MODELING OF STEADY STATE HEAT RELEASE, OXYGEN PROFILE AND TEMPERATURE PROFILE IN CIRCULATING FLUIDIZED BED COMBUSTORS

By

Dale Wen-Ching Ju

B.A.Sc., University of British Columbia, 1989

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

Department of Chemical Engineering

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

May 1995

© Dale Wen-Ching Ju, 1995

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of <u>Chemical Engineerin</u>

The University of British Columbia Vancouver, Canada

Date

DE-6 (2/88)

ABSTRACT

A computer model, using the Monte Carlo method, was developed to predict heat release, oxygen profiles and temperature profiles in Circulating Fluidized Bed (CFB) combustors. The model includes initial devolatilization of the coal feed, a correction in the evolved volatiles region based on the plume model, char combustion, an oxygen mass balance to determine the oxygen profile, and an energy balance to determine the temperature profile. The highly non-linear energy balance equation includes conduction, particle and gas convection and radiative heat transfer terms.

A number of studies were conducted to observe how the model's prediction changes with superficial gas velocities of 6 m/s and 7 m/s, and solids recirculation rates of 15, 30 and 50 kg/m²s, for both the UBC CFB and the Studsvik CFB.

A validation of the model's partial pressure of oxygen profile predictions compared to experimental data was made for the UBC CFB test case.

TABLE OF CONTENTS

	Page
ABSTRACT	ii
LIST OF TAE	BLES
LIST OF FIG	<u>URES</u> viii
<u>ACKNOWLE</u>	DGMENTxi
CHAPTER 1	INTRODUCTION
1.1	DESCRIPTION OF CIRCULATING FLUIDIZED BEDS6
CHAPTER 2	PREVIOUS MODELS OF CFBs11
2.1	INTRODUCTION
2.2	OVERALL MODELS
2.3	HYDRODYNAMICS13
	2.3.1 Senior's Hydrodynamic Model15
	2.3.1.1 Assumptions
2.4	HEAT TRANSFER
	2.4.1 Film Theory
	2.4.2 General Comments on the Film Theory24
	2.4.3 Penetration Theory
	2.4.4 Gas Film - Emulsion Packet Theory
	2.4.5 Radiative Heat Transfer
	2.4.5.1 Chen's Model
	2.4.5.2 Radiative Contribution in Heat Transfer
	Model
	2.4.6 Heat Transfer in Overall Model
CHAPTER 3	MODELLING OF HEAT RELEASE, OXYGEN PROFILES
	AND TEMPERATURE PROFILES OF CFBs
3.1	MODEL ASSUMPTIONS

3.2	DESC	RIPTION OF MODEL APPROACH AND	
	SUBR	OUTINE EQUATIONS	
	3.2.1	Devolatilization	
	3.2.2	Plume Model42	
	3.2.3	Char Combustion	
	3.2.4	Monte Carlo Approach47	
	3.2.5	Comparison of Monte Carlo Approach with	
		Analytic Technique48	
	3.2.6	Monte Carlo Approach within the Program48	
	3.2.7	Heat Transfer Model52	
		3.2.7.1 Cell to Cell Heat Transfer	
		3.2.7.2 Differences with Chen's Model54	
		3.2.7.3 Finite Difference Formulation	
		3.2.7.4 Wall to Cell Heat Transfer Equation	
		3.2.7.5 Cyclone and Standpipe	
3.3	DESC	RIPTION OF MODEL PROGRAM	
	3.3.1	Input and Output Files59	
	3.3.2	Program Steps61	
	3.3.3	Model Tuning64	
	3.3.4	Discontinuity of Temperature Profile	
	3.3.5	Convergence	
	3.3.6	Numerical Stability of Partial Pressure of	
		Oxygen Profile	
	3.3.7	Run Time72	
CHAPTER 4	DISC	USSION OF RESULTS AND VALIDATION	
4.1	INTR	ODUCTION75	
	4.1.1	Initial Test Runs76	
4.2	STUD	OSVIK CFB	
	4.2.1	General Description	
	4.2.2	Sensitivity Analysis	
	4.2.3	Results	
		4.2.3.1 Heat Release Profiles	
		4.2.3.2 Partial Pressure Profiles	
		4.2.3.3 Temperature Profiles	
4.3	UBC	PILOT CFB95	

.

	4	4.3.1 Description	95
	4	4.3.2 Test Run	
	4	4.3.3 Results	
	4.4	VALIDATION	108
	CHAPTER 5	CONCLUSION AND RECOMMENDATIONS	
	5.1	CONCLUSION	
	5.2	RECOMMENDATIONS FOR FUTURE WORK	112
	NOMENCLAT	<u>URE</u>	113
	REFERENCES	<u>.</u>	115
•	APPENDIX A	PROGRAM LISTING	119
,	APPENDIX B	SAMPLE INPUT FILES	
	B 1	HYDRODYNAMIC INPUT FILE LISTING	154
	B.2	USER INPUT FILE LISTING.	
			160
Reference -	APPENDIX C	<u>OUTPUT FILES</u>	
		sh0	
		sh1	
		sh2	171
		sh3	177
		sh4	183
		sh5	189
		sh2b	195
		sh700	201
		sh900	207
		uh0	213
		sh6	219
· .		LIST OF VARIABLES	225
			225
	D.I		2
	D.2		
	D.3	PROGRAM VARIABLES	

. .

LIST OF TABLES

Page

Table 1.1	Comparison of CFB With Other Types of Boilers
	[Basu and Fraser, 1991]4
Table 2.1	Predictions of Overall CFB Models [Sanderson, 1993]12
Table 3.1	Comparison of Predicted Burnout Times with
	Particle Diameters46
Table 3.2	Description of Convergence Loops and Tolerances used
	in Program61
Table 4.1	Characteristics of Highvale Coal [Grace et al., 1989]81
Table 4.2	Particle Size Distribution of Highvale Coal and Bed81
Table 4.3	Major Parameters in the Sensitivity Analysis Cases
	(Studsvik CFB, base case sh0)82
Table 4.4	Parameters in Baseline Test

LIST OF FIGURES

<u>Page</u>

Figure 1.1	Coal Production and Consumption in Canada, 1986
	[Energy, Mines and Resources Canada, 1987]2
Figure 1.2	Heat Transfer Surfaces of a CFB Boiler
	[Basu and Fraser, 1991]5
Figure 1.3	A Typical Commercial CFB
	[Kullendorf and Andersson, 1985]8
Figure 1.4	Various CFB Configurations [Yang, 1992]9
Figure 1.5	Common Non-Mechanical Valves [Yang, 1992]10
Figure 2.1	Illustration of Solids Distribution in a CFB Riser
	[Senior, 1992]14
Figure 2.2	Regions and Flow Patterns Assumed by a 2-Zone
	Core/Annulus Modelling Approach in a CFB
	[Brereton, 1987]17
Figure 2.3	Observed Gas and Solid Flow Patterns in a Sharp CFB
	Riser Exit [Brereton, 1987]20
Figure 2.4	Apparent Suspension Density Profile as a Function of Riser
	Exit Geometries [Senior, 1992]21
Figure 2.5	Film Theory23
Figure 2.6	Penetration Theory
Figure 2.7	Gas Film - Emulsion Packet Theory29
Figure 2.8	Radiative Heat Transfer Model [Chen, 1988]32
Figure 2.9	Schematic Cross-Section of a Membrane Waterwall Surface
	[Bowen et al., 1991]
Figure 3.1	Devolatilization Time as a Function of Temperature
	Predicted by Equation 3.140
Figure 3.2	Plume Model of Volatiles Dispersion [Stubington, 1980]43
Figure 3.3	Probability of a Particle Leaving a Cell50
Figure 3.4	Particle Paths in a Riser

Figure 3.5	Direction Convention used in Cell to Cell
	Heat Transfer Equation
Figure 3.6	Model Algorithm60
Figure 3.7	Net Mass Flowrate From the Core to the Streamer vs Height
	for the UBC CFB67
Figure 3.8	Temperature Distribution of Core Cells
	(before and after curve smoothing)68
Figure 3.9	Temperature Convergence for Various Initial Temp.
	Guesses (Studsvik CFB, case sh0)70
Figure 3.10	Temperature Profile of Case sh0
	(for various initial temperature guesses)
Figure 3.11	Partial Pressure of O2 vs Height (Studsvik CFB, Combustion
	of Highvale Coal with U=7 m/s and Gs=15 kg/m2s)73
Figure 4.1	Pressure of Cells at a Height of 1 m Above Secondary Air
	(Studsvik CFB; case sh0)78
Figure 4.2	Schematic of Studsvik CFB [Kobro, 1984]80
Figure 4.3	Volatiles Heat Release vs Height (Combustion of Highvale
	Coal with U = 7 m/s; Studsvik CFB; cases sh0, sh1 & sh2)84
Figure 4.4	Char Heat Release vs Height (Combustion of Highvale
	Coal with U = 7 m/s; Studsvik CFB; cases sh0, sh1 & sh2)85
Figure 4.5	Char Heat Release vs Height (Combustion of Highvale
	Coal with $U = 6$ m/s; Studsvik CFB; cases sh3, sh4 & sh5)86
Figure 4.6	Changes in Core Density in Secondary Zone for Various
	Solids Recirculation Rates - Primary Zone Density = 315 kg/m3
	(Combustion of Highvale Coal with $U = 7$ m/s; Studsvik CFB;
	cases sh0, sh1 & sh2)
Figure 4.7	Char Heat Release Distribution vs Height (Combustion of
	Highvale Coal, Studsvik CFB; cases sh0 and sh3)89
Figure 4.8	Partial Pressure of O2 vs Height (Combustion of Highvale
	Coal with $U = 7 \text{ m/s}$; Studsvik CFB; cases sh0, sh1 & sh2)90
Figure 4.9	Partial Pressure of O2 vs Height (Combustion of Highvale
	Coal with $U = 6$ m/s; Studsvik CFB; cases sh3, sh4 & sh5)91
Figure 4.10	Temperature vs Height (Combustion of Highvale Coal with
-	U = 7 m/s; Studsvik CFB; cases sh0, sh1 & sh2)93
Figure 4.11	Temperature vs Height (Combustion of Highvale Coal with

	U = 6 m/s; Studsvik CFB; cases sh3, sh4 & sh5)9
igure 4.12	Comparison of Wall Temperature Gradient at a Height of
	2.4 m Above Secondary Air with Other Experimental and
	Theoretical Works
Figure 4.13	Simplified Schematic Diagram of UBC Pilot-Scale CFB9
igure 4.14	Volatile Heat Release (Combustion of Highvale Coal with
	$U = 7 \text{ m/s}$ and $Gs = 30 \text{ kg/m}^2 \text{s}$)
igure 4.15	Char Heat Release (Combustion of Highvale Coal with
	$U = 7 \text{ m/s}$ and $Gs = 30 \text{ kg/m}^2 \text{s}$)
Figure 4.16	Char Heat Release for Various Mean Particle Diameters
	(UBC CFB, Combustion of Highvale Coal with $U = 7 \text{ m/s}$)10
Figure 4.17	Partial Pressure of O2 vs Height (Combustion of Highvale
	Coal with $U = 7$ m/s and Gs = 30 kg/m ² s)10
Figure 4.18	Temperature vs Height (Combustion of Highvale Coal with
	U = 7 m/s; UBC CFB; case uh010
Figure 4.19	Enthalpy Balance for Core Cell at Height = 3.36 m
	(UBC CFB, case uh0)10
igure 4.20	Oxygen Concentration Profiles for Highvale Coal
	Conditions: Zhao (T=891 °C, U=8.26 m/s, O ₂ in flue gas=2.9%
	Anthony (T=830 °C, U=7 m/s, O_2 in flue gas=3.7%)
	Agarwal & Davidson (T=830 °C, U=7 m/s, O ₂ in flue gas=3.79
	10

. 1

ACKNOWLEDGMENT

I would like to thank Dr. Clive Brereton for his continual guidance and encouragement throughout the course of this work. The success of this thesis could not have been achieved without his invaluable insights and support. I would also like to thank Dr. John Grace, Dr. Jim Lim and Dr. Serge Julien for their prompt comments given the short notice. The financial support of ABB Combustion is also gratefully acknowledged.

Most of all, thank You Jesus! To You be the Glory, forever.

CHAPTER 1 INTRODUCTION

In Canada, the major uses of coal are for the generation of electricity and for coking coal in the steel industry. Because coal is very expensive to transport compared to its energy value, its popularity as an energy source is usually only for the provinces with substantial coal reserves. In addition to transportation costs, environmental concerns are also a factor in coal's competitiveness. Combustion of coal releases sulfurous gases, NOx, unburnt trace elements [Energy, Mines and Resources Canada, 1987], and more carbon dioxide than the combustion of natural gas.

Since 1973, coal production in Canada has steadily increased. In 1985, coal production was estimated to be 60.7 million tonnes, 94% of which was mined in Western Canada. Presently, coal is Canada's third largest mineral export, after oil and natural gas. Coal consumption as a fuel in power generation is mainly in four provinces, Alberta, Saskatchewan, Ontario and Nova Scotia, with Alberta consuming the largest percentage at 47%. In fact, 92% of Alberta's electrical energy production is from the consumption of coal. See Figure 1.1 [Energy, Mines and Resources Canada, 1987].

The future outlook of coal consumption shows Canada with a large remaining reserve of coal, which is 1.5 times as large as oil and gas reserves. At the present rate of coal production, the proven reserves will last more than 100 years. The major competition for thermal coal is from nuclear sources, since nuclear energy production releases little or no gas emissions. Therefore, the challenge in using thermal coal is to develop more cost effective clean coal technologies.

Circulating Fluidized Bed Boilers (CFBBs) have a number of advantages over other solid fuel fired boilers. Some of these advantages include fuel flexibility, high combustion efficiency, in-situ and low cost sulphur removal, low NOx emissions and load turndown capabilities. In addition, CFBs are part of some advanced cycles, such as

1

Figure 1.1 Coal Production and Consumption in Canada, 1986 [Energy, Mines and Resources Canada, 1987]

2

topping cycles, which have higher cycle efficiency. Less coal is used for the same amount of thermal energy production; therefore, less carbon dioxide is released.

There are very good gas-solid and solid-solid mixing in CFBs and there are many inert solids present in the bed; therefore, fuels that enter CFBs quickly mix with the bed solids without a significant drop in the bed temperature. This results in CFBs' ability to burn many different fuels without the support of auxiliary fuel.

Compared to bubbling beds, which have combustion efficiencies of 90% to 96%, CFBs have a combustion efficiency of approximately 97.5% to 99.5% [Basu and Fraser, 1991]. The high combustion efficiencies are mainly due to good gas-solid mixing and the fact that unburnt fuel is returned back into the riser. Sulphur capture in CFBs is also better than in bubbling beds. CFBs can capture approximately 90% of the sulphur dioxide released during combustion, using less sorbent than in bubbling beds, where in both cases the beds are made up of sorbent. Sulphur capture reaction is slow; therefore, the longer residence time of particles in the CFB, approximately 3 to 4 sec., makes it more effective compared to 1 to 2 sec. in an average combustion zone.

CFBs also have low NOx emissions. CFBs have the capability to provide the combustion air in stages. Fuel nitrogen is usually released with the volatiles near the base of the riser. If not enough oxygen is supplied in the primary air, the fuel nitrogen will form molecular nitrogen before it reaches the secondary air and form NOx. Once molecular nitrogen is formed, it will not normally form NOx at the relatively low CFB temperatures of 850 °C.

Finally, the ability to control heat absorption allows the CFB to respond quickly to changes in loads. Therefore, CFBs are known to have good turndown capabilities.

All of the mentioned advantages make CFB's ideal for certain operations, depending on the type of fuel available and environmental concerns. Table 1.1 shows a comparison of a typical CFB with other types of boilers.

Characteristics	Stoker	Bubbling	CFB	Pulverized
Height (m)	0.2	1 - 2	15 - 40	27 - 45
U (m/s)	1.2	1.5 - 2.5	4 - 8	4 - 6
Excess air (%)	20 - 30	20 - 25	10 - 20	15 - 30
Grate Heat Release Rate	0.5 - 1.5	0.5 - 1.5	3 - 5	4 - 6
(MW/m2)				
Coal size (mm)	6 - 32	0 - 6	0 - 6	<0.001
Turndown ratio	4:1	3:1	3 - 4 : 1	
Efficiency (%)	85 - 90	90 - 96	95 - 99	99
NOx emission (ppm)	400 - 600	300 - 400	50 - 200	400 - 600
SO2 capture (%)	none	80 - 90	80 - 90	small

Table 1.1 Comparison of CFB With Other Types of Boilers [Basu and Fraser, 1991]

There are several possible locations and arrangements of heat transfer surfaces in a typical CFB boiler, some of which are shown in Figure 1.2 [Basu and Fraser, 1991]. Generally, heat is removed through vertical membrane wall surfaces, located around the outer reactor wall above the secondary air. For large commercial CFBs, additional internal heat transfer tubes may be added in the reactor or heat may be removed from the cyclone or external heat exchangers.

In order to design an appropriate CFB, designers need to know the heat transfer coefficients for varying operating condition; however, experimental data for CFB operations are few and fundamental understanding of CFBs trails considerably behind commercial advances, making scale-up from pilot plant data a difficult task. Therefore, there is a need for a better understanding of the hydrodynamics and heat transfer mechanism in CFBs.

Figure 1.2 Heat Transfer Surfaces of a CFB Boiler [Basu and Fraser, 1991]

(

CFBs dynamics are complex and many variables affect heat transfer to the membrane walls, some of which include particle size distribution, thermal conductivity of the particle and gas, heat capacity of the particle and gas and wall surface temperature, just to name a few. There are actually more than 31 variables that affect heat transfer in CFBs [Wu, 1989].

It is the goal of this thesis work to develop a model to predict heat release, partial pressure of oxygen profiles and temperature profiles in a CFB given the geometry and hydrodynamic properties of the CFB and the physical and chemical properties of the fuel. This model will also be used to observe changes in the CFB's operating conditions when variables such as superficial gas velocity and solids recirculation rate are changed. This model will aid in selecting the appropriate locations for heat transfer surfaces in CFBs, so that a CFB unit can be optimized for turndown and fuel flexibility.

This thesis consists of the results of a literature search into various overall models of CFBCs heat transfer and hydrodynamics, including a description of Senior's hydrodynamic model, described in chapter 2. Chapter 3 consists of a detailed discussion of a model, which was developed in this thesis to predict heat release and heat transfer in CFBs. In addition, this chapter includes a discussion of the various assumptions and convergence problems encountered throughout the model's development stages. And finally in chapter 4, there is brief discussion of the test results from the model and a qualitative comparison of the predicted results with measured experimental data for the UBC CFB. The findings from this research work are then summarized in chapter 5.

1.1 Description of Circulating Fluidized Beds

CFBs are a subset of fluidization operations, called fast fluidization, that lie between turbulent fluidization and pneumatic transport regimes. In other words, the superficial gas velocity through the bed is larger than the transport velocity of the

6

particles, but is small enough that some particles travel downwards or fall back in a region close to the outer wall of the CFB. Figure 1.3 shows a schematic of a typical CFB.

A CFB consists of a "riser", where combustion principally occurs. It is a tall column of relatively small cross sectional area compared to stoker and bubbling bed boilers. Combustion air is normally split into a primary and a secondary air feed. The primary air enters the base of the riser and the secondary air is injected anywhere from 1 m to 10 m above the base. The region below the secondary air ports is usually called the primary zone and the region above the primary zone is called the secondary zone. The superficial gas velocity in the primary zone ranges from 2 m/s to 6 m/s. In the secondary zone, gas velocities range from 5 m/s to 10 m/s. The total height of the riser can range anywhere from 10 m to 20 m or higher, and the mean particle size is approximately 50 μ m to 500 μ m. There are many different arrangements of CFB systems. A few of the more common configurations can be seen in Figure 1.4.

Solids in a CFB are comprised mainly of ash, sand during startup and fresh calcined and spent sorbent. There is considerable carryover of particles from the riser, depending on the exit geometry. Therefore, solid separators such as cyclones are used to separate the solids from the riser exit gas stream. The solids from the cyclone are returned continuously through a return leg near the base of the riser. Most return legs include a non-mechanical valve such as L-valve, J-valve, V-valve and seal pot, shown in Figure 1.5. Non-mechanical valves do not contain any moving parts. The solids that flow through the return leg are controlled by aeration and the geometry of the pipe.

The primary zone can be designed to have different geometries, such as a tapered or a constant cross-sectional area, which will affect the acceleration of particles in the primary zone as well as fuel mixing.

7

Figure 1.4

Various CFB Configurations [Yang, 1992]

5.

CHAPTER 2

PREVIOUS MODELS OF CFBs

2.1 INTRODUCTION

There have been several models of fluidized beds and CFBCs developed within the last 10 years. A summary of fluidized bed models can be found in [Saxena et al., 1981] and a summary of CFB models can be found in [Sanderson, 1993]. These models describe various fluidized bed phenomena, in order to gain a better understanding of CFB operations and to predict transient behavior and control of disturbances.

A practical model can be as complex as the power of one's computing system; however, a more complex model does not necessarily mean a more accurate one. In fact, the philosophy of modeling is to include only enough detail to adequately predict the important parameters, since it is usually unrealistic to study all possible parameters. Therefore, deciding the level of complexity needed to obtain an adequate model is highly subjective and depends on what variables the model intends to predict.

2.2 OVERALL MODELS

Overall models of CFBC are complex in nature, since there are many interrelated processes taking place. Generally, a complete overall model will include hydrodynamics, combustion reactions and heat transfer. In addition, the cyclone, particle size distribution, attrition, agglomeration and exit/inlet geometries should be taken into account.

Several overall models, listed in Table 2.1 [Sanderson, 1993], will be briefly described. The assumptions that each model has made in regards to their hydrodynamics and heat transfer models will be mentioned in the following sections. These models vary in complexity and in the variables they predict, such as

hydrodynamics, combustion, pollutant emissions, temperature and response to disturbances.

Model 1 focuses mainly on predicting combustion efficiencies, while model 2 is concerned with predicting operating parameters such as hydrodynamics, heat transfer, chemical reaction kinetics and cyclone performance. Model 3 focuses on predicting pollutant emissions and model 4 considers hydrodynamics and oxygen concentration profiles. Models 7 and 9 are steady state models while models 5, 6, 8 and 10 describe static and dynamic behaviors.

	1	2	3	4	5	6	7	8	9	10
Hydrodynamics	x	x	x	x	. x	x	x	x	x	x
Combustion	x	x	x	x	x	x	x	x	x	x
Emissions	x	x	x	x	x	x	x	x	<u>x</u>	x
Heat Transfer		• X	x		x	x	x	x		x
Miscellaneous					x	x	x	x		x
(e.g. L-valve,		· .								
additional heat										
exchanger)										

Table 2.1Predictions of Overall CFB Models [Sanderson, 1993]

Models:

- 1 Ahlstrom Pyroflow (1987)
- 2 Basu (1991)
- 3 IST (1993)
- 4 Halder & Datta (1993)
- 5 Zhang (1991)
- 6 Xu & Mao (1993)
- 7 IEA (1993)
- 8 Mori (1991)
- 9 Lin & Li (1993)
- 10 Siegen (1987)

2.3 HYDRODYNAMICS

In order to predict heat release and heat transfer in CFBs, knowledge of the flow patterns of solids within the riser must be known. Experimental observations have shown some characteristic hydrodynamics found in CFBs. Some of these observations are a downward flow of dense streamers near the walls of the riser, otherwise known as the annulus region, and an upward flow of dilute suspension in the middle of the riser, known as the core region [Yerushalmi et al., 1978], [Brereton et al., 1986] and [Yang et al., 1991], shown in Figure 2.1. It has also been observed that the core has regions of higher and lower voidages, which seem to suggest "clustering". Clustering is the phenomenon where a group of particles are loosely locked in some random configuration and engulfed in gas. The cluster, sometimes referred to as a "packet" or "streamer", acts as an individual entity, occasionally losing and gaining a few particles.

Models 1, 2, 3, 4 and 6, noted in the previous section, use the core/annulus structure of the riser. The overall models that did not use the core/annulus structure characterized a section of the CFB riser at a given height as a lumped-parameter section. In other words, gas and solids are ideally mixed in each cell and each cell has

Illustration of Solids Distribution in a CFB Riser [Senior, 1992] Figure 2.1

chemical reactions, particle attrition and cell to wall heat transfer occurring. None of the models simulated the clustering phenomena.

From previous experimental and modelling work, it was found that reactor geometry affects the hydrodynamics [Senior, 1992]. Sharp riser exits result in a higher suspension density at the top of the riser. In addition, the presence of a membrane heat transfer surface will affect the thickness of the streamers formed near the wall. It has also been shown that the position of the solids return entry and the shape of the primary zone tapering affects the solids acceleration in the developing zone. None of the CFB models incorporate reactor geometry effects.

2.3.1 Senior's Hydrodynamic Model

The heat release and heat transfer model developed in this thesis work is based on a mechanistic model of CFB hydrodynamics by Senior [1992]. This hydrodynamic model predicts the suspension density profiles and hydrodynamics of the wall and core regions. The accuracy of the predicted suspension density profile is approximately \pm 20% and was based on comparisons with experimental data, obtained from the UBC pilot CFB and the Studsvik CFB. For the UBC CFB, experimental data were measured for superficial gas velocities of 6 m/s to 10 m/s, solids recirculation rates of 20 kg/m²s to 170 kg/m²s and for various primary/secondary air splits. For the Studsvik CFB, experimental data were collected for superficial gas velocities of 4 m/s to 8 m/s, solids recirculation rates of 40 kg/m²s to 90 kg/m²s and for various air splits.

Although solids flow in a two-dimensional or a three-dimensional model will be more representative of an actual CFB riser, than a simple core/annulus model, increased dimensional models are more complex, significantly more difficult to solve and may not necessarily give more accurate results than a lower dimensional model. It was found that a model where the riser was split into a one-dimensional core and an annulus region, which is called the two-zone, core/annulus approach, gave reasonable trends. The two zones interact with one another by radial interchange of solids across the zone boundary, see Figure 2.2.

Axially, Senior's CFB model was divided into 20 core cells and 20 annulus cells along the height of the riser, above the secondary air. The primary zone is represented as a single cell. The hydrodynamic results from Senior's models show that fewer cells can be used near the middle section of the riser, where suspension densities are quite uniform; however, the top and the bottom of the riser may be regions of steep suspension density gradients and more cells may be needed to accurately predict the densities. Comparing this model to the overall models shows that the overall models had different number of cells along the height of the riser. Some models divided the riser into 2, 3 or many cells, and one model (IEA) took the entire riser as being one cell. Some of the model differences result from different number of cells being needed to predict different phenomena. For example, a riser where the solids are well mixed will require only a single cell to sufficiently predict the overall solids mixing. However, to understand the details of the density profile, more axial cells may be needed.

2.3.1.1 Assumptions

The assumptions made in Senior's model are:

- The hydrodynamics is represented by a two-zone, core/annulus flow structure, which is described above.
- (ii) The riser is isothermal. Typically, a riser's temperature ranges from 850 °C to 1000 °C, and is not isothermal in practice; however, these temperature variations will not significantly affect the hydrodynamics but will affect heat release and heat transfer in the riser. Test runs conducted using Senior's model and varying bed temperatures from 850 °C to 1000 °C show less than a 10%

difference in the mass flowrate of air; therefore, the hydrodynamic results are almost the same.

- (iii) Gas and solid densities are constant. The solid suspension densities, however, vary along the height of the riser and in each zone.
- (iv) The behavior of the particles is represented by particles with the sauter mean particle size.
- (v) The particles in the fully-developed region in the core travel up the riser at a constant velocity. This velocity is equal to the superficial gas velocity minus the sauter mean particle terminal velocity. This assumption is valid for dilute systems.
- (vi) There are no clusters in the core above the secondary air feed ports.
- (vii) The primary zone is in the developing flow region near the bottom of the riser, and the assumptions on the behavior of the particles, listed above, do not apply in this region; therefore, only the bulk density was predicted in the primary zone.
- (viii) For simplicity, the height of the top of the developing flow region is also the secondary air feed port height. In reality, the top of the developing flow region is usually 0.5 m to 1.5 m above the secondary air.

The region above the secondary air is in fully-developed flow. The developing flow region is the region near the bottom of the reactor, where there is a steep decline in the density profile and large core to wall flux of solids. In the fully developed region, there is less interchange of solids between the core and the annulus. The interface between these two regions are described in more detail in Senior's thesis.

 (ix) In the developing flow region, an exponential decaying profile is assumed for the bulk suspension density.

18

(x) The average streamer velocity in the annulus is assumed to be -1.1 m/s. The average velocity of the falling streamer usually ranges from -0.5 m/s to -1.8 m/s, and this velocity is dependent on the suspension density. This range of streamer velocity was found experimentally using high speed cinematography by Wu [Wu et al., 1990], and is the same order of magnitude as suggested by other researchers such as Glicksman [1988].

Another observation that was included in Senior's model is the non-homogeneous nature of the annulus. Some wall sections contain streamers and others are exposed to the dilute upwards flow of particle suspension in the core. Both of these conditions were modeled in the annulus, by computing the thickness of the streamer and the fraction of the wall coverage by the streamers as a function of riser height.

Some limitations in Senior's model include the assumptions made in the developing flow region or the primary zone, and the assigned reflection coefficient, which is presently modeled as not a function of solids recirculation rate, superficial gas velocity, gas viscosity, gas density, particle density, particle size distribution and exit geometry. The reflection coefficient is defined as the fraction of solids traveling upwards at the exit height that are returned down the walls of the riser. Figure 2.3 shows the gas and solids flow patterns at a sharp riser exit [Brereton, 1987] and Figure 2.4 shows the effects of riser exit smoothness on a suspension density profile [Senior, 1992]

——— Gas streamlines – – – – Solids streamlines

Figure 2.4 Apparent Suspension Density Profile as a Function of Riser Exit Geometries [Senior, 1992]

2.4 HEAT TRANSFER

Presently, there is a lack of experimental data from commercial operating CFBs that is not considered proprietary; however, a few researchers have made their data available [Werdermann et al., 1993], [Couturier et al., 1991] and [Leckner et al., 1992]. The majority of other CFB data that are available are for CFBs with either small heat transfer surfaces, small diameter CFBs or for CFBs operating at room temperatures, for example [Bi et al., 1990] and [Furchi et al., 1988]. In addition, most experimental data do not include radiative heat transfer and when compared with each other are often scattered.

Generally speaking, heat transfer models fall into three categories depending on how they treat the solid suspension near the riser wall. Theses categories are as follows:

(1) Film theory

(2) Penetration theory

(3) Gas film-emulsion packet theory

2.4.1 Film Theory

The film theory was first proposed by Dow and Jacob [Dow et al., 1951]. They conducted experiments with various particle sizes and column diameters to study the heat transfer mechanism between a fluidized bed and a heat transfer surface. In their model there is an air film between the downward moving solids and the wall of the riser. Adjacent to this air film, the solid suspension is treated as discrete particles that move down the film, and discrete hot particles move up through the center of the bed. See Figure 2.5. The particle to surface contact is assumed to be negligible and heat is transferred through this film, which may be as thin as 0.01 mm thick. As expected, there is a temperature gradient across the film, and there is also a temperature gradient near the distributor as the cold primary air mixes with the hot particles in the bed; however, the rest of the bed is at a uniform temperature. In reality, this film layer is not continuous, but it is scoured by particles at irregular intervals.

Leva [1952] used the same model as Dow and Jacob, but assumed that the air film thickness is strongly dependent on the gas viscosity. In addition, as the particles scour the air film, the film's resistance decreases; therefore, the particle's velocity should also be included in the heat transfer equation. Leva, derived an equation that contains the thermal conductivity and the viscosity of the gas as well as the mass and velocity of the particles, and a new dimensionless variable called the "fluidization efficiency" was defined. The fluidization efficiency value was determined by fitting a derived bed to wall heat transfer coefficient with experimental data.

Levenspiel and Walton [Levenspiel et al., 1954] also used the film theory, but did not assume that the air film was continuous along the wall. They assumed that a fresh film starts at every point on the heat transfer wall where a solid particle touches the surface; thereby, producing several films and predicting a smaller total resistance to heat transfer. The total resistance is expressed as an "equivalent film thickness".

2.4.2 General Comments on the Film Theory

1

The film theory emphasizes the role of thermal conductivity of the gas and neglects thermal capacity of the solid particles. Also, the air film is scoured by solids which decreases the thickness of the film. The results of this theory may appear reasonable; however, the assumption that the role of the solid particles in heat transfer are insignificant is not seen experimentally.

This model wrongly suggests that at minimum fluidization the heat transfer is zero, because an anomaly in the derived equation at minimum fluidization gives zero equivalent film thickness, which leads to zero heat transfer. Therefore, the heat transfer value at minimum fluidization must be extrapolated from a higher value. In addition, extrapolation of heat transfer values for higher fluidization ranges must also be done.

Most models using the film theory predicts that radiation heat transfer is insignificant at temperatures less than 1000 °C. Radiation heat transfer was shown, by
subsequent researchers [Szekely et al., 1969], [Botterill et al., 1970], [Baskakov, 1985] and [Han et al., 1992], to be significant at much lower operating temperatures.

2.4.3 Penetration Theory

Mickley and Trilling [Mickley et al., 1949] were first to develop the penetration theory for fluid bed heat transfer. Emphasis was placed on the transport of heat by the solid particles, which suggests that because the heat transport by the solids is fast, the temperature gradient is present only in a thin layer near the heat transfer surface. In addition, the effective thickness of this layer is reduced by the motion of the particles and heat flows by conduction and convection.

Mickley and Fairbanks [Mickley et al., 1955] were the first to represent the solid suspension as a packet. They recognized the heat transfer mechanism to be unsteady conduction and they researched the role of heat capacity of solid particles. The packet resides within a thin layer near the wall and the physical properties of the packet are the same as that of the bed. The packet has a finite life span before it is re-entrained into the core of the riser, and is replaced by a fresh packet. A continuous flow of such packets is the chief mechanism of heat exchange. See Figure 2.6.

The boundary conditions are such that the packet instantaneously attains the temperature of the wall when it comes into contact with it, i.e., there is zero resistance or an infinite heat transfer coefficient between the packet and the wall.

Mickley and Fairbanks considered two models for bed dynamics.

- Slug model all the packets move down the wall at a uniform velocity. They all have the same residence time and behave alike.
- (ii) Side mixing model there is a radial exchange of packets between the surface and the bed.

After time t

From their experiments, they showed that the heat transfer coefficient was proportional to the square root of the thermal conductivity of the packet, assuming constant packet density and heat capacity. Their model also explained how heat transfer increases due to a decrease in the particle size, because smaller particles circulate at surfaces more rapidly than larger particles.

The disadvantage of this model is that it predicts infinite heat transfer coefficients as the contact time approaches zero. The model also assumes that the bed is homogenous, which is not the case, since there are porosity changes.

Baskakov [1964] used the packet model of Mickley and Fairbanks, but he included addition thermal resistance between the wall and the packet to account for changes in porosity. His model is essentially a combination of the film theory and the penetration theory. Changes in porosity are significant near walls where gas layer thicknesses are approximately one particle radius.

Baskakov's model gives finite values of the heat transfer coefficient as the contact time approaches zero, as compared to Mickley and Fairbanks model. In addition, this additional thermal resistance seems to suggest a gap between the fluidized bed and the membrane wall.

Gorelik [1967] used a model similar to Baskakov's except the packet that reaches the wall is divided into a higher and a lower porosity zone. The higher porosity zone is close to the wall, and the lower one is equal to the bed porosity. However, the heat transfer problem becomes the unsteady heating of two zones, each having different thermal properties due to different porosities. Two zones with different thermal conductivities causes a temperature gradient at their interface. The difficulty then is to determine the thermal properties of the two zones.

2.4.4 Gas Film - Emulsion Packet Theory

The gas film-emulsion packet theory, also called the "alternate-slab model", proposed by Gabor [1970], assumes that the solid suspension near the riser wall is made up of alternate slabs of gas and solid. See Figure 2.7. Many investigators [Vedamurthy et al., 1974], [Bhattacharya et al., 1977] and [Kolar et al., 1979], using this theory assume that radiation only occurs between adjacent plates along with conduction through the gas film between the plates. The bed and heat transfer surface are considered grey and the gas is assumed to be transparent [Kolar, 1979]. The properties are evaluated at an average temperature equal to the mean of the temperature of the two bounding slab surfaces.

The radiation incident on each slab is assumed to undergo reflection, radiation, and scattering. The limiting values of these parameters as the number of slabs approaches infinity are considered to be the effective bed values.

The predictions from this model over predicts the heat transfer coefficient values at high temperatures; however, the maximum prediction error using this model is less than $\pm 35\%$, which is remarkably good considering its simplifying assumptions.

All of the above models were initially developed for bubbling beds. Many have subsequently been adapted for CFBs.

2.4.5 Radiative Heat Transfer

Most studies on heat transfer in CFBs only deal with particle convective heat transfer or overall heat transfer. Although an investigation by Jolley [1949] showed that radiative heat transfer term is significant at operating temperature of 1000 °C, experimental measurements of the radiative heat transfer contribution is difficult.

There are many views as to the contribution of radiation to the overall heat transfer in a CFB. One point of agreement is that it is insignificant at low temperatures; however, there is no agreement as to what temperatures are considered "low" and what are

Figure 2.7

Gas Film - Emulsion Packet Theory

considered "high" temperatures. According to Han's experimental measurements [Han et al., 1992], the contribution of radiative heat transfer to the total heat flux can range from 5% to 50% for suspension temperatures from 200 °C to 600 °C. In addition, there is uncertainty as to how other variables, such as particle diameter, particle surface temperature, fluidizing velocity, and effective bed and surface emissivities, affect the radiative heat transfer term. It is therefore necessary for a model of heat transfer in CFB to predict the radiative contribution in high temperature beds as a function of various parameters and operating conditions.

The additional heat transfer in the packet due to radiation using the penetration theory was studied by several researchers, such as work done in model 3. Another more complex model, by Chen [1988], involves developing a model of the heat transfer process by a non-linear differential formulation of the simultaneous radiative-conductive flux in the packet. In Chen's model, the radiative flux is split into an absorption and a scattering flux in both the forward and backward directions.

The general limitation of the penetration theory is that a number of the mean packet properties must be known, such as effective packet thermal conductivity, packet residence time and bubble fraction. In addition, for Chen's model, the packet's absorption and scattering cross-sections must also be known, which are difficult to evaluate. One assumption in the penetration theory is the packet's surface adjacent to the wall is assumed to immediately attain the wall temperature; in other words, there is zero resistance. Other assumptions include the packet leaves the wall before the thermal wave penetrates the packet, and the packet and the bed are assumed to have the same thermal properties.

The penetration theory gives predictions that are only accurate for long contact times. As time approaches zero, the heat transfer coefficient predicted approaches infinity.

30

2.4.5.1 Chen's Model

Chen developed a model that represents the interactive convective and radiative heat transfer process in a CFB. In the past, radiative heat transfer models usually treat the two-phase suspension as an opaque grey body with an effective suspension emissivity. The radiative heat transfer coefficient is then added to the convective heat transfer coefficient to obtain the overall heat transfer coefficient. In reality, radiative and convective heat transfer occur simultaneously throughout the suspension and are nonlinear. The resulting equation is non-linear and has not been solved analytically. Numerical methods were used to solve the general case.

Chen's model considers an axial segment of the riser from the wall to the center of the riser. See Figure 2.8. Solid suspension is characterized by local parameters such as volume fraction of solid particles, temperature, heat generation rate, effective thermal conductivity, absorption cross-section, back-scattering cross-section, axial particle velocity and axial gas velocity.

For steady-state conditions, an energy balance can be made for the control volume. The general formulation is given in Equation 2.1.

where,	у	distance in the axial direction (m)
	x	distance in the transverse direction (m)
	k _{eff}	effective thermal conductivity (W/m·K)
	T	absolute temperature (K)
	αn	volume fraction of the particle
	ρ _n	density of the particle (kg/m^3)
	C _n	specific heat of the particle (J/kg·K)
	un	velocity of the particle (m/s)
	ρ _σ	density of the gas (kg/m ³)
	C _σ	specific heat of the gas (J/kg·K)
	u _o	velocity of the gas (m/s)
	Ĩ	radiative flux in the positive y direction (W/m^2)
	J	radiative flux in the negative y direction (W/m^2)
	Gv	heat source intensity per unit volume (W/m ³)

٦

From the energy balance equation, Chen's model ignores the axial conductive and axial radiative fluxes as well as radial convection of the particles and gas.

The photon transport equations for the radiant energy passing through the solid suspension by absorption and back-scattering are given below.

and A_r and S_r are calculated by:

$$A_{r} = CL \frac{3\alpha_{p}\varepsilon_{p}}{d_{p}} \qquad \dots \dots \dots (2.4)$$
$$S_{r} = CL \frac{3b\alpha_{p}(1-\varepsilon_{p})}{d_{p}} \qquad \dots \dots \dots \dots \dots (2.5)$$

where, CL dimensionless proportionality factor ε_p emissivity of the particles d_p diameter of the particles (m) b back-scattering coefficient

The boundary conditions used are:

$$T(0,y) = T_w$$

$$\frac{\partial T}{\partial x}(L,y) = 0$$

$$T(x,0) = T_i$$

$$I_w(0,y) = \varepsilon_w \sigma T_w^4 + (1 - \varepsilon_w) J_w$$

$$J_L(L,y) = I_L$$

where the subscripts representation are,

w	wall condition
i	initial condition
L	condition at the center of the reactor column

2.4.5.2 Radiative Contribution in Heat Transfer Model

The convective and radiative heat transfer process in a CFB in reality is interactive. The equations are highly non-linear and difficult to solve numerically. Initially, Chen's equations were used in the heat transfer model developed in this work. The riser was divided into 20 axial cells and 2 radial cells. The annulus cell and the core cell were separated as individual control volumes, and the finite difference method was used to solve Equation 2.1. Temperature convergence was difficult to achieve; therefore, a less sophisticated non-interactive convective and radiative heat transfer equation was used to solve for the temperature profile in this thesis work. Due to the modular nature of the program developed, the heat transfer subroutine can be replaced with a more sophisticated heat transfer equation at a later date.

2.4.6 Heat Transfer in Overall Model

There are various models developed to describe high temperature heat transfer. processes in CFBs and all of them use the penetration theory. Models 2, 3, 5, 6, 7, 8 and 10, listed previously include a heat transfer model. Model 2 uses a heat transfer model according to Nag [Nag et al., 1991], which includes particle and gas convection to all of the neighboring cells. Model 3 uses a more complex heat transfer model that includes conduction, convection and radiative heat transfer. The overall heat transfer in this model is determined by a mass and energy balance on all solid and gas phases. Model 5 uses an enthalpy balance on each chemical species and a constant wall heat transfer coefficient to determine the heat transfer in the CFB. Models 6 and 8 are similar to model 5's treatment of heat transfer; however, the wall heat transfer rates are determined by energy balances at the furnace wall. Model 7 calculates the amount of chemical heat generated using the Delft SURE Model [Lin et al., 1989]; however, this model does not include bed to wall heat transfer to be implemented into an overall model. Finally, model 10 determines the amount of chemical heat generated by solving a mass balance for each gas species and assuming a constant wall temperature, a heat balance is done according to a model by Martin [1980].

None of the overall models look at heat transfer to a membrane waterwall surface, which consists of tubes connected by longitudinal fins [Bowen et al., 1991], see Figure 2.9.

CHAPTER 3

MODELLING OF HEAT RELEASE, OXYGEN PROFILES AND TEMPERATURE PROFILES OF CFBs

In this chapter, a detailed description of the model, developed in this thesis work, to predict heat release, oxygen and temperature distributions in CFB combustors will be discussed. The equations used are simple exponential equations for devolatilization and char combustion. The oxygen partial pressure profile is determined by a mass balance for each cell, given the initial oxygen pressure, and the temperature is determined by solving a nonlinear partial differential equation with the temperature term to the 4th power.

The program code is modular, so that each subroutine can be easily replaced by other equations. The heat release and heat transfer subroutines are coupled, which is required to solve for the temperature distribution.

3.1 MODEL ASSUMPTIONS

The assumptions used in the heat release and heat transfer subroutines are as follows.

(i) The heat capacity of the gas is assumed to be constant and equal to the heat capacity of the gas at a temperature of 850 °C.

The heat capacity of the gas is recognized to be a function of temperature. However, this assumption was made to simplify the heat transfer equation to show, at this initial stage, that the program gives reasonable predictions. The program can be easily modified to include more sophisticated energy balances, including a heat capacity term that is a function of temperature.

- (ii) The heat capacity of the particle is assumed to be constant.
- (iii) The density of the particle is assumed to be constant.
- (iv) The density of the gas is assumed to be constant.

(v) Velocity changes of the gas due to combustion are neglected.

Realistically, the variables in assumptions (iv) and (v) are both a function of temperature and gas velocity does change as more combustion gas is produced. However, this assumption is consistent with the hydrodynamics model used. In Senior's model, the mass flux of the gas is assumed to be constant. Since the mass flux of the gas is the product of gas density and gas velocity, both of these values were taken as constants. In the absence of a hydrodynamic model that is a function of temperature, these assumptions were made.

- (vi) Fragmentation and attrition of coal particles were assumed to be insignificant. In practice, the reaction of coal in CFBs, namely devolatilization and char combustion where heat is released, may be complicated by fragmentation that typically occurs near the end of devolatilization and by attrition, which occurs throughout char burning.
- (vii) The mass transfer rates of oxygen to the char particle and carbon dioxide away from the particle are assumed to be rapid [Howard, 1983]. Therefore, the limiting step is the kinetic rate of char combustion.

This assumption is valid for high gas velocities or good gas-solid mixing, which is a characteristic of CFBs [Basu and Yan, 1993].

- (viii) The char is assumed to be completely burned to form carbon dioxide, i.e., no carbon monoxide present.
- (ix) No heat release occurs in the standpipe, since there is very little oxygen present to support combustion.
- (x) The gas and particles in each cell are well mixed and at the same temperature.
- (xi) The higher heating value of the fuel was used for both the volatile and the char combustion.

This neglects some of the complexities at the local heat balance, and more detailed balances are needed for further development of the work.

- (xii) The model first calculates the enthalpy needed to dry all the moisture from the fuel before the coal undergoes combustion. The amount of moisture in each cell is calculated based on the fractional heat released within the cell.
- (xiii) The particle heat up rate is assumed to be infinite. In other words, the volatiles immediately start being released from the coal particles upon entering the primary zone.
- (xiv) There is 100% combustion of the coal particles. This is easily modified.

3.2 DESCRIPTION OF MODEL APPROACH AND SUBROUTINE EQUATIONS

3.2.1 Devolatilization

Several devolatilization expressions were considered. These expressions were developed by Jia [Jia et al., 1993], Anthony [Anthony et al., 1975], and a combined devolatilization expression by Agarwal [1986] and Davidson [Davidson et al., 1985].

The devolatilization expression by Anthony, shown in Equation 3.1, was determined by heating up to 950 °C, in a helium environment, monolayer samples of lignite and bituminous coal supported on wire mesh. Devolatilization was found to be a function of time and temperature and not a function of particle diameter. For bituminous coal, the correlation was found to have a standard deviation of approximately 3 wt%. Figure 3.1 shows how the correlation predicts the time to devolatilize as a function of temperature.

time (sec)

Figure 3.1 Devolatilization Time as a Function of Temperature Predicted by Equation 3.1

.

where,	V	fraction of volatiles released at time t
	V*	initial fraction of volatiles in coal (from proximate analysis)
	t	time (s)
	Т	temperature (K)
	ko	= 706 s
	Ĕ	= 11.8 kcal/mol
	Ř	$= 1.978 \times 10^{-3} \text{ kcal/mol.K}$

The devolatilization expression by Jia, shown in Equation 3.2, is a function of particle diameter; however, it is not a function of time.

.....(3.2)

$$t_d = 5.10 \times 10^{10} T_b^{-1.95} d_n^{-1.6} P_0^{-0.086}$$

where, t_d devolatilization time (s) T_b bed temperature (K) d_p particle diameter (m) P_o partial pressure of oxygen (atm.) must be within the range 0.01 atm. to 0.14 atm.

Very recently, a third devolatilization expression, which is a combination of the expressions by Agarwal and Davidson, was used. This devolatilization expression is both a function of particle diameter and time. The equations and results are listed and compared in the following chapter.

Although for all of the test cases, the devolatilization expression by Anthony was used, due to the modular nature of the program, Equation 3.1 can be easily replaced by another equation which may incorporate pressure, heating rate and particle size.

3.2.2 Plume Model

Experimentally, in both large and small CFBs, volatile plumes are found. These plumes are caused by poor radial mixing of gas, and the effect of the plume is that volatiles are not necessarily burned at the location where they are released. Clearly, as shown in Figure 3.2, this is a 2 or 3 dimensional mixing problem; however, the core/annulus model is only 1 dimensional. In order to superimpose the 2 dimensional phenomenon upon the 1 dimensional model, it is necessary to perform separate computations and then transfer the results into the 1 dimensional case.

In this model, the volatiles are assumed to burn at their point of release; therefore, the plume phenomena was handled by looking at the volatiles release as a function of height, and then transferring some fraction of the volatiles to the cell above. This transfer simulates the poor mixing, which prevents volatiles from releasing their heat of combustion at their point of evolution.

Devolatilization is rapid and generally takes place 3 to 20 seconds after the coal is fed into a CFB. Since the volatile matter will disperse from the fuel feed point rapidly in the axial direction, but only slowly in the radial direction, the volatiles evolution region forms an axial symmetric region centered on the fuel feed point [Stubington, 1980] and [Park et al., 1981]. If the fuel feed point is located at the wall, then the evolution region's axis of symmetry will be centered at the wall.

The volatiles must mix with oxygen for combustion to occur. Therefore, oxygen availability can be the limiting factor in volatile combustion, if the oxygen concentration is less than stoichiometric in the region near the fuel feed. This is more prevalent in large CFBs, where the volatiles burn higher up the riser.

As the volatiles travel up the height of the bed, they also diffuse a significant radial distance, which is given by Einstein's diffusion equation [Stubington, 1980].

 $x^2 = 2D_n t$

.....(3.3)

Figure 3.2 Plume Model of Volatiles Dispersion [Stubington, 1980]

Volaiiles evolution region for short devolatilization time

Volatiles evolution region for long devolatilization time

where.

average displacement squared radial volatile diffusion coefficient D_{rv} $= 0.01 \text{ m}^2/\text{s}$

time (s)

x²

t

To correct for the volatile dispersion, the above equation was solved for t, then knowing the velocity of the gas in the axial direction, the height h above the coal feed point where we observe fully radial mixing of volatiles is calculated. Fully radial mixing is achieved when the volatile evolution region spans the full cross-sectional area of the riser. For any cells below this height h, the amount of volatiles released is corrected for by transferring a fraction of the total volatiles to the cell above. This fraction is called the volatiles transfer fraction and is set at 0.3, which seemed to produce reasonable results.

The current volatiles release rate, calculated from Equation 3.1, is very fast and mainly occurs in the primary zone. The effects of using the plume model is not clearly seen, including the effect of various volatile transfer fraction values.

3.2.3 **Char Combustion**

After devolatilization, the char particle that remains may take several minutes to burn out, depending on the size of the particle. Since the mass transfer rate of oxygen to the coal particle was assumed to be rapid and the limiting step is char combustion, the Arrhenius equation was used to express char combustion. Assuming a first-order reaction, the following equation was used [Howard, 1983].

$$k_{R} = A_{C} \exp\left[-\frac{E_{A}}{RT_{s}}\right]$$

.....(3.4)

where,

 $\begin{array}{ll} k_{R} & \mbox{reaction rate (kg/m^{2} \cdot s \cdot atm)} \\ T_{S} & \mbox{surface temperature (K)} \\ E_{A} & = 150,000 \ \mbox{kJ/kg} \\ A_{C} & = 7260 \ \mbox{kg/m^{2} \cdot s \cdot atm} \\ R & = 8.314 \ \mbox{kJ/kg \cdot K} \end{array}$

The char combustion equation was also included in a separate subroutine within the program; thereby, making replacement expressions of the char combustion rate an easy task. The time for burnout of a particle is given by:

.....(3.5)

 $\tau = \frac{\rho_C d_C}{24k_R P_O}$

where,

 d_c diameter of the char particle (m) k_R reaction rate (kg/m² s atm)

P_o partial pressure of oxygen (atm)

 ρ_c density of the char particle (kg/m³)

 τ burn-out time (s)

From Table 3.1, we can compare the predicted burnout times and riser residence times for various particle diameters. It should be noted that the devolatilization time, calculated from Equation 3.1 [Anthony et al., 1975], is not a function of particle diameter. Also, the average particle residence times, given in Table 3.1, are determined based on a single pass.

Studsvik CFB Bed Temperature = 850 °C Particle Surface Temperature = 900 °C Partial Pressure of O ₂ = 0.05 atm Particle Density = 1400 kg/m ³ Superficial Gas Velocity = 7 m/s					
Time (s)	dp = 100 μm	dp = 1 mm	dp = 3 mm	dp = 1 cm	
Devolatilization [Anthony et al., 1975]]		4			
Devolatilization [Jia et al., 1993]	1.8x10 ⁻⁵	1.1	6.5	44.9	
Devolatilization [Agarwal, 1986]	0.047	1.5	7.8	47.4	
Char burnout	0.784	784	2352	7840	
Average single pass particle residence in the riser above the secondary air	30				
Average single pass particle residence in the primary zone		10			

Table 3.1 Comparison of Predicted Burnout Times with Particle Diame

Comparing the devolatilization time prediction by Anthony with Jia shows that Anthony's formulation over predicts the devolatilization time for small particle diameters and under predicts the time for large particles. Therefore, there is a limited range of particle size (approximately 2 mm) where this correlation is valid.

The model assumes that the fuel particle travels through the bed in the same way as the bed particles. Then the single pass residence time for the primary and secondary zone is independent of the particle diameter. This assumption is valid for small diameter particles that are approximately the same size or smaller than the bed particles. For larger diameter particles, this assumption breaks down. However, typical coal particle diameters in CFBs are no more than approximately 4 mm, compared to an average bed particle of 0.5 mm [Senior, 1992]. By comparing the char combustion time with the single pass residence time in the secondary zone, for large diameter particles, we can conclude that the coal particle will pass through the riser many times before it is completely burnt out. The heat release distribution for large particles will then be similar to the density distribution. Therefore, there is a potential for simplification in the heat release model for large particles, by setting the heat release distribution to equal the density distribution.

Finally, by comparing the devolatilization time with the single pass residence time, for small diameter particles, we can conclude that if the devolatilization time is much less that the residence time in the primary zone, then most of the volatiles will be released in this zone. In addition, from Figure 3.1, most of the volatiles are released within the first few seconds from when the fuel enters the riser; therefore, most of the volatiles will be released in the primary zone, according to Anthony's correlation.

3.2.4 Monte Carlo Approach

The Monte Carlo Method is a class of mathematical methods first used by scientists in the 1940s. The essence of this method is the use of random or pseudo random numbers to study some phenomena. Although the problem may be non-probabilistic, an individual event that makes up the problem has the structure of a stochastic process, a sequence of states determined by random events. Therefore, although the answers obtained are statistical in nature and subject to the laws of chance, the average value of the answer isn't. In order to determine how accurate the answer is or to obtain a more accurate answer more experiments can be conducted. In this program approximately 100 particles will give reasonable heat release distributions due to char combustion.

Many people use the Monte Carlo Method and it has become an accepted part of scientific practice in many fields. Some advantages are convenience, ease and directness

of the method. In addition, Monte Carlo Methods are computationally effective, compared with deterministic methods when treating many dimensional problems.

For the Monte Carlo method to be effective, a source of randomness is needed. Unfortunately, the random functions supplied with different computers are pseudo random, which is to say that they are deterministic but mimic the properties of independent uniformly distributed random variables.

3.2.5 Comparison of Monte Carlo Approach with Analytic Technique

An alternative method to the Monte Carlo Approach is to solve the heat release and the heat transfer equations simultaneously by formulating mass and energy balance equations for each particle size within each cell. There are approximately 40 cells and the greater the number of particle sizes considered in the mass and energy balances the more accurate the final result. Assuming that there are 20 particle sieve sizes considered, which is the number in the fuel feed's particle size distribution, there would be over 800 simultaneous non-linear equations that must be solved for each time step. This very large and sparse matrix must then be iterated until a final converged value is reached. Such an approach will be time consuming, and due to the nonlinear nature of the energy balance equation, the solution may be difficult to converge.

The Monte Carlo approach was chosen because it seems to be a simpler method to program than the analytic technique method. In addition, using the Monte Carlo method, CFB systems of hundreds or thousands of particles can be treated quite routinely.

3.2.6 Monte Carlo Approach within the Program

In this program a large number of coal particles are individually traced throughout the bed riser and solids recirculation system. In each cell, the coal particle's probability of being transferred to the wall, from the wall, up the riser or down the riser is simply the ratio of the flow of particles out of the cell in a given direction, to the cell mass. The time steps were selected such that at any given time step, the probability of the coal particle leaving the cell is set at 10%. See Figure 3.3. This probability value of 10% was chosen after initial experiments, using various probability values, showed that at higher probability values the accuracy of representing particle movement within the riser decreased. At lower probability values, accuracy increased; however, total run time also increased. A probability value of 10% seemed to be the optimum value.

Several hydrodynamic assumptions were made in this program. The particles in the core were assumed to move only up the riser or to the streamer, and the particles in the streamer were assumed to only move down the streamer or to the core. See Figure 3.4. This assumption is the same as in Senior's hydrodynamic model. In addition, the coal particles were assumed to move in the same way as the bulk ash and sand particles.

A fraction of the particles that hit the top of the riser is reflected back into the streamer, based on a given reflection coefficient in the CFB. The rest of the coal particles that leave the top of the riser enter the cyclone, which is treated as a CSTR with a residence time of 0.3 seconds. This cyclone model can be replaced by alternative models. The coal particles less than 50 μ m exit with the flue gas while larger particles leaving the cyclone are returned to the CFB's primary zone through the standpipe.

As the coal particle move throughout the riser, it first undergoes devolatilization then char combustion. In addition, to tracking the path of the particle, the Monte Carlo method also follows in which cell and at what time heat is released. Ultimately, this form of "bookkeeping" produces a heat release distribution.

The resultant heat release distribution is a function of temperature and partial pressure of oxygen, which must be initially guessed. However, once the heat release distribution is determined a new partial pressure of oxygen profile can be calculated and then a new temperature profile. The Monte Carlo method is repeated until a converged heat release distribution, partial pressure of oxygen profile and temperature profiles are obtained.

49

Variables:

m mass of particles in cell (kg)

0

1

- Fy flow across Ay (kg/s)
- Fx flow across Ax (kg/s)
- t time step (s)

 $Py = Fy \cdot t / m$

 $Px = Fx \cdot t / m$

Probability of a particle moving vertically:

Probability of a particle moving horizontally:

Probability of a particle staying within the cell: Pm = 1 - Py - Px

i

In order to validate the predicted particle paths throughout the riser, based on the Monte Carlo method, a test run was conducted. In this experiment one large "theoretical" particle, with a diameter of 1 m, was introduced into the primary zone and was traced as it underwent devolatilization and char combustion. The large size of the particle ensures that it will move through all of the cells many times before it is finally consumed. If the particles that hit the top of the riser are assumed to all reflect back down the streamer and the riser's temperature and oxygen concentration are constant, then the resultant heat release distribution should equal to the density distribution of the CFB.

The expression for devolatilization time chosen for this test is from Jia [Jia et al, 1993], since the time for volatiles release in this expression is given as a function of bed temperature and particle diameter. However, the devolatilization rate was assumed to be constant. The devolatilization time expression for Highvale coal is shown in Equation 3.2. The char combustion rate used is from Howard [1993] and was shown previously in Equations 3.4 and 3.5.

The results from this test, assuming a constant riser temperature of 850 °C, is that the heat release distribution due to volatiles and char combustion was indeed found to be the same shape as the density distribution.

3.2.7 Heat Transfer Model

Two types of heat transfer were considered in the model; cell to cell heat transfer and cell to wall heat transfer.

3.2.7.1 Cell to Cell Heat transfer

The overall cell to cell heat transfer equation, given below, includes conduction, convection and radiative heat transfer of both particles and gases.

52

2

$$-\frac{kA_{w}}{(\delta x)_{w}}(T_{p}-T_{E}) - \frac{kA_{E}}{(\delta x)_{E}}(T_{p}-T_{E}) - \frac{kA_{N}}{(\delta y)_{N}}(T_{p}-T_{N}) - \frac{kA_{S}}{(\delta y)_{S}}(T_{p}-T_{S})$$
$$-\left(F_{x}c_{p} + \rho_{g}c_{g}v_{g}\right)A_{w}(T_{w}-T^{0}) - \left(F_{x}c_{p} + \rho_{g}c_{g}v_{g}\right)A_{E}(T_{E}-T^{0})$$
$$-\left(F_{y}c_{p} + \rho_{g}c_{g}u_{g}\right)A_{N}(T_{N}-T^{0}) - \left(F_{y}c_{p} + \rho_{g}c_{g}u_{g}\right)A_{S}(T_{S}-T^{0})$$
$$-\varepsilon\sigma A_{p}T_{p}^{4} + \varepsilon\sigma A_{w}T_{w}^{4} + \varepsilon\sigma A_{E}T_{E}^{4} + \varepsilon\sigma A_{N}T_{N}^{4} + \varepsilon\sigma A_{S}T_{S}^{4} + G = 0$$

.....(3.6)

where,

- thermal conductivity of the cell (W/m·K) k surface area of one side of the cell (m^2) Α
- Т temperature (K)
- distance in the transverse direction (m) x
- distance in the axial direction (m) y
- F_x mass flux of particles in the transverse direction $(kg/m^2 \cdot s)$
- F mass flux of particles in the axial direction $(kg/m^2 s)$
- heat capacity of particles (J/kg·K) cp
- density of gas (kg/m³) ρ_{g}
- heat capacity of gas (J/kg·K) cg
- represents the mass exchange of gas in the transverse direction due vg to turbulent mixing (m/s)
- velocity of the gas in the axial direction (m/s) ug
- emissivity of the cell 3
- Stefan-Boltzman constant (W/m²·K⁴) σ
- source term in the cell (W/m) G
- subscripts, W

Ε

- west east
- north
- Ν south
- S
- Ρ control volume

superscripts, 0 reference

Figure 3.5 shows an enlarged riser cell cross-section, to indicate the direction convention used in the overall cell to cell heat transfer equation.

3.2.7.2 Differences with Chen's Model

The differences between the above heat transfer equation and the one used by Chen, besides the fact that the above equation does not couple the radiative and the conductive heat transfer terms are, the equation above includes heat conduction not only in the radial direction but also in the axial direction. Secondly, in Chen's model only convective heat transfer in the axial direction is considered; whereas, the above equation includes convection in the radial direction.

In Chen's model, the entire riser width is treated as a uniform gas solid suspension. The average suspension properties must be known to solve the steady-state finite differences formulation. However, in this model, the properties of the annulus and the core sections have different properties; therefore, the riser is split into a number of core and annulus cells along the riser height.

(a) Core Cell as Control Volume

(b) Annulus Cell as Control Volume

Direction Convention used in Cell to Cell Heat Transfer Equation

Figure 3.5

3.2.7.3 Finite Difference Formulation

Since the heat transfer equation is not conducive to analytical solution, numerical methods were used to solve the equation. More specifically, finite differences with the control volume method was used. The width of the riser was divided into four cells: the wall cell, the annulus, the core and the axis of symmetry of the riser. Each cell had different boundary conditions and had to be treated separately. The finite difference formulation of the heat transfer equation for each cell is given below.

For the wall cell, a constant temperature boundary condition was used. The wall temperature was set at 250°C. This assumes that the limiting rate of heat transfer is on the hot gas side, so that the cooling water temperature is equal to the wall temperature.

The annulus cell had the following finite difference formulation.

$$-hA_{W}\left(\frac{T_{P}A_{N}+T_{E}A_{ne}}{at}-T_{W}\right)-\frac{kA_{E}}{\left(\delta x\right)_{E}}\left(T_{P}-T_{E}\right)-\frac{kA_{N}}{\left(\delta y\right)_{N}}\left(T_{P}-T_{N}\right)-\frac{kA_{S}}{\left(\delta y\right)_{S}}\left(T_{P}-T_{S}\right)$$
$$-\left(F_{x}c_{p}+\rho_{g}c_{g}v_{g}\right)A_{E}\left(T_{P}-T^{0}\right)+\left(F_{xe}c_{p}+\rho_{g}c_{g}v_{g}\right)A_{E}\left(T_{E}-T^{0}\right)$$
$$+F_{yn}c_{p}A_{N}\left(T_{N}-T^{0}\right)-\rho_{g}c_{g}u_{s}A_{N}\left(T_{P}-T^{0}\right)$$
$$-F_{ys}c_{p}A_{S}\left(T_{P}-T^{0}\right)+\rho_{g}c_{g}u_{s}A_{S}\left(T_{S}-T^{0}\right)$$
$$-\varepsilon\sigma A_{P}T_{P}^{4}+\varepsilon\sigma A_{W}T_{W}^{4}+\varepsilon\sigma A_{E}T_{E}^{4}+\varepsilon\sigma A_{N}T_{N}^{4}+\varepsilon\sigma A_{S}T_{S}^{4}+G=0$$

(3.7)

For the core cells, the finite difference formulation is as follows.

$$-\frac{kA_{W}}{(\delta x)_{W}}(T_{P}-T_{W}) - \frac{kA_{N}}{(\delta y)_{N}}(T_{P}-T_{N}) - \frac{kA_{S}}{(\delta y)_{S}}(T_{P}-T_{S})$$
$$-(F_{x}c_{p}+\rho_{g}c_{g}v_{g})A_{W}(T_{P}-T^{0}) + (F_{xw}c_{p}+\rho_{g}c_{g}v_{g})A_{W}(T_{W}-T^{0})$$
$$-(F_{yn}c_{p}+\rho_{g}c_{g}u_{g})A_{N}(T_{P}-T^{0}) + (F_{ys}c_{p}+\rho_{g}c_{g}u_{g})A_{S}(T_{S}-T^{0})$$
$$-\varepsilon\sigma A_{P}T_{P}^{4} + \varepsilon\sigma A_{W}T_{W}^{4} + \varepsilon\sigma A_{N}T_{N}^{4} + \varepsilon\sigma A_{S}T_{S}^{4} + G = 0$$

.....(3.8)

The finite difference formulation for the core to annulus conduction terms, in Equations 3.7 and 3.8, estimates the temperature gradient as the difference in the core and annulus temperatures divided by their distance apart. This estimation is more valid for small CFB risers, where the distance between the core and annulus is much smaller. In larger CFB units, this estimation assumes that there is a constant gradual temperature gradient between the core and the annulus, when in actuality, the temperature gradient in a CFB is very steep in the annulus and becomes less steep near the core and annulus boundary.

The center of the riser symmetry is handled by setting the temperature gradient across the symmetry point to zero. The temperature of the center symmetry point, within the finite difference formulation, is set to equal to the core temperature at the same riser height. This boundary condition becomes less valid near the top and bottom of the riser, where the solids exit and entry points are not symmetric. Using the given equation and boundary conditions, a temperature profile of the riser was obtained.

3.2.7.4 Wall to Cell Heat Transfer Equation

The wall heat transfer coefficient term used is from a Studsvik report [Morris, 1988]. This term was obtained by fitting experimental data on the Studsvik CFB unit. A linear relationship between the furnace side heat transfer coefficient and the furnace solids bulk density was observed to be the following.

$$h_f = 1.8\rho_b$$
(3.9)

where,	h _f	furnace side heat transfer coefficient (W/m ² ·K)
	$\rho_{\rm h}$	furnace solids bulk density (kg/m ³)

3.2.7.5 Cyclone and Standpipe

The cyclone is treated as adiabatic. The total amount of devolatilization and char combustion is recorded and an overall heat balance is calculated. There are two possible selections for the solids return particle temperature. The first selection is assuming that a heat exchanger is placed between the cyclone and the standpipe, the solids return particles are assumed to re-enter the riser at a constant temperature, set by the user. The second selection is to set the temperature of the solids return equal to the operating temperature of the cyclone. The second selection was chosen in the sensitivity analysis cases.

The solids return particles are initially mixed with the combustion air and the fuel feed. The initial temperature of this mixture is used as the boundary condition of the surface temperature of the south face of the primary zone. Since this surface temperature is usually not equal to the temperature of the primary zone, there is heat loss due to conduction and radiative heat transfer through this surface. The magnitude of the heat loss is less than 0.5% of the total heat transfer through the membrane wall; therefore, this loss does not affect the accuracy of the heat balance equation and the final temperature results. However, better alternative to this boundary condition, is to set the boundary condition as being an adiabatic surface. In this way, there would be no heat loss through this surface.

3.3 DESCRIPTION OF MODEL PROGRAM

3.3.1 Input and Output Files

The model's algorithm is seen in Figure 3.6, a description of the convergence loops and tolerances used are listed in Table 3.2, and the program listing is included in appendix A. Initially, input and output files are assigned. There are 2 input files included in appendix B; one containing the CFB initial conditions and specifications, most of which are output values obtained from Senior's CFB model. The other input file includes the fuel specifications, the relaxation parameters used in the specific case and the number of particles in the Monte Carlo method. The four output files generated by the program are listed below.

- (i) A final output file included in appendix C
- (ii) A file that contains the temperature distributions at every iteration
- (iii) A file that contains information used in the enthalpy balance check
- (iv) A file that contains the temperature of one cell at every iteration, which show whether of not convergence has been achieved.

A description of the input and output variables used in the program are listed in appendix D.

Figure 3.6 Model Algorithm
Convergence Loop	Description	Tolerance	Relaxation
1	Partial pressure of oxygen profile convergence for the core cells only	Absolute 0.001 atm.	0.7
2	Temperature profile convergence	Relative 1%	0.7
3	Heat Transfer Subroutine convergence is met by monitoring the convergence of 1 core cell's temperature at every call to the heat transfer subroutine calculation, or comparing the temperature profile with the previous iteration's profile, until the absolute error is less than the set tolerance.	Absolute approx. 0.01 °C	

Table 3.2 Do	escription of Convergence	Loops and To	lerances used ir	1 Program
--------------	---------------------------	--------------	------------------	-----------

3.3.2 Program Steps

- (i) The program initially reads the input files and creates the output files.
- (ii) The riser is divided into core and annulus cells, and cell dimensions are then determined. For all the test cases, the riser was divided into 20 core cells and 20 annulus cells, which have equal height and corresponds to the cell divisions used in Senior's model. Also there is a cell that represents the primary zone and a cell that represents the cyclone.
- (iii) Given the gas velocities, the combustion efficiency and the excess oxygen value of the gas and the ultimate analysis of the fuel, the air and fuel feedrates are calculated.
- (iv) The transverse and radial mass fluxes for all the cells are converted into mass flowrates.
- (v) The mass flowrate values are used in a mass balance where the axial mass flowrates of particles in the core cells were changed to ensure conservation of mass throughout the riser. Due to the nature of Senior's mass fluxes output

values, the mass balance for each cell in the riser was not entirely balanced. The error in the mass balance varies from + 4% near the bottom of the riser to - 5% at the top of the riser. Although this did not pose problems to Senior's hydrodynamic model, the enthalpy balance is very sensitive to the mass balance. A mass balance was needed to solve the temperature distribution in this model.

- (vi) Next a uniform initial value of 21% partial pressure of oxygen was set for the riser, and a uniform temperature of 850 °C was guessed for the bed. In addition, the user was prompted by the program to specify whether the solids return temperature will be equal to the cyclone temperature or a set temperature, specified by the user.
- (vii) A probability matrix is then set up using the mass flowrate information. This matrix is used to determine how a coal particle will travel within the CFB riser during devolatilization and char combustion.
- (viii) Next the total membrane surface area is determined if a CFB design approach is used. Given an initial operating temperature of the bed, the program will calculate the fractional heat transfer area needed to achieve that temperature. If a rating approach is used, the user can specify the heat transfer area and the program will then calculate the operating temperature. Presently, the program sets the heat transfer surface as evenly distributed on all sides and along the full height of the riser above the secondary zone. The location of the heat transfer surface can be easily set at specific locations, at a later date.
- (ix) The devolatilization subroutine is called.
- (x) This heat release profile due to devolatilization is corrected by using a volatile transfer fraction term, which assumes that the unburnt volatiles travel up the riser in a plume until they reach a cell with more oxygen, or until the volatiles are radially fully mixed with other gases. This phenomena is discussed in more detail in Section 3.2.2.

- (xi) The heat release due to devolatilization is determined, by summing up the total volatiles released in each cell and assuming the volatiles have the same higher heating value as for char.
- (xii) The subroutine to determine the partial pressure of oxygen profile is called. A mass balance is done to determine the oxygen profile. The secondary air is introduced into both the core and the annulus cells just above the primary zone. The split is determined on the core and the annulus cross-sectional area. In this way, the mean gas velocities in the core and annulus will be constant and equal to the gas velocities set in the user input file.
- (xiii) This updated partial pressure profile of oxygen is compared with the previous iteration's profile to determine if convergence has been met. If convergence has not been met, the heat release due to char combustion is recalculated using the updated partial pressure of oxygen profile.
- (xiv) The subroutine to calculate the temperature profile of the CFB riser is called.
 Finite differences with a control volume formulation was used to conduct an enthalpy balance around each cell to determine the temperature profile.
- (xv) The updated temperature profile is determined.
- (xvi) The temperatures for the core and annulus cells at a height that corresponds to the beginning of the developing zone are altered to smooth the temperature profile. The other cell's temperatures were not altered. This discontinuity in the temperature profile is discussed in the Section 3.3.4.
- (xvii) The updated temperature profile is compared to the previous iteration to ensure convergence is reached. If convergence has not been achieved, the heat release due to devolatilization and char combustion and the partial pressure of oxygen subroutines are recalculated.
- (xviii) A printout of the output is generated.

3.3.3 Model Tuning

The major parameters in the user input file, found in appendix B, that can be varied for convergence reasons are listed below.

(i) Number of particles in the Monte Carlo method.

The greater the number of particles used, the heat release distribution, the oxygen partial pressure profile and the temperature profile will be more smooth. The errors associated with not enough particles become more evident in the oxygen partial pressure profile in the annulus. A coal particle does not travel through many annulus cells, especially near the bottom of the riser; therefore, as the number of particles increases, more particles will travel though any given cell.

Initial tests of the Monte Carlo method showed that approximately 100 particles are needed for reproducible results, in the core cells, which do not significantly change as more particles in the Monte Carlo method are used. More than 400 particles are needed to produce smooth profiles in the annulus cells. However, as more particles are used, the total run time increases linearly.

(ii) Tolerance used in the partial pressure of oxygen profile calculation.

This value is used in convergence loop 1, which is shown in Figure 3.6 and Table 3.2. The tolerance is an absolute tolerance, set at 0.001 atmospheres, which corresponds to a relative tolerance of 1% to 2.5%, and is based on the partial pressure of oxygen in the core. The change in the partial pressure of oxygen in the core was used as the basis, because there is very little oxygen in some parts of the annulus and its' absolute and relative tolerance errors would be too small to be meaningful. Conversely, the absolute and relative variations in the partial pressure of oxygen in the core is not large, and this iterative calculation converges steadily, normally within 10 iterations if an under relaxation factor of 0.7 is used.

(iii) Tolerance used in the temperature profile calculation

This is a relative tolerance, used in convergence loop 2 which is shown in Figure 3.6 and Table 3.2, and is set at 1% of any cell's temperature compared to the cell's temperature in the previous iteration. This calculation is very rapid, using an under relaxation factor of 0.7.

(iv) Tolerance in the heat transfer subroutine.

This value is used in convergence loop 3, which is shown in Figure 3.6 and Table 3.2. Normally, the temperature for 1 core cell was monitored to determine whether a steady-state temperature had been reached; however, the user may also specify a temperature tolerance to determine whether convergence is achieved.

For the test runs conducted, by monitoring the temperature of 1 core cell until convergence has been achieved, the final absolute temperature tolerance was less than 0.01 °C.

(v) Relaxation parameter in the partial pressure of oxygen calculation.

This under relaxation factor is set to 0.7.

(vi) Relaxation parameter in temperature profile calculation.

This under relaxation factor is set at 0.7 and prevents this subroutine from diverging.

The relaxation parameters used in the partial pressure of oxygen and the temperature calculations are used to prevent the profile predictions from diverging. Even if increasing the relaxation parameters does not cause the profile predictions to diverge, this will not significantly decrease the program's computation time, since the limiting calculation is the Monte Carlo method.

(vii) Residence time of the cyclone.

This value is set at 0.3 seconds, and can be easily replaced with a more sophisticated cyclone model, if necessary.

3.3.4 Discontinuity of Temperature Profile

There is a discontinuity in the temperature profile calculated by this model, which varies for different CFBs and initial conditions. The position and magnitude of the discontinuity coincides with the boundary between the developing and the fully-developed zone. The discontinuity results from the hydrodynamic model, which uses different equations to predict the mass fluxes for the developing and the fully-developed zones.

Figure 3.7, shows a plot of mass flowrate versus height for the UBC CFB, and the discontinuity can be seen clearly. Since the discontinuity does not significantly affect the hydrodynamic code, but affects the temperature profile, and since only 1 cell is affected, namely the boundary cell, a curve smoothing subroutine was used to correct for this one point. From Figure 3.8, it can be seen that the curve smoothing subroutine does not change the results of the other points or affect the temperature prediction in subsequent iterations.

Several other methods to correct for the discontinuity were considered. Initially, subdividing the riser into more cells in the axial direction was tested. The result of this test is shown in Figure 3.7. By increasing the number of axial cells, the bounds of the discontinuity location were constricted and the magnitude of the discontinuity was reduced; however, by increasing the number of cells, the run time increased. Secondly, the tolerance in the hydrodynamics code that controls the convergence of the boundary mass fluxes prediction was decreased. This caused the discontinuity to decrease, but not to an extent that the temperature profile would be continuous. In fact, if the tolerance was decreased too much, the hydrodynamic code would not converge.

height above secondary air (m)

7

Figure 3.7 Net Mass Flowrate From the Core to the Streamer versus Height for the UBC CFB

Figure 3.8 Temperature Distribution of Core Cells (before and after curve smoothing)

Since this discontinuity also affected the heat generation profile slightly, smoothing the heat generation profile was considered. This reduced the magnitude of the discontinuity; however, it was still present.

The best method found to date to deal with the discontinuity is to smooth the temperature profile directly, at every iteration.

3.3.5 Convergence

Due to the non-linear nature of the equations, it takes several hundred iterations until a final converged solution is obtained. In practice, several test runs were first conducted at different initial temperature guesses, to determine the bounds of the final temperature solution. These bounds, within \pm 20 °C were then used in the final run. In this way, the initial guess of the temperatures is close to the final solution, so that convergence is achieved in less than 100 iterations. If the test runs were not conducted, it may take more than 600 hundred iterations to obtain the final converged result.

Figure 3.9 shows that there is indeed a final temperature solution, since a higher or a lower initial temperature guess will still converge on the same final value.

Repeatability of the results was also studied by running the same conditions several times, starting with different initial temperature profiles. The results, shown in Figure 3.10, were such that each run produced effectively identical profiles, provided that sufficient time was given for convergence; therefore, the repeatability of the program is good.

3.3.6 Numerical Stability of Partial Pressure of Oxygen Profile

An analysis was done to determine if and when instabilities arose in the partial pressure of oxygen profile iteration and in the temperature profile iteration. For the partial pressure of oxygen profile, it was shown that the greatest relative variation in the amount

Figure 3.10 Temperature Profiles of Case sh0 (for various initial temperature guesses)

of oxygen was in the annulus cells. This suggests that because only 100 particles were used in the Monte Carlo method, and the volume and residence time in the annulus is small compared to the core cells, if one extra coal particle enters an annulus cell, the oxygen partial pressure profile can be significantly different. A test run was conducted for the Studsvik CFB, in which the number of particles in the Monte Carlo method was increased from 100 particles to 400 particles, see Figure 3.11. From this figure we see that with 400 particles the partial pressure profile in the annulus is more smooth, but clearly more particles are needed to obtain a final converged annulus profile.

This error in the partial pressure of oxygen in the core cells was small compared to the streamer and seemed to reach a converged value quickly, as will be shown in the next chapter, Figure 4.1.

3.3.7 Run Time

The run time required for convergence could be slightly improved by varying the relaxation parameters and the convergence tolerance values. However, as mentioned previously, the limiting subroutine in the program was generating the heat release distribution using the Monte Carlo method. Decreasing the minimum number of particles needed in the Monte Carlo method, can significantly decrease the overall run time of the program.

For the test cases studied, which are rating problems, initially several quick runs of approximately 10 minutes each were conducted using only 10 particles in the Monte Carlo method and starting each run at a different initial temperature guess, to determine the range of the final converged temperate profile. Then using relaxation parameters of 0.7 for both the partial pressure of oxygen profile and the temperature profile calculations, setting 0.001 atmospheres for the absolute tolerance value of the partial pressure of oxygen and 0.01 °C for the absolute tolerance of the heat transfer subroutine, and using

Figure 3.11 Partial Pressure of O2 vs Height (Studsvik CFB, Combustion of Highvale Coal with U = 7m/s and $Gs = 15 \text{ kg/m}^2 \text{s}$)

100 particles in the Monte Carlo method, the program took approximately 2.5 minutes per iteration. With a initial guess of the final temperature of the riser, which is close to the final converged temperature, program convergence can be obtained within 20 iterations; however, with most of the test runs, the program was allowed to run for 200 iterations to ensure that convergence has been met. The total run time for 200 iterations was approximately 8 hours. If more particles are used in the Monte Carlo method, then the total run time of the program would increase linearly in proportion to the number of particles.

For a design problem, where we wish to find the total heat transfer area needed to achieve a given average operating bed temperature, initial quick test runs were also conducted using a different heat transfer area for each test. The design problem was found to take just as long to run as a rating problem.

The program was executed on Sun workstations, which is approximately 3 to 4 times as fast as a 33 MHz 486 PC.

CHAPTER 4

DISCUSSION OF RESULTS AND VALIDATION

4.1 INTRODUCTION

The goal of a Circulating Fluidized Bed Boiler's operation is to generate steam for energy production. In a typical day, the demand for energy varies, with a higher demand early mornings and early evenings. Since the CFB boiler is unable to store any energy, the operation of the CFB will have to be changed to meet the various steam demands throughout the day.

The basic strategy for meeting varying steam demands is to vary the heat flux from the boiler The basic heat flux equation is given below.

Since the heat transfer area, A, is constant and the temperature difference, ΔT , cannot change significantly, this implies that the heat transfer coefficient, U, must be varied.

Some parameters must be kept within certain operating ranges. One of these parameters is the percentage of air leaving with the flue gas. Ideally, this value is kept at a minimum, usually between 10% and 30% excess air, or just enough air is added for complete combustion; thereby, minimizing heat loss by heating the excess air. Secondly, the average temperature of the bed is kept within the operating range of 750 °C to 900 °C. A temperature greater than this range will cause more NOx to be generated, decrease sulphur capture and cause other operating problems. Operating temperatures considerably less than 750 °C will hinder coal combustion.

The exact temperature will depend upon fuel reactivity. The above arguments assume that the reactor is approximately isothermal. At low load, the gas velocity may be low and the circulation rate may drop correspondingly. In this case, the primary zone must be held at the desired operating temperature; therefore, there may be a significant drop in the upper furnace temperatures.

In order to change the heat transfer coefficient to meet the steam demands, the suspension density profile of the CFB must be varied. There are several parameters that can be changed to achieve the desired heat transfer coefficient. The typical parameters include air feedrate, solids recirculation rate and flue gas recycle rate.

To verify that CFB control can be effectively modeled using the program developed here, results were obtained for both the Studsvik CFB and for the UBC CFB using various superficial gas velocities and solids recirculation rate inputs. The model does not consider flue gas recirculation; therefore, the effects of this parameter on a CFB's operations were not studied.

4.1.1 Initial Test Runs

To ensure that a random number was generated with each call to the random number generator, when the program was executed on a 486 PC, a new seed was selected with each call for a random number. The results of several Studsvik CFB runs, sh0, with the same initial inputs were conducted with similar, but not identical results. When this program was executed on the Sun Workstation, it was not possible to generate a random seed with each call to the random number generator; however, the random numbers generated are sufficiently random, such that different initial starting points of the same test case gave the same, but not identical profile predictions.

From previous testing of the model, it is clear that the temperature profile changes affect the pressure profile to a larger extent than the pressure profile causing changes in the temperature profile calculations. The reason for this is that the high solids recirculation rates tend to smooth out the temperature profile, making the temperature more uniform throughout the riser. This effect masks changes in the heat release and partial pressure of oxygen profiles under the conditions studied. Therefore, test runs were conducted to ensure that the CFB's partial pressure of oxygen profile had indeed converged before the program called the subroutine to predict the temperature profile. On average, the program conducted 10 to 20 iterations of the partial pressure of oxygen profile before the tolerance was met and the temperature profile could then be predicted. There was some concern that the tolerance was not tight enough for the pressure convergence. In one test, the partial pressure of oxygen calculation was allowed to continue for 200 iterations, tracking the pressure of oxygen in a core and streamer cell at a height which shows the greatest pressure variations. The height chosen, based on behaviour in previous runs, was 1 m above the secondary air. Figure 4.1 shows that the partial pressure of oxygen in the core cell quickly reached a steady value of approximately 0.04 atm. within the first 10 iterations, while the streamer cell's partial pressure of oxygen did not converge but varied around an average value of 0.02 atm. The reason, which was previously mentioned, is that the number of Monte Carlo particles used may not be large enough so that if one extra particle enters an annulus cell, its oxygen partial pressure profile can be significantly changed. Therefore, more particles in the Monte Carlo method will be needed. This will cause the total run time to increase.

A third test run was conducted to show that the Monte Carlo Method was simulating the path of the coal particle as it traveled throughout the CFB, based on the CFB's hydrodynamics. For this test, a very large "theoretical" particle with a diameter of 1 m was introduced into the primary zone of the CFB and tracked throughout its devolatilization and combustion. The riser was assumed to be at a constant temperature and partial pressure of oxygen. In addition, the devolatilization expression used was from Jia, which is a function of particle diameter. Since the primary zone is normally much larger and denser than a core or streamer cell, a small coal particle will devolatilize and combust before it has the chance to travel up the riser. A large coal particle should have a long enough combustion time for it to travel through all of the cells many times over. In these circumstances, the percentage of the total heat release in each cell should be the

Oxygen Partial Pressure of Cells at a Height of 1m Above Secondary Air (Studsvik CFB; case sh0) Figure 4.1

same as the cell's percentage suspension density. This was indeed found to be the case; thereby, showing that the Monte Carlo Method was working as the program intended.

4.2 STUDSVIK CFB

4.2.1 General Description

The Studsvik 2.5 MW thermal prototype CFB is a boiler that is 6.1 m tall with a square cross-sectional area of 0.65 m by 0.65 m. There are membrane surfaces on all four sides of the riser. The riser has a smooth exit geometry with a riser top reflection coefficient of 0.1 [Senior, 1992]. A schematic of the Studsvik CFB is shown in Figure 4.2.

4.2.2 Sensitivity Analysis

A set of sensitivity analysis was conducted for the Studsvik CFB to study the effects of varying superficial gas velocity and solid recirculation rates, while combusting Highvale coal. An analyses of Highvale coal is given in Table 4.1, and the particles size distribution of the Highvale coal and the bed are given in Table 4.2. The inputs and the operating conditions of the six cases studied in the sensitivity analysis are listed in Table 4.3. The three different solids recirculation rates studied were 15 kg/m²s, 30 kg/m²s and 50 kg/m²s. In addition, two superficial gas velocities cases of approximately 7 m/s and 6m/s were also studied.

In practice, a commercial CFB may have a "turndown", a reduction in the load, as low as 3:1, or a corresponding decrease in the superficial gas velocity from a full load value of 7m/s to as low as 2.5 m/s. It would be useful to model a case where the superficial gas velocity is 2.5 m/s, to observe changes in the temperature distribution. However, it was found that at superficial gas velocities less than approximately 5 m/s, the hydrodynamic model breaks down. Low gas velocities in the hydrodynamic model, coupled with the existing "wall disturbance factor", which is a value fitted to experimental

	(0/)
Proximate Analysis	(%)
Volatile Matter	30.5
Fixed Carbon	42.1
Ash	12.2
Moisture	15.2
Ultimate Analysis - Dry Basis (%)	
Carbon	62.4
Hydrogen	3.6
Nitrogen	0.8
Sulphur	0.2
Oxygen	18.7
Ash	14.3
Higher Heating Value (MJ/kg)	24

5

Table 4.1Characteristics of Highvale Coal [Grace et al, 1989]

Table 4.2Particle Size Distribution of Highvale Coal and Bed

	TT' = 1 = 1 = O = -1 (0/1)	T := c(0/1)	Ded (9/)
Particle Size (mm)	Highvale Coal (%)	Lime (%)	Bed (%)
7.925	9.25	0	0
5.613	10.92	0	0
3.962	13.18	0	0
2.794	12.11	0.34	0
1.981	11.09	0.61	0
1.397	8.73	1.36	2.0
0.991	7.75	0.95	4.44
0.701	5.48	4.33	3.7
0.495	4.75	14.06	3.27
0.351	3.74	13.33	10.78
0.246	3.41	13.19	28.29
0.175	3.99	20.54	23.72
0.124	1.29	19.76	14.33
0.088	0	7.02	5.95
0.053	0	2.91	1.54
0.045	0	1.51	0.66
0.038	0	0	0.57
0	0	0	0.75

cases:	sh0	sh1	sh2	sh3	sh4	sh5
superficial gas velocity (m/s)		7	7	6	6	6
solids recirculation rate (kg/m ² s)		50	15	30	50	15
solids return temperature (°C)		835	898	812	764	852
fuel feedrate (kg/hr)		389	403	341	335	347
air feedrate (kg/hr)	3070	3018	3129	2644	2599	2694
height of developed zone (m)		2.5	3.3	2.5	2.5	3.0
Highvale coal	yes	yes	yes	yes	yes	yes
Fuel density (kg/m ³)	1400	1400	1400	1400	1400	1400
bed density (kg/m ³)	2800	2800	2800	2800	2800	2800
average particle size (mm)	2.89	2.89	2.89	2.89	2.89	2.89
excess air (%)		20	20	20	20	20
number of particles used in the Monte		100	100	100	100	100
Carlo Method		r				

Table 4.3Major Parameters in the Sensitivity Analysis Cases
(Studsvik CFB, base case sh0)

data over a limited range, produced unreasonable core-wall flux calculations. Therefore, only a 15% reduction in the maximum load has been studied to this point.

In order to study the effects of turndown by decreasing the superficial gas velocity to a value of 3.3 m/s, the wall disturbance factor was increased from 310 to 470. However, there is insufficient experimental hydrodynamic data to validate this modification. The results from this low superficial gas velocity test, sh6, for the Studsvik CFB, is presented at the end of appendix C. Clearly, further work is needed to extend the hydrodynamic model to cover a greater operating range.

Initially, the heat transfer area needed to give an average operating temperature of 850 °C was calculated. The heat transfer area calculated was approximately 70 % of the total wall area. This percentage wall area was used for all the runs in the sensitivity analysis. The actual heat transfer area of the CFB can be modified depending on the type of fuel combusted by installing refractory, but is approximately 50% of the total wall area.

As expected, the heat transfer area calculated using the model was larger than the actual heat transfer area. This is a result of two major reasons.

The model assumes that the membrane surfaces are smooth and not made up of membranes, or parallel tubes connected longitudinally by fins. Therefore, the actual total membrane surface area is greater than the area calculated in the model. The model corrects for this inconsistency by calculating the total heat transfer area based on the steady state bed temperature one would like the model to operate at. In this way, the total heat transfer area would be equivalent to the actual heat transfer area of a membrane surface. Further work on the details of the membrane wall heat transfer would aid in the calculation of the cell to wall heat transfer rate. The performance of the membrane surface should include an effectiveness factor.

Secondly, the model does not include heat loss from the riser. However, based on a rough overall energy balance on the Studsvik CFB, assuming 50% heat transfer area, the surface of the CFB is at 35 °C, the heat transfer coefficient from the CFB surface to the surrounding air is 15 W/m²C, the surrounding air is at 20 °C and a coal feedrate of 400 kg/hr, the heat loss from the riser is less than 10 % of the total heat generated.

4.2.3 Results

The following figures of heat release, oxygen partial pressure and temperature profiles are for conditions above the secondary air. At a height of 0 m, this point indicates the condition in the primary zone.

4.2.3.1 Heat Release Profiles

The results from the sensitivity analysis, Figures 4.3, 4.4 and 4.5, show that the volatiles and char heat release is mainly in the primary zone. This is because the devolatilization expression used releases the volatiles quickly from the coal upon entry into the primary zone. In addition, the density and size of the primary zone is large compared

0-0-0-0-0-

height (m)

3

2

-24

4

5

0 10

0

1

Figure 4.3 Volatiles Heat Release vs Height (Combustion of Highvale Coal with U = 7 m/s; Studsvik CFB; cases sh0, sh1 & sh2)

to other cells in the riser, and the residence time in the primary zone compared to other cells is considerably larger. The primary zone is approximately 6 to 8 times larger than a core cell and 6 to 50 times as dense.

The second observation from these figures is that the char heat release profiles for various solid recirculation rates are almost the same; however for higher solid recirculation rates, the fraction of heat release in the primary zone is less; thereby, a larger percentage of heat is released in the riser and cyclone. This is because as more solids are being added to the riser, the primary zone begins to become saturated with solids, and the percentage density increase in that zone is not great. The density of the primary zone stays almost constant at approximately 315 kg/m³. Instead, the solids are transferred up the riser and the percentage of the riser in the secondary zone is significantly increased, causing more heat to be released further up the riser. The density changes can be seen in Figure 4.6.

In addition, the case with a higher superficial gas velocity show a slightly lower fraction of heat release near the bottom the riser. The higher gas velocity seem to contribute to carrying the particles from the primary zone up the riser, consequently releasing the heat in the secondary zone. This can be seen by comparing the heat release results from runs sh0 and sh3, shown in Figure 4.7.

4.2.3.2 Partial Pressure Profiles

From the partial pressure of oxygen profiles, shown in Figures 4.8 and 4.9, a higher partial pressure of oxygen was shown for higher solid recirculation rates and for higher gas velocities. However, the higher oxygen concentration in the core meant fewer oxygen in the streamer cells. The total amount of oxygen in the streamer is very small, approximately 1.5% of the total oxygen in the riser. In addition, the oxygen profile in the streamer varied from iteration to iteration. It is difficult to obtain a converged oxygen profile, as can be seen in Figure 4.1.

87

Figure 4.6 Changes in Core Density in Secondary Zone for Various Solids Recirculation Rates - Primary Zone Density = 315 kg/m³ (Combustion of Highvale Coal with U = 7 m/s; Studsvik CFB; cases sh0, sh1 & sh2)

Figure 4.7 Char Heat Release Distribution vs Height (Combustion of Highvale Coal, Studsvik CFB; cases sh0 and sh3)

As the superficial gas velocity decreased, there seems to be even less oxygen in the annulus cells. In fact, there are cells where there is no oxygen, near the bottom of the riser. The partial pressure of oxygen in the core cells, however, seems to change very little.

The variation in the partial pressure of oxygen in the streamer cells is due to the insufficient number of particles used in the Monte Carlo method. From Figure 3.11, when more particles are used, we see less fluctuations in the partial pressure predictions.

4.2.3.3 Temperature Profiles

From the temperature profiles, Figures 4.10 and 4.11, we see that although various solids recirculation rates and superficial gas velocities were used in these test cases, the temperature profiles were similarly shaped and uniform; however, they are displaced by approximately 50 °C. This is due to the significant contribution of the heat release distribution to the overall temperature distribution. However, the high internal circulation rates tends to smooth out huge maldistributions in the heat release distribution. Although approximately 80% of the heat release occurs in the primary zone, there are sufficient recirculating solids that there is still only a 50 °C temperature change throughout the riser. It is then understandable that the heat release distributions are similar, and subsequently the temperature profiles will also be similar although the pressure profiles may not be. Pressure has less of an affect on temperature as the reverse situation.

Another interesting phenomena is that the temperature of the streamer increases near the top of the riser, which is due to the nature of the energy balance. The volume of the streamer at the top of the riser is small; approximately 0.0003 m^3 , or 0.3% of the core volume at the top. Therefore, hot particles from the core and particles that are reflected off the top of the riser cause the streamer cells to heat up to temperatures that are greater than the core temperatures.

The temperature of the core cells is a steady decreasing curve, but the streamer cells have temperatures approximately 50 °C less than the core. This thermal boundary layer near the wall follow the same trends as experimental measurements [Leckner, 1991] and theoretical equations [Brewster, 1984], shown in Figure 4.12.

Although the model's temperature gradient predictions matches Leckner's experimental measurements very well, this is not an indication of the sophistication of the heat transfer model, since a number of simplifying assumptions have been made. However, this does indicate that the average temperature predictions of the model can be used as a starting point to predict combustion and heat transfer rates in the streamer and might be extended to predict the production of certain flue gases such as NOx and SO₂.

4.3 UBC PILOT CFB

4.3.1 Description

The detailed description of the UBC pilot-scale circulating fluidized bed combustion facility can be found in Grace [Grace et al, 1989]. A schematic of the major components can be seen in Figure 4.13.

The reactor column is 7.32 m high and has a cross-section of 152 mm by 152 mm. Primary air flows through the bottom of the CFB, through a distributor plate into a tapered primary zone. The secondary air enters the CFB through 2 opposed air ports located 0.9 m above the distributor plate. The solids and gas leaving the top of the CFB are separated in a refractory lined primary cyclone with 0.31 m ID, and finer particles are captured in a secondary cyclone with a 0.2 m ID. The solids from the primary cyclone are returned through the standpipe located 0.4 m above the distributor.

0.8

1 -

0.6

0.4

distance from wall / streamer thickness

0.2

0

Figure 4.12 Comparison of Wall Temperature Gradient at a Height of 2.4 m Above Secondary Air with Other Experimental and Theoretical Works

Figure 4.13 Simplified Schematic Diagram of UBC Pilot-Scale CFB

4.3.2 Test Run

A test case, uh0, was conducted using the model of the UBC CFB, to see how well the model predicts operating parameters in a pilot-scale CFB as compared to a commercial CFB. In addition, experimental data are available for the UBC CFB for various load control parameters. These data can be used to qualitatively validate the model.

The baseline conditions for case uh0 are superficial gas velocity of 7.03 m/s and a solids recirculation rate of 30 kg/m2s.

The heat transfer area calculated by the model, which gave a corresponding CFB operating temperature of 850 °C is 35% of the total wall area. The model assumes that the heat transfer area is evenly distributed on all four sides of the CFB riser and no heat transfer or heat loss from the primary cyclone and standpipe.

The UBC CFB's actual heat transfer area is only approximately 5% of the total wall area located in a small section near the top of the riser. However, the UBC CFB has high heat loss from all four sides of the riser and from the primary cyclone and standpipe. The heat loss from the riser is evenly distributed throughout the full height of the riser, and as much as 50% of the heat loss is from the primary cyclone and standpipe. For this CFB, the heat transfer assumptions made in the model, would reasonably represent the actual heat transfer and heat loss from the CFB, except that the high capacitance of the refractory and the axial heat transfer through the refractory would tend to make experimental temperature results more uniform.

4.3.3 Results

The heat release results from run uh0 compared to that from case sh0 of the Studsvik CFB, listed in Table 4.4 of baseline conditions, shows the volatiles completely devolatilizing in the bottom 3 m of the riser in the UBC CFB; whereas, in the Studsvik

CFB, the volatiles are released within the first meter upon entering the riser. The volatiles and char heat release profiles are shown in Figures 4.14 and 4.15.

From Figures 4.14 and 4.15, we can see that the fraction of heat released in the streamer is higher than in the core for UBC's CFB, but in the Studsvik CFB the reverse is seen.

In the Studsvik CFB, the annulus region's average cross-sectional area is approximately 0.9 % of the total cross-sectional area; whereas in the UBC CFB, the average annulus region is approximately 3 % of the total cross-sectional area. While even 3% may not seem significant in terms of total cross-sectional area occupied, the annulus region contains approximately 80% of the total solids in the cross-section. Therefore, the streamer is much more significant in terms of its effect upon combustion and pollutant formation behaviour in small cross-sectional CFB risers.

cases:	uh0 (UBC)	sh0 (Studsvik)
superficial gas velocity (m/s)	7	7
solids recirculation rate (kg/m ² s)	30	30
solids return temperature (°C)	793	859
fuel feedrate (kg/hr)	23	396
air feedrate (kg/hr)	177	3070
height of developed zone (m)	3.2	2.8
Highvale coal	yes	yes
fuel density (kg/m ³)	880	1400
bed density (kg/m ³)	2650	2700
average particle size (mm)	2.89	2.89
excess air (%)	20	20
number of particles used in the Monte Carlo Method	100	100

Table 4.4Parameters in Baseline Test

Figure 4.14 Volatile Heat Release (Combustion of Highvale Coal with U = 7 m/s and $Gs = 30 \text{ kg/m}^2 \text{s}$)

Figure 4.15 Char Heat Release (Combustion of Highvale Coal with U = 7 m/s and $Gs = 30 \text{ kg/m}^2 \text{s}$)

In terms of modelling, because the streamer's influence on combustion and emissions is less for a large cross-sectional CFB riser, a one dimensional combustion/pollutant model that considers the core cells only will be faster to converge, and properly applied, the temperature and pressure profile results may still be valid. A core annulus model for heat transfer is still vital, since heat transfer occurs in the wall layer.

For this test run, most of the volatiles are released in the primary zone, because the primary zone in the UBC CFB is approximately 2.3 times as large as a core cell and 12 to 35 times as dense. Therefore, the residence time in this zone is more than 10 times aslong as any other cell in the riser. From Figure 4.14, we see that for the UBC CFB, the fraction of volatiles released near the bottom of the riser is greater than in the Studsvik CFB. This may be due to the smaller riser diameter of the UBC CFB. In the UBC CFB, the volatile plume that forms, quickly spans the full diameter of the riser; therefore, there is enough oxygen present, near the bottom of the riser, for volatiles combustion.

The char heat release profiles with various particle diameters, at a constant temperature profile, can be seen in Figures 4.16. This figure shows that the solids in the UBC CFB is well mixed; therefore causing the char heat release profiles to stay the same regardless of particle diameter. If larger particles are combusted, not only would the devolatilization expression used be invalid, but the assumption that the fuel particle behave in the same way as the bed particles would also be invalid. The heat release profiles would then be different.

Comparing UBC's partial pressure of oxygen profiles with the profile from case sh0, Figure 4.17, shows that for UBC's CFB, the pressure profile in the streamer cells is more smooth and uniform. Again, this is due to the streamer's significance in a smaller cross-sectional CFB. The amount of oxygen present in the annulus is approximately 5% of the total oxygen in the UBC CFB; whereas in the Studsvik CFB, there is only 1.5% oxygen in the annulus. If additional coal particles were to combust in the Studsvik CFB's

Figure 4.16 Char Heat Release for Various Mean Particle Diameters (UBC CFB, Combustion of Highvale Coal with U = 7 m/s)

Figure 4.17 Partial Pressure of O2 vs Height (Combustion of Highvale Coal with U = 7 m/s and $Gs = 30 \text{ kg/m}^2 \text{s}$)

annulus, the oxygen partial pressure profile results can be quite different. Combustion in the cyclone for both the UBC CFB and the Studsvik CFB are insignificant, less than 0.5% of the total heat release, in this model.

The temperature profile, Figure 4.18, shows the UBC's CFB to give temperature in the streamer and core that are 50 °C apart near the bottom of the riser, but quickly become only 10 °C apart further up the riser. In the Studsvik CFB, the streamer's temperature is much less than the core's temperature. In addition, for UBC's CFB, we do not observe the temperature of the streamer heating up near the top of the riser.

The "kink" in the temperature profile of the streamer is due to the discontinuity in the temperature profile prediction, as discussed in Section 3.5. Although the temperature at the discontinuity point has been smoothed, by just averaging the temperatures in the adjacent cells, at times the streamer temperature profile is not as smooth as is desirable. Finally, similarly to the Studsvik CFB, there is a high solids recirculation rate in the CFB, which causes the temperature profile to become more uniform; however, for the UBC CFB, the dense annulus region, causes the average bed density for a given riser height to be greater than for the Studsvik CFB and therefore, the heat transfer coefficient is also greater. As more heat leaves through the heat transfer surface, the CFB temperature cools considerably. Figure 4.19 shows the magnitude of the particle convective term compared to the conduction and radiative terms.

Figure 4.18 Temperature vs Height (Combustion of Highvale Coal with U = 7 m/s; UBC CFB; case uh0)

Figure 4.19 Enthapy Balance for Core Cell at Height = 3.36 m (UBC CFB, case uh0)

Heat Transfer (W)	core cell	west	north	south
Temperature (C)	826			
G: heat generation	447			
C : conduction		-2	0	0
Pc : particle convection		-5681	-1016630	1022077
Gc : gas convection		-37	-46664	46779
R : radiation		-263	-35	8
Total Enthapy Balance			-1	

4.4 VALIDATION

The oxygen partial pressure profiles for the UBC CFB were computed using two different devolatilization expressions. The first expression of Anthony et. al. was shown in Equation 3.1, and the second expression is a combination of expressions by Agarwal [1986] and Davidson et. al. [1985], which are shown below. The expression by Anthony, is not a function of particle diameter and is valid for small particles with diameters less than 2 mm. This expression is not valid for larger particles; therefore, the second expression by Agarwal and Davidson was also looked at to observed the differences. The results were compared with experimental partial pressure of oxygen values measured by Zhao [1992]. Experimental and predicted profiles are shown in Figure 4.20.

The devolatilization time and rate are given by the following expressions by Agarwal and Davidson, respectively. The equation presented by Davidson is the prediction of a shrinking core model with diffusion control.

•	
$=k_{n}d_{n}^{n}$	(4.2)

where,

 τ_{d}

τ _d d _p by	devolatilization time (s) particle diameter (mm)
ΚV	= 1.5
n	constant
	= 1.5

$$\frac{t}{\tau_d} = 1 - 3(1 - f)^{\frac{2}{3}} + 2(1 - f)$$

where, t time (s) τ_d devolatilization time (s) f fractional yield of volatiles

Differences in the predicted partial pressure of oxygen profiles and experimental data may be due to several reasons. The combustion conditions used in the model and by Zhao are not identical. In addition, the devolatilization expression by Anthony is not a

.....(4.3)

function of particle diameter. Results using Anthony's expression shows most of the volatiles being released in the primary zone and not further up the riser. This is reflected in less oxygen near the bottom of the riser. The devolatilization expression by Agarwal is a function of particle diameter. This expression shifts the volatiles release further up the riser and also causes the oxygen partial pressure profile to be shifted up. This prediction is closer to the experimentally measured results. The oxygen profile in the annulus is also predicted better in this case.

In addition, accurate experimental oxygen measurements are extremely difficult to obtain, and the experimental measurements show oxygen concentrations at the wall, the center and a point midway between the wall and the center of the riser. These measurements were conducted on a square cross-sectional area riser with entrance/exit effects. In this model, oxygen profiles are calculated for the core and annulus of an equivalent circular cross-sectional riser, without considering entrance/exit effects. Therefore, only a qualitative comparison can be done.

Figure 4.20 does show the effects of a core/annulus structure in a CFB. Secondly, the expression by Agarwal and Davidson predicts approximately the correct combustion in the primary zone. The shape of the partial pressure of oxygen curve in the annulus was also correctly predicted by Agarwal and Davidson. There are some differences in the partial pressure of oxygen curves in the core; however, these differences may be due to the reasons stated above or due to experimental errors.

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 CONCLUSION

In this thesis, a computer model was developed to predict heat release partial pressure of oxygen profiles and temperature profiles in a CFB combustor, given the geometry, hydrodynamic properties of the CFB and the physical properties of the fuel. This model can be used for designing purposes to predict the heat transfer area needed to operate at a given temperature or it can be used in a rating problem to predict the temperature profile given the heat transfer area of the CFB. The program structure is modular, with separate subroutines for devolatilization, plume model, char combustion, oxygen profile and temperature calculations.

Several test cases were conducted to observe how the model predictions change with various inputs of superficial gas velocities and solid recirculation rates. In addition, comparisons were made between the UBC CFB, a pilot scale CFB with a cross-sectional area of 0.15 m by 0.15 m, and the Studsvik CFB, a 2.5 MW thermal prototype CFB with a cross-sectional area of 0.65 m by 0.65 m. A qualitative validation was made between the model predictions of the UBC CFB and experimental data. The results from this validation seems to suggest that the model can predict the correct trends, with a more representative devolatilization model.

There are some limitations to the operating cases the model can predict and the accuracy of the predictions. They are listed below.

- (i) The primary zone and the cyclone are both treated as CSTRs (Continuous Stirred Tank Reactors).
- (ii) Superficial gas velocities below 5 m/s were not studied. Due to the limitations in the hydrodynamic code as discussed in Section 4.2.2, hydrodynamic predictions for low velocity cases were not possible.

- (iii) Combustion air was not recycled back into the riser.
- (iv) Incomplete combustion to for CO was not looked at.
- (v) The devolatilization equation used is not a function of particle diameter.
- (vi) A simplified energy equation was used, where the radiative and convective heat transfer terms are not coupled. Due to the highly non-linear nature of the energy balance equation, convergence was extremely difficult to achieve and it took many iterations to arrive at the final output, even with a good initial guess of the temperature. In addition, the particle convective term is orders of magnitude larger than the other terms, see Figure 4.19. Therefore, any changes in heat release, oxygen profile or temperature within a cell will take many iterations for that disturbance to affect the whole riser. An attempt to converge an equation where the convective and radiative heat transfer terms are coupled was unsuccessful.
- (vii) Radiative heat transfer from one cell was assumed to affect its adjacent cells or surface only. This assumption is valid for a annulus cell, where there are dense particles; however, for the dilute core cells, this assumption may not be valid.

5.2 RECOMMENDATIONS FOR FUTURE WORK

Future work can be done on the model to remove the limitations listed in the previous section. Some of the limitations to the devolatilization and char combustion equation can be easily programmed due to the modular nature of the program. In addition, incorporating this model as a subroutine to Senior's hydrodynamic model, and changing the hydrodynamics code so that the temperature profile output from the model can be placed back into the hydrodynamics code and iterated until a final converged solution is achieved. Finally, the addition of a NOx and SO₂ emissions model would make the overall CFB program complete.

NOMENCLATURE

Units

<u>Variables</u>

у	distance in axial direction	m
x	distance in radial direction	m
k _{eff}	effective thermal conductivity	W/m∙K
T	absolute temperature	K
αn	volume fraction of particles	
ρ _n	density of particle	kg/m ³
C _n	specific heat of particle	J/kg.K
u _n	velocity of particle	m/s
P Q _a	density of gas	kg/m ³
rg Ca	specific heat of gas	J/kg·K
u _a	velocity of gas in the axial direction	m/s
I	radiative flux in the positive x direction	W/m ²
J	radiative flux in the negative x direction	W/m ²
G.	heat source intensity per unit volume	W/m ³
A _r	radiative absorption cross-section per unit volume	
S _r	back-scattering cross-section per unit volume	
σ	Stefan-Boltzman constant	$W/m^2 K^4$
CL	dimensionless proportionality factor	
En	emissivity of the particles	
d _n	diameter of the particles	m
b	back-scattering coefficient	
V	fraction of volatiles released at time t	
V*	initial fraction of volatiles in coal (from proximate analysis)	
t	time	S
R	gas constant	kJ/kg∙K
		kcal/mol·K
ta	devolatilization time	S
Ťh	bed temperature	K
P	partial pressure of oxygen	atm.
xŽ	average displacement squared	
Drv	radial volatile diffusion coefficient	
k _R	reaction rate	kg/m²⋅s∙atm
T,	surface temperature	K
d	diameter of char particle	m
ρ	density of char particle	kg/m ³
τ	burnout time	s
k	thermal conductivity of the cell	W/m·K
Α	surface area of one side of the cell	m2
F _x	mass flux of particles in the transverse direction	kg/m ² ·s

Fy	mass flux of particles in the axial direction	kg/m²∙s
Vg	represents the mass exchange of gas in the transverse direction due to turbulent mixing	m/s
а	emissivity of the cell	110.5
G	source term in the cell	W/m
h	cell to wall heat transfer coefficient	W/m2∙K
h _f	furnace side heat transfer coefficient	W/m2∙K
ρ _h	furnace solids bulk density	kg/m ³
U	overall heat transfer coefficient	W/m·K
Q	heat transfer	W
f	fractional yield of volatiles	

Subscripts

- w wall
- i initial
- L condition at the center of the reactor column
- W west
- E east
- N north
- S south
- P control volume
- NE north face of the cell to the east of the control volume
- xEtransverse direction of the cell to the east of the control volumemyNaxial direction of the cell to the north of the control volumemySaxial direction of the cell to the south of the control volumem

Superscripts

0 reference

REFERENCES

Agarwal, P.K., "A Single Particle Model for the Evolution and Combustion of Coal Volatiles", Fuel, Vol. 65, p. 803-810, June 1986.

Anthony, D.B., Howard, J.B., Hottel, H.C. and Meissner, H.P., "Rapid Devolatilization of Pulverized Coal", Symp. Int. Combust. Proc., 15, p. 1303-1317, 1975.

Baskakov, A.P., "The Mechanism of Heat Transfer Between a Fluidized Bed and a Surface", Int. Chem. Eng., 4(2), p. 320-323, 1964.

Baskakov, A.P., "Radiative Heat Transfer in Fluidized Beds", Fluidization, 2nd ed., Academic Press, London, Ch. 13B, p. 465-472, 1985.

Basu, P. and Fraser, S.A., <u>Circulating Fluidized Bed Boilers: Design and Operations</u>, Butterworth-Heinemann, 1991.

Basu, P. and Yan, J., "Characterization of the Fine Char Particle Combustion in CFBs", Fluidized Bed Combustion, Volume 1, ASME 1993.

Bhattacharya, S.C. and Harrison, D., "Heat Transfer in High Temperature Fluidized Beds", European Congress on Particle Technology, Nuremburg, p. 23, session K2, 1977.

Bi, H., Jin, Y., Yu, Z. and Bai, D., "An Investigation on Heat Transfer in CFB", Circulating Fluidized Bed Technology III, 1990.

Botterill, J.S.M. and Sealey, C.J., "Radiative Heat Transfer Between a Gas-Fluidized Bed and an Exchange Surface", British Chem. Eng., Vol. 15, No. 9, p. 1167, 1970.

Bowen, B.D., Fournier, N. and Grace, J.R., "Heat Transfer in Membrane Waterwalls", Int. J. Heat Mass Transfer, Vol. 34, No. 4/5, p. 1043-1057, 1991.

Brereton, C. and Stromber, L., "Some Aspects of the Fluid Dynamic Behavior of Fast Fluidized Beds", CFB Technology, Pergamon Press, Toronto, 1986.

Brereton, C., "Fluid Mechanics of High Velocity Fluidized Beds", Ph.D. Dissertation, Department of Chemical Engineering, U.B.C., 1987.

Brewster, M.Q., "Effective Emissivity of Fluidized Bed", ASME Heat Transfer Division, Vol. 40, p.7-13, 1984.

Chen, J.C., Cimini, R.J. and Dou, S., "A Theoretical Model for Simultaneous Convective and Radiative Heat Transfer in Circulating Fluidized Beds", Circulating Fluidized Bed Technology II, p. 255-262, 1988. Couturier, M.F. and Stevens, D., "Measurements of Heat Transfer, Temperature, Solids Mass Flux, Gas Concentration and Cyclone Capture Efficiency in the Chatham CFB Unit", Energy Conversion Engineering Group, University of New Brunswick, 1991.

Davidson, J.F., Cliff, R. and Harrison, D., <u>Fluidization</u>, 2nd ed., Academic Press, 1985, p. 642.

Dow, W.M. and Jakob, M., "Heat Transfer Between a Vertical Tube and a Fluidized Air-Solid Mixture", Chem. Eng. Prog., 47(12), p. 637-648, 1951.

Energy, Mines and Resources Canada, <u>Energy in Canada : A Background Paper</u>, November 1987.

Furchi, J.C.L., Golstein Jr., L., Lombardi, G. and Mohseni, M., "Experimental Local Heat Transfer in a CFB", Circulating Fluidized Bed Technology II, 1988.

Gabor, J.D., "Wall-to-Bed Heat Transfer in Fluidized and Packed Beds", Chem. Eng. Progress Sym. Series, 66(105), p. 76-86, 1970.

Glicksman, L.R., "CFB Heat Transfer", CFB Technology II, 1988.

Gorelik, A.G., "Mechanism of Heat Exchange Between Surfaces and a Fluidized Bed", J. Eng. Phys., 13(6), p. 495-498, 1967.

Grace, J.R., Brereton, C., Lim, C.J., Legros, R., Zhao, J., Senior, R.C., Wu, R.L., Muir, J.R. and Engman, R., "Circulating Fluidized Bed Combustion of Western Canadian Fuels", Final Report Prepared for Energy, Mines and Resources Canada under contract 52SS.23440-7-9136, 1989.

Han, G.Y., Tuzla, K. and Chen, J.C., "Radiative Heat Transfer from High Temperature Suspended Flows", Institute of Thermo-Fluid Engineering and Science, 1992.

Howard, J.R., Fluidized Beds, London: Applied Science, p. 62, 1983.

Jia, L., Becker, H.A. and Code, R.K., "Devolatilization and Char Burning of Coal Particles in a Fluidized Bed Combustor", The Canadian Journal of Chemical Engineering, Vol. 71, Feb. 1993.

Jolley, L.J., "Heat Transfer in Beds of Fluidized Solids", Fuel Research 28(5), p. 114-115, 1949.

Kobro, H. "Description of Studsvik's Fast Fluidized Bed Prototype", Studsvik Report, Studsvik/EM-84/3, 1984.

Kolar, A.K., Grewal, N.S. and Saxena, S.C., "Investigation of Radiative Contribution in a High Temperature Fluidized-Bed Using the Alternate-Slab Model", Int. J. Heat Mass Transfer, Vol. 22, p. 1695-1703, 1979.

Leckner, B., "*Heat Transfer in Circulating Fluidized Bed Boilers*", Circulating Fluidized Bed Technology III, p. 27-37, 1991.

Leckner, B. and Andersson, B.A. "Characteristic Features of Heat Transfer in CFB Boilers", Powder Technology, 70, p. 303-314, 1992.

Leva, M., and Grummer, M., "A Correlation of Solids Turnover in Fluidized Systems - Its Relation to Heat Transfer", Chem. Eng. Prog. 48(6), p.307-313, 1952.

Levenspiel, O., and Walton, J.S., "Bed-Wall Heat Transfer in Fluidized Systems", Chem. Eng. Prog. Symp. Ser. 50(9), p. 1-13, 1954.

Lin, W., and Van den Bleek, C.M., "The SOx/NOx Emissions in CFB Combustion of Coal", Proc. of the 3rd Int. Conf. on CFB, p. 545-550, 1989.

Martin, H., "Warme-und Stoffubertragung in der Wirbelschicht", Chem-Ing-Tech, 52, nr 3, s.199/209, 1980.

Mickley, H.S. and Fairbanks, D.F., "Mechanism of Heat Transfer to Fluidized Beds", A.I.Ch.E. Journal, 1(3), p. 374-384, 1955.

144

Mickley, H.S. and Trilling, C.A., "Heat Transfer Characteristics of Fluidized Beds", Ind. Eng. Chem. 41(6), p. 1135-1147, 1949.

Morris, M., "Furnace-Side Heat Transfer Coefficient Within Circulating Fluidized Beds", Studsvik Report, p. 110, 1988.

Nag, P.K. and Moran, M.N., "Prediction of Heat Transfer in Circulating Fluidized Beds", Proc. of the 3rd Int. Conf. on CFB, 1991.

Park, D., Levenspiel, O. and Fitzgerald, T.J., "A Model for Large Scale Atmospheric Fluidized Bed Combustors", The American Institute of Chemical Engineers Symp. Series, 77(205), p. 116-126, 1981.

Sanderson, W.E., "A Review of Overall Models of Circulating Fluidized Bed Combustors - A Literature Study", Technische Universiteit Delft, September 1993.

Saxena, S.C. and Gabor, J.D., "Mechanisms of Heat Transfer Between a Surface and a Gas-Fluidized Bed for Combustion Application", Prog. Energy Combust. Sci., Vol. 7, p. 73-102, 1981.

Senior, R., "Circulating Fluidized Bed Fluid and Particle Mechanics: Modeling and Experimental Studies with Application to Combustion", Ph.D Dissertation, Department of Chemical Engineering, U.B.C., 1992.

Stubington, J.F., "The Role of Coal Volatiles in Fluidized Bed Combustion", Journal of the Institute of Energy, p. 191-195, 1980.

Szekely, J. and Fisher, R.J., "Bed to Wall Radiative Heat Transfer in a Gas-Solid Fluidized Bed", Chemical Engineering Science, Vol. 24, p. 833-849, 1969.

Vedamurthy, V.N. and Sastri, V.M.K., "An Analysis of the Conductive and Radiative Heat Transfer to the Walls of Fluidized Bed Combustors", Int. J. Heat Mass Transfer, 17, p.1-9, 1974.

Werdermann, C.C. and Werther, J., "Heat Transfer in Large-Scale CFB Combustors of Different Sizes", Technical University Hamburg, 1993.

Wu, R.L., "Heat Transfer in Circulating Fluidized Beds", Ph.D. Dissertation, Department of Chemical Engineering, U.B.C., August 1989.

Wu, R.L., Grace, J.R., and Lim, C.J., "A Model for Heat Transfer in Circulating Fluidized Beds", Chemical Engineering Science, Vol. 45, No. 12, p. 3389-3398, 1990.

Yang, W., "The Hydrodynamics of CFBs", Encyclopedia of Fluid Mechanics Supplements, Gulf Publishing, 1992.

Yang, Y., Jin, Y., Yu, Z., Wang, Z. and Bai, D., "The Radial Distribution of Local Particle Velocity in a Dilute Circulating Fluidized Bed", <u>CFB Technology III</u>, Pergamon Press, Oxford, 1991.

Yerushalmi, J., Cankurt, N.T., Geldart, D. and Liss, B., "Flow Regimes in Vertical Gas-Solid Contact Systems", A.I.Ch.E. Symp., Series No. 176, Vol. 74, 1, 1978.

Zhao, J., "Nitrogen Oxide Emissions from Circulating Fluidized Bed Combustion", Ph.D. Dissertation, Department of Chemical Engineering, U.B.C., 1992.

APPENDIX A

2

•

PROGRAM LISTING

1	c ************************************
2	c * *
3	c * HEAT GENERATION and *
4	c * HEAT TRANSFER PROBLEM *
5	c * * *
6	c * rev. 8.1, 1995 Feb. 8 *
7	c * by: D.W. Ju *
8	c * *
9	C ************************************
10	c
11	c This program uses the Monte Carlo Method to compute the heat
12	c release, oxygen and temperature profile in a CFB riser. Initially,
13	c the y-dir flux of the core cells had to be recalculated to force a
14	c mass balance. The devolatilization rate is calculated as a function of
15	c bed temperature. The program also incorporates char combustion assuming
16	c only kinetic rates and a first order reaction. It calculates the partial
17	c pressure of oxygen along the streamer and core by assuming air enters at
18	c 21% O2. Dispersion of air in the radial direction has been corrected
19	c for using the plume model. Some of the particles that leave the top of
20	c the riser is returned to the CFB after passing through a cyclone with a
21	c residence time of RT sec. The streamer cross-sectional area varies along the
22	c CFB riser. The heat transfer subroutine uses a simplified radiation heat
23	c transfer term. The temperature profile was smoothed for 1 point at every
24	c iteration. The control-volume method was also used.
25	c
26	C*************************************
27	
28	implicit real*8(a-h,o-z)
29	real*8 mcyc,k
30	character*65 title1,title2,cyclon
31	common/blka/acell(300),o2feed,x,fuel,uc,us
32	common/blkb/cycv,npart,dt(300),pmatt(300),pmat1(300),rc,
33	1 volf,valh,rt,distv(300),siv(20),pdist(20)
34	common/blkc/heatc(300),dpcut,presc(300),press(300),denp,coeff
35	common/blkd/heat(300),total,dycell,cross,presc2(300),press2(300),con0,
36	1 oxyclc,mcyc,pair
37	common/blke/vtf,nfeed
38	common/blkf/to(5,300),k,at,twall,tair,vg,tref,cp,cg,afeed,fin
39	common/blkg/flux(300,5),dx(5,300),dy(5,300),f,emiss,denb(300)
40	common/blkh/acinit,asinit,acfin,asfin

41	common/blki/areaw(5,300), areae(5,300), arean(5,300),	
42	1 areas(5,300), areat(5,300), effh(300), deng, sbc, const1, effc(300), effr(300),	,v2,
43	2 v5.v6.cyc.gcyc	
44	dimension fluxc(300,5),heatv(300),ult(7)	
45	dimension pmat2(300), tempo(300), temp(300)	,
46		
47	Unit 1 and 2 are input files, and 3,7,8,9 are output files.	
48		
49	open(unit=1,file='sh0.dat')	
50	open(unit=2,file='h14.inp')	
51	open(unit=3,file='sh0.plt')	
52	open(unit=7,file='sh0.xls')	
53	open(unit=8,file='sh0.out')	
54	open(unit=9,file='sh0.txt',form='print')	
55		
56	data nx,dpcut/2,5.d-5/	
57	data po2,cp,cg/0.21d0,800.d0,1172.d0/	
58	data deng,sbc/0.3d0,5.67d-8/	
59		
60	pi=4.d0*datan(1.d0)	
61		
62	Error handler during generation of the executable file.	
63		
64	ieeer=ieee_handler('set', 'common', SIGFPE_DEFAULT)	
65	if (ieeer.ne.0) print *, 'could not establish fp signal handler'	
66		
67	Read input file 1.	
68		
69	read(1,900) title1,title2	
70	900 format(1x,a65,/1x,a65,/)	
71	read(1,910) ny,at,rc,per,primev,dbavg,devh,pair,tb,twall	
72	910 format(1x,i3,/1x,8(f10.6,/1x),f10.6)	
73		
74	tinit=855.d0	
75		
76	read(1,*)	
77	read(1,*)	
78	read(1,*)	
79		
80	primeh=primev/at	
81	ncell=ny*nx+1	
82		
83	do i=1,ncell	
84	read(1,920) (flux(i,j),j=1,4)	
85	920 format(8x,f6.2,3f11.4)	
	•	

~ ~		
86		enddo
87		rood(1 *)
80		read(1 *)
89		read(1, *)
90		read(1, 0.20) as init
91		read(1,950) asimi
92		$a_{cinit} - a_{cinit}$
93		(0.1-1,1)
94	020	format(1/4x f = 10.6)
95	930	anddo
96		read (1.030) asfin
97		read (1,950) asim
98		$a_{c_{111}} a_{c_{12}} a_{c_{12$
99		$\frac{1}{1} = \frac{1}{1} = \frac{1}$
100		acen(1)-acen(1) +1)
101		
102		acen(ncen)-at
103		read(1 *)
104		read(1, *)
105		read $(1, *)$
106		do i=1.7
107		ao 1 = 1,7
108	040	format(1x f(0,3))
109	940	andda
110		
111		read(1, 041) welf denn
112	041	f_{a}
113	941	10111111(1X,110.5,71X,110.5)
114		$\frac{1}{1}$
115		read(1, 1)
116		read $(1,941)$ uc, us
117	0.40	fead(1,942) sug, ituxi, k, etniss
118	942	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
119		d0 = 1, 18
120	0.40	fead(1,943) siv(1), pais(1)
121	943	format(1x,110.3,5x,110.3)
122		enddo
123		close(1)
124		
125		recirc=fluxr*at
126		
127	c Ca	culate the furnace solids bulk density as a function of height.
128		
129		do i=1,ny+2
130		denb(i+2) = (tlux(i,4)*acell(i)+tlux(i+ny,4)*acell(i+ny))/at

131	enddo
132	denb(2)=flux(ncell,4)
133	
134	
135	c Read input file 2.
136	
137	read(2,945) c1,c2,valh
138	945 format(//1x,f8.2,5x,f8.2,/1x,f8.1)
139	read(2,946) npart, perc, nfeed, eps, eps2, eps3, rf2, rf, cross, vtf, rt, exair, ceff, tsp,
140	1 tair, tref, const 1
141	946 format(/1x,i10,/1x,f10.6,/1x,i10,14(/1x,f10.6))
142	close(2)
143	
144	vg=cross
145	
146	c Set dx and dy values for each cell.
147	
148	dycell=flux(2,1)-flux(1,1)
149	r=dsqrt(at/pi)
150	do j=1,ny+3
151	dx(1,j)=0.d0
152	dx(4,j)=0.d0
153	enddo
154	do j=3,ny+2
155	rcore=dsqrt(acell(j-2)/pi)
156	ra=r-rcore
157	dx(2,j)=ra
158	dx(3,j)=rcore
159	enddo
160	rcore=dsqrt(acinit/pi)
161	ra=r-rcore
162	do i=1,2
163	dx(2,i)=ra
164	dx(3,i)=rc
165	enddo
166	rcore=dsqrt(acfin/pi)
167	ra=r-rcore
168	dx(2,ny+3)=ra
169	dx(3,ny+3)=rc
170	
171	do i=1,4
172	dy(i,1)=0.d0
173	dy(i,2)=primeh
-174	do $j=3,ny+2$
175	dy(i,j)=dycell

176	enddo
177	dy(i,ny+3)=0.d0
178	enddo
179	
180	c Call subroutine to determine air and fuel feedrates.
181	
182	call feed(tb,po2,ceff,exair,ult)
183	
184	c Multiply the mass flux matrix (FLUX) by the dimensions of the riser and store
185	c in the mass flowrate matrix (FLUXC).
186	·
187	do i=1,ny-1
188	fluxc(i,1)=flux(i,1)
189	fluxc(i,2)=flux(i,2)*dycell*per
190	fluxc(i,4)=flux(i,4)*dycell*acell(i)
191	enddo
192	fluxc(ny,1)=flux(ny,1)
193	fluxc(ny,2)=flux(ny,2)*dycell*per
194	fluxc(ny,4)=flux(ny,4)*dycell*acell(ny)
195	fluxc(ny+1,1)=flux(ny+1,1)
196	fluxc(ny+1,2)=flux(ny+1,2)*dycell*per
197	fluxc(ny+1,3)=flux(ny+1,3)*asinit
198	fluxc(ny+1,4)=flux(ny+1,4)*dycell*acell(ny+1)
199	do i=ny+2,ncell-1
200	fluxc(i,1)=flux(i,1)
201	fluxc(i,2)=flux(i,2)*dycell*per
202	fluxc(i,3)=flux(i,3)*(acell(i)+acell(i-1))/2.d0
203	fluxc(i,4)=flux(i,4)*dycell*acell(i)
204	enddo
205	fluxc(ncell,1)=flux(ncell,1)
206	fluxc(ncell,2)=0.d0
207	fluxc(ncell,4)=flux(ncell,4)*primeh*at
208	
209	c calculate axial flux of the core cells to ensure a mass balance.
210	
211	fluxc(ncell,3)=recirc+fluxc(ny+1,3)
212	fluxc(1,3)=fluxc(ncell,3)-fluxc(1,2)+fluxc(ny+1,2)
213	do i=2,ny
214	fluxc(i,3)=fluxc(i-1,3)-fluxc(i,2)+fluxc(ny+i,2)
215	enddo
216	
217	flux(ncell,3)=fluxc(ncell,3)/acinit
218	do $i=1,ny-1$
219	flux(i,3)=fluxc(i,3)/((acell(i)+acell(i+1))/2.d0)
220	enddo

221	flux(ny,3)=fluxc(ny,3)/acfin
222	afeed=o2feed/32.d0/.21d0*29.d0
223	
224	c Set initial guess of pressure and temperature.
225	
226	do $i=1,ny+2$
227	press(i)=0.21d0
228	presc(i)=0.21d0
229	enddo
230	
231	do i=1,ncell
232	temp(i)=tinit
233	tempo(i)=temp(i)
234	enddo
235	do j=2,ny+3
236	to(1,j)=twall
237	do i=2,4
238	to(i,j)=tinit
239	enddo
240	enddo
241	
242	c Input solids return temperature. It can be set to equal the cyclone
243	c temperature, calculated by the program, or set at a bed temp. set
244	c by the user (normally 850C).
245	
246	2 print*, 'Select solids return temperature. (C=cyclone,
247	1 B=temperature selected by user)'
248	read(*,950) cyclon
249	950 format(a3)
250	
251	if(cyclon.ne.'C'.and. cyclon.ne.'B') goto 2
252	
253	if(cyclon.eq.'B') then
254	print*, 'Enter temperature of inlet particles (C)'
255	read(*,*) tp
256	endif
257	tcyc=tp
258	fin=fuel/at
259	
260	c Determine the time step and the probabilities of how the particle
261	c will move, depending on the location of the particle.
262	
263	do i=1,ncell
264	pmat1(i) = fluxc(i,2)/fluxc(i,4)
265	pmat2(i)=fluxc(i,3)/fluxc(i,4)

266	pmatt(i)=pmat1(i)+pmat2(i)
267	dt(i)=perc/pmatt(i)
268	
269	pmat1(i)=pmat1(i)*dt(i)
270	pmat2(i)=pmat2(i)*dt(i)
271	pmatt(i)=pmat1(i)+pmat2(i)
272	enddo
273	
274	c Calculate the fraction of the wall covered by membrane tubes (f), or
275	c set it at a specified wall area.
276	
277	c htarea=(fuel*valh*1000.d0/2.5d0)/(const1*dbavg*(tinit-twall)
278	c 2+emiss*sbc*((tinit+273.15d0)**4-(twall+273.15d0)**4))
279	c rarea=per*(primeh+flux(ny,1)+dycell/2.d0)
280	c if(htarea.le.0.d0) htarea=0.d0
281	c f=htarea/rarea
282	
283	f=0.7d0
284	
285	c Initialize heat distribution terms
286	
287	iter2=0
288	5 iter2=iter2+1
289	
290	c Determine the areas.
291	
292	do j=1,ny+3
293	do i=1,4
294	areaw(i,j)=0.d0
295	areae(i,j)=0.d0
296	arean(i,j)=0.d0
297	areas(i,j)=0.d0
298	areat(i,j)=0.d0
299	enddo
300	enddo
301	
302	areaw(1,2)=primeh*per*f
303	areae(1,2)=primeh*per*f
304	areaw(2,2)=primeh*per*f
305	areae(2,2)=primeh*per
306	do i=3,4
307	areaw(i,2)=primeh*per
308	areae(i,2)=primeh*per
309	enddo
310	do j=3,ny+2

•

311	areaw(1,j)=dycell*per*f
312	areae(1,j)=dycell*per*f
313	areaw(2,j)=dycell*per*f
314	areae(2,j)=dycell*per
315	do i=3,4
316	areaw(i,j)=dycell*per
317	areae(i,j)=dycell*per
318	enddo
319	enddo
320	do j=3,ny+1
321	arean(3,j)=(acell(j-2)+acell(j-1))/2.d0
322	arean(2,j)=(acell(j-2+ny)+acell(j-1+ny))/2.d0
323	areas(3,j+1)=arean(3,j)
324	areas(2,j+1)=arean(2,j)
325	enddo
326	arean(3,ny+2)=acfin
327	arean(2,ny+2)=asfin
328	arean(3,ny+3)=acfin
329	arean(2,ny+3)=asfin
330	arean(3,1)=acinit
331	arean(2,1)=asinit
332	arean(3,2)=acinit
333	arean(2,2)=asinit
334	areas(3,3)=acinit
335	areas(2,3)=asinit
336	areas(3,2)=acinit
337	areas(2,2)=asinit
338	areas(3,1)=acinit
339	areas(2,1)=asinit
340	areas(3,ny+3)=actin
341	areas(2,ny+3)=astin
342	do $j=2,ny+2$
343	areat(1,j)=areaw(1,j)
344	areat(2,j)=areae(2,j)+areaw(2,j)+arean(2,j)+areas(2,j)
345	areat(3,j)=areaw(3,j)+arean(3,j)+areas(3,j)
346	enddo
347	areat(2,1)=areas(2,1)
348	areat(3,1)=areas(3,1)
349	areat(2,ny+3)=arean(2,ny+3)
350	areat(3,ny+3)=arean(3,ny+3)
351	
352	cycv=0.d0
353	
354	c Call subroutine to calculate volatilization heat distribution
355	

356	call volat(ny,heatv,tdvol,totv,ncell,c1,c2,temp,pi)		
357			
358	coeff=7.26d3*exp(-1.5d5/(8.314d0*(tsp+273)))		
359			
360	c Call subroutine to correct for volatile dispersion		
361	······································		
362	call vdisp(heatv,ncell,ny,pi,flux)		
363			
364	c Count the number of iterations and call subroutine to calculate		
365	c the char heat distribution		
366			
367			
368	10 ner=ner+1		
369	cell char(ny ave ni neell ult)		
370	can char(hy,cyc,pi,hcen,uit)		
371			
3/2	cycc-cyc-cycv		
3/3	a Calculate fraction of the total heat generated in each cell		
3/4	c Calculate fraction of the total heat generated in each cen.		
3/3	do i=1 nmax		
3/0 277	heat(i)=0 d0		
270	enddo		
370	Cilddo		
290	total=0 d0		
281	do $i=1$ ncell		
282	heat(i)=heatv(i)+heatc(i)		
383	total=total+heat(i)		
384	enddo		
385	total=total+cvc		
386			
387	do i=1 ncell		
388	heat(i)=heat(i)/total		
389	enddo		
390			
391	c Call subroutine to calculate the O2 partial pressure profile		
392			
393	call pres(ny.cvc.pi.po2,ncell)		
394			
395	c Check that the errors in the pressure of the core cells are less than EPS.		
396			
397	ermax=0.d0		
398	do $i=1,ny+2$		
399	errorc=abs(presc(i)-presc2(i))		
400	if(errorc.gt.ermax) then		

,

	•
401	ermax=errorc
402	ic=i
403	endif
404	enddo
405	
406	c Print the error and the iteration number.
407	
408	print*,'iter,error',iter,ermax
409	
410	c Update the pressures.
411	
412	do $i=1,ny+2$
413	press(i)=press(i)+rf*(press2(i)-press(i))
414	presc(i)=presc(i)+rf*(presc2(i)-presc(i))
415	enddo
416	
417	c Decide whether convergence has been met. If not, go back
418	c to statement number 10.
419	
420	if(ermax.gt.eps) goto 10
421	er1=ermax
422	
423	c Set the temperature of the solids return.
424	
425	if(cyclon.eq.'C') then
426	trec=tcyc
427	else
428	trec=tp
429	endif
430	
431	tin=(afeed*cg*tair+fuel*cp*tref+recirc*cp*trec)/(afeed*cg+fuel*cp+
432	1 recirc*cp)
433	do $i=1,4$
434	to(i,1)=tin
435	enddo
436	
437	c Call subroutine heat to determine temperature profile.
438	
439	call htrans(ncell,ny,eps3,per,rf2,recirc,ult)
440	
441	print*, 'No, of iterations in htrans=', iter2
447	write(8,*) 'No. of iterations in htrans=', iter2
442	
<u> 4</u> 75 411	c. New temperatures
777 1/15	C TION formation
777	

116	do i = nv + 23 - 1
440	temp(i-2+ny)=to(2,i)
448	temp(i-2)=to(3,i)
440	enddo
450	temp(ncell)=to(3.2)*acinit/at+to(2.2)*asinit/at
451	
452	c Smooth temperature profile for 1 point (at the boundary between
453	c developing and fully developed region).
454	
455	do i=1.nv
456	if(devh.le.flux(i,1)) then
457	i=i-1
458	ratio = (temp(i+1)-temp(i-2))/(flux(i+1,1)-flux(i-2,1))
459	temp(i)=ratio*(flux(i,1)-flux(i-2,1))+temp(i-2)
460	temp(i-1) = ratio*(flux(i-1,1)-flux(i-2,1))+temp(i-2)
461	i=i+1+ny
462	ratio=(temp(i+1)-temp(i-3))/(flux(i+1,1)-flux(i-3,1))
463	temp(i)=ratio*(flux(i,1)-flux(i-3,1))+temp(i-3)
464	temp(i-1)=ratio*(flux(i-1,1)-flux(i-3,1))+temp(i-3)
465	temp(i-2) = ratio*(flux(i-2,1)-flux(i-3,1))+temp(i-3)
466	goto 20
467	endif
468	enddo
469	A1
470	c Write the temperature to output file.
471	
472	20 write(8,960) (to(1, $ny+3$), $i=1,3$)
473	960 format($3(1x,110.2)$)
474	do $j=ny+2,3,-1$
475	write($(8,965)$) twail, temp($(+ny-2)$, temp((-2) , emi())
476	965 $format(4(1x,110.2))$
477	$\operatorname{II}(\operatorname{Ieq}, 1)$ then
478	write(3, ') temp(j-2)
479	endi
480	enddo
481	while $(8,905)$ $(10(1,2),1-1,5)$, $(11)(2)$
482	while $(8,900)$ $(10(1,1),1-1,3)$
483	$\operatorname{call}\operatorname{Hush}(7)$
484	$\operatorname{call} \operatorname{flush}(2)$
485	can nusi(o)
486	a Calculate the temperature of the cyclone
487	c Calculate the temperature of the cyclone.
488	tower-tomp(ny)+acyc/(afeed*ca+recirc*cn)
489	tcycn-temp(ny) gcyc/(arecu cg recure cp)
490	

,

	and the state of the terms and the second
491	c Set the number of iterations in the temperature prome subroutine to
492	c ensure that a converged solution is obtailed.
493	: (Citar 2 and 200) anto 50
494	in(iter2.ge.200) goto 50
495	Object the convergence of the temperature
496	c Check the convergence of the temperature.
497	
498	error=0.d0
499	ermax=0.d0
500	
501	do $i=1,ncell$
502	error=dabs(temp(1)-tempo(1))
503	if(error.gt.ermax) then
504	ermax=error
505	1err=1
506	endit
507	enddo
508	error=dabs(tcycn-tcyc)
509	if(error.gt.ermax) then
510	ermax=error
511	ierr=ncell+1
512	endif
513	
514	print*,'eps2,ermax,cell',eps2,ermax,ierr
515	write(8,*) 'eps2,ermax,cell',eps2,ermax,1err
516	if(ierr.eq.(ncell+1)) then
517	print*, 'tempo,temp',tcyc,tcycn
518	write(8,*) 'tempo,temp',tcyc,tcycn
519	else
520	print*, 'tempo,temp',tempo(ierr),temp(ierr)
521	write(8,*) 'tempo,temp',tempo(ierr),temp(ierr)
522	endif
523	write(8,*)
524	
525	c Update temperature and check that convergence has been met.
526	c If not, go back to statement number 5.
527	
528	if(ermax.gt.eps2) then
529	rf3=1.d0
530	do i=1,ncell
531	tempo(i)=tempo(i)-rf3*(tempo(i)-temp(i))
532	tcyc=tcyc-rf3*(tcyc-tcycn)
533	enddo
534	goto 5
535	endif

537	c Calo	culate average partial pressure of O2 leaving riser and cyclone (atm).
538	• • •	
530	50	nout=presc(ny+2)*acfin/at+press(ny+2)*asfin/at
540	50	ncvc=(oxvclc-mcvc*x)/(uc*acfin+us*asfin)*po2/con0
541		poje (objete doje doj(de data da o j 1
542	c Prin	nt output results to unit 9.
542	0 1 1 1	
545		write(9 800) title1.title2
545	800	format($45x$, 'page 1 of 6',////15x,
546	1	'CFB HEAT RELEASE AND HEAT TRANSFER MODEL',/15x,
547	2	''//15x,
548	3	'RUN RESULTS FROM HEAT TRANSFER ROUTINE HEAT.F.
540	4	VERSION 1.1'/15X
550	5	WRITTEN BY: DALE W.C. JU'.///15x.a65./15x.a65.///15x.
551	6	FUEL PHYSICAL PROPERTIES AND COMPOSITION',/15X,
552	7	''//15x.
552	, 8	'PROXIMATE ANALYSIS'.//15x.'Weight %')
554	Ū	write(9 802) (ult(i) $i=1.7$)
555	802	format(15x f8 3.5x 'Ash'/15x f8.3.5x 'Moisture',/15x f8.3.5x,
556	1	'Sulphur' /15x f8 3 5x 'Hydrogen'./15x f8.3.5x.'Carbon'./15x.
557	2	f8 3 5x 'Nitrogen' /15x f8.3.5x 'Oxygen'.//15x.
558	2	'PARTICI E SIZE DISTRIBUTION'.//15x.5x.'mm'.13x.'wt %')
550	5	$d_0 = 1.18$
560		write(9 804) siv(i) pdist(i)
561	804	format(15x f10.3.5x f10.3)
562	004	enddo
502		
505		write(0.806) ppart f*100 d0
504	806	format(("1")) 45x 'nage 2 of 6' /////15x
202	800	COMPLISTION CONDITIONS' /15x '' //15x
200	1	We fracticles in Monte Carlo Method' 4x i10 /15x
567	2	# 01 particles in Mome Carlo Method, π , π
568	د	% of total wall area with memoranes, 5x,110.1, 70)
569		ifferentian an ICI) than
570		n(cyclon.eq. C) then
571	000	Wille(9,000) lieu $f_{\text{remot}}(1)$ (20) lieu
572	808	tormat(15x, Solids feturin temp. equals cyclone temp., 110.1, C
573		
574		write(9,810) trec $(15, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10$
575	810	format(15x, Solids return temp. set at, 14x, 110.1, C)
576		endif
577		
578		write $(9,812)$ recirc, fluxr, cross, ceff* 100.d0, exair* 100.d0, vii,
579	1	nteed,tuel*3600.d0,ateed*3600.d0,pair*100.d0,rt,rc,devn
	010	tormat(15x 'Solids recirculation rate' 16x t10 3 ' k0/s' / 15x

581	1	'Solids recirculation flux', 15x, f10.3, 'kg/m2s',/15x,
582	2	'Gas cross-flow coefficient', 14x, f10.3, ' m/s', /15x,
583	3	'Combustion efficiency', 19x, f10.1,' %',/15x,'Excess air', 30x, f10.3,' %',/15x,
584	4	'Volatile transfer fraction', 14x, f10.3,/15x, 'Number of fuel feed points',
585	5	14x,i10,/15x,'Fuel feedrate',27x,f10.3,' kg/hr',/15x,'Air feedrate',28x,
586	6	f10.3,' kg/hr',/15x,'% of total air that is primary',10x,f10.1,' %',/15x
587	7	'Residence time of particles in cyclone',2x,f10.3,' sec.',/15x,
588	8	'Reflection coefficient', 18x, f10.3,/15x,
589	9	'Height at which developed zone begins',3x,f10.3,' m')
590		
591		write(9,814) uc,us,sug,tb
592	814	format(//15x,'GAS VELOCITIES',/15x,'',//15x,
593	1	'Core insterstitial gas velocity',9x,f10.3,' m/s',/15x,
594	2	'Streamer interstitial gas velocity',6x,f10.3,' m/s',/15x,
595	3	'Superficial gas velocity', 16x, f10.3,' m/s',//15x,
596	4	'Bed temperature used in calculating',/17x,
597	5	'heat transfer area and gas velocities',3x,f10.1,' C')
598		
599		write(9,816)
600	816	format(("1"),45x,'page 3 of 6',/////15x,
601	1	'HEAT RELEASE DISTRIBUTION',/15x,
602	2	'',//15x,'Height',8x,
603	3	'Fraction of Total Heat Release',/34x,'Volatiles',16x,
604	4	'Char',/17x,'(m)',9x,'Streamer',4x,'Core',6x,'Streamer',4x,'Core',/)
605		
606		write(9,818) fluxc(ncell,1),heatv(ncell)/total,heatc(ncell)/total
607	818	format(15x,f5.2,12x,f10.6,12x,f10.6)
608		do i=1,ny
609		write(9,820) fluxc(i,1),heatv(i+ny)/total,heatv(i)/total,heatc(i+ny)/total,
610	· 1	heatc(i)/total
611	820	format(15x,f5.2,6x,3(1x,f10.6),2x,f10.6)
612		enddo
613		write(9,822) cycv/total,cycc/total,totv/total,(total-totv)/total
614	822	format(15x,'Cyclone',10x,f10.6,12x,f10.6,//15x,'TOTAL',12x,f10.6,12x,
615	1	f10.6)
616		
617		write(9,824) fluxc(ncell, 1), press(2)
618	824	format(("1"),45x,'page 4 of 6',/////15x,
619	1	'OXYGEN PARTIAL PRESSSURE DISTRIBUTION',
620	2	/15X,'',//15x,'Height',8x,
621	3	'Partial Pressure of Oxygen (atm.)',/17x,'(m)',9x,
622	4	'Streamer',4x,'Core',//15x,f5.2,12x,f10.6)
623		do i=1,ny
624		write(9,826) fluxc(i,1)+dycell/2.d0,press2(i+2),presc2(i+2)
625	826	format(15x,f5.2,6x,2(1x,f10.6))
626		enddo
-----	-------	--
627		write(9,828) er1,po2,pout,pcyc
628	828	format(//15x,'Pressure convergence tolerance', 10x, f10.4,' atm.',
629	1	/15x, 'Partial pressure of oxygen entering', 5x, f10.6,' atm.',/15x,
630	2	'Partial pressure of oxygen leaving riser', f10.3,' atm.',/15x,
631	3	'Partial pressure of oxygen leaving cyclone',f8.3,' atm.')
632		
633		write(9,830) fluxc(ncell,1),temp(ncell)
634	830	format(("1"),45x,'page 5 of 6',/////15x,
635	1	'TEMPERATURE DISTRIBUTION',/15x,
636	2	'',//15x,'Height',8x,'Temperature (C)',
637	3	/17x,'(m)',9x,'Streamer',4x,'Core',//15x,f5.2,11x,f10.1)
638		do i=1,ny
639		<pre>write(9,832) fluxc(i,1),temp(i+ny),temp(i)</pre>
640	832	format(15x,f5.2,4x,2(1x,f10.1))
641		enddo
642		write(9,834) trec,ermax,tcyc,twall
643	834	format(//15x,'Solids return temperature',15x,f10.1,'C',/15x,
644	1	'Temperature convergence tolerance',7x,f10.3,' C',/15x,
645	2	'Cyclone temperature',21x,f10.1,' C',/15x,'Wall temperature',24x,f10.1,' C')
646		
647		write(9,836)
648	836	format(("1"),45x,'page 6 of 6',/////15x,
649	1	'HEAT TRANSFER COEFFICIENTS',/15x,
650	2	'',//15x,'Height',2x,'Density',
651	3	2x, 'Core Temp.', 2x, 'Heat Transfer Coefficient (W/m2C)',
652	4	/17x,'(m)',3x,'(kg/m3)',5x,'(C)',6x,'Radiative',2x,'Convective',3x,'Overall',/)
653		write(9,838) fluxc(ncell, 1), flux(ncell, 4), temp(ncell), effr(2), effc(2), effn(2)
654		do i=1,ny
655		denav = (flux(i,4)*acell(i)+flux(i+ny,4)*acell(i+ny))/at
656		write(9,838) fluxc(1,1), denav, temp(1), effr(1+2), effc(1+2), effn(1+2)
657	838	format(15x,t5.2,2x,t8.3,2x,t7.1,3(2x,t10.1))
658		enddo
659		
660	100	close(9)
661		close(3)
662	•	close(7)
663		close(8)
664		stop
665		end
666		
667	c***'	**************************************
668		subroutine feed(tb,po2,ceff,exair,ult)
669	c Su	broutine to calculate the coal feedrate (fuel), given
670	c the	ultimate analysis of the coal and the gas velocity in the

671	c streamer and the core (us and uc).
672	c
673	c Variables are:
674	C
675	c fuel coal feedrate (kg/s)
676	c o2feed oxygen feedrate (kg/s)
677	c o2need oxygen feedrate needed for every 1 kg/s of coal feed
678	c (kg/s)
679	c ult ultimate analysis of coal
680	c uc gas velocity in the core (m/s)
681	c us gas velocity in the streamer (m/s)
682	C*************************************
683	
684	implicit real*8(a-h,o-z)
685	common/blka/acell(300),o2feed,x,fuel,uc,us
686	common/blkh/acinit,asinit,acfin,asfin
687	dimension ult(7)
688	
689	c Calculate the O2 feedrate (kg/s)
690	
691	o2feed=101.325d0*(uc*acinit+us*asinit)/8.314d0/(273.15d0+tb)*
692	1 po2*32.d0
693	
694	c Calculate the O2 feedrate needed for 1 kg/s fuel (kg/s)
695	
696	$x = (ceff^{(ult(3)/32.d0+ult(4)/4.d0+ult(5)/12.d0)^{32.d0-ult(7)}/100.d0)$
697	o2need=exair*x+x
698	
699	c Calculate the fuel feedrate (kg/s)
700	
701	fuel=o2feed/o2need
702	return
703	end
704	
705	c*************************************
706	subroutine volat(ny,heatv,tdvol,totv,ncell,c1,c2,temp,pi)
707	c Subroutine to determine the heat release distribution due to
708	c devolatilization (heatv).
709	C*************************************
710	
711	implicit real*8(a-h,o-z)
712	common/blkb/cycv,npart,dt(300),pmatt(300),
713	1 pmat1(300),rc,volf,valh,rt,distv(300),siv(20),pdist(20)
714	common/blkc/heatc(300),dpcut,presc(300),press(300),denp,coeff
715	dimension heatv(300),temp(300)

716		
717	c Intializ	ze heatv.
718		
719	v	roli=0.d0
720	d	lo i=1,ncell
721		heatv(i)=0.d0
722	· e	nddo
723		·
724	c Main	loop over the number of particles.
725		
726	d	lo 30 ii=1,npart
727		
728	c Deter	mine the initial size of the particle based on the particle
729	c size di	istribution.
730		
731		rval=d_lcran()
732		totwt=0.d0
733		do i=1,18
734		totwt=totwt+pdist(i)/100.d0
735		if(rval.le.totwt) then
736		dpinit=siv(i)/1000.d0
737		goto 5
738		endif
739		enddo
740		
741	5	volp=pi*dpinit**3/6.d0
742		pmas=denp*volp
743		
744		vol=voli
745		voldif=1.d0
746		time=0.d0
747		icell=ncell
748	. 4	icello=icell
749		
750	c Gene	rate a random real number between [0,1] to determine the position
751	c of the	e particle.
752		
753	10	time=time+dt(icell)
754		
755		if(voldif.le.1.d-6) then
756		tdvol=time-dt(icell)
757		goto 30
758		endif
759		
760		rval=d lcran()
		-

761	
762	if(icell.eq.ncell) then
763	if(rval.le.pmatt(icell)) icell=1
764	goto 20
765	endif
766	
767	if(rval.le.pmat1(icell)) then
768	if(icell.le.ny) then
769	icell=icell+ny
770	else
771	icell=icell-ny
772	endif
773	elseif(rval.le.pmatt(icell)) then
774	if(icell.eq.ny) then
775	
776	c If the particle exits the top of the riser, another random number
777	c is generated to determine whether the particle is transferred to
778	c the streamer or is removed to the cyclone.
779	
78 0	rval=d_lcran()
781	if(rval.le.rc) then
782	icell=ncell-1
783	goto 20
784	else
785	voldif=volf*(1.d0-dexp(-c1*time*dexp(-c2/
786	1 (1.987d-3*(273.15d0+temp(icello))))))-vol
787	vol=vol+voldif
788	heatv(icello)=heatv(icello)+valh*voldif*pmas
789	time=time+rt
790	voldif=volf*(1.d0-dexp(-c1*time*dexp(-c2/
791	1 (1.987d-3*(273.15d0+temp(icello))))))-vol
792	vol=vol+voldif
793	cycv=cycv+valh*voldif*pmas
794	icell=ncell
795	icello=icell
796	goto 10
797	endif
798	elseif(icell.lt.ny) then
799	icell=icell+1
800	elseif(icell.eq.ny+1) then
801	icell=ncell
802	else
803	icell=icell-1
804	endif
805	endif

806	
807	c Add the heat generation due to volatiles to each cell.
808	•
809	20 voldif=volf*(1.d0-dexp(-c1*time*dexp(-c2/
810	1 (1.987d-3*(273.15d0+temp(icello))))))-vol
811	vol=vol+voldif
812	heatv(icello)=heatv(icello)+valh*voldif*pmas
813	icello=icell
814	goto 10
815	30 continue
816	
817	c Calculate the heat distribution.
818	
819	totv=0.d0
820	do 40 i=1,ncell
821	totv=totv+heatv(i)
822	40 continue
823	distv(1)=heatv(1)/totv
824	do 50 i=2,ncell
825	sum=0.d0
826	do j=1,i
827	sum=sum+heatv(j)
828	enddo
829	distv(i)=sum/totv
830	50 continue
831	return
832	end
833	
834	c*************************************
835	subroutine vdisp(heatv,ncell,ny,pi,flux)
836	c Subroutine which uses the plume model to correct for volatile
837	c dispersion
838	C.
839	c Variables are:
840	C
841	c nfeed Number of feed points.
842	c height Height above the feed where there is full radial mixing
843	c sdisp Average displacement in the radial direction (m)
844	c tdisp Time (sec.)
845	cr Radius (m)
846	C*************************************
847	
848	implicit real*8(a-h,o-z)
849	common/blka/acell(300),02feed,x,fuel,uc,us
850	common/blkb/cycy.npart.dt(300).pmatt(300).
000	

851	1 pmat1(300),rc,volf,valh,rt,distv(300),siv(20),pdist(20)
852	common/blke/vtf,nfeed
853	dimension r(300),heatv(300),flux(300,5)
854	data drp/0.015d0/
855	
856	r(ncell)=dsqrt(acell(ncell)/pi)
857	ndiv=1
858	if(nfeed.ne.1) ndiv=(nfeed-2)*2+2
859	
860	sdisp=r(ncell)/ndiv
861	tdisp=sdisp**2/(2.d0*drp)
862	
863	c Calculate the height where the volatiles are fully mixed in the
864	c radial direction.
865	
866	height=uc*tdisp
867	
868	c Transfer a fraction (vtf) of the volatiles to the cell above where
869	c the volatiles are released.
870	
871	heatv(ncell)=heatv(ncell)-vtf*heatv(ncell)
872	if(flux(1,1).ge.height) return
873	heatv(1)=heatv(1)+vtf*heatv(ncell)
874	heatv(1)=heatv(1)-vtf*heatv(1)
875	do i=2,ny-1
876	if(flux(i,1).ge.height) return
877	heatv(i)=heatv(i)+vtf*heatv(i-1)
878	heatv(i)=heatv(i)-vtf*heatv(i)
879	enddo
880	
881	if(flux(ny,1).ge.height) return
882	heatv(ny)=heatv(ny)+vtf*heatv(ny-1)
883	heatv(ny)=heatv(ny)-vtf*heatv(ny)
884	cycy=cycy+vtf*heatv(ny)
885	return
886	end
887	
888	c*************************************
889	subroutine char(ny.cyc.pi.ncell.ult)
890	c. Subroutine to determine the char heat release distribution.
801	
807	c. Variables are:
803	
801	c cmass Mass of char particle
074 805	c cyc Total heat released in the cyclone
073	

896	c dp Particle diameter (m)
897	c icell Position of the particle at a given time
898	c volmas Mass of volatiles
899	C*************************************
900	
901	implicit real*8(a-h,o-z)
902	common/blkb/cycv,npart,dt(300),pmatt(300),
903	1 pmat1(300),rc,volf,valh,rt,distv(300),siv(20),pdist(20)
904	common/blkc/heatc(300),dpcut,presc(300),press(300),denp,coeff
905	dimension ult(7)
906	
907	c Intialize the heat due to char combustion vector to zero, and the
908	c heat released in the cyclone to equal the heat released due to
909	c devolatilization.
910	
911	do i=1,ncell
912	heatc(i)=0.d0
913	enddo
914	cyc=cycv
915	
916	c Main loop over the number the particles.
917	
918	do 30 ii=1,npart
919	
920	c Determine the initial size of the particle based on the particle
921	c size distribution.
922	
923	rval=d_lcran()
924	totwt=0.d0
925	do i=1,18
926	totwt=totwt+pdist(i)/100.d0
927	if(rval.le.totwt) then
928	dpinit=siv(i)/1000.d0
929	goto 5
930	endif
931	enddo
932	
933	5 volp=pi*dpinit**3/6.d0
934	pmas=denp*volp
935	volmas=pmas*volf
936	ashmas=pmas*ult(1)/100.d0
937	cmas=pmas-volmas-ashmas
938	
939	c Determine diameter of a particle of fixed carbon only.
940	

941	dp=(6.d0*cmas/(denp*pi))**(1.d0/3.d0)
942	
943	c Generate a random real number between [0,1] to determine the initial
944	c position of the char particle based on the devolatilization heat
945	c released distribution.
946	
947	rval=d_lcran()
948	icell=1
949	do i=1,ncell-1
950	if(rval.ge.distv(i)) icell=i+1
951	enddo
952	icello=icell
953	
954	time=0.d0
955	10 time=time+dt(icell)
956	
957	rval=d_lcran()
958	if(icell.eq.ncell) then
959	if(rval.lt.pmatt(icell)) icell=1
960	goto 20
961	endif
962	
963	if(rval.le.pmat1(icell)) then
964	if(icell.le.ny) then
965	icell=icell+ny
966	else
967	icell=icell-ny
968	endif
969	elseif(rval.le.pmatt(icell)) then
970	if(icell.eq.ny) then
971	
972	c If the particle exits the top of the riser, another random number
973	c is generated to determine whether the particle is transferred to
974	c the streamer or is removed to the cyclone.
975	
976	rval=d_lcran()
977	if(rval.lt.rc) then
978	icell=ncell-1
979	else
980	if(dp.gt.dpcut) then
981	fi=coeff*pi*(dp**2)*presc(icello+2)*dt(icello)*12.d0
982	cmas2=cmas-fi
983	if(cmas2.le.0.d0) then
984	heatc(icello)=heatc(icello)+cmas2*valh
985	goto 30
	-

986	endif
987	heatc(icello)=heatc(icello)+fi*valh
988	cmas=cmas-fi
989	
990	time=time+rt
991	fi=coeff*pi*(dp**2)*presc(ny)*rt*12.d0
992	cmas2=cmas-fi
993	if(cmas2.le.0.d0) then
994	cyc=cyc+cmas2*valh
995	goto 30
996	endif
9 97	cyc=cyc+fi*valh
998	cmas=cmas-fi
999	$dp=(6.d0*cmas/(denp*pi))**(1.d0/3.d0)^{-1}$
1000	icell=ncell
1001	icello=icell
1002	goto 10
1003	else
1004	goto 30
1005	endif
1006	endif
1007	
1008	elseif(icell.lt.ny) then
1009	icell=icell+1
1010	elseif(icell.eq.ny+1) then
1011	icell=ncell
1012	else
1013	icell=icell-1
1014	endif
1015	endif
1016	and the state of t
1017	c Calculate the heat generation due to char combustion, assuming first
1018	c order reaction. From: Howard, J.R.
1019	
1020	20 if (icello.le.ny) then $(1 + 1) + 0 + 1 + 0 + 0$
1021	fi=coeff*pi*(dp**2)*presc(icello+2)*dt(icello)*12.d0
1022	elseif(icello.eq.ncell) then
1023	fi=coeff*pi*(dp**2)*presc(2)*dt(iceno)*12.do
1024	else $(1 + 1) + (1 + 2) +$
1025	$fi=coeff^pi^{(ap^++2)^+}press(icello-ny+2)^{(icello)^+}12.00$
1026	
1027	heatc(icello)=neatc(icello)+n=vain
1028	icello=iceli
1029	No. 1.1
1030	c Mass balance to determine the new particle diameter, DP.

÷

•

1031	
1032	cmas=cmas-fi
1033	if(cmas.lt.0.d0) goto 30
1034	dp = (6.d0 * cmas/(denp * pi)) * * (1.d0/3.d0)
1035	goto 10
1036	30 continue
1037	return
1038	end
1039	
1040	c*************************************
1041	subroutine pres(ny,cyc,pi,po2,ncell)
1042	c Subroutine to determine the partial pressure of oxygen profile.
1043	c Secondary in injected into the core and the streamer cells to
1044	c keep the gas velocities in the streamer and core at a constant
1045	c value.
1046	C
1047	c Variables are:
1048	c
1049	c cc Concentration of oxygen in the core
1050	c cs Concentration of oxygen in the streamer
1051	c mcyc Mass of fuel in the cyclone (kg)
1052	c mfuel Mass of fuel in each cell (kg)
1053	c o2prim Oxygen feed in the primary air
1054	c rcore Radius of the core
1055	C*************************************
1056	
1057	implicit real*8(a-h,o-z)
1058	real*8 mfuel, mcyc
1059	common/blka/acell(300),o2feed,x,fuel,uc,us
1060	common/blkd/heat(300),total,dycell,cross,presc2(300),
1061	1 press2(300),con0,oxyclc,mcyc,pair
1062	common/blkh/acinit,asinit,acfin,asfin
1063	dimension mfuel(300), conc(300)
1064	
1065	c Assume time duration is 1 sec.
1066	c Calculate the mass of fuel in each cell (kg) based on the fraction
1067	c of heat released.
1068	
1069	do i=1.ncell
1070	mfuel(i)=heat(i)*fuel
1071	enddo
1072	mcvc=cvc/total*fuel
1072	
1074	c Calculate the concentration of O2 in each cell $(kg/m3)$
1075	
10/5	

1076	con0=o2feed/(uc*acinit+us*asinit)
1077	cprim=o2feed*pair-mfuel(ncell)*x
1078	
1079	c Addition of secondary air, in both the streamer and core,
1080	c after the primary zone.
1081	
1082	if(cprim.le.0.d0) then
1083	conin=(o2feed*(1.d0-pair))/(uc*acinit+us*asinit)
1084	else
1085	conin=(o2feed-mfuel(ncell)*x)/(uc*acinit+us*asinit)
1086	endif
1087	
1088	conc(ncell)=conin
1089	oxyc=conin*uc*(acell(1)+acell(2))/2.d0
1090	oxys=conin*us*(acell(ny+1)+acell(ny+2))/2.d0
1091	
1092	do i=1,ny-1
1093	rcore=dsqrt(acell(i)/pi)
1094	frac=cross*2.d0*pi*rcore*dycell
1095	cc=(acell(i)+acell(i+1))/2.d0*uc
1096	cs=(acell(ny+i)+acell(ny+i+1))/2.d0*us
1097	
1098	oxys=(oxys-mfuel(ny+i)*x+frac*(oxyc-mfuel(i)*x)/
1099	$1 \qquad (cc+frac))/(1.d0+frac/cs-frac**2/cs/(cc+frac))$
1100	oxyc=(oxyc-mfuel(i)*x+frac*oxys/cs)/(1.d0+frac/cc)
1101	if(oxys.lt.0.d0) oxys=0.d0
1102	if(oxyc.lt.0.d0) oxyc=0.d0
1103	conc(i)=oxyc/cc
1104	conc(ny+i)=oxys/cs
1105	enddo
1106	rcore=dsqrt(acell(ny)/pi)
1107	frac=cross*2.d0*pi*rcore*dycell
1108	cc=acfin*uc
1109	cs=asfin*us
1110	
1111	oxys=(oxys-mfuel(ny+ny)*x+frac*(oxyc-mfuel(ny)*x)/
1112	1 (cc+frac))/(1.d0+frac/cs-frac**2/cs/(cc+frac))
1113	oxyc=(oxyc-mfuel(ny)*x+frac*oxys/cs)/(1.d0+frac/cc)
1114	if(oxys.lt.0.d0) oxys=0.d0
1115	if(oxyc.lt.0.d0) oxyc=0.d0
1116	oxyclc=oxys+oxyc
1117	conc(ny)=oxyc/cc
1118	conc(2*ny)=oxys/cs
1119	
1120	c Calculate the partial pressure of O2 in each cell
	1 1

1121	
1122	press2(1)=po2
1123	presc2(1)=po2
1124	press2(2)=conc(ncell)*po2/con0
1125	presc2(2)=press2(2)
1126	
1127	do i=3,ny+2
1128	presc2(i)=conc(i-2)*po2/con0
1129	press2(i)=conc(ny+i-2)*po2/con0
1130	enddo
1131	
1132	return
1133	end
1134	
1135	c*************************************
1136	subroutine htrans(ncell,nycell,eps,per,rf2,recirc,ult)
1137	c Subroutine to calculate the temperature profile given the partial
1138	c pressure of oxygen profile and heat release distribution.
1139	c To aid convergence, the particle convective term entering the riser
1140	c is set to equal the term leaving the riser.
1141	c
1142	c Variables are:
1143	c
1144	c a,b,c,r Entries in the tridiagonal matrix
1145	c cg Heat capacity of the gas (J/kgK)
1146	c cp Heat capacity of the particles (J/kgK)
1147	c deng Density of the gas (kg/m3)
1148	c emiss Emissivity
1149	c f Fraction of the wall covered by membrane
1150	c fx Matrix of mass flux in the radial direction (kg/m2s)
1151	c fyn Matrix of mass flux in the north direction (kg/m2s)
1152	c fys Matrix of mass flux in the south direction (kg/m2s)
1153	c g Matrix of source term for each cell (W)
1154	c heatev Heat of evaporation of water at 25 C (J/kg)
1155	c sbc Stefan-Boltzmann constant (W/m2K4)
1156	c t Temperature matrix for present iteration
1157	c to Temperature matrix for previous iteration
1158	c u Solution vector from subroutine tridag
1159	·C************************************
1160	implicit real*8(a-h,o-z)
1161	real*8 k
1162	common/blka/acell(300),o2feed,x,fuel,uc,us
1163	common/blkb/cycv,npart,dt(300),pmatt(300),
1164	1 pmat1(300),rc,volf,valh,rt,distv(300),siv(20),pdist(20)
1165	common/blkd/heat(300),total,dycell,cross,presc2(300),

1166	1 press2(300),con0,oxyclc,mcyc,pair
1167	common/blkf/to(5,300),k,at,twall,tair,vg,tref,cp,cg,afeed,fin
1168	common/blkg/flux(300,5),dx(5,300),dy(5,300),f,emiss,denb(300)
1169	common/blkh/acinit,asinit,acfin,asfin
1170	common/blki/areaw(5,300),areae(5,300),arean(5,300),
1171	1 areas(5,300), areat(5,300), effh(300), deng, sbc, const1,
1172	2 effc(300),effr(300),v2,v5,v6,cyc,gcyc
1173	dimension t(5,300), fyn(5,300), fys(5,300), fx(5,300)
1174	dimension a(300),b(300),c(300),r(300),u(300),heat(300)
1175	dimension g(5,300),ult(7)
1176	data heatev/2.44d6/
1177	
1178	ny=nycell+3
1179	nx=4
1180	
1181	c Convert temperatures from C to K
1182	
1183	do i=1,nx
1184	do j=1,ny
1185	to(i,j)=to(i,j)+273.15d0
1186	t(i,j)=to(i,j)
1187	enddo
1188	enddo
1189	
1190	c Determine fx, fyn and fys values.
1191	
1192	do j=1,ny
1193	do i=1,nx
1194	fx(i,j)=0.d0
1195	fyn(i,j)=0.d0
1196	fys(i,j)=0.d0
1197	enddo
1198	enddo
1199	
1200	do j=3,ny-1
1201	fx(3,j)=flux(j-2,2)
1202	fx(2,j)=flux(j-2+nycell,2)
1203	enddo
1204	fx(2,2)=flux(nycell+1,3)*asinit/(dy(2,2)*per)
1205	fx(3,2)=0.d0
1206	do j=4,ny-2
1207	fyn(3,j) = flux(j-2,3)
1208	fys(3,j)=flux(j-3,3)
1209	fys(2,j)=flux(j-2+nycell,3)
1210	fyn(2,j)=flux(j-1+nycell,3)

1211	enddo
1212	fys(2,3)=flux(nycell+1,3)
1213	fyn(2,3)=flux(nycell+2,3)
1214	fyn(2,2)=flux(nycell+1,3)
1215	fyn(3,3) = flux(1,3)
1216	fys(3,3)=flux(ncell,3)
1217	fyn(3,2)=flux(ncell,3)
1218	fys(3,2)=(recirc+fuel)/acinit
1219	fyn(3,ny-1)=flux(nycell,3)
1220	fys(3,ny-1)=flux(nycell-1,3)
1221	fys(2,ny-1)=flux(ncell-1,3)
1222	fyn(2,ny-1)=flux(nycell,3)*acfin*rc/asfin
1223	
1224	c Calculate heat generation term (W), subtracting the heat loss due
1225	c to the evaporation of water at (25 C).
1226	
1227	g(2,2)=heat(ncell)*(fuel*valh*1000.d0-
1228	1 (fuel*ult(2)+fuel*ult(4)/2.d0*18.d0)/100.d0*heatev)*asinit/at
1229	g(3,2)=heat(ncell)*(fuel*valh*1000.d0-
1230	1 (fuel*ult(2)+fuel*ult(4)/2.d0*18.d0)/100.d0*heatev)*acinit/at
1231	do j=3,ny-1
1232	g(2,j)=heat(j-2+nycell)*(fuel*valh*1000.d0-
1233	1 $(fuel*ult(2)+fuel*ult(4)/2.d0*18.d0)/100.d0*heatev)$
1234	g(3,j)=heat(j-2)*(fuel*valh*1000.d0-
1235	1 $(fuel*ult(2)+fuel*ult(4)/2.d0*18.d0)/100.d0*heatev)$
1236	enddo
1237	gcyc=cyc/total*fuel*valh*1000.d0
1238	
1239	c Start N-S sweep
1240	•
1241	iter=0
1242	10 iter=iter+1
1243	
1244	do 100 j=2,ny
1245	
1246	C Calculate A.B.C and R.
1247	
1248	a(1)=0.d0
1249	b(1)=1.d0
12.50	c(1)=0.d0
1250	r(1) = twall + 273.15d0
1257	
1252	if(i.ea.nv) then
1255	do i=2.4
1254	a(i)=0 d0
1233	u(1) 0.00

1256		b(i) = 1.d0
1250		c(i)=0.d0
1257		r(i)=t(3,i-1)
1250		enddo
1260		goto 50
1260		endif
1267		
1262	c. Set an	upper limit of the heat transfer coefficient 100.
1264	e set un	
1265		h=cons1*denb(i)
1265		
1260		if(h ge 100 d0) h=100.d0
1267		_(8)
1260		i=2
1270		$t_1 = (f_x(2 i)*c_0+d_{eng}*c_g*v_g)*areae(i,i)$
1270		$t2=(f_x(3,i)*cp+deng*cg*vg)*areae(i,i)$
1271		t3=fvn(i,i)*cp*arean(i,i)
1272		$t4=deng^*cg^*us^*arean(i,i)$
1274		t5=fvs(i,i)*cp*areas(i,i)
1275		t6=deng*cg*us*areas(i,i)
1276		
1277		ae=-k*areae(i,j)/((dx(i,j)+dx(i+1,j))/2.d0)
1278		$an = -k^* arean(i,j)/((dy(i,j)+dy(i,j+1))/2.d0)$
1279		as = -k*areas(i,j)/((dy(i,j)+dy(i,j-1))/2.d0)
1280		s=-g(i,j)
1281		ap=ae+an+as
1282		a(i)=h*areaw(i,j)+emiss*sbc*areaw(i,j)*to(i-1,j)**3
1283		b(i)=ap-h*areaw(i,j)*arean(i,j)/at-emiss*sbc*areat(i,j)*to(i,j)**3-
1284	1	t1-t4-t5
1285		c(i)=-ae-h*areaw(i,j)*arean(i+1,j)/at+emiss*sbc*areae(i,j)*to(i+1,j)
1286	1	**3+t2
1287	_	r(i)=an*to(i,j+1)+as*to(i,j-1)+s-emiss*sbc*arean(i,j)*
1288	1	to(i,i+1)**4-emiss*sbc*areas(i,j)*to(i,j-1)**4+
1289	2	(-t1+t2-t4-t5)*(tref+273.15d0)-t3*(to(i,j+1)-(tref+273.15d0))
1290	3	-t6*(to(i,i-1)-(tref+273.15d0))
1290	-	
1292		i=3
1293		t1 = (fx(3,i)*cp+deng*cg*vg)*areaw(i,j)
1293		t2=(fx(2,i)*cp+deng*cg*vg)*areaw(i,j)
1295		$t_3 = (fvn(i,j)*cp+deng*cg*uc)*arean(i,j)$
1296		t4=(fvs(i,i)*cp+deng*cg*uc)*areas(i,i)
12.97		
1298		$aw = -k^* areaw(i,i)/((dx(i,i)+dx(i-1,i))/2.d0)$
1200		$an = -k^* arean(i,i)/((dy(i,i)+dy(i,i+1))/2.d0)$
1200		as=-k*areas(i,i)/((dv(i,i)+dv(i,i-1))/2.d0)
1000		

1301	s=-g(i,j)
1302	ap=aw+an+as
1303	a(i)=-aw+emiss*sbc*areaw(i,j)*to(i-1,j)**3+t2
1304	b(i)=ap-emiss*sbc*areat(i,j)*to(i,j)**3-t1-t3
1305	c(i)=0.d0
1306	r(i)=an*to(i,j+1)+as*to(i,j-1)+s-emiss*sbc*arean(i,j)*
1307	1 $to(i,j+1)$ **4-emiss*sbc*areas(i,j)*to(i,j-1)**4+
1308	1 $(-t1+t2-t3)^{*}(tref+273.15d0)-t4^{*}(to(i,j-1)-(tref+273.15d0))$
1309	
1310	if(j.eq.2) r(i)=r(i)+gcyc
1311	
1312	i=4
1313	aw=1.d0
1314	ap=aw
1315	a(i)=-aw
1316	b(i)=ap
1317	c(i)=0.d0
1318	r(i)=0.d0
1319	
1320	50 call tridag(a,b,c,r,u,nx)
1321	
1322	do i=1,nx
1323	t(i,j)=u(i)
1324	enddo
1325	
1326	c Update temperature solution.
1327	
1328	90 do i=1,4
1329	to(i,j)=to(i,j)-rf2*(to(i,j)-t(i,j))
1330	enddo
1331	·
1332	100 continue
1333	
1334	c Calculate the temperature of the cyclone.
1335	
1336	tcyc=to(3,ny)+gcyc/(afeed*cg+recirc*cp)
1337	
1338	error=0.d0
1339	ermax=0.d0
1340	itab=0
1341	jtab=0
1342	do j=2,ny
1343	do i=1,nx
1344	error=dabs(t(i,j)-to(i,j))/t(i,j)
1345	if(error.gt.ermax) then

•

1346		ermax=error
1347		itab=i
1348		jtab=j
1349		endif
1350	e	nddo
1351	endd	lo
1352	print	*, 'i,j,iter,error',itab,jtab,iter,ermax
1353	-	
1354	c Calculate	the new mixing temperature.
1355		
1356	tmix	=(afeed*cg*(tair+273.15d0)+fuel*cp*(tref+273.15d0)+
1357	1 recir	c*cp*tcyc)/(afeed*cg+fuel*cp+recirc*cp)
1358	do i=	=1,4
1359	1	o(i,1)=tmix
1360	endo	lo
1361		
1362	if(er	max.gt.eps) goto 10
1363		
1364	C	
1365	c Check the	e energy balance (for debugging purposes).
1366		
1367	v1=	0.d0
1368	v2=	0. d 0
1369	v3=	0.d0
1370	v4=	0.d0
1371		
1372	do j	=ny-1,2,-1
1373		do i=2,3
1374		gen=g(i,j)
1375		v1=v1+gen
1376		write(7,900) i,j,t(i,j),gen
1377	900	format(i15,2x,i15,2x,f15.4,2x,f15.4)
1378		
1379	c Set uppe	r limit of the heat transfer coefficient.
1380		
1381		h=const1*denb(j)
1382		
1383		if(h.ge.100.d0) h=100.d0
1384		
1385		if(i.eq.2) then
1386		$condw = -h^*areaw(i,j)^*((t(i,j)^*arean(i,j)+t(i+1,j)^*))^*$
1387	1	arean(i+1,j))/at-t(i-1,j))
1388		conde = -k*areae(i,j)/((dx(i,j)+dx(i+1,j))/2.d0)*(t(i,j)-t(i+1,j))
1389		v2=v2+condw
1390		else

1391		condw=-k*areaw(i,j)/((dx(i,j)+dx(i-1,j))/2.d0)*
1392	1	(t(i,j)-t(i-1,j))
1393		conde=0.d0
1394		endif
1395		condn=-k*arean(i,j)/((dy(i,j)+dy(i,j+1))/2.d0)*(t(i,j)-to(i,j+1))
1396		conds=-k*areas(i,j)/((dy(i,j)+dy(i,j-1))/2.d0)*(t(i,j)-to(i,j-1))
1397		if(j.eq.ny-1) v3=v3+condn
1398		if(j.eq.2) v4=v4+conds
1399		write(7,910) condw, conde, condn, conds
1400	910	format(4(f15.4,2x))
1401		· · · ·
1402		if(i.eq.2) then
1403		convwp=0.d0
1404		convwg=0.d0
1405		convep = -fx(2,j) * cp * areae(i,j) * (t(i,j)-298.15d0) +
1406	1	fx(3,j)*cp*areae(i,j)*(t(i+1,j)-298.15d0)
1407		conveg=-deng*cg*vg*areae(i,j)*
1408	1	(t(i,j)-298.15d0)+deng*cg*vg*areae(i,j)*(t(i+1,j)-298.15d0)
1409		convnp=fyn(i,j)*cp*arean(i,j)*(to(i,j+1)-298.15d0)
1410		$convng=-deng^*cg^*us^*arean(i,j)^*(t(i,j)-298.15d0)$
1411		convsp=-fys(i,j)*cp*areas(i,j)*(t(i,j)-298.15d0)
1412		convsg=deng*cg*us*areas(i,j)*(to(i,j-1)-298.15d0)
1413		if(j.eq.ny-1) htop=convng+convnp
1414		if(j.eq.2) then
1415		convsg=0.d0
1416		convsp=0.d0
1417		endif
1418		else
1419		convwp=-fx(3,j)*cp*areaw(i,j)*(t(i,j)-298.15d0)+
1420	1	fx(2,j)*cp*areaw(i,j)*(t(i-1,j)-298.15d0)
1421		convwg=-deng*cg*vg*areaw(i,j)*
1422	1	(t(i,j)-298.15d0)+deng*cg*vg*areaw(i,j)*
1423	2	(t(i-1,j)-298.15d0)
1424		convep=0.d0
1425		conveg=0.d0
1426		convnp = -fyn(i,j)*cp*arean(i,j)*(t(i,j)-298.15d0)
1427		convng=-deng*cg*uc*arean(i,j)*(t(i,j)-298.15d0)
1428		convsp=fys(i,j)*cp*areas(i,j)*(to(i,j-1)-298.15d0)
1429		convsg=deng*cg*uc*areas(i,j)*(to(i,j-1)-298.15d0)
1430		if(j.eq.ny-1) htop=htop+convng+convnp
1431		if(j.eq.2) then
1432		convsg=0.d0
1433		convsp=-htop-(v1+v2)+gcyc
1434		endif
1435		endif

1436	if(j.eq.ny-1) v3=v3+convnp+convng	
1437	if(j.eq.2) v4=v4+convsp+convsg	
1438	write(7,910) convwp,convep,convnp,convsp	
1439	write(7,910) convwg, conveg, convng, convsg	
1440		
1441	radw=-emiss*sbc*areaw(i,j)*(to(i,j)**3*t(i,j)-to(i-1,j)**3*t(i-1,j))	
1442	radn=-emiss*sbc*arean(i,j)*(to(i,j)**3*t(i,j)-to(i,j+1)**4)	
1443	rads=-emiss*sbc*areas(i,j)*(to(i,j)**3*t(i,j)-to(i,j-1)**4)	
1444	if(i.eq.2) then	
1445	rade=-emiss*sbc*areae(i,j)*(to(i,j)**3*t(i,j)-	
1446	to(i+1,j)**3*t(i+1,j))	
1447	v2=v2+radw	
1448	else	
1449	rade=0.d0	
1450	endif	
1451	if(j.eq.ny-1) v2=v2+radn	
1452	if(j.eq.2) v2=v2+rads	
1453	write(7,910) radw, rade, radn, rads	
1454		
1455	if(i.eq.2) then	
1456	effc(j) = -condw/areaw(i,j)/(to(i,j)-to(i-1,j))	
1457	effr(j) = -radw/areaw(i,j)/(to(i,j)-to(i-1,j))	
1458	effh(j) = effc(j) + effr(j)	
1459	endif	
1460	enddo	
1461	enddo	
1462		
1463	v5=v1+v2+v3+v4	
1464	v6=v5/v1*100.d0	
1465	print*, v1,v2,v3,v4,v5	
1466	write(8,*) 'v1 - v5',v1,v2,v3,v4,v5	
1467		
1468	print*, 'heat balance % diff. of heat gen. = ',v6	
1469	write($8,*$) 'heat balance % diff. of heat gen. = ',v6	
1470	z1=v1	
1471	z2=v2	
1472	z3=v3	
1473		
1474	C	
1475		
1476	c Convert the temperatures back from K to C.	
1477		
1478	do i=1 nv	
1479	do i=1.nx	
1480	$t_0(i) = t_0(i) - 273, 15d0$	
TTON		

1481	enddo
1482	enddo
1483	return
1484	end
1485	
1486	c*************************************
1487	subroutine tridag(a,b,c,r,u,n)
1488	c Subroutine to solve a nxn tridiagonal matrix.
1489	C*************************************
1490	
1491	implicit real*8(a-h,o-z)
1492	dimension gam(300),a(300),b(300),c(300),r(300),u(300)
1493	bet=b(1)
1494	u(1)=r(1)/bet
1495	
1496	c Decomposition and forward substitution.
1497	
1498	do j=2,n
1499	gam(j)=c(j-1)/bet
1500	bet=b(j)-a(j)*gam(j)
1501	u(j)=(r(j)-a(j)*u(j-1))/bet
1502	enddo
1503	
1504	c Backsubstitution.
1505	
1506	do j=n-1,1,-1
1507	u(j)=u(j)-gam(j+1)*u(j+1)
1508	enddo
1509	return
1510	end
1511	
1512	c******* IEEE error handling routine ***********
1513	integer function common_handler (sig, sip, uap)
1514	integer sig
1515	
1516	c define the structure siginfo, as in < sys/siginfo.h>
1517	
1518	structure /fault/
1519	integer address
1520	end structure
1521	structure /siginfo/
1522	integer si signo
1523	integer si_code
1524	integer si errno
1525	record /fault/ fault

.*

1526	end structure			
1527	record /siginfo/ sip			
1528				
1529	c for error codes see p 89 numerical computation guide			
1530				
1531	write (0,10) sip.si_code, sip.fault.address			
1532	10 format('ieee exception ', i1,' occurred at address ', z8)			
1533	end			
1534				

APPENDIX B

SAMPLE INPUT FILES

B.1 HYDRODYNAMIC INPUT FILE LISTING

COMBUSTOR: CASE:		Studsvik Prot sh0	otype	
20 425000 0.100000 2.607681 0.680000 107.334949 2.777500 0.719603 849.850000 106.850000		no. of cell x-sect reflect perim prima averag height frac. c bed te wall t	ls in y-dir ional area (ma tion coeff. eter of riser (r ry zone volum ge bed density t of start of de of total air tha emperature (C emperature (C	2) n) ne (m3) y (kg/m3) ev. zone (m) t is primary c)
cell#	height(m)) flux out X-dir.	flux out Y-dir.	densities
1 2 3 4 5 6 7 8 9	.13 .38 .63 .88 1.14 1.39 1.64 1.89 2.15 2.40	76.6772 46.5892 28.5548 17.6849 11.0329 6.9686 4.5322 3.0692 2.1894 1.6507	238.1944 151.6668 104.8062 78.2123 62.7280 53.5793 48.1274 44.8620 42.9003 41.7035	49.3334 30.4128 20.3644 14.7241 11.4609 9.5401 8.3980 7.7148 7.3047 7.0580
10 11 12 13 14 15 16 17	2.40 2.65 2.90 3.16 3.41 3.66 3.91 4.17	1.0397 1.3395 1.3410 1.3169 1.2920 1.2663 1.2398 1.2126	41.7035 40.8774 40.1386 39.3816 38.6006 37.7956 36.9665 36.1136	6.9041 6.7814 6.6567 6.5280 6.3953 6.2585 6.1177
18 19 20 21	4.42 4.67 4.92 .13	1.1847 1.1560 1.1266 12.1690	35.2373 34.3383 33.4162 1247.4000	5.9729 5.8243 5.6720 1134.0000

22	.38	7.6581	1247.4000	1134.0000
23	.63	5.0597	1247.4000	1134.0000
24	.88	3.5054	1247.4000	1134.0000
25	1.14	2.4755	1247.4000	1134.0000
26	1.39	1.8042	1247.4000	1134.0000
27	1.64	1.4154	1247.4000	1134.0000
28	1.89	1.1882	1247.4000	1134.0000
29	2.15	1.0542	1247.4000	1134.0000
30	2.40	.9746	1247.4000	1134.0000
31	2.65	.9262	1247.4000	1134.0000
32	2.90	.8862	1247.4000	1134.0000
33	3.16	.8467	1247.4000	1134.0000
34	3.41	.8063	1247.4000	1134.0000
35	3.66	.7650	1247.4000	1134.0000
36	3.91	.7229	1247.4000	1134.0000
37	4.17	.6801	1247.4000	1134.0000
38	4.42	.6367	1247.4000	1134.0000
39	4.67	.5929	1247.4000	1134.0000
· 40	4.92	.5489	1247.4000	1134.0000
41	.00	.0000	369.1127	316.9441

Aa
(m2)
.089157
.072131
.044831
.028355
.018412
.012411
.008790
.006604
.005285
.004489
.004009
003708
.003469
.003225
002972
002712
002444
002167
001882
001589
001288

155

:

•

Particle Physic Fuel	al Properties and Composition Weight %		
12.200	ash		
15.200	moisture		
.170	sulphur		
3.050	hydrogen		
52 900	carbon		

52.900	Carbon
.680	nitrogen
15.800	oxygen
40.000	% volatiles yield
1400.000	particle density (kg/m3)
7.122	mean core gas velocity (m/s)
3.567	mean streamer gas velocity (m/s)
6.95850	superficial gas velocity (m/s)
30.00000	solids recirc. flux (kg/m2s)
.07921	thermal conductivity of gas
.85000	particle radiation emissivity

Particle Sieve Sizing

mm	wt%
7.925	9.250
5.613	10.920
3.962	13.180
2.794	12.110
1.981	11.090
1.397	8.730
.991	7.750
.701	5.480
.495	4.750
.351	3.740
.246	3.410
.175	3.990
.124	1.290
.088	.000
.053	.000
.045	.000
.038	.000
.000	.000

B.2 USER INPUT FILE LISTING

INPUT FILE FOR HEAT.F

the Devolatilization Rate Equation
bituminous coal
higher heating value (kJ/kg)
number of particles in the Monte Carlo method
frac. of particles that exit a cell within dt
number of feed points
tolerance for partial pressure of O2 (atm)
tolerance for bed temperature (C)
convergence tolerance in subroutine heat
relaxation factor in subroutine heat
relaxation factor for partial pressure of O2
mass transfer crossflow coefficient
volatile transfer fraction
residence time in the cyclone (sec.)
excess air
combustion efficiency
particle surface temperature (C)
temperature of inlet air (C)
reference temperature (C)
const. in wall convective heat transfer coeff. term

APPENDIX C

OUTPUT FILES

page 1 of 6

CFB HEAT RELEASE AND HEAT TRANSFER MODEL

RUN RESULTS FROM HEAT TRANSFER ROUTINE HEAT.F, VERSION 8.1 WRITTEN BY: DALE W.C. JU

COMBUSTOR: Studsvik Prototype

CASE: Sardinian Coal

Case : sh0 (base case)

Superficial gas velocity = 6.96 m/s

Solids reciculation rate = 30 kg/m2s

Highvale coal(mean dp = 2.89 mm)

FUEL PHYSICAL PROPERTIES AND COMPOSITION

PROXIMATE ANALYSIS

Weight %

 12.200
 Ash

 15.200
 Moisture

 0.170
 Sulphur

 3.050
 Hydrogen

 52.900
 Carbon

 0.680
 Nitrogen

 15.800
 Oxygen

PARTICLE SIZE DISTRIBUTION

wt %
9.250
10.920
13.180
12.110
11.090
8.730
7.750
5,480
4.750
3.740
3.410
3.990
1.290
0.000
0.000
0.000
0.000
0.000

1

page 2 of 6

COMBUSTION CONDITIONS

% of total wall area with membranes	70.0 %
Solids return temp. equals cyclone temp.	858.6 C
Solids recirculation rate	12.750 kg/s
Solids recirculation flux	30.000 kg/m2s
Gas cross-flow coefficient	0.100 m/s
Combustion efficiency	100.0 %
Excess air	20.000 %
Volatile transfer fraction	0.300
Number of fuel feed points	1
Fuel feedrate	395.687 kg/hr
Air feedrate	3070.295 kg/hr
% of total air that is primary	72.0 %
Residence time of particles in cyclone	0.300 sec.
Reflection coefficient	0.100
Height at which developed zone begins	2.777 m

GAS VELOCITIES

¢ ;

Core insterstitial gas velocity	7.122 m/s
Streamer interstitial gas velocity	3.567 m/s
Superficial gas velocity	6.958 m/s
Bed temperature used in calculating	
heat transfer area and gas velocities	849.9 C

page 3 of 6

HEAT RELEASE DISTRIBUTION

Height	Fraction	of Total He	at Release	
	Volatiles	•	Char	
(m)	Streamer	Core	Streamer	Core
0.00	0.33	37328	0.46424	2
0.13	0.001086	0.077952	0.017981	0.007278
0.38	0.003157	0.017585	0.009128	0.004215
0.63	0.000082	0.004516	0.006292	0.002686
0.88	0.000003	0.001274	0.004353	0.001962
1.14	0.000000	0.000414	0.003025	0.001509
1.39	0.000004	0.000233	0.002080	0.001248
1.64	0.000001	0.000448	0.001675	0.001108
1.89	0.000007	0.000271	0.001341	0.001003
2.15	0.000001	0.000200	0.001087	0.000910
2.40	0.000000	0.000257	0.000996	0.000883
2.65	0.000000	0.000123	0.000947	0.000874
2.90	0.000000	0.000076	0.000874	0.000818
3.16	0.000000	0.000039	0.000898	0.000825
3.41	0.000000	0.000063	0.000825	0.000822
3.66	0.000000	0.000079	0.000860	0.000781
3.91	0.000000	0.000027	0.000751	0.000779
4.17	0.000000	0.000017	0.000686	0.000754
4.42	0.000000	0.000007	0.000564	0.000716
4.67	0.000000	0.000007	0.000491	0.000709
4.92	0.000000	0.000051	0.000364	0.000670
Cyclone	0.0	00037	0.00464	4

TOTAL

.

0.502019

page 4 of 6

OXYGEN PARTIAL PRESSSURE DISTRIBUTION

Height	Partial Pressure of Oxygen (atm.)		
(m)	Streamer	Core	
0.00	0.0685	24	
0.26	0.031904	0.053800	
0.51	0.018193	0.046472	
0.76	0.012646	0.043154	
1.00	0.011824	0.041219	
1.26	0.015730	0.039964	
1.51	0.021778	0.039116	
1.76	0.025567	0.038457	
2.01	0.027828	0.037964	
2.27	0.029310	0.037572	
2.52	0.029630	0.037212	
2.77	0.029585	0.036890	
3.02	0.029795	0.036598	
3.29	0.029436	0.036308	
3.54	0.029658	0.036025	
3.79	0.029217	0.035742	
4.04	0.029720	0.035482	
4.29	0.030067	0.035238	
4.54	0.030834	0.035020	
4.79	0.031302	0.034815	
5.04	0.032164	0.034630	

Pressure convergence tolerance	0.0040 atm.
Partial pressure of oxygen entering	0.210000 atm.
Partial pressure of oxygen leaving riser	0.035 atm.
Partial pressure of oxygen leaving cyclone	0.034 atm.

page 5 of 6

TEMPERATURE DISTRIBUTION

Height	Temperature (C)		
(m)	Streamer Core		
0.00	889	.4	
0.13	883.8	891.4	
0.38	833.4	888.0	
0.63	830.3	884.5	
0.88	827.6	881.0	
1.14	825.1	877.8	
1.39	822.9	875.0	
1.64	821.1	872.5	
1.89	819.8	870.2	
2.15	818.7	868.1	
2.40	817.9	866.3	
2.65	820.9	864.5	
2.90	823.9	862.8	
3.16	826.9	861.4	
3.41	827.3	860.2	
3.66	828.4	859.0	
3.91	830.4	858.0	
4.17	834.2	857.2	
4.42	841.1	856.7	
4.67	853.3	856.7	
4.92	876.3	857.4	

2

Solids return temperature	858.6 C
Temperature convergence tolerance	0.004 C
Cyclone temperature	858.6 C
Wall temperature	106.8 C

page 6 of 6

,

HEAT TRANSFER COEFFICIENTS

Heigh	t Density	Core To	emp. Heat	Transfer Co	efficient (W/m2C)
(m)	(kg/m3)	(C)	Radiative	Convective	overall
0.00	316.944	889.4	110.3	100.5 2	210.8
0.13	233.423	891.4	109.9	100.8 2	210.7
0.38	146.824	888.0	98.1	106.9 2	205.0
0.63	94.664	884.5	97.4	101.4	198.7
0.88	63.214	881.0	96,8	67.7	164.5
1.14	44.242	877.8	96.2	47.4	143.6
1.39	32.797	875.0	95.7	35.1	130.9
1.64	25.889	872.5	95.3	27.7	123.1
1.89	21.720	870.2	95.0	23.2	118.3
2.15	19.205	868.1	94.8	20.5	115.3
2.40	17.688	866.3	94.6	18.9	113.5
2.65	16.738	864.5	94.8	17.8	112.6
2.90	15.982	862.8	96.6	16.8	113.4
3.16	15.211	861.4	96.6	15.9	112.6
3.41	14.412	860.2	96.7	15.1	111.8
3.66	13.591	859.0	97.0	14.2	111.1
3.91	12.744	858.0	97.4	13.2	110.6
4.17	11.869	857.2	98.3	12.2	110.5
4.42	10.968	856.7	99.8	11.2	111.0
4.67	10.042	856.7	102.6	10.1	112.7
4.92	9.091	857.4	108.0	8.9	116.9

page 1 of 6

CFB HEAT RELEASE AND HEAT TRANSFER MODEL

RUN RESULTS FROM HEAT TRANSFER ROUTINE HEAT.F, VERSION 8.1 WRITTEN BY: DALE W.C. JU

COMBUSTOR: Studsvik Prototype

CASE: Sardinian Coal Case : sh1 Superficial gas velocity = 6.96 m/s Solids reciculation rate = 50 kg/m2s Highvale coal(mean dp = 2.89 mm)

FUEL PHYSICAL PROPERTIES AND COMPOSITION

PROXIMATE ANALYSIS

Weight %

 12.200
 Ash

 15.200
 Moisture

 0.170
 Sulphur

 3.050
 Hydrogen

 52.900
 Carbon

 0.680
 Nitrogen

 15.800
 Oxygen

PARTICLE SIZE DISTRIBUTION

mm	wt %
7.925	9.250
5.613	10.920
3.962	13.180
2.794	12.110
1.981	11.090
1.397	8.730
0.991	7.750
0.701	5.480
0.495	4.750
0.351	3.740
0.246	3.410
0.175	3.990
0.124	1.290
0.088	0.000
0.053	0.000
0.045	0.000
0.038	0.000
0.000	0.000

page 2 of 6

COMBUSTION CONDITIONS

# of particles in Monte Carlo Method	100
% of total wall area with membranes	70.0 %
Solids return temp. equals cyclone temp.	835.1 C
Solids recirculation rate	21.250 kg/s
Solids recirculation flux	50.000 kg/m2s
Gas cross-flow coefficient	0.100 m/s
Combustion efficiency	100.0 %
Excess air	20.000 %
Volatile transfer fraction	0.300
Number of fuel feed points	1
Fuel feedrate	388.886 kg/hr
Air feedrate	3017.519 kg/hr
% of total air that is primary	72.0 %
Residence time of particles in cyclone	0.300 sec.
Reflection coefficient	0.100
Height at which developed zone begins	2.525 m

GAS VELOCITIES

ì

Core insterstitial gas velocity		7.187 m/s
Streamer interstitial gas velocity	,	3.600 m/s
Superficial gas velocity		6.958 m/s

Bed temperature used in calculating	
heat transfer area and gas velocities	849.9 C

page 3 of 6

HEAT RELEASE DISTRIBUTION

Height	leight Fraction of Total Heat Release			
	Volatiles		Char	
(m)	Streamer	Core	Streamer	Core
0.00	0.33	80548	0.45119	3
0.13	0.008532	0.072786	0.022746	0.007294
0.38	0.001237	0.016510	0.012063	0.004265
0.63	0.004695	0.005423	0.006954	0.002901
0.88	0.000078	0.001387	0.004356	0.002131
1.14	0.000033	0.000365	0.002992	0.001742
1.39	0.000000	0.000267	0.002187	0.001434
1.64	0.000010	0.000123	0.001822	0.001301
1.89	0.000000	0.000287	0.001637	0.001168
2.15	0.000000	0.000080	0.001444	0.001182
2.40	0.000000	0.000029	0.001286	0.001070
2.65	0.000000	0.000027	0.001289	0.001105
2.90	0.000000	0.000054	0.001260	0.001052
3.16	0.000000	0.000017	0.001123	0.001092
3.41	0.000000	0.000013	0.001082	0.000990
3.66	0.000000	0.000005	0.000949	0.000990
3.91	0.000000	0.000036	0.000831	0.000929
4.17	0.000000	0.000022	0.000781	0.000890
4.42	0.000000	0.000006	0.000678	0.000875
4.67	0.000000	0.000005	0.000565	0.000847
4.92	0.000000	0.000006	0.000489	0.000803
Cyclone	0.0	00012	0.00561	8

TOTAL

0.497612

page 4 of 6

OXYGEN PARTIAL PRESSSURE DISTRIBUTION

Height	Partial Pressure of Oxygen (atm.)		
(m)	Streamer	Core	
0.00	0.0722	15	
0.26	0.023893	0.057783	
0.51	0.012219	0.049493	
0.76	0.000000	0.045156	
1.00	0.002534	0.042749	
1.26	0.010056	0.041216	
1.51	0.018399	0.040186	
1.76	0.023755	0.039461	
2.01	0.026177	0.038872	
2.27	0.027334	0.038395	
2.52	0.028038	0.037992	
2.77	0.027895	0.037594	
3.02	0.027771	0.037204	
3.29	0.028304	0.036830	
3.54	0.028480	0.036482	
3.79	0.029135	0.036152	
4.04	0.029855	0.035846	
4.29	0.030160	0.035557	
4.54	0.030736	0.035289	
4.79	0.031467	0.035042	
5.04	0.031969	0.034815	

Pressure convergence tolerance	0.0039 atm.
Partial pressure of oxygen entering	0.210000 atm.
Partial pressure of oxygen leaving riser	0.035 atm.
Partial pressure of oxygen leaving cyclone	0.034 atm.
page 5 of 6

TEMPERATURE DISTRIBUTION

Height	Temperature (C)				
(m)	Streamer	Core			
0.00	854.0)			
0.13	849.5	855.4			
0.38	803.1	852.4			
0.63	802.2	849.6			
0.88	801.8	846.9			
1.14	802.5	844.5			
1.39	804.0	842.6			
1.64	806.1	841.0			
1.89	808.6	839.7			
2.15	811.2	838.8			
2.40	812.6	837.9			
2.65	814.0	837.1			
2.90	815.4	836.4			
3.16	815.6	835.7			
3.41	816.2	835.1			
3.66	817.3	834.6			
3.91	819.2	834.2			
4.17	822.2	833.9			
4.42	827.2	833.8			
4.67	835.5	833.9			
4.92	850.3	834.4			

Solids return temperature	835.1 C
Temperature convergence tolerance	0.004 C
Cyclone temperature	835.1 C
Wall temperature	106.8 C

page 6 of 6

HEAT TRANSFER COEFFICIENTS

Heigh	t Density	Core To	emp. Heat	Transfer	Coefficient	(W/m2C)
(m)	(kg/m3)	(C)	Radiative	Convect	ive Overall	l
	000 (01	054.0	102.2	100.2	2026	
0.00	383.621	854.0	102.3	100.5	202.0	
0.13	288.739	855.4	101.7	100.6	202.4	
0.38	185.084	852.4	91.4	106.3	197.7	
0.63	122.702	849.6	91.2	106.3	197.6	
0.88	85.097	846.9	91.2	90.3	181.5	
1.14	62.419	844.5	91.3	66.1	157.4	
1.39	48.736	842.6	91.6	51.4	143.0	
1.64	40.479	841.0	92.1	42.5	134.5	
1.89	35.495	839.7	92.6	37.0	129.7	
2.15	32.488	838.8	93.2	33.7	126.9	
2.40	30.757	837.9	93.4	31.8	125.3	
2.65	29.504	837.1	94.2	30.4	124.6	
2.90	28.167	836.4	94.1	29.0	123.1	
3.16	26.773	835.7	94.1	27.5	121.7	
3.41	25.316	835.1	94.3	26.0	120.2	
3.66	23.795	834.6	94.5	24.4	118.9	
3.91	22.212	834.2	94.9	22.7	117.6	
4.17	20.559	833.9	95.6	20.9	116.5	
4.42	18.840	833.8	96.7	19.0	115.7	
4.67	17.052	833.9	98.5	17.0	115.6	
4.92	15.196	834.4	101.9	14.9	116.8	

page 1 of 6

CFB HEAT RELEASE AND HEAT TRANSFER MODEL

RUN RESULTS FROM HEAT TRANSFER ROUTINE HEAT.F, VERSION 8.1 WRITTEN BY: DALE W.C. JU

COMBUSTOR: Studsvik Prototype

CASE: Sardinian Coal

Case : sh2

Superficial gas velocity = 6.96 m/sSolids reciculation rate = 15 kg/m2sHighvale coal(mean dp = 2.89 mm)

FUEL PHYSICAL PROPERTIES AND COMPOSITION

PROXIMATE ANALYSIS

Weight %

 12.200
 Ash

 15.200
 Moisture

 0.170
 Sulphur

 3.050
 Hydrogen

 52.900
 Carbon

 0.680
 Nitrogen

 15.800
 Oxygen

PARTICLE SIZE DISTRIBUTION

mm	wt %
7.925	9.250
5.613	10.920
3.962	13.180
2.794	12.110
1.981	11.090
1.397	8.730
0.991	7.750
0.701	5.480
0.495	4.750
0.351	3.740
0.246	3.410
0.175	3.990
0.124	1.290
0.088	0.000
0.053	0.000
0.045	0.000
0.038	0.000
0.000	0.000

page 2 of 6

COMBUSTION CONDITIONS

100 # of particles in Monte Carlo Method 70.0 % % of total wall area with membranes Solids return temp. equals cyclone temp. 897.8 C Solids recirculation rate 6.375 kg/s Solids recirculation flux 15.000 kg/m2s 0.100 m/s Gas cross-flow coefficient 100.0 % Combustion efficiency 20.000 % Excess air Volatile transfer fraction 0.300 Number of fuel feed points 1 Fuel feedrate 403.300 kg/hr Air feedrate 3129.367 kg/hr 72.0 % % of total air that is primary Residence time of particles in cyclone 0.300 sec. **Reflection coefficient** 0.100 Height at which developed zone begins 3.283 m

GAS VELOCITIES

Core insterstitial gas velocity	7.064 m/s
Streamer interstitial gas velocity	3.536 m/s
Superficial gas velocity	6.958 m/s

Bed temperature used in calculating	
heat transfer area and gas velocities	849.9 C

page 3 of 6

HEAT RELEASE DISTRIBUTION

Height	Fraction of Total Heat Release				
	Volatiles		Char		
(m)	Streamer	Core	Streamer	Core	
0.00	0.36	58394	0.46661	0	
0.13	0.001269	0.078107	0.013888	0.006876	
0.38	0.000458	0.017016	0.004697	0.003829	
0.63	0.000093	0.004032	0.001244	0.002424	
0.88	0.000300	0.001880	0.002026	0.001628	
1.14	0.001258	0.000603	0.001626	0.001121	
1.39	0.000767	0.000655	0.001453	0.000861	
1.64	0.000000	0.000138	0.001174	0.000704	
1.89	0.000000	0.000029	0.000887	0.000586	
2.15	0.000000	0.000006	0.000704	0.000569	
2.40	0.000000	0.000001	0.000578	0.000531	
2.65	0.000000	0.000000	0.000482	0.000497	
2.90	0.000000	0.000000	0.000427	0.000482	
3.16	0.000000	0.000000	0.000402	0.000471	
3.41	0.000000	0.000000	0.000394	0.000451	
3.66	0.000000	0.000000	0.000375	0.000466	
3.91	0.000000	0.000000	0.000358	0.000451	
4.17	0.000000	0.000000	0.000272	0.000433	
4.42	0.000000	0.000000	0.000236	0.000428	
4.67	0.000000	0.000000	0.000252	0.000440	
4.92	0.000000	0.000000	0.000199	0.000413	
Cyclone	0.0	00000	0.00304	8	

TOTAL

0.535547

0.464453

page 4 of 6

OXYGEN PARTIAL PRESSSURE DISTRIBUTION

Height	Partial Pressure of Oxygen (atm.				
(m)	Streamer	Core			
	0.0641	10			
0.00	0.0641	13			
0.26	0.024916	0.048143			
0.51	0.024727	0.042146			
0.76	0.034367	0.039890			
1.00	0.033023	0.038603			
1.26	0.024529	0.037719			
1.51	0.022326	0.036985			
1.76	0.027596	0.036556			
2.01	0.029910	0.036262			
2.27	0.030934	0.036028			
2.52	0.031514	0.035833			
2.77	0.031949	0.035666			
3.02	0.032133	0.035514			
3.29	0.032136	0.035370			
3.54	0.032060	0.035230			
3.79	0.032083	0.035092			
4.04	0.032094	0.034959			
4.29	0.032669	0.034841			
4.54	0.032881	0.034731			
4.79	0.032650	0.034617			
5.04	0.032975	0.034515			

Pressure convergence tolerance0.0020 atm.Partial pressure of oxygen entering0.210000 atm.Partial pressure of oxygen leaving riser0.035 atm.Partial pressure of oxygen leaving cyclone0.034 atm.

174

page 5 of 6

TEMPERATURE DISTRIBUTION

Height	Temperature (C)				
(m)	Streamer Core				
0.00	960.	6			
0.13	954.2	963.3			
0.38	897.2	959.3			
0.63	892.0	954.8			
0.88	886.8	950.2			
1.14	881.2	945.9			
1.39	875.4	941.6			
1.64	869.3	937.4			
1.89	863.3	933.2			
2.15	857.8	929.0			
2.40	852.8	924.7			
2.65	848.5	920.5			
2.90	845.4	916.7			
3.16	844.4	912.7			
3.41	843.5	908.8			
3.66	842.5	905.2			
3.91	842.7	901.9			
4.17	845.6	898.9			
4.42	853.5	896.5			
4.67	871.4	895.2			
4.92	910.2	896.2			

Solids return temperature	897.8 C
Temperature convergence tolerance	0.002 C
Cyclone temperature	897.8 C
Wall temperature	106.8 C

page 6 of 6

HEAT TRANSFER COEFFICIENTS

Heigh	t Density	Core '	Temp. 1	Heat '	Fransfer Coe	fficient (W/m2	2C)
(m)	(kg/m3)	(C)	Radia	ative	Convective	Overall	

0.00	244.887	960.6	127.9	100.7	228.7
0.13	176.105	963.3	127.9	101.0	228.8
0.38	108.381	959.3	113.1	107.4	220.5
0.63	67.562	954.8	111.8	72.8	184.6
0.88	42.946	950.2	110.6	46.4	156.9
1.14	28.095	945.9	109.2	30.4	139.6
1.39	19.131	941.6	107.8	20.8	128.6
1.64	13.725	937.4	106.4	14.9	121.3
1.89	10.462	933.2	104.9	11.4	116.4
2.15	8.491	929.0	103.6	9.3	112.9
2.40	7.304	924.7	102.5	8.0	110.5
2.65	6.586	920.5	101.5	7.2	108.7
2.90	6.153	916.7	100.8	6.7	107.5
3.16	5.899	912.7	100.2	6.5	106.6
3.41	5.709	908.8	100.7	6.2	106.9
3.66	5.503	905.2	100.1	6.0	106.1
3.91	5.295	901.9	100.2	5.7	105.9
4.17	5.083	898.9	100.8	5.4	106.3
4.42	4.871	896.5	102.6	5.2	107.8
4.67	4.656	895.2	106.9	4.8	111.7
4.92	4.440	896.2	116.4	4.4	120.7

page 1 of 6

CFB HEAT RELEASE AND HEAT TRANSFER MODEL

RUN RESULTS FROM HEAT TRANSFER ROUTINE HEAT.F, VERSION 8.1 WRITTEN BY: DALE W.C. JU

COMBUSTOR: Studsvik Prototype

CASE: Sardinian Coal

Case : sh3

Superficial gas velocity = 5.99 m/sSolids reciculation rate = 30 kg/m2sHighvale coal(mean dp = 2.89 mm)

FUEL PHYSICAL PROPERTIES AND COMPOSITION

PROXIMATE ANALYSIS

Weight %

 12.200
 Ash

 15.200
 Moisture

 0.170
 Sulphur

 3.050
 Hydrogen

 52.900
 Carbon

 0.680
 Nitrogen

 15.800
 Oxygen

PARTICLE SIZE DISTRIBUTION

mm	wt %
7.925	9.250
5.613	10.920
3.962	13.180
2.794	12.110
1.981	11.090
1.397	8.730
0.991	7.750
0.701	5.480
0.495	4.750
0.351	3.740
0.246	3.410
0.175	3.990
0.124	1.290
0.088	0.000
0.053	0.000
0.045	0.000
0.038	0.000
0.000	0.000

page 2 of 6

COMBUSTION CONDITIONS

# of particles in Monte Carlo Method	100
% of total wall area with membranes	70.0 %
Solids return temp. equals cyclone temp.	812.3 C
Solids recirculation rate	12.750 kg/s
Solids recirculation flux	30.000 kg/m2s
Gas cross-flow coefficient	0.100 m/s
Combustion efficiency	100.0 %
Excess air	20.000 %
Volatile transfer fraction	0.300
Number of fuel feed points	1
Fuel feedrate	340.730 kg/hr
Air feedrate	2643.858 kg/hr
% of total air that is primary	72.0 %
Residence time of particles in cyclone	0.300 sec.
Reflection coefficient	0.100
Height at which developed zone begins	2.525 m

GAS VELOCITIES

Core insterstitial gas velocity	6.147 m/s
Streamer interstitial gas velocity	3.077 m/s
Superficial gas velocity	5.992 m/s
D. 16	

Bed temperature used in calculating
heat transfer area and gas velocities849.9 C

page 3 of 6

HEAT RELEASE DISTRIBUTION

Height	Fraction of	of Total Hea	at Release	
-	Volatiles		Char	
(m)	Streamer	Core	Streamer	Core
0.00	0.25	58625	0.53493	7
0.13	0.006435	0.060164	0.025247	0.009468
0.38	0.000144	0.012962	0.014644	0.005495
0.63	0.000058	0.002760	0.009723	0.003660
0.88	0.000027	0.000635	0.006133	0.002588
1.14	0.000002	0.000137	0.004100	0.002051
1.39	0.000000	0.000031	0.002707	0.001709
1.64	0.000001	0.000013	0.002032	0.001462
1.89	0.000000	0.000003	0.001593	0.001332
2.15	0.000000	0.000001	0.001429	0.001263
2.40	0.000000	0.000000	0.001335	0.001217
2.65	0.000000	0.000000	0.001232	0.001170
2.90	0.000000	0.000000	0.001201	0.001126
3.16	0.000000	0.000000	0.001078	0.001083
3.41	0.000000	0.000000	0.001027	0.001080
3.66	0.000000	0.000000	0.000939	0.001031
3.91	0.000000	0.000000	0.000818	0.000989
4.17	0.000000	0.000000	0.000755	0.000988
4.42	0.000000	0.000000	0.000629	0.000936
4.67	0.000000	0.000000	0.000528	0.000868
4.92	0.000000	0.000000	0.000459	0.000893
Cyclone	0.0	00000	0.00505	0
TOTAL	0.3	85113	0.61488	:7

1

page 4 of 6

OXYGEN PARTIAL PRESSSURE DISTRIBUTION

Height	Partial Pressure of Oxygen (atm.)		
(m)	Streamer	Core	
0.00	0.0701	99	
0.26	0.013500	0.057427	
0.51	0.000000	0.049735	
0.76	0.000000	0.045732	
1.00	0.000000	0.043320	
1.26	0.007485	0.041694	
1.51	0.017631	0.040611	
1.76	0.024464	0.039862	
2.01	0.028172	0.039301	
2.27	0.029309	0.038829	
2.52	0.029512	0.038400	
2.77	0.029735	0.038000	
3.02	0.029642	0.037614	
3.29	0.030066	0.037253	
3.54	0.030170	0.036901	
3.79	0.030455	0.036571	
4.04	0.031002	0.036266	
4.29	0.031235	0.035972	
4.54	0.031846	0.035706	
4.79	0.032373	0.035467	
5.04	0.032682	0.035236	

Pressure convergence tolerance	0.0054 atm.
Partial pressure of oxygen entering	0.210000 atm.
Partial pressure of oxygen leaving riser	0.035 atm.
Partial pressure of oxygen leaving cyclone	0.034 atm.

page 5 of 6

TEMPERATURE DISTRIBUTION

Height	Temperature (C)	
(m)	Streamer	Core
0.00	837.8	3
0.13	832.7	839.3
0.38	786.1	836.2
0.63	784.0	833.0
0.88	782.3	829.8
1.14	781.1	827.0
1.39	780.5	824.5
1.64	780.4	822.4
1.89	780.7	820.5
2.15	781.3	819.0
2.40	783.8	817.6
2.65	786.4	816.2
2.90	788.9	815.1
3.16	788.8	814.1
3.41	789.0	813.2
3.66	789.7	812.3
3.91	791.4	811.6
4.17	794.6	811.1
4.42	800.2	810.8
4.67	810.3	810.8
4.92	830.1	811.5

Solids return temperature	812.3 C
Temperature convergence tolerance	0.005 C
Cyclone temperature	812.3 C
Wall temperature	106.8 C

page 6 of 6

HEAT TRANSFER COEFFICIENTS

Height	Density	Core To	emp. Heat	Transfer C	coefficient (W/m2C)
(m)	(kg/m3)	(C)	Radiative	Convectiv	e Overall
0.00	221 166	0270	09.2	100 4	108 7
0.00	551.100	037.0	96.5	100.4	100.7
0.13	246.560	839.3	97.9	100.8	198.7
0.38	156.579	836.2	87.9	106.7	194.6
0.63	102.403	833.0	87.4	106.8	194.2
0.88	69.743	829.8	87.1	74.5	161.5
1.14	50.044	827.0	86.8	53.4	140.2
1.39	38.157	824.5	86.7	40.6	127.3
1.64	30.984	822.4	86.7	32.9	119.6
1.89	26.657	820.5	86.7	28.2	114.9
2.15	24.045	819.0	86.8	25.4	112.2
2.40	22.460	817.6	87.0	23.6	110.6
2.65	21.317	816.2	88.2	22.2	110.4
2.90	20.224	815.1	88.4	21.0	109.4
3.16	19.101	814.1	88.4	19.8	108.2
3.41	17.948	813.2	88.4	18.6	107.0
3.66	16.760	812.3	88.6	17.3	105.9
3.91	15.542	811.6	89.0	16.0	105.0
4.17	14.292	811.1	89.6	14.6	104.3
4.42	13.013	810.8	90.8	13.2	104.0
4.67	11.707	810.8	93.0	11.7	104.7
4.92	10.373	811.5	97.3	10.1	107.4

page 1 of 6

CFB HEAT RELEASE AND HEAT TRANSFER MODEL

RUN RESULTS FROM HEAT TRANSFER ROUTINE HEAT.F, VERSION 8.1 WRITTEN BY: DALE W.C. JU

COMBUSTOR: Studsvik Prototype

CASE: Sardinian Coal

Case : sh4

Superficial gas velocity = 5.99 m/sSolids reciculation rate = 50 kg/m2sHighvale coal(mean dp = 2.89 mm)

FUEL PHYSICAL PROPERTIES AND COMPOSITION

PROXIMATE ANALYSIS

Weight %

 12.200
 Ash

 15.200
 Moisture

 0.170
 Sulphur

 3.050
 Hydrogen

 52.900
 Carbon

 0.680
 Nitrogen

 15.800
 Oxygen

PARTICLE SIZE DISTRIBUTION

mm	wt %
7.925	9.250
5.613	10.920
3.962	13.180
2.794	12.110
1.981	11.090
1.397	8.730
0.991	7.750
0.701	5.480
0.495	4.750
0.351	3.740
0.246	3.410
0.175	3.990
0.124	1.290
0.088	0.000
0.053	0.000
0.045	0.000
0.038	0.000
0.000	0.000

page 2 of 6

,

COMBUSTION CONDITIONS

# of particles in Monte Carlo Method	100
% of total wall area with membranes	70.0 %
Solids return temp. equals cyclone temp.	764.4 C
Solids recirculation rate	21.250 kg/s
Solids recirculation flux	50.000 kg/m2s
Gas cross-flow coefficient	0.100 m/s
Combustion efficiency	100.0 %
Excess air	20.000 %
Volatile transfer fraction	0.300
Number of fuel feed points	. 1 .
Fuel feedrate	334.951 kg/hr
Air feedrate	2599.018 kg/hr
% of total air that is primary	72.0 %
Residence time of particles in cyclone	0.300 sec.
Reflection coefficient	0.100
Height at which developed zone begins	2.525 m

GAS VELOCITIES

.

.

Core insterstitial gas velocity	6.212 m/s
Streamer interstitial gas velocity	3.107 m/s
Superficial gas velocity	5.992 m/s

Bed temperature used in calculating	
heat transfer area and gas velocities	849.9 C

page 3 of 6

HEAT RELEASE DISTRIBUTION

Height	Fraction of	of Total Hea	at Release	
-	Volatiles		Char	
(m)	Streamer	Core	Streamer	Core
0.00	0.25	57134	0.52729	1
0.13	0.000530	0.055538	0.026825	0.010168
0.38	0.001910	0.012797	0.015019	0.005935
0.63	0.000014	0.002853	0.009405	0.004031
0.88	0.000013	0.001002	0.006096	0.003002
1.14	0.000003	0.000353	0.004286	0.002480
1.39	0.000113	0.000254	0.003105	0.002090
1.64	0.000001	0.000081	0.002637	0.001927
1.89	0,000000	0.000065	0.002335	0.001734
2.15	0.000004	0.000021	0.002037	0.001652
2.40	0.000004	0.000031	0.001967	0.001618
2.65	0.000003	0.000014	0.001808	0.001501
2.90	0.000004	0.000008	0.001710	0.001572
3.16	0.000006	0.000007	0.001558	0.001435
3.41	0.000004	0.000018	0.001604	0.001371
3.66	0.000000	0.000005	0.001320	0.001343
3.91	0.000001	0.000002	0.001180	0.001287
4.17	0.000000	0.000001	0.000960	0.001219
4.42	0.000000	0.000000	0.000857	0.001197
4.67	0.000000	0.000000	0.000659	0.001142
4.92	0.000000	0.000000	0.000511	0.001071
Cyclone	0.0	00001	0.00626	60

TOTAL

Ì

-

 $\hat{}$

0.375245

0.624755

page 4 of 6

OXYGEN PARTIAL PRESSSURE DISTRIBUTION

.

Height	Partial Pressure of Oxygen (atm.)		
(m)	Streamer	Core	
0.00	0.0725	93	
0.26	0.031569	0.059943	
0.51	0.016184	0.051720	
0.76	0.008136	0.047600	
1.00	0.006963	0.044969	
1.26	0.011088	0.043167	
1.51	0.016966	0.041880	
1.76	0.021508	0.040922	
2.01	0.023921	0.040157	
2.27	0.025435	0.039510	
2.52	0.025717	0.038910	
2.77	0.026202	0.038355	
3.02	0.026501	0.037807	
3.29	0.027027	0.037303	
3.54	0.026612	0.036807	
3.79	0.027727	0.036352	
4.04	0.028494	0.035931	
4.29	0.029672	0.035555	
4.54	0.030273	0.035201	
4.79	0.031363	0.034886	
5.04	0.032257	0.034608	

Pressure convergence tolerance0.0042 atm.Partial pressure of oxygen entering0.210000 atm.Partial pressure of oxygen leaving riser0.035 atm.Partial pressure of oxygen leaving cyclone0.034 atm.

186

page 5 of 6

TEMPERATURE DISTRIBUTION

Height	Temperature (C)		
(m)	Streamer	Core	
0.00	780.8	3	
0.13	776.5	781.9	
0.38	735.2	779.2	
0.63	734.5	776.6	
0.88	734.7	774.3	
1.14	735.6	772.2	
1.39	737.0	770.5	
1.64	738.6	769.0	
1.89	740.1	767.8	
2.15	741.3	767.0	
2.40	744.6	766.2	
2.65	747.8	765.4	
2.90	751.1	764.9	
3.16	751.3	764.4	
3.41	751.8	764.0	
3.66	752.8	763.6	
3.91	754.3	763.4	
4.17	756.9	763.2	
4.42	761.2	763.2	
4.67	768.4	763.3	
4.92	781.7	763.8	

Solids return temperature	764.4 C
Temperature convergence tolerance	0.004 C
Cyclone temperature	764.4 C
Wall temperature	106.8 C

page 6 of 6

HEAT TRANSFER COEFFICIENTS

Heigh	t Density	Core To	emp. Heat	Transfer Co	efficient (W/m2C)
(m)	(kg/m3)	(C)	Radiative	Convective	Overall
			06.4	100.2 1	97.7
0.00	401.087	780.8	86.4	100.3 1	80.0
0.13	306.273	781.9	85.9	100.7 1	86.5
0.38	198.719	779.2	77.7	106.2 1	83.9
0.63	134.022	776.6	77.6	106.2 1	83.8
0.88	95.034	774.3	77.6	100.7 1	78.3
1.14	71.518	772.2	77.8	75.5 1	.53.3
1.39	57.334	770.5	78.0	60.3 1	.38.3
1.64	48.776	769.0	78.4	51.1 1	.29.4
1.89	43.612	767.8	78.6	45.5 1	.24.1
2.15	40.494	767.0	78.9	42.1 J	21.0
2.40	38.535	766.2	79.2	39.9 1	19.1
2.65	36.836	765.4	81.0	37.6 1	18.6
2.90	34.966	764.9	80.8	35.7 1	16.5
3.16	33.027	764.4	80.8	33.7	14.5
3.41	31.010	764.0	80.9	31.6	12.5
3.66	28.918	763.6	81.1	29.4	10.5
3.91	26.748	763.4	81.4	27.1	108.5
4.17	24.498	763.2	81.9	24.7	106.7
4.42	22.173	763.2	82.8	22.2	105.0
4.67	19.766	763.3	84.2	19.6	103.8
4.92	17.282	763.8	86.9	16.8	103.8

page 1 of 6

CFB HEAT RELEASE AND HEAT TRANSFER MODEL

RUN RESULTS FROM HEAT TRANSFER ROUTINE HEAT.F, VERSION 8.1 WRITTEN BY: DALE W.C. JU

:

COMBUSTOR: Studsvik Prototype CASE: Sardinian Coal

Case : sh5 Superficial gas velocity = 5.99 m/s Solids reciculation rate = 15 kg/m2s

Highvale coal(mean dp = 2.89 mm)

FUEL PHYSICAL PROPERTIES AND COMPOSITION

PROXIMATE ANALYSIS

Weight %

 12.200
 Ash

 15.200
 Moisture

 0.170
 Sulphur

 3.050
 Hydrogen

 52.900
 Carbon

 0.680
 Nitrogen

 15.800
 Oxygen

PARTICLE SIZE DISTRIBUTION

•	
mm ·	wt %
7.925	9.250
5.613	10.920
3.962	13.180
2.794	12.110
1.981	11.090
1.397	8.730
0.991	7.750
0.701	5.480
0.495	4.750
0.351	3.740
0.246	3.410
0.175	3.990
0.124	1.290
0.088	0.000
0.053	0.000
0.045	0.000
0.038	0.000
0.000	0.000

page 2 of 6

COMBUSTION CONDITIONS

# of particles in Monte Carlo Method	100
% of total wall area with membranes	70.0 %
Solids return temp, equals cyclone temp.	852.1 C
Solids recirculation rate	6.375 kg/s
Solids recirculation flux	15.000 kg/m2s
Gas cross-flow coefficient	0.100 m/s
Combustion efficiency	100.0 %
Excess air	20.000 %
Volatile transfer fraction	0.300
Number of fuel feed points	1
Fuel feedrate	347.226 kg/hr
Air feedrate	2694.266 kg/hr
% of total air that is primary	72.0 %
Residence time of particles in cyclone	0.300 sec.
Reflection coefficient	0.100
Height at which developed zone begins	3.030 m

GAS VELOCITIES

1

-

Core insterstitial gas velocity	6.090 m/s
Streamer interstitial gas velocity	3.049 m/s
Superficial gas velocity	5.992 m/s

Bed temperature used in calculating	
heat transfer area and gas velocities	849.9 C

page 3 of 6

HEAT RELEASE DISTRIBUTION

Height	Fraction of Total Heat Release			
	Volatiles		Char	
(m)	Streamer	Core	Streamer	Core
0.00	0.38	84113	0.44971	9
0.13	0.000993	0.081644	0.011341	0.007597
0.38	0.001149	0.017436	0.003789	0.004170
0.63	0.000019	0.003700	0.002066	0.002620
0.88	0.000010	0.000954	0.001942	0.001758
1.14	0.000000	0.000240	0.001930	0.001303
1.39	0.000001	0.000103	0.001620	0.001022
1.64	0.000001	0.000047	0.001235	0.000863
1.89	0.000001	0.000034	0.000981	0.000724
2.15	0.000016	0.000018	0.000784	0.000671
2.40	0.000001	0.000027	0.000627	0.000617
2.65	0.000000	0.000006	0.000540	0.000561
2.90	0.000000	0.000001	0.000505	0.000598
3.16	0.000000	0.000000	0.000458	0.000566
3.41	0.000000	0.000000	0.000413	0.000559
3.66	0.000000	0.000000	0.000406	0.000549
3.91	0.000000	0.000000	0.000368	0.000557
4.17	0.000000	0.000000	0.000271	0.000510
4.42	0.000000	0.000000	0.000273	0.000511
4.67	0.000000	0.000000	0.000247	0.000504
4.92	0.000000	0.000000	0.000232	0.000507
Cyclone	0.0	00000	0.00297	4
TOTAL	0.5	53297	0.44670	3

page 4 of 6

OXYGEN PARTIAL PRESSSURE DISTRIBUTION

Height	Partial Pressure of Oxygen (atm.)		
(m)	Streamer	Core	
0.00	0.0648	17	
0.26	0.032562	0.047682	
0.51	0.033750	0.041712	
0.76	0.038638	0.039566	
1.00	0.037759	0.038501	
1.26	0.033150	0.037794	
1.51	0.030272	0.037249	
1.76	0.030134	0.036829	
2.01	0.030661	0.036503	
2.27	0.031216	0.036236	
2.52	0.031911	0.036014	
2.77	0.032211	0.035826	
3.02	0.032213	0.035642	
3.29	0.032355	0.035472	
3.54	0.032526	0.035309	
3.79	0.032435	0.035150	
4.04	0.032545	0.034995	
4.29	0.033092	0.034863	
4.54	0.032986	0.034731	
4.79	0.033042	0.034605	
5.04	0.033026	0.034481	

Pressure convergence tolerance0.0031 atm.Partial pressure of oxygen entering0.210000 atm.Partial pressure of oxygen leaving riser0.035 atm.Partial pressure of oxygen leaving cyclone0.034 atm.

١

page 5 of 6

TEMPERATURE DISTRIBUTION

,

Height	Temperature (C)		
(m)	Streamer	Core	
0.00	905.0	0	
0.13	898.8	907.5	
0.38	845.8	903.7	
0.63	841.3	899.4	
0.88	836.7	895.1	
1.14	831.9	891.0	
1.39	827.0	887.1	
1.64	822.2	883.3	
1.89	817.7	879.6	
2.15	813.5	876.0	
2.40	809.9	872.4	
2.65	806.7	869.2	
2.90	807.4	865.9	
3.16	808.0	862.6	
3.41	808.7	859.8	
3.66	807.9	857.0	
3.91	808.4	854.5	
4.17	811.2	852.3	
4.42	818.2	850.6	
4.67	833.5	849.8	
4.92	868.0	850.9	

Solids return temperature	852.1 C
Temperature convergence tolerance	0.003 C
Cyclone temperature	852.1 C
Wall temperature	106.8 C

page 6 of 6

HEAT TRANSFER COEFFICIENTS

Height	Density	Core	e Temp. H	leat Transfer	Coefficient (W/m2C)
(m)	(kg/m3)	(C)	Radiative	e Convective	Overall

0.00	255.628	905.0	113.6	100.7	214.4
0.13	185.093	907.5	113.5	101.0	214.5
0.38	114.618	903.7	100.9	107.3	208.2
0.63	72.151	899.4	99.9	77.6	177.5
0.88	46.542	895.1	98.8	50.2	149.0
1.14	31.091	891.0	97.7	33.6	131.3
1.39	21.771	887.1	96.6	23.6	120.2
1.64	16.146	883.3	95.6	17.5	113.1
1.89	12.750	879.6	94.6	13.9	108.4
2.15	10.701	876.0	93.7	11.6	105.3
2.40	9.465	872.4	92.9	10.3	103.2
2.65	8.721	869.2	92.2	9.5	101.7
2.90	8.264	865.9	91.8	9.0	100.8
3.16	7.896	862.6	93.2	8.5	101.7
3.41	7.504	859.8	92.6	8.0	100.7
3.66	7.106	857.0	92.5	7.6	100.1
3.91	6.708	854.5	92.6	7.1	99.7
4.17	6.304	852.3	93.2	6.7	99.8
4.42	5.902	850.6	94.7	6.2	100.9
4.67	5.495	849.8	98.1	5.6	103.7
4.92	5.090	850.9	106.0	5.0	111.0

page 1 of 6

CFB HEAT RELEASE AND HEAT TRANSFER MODEL

RUN RESULTS FROM HEAT TRANSFER ROUTINE HEAT.F, VERSION 8.1 WRITTEN BY: DALE W.C. JU

COMBUSTOR: Studsvik Prototype

CASE: Sardinian Coal Case : sh2b Superficial gas velocity = 6.96 m/s Solids reciculation rate = 15 kg/m2s Highvale coal (mean dp = 2.89 mm) # of particles in MC method = 400

FUEL PHYSICAL PROPERTIES AND COMPOSITION

PROXIMATE ANALYSIS

Weight %

 12.200
 Ash

 15.200
 Moisture

 0.170
 Sulphur

 3.050
 Hydrogen

 52.900
 Carbon

 0.680
 Nitrogen

 15.800
 Oxygen

PARTICLE SIZE DISTRIBUTION

mm	wt %
7.925	9.250
5.613	10.920
3.962	13.180
2.794	12.110
1.981	11.090
1.397	8.730
0.991	7.750
0.701	5.480
0.495	4.750
0.351	3.740
0.246	3.410
0.175	3.990
0.124	1.290
0.088	0.000
0.053	0.000
0.045	0.000
0.038	0.000
0.000	0.000

page 2 of 6

COMBUSTION CONDITIONS

# of particles in Monte Carlo Method	400
% of total wall area with membranes	70.0 %
Solids return temp. equals cyclone temp.	898.9 C
Solids recirculation rate	6.375 kg/s
Solids recirculation flux	15.000 kg/m2s
Gas cross-flow coefficient	0.100 m/s
Combustion efficiency	100.0 %
Excess air	20.000 %
Volatile transfer fraction	0.300
Number of fuel feed points	1
Fuel feedrate	403.300 kg/hr
Air feedrate	3129.367 kg/hr
% of total air that is primary	72.0 %
Residence time of particles in cyclone	0.300 sec.
Reflection coefficient	0.100
Height at which developed zone begins	3.283 m

GAS VELOCITIES

heat transfer area and gas velocities

Core insterstitial gas velocity	7.064 m/s
Streamer interstitial gas velocity	3.536 m/s
Superficial gas velocity	6.958 m/s
Bed temperature used in calculating	

849.9 C

page 3 of 6

HEAT RELEASE DISTRIBUTION

Height	Fraction of	of Total Hea	at Release	
	Volatiles	C	nar	
(m)	Streamer	Core	Streamer	Core
0.00	0.290	5334	0.5544	19
0.13	0.000769	0.062872	0.014896	0.008152
0.38	0.000290	0.013703	0.004266	0.004592
0.63	0.000306	0.003105	0.002118	0.002852
0.88	0.000135	0.000735	0.001509	0.001890
1.14	0.000084	0.000309	0.001702	0.001367
1.39	0.000002	0.000141	0.001592	0.001048
1.64	0.000001	0.000063	0.001323	0.000854
1.89	0.000000	0.000032	0.001051	0.000751
2.15	0.000000	0.000020	0.000860	0.000674
2.40	0.000000	0.000012	0.000671	0.000635
2.65	0.000000	0.000006	0.000591	0.000620
2.90	0.000000	0.000002	0.000526	0.000599
3.16	0.000000	0.000003	0.000493	0.000588
3.41	0.000000	0.000001	0.000455	0.000580
3.66	0.000000	0.000001	0.000445	0.000571
3.91	0.000000	0.000000	0.000395	0.000555
4.17	0.000000	0.000000	0.000378	0.000557
4.42	0.000000	0.000000	0.000384	0.000554
4.67	0.000000	0.000000	0.000351	0.000538
4.92	0.000000	0.000000	0.000342	0.000537
Cyclone	0.	000001	0.003	3794

TOTAL

0.427439

0.572561

page 4 of 6

OXYGEN PARTIAL PRESSSURE DISTRIBUTION

Height	Partial Pressure of Oxygen (atm.)		
(m)	Streamer	Core	
0.00	0.0620	86	
0.26	0.021621	0.047834	
0.51	0.023283	0.042258	
0.76	0.028653	0.039970	
1.00	0.033086	0.038825	
1.26	0.031379	0.038072	
1.51	0.029099	0.037510	
1.76	0.028511	0.037075	
2.01	0.029260	0.036731	
2.27	0.030054	0.036453	
2.52	0.031068	0.036223	
2.77	0.031391	0.036017	
3.02	0.031620	0.035830	
3.29	0.031655	0.035652	
3.54	0.031780	0.035481	
3.79	0.031715	0.035314	
4.04	0.031962	0.035158	
4.29	0.031970	0.035004	
4.54	0.031778	0.034850	
4.79	0.031890	0.034703	
5.04	0.031827	0.034558	

ан на на _с

Pressure convergence tolerance	0.0032 atm.
Partial pressure of oxygen entering	0.210000 atm.
Partial pressure of oxygen leaving riser	0.035 atm.
Partial pressure of oxygen leaving cyclone	0.034 atm.

page 5 of 6

TEMPERATURE DISTRIBUTION

Height	Temperature (C)		
(m)	Streamer	Core	
0.00	962.	0	
0.13	955.2	964.3	
0.38	898.1	960.2	
0.63	893.0	955.7	
0.88	887.6	951.1	
1.14	882.0	946.7	
1.39	876.2	942.4	
1.64	870.3	938.3	
1.89	864.3	934.1	
2.15	858.8	929.9	
2.40	853.8	925.7	
2.65	849.5	921.6	
2.90	848.1	917.7	
3.16	846.5	913.7	
3.41	845.0	909.9	
3.66	843.6	906.3	
3.91	843.6	903.0	
4.17	846.7	900.0	
4.42	854.7	897.6	
4.67	872.5	896.4	
4.92	911.5	897.4	

Solids return temperature	898.9 C
Temperature convergence tolerance	0.003 C
Cyclone temperature	898.9 C
Wall temperature	106.8 C

page 6 of 6

.

HEAT TRANSFER COEFFICIENTS

Heigh	t Density	Core	Гетр. Heat	Transfer	Coefficient (W/m2C)
(m)	(kg/m3)	(C)	Radiative	Convec	tive Overall
0.00	244.887	962.0	128.2	100.8	229.0
0.13	176.105	964.3	128.1	101.0	229.1
0.38	108.381	960.2	113.3	107.4	220.7
0.63	67.562	955.7	112.1	72.7	184.8
0.88	42.946	951.1	110.8	46.3	157.1
1.14	28.095	946.7	109.4	30.4	139.8
1.39	19.131	942.4	108.0	20.8	128.8
1.64	13.725	938.3	106.6	14.9	121.5
1.89	10.462	934.1	105.2	11.4	116.6
2.15	8.491	929.9	103.9	9.3	113.2
2.40	7.304	925.7	102.7	8.0	110.7
2.65	6.586	921.6	101.7	7.2	109.0
2.90	6.153	917.7	101.1	6.7	107.8
3.16	5.899	913.7	100.4	6.5	106.9
3.41	5.709	909.9	100.9	6.2	107.1
3.66	5.503	906.3	100.4	6.0	106.3
3.91	5.295	903.0	100.4	5.7	106.1
4.17	5.083	900.0	101.1	5.4	106.5
4.42	4.871	897.6	102.9	5.2	108.1
4.67	4.656	896.4	107.1	4.8	111.9
4.92	4.440	897.4	116.7	4.4	121.1

page 1 of 6

CFB HEAT RELEASE AND HEAT TRANSFER MODEL

RUN RESULTS FROM HEAT TRANSFER ROUTINE HEAT.F, VERSION 8.1 WRITTEN BY: DALE W.C. JU

COMBUSTOR: Studsvik Prototype

CASE: Sardinian Coal Case : sh700 Superficial gas velocity = 6.96 m/s Solids reciculation rate = 30 kg/m2s Highvale coal(mean dp = 2.89 mm)

FUEL PHYSICAL PROPERTIES AND COMPOSITION

PROXIMATE ANALYSIS

Weight %

 12.200
 Ash

 15.200
 Moisture

 0.170
 Sulphur

 3.050
 Hydrogen

 52.900
 Carbon

 0.680
 Nitrogen

 15.800
 Oxygen

PARTICLE SIZE DISTRIBUTION

mm	wt %
7.925	9.250
5.613	10.920
3.962	13.180
2.794	12.110
1.981	11.090
1.397	8,730
0.991	7.750
0.701	5.480
0.495	4.750
0.351	3.740
0.246	3.410
0.175	3.990
0.124	1.290
0.088	0.000
0.053	0.000
0.045	0.000
0.038	0.000
0.000	0.000

page 2 of 6

COMBUSTION CONDITIONS

.

. . . .

j

-177

1

.48.

i

ļ

# of particles in Monte Carlo Method	100
% of total wall area with membranes	70.0 %
Solids return temp. equals cyclone temp.	859.9 C
Solids recirculation rate	12.750 kg/s
Solids recirculation flux	30.000 kg/m2s
Gas cross-flow coefficient	0.100 m/s
Combustion efficiency	100.0 %
Excess air	20.000 %
Volatile transfer fraction	0.300
Number of fuel feed points	1
Fuel feedrate	395.687 kg/hr
Air feedrate	3070.295 kg/hr
% of total air that is primary	72.0 %
Residence time of particles in cyclone	0.300 sec.
Reflection coefficient	0.100
Height at which developed zone begins	2.777 m

GAS VELOCITIES

Core insterstitial gas velocity	7.122 m/s
Streamer interstitial gas velocity	3.567 m/s
Superficial gas velocity	6.958 m/s
Bed temperature used in calculating	
heat transfer area and gas velocities	849.9 C

page 3 of 6

HEAT RELEASE DISTRIBUTION

Height	t Fraction of Total Heat Release			
	Volatiles		Char	
(m)	Streamer	Core	Streamer	Core
0.00	0.258	362	0.566	5111
0.13	0.000590	0.055214	0.020026	0.008767
0.38	0.001039	0.013448	0.007124	0.005038
0.63	0.000117	0.003640	0.004689	0.003222
0.88	0.000399	0.001683	0.003693	0.002311
1.14	0.000008	0.001767	0.003065	0.001771
1.39	0.000002	0.000499	0.002469	0.001498
1.64	0.000000	0.000221	0.002033	0.001218
1.89	0.000000	0.000084	0.001562	0.001138
2.15	0.000000	0.000145	0.001418	0.001078
2.40	0.000000	0.000053	0.001351	0.001023
2.65	0.000000	0.000051	0.001158	0.000974
2.90	0.000000	0.000017	0.001013	0.000953
3.16	0.000000	0.000123	0.000976	0.000931
3.41	0.000000	0.000044	0.000852	0.000892
3.66	0.000000	0.000016	0.000808	0.000893
3.91	0.000000	0.000005	0.000753	0.000877
4.17	0.000000	0.000011	0.000636	0.000840
4.42	0.000000	0.000003	0.000645	0.000834
4.67	0.000000	0.000011	0.000479	0.000784
4.92	0.000000	0.000003	0.000433	0.000759
Cyclone	0.000	0011	0.00	5340

TOTAL 0.380679

0.619321

.

page 4 of 6

OXYGEN PARTIAL PRESSSURE DISTRIBUTION

Height	Partial Pressure of Oxygen (atm.)		
(m)	Streamer	Core	
0.00	0.0664	18	
0.26	0.025838	0.053535	
0.51	0.022029	0.046858	
0.76	0.021824	0.043752	
1.00	0.020122	0.041830	
1.26	0.020567	0.040394	
1.51	0.021998	0.039458	
1.76	0.023719	0.038775	
2.01	0.026167	0.038252	
2.27	0.026929	0.037792	
2.52	0.026905	0.037386	
2.77	0.027740	0.037022	
3.02	0.028582	0.036693	
3.29	0.028730	0.036359	
3.54	0.029381	0.036061	
3.79	0.029570	0.035776	
4.04	0.029772	0.035505	
4.29	0.030455	0.035255	
4.54	0.030271	0.035009	
4.79	0.031314	0.034793	
5.04	0.031600	0.034591	

Pressure convergence tolerance	0.0023 atm.
Partial pressure of oxygen entering	0.210000 atm
Partial pressure of oxygen leaving riser	0.035 atm.
Partial pressure of oxygen leaving cyclone	0.034 atm.
page 5 of 6

TEMPERATURE DISTRIBUTION

Height	Temperature (C)			
(m)	Streamer	Core		
0.00	891.	2		
0.13	885.4	892.7		
0.38	834.7	889.3		
0.63	831.6	885.8		
0.88	829.0	882.4		
1.14	826.5	879.4		
1.39	824.3	876.6		
1.64	822.6	874.1		
1.89	821.1	871.8		
2.15	820.1	869.6		
2.40	822.1	867.8		
2.65	824.2	866.0		
2.90	826.2	864.2		
3.16	828.3	862.9		
3.41	828.6	861.6		
3.66	829.7	860.5		
3.91	831.7	859.5		
4.17	835.5	858.7		
4.42	842.5	858.1		
4.67	854.6	858.1		
4.92	877.8	858.9		

ł

÷

Solids return temperature	859.9 C
Temperature convergence tolerance	0.002 C
Cyclone temperature	859.9 C
Wall temperature	106.8 C

page 6 of 6

HEAT TRANSFER COEFFICIENTS

neight Density Core remp. near transfer Coeffi	
(m) (kg/m3) (C) Radiative Convective C	Dverall
0.00 010 044 001 0 110 7 100 5 011	2
0.00 316.944 891.2 110.7 100.5 211.	.2
0.13 233.423 892.7 110.2 100.8 211.	.0
0.38 146.824 889.3 98.4 106.8 205.	.2
0.63 94.664 885.8 97.7 101.3 199	.0
0.88 63.214 882.4 97.1 67.7 164	.8
1.14 44.242 879.4 96.5 47.4 143	.9
1.39 32.797 876.6 96.1 35.1 131	.2
1.64 25.889 874.1 95.7 27.7 123	.4
1.89 21.720 871.8 95.3 23.2 118	.6
2.15 19.205 869.6 95.1 20.5 115	.6
2.40 17.688 867.8 95.0 18.9 113	.8
2.65 16.738 866.0 95.1 17.8 112	.9
2.90 15.982 864.2 96.9 16.8 113	.7
3.16 15.211 862.9 96.9 15.9 112	9
3.41 14.412 861.6 97.0 15.1 112	1
3.66 13.591 860.5 97.2 14.2 111	4
3.91 12.744 859.5 97.7 13.2 110	.9
4.17 11.869 858.7 98.5 12.2 110	.8
4.42 10.968 858.1 100.1 11.2 111	3
4.67 10.042 858.1 102.9 10.1 113	.0
4.92 9.091 858.9 108.4 8.9 117	7.3

page 1 of 6

CFB HEAT RELEASE AND HEAT TRANSFER MODEL

RUN RESULTS FROM HEAT TRANSFER ROUTINE HEAT.F, VERSION 8.1 WRITTEN BY: DALE W.C. JU

COMBUSTOR: Studsvik Prototype

CASE: Sardinian Coal Case : sh900 Superficial gas velocity = 6.96 m/s Solids reciculation rate = 30 kg/m2s Highvale coal(mean dp = 2.89 mm)

FUEL PHYSICAL PROPERTIES AND COMPOSITION

PROXIMATE ANALYSIS

Weight %

 12.200
 Ash

 15.200
 Moisture

 0.170
 Sulphur

 3.050
 Hydrogen

 52.900
 Carbon

 0.680
 Nitrogen

 15.800
 Oxygen

PARTICLE SIZE DISTRIBUTION

mm	wt %
7.925	9.250
5.613	10.920
3.962	13.180
2.794	12.110
1.981	11.090
1.397	8.730
0.991	7.750
0.701	5.480
0.495	4.750
0.351	3.740
0.246	3.410
0.175	3.990
0.124	1.290
0.088	0.000
0.053	0.000
0.045	0.000
0.038	0.000
0.000	0.000

page 2 of 6

COMBUSTION CONDITIONS

# of particles in Monte Carlo Method	100
% of total wall area with membranes	70.0 %
Solids return temp. equals cyclone temp.	860.5 C
Solids recirculation rate	12.750 kg/s
Solids recirculation flux	30.000 kg/m2s
Gas cross-flow coefficient	0.100 m/s
Combustion efficiency	100.0 %
Excess air	20.000 %
Volatile transfer fraction	0.300
Number of fuel feed points	1
Fuel feedrate	395.687 kg/hr
Air feedrate	3070.295 kg/hr
% of total air that is primary	72.0 %
Residence time of particles in cyclone	0.300 sec.
Reflection coefficient	0.100
Height at which developed zone begins	2.777 m

GAS VELOCITIES

Core insterstitial gas velocity	7.122 m/s	
Streamer interstitial gas velocity	3.567 m/s	
Superficial gas velocity	6.958 m/s	
Bed temperature used in calculating		
heat transfer area and gas velocities	849.9 C	

4

page 3 of 6

HEAT RELEASE DISTRIBUTION

Height	Fraction of Total Heat Release			
-	Volatiles		Char	
(m)	Streamer	Core	Streamer	Core
0.00	0.3425	53	0.477220)
0.13	0.004300	0.074679	0.01353	9 0.007436
0.38	0.000576	0.017038	0.00495	5 0.004236
0.63	0.000289	0.003826	6 0.00351	4 0.002766
0.88	0.000511	0.001003	0.00303	8 0.001992
1.14	0.000150	0.000253	0.00274	5 0.001493
1.39	0.000036	0.000126	6 0.00207	4 0.001223
1.64	0.000030	0.000031	0.00164	7 0.001082
1.89	0.000000	0.000007	0.00138	2 0.000982
2.15	0.000000	0.000002	2 0.00110	9 0.000928
2.40	0.000000	0.000000	0.00110	6 0.000922
2.65	0.000000	0.000002	2 0.00094	2 0.000848
2.90	0.000000	0.000000	0.00090	5 0.000853
3.16	0.000000	0.000001	0.00082	2 0.000836
3.41	0.000000	0.000000	0.00074	1 0.000802
3.66	0.000000	0.000000	0.00071	7 0.000775
3.91	0.000000	0.000000	0.00065	0.000743
4.17	0.000000	0.000000	0.00056	0.000729
4.42	0.000000	0.000000	0.00051	2 0.000737
4.67	0.000000	0.000000	0.00046	6 0.000692
4.92 ·	0.000000	0.00000	0.00039	0.000691
Cyclone	0.000	0000	0.0047	68
TOTAL	0.5	01927	0.498	073

209

page 4 of 6

OXYGEN PARTIAL PRESSSURE DISTRIBUTION

Height	Partial Pressure of Oxygen (atm.)			
(m)	Streamer	Core		
0.00	0.0668	46		
0.26	0.031068	0.051215		
0.51	0.033960	0.044474		
0.76	0.035640	0.041798		
1.00	0.032011	0.040337		
1.26	0.027738	0.039364		
1.51	0.026677	0.038644		
1.76	0.027007	0.038093		
2.01	0.027774	0.037651		
2.27	0.028930	0.037286		
2.52	0.028606	0.036946		
2.77	0.029225	0.036646		
3.02	0.029315	0.036355		
3.29	0.029683	0.036079		
3.54	0.030116	0.035821		
3.79	0.030156	0.035573		
4.04	0.030445	0.035339		
4.29	0.030921	0.035121		
4.54	0.031221	0.034910		
4.79	0.031434	0.034714		
5.04	0.031819	0.034529		

Pressure convergence tolerance	0.0010 atm.
Partial pressure of oxygen entering	0.210000 atm.
Partial pressure of oxygen leaving riser	0.035 atm.
Partial pressure of oxygen leaving cyclone	0.034 atm.

page 5 of 6

TEMPERATURE DISTRIBUTION

Height	Temperature (C)			
(m)	Streamer Core			
0.00	891.	7		
0.13	885.9	893.5		
0.38	835.2	890.1		
0.63	832.1	886.5		
0.88	829.4	883.0		
1.14	826.9	879.8		
1.39	824.7	876.9		
1.64	823.0	874.4		
1.89	821.6	872.1		
2.15	820.6	870.0		
2.40	822.6	868.2		
2.65	824.7	866.4		
2.90	826.7	864.7		
3.16	828.8	863.4		
3.41	829.2	862.1		
3.66	830.3	861.0		
3.91	832.3	860.0		
4.17	836.1	859.2		
4.42	843.0	858.7		
4.67	855.3	858.7		
4.92	878.4	859.5		

Solids return temperature	860.5 C
Temperature convergence tolerance	0.001 C
Cyclone temperature	860.5 C
Wall temperature	106.8 C

page 6 of 6

HEAT TRANSFER COEFFICIENTS

Heigh	t Density	Core To	emp. Heat	Transfer	Coe	fficient (W/m2C)
(m)	(kg/m3)	(C)	Radiative	Convect	ive	Overall
0.00	216.044	001 7	110.9	100 5	21	1 2
0.00	316.944	891.7	110.8	100.5	21	1.5
0.13	233.423	893.5	110.4	100.8	21	1.2
0.38	146.824	890.1	98.5	106.9	20	5.4
0.63	94.664	886.5	97.8	101.4	19	9.1
0.88	63.214	883.0	97.2	67.7	16	4.9
1.14	44.242	879.8	96.6	47.4	14	4.0
1.39	32.797	876.9	96.1	35.1	13	1.3
1.64	25.889	874.4	95.7	27.7	12	3.5
1.89	21.720	872.1	95.5	23.2	11	.8.7
2.15	19.205	870.0	95.2	20.5	11	5.7
2.40	17.688	868.2	95.1	18.9	11	3.9
2.65	16.738	866.4	95.2	17.8	11	3.0
2.90	15.982	864.7	97.0	16.8	11	3.8
3.16	15.211	863.4	97 .0	15.9	11	3.0
3.41	14.412	862.1	97.1	15.1	11	2.2
3.66	13.591	861.0	97.4	14.2	11	1.5
3.91	12.744	860.0	97.8	13.2	11	1.0
4.17	11.869	859.2	98.7	12.2	11	10.9
4.42	10.968	858.7	100.2	11.2	11	1.4
4.67	10.042	858.7	103.1	10.1	11	13.2
4.92	9.091	859.5	108.5	8.9	1	17.4

page 1 of 6

CFB HEAT RELEASE AND HEAT TRANSFER MODEL

RUN RESULTS FROM HEAT TRANSFER ROUTINE HEAT.F, VERSION 8.1 WRITTEN BY: DALE W.C. JU

COMBUSTOR: UBC COMBUSTOR

CASE: RUN NO. 21, APRIL 21 1988

Case : uh0

Superficial gas velocity = 7.03 m/sSolids reciculation rate = 30 kg/m2sHighvale coal(mean dp = 2.89 mm)

FUEL PHYSICAL PROPERTIES AND COMPOSITION

PROXIMATE ANALYSIS

Weight %

 12.200
 Ash

 15.200
 Moisture

 0.170
 Sulphur

 3.050
 Hydrogen

 52.900
 Carbon

 0.680
 Nitrogen

 15.800
 Oxygen

PARTICLE SIZE DISTRIBUTION

mm	-	wt %
7.925		9.250
5.613		10.920
3.962		13.180
2.794		12.110
1.981		11.090
1.397		8.730
0.991		7.750
0.701		5.480
0.495		4.750
0.351		3.740
0.246		3.410
0.175		3.990
0.124		1.290
0.088		0.000
0.053		0.000
0.045		0.000
0.038		0.000
0.000		0.000

page 2 of 6

COMBUSTION CONDITIONS

# of particles in Monte Carlo Method	100
% of total wall area with membranes	35.0 %
Solids return temp. equals cyclone temp.	792.5 C
Solids recirculation rate	0.696 kg/s
Solids recirculation flux	30.000 kg/m2s
Gas cross-flow coefficient	0.100 m/s
Combustion efficiency	100.0 %
Excess air	20.000 %
Volatile transfer fraction	0.300
Number of fuel feed points	1
Fuel feedrate	22.863 kg/hr
Air feedrate	177.399 kg/hr
% of total air that is primary	50.4 %
Residence time of particles in cyclone	0.300 sec.
Reflection coefficient	0.860
Height at which developed zone begins	3.200 m

GAS VELOCITIES

Core insterstitial gas velocity	7.384 m/s
Streamer interstitial gas velocity	3.647 m/s
Superficial gas velocity	7.030 m/s
Bed temperature used in calculating	
heat transfer area and gas velocities	857.9 C

page 3 of 6

HEAT RELEASE DISTRIBUTION

Height	Fraction of	of Total Hea	at Release	
-	Volatiles	•	Char	
(m)	Streamer	Core	Streamer	Core
0.00	0.31	7052	0.30561	3
0.16	0.005887	0.071983	0.029671	0.009973
0.48	0.000893	0.015944	0.017396	0.005973
0.80	0.000692	0.004155	0.013057	0.004362
1.12	0.000459	0.002142	0.009720	0.003486
1.44	0.000052	0.001592	0.008220	0.003020
1.76	0.000021	0.000909	0.007529	0.002748
2.08	0.000002	0.000222	0.006999	0.002584
2.40	0.000012	0.000200	0.006848	0.002449
2.72	0.000383	0.000344	0.006309	0.002425
3.04	0.000548	0.000692	0.006106	0.002373
3.36	0.000000	0.000007	0.006034	0.002349
3.68	0.000000	0.000001	0.006743	0.002428
4.00	0.000000	0.000000	0.006760	0.002529
4.32	0.000000	0.000000	0.007350	0.002600
4.64	0.000000	0.000000	0.007849	0.002783
4.96	0.000000	0.000000	0.008391	0.003011
5.28	0.000000	0.000000	0.008868	0.003295
5.60	0.000000	0.000000	0.009645	0.003666
5.92	0.000000	0.000000	0.010064	0.004114
6.24	0.000000	0.000000	0.010948	0.004818
Cyclone	0.0	00000	0.00470	5
TOTAL	0.4	77665	0.52233	5

page 4 of 6

OXYGEN PARTIAL PRESSSURE DISTRIBUTION

Height	Partial Pr	ressure of Oxygen (atm.)
(m)	Streamer	Core
0.00	0 1010	7 ,
0.00	0.1010	13
0.32	0.050014	0.082836
0.64	0.051504	0.073647
0.96	0.051164	0.068944
1.28	0.051587	0.065837
1.60	0.051353	0.063474
1.92	0.050136	0.061521
2.24	0.049017	0.059852
2.56	0.047547	0.058266
2.88	0.046136	0.056704
3.20	0.044455	0.055137
3.52	0.043668	0.053828
3.84	0.041194	0.052458
4.16	0.039494	0.051084
4.48	0.037074	0.049655
4.80	0.034576	0.048167
5.12	0.031930	0.046627
5.44	0.029271	0.045058
5.76	0.026194	0.043449
6.08	0.023381	0.041871
6.40	0.020259	0.040204

Pressure convergence tolerance Partial pressure of oxygen entering 0.0016 atm. 0.210000 atm. Partial pressure of oxygen leaving riser0.037 atm.Partial pressure of oxygen leaving cyclone0.037 atm. 0.037 atm.

page 5 of 6

TEMPERATURE DISTRIBUTION

Height	Temperature (C)		
(m)	Streamer	Core	
0.00	879.1	l	
0.16	883.4	881.2	
0.48	828.0	867.1	
0.80	823.6	855.7	
1.12	821.5	847.1	
1.44	820.6	840.6	
1.76	820.0	835.7	
2.08	819.4	831.8	
2.40	819.6	828.9	
2.72	820.6	825.8	
3.04	815.8	822.6	
3.36	811.0	819.5	
3.68	806.2	816.3	
4.00	804.3	813.3	
4.32	802.3	810.6	
4.64	800.4	808.0	
4.96	798.0	805.4	
5.28	795.0	802.5	
5.60	791.4	799.4	
5.92	786.9	795.6	
6.24	781.8	791.2	

Solids return temperature	792.5 C
Temperature convergence tolerance	0.002 C
Cyclone temperature	792.5 C
Wall temperature	106.8 C

• •

page 6 of 6

HEAT TRANSFER COEFFICIENTS

Height	Density	Core To	emp. Heat	Transfer	Coefficient (W/m2C)
(m)	(kg/m3)	(C)	Radiative	Convecti	ve Overall
0.00	204.262	970 1	100.0	00.4	200.2
0.00	394.203	8/9.1	109.9	99. 4	209.2
0.16	171.130	881.2	109.7	99.8	209.5
0.48	111.608	867.1	96.9	105.0	201.9
0.80	80.285	855.7	95.9	83.7	179.6
1.12	63.788	847.1	95.4	66.0	161.4
1.44	55.069	840.6	95.2	56.6	151.8
1.76	50.507	835.7	95.1	51.6	146.7
2.08	48.088	831.8	95.0	48.9	143.9
2.40	46.797	828.9	95.0	47.4	142.4
2.72	46.122	825.8	95.2	46.5	141.7
3.04	46.005	822.6	95.2	46.3	141.5
3.36	47.861	819.5	90.9	49.1	140.0
3.68	51.859	816.3	92.1	52.6	144.7
4.00	57.031	813.3	91.7	57.7	149.4
4.32	63.672	810.6	91.3	64.4	155.7
4.64	72.284	808.0	90.8	73.0	163.9
4.96	83.593	805.4	90.3	84.4	174.8
5.28	98,506	802.5	89.7	99.5	189.2
5.60	118.322	799.4	88.9	101.1	190.0
5.92	144.943	795.6	88.0	101.1	189.1
6.24	180.706	791.2	87.0	101.2	188.1

page 1 of 6

CFB HEAT RELEASE AND HEAT TRANSFER MODEL

RUN RESULTS FROM HEAT TRANSFER ROUTINE HEAT.F, VERSION 8.1 WRITTEN BY: DALE W.C. JU

COMBUSTOR: Studsvik Prototype

CASE: Sardinian Coal Case : low load test case, sh6 Wall disturbance factor changed from 310 to 470 Superficial gas velocity = 3.30 m/s Solids reciculation rate = 30 kg/m2s Highvale coal(mean dp = 2.89 mm)

FUEL PHYSICAL PROPERTIES AND COMPOSITION

PROXIMATE ANALYSIS

 Weight %

 12.200
 Ash

 15.200
 Moisture

 0.170
 Sulphur

 3.050
 Hydrogen

 52.900
 Carbon

 0.680
 Nitrogen

 15.800
 Oxygen

PARTICLE SIZE DISTRIBUTION

mm	wt %
7.925	9.250
5.613	10.920
3,962	13.180
2.794	12.110
1.981	11.090
1.397	8.730
0.991	7.750
0.701	5.480
0.495	4.750
0.351	3.740
0.246	3.410
0.175	3.990
0.124	1.290
0.088	0.000
0.053	0.000
0.045	0.000
0.038	0.000
0.000	0.000

page 2 of 6

COMBUSTION CONDITIONS

# of particles in Monte Carlo Method	100
% of total wall area with membranes	70.0 %
Solids return temp. equals cyclone temp.	604.5 C
Solids recirculation rate	12.750 kg/s
Solids recirculation flux	30.000 kg/m2s
Gas cross-flow coefficient	0.100 m/s
Combustion efficiency	100.0 %
Excess air	20.000 %
Volatile transfer fraction	0.300
Number of fuel feed points	1
Fuel feedrate	185.551 kg/hr
Air feedrate	1439.763 kg/hr
% of total air that is primary	67.8 %
Residence time of particles in cyclone	0.300 sec.
Reflection coefficient	0.100
Height at which developed zone begins	2.020 m

GAS VELOCITIES

1

Core insterstitial gas velocity	3.489 m/s
Streamer interstitial gas velocity	1.743 m/s
Superficial gas velocity	3.300 m/s

Bed temperature used in calculating	
heat transfer area and gas velocities	854.9 C

f

page 3 of 6

HEAT RELEASE DISTRIBUTION

Height	Fraction of Total Heat Release Volatiles Char			
(m)	Streamer	Core	Streamer	Core
0.00	0.37	6003	0.382	288
0.13	0.002162	0.082293	0.019153	0.013069
0.38	0.000125	0.017668	0.011832	0.007722
0.63	0.000042	0.003817	0.007813	0.005338
0.88	0.000002	0.000833	0.005403	0.004024
1.14	0.000001	0.000188	0.004050	0.003246
1.39	0.000000	0.000045	0.003218	0.002861
1.64	0.000000	0.000014	0.003026	0.002561
1.89	0.000000	0.000004	0.002623	0.002407
2.15	0.000000	0.000002	0.002475	0.002234
2.40	0.000000	0.000001	0.002254	0.002118
2.65	0.000000	0.000000	0.002127	0.001936
2.90	0.000000	0.000000	0.001974	0.001744
3.16	0,000000	0.000000	0.001693	0.001697
3.41	0.000000	0.000000	0.001582	0.001542
3.66	0.000000	0.000000	0.001299	0.001354
3.91	0.000000	0.000000	0.001118	0.001241
4.17	0.000000	0.000000	0.000804	0.001071
4.42	0.000000	0.000000	0.000626	0.000980
4.67	0.000000	0.000000	0.000439	0.000843
4.92	0.000000	0.000000	0.000265	0.000757
Cyclone	0.0	000000	0.00	1993

TOTAL

0.545026

0.454974

page 4 of 6

OXYGEN PARTIAL PRESSSURE DISTRIBUTION

Partial Pressure of Oxygen (atm.)
Streamer Core
0.077348
0.048006 0.059016
0.045328 0.050294
0.041629 0.046541
0.038226 0.044397
0.035594 0.042924
0.033920 0.041784
0.032109 0.040819
0.031386 0.039957
0.030958 0.039141
0.030936 0.038368
0.030799 0.037649
0.030732 0.036987
0.031092 0.036373
0.031123 0.035810
0.031625 0.035319
0.031970 0.034881
0.032764 0.034519
0.033223 0.034208
0.033683 0.033951
0.034138 0.033739

Pressure convergence tolerance	0.0011 atm.
Partial pressure of oxygen entering	0.210000 atm
Partial pressure of oxygen leaving riser	0.034 atm.
Partial pressure of oxygen leaving cyclone	0.033 atm.

page 5 of 6

TEMPERATURE DISTRIBUTION

Temperature (C)			
Streamer	Core		
618.3	3		
615.6	619.0		
587.4	615.3		
587.4	612.4		
588.8	610.2		
591.1	608.6		
593.7	607.4		
595.3	606.9		
596.8	606.4		
598.4	605.8		
599.9	605.4		
599.8	605.1		
599.7	604.8		
599.6	604.5		
599.7	604.3		
599.9	604.1		
600.4	604.0		
601.5	603.9		
603.4	603.9		
607.2	604.0		
615.9	604.2		
	Tempera Streamer 618.3 615.6 587.4 587.4 588.8 591.1 593.7 595.3 596.8 598.4 599.9 599.8 599.7 599.6 599.7 599.6 599.7 599.9 600.4 601.5 603.4 607.2 615.9		

į

604.5 C
0.001 C
604.5 C
106.8 C

page 6 of 6

HEAT TRANSFER COEFFICIENTS

Height	Density	Core Te	emp. Heat	Transfer C	oefficient (W/m2C)
(m)	(kg/m3)	(C)	Radiative	Convectiv	e Overall
0.00	490.237	618.3	57.3	100.3	157.6
0.13	400.288	619.0	57.1	100.5	157.7
0.38	273.636	615.3	- 52.9	105.0	158.0
0.63	197.644	612.4	52.9	104.7	157.6
0.88	151.900	610.2	53.1	104.1	157.2
1.14	124.329	608.6	53.5	103.4	156.8
1.39	107.699	607.4	53.8	102.7	156.5
1.64	97.668	606.9	54.2	99.7	153.8
1.89	91.803	606.4	54.4	93.3	147.7
2.15	86.734	605.8	55.2	87.2	142.4
2.40	80.762	605.4	54.7	81.6	136.4
2.65	74.758	605.1	54.7	75.5	130.3
2.90	68.662	604.8	54.7	69.3	124.1
3.16	62.458	604.5	54.7	63.1	117.8
3.41	56.192	604.3	54.7	56.7	111.4
3.66	49.906	604.1	54.8	50.3	105.1
3.91	43.656	604.0	54.8	44.0	98.8
4.17	37.489	603.9	55.0	37.7	92.7
4.42	31.461	603.9	55.3	31.5	86.8
4.67	25.619	604.0	55.8	25.5	81.3
4.92	20.007	604.2	57.2	19.6	76.7

APPENDIX D

LIST OF VARIABLES

D.1 INPUT FILE FROM HYDRODYNAMIC MODEL

<u>Variable</u>	Description	<u>Variable Name in</u> <u>Senior's Model</u>
acell(i) acell(ncell)	cross-sectional area of core cells (m ²) primary zone cross-sectional area (m ²)	
acell(ny+i)	cross-sectional area of annulus cells (m ²)	
acfin	cross-sectional area of core at the top of the riser (m^2)	
acinit	core cross-sectional area at height = $0 \text{ m} (\text{m}^2)$	
asfin	cross-sectional area of annulus at the top of the riser (m ²)
asinit	annulus cross-sectional area at height = $0 \text{ m} (\text{m}^2)$	
at	riser cross-sectional area (m ²)	bed(4)
dbavg	average density of the bed (kg/m ³)	dbav(3)
denp	particle density (kg/m ³)	pp(1,1)
devh	height of developing zone (m)	
emiss	particle radiation emissivity	pp(4,4)
flux(i,j)	i = cell number	
	j = 1 height of cell (m)	
	= 2 radial flux out of the cell (kg/m^2s)	
	= 3 axial flux out of the cell (kg/m^2s)	
	= 4 cell density (kg/m ³)	
fluxr	solids recirculation rate (kg/m ² s)	hydg(1)
k	thermal conductivity of gas	tcg
ny	number of cells along the riser, not including the primary	zone nzb
pair	fraction of the total combustion air that is primary air	
pdist(i)	weight percentage of particles at sieve size siv(i) (%)	
per	perimeter of riser (m)	peri
primev	volume of primary zone (m ³)	bed(1)
rc	reflection coefficient	hydz(5)
siv(i)	particle sieve sizing (mm)	
sug	superficial gas velocity (m/s)	ug(5)
tb	temperature of the bed (°C)	t
twall	temperature of the heat transfer surface (°C)	
uc	mean core gas velocity (m/s)	ug(1)

ult(i)	ultimate analysis of fuel (%)	
	i = 1 ash	pp(1,2)
	i = 2 moisture	pp(1,10)
	i = 3 sulphur	pp(1,6)
	i = 4 hydrogen	pp(1,4)
	i = 5 carbon	pp(1,3)
	i = 6 nitrogen	pp(1,9)
	i = 7 oxygen	pp(1,5)
us	mean annulus gas velocity (m/s)	ug(2)
volf	fractional volatiles yield	pp(1,7)

D.2 USER INPUT FILE

Variable	Description
c1, c2	constants used in the devolatilization equation
ceff	combustion efficiency
const1	constant in wall convective heat transfer coefficient calculation
cross	gas mass transfer crossflow coefficient
eps	tolerance of oxygen partial pressure calculation
eps2	tolerance of bed temperature calculation
eps3	tolerance of bed temperature within the energy balance subroutine "htrans"
exair	fractional excess air
nfeed	number of equally spaced feed points at the bottom of the primary zone
npart	number of particles used in the Monte Carlo method
perc	fraction of particles that will leave a cell during time step
rf	relaxation factor in oxygen partial pressure calculation
rf2	relaxation factor in temperature calculation
rt	residence time of the cyclone (s)
tair	combustion air inlet temperature (°C)
tref	reference temperature (°C)
tsp	particle surface temperature (°C)
vtf	volatile transfer fraction

D.3 PROGRAM VARIABLES

face
l

gas heat capacity cg particle heat capacity ср primary zone bed density(kg/m²) denb(2)bed density at a given height (kg/m^2) denb(i+2) gas density (kg/m^3) deng volatiles heat release distribution distv(i) cut-off particle diameter in the cyclone (m) dpcut dt time step dx(i,j), dy(i,j) dimensions of the cell (m) fraction of total wall area that is a heat transfer surface f i = cell numberfluxc(i,j) i = 1height of cell (m) = 2 radial flowrate out of the cell (kg/s) axial florate out of the cell (kg/s) = 3= 4 cell mass (kg) fuel feedrate (kg/s) fuel heat release in cell heat (i) heat release due to devolatilization heatv(i) heat transfer area (m^2) htarea ncell number of cells number of cells in the radial direction nx oxygen feedrate (kg/s) o2feed oxygen feedrate needed per kg/s of fuel feedrate (kg/s) o2need pcyc oxygen partial pressur in cyclone (atm) probability of how a particle will move in a cell pmat1(i), pmat2(i), pmatt(i) partial pressure of oxygen in the airfeed (atm) po2 core cell partial pressure of oxygen (atm) presc(i) annulus cell partial pressure of oxygen (atm) press(i) height of primary zone (m) primeh total wall area (m^2) rarea solids recirculation flowrate(kg/s) recirc Stefan-Boltzmann constant (W/m2k4) sbc cyclone temperature (°C) tcyc cell temperature (°C) temp(i) cell temperature in previous iteration (°C) tempo(i) mixing temperature of fuel feed and combustion air (°C) tin initial guess of bed temperature (°C) tinit particle volume (m^3) volp

APPENDIX E

ENTHALPY BALANCE SPREADSHEETS

n	n	O.
4	4	7

 :		

~

shO

	stieamer	g			{W)			core	9			(W)		
	temp (K and C)	(W)		west	east	north	south	temp (K and C))	(W) 1920	and	west	east	north	south
22	1149	818	o-conv	-3114	245405	1017428	-1222067	867	1020	p-conv	-245405	ŏ	-10174472	10415631
!	0,0		g-conv	o	-433	-1213	1494			g-conv	433	0	-883660	882102
1			rad	-37937	-3517	-6	-9			rad	3517	0	-1	-89
21	1127	1230	cond	-3436	245290	1222080	1424818	1130	1808	cond	-1		10415858	10860502
	623		p-conv		246260	-1494	1776			a-conv	-240200	ŏ	-882121	801536
			rad	-34966	604	9	-6			rad	-604	0	66	6
20	1114	1424	cond	-3763	4	<u>`</u> 0	0	1130	1825	cond	-4	0	0	0
	841		p-conv	2	242908	1434562	-1848749	857		p-conv	-242908	2	-10660/64	881482
1 1			g-conv rad	-33441	2777	-1776	-4			rad	-2777	ŏ	-8	60
19	1107	1731	cond	-4064	6	0	0	1130	1947	cond	-8	0	0	0
	834		p-conv	0	239286	1648716	-1861908	857		p-conv	-239266	0	-10905293	11146936
			g-conv	0	627	-2055	2329			g-conv	-627	2	-881606	661762
18	1104	1895	rag	-4368	4048 B	ō	0	1131	2033	cond	-8	ŏ	õ	ő
	830		p-conv	0	234997	1861821	-2072113	868		p-conv	-234997	0	-11147264	11385213
			g-conv	0	633	-2329	2698	· 1		g-conv	-633	0	-881777	682245
			rad .	-32162	4846	. 2	-1		2170	ber bere	-4846	្ព	-96	118
1 1/	1102	2170	cond n-conv	-4004	230276	2072030	.2278708	859	2170	p-conv	-230276	0	-11385535	11619078
ļ	010		g-conv	Ŏ	702	-2598	2860			g-conv	-702	0	-882270	882895
			rad	-31928	6363	1	-1			radi	-5363	0	-119	134
18	1100	2082	cond	-4963	9	0070571	0	1133	2233	cond	-9	္ရ	11410205	11040200
	827		p-conv		220408	-2860	3118			a-conv	-764	ŏ	-882918	863677
			rad	-31793	5763	1	0			rad	-5763	Ō	-135	147
15	1100	2268	cond	-5236	10	0	0	1136	2180	cond	-10	0	0	0
	827		p-conv	2	220360	2480708	-2678609	861		p-conv	-220350	0	-11848632	12072782
			g-conv	-31764	6047	-3116	3300			rad	-6047	ŏ	-149	169
14	1100	2205	cond	-6611	10	Ō	ō	1136	2256	cond	-10	0	0	0
	827		p-conv	} 0	216332	2070539	-2871501	863		p-oonv	-216332	0	-12073137	12292363
			g-conv		824	-3366	3671			g-conv	-824	0	-884600	885571
13	1092	2391	cond	-5782	13	ŏ	-0	1137	2615	cond	-13	ŏ	-100	0
ļ "	819		p-conv	· 0	202981	2871512	-3056414	864		p-conv	-202961	0	-12202631	12500888
		ł	g-conv	0	1048	-3671	3837			g-conv	-1048	0	-885605	886964
			rad Line 4	-30777	7954	8	-1	1120	2077	rad orond	-7964	0	-1/1	222
1 '2	818	2014	D-DODY	-0120	326019	3055389	-3362060	866	2077	p-conv	-325019	ŏ	-12501389	12831774
			g-conv	0	1104	-3837	4229			g-conv	-1104	0	-887000	888244
			rad	-30707	6396	1	1			rad	-8396	0	-224	239
11	1092	2744	oond	-6667	E24216	2242024	3970926	1141	2801	cond b-conv	-14	0	12832262	13364660
			a-conv	i ő	1133	-4229	4871			g-conv	-1133	ŏ	-886277	889143
1 .			rad	-30796	8644	-1	1			rad	-8644	0	-241	267
10	1093	3400	cond	-7661	14	0	0	1143	3216	cond	-14	0	0	0
	820		p-conv		860443	3870625	-4714643	870		p-conv	-660443	0	-13365184 -880178	880310
			liad	-30919	6867	-1	2			rad	-8867	ō	-259	277
9	1094	4229	cond	-9037	14	0	0	1146	3929	cond	-14	0	0	0
	821		p-conv	0	1416677	4714676	-6115102	873		p-conv	-1415677	°,	-14232838	15655887
			g-conv	31077	9074	-0930	3	1		g-oonv und	-9074	0	-0000344	302
1 8	1096	6268	cond	-11482	15	ō	0	1148	3738	cond	-15	0	0	0
	623		p-conv	0	2336458	6114953	-8440266	875		p-conv	-2338458	0	-15656266	18004696
	1	1	g-conv	0	1195	-7702	10637			g-conv	-1195	0	·868222	884943
,	1000	7835	cond	-31277	9260	-3	6	1151	4853	cond	-9200	0	-304	341
1 '	825	,	p-conv	0	3874176	8440036	-12305315	878		p-conv	-3874176	ŏ	-18005204	21892169
			g-conv	0	1209	-10637	15512			g-conv	-1208	0	-884968	877935
	1		bai	-31636	9428	-8	10			rad ·	-9428	0	-343	384
6	1101	10993	cond	-22277	15	12204602	19720275	1164	8165	cond	-15		.21902008	28337072
	820		p-conv	, o	1224	-15514	23616			a-conv	-1224	ŏ	-877965	864350
1			rad	-31829	9623	-10	16			rad	-9623	Ō	-386	416
6	5 1103	16086	icond	-33466	15	· . 0	0	1168	18176	cond	-15	0	0	0
	630		p-conv	0	10074765	18727945	-29408147	684		p-conv	-10674755	٥ ٩	-28338043	39030695
1	1	1	g-conv	1 .221/47	1241	-23618	3/100			g-conv rad	-1241		-004380	0.39408 <u>41</u> 8
	1107	31001	cond	-35438	15	0	1	1161	55014	cond	-16	Ö	6	0
	633		p-conv	0	17741971	29406283	-47180374	888		p-conv	-17741971	Ó	-39031753	56774287
	1	1	g-conv	0	1262	-37102	62992		1	g-conv	-1252	0	-839431	795190
Ι.			lied	32617	10017	-30	825	11.00	215070	Den	-10017		419	373
3	894	48110	p-conv	-30705	20196541	47177737	-76411429	691	2100/6	p-conv	-29196541	ŏ	-56773442	85824429
1		1	g-conv	j õ	173	-62990	96252	1		g-conv	-173	l o	-795178	727798
1	1	1	rad	-38953	1486	-026	62			rad	-1486	0	-373	-101
2	1156	424343	cond	-228524	21	0	-1	1163	1598444	cond	-21		0	4 9002557
1	886	'	p-conv		-70002000 AFA	-98247		390		a-conv	-859		-727657	0
L ·	1		rad	-250996	5774	-62	-2501	L		rad	-6774	Ŏ	106	-9887

674639 1937081

2611720 -1371007 -10041809 <u>8903554</u> 2457

0

heat generated in streamer heat generated in core total heat generated heat transferred to cooling wall heat leaving top of riser heat entering bottom of riser

total % diff. of heat gen.

230

eh 1 C899:

1 1	temp (K and C)	ŵ		weat	eest	north	south	temp (K and C)			vvest	eest	north	eouth
22	1123	1212	cond	-5046	-4	0	0	1107	2006	cond	4	0	0	0
	850		p-conv	0	474162	1609953	-2048215	834		p-conv	-474162	0	-16099284	16570060
	ĺ		g-conv	0	-365	-1977	2662			g-conv red	2780		-865327	-52
21	1109	1401	red coorf	-5657	-2/80	-0	-10	1107	2112	cond	0	o	ŏ	ō
	836		p-conv	0	461522	2048232	-2478666	834		p-conv	-481522	0	-16569910	17030137
			g-conv	0	-38	-2661	3112			g-conv	38	0	-863608	862332
			rad .	-32770	-201	10	-7	1107	2100	red	281		53	-11
20	1100	1681	oond	-6249	447794	2479703	.2809277	834	2100	cona n-conv	-447784	ő	-17029877	17477694
1 (621		a-conv	ŏ	151	-3112	3653			g-conv	-151	o	-862319	861340
í (red	-31783	1112	7	-6			red	-1112	0	12	16
19	1095	1936	cond	-6820	3	0	0	1107	2262	cond		2	0	17011050
	822		p-corw	ା ୁ	433620	2898321	-3306440	834		p-conv	-433620		-1/4//410	17911000
1			g-conv rad	-31201	1966	-5005	-3			rad	-1966	ō	-15	33
18	1092	2061	cond	-7371	• 4	0	Ó	1107	2394	cond	-4	0	0	0
	819		p-oonv	0	419131	3306487	-3699311	834		p-conv	-419131	0	-17911386	18331570
			g-conv	0	346	-4177	4681			g-conv	-345	្ត	-860663	850962
17	1000	2355	rad	-30850	2020	0	-2	1108	2467	cond	-6	ŏ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	õ
. "	817	2000	p-conv	0	404767	3699384	-4079814	835		p-conv	-404767	0	-18331293	18737329
			g-conv	.0	397	-4681	5168			g-conv	-397	0	-859949	859496
			red	-30640	2090	2	-1		2400	ber	-2890	0	-46	66
16	1089	2683	cond	-8411	300530	4070971	.4448774	835	2400	cona n-conv	-390530		-18737068	19129035
1	010		g-conv	0	434	-5168	5636			g-conv	-434	ō	-859485	859152
			red	-30613	3158	1	-1			red	-3158	0	-58	65
15	1089	2796	cond	-8902	6	0	0	1109	2760	cond 🧭	6	0	0	0
	816		p-conv	2	376614	4446796	-4800069	836		p-corv	-3/6614	2	-19120816	19506731
			g-conv	-30447	3354	-0030	0007			red	-3354	ŏ	-64	71
14	1089	3124	cond	-9373	6	ò	0	1110	2745	cond	-8	ō	0	0
1	815		p-conv	0	362938	4800142	-5140377	836		p-conv	-362938	0	-19506516	19870835
1			g-conv	0	480	-6087	6523			g-conv	-480	2	-858895	858751
I		0107	red	-30423	3498	0	1	1110	2808	rea	-3486		-70	· · · ·
1 13	816	. 3187	cona n-oonv	-002/	349370	5140387	-6466926	837	2000	p-conv	-349370	ō	-19970682	20221336
ļ			g-conv	o	487	6523	6904			g-conv	-487	0	-868744	858675
1			red	-30469	3662	-1	-6			red	-3662	9	-76	80
12	1085	3188	cond	-10263		0	0 5014405	1111	2726	cond	200004		.20221224	20502270
	. 812		p-conv		584	-8904	7365	6.50		a-conv	-584	ŏ	-858670	858669
1			red	-30076	4238	6	-2			red	-4238	Ō	-80	101
11	1084	3682	oond	-10843	8	0	0	1112	3126	oond	-8	0	0	0
	811		p-conv	0	601196	5814577	-6396519	839		p-conv	-601199	2	-20692368	21198072
			g-conv	-20051	630 4676	- / 365	8085			g-corw red	-4575	6	-856673	115
10	1082	4061	oond	-11962	9	ō	o	1113	3606	oond	-	0	0	0
	809		p-corw	0	987467	6395599	-7364759	840		p-conv	-987467	0	-21196316	22187326
			g-conv	0	714	-8085	8311			g-conv	-714	0	-858227	856934
	1		ber	-29661	6169	5	-6	1114	3533	rad	-0100		-116	. 130
1	806	4044	D-CONV	-13546	1627829	7364877	-8976781	841		p-conv	-1827829	ō	-22187645	23821202
	l		g-conv	0	801	-9311	11365			g-conv	-801	0	-856947	854246
1	1	1	red	-29380	5789	6	-6			I rad	-5789	0	-140	173
8	1077	5426	cond	-16340	11	0	0	1116	4220	cond	-11		.23931630	28520541
I	804		p-conv		2000047	.11356	14756		ļ	p-corw	-2000047	6	-854283	849073
1		ł	red	-29145	6399	6	-5	1	1	red	-6396	ō	-174	213
7	1076	750	cond	-20970	12	Ō	Ō	1118	5224	cond	-12	0	0	. 0
	803	i	p-corw	0	4454832	11654718	-16102020	845		p-conv	-4454832	9	-26521055	30988106
1			g-conv		963	-14766	20405	1		g-conv	-963		-849090	039541
1 .	107	1000	1 and	-20985	09060	0	-3 0	1120	872	oond	-0000		-214	00 00
'	802	1068	0-000	-20002	7384849	16102071	-23487064	847		p-conv	-7384849	0	-30988520	38390294
1			g-conv	· 0	1033	-20408	29804			g-conv	-1033	0	-839552	822401
1	1		red	28909	7486	3	2			red	-7488	0	268	268
1 0	5 1075	2889	2 cond	-33738	13	0	0	1123	2064	Bloond	-13	l s	0	50004349
	802		p-conv		12255908	23486843	-35/00850	800	1	p-conv	-1084		-36366670	792211
1	1	I	g-conv red	.28949	7907	-2000/	11		1	red	7907		-288	300
	1076	3298	Bicond	-33778	14	· õ	1	1126	5152	cond	-14	l o	0	0
	903		p-conv	0	20360694	35762991	-56158955	i 852	4	p-corw	-20360694	0	-50660223	71030970
1		1	g-corw	0	1128	-45420	76476		1	g-conv	-1126	0	-792147	740035
1			iad .	-29064	8269	-11	860		10001	l oner	-8269	<u>ا</u> ا	-298	288
1	3 1123 eco	7767	acond	34109	33490491	56159052	-89727820	855	19001	D-CORV	-3348948	il ő	-71021079	10439106
1	000	1	g-conv	0	131	-75478	114146	3	1	g-corw	-13	õ	-739932	662403
1		1	red	-34479	1045	-860	73	3	1	red	-104	5 0	-283	-56
1 :	2 1125	49747	9 cond	-218174	12	0	-1	1128	144136	1 cond	-12	<u>د</u>	0	142406-00
1	852	'l	p-conv		-89980671	89725047] 866	'I	p-corw		5 .	-1043/4340 _662207	14248020
1		ļ	rad	-222616	3066	- 73		,		red	-308	so	65	-5381

698668 1767522

heat generated in streamer heat generated in core total heat generated heat transferred to cooling heat leaving top of riser heat entering bottom of ris

total

2468190 -1349866 -15356835 14249526 8215

0

% diff. of heat gen.

22	21	
4.	, T	

Case:	

								C 890 :	sh2						
	1.	streamer amp (K and C)	9 (W)		west	(W) east	north	south	core temp (K and C)	(W)		west	(W) east	north	south
	22	1183	611	cond	-1600	-4	0	0	1169	1061	oond	4	0	0	Ö
		910		p-conv	0	56734	661329	-561739	896		p-conv	-66734	្ត	-6613208	5565963 017220
				rad	-42681	-2852	-2	.7			rad	2852	ŏ	0	-127
	21	1144	649	cond	-1675	7	. 0	0	1168	1131	cond ·	-7	0	0	0
		871		p-conv	0	64027	561799	-594560	895		p-conv	-64027	0	-65665892	6632603 918383
				g-conv rad	-37278	4642		-4			rad -	-4642	ŏ	127	163
	20	1127	607	cond	-1766	12	0	0	1170	1102	cond .	-12	0	0	0
1	1	853		p-conv	0	68242	694608	-637804	896		p-oonv	-68242	2	-6632428	6706201
		1		g-conv red	-34976	8162	-/20	-2			rad l	-8182	ő	-162	313
	19	1119	699	cond	-1837	15	o	Ō	1172	1115	cond	-15	0	0	0
		846		p-conv	0	70534	637867	-686572	899		p-conv	-70534	0	-6706167	6783766
				g-conv	.33990	1223	-/8/	862			g-conv und	-10071		-920/61	396
1	18	1116	820	cond	-1921	17	ō	ò	1175	1160	cond	-17	ō	0	0
		843		p-conv	0	71782	686623	-738431	902		p-conv	-71782	0	-6783748	5863489
				g-conv	0	1357	-852	920			g-conv	-1367	ဂ	-923769	927158
	17	1116	963	radi	-33634	18	, i	ŏ	1178	1198	cond	-118		. 0	~ 6
1	"I	843		p-conv	0	72602	738449	-791766	905		p-conv	-72502	0	-5863475	5944489
				g-conv	0	1437	-920	989			g-oonv	-1437	0	-927165	930770
				rad	-33617	11899	0	1	1192	1181	rad ocont	-11899	2	-446	479
	18	845	1013	cond n-conv	-2089	72802	791757	-845188	909		p-conv	-72602		-5944464	0025887
1				g-conv	ō	1464	-989	1050			g-conv	-1464	0	-930766	934482
1		ł		rad	-33910	12218	-1	-1			fød	-12218	0	-479	496
	16	1116	1035	cand	-2168	20	045315	-000025	1186	1211	COND	-72302	Å	-8025852	A107812
		643		a-conv a-conv	ő	1599	-1050	1125	012		g-conv	-1599	ŏ	-934480	938542
				rad	-33638	13368	1	1			rad	-13368	0	-496	548
	14	1119	1099	cond	-2273	20	0	0	1190	1241	cond	-20	ိ	-1	e227027
		846		p-conv		109181	-1126	-991876	810		a-conv	-109181	ő	-938541	942617
				rad	-33973	13732	-1	1			tad	-13732	Ō	-548	587
	13	1122	1230	cond	-2445	20	0	0	1194	1279	cond	-20	0	-1	1
		848		p-conv	္ခ	170366	991887	-1145083	921		p-conv	-170356	0	-6227031	8407819 946620
				g-conv red	-34348	14068	-1240	2			rad	-14068	ŏ	-567	585
	12	1126	1485	cond	-2725	20	0	0	1198	1369	oond	-20	0	1	1
		863		p-conv	0	271785	1145117	-1399772	926		p-conv	-271765	0	-6407845	6690362
				g-conv	34999	1649	-1434	1/64			g-conv	-1649	0	-946024	595
		1131	1811	cond	-3184	20	0	ō	1202	1480	oond	-20	Ō	-1	1
		868		p-conv	0	440464	1399767	-1822878	929		p-conv	-440464	0	-6690419	7141961
				g-conv	0	1632	-1754	2286			g-conv	-1632	0	-960390	953699
	10	1136	2281	rad	-36617	14216	-2	0	1206	1582	cond	-20	ŏ	-080	~ 1
		863		p-conv *	0	721361	1822862	-2626867	933		p-conv	-721361	0	-7142032	7874984
				g-conv	0	1602	-2266	3171			g-conv	-1602	0	-963710	956270
		1143	3010	red cond	-36229	14125	-3	0	1211	2166	cond	-14120	0	-002	1
	°	869	5015	p-conv	0	1189115	2526870	-3698991	937		p-conv	-1189115	o	-7875194	9076357
				g-conv	· 0	1561	-3171	4642			g-conv	-1581	· 0	·956298	967688
				rad	-37014	13944	-6	8	1015	2001	rad	-13944	0	-609	611
	B	1149	5708	cond b-conv	-7282	1968226	03696944	-5652727	1216 942	3901	p-conv	-1968226	0	-1 -9076705	11057135
		570		g-conv	0	1518	-4642	7090			g-conv	-1516	Ō	-957825	956803
				rad	-37822	13739	-8	11		•	rad	-13739	0	-613	612
	기	1164	7418	cond	-10744	18	0	0	1219	4436	cond	-18		-110E7224	14320111
		881		p-conv		J200106	-7090	11168	-40		g-conv	-1481	6	-956810	962720
		1		rad	-38698	13584	-11	17			rad	-13584	Ó	-813	639
	6	1160	5983	cond	-16499	18	Ó	0	1223	9023	cond	-10	0	-1	1
		.687		p-conv	0	5429528	8904595	-14322079	950		p-conv	-5429628	l °	-14338240	19783456
				g-conv	20255	1400	-11166	.17901			g-conv	-13508		-802/20	855
	5	1165	3440	cond	-26067	13000	0	ő	1228	16605	cond	-18	ŏ	· •	1
	-	892		p-conv	0	9029303	14321812	-23340099	966		p-conv	-9029303	0	-19783471	28830479
				g-conv	0	1442	-17948	29257			g-conv	-1442	0	-942983	923627
1		1170	13350	lad	-40071	13530	-26	43	1233	53614	oond	-13530		-055	549 0
1	1	897	13208	p-conv	-30/20	15017203	23343402	-38378208	969		p-conv	-15017203	ļő	-28832454	43847089
				g-conv	0	1425	-29267	60936			g-conv	-1425	Ó	-923690	887683
				rad	-40805	13548	-43	836			rad	-13648		-651	54 8
	3	1227	38986	cond	-39044	3	38377731	-63120989	1237	218664	D-conv	-3		-43852021	66419367
· ·	1	804		g-conv		211	50936	78657			g-conv	-211	ļŏ	-867783	830503
				rad	-49443	2152	-835	5			rad	-2152	Ó	-663	-193
	2	1228	344006	cond	-249371	38	0	-1	1235	1803696	cond	-38	0	0	-8
		954		p-conv		-63136147	63119952 -78657		962		p-conv	-1101		-68422921 -830548	4809790
				ad	-316664	11210	-70037	-3966	1		rad	-11210	ŏ	188	-21765

ť

.

2564248 -1506717 -5880891 <u>4809782</u> -13679 -1

Γ

436133 2128113

heat generated in streamer heat generated in core total heat generated heat transferred to cooling wall heat leaving top of riser heat entering bottom of riser

total % diff. of heat gen.

2	2	2
2	Э	L

uh3

	streamer	9			(W)	north	south	core temp (K and C)	0 (W)		west	(W) east	north	south
	temp (K and C)	(W) 804	cond	-3336		0	0	1086	1939	cond	6	0	0	0
"	830		p-conv	0	316613	961446	-1243726	612		p-conv	-316613	0	-9614675	9927332
1			g-conv	0	-425	-989	1315			g-conv	426	ဂ္ဂ	-720659	719175 -78
1	1000	1147	rad	-32123	-3061	-6	-8	1084	1887	oond	0	ŏ	ő	Ő
1 1	810		p-conv	0	315695	1243672	-1530960	811		p-conv	-315695	0	-9927518	10242101
1			g-conv	0	11	-1315	1636	· · · ·		g-conv	-11	8	-719188 7A	/18433 .A
_	1073	1367	rad	-29860	/¥ 3	5		1084	2034	cond	-3	ŏ	0	ő
1 ~	800	1337	p-conv		312615	1530921	-1818308	811	_	p-conv	-312615	0	10242282	10555129
			g-conv	0	242	-1638	1957			g-conv	-242	2	-718448	718047
		1040	rad	-28733	1666	5	-3	1084	2147	oond	-1000	0	ő	0
1 19	795	1040	p-conv		308380	1616308	-2103488	811		p-conv	-308380	0	10555290	10864631
			g-oonv	0	378	-1967	2271			g-conv	-378	2	-718058	717893
	1045	1777	rad	-28126	2584 B	0	-2	1086	2150	cond	-6	ŏ		0
"	791		p-conv	0	303422	2103445	-2384684	812		p-conv	-303422	0	10864738	11169608
		1	g-conv	0	464	-2271	2680			g-conv	-464	0	-717900	717905
1			Tad Connd	-27789	3154 A	2	-1	1086	2240	cond	-0104	ő	-08	,°
1 "	790	2041	p-conv	0	297976	2384697	-2661486	612		p-conv	-297975	0	-11169724	11469366
1		1	g-conv	0	518	-2680	2882	1 [g-conv	-518	0	-717912	718039
	1000	2221	rad cond	-27611	3623		-1	1086	2347	cond	-3023	0	-78	ő
"	789	2231	p-conv	0	292226	2661454	-2932944	813		p-conv	-292226	0	-11469473	11763456
1		1	g-conv	0	555	-2883	3179	1		g-conv	-666	0	-718046	718269
1	1000	27.47	han honor	-27531 -A163	3772	- 11	0	1097	2353	cond	-3//2	ő	/	0
"	789	2.542	p-conv	· 0	286241	2932681	-3198636	814		p-conv	-286241	0	-11763493	12051606
	1		g-conv		580	-3179	3468			g-conv	-580	0	-718271	718577
	1042	2810	and boond	-8534	3948		0	1088	2446	cond	-7	ŏ	.0	0
"	789		p-conv	0	280189	3198585	-3458726	,915		p-conv	-280189	0	-12061613	12333679
1		1	g-conv	0	600	-3468	3743	· ·		g-oonv	-600-	0	-718677	718962
	1081	2874	Lied Cond	-27624 -6897	4091 B	0	-1	1069	2643	cond	-8	ŏ	. 0	0
1 "	788		p-conv	0	275092	3458628	-3714150	816	I.	p-conv	-275092	0	-12333622	12610794
1	1	1	g-conv	1	654	-3743	3998	ļ		g-oonv	-854		-718949	719434
	1055	2901	red cond	-2/307	4468	0	-0	1090	2645	cond	-10	ŏ	0	0
1 "	782		p-conv	0	307008	3714166	-4003934	817	1	p-conv	-307008	0	-12610694	12920654
	1		g-conv	0	807	-3998	4336	Į į	1	g-conv	-807	្តំ	-719428	720088
1 .	1054	. 3104	ad Joond	-26813	6469	6	-1	1092	2748	cond	-11	ŏ	-123	0
1 "	781		p-conv	0	498525	4003873	-4485878	019	1	p-conv	-498525	0	-12920542	13422699
1		1	g-conv	0	861	-4336	4860	1 İ	1	g-conv	-861		-720082	720502
	1054	344	2 cond	-26726 .8676	6840	1	-1	1094	2902	cond	-11	ŏ	0	6
1 "	781		p-conv	0	815763	4485828	-6286252	821		p-conv	-815763	0	-13422617	14242603
1		1 ·	g-conv	0	912	-4860	5729	l 1	1	g-conv	-912		-720497	720368
	1054		1ad 3 cond	-26672	6194 12		0	1098	3204	oond	-12	0	0	
· `	780		p-conv	0	1342479	5286239	-6615439	822	1	p-conv	-1342479	0	-14242664	16690656
		-]	g-conv	0	962	-5729	7172		Į	g-conv	-962		-720371	719250
		E000	ad .	-26640	6550			1098	3790	cond	-0000		-199	
	1064 794	0880	p-conv	-12401	2217718	6615323	-8822339	825	1	p-conv	-2217718	o	-16590624	17815317
			g-conv	0	1010	-7173	9673		Į.	g-conv	-1010	0	-719253	716386
			rad	-26645	6696	0	2	1100	4754	rad	-6696	1 8	-227	280
	1054	• 891. 	4 cond p-conv	-16417	3673366	8822024	-12489134	827	1 7,0-	p-conv	3673366	ŏ	-17815309	2149806
1	'"	1	g-conv	0	1050	-9573	13560		l	g-conv	-1050	0	-716387	710487
			rad	-26715	7206	-2	4			rad	-7206	l °	-260	298
	6 106	5] 1338 5]	o cond	-22961	6092591	12488383	-18581038	830	1 ,000	p-conv	-6092591	l ő	-21497587	2760302
1	/ /8.	"	g-conv	0	1087	-13562	20186			g-oonv	-1087	l o	-710471	699225
			rad	-26839	7606	-6	. 9			rad	-7505	0	-296	32
	5 105	7 2126	4 cond	-33006	14	19570400	28704704	1106	1396	cond p-conv	-14		.27601214	37731292
	78-	`	p-conv		10114084	-20188	31206		l	g-conv	-1120	ŏ	-699180	67869
			rad	-27010	7790	.0	19)	•	rad	-7790		-326	33
	4 105	9 3213	6 cond	-33076	14	00700000	45520744	1109	40110	1 cond	-14	1 8	-37726183	5453947
	78	8	p-conv		10808017	-31207	62391	836	1	g-conv	-1145	0	-676607	64249
1	· ·		rad	-27234	8022	-19	683	ч .		rad	-8022	0	-327	30
	3 110	8 6884	17 cond	-33378	2	-1	1 7724497	1112	151312	2 cond	-2	្រុំ	-54529234	8208034
	63	3	p-conv		27646934	45637748	79670	839	1	g-conv	-147		-642365	58759
			rad	-32437	1127	-684	40	1	1	rad	-1127	0	-298	-6
	2 110	8 36868	19 cond	-213438	19	0	-1	1112	135574	9 cond	-16	מי וי		844300
	63	4	p-conv		-73392700	/3242438		838	1	g-conv	-809	ร์ อ	-587503	
		1	rad	-208873	4644	-40	-1859		L	rad	4644	<u>l</u>	6	-720

Ţ

661821 1610242 2162062 -1226111 -9374778 <u>8443089</u> 4262 0 total % diff. of heat gen.

heat generated in streamer heat generated in core total heat generated heat transfered to cooling wall heat leaving top of riser heat entering bottom of riser

-

72	2
23	J

sh4

	streamer	g			(W)			COIE	9			(W)		an
	temp (K and C)	(W)	and	west	east	north	south of	temp (K and C) 1037	2289	cond	west F	0	nnon A	south N
22	782	1092	p-conv	-0182	560968	1478606	-2011281	764	*****	p-conv	-560968	ŏ	-14785558	15343007
			g-conv	0	409	-1586	2163			g-oonv	409	0	-682778	681065
			rad	-26770	-2569	-7	-8	1027	2440	rad bar	2569	8	-1	-44
21	1042 7AA	1408	p-conv	-0422	547873	2011218	·2534494	763	10	p-conv	-547673	ŏ	-15343602	15889371
	,		g-conv	ő	-115	-2163	2748			g-conv	116	0	-681092	679696
			rad	-25422	-710	8	-6		-	rad .	710	ဂ္ဂ	43	-16
20	1034	1832	cond	-6641	533138	2534428	3045407	763	2009	p-conv	-633138	0	-15890044	16422095
	/01		a-conv	ŏ	46	-2748	3314			g-conv	-45	0	-879725	878648
I.	1		rad	-24719	271	5	-4			rad	•271	<u>o</u>]	16	2
19	1030	2050	cond	-7337	2	2045 200	3542314	1036	2606	cond P-conv	-2 -519024	2	16422840	0 16940262
	767		p-conv	0	618024 143	-3314	3864	/63		g-conv	-143	ŏ	-878579	877570
		:	rad	-24306	866	4	-3			rad	-866	0	-3	15
18	1028	2623	cond	-8013	3	0	0	1037	2764	cond	-3	°,	18041000	17442220
1	754		p-conv	្ត្រ	502670	3642183	-4026008 A304	763		p-con⊻ a-con⊻	-502870	0	-10941096	676723
			g-conv rad	-24055	1247	3	-2			rad	-1247	0	-18	24
17	1026	2820	oond	-8666	3	0	0	1037	2879	cond	-3	0	0	0
	763		p-oonv	0	407195	4024822	-4492776	764		p-conv	-487195	2	-17444269	17931088
1			g-conv	-23905	249	-4397	4912			rad	-1500	ŏ	-0/0/09	31
1 10	1025	3435	cand	-9297	3	ō	0	1037	2968	cond	-3	Ó	0	0
1	752		p-conv	0	471824	4492646	-4945916	764		p-conv	-471824	0	-17932076	18403559
1	1		g-conv	0	278	-4912	5410			g-conv rad	-1875	0	-0/6025	076348
15	1024	3340	oond	-23017	4		0	1039	3081	oond	-4	ŏ	0	0
	751		p-conv	0	456586	4945571	-6383523	764		p-conv	-456586	0	-18404550	18860761
1 .			g-conv	0	301	-5410	5891			g-conv	-301		-6/5364	674790
	1024	3043	rad	-23766	1807	1	0	1038	3376	cond	-1007		-38 0	
"	761	3002	p-conv	0	441567	6383286	-5806924	765		p-conv	-441587	0	-18861737	19302675
}			g-conv	0	316	-5892	6366			g-conv	-318	0	-674825	674299
1			rad	-23745	1902	0	2	1039	3238	cond	-1902		-43	44
13	752	3968	p-conv	0	425756	6806574	-6214013	766	0200	p-conv	-426768	ŏ	-19303671	19728792
1			g-conv	0	304	-6366	6718			g-conv	-304	0	-674334	673966
			rad	-23844	1831	-2	-16		9599	red cond	-1831	2	-46	44
1 12	1016	4210	cond n-conv	-11682	6 342472	0 6213738	-6540842	766	3022	p-conv	-342472		-19729713	20072370
1	/**		g-conv	0	521	-6719	7142			g-conv	-521	0	-673898	673780
1	1		red	-23005	3101	16	-3	.		radi	-3101	0	-46	81
1 "	1015	4360	cond	-12185	557102	8540504	0	1040	3674	COND.	-667183		-20073101	20631088
	/41		g-conv		683	-7142	7740	,**		g-conv	-583	ŏ	-873804	673471
1			rad	-22838	3466	3	-2			ber	-3466	0	-82	96
10	1013	4986	3 cond	-13142	8	0	0	1041	3842	cond	-8		.20821500	21544540
1	740	1	p-conv		911392 836	-7741	-7000984	/68		g-conv	-635	0	-673488	672497
1	1	1	rad	-22726	3775	2	-3			red	-3775	0	-96	106
4 0	9 1012	5637	7 cond	-14722	9	0	0	1042	4268	cond	-9	0	0	0
1	736	1.1.1	p-conv	0	1499147	7980515	-9468149	769	1	p-conv	-1499147		-21645129	870341
1		1	g-conv	.226.99	697 4146	-8/18	10341	l		rad	-4145	6	-110	129
1	8 1010	687	Bicond	-17336	9	0	0	1044	5008	cond	-9	Ó	0	
1 Ì	737	4	p-conv	0	2475027	9487678	-11933743	770	l	p-conv	·2475027	0	-23047229	25526716
1 ·		1	g-conv	0	767	-10342	13037		1	g-conv	-767		-670369	666213
1.	7 1000	010		-22444	4000	4		1045	6052	cond	-10	0	0	00
1	736		p-conv	0	4094073	11933184	-16023128	772		p-conv	-4094073	0	-26620199	29627692
1		1	g-conv	0	838	-13038	17616		ļ	g-conv	-838	0	-666199	658551
1			tad .	-22317	4986	6	4	1047	0552	radi	-4985	1 %	-166	183
1	1006 v	1304	B CODY	-28862	8782400	16022337	-22807497	774	6003	p-conv	-6782400	0	-29626252	36420100
1	/30	1	g-conv	l ő	906	-17617	24956			g-conv	-906	o l	-050520	644832
1		1	rad	·22232	5402	4	-1			rad	-6402	0	-182	200
1	6 1000	2012	0 cond	-30418	11252325	22804204	34073010	1060	14704	D-CONV	-12		-36416910	4768624
1	734	'	p-conv a-conv		964	-24960	37338			g-conv	-964	0	-644776	62063
			rad	-22213	6767	1	1 7	1		rad	-5767	0	-203	22
1	4 100	3616	3 cond	-30452	12	0	1	1062	40016	cond	-12		47000170	
1	730	'	p-conv		18692238	340/2663	-52807088 A11A3	//s		p-conv g-conv	-10092236		-620756	579430
1	1	1	rad	-22278	6062	-37330	646	3		rad	-8052	e ő	-217	214
	3 1050	5843	4 cond	-30758	1	1 -1	() (1065	140360	cond	-1	0		
1	77	3	p-conv	0	30735465	62806101	-83602457	782		p-conv	-30735465		-66371520	51905
1	1	1 .	g-conv	-28234	122	-61166	91816 Ad	Ś	1	rad	-122		-078346	-24
1	2 105	43955	9 cond	-196846	11		-i	1065	1236114	cond	-11	l o	0)
	77	9	p-conv	0	-83873650	83604226		782		p-conv	83873650		-97027306	1301700
			g-conv	0	386	-91816		2	1	g-conv	-386		-618042	-380
		1 .	liad	<u>-169497</u>	2484	-80	1 1214	<u>1</u>	L	1180	1 -2484	·L 0	L 20	<u>1 300</u>

£

.

heat generated in streamer heat generated in core total heat generated heat transferred to cooling wall heat leaving top of riser heat entering bottom of riser 628590 1494217 total

.

% diff. of heat gen.

2122607 -1138036 -13991395 <u>13017001</u> 10377 _____0 C

sh5

	streamer	9		l	(W)			core	9			(W)		
	temp (K and C)	(W)		west	east	north	0	1124	1122	~~nd		644	0	
22	868	014	cona n-conv	.1726	87632	524191	-582107	851		D-CONV	-97632	ŏ	-5241813	6336187
		1 1	a-conv	ŏ	-390	-513	800	1 1		g-conv	390	Ó	-750614	749384
	1 1	i 1	rad	-36831	-3106	-3	-7	i I		rad	3108	0	0	-130
21	1107	546	cond	-1863	6	0	0	1123	1116	cond	-6 - 05000	0	5000050	
	833	i 1	p-conv	0	105330	582110	-658759	800		p-conv	-106330	1	-5336060	749970
	1 1	i I	g-conv	22520	3/4	-600	-3	1		g-conv	-2837	6	131	91
. 20	1001	804	Cond	-32030	2037	ó	õ	1124	1132	cond	-2007	ō		ō
. 20	818		0-00nV	0	109278	658793	-744397	851		D-CONV	-109278	0	-5442585	6666649
		1	a-conv	0	743	-694	793	i 1		g-conv	-743	0	-749848	751210
			rad	-30737	5637	3	-2	i 1		iad	-6637	· 0	-89	200
19	1084	601	cond	-2144	12	0	0	1126	1130	cond	-12	9	0	
	811	1	p-conv	1	111548	744429	-834706	852		p-conv	-111548	1 2	-6555365	5671811
			g-conv	20047	943 8072	./63	084	. 1		g-conv	-8972	្រ	-/01100	281
18	1082	815	rad .	-2288	13	5	o	1128	1234	cond	-13	l õl	0	0
	808		D-00NV	0	112866	834786	-927984	855		p-conv	-112866	0	-5671633	6790016
	-		g-conv	0	1056	-894	996	1 1		g-conv	-1056	0	-752987	766073
			rad	-29640	7811	1	0	1		rad	-7011	0	-259	296
17	1081	900	cond	-2432	14	0	0	1130	1215	cond	-14	1 2	0	0
ł	808	Í .	p-conv	្រ	1136/6	926016	-10228/1			p-conv	-1130/0	្រ	-0769000	767307
		1	g-conv	-29582	8348		0			rad	-8348	ŏ	-295	321
1 16	1082	914	cond	-2678	14	ō	o	1133	1237	cond	-14	o l	0	0
· -	809		p-conv	· o	114148	1022716	-1118226	860		p-conv	-114148	0	-5909252	6029678
		l	g-conv	0	1172	-1100	1206			g-conv	-1172	0	-767278	759658
		I	rad .	-29662	8726	0	1		1.050	rad	-8725	2	-319	338
15	1084	1014	cond	-2722	14	1110200	1012542	1130	1203	CONG	-113002	1 %	-9029468	A140797
	811		p-conv		113002	-1205	-1213043	~~		A-conv	-1174	ŏ	-759631	762039
		ļ	g-conv rad	-29968	8608	1 -1	-2			rad	-8808	l ò	-336	344
1 14	1078	1110	cond	-2860	17	i ol	0	1139	1327	cond	-17	0	0	0
	805	1	p-conv	.0	104273	1213615	-1301839	865		p-conv	-104273	0	-6149689	8261368
·			g-oonv	0	1390	-1293	1402			g-conv	-1390	0	-782016	764905
I			rad	-29236	10382	2	1		1966	rad .	-10382	1 2	-342	414
13	1080	1190	cond	-3031	102502	1201890	1449820	880	1200	cona	-182592	1 1	-8261184	8431758
	. 807		p-conv		102002	-1402	1582			A-CODY	-1424	6	-764882	767780
			g-conv	-29451	10711	1	1			rad	-10711	l ò	-412	433
1 12	1083	1391	oond	-3306	18	i o'	0	1146	1426	oond	-18	0	0	0
	810	,	p-conv	0	269092	1448680	-1692094	872		p-conv	-259092	0	-6431625	6698889
			g-oonv	0	1434	-1562	1826	,		g-conv	-1434	0	-787765	770486
I			red	-29797	10881	1 -1/	2			rad	-10881	្ត	-432	443
1 11	1087	1770	cond	-3764	410438	1002103	2006177	A76	1020	0000	-419436		-8898795	7126723
1	013		p-conv		1432	-1826	2264		ļ	n-conv	-1432	ō	-770474	772869
1			rad	-30209	10977	-2	3	1		rad	-10977	0	-442	453
1 10	1091	2176	cond	-4494	17	0	0	1163	1678	oond	-17	0	0	0
	918	d . 1	p-conv	0	686236	2096247	-2767305	, 880		p-conv	-686238	0	-7126684	7821844
1			g-conv	0	1421	-2264	2990	2		g-conv	-1421	0	-772864	774689
			ber	-30680	11004	-3 0		1,150	2014	red	-11004	1	-403	404
	1080	2/30	cond	-0/10	1130383	2767382	-3883052	883	2017	0-000V	-1130363	ŏ	-7821864	8961718
		1	0-000Y	1 0	1402	-2990	4197	/i	1	a-conv	-1402	0	-774690	775550
			rad	-31203	10974	-4	e e	3		ber	-10974	0	-464	476
l é	1100	3590	cond	-7745	17	0	0	1160	2489	cond	-17	0	-1	1
	827	/	p-conv	0	1869911	3883128	-5739345	i 887	'	p-conv	-1869911	1 0	-8961754	10842198
1	1		g-conv	0	1378	-4197	6203	Į.		g-conv	-1376	l v	-775553	774811
	_	1	bar	-31764	10911	-0		1184	3417	Det	-10911		-4/0	465
1 4		42/4	cona	1 -11112	2101998	6739482	-992930E	891	· · · · ·	La-conv	-3101986	ŏ	-10842209	13956413
	1	۴I	1-000V	Ĭŏ	1367	-6203	9642	2		g-conv	-1367	i o	-774812	771391
	1.	1	tad	-32332	10869	.9	14	1		rad	-10866	0	-493	516
1	8 1110	4323	Bloond	-18710	16	0	d o	1168	6006	cond	-16	9 O	-1	1
	837	,	p-conv	0	6166308	8829606	-13974796	; 896		p-conv	-5156306	0	13956390	19126842
			g-conv	0	1341	-9641	15100	2	1	g-conv	-1341		-771369	763423
Ι.	_		rad	-32905	10864	. •14	21		13006	180	-10804		-010	0~1
1	۵۹۱ (ڈ	4011	cona	-20010	9572321	13075703	.22542786	2	10000	10-000V	-8672321	il ŏ	-19126316	27712764
1	1 ~	1	p-00.14	Ĭ	1333	-15099	24357	, ···	1	g-conv	-1333	i o	.783442	747585
i i			rad	-33470	10922	-21	34	1	ļ	rad	-10922	2 0	-542	532
	4 1118	9 10931	5 cond	-36194	16	0	ן ו	1177	47846	cond	-16	3 O	-1	0
	640	3	p-conv	0	14258138	22544248	-36811427	7 904	u i	p-conv	-14266138	9 0	-27714928	41965079
	1		g-conv	0	1327	-24352	42097	/		g-conv	-1327	<u>/</u>	-747624	718163
			rad	-34025	11006	-34	690		10702	tad	-11000		-000	401
'	3 11/3	2 2731	3 cond	-30490	22485396	36911380		J 100	18/024	n-conv	-23465396	i	-41970176	65287271
	080	1	p-conv.		201	-42097	64794	á sou	1	a-conv	-201	í ō	-718240	671439
			und	-41033	1773	-690	<u>۽</u> ا	à	[rad	-177	al o	-456	-150
1	2 117:	2 30037	5 cond	-233166	36	, o	ו- נ	1179	1548120	cond	-36	5 0	0	-7
1	89	9	p-conv	0	-60318187	60286929	/ (906	3	p-conv	6031818	7 0	-65297791	4577136
			g-conv	0	1031	-64798	1 C	2		g-conv	-103	0	-671547	0
			l and	1 .282005	.1 90.96	۹- ا،	41 -3031	1		liad	1 -9090	5I D	143	-103/0

371720 1836161

2207881 -1325780 -5488748 <u>4577129</u> -9498

ł

0

heat generated in streamer heat generated in core total heat generated heat transferred to cooling wall heat leaving top of riser heat entering bottom of riser

total

% diff, of heat gen.

sh2b -

2 1100 11		streamer	g		west	(W)	north	south	core temp (Kand C)	e (w)		west	(W) east	north	south
ind person issue distrat distr	22	1183	611	cond	-1600	-4	ol	0	1169	1061	cond	4	0	0	0
1 1 0 318 435 685 2 1 5 0 100 0 100 0 <th< td=""><td>~~</td><td>910</td><td></td><td>p-conv</td><td>0</td><td>56734</td><td>661329</td><td>-581739</td><td>896</td><td></td><td>p-conv</td><td>-65734</td><td>0</td><td>-6613208</td><td>6566963</td></th<>	~~	910		p-conv	0	56734	661329	-581739	896		p-conv	-65734	0	-6613208	6566963
1 1				g-conv	0	-318	-626	669			g-conv	318	0	-916387	917229
1 1 6 1				bei	-42661	-2862	-2	-7			rad	2852	0	0	-127
B71 pow 0 <td>21</td> <td>1144</td> <td>649</td> <td>cond</td> <td>-1675</td> <td>7</td> <td>0</td> <td>504500</td> <td>1168</td> <td>1131</td> <td>cond</td> <td>-7</td> <td></td> <td>EFREDOS</td> <td>6822602</td>	21	1144	649	cond	-1675	7	0	504500	1168	1131	cond	-7		EFREDOS	6822602
matrix matrix<		871		p-conv	2	64027	661799	-594000	890		p-conv n-conv	-549		-917218	818383
20 1127 60 0 1170 </td <td></td> <td></td> <td></td> <td>g-conv</td> <td>.37278</td> <td>4642</td> <td>-008 R</td> <td>-4</td> <td></td> <td></td> <td>rad</td> <td>-4642</td> <td>ŏ</td> <td>127</td> <td>163</td>				g-conv	.37278	4642	-008 R	-4			rad	-4642	ŏ	127	163
image image <th< td=""><td>20</td><td>1127</td><td>607</td><td>condi</td><td>-1766</td><td>12</td><td>ŏ</td><td>Ō</td><td>1170</td><td>1102</td><td>cond</td><td>-12</td><td>0</td><td>0</td><td>0</td></th<>	20	1127	607	condi	-1766	12	ŏ	Ō	1170	1102	cond	-12	0	0	0
e-conv 0 897 7.72 9		853		p-conv	0	68242	5946 08	-637804	896		p-conv	-68242	0	-5632426	5706201
International and best best best best best best best best				g-conv	0	987	-726	787			g-conv	-997	0	-918360	920759
1110 effer 1120 <t< td=""><td></td><td></td><td></td><td>red ber</td><td>-34976</td><td>8182</td><td>4</td><td>-2</td><td></td><td></td><td>rad</td><td>-8182</td><td>2</td><td>-162</td><td>313</td></t<>				red ber	-34976	8182	4	-2			rad	-8182	2	-162	313
Jack jecome 0 Arges bit jecome interm	19	1119	699	cond	-1637	15	0 7057	000572	11/2	1115	oond Ducchov/	-10		-6708167	5793766
Mad 33800 10071 10 175 100 Mat 1772 0 3732 3930 18 1116 200 0 7772 6 67727 6 67727 6 67727 6 67727 6 67727 6 67727 6 67727 6 67727 6 67727 6 6 77727 6 67727 6 67727 6 67727 6 67727 6 67727 6 67727 6 67727 6 67727 6 67727 6 67727 6 67727 6 67727 6 67727 6 67727 6 67727 6 67727 6 67727 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 6 7 6 6 7 6 6 7 7 <td< td=""><td></td><td>846</td><td></td><td>p-conv</td><td>SI SI</td><td>1223</td><td>.797</td><td>-000072</td><td>000</td><td></td><td>0-CONV</td><td>-1223</td><td>l ăl</td><td>-920751</td><td>823771</td></td<>		846		p-conv	SI SI	1223	.797	-000072	000		0-CONV	-1223	l ăl	-920751	823771
1111 920 0 1775 0 0 1775 1100 0000 1775 0				rad good	-33990	10071	2	-1			rad	-10071	ō	-313	396
bbc p-anv 0 77.82 0.0822 7.9841 0.02 p-anv -77.82 0 7.9874 00.9716 0.27165 0.	18	1116	920	cond	-1921	17	ō	0	1176	1160	cond	-17	0	0	0
$ \begin{vmatrix} e-car. & 0 & 1657 & & 1657 & $		843		p-conv	0	71782	686623	-738431	902		p-conv	-71782	0	-6783748	5863489
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				g-conv	0	1367	-862	920			g-conv	-1367	<u></u>	-923769	927158
17 100 100 2000 7.9710 7.9820 980 100 1.080 7.7502 0 -5882.75 6582.475				rad	-33634	11189	1	0	1170	1100	rad	-11189		-396	44/
Book prome correct and correct correct correct and correct correct correct and correct correct correct and correct correct correct correct correct <	1 17	1116	963	cond	-2005	72502	739440	-791766	905	1190	n-conv	-72502	ŏ	-5863475	5944489
att -33817 11000 0 1 -11000 0 -448 470 16 1116 1010 condr -23007 7975272 79752 79752 <		045		0-000V	ő	1437	-920	989			g-conv	-1437	o	-927155	930770
118 1118 1013 order gram -2009 119 119 119 119 119 00 0 <				red	-33617	11899	0	1			rad	-11899	0	-446	479
Basis p-conv 0 72802 728702 728702 0 6 864844 802684	16	1118	1013	cond	-2089	18	0	0	1182	1161	cond	-18	0	0	0
e-carry 0 1444 -006 -0 196 2200 -2200 <td></td> <td>845</td> <td></td> <td>p-conv</td> <td>0</td> <td>72602</td> <td>791767</td> <td>-845188</td> <td>909</td> <td></td> <td>p-conv</td> <td>-72602</td> <td>0</td> <td>-5944464</td> <td>6025867</td>		845		p-conv	0	72602	791767	-845188	909		p-conv	-72602	0	-5944464	6025867
116 108 121 100 1221 100 1211 100 1221 100 72002 0 000 000 000000 000000 1100 1211 100 000000 72002 0 000000 000000 001000 001000 1100 1211 1100 1211 100 1211 100 1211 100 1211 100 1211 1100 1211 1100 1211 1100 1211 1100 1211 1100 1211 1100 121				g-conv	0	1464	-989	1050			g-conv	-1464	2	-930786	834482
16 111 103 103 216 72202 94212 900025 113 111 111 103 900000 1135 900000 1135 900000 1135 900000 1135 900000 1135 900000 1135 900000 1135 900000 1135 900000 1137 111 1110 1000 124 000000 1135 900000 1135 900000 1135 900000 1135 900000 1135 110 110 124 1100 124 000000 1100 124 1100 124 1100 124 1100 124 1100 125 900000 1105 1100 124 1100 125 900000 1111 </td <td></td> <td></td> <td>4005</td> <td>ber</td> <td>-33910</td> <td>12218</td> <td>-1</td> <td>-1</td> <td>1100</td> <td>1211</td> <td>raci</td> <td>-12210</td> <td>, N</td> <td>-4/9</td> <td>*</td>			4005	ber	-33910	12218	-1	-1	1100	1211	raci	-12210	, N	-4/9	*
	16	943	1036	cond .	-2100	72302	845216	-900035	912	12.11	p-conv	-72302	ŏ	-6025852	6107812
International sectors index :index :index <th:index< th=""> :index <th:index< th=""></th:index<></th:index<>	j	, ~~		0-000Y	ŏ	1599	-1050	1126			g-conv	-1599	0	-934480	938542
14 1119 1060 each -2273 20 0 9007 1100 1100 121 each -1028 0 -1127 121 13 1122 1229 cadu -2464 73377 13727 0 0 -1018 0 -1018 0 -1018 0 -1018 0 -1018 0 -1018 0 -1018 0 -1018 0 -1018 0 -1018 0 -1018 0 -1018 0 -1018 0 -1018 0 -1018 1120 1440 -1018 1000 -1018 1200 -1018 1200 -1018 1000 -1018 1000 -1018 -101118 -10118 -1018				rad	-33638	13368	1	1			rad	-13368	0	-496	648
845 p-conv 0 100191 000048 20075 118 p-conv -100181 0 -10185 0 -2017 13 1122 129 cmd -3377 1372 -1 0 1184 1270 cm -1350 0 -451 567 565 527027 40071 -1550 0 -44271 404620 -4527027 400714 116018 0 -4527027 400714 667 565 5637 565 5637 565 5637 565 5637 565	14	1119	1099	cond	-2273	20	. 0	0	1190	1241	cond	-20	0	-1	1
gentry 0 1128 1120 gentry 120 gentry 120 <t< td=""><td></td><td>845</td><td></td><td>p-conv</td><td>0</td><td>109181</td><td>900048</td><td>-991675</td><td>916</td><td></td><td>p-oonv</td><td>-109181</td><td>0</td><td>-6107807</td><td>6227027</td></t<>		845		p-conv	0	109181	900048	-991675	916		p-oonv	-109181	0	-6107807	6227027
13 1329 1335 1335 0 0 1186 1278 mod 1.0				g-conv	00070	1628	-1126	1240			g-conv	-1020		-836041	942017 5A7
13 1,122 123 124 123 124 124 125 123 124 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 165 1 0 0 165 1 0 0 165 1 0 0 165 1 0 0 165 1 0 0 165 1 0 0 165 1 0 0 166 1 1 1 1 0 0 1 165 1 120 1 1 1 1 1 0 0 1 1 1 1 0 0 1 <td></td> <td></td> <td>1220</td> <td>160</td> <td>-33973</td> <td>13/32</td> <td></td> <td></td> <td>1194</td> <td>1279</td> <td>cond</td> <td>-10/02</td> <td>ŏ</td> <td>-1</td> <td></td>			1220	160	-33973	13/32			1194	1279	cond	-10/02	ŏ	-1	
12 ready ted 0	1 13	848	1238	D-000V	-2440	170356	991667	-1145083	921		p-conv	-170368	ō	-6227031	6407619
1126 ind -33436 14066 -1 2 ind -1006 0 -557 555 1126 1455 conv 0 271765 1145117 -1399772 925 pconv -271765 0 4407445 6960382 11 11311 1191 conv 0 1440 1-14189 0 -2685 566 11 11311 1191 conv 0 440444 139677 1222078 920 -9000V -440484 0 -960047 741805 9000V 0 1322 1776 2 226 9000V -1682 0 -9600V 0 1211 2109 1660 000 14425 0 -9600V 0 1741305 110 1138 2281 cond -5167 14125 -3 5 9000V -1111 1900 0 -1211 2109 00 -11 1 0 0 -11 1				a-conv	ō	1653	-1240	1434			g-conv	-1653	0	-942618	946620
12 11495 0 - 2725 20 0 0 198 1398 0nd -20 0 -1 1 1 165 -conv 0 1449 1-434 1754 -conv -271765 1646 0 -406724 660382<			1	rad	-34348	14068	-1	2			rad	-14068	0	-567	585
BE3 p-conv 0 217/196 146117 1390772 025 p-conv 277765 0 4607845 6960382 11 1131 1911 cond 34848 14149 -2 2 ind -14449 0 -6655 565 9 9 9 0 1202 1480 ond -27176 0 -6655 565 9 9 9 0 1202 1480 ond -440484 0 -660017 7414215 0 -565 601 10 1138 2281 ond -362220 14212 -3 5 ind -14215 0 -742331 0 -744332 787496 0 9007 -6007 005725 9007 90077 14215 0 907757 9007 90077 -714331 0 7142332 787496 0 9073557 9007 90077 90077 90077 90077 90077 90077 900777	12	1126	1405	cond	-2726	20	0	· 0	1198	1369	cond	-20	0	-1	1
geconv 0 1448 1-1438 1/148 geconv 1-1648 0 -3-862.4 900352 11 1131 1181 20 0 0 0 1202 1490 0and -2.8 0 -96804 -96904 -7141 BE -96904 -2.8 0 -96900 55390 55390 55390 55390 55390 55390 55390 55390 55390 55390 55390 55390 55390 55390 55390 55390 56390 55390 56390 55390 56390 55390 56390 56390 56390 56390 563971 5031 -90004 -1017 774404 -90004 -10181 5226870 -36892 95390 -1017 1907357 -90074 116141 511 4444 -5 6 -101 101 -90074 -1017 53171 4442 507 900074 -1017 507156 907357 105227 92074 -1017 -1017 1014 <td></td> <td>853</td> <td></td> <td>p-conv</td> <td>0</td> <td>271785</td> <td>1145117</td> <td>-1399772</td> <td>926</td> <td>•</td> <td>p-conv</td> <td>-271785</td> <td>l °</td> <td>-6407845</td> <td>6690362</td>		853		p-conv	0	271785	1145117	-1399772	926	•	p-conv	-271785	l °	-6407845	6690362
ind 34800 14100 -2 2 1202 1480 add -14160 5 -000 1000 11 1131 1131 201 34800 3184 20 0 90000 741165 0 90000 950300 953300 953300 953300 953300 953300 953300 953300 953300 953300 953300 953300 950300 953300 950300 953300 950300 953300 950300 950310 950310 950320 950310 950300 950310 950320 950310 950300 950310 950300 950310 950300 950310		l		g-conv	0	1649	-1434	1754			g-conv	-1649		-946624	950382
11 101 101 101 101 101 101 101 101 101 102 102 102 102 102 102 102 102 102 102 0				rad	-34888	14198	-2		1202	1480	cond	-20		-080	1
near p-conv 0 1122 1754 2286 p-conv 1632 0 </td <td>. "</td> <td>858</td> <td> '0''</td> <td>D-CODY</td> <td></td> <td>440464</td> <td>1399767</td> <td>-1822878</td> <td>929</td> <td></td> <td>p-conv</td> <td>-440464</td> <td>0</td> <td>-6690419</td> <td>7141951</td>	. "	858	'0''	D-CODY		440464	1399767	-1822878	929		p-conv	-440464	0	-6690419	7141951
Ind -36617 14216 -2 3 ind -14216 0 -565 801 10 1336 2281 cond -3944 20 0 1206 1520 cond -20 0 -1 1	1	1		g-conv	ō	1632	-1754	2266			g-conv	-1632	0	-950390	963699
10 1136 2281 cond -3944 20 0 0 1206 1652 cond -720 0 -1 -1 -1 8 9 -0 0 1802 -2286 317 63 9 -721381 0 771381 0 771381 0 771381 0 771381 0 771381 0 0 -1 1 1 1 9 0 -1 1 1 0 -1 0 -1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1				rad	-35617	14215	-2	3			rad	-14215	0	-596	601
B63 p-conv 0 721361 1622692 2-252887 K33 p-conv -/14.002 //4.4062 g 14d -36228 14125 -3 5 mad -14125 0 -9007 -9007 -9007 -9007 -9007 9007 -9007 9007 -9007 9007 -9007 9007 -9007 9007 -9007 9007 9007 -9007 9007 -9007 -9007 -9007 -9007 -9007 -9007 -9007 -9007 -9007 -9007 -9007 -11 1 9 0 0 1215 3901 ond -9007 -907875 1107135 9 0 0 1516 -4442 7090 1215 3901 ond -11 11 9 1164 -31824 0 0 0 1215 3901 ond -11 11 9 0 1168 -44423 7000 11168 <t< td=""><td>10</td><td>1136</td><td>2281</td><td>cond</td><td>-3944</td><td>20</td><td>0</td><td>0</td><td>1206</td><td>1582</td><td>cond</td><td>-20</td><td>0</td><td>-1</td><td>1</td></t<>	10	1136	2281	cond	-3944	20	0	0	1206	1582	cond	-20	0	-1	1
geomy 0 1002 -2286 3.7 years 1002 0 0007 0 0007 0 0007 0 0007 0 0007 0 0 0 1111 2188 ond -116 0 -116 0 -116 0 -116 0 -116 0 -116 0 -116 0 -116 0 -116 0 -7107 0 0 1181 0 -7875184 907655 0 0 1111 2188 on -116 0 -1 1 0 -7875184 907655 0 0 -1 1 0 -1 1 0 -1 1 0 0 -107655 0<		863		p-conv	0	721361	1822862	-2526867	833		p-conv	-/21361		-/142032	068270
9 1143 3019 and poort 0 1211 2169 ond poort -116 0 -1 11 869 poort 0 1189115 2528870 -3898991 837 poort -1189115 0 -7975124 0070357 9 0 11691 37714 1189115 2528870 -3898991 937 poort -1189115 0 -9575124 0070357 9 0 1116 -37014 19464 -5 8 red -13844 0 -090 611 9 0 0 1215 3010 ond -181 0 -17154 0 -56725 566803 9 0 1968226 0 0 1216 4433 Conv -181 0 -13739 0 -613 6121 9 0 1431 7090 1116 9 0 1213 9230 9300 90070 14338201 137391 <td></td> <td></td> <td></td> <td>g-conv</td> <td>-38229</td> <td>14125</td> <td>-2200</td> <td>5171</td> <td></td> <td></td> <td>lad</td> <td>-14125</td> <td>ilŏ</td> <td>-602</td> <td>607</td>				g-conv	-38229	14125	-2200	5171			lad	-14125	ilŏ	-602	607
999 p-conv 0 1189115 2526870 -366991 937 p-conv -1189115 0 -7875184 9076057 9 1146 5708 cond -37014 13844 -5 8 iad -13844 0 -9629 95768 9 1146 5708 cond -7262 19 0 0 1215 3001 cond -19 0 -1 1 9 p-conv 0 1516 -4642 7090 g-conv -1616 0 -977252 956903 7 1154 7418 cond -10744 18 0 0 1219 4436 cond -118 0 -11057221 14318111 9 p-conv 0 3288168 565207 -9804789 948 p-conv -2368168 0 -11057221 14318111 9 p-conv 0 3288168 565207 -9804789 9448 p-conv -11	4	1143	3016	oond	-5199	19	0	Ò	1211	2166	cond	-18	o j	-1	1
9 9 0 1561 -3171 4442 9 -00** -1561 0 -957589 8 1149 5706 cond -7282 19 0 0 0 1215 3901 -00***********************************		869		p-conv	• 0	1189115	2526870	-3698991	937		p-conv	-1189115	i 0	-7875194	9076367
Ind -37014 13944 -5 6 Ind -13944 0 -609 611 8 1148 5706 cond -7282 19 0 0 1215 3901 cond -1988226 0 -9076705 11057135 9 g-conv 0 1516 -4582 7090 g-conv 1988226 0 -9076705 196802 956903 -9076705 966903 -9076705 966903 -13 012 7 1154 7418 cond -10744 286166 565207 -9004789 946 -0 -1 1 1 1 -13584 0 -13 013 0 -1 1 1 1 -1 1 1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1	1			g-conv	0	1561	-3171	4642	2		g-conv	-1561	0	-956296	957588
6 1140 5706 cond -7282 16 0 1215 3901 cond -110 0 -7 876 p-conv 0 15616 4842 7090 p-conv 198226 0 907051 11057135 96803 7 11154 7418 cond -10744 18 0 0 1219 4436 cond -11 1 881 p-conv 0 3288166 5652097 9804789 946 p-conv -288166 0 -11 1 g-conv 0 3288166 5652097 9804789 946 p-conv -3288166 0 -1133 0 -11 1 13389 0 -413 639 g-conv 0 14481 -7090 11166 -9001 -3288166 0 -413 639 g-conv 0 1428 1432012 -390423 00nd -1193 143 639 -413				red	-37014	13944	-6	6			ben	-13944	9 0	-609	611
876 pconv 0 1986220 3989844 -0502727 942 pconv -1966220 0 -1960220 1007130 11007130 7 1154 7418 cond -13729 -6 11 iad -13739 0 -611 1 981 pconv 0 3266166 5652097 -8904769 946 pconv -3266168 0 -11057221 1433911 981 pconv 0 1461 -7000 1116 gconv -1461 0 -613 839 16 160 -163 36656 13564 111 17 rdd -3266168 0 -1133639 0 -67228 9023 conv -1451 0 -1 1 389 9 pconv 0 5429628 0 0 1223 9023 conv -1455 0 -1 1 37926 9 pconv 0 5429628 0 14	6	1149	6706	Gond	-7282	19	0	5050707	1216	3901	cond	1060226		0074705	11057125
Ind -3782 100 100 100 100 100 100 100 10000 10000 10000 10000 10000 10000 10000 10000 100000 10000 100000 100000 100000 100000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 100000000 1000000000 10000000000000 1000000000000000000000000000000000000	1	876	1	p-conv		1900220	J080840	70002/2/			a-conv	-1500220	il ñ	-957625	956803
7 1154 74 8 cond -10744 18 0 0 1219 4438 cond -18 0 -1 1 801 p-conv 0 3288186 565209 -8904789 948 p-conv -3286186 0 -105721 14338111 g-conv 0 1461 -2090 11166 g-conv -3461 0 -956801 95272 14338111 9438 -13564 0 -956801 9527 1431 0 -1 1		1	1	and	-37822	13739	-A	11	1	l	tad	-13739		-613	612
B81 p-conv 0 3286166 6652097 -9904769 946 p-conv -3266186 0 -11057221 14338111 6 1160 5983 cond -1849 1 -7000 11166 g-conv -1481 0 -95691 95621 -13584 0 -11 1 </td <td></td> <td>1154</td> <td>7416</td> <td>cond</td> <td>-10744</td> <td>18</td> <td>ŏ</td> <td>0</td> <td>1219</td> <td>4436</td> <td>cond</td> <td>-18</td> <td>9 Ö</td> <td>-1</td> <td>1</td>		1154	7416	cond	-10744	18	ŏ	0	1219	4436	cond	-18	9 Ö	-1	1
6 100 100 8 g-conv rad 0 -385696 1481 13664 -7090 13564 11166 g-conv rad -1481 -13684 0 -813 -85681 639 6 1160 5983 50 cond -13694 -13694 0 -1455 -13694 -1456 0 -1456 -131694 -1456 0 -140 -131694 -140 0 -143322079 9023 -1455 -131694 -1455 0 -140382240 19783458 -14322079 6 1165 3440 cond -28067 18 -10 0 -1422 1228 -1665 19605 -13569 -1455 -14322079 0 -14338240 19783458 -14322079 6 1165 3440 cond -28067 18 -10 0 -17 26 -133009 9565 -2007 -902803 0 -177 19783472 6 1165 3440 cond -3832451 135030 2 14321 273340099 9565 -9007 -902803 0 -1783472 2830472 4 170 13256 cond -33755 17 0 1 1233 53814 cond -1	1	881	1	p-conv	0	3266166	6652097	-8904789	946	ļ	p-conv	-3266166	8 O	-11057221	14330111
6 1100 5983 cond -18649 1864 -11 17 red -13684 0 -613 639 8 1100 5983 p-conv 0 5429528 8904595 -14322079 960 p-conv -5429528 0 -14338240 19783458 9 g-conv 0 1455 -11166 177 26 red -13508 0 -652728 942982 1 red -33556 13506 -17 26 red -13508 0 -652728 942982 9 g-conv 0 1452 -177 26 red -13508 0 -653 9655 9 g-conv 0 1442 -17948 228257 g-conv -1442 -942982 923933 923932 238378208 9569 p-conv -1455 9239468 923893 926893 -17<0		1	1	g-conv	0	-1481	-7090	11166			g-conv	-1481	0	-956810	962720
6 1160 5983 cond -18499 18 0 0 1223 9023 cond -18 0 -1 1 897 p-conv 0 5429528 9904596 14322079 960 p-conv -5429628 0 1-43982040 19733560 0 -14356 0 -143562040 19733560 0 -43982040 19733560 0 -6429628 0 -43982040 19733560 0 -43982040 19733560 0 -43982040 19733560 0 -43982040 197335471 29830478 g-conv -9028303 0 19783471 29830478 g-conv -1442 0 -442983 293827 g-conv -1442 0 -442983 293827 g-conv -1442 0 -442983 293827 g-conv -1442 0 -421983 293827 g-conv -1445 0 -41 0 -41 0 -41 0 -41 0 -41 0 -41	1	1	1	rad	30500	13584	-11	17			rad	-13684	y 0	-613	639
BB7 p-conv 0 b-conv 0 1456 0 1456 0 -6330240 197951 -0000 -1455 0 -6330240 197951 -0000 -1455 0 -6529 9429828 942982 942982	1 (3 1100	598 3	cond	-16499	18	0004507	14222070	1223	9023	cond	-16		-14339240	10783464
grounv v inuv	1	887	1	p-conv		0429028	11100	17061	1 ⁹⁶⁰		0-0004	-1455	i i	-962729	942982
6 1165 3440 cond -2007 18 0 0 1228 16606 cond -18 0 -1 1 892 p-conv 0 9029303 14321812 -23340089 965 p-conv -9028033 0 -19783471 28830479 9-conv 0 1442 22257 6 g-conv -1442 0 -942808 923827 4 1170 13256 cond -38725 17 0 1 1233 53814 cond -17 0 -1 0 -4007 10 9420803 0 -665 449 4 1170 13256 cond -38725 17 0 1 1233 53814 cond -17 0 -1 0 1350 -26832454 43947069 g-conv -1825 0 -2823890 967683	1		1	g-conv tad	-39355	13508	-17	26	3	l	rad	-13606	s ŏ	-639	865
892 p-conv 0 9029303 14321812 -23340099 955 p-conv -9028303 0 -19783471 28630478 4 1170 13259 cond -38725 17 0 1 1233 53614 cond -1742 0 -424283 923627 4 1170 13259 cond -38725 17 0 1 1233 53614 cond -17 0 -61 0 9283027 g-conv 0 1507203 2343402 -38378209 959 p-conv -125017203 0 -28832454 43947089 9690 9conv -1425 0 -923808 6969 p-conv -1425 0 -923890 8969 9conv -1426 -924808 8367 9conv -1425 0 -923808 6969 9conv -1426 -923890 8969 963 p-conv -1425 0 -651 548 -92389 9conv -1425 92478	1	1166	344	cond	-26067	10	0	0	1228	16605	cond	-18	a o	-1	1
4 9 conv rad 9 conv -40071 0 13530 1442 -28 -17948 29257 -28 9 conv rad 9 conv -1422 -13630 0 -6656 642 649 4 1170 13259 cond -38725 17 0 1 1233 53814 cond -17 0 -1 0 0 -6456 649 897 p-conv 0 15017203 23343402 33378208 969 p-conv -165017203 0 -28832464 43847089 7 rad -408056 13548 -43 835 rad -13548 0 -2832864 69698 9-conv -1426 0 -2832864 69698 9-conv -1426 0 -2832864 69698 9-conv -1426 0 -2832869 69698 9-conv -1425 0 -2832864 69698 697693 1ed -13548 0 0 -656 -588 -9 -9 -24725604 0 -4365021 69678 9	Ì	892	2	p-conv	0	9029303	14321812	-23340099	955		p-conv	-9029303	9 O	-19783471	26630479
Ind -40071 13530 -26 43 rad -13530 0 -655 649 4 1170 13259 cond -39725 17 0 1 1233 53814 cond -17 0 -11 0 -11 0 -11 0 -11 0 -11 0 -11 0 -11 0 -11 0 -11 0 -11 0 -11 0 -123 53814 cond -17 0 -11 0 -123 53814 cond -123 53814 cond -13549 0 -2832454 43947089 9979 -0000 -1425 0 -2823690 987683 -13548 -43 8356 red -13549 0 -61 548 3 1227 38986 cond -39044 3 -1 0 1237 216564 cond -33 0 0 0 0 0 0 <	1	1	1	g-conv	0	1442	-17948	29257	1		g-conv	-1443	2 0	-942983	923627
4 1170 13259 cond -38725 17 0 1 1223 53814 cond -17 0 -1 00 897 p-conv 0 15017203 23343402 38378208 969 p-conv -16017203 0.28332444 438476 9 g-conv 0 1425 29257 50935 p-conv -1425 0 -2833244 439870683 3 1227 38986 cond -39044 3 -1 0 1237 216564 cond -3 0	1	1		rad -	-40071	13530	-26	43	1		rad	-13630	0	-655	649
B97 p-conv 0 10017203 23342402 35378208 999 p-conv 10017203 0 28532464 43987089 3 1227 38986 cond -30044 3 -1 0 1237 218584 cond -3004 3 0 0 6486 964 p-conv 0 2472560 3837731 65120986 9630 -24725804 0 -4365202 64395030 0	1 4	u 1170	1325	cond	-38726	17	0	1	1233	53614	cond	-17	1 2	-1	43947000
g-conv g-conv u 1-420 2-2000 0000 1-1-20 0 1-2000 00000 3 1227 38966 cond -39044 3 -1 0 1237 218584 cond -3 0<	1	697	1	p-conv	1	1001/203	23343402	50070200		· ·	0-000	-1426	ś ő	-923690	887683
3 1227 38986 cond -39044 3 -1 0 1237 218584 cond -3 0	1	1	1	g-conv rad	-40805	13549	-20207	836			rad	-13546		-661	548
954 p-conv 0 24725604 38377731 -63120989 963 p-conv -24725604 0 -43852021 68419367 1 -0000 211 -50036 79657 g-conv -211 0 -897763 830503 1 rad -49443 2152 -835 5 rad -2152 0 -553 -183 2 1228 344006 conv 0 -263135147 63119952 0 962 p-conv 63135147 0 -880780 0 0 -88 954 p-conv 0 -63135147 63119952 0 962 p-conv 63135147 0 -88422921 4800790 954 g-conv 0 -101 -78657 0 92007V 1010 -890548 0 0 -830548 0 0 1801967V 0 -830548 0 0 -8422921 4800790 0 92007V 92007V 92007V 9	1 .	1227	3898	6 cond	-39044	3	-1		1237	218584	cond	4	3 Ö	0	0
g-conv 0 211 -50636 78657 g-conv -211 0 -897763 830503 2 1228 344006 cond -249371 38 0 -1 1235 1803696 cond -249371 39 0 -1 1235 1803696 cond -38 0 0 -8 954 p-conv 0 -63135147 63119052 0 962 p-conv 63135147 0 -88422921 4900790 954 p-conv 0 1101 -78657 0 g-conv 63135147 0 -88422921 4900790 1ad -3166644 11210 -5 -3966 1844 -11210 0 880548 -0	Ì	954	4	p-conv	0	24725604	38377731	-63120986	963		p-conv	-24725604	4 O	-43852021	68419367
Ind -49443 2152 -855 Image: Figure Fi	1		1	g-conv	0	211	-50936	78667	2		g-conv	-211	0	-887763	830503
2 1228 344006 cond -249371 38 0 -1 1235 1803696 cond -38 0 0 -8 954 p-conv 0 -63135147 63119952 0 962 p-conv 63135147 0 -68422921 4809790 954 g-conv 0 1101 -78657 0 9conv -1101 0 -68422921 4809790 1ad -316664 11210 -5 -3968 1rad -1101 0 686 0	1		1 2	rad .	-49443	2162	-835				han	·2152		-663	-193
g-conv 0 -0515167 05179657 0 902 PC0nv 0515167 0519672 00 902 g-conv -1101 0 -06422921 400780 g-conv 0 1101 -79657 0 g-conv -1101 0 -830546 00 lad -316664 11210 -55 -3968 lad -11210 0 168 -21765	1	2 1226	34400	8 cond	-249371	30	0	-1	1235	1803696	cond	6312514	3 3	-88422023	4800700
ind -316664 11210 -5 -3966 ind -11210 0 1688 -21765	i	954	'	p-conv		1101	.79467		962	1	a-conv	-1101	1 1	-830548	0
	1	1.	1	rad	-316664	11210	-5	-3966	3	1	red	-11210		188	-21765

heat generated in streamer heat generated in core total heat generated heat transferred to cooling wall heat leaving top of riser heat entering bottom of riser

total % diff. of heat gen.

436133 2128113

2564246 -1506717 -5680091 4809782 -13579 -1

1

22	6
23	υ

sh700

<u> </u>	streamer	9		14/04*	(W)	north	enuth	core temp (K and C)	ŵ		west	(W) east	north	south
	temp (K and C)	(W) 1092	cond	-3120	 .5	<u>noith</u>	0	1132	1923	cond	6	0	0	0
"	878	1002	p-conv	o	245824	1019170	-1224189	869	- I	p-conv	-245824	0	10191989	10433465
1		l,	g-conv	0	-434	-1216	1497			g-conv	434		-886071	663613
		1010	rad	-38131	-3535	-6	-9	1131	2008	cond i	-1	ŏ	0	0
21	1128	1210	o-conv	0	245742	1224146	-1436869	858		p-conv	-245742	ō.	10433807	10678744
1		۱ ۱	g-conv	Ő	80	-1497	1779	ł		g-conv	-80	0	-883642	863044
1		1	i ad	-35122	626	9	-6			rad b	-626	2	68	5
20	1116	1627	cond	-3760	243330	1436946	0 -1851594	1131	~~~	p-conv	-243328	ŏ	10679148	10923580
1	642	Į .	g-conv		359	-1779	2058			g-conv	-359	o	-883078	882983
1		Į	rad	-33611	2794	6	-4	' 		rad	-2794	0	-7	59
16	1109	1605	cond	-4071	7	0	0	1132	2148	cond	-7	0	10924011	11185950
	836	9	p-conv	0	239742	1651509	-1864808	808		a-conv	-238/42	ő	-883019	883256
1		ł	u-conv red	-32770	4089	4	-2	1	1	rad	-4089	0	-61	95
1 16	1105	1901	cond	-4376	8	0	0	1133	2227	cond	-8	2	0	0
1	832	l	p-conv	0	235430	1864769	-2076492	860	-	p-conv	-236430 .esa	_ ار	-11106471	11404/11 883750
1	1		g-conv	-32310	636 4992	-2333	2002	1	i	rad	-4883	ő	-07	119
1 17	7 1103	2040	cond	-4673	9	ō	ò	1134	2293	cond	-9	0	0	0
1	830		p-conv	Ō	230725	2076412	-2282299	861	l	p-conv	-230725	°,	-11406266	11639172
1	1		g-conv	0	706	-2602	2864	1 I		rad tad	-706	0	-003/99	004422
	3	2154	cond	-32079	0408 0			1136	2363	cond	-9	0	0	0
1 "	829	2101	p-conv	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	225830	2282221	-2484896	862		p-conv	-225830	0	-11639790	11869048
1		1	g-conv	0	767	-2864	3122	۱ ا		g-conv	-767	o o	-884469	995223
1			ted	-31960	6806	1	0		DAFA	cond	-0806		-138	160
1 1	1101	2463	cond D-000V	-6247	10 220777	2484827	-2683139	863	2000	p-conv	-220777	0	-11869781	12093927
1	828	1	g-conv		794	-3122	3372	1		g-conv	-794	o	886278	886124
1	1	1	rad	-31912	6092	0	0	ı l	۱ <u> </u>	red	-8092	0	-162	169
1	4 1101	2567	cond	-6522	10	200000	2970540	1137	2446	cond D-CODY	-10		-12094660	12314140
1	828	'	p-conv	2	215729	2003026	•∠0/0018 3577	804		g-conv	-826	ő	-686177	887140
1	1	1	iad 1	-31906	6349	0	-8	n i	1 1	rad	-6349	0	-162	171
1 1:	3 1093	2922	2 cond	-6794	13	Ő	0	1139	2588	cond	-13	0	0	1000000
1	820	년	p-conv		203345	2876443	-3060943	866	l I	p-conv	-203345	1 2	-12315000 .887202	889544
1		1	g-conv	0	1050	-3578	3844	ŋ i	1	rad v-conv	-1050		-00/202	226
.	2 1000	3404) cond	-6137	14	. 0	0	1141	. 2714	cond	-14	ō	0	0
1	819		p-conv	0	326597	3060732	-3368346	868	.	p-conv	-326597	0	-12524260	12855428
	1	1	g-conv	0	1106	-3844	4237	¶ , İ	1	g-conv	-1108	l 灯	-888623	889882
1 .		1	red 7 cmm.4	-30872	8446	1	1	1149	3087	cond	-0446	ő	-229	
1	1093 820	367.	p-conv	-0081	527308	3368056	-3877805	870		p-conv	-527308	ō	-12856286	13389482
1		1	g-conv	ŏ	1135	-4237	4880	1 1	l	g-conv	-1136	0	-889941	890796
. 1	1		rad	-30960	8701	-1	1		3000	red cond	8701	1 2	-247	256
1 1	U 1094	394	i condi	-7576	14 862007	0 387753A	-4723050	1145 872	3083	p-conv	-662097	ŏ	-13390207	14259160
1	821	.1	g-conv		1160	-4880	5946	1	1	g-conv	-1160	0	-890843	890986
1	1	1	rad	-31079	8934	-1	2			rad	-8934	0	-262	281
1	9 1096	3 5134	0 cond	-9056	14	0	0	1147	3633	cond	-14		-14259906	15685907
1	82	"	p-conv g-conv		1418291	-5946	7716			g-conv	-1181	l ŏ	-891029	889903
1	1	1	lad	-31243	9139	-2	3	1	1	rad	-9139	0	-284	307
	8 1098	623	6 cond	-11507	15	Ō	0	1150	5039	cond	-15	0	0	10000-0
1	824	4	p-conv	0	2343019	6125990	-8456254	877		p-conv	-2343010	ן ג	-10686588	888600
1 .		1	g-conv	0	1198	-//17	10656 A	1	1	rad	-9326		-309	336
1	7 110	776	4 cond	-15571	15) ő	1153	8928	cond	-15	l o	0	ļ (
1	82	7	p-conv	0	3881479	8455834	-12327344	879	1	p-conv	-3881479	0	-18038784	2192923
1			g-conv	0	1212	-10666	16639	ì	1	g-conv	-1212	2	-686619	87942
1		,	a land	-31703	9496	-6	10	1160	10000	cond	-9496		-J40 A	36
1	110.	9 1032	p-conv	-22317	6438281	12326699	-18760660	882		p-conv	-6438281	ŏ	-21928606	2838140
_ `	82	-1	g-conv	0	1224	-16640	23665	1	l I	g-conv	-1224	ļ	-879396	86570
1		1	rad	-31991	9669	-10	16	2	1	tad	-9669	' º	-368	40
1	5 110	6 1212	7 cond	-33519	15	107000-0	20450000	1159	17316	cond	-16	^	-28370340	3909920
	83	z	p-conv		10690107	-23864	37150	896	1	g-conv	-1241	0	-865639	84064
1	1	1	rad	-32302	9881	-18	29	, ·	1	rad	-9881	ļŏ	-403	41:
1	4 110	8 2060	0 cond	-35489	16	0	1	1162	46660) cond	-16	i o	0	
1	83	6	p-conv	0	17765604	29454874	47248778	889	'	p-conv	17765604	1 0	-39084452	0686896
1		1	g-conv	0	1262	-37156	63103		1	g-conv (ed	-1262		-040004	1803/
1	al	a =	1ad 16 const	-32668	10048		632	1164	161457	7 cond	-2	، ا) ``
1	AA	6	p-conv	0	29236619	47252968	-76546400	893	1	p-conv	-29236616	o j	-56854891	8599914
1			g-conv	j õ	167	-63102	96427	7	1	g-conv	-167	<u>'</u>	-796319	72928
			tad	-39160	1444	-632	54	۰	1	bar	-1444	1 2	-376	3 ⁻⁶
1	2 116	43646	se cond	-229095	23	74549500	() -1 ()	1165	1044116	p-conv	78729803		-86009734	892999
1	88	"	a-conv		715	-96432		>	1	g-conv	-716	i ő	-729370	ק א
		1	rad	-252392	6103	-64	-2516	5	<u> </u>	ber	-6103	3 0	51	-996

heat generated in streamer heat generated in core total heat generated heat transferred to cooling wall heat leaving top of riser heat entering bottom of riser

,

2510031 -1376776 -10059106 8929995 4144

C

0

totai % diff. of heat gen.

237

sh900

	streamer	g			(W)			COIO	8		weet	(W)	north	en
┝━┷┷╤┥	temp (K and C)	(W)	and	west	east	north	south	temp (K and C)	1745	cond	West F	9880 0	north	south
22	1162	1004	p-conv	-3123	246006	1019934	-1226032	859		p-conv	-246006	ő	-10199275	10441093
	5.0		g-conv	Ó	-433	-1216	1498			g-conv	433	0	-885704	884269
			rad	-38214	-3540	-6	-9	1199	1744	rad cond	3640	0	0	-91
21	1129	1177	D-CONV	-3446	245899	1225042	-1437927	859	1,140	p-conv	-245899	ŏ	-10441008	10686348
			g-conv	o	79	-1498	1780			g-conv	-79	0	-864251	883673
			rad	-35201	623	9	-6		1000	rad	-623	្ព	92	4
20	1116 843	1291	cond	-3763	243515	1437936	-1652532	859	1000	D-CONV	-243616	6	-10686252	10931095
1	~~~		g-conv	o	361	-1780	2059			g-conv	-361	0	-883665	883592
			rad	-33674	2810	6	-4			rad	-2810	0	-4	59
19	1109	1432	cond	-4074	6	1052505	.1966113	1132	1841	cond	-6	2	-10930978	11173349
	836		p-conv		239677	-2059	2334	305		g-conv	-630	o	-883583	863641
			rad	-32840	4091	4	-2			rad	-4091	0	-68	94
18	1105	1644	cond	-4379	8	0	0	1133	1875	cond	-8	្ព	0	0
	832		p-conv		235564	-2334	-2076603	800		a-conv	-230004	ő	-863631	884316
			rad	-32361	4891	2	-1			rad	-4891	o	-93	117
17	1103	1809	cond	-4676	θ	0	0	1134	1967	cond	-9	0	0	0
	830		p-conv		230643	2076811	-2263721 2866	100		p-conv a-conv	-230843 -705		-11411828	884954
			rad	-32142	5413	1	-1			rad	-5413	ō	-117	134
16	1102	1869	cond	-4966	9	0	0	1135	2024	cond	-0	0	0	0
	829		p-conv	0	226917	2283780	-2486503	862		p-conv	-226917	្ត	-11646088	11876753 885723
			g-conv tad	-32015	6802	-2000	0			rad	-5802	ŏ	-134	148
15	1102	2075	cond	-5260	10	0	0	1137	2112	oond	-10	0	0	0
1	829	•	p-conv	0	220840	2486577	-2684824	663		p-conv	-220840	0	-11875692	12100415
			g-conv	-31976	8086	-3124	3374			g-bonv rad	-6086	ŏ	-000/19	158
14	1102	2264	cond	-5525	10	ō	0	1138	2165	cond	-10	Ó	0	0
	829		p-conv	0	216764	2684860	-2878395	865		p-conv	-215764	0	-12100379	12320174
			g-conv	0	823	-3374	3580			g-conv	-823	0	-886596	887575
13	1094	2376	cond	-5796	13	o	-0	1139	2144	cond	-0340	ŏ	-100	0
	820		p-conv	0	203396	2876389	-3062491	866		p-conv	-203396	0	-12320148	12529018
1			g-conv	0	1049	-3580	3846			g-conv	-1049	0	·887572	888960
1 12	1093	2790	Dend	-30989	14	0	-1	1141	2328	cond	-0001	o	-100	223
"	820	2700	p-conv	0	325664	3062529	-3370100	868		p-conv	-326664	ō	-12529014	12060600
1			g-conv	0	1104	-3846	4239			g-conv	-1104	0	-888960	890240
		0700	ted	-30925	8438	1	1	1143	2348	rad	-8438	0	-223	241
1 "	821	2/96	cona n-conv	-0004	527417	3370079	-3879708	870	2340	D-CONV	-527417	o	-12860598	13394589
			g-conv	0	1133	-4239	4883			g-conv	-1133	0	-890239	891134
			rad	-31011	8690	-1	1			rad	-8690	0	-241	269
1 10	1095	3486	cond	-7679	862268	3879779	-4725720	872	2497	cond p-conv	-14	0	-13394646	14264307
	022		g-conv	0	1157	-4883	5949			g-conv	-1167	ŏ	-891138	891311
			rad	-31136	8914	-1	2			ber	-8914	0	-259	281
	1096	4232	2 cond	-9059	14	4725478	.8120291	1148	2808	cond .	-14	° °	-14264426	15601665
	623		a-conv	ŏ	1179	-5949	7720	0/4		g-conv	-1179	ŏ	-891318	890230
1	1	1	Ind	-31290	9128	-2	3			lad	-9128	0	-281	309
8	1096	5326	cond	-11611	15	0	0	1150	3404	cond	-15	0	0	0
	825		p-conv	0	2343731	6129163	-8459996	877		p-conv	-2343/31		-10091000	888977
	1	l	rad	-31494	9320	-3	6			rad	-9320	ļŏ	-309	345
1 7	1100	7304	cond	-15578	16	Ó	0	1163	4406	cond	-15	0	0	0
1	827		p-conv	0	3883011	8459810	-12333662	690	ł	p-conv	-3863011	l °	-18046320	21942629
1			g-conv rad	-31762	1211	-10662 _A	10048	1		rad lad	-1211	6	-000909	380
6	1103	8956	3 cond	-22333	15	Ö	0	1156	7558	cond	-16	ŏ	0	0
	829		p-conv	0	6442735	12333261	-18771298	883		p-conv	-6442735	0	-21943227	28402929
1			g-conv	0	1227	-15548	23669	· ·		g-conv	-1227	ļ	-879963	866359
.	1105	0600	180 Cond	-32044	9698	-10	16	1160	16635	cond	-9098		-390	421 0
1	832		p-conv	00000	10699864	18770868	-29471673	886		p-conv	-10699864	ŏ	-28403797	39123188
	1		g-conv	0	1247	-23669	37181		l	g-conv	-1247	0	-866365	841397
1.			bat	-32369	9932	-16	29		FORT	ben	-9932		-422	425
- I. 4	1108	13957	Cond	-36628	10	29472192	-47278029	890	0308/	p-conv	-17785258	0	-39124769	56912056
1	336	· ·	g-conv	0	1261	-37179	63144	1		g-conv	-1261	0	-841431	797119
1			rad	-32725	10124	-29	635	l		rad	-10124	0	-427	381
3	1169	4501	cond	-35853	2	-1	70500054	1167	207218	cond	-2		56014000	88048028
1	886	Ϊ.	p-conv		29269667	4/260628	96484	094	ļ	g-conv	-176	0	-797169	729685
1	- ·	1	rad	-39237	1502	-834	52			Ind	-1502	ļő	-383	-89
1 2	2 1161	43397	9 cond	-229230	23	0	· -1	1166	1634745	cond	-23	0	0	-4
1	896	1	p-conv	0	-76776729	76590169		893		p-conv	76775729		-86054177	8936124
1		1	g-conv Lad	-252841	6065	-90490	-2520			rad	-6065	0	-728746	-9982
	1		1.00					.	• • • • • • • • • • • • • • • • • • • •			·		

2511499 -1378766 -10066260 <u>8936120</u> 2593 0 total

% diff. of heat gen.

554410 1957090

heat generated in streamer heat generated in core total heat generated heat transferred to cooling wall heat leaving top of riser heat entering bottom of riser

2	2	Q
4	.,	ο

uh0

	sticamer	g			(W)			ene	9			(W)		
	temp (K and C)	(W)		west	east	north	south	temp (K and C)	(W) 702	aand	west	east	north	south
22	1055	1086	cond n-conv	-4660	-630624	2815825	-2082684	791	705	0-000V	530624	ŏ	-3041408	2509058
	/02		a-conv	ő	64	-3389	2745			g-conv	-64	ō	-39206	40794
			rad	-4005	420	6	· 3			rad	-420	0	0	21
21	1060	1467	oand	-4693	3	0	0	1069	600	cond	-3	0	0	0
	787		p-conv	0	-396807	2082598	-1683134	796		p-conv	396607	2	-2009037	42108
			g-conv	-4084	394	-2745	2210			rad	-394	ŏ	-21	19
20	1064	1406	cond	-4720	3	ō	o	1072	535	cond 🕓	-3	0	0	0
	791		p-conv	0	-297123	1683150	-1383343	799		p-conv	297123	0	-2110761	1812523
			g-conv	0	66	-2216	1820	· ·		g-conv	-66	2	-42106	43113
			ber	-4164	366	-2	2	1070	490	Den bond	-300	2	-19	10
19	1068	1293	cond	-4672	.2223007	1383380	.1157101	803	400	D-CODV	223397	ŏ	-1812613	1588260
	790		a-conv	ŏ	52	-1820	1521			g-conv	-62	ō	-43112	43895
			rad	-4212	351	-2	1			rad bar	-361	୍	-16	15
18	1071	1224	cond	-3982	3	0	0	1079	439	cond	-3	2	1500054	0
	798		p-conv		-168984	-1521	-986370	806		p-conv	-51		-1000204	44518
			g-conv	-4261	345	-1	1			rad	-345	ō	-15	14
17	1074	1144	cond	-3456	3	Ó	o	1081	406	cond	-3	0	0	0
	800		p-conv	0	-128487	986371	-863972	808		p-conv	126487	0	-1418606	1289618
			g-oonv	0	52	-1294	1121			g-conv	-62	2	-44518	45024
<u>ا</u>	1075		rad	-4299	360	-1	1	1094	370	rad .	-368	2	-14	14
1 16	802	1072	D-CODY	0000	-98112	853975	-752931	811	378	p-conv	90112	ŏ	-1289615	1191140
			g-conv	ŏ	67	-1121	966			g-conv	-67	0	-45024	45459
· ·			rad	-4331	393	-1	0			rad	-393	0	-14	16
16	1077	966	cond	-2748	3	0	0	1086	369	cond	-3	0	0	0
	804	1	p-conv	0	-76264	762937	-674714	813		p-conv	/6264	0	-1191145	1110033
			g-conv	4262	432	-900	000			g-conty and	-432	ŏ	-15	16
14	1079	983	cond	-2509	4	0	ŏ	1089	354	cond	-4	0	0	0
	806		p-conv	0	-67782	674718	-614002	816		p-conv	57782	0	-1115645	1057710
			g-conv	0	69	-886	79 8			g-conv	-69	0	-45844	46198
1 ·			rad	-4394	484	0	-1	1000		rad	-484	0	-16	18
13	1074	880	cond	-2326	41946	0 012006	570214	1093	344	cona	41345	0	-1057730	1016591
	801		p-conv	i ől	129	-796	765	020		g-conv	-129	ŏ	-46199	46662
			rad	-4305	896	1	- 4			rad	-896	0	-18	35
12	1093	970	cond	-2256	2	0	0	1099	447	cond	-2	0	0	0
	820		p-conv	0	5681	670219	-672633	826		p-conv	-5681	0	-1016630	1022077
			g-conv	. 4622	37	-765	760			g-conv	-263	0	-40004	40//9
.,	1094	976	Loond	-2266	200	0	ŏ	1100	404	cond	-2	ō	0	ő
I	821		p-conv	0	8969	672619	-578188	827		p-conv	-8969	0	-1022100	1030957
			g-conv	0	44	-760	766			g-conv	-44	0	-46780	46874
			rad	-4637	322	0	0			rad	-322	0	-8	11
1 10	1093	1000	cond	-2305	15000	570170	.601076	820	300		-15089	0	-1030972	1046974
	820	•	p-conv		64	-756	774	020		g-conv	-64	ŏ	-46874	47003
1	i		tad	-4620	465	0	0			rad	-465	0	-11	17
6	1093	1021	cond	-2377	4	0	0	1105	409	cond	-4	0	0	0
	819		p-conv	0	28446	591062	-016619	832		p-conv	-28446	0	-1046982	1076561
		1	g-conv	0	85	-//4	608			g-conv	-80	0	-4/004	4/100
	1000		180	-4617	01/ A			1109	533	Cood	-617	o o	-17	
1 '	820		p-conv		51306	616629	-665390	836	~~~	p-conv	-51306	ŏ	-1075571	1127075
1	1		g-conv	0	107	-808	872			g-conv	-107	0	-47160	47317
	1	1	rad	-4628	783	0	0	1		rad	-783	0	-23	29
1 7	1094	1200	Cond	-2755	7	0	0	1114	672	cond	-7	0	1107050	0
	821		p-conv		94553	065401	-/5/822	841		p-conv	-84003		-112/008	47442
Ι.	1	l i	g-conv	4020	137	-872 ^	883			rad	-137	n	-29	39
	1005	1494	ticond	-3217	a	0	ĺŏ	1120	820	cond	-9	ŏ	· 0	0
1	821		p-conv	0	176897	767846	-933352	847		p-conv	-176897	(o	-1221889	1399430
	1		g-conv	0	176	-993	1225			g-conv	-176	<u>`</u> 0	-47439	47456
			rad	-4663	1308	0	1			rad	-1308	0	-39	62
	5 1097	2001	5 cond	-4094	. 12	0	1007004	1129	1242	cond	-12		.1200422	1725070
1	824	'	p-conv		334/20	-1225	1880	000		a-conv	-034/26	"	-47468	47175
			rad	-4689	1666	-1	2			rad	-1666	Ö	-62	69
1 4	1 101	266	7 cond	-5169	14	İ	0	1140	3196	cond	-14	0	0	0
	826	3	p-conv	0	639413	1267651	-1906465	667	l '	p-conv	-639413	0	-1735106	2374649
1 1	1	1	g-conv	0	268	-1669	2671	l ·	l	g-conv	-268		-47176	46176
1.			ber	-4767	2065	-2	37		1105	rad	-2085		-69 0	0 ⁸ 0
1 *	115	618	cond	-6286	-1 1154409	1908524	-3063706	891	11900	0-conv	-1154488		-2374818	3520187
1	88	1	d-conv	1 0	-15	-2671	4013			g-conv	15	Ō	-46179	43318
1		1	ber	-5816	-128	-37	0			rad	128	0	-86	-17
1 :	2 115	7 1428	0 cond	-10043	0	0		1151	76526	cond	0	0	0	-1
1	884	4	p-conv	0	-3065182	3063693	0	878		p-conv	3065182	0	-3620165	504418
1		1	g-conv		-73	-4013		1		g-conv	73		-43318	.750
1	1	1	[rad	-11101	-621	· 0	1 -148		1	1.90	1 021	<u> </u>	1 1/	-708

heat generated in streamer heat generated in core total heat generated heat transferred to cooling wall heat leaving top of riser heat entering bottom of riser

total % diff, of heat gen.

43925 101196

145122 -181208 -468374 504417 _43

0

:08901

	streamer	9			(W)			COLO	9			(W)		
	temp (K and C)	(W)		west	east	north	south	temp (K and C)	(W)		west	east	north	south
22	889	314	cond D-CODV	-4641	-3	715840	-1504388	604	999	cond n-conv	-802263	0	-7159260	7050409
	0.0		g-conv	Ő	-266	-411	910			g-conv	266	ŏ	-301178	300054
			rad	-13279	-1006	-2	-3			rad	1006	0	0	-13
21	880	619	cond	-5812	-1	0	0	877	997	cond	1	0	0	· 0
	607		p-conv	0	636366	1504425	-2330806	804		p-conv	-638356	0	-7969367	8797442
			g-conv	.12760	.73	-810	-2			g-conv red	271	0	-300049	298969
20	877	741	cond	-7136	0	ŏ	ō	877	1159	cond	0	ŏ	0	0
	603		p-conv	0	869659	2330844	-3189288	604		p-conv	-869559	0	-8797313	9666630
			g-conv	0	11	-1422	1962			g-conv	-11	0	-298965	297895
			rad	-12526	42	2	-1			rad	-42	0	5	0
19	8/10	802	cond	-6003	804202	3180368	4073191	804	1200	cona	-1	0	-06666600	10581023
			g-conv	ő	56	-1962	2497			a-conv	-56	ŏ	-297891	296830
			rad	-12412	205	. 1	-1			rad	-205	ō	0	4
18	874	1323	cond	-9903	1	0	0	877	1468	cond	-1	0	0	0
	600		p-conv	0	011838	4073262	-4976173	604		p-conv	-911638	0	-10560911	11472713
			g-oonv rad	-12350	299	-248/	-1			g-conv rad	-01	0	-296827	290774
17	873	1537	cond	-11323	1	Ó	Ö	877	1802	cond	-1	ŏ	ō	ó
	600		p-conv	0	922010	4976209	-6887635	804		p-conv	-922010	0	-11472595	12394492
			g-conv	0	97	-3062	3614			g-conv	-97	0	-295771	294733
<u>،</u>	070	4070	rad	-12319	356	1	0		1005	rad	-356	0	-7	10
10	800	10/2	0000	-12/03	024743	5897571	.6903027	877	1820	cond D-cond	-024743	0	12204200	12210024
			g-conv	ő	106	-3614	4178	~~~		a-conv	106	ŏ	-294730	293710
			rad	-12305	391	0	0			rad	-391	ō	-10	12
16	873	2004	cond	-14181	1	0	0	878	2008	cand	-1	0	0	0
	600		p-conv	0	920407	6803049	-7714296	605		p-conv	-920407	0	-13318708	14238628
			g-conv	12202	112	-4178	4/38			g-conv	-112	0	-293708	292712
14	873	2336	cond	-16697	413	ŏ	ŏ	878	2064	cond	-413	0		14
	600		p-conv	0	909405	7714355	-8615024	605		p-conv	-909405	ŏ	-14238506	15147353
			g-conv	0	116	-4738	5291			g-conv	-116	0	-292710	291748
			rad	-12308	428	0	0			rad	-428	0	-14	16
13	873	2617	cond	-16991	804227	0 8615060	-0500736	878	2292	cond	-2	0	15147202	10040707
			a-conv	Ö	122	-5291	5636	000		a-conv	-094237	0	-1014/203	290820
			rad	-12311	450	0	0			rad	-450	ŏ	-16	18
12	873	2667	cond	-18367	2	0	0	879	2607	cond	-2	0	0	0
	600		p-conv	0	886448	9500749	-10378755	605		p-conv i	-886448	0	-16040624	18926061
			g-conv	12210	127	-6636	6410			g-conv	-127	0	-290818	289918
1 11	876	2928	cond	-19744	409	0	ő	879	2648	cond	-409	0	-18	20
	603		p-conv	0	879619	10376833	-11249652	606	2010	p-conv	·879519	ŏ	-16925974	17804072
			g-conv	0	61	-6410	6840			g-conv	-61	0	-289916	288993
			ber	-12509	227	-8	-14			rad	-227	0	-20	8
10	8/1	3104	cond	-20893	802071	11240702	0	879	2863	cond	-2	0	17002004	10404770
			a-conv		197	-6840	7313			a-conv	-082071	0	-288991	288318
			rad	-12173	721	14	-3			rad	-721	ŏ	-8	34
9	869	3581	cond	-22251	3	0	0	880	3046	cond	-3	0	0	0
	596		p-conv	0	1134990	11934334	-13062851	607		p-conv	-1134990	0	-16494676	19628766
		1.1	g-conv	0	240	-7313	7989			g-conv	-240	0	-288316	207202
8	887	3808	Coord	-12100	880	3	-/	891	3430	cond	-660	. 0	-34	44
ľ	694		D-CONV	0	1878585	13062888	-14936013	607	0400	D-CONV	-1878585	ŏ	-19628676	21507124
			g-conv	0	314	-7988	9131			g-conv	-314	Ō	-287281	265427
			rad	-11962	1148	7	-9			rad	-1148	0	-44	62
7	864	4794	cond	-22848	5	0	0	862	4064	cond	-6	0	. 0	0
	681		p-conv		3114518	14936125	-16047664	609		p-conv	-3114518	0	-21507093	24622633
			g-conv rad	-11814	1460	-0131	-9			g-conv rad	-400	0	-200427	282182
6	862	6397	cond	-22000		ŏ	ŏ	863	6747	cond	-6	ŏ	02	ő
ſ	589		p-conv	0	6172703	10047733	-23220807	610		p-conv	-5172703	0	-24822724	29797594
			g-conv	0	491	-11038	14224			g-conv	-491	0	-282183	276526
			rad	-11682	1789	9	.7			rad	-1789	0	-85	113
• •	597	8290	cond	-22962	9607630	22220808	31034641	880	10833	cond	-/	0	1 2020000	29407470
			a-conv	l ő	674	-14224	19660	012		a-conv	-674	ŏ	-278530	266702
			rad	-11602	2096	7	0			rad	-2096	Ő	-113	144
4	861	14150	cond .	-23035	8	0	1 1	689	30045	cond	-8	0	0	0
	587		p-conv	0	14364094	31634661	-46204633	615		p-conv	-14354094	0	-38408403	52752447
1	1		g-conv	0	641	-19660	29799			g-conv	-641	0	-266708	249685
·		25224	180 Cond	-11602	2361		300		112040	rad	-2361		-144	169
۲ °	616	20229	D-CONV	-23341	23446076	46204478	-69675338	619	112049	D-CONV	-23446076	0	-62753955	76113936
1		1	g-conv	ة ا	77	-29800	42887		1	g-conv	-77	ŏ	-249692	223488
		1	rad	-13264	299	-300	22			tad	-299	Ó	-170	-6
2	890	249601	cond	-149382	8	0	•	892	647736	cond	-8	0	0	-1
1	617		p-conv	0	-69835457	69674774	0	619		p-conv	69835457	0	-76114357	6372664
			g-conv und	-R6429	278	-42887	0 .602			g-conv und	-276		-223490	1841
L		L	1.00	1 -00-420	1 1000		1002		1		-1000			

heat generated in streamer	339665	
heat generated in core	841345	
total heat generated		1181010
heat transferred to cooling wall		-808831
heat leaving top of riser		-6744019
heat entering bottom of deer		6372663
	total	822
•	% diff. of heat gen.	0