTION IN RECTANGULAR ENCLOSURES

The two-dimensional rectangular cavity 1is called a
vertical rectangular cavity if the isothermal walls are

vertical, and a horizontal rectangular cavity if the
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isothermal walls are horizontal. This classification ari;es
from the differences in the convection patterns observed for
the two cases [1,2]. In the vertical rectangular cavity, the
flow starts 1immediately because the density gradient is
perpendicular to the gravity vector. On the other hand, for
the horizontal rectangular cavity, two cases are possible:
1. 1if the density gradient is parallel and opposed
to the gravity vector, the flow starts only if
the gradient is sufficiently large, and

2. 1f the density gradient is parallel to and in
the same direction as the gravity vector, no
flow takes place in the cavity.

The independent variables associated with the
rectangular cavity are the Rayleigh number, the Prandtl
number, the cavity aspect ratio and the angle of tilt.
Extensive experimental and numerical investigations have
been carried out on the rectangular cavity to establish flow
regimes and to determine average Nusselt numbers. The
results of these investigations are thoroughly discussed 1in
twd excellent review articles [1,2]. The different flow
regimes and dominant heat transfer mechanisms observed as a
function of Rayleigh number are shown in Table 2 for the
case of the vertical square cavity filled with air [1,3].
Two example flow patterns are illustrated in Fig. 5. For the
vertical square enclosure, the following 1identification
scheme for the various heat transfer regimes was

proposed [14]:



Table 2. Flow and heat -transfer observations for the
vertical square cavity filled with air.

Rayleigh Nﬁmber
Range

Observations

0 to 1000

- Weak unicellular flow pattern
- Conduction heat transfer regime

1000 to 10000

= Unicellular boundary-layer like
flow pattern
- Transition heat transfer regime

10000 to 100000

- Uh{éellular boundary-layer like

flow pattern
- Boundary-layer heat transfer regime

100000 to 1000000

- Onset of a secondary flow
cat's-eye pattern
- Boundary-layer heat transfer regime

I’A}
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Figure 5. Typical flow patterns observed in a vertical
sqguare cavity. (a) Ra=10000, unicellular flow, (b)
Ra=100000, "cat's-eye" pattern. '

a)

" b)
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1. the end of the conduction regime is attainedz
when the horizontal temperature derivative at
the center of the cavity differs by 10 percent
from the value for pure conduction, and
2. the beginning of the boundary-layer regime is
reached when the horizontal temperature
derivative at the center of the cavity is equal
to zero.
The average Nusselt number 1is found to be significantly
affected by the Rayleigh number [3-8,11,13], low Prandtl
number [3,7,8], the cavity aspect ratio [6,7,13] and the
angle of tilt [4-6]. The effect of large Prandtl number on
the average Nusselt number 1is negligible ([3,7,8]. The
general relationship wused to correlate the Nusselt number
with the Rayleigh number (other independent variables being
constant) is similar to that employed for the isothermal

flat plate (Eg. 3):

_ b
Nuave-a(Ra) (8)
where
avelc
Nu = (9)
ave
ko

and
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Ra:gﬁopozLé(Th—Tc)Cpo/uoko (10)

The characteristic length, Les is the 1length of the
adiabatic wall and the fluid reference temperature 1is the
average temperature through the cavity. For the laminar
boundary-layer regime, the value of the exponent b 1is
somewhat greater for the vertical rectangular cavity than
for the vertical isothermal flat plate. For the enclosure, b
ranges from 0.25 to 0.35 (3,7,9,10]. This fact demonstrates
the importance of the core of the cavity and the significant
interaction it has with the Dboundary-layer at the
"wall [1,2,4].

Natural convection in a vertical sqguare cavity has
become a benchmark problem for numerical studies, primarily
because this is'the simplest case for which all terms of the
Navier-Stokes eqguations must be included and where the
energy and motion equations are coupled. In 1982, under the
auspices of De Vahl Davis and Jones [15], a comparison
exercise was carried out to test the ability of a large
number of different numerical techniques to ‘'successfully
solve this problem. Of the 36 contributions, 21 used finite
difference methods while 10 others wused finite element
methods. Also, among all contributions, 11 considered the
primitive wvariable form (two velocities, pressure and
temperature) of the governing equations while 9 others used
the stream function, vorticity and temperature form. A large

variety of finite difference discretization methods were
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used. Of the various finite difference solutions submitged,
one of the most successful was that of Wong and
Raithby [12], who employed the exponential differencing
scheme and a second order accurate vorticity boundary
condition.

Investigations have also been carried out on the
validity of the commonly used assumptions 1in numerical
natural convection studies. The validity of the Boussinesg
approximations and constant fluid properties (with the
exception of the density) assumption was studied by
examining the effects of wvariable properties on laminar
natural convection in a vertical square enclosure [10]. 1In
this study, the unsteady-state conservation equations
written in terms of primitive variables were solved wusing
finite difference methods. To determine the validity limits
of the Boussinesq approximations (constant properties
evaluated at the cavity cold wall temperature), a
compressible Newtonian fluid (air) whose density follows the
perfect gas law and whose other fluid properties are
cohstant was considered. It was found; that the Boussinesqg
approximations were valid 1if the overall temperature
difference satisfied the following criterion:

T, =T
h co.1 (11)

T
c

where the temperatures are expressed in Kelvins. Considering

a compressible Newtonian fluid (air) whose density is still
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- given by the perfect gas law but whose properties ére

temperature dependent, it was found that

1. the average Nusselt number was unaffected by the
assumptions made about the fluid properties over
a range of (Th—Tc)/TC from 0.2 to 2.0 as long as

an appropriate reference temperature, i.e.
T0=TC+O.25(Th—Tc) (12)

was chosen, and
2. the velocity and = temperature profiles were
influenced to a greater or lesser degree by the
choices made concerning the property assumptions.
The Newtonian fluid and constant property assumptions
were also investigated by studying the natural convection in
a rectangular enclosure of a fluid whose viscosity was
temperature dependent or whose behaviour was
non-Newtonian [9]. 1In this study, the steady-state
conéervation equations written in terms of stream function,
vorticity and temperature were solved using finite
difference methods. It was assumed that the Boussinesq
approximations were valid and that the fluid properties
other than density, viscosity and elasticity were constant.
It was found that, while the wvelocity distribution 1is
affected significantly, the overall rate of heat transfer

through the enclosure is negligibly influenced by assuming
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Newtonian behaviour.

Natural convection has been studied 1in modified
rectangular cavities [16,17]. Chang and al. [17] numerically
investigated the effects of 1internal baffles located
opposite one another on the top and bottom walls of a
vertical cavity. The unsteady-state conservation equations
written in terms of primitive variables were solved using a
finite difference method. It was assumed that the fluid was
Newtonian and obeyed the perfect gas law and that its
properties other than density were constant; The numerical
results are discussed but are not compared with experimental
measurements. Kim and Viskanta [16] studied the effect of
wall heat conduction on natural convection heat transfer in
a square enclosure. The unsteady-state conservation
equations written in terms of stream function, vorticify and
temperature were solved with finite difference methods. It
was assumed that the Boussinesq approximations were valid,
that the fluid was Newtonian, 1its properties other than
density were constant and that the wall properties were
isdtropic and temperature-independent. Their numerical
results were compared with measurements carried out by the
same authors [16]. Very good agreement was found between the
numerical and experimental results for the temperature
distribution 1in the solid while a reasonable agreement was

obtained for the temperature distribution in the liquid.
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C. PHASE CHANGE PROBLEMS

The problem of melting or solidification 1in an
enclosure has not been extensively investigated either
numerically or experimentally. The 1lack of theoretical
information about this case can be attributed to the
difficulty of solving the equations of motion and energy in
an irregular-shaped cavity with a moving boundary [19]. 1It
has been amply demonstrated that natural convection plays a
significant role in such phase change problems [18,19,20].
Numerical results are available for melting or
solidification in a vertical rectangular cavity [18,19] and
in an annular cavity [20]. In these studies, a
non-orthogonal coordinate system and a quasi-steady approach
were used to éolve either the steady-state [19] or
unsteady-state [18,20] conservation equations. In all cases,
it was assumed that the fluid phase properties other than
density were constant, that the fluid was Newtonian and that
the Boussinesqg assumptions were valid while all properties
of the solid were assumed to be constant. Both primitive
vafiables and stream function, vorticity and temperature
variables were used in these numerical investigations. Only
the numerical results of Ho and Viskanta [18] were
extensively compared with measurements obtain bj the same
authors [18]. The 1liquid wvolume fraction, the local and
average Nusselt numbers along the vertical hot wall, and the
shape of the solid-liquid interface were compared at

different times during the transient melting process. At
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early times, good quantitative agreement was found betwéen
the numerical and experimental results, but with increasing
time, the numerical results were found to display only
similar gqualitative trends in time and space with the
measured results. Natural convection phase change problems
also occur during casting procésses. For instance, Kroeger
and Ostrach [21] have carried out a theoretical study of the
continuous casting of a slab. A numerically generated
conformal orthogonal coordinate system was used along with
finite difference methods to solve the steady-state
conservation equations, written in terms of stream function,
vorticity and temperature dependent variables. It was
assumed that the fluid phase properties other that density
were constant, that the fluid was Newtonian and that the
Boussinesq approximations were wvalid. Unfortunately, the

numerical results were not compared with measured data.

D. NATURAL CONVECTION IN NONRECTANGULAR ENCLOSURES

Natural convection 1in two-dimensional nonrectangular
enélosures (other than cylindrical) has also been 1little
investigated. Some experimental work on natural convection
in parallelogrammic enclosures has been carried out [23]. A
major study which involved numerical analyses as well as
some experimental measurements investigated natural
convection in two-dimensional vee-corrugated channels
(bottom 1left image of Fig. 2) [22,24,34-37]. 1In the

numerical investigation [22,24], a Schwartz-Christoffel
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transformation was used to analytically determine: a
conformal boundary-fitted orthogonal coordinate system. The
usual assumptions (constant fluid properties other than
density, Boussinesqg, Newtonian fluid) were made in order to
solve the unsteady-state conservation equations, written in
terms of stream function, vorticity and temperature, using
finite difference methods. Average Nusselt numbers along the
flat surface were compared with measurements [34-37] for
different channel aspect ratios, angles of tilt and Rayleigh
numbers. Similar trends were noticed although guantitative

discrepancies (up to 20 percent) were found.

E. BODY-FITTED ORTHOGONAL TRANSFORMATIONS

Body-fitted orthogonal transformations for mapping
nonrectangular domains into rectangular domains can be
obtained using either an analytical or a numerical approach.
The analytical approach 1involves tedious mathematical
manipulations and 1is restricted to the mapping of very
simple nonrectangular domains. However, the numerical
apbroach can be used to map nearly any irregular domain and
allows for far more flexible mapping characteristics.

Numerical coordinate generation 1is a relatively new
area of numerical analysis and 1its progression has been
reviewed in several recent articles [25,26]. Of the
numerical mapping procedures available for enclosures with
specified boundaries, the so-called weak constraint method

of Ryskin and Leal [26] appears to be most powerful. It not
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only generates orthogonal grids which  have distihct
advantages over non-orthogonal coordinate systems, but it
also allows for the convenient matching of boundary
conditions at the interface of neighbouring regions, an
important consideration in phase change problems. Despite
its many advantageous features, the weak constraint method
appears to have had 1limited use 1in solving fluid flow
problems. The only reference to the procedure that has
appeared in the literature so far is a paper by Chikhliwala
and Yortsos [27] who used it to map the irreqular domains
likely to arise during immiscible fluid-fluid displacement
in porous media. However, the paper was concerned only with
the mapping process; there were no accompagning solutions to
the fluid flow problem. Several earlier studies have solved
the Navier-Stokes equations using less elaborate numerical
procedures than the weak constraint method. For example,
Pope [29] wused a numerically generated orthogonal grid
(constant shape factor) to investigate turbulent forced
convection flows in an irregular channel while Kroeger and
Osfrach [21] used a numerically generated orthogonal grid to
study the continuous casting process of a slab in which

natural convection was taken into account.



III. COORDINATE SYSTEM

In mapping a nonrectangular two-dimensional domain,
many coordinate systems could be considered. For example,
either a Cartesian, a body-fitted nonorthogonal or a
body-fitted orthogonal coordinate system could be used
(Fig. 6). Whichever coordinate system is adopted, the mass,
momentum and energy conservation principles required to
solve the natural convection problem are still applicable;
however, the mathematical formulation of these conservation
principles 1in a particular coordinate system is complicated
to a greater or lesser extent depending on which coordinate
system is chosen.

The steady-state nafural convection problem which 1is
described by a set of elliptic partial differential
eqguations is subject to a corresponding set of boundary
conditions. These boundary conditions are either of the
Dirichlet, Neumann or mixed (Robin) type. A Dirichlet
boundary condition specifies the wvalue of a dependent
variable at the domain boundary. A Neumann boundary
coﬁdition specifies the wvalues of the derivative of a
dependent variable in the direction normal to the boundary.
The mixed boundary condition as, its name implies, relates
the normal derivative of a dependent variable with its value
at the boundary. Thus, the way the coordinate system matches
the cavity boundary is an important factor to consider. The
easier and the more accurately the boundary conditions can

be prescribed, the better will be the numerical

25
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Figure 6. Different coordinate systems whith can be used to
map an irregular cavity. (a) Cartesian, (b) body-fitted
nonorthogonal, (c) body-fitted orthogonal.

a)

by |

) | [ \




27

solution [24].

The body-fitted orthogonal coordinate system is the
only one which matches the domain boundary, allows easy
specification of Dirichlet, Neumann and mixed conditions at
the boundary and reduces the conservation equations to a
relatively compact form. The choice of the Cartesian
coordinate system was eliminated bécause not all of the
finite difference nodes lie on the boundary, nor do the grid
lines intercept it at right angles. As a consequence, it
becomes very difficult to accurately specify any type of
boundary condition, The body-fitted non-orthogonal
coordinate system makes the setting of Dirichlet conditions
a simple matter, but it is also a poor choice because the
Neumann and mixed conditions cannot be accurately specified
and furthermore, the governing equations, due to the fact
that cross-derivative terms must be retained, become very

cumbersome.

A. BODY-FITTED ORTHOGONAL MAPPING USING THE WEAK CONSTRAINT

VMETHOD
In the following discussion, two domains are considered
(Fig. 7) which are referred to as the physical and the
transformed domains, respectively. The coordinate system of
the physical domain is Cartesian, and it has an irregqular
shape whose boundaries can be expressed in terms of analytic
formulae. Regardless of 1its shape, fhe boundary of the

physical domain can be divided 1into four sections. The



Figure 7. Physical domain (a) and transformed domain (b).
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sections are numbered from 1 to 4 following the boundary: in
its clockwise direction. The coordinate system of the
transformed domain is orthogonal. The transformed domain
always has a rectangular shape which is the image, in the
orthogonal coordinate system, of the physical domain. The
four boundaries of the transformed domain are referred to as
the top, right, bottom and left walls and are expressed in

analytical form by the following relationships:

left wall, t=1;

right wall, §=M;

bottom wall, n=1;
and

top wall, n=N;

where M and N are the number of rows or columns of nodal
points in the ¢ and n directions, respectively.

If it is arbitrarily considered that the images of the
top wall and the top right corner of the transformed domain
cofrespond to section 1 and the junction of sections 1 and 2
of the physical domain, respectively, then the following
statements can be made about the transformation:

1. the 1images of the top, right, bottom and left
walls of the transformed domain must correspond
to sections 1 to 4 of the physical domain
boundary, respectively, and

2. the image of the top left, bottom 1left, bottom
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right and top right corner points of the
transformed domain boundary must correspond to
the junctions of the physical domain boundary
sections 1 and 2, 2 and 3, 3 and 4, and 4 and 1,
respectively.

The point-by-point coordinate mapping of the
transformed domain into the physical domain 1is obtained
numerically by solving an appropriate set of differential
equations. In the weak constraint method of Ryskin and
Leal [26], the orthogonal mapping is defined by the folowing

pair of elliptic partial differential equations:

1 0 0X| 9 |10X
H.H 88| 28] o fan
and
1 o BY' 0 10Y
___Hf_J +_[___”=0 (1)
HEHﬂ of| o¢| onlfan
where
H
=1 A (15)
H

3X12 [oay]?
H%?= | — + | —— (16)
: [az} LJ

and
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X112 [aY]?
H2= _— + | (17)
T lan an )

Equations 13 and 14 are Laplace's equations in general
orthogonal coordinates, and they arise from consideration of
the fact that all coordinate lines in both the physical and
transformed domains must meet at right angles. The two
equations must be solved simultaneously over the whole of
the transformed domain subject to an appropriate set of
boundary conditions.

The quantities, HE and Hﬂ' are called scale factors.
They relate the length of infinitesimal displacements in
both domains. The shape factor, f, specifies the aspect
ratio of an infinitesimal rectangular element 1in the
physical domain which 1is the image of an infinitesimal
square element in the transformed domain. The shape factor
is prescribed over the interior of the transformed domain by
a function which is called the distortion function. The
distortion function can be any positive scalar function
including, in its simplest form, a constant. If the shape
factor 1is everywhere equal to unity, then the mapping which
results is called conformal. The mapping of an irregqular
shape wusing a constant distortion function is said to be
"stiff" because such a condition is a major and unnecessary
restriction [26]. A distortion fﬁnction which varies with ¢
and n is much more desirable because it gives the user more
control over the mapping process. Ryskin and Leal [26]

recommend the following algebraic interpolation formula
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which considers the shape factors along the transformed
domain boundary in order to determine the shape factors in

the interior of the transformed domain:

F(eE,n)=(1-8)E(1,9)+,E (M, n)+(1-9)E(E,1)+nE(E,N)
S(1-8)(1-9)ECT, 1) =-(1-8)nf (1,N)
-£(1-9n)f(M,1)-£qnf (M,N) (18)

It has been demonstrated that Eg. 18 can be used with great
success to map a variety of different irregular-shaped

domains with body-fitted orthogonal coordinates [26,27].

B. BOUNDARY CONDITIONS OF THE BODY-FITTED ORTHOGONAL MAPPING

The imposition of the boundary conditions in
body-fitted orthogonal mapping is of primary importance. Two
boundafy conditions, one for each Cartesian coordinate, are
required along each section of the transformed domain
boundary. The possible boundary conditions, which must be

either of the Dirichlet or Neumann type, are reported below.
Dirichlet boundary conditions:
X=F(Y) (19)

and
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Y=F(X) (20)

Neumann boundary conditions:

0X 0Y
f—=— (21)
9t 9
and
oX oY
—_——f (22)
on ot '

In the weak constraint method, two different choices of
boundary conditions for each boundary section are possible.
In one case, the correspondence between Cartesian and
orthogonal coordinates is completely specified along the
transformed domain boundary section while the shape factors
along the same boundary section required for Eg. 18 are
obtained numerically from Egs. 15 to 17. This case requires
the specification of two Dirichlet conditions. This method
of * prescribing boundary conditions allows complete control
of the spacing between ¢ or n coordinate lines at a boundary
section of the physical domain and also for complete
matching of ¢ or n coordinates lines at the 1interface of
adjoining physical domains. The other possible choice is to
specify the shape factors along the transformed domain
boundary section (usually by linearly interpolating the
pre-assigned values at the two corner points) and alloﬁ - the

mapping to determine the correspondence between Cartesian
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and orthogonal coordinates. Therefore, in this case, it:is
the mapping which determines where the §¢ and 75 coordinate
lines 1intersect on the physical domain boundary for the
section considered. This second choice requires the
specification of one Dirichlet and one Neumann condition at
the boundary. The Neumann condition (Egs. 21 or 22) simply
indicates that the coordinate 1line of ¢ or 7 must be
orthogonal to the physical domain boundary. In practice, the
best mapping results are wusually obtained by requiring
boundary correspondence only at one or at most three
boundary sections [27]. Attempting to impose the
correspondence between Cartesian and orthogonal coordinates
on all four boundary sections may lead to a mapping in which
the orthogonality condition is not necessarily respected.

Such mappings would be ill-suited for numerical solutions.



IV, CONSERVATION EQUATIONS

The natural convection problem 1is. described by the
mass, momentum and energy conservation equations. These
equations can be written in terms of different sets of
dependent variables. One common choice 1is to use the
velocity components, the temperature and the pressure as the
dependent variables. This set 1is known as the set of
primitive variables. An alternative set of dependent
variables consists of the stream function, vorticity and
temperature. An advantage of the second set over the first
set, at least in two-dimensional natural convection
problems, is that the four conservation equations associated
with the primitive variables are reduced to three. This
advantage 1is offset to some extent by the fact that the
vorticity boundary conditions are difficult to specify and
the pressure distribution, which is very important in forced
convection, is not obtained explicitly. However, the latter
information 1is not usually of direct interest in natural
convection situations.

| The simplicity of the conservation equations written in
general two-dimensional orthogonal coordinates also has to
be taken into account in the choice of dependent variables.
Because the stream function and the vorticity are scalar
quantities in two dimensions whereas velocity is always a
vector, the conservation equations in general coordinates
have 1less complex formulations when the stream function,

vorticity and temperature variables are used.

35
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For the above reasons, the stream function, vorticity
and temperature were adopted as dependent variables in the

present study.

A. ASSUMPTIONS

The assumptions used in the analysis of laminar natural
convection occuring in an enclosure are stated below:

1. Problem is independent of time.

2. Problem is two-dimensional.

3. Fluid is Newtonian.

4. Fourier's law is valid.

5. Boussinesq approximations are valid:

a. the density variations are considered only
insofar as they contribute to buoyancy, but
are otherwise neglected, and

b. ;he' density difference which causes the
buoyancy is approximated as a pure
temperature effect.

6. Fluid properties other than density are
constant.

7. The body force is due only to the gravity.

8. Viscous dissipation is negligible.

9. Compressible work is negligible.

10. Energy is not generated.
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B. .CONSERVATION EQUATIONS IN CARTESIAN SYSTEM

To obtain the correct formulation of the relevant
conservation eqguations of the natural convection problem in
a general orthogonal system, the equations are first derived
for the Cartesian system 1in the present section and then
modified for the general system 1in the section which
follows.

Using the assumptions stated in Section A, the relevant
mass, momentum and energy conservation equations become,

respectively,

i) Fo)
—(v_ )+—(v_)=0 (23)
ax X ay Y
0 ° 0
—_— + —_ o )
Po vxax(vx) vyay(vx) ax(den
2% LK
+ + ' 24
uo[axz(vx) ayz(vx)] (24)
) 0 ) a2 3%
— +v — m—— + + ( )
Po anx(vy) vyay(vy) ay(pdy“) Ko axz(vy) o’ vy
+gBopo (T-To) (25)
. oT oT 92T 82T
poC 0 VvV —ty — =k0 + (26)
Pl ¥3x Yy dx? 09y?

where the gravity vector direction is opposed to the Y axis,
as shown in Figs. 1 and 4. The natural convection driving
mechanism, which 1is represented by the last term on the

right hand side of Eg. 25, results from the interaction of
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the hydrostatic pressure gradient and the body fgrce
term [30-33]. Thus, the pressure in Egs. 24 and 25 is the
dynamic pressure (local pressure minus the hydrostatic
pressure).

Dimensionless variables and characteristic groups are
introduced to reduce the number of parameters that need to

be specified in the numerical experiments. Let

T—TC
6= (27)
Th T
X
X=— (28)
L
C
y _
Y=—o (29)
L
C
Vy=PoChoL vy /ko (30)
Vy=PonoLch/ko (31)
— 2 12 /1,2
den_pdynp°cp°Lc/k° (32)
Ra:gBongé(Th—TC)Cpo/#oko (33)
and
Pr=#ocpo/ko (34)

where Ra represents the Rayleigh number, Pr represents the
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Prandtl number and Lc’ the characteristic length, is eqﬁal
to the 1length of the cavity bottom yall. Using these
dimensionless variables and groups, the mass, momentum and

energy equations are transformed to

d )
gg(vx)+;(vy)=o (35)
3 3 3 52 32 ]
ng;(vx)+vyg;(vx)=—;;(den)+9r aXZ(Vx)+aY2(Vx)_ (36)
3 ) ) (32 92 ]
ng;(vy)+vyg§(vy)=—g;(9dyn)+9r axz(vy)+aY2(VY)

+RaPr(9—60) (37)

and
00 06 928 326

V —+V —= —+
¥ax Yoy ax2 av?

(38)

At this point, let us introduce the stream function and
vorticity wvariables. The stream function is defined in such
a way as to satisfy the mass conservation equation. Thus,

the stream function definition is

oy
3Y

v (39)

X

and
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V. =—— (40)

The vorticity represents the amount of anticlockwise
rotation that the fluid possesses. It 1is obtained

mathematically as the curl of the velocity vector, i.e.

_|o 9
Q=|—(V_)-—(V_)|e (41)
ax ¥ a3y X | %

The vorticity is a vector by definition. However, because
the vector orientation in a two-dimensional Cartesian
situation is everywhere the same (perpendicular to the
two-dimensional Cartesian plane), the wvorticity can be
considered as a scalar variable. Thus, we can write that

9 o

Q=—(V_)-—(V_) (42)

ax ¥ a3y %
When the stream function definition (Egs. 39 and 40) is
introduced 1into the above equation, the final vorticity

definition becomes

: 3%y 9%y
Q=- + (43)
0X? dyY?

The two momentum equations can be 1linked together to
cancel the pressure terms by subtracting the X momentum
equation differentiated with respect to Y from the Y
momentum equation differentiated with respect to X. Using

the vorticity definition (Eq. 42), the momentum equations
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then reduce to

—(vx9)+—(vy9)=pr + +RaPr— . (44)

3 ) 32Q 2329 30
X Y 9X2 9Y? X

The velocity components that appear in Eg. 44 (and also
in the temperature Eqg. 38) can be rewritten in term of
stream function but are retained because their presence
simplifies the discretization process (see Chapter V). The
set of semitransformed equations (Egs. 43, 44 and 38) are
called the stream function, wvorticity and temperature

equations, respectively.

C. CONSERVATION EQUATIONS IN A GENERAL ORTHOGONAL SYSTEM

The conservation equations written for a Cartesian
system cannot be directly applied to a general
two-dimensional orthogonal system because the domain is
locally stretched or shrunk. This fact must be taken into
account when deriving alternate forms of the conservation
equations for general orthogonal coordinates.

| To derive these -alternate forms, the following two
steps were used:

1. the Cartesian conservation equations were first
rewritten in forms which are independent of the
coordinate system chosen by using the Cartesian
gradient, divergence, curl and Laplacian
operators, and then ‘

2. the same vector operators defined for a general
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orthogonal system were simply substituted into

the coordinate-free conservation eqguations.

The definitions of the gradient, divergence, curl and

Laplacian operators in a general orthogonal system can be

found 1in many standard textbooks [41,45-47] and, in order,

are
1 3¢ 1 9¢
Vo= e_ .+ e (45)
z1 z2
Hz1aZ1 Hz2aZ2
_ 1 E 3
Vea= (H_,a_,)+—(H_.a (46)
z2 21 z17z2
Hlezz_aZ1 922
_ 1 2 ) _
VXQ:H H 521(H22a22)’az2(Hzlaz1 ez3 (47)
z1 'z2t B
and
1 ) H .9¢ 0 H .9¢
V2= { {22 }+ [ z1 (48)
HZ1H22 071 HZ1BZ1 0Z2 szazz
The operator definitions for a Cartesian can

obtained from
scale factors.

Let

the

above

equations

by substituting unity

us first rewrite the mass conservation eguation in

a general orthogonal system in order to derive the

appropriate definition of the stream function. Using the

Cartesian and orthogonal operator definitions, the mass

conservation 35 can be rewritten 1in the general

Eq.

orthogonal system as
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1 ) 9
——|—(H_ V, )+—(H

n & £
HEHn ot on

Vn) =0 . (49)

By definition, the stream function must satisfy the mass
conservation equation. Therefore, in the general orthogonal

system, the stream function is defined by

oy
H VE=——- (50)
on
and
oy
H,V =—— (51)
£ n dt :

The vorticity, which 1is defined as the curl of the

velocity vector, becomes in the general orthogonal system

1 ] ]
Q= —(H V )-—(H,V,)|€E (52)
nn 3 3 z
HEHn ot on
Because the coordinate system 1is two-dimensional, the

vorticity can once again be considered as a scalar variable
for reasons similar to those discussed for the Cartesian
system. Therefore, Eq. 52 can be written as
1 2 0
=——|—(H V_)-—(H

nn 13
HEHﬂ o0& on

VE) (53)

When the stream function definition for an orthogonal system

is introduced into the above equation, the vorticity
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definition becomes

1 d [H ay] [a [H, 3y ’
HEHn Dt HEEE 3n Hnan

This equation is the stream function eguation 1in general

orthogonal coordinates.

To derive the appropriate  form of the vorticity
equation (Eg. 44) in the generai orthogonal system,‘the
Cartesian and general orthogonal operator definitions are

required along with the relation

(55)

09 1 |8Y 9¢ 03Y 09
2 8220Z1 9Z101Z2

oX Hlez

which can be found in the literature [43]. In Eq. 55, X is a
Cartesian coordinate and Zt1 and 22 are . general orthogonal
coordinates. After some manipulation, the vorticity equation

. in general orthogonal coordinates is found to be- -

1 [a 2 | Pr [2 [H 3Q] 2 [H,2Q
_— __(HUVEQ)+__(HEVnQ) = S, i/ S P S
H,H 3% 3 HH 28 [H,06] an|H on] |

RaPr{aYas avoe
+ - (56)
HH [303% 8%0n

Similarly, the temperature eqguation (Eg. 38), whose
transformation also requires the use of the Cartesian and

general orthogonal operators, becomes
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1 o 3 1 [o [H,26] 8 [H,26
—}—(H V£0)+—(HEV §) | = | — | A [+ — [ ——
HH |o¢ K a1 n H,H |2 [H 0E] an|H on.

E'n

(57)

The velocity components VE and Vn can be rewritten in terms
of the stream function but are allowed to remain in Egs. 56
and 57 to simplify the discretization procedure described in
Chapter V.

In summary, the mass, momentum and energy conservation
equations for a two-dimensional orthogonal system are given

by Egs. 54, 56 and 57, respectively.

D. BOUNDARY CONDITIONS OF THE CONSERVATION EQUATIONS

The four ~types of boundary conditions needed to
‘complete the specification of the natural convquion problem
are: | | ”

1. the four walls of the cavity are impermeable

(i.e. the normal component of the fluid velocity
at the wall is zero),

2. the top and bottom walls of the cavity are

adiabatic,

3. the left and right walls of the cavity are

isothermal, and

4, the no-slip condition applies at all four

bounding surfaces (i.e. the tangential component

of fluid velocity is zero).
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It is now necessary to translate the above bound;ry
conditions, which are given in terms of primitive variables,
to their equivalent forms written for stream function,
vorticity and temperature variables.

The first boundary condition is satisfied by specifying
a constant stream function value along the domain boundary.
By convention, this value is arbitrarily assigned as zero.

Thus, the first boundary condition is given by

The second boundary condition specifies a null heat

flux throught the top and bottom walls. This can be written

as
06
— =0 ' (59)

m oy

and
08
—_ =0 (60)
on 2=N

where 7n=1 and 7=N correspond to the bottom and top walls,
respectively.
The isothermal wall boundary conditions are given by

assigning the dimensionless temperature at the wall to
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=0 (61)

and

=1 (62)

where ¢(=1 and (=M correspond to the left and right walls,
respectively.

The no-slip boundary condition is satisfied by
specifying a zero stream function derivative 1in the
direction normal to each wall. Because the first three
boundary conditions have already been used to specify the
stream function and temperature variations along the domain
boundary, the fourth condition 1is wused to derive the
vorticity boundary condition. Many different representations
of the wvorticity boundary condition which satisfy the
no-slip criterion can be found in the
literature [12,38,40,43,44]. Each 1is derived somewhat
differently and each describes the no-slip condition with
differing degrees of accuracy. The Wood and the second order
vorticity boundary conditions are considered in this work
because they are expected to be the most accurate [12].
Derivations of these two forms of the vorticity boundary
condition can be found for the two-dimensional Cartesian
system [12,38,40,43,44] and the general two-dimensional
conformal orthogonal system [24]. However, these vorticity

boundary conditions have never been derived for the case of
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the general two-dimensional non-conformal orthogonal sysiem
used in the present study. Such a derivation is presented in

the chapter on discretization which follows.



V. FINITE DIFFERENCE DISCRETIZATION

Sets of simultaneous partial differential equations
along with their attendant boundary conditions are very
difficult to solve analytically even under the simplest of
circumstances. Because of the non-linearity of the vorticity
and temperature equations and because of the strong 1linkage
between all three conservation equations, an analytical
solution to the present set is not possible. Thus it becomes
necessary to resort to approximate numerical techniques. The
most common numerical methods wused for solving sets of
elliptic partial differential equations are finite
difference, finite element and collocation methods.

In the finite difference method chosen for the present
study, the idea of obtaining a continuous solution over the
whole of the physical domain 1is abandoned for one of
determining approximate values of the dependent variables at
discrete positions within and on the boundaries of the
domain. These discrete positions are not randomly scattered,
but are specified by, in the present case, an orthogonal
grid which covers the domain in a fairly homogeneous
fashion. At each grid point or node, the differential
equation 1is substituted by a corresponding algebraic
equation obtained by somewhat compromisingly réplacing the
exact differentials by finite difference analogues. This
procedure leads to a set of simultaneous algebraic equations
in which each nodal wvalue 1is 1linked to those of 1its

neighbouring nodes. The set is then solved using standard

49
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sparse matrix techniques.

The finite difference form of any partial differential
equation can be derived wusing either Taylor series
expansions or the control volume approach [39]. In the
latter discretization technique, the partial differential
equation 1is integrated over the finite control volume which
surrounds each nodal point. The control volume approach has
several distinct advantages over the Taylor series method:

1. 1t 1is easy to wunderstand and lends itself to
direct physical interpretation,

2. it ensures that the conservation of each
dependent variable 1is maintained over every
control volume and hence globally over the whole
domain, and

3. it allows the wuse of far more realistic
dependent variable profiles between nodal
points.

In the present work, the control volume approach 1is
used to discretize all of the partial differential
eqdations. However, on a few occasions, Taylor series
expansions are used to approximate first order derivatives
in some boundary conditions. Equations 63 to 65 1list three
first order derivative approximations of second order
accuracy obtained using series expansions. They are referred
to as the forward, central and backward finite difference

approximations, respectively, and are written as
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d¢
—_— -~ —3¢ +4¢
dzi Z1=21, Z1=21, Z1=21,+A21
- /(20Z1) (63)
Z1=21,+2A2 14
d¢
S =|¢ -¢ /(2821) (64)
AZ11z1221,+A21 Z1=21,+24Z1 121=21,
and
d¢
— ~|3¢ -4¢
dZ1{z1221,+2421 Z1=21,+2AZ1 Z1=21,+AZ 1
+¢ ]/(2AZ1) (65)
Z1=Z1 0

A. DISCRETIZATION OF THE GRID GENERATION EQUATIONS

The mapping equations (Egs. 13 and 14) must be
transformed into a set of algebraic equations in order to
generate the body-fitted orthogonal grid. A grid which is
uniform in the two general orthogonal coordinate directions
(i.e. Af=An=1) 1is wused in to specify the positions ofrthe
discrete values in the transformed domain. The grid is
represented in Fig. 8 by the solid lines; the dashed lines
delimit the control volumes associated with each discrete
value. The discrete values in this case are the Cartesian
coordinates from which the scale factors, the shape factors
and various first order derivatives of Cartesian coordinates

with respect to the orthogonal coordinates can be derived.
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Figure 8. Uniform grid in the transformed domain used to
discretize the differential equations of governing the

body-fitted orthogonal coordinate transformation.
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The algebraic form of the body-fitted orthogoﬁal
mapping equation involving X 1is obtained by integrating
Egq. 13 over a general control volume (Fig. 9). Thus, after

integrating, Eqg. 13 becomes

1 [[a [ 8x] a [10%
on+A£Ino+Aﬂ____ — | f—|+—|—]| | |H ,H_dtdn=0 (66)
° Mo mm ||og] ae] anlfon &

The product of scale factors appears in Eg. 66 because the
Jacobian must be accounted for when integrating in general
orthogonal coordinates. Equation 66 can be partially

integrated to give

' oX oX
122+A”[f—— —f— ]dn
Plggrne 2y,
10X 10X | ‘
+f§g+AE[——— -— }dg=o (67)
£oml g ean F070n,

At this stage, assumptions are required 1in order to
continue, Let us assume that the normal derivative and the
shape factor at a control volume face are constant over the
enfire face and are evaluated by assuming a linear profile
between the pair of nodal points involved [39]. Using these
assumptions, it can be easily shown that the above equation

reduces to the following algebraic equation

X. (68)

aX=a. . X. +a. X. +a 5-1%5-1

jitiente

where



Figure 9. General control volume for the Cartesian
coordinate discrete values.
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a=a. .*a. .+a.. . +ta. (69)

a;=(E+E, )72 (70)

a;_,=(f+£._,)/2 (71)

a5, y=2/(E4E5,,) (72)
and

aj_=2/(E+E5 ) | (73)

In the above equations, the missing indices are understood
to be 1 and j. This nomenclature is used throughout the rest
of this work.

Because the mapping equation for Y (Eg. 14) is similar
to the one for X and because both X and Y share the same
control volume, the derivation of the algebraic analogue of
the mapping equation for ¥ can be deduced from Eg. 68. Thus,
thé algebraic equation which defines the body-fitted

orthogonal mapping for Y is given by

Y. (74)

a¥Y=a. Y. +a. Y. +a 5-1¥4-1

jrifyate
where the coefficients are again given by Egs. 69 to 73.
Equations 68 and 74 define a set of algebraic equations

for X and Y which apply at all of the interior nodes of the
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transformed domain. Once this set of equations along Jith
the discretized forms of the boundary conditions have been
solved, the scale factors are obtained by using second order
accurate forward, backward or central differences to
represent the first derivatives of the Cartesian coordinates
with respect to the orthogonal coordinates which appear in

Egs. 16 and 17.

B. DISCRETIZATION OF THE GRID BOUNDARY CONDITIONS

The application of the Dirichlet boundary conditions of
the grid generating equations is straight-forward; the
boundary nodes are simply assigned to the appropriate value
of X or Y. Two modified Neumann boundary conditions (Egs. 75
and 76) have been found to give better results than the two
original Neumann boundary conditions (Egs. 21 and 22). These

new conditions' are derived from the old ones and are given

by
3X 0YoY
———— {75)
on 0Xon

and
Y 9XoX
-— (76)
0t 0YO¢

These modified Neumann boundary conditions yield improved
numerical accuracy because they . require the finite

difference approximation of only two quantities: the X and Y
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derivatives with respect to either ¢ or 5. The derivative of
X with respect to Y or the derivative of Y with respect to X
can be determined exactly from the analytical functions
which define the physical domain boundary. However, the
original Neumann boundary conditions involve the approximate
evaluation of three quantities: the X and Y derivatives with
respect to either ¢ or n and the shape factor (see Egs. 15,
16 and 17). The algebraic form of the modified Neumann
conditions are obtained by using finite difference

approximations of second order.

C. DISCRETIZATION OF THE NATURAL CONVECTION EQUATIONS

In order to solve the natural convection problem, the
stream function, the vorticity and the temperature equations
also have to be discretized. The scale factors, shape
factors and various Cartesian coordinate derivatives
required in these equations must be available from the
numerical solution of the mapping equations. A staggered
grid is used to specify the positions of the discrete values
as‘shown in Fig. 10. The intersections of the dashed 1line
grid determine the positions of the wvorticity and
temperature nodes; the solid 1line grid delimits the
vorticity and temperature control volumes. The fictitious
discrete temperature and vorticity nodes outside the
transformed domain are used to specify the boundary
conditions. The intersections of the solid grid correspond

to the stream function nodes and indicate the positions
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natural convection conservation equations.
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where the scale factors, shape factors and Cartes}an
coordinate derivatives are known from the convérged
numerical solution of the mapping equations. The stream
function control vclumes are delimited by the dashed grid.
Both the solid and dashed grids are uniformly spaced in the
two transformed coordinate difections (i.e. At=An=1). Of
course, there is no loss of generality by wusing a uniform
grid in the transformed coordinate system; the
non-uniformities in the physical domain are accounted for in
the transformation. Several advantages of staggered grids of
the type shown in Fig. 10 over standard grids in which all
three dependent variables are 1located at the same nodal
positions have been c¢laimed [12,39). These advantages
include:

1. the fluid flow across any vorticity or
temperature control volume face is given exactly
by the difference in discrete stream function
values at the corresponding corners,

2. the use of fictitious vorticity and temperature
nodes outside the solution domain allows more
accurate specification of derivative boundary
conditions (all wvorticity and half of ‘the
temperature boundary conditions involve normal
derivatives: the stream function is constant at
the boundaries) and

3. there are no half or guarter control volumes for

vorticity or temperature at the boundaries,
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across which both energy and momentum may be

transferred.

1. STREAM FUNCTION EQUATION

The algebraic form of the stream function equation
(Eq. 54) can be deduced from the discretized version of the
mapping equation for X because they both share the same
control wvolume (Fig. 11) and have similar differential
equations. In fact, the stream function differential
equation has one additional term, the vorticity, which acts
as a source term. If it is assumed that the wvorticity and
the scale factors are constant over a stream function

control volume, this source term can be approximated by
- AE cnotln
b=géotBE Mot ANy y ya4ra
on Iﬂo { £n sdn

=H Hn(9+gi+1+9- +Qi+1,j+1)/4 (77)

3 I+

Thus, the discretized stream function eqQuation <can be

written as
a\(!=ai+1\l/i+1+ai_1\lli_1+aj+1\lxj_ﬂ+aj_1¢/j_1+b (78)

where the coefficients are once again given by Egs. 69 to 73

and the coefficient b is defined by Eqg. 77.



Figure 11. General control volume for discrete stream
function values.
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2. VORTICITY EQUATION

First, the vorticity equation (Eg. 56) is integrated
over the general vorticity control volume shown in Fig. 12

‘to obtain

(1 [o 0
IE°+AEIZ°+An - __(angg)+——(ugvn9)}
o} o
[H H, 3¢ an
pr [o [H_aQ] @ [H aﬂ}}
- || E
H.H [9¢[H 3t 37 Hnan

RaPr[2Ya6 2Ya#6

- - HH ddn=0 (79)
H H [972% dtn "

After a partial analytical integration, the above equation

becomes

[ H 29
gro*bnil(y v @)-pr-t
Mo n £ H, 0

i H_ 0@ | ;

-1 (3 v, Q)-Pr—2— dn
| oo Hot] [, |
EotAg § Eo

Hgaﬂ"j

- (1, v_Q)-p |
‘ [( £V ) rH o |
notAn n

i H, 09
+f£°+A£ (H,vV_Q)-pr—t
EO | E n Hnan»

dnot¢ 0kdn

—15°*A51"°+A"Rapr[ dgdn=0 (80)
£o Mo

oYao ayae]'
‘At this point, assumptions are required in order to
continue. Thus, the vorticity and its normal derivative at a
control volume face are assumed to be constant over the
entire surface. It is not recommended that a linear profile
of the vorticity between its discrete nodal values be used

because it leads to a differencing scheme which is only
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conditionally stable [38-40]. Thus, to determine the valhes
of the wvorticity and its derivative at a control volume
face, an exponential scheme [39] is employed. The
exponential scheme uses as a profile between two
neighbouring nodal points the analytical solution of a
one-dimensional pure convection-diffusion problem. This

problem can be written in a general form as

1 0 r 0 H223¢
—————————(HZZVZ1¢)=_ (81)
HZ1H22821 Hz1szaZ1 HZ1821

subject to
¢ =¢ (82)

Z21=0
¢ =¢, (83)

Z1=L

where ¢ 1is a general dependent variable and I' is a general
diffusion coefficient. If the distance between the discrete

(
values, L, 1is small, then H

A . _ sz and V21 can be taken
outside the differentials and assigned values of Hoy aver
4
HzZ,ave and Vzl,ave’ respectively. Thus, the above equation
is reduced to
9¢ H,, .. 3%¢
Hz2 avevz1 ave =D 22,ave (84)
! ! 221 H 9212
z1,ave

or
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¢ 0%¢
a——-=b—— (85)
9Z1 9Z17%
where
a=HzZ,aveVZI,ave (86)
and
HZZ ave
b='————— (87)
H
z1,ave

The profile of the general dependent variable, ¢, in the
interval between Z1=0 and Z1=L is obtained by solving the
above differential equation with 1its boundary conditions

(Egs. 82 and 83). This profile is found to be

exp(Pez21/L)-1

o=(d.-¢,) +o, (88)
exp(Pe)-1
where
aL
Pe=— (89)
b

is the local Peclet number which represents the ratio of the
relative strengths of convection and diffusion 1in the
direction 21,

Using Eg. 88 together with Eg. 89, both the vorticity
and its derivative can now be evaluated at each control

volume face over which they are assumed to be constant.
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Also, the scale factors are assumed to be constant betw;en
the discrete nodal values of € and over their common control
volume face. The scale factors are evaluated by assuming a
linear profile between their nodal values. Finally, the
vorticity source term (the last term on the right hand side
of Eqg. 80) 1is assumed to be constant throughout the
vorticity control volume and the values of the derivative of
Y with respect to n and the derivative of X with respect to
¢ are evaluated as a mathematical average. Using the above
assumptions, it can be shown that the discretized form of

Eq. 80 becomes

afl=a; 8y qta g9 rag Ry a8y tb (50)
where
a=ai+1+ai_1+aj+1+aj_1 (91)
(Y-y:_,)
ay, =— (92)
exp(Pee)—1
(V. _,-v._ . -_.)exp(Pe )
a;_ - i-1 Yi-1,9-1 W (93)
exp(Pew)-1
(Y. _,=¢)
exp(Pen)-l
(Y:_ . s_.~¥._,)exp(Pe_)
a. =—21,J71 7371 S (95)

-1 -
| exp(Pes) 1
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v-v. . [H
pe = J-1|_& (96)
€ r H
N
Y. . ~v. . . . [H
pe =11 1°1:] ‘[—5] (97)
r H
7
V. .~y[H
pe =271 | 1 (98)
R H,
, . —y. [H
Pe Yim1,3m1Y )y (99)
S r H,
36 26
b=RaPr|b,—-b,— (100)
ot on
dY ay dY 3Y '
b,=|—+— +— +— /4 (101)
0 0l pmioy Ol pagey OMpoiog, peg-y
and
3Y Y| dY Y |
by=|—+— +— — /4 (102)
R R RANMAAN TICR RS

where I'=Pr., A central finite difference representation of
second. order is wused to approximate the temperature
derivatives which are present in Eg. 100.

The advantages of the exponential differencing scheme
are that it more realistically accounts for the competing
roles played by convection and diffusion in determining
dependent variable profiles between nodes and that it has
been shown to be unconditionallylstable. Furthermore, as
should be expected, the exponential formula reduces to a
central difference equation when Pe approach zero (i.e.

diffusion dominates convection) and an wupwind or downwind
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difference equation when Pe has either a large positive or

large negative value (i.e. convection dominates diffusion).

3. TEMPERATURE EQUATION

Because the temperature equation (Eg. 57) has the same
form as the vorticity equation (recognizable convection and
diffusion terms, but no source terms 1in this case) and
because they share the same control volume, the discretized
form of the temperature equation can be deduced from the
algebraic vorticity equation. Thus, the finite difference

version of the temperature equation is given by

a. a. (103)

a9=a. 6. 1+a- 9- +a' 9 3_1 3_1

j+1 j+1+

where the coefficient definitions are given by Egs. 91 to 97

and I'=s1t.

D. DISCRETIZATION OF THE NATURAL CONVECTION BOUNDARY

CONDITIONS

| The Dirichlet conditions for the stream function
(Eq. 54) are specified simply by assigning the value of zero
to the boundary stream function nodes. The algebraic forms
of the temperature boundary conditions, Egs. 59 to 62 are
obtained by wusing second-order accurate Taylor series
approximations for the former two and mathematical averages

for the latter two.
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For the vorticity boundary conditions, two separéte
representations, called the Wood and second order equations,
will be tested. However since the form of these equations
appropriate to general orthogonal coordinates does not
presently exist, this extension must first be carried out.
The position and notation for the vorticity, stream function
and scale factor wvalues involved in these derivations are
shown in Fig. 13. All of the variables and their
differentials are evaluated at the wall unless otherwise
specified.

The no-slip boundary condition and the impermeable wall

condition imply, respectively, that

oy
—=0 (104)
oZn
ay 3%y 3y
Y= = = =...=0 (105)

9Zt 092t? 3zt?3

where Zn and 2t refer to the normal and tangential general
orthogonal coordinates, respectively. Thus, in the vicinity
of the wall, the stream function equation (Eg. 54) is
reduced to

H_, 0%y

2t +(H H, )=0 (106)

H__3Zn?

zn

Because a Neumann vorticity boundary condition was found to
give more accurate results than a Dirichlet vorticity

boundary condition [12], 1let wus differentiate the above
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-

equation with respect to the coordinate normal to the wall

to obtain
2 H 92y H_,_093¢ 2
20— l: Zt} + zt + (Hanzt)Q

2 3

oZn Hzn d9Zn HznaZn oZn
Y] v

+(H__H_, )———=0 (107)
zn 'zt 3Zn

To derive the Wood and second order vorticity boundary
conditions from Eg. 107, the following Taylor series
expansions are required:

oy 102y 103y

1=w+———AZn+ AZn?+
3in 29Zn?2 632n?3

AZn3

1

w+

1 9%y
+—— AZn%+0(AZnS%) (108)
249Znt

oy R 4933y
=y+2——AZn+2 AZn?+
3Zn 9Zn? 392Zn?3

3
ww+2 AZn

20%

+ AZn®*+0(AZn3) (109)

39zZnt

_ 199 1932Q ' ,
2, =0+——AZn+————4Zn2+0(AZn?) (110)
w 292Zn 892n?2

and

399 932Q
Q =0+ AZn+ AZn?+0(AZn?3) (111)
20Zn 83Zn?

The Wood vorticity boundary condition is obtained by

w

using one stream function Taylor series expansion (Eg. 108),
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one vorticity Taylor series expansion (Eg. 110), the no—siip
boundary condition (Eg. 104) and Eqgs. 106 and 107. The
no-slip boundary condition and Egs. 106 and 107 are first
substituted into the stream function Taylor series
expansion, Eg. 108, truncated after the first four terms on
the right hand side. The vorticity expansion, Eg. 110,
truncated after the first two terms on the right hand side,
is substituted into this modified stream function expansion.
The final result of these manipulations 1is the expression
for the Wood vorticity boundary condition for a general

two-dimensional orthogonal coordinate system given below:

o
a15;=a29w+1+1[/—\//w+1 (112)
where
th . Hzn 3
a,=—-——AZn3- (Hanzt)AZn“
12 12H,, 0Zn
H3 9 H
+20 [ Zt}AZn“ (113)
6HztaZn HZn
and
H;n Hzn a
a,=- AZn?- (H. H _)AZn?
2 6H _azn 20 2t
zt
H3 23 H
420 { Zt}AZn3 (114)
3HztaZn Hzn

The discretized form of the Wood boundary condition 1is
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easily generated from Eg. 112 by using a central difference
to approximate the first derivative term. The stream
function and scale factors needed in Egs. 112 to 114 are
obtained by linearly interpolating their nodal values.

The second order vorticity boundary condition uses both
stream function Taylor series expansions (Egs. 108 and 109),
both vorticity Taylor series expansions (Egs. 110 and 111),
the no-slip boundary condition (Eq. 104) and Egs. 106 and
107. Equations 108 and 109 are first 1linked together to
eliminate the fourth order term from the resulting stream
function series expansion. The no-slip boundary condition
and Egs. 106 and 107 are then substituted in this new stream
function expansion. Equations 110 and 111 are also linked
together to eliminate the second order term from the
vorticity series expansions. Finally, the vorticity
expansion is introduced into the 1last stream function
expansion to obtain an expression for the second order
vorticity boundary condition 1in a general two-dimensional
orthogonal coordinate system. This expression is found to be

194

axg;;=a29w+1+a39w+2+15w-16¢w+1+ww+2 (115)

where
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H3 3 [H ' _
+_2n [ Zt]AZn“ (116)

3H? 9 H
+_—20 [ Zt}AZn3 (117)

and

H: 9 H
—_2n [ Zt}AZn3 (118)

3HztaZn Hzn

As in the case of the discretized Wood boundary condition,
the algebraic form of the second order boundary condition is
obtained by using a second order accurate finite difference
to represent the derivative, aQ/3dzn, and linearly
interpolating the discrete streém function and scale factors
to determine their mid-point values.

If scale factors of unity are introduced into Egs. 112
and 115 above, the Wood and second order vorticity boundary

conditions for a Cartesian system are recovered.



Vi. COMPUTER PROGRAM

The computer program including the initialisation
procedures, the techniques for solving the algebraic finite
difference equations, the accuracy criteria and the
performance indicators employed, and the methods for
calculating 1local and average Nusselt numbers is described
in this section and listed in Appendix A.

The computational procedure consists of two major
parts: the generation of the body-fitted orthogonal grid and
the solution of the corresponding natural convection
problem. The general steps of the program are 1listed in
Table 3. As can be seen from the Table, the procedure
consists of 13 steps; the grid generation involves steps 3
to 6 while the natural convection calculation is carried out
in steps 10 to 12.

In the program, the top, right, bottom and left walls
of the transformed domain correspond to the top, right,
bottom and left walls of the physical domain, respectively.
The analytic functions (as well as the derivatives needed
fof the modified Neumann boundary conditions) which define
the boundaries of the physical domain, i.e. Y=F(X) or
X=F(Y), are 1introduced into the program through a function
subroutine. The grid boundary conditions, two Dirichlet or
one Dirichlet and one Neumann, are specified in a consistent
manner at all grid points along each wall of the transformed
domain. In the program, the desired'grid boundary conditions

at each wall of the transformed domain are specified by
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Table 3. Program algorithm.

1) Set up the analytical functions and their
decivatives for each physical domain
boundary. Provide the program with the grid
boundary condition flag values, the shape
factors at the transformed domain corners,
the vorticity boundary condition flag value,
the grid size, the accuracy criteria, the
allowed maximum number of iterations and the

relaxation factors.

2) lnitialize X, Y, 6, ¢ and @ at their
appropriate boundary and internal grid

points,

3) Update X and Y values using Egs. 68 and

74 (where the coefficient definitions in

both eguations are given by Egs. 69 to 73)
and the appropriate boundary conditions
(among Egs. 18, 20, 75 or 76). One iteration
consists of a complete sweep of rows

followed by a complete sweep of colums using.
the line-by-line procedure. A line of X is
followed immediately by the same line of Y
to ensure the solution is as simultaneous as

possible.

4) Update the shape factors using Bgs, 15 to
17 on walls (including the corner values)
where two Dirichlet conditions are imposed.
On walls where one Dirichlet and one Neumann
condition are specified, the shape factors
are evaluated by linearly interpolating the
corner values. The shape factors inside the
transformed domain are calculated by means

of Eq. 18,

5) If the maximum absolute difference of X
or Y is larger than 2, stop the execution.

Otherwise, go to the next step.

6) If the convergence criteria are satisfied
or if the maximum number of iterations for
the grid generation part is exceeded, go on
tce the next step, Othervise, return to

step 3.
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3ax ax 2y ay

7) Calculate —, —, — and — at all grid
3¢ dn At an

points in the transformed domain.

8) Calculate the grid performance indicators

using Eqs. 119 to 121,

9) Calculate the scale factors and the shape
factors at all grid positions in the

transformed domain using Egs., 15 to 7.

10) Update the ¢, @ and 6 discrete values
using Eqs. 78 (where the coefficient
definitions are given by Egs. 63 to 73 and
77), 90 (where the coefficient definitions
are given by Egs. 91 to 102) and 103 (where
the coefficien; definitions are given by
Egs. 90 to 99). The boundary conditions of
these dependent variables are specified by
Bgs. 58; either 112 (where the coefficients
are given by Eqs. 113 and 114) 115 (where
the coefficient are given by Bgs. 116 to
118); and 59 to 62. Again one iteration
requires a complete sweep of rows and then
columng. Since the grid is staggered, the
temperature and the vorticity for any given
line is updated before moving on to the

adjacent line of stream function values.

11) 1f the maximum vorticity value is larger
than 10'°, stop the execution., Othervise, go

to the next step.

12) If the convergence criterion is
satisfied for all #, ¢ and Q values, or if
the maximum number of iterations for the
natural convection part is exceeded, go to

the next step. Otherwise, return to step 10.

13) Find the absolute maximum stream
function value and calculate the local and
average Nusselt numbers along the left and
right walls of the enclosure using the

Bgs. 124 and 125,
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assigning a value of 0 or 1 to a flag variable. On wails
where two Dirichlet boundary conditions are used, the
initial values of the Cartesian coordinates at. each nodal
point remain wunchanged during the computation. On walls
where one Dirichlet and one Neumann boundary conditions are
employed, the shape factors are obtained by 1linearly
interpolating the corner values (other shape factor profiles
could have been used). The shape factors at the corners of
the transformed domain are assigned specific values at the
beginning of the program. This corﬁer shape factor value
remains constant if one Dirichlet and one Neumann condition
are specified on both walls which meet at that corner;
otherwise, the corner value must be recalculated numerically
using Eg. 15 with second order finite differences to
represent the derivatives in Egs. 16 and 17. Thus, it |is
through the choice of the grid boundary conditions, the
initialisation of the Cartesian coordinates and the
initialisation of the shape factors at the corner points
that the grid characteristics are specified. The 1initial
cofrespondence between Cartesian and orthogonal coordinates
at each boundary node of the transformed domain is given 1in
Table 4 for a MxN grid. Note that when two Dirichlet
conditions are specified for any wall, Table 4 assumes that
the nodes are to be uniformly spaced in the direction of the
dependenthartesian coordinate of the analytic function
(other types of boundary point correspondence could have

been prescribed).



Table 4. Initial correspondence between Cartesian and
body-fitted orthogonal coordinates at the domain boundaries,

Wall Physical Domain New Domain

Cavity Ci1 Cavity C2

Top [TCi=1) (1+2a) i—1 _
2 — ! (i,N)
L M- M-1
Right i j-1 7 ' 3= 1 .
F1(Y), [— F2(y), |— (M, 3)
L N-1 N-1
Bottom i=1 | . i-1
—1,0 —1,0
HM"‘} } HM—J }
Left '—17 ” 7 -1
) [O[J——H {OF_._H (1,3)
N-1 N-1

(i,1)

8L
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Because an iterative method will be used to solve the
finite difference representation of the grid generation and
natural convection egquations, it becomes necessary to
specify initial values for all dependent variables (X, Y, 6,
Y, and §) at the beginning of the program. The initial
values of the Cartesian coordinates, X and Y, at all
interior nodes of the transformed grid are assigned_by
linearly interpolating the boundary values. Initial
temperature values are normally obtained by a linear
interpolation between the isothermal walls of the
enclosures. Since the stream function and vorticity values
are difficult to specify beforehand and, in fact, ‘can be
either positive or negative, their initial values were
normally assigned to zero. Provision is also made to wuse a
converged solution of a similar problemh(eg. at a slightly
different Rayleigh number) to obtain starting 8, ¢ and
values for a new problem. Of course, the initial values have
no effect on the final converged solution other than to
modify the number of iterations required to reach the final
anéwer.

During each step of the iterative process, the
Cartesian coordinates (during grid generation) and the
temperature, the stream function and the vorticity (during
the natural convection caculations) are updated wusing a
line-by-line solution procedure along with successive
relaxation. In the line-by-line method, the linear algebraic

equations for a complete 1line of new dependent variable
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values are written in implicit form. This procedure leads:to
a tridiagonal matrix which can then be solyed using the very
efficient Thomas algorithm [38-40]. The 1line-by-line
implicit method has much better convergence properties than
explicit methods 1like the Gauss-Seidel technique because
information from the boundaries is transported in a single
step tﬁroughout the domain. To ensure the rapid diffusion of
all boundary information, the line-by-line method proceeds
by rows in one sweep through the grid and then by columns in
the next. Convergence can be further accelerated by applying
successive relaxation to each set of solution values.
Over-relaxation is used for the two Cartesian coordinates,
the temperature and the stream function. It was found that
under-relaxation was necessary in order to ensure the
convergence of the vorticity.

Many criteria can be used to specify a desired level of
convergence for a numerical solution. These criteria can be
based on either absolute or relative errors. In this work,
the absolute error of a dependent variable is defined as the
maiimum absolute difference between the discrete values
obtained in the latest iteration and those obtained in the
previous one. The relative error is then given by the ratio
of the absolute error and the largest absolute value of that
dependent variable in the latest iteration. The numerical
procedure for generating the body-fitted orthogonal grid is
stopped only when both Cartesian coordinates satisfy an

absolute error criteria. The numerical procedure used to
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solve the natural convection problem.is considered to:be
converged when the temperature, stream function and
vorticity discrete values meet a prescribed relative error
criterion.

In most of the numerical experiments, both the absolute
and relative errors.were required to be less than 0.00001.
The maximum absolute difference of X and Y at the end of
each grid generation 1iteration and the maximum absolute
vorticity value at the end of each natural convection
iteration were used to detect a divergent solution. If the
maximum difference of X or Y were larger than 2 or the
maximum absolute vorticity value was greater than 10'%, the
solution was assumed to be divergent and the procedure was
stopped. Also, upper limits on the number of iterations for
the grid generation and the natural convection calculation
parts prevented the consumption of excessive CPU time.

Once each pair of grid generation and natural
convection problems had successfully converged, the discrete
results were used to calculate the following information:

| 1. the length of the curved right wall,
2. the average and maximum deviations of the
numerically generated grid from orthogonality,
3. the maximum stream function value, and
4, the local and average Nusselt numbers of both
the left and right isothermal walls.
The length of the right wall, which is the only curved

boundary of both the C1 and C2 cavities, is calculated by
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means of the integral

Ny dn (119)

The 1integration 1in Eq. 119 is approximated numerically by
using the trapezoid rule. The length of the right wall |is
used as an 1indicator of the performance of the numerical
grid generation routine. The length, 1in general, 1is a
function of the grid size. As the number of grid points
increases, the calculated length converges asymptotically to
the exact wvalue which can be determined by an analytical
integration of the boundary equation.

The deviation of the numerically generated grid from
orthogonality is another indicator of the performance of the
program. The deviation from orthogonality is also a function
of the grid size. It should approach zero as the number of
grid points increases. At each nodal point, the angle, ©, at

which the grid lines intersect can be determined from

0X9X 9YoY
<+
0kdn 0ton
Q)= (120)
3X]2 favy}2jo"s® dX] 2 fav}2]°°°®
0f| Lo¢ on an
To evaluate O, the various derivatives appearing in Eg. 120

were approximated by second order accurate forward, backward
and central finite differences. Finally, the deviation from

orthogonality, Dev, was calculated as



83

Dev=|90°-0| (121)

The maximum stream function was taken to be the maximum
absolute value of all of the discrete stream function values
on the grid. The maximum stream function wvalue 1is an
important quantityv because it 1is a measure of the total
circulatory flow in the enclosure. If the sign associated
with the maximum value is positive, the flow is
anti-clockwise; otherwise, the flow is clockwise,

Probably the most important derived quantity in any
convective heat transfer situation 1is the heat transfer
coefficient at the fluid-solid interface. This quantity is
essential in the design of any unit operation 1in which
convection heat transfer occurs. The local heat flux at a
solid-fluid interface 1is given 1in general orthogqnal
coordinates by |

o 7 (122)
q, =—— 1

“" H, L_3Zn
Fof design purposes, the local heat flux at the wall can
also be written as the product of the characteristic
temperature difference of the system and a coefficient

called the convection heat transfer coefficient, i.e.
q,,=h(Ty-T_) (123)

The dimensionless convection heat transfer coefficient,
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called the Nusselt number, can now be derived by combining

Egs. 122 and 123 to obtain

Nu= == (124)

The local Nusselt number is calculated numerically from the

above equation by using a second order accurate central

difference to approximate the temperature derivative and by

linearly interpolating the discrete scale factor values. The

average Nusselt number along a wall is then given by
fwallNqutdZt

Nu = (125)
ave
IwalletGZt

The average Nusselt number is calculated from Eg. 125 using

the trapezoid rule integration technique.



VII. TEST PROBLEMS

Using results available from the  literature, two
different types of test problems were considered in order to
ensure that the simulation program was running properly. The
first problem was designed to test the program's ability to
succesfully generate body-fitted orthogonal grids. The
second test case examined the program's ability to solve a

standard natural convection problem.

A. FIRST TEST

Chikhliwala and Yortsos [27] extensively 1investigated
the ability of the weak constraint method to generate
body-fitted orthogonal grids in two-dimensional domains
which they suggest are encountered during immiscible fluid
displacement in porous media. The general shape of the
domain is 1identical to the cavity C1 with the only
difference being that the bottom wall length is not B but
0.75B (see Fig. 4). Therefore, the function representing the

right wall is
X=0.75+A COS(wY) (126)

where the amplitude, A, was allowed to vary from 0.0
(rectangular cavity) to 0.25. Two of the three different
sets of boundary conditions considered by Chikhliwala and
Yortsos are also investigated in this work. In case 1, the

correspondence between Cartesian and general orthogonal

85
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coordinates 1s prescribed at the right wall while the shépe
factors of the top left and bottom left corners are assigned
to unity (i.e. the shape factors along the left wall are all
unity, those along the right wall are calculated using
Egs. 15 to t7 and those along the top and bottom walls are
linearly interpolated from their respective corners values).
In case 2, boundary correspondence between the Cartesian and
general orthogonal coordinates 1is prescribed at the the
left, right and bottom walls (the shape factors are
calculated for the 1left, right and bottom walls wusing
Egqs. 15 to 17 and are determined for the top wall by linear
interpolating its corner values). As a standard example, the
authors chose a grid having 18 rows and 18 <columns.
Unfortunately, they give only very cursory information about
their discretization methods.

These two cases were entered into the present program.
An 18x18 grid was employed and the amplitude was allowed to
range from 0.05 to 0.25 for both cases. The maximum
deviations from orthogonality computed for the internal
(nén-boundary) grid points are compared to the results of
reference [27] in Tables 5 (case 1) and 6 (case 2). It is of
interest to note that the grids generated by the present
program are more orthogonal than those obtained by
Chikhliwala and Yortsos. The improved results obtained by
the present program are probably attributable to the use of
second order accurate finite difference approximations

throughout, more stringent convergence criteria and the
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Table 5. Comparison of the maximum deviations (in degrees)

obtained in the present work and by Chikhliwala and

Yortsos

[27] -~ case 1.
Amplitude Present Reference
Work [27]

0.05 0.106 0.300
0.10 0.221 1.000
0.15 0.352 2.000
0.20 0.809 3.600
0.25 1.510 5.700

Table 6. Comparison of the maximum deviations (in degrees)

obtained in the
Yortsos [27]

present work and by Chikhliwala and

~ case 2.
Amplitude Present Reference
Work [27]
0.05 0.251 1.300
0.10 0.743 2.400
0.15 1.780 3.700
0.20 3.310 5.000
0.25 6.050 6.500
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modified Neumann boundary conditions (Egs. 75 and 7%).
Tables 5 and 6 also reveal that the more the boundary nodes
are constrained, i.e. the larger the number of bounding
surfaces where complete boundary correspondence is required,
the less orthogonal 1is the generated grid. In fact,
Chikhliwala and Yortsos found that, in some cases, when the
boundary nodes were initially prescribed over the entire
perimeter of the domain, it was either impossible to obtain
a converged set of interior grid points or the orthogonality
condition was not satisfied. Apparently, the physical grid
can be overconstrained at the boundaries to the point where
a realistic solution is no longer achievable. However, this
failure to obtain complete boundary correspondence should
not be <considered as a fatal deficiency of the weak
constraint method. In most cases, including those considered
in the present thesis, it is only essential to have boundary
correspondence at one surface where two contiguous regions
join (see Chapter X). The concentration of grid points can
be varied by adjusting the scale factor values at the

corners formed by the other three sides.

B. SECOND TEST

The natural convection portion of the program was
tested by considering the case of a square cavity with
vertical 1isothermal walls. As was mentioned earlier, this
problem has been extensively investigated in the literature

to the point where it is now considered to be a standard
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problem for comparing different numerical heat transfer
methods. De Vahl Davis and Jones [15] have summarized the
results of a comparison exercise for the square cavity
problem which included the solutions of 36 1international
contributors. As well, De Vahl Davis and Jones gave a
benchmark solution which they consider to have a relative
accuracy of better than 1 percent,

Using the present program, numerical simulations were
carried out for the cases of Rayleigh number equal to 1000,
10000 and 100000. For each case, the Prandtl number was set
equal to 0.71 (air) and a uniform Cartesian grid consisting
of 42 rows and 42 columns was used. Contour plots of the
stream function and temperature distributions as well as the
local Nusselt number variations along the 1isothermal walls
are shown on Figs. 14 to 16 for the three Rayleigh numbers
studied. The maximum stream function value and the average
cavity Nusselt number for each case are compared to the
benchmark values of De Vahl Davis and Jones in Tables 7 and
8.

An examination of Tables 7 and 8 demonstrate that the
results of the present program are in excellent agreement
with the best solutions given by De Vahl Davis and Jones.
The largest discrepancy was 0.72 percent and was associated
with the maximum stream function at Ra=100000. The
differences observed in Tables 7 and 8 are small compared to
the total range of deviations 1listed in reference [15].

Thus, it can be concluded that, at least for a vertical
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Figure 14. Selected natural convection results for a
vertical square cavity with Ra=1000 and Pr=0.71. (a) Stream
function contour plot, (b) Temperature contour plot
(isotherms range from 0 to 1 in increments of 0.1), (c) Left
wall Nusselt number distribution, (d) Right wall Nusselt
number distribution.
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Figure 15. Selected natural convection results for a
vertical square cavity with Ra=10000 and Pr=0.71. (a) Stream
function contour plot, (b) Temperature contour plot
(isotherms range from 0 to 1 in increments of 0.1), (c¢) Left
wall Nusselt number distribution, (d) Right wall Nusselt
number distribution.
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Figure 16. Selected natural convection results for a
vertical square cavity with Ra=100000 and Pr=0.71. (a)
Stream function contour plot, (b) Temperature contour plot
(isotherms range from 0 to 1 in increments of 0.1), (c) Left
wall Nusselt number distribution, (d) Right wall Nusselt

number distribution.
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in the present work with the benchmark results of De Vahl

’
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Comparison of the maximum stream functions obtained

Davis and Jones

[15].

Rayleigh Present Reference
Number Work [15]
1000 1.172 1.174
10000 5.070 5.079
100000 9.691 9.622

Table 8., Comparison of the average Nusselt numbers obtained

in the present work with the benchmark results of De Vahl

Davis and Jones [15].

Rayleigh Present Reference
Number Work [15]
1000 1.117 1.118
10000 2.241 2.238
100000 4.517 4.505
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square cavity, the present program better than successfuily
solves simultaneous mass, momentum and energy balances.

The stream function and temperature contour plots shown
in Figs. 14 to 16 illustrate the regimes typical of natural
convection heat transfer 1in enclosures. For low Rayleigh
numbers like 1000, the buoyancy—drivenvflow is very weak and
hence the contribution of convection to the overall heat
transfer is not very significant. This fact 1is «clearly
revealed in the temperature plot where the isotherms deviate
only slightly from verticality; the state that would exist
if convection were absent. In the latter case, the enclosure
problem reduces to one of wuni-directional <conduction for
which case it is possible to prove that the Nusselt number
should be exactly unity. Thus, at Ra=1000, the calculated
Nusselt number indicates that natural convection only
increases the -'overall heat transfer rate by about 12
percent.

As the Rayleigh number is increased (for a given fluid,
this can be achieved by increasing the characteristic
teﬁperature difference or the characteristic length of the
cavity), ‘the flow becomes stronger and convection makes a
more important contribution to the overall transfer of heat.
At a Rayleigh number of 100000, convection completely
dominates conduction as a heat transfer mechanism and the
flow is sufficiently strong that it begins to take on some
of the attributes of a boundary layer. This is particularly

noticeable in the temperature plot where the gradients are
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very steep in the wvicinity of the isothermal walls and
essentially zero at the centre of the enclosure. For this
case, 1t can be observed that secondary flows begin to
develop in the core resulting in the formation of the

characteristic "cat's eye" pattern.



VIII. PART 1

A. NUMERICAL EXPERIMENTS

The natural convection problem treated here is totally
defined by the specification of five independent parameters:
the Rayleigh number, the Prandtl number, the dimensionless
amplitude (referred to as the amplitude from this point
onwards), the cavity aspect ratio and the cavity angle of
tilt. The 1independent variable values 1investigated are
presented in Table 1. For each cavity type (C1 or C2), the
pérmutation of these independent variable values defines 30
different natural convection problems. Each natural
convection problem is solved numerically by satisfying the
difference forms of the body-fitted orthogonal mapping,
stream function, wvorticity and temperature equations along
with their various boundary conditions. Six different sets
of boundary conditions are considered in this work and these
are presented in Tables 9 and 10. Also, 7 grid sizes are
examined and are listed in Table 11. The permutation of the
boﬁndary conditions and grid sizes defines an additional 42
ways that each natural convection problem could be solved.

The primary objective of Part I is to determine the
effect of the grid size and the set of boundary conditions
used on the accuracy of the numerical solutions. Although
each natural convection problem represents a particular
case, 60x42 numerical simulations were not attempted 1in

order to fulfil this first objective; rather only those

96
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Table 9. Different grid, stream function, vorticity and
temperature boundary conditions investigated
in Part I.

Grid Stream Function Temperature Vorticity
Case A Eg. 58 Egs. 59 to 62 Wood:
Egs. 112 to 114
Case B
: Second Order:
Case C Egs. 115 to 118

Table 10. Grid boundary conditions investigated in Part I;
D=Dirichlet, N=Neumann.

Case Top Wall Right Wall Bottom Wall Left wWall
X Y X Y X Y X Y

A N | D | D | N N D D | N
B N | D | D [ D | N [ D D | N
c D p | o | b D D D N
Grid Size Table 11. Grid sizes investigated in Part I.
M N

7 7

S S

13 13

17 17

25 25

33 33

49 49
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cases expected to yield the greatest numerical difficulty
were investigated in detail. Thus, five natural convection
problems were selected for this purpose and are presented in
Table 12. These five <cases use only the most distorted
cavities. A Rayleigh number of 10000 was chosen in four of
the cases partly because the heat transfer at this condition
exhibits both conduction and convection modes, and also
because the computational cost of tackling a larger Rayleigh
number was prohibitive., However, one case of Ra=100000 was
included because it provides a more rigorous test of the
accuracy of the numerical solution procedure. To minimize
CPU time, the initial solution values for stream function,
vorticity and temperature for each finer grid were obtained
by linearly interpolating the converged answer for the
previous coarser grid. In each case, once convergence had
been attained, plots were made of the generated grids, the
stream function, vorticity and temperature distributions as
well as the local Nusselt number distributions on the left
and right walls. Also, the length of the right wall, the
makimum deviation of the grid from orthogonality, the
maximum stream function and the average Nusselt numbers of
the left and right walls were recorded in order to assess
the accuracy of the solutions. Finally, a heat balance at
the domain boundary was performed for each numerical
experiment. Because the top and bottom walls are adiabatic,
all of the heat enérgy which enters the cavity from the hot

right wall must be removed from the cavity at the cold left



Table 12. Dimensionless amplitudes and Rayleigh
investigated in Part I.

numbers

Case Cavity Dimensionless Rayleigh'
Amplitude Number
1 Ci -0.15 10000
2 C1 0.15 10000
3 C2 ~-0.15 10000
4 c2 0.15 10000
5 Ci1 -0.15 100000
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wall 1if steady-state conditions are to prevail. This

condition can be written dimensionally as

=Q (127)

rw

Qlw
The above equation can be rewritten in terms of the average
heat transfer coefficients of each wall, i.e.

h

(Th-Tc)=h (Th-TC) (128)

ave,lecLlw ave,erchw

assuming the cavity has a depth of unity. If Eg. 128 is
divided through by k,, it reduces to

Nu =Nu L (129)

ave,lelw ave,rw rw

where in the present investigation, Ly is unity. Thus, as
an additional measure of solution accuracy, the ratio of the
difference between the left and right hand sides of Eg. 129

to their mean value was calculated.

B. RESULTS

There is not sufficient space or need to show all of
Part I results. Some representative examples for a 33x33
grid are given 1in Figs. 17 to 21 for <cases 1 to 5,
respectively. Each figure includes three numerically
generated grids corresponding to the three sets of boundary

conditions (i.e. no boundary correspondence, boundary



Figure 17. Selected results
obtained for case 1 of Table
12. (a), (b) and (c) 33x33
grids obtained with boundary
conditions A, B and C,
respectively, (d) Stream
function contours, (e)
Temperature contours, (f)
and (g) Right and left wall

Nusselt number _
distributions, respectively.
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Figure 18. Selected results
obtained for case 2 of Table
12. (a), (b) and (c) 33x33
grids obtained with boundary
conditions A, B and C,
respectively, (d) Stream
function contours, (e)
Temperature contours, (f)
and (g) Right and left wall
Nusselt number
distributions, respectively.
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.

a)

Figure 19. Selected results
obtained for case 3 of Table
12. (a) and (b) 33x33 grids
obtained with boundary
conditions A and B,
respectively (grid boundary
conditions C did not yield a
converged result), (4d)
Stream function contours,
(e) Temperature contours,
(f) and (g) Right and left
wall Nusselt number ' A

distributions, respectively.
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Figure 20. Selected results
obtained for case 4 of Table
12. (a), (b) and (c) 33x33
grids obtained with boundary
conditions A, B and C,
respectively, (d) Stream
function contours, (e)
Temperature contours, (£)
and (g) Right and left wall
Nusselt number
distributions, respectively.
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Figure 21. Selected results a) |
obtained for case 5 of Table ]
12. (a), (b) and (c) 33x33
grids obtained with boundary
conditions A, B and C,
respectively, (d) Stream Rz
function contours, (e)
Temperature contours, (f)
and (g) Right and left wall
Nusselt number
distributions, respectively.
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correspondence on right wall and boundary correspondence:on
top, right and bottom walls) listed in Table 10. Also shown
for purposes of discussion are contour plots of stream
function and temperature as well as the local Nusselt number
distributions along the two isothermal walls of the cavity.
Note that these countour plots were generated wusing the
results obtained with the finest grid (49x49) and were found
to be unaffected by the set of grid and vorticity boundary
conditions used.

The length of the right wall, the maximum deviation
from orthogonality, the maximum stream function and the
average Nusselt numbers used to monitor the accuracy of the
solution are given in Figs. 22 to 26 for cases 1 to 5,
respectively. These parameters are plotted as a function of
the number of grid points (Table 11) and the type of
boundary conditions used (Tables 9 and 10). As can be seen
from Figs. 22 to 26, all of these monitored parameters
eventually converge to asymptotic values as the number of
grid points 1is 1increased. Consiaering these asymptotic
vaiues, relative errors associated with the length of the
right wall, the maximum stream function and the average
Nusselt numbers were calculated for the coarser grids. For
example, the estimated relative errors obtained for a 33x33
grid are tabulated in Table 13 for the five extreme cases of
interest. Also, the maximum deviation from orthogonality and
the ratio of the difference between heat transfer rates

through each isothermal wall and their mean values are
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Figgre 23. Plots of the
monitored variables as a

function of the number of
discrete points for case 2.
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Figure 24. Plots of the
monitored variables as a
function of the number of

discrete points for case 3.
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Figure 25. Plots of the
monitored variables as a

fgnction of the number of
discrete points for case 4.
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Figufe 26. Plots of the
monitored variables as a
function of the number of

discete points for case 5.
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Table 13,
using a 33x33 grid.

Errors in monitored variables for cases ' to 5

Case Grid Vorticity Relative Max {mum Relative Relative Relative Relative
Boundary Boundary Error of Deviation Error of Error of Error of Error of
Conditions Condition Right from Max { mum Left Right Heat

Wall Orthogonal ity Stream Wall Waltl Transfer
Length Function Average Average Rate
Nussel t Nusselt
Number Number

1 Case A Wood 6.70E-5 0.386 3.75E-4 7.54E-4 9.0%€E-4 5.41€-5
Case B Wood 1.02€-4 0.588 4.18E-~4 {1.19E-3 t.18E-3 t.08E-4

Case A 2nd Order 6.70€E-5 0.386 5.25€E-4 B8.97€-4 {1.05€-3 5.33€-5

Case B 2nd Order 1.02E-4 0.588 4.18E-4 1.16E-3 1.20€E-3 {.0BE-4d

Case C 2nd Order 1.02€E-4 0.225 5.04E-4 S.47E-4 8.01E-4 1.05€-4

2 Case A Wood 1.47€E-4 0.4714 1.15€E-3 6.47E-5 4.55E-4 9.06E-5
Case B wWood 1.17€-4 1.640 1.61E-3 2.45E-4 5.09E-5 3.54€E-5

Case A 2nd Order 1.47€E-4 0.471 9.24E-4 2.17€-4 7.44€E-4 9.81E-5

Case B 2nd Order 1.17€-4 1.640 1.32E-3 1.12€-5 2.05€E-4 3.42E-5

3 Case B ~Wood t.03E-3 6.74 6.23€E-4 8.76E-4 7.16E-4 t.18E-4
Case A 2nd Order 1.86E-2 13.66 2.27€-3 3.16E-3 2.06E-2 8.28E-6

Case B 2nd Order 1.03E-3 6.74 B8.58E-4 7.24f-4 B.G1E-4 1.26E-4

4 Case B wWood t.03E~3 11.00 2.70E-3 8.16E-4 1.62€E-3 1.65E-4
Case A 2nd Order 1.20E-2 .3t 5.48€-4 1.56€£-3 {.05€E-2 1.44E-5

Case B 2nd Order 1.03€E-3 1.00 2.53E-3 9.08E-4 1.71€E-3 1.71€-4

Case C 2nd Order 1.03€E-3 37 2.68E-3 4.73E-5 0.00E+0 1.59€E-4

5 Case A wood 6.31E-5 0.386 6.79E-3 9.83E-4 }.06E-3 f.30€E-5
Case A 2nd Order 6.31E-5 0.386 5.69€E-3 2.07e-3 2.15E-3 9.25€-6

Case B 2nd Order {.06E-4 0.588 8.19€-3 2.50€E-3 2.38BE-3 t.47€-5

Case C 2nd order 1.06€E-4 0.225 6.69E-3 1.42€-3 1.51€-3 2.78E-5

Lil
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listed for a 33x33 grid in the same table.

C. DISCUSSION

Body-fitted orthogonal grids were generated for cases 1
to 5 considered in this exercise wusing all sets of grid
boundary conditions defined 1in Table 9 with only one
exception, It was not possible to generate a body-fitted
orthogonal grid for case 3 with the grid boundary conditions
C. It is not clear why convergence was not reached in this
case, but it appears that the requirement of boundary
correspondence on three faces over-constrains the problem
for this particular geometry. Also, in order to obtain a
converged symmetric grid for case 4 with the grid boundary
conditions A, the numerical procedure had to be modified
slightly. The grid boundary conditions A require the use of
both Neumann and Dirichlet conditions along the entire
transformed domain boundary. However, for case 4, 2
Dirichlet boundary coﬁditions were used at, and only at, the
central node of the right wall in order to obtain the
symmetric mapping expected from this geometry.

To obtain an accurate numerical simulation using finite
difference methods, the grid density should be highest in
areas of the cavity where either the flow or the heat
transfer is  important, i.e. where the gradients of
temperature or stream function are the greatest. It is clear
from the close proximity of contour 1lines, that the

temperature gradient is maximal in the wvicinity of the
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isothermal walls. The areas of highest heat transfer albng
the 1isothermal walls can be located by considering the left
and right wall local Nusselt number distributions given in
Figs. 17 to 21. For cavity cases 1 to 4, the top of the left
wall and the bottom half of the right wall are the areas of
highest heat transfer. The gradients in these areas become
stronger as the Rayleigh number increases because the
resulting increase in convection intensifies the local heat
transfer. The fluid shear is greatest near the cavity
boundary and becomes less important in the core. Again,
particularly near the boundaries, the velocity gradients
become steeper as the Rayleigh number increases and the flow
assumes a more boundary—layer like nature.

An inspection of the numerically generated grids shown
in Figs. 17 to 21 reveals that most grids have a fairly
constant grid density over the entire domain. However, some
grids have higher resolutions in regions where it 1is not
justified by the gradients (eg. lower left hand corner of
Fig. 17c), regions of very low grid density (eg. wupper and
lo&er right hand corners of Figs. 19a and in the middle of
the right hand wall in Fig. 20a) or have problems satisfying
the orthogonality condition (e.g. Fig. 20c).

The results of Figs. 22 to 26 and Table 13 also
demonstrate that

1. independent of the grid and vorticity boundary

conditions chosen, numerical solutions having

accuracies of better than 1 percent were



obtained by wusing only a 22x22 grid for a
Rayleigh number of 10000 with only two
exceptions: cases 3 and 4 with grid boundary
conditions A,

independent of the grid and vorticity boundary
conditions chosen, numerical solutions having
accuracies of better than 1 percent were
obtained by wusing a 28x28 grid for a Rayleigh
number of 100000,

for grids sizes larger than 30x30, the maximum
stream function, average Nusselt numbers and
right wall 1length monotically approach their
asymptofic values,

good accuracy was obtained for the grid size of
33x33 for all cases except for cases 3 and ¢
with the grid boundary conditions A,

it is difficult to justify which combination of

grid and vorticity boundary conditions yields’

the most accurate results for coarser grids

either because one combination of boundary

conditions does not show consistent superiority
over the others for all of the monitored
variables or because all combinations lead to
similar accuracies, and

the heat balance over the cavity is always well
satisfied for é 33x33 grid with the present

accuracy criteria.
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It was somewhat surprising to discover that Ehe
different combinations of grid (with the exception of grid
boundary conditions A when used with cases 3 and 4) and
vorticity boundary conditions gave  similar solution
accuracies. The reasons why the second order vorticity
boundary condition does not show any superiority to the Wood
boundary condition even though the former is based on Taylor
series of higher order can be explained as follows. Firstly,
for the square cavity natural convection problem, Wong and
Raithby [12] showed that the Wood boundary condition not
only gave more accurate solutions than any of the other
commonly used vorticity boundary approximations but, it
yielded results which were only slightly less accurate than
the second order condition. Secondly, in the present
problem, the orthogonal coordinate system has to be
generated numerically and hence, already contains
inaccuracies. For an orthogonal system, the second order
condition has more terms that require numerical manipulation
of the grid characteristics than does the Wood boundary
cohdition. Thus, it is surmised that the gain in accuracy
achieved by using more terms of the Taylor series is offset,
to some extent, by additional computational error associated
with the numerically generated grid.

Thus, even though one of the objectives of Part I was
to determine which of the grid and vorticity boundary
conditions gave the most accurate numerical results for each

case, there was no clear conclusion. For any given numerical
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experiment, it was found that the combination of conditi;ns
which minimized the error for one dependent variable often
gave poorer results for another variable. However, it was
observed that, except for boundary conditions which led to
undesirable grids, most combinations of grid and vorticity
boundary conditions gave results of acceptable accuracy as
long as a sufficient number of grid points were used. All of
the natural convection results reported in Parts II and III
were obtained using the Wood vorticity boundary condition,
because it requires fewer numerical manipulations than does
the second order boundary condition. For cavity C1, the grid
boundary conditions A were chosen because the C conditions
yielded high grid densities in regions which were
inappropriate and the B conditions produced grids which were
less orthogonal than A. For cavity €2, the grid Vboundary
conditions B were decided upon because the A conditions lead
to grids of low density in area of susceptible gradients and
the C conditions result in non-orthogonal grids.

The second objective of Part I was to use the results
to. determine what grid size was needed to give natural
convection results of acceptable accuracy. In all cases, it
was found that solutions with sufficient accuracy were
obtained as long as the grid size exceeded 33x33. For
example, Table 13 shows that, for a 33x33 grid, the maximum
error was a 0.0082 in the stream function obtained at
Ra=100000 for a C1 cavity, type A grid boundary conditions

and second order vorticity boundary conditions. This maximum
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error is associated with the largest Rayleigh number which
is in agreement with many literatyre observations,
e.g. [12]. Therefore, the numerical natural convection
results are expected to have an accuracy of better than 1
percent if a grid size of 33x33 or larger 1is wused. As a
conseqguence, a 35x35 grid was employedlto generate all of
the results in Parts II which follows. Use of a finer grid

was ruled out because of the excessive computation costs.



IX. PART 11

A. NUMERICAL EXPERIMENTS

The primary objective of Part II was to study the
effect of the amplitude and the Rayleigh number on the
natural convection flow and heat transfer in cavity types C1
and C2. The combination of the six Rayleigh numbers (0 to
100000) and five amplitudes (-0.15 to 0.15) investigated
(see Table 1) yielded a total of 30 natural convection
problems for each cavity. Note that these 30 experiments
include several special cases. When the amplitude equals
zero, the sguare cavity, for which there is much
corroborating data in the literature, results. When the
Rayleigh number equals 2zero, there can be no natural
convection and a pure conduction problem results.

As was mentioned in the last section, the relatively
simple Wood vorticity boundary condition was used in all
‘cases since it appears to cause no loss in numerical
accuracy and requires less computing time. For the cavity
C1,vape A grid boundary conditions were employed while ‘the
C2 cavity used type B conditions. The different sets of grid
boundary conditions are listed in Table 14. To maintain
acceptable numerical accuracy for all runs, the grid size
was set at 35x35.

To conserve computing time, the following procedures
were utilized. Firstly, for each cavity shape, the

orthogonal grid was generated only once while the Rayleigh
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Table 14. Grid and vorticity boundary conditions used

Part II.

Cavity Dimensionless Grid Vorticity
Amplitude Boundary Boundary
Conditions Condition
C1 Negative Case A Wood
Ci Positive Case A Wood
C2 Negative Case B Wood
C2 Positive Case B Wood

in
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number was increased from 0 to 10000. Secondly, to pro;ide
better starting values each time the Rayleigh number was
increased, the stream function, temperature and vorticity
nodes were initialized using the final solutions obtained

for the previous Rayleigh number.

B. RESULTS

The computed results for all 60 natural convection
problems, including the grid, the stream function, vorticity
and temperature contours as well as the local Nusselt
numbers for the left and right hand walls, are presented in
compact form in Appendix B. In the rest of the chapter, only
the maximum stream function and the average Nusselt number
of the 1left wall are considered further. The former
characterizes the strength of the convection flow while the
latter 1is a measure of the total heat transfer rate through
the cavity. Of course, as was shown in Eg. 129, the left and
right wall Nusselt numbers are simply related through the
dimensionless length of the curved right wall. The maximum
stfeam function and left wall Nusselt numbers afe plottea as
functions of the Rayleigh number and curved wall amplitude
in Figs. 27 and 28 for cavity C1 and Figs. 29 and 30 for
cavity C2. The limiting left wall Nusselt numbers for
Rayleigh number equals zero (pure conduction) are presented

in Table 15 and 16 for cavities Ci1 and C2, respectively.
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Figure 27. Plot of the maximum stream function versus the -

Rayleigh number for different amplitudes - cavity C1.



128

w
o AMPLITUDE - -0.15
w1 o AMPLITUDE - -0.075
s AMPLITUDE = 0.0

«J © AMPLITUDE - 0.075
. v AMPLITUDE - 0.15

%

o0

P

=

=zt

F—

-J

L

0

n

-

=

8

(O NV

ea

[0

J

>

CE

1§

[

10*
RAYLEIGH NUMBER

Figure 28. Plot of the average left wall Nusselt number
versus the Rayleigh number for different amplitudes -

cavity C1.

L L ] 1) L i LI LI

10



129

o AMPLITUDE - -0.15

o AMPLITUDE - -0.075
o4 & AMPLITUDE - 0.0

o AMPLITUDE = 0.075

v AMPLITUDE = 0.15

8
]

MAXIMUM STREAM FUNCTION
6

C’[ T T L lllll]‘ T T T | SO N SR S
~ 10 | 10°
RAYLEIGH NUMBER

Figure 29. Plot of the maximum stream function versus the
Rayleigh number and different amplitudes - cavity C2.
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amplitude for Ra=0 - cavity C1.

Table

amplitude for Ra=0 - cavity C2.

15.

16.
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Average Left wall Nusselt number as -a function of

Dimensionless Average
Amplitude Nusselt
: Number
-0.150 1.224
-0.075 .090
0.000 .000
0.075 0.936
0.150 0.894

Average Left wall Nusselt number as a function of

' Dimensionless | Average
' Amplitude Nusselt
Number

-0.150 .262
-0.075 .099
0.000 .000

0.075 0.943

0.150 0.914
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C. DISCUSSION

The stream function and temperature fields of the 60
natural convection problems, ‘shbwn in Appendix B, are
examined first. From the stream function plots, it can be
seen that the "cat's-eye" flow pattern (secondary flow)
occurs for both cavities C1 and C2 at a Rayleigh number of
100000 independent of the dimensionless amplitude.
Apparently, for a given Rayleigh number, a similar flow
pattern 1is obtained in all <cavities regardless of their
shape. Perhaps larger differences would have been observed
~if cavities with more extreme amplitudes had been tried. If
the beginning of the laminar boundary-layer regime is
considered to be reached when the derivative of the
temperature with respect to the X direction is equal to zero
at the middle of the cavity (even though this criterion was
derived for rectangular cavity), an examination of the
temperature plots shows that a boundary-layer-like regime
begins to occur at a Rayleigh number of 10000 for all cavity
shapes except the cavities C1 and €2 with amplitude of
-0;15, which seem to require a Rayleigh'number between 10000
and 30000. These results are similar to those reported in
the literature for a square cavity [1,3] (Table 2).

As can be seen from Figs. 27 and 30, the maximum stream
function and left wall Nusselt number are both significantly
affected by the Rayleigh number and by the amplitude of the
cavity. (Note that no error bars are plotted in Figs. 27 to

30 1t can be assumed that the error in the maximum stream
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functions and average left wall Nusselt numbers are, in 511
cases, less that the height of the symbols.) For both types
of cavities, C1 and C2, the maximum stream function and the
average Nusselt number of the 1left wall increase as the
Rayleigh number increases. The maximum stream function also
increases with increasing amplitude for both cavities Ct1 and
C2 with one exception. For cavity Ci1, the amplitude has no
noticeable effect on the maximum stream function at
Ra=30000. The behavior of the average Nusselt number with
respect to an 1increase of the amplitude 1is not so
straightforward. For cavity C1, the average Nusselt number
along the left wall decreases monotonically as the amplitude
increases with one exception. The émplitude has a negligible
effect on the average Nusselt number along the left wall at
Ra=100000. However, fér cavity C2, two different types of
behavior are observed depending on the Rayleigh number. At
low Rayleigh numbers, the average left wall Nusselt number
decreases as the amplitude increases; at high Rayleigh
numbers, the Nusselt number increases with 1increasing
amplitude. For intermediate Rayleigh numbers, there is a
cross-over range where the amplitudé has no noticeable
effect on the average Nusselt number. The trends observed
for the maximum stream function and the average left wall
Nusselt number as a function of amplitude are recorded in
Tables 17 to 20 for each Rayleigh number.

To understand the effects of the Rayleigh number and

the amplitude on the fluid flow and heat transfer in
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Table 17. Percent change of the maximum stream function with
increasing amplitude for a given Rayleigh number -
cavity Ci.

Rayleigh Dimensionless Amplitude Ranges
Number
‘ -0.150 | -0.075 | 0.000 | 0.075
‘ to . to - to to
-0.075 0.000 0.075 0.150
0 I
t000 | 1} 1 | o1 .
3000 B 1 1 B |
10000 | 1 1 1oz | oousy |
30000 | o0.10 | -0.93 | -0.09 | o0.57 |
100000 - 0.75 | 1.93 1.62 |

I: increase of 2 percent and more with an increase of the
amplitude over the indicated range.

'D: decrease of 2 percent and more with an increase of the
amplitude over the indicated range.

-: not applicable or not defined.
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Table 18. Percent change of the average left wall Nusselt
number with increasing amplitude for a given Rayleigh number

- cavity Ci1.
Rayleigh Dimensionless Amplitude Ranges
Number
-0.150 -0.075 0.000 0.075
to to to to
-0.075 0.000 0.075 0.150
0 D D D D
1000 D D D -1.94
3000 D D D D
10000 D D - -1.53 -1.07
30000 D  -1.53 | -0.73 -0.26
100000 - - -1.02 | -0.16 | 0.21-

I: increase of 2 percent and more with an increase of the
amplitude over the indicated range.

D: decrease of 2 percent and more with an increase of the
amplitude over the indicated range.

—-: not applicable or not defined.
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Table 19. Percent change of the maximum stream function with

increasing amplitude for a given Rayleigh number -
cavity C2.

Rayleigh Dimensionless Amplitude Ranges
Number
-0.150 | -0.075 | 0.000 0.075
to to to to
-0.075 0.000 0.075 0.150
0 E - - - f -
1000 1 | I 1 |
3000 1 S S B T
10000 | 1 B 1 1.05
i i s i
30000 | 1 f o3 | o1 |1
100000 | 0.40 | I o B

I: increase of 2 percent and more with an increase of the
amplitude over the indicated range.

D: decrease of 2 percent and more with an increase of the
amplitude over the indicated range.

-: not applicable or not defined.
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Table 20, Percent change of the average left wall Nusselt
number with increasing amplitude for a given Rayleigh number
- cavity C2.
Rayleigh Dimensionless Amplitude Ranges
Number -
' -0.150 | -0.075 | 0.000 | 0.075
to to to to
-0.075 0.000 0.075 0.150
0 D D D D
!
1000 D D D -1.45
3000 D -0.65 0.23 0.26
10000 | -0.62 0.77 1.79 1.66
30000 | -0.92 | 1.37 1 I
100000 | -0.36 1.29 1 I

I: increase of 2 percent and more with an increase of the
amplitude over the indicated range.

D: decrease of 2 percent and more with an increase of the
amplitude over the indicated range.

-: not applicable or not defined.
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non-rectangqular cavities, it 1is wuseful to reconsider Ehe
fundamental mechanisms involved in the natural convection
phenomena.

The driving force for fluid flow in natural convection
is the density difference. It results from the interaction
between the gravitational body force and the hydrostatic
pressure gradient and can be approximated in the present
circumstances as a pure temperature effect. After
dimensional analysis, the source term which drives the fluid
flow is the body force term (last term on the right hand
side) of Eq. 37. For a dimensionless reference temperature
of 0.5, the body force term can take on positive, =zero or
negative values. These values correspond respectively to a
body force acting upwards, a null body force or a body force
acting downwards. Egquation 37 shows that the body force term
is the product of the Rayleigh number, the Prandtl number
and the difference between the local and reference
dimensionless temperatures. The dimensionless groups.
involved in the body force term, i.e. Ra and Pr, gather
toéether the constant parameters affecting the natural
convection problem: the values of the fluid_propertiés
evaluated at the reference temperature plus the cavity
characteristic length and characteristic temperature
difference. For the cavity as a whole, the strength of the
natural convection flow 1s given by the maximum stream
function and is therefore directly influenced by both Ra and

Pr. The maximum stream function 1is also affected by the



139

specific geometry of the cavity. However, the relationship
between the strength of the flow and the cavity geometry is,
in general, far more complex.

In all convection problems, heat is transferred by both
conduction and convection., Therefore, the rate of heat
transfer, which is given 1in dimensionless terms by the
average Nusselt number, 1is directly influenced by the
following two factors:

1. the mean distance which separates the two

isothermal walls, and

2. the strength of the fluid flow.
The first factor affects the amount of heat transfer through
the cavity by both the conduction and convection mechanisms.
I1f conduction dominates, the larger the distance between the
two isothermal walls, the smaller will be the amount of heat
transferred through the cavity. Also, when convection is the
dominant mechanism, the larger the distance between the two
isothermal walls, the more time the warmer stream flowing
near the wupper adiabatic wall has to transfer energy by
cohduction through the core to the cooler stream flowing
along the 1lower adiabatic wall. Thus, the greater is the
heat exchange between these two counterflowing parts of the
loop, the less will be the net rate of heat transfer between
the two 1isothermal walls.

Considering these different factors which play a role
in natural convection flow and heat transfer, let's now try

to interpret the results of Figs. 27 to 30, and Tables 17 to
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20.

Consider cavity C1 first. There are two factors which
explain why the maximum stream function 1increases with
increasing amplitude. Regardless of the amplitude, a cold
element from the bottom left corner of the cavity must move
to the‘bottom right corner to replace a fluid element
ascending because of the buoyancy induced by the hot right
wall. As the amplitude decreases from 0 to -0.15, the bottom
right corner of the cavity acts as a dead end to the fluid
flow. Also, the fluid element which rises along the
inward-sloping right wall works again 1it, exerting a
pressure on the wall rather than accelerating the element to
a higher velocity. Conversely, when the amplitude is raised
from 0 to 0.15, the dead end dissappears and now an element
of fluid warmed by the hot surface is free to rise
unhindered to the very“top=0ﬁ the cavity. As a conseguence
of these two factors, the maximum stream function generally
increases as the amplitude is increased. However, for sofe
inexplicable reason, the amplitude has no observable effect
on.the maximum stream function at Ra=30000.

Because the body force term of Eqg. 37 is directly
proportional to the Rayleigh number, the fluid flow
strength, as expected, 1increases substantially as the
Rayleigh number is raised.

Contrary to the fluid flow behavior, the heat transfer
rate depends on factors which have opposing effects.

Therefore, to explain the behavior of the average Nusselt
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number along the left wall with respect to the dimensionl;ss
amplitude and the Rayleigh number, 1let's inspect the
relative importance of each of these factors separately.

Without fluid flow, the average Nusselt number of the
left wall decreases as the mean distance: - between the
isothermal walls increases simply because the average length
of the conduction path becomes larger. This trend is clearly
indicated by Tables 15 and 16, for Ra=0. Note that when Ra=0
and A=0 (square enclosure for both cavities Ct and C2), the
Nusselt number is exactly unity.

In the presence of fluid flow, the changing amplitude
causes two opposing effects on the Nusselt number of the
left wall. As was just observed, the strength of fluid flow
increases as the amplitude increases. Thus, on the basis of
this fact alone, it might be expected that the Nusselt
number of the left wall would be magnified as the amplitude
was increased. However, as the amplitude becomes larger, the
heat transferred from the hot stream flowing along the
adiabatic top wall to the cold stream flowing along the
adiabatic bottom wall by conduction through the core
increases. Furthermore, the average length of the conduction
path between the isothermal walls also increases. These two
factors would cause the average Nusselt number to diminish
with increasing amplitude. Therefore, to rationalize the
general trend observed, i.e. that the average Nusselt number
along the left wall of the C1 cavity decreases as the

amplitude increases, the effect of increasing the average
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distance between the two isothermal walls must be dominating
over the effect of increasing the strength of convection.

The average Nusselt number of the left wall increases
substantially as the Rayleigh number increases due to the
increasing strength of the flow.

Consider now the C2 cavity. There again appear to be
two factors which explain why the fluid flows become
stronger with increasing amplitude. First of all, for
negative amplitudes, the bottom right corner of the cavity
acts as a dead end to fluid flow in a similar fashion asi it
did for the corresponding C! cavity. However, there is a far
less abrupt change in the direction of the fluid flow 1in
both  the top and bottom right corners for positive
amplitudes compared to negative amplitudes. Therefore, 1in
the former case, less momentum 1is transformed 1into a
pressure: increaée. Secondly, an element of warm fluid
arising from the hot right wall can travel, on average, a
much further distance before its upward motion is impeded by
a horizontal or inward sloping wall.

| The Rayleigh number affects the fluid flow strength in
a similar fashion as was explained for the C1 Cavity.

Without fluid flow, the average Nusselt number of the
left wall increases as the mean distance between isothermal
walls increases, as expected. However, in presence of fluid
flow, the "effect of the amplitude on the average Nusselt
number again involves the two factors with opposing effects:

flow strength and distance between isothermal walls, as were
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discussed for the C1 cavity. As the amplitude increases,:the
strength of the fluid flow increases and consequently the
average Nusselt number along the left wall is expected to
rise. Also, as the amplitude increases, the average 1length
separating the two isothermal walls increases, and
consequently the average Nusselt number along the left wall
should decrease (due to the combined effects of increasing
the conduction heat transfer resistance between the two
isothermal walls and the amount of conduction heat exchange
between the hot and cold streams flowing countercurrently
near the two adiabatic walls). The fact that the calculated
average Nusselt numbers along the left wall decrease with
increasing amplitude at 1low Rayleigh numbers can be
attributed to the dominant effect of an increasing average
distance between the two isothermal walls. The reverse trend
which is observed at high Rayleigh numbers suggests that the
effect of fluid flow strength becomes the more important
factor.

Because the increase in Rayleigh number 1leads to
substantial increases in the strength of fluid flow, the
average Nusselt number along the 1left wall increases

directly with Rayleigh number.

D. EMPIRICAL CORRELATIONS

When the average left wall Nusselt number was plotted
as a function of Rayleigh number on log-log coordinates, it

was observed that a linear relationship was obtained, at
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least for conditions where convection was the dominant héat
transfer mechanism. Thus, for this convection dominated
regime, the average Nusselt number results for each cavity
shape were fitted to a simple power law relationship having
the same form as Eg. 8. The empirical parameters, a and b,
were obtained by a least squares linear fit of the
logarithmic results and are reported in Tables 21 and 22. No
statistical analysis was performed on the fitting parameters
because it was recognized that an unsufficient number of
points were used to obtain these results. Nonetheless, the
fitting parameters determined in the present study for
distorted cavities are similar in magnitude to those listed
in the literature for more regular enclosures. The values of
the <coefficients a and b calculated from the results of the
present study for a square cavity were found teo differ by
only 4 and 2 percent, respectively, from the coefficients
obtained by De Vahl Davis and Jones [15] in their benchmark
‘'solution to this special problem. Note that for both types
of cavities, the coefficient a decreases while the
coefficient b increases as the amplitude 1is raised. A
decreasing value of the coefficient a reflects the fact that
the Nusselt number diminishes as the amplitude increases
while an increasing value of coefficient b is indicative of

the stronger flows that are possible with larger amplitudes.
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Table 21. Curve fitting coefficients of the simple power law
model for cavity C1 with different amplitudes.

Dimensionless Curve Fitting
Aamplitude Coefficients
a b

-0.150 0.138 0.307
-0.075 0.139 0.304
0.000 0.131 0.308
0.075 0.122 0.314
0.150 0.115 0.320

Table 22. Curve fitting coefficients of the simple power law
model for cavity €2 with different amplitudes.

' Dimensionless Curve Fitting
Amplitude Coefficients
a b

-0.150 0.135 0.305

-0.075 0.133 0.306

0.000 0.131 0.308

0.075 0.128 0.312

0.150 0.122 0.320




X. PART 111

A, NUMERICAL EXPERIMENTS

The primary objective of Part III was to investigate
the possibility of using the present numerical approach to
simulate natural convection flows in a two-dimensional
non-rectangular enclosure whose shape results from a phase
change process. More specifically, an attempt was made to
reproduce nume;ically the steady-state fluid circulation
pattern observed experimentally in the liquid water phase
during an ice formation process. Eckert [42] carried out a
number of 1ice forming experiments in a 5x5 cm? vertical
square cavity. Initially, the heavily insulated cavity was
filled with water whose temperature was eqguilibrated at the
hot wall value by passing the same conétant temperature
fluid through the copper chambers forming the isothermal end
walls. At zero time, the fluid in the right hand chamber was
replaced by a second fluid from a refrigerated bath whose
temperature was well below the freezing point of water. Soon
théreafter, ice began to form on the cooler surface.
Simultaneously, the changing flow pattern of the 1liquid in
the cavity was visualized by a "streak photography" method.
In this technique, neutrally-buoyant reflective pliolite
particles §uspended in the water were illuminated by a thin
sheet of laser light and photographed at right angles to the
main flow direction. Thus, the objective was to try and

duplicate this streak pattern at a given instant in time for

146
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a few different warm wall temperatures.

Since the present program was sef up to analyze
steady-state natural convection, it was necessary to assume
that the process was quasi-steady, i.e., even though the ice
interface is growing with time, the flow in the liquid phase
is insensitive to this movement. This assumption seems quite
reasonable under the present circumstances as it was
observed that while the ice interface required many hours to
reach 1its steady-state configuration, disturbances in the
liguid phase took only a few minutes to become completely
damped. Also the temperature boundary conditions were
assumed to be as follows: left wall, hot 1isothermal wall;
right wall, cold isothermal wall; and top and bottom walls,
adiabatic walls. The growing ice surface was, of course, at
0°C. But there was likely some variation in temperature over
the hotter "isothermal" wall and some heat gain through the
two "adiabatic" surfaces.

Before the existing program could be used for the
Part IIl1 simulations, two major modifications had to be
cafried out. First, the linear relationship assumed between
the fluid density and the temperature does not hold for
water in the temperature range from 0 to 15 degrees Celsius.
In this range, the coefficient of thermal expansion is no
longer constant and for the present purposes was represented
by a cubic polynomial obtained by fitting the density versus
temperature data given 1in the Handbook of Physics and

Chemistry [51] for water between 0 and 20°C. A reanalysis of
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the momentum equations using similar assumptions as bef;re
shows that a non-linear relation between density and
temperature affects only the source term and it can be
conveniently incorporated into the present program through a

variable Rayleigh number which can be defined as

oT

Ra=

gp0L3C o(T -T ) ap
-~ _¢cp hoc | (130)

Moko

Thus, the Rayleigh number becomes dependent on the local
temperature through the relationship between 98p/dT and T.
All other properties in Eg. 130 are taken to be constant and
are once again evaluated at a reference temperature. These
constant values are calculated wusing other empirical
relationships obtained by fitting property data available in
the literature.

The second modification concerns the method of
representing the shape of the liquid-solid interface. The
relationship for the interface position, ZX=F(Y), can no
longer be given by a simple analytical formula. This problem
waé overcome by fitting a set of cubic spline interpolafion
formulae to discrete positional data taken directly from the
photographs. In the cubic spline interpolation
method [48,50], the variation of the dependent parameter in
the 1interval between each pair of discrete points 1is
represented by a cubic polynomial whose coefficients are
obtained by matching conditions of continuity and smoothness

at the discrete points. The extra pair of conditions needed
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to. evaluate the splines are obtained by using cuLic
equations passing through the first four and 1last four
points to determine the initial and final slopes of the
first and last splines, respectively. (Note that these end
point derivatives were approximated numerically by using the

divided difference technique [48-501]).

of the many experimental results reported by
Eckert [42], four cases were chosen for numerical
simulation. The specific experimental and numerical

parameters used in each case are reported in Table 23. 1In
all four cases, the 1ice block was nearing 1its final
steady-state shape and hence, the ice-water 1interface was
growing only very slowly with time. The primary independent
variable in these experiments was the warm wall temperature
which was raised progressively from 2.5 to 15.1°C, a range
which encompasses the density extremum. The reference
temperature of the 1liquid phase, i.e. the temperature at
which the constant properties were evaluated, was taken to
be the average of the hot wall and the ice-water interface
teﬁperatures. The characteristic 1length (i.e. height or
width) of the experimental chamber was 5 cm. Unfortunately,
it was found that in order to obtain a converged solution
with a reasonable amount of computing effort, a somewhat
smaller characteristic length had to be used in two of the
four numerical simulations. Reducing the <characteristic
length significantly reduces the range of the variable

Rayleigh number (see Eg. 130). Thus, the characteristic



Table 23, Expérimental and numerical conditions used

temperature water natural convection trials.

for 1ow

Hot Wall

Characteristic Length

Cold Watl Ltiquid Prandt) Rayleigh Number Ranges
Case Temperature Temperature of the Vertical Sqguare Phase Number
(Degrees (Degrees Cavity (cm) Reference Experimental Numerical
Celsius) Celsius) = - Temperature Simulation
Experimentalj Numerical (Degrees
simulation Celsius)
1 2.3 -9.8 5.0 5.0 1.15 12.69 -7.90ES5 -7.90€E5
to to
-3.45E5 -3.45E5
2 5.6 -9.8 5.0 5.0 2.8 11.94 -1.92¢E6 -1.92€6
to to
8.39ES 8 .39ES
3 8.6 -11.8 5.0 1.5 4.33 11.31 -2.95E6 -7.97E4
to to .
3.82E6 1.03ES
4 15. 1 -11.8 5.0 1.5 7.55 10. 12 -5.18E6 -1,40E5
to to
1.74€7 4 . 70E5

oSl
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length was reduced to 1.5 cm for the third and fourth caées
(see Table 23). Although these characteristic length
modifications will certainly change the strength of the
flows 1in the distorted cavities, it was hoped that the
general circulation patterns would remain qualitatively the
same. This would be particularly true 1if, at the lower
Réyleigh number range, a laminar boundary-layer regime had
already been established. It was expected that the flow
patterns would not change enormously with further increase
in Rayleigh number once this regime has been reached.

In each simulation, the type B grid boundary conditions
(boundary correspondence on the curved wall) and the Wood
vorticity boundary condition were employed. A 15x33 grid was
used to simulate cases 1 to 3 while a 33x33 grid was
employed in case 4., These grid sizes gave similar grid
densities as in Part 1I¥. The results are presented in
Figs. 31 to 34 and include, for each case, the body-fitted
orthogonal grid, the temperature and stream function
countour plots as well as the local Nusselt number
diétributions along the ice-water interface and the hot
wall. A reproduction of the experimental streak pattern [42]
is also shown for comparison with the numerical streamline

plot.
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Figure 31. Low temperature water natural convection results s
for Th=2.3°C. (a) Grid, (b) Stream function contours, (c) 3 _,,"’
Temperature contours (0°C - 2.3°C, 0.23°C increments), (4)
Experimental streak-lines [42], (e) Left wall Nusselt 3
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Figure 32. Low temperature water natural convection results
for Th=5.6°C. (a) Grid, (b) Stream function contours, (c)
Temperature contours (0°C - 5,6° C, 0.56°C increments), (d)
Experimental streak-lines [42] (e) Left wall Nusselt ..
numbers, (f) Right wall Nusselt numbers.
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Figure 33. Low temperature water natural convection results
for Th=8.6°C. (a) Grid, (b) Stream function contours, (c)
Temperature contours (0°C - 8.6°C, 0.86°C incrementss, (da)
Experimental streak-lines [42], (e) Left wall Nusselt
numbers, (f) Right wall Nusselt numbers.
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B. DISCUSSION

Natural convection in the region of a density extremum
has a far more complex flow behavior than any of the
situations discussed earlier. Consider the changing
streamline patterns revealed in Figs. 31 to 34. In case 1
(Fig. 31), the warm wall temperature is below the extremum
temperature and the density 1increases monotonically with
increasing temperature. Thus, the flow is downward along the
warm left wall and upward along the cold right wall creating
a unicellular anticlockwise circulation. Warm water from the
left wall region impinges on the ice-water 1interface near
the bottom and cools as it rises along this surface by
natural convection; Thus, maximal heat transfer occurs near
the bottom of the right wall and falls off with increasing
elevation. This prediction is confirmed by the right wall
local Nusselt number plot and the shape of the interface
(Fig. 31). Because the heat flux. into the interface is
highest near the bottom, the conduction resistance (i.e. the
length of the conduction path) through the ice block must be
sméllest in this region.

In case 2 (Fig. 32), the warm wall temperature has
risen to 5.6 °C, which is slightly above the maximum density
temperature of 4°C. In this case, a weaker <clockwise flow
can be seen to be starting in the lower left hand corner of
the cavity, indicating the influence of the reversal in sign
of the volumetric expansioh coefficient above 4°C. However,

the dominant circulation is still anticlockwise and because
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the cavity temperature difference 1is ‘larger, its £low
strength 1is considerably greater than in case 1. Thus, the
Nusselt number distribution over the ice interface 1is even
more non-uniform and the interface assumes an even more
noticeable slope.

At a warm wall temperature of 8.6°C (case 3, Fig. 33),
numerical convergence problems were encountered. For such a
temperature difference across the 1ligquid phase, two
counter-circulating loops of similar size develop. Because
the two loops have almost equal strength, it is conjectured
that the final flow pattern is obtained as a consequence of
a very delicate momentum balance between them. Therefore,
because the steady-state flow is easily destabilized, the
cavity characteristic length used in the numerical
investigation had to be reduced to 1.5 cm in order to ensure
a converged solution within a reasonable CPU cost. As a
result, the numerical stream function soiution does not
agree completely with vthe experimental streak pattern and
also does not explain the shape of the ice-water interface.
If. the experimental pattern (Fig. 33) is examined closely,
it is clear that the solidifying ice mass must be thinnest
at the top because the clockwise circulating loop on the
left brings heat directly from the hot wall to the cold one.
Over the 1lower portion of the interface, +the 1ice 1is
partially insulated by an anticlockwise loop driven by
temperétures below the density extremum. In this region,

there is no direct exchange of heat between the 1left and
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right walls. Rather, the clockwise loop must give wup its
heat by conduction to the anticlockwise 1loop which
eventually transfers this heat to the 1ice. Because the
warmest part of this latter flow loop strikes the bottom of
the ice surface, the interface slopes slightly to the left.
At a temperature of 15.1°C (case 4, Fig. 34), the
reversal in flow direction 1is almost complete with the
clockwise loop originating at the wall now almost completely
dominating the flow in the cavity. However, a small
countercirculating flow still exists at the very bottom of
the ice surface. Once again, because there is no direct heat
exchange between the two walls in this region, the ice mass
is much thicker at the bottom than at the top. Numerical
convergence problems were also encountered in this case. In
countrast to case 3, the convergence problems of case 4 were
due to the large temperature difference through the liquid
phase cavity which produced a convec£ive flow which was
almost turbulent in some regions of the cavity. Thus, the
cavity characteristic 1length was once again reduced to
1.5 cm in order to achieve a converged numerical solution.
In general, the numerical predictions of the fluid
circulation showed reasonably> good agreement with the
accompanying time-lapse streak photographs. In each case,
the overall flow pattern 1is qualitatively reproduced. An
increase in the characteristic length used in the numerical
analysis would probably lead to the "cat's-eye" formation

observed in case 4 and might allow the left circulation cell
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to dominate near the top of the cavity 1in case 3. Thése
discrepancies seem to be the only important differences
_between the experimental and numerical results.
Unfortunately, other information, such as the experimental
temperature distributions or velocity profiles were not
available for additional verification of the numerical
results.

The success of the present steady-state program in
simulating the liquid-side natural convection flows
occurring at a given instant in various ice-formation
experiments, suggests that the same approach might be used
to model the entire unsteady-state freezing process. This 1is
the intended wultimate wuse of the numerical procedures
developed in the present thesis, but time did not permit the
latter simulations to be carried out. However, based on the
experience gained in building up the present program, a
numerical algorithm which might achieve the above-mentioned
objective 1is presented below. First, the overall time
interval of interest must be broken up into many small
subintervals. These could be of increasing duration as the
numerical experiment progressed, reflecting the fact that
the 1ice grows more and more slowly with time. It would be
necessary to assume that the heat transfer process in both
the 1liquid and the solid 1is guasi-steady over any small
subinterval in time, i.e. the flow and/or temperature are
steady at each instant. Thus, starting with a finitely

small, uniformly thick layer of solid phase on the cold wall



of the cavity, the solution would be extended over

subinterval by means of the following steps:

1.

The 1irreqular enclosure in which the liquid
phase 1is trapped is transformed into a
rectangular shapeA using the orthogonal grid
generation routine. The curved ice-water
interface would be represented by a set of cubic
splines fitted through the boundary nodes.

The irreqular shape bounding the solid phase is
similarly transformed to a second rectangle.

The dependent variables (temperature, vorticity
and stream function) are updated over the first
transformed domain. The solution obtained at the
end of the previous subinterval would be used to
determine values of each dependent variables for
the present subinterval. Note that the only new
information supplied to the natural convection
solver are the updated grid characteristics from

step 1.

160

each

The conduction problem for the solid phase is

resolved, i.e. the temperature 1is updated at
each nodal point. Once again, initial
temperature values from the previous subinterval
can be wused. Note that because the interface
temperature is fixed at the melting temperature,
the liquid and solid phase solutions are

uncoupled from one another.
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5. A heat balance 1is performed at each boundary '
node at the liquid-solid interface. The
difference between the heat dissipated by the
solid phase at that point and the heat received
from the 1liquid phase must equal to the amount
of local phase change which has taken place.
Knowing the density of the solid phase and the
latent heat of freezing, it then becomes
possible to determine how far the interface
(i.e. the nodal position) has locally advanced
or receded in the normal direction to the
surface during that subinterval in time. The new
set of the boundary nodes thus calculated define
the new ice-water interface.

6. Steps'1 to 5 are repeated until no further
change -in the interface position is observed.

The nodal values of all dependent variables then

corresponds to the final steady-state solution.
Note that each time step requires the iterative convergence
of two grid generation problem (one for each phase) and two
different finite difference transport problems (the
diffusion and convection process taking place in the liquid
phase and the conduction process in the solid phase). Thus,
it 1is suspected that the modelling of a time dependent
melting or freezing process in this manner will require such
excessive amounts of computer time that the possibility of

ever running it on the present computational facilities |is
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qguestionable. However, 1if the time subintervals ére
sufficiently small such the various solutions do not change
significantly over that period, the starting dependent
variable values may be <close enough to their next
steady-state answers that only a small number of 1iterations
will be required to obtain convergence. In this case, once a
solution has been generated for the first time step, it may
be possible to obtain all of the succeeding ones with
relatively little effort. However, if this "optimal" time
subinterval proves to be too short to be practical, the
simulation of an unsteady-state phase change process may
have to wait wuntil the program can be implemented on a.
supercomputer, preferably one with parallel processing

capabilities.



XI. CONCLUSIONS

Body-fitted orthogonal grids were generated for the
most distorted cavities of type Ci1 and C2 wusing three
different sets of grid boundary conditions: correspondence
between Cartesian and orthogonal coordinates was specified
along none of the boundaries, the right wall only and the
top, right and bottom walls. Most of the grid boundary
conditions produced grids of reasonably constant density
over the entire domain of these distorted cavities. A few
boundary conditions yielded grids with very low densities in
regions where gradients of stream function. and temperature
were substantial. With the exception of this small number of
undesirable grids, it was found that, independent of the
grid and vorticity boundary conditions used,

1. a grid size of 22x22 assures numerical results
having accuracies better than 1 percent at a
Rayleigh number of 10000,

2., a grid size of 28x28 assures numerical results
with accuracies better than 1 percent for
Ra=100000,

3. the maximum stream function, the average Nusselt
number and the length of the right wall all
monotically approach their asymptotic values for
grid sizes larger than 30x30, and

4, all of the numerical results obtained for a grid
size of 33x33 were accurate to better than 1

percent.
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The effects of the amplitude and the Rayleigh number on

the natural convection behaviour are listed below:

1. the strength of the fluid flow 1increases with
increasing amplitude for both the Ct and C2
cavities,

2. the strength of the fluid flow increases with
increasing Rayleigh number,

3. the rate of heat transfer through the cavity
decreases as the amplitude increases for the C1
cavity,

4., the rate of heat transfer through the cavity
decreases with increasing amplitude for the C2
cavity at low Rayleigh numbers,

5. the rate of heat transfer through the cavity
increases with increasing amplitude for the C2
caQity at high Rayleigh numbers, and

6. the rate of heat transfer through the cavity
increases with increasing Rayleigh number for
both the Ct and C2 cavity.

Thé behaviour of the strength of fluid flow with respect to
the amplitude and the Rayleigh number was rationalized by
considering the effect of the Rayleigh number on the source
term in the vorticity equation and the effect of the cavity
shape in either inhibiting or enhancing fluid flow. The
behaviour of the cavity Nusselt number with respect to the
amplitude and Rayleigh number was interpreted by considering

the opposing effects of the strength of convect{on and the
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the average distance between the two isothermal walls on the
ability of the cavity to transfer heat. A;so, the average
Nusselt number along the left wall was correlated with the
Rayleigh number by using a power law equation of the form
Y=ax? for each cavity type (C1t and C2) and for each
amplitude. It was found that the coefficient a decreases
while the exponent b increases as the amplitude is raised
for both cavity types. |

The numerical predictions of the fluid circulation for
a liquid which does not have a linear density-temperature
relationship showed reasonably good agreement with the flow
visualisation experiments carried out by Eckert [42]. 1In
three <cases out of four, the general flow pattern was
reproduced fairly accurately. Numerical convergence problems
were encountered in two cases and were caused either by the
very delicate balance of momentum which occurs between two
counter-circulating loops of similar size or by a very large

imposed temperature difference.



XI11. RECOMMENDATIONS

Similar numerical simulations to the one presented in
this thesis should be performed on other families of
cavities to further 1investigate the merits of using
body-fitted orthogonal <coordinate systems to solve
coupled transport phenomena problems and to learn and
understand more about natural convection phenomena.
Cavities which are even more distorted than the ones
employed here should be investigated to help
differentiate between the effectiveness of the various
grid and vorticity boundary conditions tried.

The use of a direct linear equation solver (sparse
matrix solver) should be investigated to help overcome
numerical convergence problems which occasionally occur
when iterative procedures are used to solve coupled
energy and momentum eguations.

To further improve the convergence rate of finite

difference solutions, efforts should be spent on finding

a workable procedure which will optimally adjust the
relaxation factors as the iterative process 1is being

executed.
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Dev

ml

M,N
Nu .

Nuy

Pe

Pr

NOMENCLATURE

General coefficients

Cavity dimensionless amplitude
Cavity wall lengths

Fluid specific heat capacity

Deviation of the numerically generated body
fitted orthogonal grid from orthogonal

Unit vector
Shape factor
General analytical function

Gravitational acceleration magnitude and
vector

Grashof number
Convective heat transfer coefficient
Scale factor component

Node indices

Fluid thermal conductivity

General dimensionless length

Cavity characteristic length

Maximum values of ¢ and 7, respectively
Nusselt number

Nusselt number calculated with respect to
the distance along a vertical flat plate in

the flow direction

Order of magnitude of the remaining term in
a truncated series

Pressure
Dimensionless pressure

Local Peclet number calculated with respect
to the distance between two discrete points

Prandtl number
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Ra

Ray

X,y
X,Y

Zn, 2t

71,22

Ql

i
r

AZn,AZ1,An, At
n,&
6
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Heat flux component

Heat transfer rate through the cavity
Cavity aspect ratio

Rayleigh number

Rayleigh number calculated with respect to
the distance along a vertical flat plate in
the flow direction

Temperature (K or otherwise specified)
Velocity component

Dimensionless velocity component

Cartesian coordinates

Dimensionless Cartesian coordinates

Normal and tangential dimensionless general
Sggyogonal coordinates with r?spect to a

Dimensionless general orthogonal coordinates

General coefficient or general vector
component

"General vector

Fluid thermal volumetric expansion
coefficient

Cavity angle of tilt

General diffusion coefficient

Dimensionless space increments

Dimensionless general orthogonal coordinates
Dimensionless temperature

Angle of deviation from orthogonality
Viscosity

Fluid density

General dependent variable

Dimensionless stream function



SUBSCRIPTS

ave
bw,lw,rw,tw
c

db

dyn

e,n,s,w
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Dimensionless vorticity

Dimensionless vorticity vector

Average

Bottom, left, right and top cavity walls
Cavity cold wall (Exception: L¢)

Domain boundary

Dynamic

BEast, north, south and west control volume
face indices, respectively

Cavity hot wall
Node indices

Cartesian coordinate directions (Exceptions:
Nuy and Ray)

wall or node index

Normal and tangential general orthogonal

‘coordinate directions with respect to a wall

General orthogonal coordinate directions
Reference temperature or position
Coefficient or node indices

General orthogonal coordinate directions’

Conditions far from the isothermal flat
plate
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APPENDIX A

The program which was used to generaie the numerical
results of Part I, Part II and Part 1II (with some minor
modifications) 1is 1listed here. The listing includes
descriptions of both the subroutines and the important
variables.

The initialisation procedure, the discretized equations
and boundary conditions and the methods used to solve them,
the accuracy criteria and the divergence tests were
described in previoqs chapters. There is only one difference
between the program description given in the main body of
the thesis and the program itself. This difference corcerns
the way the location of the discrete grid point values are
indicated on the transformed grid. In the program, the grid
points are numerated wusing the indices I and J which are
associated with'the n and ¢ directions, respectively. Also,
the node I=1 and J=1 is associated to the top left corner of
the transformed domain. The indices I and J still vary from
1 «fo M (M+1 for the staggered grid) and 1 to N (N+1 for the
staggered grid), respectively.

Only one cavity shape can be handled at a time by the
program, but many grid characteristics, vorticity boundary
conditions and grid sizes can be investigated in a single

execution.
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P R R R T R R R L T L R E L R L R IO S R Py

NAME : MAIN.

PURPOSE:

MANAGES THE DIFFERENT INTERAC-
AND SET-UP. MAGNIFY OR

READS IN DATA,
IMPORTANT SUBROUTINES,

THIS SUBROUTINE
TION BETWEEN OTHER
REDUCED ARRAYS.

CHARACTERISTIC:

LINEAR TWO~DIMENSIONAL INTERPOLATION.

B A L T A Ry Ly T R AT A R 2 A L RS e

IMPORTANT VARIABLES:

- CO: CURRENT RUN NUMBER.
- COUL: MAXIMUM NUMBER OF
- Ct1UL: MAXIMUM NUMBER OF

RUNS.
ITERATION ALLOWED TO SOLVED
OF THE DISCRETIZED GRID DIFFERENTIAL EQUATIONS.
- C2UL: MAXIMUM NUMBER OF ITERATION ALLOWED TO SOLVED
THE DISCRETIZED CONSERVATION EQUATIONS.
ARRAY CONTAINING THE CARTESIAN COORDINATE
OF THE PHYSICAL DOMAIN CORNER.
- RSF: ARRAY OF THE RATIO OF SCALE FACTORS.
- SF: ARRAY OF STREAM FUNCTION VALUES.
- T: ARRAY OF TEMPERATURE VALUES. )
- VOR: ARRAY OF VORTICITY VALUES.
- XY: ARRAY OF CARTESIAN VALUES.
- SFN: ARRAY OF PREDICTED STREAM FUNCTION VALUES
FOR A NEW RUN.
ARRAY OF PREDICTED TEMPERATURE VALUES FOR A NEW RUN.
ARRAY OF PREDICTED VORTICITY VALUES FOR A NEW RUN.
ARRAY OF PREDICTED CARTESIAN COORDINATES VALUES
FOR A NEW RUN.
- BTYPE: ARRAY OF GRID BONDARY CONDITIONS.
- M: MAXIMUM VALUE OF THE INDICE I FOR THE NON STAGGERED
GRID.
- N: MAXIMUM VALUE OF THE INDICE J FOR THE NON STAGGERED
GRID.

- PTC:

- TN:
- VORN:
- XYN:

~ MN: MAXIMUM VALUE OF THE INDICE
STAGGERED GRID) FOR THE NEXT
- NN: MAXIMUM VALUE OF THE INDICE
FOR THE NEW RUN.
- EPS1: ABSOLUTE ACCURACY USED TO
- RFXY: RELAXATION FACTOR FOR THE
- EPS2: RELATIVE ACCURACY USED TO
CONVECTION CALCULATION.
- RFT:
AND VORTICITY.
- VBC:
- PR:
- RA:
- H:
- 0.

PRANDTL NUMBER.
RAYLEIGH NUMBER.
ARRAY OF SCALE FACTORS.

RELAXATION FACTOR FOR TEMPERATURE,

I (NON
RUN.
J (NON STAGGERED GRID)

STOP THE GRID GENERATION.
CARTESIAN COORDINATES.
STOP THE NATURAL

STREAM FUNCTION

VORTICITY BOUNDARY CONDITION:

ARRAY OF DERIVATIVES OF CARTESIAN COORDINATES

WITH RESPECT TO THE ORTHOGONAL COORDINATES.
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C

Ch%w

of

C

- ATDMA:
- BTDMA:
- CTDMaA:
- DTOMA
- PTDMA :
- QTDMA:

- SLN:

- MAXSF
- MAXVD
- DIST:

- NUAV:
- NUL:
- XYZ:
c
- 2ZCNTR
- XYS:
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ARRAY OF THE TDMA COEFFICIENTS.
ARRAY OF THE TDM& COEFFICIENTS.
ARRAY OF THE TDMA COEFFICIENTS.
ARRAY OF THE TDMA COEFFICIENTS.
ARRAY OF THE TOMA COEFFICIENTS.
ARRAY OF THE TDMA COEFFICIENTS.
ARRAY OF SOLUTION VALUES.
- MAXIMUM STREAM FUNCTION VALUES.
R: MAXIMUM VORTICITY VALUES.
ARRAY OF DISTANCES ALON THE BOUNDARY SHAPE
CALCULATED FRODOM THE TOP wALL.
"ARRAY OF AVERAGE NUSSELT NUMBER.
ARRAY OF LOCAL NUSSELT NUMBER.
ARRAY DOF CONTOUR VALUES OF A SCALAR AND ITS
ARTESIAN CODORDINATES.
: ARRAY OF VALUES OF CONTOUR LINES.
ARRAY OF CATESIAN PDSITIONS OF THE STAGGERED GRID

NODES.

- COND:
-~ CONV:
~ DIFA:

IMPLICI
INTEGER
REAL=*S8
REAL*B
REAL=~8
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

SET UP

CALL DS

CONDUCTION STRENGTH THROUGH A CONTROL VOLUME FACE.
CONVECTION STRENGTH THROUGH A CDNTROL VOLUME VACE.
MAXIMUM GRID DEVIATION FROM ORTHOGONALITY (DEGREE).

s M ak sk Sk me ko3 skook M 3k ok ko sk Ok ok ok bk K M W S a Bk B ok sk 2k sk MK O K ok ok ok B SR b B 3 Ik ok uk ak 0K ok Bk K Sk Bk Sk M Mk K e S Bk Sk % wk K ok ok K o

T REAL*8(A-H,D-2)
BTYPE(4),.C0O,COUL,C1UL.C2UL,VBC

PTC(2,4) ,RSF(50.50)
SFN(50,50),TN(50,50).XYN(50,50,2),VORN(50, 50)
SF(50.50).T(50,50),XY(50,50.2).VOR(50,50)
/BLK1/ M,N

/BLK2/ BTYPE RSF

/BLK3/ XY

/BLK6/ PR RA

/BLK7/ T

/BLK8/ VOR

/BLKS/ SF

/BLK11/ EPS1,RFXY, C1UL

/BLK12/ EPS2 RFT,RFVOR,RFSF,C2UL,VBC

THE GRAPHIC SOFTWARE.

PDEV (‘PLOT’)

C*==*= PRELIMINAIRY INPUT DATA,

C

C
Cem»
C
C'..
Cc

READ (5

.360) COuL

READ (5,370) PTC(1.1)
READ (5.370) PTC(2.1)
READ (5,370) PTC(1.2)
READ (5.370) PTC(2.2)

READ (S
READ (S
READ (5
READ (5
OVERALL
INPUT D

DO 350

.370) PTC(1,3)
.370) PTC(2.3)
,370) PTC(1.4)
.370) PTC(2.4)
LOOP.

ATA.

CO=1.COUL
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READ (5,368C) MN

READ (5,360) NN

READ (5,360) C1UL

READ (5.270) EPSH

READ (5.370) RFXY

READ (5.360) BTYPE(1)
READ (5.350) BTYPE(2)
READ (5.360) BIYPE(3)
READ (5.360) BTYPE(4)
READ (5.370) RSF(1.1)
READ (5,370) RSF(1,NN)
READ (5,370) RSF{MN,NN)
READ (5.370) RSF(MN, 1)
READ (5,370) PR

READ (5.370) RA

READ (5,360) C2uL

READ (5,370) EPS2

READ (5.370) RFT

READ (5.370) RFVOR
READ (5,370) RFSF

READ (5,360) VBC

Cc
Ce==* PRINTOUT THE INPUT DATA.
Cc
WRITE (6,380) CO.MN,NN C1UL,EPS1,RFXY, (BTYPE(I).I=1.,4),
1RSF(1,1),RSF(1.NN) RSF(MN _NN) RSF{MN,1),PR,RA,C2UL,EPS2,
2RFT.RFVDOR,RFSF,VBC
C
C==** SET UP THE INITIAL CONDITION.
C
IF (CO.NE.1) GOTD 80
M=MN
MP =M+ 1
MM 1=M- 1
MM2=M-2
N=NN
NP 1=N+1
NM1=N-1
NM2=N-2
C

C*** THE X AND Y VALUES OF BOUNDARY POINTS ARE CALCULATED USING
C*=» EQUAL INTERVALS OF THE DEPENDENT VARIABLE.
c
XY(1.1,4)=PTC(1.1)
XY(1,1,2)=PTC(2.1)
XY(1,N,1)=PTC(1.2)
XY(1,N,2)=P7C(2.2)
XY(M.N.1)=PTC(1.3)
XY(M.N,2)=PTC(2.3)
XY(M,1,1)=PTC(1.4)
XY(M,1,2)=PTC(2,4)
c
C*** TOP WALL.
c
AMO=(XY(1.N.1)-XY(1,.1.1))/NM1
DO 10 J=1,NM2
XY(1,J+1,1)=XY(1,1, 1)+J"AMO
XY(1,U+1,2)=F(XY(1,J+1,1),1)
10 CONTINUE



Con»
C

20

loNeNe!
]
)
L3

30

Cem™x

40

c*i*

50
60

Cexx
CH*%xx*

70

© 80

Cx*e=

20

Cr >

100
110

RIGHT walLl.

AMO=(XY(M N 2)-XY(1,HN,2))/MMi
DO 20 1=1,MM2
XY(I41 N,2)=XY(1,N,2)+1*AMO
XY(I+1 N, 1)=F(XY(I+1.N .2}, ,2)
CONTINUE

BOTTOM WALL.

AMO=(XY(M N, 1)=XY(M, 1. 1))/NMH
DD 30 u=1,NM2
XY(M,U+1.1)=XY(M, 1,1)+J*AMO
XY(M.u+1.2)=F(XY(M,Uu+1,1).3)
CONTINUE

LEFT WALL.

AMO=(XY(M,.1.2)=-XY(1,1.2))/MM{
DO 40 1=1,MM2
XY(I+1.1,2)=XY(1,1,2)+I%aMO
XY(I+1,1,1)=F(XY(I+1,1,2).4)
CONTINUE

INTERNAL X AND Y VALUES.

DO 60 1=2,MM1
AMO=(XY(I,N,1)-XY(I,1,1))/NM1
AMA=(XY(I.N.2)-XY(I,1,2))/NM1
DO SO J=1,NM2

XY(I,J+1.1)=XY(I,1,1)+J*AMO
XY(I,0+1,2)=XY(1,1,2)+J=~AM1
CONTINUE
CONTINUE

THE TEMPERATURE IS SET UP CONSIDERING ONLY THE CONDUCTION.

SF(I1.J)=0. (IMPERMEABLE WALLS) AND VOR(1.J)=O.

DO 8O 1=1,MP1

DO 70 J=1,NP1
SF(I,J)=0.DO
T(1,J)=1.D0-(2.D0*(J-1.D0)-1.D0)/(2.DO*NM1)
VOR(1,u)=0.D0O

CONTINUE

CONTINUE

GOTO 340

MAGNIFICATION OR REDUCTION OF ARRAYS.
IF ((MN.EQ.M).AND.(NN.EQ.N)) GOTO 340
COORDINATES AND STREAM FUNCTION.

DO 150 I=1 MN
DO 140 J=1.NN
DO 100 11=2.M
IF ((11-1.)/(M-1.) . GT.(I-1.)/(MN-1.)) GOTO
CONTINUE
T I11=11-1
DO 120 JJU=2.N

110

179



120
130

C

1+aM

1+AM

1+AM

IF ({(JU-1.3/(N-1.}Y.GT.(U-1.)/(NN-1.)}) GDOTO 130

CONTINUE
Jd=Jdd- 1

AMO={1-1.D0}/{(MN-1.D0)-(11-1.D0)/(M-1.D0O)
AM1=(U-1.DO}/(NN-1.00)-(JU-1.D0)/(N~-1.DO)

AM2=1.0D0/(M-1.00)
AM3=1.DO/(N-1.DO)
AMA=XY{II+1 . JJ,1)-XY(I1 JJ, 1)
AMS=XY(I1 Ju+1,1)=-XY(I1,Jd, 1)

AME=XY (1141 JJ+1, 1)-XY(II+1 JJ. 1)-XY(I1,Jd+1,1}+XY(I1.JJ, 1)
XYN(I.J.1)=XY(11,JJ, 1)+AMD~AMA/AM2+AM 1= AM5 /AM3

O*AM1~AME/ (AM2*AM3)
AMA=XY(II+1.JJ.2)-XY(11,Jd.2)
AMS=XY(II,Ju+1.2)-XY(11,4J,2)

AMG=XY (II+1,JJ+1,2)-XY(II+1,0d.2)-XY(I1,JJ+1,2)+XY(II,JJ.2)
XYN(I,JU.2)=XY(11,JJ,.2)+AMD*AM4/AM2+AM1*AMS /AM3

O*AM1*AMG/ (AM2*AM3)
AMA=SF(II+1,JJ)})-SF(11.Jd)
AMS5=SF(II,JJU+1)}-SF(11,JdJ)

AMB=SF(1I+1 JU+1)-SF(I1+1,0J)-SF(II,Ju+1)+SF(11, 4J)
SFN(I,J)=SF(II,JJ)+AMO*AM4/AM2+AMI*AMS/AM3

O*AM1*AME/ (AM2*AM3)

C*=*» IMPERMEABLE WALLS.

c

140
150

C**x

C‘*t

Cr*x

160

Cr==

170

o)
co

REA

COR

XY
XY
XY
XY
XY
XY
XY
XY

TOP

IF
AM
NN
DO

X

X
Cco

IF ((1.EQ.1).DR.{(I.EQ.MN)) SFN(1,J)=0.D0
IF ((J.EQ.1).0R.(J.EQ.NN)) SFN(I1,J)=0.DO
DNTINUE )

NTINUE

SSIGN THE BOUNDAIRY POINT COORDINATES.
NER POINTS.

N(1,1,1)=PTC(1.1)
N(1,1,2)=PTC(2.1)
N(1.NN,1)=PTC(1,2)
N(1,NN,2)=PTC(2,2)
N(MN,NN, 1)=PTC(1.3)
N(MN.NN.2)=PTC(2,3)
N(MN,1,1)=PTC(1.4)
N(MN,1,2)=PTC(2,4)

WALL.

(BTYPE(1).EQ.0) GOTO 170
O=(XYN(1,NN_1)-XYN(1,.1,1))/(NN-1.DO)
M2 =NN-2

160 J=1.NNM2
YN(1, J+1,1)=XYN(1, 1, 1)+J"AMO
YN(1,J+1,2)=F(XYN(1,J+1,1),14)

NTINUE

RIGHT WALL.

1F

(BTYPE(2).EQ.O) GOTO 190

AMO=(XYN(MN NN, 2)-XYN(1,NN,2))/(MN-1.D0)
MNM2=MN-2

Do
X

180 I=1,MNM2
YN(I+1,NN,2)=XYN{1 NN, ,2)+I*AMO

180



180

[N Ne]
.
.
.

180

200

Crws

210

220

C‘!*.

230

240
250

260
270

280
290
Cc

Cx»»

XYN(I+1 NN _1)=F(XYN{I+1 NN ,2),2)
CONTINUE

BOTTOM WALL .

IF (ETYPE(3).EQ.O) GOTD 210
AMO=(XYN(MN NN, 1)-XYN(MN_ 1,1))/(NN-1.DQ)
NNM2 =NN-2
DO 200 J=1.NNM2

XYN{MN, J+1 . 1)=XYN(MN, 1, 1)+J*AMO

XYN(MN, J+1,2)=F(XYN(MN,J+1,1),3)

CONT INUE

LEFT WALL.

IF (BTYPE(4).EQ.0) GODTO 230
AMO=(XYN{MN,1.2)-XYN(1,1,2))/(MN-1.DO)
MNM2=MN-2

DO 220 I=1.MNM2
XYN{(I+1,1,2)=XYN(1,1,2)+I*AMO
XYN(I+1,1,1)=sF(XYN(I+1,61.,2).4)
CONTINUE

TEMPERATURE AND VORTICITY.

MP 1=M+1
NP 1=N+1
MNP 1 =MN+1
NNP 1=NN+1
DO 280 I=1 ,MNP1
DO 280 J=1,NNP1
DO 240 11=2,MP1

IF ((11-1.5)/(M-1.).GT.(I~-1.5)/(MN-1.)) GOTO 250

CONTINUE
I1=11-1
DD 260 JuJ=2,NP1

IF ((JU-1.5)/(N-1.).GT.(J-1:5)/(NN-1.)) GOTO 270

CONTINUE
Jdsdi-1

AMO=(1-1.5D0)/(MN-1.D0O)-(11I-1.5D0)/(M-1.D0)
AM1=(J-1.5D0)/(NN=-1.D0O)~(JJ=1.5D00)/(N-1.D0)

aAM2=1.D0/(M-1.D0O)
AM3=1.D0/(N-1.D0O)
AMA=T(II+1,JJ)-T(11,JJ)
AMS=T(I1,JU+1)-T(I1,hdJ)

AMGET(II+1,JJ+1)-T(I1+1,UU)-T(I1,UJd+1)+T(11,4J)
TN(I. JU)=T(I1,JJ)+AMO*AMA/AM2+AMT*AMS /AM3

1+AMO*AM1*AME/ (AM2*AM3)
AMA=VOR(I1+1,JJ)-VOR(II, uJ)
AMS=VOR(I1I,JJ+1)-VOR(II,Juy)

AME=VOR(II+1 JJ+1)-VOR(II+1,JJ)-VOR(II,JJ+1)+VOR(II,JJ)
VORN(1,J)=VOR(11,JJ)+AMO*AMA/AM2+AM1*AMS/AM3

1+AMO®AM1~AMG/( AM2~* AM3)
CONT INUE
CONTINUE

GIVE 70 XY,T,VOR AND SF ARRAYS THEIR NEW VALUES.

181
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DO 31C I=1 M
DC 300 J=1.N
XY (1, Jd, 1)=XYN(T , J. 1)
XY{1 . 0.2)=XYN{] .J.2)
SF(TI.J)=5FN{T U}
300 CONTINUE
310 CONTINUE
MP 1=M+ 1
NP 1=N+ 1
DD 330 I=1,MP1
DO 320 J=1.NP1
T(I,J)=TN(1.J)
VOR(1.J)=VORN(1,J)
320 CONTINUE
330 CONTINUE

C
C===* GENERATE THE DRTHOGDNAL GRID.
c
340 CALL GRIDNC
C

Cx=** COMPUTE THE STEADY-STATE CONDITION OF THE NATURAL CONVECTION
C»=*= PROBLEM.

c
CALL NATC
c .
C*=» GRAPH THE RESULTS.
c
CaLl PLOT
350 CONTINUE
o}
C**= STOP THE GRAPHIC SOFTWARE.
C

CALL DONEPL
sToP
360 FORMAT(IS5)
370 FORMAT(D13.3)
380 FORMAT(’1‘,TS, INPUT DATA (’.13,°).7.2(/).
1TS, “WOOD BOUNDARY CONDITION‘./,
275, *GRID SIZE 1S°,13,‘ BY’,13./.
3TS, 'MAX.# OF ITERATIONS= ‘,13./,
4TS, ‘ACCURACY= ' .D10.3./.
5T5, ‘RFXY= /,D10.3./,
675, ‘BTYPE(T)= *,I13,/,.75,'BTYPE(R)= ‘,13./,
775.’BTYPE(B)= *,13,/,T5,‘BTYPE(L)= ‘,13,/.
8TS, 'RSF(TL)= ‘.D10.3./.T5, RSF(TR)= ‘,D10.3./.
9T5, ‘RSF(BL)= *.D10.3./.75, ‘RSF(BR)= ’,D10.3./.
*T5,'PR= ‘' ,D10.3,/.75,'RAa= ‘' ,D10.3./,
1TS, ‘MAX.# OF ITERATIONS= ‘,I13./,
2T5. ‘ACCURACY= ‘.,D10.3./.
375, ‘RFT= *,D10.3./.TS, ‘RFVOR= ‘,D10.3./,
4TS, 'RFSF= ' ,D10.3./.
575, VBC= ‘,13.2(/))
END

OO0

SUBROUTINE GRIDNC
C

AR AR R A R R R R R A A N A A A R R R A

c
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NAME : GRID NON CDNFORMAL .
PURPOSE :

THIS SUBROUTINE HAS BEEN BUILT TO PRODUCE AN
ORTHOGONAL GRID WHICH DOES NOT HAVE TO BE CONFORMAL.
FOR ANY OF BODUNDARY THE GRID POINT POSITIDNS CODULD
EE PRESCRIBED (ETYPE=1). IN THAT CASE THE INITIAL POINT
POSITIONS WILL BE USED.
THE RATIO OF SCALE FACTORS IN EACH CORNER COULD BE
SPECIFIED ALSO. THE RATIO AT A SPECIFIC CORNER WILL BE CONSIDERED
ONLY IF THE GRID POINT POSITIONS ARE NOT SPECIFIED ON THE
WALL JOINING AT THE CORNER.

CHARACTERISTIC:

- LINE BY LINE SOLVER.

~ SECOND ORDER ACCURACY NEUMANN BOUNDARY CONDITION.
~ ABSOLUTE ACCURACY CRITERION.

- MAXIMUM NUMBER OF ITERATION.

- RELAXATION FACTOR. .

W W MK S N T M R W T B T M N N KON TR M NK N MK N BK Y K B O N N TR W I W T N s 0 0K N TR M MW R RS MK W I W RNk K K R

OO0O0O00000000000000NNO0D000

IMPLICIT REAL*B(A-H,0-2)

INTEGER BTYPE(4),C1.C1UL

REAL*8 D(50.50.4).H(50.50,2).RSF(50.50),XY(50,50.2)
REAL*8 ATDMA(S50).BTDMA(S50).CTDMA(S0).DTDMA(S0),SLN(50)
COMMON /BLK1/ M,N

COMMON /BLK2/ BTYPE RSF

COMMDN /BLK3/ XY

COMMON /BLK4/ H

COMMON /BLKS5/ D

COMMON /BLK10/ ATDMA ,BTDMA,CTDMA ,DTDMA,SLN

COMMON /BLK11/ EPS1 RFXY,C1UL

c
C*=* SET UP VARIABLES.
c
C1=0
MM 1=M-1
MM2=M-2
NM1=N-1
NM2=N-2
c
C**» OVERALL LOOP.
C.
C*=* CALCULATE THE RATIO OF SCALE FACTORS.
c
10 CALL DISF
DIFX=0.D0
DIFY=0.DO
c
C*** MOVE ROWS.
c
DO 120 1=2,MM1
c
C*=* SOLVE FOR Y.
C

C=»» SET UP THE TDMA COEFFICIENTS.



C

20

C=»

C

C

30

40

50
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DO 20 J=2 . NM:
AT=2.DO/(RSF{I1 ,J})+RSF(1~-1.4J))
AR=(RSF(I,J)+RSF(1.U+1))/2.D0
AB=2 .DO/{RSF{I J)+RSF(I+1,J))
AL=(RSF(1 . JUI4RSF(1.,4-1}}/2.00
ATDMA{ U)=LT+AR+AB+AL
BTDMA(J)=AR
CTDMA{J)=AL
DTDMA(UJ)=AT*XY(1-1.J.2)+aB"XY(I+1.J.2)

CONTINUE

SET UP THE BOUNDARY CONDITION (NEUMAN OR DIRICHLET).

IF (BTYPE(4).E0Q.1) GOTO 30
ATDMA(1)=3.D0O

BTDOMA(1)=4.DO

CTDMA(1)=0.DO
AMO=3.DO*XY(I.,1,1)-4.DO*XY(1,2,1)+XY(1.3,1)
DTDMA(1)=-AMO*F(XY(1.1.2).8)
ACRI1=-1.DO

GOTO 40

ATDMA(1)=1.DO

BTDMA( 1)=0.DO

CTDMA(1)=0.DO

DTDMA(1)=XY(1,1.2)

ACRI1=0.D0O

IF (BTYPE(2).ED.1) GOTOD 50
ATDMA(N)=3.D0

BTDMA(N)=0.D0O

CTDMA(N)=4.DC

AMO=3 . DO*XY(I . N, 1)-4 DO*XY{I NM1, 1)+XY(I NM2, 4)
DTDMA(N)=-AMO*F(XY(I,N,2).6)
ACRIM=-1.DO

GDTO 60

ATDMA(N)=1.DO

BTDOMA(N)=0.DO '

CTDMA(N)=0.DO

DTDOMA(N)=XY(1.N,2)

ACRIM=0.DO

C*=*=» REVISED TRIDIAGONAL-MATRIX ALGORITHM.

C

C

€0

CALL RTDMA (N,ACRI1,ACRIM)

C**= STORE THE VECTOR SOLUTION.

C

C

70

DO 70 JU=1.N
AMO=XY(1,J.2)+RFXY*(SLN(JU)-XY(1,J,2))
DIFY=DMAX1(DIFY.DABS(AMO-XY(1.J.2)))
XY(I,J,2)=AMO

CONTINUE

Cr*=* DIRICHLET CONDITIONS.

C

C*»»

9

RIGHT WALL.

IF (BTYPE(2).EQ.1) GOTO 80
AMO=F(XY(1,N,2).2)

DIFX=DMAX1(DIFX DABS(AMO-XY(I ,N,1)))
XY(1.N,.1)=aM0



Cr*»

80

Cr=»

Cr=»

80

100
[of

Cxxx

C

C=*x

Ctﬁ*

110
120

Cx»x

Cx=x

Cwnx

LEFYT watl.

IT (BTYPE(4).CQ.1) GOTO 90
AMO=F (XY(1.1.2).4)

DIFX=DMAX1(DIFX.DABS{AMO-XY(1,1,1)))

XY(1,1,1)=AMO

SOLVE FOR X.

SET UP THE TDMA COEFFICIENTS.

DO 100 U=2,NM1
AT=2.DO/(RSF(1.U)+RSF(1~-1,J))
AR=(RSF(I.J)+RSF(I1.,U+1))/2.D0
AB=2.DO/(RSF(1.U)*+RSF(I+1,U))
AL=(RSF(I.J)+RSF(1,J-1)}/2.D0

ATDMA(U)=AT+AR+AB+AL
BTDMA (J)=AR
CTDMA(J)=AL

DTDMA(U)=AT*XY(I-1,J.1)+AB*XY(I+1,J,.1)

CONTINUE

SET UP THE BOUNDARY CONDITIONS (DIRICHLET).

DTDMA(2)=DTDMA(2)+CTDMA(2)*XY(I,1,1)

CTDMA(2)=0.DO

DTDMA(NM1{)=DTDMA (NM1)+BTDMA (NM1)*XY(I N 1)

BTDMA(NM1)=0.DO
TRIDIAGONAL-MATRIX ALGORITHM,
CALL TDMA (2,NM1)
STORE THE SOLUTION VECTOR.

DO 110 J=2 NM1

AMO=XY(I,U, 1)+RFXY*(SLN(J)-XY(1.J,1
DIFX=DMAX1(DIFX,DABS(AMO-XY(I,J.1))

XY(I,J.1)=AMO
CONTINUE
CONTINUE
MOVE COLUMNS.
DO 230 J=2 ,NM{
SOLVE FOR X.
SET UP THEYTDMA COEFFICIENTS.

DO 130 I=2,MM1

AT=2 .DO/(RSF(I,J)+RSF(1-1,4))
AR=(RSF(I,J)+RSF(1.,U+1))/2.D00
AB=2.D0/(RSF(1,J)+RSF(1+1,4))
AL=(RSF(I,J)+RSF(1,U-1))/2.D0
ATOMA(I)=AT+AR+AB+AL
BTDMA(1)=AB

CTOMA(1)=AT

))
)

DTDMA(I)=AR*XY(I J+1, 1)+AL*XY(] U-1,1)

185



130
C
C“l
c

140

150

160

Cttk

170

C"t

180

C‘*t

Cﬁ.!*

ci**

190

C»=

CONTINUE

SET UP THE BOUNDARY CONDITIONS (NEWMAN OR DIRICHLET).

IF (BTYPE(1).EQ.1) GOTO 140
ATDMA(1)=3.D0
BTDMA( 1)=4.DO
CTDMA( 1)=0.D0O

AMO=3 .DO*XY(1,J.2)-4 .DO*XY(2,J,2)+XY(3,J.2)

DTDMA( 1)=-AMO*F(XY(1.J.1).5)
ACRI11=-1.DO

GOTO 150

ATDMA(1)=1.DO

BTDMA(1)=0.D0

CTDMA(1)=0.D0O
DTDMA(1)=XY(1.J,1)
ACR11=0.DO

IF (BTYPE(3).EO.1) GOTOD 160
ATDMA(M)=3.DO

BTDMA(M)=0.D0

CTDMA(M)=4 .DO

AMO=3.DO*XY(M,J,2)~4 . DO*XY(MM1, J,2)+XY(MM2,J,2)
DTDMA(M)=-AMO*F (XY (M, U, 1).,7)

ACRIM=-1.DO

GOTO 170
ATDMA(M)}=1.DO
BTDMA(M)}=0.DO
CTDMA(M)=0.DO
DTDMA(M)=XY (M J, 1)
ACRIM=0.D0

REVISED TRIDIAGONAL-MATRIX ALGORITHM.

CALL RTDMA (M,ACRI1,ACRIM)
STORE THE VECTOR SOLUTION.

DO 180 I=1,M

AMO=XY (I, J, 1)+RFXY*(SLN(I)-XY(I.J,
DIFX=DMAX1(DIFX .DABS{AMO-XY(1,J, 1

XY(I.Jd,1)=aMO
CONTINUE

DIRICHLET CONDITIONS.
TOP WALL.

IF (BTYPE(1).E0Q.1) GOTO 190
AMO=F(XY(1,J.1).1)

1
)

DIFY=DMAX1(DIFY DABS{AMO-XY(1,J,.2)))

XY(1,J.2)=AM0
BOTTOM waLL.

IF (BTYPE(3).EQ.1) GOTO 200
AMO=F(XY{(M,J,1),3)

DIFY=DMAX1(DIFY , DABS(AMO-XY(M.J,2)))

XY(M,J,2)=AMO

SOLVE FOR Y.

3
)
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C"'

C
200

210
C
C“i
C

c*'*

Ce»*x

220
230

Coxx

C

C*li
c
C

Ct*t

C

240

[eNeNe]

C

A ARE R ERE R S R R R AR A S A R R R S R R N A I L A A R R L R L AR
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SET UP THE TDMA COEFFICIENTS.

DO 210 1=2 MM1
AT=2 . DO/(RSF(1,J)+RSF(1-1.J))
AR=(RSF(1,J)+RSF(1,J+1))/2.D0
AB=2 DO/{(RSF(I . U)+RSF(I+1,4))
AL=(RSF(1.J)+RSF(1.0U-1))/2.D0
ATDMA(1)=AT+AR+AB+AL
BTDMA(1)=AB
CTDMA(1)=AT
DTDMA(I)=AR*XY (I J+1.2)+AL*XY(I.JU-1,2)

CONTINUE

SET THE BOUNDARY CONDITIONS (DIRICHLET).

DTDMA(2)=DTDMA(2)+CTDMA(2)*XY(1.J,2)
CTDMA(2)=0.D0O

DTDMA (MM1)=DTDMA (MM1 )+BTDMA(MM1)*XY (M J,2)
BTDMA (MM1)=0.DO

TRIDIAGONAL-MATRIX ALGORITHM.
CALL TDMA (2,MM1)
STORE THE VECTOR SOLUTION.

DD 220 1=2.MM1
AMO=XY(1,J,2)+RFXY*(SLN(I)-XY(I.J,2))
DIFY=DMAX1(DIFY DABS(AMO-XY(I.J,2)))
XY(I.J.2)=aMO

CONTINUE

CONTINUE

ACCURACY AND PRINTOUT.

C1=C1+1
WRITE (6,240) C1,DIFX,DIFY

IF ((DIFX.GE.2.D0).0OR.(DIFY.GE.2.DO)) STOP

IF (((DIFX.GT.EPS1).OR.(DIFY.GT.EPS1)).AND.(C1.LT.C1UL))

1G0OT0 10

CALCULATION OF THE DERIVATIVES AND SCALE FACTORS.
CALL DSF
ORTHOGONALITY TEST.

CALL ORTHO
RETURN

FORMAT(/.T5,°(*.13,7),3X,'DIfX= *,D11.5,3X,'DIFY= *,D11.5)

END

SUBROUTINE NATC

NAME : NATURAL CONVECTION.
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PURPOSE «

THIS SUBROUTINE COMPUTES THE SOLUTION OF A STEADY-STATE
NATURAL CONVECTION IN A NON-RECTANGULAR CAVITY.

CHARACTERISTIC:

= LINE BY LINE SOLVER.

VORTICITY BOUNDARY CONDITION.

~ EXPONENTIAL SCHEME.

- GRID
- GRID
- RELAX
- STAGG
- RELAT
- DIVER

IS ORTHOGONAL AND NOT NECESSAIRLY CONFORMAL.
IS UNIFORMLY SPACE IN THE NEW DOMAIN.

ATION FACTOR.

ERED GRID.

IVE ACCURACY CRITERION.

GENCE TEST.

- MAXIMUM NUMBER OF ITERATIONS. P

~ WALLS
- TOP A
= RIGHT

IMPLICI
INTEGER
REAL*SB
REAL*8
REAL*8
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

SET UP

C2=0

MM 1=M-1
MM2=M-2
MP { =M+ 1
NM1=N-1
NM2=N-2
NP 1=N+1

OVERALL
MAXVOR=

MAXSF=0
DIFT=0.

DIFVOR=

ARE IMPERMEABLE.
ND BOTTOM WALLS ARE ADIABATIC.
AND LEFT WALLS ARE ISOTHERMS.

MK M M N DK K R W MK N N K M N K MK MK B K K M K 3K K K TR M K N T B B MW IK TR S N3 0 3k Mk ok 3K SR I 3K Bk M ok ok I B 3K K IK 0K 0K 3 B K Nk

T REAL*8(A-H.0-2)
€2,C2UL,VBC

ATDMA(50) ,BTDMA(50),CTDMA(S50) .DTDMA(S0),SLN(50)
SF(50,50),T(50,.50).VOR(50,50)
D(50.50.4).H(50,50.2) .MAXSF,MAXVOR
/BLK1/ M.N

/BLK4/ H

/BLKS/ D

/BLKG/ PR.RA

/BLK7/ T

/BLK8/ VOR

/BLKS/ 'SF

/BLK10/ ATDMA,BTDMA,CTDMA,DTDMA, SLN
/BLK12/ EPS2,RFT.RFVOR,RFSF,C2UL,VBC

VARIABLES.

LOOP.

0.00
.DO
DO
0.D00

DIFSF=0.D0O

MOVE RO

DO 100

WS.

I=2.M



c

Cw=x

c

Crw

C

C
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ENERGY EQUATION.

COMPUTATION OF ENERGY EOUATION CGEFFICIENTS.

DO 20 U=2.N
COND=(H{1-1.J-1, 1)+H{I1-1.J, 1))/(H(I-1,d-1.2)+H(I-1,J.2)})
CONV=SF(I-1,d-1)-SF(I1-1.,4)
AT=COND*COEFF(COND,CONV)+DMAX1(0.D0O.-CDNV)
COND=(H(I-1.J.2)+H(1.J.2))/(H(I-1,J,1)+H(1 J, 1))
CONV=SF(1-1,J)=SF(1.d)
AR=COND~*COEFF (COND, CONV )+DMAX1(0.DO. ~CONV)
COND=(H(I.,J=-1,1)+H(I . J, 1))/ (H(I,4-1.2)+H(1.J,.2))
CONV=SF({1.U-1)~SF(I1.J)
AB=COND=COEFF (COND , CONV )+DMAX 1(0.DO, CONV)
COND=(H(I-1,J-1.2)+H(1.U-1.2))/(H{I-1,d-1.1)+H(I.U~1,1))
CONV=SF(I-1,U-1)~-SF(1,J-1)
AL=COND=*COEFF(COND,CONV)+DMAX1(0.DO,CONV)
ATDMA(J)=AT+AR+AB+AL
BTDMA(J)=AR
CTDMA{J)=AL
DTOMA(J)=AT*T(I-1,J)+AB*T(I+1,J)

20 CONTINUE

C=== SET UP THE BOUNDARY CONDITIONS (CONSTANT TEMPERATURE WALLS).

c

C

ATDMA(1)=1.D0O
BTDMA(1)=-1.D0
CTDMA(1)=0.D0O
DTDMA(1)=0.D0
ATDMA(NP1)=1.DO
BTDMA(NP1)=0.D0O
CTDMA(NP1)=-1_.DO
DTDMA(NP1)=2.DO

C*** TRIDIAGONAL-MATRIX ALGORITHM,

c

C

CALL TDMA (1,NP1)

C*** STORE THE SOLUTION VECTOR.

C

C

DO 30 J=1,NP1
AMO=T(I J)+RFT*(SLN(J)-T(I,J))
DIFT=DMAX1(DIFT ,DABS(AMO-T(1,J)))
T(I,J)=aMO

30 CONTINUE ’

C*** VORTICITY EQUATION.

Cc

C*** COMPUTATION OF VORTICITY EQUATION COEFFICIENTS.

C

DO 40 J=2.N
COND=PR*(H(I-1,U-1,1)+H(I-1.J,1))/(H(I-1,U-1,2)+H(I-1,0.2))
CONV=SF(I~-1,J-1)-SF(I-1,J)
AT=COND*COEFF (COND, CONV)+DMAX 1(0.DO, ~-CONV)
COND=PR*(H(1-1,U,2)+H{1.J.2))/(H{I-1,U,1)+H(I,J, 1))
CONV=SF(I-1,J)-SF(I,J)
AR=COND*COEFF(COND,CONV)+DMAX 1(0.DO, ~CONV)
COND=PR*{(H(I,J=-1,1)+H(I.J. 1))/ (H(I,JU-1,2)+H(1,0.2))
CONV=SF(I,J-1)-SF(I1.J)
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c
Cwm»

C=x=»

c

C

[ol b d

o

AB=COND<*COEFF (COND,CONV )+DMAX1(0.DO,CONV )

COND=PR*{(H(I-1,J-1,2)+H(I1,J-1,2))/(H(I-1,J-1,1)+H(1,d-1,1))

CONV=SF(I-1,J-1}-SF(1.u-1)

4L =COND®COEFF (COND, CONV)+DMAX 1{0.DC,CONV)
AMO=(D(I1-1.,U-1.2)+D(1-1.J.2)+D(1.u-1,2)+D(1.J.2))/4.00
AM1=(D(1-1,d-1,4)+D(1-1,0,4)+D(1,4-1.4)+D(1.4J,4))/4.D0
AM2=(T(1,J+1)-T(1.U-1))/2.00
AM3=(T(I-1.J)-T(1+1,J)}/2.D0
B=(AM17AM2-AMO*AM3 ) *PR*RA

ATDMA(J)=AT+AR+AB+AL

BTDMA(J)=4aR

CTDMA(J)=AL

DTDMA(J)=AT*VOR(I-1_ J)+AB=VOR(I+1,J)+B
CONTINUE

SET UP THE VORTICITY BOUNDARY CONDITION.
WALLS ARE IMPERMEABLE.

If (VBC.EQ.1) GDTO 50
wOoQD.

AMO=(H(I-1.,1,1)+H(1,1,.1))/2.D0
AM1=(H(I-1,1,2)+H(1,1.2))/2.D0
AM2=(H(I-1.2,4)+H(1.2,.1))/2.D0
AM3=(H(I-1.2,2)+H(1.2.2))/2.D0
AM4=(H(I-1,3,1)+H(1.3,1))/2.D0
AMS5=(H(1-1.3.2)+H(1.3,2))/2.D0
AMB=(-3.DO*AMO*AM1+4 .DO*AM2*AM3-AM4*AMS) /2 .DO
AM7=(~-3.DO*AM1/AMO+4 .DO*AM3/AM2-AM5/AM4)/2.D0O
AMB=(AMO**2)/2.D0O

AMS=AMO*AMG/ (6 .DO*AM1)
AM10=~(AMO**3)*aAM7/(3.DO*AM1)
AM1{1=-(AMO*~2)/4.DO

AM{2=-AMO*AMG/ (12 .DO*AM1)

AM13=(AMO**2)/6.DO

AM14=( AMO**3)*AM7/(6.DO*AM1)
AM15=AMB+AMI+AM10

AM1G=AM1 1+AM12+AM13+AM14

ATDMA( 1)=AM16

BTDMA(1)=AM15+AM16

CTDMA(1)=0.D0
DTOMA(1)=(SF(1~-1,2)+SF(1,2))/2.D0
AMO=(H(I-1.N,1)+H(I.N.1))}/2.D0

AMA1=(H(I-1 ,N,2)+H(I N.2))/2.DO
AM2=(H(I-1.NM1_1)+H(I NM1,1))/2.D0
AM3=(H{I-1,NM1 2)+H(I.NM1,2))/2.D0

AMA=(H(I~1 ,NM2,1)+H(I NM2,1)}/2.DO
AMS=(H(I-1,NM2 2)+H(I.NM2,2))/2.D0O
AMG=(-3.DO"AMO*AM1+4 DO*AM2*AM3-AMA*AMS)/2.DO
AM7=(-3.DO~AM1/AMO+4 .DO*AM3/AM2~-AMS5/AM4)/2.D0
AM8=(AMO**2)/2.D0

AM9=AMO*AME/(6.D0O” AM1)
AM10=-(AMO**3)*AM7 /(3 .DO*AM1)
AM11=-(AMO*~2)/4 .D0O

AM12=-AMO*AMG /(12 .DO*AM1)

AM13=(AMO*>2)/6.D0O
AM14=(AMO*~3)*AM7/(6.DO*AM1)
AM15=AMB+AMS+AM10

AMIG=AM11+AM12+AM1I13+AM 14
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C ="

C

50

ATDMA(NP1)=AM16
BTOMA(NP1}=0.D0O
CTDMA(NP{1)}=AM{5+AM 16

DTDMA(NP1)=(SF(T-1_ NM1)+SF{1 NM1)}/2.D0O

ACRI1=0.D0O
ACRIM=0.D0C
GOTD 60

SECOND ORDER.

AMO=(H(I-1,1,1)+H(1.1.1))/2.
AMA=(H{1-1,1,2)+H(1.1,2))/2.
AM2=(H(1-1,2_ 1)+H(I.2.1))/2.
AM3=(H(I-1,2,2)+H(1.,2,2))/2.
AMA=(H(I-1,3,1)+H(1.3.1))/2.
3

AMS=(H(I-1,3,2)+H(1,3,2))/2.

AME=(-3.DO*AMO"AM1+4 .DO*AM2~AM3-AMA"AMS) /2 .DO
AM7=(~-3.D0"AM1/AMO+4 .DO*AM3/AM2-AM5/AM4 ) /2 .DO

AMB=27 .DO*(AMO**2)/4 .DO
AMS=3 .DO*AMO*AM6/ (2 .DO>aM1)
AM10=-3.DO*(AMO**3)*»AM7/AM1
AM11=-3 . D0*(AMO*~*2)/4.D0O
AM{2=-AMO*AMG/ (6 .DO*AM1)
AM13=(AMO**3)*AM7/(3.DO*aM1)
AM14=-9 . DO*(AMO**2)/4.DO
AM15=-AMO*AME/ (2 .DO*AM1)
AM16=4 DO*(AMO**2)/3.DO
AM17=(AMO**3 ) *AM7 /AM1
AM1B=AMB+AMI+AM{O
AM1S=AM11+AMI2+AM13
AM20=AM{14+AM15+AM16+AM17
ATDMA (1)=AM20
BTDMA(1)=AM1B+AM20
CTDMA(1)=0.D0O

DTDMA(1)=(16.DO*(SF(I-1,2)+5F(1,2))-(SF(1-1,3)+5F(1.3}))/2.D0

ACRI1=AM1Q

AMO= (H(I~4,N,4)+H(I.N,1))/2.D0
AM1=(H(I-1.N,2)+H(I ,N.2))/2.D0
AM2=(H(I-1,NM1,1)+H(I.NM1,1))/2.D0
AM3=(H(I~-1,NM1,2)+H(I,NM1,2))/2.D0O
AMa=(H(I-1,NM2,1)+H(I.NM2,1))/2.DO
AMS=(H(I-1,NM2 2)+H(I ,NM2,2))/2.D0
AMG=(~3.DO*AMO*AM1+4 . DO*AM2*AM3-AM4*AMS ) /2.D0
aM7=(~-3.DO*AM1/AMO+4 .DO*AM3/AM2-AMS/AM4 ) /2.DO

AMB8=27 . DO*(AMO**2)/4.DO
AMS=3 DO*AMO*AMG /(2 .DO~AM1)
AM10=-3 . DO (AMO=*3)~AM7/AM1
AM14=-3 .DO*(AMO**2)/4.D0O
AM12=~AMO~AMG /(6 .DO=AM1)
AM13=(AMO**3)*AM7/(3.DO*AM1)
AM14=-9 .DO*(AMO**2)/4.D0
AM15=-AMO*AMG/(2.DO"AM1)
AM16=4 .DO~{AMO~*2)/3.D0
AM17=( AMO**3)~AM7/AM1
AM18=AM8+AM9+AM10D
AM19=AM11+AM12+AM13
AM20=AM14+AM1I5+AM1G+AM 17
ATDMA(NP1)=AM20
BTDMA(NP1)}=0.DO

CTDMA (NP 1)=aM18+AM20
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¢

DTDMA{NP1)=( 16 .DO*(SF(1-1,NM1)+SF(1 NM1))-(SF(JI-1,NM2)
1+SF(1,NM2)))/2.00
ACRIM=AM1{9

C
C*** REVISED TRIDIAGONAL-MATRIY ALGORITHM.
Cc
60 CALL RTDMA (NP1 _ACRI{1, ACRIM)
C
C*** STORE THE SOLUTION VECTOR.
c
DD 70 U=1.NP1 .
AMO=VOR(1,J)}+RFVOR* (SLN(JU)-VDR(1,U))
DIFVOR=DMAX1(DIFVOR .DABS{AMO-VOR(1.,4)})
MAXVOR=DMAX 1(MAXVOR ,DABS(AMO))
VOR(1.J)=4MO
70 CONTINUE
IF (1.EQ.M) GDTO 100
C
C*=*» STREAM FUNCTION EOQUATION.
Cc

Cx== CDOMPUTATION DOF THE STREAM FUNCTION EQUATION COEFFICIENTS.

DO 80 J=2,NM1
AT=(H(I-1,J,1)+H(I,J. 1))/ (H(I-1,U,2)+H(1,J,2))
AR=(H(I, J.2)+H(I,U+1,2))/(H(I,J,1)+H(I u+1,1))

AB=(H(I U, 1)+H(I+1,0,1))/(H(I.U.2)+H(I+1,0.2))
AL=(H(I,J-1,2)+H(I,J.2))/(H(I,d-1,1)+H(1,J,1))
AMO=(VOR(1.J)+VOR(I ,U+1)+VOR(I+1,J)+VOR(I+1.U+1))/4.D0
B=AMO*H(1.J,1)*H(1,J,2)
ATDMA(J)=AT+AR+AB+AL
BTDMA(J)=4aR
CTDMA(J)=AL :
DTDMA(J)=AT*SF(I-1,J)+AB*SF(I+1,J)+B

80 CONTINUE

c

C*** SET UP THE BOUNDARY CONDITIONS.

c i
DTOMA(2)=DTOMA(2)+CTDMA(2)*SF(I,1)
CTDMA(2)=0.D0O
DTDMA(NM1)=DTDMA(NM1)+BTDMA(NM1)*SF(I,N)
BTOMA(NM1)=0.D0

c

C*** TRIDIAGONAL-MATRIX ALGORITHM.

c

. CALL TDMA (2.NM1)

c

C*** STORE THE SOLUTIDON VECTOR.

c

DO 90 J=2,NM1
AMO=SF(I,J)+RFSF*(SLN(J)-SF(1.J))
DIFSF=DMAX1(DIFSF ,DABS(AMO-SF(1.J)}))
MAXSF=DOMAX 1(MAXSF ,DAES(AMO))
SF(I.J)=aMD

90 CONTINUE
100 CONTINUE

C*** MOVE COLUMNS

DO 180 uJ=2,N
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C=*+ ENERGY EQUATION.
C
C*=» COMPUTATION OF ENERGY EOQUATIDN COEFFICIENTS.
c
DO 110 1=2.M
COND=(H(I-1,d-1. 1)+H(I~-1.J.1))/(H(1-1,0~1,2}+H(1-1.J.2))
CONV=SF{1-1.Jd-1)-SF(1-1.4J)
AT=COND*COEFF (COND,CONV)+DMAX 1(0.DO., -CONV)
COND=(H(1-1.J,2)+H(1.J.2))/(H(I-1.J, 1)+H(I ,J.1))
CONV=SF(1-1,J)-SF(1.J)
AR=COND=*COEFF (COND,CONV )+DMAX 1(0.DO, ~CONV)
COND=(H(T.J-1.1)Y+H(1.J. 1))/ (H{1.u-1.2)+H(1.U.2))
CONV=SF(1.J-1)-SF(1,J)
AB=COND*COEFF (COND.CONV }+DMAX1(0.DO.CONV)
COND=(H(I-1,d-1,2)+H(1,J-1,2))/(H(I~-1,J-1,1)+H(I ,Jd-1,1))
CONV=SF(I-1.J-1)-SF(1.u-1)
AL=COND=*COEFF (COND,CONV )+DMAX 1(0.DO,CONV)
ATDMA (I )=AT+AR+AB+AL
BTDMA(I)=4B
CTDMA(I)=AT
DTDMA(1)=AR*T(I.J+1)+AL*T(1,J-1)
110 CONTINUE

€
C**» SET UP THE BOUNDARY CONDITIONS (ADIABATIC WALLS).
c
ATDMA(1)=1.DO
BTDMA(1)=1.DO
CTDMA(1)=0.D0O
DTDMA(1)=0.D0O
ATDMA(MP1)=1.DO
BTDMA(MP1)=0.D0O
CTDMA(MP1)=1.DO
DTDMA(MP1)=0.DO
c
C*** TRIDIAGONAL-MATRIX ALGORITHM,
c
CALL TDMA (1,MP1)
c
C*** STORE THE SOLUTION VECTOR.
C
DO 120 I=1,MP1
AMO=T(I,J)+RFT*(SLN(I)}-T(1.U))
DIFT=DMAX1(DIFT.DABS{AMO-T(I1.J)}))
T(I,J)=AMO
120 CONTINUE
C
C*** VORTICITY EQUATION.
[
C*** COMPUTATION OF VORTICITY EQUATION COEFFICIENTS.
C

DO 130 1=2.M
COND=PR*(H(I-1,J-1,1)}+H{I-1.J. 1))/ (H(I-1,J-1,2)+H(1-1,J.2))
CONV=SF(I-1,J-1)-SF(I1-1,J)

AT=COND*COEFF (COND,CONV)+DMAX 1(0.DO, -CONV)
COND=PR'(H(I-1,d.2)+H(I.d,2))/(H(I—1,d,1)+H(I,d,1))
CONV=SF(I-1,J)-SF(1.U)
AR=COND*COEFF {COND, CONV )+DMAX 1(0.DO, -CONV)

COND=PR* (H({I.J-1,1)+H(I,J.1))/(H(I J-1,2)+H(I J.2)})
CONV=SF(I,J-1)-SF(1,J)

AB=COND=*COEFF (COND,CONV)+DMAX 1(0.D0O,CONV)



130
c

Cxxw

Cwx»

C

c

C*xx%

C

v

COND=PR* (H{1-1_.J-1,2)+H(I,J-1.2))/(H(I-1,J-1. 1)+H(T J-1,

CONV=SF(I-1,4-1)-SF(I.J-1)

AL=COND*COEFF (COND.CONV)}+DMAX1(0.DO,CONV)
AMO=(D(1-1.d-1,2)+D(1-1,J.2)+D(1.y-1,2)4D(1.J.2))/4.00
AMA1=(D(I-1.U-1,4)+D(1-1,J,4)+D(1.J-1.4)+D(1,J.4))/4.D0
AM2=(T(1,U+1)-T(1,0-1))/2.D0
AM3=(T(I-1,J)-T(1+1,4))/2.D0

B=( AM1*AM2-AMO~AM3)*PR*RA

ATDMA(I)=AT+AR+AB+AL

BTDMA(1)=AB

CTDMA(I)=AT

DTDMA(1)=AR*VOR(I,JU+1)+AL*VOR(I,J-1)+B
CONTINUE

SET UP THE VORTICITY BOUNDARY CONDITION.
WALLS ARE IMPERMEABLE.

IF (VBC.EDQ.1) GOTD 140
WoOoD .

AMO=(H(1,U-1,2)+H(1.,4,2))/2.D0O
AMi=(H(1,0-1,1)+H(1,J.1))/2.D0
AM2=(H(2,J-1,2)+H(2.J.2))/2.D0
AM3=(H(2,U-1,1)+H(2,J.1))/2.D0
AMA=(H(3,uU-1,2)+H(3,J.2))/2.D0
AM5=(H(3,J-1,1)+H(3,J.1))/2.D0
AME=(~3.DO*AMO*AM1+4 . DO*AM2*AM3-AM4*AMS) /2 .DO
AM7=(~-3.DO*AM1/AMO+4 . DO*AM3/AM2-AMS/AM4) /2. DO
AMB=(AMO**2)/2.D0O

AMS=AMO*AMSE/ (6 .DO*AM1)
AM10=-(AMO**=3)*aM7/(3.DO*AM1)
AM11=-(AMO**2)/4.DO

AM12=-AMO*AME/ (12 .DO*AM1)

AM13=(AMO**2)/6.D0O
AM14=(AMO'*3)'AM7/(G.DO‘AM1)
AM15=AM8B8+AMS+AM10O

AMI16=AMT11+AM12+AM13+AM 14

ATDMA(1)=AM16

BYDMA(1)=AM15+AM16

CTDMA(1)=0.D0O
DTDMA(1)=(SF(2,J-1)+SF(2.J))/2.D0
AMO=(H(M,U-1,2)+H(M,J,2))/2.D0
AM1=(H(M,U-1,1)+H(M,J,.1))/2.00
AM2=(H(MM1,J-1,2)+H(MM1,J,2))/2.00
AM3=(H(MM1,U-1,1)+H(MM1,J,1))/2.D0
AMA=(H(MM2, J-1,2)+H(MM2,J,2))/2.00

AMS= (H(MM2,J-1, 1)+H(MM2,J,1))/2.00
AMG=(-3.D0*AMO*AM1+4 .DO*AM2*AM3-AM4*AMS)/2.D0
AM7=(-3.DO*AM1/AMO+4 .DO*AM3/AM2-AMS5/AM4)/2.DO
AMB=(AMO**2)/2.DO

AM9=AMO*AMG/(6.DO*AM1)
AM10=~-(AMO**3)*AMT7/(3.DO*AM1)
AM1{1=-(AMO**2)/4.D0O

AM12=-AMO*AMG/(12.D0"*AM1)

AM13=(AMO**2)/6.D0O
AM14=(AMO**3)*AM7/(6.DO*AM1)
AM15=AMB+AMO+AMIC

AM1G6=AM1 1+ AM12+4AM13+AM14

ATDMA(MP1)=AM1G

1))
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C=*»

o

140

BTDMA(MP1)=0.D0

CTDMA(MP1)=AM1{5+AM16
DTDOMA(MP1)=(SF(MM1 _ J-1)+SF(MMI, J))}/2.D0
ACR11=0.DC

ACRIM=0.DOC

GOTO 150

SECOND ORDER.

AMO={(H( 1, ,J~1.2)+H(1,J,2))/2.D0
AMAI=(H(1,J-1.1)+H(1.J.1))/2.D00
AM2=(H(2,U~-1.2)+H(2.J,2))/2.D0

AM3=(H(2 J-1,1)+H(2,J,1))/2.D0
AMA=(H(3,U~1,2)+H(3,J.2))/2.D0
AMS=(H(3.,J-1,1)+H(3.J,1))/2.D0
AMG=(-3.DO"AMO*AM1+4 . DO"AM2*AM3-AMA=AMS)/2.DO
AM7=(-3.DO*AM1/AMO+4 .DO*AM3/AM2-AMS/AM4 ) /2 DO
AMB=27 .DO* (AMO**2)/4 .DO

AMO=3 DO*AMO*AMG/ (2 .DO*AM1)
AM10=-~3 .DO* (AMO**3 ) *AM7/AM1

AM11=-3 .DO*(AMO**2)/4 .DO
AM12=-AMO*AME /(6 .DO*AM1)
AM{3=(AMO**3)*AM7/(3.DO*AM1)

AM14=-9.DO* (AMO**2)/4.D0O
AM{i5=-AMO*AMG/ (2 .DO*AM1)

AM16=4 DO*=(AMO**2)/3.DO
AM17=(AMO**3)*AM7 /AM1

AM18=AM8+AMS+AM10

AM19=AM11+AM12+AM13

AM20=AM14+AM15+AM16+AM17

ATDMA( 1,)=AM20

BTDMA(1)=AM18+AM20

CTDMA(1)=0.DO
DTDMA(1)=(16.DO*(SF(2.J-1)+SF(2,U))-(SF(3,U~-1)+5F(3,J)))/2.D0
ACRI1=AM19

AMO={H(M,JU~1,2)+H(M,J,2))/2.D0
AM1=(H(M,J-1,1)+H(M,u.1))/2.D0
AM2=(H(MM1,J-1,2)+H(MM1.J.2))/2.D0
AM3=(H(MM1,U-1,1)+H(MM1,J.1))/2.D0
AM4A=(H(MM2,J-1,2)+H(MM2,J,2))/2.D0
AMS=(H(MM2,J-1,1)}+H(MM2,J.1))/2.D0
AMG=(~3.DO*AMO*AM1+4 . DO*AM2*AM3-AM4*AMS)/2.DO
AM7=(-3.DO*AM1/AMO+4 .DO*AM3/AM2-AM5/AM4)/2.DO
AMB=27 .00*(AMO**2)/4 . DO

AMS=3 .DO*AMO*AMG/ (2 .DO*AM1)

AM10=-3.D0* (AMO**3)*AM7/AM1
AM11=-3_DO*(AMO**2)/4 .DO
AM12=-AMO*AMG/ (6 .DO*AM1)
AM13=(AMO**3)*AM7/(3.DO*AM1)
AM14=-9.DO*(AMO**2)/4 .DO
AM15=-AMO*AM6/(2.DO*AM1)

AM16=4 .DO*(AMO**2)/3.DO

AM17=(AMO**3)*AM7 /AM

AM1B=AMB+AMZ+AM10

AM19=AM{1+AM12+AM13

AM20=AM14+AM15+AM1G+AM17

ATDMA(MP 1) =AM20

BTDMA(MP1)=0.D0O

CTDMA(MP1)=AM18+AM20

DTDOMA(MP1)=( 16 .DO*(SF(MM1 J-1)+SF(MM1, J))-(SF(MM2 J-1)
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Ct'n
C

150
C
C*‘t
C

160

Cw=x*

Cxuw

170

C*t*

Cxwx

Ceww

180
190

Clwk

14SF(MM2,.J)))/2.D0
ACRIM=AM1IS

REVISED TRIDIAGONAL-MATRIX ALGORITHM.
CALL RTDMA (MP1_ ACRI1.ACRIM)
STORE THE SOLUTION VECTOR.

DD 160 I=1,MP{
AMO=VOR(1,J)+RFVOR*{SLN(1)-VOR(1.J))
DIFVOR=DMAX1(DIFVOR ,DABS(AMO-VOR(1.J)))
MAXVOR=DMAX1(MAXVOR ,DABS(AMO))
VOR(1,J)=AMO

CONT INUE

IF (J.EQ.N) GOTOD 190

STREAM FUNCTION EQUATION.

COMPUTATION OF THE STREAM FUNCTION EQUATION COEFFICIENTS.

DO 170 1=2, MMi
AT=(H(I-1,J, 1)+H(I,J, 1))/ (H(I-1,J,2)+H(1,U.2)})
AR=(H(I.J.2)+H(I,J+1,2))/(H(I U, 1}+H(I, U+1,1))
AB=(H(I,J,1)+H(I+1,J,1))/(H(I1.J.2)+H(I+1,J.2))
AL=(H(I,u-1,2)+H(I,J,2))/(H(1,0-1,1)+H(1,J,1))
AMO=(VOR(I,J)+VOR(I . ,J+1)+VOR(I+1,J)+VDOR(I+1,J+1))/4.D0
B=AMO*H(I,J, 1)*H(I.J.2)

ATDMA(I)=AT+AR+AB+AL

BTDMA(I)=AB

CTDMA(I)=AT

DTDMA(I)=AR*SF(I,J+1)+AL*SF(I,U-1)+B
CONTINUE

SET UP THE BOUNDARY CONDITIDNS.

DTOMA(2)=DTDMA(2)+CTDOMA(2)*SF(1.J)
CTDMA(2)=0.DO

DTDOMA(MM1)=DTDMA (MM1)+BTDMA(MM1)*SF(M,J)
BTDMA(MM1)=0.D0O

TRIDIAGONAL-MATRIX ALGORITHM.
CALL TDMA (2,MM{1)
STORE THE SOLUTION VECTOR.

DO 180 I=2, MM1
AMO=SF(1,J)+RFSF*(SLN(1)-SF(I1,J))
DIFSF=DMAX1(DIFSF DABS(AMO-SF(1,J)))
MAXSF=DMAX 1(MAXSF ,DABS(AMO))
SF(I1.J)=AMO

CONT INUE

CONTINUE

ACCURACY, TEST AND PRINTOUT.
C2=C2+1

AMO=DIFT
AM1=DIFVOR/MAXVOR
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197

AM2=DIFSF/MAXSF

WRITE (6,200) C2.DIFT.DIFVOR . DIFSF MAXVOR MAXSF  AMO . AMY,
1AM2

IF (MAYXVDR.GE.1.D10) STOP

IF (((AMD.GT .EPS2).0OR.{AM1 .GT .EPS2).0R.(AM2 GT . EP32))
1.AND . (C2.LT.C2UL)) GOTOD 10

C*~~* CALCULATION OF NUSSELT NUMBERS.

C

o NeNel

Cc

CaLL NU
RETURN

200 FORMAT(/.T5. (.13, ). T15, "ENERGY "’ ,T26_, ‘VORTICITY .

1738, 'STREAM FUNCTION',/.T5.,48('-")./.T5,'DIF",
2713.D11.5,726.D11.5,740.D11.5,./,75., ‘MAX ",
3T26.D11.5.740.,011.5, /.75, ‘RATIO’ . T13.D11.5,
4726.,D11.5,T40.D11.5)

END

SUBROUTINE PLOT

Ok m ook sk s R K R W MR K MMM R MR RN AR AR AR N AR RN KRR F R B R RO TR TR R RN R K TR

[eRoNeNeNeNeNeNeNoNeNoReNeNoNe!

NAME : PLOT.
PURPOSE :

THIS SUBROUTINE PRODUCES THE PLOT OF THE GRID,
THE TEMPERATURE, THE STREAM FUNCTION, AND
VORTICITY DISTRIBUTIONS AND THE
THE LOCAL NUSSELT NUMBER PLOTS.

NB. THIS SUBROUTINE IS NOT GENERAL BUT SPECIFIC TO A GIVEN
PROBLEM. IT ALSD REQUIRED THE SOFTWARE "DISSPLA™

OB MK M N M B Nk e ok W WK N N ak K M N N NN M K K Ok B 3k Mk sk ok BE M0 Bk ok 3k Mk K Dk ok ok 3k 3k ok s oK 3K Bk 3k M K 3K M sk 3K M 3k % K 3K M XK %k K XK K ok

IMPLICIT REAL*B(A-H,D-2)

REAL*B XY(50.50,2),T(50,50),5F(50.50),VOR(50,50)
REAL*8 DIST(S0,4).NUAV(4) NUL(50,4)

REAL X(100),Y(100),XYS(50,.50,2),XYZ(50,50,3),ZCNTR(50)
REAL MAXSF,MINSF MAXVOR,MINVOR

COMMON /BLK1/ M N

COMMON /BLK3/ XY

COMMON /BLKE/ PR,RA

COMMON /BLK7/ T

COMMON /BLK8/ VOR

COMMON /BLKS/ SF

COMMON /BLK13/ DIST NUAV NUL

COMMON /BLKA/ XYZ . ZCNTR

C*=**» GRID TO COARSE.

IF ((M.LT.20).AND.(N.LT.20)) RETURN

C*=** SET UP VARIABLES.

MM {=M- 14
MP 1=M+1



C

Cx=»

C
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20

30

40

Cxwx

C

50

Ce=xx»

C
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MP2=M+2
NP 1 =N+ 1

GRAPH THE GRID.

CALL BGNPL (-1) :
CALL TITLE (’'GRID’.-4,‘X AXIS'.6.,'Y AXIS’'.6.7..6.)
CALL GRAPH (0...2,0.,.2)
CALL FRAME
DO 20 l=1.M
DO 10 JU=1 N
X(J)=xyY(1.J.1)
Y(J)=XY(I,J.2)
CONTINUE
CALL CURVE (X,Y.N,O)
CONTINUE
DO 40 u=1,N
DD 30 I=1.M
X(I)=XY(1,J.1)
Y(I)=XY(I.4,2)
CONTINUE
CALL CURVE (X.,Y.M,0)
CONTINUE
CAaLL ENDPL (-1)

GRAPH THE LOCAL NUSSELT NUMBERS (RIGHT wall).

CALL BGNPL (-2)

CALL TITLE (’NUSSELT NUMBER AT RIGHT WALL (VS) DISTANCES’.-100,

1'DISTANCE (TOP TD BDTTOM) ‘.24, 'NUSSELT NUMBER’.14,7..6.)
AMO=10./6.

CALL GRAF (0...2.1.4,0..1.,10.)

CALL FRAME

CALL GRACE (0.)

CALL MESSAG (‘PR=“,3,4.,5.7)

CALL REALNO (PR,2.‘ABUT‘,’ABUT’)

CALL MESSAG (’RA=‘,3.4.,5.4)

CALL REALNO (RA,-2,‘ABUT’, ‘ABUT’)

CALL MARKER (13)

CALL SPLINE

DO S0 I=1,MM{
X(I)=(DIST(1,2)+DIST(I+1.2))/2.
Y(I)=NUL(I+1,2)

CONTINUE

CALL CURVE (X,Y.MMi, 1)

X(1)=0.

Y(1)=NUAV(2)

X(2)=DIST(M,2)

Y(2)=NUAV(2)

CALL RESET ('SPLINE‘)

CALL CURVE (X.Y.2.,0)

YPOS=NUAV(2)*6./10.+.02

CALL MESSAG (‘AVERAGE’,7.0.5,YP0OS)

CALL ENDPL (-2)

GRAPH THE LOCAL NUSSELT NUMBER (LEFT WALL).

CALL BGNPL (-3)
CALL TITLE ('NUSSELT NUMBER AT LEFT WALL (VS) DISTANCES‘.-100,
1'DISTANCE (TOP TO BOTTOM)‘, 24, 'NUSSELT NUMBER’,14.,7..6.)



80

Ctt#
Coxx
Cwww

Cw=»

C*l‘

Cexx>

70

80

Cr=x

CALL GRAF (0...2.1.4.0..1..10.)

CALL FRAME

CALL GRACE (0.)

CALL MESSAG (’PR=',3.4..,5.7)

CALL REALND (PR,2, ABUT’, *ABUT’)

CALL MESSAG (’'Ra='.,3.4.,5.4)

CALL REALND (RA,-2. ABUT' ., “ABUT")

CALL MARKER (13)

CALL SPLINE

DO 60 I1=1.MMt
X(I)=(DIST(1,4)+DIST(1+1.4))/2.
Y(I)=NUL(I+1. 4)

CONTINUE

CALL CURVE (X.Y ,MM1_1)

X{(1)=0.

Y{1)=Nyav(4)

X(2)=DIST(M.4)

Y(2)=NUAV(4)

CALL RESET (*SPLINE’)

CALL CURVE (X,Y.2,0)

YPOS=NUAV(4)*6./10.+ .02

CALL MESSAG (‘AVERAGE‘,7,3.75,YPOS)

CALL ENDPL (-3)

THE TEMPERATURE

IS NOT DEFINED AT THE GRID INTERSECTIONS

BUT AT THE CENTER OF EACH SOUARE DEFINE BY THE GRID.
CALCULATION OF THE COORDINATES OF THE CENTER.

CORNER POINTS.

XYS(1,1.1)=XY(1,1,1)
XYS(1,1,2)=XY(1,1,2)
XYS(1,NP1,1)=XY(1,N, 1)
XYS(1,NP1,2)=XY(1,N,2)
XYS(MP1,1,1)=XY(M,1,1)
XYS(MP1,1,2)=XY(M,1,2)
XYS{MP1 NP1, 1)=XY(M , N, 1)
XYS(MP1 ,NP1,2)=XY(M,N,2)

BOUNDARY POINTS.

D0 70 J=2.,N

XYS(1.,J.1)=(XY(1,J,1)+XY(1,J-1,1))/2.00
XYS(4.0.2)=(XY(1,0.2)+XY(1,U-1,2))/2.D0
XYS(MP1,J,1)=(XY(M,J, 1)+XY(M J-1,1))/2.D0
XYS(MP1,J,2)=(XY(M,J,.2)+XY(M,J-1.2))/2.D0O

CONTINUE
DO 80 1=2.M
XYS(I, 1,1)=(XY(I,1,1)+XY(I-1,1,1))/2.00
XYS(I.1,2)=(XY(I,1,2)+XY(I-1,1.2))/2.D0
XYS{I.NP1,1)=(XY(I N, 1)+XY(I-1,N,1))/2.D0O
XYS(I . NP1,2)=(XY(I N,2)+XY(I-1,N,2))/2.D0
CONT INUE

INTERNAL POINTS.

DO 100 1I=2,M
DO 80 J=2.N

XYS(T,J,1)=(XY(T , J,1)+XY(I-1,J, 1)+XY(I -, 1)+XY{I~1,0-1,

1))
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C

CH=n»

C

c

1/4 .00

XYS(I.J,2)=(XY (1 ,J.2)+XY(1-1.J.2)+XY (1 . J-1,2)}+XY(I-1,U~1,2)}))

1/4 .00

90 CONTINUE
100 CONTINUE

GRAPH THE TEMPERATURE FIELD.

DO 120 1=1,MP1
DO 110 J=1,NP1

XYZ(1.d.1)=XYS(1.J.1)

XYZ(1.,0,2)=XYS(1,0.2)

IF (J.EOQ.1) XY2(1.J.3)=0.

If (J.EQO.NP1) XYZ(I.d.3)=1.

IF ((JU.NE.1).AND.(J.NE.NP1)) XYZ(1.0.3)=T(1.J)

110 CONTINUE
120 CONTINUE

CALL BGNPL (-4) .
caLL TITLE ('TEMPERATURE FIELDS‘,-100,
1/X AXIS’.6.'Y AXIS’.6.7..6.)
CALL GRAPH (0...2.0...2)
CALL FRAME
cALL GRACE (0.)
CALL MESSAG (‘PR=’.3,4.,5.7)
calLL REALND (PR,2, ABUT’, “ABUT’)
CALL MESSAG ('RA=’.,3.4..,5.4)
CALL REALND (RA.-2,’ABUT’,’ABUT’)
WRITE (6.270)
AMO=0.
AM1=1,
WRITE (6.300) AMO, AM{
DO 130 1=1,8
2CNTR(1I)=1/10.
WRITE (6.310) 1,ZCNTR(1)

130 CONTINUE

CALL CNTR (MP% NP1, 8)
X(1)=0.

Y(1)=1.

D0 140 I=1,MP?
X(I+1)=XYS(I , NP1 1)
Y(I+1)=XYS(I NP1, 2)

140 CONTINUE

CALL CURVE (X.,Y.MP2,0)
CALL ENDPL (-4)

C*** GRAPH THE VORTICITY FIELD.

C

XYZ(1.1.3)=(VOR(1,2)+VOR(2,1)+VOR(2.2))/3.
XYZ(1,NP1,3)=(VOR(1,N)+VOR(2,N)+VOR(2,NP1))/3.
XYZ(MP1,1,3)=(VOR(M, 1)+VOR(M,2)+VOR(MP1,2))/3.

XYZ(MP1,NP1,3)=(VOR(M,N)+VOR(M NP1)+VOR(MP1 ,N))/3.

DO 150 1=2 M
XYZ(I1,1,3)=(VOR(I,1)+VOR(I,2))/2.
XYZ(I1.NP1,3)=(VOR(I,N)+VOR(I NP1))/2.

150 CONTINUE

DO 160 J=2,N
XYZ(1,J,3)=(VOR(1,J)+VOR(2,J))/2.
XYZ(MP1,J,3)=(VOR(M,J)+VOR(MP1,4))/2.

160 CONTINUE

DO 180 I=2 M
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DO 170 J=2.N
XYZ(1,J.3)=VOR(1.,U)
17C CONTINUE
180 CONTINUE

CALL BGNPL (-5)

CALL TITLE ('VORTICITY FIELDS',-100.

1°X AXIS . 6.°Y AXIS’.6.7..6.)

CALL GRAPH (O...2.0...2)

CALL FRAME

CALL GRACE (0.)

CALL MESSAG (’'PR=’.,3.4..5.7)

CALL REALNO (PR,2,'ABUT’ ., ABUT’)

CALL MESSAG (‘RA=’.3.4..5.4)

CALL REALNO (RA,-2, ABUT‘, ‘ABUT’)

WRITE (&.280)

MAXVOR=XYZ(1,1.3)

MINVOR=XYZ{1,1.3)

DO 200 1=1.MP1
DO 180 JU=1,NP1

MINVOR=AMINT(MINVOR,XYZ(1.J.3))
MAXVOR=AMAX 1 (MAXVOR . XYZ(1.J.3))
190 CONTINUE
200 CONTINUE

WRITE (6.300) MINVOR,MAXVOR

DO 210 1=1.8
ZCNTR(I)=(MAXVOR-MINVOR)*I/10.+MINVOR
WRITE (6.310) 1,ZCNTR(1)

210 CONTINUE

CALL CNTR (MP1,NP1.9)

X(1)=0.

Y(1)=1.

DD 220 1=1,MP1
X(I+14)=XYS(1,NP1,1)
Y(I+1)=XYS(I,NP1,2)

220 CONTINUE
CALL CURVE (X,Y,MP2,0)
CALL ENDPL (-5)
c
C*** GRAPH THE STREAM FUNCTION FIELD.
c

MAXSF=SF(1,1)

MINSF=SF(1,1)

DO 240 1=1,M
DO 230 J=1,N

XYZ(I.J,1)=XY(I,J.1)
XYZ(1,d.2)=XY(1,4,2)
XYZ(1,J.3)=SF(1,U)
MAXSF=AMAX 1(MAXSF XYZ(1,J.3))
MINSF=AMIN1(MINSF XYZ(1.J.3))
230 CONTINUE
240 CONTINUE

CALL BGNPL (-6)

CALL TITLE (‘STREAM FUNCTION FIELDS'.-100

1,'X AXIS‘.6,°Y AXIS’.6.7..6.)

CALL GRAPH (0.,.2.0...2)

CALL FRAME

CALL GRACE (0.)

CALL MESSAG (‘PR=’,3,4..5.7)

CALL REALNO (PR,2, ABUT’, *ABUT’)

CALL MESSAG ('RA=',3.4..5.4)



CALL REALND (RA,-2,‘ABUT', 'ABUT ')
WRITE (6.290)
WRITE (6,300) MINSF, K MAXSF
DD 250 1=13.9
ZCNTR(1)=(MAXSF-MINSF)*1/10.+MINSF
WRITE (6.310) 1,ZCNTR(1)
250 CONTINUE
CALL CNTR {M,N.9)
X{1)=0.
Y(1)=1.
DD 260 1=1.M
X(I+1)=XY{1.N.,1)
Y(I+1)=XY(1,N.2)
260 CONTINUE
CALL CURVE (X,Y.MP1,0)
CALL ENDPL (-6)
RETURN
270 FORMAT(/.TS5, 'TEMPERATURE CONTDUR VALUES.')
280 FORMAT(/,.TS, VORTICITY COUNTOUR VALUES.")
280 FORMAT(/,T5, ‘STREAM FUNCTION CONTOUR VALUES.’)
300 FORMAT(TS, ‘MIN= ‘ E15.7,/,T5, ‘MAX= ‘ E15.7)
310 FORMAT(TS5, 'CONTOUR #'.15,5X,E15.7)

END
c
c
c
SUBROUTINE TDMA (IMIN, IMAX)
c
e o o IO K KR e e N K I N R R R R K K
c
o NAME : TRIDIAGONAL MATRIX ALGORITHM.
Cc
o PURPOSE :
o
o THIS SUBROUTINE SOLVES A TRIDIAGONAL MATRIX.
[
c INPUT DATA:
o}
Cc - IMIN: MINIMUM INDEX.
o} - IMAX: MAXIMUM INDEX.
c
o N L e
c

IMPLICIT REAL*8(A-H,0-2)

REAL*8 ATDMA(S50),BTDMA(S0).CTDMA(S0).DTDMA(S0)
REAL*8 PTDMA(50),QTDMA(S50),SLN(50)

COMMON /BLK10/ ATDMA .BTDMA,CTDMA ,DTDMA,SLN

C

C*=** SET UP VARIABLES.

C
IMINP 1=IMIN+1
IMAXM1=IMAX-1
N=IMAX-IMIN

Cc

C*+* SOLVE THE ARRAY.

C

PTDMA(IMIN)=BTDMA(IMIN)/ATDMA(IMIN) ¢
OTOMA(IMIN)=DTDMA(IMIN)/ATOMA(IMIN)
DO 10 I=IMINP1{, IMAX

DEN=ATDMA(I)-CTDMA(I)*PTOMA(I-1)
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PTDMA(I)=BTDMA(])/DEN
OTDMA(1)=(DTDMA(1)+CTDMA(1)=QTDMA(1-1))/DEN
10 CONTINUE
SUN(IMAX)=0TDMA( IMaX)
DO 20 1=1.,N
J=IMAX-1
SLN(J)=PTDMA(J)*SLN(J+1}+0TDMA(J)
"20 CONTINUE

RETURN
"END
c
c
c
SUBRDUTINE RTDMA (IMAX.ACRI1,ACRIM)
C
C**“ttkll-'-*lll!*-l'*‘lr)t‘.***l'k'ltl.lll‘i‘&""‘l‘."tll‘ﬁl‘..l."'
c
c NAME : REVISED TRIDIAGONAL MATRIX ALGORITHM.
c
c PURPOSE :
c
c THIS PROGRAM SOLVES A TRIDIAGONAL-MATRIX WHICH HAS TWO ELEMENTS
C DUTSIDE OF THE TRIDIAGONAL. THE FIRST ONE IS LDCATED ROW 1 AND
C COLUMN 3, AND THE SECOND IS LDCATED ROW IMAX AND COLUMN IMAX-2.
c
C INPUT DATA:
C -
c - IMAX: NUMBER OF ROW AND COLUMN IN THE ARRAY.
c - ACRI1: ADDITIONAL COEFFICIENT RELATED TO THE ROW 1.
c - ACRIM: ADDITIONAL COEFFICIENT RELATED TO THE ROW IMAX.
c
CIQ?‘K.“ltltt'tltt'rt‘l".t#ﬁ'.t"-‘tl".l.t".'nl‘&lﬁl".lt.t'tt.t‘l‘.'*'
c
IMPLICIT REAL*B8(A-H,0-2)
REAL*8 ATDMA(S50),BTDMA(50) . CTDMA(50),DTDMA(50),SLN(50)
COMMON /BLK10/ ATDMA ,BTDMA,CTDMA,DTDMA, SLN
c
C*** SET UP VARIABLES.
c
" IMAXM{=IMAX-1
c
C*=** MODIFIED THE TDMA COEFFICIENTS.
c
ATDMA(2)=ATDMA(2)-CTDMA(2)*BTDMA(1)/ATDMA( 1)
BTDMA(2)=BTDMA(2)+CTDMA(2)*ACRI 1/ATDMA( 1)
DTDMA(2)=DTDMA(2)+CTDOMA(2)*DTDMA( 1)/ATDMA(1)
ATDMA( IMAXM1)=ATDMA (IMAXM 1) -BTDMA(IMAXM1)*CTDMA (IMAX)
1/ATDMA( IMAX)
CTDMA(IMAXM1)=CTDMA ( IMAXM1)+BTDMA(IMAXM1)*ACRIM/ATDMA( IMAX)
DTDMA( IMAXM1)=DTDMA (IMAXM1)+BTDMA( IMAXM1 )} *DTDMA ( IMAX)
1/ATDMA (IMAX)
CTDMA(2)=0.DO
BTDMA( IMAXM1)=0.DO
c
C*** TDMA.
c
CALL TDMA (2.1MAXM1)
c

C*=* CALCULATE VALUES FOR 1 AND IMaX.
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v

SLN(1)=(BTOMA(1)*SLN(2)+ACRI1*SLN(3)+DTDMA(1))/ATDMA( 1)
SLN(IMAX)=(ACRIM~SLN(IMAX-2)+CTDMA( IMAX ) *SLN{IMAXM{)
1+DTOMA(IMAX) ) /ATOMA{ IMAX)

RETURN

END

[eNeNe!

DODUBLE PRECISIDN FUNCTION COEFF (COND.CONV)

LA R B S A RS AR SRS AN R AR AR AN RRE SRR EE RS FEEEEEEFEERERESE R EE SR B RN R R
NAME : COEFFICIENT.
PURPOSE :

THIS SUBROUTINE CALCULATES THE COEFFICIENT A(P)
OF THE POWER LAW SCHEME AS PRESENTED BY PATANKAR.D

NB. THE POWER LAW IS USED BELOW, BUT OTHER SCHEMES AS CENTRAL
DIFFERENCE SCHEME, UPWIND SCHEME OR HYBRID SCHEME COULD BE
USED AS WELL.

INPUT DATA:

~ COND: CONDUTION STRENGTH.
-~ CONV: CONVECTION STRENGTH.

o3k m B o ak B M T N T a o e a  oh ak ok ok 0K B ak S ok kK Mk Tk K K Mk R Kk R R R K KR KW R K Wk Kk K R
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IMPLICIT REAL*B(A-H,0-Z)
COEFF=DMAX1(0.D0O, (1.D0O-0. 1DO*DABS{CONV/COND) )=**5)

RETURN
END
c
c
c
SUBROUTINE DISF
c

Ci*l*t*‘t**‘l*-Itttttttttt**ti*t‘#**tt‘t.t‘t.t‘t‘lttk‘*t“*'*‘

NAME: DISTORTION FUNCTION.
PURPOSE :

THIS PROGRAM COMPUTES THE FIRST ORDER DERIVATIVES OF THE
CARTESIAN COORDINATES WITH RESPECT TO THE ORTHOGONAL
COCRDINATES AND THE SCALE FACTORS ALONG BOUNDARIES
WHERE TWO DIRICHLET BOUNDARY CONDITIONS ARE USED.

ALONG BOUNDARIES WHERE THE POINT

POSITIONS ARE NOT GIVEN THE RATIOS OF SCALE FACTORS ARE
SPECIFIED BY LINEARLY INTERPOLATING THE CORNER VALUES.
THE RATIO OF SCALE FACTORS FOR THE INTERNAL GRID POINTS
ARE COMPUTE USING THE FORMULA PROPOSED BY G. RYSKIN AND
L.G. LEAL.

CHARACTERISTIC:

- FINITE DIFFERENCES FORMULA OF SECOND ORDER.
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IMPLICIT REAL*B(A-H.0-27)

INTEGER BTYPE(4)

REAL*B D(50.50.4) .H{(50,50,2).RSF(50.50),XY(50,50.2)
COMMON /BLK1/ M.N

COMMON /BLK2/ BTYPE.RSF

COMMON /BLK3/ XY

COMMON /BLK4/ H

COMMDN /BLK5/ D

SET UP VARIABLES.

MM1i=M-1
MM2=M-2
NM1=N-1
NM2=N-2

ASSIGN RATIO OF SCALE FACTORS AT BOUNDARIES.
TOP LEFT CORNER.

IF ((BTYPE(1).EQ.O).AND.(BTYPE(4).EQ.0)) GOTD 10
D(1,1.1)=(-3.DO*XY(1,1,1)+4.DO*XY(1.2,1)-XY(1,3.1))/2.D0
D(1,1,2)=(-3.DO*XY(1,1,2)+4.D0*XY(1,2,2)-XY(1,3,2))/2.D0
D(1,1.3)=(3.D0*XY(1,1.1)-4.D0*XY(2,1.1)+XY(3,1,1))/2.D0
D(1.1,4)=(3.DO*XY(1,1,2)-4.D0*XY(2,1,2)+XY(3,1,2))/2.D0
H(4,1,9)=(D(1,1,1)**2+D(1,1,2)**2)**0.5D0
H(1,1,2)=(D(1,1,3)*=2+D(1,1,4)**2)*=0.5D0
RSF(1,1)=H(1,1,2)/H(1,1,1)

TOP RIGHT CORNER.

IF ((BTYPE(1).EQ.0).AND.(BTYPE(2).EQ.0)) GOTD 20
D(1,N,1)=(3.D0*XY(1.,N,1)-4.D0*XY( 41 .NM1,1)+XY(1,NM2,1))/2.D0
D(1.,N,2)=(3.00*XY(1,N,2)-4.DO*XY(1.NM1,2)+XY(1,NM2,2))/2.D0
D(1,N.3)=(3.DO*XY(1,N, 1)-4.00*XY(2,N, 1)+XY(3.N,1))/2.DO
D(1.N,4)=(3.DO*XY(1.N,2)-4.DO*XY(2,N,2)+XY(3,N,2))/2.D0
HC1,N,1)=(D(1,N,1)**2+D(1,N, 2)**2)**0.5D0O
H(1,N,2)=(D(1,N,3)**2+D(1,N,4)**2)**0.5SDO
RSF(1,NY=H(1,N,2)/H(1,N, 1)

BOTTOM LEFT CORNER.

IF ((BTYPE(4).EQ.O).AND.(BTYPE(3).EQ.0)) GOTO 30
D(M,1,1)=(-3.00*XY(M,1,1)+4.DO*XY(M,2,1)-XY(M,3,1))/2.D0
D(M,1,2)=(-3.D0*XY(M,1,2)+4 DO*XY(M,2,2)-XY(M,3,2))/2.D0
D(M,1,3)=(~3.DO*XY(M.1,1)+4.DO*XY(MM1,1,1)~XY(MM2 1,1))/2.D0O
D(M,1,4)=(-3.DO*XY(M, 1,2)+4.DO*XY(MM1,1,2)-XY(MM2,1,2))/2.D0O
H(M,1,1)=(D(M, 1, 1)**24D(M, 1,2)**2)**0.5D0

H(M,1,2)=(D(M, 1,3)**2+D(M, 1,4)**2)**0.SDO

RSF(M, 1)=H(M,1,2)/H(M, 1,1)

BOTTOM RIGHT CORNER.

1IF ((BTYPE(2).EQ.0).AND.(BTYPE(3).EQ.0)) GOTO 40
O(M,N,1)=(3.00*XY(M,N,1)-4 . DO*XY(M NM1,  1)+XY(M ,NM2,1))/2.00
D(M,N,2)=(3.00*XY(M N 2)~4.DO*XY(M NM1 2)+XY(M NM2,2))/2.D0O
D(M,N,3)=(-3.DO*XY(M N, 1)+4.DO*XY(MM1 N, 1)-XY(MM2 N, ,1))/2.D0
D(M,N,4)=(-3.DO*XY(M ,N,2)+4 . DO*XY(MM1 N,2)-XY(MM2 N 2))/2.D0O
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H(M.N, 1)=(D(M,N,1)**2+D(M,N,2)**2)*=0.5D0O
H(M,N.2)=(D(M N,3)**2+D(M N, 4)"*2)**0.5D0O
RSF(M. N)=H(M ,N.,2)/H(M N, 1)

TOP waALL.

IF (BTYPE(1).EQ.O0) GOTD &0

DO 50 J=2.NM1

D(1,0,1)=(XY(1,U+1.1)-XY(1,U-1,1))/2.D0
D(1,J.2)=(XY(1,U+1,2)}-XY(1,0-1,2))/2.D0
D(1.U.3)=(3.DO*XY(1.J,1)-4.DO*XY(2.J.1)+XY(3.J.1))/2.D0
D(1.J,4)=(3.DO*XY(1,U,2)-4.DO*XY(2,J.2)+XY(3.J.2))/2.D0
H(1.J.1)=(D(1,J.1)**2+D(1.J.2)**2)**0.5D0
H(1.J.2)=(D(1,J,3)**2+D(1,J,4)**2)}**0.5D0
RSF(1.J)=H(1,J.2)/H(1,J.1)

CONTINUE

BOTTOM WALL.

IF (BTYPE(3).E0Q.0) GOTOD 80

DO 70 J=2,NM1

D(M,J,1)=(XY{(M, U+1,1)-XY(M,U-1,1))/2.D0
D(M,J,.2)=(XY(M,J+1,2)-XY(M,J-1.2))/2.D0
D(M,J.3)=(~3.DO*XY(M,U, 1)+4.DO*XY(MM1 ,J, 1)}-XY(MM2,U.1))/2.DO
D(M,J,4)=(-3.DO*XY(M,J.2)+4 . DO*XY(MM1,J_ 2)-XY(MM2.U.2))/2.D0
H(M,J.1)=(D(M,J, 1)**2+D(M, J,2)**2}**0.5D0
H(M,J,2)=(D(M,J,3)**2+D(M,J,4)**2)**0.5D0
RSF(M.JU)=H(M,J,2)/H(M, U, 1)

CONTINUE

LEFT wall.

IF (BTYPE(4).EQ.O0) GOTD 100

DO S0 I=2.MM{
D(I,.1.1)=(-3.DO*XY(1.1,1)+4.DO*XY(1.,2.1)-XY(1.3.1))/2.00
D(1.1.2)=(-3.DO*XY(1,1,2)+4.D0*XY(1,2.2)-XY(1,3,2))/2.00
D(I,1.3)=(XY(I-1,1,1)-XY(I+1,1.1))/2.D0
D(I,1.4)=(XY(I-1.1,2)-XY(I+1,1.2))/2.00
H(I.4,1)=(D(1.1,1)**2+D(1,1,2)**2)**0.5D0
H(I,1,2)=(D(1,1,3)**2+D(1,1,4)**2)**0.5D0O

RSF(I, 1)=H(I,4.2)/H(1,1.1)

CONTINUE

RIGHT WALL.

IF (BTYPE(2).EQ.D0) GOTO 120
DO 110 I=2,MM1
D(I.N,1)=(3.DO*XY(I,N,1)-4.DO*XY(I ,NM1, 1)+XY(I ,NM2,1))/2.DO
D(I,N.2)=(3.D0*XY(I,N,2)~4.D0*XY(I NM{ ,2)+XY(I ,NM2,2))/2.00
D(I.N.3)=(XY(I-1,N,1)-XY(I+1,N,1))/2.D0
D(I.N,4)=(XY(I-1,N,2)-XY(I+1,N,2))/2.00
H(I.,N,1)=(D(1,N,1)=*2+D(1 ,N,2)**2)**0.5DC

H(I N,2)=(D(I ,N,3)**2+D(I,N,4)=*2)**0.5DO
RSF(I.N)=H(I N, 2)/H(I,N, 1)

CONTINUE

EVALUATION OF RATIO OF SCALE FACTOR AT BOUNDARIES WHERE
POINTS ARE NOT FIXED, USING A LINEAR INTERPOLATION
OF CORNER POINTS.
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TOP WALL.

IF (BTYPE(1).EQ.1) GDOTO 140

DO 130 J=2 NM{ '
RSF{1.JU)=RSF{(1,1)+(U-1.D0)*(RSF(1,N)-RSF(1,1))/NM1

CONTINUE

RIGHT walLl.
IF (BTYPE(2).E0.1) GOTO 160
DO 150 I1=2,MM1

RSF(I.N)=RSF(1.N)+(1~-1.DO)*(RSF(M N)}-RSF(1{.N))/MM1 ,

CONTINUE
BOTTOM WALL.

IF (BTYPE(3).EQ.1) GOTO 180
DO 170 J=2,NM{1

RSF(M.J)=RSF(M, 1)+(uU~-1.00)*(RSF(M,N)-RSF(M, 1))/NMT
CONTINUE

LEFT walLlL.

If (BTYPE(4).EOQ.1) GOTD 200

DO 180 I=2,MM1
RSF(I,1)=RSF(1,1)+(XI-1.DO)*(RSF(M,1)-RSF(1,1))/MM1
CONTINUE

COMPUTATION OF THE RATIO OF SCALE FACTORS FOR THE
INTERIOR PODINTS USING THE RELATION PROPDSED
BY G. RYSKIN AND L.G. LEAL.

DO 220 I=2,MM1
DD 210 uU=2,NM1t
AMO=(1-1.D0)/MM1
AMi=(J~-1.D0O)/NM1
RSF(I1,4)=(1.DO-AMO)*RSF(1,J)+AMO*RSF(M,J)
1+(1.DO-AM{)=RSF(I,1)+AM1=RSF (I ,N)
2-((1.DO-AMD)*(1.DO-AM1)*RSF(1,1)
3+(1.DO-AMO)*AM1=*RSF(1.N)
4+AMO*( 1.DO-AM1)*RSF (M, 1)+AMO*AM1*RSF(M,N))
CONTINUE
CONT INUE
RETURN
END

SUBROUTINE DSF

I EEASEE RS S RS NSRS S RS F S R R R R SRR R R RS SRR NE RS R

NAME : DERIVATIVES AND SCALE FACTORS.

PURPDSE :

THIS SUBROUTINE COMPUTES THE FIRST ORDER DERIVATIVES OF THE

ARTESIAN COORDINATES WITH RESPECT TO THE ORTHOGONAL
ODORDINATES AND CALCULATES THE SCALE FACTORS.

CHARACTERISTIC:
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IMPLICIT REAL*B(A-H,D-2Z)

REAL*8 D(50.,50.4) .H(50.50.2),XY(50.50,2)
COMMON /BLK1/ M_N

COMMON /BLK3/ XY

COMMON /BLK4/ H

COMMON /BLKS5/ D

SET UP VARIABLES.

MM {=M-1
MM2=M=-2
NMi=N-1
NM2=N-2

DERIVATIVES AT CORNER.
TOP LEFT CORNER.
D(1.1,.1)=(-3.DO*XY(1,1,1)+4.D0*XY(1,2,1)-XY(4,3.1))/2.00
D(1.1.2)=(-3.DO*XY{(1,1,2)+4.DO*XY(1.2,2)-XY(1,3.2))/2.D0
D(1,1,3)=(3.D0*XY(1,1,1)-4.DO*XY(2,1.1)+XY(3,1,1))/2.D0
D(1.1.4)=(3.D0"XY(1,1,2)-4.D0*XY(2,1,2)+XY¥(3,1,2))/2.D0

TOP RIGHT CORNER.
D(1.N,1)=(3.DO*XY( 1+ ,N, 1)-4.D0*XY(1,NMt, 1)+XY(+ NM2,61))/2.DO
D(1.N.,2)=(3.DO*XY(1,N,2)-4.DO*XY(1,NM1,62)+XY (1 ,NM2,2))/2.DO
D(1,N,3)=(3.DO*XY(+,N,1)-4.DO*XY(2,N, 1)+XY(3.N,1))/2.D0
D(1¥,N,4)=(3.00*XY(1,N,2)-4.00*XY(2,N,2)+XY(3,N,2))/2.D0

BOTTOM LEFT CORNER.

D(M,1,1)=(-3.DO*XY(M,1,1)+4.DO*XY(M,2,1)-XY(M,3,1))/2.D0
D(M,1,2)=(~3.D0*XY(M,1,2)+4.00*XY(M,2,2)-XY(M,3,2))/2.D00
D(M,1,3)=(-3.DO*XY(M, 1,1)+4.DO*XY(MM1,1,1)~-XY(MM2,1,1)})/2.D0
D(M,1,4)=(-3.D0*XY(M,1,2)+4 . DO*XY(MM1,1,2)-XY(MM2,1,2))/2.D0

BOTTOM RIGHT CORNER.

D(M,N,1)=(3.DO*XY(M,N,1)-4.DO*XY(M,NM1, 1)+XY(M,NM2,1))/2.D0O
D(M.,N,2)=(3.DO*XY(M ,N,2)-4 . DO*XY(M NM{,2)+XY(M NM2,2))/2.D0
D(M,N,3)=(-3.DO*XY(M.N, 1)+4 DO*XY(MM1{ N, 1)~-XY(MM2 ,N,1))/2.D0
D(M.,N,4)=(-3.DO*XY(M,N,2)+4.DO*XY(MM1 ,N,2)-XY(MM2 ,N.2})/2.D0O

DERIVATIVES AT THE BOUNDARIES.

DO 10 J=2 NM1t

TOP WALL.
D(1,U,1)=(XY(1,J+1,1)-XY(1,J-1,1))/2.D00
D(1,J.2)=(XY(1,J+1,2)-XY(1,U-1,2))/2.D0

D(1.J.3)=(3.00*XY(1,J,1)-4.00"XY(2.J,1)+XY(3,J,1)})/2.D0
D(1,U,4)=(3.D0*XY(1.J.2)-4.D0*XY(2.J.2)+XY(3,J.2))/2.00
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BOTTOM WALL.

D(M.J,1)=(XY(M . J+1,1)-XY(M,U-1,1))/2.D00
D(M,J,2)=(XY(M,J+1,2)-XY(M,J-1,2))/2.D0
D(M.J,3)=(-3.DO*XY(M.J.1)+4 . D0*XY(MM1 J, 1)-XY(MM2,J,1))/2.00
D(M,J.4)=(-3.DO*XY(M,J.2)+4 .DO*XY(MM1,J,2)-XY(MM2,.J,2))/2.D0
CONTINUE

DC 20 1=2,MM1

LEFT WALL.
D(I.4,1)=(-3.D0*XY{(I.1,1)+4.00*XY(1.,2.1)-XY(1.3,1))/2.D0
D(I1,1.2)=(-3.DO*XY(1,1.2)+4.D0*XY(1,2,2)-XY(1.3.2))/2.00
D(I1,1.3)=(XY(1-1,1,1)-XY(I+1,1,1))/2.D0
D(I,1,4)=(XY(I-1,1,2)-XY(I+1,1,2))/2.00

RIGHT WALL.

D(I.N,1)=(3.DO*XY(1I,N,1)-4.00*XY(I NM1,61)+XY(I ,NM2,1))/2.D0O
D(I.N,2)=(3.D0O*XY(I,N,2)-4.DO*XY(I ,NM{,2)+XY(I ,NM2,2))/2.D0
D(I.N,3)=(XY(I-1,N,1)-XY(I+1,N,1))/2.00
D(I.N.4)=(XY(I-1,N,2)-XY(1+1,N,2))/2.D0
CONTINUE

DERIVATIVES FOR THE INNER GRID POINTS.

DO 40 1=2,MM1
DO 30 J=2,NMt
D(I,J,1)=(XY(I,J+1,1)-XY(I,J-1,1))/2.D0
D(I,J.2)=(XY(I,JU+1,2)-XY(1,U-1.2))/2.D0
D(I.J,3)=(XY(I-1,J,1)-XY(I+1,4,1))/2.00
D(I.,J.4)=(XY(I-1,J,2)-XY(1+1,4,2))/2.D0
CONTINUE

CONT INUE

CALCULATION OF THE SCALE FACTOR.

DO 60 I=1.M
DO SO J=1,N
H(I,d.1)=(D(I,J,1)**2+D(I,J.2)**2)**0.5D0
H(I.J.2)=(D(I.J.3)**2+D(1.J,4)**2)*=0.5D0
CONTINUE

CONTINUE

RETURN

END

DOUBLE PRECISION FUNCTION F(Z,I)

C % % e e ik ok ok ek e ok ok sk o o e e  a o K  K R e kK ke Kk

OOO0O0O00O0000

NAME: FUNCTION.
PURPOSE :

THIS SUBPROGRAM SPECIFIED THE OIRICHLET BOUNDARY CONDITIONS

OR RETURN THE NORMAL DERIVATIVE AT THE WALLS.

INPUT DATA:
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- Z: INDEPENDENT VARIABLE.
1: FUNCTION NUMBER (1 TO 8).

WHERE I=1: FUNCTION TOP Y=F(X)
I1=2: FUNCTION RIGHT X=F(Y)
I=3: FUNCTION BOTTOM Y=F(X)
I=4: FUNCTION LEFT X=F(Y)
I=5: DERIVATIVE TOP.
I1=6: DERIVATIVE RIGHT.
I1=7: DERIVATIVE BOTTOM.
1=8: DERIVATIVE LEFT.

RS R R E SR R SRR ERE SRSl R RN RS RS E S R R SRR R RS R R R SRR R SRR RENSE RS RN S

IMPLICIT REAL*B(A-H,D0-2)
AMP=0.075D0

FUNCTION TOP WALL.
IF (I1.EQ.1) F=1.DO
FUNCTION RIGHT WALL.
IF (1.EQ.2) F=1.DO
IF (1.EQ.2) F=1.DO-AMP+AMP*DCOS(4.DO*DATAN(1.D0)*2Z)
IF (1.EQ.2) F=1.DO+AMP-AMP=DCOS(4.DO*DATAN(1.D0)*2)
IF (I.EQ.2) F=1.DO-AMP+AMP=*DCOS(8.DO*DATAN(1.D0)*2Z)
IF (1.EQ.2) F=1.DO+AMP-AMP*DCOS(8.DO*DATAN(1.D0O)*2)
FUNCTION BOTTOM WALL.
IF (1.EQ.3) F=0.DO
FUNCTION LEFT WALL.
IF (1.E0.4) F=0.00
DERIVATIVE TOP WALL.
IF (1.EQ.5) F=0.DO
DERIVATIVE RIGHT WALL.
IF (1.€EQ.8) F=0.D0O
IF (1.EQ.6) F=-4 .DO*DATAN(1.DO)*AMP*DSIN(4 .DO*DATAN(1.D00)*Z)
IF (1.EQ.6) F=4 . DO*DATAN(1.D0)*AMP*DSIN(4.DO*DATAN(1.00)*2)
IF (1.EQ.6) F=-8.DO*DATAN(1.DO)*AMP*DSIN(8.DO*DATAN(1.00)*2Z)
IF (1.EQ.6) F=8.DO*DATAN(1.DQ)*AMP*DSIN(8.DO*DATAN(1.D0)*2Z)
DERIVATIVE BOTTOM WALL.
IF (I1.EQ.7) F=0.DO
DERIVATIVE LEFT WALL.
IF (I1.EQ.8) F=0.DO

RETURN
END
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NAME : NUSSELT.
PURPOSE :

THIS SUBROUTINE COMPUTES THE DISTANCE ALONG THE WALLS, THE

LOCAL NUSSELT NUMBERS AND THE AVERAGE NUSSELT NUMBERS.

CHARACTERISTIC:

- INTEGRATION BY TRAPEZE.
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IMPLICIT REAL*8(A-H,0-2)

REAL*8 H(50,50,2)

REAL*8 DIST(50,4),.NUAV(4) .NUL(50.4)
REAL*8 T(50,50)

COMMON /BLK1/ M,N

COMMON /BLK4/ H

COMMON /BLK7/ T

COMMON /BLK13/ DIST,NUAV, NUL

SET UP VARIABLES

NP 1=N+1 ’
DIST(1,2)=0.D0

DIST(1,4)=0.D0

NUAV(2)=0.D0

NUAV(4)=0.00

RIGHT WALL. .
CALCULATE THE DISTANCE (TOP TO BOTTOM) AND THE LOCAL NUSSELT

NUMBER . :

DO 10 I=2.M
DIST(I.2)=DIST(I-1,2)+(H(I N.2)+H(I-1,N.2))/2.D00
NUL(I,2)=2.DO0O*(T(I . NP1)-T(I ,N))/(H(I-1,N 1)+H(I,N,1))
NUAV(2)=NUAV(2)+NUL(I,2)*(DIST(I,2)-DIST(I-1,2))

CONTINUE .

NUAV(2)=NUAV(2)/DIST(M,2)

LEFT wWALL.
CALCULATE THE DISTANCES (TOP TOD BOTTOM) AND THE LOCAL NUSSELT

NUMBER .

D0 20 I=2,M
DIST(I.4)=DIST(I-1.4)+(H(I,1,2)+H(I-1,1,2))/2.D0
NUL(I,4)=2.D0*(T(1,2)-T(I.1))/(H(I-1,1,1)+H(I,1,1))
NUAV(4)=NUAV(4)+NUL(I,4)*(DIST(I.4)-DIST(I-1,4))

CONTINUE

NUAV(4)=NUAV(4)/DIST(M.4)

PRINTOUT.

WRITE (6,30) NUAV(2) . NUAV(4),DIST(M 2) ,DIST(M, 4)



212

RETURN :
30 FORMAT(/,T5,AVERAGE NUSSELT NUMBER (RIGHT WwALL)= ' .D15:7./,

175, AVERAGE NUSSELT NUMBER (LEFT WALL)= ‘.,D15.7./,

2TS., 'LENGTH OF THE WALL(RIGHT)= ‘,D15.7./,

375, 'LENGTH OF THE WALL(LEFT)= ' ,D15.7)

END
o
C
Cc

SUBROUTINE ORTHO
gt..‘tﬁ‘l"t‘t"t...‘t‘t.l‘*lllnt‘ttt't‘.-"ﬁ‘ltl’*“i.-.‘l'ttt-l"ttt.
Cc
c NAME : ORTHOGONAL.
o}
o] PURPOSE :
C
C THIS PRDOGRAM CALCULATES THE INTERSECTING ANGLE OF TWD
C COORDINATE LINES AT ALL POINTS OF THE GRID.
C
C NB. THE FORMULA USED HERE IS TAKEN IN THE CHIKHLIWALA AND YOHSOS
C ARTICLE.
C

Co& % %k Mok sk ok 8ok e ke ke kK kN ke T A ke ke e e ok e ek R Rk ke K K Kk

c
IMPLICIT REAL*8(A-H,0-2)
REAL*8 D(50,50.4)

COMMON /BLK1/ M,N
COMMON /BLKS5/ D

C
C*=»* SET UP DATA.
c
DIFA=0.DO
SUM=0.0DO
MI=1
MJ=1
Cc
C*=*=* ORTHOGONALITY TEST.
Cc

DO 20 I=t,M
DO 10 J=1,N
AMO=0(I,J,1)*D(I,J,3)+D(1,J.2)=0(I,J,4)
AM1=((D(I,J.1)*==2+D(I,J,2)**2)*=0.5SDO)*((D(I,d,3)=*2
1+0(1,J,4)**2)*=0.500)
ANGLE=DARCOS (AMO/AM1)*180.D0/{4.DO*DATAN(1.D0))
SUM=SUM+DABS (S0.0DO~ANGLE)
AMO=DOMAX 1(DIFA,DABS(90.00-ANGLE))
IF ((AMO-DIFA).LT.1.0D-6) GOTO 10
MI=1
MU=y
DIFA=AMO
10 CONTINUE
20 CONTINUE

c
C*** AVERAGE DEVIATION OF ORTHOGONALITY.
c

SUM=SUM/ (M*N)
C
C*+** PRINTOUT.:
c



[eNeNe I

C

WRITE (6,30) DIFA MI MJ
WRITE (6.40) SUM
RETURN
30 FORMAT(/,TS, ‘MAX. DEVIATION OF ORTHOGONALITY ‘,
1°(ALL POINTS, DEGREE)= .

2015.7,/.75.POSITION: 1= ‘,I2,° ,J= *.12)
40 FORMAT(/,TS5, AVERAGE DEVIATION OF ORTHOGONALITY
1’ (ALL POINTS, DEGREE)= .D15.7)
END

SUBROUTINE CNTR (IMAX,JMAX,NCNTR)

ot AR E RS EE RS IR R L A R R A R A R N R

[eEeNsNeNoNoNoNs N Ne e ReNe Ne Ne Ko Re Na N2 Re Ke!

c

NAME : CONTOUR.
PURPOSE :
THIS SUBROUTINE DRAWS THE CONTOUR LINES OF A SCALAR
DEPENDENT VARIABLE
WHICH IS KNOWN DVER A NON RECTANGULAR GRID.
INPUT DATA:
- IMAX: MAXIMUM VALUE OF THE INDEX I IN XYZ(I,J.K).
- JMAX: MAXIMUM VALUE OF THE INDEX J IN XYZ(I,J.K).
= NCNTR: NUMBER OF CONTOUR LINES.
CHARACTERISTIC:

= LINEAR INTERPOLATION IS USED.

W S e ook ok a0 ak i o e o e i N B ok e e ok ol e e i i ok o i I R K e i ol i 0 ke e e i Sl ol ke i e e e ok ke o ol o R R i e e

REAL XYZ(50,50,3),XCNTR(10),YCNTR(10),2CNTR(50)
COMMON /BLKA/ XYZ.ZCNTR

C*=== SET UP VARIABLES.

C

(o4

IMAXM1=IMAX~-1
JMAXM1=JMAX~1

C**+* OVERALL LOOP.

C

DO 80 K=1,NCNTR
00 70 I=1,IMAXM1
DO 60 JU=1,JMAXM1

ZMAX=AMAX 1(XY2(1.J.3),.XYZ(I+1,J,3).XY2(I J+1.3),
IXYZ(I+1,J+1,3))

ZMIN=AMINI(XYZ(I,J.3) ,XYZ(I+1.d,3),XYZ(I,J%1.3),
IXYZ(I+1,d+1,3))

IF ((ZCNTR(K).LT.ZMIN).OR.(ZCNTR(K).GT.ZMAX)) GOTO 60

L=0

ZMAX=AMAX1(XYZ(I.,J.3).XYZ(1, U+1,3))

ZMIN=AMINT(XYZ(I,J.3).XYZ(1,J+1,3))

IF ((ZCNTR(K).LT.ZMIN).OR.(ZCNTR(K).GT.ZMAX)) GOTO 10

L=L+1

XCNTR(L)=XLINT(I, J,I,J+1.K)
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10

20

30

40

50
60
70
80

YCNTR(L)=YLINT(I,J,1,U+1.K)

ZMAX=AMAX 1 (XYZ(I ,J+1,3).XYZ(1+1,J+1.3))
ZMIN=AMINI(XYZ(1,U+1,3) ,XYZ(1+1,4d+1,3))
IF ((ZCNTR(K).LT.ZMIN) .OR.(ZCNTR(K).GT.2ZMAX)) GOTO 20

L=L+1
XCNTR(L)=XLINT (I ,J+1,1+1,J+1,K)
YCNTR(L)=YLINT(I u+1, 1+1,J+1 ,K)

ZMAX=AMAX1(XYZ(I+1,J,3).XYZ(I+1,J+1,3))
ZMIN=AMINI(XYZ(I+1,J,3) . XYZ(I+1,J+1,3))
IF ((ZCNTR(K).LT.ZMIN).OR.(ZCNTR(K).GT.ZMAX)) GOTOD 30

L=L+1
XCNTR(L)=XLINT(I+1,J,I+1,J+1 K)
YCNTR(L)=YLINT(I+1,J, 1+1,J+1 K}

ZMAX=AMAX1(XYZ(I,J,3)}.XYZ(I+1,4.3))
ZMIN=AMINA(XYZ(1,J,3),.XYZ(I+1,J.3))
IF ((ZCNTR(K).LT.ZMIN).OR.(ZCNTR(K).GT.ZMAX)) GOTO 40

L=L+1
XCNTR(L)=XLINT(I,J.I+1,J,K)
YOCNTR(L)=YLINT(I J,I+1,J,K)
IF (L.EQ.2) GOTO 50
XCNTR(1)=XYZ(I.,J,1)
YCNTR(1)=XYZ(1.J,2)
XCNTR(2)=XYZ(1,u+1, 1)
YCNTR(2)=XYZ(1,J+1,2)
XCNTR(3)=XYZ(I+1,U+1,1)
YCNTR(3)=XYZ(I+1,J+1,2)
XCNTR(4)=XYZ(I+1,J,1)
YCNTR(4)=XYZ(1+1,J,2)
XCNTR(S)=XYZ(1,J,1)
YCNTR(S)=XxYZ(1.,J.2)
XCNTR(6)=XYZ(I+1,d+1,1)
YCNTR(6)=XYZ(I+1, d+1,2)
CALL CURVE (XCNTR,YCNTR,G.0)
XCNTR(1)=XYZ(I+1,J,1)
YCNTR(1)=XYZ(I+1,J,2)
XCNTR(2)=XYZ(I,J+1, 1)
YCNTR(2)=XYZ(I.J+1.,2)
CALL CURVE (XCNTR,YCNTR,2,0)
GOTO 60
CALL CURVE (XCNTR,YCNTR.2,0)
CONT INUE
CONTINUE
CONTINUE
RETURN
END

REAL FUNCTION XLINT (I1.J1,I2.J2.K)
REAL XYZ(50.50,3).ZCNTR(50)

COMMON /BLKA/ XYZ.ZCNTR
AMO=ZCNTR(K)-XYZ(I1,J1.3)
AM1=XYZ(I12,J2.3)-XYZ(I1.J1.3)
AM2=XYZ(12.J2.1)-XYZ(I1.J1.1)
XLINT=AMO*AM2/AM1+XYZ(I 1 J1,6 1)
RETURN

END
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REAL FUNCTION YLINT (I1,J1,12.J2.K)
REAL XYZ(50.50,3).2CNTR(50)

COMMON /BLKA/ XYZ,(ZCNTR
AMO=ZCNTR(K}=XYZ(11.41.3)
AM1=XYZ(12,J2,3)->YZ2(11,d1.3)
AM2=XYZ(12,J2.2)-XYZ(I1,41.2)
YLINT=AMO*AM2/AMI+XYZ(I1,d1.2)
RETURN

END
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APPENDIX B

The numerical results of Part II are‘presented in this
appendix. Plots of the grid; the temperature, stream
function and vorticity distributions; and the local Nusselt
number distributions along the left and right wall are
presented here for each cavity type, dimensionless amplitude
and Rayleigh number. The results of cavity Ct are presented
first. For each cavity, the results are presented in order
of increasing amplitude, and for each amplitude, they are
given in order of increasing Rayleigh number.

Each of the following pages contains the information

listed below:

1. The wvalues of the Prandtl number, Rayleigh
number and dimensionless amplitude are written
at the top of the left column. Directly below,
in the same column, the average Nusselt numbers
of the isothermal walls, the vorticity countour
line values and the stream function countour.
line values are listed. The values of the
isotherms are not included because they always
range from 0 (cavity ieft wall) to 1 (cavity
right wall) in increments of 0.1.

2. Plots of local Nusselt number along the right
and left walls versus the distances calculated
from the top of the cavity are presented at the

middle and the bottom of the 1left column,
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respectively.

Plots of the grid and the temperature, stream
function and vorticity contours are presented in
order from the top to the bottom of the right
column. The minimum contour line value for the
steam function is always the one corresponding
to the wall. The maximum positive contour line
value for the wvorticity 1is always the one

closest to the center.
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Ra= 0.0

DIMENSIONLESS aMp| 1TUDE~ -0 150

AVERAGE NUSSELT NUMBER (RIGHT waAll )~ 0.1164160£+401
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PR= 1.0
Ra= 1000.0
DIMENSIONLESS AMPLITUDE= -0.150
AVERAGE NUSSELT NUMBER (RIGHT wALL)e
AVERAGE NUSSELT NUMBER (LEFT waLL)-
LENGTH OF THE WALLIRIGHI )=
LENGTH OF THE WALL{LEFT)e
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PRe 1.0
Rae 3000.0
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PR 1.0

RA= 10000.0Q

OIMENSTONLESS AMPLITUDE« -0.150
AVERAGE NUSSELT NUMBER (RIGHT WALL )+
AVERAGE NUSSELT NUMBER (LEFT waLl)s
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PRe 1.0

RA= 30000.0

DIMENS IONLESS AMPLITUDE. -0.1S0
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LENGTH OF THE WALL(RIGHT )« 0.10533728+01

LENGTH OF THE WALL(LEFT)~ 0. 100000QE+O 1

VORTICITY COUNTOUR VALUES.
MiIN= -0 1060230€4+04
HAX = 0.2697053E+00

CONTOUR # 1 -0.9272361£+¢03
CONTOUR » 2 ~0.7B42428E403
CONTOUR # 3 ~0.6612483€+03
CONTOUR # 4 -0.5282561£4+03
CONTQUR «# s ~0.3952627€+¢03
CONTRUR # [ -0.2622688£+03
CONTOUR » 7 ~0.1292756E¢03
CONTOUR » 8 0.3718262£401
CONTOUR # s 0. 1367117E+03

STREAM FUNCTION CONTOUR VALUES.
MIN- 0.0
MAX= 0.7396083E+01

CONTOUR » ] 0.7396083E400
CONTQUR # 2 0.1478218E+01
CONTOUR # 3 0.2218827E+01
CONTOUR # 4a G.2958436E+401
CONTOUR # 5 0.369804S5€+401
CONTOUR # (3 0.4437655E+401
CONTOUR « 7 0.5177264E+01
CONTOUR # [} 0.5916874E4+01
CONTOUR # 8 0.6656483E401

3

¢_;'~

a

e

a

peE

o

-

6.0

NUSSELT NUMBER
s.0

4.0
—L

o | AVERAGE ol

TN

i

SRESNENR!

)

e
2
-]
-
e
e T T T T T T
0.0 .2 0.4 0.6 0.8 . 1.0 1.2
DISTANCE (TOP TO BOTTOMI
e
8-
o
2]
e
2]
Q
Ee
2~
Eo n'.m.“.
— 'ﬂ'w Y.
3 --
L -
[ -
S “u
Z a
- ‘.' AVERAGE
"
M .,
- '-,_“““
e
i X T Y T hl
8.0 0.2 u.e 1.0 12

0.4 0.8
DISTANCE (TOP TO BOTTOMI

222



RA= 100000.0
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PR 1.0
RA= 3000.0
OIMENSIONLESS AMPLITUDE® -D.078
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CONTOUR # [ ©.1818581£+01
CONTOUR » 7 0. 1768189E+01
CONTOUR » [ ] ©.2020788L <01
CONTOUR # ] ©.22733078+01
o
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PR+ 1.0

RA= 30000 .0

DIMENSIONLESS AMPLITUOE» -0.075

AVERAGE MUSSELYT NUMBER (R1GHT wall)e 0.22713438401
AVERAGE MUSSELT NUMBER (LEFT wALL)e 0.2302238¢8+01
LENGTH OF THE WALLIRIGHKT )e 0. 10137278001

LENGTH OF THE WALL(LEFT). ©. 1000000€ +0 1

VORTICITY COUNTOUR VALUES.
Mine =0.43287832E~02
Rixe 0. 13116608 +02

CONTOUR # 1 =0.3764708€+02
CONTOUR # 2 ~0.3200668£+02
CONTOUR # ] «0.2628628€+02
CONTOUR # 4 -0.2072%87¢£+02
CONTOUR # 1.1 ~0.1808347£+03
CONTOUR # [ +0.04450801 02
CONTOUR # ? ~0.38046J8E+02
CONTQUR # L] 0.1828742€+02
CONTQUR # ® 0.7476172€6+02
STREAM FUNCTION CONTOUR VALUES.
MiNe 0.0
MAXS 0.485673JE 0y
CONTOUR # 1 0.4956732F+00
CONTOUR »# 2 ©.80 12809¢+00
CONTOUR # k] 0. 148T7025E+01
CONTOUR # 4 ©.1982700E+01
CONTOUR » 1] 0.2478374¢£+01
CONTOUR # [ ] ©0.2874081E+01
CONTOUR # ? 0.3489727E+01
CONTOUR # [] 0.3865402£ 401
coNTOUR 2 9 0.4461076E+01
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http://-0.433t7S3E.03

PR 1.0

Kae= 30000.0

DIMENSIONLESS AMPLITUDE® =-0.078

AVERAGE NUSSELY MUMBEA (RICHMT WALL)» 0.31848 18801
AVERAGE NUSSELT NUMBER (LEFY wall)e 0.232287878+01
LENGTIN OF THE WALL(RIGHT ). ©.1013737040

LENGTH OF THE WALL{LEPT)e 0. 10000008 +0 1

VORTICITY COUNTOUR vaLUES.
MIN®  -0.1047080€ 04
MAXe ©.26600371+02

228

CONTOUR # 1 =0.01868028+03
CONTOUR # 2 “0.78427226+03
CONTOUR # H) =0.8828640£+0)
CONTOUR # a ~0.8214588¢£40)
CONTOUR » 8 =0.3800476E+03
CONTOUR # s -0.2886394£+03
CONTOUR # 7 «0.12722128+0)
CONTOUR » ] 0.84177002E+01
CONTOUR » ] ©0.12355882£+0)
STREAN FUNCTION CONTOUR VALUES.
MINe 0.0
MHAXe 0.7403012€+01
CONTOUR » 1 0.7403811E+00
CONTOUR » 2 0. 1480782£+01
CONTOUR » 3 0.22211728+01
CONTOUR # 4 0.2961864E+01¢
CONTOUR » 8 0.3701854E+01
CONTOUR » s 0.4442348E+01
CONTOUR # ? 0.8182737¢8+01
CONTOUR » [ ] 0.88223129L+01
CONTOUR » ] 0.6663319¢+01
o
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PRe 1.0
RAs 100000.0 |
DIMENSIONLESS AMPLITUDE. ~0.078

AVERAGE NUSSELY NUMBER (RIGMT WALL )= ©.48772808+01

AVERAGE NUSSELT NUMBER (LEFT waLl)e 0.
LENGTM OF THE WALL(RIGHT)e ©.1013727¢+01
LENGTH OF TME wALL(LEFPT)- O.lmE‘O!

VORTICITY COUNTOUR VaALUES.
MiNe  -0.2678384£404
HAXe 0.6326648£¢02

CONTOUR »# 1 *0.23453200¢+04
CONTOUR » 2 *0.2012178¢€+04
CONTOUR # ] ~0.1678070¢ *0O¢
CONTOUR » a “0. 1245063E+04
CONTOUR » 1 ] ~0. 1012860 +04
CONTOUR » s ~0.87978318+02
CONTOUR # ? =0.2466304£¢03
CONTOUR # [ 0. 135454 1E+02
CONTOUR »# 1] 0.2195588¢+0
STREAM FUNCTION CONTOUR VALUES.
MINe 0.0
MAXa 0. 1006550¢+02
CONTOUR » t O 1006550¢+01
CONTOUR » 2 ©0.2012100E+01
CONTOUR # 3 0.3010650L+01
CONTOUR # L] ©.40262008+01
CONTOUR » ] ©.803278 18401
CONTOUR # € ©0.6029200€+01
CONTOUR »# v 0.7045851E+01
CONTOUR » 1] 0.8052402£+01
CONTOUR ¢ ] 0.90589326+01
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Pas 1.0

Ras 0.0

DININSIONLESS AMPLITUDE. 0.0

AVEIRAGE NUSSILY MMBER (RIOHT WALL)e ©. 10007 122401
AVERAGE MUSSELY MUOMBIR (LEFY walL)~ 0.89998428 400
LENGTH OF THE VALL(RIGHT ). ©. 10000008 ¢ 0
LENGTH OF THE WALLI(LEFT). 0. 1000000€+01

MUSSELT NUMBER
3.0 0 30 80 7o 6o t0 10,0
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R 1.0
fas 1000
OIMENSIONLESS AMPLITUDE- 0.0

AVERAGE NUSSELY NUMBER (RIGHT WALL)» O.1117314k0)
AVERAGE NUSSELT MUMBER (LEFY walL ). ©. 11171188200

LENGTH OF THI WALLIRIGHT)» ©. 1000000t *D
LENGTH OF THE WALLILEFT). ©. t000000E * 0}

VORTICITY COUNTOUR VALUES.
MIN®  =0.8111407E¢02
MAX e 0.3102279¢+02

)

conTouR # 1 -0.42800398+07
CONTOUR # 2 -0.348047 1£402
CONTOUR # 3 «0.2620002€+02
CONTOUR # . -0. 1789526E +02
CONTOUR # 8 *0.9880688E01
CONTOUR # 3 -0. 1288980€+01
CONTOUR # ? 0.7018707¢+01
CONTOUR # L) ©.1832320¢¢02
CONTOUR # ® 0.2362808£4+02
STREAM FUNCTION CONTOUR VALUES.
MIN> 0.0
MAXe 0. 1172180€+01
CONTOUR # 1 0.1172149E+00
CONTOUR # 2 0.2344289E400
CONTOUR # a 0.3816449E400
CONTOUR # 4 0.4888598£+00
CONTOUR # 8 0.8880748£+00
CONTOUR # . ©.70328978+00
CONTOUR # 7 0.82080478+00
CONTOUR # . 0.83771874+00
CONTOUR # s 0. 10549388401
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PR 1.0

Rae J000.0

OIMENSIONLESS ANPLITUOE: 0.0

AVERAGE NUSSELT NUMBER (RIGMT WALL)- 0. 180300710
AVERAGE NUSSELY NUMBER (LEFT wall)e 0. 1802778101
LENGTH OF THE WALLIRIGHT ). 0. 1000000E 40t

LANGTM OF THE WaLLILEFY). ©. 1000000E+0 1

VORYICITY COUNTOUR VALUES.
MiNe -0, 1472278¢+02
MAX= 0.8718168£+02

CONTOUR » ) =0.1388196€+00
CONTOUR » 2 «0. 10421178400
CONTOUR » 2 ~0.8280074k+02
CONTOUR »# 4 -0.6129%841+02
CONTOUR # L] ~0.3978702L+02
CONTOUR » [ 0. 1827990£402
CONTOUR # 7 0.322719218+0!
CONTOUR # 8 0.2473882E402
CONTOUR # ] 0.4624074£+02
STREAM FUNCTION CONTOUR VALUES.
MINe 0.0
MaAXe 0.27087008£+01t
CONTOUR # ' 0.2708798E+00
CONTOUR # 2 0.8419395£200
CONTOUR » 2 ©.8120383£+00
CONTOUR # 4 0.1082019L+0)
CONTOUR # 1 ] ©0.13542988401
CONTOUR » [ 0.1623877E+01
CONTDUR » ? 0.1896858£+01
CONTOUR # ] 0.2167837£401
CONTOUR # ® ©.2438816L401
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PR= 4.0 N
», 10000 .0
OINENSIONLESS AMPLITUDE® ©.0 41414

AVERAGE NUSSELY NUMBER (RIGMT WALL)* ©.2288860E+0t
AVERAGE NUSSELT NUMBER (LEFT wAll)e ©,22886776+01
LENGTH OF THE WALL(RIGMT)e  ©. tOO0000L +O1

LENGTH OF THE WALLILEFT)e  ©. 1000000 +01 1 4-FHH 1

VORTICITY COUNTOUR vaLULS.
MINe <0.4387206E+00
MAX s 0.12788775+03

CONTOUR # 1 ~0.3712842£4+02
CONTOUR # 2 =0.3188020¢+02
CONTOUR # -] =0.2600418E+00
CONTOUR » 4 *0.2048804E+00 8
CONTOUR »# 0. 14941828+03
CONTOUR # [ *0.0298778£+02
CONTOUR # k] «0.28049688¢8+02
CONTOUR »# [ ] ©.1696460E+02
CONTOUR # ® 0.7242578F+02
STREAM FUNCTION CONTOUR VALUES.
NINe 0.0
MAXS 0.8112517€+01
CONTOUR # 1 0.5112517£+00
CONTOUR # 2 ©0.1022502€+014
CONTOUR '# 3 ©.1833784E+01
CONTOUR # 4 0.2043006E+01
CONTOUR # ] ©.28862337L+01 .
CONTOUR # [ ] ©0.2067808€+01
CONTOUR #¢ b 0.38787%76 1801
CONTOUR # [ ] ©.4090013£+01
CONTOUR # ] ©.4801268L 01
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PR= 1.0

Ra= 30000.0

OIMENSIONLESS aMPLITUDE- 0.0

AVERAGE NUSSELY MMBER (RICHT waLl)s 0.3178228140
AVERAGE NUSSELY MumBER (LEFT wALL)» 0.21792881+01
LENGTH OF THE wALL{RIGNHT ). ©. 1000000E+0 1

LENGTH OF THE WALLILEPT ). 0. 1000000E+0 ¢

VORTICITY COUNTOUR VALUES.
MHlNe =0, 1042280£+04
MAXe 0.2807678E+0

'
d
1

CONTOUR # | ~0.9120889E+02
CONTOUR # 2 -0.7818823E+03
CONTOUR # ] -0.6816506E *03
CONTOUR ¢ 4 ~0.6214480€+03
CONTOUR # [ ~0.3012488£+02
CONTOUR # 3 ~0.2610420E+03
CDNTOUR 7 7 ~0.1308403E+02
CONTOUR # s “0.6374813E+00
CONTOUR » ° ©0.1208647€+03
STREAM FUNCTION CONTOUR VALUES.
MiN- 0.0
MAXe  0.7335072E+0!
CONTOUR # 1 0.7335073£+00
CONTOUR # 2 0. 146701401
CONTOUR ¢ 3 0.2200821€+01
CONTOUR # 4 0.2834029£+01
CONTOUR # [ 0.3667625E+01
CONTOUR »# 6 0.44010423E+01
CONTOUR # 7 0.8134860E+01
CONTOUR # [ 0.58688038E+01
CONTDUR # ' ©.66018656+01
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PR 1.0
fas 100000Q.0
DIMENSIONLESS AMPLITUDE. ©.0

AVERAGE MNUSSELT MUMBER (RIGMT WALL)= ©.43029 168401
AVERAGE MNUSSELY NUMBER (LEFY WALL)e 0.488240024+01

LENGTH OF THE WALL{RIGHT)e ©. 000000k +0 1
LENGTYN OF THE walLL{LErFT)e 0. 1000000€+0 1

VORTICITY COUNTOUR VALUES.
MINe  =0.3694243F+04
Maxe 0.62119218+02

CONTOUR # 1 +0.2362700F 404
CONTOUR » 2 *0.2021186E4+04
CONTDUR # J 0. 16998 128+04
CONTOUR # Ll ~0. 13600609 +04
CONTOUR # 1] =0. 1026328L+04
CONTOUR # [ ~0.70498 14402
CONTOUR # 7 ~0.3724382¢+03
CONTOUR # [ ] ~0.41804536+02
CONTOUR # ] ©0.28864948+0)
STREAM FUNCTION CONTOUR VALUES.
MINe 0.0
MAK = ©.1014181E+02
CONTOUR # 1 0.1014181E+01
CONTOUR » 2 0.2028301E+01
CONTOUR # 3 0.3042483E+01
CONTOUR # 4 ©.4058803E+01
CONTOUR # ] 0.8070738E+0)
CONTOUR # ¢ 0.808480€E+01
CONTOUR # 1 ©0.70898036£+01
CONTOUR # [ ©.8113208E+01
CONTOUR »# ® 0.9127258¢E+01
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PR 1.0

RA* 0.0

OINENSIONLESS AMPLITUDEe ©.078

AVERAGE NUSSELY NUMBER (RIGHT WALL)® ©0.9189898L+00
AVERAGE MNUSSELT NUMBER (LEFT waLL)e 0.8368884K+00
LENGTH DF TNE WALLIRIGHT)» 0.10127331+01

LENGTH OF THE WALLILEFT)- ©. 1000000E +0 |
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1000.0
DIMENSIONLESS AMPLTUDE- ©.078

AVERAGE MUSSELT NUMBIR (RIGHT wall)e
AVERAGE NUSSELT NUMBER (LEFT waLL ).
LENGTH OF THME WALLIRIGHT)»
LENGTH OF THE WALL(LEFY)»

0. 1032864L+01
0. 10660176401
©.1013721£+01
0. Y000000E+0 ¥

VORTICITY COUNTOUR VALUES.
MiN=  +D.B8269403E+02
MaXe ©.3188074£+02

237

"
1
]
1

CONTOUR ' -0.4425938€+02
CONTQUR # 2 -0.33638091+02
CONTOUR # H -0.273906 1€+02
CONTOUR » Ll «0. 18058 18¢+02
CONTOUR # s -0.1032167€+02
CONTOUR # . +0.30671738+01
CONTOUR » 7 0.6347200E+01
CONTOUR »# 8 0. 1478177802
CONTOUR # ] 0.2321625£+02
STREAM PUNCTION CONTOUR VALUES.
MiNe 0.0
MAX = 0.1236493E01
CONTOUR « 1 0.1236499E+00
CONTOUR # 2 0.2472986E +00
CONTOUR # 2 £.2709478E+00
CONTOUR # 4 0.4048972E+00
CONTOUR # [ 0.6182466E 00
CONTOUR # € 0.7418958€+00
CONTOUR «# 7 .8853452E+00
CONTOUR # 8 0. 1948E€+00
CONTOUR # 0 0. 1112844401
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PR- 1.0
Ras 2000.0

DININSIONLESS AMPLITUDE. ©0.078

AVERAGE NUSSELY WUMBER (RIGHT wAll)e  O. 14477688401
AVERAGE NUSSELT NUMBER (LEFT WALL)=  O.14878361+01
LINGTH OF THE WALL{RIGHT)= 0. 10137338401

LENGTH OF THE WALLILEFT)*  O.1DOOOOOLO1

VORTICITY COUNTOUR VALUES.
MiNe =0.18344201+00
MaAXe ©0.68520722+02

CONTOUR # 1 0. 121864¢E+0)
CONTOUR # 2 «0. 1096662£+00
CONTOUR # k] ~0.8776787£+02
CONTOUR # 4 ~0.6386851E+02
CONTOUR ¢ s =0.429711JE+02
CONTOUR # [ =0.22072778+02
CONTOUR # 7 =0. 1744080£ +00
CONTOUR # L] 0.2172308E+02
CONTOUR # ) 0.43622348+02
STREAM FUNCTION CONTOUR VALUES.
MIN= 0.0
MAX e 0.280110%9€-01
CONTOUR # L] 0.2811088€+00
CONTOUR » 2 0.5622118¢+00
CONTOUR # k] 0.8432177E+00
CONTOUR # 4 ©0.1124423E01
CONTOUR # ) 0.1403520€+01
CONTOUR # [ ] ©.1686824E+01
CONTOUR # 7 0.1967729€+01
CONTOUR # [ I 0.2248846L+01
CONTOUR # ] 0.25209823E+01
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PR= 1.0

Ra= 10000.0

OIMENSIONLESS ANPLITUDEe 0.07%

AVERAGE NUSSILT NUMBER (ALCHT wallle  ©.3190784€4+01
AVERAGE NUSSELT NUMBIR (LEFT WALL)»> 0.22210148401t
LEINGTH Of IHE WALLIRIGHT)» 0.t013732K+0)

LENOTH OF THE WALL{LEFY)- ©. 1000000¢ 401

VORTICITY COUNTOUR vaLULS.
MiNe  ~0.44128888+02
MAXe ©.1268181E+0)

CONTOUR # ' -0.28448468+0)
CONTOUR » 2 ~0.3276722€+0)
CONTOUR # ] =0.2708623E+0)
CONTOUR » ] ~0.2140%13E03
CONTOUR # ] «0. 1872400E+03
CONTOUR # 3 «0. 1004280£+03
CONTQUR » 7 =0.4361760E+02
CONTOUR » [] ©.1219236¢+02
CONTOUR »# ] 0.7000429£+02
SYREAM FUNCTION CONTOUR VALUES.
MiN- 0.0
MAX 0.5170072¢8+01
CONTQUR » [ 0.8170071E+00
CONTOUR # 2 0. 10340140
CONTOUR » 23 0.18510218+01
CONTOUR »# 4 0.2068017E+01
CONTOUR # ] 0.32%83025¢£+0
CONTOUR # [ 0.310204 1E+Q1
CONTOUR »# 7 0.3619049E+01
CONTOUR » ] ©.4136086E01
CONTQUR »# 9 0.4852064E+01
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PR 4. O
R 30000.0 .
DIMENSIONLESS ANPLITUDE- 0.078
AVERAGE NUSSELY NUMOER (RIOMT wALL)e
AVERAGE MUSSELY NUMBER (LEFT wall)e
CENGTH OF THE WALL{RIGMT). 0.10137
LENGTH OF THE WALLILEFT).

VORTICITY COUNTOUR valLuts.

MINe ~0. 1067008104
[T} O 0.26248221+0)
CONTDUR » \] =0.8244087E+0)
CONTDUR # 2 ~0.801818£+02
canNtour » 3 «0.6682737¢+07
CONTOUR » L] =0.835 1638803
CONTOUR # ] =0.4020570E+02
CONTOUR # [ =0.2800498E+03
CONTOUR # 7 «0.1358413£+03
CONTOUR # [ =0.27321841 01
CONIDUR # » 0.13037481+02
STRLAM FUNCTION CONTOUR VALUES.
MiNe 0.0
MAXe 0.7327776L01
CONIOUR » 1 ©0.73277176E+00
CONTOUR ¢ E ©. 1485338E+01
CONTOUR »# ] 0.2198332E°01
CONTOUR # . 0.28J1109E+01
CONTOUR ¢ ] ©.3662887€+01
CONTOUR # [ ©.4296664£+01
CONTOUR » 7 ©.8129441E01
CONTOUR ¢ ] ©0.5062221E+01
CONTOUR # ® ©.6394997[ 01
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PR 1.0

fas 0.0

OIMENSIONLESS AMPLITUDE= 0.150

AVERAGE NUSSELT NUMBER (RIGHT waAlL)e ©.8611182€+00
AVERAGE NUSSELT NUMBER (LEFT wALL)» 0.8847178E+00
LENGTH OF THE WALL{RIGHT)= 0.1083476E+01

LENGTH OF THE WALL(LEFT)= 0. 10000COE+0 1
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PR= 1.0
RA- 1000.0
OIMENSIONLESS AMPLITUDE* O 150
AVERAGE NUSSELT NUMBER (RIGHT WALL)e
AVERAGE NUSSELT NUMBER (LEFT WALL)=
LENGTH OF THE WALL(RIGHT)=
LENGTH OF THE WALL(LEFT)e

VORTICITY COUNTOUR VALUES.
MIN= -0.8488451E+02
MAX 0.3114812E+02

0.87981071E+00
0. 1031266E+01

0. 1053476E4+01
©. 1000000E+01

i
LT
]

111

INESEsRas|

CONTOUR ¢ 1 -0.46260123€+402
CONTOUR «# 2 ~0.3767788E+02
CONTOUR # 3 ~0.2807475E+02
CONTOUR # 4 =0.2047148E+02
CONTOUR » 5 -0.1186821£+02
CONTOUR # 6 ~0.3264954E+01
CONTOUR # 7 0.5338318E+01
CONTOUR # 8 0. 1384 15S8E+02
CONTOUR »# -] 0.2254483E+02
STREAM FUNCTION CONTOUR VALUES.
MIN= 0.0
MAX = 0.1274205E+01
CONTOUR ¢ 1 0. 127420SE+00
CONTOUR # 2 0.2548410E+00
CONTOUR » ] ©.3822615E+00
CONTOUR # 4 ©.5086821E+00
CONTOUR # 5 0.6371026£+00
CONTOUR # [ 0.7645231E+00
CONTOUR «» 7 0.8819436E+00
CONTOUR # 8 0. 1018363E+01
CONTOUR # 8 O.1146784E+01
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PRe 1.0

Ra= 3000.0

OIMENSIONLESS AMPLITUDE» O. 150
AVERAGE NUSSELT NUMBER (RIGHT waLL)e
AVERAGE MUSSELY NUMBER (LEFT WALL})e
LENGTH OF THE WALL(RIGMT)= 0.1053476E+01
LENGTH OF THE WALL(LEFT)~- ©. SO00000E +01

VORVICITY COUNYQUR VALUES.
®IN= ~0.1585402E+02
MAX = 0.6393082£+02

0.1366085€+0 4
0. 1439019€+01
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TIT]
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11T
INSepen]

W

CONTOUR # 1 ~0.1371937€+03
CONTOUR # 2 ~0. 1148466E+0]
CONTDUR # 3 ~0.9248940£+02
CONTOUR # 4 ~0.7015224€+402
CONYOUR » S ~0.4780507T€+02
CONTOUR # ] ~0.2545788€+02
CONTOUR # 7 “0.31107{BE+O1
CONTOUR »# 8 0. 1823645€+02
CONTOUR # 8 O.415B362€E+02
STREAM FUNCTION CONTOUR VALUES.
MIN= 0.0
MAX e 0.2869203E+01
CONTOUR # 1 0.2B68202E+00
CONTOUR » 2 0.5738405E+00
CONTOUR » 3 0.8607607E+00
CONTOUR # 4 0. 11476808401
CONTOUR # ) 0. 1434601E+0
CONTOUR # [ 0.1721520€+01
CONTOUR » T 0.2008441E401
CONTOUR «# 8 0.2295361£+01
CONTOUR # 8 0.2582281E+401
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PR= 1.0

RA= 10000.0

DIMENSIONLESS AMPLITUDE= O.150
AVERAGE NUSSELY NUMBER (RIGHT WaALL)e
AVERAGE NUSSELT NUMBER (LEFT WALL)-

0.2085385E+01
0.2187152€+01

LENGTH OF THE WALL(RIGHT)«
LENGTM OF THE WALL(LEFT)s

0. 1053476E+01
0. 1000000E+0 (

VORTICITY COUNTOUR VALUES.
MIN= -0.45213208E+02
MAXe 0. 1267906E+03

CONTOUR # \] =0.3951404£4+03
CONTOUR # 2 ~0.3371479E+403
CONTOUR # 3 -0.2791558€E+03
CONTOUR # 4 ~0.2211635£+0)
CONTQUR # -] -0. 1631 T7T11E£+0D
CONTOUR # 6 -0 . 105 1T90E 402
CONTOUR # 7 ~0.4718632€+02
CONTOUR ¢ B8 0. 1080566€+02
CONTOUR # -] ©.68787A5E+02
STREAM FUNCTION CONTOUR VALUES.
MIN= 0.0
MAX= O.51896774E4+01
CONTOUR # 1 0.5(96773E+00
CONTOUR » 2 0.1039354E+01
CONTQUR # ] 0. 155903 tE+01
CONTOUR # P 0.2078709€+01
CONTOUR # 5 0.2598385£+01
CONTOQUR » 6 ©.311B063E+01
CONTOUR 7 0.3637T41E+01
CONTOUR » 8 0.4157418E+0
CONTOUR # ] 0.46TTOS4E+0 1
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PR 1.0
Ras 30000.0
DIMENSIONLESS AMPLITUOE=- Q. 150
AVERAGE NUSSELT NUMBER (RIGHT WaLL)e=
AVERAGE NUSSELT NUMBER (LEFT wWALL)=
LENGTH OF THE WALL(RIGHT)=
LENGTH OF THE WALL(LEFT)»

VORYICITY COUNTDUR VALUES.
MINe <~0.1084109E404
MAX= 0.2631633t402

CONTQUR # 1 ~0.9491810E+03
CONTOUR # 2 ~0.8142546E+0)
CONTOUR # 3 ~0.6792274E+03
CONTOUR # 4 ~0.5444001E+02
CONTOUR # s ~0.4094734€+03
CONTOUR # [ =0.2743459E+403
CONTQUR # 7 ~0.1386167€+03
CONTOUR # 8 +~0.4681162E+01
CONTOUR # 9 0. 1302356E+403

STREAM FUNCTIDN CONTOUR VALUES.
HIN= 0.0

MAX= 0.73700S3E+01

CONTOUR
CONTOUR
CONTOUR
CONTOUR
CONTOUR
CONTOQUR
CONTOUR
CONTOUR
CONTOUR

0.7370053€+00
0.1474010E+01
0.2211015E+401
0.2948021E+01
©0.3685026E+01
©.4422030E+08
0.5159036E+01
0.5896042E+01
©.6633047E401
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PR« 1.0

Fas 100000.0
OIMENSIONLESS AMPLITUDE=~ O. 150

AVERAGE NUSSELT NUMBER (RIGHY WALL)=
AVERAGE NUSSELT NUMBER (LEFT WALL)=
LENGTH OF THE WALL(RIGHT)«
LENGTH OF YHE WALL(LEFT)-

VIRTICITY COUNTOUR VALUES.
MIN= -0.2748340E+04
MAX = 0.6252287E+03

CONTOUR » ] ~0.2411883E+04
CONTOUR » 2 -0.2074427E+04
CONTOUR «# K] 0. 1736968E+04
CONTOUR # 4 -0.1399512E+04
CONTOUR # H -0. 1062055E+04
CONTOUR # 6 -0.7245984£+02
CONTDUR # 7 ~0.3B71414€+0)
CONTOUR # 8 ~0.49G6843JE+02
CONTQUR » ® ©.2877722E+03

STREAM FUNCTION CONTOUR VALUES.
LY L 0.0
MAX = 0. 1050607£+02

O.4361712E+01
0.4594798E+01

0. 1053476E+401
0. 1000000E+0

1T

INSESs.)

CONTOUR # ] 0. 1050C607E+D1
CONTGUR # 2 0.2101243E+01
CONTOUR »# 3 0.3151818E+Q¢
CONTOUR # 4 0.4202426E+01
CONTOUR # s 0.5253033E+01
CONTQUR # & ©0.6303G3RE+0
CONTOUR ¥ 7 0.7354246E+01
CONTOUR # 8 0.8404854E+01
CONTOUR » -] 0.8455460£E+01
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PR> 1.0

RA= 0.0

DIMENSIONLESS AMPLITUDE= -0.1%0

AVERAGE NUSSELT NUMBER (RIGHT WALL)= 0. 1060091401
AVERAGE NUSSELT NUMBER (LEFT WALL)=  0.1262018E+01
LENGTR OF THE WALL(RIGHMT)=  0.1182486E+01

LENGTH OF THE WALL(LEFT)s  0.9998379€+00
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PR= 1.0
RA= 1000.0
DIMENSIONLESS AMPLITUDE- -0.150

AVERAGE NUSSELT NUMBER (RIGHT WALL)= 0. 1098033E+01
AVERAGE NUSSELT NUMBER (LEFT WALL)= 0.1310722€+01

LENGTH OF THE WALL{RIGHT)« O. 1192486E+01
LENGTH OF THE WALL(LEFT)= 0.9998379E+00

VORTICITY COUNTOUR VALUES.
MIN= <~0.7787270€+02
MAX ©.2656781E+02

CONTOUR # 1 ~0.6722864E+02
CONTOUR # 2 ~0.56584%8E+02
CONTOUR # 3 -0.4594057E+02
CONTOUR # 4 ~0.35296S1E402
CONTQUR # 5 ~0.2463247€402
CONTOUR # © -0.1400842E+02
CONTOUR 7 ~0.3364349E+01
CONTOUR # 8 0.7279684E+01
CONTOUR # 9 0.1782374E402
STREAM FUNCTION CONTOUR VALUES.
MINe ©.0

MAX " 0.7184311E+00

CONTQUR # 1 O.7184309E-01
CONTDUR # 2 0. 1436862E+00
CONTOUR # 3 ©0.2155282E+00
CONTOUR # 4 0.2873724E+00
CONTOUR # L 0.3582154E+00
CONTOUR # [ 0.4310586E+00
CONTOUR # 7 ©0.5028016E+00
CONTOUR # 8 0.5747448E+00
CONTOUR # ] 0.6465879E+00
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PR 1.0

Ra= 3000.0

OIMENSIONLESS AMPLITUDE- -0.150

AVERAGE NUSSELT NUMBER (RIGH! WALL)= 0. 1301820E+0¢
AVERAGE NUSSELT NUMBER (LEFT WALL)~ 0. 1552836E+01
LENGTH OF THE WALL(RIGHT )= 0. 1192486E+01

LENGTH OF THME WALL{LEFT)- 0.9999379E+00

VORTICITY COUNTOUR VALUES.
MIN=  ~0.2202487€+03
MAX = 0.7359B08E+02
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(111]
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17
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CONTOUR « 1 -0. 1308640E+02
CONTOUR «# 2 ~0. 16 14793E+03
CONTOUR » 3 -0. 1320947E4+0)
CONTOUR # 4 -0.1027100€403
CONTQUR # 5 ~0.7332532£¢02
CONTOUR # 6 -0.4394066E+0Q2
CONTOUR # T -0. t455598E402
CONTOUR # 8 0. 148286 TE+0Q2
CONTOUR # 9 0.44213268+02
STREAM FUNCTION CONTOUR VALUES.
MHINe 0.0
MAX = 0. 1800163E+01
CONTOUR »# 1 0. 1900163E+00
CONTOUR # 2 Q.3800325E+00
CONTOUR » 3 0.5700488E+00
CONTQUR »# 4 0.7600651E+400
CONTOUR # -] ©0.8500813E+00
CONTOQUR # € Q. 1140098BE+01
CONTOUR # T 0. 1230113E+D1
CONTCUR # 8 ©.1520130€+01
CONTQUR # -] ©. 1710145E+401
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PRe 1.0

RA® 10000.0
DIMENSIONLESS AMPLIYUDE- -0.150

AVERAGE NUSSELY NUMBER (RIGHT wWalLl )=
AVERAGE NUSSELT NUMBER (LEFT WALL)»
LENGTH OF THE WALL{RIGHT )«
LENGTH OF THE WALL{LEFT}-

©.1888602E401
0.2252446E+01

O.1182486E+01
0.68898119€+00

VORTICITY COUNTOUR VALUES.
MIN=  -0.60%2832€+03
MAX = 0.1476740E+03

CONTOUR # 1 -0.5299963E+03
CONTOUR # 2 ~0.4546997€+Q02
CONTOUR # 3 =0.J784031E+03
CONTOUR »# 4 ~0.3041064E+03
CONTOUR # 3 ~0.2288098£+01
CONTOUR » 6 =0. 1535132E+03
CONTOUR » 7 ~0.7821680€+02
CONTOUR # 8 ~0.2819922E+01
CONTOUR # -] 0.7237695E4+02

STREAM FUNCTION CONTOUR VALUES.
MINe 0.0

MAX = 0.4249744E4+01

CONTOUR
CONTDUR
CONTOUR
CONTOUR
CONTOUR
CONTOUR
CONTOUR
CONTOUR
CONTOUR

.4249744E+00
.B4DBY4BIE+0D
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PR= 1.0

RA= 30000.0

DIMENSIONLESS AMPLLITUDE= -0.150
AVERAGE NUSSELT NUMBER (RIGHT WALL)e
AVERAGE NUSSELT NUMBER (LEFT wALL)®
LENGYTH Df THE WALL(RIGHT)=  ©0.11824
LENGTH OF THE WALL(LEFT)=  ©0.899837

VORTICITY COUNTOUR VALUES.

MIN= -~0.1387027€+04

MAX e ©.2566 150E+03

CONTOUR # 1 =0.1222663E+404
CONTOUR # 2 ~0.10568289E+04
CONTOUR # 3 -0.8939348E+03
CONTOUR # 4 -0.7205708£+03
CONTOUR # L ~0.5652063E+03
CONTOUR # 6 -0.4008423€4023
CONTOUR # 7 ~0.2364778£+02
CONTOUR » a8 ~0.7211377€+02
CONTOUR ¢ 8 0.8226024£+02

STREAM FUNCTION CONTOUR VALUES.
MIN=- ©.0

MKAX= 0.7¢1T8GIE+O1

CONTOUR
CONTOUR
CONTOUR
CONTOUR
CONTOUR
CONTOUR
CONTOUR
CONTOUR
CONTOUR

T117860£400
1423592E+01
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2047183E+01
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PR= 1.0

RA= 100000.0

DIMENSIONLESS AMPLITUDE- -0.150

AVERAGE NUSSELT NUMBER (RIGHT wall)e Q.381ST1TE<Q
AVERAGE NUSSELT NUMBER (LEFT wall)e 0.4550391E401
LENGTH OF THE WALL(RIGHT)= 0. 11824R6E4+01

LENGTH OF THE WALL(LEFT)= 0.8998378E400

VORYICITY COUNYOUR VALUES.
MIN=  -0.3236858E+04

MAX = ©.6008074E+03

CONTOUR
CONTDUR
CONTOUR
CONTOUR
CONTOUR
CONTOUR
CONTOUR
CONTOUR
CONTOUR

-0.2852193€+04
~0.2467526E+04
-0.2082859E+04
~0.1698193E+04
~0.1313526E+04
-0.9288584E403
<0.5441931E403
~0.1595264€+03

©.2251406€403
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STREAM FUNCTION CONTOUR VALUES.
HINe 0.0

MAX = 0.9830267E+01

CONTOUR
CONTOUR
CONTOUR
CONTOUR
CONTOUR
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CONTOUR

883026 TE+00
1866052E+01
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4915132E+01
SBSB159E+01
6€881186E+01
7864213E+401
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PR= 1.0

RA= 0.0

DIMENSIONLESS AMPLITURE- -0.075

AVERAGE NUSSELT NUMBER (RIGHT WALL )= 0. 1046563E401
AVERAGE NUSSELT NUMBER (LEFT WALL)e 0.1098328E+01
LENGTH OF VTHE WALL(RIGHT)- 0. 1052813E+01

LENGTH OF THE WALL(LEFT)« 0.9998620€+00
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PRRe 1.0

RA+= 1000.0 .

DIMENSIONLESS AMPLITUDE= -0.075

AVERAGE NUSSELT NUMBER (RIGHT waLl)e= 0.1124238£404
AVERAGE NUSSELT NUMBER (LEFT WALL)- 0. 1183972€+01
LENGTH OF THE WALL{RIGHT)e 0. 10528 13E+01

LENGTH OF THE WALL(LEFT)= 0.8999620E+00

VORTICITY COUNTOUR VALUES.
MIN= ~0.6888629E8+02
HAX = Q.3121031E402

CONTOUR # 1 -0.5087662€+02
CONTOUR # 2 ~0.48B6687£+02
CONTDUR # 3 ~0.38857J2E402
CONTOUR # 4 ~0.2884767E+02
CONTOUR «# s ~Q.1883801€+02
CANTOUR » L3 -0.8828338£4+01
CONTOUR # 7 0. 1181305E+01
CONTOUR # 8 0. 1118088E+02
CONTQUR # 8 0.2120064E+02

STREAM FUNCTION CONTOUR VALUES.
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WUINe 0.0
MAX > 0.8785647E+00
CONTQUR # 1 0.9785646E-01
CONTOUR # 2 0.1857128E+00
CONTOUR # ke 0.2935693E+00
CONTOUR # 4 0.3814258E+00
CONTOUR # 5 ©.4892823E+400
CONTOUR # 6 0.56871387E+00
CONTOUR # 7 0.684B952E+00
CONTOUR # 8 0.7828517E+00
CONTOUR # 8 0.8B07081E+00
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PR= 1.0

RAe 3000.0

DIMENSIONLESS AMPLITUDE~ -0.075

AVERAGE NUSSELT NUMBER (RIGHT WALL)e 0. 1437706E+01
AVERAGE NUSSELT NUMBER (LEFT WALL )« 0. 15 13898E+01
LENGTH OF THE WALL(RIGHT)~ 0. 10528 13E+401

LENGTH OF THE WALL(LEFT)~ 0.8888620¢+00

VORTICITY COUNTOUR VALUES.
MINe <-0.1821734E+03
HAX= Q.7216084E+02

CONTOUR # 1 . ~0.1657400E+03
CONTOUR # 2 ~0.1393067E+03
CONTOUR # 3 -0.1128733£+0)
CONTOUR # 4 ~0.8643991E+02
CONTOUR # 5 ~0.6000653E+02
CONTOUR # 6 =0.JIBTINTE+02
CONTOUR # T -0.71397B6E+O1
CONTQUR # [} 0.1829358£+402
CONTOUR # 9 0.4572696E+02
STREAM FUNCTIDN CONTOUR VALUES.
MHIN- 0.0
HAX = 0.2394137E+01
CONTOUR # 1 0.2394137E+400
CONTOUR # 2 0.478827SE+00
CONTOUR # 3 0.7182412E400
CONTOUR # 4 0.857T6550E+00
CONTOUR # 3 0.119T7068E+01
CONTOUR # 6 0. 1436482E401
CONTOUR # 7 0.1675896E+01
CONTOUR # a8 0. 1915308€+01
CONTOUR # -] 0.2154722E+01
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par 1.0

RA= 10000.0

DIMENSIONLESS AMPLITUDE~ -0.07S

AVERAGE NUSSELT NUMBER (RIGHT WALL)®  0.2128877€+01
AVERAGE NUSSELY NUKBER (LEFY WALL)*  0.2238308E+01
LENGTH OF THE WALL{RIGHT}= 0.1082813E+01

LENGTH OF THE WALL(LEFT)}=  0.8998620€+¢00

VORTICITY COUNTOUR VALUES:
HiMe =0.BI0LOIGE*OI
Lo 0.1318301E+03
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CONTOUR # 1 -0 .4641676E+Q3
CONTOUR # 2 -0.3070333E+03
CONTOUR » 3 ~0.3316882£+03
CONTDUR » 4 -0.2654656E+03
CONTOUR # 8 ~0.1982314£+03
-CONTOUR # 6 ~0.1328873£+03
CONTOUR # 7 ~0.6676343E+02
CONTOUR #¢ a «0.52954 10£+00
CONTOUR # ] 0.6570468€+02
STREAM FUNCTION CONTOUR VALUES.
MINe 0.0 .
MHAXe 0.4824135E+01 .
CONTOUR # 1 0.4824136€+00
CONTOUR # 2 0.9648268€+00
CONTOUR # k] 0. 1447240E+01
CONTDUR # 4 0.1828653E+01
CONTDUR # | ] 0.2412066E+01
CONTOUR # 6 0.2864481£+01
CONTOUR # 7 0.3376883E+01
_CONTOUR # 8 0.3858307E+01
CONTOUR # 9 O.4341721E+01
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pas 1.0
Ras 30000.0

DIMENSIONLESS AMPLITUDE= -0.078

AVERAGE NUSSELT MUMBER (RIGHT WALL)®s  ©.2978804E+O1
AVERAGE NUSSELT NUMBER (LEFT WALL)®  0.3136203€401
LENGTH DF THE WALLIRIGHT)»  ©.1052B13E+01

LENGTH OF THE WALL(LEFT)s  O.9999620E+00

VORTICITY COUNTOUR VALUES.
MINe -0.1225978E+04
MAX e 0.3337362£+03

CONTOUR # 1 0. 1078007E+04
CONTOUR # 2 ~0.8300354E+03
CONTOUR # k] ~0.7820640£+02
CONTOUR » 4 -0.6240825£+03
CONTOUR # -3 ~0.4861211E+03
CONTOUR » [ ~0.2381498E+02
CONTOUR # 1 =0.1801785€+02
CONTOUR # 8 =0.4220703€+02
CONTOUR # -] 0.1057644E+03

STREAM FUNCTION CONTOUR VALUES.

MINe ‘0.0
MAXe 0.7303573E+01
CONTOUR # 1 O.7303572E+00
CONTOUR # 2 0. 14607 14E+0Q
CONTOUR »# 3 0.2181071E+0O1
CONTOUR ¢ 4 0.2821428E+01¢
CONTOUR « s 0.365178%5€+01
CONTOUR ¢ [ Q.4382142E+01
CONTOUR # 7 0.5112499€+401 -
CONTOUR # 8 0.5842857E+401
CONTOUR # ) 0.657321SE+01
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PR> 1.0

Ra= 100000.0
DIMENSIONLESS AMPLITUDE= ~0.075

AVERAGE NUSSELY NUMBER (RIGHT wALL)=
AVERAGE NUSSELT NUMBER (LEFT WALL)»
LENGTH OF THE WALL{RIGMY)=
LENGTH OF THE WALL{LEFT)~

0.4306437E+01
0.4534001€+01

0. 10528136401
0.9889620£+400

VORTICITY COUNTGQUR VALUES.
MIN® -~0.2884367E+04
MAX = 0.6340410E+03

CONTOUR » 1 ~0.2622526£+04
CONTOUR # 2 ~0.2260686E+04
CONTOUR »# 2 -0.1888845£+04
CONTOUR «# 4 -0. 15J7004E+04
CONTOUR # s ~O. 1175163€+04
CONTOUR «# 6 ~0.81332223E+03
CONTOUR « 7 ~0.4514817E+03
CONTOUR # 8 ~0.8864063E+02
CONTOUR # 8 0.2722000E+03
STREAM FUNCTION CONTQUR VALUES.
HINe 0.0

HAX e Q.8870117E+01

CONTDUR # 1 0.9870117E+00
CONTOUR » 2 0.1874023E+01
CONTODUR # 3 0.2961035E+01%
CONTOUR # 4 ©.384B047E+01
CONTOUR »# 3 0.4915059£+01
CONTOUR »# [ 0.5822070E+01
CONYQGUR # 7 0.6809081E+01
CONTDUR # 8 0.7886093£+01
CDNTOUR # [} 0.88BI105E+01
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PR= 3.0
RA= 0.0
OIMENSIONLESS AMPLITUDE= 0.0

AVERAGE NUSSELT NUMBER (RIGHT WALL)e 0. 10007 12E+01
AVERAGE NUSSELT NUMBER (LEFY WALL)- 0.9809542E+00
LENGTH OF THE WALL(RIGHT ). 0. 1000000E +0 1
LENGTH OF THE WALL(LEFT)= 0. 1000000k +0 |
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PR~ 1.0

RA« 1000

DIMENSIONLESS AMPLITUDE= 0.0

AVERAGE NUSSELT NUMBER (RIGHT WaAlLL)» O. 1(17J14E+0O1
AVERAGE NUSSELT NUMBER (LEFT wALL)- 0. 1117116E4014
LENGTH OF THE WALL{RIGHT)= 0. 1000000£+0 1

LENGTH OF THE WALL(LEFT )« 0. LO000QQE «0 Y

VORTICITY COUNTOUR VALUES.
MIN= -C.DI111407E+402
MAX = 0.3193279E+02

)

CONTOUR # ] -0.42080939£+02
CONTOUR # 2 ~0.2450471€+02
CONTOUR # 3 -0.2620003E+02
CONTOUR # 4 -0.1789836E+02
CONTOUR # 5 -0.9530668E401
CONTOUR # 6 -0.1285980€401
CONTOUR # 7 0.7018707E+01
CONTOUR # 8 0. 1532338E+402
CONTOUR # e 0.2362808£+02
STREAM FUNCTION CONTOUR VALUES.
MINs 0.0
MAX®  0.1172150E+01
CONTOUR # ' 0. 11721496400
CONTOUR # 2 0.2344289E+00
CONTOUR # 3 0.35164496+400
CONTOUR # a 0.4688598€+00
CONTOUR # 5 ©0.5860748E+00
CONTOUR # 6 0.7032897E+00
CONTOUR # 1 ©.820504TE+00
CONTOUR # 8 0.8377197E+00
CONTOUR # 9 0. 105493SE+01
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PR= 1.0

RA= 3000.0

OIMENSIONLESS AMPLITUDE« 0.0
AVERSGE NUSSELT NUMBER (RIGHT waALl)-
AVERAGE NUSSELT NUMBER (LEFT walLL)»
LENGTH OF THE WALL{RIGHT)~»
LENGTH OF THE WALL(LEFT)~

0. 180380T7E+0
0. 1503778E+0
0. 1000000E+0 ¥
0. 1000000£ 401

VORTICITY COUNTOUR VALUES.
MINe -Q.147327SE+403
MAX = 0.6775168E+02

CONTOUR # 1 -0.1258196E40)
CONTOUR # 2 -0O.104318T7E+0)
CONTOUR « 3 ~0.82B0374E+02
CONTOUR # 4 ~0.6129584E+02
CONTOUR # S -0.3978782€+02
CONTOUR « 6 -~0.1627998€+02
CONTOUR # 7 0.3227924E4+01
CONTOUR # 8 0.2473582E+02
CONTOUR # 9 0.4624374€+02
STREAM FUNCTION CONTOUR VALUES.
HiN= 0.0
MAX ©.2709798E+01
CONTOUR # 1 0.2709798E+00
CONTOUR # 2 0.%5418595E+00
CONTOUR # k) 0.8129393E+00
CONTOUR « 4 Q.1083919E+01
CONTOUR » 5 0. 135488BE+01
CONTOUR » 6 0.1625877E+01
CONTOUR » 7 O.1896858E+01
CONTOUR # 8 0.2167837E4+01
CONTOUR # ] 0.2438816E+01
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PR= 1.0

Ra= 10000.0

OIMENSIONLESS AMPLITUDE= 0.0

AVERAGE NUSSELY NUMBER (RIGHT WALL)e 0.2253560E+01
AVERAGE NUSSELT NUMBER (LZIFT waALL)»= 0.2255677E+01
LENGTH OF THE WALL{RIGHT)« 0. 100000QE+0 1

LENGTH OF THE WALL(LEFT). 0. 1000000E+0

VORTICITY COUNTOUR VALUES.
KIN= ~D.4267256E+03
MAX = 0.1278877E+03

CONTOUR # 1 ~0.3712642€+03
CONTOUR # 2 -0.31580306+03
CONTOUR # 3 -0.26034 16€+03
CONTOUR »# 4 ~0,2048804E401
CONTOUR #» 5 -0. 14841826403
CONTOUR # [ -0.9395776E+02
CONTOUR » 1 -0.3848658€+02
CONTQUR # & ©.1696460£ +02
CONTOUR # B 0.7242578E+02
STREAM FUNCTION CONTOUR VALUES.
XINe 0.0
MAXs  0.5112517€+01
CONTOUR # 1 0.5112517E+00
CONTOUR # 2 0. 1022503€+01
CONTODUR # 3 0. 1533754E+01
CONTOUR # 4 0.2045006E+01
CONTOUR # 5 0.255625TE+01
CONTOUR ¢ & ©.3067508E+01
CONTOUR # 7 0.357B761E+01
CONTOUR # 8 ©0.4090013E+01
CONTOUR ¢« 8 0.460126SE+01
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PR= 1.0

RA= 30000.0

DIMENSIONLESS AMPLITUDE 0.0

AVERAGE NUSSELY NUMBER (RIGHT WALL )= 0.317832€E+01
AVERAGE NUSSELT NUMBER (LEFT wWaLL)e 0.3178296E+01
LENGTH OF THE WALL(RIGHT)« 0. 1000000E +0 1

LENGTH DF THE WALL(LEFT)~ 0. 1000000k +01

VORTICITY COUNTOUR VALUES.
MIN® ~0.1042259E404
MAX= 0.2887678E+0)

CONTOUR # 1 ~0.9120558E+03
CONTOUR # 2 -0.7818533E+03
CONTOUR # 3 -0.6516306€+03
CONTOUR + 4 -0.5214480E+03
CONTQUR # & -0.3912458¢ +03
CONTOUR ¢ 6 -0.2610430E +03
CONTOUR # 7 -0. 1308403403
CONTOUR # 8 -0.6374512€+00
CONTOUR ¢ B 0.1285647E+03
STREAM FUNCTION CONTOUR VALUES.
KINs 0.0
MAXe  0.7335073E+01
CONTOUR # ' ©0.7335073£+00
CONTQUR # 2 0.1467014E+01
CONTOUR # 3 ©0.2200521E+01
CONTOUR # 4 0.2834029£401
CONTOUR # & 0.3667535€+01
CONTOUR « & ©.4401043€+01
CONTOUR # 7 0.5134550€+01
CONTOUR ¢ B 0.586BO58E+01
CONTOUR ¢ 8 0.6601565E+01
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T -
PR 1.0 1 T
RA® 100000.0 - T
OIMENSTONLESS AMPLIYUDE O O NEEERENNRERRRRAN 4.1 JA
AVERAGE NUSSELT NUMBER (RIGHT WALL)= 0Q.4592916E+0) ae
AVERAGE NUSSELT NUMBER (LEFT waLL)- 0.4592480E+01 TTHHETTE 7] T
LENGTH OF THE WALL{RIGHT )~ O . 1000000 +0 1 - {-1- -
LENGTH OF THE WALL(LEFT)=  O.1000C000E+01
VORTICITY COUNTOUR VALUES.
MIN*  -0.2694243E+04 11 i
MAX= 0.6211931E+02 -4 144~
CONTOUR # 1 -0.2362700€ +04 -
CONTOUR » 2 ~0.2031156E+04 ]
CONTOUR « a -0. 16996 12E+04
CONTQUR # 4 -0. t168069E+04 o T
CONTOUR # 5 0. 1036525E+04 _1_": 1390
CONTOUR »¢ 6 -0.7048814E£+02
CONTOUR # 7 -0.3734382E+03
CONTOUR # 8 -0.4189453E+02
CONTDUR # ) 0.26896454E+03
STREAM FUNCTION CONTOUR VALUES. EERRuEn
MINe 0.0
MHAXa 0.1014151E+02
CONTOUR # 1 0.1014151E401
CONTOUR # 2 0.2028301E+01
CONTOUR » 3 0.3042453E+01
CONTOUR # 4 0.4056603E+01
CONTOUR # s 0.50707S5E+01
CONTOUR # [ ©.6084806£+01
CONTOUR # 7 0.7098056E+01
CONTOUR # 8 0.8113208E€+01
CONTOUR # ] 0.81273S8E+01
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PR« (.0

RA+~ 0.0

DIMENSIONLESS AMPLITUDE= 0.075

AVERAGE NUSSELT NUMBER (RIGHT WALL)= ©0.88872189E+00
AVERAGE NUSSELT NUMBER (LEFT WALL)e 0.843187TE+0C
LENGYH OF THE WALL(RIGHT)» 0.105281J£401

LENGTH OF THE WALL(LEFTY)e 0. 1000045E+0 1
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PR 1.0
Ra= 1000.0
OIMENSIONLESS AMPLITUDE= 0.07%

AVERAGE NUSSELT NUMBER (RIGHT walL)= 0.10311e9¢e+01
AVERAGE MUSSELT NUMBER (LEFT wall)e 0. 1085437€4+01

LENGTH OF THE WALL(RIGHT)e ©0.1052813§+01
LENGTH OF THE WALL(LEFT)= 0. 1000048E+01

VORTICITY COUNTOUR VALUES,
MiNe -0.8080365€+02
MAXe 0.3166330€E+02

CONTODUR # 1 -0.4228694E+02
CONTOUR » 2 ~0.3407027€+02
CONTOUR # 3 ~0.25B5158£+02
CONTOUR # 4 ~0.1763688E+Q2
CONTOUR # 5 ~0.942018tE+O1
CONTOUR # 6 ~Q. 1203806€E+01
CONTOUR # 7 0.7012109€+01
CONTQUR # [ 0.1822089€+02
CONTOUR # '] 0.2344658€+02
STREAM FUNCTION CONTOUR VALUES.
NIN= 0.0 -
MAX= 0. 1205832E+01
CONTOUR # 1 0.1285832E400
CONTOUR # 2-° 0.2571664E+00
CONTOUR # 3 0.3857497E+400Q
CONTOUR ¢ 4 0.51423330E+00
CONTOUR # 5 0.6429162E400
CONTOUR ¢ [ 0.77148B4E+00
CDNTOUR # 7 0.0000826E+00
CONTOUR # 8 0. tD028666E+01
CONTOUR # 8 0. 1157248E+01
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PR= 1.0
RA*= 3000.0
OIMENSIONLESS AMPLITUDE-

©0.078

AVERAGE NUSSELT NUMBER (RIGHT WaALL )=
AVERAGE NUSSELT NUMBER (LEFT wALL)=

0. 1431821E+01
0. 1507381E+01

LENGTH OF THE WALL{RIGHT)=
LENGTH OF THE WALL(LEFT)=

VORTICITY COUNTOUR VALUES.

0. 10528 13E+01
0. 1000048E+0 1

MIN® -0.1467118E+03
MAX > ©.6423500E+02

CONTOUR # 1 -0. 1256 160€403
CONTQUR # 2 -0.1045242€+03
CONTOUR # 3 ~0.8343050£+02
CONTOUR # 4 -0.6233672€+02
CONTOUR # 6 ~0.4124285%E+02
CONTOUR # 6 ~0.2014820£+402
CONTOUR # 7 0.9448801E+400
CONTOUR # 8 0.2203836E+402
CONTOUR # 8 0.4313211€402

STREAM FUNCTION CONTOUR VALUES.

MINe 0.0
MAXe  0.2875842E+01
CONTOUR # 1 0.2875842E+400
CONTOUR # 2 0.5751684E400
CONTOUR # 3 0.8627526€+00
CONTOUR # 4 - 0.1150336E+01
CONTOUR # ] 0. 1437921E+01
CONTOUR ¢ & 0.1725505€401
CONTOUR ¢ 7 0.2013088E401
CONTOUR ¢ 8 0.2300673E+01
CONTOUR ¢ 0.25868257€+01
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PRe
RA®

1.0
10000 .0

DIMENSIONLESS AMPLITUOE- 0.075

AVERAGE NUSSELT NUMBER (RIGHT WALL)=
AVERAGE NUSSELT NUMBER (LEFT wALL)~
LENGTH OF THE WALL(RIGHT)=
LENGTH OF THE WALL(LEFT)s

0. 105281JE+401
0. 1000045E4+01

VORTICITY COUNTOUR VALUES.

0.2180866E+01
0.2296139E+01
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—

MINe -0.4301121E+03
MAXe  ©.1335035£+03
CONTOUR # 1 -0.3737505E+03
CONTQUR # 2 -0.3173889£+023
CONTOUR # 3 -0.2610273E403
CONTOUR # a -0.2046659E+03
CONTOUR # 5 -0. 1483044E+03
CONTOUR # 6 -0.9194287E+02
CONTOUR # 7 -0.3558 130E402
CONTOUR # 8 ©.2078003E+02
CONTOUR “# -] O.77T14185E+02
STREAM FUNCTION CONTOUR VALUES.
MIN= 0.0 .
MAXe  0.5241264E+01
CONTOUR # 1 0.5241264€+00
CONTOUR # 2 ©. 1048252E401
CONTOUR # 3 0.1572379E+01
CONTOUR # 4 0.2096505E+01
CONTOUR # 5 ©0.2620631£+01
CONTOUR # 6 0.3144758E401
CONTOUR # 7 0.36688B4E+O1
CONTOUR ¢ 8 0.4183011E+01
CONTOUR # 2 0.4717136E+01

Q

%

a

el

o

2]

e

&
xﬂ
gd-

ol
- v
i)
8 - .
n 2]
-

b

ad

o |__AVERAGE

&

e

a T T N Y v .

0.0 c. a.4 0.6 c.0 1.0 12
DISTANCE (TOP TO BOTTOM)

=]

°]

o

2]

o

2]

P

o
Sel
g.

M
=
i}
[n]
he
27

o

S

AVERAGE

d

2

<

et

a g

0.0 02 . . 1o 12

0.4 0.6 0.8
DISTANCE (TOP TO BOTTOM)




PRe .0

RA« 30000.0

OIMENSIONLESS AMPLITUDE= 0.0TS
AVERAGE NUSSELT NUMBER (RIGHT WALL)e
AVERAZE *USSELT NUMBER (LEFT walLL)e

0.3103331E+01
0.3266892€401

LENGTH OF THE WALLIRIGHT )= ©.1052813E+401
LENGTH DOF THE WALL(LEFT). 0. 1000046£+01

VORTICITY COUNTOUR VALUES.
MIN= ~-0.1062268E+04
MAX = 0.2828481E+03

a1n

CONTOUR # 1 -0.8277866E403
CONTOUR # 2 ~0.78324%1£+03
CONTODUR »# ) ~0.6587334E¢03
CONTOUR # L) -0.5242218E+03
CONTOUR # s -0.38871026+03
CONTOUR # (3 -0.2551890£+03
CONTOUR # 7 -0. 12068736403
CONTOUR # 8 0.1382446E402
CONTOUR # 9 0.1483362E+03

STREAM FUNCTION CONTOUR VALUES.

MINe 0.0 .

MAX = 0.7506284E+01

CONTOUR # 1 ©0.7506384£400
CONTOUR # 2 0.1501276E+01
CONTOUR # 3 0.2251815€+01
CONTOUR # 4 0.3002552€401
CONTOUR # s 0.3753190E+401
CONTOUR # € ©.4503830E+01
CONTOUR # 7 0.5254467E+01
CONTOUR # & ©.6005107E+01
CONTOUR # 1 0.6755745€+401
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PR= 1.0

RA* 100000.0

DIMENSIONLESS AMPLITUDE= 0.07S

AVERAGE NUSSELT NUMBER (RIGMT wWAlL)e O.44844587E+01
AVERAGE NUSSELT NUMBER (LEFT walLl)~- 0.4721610E401
LENGTH OF THE WALL{RIGHT)- ©.10528 {JE+01

LENGTH OF THE WALL(LEFT)- 0. 100004BE+Ot

VORTICITY COUNTOUR VALUES.
MINe -0.27I8948E+04
MAX e ©.6383I308E+02

1LIT

11

=)

CONTOUR # 1 -0.2401220E404
CONTOUR # 2 ~0.2063493E+04
CONTOUR » 3 ~0.1725764E+04
CONTOUR # 4 ~0.1388037E404
CONTOUR # b -0. 105S0308E+04
CONTOUR # 6 ~0.7125808£+03
CONTOQUR « 1 =0.3748533€+07
CONTOUR # 8 -0.3712500€+02
CDONTOUR # 9 0.3006028E+03
STREAM FUNCTION CONTOUR VALUES.
MIN= 0.0 t.
MAX = ©. 10764 16E+02
CONTOUR # 1, 0. 10754 1BE+01
CONTOUR # 2 0.2150828E+401 °
CONTOUR # 3 0.3226243€4+01
CONTOUR « 4 0.4301658£+01
CONTOUR # 5 0.5377073E+01
CONTOUR # ] 0.6452487E+01
CONTOUR # 7 0.7527802E+01
CONTOQUR # -] 0.8603317E+01
CONTOUR ¢ ‘] 0.896TBTI2E+O1
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INERRERNARARN!
PR= 1.0 1
Ra= 0.0 0 N
DIMENS IONLESS AMPLITUDE= O. 150 s N
AVERAGE NUSSELT NUMBER (RIGHT WALL)=  0.7694461E+00 N +
AVERAGE NUSSELT NUMBER (LEFT WALL)=  0.9144906E+00 H -
LENGTH OF THE WALL{RIGHT}=  0.1182486E+01 n
LENGTH OF THE WALL(LEFT)s  O.1000084E+401 13
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PR= 1.0

RA= 1000.0

DIMENSIONLESS AMPLITUDE= Q.150

AVERAGE NUSSELT NUMBER (RIGHT wALl)e 0.8871367E+00
AVERAGE NUSSELT NUMBER (LEFT waLL)= 0.1069688E+01
-LENGTH OF THE WALL{RIGHT )= 0. 1192486E+01

LENGTH OF THE WALL{LEFT)- ©O.1000084E+01

VORTICITY COUNTOUR VALUES.
MIN" -0.85156377E+02
MAX = 0.2105145E+02

CONTOUR # 1 ~0.4330223£+402
CONTOUR # 2 ~0.3504073E+02
CONTOUR «# 3 ~0.267T78B21E+Q2
CONTOUR # 4 ~0.1851770€+02
CONTOUR # 5 -0.10256 1BE+02
CONTOUR # 6 =-0.1994659€+01
CONTOUR # 7 0.6266861E+401
CONTOUR # 8 0. 1452840E+02
CONTOUR # 8 0.2278992£+02
STREAM FUNCTION CONTOUR VALUES.
MIN= 0.0 M

MAX= ©.1344856E+01

CONTOUR # 1 0. 1344856E+00
CONTOUR # 2 0.2689912E+00
CONTOUR # 3 0.4034869E400
CONTOUR # 4 ©.53786825E+00
CONTOUR # 5 0.6724782E400
CONTQUR # & 0.8069738E+00
CONTOUR # 7 0.8414684E+400
CONTOUR # 8 0. 1075965£+01
CONTOUR # 8 0. 1210461401
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PR= 1.0

RA= 23000.0

OIMENSIONLESS AMPLITUDE=~ 0. 150
AVERAGE MNUSSELT NUMBER (RIGHT WALL)-

0.1267410€401
AVERAGE NUSSELT NUMBER (LEFT WALL)e  0.1311370E+01

LENQTH OF VHE WALL{RIGHT)= O, 1182486E401
LENGTH OF THE WALL(LEFT)~ 0. 1000084E£+401

VORTICITY COUNTOUR VALUES.
MIN= =-0.1474010E+03
MAX ©.6207288£4+02

273

44

CONTOUR # 1 ~0. 1264545403
CONTOUR # 2 ~0.1055070€+03 -
CONTOUR # 3 -0.8455951€402
CONTQUR ¢ 4 ~0.6361201E+02
CONTDUR # 8 -0.4266454E+02 -
CONTOUR # [ -0.2171707£+02
CONTQUR # 7 -0.7685823E+00 =
CONTOUR # 8 0.2017780E+02 :_
CONTDUR # g 0.4112538£+402
STREAM FUNCTION CONTOUR VALUES.
MINe 0.0 N
MAX = 0.205563TE+O1
CONTOUR # 1 0.2955637E+00
CONTOUR # 2 . 0.8911274E+400
CONTOUR # 3 ©.8866911E400
CONTOUR # 4 O.1182255E+01
CDONTOUR # 5 0.1477818E+O}
CONTOUR # 6 0. 1773380E+01
CONTOUR # 7 0.2068945E+01
CONTOUR # 8 0.2364510E401
CONTOUR # [:] ©.2660072E+01
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PR« 1.0

Ri= 10000.0

OIMENSIONLESS AMPLITUDE- 0.150

AVERAGE NUSSELT NUMBER (RIGMT WALL)= O.IRBTIBTLEOS
AVERAGE NUSSELT NUMBER (LEFT WALL)« 0.2334428€+0%
LENGTH OF THE WALL(RIGHT)= 0. 1192486E401

LENGTH OF THE WALL{LEFT)~ ©. 1000084E+014

VORTICITY CAOUNTOUR VALUES.
MIN= -0.42627023€+02
MAX = 0. 124895 1E403

CONTOUR # ) ~0.3791618£+00
CONTOUR # 2 ~0.3220444€+03
CONTOUR # 3 ~0.2649270E+03
CONTOUR # 4 =0.2078096E+03
CONTOUR # 5 -0. 150692 1E+02
CONTOUR & & ~0.8357471£402
CONTOUR # 7 ~0.3645728£402
CONTOUR # 8 0.2066016E+02
CONTOUR # ] 0.T777734E+02
STREAM FUNCTION CONTOUR VALUES.
MIN= 0.0 .
MAX = 0.52967T78E+OY
CONTOUR #» 1 0.5286777E400
CONTOUR # 2 0.1059355E+01
CONTOUR & 3 0. 1588033E+01
CONTQUR # 4 ©.2118710E+0!
CONTOUR # 5 0.2648388E+01
CONTOUR # © 0.3178065E401
CONTOUR # 7 ©.3707744E+0!
CONTOUR # 8 0.4237422€+01
CONTOUR # 8 0.476709BE+OY
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PRe 1.3

RA= 100000.0

OIMENSIONLESS AMPLITUDE« 0.150

AVERAGE NUSSELT NUMBER (RIGHT WALL)e 0.40825209€+01
AVERAGE NUSSELT MUMBER (LEFT WALL)=  0.4881560€+01
LENGTH OF THE WALL(RIGHT)=  O.119248GE+O1

LENGTH OF THE WALL(LEFT)=  O.1000084E+01

VOATICITY COUNTQUR VALUES.
MINe ~0.2808641E4+04
MAX e Q.66 15948€4+03

CONTOUR # ) -0.2461620E+04
CONTOUR # 2 ~0.2114596E+04
CONTOUR »# 3 ~0.1767372E€+04
CONTOUR # 4 =0.1420949€+04
CONTOUR # L] ~Q. 1073523E+04
CONTOUR » [} ~0.7269007€+03
CONTOUR # k) ~0.379477T1E+03
CONTOUR ¢ 8 ~0.3245313€+02
CONTOUR # 9 0.3145703€+403
STREAM FUNCTIOM CONTOUR VALUES.
HIN- 0.0 ..
MAX= 0. 1133965E+02 :
CONTOUR # 1, 0. 1133963€+01
CANTQUR # 2 0.2267930€+01
CONTOUR » b ] Q.3401895E+01t
CONTOUR # 4 0.4535861E+01
CONTOUR # S 0.5669826E+01¢
CONTGUR # 6 0.6803791E4+01t
CONTOUR # 7 0.7937736E+01
CONTOUR # a - 0.807$722€+01
CONTQUR »# 9 0.1020969€+02
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