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Abstract

A transient, spatially distributed mathematical model is developed describing the

exchange of materials (fluid and solute) across the capillary membrane into the interstitial

space. The formulation includes a lymphatic sink which drains both fluid and solute from

the tissue. This can be located anywhere within the tissue. The model is constructed in

cylindrical coordinates and consist of the capillary lying along the z axis and the tissue

envelope surrounding the capillary.

The driving force for fluid motion is the fluid chemical potential. This is equal to the

difference between the local fluid hydrostatic pressure and the local colloid osmotic pressure.

Starling's hypothesis governs fluid flow across the capillary wall. This states that the amount

of fluid that crosses the capillary membrane is due to the transmembrane potential difference.

The fact that solute may leak across the membrane promotes the use of a capillary membrane

reflection coefficient. In the tissue, the fluid motion is found from a modified Darcy's law

which makes use of the gradient in the fluid potential rather than the hydrostatic pressure. In

addition, a tissue reflection coefficient is used.

The study consists of an evaluation of the effect the physiological parameters have on

the system. This is presented in the form of a sensitivity analysis for steady state results

only. It is shown that the strength of the lymphatic sink is important in promoting fluid

reabsorption back into the capillary and negative hydrostatic pressures (subatmospheric)

throughout the tissue.

Transient test are performed to evaluate the regulating mechanisms for capillary-

tissue fluid balance. The capillary membrane, the colloid osmotic pressure, and the

lymphatic sink are examined for their roles in maintaining fluid balance. It is found that the

colloid osmotic pressure acts as a negative feedback signal regulating the cycle of solute

concentrations and fluid hydrostatic pressures throughout the tissue. The lymphatic sink is



important as it provides a mechanism for lowering tissue pressures and removing solute from

the interstitial space, thus lowering the tissue colloid osmotic pressure. The trends indicated

in the results compare well with results from Manning et al. (1983) and Taylor et al. (1973).
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Chapter 1 : INTRODUCTION

Chapter 1 : Introduction

The circulating blood contains various solutes which are distributed via the

cardiovascular system to the tissues within the human body. These solutes are transported

into the space between the tissue cells (the interstitium). Nearly all of this material exchange

between the circulatory system and interstitial space occurs in capillaries. This is termed

microvascular exchange and involves specifically the transport of fluid and solutes (proteins

and electrolytes) across the capillary membrane, within the interstitial space, and out the

lymphatics. The lymphatics drain fluid from the interstitium back into the circulation. The

regulation of the microvascular exchange system is very complex and depends largely on the

properties of the capillary membrane, the interstitium, and the lymphatics. The regulatory

mechanisms of microvascular exchange protect against edema formation (excess

accumulation of fluid) or dehydration. The objective is to identify controlling features of

microvascular exchange system and their influence on the system dynamics for the

prevention of edema or dehydration.

The dominant forces driving fluid motion across the capillary wall and within the

interstitium are the hydrostatic and colloid osmotic pressures. The colloid osmotic pressure

lowers the driving potential for fluid motion and is a non-linear function of the protein

concentration. In this way, it acts to dilute protein. The driving potential is the difference

between the hydrostatic pressure and the colloid osmotic pressure. This exists across the

capillary wall and within the tissue. Proteins are driven across the capillary membrane by
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two main mechanisms. The concentration difference across the capillary membrane and the

fluid motion induce both diffusion and convection respectively.

The potential drop along the capillary causes fluid and solutes to be filtered into the

interstitial space at the arteriolar end of the capillary. Depending on the strength of the

lymphatic sink, material may be reabsorbed back into the capillary at the venular end of the

capillary. An increase in the lymphatic sink strength enlarges the lymph drainage from the

system. The filtration, reabsorption, and lymphatic drainage create recirculation patterns

within the tissue space.

The amount of fluid which leaves via the lymphatic sink is a function of the local

tissue hydrostatic pressure. Similarly, the rate at which solute that drains out through the

lymphatic sink is both a function of the local tissue pressure and solute concentration. The

microvascular exchange system obviously permits complex behaviours which are the result

of the fluid-solute-tissue matrix interactions in the presence of the pressure and concentration

fields.

Experimental investigations of the microvascular exchange system are difficult due to

the scale of the system. Typical dimensions are in the range of tens to hundreds of

micrometers. An alternative and complementary approach is the development of complex

mathematical models describing microvascular exchange. These models can be used to

examine system dynamics and sensitivity and suggest directions for further experimental

research. Several mathematical models of microvascular exchange have appeared in the past

few years (Baxter and Jain, 1989, 1990, 1991a, 1991b; Taylor et al., 1990b; Chapple, 1990).

The two types of models in common use are compartmental and spatially distributed models.

Compartmental models assume well-mixed, homogeneous compartments between which

material exchange occurs. The equations governing transport between the compartments are

functions of time only. In spatially distributed models, the material spatially distributes itself

throughout the system space nonhomogeneously. The equations are functions of position in

addition to time.
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In this work, a transient, spatially distributed model is developed in cylindrical

coordinates to describe microvascular exchange of fluid and a single solute. The

distributions of fluid velocity and solute concentration are determined. In this manner, the

effects of capillary membrane properties, osmotic pressure, the lymphatic sink, and high

fluid conductivity channels can be examined. It also permits the use of the model to suggest

key features of the system that modulate and control hydrostatic pressure, fluid motion, and

solute field behaviour, possibly by some feedback mechanism. One of the primary uses of

such models is use as a tool to suggest possible further experimental work. Also,

assumptions about the system may be tested and validated.

In Chapter 2 the pertinent microvascular physiology is briefly outlined. Chapter 3

presents the governing equations of microvascular exchange and model assumptions. The

appropriate boundary conditions are also presented. In Chapter 4, a sensitivity analysis is

presented detailing the influence of various physiological parameters on the microvascular

exchange system. The effects of variable capillary membrane permeability and tissue

hydraulic conductivity are also examined in this chapter. The latter allows us to investigate

the impact of high flow channels on the system. The controlling features of the capillary

membrane, the osmotic pressure, and the lymphatic sink are investigated in Chapter 5. The

transient simulations performed here permit the identification of the roles of the capillary

membrane, the osmotic pressure, and the lymphatic sink within the system from the fluid

balance point of view. The results suggest that the osmotic pressure acts as a negative

feedback signal regulating capillary-tissue fluid balance. The final chapter, Chapter 6, lists

some general conclusions and recommendations for further research work.
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Chapter 2 : Microvascular Exchange Physiology

This chapter discusses the underlying physiology of the microvascular exchange

system. The circulation system is a closed loop through which blood flows. The heart

pumps blood into the arteriolar circulation first via the aorta, then arteries, arterioles, and

eventually capillaries. Microvascular exchange occurs between the capillaries and the

surrounding tissue. The blood returns to the heart by venules and then veins.

The discussion of physiology is divided into five sections. The first section will

outline broadly the physiology of the circulatory system and body fluids. The second section

details the flow of blood and lymph through the circulatory system and lymphatics and the

major microvascular mass exchangers, the capillaries. The third section presents the

interstitium, its constituent materials, and properties. In the fourth section, the flow

properties of membranes and the nature of capillary walls will be summarized. The

remaining section, section five, will briefly describe the structure and function of some

tissues. The focus in that section will be on the geometrical configuration of capillaries

within tissues.
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2.1 Body Fluid Compartments and the Circulation System

The basic unit of machinery in all living creatures is the cell. Cells exist in

multicellular organisms in a sea of extracellular fluid. This fluid supplies cells with nutrients

and accumulates metabolic wastes. The extracellular fluid is divided into two compartments,

the interstitial fluid and the blood circulation. In an average adult male human, the

intracellular water (fluid within cells) constitutes about 40% of the total body weight

(Ganong, 1989). The extracellular component, meanwhile, makes up about 20%. About

one-quarter of the extracellular fluid is the circulating blood plasma and the remaining three-

quarters is the interstitial fluid (Ganong, 1989). This means the blood plasma and interstitial

fluid comprise about 5% and 15% of the total body weight respectively. The distribution of

the body fluid compartments are shown in Figure (2.1).

Extracellular fluid
20% body weight

Blood plasma, 5% body weight

Interstitial fluid, 15% body weight

 

Intracellular fluid, 40% body weight

Figure 2.1: Distribution of body fluid compartments.
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The composition of solutes (proteins and electrolytes) is considerably different in

each of the body fluid compartments. These differences in composition are largely due to

the character of the barriers between the fluid compartments. As seen from Table (2.1), the

concentration of protein anions in the interstitial fluid is significantly lower than that in the

intracellular fluid and the blood plasma. Also the electrolytes Na + and Cl - are

predominantly found in the extracellular fluid whereas K+ is largely intracellular (Ganong,

1989).

Table 2.1: Electrolyte compositions of human body fluids (in meq/L water) (Ganong, 1989).

Solute Blood Plasma Interstitial Fluid Intracellular Fluid
Na+ 152 143 14
Cl - 113 117 small
K+ 5 4 157

mg2+ 3 3 26
Protein anions 16 2 74

HCO3 - 27 27 10

Besides supplying nutrients to cells and accumulating wastes, another function of the

body fluids is to provide buffering capacity. Buffering allows the intracellular and

extracellular fluids to maintain a constant pH. For instance, the pH of the extracellular fluid

is maintained at 7.40+0.05 (Ganong, 1989).

The particular fluid compartments of interest in this work are the blood circulation

(in the capillaries) and the interstitial space. The blood circulation system removes wastes

(for example carbon dioxide) from and supplies nutrients (for example oxygen) to body

tissues. This is achieved via the cardiovascular system. The latter consists of the heart (a

pump) and a complex system of branching elastic tubes that distribute the blood throughout

the body. The left ventricle of the heart pumps blood first through arteries, then arterioles,
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and ultimately capillaries. After mass exchange within the capillaries, the blood drains

through venules and then veins back to the right atrium of the heart. This closed circuit is

the systemic (major) circulation. In the pulmonary (lesser) circulation, the right ventricle

pumps blood into the vessels of the lungs. This is the site of gas exchange.

An additional circulatory system is the lymphatic circulation. Fluid and solutes

exchange across the capillary wall into the tissue. Some of this exchanged material that is

derived from the interstitium flows into the lymphatic vessels that drain via the thoracic duct

into the venous system. This fluid is known as lymph. More details about the lymphatics

and capillary exchange will be discussed later.

2.1.1 The Blood and Plasma Proteins

The blood is essentially a suspension of several cellular components - red and white

blood cells and platelets - in plasma. Red blood cells carry oxygen bound to hemoglobin.

The white blood cells are instrumental in the immune system for body defenses to viral and

bacterial infections. Dissolved within the blood plasma are many ions, proteins, organic and

inorganic molecules. These may serve several functions, for example, as nutrients,

hormones, or aid in the transport of other compounds.

Table (2.2) lists some plasma proteins found in blood. The most abundant proteins

are albumin, globulin, and fibrinogen. At the normal plasma pH of 7.40, these proteins are

in their anionic forms. The proteins cannot easily traverse the capillary walls and thus exert

a colloid osmotic pressure difference across the capillary wall. A reduction in the tissue-side

colloid osmotic pressure tends to draw water back into the blood circulation from the

interstitial space (this effect actually manifests itself as a reduction in the local

transmembrane potential). The most abundant and osmotically active protein is albumin.

Normally, over 50% of the plasma protein is albumin. Previous work (Taylor, 1990) on
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microvascular exchange indicates that colloid osmotic pressure and its gradients have

significant effects on fluid flows and solute distributions within the interstitium. When

plasma protein levels are low (prolonged starvation or liver disease), this is known as

hypoproteinemia. The decrease in protein osmotic activity leads to edema formation, i.e.,

excess fluid in tissues.

Table 2.2: Plasma proteins and their approximate molecular weights (Ganong, 1989).

Plasma Protein^Molecular Weight (Daltons)
Albumin^ 69000

Hemoglobulin^ 64450
Fibrinogen^ 340000

131 - Globulin^ 90000
y - Globulin^ 156000

2.2 The Blood and Lymphatic Flow and Microvascular Exchange

Blood flows throughout the systemic circulation via different blood vessels. The

driving force for flow is mainly the hydrostatic pressure gradient set up by the pumping

action of the heart. To a lesser degree, diastolic recoil of the arterial walls, vein compression

during exercise, and negative pressure generated in the thorax during inspiration also

contribute to blood flow. The blood vessels are organized into various types based on their

size.



Chapter 2 : PHYSIOLOGY OUTLINE^ 9

2.2.1 Blood Vessel Classification

Table (2.3) categorizes the various types of blood vessels. Upon leaving the heart,

the blood enters immediately the aorta and then the arteries. These vessels are thick-walled

and of large diameter. The walls of the aorta and arteries contain copious amounts of elastic

material and offer some pumping action as they recoil during diastole (Ganong, 1989).

Table 2.3: Types of Blood Vessels in Humans (Ganong, 1989).

Vessel Lumen
Diameter

Wall Thickness Approximate
Total Cross

Sectional Area
(cm2 )

Blood Volume
Fraction

(systemic)

Aorta 2.5 cm 2 mm 5 0.02
Artery 0.4 cm 1 mm 20 0.08

Arteriole 30 gm 20 gm 400 0.10
Capillary 5 p.m 1 pm 4500 0.05
Venule 20 pm 2 pm 4000

0.54Vein 0.5 cm 0 5 mm 40
Vena cava 3.0 cm 1.5 mm 18

The blood then flows into smaller diameter vessels called arterioles. These contain

less elastic tissue than arteries but contain more smooth muscle. This muscular action

provides the main source for resistance to blood flow in the circulation. The arterioles

subdivide further into smaller vessels called metarterioles which then empty into the

capillary beds. The capillary bed is arranged as a complex random network of relatively

highly permeable tubes within the tissue. This is the main site of material exchange between
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the blood circulation and the interstitium. Capillaries have a wall thickness and diameter of

about 1 1.1M and 5 pm respectively. The total available area for material exchange exceeds

6300 m2 in a normal human adult (Ganong, 1989). Section (2.2.3) presents the structure of

the capillary wall and describes its functions in detail.

The blood drains from the capillary beds into venules and eventually into veins. The

walls of venules and veins are thin and distend easily, but, however, do contain some smooth

muscle. This permits them to function as a variable volume blood reservoir (Ganong, 1989).

2.2.2 The Lymphatics

Some of the fluid from the interstitial space flows into the lymphatic circulation.

Figure (2.2) illustrates the form and structure of a typical lymphatic terminal. Interstitial

fluid enters the lymphatic system through a readily deformable lymphatic bulb into the initial

lymphatics that have no smooth muscle and are not contractile. These vessels join to form

collecting lymphatics that may or may not contain smooth muscle and valves. A tree

structure then follows as the lymphatic vessels converge to form bigger vessels. Lymphatic

vessels are not necessarily paired with any blood vessel but are randomly distributed

throughout the interstitium (Schmid-Schonbein, 1990).

It is not clearly understood how fluid and solutes are transported into the lymphatics

and how lymph is propelled within the lymphatic system. On average, about 50% of the

total circulating protein recirculates via the lymphatics and 2-20 liters of fluid pass through

the lymphatics daily (Ganong, 1989; Guyton et al., 1987). Material transport requires some

form of potential difference. Two different forms of lymph pump are thought to exist

corresponding to the two different observed lymphatic anatomies (Schmid-Schonbein, 1990).

They are the intrinsic and extrinsic lymph pumps.
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The periodic compression of the microlymphatics by its own smooth muscle is the

mechanism proposed for the intrinsic lymph pump. Bat wing is the only known mammalian

example where this type of mechanism exists. The smooth muscle activity acts to fill the

lymphatics by expanding the lymphatic ending. Lymph then empties into the collecting

lymphatics. A requirement for this to work is that the membrane of the initial lymphatic

bulb be permeable to material in one direction only. This is achieved through the use of

endothelial microvalves which prevent fluid from flowing out of the lymphatics (Schmid-

Schonbein, 1990).

Figure 2.2: Structure of lymphatics in cat mesentery
(taken from Schmid-Schonbein, 1990).

The extrinsic pump mechanism does not make use of smooth muscle to drive material

into the initial lymphatics. The only way to achieve lymph flow in this case is via a pressure

drop from the interstitial space to the initial lymphatics or an active lymphatic membrane
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pump operated by some cellular transport mechanism. Such a transport mechanism has not

been conclusively identified as yet. Further, a pressure drop from the interstitium to the

initial lymphatics has not been firmly established. Pressure drops found experimentally tend

to be small and periodic (Schmid-Schonbein, 1990).

The second approach is the one adopted for this work. The lymph drainage rate is

assumed to be a function of the local tissue hydrostatic pressure and lymphatic sink pressure.

Tissues subjected to increased pressure drops between the interstitium and the initial

lymphatics have enhanced lymph flows. For this reason, passive limb movement and skin

massage increase lymph flow. At present, the formation of lymph and dynamics related to

its flow are not well understood (Schmid-Schonbein, 1990).

2.2.3 Microvascular Exchange

The basic functional unit of the microvascular exchange system is the capillary and

its associated envelope of tissue. Also associated with this system unit are any lymphatics

that may drain interstitial fluid. The lymph fluid eventually returns back to the circulation

via the right and left subclavian veins.

Material (fluid and solute) exchange between the capillary and interstitium encounter

two main resistances, namely the capillary wall/basement membrane, and the interstitium

itself. Each of these resistances will be discussed in some detail in the following subsections.

The Capillary Wall and Basement Membrane

The capillary wall consists of a single layer of endothelial cells. Figure (2.3)

illustrates the structure of the capillary wall. The basement membrane (or basal lamina) is a

thin structure consisting primarily of a different specialised form of collagen than that found
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in the interstitial space. It surrounds and supports the blood vessels of the microvasculature

in an extracellular matrix envelope. In addition to its mechanical functions, the basement

membrane may also serve as a resistance to or conductance for material exchange (Bert and

Pearce, 1984).

The capillary wall consists of a monolayer of epithelial cells. In general, capillary

walls are similar from tissue to tissue. Clear differences arise, however, when considering

the relative molecular sizes of substances that may cross the capillary wall in different

tissues. In most tissues, water and relatively small solutes are the only materials that may

cross the capillary walls with ease. The tissue fiber matrix restricts high molecular weight

species such as plasma proteins due to their size. However, these molecules may transfer

into the interstitial space by a variety of means.

There is an assortment of different transport pathways across capillary walls that have

been proposed. These are outlined in the following :

• vesicular transport

Plasma and substances in solution are taken up by endocytosis on the capillary lumina]

side, transported across the endothelial cell interior, and then released into the

interstitium by exocytosis (Ganong, 1989). These vesicles may fuse to form aqueous

channels permitting passage of plasma (Bassingthwaite et al., 1989).

• interendothelial cell clefts

Material transport may go through the endothelial cells or through the clefts between

adjacent cells. These junctions usually vary in size from tissue to tissue but average

between 10-20 ptm except in the brain microvasculature where the junctions are nearly

completely closed (the relatively impermeable blood-brain barrier). The structure of

these pores is not well understood (Silberberg, 1988).

• fenestrations

The walls of some capillaries contain fenestrations. These are areas of the endothelial

cell membrane that are stretched to form gaps typically between 20-100 nm in diameter.
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These fenestrations allow passage of relatively large molecules. In the liver, these gaps

may be of the order of 3000 nm diameter making the capillary wall very porous

(Ganong, 1989).

• passive diffusion

The capillary wall is very permeable to water and other small non-polar solutes. Lipid

soluble molecules also pass through the capillary wall but are hindered by the aqueous

intracellular environment and thus can only pass through the capillary wall by travelling

within the endothelial cell membrane of vesicles. These substances simply diffuse down

their chemical potential gradient.

Direct
Capillary
Wall CellsCD

iu  ^
Basement Membrane

Figure 2.3: Structure of and transport mechanisms through capillary walls

The mechanisms for transport across the capillary wall are summarized in Figure

(2.3). There are other factors that affect transcapillary transport of solutes such as electric

charge, solute concentration, and pressure differences. The effect of albumin concentration

and hydrostatic pressure on capillary wall hydraulic conductivity has been studied

extensively (Dull et al., 1991; lida, 1990; and Parker et al., 1984).
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Transcapillaty Transport

The capillary wall exhibits sieving characteristics allowing it to be treated simply as a

membrane. The various forms of transport across the capillary wall are not all fully

understood and so it is often treated mathematically as a porous membrane (Ogston and

Michel, 1978; Curry, 1984; Taylor, 1990a). Here material exchange rates are expressed as

the product of a driving force, usually the potential gradient, and a conductivity constant

(inverse resistance). The mathematical complexity of treating the membrane is simplified

via the use of the lumped resistance term.

There are two main driving forces for fluid exchange across the capillary wall. These

are the hydrostatic pressure and osmotic pressure gradients. The latter arises because of

solute (protein) concentration difference across the capillary membrane. These two forces

for fluid flow have been termed the Starling forces. The colloid osmotic pressure is usually

a non-linear function of the solute concentration and reduces the local fluid chemical

potential. Figure (2.4) illustrates the roles of the Starling forces.

Hydrostatic
Pressure

Pc Pt

Osmotic
Pressure

it 7Ct

Membrane
Capillary^Interstitium

Figure 2.4: Starling Forces
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The Starling forces give rise to the Starling hypothesis (Taylor and Townsley, 1987) :

VIM = [ P, - - (3{7r, - (2.1)

where vfn is the transmembrane fluid velocity, Lp is the capillary wall filtration coefficient

(also known as the capillary wall hydraulic conductivity coefficient), and a is the particular

solute's osmotic reflection coefficient. P(  and Pt are the capillary and interstitial hydrostatic

pressures while ne and Itt are the capillary and interstitial colloid osmotic pressures,

respectively. Note that the interstitial hydrostatic and colloid osmotic pressures used in

equation (3.1) are evaluated immediately adjacent to the capillary membrane.

The solute osmotic reflection coefficient, a, accounts for the difference between the

effective osmotic pressure difference which actually operates across the membrane and the

calculated osmotic pressure difference. If the reflection coefficient is equal to 1.0, the solute

is totally reflected from the membrane, i.e., the membrane is impermeable to the solute. A

reflection coefficient of 0.0 means the solute has the same permeability as that of water

through the membrane, i.e., the only driving force for material exchange is the hydrostatic

pressure gradient. Capillaries in the brain display a reflection coefficient of nearly 1.0

(impermeable), while the liver sinusoids have a reflection coefficient of nearly 0.0 (totally

permeable) (Taylor and Townsley, 1987).

In most capillary membranes, the protein reflection coefficient is somewhere between

0.5 and 0.95 (Renkin, 1986). This is interpreted as meaning that the solutes are transferred

into the interstitium but that the effective colloid osmotic pressure driving force is a fraction

(a) of the actual (measured) colloid osmotic pressure driving force.
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If there are two different means of transcapillary exchange, for example two different

pore sizes 1 and 2 (small and large pore sizes), this may be treated by an areal weighting

between the two flow terms, i.e.,

vfs = coL„,[P, — —^— rc )1+ (1— w)Lp2 [P, —^cs-2 (7t,— Icc )]^(2.2)

where co (0<co<l) is the fractional area of pores having size 1.

The Patlak equation (Patlak et al., 1963; Curry, 1987; Renkin, 1986) links solute flux

across the capillary wall to the Starling hypothesis. For a membrane separating a capillary

having concentration c1 and an interstitial solution having concentration c2, the solute flux,

js, is given by :

PS(c, — c2 )Pe„,
js = vf,(1— o-)c,+^

ePe- —1

where Pe,n is the modified capillary membrane Peclet number given by :

= vfm(1—Pe 
PS

and PS is the diffusive component of the capillary permeability. When the convective

transport contribution is zero or the capillary membrane completely reflects the solute,

equation (2.3) reduces to the simple form :

(2.3)

(2.4)

js = PS(c, —c2 )^ (2.5)
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The Patlak equation, (2.3), is a non-linear flux equation. Two assumptions to bear in mind

about its use are that, first, it is only applicable to a single solute species and second, the

transport pathways are all the same for both transport mechanisms (convection and

diffusion).

The capillary wall Peclet number is important for indicating the relative roles of

convection and diffusion in solute transport across the capillary membrane. For convection-

dominated flows, Pe„, is greater than unity.

In summary, Starling's hypothesis and Patlak's equation give expressions for the fluid

and solute flux across the capillary wall respectively.

2.3 The Interstitial Space

The interstitium is a three-dimensional network of fibrous connective tissue

molecules embedded in a gel-like matrix consisting of various polymers dissolved in the

intercellular fluid. It includes all of the tissue space outside the capillaries, the lymphatics,

and the cells themselves. The fluid and solutes flow around and through the cells and the

molecular meshwork occupying the extracellular space. In this respect, the interstitial space

is really a porous medium. The fibers impart mechanical strength and elasticity to the

interstitium. This allows for deformation and fluid accumulation within the interstitium.

The resulting complicated nature and behaviour of tissue is evident. Figure (2.5) provides a

visual depiction of the interstitial space.

In the following, each of the various components in the interstitium will be briefly

discussed.

•^interstitial fluid

The largest component of the interstitial space is water. Some of the fluid is bound to the

fibrous elements in the interstitium. In addition, the effective viscosity of the fluid is
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Figure 2.5: The interstitial space (taken from Bert and Pearce, 1984).
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increased by the presence of mobile hyaluronan (formerly known as hyaluronate). This

means that even under very high pressures, a significant portion of the fluid is retained in

the tissue (Lank, 1983). The interstitial fluid originates from the capillary and either is

reabsorbed back into the capillary or drains into the lymphatics. Like many porous

media, the interstitial matrix is virtually impossible to describe rigorously from a

microscopic point of view. It is expected as fluid and solute traverse the interstitium that

some channeling occurs. This phenomena is not well understood and has not been

conclusively proven (Bert and Pearce, 1984).

• collagenous fibers

Collagenous fibers impart structure and mechanical strength (in the form of tensile

strength) to the interstitium. These are long fiber bundles consisting of collagen

molecules (tropocollagen). A collagen fiber consists of an organized array of collagen

molecules. All of the molecules are arranged in parallel with many stable covalent cross-

linkages between the molecules providing the high tensile strength (Bert and Pearce,

1984; Laurent, 1987).

• elastic fibers

Elastic fibers provide tissues with elasticity, conferring a rubber-like texture to tissues.

The aorta and larger arteries are particularly rich in elastic fibers (Laurent, 1987). The

main elastic fiber found in tissues is elastin, which is constructed from the tropoelastin

molecule. Elastin is a three dimensional network of highly hydrophobic coiled

molecules jointed at many cross-links. When unstressed, elastin assumes a random

configuration, and contains about 0.56 ml water per ml elastin. This water is most likely

accessible to smaller solutes (for example, glucose, urea, and sodium). However, larger

molecules like colloid proteins are excluded from this space (Bert and Pearce, 1984).

• glycosaminotdycans and proteoglycans

The properties these substances contribute to the interstitium are physicochemical in

nature. Glycosaminoglycans are hydrophilic charged polysaccharide chains containing
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an amino sugar. An example of a glycosaminoglycan is hyaluronan (molecular weight

usually between 106 and 107 Daltons) (Laurent, 1987). Glycosaminoglycans are usually

covalently bound in tissue to polypeptides known as proteoglycans. Hyaluronan is an

unbranched polysaccharide which forms an extended random coil when solubilized.

Water is bound by hydrogen bonds to the hyaluronan molecule. The coil is further

expanded by the mutual repulsion of the negative charges throughout the hyaluronan

molecule. The volume occupied by the random coil is often greater than 1000 times the

polymer molecular volume. The effective viscosity of interstitial fluid is increased

considerably in the presence of hyaluronan. This is ascribed to entanglement that occurs

between different hyaluronan coils. At low hyaluronan concentrations, solutions may gel

(Bert and Pearce, 1984). Proteoglycans form aggregates in the presence of and may bind

to hyaluronan. These polymer chains are hydrophilic and have a high charge density.

They also can bind to collagen fibers providing a stabilizing effect. These fibers tend to

bind water due to their hydrophilic nature and restrict movement of the interstitial fluid

and matrix (Bert and Pearce, 1984).

• interstitial plasma proteins

There are over 100 different plasma proteins (Bert and Pearce, 1984). The most

abundant plasma protein is albumin. About 60% of the total body albumin (approximate

molecular diameter is 7.5 nm) is contained in the extravascular space. This means that

the interstitium provides a considerable reservoir for plasma proteins. At the

physiological pH of roughly 7.40, most of the plasma proteins are negatively charged.

All of the plasma proteins exert a colloid osmotic pressure, but most of this is contributed

by albumin. This work examines the concentration distributions of protein (albumin)

within the interstitium.

The response of the interstitium to any changes is the sum total of the effects of the

perturbations on all of the components interacting with each other within the interstitial
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space. Thus, the system behaviour is in general, very complex. In this work, several

assumptions are made, simplifying the system enormously. These are described in detail in

Chapter 3.

The mechanical properties of the interstitial space are predominantly determined by

collagen and elastin fibers. The degree of hydration of tissue is largely determined by

glycoaminoglycons and proteoglycans. As mentioned earlier, the resistance of tissue to

deformation is due to the mechanical properties of the fiber matrix, the binding of the fluid

to matrix elements, and the increased fluid viscosity due to hyaluronan. As a tissue deforms,

the fibers rotate, stretch, and compress in the tissue volume. This movement exerts stress on

the fluid forcing it to be expelled from the matrix.

2.3.1 Volume Exclusion

Volume exclusion is the term applied to the phenomenon occuring when the

meshwork flow domain limits solutes of larger dimensions than the matrix voids. The

interstitial space consists of collagen, elastin, hyaluronan, and proteoglycans producing a

dense fibrous network of molecular dimensions. This means that larger solutes will be

restricted from entering some regions of the interstitium because of steric exclusion. The

result is a larger effective solute concentration due to the smaller possible occupation

volume. It is this effective solute concentration which will determine the osmotic driving

force for fluid flow.

An example illustrating the effect of volume exclusion is that of albumin exclusion

by hyaluronan. Hyaluronan solutions of 0.5% and 1.5% by weight exclude albumin from

25% and 75% of the solution volume respectively (Bert and Pearce, 1984).

It is necessary to include solute exclusion in any mathematical description of the

interstitium due to its effects on solute concentration.
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2.3.2 Geometry of Tissue

This section briefly describes the arrangement of capillaries in tissues. This will

serve as the basis for defining the functional unit used in the next chapter to formulate the

microvascular exchange model.

Figure (2.6) presents a capillary network geometry from the frog sartorius muscle

(Dietrich and Tyml, 1992). As can be seen, the capillaries are largely arranged in parallel to

each other. Single unbranched capillary lengths appear to average between 200-800 gm.

Klitzman and Johnson (1982) determined that the average capillary length in the hamster

cremaster muscle was 262 gm. The functional unit described in the next Chapter is based on

the single unbranched capillary length. This is assumed in Chapter 4 to be 300 gm.

Intercapillary spacing has been experimentally found to be of the order of 40-60 gm

(Intaglietta and Zweifach, 1971; Ganong, 1989). This is assumed to be 60 pm in Chapter 4.

Figure 2.6: Microvascular network of the frog sartorius muscle
(taken from Dietrich and Tyml, 1992).
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Chapter 3 : Model Development and Formulation

This chapter presents the model development and formulation. The first section

reviews microvascular models found in the literature. The second section discusses the

continuum approach for fluid and solute transport. The third section presents the governing

equations of microvascular exchange. The associated boundary conditions are given in the

fourth section. The fifth section briefly outlines the mathematical treatment of fluid and

solute exchange in the capillary. The numerical procedure is outlined in the sixth section.

The final section summarizes the governing equations and boundary conditions.

3.1 Literature Review

A wide variety of mathematical models have been developed for different

physiological systems. These models aid in our understanding of the fundamentals of

transport and material exchange in the human body. The expectation is that mathematical

models provide a framework for experimentation, especially with respect to determining

physiological parameters for predictive behaviour and governing mechanisms of transport

and regulation.

Microvascular exchange has been receiving much attention during the last couple of

decades. Mathematical models have been developed to investigate the underlying

mechanisms of pressure and flow regulation and transcapillary material exchange. The

models are becoming increasingly complicated. They include such factors as property

heterogeneity, colloid osmotic pressure, and lymphatic sinks, thus serving as more effective

research tools.
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Early attempts at modeling microvascular exchange (Apelblat et al., 1974; Intaglietta

and de Plomb, 1973; Salathe and An, 1976; An and Salathe, 1976) generally investigated

fluid exchange. These models did not include solute transport and thus assumed colloid

osmotic effects were constant in the region of interest. Salathe and Venkataraman (1978)

presented a capillary-tissue fluid exchange model taking variations in plasma and interstitial

osmotic pressure into account due to protein convection and diffusion. Their model,

however, neglects transcapillary protein exchange. They obtained analytical solutions using

perturbation methods. Weiderhielm (1979) performed a non-linear simulation of capillary

fluid exchange including the effects of volume exclusion due to glycoaminoglycans and

proteoglycans. Plasma protein transfers into the interstitium via convection and diffusion

through large pores at the venous end of the capillary. An analog computer model was used

to generate the simulations. This analysis is similar conceptually to a compartmental model

since tissue and capillary variables were functions of time only (spatially invariant).

Blake and Gross (1980, 1981) presented a series of papers outlining a model for fluid

exchange in and between capillaries. The model assumes the capillaries are parallel

cylinders of finite length. They assumed that there is Poiseuille flow in the capillaries and

transcapillary fluid exchange obeys Starling's hypothesis. Constant protein concentrations

throughout the solution domain were assumed and analytical solutions were found for single

and multiple capillaries in parallel.

Benoit et al. (1984) proposed a compartmental model for fluid and protein exchange

in the rat intestine. They consider three compartments: the capillary, interstitium, and

lumen. They used the Patlak equation to evaluate the protein flux across the capillary

membrane. Flessner et al. (1984, 1985a, 1985b) presented a series of papers discussing a

distributed model of peritoneal-plasma transport. They use a combined compartmental

approach in conjunction with a one-dimensional spatially distributed model for solute

transport within the peritoneal tissue. They assumed the colloid osmotic pressure is constant

within each compartment. They also included lymphatic drainage of material via the use of
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an uptake rate expression. Their analysis treated volume exclusion and tortuosity effects by

lumping them into an effective diffusivity. A retardation factor was also included to account

for convective transport hindrance due to the intercellular matrix-solute interactions.

Fry (1985) derived a one-dimensional finite element model (and an analytical one) to

describe transport of chemically reactive macromolecules across arterial tissues. He found

estimates for the tissue diffusivity and convective velocities by fitting the model to

experimental data.

Bert et a/. (1988) presented a dynamic mathematical model describing the

distribution and transport of fluid and proteins among the three compartments: circulation,

skin, and muscle interstitial spaces. Fluid also drained from the tissues forming lymph that

returned to the circulation. They examined two mechanisms of transcapillary exchange: a

homoporous 'Starling' model and a heteroporous plasma leak model. The Starling model

proposes that fluid filters across a membrane from the circulation to the interstitium. Solutes

may cross the membrane by diffusion or by convection due to fluid filtration. The plasma

leak model proposes that fluid filters across the membrane through small completely-sieving

pores. Solutes cross the membrane via large non-sieving pores at the venular end of the

capillary only or by diffusion along the length of the capillary. They concluded that the

plasma leak model provides a better description of transcapillary exchange. Bert et al.

(1989), Bowen et al., (1989), and Lund et al., (1989) presented a series of papers describing

a dynamic compartmental model of microvascular exchange after burn injuries. This model

contains four compartments: circulation, muscle, injured and non-injured skin.

Recently, microvascular exchange models have shifted from compartmental

approaches to spatially distributed formulations. In compartmental modeling, the material

exchange occurs between well-mixed homogeneous compartments. Rate constants govern

material transfer between compartments. This means that properties in each compartment

are constant throughout the compartment, i.e., they represent an average value for the

compartment properties. The spatially distributed models do not assume that the



Chapter 3 : MODEL FORMULATION^ 27

compartments are well mixed and homogeneous. This means that material transport within a

compartment affects the systemwide behavior. These models thus approximate the real

system more closely. This added benefit is offset by the increasingly more detailed

information required about the structure and transport characteristics of each compartment.

The mathematical complexity of spatially distributed models also increases. The lack of data

in the literature forces the use of estimates for required parameters in mathematical

microvascular models. This is especially so for transport characteristics of the interstitium

and lymphatics. These models are used primarily for identifying general trends; they are not

expected to predict verifiable quantitative results.

Baxter and Jain (1987) presented a transient, two-dimensional model for

macromolecular transport in tissues. Their model only accounts for diffusive transport of

solute and neglects convection. In a later paper, Jain and Baxter (1988) investigated

mechanisms of macromolecular transport in tumors. Their development is transient and

included both convective and diffusive solute transport mechanisms within spherical tumors.

This model was one-dimensional (radial) for both fluid and solute transport and assumed that

the transport parameters and osmotic pressure are constant throughout the tumor. They

extended their work (Baxter and Jain, 1989, 1990) by including a lymphatic drainage term

and non-uniform heterogeneous perfusion of the tumor. They accomplished this by

incorporating a necrotic core in the center of the tumor. They again assume that interstitial

transport parameters and osmotic pressure are constant within the solution domain. Baxter

and Jain (1991a) further extended their model by introducing extravascular binding of

macromolecules and metabolism within the tumor. All of their tumor models so far consider

fluid and solute transport in spherical tumors in the radial direction only. They therefore

assumed that the lymphatic sinks and capillary sources exist continuously throughout the

tumor. These models do not really address microvascular exchange at the capillary level as

their material balances are based on differential volumes which include many capillaries.
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In their most recent paper, Baxter and Jain (1991b) address microscopic

macromolecular transport from capillaries by examining a single capillary in the plane

perpendicular to the axis of the capillary. They assumed constant membrane transport

parameters, vascular pressure, and osmotic pressures in the solution domain. The models

described by Baxter and Jain above are increasingly complex but fail to account for the

effects of variations in the osmotic pressure throughout the geometry on fluid movement

(and thus the solute concentration distribution).

Taylor et al. (1990a, 1990b, 1990c) described a complex transient model of

microvascular exchange that potentially includes the combined effects of interstitial swelling

and protein exclusion. Local osmotic pressure gradients also determine fluid velocities

within the interstitial space, i.e., fluid movement is a function of the protein concentration

distribution. Transport of solute occurs by diffusion, dispersion, and convection. This

model, however, does not include the effects of lymphatic drainage. The model was applied

to both steady-state and transient transport in mesentery (Taylor et al., 1990a, 1990c).

However, it neglected the effects of capillary pressure variations as well as swelling,

dispersion, and property heterogeneity in the tissue and capillary membranes.

This work extends the model proposed by Taylor et al. to include axial pressure and

solute concentration variations in the capillary, lymphatics, and property heterogeneity

within the interstitial space and the capillary membrane. The tissue is assumed as rigid with

constant volume and, hence, swelling effects are assumed to be negligible.

3.2 The Interstitium as a Continuum

As described in Chapter 2, the interstitium is a complex structure consisting of a fiber

matrix swollen with fluid. The hydrophilic proteoglycans and collagen form a meshwork

that permits fluid to percolate throughout the organic porous medium. Dissolved within the
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interstitial fluid are various electrolytes and proteins. At the molecular scale, fluid and

solutes traverse the interstitial space through tortuous passages. The solutes may interact

with the passage walls throughout their journey and may be hindered by electrostatic forces

and the fiber matrix structure (volume exclusion). Any attempt to model the interstitium at

the molecular level is impractical since it is both impossible to adequately define the

geometry and measure variables (such as the pressure and concentration) at microscopic

scales.

The alternative approach moves to the macroscopic scale and considers the

interstitium as a continuum. The fluid and solid phases are not dealt with on an individual

basis, but considered, rather, as one continuous composite phase exhibiting average

properties. This means that the properties of the fluid and solid phases are spatially averaged

at some local scale and continuously distributed throughout the interstitial region. Examples

of averaged properties are the fluid hydraulic conductivity, the effective protein diffusivities,

and the excluded volume fractions.

3.3 Model Formulation

This section presents the geometry of the problem and the governing equations for

fluid and solute transport in the interstitium, their associated boundary conditions, and model

assumptions. It also includes the mathematical treatment of volume exclusion and its effects

on the colloid osmotic pressure and convective velocities.

3.3.1 Model Geometry

For this work, a single capillary is assumed to be the fundamental unit of

microvascular exchange. The use of a single capillary model was first introduced by Krogh

(1919). Here, the microvascular exchange unit is approximated as a rigid capillary of fixed
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length and radius surrounded by an annular tissue space (the Krogh cylinder). Krogh (1919)

used this geometry to investigate diffusive exchange of solutes. The Krogh cylinder was

used by Apelblat et al. (1974) to describe fluid and solute exchange across the capillary. The

use of the Krogh cylinder approach implies that there is no intercapillary fluid or solute

communication. This means that material can enter the system but may only exit via

reabsorption or lymphatic drainage.

For this work, the Krogh cylinder approach is adopted. Tissue swelling is ignored,

that is, the tissue is assumed to be rigid. This implies that there is no accumulation of fluid

in the system. Blood flows through the capillary due to a drop in the capillary pressure from

Fart at z 0 to Pven at z = L. Fluid flows through the membrane based on Starling's

hypothesis. Solute may be transported across the capillary membrane (based on Patlak's

equation) and then distribute itself freely throughout the tissue as a consequence of the

diffusive, dispersive, and convective mechanisms. The fluid and solute can be withdrawn

from the tissue via a lymphatic sink. This may be confined to a specific region or may be

distributed throughout the tissue space. The model geometry is presented schematically in

Figure (3.1).

Membrane

77+^

 

Capillary - _ .....^......... _ .... .............. .___.....r = 0

 

r = Rt,

Tissue

r

r = Rt

z = Lz = 0

Lymphatic Sink

Figure 3.1: Model Geometry.
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The cylindrical coordinate system is the natural system to use due to the model

geometry. All governing equations are derived in this system of coordinates with

axisymmetry. This means that the lymphatic sink as shown in Figure (3.1) is a concentric

shell surrounding the tissue space. The outer tissue boundaries (at the z = 0 and z = L planes

and the concentric shell at r = Rt ) are assumed to be impermeable, i.e., there is no fluid or

solute transport across these boundaries. Material may only enter through the capillary wall

and then exit either through reabsorption back into the capillary or through the lymphatic

sink. Capillary flow enters at z = 0 and exits at z = L. The lymphatic sink can be placed at

any arbitrary location within the sink and is shown at the edge of the tissue envelope in

Figure (3.1). The volume of the lymphatic sink may also be varied.

The general model assumptions are listed in Table (3.1). These assumptions are used

in formulating the model and are thus an intrinsic part of the model.

3.3.2 Fluid Transport in the Fiber Matrix Porous Medium

Within a differential element, the fluid mass balance equation has to be satisfied. For

cylindrical coordinates in the r and z directions only, this is given by (Bird et al., 1960) :

dp1 1 d(P fv,)^fvz) 
p fQ = 0

dt r  
(3.1)

where Q is a source term and pr. is the fluid density. Equation (3.1) simply states that the

amount of fluid entering into the differential element by flow and from the source is equal to

that leaving the element by flow. The source term is used to implement the lymphatic sink.

In this model, the tissue is assumed to be rigid and non-deformable. The fluid density is

assumed constant and as a consequence, the mass balance equation simplifies to :
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Table 3.1 : General Model Assumptions.

Model Assumption Summary
Continuum model formulation.
Rigid capillary (not distensible).
Fluid density is constant.
Rigid interstitial space (not deformable).
Fluid motion in tissue can be described by Darcy's law.
Chemical potential driving fluid flow is given by (P-o-n).
Effective solute drag velocity is some fraction of the fluid velocity (the retardation
factor,
Interstitial space reflection coefficient assumed to be equal to 1.0. The effect of this
parameter on the system is examined in Chapter 4.
Lymphatic drainage is treated simply as a sink. Solute is convected with the fluid out
the lymphatic sink.
Starling's hypothesis governs fluid flow through capillary membrane.
Patlak's equation governs solute flow through the capillary membrane.
Thin film of fluid between capillary membrane and tissue porous medium (for
continuity of pressure and solute concentration).
Capillary pressure only a function of distance down capillary. Capillary pressure may
be assumed a linear function from the arterial to the venular pressures (Poiseuille's
law).
Capillary solute concentration only a function of distance down capillary. May be
assumed as constant along the length of the capillary.
Single aggregate protein represents all distinct protein species.
Dispersion of solute is described by two parameters, the longitudinal and transverse
dispersivities.
Lymphatic sink material removal rate is simply given by a linear equation in the local
tissue hydrostatic pressure.
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dvr^
+—

avz 
-Q= 0dr^r^az
^ (3.2)

A general macroscopic equation that describes the flow of a fluid through an

anisotropic porous medium is Darcy's law (Smith, 1990) given by :

vf - vs = k V( + pfgz)
^f

^ (3.3)

where k, 6, and !if are the anisotropic permeability and porosity of the porous medium, and

fluid viscosity respectively. The constant g is the acceleration due to gravity. This empirical

law expresses the fluid velocity, v1; relative to the solid matrix velocity, vs, due to an

imposed fluid pressure drop, Pt, and height difference, z, across the porous matrix.

Neglecting the effects of height differences and with zero solid phase velocity, this may be

rewritten :

vf =—KVP,^ (3.4)

where K is the fluid hydraulic conductivity. Substituting Darcy's law, equation (3.4), into

the mass balance equation (3.2) yields :

a ( aP) K, P, _ ( dPty Q(pi ) = 0K --L. --
dr rr dr^r dr az - az

(3.5)

where Pt is the local tissue pressure. The lymphatic term, Q(P), is a function of the local

tissue hydrostatic pressure. Equation (3.5) does not include the effects of the colloid osmotic

pressure and therefore has to be modified.
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The driving force for fluid movement is the chemical potential gradient. In the

absence of osmotically active solute, the only driving force for fluid motion is then the

hydrostatic pressure. Colloid osmotic pressure serves to reduce the local driving pressure for

fluid flow across a membrane. The tissue may be considered as a stack of membranes thus

allowing local osmotic pressure gradients throughout the tissue. Equation (3.5) is modified

to include the effect of the colloid osmotic pressure as follows :

K 
d K - CT 7C )ii+ a d(P - a It)K^st 0afr, — 0;71

ar^'r^ar r dz
) 1_ Q(pi ).^(3.6)dz

where at is the local osmotic pressure and a t is the tissue reflection coefficient. If the

reflection coefficient equals 0.0 then the driving force is simply the local hydrostatic pressure

gradient. Solving equation (3.6) yields the tissue pressure which equals the fluid pressure

since equilibrium exists locally within the porous medium. The local fluid velocities in the r

and z directions may then be determined from :

d(P crtgt) vff = — K, ar
and

a(P —^)
vf.Z = — K2^"az

Equations (3.6), (3.7), and (3.8) describe fluid transport in the interstitial space

porous medium. They are not complete, however, since they do not include the effects of

volume exclusion. The mathematical treatment of volume exclusion and its effects on the

above equations will be presented in a later section.

(3.7)

(3.8)
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3.3.3 Solute Transport in the Fiber Matrix Porous Medium

Solute transport occurs by three mechanisms in the tissue fiber matrix. These are

diffusion, dispersion, and convection. All three modes of solute transport have to be

included since at high convective velocities, convection and dispersion may become

significant.

Fick's law gives the local diffusive flux of solute through the interstitial space :

idiffs —DdiffVCs
^ (3.9)

where jdiffs and cs are the diffusive solute flux and solute concentrations respectively and

Ddiff is the anisotropic diffusivity tensor for the solute through the porous medium. These

diffusion coefficients are usually less than the solute's free diffusion coefficients because of

the impeding effects of the solid matrix. These hindering effects are due to both steric

hindrance and electrostatic interactions between the solute and the solid matrix components.

For albumin, the diffusion coefficients tend to be about 1.0x10 -12 m2/s in human tissue

(Gerlowski and Jain, 1988). The effects of volume exclusion on solute diffusion is presented

in a later section.

Convection is an important mechanism of solute transport in tissue. The mass flux of

solute transported by convection,,leOtiv,s5 is given by :

convs = V s,eff C
^ (3.10)

where vseff is the effective solute transport velocity. The local effective solute convective

velocity (solvent drag velocity) is expected to be less than the local effective fluid velocity.

This is because of several factors. First, the hydrodynamic interactions between the solute

and the solid matrix will retard solute flow. Second, the shape and size of the solute
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molecule will result in volume exclusion effects. This effect actually promotes increased

mean solute flow rates and will be explained later in more depth. The third and final effect

is that of electrostatic charge. Repulsion or attraction of the solute to the solid matrix

components may increase or decrease the overall solute convective flow rate and relates

closely to surface depletion effects. The first factor will be briefly discussed here while the

others will be discussed further in the section on volume exclusion.

The hydrodynamic effects on solute convective transport result from the viscous fluid

interaction between the convected solute particles and stationary randomly arranged fibers of

the solid matrix. This will hinder the movement of the solute front since the particles will be

required to travel a tortuous path within the fiber matrix from one location to another and

will travel at a slower speed than the trasnporting fluid due to viscous interaction with the

solid components. Brenner and Gaydos (1976) theoretically analyzed transport of neutrally

buoyant spherical particles in a Poiseuille flow in narrow capillaries. Their analysis

considers specifically solute particles of radius of similar order of magnitude as the channel

radius. They predict that two opposing effects will exist. First, the ratio of the particle

velocity to the fluid velocity at the particle center decreases as the particle size increases.

This is expected since as the particle radius increases, more solute-solid matrix interactions

will occur. Second, as the size of the particles increases, they tend to remain in the central

region of the fluid flow. This is the surface depletion effect which will be discussed in detail

in the volume exclusion section. This effect may cause the mean solute velocities to be

greater than the mean fluid velocities.

It is required to define the local effective solute convective velocity. As mentioned

above, it is known to be somewhat less than the local fluid velocity. It is useful to define a

retardation factor, which relates the effective solute convective velocity and the effective

fluid velocity by :

vs = of^(3.11)
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The transport of solute by convection is now given as :

Jconvs =^=
^ (3.12)

The retardation factor is a function of the apparent accessible pore space fraction. It

should be also noted that the retardation factor is a function of the tissue hydration since the

apparent accessible pore space volume varies with the tissue hydration.

The third and final solute transport mechanism is mechanical dispersion. The

dispersive flux originates from microscale fluid velocity variations from the mean fluid

velocity and solute flowing into microscale pathways different from the direction of the bulk

convective flow. Mechanical dispersion spreads the solute front in a manner similar to

molecular diffusion. For this reason, it is assumed that dispersion can be expressed as a

Fickian process :

Jdisps = —Ddsp VCs
^ (3.13)

where Ddisp is the mechanical dispersion tensor. This means that the dispersion term of

solute transport can be coupled with the diffusion term as :

j d„ = —D VCS^(3.14)

where D is the sum of the molecular diffusion and mechanical dispersion coefficients.

The dispersion coefficients are functions of the effective convective velocities and

average pore size in the porous medium (Smith, 1990). The relationship between the

dispersion coefficients and the fluid velocities and porous medium structure is given by

(Bear, 1972) :



Chapter 3 : MODEL FORMULATION^ 38

Da^= a ijkl
^ (3.15)

where aijki is the anisotropic dispersivity (a fourth rank tensor) and is a function of the

porous medium structure and Vics and v4 s. are the fluid velocities in the k and 1 directions.

The product of the dispersivity tensor and the fluid velocities gives the dispersion

coefficients in each direction. The absolute magnitude of the velocity, 10, is given by :

Iv,' = + vz2, (3.16)

For an isotropic porous medium, equation (3.15) may be simplified to a function of two

parameters, a/wig and atran, the longitudinal and transverse dispersivities respectively (Bear,

1972), i.e.,

DdiryJj = a tranl l )51 8 ij + (a long — atran) 11 
s l

(3.17)

where Sly is the Dirac delta function. Typically the value of ai„ g is usually taken to be of

the order of magnitude of the grain size of the porous medium (Smith, 1990). Both

parameters are usually statistically estimated from experimental data to gain the best fit with

model predictions. Such data is not available for human tissue so rules of thumb are used.

For human tissue, the typical grain size of the solid matrix can be assumed to be the tissue

cell diameter. This results in a longitudinal dispersivity of the scale 10 12m. The transverse

dispersivity is usually estimated roughly as being ten percent of the longitudinal dispersivity

(Smith, 1990).
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In some porous media, for instance in petroleum reservoirs, dispersion exceeds

diffusion by about two orders of magnitude due to the highly convective flows. Since fluid

velocities tend to be less than 1.0x10 -7 m/s in humans (Baxter and Jain, 1989), using a

longitudinal dispersivity of 10 1-1.M for human tissue suggests that dispersion is a secondary

transport effect which may be safely neglected for low convective velocities.

The three modes of solute transport have been described mathematically above. Now

the solute convective-dispersion equation will be presented describing the transient

behaviour of solute within the interstitial space. The derivation of the solute transport

equation begins with a mass balance on a differential element. This is stated as follows : the

rate of accumulation of solute within a differential volume is equal to the net diffusive,

dispersive, and convective transport of solute into the differential volume and the solute

influx due to the source. This can be expressed as follows :

Rate of^= diffusive I dispersive flux +convective flwc+ source term
accumulation^(lids)^(i conv,^)^(Q)

(3.18)

This is expressed mathematically as :

dcs^d2c, D,7 dc^d2c^d(v,cs ) d(v, scs )
— D +--+ Du_ s^ ^'^+QV. ,P)

dt^dr2^r dr^- dz2^dr^dz^s s'eif
(3.19)

where Dn. and Dr__ are the diffusive-dispersive coefficients in the r and z directions

respectively. The source term, 0,(cseil , /1), is a function of the effective solute concentration

and local tissue hydrostatic pressure. This term is used to model a lymphatic sink in the

tissue space. The left hand side of equation (3.19) is the rate of accumulation of solute term.

The first three terms on the right hand side are the diffusive-dispersive terms in the r and z



Chapter 3 : MODEL FORMULATION^ 40

directions. The fourth and fifth terms represent the convective transport components in the r

and z direction respectively. The final term represents the lymphatic drainage of fluid and

solute which is treated as a sink in this formulation.

The convective terms contain the effective solute convective velocities. These terms

are calculated from the equations (3.7) and (3.8). The potential, (Pratirt), is obtained from

the fluid conservation equation (3.6). This equation, however, is a function of the local

colloid osmotic pressure which is also a function of the effective solute concentration. This

means that the fluid pressure equation and the solute transport equation are coupled and must

be solved simultaneously. The colloid osmotic pressure is a non-linear function of the solute

concentration, i.e.,

7r, (cs.t.ff (3.20)

and this complicates the solution of the governing equations. The effective solute

concentration, csxg; is evaluated from the actual fluid volume the solute may occupy.

The equations governing fluid and solute movement in the interstitial have been

presented. In the following sections, the implementation of the lymphatic sink will be

discussed and the mathematical treatment of volume exclusion and its inclusion in the above

equations will be presented.

3.3.4 The Lymphatic Sink

The fluid drainage out through the lymphatics is treated as a volumetric sink. The

function governing the removal of material by the lymphatic sink is unknown. Taylor et al.

(1973) report data for the lymph flow rate as a function of the average tissue hydrostatic

pressure in a dog's thigh. The function is shown in Figure (3.2). As can be seen, it is nearly
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linear below -2 mmHg and levels off when tissue hydrostatic pressures become sufficiently

positive.
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Figure 3.2: Lymph flow versus average tissue hydrostatic pressure
(taken from Taylor et al., (1973).

Baxter and Jain (1990) treated the lymphatic sink drainage as a linear function in the tissue

hydrostatic pressure. Since there is no data for humans, for this work, as a first

approximation, the lymphatic fluid depletion rate is assumed to be a simple linear function of

the tissue hydrostatic pressure given by :

Q(P,) = — LS(P,— PL )^ (3.21)

This means that the lymphatic drainage is proportional to the difference between the local

tissue pressure and the lymphatic sink pressure, PL. The lymphatic drainage function is

negative since the governing equations (3.6) and (3.19) are presented as having a source.

The local amount of solute being drained by the lymphatic sink is then given by :
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Qs(cs.eff ,P, )= Q(P,^ (3.22)

This gives the mass of solute leaving the system per unit time.

The sink is implemented as a term where fluid and solute are simply removed from

the system at that point. This is analogous to a binding term. This allows the fluid and

solute to communicate with the rest of the tissue above and beyond the sink. The tissue fluid

flow velocities at the sink are not then necessarily equal to the lymphatic convective velocity

since the fluid does not all necessarily exit the system via the sink but rather flows through

the local volume associated with the sink.

The conceptual picture of the lymphatic sink is displayed in Figure (3.3). In this

representation, the sink is located roughly in the middle of the tissue parallel to the capillary.

It is important to bear in mind that the model developed here is in cylindrical coordinates

although Figure (3.3) does not reflect this.

Capillary Flow
Lymphatic Sink

Drainage

Figure 3.3: Conceptual picture of the lymphatic sink.
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3.3.5 Volume Exclusion and Surface Depletion

This section presents : 1) definitions of volume exclusion and surface depletion, 2)

their effect on material transport, and 3) their implementation into the governing equations

presented above.

Volume Exclusion (Inaccessible Volume)

Volume exclusion refers to the phenomenon that occurs when the macromolecules

are restricted from certain regions of the porous medium because the opening sizes

connecting these regions are smaller than the size of the macromolecule. This excludes

macromolecules from a fraction of the pore space - both in these small pores and any larger

pores they give access to. There are two effects of volume exclusion. The first is a relative

advancement of the solute front with respect to the fluid front. This is because the fluid front

has to pass through all porous regions whereas the solute may bypass certain regions due to

volume exclusion. This results in the fluid taking effectively longer flow paths than the

solute. The second is that the effective solute concentration in the fiber matrix is greater than

the concentration expected if the solute were distributed throughout the entire volume. In

tissues, this effect cannot be ignored; for example, albumin is excluded from 60% of the total

interstitial space (dermis) due to volume exclusion (Bert and Pearce, 1984).

Figure (3.4) illustrates volume exclusion through a two-dimensional porous medium.

As can be seen, the solute particles are excluded from some regions of the space due to the

small pore sizes. The implementation of volume exclusion mathematically is facilitated

through the use of an representative elementary volume. This is displayed for a single solute

in Figure (3.5) The available fraction of space 'seen' by the fluid is f,. The accessible

volume fraction available to the solute (space the solute can 'see') is 1;t. The excluded

volume fraction is thus given by :
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Figure 3.4: Volume Exclusion of Solute.

fex =^ (3.23)

The volume fractions must sum to unity, that is :

fs, + fex + ; + fso =1^ (3.24)

where fso and^are the fractions of the volume occupied by the solid matrix and the

immobile fluid bound to the solid matrix respectively.

The solid phase consists mainly of the large polymers mentioned in Chapter 2, that is

collagen, glycosaminoglycans, proteoglycans, and elastin. The dominant glycosamino-

glycan, hyaluronan, is hydrophilic and readily binds the interstitial fluid. A more extensive
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description of partitioning the representative elementary volume for multiple solutes is

provided in Taylor (1990a).
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Figure 3.5: Partitioning of a representative elementary volume into the
various volume fractions.

The various volume fractions will in general be both functions of the tissue hydration

and the fiber matrix properties. Now it remains to be seen how volume exclusion is

incorporated into the governing equations of fluid and solute transport mathematically.

The fiber matrix, through volume exclusion, restricts the accessible fluid volume

available to solutes. This means that the effective solute concentration within the elementary

volume is somewhat greater because it occupies a smaller fluid space. The solute can access

only thels' t fraction of the elementary volume. This means the effective solute concentration

in the elementary volume is given by :

cs eff
^Cs^ (3.23)
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The osmotic pressure is determined by the effective solute concentration. This is then given

by :

= F(c.s.eff^(3.24)

where F is typically a low order polynomial in culi:

The mechanisms of solute transport will be affected as follows. The diffusive-

dispersive flux of solute can only transport material through the volume fraction available to

the solute. This gives a diffusive-dispersive flux as follows :

d = —LDVes,eif
^ (3.25)

The convective terms are also affected because volume exclusion has an influence on

the fluid velocities. The fluid can only flow through the fraction of pore space available to

it, that is L. ,. The effective fluid velocities through the fiber matrix porous medium will then

be given by :

V f = 
VI^ (3.26)

.1 av

This, however, is not incorporated into the fluid pressure equation. This is because the

experimentally determined hydraulic conductivities are assumed to have the volume

exclusion effects lumped into them. Volume exclusion, however, does affect the solute drag

velocity since it cannot 'see' all of the fluid flow due to the excluded fluid volume fex .

Therefore, the effective solute convective velocity has to be modified as follows :



Chapter 3 : MODEL FORMULATION^ 47

= .fs^ v
fad

(3 .27)

The final form of the solute transport equation including volume exclusion effects is then

given by :

Cks.eff^4 1 /,. ,,eff Cs ., If )^1/,,,,ff Cs ,ejf )^ +^ + 4
^ =

dt^dr^dz
s ,J, 

DD„
dr2

(92c,,eff  + Dn. dc eff(^ d2 

r dr 4- 
Da ai l2'eff i+ Qss 'e(Cff 'Pt )

(3.28)

This equation is solved to obtain the effective solute concentrations. The solute

convective velocities are obtained indirectly from the fluid conservation equation which is a

function of the solute concentrations via the colloid osmotic pressure. The colloid osmotic,

in turn, is a function of the effective solute concentration. The coupled equations (3.6) and

(3.28) must be solved simultaneously.

Surface Depletion

To some extent, surface depletion is very similar to volume exclusion in that some

portion of the elementary volume is not available to the solute. While volume exclusion

refers to an inaccessible pore space due to the sizes of the macromolecules and the pores in

the fiber matrix, surface depletion refers to the steric exclusion of macromolecules from the

pore wall (Sorbie et al., 1991). Volume exclusion is more likely to occur in low

permeability porous media whereas surface depletion is more dependent on the shape and

orientation of the molecule. It is expected that surface depletion will be less for spherical

globular molecules than long rod-like molecules of equivalent molecular mass.
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Figure (3.6a) illustrates surface depletion using two molecules: a rod and sphere and

a sphere in a random network of rods. Rod-like molecules will not be allowed to freely

rotate within a layer having the same thickness as the length of the rod-like molecule. This

layer is referred to as the depleted layer (Sorbie, 1990). Thus the excluded volume is the

layer of fluid surrounding the rod having an annular radius equal to the length of the rod.

This is dependent on the angle that the rod-like molecule makes with the fiber. Figure (3.6b)

displays the available space for a spherical molecule in a random network of fibers. The

space the molecule can move freely within is enclosed by the dotted line.

(a) -
^

Free rotation

Depleted layer thickness = 3

Rod-like molecule
Spherical molecule

S^>111< Hindered rotation

  

Fiber

Figure 3.6: Schematic diagram of (a) surface depletion of spherical and
rod-like molecules from fiber and (b) steric exclusion of sphere in random
network of fibers.

Similar to volume exclusion, surface depletion will lead to an advancement of the

macomolecular solute front relative to a low molecular mass tracer. Also, the lower

concentrations of the solute at the pore wall will lead to a lower solution apparent viscosity

adjacent to the wall.
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In this model, the volume exclusion (inaccessible pore space) and surface depletion

effects are assumed to be lumped together into the volume fractions presented in Figure 3.5.

First, this simplifies the analysis, and second, there is no data available to differentiate

between the two phenomena in the human interstitium.

3.4 Boundary Conditions

To solve the above governing equations, the behaviour of the fluid and solute at the

boundary has to be specified. As outlined above, the problem is posed in the cylindrical

coordinate system.

At an impermeable boundary, the fluid boundary condition is given by :

d(P, — afri) 
do

(3.29)

where n signifies the coordinate normal to the boundary. For the solute, an impermeable

boundary is represented by :

dc
—D "ff^Cn,eff s,eff

nn an + V (3.30)

This implies that there is no movement of solute across the boundary by any of the various

forms of transport: diffusion, dispersion, and convection.

The mathematical treatment of the capillary membrane boundary conditions requires

the assumption of an infinitesimally thin layer of fluid between the capillary membrane and

the tissue porous medium. In this thin layer, the pressure and solute concentration are in

equilibrium with the pressure and solute concentration in the accessible pore space. This is
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merely a mathematical convenience but it is required for continuity from the capillary

membrane to the tissue space.

At the capillary membrane, fluid continuity is required across the membrane. This

means the amount of fluid flowing across the membrane according to Starling's hypothesis

(Renkin, 1986) :

vs;„ =^— P, — o-(7r, - 7r, )]
^

(3.31)

must be the same as that indicated from Darcy's law for flow into the tissue, i.e.,

v Da^K '903t a 1 7r t) 
f„^

nn
^do

membrane

(3.32)

  

Equations (3.31) and (3.32) are coupled to provide the following boundary condition :

d(PeK ^
do

membrane

= L „ — P, —^— 70] (3.33)

   

This boundary condition is complicated by the fact that the capillary pressure, Pc, the

tissue pressure, P1, the tissue osmotic pressure, 710 the capillary membrane hydraulic

conductivity Lp , and the capillary membrane reflection coefficient, a t, may all be functions

of the location down the membrane. This means an iterative procedure has to be used to

satisfy the fluid capillary boundary condition. The solution algorithm is presented in the

Section 3.6.
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The capillary membrane solute boundary condition states that the amount of solute

passing through the membrane is given by Patlak's equation (2.3) (see Section 2.2.3). This is

given by (Curry, 1984) :

dc.
s ' eff v^

PS(Ce— Cs.eff )Pe.
J"D" do^'Leff('^= V 11eff(1— S)Ce+^

ePe"' —1
(3.34)

where cc is the local capillary solute concentration and the membrane Peclet number, Pem,is

given by :

V1.
'"

Pe.= 1.'"
PS

(3.35)

This states that the diffusive, dispersive, and convective flux of solute into the tissue is equal

to the amount passing through the capillary membrane given by Patlak's equation.

3.5 Fluid and Solute Exchange in the Capillary

At the arteriolar end of the capillary, as fluid and solute pass through the membrane

into the tissue, the flow rate and concentration of solute decrease with downstream distance.

If fluid and solute are reabsorbed back into the capillary at the venular end, the capillary

fluid flow rate and solute concentration will increase with z. This section describes how the

fluid and solute change in the capillary are treated mathematically.

Figure (3.7) illustrates a differential length of the capillary for the change in a general

variable W.
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Figure 3.7: Fluid and solute flow in capillary.

Realistically, the pressure and solute concentration are functions of both the radial, r,

and longitudinal, z, distances within the capillary. Also, red blood cells moving down the

capillary will cause pressure fluctuations along the capillary length. In this model, it is

assumed that the pressure and solute concentration are functions of z only and the pressure

fluctuations caused by the passage of red blood cells produce, in an average sense, a linear

pressure profile down the capillary (Apelblat et al., 1974). The latter assumption is quite

drastic but simplifies the analysis substantially. The small amount of fluid leaking into the

tissue determined from simulations presented in Chapter 4 (less than 0.1%) indicates that the

pressure drop down the capillary is very nearly linear and suggests that the flow is

Poiseuille-like. This implies that radial pressure gradients are negligible.

Assuming that on average, flow obeys Poiseuille's law in the capillary yields the

normal capillary fluid flow rate at the capillary membrane, v„, e 1
mentbnine

, as

= R(3, d2 P.
V " 'el membrane^I 6 p dz2

(3.36)
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For fluid continuity, this can be set equal to the fluid flow rate across the capillary membrane

according to Starling's hypothesis yielding a second order ordinary differential equation

given by :

d2Pc^r^ = [13 — P — o-, (re —701
dz2

(3.37)

where a2 = 1 6Lp pIR 3 For these simulations, the pressures at the arteriolar and venularc•

ends (Part and Pven) of the capillary are specified. This means that solution of the pressure

in the capillary requires the solution of a second order boundary value problem. It is also

noted that the solution of equation (3.37) requires the tissue hydrostatic and osmotic

pressures, the membrane filtration coefficient, and the fluid reflection coefficient as

functions of the length down the capillary. This forces an iterative solution for the capillary

and tissue pressure profiles at the membrane-tissue interface.

It is noted that a2 is very small (typically about 10 -4). This implies that the capillary

pressure profile is very nearly linear from the value at the arteriolar end, Part, to the value at

the venular end, Pven. Assuming that the capillary pressure is linear from the inlet to the

outlet end removes the requirement for iterative solution, reducing computational costs

considerably. This has been shown to be a good assumption since the amount of fluid

leaking into the tissue is small relative to the flow of fluid (typically < 0.1%) through the

capillary wall.

A solute mass balance on the differential length in Figure (3.7) yields :

s (z)2n-Re
dz^

(3.38)
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where Qe is the volumetric fluid flow down the capillary and the amount of solute passing

through the membrane, Js (z), is given by Patlak's equation (3.34). This is a first order

differential equation describing the solute concentration down the capillary as a function on

the amount that transfers across the membrane, Js (z), and the capillary radius. The initial

condition for this boundary condition is the arteriolar inlet solute concentration, cart. It

was found from simulations performed that the solute concentration changes by less than

0.01 % along the length of the capillary. The capillary solute concentration was thereafter

assumed as constant along the capillary.

The mathematical model is now complete. It shall be now applied for several cases

presented in the following chapters.

3.6 Numerical Procedure and Solution Algorithm

The coupled equations (3.6) and (3.28) are solved using the Petrov-Galerkin finite

element method (Hughes, 1978; Brooks and Hughes, 1982; Yu and Heinrich, 1986, 1987,

1988). In the finite element method, the system geometry is divided into elements of

varying dimensions. The regions expected to have the highest gradients are subdivided into

fine elements while those expected to have relatively lower gradients are subdivided with

relatively coarse elements. The method spatially discretizes the problem by specifying nodes

within each element at which the dependent variables (Pt and Cseff) are evaluated. The

dependent variables are approximated within each element by interpolating or shape

functions. In this work, rectangular elements with simple linear basis functions were used.

The weighted residual analysis of the weak form of the partial differential equations (see

Appendix A for further details about the weak formulation) yields a set of algebraic

equations for the dependent variables at each node. These equations can be solved using any

standard system of equations solver (Press et al., 1986).
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The numerical solution is complicated because there is convective domination within

the interstitial space for the solute transport equation (3.28). This changes the nature of the

partial differential equation (3.28) from elliptic to hyperbolic-like. The Petrov-Galerkin

streamline upwinding method was adopted to deal with the dominance of convection. In this

method, artificial diffusion is added to the basis functions. This can be viewed as a

modification of the weighting functions for the convective terms. The Petrov-Galerkin

method seeks to add the optimal amount of artificial diffusion such that the accuracy is

maximized. A more detailed description of the Petrov-Galerkin finite element method is

presented in Appendix A.

The fluid conservation and solute transport equations are coupled. This means that

the tissue hydrostatic pressure and solute concentrations have to be solved iteratively. At a

particular time step, the solute concentrations are assumed within the interstitial space.

Usually this is estimated from the values at the past two time steps. The colloid osmotic

pressure is then calculated and the tissue hydrostatic pressure is subsequently obtained from .

equation (3.6) subject to the appropriate boundary conditions. If the capillary hydrostatic

pressure is not assumed as linear down the capillary length, then a separate iterative

procedure occurs for the solution of the hydrostatic pressures in the capillary, equation

(3.37), and within the tissue, equation (3.6). The fluid velocities are then evaluated within

the tissue and the solute transport equation is solved using the Petrov-Galerkin method

subject to the imposed boundary conditions. The procedure is repeated until the relative

change in the solute concentrations and hydrostatic pressures are less than a specified

tolerance, typically 10 -6 , or when the iterations exceeded a specified limit (100).

A modified version of the dominant eigenvalue under-relaxation technique suggested

by Orbach and Crowe (1971) is employed. This is discussed in further detail in Appendix B.

As a check on the numerical solution accuracy, material balances were performed about the

system boundaries. The relative material balance errors for fluid and solute were always less

than 0.5%. The number of elements was also tested to ensure accuracy of the numerical
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solution. Increasing the number of nodes from 1020 (50x21) to 2000 (80x25) produced less

than 0.01% difference in the results. All cases performed in Chapters 4 and 5 were produced

using 1020 nodes.

The program listing may be found in Appendix C.

3.7 Summary of Governing Equations in Dimensionless Form

Reference Values

Pressure

Concentration

Length

Diffusion coefficient

Tissue hydraulic conductivity

Part

Cant

L

Dm*

K„f

Arteriolar hydrostatic pressure

Arteriolar solute concentration

Capillary length

Molecular diffusion coefficient

Base tissue hydraulic conductivity value.

Dimensionless Variables

. rr = —
L

. 7r7r =
Pan

zz =-
L

•^Dddii Dii =
udiff

C
• = ^P. = P—

Can^ pad

= ^Pe,=1/11T(1—c7)
Kref^ PS

v.Lv. —^
K Pref art

tDdis.
r —^
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Fluid Flow in Tissue

'dr^dr*
( K. a(P,* —a/ 7r/+

r^dr^az^az^Kr
d(Pis 0-17r*J

 + 
a  (K. ^cri7r1 +^

^* ^*^'^*^efPa,
L2

rr Q(Ps) = °

co(P,*)=—Po„Ls(P,* —P;)

K*„.1C P a(19, * —
= r̂ef a ^

ars

VI,z =
az*

Solute Transport in Tissue

KriCrefPan d(Pf* 6, l,

•^•
dc.s.eff  + PartKrej d( lir,s,effCs.eff) PartKref^,s,effCs* .eff) =

az ^Ddiff^ar*^Ddiff^az*

d2c: 1 d c:^
D*D*^"ff +

a2 c`
"

ff L2

+
dr* 2 r ^ar az*2 D do an

Fluid Flow Boundary Condition at Membrane

   

membrane

LL^*

^

{p^_
Kref

—
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Fluid Flow Boundary Condition at Impermeable Boundary

P, - =0an `

Solute Transport Boundary Condition at Membrane

C
acs^Pa,Krefv„,eff •^ Pa,,Kn,

f.
e
ff^cr)c, + 

D L PS(e*, 
ere

 csseff)Pe„,

D""^
=

an^Ddiff^ddiff^('- —1s'eff^D iff

Solute Transport Boundary Condition at Impermeable Boundary

c*^P K vn,effs,tff

 + 
 art rtf 

^n 
a

 an*^Ddiff^
cs = 0

Osmotic Pressure relationship

*^ rt^ff^a rt^s,e^,effffk1 a (cs,e*^+ k2 c2 (c * ) 2 + k3c^)3
=

Part

where kb k2, and k3 are fitted parameters dependent on the particular solute species.
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Chapter 4 : Effects of System Parameters on Steady State
Microvascular Exchange : A Sensitivity Analysis

4.1 Introduction

Chapter 3 presents the formulation of the model equations governing the

microvascular exchange system. Using this model we will first evaluate the effects of the

various system parameters on the system. In the tissue, these include parameters that affect

the lymphatic sink (LS and EL), tissue fluid motion via the osmotic pressure (a s), hydraulic

conductivity (K), and solute transport via diffusion (D(J&, dispersion (Ddjsp), and

convection (0. In addition, fluid motion and solute transport across the capillary wall are

altered with adjustments in the diffusive permeability (PS), capillary membrane filtration

coefficient (Lp), and the capillary reflection coefficient (a). The position of the lymphatic

sink will also be investigated.

The effects of a variable capillary membrane filtration coeffcient, Lp, and reflection

coefficient, a, along the capillary membrane and spatially variant tissue hydraulic

conductivity, K(r,z), will also be examined briefly. The capillary membrane filtration

coefficient and reflection coefficient are assumed to be a known functions which are

specified along the length of the capillary wall. The high flow channels are implemented as

a locally increased tissue hydraulic conductivity.

In this chapter, the problem will be first summarized. The parameter values are

then discussed and then the case studies performed listed. The results are then presented
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and discussed in detail for the base case values (the base case). The results from the

sensitivity analysis are then presented to evaluate the influence of the physiological

parameters. The results obtained by using a variable capillary membrane filtration

coefficient and tissue hydraulic conductivity are reported.

4.2 Problem Statement

The system under investigation is displayed schematically in Figure (3.1). The

blood plasma flows through the capillary leaking fluid and solute into the tissue through the

capillary membrane. As a first approximation, the capillary radius is assumed constant

along its length. The tissue envelope surrounding the capillary is also assumed to be of

constant outer radius. Fluid and solute may be reabsorbed at the venular end of the

capillary but may also leave the system via the lymphatic sink which can be placed

anywhere within the tissue space. The tissue is assumed to be perfectly rigid. This means

there are no deformations due to swelling.

The problem is stated as follows: given the arteriolar and venular capillary

hydrostatic pressures and the arteriolar solute concentration, find the solute concentration

and hydrostatic pressure distributions throughout the tissue subject to Starling's hypothesis

and Patlak's equation governing fluid and solute transport across the capillary membrane.

The other boundaries are impermeable to both fluid and solute. The behaviour will depend

on the physiological parameters chosen for the simulation.

4.3 Parameter Values

Table (4.1) lists the parameter values used in the numerical simulations. These

values are typical for tissues found in the literature. Many values (e.g., /7), PS, a, at ,^,
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andm were taken from estimates presented by Taylor (1990a). The value of the capillary

permeability, PS, was assumed to be 2.4x10 -10 m2/s. The capillary wall protein reflection

coefficient, a, was assigned the value 0.85. This value is typical for albumin in capillaries

(Ballard and Perl, 1978). The tissue protein reflection coefficient, at , is assumed for most

cases to be equal to 1.0. To test the effect this parameter has on the system, it was varied

between 0.0 and 1.0 in three cases. There are no data available indicating a better estimate

for this parameter. The immobile and accessible fluid volumes, Am andfm, were obtained

by assuming that the main component of the immobile fluid volume is the intrafibrillar

water associated with the collagen (Taylor, 1990a).

The tissue hydraulic conductivity, K, is estimated to be 3.1x10 -16 m2 /Pa s. This

value is typical for subcutaneous tissue (Levick, 1987). The value of the solute diffusivity

was taken to be that of albumin in normal tissue. This was assumed to be 1.0x10 -12 m2/s

(Gerlowski and Jain, 1988).

The geometry of the system is shown in Figure (3.1). The length of the capillary, L,

is taken to be 300 rim. This is based on the average capillary length determined by

Klitzman and Johnson, (1982). The radius of the capillary, Rc, is set as 3 p.m. This is

typical for capillaries (Ganong, 1989). The radius of the tissue envelope, RI, was assumed

to be 30 Jim. This is comparable to the capillary spacing data reported by Intaglietta and

Zweifach (1971). The pressure drop from the arterial inlet to the venular outlet of the

capillary is taken to be 25 mmHg. The inlet arteriolar hydrostatic pressure is assumed to be

30 mmHg. These values are typical for arterial regions in capillaries (Brace and Guyton,

1977; Ganong, 1989). The concentration of the solute at the arteriolar end of the capillary

is taken to be 35.9 mg/ml (Bert and Pearce, 1984).

The lymphatic sink drains fluid and solute according to the simple linear form given

by equation (3.20). Using data in Chapple (1990), the value of LS is estimated to be

1.24x10-8 m3 fluid/m3 tissue Pa•s. The value of the lymphatic pressure is still under

investigation. It is assumed to be near the limit of the most negative hydrostatic pressures
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found in tissue where the lymph flow approaches zero. Using various techniques the tissue

hydrostatic pressures have been reported to be as low as -9 mmHg (Guyton et al., 1987).

The negative value implies that the lymphatics are below atmospheric pressure. Results

from Taylor et al. (1973) (see Figure (3.2)) suggest that the no flow lymphatic sink

pressure is near -6 mmHg. Therefore, the base case value for the lymphatic sink pressure

for this work is chosen as -6 mmHg. The value is assumed to be temporally invariant and

constant throughout the lymphatic sink. The effect of the lymphatic sink pressure is

investigated by lowering its value to -9 mmHg and -12 mmHg. The location of the

lymphatic sink was assumed to be at the peripheral edge of the tissue envelope.

The osmotic pressure is assumed to be a simple polynomial function of the protein

concentration :

nt (c.s.eff = 57.182c,,es. —1.2388cs2.,ff + 0.050849c,34-^ (4.1)

This gives the colloid osmotic pressure (in Pascals) as a function of the effective solute

concentration (kg/m 3 ). This was taken from Bert et al. (1988) for albumin in skin.

4.4 Case Studies

A sensitivity analysis was performed to investigate the effects of various system

parameters on the microvascular exchange system. These comparisons were for steady-

state cases only. These results also illustrate the effect the parameters have on the

capillary-tissue fluid balance. The fluid balance and its regulation will be examined further

in Chapter 5.

The influence of the lymphatic sink can be investigated from two perspectives. The

first is to simply vary the strength of the sink, that is vary LS and/or PL. The second is to

actually move the sink within the tissue domain. In general, the sink may be placed
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anywhere in any orientation within the tissue space. For simplicity, we shall assume the

lymphatics always run parallel to the capillary. This means only the radial position of the

sink is varied. As the sink is moved radially, the lymphatic sink volume reduces because

the system is in cylindrical coordinates. There are two methods to maintain the strength of

the sink: either by enlarging the sink volume or by simply increasing the value of LS. In

this work, the value of LS is increased to reflect the reduction in the lymphatic sink volume

as it is moved radially. To examine the effects of the sink position on the system, the sink

is placed at various dimensionless radial distances. The baseline position for the sink is

against the outer edge of the tissue envelope.

Table 4.1 Parameter Values.

Parameter^Value^ Reference

Cart^35.9 mg/ml^Bert and Pierce (1984)

Part^30.0 mmHg^Brace and Guyton (1977)

Pven^5.0 mmHg^ Ganong (1989)

fim^0.128^ Taylor (1990a)

fst^0.680^ Taylor (1990a)

^

0.0-1.0^ See text
a^0.85^ Taylor (1990a)

at^0.0-1.0^ See text
PS^2.4x10-1° m/s^Taylor (1990a)

L 1.35x10-1° m/Pa s^Taylor (1990a)P

Ddi•^1.0x10-12 m2/s^Gerlowski and Jain (1988)
K^3.1x10-16 m2/Pa s^Levick (1987)
LS^1.24x10-8 m 3/m 3 Pa s^Chapple (1990)
PL^-6.0 mmHg^Taylor et al. (1973)

Rc^3µm^ Ganong (1989)
R t^30 tm^Intaglietta and Zweifach (1971)
L 300 tm^Klitzman and Johnson (1982)

aton.e^1.0x10-5 m^ See text
atran^1.0x10-6 m^ See text
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The effects of mechanical dispersion are also examined. The longitudinal and

transverse dispersivities are estimated from the size of the average grain size in the tissue

porous medium. At the scale of the present simulations, the longitudinal dispersivity is

estimated to be roughly 1x10 -5 m. This is based loosely on the size of the typical human

tissue cell in the interstitium. The hydrodynamics and transport of solute occur around the

cell bodies. The framework of cells forms the porous medium through which flow occurs.

The scale of the continuum model (of the order of micrometers) suggests that an average

cell dimension be used rather than the diameter of the collagen molecule (of the order of

nanometers) for instance. As a first approximation, the transverse dispersivity is estimated

as ten percent of the longitudinal dispersivity, that is 1x10 -6 m.

The cases performed are listed in Table (4.2). These are all steady-state cases.

Steady-state was determined when the tissue solute concentrations and hydrostatic

pressures changed by less than a specified tolerance between consecutive time steps. The

results from these cases will be used to investigate the effects of the various parameters on

the system. The first case is the base case. This case uses the parameters listed in Table

(4.1). The other 28 cases use the same parameters except one is varied to evaluate the

influence of that parameter on microvascular exchange. For example, the case LS x 0.2

indicates that this case used a value of the lymphatic sink strength, LS, equal to 2.48x10 -9

m3/m3 Pa s instead of the base value 1.24x10 -8 m3/m3 Pa s. The case in which dispersion is

included is case 17, called disp. The two cases Lp to 2Lp (linear) and Lp to 2Lp (step)

denote linear and step variations in the capillary filtration coefficient along the length of the

capillary respectively. The functions vary from the base value of Lp in Table (4.1) at the

arteriolar end of the capillary to twice this value at the venular end of the capillary. The

cases ms3 and ms6 each denote the repositioned sink at r* = 0.025 and r* = 0.055. For the

base case, the sink is placed at the outer edge of the tissue envelope, i.e., at r* = 0.10. Each

case and its results are discussed in detail in the following section.
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Table 4.2 List of Cases

No. Case Explanation
1 base Base Case.
2 nows No osmotic pressure effects, with lymphatic sink.
3 LS x 0.2 Lymphatic sink permeability reduced by a factor of five.
4 LS x 5 Lymphatic sink permeability increased by a factor of five.
5 a = 0.1 Capillary reflection coefficient equal to 0.10.
6 a = 0.5 Capillary reflection coefficient equal to 0.50.
7 a = 0.99 Capillary reflection coefficient equal to 0.99.
8 = 0.1 Retardation factor equal to 0.10.

9 t = 0.5 Retardation factor equal to 0.50.

10 PS = 0.0 Capillary diffusive permeability equal to zero.

11 PS x 100 Capillary diffusive permeability increased by a factor of one hundred.

12 PS x 10000 Capillary diffusive permeability increased by a factor of ten thousand.

13 at = 0.0 Tissue reflection coefficient equal to zero.

14 at = 0.5 Tissue reflection coefficient equal to 0.50.

15 DdifiA 0.1 Solute diffusion coefficient reduced by a factor of ten.

16 Ai; frx 10 Solute diffusion coefficient enlarged by a factor of ten.

17 disp Dispersion included as transport mechanism.

18 K x 0.1 Tissue hydraulic conductivity reduced by a factor of ten.

19 K x 10 Tissue hydraulic conductivity enlarged by a factor of ten.

20 P f .= -0.40 Lymphatic sink pressure set equal to -12 mmHg.

21 P1,= -0.30 Lymphatic sink pressure set equal to -9 mmHg.

22 L,, x 0.5 Capillary filtration coefficient reduced by a factor of two.

23 L, x 2 Capillary filtration coefficient enlarged by a factor of two.

24 L, to 2L„
(linear)

Linear capillary filtration coefficient variation from arteriolar to venular end.
From base value to twice the base value.

25 L„ to 2L„
(step)

Step capillary filtration coefficient variation from arteriolar to venular end.
From base value to twice the base value.

26 K1 Single high flow channel at z * = 0.5.

27 K2 Two high flow channels at z * = 0.3 and 0.7.

28 ms3 Lymphatic sink radial position equal to r * = 0.025.

29 ms6 Lymphatic sink radial position equal to r * = 0.055.
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4.5 Discussion of Results and Sensitivity Analysis

In this section, the results for the base case will first be discussed in detail. Figure

(4.1) present the results from the base case. This forms the basis for comparison with all

other cases and provides insights into the influences of osmotic pressure and the lymphatic

sink.

In the first section, the results for the base case will be presented. This will be

compared to a case where the osmotic pressure contributions are switched off through the

system. The effects of other physiological parameters on the system will next be presented,

in the form of a sensitivity analysis, in the second section. Here the effect of a

physiological parameter is studied by varying the parameter and observing the change in

the results from the base case. The third section presents effects of a variable capillary

membrane filtration coefficient (L,p) and the fourth section examines the influence of high

flow channels on the hydrodynamics and solute transport in the interstitium.

4.5.1 The Base Case

Figure (4.1) displays the results from the base case. This case uses all the base

values specified in Table (4.1) and includes the colloid osmotic pressure effects and the

lymphatic sink. The capillary is located at the upper edge of each plot. The inlet arteriolar

end of the capillary is at the left end and the outlet venular end is at the right

end of the plot. The distance into the tissue increases in the downwards direction. The

arrangement is displayed in Figure (3.1). The lymphatic sink is located at the lower edge

of the plots. It is important to note that the distance into the tissue scale has been

exaggerated (the tissue outer radius is actually one-tenth of the length of the capillary).

The first contour plot contains the dimensionless solute concentration given by :
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Figure 4.1: Dimensionless tissue solute concentrations, hydrostatic pressure, Peclet number,
potential, and velocity vector distributions for the base case at steady-state.
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Cs
Cs = —

Cart

(4.2)

where Cart is the inlet arteriolar capillary solute concentration. The dimensionless tissue

hydrostatic pressure is displayed in the second plot. The dimensionless hydrostatic pressure

is given by :

P * = 1,19(
^

(4.3)

The third plot displays the Peclet number distribution which is calculated as follows :

Pe = Iv, eff1L 

D

where

2^+1 Vs'eff I = 17r"'•eff^vz-s'eff

and D is the total diffusion coefficient including molecular and dispersive contributions.

The Peclet number distribution is directionless but reflects the importance of convection

relative to the total diffusive and dispersive transport. Near the impermeable boundaries,

the Peclet numbers attain their lowest values indicating that there is less convective

transport near these boundaries. The Peclet numbers are not equal to zero at the

impermeable boundaries because there is fluid motion tangential to the boundary.

The fourth plot displays the dimensionless potential :

(4.4)

(4.5)
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(P-0-7r)

Pan

(4.6)

within the tissue. The potential drives fluid motion. Finally, the velocity vector field is

displayed in the fifth plot. The length of the velocity vectors indicates the fluid velocity

magnitude (approximately 1 mm = 3x1 0-7 m/s).

From the solute concentration contour plot, it is seen that the c: increases from the

end of the tissue adjacent to the capillary inlet to the end nearest the capillary outlet (range

is from about 0.45 to just greater than 0.72). The solute is washed out to a higher degree at

the arteriolar end of the tissue than the venular end due to the higher transmembrane fluid

velocities at the arteriolar end of the tissue. This leads to higher solute concentration

gradients towards the venular end of the tissue than in the central and arteriolar portions of

the tissue. The solute is removed from the system by the lymphatic sink. The average

dimensionless solute concentration within the tissue is 0.5258. This corresponds to a

dimensional solute concentration of 18.88 mg/ml. This is similar to the average interstitial

space protein concentrations (21 mg/ml) estimated by Landis and Pappenheimer (1963).

The dimensionless solute concentration in the lymph drainage is lower than the tissue-wide

average at 0.5134 (18.43 mg/ml).

The tissue hydrostatic pressure distribution is very similar to the solute

concentration distribution. The hydrostatic pressure is lowest at the arteriolar end of the

tissue and increases towards the venular end of the tissue. The gradients in the hydrostatic

pressure are greatest near the capillary and drop off as the sink is approached. This is

especially so at the venular end of the tissue near the capillary. This is explained by the

relatively large solute concentration gradients at the venular end of the tissue near the

capillary. The hydrostatic pressure responds to the solute concentration via the colloid

osmotic pressure. Near the sink, the hydrostatic pressures fall to negative values. This
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means that in this region, the tissue is subatmospheric. The dimensionless average tissue

hydrostatic pressure is equal to -0.0255 (-0.7650 mmHg). This falls in the range of tissue

hydrostatic pressures for tissues (Guyton et al., 1987). The dimensionless lymphatic sink

pressure is -0.20. The relatively more positive hydrostatic pressures in the region of the

lymphatic sink cause the removal of fluid. The lymph drainage rate is equal to 5.47 1/day.

This is in the range of lymph drainage rates observed experimentally. Mortillaro and

Taylor (1976) report lymph flows between 5.53 and 8.64 1/day for similar hydrostatic

pressure drops down the capillary as that used in this work.

The Peclet number distribution indicates that solute transport is largely convectively

dominated. This is especially so near the capillary and within the central portions of the

tissue. The Peclet number distribution passes through a maximum in the central portion of

the tissue at approximately z* = 0.60. The range in the Peclet numbers for the base case are

roughly between just above 0 and 120. The Peclet number distribution also indirectly

reflects the relative magnitudes of the fluid velocities (see equation (4.4)).

The potential is entirely negative within the tissue. The range in the dimensionless

potential is very small (approximately 0.015). Most of the loss of potential occurs across

the capillary membrane whereas potential gradients in the tissue are relatively small. This

suggests that the capillary membrane resistance to fluid flow is much greater than the tissue

flow resistance. The potential drops from the arteriolar end of the tissue near the capillary

to the venular end of the tissue near the lymphatic sink. This results in the fluid flow

pattern displayed in the velocity vector plot. Fluid filters across the capillary wall into the

tissue along the entire length of the capillary and is removed from the system by the

lymphatic sink. From the velocity field plot, the fluid velocities are clearly seen to be

greater at the arteriolar end of the tissue and drop along the length of the capillary.

The results from the base case illustrate that lower solute concentrations and

hydrostatic pressures are at the arteriolar end of the capillary. It is important to bear in

mind that the potential and not the hydrostatic pressure drives the fluid motion. The
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hydrostatic pressure shifts in response to the solute concentration distribution. The greater

amounts of solute at the venular end of the tissue lead to increased colloid osmotic pressure

activity in this region. From the results, the importance of the osmotic pressure in

determining fluid motion is apparent. In the absence of the colloid osmotic pressure, the

hydrostatic pressure distribution is identical to the potential distribution.

For comparison purposes, a case without the effects of the colloid osmotic pressure

throughout the system (including the capillary) was performed. This case was termed

vows. Here, the solute concentration via the colloid osmotic has no effect on fluid motion.

The results from this case are presented in Figure (4.2).

From the results, it is clear that the solute concentration distribution becomes more

one-dimensional in the radial direction. The solute concentrations change little within the

tissue with the highest values at the arteriolar end of the tissue near the capillary. The

lowest values occur at the venular end of the tissue near the lymphatic sink. The

dimensionless average tissue solute concentration is 0.7462. The tissue hydrostatic

pressure and potential distributions are identical. This is because there are no colloid

osmotic pressure gradients within the tissue. The tissue hydrostatic pressures are lowered

within the tissue (average dimensionless hydrostatic pressure equals -0.1014) when

compared with the base case average pressure (-0.0255). This results in lowered lymph

drainage rates (3.37 l/day) from the system than the base case (5.47 1/day).

It is interesting to note that the fluid velocities across the capillary membrane are

slightly greater for this case than the base case up to z 0.40 and beyond z -a: 0.90. In the

central portion of the capillary length (0.40<z<0.90), the transcapillary fluid velocities are

lower than the base case. This is reflected in the Peclet number distribution. The values

are higher at the extreme arteriolar and venular ends and lower in the central portion of the

capillary than the base case values. The fluid velocities within the tissue are lower than the

base case fluid velocities. As a consequence, the convective transport of solute is lowered

and therefore the more uniform solute concentration distribution results. Also the velocity
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magnitudes change less along the capillary length than for the base case. This results in

less dramatic solute washout from the capillary.

The influence of the colloid osmotic pressure is clearly illustrated by comparing the

two above cases. The presence of the colloid osmotic pressure causes the tissue hydrostatic

pressure to respond to the solute concentration distribution. This means that the tissue

hydrostatic pressures becomes more positive and as a result, increases the lymphatic

drainage. The amount of solute removed from the tissue through the lymphatic sink rises

leading to lowered solute concentrations within the tissue.

4.5.2 Sensitivity Analysis

The following summarizes the effects physiological parameters had on the system.

These simulations indicate the parameters most influential on the system.

Retardation Factor,

The impact of the retardation factor on the system behaviour was evaluated via

three cases. First the base case where is set equal to 1.0. The second and third cases were

performed with equal to 0.1 and 0.5 respectively.

As the retardation factor is reduced, the amount of convective transport of solute

decreases relative to the diffusive transport. If the diffusion coefficient is sufficiently large,

diffusive transport begins to dominate the solute behaviour and solute concentration

gradients throughout the region are reduced. This can be seen in Figure (4.3) for a

retardation factor equal to 0.10. For the base case, the solute dimensionless concentration

range is from roughly 0.47 to 0.70 (the range is thus 0.23). This range drops to about 0.13

and 0.03 for retardation factor values of 0.5 and 0.1 respectively. Also at reduced values of
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the retardation factor, the solute concentration gradient profile is more uniform within the

central portion of the tissue. The highest gradients and solute concentration values are

along the capillary wall, especially towards the venular end of the tissue. The

dimensionless average tissue concentration of solute increases as the retardation factor

decreases to 0.7132 for = 0.1.

The pressure distribution displays similar characteristics as the solute concentration

distribution. As the retardation factor is reduced, the hydrostatic pressure range is reduced

and the solute distribution is more uniform. The average pressure in the tissue increases as

the solute hindrance increases. The lower pressure range and more uniform distribution are

the results of the increased solute concentration throughout the tissue space. The colloid

osmotic pressure values and gradients throughout the tissue are functions of the local solute

concentration. In response to the increased colloid osmotic pressure created by elevated

solute concentrations, the hydrostatic pressure distribution increases. The dimensionless

hydrostatic pressure rises to 0.0406 (1.2180 mmHg) for i, = 0.10. The increase in pressure

and solute concentrations leads to a slight increase in the range of the potential distribution.

The potential distribution is shifted, at lower retardation factor values, in the negative

direction.

The amount of lymph drainage increases as the retardation factor is reduced. For

= 0.10, the lymph drainage rate is equal to 8.19 1/day. This is due to an increased

hydrostatic pressure throughout the tissue. The rise in the solute concentrations result in

increased osmotic pressure activity and thus higher hydrostatic pressures. Using the base

values for the sink strength (LS and PL), there is no reabsorption of fluid back into the

capillary for all of these cases = 0.1, 0.5, and 1.0). The enlarged lymph flow causes an

increase in fluid filtration across the capillary membrane. The transcapillary flow

velocities are roughly one-third greater than the base case values. Since the solute

convective velocities are directly affected by the retardation factor, the Peclet number



. I•^• •-n--•
0.3^OA^0.6^0.6^0.7^0.8^0.9

^
1.0

Solute Concentration

O o^. ...A^-^3oo^ar ^0
cP

-.

^ 1
0.2 

\ 
0.3^0.4

0.01 ^
0.02:
0.03-
0.04:
0.05:
0.06:
0.07:
0.08 .

0.10^. ^
0.0^0.1

Hydrostatic Pressure
0.01 . 
0.02:
0.03:
0.04:
0.05:
0.06-
0.07-
0.08-
0.09-
0.10

0.0^0.1^0.2

0.5 0.6 0.7 0.8 0.9 1.0

0 0

Chapter 4 : EFFE('TV OF SYSTEM PARAMETERS ON MICROVASCULAR EX('HANGE^75

:Vs
0.01
0

• 

0..0032_ ..........................................................................................................................................................

.

.:
...........ra .......

-• 0.07 Z-9996
9.91^

:... ..... . g. co
03^

.........

....,

E-■
0.04,---399

91--...., 7..,...
0.05- ............^

.-
.'....................... -----.

--"
.....-- ........ . .^

'.....^4C--

2, 0.06-^ 4 -9

0.7
^

0.8

Peclet Number

0 0.08:-
O 0.09-
• 0.10 .... . ..-.---,-.-..-  .. -j^cl^ , ^ i -^--i• •-•-----,--•4.$^0.0^0.1^0.2^0.3^0.4^0.5^0.6co

- ...I

A
(P-°70/Part0.01,^

0.03:

0.05:
--.............' 7/ 71/1/11 /Y i 7 :II/

fa
cbA*

..
^

4o^.:^co
co^•^cs.^ a)^:^CO

0.027

0.067^ O.^:^(Cob^i^03^•^C13^ CO^0^•^0
CO^ 0^:^•■•4

/^:^ 40^40^40^40^CO^:^CO0.077^ 0-

0.09-^
7^ ( .•

al.^ci•

 ^1
di^ci.^T.^•^a;0.08:

0.10^ I^ .. , .. .. .4.^I^I^1 0.0 0.10.2^ 0.3 0.4^0.5^0.6^0.7^0.8^0.9^1.0

Velocity Vector Field

.....

0.9^1.0

0.08
0.09:

0.0 6-:

0.03:
0.04-
0.05-

0.07-

0.02:
0.01 .

1 1 1
155

^

15    
1 1 AAAAA‘‘A■ ............................ ■■ 4.AAAA 1 1

1 1 1 1 1 A AAAAAAAA 4.4.■ ••■■■■■■■ 4. 4. 4.%■ 4. 4.■ 4.4.•■4.4.•■•AAAAA 1 11 1 1 1 1 AAAAAA■• ........ ■•■■ ..... 4. 4.■■■■■■■■■■■■AAAA 1 1

1 1 1 1 1 A A AAA AAAAAAAANAA.•••■■■•■•■••■■■•■•AAAAAAA 1
1 1^1 1 Ai^ASAAAAAAAAAAAAAAAANAAAAA A A A A A A A A A 1 1 1
1 1 111 1 I 11111^III^ ;^1^1

^  5551
AAA 1 1

^

A A^1
0.0

0.8
^

0.9
^

1.0

0.10 -
0.1^0.2^0.3^0.4^0.5^0.6^0.7

Distance down Capillary (dim)
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distribution is decreased and has a much smaller range. This means that for lower values of

the retardation factor, as expected, greater portions of the tissue are undergoing greater

diffusive transport. It is important to bear in mind that the Peclet numbers indicate the

amount of convective solute tranport relative to diffusive-dispersive transport. The

convective term makes use of the solute convective velocity and not the absolute fluid

velocity.

Capillary Reflection Coefficient, a

The effect of the capillary reflection coefficient is evaluated using the base case and

three other cases (a = 0.10, 0.50, and 0.99).

Figure (4.4) presents the results for the capillary membrane reflection coefficient

equal to 0.1. As can be seen from the results, the tissue-side capillary membrane solute

concentration and pressure profiles are considerably different from the base case (base, a =

0.85). The solute concentration range and gradients are reduced within the tissue space.

The dimensionless average tissue solute concentration, however, increases to 0.7150. The

gradients tend to become increasingly one-dimensional (in the longitudinal z direction) as

the capillary reflection coefficient is reduced.

Similarly, the pressure range and associated gradients also decrease as the reflection

coefficient is decreased and the distribution becomes more one-dimensional in the

longitudinal direction. The hydrostatic pressure distribution for the lowered reflection

coefficients looks very similar to the solute concentration distribution. The hydrostatic

pressure distribution is shifted in the positive direction. This is due to the increased

osmotic activity in the tissue because of the greater solute concentrations. The

dimensionless average tissue hydrostatic pressure rises to 0.04282 (1.2846 mmHg). This

results in an increase in the lymph drainage rate to 8.25 1/day. The potential distribution is

shifted in the negative direction but has a very similar range as a is reduced. Radial
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gradients are greater especially at the arteriolar and venular ends of the tissue near the

capillary wall.

These results are expected since a reduction in the capillary reflection coefficient

lowers the osmotic pressure driving force acting against the hydrostatic pressure difference

across the membrane. This means the transcapillary fluid velocities are increased. Also

from equation (3.34) it is seen that less solute is reflected at the capillary membrane as a is

reduced, thus more solute is convected through the capillary wall. For a = 0.10, of the

solute that would otherwise have freely convected across the capillary membrane, only 10

percent is reflected back into the capillary flow. The increased transcapillary fluid flow

velocities and reduced solute reflection combine to convect more solute into the tissue

space resulting in the higher average tissue solute concentration. This, in turn leads to

elevated tissue hydrostatic pressures and the increased lymph flow rate.

The increase in the capillary reflection coefficient to 0.99 leads to increased solute

concentration gradients within the tissue. The results for this case are displayed in Figure

(4.5). The solute concentrations especially at the arteriolar end of the tissue are lower than

those found in the base case (the dimensionless average tissue solute concentration is

0.5056). The range in the solute concentrations is increased. The hydrostatic pressure

distribution is similarly increased in range and has a slightly lower average tissue

hydrostatic pressure equal to -0.0328 (-0.984 mmHg). The potential distribution is

relatively unchanged but is shifted in the positive direction and consequently the velocity

field and magnitudes are very similar to the base case. This is expected since the base case

reflection coefficient is equal to 0.85.

With a reflection coefficient equal to 0.99, this means that 99% of the solute that

would be transported convectively across the capillary membrane is reflected. The

reduction in the solute crossing the membrane can be seen in the results since the solute

concentrations at the arteriolar end of the tissue are reduced. This is the region of highest
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0.01 êrres-rt ri% - .......................

0.8^0.9^1.0

0.8

(P-crrr)/Par,

0.03: I^1^1^1^I^I^1
0.047

^

0.05-^:^o)^a^al^a^CD^0^aa^
0^0^r-^co^.-.^0.06:^ 1,-^g^co^a)^co^co^co0^0^co^co^02^el^el0.077

c;^c;^c::;^6^c;^6^6^0.08 :^ I^
i^1^I^I^I0.097

0.10^.... ... , -4.---.^11-1-4-1-rvt...-,,,-Lrrve-r•r4L-m-,-,jr-r,^I-.^I.^i ^0 .0^0.1^01.2^0.3^0.4^0.5^0.6^0.7^0.8^
• . ^
0.9 1.0

0.01 .
0.02:
0.03:
0.047
0.057
0.08:
0.077
0.08-
0.09-
0.10

0.0

Velocity Vector Field

0.1^0.2^0.3^0.4^0.5^0.6^0.7
Distance down Capillary (dim)

I III iiiiiWAAAAA
AAAAAAA

111AAAAA
11AAAA  
1 A A A
1 A ^
A

4, 4.

^ 4'

^

 ^‘.
^ ■
^ .. • A
^ . A I
^ .. 1
^ . A A
^ ..

0.9^1.0

Figure 4.5: Dimensionless tissue solute concentrations, hydrostatic pressure, Peclet number,
potential, and velocity vector distributions for the case with the capillary reflection
coefficient, a, equal to 0.99 at steady-state.
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solute convection across the capillary wall. Solute, however, may still be transported

across the wall by diffusion (the diffusive permeability PS).

Tissue Reflection Coefficient, at

The effect of the tissue reflection coefficient is evaluated using the base case (at =

1.0) and two other cases (at = 0.0 and 0.50). Using at equal to zero implies that the solute

concentration distribution and gradients do not influence fluid motion and hence the

hydrostatic pressure (and potential) fields within the tissue.

The range in the solute concentration distribution is slightly reduced as at

approaches zero. The results for a t = 0.0 are shown in Figure (4.6). The solute

concentration gradients in the radial direction are also reduced. The concentration

gradients grow more uniform within the arteriolar end and central portions of the tissue as

at is reduced. The dimensionless average tissue solute concentration increases very slightly

to 0.5492 for at = 0.0.

As a consequence of the increasingly more uniform solute concentration distribution

as at is reduced, the colloid osmotic pressure distribution plays a reduced role towards fluid

motion. At at equal to zero, the solute concentration distribution plays no role in the fluid

motion. This is true within the tissue but is not, however, at the capillary wall where

Starling's hypothesis still governs fluid flow across the capillary membrane. In the limit of

at = 0.0, the hydrostatic pressure and potential distributions are identical within the tissue.

At lowered at, the range of the hydrostatic pressure is greatly reduced. When al = 1.0 (the

base case), the dimensionless pressures range from about -0.1 to 1.0. At a t =0.5, the

dimensionless pressure range changes to lie between 0.1 to 0.55. The hydrostatic pressure

responds to the reduced solute concentration gradients via the colloid osmotic pressure.

The distribution changes from one that resembles the concentration distribution to one that

resembles the potential distribution. This means that the maximum hydrostatic pressure
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shifts along the capillary wall towards the arteriolar end as at is reduced. The average

tissue hydrostatic pressure becomes more negative with reduced a t since it approaches the

potential distribution leading to lower lymph drainage rates. For at = 0.0, the

dimensionless average tissue hydrostatic pressure drops to -0.1162 (-3.486 mmHg) and the

lymph flow is 2.87 1/day. Correspondingly, as a t is reduced, the potential distribution is

shifted in the positive direction and the range in its values is lowered since the solute

concentration distribution range reduces.

There is no fluid reabsorption back into the capillary as a t is reduced and velocity

magnitudes decrease substantially within the tissue space and are reduced at the arteriolar

end of the capillary membrane. At the venular end of the capillary, the fluid velocities are

slightly greater for reduced a t than the base case values. This means that there is more

fluid filtering into the tissue in this region with lowered a t. As can be seen from the values

in the Peclet number distribution, the fluid velocities in the tissue are reduced as a t is

reduced.

Solute Diffusion Coefficient, Dd11.

The effect the diffusion coefficient had on the system was investigated using the

base case and two other cases where the diffusion coefficient was increased and decreased

by an order of magnitude.

Figure (4.7) displays the results obtained with diffusion coefficient increased ten

fold. An increase in the diffusion coefficient affects the results in a similar manner to the

reduction of the retardation factor. The range in the solute concentration is reduced and the

dimensionless average tissue solute concentration rises to 0.7151. The increase in the

diffusion coefficient means that the solute can counter the convective transport to a higher

degree. This means that there is very little solute washout from the arteriolar region of the
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Figure 4.7: Dimensionless tissue solute concentrations, hydrostatic pressure, Peclet number,
potential, and velocity vector distributions for the case with the solute molecular diffusion
coefficient, Ddill; increased by an order of magnitude from the base value at steady-state.
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capillary since solute can easily diffuse back to the capillary membrane. This leads to the

more uniform solute distribution throughout the tissue clearly displayed in Figure (4.7).

The solute concentration distribution yields a similarly distributed osmotic pressure

field. The hydrostatic pressure responds to the colloid osmotic pressure resulting in a

distribution similar to the solute concentration distribution. Due to the higher solute

concentrations, the osmotic pressure is greater throughout the tissue. This leads to more

positive hydrostatic pressures throughout the tissue and therefore greater lymph flow. The

average tissue hydrostatic pressure is 0.0408 (1.224 mmHg).

The potential distribution is shifted in the negative direction due to the increase in

the solute concentrations via the osmotic pressure. The potential gradients are stronger in

the radial direction than the base case. This is due to the greater lymph flow (8.23 1/day)

caused by the more positive hydrostatic pressures in the tissue. The fluid velocities are

greater throughout the tissue and at the capillary membrane.

It is interesting to note that an increase in the solute diffusion coefficient by a factor

of ten has very similar transcapillary flow velocities to that when the retardation factor is

reduced by a factor of ten. This is because the effect on solute transport is similar for both

cases, i.e., the diffusive contribution is effectively increased by ten-fold. As expected, the

drop in the range of the Peclet number indicates that the diffusive transport is increased.

Tissue Hydraulic conductivity, K

The effect of the tissue hydraulic conductivity is tested in three cases. The base

case uses the value indicated in Table (4.1). Two other cases are performed with K reduced

and then enlarged by an order of magnitude respectively. The results discussed below are

displayed in Figures (4.8) and (4.9) (K x 0.1 and K x 10 respectively).

The main effect of an adjustment in the tissue hydraulic conductivity is a change in

the potential gradients within the tissue. From the results, a reduction in K by a factor of
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ten increased the range in the potential by just under a factor of ten. This is expected since

this corresponds to an increase in the tissue fluid flow resistance. The combined decrease

in the hydraulic conductivity and the increase in the potential gradients yield slightly lower

fluid velocities throughout the tissue. This means that less solute is convected into the

interstitial space. The range in the solute concentration distribution is reduced as the

hydraulic conductivity is reduced. At the arteriolar end of the tissue, the solute

concentrations are slightly higher than the base case values. This however, is not the case

at the venular end of the tissue where the solute concentrations are slightly lower than the

base case values. This produces a solute distribution with lower longitudinal and radial

gradients throughout the tissue than the base case. The dimensionless average tissue solute

concentration, slightly higher than the base case value, is equal to 0.5403.

The increase in K results in a lower range in the potential within the tissue. The

fluid velocities increase and result in a greater solute range throughout the tissue. This

produces a less uniform solute concentration distribution throughout the tissue.

The hydrostatic pressure distribution is very similar to the solute concentration

distribution. For the case with decreased K, the more uniform solute concentrations

throughout the tissue result in a more uniform hydrostatic pressure distribution. The range

in the pressures is decreased with increasing portions of the tissue becoming

subatmospheric. Hydrostatic pressure gradients are low in the central and arteriolar

portions of the tissue. The dimensionless average tissue hydrostatic pressure for the

reduced hydraulic conductivity case is -0.0268 (-0.8040 mmHg). The lymphatic drainage

decreased to 5.27 1/day. When the hydraulic conductivity was increased by an order of

magnitude, the dimensionless tissue hydrostatic pressure increased very slightly to -0.0253

(-0.7590 mmHg). The lymph drainage increased slightly to 5.51 1/day. The smaller change

in the average tissue hydrostatic pressure for an order of magnitude increase in K than the

order of magnitude decrease in K implies that the tissue fluid flow resistance is not

dominating the fluid flow structure at the current base value of K listed in Table (4.1). As
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K decreases further, the tissue potential drop increases and the hydraulic conductivity

begins to control the fluid flow patterns to a greater extent. Therefore, only reductions in

the tissue hydraulic conductivity (or increasing the capillary membrane filtration

coefficient) would alter the flow patterns significantly.

As K is decreased, the fluid velocities within the central portions and arteriolar end

of the tissue are reduced despite the increase in the potential gradients. This is reflected in

the Pecelt number distribution. The reason the fluid velocities are largely reduced

throughout the tissue is due to the increased resistance of the tissue porous medium. The

fluid velocities are similarly decreased at the capillary wall except at the extreme venular

end of the capillary where fluid velocities are slightly elevated from the base case values.

Capillary Membrane Diffitsive Permeability, PS

Four cases were used in evaluating the impact of the diffusive permeability through

the capillary wall, PS. As well as the base case, the following cases were also investigated:

PS = 0.0, PS x 100, and PS x 10000. Figure (4.10) displays the results for the last case.

Moderate changes in PS only affect the solute concentration distribution (and thus

the pressure and potential distributions) slightly. Increases in PS increase the diffusive

transport of solute through the capillary membrane yielding higher solute concentrations at

the tissue-side of the capillary membrane and thus throughout the tissue. This is most

pronounced at the venular end of the capillary. This is expected since the convective

transport of solute is minimal at the venular end of the capillary. The small changes in the

results for moderate changes (x100) in PS indicate that transport across the capillary

membrane is convectively dominated. If there were reabsorption of fluid back into the

capillary then increasing PS would most affect the central portions of the capillary near the

zero point where the fluid velocities are the lowest.
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Figure 4.10: Dimensionless tissue solute concentrations, hydrostatic pressure, Peclet
number, potential, and velocity vector distributions for the case with the capillary
membrane diffusive permeability, PS, increased by a large amount (x10000) from the base
value at steady-state.
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Extreme changes in the diffusive permeability (for example, x 10000) alter the

solute concentration range and average tissue concentration values significantly. The solute

concentration range is reduced dramatically to roughly 0.010 and gradients are reduced

throughout the tissue. The increased diffusive permeability raises the dimensionless

average tissue solute concentration to 0.7355. This rise in the solute concentration

distribution leads in turn to a rise in the hydrostatic pressure distribution as it responds to

the increased colloid osmotic pressure throughout the tissue. The dimensionless average

hydrostatic pressure is 0.05209 (1.5627 mmHg). This results in an increase in the lymph

drainage to 8.60 I/day. The range in the potential is largely unaffected. The main change is

that the radial gradients are slightly greater throughout the tissue especially at the arteriolar

end near the capillary. The potential distribution is shifted in the negative direction due to

the increased solute concentration values (via the colloid osmotic pressure). Fluid

velocities are greater along the capillary membrane and within the tissue due to the

increased lymph flow.

Lymphatic Sink Strength, LS

The strength of the sink was varied in two other cases. In the first case, the sink

strength, LS, is reduced by a factor of five while in the second case it is increased by a

factor of five. This allows us to make some generalizations on the behaviour of the system

with regard to the strength of the lymphatic sink.

The solute concentration distribution is increased as the sink strength is reduced.

The dimensionless average solute concentration is equal to 0.5653 for the reduced value of

LS. This is expected since less solute is being dragged out through the sink and less solute

is being convected across the capillary membrane. The range in the solute concentration

changes little with a drop in LS. These results are presented in Figure (4.11). Increasing

the value of LS lowers the average solute concentration to 0.5065. The radial gradients are
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Figure 4.11: Dimensionless tissue solute concentrations, hydrostatic pressure, Peclet
number, potential, and velocity vector distributions for the case with the lymphatic sink
strength, LS, decreased by a factor of five from the base value at steady-state.



Chapter 4 : EFFECTS OF SYSTEM PARAMETERS ON MICROVASCULAR EXCHANGE^92

increased relative to the longitudinal gradients within the tissue as the sink strength is

increased.

The hydrostatic pressure distributions are very similar to the solute concentration

distributions. As the sink strength is increased, the pressure distribution shifts lower but is

limited by the lymphatic pressure, PL. The average tissue hydrostatic pressures are 0.0924

(2.772 mmHg) and -0.0575 (-1.725 mmHg) for the cases with LS reduced and increased by

a factor of five respectively. As the sink strength is reduced, the potential distribution is

shifted in the positive direction. The sink affects the fluid velocities within the tissue and at

the capillary membrane. As expected, as the sink strength is reduced the zero points

approaches the mid-point z* = 0.5. With a sufficiently strong sink, there is no reabsorption

of fluid back into the capillary and all the fluid is drained out through the lymphatics. This

occurs with the base case. The case with LS reduced by a factor of five displays fluid

reabsorption back into the capillary. The zero point occurs at roughly z * = 0.94.

As expected, as LS is increased, the lymph flow increases. The lymph drainage

flows are equal to 1.91 and 21.42 1/day for the cases where LS is decreased and increased

respectively. Numerical convergence was difficult to obtain in cases where LS was

increased. This is because the fluid leaving the system via the lymphatic sink is limited by

the amount of fluid that can enter the system. This is dictated by the value of the capillary

filtration coefficient, L/), which is prescribed at the capillary membrane. This result

indicates that, given a fixed value of the capillary filtration coefficient, there is a lymph

flow limit that cannot be exceeded.

Lymphatic Sink Pressure, PL

The base case value of the lymphatic sink pressure is -0.20 (-6 mmHg). Two other

cases were performed with the lymphatic sink pressure reduced to -0.30 (-9 mmHg) and -
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Figure 4.12: Dimensionless tissue solute concentrations, hydrostatic pressure, Peclet
number, potential, and velocity vector distributions for the case with the lymphatic sink
pressure, PL *, lowered to -0.4 (-12 mmHg) at steady-state.
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0.40 (-12 mmHg). The latter case represents an extremely low lymphatic sink pressure and

is presented in Figure (4.12).

Decreasing the lymphatic sink pressure increases lymph drainage (see equation

(3.20)). Consequently, with more negative lymphatic sink pressures, the average solute

concentrations in the tissue are slightly lower than the base case. This is especially

noticeable in the tissue away from the capillary (r* > —0.03). In addition, the range in the

solute concentrations are reduced slightly. The change in the solute concentration field

causes a drop in both the hydrostatic pressure distribution and its range. The average

pressure drops from -0.0255 (-0.7650 mmHg) for the base case to -0.1800 (-5.4000 mmHg)

for a lymphatic sink pressure of -0.40 (-12 mmHg). As expected, the potential distribution

is shifted in the negative direction and its range decreased as PL is reduced. The velocity

field is virtually unchanged in most of the tissue although fluid velocities are greater than

those of the base case at the venular end of the capillary. This is a result of the increased

lymph drainage. The lymph flow rises to 7.14 1/day for PL * = -0.40 (-12 mmHg). The

increased lymph flow leads to lower solute concentrations within the tissue space. The

dimensionless average solute concentration is equal to 0.4901 for Pi, * = -0.40 (-12 mmHg).

Lymphatic Sink Radial Position

The position of the sink was varied in two other cases. These two cases place the

sink at the radial positions r* = 0.025 and r* = 0.055 (half of tissue envelope thickness).

The results for the former case are shown in Figure (4.13). The sink is always maintained

as parallel to the capillary. When the sink is repositioned to a reduced radius, the volume

of the sink is lowered because the lymphatic sink is represented by a concentric shell of the

smae radial thickness about the capillary. To provide a valid comparison, either the volume

of the sink or the sink strength has to be enlarged. Here, the sink strength will be increased

to reflect the reduction in sink volume with lower radii. The volume of the
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Figure 4.13: Dimensionless tissue solute concentrations, hydrostatic pressure, Peclet
number, potential, and velocity vector distributions for the case with the lymphatic sink
repositioned at r* = 0.025 at steady-state.
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sink when positioned at r* = 0.025 is 3.55 times less than the volume of the sink at the

outer tissue envelope. Therefore the sink located at r* = 0.025, the value of LS is increased

by the factor 3.55. Similarly, the sink strength for the sink located at r* = 0.055 was

increased by the factor 1.70.

From the results, it is seen that the solute concentration and hydrostatic pressure

distributions are not affected significantly by the movement of the sink. The solute

concentrations lower as the sink moves closer to the capillary. The radial gradients are

greater near the venular end of the tissue and increase near the capillary as the sink moves

closer to the capillary. Despite the presence of the sink, the solute and fluid can 'see' the

remainder of the tissue beyond and can pass into and out of these regions. This explains

why there is solute on the other side of the sink into the tissue for the two repositioned sink

cases. The solute gradients in these regions are far less than the gradients that exist

between the capillary and sink. The average solute concentrations are 0.5006 and 0.5167

for the r* = 0.025 and r* = 0.055 positioned sinks respectively.

The hydrostatic pressure distributions are very similar to the solute concentration

distributions for both cases. The gradients beyond the sink diminish as the sink is moved

towards the capillary. The dimensionless average tissue hydrostatic pressures for the r* =

0.025 and r* = 0.055 positioned sinks are -0.0761 (-2.2833 mmHg) and -0.0322 (-0.9660

mmHg) respectively. The lymph flows increase as the sink is moved towards the capillary

to 18.38 and 9.69 1/day for the r* = 0.025 and r* = 0.055 positioned sinks respectively. It is

important to bear in mind that the sink strengths have been increased for each case due to

the sink geometry. This the reason the average tissue pressures for these cases are less than

the base case value and yet provide more lymph flow. With increased sink strengths, the

tissue beyond the sink would contain less and less solute (and lower gradients) and the

hydrostatic pressure would fall to that slightly above the the lymphatic sink pressure (also

with lower gradients). With a reduction of the sink strength, there is greater solute stored

in the outer tissue space and the hydrostatic pressure increases.
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From Figure (4.13), as the sink becomes closer to the capillary, the potential

distribution shifts in the negative direction. The range of the potential distribution is

similar to all the previous runs. There is a dip in the potential along the sink which

becomes more pronounced at the venular end of the tissue. As can be seen from the fluid

velocity plots, the sink at r* = 0.025 affects the flow patterns. Fluid enters the sink from

the capillary-side and from tissue-side of the lymphatic sink. The radial component of the

fluid velocities increases in the neighborhood of the sink. This is indicated indirectly in the

plot of the Peclet numbers. There is a local ridge of higher Peclet numbers in the vicinity

of the sink reflecting the greater convective transport at the sink.

The tissue space beyond the lymphatic sink stores solute. This means that there

exists the possibility to access this solute if there is a sudden shortage or that solute will still

be drained via the sink even if there were none in the plasma. This would occur until the

stored solute were depleted. In this manner, the tissue beyond the sink acts as a

capacitance.

Capillary Membrane Filtration Coefficient, L,p

The effect of the capillary membrane filtration coefficient, Lp, on the system was

examined from the base case and two other cases where it was varied as half the base value

and twice the base value (Li,  0
.

5 and Li, x 2 respectively). A reduction in the capillary

membrane filtration coefficient increases the fluid flow resistance of the capillary

membrane. This means that the flow rate decreases for a given potential drop across the

membrane. The results for the increased and decreased filtration coefficients (L x 2 and

LP x 0.5) are shown in Figures (4.14) and (4.15) respectively.

The range in the solute concentration and gradients increase as the capillary

membrane filtration coefficient is increased (or capillary fluid flow resistance is reduced).

The average solute concentration decreases as Li) increases (0.4311 for Li) x 2 and 0.6053
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for Li, ^0.5). The reduction in Li) reduces the fluid velocities across the capillary

membrane. The reduction in Li,  a factor of two reduces the transcapillary flow

velocities by roughly a factor of two. This means that the fluid velocities in the tissue will

also be reduced and thus diffusion will play a relatively greater role for solute transport in

the tissue. This explains the increased average tissue solute concentration for the case Lp x

0.5.

The hydrostatic pressure distributions are very similar to the solute concentration

distributions. As a consequence of the ranges in the solute concentration distributions, at

increased Lp, the hydrostatic pressure range increases and high gradients occur, particularly

at the venular end of the tissue near the capillary. A reduction in Lp also lowers the

average tissue hydrostatic pressure. The average tissue hydrostatic pressures are -0.0205 (-

0.6150 mmHg) and -0.0262 (-0.7860 mmHg) for the cases Lp x 2 and Lp x 0.5 respectively.

This results in the following lymph flow rates : 5.76 l/day for Lp x 2 and 5.37 I/day for Lp x

0.5. The reduced solute removal by the lymphatic sink also explains the higher solute

concentrations in the tissue for lowered values of Lp .

With enlarged LP' the potential gradients increase and the range in the tissue rises

and is shifted slightly in the positive direction. This is expected since the decrease in the

capillary membrane filtration resistance will increase the potential drop throughout the

tissue space relative to that in the capillary wall. In other words, the potential distribution

will be less uniform. For reduced Li) , at the arteriolar end of the tissue, the velocities across

the membrane are significantly lower than those for the base case. The opposite is true at

the extreme venular end of the capillary where flows are slightly greater than the base case.

An increase in Lp changes the flow structure significantly. As shown for the case with

increased Lp, reabsorption back into the capillary starts to occur. The zero point occurs at

about z* = 0.92. This is expected since with increased Lp more fluid can enter the system.

The transcapillary flow velocities are much greater in the arteriolar and central portions of

the capillary. At the venular end of the tissue, the reabsorption is apparent. The strength of
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Figure 4.14: Dimensionless tissue solute concentrations, hydrostatic pressure, Peclet
number, potential, and velocity vector distributions for the case with the capillary
membrane filtration coefficient, Up, increased by a factor of two from the base value at
steady-state.
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Figure 4.15: Dimensionless tissue solute concentrations, hydrostatic pressure, Peclet
number, potential, and velocity vector distributions for the case with the capillary
membrane filtration coefficient, Up, decreased by a factor of two from the base value at
steady-state.
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the sink is constant and so fluid starts to flow back into the capillary. This shows that with

the increased L11,  fluid is entering the system to allow a large amount of lymph

drainage (at fixed sink strength) and reabsorption. The fluid velocity magnitudes are

indirectly indicated in the Peclet number distribution. As expected, for increased Lp, the

fluid velocities are greater throughout the tissue and at the capillary wall.

In summary, if Lp is increased, the fluid velocities rise due to the reduction in the

resistance to flow at the membrane. This is propagated throughout the tissue. An enlarged

filtration coefficient promotes convection throughout the tissue lowering the solute

concentration distribution and leading to increased lymph flow. With reabsorption of fluid

back into the capillary, there are higher than usual solute concentration gradients at the

venular end of the tissue. This is because convective transport is operating in the opposite

direction to diffusive transport in this region.

Mechanical Dispersion

The inclusion of dispersion in the problem simply increases the effective diffusion

coefficient. The results are displayed in Figure (4.16). This case involves an added degree

of complexity because the dispersion coefficient is a function of the local fluid velocities

which are in turn a function of the solute concentrations via the osmotic pressure term. The

increase in the effective diffusion coefficient lead to slightly higher solute concentration

values and lower concentration gradients within the tissue. The inclusion of dispersion

increases the dimensionless average tissue solute concentration to 0.6842 from 0.5258 for

the base case (this is without dispersion). The solute concentration gradients are reduced

within the tissue especially in the arteriolar end of the tissue. As a consequence of the

increased solute concentration distribution, the hydrostatic pressure distribution responds

and falls slightly. The average dimensionless tissue pressure is -0.0258 (-0.7740 mmHg)

compared to the base case value of -0.0255 (-0.7650 mmHg). The lymph drainage rate
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Figure 4.16: Dimensionless tissue solute concentrations, hydrostatic pressure, Peclet
number, potential, and velocity vector distributions for the case with the inclusion of
mechanical dispersion at steady-state.
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increases as a result of the increased solute concentration to 7.70 1/day. The potential

distribution is shifted in the negative direction due to the greater osmotic pressures

throughout the tissue. The velocity field, although similar to the base case, has greater

transcapillary velocities than the base case in response to the enlarged lymph drainage. The

Peclet number distributions are difficult to compare since the effective diffusion-dispersion

coefficient is a function of the local fluid velocities and is therefore a function of position.

It is apparent, however, that convection plays a reduced role in solute transport from the

Peclet number distribution. This is especially so at the arteriolar end of the tissue near the

capillary where the highest fluid velocities are found.

4.5.3 Variable Capillary Membrane Filtration Coefficient, Liz)

In this section, the capillary membrane filtration coefficient is considered to be a

known function of the length down the capillary. It is known that the capillary fluid

conductance increases towards the venular end of the capillary network. This allows for

more fluid and solute interchange between the circulation and the interstitial space at

locations where the filtration coefficient is high.

As a first approximation, a linear function is assumed between values specified at

the arteriolar and venular ends of the capillary. The value at the arteriolar end is chosen to

be the base value given in Table (4.1). The value at the venular end is taken to be twice the

base value. This value is arbitrary but indicates general trends for linearly increasing

capillary filtration coefficient. Since Lp increases towards the venular end of the capillary,

the fluid flow resistance decreases along the capillary length.

The linear function for LI) leads primarily to greater fluid velocities across the

capillary membrane along its length. The results are presented in Figure (4.17). This

promotes more lymph drainage in the system (5.64 1/day). The increased fluid velocities
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Figure 4.17: Dimensionless tissue solute concentrations, hydrostatic pressure, Peclet
number, potential, and velocity vector distributions for the case with the capillary
membrane filtration coefficient, Lp , varied linearly from the base value at the arteriolar end
to twice the base value at the venular end of the capillary at steady-state.
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are localized to near the capillary and the central portions of the tissue. At the extreme

arteriolar and central portions of the tissue near the lymphatic sink, the flow velocities are

largely unchanged. Although the increased flows through the capillary wall lead to higher

transport of seived solutes through the membrane, the increased lymph drainage removes

solute from the system. The net effect is a lowering of solute concentrations in the tissue.

This is particularly noticeable in the arteriolar end of the tissue (z* < 0.5) where increased

solute washout drags more solute from the tissue space to the lymphatics where it is

removed from the system. Although the average hydrostatic pressure increases slightly,

more of the tissue is subatmospheric due to the lower solute concentrations in the tissue.

The average tissue concentration and tissue hydrostatic pressure are 0.5029 and -0.0250 (-

0.7500 mmHg) respectively. The dimensionless average tissue hydrostatic pressure over

the region of the lymphatic sink is equal to -0.0356 (-1.068 mmHg). The average

hydrostatic pressure at the sink for the base case is equal to -0.0405 (-1.2100 mmHg). The

more positive value for this case explains why the lymph drainage (5.64 1/day) is greater

than the base case value (5.47 1/day). As expected, the lymph flow rate for this case lies

between the base case and the case Li) x 2 values.

The range in the potential is largely unchanged but is shifted in the positive

direction. This is due to the drop in the solute concentration distribution which leads to

lower colloid osmotic pressures in the tissue.

In addition, the filtration coefficient along the capillary was also varied as a step

function (at z * = 0.5). It was found that the discontinuity occurring at the step caused

considerable numerical difficulties. The following functional form solved this problem :

L

^

L p( Z . ) = p ,an ( P •V  ^p

^I ±^M(Z -11.$1
(4.7)
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Figure 4.18: Step function for variable membrane filtration coefficient.

where m governs the quality of the step and varies typically between 10 and 100. This

produces an effective step function at z* = 0.5 without the discontinuity and is displayed in

Figure (4.18). The arteriolar capillary filtration coefficient, Lp,art, was set to the base case

value while the venular end value, Lp yen, was set to twice the base case value. The value

of the parameter m was set to 50.

The results, shown in Figure (4.19), were found to be very similar to those found

for the linear case described earlier. Here, the sudden increase in the filtration coefficient

resulted in a region of lower solute concentrations in the region z* = 0.53 to e = 0.64. This

is because of the washout of solute occurring here due to the higher fluid velocities across

the membrane. The cushioned step function that exists between z* = 0.47 and z* = 0.53

produces a local maximum in the solute concentration at roughly z* = 0.50. As can be seen

in the velocity vector plot, this corresponds to a minimum in the transcapillary fluid

velocity across the membrane. Thus the minimal amount of washout of the solute from the

membrane occurs here. The reduction of the membrane flow resistance leads to increased

fluid flow across the capillary wall after e = 0.53. This promotes more washout of solute
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Figure 4.19: Dimensionless tissue solute concentrations, hydrostatic pressure, Peclet
number, potential, and velocity vector distributions with a step change in the capillary
membrane filtration coefficient, Lp, at z* = 0.50 from the base value at the arteriolar end to
twice the base value at the venular end of the capillary at steady-state.
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from the capillary membrane and a minimum in the solute concentration at this point. This

can be seen as a local solute concentration minimum at z* 0.56. In the region z* > 0.53,

the transcapillary fluid velocities decrease further down the capillary length resulting in less

solute washout from the capillary. This produces a maximum in the solute concentration at

the venular end of the capillary.

The lymph drainage rises to 5.71 1/day. The hydrostatic pressure distribution is, as

expected, similar to the solute concentration distribution. At z* = 0.50, there is a local

maximum in the hydrostatic pressure. At z* = 0.53, just after the step change in the

filtration coefficient, there is a minimum in the hydrostatic pressure. These correspond to

the maximum and minimum found in the solute concentration distribution. The average

tissue solute concentration and hydrostatic pressure are 0.5161 and -0.0256 (-0.7680

mmHg) respectively. As with the case above, the increased lymph drainage rate is due to

the relatively more positive dimensionless hydrostatic pressures in the lymphatic sink

region (-0.0334) when compared to that of the base case (-0.0405). The increased flow

velocities after the step change in Lp are reflected in the Peclet number distribution. The

potential distribution rises due to the drop in the solute concentration distribution.

4.5.4 High Flow Channels

The high flow channels are implemented within the tissue as an increase of the

tissue hydraulic conductivities in specified regions of the tissue space. This means that the

fluid flow resistance is reduced in these regions. The spatial heterogeneity of the hydraulic

conductivity requires that the fluid-pressure equation (3.6) be expanded as :
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K^P,d2( — (Yi n( ) K„. ^(7,70 + K a2 (Pi afzi
 +

n. 

dr2^r^dr^g^
dz2

aK,r a(P, - cr,r, ) dIC,,  01 - Crt 71-1) Q(pi) = 0
dr^dr^dz^az

(4.8)

The two new terms thus created contain the gradients in the hydraulic conductivities and

can be treated in the same way as the convective terms in the solute transport equation.

When the hydraulic conductivity is constant throughout the tissue, these two extra terms

reduce to zero.

Two different physical situations were simulated. The first had the high flow

channel perpendicular to the capillary membrane centred at zs = 0.5. The dimensionless

thickness of the single high flow channel is approximately 0.10 or 10% of the length of the

capillary. This may be visualized as a cylindrical fin (of higher flow conductivity) about

the capillary. The second case is similar with two channels centred at z" = 0.3 and z* = 0.7.

Each of the high flow channels is taken to be approximately 0.05 dimensionless length

units thick or 5% of the capillary length. For both cases, the hydraulic conductivity in the

high flow channels are set to twice the base case value.

As seen from earlier results, the primary location of the fluid flow resistance is the

capillary membrane. The tissue hydraulic resistance is small compared to that across the

capillary wall. This leads to the high potential drop across the membrane relative to that

across the tissue. To accomodate higher velocities across the capillary membrane, the

filtration coefficient was doubled where the high flow channel met the capillary membrane.

The tissue hydraulic conductivity was increased by a factor of two in the high flow

channels. This is sufficient to indicate the general trends. It is important to note that the

high flow channels were not considered to be free flow channels but simply rather as

regions with increased tissue conductivity. This means that the potential still acts as the

driving force for fluid flow in the high flow channels. If the high flow channels are



0.01
0.02
0.03-
0.04-
0.05
0.06-
0.07-
0.08-
0.09-
0.10

0.0 0.1^0.2
^

0.3
^

0.4
^

0.5^0.6
^

0.7
^

0.8 0.9 1.0

Hydrostatic Pressure
0.01
0.02=
0.03-^\
0.04-
0.05-
0.06- 0
0.07-
0.08-
0.09-
0.10  

0.0^0.1

v 

0O
0800

0.7^O.B^0.9^X1.0
:.^

•••

0.000

r
0.2^0.3

^
0.4
^

0.5^0.6

0.01 ^
0.02-
0.03-
0.04 -
0.05-
0.06-
0.07-
0.08-
0.09-
0.10

0.0 0.1 0.2

[
f l i t

^^O^C
I^^^I

, ^
0
,
.3
....t....,.1^J

0.5
^I ..L ^ ,...^.1.

^0.4 ^0.6^0.7

(P-a7r)/P1zt

0.8
I.^I

0.9 1.0

('haptr'r 4 : EFh'E( '7:1' OF SYS'I EM I'AK4afETEKS ON MN R(1 VASCULAR EXCHANGE
^

110

Solute Concentration

Peclet Number
m 0.01^-.-   ^ ^• ̂ _^,v,. .........

0.02- _..-- ••_.-•^ •:_____::
a^ 0.03 ^ 
h 0.04-' ._..........^.^7
EH 0.05.1^o^ m
.Ua 0.08-^gg^•^'• ^ • :^t^_^-
C 0.07-^4,^ce^- =

--- ch^•• ".^........ ^^^.z^ 59 9882^•--. ^^

.-^^
0.10^.....I^

__
T^

y,^0.0^0.1^0.2^0.3^0.4^0.5^0.6^0.7^0.8^0.9
h

A

Velocity Vector Field

illl^l^ti'''.'' .'^^^^^^,^^^^
t 1 1 t t \ \ \ \ \ \ t ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ,'

1 \ \ ^
I \ ^
I' ^
'4. ^

I^ I^ , ..--.r-...ice I ^ j... ^ ,^ I .^ .--. --r..T^^ -T^-r ------------- j - •--•--r.....

0.0
^

0.1^0.2^0.3^0.4^0.5^0.6^0.7^0.8^0.9^1.0

Distance down Capillary (dim)

Figure 4.20: Dimensionless tissue solute concentrations, hydrostatic pressure, Peclet
number, potential, and velocity vector distributions for the case with a single high flow
channel centred at z` = 0.50 at steady-state.
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considered to be true free flow channels then the driving force for fluid motion would be

the hydrostatic pressure. The lymphatic sink region is also considered to be a high flow

channel. This aids in the distribution of fluid to the lymphatic sink.

As expected, the increased conductivities in the high flow regions lead to higher

fluid flow velocities in the high conductivity regions. This promotes greater solute

convection in these regions. With the increased flow velocities, there is greater solute

washout from the capillary membrane into the tissue. This is seen in the results for the case

with the single high flow region (Figure (4.20)) where the concentrations drop near the

capillary membrane in the high conductivity region. The dimensionless average tissue

solute concentration is equal to 0.5307. The solute leaking through the membrane is

sufficient to produce a local maximum in the solute concentration in the area of z* 0.40 at

the capillary wall. Here, fluid velocities are still limited by the base values of the capillary

filtration coefficient and hydraulic conductivity. The hydrostatic pressure distribution

clearly responds to the solute concentration which has a similar distribution. The

dimensionless average tissue hydrostatic pressure rises to 0.0068 (0.2040 mmHg) and

0.0128 (0.3840 mmHg) for the single and double high flow channel cases respectively.

The lymph flow, as expected, increases with the presence of high flow channels. The

lymph flows are 6.57 and 6.78 1/day for the single and double high flow channels

respectively. The potential distribution is largely unaffected by the presence of the high

flow channels but does have larger radial gradients in the high flow channel as indicated by

the velocity field. The magnitudes of the fluid velocities are greater in the high flow

channel. This is also indicated in the Peclet number distribution where the higher Peclet

numbers are in the high flow channel areas and the lymphatic sink. The results from the

single high flow channel are shown in Figure (4.20).

For the case with two high flow channels, both have fluid propelled towards the

lymphatic sink. The results are displayed in Figure (4.21). The trends indicated by the two

channel case are very similar to that of the single channel case.
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Figure 4.21: Dimensionless tissue solute concentrations, hydrostatic pressure, Peclet
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Chapter 4 : EFFECTS OF SYSTEM PARAMETERS ON 1111(ROVASCULAR EXCHANGE^113

4.6 Conclusions

The model developed in Chapter 3 was used for steady-state analysis of fluid and

solute transport in human tissue. The influence of the physiological parameters on the

microvascular exchange system were examined in detail. The results from the many

simulations are summarized in Table (4.3). Some conclusions based on the results above

are summarized in the following.

1. The numerical simulations indicate that both convection and diffusion contribute to

solute transport. Convection appears to be the dominant mode of solute transport.

Solute distributions were considerably different for different values of the retardation

factor and diffusion coefficient.

2. The osmotic pressure plays an important role in microvascular exchange. The

differences in solute concentrations throughout the tissue yield osmotic pressure

gradients which serve to reduce fluid motion. The hydrostatic pressure responds to the

solute concentration distribution via the osmotic pressure. The heterogeneity of the

osmotic pressure throughout the interstitium cannot be ignored and should be taken into

account in any models of microvascular exchange.

3. The inclusion of the lymphatic sink provides the mechanism for negative pressures

(below atmospheric) in the tissue. As the strength of the sink increases, the amount of

material reabsorbed back into the capillary is reduced and the zero point shifts towards

the venular end of the capillary. With a reduced sink strength, the amount of

reabsorption increases. At the limit when the sink strength is equal to zero, the amount

of fluid filtered into the tissue equals that being reabsorbed.
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4. Dispersion plays a secondary role as a solute transport mechanism. It acts to increase

the effective diffusion coefficient, thus lowering solute concentration gradients. The

nature of dispersion in the interstitial space is not well understood but has been

described by two parameters, the longitudinal and transverse dispersivities which are

dependent on the porous medium grain size and fluid properties. It is unknown at what

scale the representative grain size should be chosen.

5. Fluid pressure, solute concentration, and potential distributions are determined largely

by transport properties of the capillary membrane. The range in the potential has been

shown to be due to the relative fluid flow resistance of the capillary membrane to that

of the tissue. The primary fluid flow resistance is located in the capillary membrane.

6. An increasing capillary membrane filtration coefficient along the length of the capillary

induces greater fluid flow across the capillary membrane due to lower membrane flow

resistance. This leads to increased lymph drainage and thus lower solute concentrations

within the tissue. The hydrostatic pressure drops in response to the solute concentration

distribution.

7. The many results indicate that the microvascular exchange system produces complex

fluid flow and solute distributions which are highly reliant on the values of the

physiological parameters.
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Table 4.3 : Results from Various Cases.

No. Case Average c, Average Pi Average c, Lymph Flow
(1/day)

1 base 0.5258 -0.0255 0.5134 5.47
2 vows 0.7462 -0.1014 0.7460 3.37
3 LS x 0.2 0.5653 0.0924 0.5555 1.91
6 LS'x 5 0.5065 -0.0575 0.4911 21.42
5 a = 0.1 0.7150 0.0428 0.7139 8.25
6 a = 0.5 0.5990 -0.0002 0.5922 6.51
71_ a = 0.99 0.5056 -0.0328 0.4914 5.17
8 = 0.1 0.7132 0.0406 0.7123 8.19

9 = 0.5 0.6137 -0.0002 0.6088 6.60
10 PS = 0.0 0.5258 -0.0255 0.5134 5.47

11 IS x 100 0.5265 -0.0252 0.5141 5.48

14 l'Sx 10000 0.7355 0.0521 0.7349 8.60
15 at = 0.0 0.5492 -0.1162 0.5460 2.87

16 at = 0.5 0.5346 -0.0710 0.5265 4.25
15 Ddif•x 0.1 0.4120 -0.1185 0.3854 2.75
16 Ddifrx 10 0.7151 0.0408 0.7148 8.23
17 disp 0.6842 0.0258 0.6836 7.70

18 K x 0.1 0.5403 -0.0268 0.5327 5.27
19 K x 10 0.5232 -0.0253 0.5100 5.51

20 P1 = -0.40 0.4901 -0.1800 0.4794 7.14

21 P f = -0.30 0.5078 -0.1029 0.4961 6.30

22 L„ x 0.5 0.6053 -0.0262 0.5992 5.37

23 L„ x 2 0.4311 -0.0205 0.4081 5.76

24 L„ to 2L„
(linear)

0.5029 -0.0250 0.4940 5.64

25 L„ to 2L„
(step)

0.5161 -0.0256 0.5097 5.71

26 K1 0.5307 0.0068 0.5186 6.57

27 K2 0.5116 -0.0128 0.4998 6.78

28 ms3 0.5006 -0.0761 0.5251 18.38

29 ms6 0.5167 -0.0322 0.5163 9.69
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Chapter 5 : Capillary - Tissue Fluid Balance and the Effects of
Perturbations on Material Exchange

5.1 Introduction

The roles of the interstitial space, the lymphatic sink, and osmotic pressure have not

been clearly identified in terms of the capillary-tissue fluid balance. By the capillary-tissue

fluid balance, it is meant the regulation of the transcapillary fluid flows and lymph drainage.

These flows affect maintenance of the interstitial space and plasma volumes.

Starling (1896) postulated that transcapillary fluid exchange is the result of

differences in both the hydrostatic and osmotic pressure across the capillary membrane. The

colloid osmotic pressure acts to oppose the hydrostatic pressure driving force for fluid

motion. The steady-state equilibrium of the Starling forces is thus dependent on the solute

concentrations within the capillary and tissue via their colloid osmotic pressure

contributions. Landis (1927) experimentally confirmed Starling's hypothesis.

The thrust of the work in this area is to isolate the mechanisms of regulation of the

capillary-tissue fluid balance. The microvascular exchange system is maintained in a stable

state through various feedback mechanisms. This chapter makes use of the model developed

in Chapter 3 to examine capillary-tissue fluid balance and its regulation. The nature of the

effect the osmotic pressure, the capillary membrane, and the lymphatic sink has on

controlling and maintaining fluid balance will be discussed.
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The first section (5.2) will investigate fluid flow through the capillary membrane.

The driving forces for fluid movement through the capillary wall will be identified and

displayed for the base case and the case where the lymphatic sink conductivity, LS, has been

reduced by a factor of five (LS x 0.2). These two cases were also examined in Chapter 4.

The second section, (5.3), will describe some transient cases that were performed in order to

examine the effect on fluid balance. The final section will briefly list some conclusions

based on the findings.

5.2 Transcapillary Fluid Flow

Starling's hypothesis relates the amount of fluid flowing across the capillary

membrane to the driving forces and the membrane fluid conductivity. This is given by

(Taylor and Townsley, 1987) :

vp, = {/De — — a(re )] (5.1)

where Lp is the capillary membrane filtration coefficient, Pc and P1 are the capillary and

tissue hydrostatic pressure respectively, and n(. and 7rt are the capillary and tissue osmotic

pressure respectively. The reflection coefficient, a, is given by :

epctivecr=^
Ar theoretical

(5.2)

The reflection coefficient relates the value of the theoretical (measured) osmotic pressure

gradient to the effective gradient operating across the membrane. If the reflection coefficient



Chapter 5 :CAPILLARY- TISSUE FLUID BALANCE^ 118

is equal to 1, the the driving force for fluid motion across the membrane is the transcapillary

potential given by :

AT = (13; — re )—(P, —70^ (5.3)

This means that there is no leakage of solute across the membrane, in other words, it is 100

percent reflected from the membrane. The actual measured osmotic pressure then acts to

oppose fluid motion. If there is leakage of solute across the membrane, then the osmotic

gradient across the membrane is lowered. Therefore, only some fraction, a, of the measured

osmotic pressure gradient will operate across the membrane opposing fluid motion. This

leads to the effective operating osmotic pressure gradient. If the reflection coefficient is

equal to zero, then solute may pass unsieved through the membrane. This means there

would be no osmotic pressure gradient across the membrane and the hydrostatic pressure

would be the only driving force for fluid motion. Typically, in human capillaries, a ranges

between 0.75 and 0.95 (Renkin, 1977). There are some cases where the reflection

coefficient is nearly zero (the liver sinusoids) and those where it is nearly 1 (the blood-brain

barrier) (Ganong, 1989).

The driving force for fluid motion in the tissue is the potential given by :

= P, -
^ (5.4)

where Pt and nt are the tissue hydrostatic and colloid osmotic pressure respectively. The

tissue reflection coefficient, a t , relates the fact that the tissue porous medium may be

considered as a stack of membranes. In this sense, solute transport will be hindered in

certain regions by the fibrous meshwork of biopolymers causing osmotic pressure gradients

throughout the tissue. The solute can still leak throughout the tissue by the various transport

mechanism, diffusion, dispersion, and convection. This means that a fraction, a t, of the
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measured osmotic pressure gradient (the effective osmotic pressure gradient) will operate to

oppose fluid motion.

In past analyses, the driving force for fluid motion in the tissue has been the

hydrostatic pressure only (Taylor and Townsley, 1987). The results from Taylor (1990) and

this work (see Chapter 4) have demonstrated that the colloid osmotic pressure is sufficiently

large and spatially variable that it must be included in any analysis of microvascular

exchange. It plays a significant role in material exchange throughout the tissue. Taylor and

Townsley (1987) have used a simplistic Starling force analysis of flow across the capillary

wall. This is displayed in Figure (5.1). Here the tissue hydrostatic pressure drops along the

length of the membrane and the colloid osmotic pressure is considered nearly constant along

the capillary. The transcapillary potential difference is seen to be constant and positive (fluid

filtration) down the length of the capillary. From their analysis, they conclude that fluid

reabsorption is a transient phenomenon which will not occur at steady-state. In this work, it

has been found that the hydrostatic pressure increases along the length of the capillary in

response to the solute profile (via the osmotic pressure) along the membrane. The solute

concentrations increase along the capillary membrane due to the lower washout that occurs at

the venular end of the tissue. The transcapillary potential difference does not remain

constant but is maximal at the arteriolar end of the capillary and decreases along the

capillary. The tissue-side potential decreases along the capillary. The hydrostatic pressures,

osmotic pressures, and transcapillary potential difference are displayed in Figures (5.2) and

(5.3) for the base and LS x 0.2 cases.
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Figure 5.3: Transcapillary fluid motion : Driving forces for LS x 0.2.

As can be seen from the results, the transcapillary potential difference remains positive for

the base case confirming the results shown in Chapter 4 for no fluid reabsorption. The

results in Figure (5.3) display clearly the fluid reabsorption occurring at the venular end of

the capillary (after about z* = 0.92) where the transcapillary potential difference becomes

negative. Both of these results are steady-state results. The reabsorption of fluid back into

the capillary for the latter case conflicts with Taylor and Townsley's suggestion that

reabsorption occurs only transiently until the tissue forces equilibrate. The amount of fluid

that flows across the membrane, however, is very close to the lymph drainage rates. This

suggests that the amount of reabsorption is expected to be far less than fluid filtration into

the tissue. This agrees well with results suggested by Intaglietta and Endrich (1979).
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5.3 Capillary - Tissue Fluid Balance : Mechanisms of Regulation

The roles of material exchange across the capillary membrane, lymphatic drainage,

and the osmotic pressure will be examined in this section. The goal here is to identify

mechanisms of control observed from transient simulations of microvascular exchange using

the model formulated in Chapter 3. These controlling features of the microvascular

exchange system will be investigated by implementing several perturbations to the system.

The first section will deal with a sudden drop in the tissue solute concentrations and its

impact on the flow structure. The second will examine the effects of an elevated venous

pressure on the system. The third section will examine the effects of a sudden drop or

increase in the capillary solute concentration on the system. The final section will briefly

summarize the results from two cases which examine the role of the osmotic pressure on the

system. This is done by perturbing the system after it has reached steady-state (the base

case) with zero plasma solute concentration. Two simulations are performed. The first

includes the effects of osmotic pressure throughout the system and the second does not.

5.3.1 Perturbed Tissue Solute Concentration

The tissue solute concentration generates an osmotic pressure which opposes fluid

reabsorption back into the capillary. If the solute concentration is high at a particular

location in the tissue adjacent to the capillary membrane, then the corresponding osmotic

pressure will reduce the local tissue potential. This will promote fluid filtration from the

capillary into the tissue. The effects a lowered tissue solute concentration will have on the

system will be examined in this section.

This condition was implemented in the model by dropping the capillary solute

concentration but maintaining the capillary osmotic pressure at its normal values found from
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normal capillary solute concentrations. This will maintain the driving forces (colloid

osmotic pressure) from the capillary side for fluid exchange but will lower the concentration

of solute in the tissue since there is less solute effectively passing through the membrane.

This is purely a contrivance to achieve the desired conditions for lowered solute

concentrations in the tissue.

Figures (5.4)-(5.6) display the transient results for the case where the effective

dimensionless capillary solute concentration is equal to 0.10. The colloid osmotic pressure

in the capillary is maintained at the value for a dimensionless solute concentration equal to

1.0 (the base value). This is a reduction in the solute concentration by a factor of ten which

will lead to lower the solute concentrations within the tissue. This condition is implemented

after the sytem has reached the base case steady-state conditions presented in Chapter 4.

As can be seen from the results, the drop in the effective solute concentration acting

across the capillary membrane results in lower tissue solute concentrations. The solute is

still washed out of the regions near the capillary to the sink and builds at the sink initially

(see t = 1800 s). After one hour the solute concentrations are beginning to equilibrate within

the tissue and the solute build-up at the sink is far reduced. At the new steady-state, the

tissue solute distribution is lower (average concentration is equal to 0.0620) and there is a

build-up of solute near the venular capillary wall. It is important to bear in mind that the

osmotic pressures in the capillary have not been changed to correspond with the effective

solute concentrations transporting across the membrane.

The transient behaviour of the hydrostatic pressure is similar to the solute

concentration distributions. This is because the hydrostatic pressure responds to the solute

concentration via the colloid osmotic pressure. The hydrostatic pressures become negative

(subatmospheric) throughout the tissue with the maximum values at the venular end of the

capillary. These shift from the lymphatic sink region early in the transient response to near

the capillary at steady-state. The average tissue hydrostatic pressure at the new steady-state

is -0.1288 (-3.864 mmHg).
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Figure 5.4: Dimensionless tissue solute concentration, hydrostatic pressure, Peclet number,
potential and velocity vector distributions for the case with lowered tissue solute
concentration at t = 1800 s.
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Figure 5.6: Dimensionless tissue solute concentration, hydrostatic pressure, Peclet number,
potential and velocity vector distributions for the case with lowered tissue solute
concentration at new steady-state.
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The drop in the tissue solute concentrations lead to lower osmotic pressures

throughout the tissue. This is particularly important adjacent to the capillary membrane. As

can be seen in the potential distributions, the lowest potential regions shift from being

entirely at the the lymphatic sink to being at the venular capillary membrane. This causes

fluid reabsorption back into the capillary as can be seen in the fluid field structure. This is a

direct consequence of the drop in the osmotic pressure in the tissue.

The drop in the tissue osmotic pressure causes the tissue-side potential to increase in

magnitude. This then at some point exceeds the capillary potential and then fluid

reabsorption occurs. As the tissue solute concentrations are further lowered transiently, the

amount of reabsorption increases. This can be seen in the results as the zero point (the point

on the capillary membrane where the normal fluid flow is zero) shifts up the capillary from

z* 0.82 at 1800 s to z* 0.79 at the new steady-state. The increasing amount of

reabsorption due to the reduction in the tissue osmotic pressures leads to lower fluid

velocities across the capillary membrane. This is clearly displayed in the Peclet number

distribution. The convective transport drops off into the tissue from maximum values at the

arteriolar capillary membrane. There is slight increase in the region of reabsorption at the

venular end of the capillary. The lymph drainage drops to 2.42 1/day at the new steady-state.

5.3.2 Perturbed Venous Hydrostatic Pressure

The venous hydrostatic pressure provides an additional controlling factor for fluid

filtration and reabsorption. This can be understood if a rise in the venous pressure is

considered. This will lead to a rise in the hydrostatic pressures along the capillary. Elevated

venous pressures may occur because of venous obstructions or in heart failure. If the

capillary solute concentration, and thus the capillary colloid osmotic pressure, is largely

unchanged, then an elevated venous pressure will increase the potential to be overcome for

fluid reabsorption. In fact, this would lead to increased fluid filtration and lymph drainage.
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The results shown in Figure (5.7)-(5.10) are the transient results for elevated venous

pressure. The venous hydrostatic pressure is increased suddenly to four times its original

value. This corresponds to a venular pressure of 0.6667 (20 mmHg). Steady-state is

achieved rapidly (< 2000 s) unlike the case performed in section 5.3.2 above. The initial

state corresponds to the base case performed in Chapter 4.

Initially, with increased venous pressure, the fluid filtration rates across the capillary

membrane increase rapidly and the tissue pressures increase. Subsequent to the perturbation,

the lymph flow increases to 6.43 1/day. This leads to greater removal of solute from the

tissue space and thus the solute concentration drops. This can be seen at t = 120 s in Figure

(5.5) where the solute concentrations are dropping throughout the tissue and radial gradients

have formed near the capillary wall. The maximum dimensionless hydrostatic pressures are

as high as 0.1000 (3.000 mmHg) at the extreme venular end of the tissue. The dimensionless

average tissue hydrostatic pressure is increased to -0.0209 (-0.6270 mmHg).

As a result of the lowered solute concentrations within the interstitium, the

hydrostatic pressure begins to drop in response to the lower colloid osmotic pressures. As a

consequence, the lymph drainage rates begin to fall. At t = 240 s, the lymph flow drops to

6.00 1/day. The fluid velocities across the capillary and within the tissue also drop. The

solute concentrations and hydrostatic pressures continue to drop through time resulting in

decreasing lymph flows. The new steady-state lymph flow (5.89 1/day) is higher then the

initial state value (5.47 I/day).

At the new steady-state, the solute concentrations are lowered within the tissue (the

dimensionless average tissue solute concentration equals 0.4997) and the range is lower than

the initial state. The solute gradients appear to be more uniform throughout the tissue. The

maximal gradients occur at the venular end of the tissue but they are lower than gradients in

this region for the initial condition (the base case). This is because there is greater and more

uniform washout of solute into the tissue along the length of the capillary. This results in the

more uniform solute concentration distribution within the tissue.
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Figure 5.9: Dimensionless tissue solute concentration, hydrostatic pressure, Peclet number,
potential and velocity vector distributions for the case with elevated venous hydrostatic
pressure (sPven* = 0.6667) at t = 600 s.
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Figure 5.10: Dimensionless tissue solute concentration, hydrostatic pressure, Peclet number,
potential and velocity vector distributions for the case with elevated venous hydrostatic
pressure (Peen * = 0.6667) at steady-state.

2
-T:

0.01

0 04-3^0.0^0.1^0.2^0.3^0.4^0.5^0.6^0.7
V2^

0.8^0.9

0.01 ^
0.02

.

0.03-
0.04:
0.05-
0.06:
0.07:
0.08:
0.09:•
0.10

0.0

1 1 1 1 1 1 1 1 1 1 t 1N1 A■Al%•■■■■••••■•••■■■■■■■At AAA 1 1 1 1 1
1 11 1 1■■•1At■■■••••■44.••••••••••••••4'■4.•■■■■•■ 1 1 1 1

1 1 1 I 1 14.4.4.■•••••••••••••••••••••••••••••■•■•■■ 1 1 1
1 f 1 1 .1 1■••■••••••••••••••• .......... ••••••••••• 11A 1 1
1414.4.4.   4.4.44.111
1 1■■■4 ^  4 t t t 1 1
1 1
1 I  ^ .. • •



Chapter 5 :CAPILLARY - TLSISVE FLUID BALANCE^ 133

As expected, the hydrostatic pressure distribution is very similar to the solute

concentration distribution. The gradients are lower within the tissue and the range is

reduced. The dimensionless average tissue hydrostatic pressure rises slightly from the initial

state to -0.0251 (-0.7530 mmHg) , however, greater portions of the tissue become

subatmospheric as the venous hydrostatic pressure is increased. This was not expected but

can be explained by tendency of the tissue hydrostatic pressures to respond to the tissue

solute concentrations. The lower, more uniform solute concentration distribution leads to a

more uniform hydrostatic pressure distribution throughout the tissue. Although the average

hydrostatic pressure for elevated venous pressure is higher than the initial state value, a

greater portion of the tissue is subatmospheric.

The radial gradients in the potential are increased and the distribution become slightly

more positive with the increase in the venous pressure . The increased radial gradients are

expected since the elevated venous pressure promotes more fluid filtration at higher fluid

velocities across the capillary membrane.

In summary, the results from this case illustrate that the system initially responded to

the increased venous pressure by increased tissue hydrostatic pressure and associated lymph

flow. This, subsequently, reduced the solute concentrations within the tissue leading

transiently to lower hydrostatic pressures in the interstitium and thus lower lymph drainage.

The lowered solute concentrations at the tissue-side of the capillary membrane decrease the

transmembrane potential thus providing the tendency to lower fluid filtration rates across the

capillary wall. These results follow trends found in experimental studies (Johnson and

Richardson, 1974; Mortillaro and Taylor, 1976).

When the system had reached the new steady state, the lymph flow had reduced until

it was just greater than the initial state. The system has shown that despite the large increase

in the venous pressure, the solute concentration, hydrostatic pressure, and potential

distributions readjust themselves to provide a modest increase in the average tissue

hydrostatic pressure and lymph drainage. This safety factor mechanism against edema is
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supported by the work of Johnson and Richardson (1974). It is important to bear in mind

that the potential drives fluid motion throughout the system. The tissue potential distribution

increases (by about 0.04) with the rise in the venous pressure. In terms of the range of the

tissue potential, this is a significant amount. This further confirms that the capillary wall

bears the dominant fluid flow resistance in the system. In other words, the potential drop

across the capillary increases to a larger degree than the tissue potential.

5.3.3 Perturbed Capillary Solute Concentration

In this section, the results from two cases will be presented. In the first, the

dimensionless capillary arteriolar solute concentration will be decreased to 0.10 (the base

case value is 1.0). The corresponding capillary osmotic pressures will accordingly be

reduced in response to the lower solute concentrations. In the second case, the dimensionless

capillary arteriolar solute concentration will be increased to 1.2. The first case corresponds

to hypoproteinemia, that is when plasma protein levels are low. This may occur because of

liver disease (low hepatic protein synthesis) or nephrosis (elevated loss of protein in urine).

The perturbation in the capillary solute concentration is implemented when the steady-state

conditions achieved in the base case in Chapter 4 have been reached.

The transient results for the case where the blood solute concentration is dropped to

0.10 are displayed in Figures (5.11) to (5.14). As the solute concentration in the blood is

reduced, the plasma colloid osmotic pressure exerted is lowered. This means that the

transcapillary potential difference becomes more positive leading to greater amounts of fluid

filtration. Initially this results in increased lymphatic drainage rates. In this manner, the

blood volume decreases and more fluid passes through the interstitial space and out through

the lymphatics. Later, the solute concentrations in the tissue begins to drop as seen at t = 300

s (Figure (5.11)) due to the increased lymphatic withdrawal. The maximum tissue solute

concentrations occur near the lymphatic sink. The tissue hydrostatic pressure falls in
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response to the drop in the tissue solute concentrations. At t = 300 s, the tissue hydrostatic

pressures have become subatmospheric throughout most of the tissue. As a result the

lymphatic sink removes less and less fluid and solute from the tissue thus reducing the fluid

flow rates at the capillary membrane.

The solute concentrations reduce further with time. The hydrostatic pressure

responds to the lowered solute concentrations by becoming increasingly more negative

throughout the tissue. As a consequence, the lymph flow rates lower and therefore the

transcapillary fluid velocities decrease with time. This means that solute removal rate out

the lymphatics is dropping with time.

At steady-state (t 4600 s), Figure (5.14), the maximum solute concentration of the

solute distribution has shifted to the venular end of the tissue near the capillary. The excess

amount of solute that had built up in the venular end of the tissue near the lymphatic sink due

to the initial condition has now been depleted and solute removal is now largely dependent

on the amount of solute being transported from the capillary membrane. As expected, the

tissue hydrostatic pressure distribution resembles the solute concentration distribution. The

low solute concentrations within the tissue cause the tissue to be entirely subatmospheric.

The new steady-state solute concentration distribution has lower gradients throughout the

tissue. The range is also decreased to roughly one-tenth of the initial condition values. This

is reasonable since the blood solute concentration was dropped to 10% of its original value.

The dimensionless average tissue solute concentration at the new steady-state is equal to

0.0495. The hydrostatic pressures are also lowered within the tissue. The dimensionless

average tissue hydrostatic pressure drops to -0.0949 (-2.847 mmHg). As a result of the

lower hydrostatic pressures, the lymphatic drainage rate is reduced to 3.59 I/day (from the

original 5.47 1/day).

These results are confirmed by the experimental findings of Manning et al. (1983) in

dogs. They found that the lymph flow decreased as the capillary protein content was reduced

to very low levels.
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The results for the increased capillary solute concentration are displayed in Figures

(5.15)-(5.18). Here, the trends are opposite to those of the previous case. As expected, more

solute is transported into the tissue leading to higher solute concentrations and thus elevated

colloid osmotic pressures. The transmembrane potential, as a result, decreases until, near the

venular end of the capillary, it eventually becomes negative. At this point, fluid reabsorption

back into the capillary begins to occur. At t = 0, corresponding to the base case, the solute is

completely filtered into the tissue space

Figure (5.18) display the results at t = 300 s. As can be seen, the solute

concentrations are increased within the tissue. Also, the solute concentration gradients at the

venular end of the tissue near the capillary increase due to the fluid reabsorption and

consequent tissue-side protein filtration occurring in this region. Washout of solute from the

arteriolar region of the tissue produces lower solute concentrations here with relatively lower

gradients. The tissue hydrostatic pressure responds to the solute concentration distribution

and has increased gradients at the venular end of the tissue near the capillary. The

hydrostatic pressures become more positive. This leads to an associated increase in the

lymphatic drainage. Fluid velocities increase within the tissue as a consequence of the rise in

the lymph drainage. The rise in the solute concentrations within the tissue produce a drop in

the potential distribution via the colloid osmotic pressures. As can be seen from the fluid

flow field, fluid reabsorption is occurring. The zero point is located at z * = 0.70.

At t = 600 s, Figure (5.16), the solute concentration has increased further within the

tissue. The solute concentration and hydrostatic pressure gradients have increased further at

the venular end of the tissue near the capillary. Also the maximum values of the

concentrations and pressures occur in this region. The rise in the hydrostatic pressures

results in an enlarged lymph drainage rate. This leads to a slight reduction in the fluid

reabsorption back into the capillary. This is reflected by the shift in the zero point down the

capillary to z* = 0.75.
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concentration (cart* = 1.2000) at t = 1800 s.

1.0
0.0

1 1 AAAAAA
'AAA' ^

t I^
1^1 A I AA
A 'IAA ^

0.1
0.8 0.9



.

..^

......

..........
^

...
....... .. .. .....

......

................................ ....... ....
.............. ............................ 

.moo.

4.6^4.6^4.7^4.6 1.00.9

0.01^
0.02

.

0.03:
0.04:
0.05:
0.06:
0.07:
0.08:
0.09:
0.10

0.0^0.1
•

0.2^0.3

0

^ 1^1. •
0.5^0.6^0.7^0.8^0.90.4

0

at
to-

(P-a10/Part

0
30

to03

30

co
to

1.0

l'hapter 5 :(APILLARY - TISSUE FLUID BALAN(T 194

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

Solute Concentration
.....^...........^...

..... ....^...............
- • •^

• •^
.
..........

.. ......................................... ..... .

...... ... .. . .0.. 
....... . .......0.....iiii: :s.- -----^ .0

>.96 *-

.7,??.6.--.,
------.-__

0.6^.. °---..^ ---.. 1 ........^age^....^-..
••

•
••^•

0.0^0.1 0.2 0.3

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10 ^

0.0^4.1^4.2^4.3

0.4 0.5 0.6

Hydrostatic Pressure

0.7 0.8 0.9 1.0

0.01

0.03:
0.04

0.02 ^

Peclet Number
..............................

......................
^ ...... ..........................

......

... .. '•^4&:;\
0.05

.
7 •SS

0.06: co co^0
0.07-
0.08-
0.09-
0.10

0.0^0.1^0.2^0.3^0.4^0.5^0.6

to

0

ato
co^'co^to .
co^co•to 
...^co^co
co^ta^co :

0.7 0.8 0.9 1.0

Velocity Vector Field
^ ...

■

••1 r ".■ -1r •-•-

0.1^0.2^0.3^0.4^0.5^ 0.7^0.8
Distance down Capillary (dim)

Figure 5.18: Tissue solute concentration, hydrostatic pressure, Peclet number,
potential and velocity vector distributions for the case with enlarged capillary solute
concentration (c,,/ * = 1.2000) at steady-state.
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The solute continues to build-up, although more slowly, with time at the venular end

of the tissue near the capillary membrane. The associated increase in the colloid osmotic

pressure at the tissue-side of the capillary membrane results in a increasingly more positive

transmembrane potential. As a consequence, the tendency for fluid reabsorption begins to

lessen and the zero point continues to move down the capillary. At t = 1800 s, the zero point

is at z* 0.80. At steady-state, Figure (5.18), the solute concentration distribution has higher

gradients than the initial state, especially at the venular end of the tissue near the capillary.

The hydrostatic pressure distribution resembles the solute concentration distribution. The

gradients are particularly steep at the extreme venular end of the tissue adjacent to the

membrane. The Peclet numbers are higher throughout the tissue than the initial state

indicating increased fluid velocites and thus a higher degree of convective transport. At the

new steady-state, the dimensionless average tissue solute concentration is equal to 0.6881.

The average hydrostatic pressure is equal to 0.0189 (0.5670 mmHg) and the resulting lymph

drainage is 6.34 liday.

From the above simulations it is clear that the lymphatic sink also plays a role in fluid

balance regulation. When reabsorption occurs due to the elevated capillary solute

concentrations (via its colloid osmotic pressure), then less fluid is withdrawn from the tissue

via the lymphatic sink. As the solute concentration builds-up at the capillary wall, the

transmembrane potential becomes more positive and the amount of reabsorption decreases

and the hydrostatic pressures rise. The lymph drainage increases as a result. An equilibrium

is established based on the fact that the increased solute removal by the lymphatics offsets

the high solute flux across the capillary membrane. The amount of reabsorption is dependent

on the transmembrane potential which is in turn is a function of the solute concentrations

within the tissue. With a suffficiently strong sink, solute concentrations would be lowered

leading to fluid reabsorption.
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5.3.4 Transient Analysis of the Effects of Osmotic Pressure

The influence of the osmotic pressure on the system was examined in this section.

Two cases were performed; the first including colloid osmotic pressure effects and the

second without any colloid osmotic pressure driving terms throughout the system. The

system was perturbed at steady-state (the base case solution) by resetting the capillary solute

concentration to zero. This means that there is no longer any solute entering the system and

thus solute concentrations will fall in the tissue due to the lymphatic drainage.

The average tissue and lymphatic fluid solute concentrations are displayed in Figure

(5.19). As can be seen, the solute concentrations drop rapidly to zero. For the case where

the effects of the osmotic pressure are not included, the osmotic pressure gradients may be

taken as equal to zero. For the case under the influence of the colloid osmotic pressure

effects, fluid is dragged out through the lymphatics causing relatively high gradients in the

osmotic pressure, especially at the venular end of the tissue. The hydrostatic pressures

throughout the tissue begins to fall in response to the depletion of solute. Consequently, the

lymphatic drainage drops therefore lowering fluid velocities throughout the interstitium and

across the membrane. Initially, the hydrostatic pressures are greater throughout the tissue for

the case with osmotic pressure than the case without it. This means during these times,

lymphatic drainage is greater in the case with osmotic pressure than the case without. This is

why the solute concentrations for the case with osmotic pressure are lower, i.e., initially, the

solute is dragged out of the tissue at a faster rate than the case without the osmotic pressure.

As the solute concentrations drop within the tissue, the colloid osmotic pressure plays

a smaller role in determining the hydrostatic pressure and the profiles become

indistinguishable.
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Figure 5.19 : Average tissue and lymphatic fluid solute concentrations through time.

From Figure (5.19), it appears that the colloid osmotic pressure enhances solute

removal from the system at early times for higher solute concentrations.

The transient contour plots for the case with colloid osmotic pressure effects included

are displayed in Figure (5.20)-(5.24). The inital state is the steady-state base case

distributions presented in Chapter 4. The solute removal by the lymphatic sink creates a

strongly radial solute concentration distribution. Also the relatively greater washout of

solute at the arteriolar end of the tissue promotes lower solute concentrations at the arteriolar

end of the tissue near the capillary membrane.

Initially in the transient response, the hydrostatic pressure distributions are similar to

the solute concentration distributions. At low solute concentrations, the hydrostatic pressure

distribution approaches the potential distribution. This is because the colloid osmotic

pressure approaches zero. For the case without osmotic pressure effects, the hydrostatic

pressure distribution is constant through time and is identical to the potential distribution.

The potential distribution for the case with osmotic pressure shifts in the positive direction as
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Solute Concentration

0.3^0.4^0.6^0.6^0.7^0.8^0.0^1.0

Hydrostatic Pressure

..^....

•. •
........ ... .........^•

41)
cb .

A (̂cb.0.7^0.9

0.9^1.0

1.0

0.01
0.02:
0.03:
0.04-
0.05:
0.08:
0.07:
0.08:
0.09:
0.10

0.01
0.02:
0.03:
0.04:
0.05-
0.08
0.07-
0.08:
0.09:
0.10

0.0 0.1^0.2^0.4^0.5^
•
0.6^0.7

Velocity Vector Field

•••

•A,

1.0

0.0 0.1

 

0I
^

0i 4.9^1 .0



Chapter 5 :(APILLARY - TISSUE FLUID BALANCE
,^149

Solute Concentration

. . .. . .... . . . . . ........ . . . ...... . .. . .. . .. . .... . ...... .. .... . .... . .... . ..... . .... . ........... . .. . ..... . .. . .... . .. . .. . ...... . ... . .. ... ........

.. . .. .. ......... .
............. . ...... ............ . . . .. . ........ .... .. . ... .. ... . .... . ... . .... . .... . . . . . .......... .

... . .... ........... ........

... .........
........^

.........

- -^
- 0.020 0 70.300 7. .2. .7 0 .0 sto. 0.^.......

0.01000.0100

0.7^0.8^0.9^1.0

0.01 .̂
0.02-
0.03-^ ..........................................................................................................................

-0.1100- 0.1100 --0.1100- 0.1100

0.07-^
01050- 01 050- 0.1050 ----0.1050---- - ... 1-10 ?.?.. --_-0-.1.0-0-0 ....................

.................................................................0.04-
0.05:. ...................................................
0.06:
0.06:.,..................................................................... ...

..0....1..0..0..0. ........... 0..1.0....0.-.0^:0...10.i.)... ... ..^........^..
_---^

..
--- -^......^.9..6.0 ....- - - - ...t.)0: ......

0^
.........---"--0.09:

0.0 t
0.02:
0.03-

0.05-
0.06 
0.07:
0.08-
0.09-
0.10  

0.0 0.1^0.2 0.3^0.4 0.5^0.6

Hydrostatic Pressure

0.01..^
0.02-
0.03::
0.04-
0.05-
0.06-
0.07-
0.05:

0.10

0.0

Peclet Number

s9-99°6

0.2^0.3^0.4^0.5^0.6^0.7

..........-

Ii
----^!„----• 7,-- -7 -isi is i ..-

,^ ....^• • f
0.^:^.....„,^,„,.^,.,,^.^0

/^C ;^CS^0.
C).^. . I^• • 1^• • • I
.,^,,...0^co^..

:^ 4

^

I^. I^I^:

(p_owpart

,

E
0.01c

^ 0.021
93^

......~

E-...../

;

(It:. ....................................... ................. -3.9

O 0.06^

... ... 9..0..8. ................ 9..9..0. ...................

9.05-• ................
•

PI

44 9.07^190.08:^.9954LI^0.09. ......0.10^. ....

4 -1
Cr^0.0^0.1

.ti
CI

0.1^0.2 0.3^0.4 1.0

0.8 0.9 1.0

7 /I/
0 10)co^•.,...^:^-..-,^0.0.^//

0.5^0.6^0.7^0.8^0.9

...

..^ ........ ,
.................

^
..... .

...•

0.01
0.02:
0.03:
0.04-
0.057.
0.067
0.077
0.087
0.09:
0 10

0.0^0.1^0.2 0.3^0.4^0.5^0.6

Velocity Vector Field

1

0.7^0.6^0.9

111 1 11 11 4 111111 4 4 4 4 4 4 4 4 ; 4^4 - ; ; 4^I 1
fT TI TIIT 1 1 1 IIIIIttAtt 11111A AttAttAttAttAtit I I 1 1 1

1 T I I 1 1 1I I 1 AA At AttAIAIAAAANA•■■••■••■■•■AAIIAti 1 I 11 1 1 1 1 1 1 t^AAAAAAANt ••••■•■•••••••••••••■■•■■ At 1 11 1 1 1 1 1^AllAtAtt•••••••••■••••••■•■■■■•••••••■■ 1 11 1 1 1^At ■•■•••••••••••■•■■■■■■■•■■■■•••••■■■111
lItiltAtt%•■••■•■•■• ........... ■■■■■■•••••AAN 1 11 1^ANA••••■■•■■ .................................II I

. • 1
0.2^0.3^0.4^0.5^0.6^0.7^0.8

--^I ^
0.9

Distance down Capillary (dim)
0.0^0.1

1.0

1.0

Figure 5.21: Dimensionless tissue solute concentration, hydrostatic pressure, Peclet number,
potential and velocity vector distributions for the case with colloid osmotic pressure effects
throughout the system and zero arteriolar capillary solute concentration (curt = 0.0000) at t
= 1200 s.
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potential and velocity vector distributions for the case with colloid osmotic pressure effects
throughout the system and zero arteriolar capillary solute concentration c( art* = 0.0000) at t
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Figure 5.24: Dimensionless tissue solute concentration, hydrostatic pressure, Peclet number,
potential and velocity vector distributions for the case with colloid osmotic pressure effects
throughout the system and zero arteriolar capillary solute concentration (can* = 0.0000) at
new steady-state.
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the solute concentrations decrease. This is a direct result of the reduction of the osmotic

pressure and its gradients within the tissue through time. The velocity vector pattern is

similar through time. There is no fluid reabsorption during the simulations.

5.4 Discussion and Conclusions

The average tissue solute concentration and hydrostatic pressures, lymphatic solute

concentrations, and lymph drainage rates for the cases performed in this Chapter are listed in

Table (5.1). These values are those at the new steady-state established after the perturbation.

Table 5.1: Results summary for transient cases performed at new steady-state.

Case Average c, Average Pt Average c, Lymph Flow

(Uday)

Ps ,„„ * = 0.6667 0.4997 -0.0251 0.4971 5.90

c; lowered 0.0620 -0.1289 0.0612 2.42

Cart* = 0.10 0.0495 -0.0949 0.0490 3.59

car,* = 1.20 0.6881 0.0189 0.6492 6.34

cart
* = 0.0

Osmotic Pr. On

0.0000 -0.1014 0.0000 3.37

c11 ,/* = 0.0

Osmotic Pr. Off

0.0000 -0.1014 0.0000 3.37

Elevated venous hydrostatic pressure leads to higher tissue hydrostatic pressures.

This means that the lymphatic sink will drain more material from the system. The fact that

the lymphatic sink can accomodate large flow rates points to it being a regulator of the fluid

balance. As the tissue hydrostatic pressure increases, there is increased lymph drainage.

This allows for the removal of excess fluid in the interstitial space which would increase

tissue pressures. As pointed out by Guyton et al. (1987), the lymph drainage may increase
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up to 20 times before edema occurs. It then levels off as indicated by the work of Taylor et

al. (1973). This supports the idea that the lymphatic sink initially handles the increase in the

fluid filtration through the capillary membrane maintaining the fluid balance and tissue

volume. Once the tissue hydrostatic pressures are sufficiently positive, the lymph flow does

not increase further indicating that it is saturated. The reason for this is not understood. It is

important to remember that the model does not take into account tissue swelling. With

venous pressure elevation it is expected that tissue swelling would occur. This may explain

the modest decrease in the solute concentration in the tissue. Mortillaro and Taylor (1976)

observed that the lymphatic protein concentration fell about 20% for a similar elevation of

venous pressure as performed in this work. This indicates a reduction in the interstitial

protein concentration. Elevated venous pressure would expectedly lead to tissue swelling

resulting in enlarged tissue hydration. This would lower observed tissue protein

concentrations.

The lymphatic sink is also instrumental in providing the negative pressures

throughout the tissue and lowering the solute concentrations within the tissue space. With

sufficient sink drainage, the solute concentrations would be reduced to low values in the

tissue. This is because the transcapillary exchange of solute is limited by the capillary

filtration and reflection coefficients. Eventually, the tissue solute concentrations will be low

enough that fluid reabsorption occurs. This is because of the phenomenon due to lowered

tissue-side capillary membrane osmotic pressures discussed above. Once fluid reabsorption

occurs, eventually, the hydrostatic pressure will drop in the tissue. Thus the lymphatic

drainage will be reduced and then consequently, the solute concentrations in the tissue will

start to increase once again. This will lead to a reduction in fluid reabsorption back into the

capillary and tissue fluid hydrostatic pressures will start to increase. The cycle of control is

then repeated as the lymph sink starts to drain more fluid and solute again. The solute

concentration acting through the osmotic pressure provides the feedback signal to the system

to adjust the flow pattern. The signal that controls the lymphatic sink drainage is the tissue
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hydrostatic pressure. Any increase in the tissue hydrostatic pressure leads to an increased

lymph drainage and thus a lowered solute concentration. Lower tissue solute concentrations

lead to lower tissue osmotic pressures which in turn then result in higher tissue hydrostatic

pressures via the transport through the capillary membrane phenomenon.

The control of the interstitial fluid balance is closely tied with that of the blood

volume. The lymphatic sink and capillary membrane through their transport properties

regulate the flow of fluid and solute between the plasma and tissue compartments. The

osmotic pressure, as mentioned earlier, provides a negative feedback signal controlling the

fluid balance across the capillary wall via the transcapillary potential difference. This leads

to the control of the blood volume. When the venous pressure rises, more fluid filters into

the interstitial space. This in itself reduces the blood volume. As the tissue solute

concentrations are lowered due to removal by the lymphatic sink, this promotes increased

fluid reabsorption. This will increase the blood volume.

The following conclusions can be made :

1. The osmotic pressure plays an important role as a feedback signal for fluid balance

regulation. It serves to regulate the amount of fluid reabsorption into the capillary.

2. The controlling mechanisms for capillary-tissue fluid balance arise from the cycling

effects of the hydrostatic pressure and solute concentrations within the tissue and the

capillary. This can be established as follows. Lowered tissue solute concentrations result

in a reduction of the tissue hydrostatic pressure due to fluid reabsorption. This means

less flow exits via the lymphatics and thus the solute concentrations increase leading to

less fluid reabsorption. The hydrostatic pressure rises because of both the lesser

reabsorption and as a consequence of its response to the increasing osmotic pressure.

This leads to greater lymph drainage and eventually lower solute concentrations.

3. The lymphatic sink serves as a controlling feature of the capillary-tissue fluid balance.

Its role is to remove excess fluid and solute from the interstitial space. The regulation of

the solute concentrations in the tissue are key for the occurrance of fluid reabsorption
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back into the capillary. This is directly dependent on the local tissue hydrostatic

pressure.
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Chapter 6 : Conclusions and Recommendations

A transient, spatially distributed two-dimensional model of the microvascular

exchange system has been developed and successfully implemented in cylindrical

coordinates. For the base case parameters selected, the calculated values for the average

tissue solute concentrations, hydrostatic pressures, and lymph drainage are in the range of

values expected for human tissue. The effect of these physiological parameters on the

system have been investigated. It appears that some of the parameters have a larger impact

on the system than others.

In particular, the capillary membrane filtration coefficient and lymphatic sink

strength dominate the fluid flow structure of the system. The capillary membrane filtration

coefficient limits the amount of fluid entering the system. The high fluid flow resistance of

the membrane relative to that in the tissue suggests that fluid flow is controlled entirely by

the capillary filtration coefficient. This is clearly shown by the significantly greater potential

drop across the membrane relative to that across the tissue. The strength of the lymphatic

sink in combination with the high flow resistance of the capillary membrane provides the

opportunity for negative hydrostatic pressures (subatmospheric) within the interstitial space.

The lymphatic sink also provides the primary mechanism for removal of solute from the

tissue. Fluid reabsorption may be promoted based on the values of LS, PL, and Lp. The

average tissue solute concentration, hydrostatic pressure, and potential distributions are

largely functions of the transport properties of the capillary membrane and the lymphatic

sink.
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Dispersion was not found to play a major role as a transport mechanism based on the

assumed dispersivity values. This was found despite the highly convective nature of the

solute transport across the capillary membrane and within the tissue. High convective

transport promotes greater dispersion.

From the results, the colloid osmotic pressure cannot be ignored in any formulation

of microvascular exchange. Gradients in the colloid osmotic pressure are significant in the

tissue and contribute to the fluid motion. The hydrostatic pressure distributions are usually

quite similar to the solute concentration distributions. This is because the hydrostatic

pressure responds directly to the solute concentrations via the osmotic pressure. This would

occur for at greater than zero. Of course, as the tissue reflection coefficient is reduced, the

effect of the colloid osmotic pressure on hydrostatic pressure distribution would diminish.

The fluid potential is the driving force for fluid movement throughout the system.

The capillary-tissue fluid balance is regulated by a combination of the osmotic

pressure, the lymphatic sink, and transport through the capillary membrane. The colloid

osmotic pressure serves as a negative feedback signal controlling the influx of fluid into the

interstitial space by maintaining the transcapillary potential difference. The lymphatic sink

also acts as a regulatory mechanism for fluid balance. It serves to reduce solute

concentrations within the tissue thus reducing the transcapillary potential and promoting

fluid reabsorption. This lowers the hydrostatic pressures within the interstitial space thus

reducing the lymph drainage, which would eventually lead to higher solute concentrations

and therefore less reabsorption. The hydrostatic pressure would then begin to increase once

again. This is intimately tied to maintenence of the blood plasma volume.

The following recommendations are made for possible future efforts as extensions of

the present work :
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1. The model is limited in that the tissue is assumed rigid and nondeformable. This means

the effects of hydration and fluid accumulation on the fluid balance cannot be studied.

This does not permit the observation of edema within the tissue. The inclusion of

swelling in the model formulation would enhance the model's utility and aid in observing

the regulation of interstitial fluid volume. This may be implemented as a first

approximation as being one dimensional swelling in the radial direction. This could be

averaged over the entire length of the tissue thus producing a radial increase or decrease

in volume depending on the compliance relationships and fluid balance. In this manner,

the need for calculating stresses at each element in the tissue is avoided simplifying the

problem greatly.

2. The description of the lymphatic sink may be extended to be more realistic. In the

present model, it is assumed as a simple linear function of the local tissue hydrostatic

pressure. This may be too simple in that there is no limit on the lymphatic flow which is

observed experimentally (Taylor et al., 1973).

3. The tissue reflection coefficient and the implications of such a parameter should be

examined from a theoretical and experimental viewpoint. The emphasis would be on

deriving or approximating the relationship between the tissue reflection coefficient and

the retardation factor and volume exclusion fractions and its impact on osmotically active

solute particles moving through a fibrous porous medium.

4. It is also felt that existing models describing microvascular exchange should first be

validated by experimental work. The construction of more complex and elaborate

models may not be adding new understanding to the mechanisms of solute and fluid

exchange in the microvascular system unless experiments are done validating them. At

present, there is little experimental data to draw from for model validation.
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Nomenclature

Symbol Description^ Units

a^Dispersivity^ m

A^Area^ m2

c^Solute concentration^ kg m-3

dim^Dimensionless

D^Solute diffusion coefficient^ m2 s-i

6^Dirac delta function or small distance

f^Volume fraction

g^Acceleration due to gravity^ m s-2

j^Solute flux^ kg m-2 s-1

k^Anisotropic porous medium permeability^m

K^Fluid hydraulic conductivity^ m2 pa-I s-I

L^Length^ m

r,„^Capillary fluid filtration coefficient^m Pa-1 s- 1

LS^Lymphatic sink strength^ m3 fl ni-3 tis Pa-1 s-1

A^Fluid viscosity^ Pa s-1
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n^Outward normal direction

Colloid osmotic pressure^ Pa

P^Hydrostatic pressure^ Pa

Pe^Peclet number

PS^Solute capillary wall diffusive permeability^m s-1

Q^Lymphatic sink drainage or^ s-I

volumetric flow rate^ m3 s-1

p^Fluid density^ kg m-3

r^Radial coordinate direction

R^Capillary or tissue radius

a^Solute reflection coefficient

if no subscript, then for capillary membrane

if subscipt t then for tissue

t^Time

Dimensionless time

T^Fluid driving potential, (P-an)^ Pa

0^Tissue porosity

v^Velocity^ m s-i

W^General variable

Retardation factor

z^Longitudinal coordinate direction
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Appendices

Symbol Description^ Units

A^Vector or matrix of elemental function, a(s), values

a^Upwinding parameter

C^Convective matrix

D Diffusion coefficient^ m2

f^Function defined in solution domain

F^Vector of elemental function,f values

Elemental Peclet number

h^Elemental characterisitic length^ m

h(s)^Function defined along element boundary

H Vector of elemental function, h(s), values

K Stiffness matrix

A^Eigenvalues

n^Basis or trial functions

N Vector of elemental trial functions

p^Perturbation (upwinding) function

s^Coordinate along boundary segment

t^Interpolation function

T^Transient matrix

u^General unknown variable

U Vector of elemental unknown variables
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v^Fluid velocity^ m s- I

w^Weighting or test function

0J^Relaxation factors

x^x-direction

y^y-direction

Subscripts and Superscripts (including Appendices)

Symbol Description

art^Arteriolar capillary quantity

av^Available volume fraction seen by fluid

c^Capillary quantity

d^Combined diffusive and dispersive components

diff^Diffusive component

disp^Dispersive component

Da^Darcy's law

e^Elemental quantity

qif^Effective quantity

ex^Excluded volume fraction

1^Fluid quantity

G^Global matrix quantity

ith direction

im^Immobile fluid volume fraction
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nth direction

direction or dummy iteration variable

ith direction

L^Lymphatic quantity

long^Longitudinal direction

m^Membrane quantity

n^Outward normal direction

r^Radial coordinate direction

ref^Reference quantity

s^Solute quantity

so^Solid volume fraction

st^Volume fraction solute can see

St^Starling's hypothesis

t^Tissue quantity

tran^Transverse direction

yen^Venular capillary quantity

z^Longitudinal coordinate direction

Dimensionless quantity
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Appendices

Appendix A : The Finite Element Method and the Petrov-Galerkin Method.

Appendix B : Solution algorithm and under-relaxation technique.

Appendix C : Program Listing.
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Appendix A : The Finite Element Method and the Petrov-Galerkin
Upwinding Method.

A.1 The Galerkin Finite Element Method

In this section, a brief introduction of the basic theory of the Galerkin finite element

method will be presented. The Galerkin finite element method applies the method of

weighted residuals (MWR). The general procedure for implementing the finite element

method is presented by applying the method to two-dimensional transient solute transport

equation in rectangular coordinates . The treatment the equivalent equation in cylindrical

coordinates will then be discussed. A detailed introduction of the finite element method may

be found in Bickford (1990).

The two dimensional transient solute transport equation, an elliptic partial differential

equation, is stated as follows :

in C2^ (A.1)

u = g(s)^ on L 1^(A.2)

du - F u(s)u = h(s)^ on L2^ (A.3)dn

du^du^du D(1-1.21+ v^ + v —
dt^x ar^' dy

= + a-Ta2121+ f(u,x,y)

where u is the unknown variable which is sought and .f(x,y) is an arbitrary function

prescribed within the solution domain O. The first and second terms are the temporal and
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convective terms respectively. The third term is the diffusive-dispersive component and the

last term may be considered as a source term. The essential boundary conditions (Dirichlet

boundary condition) are specified at the boundary segment LI. The natural boundary

conditions (Robins boundary condition) are specified along the boundary segments L2. If

a(s) is set to zero, then this is referred to as a Neumann boundary condition. The general

geometry of the problem is described in Figure (A.1).

LI

L2

Figure A.1: General description of elliptic boundary value problem.

The general procedure for implementing the finite element method can be

approached in five steps (Bickford, 1990) : 1) discretization, 2) interpolation, 3) weak

formulation, 4) formation of elemental matrices, 5) solution of resulting algebraic equation.

Discretization

The finite element method, like the finite difference method, approximates the solute

of the differential equation at a finite set of point (or nodes) in the solute domain. The

objective of these methods is to set up an approximate algebraic form of the differential

equation at each node. It is required that the position of nodes be chosen (discretization)
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within the solution domain. In the finite element method, the differential equation is

satisfied locally within subregions called elements. There is then a requirement that at the

boundary of two elements, for instance, the differential equation is satisfied for both

elements and at the mutual boundary. At the absolute boundary of the solution domain, the

boundary conditions (A.2) and (A.3) have to be satisfied. A typical discretization for the

geometry above is displayed in Figure (A.2).

Nodes
Elements

Figure A.2: Discretized geometry using linearly interpolated rectangular elements.

The region is discretized using linearly interpolated rectangular elements. This means that

curved boundaries have to be approximated with straight line segments. This introduces an

inherent npproximation error into the formulation. More nodes are placed within regions

expecting relatively high gradients.

The elements are constructed from any number of nodes (> 3 for two-dimensional

problems). For linearly interpolated elements, three node elements are known as triangular

elements whereas four node elements are known as rectangular elements. With additional

nodes within an element, say eight in a rectangular element, the degree of accuracy increases

and the element boundary may follow a quadratic function shape. For this work, linearly

interpolated rectangular elements were used.
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Interpolation

The solution at any particular location within each element is approximated by an

interpolation scheme using the values of the solution at the nodes. The linear interpolation

functions are the simplest to implement. This can be visualized as a plane (the solution

surface) above the element. This is shown in Figure (A.3).

Linear representation
of u(x,y) in element

Figure A.3: Rectangular element with linear interpolation.

The approximation to the solution within the element, ue(x,.y), is expressed mathematically

(Yu and Heinrich, 1987) as :

4

ue (x,A= to; (A.4)
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where ui is the solution value at node i and n i is the interpolation function (also known as the

shape or trial function) of node i. For the space trial functions defined over the element

region 0<y..!Xy, the interpolation functions are given by (Yu and Heinrich, 1987) :

(x,y) = t 1 (9t2 (1 . )

n2 (x, = t2 (x)t, (y)

n3 (x,y)= t2 (x)t,(y)

n4 (x,y)= t,(9t2 (y)

(A.5)

where the numbers refer to the nodes in Figure (A.3) and the functions ti(•) is the

interpolation function along the boundary for each node and are given by :

t, (z) (1_ Lz^
(A.6)

t2 (z).
Az

It is here that linear interpolation is being used to define the variation of the unknown

variable, u, within the element. If more nodes are placed within the element, then higher

order interpolation functions may be used.

Weak formulation

The weak formulation is found by first multiplying the differential equation by an

appropriate test function, w(x,y), and then integrating it over the solution domain :
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au^du^u^d'u +^ -w(x,y)[ —+ vx —+ v --D1^) (u,x,y)1112 = 0
dt^dx Y

a
dy^dx2 ay

(A.7)

This equation satisfies the differential in an average sense within the solution region. It does

not require that the differential equation be satisfied exactly at every point. In this manner,

equation (A.7) is a weaker statement of the problem than equation (A.1). The test function is

any arbitrary continuous function since at the solution, the term in the square brackets

vanishes. However, the test function must hold to the property that it vanishes on LI , i.e.,

the portion of the boundary at which essential boundary conditions apply. From Green's first

identity (the two-dimensional form of the divergence theorem), we have (Bickford, 1990) :

d'u^uf w(—ax2 + —ay2 )(IQ = 
an 

ds - wrw du + aldf2dx dx ay ay (A.8)

where n is the outward pointing normal and L is the line segment bounding the region.

Substituting equation (A.8) into equation (A.7) gives :

flw^ + Jw x — + v , u\du^d
(K2+

at^L.,^dx^ay

D ff (—d" + —dw )(IQ = f w —
dn

ds + ivf
dx dx dy dy^

du

12

(A.9)

The bounding segment, L, is composed of the two segments L 1 and L2. Since the test

function vanishes on L1 then the first term on the right hand side in equation (A.9) only

applies about the line segment L2. The imposed boundary condition, equation (A.3) may

then be substituted into equation (A.9) resulting in :
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duw du^au \
2+ w v — +v — dt.2+

at
55 ( 

X ax^Y ayf2 (A.10)
dwD w(h(s)- a(s)u)ds +

1-1

wt. (K2—du + —aw —du )(152=ff(—
ax ax^dy ay

Or

(
ffw

.du ,r,--ale+ fi w duv x — + v au— (K2+
at^ax Y ay, ■

D55( aw du 
+

dw du) df2+ i wauds = i whds + if wfdS2
ax ax ay dycl ^o

(A.11)

This is the final weak form of the differential equation. It includes the natural boundary

conditions that may exist if there are any natural boundary conditions on the boundary.

Using the appropriate interpolation functions for the variable u and test functions, w, it is

possible to generate a set of algebraic equations describing the system. This is performed in

the next section.

Formation of elemental matrices

The unknown variable a is approximated by equation (A.4). This may be rewritten in

matrix notation as :

4

ujx,y)= n = UT N = N T U(.
i=1

(A.12)
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In the Galerkin method, the test function is taken to be the same as the unknown variable,

thus equation (A.11) becomes :

ff u du , ± jf u vx du +v df2+
dt dx y dy 1

DirraU)2 ±dU 2
) df2+ uu2ds = uhds + 55 ufd.C2

.)61 dx )^dy

(A.13)

Substitution of the interpolated approximations, equation (A.12), into equation (A.13) yields

the following discrete form :

Tff^aN  U,,d.C1+ If U,7:1V(vx
dATT +v XV' jUed.C2+

dt^dx^dy

Dffr.
aN^

(je+Lf 
dN aNT 

 U jdn +
dx dx0^ dY dY e

(A.14)

fU,T,'NuNTUedv= 5 UU Nhds + .11U,,TNT df2

The unknown variable, U,, may be taken outside of the integrals resulting in a system of

four equations for each node in an element. This is written as :

de^is^dNT^dNT\ 
dn+N^df2+ N v^v ^

dt^x dx

( dAT aNT dN dNT Dfs ^) (11.2+ ir NaNT ds U, = (A.15)
dx dx dy dy

Nhds + ff Nidn
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The functionfcan be approximated by its interpolant within the element, i.e.,

= N T F^ (A.16)

Also, a(s) and h(s) may be approximated by their linear interpolants along the boundary

segments, i.e.,

a= co; +^= N T A

h= hini + h = N T H^ (A.17)

where nodes i and j are along he boundary segment. These approximations may be

substituted into equation (A.15) to give :

[

„ .2+ ff N(v x dNT v aN T JJ
,^dt^dx

Dff 
aN aN T dN aNT  )(K2 + NNT AN T ds1U =

dx

f NN T Hds + ff 1VN T F (K2
L^St

(A.18)

Or

[T,]U e +[C e + K , + AJU =[Fe + H^ (A.19)

where Te ,^Ke, and A E are the temporal matrix, convective, stiffness, and natural boundary

condition matrices respectively. Fe and He are the load and natural boundary condition

vectors respectively. The dot signifies the time derivative of the unknown variable. The
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integration of the interpolation functions in equation (A.18) is handled easily by a Gauss

quadrature method (Press et al., 1986).

The temporal derivative may be handled by a finite difference backward or Crank-

Nicolson method. If a backward difference method is used, then (A.19) is rewritten as :

, T
+Ce i K9 +^4-1-.-Ut +Fe + He ]

At^ At e
(A.20)

The unknown variable may be evaluated from this equation for the nodes within an element.

However, since each node may have communication with other nodes outside the particular

element, then the equations have to be solved simultaneously for all other elements. For

four-node, rectangular elements, each node will be in communication with four nodes. This

is displayed schematically in Figure (A.4).

0

Element 1^Element 2

Element 3^Element 4

Figure A.4: Node communication.

This means that the center node c will form four separate equations with the four elements 1,

2, 3, and 4. Each equation will form elemental entries which apply globally to the entire



where

KG = L T
elements At

I A„
elements on
boundary
segments

(A.22)

and

= E Ft/et+ Fe j+ I He

elements 'At^elements on
boundary
segments

(A.23)
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system and thus they are incorporated into a global stiffness matrix. In this manner, the

global stuffness equations are formed from the sum of the elemental matrices :

[KG }t4;+°: = V;
^ (A.21)

Solution of the resulting algebraic equations

The system of equations described in equation (A.20) may be solved using any of the

direct of iterative system of equations solvers (Press et al., 1986; Bickford, 1990). For this

work, a banded direct method solver (Gauss-Jordan elimination) was used.

Natural boundary conditions are automatically dealt with in the Galerkin finite

element method. Essential boundary conditions have to be implemented separately. Since

the value of u is known at the boundary segment for an essential boundary condition, then

the equation associated with this node may be eliminated and the global stiffness matrices

adjusted to reflect this change. On the other hand, the equation may be retained but

manipulated such that it solves for the specified boundary value. This is discussed further in

Smith, 1990.
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Cylindrical Geometry and Variable Properties

The problem for cylindrical geometry can be handled in a similar manner to the

above formulation for rectangular coordinates. Deriving the problem in cylindrical

coordinates introduces an additional term :

1 du
ar

which can be simply treated as a convective-like term in the formulation. This is similar to

the situation with spatially variant properties. As can be seen from equation (4.8), this

introduces two convective-like terms into the formulation.

A.2 The Petrov-Galerkin Upwinding Method

It was found that the straight-forward Galerkin finite element method was insufficient

to solve the solute transport problem due to the high convection within the system. The

dominance of the convective terms alter the nature of the differential equation from that of

elliptic to that of hyperbolic-like. Its effect was observed in the form of 'wiggles' and large

scale oscillations in the calculated solutions. Convective dominance produces large gradients

in the solution which can only be dealt with by making the finite element mesh very fine or

by implementing an upwinding method. Upwinding techniques have been the most popular

method employed for convection dominated finite difference problems (Richtmyer and

Morton, 1967).

The upwinding formalism developed by Yu and Heinrich (1986) is used in this work.

This is largely based on the streamline upwinding technique first implemented by Brooks
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and Hughes (1982). Artificial diffusion is added in the direction of flow. The method will

simply be presented here. Detailed theoretical justification of the Petrov-Galerkin upwinding

formulation may be found elsewhere (Brooks and Hughes, 1982; Yu and Heinrich, 1986;

Donea, 1984).

The upwinding technique is implemented as a modification of the weighting function

of the convective term. This modified weighting function vanishes for the other terms and

so can be applied to all terms thus defining a consistent finite element formulation. The

weighting functions are considered to be of the form :

w,=n,+ p, (A.24)

where n are the interpolation functions given by equation (A.5) and p is a perturbation

function that adds the appropriate amount of artificial diffusion. Yu and Heinrich (1987)

give the perturbation function as :

h dn. v d 
(A.25)

n.)
.= oc—

211v11 Y dy

where h is a characteristic element length, a is a parameter which optimizes the size of the

perturbation function, and 'MI is the Euclidean norm of the average velocity in the element.

Equation (A.25) represents additional anisotropic diffusion added to the convective term of

the solute transport equation of the form :

avh d2u
2 aV



APPENDICES^ 185

where is the coordinate in the flow direction. This can be arrived at by substituting the

weighting function in equation (A.24) into the finite element equation (A.18). The optimal

value of the 'parameter a has been found to be given by (Yu and Heinrich, 1987) as :

a = coth(1— —2
2 y

(A.26)

where y is defined for each element as :

y _ 
D
^ (A.27)

where D is the local diffusion coefficient. The charactersitic element length for rectangular

finite elements is given by (Yu and Heinrich, 1987) :

h = 11-11 11 (iv xi& +11) YIAY)

^

(A.28)

where Ax and Ay are shown in Figure (A.3).

The perturbed weighting functions are easily incorporated into the program and

integrated along with the other terms in the finite element equation (A.18). The upwinding

routines incorporated into the program constructed for this work were tested successfully

against the examples provided in Yu and Heinrich (1987).
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Appendix B : The solution algorithm and under-relaxation scheme.

B.1 The Solution Algorithm

The solution algorithm is presented in Table (B.1). The convergence tolerance was

set as 10 -6 for both the solute concentrations and the hydrostatic pressures. If the problem

did not converge within 100 iterations, the procedure was terminated.

Table B.1: Overall solution algorithm.

Step
0. Set initial estimates for the solute concentrations and hydrostatic pressures

within the tissue space.
1. Calculate the colloid osmotic pressure throughout the interstitium.
2. Obtain the tissue potential by solving the fluid conservation equation using the

hydrostatic pressures for the sink drainage term.
3• Evaluate the fluid velocities within the tissue and across the capillary wall.
4. Calculate the hydrostatic pressure distribution throughout the interstitium.

5• Obtain the solute concentrations by solving the solute transport equation
throughout the tissue space. Use the last estimates of the solute concentrations
for the sink drainage term.

6. Compare the solute concentrations and hydrostatic pressures from the previous
estimates and if they differ by less than the tolerance, then the procedure is
complete and this time step is complete. If not, go to step 1. and repeat the
process.

This procedure has to be repeated for each time step. The initial guess of the values

at the following time step may be estimated from the first two terms of the Taylor's series

expansion :
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du= u` + At 
Tt

(B.1)

where u may be the solute concentrations or the hydrostatic pressures. This provides a rough

estimate of the variable at the next time step. This is not very efficient at the first few time

steps since the estimate of the temperal derivative is not very good. At later times when a

good estimate of the time derivative has been evaluated, equation (B.1) accelerates the

process to steady-state.

If the hydrostatic pressure in the capillary is not assumed linear, then the solution of

the fluid conservation equation, equation (3.6), coupled with Starling's hypothesis, equation

(3.33), has to be performed iteratively. This is because the the capillary hydrostatic pressure

is required as a known value in the Starling hypothesis for the membrane boundary condition

for the solution of the fluid conservation equation. On the other hand, the capillary pressure

is a function of the tissue-side membrane hydrostatic pressure and requires its value for the

solution of the capillary hydrostatic pressure. The solution algorithm used for this work is

listed in Table (B.2).

Table B.2: Capillary hydrostatic pressure-tissue hydrostatic pressure solution algorithm.

Step
1. Using prior estimates of the tissue-side (from the last time step or overall

iteration), solve for the capillary hydrostatic pressure using equation (3.36).
2. Using the newly evaluated capillary hydrostatic pressure, solve for the tissue

hydrostatic pressure distribution obtained from the solution of the fluid
conservation equation.

3. Repeat steps 1. and 2. until the tissue-side membrane hydrostatic pressures are
less than the specified tolerance.
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If the solute concentration is allowed to vary down the capillary, the identical

solution is adopted as above for the capillary and tissue hydrostatic pressures. Here the

solute transport equation and Patlak equation have to be satisfied as well as the solute

depletion or addition to the capillary.

B.2 The Under-relaxation technique

The fluid conservation and solute transport equation are coupled due to the colloid

osmotic pressure. The osmotic pressure is a non-linear function of the solute concentration.

This can cause problems for successful convergence and so an under-relaxation method was

adopted to attempt to ensure convergence if possible. The technique used was the dominant

eigenvalue method suggested by Orback and Crowe (1971). This method often accelerates

the convergence of the problem. The method is presented as follows. At two consecutive

iterations k and k+1, the change in the solution may be given by the vectors duk and duk+/.

The general variable u may be the solute concentrations or hydrostatic pressures. The vector

duk+i, for example, is evaluated as the difference in the solution between the k and (k+1)st

iterations. The general dominant eigenvalue method of Orbach and Crowe (1971) suggests

that the dominant eigenvalues of the solution matrix can be roughly estimated from these

consecutive differences :

A. = 
du. k-1

du g*.
(B.2)

where A, are the estimated eigenvalues. The relaxation factors are then calculated from :

1
co = ^ (B.3)

1— A;
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and the accelerated solution evaluated from :

= ( —^k+1 
W i lli
^ (B.4)

This solution is then used in the next iteration. As the residual difference between the

iterations diminishes as convergence is achieved, the eigenvalues approach zero and thus the

relaxation parameters approach unity. This acceleration procedure was implemented in the

program constructed as part of this work.
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Appendix C : Program Listing.

The program constructed was written in C and run on both an IBM 3090 using the

Metaware High C compiler and then on a IBM RS/6000 using the standard IBM C compiler

supplied with the unit.

/*
MVE .0

AXISYMMETRIC PROBLEM - SOLVES 2D ADVECTIVE DISPERSION
EQUATION TRANSIENTLY IN POROUS MEDIA USING THE PETROV-
GALERKIN FINITE ELEMENT METHOD OSMOTIC PRESSURE
EFFECTS TAKEN INTO ACCOUNT.

THE ARGUMENTS TO THIS PROGRAM ARE AS FOLLOWS :

mve cvpd b 1

WHERE :

c IS THE CONCENTRATION OUTPUT RESULTS
v IS THE VELOCITY FIELD OUTPUT RESULTS
p IS THE PRESSURE OUTPUT RESULTS
d IS THE PECLET OUTPUT RESULTS
b IS THE CAPILLARY PRESSURE RESULTS FILE NAME
1 IS THE LOG FILE NAME

cvpd IS A SINGLE FILE

WRITTEN BY IAN GATES
CHEMICAL ENGINEERING
UNIVERSITY OF BRITISH COLUMBIA
MAY 1992

*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <float.h>
#define I int
#define F float
#define D double
#define C char
#define V void
#define PI 3.14159265352
#define PI2 6.28318530704
/*

PROGRAM CONSTANTS :

NM : NUMBER OF NODES
EM : NUMBER ELEMENTS
MM : NUMBER OF NODES ABOUT DOMAIN PERIMETER (ON BOUNDARIES)
IM : NUMBER OF NODES ON CAPILLARY WALL (>nz)
NJ : NUMBER OF COMMUNICATION INTERVALS ALONG CAPILLARY WALL (>IM)
HM : NUMBER OF ODE'S TO SOLVE IN BVP SOLVER (DO NOT ADJUST)
RW : NUMBER OF NODES IN R DIRECTION FOR RESULTS
ZW : NUMBER OF NODES IN Z DIRECTION FOR RESULTS

r/

#define NM 615
#define EM 545
#define MM 280
#define IM 65
#define NJ 103
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#define KM 4
#define RW 25
#define ZW 105

/*
DEFINED DATA STRUCTURES

*1

typedef struct (
I error, nf, k;
D err, t, x[HM], tt[NJ], xx[NJ], ) M;

typedef struct (
I iter;
D p[N14], r[NM], z[N14], ptINMI, pcap[IM], qcap[I14]; } N;

typedef struct (
I iter;
D c[NM], ccap[I14], ctis[IMI, fmem[IM], mpe[IM]; ) 0;

typedef struct (
D m[NM][NM], v[N14]; } U;

typedef struct {
I typ_lp, mnod[IM],
D asq, c_art, sigma, pi_cap, pa, ps_d, diff,

1p0, 1pl, lref, cref, pref, wall_th, wall_th_d,
r[I14], z[IM1, hp[I14], op[IM], vm[IM], cP[IK]. ct[IK]; ) membr;

typedef struct (
I cam;
D mu, rho, por, hind, ls, vol_tis, alfl, alft, diff, sigmag,
plymph, Jo, fex, fat, fav, fs, fim, lref, cref, pref, kref,
hi_k, 10_k;^media;

typedef struct (
D q[NJ], r[NJ], s[NJ];^vec3;

typedef struct (
D rr[N14], rz[NM], zz[NM); I vdiff;

typedef struct (
D v[6]; ) W;

/*
GENERAL DATA CHECKING ROUTINES

*1

I safechk(I, I, I, I, I, I);
I datachk(I*);

/*
FINITE ELEMENT STIFFNESS MATRICES ROUTINES

0* atif(I, I, I, I, D*, 0*, I*, D*, D*, D*, 0*, D*, D*, 0*, D*, D, I, I, I, I);

/*
MODIFY STIFFNESS ROUTINE FOR BC'S

*/

U modstif(I, I*, D*, D*, I*, D*, 0*, I*, I*, D*, D*, D*, I, I);

/*
DIFFUSION AND DISPERSION MATRICES

vdiff dspc(I, D, D, D, D*, 0*, I);

/*
FLUID PRESSURE AND VELOCITY ROUTINES

N itpruruz2d(I, I, I, I, I, I, I, I, media, membr, I*, 1*, 0*, 0*, D*, D*,
0*, D*, I*, D*, I*, I*, D*, D*, I*, I*, I*, D, D, D, D, I, I, I, I, I);

D *cmpd(I, membr, D, D);
D *mempr(membr, D, D*, D, D);

/*
SOLUTE CONCENTRATION ROUTINES

*/

O itcsccap2d(I, I, I, I, I, I, I, I, media, membr, I*, D*, D*, 0*, D*,
D*, 0*, D*, D*, D*, D*, D*, I*, D*, I*, I*, ID*, 0*, 1*, I*, I*,
D, D, I, I, I, I, I);

D *cmcd(I, membr);
D *memcs(membr, D, D*, D, D. D);

/*
USER DEFINED 1p() FUNCTION.
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D 1p(I, D, D, D);

/*
MASS BALANCE

^ massb(I, I, I, I, media, membr, I*, I*, D*, D*, D*, D*, D*, D, D, I, I);

/*
AVERAGE QUANTITIES FOR SOLUTION DOMAIN

*1

^ domavg(I, media, I*, D*, D*, D*, D*, I, I);

/*
COLLOID OSMOTIC PRESSURE ROUTINE

D *osmopr(I, media, D*);

/*
ODE AND BVP SOLVER ROUTINES (PRED-CORR ODE SOLVER)

*

M pdcr(I, membr, D*, D, D, I, vec3, vec3, vec3, I, I);
D *rk4(I, membr, D, D, D*, D, D, D, I);

/*
CUBIC SPLINE ROUTINES

vec3 fspl(I, D*, D*, I, I, D, D);
D *tridiag(I, D*, D*, D*, D*);
D evalcs(I, vec3, D*, D*, D);
D devalcs(I, vec3, D*, D);
D d2evalcs(I, vec3, D*, D);
D ddpoly(D*, D * );

/*
MATH FUNCTION ROUTINES

* /

D sq(D x)
{ x *= x;return x; )

D norm(D x, D y)
{ D z = sqrt(sq(x)+sq(y));return z; }

D coth(D x)

D ql, q2;
if (x^0.0) {

puts(" E: coth()-> Domain error.\n");
exit(0); }

if (fabs(x) > 10.0)
{ x = 1.0; }

else {
ql = exp(x);
q2 = exp(-x);
if (ql q2)

( x = (ql+q2)/(ql-q2);
else

( x^1.0/x; } }
return x;

DATA RECORDING ROUTINES

^ outdata(I, I, I, I, I, I*, I*, F*, F*, D*, D*, D*, D*, I, D, C*, D*, FILE*);
^ outuv2d(I, I, I, I, I, I*, I*, F*, F*, D*, D*, D*, D*, I, D, C*, D*, D*, FILE*);
^ outcoll(I, I, I, D, D*, D*, D*, C*, FILE*);
^ outcapp(I, I, D, D*, D*, D*, D*, D*, D*, D*, C*, FILE*);
^ contour(I, I, I, I, I, D*, D, C*, FILE*);
^ header(D, D, D, membr, media, FILE*);

/*
MATRIX ROUTINES AND ITERATIVE SOLVERS
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D *solver(I, I, D*, D*);
D *matvecbw(I, I, I, D*, D*);

/*
ELEMENTAL STIFFNESS MATRIX INTEGRATION AND CONSTRUCTION ROUTINES

D 11(D, D);
D 12(D, D);
D 13(D, D);
D d11(D, D);
D d12(D, D);
D d13(D, D);
D d211(D, D);
D d212(D, D);
D d213(D, D);
W fnrzt(D, D, D, D);
W fmrzt(D, D, D, D);
W fwrzt(D, W, W, W, W, W);
W fdndr(D, D, D, D);
W fdndz(D, D, D, D);
W fdmdr(D, D, D, D);
W fdmdz(D, D, D, D);
W fd2mdr2(D, D, D, D);
W fd2mdrdz(D, /4 D. D);
W fd2mdz2(D, D, D, D);
W fd3mdr2dz(D, D, D, D);
W fd3mdrdz2(D, D, D, D);
D gw(I, I);
D gp(I, I);
D gw2(I);
D gw3(I);
D gw4(I);
D gw6(I);
D gw8(I);
D gw16(I);
D gp2(I);
D gp3(I);
D gp4(I);
D gp6(I);
D gp8(I);
D gp16(I);

/*
M A I N ( )
READS IN DATA AND IMPLEMENTS SOLUTIONS OF EQUATIONS AT EACH
TIME STEP. RECORDS CONVERGED SOLUTION INTO A TEMPORARY FILE
IN CASE OF SYSTEM SHUTDOWN.

main(I argc, C *argv[])

I 1, j, k, 1, m, n, 11, jj, bw, cdt, ndt, ict, crz, diap, doitpr,
ic=1, irec, geom, ihof, ndnm, ndnmout, elnm,
nncbc, necbc, nnpbc, nepbc, nesink, nrec, nr, nz,
nrout, nzout, ngp, cmaxit, vmaxit, icontour, lincap, wtf,
relaxc, relaxp, se, pert, pert_osmp;

I drec[20], inchk[50];
I cbcnod[MM], cbcele[mm], cbcgrp[MM], cbc1[MM], cbc2(MM],
pbcnod[MM], pbcele[MM], pbcgrp[MM], pbcl(MM], pbc2[MM],
isink[EM], iout[RW*ZW], nsink[NM], eldef[EM][6];

I flow(NM];
F wl, w2, w3, w4, w5;
F rot[IM], zot[IM];
D avgas, ctol, co, dd, ddt, dgamma, dr, dz, dt, dto, dti,
dtmax, dtmin, effvol, en, eo, hc, hh, p_art, p_ven,
pert_p_art, pert_p_ven, pert_c_art, pert_c_osmp, pn, ndvel,
maxcc, maxco, maxpe, maxop, maxdc, maxdp, lref2d,
t, ti, tf, rg, rg2, zg, ur, uu, uz, vtol, uc, ww, xm;

D trec[20];
D cbcndv[MM], cbceva[MM][3], cbcevh[MM][3],
pbcndv[MM], pbceva[MM][3], pbcevh[MM][3];

D edr[EM], edz[EM];
D r[NM], z[NM), pe[NM], hp[NM], op[NM], cm[N14], cn[NM], dc[NM],
drreff[NM], drzeff[NH], dzzeff[NM];

D *p_q;
C line[80], title[60];
FILE *in, *outr, *outb, *outl, *outq, *outu, *tmpf;
vdiff d;
media pp;
membr mem;
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N pruruz;
O co;
/*^•/
puts(" mve()
if ((argc ==

( ic
if (ic == 1)

puts(
puts(
puts(
puts(
puts(
puts(
puts(
puts(
puts(

:\n");
2) II (argc == 5))
= 0; )

* F: mve MODEL_f
MODEL_f =

▪ PRES
• POTL
▪ PECL
▪ CONC
▪ VEL
▪ CAP_f
▪ LOG_f

PRES_POTL_PECL_CONC_VEL_f CAP_f LOG_f.\n");
input model file");
Pressure results");
Potential results");
Peclet number results");
Concentration results");
Velocity results");
Capillary data file");
Log file");

exit(0); )
/*
OPEN INPUT
*/
if ((in = fopen(argv[1], "r")) == NULL) (

printf("\n E: mve()-> %a not found. \n", argv[1]);
exit(0); }

/•
INITIALIZE VARIABLES AND VECTORS
*/
ict^ic^1;
ndnm ndnmout = elnm = nr nz 0;
nncbc = nncbc = nnpbc = nepbc = nesink = pert = pert_osmp 0;
bw = cdt = ndt crz = disp = doitpr = jj^as = 0;
geom = ihof = cmaxit = vmaxit = ngp = 0;
irec = nrec = icontour = wtf = relaxc = relaxp = 0;
pert_p_ven = pert_p_art = pert_c_art = pert_c_osmp = 0.0;
dgamma avgas = co = p_art p_ven pn = 0.0;
dr = dz = ddt = dt = dto dti = dtmax dtmin 0.0;
t = ti = tf = lref2d = effvol^ndvel = 0.0;
dd = he = hh = uc = ur = uu uz = ww = xm = 0.0;
ctol = vtol^0.0;
maxcc = maxco maxdc = maxdp maxpe = maxop 0.0;
for (i=0;i<50;i++)

( inchk(i] = 0; )
for (i=0;i<NM;i++) {

nsink[i] = flow[i] = 0;
r[i] = z[i] = op[i] = hp[i] = 0.0;
d.rr[i] = d.rz[i] = d.zz[i] = 0.0;
drreff(i] = drzeff[i] = dzzeff[i] = 0.0;
cn[i] = cs.c[i]^cm[i] = dc[i] = 0.0;
pruruz.r[i) = pruruz.z[i] = pruruz.p[i] = 0.0; }

for (i=0;i<MM;i++) (
cbc1[1] = cbc2[i] = pbc1[1] = pbc2[i] = 0;
cbcele(i] = pbcele[i] = 0;
cbcnod(i] = pbcnod[i] = 0;
cbcgrp[i] = pbcgrp[i] = 0;
cbcndv[i] = pbcndv[i] = 0.0;
for (j=0;j<3;j++) {

cbceva[i][j] = cbcevh[i][j] = 0.0;
pbceva[i][j] = pbcevh[i][j] = 0.0; ))

for (i=0;i<EM;i++) (
isink[i] = 0;
edr[i] = edz[i] = 0.0;
for (j= 0 ;i< 6 ;i++)

{ eldef[i][j] = 0; } }
for (i=0;i<RW*ZW;i++)

{ iout[i] = 0; )
puts(" Work vectors and matrices initialized.");
/*
READ MODEL DATA
*/

ic = 0;
while ((feof(in) == 0) && (ic < 120)) {

/*^*/

fgets(line, 80, in);
/*^*/

if (strncmp(line, "$end input", 10) == 0) (
inchk[0] = 1; )

else
if (strncmp(line, "$beg input", 10) == 0) (

inchk[1] = 1;
fgets(title, 80, in);
puts(title); )

else
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if (strncmp(line, "$prob size", 10) == 0) {
inchk(2] = 1;
fscanf(in, "%d %d %d %d %f %f", &ndnm, &elnm, &nr, finz); )

else
if (strncmp(line, "$transient", 10) == 0) {

inchk[4] = 1;
fscanf(in, "%d %f %f %f", &ss, &wl, &w2, &w3);
t = ti = wl;
tf = w2;
dt = dto = dti = w3;
fscanf(in, "%e %e %d', &wl, &w2, &ndt);
dtmax = wl;
dtmin = w2; )

else
if (strncmp(line, "$max iterations", 15) == 0) (

inchk[5] = 1;
fscanf(in, "%d %d", ficmaxit, &vmaxit); )

else
if (strncmp(line, "$dispersivity", 13) == 0)

inchk[6) = 1;
fscanf(in, "ese %e %e %d", &wl, &w2, &w3, &crz);
pp.alfl = wl;
pp.alft = w2;
pp.diff mem.diff = w3;
if ((pp.alfl 1= 0.0) I) (pp.alft != 0.0))

disp = 1; )
else

{ disp^0; ) }
else
if (strncmp(line, "$fluid sink LS", 14) == 0) (

inchk[7] = 1;
fscanf(in, "%e", &wl);
pp.ls = wl; }

else
if (strncmp(line, "$porosity", 9) .= 0) {

inchk[8] = 1;
fscanf(in, "%f", &wi);
pp.por = wl; )

else
if (strncmp(line, "$fluid viscosity", 16)

inchk[9] = 1;
fscanf(in, "%f", &wl);
pp.mu = wl; )

else
if (strncmp(line, "$relaxation", 11) == 0) (

inchk[10] = 1;
fscanf(in, "%d %d", &relaxc, &relaxp); )

else
if (strncmp(line, "$hydraulic cond", 15) == 0) (

inchk[11) = 1;
fscanf(in, "%e %e", &wl, &w2);
pp.lo_k = wl;
pp.hi_k w2; }

else
if (strncmp(line, "$conc sink", 10) == 0) {

inchk[12] = 1;
nesink = 0;
for (i=0;i<elnm;i++) (

fscanf(in, "%d %d", &j, &k);
isink[i] = k;
if (k == 1)

nesink++;^}^}
printf(" %d elemental sinks specified.\n", nesink);^)

else
if^(strncmp(line,^"$mem refl coef",^14) == 0)

inchk[13]^= 1;
fscanf(in,^"%f",^&wl);
mem.sigma = wl; }

else
if^(strncmp(line,^"$fluid density",^14) == 0) {

inchk[14)^= 1;
fscanf(in,^"%f",^&wl);
pp.rho = wl; 3

else
if^(strncmp(line,^"$tis refl coef",^14) == 0)

inchk[3)^= 1;
fscanf(in,^"%f",

^
&wl);

pp.sigmag = wl;
else
if^(strncmp(line,^"$diff mem PS",^12)^== 0) (

inchk(15]^= 1;
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fscanf(in, "%e", awl);
mem.ps = wl; )

else
if (strncmp(line, "$geometry", 9) == 0) (

inchk[16] = 1;
fscanf(in, "%d", &geom);
switch (geom) {

case 0: puts(" Rectangular Coord w/o Upwinding.");
break;

case 1: puts(" Cylindrical Coord w/o Upwinding.");
break;

case 2: puts(" Rectangular Coord w/ Upwinding.");
break;

case 3: puts(" Cylindrical Coord w/ Upwinding.");
break; } }

else
if (strncmp(line, "$cap osm pr", 11) == 0) (

inchk[17] = 1;
fscanf(in, "%f", awl);
mem.pi_cap = wl; )

else
if (strncmp(line, "$node definitions", 17) == 0) (

inchk[18] = 1;
for (i=0;i<ndnm;i++) (

fscanf(in, "%d %f %f %d", &j, &wl, &w2, &k);
r[j] = wl;
z[j]^w2;
flow[j] = k; )
printf(" %d node definitions set.\n", ndnm); )

else
if (strncmp(line, "$elem definitions", 17) == 0) (

inchk[19] = 1;
for (i=0;i<elnm;i++) (

fscanf(in, "%d %d %d %d %d", &j, &k, &l, fira, an);
eldef[J][0] = k;
eldef[J][1] = 1;
eldef[J][2] = m;
eldef(J][3] = n; )

printf(" %d element definitions set.\n", elnm); )
else
if (strncmp(line, "$conc node bc", 13)^0) (

inchk[20]^1;
= 0;

while(strncmp(fgets(line, 80,in), "$e", 2) != 0) {
sscanf(line, "%d %e", &J, awl);
cbcnod[i] = j;
cbcndv[i] = wl;
i++; )

nncbc = i;
printf(" %d concentration nodal BC's specified.\n", nncbc); )

else
if (strncmp(line, "$conc elem bc", 13) == 0) (

inchk[21]^1;
= 0;

while(strncmp(fgets(line, 80, in), "$e", 2) != 0) {
sscanf(line, "%d %d %d %d %e %e %e %e", &j, &k, &l, &m, &wl,

&w2, &w3, &w4);
cbcele[i] = j;
cbcgrp[i] = k;
clocl[i] = 1;
cbc2[1] = m;
cbceva[i][0] = wl;
cbcevh(1][0] = w2;
cbceva[i][1] w3;
cbcevh[i][1] = w4;
i++; )

necbc = i;
printf(" %d concentration elemental BC's specified.\n", necbc); }

else
if (strncmp(line, "$conc node is", 13) == 0) {

inchk[22] = 1 ;
fgets(line, 80, in);
if (strncmp(line, "$$file", 6) == 0) (

for (1=0;1<ndnm;i++) (
fscanf(in, "%d %e", &j, &wl);
cn[j]^cm[j] = wl; ) }

else
if (strncmp(line, "$$init", 6) == 0) {

fscanf(in, "%e", &wl);
for (1.0;1<ndnm;i++)

( cn[i] = cm[i] = wl; } )
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printf(" %d concentration IC's specified.\n", ndnm); )
else
if (strncmp(line, "$cap conditions", 15) == 0) (

inchk[33] = 1;
fscanf(in, "%f %f %f %d", &wl, &w2, &w3, &Uncap);
mem.c_art wl;
p_art w2;
p_ven w3; )

else
if (strncmp(line, "$pres node bc", 13) == 0) (

inchk[23] = 1;
= 0;

while(strncmp(fgets(line, 80,in), "$e", 2) 1= 0) (
sscanf(line, "%d %e", &j, &wl);
pbcnod[i] = j;
pbcndv[i] = wl;
pruruz.p[J] = wl;
i++; }

nnpbc = i ;

printf(" %d pressure nodal BC's specified.\n", nnpbc); }
else
if (strncmp(line, "$pres elem bc", 13) == 0) {

inchk[24] = 1;
i = 0;
while(strncmp(fgets(line, 80, in), "$e", 2) != 0) (

sscanf(line, "%d %d %d %d %e %e %e %e", &j, &k, &l, &m, &wl,
&w2, &w3, &w4);

pbcele[i] = j;
pbcgrp[i]^k;
pbcl[i]^1;
pbc2[i] = m;
pbceva[i][0] = wl;
pbcevh[i][0] = w2;
pbceva[i][1] = w3;
pbcevh[i][1] = w4;
i++; }

nepbc = i;
printf(" %d pressure elemental BC's specified.\n", nepbc); }

else
if (strncmp(line, "$write results", 14) == 0) {

inchk[25] = 1;
switch (ss) {

case 0 :
nrec = 1;
for (i=0;i<20;i++) {

drec[i]^1;
trec[i] = 0.0; }

break;
default :

fscanf(in, "%d", &nrec);
for (i=0;i<nrec;i++) {

fscanf(in, "%f", &wl);
trec[i] = wl;
if (trec[i] == 0.0)

{ drec[i] = 1; }
else

drec[i] = 0; }
break; ))

else
if (strncmp(line, "$contour", B) == 0) {

inchk[26] = 1;
fscanf(in, "%d", &icontour); }

else
if (strncmp(line, "$ref values", 11) == 0) (

inchk[27] = 1;
fscanf(in, "%e %e %e %e", &wl, &w2, &w3, &w4);
pp.lref^mem.lref = wl;
pp.cref = mem.cref^w2;
pp.pref = mem.pref = w3;
pp.kref = w4;
puts(" Reference values set."); }

else
if (strncmp(line, "Stolerance", 10) == 0) {

inchk[28) = 1;
fscanf(in, "%e %e", &wi, &w2);
ctol = wl;
vtol = w2; )

}

else
if (strncmp(line, "$frac volumes", 13) == 0) (

inchk[29] = 1;
fscanf(in, "%f %f %f %f %f",^&w2, &w3, &w4, &w5);
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pp.fex = wl;
pp•fst = w2;
pp.fav = w3;
pp•fs = w4;
pp.fim = w5; }

else
if (strncmp(line, "$conv hindrance", 15) == 0)

inchk[30] = 1;
fscanf(in, "%f", &wl);
pp.hind = wl; )

else
if (strncmp(line, "$gauss points", 13) == 0) (

inchk[31] = 1;
fscanf(in, "%d", &ngp);
= 0;

switch(ngp) {
case 2 :
case 3 :
case 4 :
case 6 :
case 8 :
case 16: i 1;break; }

printf(" Using Gaussian integration of order %d.\n", ngp);
if (i == 0) (

puts("\n E: mve() - > Incorrect Gauss Points (2,3,4,6,8,16
allowed).\n"):

exit(0); ) }
else
if (strncmp(line, "$asq", 4) == 0) (

inchk(32] = 1;
fscanf(in, "%e", &wl);
mem.asq = wl; }

else
if (strncmp(line, "$hof", 4) == 0) (

inchk[34] = 1;
fscanf(in, "%d", &ihof);
switch (ihof) (

case 0: puts(" Using lower order trial functions.");
break;

case 1: puts(" Using higher order trial functions.");
break; } )

else
if (strncmp(line, "$node results", 13) == 0) {

inchk(35] = 1;
fgets(line, 80, in);
if (strncmp(line, "$$coll", 6) == 0) {

wtf = 1;
nrout = nr;
nzout = nz;
ndnmout = ndnm;
puts(" Record nodal results at collocation points."); }

else
if (strncmp(line, "$$file", 6) == 0) {

wtf = 0;
fscanf(in, "%d", &nrout);
for (i=0;i<nrout;i++)

( fscanf(in, "%f", &rot[i]); )
fscanf(in, "%d", &nzout);
for (i=0;i<nzout;i++)

{ fscanf(in, "%f", &zot(i]);
ndnmout = nrout*nzout;
puts(" Record nodal results at specified points."); })

else
if (strncmp(line, "$osm pres", 9) == 0) (

inchk[36] = 1;
fscanf(in, "%d", &pp.osm); )

else
if (strncmp(line, "$dgamma", 7) == 0) {

inchk[37] = 1;
fscanf(in, "%f", &wl) ;
dgamma = wl; )

else
if (strncmp(line, "$lymph cond", 11) == 0) (

inchk[38] = 1;
fscanf(in, "%f %e", &wl, &w2);
pp.plymph = wl;

= w2 )
else
if (strncmp(line, "$wall th", 7) == 0) (

inchk[40] = 1;
fscanf(in, "%e", &wl);
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mem.wall_th = wl; }

else
if (strncmp(line, "$perturbation", 13) == 0) {

inchk[41] = 1;
fscanf(in, "%d %f %f %f %f %d", &pert, &wl, &w2, &w3, &w4, &pert_osmp);
pert_p_art = wl;
pert_p_ven = w2;
pert_c_art = w3;
pert_c_osmp = w4;
if (pert != 0)

( puts(" System perturbation will occur after SS reached."); )
else

( puts(" No specified system perturbation."); ))
else
if (strncmp(line, "$cap wall Lp", 12) == 0) {

inchk[39] = 1;
fscanf(in, "%d %e %e", &mem.typ_lp, &wl, &w2);
mem.1p0 = wl;
mem.1p1 = w2;
if ((mem.1p0 == 0.0) && (mem.1p1 == 0.0)) {

puts("\n B: mve()-> Lp = Zero.\n");
exit(0);^}

ic++; )
fclose(in);
/* */
if (safechk(ndnm, elnm, nr, nz, nzout, nzout) 1= 0) (

puts("\n Run Aborted.");
exit(0); }

if ((ic = datachk(&inchk[0])) != 0) (
printf("\n B: mve()-> %d input items missing. Run aborted.\n", ic);
exit(0); }

/* */
puts("\n Model input data check passed.\n");
if (argc == 2) (

puts("\n T: mve()-> Data check. No analysis performed.\n");
exit(0); }

/*
MEMBRANE NODE NUMBER, LOCATION, AND ESTIMATED PRESSURE
*/
xm = (p_art-p_ven);
for (i=0;i<nz;i++) {

k = i*nr;
mem.mnod[i] = k;
mem.r[i] = r[k];
mem.z[i] = z[k];
mem.hp[i] = p_art-xm*mem.z[1]; }

/*
TISSUE OUTER RADIUS
*/
rg = r[nr-1];
zg = mem.z[nz-1]-mem.z[0];
rg2 = sq(rg);
/*
GET dr(] AND dz[] VECTORS
*/
for (i=0;i<elnm;i++)

edr[i] = fabs(r[eldef[i][1]]-r[eldef[i][0]]);
edz[i] = fabs(z[eldef[i][3]]-z[eldeffi][0]]); )

/*
ASSIGN OUTPUT ELEMENTS FOR OUTPUT NODE LOCATIONS
*/
for (i=0;i<elnm;i++)

for (j=0;j<nzout;j++)
for (k=0;k<nrout;k++) (

1 = j*nrout+k;
if (iout[1] == 0) (

if ((rot[k] >= r[eldef[i][0]])
&& (rot[k] <= r[eldef[i][2]])
&& (zot[j] >= z[eldef[i][0]])
&& (zot[j] <= z[eldef[i][2]]))

( iout[1] = i; } ) )))
puts(" Assigned output element-node numbering.");
/*
DATA CONVERSIONS TO MAINTAIN CORRECT UNIT DIMENSIONS
*/
bw = 2*nr+1;
/*
DIMENSIONING TERMS
*/
lref2d = sq(pp.lref)/pp.diff;
ndvel = pp.hind*pp.fst/pp.fav;
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mem.pa_d = mem.ps*mem.lref/mem.diff;
mem.wall_th_d = mem.wall_th/mem.lref;
/*
ASSIGN NODAL SINX VALUES AND GET AVERAGE SINX AREA
*/

avgas = 0.0;
for (i=0;i<elnm;i++) {

if (isink[i] == 1) {
avgas += (edr[1]*edz[i]);
for (j=0;j<4;j++)

^

{ nsink[eldef[i][j]] = 1;^} )
if (nesink 1= 0)

{ avgas *= sq(pp.lref)/((D)(nesink)); }
else

( avgas = 0.0; )
printf(" Lymphatic sink area = %10.6e\n", avgas);
/*
GET EFFECTIVE VOLUME AND TOTAL TISSUE VOLUME
*/
effvol = (1.0-pp.fs)/pp.fst;
pp.vol_tis = 0.0;
for (i=Ori<nz-lri++) (

dr = 0.5*(mem.r(i]+mem.r[i+1]);
dz = (mem.z[i+1]-mem.z(i));
pp.vol_tis += dz*(rg2-sq(dr)); }

pp.vol_tis *= (pp.lref*pp.lref*pp.lref*PI);
printf(" Total tissue volume = %10.6e\n", pp.vol_tis);
/*
OPEN OUTPUT FILES
*/

outr = fopen(argv(2), "w+");
outb = fopen(argv[3], "w+");
/*
WRITE (DISSPLA) HEADER DATA TO OUTPUT FILES
*/
fprintf(outr, " %d\n", nrec);
header(rg, zg, pp.lo_k, mem, pp, outr);
header(rg, zg, pp.lo_k, mem, pp, outb);
/*
CLOSE FILES
*/
fclose(outr);
fclose(outb);
switch (ss) {

case 0 :
printf(" Steady-state run. \n");
break;

default :
if (ss == 1)

( puts(" Temporal stability requirement (Co < 1) enforced."); }
else

( puts(" Temporal stability requirement (Co < 1) not
enforced."); }

^

printf(" Initial time = %10.4f\n Final time^= %10.4f\n", ti, tf);
printf(" Time step will be increased every %d cycles.\n", ndt);
break; )

printf("\n %s Run start.\n", title);
if (ss 1= 0) {

outl = fopen(argv(4], "w+");
fputs(title, outl);
fputs("\n Model Run Log :\n\n", outl);
fputs("^TOT t^INC t^MAXCO^MAXPE^MAXDC:N

MAXDP:N\n", outl);
fputs("

----\n", outl);
fclose(outl); }

/*
START MODEL RUN
*/

= cdt = 0;
/* */
do (^raku:

ii++;
cdt++;
irec = 0;
ti = t;
puts("\n 
^

) r
if (ss != 0)

{ printf("Time Step %4d :\n", ii); )
/*
SWITCH OFF ALL OSMP EFFECTS IN TIS AND CAP IF DESIRED
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./
if (pp.osm^0)

{ mem.sigma pp.sigmag^0.0; }

CHECK IF TO RECORD THIS TIME STEP
.1
switch (Bs) {

case 0 :
irec^1;
dt = ddt = 0.0;
break;

default :
if (pert == 0) {

if ((t+dt) > tf) {
irec = 1;
dto = dt;
dt = tf-t; }

for (i=nrec-1;1>-1,1--) (
if (((t+dt) > trec[i]) && (drec[i] "

irec = 1;
dto = dt;
dt = trec[i]-t;
for (i*id> -1;i -- )

{ drec[j] =^)) }
if (dt > dtmax) {

irec = 0;
dt = dtmax; )

if (dt <= 0.0) {
irec = 0;
printf("\n W: mve()-> dt <= Zero. Reset to dtmax.\n");
dt = dtmax; )

ddt = dt/lref2d;
break; )

/*
SET PREDICTOR VALUES AND PRESSURE AT TIME t+dt
*1
for (i=0;i<ndnm;i++)

{ cs.c[i] = cm[i]^cn[i]+ddt*dc[i]; }

/*
START ITERATIVE SCHEME
*1
jj^0;
eo = 1.0e-02;
do {

JJ++;
doitpr^0;
maxco = maxdc = maxop maxpe = 0.0;
printf(" Conc Iter %3d :\n", jj);
/*
OSMOTIC PRESSURE EFFECT
./
j = 0;
p_q = osmopr(ndnm, pp, &cs.c[0]);
for (i=0;i<ndnm;i++) {

op[i] = *p_q++;
if (op[i] > maxop) {

maxop = op[i];
j = i; ))

printf(" Max Osmotic Pressure = %10.6f at node %d.\n", maxop, j);
/*
SET MEMBRANE OSMOTIC PRESSURE
./
for (i=0;i<nz;i++)

{ mem.op[i] = op[mem.mnod[i]]; }
/*
PRESSURE DISTRIBUTION AND FLUID VELOCITY FIELD
*1
if (pp.osm != 0)

{ doitpr = 1; )
else

{ doitpr = 0; )
if (ii < 2)

{ doitpr = 1; }
switch (doitpr) {

case 0 :
puts(" Membrane-Tissue Pressure-Velocity variables

0)) {

converged.");
break;

case 1 :
pruruz = itpruruz2d(ndnm, elnm, nnpbc, nepbc,

nr, nz, bw, vmaxit, pp, mem,
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&eldef[0][0], &flow[0], &edr[0], &edz[0],
fir[0], &z[0], &oP[0], &hP[i], &pbcnod[0],

&pbcndv[0],
&pbcele[0], &pbcgrp[0], fipbceva[0][0],

&pbcevh[0](0],
&pbc1[0], &pbc2[0], &nsink[0],
p_art, p ven, ctol, vtol,
lincap, relaxp, ihof, geom, WP);

/*
SET IMPROVED NODAL PRESSURE BOUNDARY CONDITIONS
*/
for (i=0;i<nnpbc;i++)

{ pbcndv[i] = pruruz.p[pbcnod[i]];
/*
SET MEMBRANE FLUID VELOCITIES
*/
for (i=0;1<nzii++) {

mem.vm[i) = pruruz.r[mem.mnod[i]];
mem.hp[i] = pruruz.p[mem.mnod[i]]; }

break;
/*
CALCULATE VIRTUAL DIFFUSION COEFFICIENTS
*/
if ((disp == 1) II (ii < 2)) {

d = dspc(ndnm, pp.alfl, pp.alft, pp.diff,
&pruruz.r[0], &pruruz.z[0], crz);

/*
GET DIMENSIONLESS DIFF-DISP COEFFICIENTS
*/
for (i=0;1<ndnm;i++) (

drreff[i] = pp.fst*d.rr[i]/pp.diff;
if (crz == 1)

{ drzeff[i] = pp.fst*d.rz[1]/pp.diff; I
dzzeff[i] = pp.fst*d.zz[i]/pp.diff; } I

/*
GET MAX COURANT AND PECLET ELEMENTAL NUMBERS
AND CHECK MAX PERMISSABLE dt FOR STABILITY
*/

k = 1 = 0;
for (i=0;i<elnm;i++) {

dr = dz = ur = uz = 0.0;
for (J=0;J<4;i") {

dr += pp.fst*d.rr[eldef[i][J]];
dz += pp.fst*d.zz[eldef(i][i]];
ur += ndvel*fabs(pruruz.r[eldef[i][il]);
uz += ndvel*fabs(pruruz.zfeldef[i][i]l); I

dr *= 0.25;
dz *= 0.25;
ur 0.25;
uz *= 0.25;
uu = norm(ur, uz);
dd = norm(dr, dz);
if (uu != 0.0) (

hh = pp.lref*(ur*edr[i)+uz*edz[i])/uu;
co = uu*dt/hh;
pn = uu*hh/dd;

else (
co = pn = 0.0; )

if (co > maxco) {
maxco = CO;
UC = uu;
he hh;
k= i;

if (pn > maxpe) (
maxpe = pn;
1 = i;^I

printf("\n Max Peclet number = %10.6f at element %3d.\n", maxpe, 1);
if (ss != 0) {

printf(" Max Courant number = %10.6f at element %3d.\n", maxco,

if ((maxco > 0.95) && (ss == 1)) (
puts(" Stability violation (Max Co < 1.0).");
ii--;
dt = 0.9*hc/uc;
t = ti;
if (dt < dtmin) (

outl = fopen(argv[8], "a+");
puts("\n E: mve() - > Time increment too small.

k);

Run aborted.\n");
fputs("\n E: mve()-> Time increment too small.

Run eloorted.\n", outl);
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fclose(outl);
goto aljo; )

printf("\n W: mve()-> Reducing time increment to dt =
%10.6f.\n", dt);

goto raku; 3)
/*
USE ITERATIVE SOLVER WITH SINK TERMS ON THE
RIGHT HAND SIDE FOR SOLUTE DISTRIBUTION
*
Ca
^

itcsccap2d(ndnm, elnm, nncbc, necbc, nr, nz, bw,
cmaxit, pp, mem, fieldef[0][0],
fiedr[0], fiedz[0], &r[0], &z[0],
&drreff[0], fidrzeff[0], &dzzeff[0],
&pruruz.r[0], &pruruz.z[0],
&pruruz.p[0], &cn[0],
&cbcnod[0], &cbcndv[0],
&cbcele[0], ficbcgrp[0], &cbceva[0][0], &cbcevh[0][0],
ficbc1[0], &cbc2(0],
&naink[0], ctol, ddt, crz, ss, ihof, geom. ngp);

/*
SET IMPROVED NODAL CONCENTRATION BOUNDARY CONDITIONS
*/
for (i=0;i<nncbc;i++)

{ cbcndv[i]^cs.c[cbcnod[i]]; )
/*
SET CAPILLARY AND TISSUE-SIDE MEMBRANE CONCENTRATIONS
*1
for (i=0;i<nz;i++) {

mem.ct[i] = cs.c[mem.mmod[i]];
mem.cp[i]^cs.ccap(iJ; )

/*
GET DEVIATION AND THEN APPLY RELAXATION
*1
for (i=0;i<ndnm;i++) {

dc[i] = fabs(cs.c[il-cm[1]);
if (dc[i] > maxdc)

( maxdc = dc[i]; ))
if (relaxc != 0) (

en = 0.0;
for (i=0;i<ndnm;i++)

{ en += fabs(dc[i]); )
ww = dgamma/(1.0+en/e0);
if ((eo = en) == 0.0)

( eo = 1.0e-02; )
for (i=0;i<ndnm;i++) (

cs.c[i] = ww*cs.c[i]+(1.0-ww)*cm[i];
cm[i] = cs.c[i]; )}

else (
for (i=0;i<ndnm;i++)

( cm[i] = cs.c[i]; ))
/* */
printf(" Conc Iter %3d : MDeltaC = %7.3e\n", jj, maxdc);

} while ((maxdc > ctol) && (jj < cmaxit));
if (jj >= cmaxit) {

puts(" Did not converge. Possibly try smaller time step");
puts(" or implement relaxation parameter.\n Program terminated.\n");
exit(0);

/*
SOLUTION CONVERGED
*/
for (i=0;i<ndnm;i++) (

if (cs.c[i] < 0.0)
( cs.c[i] = 0.0; ))

switch (ss) (
case 0 :

printf("Steady-state solution completed in %3d iterations.\n",
in;

break;
default :

t += dt;
printf("Solution completed in %3d iterations.\n", jj);
printf("Time Step %4d : t = %10.6f : dt^%10.6f completed.\n",

t, dt);
break; )

/*
CALCULATE MAX CHANGE IN CONCENTRATION SOLUTION THROUGH TIME
*/

if (as != 0) (
maxcc maxdc = maxdp 0.0;
for (i=0;i<ndnm;i++) (

uc^cs.c[i]-cn[i];
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&eldef[0][0],

&edz(0),

uu = pruruz.p[i]-bp[i];
if (fabs(cs.c[i]) > maxcc)

( maxcc = cs.c[i]; )
if (fabs(uc) > fabs(maxdc)) {

k = i;
maxdc = uc; }

if (fabs(uu) > fabs(maxdp)) {
1 . i;
maxdp = uu; }

if (ddt != 0.0)
{ dc[i] = uc/ddt; }

else
( dc[i] = 0.0; )

cn[i] = cs.c[i];
bp[i]^pruruz.p[i];
cs.c[i] /= effvol; })

if (maxcc != 0.0)
( uc = fabs(maxdc/maxcc); )

else
( uc = fabs(maxdc); )

if ((uc < ctol) && (ss != 0)) (
printf(" Max temporal relative change in solute conc. = 9610.6e\n", uc);
puts(" Solute steady-state distribution has been achieved.\n");
puts(' Will output steady-state data to amod.inp input Ms.");
puts(" Will implement perturbation if specified.");
printf(" Time to steady-state = 9610.6f\n", t);
irec = 1;
jj = ss;
ss = 3;
ti = 0.0;
dt = dti; }

/*
CALCULATE PECLET NUMBER - THIS IS NOT THE ELEMENTAL
PECLET NUMBER (USES REFERENCE LENGTH r[0]*pp.lref)

xm = pp.hind*pp.fst/pp.fav;
for (i=0;i<ndnm;i++) (

uu = xm*norm(pruruz.r[i], pruruz.z[i]);
dd = pp.fst*norm(d.rr[i], d.zz[i]);
if (uu != 0.0)

( pe[i] = uu*pp.lref/dd; )
else

( pe[i] = 0.0; ) )
/*
MASS BALANCE FOR FLUID AND SOLUTE
*/
massb(elnm, nr, nz, nesink, pp, mem, &eldef[0][0], &isink[0],

&edr[0), &edz[0], &cs.c[0], &pruruz.p[0], &cs.fmem[0],
pruruz.qcap[0], avgas, ngp, geom);

/*
GET TISSUE AVERAGE PRESSURE AND SOLUTE CONCENTRATION
5/
domavg(elnm, pp, &eldef[0][0], &edr[0], &edz[0), &cs.c[0],

&pruruz.p[0], ngp, geom);
/*
CONTOUR OUTPUT DATA
1,/
if (icontour != 0) (

outq = fopen("zcon.dat", "w+");
contour(0, ss, ndnm, nr, nz, &cs.c[0], t, title, outq);
contour(1, ss, ndnm, nr, nz, &pruruz.p[0], t, title, outq);
if (pp.osm != 0) (

contour(2, ss, ndnm, nr, nz, &op[0], t, title, outq);
contour(3, as, ndnm, nr, nz, &pruruz.pt[0], t, title, outq); }

printf(" contour()");
fclose(outq); )

/*
OUTPUT CONVERGED RESULTS
5/
if ((nrec == 0) II (irec == 1)) (

printf(" Recording data : ");
outr = fopen(argv[2], "a+");
outb = fopen(argv[3], "a+");
switch (wtf) (

case 0:
outdata(0, ss, ndnmout, nrout, nzout, &iout[0],

&rot(0], &zot[0], &r[0], &z[0], &edr[0],

ihof, t, title, &cs.c[0], outr);
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outdata(1, as, ndnmout, nrout, nzout, &iout(0],
&eldef[0][0],

&rot(0], &zot(0], &r[0] , fiz(0], &edr(0],
&edz(0],

ihof, t, title, &pruruz .p(0], outr);
outdata(2, ss, ndnmout, nrout, nzout, &iout(0],

&eldef(07(01,
&rot(0], &zot[0], &r(0] , &z[0], &edr[0],

&edz[0],
ihof, t, title, &pe[0], outr);

outdata(3, as, ndnmout, nrout, nzout, &iout(0],
&eldef[0](0],

&rot[0], &zot[0], &r[0], &z[0], &edr(0],
&edz(0],

case 1:

ihof,^t,^title,
break;

&pruruz.pt(0], outr);

title,

title,

outr);

outr);

outcoll(0,

outcoll(1,

outcoll(2,

as,

as,

ss,

ndnmout, t,

t,

t,

&r[0],

&r(0],

&r(0],

&z(0],

&z[0],

&z(0],

&cs.c(0],

&pruruz.p(0],

&pe(0], title,

ndnmout,

ndnmout,
outr);

title, outr);
outcoll(3,

break; )

as, ndnmout, t, &r[0], &z(0], &pruruz.pt(0],

outuv2d(wtf, as, ndnmout, nrout, nzout, &iout(0], &eldef[0](0],
&rot(0], &zot[0], &r(01, &z[0], &edr(0], &edz[0],
ihof, t, title, &pruruz.r[0], apruruz.z(0], outr);

outcapp(nz, ss, t, &mem.z[0], &pruruz.pcap(0], &pruruz.qcap[0],
fimem.vm[0],

&cs.ccap(0], fics.mpe(0), &cs.fmem[0], title, outb);
fclose(outr);
fclose(outb);
printf(".\n"); }

/*
OUTPUT TO RUN LOG FILE
*1

if (ss != 0) {
outl^fopen(argv[4], "a+");
fprintf(outl, "%3d %10.4f %10.4f %6.3e %6.3e %+6.3e:%3d %+6.3e:%3d",

ict++, t, dt, maxco, maxpe, maxdc, k, maxdp, 1);
if (pert == 0) {

switch(irec) {

case 0: break;
case 1: fprintf(outl, " R");break; ) }

fprintf(outl, "\n");
fclose(outl); )

if (ss == 3)
ss = 0; )

/*
WRITE RESULTS TO INTERMEDIATE FILE IN CASE OF SHUTDOWN
OR FOR NEW START-UP FILE FOR OTHER RUNS
:1
tmpf = fopen("zmod.tmp", "w+");
/*^./

fputs("$beg input\n", tmpf);
fputs(title, tmpf);
fputs("$prob size\n", tmpf);
fprintf(tmpf, "%d %d %d %d\n", ndnm, elnm, nr, nz);
fputs("$transient\n", tmpf);
fprintf(tmpf, "%d %f %f %f\n%e %e %d\n",

ss, ti, tf, dt, dtmax, dtmin, ndt);
fputs("$max iterations\n", tmpf);
fprintf(tmpf, "%d %d\n", cmaxit, vmaxit);
fputs("$dispersivity\n", tmpf);
fprintf(tmpf, "%e %e %e %d\n", pp.alfl, pp.alft, pp.diff, crz);
fputs("$fluid sink LS\n", tmpf);
fprintf(tmpf, "%e\n", pp.ls);
fputs("$porosity\n", tmpf);
fprintf(tmpf, "%f\n", pp.por);
fputs("$fluid viscosity\n", tmpf);
fprintf(tmpf, "%f\n", pp.mu);
fputs("$fluid density\n", tmpf);
fprintf(tmpf, "%f\n", pp.rho);
fputs("$relaxation\n", tmpf);
fprintf(tmpf, "%d %d\n", relaxc, relaxp);
fputs("$geometry\n", tmpf);
fprintf(tmpf, "%d\n", geom);
fputs("$dgamma\n", tmpf);
fprintf(tmpf, "%f\n", dgamma);
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fputs("$lymph cond\n", tmpf);
fprintf(tmpf, "%f %e\n", pp.plymph, pp.jo);
fputs("$wall th\n", tmpf);
fprintf(tmpf, "%e\n", mem.wall_th);
fputs("$cap wall Lp\n", tmpf);
fprintf(tmpf, "%d %e %e\n", mem.typ_lp, mem.1p0, mem.1p1);
fputs("$osm prea\n", tmpf);
fprintf(tmpf, "%d\n", pp.osm);
fputs("$mem refl coef\n", tmpf);
fprintf(tmpf, "%f\n", mem.sigma);
fputs("$tis refl coef\n", tmpf);
fprintf(tmpf, "%f\n", pp.sigmag);
fputs(”diff mem PS\n", tmpf);
fprintf(tmpf, "%e\n", mem.ps);
fputs("$cap osm pr\n", tmpf);
fprintf(tmpf, "%f\n", mem.pi_cap);
fputs("$ref values\n", tmpf);
fprintf(tmpf, "%e %e %e %e\n",

pp.lref, pp.cref, pp.pref, pp.kref);
fputs("$tolerance\n", tmpf);
fprintf(tmpf, "%e %e\n", ctol, vtol);
fputs("$frac volumes\n", tmpf);
fprintf(tmpf, "%f %f %f %f %f\n",

pp.fex, pp.fst, pp.fav, pp.fa, pp.fim);
fputs("$conv hindrance\n", tmpf);
fprintf(tmpf, "%f\n", pp.hind);
fputs("$gauss points\n", tmpf);
fprintf(tmpf, "%d\n', ngp);
fputs("$contour\n", tmpf);
fprintf(tmpf, "%d\n", icontour);
fpute("$asq\n", tmpf);
fprintf(tmpf, "%e\n", mem.asq);
fputs("$hof\n", tmpf);
fprintf(tmpf, "%d\n", ihof);
fputs("$perturbation\n", tmpf);
fprintf(tmpf, "%d %f %f %f %f %d\n",

1, pert_p_art, pert_p_ven, pert_c_art, pert_c_osmp, pert_osmp);
fputs("$hydraulic cond\n", tmpf);
fprintf(tmpf, "%10.6e %10.6e\n", pp.lo_k, pp.hi_k);
fputs("$conc sink\n", tmpf);
for (i=0;1<elnm;i++)

fprintf(tmpf, "%d %d\n", 1, isink[i]); }
fputs("$node definitions\n", tmpf);
for (i=0;i<ndnm;i++)

fprintf(tmpf, "%4d %10.6f %10.6f %4d\n", 1, r[i], z[i], flow[i]); }
fputs("$elem definitions\n", tmpf);
for (i=0;1<elnm;i++)

( fprintf(tmpf, "%4d %4d %4d %4d %4d\n",
eldef[i][0], eldef[i][1], eldef[i][2], eldef[i][3]); }

fputs("$conc node bc\n", tmpf);
for (i=0;1<nncbc;1++)

fprintf(tmpf, "%4d %10.6e\n", cbcnod[i], cbcndv[i]); }
fputs("$e\n", tmpf);
fputs("$conc elem bc\n", tmpf);
for (i=0;i<necbc;i++)

fprintf(tmpf, "%4d %4d %4d %4d",
1, cbcgrp[i], cbc1[1], cbc2[1]);

for (j=0;1<2;J++)
fprintf(tmpf, " %10.6e %10.6e",

cbceva[i][J], cbcevh[i][j]); }
fprintf(tmpf, "\n"); )

fputs("$e\n", tmpf);
fputs("$conc node ic\n", tmpf);
fputs("$$file\n", tmpf);
for (1=0;1<ndnm;i++)

fprintf(tmpf, "%4d %10.6e\n", i, cs.c[i]); )
fputs("$cap conditions\n", tmpf);
fprintf(tmpf, "%10.6f %10.6f %10.6f %d\n",

mem.c_art, p_art, p_ven, lincap);
fputs("$pres node bc\n", tmpf);
for (i=0;1<nnpbc;i++)

fprintf(tmpf, "%4d %10.6e\n", pbcnod[i], pbcndv[i]); }
fputs("$e\n", tmpf);
fputs("$pres elem bc\n", tmpf);
for (1=0;1<nepbc,i++)

fprintf(tmpf, "%4d %4d %4d %4d",
pbcgrp[1), pbc1[1], pbc2(i));

for (j=0;j<2;J++)
fprintf(tmpf, " %10.6e %10.6e",

pbceva[l][j], pbcevh[i][i]); }
fprintf(tmpf, "\n"); )
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fputs("$e\n", tmpf);
fputs("$write results\n", tmpf);
switch (ss) (

case 0 :
break;

default :
fprintf(tmpf, "%d\n", nrec);
for (i=0;i<nrec;i++)

( fprintf(tmpf, "%10.6f\n", trec[i]); }
break; }

fputs("$node results\n", tmpf);
switch (wtf) {

case 0: fputs("Wile\n", tmpf);
fprintf(tmpf, "%d\n", nrout);
for (1=0;i<nrout,i++)

fprintf(tmpf, "%f\n", rot[i]); }
fprintf(tmpf, "%d\n", nzout);
for (1.0;i<nzoutti++)

( fprintf(tmpf, "%f\n", zot[i]); }
break;

case 1: fputs("$$coll\n", tmpf);
break; }

fputs("$end input\n", tmpf);
/*^*/
fclose(tmpf);
/*
ENLARGE TIME INCREMENT EVERY ndt TIME STEP CYCLES
*1
if (ss := 0) (

if (irec == 1)
{ dt = dto; )

if (cdt^ndt) (
cdt^0;
dt *= 2.0; }

ddt dt/lref2d; }
if ((pert !. 0) && (ss == 0)) {

puts(" Initiating perturbation in Part, Pven, Cart, and Osmp.");
ss = jj;
pert = ii = 0;
t^0.0;
p_art pert_p_art;
p_ven = pert_p_ven;
mem.c_art = pert_c_art;
mem.pi_cap = pert_c_osmP;
pp.osm = pert_osmp;
printf(" P_art^= %10.6f\n", p_art);
printf(" P_ven^= %10.6f\n", P_ven);
printf(" C_art^= %10.6f\n", mem.c_art);
printf(" Osmp_cap^= %10.6f\n", mem.pi_cap);
switch (pp.osm) {

case 0 : printf(" Osmotic effects off.\n");break;
case 1 : printf(" Osmotic effects on.\n");break; ))

/*
^*/

while ((t < tf) && (ss := 0));
/*^*/
outl^fopen(argv[4], "a+");
fputs("\n Model run complete.\n", outl);
fclose(outl);
rename("zmod.tmp", "amod.inp");

aljo:^/*^*/
printf(" %s Run complete.\n", title);

O itcaccap2d(I ndnm, I elnm, I nncbc, I necbc, I nr, I nz, I bw, I cmaxit,
media pp, membr mem,
I^D *rd, D *zd, D *pr, D *pz,
D *rr, D *rz, D *zz, D *ur, D *uz, D *ph, D *co,
I "bn, D *bv, I *be, I *bg, D *ba, D *bh, I "bl, I *b2,
I "sk, D ctol, D ddt, I crz, I ss, I ihof, I geom, I ngp)

I 1, j, k, 1, n, m;
I bcn[MM], bce[MM], bcg[MMI, bc1[MM], bc2(MM];
I nsk[NM], eldef[EM][6];
D aa, bb, cc, dd, 'sigmas, lref2d, lsvol, jovol, ndvel, mcerr, xm, *p_q;
D edr[EM], edz(EM], bcv(MM], bca[MM][3], bch[MM][3];
D r[NM], z[NM], drr[NM], drz[NM], dzz[NM), qt[NM],
per[NM], pez[NM], vr(NM), vz[NM], hp[N14), glymph[NM];

O cs;
U cln;
/*^*/
for (i=0;i<NM;i++) (

r[i] = *pr++;
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z[i] = *pz++;
nsk[i] = *sk++;
drr[i] *rr++;
drz[i] = *rz++;
dzz[i] = *zz++:
vr[i] = *ur++;
vz[i] = *uz++;
hp[i] *ph++;
qt[i] = *co++;
for (j=0;j<NM;j++)

{ c1b.m[i][j] = 0. 0; ))
for (i=0;i<EM;i++) (

edr[i]^*rd++;
edz[i] = *zd++;
for (j=0;j<6;j++)

( eldef[i][j] = *pe++; ))
for (i=0;i<MM;i++) {

bcl[i] = *b1++;
bc2[1] = *b2++;
bce[i] = *be++;
bcn[i] *bn++;
bcg[i] = *bg++;
bcv[i] = *by";
for (j=0;j<3;j++) {

bca[i][j] = *ba++;
bch[i][j] = *bh++; ))

/* */

puts(• Itcsccap()");
isigmas = 1.0-mem.sigma;
lref2d = sq(pp.lref)/pp.diff;
ndvel = pp.lref*pp.hind*pp.fst/(pp.fav*pp.diff);
lsvol = pp.pref*lref2d*pp.ls;
jovol = lref2d*pp.jo;
/*
GET DIMENSIONLESS EFFECTIVE CONVECTIVE VELOCITIES
*/
for (i=0;i<ndnm;i++) {

per[i] = ndvel*vr[i];
pez[i] = ndvel*vz[i]: }

/*
GET NODAL LYMPH FLOW
*/

if (pp.ls != 0.0) (
for (i=0;i<ndnm;i++) (

if (nsk[i] 1. 0) {
if ((xm^lsvol*(hp[i]-pp.plymph)) > 0.0)

( qlymph[i] = jovol+xm; )
else

( qlymph[i]^jovol; ))
else

( qlymph[i] = 0.0; )) )
else {

for (i=0;i<ndnm;i++)
( qlymph[i] = 0.0; ))

/*
TEMPORAL AND/OR SINK MATRIX
*/

P-4 = stif(2, ndnm, elnm, bw, &r[0], &x[0], &eldef[0][0], &edr[0], &edz[0],
&drr[0], &drz[0], &dzz[0], &per(0], &pez[0], &per[0],
pp.lref, crz, ihof, geom, ngp);

for (i=0;1<NM;i++) {
for (j=0;j<NM;j++)

{ cln.m[i][j] = *p_q++; ))
*

PREVIOUS TIME STEP CONTRIBUTION
*/
if (ss != 0) (

p_q = matvecbw(0, ndnm-I, bw, &cln.m[0][0], &qt(0]);
for (i=0;i<ndnm;i++)

( qt[i] = (*p_q++)/ddt; ))
else {

for (i=0;i<ndnm;i++)
{ qt[i] = 0.0; }}

/*
SUM TEMPORAL AND SINK MATRICES
*1
if (pp.ls != 0.0) (

for (i=0;i<NM;i++)
for (j=0;j<NM;j++) {

if (ss != 0)
( c1n.m[i][J] *= (1.0/ddt+qlymph[i]): )
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e lse
( cln.m[i][j] *= qlymph[i]; )))

/*
SUM DIFF-DISP STIFFNESS AND TEMPORAL-SINK MATRICES
*/
p_q = stif(0, ndnm, elnm, bw, &r[0], &z[0], &eldef[0][0], &edr[0J, &edz[0],

&drr[0], &drz[0], &dzz[0], &per[0], &pez(0], &per[0],
pp.lref, crz, ihof, geom, ngp);

for (i=0;i<NM;i++) {
for (j=0;j<NM;j++)

{ cln.m[i][i] += `1).4++; }}
/*
SUM TEMPORAL-SINK-DIFF-DISP AND CONVECTIVE MATRICES
*/
p_q = stif(1, ndmm, elnm, bw, &r(0], &z(0], &eldef[0][0], fiedm[0], Gedz(°],

&drr[0], &drz[0], &dzz[0], &per[0], &pem(0], &per(0),
pp.lref, crz, ihof, geom, ngp);

for (i=0;i<NM;i++) {
for (j=0;j<NM;j++)

( cln.m[i][J] += *P_4++; ))
/*
GET MEMBRANE PECLET NUMBER
*/
for (i=0;i<nz;i++) (

cs.mpe[i] = fabs(vr[mem.mmod[i]] *isigmas/mem.ps);
cs.ccap[i] = mem.cp[i]; )

/* */
puts("\n Membrane-Tissue Concentration Iterations :");
k = 1 = m = n = 0;
do (

mcerr = 0.0;
printf(" %3d:", 1+1);
/*
GET TISSUE-SIDE SOLUTE CONCENTRATION USING INTEGRATED
PATLAK EQUATION
*/
for (i=0;i<nz;i++) (

if (cs.mpe[i] > 1.0e-06) {
if (cs.mpe[i] > 100.0)

( aa = 0.0; y
else

( aa = mem.ps_d*cs.mpe[i]/(exp(cs.mpe(i])-1.0);
else

{ aa = mem.ps_d;
if (mem.vm[i] >= 0.0) {

bb = aa+per[mem.mmod[i]]*isigmas;
cc = aa+per[mem.mmod[i]];
dd = cc*mem.wall_th_d/drr[mem.mmod[i]];
xm = bb/cc;
mem.ct[i] = (xm+(1.0-xm)*exp(-dd))*mem.cp[i]; }

else {
bb = per[mem.mmod[i]]-aa;
cc = per[mem.mmod[i]]*isigmas-aa;
dd = cc*mem.wall_th_d/drr[mem.mnod[i]];
xm = bb/cc;
mem.ct[iJ = (xm+(1.0-xm)*exp(dd))*mem.cp[i];^)

/*
CAPILLARY MEMBRANE CONCENTRATION DISTRIBUTION
*
p_q cmcd(nz, mem);
for (i=°;i<nz;i++) (

if ((mem.cp[i] = *p_q++) < 0.0)
( mem.cp[i] = 0.0; ) )

/* */
for (i=0;i<nz;i++) {

if (fabs(mem.cp[i]-cs.ccap[i]) > mcerr)
( mcerr = fabs(mem.cp[i]-cs.ccap[i]);

cs.ccap[i]^mem.cp[i];
printf(" mcemr=%6.3e\n", mcerr);
1++;

) while ((mcerr > ctol) && (1 < cmaxit));
cs.iter = 1;
/* */
for (i=0;i<nz;i++)

( cs.c[mem.mmod[i]] = mem.ct[i]; )
/*
SET TISSUE NODAL BC
*/
for (1=0;i<nz;i++) (

for (j=0;j<nncbc;j++) (
if (bcn(j) == mem.mnod(1))
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{ bcv(jJ^mem.ct(i]; )))
/*
SET TYPE 3 BOUNDARY CONDITION VALUES FOR
MEMBRANE BC AND WALLS.
,t/
for (i=0;i<necbc;i++) {

switch(bcg[i]) (
case 0: /* RO<r<RG, z=0 */

for (J= 0 ;J<2;J++) (
switch (j) (

case 0 : k = bcl[i];break;
case 1 : k = bc2[1.];break; }

bca[i][j] = -pez(k]/dzz[k];
bch[i][1] = 0.0; )

break;
case 1: /* RO<r<RG, z=L */

for (j= 0 ;j<2;j++) (
switch (j) {

case 0 : k = bcl[i];break;
case 1 : k^bc2[iJ;break, }

bca[i][j] = -pez[k]/dzz[k];
bch[i][J] = 0.0; )

break;
case 2: /* r=RG, 0<z<L */

for (J=0;j<2;J++) (
switch (j) {

case 0 : k = bc1[1];break;
case 1^k = bc2[i];break; }

bca[i][j] = -par[k]/drr[k];
bch[i] (j] = 0.0; }

break;
case 3: /* r=RO, 0<z<L, MEMBRANE BC */

for (j=0;j<2;j++) (
switch (j) {

case 0 : k = bcl[i];break;
case 1 : k = bc2[1];break; }

for (m=0;m<nz;m++) (
if (mem.mnod[m]^k)

n = m; }}
if (cs.mpe[n] > 1.0e-06) {

if (cs.mpe[n] > 100.0)
( xm = 0.0; }

else
( xm = cs.mpe[n]/(exp(cs_mpe(n]) - 1.0);

}

else
( xm mem.ps_d; )

if (per(k] > 0.0) (
bca[i][j] = -pp.lref*(per[k]+mem.ps_d*xm);
bch[i][1] = -

pp.lref*(per[Wisigmas+mem.ps_d*xm)*cs.ccap[n]; )
else (

bca[i][j]^-pp.lref*(per[k]*isigmas-
mem.ps_d*xm);

bch[i][1] = -pp.lref*(per[10-
mem.ps_d*xm)*cs.ccap[n]; ) )

break;
case 4 : /* PRESCRIBED AT INPUT */

break; 1)
/*
MODIFY CONC STIFFNESS MATRIX FOR ELEMENTAL BOUNDARY CONDITIONS
*1

if (necbc != 0) (
cln = modstif(necbc, &eldef[0)[0), &r[0), &z[0],

&bce(0), &bca[0][0], &bch(0)[0], &bc1[0], &bc2[0],
&edr[0], &edz[0], &cln.m[0][0], ihof, ngp); }

/*
SUM TYPE 3 BC VECTOR AND PREVIOUS TIME STEP VECTOR
*/

for (i=0;i<ndnm;i++)
( cln.v[i] += gt[i]; }

/*
NODAL BOUNDARY CONDITIONS (TYPE 1)
*/

for (i=0;i<nncbc;i++) {
for (j=0;j<ndnm;j++) (

if (1 == bcn[i]) (
cln.m[bcn[i]][j]
cln.v[bcn[i]]

else

= 1.0e+15;
= 1.0e+15*bcv[i]; )

( cln.m[bcn[i]][J] = 0. 0; ) } )
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/*
GET CONCENTRATION DISTRIBUTION
*/
p_ca^solver(ndnm, bw, ficln.m[0][0], &cln.v[0]);
for (i..0;i<ndnm;i++)

( cs.c[i] = *p_q++ ; )

/*^*1

for (i=0;i<nz;i++) (
cs.ctis[i]^cs.c[mem.mnod[i]];
cs.ccap[i] = mem.cp(i]; )

/*
SOLUTE FLOW ACROSS MEMBRANE
*/
for (i=0;i<nz;i++) (

if (cs.mpe[i] > 1.0e-06) {
if (cs.mpe[i) > 100.0)

( xm = 0.0; }
else

( xm = cs.mpe[i]/(exp(cs.mpe[i])-1.0); )}
else

{ xm mem.ps; }

cs.fmem[i]^vr[mem.mnod[i]]*isigmas*mem.cp[i]+mem.ps*xm*(cs.ccapli)-
cs.ctis[i]); }

/* */
return co;

}

N itpruruz2d(I ndnm, I elnm, I nnpbc, I nepbc, I nr, I nz, I bw, I vmaxit,
media pp, membr mem, I *pe, I *fl, D *rd, D *zd, D *pr, D *pz,
D *po, D *ph, I *bn, D *bv, I *be, I *bg, D *ba, D *bh, I *bl, I *b2, I *sk,
D p_art, D p_ven, D ptol, D vtol, I lincap,
I relaxp, I ihof, I geom, I ngp)

I i, j, k, 1, m, n, hiflow;
I bcn(MM), bce[MM), bcg[MM], bc1[MM], bc2[MM];
I nsk[NM], flow[NM), eldef[EM][6];
D en, eo, ls_d, jo_d, lref2k, piatemu, prefl, mperr, mverr, xm, ww, Stpcji

D xx[IM], yy[IM], verrEIMI, vmem[im), vtis[IM], edr[EM], edz[EM];
D bcv[MM], bca[MM][3], bch[MM][3];
D dp[NM), r[NM], z[NM], dkrr[NM], dkzz[NM], krr[NM], kzz[NM],
kkr[NM), kkz[NM], 0P(NM], lsk[NM], ld[NMI, hp[Nm], sig[NM];

D ln[NMUNMI;
N pruruz;
U pin;
vec3 v_p;
/*^*/

for (i=0;i<NM;i++) (
nsk(i] = *sk++;
flow[i] = *fl++;
r[i]^*pr++;
z[i]^*pz++;
op[i] = *po++;
hp[i] = *ph++; }

for (i=0;i<EM;i++) {
edr[i] = *rd++;
edz[i] = *zd++;
for (j=0;j<6;j++)

( e1def[i][J] = *pe++; ))
for (i=0;i<MM;i++)

bc1[1] = *b1++;
bc2(i] = *b2++;
bce[i] = *be++;
bcn[i] = *bn++;
bcg[i] = *bg++;
bcv[i] = *bv++;
for (j=0;j<3;j++) (

bca[i][j] = *ba++;
bch[i][j] = *bh++; )}

/* */

switch (geom) (
case 0: /* NO UPWINDING - RECT */

geom = 0;
break;

case 1: /* NO UPWINDING - CYL */
geom = 1;
break;

case 2: /* UPWINDING - RECT */
geom = 0;
break;

case 3: /* UPWINDING - CYL */
geom = 1;
break; )
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/* *1

puts(" itpruruz()");
hiflow^0;
lref2k = sq(pp.lref)/pp.kref;
prefl = pp.pref/(pp.lref);
ls_d = lref2k*pp.ls;
jo_d lref2k*pp.jo;
/*
HYDRAULIC CONDUCTIVITY
*/

for (i=0;i<ndnm;i++) {
switch (flow[i]) {

case 0 : /* LO FLOW CHANNEL */
default :

krr[i] = kzz[i] = pp.lo_k;
kkr[i] = kkz[i] = pp.lo_k/pp.kref;
sig[i] = pp.sigmag;
break;

case 1 : /* HI FLOW CHANNEL */
hiflow = 1;
krr[i] = kzz[i] = pp.hi_k;
kkr[i] = kkz[i] = pp.hi_k/pp.kref;
sig[i] = pp.sigmag;
break;

^

case 2 : /* SINK REGION^*/

krr[i] = kzz[i] = pp.hi_k;
kkr[i] = kkz[i] = pp.hi_k/pp.kref;
sig[i]^pp.sigmag;
break; } )

for (i=0;i<ndnm;i++)
{ sig[i] *= op[i]; }

/*
GRADIENTS IN HYDRAULIC CONDUCTIVITY :

Krr IN r DIRECTION
Kzz IN z DIRECTION

*1

if (hiflow != 0) {
for (i=0;i<nz;i++)

for (j=0;j<nr;j++)
k = i*nr+j;
xx[j] = r[k];
yy[j]^krr[k]; )

v_p = fspl(nr, &xx[0], &yy(0], 0, 0, 0.0, 0.0);
for (j=0;j<nr;j++)

k = i*nr+j;
dkrr(k] = devalcs(nr,

-^

&xx[0], r[k]); ))
for (i=0;i<nr;i++)

for (j=0;j<nz;j++)
k = j*nr+i;
xx[J] = z[k];
yy(j] = kzz[k]; )

vp = fspl(nz, &xx(0], &yy(0), 0, 0, 0.0, 0.0);
for (j=0;j<nz;j++)

k = j*nr+1;
dkzz[k] = devalcs(nz, vp

- 

, &xx(0], z[k]); ))
printf(" dkrr()/dkzz()"); )

/*
GET CONDUCTIVITY STIFFNESS MATRIX
*/
p_q = stif(0, ndnm, elnm, bw, &r[0], &z[0], &eldef[0][0], &edr[0], &edz[0],

&kkr[0], &kkz(0], &kkz[0], &dkrr[0], &dkzz[0], &kkz[0],
pp.lref, 0, ihof, geom, ngp);

for (i=0;i<NM;1++)
for (j=0;j<NM;j++)

ln[i][j] = *p_q++; ))
/*
SUM CONDUCTIVITY AND ANISOTROPIC CONDUCTIVITY (CONVECTIVE-LIKE) MATRICES
ft 1
if (hiflow != 0) {

p_q = stif(1, ndnm, elnm, bw, &r[0], &z[0], &eldef[0][0], &edr[0],
&kkr[0], &kkz[0], &kkz[0], &dkrr(0], &dkzz[0], &kkz[0],
pp.lref, 0, ihof, geom, ngp);

for (i=0;i<NM;i++)
for (j=0;j<NM;j++)

I 1n[i][J1 -= lref2k*(*p_q++); )) )
/* */

puts("\n Membrane-Tissue Pressure-Velocity Iterations : ) ;

eo = 1.0e-02;
k = 1 = m = n = pruruz.iter^0;
do

mperr mverr = 0.0;

&edz[0],
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printf(" %3d:", 1+1);
/*
CAPILLARY MEMBRANE PRESSURE DISTRIBUTION
*/
if (lincap != 0) {

xm = (p_art-p_yen)/(mem.z[0]-mem.z[nz-1]);
for (i=0;i<nz;i++)

{ pruruz.pcap[i] = p_art+xm*mem.z[i]; }}
else (

p_q = cmpd(nz, mem, p_art, p_ven);
for (i=0;i<nz;i++)

{ pruruz.pcap[i] = *p_q++; })
/*
SET POTENTIAL TYPE 3 BOUNDARY CONDITIONS d(hP-sigmaeoP)/dn = 0.0
*/
for (i=0;i<nepbc;i++) {

switch(bcg[i]) {
case 0: /* RO<r<RG, z=0 */

for (J=0;J<2;J++) {
switch (j) {

case 0 : k = bc1[1.);break;
case 1^k = bc2[1.];break; }

bca[i][j] = 0.0;
bch[i][J] = 0.0; }

break;
case 1: /* RO<r<RG, z=L */

for (j=0;j<2;j++) (
switch (j) {

case 0 : k = bc1[1];breaki
case 1 : k = bc2[1];break; }

bca[i][j] = 0.0;
bch[l][J] = 0.0; }

break;
case 2: /* r=RG, 0<z<L */

for (j=0;j<2;j++) (
switch (j) {

case 0 : k = bol[i];breakt
case 1 : k = bc2(i];break; )

bca[i][j] = 0.0;
bch[i][j] = 0.0; }

break;
case 3: /* MEMBRANE BC */

for (j=0;j<2;j++) {
switch (j) {

case 0 : k bc1[1];break;
case 1 : k = bc2[1],break; }

for (m=0;m<nz;m++) {
if (mem.mnod[m] == k)

{ n = m; ))
switch (flow[k]) {

case 0 :
default :

xm = lref2k*lp(mem.typ_lp,
mem.1p0, mem.lpl, z(10);

break;
case 1 :

xm = lref2k*lp(0, mem.lpl,
mem.lpl, z[k));

break; )
bca[i][j] = xm;
bch[i][J] = xm*((pruruz.pcap[1:]-

mem.sigma*mem.pi_cap)+(mem.sigma-pp sigmag)*op[k]); }
break;

case 4 : /* PRESCRIBED AT INPUT */
break; )/

/*
MODIFY PRESSURE STIFFNESS MATRIX
*1
if (nepbc != 0) {

pin = modstif(nepbc, &eldef(0)(0), &r[0], &z[0],
&bce[0], &bca[0][0], &bch[0][0], &bc1[0], &bc2[0],
&edr(0], &edz[0), &ln(0)[0], ihof, ngp); }

/*
SUM CONDUCTIVITY AND SINK MATRICES
*/
if (pp.ls != 0.0) {

/*
SINK MATRIX CONTRIBUTION
*/

for (i=0;i<ndnm;i++) (
if (nsk[i] != 0)
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( lsk[i]^la_d; )
else

( lsk[i] = 0.0; ))
p_q^stif(3, ndnm, elnm, bw, fir[0], fiz[0], &eldef[0][0], &edr[0],

&edz[0],
Qkkr[0], &kkz[0], &kkz[0], &kkz[0], &kkz[0], &kkz(0],
pp.lref, 0, ihof, geom, ngp);

for (i=0;i<NM;i++) {
for (j=0;j<NM;j++)

{ pin.m[i][j] += lsk[i]*(*P_g++); }}
/*
SINK VECTOR CONTRIBUTION (TAKEN FROM LHS OF FEM EQN)

for (i=0;i<ndnm;i++) {
if (nsk[i] != 0)

{ lsk[i]
^

ls_d*(pp.plymph-sig[i])-jo_d; }
else

( lsk[1] = 0.0; ))
p_q = stif(4, ndnm, elnm, bw, &r[0], &z[0], &eldef[0][0], fiedr[01,

&edz[0],
&kkr[0], &kkz[0], &kkz[0], &kkz(0], &kkz[0], &lsk(0],
pp.lref, 0, ihof, geom, ngp);

for (1=0;i<NM;i++)
{ lsk[i] = (*p_q++); }

for (i=0;i<ndnm;i++) (
if (nsk(i] !=. 0)

( pin.v[i] += lsk[i];^}
/*
NODAL BOUNDARY CONDITIONS (TYPE 1)

for (i=0;i<nnpbc;i++) (
for (j=0;j<ndnm;j++)

if (j == /Derail) (
pin.m[bcn[i]][J]^1.0e+15;
pin.v[bcn[i]]^1.0e+15*(bcv[1.]-sig[j]); }

else
( pin.m[bcn[i]][J] = 0.0; ) })

/*
GET PRESSURE (hP) AND POTENTIAL (hP-sigma*oP) DISTRIBUTIONS

p_q = solver(ndnm, bw, &pin.m[0][0], &pin.v[0]);
for (i=0;i<ndnm;i++) (

pruruz.pt[i] = *P_g++;
pruruz.p[i] = pruruz.pt[i]+sig[i]; }

/*
FLUID FLOW VELOCITY FIELD

for (i=0;i<nz;i++)
for (j=0;j<nr;j++) {

k = i*nr+j;
zz[j] = r[k];
yy(j] = pruruz.pt [k]; )

v_p^fspl(nr, &xx[0], &yy(0], 2, 1, 0.0, 0.0);
for (j=0;j<nr;j++)

k = i*nr+j;
pruruz.r[k]^-krr[k]*prefl*devalcs(nr, v_p, &xx[0], r[kl); }}

for (i=0;i<nr;i++) (
for (j=0;j<nz;j++) (

k = j*nr+i;
xx[J] = z[k];
yy[j] = pruruz.pt[k]; )

v_p = fspl(nz, &xx[0], &YY[0], 1, 1, 0.0, 0.0);
for (j=0;j<nz;j++) (

k^j*nr+i;
pruruz.z[k] = -kzz[k]*prefl*devalcs(nz, v_p, &xx[0], z[k]);

printf(" uv2d()");
/*
CHECK FLUID CONTINUITY ACROSS MEMBRANE

for (i=0;i<nz;i++) (
k = mem.mnod[i];
vmem[i] = 1p(mem.typ_lp, mem.1p0, mem.lpl, z[k]) *PP.Pref * (pruruz.p[k]-

pruruz.pcap[i]-mem.sigma*(op[k]-mem.pi_cap));
vtis[i] = pruruz.r[k];
verr[i] = (vmem[i]-vtis[i]);
if (fabs(verr[i]) > fabs(mverr))

{ mverr = verr[i]; }}
/*
GET PRESSURE DEVIATION AND THEN APPLY RELAXATION

for (1=0;1<ndnm;i++) (
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dp(i]^pruruz.p[i]-hp[i];
if (fabs(dp(i]) > mperr)

{ mperr = fabs(dp(i]); ))
if (relaxp != 0) {

en = 0.0;
for (i=0;i<ndnm;i++)

{ en += fabs(dp(i]); )
ww = 1.0/(1.0+en/eo);
if ((eo = en) == 0.0)

{ eo = 1.0e-02; }

for (1=0;i<ndnm;i++) {
pruruz.pfil^ww*pruruz.p(i]+(1.0-ww)*hp[i];
hp[i] = pruruz.p[i]; ) }

else {
for (i=0;i<ndnm;i++)

{ hp[i] = pruruz.p[i]; ) }
/*
SET MEMBRANE HYDROSTATIC PRESSURE
*/
for (1.0;i<nz;i++)

{ mem.hp(i] = pruruz.p(mem.mnod[i]]; }
/*
CHECK IF PRESSURES ARE BELOW SINK PRESSURE LIMIT AND SWITCH
OFF SINK IF THIS IS CASE AND SET PRESSURES FOR THOSE NODES
EQUAL TO LYMPHATIC SINK LIMIT VALUE
*/
k = 0;
for (i=0;i<ndnm;i++) (

if (nsk(i) I. 0) (
if ((pruruz.p(i]-pp.plymph) < 0.0) {

k = 1;
bcn[nnpbc] = i;
bcv[nnpbc] = pp.plymph;
nnpbc++;
nsk[i] = 0; }}}

/* */
if ((mperr < ptol) II (fabs(mverr) < vtol))

( pruruz.iter = 1; }
else

{ pruruz.iter = 0; }
if (lincap != 0)

{ pruruz.iter = 1; }
if (k != 0)

( pruruz.iter = 0; )
/* */
if (k != 0)

( puts(" Recycle - sink pressure violation."); )
else

( printf(" mperr=%6.3e mverr=%+6.3e\n", mperr, mperr); }

1++;
) while ((pruruz.iter == 0) && (1 < vmaxit));
pruruz.iter = 1;
if (1 >= vmaxit) (

puts(" W: itpruruz()-> Convergence not achieved.");
puts("^ Try different Lp or K values.");
puts("^ Node List : ");
for (i=0;i<ndnm;i++) (

if (fabs(dp[i]) > ptol)
( printf("^Node : %4d : Deviation = %+10.6e\n*, mem.mnod[i],

dP(1.]); })
printf("^Max pressure deviation^= %10.6e\n", mperr);
printf("^Max velocity deviation^= %+10.6e\n", mverr); }

/*
GET FLUID FLOW RATE ALONG CAPILLARY
*1
if (lincap != 0) (

piatemu = (PI*pp.pref/(8.0*pp.mu*pp.lref))*(p_art-p_ven)/(mem.z(0]-mem.z[nz-
17);

for (i=0;i<nz;i++) (
xm = pow(pp.lref*mem.r(i], 4.0);
pruruz.qcap[i] = -piatemu*xm; ))

else {

piatemu = PI*pp.pref/(8.0*pp.mu*pp.lref);
for (1=0;1<nz;i++) (

xx[i]^z[mem.mnod[i]];
yy[i] = pruruz.pcap(i]; }

vp^fspl(nz, &xx[0], &YY[0], 2, 2, 0.0, 0.0);
for (i=0;i<nz;i++) (

xm^pow(pp.lref*mem.r[i], 4.0);
pruruz.gcap(i) = -piatemu*xm*devalcs(nz, vP, &xx[0], mem.z[i]); }}

/*^*1
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return pruruz;

D *Istif(I lct, I ndnm, I elnm, I bw, D *pr, D *pz, I *pc, D *rd, D *zd,
D *rrd, D *rzd, D *zzd, D *ur, D *uz, D *pf,
D lref, I crz, I ihof, I goon, I ngp)

{

• i, j, k, ii, jj, wind;
I eldef[EM][6];
D aa, alpha, gam, vravg, vzavg, dravg, dzavg, unorm, dnorm,

hh, rr, zz, rp, zp, rw, zw, dr2, dz2, drdz, ww, ro, *P_4;
D estif[6][6];
D edr[EM], edz(EM];
D f(NM], drr(NM], drz[NM], dzz(NM], r[NM], z[NM], vr[NM], vz[NM];
D stifn(NMUNM];
D nrzt, wrzt, dndr, dndz, edrr, edrz, edzz, evr, evz;
/*^*/
for (i=0;i<NM;i++) {

f[i]^= *pf++;
r[i]^= *pr++;
z[i]^= *pz++;
drr[i]^*rrd++;
if (crz == 1)

{ drz[i] = *rzd++; }
dzz(i1 = *zzd++;
vr[iJ = *ur++;
vz[i] = *uz++; }

for (i=0;i<EM;i++) {
edr[i] = *rd++;
edz[i] = *zd++;
for (j=0;j<6;j++)

{ eldef[i][j] = *pe++; } }
/*
INITIALIZE VARIABLES, MATRICES, AND VECTORS
*/
wind = 0;
aa = ro = 0.0;
for (i=0;i<NM;i++) (

for (j=i;j<NM;j++)
( stifnlil(J1 = stifn[J][i] = 0.0; }}

/*
STIFFNESS MATRIX AT t=t
*/
switch (geom) {

case 0: /* NO UPWINDING RECT */
geom = 0;
wind = 0;
break;

case 1: /* NO UPWINDING CYL */
geom = 1;
wind = 0;
break;

case 2: /* UPWINDING - RECT */
geom = 0;
wind = 1;
break;

case 3: /* UPWINDING CYL */
goon = 1;
wind = 1;
break; )

/*
FORM ELEMENTAL STIFFNESS MATRIX
*/

switch (lct) {
case 0 :^/* LAPLACE */

for (1=0;1<elnm;1++) {
/* */

dr2^0.5*edr(i];
dz2 = 0.5*edz(i];
drdz = dr2*dz2;
for (i= 0 ;J< 6 ;J++) (

for (k=j;k<6;k++)
( estif[j][k] = estif[k][i] = 0.0; }}

for (j= 0 ;J< 4 ;J++) (
edrr.v[j] = drr[eldef[i][j]];
edrz.v01 = drzfeldeffil[J]];
edzz.v[j] = dzzIeldef[i][1]); )

^

/*^*/
for (k=0;k<ngp;k++)

zp = gp(ngp, k);
zw = gw(ngp, k);
zz = dz2*(zp+1.0);
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for (j=0;j<ngp;j++) {
rp = gp(ngp, j);
rw = gw(ngp, j);
rr^dr2*(rp+1.0);
/*^*/
ww = rw*zw;
if (geom == 1)

( ro = r(eldef[i](011+rrt }

/*^5/

if (ihof == 1) {
nrzt = fmrzt(rr, zz, edr[1], edz[1]);
dndr = fdmdr(rr, zz, edr[i], edz[i]);
dndz = fdmdz(rr, zz, edr[i], edz[i]); )

else {
nrzt = fnrzt(rr, zz, edr(i], edz(i]);
dndr = fdndr(rr, zz,^edz(i]);
dndz = fdndz(rr, zz, odr(il, edz(i]); }

/*
^5/

for (ii=0;ii<4;ii++) (
for (jj= 0 ;jj<4;jj++) {

estif(iiMJJ] =
(wW*edrr.v(iil*dndr.v[ii]*dndr.v(jj));

(ww*edrz.v[ii]*dndr.v(ii)*dndz.v[jj));

(ww*edrz.v[11]*dndz.v[ii]*dndr.v(iJ]); )

(ww*edzz.v(iil*dndz.v[ii]*dndz.v(jj1);

(ww*edrr.v(ii)*nrzt.v(ii]*dndr.v(jj1/ro); )^}
/*
SCALE TO INTEGRATION DOMAIN
5/
for

if (crz == 1) {
estif[ii][jj] +=

estif[11]1JJ] +=

estif[ii][jj] +=

if (geom == 1)
estif[ii][JJ] -=

(ii=0;ii<4;ii++) (
for (jj=0;jj<4;jJ++)

{ estif(iilljj] *= drdz; }}
/*
INCORPORATE INTO GLOBAL STIFFNESS MATRIX AT t
*/
for (j=0;j<4;j++) (

for (k=0;k<4;k++)
{ stifn[eldef[1][J]][eldef[i][k]] =

estiffJ100;
printf(• lapl()*);
break;

case 1^/* CONVECTIVE */
for (i=0;i<elnm;i++) {

/*^5/

dr2 = 0.5*edr(i);
dz2 = 0.5*edz(i];
drdz dr2*dz2;
for (j=0;j<6;j++) (

for (k=j;k<6;k++)
{ estif(j][k] = estif(k](j] = 0.0; }}

for (j=0;j<4;j++) (
evr.v(j] = vr[eldel[i][j]];
evz.v[j] = vz[eldef[1][J]];
edrz.v[j] = drr[eldef[i][j]];
edrz.v[j] = drz[eldet[i][J]];
edzz.v(j] = dzz(eldef(i)(j]); )

/* */
if (wind == 1) {

vravg = vzavg = dravg = dzavg = 0.0;
for (j=0;j<4;j++) (

vravg += fabs(evr.v(j]);
vzavg += fabs(evz.v(j]);
dravg += edrr.v(j];
dzavg += edzz.v(j); )

vravg *= 0.25;
vzavg *= 0.25;
dravg *. 0.25;
dzavg *= 0.25;
unorm norm(vravg, vzavg);
dnorm = norm(dravg, dzavg);
if (Imo= != 0.0) {

hh =
lref*(fabs(vravg)*edr(i)+fabs(vzavg)*edz[11)/unorm;

gam 0.5*unorm*hh/dnorm;
alpha = coth(gam)-1.0/gam;
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dndz); }

aa = alpha*hh/(2.0*unorm); )
else

{ aa = 0.0; } }
else

{ aa . 0.0; }
/*
^./

for (k=0;k<ngp;k++) {
zp^gp(ngp, k);
zw gw(ngp, k);
zz = dz2*(zp+1.0);
for (j=0;j<ngp;j++) {

rp^gp(ngp, j);
rw = gw(ngp, j);
rr = dr2*(rp+1.0);
/*
ww rw*zw;
/*^./

if (ihof == 1) {
nrzt = fmrzt(rr, zz, edr[i], edz(i]);
dndr fdmdr(rr, zz, edr[i], edz[i]);
dndz = fdmdz(rr, zz, edr[i], edz[i]); )

else (
nrzt^fnrzt(rr, zz, edr[i], edz[i]);
dndr = fdndr(rr, zz, edr[i], edz[i]),
dndz = fdndz(rr, zz, edr[i], edz[i]); }

if (wind == 1)
( wrzt = fwrzt(aa, evr, evz, nrzt, dndr,

else

(ww*evr.v[ii]*wrzt.v[ii]*dndr.v[JJ]);

( wrzt = nrzt; )
/*
^./

for (ii=0;ii<4;ii++)
for (jj=0;jj<4;jj++) (

estif[ii][Jj] +=

estif[ii][JJ] +=
(ww*evz.v[iil*wrzt.v[ii]*dndz.v[jj]); )) ) }

/*
SCALE TO INTEGRATION DOMAIN

for (ii=0;ii<4;ii++) (
for (jj=0;jj<4;JJ++)

estif[ii][JJ) drdz; }}
/*
INCORPORATE INTO GLOBAL STIFFNESS MATRIX

for (j=0;j<4;j++) {
. for (k=0;k<4;k++)

{ stifn[eldef[i][i]][eldef[i][k]l +_
estif[j][k]; )) )

printf(• cony()•);
break;

case 2 :^/* TEMPORAL STIFFNESS MATRIX */
case 3 :^/* SINK STIFFNESS MATRIX */
case 4 :^/* LOAD VECTOR STIFFNESS MATRIX */

for (i=0;i<elnm;i++)
/*^./

dr2^0.5*edr[i];
dz2 = 0.5*edz[i];
drdz = dr2*dz2;
for (J=0;J<6;j++) (

for (k=j;k<6;k++)
( estif[J][k] = estif[k][J]

/*^*/
for (k=0;k<ngp;k++) (

zP = gp(ngp, k);
zw = gw(ngp, k);
zz^dz2*(zp+1.0);
for (j=0;j<ngp;j++) {

rp = gp(ngp, j);
rw = gw(ngp, j);
rr = dr2*(rp+1.0);

^

/*^.1

ww = rw*zw;

^

/*^*/
if (ihof == 1)

( nrzt = fmrzt(rr, zz, edr[i], edz[i]); )
else

( nrzt = fnrzt(rr, zz, edr[i], edz[i]); }

^

/*^*/
for (ii=0;ii<4;ii++) (

= 0. 0; ))
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for (jj=0;jj<4;jj++)
estiflii][JJ] +=

(ww*nrzt.v[ii)*nrat.v[JJ]); }) ) }

I.
SCALE TO INTEGRATION DOMAIN
*/

for (ii=0;ii<4;ii++)
for (jj=0;jj<4;JJ++)

{ estif[ii][JJ] *= drdz; ))
/*
INCORPORATE INTO GLOBAL STIFFNESS MATRIX AT t
*/
for (j=0;j<4;j++)

for (k=0;k<4;k++)
Stifn[eldef[i][J]][eldef[i][k]] +_

estif[J][k]; }} }
switch (lct)

case 2
case 3 : printf(" temp()/sink()");break;
case 4 : printf(" func()");break; )

break; }
*/

(lct == 4) {
p_q = matvecbw(0, ndnm-1, bw, &stifn[0][0], &f[0]);
for (1=0;i<1414;1++)

( f[i] = *p_q++; )
return &f[0]; )

/* */
return &stifn[0][0];

U modstif(I nebc, I *pe, D *pr, D *pz, I *be, D *ba, D *bh, I *bl, I *b2,
D *rd, D *zd, D *st, I ihof, I ngp)

I i, j, k, ii, jj;
I lnod[3], gnod[3], bce[MN], bc1[MM], bc2[M14];
I eldef[EM][6];
D gamma, cgamma, sganma, ss, rr, zz, sp, sw, sqn1n2, ds, ds2, ww;
D edr[EM], edz[EM], r[NM], Z[1414];
D he[3], se[3][3], ae[4][4], bca[MM][3], bch[MM][3];
W nrzt;
U my;
/*^*/
for (i=0;i<NM;i++)

r[i] = *nr++;
z[i] *pz++;
for (j=0;j<NM;j++)

( mv.m[i][j] = *st++; }}
for (i=0;i<MN;1++)

bol[i] = *b1++;
bc2[i] = *b2++;
bce[i] . *be++;
for (j=0;j<3;j++) {

bca[i][J] = *ba++;
bch[i][j] = *bh++; }}

for (i=0;i<EM;i++)
edr[i] = *rd++;
edz[i] = *zd++;
for (j=0;j<6;j++)

eldef[i][j] = *pe++; ) }
/*
INITIALIZE VARIABLES
*/

for (i=0;i<3;i++)
lnod[i] = gnod[i]

for (i=0;i<NM;i++)
mv.v[i] = 0.0; }

= 0 ; )

/*
INCORPORATE TYPE 3 BOUNDARY CONDITIONS
*/

for (i=0;i<nebc;i++) (
for (j=0;j<4;j++) (

if (bcl[1] == eldef[bce[i]][j]) {
lnod[0] = j;
gnod[0] = born]; )

if (bc2[i] == eldef[bce[i]][j]) {
lnod[1] = j;
gnod[1] = bc2[i]; } )

for (j=0;j<3;j++) (
he[j] = 0.0;
for (k=j;k<3;k++)

( ae[1][k] = ae[k][J] = se[J][k] = se[k][J] = 0.0; )}

/*
if
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/*^*/
ds = sqrt(sq(r[bc1[1]]-r[hc2[1]])+sq(z[bc1[1]]-z[bc2[1]]));
ds2^0.5*ds;
if (r[bc1[1]] == r(bc2[1])) (

gamma = 0.5*PI;
cgamma = 0.0;
sgamma = 1.0; )

else
if (z[bcl[i]] == z[bc2[1]])

gamma = 0.0;
cgamma = 1.0;
sgamma = 0.0; }

else {
gamma = atan(fabs(r[bcl[i]]-r[bc2[1]])/fabs(z[bcl[i]]-z[bc2[1]]));
cgamma = cos(gamma);
sgamma = sin(gamma); }

for (j=0;j<ngp;j++) {
sp = gp(ngp, j);
sw = gw(ngp, j);
as = ds2*(sp+1.0);
rr = ss*cgamma;
zz ss*sgamma;
ww = sw;
/*^*/
if (ihof == 1)

{ nrzt = fmrzt(rr, zz, edr[bce[i]], edz[bce[i]]); }
else

( nrzt = fnrzt(rr, zz, edr[bce[i]], edz[bce[i]]); }
sqn1n2 = sg(nrzt.v[lnod[0]])+eg(nrzt.v[lnod[1]]);
/* *1
for (1i=0;13.<2;11++) (

for (jj=0;jj<2;JJ++) (
se[il][ii] += (ww*nrzt.v[lnod[li]]*nrzt.v[lnod[ji]]);
ae[ii][jj] += (ww*bca[l][11]*nrzt.v[lnod[11]]*seinln2);

/*
SCALE TO INTEGRATION DOMAIN
*/
for (ii=0;ii<2;11++) {

for (jj=0;jj<2;jj++) {
se(ii][ii] *= ds2 ;
ae[ii][jj] *= ds2; ))

/*
GET h CONTRIBUTION
*/
for (ii=0;ii<2;ii++) {

for (jj=0;jj<2;JJ++)
{ he[ii] += se[11.1[Jj)*bch[i][JJ); }}

/*
INCORPORATE INTO STIFFNESS MATRIX AND MIS VECTOR
*/
for (ii=0;ii<2;ii++) {

mv.v[gnod[ii]] += he[ii];
for (jj=0;jj<2;jj++)

{ mv.m(gnod[ii]][gnod[jj]] += ae[11][JJ]; )) )

) ) }

vdiff

/* */
printf(" modstif()");
/* */
return mv;

dspc(I ndnm, D al, D a2, D diff, D *vr, D *vz, I crz)

11;
D vel, vrz, vr2, vz2;
vdiff d;
/*^*/
if ((al == 0.0) && (a2 == 0.0)) {

for (i=0;i<ndnm;i++) {
d.rr[iJ = diff;
d.rz[1] = 0.0;
d.zz[i] =^)1

else (
for (i=0;i<ndnm;i++) (

vrz = fabs(vr[1]*vz[1]);
vr2^sq(vr[i));
vz2 = sq(vz[i]);
vel = sqrt(vr2+vz2);
if (vel == 0.0) {

d.rr[i] = diff;
d.rz[i] = 0.0;
d.zz[i] = diff; )
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else
d.rr[i]^(a2*vz2+al*vr2)/vel+diff;
if (crz == 1)

( d.rz[i] = (al-a2)*vrz/vel; }

else
{ d.rz[i] = 0.0;

d.zz[i]^(a2*vr2+al*vz2)/vel+diff; 1)
/*^*/

printf(" dspc()");
/*^*/

return d;

/*
USER DEFINED 1p() FUNCTION.

*/
D 1p(I typ, D 1p0, D 1pl, D x)
{

D 1p=0.0;
switch (typ)

case 0 :
1p = 1p0;
break;

case 1 :
1p = (1.0-x)*1p0+x*lpl;
break;

case 2 :
if (x <= 0.50)

( 1p = 1p0; )
else

break;
case 3

if ((x

else

( 1p = 1pl;

< 0.90) II (x > 0.95))
1p = 1p0;

{ 1p = 1pl;
break;

case 4 :
1p = 1p0+(lp1-1p0)/(1.0+exp(-50.0*(x-0.5)));
break;

return 1p;

MASS BALANCE
*/

^ massb(I elnm, I nr, I nz, I nesink, media pp, membr mem, I *pc, I *sn, D *rd, D *zd,
D *pc, D *ph, D *pf, D qcap, D avgas, I ngp, I geom)

I i, j, k, 1, er, ez;
I isink[EM], eldef[EM][6];
D dr2, dz2, lref3, uc, uu, rr, rp, rw, zz, zp, zw,

xm, fqm, sqm, qfi, qfo, qmf, qms, qsi, qso, qsf, gas, p, c,
pa, ca, va, pavg, cavg, vavg, vol, ww;

D fmem[IM), edr[EM], edz[EM], co[NM], hp(NM];
D epr, ecs, nrzt;
/* */

for (i=0;i<NM;i++) (
co[i] = *pc++;
hp[i] = *ph++; )

for (i=0;i<EM;i++)(
isink[i] = *sn++;
edr[i] = *rd++;
edz[i] = *zd++;
for (j=0;j<6;j++)

( eldef[i][J] = *pe++;
for (i=0;i<IM;i++)

{ fmem[i] = *pf++; }

er = nr-1;
ez = nz-1;
switch (geom) (

case 0: /* NO UPWINDING - RECT */
geom = 0;
break;

case 1: /* NO UPWINDING - CYL */
geom = 1;
break;

case 2: /* UPWINDING - RECT */
geom 0;
break;

case 3: /* UPWINDING - CYL */
geom = 1;
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break; }
/*
FLUID AND SOLUTE MASS BALANCE
*1
puts(" Mass Balance : ");
lref3 = pp.lref*pp.lref*pp.lref;
qfi = qfo = qmf = qms = qsi = qso = qsf = qss = 0.0;
/*
MEMBRANE FLUID FLOW AND SOLUTE TRANSPORT
qfi, qfo : m3/s
qsi, qso : Kg/s

for (i=0;i<ez;i++) (
k = i*er;
xm = edz[k]*pp.lref;
rr = 0.5*(mem.r(i)+mem.r[i+1])*pp.lref;
uu = 0.5*(mem.vm[i]+mem.vm[i+1]);
uc = 0.5*(fmem[i]+fmem[1+1]);
fqm = PI2*uu*rr*xm;
eqm = PI2*uc*rr*xm*pp.cref;
qmf += fqm;
gins += sqm;
if (fqm >= 0.0) {

qfi += fqm;
qsi += sgm; )

else {

qfo += fqm;
(ISO += dgM; 3)

/r

printf(" Fluid into membrane
printf(" Fluid out of membrane
printf(" Net fluid into membrane
printf(" Solute into membrane
printf(" Solute out of membrane
printf(" Net solute into membrane
printf(" Fractional fluid flow into membrane
/*
SINK FLUID FLOW AND SOLUTE TRANSPORT
qsf : m3/s
qss : Kg/s

• %+10.6e\n", qfi);
= 1:6+10.6e\n", qfo);
• %+10.6e\n", qmf);
• %+10.6e\n", qsi);
= 16+10.6e\n", qso);
= 96+10.6e\n", gins);
= 96+10.6e\n", qfi/qcaP);

*/

pavg = cavg = vol = 0.0;
for (i=0;i<elnm;i++) (

if (isink[i] ==. 1) (
dr2 = 0.5*edr[i];
dz2 = 0.5*edz[i];
xm = dr2*dz2;
for (J=0;i< 4 ;J++) {

epr.v[j] = hp[eldef[i][J]1;
ecs.v[j] = co[eldef[i][j]];

pa^ca = va = 0.0;
for (k=0;k<ngp;k++) (

zp = gp(ngp, k);
zw^gw(ngp, k);
zz = dz2*(zp+1.0);
for (j=0;j<ngp,j++) (

rp = gp(ngp, j);
rw = gw(ngp, j);
rr = dr2*(rp+1.0);

./
WW = rw*zw;
nrzt = fnrzt(rr, zz, edr[i], edz[1]);
p = c = 0.0;
for (1.0;1<4;1++) (

p += epr.v[11*nrzt.v[1];
c += ecs.v[1]*nrzt.v[1];

switch (geom) (
case 0 :

pa += ww*p;
ca += WW* C;
va += ww;
break;

case 1 :
pa += ww*PI2*rr*p*pp.lref;
ca += ww*PI2*rr*c*pp.lref;
va += ww*PI2*rr*pp.lref;
break; ) 3)

pavg += (lref3*xm*pa);
cavg += (lref3*xm*ca);
vol += (lref3*xm*va); 1)
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if ((avgas := 0.0) && (vol != 0.0)) {
pavg 1= vol;
cavg 1= you;
if ((pa pp.pref*pp.ls*(pavg-pp.plymph)) > 0.0)

{ qsf = -pp.vol_tis*(pa+pp.jo); )
else

( qsf = -pp.vol_tis*pp.jo; }
qss qsf*cavepp.cref;
vavg = qmf/(((D)nesink)*avgas);
printf(" Net fluid out sink

^
96+10.6e\n", qsf);

printf(" Net solute out sink
^ = 96+10.6e\n", qss),

printf(" Avg solute cone out sink
^

= 96+10.6e\n", cavg);
printf(" Avg cony velocity out sink

^
= %+10.6e\n", vavg);

printf(" Avg tissue pressure at sink
^

16+10.6e\n", pavg);
printf(" Volume of sink

^
96+10.6e\n", vol); }

else
{ puts(" No sinks in geometry."); )

printf(" Fluid Mass Balance Residual^9610.6e\n", 00a-qsf);
printf(" Solute Mass Balance Residual^9610.60\n", qms-qss);

}

V domavg(I alum, media pp, I *pe, D *rd, D *zd, D *pc, D *ph, I ngp, I goon)

I i, j, k, 1;
I eldef[EM][6];
D dr2, dz2, lref2, rr, rp, rw, zz, zp, zw, xm, p, c,
pa, ca, va, pavg, cavg, vol, ww;

D edr[EM], edz[EM], co[NM], hP[NM];
W epr, ecs, nrzt;
/* */
for (i=0;i<NM;i++) (

co il] . *pc++;
hp[i) = *ph++; }

for (i=0;i<EM;i++)(
edr[i]^*rd++;
edz[i]^*zd++;
for (j=0;j<6;j++)

eldef[i][j] = *pe++; ))
switch (geom) {

case 0: /* NO UPWINDING - RECT */
geom 0;
break;

case 1: /* NO UPWINDING - CYL */
geom 1;
break;

case 2: /* UPWINDING - RECT */
geom 0;
break;

case 3: /* UPWINDING - CYL */
geom 1;
break; )

/*
GET AVERAGE QUANTITIES IN SOLUTION DOMAIN
*/

lref2^pp.lref*pp.lref;
1* *1

pavg = cavg = vol = 0.0;
for (1.0;i<elnm;i++) (

dr2^0.5*edr[i];
dz2 = 0.5*edz[i];
xm = dr2*dz2;
for (j=0;j<4;j++) (

epr.v[j] = hp[eldeffinfl];
ecs.v[j] = co[eldef[i][j]]; }

pa = ca = va = 0.0;
for (k=0;k<ngp;k++)

zp = gp(ngp, k);
zw = gw(ngp, k);
zz = dz2*(zp+1.0);
for (j=0;j<ngp;j++) (

rp = gp(ngp, j);

^

rw^gw(ngp, j);
rr = dr2*(rp+1.0);

^

/*^*/

ww = rw*zw;
nrzt = fnrzt(rr, zz, edr[i], edz[1]);
p = c = 0.0;
for (1=0;1<4;1++) {

p += epr.v[1]*nrzt.v[1];
c^ecs.v[1]*nrzt.v[1]; }

switch (geom) (
case 0 :
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pa += ww*P;
ca += ww*c;
va += ww;
break;

case 1 :
pa += ww*PI2*rr*p*pp.lref;
ca += ww*PI2*rr*c*pp.lref;
va += ww*PI2*rr*pp.lref;
break; } ))

pavg += lref2*xm*pa;
cavg += lref2*xm*ca;
vol^lref2*xm*va; }

pavg /= vol;
cavg /= vol;
printf(" Average Tissue Solute Concentration = %10.5e\n", cavg);
printf(" Average Tissue Pressure^= %10.6e\n", pavg),

OSMOTIC PRESSURE ROUTINE.
USE EFFECTIVE SOLUTE CONCENTRATION (DUE TO VOLUME EXCLUSION).
THIS IS THE CONCENTRATION BEING CALCULATED (SO NO ADJUSTMENT).

*/
D *osmopr(I n, media pp, D *pc)

I i, jt
D cr, a[5], c[NM], op[NM];
/* */
for (i=0;i<NM;i++) (

c[i]^*pc++;
op[i] = 0.0; )

/*
CONVERT TO EFFECTIVE CONCENTRATION IN AVAILABLE FLUID VOLUME
*/
if (pp.osm := 0) {

a[0] = 0.0;
cr pp.cref/pp.pref;
a[1] = 57.18198*cr;
cr *= pp.cref;
a[2] = -1.238832*cr;
cr *= pp.cref;
a(3]^0.050849*cr;
/*
DIMENSIONLESS FORMS of c[) and op[]
*/
for (i=0;i<n;i++) (

op[i] = a[3];
for (j=2;j>-1;j--)

( op(i) = op[i]*c[i]+a[j]; }} }

printf(" osmp()");
/*^*/
return &op[0];

D *cmpd(I n, membr m, D p_art, D p_ven)

I i, j, maxit;
D bc, err, tol, xm;
D xbc[3], fbc[3], p[H14), pm[IM];
M s_f;
vec3 v_f, v_p;
/*^*/
maxit = 200;
tol = 1.0e-6;
/* */
v_p = fspl(n, &m.z[0], &m.hp[0], 2, 2, 0.0, 0.0);
v_f^fspl(n, &m.z(0], &m.op[0], 2, 2, 0.0, 0.0);
/*^*/

p[0] = p_art;
p[1] = (p_art-p_ven)/(m.z[0)-m.z[n-1));
bc p_ven;
/*
GET FIRST TWO VALUES
*/
for (j=0;j<2;j++) (

s_f^pdcr(2, m, &p[0], m.z[0], m.z[n-1), NJ-2, v_f, v_p, v_p, n, 1);
if (s_f.error == 1) (

printf("\n E: pdcr()-> Failed beyond t = 1610.6f.\n", s_f.t);
exit(0); }

err = bc-s_f.x[0];
xbc[J) = p[l];
fbc[j]^s_f.x[0];

p[1] *= 0.9; )
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if (fabs(err) < tol) goto done;
/*
SECANT METHOD UNTIL CONVERGENCE
*/
j^2;
do (

j++;
if ((xm^fbc[1]-fbc[0]) )= 0.0)

{ p[1] = xbc[1]-(fbc[1]-bc)*(xbc[1]-xbc[0])/xm; }

else
( P[1] = xbc[1]; }

s_f = pdcr(2, m, &p[0], m.z[0], m.z[n-1], NJ-2, v_f, v_p, v_p, n, 1);
if (s_f.error^1) {

printf("\n E: pdcr()-> Failed beyond t^9610.6f.\n", s_f.t);
exit(0); )

err = bc-s_f.x[0];
xbc[0] = xbc[1];
fbc[0] = fbc[1];
xbc[1] = p[1];
fbc[1] = s_f.x[0];

) while((fabs(err) > tol) && (j < maxit));
if (j > maxit) (

printf("\n Not converged after Ifid iterations.\n", maxit);
exit(0); )
*/

(s_f.error == 1) (
printf("\n E: pdcr()-> Failed beyond t^%10.6f.\n", s_f.t);
exit(0); )

err bc-s_f.x[0];
/*
vf
/*
for

done:^/*
if

/*
if

els

/ *

*/

= fspl(s_f.k, &s_f.tt[0], &s_f.xx[0], 2, 2, 0.0, 0.0);
*/

(i=0;i<n;i++)
Pm[i] = evalcs(s_f.k, v_f, &s_f.tt[0), &s_f.xx[0],

*/
(fabs(s_f.err) > tol)

printf(" cmpd(merr=%6.3e)", fabs(s_f.err)); )
e

( printf(" cmpd()"); }
*/

m.z[i]); )

return &pm[0];
}

D *cmcd(I n, membr m)
{

I i;
D c[HM], ccap[IM];
M s_f;
vec3 v_u, v_v, v_w;
/* */
v_u^fspl(n, &m.z[0], &m.cp[0], 2, 2, 0.0, 0.0);
v_v^fspl(n, &m.z[0], &m.ct[0], 2, 2, 0.0, 0.0);
v_w = fspl(n, &m.z[0], &m.vm[0], 2, 2, 0.0, 0.0);
/*^*/

c[0] = m.c_art;
/* */
s_f^pdcr(1, m, &c[0], m.z[0], m.z[n-1], NJ-2, v_u, v_v, v_w, n, 0);
/*^*/
v_u = fspl(s_f.k, &s_f.tt[0], &s_f.xx[0], 2, 2, 0.0, 0.0);
/*^*/
for (i=0;i<n;i++)

{ ccap[1] = evalcs(s_f.k, v_u, &s_f.tt[0], &s_f.xx[0], m.z[i]); }
/*^*/
printf(" cmcd()");
/*^*/
return &ccap[0];

PREDICTOR-CORRECTOR ODE INTEGRATION ROUTINES
s_f^CONTAINS ANY ERROR CONDITIONS, THE NUMBER OF FUNCTION

EVALUATIONS, k, THE SOLUTION AT tf, AND THE tt AND xo
VECTORS.

*/

M pdcr(I n, membr m, D *p_x, D tt, D tf, I nci, vec3 v_f, vec3 v_p, vec3 v_q,
I nn, I pc)

11, j;
D err, nerr, t[6], ci, ci24, xm;
D pi[6], bp[6], cp[6], ct[6], vm[6], f[6][HM], x[6][HM], x4p[HM];
M s_f;
/*^*/

a_f.err = 0.0;
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s_f.error = s_f.nf^s_f.k^0;
xm = 19.0/270.0;
ci^fabs(tf-tt)/((D)(nci)-1.0);
ci24 = ci/24.0;
for (i=0;i<n;i++)

{ m[0][1] = *p_x++; }

s_f.xx[s_f.k) = x[0][0];
s_f.k++;
for (i=0;i<nci;i++)

{ s_f.tt[i] = (p)( 1 )*ci; }
/*
FOURTH ORDER RUNGE KUTTA ROUTINE FOR FIRST FOUR POINTS

for (j=0;j<3;j++) (
tt += ci;
switch (pc) {

case 0 :

^

cp[j]^evalcs(nn, v_f, &m.z[0], &m.cp[0], tt-ci);
ct[j] = evalcs(nn, v_p, &m.z[0], &m.ct[0], tt-ci);

^

vm[j]^evalcs(nn,^&m.z[0], &m.vm[0], tt-ci);

^

p_x^rk4(n, m, tt-ci, ci, fix[J][0], cp[j], ct[j}, vm[J] pc);
break;

case 1 :
hp[j] = evalcs(nn, v_p, &m.z[0], &m.hp[0], tt-ci);

^

Pi[J]^evalcs(nn, v_f, &m.z[0], &m.op[0], tt-ci);
p_x = rk4(n, m, tt-ci, ci, &x[J][0], P1[J], hp[J], 0.0, pc);
break;

s_f.nf += 4;
for (i=0;i<n;i++)

^

{ x[j+1][1]^*p_x++;
s_f.xx[s_f.k]^x[j+1][0];
s_f.k++; }

/*
PREDICTOR-CORRECTOR INTEGRATION ROUTINE
*1

for (1=4;i> - 14--) {
t[i] = tt+(D)(i-3)*ci;
switch (pc) {

case 0

^

cp[j]^evalcs(nn, v_f, &m.z[0], &m.cp[0], t[i]);

^

ct[j]^evalcs(nn, v_p, &m.z[0], &m.ct[0], till);
vm[j] = evalcs(nn, v_q, &m.z[0], &m.vm[0], t[i]);
break;

case 1 :
hp[j] = evalcs(nn, v_p, &m.z[0], &m.hp[0], t[i]);
Pi[J] = evalcs(nn, v_f, &m.z[0], &m.op(0], t[i]);
break; ])

for (j=0;j<4;j++)
switch (pc) {

case 0 :
p_x^memcs(m, t[j], &m[J][0], cp[j], ct[j], vm[j]);
break;

case 1 :
p_x = mempr(m, t[J], &x[J][0], pi[j], hp[J]);
break; }

s_f.nf++;
for (i=0;i<n;i++)

{ f[j][1] = *p_m++; } }
/*
^*1

while (tt < (tf-ci)) {
err = nerr = 0.0;
t[4)^tt+ci;
switch (pc) {

case 0 :
cp[4]^evalcs(nn, v_f, &m.z[0), &m.cp[0], t[4]);
ct[4] = evalcs(nn, v_p, &m.z[0], &m.ct[0], t[4]);
vm[4] = evalcs(nn, v_q, &m.z[0], &m.vm[0], t[4]);
p_x = memcs(m, t[4], &x4p[0], cp[4), ct[4], vm[4]);
break;

case 1 :
hp[4] = evalcs(nn, v_p, &m.z[0], &m.hp[0), t[4]);
pi[4] = evalcs(nn, v_f, &m.z[0], &m.op[0], t[4]);
p_x = mempr(m, t[4], &x4p[0], pi[4), hp[4]);
break; }

s_f.nf++;
for (i=0;i<n;i++)

{ f(4)(i) = *p_x++; }
for (i=0;i<n;i++)

{ x4p[i] = m[3][1]+c124*(55.*f[3][1]-59.*f[2][1]+37.*f[1][1]-
9. * f [0][i)); )

/* x[4][] = x4c[] */
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for (i=0;i<n;1++) {
x[4] [1] = x[3][i]+c124*(9.*f[4][i]+19.*f[3][1]-5.*f[2][1]+f[1][11);
/*
ABSOLUTE ERROR ESTIMATE
*/

nerr^xm*fabs(x4p[il-x[4][1]);
if (nerr > err)

( err = nerr; ))
if (err > s_f.err)

( s_f.err = err; )
tt += ci;
s_f.xx[s_f.k]^x[4][0];
s_f.k++;
for (J=0;i< 4 ;J++) (

t[j] = t(j+1];
for (i=0;i<n;i++) (

x(j] (1] = x[J+1][1];
f[j][i] = f[j+1][i]; )) )

for (i=0;i<nri++)
{ s_f.x[i] = x[4][i]; )

/*^*/
return s_f;

rk4() IS THE STANDARD FOURTH ORDER RUNGE-EUTTA SYSTEM OF
ORDINARY DIFFERENTIAL EQUATION INTEGRATION ROUTINE. THIS
IS REQUIRED FOR THE PREDICTOR-CORRECTOR ROUTINE SINCE IT IS
A MULTI-STEP ALGORITHM.

*/

D *rk4(I n, membr m, D t, D ci, D *p_x, D xl, D x2, D x3, I pc)

I i;
D ci2, ci6;
D z[HM], g[HM], 8111[13141, cl [HM] ;
/*^*/
ci2^ci/2.0;
ci6^ci/6.0;
/*^*/
for (i=0;i<n;i++) (

z[i] = *p_x++;
sm[i] = 0.0; }

switch (pc) (
case 0 :

p_x = memcs(m, t, &z[0], xl, x2, x3);
break;

case 1 :
p_x = mempr(m, t, &z[0], xl, x2);
break; }

for (i=0;i<n;i++)
( q[i] = *p_x++; )

for (i=0;i<n;i++) (
sm[i] += q[i];
g[l]^z[i]+c12*q[i]; )

switch (pc) (
case 0 :

p_x = memcs(m, t+ci2, &q[0], xl, x2, x3);
break;

case 1 :
p_x = mempr(m, t+ci2, &g[0], xl, x2);
break; }

for (i=0;i<n;i++)
( q[i] = *p_x++; )

for (i=0;i<n;i++) {
sm[i] += 2.0*q[1);
g[i] = z[i]+ci2*q[i]; }

switch (pc) (
case 0 :

p_x^memcs(m, t+ci2, &q[0], xl, x2, x3);
break;

case 1 :
p_x = mempr(m, t+ci2, &g[0], xl, x2);
break; }

for (i=0;i<n;i++)
( q(i] = *p_x++; )

for (1=0;i<n;i++) {
sm[i] += 2.0*q[i];
g[i]^z[i]+ci*q[i]; )

switch (pc) (
case 0 :

p_x = memcs(m, t+ci, &q[0], xl, x2, x3);
break;
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case 1 :
p_x = mempr(m, t+ci, &g[0], xl, x2);
break;

for (i=0;i<n;i++)
{ q[i] = *p_x++1 )

for (i=0;i<n;i++)
sm[i] += g[i];
z[i] += ci6*sm[i]; )

return &z[0];

D *mempr(membr m, D t, D *px, D pi_mem, D p_tiss)

I i;
D p, x[HM], dxdt[HM];
/*^*/
for (i=0;i<HM;i++)

{ x[i] = *px++; }
/*^*/
p = p_tiss-m.sigma*(pi_mem-m.pi_cap);
/*
asg*lp*(p_tiss-p_cap-sigma*(pi_mem-pi_cap)
*/
dxdt[0]^x[1];
dxdt[1]^m.asq*lp(m.typ_lp, m.1p0, m.lpl, t) * (P-X[0]);
printf("", x[0],x[1],dxdt[0],dxdt[1]);
/*^*/
return &dxdt[0];

D *memcs(membr m, D t, D *px, D c_cap, D c_tis, D v_mem)

I 1;
D pe, isigmas, xm, x[HM], dxdt[HM];
/*^*1
for (i=0;i<HM;i++)

{ x(i)^*px++;
/*
Js = (PS.Pe/(e(Pe)-1))(c_cap-c_tis)+Jv(1-sigmas)c_cap
*/
isigmas^1.0-m.sigma;
xm^PI2*m.r[0]*m.lref;
pe fabs(v_mem*isigmas/m.ps_d);
if (pe > 1.0e-06) {

if (pe > 100.0)
{ dxdt[0] = -(v_mem*isigmas*c_cap)*xm; I

else
dxdt[0] = -(m.ps_d*(c_cap-c_tis)*pe/(exp(pe)-

1.0)+v_mem*isigmas*c_cap)*xm; I/
else

{ dxdt[0]^-(m.ps_d*(c_cap-c_tis)+v_mem*isigmas*c_cap)*xm; I
printf("", x[0],dxdt(0]);
/*^*/
return &dxdt[0];

NATURAL, CLAMPED, OR FITTED END POINTS CUBIC SPLINE. IF n < 6
THEN ONLY NATURAL OR CLAMPED BOUNDARY CONDITIONS CAN BE APPLIED.
O : NATURAL
1 : CLAMPED (1ST DERIVATIVE SPECIFIED : ldv, udv)
2 : FITTED END POINTS

*/
vec3 fepl(I n, D *px, D Spy, I lbc, I ubc, D ldv, D udv)
{

I i, k, kp, km, nm=n-1, norm=n-2;
D a[NJ], b[NJ], c[NJ], d[NJ), h[NJ], x[NJ], YINJ1, *P_f;
vec3 v_f;
/*^*/
for (i=0;i<NJ;i++) {

= *px++;
y[i] = *py++; }

/*^*/
if ((n < 6) && (lbc == 2)) lbc = 0;
if ((n < 6) && (ubc^2)) ubc = 0;
/*^*/
for (i=0;i<nm;i++)

h[i]^x[i+1]-x[i]; )
art)) = 0.0;
switch (lbc) {

case 0:
b[0]^1.0;
c[0]^0.0;
d[0] = 0.0;
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break;
case 1:

b[0] = 2.0*h[0];
c[0] = h[0];
d[0] = 3.0*((Y[1]-y[0])/h[0]-1dv);
break;

case 2:
b[0] = -h[0];
c[0] = h[0];
d(0] = 3.0*sq(h[0])*ddpoly(&x[0], &y[0]);
break; }

for (k=1;k<nm;k++)
kp = k+1;
km = k-1;
a[k] = h[km];
b[k] = 2.0*(h[km]+h[k]);
c[k] = h[k];
d[k] = 3.0*([Y[kP]-Y[h])/h[k]-(y(k]-Y[km])/h[km]); )

c[nm] = 0.0;
switch (ubc) {

case 0:
a[nm] = 0.0;
b[nm] 1.0;
d[nm] = 0.0;
break;

case 1:
a[nm] = h[nmm];
b[nm] = 2.0*h[nmm];
d[nm] = -3.0*((y[nrq-y[nmm])/h[nmm]-udv);
break;

case 2:
a[nm] = h[nmm];
b[nm] = -h[nmm];
d[nm] = -3.0*sq(h[nmm])*ddpoly(&x[n-4], &y[n-4]);
break; )

/*
TRIDIAGONAL LINEAR EQUATION SOLVER
/

p_f = tridiag(n, &a[0], &b[0], &c[0], &d[0]);
/*
^*/

for (i=0;i<n;i++)
v_f.r[i] = *P_f++; }

for (k=0;k<nm;k++) {
kp = k+1;
v_f.q[k] = (y[kp]-y[k])/h[k]-h[k]*(2.0*v_f.r[k]+v_f.r(kp])/3.0;
v_f.s[k] = (v_f.r[kp]-v_f.r[k])/(3.0*h[k]); )

/*^*/

return v_f;
}

D *tridiag(I n, D *a, D *b, D *c, D *d)
{

I i, im, nm=n-1;
D xmt, x[NJ], p[NJ], g[NJ];
/*^*/

a++ ;
p[0] = -(*c++)/(*b);
q[o] = (*d++)/(*b++);
for (i=1;i<n;i++) {

im = i-1;
xmt = (*a)*p[im]+(*b++);
p[i] = -(*c++)/xmt;
q[i] = ((*d++)-(*a++)*q[im])/xmt; )

x[nm] = q[nm];
for (i=nm-1;i>-1;i--)

x[i] = pfil*x(i+1]-4-q[i]; }
/*^*/
return fix[0];

}

D evalcs(I n, vec3 v, D *px, D *PY, D zz)
{

I i, j, k, nm=n-1;
D xt, zy, x[NJ], Y[N,1];
C *mssg;
mssg = "\n W: evalcs()-> %f out of range.\n";
/*^*/

for (i=0;i<NJ;i++) {

x[i] = *px++;
Y[i] = *PY++; )

/*
PLUS-MINUS TWO PERCENT OF RANGE
*1
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xt = 0 02*(x[nm]-x[0]);
if (zz < (x[0]-xt)) {

= 1;
printf(mssg, zz); }

else
if (zz > (x[nm]+xt)) (

= n-2;
printf(mssg, zz); )

else { i = 0;
j = nm;
while (j > 1+1) (

k = (i+j)/2.0;
if (zz < x[k]) j = k;else 1 = k; ) }

zy = zz-x[i];
zy = y[i]+zy*(v.g[i]+zy*(v.r[i)+zy*(v.e[i])));
/*^*/
return zy;

}

D devalca(I n, vec3 v, D *px, D zz)

I i, j, k, nm=n-1;
D xt, zy, x[NJ];
C *mssg;
mssg = "\n W: devalcs()-> %f out of range.\n";
/*^*/
for (i=0;i<NJ;i++)

( x[i] = *px++; }

/*
PLUS-MINUS TWO PERCENT OF RANGE
*/
xt = 0.02*(x[nm)-x[0]);
if (zz < (x[0]-xt)) {

= 1;
printf(masg, zz); )

else
if (zz > (x[nm]+xt)) (

= n-2;
printf(mssg, zz); )

else ( i = 0;
j = nm;
while (j > 1+1) (

k = (1+J)/ 2 . 0 ;
if (zz < x[k]) j = k;else i = k;

zy^zz-x[i];
zy^v.g[i]+zy*(2.0*v.r[i]+zy*(3.0*v.s[i]));
/*^*/

return zy;

D d2evalca(I n, vec3 v, D *px, D zz)

I i, j, k, nm=n-1;
D xt, zy, x[NJ];
C *mssg;
mssg = •\n W: d2evalcs()-> 96f out of range.\n";
/*^*/

for (i=0;i<NJ;i++)
( x[i] = *px++; )

/*
PLUS-MINUS TWO PERCENT OF RANGE
*/

xt = 0.02*(x[nm]-x[0]);
if (zz < (x[0]-xt)) (

= 1;
printf(mssg, zz); )

else
if (zz > (x[nm]+xt)) (

i = n-2;
printf(mssg, zz); )

else (^0;
j = nm;
while (j > i+1) (

k = (i+j)/2.0;
if (zz < x[k]) j^k;else 1 = k; ) )

zy = zz-x[i];
zy = 2.0*v.r[i]+zy*3.0*v.s[i];
/*^*/

return zy;

) }

ddpoly() SUPPLIES THE THIRD DERIVATIVE OF THE FITTED NEWTON'S
DIVIDED DIFFERENCE POLYNOMIAL. INSTEAD OF SETTING UP A DIVIDED
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DIFFERENCE TABLE, ONLY THE REQUIRED COEFFICIENTS DESCRIBING THE
INTERPOLATING POLYNOMIAL ARE CALCULATED. THIS REDUCES MEMORY USE
AND CALCULATIONS.

*1

D ddpoly(D *px, D *py)
{

I i, j;
D x[6], y[6];
for (i=1;i<5;i++)

x [i] = *px++;
y[i]^*py++; }

for (j= 1 ;i< 4 ;J++) (
for (i=4;i>j;i--)

( y(1) = (Y[1] -Y[1 - 1))/(x[i] -x(i -j)); )1

RETURN THIRD DERIVATIVE/6.0
*1

return y[4];
}

D *solver(I n, I bw, D *pa, D *pb)

I i, j, k=0, nm=n-1, ink, index(NM], ierror=0;
D max, xm;
D x(NM], b[NM], maxr[NM], a[NM]IEM];
char *mssg;
swag^"\n ERROR: solver()-> Diagonal element = 0.0•;
for (i=0;i<NM;i++) (

b[1] = *pb++;
for (j=0;J<NM;J++)

( a[i](1) = *Pa++; ))
/*^*/

for (1=0;1<n;1++) (
index[1] = 1;
max = 0.0;
for (j=i;j<i+bw;j++) (

if (fabs(a[i][j]) > max)
( max = fabs(a[1](J)); ))

maxr[1] = max; )
for (i=0;i<nm;1++) (

max = 0.0;
for (j=i;j<n;J++)

if (fabs(a[index[J])(1))/maxr[index[J]] > max) (
k = j;
max = fabs(a[index[j]][1])/maxr[index[j]]; }}

ink = index[k];
index[k] = index[i];
index[i] = ink;
for (j=i+l;j<n;j++) (

xm = a[index[J]][1]/a[ink][i];
for (k=i+1;k<i+bw;k++)

( a[index[J]][k] -= xm*a[ink][k]; )
b[index[J)) -= xm*b[index[i]];
a(index(jMi] = 0.0; ))

for (j=nm;j>0;j--) (
for (i=j-l;i>-l;i--) (

xm = a[index[i]][JI/a[index[j)][j];
a[index[i]][j] -= xm*a[index[j]][j];
b[index[i]] -= xm*b(index[j]); ))

for (i=0;i<n;i++) {
if (a[index[1]][1] == 0.0)

{ ierror = l;continue; )
x[i] = b[index[1]]/a(index[1]][1]; )

if (ierror == 1) (
puts(mssg);
exit(0); )

/*^*/

return &x[0];

D *matvecbw(I nb, I ne, I bw, D *pa, D *pv)

I i, j, bw2p;
D b[NM], v[NM), a[NM][NM];
bw2p = bw/2+2;
for (i=0;i<NM;i++)

v(i) = *pv++;
b[i] = 0.0;
for (j=0;j<NM;J++) (

a[i][i] = *Pa++; ))
/*^*/

for (1=nb;i<=ne;i++)
for (j=i-bw2p;j<=i+bw2p;j++)
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if (j < nb) continue;
if (j > ne) continue;
b[1] += 4(1][i]*v[1]; )}

return &b[0];
)
D 11(D x, D dx)
{

D y = 1.0-x/dx,
return y;

}
D 12(D x, D dx)

D y = x/dx;
return yr

)
D 13(D x, D dx)

D y = 4.0*(x/dx)*(1.0-x/dx);
return y;

)
D dll(D x, D dx)

D y = -1.0/dx;
return y;

}
D d12(D x, D dx)

D y = 1.0/dx;
return y;

}
D d13(D x, D dx)

D y = (4.0/dx)*(1.0-2.0*(x/dx));
return y;

)
D d211(D x, D dx)

D y = 0.0;
return y;

)
D d212(D x, D dx)

D y = 0.0;
return yr

)
D d213(D x, D dx)

D y = -8.0/s4(dx);
return y;

}
W fnrzt(D r, D z, D dr, D dz)

D 11r, 12r, 11z, 12z;
W v;
llr = 11(r, dr);
12r = 12(r, dr);
11z = 11(z, dz);
12z = 12(z, dz);
/* *1
v.v[0) = 11r*11z;
v.v[1] = 12r*11z;
v.v[2] = 12r*12z;
v.v[3] = 11r*12z;
return v;

}
W fmrzt(D r, D z, D dr, D dz)

D 11r, 12r, 11z, 12z;
W v;
llr = 11(r, dr)+13(r, dr);
12r = 12(r, dr)+13(r, dr);
llz = 11(z, dz)+13(z, dz);
12z = 12(z, dz)+13(z, dz);
/* *1
v.v[0] = 11r*11z;
v.v[1] = 12r*11z;
v.v[2] = 12r*12z;
v.v[3] = 11r*12z;
return v;

)
W fwrzt(D aa, W evr, W evz, W przt, W dpdr, W dpdz)
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I i;
W a, v;
/*^*/
for (1=0;i<4;1++) {

aa*(evr.v(i)*dpdr.v[1]+evz.v[i]*dpdz.v[i]);
v.v[i] = przt .v [ 1] +a .v [1] ; }

/*^*/
return v;

)
W fdndr(D r, D z, D dr, D dz)
{

D dllr, dl2r, 11z, 12z;
W v;
dllr = d11(r, dr);
dl2r = d12(r, dr);
llz = 11(z, dz);
12z = 12(z, dz);
/*^*/
v.v[0] = dllr*11z;
v.v[1] = d12r*11z;
v.v[2] = d12r*12z;
v.v[3] = dllr*12z;
return v;

)
W fdndz(D r, D z, D dr, D dz)
{

D 11r, 12r, dllz, d12z;
W v;
llr = 11(r, dr);
12r = 12(r, dr);
dllz^dll(z, dz);
d12z = d12(z, dz);
/*^*/
v.v[0] = 11r*dllz;
v.v[1] = 12r*dllz;
v.v[2] = 12r*d12z;
v.v[3] = 11r*d12z;
return v;

)
W fdmdr(D r, D z, D dr, D dz)
{

D dllr, d12r, 11z, 12z;
W v;
dllr = dll(r, dr)+d13(r, dr);
dl2r = d12(r, dr)+d13(r, dr);
llz = 11(z, dz)+13(z, dz);
12z = 12(z, dz)+13(z, dz);
/*^*/
v.v[0] = dllr*11z;
v.v[1] = d12r*11z;
v.v[2] = dl2r*12z;
v.v[3] = dllr*12z;
return v;

)
W fdndz(D r, D z, D dr, D dz)

D 11r, 12r, dllz, d12z;
W v;
llr = 11(r, dr)+13(r, dr);
12r = 12(r, dr)+13(r, dr);
dllz = dll(z, dz)+d13(z, dz);
d12z = d12(z, dz)+d13(z, dz);
/*^*/
v.v[0] = 11r*dllz;
v.v[1] = 12r*dllz;
v.v[2] = 12r*d12z;
v.v[3] 11r*d12z;
return v;

)
W fd2mdr2(D r, D z, D dr, D dz)

D d211r, d212r, 11z, 12z;
W v;
d211r = d211(r, dr)+d213(r, dr);
d212r = d212(r, dr)+d213(r, dr);
llz = 11(z, dz)+13(z, dz);
12z = 12(z, dz)+13(z, dz);
/*^*/
v.v[0] = d211r*11z;
v.v[1] = d212r*11z;
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^v.v[2]^d212r*12z;
v.v[3] = d211r*12z;
return v;

}
W fd2mdrdz(D r, D z, D dr, D dz)

D dllr, dl2r, dllz, d12z;
W v;
dllr = dll(r, dr)+d13(r, dr);
dl2r = d12(r, dr)+d13(r, dr);
dllz
d12z

= dll(z,
d12(z,

dz)+d13(z,
dz)+d13(z,

dz);
dz);

/*^*/
v.v[0] = dllr*dllz;
v.v[1] = dl2r*dllz;
v.v[2] = dl2r*d12z;
v.v[3] dllr*d12z;
return v;

W fd2mdz2(D r, D z, D dr, D dz)

D 11r, 12r, d211z, d212z;
W v;
llr = 11(r, dr)+13(r, dr);
12r = 12(r, dr)+13(r, dr);
d211z = d211(z, dz)+d213(z, dz);
d212z = d212(z, dz)+d213(z, dz);
/*^*/
v.v[0] = 11r*d211z;
v.v[1] = 12r*d211z;
v.v[2] 12r*d212z;
v.v[3] = 11r*d212z;
return v;

W fd3mdr2dz(D r, D z, D dr, D dz)

D d211r, d212r, dllz, d12z;
W v;
d211r = d211(r, dr)+d213(r, dr);
d212r = d212(r, dr)+d213(r, dr);
dllz = dll(z, dz)+d13(z, dz);
d12z = d12(z, dz)+d13(z, dz);
/*^*/
v.v[0]^d211r*dllz;
v.v[1] = d212r*dllz;
v.v[2] = d212r*d12z;
v.v[3] = d211r*d12z;
return v;

W fd3mdrdz2(D r, D z, D dr, D dz)
{

D dllr, dl2r, d211z, d212z;
W v;
dllr = dll(r, dr)+d13(r, dr);
dl2r = d12(r, dr)+d13(r, dr);
d211z = d211(z, dz)+d213(z, dz);
d212z = d212(z, dz)+d213(z, dz);
/*^*/
v.v[0] = dllr*d211z;
v.v[1]^dl2r*d211z;
v.v[2]^dl2r*d212z;
v.v[3] = dllr*d212z;
return v;

D gp(I n,^I i)

D z=0.0;

^

switch^(n)^{

case 2^: z = gp2(i);break;
case 3^: z gp3(i);break;
case 4^: z = gp4(i);break;
case 6^: z = gp6(i);break;
case 8^: z = gp8(i);break;
case

return z;
16^: z = gp16(1);break;^}

D gw(I n,^I i)
{

D w=0.0;
switch^(n)

case 2^: w = gw2(i);break;
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case 3^w gw3(i);break;
case 4 : w = gw4(i);break;
case 6 : w = gw6(i);break;
case 8 : w = gw8(i);breaki
case 16 : w = gw16(1);break; )

return w;

TWO POINT GAUSS-LEGENDRE FORMULA
*/

D gp2(I i)
{

D
switch (i) {

case 0 : z = 0.577350269189626/break;
case 1 : z = -0.577350269189626;break; )

return z;
)

/*
TWO POINT GAUSS-LEGENDRE FORMULA

*/
D gw2(I 1)
{

D w=0.0;
switch (i) (

case 0 : w^1.000000000000000;break;
case 1 : w = 1.000000000000000;break; )

return w;

THREE POINT GAUSS-LEGENDRE FORMULA
*/

D gp3(I i)
{

D z=0.0;
switch (i) (

case 0 : z^0.000000000000000;break;
case 1 : z^0.774596669241483;break;
case 2 : z^-0.774596669241483;break; )

return z;
}
/*

THREE POINT GAUSS-LEGENDRE FORMULA
:1

D gw3(I i)

D w=0.0;
switch (i) {

case 0 : w = 0.888888888888889;break;
case 1 : w = 0.555555555555556;break;
case 2 : w 0.555555555555556;break; )

return w;

FOUR POINT GAUSS-LEGENDRE FORMULA
*1
D gp4(I i)
{

D z=0.0;
switch (i)

case 0 : z = 0.339981043584856;break;
case 1 : z = -0.339981043584856;break;
case 2 : z

• 

0.861136311594053;break;
case 3 : z = -0.861136311594053;break; )

return z;
)
/*

FOUR POINT GAUSS-LEGENDRE FORMULA
*/

D gw4(I 1)

D w=0.0;
switch (i) {

case 0 : w = 0.652145154862546;break;
case 1 : w = 0.652145154862546;break;
case 2 : w 0.347854845137454;break;
case 3 : w = 0.347854845137454;break; )

return w;

SIX POINT GAUSS-LEGENDRE FORMULA
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*/
D gp6(I 1)
{

D z=0.0;
switch (i) {

case 0 : z = 0.932469514203152;break;
case 1 : z = -0.932469514203152;break;
case 2 : z = 0.661209386466265;break;
case 3 : z^-0.661209386466265;break;
case 4 : z^0.238619186083197;break;
case 5 : z = -0.238619186083197;break; }

return z;

SIX POINT GAUSS-LEGENDRE FORMULA
*/

D gw6(I i)
{

D w=0.0;
switch (i) (

case 0 : w^0.171324492379170;break;
case 1 : w = 0.171324492379170;break;
case 2 : w = 0.360761573048139;break;
case 3 : w = 0.360761573048139;break;
case 4 : w = 0.467913934572691;break;
case 5 w = 0.467913934572691;break; }

return w;
}

/ *
EIGHT POINT GAUSS-LEGENDRE FORMULA

*/

D gp8(I i)
{

D z=0.0;
switch^(i)^(

case 0^: z = C.960289856497536;break;
case 1^: z = -0.960289856497536;break;
case 2^: z = 0.796666477413627;break;
case 3^: z = -0.796666477413627;break;
case 4^: z 0.525532409916329;break;
case 5 z = -0.525532409916329;break;
case 6^: z = 0.183434642495650;break;

return
case
z;

7^: z = -0.183434642495650;break;^}

/*
EIGHT POINT GAUSS-LEGENDRE FORMULA

*/
D gw8(I i)

D w=0.0;
switch (i)^{

case 0^: w = 0.101228536290376;break;
case 1^: w = 0.101228536290376;break;
case 2^: w 0.222381034453374;break;
case 3^: w = 0.222381034453374;break;
case 4^: w = 0.313706645877887;break;
case 5^: w = 0.313706645877887;break;
case 6^: w = 0.362683783378362;break;

return
case
w;

7^: w 0.362683783378362;break;^}

SIXTEEN POINT GAUSS-LEGENDRE FORMULA
*/

D gp16(I i)
{

D z=0.0;
switch^(i)^{

case 0 : z = 0.095012509837637440185;break;
case 1 : z -0.095012509837637440185;break;
case 2 : z 0.281603550779258913230;break;
case 3 : z = -0.281603550779258913230;break;
case 4 : z = 0.458016777657227386342;break;
case 5 : z = -0.458016777657227386342;break;
case 6 : z = 0.617876244402643748447;break;
case 7 : z = -0.617876244402643748447;break;
case 8 : z = 0.755404408355003033895;break;
case 9 : z = -0.755404408355003033895;break;
case 10 : z = 0.865631202387831743880;break;
case 11 : z -0.865631202387831743880;brsak;
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case 12 : z = 0.944575023073232576078;break;
case 13 : z -0.944575023073232576078;break;
case 14 : z = 0.989400934991649932596:break;
case 15 : z = -0.989400934991649932596;breaki }

return z;

SIXTEEN POINT GAUSS-LEGENDRE FORMULA
*1

D gw16(I 1)

D w=0.0;
switch (i)^{

case 0^: w = 0.189450610455068496285;break;
case 1^: w 0.189450610455068496285;break;
case 2^: w = 0.182603415044923588867;break;
case 3^: w = 0.182603415044923588867;break;
case 4^: w = 0.169156519395002538189;break;
case 5^: w = 0.169156519395002538189;break;
case 6^: w = 0.149595988816576732081;break;
case 7^: w = 0.149595988816576732081;break;
case 8^: w = 0.124628971255533872052;break;
case 9^: w = 0.124628971255533872052;break;
case 10^: w = 0.095158511682492784810;break;
case 11 w = 0.095158511682492784810;break;
case 12^: w = 0.062253523938647892863;break;
case 13^: w = 0.062253523938647892863;break;
case 14^: w = 0.027152459411754094852;break;

return
case
w;

15 w = 0.027152459411754094852;break;^}

V outdata(I pc, I ss, I n, I nrout, I nzout, I *pi, I *pe, F *rp, F *zp,
D *pr, D *pz, D *dr, D *dz, I ihof, D t, C *title, D *data, FILE *out)

I i, j, k, 1, el;
I iout[RW*ZW), eldef[EM][6];
F rot[IM], zot[IM]:
D rr, zz, sum, edr[EM], edz[EM], r[NM], ZINN], f[NM];
W nrzt;
/*
for (i=0;i<NM;i++)

r(i) = *pr++;
z[i] = *pz++;
f[i] = *data++; }

for (i=0;i<IM;i++) {
rot[i] = * r13++:
zot[i] = * zP++: }

for (i=0;i<EM;i++)
edr[i] = *dr++;
edz(i] = *dz++;
for (j=0;j<6;j++)

( eldef[1][J] = *pe++; ) }
for (1=0;i<RW*ZW;i++)

{ lout[i] = *pi++; )
if (ss == 3)

ss = 0; }

fprintf(out, "%d %d %d %d\n", pc, nrout, nzout, n);
/*
TITLE 1 AND 2

fputs(title, out);
switch (pc)

case 0: /* CONC */
fprintf(out, "Concentration of Solute");
break;

case 1: /* PRES */
fprintf(out, "Pressure Distribution");
break;

case 2: /* PECL */
fprintf(out, "Peclet Distribution");
break;

case 3: /* POTL */
fprintf(out, "(P-#sp&)/Pref");
break; I

switch (ss) {

case 0 :
fprintf(out, " at Steady-State.$\n");
break;

default :
fprintf(out, " at t^%10.6f$\n", t);
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break; )
/*
TITLE X, Y, AND Z AXES
*I
fputs("Distance into Tissue, dimensionless$\n", out);
fputs("Distance down Capillary, dimensionless$\n", out);
switch (pc) {

case 0: /* CONC */
fputs("Concentration, dimensionless$\n", out);
break;

case 1: /* PRES */
fputs("Pressure, dimensionless$\n", out);
break;

case 2: /* PECL */
fputs("Peclet Number$\n", out);
break;

case 3: /* POTL */
fputs("(P-#sp&)/PrefS\n", out);
break; )

for (i=0;i<nzout;i++) {
for (j=0;j<nrout;j++) {

k = i*nrout+j;
el = iout[k];
rr^rot[J]-r[eldef[el][0]];
zz = zot[il-z[eldef[el][0]];
if (ihof == 1)

{ nrzt = fmrzt(rr, zz, edr[el], edz[el]); }
else

{ nrzt^fnrzt(rr, zz, edr[el], edz[el]);
sum = 0.0;
for (1=0;1<4;1++)

{ sum += nrzt.v[1]*f[eldef[el][1]);
fprintf(out, " %10.6f %10.6f %15.12f\n",

rot[j], zot[i], sum); })
switch (pc) {

case 0: printf(" CONC");break;
case 1: printf(" PRES");break;
case 2: printf(" PECL");break;
case 3: printf(' POTL");break;

V outuv2d(I wtf, I ss, I n, I nrout, I nzout, I *pi, I *pe, F *rp, F *zp,
D *pr, D *pz, D *dr, D *dz, I ihof, D t, C *title, D *ur, D* uz, FILE *out)

{

I i, j, k, 1, el;
I iout[RW*ZW], eldef[EM][6];
F rot(IM], zot[IM];
D rr, zz, sr, sz, edr[EM], edz[EM], rINM), z[NM], vr[NM], vz[NMJ;
W nrzt;
/*^*/
for (i=0;i<NM;i++) {

r[i] *pr++;
z[i] = *pz++;
vr[i] = *ur++;
vz[i] *uz++; }

for (i=0;i<IM;i++) {
rot(i] = *rp++;
zot[i] = *zp++; )

for (i=0;i<EM;i++) (
edr[i] = *dr++;
edz[i] = *dz++;
for (j=0;j<6;j++)

{ eldef(i)[J]^*Pe++; ) }

for (i=0;i<RW*ZW;i++)
{ iout[i] = *pi++ ; )

if (as == 3)
ss = 0 ; }

/*^*/
fprintf(out, "%d %d %d %d\n", 4, nrout, nzout, n);
/*
TITLE 1 AND 2
*/
fputs(title, out);
fprintf(out, "Velocity Field");
switch (ss) {

case 0 :
fprintf(out, " at Steady-State.$\n");
break;

default :
fprintf(out, " at t = %10.6f$\n", t);
break; )

/*
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TITLE X, Y, AND Z AXES
*/
fputs("Distance into Tissue, dimensionless$\n", out);
fputs("Distance down Capillary, dimensionless$\n', out);
fputs(" $\n", out);
switch (wtf)

case 0 :
for (i=0;i<nzout;i++) {

for (j=0;j<nrout;j++) (
k i*nrout+j;
el = iout[k];
rr = rotIJI-rfeldeffel][0]);
zz^zot[i]-z[eldef[el][0]];
if (ihof^1)

{ nrzt = fmrzt(rr, zz, edr[el], edz[e1]); )
else

{ nrzt^fnrzt(rr, zz, edr[el], edz[el]);
sr = sz = 0.0;
for (1...0;1<4;1++) (

sr += nrzt.v[1]*vr[eldef[el][1]];
sz += nrzt.v[1]*vz[eldef[el][1]]; )

fprintf(out, ' %10.6f %10.6f %10.6e %10.6e\n",
rot[J], zot[i], sr, sz); ))

break;
case 1 :

for (i..0;i<n;i++)
( fprintf(out, "%10.6f %10.6f %10.6e %10.6e\n",

r[i], z[i], vr[i), vz[i]); )
break; )

printf(" VEL");

V outcoll(I pc, I ss, I n, D t, D *px, D *py, D *pf, C "title, FILE *out)

I i;
if (ss^3)

( ss = 0; )
fputs(title, out);
switch (pc) (

case 0: /* CONC */
fprintf(out, "Concentration of Solute");
break;

case 1: /* PRES */
fprintf(out, "Pressure Distribution");
break;

case 2: /* PECL */
fprintf(out, "Peclet Distribution");
break;

case 3: /* POTL */
fprintf(out, "Potential Distribution");
break; }

switch (ss) (
case 0 :

fprintf(out, " at Steady-State.S\n");
break;

default :
fprintf(out, " at t^%10.6f$\n", t);
break; }

fputs("Distance into Tissue, dimensionless$\n", out);
fputs("Distance down Capillary, dimensionless$\n", out);
switch (pc) {

case 0: /* CONC */
fputs("Concentration, dimensionless$", out);
break;

case 1: /* PRES */
fputs("Pressure, dimensionless$", out);
break;

case 2: /* PECL */
fputs("Peclet Number$", out);
break;

case 3: /* POTL */
fputs("(P-#8P&)/Pref$", out);
break; }

fprintf(out, "\n %d\n", n);
for (i.=0;i<n;i++)

fprintf(out, " %10.6f %10.6f %15.12f\n", *px++, *py++, *pf++); )
switch (pc)

case 0: printf(" CONC");break;
case 1: printf(" PRES");break;
case 2: printf(" PECL");break;
case 3: printf(" POTL");break;

}
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V outcapp(I n, I as, D t, D *pz, D *pc, D *qc, D *vm, D *cc, D *pe, D *vs, C *title, FILE
*out)
{

I 1;
if (as == 3)

{ ss = 0; }
fputs(title, out);
fprintf(out, "Capillary Variables");
switch (as) {

case 0 :
fprintf(out, " at Steady-State.$\D");
break;

default :
fprintf(out, ' at t = %10.6f$\n", t);
break; )

fprintf(out, " %d\n", n);
fputs('^z^Pcap^Qcap^Vmem^Ccap^mPe^Vsol\n', out);
for (1=0;i<n;i++)

( fprintf(out, " 966.4f %8.6f %8.6e %8.6e %8.6e %8.6e %8.6e\n",
*pz++, *pc++, *qc++, *vm++, *cc++, *pe++, *vs++); )

printf(' CAPP");
}

V contour(I pc, I as, I n, I nr, I nz, D *pz, D t, C *title, FILE *out)

I i, j, k;
D z[NM];
/*^*1
for (i=0;i<NM;i++)

{ z(i) = *pz++; }
if (as == 3)

{ ss = 0; }
/*^*1
fputs(title, out);
switch (pc) (

case 0: /* CONC */
fprintf(out, "Concentration of Solute");
break;

case 1: /* PRES */
fprintf(out, "Pressure Distribution");
break;

case 2: /* PECL */
fprintf(out, "Peclet Distribution");
break;

case 3: /* POTL */
fprintf(out, "Potential Distribution");
break; )

switch (ss) (
case 0 :

fprintf(out, " at Steady-State.\n");
break;

default :
fprintf(out, " at t = %10.6f\n", t);
break; )

/
^*/

for (i=flz;i>071--) (
fprintf(out, "I ");
for (j=0;j<nr;j++) (

k^(i-1)*nr+j;
fprintf(out, "%5.4f ", z(k)); }

fprintf(out, "I\n"); }

V header(D rg, D zg, D knn, membr mem, media pp, FILE *out)

fprintf(out, "AR = %3.1f:%d$\n", (zg/rg), 1);
fprintf(out, "Rf = %4.2f$\n", pp.hind);
fprintf(out, "#s& = %4.2f$\n", mem.aigma);
fprintf(out, "#s&g = %4.2f$\n", pp.sigmag);
fprintf(out, "PS = %4.2E m/s$\n", mem.ps);
fprintf(out, "D = %4.213 m2/8$\n", pp.diff);
fprintf(out, "Lp = %4.2E m/Pa.s$\n", mem.1p0);
fprintf(out, "K = %4.213 m2/Pa.s$\n", knn);
fprintf(out, "LS = %4.22 m3/m3.Pa.s$\n", pp.ls);

I safechk(I ndnm, I elnm, I nr, I nz, I nzout, I nzout)

I err=0;
C *ml, *m2, *m3, *m4, *m5, *m6, *m7, *m8;
ml = " E: safechk()-> NM too small. Set > %d.\n";
m2 = " E: safechk()-> EM too small. Set > %d.\n";
m3 = " E: safechk()-> IM too small. Set > %d.\n";
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m4 = " B: safechk()-> MM too small. Set > %d.\n";
m5 =^B: safechk()-> RW too small. Set > %d.\n";
m6 =^B: safechk()-> ZW too small. Set > %d.\n";
m7 =^B: safechk()-> nr > nz.^Set nr < nz.\n";
m8 = " B: safechk()-> NJ < IM.^Set NJ > IM.\n";
/*^*/
if (ndnm+2 > NM) {

printf(ml, ndnm);
err = 1; }

if (elnm+2 > BM) {
printf(m2, elnm);
err = 1; )

if (nz+2 > IM) (
printf(m3, nz);
err = 1; )

if ((2*nr+2*nz) > MM) (
printf(m4, 2*nr+2*nz);
err = 1; )

if (nrout+2 > RW) (
printf(m5, nrout);
err = 1; )

if (nzout+2 > ZW) {
printf(m6, nzout);
err = 1; }

if (nr > nz) (
printf(m7);
err = 1; )

if (NJ < IM) (
printf(m8);
err = 1; )

/*^*/
return err;

I datachk(I *pc)

I 1, err=0, nerr=0, chk[50];
C *mssgl, "item."";
mssgl^" E: datachk()-> %s card missing.\n";
for (1=0;1<50;1++)

( chk[i] = *pe++; )
for (1=0;1<50;1++) (

switch(i) (
case 0 : if (chk[1] == 0) {

err = 1;
item = "$end input"; }

break;
case 1 : if (chk[i] == 0) (

err = 1;
item = "$beg input"; }

break;
case 2 : if (chk[i] == 0) (

err = 1;
item = "$prob size"; )

break;
case 3 : if (chk[i] == 0) {

err = 1;
item = "$tis refl coef"; }

break;
case 4 : if (chk(i] == 0) (

err = 1;
item = "$transient"; }

break;
case 5 : if (chk[i] == 0) (

err = 1;
item = "$max iterations"; )

break;
case 6 : if (chk[i] == 0) {

err = 1;
item = "$dispersivity"; }

break;
case 7 : if (chk[i] == 0)

err = 1;
item = "$fluid sink LS"; }

break;
case 8 : if (chk[i] == 0) f

err = 1;
item = "$porosity"; }

break;
case 9 : if (chk(i] == 0) (

err = 1;
item = "$fluid viscosity"; }
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break;
case 10: if (chk[i] == 0) {

err^1;
item = "$relaxation"; }

break;
case 11: if (chk[i] == 0) {

err = 1;
item = "$hydraulic cond"; )

break;
case 12: if (chk[i] == 0) {

err = 1;
item = "$conc node sink"; }

break;
case 13: if (chk[i] == 0) {

err = 1;
item = "$mem refl coef"; }

break;
case 14: if (chk[i] == 0) (

err^1;
item^"$fluid density"; )

break;
case 15: if (chk[i] == 0) {

err^1;
item = "$diff mem PS"; }

break;
case 16: if (chk[i]^0) {

err = 1;
item = "$geometry"; )

break;
case 17: if (chk[i] == 0) (

err = 1;
item^"$cap osm pr"; )

break;
case 18: if (chk[i] == 0) {

err = 1;
item = "$node definitions"; )

break;
case 19: if (chk[i] == 0) (

err = 1;
item = "$elem definitions"; }

break;
case 20: if (chk[i] == 0) (

err = 1;
item = "$conc node bc"; )

break;
case 21: if (chk[i] == 0) (

err = 1;
item = "$conc elem bc"; )

break;
case 22: if (chk[i) == 0)

err = 1;
item = "$conc node is"; )

break;
case 23: if (chk[i] == 0) (

err = 1;
item = "$pres node bc"; }

break;
case 24: if (chk[i] == 0) (

err = 1;
item = "$pres elem bc"; )

break;
case 25: if (chk[i] == 0) {

err = 1;
item = "$write results"; )

break;
case 26: if (chk[i) == 0) {

err = 1;
item = "$contour"; }

break;
case 27: if (chk[i] == 0)

err = 1;
item = "$ref values"; )

break;
case 28: if (chk[i] == 0) (

err = 1;
item = "$tolerance"; )

break;
case 29: if (chk[i] == 0) {

err = 1;
item = "$frac volumes";

break;
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case 30: if^(chk[i]
err
item

break;

==^0)^{

=^1;
= '$conv hindrance"; )

case 31: if^(chk[i]
err
item

break;

==^0)^{

=^1;
= "$gauss points";^}

case 32: if^(chk[i]
err
item

break;

==^0)^{

=^1;
.^"$asq";^)

case 33: if^(chk[i]
err
item

break;

==^0)^(
= 1;
= "$cap conditions"; }

case 34: if^(chk[i]
err
item

break;

== 0)^(
= 1;
= "$hof";^)

case 35: if^(chk[i]
err
item

break;

.= 0)^(
= 1;
= "$node results"; )

case 36: if^(chk[i]
err
item

break;

== 0)
=^1;
= "$osm pres";^}

case 37: if^(chk[i]
err
item

break;

== 0)^{

=^1;
= "$dgamma"; }

case 38: if^(chk[i]
err
item

break;

== 0)^{
= 1;
= "$lymph cond"; )

case 39: if^(chk[i]
err
item

break;

== 0)^{
= 1;
= "$cap wall Lp"; )

case 40: if^(chk[i]
err
item

break;

== 0)^{

=^1;
= "$wall th";^}

case 41: if^(chk[i]
err
item

==^0)^(
=^1;
= "$perturbation"; }

break; )
if (err != 0)

nerr++;
printf(mssgl, item); }

err = 0; )
return nerr;

}
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