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Abstract

Literature on fibre fractionation in hydrocyclones is reviewed.

A force balance on an idealized particle moving in an idealized centrifugal field is used to
show that the radial velocity of a fibre or other type of particle moving inside a
hydrocyclone is slower for particles having higher values of specific surface. Thus, in
theory, the rejects stream is more likely to contain material having lower specific surface
than the feed and the accepts stream is more likely to contain material having higher
specific surface material. It is also shown that fibre coarseness is inversely related to
specific surface.
)

Fractionation of various pulps are described showing evidence of fractionation by length
and coarseness. Sheet property measurements, showing that sheets made from
hydrocyclone accepts are always stronger than those made from hydrocyclone rejects, are

also presented.

Multistage fractionation of mechanical and chemical pulps has been investigated to show
the degree of separation achievable. This was quantified by the measurement of fibre
(length, coarseness, microscopy, width, shape factor) and paper (tensile, tear, burst,
roughness) properties. For tests performed with mechanical pulp, it was shown that the
hydrocyclone tested in these experiments resulted in rejects fibres which were coarser
and shorter than fibres reporting to the accepts. In these tests fibre fines reported to the
rejects. A different hydrocyclone was tested to fractionate chemical pulp. In these tests
it was found that fibre fines and earlywood fibres reported to the accepts and latewood

fibres reported to the rejects.

Refining of fractionated chemical pulp was performed. These tests illustrated that
earlywood fibres develop at lower refining intensity than latewood fibres. It was also

demonstrated that latewood fibres could be upgraded to usable fibre through refining.
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Chapter 1
Introduction

The fractionation of pulp into separate streams containing pulp fibres of different
characteristics can be useful in papermaking. Screens and hydrocyclones are currently the
most common type of equipment found in pulp and paper mills capable of fractionating pulp.

In this thesis only the use of hydrocyclones for fractionating pulp fibres will be considered.

Hydrocyclones, also known as centrifugal cleaners, are widely used by pulp and paper mills
for removing contaminants (dirt, plastic) and unsatisfactorily pulped fibres (shives) from the
product stream. More recently some pulp and paper mills have installed hydrocyclones to
fractionate pulp fibres [45]. The objective here is to separate thick-walled fibres from thin-
walled fibres since thick-walled fibres negatively affect paper properties (smoothness,
bonded area, and strength). After fractionation these mills reject refine the separated thick-

walled fibres to develop the desirable fibre characteristics required in papermaking.

Bliss [5,6,7,8] summarizes some other reasons for fractionation of fibres using

hydrocyclones. Some of his objectives for fractionating include:

1. Production of stronger paper sheets at the same freeness.

2. Producing ﬁulps that give equivalent sheet strengths at higher freeness with reduction in
the amount of fines.

3. Reduction in refining power requirements. This can result by realizing that fractionated
streams require different amounts of energy input for fibre development.

4. Separation of chemical pulps from mechanical pulps and separation of hardwood fibres

from softwood fibres.

Bliss [5,6] further suggests that after a successful fractionation, the longer and stronger fibre
fraction might be refined to produce sheets having higher strengths than the unfractionated
pulp but at the same freeness as the unfractionated pulp. If this were possible then the so

upgraded pulp (refined fraction) could be used to replace another, more expensive furnish

component without an overall adverse effect on drainage.



If the sheet strength of paper made from the unfractionated pulp was adequate, fractionation,
and subsequent refining could result in one of the exit streams from the hydrocyclone having
equal sheet strength potential but at higher freeness and with a lower fines content. Thus

papermachine drainage and first pass retention might be improved.

In his paper [3,4], Bliss presents four fractionation schemes. In the first of these the accepts
from the fractionation stage are sent to papermachine A while the rejects go to papermachine
B. For this scheme to be useful two, or more papermachines, which can produce marketable
products from each of the accepts and rejects streams from the fractionation, must be

available.

In the second scheme the accepts and rejects from the hydrocyclone go to different layers of
a multilayer sheet (e.g. liner and filler for paperboard). For this scheme to be useful ply

bonding between the different layers must be acceptable.

In the third scheme the rejects are discarded and the accepts proceed to papermaking. This is

the conventional way of using hydrocyclones to get rid of dirt, shives, etc.

In the fourth scheme, Bliss [3,4,5,6] proposes the accepts stream goes directly to the
papermachine and the rejects are upgraded by refining. The upgraded rejects are then mixed
with the accepts and proceed to a papermachine. Such a scheme was contemplated as a way
of reducing refining energy requirements because only the fraction of the pulp that needed
refining would be refined. Bliss provides an energy balance to show that, if it is assumed
that the refiner motor draws constant power, there are no savings in energy. This assumption
seems arguable but that argument is better left to those with a greater knowledge of refiner
energetics than we have. Bliss [3] notes that these fractionation schemes have some

limitations and often are impractical from a process or economic standpoint.

Another reason for fibre fractionation is to study the characterization of pulps for prediction

of their papermaking potential. To do this a laboratory fractionating device would be




required which would be capable of separating fibres into fractions having different
properties, such as specific surface, coarseness, fibre length distribution, etc. Some studies

on fractionating pulp for this reason have been published by Wood and Karnis [83,84,85].
1.1 Thesis Objectives

To show via a theoretical analysis and by reviewing relevant literaturé that a hydrocyclone
can separate pulp suspensions into fractions having different specific surfaces. To relate
specific surface to other fibre properties (coarseness, specific volume, freeness).

To experimentally determine how varying hydrocyclone operating parameters (flowrate, pulp
consistency, reject rate) can affect the characteristics of the fibres of the separated streams.
To determine what fibre properties should be characterized when fractionating different types
of pulps (mechanical, recycled, Kraft).

To develop a fractionation scheme that produces streams of different characteristics and to

then refine these different streams to study how each stream responds to subsequent refining.

1.2 Organization of Thesis

Chapter 2 presents a chronological literature review on the uses of hydrocyclones for
fractionating pulp. '

Chapter 3 details the experimental equipment used. Experimental procedures and analytical
methods are also outlined.

Chapter 4 describes theoretical analysis of fibre separaﬁon in a hydrocyclone.

Chapter 5 presents the results and discussion of the experiments performed.

Chapter 6 draws conclusions on the work performed and suggests recommendations for
future work.




Chapter 2

Literature Review

2.1 Overview

Section 2.2 presents a chronological literature review on fibre fractionation.

Section 2.3 summarizes the key findings of the literature reviewed to date.

2.2 Studies of Fractionation in Hydrocyclones to Date

This review concentrates on literature, in chronological order of appearance, that deals
with separating pulp into streams, both of which might be useful in making paper, that
have different fibre properties.

The first patent for a hydrocyclone was granted to E. Bretney in 1891. The first patent for
hydrocyclone processing of pulp was granted to J. MacNaughton in 1906. More

information about the history of the hydrocyclone can be found in a review by Bliss [8].

In a 1956 paper Boadway and Freeman [9] described a centrifugal pulp cleaner for
removing shives. In it, it was recognized that the ability of the cleaner to separate
undesirables from the pulp depended on the size of the particles to be separated and on
the dimensions of the hydrocyclone. In a later paper Broadway [10], in discussing the
theory of particle separation in a hydrocyclone, pointed out that if fibres were to be
considered as cylindrical rods, the fibre property governing fibre separation in a
hydrocyclone would be fibre diameter. Since it can be shown that fibre coarseness is
related to fibre diameter then a hydrocyclone should, in theory, be able to fractionate

based on differences in fibre coarseness.

McCulloch [48] studied the effects of Vorjects, primarily used for shive removal, on

groundwood pulp quality. He found at various rejects rates that the burst strength,




breaking length and tear strength of handsheets made from the feed, accepts and rejects
streams were greatest for the accepts stream, lower for the feed stream and much lower

for the rejects stream.

Boadway [12] described the use of hydrocyclones in separating coarse, stiff ﬁbrgs and
shives from groundwood. He believed that a hydrocyclone tended to fractionate-fibres
via a mechanism based on differences in their fibre diameters rather than on differences
in their lengths. Photomicrographs showed clearly that shives were preferentially rejected
by a hydrocyclone and that the material in the rejects was coarser and less fibrillated than
material in the accepts or in the feed to the hydrocyclone. He noted that the rejects tended
to be free of fines, possibly because of the type of cleaner used involved the injection of
elutriation water the result of which was that the fines would make several passes through

the separation zone and thus have a greater probability of being accepted.

One of the purposes of Boadway’s investigation was to develop a fibre classifier based on
the use of a series of hydrocyclones of progressively smaller diameters. The accepts from
stage 1 would be the feed for stage 2 etc. The rejects from each stage and the accepts
from the final stage would then provide (n+1) fractions of pulp having different properties

with n being the number of stages.

In Boadway’s work, when a single stage hydrocyclone was operated with the accepts
being recycled continuously to the feed tank the level of coarse material appearing in the
rejects decreased with time. The assessment of coarseness was subjective based on the
appearance of stock in the photomicrographs and on visual observations made on

handsheets.

Boadway also noted that smaller diameter hydrocyclones were capable of rejecting
material that could not be rejected by larger diameter hydrocyclones. He worked at

consistencies of the order of 0.1% to avoid interfibre interferences as the fibres moved

inside of the hydrocyclone.




Also in 1963 a patent was granted to A.W. Pesch [61] for a process using hydrocyclones
which could separate pulp suspensions into fractions having a greater content of
springwood fibres in the accepts and a greater content of summerwood fibres in the
rejects than what prevailed in the feed stream to the hydrocyclone. He observed that,
under the influence of gravity, summerwood fibres from southemn pine species
sedimented three times faster than springwood fibres. The springwood fibres were more
flexible, tending to be thin, collapsed ribbons having diameters around 40 - 45 um and a
thickness of 10 - 12 um (i.e. thickness = twice the cell wall thickness of 5 - 6 um). The
more rigid summerwood fibres did not collapse but retained their tubular nature with
diameters of 25 - 35 um and cell wall thickness of 10 - 15 um. The best pulp
consistencies for such separations were in the range of 0.1 - 0.2%. Bliss [3] notes that

these consistencies are too low for economical hydrocyclone operation.

Further studies in this area of springwood/summerwood separation were carried out by
Jones et al. [38]. They used fibres resulting from the Kraft pulping of various species of
pine which grow in the southern USA. The most impressive results were obtained using
longleaf pine (Pinus palustris) and slash pine (Pinus caribea). Effective separations of
springwood from summerwood fibres could be made for other species but there were less
differences in the papermaking characteristics between summerwood and springwood

fibres from those species.

Jones’s springwood/summerwood separations were achieved in a Bauer (600N) 3 inch
diameter, centrifugal cleaner. Other cleaners were tested but the 600N gave the best
separations. Smaller diameter cleaners were more effective in achieving fibre separation
than larger ones. The relative amounts of springwood and summerwood fibres in the
feed, accepts and rejects streams were measured by making microscope slides from
samples taken from each of these streams and counting the numbers of springwood and
summerwood fibres in each. The rejects and accepts streams were collected on screens

with an attempt made to retain their fines contents by using recycled white water from the

screens.




Jones adopted as the criteria for the acceptability of a separation that 70% of the
springwood fibres were in the accepts stream and 70% of the summerwood fibres were in
the rejects stream. The reason for this was that increasing the springwood content of a
pulp, that was subsequently made into a sheet of paper, to more than 70% resulted in little
further change in burst strength and breaking length. As the springwood content

increased the tearing strength decreased.

Feed, accepts and rejects stream samples were refined in a Valley beater to various
freeness levels. Handsheets were made and their burst factors, tear factors, densities,
opacities, smoothness, porosities and breaking length measured. Print quality tests were
also done. Some tests were also done on a pilot plant scale to confirm the results

obtained with handsheets.

The parameters which were found to affect the springwood/summerwood fibre separation
were pulp consistency, temperature, reject nozzle opening diameter, pressure drop

between the feed and accepts stream and prior mechanical treatment of the fibres.

As pulp consistency rose from 0.05 - 0.25% (the range studied by Jones et al.) the fraction
of springwood fibres in the accepts decreased and the fraction of summerwood fibres in
the rejects also decreased. The ratio of the mass flow rate of the accepts stream to the
feed stream increased as the consistency increased while the ratio of the mass flow rate of
the rejects stream to the feed stream tended to decrease. An empirical equation was
presented which relates the % of springwood fibres in the accepts stredm to %
consistency. However this equation is only valid over the rather modest range of
consistencies studied by Jones et al. The % springwood fibres in the accepts stream
ranged from 85 at a feed pulp consistency of 0.05% to 63 at a feed pulp consistency of
0.25%. The % summerwood fibres in the rejects stream ranged from 74 at a feed pulp
consistency of 0.05% to 65 at a feed pulp consistency of 0.25%. The ratio of the mass

flow of accepts to feed covered the range 31 - 42% while the ratio of the mass flow rate

of rejects to feed covered the range 69 - 58%.




It was noted that the rejects had higher freeness values than the accepts. This observation
is consistent with the views expressed below that hydrocyclones can separate fibres based
on differences in specific surface, tending to reject fibres of low specific surface. The
theory of El-Hosseiny and Yan [20]' indicates that as specific surface increases freeness
decreases. It was also observed that little springwood/summerwood fibre separation

occurred at feed pulp consistencies greater than 0.25%.

Jones et al. note that ““for high purity in both fractions the accepts to rejects ratio must be
nearly the same as the ratio of springwood to summerwood in the original pulp. This
ratio is about 50 : 50 for southern pine. If one fraction is only a small percentage of total
feed, this fraction may be quite pure, but the larger fraction will have about the same
fibre composition as the feed pulp.” This may not be strictly true, perhaps there is an
optimum ratio of accepts to rejects flow split that gives best separation and that this
optimum may not necessarily be the ratio of springwood fibres to summerwood fibres in

the feed. What the optimum is depends on the desired objective of the separation.

As already noted mechanical damage done to the fibres during processing can affect the
ability of a hydrocyclone to separate springwood from summerwood fibres. Jones et al.
observed that never dried pulps separated better than pulps which had been dried and
reslurried. Some samples were refined in a laboratory Jordan refiner. When these were
passed through the hydrocyclone the more refined fibres tended to concentrate in the
accepts stream. In this case the separation achieved was more on the basis of degree of
refining of the fibres, as measured by freeness, than by springwood/summerwood
differences. Again recall that El-Hosseiny and Yan [20] have demonstrated that
Canadian Standard Freeness (CSF) can be inversely related to specific surface. As the
specific surface of pulp increases the value of the CSF decreases. The ratio of mass flow

of accepts to rejects was also affected by refining, the lower the freeness the greater the

accepts to rejects ratio. Bleaching of pulp was also noted to affect (adversely) separation.




The ratios of the mass flow rate of rejects to feed and of accepts to feed depended on
temperature, pressure drop between the feed inlet and the accepts outlet; (the rejects
outlet is at atmospheric pressure) and the diameter of the opening in the rejects nozzle.

As noted above they also depended on consistency and the degree of refining of the pulp.

Over the range 27 - 41 °C the % of springwood fibres in the accepts stream tended to
increase with increasing temperature but the % of summerwood fibres in the rejects was
insensitive to temperature changes. As the temperature rose the mass flow rate ratio of

rejects to feed increased at a constant pressure drop of 241 kPa.

As might be expected as the reject nozzle opening diameter increased the amount of fibre

rejected increased at constant pressure drop.

Burst factors, breaking lengths, apparent densities, and smoothness were better for sheets
made from the accepts than for sheets made from the feed pulp which in turn were better
than sheets made from the rejects. Tear factors and porosities were higher for sheets
made from the rejects than for sheets made from the feed which in turn had higher values

than sheets made from the accepts. Opacities were about the same for all three sources of

pulp.

Jones et al. observed that the fines in the springwood rich accepts tended to consist of |
macerated fibre debris. This material significantly lowered the freeness values of the
accepts pulp streams. This complicates the analysis of the effects of refining because the
presence of these fines means that refining to a certain level of freeness requires less
energy than if the fines were not there. Thus the strength potential of the non-fines fibres
may not be fully developed. These sorts of fines did contribute positively to sheet
strength and fibre bonding. Fines in the summerwood rich rejects seemed to consist of

short, cut fibres which had little influence on sheet strength and pulp freeness.



Stephens and Peérson [74] investigated the effectiveness of 76 mm ( inch), 102 mm (4
inch), and 305 mm (12 inch) diameter hydrocyclones in removing shives and dirt from
Eucalypt groundwood. Their studies were conducted over a consistency range of 0.5 -
1.8%. They found that operation at consistencies above 1.2% resulted in worse
separation efficiencies in terms of dirt and shive removal. In their experiments they
observed that the wet and dry strengths (burst factor, breaking length and tear factor) of
handsheets made from pulp in the accepts from the 75 mm and 102 mm hydrocyclones
were greater than those of the feed and noted that not all of the differences could be
attributed to differences in shive or dirt counts. The wet and dry strength values for the
handsheets made from the pulp in the rejects stream were usually lower than those for
sheets made from the feed stream. With the 305 mm hydrocyclone the accepts burst
factors in 21 out of 23 tests were higher than for the feed. Improvements ranged from -
1.1% to +17.0%, and averaged 5.1%. Similarly in 20 out of 23 tests the breaking lengths
of the accepts were higher than for the feed. Improvements ranged from -0.9% to +13.0%
and averaged 4.8%. Stephens and Pearson [74] interpret this finding to mean that a
hydrocyclone fractionates fibres on the basis of differences in fibre flexibility, the less

flexible material having a higher probability of being rejected.

Marton and Robie [47] investigated the sedimentation behaviour of mechanical pulp
(stone and reﬁner groundwoods, spruce, balsam fir mixtures) fibre suspensions. The
settling velocities of several Bauer McNett classifier fractions were measured as were
fibre properties such as specific surface, fibre coarseness, fibre length and handsheet
strengths. Their work had nothing whatsoever, directly, to do with hydrocyclones but is
of interest to this review because fibres settling (sedimenting) under the influence of
gravity have many things in common with fibres moving under the influence of the
centrifugal forces found in a hydrocyclone. They observed that fibre length correlated
well with fibre coarseness. If a fibre is considered to be a circular cylinder or a flat ribbon
in theory fibre coarseness shouldn’t be a function of fibre length [32]. Multiple
regression analysis showed that most of the relation between settling velocity and fibre

properties could be attributed to coarseness and a lesser, but still statistically significant,
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amount to fibre specific surface. The influence of fibre length was statistically

insignificant.

However, Marton and Robie also state “These results should by no means be construed to
mean that settling rate is independent of fibre length”. Chapter 4 of this thesis presents
some theoretical evidence that shows there is a relationship between fibre coarseness and
fibre specific surface, thus it would appear from Marton and Robie’s work that fibre
settling velocity is primarily a function of fibre coarseness. Later in this thesis,
experimental evidence is provided showing that hydrocyclones can separate fibres into

fractions having different fibre lengths.

Corson and Tait [16] used multiple regression analysis on some experimental data
obtained in a Bauer 606-110-P, Centri-Cleaner which had a cyclone diameter of 6 inches.
Six independent variables were varied; these included inlet pulp consistency, inlet pulp
freeness (CSF), reject tip outlet diameter, the pressure drop across the cleaner, the inlet
shive content of the pulp and a parameter (b) which characterizes the fibre length
distribution of the pulp entering the cleaner. The dependent variables considered were
weight % rejection of fibre, volumetric ratio of reject flow to feed flow, accepts
consistency, accepts freeness, accepts parameter b value, accepts shive content, rejects
consistency, rejects parameter b value and rejects shive content. The test data were
obtained using refiner mechanical pulps of Pinus radiata from which latency had been

removed. The tests were done at 50 °C.

The fibre length distributions could be represented by a modified Rosin-Rammler

equation [16]. Thus
W=a™ (1)

where

W = fraction of fibres having length > x
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x = fibre length

a, b = constants for a particular fibre sample

The parameter b, which affects the fibre length distribution, was shown, for the accepts
stream to be a function of the pressure drop across the hydrocyclone and the feed freeness
of the pulp. Parameter b for the rejects stream depended upon the inlet consistency and
the inlet fibre length distribution or upon the inlet consistency, reject tip diameter and
inlet freeness, depending on whether or not the inlet fibre length distribution was included
as an independent variable in the regression analysis. In any event passage through a
hydrocyclone was shown to affect the fibre length distributions of the accepts and rejects

streams. Accepts freeness values were lower than feed freenesses.

Seifert and Long [71] have noted, in a paper comparing a variety of ways of fractionating
pulp fibres, that in a 76.2 mm diameter cleaner operating with a 25% reject ratio, long

fibres were concentrated in the accepts and short fibres in the rejects.

Hill et al. [30] studied the separation of shives in screens and hydrocyclones using an
optical shive analyzer to provide the data. The slope of a plot of shive removal efficiency
against rejects ratio gave the number of shives per kg of rejects divided by the number of
shives per kg of feed. The higher the value was above one the better the rejection of
shives. Two hydrocyclone cleaners were tested in this manner. One cleaner was smaller
than the other. For the small cleaner when the ratio of shives in the rejects to shives in
the feed was plotted against shive length, shive removal effectiveness decreased as shive
length increased for both TMP and stone groundwood. In the case of the larger cleaner
the ratio increased as shive length increased up to a maximum value and then decreased

as shive length was further increased.

Wood and Karnis [83], in an investigation directed at minimizing the linting of
newsprint, used a hydrocyclone to separate fibres into fractions having different values of

specific surface. For TMP they found that lint consisted mostly of short, stiff fibres
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which had smooth surfaces, low values of specific surface and hence a low level of
interfibre bonding potential. They collected enough lint samples from a printing press to
show that, after processing it by solvent exchange, it had an average specific surface, as
measured by the Robertson Mason [68] water permeability test, of around 2.5 m*/g (range
0.7 - 4.0 m%/g), Material that would have a tendency to lint was defined as having fibre
lengths in the range 0.2 - 1.5 mm and specific surfaces in the range 0.7 - 4.0 m%*/g. It was
also observed that lint had an extraordinary amount of latewood (summerwood) fibres in

it as compared to the whole pulp which the lint originated.

Knowing that a hydrocyclone could separate fibres into fractions having different levels
of specific surface, Wood and Karnis built a fractionating device (the Domtar Specific
Surface Fractionator) which used a hydrocyclone to do the fractionating. The
hydrocyclone used had a cyclone djameter of 51 mm and reject tip openings of 7.9 or 4.0
mm. This device is also discussed in a later paper by the same authors [66]. Pulp was
processed in the Fractionator at a consistency of 0.015%. The pressure drop across that
hydrocyclone was 138 kPa (20 psi). Using this device they were able to measure specific
surface distributions. They also pointed out that there was an inverse relationship

between freeness and specific surface.

By sequentially passing the rejects from the hydrocyclone through the hydrocyclon