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Abstract

Osmotically active proteins and cells, retained in the extracapillary space (ECS) of hollow

fibre bioreactors (HFBRs), can influence the hydrodynamics of such devices. A mathematical

model was developed to describe the coupled hydrodynamics and high molecular weight

protein transport in a cell filled HFBR. It was assumed that the multi-fibre reactor can be

represented by a single, straight fibre surrounded by a symmetry envelope containing fluid and

a homogeneous packed bed of cells. The low Reynolds number flow in this porous medium

was described by Darcy's law.

Because of difficulties associated with operating a reactor filled with mammalian cells, a

suitable analogue was used to experimentally investigate protein polarization in packed

HFBRs. The ECS side of the reactor was filled with an agarose/protein solution which, upon

cooling, formed a porous medium with a uniform initial concentration of protein. A constant

lumen flow was established for several days before the cartridge was sacrificed and the axial

ECS protein distribution was measured.

Since the protein transport and HFBR hydrodynamics were coupled, numerical methods

were required to solve the governing equations of both the two-dimensional (axial plus radial

variations) and the one-dimensional (axial variations only) models developed to predict

axisymmetric transient ECS protein concentrations. Computer modelling results indicated

that, because of the large length/radius ratio of the representative fibre unit, the two-

dimensional ECS protein concentrations could be accurately duplicated by the simpler one-

dimensional model. The latter model, required about two orders-of-magnitude less

computational time than the former. The one-dimensional model results were compared to

experimentally obtained ECS protein profiles and, subsequently, the model was used to

predict protein polarization in ITFBRs for different conditions.

The hydraulic conductivity of the agarose gel, required for the model, was experimentally

determined using the falling head method. The measured conductivity values failed to
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adequately describe the observed protein polarization in the ECS of HFBRs. However, by

using a gel conductivity which was about an order-of-magnitude higher than the measured

value, it was found that the model agreed well, in general, with the measured ECS protein

polarization profiles obtained for initial protein loadings of 5 - 30 g/L. The higher apparent

conductivity, needed to fit the model to the experimental results, was attributed to the inability

of the gel to completely fill the geometrically complex ECS.

Since in HFBRs, packed anchorage-dependent mammalian cells are expected to achieve

hydraulic conductivities similar to values encountered in tissues, several model simulations

were carried out at low tissue conductivity values. The results indicated that, for these

conditions, protein transport in the ECS is mainly governed by diffusion. Protein polarization,

a dominant feature of empty ECS protein transport, is greatly reduced. Also, it was shown

that the removal of product protein from a packed ECS space can be difficult, since ECS

flows are reduced. Models, such as those developed here, can be used to further investigate

HFBR operation and process optimization.
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CHAPTER 1

Introduction

Complex therapeutic and diagnostic proteins are the major products in mammalian cell culture

biotechnology (Walker and Gingold, 1988; Atkinson and Mavituna, 1991). In conventional

stirred tank bioreactors, productivity and product concentrations are low; therefore

immobilized cell designs can greatly improve reactor performance (Belfort, 1989). In hollow

fibre bioreactors (HFBRs), mammalian cells can grow up to 100 times higher density (>10 8

cells/mL) than in suspension type bioreactors. A typical HFBR consists of several thousand

bundled ultrafiltration hollow fibres potted at each end and enclosed in a tubular shell. The

cells grow around the fibres in the shell side, referred to as the extracapillary space (ECS) by

analogy to the tissue-capillary system.

Tharakan and Chau (1986) reported that recycle flow in the HFBR lumen creates an axial

pressure drop which drives a secondary flow in the ECS referred to as the Starling flow

(Figure 1.1), again by analogy to the coupled flows found in the microvascular exchange

system. In the upstream half of the reactor, a fraction of the flow enters the ECS, whereas in

the downstream half, it re-enters the fibre lumen (Figure 1.2). In this closed-shell, lumen

recycle mode, the amount of leakage into the ECS is a function of the ECS and membrane

conductivities, fibre dimensions and the pressure drop along the lumen side.

Smaller molecules such as growth factors (e.g., insulin), glucose or oxygen, supplied from

the lumen side, penetrate through the fibre membranes. Oxygen depletion in the ECS

environment can lead to oxygen limitations and limit the viable cell distribution (Piret and

Cooney, 1991). Cells are completely retained in the ECS, while high molecular proteins,

introduced with the cell inoculum, are partly or completely rejected by the ultrafiltration

membranes. High molecular weight products (e.g., antibodies), produced by cells and

rejected by the ultrafiltration membranes are harvested from the ECS ports. The secondary



Figure 1.1^Pressure distribution in a closed-shell HFBR.

2

Figure 1.2^Starling flow around a single fibre in a closed shell.
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flow in the ECS transports these proteins towards the downstream end where they accumulate

and increase the local osmotic pressure. This osmotic pressure, by reducing the total pressure

difference across the membrane, can significantly affect the fluid dynamics in the ECS (Taylor

et al., 1993). Transferrin mediates cellular iron-uptake and is thus an important constituent of

most cell culture media. Downstream polarization of transferrin can skew cell growth

towards the downstream end of the reactor which decreases overall HTER cell growth (Piret

and Cooney, 1990b). On the other hand, this flow polarizes the product proteins to locally

higher concentrations thus facilitating downstream processing and product purification.

Recently, Taylor eta!. (1993) modelled HFBR flow dynamics and ECS protein

redistribution under startup conditions where the reactor is essentially unobstructed by cells.

The objective of this work was to study the transport of high molecular weight proteins in the

ECS of HFBRs under packed cell conditions. To accomplish this a mathematical model was

developed describing the lumen and ECS hydrodynamics in the presence of osmotically active

proteins trapped in the ECS (Chapter 3). Since protein transport and hydrodynamics are

coupled, numerical methods were applied. To validate the model experimentally, a packed

HFBR system was designed (Chapter 4). Successful culturing of mammalian cells requires

considerable technical expertise. It is also very time consuming; usually several weeks of

growth are required to fill the ECS of a HFBR with cells. Therefore a packed ECS bed was

simulated by filling the shell side with a gel/protein mixture (Wei and Russ, 1977). Hydrogels

have a low hydraulic conductivity and are easy to prepare; upon cooling they form a

homogeneous porous medium. The idea of filling the cartridge with monodisperse spherical

particles (e.g., latex or glass) was rejected because such particles are expensive and it was

questionable if they could be packed homogeneously between the fibres. Also, the large

particle surface area could have caused significant protein adsorption.

To validate the model equations, computer modelling results were compared to

experimentally obtained ECS protein concentration profiles (Chapter 5). Using the model, the

impact of protein loading and packed bed conductivity on the axial protein distribution and
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hydrodynamics was investigated. By way of conclusions, the implications of the experimental

and modelling results to mammalian cell culture are discussed in Chapter 6. Suggestions for

further research are given in Chapter 7.
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CHAPTER 2

Literature Review

2.1 Cell Culture

In the early 1950s the first industrial use of animal cell culture was reported for the production

of vaccines (e.g., polio). Since bacteria grow about 10 times faster than mammalian cells and

require less expensive media, the recombinant DNA technology in the early 1970s gave hope

to the idea of expressing mammalian proteins in bacteria. Unfortunately, many of these

complex biological molecules require mammalian cell post-translational processing. Such

protein post-translational modifications include, for example, specific modifications of amino

acids or glycosylation. The development of hybridoma cell technology in 1975 by Kohler and

Milstein opened the new field of monoclonal antibody production.

By injecting hybridoma cells into mice, monoclonal antibodies can be harvested from the

peritoneal fluid (ca. 10 mL). Due to impurities and ethical concerns, new reactor designs are

desirable. Industrial production mainly uses stirred tank bioreactors, with low product

concentrations and low productivities (Belfort, 1989). Additional costs arise for mammalian

cell culture by the expensive media and the product recovery costs due to the presence of

extraneous proteins in the solutions.

Immobilized membrane reactors are attractive for culturing mammalian cells because they

retain cells at low shear stress and simulate an in vivo environment. In general there are three

major cell immobilization methods used, namely, attachment on microcarrier beads,

entrapment in a porous matrix and physical separation by a membrane barrier (Belfort, 1989).

The higher cell densities in the immobilized phase increase volumetric protein productivity and

by perfusing these reactors with fresh medium the production can be maintained. After
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startup, the cells are retained in the immobilized phase and low cell growth rates become less

important. These bioreactors can be productive for weeks or even months

The first use of a HFBR for mammalian cell culture was reported by Knazek et al.

(1972). Cells, separated from the medium stream in the shell-side of a kidney dialysis

ultrafiltration membrane module, grew to tissue-like densities and were maintained productive

for nearly a month. Since then, many others have reported the use of HFBRs for culturing

mammalian cells (Knazek eta!., 1974; Tharakan and Chau, 1986; Piret and Cooney, 1990a).

For HiFBR the formation of necrotic regions due to nutrient limitations at high cell

densities is one of the major disadvantages of cell immobilization. Also the reactor setup is

more sophisticated and more training is required for its operation. Mass transfer modelling

becomes an important consideration for improved reactor design, scale-up and control

strategies.

2.2 Hollow Fibre Bioreactor Modelling

In recent years many models have been published to describe the hydrodynamics and mass

transport in HYBRs. Most of these models are based on the assumption that a multi-fibre

device can be represented by a Krogh (1919) cylinder geometry where a single straight fibre,

homogeneously surrounded by cells, is assumed to represent the fibre bundle.

The performance of hollow fibre reactors with enzymes immobilized in the spongy section

of the fibre wall was investigated by Waterland et al. (1974). A mathematical model was

developed which included lumen and membrane mass transfer resistance for first-order and

Michaelis-Menten kinetics. Kim and Cooney (1976) considered the same case, but reported a

simpler analytical solution. Waterland et al. (1975) immobilized the enzyme I3-galactosidase

in the membrane matrix and applied the previously developed model to predict the reactor

performance.
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Wei and Russ (1977) injected a gelatin/agarose gel into a HFBR shell to simulate tissue

culture conductivities. A dual circuit HFBR was designed to simulate solute fluxes in

capillaries. The results demonstrated that for small molecules, such as oxygen, convective

fluxes can significantly contribute to their transport through tissues.

Webster and Shuler (1978, 1979, 1981) considered the cases where cells or enzymes

surround a single fibre and the transport occurs mainly by diffusion into the outer fibre region.

Concentration gradients in the lumen, as well as the impact of the ECS hydrodynamics, were

neglected. The radial diffusion equation was solved and results were presented for zero and

first order kinetics in the form of effectiveness factor plots. These plots illustrated the

importance of diffusive hindrances for a reacting substrate and provided a guide for the

selection of HFBR dimensions.

The impact of radial flow on substrate transport was first recognized by Kleinstreuer and

Agarwal (1986). Cell growth as well as Michaelis-Menten kinetics of cells or enzymes in the

spongy fibre matrix were considered. A model was presented that included transient lumen,

membrane and ECS concentration profiles. The complete Navier-Stokes equation, governing

the lumen hydrodynamics, was solved with a numerical scheme based on the SIMPLE

computer code, developed by Patankar and Spalding (Patankar, 1980). However, the impact

of the axial ECS velocity profiles on substrate transport was not considered.

Despite the evidence of polarization from Waterland et al. (1975), who reported a

10-fold higher enzyme activity at the downstream end of a HFBR, the early models did not

include convective transport effects. Tharakan and Chau (1985) measured the transmembrane

pressures in a closed-shell HFBR and considered the impact of the secondary ECS flow on the

cell or enzyme distributions. Models developed by Tharakan and Chau (1986) and Schonberg

and Belfort (1987) only considered radial convection and neglected the influence of axial ECS

transport.

Libicki et al. (1988) investigated the influence of Starling flow on solute transport. They

measured a 10% increase in gas transport through dense microbial pellets around a single
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hollow fibre system enclosed in a permeable membrane. They developed a model based on

the work of Apelblat et al. (1974), who modelled the fluid exchange between capillaries and

tissue beds, which is similar to the flow encountered in a cell-filled ECS. An analytical

solution was obtained by describing the membrane and ECS flows by Darcy's law and the

lumen flow by a simplified one-dimensional version of the Navier-Stokes equation. Salmon et

al. (1988) modelled the transport of reacting and non-reacting solutes for the same system

investigated by Libicki eta!. (1988). Again, by incorporating the analytical velocity profiles of

Apelblat et al. into the numerically solved solute transport equation, they found that, under

high flow and packed cell conditions, convective transport could play a significant role.

Heath et al. (1990) used nuclear magnetic resonance flow imaging to measure the ECS

velocity profiles around a single hollow fibre in an empty shell. Because they were not able to

place the single fibre concentrically within the cylindrical reactor shell, they numerically solved

the unidirectional Navier-Stokes equation. Instead of linking the ECS and lumen flows, the

maximum predicted ECS axial velocities were simply equated to the corresponding measured

results. As a consequence, they obtained generally good agreement between predicted and

measured velocities at other radial positions. Heath et al. (1990) also used Apelblat's solution

to theoretically predict ECS velocities in both packed as well as empty multi-fibre HEBRs.

However, a questionably high Darcy conductivity (10-4 m2) was arbitrarily selected for the

empty ECS case.

The pressure and flow distributions in a HFBR with an unobstructed ECS were modelled

for different operating conditions by Bruining et al. (1989) and Kelsey et al. (1990). They

assumed that radial pressure gradients in the lumen and ECS did not exist, due to the low

Krogh cylinder radius to fibre length ratio. The coupled pair of second-order ordinary

differential equations for the lumen and ECS pressures were solved analytically.

The insulin response of a HFBR bioartifical pancreas was modelled by Pillarella and

Zydney (1990) by superimposing a solute mass balance on the hydrodynamic solution of

Kelsey eta!. (1990). It was shown that the radial and axial convective fluxes can dramatically
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increase insulin response times. Their numerical modelling results agreed with transient

insulin measurements.

The impact of the ECS secondary flow on mammalian cell distribution and protein

concentrations was investigated experimentally by Piret and Cooney (1990b). A freeze-

sectioning technique was developed to measure the axial distributions of mammalian cells and

proteins in the ECS of anisotropic membrane HFBRs following various operating protocols.

They found that the downstream polarization of the high molecular weight proteins, needed

for mammalian cell growth (e.g., transferrin), correlated well with the measured non-uniform

axial cell growth in the HFBRs. By periodically alternating the lumen flow direction, protein

polarization was reduced and a more uniform cell distribution was obtained, resulting in a 2-

to 3-fold increase in reactor antibody productivity.

Piret and Cooney (1991) developed a model to describe oxygen gradients in HFBRs. By

an order-of-magnitude analysis they showed that convective oxygen transport in the ECS can

be neglected. Hence, the governing equations were simplified and an analytical solution was

derived. The model included membrane and lumen resistance, as well as axial and radial

oxygen gradients. The model results were presented in the form of effectiveness factors from

which one can easily calculate oxygen limitations for a given reactor system. Their

experimentally determined axial cell distributions agreed reasonably well with the model

results. The tissue-like cell densities obtained in HFBRs can produce such high metabolic

rates that gradients in nutrient concentration occur. Sardonini and DiBiasio (1992) supported

their conclusions by measuring the radial mammalian cell distribution around a single hollow

fibre for different lumen oxygen concentrations.

None of the models described above included the impact of high molecular weight

osmotically active molecules retained by the fibre membranes. Recently, Taylor et al. (1993)

developed a model to describe the coupled protein transport and fluid dynamics for a Krogh

cylinder geometry with an osmotically active protein solution retained in the ECS. Numerical

techniques were required to solve the two-dimensional transient concentration profiles in the



10

ECS. They found that the downstream polarization of proteins can significantly change the

flow distribution in HFBRs.

Patkar et al. (submitted) experimentally investigated protein polarization in a HFBR and

presented a simplified one-dimensional model based on the more complex two-dimensional

model by Taylor et al. (1993). The transient as well as steady-state ECS protein

concentrations, recovered from the frozen reactors, agreed with the model predictions. A

high initial ECS protein loading reduced the non-uniform steady-state protein distributions

caused by the Starling flow. Also the influence of flow cycling on the redistribution of

proteins was investigated.

2.3 Protein Transport in a Gel

Hydrogels are networks of organized polymers that absorb large quantities of water while

remaining insoluble. These gels, which are neither solid nor liquid, have a low tendency to

adsorb proteins (Gin et al., 1990). Agarose gels are made from purified linear galactose-

containing aerogel-xerogel hybrid colloids either isolated from agar or directly recovered from

agar-bearing marine algae (Dean et al., 1985). The structural integrity, hardness and porosity

of an agarose gel depends on the secondary structure caused by non-covalent bonds

(hydrogen bonds) between various agarose chains (Dean et al.). The surface porosity of an

agarose gel, observed by electron microscopy, showed that a 3% agarose gel has a very

uniform internal pore structure with pore diameters ranging from 0.1 to 1.0 i_tm (Bassi et al.,

1987). Therefore the agarose pore structure should offer insignificant hindrance to the

transport of BSA molecules (Hjerten, 1962), which have an average diameter of about 6.3 nm

(Tanford, 1961).
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The flow field in porous media can be described by Darcy's law as long as the Reynolds

numbers do not exceed a value between 1 and 10 (Scheidegger, 1960) The Reynolds number

in a porous medium is defined in terms of the pore diameter of the packed bed,

u
Re = 'pore

(2.1)

where u is the superficial velocity, d is the pore diameter and u is the fluid kinematic viscosity.

2.4 Porous Bed Conductivity

The presence of cells in the ECS of a HTBR can lead to significant changes in the flow

behaviour and protein transport compared to an empty ECS. It is expected that, for a packed

cell ECS, the protein polarization will strongly depend on the conductivity of the porous

medium. Therefore, it is important to use a conductivity in the model that corresponds to the

packed beds employed in the experiments. Unfortunately, conductivity values for packed beds

of mammalian cells have not been reported in the literature.

Libicki (1985) studied the Darcy permeability of packed spherical particles in the ECS of

HFBRs and compared the results with a model by Sangani (1982). Libicki's results and the

conductivities obtained from Equation 2.2 are summarized in Table 2.1. As expected, the

conductivity strongly depended on the particle size and the bed porosity. Both models

describe the bed conductivities reasonably, but for the highest particle radius of 87.5 Jim

Sangani's modelling result agreed better with Libicki's conductivity measurement. However, it

is not clear whether the conductivity of a packed bed of solid spheres is representative of the

conductivity that exists for high density packed mammalian cell aggregates. Humphrey et al.

(1985) reported Darcy permeabilities for bacteria in filter cakes in the range of 10"" to
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1046m2, depending on the applied pressure difference. Due to the deformability of cells, these

values are probably not valid for the low pressure gradients that exist in the ECS of I-EFBRs.

Table 2.1 Conductivities of packed spheres.

Particle Radius^Measured
^

Estimated
^

Kozeny^Porosity
Conductivity Conductivity^Carman

(Libicki)
^

(Sangani)
^

(Eqn. 2.2)
(iirn)

(m2) (m2) (m2)
(-)

8 2.85 x1042 2.20 x 10-12 2.12 x 10-12 0.61

10 9.68 x1042 2.35 x1042 6.0 x 1043 0.44

19.8 15.9 x1042 49.0 x10-12 11.8 x 10-12 0.60

87.5 403 x10-12 447 x1042 103 x 10-12 0.52

The hydraulic resistance of packed beds of red blood cells was measured and modelled by

Zydney et al. (1986). They found that these cells were compressible, therefore the packing

and hence the conductivity were a function of the applied pressure gradient. A porosity E of

0.2 was measured in packed beds of cells sedimented gravitationally. The lowest porosity for

uniform rhombohedral packed spheres is 26% (Bear, 1972). Based on the Kozeny-Carman

equation (Kozeny, 1953; Carman, 1937),

k=

5(';(1-8))2

(2.2)

where S is the area of the particle surface and V is the particle volume, Zydney et al.

calculated conductivities for packed, relatively uncompressed, red blood cells from 7x10-15

down to 3x10-18 m2 for the highest cell packing
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A simple calculation of the conductivity of a mammalian cell bed based on the Kozeny-

Carman equation was carried out here. Assuming an average mammalian cell radius of

12 1.1m, a spherical shape and packing porosities of 26, 10 and 5%, cell bed conductivities of

10-13, 4x10-15 and 4.4x10-16m2, respectively, were obtained.

The flow through interstitial fibre matrices was studied by Levick (1987). He found that,

even for a very highly packed cellular tissue, the flow resistance is not due to the drag effect

of the bounding cell walls but from the drag created by the intracellular matrix. This

intracellular matrix is created by a network of relatively coarse fixed elements, the collagen

fibrils, and a finer meshwork of glycosaminoglycans.

Swabb et al. (1974) investigated the hydraulic permeability for flow through sub-

cutaneous and hepatocarcinoma rat tissue and obtained values of 6.4x10-18 and 31x10-18 m2,

respectively. These conductivities are similar to the values reported by Apelblat et al. (1974)

for rabbit omentum (2.6x10-18- 6.0x10-18 m2).

A summary of the relevant cell bed hydraulic conductivities is given in Table 2.2. The

conductivities in HTI3Rs packed with mammalian cells are expected to lie between those

calculated for beds of 10 to 15 tim packed spheres and values reported for tissue regions.

Table 2.2 Hydraulic bed conductivities

Porous Medium^Hydraulic Conductivity^Reference

(m2)

Packed spheres^10-13- 4x10-16^Equation 2.2

Red blood cells^7x10-15- 3x10-18^Zydney eta!. (1986)

Rat tissue^6.4x10-18, 3 1x10-18^Swabb eta!. (1974)

Rabbit tissue^2.6x10-18- 6x10-18^Apelblat et al. (1974)
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CHAPTER 3

Model Formulation

Figure 3.1 shows a representative single fibre of a multi-fibre HFBR cartridge, where L is the

permeable length of the fibre, Pin and P0 the pressures at the permeable fibre inlet and

outlet, respectively. The fibre is potted into epoxy at both ends where no fluid exchange with

the ECS occurs. The notation specifying the lumen, membrane and ECS regions as 1, 2 and

3, respectively, is used in the subsequent sections, which describe the equations governing the

hydrodynamics and protein transport in all three regions.

Figure 3.1 Single fibre Krogh cylinder geometry.

3.1 Krogh Cylinder Approximation

To describe the flow in a reactor that consists of several thousand fibres, some major

simplifications are necessary. The reactor is modelled as containing N parallel, evenly-spaced

fibres that do not exchange fluid or proteins with each other. Therefore each fibre can be
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assumed to be surrounded by an average volume of homogeneous ECS (Figure 3.1) with a

hydraulic conductivity k3 and radius R3 (Figure 3.1). The radius R3, referred to as the Krogh

cylinder radius, can be easily calculated from the following equation:

R3 = r-
N

(3.1)

where Rc denotes the cartridge radius. The Krogh cylinder (1919) approach was originally

developed to describe the flow in analogous tissue/capillary systems, where the capillaries

were assumed to be parallel and uniformly spaced.

Krogh cylinder

fibre lumen

fibre membrane

EC S/shell- side

Figure 3.2 Schematic of the Krogh cylinder representation of a multi-fibre reactor.

3.2 Hydrodynamics

3.2.1 Flow in Porous Media

The conductivity of a porous material defined by Darcy's law (1856) is a macroscopic

property of the material. Many attempts have been made to relate the conductivity to the
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porous structure, but no satisfactory solution has been found (Scheidegger, 1960). The

Kozeny-Carman equation (Kozeny, 1953; Carman, 1937), mainly used for filtration

application, models the porous medium as consisting of capillary bundles and therefore applies

a classical hydrodynamic approach. The differential form of Darcy's law in vector notation

can be written as

V =--
k

•VT^ (3.2)

where V is the superficial fluid velocity vector, t is the fluid viscosity, k is the medium

conductivity and the flow potential IP is defined as follows to account for the hydrostatic

pressure:

qi= P+pgz,^ (3.3)

where P is the pressure, g the gravitational constant and z the height with reference to a

selected datum. It should be noted that, for a non-homogeneous medium, k is a second-rank

symmetrical tensor. In the case of an incompressible fluid (i.e., constant p), the volume is not

altered by pressure changes. Hence mass is conserved and one can write

(v v), o^ (3.4)

By substitution of the isotropic form of Darcy's law into Equation 3.4, the following

equation is obtained:

V •(—V P),
jt (3.5)

Usually the isotropic conductivity k, gravity g, density p and viscosity g_t are considered to be

constant. Therefore the partial differential equation (PDE), Equation 3.5, reduces to the

Laplace equation, namely
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\72 P = 0.^ (3.6)

3.2.2 Membrane Hydrodynamics

The membrane is treated as a homogeneous porous cylindrical shell with a constant

conductivity. Therefore the Laplace equation, which describes constant density and constant

viscosity flow in any general porous medium, can be applied (Collins, 1961). Written in

cylindrical coordinates and assuming axisymmetry, Equation 3.6 becomes

1  a  ( a P2) a2 P2 0+
r ar^ar^az

2 = (3.7)

Since the aspect ratio of the membrane, (R2-R1)/L, is less than 104, pressure gradients in the

axial direction are generally orders-of-magnitude smaller than in the radial direction. Thus

Equation 3 7, which applies at any axial position, simplifies to

15
r Sr

( a Pr^2 j= 0.
ar (3.8)

This ordinary differential equation is subject to the following boundary conditions:

1) P2 = (z)^(z, Ri)^at^r R,

2) P2 =P3(z,R2)—an3(z,R2)^at^r = R2

Proteins, partially rejected by the membrane, can exist in the ECS and lumen of HTBRs The

boundary conditions include the osmotic pressures, III and 113, whose difference acts in the
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opposite direction to the hydrostatic pressure driving force across the membrane. The

osmotic pressure difference is multiplied by the reflection coefficient a. If a is 0, the

membrane is completely permeable to the solute and solvent; if a is 1, the membrane retains

the solute completely. The first boundary condition also reflects the fact that, in the simplified

hydrodynamics assumed for the lumen (see Section 3.2.3), only the radially-averaged

hydrostatic pressure, Pi(z), is required.

By integrating this ODE twice and applying the boundary conditions, the following

pressure distribution in the membrane, as a function of the local pressure difference between

the lumen side and ECS, is obtained

p2(r),p1(z)+ 
P3(Z)R2)- PI(Z)+Oirli(Z,A)-r13(2.,R2)}

 in
1
^(3.9)

After differentiating Equation 3.9 with respect to the radius and substituting the result into

Darcy's law, the relationship for the local superficial membrane velocity becomes

L R
v 2(z ,r)^13,(4— P3(z , R2) +cy [113(z,R2)— II,(z,R1)] (3.10)

where v represents the radial velocity and the hydraulic permeability Lp is defined (Taylor et

al., 1993 ) as

Equation 3.10 is generally referred to as Starling's relationship, in recognition of Ernest

Starling, an English physiologist who proposed in 1896 that transmembrane flow between the
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interstitial space and capillaries can be described by a balance between hydrostatic and

osmotic pressure. The resulting flow in the extracapillary space is therefore sometimes called

Starling flow.

For the cuprophan membranes investigated here, which have a molecular weight cut-off

of about 13k Da (manufacturer's specifications), the 69k Da protein bovine serum albumin

(BSA) does not leak from the ECS through the membrane into the lumen side where also no

osmotic pressure exists. For these circumstances Equation 3.10 simplifies to

v(z,r) =^P3(z , R2) +113(z , R2)1.
4 r (3.12)

3.2.3 Lumen Hydrodynamics

The following equations of motion and continuity, written in vector notation, govern the flow

in the lumen side:

avi +(y•v)vi,---1 vpi+vv2v, +Fi^ (3.13)
at

(v. v3= o^ (3.14)

where V1 represents the lumen velocity vector, I the time, p the constant density, P1 the lumen

pressure, F1 the body forces and v the kinematic viscosity of the fluid. To further simplify the

problem some assumptions are required. Since the fluid density is constant the body forces F1

can be neglected. Because the fluid is nearly incompressible, the laminar flow (Re < 10) in the

lumen adjusts almost instantaneously to any pressure changes, and consequently, its governing

equation is not time dependent. The inertial terms of the Navier Stokes equation can be
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neglected because the radial leakage flow through the membrane is orders-of-magnitude lower

than the lumen flow rate (Berman, 1953) and the flow is fully developed before it reaches the

permeable region of the fibre bundle. The low fibre aspect ratio, RA, (< 10-4) allows the

radial pressure gradients and the entrance effects to be neglected. In addition, the problem is

axially symmetric around the fibre centre. Consequently, the radial component of Equation

3.13 simplifies to

°PI —
ar

or = (z)

while the axial component becomes

OP,^1 a ( r au,

az^r ar^ar)• (3.15)

The last equation can be integrated twice subject to the following boundary conditions

u 1 = 01^at r= R1^(i.e., no-slip at the membrane wall)

and

â  =0 at r =0^(i.e., symmetry at the centre of the fibre)
Or

to obtain the radial velocity in the lumen as a function of the local pressure gradient, namely

^u,(z,r)=—RI2 dP ( r
2

41=1. dz^R2)
(3.16)

By integrating this equation over the fibre cross section one can obtain the local radially-

averaged axial lumen velocity as
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1  12 rcu (zd z = R'2 d,R12 0^ 8t d z (3.17)

Applying a mass balance on a differential axial control volume in the lumen and substituting

Equation 3.12 into the result leads to

=2 v2 (z ,R1)
2 ^

„^,
PI(z)—Pjz,R2)+II3(z,R2) ).

d z^R,^R, (3.18)

Finally, by differentiating Equation 3.17 and substituting for the 1.h.s. of Equation 3.18, a

second-order ordinary differential equation governing the lumen pressure distribution can be

written, i.e.,

d2^ = 16LP^( (z) P3(Z,R2 )± r13(Z, R2 ) )d z2^R;
(3.19)

This equation is subject to the following pressure boundary conditions at the fibre inlet

Pin at z = 0

and fibre outlet

P1= P0^at z = L

One should note that the applied no-slip assumption at the membrane wall is not valid for

very porous materials. In our case the membrane has a very low conductivity and the axial

pressure gradients are small. Therefore the axial velocities within the membrane are very

small and the axial slip at the membrane interface can be neglected (Taylor, 1971; Saffman,

1971).
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3.2.4 Extracapillary Space Hydrodynamics

For modelling purpose it is assumed, that the porous medium, such as a bed of mammalian

cells, is distributed homogeneously in the ECS and therefore has a constant conductivity k3.

The Reynolds numbers in a packed cell or gel ECS bed are low (Re << 1) and Darcy's law can

be applied. Also, assuming axial symmetry, the problem can be described as two-dimensional

and Equation 3.6 becomes

I  a  (ra P3)-fa2 P3 = 0
r Or^ar^az2 (3.20)

The fluid viscosity does not appear in this equation, because it is assumed that, over the

concentration range of interest, viscosity is essentially independent of protein concentration.

Equation 3.20 is subject to the following boundary conditions:

1) aP3 —0^at^z= 0, R2 r R3
az

2) a 133 0^at^z=L, R2 r R3
a z

3) aP3 —0^at^r = R3, 0.z._. L
ar

4)
aP3^R, (p, z„ „

P R2 J+II3 (z, R2 ) ) at r R2 0
or^k3 R2^1^3

The first three boundary conditions assume that the velocities at the outer boundaries of the

Krogh cylinder are zero (i.e., no flow passes from one fibre space to another nor does it

penetrate into the potting material at either end of the ECS). The fourth boundary condition

arises from the fact that incoming and outgoing fluxes at the ECS/membrane interface must be
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equal. After the ECS pressure distribution is obtained the axial and radial velocities, required

for the protein transport equation (Section 3.3.2), can be calculated using Darcy's law.

3.3 Protein Transport

3.3.1 Protein Properties

Generally the osmotic pressure for dilute low molecular weight solutions can be described by

van't Hoff s (1887) law

II=c 
RT^

(3.21)

where c is the concentration of the solute, R is the gas law constant (8.314 J/mol-K), T the

absolute temperature and M the molecular weight of the solute. For molecules with high

molecular weights (e.g., proteins) the observed osmotic pressure does not follow this linear

relationship, especially at higher concentrations. A more general form of this equation is

given by a power series (Tombs and Peacocke, 1974)

^ (c+A2c2 +A3c3).^ (3.22)

The constants A2 and A3 are referred to as the virial expansion coefficients and they account

for the non-ideal behaviour of the solution due to molecular interactions. The osmotic

pressure relationship for BSA was extensively studied by Vilker et al. (1981a). A complex

semi-empirical relationship was developed to describe the BSA osmotic pressure as a function

of the protein and salt concentrations. In addition to the two virial coefficients A2 and A3,

another term was included to account for the non-ideal behaviour resulting from ionic

interactions, i.e.,
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where Z represents the BSA charge number (Z = -20.4 at pH 7.4), ms is the molar salt

concentration in the solution and M is the average molecular weight of BSA (69k Da). The

virial expansion coefficients are given by:

A2 =-5.625x 10-4 —2.410x 10-4Z-3.664 x10-5Z2^ (3.24)

A3= 2.950 x 10' —1.051 x10-6Z— 1.762 x 10--7Z2^ (3.25)

Equation 3.24 and 3.25 were obtained by Vilker et. al. (1981a) by curve-fitting their measured

osmotic pressure data.

Vilker's et al. expressions were based on measurements at high protein concentrations (84

to 475 g/L). Since the concentration range encountered in this work was below 100 g/L, a

more appropriate osmotic pressure relationship was obtained by using osmotic pressure data

reported by Scatchard et al. (1946) and finding constant values for the two virial expansion

coefficients by curve-fitting. In comparison with Vilker's equation, Scatchard's data show a

slightly higher osmotic pressure in the 0 - 100 g/L range, a trend that was also consistent with

our own measurements. In Figure 3.3, the fitted curve for Scatchard's data is shown along

with Vilker's correlation. By fitting Scatchard's data to Equation 3.22, the following

parameters were found which apply to a BSA concentration range of 0 - 165 g/L:

A2 = 10.473 x10-3 m3/kg

A3 = 17.374 x10-6 m6/kg2
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Tombs and Peacocke (1974) also fitted experimental data to obtain a similar second-order

polynomial for the BSA osmotic pressure relationship.

Figure 3.3 Osmotic pressure of BSA protein solutions. Dashed line: Vilker's correlation
(Equation 3.23), •: Scatchard's data, solid line: fit of Equation. 3.22 to Scatchard's data.

The following simple linear relationship for the density of BSA solutions, which applies to

concentrations up to 540 g/L, was found by Vilker eta!. (1981b):

p = 2.54 x 10' c + 1.^ (3.26)

Tanford et al. (1956) investigated the viscosity of BSA solutions for a wide pH range and

expressed their results in terms of the power series

= 1 + DA] c + K [pd2 c2^ (3.27a)

where u is the viscosity of the BSA solution, po is the viscosity of the solvent (i.e., water at

20 °C) and [p.] is the intrinsic viscosity obtained by extrapolation of
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11— I-to 
lim
C-30 C I-t0

(3.27b)

The constant K depends on the molecule charge, ionic strength as well as the pH of the

solution. At pH 7.3, the dimensionless constant K is 2.085 and [4] = 3.65x10-3 Lig.

The concentration dependent diffusivity of BSA was investigated by van den Berg and

Smolders (1989). They reported that, according to other cited references, the diffusivity of

BSA depends only insignificantly on the concentration of the solution. At 20 °C, the value of

the diffusivity is essentially constant (D = 0.69x10-1° m2/s) over a wide concentration range (0

to 300 g/L). Anderson et al. (1978) investigated the diffusivity at pH 6.5 and obtained by

extrapolation the following linear relationship

D = D0(1+ 6x10 -4 c)^ (3.28)

where the Do is the diffusivity at infinite dilution (0.59x10-1° m2/s at pH 6.5) and c has units of

g.

In the range of concentrations of interest in this study (up to 100 g/L), neither density nor

diffusivity are strongly concentration dependent (Table 3.1) However, the viscosity does

show a significant concentration dependence and the impact of this will be discussed further in

a later section.

Table 3.1 Influence of BSA concentration on viscosity, density and diffusivity;
percent changes in value from an infinitely diluted solution

CBSA^50 WI' CBsA = 100 g/L

density^p^(Eqn. 3.26) 1.3% 2.6%

diffusivity^D (Eqn. 3.28) 3% 6%

viscosity^IA^(Eqn. 3.27a) 25% 64%
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3.3.2 Governing Equations

For the axially symmetric ECS region, the equation of protein continuity for a constant density

p in the absence of any sinks or sources can be written as follows:

5c
3 = 

1 -a--(K Drac3)+ a (K
at az^aZ

Dac3) K 113 ac3 -K ^
r^d^d ^c^OZ^c^ar (3.29)

where c represents the protein concentration in the fluid phase, c the packed bed porosity, u

the axial and v the radial fluid velocity, D the protein diffusivity and t the time. For

completeness, the two protein hindrance factors Kd and IC for diffusive and convective

transport respectively, are included. Since the BSA molecule is about two orders-of-

magnitude smaller than the average size of the gel pores, no hindrance is expected and a value

of 1 for Kd and IC was assumed. The partial differential equation is subject to the following

boundary conditions:

1) c3-c30^at^0_<_z.L,^1=0

ac3^ =02) at^z =0,^R2 .t- R3, 1 0
az

3) ac3 0 at^z= L,^R2 _r_ R3, 1 0
az

4) =O3 at^0< z < L,^r R3,^>
ar

5)^Kc-lv c3-Kd^at^0< z < L,^r =R2,^t> O .
6^ar

The first boundary condition assumes that initially the proteins are distributed homogeneously

throughout the entire ECS. The subsequent conditions state that there is no protein leakage

flux through any of the ECS boundaries. Boundary condition 5 implies that, at the membrane
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surface, since there is no protein leakage, the convective and the diffusive protein fluxes must

be in opposite directions and equal in magnitude.

3.3.3 Simplified One-Dimensional Model

In this section a simplified one-dimensional (i.e., radially-averaged) version of the model is

developed to describe the hydrodynamics and protein transport in the packed ECS

surrounding a single fibre. It is expected that, because of the typically low aspect ratios

((R3-R2)/L < 10-3-10-4) of the ECS, such a one-dimensional model should reasonably

approximate the fully two-dimensional model developed above. Applying a mass balance to a

differential axial control volume in the ECS results in

dri3^2R3̂ vAz R,,)
d z (R; — R22 ) (3.30)

where the local axial velocity (ii3) is averaged over the radial cross-section of the ECS By

differentiation of Darcy's law, a second relationship for the velocity gradient results, namely

d113^k3 d2 P3 

d z^j.idz2 (3.31)

The local radial velocity at the junction of the ECS and the fibre wall can be obtained from

Equation 3.12. Substituting Equations 3.12 (with r = R2) and 3.31 into Equation 3.30 yields

the following governing equation for the pressure distribution in the ECS:

d2 p3^2R1^L (pi_ p3+113)
dz2^(R.:—R)k3

(3.32)



29

Because of the closed shell operating condition, no fluid can leave the boundaries at z = 0 and

L, and one can write:

d1 0,0
d z

d P3 0
d z

In the one-dimensional model for an empty ECS, the conductivity k3 is given explicitly by the

following expression (Taylor eta!., 1993):

k3 = 1(  4R 3 log --J-)-3R32 +R.;
8 1Z —^\R2

4^R (3.33)

In the absence of osmotically active molecules, the coupled second-order differential

equations (Equation 3.19 and 3.32), governing the lumen and ECS pressures, can be solved

analytically. The solution is presented in Appendix 2.

The one-dimensional protein transport in the ECS can be described by the simplified

diffusion-convection equation

a c3 - a (ICD al a (K
at^OZ^az ^az c 6 3

(3.34)

where U3 represents the local radially-averaged ECS protein concentration. The radially-

averaged ECS axial velocity 173 is not constant and therefore must remain inside the

differential. Equation 3.34 is subject to the following boundary conditions:

at^z = 0

at^z = L .

1)^Z73 = C30^at^0 < z < L,^/=0
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ac3 =02) at^z = 0,^t 0
az

ac3 - 03) at^z = L,^t
az

The first boundary condition reflects the initial homogeneous protein distribution in the ECS

The other two boundary conditions state that there is no protein transport through either end

of the ECS.

3.4 Numerical Methods

The coupled hydrodynamic and protein transport equations were solved numerically by finite

difference methods. The spatial derivatives in all equations were discretized using the control

volume method recommended by Patankar (1980). A listing of the FORTRAN source-code

for the one-dimensional and two-dimensional computer models is included in Appendix 4.

The system parameters were read from an external input file, all variables were specified

and the program was started with a uniform initial protein and osmotic pressure distribution.

The partial differential equation that governs the pressure distribution in the ECS was solved

by a line-by-line scheme with over-relaxation (Patankar, 1980) to ensure convergence. After

each "sweep" of the ECS pressures in the axial and radial directions, the lumen pressures were

updated until the maximum pressure change between two complete "sweeps" was less that

10-12 Pa. Due to the extremely low membrane leakage flow, the lumen pressure did not

change significantly. It was subsequently found, therefore, that the lumen pressures only

needed to be updated after the ECS pressures had converged. After calculating the ECS

pressures, the radial and axial ECS velocities were calculated halfway between the pressure

nodes using a central difference approximation of Darcy's law.
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The alternating direction implicit (ADI) scheme developed by Peaceman and Rachford

(1955) was used to solve the discretized transient form of the two-dimensional protein

diffusion-convection equation. This scheme is the recommended one, if applicable, because it

requires minimal computational effort. Locally high Peclet numbers can create tridiagonal

matrices which are no longer diagonally dominant. Therefore, the first-order upwind

corrected "power law" scheme proposed by Patankar (1980) was included. In the simplified

one-dimensional version of the program, the protein diffusion-convection equation was solved

by a Crank-Nicolson method (Patankar, 1980) with a similar upwinding scheme.

Since the osmotic pressure changes associated with the new protein distribution in the

ECS were relatively small, the velocities were at a quasi-steady-state and, consequently, the

velocity field was lagged one time increment behind the concentration field. These

assumptions hold only as long as the flow field changes over each new time step are relatively

insignificant.

The osmotic pressures, associated with the local protein concentrations at the

membrane/ECS boundary, were updated and the new hydrodynamic conditions calculated. At

pre-defined time steps all information was written to separate files until the maximum time

was reached or the slope of the maximum concentration difference between two successive

time steps was less than 10-8g/L-s. To check for protein losses, associated with numerical

instabilities, a mass balance was occasionally calculated by integrating over the permeable

length of the fibre a set of third-order splines fitted to the radially-averaged ECS

concentrations.

The Dirichlet boundary conditions associated with the lumen pressures did not require

any special treatment to close the tridiagonal matrix. To handle the Neumann boundary

conditions for the ECS pressure as well as the diffusion-convection equation, integration over

half control volumes was necessary (Patankar, 1980).

The equations were discretized to allow for a variable grid spacing. In Figure 3.4 a

control volume is sketched showing the notation used. The control volume faces were
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located halfway between neighbouring grid points. The indices i and j define the axial and

radial grid locations and the associated grid spacing. The velocities were calculated at the

control volume boundaries (dashed line); whereas the pressures and the concentrations were

calculated at the nodal positions.

Figure 3.4^Computational control volume.
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CHAPTER 4

Materials and Methods

4.1 Hollow Fibre Bioreactor Specifications

A gambro® GFE 15 (Hechingen, Germany) cartridge was split in half along its axis and

geometric measurements were taken with a dial caliper (Mitutoyo, Japan). The empty

cartridge shell volume was calculated based on these measurements. A method described by

Klein et al. (1977) was used to measure the fibre volume increase during wetting. A light

pharmaceutical mineral oil (Stanley Pharmaceutical, Vancouver BC) was injected into the

cartridge shell. Since the hydrophilic fibre material does not extensively adsorb the

hydrophobic oil, the unwetted cartridge ECS volume can be calculated based on the measured

oil volume (Klein et al., 1977). A water flow was then established in the fibre lumina and oil

ejected from the ECS ports, due to fibre swelling, was collected and weighed. Based on the

known density of oil (p = 0.852 kg/L), the ECS volume in the presence of wet fibres was then

calculated. Since the ejection of oil from the ECS port occurred almost instantaneously and

also no further oil flow was noticed up to about 5 min afterwards, it was assumed that water

leakage into the ECS was minimal during this time.

4.1.1 Fibre Dimensions

The hollow fibre ultrafiltration membranes in the gambro® GFE 15 reactor consist of

cuprophan, a cellulose material made from cotton linters manufactured via a cuprammonium

intermediate (Klein et al., 1977) Unlike hydrophobic polyamide or polysulphone membranes

this hydrophilic material adsorbs little protein. Cellulose based membrane materials change

dimensions when wetted with water, which is referred to as swelling (Klein et al., 1977;
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Broek et al., 1992,). Therefore dry and wet fibre dimensions can differ significantly. By

placing dry and wet fibres under a light microscope (Leitz; Wetzlar, Germany), the outer fibre

diameter was measured in each case. It was not practical to cut a single wet fibre to

determine the inner radius. Since the fibre membrane permeability was extremely low, the

lumen inner diameter was therefore estimated based on pressure drop measurements in the

HFBR cartridge using the Hagen-Poiseuille relationship for laminar flow in tubes

nR4 P — P^ in^out 

8p.^L
(4.1)

where Q1 is the volumetric flow rate through a single fibre. The pressures at the upstream and

downstream lumen manifolds were measured by inserting small syringe needles through the

cartridge shell and using water manometers. Needles were positioned at several locations

near the potting surface of the manifold to measure the radial manifold pressure gradients.

The pressure drop in the fibre potting region was measured using a cartridge end sawed at the

fibre bundle side of the potting surface. The pressure at the manifold side of the potting was

determined for several volumetric flow rates. For the latter measurements, the pressure at the

potting outlet was assumed to be atmospheric.

4.1.2 Membrane Permeability Measurements

The hydraulic permeability of the GFE 15 fibre membranes was determined using a cartridge

which was wetted over night. One lumen port was sealed and a constant water pressure was

applied to the other port. The volumetric flow rate was measured through the ECS port

closest to the sealed lumen port. It was experimentally validated that the volumetric flow rate

does not depend on the location of the exit port by also measuring the flow with both ECS
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ports open. The hydraulic permeability Lp was then calculated from the following relationship

(Mulder, 1991):

L
J=

Q
= AP

Amem^p,
(4.2)

where J denotes the membrane flux, Q3 the volumetric flow rate, Amen, the inner membrane

surface area, p. the fluid viscosity and AP the applied pressure difference between the lumen

inlet and ECS outlet. The membrane surface area was calculated from the measured fibre

dimensions and was in close agreement with the value supplied by the manufacturer. When

using Equation 4.2, it was assumed that all of the measured pressure drop occurred across the

membrane. This assumption was reasonable since the measured volumetric ECS flow rates

were extremely low (maximum 6 mL/min) and hence both the lumen and ECS axial pressure

losses were negligible.

4.2 Gel Preparation

To avoid protein heat denaturation, a low melting temperature (ca. 30 °C) agarose gel type

VII (Sigma, St. Louis MO) was chosen to fill the ECS of the reactor. The gel showed

sufficient strength at 2 - 3% (w/w) to retain its integrity. To prepare the gel, PBS buffer

(pH 7.4) was heated to 60 °C before a weighed amount of agarose powder was added. A

clear viscous liquid was obtained after 1 - 2 h of stirring. A solution of bovine serum albumin

(BSA) (Sigma) was prepared in PBS with the addition of 0.2% sodium azide to prevent

bacterial growth. Trace amounts of azoalbumin (Sigma) were added to the BSA solution in

some experiments. Azoalbumin, a BSA derivative with azo-groups, gives the protein solution

a light reddish colour at neutral pH. Equal amounts of the protein and agarose solutions were
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mixed together after the gel had cooled to about 40 °C. After preparation the final gel/protein

mixture had half of the initial BSA and agarose concentrations.

4.3 Reactor Preparation and Flow Configuration

The lumen, as well as the ECS ports, of a dry HFBR cartridge were closed with rubber tubing

before the reactor was placed into a 37 °C warm room. After about 2 h the cartridge was at

equilibrium with the warm room temperature and ready for filling. The previously prepared

protein/gel mixture was then added with a peristaltic pump (Amicon, Danvers MA) from the

bottom ECS port into the HFBR which was tilted 45° from vertical. A very slow volumetric

flow rate (10 mL/min) was used to avoid excessive formation of air bubbles in the gel. After

the ECS was completely filled with gel, the ECS flow was recycled at 50 mL/min until most of

the remaining small air bubbles were removed and a homogeneous gel obtained. The reactor

was then taken out of the warm room for gelling at room temperature (20 °C). The following

day the ECS tubing ports were carefully cut off with a hack-saw and afterwards the two

openings were sealed with a thin layer of water resistant epoxy glue to prevent leakage.

Figure 4.1 shows the HFBR flow configuration for the protein polarization experiments.

A constant head of PBS buffer (with 0.2% of sodium azide) was established. After the liquid

passed through the lumen side of the horizontal reactor, it was returned to the head vessel

with a peristaltic pump (Amicon, Danvers MA) from a vertical tube in the recycle vessel. This

configuration had the advantage of creating a constant non-pulsating lumen flow. Parafilm

covers (American National Can, Greenwitch CT) on the head and recycle vessel prevented

water evaporation during the long runs. The total lumen volume in each experiment was

about 1 L of buffer solution. Liquid volumes, collected at the reactor outlet, were measured

to determine lumen flow rates. Only short collection times (maximum 20 s) were used to
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avoid substantial changes in lumen pressures. Afterwards the collected liquid was poured

back into the lumen recycle loop Each measurement was repeated at least twice.

After a defined polarization time the flow was stopped and the lumen fluid replaced with

air before the whole reactor was frozen in liquid nitrogen. The advantages of freezing were

that the fragile gel in the reactor solidified and protein redistribution during cutting was

prevented.

Figure 4.1 Schematic diagram of the reactor flow configuration.

4.3.1 Preparation and Analysis of Samples

After the reactor was cut with a hack-saw into several (5 - 11) sections, the frozen gel was

removed from the shell, weighed and diluted with a defined amount of water (about 10-fold).

The thawed gel and fibres were broken to decrease the time required to obtain a uniform

protein concentration in the gel/water mixture, since the protein transport from the gel

occurred mainly by diffusion. The gel/water suspensions were occasionally stirred and
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samples were taken. After about 2 days, the protein concentrations no longer varied,

indicating that an equilibrium had been reached between the protein concentrations in the

suspended gel particles and the water. Also, initial protein concentrations, based on weight

measurements, agreed with these measurements.

To measure the protein concentrations in the aqueous solutions, a small volume of liquid

(1 mL) was taken with a pipette such that no fibres or gel particles were sampled. The sample

was spun for 15 min in an Eppendorf centrifuge (Eppendorf 5415; Hamburg, Germany) at

14,000 rpm (ca. 800 g) to separate small agarose or fibre particles that could influence the

protein measurements.

A Bio-Rad protein assay (Bio-Rad Laboratories, Richmond ON) was used to measure the

protein concentration of the samples. The Bio-Rad assay dye binds to the BSA molecules and

creates a blue solution. The Bio-Rad supplied BSA protein standard was used to prepare 6

different solutions of known concentration (50 to 260 mg/L). The supernatants of the spun

samples were diluted with water such that the protein concentrations always remained in the

range of the prepared BSA standards. After pipetting 20 IAL of the protein sample into a

multi-well plate, 180 tL of five times diluted Bio-Rad dye was added. Each sample and

protein standard was prepared at least in triplicate. After about 20 min the absorbances were

analyzed with a Molecular Devices Vnia, microplate reader (Menlo Park, CA) at a wavelength

of 595 nm. The integrated software performed a regression of the BSA standard and

calculated the sample protein concentrations as well as the standard deviations. To ensure

complete protein binding with the dye, the plates were analyzed again after 10 min; no further

absorbance changes were measured. The reactor ECS protein concentration in the cut section

was calculated based on the gel weight, assuming that the gel and the protein solution had the

same density as water. Since the membrane excluded BSA, the water in the membrane as well

as the dry fibre weight was subtracted (1.47 g/cm-cut) from the weight of the cut section. A

sample protein concentration calculation is included in Appendix 3.
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4.4 Gel Conductivity Measurements

An agarose/water gel was prepared according to the method in Section 4.2. After the solution

cooled down to about 33 °C the liquid gel was poured into a 60 mL Buchner funnel (Pyrex

#36060C, Corning NY) with a coarse glass fit and an inner diameter of 4 cm. This procedure

was performed carefully in order to prevent the creation of entrapped air bubbles in the gel.

After the gel had solidified (3 - 4 h), the gel conductivity was measured using the falling head

technique (Bear, 1988). A schematic of the this technique is shown in Figure 4.2.

Figure 4.2 Schematic diagram of the falling head method for gel conductivity measurements.

A constant water head was applied at the gel side while on the other side, the water level in

the capillary was measured as a function of time. The gel conductivity k was then calculated

based on the following equation (Bear, 1988):

/1„,^( k
t ^ In ^

k Aga p g (4.1)
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where g is the gravitational constant, p is the density of water, 5 is the gel thickness, vi is the

fluid viscosity, Age, and A cap are the cross-sectional areas of the gel and the capillary,

respectively, h0 is the height of the constant water head, and h is the water height in the

capillary at time 1. By plotting the modified water height ( ln[h .1(h 0-h)] ) versus time the gel

conductivity can be calculated from the slope of the regressed straight line.

To ensure a constant h., the water reservoir surface area was orders-of-magnitude greater

than the capillary surface area. Since the frit permeability was also orders-of-magnitude

(>106) higher than the values measured for the gels, the pressure drop in the frit did not

influence the results and was therefore neglected.

A volumetric pipette (0.1 mL) was used as the capillary. A ruler was fixed next to the

capillary and the water heights h was measured as a function of time. To avoid gel

compression due to the applied pressure, water heads of less than 20 cm were used; in this

range a constant value of k was obtained independent of he at each experiment. To ensure

that the water did not leak around the gel, a blue ink (Pelikan 4001, Germany) was injected

into the water near the gel surface to allow visual observation of any bypassing.
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CHAPTER 5

Results and Discussion

5.1 Reactor Specifications

The geometric specifications of the reactor, the dimensions of the fibres, the number of fibres

in a cartridge and the hydraulic permeability of the fibre membranes are amongst the reactor

characteristics required for modelling. A total number of 8128 hollow fibres were counted

manually in a gambro® GFE cartridge sacrificed for this purpose. A uniform fibre length of

about 10 cm was cut from the fibre bundle of another cartridge and weighed. Fifty fibres were

manually separated from this bundle and also weighed. From these two weight measurements,

the total number of fibres in this bundle was estimated to be 7950. This result differs only

slightly (2.2%) from, and hence confirms, the number of fibres obtained by counting.

An average membrane hydraulic permeability of 6x10-15 m (± 10%) was determined from

measurements made on several cartridges. The variations were considered to be insignificant

and it was assumed that they were mainly due to changes in the membrane material rather than

to varying numbers of fibres in cartridges. The manufacturer reported a slightly higher

membrane hydraulic permeability of 8x10-15 m.

To investigate the impact of membrane protein adsorption on the membrane hydraulic

permeability, the ECS of a HFBR was loaded with BSA (10 g/L) overnight. After flushing

the ECS with water on the following day to remove the BSA, no changes in permeability were

measured. Solutions of BSA (1.1 and 2.2 g/L), containing different amounts of cut fibres,

were prepared and the protein concentrations were measured over several days. Since no

concentration changes were found, it was verified that BSA did not adsorb to the hydrophilic

membrane structure. These results are very different from those found by Patkar et al.



42

(submitted) for hydrophobic polysulfone fibres, where significant BSA adsorption occurred in

a few hours.

The pressure drop in the fibre potting was determined separately using a sawed HFBR

cartridge consisting only of the inlet manifold and the upstream potting section of the fibre

bundle. From pressure and volumetric flow rate measurements in this specially prepared

cartridge, an average inner fibre radius of 88 1.11T1 was calculated by using the Hagen-Poiseuille

equation. An average inner fibre diameter of 91 ±1 pm in the potting material was measured

under the light microscope by Patkar et al. (submitted). The small difference between these

two measurements may have been due to slight swelling of these outwardly constrained fibres

upon wetting or the fact that the fibre cross-section in the potting region was not perfectly

circular (Patkar et al., submitted).

The outer radii of dry hollow fibres were determined under a light microscope. The

visually distinguishable inner membrane boundaries also allowed measurements of inner fibre

radii. After wetting with water, the fibres became transparent and the inner fibre radii were no

longer visible under the light microscope. An average inner fibre radius of 115 pm was

calculated from the lumen pressure drop and flow rate measurements using the Hagen-

Poiseuille relationship. Since the fibres in the inlet and outlet potting regions had a smaller

average inner fibre radius, the measured pressure losses in these two regions were subtracted

from the overall pressure drop. The calculated average inner lumen radius agreed well with

the assumption that, during wetting, the inner and outer membrane radius increased about

15 whereas the thickness of the membrane hardly changed (ca. 1 pm). When single fibres

were wetted, an average 10% increase in axial length was measured.

A cartridge volume of 191 mL (without fibres) was calculated from the measurements

shown in Figure 5.1. Dry and wet ECS volumes of 127 mL and 101 mL, respectively, were

calculated by subtracting the total fibre volume from the HFBR shell volume. This results

were in excellent agreement with the calculations made from the oil measurements for the dry
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and wet reactor (128 and 102 mL). A summary of the measured and manufacturer supplied

values is given in Table 5.1.

Table 5.1 Summary of gambro® GFE 15 reactor specifications.

Parameter Dry Wet

Inner fibre radius 100" plin 110*, 115

Outer fibre radius 108*/** ptm 126 *, 124** pm

Length of fibre 21.5** CIT1 23.6** C111

Length of potting material 1.2** CII1 -

Number of fibres 8128**

Inner membrane area 1.4*,^1.5** m2

Membrane permeability 8^6** x10-15 m

Total cartridge volume 191** mL

ECS volume 128** mL 102** mL

Membrane volume 10.0*/** nth 11.8*,^13.0** nth

Lumen volume 76.4*/** mL 95.7*, 93.7** mL

manufacturer's specification
**

measured

Park and Chang (1986) investigated the radial lumen flow distribution due to radial

pressure losses in the inlet and outlet manifold of multi-fibre cartridges. They reported that,

under conditions where manifold pressure losses are significant, the highest lumen velocity

occurred at the centre of the fibre bundle and decreased towards the periphery. A relatively
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uniform lumen flow distribution was obtained for large axial pressure drop parameters (K),

small Reynolds numbers (Re) and large axial manifold thicknesses, where K and Re are special

parameters defined by Park and Chang. For a gambro® reactor, having a typical lumen

recycle flow rate of 500 mL/min and an axial manifold thickness of 1.2 cm (Figure 5.1), an

axial pressure drop parameter (K) of 2x105 and a Reynolds (Re) of 170 was calculated. For

these conditions, a radially uniform fibre velocity distribution was expected (Park and Chang).

This was verified by measuring the radial pressure distribution in the entrance manifold of a

HFBR cartridge. For inlet pressures of 4000 Pa, pressure variations of less than 1% were

found between the reactor symmetry axis and the outer manifold radius.

5.2 Gel Conductivity Measurements

The falling head method (Bear, 1972) was used to determine conductivities for agarose gel

concentrations of 1, 2 and 3%. All experiments were performed at room temperature and low

pressure gradients (< 2000 Pa) to avoid gel compression. In Table 5.2 a summary of the

calculated agarose gel conductivities, based on the measurements, is given. A correlation

coefficient r> 0.99 for the linear 1n[(h-170)1h0] versus time plots was obtained for all

conductivity calculations. The low Reynolds number flow in the porous media was described

by Darcy's law. The porous medium Reynolds number (Re << 1), calculated from Equation

2.1 using the maximum superficial velocity encountered, was orders-of-magnitude below the

upper limit reported for the Darcy flow regime (Scheidegger, 1960; Bear, 1972).

The two conductivity measurements for a 2% gel were not identical. This might be due

to a slightly altered gel structure because of higher initial pressures applied in the first 2% gel

experiments (Table 5.2), or to minor leakage around the edges of the gel plug. The

conductivity of the 1% gel was about 10-fold greater than that of the 2% gels, due to the

lower agarose concentration. But the increase in conductivity was not as substantial when the
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gel concentration was reduced from 3% to 2% A 2% agarose gel with a 2% BSA addition

was prepared to investigate the effect of the presence of protein on the conductivity of the gel

used in the gel/protein-filled HFBR experiments. It was noticed that the BSA containing gel

mixture had a softer consistency than a pure agarose gel. The presence of BSA increased the

conductivity of the gel, presumably because this contaminant adversely affected the gel

structure.

Table 5.2 Experimentally determined agarose gel conductivities.

Agarose Range of Gel Calculated Gel
Gel Concentration Applied Pressure Thickness Conductivity

% P 5 k
(w/w) (Pa) (cm) (m2)

3% 1577 - 1322 1.95 0.9x10-16

2% 1555 - 180 2.15 2.7x10-16

2% 930 - 852 2.05 1.5x10-16

1% 1822 - 627 2.50 20x10-16

2% + 2% BSA 940 - 700 2.30 7.5x10-16

The measured results did not agree with the 2% agar-agar gel conductivity of

4.4x1043 m2 reported by Pallmann and Deuel (1945). They measured the conductivity by

adding the gel solution to a tube with a frit, allowing it to solidify and collecting the fluid,

transmitted through the gel under an applied pressure (1 m water), for several days.

Obviously, their reported conductivity values were not corrected for viscosity, or the wrong

units were presented. If these values were multiplied by the viscosity of water at 20 °C, the
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conductivities would agree with the ones found here for 2% agarose gels. Wei and Russ

(1977) measured a conductivity of 2x10-'7 m2 for gelatin/agarose (3.5%/1.25%) gels. They

determined the conductivity of the gel by measuring the movement of the percolating fluid in a

capillary using a light microscope. This lower conductivity, given the higher overall gel

concentration, is in reasonable agreement with the results measured in this study.

5.3 Model Parameters

The Krogh cylinder radius R3 was calculated assuming a homogenous fibre distribution in the

cartridge with a constant inner shell diameter of 3.15 cm (Figure 5.1). Since the cylindrical

cartridge shell diameter increased radially to 4.12 cm over a length of 2.1 cm at both ends, the

outer part of the fibre bundle was exposed to an additional ECS volume of 11.9 mL or 9% of

the total ECS volume at each end. The effect of these additional spaces on ECS

hydrodynamics and protein redistribution cannot be properly accounted for by the Krogh

cylinder assumption and therefore it was neglected. It also was assumed that infiltration of

agarose into the ultrafiltration membrane did not alter the hydraulic permeability of the fibre

membranes. This is a reasonable assumption since the agarose gel conductivity was still three

orders-of-magnitude greater than the conductivity of the cuprophan membrane material

(5x10-19 m2). The low Reynolds number flow in the porous media was described by Darcy's

law. The highest axial ECS velocity encountered during computer simulation, along with an

assumed agarose gel pore diameter of 1.0 pun, yielded a maximum Reynolds numbers of 10-5,

which was still orders-of-magnitude lower than the upper limit (Re < 10) reported for the

Darcy flow regime (Scheidegger, 1960; Bear, 1972).

The stretching of the fibres in the cartridge shell, due to 10% axial expansion during

wetting, was neglected. Only a small fraction of the lumen flow passed into the ECS (<<1%)

and thus a nearly linear axial pressure distribution existed in the fibre lumen. Since the
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volumetric lumen flow rate was measured, the pressure boundary condition at the permeable

fibre inlet was calculated by using the Hagen-Poiseuille relationship for laminar flow in a

straight tube. The pressure at the permeable fibre outlet was assumed to be atmospheric. The

fibre length was taken to be the axial distance between the two inner surfaces of the inlet and

outlet potting sections (21.5 cm). Pressure losses in the impermeable fibre pottings were not

considered, since these did not contribute to any ECS leakage flow. The reported lumen flow

rate is, by definition, the total flow into a multi-fibre HFBR. The volumetric flow rate for a

single fibre Q1 was obtained by dividing the total flow through the HFBR Q, uniformly

amongst all 8128 fibres in the cartridge.

An ECS porosity of 100 % (6 = 1) was used for nearly all computer modelling. Only at

the last Figure (5.24) the influence of the decreased ECS porosities on the protein transport

was investigated for a very low ECS conductivity. All computer simulation results presented

were obtained using 201 uniformly spaced grid points in the axial direction and, for the two-

dimensional simulations, 11 uniformly spaced radial grid points at each axial node. In the one-

dimensional empty ECS model, extremely steep concentration gradients were encountered as

steady-state was approached. However, 201 axial nodes were still sufficient to handle these

steep gradients. Computer simulations using 801 axial nodes increased the computational time

but did not alter the results. Since extreme concentration gradients were not found in the

packed ECS simulations, 201 axial grid points were more than sufficient. The same steady-

state solution was obtained for a wide range of time-increments; 360 - 18000 s for an ECS

conductivity of 5x1045 m2 and 10 - 500 sec for an empty ECS. However, for the transient

model simulations, sufficiently small time-steps were always used to ensure accurate results, 5.

1000 s for a packed and s for an empty ECS. The ECS concentration profiles were

considered to be at steady-state when the slope of the maximum concentration change

between two successive time steps was less than 10-8g/L-s. A summary of the computer

modelling parameters is given in Table 5.3.



Table 5.3 Modelling parameters for HTER protein polarization program.

Parameter Values Units Symbol

Temperature 293 K T

Permeability of membrane 6x10-15 m L P

Viscosity of water 1.002x10-3 Pa-s i_t

Fibre length 0.215 m L

Inner fibre radius 115 iim R1

Outer fibre radius 124 1-tal R2

Krogh radius 175 jAM R3

ECS conductivity 10-9- 5x10-17 m 2 k3

ECS porosity 1.0 6

Molecular weight of BSA 69,000 DA M

Initial concentrations of BSA 5 - 75 gli- c30

2nd virial coefficient of BSA 10.473 x 10-3 L/g A 2

3rd virial coefficient of BSA 17.374 x 10-6 L2/g2 A 3

Diffusivity of BSA 0.69x10-1° m2is D

HTER flow rate 447 - 544 mL/min 0

Number of fibres in HFBR 8128 - N

49
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5.4 Modelling of Hollow Fibre Bioreactor Hydrodynamics

Apelblat et al. (1974) modelled the fluid dynamics in a tissue-capillary system using the Krogh

cylinder approach. Their system corresponds to the packed ECS fliFBR system in the absence

of osmotically-active proteins. Apelblat et al. solved the Laplace equations governing the

pressure in the ECS, lumen and membrane by power series expansions. This publication, as

well as others which cited and attempted to correct it (Heath et al., 1990; Libicki, 1986),

contained equations with typographical errors. A corrected solution of the Apelblat

hydrodynamic model is included as Appendix 1.

Figure 5.2 Axial ECS pressures at R2 calculated using Apelblat's analytical solution (-) and
the 2-D (.) and 1-D (0) computer models. k3= 5x10-15 M2, c= 1.0, API = 5000 Pa,
L = 6x10-15 M.

A program was written to calculate the Apelblat et al. solution, in terms of Bessel series,

for the axial pressure distribution along the outer radius of the fibre membrane (R2) for an

ECS conductivity of 5x10-15 m2. These results as well as the ones obtained from the two-
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dimensional and one-dimensional computer models are plotted in Figure 5.2. However,

Figure 5.2 reveals that pressure variations between all three model predictions were negligible

at all axial positions. Thus, the one-dimensional model described the HiFBR hydrodynamics as

well as the two-dimensional model and, therefore, was used to generate the results shown in

Figures 5.3 to 5.5.

Axial Distance (cm)
Figure 5.3 Axial ECS pressure distribution for different conductivities k3, 0 = 500 mL/min,
e = 1.0, Lp= 6X10-15 M.

In Figure 5.3 axial lumen and ECS pressure distributions for different ECS conductivities

are shown. Since the leakage flows from the lumen into the ECS were less than 0.01% of the

lumen inlet flows, even in the empty ECS case, a nearly constant lumen pressure drop was

encountered in all computer simulations. In the first half of the fibre, the ECS pressures

exceeded the lumen pressures, resulting in a positive leakage flow into the ECS (Figure 5.4).

Fluid re-entry into the fibre lumen results in a symmetric leakage flow downstream.
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Figure 5.4 Transmembrane and average ECS velocities for different conductivities k3.
Q = 500 mL/min, c = 1.0, Lp= 6x10'5 m. Solid line: transmembrane velocity, dotted line:
radially-averaged axial ECS velocity.

A mirror image of the pressures exists at half the fibre length where all pressures intersect. At

this point no transmembrane flux between lumen and ECS occurs and the axial velocities

reach their maxima (Figure 5.4). The transmembrane velocities are governed by the

transmembrane pressure differences which are influenced by the ECS conductivity, membrane

permeability and the lumen pressure drop. For an ECS conductivity of 10-9 m2, corresponding

to an empty ECS situation, the ECS pressure distribution was nearly constant. A reduction of

the ECS conductivity increased the flow resistance there and hence, the ECS pressures

approached the lumen values (Figure 5.3). For the lowest plotted ECS conductivity of

5x10-15 m2, transmembrane pressure differences existed only over very narrow regions near

the fibre inlet and outlet. This resulted in a nearly uniform axial ECS velocity profile (Figure

5.4). The average axial velocities for an ECS conductivity of 10-17 m2 were not plotted in

Figure 5.4, since these velocities were extremely low (<0.5 tim/h). A further conductivity
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decrease resulted in such low transmembrane pressure differences that, round-off errors, even

with double precision computing, created numerical problems.

Axial Distance (cm)

Figure 5.5 Axial ECS pressure distribution for different membrane hydraulic permeabilities.
Q = 500 mL/min, k3 = 5x10-15 m2, E = 1.0.

The lumen and ECS pressure distributions for an ECS conductivity of 5x10-15 m2 are

plotted as a function of membrane permeability in Figure 5.5. Decreasing membrane

permeabilities resulted in increased transmembrane pressures. The flow resistance in the

membrane increased and hence the resistance in the ECS became less important. At a

membrane hydraulic permeability of 6x10-15 m, the main flow resistance was found in the

ECS. Decreased membrane permeabilities resulted in more uniform ECS pressure profiles,

like those found in the empty ECS case (Figure 5.3). An ECS pressure profile that followed

the lumen pressure distribution was found for large membrane hydraulic permeability values

(6x10 - 13 m). Here, the flow resistance in the membrane became insignificant and compared

to that in the ECS.
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The current model neglects axial pressure gradients in the membrane region which could

influence the results particularly at high membrane permeabilities or low ECS conductivities

when the membrane resistance is relatively small. But, since the membrane volume is more

than an order-of-magnitude less than the ECS volume, the influence of the axial membrane

leakage flow on the Starling flow and protein transport in the ECS was considered to be

minor.

5.5 Protein Transport in a Packed Hollow Fibre Bioreactor

ECS convective flow transports initially uniformly distributed proteins towards the

downstream end of HYBRs. The proteins accumulate until the osmotic pressures, associated

with the local protein concentrations, match the lumen pressures. A steady-state situation is

achieved after all proteins are swept downstream and distributed such that the effective

(i.e., P3 - n3) ECS pressures match the lumen pressures. In the region of high protein

accumulations transmembrane pressure differences between the lumen and ECS are virtually

zero, creating a stagnant, motion-free region.

The transient and steady-state radially-averaged axial protein concentration results from

the one-dimensional and two-dimensional models are compared in Figure 5.6. The steady-

state ECS profile was assumed to be reached at 1000 h as the maximum concentration change

slope had decreased to less than 10-8 g/L-s. An ECS conductivity of 5x10-15 m2, a lumen flow

rate of 500 mL/min and a low initial protein concentration of 5 g/L were selected for these

computer model simulations in order to obtain relatively high radial ECS velocities. The

results indicate that radial protein concentration gradients as well as radial ECS pressure

gradients can be neglected from the analysis. Radial concentration variations at any axial

location were not found for the 6 significant figures printed. To the same number of

significant figures, the one-dimensional and two-dimensional models computed identical
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radially-averaged axial concentration profile results. Hence the two-dimensional simulations,

which required about two orders-of-magnitude more computation time, were unnecessary and

the one-dimensional model was used to generate all further results.

Figure 5.6 Transient axial protein concentration results from 2-D (-) and 1-D (.) model. The
2-D model results represent concentrations at R2 and R3, whereas the 1-D results represent
radially-averaged concentrations. c30 = 10 g/L, Q 500 mL/min, k3= 5x10-15 M2, s = 1.0,
L— 6X10-15 M.

Insignificant radial protein concentration gradients in an empty ECS were also predicted

by Taylor et al. (1993) and Patkar et al. (submitted). Patkar simplified Taylor's two-

dimensional model to a one-dimensional one and then compared the predictions of the two

models. This comparison yielded a similar outcome, namely that the one-dimensional empty

ECS model predicted very similar transient and steady-state ECS concentration profiles as the

fully two-dimensional model. The radial Peclet numbers for an empty ECS HIFBR are so low

(Pe << 1), that diffusive protein transport in the radial direction always dominates under
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normal operating conditions. Axial and radial velocities in a packed ECS can be several

orders-of-magnitude lower than in an empty ECS. Therefore, it is not surprising that the one-

and two-dimensional models developed here for the latter case, yield such closely similar

protein distribution results.

5.5.1 Comparison of Experimental Data with Model Results

To validate the mathematical model developed here to describe transient protein transport in

the ECS of HFBRs, a packed ECS was simulated experimentally by filling the ECS of gambro

reactors with agarose/protein gels and then pumping a unidirectional flow of water through

the fibre lumina. Several protein polarization experiments with different BSA loadings were

performed. At defined times the reactors were frozen in liquid nitrogen and the axial ECS

protein concentrations analyzed. The measured radially-averaged ECS protein concentration

profiles were then compared with the model predictions.

The protein polarization experiments are summarized in Table 5.4. In the first two

experiments the fluid was not cleared from the lumen-side and therefore the ECS protein

concentration calculations accounted for the dilution by the protein-free water in the lumen.

In the other experiments the lumen fluid was first removed before freezing the reactor in liquid

nitrogen. This procedure avoided cracks in the cartridge shell which complicated sawing of

frozen reactors.

In the experiments whose results are shown in Figures 5.8 and 5.11, a trace amount of

azoalbumin (red-coloured BSA derivative) was added to the gel/BSA mixture to allow visual

observation of the protein polarization in the HFBR. The red colour intensity increased at the

downstream end of the reactor during continuous lumen flow, whereas gradual protein

leakage from the upstream ECS manifold (Figure 5.1) resulted in red streaks along the

cartridge wall. This latter material polarized less rapidly because protein transport by
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convection and/or diffusion from the manifold region occurred very slowly. However, after

the upstream manifold was completely cleared of protein, the red streaks disappeared and

radial variations in the reactor were no longer apparent. The greatest red colour intensity was

observed at the downstream end where the highest protein concentrations were measured. In

the visually clear upstream regions very low protein concentrations were detected.

Table 5.4 Summary of experimental protein polarization results.

Protein Protein Protein Gel Time of Lumen flow
concentration

added
concentration

recovered
Recovery concentration

(w/w)
Recycle flow rate

(g/1-) (g/L) (/0) (/0) (h) (mL/min)

20 20 100 3 215.6 492

20 19.3 97 3 146.3 544

28.6 27.0 94 2 331.5 512

30 26.9 90 2 380.8 447

5 4.7 94 2 329.2 484

The sedimentation of protein solutions in the empty ECS of horizontally-operated HTBR

cartridges was reported by Piret et al. (1991). In the experiments where azoalbumin was

added to gel-filled HFERs (Figures 5.8 and 5.11), vertical concentration gradients due to

solution sedimentation were not visibly noticeable. To evaluate the importance of the buoyant

forces relative to the viscous resistance acting on the concentrated BSA solutions encountered

near the downstream end of the HIFBR a Grashof number was calculated from:



e g p Ap
Gr = 2̂

where dpore is the pore diameter of the gel, p the fluid density, g is the gravitational constant,

Ap is the difference between the protein containing and protein free fluid densities and 1i is the

viscosity of the solution. Using an average gel pore diameter of 1.0 i_tm (Bassi et al., 1987)

and values listed in Table 3.1 for a solution containing 50 g/L of BSA, a Grashof number of

<10-5 was calculated. Since this Grashof number was much less than unity, significant

sedimentation of concentrated protein solutions was not expected.

Computer modelling results using the measured agarose/protein (2%/2%) gel

conductivity of 7.5x10-16 m2 did not agree with observed ECS protein profiles obtained for the

first run. The computed ECS velocities were too low to cause a significant change from the

initial uniform protein profile after 216 h (Figure 5.7). The gel structure in the conductivity

measurement experiments was probably not the same as that in the cartridge. This may be

explained by incomplete gel attachment at the fibre walls, which could have resulted in higher

average ECS hydraulic conductivities. Since direct gel conductivity measurements on a gel

filled HFBR cartridge were not possible, an apparent ECS conductivity of 5x10-15 m2 was

obtained by forcing the transient computer model predictions to fit the experimental results of

Figure 5.10. Comparisons for the other experimental runs (Figures 5.8 - 5.11) showed that, if

a constant ECS conductivity of 5x10'5 m2was assumed, the computer model simulations

adequately described all the measured transient ECS protein concentration profiles.

The measured protein concentrations represent the average concentration of each cut

section. In Figure 5.7, where the first section was about 10 cm long, it is obvious that the

plotted concentration did not necessarily describe the true axial concentration profile. This

experiment was repeated and more axial sections were analyzed to obtain the more detailed

axial protein distribution shown in Figure 5.8, which revealed an improved agreement between

the experimental and theoretical results.
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Figure 5.7
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k3= 5x10-15
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Axial Distance (cm)

Experimentally obtained radially-averaged axial ECS protein concentrations
puter modelling results. c30= 20.2 giL, Q = 492 mL/min, time = 215.6 h, 3% gel,
and 7.5x10-16 m2, E = 1.0, Lp= 6x10-15m. Solid line: model;^experimental data,
section length.
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Figure 5.8 Experimentally obtained radially-averaged axial ECS protein concentrations
versus computer modelling results. c30 = 19.3 g/L, Q = 544 mL/min, time = 116.3 h, 3% gel,
k3= 5x10-15 m2, E = 1.0 Lo= 6x10-15m. Solid line: model;.: experimental data.
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Higher initial protein loading experiments were performed (Figures 5.9 and 5.10) to test

the influence of increased osmotic pressures on the protein redistribution behaviour. The

protein transport was significantly slower and, after 14 - 16 days, nearly linear axial

concentration profiles were measured. Again, the model provided a good description of the

measured radially-averaged axial protein distributions in the ECS. To test the model at a

lower initial protein concentration, an experiment was performed at 5 g/L BSA (Figure 5.11).

As expected, the decreased osmotic effects increased the ECS velocities and protein was

transported more rapidly to the downstream end of the reactor. The measured radially-

averaged axial protein profile was no longer linear, but still agreed reasonably well with the

model prediction.

Computer simulation results were able to describe the axial protein concentration profiles

measured in multi-fibre HFBRs. However, to account for an apparently altered gel structure

in the reactors, it was necessary to assign a gel conductivity in the computer model that was

about 10 times higher than the measured value. The experimental method of using an average

protein concentration for a cut section, assumed that the protein was distributed uniformly in

the radial direction. This assumption did not always hold since it was observed that higher

azoalbumin concentrations near the cartridge wall existed in some regions, whereas the rest of

the cross-section appeared to be clear of protein. By looking at the cut surface of the HFBR

cross-sections, it was confirmed that the dye was mainly located near the cartridge walls.

These higher protein concentrations could be due to the ECS manifold ring at the upstream

end of the reactor, which released protein along its circumference into the outer regions of the

fibre bundle. The proteins inside the multi-fibre bundle were more rapidly cleared from the

upstream space by the secondary ECS convective flow.
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Figure 5.9 Experimentally obtained radially-averaged axial ECS protein concentrations
versus computer modelling results. c30= 27.5 g/L, Q = 512 mL/min, time = 331.5 h, 2% gel,
k3= 5x10-15m2, c = 1.0, Lp= 6X10-15m. Solid line: model;.: experimental data.

Figure 5.10 Experimentally obtained radially-averaged axial ECS protein concentrations
versus computer modelling results. c30= 26.9 g/L, Q = 447 mL/min, time = 380.8 h, 2% gel,
k3= 5x10-15m2, 6 = 1.0, Lp= 6x10'5 m. Solid line: model at 380.8 h; dotted line: steady-state
result at 1888 h; •: experimental data.
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Figure 5.11 Experimentally obtained radially-averaged axial ECS protein concentrations
versus computer modelling results. c30= 4.7 g/L, Q = 484 mL/min, time = 329.2 h, 2% gel,
k3= 5x10-15m2, E = 1.0, Lp= 6X10-15m. Solid line: model;.: experimental data.

5.5.2 Model Predictions

The initial and steady-state ECS and lumen effective pressure distributions for a packed ECS

(k3= 10'3m2) and for an empty ECS (k3= 10-9m2) are compared in Figures 5.12 and 5.13,

respectively, for an initial BSA concentration of 10 g/L and a lumen flow rate of 500 mL/min.

A packed bed ECS conductivity of 1043 m2 was chosen for Figure 5.12 since, for lower ECS

conductivities the lumen and ECS pressures were no longer distinguishable. Due to the

initially uniform protein distribution, the ECS pressure profiles for both conductivities were

similar to the protein-free situation discussed in Section 5.4. At steady-state the proteins were

polarized at the downstream end of the reactors, and the points where lumen and ECS

pressures intersected were shifted upstream with decreasing ECS conductivities.



Axial Distance (cm)
Figure 5.12 Lumen and ECS total pressures (P3 - 113) as function of axial distance at
steady-state for a packed ECS conductivity. c30= 10 g/L, 0 = 500 mL/min, k3 = 10-131112,
E = 1.0, Lp= 6X10-15 M.

Figure 5.13 Lumen and ECS total pressures (P3 - 1-13) as function of axial distance at
steady-state for an empty ECS. c30= 10 g/L, Q = 500 mL/min, k3 = 10-91112, L0= 6X10-15 M.
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The transient protein concentrations and ECS velocity profiles for an empty ECS are

plotted in Figure 5.14 and the associated initial and steady-state transmembrane velocities in

Figure 5.15. Protein accumulation at the downstream end decreased transmembrane pressure

differences and resulted in decreased ECS velocities. After steady-state was achieved, the

secondary ECS flow was restricted to a region of about 75% of the total reactor length. Low

BSA diffusivity resulted in a sharp concentration gradient between the downstream polarized

and the upstream protein-free regions (Taylor et al., 1993; Patkar et al., submitted).

The packed ECS conductivity of 10-13m2 required lower protein concentrations to

counter-balance the lumen pressures since the transmembrane pressures were decreased.

Hence, at steady-state, a larger ECS region contained proteins. For example, at steady-state,

the proteins in the packed ECS were distributed over about 50% of the total fibre length

(Figure 5.16), whereas in the empty ECS it was only about 25% (Figure 5.14). Also, due to

the decreased axial ECS velocities (Figure 5.16), the time required to create the steady-state

downstream polarized region was about 20 times longer. Diffusive protein transport, which

did not influence the results in the empty ECS case, became more important in the packed

ECS because of the greatly reduced ECS velocities. Hence the protein concentration gradient

in the protein-containing regions was also determined by the protein diffusivity. The

corresponding initial and steady-state radial transmembrane velocities are plotted in Figure

5.17. Whereas in the empty ECS case the maximum axial ECS (Figure 5.14) and

transmembrane velocities (Figure 5.15) decreased significantly at steady-state, these maximum

velocities changed little in the packed ECS case (Figure 5.16 and 5.17) A smoother, more

spread out, steady-state transmembrane velocity profile, compared to Figure 5.15, separated

the upstream protein depleted and downstream protein polarized regions (Figure 5.17), where

low transmembrane fluxes still existed. Note, that the packed ECS conductivity used to

generate Figures 5.16 and 5.17 was reduced back to its standard value of 5x1 5 2
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Figure 5.14 Transient radially-averaged axial ECS protein distribution and axial velocities
for an empty ECS. c30 = 10 g/L, Q = 500 mL/min, k3 = 109m2, L= 6x10-15 m. Solid line:
concentration; dotted line: velocity.

30 iT)

20 3
CD
3

10 CT
F13

0^CD

-10

-30

Axial Distance (cm)
Figure 5.15 Steady-state radially-averaged axial transient BSA concentrations and
transmembrane velocities for an empty ECS, c30 = 10 g/L, 0 = 500 mL/min, k3 = 10-9 m2,
Lp= 6x10-15 m. Solid line: concentration; dotted line: velocity.
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Figure 5.16 Transient radially-averaged axial protein distribution and axial velocities for a
packed ECS, c30 = 10 g/L, Q = 500 mL/min, k3 = 5x10'5 m2, c = 1.0, L— 6x10'5 m. Solid
line: concentration; dotted line: velocity.

Figure 5.17 Radially-averaged BSA concentrations and transmembrane velocities for a
packed ECS, c30= 10 g/L, Q = 500 mL/min, k3= 5x10-15 m2, c = 1.0, L = 6x10'5 m. Solid
line: concentration, dotted line: velocity.
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The viscosity of BSA solutions can vary significantly from the viscosity of water as the

BSA concentration is increased. In the model equations, the ECS fluid was treated as water

and viscosity changes due to the presence of proteins were neglected. The computer program

for the one-dimensional case was altered such that a concentration dependent viscosity was

calculated to investigate the impact of viscosity changes due to the presence of BSA.

Therefore Equation 3.32, governing the pressure distribution in the ECS, was rewritten as

follows:

d (1 d P3), ^2R1^L
d z

p  (pi p3 / 3 )

d z 113^(f? -1=0 k3
(5.2)

where i_13 is the local viscosity of the ECS protein solution and 1..ti is the constant viscosity of

the lumen and membrane fluid (water). Radially-averaged BSA concentrations were used to

calculate the local ECS viscosity 43 using Equation 3.27a, developed by Tanford et al. (1956).

After the axial protein distribution was recalculated at each new time-step, the associated ECS

viscosities were updated.

Since the viscous influence of the BSA solutions was expected to be more significant for

higher protein loadings, an initial protein concentration of 20 g/L was selected for the model

comparisons. The results were compared to those obtained using the earlier one-dimensional

model, which did not include effects of variable viscosity. For both the empty and packed

ECS cases, transient and steady-state radially-averaged axial protein profiles were

investigated. The results obtained for the empty ECS case are shown in Figure 5.18. The

concentration profiles are nearly identical to the cases where viscous effects were neglected at

all times, indicating that the variations in protein solution viscosity had little effect on the

behaviour of the system.
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Figure 5.18 Transient radially-averaged ECS protein concentrations for an empty ECS,
including viscosity variations. Solid line: constant viscosity, dotted line: variable viscosity.
c30= 20 g/L, Q = 500 mL/min, k3= 109 m2, L = 6x10 - 15m.
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Figure 5.19 Transient radially-averaged ECS protein concentrations for a packed ECS,
including viscosity variations. Solid line: constant viscosity, dotted line: variable viscosity.
c30 = 20 g/L, Q = 500 mL/min, k3 = 5x10-15 m2, e = 1.0, Lp= 6x10-15m.
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The radially-averaged protein concentration profiles for a packed ECS are shown in

Figure 5.19. Because the flow resistance of the packed ECS plays a far more important role

in controlling HIBR hydrodynamics than in the empty ECS case, the influence of variable

viscosity was more pronounced. The transient protein concentration profiles lagged slightly

behind the ones obtained when viscous effects were not considered. The steady-state criterion

was satisfied after 1671 h in the latter case while an additional 95 h was required by the

former to achieve the same steady-state concentration profile.

In general, however, the results showed that ECS viscosity changes due to the presence

of proteins did not significantly alter the transient concentration profiles. Also, at steady-

state, the constant and variable viscosity models predicted nearly identical concentration

profiles for both the empty and packed ECS cases.

0
^

5^10^15
^

20
Axial Distance (cm)

Figure 5.20 Steady-state radially-averaged BSA concentrations for c30 = 5, 15, 30, 50 and
75 g/L, 0 = 500 mL/min, L= ^Solid line: packed ECS, k3 = 5x10-15 m2, c = 1.0;
dotted line: empty ECS, k3 = 10-9 m2.
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Radially-averaged steady-state ECS protein profiles for a packed ECS reactor having a

conductivity of 5x10'5 m2and different initial protein concentrations are plotted in Figure

5.20. With increasing initial protein concentration, the protein profile extended over larger

axial ECS regions. For protein loadings higher than 30 g/L the proteins were distributed

throughout the entire ECS. The empty ECS radially-averaged protein concentration profiles

obtained under otherwise identical conditions are also shown in Figure 5.20. For the empty

ECS case, a minimal protein concentration of about 30 giL was also required to achieve

complete protein distribution in the ECS. This result was somewhat surprising, since it was

expected that a higher initial ECS protein loading would be required to achieve this result for

the empty ECS case. Also, the steady-state profiles for higher initial concentrations were very

similar to the ones obtained from the packed ECS model. At high initial protein

concentrations (>30 g/L), sufficient protein is loaded in the ECS for osmotic pressures to

almost exactly counter-balance the lumen pressure variation, which is the same in both the

empty and packed ECS situations.

The time required to reach steady-state as a function of initial protein concentration is

plotted in Figure 5.21. With increasing protein loading the time required to reach steady-state

initially increased, due to the reduced ECS velocities, caused by the osmotic back-pressure.

However, above a critical protein concentration of about 25 g/L, the time began to decrease

again, presumably because the proteins did not have to travel as far to reach their final steady-

state distribution. For the empty ECS case the times are significantly lower, since axial ECS

velocities are higher due to the higher ECS conductivity.

Closer observation of Figure 5.20 reveals that, for the protein profiles obtained for initial

concentrations below 30 g/L, true steady-state was not reached yet. Computer modelling

results showed that about twice the time was required to avoid the low concentration tails in

front of the downstream polarized protein profiles. By lowering the steady-state criterion

these tails disappeared. But since these new protein concentration profiles were otherwise
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very similar, the standard steady-state criterion^10-8 g/L-s) was maintained to generate all

the results shown in Figure 5.21.

Figure 5.21 Time to reach steady-state as a function of initial BSA concentrations.
Q = 500 mL/min, Ic3 = 5x10-15 m2, c = 1.0, Lp = 6x10-15m. Solid line: packed ECS, dotted line:
empty ECS

The effect of ECS conductivity on the steady-state protein profiles is shown in Figure

5.22. For an empty ECS conductivity of 109m2, a highly polarized protein region existed at

the downstream end of the reactor. With decreasing ECS conductivity the transmembrane

pressure differences decreased and hence lower protein concentrations were required to shut

off the transmembrane flows. Also, at reduced axial ECS velocities, diffusive transport

became more dominant and the concentration gradients became more gradual. With

decreasing ECS conductivities the time required to reach steady-state increased and, due to
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low axial ECS velocities, a nearly linear concentration profile was obtained at an ECS

conductivity of 10'7m2.

Figure 5.22 Steady-state radially-averaged protein distributions at ECS conductivities of
k3 = 10-9, 5x10-15, 10-16 and 10-17m2, e = 1.0, C30 10 g/L, Q = 500 mUmin, Lo= 6x10 - 15m.

The maximum average axial ECS Peclet number exists at the beginning, when proteins

are uniformly distributed in the ECS. Based on the length of the fibre L, diffusivity of the

protein D and the velocity obtained by averaging the ECS axial velocity over the entire

ECS volume, this Peclet number was calculated as follows:

Pe = 
u

3
L̂
^(5.2)

This maximum average axial ECS Peclet number, for different ECS conductivities is shown in

Table 5.5. In the empty ECS case (1c3 10-9 m2) the high Peclet number shows that

convective transport dominates. As the ECS conductivities decrease, the axial ECS velocities
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decreased and hence the Peclet numbers are lower. For the lowest ECS conductivity of

10-17 m2, convective transport no longer dominates.

Table 5.5 Maximum average axial ECS Peclet numbers.

ECS conductivity^Peclet number

k3^ Pe

[m2]^
[-] 

^

10-9^16200

^

5x10-15^216

1047^0.4

In Figure 5.23 the transient radially-averaged axial protein concentration and axial ECS

velocities are plotted for the tissue-like packed ECS conductivity of 10-17 m2. At steady-state

the axial ECS velocities do not significantly differ from their initial values. The steady-state

profiles were obtained after about 10 years at which time only a slight protein gradient

existed. Normally HFBRs operate for about 3 months. Over such times, at low ECS

conductivities, protein polarization should therefore be negligible.

The BSA diffusivity used in the computer simulations was considered to be concentration

independent (van den Berg and Smolders, 1987). The modelling results were obtained at

protein and fluid properties evaluated at room temperature (20 °C). The increased HFBR

operating temperatures used for mammalian cell culture (37 °C) will increase the diffusivities

of proteins. As a result, axial diffusive transport will increase further and protein polarization

may be even less significant.
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Axial Distance (cm)
Figure 5.23 Transient radially-averaged BSA concentrations and ECS velocities for a
tissue-like conductivity, c30= 10 g/L, Q= 500 mL/min, k3= 107m2, £ = 1.0, L= 6x10-15m.
Solid line: concentration, dotted line: velocity.

In the previous modelling the ECS porosity was taken to be 1. The influences of reduced

ECS volumes due to the presence of impermeable cells in the ECS were investigated. The

results for a low ECS conductivity of 10-17m2 are shown in Figure 5.24. Decreased bed

porosities increased the axial ECS velocities and this resulted in increased convective protein

transport. Also, reduced bed porosities increased the downstream protein polarization. The

shortest period of time to reach steady-state was required for the lowest ECS porosity.
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Figure 5.24 Steady-state radially-averaged protein distributions in fluid phase at ECS
porosities of -= 1.0, 0.5, 0. 2 and 0.1, k3 = 10-17m2, c30 = 10 g/L, Q = 500 mL/min,
Lp= 6X10-15 M.
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CHAPTER 6

Conclusions

In this work, the transport of osmotically-active, high molecular weight proteins entrapped in

the ECS of BFBRs was studied. One- and two-dimensional mathematical models were

developed to describe the motion of fluid and protein in HFBRs whose ECS was packed by

cells or gel. Numerical methods were required to solve the coupled differential equations

governing the transient ECS protein distribution and quasi-steady hydrodynamics in the lumen

and ECS.

The packed bed of cells was simulated experimentally by filling the ECS with liquid

agarose solution containing protein. Upon cooling, a porous gel was formed having a

sufficiently low hydraulic conductivity that Darcy's law was applicable. Therefore, month-

long experiments, required to grow mammalian cell packed HFBRs, were not needed.

The computer modelling results indicated that radial ECS pressure gradients were

negligible and hence, the simplified one-dimensional model was sufficient for all HFBR

operating conditions of interest. The latter computer program required about two orders-of-

magnitude less time to produce the same results as the two-dimensional model.

6.1 Experimental Versus Model Results

Axial ECS velocities were mainly governed by the hydraulic conductivity of the gel. When

the gel conductivity obtained by the falling head method (Bear, 1972) was used, the model

was unable to describe the experimental axial protein profiles measures in the ECS of gel filled

HFBRs. It was believed that the gel did not completely fill the complex ECS volume. Thus, a

higher conductivity was obtained by fitting the model predictions to one set of experimental
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data. The modelling results indicated that, with an effective ECS conductivity of 5x1015 m2,

all of the experimentally obtained axial protein concentrations profiles could be adequately

described. The primary differences between model and experimental results occurred near the

ends of the reactor and were attributed to the circumferential ECS manifolds, which exchange

fluid and protein only very slowly with the fibre bundle region of the ECS.

6.2 Implications for Hollow Fibre Bioreactor Operation

Mammalian cells entrapped in the ECS of a HFBR can eventually fill this space to produce

very highly packed conditions with low hydraulic conductivities. The hydraulic conductivity

of hybridoma cell lines can be roughly approximated by those for packed beds of red blood

cells; values of which have been reported by Zydney et al. (1986) and by packed beds of

spheres whose conductivities can be described by the Kozeny-Carman equation (Zydney et

al., 1986). Surface dependent cell lines like BHK (baby hamster kidney) form an extracellular

matrix around the cells and conductivities are expected to be like those of tissues, which are

orders-of-magnitude lower.

Modelling results indicated that ECS velocities, responsible for the convective protein

transport, were so low at packed ECS conductivities that, practically no protein polarization

occurred on the time scale of HFBR operation. The hydrodynamic resistance in the ECS

became so dominant that the membrane hydraulic permeability no longer affected the ECS

flow. The ECS pressure distribution, nearly constant in an empty ECS, was nearly identical to

the lumen pressures. Hence transmembrane pressure differences, responsible for the leakage,

flow decreased dramatically. Convective protein transport and associated osmotic effects

influenced the ECS hydrodynamics much less since the protein profile changed little even after

several months.
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High BSA loadings at HFBR start-up can reduce downstream polarization of proteins

(Taylor et al., 1993; Patkar et al, submitted). A uniform distribution of essential cell growth

proteins (e.g., insulin) is desirable, especially upon cell inoculation, to ensure homogeneous

cell growth. Modelling results showed that, after a high cell density is obtained, these high

protein loadings are no longer required since convection no longer dominates the protein

transport.

Large product molecules (e.g., antibodies) entrapped in the ECS are harvested by

opening the shell ports. The modelling results indicated that, in highly packed tissue-like cell

beds, the ECS flow resistance is so high that practically no ECS leakage flow occurred.

Consequently, after the ECS ports are opened it could take up to several weeks to recover the

ECS fluid containing the desired product. Alternatively one could apply an external flow

through one of the ECS ports to increase the flow of product-containing fluid from the other

ECS port. However, to increase the harvesting flow significantly, very large pressures at the

ECS side would be required. These high pressures could conceivably cause cell bed

compression and hence further decreases in bed conductivities. Such decreases in packed cell

bed conductivities with increasing pressure were reported by Zydney et al. (1986) for red

blood cell filtration.

The low ECS conductivities greatly reduced ECS fluid flow during product harvesting.

To allow recovery of the ECS proteins the membrane size could be increased (i.e.,

microporous hollow fibre membranes), allowing the product to penetrate into the lumina.

Alternatively, a dual circuit HFBR with two different membrane fibre cut-offs could be used

to separate product harvesting from medium perfusion, but this would require a more complex

reactor design.

Local depletion of growth factors in highly metabolically active cell beds could cause cell

starvation. Due to their high molecular weights these molecules cannot penetrate through the

fibre membranes into the ECS and hence must be supplied from the ECS ports. Decreased

ECS porosities increased the convective protein transport in the ECS even for a very low ECS
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conductivity. As long as the ECS conductivity is not too low, convection can facilitate the

transport into the metabolically active regions. But in highly packed ECS regions, convection

no longer dominates. Transport of growth factors into these regions will now be governed by

slow convective and diffusive transport; hence, cell growth may decrease or cell death may

occur.
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CHAPTER 7

Future Work

1) The fluid dynamics of HFBRs having hydraulic conductivities corresponding to packed

beds of mammalian cells has not been thoroughly investigated. Ex situ techniques, such as the

falling head method, did not provide measured conductivities representative of those found in

HFBRs whose ECS is packed with the same porous medium. Due to the extracellular matrix

formed around mammalian cells, conductivity calculations based on a spherical cell packing

cannot be used to obtain the required estimates, especially in the geometrically complex ECS.

A method should be designed to allow for accurate conductivity measurements in situ.

2) An on-line non-invasive flow measuring technique such as nuclear magnetic resonance

could give experimental insight about the effects of osmotically-active proteins on ECS

hydrodynamics. If this technique is sensitive enough, whole-reactor radial variations could

also be investigated.

3)^The Krogh cylinder approximation assumes that the hydrodynamic and protein transport

behaviour observed for a single fibre is representative of all fibres in the multi-fibre bundle

which makes up the HFBR. A more sophisticated model could be developed to provide more

realistic simulations of a multi-fibre HFBR for circumstances where the Krogh cylinder

approximation is no longer applicable. Such a model could accommodate the existence of

circumferential manifolds near the ends of the HFBR and would permit more realistic

modelling of open-shell operations such as exist, for example, during product harvesting. This

model could also handle the sedimentation of protein solutions that occur due to

concentration-dependent density gradients.
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4) During cell growth cell densities increase and tissue-like regions are formed that change

the HFBR hydrodynamics. The current models could be re-written to include such time

dependent local conductivity changes.

5) Smaller molecules such as insulin, which are essential for cell growth, can penetrate

through the membrane. Protein polarization profiles need to be studied, both theoretically and

experimentally, to understand the influence of membrane leakage on the behaviour of the

system. For such studies, the impact of the simultaneous presence of high molecular weight

proteins, such as BSA, could be included.



Nomenclature

A 2^2nd virial coefficient^ [m3 kg-1]
A3^3rd virial coefficient^ [m6 kg-2]

A cap^cross-sectional area of the capillary^ [m2]

A gel^cross-sectional area of the gel^ [m2]

A mem^total area of the membrane in the HFBR^[m2]

c^concentration^ [kg m-3]
c30^uniform initial start concentration in ECS^[kg m-3]
Z.-^radially-averaged axial concentration^[kg m-3]
D diffusivity^ [m2 s-1]

D.^diffusivity at a infinite diluted solution^[m2 s-1]

dpore^pore diameter^ [m]
6^bed porosity^ H
F^body force vector^ [N]
g gravitational constant^ [m s-2]
h^height of water in the capillary^ [m]
h0^height of constant water head^ [m]
I.^modified Bessel function, first kind, order zero^H
II^modified Bessel function, first kind, order one^H
J membrane flux^ [m3 s-1 m2]
k^conductivity^ [m2]

K pressure drop parameter (Park and Chang, 1986)^H
K constant for protein viscosity Eqn. 3.27a^H
IC^convective hindrance factor^ H
Kd^diffusivity hindrance factor^ H
K.^modified Bessel function, second kind, order zero^H
K1^modified Bessel function, second kind, order one^H
L reactor length^ [m]
Lp^membrane permeability^ [m]
M^molecular weight^ [kg moles-1]
nis^molar salt concentration^ [g L-1]
N number of fibres in the reactor^ H
P pressure^ [Pa]
O volumetric flow rate through the HFBR^[m3 s-1]
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Qi^volumetric flow rate through a single fibre^[m3 s-11J

Q3^volumetric flow rate^ [m3 s-1]

aleak^average volumetric leakage flow rate from the lumen^[m3 s-1]

r^radial distance^ [m]
R^gas constant^ [J moles-1 K-1]
R1^lumen radius^ [mi
R2^outer membrane radius^ [m]
R3^Krogh radius^ [m]
Rc^cartridge radius^ kill
S particle surface area^ [m2]

I^time^ [s]
T^absolute temperature^ [K]
u^axial velocity^ [m s-1]
Ft^radially-averaged axial velocity^ [m s-1]
,
u3^ axial ECS velocity averaged over the entire ECS^[m s-1]
v^radial velocity^ [m s-1]
^ velocity vector^ [m s-1]
^ particle volume^ [m3]
z^axial distance^ [ri]
Z^protein charge number^ [-]

Abbreviations

BSA^bovine serum albumin
ECS^extracapillary space
EIFBR^hollow fibre bioreactor
ODE^ordinary differential equation
PDE^partial differential equation



Subscripts and Superscripts

1^lumen region
2^membrane region
3^ECS region

averaged quantity
i^index for axial grid location

j^index for radial grid location
in^fibre inlet
out^fibre outlet
o initial situation

Greek Letters

5^thickness of the gel^ [In]
£ porosity^ [-]
1-1^viscosity^ [Pa-s]

II.^viscosity at infinite diluted solution^ [Pa-s]

[Il]^intrinsic viscosity^ [L g-1]
it^3.14159....^ [-]
H^osmotic pressure^ [Pa]
p^density^ [kg m-3]
a^protein reflection coefficient^ [-]
u kinematic viscosity^ [m2 s-1]

T^flow potential^ [Pa]
AP^pressure difference between the lumen

inlet and ECS outlet^ [Pa]

Dimensionless Numbers

Gr^Grashof number
Pe^Peclet number
Re^Reynold's number
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Appendix 1

Two-Dimensional Analytical Solution for HFBR Hydrodynamics
in a Packed ECS, Protein Free System

This is a typographically corrected version of the Apelblat et al. (1974) solution. In the

absence of osmotically-active molecules, the pressure distributions in the fibre lumen, in the

fibre membrane and in the ECS region can be calculated as follows:

For the fibre lumen:

An^,

pi(z) D +G(z ^ coskanz)
n=1 an

1  dP, (1,2 R12)
V =

d z

1 d2 P
u = ^

2
^ (2r R,2 –t-3)

16p d z 

For the membrane and cell region ( i = 2, 3):

Lp(z,r) D+G(—+II3nR (anr) cos(anz))
2
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L — E

R2 (anr) = W„Ijanr) + S.K.(anr)

a
R^= K(anr) +K j^

Ij
o: nR3) 

^fl/)

(a

S ^a„R2(D„II (a n R2) — Enlo (an R2 )

k
WT,

k
2)

92



93

Appendix 2

One-Dimensional Analytical Solution for Hydrodynamics in a
Packed ECS, Protein Free System

In the absence of osmotically-active molecules the one-dimensional pressure distributions in

the fibre lumen and ECS region can be calculated as follows:

For the fibre lumen:

Pi(z) = B, sinh(X4 +B2 cosh(kz) +B3 z +134

For the ECS:

P3(z) =7 B, sinh(kz)+7 B2 cosh(2z)+B3 z +B4

Volumetric flow rate into the lumen:

Tc R4 ,
= ^ 03, X, +B3)

81A

Average volumetric leakage flow rate from the lumen:

(2, jeak = n R1
4 [A,B, (cosh(X—L )– 1)+ B2 sinh (X —

L
8 t [̂ 2^2

1^R14
8k3 (R; – R22)

Y =
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Appendix 3

Experimental HFBR Protein Results

Figure 5.7
Axial location of section weight water added average measured

cut HFBR
section

(without HFBR shell) to section BSA
concentration

in gel/water mixture

[cm] [g] [mL] [g/L]
0.0^-^10.0 80.6 121.6 0.88
10.0^-^15.0 35.8 59. 4.38
15.0^-^18.0 20.1 53.9 4.48
18.0^-^20.0 12.7 39.7 4.79
20.0^-^21.5 25.0 57.0 7.06

Figure 5.8
0.0^-^2.0 25.0 30.8 0.66
2.0^-^7.0 34.8 42.2 2.62
7.0^-^10.0 23.3 52.0 1.69
10.0^-^12.0 14.7 30.3 1.80
12.0^-^14.0 15.5 30.8 3.13
14.0^-^16.0 13.5 30.0 3.80
16.0^18.0 14.2 29.9 4.10
18.0^20.0 14.0 45.1 3.95
20.0^21.5 20.5 35.5 8.70

Figure 5.9
0.0^2.2 21.3 90.6 0.12
2.2^-^3.9 10.6 59.8 0.96
3.9^6.0 11.7 60.9 1.48
6.0^8.1 11.4 61.2 2.12
8.1^9.9 10.3 59.5 2.54
9.9^12.0 11.3 62.2 3.65
12.0^13.7 11.2 54.1 4.32
13.7^15.8 12.9 60.4 4.65
15.8^17.6 12.1 75.4 4.00
17.6^18.9 8.8 46.8 4.85
18.9^-^21.5 24.5 97.3 8.95
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Figure 5.10
Axial location of section weight water added average measured

cut FIFER (without HFBR shell) to section BSA
section concentration

in gel/water mixture

[cm] [g] [mL] [g11-]
0.0^-^2.5 23.9 200 0.53
2.5^-^5.0 14.5 200 0.60
5.0^7.5 15.6 200 0.97
7.5^-^10.0 15.4 200 1.22
10.0^-^12.5 14.1 200 1.35
12.5^-^15.0 15.6 200 1.80
15.0^-^17.0 11.7 200 1.57
17.0^-^19.4 14.9 400 1.10
19.4^-^21.5 23.0 400 2.13

Figure 5.11
0.0^-^2.5 24.3 130 0.00
2.5^-^6.6 23.2 230 0.08
6.6^-^10.4 22.9 204 0.11
10.4^-^13.4 18.7 233 0.07
13.4^-^15.4 12.2 241 0.08
15.4^-^17.4 11.5 243 0.20
17.4^-^19.2 9.80 228 0.31
19.2^-^21.5 22.8 448 0.69

Sample Calculation for Gel BSA Concentration

(fibre lumen was cleared from water)

e.g. , Figure 5.11 last sample:

length of axial cut AL = 21.5 - 19.2^2.3 cm

weight of fibres^= 1.47 cm • 2.3 g/cm = 3.8 g

weight of gel^= 22.8 g - 3.8 g^19 g

volume added to gel/fibre mixture^448.4 mL

measured average concentration of BSA in gel/water mixture^0.69 g/L

concentration of BSA in gel = ( 448.4 mL + 19 mL) / 19 mL • 0.69 g/L = 17.0 g/L
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Experimental Gel Conductivity Results

Area of the gel cross-section^Agel = 12
.
57 [cm2]

Area of the capillary^kap = 4.63^[mm2]

3% agarose gel
time

t
[s]

water height

h

[cm]

height of
water head

ho

[cm]

axial gel
thickness

°pet

[cm]
4310 1 17.1 1.95
7332 2.3 17.1 1.95
16805 3.5 17.1 1.95

2% agarose gel
2820 2.4 18.3 2.15
12420 7.8 18.3 2.15
16380 9.3 18.3 2.15
19500 10.4 18.3 2.15
32700 15.6 18.3 2.15
78000 17.2 18.3 2.15

2% agarose gel
4620 1.2 10.7 2.05
6300 1.6 10.7 2.05
7860 2 10.7 2.05

2% agarose gel + 2% BSA
275 0.3 9.9 2.3
520 0.5 9.9 2.3
617 0.6 9.9 2.3
2700 2.15 9.9 2.3
3260 2.5 9.9 2.3
3615 2.7 9.9 2.3

1% agarose gel
111 1 19.6 2.5
272 2.1 19.6 2.5
632 4 19.6 2.5
842 5 19.6 2.5
2350 9 19.6 2.5
3320 10.5 19.6 2.5
6600 13.2 19.6 2.5
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Appendix 4

The following pages lists the source-codes for the two-dimensional and one-dimensional

computer models written in the FORTRAN language. Each program requires a separate input

file in which all of the system parameters are specified. The over-relaxation parameters,

required for the two-dimensional model are grid size and operating condition dependent;

therefore, the parameters listed in the example input file are not necessarily the optima for

different conditions. Also the COMMON block size can be easily changed (in both programs)

to allow for larger axial and/or radial grids. Also, to avoid data loses due to run-time errors,

individual files are opened for each transient solution (starting with the extension *.000 for the

initial start-up data to a maximal *.099). In the two-dimensional model, two files are opened,

one containing the axial and radial solutions, while the other contains only radially-averaged

values. After the programs are initialized, an information file is written specifying all model

parameters.

In the one-dimensional model the protein distribution in an empty ECS can be generated

by setting the ECS conductivity to 0. The program automatically calculates an ECS

conductivity which is defined by geometric factors for the one-dimensional empty ECS

situation.
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PROGRAM HFBR_Protein_2D

* This program models the 2 dimensional transient protein concentrations in a
single fibre HFBR.

VERSION 4.1

last change : 6.6.93
by liirgen Koska

Important variables used in the program

• C_ECS(z,r)^2 dimensional field with ECS protein concentrations
• P_ECS(z,r)^2 dimensional field with ECS pressures
• P_LU (z)^I dimensional field with lumen pressures
* P_OS (z)^I dimensional field with osmotic ECS pressures
• X_^1 dimensional filed for axial grid location
• D_X^I dimensional field for axial grid spacing
• R_^I dimensional field for radial grid location
• D_R^I dimensional field for axial grid spacing
• RI^inner membrane radius
• R2^outer membrane radius
• R3^Krogh radius
• P_IN^lumen inlet pressure
• POUT^lumen outlet pressure
• PI^3.1415...
• P_EPS^accuracy for pressures in ECS and lumen
* NITER_P^max. 6 of iterations to reach PEPS

ALPHAX^axial ECS pressure over-relaxation parameter
• ALPHAR^radial ECS pressure over-relaxation parameter
* DT^time step
• T_RELAX^time step relaxation factor ( - 1.01)
• TIME_TOTA^total time for simulation to reach St. st.
• CEPS^concentration criterion for steady state
• NR^6 of grids in radial direction
• NX^6 of grids in axial direction

PER_MEM^membrane permeability
• CONDECS^ECS conductivity
• VISC_L^viscosity in lumen
• R_MID^radial grid location half-way in between nodes
• X_MID^axial grid location half-way in between nodes
• N_X_OUT^6 of out put data in axial direction
• N_R_OUT^6 of out put data in radial direction
• DIFF^protein diffusivity
* NFIBRE^6 of fibres in reactor
• PM^molecular weight of protein [g/L]
• VIRA_I^1st virial coeff. for osmotic relation
• VIRA_2^2nd virial coeff for osmotic relation
• RG^gas constant
• T^temperature [K]

TRA_TIME_OUTfield with transient reporting times
• C_START^average start concentration in ECS

CALL UP_DATE_P_OS
CALL UP_DATE_P_ECS P_DIFMAX, ITER_P )
WRITE( ,55) ITER_P, P_D1FMAX
WRITE(20,55)1TER_P, P_DIFMAX
CALL VEL_ECS
CALL DATA_OUT ( 0 , TIME_TOTA )
WHILE ( C_DIFMAX .GT. C_EPS ) DO
CALL UP_DATE_C ( DT, C_DIFMAX , PE_X_MAX, PE_R_MAX )
C_DIFMAX = C_DIFMAX / DT
CALL UP_DATE_P_OS ! up-date the osmotic pressures
CALL UP_DATE_P_ECS ( P_DIFMAX,ITER_P )
CALL VEL_ECS^! up_date the velocities in the ECS
TIME_TOTA = TIME_TOTA + DT
DT = DT • T_RELAX
T1ME_H = TIME_TOTA /3600. ! convert to hours
IF ( TIME_TOTA .GE. TRA_TIME_OUT( N_F1LE ) ) THEN

CC^We reached the time for writing all information
WRITE(20,125) N_FILE, TIME_H
WRITE(20,130) C_DIFMAX,P_DIFMAXITER_P,

PE_X_MAX, PE_R_MAX
CALL DATA_OUT ( N_FILE , TIME_H )
IF ( TIME_TOTA .GE. TRA_T1ME_OUT( N_TRANS ) ) THEN

CC^we reached the specified max modelling time and we stop!
WRITE(' ,200) C_DIFMAX
WRITE(20,200) C_DIFMAX
RETURN

END IF
N_FILE N_FILE + 1

END IF
WRTTE(.,135)TIME_H, C_D1FMAX, P DIFMAX, ITER_P

END WHILE
CC We are done the required steady-state cond is obtained

CALL DATA_OUT ( N_FILE , TIME_H
RETURN

• -1--F-1,-.-+-F-F-1-1-4,-1--1--1--1-1-1,+++++++++++++++ +MC++

55 FORMAT(/3X,'6 of iter. to adjust pressures',16,' tip ',E10.4,
' [Pa])

100 FORMAT(5X,110,F16.2,1s])
110 FORMAT(11F7.1)
112 FORMAT(11F73)
125 FORMAT(//'   file time:',F9.4,' [h]

130 FORMAT(2X,2(2X,E12.4),2X,17,2(2X,E12.4) )
135 FORMAT(2X,F10.2,2X,E10.4,2X,E10.4,2X,15,2X,E10.4,2X,E10.4)
200 FORMATCsteady-state was not achieved 1 diffmax C:',E10.4 )
C^WRITE(*, I 12 ) ( (C_ECS(1,1),1=1,NX,N_X_OUT),1=NR, I ,-N R_OUT)
C^WRITE(",110 ) ( (P_ECS(1,1),1=1,NX,N_X_OUT),J=NR, I ,-N_R_OUT)

END

SUBROUTINE UP_DATE_P_ECS ( P_DIFMAX, ITER)

•
•

The Laplace eqn. that governs the pressure distribution
in the ECS space is solved by a line by line method.

IMPLICIT REAL*8 (A-H2O-Z) • d2P/dx2 + 1/rd ( r dP/dr) dr = 0
CALL SET_UP
START_TIME = F_TIME0 IMPLICIT REAPS (A-H2O-Z)
CALL HEART PARAMETER ( MAXX=20I, MAXR=1 I)
CPU_TIME = F_TIMEO-START_TIME COMMON / B_N^/ NR, NX, NRM, NXM
WRITE(",100) CPU_TIME/60. COMMON / B_PA / P_EPS, NITER P, ALPHAX, ALPHAR
STOP COMMON / Bp!^/ PLU(MAXX), P_OS(MAXX)

100 FORMAT( ' CPU-time: ', F12.4,' [min] ) COMMON / B_P2 / P_ECS(MAXX,MAXR)
END COMMON / PRESS_T / TAX(MAXX), TCX(MAXX), TAR(MAXR),

TCR(MAXR), T_F1ELD(MAXX, MAXR)

COMMON / C_I^/ T_RELAX, TIME_TOTA, DT, C_EPS
SUBROUTINE HEART COMMON / DUMMY / CONSTANT

DIMENSION TB(MAXX), TD(MAXX), P_NEW(MAXX)
C This routine calls all other routines. CC CONSTANT= RI • PER_MEM / ( COND_ECS • A)

IMPLICIT REAL•8 (A-H2O-Z) ALPHAXM = I.DO - ALPHAX
PARAMETER( MAXX=20I, MAXR=I I 1 ALPHARM = 1 DO - ALPHAR
COMMON / B_N / NR, NX, NRM, NXM DO ITER = 1, NITER_P
COMMON / B_DI / RI, R2, R3, XL P_DIFMAX = 0 DO
COMMON / N_OUTP / N_X_OUT, N_ROUT
COMMON / B_P2 / P_ECS(MAXX,MAXR)
COMMON / CI / T_RELAX, T1ME_TOTA, DT, C_EPS
COMMON / CONC / C_ECS(MAXX,MAXR)
COMMON / TR_OUT / N_TRANS, TRA_T1ME_OUT(99)

N_FILE = 1
TIME_TOTA =0.D0
C_DIFMAX = I.D10
WRITE(20,125) 0, TIME_TOTA

  

1st sweep as r direction

 

DO I = I, NX
IF =I + 1
IM =I - I
DO = 1, NR

TB(.1) = T_FIELD(1,1)
TD(1) = P_ECS(IM,11" ( -TAX(I))



+ P_ECS(IP„.1) • ( -TCX(I) )
END DO
TB(l) = 713(1) - CONSTANT

Include BC. at the membrane/ECS interface
TD(t) = TD(1) - CONSTANT • ( P_LU(I) + P_OS (D )
CALL TDMA ( TAR, TB, TCR, ID, P_NEW, 1, NR)
DO I= 1, NR

P_NEW(1) = ALPHARM • P_ECS(1,1), ALPHAR •
P_NEW(J)

P_DIFMAX = DMAX1(P_DIFMAX,
DABS(P_NEW(1)-P_ECS(1,1)))

PECS(1,1)= P_NEW(1)
END DO

END DO

C^ 2nd sweep in x direction

C---- incorp. the B.C. into the first row
= 1

1P = .1+ 1
DO! = I, NX

TB(1)=T_FIELD(1,1)
TD(!) =

- CONSTANT • ( P_LU(I) - P_ECS(1,1) + P_OS(I) )
+ P_ECS(I,JP) * ( -TCR(I) )

END DO
CALL TDMA (TAX, TB, TCX, TD, P_NEW, I, NX )
DO! = I, NX

P_NEW(I) = ALPHAXM * P_ECS(1,1) + ALPHAX *
P_NEW(I)

P_DIFMAX = DMAXI (P_DIFMAX,
DABS(P_NEW(1)-P_ECS(1,1)))

P_ECS(1,1)= P NEW(I)
END DO
DO I = 2, NR

JP =I + I
JM I - I
DO! = I, NX

TB(I) = T_FIELD(1,1)
TD(I) =

P_ECS(I,JM) • (-TAR(J) ) + P_ECS(1,1P) • ( -TCR(1) )
END DO
CALL TDMA ( TAX, TB, TCX, TD, P_NEW, I, NX )
DO! = I, NX

P_NEW(I) = ALPHAXM • P_ECS(1,1) + ALPHAX •
P_NEW(I)

P_D1FMAX = DMAX1(P_DIFMAX,
DABS(P_NEW(1)-P_ECS(1,1)))

P_ECS(1,1)= P_NEW(I)
END DO

END DO
CC^now we up-date the lumen pressures

CALL LUMEN_PRESS ( P_DIF_L )
CC^check if the requ. ace. is obtained

IF ( ( P_DIFMAX + P_DIF_L )^PEPS) RETURN
END DO

CC We exceeded the maximum iteration and print out an warning
WRITE( •,120) T1ME_TOTA/3600., P_DIFMAX, P_DIF_L
WRITE(20,120) TIME_TOTA/3600., P_DIFMAX, P_DIF
RETURN

110 FORMAT(11F7.1)
120 FORMAT(3)Cpressure diff at t=',F12.3,(h) is stilt,/

. 2X'ECS ',E12.5,/
2X'Lumen ' ,E12.5 )

END

SUBROUTINE LUMEN_PRESS ( P_DIFMAX )

CC^ This S.R. calculates the new lumen pressures.
CC^d2P 1 /dx2 = 16 Lp/R I ^3 • Pt I6Lp/R 1 ^3 ( Pi3 - P2 )

IMPLICIT REAL*8 (A-H2O-Z)
PARAMETER ( MAXX=201, MAXR=11 )
COMMON! B_N / NR, NX, NRM, NXM
COMMON! B_A / X (MAXX),R (MAXR), D_X(0:MAXX), D_R(0:MAXR)
COMMON / B_DI / RI, R2, /13, XL
COMMON / B_SP / PER_MEM , COND_ECS, VISC_L
COMMON! B_P1 / P_LU(MAXX), P_OS(MA XX)
COMMON! B_P2 / P_ECS(MAXX,MAXR)
COMMON! PRESS / PIN, P_OUT
DIMENSION P_NEW(MAXX), A(MAXX), B(MAXX), C(MAXX), D(MAXX)

C^ now we calculate the new axial pressures in the lumen with a
C^ Finite Difference Method.

P_DIFMAX = O.DO
DUMMY= 16.D0 • PER MEM / R I **3.D0
A(1)= O.DO
B(I)= LDO
C(I) = 0.130
0(l) = P_1N ! pressure at the fibre lumen inlet
DO I = 2, NXM
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R_DX1M = I .00 / D_X(I-1)
R_DXI = 7130 / D_X(I)
FISUMDX = ( D_X(I-1) + D_X(I) ) • 0.500
A(I) =^R_DXIM
B(I) = - ( R_DXI + R_DX1M + DUMMY " FISUMDX )
C(I) = R_DX I
D(I) = DUMMY • HSUMDX • P_OSM-P_ECS(1,1)

END DO
A(NX)= O.DO
B(NX) 1.00
C(NX)= 0.00
D(NX)= P_OUT ! pressure at the fibre lumen outlet

CC^solve the tridiagonal matrix and up-date the lumen pressures

CALL TDMA ( A, B, C, D, PNEW, I, NX )
DO I = 2, NXM
P_DIFMAX = DMAXI( P_DIFMAX, DABS( P_NEW(I)-P_LU(I)))
P_LU(I) = P_NEW(I) ! new lumen pressure

END DO
RETURN

END

SUBROUTINE DATA OUT ( NUM, TRANS:TIME )

C^ This Function writes the data to a file
IMPLICIT REAL*8 (A-H2O-Z)
CHARACTER*3 INT_CHAR, NUMBER
PARAMETER ( MAXX=20I, MAXR=Il )
COMMON / B_VE_ME / VXR_LU(MAXX), UXR_LU(MAXX)
COMMON / B_N /NR, NX, NRM, NXM
COMMON! B_P I / P_LU(MAXX), P_OS(MAXX)
COMMON! B_P2 / P_ECS(MAXX,MAXR)
COMMON! B_A / X (MAXX),R JMAXR), D_X(0:MAXX), D_R(0:MAXR)
COMMON / CONC / C_ECS(MAX)C,MAXR)
COMMON! B VE ECS/ VEL(MAXX,MAXR,4)
COMMON! FIALF-DR / X MID(MAXX+ I), R_MID(MAXR+ I)
COMMON / B_SP / PER MEM , COND_ECS, VISC L
COMMON / BDI / RI, R2, R3, XL
COMMON! AVER / C_AVER(MAXX)
COMMON / N_OUTP / N_X_OUT, N_R_OUT

NUMBER = INT_CHAR( NUM)
101 = 11
102 = 12

CC^calculate a scaling factor for the velocities inin/h
FACTOR = 1000 • 3600
OPEN( UNIT= 101, FILE = 'D2_DAT_ANNUMBER )
OPEN( UNIT=IO2, FILE = D2_DAT_BY/NUMBER )

CC^Calculate a mass balance in the ECS
CALL C_AVERAGE

CC^Calculate the velocities in the lumen
CALL LUMEN_VEL

CC^First we write the averaged values to separate file
DO I = 1, NX, N_X_OUT

WRITE(I01,100) Mr 100., C_AVER(I),
UXR_LU(I), VXR_LU(1)*FACTOR,
F_PI( C_AVER(1) ), P_LU(I), F_R_AVRAGE( P_ECS,I )

END DO
100 FORMAT ( 2(F8.4,2X), 2(E14.6,2X), 3(F I2.4,2X) )

DO 3=1, NR, N_R_OUT
JM =1 - I
DO I = 1, NX, x_x_our
IM = I - I
WRITE(IO2,101) X(1)•1132, R(J)•1136, C_ECS(I,1), P_ECS(1,1),

CC^interpolate the axial velocity in the ECS at the grid-points
(D_X(1)*VEL(1,1,2)+D_X(IM)*VEL(1,1,1))/(D_X(1)+D_X(IM))

*FACTOR,
CC^interpolate the radial velocity in the ECS at the grid-points

(D_R(.0'VEL(1,1,4)+D_R(IM)•VEL(t,1,3))/(D_R(1)+D_ROMD
*FACTOR

END DO
END DO
WRITE(I01,110) TRANS_TIME ! time-stamp on each file
WRRE(IO2,110) TRANS_T1ME ! time-stamp on each file
CLOSE( UNIT=101 )
CLOSE( UNIT=IO2 )
RETURN

101 FORMAT ( 3(F8.4,2X), F12.4,2X, 2(E14.6,2X))
110 FORMAT ( /F14.3)

END

SUBROUTINE UP_DATE_C ( TIME_STEP, C_DIFMAX, PE_X_MAX,
PE_R_MAX )

CC This routines solves the 2D diffusion convection eq in the EC S
CC The PDE eq is discretized by a finite difference approach
CC and to ensure realistic solutions a "power-law" scheme with



CC 1st order up-winding is included.
CC At the first half-time step the radial concentration is calc and
CC in the next half-time step the axial concentration is updated. This
CC method is also referred to as the ADI-Method, for further details see Anderson
CC eta!. 1980.

IMPLICIT REAL*8 (A-H2O-Z)
PARAMETER( MAXX=20I, MAXR=I I )
COMMON! B_N / NR, NX, NRM, NXM
COMMON / BA / X (MAXX),R (MAXR), D_X(0:MAXX), D_R(0:MAXR)
COMMON! B_DI / RI, R2, R3, XL
COMMON / HALF_GR / X_M1D(MAXX+ I), R_MID(MAXR+ I)
COMMON! CON / A_R(MAXR), A_X(MAXX)
COMMON! B VE ECS / VEL(MAXX,MAXR,4)
COMMON! CONC- / C ECS(MAXX,MAXR)
COMMON / DIFFUS / DiFF,NFIBRE
DIMENSION A(MAXX), B(MAXX), C(MAXX), D(MAXX), CNEW(MAXX),

. PE_R(MAXX,MAXR), PE_X(MAXX,MAXR),
CSTAR(MAXX,MAXR), AV(MA30), AN2(MAXX,MAXR),
AS2(MAXX,MAXR),AW2(MAXX,MAXR),AE2(MAXX,MAXR)

C_D1FMAX = 0.D0
PE_R_MAX = 0.D0
PE_X_MAX = 0.D0
DT = 2.0D0 / TIME_STEP^! set rezipr. halftime-step for AD!

C set-up the Peclet numbers in axial PE_X and radial PE_R direction
DO 1 -= I, NR

DO 1= I, NXM
PE = VEL(1,1,1)* D_X(I)/ DIFF
PE_X(1,1)= F_POWER( PE ) • DIFF / D_X(I)
calculate the highest local axial Pe number

PE X MAX = DMAXI(PE_X_MAX, FE)
END- D-0

END DO
DO I = 1, NX

DO J = 1, NRM
PE = VEL(1,1,3)* D_R(1) / DIFF
PE_R(1,1)= F_POWER( FE) * DIFF/ D_R(1)
calculate the highest local radial Pe number
PE_R_MAX = DMAX1( PE_R_MAX, FE)

END DO
END DO

CC Now we calculate some repeated constants

DO I = I, NX
1M =I - I
DO1 = 1, NR
JM =1 - I
JP I + I
AN2(1,J) = ( PE_R(1,1 ) + DMAX I (-VEL(1,1,3),O.D0) )

• R_MID(JP)*A_R(J)
A52(1,1) = ( PE_R(I,JM) + DMAX1( VEL(1,1,4),0.D0) )

• R_MID(1) • A_R(.1)
AW2(1,1)= ( PE_X(IM,J)+ DMAXI( VEL(1,1,2),0.D0) ) •A_X(I)
AE2(I,J) = ( PE_X(I,1 ) + DMAX I (-VEL(I,1,1),O.D0) ) • A_X(1)

END DO
CC^This array spec. the constants at the membrane/ECS interface

AV(I) VEL(1,1,4) * A_R(I) • R2
END DO

CC Now we start with the ADI-Method.

• ^
CC At the 1st half-time step we sweep over all x grids to cats ^
CC^the new concentrations in radial direction

00 1== I, NX
IM = I - I
IF = I + 1

= I
A(J) = 0.00
C(J) = -AN2(I,J)
13(1) = DT - C(J) - A(J) + AVM
D(1)=^AW2(I,J) * C_ECS(IM,J)

+ ( DT-AE2(1,1)-AW2(1,1) ) * C_ECS(1,1)
AE2(1,1) * C_ECS(IP,1)

DO 1 = 2, NRM
JM =1-1
JP = 1+1
A(1)= - AS2(I,1)
CM= - AN2(1,J)
B(J) = DT - C(i) - A(1)
D(J)= AW2(1,1)^" C_ECSHM,11
+ ( DT- AE2(1,1) - AW2(1,1) C_ECS(1,1)
+^AE2(1,1)^• C_ECS(IP,J)

END DO
=NR

1M = NR - I
A(NR) = - AS2(1,1)
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C(NR) = 0.D0
B(1) = Dl- C(1) - AU)
D(NR) =^AW2(1,1) • C_ECS(IM.11

+( DT - AE2(I,1) - AW2(l,F) ) • C_ECS(1,1)
+^AE2(I,1)^• C_ECS(IP,1)

CALL TDMA ( A, B, C. D, CNEW, I , NR)
DO 1= I, NR

CSTAR(1,1) = CNEW(1)
END DO

END DO
CC Note: the intermediate concentration values CSTART are meaning less
CC^and only used for the next time step

CC Now in the 2nd half-time step we sweep over all r grids to cats.
CC
^

the new concentrations in axial direction.

=1 ! first row
JP = + I
DO I = I, NX

A(1)= -AW2(1,1)
• -AE2(I,J)
B(1)= DT - C(I) - A(1)
• (DT - AN2(I,J) - AVM ) * CSTAR(1,1)
+ AN20,1)^• CSTAR(1,1P)

END DO
CALL TDMA ( A, B, C, D, CNEW, I, NX)
DO I = I, NX

C_DIFMAX = DMAXI(C_DIFMAX,DABS(CNEW(I)-C_ECS(1,1)) )
C_ECS(I,H= CNEW(I)

END DO
DO J = 2, NR

JM =1 - I
JP =1+ I
DO I = I, NX

A(I) = -AW2(1,1)
C(I)= -AE2(I,J)
BM= DT - C(I) - A(I)
D(I) =^AS2(I,J) CSTAR(1,1M)

+ ( DT - AN2(1,1) - AS2(1,1) ) * CSTAR(1,11
• AN2(I,J)^CSTAR(1,1P)
END DO
CALL TDMA ( A, B, C, D, CNEW, I, NX)
DO I = I, NX

C_DIFMAX = DMAX1(C_DIFMAX,DABS(CNEW(1)-
C_ECS(1,1)) )

C_ECS(1,1) = CNEW(I)
END DO

END DO
RETURN
END

REAL*8 FUNCTION F_POWER( Pc)

C This function applies the power law scheme for the finite
C difference formula. Other schemes can be used by substituting
C appropriate functions (see Pantankar (1980) for details].

IMPLICIT REAL•8(A-H2O-Z)
F_POWER = DMAX1( 0.D0 , I.D0 - 0.1 DO *I DABS(Pe)^)
RETURN

END

SUBROUTINE SET_UP

IMPLICIT REAL•8 (A-14,0-Z)
PARAMETER( MAXX=20I, MAXR=Il )
COMMON! B_P1 / PI
COMMON / B_A / X_(MAXX'),R (MAXR), D_X(0:MAXX), D_R(0:MAXR)
COMMON! B_PA P_EPS, NITER P. ALPHAX, ALPHAR
COMMON / B_PI / P_LU(MAXX), P_OS(NIAXX)
COMMON! B_P2 / P_ECS(MAXX,MAXR)
COMMON! C_I / T_RELAX, TIME_TOTA, DT, C_EPS
COMMON! B_N / NR, NX, NRM, NXM
COMMON / B_DI / RI, R2, R3, XL
COMMON! DUMMY / CONSTANT
COMMON / B_SP / PER_MEM, COND_ECS, VISC_L
COMMON / PRESS _T / TAX(MAXX), TCX(MAXX), TAR(MAXR),

TCR(MAXR), T_FIELD(MAXX, MAXR)
COMMON / HALF OR / X_MID(MAXX+ 1 ), R_MID(MAXR+ 1 )
COMMON / N_OUTP / N_X_OUT, N_R_OUT
COMMON! CONC / C_ECS(MAXX,MAXR)
COMMON / DIFFUS / DIFF, NFIBRE
COMMON / OSMOTI /PM, T, VIRA_I, VIRA_2, RG, OS CON
COMMON / CON / A_R(MAXR), A_ X(MAXX)
COMMON ! TR_OUT % N_TRANS, TRATI ME _our(99)
COMMON / C_BEGIN / C_START
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COMMON / PRESS / PIN, POUF
OPEN( UNIT-10, FILE = 'HF2D_IN.PUP)
OPEN( UNIT-20, FILE ='D2_DARCY.INF)
READ(10,*) NX !8 of grids in X-direction
READ(I 0,*) NR !8 of grids in R-direction
READ(I0,*) N_X_OUT ! 14 of grids in X-direction
READ(I 0,*) FLOW ! flow rate in the reactor [mL/min]
READ(I0,*) P_IN ! Inlet pressure [Pa]
READ(10,*) P_OUT ! Outlet pressure [Pa]
READ(I0,*) XL ! [m] length of the capillary
READ(10,*) RI^! [m] inner lumen radius
READ(I0,*) R2^[rn1 outer membrane radius
READ(I0,*) R3 ! [m] Krogh radius
FtEAD(I0,*) RSHELL ! [m] inner shell radius of the HFBR
READ(I 0,*) NFIBRE ! [-] 8 of fibres in the reactor
READ(I0,*) PER_MEM ! [m] membrane permeability
READ(I0,*) COND_ECS! [mY] ECS conductivity
READ(I0,*) C_START ! BSA start concentration in the ECS
READ(10,*) DIFF ! BSA diffusivity
READ(I0,*) PM ! molecular weight of the protein
READ(10,•)TC ! temperature [Co]
READ(I0,*) G_FX ! Grid-factor for sym. grid
READ(I0,*)0_FR ! Grid-factor for unsynt. grid
READ(I 0,*) P_EPS ! Accuracy for P_ECS in ADI
READ(I0,*) ALPHAX ! SOR factor for pressure in x-direction
READ(I0,*) ALPHAR ! SOR factor for pressure in R-direction
READ(I0,*) NITER_P ! max. 8 of iterations for pressures
READ(I0,*)C_EPS ! steady-state acc. for the concentrations
READ(I0,*) DT ! Time-step for the cliff cony. eq.
READ(10,*)T_RELAX ! time-relaxation factor for the dill'. cony. eq.
T^= 273.15 + TC ! convert to Kelvin
V1SC_L = F_VISC_H20( TC )

CC^viral coeff for osm. pressure relationship
VIRA _I = 0.010473D0
VIRA_2 = I.73743D-5
RG^= 8.3141500^! GAS CONSTANT.Umoles-K
OS_CON = RG • T / (PM/1000.)
DO I = I, 99

READ(l 0,•,ERR=18) TRA_TIME_OUT(I)
END DO

18^N_TRANS = I - I
CLOSE( UNIT=I0 )

C^convert to seconds !
DO I = 1, N_TRANS

TRA_TIME_OUT(I) = TRA_TIME_OUT(I) • 3600.00
END DO
IF ( NX .GT. MAXX) NX=MAXX
IF ( NR .GT. MAXR) NR=N1AXR

CC^Set the relaxation parameter for the SOR in line by line if they are
CC^not appropriate !

PI = DATAN(I.D0) • 4.00
IF ( ALPHAX .LE. 0.00 .0R. ALPHAX .GT. 200) THEN

ALPHAX=2./(1.+DSQRT(I -(1. DO - PI**2./(2*NX**2))**2))
END IF
IF ( ALPHAR .LE. 0.00 OR. ALPHAR .GT. 2.00) THEN

ALPHAR = 2./(1.+DSQRT(1-(1.D0-P1**2./(2*NR••2))**2) )
END IF
WRITE(*,32) ALPHAX, ALPHAR

32 FORMAT(I0X,'Relaxation Parameters:',/,
5x, 'alpha-x: ',F7.4,' alpha-r : ',F7.4)

CC^Check if the Krogh Radius is given !!
IF ( R3 .LE. 0.00) THEN

R3 = RSHELL / NFIBRE**0.5
WRITE(*,*) 'Krogh radius:', R3

END IF
IF ( FLOW .GT. 0.000) THEN

P_OUT = 0.00
QF = FLOW*I.D-6/60/NFIBRE ! calculate flow in a single fibre
P_1N = QP`XL*8*VISC_L/(P1*R I **4.)

END IF
WRITE(,100) P_IN, P_OUT

100^FORMAT(5X,'p-in:',F10.2,5X;p-out:',F I 0.2,' [Pap
FLOW = P_IN/(1.D-6/60/NFIBRE•XL*8•VISC_D(Pl•RI".4.))
WRITE(*,110) FLOW

110^FORMAT(5X,'Q-HFBR:',F I 0.2; [ml/min]')

TIME_TOTA = 0.00
P_TIME_TOTA = 0.00
NXM = NX - I
NRM = NR - 1
N_X_OUT = NXM / (N_X_OUT-1)
N_R_OUT = 1

CC^ Setup the grids in both directions
CALL USYM_GRID ( 0.DO, XL, NX, G_FX, X_, D_X )
CALL USYM_GRID ( R2 , R3, NR, G_FR, R_, DR)

CC^ Initialize a linear pressure drop along the lumen-side!
DP = (P_IN - P_OUT)*0.5D0 I average pressure in the ECS

DO I = I, NX
PLUM = F_YLIN( 0.00, XL, P_IN, P_OUT, X_(I) )
P OS(I) = F_P1( C_START )
D-0 1= 1, NR

P ECS(I,1)= DP
ECS(1,1) = C_START

END DO
END DO
PLUM = P IN
P_LU(N)G =POUT

C---- set-up coeff for the pressure eq.
DO I = 1, NX

1M^= I-1
X_IN = ( D_X(I) + D X(IM) ) • 0.5D0 ! integration from w to e
X_W = X_(I) - D_X-(IM) 0.5D0
X_MID(I) = X W
A X(I) = 1.130—/X IN
IF—( 1. EQ. I ) THEN

TAX(1)= 0.00
ELSE

TAX(I)= 1.00 / ( D_X(1M) • X_IN
END IF
IF ( I. EQ. NX ) THEN

TCX(I) = 0.00
ELSE

TC X(I) = I .D0 / ( D_X(I) • X_IN )
END IF

END DO
X MID(NX+ I) = X_(NX)
DO 3 = I, NR
JM = 1-1
R_S = R_(.1) - D ROM) • 0.500
R_N^R_(J) + 13_R(.1 ) • 0.5D0
R M1D(J) = R S
DUMMY =W2. - R_S2.)* 0.500
A_R(1) = 1./DUMMY
A^= DUMMY^! integration area
IF ( J. EQ. I ) THEN
TAR(J) = 0.00
CONSTANT — RI • PER_MEM / ( COND_ECS • A)

ELSE
TAR(J) = 1.00 / (DLOG( R(1)/(R(1)-D_R(1M)) ) • A)

END IF
IF ( 1. EQ. NR ) THEN
TCR(J) = 0.00

ELSE
TCR(.0 = 1.00 / (DLOG( (R_(.1)+ D_R(1))/R (1)) " A)

END IF
END DO
R MID(NR+I) = R_(NR)
DO I = 1, NX

DO I = 1, NR
T FIELD(1,1) = - TAR(J) -TCR(1) - TAX(I) - TCX(I)

END DO
END DO
CALL DATA SHOW( RSHELL, FLOW, GF_X, GF_R )
RETURN

END

REAL*8 FUNCTION F_VISC_H20( TC )

C This function calculates the viscosity of H2O at the given Temp TC in Celsius.
C input TC : oC
C output vise : Pus

IMPLICIT REAL*8(A-H2O-Z)
IF (TC .GT. 99.00 .0R. TC .LE. ODO ) THEN

WRITE() 'EXCEEDING RANGE IN VISCOS EQ. II!'
END IF
F_VISC_H20 = 10.1:10"*( (1.3272*(20-TC)-0.001053*(TC-20)••2 )

/ (TC+I05.) ) • 1.0021/100/10
RETURN

END

REAL*8 FUNCTION F_VISC_BSA( C, VISC

C This function relates the viscosity to the BSA concentration.
C The viscosity of water must be also specified
C input C BSA g,'L

VISC H20 : Pa s
C output visc : Pus

IMPLICIT REAL•8(A-H2O-Z)
V_INT = 3.65D-3
V_K = 2.08500
C2 = VINT * C
F_VISC_BSA = VISC*( I a C2 * ( I V_K *C2 ) )
RETURN

END



 

100 FORMAT(5X;mass-balance ',F8 4,' lost.',F10.6; Ig/LI'l
RETURN
END
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SUBROUTINE VEL_ECS

   

CC This routine up-dates the velocities in the ECS. The velocities
CC^are located half-way between the grids
CC
IMPLICIT REAL*8 (A-H2O-Z)

PARAMETER ( MAXX=201, MAXR=I I)
COMMON / B_N / NR, NX, NRM, NXM
COMMON / B_A / X JMAXX), R_(MAXR), D_X(O.MAXX),

D_R(0:MAXR)
COMMON / B_DI / RI, R2, R3, XL
COMMON! B_SP / PER_MEM, COND_ECS, VISC_L
COMMON! B_PI / P_LU(MAXX), P_OS(MAXX)
COMMON! B_P2 / P_ECS(MAXX,MAXR)
COMMON! B_VE_ECS/ VEL(MAX)çMAXR,4)
COMMON / HALF_OR / X_MID(MAXX+ I), R_MID(MAXR+1)
COMMON! CONC / C_ECS(MAXX,MAXR)

DUMMY = -COND_ECS/VISC_L
CC^calculate velocities in r-direction V(x,r) n and s

DO .1= 2, NRM, 2
JP = 1+1
JM =1-1
DO I = I, NX
VEL(1,1,4) = DUMMY * (P_ECS(1,J)-P_ECS(1,1M))/D_R(.1N1)
VEL(1,1,3) = DUMMY • (P_ECS(1,JP)-P_ECS(1,1))/D_R(1)
VEL(1,1M,3)= VEL(1,1,4)
VEL(1,111,4)= VEL(1,1,3)
END DO

END DO
CC calculate velocities in x-direction U(x,r) e and w

DO I= 2, NXM, 2
IP = 1+1
1M = I-I
DOS = I, NR

VEL(I,J,2) = DUMMY * (P_ECS(1,J)-P_ECS(1M,J))/D_X(IM)
VEL(1,1, I ) = DUMMY • (P_ECS(lP,J)-P_ECS(1,1))/D_X(1)
VEL(tM,1,1)= VEL(1,1,2)
VEL(IP,1,2)= VEL(1,1,1)
END DO

END DO
DUMMY = RI • PER MEM / ( VISC_L * R2)
DO! = I, NX

CC^velocity on the grid-points at the membrane out-side R2
VEL(I, 1,4) = DUMMY • ( P_LU(1)-PECS(1,1)+P_OS(1) )

CC^VEL(1,NR,3)= 0.D0 ! n at R3
END DO
DO .1= I, NR

VEL(I, 1,2) = 0.0D0 ! at X = 0 W
VEL(NX.,1,1)= 0.0D0 ! at X = L E

END DO
RETURN

END

******* ****************^............... **•**■• frt*• •

SUBROUTINE C_AVERAGE

REAL'8 FUNCTION FR _AVRAGE FIELD, 1

CC This function returns a radial average value for any spec x location.

IMPLICIT REAL•8 (A-H2O-Z)
PARAMETER MAXX=201, MAXR=11
COMMON / B_A / X JMAXX),R JMAXR), D_X(0:MAXX), D_R(0 MAXR)
COMMON! B_N / NR, NX, NRM, NXM
DIMENSION FIELD ( MAXX, MAXR )

SUM =0.1)0
C23 = 2.D0/3.D0
DO I = 2, NR

JM =1 - 1
SUM = (^D_R(JM) FIELD(1,1M)

+ 2.1)0 R_(JM) • FIELD(1,1M)
+ C23 D_R(JM) ( FIELD(1,1)-FIELD(1,JM) )
+ R J1M) • ( FIELD(1,J)-FIELD(1,1M) )

) • D_R(JM) + SUM
END DO

CC now we divide this by the annular cross-section to obtain the
CC^required average value

F_R_AVRAGE = SUM! ( R (NR)"•2 - R_(I)"2 )
RETURN

END

SUBROUTINE DATA_SHOW ( RSHELL,FLOW,GF_X,GF_R )

CC This routine writes the important modelling parameters to an file
IMPLICIT REAL*8 (A-H2O-Z)
PARAMETER( MAXX=201, MAXR=I I )
COMMON! B_PI / PI
COMMON / B_N I NR, NX, NRM, NXM
COMMON / N_OUTP / N_X_OUT, N_R_OUT
COMMON! B_DI / RI, R2, R3, XL
COMMON! B_SP / PER MEM, COND_ECS, VISC_L
COMMON! DIFFUS! DIFF, NFIBRE
COMMON! OSMOT I / PM, T, V1RA_ I, VIRA_2, RG, OS CON
COMMON / TROUT / N_TRANS, TRA_TIME_OUT(99)
COMMON! C_BEGIN/ C_START
COMMON! PRESS / PIN, P_OUT
COMMON / B_PA / P_EPS, NITER_P, ALPHAX, ALPHAR
COMMON! BA / X (MAXX),R JMAXR), D_X(0:MAXX'), D_R(0:MAXR)
COMMON! C_1 / T_RELAX, TIME_TOTA, DT, CEPS

10 = 33
OPEN( UNIT=I0, FILE = 'D2_DARCY.DAT)
WRITE(10,001) NX,NR

001 FORMAT(6X,14,' x-grids ',14,' r-grids)
WRITE(I0,003) PIN, P_OUT

003^FORMAT(2X;Pressure: inlet^:',F10.2; War/
C This S. R. calculates the average concentration in the radial . 2X,'^outlet^1',F10.2; 'Par)
C directions. WRITE(I0,005) FLOW

IMPLICIT REAL"8 (A-H2O-Z) 005 FORMAT(2X;Vol. flow rate in HFBR^:',F10 4,' [ml/minr)
PARAMETER ( MAXX=201, MAXR=I t) WRITE(10,007) XL*100.
COMMON! B_A / X JMAXX),R JMAXR), D_X(0:MAXX), D_R(0:MAXR) 007 FORMAT(2X,'Fibre length^:',F10.4,. (cm))
COMMON! B_N / NR, NX, NRM, NXM WRITE(10,009) RI " I D6, R2•1D6
COMMON! CONC / C_ECS(MAXX,MAXR)
COMMON! AVER! C_AVER(MAXX)

009 FORMAT(2X;Fibre radii- inner^:',F10.2; ()am)'!
outer^:',F10.2; ltrnir)

COMMON / C_BEG1N / C_START WRITE(I0,01 I) R3.1D6
011 FORMAT(2X;Krogh radius^:',F10.2,' 4un(')

CC Check for negative concentrations WRITE(10,013) RSHELL^100.
DO I = I, NX 013 FORMAT(2X;Inner cardrige radius^.',F I 0.4; (emi(')

DO .1= I, NR WRITE(10,015) NFIBRE
IF ( C_ECS(1,5). LT. 0.1)0) C_ECS(1,1) = 0.1)0 015 FORMAT(2X;# of fibres in reactor^:',110)
END DO WRITE(I0,016) NFIBRE*R2•XL•PI•2

END DO 016 FORMAT(2X,'outer HFBR membrane area^ ',F10.4,1m2r)
WRITE(I0,017) VISC_L

CC Calculate the average radial value on each axial grid location 017 FORMAT(2X,'Viscosity in lumen^ ',E10.4; [Pa-s(')
DO I= I, NX WRITE(I0,019) PER MEM

C_AVER(I) = F_R_AVRAGE( C_ECS, 11 019 FORMAT(2X;Meurbrane permeability^.',E10 4,' (inn
END DO WRITE(I0,020) PER MEM^RI • DLOG )R2/12.1)

020 FORMAT(2X;Menrbrane conductivity^:',E10.4; (11121')
CC Now we calculate a mass-balance over the reactor WRITE(10,021 ) COND_ECS

021 FORMAT(2 X;ECS-Conductivity^/.E10 A,' [m2(')
CC^First we calculate a spline over the radial averaged concentrations WRITE(I0,023)

CALL SPLINE ( X_ , C_AVER, NX, 2) 023 FORMAT(/,10X,' Protein specifications in ECS:
WRTTE(10,025) C_START

CC now we integrate the area under this spline and divide by the reactor 025 FORMAT(2X,'Start Concentration^.',F10.4,' [g/L(')
CC length to obtain the total average concentration in the ECS WRITE(10,027) DIFF

CAV = FS_INTEG ( X_( I ), X (NX) ) / X JN 027 FORMAT(2X;Diffusivny^:',E I 0.4,' (m2/sr)
WR1TE(20,100) CAV , C_START-CA V WRITE(10,029) PM
WRITE( ',100) CA V , C_START-CAV
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029 FORMAT(2X,'Molecular weight^:910.2, [Dap
WRITE(10,031) F_PI(C_START)

031 FORMAT(2X,'Osm press. at start^:',910.4,' (Pa])
WRITE(10,032) F_V1SC_BSA(C_START, V1SC_L)

032 FORMAT(2X,'Viscosity of protein so! . :',E10.4,' [Pa-s]')
WRITE(I0,033) T -273.15

033 FORMAT(2X,Temperature^:',F10.2,' [oC]',/)
WRITE(I0,037) PEPS

037 FORMAT(2X,'Pressure tolerance^WA,' [Pa]')
WRITE(10,039) NITER_P

039 FORMAT(2X,'Max iter. to reach the toler_ :',I10)
WRITE(I0,041) ALPHAX, ALPHAR

041 FORMAT(2X,'axial relaxation parameter :',F10.4,/
.^2X;radial^:',F10.4)
WRITE(10,043) CEPS

043 FORMAT(2X,'Steady-state for conc.^:',E I 0.4,' [g/L]')
WRITE(10,045) DT, T_RELAX

045 FORMAT(2X„'inital time step^:',F10.4,/
aced. factor:^:910.8)

WRITE(10,049)
049 FORMAT(2X,//,'**• Transient times for print-out *** )

DO! = 1, N_TRANS
TR =TRA_TIME_OUT(1)
WRITE(10,055)111, TR/60.

END DO
055 FORMAT(5X, F10.2, ' [5] ',F10.4,' [min] )

WRITE(I0,057) GF_X
057 FORMAT(2X//,'*** grid loc./spacing in x-dir. [cm] **• ',F10.6)

DOI= I, NX
WRITE(I0,059) I, X(I)*100., D_X(1).100.

END DO
059 FORMAT(2X,I4,2(5X, F10.6) )

WRITE(10,061) GF_R
061 FORMAT(2X1/,'••• grid locations in r-direction [mml ^'

.^,F10.6)
DO I = I, NR

WRITE(10,059) J,^D_R(1)•1.D6
END DO

063 FORMAT(2X,142(5X, F10.6) )
CLOSE( UNIT=10 )
RETURN
END

..... ...... *..***** ****** *...5•1•**.**** ********* ****

SUBROUTINE LUMEN_VEL

CC This Sub. R. up-dates the osmotic pressures along the membrane/ECS
CC interface.

IMPLICIT REAL*8 (A-H2O-Z)
PARAMETER ( MAXX=20I, MAXR=11 )
COMMON / B_N / NR, NX, NRM, NXM
COMMON / B_P / P_LU(MAXX), P_OS(MAXX)
COMMON / CONC / C_ECS(MAXX,MAXR)

DON I,NX
P_OS(I) = F_P1( C_ECS(1,1) )

END DO
END

REAL 8 FUNCTION F_PI( C_IN )

IMPLICIT REAL*8 (A-H2O-Z)
COMMON / OSMOT1 / PM, T, VIFtA_ I, VIRA_2, RG, OS_CON

F_PI = OS_CON • C_IN * (I DO + C_IN
(VIRA_I+C_IN*VIRA_2) )
RETURN

END

REAL"8 FUNCTION F_YLIN( XI, X2, Y1, Y2, XLIN )

CC This Function calc. a linear interpolation
CC between two points.

IMPLICIT REAL*8 (A-H2O-Z)
F_YLIN = ( Y2 - Y1 X2 - XI) • ( XL1N - XI) + YI
RETURN

END

CHARACTER•3 FUNCTION INT_CHAR ( I )

This Function changes an Integer to an char, string (0-99)
IMPLICIT REAL*8 (A-H2O-Z)
C HARACTE R*1 A I , A2, A3

ITEL =1110
Al^=0'
A2 = CHAR( ITEL + 48 )
A3 = CHAR( I - ITEL•I0 + 48 )
1NT_CHAR = A I //A2//A3
RETURN

END

CC calculate lumen velocities
IMPLICIT REAL*8 (A-H2O-Z)
PARAMETER ( MAXX=201, MAXR=I I)
COMMON / BPI / PI
COMMON / B_N / NR, NX, NRM, NXM
COMMON! B_A / X_(MAXX) ,R_(MAXR), D_X(0:MAXX), D_R(0:MAXR)
COMMON! B_D1 / RI, R2,11.3, XL
COMMON / B_SP / PER_MEM , COND_ECS, V1SC_L
COMMON! B_PI / P_LU(MAXX), P OS(MAXX)
COMMON / B_P2 / P_ECS(MAXX,MAXR)
COMMON / DIFFUS / DIFF, NFIBRE
COMMON / B_VE_ME/ VXR_LU(MAXX), UXR_LU(MAXX)
DIMENSION VDUMMY(MAXX)

C^ UXR_LU: contains the average axial velocities in the lumen
C^ VXR_LU: contains the radial velocities at RI (inner membrane)
C^ calculate the average lumen axial velocities

DUMMY= - R1**2.D0 /(8.*VISC_L)
DO I= 2, NXM
IF = I + I
IM =I - 1
SLOPE = (P_LU(IP)-P_LU(IM))/(D_X(1)+D_X(IM))
UXR_LU(I) = SLOPE • DUMMY

END DO
UXR_LU(1) = DUMMY * (P_LU(2)-P_LU(I) )/ D_X(I)
UXR_LU(N X) = DUMMY (P_LU(NX)-P_LU(NX-1)) / D_X(N X-1 )
DUMMY = PER_MEM / VISC_L
DO I = 1, NX

VXR_LU(1) = DUMMY * ( PLUM - P_ECS(1,I) + P_OS(I) )
VDUMMY(I) = DABS( VXR_LU(1) )

END DO
Q_U_IN = UXR_LU(1) * PI • RI • 2. ! Bow rate in the lumen

C^calculate the leakage flow into the lumen
CALL SPLINE ( X_, VDUMMY, NX, 2)
O_V_LEK = 2.DO*Pl•RI * FS_INTEG ( X(1), X_(79X) )/ 2.00
FAC = 1.136`60.*NFIBRE
WRITE(20,55) Q_U_IN•FAC, O_V_LEK*FAC
WRITE('' ,55) Q_U_IN•FAC, O_V_LEK•FAC
RETURN

55^FORMATOX,'Q Lu : ',F10.4,' Q Leak : ',F10.4,' [mUminr)
END

SUBROUTINE UP_DATE_P_OS

SUBROUTINE USYM_GRID ( XO, XF, N, G_F, X, DX)

C^This S.R. establishes a non-uniform grid_
C^For positive G_F values more grids are on the left side.
C For negative G_F values more grids are on the right side_
C^0 < GF_A < PI/2

IMPLICIT REAL*8 (A-H2O-Z)
DIMENSION X(N), DX(0:N)
PIN = 2.D0 • DATAN(I .D0)
IF ( DABS(G_F) .GT. PIN) G_F=0.D0
NM = N - 1
IF (0_F .EQ. 0.00) THEN

DXC =(XF-X0)/NM
X(1)= XO
DO I = 2, N

X(1) = X(1-1) + DXC
DX(I-1)= DXC

END DO
ELSE

G = DABS(G_F)
DO I = I, N
IM = I - 1
X(I) = XO + (XF- X0) DTAN( 0• IM/NM )/DTAN(G)
IF (I NE. I) DX(IM)=X(I)-X(IM)

END DO
IF ( G_F^0.D0 ) THEN

DOI = I, N
DX(I) = X(N-1+1) - X(N-I)

END DO
X(I) = XO
DO 1= 2, N
X(1) = X(I-I) + DX(I-1)

END DO
END IF

END IF
DX(0) = 0.D0
DX(N) = 0.D0
RETURN

END

SUBROUTINE SYM _GRID ( XO, XF, N, G_F, X, DX)



IMPLICIT REAL*8 (A-H2O-Z)
C This S.R. establishes a symmetric non-uniform grid.
C^0 < GF_A < PI/2
C^Note GF_A = 0.D0 leads to a uniform grid

DIMENSION X(N), DX(0:N)
=2.D0 • DATAN(I .D0)

IF ( DABS(G_F) .GT.
NM = N - I
IF ( G_F .EQ. O.DO ) THEN

DXC = (XF-X0)/NM
X0

DO I = 2, N
X(I) = X(I-1) + DXC
DX(1-1)= DXC

END DO
ELSE

=DABS(G_F)
DO I = 1, N

IM =I - I
X(I) = X0 + (XF-X0) • 0.5D0
• (I .DO+DSIN( G• (2.D0 * IWNM-I.D0 )) /DS1N(G) )
IF ( I NE. I ) DX(IMX(1)-X(IM)

END DO
END IF
DX(0) = O.DO
DX(N) = 0.D0
RETURN

END

SUBROUTINE TDMA ( A, B, C, D, X, NI, N2)

CC This S.R. solves a nidiagonal system of equations. In this
CC routine the start and end of the eq. in the matrices needs to
CC be defined.

IMPLICIT REAL*8 (A-H2O-Z)
PARAMETER ( MAXX=20I)
DIMENSION A(N2), 8(N2), C(N2), D(N2), X(N2), P(MAXX), Q(MAXX)

P(NI)= -C(b11)/ B(N1)
Q(N1) D(NI)/B(NI)
DO I =N1+1, N2
IM "I-I
DEN = A(I) • P(IM)+ B(I)
P(I) = -C(I)/ DEN
Q(1) = (D(1)-A(1)*Q(1M))/DEN

END DO
X(N2)= Q(N2)
DO 1 = N2-1,N1, -1

X(I) = P(1) " X(1+1) + Q(I)
END DO
RETURN

END

REAL*8 FUNCTION F_TIME0
*********** ****************** ********* **..*••■■.**•..***••■

C This function returns the time in seconds after midnight
INTEGER*2 hour, minute, second, hundredth, YEAR, MONTH, DAY
CALL GE I (1M( hour, minute, second, hundredth )
CALL GETDAT (YEAR, MONTH, DAY)
WRITE(20,100) DAY,MONTITYEAR, HOUR,MINUTE,SECOND

100 FORMAT (25C,/,'date:^ ',3(13'1)
F_TIME = ((DBLE( hour ) • 3600.0) + (DBLE( minute) • 60.0) +

DBLE( second) + (DBLE( hundredth )/ 100.0))
END

SUBROUTINE SPLINE ( X, Y, N, IBC)

This subroutine calculates the Q,R,S values for the spline inter-
polation.

The boundary for each end can be selected ot of the three types

1:natural splines
2:clamped splines
3: fitted splines

IMPLICIT REAL•8(A-H2O-Z)
PARAMETER( MAXX=20I )
COMMON / BLKA / XX(MAXX),YY(MAXX), NN
COMMON / BLKB / Q(MAXX), R(MAXX),S(MAXX)
DIMENSION X(N), Y(N), H(MAXX)
DIMENSION A(MAXX), B(MAXY), C(MAXX), D(MAXX)

Assign dummy variables to the COMMON blocks
NN = N
DO I = I, N

XX(I)= X(I)
YY(1) = Y(I)

END DO
calculata H(I)

DO 1=1 ,N- 1
H(r) = x(t+1)-X(I)

ENDDO
IF ( IBC EQ 1 ) THEN^Natural splines
B(t)= I.D0
C(I) = O.DO
D(1) = 0.D0
A(N) = ODO
B(N) = I.D0
D(N) =0 DO

ENDIF

IF ( IBC .EQ. 2) THEN ! Clamped splines
DERIVI = O.DO
DERIV2 = 0.00
B(1) = 2D0 • H(I)
C(1)= H(l)
13(1)= 3.D0*((Y(2)-Y(1))/H(1)-DERIVI )
A(N) = H(N- I )
B(N) = 2.D0•H(N-1)
D(N) ---3.1)0*((Y(N)-Y(N- I))/H(N-1)-DERI VI )

ENDIF

IF ( IBC .EQ. 3) THEN I Splines with fitted end points
B(1)=-H(1)
C(1)= H(I)
D(1) = 3.D0*(H(I)**2)
Y(1)/((X(1)-X(2)) • (X(I)-X(3)) • (X(I)-X(4))) +
Y(2)/((X(2)-X(1)) • (X(2)-X(3)) • (X(2)-X(4))) +
Y(3)/((X(3)-X(I)) (X(3)-X(2))* (X(3)-X(4)))
Y(4)/((X(4)-X(I)) " (X(4)-X(2)) • (X(4)-X(3)))
A(N)' H(N-I)
B(N) --H(N-t)
D(N)=-3.D0*(H(N-1)••2)*
Y(N-3((X(N-3)-X(N-2))"(X(N-3)-X(N-I))*(X(N-3)-X(N))) ,-
Y(N-2)/((X(N-2)-X(N-3))"(X(N-2)-X(N-1))*(X(N-2)-X(N))) +
Y(N-1((X(N-1)-X(N-3))"(X(N-1)-X(N-2))*(X(N-1)-X(N))) +
Y(N)/((X(N)-X(N-3))*(X(N)-X(N-2))"(X(N)-X(N-I)))
ENDIF

A(1) DO
DO I = 2, N-I
IM =1-1
A(I) = H(IM)
B(I) = 2 DO*(H(IM)+H(1))
C(I)= H(I)
D(I) = 3.D0*((Y(1+1)-Y(1))/H(1)-(Y(1)-Y(IM))/H(IM))

END DO

CALL TDMA ( A, B, C, D, R, I, N)
DO I = I, N-1
IF =1+1
13(1) = (Y(1P)-Y(1))/H(1)-H(1)*(2 R(I)+R(IP))/3.D0
S(1) = (R(IP)-R(I))/(3.DO*H(I))

END DO
RETURN

END

REAL'8 FUNCTION FS_INTEG ( Z I , Z2)

IMPLICIT REAL*8 (A-H2O-Z)
PARAMETER( MAXX=20I )
COMMON/ BLKA / X(MAXX), Y(MAXX), N
COMMON/ BLKB / Q(MAXX), R(MAXX'), S(MAXX)
IF (Z1.GT.Z2) PAUSE 'FEHLER'
IF (ZI.LT.X(I)) THEN
WRITE(", I 5) Z1
STOP

15^FORMAT(/'-Waming-',D10.5; is out of the range !!!!')
ELSEIF (Z2.GT.X(N)) THEN
WRITE(','I S) ZI
STOP

END1F
C^Search for the start region of the Integral

I=1
1=N

10 K=0+1)/2
IF(ZI.LT.X(K)) 1=K
IF(Z1.GE X(K)) I=K
1F(1.GT.1+ I) GOTO 10
ISTART=1

C^Search for the end region of the integral
1=1
1=N

12^K=(I+1)/2
1F(Z2.LT.X(K)) 1=K
1F(Z2.GE.X(K)) I=K
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IF(1.GT.I+1) GOTO 12

C Calculate the integral over the functions
FS_INTEG-0.D0

C^Now calculate the start
K—ISTART
KP=K+1
DX=X(KP)-X(K)
FINT2=X(KP)*Y(K)+DX**2*(0.500*Q(K)+

• DX*0 .00/3.00*R(K)+ I . DO/4. DO* DX*S(K)))
DX=ZI-X(K)
FINTI =Z1* Y(K)+DX**2*(0.5DO*Q(K)+

• DX*0 .00/3.00*R(K)+ I .D0/4.00* DX* S(K)))
FS_INTEG=FINT2-FINTI
FS=1D0
DO K=ISTART+1,IEND

KP=K+I
DX=X(KP)-X(K)
FINT2=X(KP)nY(K)+DX**2*(0.500.Q(K)+

DX*(1.00/3.D0*R(K)+1.00/4.DO*DX*S(K)))
FINTI=X(K)*Y(K)
FS INTEG=FS INTEG+FINT2-FINTI

END 150
K=IEND
KIP=K+ I
DX=X(KP)-X(K)
FINT2=X(KP)*Y(K)+DX**2*(0.5D0*Q(K)+

DX*(1.00/3.00*R(K)+1.00/4.00*DX*S(K)))
DX=Z2-X(K)
FINTI=Z2*Y(K)+DX**2*(0.500*Q(K)+

DX*0 .D0/3.DO*R(K)+1.00/4.DO*DX*S(K)))
FS_INTEC,FS_INTEG-(FINT2-FINT1)
RETURN

END

REAL*8 FUNCTION FS_INP ( Z )

C^This Function calculates the value for a spline interpolation.
• The required values are supplied by a COMMON block_

C

• 

INPUT:
• XARG: interpolation values for X
• YARG: interpolation values for Y
C^OUI-POT:
• F2D: interpolation for Z(X,Y)

IMPLICIT REAL•8 (A-H2O-Z)
PARAMETER ( MAXX=201 )
COMMON! BLKA / X(MAXX), Y(MAXX), N
COMMON! BLKB / Q(MAXX), R(MAXX), S(MAXX)
IF(Z.LT.X( I)) THEN
WRITE(*,15) Z

15^FORMAT(fl-Waming-',D10.5, is out of the range !!!!')
ELSEIF (Z.GT.X(N)) THEN

WRITE(*,-) Z
I=N- I
WRITE(*,15) Z

ELSE
1=1
1=N

10^Kl+.1Y2
IFIZ LT.X(K)) 1=K
IF(Z GE X(K)) I=K
1F(1.GT I+ 0 GOT° 10

ENDIF
DX = Z - X(I)
FS_INP=Y(1)+DX*(Q(IHDX*(R(1)+DX*S(I)))
RETURN

END

HF2D_in.PUT Driver File
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! ri of grids in X direction^[-)
I I
^

!8 of grids in R direction^[-]
51
^

! number of data in x direction in out-put file
500.000
^

! flow rate in the reactor^[ml/min]
000.00
^

! Inlet pressure^[Pa)
00000.00
^

! Outlet pressure^[Pa)
21.500-2
^

! fibre length
115.000-6

^
! Lumen radius^fro)

124.000-6
^

! Outer membrane radius^[ml
175.00D-6

^
! Krogh Radius^Em]

0.0157500
^

inner shell diameter of the HFBR [m]
8128
^

!6 of fibres in the reactor^I-)
6.000-15

^
! Membrane permeability Lp [m]

5.000-15
^

ECS conductivity K^Dn21
10.00
^

! BSA start-concentration^[gill
6.8D-I0
^

! BSA diffusivity^[rn2/s]
69000.00
^

! Molecular weight of the protein [g/moles]
20.00
^

! Temperature^toC/
0000
^

! grid-spacing factor in x-dir. [-]
0.000
^

! grid-spacing factor in r-dir. [-]
1.0D-6
^

! Arc_ for the pressure^[Pa)
1.900
^

! SOR factor x direc. for L.b.L.(1 2)
1.600
^

SOR factor in r direr, for L.b.L.(1 -2)
1000
^

! max # of iteration to adjust pressures
1.0-8
^

! steady-state acc for the concentrations
2000.^! Time-step for the cliff cony. eq. [sl
1.000
^

! Time-relaxation factor for the duff, cony. eq.
1.000
^

! transient reporting values^[11)
2.0130
5.000
10.00
END
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Source Code for the One-Dimensional Computer Model
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PROGRAM HFBR_Protein_lD

VERSION 2.0
LAST CHANGE: 10.6.92

Numerical Solution for ID HFBR Polarization model!
By setting the ECS conductivity to O. the empty ECS is
simulated

by: Jurgen Koska

RETURN

IOU FORM AT(5X,110,F I 6 ^ 2,1s1')
125 FORMAT(///'^ file 6:15,' time. ,F9 4,'
130 FORMAT(2X,I5,6(2X,E12.4))
135 FORMAT(15,2),F10.3,2X,F10.5,2X,F10.5,2X,F10.3)
200 FORMAT(//,10X,' steady state was reached !!!')
300 FORMAT(//,10X,' steady state was not reached !!!',//)

END

IMPLICIT REAL*8 (A-H2O-Z)
CALL SET_UP
START_TIME = F_T1ME_STAMP( )
CALL HEART
CPU TIME = FTIMEETAMP( ) - START TIME
WRITE(*,100) CPU_TIME/60.
WRITE(20,100) CPU_TIME/60.
CLOSE( UNIT=20 )
STOP

100 FORMAT( ' CPU-time: F12.4,' Iminj ')
END

SUBROUTINE HEART

• Main Routine from where all other functions are called

IMPLICIT REAL•8 (A-H2O-Z)
PARAMETER ( MAXX=25I )
COMMON / B_DI / NX, NXM, RI, R2, R3, XL
COMMON / N_OUTP / N_X_SKP
COMMON / B_P I / P_LU(MAXX), P_OS(MAXX), PECS(MAXX)
COMMON / C_I / C_RELAX, C_TIME_TOTA, C_DT, C_EPS
COMMON / CONC / C_ECS(MAXX)
COMMON/TROUT / NTRANS, TRATIME_OUT(99)
COMMON / C_BEG1N / C_START
COMMON / PLOT_TU IPLOT_TIME

!PLOT = I
N_FILE = 1
WRITE(20,125) 0, C_TIME_TOTA
CALL PRESSURE ( ITER_P, 100, I .D-12 )
CALL DATA_OUT ( 0 , C_TIME_TOTA )
IF ( C_START .LE. 0.D0) RETURN
CALL UP_DATE_C ( C_DT, TODO, C_DIFMAX, PE_X )
C TIME_TOTA = C_TIME_TOTA + C_DT

DO ITER=I , 00000000
CALL UP_DATED ( C_DT, 0.5D0, C_DIFMAX, PE_X )
C_DIFMAX = C_DIFMAX / CDT
CALL PRESSURE ( ITERP, 100, 1.D-12 )
C_TIME_TOTA = C_TIME_TOTA + C_DT
TI_H = C_TIME_TOTA / 3600. ! convert to hours
IF ( C_DIFMAX IE. CEPS ) THEN

CC^the required steady-state criterion is obtained
CALL DATA_OUT ( N FILE , TI_H
WRITE(* ,200)
WRITE(20,200)
WR1TE(20,125) N_FILE, TI_H
WRITE(20,130) ITER, C_DIFMAX, PEN

RETURN
END1F
IF ( C_TIME_TOTA GE. TRA_TIME_OUT(N_FILE) ) THEN

CC^We reached the time for writing all information
WR1TE(20,125) N_F1LE, TI_H
WRITE(20,130) ITER, C_D1FMAX, PE_X
CALL DATA_OUT ( N_FILE , TI_H )
IF ( C_TIME_TOTA .GE. TRA_TIME_OUT(NTRANS) ) THEN

CC^check if max. time is exceeded
WRITE(20,300)
WRITE(* ,300)
RETURN

END IF
N_FILE = N_FILE +

END IF
IF ( C_T1ME_TOTA .GE. IPLOT_TIME "IPLOT ) THEN

WRITE(*,135) ITER, TI_H, C_DIFMAX, PE_X
CALL PLOT
CALL DELAY ( LODO )
!PLOT = IPLOT + 1

END IF
C DT = C_DT • C_RELAX

EN-121 DO

SUBROUTINE PRESSURE (ITER, MAXITER, EPS_P )

C Here the coupled lumen and ECS pressure eq. are solved for
C convergence.

IMPLICIT REAL'S (A-H2O-Z)
PARAMETER( MAXX=251 )
COMMON / B_P I / P_LU(MAXX), P_OS(MAXX), P_ECS(MAXX)
COMMON / B_004 / C_RELAX, C_T1ME_TOTA, C_DT, C_EPS
COMMON / B_DI / NX, NXM, RI, R2, R3, XL

CC first we update the osmotic pressures !
CALL UP_DATE_P_OS

CC now we allow a max. number of iterations to calc. the pressures
CC in the lumen and in the ECS for convergence.

DO ITER = I, MAXITER
CALL PRESS_ECS ( D_P_ECS )
CALL PRESS_LUMEN ( D_P_LU )
IF ( (D_P_LU+D_P_ECS) .LT. EPS_P ) THEN

the pressures converged and we rale the velocities
CALL VEL_ECS
RETURN

END IF
END DO
WRITE( *,100) C_T1ME_TOTA
WR1TE(20,100) C_TIME_TOTA

100 FORMAT (2X,THE PRESSURES DID NOT CONVERGE AT:',F10.2,'s)
CALL VEL_ECS
PAUSE
RETURN

END

SUBROUTINE PRESS_ECS ( P_D1FMAX )

C^ now we calculate the new pressures in the ECS-side!
IMPLICIT REAL*8 (A-H2O-Z)
PARAMETER ( MAXX=251 )
COMMON/ B_DI / NX, NXM, RI, R2, R3, XL
COMMON / B_A / X JMAXX), D_X(0:MAXX)
COMMON / B_SP / PER_MEM, COND_ECS
COMMON / BPI / P_LU(MAXX), P_OS(MAXX), P_ECS(MAXX)
COMMON / B_VISC / VISC_L, V1S_INS, V_K
COMMON / C_1 / C_RELAX, C_TIME_TOTA, C_DT, CEPS
COMMON / X BLK / X IN(MAXX), D_X_INV(MAXX)
COMMON / PRESS / PIN , POUT
COMMON / BLK_PS /-CO_PTECS,CO_P_LU, CO VEL
DIMENSION A(MAXX), B(MAXX), C(MAXX), D(MAXX),

P_NEW(MAXX)

C^note: flux B.C. are given
P_D1FMAX = 0.D0
A(I) = 0.D0
B(I) = - ( D_X_INV(I) + CO_P_ECS X_IN(1) )
C(I) =^D_X_INV(I)
D(1) = ( - PIN - P_OS(I) ) • CO_P_ECS • XIN(l)
DOI = 2, NXM
IM = I - I
A(I) = D_X_INV(IM)
B(I) = -( D_X_INV(1M) + D_X_INV(1) + CO_P_ECS • X_IN(I))
C(I)=^D_X_INV(I)
D(I) = ( - P_LU(I) - P_OS(I) ) • CO_P_ECS X_IN(I)

END DO
A(NX) = D_X_INV(NXM)
B(NX)^D_X_INV(NXM) + CO_P_ECS • X_IN(NX) )
C(NX) = 0.D0
D(NX) = (- POUT - P_OS(NX) ) CO_P_ECS • X_IN(NX)

CALL TDMA ( A, B, C, D, P_NEW, I, NX )
DO I = I, NX
P_DIFMAX = DMAX I( P_DIFMAX, DABS(P_NEW(1)-P_ECS(I)) )
P_ECS(I) = P_NEW(I)



END DO
RETURN

END

SUBROUTINE PRESS_LUMEN ( P_DIFMAX )

C^ This S.R. calculates the new lumen pressure profile!
IMPLICIT REAL*8 (A-H2O-Z)
PARAMETER ( MAXX=251 )
COMMON / B_DI / NX, NXM, RI, R2, R3, XL
COMMON / B_A / X_(MAXX), D_X(0:MAXX)
COMMON / B_SP / PER_MEM , COND_ECS
COMMON / B_PI / P_LU(MAXX), P_OS(MAXX), P_ECS(MAXX)
COMMON / B_V1SC / V1SC_L, VIS _INS, V_K
COMMON / X_BLK / X_IN(MAXX), D_X_INV(MAXX)
COMMON / PRESS / P_IN, P_OUT
COMMON / BLK_P_C/ CO_P_ECS,CO_P_LU, CO_VEL
DIMENSION P_NEW(MAXX), A(MAXX), B(MAXX), C(MAXX), D(MAXX)

P_DIFMAX = 0.00

C^ now we calculate the new axial pressures in the lumen with a
C^ note: the pressures at both fibre ends are given as B.C.

A(I) = 0.DO
B(I)= 1.00
C(1) = O.DO
D(I) = PIN ! pressure at the fibre lumen inlet
DO I =2, NXM
IM = I - I
A(I) =^D_X_INV(IM)
B(I) = - ( D_X_INV(1) + D_X_INV(IM) + CO_P_LU * X_IN(I) )
CO) = D_X_INV(I)
D(I) = CO_P_LU • X_IN(I)* ( P_OS(I)-P_ECS(I) )

END DO
A(NX)= 0.D0
B(NX)= 1.00
C(NX) 0.D0
D(NX)= P_OUT ! pressure at the fibre lumen outlet
CALL TDMA ( A, B, C, D, P_NEW, I, NX )
DO I = I, NX
P_DIFMAX = DMAX1( P_D1FMAX, DABS( P_NEW(4)-P_LU(1)) )
P_LU(I) = P_NEW(1) ! new pressure in axial direction

END DO
RETURN

END

• ...rt.*** ****** rt.*** ******** **.*****..*******.x* . ...... .........
SUBROUTINE SET_UP

........ ....*•* ..... ..... *******.*.”•.****• ...............

CC This routine initializes the program by reading the external file
CC and sets system parameters

IMPLICIT REAL*8 (A-14,0-Z)
PARAMETER ( MAXX=25I )
CHARACTER*8 FILE_NAME
COMMON / F_NAME / FILENAME
COMMON / B_PI / PI
COMMON / B_A / X_(MAXX), D_X(0:MAXX)
COMMON / B_PI / P_LU(MAXX), P_OS(MAX)C), P_ECS(MAXX)
COMMON / C_I / C_RELAX, C_T1ME_TOTA, C_DT, C_EPS
COMMON / B_DI / NX, NXM, RI, R2, R3, XL
COMMON / B_SP / PER_MEM, COND_ECS
COMMON/ HALF_GR / X_MID(MAXX+ I)
COMMON / N_OUTP / N_X_SKP
COMMON / B_VISC / VISC_L, VIS_INS, V_K
COMMON / CONC / C_ECS(MAXX)
COMMON / DIFFUS / DIFF, NFIBRE
COMMON / OSMOTI / PM, SM, T, OS_CONS, VIR_I,VIR_2
COMMON / TROUT / NTRANS, TRATIME_OUT(99)
COMMON / C_BEGIN / C_START
COMMON / X_BLK / X_IN(MAX)G , D_X_INV(MAX)0
COMMON / BLK_PE / D_X_D1FF(MAXX)
COMMON / PRESS / P_IN, P_OUT
COMMON / BLK_P_C / CO_P_ECS, CO_P_LU, CO_VEL
COMMON / PLOT_TI / 1PLOT_TIME

OPEN( UNIT=10, FILE =1-1F1 D_IN.PUT)
READ(I 0,333) FILE_NAME ! name for out-put files

333 FORMAT( A8
OPEN( UN1T=20, FILE = FILE_NAME/P.DAT)
READ(I0,*) NX ! Of of grids in X-direction
READ(10,") N_DAT 'skip factor for data in the out-put file
READ(10,*) FLOW ! flow rate in the reactor [mL/min]
READ(I 0,") PIN ! Inlet pressure [Pal
READ(I0,") P_OUT 'Outlet pressure [Pal
READ(I0,") XL^! [ml length of the capillary
READ(I0,") RI^! [ml inner lumen radius
READ(10,") R2^! [in] outer membrane radius
READ(I0,") R3 ! lin] Krogh radius
READ(I0,*) RSHELL '[ml inner shell radius of the HFBR

READ(I0,") NFIBRE ! [-] (1 of fibres in the reactor
READ(I0,*) PER_MEM ! lin) membrane permeability
READ(10,*) COND_ECS! fin"2] ECS conductivity
READ(10,•) C_START ! BSA start concentration in the ECS
READ(I0,*) DIFF ! BSA diffusivity
REA D(10,•1 PM^! molecular weight of the protein
RE AD(10,*) TC^'temperature [KJ
READ(10,*) G_FX^grid-spacing factor in x-dir. [-]
READ(10,*) C_EPS ! steady-state acc. for the concentrations
READ(I0,*) C _DT ! Time-step for the diff. cony. eq.
REA D(10,*) IPLOT_TIME! Time-step for screen plots
READ(10,") C_RELAX ! time-relaxation factor for the cliff, cone. eq.
IF ( NX .GT. MAXX) NX=MAXX
DO 1= I, 99
READ(I 0,",ERR=I8) TRA_TIME_OUT(I)

END DO
18 N_TRANS = I - 1

CLOSE( UN1T=10 )
DOI= 1, N_TRANS
TRATIME_OUT(I)= TRATIME_OUT(1)*3600.D0 ! convert to sec_
END DO
VISC_L^= F_VISC_H20( TC )
V1S_INS^= 3.65D-3
V_K^= 2.085110
PI^= DATAN(I.D0) r 4.D0

= TC + 27115
C_TIME_TOTA = 0.110
NXM^= NX I
N_X_SKP^= NXM / (N_DAT-1)

CC^Check if the Krogh Radius is given)'
IF ( R3 .LE. 0.00) THEN

R3 = RSHELL / NFIBRE**0.5
WRITE() 'Krogh radius:', R3

END IF
IF ( FLOW .GT. 0.000) THEN

POUT = 0.000
QF = FLOW" I .D-6/60/NFIBRE 'calculate flow in a single fibre
P_IN = QF' XL*8" VI SC_LJ(P1.121**4.)

END IF
WRITE(',100) P_1N, P_OUT

100 FORMAT(5)Qp-in:',F10.2,5X;p-out:',F I 0.2; [Pal')
FLOW = P_IN/(I.D-6/60/NFIBRE" XL*8*VISC_L/(PI"R1*"4.))
WRITE(",110) FLOW

10 FORMAT(5X,'Q-HFBR:',F10.2,' [ml/minn

CC-- Setup a non-uniform grid in both directions
CALL USYM_GR1D (000, XL, NX, G_FX, X_, D_X )
DO I = I, NX

P_LU(I) = FTLIN( 0.00, XL, P_1N, P_OUT, X(1)
P_OS(I) = F_PI( C_START )
C_ECS(I) = C_START
P_ECS(I) = (P_IN+P_OUT) "0.500 ! set start pressure
X_MID(I) = X_(I) - D_X(1-1).0.5D0

END DO
X_MID4NX+1) = X_(NX)
P_LU(I) = P_1N
P_LU(NX) = POUT
DO 1= I, NX
X_IN(I)^= ( D_X(I-1) + D_X(I) ) • 0.500
D_X_DIFF(I) = D_X(I ) / DIFF

END DO
DOI= I, NXM
D_X_INV(I) = I.DO/D_X(I)

END DO

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CC
CC^check for the model and set the appropriate constants
CC^K = 0 empty shell side model
CC^K >0 filled ECS model with Darcy conductivity K
CC^CO_P_ECS constant for pressures
CC^CO_VEL constant for ECS velocities

A_FRAC = 2. * RI / (R3**2.-R2**2.)
IF ( COND_ECS .LE. O.DO ) THEN

PHI = 4 *R3**4"DLOG(R3/R2)/(R3""2-R2"*2)-3"R3**2+R2**2
COND_ECS = PHI / 8 DO
WRITE(',*) ' You use the empty ECS Model'

END IF

CO_VEL = - COND_ECS / V1SC_L
CO_P_ECS = A_FRAC • PER_MEM / COND_ECS
WRITE(*)' K= COND_ECS
CALL DELAY ( 2.000

CC set constant for the lumen pressures
CO_P_LU = 16.1)0 • PER_MEM / R 1" -3.110

CC setup constants for osmotic pressure relationship
= 8.3141500 ! gas constant
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VIR_ I = 0.01047300 ! 2nd canal coef for BSA
VIR_2 = 1.7374313-5 ! 3rd virial coef for BSA
OS_CONS = R • TI (PM/1000.)
CALL DATA_SHOW( RSHELL, FLOW, GF_X )
RETURN

END

SUBROUTINE VEL_ECS

Calculates the velocity profile in the ECS
IMPLICIT REAL•8 (A-H2O-Z)
PARAMETER ( MAXX=251 )
COMMON / B_DI / NX, NXM, RI, R2, R3, XL
COMMON / B_A / X(MAXX), D_X(0:MAXX)
COMMON! B_SP / PER_MEM, COND_ECS
COMMON / B_P I / P_LU(MAXX), P_OS(MAXX), P_ECS(MAXX)
COMMON! B_VE_ECS / VEL(MAXX,2)
COMMON / B_V1SC / VISC_L, VIS INS, V_K
COMMON / CONC / C_ECS(MAXX)
COMMON! BLK_P_C / CO_P_ECS, CO_P_LU, CO_VEL

CC^calculate velocities in x-direction U(x,r) e- and w-side
VEL(I ,2)= 0.000 ! at X = 0 W
DO I = 2, NXM, 2
IP =1+1
IM = I-I
VEL(I,2) = CO_VEL " ( P_ECS(I)-P_ECS(IM) )/D_X(IM)
VEL(1,1) = CO_VEL " ( P_ECS(IP)-P_ECS(I) )/D_X(1)
VEL(IM,1) = VEL(1,2)
VEL(IP,2)= VEL(1,1)

END DO
VEL(NX,1) = 0.0D0 ! at X = L E

RETURN
END

SUBROUTINE PLOT

•• Driver routine for graphical presentation on the screen
IMPLICIT REAL*8 (A-HO-Z)
PARAMETER( MAXX=251 )
EXTERNAL FS_1NP
COMMON / B_D1 / NX, NXM, RI, R2, R3, XL
COMMON! B_A / X(MAXX), D_X(0:MAXX)
COMMON! CONC / C_ECS(MAXX)

CA MAX =100,00
CALL SPLINE ( X_, C_ECS, NX, 2)
CALL SCREEN ( FS_INP, 0.00, XL, 0.000, CA_MAX )
RETURN

END

SUBROUTINE UP_DATE_C ( DT, F, C_DIFMAX, PE_X_MAX )

CC This Routine solves for the new protein distribution in the
CC^shell side of the HFBR. The transient diffusion convection eq.
CC is solved with a modified Crank Nicolson Method.
CC To ensure a tridiagonal dominant matrix the power law scheme
CC with 1st order up-winding with is included.

IMPLICIT REAL•8 (A-H2O-Z)
PARAMETER( MAXX=251 )
COMMON! B_D1 / NX, NXM, RI, R2, R3, XL
COMMON! B_A / X_(MAXX), D_X(0:MAXX)
COMMON! B VE ECS / VEL(MAXX,2)
COMMON! CONC- / C ECS(MAXX)
COMMON! DIFFUS! 137FF, NFIBRE
COMMON! X_BLK / X_IN(MAXX), D_X_INV(MAXX)
COMMON / BLK_PE / D_X_DIFF(MAXX)
COMMON! BLK_OLD / A_OLD(MAXX), B_OLD(MAXX), C_OLD(MAXX)
DIMENSION A_N(MAXX), B_N(MAXX), C_N(MAXX), PE(MAXX)
DIMENSION A(MAXX), B(MAXX), C(MAXX), D(MAXX), C_NEW(MAXX)
C_DIFMAX = 0.00
PE_X_MAX OD°
FM^= - (I -F)
R_DT = I .D0 / DT
DO I = I, NXM

PE^= VEL(I,I) • D_X_DIFF(1)
PE (I) = F_POWER ( PE ) / D_X_DIFF(1)

CC^calculate the highest local axial Pe number
PE_X_MAX = DMAXI ( PE_X_MAX, PE)

END DO
CC note: VEL(i,l) velocity at east side of control volume
CC^VEL(i,2) velocity at west side of control volume

A_N(1) =000
C_N(I) = PE JD + DMAXI(0.D0,-VEL(1,11)
B_N(1)^= (C_N(1)+ VEL(1,11)
DO I = 2, NXM

A_N(I)= PE(1-1) + DMAX1(0.D0, VEL(I,2) )
C_N(1) = PE(I) + DMAXI(O.D0,-VEL(1,1) )
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B_N(I) = -( A_N(I) + C_N(I) + VEL(I, I ) - VEL(1,2) )
END DO
A_N(N X) = PE_(NXM) + DMAX I (0.DO, VEL(NX,2) )
C_N(NX) =0.00
B_N(NX) = ( A_N(NX) - VEL(NX,2) )

DOI= 1, NX
A(1) = F • A_N(1)
C(1) = F • C_N(1)
B(I) = F • B_N(I) - X_IN(I) R_DT
0(0= FM • A_OLD(I)^• C_ECS(I-1)

+ ( FM • B_OLD(I) - X_IN(1) • R_DT ) • C_ECS(I )
+ FM • C_OLD(1)^• C_ECS(I+1)

END DO
CALL TDMA ( A, B, C, D, C_NEW, I, NX ) ! solve the tridiagonal set

C save these values for the next time step
DOI= I, NX

A_OLD(I)= A_N(I)
B_OLD(1) B_N(I)
C_OLD(I)= C_N(I)
C_D1FMAX = DMAX1( C_DIFMAX, DABS(C_NEW(1)-C_ECS(1)))
C_ECS(1)= C_NEW(1)

END DO
RETURN
END

REAL•8 FUNCTION F_POWER ( PE)

C^This function applies the power law scheme
C^(Patankar, 1980)

IMPLICIT REAL•8 (A-H, 0-Z)
F_POWER= DMAX1( 0.DO, (1.00 - 0.100 * DABS(PE) )• '5.)
END

SUBROUTINE LUMEN_VEL

IMPLICIT REAL*8 (A-H2O-Z)
PARAMETER ( MAXX=25I )
COMMON / B_PI / PI
COMMON / B_D1 / NX, NXM, RI, R2, R.3, XL
COMMON! B_A / X(MAXX), D_X(0:MAXX)
COMMON! B_SP / PER_MEM , COND_ECS
COMMON / B_VE_ME / VXR_LU(MAXX), UXR_LU(MAXX)
COMMON! B_P I / P_LU(MAX)Q, P_OS(MAXX), P_ECS(MAXX)
COMMON! B_VISC / V1SC_L, VIS_INS, V_K
COMMON! DIFFUS /DIVE, NF1BRE
DIMENSION VDUMMY(MAXX)

C^ UXR_LU: contains the average axial velocities in the lumen
C^ VXR_LU: contains the radial lumen velocities at R2
C^ calculate the average lumen axial velocities

DUMMY=. RI 2. 1(8." VISC_L)
DO I =2, NXM
1P=I+ 1
IM = I. I
SLOPE = (P_LU(IP)-P_LU(IM))/(D_X(1)+D_X(IM))
UXR_LU(I)= SLOPE DUMMY

END DO
UXR_LU(1) DUMMY • (P_LU(2)-P_LU(I) )/ D_X(I)
UXR_LU(NX)= DUMMY * (P_LU(NX)-P_LU(NX-0)! D_X(NX-I)
DUMMY = PER_MEM / V1SC_L
DO I = I, NX

VXR_LU(1) = DUMMY • ( P_LU(1) - P_ECS(I) + P_OS(I) )
VDUMMY(I) = DABS( VXR_LU(I) )

END DO
Q_U_IN = UXR_LU(1) • PI " RI ••2. ! flow rate in the lumen

C^calculate the leakage flow into the lumen
CALL SPLINE ( X_, VDUMMY, NX, 2)
O_V_LEK = 2.DOP1•121 • FS_INTEG ( X(I), X(NX) ) /2.00
FAC = I .D6"60."NFIBRE
WRITE(20,55) Q_U_IN*FAC, O_V_LEK"FAC
WRITE(• ,55) Q_U_IN•FAC,O_V_LEK•FAC
RETURN

55^FORMAT(4X,'Q Lu.: ',F10.4; Q Leak: ',F10.4,' [mL/minf)
END

SUBROUTINE DATA_OUT ( NUM, TRANS:IT ME )

C^ This Function writes the data to a external file
IMPLICIT REAL*8 (A-H2O-Z)
PARAMETER ( MAXX=251 )
CHARACTER•3 1NT_CHAR, NUMBER
CHARACTER•8 FILE_NAME
COMMON / F_NAME / FILE_NAME
COMMON! Bye_ME / VXR_LU(MAXX), UXR_LU(MAXX)
COMMON! B_DI / NX, NXM, RI, R2, R3, XL
COMMON! B_P1 / P_LU(MAXX), P_OS(MAXX), P_ECS(MAXX)



COMMON / BA / XJMAXX) , D_X(0:MAXX)
COMMON! CONC / C_ECS(MAXX)
COMMON / B_VE_ECS / VEL(MAXX,2)
COMMON / HALF_GR / X_MID(MAXX+1)
COMMON / B_SP / PER MEM , COND_ECS
COMMON / B_V1SC / VISC_L, VIS_INS, V_K
COMMON / N_OUTP / N_X_SKP

101^= I I
NUMBER = INT_CHAR( NUM)
OPEN( UNIT=I01, FILE = FILE_NAME/MNUMBER
DO 1 = I, NX

IF ( C_ECS(I) .LT. 0.00 ) C_ECS(I)= 0.00
END DO
CALL LUMEN_VEL ! calculate the lumen velocities
CALL C_AVERAGE ! calculate a mass-balance over the reactor
DO I = 1, NX, N_X_SKP
IM = I - I
WRITE(101,100) X_(I) 1.D2, C_ECS(I), VXR_LU(1),
interpolate the axial velocity in the ECS at the grid-points
(D_X(1)•VEL(1,2)+D_X(IM)*VEL(1,1))/(D_X(1)+D_X(IM)),
UXR LU(I), PLUM, P_ECS(1),P_OS(1),PECS(1)-P_OS(1)
END DO
WRITE(101,110)TRANS_TIME! time-stamp on each file
CLOSE( UNIT=I01 )
RETURN

100 FORMAT( 2(F10.4,2X),3(E16.8,2)0,4(F10.4,2X) )
110 FORMAT ( /F14.6)

END

SUBROUTINE C AVERAGE
............ .. 11■•••• .• •.* .................^..... ••••■■••

This S. R. calculates the average concentration in the HFBR
IMPLICIT REAL*8 (A-H2O-Z)
PARAMETER ( MAXX=251, MAXR=I I)
COMMON / B_A / X JMAXX), D_X(0:MAXX)
COMMON! B DI / NX, NXM, RI, R2, R3, XL
COMMON / CONC / C ECS(MAXX)
COMMON / C_BEG1N7 C_START
CALL SPLINE ( X_ ,C_ECS, NX, 2)
CAV = FS_INTEG ( X(I), X JNX))/ X (MO
WRITE(20,100) CAV , C_START-CAV
WRITE( •,100) CAV , C_START-CAV

100 FORMAT(5X,'mass-balance:',F8.4,' lost.',F10.6,' [g/Lr)
RETURN
END

X.* ..... ••■■•*. ............ 41.****.**.*. .....^..... rtt• • .***•
SUBROUTINE DATA_SHOW ( RSHELL, FLOW, GF_X )

•••• ********** ** ****************** ••• •• ••• •• • ********* "`• • •• • ••
•• All system information is written loan external file!

IMPLICIT REAL•8 (A-H2O-Z)
PARAMETER ( MAXX=251 )
CHARM. I ER*8 FILE NAME
COMMON / F_NAME-/ FILE NAME
COMMON! B_DI / NX, NXM, RI, R2, R3, XL
COMMON / N_OUTP / N X SKP
COMMON / B_A /^D X(01MAXX)
COMMON / C_I / C RELAX, C TiME_TOTA, CDT, CEPS
COMMON / B SP / PER_MEM, COND_ECS

COMMON / DIFFUS / D1fF, NFIBRE
COMMON / OSMOTI / PM, SM, T, OS CONS, VIR 1,VIR_2
COMMON / TROUT / N TRANS, TRATIMEDUT(99)
COMMON / C^/ J_START
COMMON! PRESS / P_IN, P_OUT
COMMON / B_PI / PI
10 = 33
OPEN( UNIT=I0, FILE = FILE_NAME/P.INF)
WRITE(I0,001) NX

001 FORMAT(6X;x-grids: ',I4)
WRITE(10,003) P IN •I.D-5 ,P_OUT•I.D-5

003 FORMAT(2X,'BMssures- inlet^:T10.4,' [bur

^

outlet^[burl')
WRITE(I0,005) FLOW

005 FORMAT(2X;Vol flow rate in HFBR^.',F10.4,' [mL/minr)
WRITE(10,007) XL•100.

007 FORMAT(2X,'Fibre length^:',F10.4,' [cmj')
WRITE(I0,009) RI•106,R2` I D6

009 FORMAT(2X,'Fibre radii- inner^:',F10_4,' 4u-nr/

^

outer^:',F10.4,' [pm[')
WRITE(I0,011) R3•1D6

011 FORMAT(2X,'Krogh radius^:',F10.4; lima)
WRITE(I0,013) RSHELL • 100.

013 FORMAT(2X,'Inner cartridge radius^:',F10.4, [cm])
WRITE(I0,015) NFIBRE

015 FORMAT(2X;# of fibres in reactor^:',I10)
WRITE(I0,016) P1121•2XLNFIBRE Pl•R2"2•XL*NFIBRE

016 FORMAT(2Vinner HFBR membrane area :',F10.4; [inn/
2X;outer HFBR membrane area^:',F10.4: [m2[')
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WRITE(I0,017) F_VISC_H20( T - 273.15)
017 FORMAT(2X,'Viscosity in lumen^:',E10.4; [Pa-sr)

WRITE(I0,019) PER_MEM
019 FORMAT(2X,'Membrane permeability^:',E10.4,' [ml')

WRITE(I0,020) PER_MEM • RI * DLOG (R2/R1)
020 FORMATRX,'calc. Membrane conductivity :',E10.4; [m2r)

WRFTE(10,021) CON D_ECS
021 FORMAT(2X,'ECS-conduchvity^:',E10.4,' frn2r)

WRITE(10,023)
023 FORMAT(/,10X; Protein:)

WRITE(I0,025) C_START
025 FORMAT(2X,'Stan Concentration^:',E10.4,' [g/L[')

WRITE(10,027) DIFF
027 FORMAT(2X,'Diffiisivity^:',E10.4,' [m/s••21)

WRITE(I0,029) PM
029 FORMAT(2X,'Molecular weight^[g/molesr)

WRITE(I0,031) F_PI(C_START)
031 FORMAT(2X,'Osm. press.^:',E10.4,' [Pal')

WRITE(10,032)F_VISC_BSA(C_STARD
032 FORMAT(2X;Viscosity of protein sol. :',E10.4,' [Pa-sr)

WRITE(10,033) VIR_I ,VIR_2
033 FORMAT(2X,'I at virial coeff.^:',F12.8/

.^,2X,'2 nd vinal coett^:',E12.4)
WRTTE(I0,041) T-273.1500

041 FORMAT(2X,Temperature^:',F I 0.2; [oCr)
WRITE(I0,043) C_EPS

043 FORMAT(2X,'Steady-state for conc.^:',E10.4,' [g/L,]')
WRITE(10,045) C_DT,C_RELAX

045 FORMAT(2X,Time Step^:',F10.4,/
2 X,Tirne Aced. Factor:^:',F10.6)

WRITE(10,049)
049 FORMAT(//,2X,'"• • Transient times for mint-out ••• ')

DOI= I, NTRANS
TR = TRA_TIME_OUT(I)
WRITE(I0,055) TR, TR/60.,TR/60./60.

END DO
055 FORMAT(5X, P102,' [sj^[min] ',F10.4,' [h])

WRITE(I0,057) GF_X
057 FORMAT(//,2X,'•*"' grid locations in x-ditection [cm] "'"• ',F10.6)

DO I = 1, NX
WRITE(I0,059) 1,X J1)*100., D_X(05100.

END DO
059 FORMAT(2X,I4,2(5X, P10.6))
063 FORMAT(2X,I42(5X, P10.6))

CLOSE( UNIT=I0 )
RETURN
END

***** *****^********* ..***.rt ******^****** *4..**.***.

SUBROUTINE UP_DATE_P_OS

CC This Sub. R. updates the osmotic pressures along the membrane/ECS
CC interface.

IMPLICIT REAL*8 (A-H2O-Z)
PARAMETER ( MAXX=251 )
COMMON! B_DI / NX, NXM, RI, R2, R3, XL
COMMON / BPI / P_LU(MAXX), P_OS(MAXX), P_ECS(MAXX)
COMMON / CONC / C_ECS(MAXX)

DO I = 1, NX
P_OS(I)= F_PI( C_ECS(I) )

END DO
RETURN

END

REAL•8 FUNCTION F_VISC_H20( TC )

C This function calculates the viscosity of H2O at the given Temp TC in Celsius.
C input IC^oC
C output vise^Pa s

IMPLICIT REAL•8(A-H,0-Z)
F_VISC H20 = 10.D0• *( (1.3272.(20-TC)-0.001053*(TC-20)""2 )

7(TC+105.) ) • 1.0021/100/10
RETURN

END

REAL*8 FUNCTION F_VISC_BSA( C)

C This function relates the viscosity to the BSA concentration.
C The viscosity of scaler must be defined before in VISC_L
C input c BSA g/L
C output vise Pa s

IMPLICIT REAL•8(A-H2O-Z)
PARAMETER ( MAXX=251 )
COMMON / B_ VISC / VISC_L, VIS_INS, V_K
C2 = C/10
F_VISC_BSA = VISC_L•( 1 • C2 * ( VIS INS + V_K • C2 ) )
RETURN

END



X(1)= X0
DO I = 2, N

REAL*8 FUNCTION F_PI( C_IN )^ X(I) = X(I-1) + DXC
DX(1-1)=- DXC

CC This function calculates the local colloid osmotic pressure as a^ END DO
CC function of the local protein concentration according.^ ELSE

IMPLICIT REAL*8 (A-H2O-Z)^ 0 = DABS(G_F)
COMMON / OSMOT I / PM, SM, T, OS_CONS, VIR_I,VIR_2^ DO I = I, N
F_PI OS_CONS C_IN •^ 1M -- I - I

. (I + C_IN • ( VIR_1 + C_IN • V1R_2 ) )^ X(I) X0 + (XF-X0) • 0.5D0
RETURN^ " (I .DO+DSIN( G " (2.D0 • IM/NM-1.D0 ))/DSIN(G) )
END^ IF ( I NE. I ) DX(IMX(1)-X(IM)

END DO
END IF

REAL*8 FUNCTION F_YL1N( XI, X2, Y I , Y2, XLIN )^ DX(0) = 0.D0
DX(N)= O.DO

this Function performs a linear interpolation between two points.^ RETURN
IMPLICIT REAL*8 (A-H2O-Z)^ END

F_YLIN ( Y2 - YI )/( X2 - XI)' ( XLIN XI) + Y1
RETURN

END^ SUBROUTINE TDMA ( A, B, C, D, X, NI, N2)

CC This S.R. solves a tridiagonal system of equations.
CHARACTER*3 FUNCTION 1NT_CHAR (I)^ CC In this routine the start and end of the eq. in the

CC matrices has to be defined.
C This Function changes a an integer loan char. string (0-99)^ IMPLICIT REAL*8 (A-H2O-Z)

IMPLICIT REAL*8 (A-H2O-Z)^ PARAMETER ( MAXX=25I )
CHARACTER*1 Al, A2, A3^ DIMENSION A(N2), B(N2), C(N2), D(N2), X(N2), P(MA30(), Q(MAX))

ITEL = I/10^ P(NI) = -C(NI)/ B(N1)
Al ='0'^ COD = D(NI)/B(NI)
A2 = CHAR( 1TEL + 48 )^ DOI = NI+1,N2
A3 = CHAR( I - rret..lo 48 )^ IM =1-1
INT_CHAR = A I //A2//A3^ DEN = A(I)* POM)+ B(I)
RETURN^ P(I) = -Ca) / DEN

END^ Q(I)=- (1)(0-A(1)•Q(IM))/DEN
END DO
X(N2) = Q(N2)

SUBROUTINE USYM_GRID ( XO, XF, N, G_F, X, DX)^ DOI =N2-1,N1, -I
X(I) = P(I)* X(I+1) + Q(I)

C This S.R. establishes a non uniform grid.^ END DO
C For positive G_F values more grids are on the left side.^ RETURN
C For negative G_F values more grids are on the right side.^ END
C^0 < GF_A < PI/2

IMPLICIT REAL*8 (A-H2O-Z)
DIMENSION X(N), DX(0:N)^ SUBROUTINE SPLINE ( X, Y, N, IBC)
PIH = 2.D0 * DATAN(I .D0)
IF ( DABS(G_F) .(JT. PIH)^ C^This subroutine calculates the Q,R,S values for the spline inter-
NM = N - I^ C^polation.
IF (0_F .EQ. 0.00) THEN^ C^The boundary for each end can be selected out of the three types:

DXC = (XF-X0)/NM
X(t)= X0^ C^I: natur-al splines
DO I = 2, N^ C^2: clamped splines
X(I) = X(1-0+ DXC^ C^31 fitted splines
DX(11- I DXC

END DO
ELSE^ IMPLICIT REAL*8(A-H2O-Z)

G = DABS(G_F)^ PARAMETER ( MAXX=251 )
DO I = I, N^ COMMON / BLKA / XX(MAXX),YY(MAXX), NN
1M — I - I^ COMMON / BLKB / Q(MAXX), R(MAXX),S(MAXX)
X(I) = XO + (XF-X0) • DIAN( 0 IWNM )/DTAN(G)^ DIMENSION X(N), Y(N), H(MAXX)
IF ( I .NE. I) DX(IM )=X(I)-X(IM)^ DIMENSION A(MAXX), B(MAXX), C(MAXX), D(MAXX)

END DO
IF (0_F .LT. 0.00) THEN^ C Assign dummy variables to the COMMON blocks

DO I = I, N^ NN = N
DX(I) = X(N-I+1) - X(N-I)^ DO I = I, N

END DO^ XX(I) = X(1)
X(I) = X0^ YY(I)= Y(I)
DO I = 2, N^ END DO
X(I) = X(1-0+ DX(I-1)^ C^calculate H(I)

END DO^ DO I=1,N-1
END IF^ H(0= X(I+ 0-X(1)

END IF^ ENDDO
DX(0) = 0.00^ IF ( IBC .EQ. I ) THEN !^Natural splines
DX(N) = 0.D0^ B(I)= I.00
RETURN^ C(I) = 0.00
END^ D(1) = 0.D0

A(N)= O.DO
B(N) = I .D0

SUBROUTINE SYM_GRID ( XO, XF, N, 0_F, X, DX)^ D(N) = 0.00
ENDIF

IMPLICIT REAL*8 (A-I-1,0-Z)
C This S.R. establishes a symmetric non uniform grid
C^0 < GF_A < P1/2
C^Note GF_A = 0.00 leads to a uniform grid

DIMENSION X(N), DX(ON)
PIH = 2.00 * DATAN(I .D0)
IF ( DABS(G_F) .GT PIH)
NM = N - 1
IF ( G_F .EQ. 0.D0 ) THEN

DXC = (XF-X0)/NNI

IF ( IBC .EQ. 2) THEN ! Clamped splines
DERIVI =000
DERIV2 -0.00
B(1) = 2.D0 • H(1)
CID= H(I)
D(I) = 3.D0*((Y(2)-Y(1))/H(1)-DERI VI )
A(N) =
B(N) = 2 DO•1-1(N -I)
D(N)=-3.00"((Y(N).Y(N- I ))JH(N-1)-DER1 V 1
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ENDIF

IF ( IBC .EQ. 3 ) THEN ! Splines with fitted end points
B(I ) -H(I)
C(I)= H(I)
D(I) = 3. D0-(H(1)**2) •
Y(1)/0X(1)- X(2)) " (X(1)-X(3)) (X(1)-X(4)))
Y(2)/((X(2)-X(I)) (X(2)-X(3)) • (X(2)-X(4))) +
Y(3)/((X(3)-X(1)) • (X(1)-X(2)) • (X(3)-X(4)))
Y(4)/((X(4)-X(I)) • (X(4)-X(2)) • (X(4)-X(3)))
A(N) = H(N-1)
13(1,1) =-H(N-1)
D(N)=-3.D0*(H(N-1)•"2)"

Y(N-3)/((X(N-3)-X(N-2))*(X(N-3)-X(N-1))*(X(N-3)-X(N))) +
Y(N-2)/((X(N-2)-X(N-3))*(X(N-2)-X(N-1))*(X(N-2)- X(N))) +
Y(N- I y((c(N- D-xos,-3))*(x04-0-x(N-2))*(x(N-1)-X(N)))
Y(N)/((X(N)-X(N-3))*(X(N)-X(N-2))•(X(N)-X(N-1)))
ENDIF

A(I
DOI= 2, N- I
IM =1-I
A(I)= H(IM)
B(I) = 2.D0*(H(IM)+H(1))
C(I)= H(1)
D(I) = 3 .D0•((Y(1+ 1)- Y(I))/H(I)-(Y(I)- Y(IM))/H(IM))

END DO

CALL TDMA ( A, B, C, D, R, 1, N)
DO! = I, N-1

IP =1+1
Q(I) = (Y(IP)-Y(1))/H(1)-H(1)*(2.*R(1)+R(IP))/3.D0
S(I) = (R(IP)-R(I))/(3.DO•H(I))

END DO
RETURN

END

REAL•8 FUNCTION FS_INTEG ( Z1, Z2)

IMPLICIT REAL•8 (A-H2O-Z)
PARAMETER( MAXX=251 )
COMMON/ BLKA / X(MAXX), Y(MAXX), N
COMMON/ BLKB / Q(MAX50, R(MAXX), S(MAXX)
IF (Z1.GT.Z2) PAUSE 'FEHLER'
IF (ZI .LT.X(1)) THEN
WRITE(`,15) Z I
PAUSE 'FEHLER'

15^FORMAT(5X,'Waming :,E10.5; is out of the range !!!!')
ELSE1F (Z2.GT.X(N)) THEN
WRITE(•,15) ZI
STOP

ENDIF
C^Search for the start region of the integral

1=1
.1=N

10^KI+J)/2
IF(Z1.LT.X(K)) J=K
IF(ZI.GE.X(K)) I=K
IF(J.GT.1+1) GOTO 10
ISTART=I

C^Search for the end region of the integral
1=1
J=N

12^Kl+.4)/2
IF(Z2.LT.X(K)) J=K
IF(Z2.GE.X(K))1=K
IF(.1.GT.1+1) GOTO 12
IEND = I

C^Calculate the integral over the functions
FS_INTEG.D0

C^Now calculate the start
K=ISTART
KP—K+1
DX=X(KP)-X(K)
FINT2=X(KP)*Y(K)+DX••2*(0.5D0•Q(K),

DX*(1.00/3.DO•R(K)+1.D0/4.DO•DX"S(K)))
DX=Z1-X(K)
FINTI=ZI*Y(K)+DX••2*(0.5D0•Q(K)+

DX•O.D0/3.13.0*R(K)+1.D0/4.DO•DX•S(K)))
FS_INTEG=FINT2-FINT1
FS0.D0
DO K=ISTART+1,IEND

KP=K+1
DX=X(KP)-X(K)
FINT2=X(KP)Y(K)+DX••2•(0.5DO•Q(K)+

DX*(1.D0/3.DO•R(K)+1.D0/4.DO•DX•S(K)))
FINT I =X(K)*Y(K)
FS_INTEG=FS_INTEC+ F INT2-F INT I

END DO

K=IEND
KP=K+I
DX=X(KP)-X(K)
FINT2=X(KP)*Y(K)+DX**2*(0.500•Q(K)-+

DX*0 .D0/3.DO"R(K)+1.00/4.DO•DX•S(K)))
DX-'Z2-X(K)
FINT I =Z2" Y(K)+DX**2*(0.5DO*Q(K)+

DX*(1.1,10/3.DO*R(K)+1.D0/4.DO•DX•S(K)))
FS_INTEG=FS_INTEG-(FINT2-FINTI)
RETURN

END

............. * ...... * ....... * .......... ***********•** ****** *****
REAL*8 FUNCTION FS_INP ( Z )

This Function calculates the value for a spline interpolation.
The required values are supplied by a COMMON block.

INPUF:
XARG: interpolation values for X
YARG: interpolation values for Y

OUTPUT:
F2D: interpolation for Z(X,Y)

IMPLICIT REAL*8 (A-H2O-Z)
PARAMETER ( MAXX=251 )
COMMON / BLKA / X(MAX)Q, Y(MAXX), N
COMMON / BLKB / Q(MAXX), R(MAXX), S(MAKX)
I = I
J = N

10
^

K = (1+4)/2
IF ( Z .LT. X(K) ) J=K
IF ( Z .GE. X(K) ) I=K
IF ( J .GT. 1+1 ) GOTO 10
DX = Z - X(I)
FS_INP=Y(1)+DX*(Q(1)+DX*(R(1)+DX•S(1)))

RETURN
END

SUBROLTTINE DELAY ( TIME_STEP )
.* .....^ .....^..... .......

IMPLICIT REAL•13(A-H2O-Z)
START_T = F_TIME0

100 IF ( ( F_TIME0 START_T) .GT TIME_STEP ) THEN
RETURN

ELSE
GOTO 100

END IF
END

REAL*8 FUNCTION F_TIME_STAMPO

C This function returns the time in seconds after midnight.
IMPLICIT REAL*8 (A-H2O-Z)
INTEGER"2 hour, minute, second, hundredth, YEAR, MONTH, DAY
CALL GETT1M( hour, minute, second, hundredth )
CALL GETDAT (YEAR, MONTH, DAY)
WRITE(,100) DAY,MONTH,YEAR, HOUR, MINUTE, SECOND
F_TIME_STAMP = ((DBLE( hour )"3600.)+(DBLE( minute)*601+

DBLE( second) + (DBLE( hundredth ) / 100.0))
100 FORMAT (/,2X:date:

.^/,2X:time:
RETURN

END

REAL*8 FUNCTION F_TIME( )

C This function returns the time in seconds after midnight.
1NTEGER•2 hour, minute, second, hundredth
CALL GETTIM( hour, minute, second, hundredth )
F_T1ME = ((DBLE( hour ) • 3600.) + (DBLE( minute) • 60)'

.^DBLE( second) + (DBLE( hundredth ) / 100))
RETURN

END

SUBROUTINE SCREEN ( FUNC, XI, X2, YSIAL, YBIG )

CC Performs a graphical screen print
IMPLICIT REAL•8 (A-H2O-Z)
PARAMETER ( ISC R=65 ,JSCR=22 )
CHARACTER"' SCR(ISCR,JSCR), BLANK, ZERO, YY, XX, FF
DIMENSION Y(ISCR)
DATA BLANK, ZERO, YY, XX, FF/
DO 1= 1, JSCR

SC R(1,^= YY
SCR(ISCR,J)= YY

END DO



DO I = 2, ISCR-I
SCR(l, I) = XX
SCR(1, JSCR) = XX
DOS = 2, 50CR-1

SCR(I,J)= BLANK
END DO

END DO
DX = (X2 - XI )! (ISCR - I)
X = XI
YBIG = 0.D0

C YSML = YBIG
DO! = 1, ISCR

Y(I) = FUNC(X)
C^IF ( Y(I) .LT. YSML ) YSML = Y(I)

IF ( Y(I) .GT. YBIG ) YBIG = Y(I)
X=DX+X

END DO
IF (YBIG .EQ. YSML) YBIG=YSML+ I
DYJ = (JSCR-I)/ (YBIG-YSML)
JZ = 1 - YSML • DYJ
DO! = I, ISCR

SCR(1,1Z) = ZERO
= 1 + ( Y(1)- YSML ) * DYJ

SCR(1,1)= FF
END DO
WRITE(,100) YBIG/10,(SCR(1,1SCR),1=1,1SCR)
DO = JSCR-I, 2, -I

WRITE(•,110)(SCR(1,1),1=1,1SCR)
END DO
WRITE(*,100) YSMU10,(SCR(1,1),1=1,ISCR)
WRITE(*,I20) X1/10, X2110

100 FORMAT(IX,IPF10.3,1X,80A1)
110 FORMAT(1 2X,80A1)
120 FORMAT(' OX, I PF63,55X,F7.3)

RETURN
END

Driver file "HFIDJN.PUT" REQUIRED
the ID HFBR Protein Polarization Program

Test 
^

! define name for output files
201^of grids in X direction^I-1
101^O of data in the out-put file
500.0D0 ! flow rate in the reactor^1mL/nunl
0000.D0 ! Inlet pressure^Raj
000.0D0 ! Outlet pressure^[Pal
0.215D0 ! Length of the capillary^Ern

115.00D-6 ! Lumen radius^[ni
124.00D-6 ! Outer membrane radius^fm
175.00D-6 ! Krogh Radius^fm
0.01575D0 ! inner shell diameter of the HFBR Ins
8128^of fibres in the recator

6.00D-I 5 ! Membrane permeability Lp^Em
5.00D-15 ! ECS conductivity K

^
[m••21

10.0D0 ! BSA start-concentration^[0]
6.8D-I0^! BSA diffusivity^fin2/si
69000.D0 ! Molecular weight of the protein Eg/molesj
20.DO
^

! Temperature^foci
0.0D0
^

! grid-spacing factor in x-dir.^f-1
I D-8
^

! steady-state acc. for the concentrations
1000.D0

^
! Time-step^ fs1

50000
^

!Time-step for screen plots^[s]
1.000D0

^
! Time-relaxation factor for the cliff cony. eq.

1000.D0 ! time request for transients
2000.D0
END

113
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