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Abstract 

Greenhouse tomato yields were predicted using two mathematical models 

developed in this study - the empirical and deterministic models. Weekly yield predictions 

for an entire growing season were compared with actual yields and results from an expert 

system model developed by the Agassiz Research Station. 

The deterministic math model involved using first principle equations of photosynthesis 

and respiration to simulate crop growth. Utilizing a known tomato yield conversion factor, 

net photosynthesis rates (Pnet) were converted to weekly yield predictions and compared 

with actual recorded yields. A deterministic model using two week cumulations of Pnet 

converted to yield was used successfully to predict actual tomato yields 6 weeks ahead of 

time with a root-mean-square-error (RMSE) of 0.38 kg/m2. 

The empirical math model employed regression techniques to fit historical greenhouse 

climate data to recorded yields. Correlations between light, temperature, and weekly 

tomato yields were derived into equations to predict yields for future growing seasons. An 

empirical model cumulating 3, 6, and 9 weeks of light and temperature data was developed 

to predict yields 4 weeks ahead of time with a RMSE of 0.45 kg/m2. 

When one-week-ahead predictions from the Agassiz expert system model were 

compared with actual recorded yields a RMSE of 0.401 kg/m2 was calculated. The expert 

system model utilizing trend recognition techniques was also used as a comparison with the 

two math models. When compared and ranked for prediction accuracy, application 

flexibility, and user-friendliness, the expert system was chosen as the overall best model for 

tomato yield prediction. 
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Introduction 

Greenhouse produced crops have become an important part of the agricultural 

industry (BCFA, 1994) and are well-known in the marketplace for their high quality and 

consistency. However, while striving to provide a top quality product, greenhouse 

producers have had to incur heavy capital costs, and these costs are then inevitably reflected 

to the consumer. Consequently, any advances that may improve the yield and lower the 

cost of producing greenhouse crops will benefit both growers and consumers. 

Current decision-making for greenhouse climate control and production relies 

heavily on the past experience of the individual grower and general guidelines published in 

production manuals. As a result, grower yields tend to vary greatly on an individual and 

yearly basis. In an attempt to solve these problems, computers have been implemented in 

climate control to regulate the aerial and root-zone environmental conditions for crops and 

thereby improve yields. However, computer climate control still remains largely dependent 

on settings prescribed by individual growers. Although computers have been useful in 

providing automated control of environmental parameters (Hashimoto et al., 1993), the 

actual dynamic relationships that exist between climatic conditions and crop yields still 

remain unclear. 

Models of the greenhouse environment and simulations of crop growth are needed to 

enhance environmental control strategies and to encourage growth of the entire 

greenhouse industry (Jones et al., 1991). 
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One approach to improving crop yields and identifying plant response relationships 

lies in developing mathematical growth models that can predict future yields given a set of 

climatic conditions. Successful growth models can then help to identify the environmental 

factors with the greatest influence on crop yield and aid the grower in making essential 

management decisions to improve productivity. Affected decisions may range from simple 

adjustments of lighting or temperature setpoints to justifying the cost of investing in new 

equipment. A valid growth model can also be a useful tool for the greenhouse grower by 

providing a quick estimate of future yields based on current practises. 

Another approach for yield prediction involves expert system modeling which is an 

advanced information processing method that is able to recognize patterns and compensate 

for incomplete or ambiguous data (Rehbein, et al., 1992). Provided with historical data, a 

properly trained expert system will be able to analyse trends in production as they relate to 

input data (ie. light, temperature, and other greenhouse climatic variables) and predict 

future yields. 

By providing reliable future yield and growth forecasts, both the mathematical 

modeling and expert system approaches aim to improve the overall productivity of 

greenhouse crops and enhance their marketability to the consumer. Successful yield 

prediction is a valuable tool for detennining better greenhouse management practises, 

reducing resource wastage, and identifying the relationships between plant responses, crop 

yield, and climate. 
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1.0 Theory and Review 

As world populations continue their steady growth, greenhouse production systems 

must become more efficient to meet the increasing demands for food. Much of the recent 

advances in greenhouse crop production have been linked to the application of computers in 

climate control. Computer automation has already allowed greenhouse environmental 

conditions to be properly monitored and maintained to increase crop productivity while 

reducing energy requirements. However, in order to make further advances in greenhouse 

productivity a better understanding of plant responses to climatic conditions is required 

(Tantau, 1980). The emphasis on developing innovative methods for optimizing 

greenhouse production has intensified globally over the past decade (Jones, 1991). 

Devising models or methods for predicting future crop yields is an effective way to 

investigate plant growth and climate relationships. 

1.1 The Development of Mathematical Yield Models 

Developing mathematical models to simulate crop growth is one method that can 

be used to predict final yield. Math models are generally divided into two main classes -

those that employ the deterministic method and those that apply the empirical approach. 

{Figure 1). 

The deterministic approach relies on general laws or basic first principles to derive 

a scientifically-based model. Researchers have already used this approach to produce 

models to make predictions of canopy photosynthesis (Acock et al, 1978), and plant 

transpiration (Stanghellini and van Meurs, 1992;Yang et al., 1990). 



Greenhouse Tomato Yield 
Prediction Modeling 

Expert System 
Modeling 

(Agassiz Research Station) 

Mathematical 
H I Modeling 

A/ 
f r o • 

Empirical 
Approach 

Deterministic 
Approach 
(General - based on 
First Principles) 

Figure 1. Shown above are the approaches that wil l be used to 
predict Greenhouse Tomato Crop Yield. 

(Illustration by W.C.Tang, 1995) 
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The deterministic approach could also be useful in predicting yield. By applying the 

first principles that relate plant photosynthesis, respiration, and plant growth, estimates of 

yield could be made. Deterministic equations involve systems of differential equations to 

describe dynamic processes such as plant growth. If plant models are developed using this 

approach, each reaction between the seedling to harvest stage is described by a differential 

equation (ie. change in dry matter production). However, as plant growth typically 

involves long time spans, most studies limit their scope for testing plant models to only a 

few months (Takakura, 1993). The ultimate goal of the deterministic model is to reach the 

best possible agreement between the model predictions and the experimental data over a set 

time period. 

Empirical models examine historical data and use mathematical regression 

techniques to find correlations between independent and dependent variables. In this case, 

the independent variables would be the environmental parameters such as greenhouse 

temperature, light, and humidity and the dependent variable would be the actual yield 

recorded for that period. Empirical models search for basic cause and effect relationships 

to simplify a complicated process into a functional equation which can be applied to the 

general case. The problem that exists for equations derived purely from an empirical 

approach is that they are generally linear-based (straight line equations) while plant growth 

is an example of a non-linear, dynamic system (Takakura, 1993). As a result, empirical 

models are restricted to providing good estimates within the range of data they were 

derived from. 
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Beyond the range of values found in the experimental case, empirical models can 

only provide extrapolations as a basis for predictions. 

1.2 The Application of Expert Systems for Yield Prediction 

An innovative approach to modeling involves the application of expert system 

models in greenhouse crop production (Figure 1). An expert system model is simply a 

method of processing information that involves a self-learning model that adapts to 

changing data inputs (ie. environmental parameters). Expert systems are based on the 

most up-to-date 'expert' information in a field of study and incorporate this knowledge in 

decision-making processes and weighting factors (Levine et al, 1990). For predicting 

tomato crop yield, expert information would include up-to-date research findings of plant-

climate relationships from greenhouse growers and plant physiologists. This expert 

knowledge would then be incorporated into a computer program by applying weighting 

factors to measured environmental parameters such as light, temperature, and humidity 

(Figure 2). 

By relating the weighted environmental parameters to recorded actual yields, an 

expert system model can provide yield predictions. The advantage of using expert systems 

for yield prediction is their potential ability to provide nonlinear systems control for cases 

such as plant growth and their ability to forecast yields even in cases where data sets are 

incomplete or ambiguous. This is accomplished by assigning weights {Wt) to all selected 

data inputs ( X,) (ie. light, temperature, humidity values) based on expert (greenhouse 

growers, plant physiologists) knowledge and then applying these weighted data as input for 
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a processing element (internal algorithm) which in turn produces one output value. In 

reaction to the data input, the model will then gradually adjust the weighting of each factor 

to produce more accurate and reliable predictions and minimize the error for the next 

iteration. By repeating this process, expert systems learn to recognize trends in the data 

inputs and are able to make predictions based oh historical cases. Ideally, a properly trained 

expert system would then be interfaced with an on-line greenhouse climate control system 

to determine the best environmental setpoints to maximize future crop yields and minimize 

operating costs. 

Expert system models have recently been tested in determining ideal temperature 

setpoints in greenhouses (Lacroix, et al., 1993). In this case, an artificial expert system 

temperature controller was created to predict crop responses to changes in greenhouse 

setpoint temperatures. By examining and testing various temperature setpoints with this 

technique, researchers were able to reduce energy consumption by 10% while maintaining 

productivity. 

In another study, expert system methods were combined with standard data analysis 

techniques to predict apple quality (Boucherau et al., 1992). Measurements of apple sugar 

content obtained from infra-red spectrometry were used as a basis for detenmning quality. 

By employing standard regression techniques, a simple linear model was produced. An 

expert system was then employed to handle the non-linear data components and this 

improved the accuracy of apple quality predictions by five per cent. 
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Expert systems have also helped determine suitable environmental settings for 

greenhouse lettuce crops (Seginer et al., 1992). Historical data was used to train an expert 

system to aid in management decisions and determine environmental setpoints (ie. 

temperature settings). 

When compared, mathematical models provide reasonable linear projections of 

future values but are less flexible than expert system models in terms of overall application. 

Mathematical models require many parameters for the submodels that account for 

various physiological growth and development processes (Figures 6a & 6b). These 

parameters need to be determined by scientific experiments or at the very least 

approximated. 

Uncertainties are therefore bound to be associated with mathematical models. 

Conversely, expert systems focus on trend and pattern analysis eliminating the need to 

approximate environmental coefficients to provide predictions. 

Expert systems are able to adapt and learn by continually analysing trends to 

minimize the error with each subsequent prediction. 

1.3 Research Objectives 

The main objective of this study is to adapt (deterministic model) and develop a 

model (empirical model) that can successfully predict greenhouse tomato yield, of the 

tomato fruit itself, in terms of quantity (kg/m2). 
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Steps (Figure 3) required to achieve the research objectives include: 

1. To collect and analyse historical environmental and crop yield data from 
greenhouse growers via graphical hourly plots of greenhouse data to identify any 
obvious trends, patterns, or relationships. 

2. To develop and test a deteraiinistic yield prediction model (one based on first 
principles and known yield conversion factors). 

3. To develop an empirical yield prediction model from multiple regression analysis of 
greenhouse data. The best preliminary model will then be selected for further 
development to determine the best overall empirical model. 

4. To analyse yield predictions from an alternative, expert system model adapted by 
the Agassiz Research Station (Lin, 1994). 

5. To compare and validate the empirical, deterministic, and Agassiz expert system 
yield prediction models. The best overall prediction model will then be identified. 

2.0 Materials and Methods 

2.1 Data Source 

All of the data used in this study will be collected from growth records of 

greenhouse tomatoes provided by independent growers and the B.C. Greenhouse 

Growers Co-operative. 



Research •/ 
Objectives 

Main Objective 

Deterministic 
Prediction 

Model 

IDENTIFY 
BEST YIELD 
PREDICTION 

MODEL 

Comparison 
of 

Predictive 
Models 

Main Objective 

Collect 
and fft 

Analyse 
Greenhouse Climate Data 

Figure 3. S h o w n a b o v e are the research objectives 
in this study. 
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2.2 Data Collection 

Temperature, carbon dioxide, humidity, and solar radiation data used in this study 

were collected by a greenhouse climate computer with measurement transducers. Typical 

locations for these transducers within a greenhouse environment are shown on Figure 2. 

2.3 Data Analysis 

The environmental data required for developing the various mathematical and expert 

system models will be obtained from two independent tomato greenhouse growers. In 

order to maintain the confidentiality of their information, data shall be identified as either 

from Greenhouse Grower 'A' or Greenhouse Grower 'B' (Figure 4). 

Greenhouse Grower A's data set includes hourly environmental values (values 

for every hour of the day) for light intensity, greenhouse temperature, inside relative 

humidity, carbon dioxide concentrations, and actual recorded yield for a number of 

growing seasons during 1992. Hourly data is necessary for developing a deterministic 

mathematical growth model based on first principles (ie. photosynthesis and respiration 

equations) as the model attempts to simulate actual crop growth in order to provide yield 

predictions. 



Data Collection & Analysis 

Tomato Crop Climate & Production Data 

Figure 4. Shown above are the data sets used in this study 
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One complete set of greenhouse tomato hourly climate data will be plotted for a 60-

day period (1440 hours) during the 1992 growing season. Graphical plots of: inside 

temperature, outside temperature, solar intensity (light), relative humidity, and carbon 

dioxide concentrations, will be analysed for any obvious trends or patterns in greenhouse 

conditions or management practises. 

Greenhouse Grower B's data set includes weekly values for: light intensity 

(weekly cumulative total in W/m2), average temperatures (a weekly average based on every 

hour temperature readings), day and night temperatures (weekly averages of hourly day

time and night-time temperatures, respectively), day and night humidity (weekly averages of 

hourly day and night humidity readings, respectively) and weekly recorded actual yield 

values (kg/m2) for the years between 1987 to 1993 (excluding 1988 due to missing data). 

Weekly data from grower B will be used in this study to prepare an empirical math model 

using mathematical regression methods. The same weekly data from grower B was also 

used in testing the expert system model developed by the Agassiz Research Station 

(Agassiz, B.C.), a Research Branch of Agriculture Canada. The weekly predictions from 

the Agassiz expert system will then be used for comparison purposes. 

2.4 Selecting the Deterministic Math Model 

Using the hourly data provided by Greenhouse Grower A, a deterministic crop 

growth model will be developed to predict yield (Figure 5). The first principle equations 

that will be used for this approach are mathematical relationships between environmental 
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Development of the Deterministic 
Model ± 

Validated 
Deterministic 

Math 
Model 

Deterministic 

Validation & Analysis 
of 

Predictions 

Fully Developed 
Deterministic 
Math Model 

Yield Prediction 
using known 

Yield 
Conversion Factor 

First Principle 
Equations 

(Photosynthesis, 
Respiration) 

Start 

Validation 
of 

First Principle 
Equation Results 

Import, 
Format, 

and Manipulate 
Climate Data 

Greenhouse Grower A 
Hourly Climate Data (Illustration by W.C.Tang, 1995) 

Figure 5. Shown above is the general process train for the development 
of the Deterministic Model. 
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conditions, dry weight growth, respiration rate, and photosynthesis as detailed in 

literature (Jones, 1991) and shown on Figures 6a & 6b. An alternative method to 

compute crop yield is by applying a multiplication factor that relates net photosynthesis to 

crop yield. For tomatoes, this was found to be 7 (Enoch, 1978) with the following 

assumptions: greenhouse light transmission of 80%, plant production based on C O 2 

uptake at optimal leaf temperature, and that one absorbed C02 molecule is used to create 

one molecule of dry matter (CH2O) , with 50% of this dry matter being fruit yield, 

representing between 5% - 7% of the total fruit weight including both wet and dry portions 

(Ho and Hewitt, 1983) (Figure 6c). 

In order to narrow the scope of this study, only hourly data from the 1992 growing 

season for Grower A will be used. The 1992 environmental data contained the most 

complete set of readings for greenhouse climate: light intensity, temperature, and carbon 

dioxide concentrations. (The deterministic math model will not utilize humidity data 

because transpiration is not being modeled.) Using a computer spreadsheet program, the 

appropriate column headings for the data will be configured and formula cells based on first 

equations found in literature (Jones, 1991) will be applied. Predictions for respiration, 

gross photosynthesis, net photosynthesis, and crop dry weight are then obtained. The 

results of net photosynthesis can now be converted to crop yield (Figure 6c) using the 

generalized multiplication factor of 7 (Enoch, 1978). Weekly cumulations of net 

photosynthesis based yield predictions will then be plotted and compared with actual 

recorded tomato yields for 1992. Once these immediate yield results are validated and 

corrected for missing data, the model will be used to predict yield 4 and 6 weeks ahead. 
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P g - Gross Photosynthesis Equation 

p g - D x * C * p(9) * In f q* K *L + ( 1 - m )* x * C * p(9) J 
K L a * K * I 0 * exp (-KL) + (1 - m)* x * C * p(8) J 

where Pg = gross photosynthesis measured in units of g (CH20) / m2-h 

D = coefficient to convert photosynthesis calculations from umol (CO2) / m2-s 
to g (CH20) / m2-h 

x = leaf conductance to C0 2 , pmol (C02)V m2-s 
C = C0 2 concentration of the air, (umol (C02) / mol (air)) = ppm 
p(6) = dirhensionless function of temperature, the effect of temperature on the 

maximum rate of photosynthesis for a single leaf, as a quadratic equation: 

P(6)= { l - ( ( 9 h - e ) / ( 0 h - e , ) ) 2 } 

where: 9h is the temperature at which leaf photosynthesis is maximum, °C 
9 is the measured temperature in the greenhouse, °C 
9i is the temperature at which leaf photosynthesis is zero, °C 

and 

a 
K 
Io 
m 
L 

leaf light utilization efficiency, pmol (C0 2) / umol (photon) 
canopy light extinction coefficient 
light flux density at the top of the canopy, umol (photon) / m2-s 
light transmission coefficient of leaves 
canopy leaf area index, m2 (leaf) / m2 (ground) 

R m - Maintenance Respiration Rate 

where R 

m - km * exp (0.0693 [ 9 - 25 ] ) 

m 

9 

maintenance respiration rate, g (CH20) /.g tissue - h 
(maintenance respiration is the loss of C0 2 due to breakdown and 
re-synthesis of existing tissue and depends on temperature) 
respiration rate at 25°C, g (CH20) / g tissue - h 
measured greenhouse/inside temperature, °C 

Figure 6a. Shown above are the Pg and R„ equations used in developing the 
deterministic math model (Jones, 1991). 
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dW/dt - Crop Dry Weight Growth Rate 

dW/dt = E ( P g - R m * W ) 

where dW/dt = rate of dry weight of the crop, g (tissue) - h 

W = total plant dry weight, g / m2 

E = conversion efficiency of CH 2 0 to plant tissue, g(tissue) / g(CH20) 

R m = maintenance respiration rate, g (CH20) / g(tissue) - h 

and Pg = canopy gross photosynthesis rate, S (CH20) / m2 - h 

Pnet - Net Photosynthesis 

Pn =Pg - R m * W 

net photosynthesis rate, g (CH20) / m2 - h 

canopy gross photosynthesis rate, g (CH20) / m2 - h 

maintenance respiration rate, g (CH20) / g(tissue) - h 

total plant dry weight, g/rh2 

where P n 

Pg 
Rm 

and W 

Coefficient Values used in these Equations 

a =0.056 0h=3O°C, 9i=5°C x = 0.0664 kra=0.0006 m = 0.10 D = 0.108 
E=0.70 K = 0.58 L = varies from 0.6 to 3.31 (deKoning, 1993) 

Figure 6b. Shown above are the dW/dt and Pn equations, and coefficient values used in 
developing the deterministic math model (Jones, 1991). 
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Photosynthesis: 

6C0 2 + 6H20 - C 6 H 1 2 0 6 + 602 

Simplified Carbon Conversion for determining Yield Conversion Factor: 

1 C0 2 - 1 CH 20 molecule 

(MW) = 44g (MW) = 30g 
(MW) = Molecular Weight 

• For 1 molecule of C02used, (ie. every 44 g of C0 2 used) we get 30 g of CH20. 

• 1/2 of this 30 g of CH 20 is partitioned to become fruit yield (dry portion) = 15 g. 

• This 15g is 5% of the total weight of the fruit (wet and dry portions) 

• Therefore, the total fruit weight is actually: 15 g * (100 / 5) =300 grams 

• For 44 g of C0 2 used (absorbed) we have 300 g of fruit weight. 

.'. 1 gof CO2 used leads to ( 300 g / 44g) = 7 gof fruit weight (wet & dry). 

_ Enoch's Generalized Multiplication Factor for Tomato Yield (Enoch, 1978) 

30 g * I * 100 s 7 = Yield Multiplication Factor 
44g 2 5 for Tomatoes 

• Molecular Weight for C0 2 (44 g) and CH 2 0 (30 g) 
• Half the dry matter is yield (1/2). 
• This dry matter represents 5% of total fruit weight (dry & wet) (100/5). 

Figure 6c. Shown above is Enoch's Yield Conversion Factor (1978) for tomatoes that will be 
used in developing the deterministic math model. 
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Predicted and actual yield values will then be compared with the standard error of 

estimate (Se) or root-mean-square-error (RMSE) method (Figure 9) for evaluating the 

accuracy of results using the deterministic modeling approach. 

2.5 Developing the Empirical Math Model 

Weekly light and temperature data from Greenhouse Grower B will be used in this 

portion of the study to develop an empirical prediction model using multiple regression 

techniques (Figure 7). Regression techniques are useful for deriving linear relationships 

between input and output variables. Such analysis will be carried out in the advanced math 

tools available in spreadsheet programs such as Quattro Pro (for simple regression) as well 

as with more advanced statistical analysis packages such as Systat (for multiple and 

stepwise regressions). 

The first step in developing the empirical model involves identifying the primary 

environmental condition that is most closely linked to tomato crop production. From 

literature review McAvoy et al. (1989), have found strong relationships between 

photosynthetic photo flux (light intensity) and total yield. In this study they performed 

comparisons and regressions of the total photosynthetic photon flux (PPF) received during 

a 60-day production cycle. A close linear trend (r2 = 0.947) between recorded tomato 

yields and total PPF was observed. 

Following a similar approach, the weekly data for 1987 to 1993 from Greenhouse 

Grower B will be analysed for a light/yield linear relationship. Nine week (63 day) 

cumulative light intensity (PPF) values will be plotted against recorded yield. This method 
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Figure 7. Shown above is the general process train for developing 
the empirical math model. 
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will identify the yearly data that has the closest relationship between 9-week cumulated 

PPF and yield (in g/plant), as indicated by the statistical r2 , and derive a set of linear 

mathematical expressions for each year of data as well as for 6- year cumulative data 

(1987, 1989, 1990, 1991, 1992, 1993, excluding 1988 data). The r2, or correlation 

coefficient, measures the linear association or clustering around a line with higher values 

indicating a closer fit to actual yields (Freedman et al, 1991). 

Extending the light and yield relationship further, a second set of regression results 

will be performed by cumulating light data for 9 weeks (CL9) in units of W/m2 and 

regressing these totals against recorded yield in units of (kg/m2). These linear equations 

based on 9-week summations of light will then be used to predict 1994 crop yields based on 

light readings recorded for 1994. The actual 1994 yields and immediate weekly predicted 

yields from these equations will then be plotted on the same graph and compared. A 

standard error of estimate (Se) or root-mean-square-error analysis (RMSE) will also be 

performed on each set of predictions versus actual yield values (Figure 9) to determine the 

equation that most closely approximates the actual yield. 

The next step in developing the empirical model will be to investigate the 

relationships between yield and other recorded environmental parameters. Tomato plants 

have been found to be very responsive to changes in temperature and light levels and the 

status of these conditions strongly affects carbon fixation and dry matter partitioning into 

fruit (Jones et al, 1991). 
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Humidity also affects tomato growth but to a lesser degree, and a single trial run 

will be included development of the empirical model to examine its effectiveness as a factor 

in yield predictions, research time-permitting. 

As a further step in the empirical analysis, the effect of temperature will be entered 

into the regression model. 

The general rule for tomato production is that the 24-hour greenhouse temperature 

is generally responsible for the rate of growth, with higher average temperatures increasing 

growth rates. The target setpoint temperature for tomatoes reported in the 1993 

Greenhouse Vegetable Production Guide is 19 °C (B.C. Ministry of Agriculture, 1993). 

Below 10°C, little tomato growth / photosynthetic activity occurs. Provided with this 

information, a cumulation of temperature in terms of heat units (Wolf et al., 1986) will be 

performed. Each heat unit (HU) is defined as the difference between the daily 24-hour 

average temperature and a baseline temperature of 10 °C. The first trial run using this 

approach will involve cumulating 9 weeks of recorded temperatures and subtracting the 

baseline 10°C from each value ( 9 weeks of values x 10°C = 90°C subtracted from 9 week 

cumulative total of temperature readings). These adjusted values will then be referred to as 

9-week cumulative heat units (CH9). By performing a multiple step-wise regression 

analysis on both the 9 week heat units (CH9) and 9-week cumulative light values (CLg), 

linear relationships involving heat, light, and yield will result. This approach will provide 

immediate yield predictions and provide an indication as to which factor (light or 

temperature) plays a bigger role in tomato yield prediction. 
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Continuing on with the study, the yearly data set that contains the best linear 

relationship with light (highest r2 - value from 9-week light (PPF) regression) will be further 

analysed. Combinations of the environmental factors; 3, 6, and 9 week cumulative heat 

units (CH3, CH6, CH9) and 3, 6, and 9 week cumulative light values (CL 3, CL 6 , CL9) will 

be regressed to determine the best prediction equation (Yp) for yield (Yp = f { CH 3 , CH*, 

CH 9 , CL 3 , CL 6 , CL9} ) However, at this point of the analysis process instead of using the 

model to produce immediate weekly yield values, the model as a true predict-ahead model. 

The initial regression results of empirical model identified the most correlated data, 

and whether light or temperature was the greatest influencing factor on yield. However, an 

empirical model that uses historical data to predict crop yield a few weeks ahead is 

necessary if the model is to be more flexible for growers and the Greenhouse Growers Co

operative Association. By using the cumulated values of light and temperature and 

regressing them with actual yield results recorded four weeks ahead, a four-week ahead 

predictive model can be obtained. 

As a final step of the empirical approach to yield prediction, the 1994 yield will be 

predicted 4 weeks ahead by an multi-variable linear equation that combines 3,6, and 9 week 

cumulative light and 3, 6, and 9 week cumulative heat data. This equation will be evaluated 

by standard error analysis (Se or RMSE) for usefulness and flexibility of the model to the 

greenhouse grower to identify the best overall empirical model. 



2 5 

2.6 The Agassiz Expert System Model 

The results from an expert system, tomato yield prediction model, developed by the 

Agassiz Research station (Lin, 1994) will be analysed and used solely as a comparison 

model for the two mathematical models developed in this study. 

The specific methodology used to develop the Agassiz expert system is currently 

being licensed and must remain confidential as part of a collaborative agreement 

to protect intellectual rights between the Agassiz Research Station, the University 

of British Columbia, and the participating members of the greenhouse industry. 

However, an overview of the general methodology used to develop the Agassiz 

expert system is presented on Figure 8. First, the same weekly environmental data (actual 

yield, light intensity, temperature, and humidity readings from 1987 to 1993) from 

Greenhouse Grower B used in developing the empirical math model, was imported into the 

expert system. Then by using up-to-date expert knowledge from research findings, 

greenhouse growers, and plant physiologists (Lin, 1994), weighting of environmental 

variables as they related to yield were applied in training the expert model. 

The advantage to the Agassiz expert system is that as the database of expert 

knowledge grows, the model can be modified to reflect these new findings by adjusting the 

environmental weighting factors. The expert system is also a self-learning system, in that it 

recognizes trends between environmental variables and actual yield, and adjusts the 

weighting factors to reduce the error with each subsequent yield prediction. 
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Development of the Agassiz Expert System 
Yield Prediction Model 

Validated 

Expert System Model 

I Tomatoes 

Expert System 

Yield Predictions 

1,2,3,4 Weeks ahead 

Training of 

Expert System 

Import & Configuration 

of Climatic Data & Variables 

Historical Weekly Climatic 

Data from Greenhouse Grower B 

Comparison of 

Expert System Predictions 

with Empirical & Deterministic 

Models 

(Illustration by W.C.Tang, 1995) 

Figure 8. Shown above is the general process scheme for developing the 
Agassiz Expert System yield prediction model. 
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The researchers at Agassiz have configured their expert system to provide 1 week, 2 

week, 3 week, and 4 week ahead predictions of 1994 yield and these results will then be 

validated by comparison with actual recorded yields by the RMSE approach. The results 

from the Agassiz expert system will also be compared with the predictions from the 

mathematical models developed in this study. 

2.7 Validation and Comparison of the Yield Predictive Models 

In order to be a useful management tool for greenhouse growers, crop growth and 

yield prediction models must be validated before they are used (de Koning, 1993a). The 

validation of the deterministic, empirical, and Agassiz expert system model can be 

performed by analysing the magnitude of the error in their predictions. 

Calculation of the standard error of estimate (Se) (Alder and Roessler, 1960) or 

root-mean-square-error (RMSE) for prediction results measures the overall size of 

differences between predicted and actual values for yield (Freedman et al, 1991 and Kozak, 

1995). 

The Se or simplified RMSE equation used in this study is shown on Figure 9. The 

magnitude of these error values depends on the range of values being compared and the 

number of predicted values. With a larger range and greater number of values, generally 

larger error values are expected. In this study, typical tomato crop yield results range from 

0 kg/m2 to 4 kg/m2, with a minimum of 30 predicted yield values provided by each model. 

To provide a basis for validation and comparison, models providing error values of less than 

0.8 (kg/m2) for a year of predictions (approximately 50% error for an average 1.6 kg/m2 

yield throughout the year) will be considered valid models in this study. 
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Root-Mean-Square-Error Analysis (RMSE) 
or 

Standard Error of Estimate ( Se) 

m n 

RMSE or Se = 
1 

X (Actual - Predicted): 

i= 1 

N 

• Se = Standard Error of Estimate, kg/m2 

• RMSE = Root Mean Square Error, kg/m2 

• Predicted = Predicted Yield Value, kg/m2 

• Actual = Actual Yield Value, kg/m2 

• N = Total Number of Predictions 

Figure 9. Shown above is the Se or RMSE method used to 
compare the predictive models in this study. Lower 
values indicate less error and better predictions. 

(Freedman et al, 1991. Alder & Roessler, 1960. and Kozak, 1995) 
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The lowest RMSE or Se values indicate the least error between predicted and actual 

values (ideally an error value of 0 kg/m2), and best predictive performance. 

The best overall model will be determined by the accuracy of predictions (lowest 

RMSE or S6 values) for an entire growing season and during periods of peak productivity 

(RMSE for a specific peak interval), flexibility of the model for application in site-specific 

and general cases, and overall user-friendliness. 

3.0 Results and Discussion 

3.1 Analysis of Graphical Plots of Hourly Greenhouse Climate Data 

Shown in Appendix A are graphical plots of inside greenhouse temperature, outside 

temperature, solar intensity, carbon dioxide concentrations, and relative humidity for a 60-

day growth period (between January 1, 1992 to March 5, 1992). 

Trends observed during the 60-day growth period included the maintenance of a 

fairly consistent inside greenhouse temperature between the 18 to 23°C range, with peaks in 

daily inside temperature corresponding directly to peaks in solar intensity (Figures A-l, 

A-2, A-3 in Appendix A). Solar intensity peaks are recorded for noon periods each day. 

Guidelines from the 1993 Greenhouse Vegetable Production Guide indicate average 24 

hour temperatures as being responsible for the rate of growth, with higher averages leading 

to faster growth rates. The target setpoint temperature for tomatoes is currently 19°C 

(B.C. Ministry of Agriculture, Fisheries, and Foods, 1993). Successful environmental 
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temperature control for this plotted growth period is evidenced by the minimal fluctuations 

even during periods of outside temperature extremes including sub-zero periods. 

Plots of carbon dioxide concentrations for the same period (Figures A-4, AS, A-6 

in Appendix A) revealed a range between 200 to 2000 parts per million (ppm), which is 

typical enrichment for a tomato crop (Gould, 1983). Concentrations frequently reached 

their peaks during the noon hour of each day, and showed a daily maximum fluctuation of 

about 1800 ppm. Inside venting for temperature control can be held accountable for part of 

the variability in carbon dioxide concentrations. 

Relative humidity readings plotted for the same growth period showed peaks and 

valleys approximately every ten hours, with peak humidity during late afternoon and 

evening hours. Humidity was found to vary greatly between 60 to 95 percent for the early 

part of the growth period (January 1 to January 24, 1992) with less variation occurring 

during the following two months (January 25 to March 5, 1992). Low humidities for a 

few hours a day will not hinder the overall climate balance within the greenhouse but levels 

should typically be maintained above 50% to prevent extreme moisture losses. Proper 

maintenance of high humidity levels (80% and above) will encourage stomatal opening and 

increased carbon dioxide uptake, leading to increased water evaporation, and cooling of the 

plant canopy (B.C. Ministry of Agriculture, Fisheries, and Foods, 1993). 

The patterns discovered from these plots illustrate both the importance of climate 

control and the possibility of applying trend recognition techniques to predict these 

parameters. Trends in greenhouse climate can then be related to actual recorded yields for 

particular growth periods for the development of a yield prediction model. 
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3.2 Results of the Deterministic Math Model 

Applying the first principle equations of photosynthesis, respiration, and dry weight 

growth rate detailed in literature (Jones, 1991) a deterministic math model was developed. 

Using the yield conversion factor of 7 described in literature (Enoch, 1978) hourly net 

photosynthesis calculations were converted into hourly yield predictions (ie. hourly P n e t 

values multiplied by 7). Monthly variations in leaf area index (LAI) throughout the year 

(Appendix B) affected the photosynthetic values and were corrected for accordingly. 

Highest LAI values were reported from literature (de Koning, 1993a) for the peak growth 

period between March to June. 

A sample of the spreadsheet used in developing the deterministic math model is 

shown in Appendix B. For graphical plotting of the results, the hourly yield predictions 

were summed into weekly cumulative totals before plotting versus week number. Week 

numbers correspond to an annual chronological scheme where week 1 represents the first 

week in January and where week 52 represents the last week of December. 

The initial plot of immediate (same week) yield predictions compared with actual 

recorded yield (Figure 10) produced an good range of results. By cumulating net 

photosynthetic (Pnet) rates for periods of 1 week (158 hours) and converting these totals to 

yields (1 Week C. P n e t Yield) a low range of yield predictions resulted. The magnitude of 

the predictions were approximately half of the actual recorded yield for the 1 week 

cumulations, indicating that a week of net photosynthetic activity may not be sufficient for 

predicting actual yields. 
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Cumulative Pnet based Yield 
Immediate Yield Predictions 

3.5-r ~~ 

Week # 

-A- Actual Yield - X - 1 Week C.Pnet-Yield - B - 2 Week C.Pnet-Yield -+— 3 Week C.Pnet-Yield 

Figure 10 Shown above are the immediate yield predictions 
using'the yield conversion factor applied to Pnet. 
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The idea of cumulating net photosynthetic activity and converting to yield was carried 

on further by cumulating 2 and 3 weeks of Pnet in order to obtain a better fit of the actual 

yield curve. The plotted results (Figure 10) revealed the closest correlation between a two 

week cumulation of P n e t and actual yield. For the first half of the year (up to week 23) 

predictions showed a good range of peaks simulating actual recorded yield. Predicted yield 

peaks were similar especially during the 10 to 20 week period after a short initial period of 

over-prediction (weeks 1 to 10). The over-prediction during the initial few weeks was 

expected as the deterministic model assumes that all net photosynthetic activity is being 

directly converted to yield. In actual greenhouse practise however, tomato crops are not 

being harvested for the first 8 to 9 weeks at the start of the growth season. 

The general shapes of the curves for each of the weekly cumulation trials were 

similar and encountered a shared problem. In cases of missing or incomplete data sets, 

yield predictions cannot be made accurately. Yield predictions for weeks 23 to 25 and 32 

to 35 show evidence of the problem that exists when required values for the climatic 

variables used in predictive equations are missing. The successful prediction and 

cumulation of Pnet activity relies on complete data sets. Calculated cumulative yields 

following periods of missing data lead to inaccurate and incomplete predictions due to zero 

value predictions being included in the weekly totals. These zero values are then carried 

forward to the next week of predictions and then the effect is magnified as these zero values 

dampen the results leading to under-predictions. 
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In order to compensate for those weeks of missing or ambiguous data, manual 

extrapolation of the predictions between those weeks with complete data had to be 

performed. The two intervals of weeks with incomplete or zero data (weeks 23 to 25 and 

32 to 35) were corrected by extrapolating prediction lines between the two weeks with 

reliable data (weeks 22 to 26 and 32 to 36 respectively). The yield prediction corrections 

for missing data are shown as intervals connected with dotted lines on the future yield 

prediction plots that followed. In order for the deterministic prediction model to be useful 

for a grower, it must be able to forecast yields ahead of time. 

Predictions of yield were made 4 weeks ahead of time using the same 1, 2, and 3 

week cumulations of net photosynthetic converted activity (Figure 11). Better results were 

found for the 4 week ahead set of data than those reported for the immediate, same week 

predictions. In fact, by predicting 4 weeks ahead, the problem of over-prediction during the 

first nine weeks of the growing season was alleviated. The 4 week ahead shift in yield 

prediction also led to closer alignment of the predicted and actual yield peaks and valleys. 

In particular, the 2 week cumulation of P n e t showed the closest relationship to actual yield 

and was calculated to have a RMSE of 0.464 kg/m2 for the full year of predictions. The 

dotted intervals between weeks 25 to 29 and 36 to 38 show the correction by extrapolation 

for missing data during these periods (Figure 11). However, correction for yield 

predictions in this manner was still not sufficient to maintain the close prediction trend 

experienced in the first 25 weeks plotted. 
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Cumulative Pnet based Yield 
Predictions 4 weeks ahead 

3.5-1 : 

Week # 

T A T Actual Yield - X - 1 Week C.Pn-Y - B - 2 Weeks C.Pn-Y —t— 3 Weeks C.Pn-Y 

Figure 11 Shown above are the 4 week ahead yield predictions 
using the yield conversion factor applied to Pnet 



36 

The reason for the loss in accuracy and precision after the periods of missing data is 

that the deterministic model attempted to simulate actual, continuous growth of a tomato 

crop. Any discontinuities, or periods of missing data would not only affect that particular 

period, but also the summations leading to yield predictions for subsequent time periods. 

The effect of the missing data periods was even magnified further for the last quarter of 

predictions (weeks 35 to 52). 

In a further attempt to provide predictions further ahead, yields were predicted 6 

weeks ahead of time, again by shifting immediate yields forward and comparing by the 

RMSE method. Even better results were found for predicting 6 weeks ahead as shown on 

the plotted graph (Figure 12). The major peaks in yield became even more closely aligned 

with actual yields and the 6 week shifting reduced the prediction error of the extrapolated 

intervals with missing data. Root-mean-square analysis of the 2 week cumulative yield plot 

for 6 weeks ahead produced a value of 0.3818 kg/m2, even closer than the 4 week ahead 

plot. 

The use of two week cumulative P n et values converted to yield for 6 week ahead 

predictions actually becomes a 8 week ahead forecast considering 2 weeks of historical 

data are required to make these predictions. Basis for cumulating two week P n e t activity as 

a yield predictor was found from the rate of starch accumulation of a tomato plant found 

from literature. Daily starch accumulation for tomato crops was found to reach its peak 

during the 15 to 25 day period after pollination (Ho and Hewitt, 1986). 
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Cumulative Pnet based Yield 
Predictions 6 weeks ahead 

Week # 

Actual Yield - X - 1 Week C.Pn-Y - S - 2 Weeks C.Pn-Y - 4 - 3 Weeks C.Pn-Y 

Figure'12 Shown above are the 6 week ahead yield predictions 
using the yield conversion factor applied to Pnet. 
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As the rate of starch accumulation may vary slightly for different tomato varieties, it is 

likely that the peak starch accumulation period for the tomatoes used in this study were 

near the two week (14 day) interval. 

From literature, the peak of starch accumulation accounts for approximately 30% of the 

daily accumulated dry matter by day 20 after fruit pollination (Ho and Hewitt, 1983). Use 

of the two week Pnet results and converting with the assumptions (Figure 6c) built into the 

yield conversion factor (Enoch, 1978) for yield predictions may be justified. As much of 

the starch and dry weight growth of the tomato may have occurred by the two week rapid 

growth period, the conversion factor already has an assumption that only 50% of the dry 

matter is being converted to yield. With the 50% assumption of dry matter to yield 

conversion the magnitude of the prediction error is already being reduced as this ratio may 

vary under changing climatic conditions. For example, under conditions of very low light 

flux densities (below 40 W/m2) no net photosynthesis was recorded for tomatoes of any 

size (Tanaka et al., 1974), however based on the spreadsheet structure of the deterministic 

model and first principle equations, a value greater than zero may be calculated. 

One possible reason for the discrepancy between results in actual practise and in theory 

is that emphasis of the effects of light in the generalized photosynthetic equation may not be 

great enough. The effect of temperature, carbon dioxide concentrations, leaf area index, 

and light are all incorporated into the photosynthetic equation and each additional 

parameter may dampen the significant effect of light levels on Pnet activity. Consequently, 

when Pnet values are directly converted into yield predictions using the conversion factor, 
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the deterministic model may over-predict during periods of low light levels and under-

predict under high light conditions. 

Other possible sources of error for the predictions is the effect of respiration upon 

the magnitude of P„et. It is known that respiration rates in mature fruits and young fruits 

vary greatly. Respiration rates in two-week-old tomatoes were reported to change from 

0.4-0.6 mg C O 2 per gram of fresh weight per hour to 0.05 to 0.07 mg C O 2 per gram of 

fresh weight per hour as they reached maturity (Tanaka et al., 1974). The deterministic 

model developed here does not account for the variability of respiration rates due to fruit 

age and this may be a source of error for the predictions. 

3.3 Results of the Empirical Math Model 

Following studies that found a close correlation between photosynthetic photon flux 

(PPF) received during a 60-day production cycle and tomato yield (McAvoy et al, 1989), 

an empirical model was developed. Weekly solar radiation data from Greenhouse Grower 

B in units of moles/m2 were plotted versus crop yield (g/plant) assuming a tomato plant 

density of 2.5 tomato plants / m2. Results from these plots of total PPF for a 9-week 

(approximately 60-days) production period versus crop yield were plotted and linear 

regressions were performed to derive equations for each year of data. 

A summary of the regression equations derived from the total PPF plots can be 

found in the appendix {Table A-l in Appendix Q. For each plot, nine weeks of PPF were 

cumulated and then plotted against yield (g/plant) to find the year with the closest 

correlation (Figures A-ll, A-12, A-13, A-14, A-15, A-16 and A-l 7 in Appendix C). As 
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well, for one plot, data from all 6 years (1987 to 1993 inclusive, excluding 1988 due to 

missing data) was plotted as a 1987-1993 graph to identify a general trend relationship 

between light and yield (Figure 13). The 1987-1993 plot had a calculated r2 value of 0.668 

which indicates a fairly consistent and direct relationship between light and yield for 6 years 

of historical data. 

From r2 analysis, or comparison by the correlation coefficient, the 1992 data set 

showed the closest fit with the highest r2 value of 0.746. The higher the r2 value (with 

maximum value being 1) the better the linear fit between the independent variable of light 

(PPF) and dependent variable (yield). 

The yearly scatter plots showed a fairly good linear trend between light and yield 

with r2 results ranging from 0.61 to 0.746. The r2 correlation results calculated from 

Grower B's weekly data were generally lower than those reported in literature for tomato 

crops (McAvoy, 1989) where an r2 value of 0.896 (or r = 0.947) was obtained. 

From the results of these preliminary plots, a second set of regression equations was 

obtained by plotting light and yield data in different units (Table A-2 in Appendix D). 

Light data was cumulated for 9 weeks (assuming a 60-day production period as before) in 

units of W/m2 and regressed with yield measured in units of kg/m2 to develop an empirical 

model which would produce more meaningful results (in more useful and common units) 

for greenhouse growers. 

The whole range of regression equations derived from each year of data were used 

to predict 1994 tomato yields and compared with actual yields reported for the same period 

(Figures A-18 & A-19 in Appendix D). 
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1987-1993: Total PPF vs. Crop Yield 
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Figure 13 Trend identification of light (PPF) vs. Crop Yield 
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Analysis by the root-mean-square-error analysis revealed the best results (RMSE = 

0.382 kg/m2, r2 = 0.625) when the equation derived from the 1990 set of data based on 

light alone (CL9) was used to predict yields for 1994. 

The coefficients for 1990 set of data were then identified as predictive equation 1.1 

(Table 1, and Appendix C - Table A-l). Using a similar approach, the regression equation 

derived from the 1992 set of data was identified as predictive equation 1.2 to provide an 

upper-range value for prediction (Table la). When equation 1.2 (1992 equation) was used 

to predict 1994 tomato yields an RMSE value of 0.4574 kg/m2 (r2 = 0.465) was calculated. 

Plots of both sets of same-week yield predictions from equation 1.1 and 1.2 against actual 

recorded yields is shown on Figure 14. From an examination of the plotted predicted 

yields, the regression equations were found to produce fairly good results for the first 20 

weeks of the growing season when yields rose steadily. 

However, for certain intervals of rapid growth (between weeks 20 to 30 and weeks 

40 to 46), peaks in actual recorded yields could not be adequately predicted by the 

regression models. In fact from week 20 onward, the light-only based models (CL9) were 

unable to predict the yield extremes found in actual greenhouse production practises. The 

greatest discrepancy in actual recorded yields and predicted yields was found during weeks 

25 and 32 where the regression models consistently under-predicted actual yields. 

Although an empirical model developed solely on cumulative light had its basis, adequate 

correction for predictions during the peak periods of actual yield could not be obtained 

using a light-only model. 
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Table la 

EMPIRICAL MATH MODEL 
Results for 1994 Yield Predictions 

1.0 Light Alone (CL 9) 

r2 RMSE 

0.625 0.382832 

0.465 0.457382 

The predictive equation (1.1) is based on fitting 1990 data to regression equation (1) and 
produced a RMSE of 0.34827 and r2 = 0.625 for 1994 yield predictions. Predictive equation 
(1.2) is based'dn fitting 1992 data to regression equation (1) and produced a RMSE of 
0.457382 and r2 = 0.465 when used to predict 1994 yield. 

2.0 Light and Heat (C L 9 and CH 9) 

Y p 2 = ao + ai (CL 9 ) + a2(CH9) (2) 

ao ai a2 r2 RMSE 

Predictive.equation(2.1) 2.39584 0.00001513 -0.03003 0.68 0.353099 
(1992 Data) 

Predictive equation (2.2) 2.38054 0.00002444 -0.033809 0.247 0.542205 
(1990 Data) 

The predictive equation (2.1) is based on fitting 1992 data to regression equation (2) and 
produced a RMSE of 0.353 and r2 = 0.68 for 1994 yield predictions. Predictive equation 
(2.2) is based on 1990 data and produced a RMSE of 0.542 and r2=0.247 when used to 
predict 1994 yield. 

• Y p i = ao + a i (CL 9 ) 0 ) 

ao ai 

Predictive equation (1.1) -0.07057 0.0000165 
(1990 Data) 

Predictive equation (1.2) -0.08383 0.0000145 
(1992 Data) 
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Greenhouse growers require the best yield forecasts during peak growth periods to 

ensure that availability of adequate harvesting supplies and workers to capitalize on the 

crop productivity. 

In an attempt to provide closer predictions during these peak yield periods, another 

climatic variable had to be incorporated into the regression equation. From literature 

review, temperature was also found to strongly affect the yield of tomato crops (Jones et al, 

1991). As well, in another study, the development time between flowering and harvest for 

tomato crops was found to be mainly dependent on temperature (de Koning, 1993b). 

Consequently, the next climatic variable entered into the empirical model for predicting 

tomato yield was temperature. 

Using a cumulative heat unit approach described in literature (Wolf et al., 1986) 9-week 

cumulations of corrected temperatures (CH9) were regressed with 9-week cumulations of 

light data (CL9) to create a light and heat based empirical model. 

Multiple step-wise regressions were performed for each year of data to provide detailed 

analysis of the relationships between corrected temperatures (CH9), light (CL9), and yield 

(Appendix D). The resulting regression equations from this approach were then 

summarized (Appendix D, Table A-2) and used to predict 1994 tomato yields. Prediction 

plots versus actual recorded yields for 1994 were performed (Appendix D, Figures A-20, 

A-21). Analysing the plotted results it was found that the incorporation of the temperature 

variable provided better predictions during the peak production periods. Where the light-

only plots (CL9) were unable to predict for these extreme intervals, the 9 week cumulative 
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temperature (CH9) and light (CL9) based equations were able to correct for the peak 

periods. Isolating the equations from the same two years (1990 and 1992) of predictions 

(Table 1), a good range of predictions was obtained. The best predictions were found using 

the heat and light method with the 1992 set of data (RMSE = 0.353 kg/m2) and was 

identified as predictive equation 2.1 (Table la). 

The 1990 equation was identified as predictive equation 2.2 (RMSE = 0.542 kg/m2) 

both for comparison with the previous light-only model (CL9) and also to illustrate the 

improved predictions during the peak yield periods using this method. From the plot of 

predicted yields and actual yield (Figure 15) a better range of predictions for high and low 

values were found. Predictive equation 2.1 (1992 data) was found to produce yield 

predictions very close to the actual yields for the first 25 weeks of the production period. 

Problems with predicting yields during peak periods still existed using equation 2.1 but 

predictions were generally higher during these intervals producing an overall improved and 

lower RMSE of 0.353 kg/m2. 

Using predictive equation 2.2, yields were generally over-predicted for the entire 

production periods (RMSE = 0.542 kg/m2) but the possibility for adequate correction using 

this method (CH 9 & CL<> regressions) was shown. If RMSE analysis was performed for the 

peak periods alone, equation 2.2 with its over-predictions may actually be proven to 

provide the most useful results to a greenhouse grower. During peak periods it may be 

preferable for a grower to be prepared to handle higher yields than those actually 

experienced to maximize productivity. 
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1994 Predicted Yie lds 
Light(CL ) and Temperature(CH ) Based 

Week Number 
Actual Yield - e - Predictive Eqn# 2.1 Predictive Eqn# 2.2 

Figure 15 Predicted yields for 1994 production based on cumulative 
light and heat data. 
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The encouraging results from these light and heat multiple regressions led to 

experimentation with other combinations of cumulative light and heat data. In particular, it 

was postulated that by cumulating heat and light units for different time intervals (using a 

similar approach as used for the 9-week period) 3 and 6 week cumulations would be made. 

For this experimental process, only one yearly characteristic set of data was used for 

developing the empirical model. 

As detailed in the materials and methods section the year of data with the best linear 

relationship with light was further analysed. The 1992 data set was chosen for further 

analysis because it had the closest relationship between total PPF and crop yield (g/plant) 

from the first set of regression results (r = 0.746). 

As well, the 1992 equation was selected for a better comparison of results between 

the deterministic and empirical models. A comparison of prediction results from the 

deterministic and empirical models developed from the same year of data (the former being 

hourly and the latter being weekly 1992 data) would ideally identify the better model rather 

than variations in predictions based on climatic differences. 

By incorporating the 3, 6 and 9-week cumulative totals for light and heat into an all-

inclusive equation, Equation 3.1 (Table lb) (where Yp = f{CH3, CHg, CH 9 , CL 3 , CL 6 , 

CL9}) it was hoped that this method would correct for yield peaks and provide an overall 

improvement in prediction accuracy. Using three light and heat variables in the yield 

prediction was based on the fact that each interval (3, 6, and 9 weeks) may have varying 

effects on the development of the tomato crop related to yield. 
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Table lb 

E M P I R I C A L M A T H M O D E L 

3.0 Light and Heat (C L 3 . 6 .9 and CH 3.6.9) - Immediate Yield Prediction 

Y p 3 = ao + a,(CL 3) + a 2(CL 6) + a3 (CL 9) + a4(CH 3) + 
a5(CH«) +a6(CH 9) (3) 

ao ai a2 a3 

Equation (3.1) 0.34917 0.0000355 0.00000548 -0.000667 
(1992 Data) 

a 4 a5 &6 r2 RMSE 
-0.001127 -0.03108 -0.02212 0.527 0.429766 

The predictive equation (3.1) is based on fitting 1992 data to regression equation (3) with a 
RMSE of 0.429766 and r2 = 0.527 for 1994 predictions. 

4.0 Light and Heat (C L 3, 6, 9 and CH 3,6.9) - Future Yield (4 Weeks ahead) 

Y p 4 = ao + a!(CL 3) + a 2(CL 6) + a3 (CL 9) + 34(CH 3 ) + 
a5(CH5) +a6(CH 9) (4) 

ao ai a2 a3 

Equation (4.1) 0.34917 0.0000355 0.00000548 -0.000667 
(1992Data) 

a 4 a5 ae r2 RMSE 
-0.001127 -0.03108 -0.02212 0.491 0.44579 

The predictive equation (4.1) is based on fitting 1992 data to regression equation (4) and 
produced a RMSE of 0.44579 and r2 = 0.491 for 1994 predictions when using 3,6, and 9 
week cumulated data (4 weeks ahead of actual yield) to make future yield predictions. 

Yp4 = 0.35 + 0.0000355(CL3) + 0.0000055(CL6) - 0.00067(01 )̂ - 0.0011(CH3) -
0.031(CH6)-0.022(CH9) 

RMSE =0.4458 kg/m 2 
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By incorporating each cumulative interval into the yield predictive equation an attempt 

was made to have a model that would predict for peak periods and more closely follow the 

trends of the actual yields. Regressing (Appendix D) and plotting the results of this 

approach (Figure 16) a better pattern of predictions was found even though prediction 

error increased (RMSE = 0.43 kg/m2). Predicted yields showed more high and low 

variation and demonstrated a greater degree of association with the pattern of tomato crop 

productivity. From these regression results it became more evident that light or solar 

intensity was the primary influencing factor affecting yield with temperature effects being 

the secondary factor mainly influencing peak periods of productivity. From these stages in 

developing the empirical model, an attempt was made to predict yield weeks ahead of time 

to be a useful management tool for growers. 

From the results of the three approaches used to develop the empirical model 

(light-only, light and heat, and 3 variables of light and heat) it was decided that the method 

using 3 variables of light and heat be pursued for creating a 4-week predict ahead model. 

Two approaches were used for developing this 4-week predict ahead model. The first 

approach involved cumulating 3, 6, and 9-week data for light and heat and regressing these 

results with actual yield values recorded 4 weeks ahead of time. Previously, predictions 

were only made for the same week by relating 3, 6, and 9-week data leading up to that 

week. With the 4 week ahead approach, the actual yields from 1992 were related to data 

cumulated 4 weeks prior to the actual reported yield. 
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1994 Predicted Yie ld 
Using 3 Light and 3 Heat Variables 

Week Number 
Actual Yield - e - Predictive Eqn# 3.1 

Figure 16 Predicted Immediate yield using 3 variables of light and 3 
variables of heat. (CL3, CL6, CL9, and CH3, CH6, CH9) 
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The regression equation derived using this approach (Appendix D, Alternative 

Regression Method) produced predictions with fairly high error and low correlation with 

environmental variables (RMSE value of 0.615 kg/m2 and r2 = 0.321) 

The second approach that was employed to predict 4 weeks ahead, was to simply 

use the same prediction equation developed for immediate, same-week predictions for the 3 

variables of light and heat (Equation 4.1, Table lb) and use weekly light and temperature 

values 4 weeks ahead in the equation. Use of this method produced a much lower RMSE 

value (0.45 kg/m2) and showed better correlation (r2 = 0.491) with environmental variables 

than predictions made using the regression equation derived from 4 week ahead data and 

yield (Appendix D, Alternative Regression Method). The predictions using the same 

week equation (4.1) with 4 week ahead data are shown on Figure 17. Analysing and 

comparing with the actual yield plot, prediction error for the first 25 weeks is minimal. 

For the remaining 25 weeks of the growing season, the highest prediction error interval 

still remains between week 25 to 30 (June, July) when crop productivity is typically highest. 

A reason for the greater error during this interval include the strong influence of warmer 

temperatures on crop development time during this period which cannot be easily 

accommodated by a regression model that tries to predict weekly yields for an entire 

growing season. In fact, researchers are still having difficulty estimating the amount of 

plant assimilates (nutrients from photosynthesis and root absorption) being formed and 

translated at different temperatures. 
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1994 Predicted Yie ld - 4 Weeks Ahead 
Using 3 Light and 3 Heat Variables 

3 
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Week Number 
Actual Yield - s - Predictive Eqn# 4.1 

Figure 17 Predicted yield for 4 weeks ahead using 3 light and 3 heat 
variables. (CL3, CL6, CL9, and CH3, CH6, CH9) 
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Nutrient translocation rates have been reported to be about four times higher at 27°C 

than at 15°C (Barendse, 1993) and this may provide a clue to sharp increases in 

productivity during high temperature intervals. 

Similarly, tomato development times between flowering to harvesting of the tomato 

fruit have been found to vary from 70 days at 17°C to 44 days at 25°C, demonstrating 

strong a strong relationship to temperature (de Koning, 1993b). In order to improve the 

accuracy of predictions during the peak temperature and solar intensity periods (weeks 25 

to 30), it may be necessary to develop regression equations for those specific intervals. 

Actual yield and environmental data for those peak periods may need to be isolated and 

regressed separately to derive separate equations for peak productivity intervals throughout 

the year. The grower may then use these 'peak period equations' to provide an upper-

end estimate of yields during high productivity periods. 

When a trial test run was performed to incorporate the effects of humidity as well as 

light and heat (Appendix E, Humidity Trial Regression Results & Figure A-22), prediction 

accuracy was found to be worse than with only light and heat, (RMSE = 0.472 kg/m2). 

Overall, the empirical model with 4-week ahead predictions using equation (4.1) 

was found to be the most flexible and useful for actual application by greenhouse growers. 

3.4 Results of the Agassiz Expert System 

Using weekly data from Greenhouse Grower B, the Agassiz Expert System model 

was trained to provide tomato yield predictions 1, 2, 3, and 4 weeks ahead of time. The 

specific weighting and configuration of environmental variables was decided upon by the 

plant physiologist researchers at Agassiz (Lin, 1994) and the detailed methodology used in 

the development of the model remained confidential for licensing purposes. However, 
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prediction results using this model were shared for academic comparison with the empirical 

and deterministic models developed in this study. The tabulated results from the Agassiz 

Expert System are shown on Table 2. 

For comparison with the two mathematical models in the study, RMSE analysis 

was performed on the four sets of predictions. Weekly predictions were identified as 

PRE-1, PRE-2, PRE-3, and PRE-4 results, representing predictions made 1, 2, 3, and 4 

weeks before actual yields are recorded, respectively. Error analysis by RMSE revealed 

a range from a high 0.722 kg/m2 for the PRE-2 results (2 weeks before actual yield is 

recorded) to a low value of 0.401 kg/m2 for the PRE-1 results. 

The best predictions in terms of lowest error when compared with actual yield were 

found for the PRE-1 (1 week before actual yield is recorded) set of results with an RMSE 

of 0.401 kg/m2. The predictions from the Agassiz model were then compared graphically 

by plotting the PRE-1 results with actual recorded yields for better analysis of prediction 

performance throughout the growth season (Figure 18). 

Comparing the actual and predicted yields (PRE-1) the advantages of the trend 

recognition techniques employed by the Agassiz expert system become more evident. The 

expert system is capable of predicting more variability in yield trends throughout the 

growing season than the mathematical models. During the first 20 weeks, although 

predictions have less accuracy than those of the mathematical models, the general trend of 

actual yields is well predicted. Between weeks 20 to 30 there is evidence of the improved 

ability to predict for peaks and valleys in crop productivity during intervals of high 

temperature and solar intensity. 



1994 TOMATO YIELD PREDICTION 

pRE-4 PRE-3 PRE-2 PRE-1 
KG/M ~ 2 

ACTUAL YIELD 
KG/M ~ 2 

1994 DATE 
(Mon --> Sun) 

PREDICTED 
YIELDS 

NA 
NA 
NA 
NA 

0.85 
1.16 
1.12 
0.36 
1.28 
1.45 
1.63 
1.26 

NA 
NA 
NA 

0.77 
0.82 
0.54 
0.77 
1.12 
1.58 
1.25 
0.96 
0.87 

NA 
NA 

0.66 
0.77 
0.24 
0.39 
1.11 
1.14 
1.23 
0.85 
0.87 
1.45 

NA 
0.47 
0.66 
0.47 
0.66 
0.95 
0.95 
1.26 
0.82 
1.23 
1.56 
1.38 

ACTUAL 
YIELD 

0.01 
0.53 
0.54 
0.85 
0.95 
0.92 
1.12 
1.19 
1.31 
1.45 
1.81 
1.6 

FEB28-
MAR07 
MAR14 
MAR21 
MAR28 
APR04 
APR11 
APR18 
APR25 
MAY02 
MAY09 
MAY16 

MAR6 
-MAR13 
-MAR20 
-MAR27 
APR03 

•APR10 
APR17 
APR24 
MAY01 
-MAY08 
MAY15 
MAY22 

1.47 
2.1 

1.93 
2.08 
2.31 
2.05 
2.09 
1.88 
2.52 
2.35 
2.63 
3.94 
1.36 
1.48 
1.49 
1.05 
1.31 
1.32 
1.29 
1.04 
0.93 
1.06 
1.62 
1.27 
1.21 
0.96 

0.7 

1.77 
1.33 
1.74 
1.62 
1.42 
1.51 
1.53 
1.97 
1.83 
2.94 
3.63 
1.78 
1.48 
1.59 
1.58 
1.41 
1.32 
1.24 
1.22 
1.1 
1.1 

1.12 
1.12 
1.23 
0.99 
0.77 
1.08 

1.19 
1.84 
1.62 
1.46 
1.39 
1.59 
1.83 
1.54 
3.34 
4.34 
2.12 
1.48 
1.65 
1.92 
1.96 
1.83 
1.56 
1.37 
1.31 
1.49 
0.78 
0.74 
0.54 
1.06 
1.44 
1.26 

1.63 

1.87 
1.92 
1.75 
1.71 
1.99 
2.18 
1.83 
1.74 
2.41 
1.93 
1.67 
1.72 
1.88 
2.14 
1.94 
1.7 
1.3 

1.31 
1.81 
0.99 
0.78 

0.7 
0.96 
1.48 
1.61 

2 
1.4 

2.92 
1.75 
2.11 
2.06 
2.65 
2.41 
1.99 
2.99 
2.1 

2.16 
2.12 
1.52 
2.06 

2 
1.88 
1.21 
1.28 
1.8 

1.49 
1.12 
1.37 
0.82 
0.95 
1.53 
1.75 
1.75 
0.71 

MAY23-MAY29 
MAY30-JUN05 
JUN06-JUN12 
JUN13-JUN19 
IJUN20-JUN26 
|JUN27-JUL03 
(JUL04-JUL10 
JUL11-JUL1 7 
JUL1 8-JUL24 
IJUL25-JUL31 
AUG01-AUG07 
AUG08-AUG14 
|AUG15-AUG21 
AUG22-AUG28 
AUG29-SEP04 
SEP05-SEP11 
SEP12-SEP18 
SEP19-SEP25 
SEP26-OCT02 
OCT03-OCT09 
OCT10-OCT16 
OCT17-OCT23 
OCT24-OCT30 
OCT31-NOV06 
NOV07-NOV13 
NOV14-NOV20 
INOV21-NOV27 

RMSE || 0.63 10.603 10.722 

NA = NOT AVAILABLE BECAUSE OF NO PREVIOUS ACTUAL YIELD RECORD 

Table 2 Tabulated results for the Agassiz Expert System 
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A g a s s i z Exper t S y s t e m Pred ic t ions 
1994 Yields (1-Week Ahead Predictions) 

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 
Week # 

Actual Yield 1-Week Ahead 

Figure 18 Shown above are the 1 -Week Ahead Yield Predictions for 
1994 using the Agassiz Expert System. 
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For the last interval, from weeks 30 to 50, the expert system continues to demonstrate 

its general ability to provide close predictions for peak productivity periods and an excellent 

forecast of the yield trend expected. 

For the purpose as a greenhouse management tool, yield predictions 1-week ahead 

(PRE-1) may be sufficient for preparing for weekly harvests depending on the size of the 

greenhouse operation. Larger operations may require an earlier forecast of yields for 

decision-making regarding capital cost investments such as the purchase of higher capacity 

harvesting equipment. However, the advantage of the predictions provided by the Agassiz 

Expert System is its ease of application, and flexibility. 

With the expert system designed to provide a range of predictions (1, 2, 3, and 4 week 

ahead), the same model could be applied to another set of data from another greenhouse 

site quite easily as only the weighting factors and input data may change. In fact, in terms 

of flexibility and user-friendliness, the expert system has the greatest potential and 

advantage. As the database of actual yield and environmental parameters grows, the 

predictions by the trend recognition expert system will improve. The expert system will be 

able to account for fluctuations in yield and better accommodate for yearly trends than the 

mathematical models, without tedious modifications. As an added advantage, the expert 

system approach begins as a general model for yield prediction, but then as it is trained with 

grower and site specific data it learns yield trends. The expert system model becomes 

particular to trends of a specific grower and gradually becomes a customized model. 
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The results from the Agassiz expert system demonstrate the dynamic and flexible 

nature of this approach and encourages further research and experimentation with this 

method of yield prediction. 

3.5 Validation and Comparison of Results from the Yield Predictive Models 

The guideline for validation of the models in this study was established to be an 

RMSE error value of less than 0.8 kg/m2 as mentioned earlier (Section 2.7). 

For the deterministic model based on the first-principle equations of net 

photosynthesis and respiration, the best model developed was a 2-week cumulative Pnet 

based yield model predicting 6 weeks ahead with an RMSE value of 0.3618 kg/m2. The 

error value obtained within the set guideline required for validation so the model was 

considered valid. The advantages of the deterministic modeling method was that it was 

flexible, and based on well-accepted first-principle equations. The model was considered 

flexible because the equations applied relied purely on environmental parameters and did 

not attempt to measure trends or simulate patterns of yield productivity. Consequently, by 

theory, the model should be applicable to any greenhouse site without bias, and provide the 

same predictions for any tomato crop under the same environmental conditions. The 

deterministic model is not season-dependent nor grower-specific because the structure of 

this approach relies only on the magnitude of environmental parameters such as solar 

intensity, temperature, and carbon dioxide concentrations. 

Disadvantages to the deterministic approach include the strict environmental 

monitoring required, the use of many growth parameters, assumptions in the yield 

conversion factor, and the tedious nature of application. In order to provide accurate and 
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useful predictions, the development of the model required a full year of hourly 

environmental data (8760 hours / year). Missing or ambiguous data for any extended 

periods of time led would result in 'zero values' for predictions during that interval because 

the equation would not have any input values. The problem of missing data becomes 

greater once the effect of cumulating weekly net photosynthetic rates (P n e t) is considered. If 

cumulative totals of P n e t are being converted and used to predict yield, low totals due to 

missing data for normally productive yield periods would lead to inaccurate predictions. In 

this study, zero yield periods were solved by extrapolation between known prediction 

points but without the far prediction point (weeks ahead of time) no yield value could be 

reported. Aside from the problem of missing data, it may not be time or cost-effective to 

require such a strict environmental monitoring scheme to ensure proper predictions by this 

method. 

The use of a great number of coefficients and growth parameters is also a weakness 

of the deterministic approach (Figures 6a & 6b). Small errors in assumptions or 

parameter values become magnified with subsequent predictions and finding the source of 

the error from the many assumptions becomes a difficult task. 

Another uncertainty in developing the deterministic model was the application of 

the yield conversion factor found in literature (Enoch, 1978). Examining the assumptions 

involved in applying the conversion factor more carefully (Figure 6c) two of the main 

parameters on which the factor is based are quite variable. First, the assumption that half 

the dry matter of a tomato is partitioned to yield will strongly affect the magnitude of the 

conversion factor. For example, if the dry matter partitioning for the tomato is actually 
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closer to 60% in practise, rather than the assumed 50%, a 17% increase in the yield 

conversion factor results (factor changes value from 7 to 8.18). Similarly, from literature 

the dry matter content for tomatoes was found to vary between 5 to 10% at different stages 

of fruit development (Ho and Hewitt, 1986). If the assumed value for dry matter content 

changed from 5% to 10%, the yield conversion factor would change from a value of 7 to 

3.4. Further, if both assumptions are slightly inaccurate then the changed yield conversion 

factor would produce significantly different results. 

Changes in temperature are known to strongly affect the partitioning of assimilates 

in plants (Barendse, 1993) as well as development time of tomatoes (de Koning, 1993b). 

Assuming a constant or averaged dry matter content for the entire growth season in order 

to apply the yield conversion factor may only lead to predictions that apply to certain 

periods of fruit development. The yield conversion factor assumes that by averaging the 

high and low percentage periods of dry matter partitioning throughout a growing season a 

generalized yield prediction can be made. As a result of the many assumptions, sources of 

error, and possibilities for variations in the yield conversion factor, the low error value 

(RMSE = 0.3618 kg/m2) of the deterministic model may not prove overall prediction 

accuracy. 

The empirical model based on multiple regressions of historical data produced 

reliable and useful predictions for the 1994 growing season. Beginning with a light-only 

based model and expanding to a model which incorporated temperature in terms of heat 

units, the empirical model gradually reduced its prediction error. The best, most useful 

empirical model developed, involved using cumulations of 3, 6, and 9-weeks of light and 
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temperature data to predict yields 4-weeks ahead (Equation 4.1, Figure 17). Error 

analysis of this approach produced an RMSE value of 0.45 kg/m2, well within the required 

validation guideline of 0.8 kg/m2 established for this study. 

The advantages of the empirical approach include the straight-forward method of 

development and reliable prediction results for general yield trends. Using regression 

equations derived from historical data to relate environmental variables to actual yield had 

the advantage of not requiring plant physiology assumptions or conversion factors. 

Based on previous trends of production for a specific grower and site, the 

regression equations were developed and analysed for their prediction accuracy. The 

prediction equation required only two parameters, temperature and light on a weekly basis 

to produce results. The empirical approach was much simpler to apply since less stringent 

environmental monitoring would be required for obtaining weekly averaged values for only 

light and temperature data. From the graphical plots, the empirical approach was able to 

adequately predict tomato yield trends for the first 25 weeks with fairly good accuracy. 

Difficulty in providing close predictions was encountered during peak yield periods (June-

July) most likely due to changes in plant partitioning and shortened development times 

induced by warmer temperatures (Barendse, 1993) mentioned earlier. 

Disadvantages to the empirical method would be that the fact that equations derived 

for the data sets would only be site or grower-specific, and the inability to predict for 

periods. Since the empirical method employs regression techniques for a specific set of 

data, the equations derived for one grower could not be applied to other sites or 

greenhouses. Equations or methods that produced the best-fitting predictions for a 
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particular grower may not necessarily produce good forecasts for other growers. For each 

grower, a new set of regression equations would have to be produced, and new analysis of 

results would have be performed to identify the best equations. As a result, the 

methodology of developing the model actual makes the empirical model the least flexible of 

the three models compared in this study. However, comparatively, the predictions from 

the empirical model are more reliable than those from the deterministic model because the 

method used its development requires fewer assumptions. 

The final model examined in this study was the Agassiz Expert System model which 

employed trend recognition techniques to make yield predictions. The one-week ahead 

prediction model (PRE-1) produced an RMSE value of 0.401 kg/m2 and was considered a 

valid model by the validation guideline of 0.8 kg/m2. The plotted results of the one-week 

ahead model versus actual yield (Figure 18) demonstrated the ability of the expert 

approach to provide the good variability to predict high and low peaks and during high 

productivity periods (weeks 20 to 35). 

As a comparison model, the Agassiz Expert System model showed the most 

flexibility. The expert system could be applied to new sites or growers without making 

major changes to the model itself, other than adjusting weighting factors applied and 

training the model with new sets of data. Further, the expert system would be the most 

user-friendly model to apply for yield prediction as it quickly provides an understandable 

range of predictions (PRE-1, PRE-2, PRE-3, PRE-4) without requiring the user to have 

detailed knowledge of plant physiology. 
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In order to summarize the weaknesses and strengths of each approach, a three-point 

ranking system was devised to determine the best overall model. The best model in each 

category is ranked with a value of 1 (for first / best) and the worst in each category is 

ranked with a value of 3 (for last / worst). The model with the overall lowest total score 

out of a maximum of 15 points for 5 categories will be identified as the best overall 

prediction model. 

The categories used for comparison included: RMSE error for the entire annual 

growing period, RMSE error for the most productive period (Weeks 20 to 35 of the 

annual growing season), flexibility of application for individual grower sites, application 

flexibility for the general case, and user-friendliness of the model {Table 3). 

When the root-mean-square-error was calculated and compared for each model the 

deterministic model reported the lowest error (0.3818 kg/m2) and was ranked with a value 

of 1. The Agassiz expert system was ranked a close second for overall RMSE (0.401 

kg/m2), while the empirical model reported the greatest error of the comparison group 

(0.45 kg/m2) and was ranked with a value of 3. Although the deterministic model 

reported the lowest overall RMSE for the year of predictions it must also be noted that 

during part of the growing season, incomplete data sets led to zero predictions for certain 

intervals. As a result, the deterministic model required extrapolations between known 

prediction points to provide a full year of predictions. Further, the known variability in fruit 

water content and dry matter partitioning throughout fruit development may require the 

application of a variable instead of a constant yield conversion factor. The advantage of the 
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expert system approach was that even with missing or ambiguous data sets it had the ability 

to make predictions based on analysed trends of historical data. 

Finally, the empirical model (Figure 17) produced the best predictions for the first 25 

weeks of the growing season but had difficulty predicting the high productivity periods. 

Based on numerical analysis alone, the deterministic model had the best overall RMSE 

results but in terms of consistency, the empirical and Agassiz expert system may be more 

reliable (Table 3). 

For a better comparison of the results during the peak productivity period, a 

separate root-mean-square-error analysis was performed between weeks 20 to 35 of the 

growing season. The results are shown in Table 3 with the best results being reported for 

the deterministic model, followed by the empirical, and Agassiz expert system (ranked 1, 2, 

and 3, respectively). Although numerically the error results were the best for the 

deterministic method, the expert system actually had the best prediction of variability during 

this period, in terms of high and low peaks. The deterministic produced good results 

(compared with actual recorded yields) during this period as well but required a complete 

set of hourly data to produce these predictions. The feasibility of such strict monitoring of 

environmental parameters and extrapolation of results in cases of missing data is questioned 

if this method were to be actually applied in-situ. The empirical model had fairly good 

results as well, but had less ability to predict for the general trends of yield productivity 

when results were analysed graphically (Figure 17). 
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Table 3: Comparison of Yield Predictive Models 

PREDICTIVE O V E R A L L R A N K Wk 20 to R A N K Application User OVERALL 
M O D E L R M S E 35 

R M S E 
Flexibility Friendly SCORE 

(kg/m2) (1-3) (kg/mA2) (1 - 3) Rank: (1 - 3) 
Site / General 

(1-3) Score/Rank 

DETERMINISTIC 0.3818 1 0.170 1 3 / 2 3 10 / 2 

EMPIRICAL 0.45 3 0.233 2 2 / 3 2 12 / 3 

AGASSIZ 
E X P E R T 
S Y S T E M 

0.401 2 0.247 3 1 / 1 1 9 / 1 

* Deterministic Model: 2 Week Cumulative P„ot based model - 6 weeks ahead 
* Empirical Model : 3 Light & 3 Heat Variables - 4 weeks ahead 
* Agassiz Expert Sys. : Trend Recognition Based -1 week ahead 

In terms of flexibility of application on a site-specific basis, the Agassiz expert 

system was ranked highest because of its well-defined model structure (Table 3). The 

Agassiz model could be easily applied to new sites without any major modification to the 

model itself. New historical data for each site would be required to train the model, but the 

model itself could be easily applied to new sites with minor difficulties. The empirical 

approach was ranked second because it is based purely on site-specific data and the model 
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is customized for particular growers. The deterministic model using first principle 

equations of net photosynthesis was ranked third because it applied generalized equations 

regardless of a specific site. Based on environmental variables alone, the deterministic 

model would make predictions without considering any yield trends from previous years. 

When the flexibility of applying the various models to general cases was analysed, 

the Agassiz expert system was ranked first because it would be able to accommodate the 

greatest variations in available data. While the deterministic and empirical models require 

complete data sets and a more rigid environmental monitoring scheme, the expert model 

would be reliable even in cases of missing data sets. For actual field application, it is 

believed that providing reasonable predictions regardless of missing data sets would be 

extremely beneficial to the greenhouse grower and management staff. 

Comparing user-friendliness of the three models, a number of factors were 

considered. 

First, the prediction results would be considered user-friendly if they were based on 

very few assumptions, and could be easily interpreted without extensive knowledge or 

thought of plant physiology. It was also decided that yield predictions one-week ahead of 

time were sufficient for most greenhouse management decisions. The Agassiz expert 

system was the only model that had the advantage of providing an immediate 1, 2, 3, and 4 

week ahead range of yield predictions and produced'some of the best results from its 1-

week ahead forecasts. Generally, larger management decisions for capital cost 

expenditures would be dependent on analysing annual productivity trends rather than 

weekly yield patterns. Consequently, the best use for the yield prediction models would be 
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to prepare adequate equipment and manpower for harvests and to maximize overall crop 

productivity. 

As the goal of the prediction models was to purely to provide good tomato crop 

yield predictions, the model requiring the least manipulation or customization by the user 

was considered the best model. The empirical model based on multiple trials of linear 

regression would require an experienced technician or researcher to properly fit the data for 

each individual grower site. To properly apply the deterministic model approach a strict 

environmental monitoring scheme would be required, which may not be a cost-effective 

option for many small-scale growers. However, the deterministic model would have the 

advantage of being applied effectively in general cases if predictions were properly adjusted 

with variable yield conversion factors throughout different stages of fruit development. 

As well, in situations where predictions are required fairly far in advance, the deterministic 

model may be favored for its 6-week-ahead predictions. 

Similarly, the empirical model has the advantage of predictions made 4 weeks ahead 

but requires many regression trials to properly fit each growers' historical yield data. 

Comparatively, the Agassiz expert system would require the least customization of all three 

models to provide reliable and cost-effective yield predictions. 

Based on the overall scores reported for each model, the Agassiz Expert system was 

ranked first, with the deterministic model a close second. The empirical model was ranked 

lower than the other two models due to its lack of flexibility in actual application and the 

need for customization by skilled technicians or researchers. For cases when predictions 

are required far in advance (i.e. 6 weeks) then the deterministic model may be applied 
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effectively. However, for the general case, it is believed that the range of 1,2, 3, and 4 

week predictions offered by the Agassiz expert system would be sufficient for most end-

users. 

Overall, the best prediction approach was determined to be the Agassiz expert 

system model, favoured for its simplicity, reliable and accurate predictions, flexibility in 

application, and user-friendliness. 
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4.0 Conclusions 

In this study, two mathematical models were successfully adapted (deterministic 

model), developed (empirical model) and validated to predict greenhouse tomato yield in 

terms of quantity (kg/m2). 

The final empirical math model developed was based on 3, 6, and 9 week 

cumulations of light and temperature (in heat units) to predict tomato yields 4 weeks ahead 

of time. 

Error analysis of the empirical method produced the largest root-mean-square-error 

value of 0.45 kg/m2 for the entire growing season. Predictions during the peak 

productivity periods (weeks 20 to 35) were fairly good using this approach (RMSE = 0.233 

kg/m2). Weaknesses of the empirical model included its site-specific nature, and difficulty 

in applying to general grower cases. 

The final detenriinistic math model based on first principle equations of net 

photosynthesis (PMt) predicted yields 6 weeks ahead using a yield conversion factor and two 

week cumulations of Pn e t. From error analysis, the most accurate predictions were 

achieved with the deterministic model, with an overall RMSE value of 0.381 kg/m2 for the 

entire growing season. The deterministic approach was also fairly flexible for general 

applications but there were a number of weaknesses identified with this approach. The 

application of a constant conversion factor was based on assumptions that fruit moisture 

contents and dry matter partitioning remained constant throughout the tomato development 

period. Ideally, a variable conversion factor reflecting changes in crop growth could be 

developed and applied to this model to improve prediction accuracy. 
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Another weakness identified with the deterministic model was the need for an extensive 

understanding of plant physiological processes to successfully apply the equations used to 

make the predictions. Further, the requirement for a continuous and complete set of 

hourly data to make predictions may not be time or cost-effective for many greenhouse 

growers. In terms of user-friendliness, the deterministic model was ranked last for its large 

number of plant parameters and assumptions and its inability to provide predictions without 

a comprehensive set of hourly environmental data. 

The predictions from the Agassiz expert system model were used for comparison 

with the two mathematical models developed. With an overall RMSE value of 0.401 kg/m2 

for the entire growing season, the expert system was considered a valid model. 

When an overall comparison was made with the two math models developed in this 

study, the expert model was top-ranked in terms of total score (Table 3). Although 

ranked third for prediction accuracy during the peak productivity periods it became evident 

that the expert system had the greatest potential for predicting yield variations during these 

intervals (Figure 18). The expert system would be capable of improving its predictive 

ability with further training with site-specific, historical data sets, to become a fully 

customized management tool. Another advantage of the Agassiz model was its ability to 

provide predictions even for cases of missing or ambiguous data. 

When the three tomato yield prediction models were compared, the Agassiz expert 

system was identified as the best overall model for its prediction accuracy, ease of 

application to both site-specific and general conditions, and overall user-friendliness. 
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5.0 Recommendations 

From the results of this study the inherent weaknesses and strengths of each 

modeling approach became clearly evident. 

The empirical modeling approach using mathematical regression techniques was 

effective for providing accurate yield predictions for a site-specific case, but these site-

specific equations could not be readily applied to other greenhouses. In order to 

successfully apply the approach developed in this study to other sites, the same 

methodology would have to be repeated to identify the best empirical model. Regression 

equations with new coefficient values would need to be derived for each individual site and 

compared with a similar error analysis method. However, an advantage of the empirical 

approach was that it attempted to predict trends in yield productivity using weekly 

environmental data. By simply applying the methodology outlined in this study, a grower 

with a full year of weekly historical data and a spreadsheet program could establish yield 

predictive equations for their current growing season. Greenhouse growers may favor the 

empirical modeling approach for its consistent predictability, straight-forward methodology, 

and low cost for implementation. 

The deterministic model applying first principle equations of photosynthesis had the 

advantage of being applicable to all general cases of tomato crop production. Using a 

generalized yield conversion factor (Enoch, 1978) and cumulations of net photosynthesis 

activity, the deterministic model attempted to simulate actual tomato crop productivity. 

However, in order to improve the accuracy of predictions during different stages of crop 

growth, the development of a variable yield conversion factor may be necessary. The 
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current yield conversion factor is based on fixed assumptions of dry matter partitioning and 

moisture content. It is suggested that a yield conversion factor should be developed to 

account for plant physiological changes in partitioning ratios throughout the various growth 

phases of the tomato Suit. Modifying the method found in literature (Enoch, 1978) 

average values for tomato moisture content and partitioning on a weekly or bi-weekly basis 

could be used to calculate a new series of yield conversion factors for weekly intervals to 

convert Pnet values. Further research into the plant physiology of the tomato crop at 

different developmental stages may be required to properly apply the deterministic model. 

The Agassiz expert system used for comparison in this study was identified as a 

successful method for yield prediction. The structure of the model would allow its 

application to both site-specific and generalized cases with minimal modification to the 

model itself. In actual practise, the end-user would only be required establish a historical 

database and input new environmental data weekly, to predict yields 1, 2, 3, and 4 weeks 

ahead of time. The success of the expert system is dependent on the data with which it is 

trained. As a result, it is recommended that for the initial training of the expert system, 

historical data sets with the most complete sets of parameters and characteristic yields be 

used as input. Ideally, the more sets of data the model is trained with, the greater its 

capacity to predict for trends during peak productivity periods. 

A recommended improvement to the Agassiz expert model would be to include an 

algorithm within the model itself, for an on-going error analysis with each week of 

predictions. Further, when training the system for predictions, error analysis for each 

predict ahead model should be performed (PRE-1, PRE-2, PRE-3, PRE-4) for each 
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additional year of historical data. The model could be further integrated to provide 

graphical analysis of actual and predictive yields to allow end-users to monitor predictive 

performance visually. A report generation program within the model including yield 

forecasts, weekly error analyses, and graphical plots would be a useful management tool for 

greenhouse growers. Ideally, a generalized expert system model for tomato crops could 

be developed based on generalized sets of data from a variety of greenhouse growers. 

With a generalized yield predictive model, the end-user may only need to customize the 

expert model by entering one or two years of historical data to establish good predictions 

for their site-specific case. 

Once the Agassiz expert system is fine-tuned to provide accurate predictions for a 

site-specific case, implementation of yield predictions to an on-line computer climate 

control system may be feasible. Using computer algorithms related to expected yield 

values, adjustments may be made to environmental settings to improve tomato crop 

productivity via the climate control system. Another possibility for the expert model would 

be to present the end-user with a software driven option to view the yield forecast if 

modifications are made to environmental settings. Ideally, the greenhouse grower would be 

allowed to experimentally change the weekly environmental settings within the software 

program and view the change in productivity if those changes were actually made. 

Further, once the expert system software is advanced enough to allow experimental 

changes to parameters, additional menu options could be added to the model itself. If the 

user desired to increase or decrease yield productivity, the model could be programmed to 

provide suggestions to achieve this effect. Eventually, the expert system could be user-
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customized with default settings to maximize yield during selected intervals and become a 

companion program to the main climate control algorithm. 

Great potential exists for the expert system approach for yield prediction. A similar 

method could be applied to other greenhouse crops to develop crop and site-specific 

models for each individual grower. With the encouraging results found in this study, 

further research and development of expert system modeling is recommended for 

greenhouse tomato yield prediction. 
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C R O P YIELD MATHEMATICAL M O D E L 

G R O S S PHOTOSYNTHESIS (Pg),''-'': %*W?fr&f<#&43$ 1 

Based on Eqn (7) in "Crop Growth, Development, and Production Modelling" by J.W. Jones 

Pg = D ((t*C*p($)) / K ) * { In [ (&*K* lo + (1 - m)* t * C *p($)) / ( &*K* lo*exp (-KL) + (1 - m)*t*C*p($)) ] } 

For Tomato Crop / Variables & Unit Definitions: 

FOR: G R O S S PHOTOSYNTHESIS (Pg) 

Term Abbrev. Units 

Gross Photo. 
Conv. Factor 
Leaf Conduct.to C 0 2 
C 0 2 cone, of air 

Function of Temp. 

Canopy L.E. Coeff. 
Leaf L.U. Eff. 

Ligh Flux Density 

Respiration rate @ 25*C 
Light T. Coeff. Leaves 

Leaf Area Index (LAI) 

FOR: p($) 

Pg 
D 
t 
C 

p($) = p(theta) 

K 
& = alpha 

lo 

km 
m 

g (CH20) / m ~ 2*h 

umol (C02) / m ~ 2 * s 
umol(C02) / mol (air) = ppm 

Dimensionless 
Note: " $ " = Theta (for notation) 

Dimensionless 

umol (C02) / umol (photon) 

umol (photon)/m ~ 2*s 
* * Conversion from W/m " 2 

0.0006 
Dimensionless 

m"2( leaf ) / m~2(ground) 

RESPIRATION RATE,- ; ' 

p($) = [1 - (1 -{ ( $ h - $ ) / ( $ h - $ i ) } ~ 2 ] 

p($) = expresses the effect of temperature on the max. rate of photo, for a single leaf 
$h = temp at which leaf photosynthesis is maximum, 3 0 * C 
$i = is temp below which leaf photosynthesis is zero, 5 * C 
$ = measured temp = Tin = temperature inside 

Based on Eqn (5) in J .W. Jones ' paper 

Rm = km * exp (0.0693*[$ - 25)) 

Rm = maintenance respiration rate, g C H 2 0 / g tissue * h 
km = respiration rate at 25*C, g C H 2 0 / g tissue * h 
$ = measured temp. 
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D R Y W E I G H T • • ' - / ^ l 

Based on Eqn (6) in J.W. Jones' paper 

fdW / dt = E* ( Pg • Rm'W) 1 
dW / dt = rate of dry wt. growth of crop, g tissue / m ~ 2*h 
W = total plant dry weight, g/m ~ 2 
E = conversion efficiency of CH20 to plant tissue, g (tissue) / g(CH20) 
Pg = canopy gross photosnthesis rate, g(CH20) / m 2̂*h 
Rm = maintenance respiration rate, g CH20 / g tissue *h 

Then, once dW/dt is known the new weight W(new) can be found: 

fw(new) = W(i) + dW / dt ~| 

W(new) = new weight, g/m ~ 2 for that HOUR 
W(i) = total initial plant dry weight, g/m ~ 2 
dW/dt = rate of dry weight growth of the crop ( g tissue / m "2*h) 

M U LT| P. LIG ATI C N . F A C T O R ' ^ Y V ' , ' ' ^ M ^ ^ ^ M j ' ' ^ ^ ^ ^ 

Based on paper by H.Z. Enoch (Acta Hort 76. 1978 p. 48) 

Y = [ (30 * 100) / (44* 5) ] * X or: 30/44 * X = Y * (5/100) 

Y = multiplication factor to relate photosynthesis to yield 
X = percentage of dry matter that is yield (ie . 50% = 0.50 ) 
30, 44 = Mol. Weights of CH20 and C02 respectively 
5/100 = represents 5% dry matter in yield. 

Based on Paper: Y = 7 (approx., based on X= 50% ) 

Y I E L D . V A L U E - V -.. ; y . V ^ ; . : ^ c ^ o 

Based on Pg and multiplication factor "Y" 

Yield Value #1 = Pg * Y 

N E T P > i O T O S Y N T H ESI S ' ' / f i f £ 

Pnet = Pg - Rm*W 

Pnet = net photosynthesis, g (CH20) / m ~2*h 
Rm = maintenance resp. rate, g (CH20) / g tissue*h 
W(new) = total plant dry weight, g/m " 2 = W = W(i) for the first assumed weight hour 
Pg = gross photosynthesis, g (CH20) / m ~2*h 

• Y I E L D J V A L U E #2 i ~ > t t > 

Based on Net Photosynthesis (Pnet) and Multiplication Factor "Y" 

Yield Value #2 = Pnet * Y 
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YIELD CONVERSION FROM GROWER'S DATA: 

Weight ( kg / m ~ 2 ) = [ Total number of 20 pound cases * 20 / (2.2*25400) ] 

* * Greenhouse Area = 25,400 m " 2 

LIGHT INTENSITY CONVERSION FROM W/'m ~ 2 to umol / m ~ 2*s 

lo = umol / m ^ s = (I, W / m ~ 2 / 0.22 ) * 0.80 * 0.45 

lo = converted units from I, raw data entered as W/m ~ 2 
I = raw data from grower in units of W/m ~ 2 

LEAF AREA INDEX (LAI) , L 

Separate Column for varying LAI, L 

Shaded Areas are 
= Formula Blocks $i = 5.0 and $h = 30.0 

To Follow is the Spreadsheet Layout for the Deterministic Math Model 
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Sample Spreadsheet Column Headings for the Deterministic Model 

To LAJ P~ 24 Hour Yield #2 Y Factor 

I0 = Light Flux Density (umol (photon) / m2 *s ) 

LAI - Leaf Area Index 

P g = Gross Photosynthesis (g(CH20)/m2 *h) 

R m = Maintenance Respiration Rate (g(CH20) / g tissue* h) 

Pnet = Net Photosynthesis (g (CH20) / m2 * h) 

24 Hour Yield #2 = Yield for a 24 hour period (kg / m2) based on 
Net Photosynthesis 

Y Factor = Enoch's Yield factor of 7 

Sample Spreadsheet Layout for the DETERMINISTIC MATH MODEL 



96 

LAI vs . T i m e (month) 

M Month LAI Value 

January 0.6 

" 

/ 

February 
\ March 

\ April 

274"4"" 
3.13 
3.31 

m 
i 

l 

^ \ May 
\ June 

\ July 
August 

...... 
2.51 
1.93 
1.31 

1 
1 
i 

• . September 
October 

\ November 
\ December 

1.18 
1.00 
0.62 
0.00 

/ 

/ 
/ 

/ 

i i i — - — i 1 i i 
8 1 0 

Figure 
A- IO 

2 4 6 

Month # 
Changes in Leaf Area Index (LAI) throughout the year 

Reference: de Koning. 1993 

1 2 
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Summary of: 

Total PPF vs. Crop Yield Results 

Year r2 Equation 

1987 0.722917 y = 0.95 x- 35.28 

1989 0.711196 y = 0.99 x-29.43 

1990 0.618388 y= 1.12x-28.23 

1991 0.613489 y= 1.07x-41.15 

1992 0.746478 y = 0.99 x - 33.53 

1993 0.672635 y= 1.02 x- 68.31 

1987 - 1993 0.668588 y = 0.00025 x- 0.07858 

Where: 

x = 9 week cumulated photosynthetic photon flux (PPF) 
y = crop yield in grams/plant 

Given yield in kg/m2. and plant density of 2.5 plants/m2: 

Crop Yield (grams/plant) = Yield (kg/m2) *(Plants / m2)* (1000 g / kg) 

The best correlated data for light (9 week PPF) and crop yield (g/plant) as 
analysed by the r2 correlation coefficient was found to be the 1992 data 
with a value of 0.746478. 

Table A - l 
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EMPIRICAL MATH MODEL REGRESSION RESULTS (Equation 1) 

REGRESSION RESULTS FOR LIGHT ALONE (CL9) 
(Cumulative Light for 9 weeks, W/m2) 

Y p 2 = a0 + ax (CL,) (1) 

RMSE Results 
for 1994 Predictions 

ao ai 

1987 Equation -0.08819 0.000014 0.489258 

1989 Equation -0.0736 0.0000147 0.441116 

1990 Equation .. -0.07057 0.0000165 0.382832 (Eqn. 1.1) 

1991 Equation -0.10287 0.0000158 0.408559 

1992 Equation -0.08383 0.0000145 0.457382 (Eqn. 1.2) 
1993 Equation -0.17077 0.0000150 0.482722 

1987-1993 Eqn -0.07858 0.00001479 0.439355 

Where: a 0 is the constant for predictive equation 1 
ai is the coefficient for predictive equation 1 (CL9) 

"1992 Equation" means the regression equation based on fitting 1992 data 
to regression equation 1. 

RMSE for 1994 Predictions: is the calculated root-mean-square-error of 
tomato yield predictions for 1994 using that particular year's regression 
equation. 

For example, using the 1992 Equation of: 
Y = -0.08383 + 0.0000145 (CL9) to predict 1994 yield (with 1994 data), 
the root-mean-square-error of the predictions was found to be: 0.457382 

Table A-2 
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1994 Predicted Yields 
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Figure 
A-16 
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Predicted yields for 1994 production based on regression 
equations derived from light data from 1987 to 1991. 
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1994 Predicted Yields 
Cumulative Light Based (CL ) 

5 10 15 20 25 30 35 40 45 50 
1994 Week Number 

Actual Yield - B - 1993 Eqn. - 4 - 1987 to 1993 Eqn. 1992 Eqn. 

Figure Predicted yields for 1994 production based on regression 
A-19 equations derived from light data (1992,1993, and '87 - '93) 
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REGRESSION RESULTS FOR LIGHT and HEAT (CL9 and CH9) 
(Cumulative Light for 9 weeks, W/m2 and Cumulative Heat Units for 9 weeks) 

Y p 2 = a0 + ax (CL9) + a2 (CH9)..... (2) 

RMSE Results 
for 1994 Predictions 

a0 a! a2 

1987 Equation 0.52199 0.00001207 -0.0043454 0.440142 

1989 Equation 4.25232 0.00002708 -0.057994 0.692027 

1990 Equation.,,, .... 2.38054 . 0.00002444 -0.033809 0.542205 (Eqn. 2.2) 

1991 Equation 3.76864 0.00002193 -0.0480305 0.527883 

1992 Equation , 2.39584 0.00001513 -0.0300318 0.353099 (Eqn. 2.1) 

1993 Equation 0.77455 0.00001349 -0.0092041 0.425785 

1987-1993 Eqn 0.770725 0.00001364 -0.0080933 0.379579 

Where: ao is the constant for predictive equation 2 
ai is the coefficient for predictive equation 2 (CL9) 
a2 is the coefficient for predictive equation 2 (CH9) 

"1992 Equation" means the regression equation based on fitting 1992 data 
to regression equation 2. 

RMSE for 1994 Predictions: is the calculated root-mean-square-error of 
tomato yield predictions for 1994 using that particular year's regression 
equation. 

For example, using the 1992 Equation of: 
Y = 2.39584 +0.00001513 (CL*) -0.030018(CH9) to predict 1994 yields 
(with 1994 data), the root-mean-square-error of the predictions was found 
to be: 0.353099 

Table A-3 
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1994 Predicted Yields 
Light(CLg) and Temperature(CH ̂  Based 

3.5n 

1994 Week Number 
Actual Yield - B - 1987 Eqn. - * K ~ 1989 Eqn. 

- B - 1990 Eqn. - X - 1 9 9 1 Eqn. - A r 1992 Eqn. 

Figure Predicted yields for 1994 production based on regression 
A-20 equations derived from light & heat data from 1987 to 1992. 
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1994 Predicted Yields 
Light(CL g) and Temperature(CH ̂  Based 

1994 Week Number 
Actual Yield - B - 1993 E q a - * r - 1987 to 1993 Eqn. 

Figure Predicted yields for 1994 production based on regression 
/\-2/ equations derived from light & heat data (1993 and '87 - 93) 
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1987 STEPWISE REGRESSION RESULTS 

Year 1987 
Data Set. D-RYALL (MR87.SYS from Systat) 

Variables: VAR(3) = Yield in kg /m 2 

VAR(4) = 9 week cumulative light readings in W/m 2 

VAR(5) = 9 week cumulative heat units, degrees Celsius 
(each 9 wk. period = sum of 9 wk. avg temp *C - 90) 

Statistical Method: 
Stepwise Regression for light VAR(4) and heat units VAR(5). 
Al l results based on dependent variable VAR(3), yield in kg/m 2 

-> DEPENDENT VARIABLE VAR(3), Yield in kg/m 2 <-

MINIMUM T O L E R A N C E FOR ENTRY INTO MODEL = .010000 

FORWARD STEPWISE WITH FIRST 4 VARIABLES F O R C E D IN MODEL 
ALPHA-TO-ENTER= .150 AND ALPHA-TO-REMOVE= .150 MAX # STEPS= 

STEP # 0 R= .000 RSQUARE= .000 

VARIABLE COEFFICIENT STD ERROR STD C O E F T O L E R A N C E F 'P' 

IN 

1 CONSTANT 

OUT PART. C O R R 

2VAR(4) 0.75591487 .1E+01 .45E+02 0.0000 
3VAR(5) 0.59594473 .1E+01 .19E+02 0.0001 

STEP # 1 R= .756 RSQUARE= .571 
T E R M ENTERED: VAR(4) 

VARIABLE COEFFICIENT STD ERROR STD C O E F T O L E R A N C E F 'P' 

IN 

1 CONSTANT 

2VAR(4) 0.00001021 0.00000152 .076E+01 .1E+01 .45E+02 0.0000 

OUT PART. CORR 

3VAR(5) -0.13153800 0.27982 0.58103 0.4513 
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S T E P # 2 R= .761 RSQUARE= .579 
TERM ENTERED: VAR(5) 

VARIABLE COEFFICIENT STD ERROR STD C O E F T O L E R A N C E F 'P' 

IN 

1 CONSTANT 
2VAR(4) 0.00001207 0.00000288 .089E+01 0.27982 .18E+02 0.0002 
3VAR(5) -0.00434545 -0.00570082 -.016E+01 0.27982 0.58103 0.4513 

OUT PART. CORR 

none 

THE SUBSET MODEL INCLUDES THE FOLLOWING PREDICTORS: 

CONSTANT 
VAR(4) 
VAR(5) 

DEP VAR: VAR(3) N: 36 MULTIPLE R: 0.761 SQUARED MULTIPLE R: 0.579 
ADJUSTED SQUARED MULTIPLE R: .553 STANDARD ERROR OF ESTIMATE: 0.28657972 

VARIABLE COEFFICIENT STD ERROR STD C O E F T O L E R A N C E T P(2 TAIL) 

CONSTANT 
VAR(4) 
VAR(5) 

S O U R C E 

0.52199056^0.30523030 0.00000000 
0.00001207 '0.00000288 0.89406748 0.2798160 

-0.00434545'0.00570082 -0.16279360 0.2798160 

1.71015 0.09663 
4.18631 0.00020 

-0.76225 0.45132 

ANALYSIS OF VARIANCE 

SUM-OF-SQUARES DF MEAN-SQUARE 

REGRESSION 
RESIDUAL 

3.72465308 
2.71022192 

2 
33 

1.86232654 
0.08212794 

F-RATIO P 

22.67592009 0.00000064 

DEPENDENT VARIABLE VAR(3) 

MINIMUM T O L E R A N C E FOR ENTRY INTO MODEL = .010000 

FORWARD STEPWISE WITH FIRST 4 VARIABLES F O R C E D IN MODEL 
ALPHA-TO-ENTER= .150 AND ALPHA-TO-REMOVE= .150 MAX # STEPS= 6 
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STEPWISE REGRESSION RESULTS 

Year. 1989 
Data Set. D-RYALL (MR89.SYS from Systat) 

Variables: VAR(3) = Yield in kg/m 2 

VAR(4) = 9 week cumulative light readings in W/m 2 

VAR(5) = 9 week cumulative heat units, degrees celsius 
(each 9 wk. period = sum of 9 wk. avg temp *C - 90) 

Statistical Method: 
Stepwise Regression for light VAR(4) and heat units VAR(5). 
Al l results based on dependent variable VAR(3), yield in kg/m 2 

-> DEPENDENT VARIABLE VAR(3), Yield in kg/m 2 <-

DEPENDENT VARIABLE VAR(3) 

MINIMUM TOLERANCE FOR ENTRY INTO MODEL = .010000 

FORWARD STEPWISE WITH FIRST 4 VARIABLES F O R C E D IN MODEL 
ALPHA-TO-ENTER= .150 AND ALPHA-TO-REMOVE= .150 MAX # STEPS= 6 

STEP# 0 R= .000 RSQUARE= .000 

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F V 

IN 

1 CONSTANT 

OUT PART. CORR 

2VAR(4) 0.76284622 .1E+01 .52E+02 0.0000 
3VAR(5) 0.43172526 .1E+01 8.47615 0.0061 

STEP* 1 R= .763 RSQUARE= .582 
T E R M ENTERED: VAR(4) 

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F 'P' 

IN 

1 CONSTANT 

2VAR(4) 0.00001285 0.00000179 .076E+01 .1E+01 .52E+02 0.0000 

OUT PART. C O R R 
3VAR(5) -0.73518613 . 0.24047 .42E+02 0.0000 
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STEP* 2 R= .899 RSQUARE= .808 
TERM ENTERED: VAR(5) 

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F "P" 

IN 

1 CONSTANT 
2 VAR(4) 0.00002708 0.00000251 .161E+01 0.24047 .12E+03 0.0000 
3VAR(5) -0.05799486 -0.00891219-.097E+01 0.24047 .42E+02 0.0000 

OUT PART. CORR 

none 

THE SUBSET MODEL INCLUDES THE FOLLOWING PREDICTORS: 

CONSTANT 
VAR(4) 
VAR(5) 

DEPVAR: VAR(3) N: 39 MULTIPLE R: 0.899 SQUARED MULTIPLE R: 0.808 
ADJUSTED SQUARED MULTIPLE R: .797 STANDARD ERROR OF ESTIMATE: 0.22600488 

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL) 

CONSTANT 4.25232655' 0.64683641 0.00000000 
VAR(4) 0.00002708 ,0.00000251 1.60766401 0.2404687 
VAR(5) -0.05799486^0.00891219 -0.96937144 0.2404687 

6.57404 0.00000 
.11E+02 0.00000 

-6.50736 0.00000 

ANALYSIS OF VARIANCE 

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P 

REGRESSION 7.73327686 2 3.86663843 75.70035554 0.00000000 
RESIDUAL 1.83881545 36 0.05107821 
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STEPWISE REGRESSION RESULTS 

Year 1990 
Data Set. D-RYALL (MR90.SYS from Systat) 
Variables: VAR(3) = Yield in kg/m2 

VAR(4) = 9 week cumulative light readings in W/m2 

VAR(5) = 9 week cumulative heat units, degrees Celsius 
(each 9 wk. period = sum of 9 wk. avg temp *C - 90) 

Statistical Method: 
Stepwise Regression for light VAR(4) and heat units VAR(5). 
All results based on dependent variable VAR(3), yield in kg/m2 

-> DEPENDENT VARIABLE VAR(3), Yield in kg/m2 <-

DEPENDENT VARIABLE VAR(3) 

MINIMUM TOLERANCE FOR ENTRY INTO MODEL = .010000 

FORWARD STEPWISE WITH FIRST 4 VARIABLES FORCED IN MODEL 
ALPHA-TO-ENTER= .150 AND ALPHA-TO-REMOVE= .150 MAX # STEPS= 6 

STEP* 0 R= .000 RSQUARE= .000 

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F 'P' 

IN 

1 CONSTANT 

OUT PART. CORR 

2VAR(4) 0.67698642 .1E+01 .31E+02 0.0000 
3VAR(5) 0.53005288 .1E+01 .14E+02 0.0005 

STEP* 1 R= .677 RSQUARE= .458 
TERM ENTERED: VAR(4) 

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F 'P' 

IN 

1 CONSTANT 

2VAR(4) 0.00001443 0.00000258 .068E+01 .1E+01 .31E+02 0.0000 

OUT PART. CORR 
3VAR(5) -0.28777015 0.16902 3.25039 0.0798 
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STEP# 2 R= .709 RSQUARE= .503 
TERM ENTERED: VAR(5) 

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F 'P' 

IN 

1 CONSTANT 
2 VAR(4) 0.00002444 0.00000609 .115E+01 0.16902 .16E+02 0.0003 
3 VAR(5) -0.03380935 -0.01875293 -.052E+01 0.16902 3.25039 0.0798 

OUT PART. CORR 

none 

THE SUBSET MODEL INCLUDES THE FOLLOWING PREDICTORS: 

CONSTANT 
VAR(4) 
VAR(5) 

DEP VAR: VAR(3) N: 39 MULTIPLE R: 0.709 SQUARED MULTIPLE R: 0.503 
ADJUSTED SQUARED MULTIPLE R: .476 STANDARD ERROR OF ESTIMATE: 0.43162224 

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL) 

CONSTANT 2.38053976' 1.27331469 0.00000000 
VAR(4) 0.00002444 ' 0.00000609 1.14660486 0.1690213 
VAR(5) -0.03380935' 0.01875293 -0.51516956 0.1690213 

1.86956 0.06970 
4.01265 0.00029 

-1.80288 0.07978 

ANALYSIS OF VARIANCE 

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P 

REGRESSION 6.79227052 2 3.39613526 18.22960904 0.00000340 
RESIDUAL 6.70671922 36 0.18629776 
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STEPWISE REGRESSION RESULTS 

Year: 1991 
Data Set. D-RYALL (MR91.SYS from Systat) 

Variables: VAR(3) = Yield in kg/m 2 

VAR(4) = 9 week cumulative light readings in W/m 2 

VAR(5) = 9 week cumulative heat units, degrees Celsius 
(each 9 wk. period = sum of 9 wk. avg temp "C - 90) 

Statistical Method: 
Stepwise Regression for light VAR(4) and heat units VAR(5). 
Al l results based on dependent variable VAR(3), yield in kg/m 2 

-> DEPENDENT VARIABLE VAR(3), Yield in kg/m2 <-

D E P E N D E N T V A R I A B L E VAR(3 ) 

M IN IMUM T O L E R A N C E F O R E N T R Y INTO M O D E L = .010000 

F O R W A R D S T E P W I S E WITH F I R S T 4 V A R I A B L E S F O R C E D IN M O D E L 
A L P H A - T O - E N T E R = .150 A N D A L P H A - T O - R E M O V E = .150 M A X # S T E P S = 6 

STEP # 0 R= .000 R S Q U A R E = .000 

V A R I A B L E C O E F F I C I E N T S T D E R R O R S T D C O E F T O L E R A N C E F ' P ' 

IN 

1 C O N S T A N T 

O U T P A R T . C O R R 

2 V A R ( 4 ) 0.65059951 .1E+01 .26E+02 0.0000 
3 V A R ( 5 ) 0.26286050 .1E+01 2.67207 0.1108 

STEP # 1 R= .651 R S Q U A R E = .423 
T E R M E N T E R E D : VAR(4) 

V A R I A B L E C O E F F I C I E N T S T D E R R O R S T D C O E F T O L E R A N C E F ' P ' 

IN 

1 C O N S T A N T 

2 V A R ( 4 ) 0.00001201 0.00000234 .065E+01 .1E+01 .26E+02 0.0000 

O U T P A R T . C O R R 

3 V A R ( 5 ) -0.54492557 0.37242 .15E+02 0.0005 
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S T E P # 2 
T E R M ENTERED: VAR(5) 

R= .771 RSQUARE= .595 

VARIABLE 

IN 

COEFFICIENT STD ERROR STD C O E F T O L E R A N C E F 'P' 

1 CONSTANT 
2VAR(4) 0.00002193 0.00000326 .119E+01 0.37242 
3VAR(5) -0.04803047 -0.01249225 -.068E+01 0.37242 

.45E+02 0.0000 
.15E+02 0.0005 

OUT PART. C O R R 

none 

T H E S U B S E T M O D E L INCLUDES T H E FOLLOWING PREDICTORS: 

CONSTANT 
VAR(4) 
VAR(5) 

DEP VAR: VAR(3) N: 38 MULTIPLE R: 0.771 SQUARED MULTIPLE R: 0.595 
ADJUSTED S Q U A R E D MULTIPLE R: .571 STANDARD ERROR OF ESTIMATE: 0.31662425 

VARIABLE 

CONSTANT 
VAR(4) 
VAR(5) 

COEFFICIENT STD ERROR STD C O E F T O L E R A N C E P(2 TAIL) 

3.76864580 ' 0.92989756 
0.00002193' 0.00000326 

-0.04803047' 0.01249225 

0.00000000 4.05275 0.00027 
1.18780098 0.3724207 6.73468 0.00000 

-0.67811428 0.3724207 -3.84482 0.00049 

S O U R C E 

ANALYSIS O F VARIANCE 

S U M - O F - S Q U A R E S DF MEAN-SQUARE F-RATIO 

REGRESSION 5.14490480 2 2.57245240 25.66013879 0.00000014 
RESIDUAL 3.50878204 35 0.10025092 
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STEPWISE REGRESSION RESULTS 

Yean 1992 
Data Set. D-RYAJJL (MR92.SYS from Systat) 
Variables: VAR(3) = Yield in kg/m2 

VAR(4) = 9 week cumulative light readings in W/m2 

VAR(5) = 9 week cumulative heat units, degrees Celsius 

(each 9 wk. period = sum of 9 wk. avg temp *C - 90) 
Statistical Method: 

Stepwise Regression for light VAR(4) and heat units VAR(5). 
All results based on dependent variable VAR(3), yield in kg/m2 

-> DEPENDENT VARIABLE VAR(3), Yield in kg/m2 <-

D E P E N D E N T V A R I A B L E VAR(3 ) 

M IN IMUM T O L E R A N C E F O R E N T R Y INTO M O D E L = .010000 

F O R W A R D S T E P W I S E WITH F I R S T 4 V A R I A B L E S F O R C E D IN M O D E L 
A L P H A - T O - E N T E R = .150 A N D A L P H A - T O - R E M O V E = .150 M A X # S T E P S = 6 

S T E P # 0 R= .000 R S Q U A R E = .000 

V A R I A B L E C O E F F I C I E N T S T D E R R O R S T D C O E F T O L E R A N C E F ' P ' 

IN 

1 C O N S T A N T 

O U T P A R T . C O R R 

2 V A R ( 4 ) 0.78102804 .1E+01 .56E+02 0.0000 
3 V A R ( 5 ) 0.24309995 .1E+01 2.26114 0.1414 

S T E P * 1 R= .781 R S Q U A R E = .610 
T E R M E N T E R E D : VAR(4 ) 

V A R I A B L E C O E F F I C I E N T S T D E R R O R S T D C O E F T O L E R A N C E F ' P 1 

IN 

1 C O N S T A N T 

2 V A R ( 4 ) 0.00001186 0.00000158 .078E+01 .1E+01 .56E+02 0.0000 

O U T P A R T . C O R R 

3 V A R ( 5 ) -0.45593461 . 0.63726 9.18502 0.0046 
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S T E P * 2 R= .831 R S Q U A R E = .691 
T E R M E N T E R E D : VAR(5) 

V A R I A B L E C O E F F I C I E N T S T D E R R O R S T D C O E F T O L E R A N C E F "P" 

IN 

1 C O N S T A N T 

2 V A R ( 4 ) 0.00001513 0.00000179 .100E+01 0.63726 .72E+02 0.0000 
3 V A R ( 5 ) -0.03003183 -0.00990927 -.036E+01 0.63726 9.18502 0.0046 

O U T P A R T . C O R R 

none 

THE S U B S E T MODEL INCLUDES THE FOLLOWING PREDICTORS: 

C O N S T A N T 
VAR(4) 
VAR(5 ) 

D E P V A R : VAR(3 ) N: 38 M U L T I P L E R: 0.831 S Q U A R E D M U L T I P L E R: 0.691 
A D J U S T E D S Q U A R E D M U L T I P L E R: .673 S T A N D A R D E R R O R O F E S T I M A T E : 0.29923584 

V A R I A B L E C O E F F I C I E N T S T D E R R O R S T D C O E F T O L E R A N C E T P(2 TAIL) 

C O N S T A N T 2 .39584015 ' 0.73325947 0.00000000 . 3.26738 0.00244 
VAR(4 ) 0 . 0 0 0 0 1 5 1 3 ' 0.00000179 0.99584564 0.6372618 8.46172 0.00000 
VAR(5) -0 .03003183 / 0.00990927 -0.35667547 0 .6372618-3 .03068 .0 .00457 

A N A L Y S I S O F V A R I A N C E 

S O U R C E S U M - O F - S Q U A R E S DF M E A N - S Q U A R E F -RATIO P 

R E G R E S S I O N 7.01081632 2 3.50540816 39.14816096 0.00000000 
R E S I D U A L 3.13397316 35 0.08954209 
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STEPWISE REGRESSION RESULTS 

Year 1993 
Data Set. D-RYALL (MR93.SYS from Systat) 

Variables: VAR(3) = Yield in kg/m 2 

VAR(4) = 9 week cumulative light readings in W/m 2 

VAR(5) = 9 week cumulative heat units, degrees C e l s i u s 
(each 9 wk. period = sum of 9 wk. avg temp *C - 90) 

Statistical Method: 
Stepwise Regression for light VAR(4) and heat units VAR(5). 
Al l results based on dependent variable VAR(3), yield in kg/m 2 

-> DEPENDENT VARIABLE VAR(3), Yield in kg/m2 <-

D E P E N D E N T V A R I A B L E VAR(3 ) 

M IN IMUM T O L E R A N C E F O R E N T R Y INTO M O D E L = .010000 

F O R W A R D S T E P W I S E WITH F I R S T 4 V A R I A B L E S F O R C E D IN M O D E L 
A L P H A - T O - E N T E R = .150 A N D A L P H A - T O - R E M O V E = .150 M A X # S T E P S = 6 

S T E P * 0 R= .000 R S Q U A R E = .000 

V A R I A B L E C O E F F I C I E N T S T D E R R O R S T D C O E F T O L E R A N C E F ' P ' 

IN 

1 C O N S T A N T 

O U T P A R T . C O R R 

2 V A R ( 4 ) 0.67378618 .1E+01 .29E+02 0.0000 
3 V A R ( 5 ) 0.31215946 .1E+01 3.77874 0.0600 

S T E P * 1 R= .674 R S Q U A R E = .454 
T E R M E N T E R E D : VAR(4 ) 

V A R I A B L E C O E F F I C I E N T S T D E R R O R S T D C O E F T O L E R A N C E F ' P ' 

IN 

1 C O N S T A N T 

2 V A R ( 4 ) 0.00001149 0.00000213 .067E+01 .1E+01 .29E+02 0.0000 

O U T P A R T . C O R R 

3 V A R ( 5 ) -0.19585125 0.60300 1.35618 0.2523 
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S T E P * 2 R= .689 R S Q U A R E = .475 
T E R M E N T E R E D : VAR(5) 

V A R I A B L E C O E F F I C I E N T S T D E R R O R S T D C O E F T O L E R A N C E F 'P* 

IN 

1 C O N S T A N T 
2 V A R ( 4 ) 0.00001349 0.00000273 .079E+01 0.60300 .24E+02 0.0000 
3 V A R ( 5 ) -0.00920407 -0.00790353 -.019E+01 0.60300 1.35618 0.2523 

O U T P A R T . C O R R 

none 

T H E S U B S E T M O D E L I N C L U D E S T H E F O L L O W I N G P R E D I C T O R S : 

C O N S T A N T 
VAR(4 ) 
VAR(5 ) 

D E P V A R : VAR(3 ) N: 37 M U L T I P L E R: 0.689 S Q U A R E D M U L T I P L E R: 0.475 
A D J U S T E D S Q U A R E D M U L T I P L E R: .444 S T A N D A R D E R R O R O F E S T I M A T E : 0.32356666 

V A R I A B L E C O E F F I C I E N T S T D E R R O R S T D C O E F T O L E R A N C E T P(2 TAIL) 

C O N S T A N T 0 .77455001 ' 0.54026852 0.00000000 1.43364 0.16081 
VAR(4 ) 0.00001349 ' 0.00000273 0.79121212 0.6030001 4.94405 0.00002 
VAR(5 ) - 0 . 0 0 9 2 0 4 0 7 ' 0.00790353 -0.18636692 0.6030001 -1.16455 0.25231 

A N A L Y S I S O F V A R I A N C E 

S O U R C E S U M - O F - S Q U A R E S DF M E A N - S Q U A R E F -RAT IO P 

R E G R E S S I O N 3.21974609 2 1.60987305 
R E S I D U A L 3.55964310 34 0.10469539 

15.37673359 0.00001753 
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S T E P W I S E R E G R E S S I O N R E S U L T S 

Year. 1987-1993 
Data Set. D-RYALL (MR8793.SYS from Systat) 

Variables: VAR(3) = Yield in kg/m 2 

VAR(4) = 9 week ciimulative light readings in W/m 2 

VAR(5) = 9 week cumulative heat units, degrees Celsius 
(each 9 wk. period = sum of 9 wk. avg temp "C - 90) 

Statistical Method: 
Stepwise Regression for light VAR(4) and heat units VAR(5). 
Al l results based on dependent variable VAR(3), yield in kg/m 2 

-> DEPENDENT VARIABLE VAR(3), Yield in kg/m2 <-

D E P E N D E N T V A R I A B L E V A R ( 3 ) 

M IN IMUM T O L E R A N C E F O R E N T R Y INTO M O D E L = .010000 

F O R W A R D S T E P W I S E WITH F I R S T 4 V A R I A B L E S F O R C E D IN M O D E L 
A L P H A - T O - E N T E R = .150 A N D A L P H A - T O - R E M O V E = .150 M A X # S T E P S = 6 

S T E P # 0 R= .000 R S Q U A R E = .000 

V A R I A B L E C O E F F I C I E N T S T D E R R O R S T D C O E F T O L E R A N C E F ' P ' 

IN 

1 C O N S T A N T 

O U T P A R T . C O R R 

2 V A R ( 4 ) 0.71031954 . .1E+01 .23E+03 0.0000 
3 V A R ( 5 ) 0.34628936 .1E+01 .31E+02 0.0000 

STEP# 1 R= .710 R S Q U A R E = .505 
T E R M E N T E R E D : VAR(4 ) 

V A R I A B L E C O E F F I C I E N T S T D E R R O R S T D C O E F T O L E R A N C E F ' P ' 

IN 

1 C O N S T A N T 

2 V A R ( 4 ) 0.00001190 0.00000079 .071E+01 .1E+01 .23E+03 0.0000 

O U T P A R T . C O R R 
3 V A R ( 5 ) -0.18303353 0.60489 7.76440 0.0058 
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STEP # 2 R= .722 R S Q U A R E = .521 
T E R M E N T E R E D : VAR(5 ) 

V A R I A B L E C O E F F I C I E N T S T D E R R O R S T D C O E F T O L E R A N C E F ' P ' 

IN 

1 C O N S T A N T 
2 V A R ( 4 ) 0.00001364 0.00000100 .081E+01 0.60489 .19E+03 0.0000 
3 V A R ( 5 ) -0.00809330 -0.00290450 -.017E+01 0.60489 7.76440 0.0058 

O U T P A R T . C O R R 

none 

THE SUBSET MODEL INCLUDES THE FOLLOWING PREDICTORS: 

C O N S T A N T 
VAR(4) 
VAR(5 ) 

D E P V A R : V A R ( 3 ) N: 227 M U L T I P L E R: 0.722 S Q U A R E D M U L T I P L E R: 0.521 
A D J U S T E D S Q U A R E D M U L T I P L E R: .517 S T A N D A R D E R R O R O F E S T I M A T E : 0.34617793 

V A R I A B L E C O E F F I C I E N T S T D E R R O R S T D C O E F T O L E R A N C E T P(2 TAIL) 

C O N S T A N T 0 .77072466 ' 0.21153971 0.00000000 3.64340 0.00033 
VAR(4 ) 0 .00001364/ 0.00000100 0.81444264 0.6048929 .14E+02 0.00000 
VAR(5 ) -0 .00809330/ 0.00290450 -0.16564933 0.6048929 -2.78647 0.00579 

A N A L Y S I S O F V A R I A N C E 

S O U R C E S U M - O F - S Q U A R E S DF M E A N - S Q U A R E F -RAT IO P 

R E G R E S S I O N 29.21550328 2 14.60775164 .121895E+03 0.00000000 
R E S I D U A L 26.84397160 224 0.11983916 
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EMPIRICAL MATH MODEL 

STATISTICAL RESULTS FOR EQUATIONS 3.1 and 4.1 

Light & Heat (3,6,9 week) Combined Step-Wise Regression 
1992 Equation for Yield Prediction 

Definition of Variables: 
VAR(10) = Yield (kg/mA2) 
VAR( 5) = Cumulative Light for 3 weeks (W/mA2) 
VAR( 6) = Cumulative Light for 6 weeks (W/mA2) 
VAR( 4) = Cumulative Light for 9 weeks (W/mA2) 
VAR(16) = Cumulative Heat for 3 weeks (*C) 
VAR(15) = Cumulative Heat for 6 weeks (*C) 
VAR(14) = Cumulative Heat for 9 weeks (*C) 
EQUATION LAYOUT: 

VAR(10) = CONSTANT + a,VAR(5) + a2VAR(6) + a3VAR(4) + a4VAR(16) + a5VAR(15) + a6VAR(14) 

Where 'CONSTANT' and a, to a 6 are to be determined. 

Step-Wise Regression Results (Based on 1992 Data) 

DEPENDENT VARIABLE VAR(IO) = Four Week Ahead Actual Y i e l d 
MINIMUM TOLERANCE FOR ENTRY INTO MODEL = .010000 
FORWARD STEPWISE WITH FIRST 8 VARIABLES FORCED IN MODEL 
ALPHA-TO-ENTER= .150 AND ALPHA-TO-REMOVE= .150 MAX # STEPS= 14 

STEP # 0 R= 

VARIABLE 
IN 

1 CONSTANT 
OUT 

2 
3 
4 
5 
6 
7 

VAR (5) 
VAR(6) 
VAR (4) 
VAR(16) 
VAR(15) 
VAR (14) 

.000 RSQUARE= 

COEFFICIENT 

PART. CORR 
0. 83258920 

78185025 
68540368 

0.60663037 
56819254 
53326428 

.000 

STD ERROR STD COEF TOLERANCE 

.1E+01 

.1E+01 

.1E+01 

.1E+01 

.1E+01 

.1E+01 

.88E+02 

.61E+02 

.35E+02 

.23E+02 

.19E+02 

.15E+02 

0.0000 
0.0000 
0.0000 
0.0000 
0.0001 
0.0003 

STEP # 1 R= .833 RSQUAR& 
TERM ENTERED: VAR(5) 

VARIABLE 
IN 

1 CONSTANT 
2 VAR(5) 

.693 

COEFFICIENT STD ERROR STD COEF TOLERANCE 

0.00003932 0.00000419 .083E+01 .1E+01 .88E+02 0.0000 
OUT PART. CORR 



3 VAR(6) 
4 VAR(4) 
5 VAR(16) 
6 VAR(15) 
7 VAR(14) 

-0.07246533 
-0,11529719 
0.11202455 
0.10239134 
0.06869768 

0.09069 
0.25680 
0.54637 
0.60371 
0.63510 

0.20060 
0.51196 
0. 48294 
0.40261 
0.18019 

0.6568 
0.4787 
0.4913 
0.5295 
0.6736 

STEP # 2 R= .834 RSQUARE= 
TERM ENTERED: VAR(6) 

VARIABLE 

IN 
COEFFICIENT 

. 695 

STD ERROR STD COEF TOLERANCE F 

1 CONSTANT 
2 VAR(5) 
3 VAR(6) 

OUT 

4 VAR(4) 
5 VAR(16) 
6 VAR(15) 
7 VAR (14) 

0.00004532 
-0.00000332 

PART. CORR 

-0.12780013 
0.12679220 
0.12233083 
0.09128331 

0.00001405 
-0.00000742 

.096E+01 0.09069 
•.013E+01 0.09069 

.10E+02 0.0026 
0.20060 0.6568 

0.03675 0.61435 0.4381 
0.53004 0.60454 0.4418 
0.57265.- 0.56211 0.4582 
0.59089 0.31090 0.5805 

STEP # 3 R= .837 RSQUARE= 
TERM ENTERED: VAR(4) 

VARIABLE 

IN 
COEFFICIENT 

.700 

STD ERROR STD COEF TOLERANCE 

1 
2 
3 
4 

OUT 

CONSTANT 
VAR(5) 
VAR{6) 
VAR (4) 

5 VAR(16) 
6 VAR115) 
7 VAR(14) 

0.00003448 
0.00001098 
-0.00109713 

PART. CORR 

0.12114063 
0.11464885 
0.09119794 

0.00001977 
0.00001972 
-0.00139975 

.073E+01 0.04630 

.044E+01 0.01298 
•.037E+01 0.03675 

3.04195 0.0894 
0.31025 0.5809 
0.61435 0.4381 

0.52853 0.53617 0.4688 
0.56987 0.47950 0.4931 
0.59087 0.30193 0.5861 

STEP # 4 R= .839 RSQUARE= 
TERM ENTERED: VAR(16) 
VARIABLE 

IN 
COEFFICIENT 

.704 

STD ERROR STD COEF TOLERANCE 

1 
2 
3 
4 
5 

OUT 

CONSTANT 
VAR (5) 
VAR (6) 
VAR(4) 
VAR(16) 

6 VAR(15) 
7 VAR(14) 

0.00003387 
0.00000930 
-0.00104205 
0.00831282 

PART. CORR 

-0.00178971 
-0.04931388 

0.00001991 .072E+01 0.04622 2.89251 
0.00001998 .037E+01 0.01281 0.21668 
-0.00141062 -.035E+01 0.03664 0.54570 
0.01135264 .09129784 0.52853 0.53617 

0.05454 0.00011 
0.09570 0.08532 

0.0976 
0.6444 
0.4649 
0.4688 

0.9916 
0.7719 

STEP # 5 R=" .839 RSQUARE= 
TERM ENTERED: VAR(IS) 

VARIABLE 

IN 
COEFFICIENT 

.704 

STD ERROR STD COEF TOLERANCE 'P' 

CONSTANT 
VAR(5) 
VAR(6) 
VAR(4) 
VAR(16) 
VARU5) 

0.00003382 
0.00000933 
-0.00104297 
0.00868756 
-0.00022289 

0.00002069 
0.00002045 
-0.00143331 
0.03721875 
-0.02105054 

.072E+01 

.037E+01 
-.035E+01 
09541359 

04405 
01257 
03650 
05058 

00416809 0.05454 

67310 
20809 
52950 
05448 
00011 

1110 
6511 
4717 
8168 
9916 

OUT PART. CORR 



3 VAR(6) 
4 VAR (4) 
5 VAR(16) 
6 VAR(15) 
7 VAR(14) 

-0.07246533 
-0.^11529719 
0.11202455 
0. 10239134 
0.06869768 

0.09069 
0.25680 
0.54637 
0.60371 
0.63510 

0.20060 
0.51196 
0.48294 
0.40261 
0.18019 

0.6568 
0.4787 
0.4913 
0.5295 
0.6736 

STEP # 2 R= .834 RSQUARE= 
TERM ENTERED: VAR(6) 

VARIABLE 

IN 

COEFFICIENT 

. 695 

STD ERROR STD COEF TOLERANCE 

1 CONSTANT 
2 VAR(5) 
3 VAR(6) 

OUT 

4 VAR (4) 
5 VAR(16) 
6 VAR(15) 
7 VAR(14) 

0.00004532 
-0.00000332 

PART. CORR 

-0.12780013 
0.12679220 
0.12233083 
0.09128331 

0.00001405 
-0.00000742 

.096E+01 0.09069 
-.013E+01 0.09069 

.10E+02 
0.20060 

0.03675 0.61435 
0.53004 0.60454 
0.57265 0.56211 
0.59089 0.31090 

0.0026 
0.6568 

0.4381 
0.4418 
0.4582 
0.5805 

STEP # 3 B r .837 RSQUARE= 
TERM ENTERED: VAR(4) 

VARIABLE 

IN 

COEFFICIENT 

.700 

STD ERROR STD COEF TOLERANCE 

1 CONSTANT 
VAR(5) 
VAR(6) 

4 VAR (4) 

OUT 

0.00003448 
0.00001098 
-0.00109713 

PART.' CORR 

0.00001977 .073E+01 0.04630 3.04195 0.0894 
0.00001972 .044E+01 0.01298 0.31025 0.5809 
-0.00139975 -.037E+01 0.03675 0.61435 0.4381 

5 VAR(16) 
6 VAR(15) 
7 VAR(14) 

0.12114063 
0.11464885 
0.09119794 

0.52853 0.53617 0.4688 
0.56987 0.47950 0.4931 
0.59087 0.30193 0.5861 

STEP # 4 R= . 8 3 9 RSQUARE= 
TERM ENTERED: VAR(16) 

VARIABLE 

IN 
COEFFICIENT 

.704 

STD ERROR STD COEF TOLERANCE 

1 
2 
3 
4 
5 

OUT 

CONSTANT 
VAR(5) 
VAR(6) 
VAR (4) 
VAR(16) 

6 VAR(15) 
7 VAR(14) 

0.00003387 
0.00000930 • 
-0.00104205 
0.00831282 

PART. CORR 

-0.00178971 
-0.04931388 

0.00001991 
0.00001998 
-0.00141062 
0.01135264 

.072E+01 0.04622 

.037E+01 0.01281 
-.035E+01 0.03664 
,09129784 0.52853 

0.05454 
0.09570 

2.89251 
0.21668 
0.54570 
0.53617 

0.0976 
0.6444 
0.4649 
0.4688 

0.00011 0.9916 
0.08532 0.7719 

S T E P # 5 R= . 8 3 9 RSQUARE= 
TERM ENTERED: VAR(15) 

.704 

VARIABLE 

IN 
COEFFICIENT STD ERROR STD COEF TOLERANCE 

1 CONSTANT 
2 VAR (5) 
3 VAR(6) 
4 VAR (4) 
5 VAR (16) 
6 VAR (15) 

0.00003382 0.00002069 -.072E+01 0.04405 2.67310 
0.00000933 0.00002045 .037E+01 0.01257 0.20809 
-0.00104297 -0.00143331 -.035E+01 0.03650 0.52950 
0.00868756 0.03721875 .09541359 0.05058 0.05448 
-0.00022289 -0.02105054 .00416809 0.05454 0.00011 

0.1110 
0.6511 
0.4717 
0.8168 
0.9916 

OUT PART. CORR 
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7 VAR(14) -0.11478835 . . 0.01651 0.45398 0.5050 

STEP # 6 R= .841 RSQUARE= 
TERM ENTERED: VAR(14) 

VARIABLE 

IN 

CONSTANT 
VAR (5) 
VAR(6) 
VAR (4) 
VAR(16) 
VAR (15) 
VAR (14) 

COEFFICIENT 

.708 

STD ERROR STD COEF TOLERANCE 

0 00003552 .0 00002100 .075E+01 0 04342 2 86024 0 0999 
0 00000548 0 00002139 .022E+01 0 01167 0 06558 0 7994 

-0 00066667 -0 00154883 -.022E+01 0 03176 0 18527 0 6696 
-0 00112719 -0 04024149 .01237968 0 04395 0 00078 0 9778 
0 03107864 0 05107220 .058E+01 0 00941 0 37030 0 5469 

-0 02212007 -0 03282987 -.049E+01 0 01651 0 45398 0 5050 
OUT PART. CORR 

DEP VAR: VAR(IO) N: 41 MULTIPLE R: 0.841 SQUARED MULTIPLE R: 0.708 
ADJUSTED SQUARED MULTIPLE R: .657 STANDARD ERROR OF ESTIMATE: 0.38140815 

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P (2 TAIL) 

CONSTANT 0 34917888 0 62100805 0 00000000 0 56228 0 57762 
VAR(5) 0 00003552 0 00002100 0 75201265 0 0434212 1 69123 0 09994 
VAR (6) 0 00000548 0 00002139 0 21962994 0 0116716 0 25608 0 79943 
VAR (4) -0 00066667 0 00154883 -0 22379827 0 0317579 -0 43044 0 66960 
VAR(16) -0 00112719 0 04024149 -0 01237968 0 0439517 -0 02801 0 97782 
VAR (15) 0 03107864 0 05107220 0 58119010 0 0094117 0 60852 0 54688 
VAR(14) -0 02212007 0 03282987 -0 48579463 0 0165150 -0 67378 0 50501 

SOURCE 

REGRESSION 
RESIDUAL 

ANALYSIS OF VARIANCE 

SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO 
11.99853611 
4.94605413 

6 
34 

1.99975602 13.74665598 
0.14547218 

0.00000007 

DURBIN-WATSON D STATISTIC 
FIRST ORDER AUTOCORRELATION 

1.510 
.240 

F i n a l R e g r e s s i o n E q u a t i o n : 

YIELD = 0.3491788 + 0.00003552 (CL,) + 0.00000548 (CL,) - 0.00066667 (CL,) - 0.00112719 (CH3) + 
0.03107864 (CH6) - 0.02212007 (CH„) 

Where CL a and CH a are the Cumulative Light and Cumulative Heat for 'a' weeks 
respectively. 
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EMPIRICAL MATH MODEL 

STATISTICAL RESULTS FOR 'ALTERNATIVE REGRESSION METHOD' 

Light & Heat (3,6,9 week) Combined Step-Wise Regression 
1992 Equation for Yield Prediction (4 weeks ahead yield) 

Definition of Variables: 
VAR(9) = 4 weeks ahead Yield (kg/mA2) 
VAR(3) = Cumulative Light for 3 weeks (W/mA2) 
VAR(4) = Cumulative Light for 6 weeks (W/mA2) 
VAR(5) = Cumulative Light for 9 weeks (W/mA2) 
VAR(6) = Cumulative Heat for 3 weeks (*C) 
VAR(7) = Cumulative Heat for 6 weeks (*C) 
VAR(8) = Cumulative Heat for 9 weeks (*C) 
EQUATION LAYOUT: 

VAR(9) = CONSTANT + a,VAR(3) + a2VAR(4) + a3VAR(5) + a4VAR(6) + a5VAR(7) + aeVAR(8) 

Where 'CONSTANT' and a, to a 6 are to be determined. 

S t e p - W i s e R e g r e s s i o n R e s u l t s ( B a s e d o n 1 9 9 2 D a t a ) 

DEPENDENT VARIABLE VAR(9) 

MINIMUM TOLERANCE FOR ENTRY INTO MODEL = .010000 
FORWARD STEPWISE WITH FIRST 9 VARIABLES FORCED IN MODEL 
ALPHA-TO-ENTER= .150 AND ALPHA-TO-REMOVE= .150 MAX # STEPS= 14 

STEP # 0 R= 

VARIABLE 

IN 

1 CONSTANT 

OUT 

VAR(3) 
VAR (4) 

4 VAR (5) 
VAR(6) 
VAR (7) 

7 VAR(8) 

.000 RSQUARE= 

COEFFICIENT 

PART. CORR 

0.81997755 
0.71710795 
0.58652376 
0.55901034 
0.50429635 
0.45908945 

.000 

STD ERROR STD COEF TOLERANCE 

.1E+0I 

.1E+01 

.1E+01 

.1E+01 

.1E+01 

.1E+01 

.78E+02 

.40E+02 

.20E+02 

.17E+02 

.13E+02 

.10E+02 

0.0000 
0.0000 
0.0001 
0.0002 
0.0009 
0.0029 

STEP # 1 R= .820 RSQUARE= .672 
TERM ENTERED: VAR(3) 

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F 'P' 
IN 

1 CONSTANT 
2 VAR(3) 0.00003977 0.00000450 .082E+01 .1E+01 .78E+02 0.0000 



OUT PART. CORR 

3 VAR(4) -0-.34723606 
4 VAR(5) -0.37278569 
5 VAR(6) 0.03765418 
6 VAR(7) -0.04839489 
7 VAR(8) -0.08879462 

0.09725 5.07284 0.0303 
0.27466 5.97175 0.0194 
0.56170 0.05253 0.8200 
0.58919 0.08686 0.7699 
0.62907 0.29404 0.5909 

STEP # 2 R= . 84 4 RSQUARE! 

TERM ENTERED: VAR(4) 

VARIABLE 

IN 

1 CONSTANT 
2 VAR(3) 
3 VAR(4) 

OUT 

4 VAR{5) 
5 VAR(6) 
6 VAR (7) 
7 VAR(8) 

.712 

COEFFICIENT STD ERROR STD COEF TOLERANCE 

0.00006913 
-0.00001641 

PART. CORR 

-0.14479167 
0.09267208 
0.02907883 
0.00493994 

0.00001372 
-0.00000729 

.143E+01 0.09725 
-.064E+01 0.09725 

.25E+02 
5.07284 

0.03967 0.77089 
0.55079 0.31185 
0.56169 0.03047 
0.58369 0.00088 

• p . 

0.0000 
0.0303 

0.3858 
0.5800 
0.8624 
0.9765 

STEP # 3 R= .847 RSQUARE= 
TERM ENTERED: VAR(5) 

.718 

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE 

IN 

CONSTANT 
VAR(3) 
VAR (4) 

4 VAR (5) 

0.00005730 0.0,0001927 .118E+01 0.04965 8.84633 0.0052 
-0.00000079 -0.00001923 .03076607 0.01405 • 0.00170 0.9674 
-0.00000705 -0.00000803 -.039E+01 0.03967 0.77089 0.3858 

OUT PART. CORR 

5 VAR(6) 
6 VAR(7) 
7 VAR(8) 

0.08444639 
0.01526350 
0.00355501 

0.54852 0.25138 0.6192 
0.55640 0.00816 0.9286 
0.58364 0.00044 0.9833 

STEP # 4 R= .848 RSQUARE= 
TERM ENTERED: VAR(6) 

.720 

VARIABLE 

IN 
COEFFICIENT STD ERROR STD COEF TOLERANCE . p . 

1 
2 
3 
4 
5 

OUT 

CONSTANT 
VAR (3) 
VAR (4) 
VAR(5) 
VAR(6) 

0.00005673 
-0.00000189 
-0.00000679 
0.00665415 

0.00001950 
0.00001956 
0.00000814 
0.01327160 

.117E+01 0.04948 8.46182 0.0063 
.07355506 0.01387 0.00938 0.9234 
-.038E+01 0.03951 0.69702 0.4095 
.06055901 0.54852 0.25138 0.6192 

PART. CORR 

6 VAR (7) 
7 VAR (8) 

-0.20307304 
-0.15773190 

0.05696 
0.12118 

1.46242 
0.86748 

0.2349 
0.3582 

STEP # 5 R= .855 RSQUARE= 
TERM ENTERED: VAR(7) 

VARIABLE 

IN 

CONSTANT 
VAR (3) 
VAR (4) 
VAR(5) 
VAR(6) 
VAR(7) 

.731 

COEFFICIENT STD ERROR STD COEF TOLERANCE 

0.00005066 0.00002001 .104E+01 0.04637 6.40679 0.0162 
0.00000303 0.00001985 .012E+01 0.01328 0.02336 0.8794 
-0.00000791 -0.00000814 -.044E+01 0.03900 0.94485 0.3379 
0.05386681 0.04120735 .049E+01 0.05616 1.70881 0.1999 
-0.03271546 -0.02705307 -.045E+01 0.05696 1.46242 0.2349 
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OUT PART. CORR 

7 VAR(8) 0.03349897 . . 0.03169 , 0.03707 0.8485 

STEP # 6 R= .855 RSQUARE= .732 
TERM ENTERED: VAR(8) 

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F 'P' 
IN 

1 CONSTANT 
2 VAR (3) 0 00005016 0 00002047 '. 103E+01 0 04561 6 00256 0 0198 
3 VAR (4) 0 00000414 0 00002094 .016E+01 0 01229 0 03906 0 84 45 
4 VAR(5) -0 00000853 -0 00000886 -.047E+01 0 03380 0 '92609 0 3429 
5 VAR(6) 0 05684290 0 04456955 .052E+01 0 04940 1 62658 0 2111 
6 VAR (7) -0 04159460 •-o 05366335 -.057E+01 0 01490 0 60078 0 4 438 
7 VAR (8) 0 00611141 0 03174018 .09750775 0 03169 0 03707 0 8485 

OUT PART. CORR 

none 

DEP VAR: VAR(9) N: 40 MULTIPLE R: 0.855 SQUARED MULTIPLE R: 0.732 
ADJUSTED SQUARED MULTIPLE R: .683 STANDARD ERROR OF'ESTIMATE: 0.36795680 

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL) 
CONSTANT 0 46699163 0 70285733 0 00000000 0 66442 0 51104 
VAR (3) 0 00005016 0 00002047 1 03422418 0 0456141 2 45001 0 01976 
VAR(4) 0 00000414 0 00002094 0 16075081 0 0122872 0 19764 0 84454 
VAR(5) -0 00000853 0 00000886 -0 47190541 0 0338014 -0 96234 0 34288 
VAR(6) ' 0 05684290 0 04456955 0 51732383 0 0494018 1 27538 0 21108 
VAR(7) -0 04159460 0 05366335 -0 57251194 0 0148984 -0 77510 0 4 4380 
VAR(8) 0 00611141 0 03174018 0 09750775 0 0316941 0 19255 0 84850 

ANALYSIS OF VARIANCE 

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RAT IO 
REGRESSION 
RESIDUAL 

12.18925463 
4.46794287 

6 
33 

2.03154244 15.00486965 0.00000003 
0.13539221 

Final Regression Equation: 

YIELD = 0.46699163 + 0.00005016(CLj) + 0.00000414 (CL,) - 0.00000853 (CL,) + 0.05684290 (CH 3) 
0.04159460 (CH 6) + 0.00611141 (CH 9) 

Where CL a and CH a are the Cumulative Light and Cumulative Heat for 'a' weeks 
respectively. 
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APPENDIX E 



135 

EMPIRICAL MATH MODEL (HUMIDITY TRIAL) 

STEP-WISE STATISTICAL RESULTS FOR: 

Light & Heat & Humidity (3, 6, 9 week) Combined Step-Wise Regression 
1992 Equation for Tomato Yield Prediction 

Definition of Variables: 

VAR( 9) = Yield (kg / mA2) 
VAR( 3) = Cumulative Light for 3 weeks ( W / mA2) 
VAR( 4) = Cumulative Light for 6 weeks ( WI mA2) 
VAR( 5) = Cumulative Light for 9 weeks ( W / mA2) 
VAR( 6) = Cumulative Heat for 3 weeks (*C) 
VAR( 7) = Cumulative Heat for 6 weeks ( *C) 
VAR( 8) = Cumulative Heat for 9 weeks (*C) 
VAR(19)= Humidity, Vapor Pressure Deficit Avg. for 3 weeks (kPa) 
VAR(20)= Humidity, Vapor Pressure Deficit Avg. for 6 weeks (kPa) 
VAR(21)= Humidity, Vapor Pressure Deficit Avg. for 9 weeks (kPa) 

EQUATION LAYOUT: 

VAR(9) = CONSTANT + a1VAR(3) + a2VAR(4) + a3VAR(5) + a4VAR(6) + asVAR(7) + 
a6VAR(8) + a7VAR(19) + a8VAR(20) + a9VAR(21) 

STEP # 1 R= 
TERM ENTERED: VAR(3) 

820 RSQUARE= 673 

VARIABLE 

IN 

1 CONSTANT 

COEFFICIENT STD ERROR STD COEF TOLERANCE 

2 VAR(3) 0 00003767 0.00000405 .082E+01 1E+01 .86E+02 0 0000 

OUT PART. CORR 

3 VAR(4) 0 52099545 ' . 0 07492 .15E+02• 0 0003 
4 VAR(5) 0 51599741 0 21251 .15E+02 0 0004 
5 VAR(6) 0 41882792 0 46353 8.72209 0 0052 
6 VAR(7) 0 34316870 0 52028 5.47287 0 0243 
7 VAR(8) 0 31997085 0 57098 4.67641 0 0365 
8 VAR(19) 0 28913879 0 98058 3.74035 0 0600 
9 VAR(20) 0 07158819 0 94214 0.21120 0 6483 

10 VAR(21) 0 08411291 0 94064 0.29214 0 5918 



STEP # 2 R= .873 RSQUARE= .762 
TERM ENTERED: VAR(4) 

VARIABLE 

IN 

1 CONSTANT 
2 VAR(3) 
3 VAR(4) 

COEFFICIENT 

-0.00001041 
0.00002623 

STD ERROR STD COEF TOLERANCE 

-0.00001279 -.023E+01 0.07492 
0.00000671 .109E+01 0.07492 

0.66273 
.15E+02 

0.4203 
0.0003 

OUT 

4 VAR(5) 
5 VAR(6) 
6 VAR(7) 
7 VAR(8) 
8 VAR(19) 
9 VAR(20) 

10 VAR(21) 

PART. CORR 

0.10479260 
0.37222300 
0.26183291 
0.23000082 
0.37526138 
0.07520101 
0.00796328 

0.03056 
0.44360 
0.48968 
0.53551 
0.97720 
0.94195 
0.91989 

0.44414 0.5090 
6.43334 0.0152 
2.94410 0.0939 
2.23421 0.1428 
6.55608 0.0143 
0.22749 0.6360 
0.00254 0.9601 

STEP # 3 R= .874 RSQUARE= .764 
TERM ENTERED: VAR(5) 

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F ' P ' 

IN 

1 CONSTANT 
2 VAR (3) -0 00000220 -0 00001783 .04782375 0 03909 0 01517 0 9026 
3 VAR(4) 0 00001524 0 00001782 .063E+01 0 01077 0 73185 0 3974 
4 VAR (5) 0 00000493 0 00000739 .029E+01 0 03056 0 44414 0 5090 

JUT PART. CORR 

5 VAR(6) 0 36826236 0 44176 6 11890 0 0178 
6 VAR(7) 0 25623690 0 48704 2 74058 0 1059 
7 VAR(8) 0 21882036 0 52530 1 96132 0 1693 
8 VAR(19) 0 36258689 0 88100 5 90342 0 0198 
9 VAR(20) 0 05869590 0 91519 0 13483 0 7155 

10 VAR(21) -0 01704183 0 86984 0 01133 0 9158 

STEP # 4 R= .892 RSQUARE= .796 
TERM ENTERED: VAR(6) 

VARIABLE 

T H 

COEFFICIENT STD ERROR STD COEF TOLERANCE F 1 P' 

1 CONSTANT 
2 VAR(3) -0 00000697 -0.00001690 -.015E+01 0 03858 0 .17012 0 .6823 
3 VAR(4) 0 00001438 0.00001678 .060E+01 0 01077 0 .73421 0 . 3968 
4 VAR(5) 0 00000382 0.00000697 .023E+01 0 03044 0 .29924 0 .5875 
5 VAR(6) 0 01910167 0.00772209 .027E+01 0 44176 6 .11890 0 .0178 

OUT PART. CORR 

6 VAR(7) -0 40366647 0 03388 7 .39734 0 .0098 
7 VAR(8) -0 33029798 0 08036 4 .65334 0 .0374 
8 VAR(19) 0 44322527 0 86712 9 .29007 0 .0042 
9 VAR(20) 0 43539595 0 51259 8 .88867 0 .0050 

10 VAR(21) 0 47428924 0 33216 .11E+02 0 .0020 
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STEP # 5 R= .911 RSQUARE= .829 
TERM ENTERED: VAR(7) 

VARIABLE 

IN 

COEFFICIENT STD ERROR STD COEF TOLERANCE ' P' 

1 
2 
3 
4 
5 
6 

CUT 

CONSTANT 
VAR(3) 
VAR(4) 
VAR(5) 
VAR(6) 
VAR(7) 

7 VAR(8) 
8 VAR(19) 
9 VAR(20) 

10 VAR(21) 

-0 00001305 -0 00001582 --.028E+01 0 03781 0.68038 0 4146 
0 00001548 0 00001556 .064E+01 0 01076 0.98936 0 3262 
0 00000457 0 00000647 .027E+01 0 03038 0.49934 0 4841 
0 09029463 0 02713664 .127E+01 0 03073 .11E+02 0 0020 

-0 03759139 -0 01382135 --.099E+01 0 03388 7.39734 0 0098 

IT. CORR 

0 07802977 0 01576 0.22666 0 6368 
0 62193128 0 80748 .23E+02 0 0000 
0 44746344 0 51031 9.26293 0 0043 
0 39482351 0 29592 6.83292 0 0129 

STEP # 6 R= 
TERM ENTERED: VAR(8) 

911 RSQUARE= .831 

VARIABLE 

IN 

COEFFICIENT STD ERROR STD COEF TOLERANCE 

1 
2 
3 
4 
5 
6 
7 

OUT 

CONSTANT 
VAR(3) 
VAR(4) 
VAR(5) 
VAR (6) 
VAR(7) 
VAR(8) 

8 VAR(19) 
9 VAR(20) 

10 VAR(21) 

-0 00001474 -0 00001638 --.032E+01 0 03603 0 81047 0 3738 
0 00001801 0 00001660 .075E+01 0 00965 1 17767 0 2849 
0 00000341 0 00000698 .020E+01 0 02666 0 23875 0 6280 
0 09749132 0 03130811 .137E+01 0 02357 9 69657 0 0036 

-0 05104955 -0 03152920 --.134E+01 0 00665 2 62155 0 1139 
0 00704359 0 01479472 .026E+01 0 01576 0 22666 0 6368 

PART. CORR 

0.62017524 
0.44201762 
0.41669313 

0. 80438 
0.49757 
0.28649 

.23E+02 
8.74159 
7 . 56419 

0.0000 
0.0055 
0.0093 

STEP # 7 R= .946 RSQUARE= .896 
TERM ENTERED: VAR(19) 

VARIABLE 

IN 

COEFFICIENT STD ERROR STD COEF TOLERANCE 

CONSTANT 
VAR(3) 
VAR(4) 
VAR(5) 
VAR(6) 
VAR(7) 
VAR(8) 
VAR(19) 

-0 00003216 -0 00001353 --.070E+01 0 03338 5.64930 0 0229 
0 00003744 0 00001382 . 155E+01 0 00881 7.33993 0 0103 

-0 00000444 -0 00000579 --.026E+01 0 02448 0.58794 0 4482 
0 12470081 0 02555106 .176E+01 0 02238 .24E+02 0 0000 

-0 05877324 • -0 02512748 --.155E+01 0 00662 5.47093 0 0250 
0 00357863 0 01178866 .013E+01 0 01570 0.09215 0 7632 
0 69266441 0 14602588 .028E+01 0 80438 .23E+02 0 0000 

OUT PART. CORR 

9 VAR(20) 
10 VAR(21) 

-0.06834448 
-0.37137923 

0.20402 0.16425 
0.06060 5.59960 

0.6877 
0.0236 
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STEP # 8 R= .947 RSQUARE= 
TERM ENTERED: VAR(20) 

896 

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE 

IN 

OUT 

CONSTANT 
VAR(3) 
VAR(4) 
VAR(5) 
VAR(6) 
VAR(7) 
VAR(8) 
VAR(19) 
VAR(20) 

10 VAR(21) 

-0 00003287 -0 00001380 -.072E+01 0 03284 5 .67163 0 0228 
0 00003840 0 00001418 .159E+01 0 00856 7 .33172 0 0104 

-0 00000448 -0 00000586 -.027E+01 0 02448 0 .58473 0 4496 
0 12635311 0 02617240 .178E+01 0 02184 .23E+02 0 0000 

-0 06235919 -0 02691998 -.164E+01 0 00590 5 .36601 0 0265 
0 00442500 0 01210936 .016E+01 0 01524 0 .13353 0 7170 
0 76449037 0 23073661 .031E+01 0 32983 11E+02 0 0022 

-0 18221414 -0 44960168 .04886636 0 20402 0 .16425 0 6877 

vr. CORR 

-0 36916807 0 05480 5 .36484 0 0267 

STEP # 9 R= .954 RSQUARE= .910 
TERM ENTERED: VAR(21) 

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE 

IN 

CONSTANT 
VAR(3) 
VAR(4) 
VAR(5) 
VAR(6) 
VAR(7) 
VAR(8) 

8 VAR(19) 
9 VAR(20) 

10 VAR(21) 

-0 00003803 -0 00001320 -.083E+01 0 03190 8 .29517 0 0068 
0 00003563 0 00001342 .148E+01 0 00850 7 .04483 0 0120 
0 00000361 0 00000654 .021E+01 0 01749 0 .30470 0 5846 
0 13616252. 0 02503952 .192E+01 0 02121 30E+02 0 0000 

-0 06272876 -0 02538418 -.165E+01 0 00590 6 .10671 0 0186 
-0 01112060 -0 01324475 -.041E+01 0 01132 0 .70497 0 4070 
1 29369637 0 31549768 .053E+01 0 15685 17E+02 0 0002 
0 13726317 0 44581701 .03681137 0 18449 6 .09480 0 7600 

-2 61590639 -1 12938969 -.051E+01 0 05480 5 .36484 0 0267 

OUT PART. CORR 

THE SUBSET MODEL INCLUDES THE FOLLOWING PREDICTORS: 

CONSTANT 
VAR(3) 
VAR(4) 
VAR(5) 
VAR(6) 
VAR(7) 
VAR(8) 
VAR(19) 
VAR(20) 
VAR(21) 
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DEP VAR: VAR(9) N: 44 MULTIPLE R: 0.954 SQUARED 
MULTIPLE R: 0.910 ADJUSTED SQUARED MULTIPLE R: .887 
STANDARD ERROR OF ESTIMATE: 0.22643645 

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL) 

CONSTANT 1 35770256 0 84447452 0 00000000 1 60775 0 11714 
VAR(3) -0 00003803 0 00001320 -0 82807586 0 0319035 -2 88013 0 00683 
VAR (4) 0 00003563 0 00001342 1 47884509 0 0084953 2 65421 0 01200 
VAR(5) 0 00000361 0 00000654 0 21434412 0 0174902 0 55199 0 58456 
VAR (6) 0 13616252 0 02503952 1 91743544 0 0212117 5 43791 0 00000 
VAR (7) -0 06272876 0 02538418 -1 65176495 0 0059029 -2 47118 0 01864 
VAR(8) -0 01112060 0 01324475 -0 40521191 0 0113229 -0 83962 0 40698 
VAR(19) 1 29369637 0 31549768 0 53170290 0 1568509 4 10049 0 00024 
VAR(20) 0 13726317 0 44581701 0 03681137 0 1844946 0 30789 0 76004 
VAR(21) -2 61590639 1 12938969 -0 50810503 0 0548028 -2 31621 0 02671 

ANALYSIS OF VARIANCE 

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO 

REGRESSION 
RESIDUAL 

17.69865677 
1.74329777 

9 
34 

1.96651742 38.35351215 
0. 05127346 

0.00000000 

DURBIN-WATSON D STATISTIC 2.100 
FIRST ORDER AUTOCORRELATION - . 0 8 3 

RESIDUALS HAVE BEEN SAVED 

F i n a l R e g r e s s i o n E q u a t i o n for L i g h t H e a t & H u m i d i t y (3. 6, 9 w k . ) 

Yield (kg/ m2) = 1.3577 - 0.00003803 (CL3) + 0.00003563 (CL6) + 0.00000361 (CL9) 
+ 0.1361 (CH3) - 0.0627 (CH6) - 0.0111 (CH9) + 1.293 (VPD3) 
+ 0.1372 (VPD6) - 2.6159 (VPD9) 

Where CL a , C H a , and VPD a are the Cumulative Light, Cumulative Heat, and 
Average Vapor Pressure Deficit (VPD) for 'a' weeks respectively. 
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1994 Pred ic ted Y ie ld - 4 W e e k s A h e a d 
3 Light, 3 Heat, & 3 Humidity (VPD) 

Week Number 
Actual Yield - e - 3L, 3 H , 3 V P D , E q n . 

Figure A -22 Predicted yield for 4 weeks ahead using 3 light, 3 heat, 
3 humidity variables. (CL3,6,9, CH3,6,9, V P D 3,6,9) 


