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Abstract

Greenhouse tomato yields were predicted using two mathematical models
developed in this study - the empirical and deterministic models. Weekly yield predictions
for an entire growing season were comparéd with actual yields and resul.ts from an expert
system model developed by the Agassiz Research Station.

 The .deterministic math model involved using first principle equations of photosynthesis
and respiration to simulate crop growth. Utilizing a known tomato yield conversion factor,
net photosynthesis rates (P,..) were converted to weekly yield predictions and compared
with actual recorded yields. A deterministic model using two week cumulations of P
converted to yield was used successfully to predict actual tomato yields 6 weeks ahead of
time with a root-mean-square-error (RMSE) of 0.38 kg/m”.

The empirical math model employed regression techniques to fit historical greenhouse
climate data to recorded yields. Correlations bétween light, temperature, and weekly
tomato yields were derived into equations to predict yields for future growing seasons. An
empirical model cumulating 3, 6, and 9 weeks of light and temperature data was developed
' to predict yields 4 weeks ahead of time with a RMSE of 0.45 kg/m®.

When one-week-ahead predictions from the Agassiz expert system model were
compared with actual recorded yields a RMSE of 0.401 kg/m” was calculated. The expert
system model utilizihg trend recognition techniques was also used as a comparison withb thev
two math models. When compared and ranked for prediction accuracy, application

flexibility, and user-friendliness, the expert system was chosen as the overall best model for

tomato yield prediction.
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Introduction

Greenhouse produced crops have become an important part of the agricultural
industry (BCFA, 1994) and are well-known in the marketplace for their high quality and
consistency. However, while striving to provide a top quality product, greenhouse
producers have had to incur heavy capital costs, and these costs are then inevitably reflected
to the consumer. Consequently, any advances that may improve the yield and lower the
cost of producing greenhouse crops will benefit both growers and consumers.

Current decision-making for greenhouse climate control and produétio‘n relies
heavily on the past experience of the individuai grower and .general guidelines published in
production manuals. As a result, grower yields tend to vary greatly on an individual and
yearly basis. In an attempt to solve these problems, computers have been implemented in
climate control to regulate the aerial and root-zone environmental conditions for crops and
thereby improve yields.. However, computer climate control still remains largely dependent
on settings prescribed by individual growers. Although computers have beeﬁ useful in
providing automated control of environmental parameters (Hashimoto et al., 1993), the
actual dynamic relationships that exist between climatic conditions and crop yields" still
remain unclear.

Models of the greenhouse environment and simulations of crop growth are needed to

enhance environmental control strategies and to.encourage growth of the entire

greenhouse industry (Jones et al., 1991).




One approach td improving crop yields and identifying plant response relationships
lies in developing mathematical growth models that can predict future yields given a set of
climatic conditions. Successful growth models can then help to identify the environmental

-factors with the greatest influence on crop yield and aid the grower in making essential
management decisions to improve productivity. ~Affected decisions may range from simple
adjustments 6f lighting or temperature setpoints to juétifying the cost of investing in new
equipment. A valid growth model caﬁ also be a useful tool for the greenhouse grower by
providing a quick estimate of future yields based on current practises.

Another approach for yield prediction involves expert system modeling which is an
advanced information processing method that is able to recognize patterﬂs and compensate
for incomplete or ambiguous data (Rehbein, et al., 1992). Provided with historical data, a
properly trained expert system will be able to analyse trends in prodﬁcﬁon as they relate to
input data (ie. light, temperature, and other greenhouse climatic variables) and predict
future yields.

By providing reliable future yield and growth forecasts, both the mathematical
modeling and expert system approaches aim to improve the overall productivity of
greenhouse crops and enhance their marketabilitj to the consurher. Successful yield
prediction is a valuable tool for determining better greenhouse management practises,

reducing resource wastage, and identifying the relationships between plant responses, crop

yield, and climate.




1.0 Theory and Review

As world populations continue their steady growth, greenhouse production systems
must become more efficient to meet the increasing demands for food. Much of the recent
advances in greenhouse crop production have been linked to the application of computers in
climate control. = Computer automation has already allowed greenhouse envirqnmental
conditions to be properly monitored and maintained to increase crop productivity while
reducing energy requirements. However, in 6rder to make further advances in greenhouse
productivity a better understanding of plant responseé to climatic conditions is required
(Tantau, 1980). The emphasis on developing innovative methods for optimizing
greenhouse production has intensified globally over the past decade (Jones, 1991).
Devising models or methods for predicting future crop yields is an effective way to.

investigate plant growth and climate relationships.

1.1 The Development of Mathematical Yield Models |
Developing mathematical models to simulate crop growth is one method that can
be used to predict final yield. Math models are generally divided into two main classes i
those that employ the deterministic .wmethod and those that apply the empirical approach.
| (Figure 1). -
The deterministic approach relies on general laws or basic first principles to derive
a scientifically-based model. Researchers have already used this approach to produce

models to make predictions of éanopy photosynthesis (Acock et al, 1978), and plant

transpiration (Stanghellini and van Meurs, 1992;Yang et al., 1990).




Deterministic

~ Approach

v ‘-  o -;;':(Gehér‘al - based on
- First Principles)

Figure 1. Shown above are the approaches that will be used to
predict Greenhouse Tomato Crop Yield.

(Illustration by W.C.Tang, 1995)



The deterministic approach could alsb be useful in predicting yield. By applying the
first principles that relatve plant photosynthesis; respiration, and plant growth, . estimates of
yield could be ﬁlade. Deterministic .equations involve systems of differential eQuatioﬁs to
describe dynamic processes such a;s plant growth. 'va plant models are deVelbp’ed using this
ai)proach, eaqh reaction betweén th¢ seedling to harvest stage is described by a differential
- equation - (ie. change in dry matter production). = However, as plant growfh typically
involves long time spans, most studies limit their scope for testing pl#nt models to only a
few months (Takakuré, 1993). - The ultimate goal of the deterministic model is't_o reach the
bést possible agreement between the modei predictions and the experimental data over a sét
time period.

Empirical models examine historical data and use mathematical regression
techniques to find correlations between independent and dependent variables. 1In this case,
the independent variables would be the environmental ‘par’ameters such as greenhouse
temperature, light, and humidity and the dependent variable would be the aptual yield
recorded for that period. Empirical models search for basic cause and effect relatioijships
to.simplifyAa combliéated pro¢ess int‘o’a functional equation which can be applied to the
general case. The problem that eﬁsts for equations derived purely from an empirical
approach is that they are generally linear-based (straight'line equations) while plant growth
is an example of a non-linear, dynamic system (Takakura, 1993). As a result, empirical

models are restricted to providing good estimates within the range of data they were

derived from.




Beyond the range of values found in the experimental case, empirical models can

only provide extrapolations as a basis for predictions.
1.2 The Application of Expert Systems for Yield Prediction

An innovative approach to modeling involves the application of expert system
models in greenhouse crop production (Figure I). An expert system model is simply a
method of processing information that involves a self-iearning model ‘that adapts to
changing data inputs (ie. environmental parameters). Expert systems are based on the
most up-to-date ‘expert’ information in a field of study and incorporate this knowledge in
decision-making processes and weighting factors (Levine et al, 1990).  For predicting
~ tomato crop yield, expert information would include up-to-date research findings of plant-
climate relationships from greenhouse growers and plant physiologists. | This expert
knowledge would then be incorporated into a computer program by applying weighting
factors to measured environmental parameters such as light, temperature, and humidity
(Figure 2). |

By relating the weighted enyironmental paramefers to recorded actual yields, an
expert system model can provide yield predictions. The advantage of using expert systems
for yield prediction is their potential ability to provide nonlinear systems control for cases
such aé plant growth andvtheivr ability to forecast yields even in cases where data sets are
incomplete or ainbiguous. This is acéomplished by assigning weights (; ) to all selected

data inputs ( X; ) (ie. light, temperature, humidity values) based on expert (greenhouse

growers, plant physiologists) knowledge and then applyihg these weighted data as input for
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a processing element (internal algorithm) which in turn produces one output value. In
reaction to the data input, the model will then gradually adjust the weighting of each factor
to produce more accurate and reliable predictions and minimize the error for the next
iteration. By repeating this process, expert systems learn to recognize trends in the data
inputs and are able to mai(e predictions based on historical cases. Ideally, a properiy trained
expert system would then be interfaced with an on-line greenhouse climate control system
to determine the best enﬁromental setpoints to maximize future crop yields and minimize
operating costs.

Expert system models have recently been tested in determining ideal temperature
setpoints in greenhouses (Lacroix, et al., 1993). In this case, an artificial expert system
temperature controHér was created to predict crop responses to changes in greenhouse
setpoint temperatures. By examining and testing various temperature setpoints with this
technique, researchers were able to reduce energy consumption by 10% while maintaining
productivity.

In another study, expert system methods were com‘bined with standard data analysis
techniques to predict apple quality (Boucherau et al., 1992). Measurements of apple sugar
content obtained from infra-red spectrometry were used as a basis for determining quality.
By employing standard regression techniques, a simple linear model was produced. An

expert system was then employed to handle the non-linear data components and this

improved the accuracy of apple quality predictions by five per cent.




- Expert systems have also help’ed determine suitable environmental settings for
greenhouse lettuce crops (Seginer et al., 1992). Historical data was used to train an expert
system to aid in management decisions and determine environmental setpoints (ie.
temperature settings). |

When conipared, mathematical models provide. reasonable linear projections of
| future values but .are'less ﬂgxible than expert system models in terms of overall application.

Mathematical models reqqife many parameters for the submodels that account for
various physiological growth and development processes (Figﬁres 6a & ‘6b). These
pafameters need to be determined by sci'eﬁtiﬁg experiments or at the very least
approximated.

Uncertainties are therefore bound to be associated with mathematical models.
Conversely, expert systems focus on trend and pattern analysis eliminating the need to
approximate environmental coefficients to provide p_rédictions. |

Expert systems are able to adépt and learn by continually analys'ing trends to

minimize the error with each subsequent prediction.

1.3 Research Objectives

The main objective of this study is to adapt (deterministic model) and develop a

model (empirical model) that can successfully predict greenhouse tomato yield, of the

tomato fruit itself, in terms of quantity (kg/m?).
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Steps (Figure 3) required to achieve the research objectives include:

1. To collect and analyse historical environmental and crop yield data from
greenhouse growers via graphical hourly plots of greenhouse data to identify any
obvious trends, patterns, or relationships.

2. To develop and test a deterministic yield prediction model (one based on first
principles and known yield conversion factors).

3. To develop an empirical yield prediction model from multiple regression analysis of
greenhouse data. The best preliminary model will then be selected for further

development to determine the best overall empirical model.

4. To analyse yield predictions from an alternative, expert system model adapted by
the Agassiz Research Station (Lin, 1994).

5. To compare and validate the empirical, deterministic, and Agassiz expert system
yield prediction models. The best overall prediction model will then be identified.

2.0 _Materials and Methods

2.1 Data Source
All of the data used in this study will be collected from growth records of

greenhouse tomatoes provided by independent growers and the B.C. Greenhouse

Growers Co-operative.
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Research
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=

Comparison
of
Predictive
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Prediction § Expert System
Model Model

Collect
and 1

Analyse *

Greenhouse Climate Data

Empirical

Prediction §
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Figure 3. Shown above are the research objectives

in this study.
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2.2 Data Collectibn

Temperature, carbon dioxide, humidity, and solar radiation data used in this study
were collected by a greenhouse climate computer with measurement transducers. Typical

locations for these transducers within a greenhouse environment are shown on Figure 2.

2.3 Data Analysis

The environmental data required for developing the various mathematical and expert
system models will be obtained from two independent tomato greenhouse growers. In
order fo maintain the confidentiality of their information, data shall be identified as either
from Greenhouse Grower ‘A’ or Greenhouse Grower ‘B’ (Figure 4).

. Greenhouse Grower A’s (iata set includes hourly environmental values (values
for every hour of the day) for light intensity, greenhouse temperature, inside relative
humidity, carbon dioxidé concentrations, and actual recorded yield for a number of
growing seasons during 1992. Hourly data is necessary for develbping a deterministic
mathematical growth model based on first principles (ie. photosynthesis and respiration
equations) as the model attempts to simulate actual crop growth in order to provide yield

predictions.



Tomato Crop Climate & Production Data | -

Hourly Data Weekly Data
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One complete set of greenhouse tomato hourly climate data will be plotted for a 60-
day period (1440 hours) during the 1992 growing season.  Graphical plots of. inside
temperature, outside temperature, solar intensity (light), relative humidity, and carbon
dioxide concentrations, will be analysed for any obvious trends or patterns in greenhouse
conditions or management practises.

Greenhouse Grower B’s data set includes weekly values for: light intensity
(weekly cumulative total in W/m?), average temperatures (a weekly average based on every
hour temperature readings), day and night temperatures (weekly averages of hourly day-
time and night-time temperatures, respectively), day and night humidity (weekly averages of
hourly day and night humidity readings, respectively) and weekly recorded actual yield
values (lgg/mz) for the years between 1987 to 19_93 (excluding 1988 due to missing data).
Weekly data from grower B will be used in this study to prepare an empirical math model
using mathematical regression mefhods. The same weekly data from grower B was also
used in testing the expert system model developed by the Agassiz Research Station
(Agassiz, B.C), a Research Branch of Agriculture Canada. The weekly predictions from

the Agassiz expert system will then be used for comparison purposes.
2.4 Selecting the Deterministic Math Model

Using the hourly data provided by Greenhouse Grower A, a deterministic crop

growth model will be developed to predict yield (Figure 5). The first principle equations

that will be used for this approach are mathematical relationships between environmental
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Model

Validated
Deterministic
Math
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I ' : ]
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using known
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I
I 1
First Principle Validation
Equations of
(Photosynthesis, First Principle
Respiration) Equation Results
Import,
Format,
and Manipulate
Climate Data
Greenhouse Grower A

Hourly Climate Data (Illustration by W.C.Tang, 1995)” ’

o

Figure 5. Shown above is the general process train for the development .
of the ‘Deterministic Model.
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conditions, dry weight growth, respiration rate, and photosynthesis as detailed in
literature (Jones, 1991) and shown on Figures 6a & 6b. " An alternative method to
compute crop yield is by applying a multiplication faetor that relates net photosynthesis to
crop yield. For tomatoes, this. was foun'd‘to be 7 (Enoch, 1978) with the following
assumptions:v greenhouse light transmission of 80%, plant prodnction based on COzi
uptake at optimal leaf temperature, and that one absorbed CO; molecule is used to create
one molecule of dry matter (CH;0), with 50% of this dry matter being. fruit yield,
representing between 5% - A7% of the total fruit weight including both wet and dry portions
(Ho and Hewitt, 1983) (Figure 6c).

In order to narrow the scope of this study, only hourly data from the 1992 growing
season for Grower A will be used. The 1992 environmental data contained the most
complete set of readings for greenhouse climate: light intensity, temperature, and carbon
dioxide concentrations. | (The deterministic math model will not utilize humidity data
because transpiration is not being modeled.) Usiné a computer spreadsheet program, the
appropriate column headings for the data will be configured and formula cells based on ﬁrst
equations found in literature (Jones, 1991) will be applied. Predictions for respiration,
gross photosynthesis, net photosynthesis, and crop dry weight are then obtained. The
results of net photosynthesis can noxy be converted to crop yield (Figure 6¢) using the
generalized multiplication factor of 7 | (Enoch, 1978). | Weekly cumulations of net
photosynthesis based yield predictions will. then be plotted and compared with actual

recorded tomato yields for 1992. Once these immediate yield results are validated and

corrected for missing data, the model will be used to predict yield 4 and 6 weeks ahead.
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P, - Gross Photosynthesis Equation

Pg=.Dr*c*p(e)*1nF o*K*, + (1-m)*Tt*C*p@) ]
K L o *K*L,*exp (-KL)+ (1 - m)* t * C * p(6) ]
where 'Pg = gross photosynthesis measured in units of g (CH,0) / m*-h
D = coefficient to convert photosynthesis calculations from pimol (CO,) / m*=s
to g (CH,0) / m*-h
T = leaf conductance to CO,, pmol (CO,)/ m’s
C = CO; concentration of the air, (imol (CO,)/ mol (air)) = ppm
- p(®) = dimensionless function of temperature, the effect of temperature on the
maximum rate of photosynthesis for a single leaf, as a quadratic equation:
PO)= {1- ((6x-0)/(®-61))%) |
where: 0y is the temperature at which leaf photosynthesis is maximum, °C
0 is the measured temperature in the greenhouse, °C
0, is the temperature at which leaf photosynthesis is zero, °C
o = leaf light utilization efficiency, pmol (CO, ) / umol (photon)
K = canopy light extinction coefficient
I, = light flux density at the top of the canopy, umol (photon) / m*-s
m = light transmission coefficient of leaves
and L = canopy leaf area index, m’* (leaf) / m* (ground)
Ry - Maintenance Respiration Rate
Rim = ka*exp(0.0693[0-25])
where Rm — maintenance respiration rate, g (CH,0) /g tissue - h
(maintenance respiration is the loss of CO, due to breakdown and
re-synthesis of existing tissue and depends on temperature)
km = respiration rate at 25°C, g (CH,0) / g tissue - h
0 = measured greenhouse/inside temperature, °C
Figure 6a. Shown above are the P, and R, equations used in developing the

deterministic math model (Jones, 1991).
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“dW/dt - Crop Dry Weight Growth Rate

dW/dt =E (Py-Rn* W)

where dW/dt = rate of dry weight of the crop, g (tissue) - h

W. = total plant dry weight, g/m’ '
E = conversion efficiency of CH,O to plant tissue, g(tissu.e) / g(CH;0)
Rm = maintenance respiration rate, g (CH;0) / g(tissue) - h
and P g = canopy gross photosynthesis rate, & (CH20) / m” - h
Pnet - Net Photosynthesis
P, =P - Rp*W
where Pn = net photosynthesis rate, g (CH,0) /. m*- h
Pg = canopy gross photosynthesis rate, 8 (CH20) /m’ - h
'Rm = maintenance respiration rate, g (CH,0) / g(tissue) - h
and \\Y% =

total plant dry weight, g/m?

Coefficient Values used in these Equations

o =0.056  B,= 30°C, 6,=5°C 1=0.0664 k,=0.0006 m=010 D=0.108
E=0.70 K=10.58 L = varies from 0.6 to 3.31 (de Koning, 1993)

Figure 6b.  Shown above are the dW/dt and P, equations, and coefficient values used in
developing the deterministic math model (Jones, 1991).
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Photosynthesis:
6C02 + 6H20 - C6H1206 + 602

Simplified Carbon Conversion for determining Yield Conversion Factor:

1 CO; — 1 CH,Omolecule
b l /
MW)=d4g  (MW)=30g
(MW) = Molecular Weight
For 1 molecule of COused, (ie. every 44 g of CO, used) we get 30 g of CH:0.
172 of this 30 g of CH,O is partitioned to become fruit yield (dry portion) = 15 g.
This 15g is 5% of the total weight of the fruit (wet and dry portions)
Therefore, the total fruit weight is actually: 15 g * (100/5) = 300 grams

For 44 g of CO; used (absorbed) we have 300 g of fruit weight.

. 1gof COyused leadsto (300 g/ 44g) = 7 g of fruit weight (wet & dry).

Enoch’s Generalized Multiplication Factor for Tomato Yield (Enoch, 1978)

30g * 1* 100 =~ 7= YieldMultiplication Factor
44g 2 5 - -for Tomatoes

- Molecular Weight for CO, (44 g) and CH,0 (30 g)
Half the dry matter is yield (1/2). :
This dry matter represents 5% of total fruit weight (dry & wet) (100/5).

Figure 6¢c. Shown above is Enoch’s Yield Conversion Factor (1978) for tomatoes that will be
used in developing the deterrmmsnc math model.
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Predicted and actual yield values will then be compared with the standard error of
estimate (S.) or root-mean-square-error (RMSE) method (Figure 9) for evaluating the

accuracy of results using the deterministic modeling approach.
2.5 Developing the Empirical Math Model

Weekly light and temperature data from Greenhouse Grower B will be used in this
portion of the study to develop an empirical prediction model using multiple regression
techniques (Figure 7). Regression techniques‘ar.e useful for deriving linear relationships
between input and output variables. Such analysis will be carried out in the advanced math
tools aQailable in spreadsheet programs such as Quattro Pro (for simple regression) as well
as with more. advanced statistical analysis packages such as Systat (for multiple and
stepwise regressions).

The first step in developing the empirical model involves identifying the primary
environmental condition that is most closely linked to tomato crop production. From
literature review McAvoy et al. (1989), have foune strong relationships between
photosynthetic photo flux (light intensity) and total yield.  In this study they performed
comparisons and regressions of the total photosynthetic photon flux (PPF) received during
a 60-day production cycle. A close linear trend (" = 0.947) between recorded tomato
yields and total PPF was observed.

Following a similar approach, the weekly data for 1987 to 1993 from Greenhouse
Grower B will be analysed for a light/yield linear relationship. Nine week (63 day)

cumnulative light intensity (PPF) values will be plotted against recorded yield. This method



Development of the Empirical
Math Model

“Validated '
Empmcal : *
“.Math .

"‘Modal
I

Selectlonof i ‘Validation of

‘ ‘Models by
RMSE

Approach

& Future Yléld Predictions

: usmg nght Alon and
S Light & Heat
_ Equations

Basuc Weekly
Climate Data -
from Greenhouse’
Grower B

Figure 7. Shown above is the general process train for developing
the empirical math model.
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will identify the yearly data that has the closest relationship between 9-week cumulated
PPF and yield (in g/plant), as indicated by the statistical r* , aﬁd derive a set of linear
mathematical expressions for each year of data as well as for 6- year cumulative data
(1987, 1989, 1990; 1991, 1992, 1993, excluding 1988 data). The r?, or correlation
coefficient, measures the linear association or clustering around a line with higher values
indicating a closer fit to actual yields (Freedman et al, 1991).

Extendiné the light and yield relationship further, a second set of regression results
will be performed by cumulating light data for 9 weeks (CLo) in units of W/m? and
regressing these totals against recorded yield in. units of (kg/m®). These linear equations
based on 9-week summations. of light will then be used to predict 1994 crop yieids based on
light readings recorded for 1994. The actual 1994 yields and immediate weekly predicted
yields from these equations will then be plotted on the same graph and compared. A
standard error of estimate (S.) or root-mean-square-error ‘analysis (RMSE) will also be
performed on each set of predictions versus actual yield values (Eigure 9) to determine the
~ equation that most closely approximates the actual yield.

The next step in developing the empirical model will be to investigate the
relationships between yield. and other reco;ded' environmental parameters.A Tomato plants
have been found to be very responsive to changes in temperature and light levels and the

status of these conditions strongly affects carbon fixation and dry matter partitioning into

fruit (Jones et al, 1991).
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Humidity also affects tomato growth but to a lesser degree, and a single trial run
will be included development of tﬁe empirical model to examine its effectiveness as a factor
in yield predictions, research time-permitting.

As a further step in the empirical analysis, the effect of temi)erature will be entered
into the regression model.

The general rule for tomato production is that the 24-hour greenhouse temperature
is generally responsible for the rate of growth, with higher average temperatures increasing
growth rates. The target setpoiﬁt temperature for tomatoes reported in the 1993
Greenhouse Vegetable Production Guide is 19 °C (B.C. Ministry of Agriculture, 1993).

Below 10°C, little tomato growth / photosyﬁthetic activity occurs. Provided with this
information, a cumulation of temperature in terms of heat units (Wolf ét al., 1986) will bé
performed. Each heat unit (HU) is defined as the difference between the daily 24-hour

average temperature and a baseline temperature of 10 °C. The first trial run using this

approach will involve cumulating 9 weeks of recorded temperatures and subtracting the

baseline 10°C from each value ( 9 weeks of values x 10°C = 90°C subtracted from 9 week
cumulative total of temperature readings). These adjusted values will then be referred to as
9-week cumulative heat units (CHg). By performing a multiple step-wise regression
analysis on both the 9 week heat units (CHy) and 9-week cumulative light_ values (CI,g),
linear relationships involving heat, light, and yield will result. This approach will provide
immediate yield predictions and provide an indication as to which factor (light or

temperature) plays a bigger role in tomato yield prediction.
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Continﬁing on with the study, the yearly data set that contains the best linear
relationship with light (highest r° - value from 9-week light (PPF) regression) will be further
analysed. Combinations of the 'environmental factors; ‘3, 6, and 9 week cumulative heat
units (CH;, CHg, CHy) and 3, 6, and 9 Week cumulative light values (CL3, CL¢, CLo) inll
be regressed to determine the best prediction equation (Y,) for yield (Y, = f { CHs;, CHs,
CHjy, CL;, CLs, CLo } ). However, at this point of the analysis process instead of using the
model to produce immediate weekly yield values, the model as a true predict-ahead model;

The initial regression results of empirical model identified the most correlated data,
and whether light or femperature was the greatest influencing factor on yield. However, an
empirical model that uses- historical data to predict crop yield a few weeks ahead is
necessary if the modél is to be more flexible for growers and the Gféenhouse Growers Co-
operative Association. By using the cumulated values of light and temperature and
regressing them with actual yield results recorded four weeks -ahead, a four-week ahead
predictive model can be obtained.

As a final step of the empirical approach to yield prediction, the 1994 yield will be
predicted 4 weeks ahead by an multi-variable linear equation that combines 3,6, and 9 week
cumulative light and 3, 6, and 9 week cumulative heat data. This equafion will be evaluated-
by standard error analysis (S, or RMSE) for uéefulness" and flexibility of the model to the

greenhouse érower to identify the best overall empirical model.
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2.6 The Agassiz Expert System Model
“The results from an expert system, tomato yield prediction model, developed by the
Agassiz Research station (Lin, 1994) will be analysed and used solely as a comparison

model for the two mathematical models developed in this study.

The specific methodology used to develop the Agassiz expert system is currently
being licensed and must remain cohﬁdential as part of a collaborative agreement
to protect intellectual rights between the Agassiz Research Station, the University

of British Columbia, and the participating members of the greenhouse industry.

However, an overview of the general methodology used to devel'op. the Agassiz
expert system is presented on Figure 8.  First, the same weekly environmental data (actual
yield, light intensity, temperature, and humidity readings from 1987 to 1993) from
Greenhouse Grower B used in developing the empirical math model, was imported into the
expert system.  Then by using up-to-date expert knowledge from research findings,
greenhouse. growérs, and plant physiologists (Lin, 1994), weighting of environmental
variables as they related to yield were applied in training the expert model.

The advantage to the Agassiz expert system is that as the database of expert
knowledge grows, the model can be modified to reflect these new findings by adjusting the
environmental weighting factors. The expert system is also a self-learning system, in that it
recognizes trends between environmental variables and actual yield, and adjusts the

weighting factors to reduce the error with each subsequent yield prediction.
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The researchers at Agassiz have configured their expert system to provide 1 week, 2
week, 3 week, and 4 week ahead predictions of 19,94 yield and these results will then be
validated by comparison with actual recorded yields by the RMSE approach. The results
from the Agassiz expert system will also be compared with the predictions from the
mathematical models developed in this study.

2.7 Validation and Comparison of thé Yield Predictive Mod‘els

In order to be a useful management tool for greenhouse growers, crop growth and
yield prediction models must be validated before they are used (de Koning, 1993a). The
validation of the deterministic, empirical, and Agassiz expert system model can be
berformed by analysing the magnitude of the error in their'predicvtions.

Calculation of the standard error of estimate (S.) (Alder and Roessler, 1960) or
root-mean-square-error (RMSE) for prediction results. measures the overall size of
differences between predicted and actual values for yield (Freedman et al, 1991 and Kozak,
1995).

The S. or simplified RMSE equation used in this studyv is shown on Figure 9. The
magnitude of these error values depends on the range of values being compared and the
number of predicted values. With a larger range and greater number of values, generally
larger error values are expected. In this stﬁdy, typical tomato crop yield results range from
0 kg/m’ to 4 kg/m®, with a minimum of 30 predicted yield values provided by each model.
To provide a basis for validatioﬁ and comparison, models providing error values of less than

0.8 (kg/mz) for a year of predictions (approximately 50% error for an average 1.6 kg/m’

yield throughout the year) will be considered valid models in- this | study.




Root-Mean-Square-Error Analysis (RMSE)
or
Standard Error of Estimate ( S, )

RMSE or S, = | 2(Actual - Predicted)?

N

.S, _
*RMSE =

Standard Error of Estimate, kg/m?

Root Mean Square Error, kg/m?
* Predicted = Predicted Yield Value, kg/m?
« Actual = Actual Yield Value, kg/m?
*N = Total Number of Predictions
Figure 9. Shown above is the S, or RMSE method used to

compare the predictive models in this study. Lower
values indicate less error and better predictions.

(Freedman et al, 1991. Alder & Roessler, 1960. and Kozak, 1995)
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The lowest RMSE or S, values indicate the least énor between predicted and actual
values (ideally an error value of 0 kg/m?), and best predictive performance.
The best overall model will be determined. by the accuracy of predictions (lowest
RMSE or S, values) for an entire growing season and during periods of peak préductivity
(RMSE for a specific peak interval), flexibility of the model for application in site-specific

and general cases, and overall user-friendliness.

3.0 Results and Discussion
3.1 Analysis of Graphical Plots of Hourly Greenhouse Climate Data

Shown in Appendix A are graphical plots of inside greenhouse temperature, outside
temperature, solar intensity, carbon dioxide concentrations, and relative humidity fqr a 60-
day growth period (between January 1, 1992 to March 5, 1992).

Trends observed during the 60-day growth period included the maintenance of a
fairly consistent inside greenhouse temperature between the 18 to 23°C range, with peaks in
daily inside temperature corresponding directly to peaks in solar intensity (Figures A-1,
A-2, A-3 in Appehdix A). Solar intensity peaks are recorded for noon periods each day.

Guidelines from the 1993 Greenhouse Vegetable Production Guide indicate average 24
hour temperatures as being responsible for the rate of growth, with higher averageé leading
to faster growth rates. The target setpoint temperature for tomatoes is currently 19°C

(B.C. Ministry of Agriculture, Fisheries, and Foods, 1993). Successful environmental
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temperature control for this plotted growth period is evidenced by the minimal fluctuations
even during periods of outside temperature extremes including sub-zero periods.

Plots of carbon dioxide concentrations for the same period (Figures A-4, A-5, A-6
in Appendix A) revealed a range bétween 200 to 2000 parts per million (ppm), which is
typical enrichment for a tomato crop (Gould, 1983). Concentrations frequently reached
their peaks during the noon Hour of each day, and showed a daily maximum ﬂucfuation of
about 1800 ppm. Inside venting for temperature control can be held accountablé for part of
the variability in carbon dioxide concentrations.

Relative humidity readings plotted for the same gro§vth period showed peaks and
valleys approximately every ten hours, with peak humidity during late afternoon and
evening hours. Humidity was found to véry greatly betv&een 60 to 95 percent for the early
part of the growth period (January 1 to January 24, 1992) with less variation occurring
during the following two months (January 25 to March 5, 1992).  Low humidities for a
few hours a day will not hinder the overall climat¢ balance within the greenhouse but levels
should typically be. maintained above 50% to prevent extreme moisture losses. Proper
maintenance of high humidity levels (80% and above) will encourage stomatal opening and
increased carbon dioxide uptake, leading to increased water evaporation, and cooling of the
plant éanopy (B.C. Ministry of Agriculture, Fisheries, and Foods, 1993).

The patterns discovered from these .plots illustrate both the importance of climate
control and the po.ssibility of applying trend recognition techniques to predict these

parameters. Trends in greenhouse climate can then be related to actual recorded yields for

particular growth periods for the development of a yield prediction model.
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3.2 Results of the Deterministic Math Model

Applying the first pdnciplg equations of photosynthesis, fespiration,‘and dry weight
growth rafe detailed in literature (Jones, 1991) a deterministic math model was developed.
Using the yield coﬂversion factor of 7 described in literature (Enoch, 1978) hourly net
photosynthesis calculationé were converted into hourly yield predictions (ie. hourly Pug
values multiplied by 7). Monthly variations in leaf area index (LAI) throughout the year
(Appendix B) affected the photosynthetic values and were corrected for accordingly.
Highest LAI values were reported from literature (de Koning, 1993a) for the peak growth
period between March to June.

A sample of the spreadsheet used in developing the determinisﬁc math model is
shown in Appendix B. For graphical plotting of the results, the hourly yield predictions
were summ‘ed‘ into weekly cumulative totals before plotting versué week number. Week
numbers correspond to an annual chronological scheme where wéek 1 represents the first
week in January and where week 52 represents the last week of December.

The initial plot of immediate (same week) yield predictions compared with actual
recorded yield (Figure 10) produced an good range of results. By cumulating net
photosynthetic (P,,etA) rates for periods of 1 week (158 hours) and converting these totals to
yields (1 Week C. P, Yield) a low range of yield predfctions resulted. The magnitude of
the predictions were approximately half of the actual recorded yield for the 1 week

cumulations, indicating that a week of net photosynthetic activity may not be sufficient for

predicting actual yields.
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Cumulative Pnet based Yield
Immediate Yield Predictions

3.5

2.5

1.5

Yield (kg/m~2)

0-

—& Actual Yield < 1 Week C.Pnet-Yield = 2 Week C.Pnet-Yield —+— 3 Week C.Pnet-Yield

Flgure 10 Shown above are the immediate yield predictions
using the yield conversion factor applied to Pnet.
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The idea of cumulating net photosynthetic activity and converting to yield‘ was carried
on further by cumulating 2 and 3 weeks of P, in order to obtain a better fit of the actual
yield curve. The plotted results (Figure 10) revealed the closest correlation between a two
week cumulation of P,y and actual yield. For the first half of the year (up to week 23)
predictions showed a good range of peaks simulating actual recorded yield. Predicted yield
peaks were similar especially during the 10 to 20 week period é.ﬁer a short initial period of
over-prediction (weeks 1 to | 10). The over-prediction during the initial few weeks was
expected as the deterministic model assumes that all net photosynthetic activity is being
directly converted to yield. In actual greenhouse practise however, tomato c'rops are not
being harvested for the first 8 to 9 weeks at the start of tﬁe growth season.

The general shapes of the curves for each of the weekly cumulation trials were

similar and encountered a shared problem. In cases of missing or incomplete data sets,

. yield predictions cannot be made accurately. Yield predictions for weeks 23 to 25 and 32

to 35 show evidence of the problem that exists when required values for the climatic

variables used in predictive equations are missing. The successful prediction and

cumulation of P, activity relies on complete data sets. Calculated cumulative yields

following periods of missing data lead to inaccurate and incomplete predictions due to zero
value predictions being included in the weekly totals. These zero values are then carried
forward to the next week of predictions and then the effect is magnified as these zero values.

dampen the results leading to under-predictions.
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In order to compensate for those weeks of missing or ambiguous data, manual
extrapolation - of the predictions between those weeks with complete data had to be
performed. The two intervals of weeks with incomplete. or zero data (weeks} 23 to 25 and
32 to 35) were corrected by extrapolatingbrediction lines between the two ‘weeks with
reliable data (weeks 22 to 26 and 32 to 36 réspectively). The yield prediction corrections
for missing data are shown as intervals connected with dotted lines on the future yield
prediction plots that followed. In order for the deterministic prediction model to be useful
for a grower, it must be able to forecast yields ahead of time.

Predictions of yield were made 4 Weeks.ah‘ead of time using the same 1, 2, and 3
week cumulations of net photosynthétic converted activity (Figure 11). Better results were
found for the 4 week ahead set of data than those reported for the immediaté, same week
predictions. In fact, by predicting 4 weeks ahead, the problem of over-prediction during the
first nine weeks of the growing season was alleviated. The 4 week ahead shift in yield
prediction also led to closer alignment of the predicted and actual yield peaks and valleys.
In particular, the 2 week cumulation of P, showed the closest relationship to actual yield
and was calculated to have a RMSE of 0.464 kg/m® for the full year of predictions. The
dotted intervals between weeks 25 to 29 and 36 to 38 show the correction by extrapolaﬁon
for missing data during' these periods (Figure 1 1 ). However, correction for yield
predictions in this manner was still not sufficient to maintain the close prediction trend

experienced in the first 25 weeks plotted.
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Cumu‘hl'ative Pnet baséd Yield
Predictions 4 weeks ahead
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. Figure 11 Shown above are the 4 week ahead yield predictions
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The reason for the loss in accuracy and precision after the periods of missing data is
that the deterministic model attempted to simulate actual, continuous growth of a tomato
crop. Any discontinuities, or periods of missing data would not only affect that particular
period, but also the summations leading to yield predictions for subsequent time periods.
The effect of the missing data periods was even magnified further for the last quarter of
predictions (weeks 35 to 52).

In a further attempt to provide predictions further ahead, yields were predicted 6
weeks ahead of time, again by shifting immediate yields forward and comparing by the
kMSE method. Even better results were found for predicting 6 weeks ahead ‘as shown. on

the plotted graph (Figure 12). The major peaks in yield became even more closely aligned

with actual yields and the 6 week shifting reduced the prediction error of the extrapolated

intervals with missing data. Root-mean-square analysis of the 2 week cumulative yield plot

for 6 weeks ahead produced a value of 0.3818 kg/m?, even closer than the 4 week ahead

plot.

The use of two week cumulative P, values converted to yield for 6 week ahead
predictions actually becomes a 8 week ahead forecast considering 2 weeks of historical
data are required to make these prediciions. Basis for cumulating two week Py activity as
a yield predictor was found from the rate of starch accumulation of a tomato plant found
from literature. Daily starch accumulation fof_ tomato crops was found to reach its peak

during the 15 to 25 day period aﬂér'pollination (Ho and Hewitt, 1986).
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Cumuléﬁve Pnet basedﬂ Yield
Predictions 6 weeks ahead
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Figure': 1'2 ' Shown above are the 6 week ahead yield predictions
using the yield conversion factor applied to Pnet.
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| As the rate of starch accumulation may vary slightly for different tomato vérieties, it is
likely that the peak starch accumulation period for the tomatoes used in this study were
near the two week (14 day) interval.

From literature, the peak of starch accumulation accounts for approximately 30% of the
daily accumulated dry matter by day 20 after fruit pollination (Ho and Hewitt, 1983). Use
of the two week P, results and converting with the assumptions (Figure 6¢) built into the
yield conversion factor (Enoch, 1978) for yield predictions may be justified. As much of
the starch and dry weight growth of the tomato may have occurred by the two week rapid
growth period, the conversion factor already has an assumption that only 50% of the dry
 matter is being converted to yield. With the 50% assumption of dry matter to yield
conversion the magnitude of the prediction error is already being reduced as this ratio may
vary under changing climatic conditions. For example, under conditions of very low light
flux densities (below 40 W/m®) no net photosynthesiS was recorded for tomatoes of any
size (Tanaka et al., 1974), however based on the spreadsheet structure of the deterministic
model and first principle equatiéns, a value greater than zero may be calculated.

One possible reason for the discrepancy between resu}ts in actual practise and in theory
is that emphgsis of the effects of light in the generalized photosynthetic equation may not be
great enough. The effect of temperature, carbon dioxide concentrations, leaf area index,
and light are all incorporated into the photosynthetic equation and each additional
parameter may dampen the significant effect of light levels on P, activity. Consequently,

when Py values are directly converted into yield predictions using the conversion factor,
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the deterministic model may over-predict during periods of low light levels and under-
predict under'high light conditions.

Other possible sources of error for the predictions is the effect of respiration upon
the magnitude of P, It is known that respiration rates in mature fruits and young fruits
vary greatly. Respiration rates in two-week-old tomatoes were reported to change from
0.4-0.6 mg CO; per gram of fresh weight per hour to 0.05 to 0.07 mg CO; per gram of
fresh weight per hour as they reached maturity (Tanaka et al., 1974). The deterministic
model developed here does not account for the variability of respiration rates due to fruit

age and this may be a source of error for the predictions.
3.3 Results of the Empirical Math Model

Following studies that fdund a close correlation between photosynthetic photon flux

(PPF) received during a 60-day production cycle and tomato yield (McAvoy et al, 1989),

an empirical model was developed. Weekly solar radiaﬁon data from Greenhouseé Grower

B in units of moles/m” were plotted versus crop yield (g/plant) assuming a tomato plant

density of 2.5 tomato plants / m>. Results from these plots of total PPF for a 9-week

(approximately 60-days) production period versus crop yield were plotted and linear
regressions were performed to derive equations for each year of data.

A summary of the regl;ession e@uations derived from the total PPF plots can be

found in the appendix (Table A-1 in Appendix C). For each plot, nine weeks of PPF were

cumulated and then plotted against yield (g/plant) to find the year with the closest

correlation (Figures A-11, A-12, A-13, A-14, A;I 5, A-16 and A-17 in Appendix C). As
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well, for one plot, data from all 6 years (1987 to 1993 inclusive, excluding 1988 due to
missing data) was plotted as a 1987-1993 graph to identify a general trend relationship
between light and yield (Figure 13). The 1987-1993 piot had a calculated r’ vglue of 0.668
which indicates a fairly consistent and direct relationship betweén light and yield for 6 years
of historical data.

From r* analysis, or comparison by the correlation goeﬁicient, the 1992 data set
showed the closest fit with the highest r* value of 0.746. The higher the r* value (with
maximum valuev being 1) the better the linear fit between the independent variable of light
(PPF) and dependent variable (yield).

| The yearly scatter plots showed a fairly good linear trend between light and yield
with r* results ranging from 0.61 to 0.746.  The r* correlation results calculated from
Grower B's weekly data were generally lower than those reported in literature for tomato
crops (McAvoy, 1989) where an 1* value of 0.896 (or r = 0.947) was obtained.

From the results of these preliminary plots, a second set of regression equations was
obtained by plotting light and yield data in different units (Table A-2 in Appendix D). .
Light data was cumulated for 9 weeks (assuming a 60-déy production period as before) in
units of W/m® and regressed with yield measured in units of kg/m® to develop an empirical
model which would produce more meaningful results (in more useful and common units)
for greenhouse growers.

The whole range of regression equations derived from each yéar of data were used

_to predict 1994 tomato yields and compared with actual yields reported for the same period

( Figures A-18 & A-19 in Appendix D).
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Analysis by the root-mean-square-error agalysis revealed the best results (RMSE =
0.382 kg/m®, r* = 0.625) when the equation derived from -the 1990 set of data based on
light alone (CLo) was used to predict yields for 1994.

The coefficients for 1990 set of data were then identified as predictive equation 1.1
(Table 1, and Appendix C - Table A-1). Using a similar approéch, the regression equation
derived from the 1992 set of data was identified as predictive equation 1.2 to provide an
upper-range value for prediction (Table 1a). When equation 1.2 (1992 equation) was used
to predict 1994 tomato yields an RMSE value of 0.4574 kg/m® (r* = 0.465) was calculated.
Plots of both sets of same-week yield predictiohs from equation 1.1 and 1.2 against actual
recorded yields is shown on Figure 14. From an examination of the plotted predicted
yields, the regression equations were found to producé fairly good results for the first 20
weeks of the growing season when yields rose steadily.

~ However, for certain intervals of rapid growth (between weeks 20 to 30 and weeks
40 to 46), peaks in actual recordéd yields could not be adequately predicted by the
regression models. In fact from week 20 onward, the light-only based models (CLo) were
unable to predict the yield extremes found in actual greenhouse production practises. The
gfeatest discrepancy in actual recorded yields and predicted yields was found during weeks
25 and 32 where the regression models consistently under-predicted actual yields.
Although an empirical model developed solely on cumulative light had its basis, adeq;late

correction for predictions during the peak periods of actual yield could not be obtained

using a light-only model.
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‘Table 1a

~ EMPIRICAL MATH MODEL
" Results for 1994 Yield Predictions

1.0 Light Alone (C L o)

‘pr=ao+a;(CL9) ............................. (1)
‘ap o o RMSE
Predictive equation (1.1) -0.07057 0.0000165 0.625 0.382832
(1990 Data) ' _
Predictive equation (1.2) ~ -0.08383 .- 0.0000145 0.465 0.457382
(1992 Data) '

The predlctlve equation (1.1) is based on fitting 1990 data to regression equation (1) and
produced a RMSE of 0.34827 and r* = 0.625 for 1994 yield predictions. Predictive equation
(1.2) is based'on fitting 1992 data to regression equation (1) and produced a RMSE of
0.457382 and r* = 0.465 when used to predict 1994 yield.

2.0 Light and Heat (C L o and CHy)

Yp2=a+a1(CLlo) +a3(CHo) ..ooooovririnin )
2 a 2 r* RMSE

Predlctlve -equation (2 1) 239584  0.00001513 0.03003 068 0.353099
(1992 Data) '

'Predlctwe equatlon (2 2) 238054 0.00002444 -0.033809 0.247  0.542205
(1990 Data) :

The predictive equation (2.1) is based on fitting 1992 data to regression equation (2) and
produced a RMSE of 0.353 and r* = 0.68 for 1994 yield predxctlons Predictive equation
(2.2) is based on 1990 data and produced a RMSE of 0.542 and r*=0.247 when used to
predict 1994 yield.
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1994 Predicted Yields
Cumulative_Light Based (CL g)

RMSE = 0.3828

. RN,

RMSE = 0.4574

Yield (kg/m~2)
&

o ¥ 1 T - T T .
5 10 15 20 25 30 35 40 45 50

Week Number

—— Actual Yield —&— Predictive Eqn# 1.2 - Predictive Eqn# 1.1

Predicted Yields for 1994 production based on cumulative

Figure 14" jight data A
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Greenhouse growers require the best yield forecasts during peak growth pén’ods to
ensure that availability of adeqﬁ;te harvesting supplies and workers to capitalize on the
crop productivity.

~ In an attempt to provide closer predictions during these peak yield periods, another
climatic variable had to be incorporated into the regression equation. Frorﬁ literature
review, temperature was also found to strongly affect the yield of tomato érops (anes et al,
1991). As well, in another study, the development time between flowering and harvest for
tomato crops was found td be mainly dependent on temperature (de Koning, 1993b).

Consequently, the next climatic variable entered into the empirical model for predicting
tomato yield was temperature.

Using a cumulative heat unit approach described in literature (Wolf ét al., 1986) 9-week
cumulations of corrected temperatures (CHy) were regressed with 9-week cumulations of
light data (CLo) to create a light and heat based empirical model.

Multiple step-wise regressions were performed for each year of data to provide detailéd
analysis of the relationships between corrected temperatufes (CHy), light (CLy), and yield
(Appendix D). The resulting regression equations from this approach were then
summarized (Appendix D, Table A-2) and used to predict 1994 tomato yields. Prediction
plots versus actual recorded yieids for 1994 were performed (Appendix D, Figures A-20,
A-21). Analysing the plotted results it was found that the incorporation of the temperature
variable provided better predictions during the peak production periods. Where the light-

only plots (CLo) were unable to predict for these extreme intervals, the 9 week cumulative
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temperature (CHy) and lighf (CL,) based equations wére able to correct for the peak
periods. Isolating the equations from the same two years (1990 and 1992) of predictions
(Table 1), a good range of predictions was obtained. The Best predictions were found using
the heat and light method with the 1992 set of data (RMSE = 0.353 kg/m?) and was
identified as predictive equation 2.1 (Table 1a).

The 1990 equation was identified as br_edictive equation 2.2 (RMSE = 0.542 kg/m?)
both for cbmpan'son with the previous light-only model (CLy) and also to illustrate the
improved predictions during the peak yield periods using this method. From the plot of
predicted yields and actual yield (Figure 15) a better range of predictions for high and low
values were found. Predictive equation 2.1 (1992 data) was found to produce yield
predictions very close to the actual yields for the first 25 weeks of the production period.
Problems with predicting yields during peak periods still existed using equation 2.1 but
predictions were generally higher during these intervals producing an overall improved and
lower RMSE of 0.353 kg/m”.-

Using predictive equation 2.2, yields were generally over-predicted for the entire
production periods (RMSE = 0.542 kg/m?) but thé possibility for adequate correction using
this method (CH§ & CL, regressions) was shown. If RMSE analysis was performed for the
peak periods alone, equation 2.2 with its over-predictions may actually be‘ proven to
provide the most useful results to a greenhouse grower. During peak periods it may be

preferable for a grower to be prepared to handle higher yields than those actually

experienced to maximize productivity.
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1994 Predicted Yields
Light(CLg) and Temperature(CH 2 Based

RMSE = 0.353

0 I v T I T 1
5 10 15 20 25 30 35 40 45 50

Week Number
— Actual Yield -5 Predictive Eqn# 2.1 —— Predictive Eqn# 2.2

Figure 15 Predicted yields for 1994 production based on cumulative
‘ light and heat data.
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The encouraging results from. these light and heat multiple regressions led to
experimentation with other combinations of cumulative light and heat data. In particular, it
was postulated that by cumulating heat and light units for different time intervals (using a
similar aipproach as used for the 9-week period) 3 and 6 week cumulations would be made.

For this experimental process, only one yearly characteristic set of data was used for
developing the empirical model.

As detailed in the materials and methods section the year of data with the best linear
.relationship with‘ light was further anaiysed. The 1992 data set was chosen for further
analysis because it had the closest‘ relationship between total PPF and crop yield (g/plant)
from the first set of regression results (r = 0.746).

As well, the 1992 equation was selected for a better comparison of results between
the deterrriinistic and empirical models. A comparison of prediction results from the
deterministic and empirical models developed from the same year of data (the former being
hourly and the latter being weekly 1992 data) would ideally identify the better model rather
than variations in piedictions based on climatic differences.

By incorporatirig the 3, 6 and 9-week cumulative totals for light and heat into an all-
inclusive equation, Equation 3.1 (Table 1b) (where Yp = f{CH;, CHs, CH,, CL3, CLs,
CLo}) it was hoped that this method would correct for yield peaks and provide an overall
improvement in prediction accuracy. Using three light and heat variables iil the yield
prediction was based on the fact that each interval (3, 6, an(i 9 weeks) may have varying

effects on the development of the tomato crop related to yield.
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Table 1b

EMPIRICAL MATH MODEL

3.0 Light and Heat (C L 359 and CH 34,) - Immediate Yield Prediction

Yps = a +a1(CL3) +a;(CLe) +a3(CLy) +as(CH3) +

25(CHg) + 86 (CHo). oo S 3)
A a ap az
Equation (3.1) 0.34917 0.0000355 0.00000548 -0.000667
(1992 Data) :
as as » as 1'2 RMSE
-0.001127 -0.03108 -0.02212 0.527 0.429766

The predictive equation (3.1) is based on fitting 1992 data to regression equation (3) with a
RMSE of 0.429766 and r* = 0.527 for 1994 predictions.

4.0 Light and Heat (C L 34, and CH 369 ) - Future Yield (4 Weeks ahead)

Yo = ap +a;(CL3) +a,(CLg) +a3 (CLo)+a,(CH3) +

as(CHg) +as(CHo)......ooooovvveoiec e, ()]
a9 T 7 a3
Equation (4.1) 0.34917 0.0000355 0.00000548 -0.000667.
(1992 Data)
as as as I'2 RMSE
-0.001127 -0.03108 -0.02212 0.491 0.44579

The predictive equation (4.1) is based on fitting 1992 data to regression equation (4) and
produced a RMSE of 0.44579 and 1* = 0.491 for 1994 predictions when using 3,6, and 9
week cumulated data (4 weeks ahead of actual yield) to make future yield predictions.

Yo = 0.35 + 0.0000355(CLs) + 0.0000055(CLg) - 0.00067(CLs) - 0.0011(CH;) -
0.031(CHj, - 0.022(CH) |

RMSE =0.4458 kg / m®
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By incorporating each cumulative interval into the yield predictive equation an attempt
was made to have a model that would predict for peak periods and more closely follow the
trends of the actual yields. Regressing (Appendix D) and plotting the results of this
approach (Figure 16) a better pattern of predictions was found even though prediction
error increased (RMSE = 0.43 kg/m?). Predicted yields showed more high and low
variation and demonstrated a greater degree of association with the pattern of tomato crop
productivity. From these regression results it became more evident that light or solar
intensity was the primary influencing factor affecting yield with temperature effects being
-the secondary factor mainly influencing peak periods of productivity. From these stages in
developing the empirical model, an attempt was made to predict yield weeks ahead of time
to be a useful management tool for growers.

From the results of the three approaches used to develop the empiricai model
(light-only, light and heat, and 3 variables of light and heat) it was decided that the method
using 3 variables of light and heat be pursued for creating a 4-week predict ahead model
Two approaches were used for developing this 4-week predict ahead model. The first
approach involved cumulating 3, 6, and 9-week data for light and heat and regressing these
results with actual yield values recorded 4 weeks ahead of time. Previously, predictibns
were only made for the same week by rélating 3, 6, and 9-week data leading up to that

week. With the 4 week ahead appfoach, the actual yields from 1992 were related to data

cumulated 4 weeks prior to the actual reported yield.




Yield (kg/m " 2)

1994 Predicted Yield
Using 3 Light and 3 Heat Variables

RMSE = 0.43
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' Week Number
—— Actual Yield

—=— Predictive Eqn# 3.1

Figure 16 Predicted Immediate yield using 3 variables of light and 3
; variables of heat. (CL3, CL6, CL9, and CH3, CH6, CH9)
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| The regression equation derived using this approach (Appendix D, Alternative
Regression Method) produced predictions with fairly high error and low correlation with
environmental variables (RMSE value of 0.615 kg/m® and r* = 0.321)
" The second approach that Awas employed to predict 4 weeks ahead, was to simply
use the same prediction equation developed for immediate, same-week predictions for the 3
variables of light and heat (Equation 4.1, Table 1b) and use weekly light and temperature
values 4 weeks ahead in the equation. Use of this method produced a much lower RMSE
value (0.45 kg/m°) and showed better correlation (r* = 0.491) with environmental variables
than predictions made using the regression equation derived from 4 week ahead data and
yield (Appendix D, Alternative Regression Method). The predictions using the same
week equation (4.1) with 4 week ahead data are shown on Figure 17. Analysing and
comparing with the actual yield plot, prediction error for the first 25 weeks is minimal.

For the remaining 25 weeks of the gréwing season, the highest prediction error interval
still remains between week 25 to 30 (June, July) when crop productivity is typically highest.
A reason for the greater error during this interval include the strong influence of warmer
temperatures on crop development _time during this period which cannot be easily
accommodated by a regression model that tries to predict weekly yields for an entire
growing season.  In fact, researchers are still having difficulty estimating the amount of
" plant assimilates (nutrients from photosynthesis and root absorption) being formed and

translated at different temperatures.
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1994 Predicted Y|eId 4 Weeks Ahead
Using 3 Light and 3 Heat Variables

RMSE=0.45

Yield (kg/m " 2)
g

0.5
0 I T T T ] T T i
5 10 15 20 25 30 35 40 45 50
_ Week Number
— Actual Yield —5— Predictive Eqn# 4.1

Figure 17 Predicted yield for 4 weeks ahead using 3 light and 3 heat
variables. (CL3, CL6, CL9, and CH3, CHS, CH9)
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Nutrient translocation rates have been reported to be about four times higher at 27°C
than at 15°C (Barendse, 1993) aﬁd this may provide a clue to sharp increases in
productivity during high temperature intervals.

Similarly, tomato development times between flowering to harvesting of the tomato
fruit have been found to vary.. from 70 days at 17°C to 44 days at 25°C, demonstrating
strong a strong relationship to temperature (de Koning, 1993b). In order to improve the -
accuracy of predictions during the peak temperature and solar intensity periods (weeks 25
to 30), it may be necessé.r’y to develop regression equations for those specific intervals.
Actual yield and environmental data for those peak periods may need to be isolated and
regressed separately to derive separate equations for peak productivity intervals throughout
_ the year. The grower may then use these ‘peak period equations’ to provide an upper-
end estimate of yields during high productivity periods.

When a trial test run was performed to incorporate the effects of humidity as well as
light and heat (Appéndix E, Humidity Trial Regression Results & Figure A-22), prediction
accuracy was found to be worse than with only light and heat, (RMSE = 0.472 kg/m?). |

Overall, the empirical model with 4-week ahead predictions using equation (4.1)
was found to be the most flexible and useful for actual application by greenhoilse growers.

3.4 Results of the Agassiz Expert System

Using weekly data from Greenhouse Grower B, the Agassiz Expert System model
was trained to provide tomato yield predictions 1, 2, 3, and 4 weeks ahead of time. The
specific weighﬁng and configuration of environmental variables was decided upon by the

plant physiologist researchers at Agassiz (Lin, 1994) and the detailed methodology used in

the development of the model remained confidential for licensing purposes. However,
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prediction results using this model were shared for academic comparison with the empirical
and deterministic models developed in this study. The tabulated results from the Agassiz
Expert System are shown c;n Table 2.

For comparison with the two mathematical models in the study, RMSE analysis
was performed on the four sets of predictions. =~ Weekly predictions were identified as
PRE-1, PRE-2, PRE-3, and PRE-4 results, repfesenting predictions made 1, 2, 3, and 4
weeks before actual yields are recorded, respectively.  Error analysis by RMSE revealed
a range from a high 0.722‘ kg/m® for the PRE-2 results (2 wéeks before actual yield is
recorded) to a low value of 0.401 kg/m* for the PRE-1 results.

The best prédictions in terms of lowest error when comparéd with actual_ yield were
found for the PRE-1 (1 week before actual yield is recorded) set of results with an RMSE
of 0.401 kg/mz. The predictions from the Agassiz model were then compared graphically
by plotting the PRE-1 results with actual recorded yields for better analysis of predicl:tion
performance throughout the growth season (Figure 18).

Comparing the actual and predicted yields (PRE-1) the advantages of the trend
recognition techniques employed by the Agassiz expert system become more evident. The
‘expert system is capable of predicting more variability in yield trends throughout the
growing season than the mathematical models. During the first 20 Weeks, although
predictions have less accuracy than those of the mathematical tﬁodels, the general trend of
actual yields is well predicted. Between weeks 20 to 30 there is evidence of the improved

ability to predict for peaks and valleys in crop productivity dun’rig intervals of high

temperature and solar intensity.




1994 TOMATO YIELD PREDICTION

WEEK |PRE4 PRE-3 PRE-2 PRE-1 |ACTUAL YIELD |1994 DATE
KG/M~2 KG/M ™2 (Mon --> Sun)

1 _ :

6 PREDICTED ACTUAL

7 YIELDS ' YIELD

8 .

9 NA NA NA NA 0.01 FEB28-MARS6
10 NA NA NA 0.47 0.53 MARO7-MAR13
11 NA NA 066 0.66 0.54 MAR14-MAR20
12 NA 077 077 047 0.85 MAR21-MAR27
13 0.85 0.82 0.24 0.66 0.85 MAR28-APR0O3
14 116, 054 039 0.95 0.92 APRO4-APR10
15 ti2 077 111 095 1.12 APR11-APR17
16 0.36 112 1.14 1.26 1.19 APR18-APR24
17 ) 128 158 123 082 1.31 APR25-MAYO1
18 145 125 085 1.23 1.45 MAY02-MAY08
19| 163 096 087 1.56 1.81 MAY09-MAY15
20 126 087 145 138 1.6 MAY16-MAY22
21 || 147 177 119  1.87 2.92 MAY23-MAY29
22 21 133  1.84 1.92 175 MAY30-JUNO5
23l 193 174 162 1.75 2,11 JUNO6-JUN12
24§ 208 1.62 146 1.71 2.06 JUN13-JUN19
25 231 142 139  1.99 2.65 ~ |JUN20-JUN26
26’ 205 151 159 218 2.41 JUN27-JULO3
27y 209 153 1.83 1.83 1.99 JUL04-3UL10
28 188 197 154 1.74 2.99 JULT1-JuLt?
291 252 1.83 3.34 241 2.1 JUL18-JUL24
300l 235 294 434 193 2.16 JUL25-JUL31
31| 263 363 212 1.67 2.12 AUGO01-AUGO7
32| 394 178 148 1.72 1.52 AUGO08-AUG1T4
33 ) 1.36 1.48 1.65 1.88 2.06 AUG15-AUG21
‘34 1.48 1.59 1.92 2.14 2 AUG22-AUG?28
35. 1.49 1.58 1.96 1.94 1.88 AUG29-SEPO4
36 1.05 1.41 1.83 1.7 i.21 SEPO5-SEP11
37 1.31 1.32 1.56 1.3 1.28 SEP12-SEP18
38 132 124 137 1.31 1.8 SEP19-SEP25
39 129 122 131 181 1.49 SEP26-OCT02
40 1.04 1.1 1.49 0.99 1.12 OCT03-0CT09
41| 0.93 11 078 0.78 1.37 OCT10-OCT16
424 106 112 074 07| 0.82 OCT17-OCT23
43| 162 112 054 096 0.95 0OCT24-0CT30
44 | 127 123 106 1.48 1.53 OCT31-NOV08
45 || 1.21 089 144  1.61 1.75 NOV07-NOV13
46 || 096 0.77 1.26 2 1.75 NOV14-NOV20
47 0.7 1.08 1.63 1.4 0.71 NOV21-NOV27

[RMSE ]l 0.63 ]0.603 10.722 Heyly

NA = NOT AVAILABLE BECAUSE ‘OF NO' PREVIOUS ACTUAL YIELD RECORD
Table 2 Tabu]ated results for the Agassiz Expert System
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Agassiz Expert System Predictions
1994 Yields (1-Week Ahead Predictions)

3

RMSE = 0.401
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Figure 18 Shown above are the 1-Week Ahead Yield Predictions for
1994 using the Agassiz Expert System.
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For the last interval, from weeks 30 to 50, the expert system continues to demonstrate
its general ability to provide close predictions for peak productivity periods and an excellent
forecast of the yield trend expected.

For the purpose as a greenhouse management tool, yield predictions 1-week ahead
(PRE-1) may be sufficient for preparing for weekly harvests depending on the size of the
greenhouse operation. Largér operations may reciuire an earlier forecast of yields for
decision-making regarding capital cost investments such ‘as the purchase of higher capacity
harvesting equipment. However? the advantage of the predictions provided by the Agassiz
Eipert System is its ease of application, and flexibility.

With the expert system designed to provide é range of predictions (1, 2, 3, and 4 week
ahead), the same model could be applied to another set of data from another greenhouse
site quite easily as only the weighting factors and input data may change. In fact, in terms
of flexibility and user-friendliness, the expert system has the gréatest potential and
advantage. As the database‘ of actual yield and environmental parameters grows, the
predictions by the trend recognition expert. system will improve. The expert system will be
able to acéount for fluctuations in yield and better accommodate for yearly trends than the
mathematical models, withdut tedious modifications.  As an added advantage, the expert
system approach begins as a general model for yield prediction, but then as it is trained with
grower and site specific data it learns yield trends. The expert system model becomes

particular to trends of a specific grower and gradually becomes a customized model.
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The results from the Agassiz expert system demonstrate the dynamic and flexible
nature of this approach and encourages further research and experimentation with this

method of yield prediction.

3.5 Validation and Comparison of Results from the Yield Predictive Models

The guideline for validation of the models in this study waé established to be an
RMSE error value of less than 0.8 kg/m* as mentioned earliér (Section 2.7).

For the deterministic model -based on the first-principle equations of net
photosynthesis andvrespiration, the best model developed was a 2-week cumulative Py
based yield model predicting 6 weeks ahead with an RMSE value of 0.3618 kg/m®>.  The
error value obtained within the set guideline required for -vaiidation SO thg model was
considered valid.  The advantages of the deterministic‘ modeling method was that it was
ﬂexible; and based on well-accepted first-principle equations. The model was considered
flexible because the equafions applied relied purely on environmental parameters and did
not attempt to measure trends or simulate patterns of yield productivity. Consequently, by
theory, the model should be applicable to any greeﬁhouse site without bias, and provide the
same predictions for any tomato crop under the same environmental conditions. The
deterministic model is not seéson—dependent nor grower-specific because the structure of
thié approach relies only on the magnitude of environmental parameters such as solar
intensity, temperature, and cafbon dioxide concentrations.

Disadvantages to the deterministic approach include the strict environmental

monitoring required, the use of many growth parameters,' assumptions in the yield

conversion factor, and the tedious nature of application. In order to provide accurate and
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useful predictions, the developmént of the model required a full year of hourly
environmental data (8760 hours / year). Missing or ambiguous data for any extended
periods of time led would result in ‘zero vélues’ for predictions during that interval' because
the equation would not have any input values. The problemvbof missing data becomes
greater once the effect of cumulatiﬁg weekly net photosynthetic rates (Py) is considered. If
cumulative totals of P, are being converfed and used to predict yield, low totals due to
missing data for normally productive yield periods would lead to inaccurate predictions. In
this sfudy, zero yield periods were solved by extrapolation between known prediction
points but without the far prediction point (weeks ahead of time) no yield value could be
reported. Aside frofn the problem of rﬁissing data, it may not be time or cost-effective to
require such a strict environmental monitoring scheme to ensure proper predictions by this
method.

The use of a great number of coefficients and growth parameters is also a weakness
of the deterministic approach (Figures 6a & 6b). Small errors in assumptions or
parameter values become magnified with subsequent predictions and finding the source of
 the error from the many assumptions becomes a difficult task.

Another uncertainty in developing the deterministic model was the application of
the yield conversiqn factor found in literature (Enoch, 1978). Examining the assumptions
involved in applying the conversion factor more caréfully (Figure 6¢c) two of the main
parameters on which the factor is based are duite variable.  First, the assumption that half

the dry matter of a tomato is partitioned to yield will strongly affect the magnitude of the

conversion factor.  For example, if the dry matter partitioning for the tomato is actually
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closer to 60% in practise, rather than the assumed 50%, a 17% increase in the yield
converSion factor results (factor changes value from 7 to 8.18).  Similarly, from literature
the dry matter content for tomatoes was found to vary between 5 to 10% at different stages
of fruit development (Ho and He;;vitt, 1986). If the assumed value for dry matter content
changed from 5% to 10%, the yield conversion factor would change from a value of 7 to
3.4. Further, if both assumptions are slightly inaccurate then the changed yield convefsion
factor would produce significantly different results.

Changes in'temperature are known to strongly affect the partitioning of assimilates
in plants (Barendse, 1993) as well as development time of tomatoes (de Koning, 1993b).
Assuming a constant or averaged dry matter content for the entire growth season in order
to apply the yield conversion factor may only lead to predictions that apply to certain
periods of fruit development.  The yield conversion factor assumes that by averaging the
high and low percentage periods of dry matter partitioning throughout a growing season e
generalized yield prediction can be made. As a result of the many assumptions, sources of
error, and pbssibilities for variations in the yield conversion factor, the low error value
(RMSE = 0.3618 kg/m’) of the deterministic model may not prove overall predilction

accuracy.

The empirical model based on multiple regressions of historical data produced
reliable and useful predictions for the 1994 growing season.  Beginning with a light-only
based model and expanding to a model which incorporated temperature in terms Qf heat
units, the empirical model gradually reduced its pfediction error.  The best, most useful

empirical model developed, involved using cumulations of 3, 6, and 9-weeks of light and
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temperature data to predict yields 4-weeks ahead (Equation 4.1, Figure 17). Error
analysis of this approach produced an RMSE value of 0.45 kg/m’, well within the required

validation guideline of 0.8 kg/.m2 established for this study.

The advantages of the empirical approach include the straight-forward method of
development and reliable prediction results for general .yield trends. Using regression
equations derived from historical data to relate environmental variables to actual yield had
the advantage of not requiring plant physiology assumptions or conversion factors.

Based on previous trends of production for a specific grower and site, the
regression equations were developed and analysed for their prediction accuracy. The
prediction equation required only two parameters, temperature and light on a weekly basis
to produce results. The empirical approach v;'as much simpler to apply since less stringent
environmental monitoring would be required for obtaining weekly averaged values for only
light and temperature data.  From the graphical plots, the empirical approach was able to
adequately predict tomato yield trends for the first 25 weeks with fairly good accuracy.
Difficulty in providing close predictions was encountered during peak yield periods (June-
July) most likely due to changes in plant partitioning and shortened development times
induced by warmer temperatﬁres (Barendse, 1993) mentioned earlier.

Disadvantages to the empirical method would be that the fact that equations derived
for the data sets would only be site or grower-specific, and the inability to predict for
periods.  Since the empiriqal method employs regression techniques for a specific set of

data, the equations derived for one grower could not be applied to other sites or

greenhouses. Equations or methods that produced the best-fitting predictions for a
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particular grower may not necessérily produce good forecasts for other growers. For each
grower, a new set of regression equations would have to be produced, and new analysis of
results would have be performed to identify the best equations. As a result, the
methodology of developing the model actual makes the empirical model the least flexible of
the three models compared in this stud};. However, comparatively, the pr_edictioﬁs from
the empirical model are more reliable than those from the detemﬁnistic model because the
method used its development requires fewer assumptions.

The final model examined in tﬁs study was the Agassiz Expert System model which
employed trend recognition techniques to make yield predictions. The one-week ahead
prediction model (PRE-1) produced an RMSE value of 0.401 kg/m’ and was considered a
valid model by the validation guideline of 0.8 kg/m®>.  The plotted results of the one-week
ahead model versus actual yield (Figure 18) demonstrated the ability of the expert
approach to provide the good variability to predict high and low peaks and during hlgh
productivity periods (weeks 20 to 35). |

As a comparison model, the Agassiz Expert System model showed the most
flexibility. The expert system could be applied to new sites or growers without making
majof changes to the model itself, other than adjusting weighﬁng factors applied and
training the model with new sets of data.  Further, the expert system wo;xld be the most
user-friendly model to apply for yield prediction as it quickly provides an understandable

range of predictions (PRE-1, PRE-2, PRE-3, PRE-4) without requiring the user to have

detailed knowledge of plant physiology.
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In order to summarize the weaknesses and strengths of each approach, a three-point
ranking system was devised to determine the best 6vera11 model. The best model in each
category is ranked with.a vaiue of 1 (for first / best) and the worst in each category is
ranked with a value of 3 (for last / worst). The model with the overall lowest total score
out of a maximum of 15 points for 5 categories will be identified as the best overall
prediction model.

The categories used for comparison included: RMSE error for the entire annual
growing period, RMSE error for the most productive period (Weeks 20 to 35 of the
annual growing season), flexibility of application for individual grower sites, application
ﬂexibiiity for the general case, and user-friendliness of the model (Table 3).

When the root-mean-square-error was calculated and compared for each model the
deterministic model reported the lowest error (0.3818 kg/m”) and was ranked with a value
of 1. The Agassiz expert system' was rénked a close second for overall RMSE (0.401
kg/m?), while the empirical model reported the greatest error of the éomparison group
(0.45 kg/m®) and was ranked with a value of 3.  Although the deterministic model
reported.the lowest overall RMSE for the year of predictions it must also.be noted that
during part of the growing season, incomplete data sets led to zero predictioﬁs for certain
intervals. As a result, the deterministic model required extrapolations between known
prediction points to provide a full year of predictions. Further, the known variability in fruit

water content and dry matter partitioning throughout fruit development may require the

application of a variable instead of a constant ﬁeld conversion factor. The advantage of the
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expert system approach was that even with missing or ambiguous data sets it had the ability
to make predictions based on analysed trends of historical data.

Finally, the empirical model (Figure 17) produced the best predictions for the first 25
weeks of the growing season but had difficulty predicting the high productivity periods.
Based on numerical analysis alone, the deterministic model had the best overall RMSE
results but in terms of consistency, the empirical and Agassiz expert system may be more
reliable (Table 3).

For a better comparison of the results during the peak productivity period; a
separate root-mean-square-error analysis was performed betweeﬁ weeks 20 to 35 of the
growing season. The results are shown in Table 3 with the best results being reported fo‘f
the deterministic model, followed by the empirical, and Agassiz éxpert system (ranked 1, 2,
and 3, respectively). Although numerically the error fesults were the best for the
deterministic method, the expert system actually had the best prediction of variability during
this périod, in terms of high and low peaks. The deterministic produced good results
(compared with actual recorded yields) during this period as well but required a complete
set of hourly data to produce these predictibhs. The feasibility of such strict monitoring of
environmental parameters and extrapolation of results in cases of missing data is questioned
if this method were to be actually applied in-situ. ~ The empirical model had fairly good
results as well, but had less abiIity to predin for the general trends of yield productivity

when results were analysed graphically (Figure 17).
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Table 3: Comparison of Yield Predictive Models
PREDICTIVE OVE Application

MODEL _ RMS] Flexibility
DETERMINISTIC 0.3818 1 0.170 1 37 2 3 10 /2
EMPIRICAL 0.45 3 0.233 2 2 /3 2 12 /3
AGASSIZ
EXPERT 0.401 2 0.247 3 1/ 1 1 9 /1
SYSTEM

* Deterministic Model:
* Empirical Model
* Agassiz Expert Sys. :

2 Week Cumulative P, based model - 6 weeks ahead
3 Light & 3 Heat Variables - 4 weeks ahead
Trend Recognition Based - 1 week ahead

In terms of flexibility of application on a site-specific basis, the Agassiz expert

system was ranked highest because of its well-defined model structure (Table 3). The

Agassiz model could be easily applied to new sites without any major modification to the

model itself. New historical data for each site would be required to train the model, but the

model itself could be easily applied to new sites with minor difficulties. ~The empirical

approach was ranked second because it is based purely on site-specific data and the model
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is customized for particular growers. = The deterministic model using first principle
equations of net photosynthesis was ranked third because it applied generalized equations
regardless of a specific site. Based on environmental variables aloné, the deterministic
model would make predictions without consiciering any yield trends from previous yedrs.

When the flexibility of applying the various models to general cases was analysed,
the Agassiz expert system was ranked first because it would be able to accommodate the
greatest variations in available data. While the deterministic and empirical models require
complete data sets and a more rigid environmental monitoring scheme, the expert model
would be reliable even in cases of missing data sets. For actual field application, it is
believed that providing reasonable predictions regardless of missing data sets would be
extremely beneficial to the greenhéuse grower and management staff.

Comparing user-friendliness of thev three models, a number of factors were
considered.

\ First, the prediction results would be considered user-friendly if they were based on
very few assumpﬁqns, and could be easily interpreted w;thout extensive knowledge or
thought of plant physiology. It was also decided that yield prgdictions one-week ahead of
time were sufficient for most greenhouse management decisions. The Agassiz expert
system was the only model that had the advantage of providing an immediate 1, 2, 3, and 4
week ahead range of yield predictions and produced'some. of the best results from its 1-
week ahead forecasts. Generally, larger management decisions for capital cost

expenditures would be dependent on analysing annual productivity trends rather than

weekly yield patterns. Consequently, the bést use for thé yield prediction models would be
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to prepare adequate equipment and manpower for harvests and to maximize overall crop
productivity.

As the goal of the prediction models was to purely to provide good tomato crop
yield predictions, fhe model requiring the least manipulation or customization by the user
was considered the best model. The empirical model based on multiple trials of linear
regression would require an experienced technician or researcher to properly fit the data for
each individual grower site. To properly apply the deterministic model approach a strict
environmental monitoring scheme would be required, which may not be a cost-effective
option for many small-scale growers. However, the deterministic model would have the
advantage of being applied effectively in ger;eral cases if predictions were properly adjusted
with variable yield conversion factors throughout different stages of fruit development.
As well, in situations where predictions are required fairly far ih advance, the deterministic
model may be favored for its 6-week-ahead predictions.

Similarly, the empirical model has the advantage of predictions made 4 weeks ahead
but requires many regression trials to properly fit each growers’ historical yield data.
Comparatively, the Agassiz expert system would require the least customization of all three
models to provide reliable and cost-effective yield predictions.

Based on the overall scores reported for each model, the Agassiz Expert system was
ranked first, with the deterministic model a close second. The empirical model was rénked
lower tﬂan the other two models due to its lack of flexibility in actual application and the
need for customization by skilled technicians or researchers. For cases when predictions

are required far in advance (i.e. 6 weeks) then the deterministic model may be applied
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effectively. However, for the general case, it is believed that the range of 1, 2, 3, and 4
week predictions offered by the Agassiz expert system would be sufficient for most end-
users.

- Overall, the best prediction approach was determined to be the Agassiz expert

system model, favoured for its simpiicity, reliable and accurate predictions, flexibility in

application, and user-friendliness.




70

4.0 Conciusions

In this study, two mathematical models were successfully adapted (deterministic
model), developed (empirical model) and validated to predict greenhouse tomato yield in
terms of quantity (kg/m?).

Th¢ final empirical math model developed was based on 3, 6, and 9 week
cumulations of light and temperature (in heat units) to predict tomato yields 4 weeks ahead
of time.

Error analysis of the empirical method prpduced the lai'gest root-mean-square;error
value of 0.45 kg/m’ for the entire growing season. Preciictions during the peak
productivity periods (weeks 20 to 35) were fairly good using this approach (RMSE = 0.233
kg/m’). Weaknesses of the empirical model included its site-specific 'nature, and difficulty
in applying to general grower cases.

The final deterministic math model based on first principle equations of net
phbtosynthesis (Pyet) predicted yields 6 weeks.ahead using a yield conversion factor and two
week cumﬁlations of P.«.  From error analysis, the most accurate prédictions were
achieved with the determinfstic model, with an overall RMSE value of 0.381 kg/m® for the
entire growing season.  The detemﬂnistic approach was also fairly flexible for general -
applications but there were a number of weaknesses identified with this approach. The
application of a constant conversion factor was based on assumptions that fruit moisture
contents and dry matter partitioning remained constant throughout the tomato development

period. Ideally, a variable conversion factor reflecting changes in crop growth could be

developed and applied to this model to improve prediction accuracy.
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Another weakness identified with the deterministic model was the need for an extensive
understanding of plant physiological processes to successfully apply the equations used.to
make the predictions. Further? the requirement for a continuous and complete set of
hourly data to make predictions may not be tifne or cost;eﬁ'ective for many greenhouse
growers. In terms of user-friendliness, the deterministic model was ranked last for its large
number of plant parameters and assumptions and its inability to'provide predictions without
a comprehensive set of hourly environmental data.

The predictions from the Agassiz expert system model were used for comparison
with the two mathematical models developed. With an overall RMSE value of 0.401 kg/m® |
for the entire growing season, the expert system was considered a valid model. |

When an overall comparison was made with the two math models developed in this
study, the expert model was top-ranked in terms of total score (Table 3). Although
ranked third for prediction accuracy during the peak prodﬁctivity periods it became evident
that the expert system had the greatest potential for predicting yield variations during these
iﬁtervals (Figure 18). The expert system would be capable of improving its predictive
ability with further training with site-specific, historical data sets, to become a fully
customized management tool. Another advantage of the Agassiz model was its ability to
provide predictions even for cases of missing or ambiguous data.

When the three tomato yield prediction models were compared, the Agassiz expert

system was identified as the best overall model for its prediction accuracy, ease of

application to both site-specific and general conditions, and overall user-friendliness.
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5.0 _Recommendations

From the results of this study the inherent weaknesses and strengths of each
modeling approach became clearly evident.

The empirical modeling approach using mathematical regression techniques was
éffective for providing accurate yield predictions for a site-specific case, but these site-
specific equations could not be readily épplied to .other greenhous_es. In order to
successﬁilly apply the approach developed in this study to other sites, the same
methodology would have to be repeated to identify the best erﬁpirica} model. Regression
equations with new coefficient values would need to be derived for each individual site and
compared with a similar error analysis method. However, an advantage of the empirical
approach was that it attempted to predict trends in yield productivity using weekly
environmental data. By simply applying the methodology outlined in this study, a grower
with a full year of weekly historical data énd a spreadsheet program could establish yield
predictive equations for their current growing season. Greenhouse growers may favor the
empirical modeliﬁg approach for its consistent predictability, straight-forward methodology,
and low cost for implementation.

The deterministic model aﬁplying first principle equaﬁons of photbsynthesis had the
advantage of being applicable to all general cases of tomato crop production. Using a
generalized yield conversion factor (Enoch, 1978) and cumﬁlations of net photosynthesis

activity, the deterministic model attempted to simulate actual tomato crop productivity.

However, in order to improve the accuracy of predictions during different stages of crop

growth, the development of a variable yield conversion factor may be necessary. The
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current yield conversion factor is based on fixed assumptions of dry matter partitioning and
moisture content. It is suggested that a yield conversion factor should be developed to
account for plant physiological changes in partitioning ratios throughout the various growth
phases of the tomato fruit. Modifying the method found in literature (Enoch, 1978)
average values for tomato moisture content and partitioning on a weekly or bi-weekly basis
could be used to calculate a new series of yield conversion factors for weekly intervals to
convert P values. Further research into the plant physiology of the tomato crop at
different developmental stages may be required to properly apply the deterr;ﬁnistic model.
The Agassiz expert system used for comparison in this study was identified as a
successful method for yield prediction. The structure of the model would allow its
application to both site-specific and generalized cases with minimal modification to the
model itself. In actual practise, the end-user would only be required establish a historical
database and input new environmental data weekly, to predict yields 1, 2, 3, and 4 weeks
| ahead of time. The success of the expert system is dependent on the data with which it is
trained. As a reSult, it is recommended that for the initial training of the expert system,
historical data sets with the most complete sets of parameters and charaéteristic yields be
used as input. Ideally, the more sets of data the model is trained with, the greater its
capacity to predict for trends during peak productivity periods.
A recommended improvement to the Agassiz expert model would be to include an
algorithm within the model itself, for an on-going error analysis with each week of

predictions.  Further, when training the system for predictions, error analysis for each

predict ahead model should be performed (PRE-1, PRE-2, PRE-3, PRE-4) for each
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additional year of historical data. The model could be further integrated to provide
graphical aﬁalysis of actual and predictive yields to allow end-users to monitor predictive
performance visually. A report generation program within the model including yield
forecasfcs, weekly error analyses, and graphical plots would be a useful management tool for
greenhouse growers. Ideally, a generalized expert system model for tomato crops could
be developed based on generalized sets of data from a variety of greenhouse growers.
With a generalized yield predictive model, the end-user may only need to customize the
expert model by entering one or two years of historical data to establish good predictions
for their site-specific case.

Once the Agassiz expert system is fine-tuned to provide accurate predictions for a
site-specific case, implementation of yield predictions to an on-line computer climate
control system may be feasible. Using computer algorithms related to expected yield
values, adjustmepts mayv be made to environmental settings to improve tomato crop
productivity via the climate control system. Another possibility for the expert model would
be to present the end-user with a software driven option to view the yield forecast if
modifications are made to environmental settings. Ideally, the greenhouse grower would be
allowed to experimentally change the weekly environmental settings within the software
program and view the changé in éroductivity if those changes were actually made.

Furthér, once the expert system software is advanced énough to allow experimental
changes to parameters, additional menu options could be added to the model itself. If the

user desired to increase or decrease yield productivity, the model could be programmed to

provide suggestions to achieve this effect. Eventually, the expert system could be user-
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customized with default settings to maximize yiéld during selected intervals and become a
companion program to the main climate control algorithm.

Great potential exists for the expert system approach for yield prediction. A similar
method could be applied to other greenhouse crops to develop crop and site-specific
models for each individual grower. With the encouraging results found in this study,
further research and development of expert system modeling ié recommended for

greenhouse tomato yield prediction.
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CROP YIELD MATHEMATICAL MODEL

GROSS PHOTOSYNTHESIS (Pg):~

Based on Eqn (7) in "Crop Growth, Development, and Production Modelling" by J.W. Jones

Pg= D ((*C*p(®))/K) * {In [(&*K*lo + (1 -m)* t* C *p($)) / (&*K*lo*exp (-KL) + (1 - m)*t*C*p($) ) ] }

Term

Gross Photo.

Conv. Factor

Leaf Conduct.to CO2
CO2 conc. of air

Function of Temp.
Canopy L.E. Coeff.
Leaf L.U. Eff.

Ligh Flux Density

Respiration rate @ 25*C
Light T. Coeff. Leaves

Leaf Area Index (LAI)

RESPIRATION RAT

Abbrev. Units

Pg g (CH20) / m~2*h
o
t umol (CO2) / m ™ 2*s
C umol(CQO2) / mol (air) = ppm
p($) = p(theta) Dimensionless

Note: " $ " = Theta (for notation)
K Dimensioniess
& = alpha umol (CO2) / umol (photon)
lo umol (photon)/m ™ 2*s

** Conversion from W/m ~ 2
km 0.0006
m Dimensionless
L m ™ 2(teaf) / m ~ 2(ground)

P®) =[1-(1-{($h-$)/(Sh-8i)}"2]

p($) = expresses the effect of temperature on the max. rate of photo. for a single leaf
$h = temp at which leaf photosynthesis is maximum, 30*C

$i = is temp below which leaf photosynthesis is zero, 5*C

$ = measured temp = Tin = temperature inside

Based on Eqn (5) in J.W. Jones’ paper

Rm = km * exp (0.0693*[$ - 25])

Rm = maintenance respiration rate, g CH20 / g tissue * h
km = respiration rate at 25*C, g CH20 / g tissue * h
$ = measured temp.



Based on Eqn (6) in J.W. Jones' paper

[aw/dt = E* (Pg - Rm*W) |

dW / dt = rate of dry wt. growth of crop, g tissue / m ~ 2*h

W = total plant dry weight, g/m ~ 2

E = conversion efficiency of CH20 to plant tissue, g (tissue) / g(CH20)
Pg = canopy gross photosnthesis rate, g{CH20) / m ~2*h

Rm = maintenance respiration rate, g CH20 / g tissue *h

Then, once dW/dt is known the new weight W(new) can be found:

[Winew) = W() + dw/dt

W(new) = new weight, g/m ~ 2 for that HOUR
W(i) = totalinitial plant dry weight, g/m ~2
dW/dt = rate of dry weight growth of the crop ( g tissue / m ™~ 2*h)

MULTIPLIGATIONFACTO

Based on paper by H.Z. Enoch (Acta Hort 76, 1978 p. 48)

Y = [ (30 * 100) / (44*5) ] * X or: 30/44 * X = Y * (5/100)

Y = multiplication factor to relate photosynthesis to yield

X = percentage of dry matter that is yield (ie . 50% = 0.50)
30, 44 = Mol. Weights of CH20 and CO2 respectively
5/100 = represents 5% dry matter in yield.

Based on Paper: Y = 7 (approx., based on X= 50% )

VIELD VALUE #1847 5 st ot

Based on Pg and multiplication factor "Y"

Yield Value #1 = Pg * Y

NET BHOTOSYNTHESIS'

Pnet = Pg - Rm*W

Pnet = net photosynthesis, g (CH2Q) / m ~ 2*h

Rm = maintenance resp. rate, g (CH20) / g tissue*h

W(new) = total plant dry weight, g/m "~ 2 =W = W(j) for the first assumed weight hour
Pg = gross photosynthesis, g (CH20) / m ~2*h

YIELDIVALUE #

Based on Net Photosynthesis (Pnet) and Multiplication Factor "Y*

Yield Value #2 = Pnet* Y



YIELD CONVERSION FROM GROWER's DATA!

Weight (kg /m~2) = [ Total number of 20 pound cases * 20 / (2.2*25400) ]
** Greenhouse Area = 25,400 m "~ 2

LIGHT INTENSITY CONVERSION FROM W/m 2.2 to umol / m” 2*s
lo=umol/m~2* = (|, Wm~2 /0.22) *0.80 * 0.45

lo = converted units from |, raw data entered as W/m "™ 2
| = raw data from grower in units of W/m~ 2

LEAF AREA INDEX (LAl) , L
Separate Column for varying LAI, L
Shaded Areas are
= Formula Blocks

To Follow is the Spreadsheet Layout for the Deterministic Math Model

$i = 5.0 and $h = 30.0
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Sample Spreadsheet Column Headings for the Determinisﬁc Model

I, LAI P, R, Pot 24 Hour Yield #2 Y Factor

T = Light Flux Density (umol (i)hoton) / m?*s)
LAI = Leaf Area Index
P, = Gross Photosynthesis ( g(CH,0)/m” *h)
R. = Maintenance Respiration Rate ( g(CHzo) /g tiséue* h)
Pq.et = Net Photosynthesis ( g (CH,0) / m* * h)

24 Hour Yield #2 = Yield for a 24 hour period (kg / m® ) based on
Net Photosynthesis

Y Factor = Enoch’s Yield factor of 7

Sample Spreadsheet Layout for the DETERMINISTIC MATH MODEL
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- LAl vs. Time (month)

3.5
'''' m Month LAl Value
_ T - January 0.6
3 / February 2.44
March 3.13
/ N April 3.31
2.5 w - May 306
. / “\ June 2.51
. July 1.93
o) 2 / August 1.31
= / ] September  1.18
© Qctober 1.00
> / . November 0.62
< / . December 0.00
5 1 '5 1{ RN
/ -\-
1 [/ ........ k™
.Z “m
0.5
0 T T 1 T T ’
~ 0 2 4 6 - 8 10 12
Month #

Figure Changes in Leaf Area Index (LA!) throughout the year.
A-lo Reference: de Koning. 1993
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Summary of:

Total PPF vs. Crop Yield Results

Year ' r Equation
1987 | 0.722917 y=0.95x-3528
1989 0.711196 y=099 x - 2943
1990 0.618388 y=112x-2823
1991 0.613489 y=107x-4115
1992 0.746478 y =0.99 x - 33.53
1993 0672635 y=102x-6831
1987 - 1993 | 0.668588 y =0.00025 x - 0.07858
Where:

x = 9 week cumulated photosynthetic photon flux (PPF)
y = crop yield in grams/plant

Given yield in kg/m’, and plant density of 2.5 plants/m>

Crop Yield (grams/plant) = Yield (kg/m?) *(Plants / m*)* (1000 g/ kg)

The best correlated data for light (9 week PPF) and crop yield (g/plant) as
analysed by the r* correlation coefficient was found to be the 1992 data
with a value of 0.746478.
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EMPIRICAL MATH MODEL REGRESSIQN RESULTS (Equation 1)

REGRESSION RESULTS FOR LIGHT ALONE (CLy)
(Cumulative Light for 9 weeks, W/m?)

Y=ap+a; (CL?) ....... vevenesneens(1)
RMSE Résults
for 1994 Predictions
ap a
1987 Equation......... -0.08819 0,060014 0.489258
1989 Equation......... -0.0736 0.0000147 0.441116
1990 Equation........ -0.07057 0.0000165 0.382832 (Eqn. 1.1)
1991 Equation......... -0.10287 0.0000158 0.408559
1992 Equation........ -0.08383 0.0000145 0.457382 (Eqn. 1.2)
1993 Equation....."... -0.17077 0.0000150 0.482722
- 1987-1993 Eqn....... -0.07858 0.00001479 0.439355

Where:

a is the constant for predictive equation 1
a; is the coefficient for predictive equation 1 (CLy)

“1992 Equation” means the regression equation based on fitting 1992 data
to regression equation 1.

RMSE for 1994 Predictions: is the calculated root-mean-square-error of

tomato yield predictions for 1994 using that particular year’s regression
equation.

For example, using the 1992 Equation of:

Y = -0.08383 + 0.0000145 (CLs) to predict 1994 yield (with 1994 data),

the root-mean-square-error of the predictions was found to be:  0.457382

Table A-2
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1994 Predicted Yields
Cumulative Light Based (CL )

Yield (kg/m "™ 2)
g

O i i 1 T I T I 1
5 10 15 20 25 30 35 40 45 50

1994 Week Number

— Actual Yield == 1987 Eqn. —+ 1989 Eqn.
- 1990 Egn. 3%~ 1991 Eqgn.

Figure Predicted yields for 1994 production based on regression
A-18 equations derived from light data from 1987 to 1991.
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1994 Predicted Yields
Cumulative Light Based (CL J

Yield (kg/m ~ 2)
&

I T I i

5 10 15 20 25 30 35 40 45 50
1994 Week Number

l—— Actual Yield -5~ 1993 Eqn. —- 1987 to 1993 Eqn. ¢ 1992 Eqn. |

Figure  Predicted yields for 1994 production based on regression
A-19 equations derived from light data (1992, 1993, and '87 - '93)
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EMPIRICAL MATH MODEL REGRESSION RESULTS (Equation 2) -

REGRESSION RESULTS FOR LIGHT and HEAT (CLs and CHy)
(Cumulative Light for 9 weeks, W/m” and Cumulative Heat Units for 9 weeks)

sz =ap+a, (CL9) + a, (CH9)

A9
1987 Equation......... 0.52199
1989 Equatton......... 4.25232
1990 Equation........ 2.38054
1991 Equation......... 3.76864
1992 Equaiion ........ 2.39584
1993 Equation......... 0.77455
1987-1993 Eqn....... 0.770725

Where:

ay

0.00001207

0.00002708

. 0.00002444

0.00002193

0.00001513

0.00001349

0.00001364

az

-0.0043454

-0.057994

-0.033809

-0.0480305

-0.0300318

-0.0092041

-0.0080933

ap is the constant for predictive equation 2

ay is the coefficient for predictive equation 2 (CLo)
a, is the coefficient for predictive equation 2 (CHy)

RMSE Results

for 1994 Predictions
0.440142

0.692027

0.542205 (Eqn. 2.2)
0.527883

0.353099 (Eqn. 2.1)
0.425785 |

0.379579

“1992 Equation” means the regression equation based on fitting 1992 data
to regression equation 2.

RMSE for 1994 Predictions: is the calculated root-mean-square-error of
tomato yield predictions for 1994 using that particular year’s regression

equation.

For example, using the 1992 Equation of:
Y =2.39584 +0.00001513 (CLo) -0.030018(CHp) to predict 1994 yields
(with 1994 data), the root-mean-square-error of the predictions was found

tobe: 0.353099

Table A-3




Yield (kg/m "™ 2)

m

1994 Predicted Yields

Light(CL ) and Temperature(CH g) Based

3.5
3_
2.5
2_
1.5
1 -
0.5-
0 T T T T T T T
5 15 20 25 30 35 40 45
1994 Week Number
— Actual Yield /= 1987 Eqn. —><- 1989 Egn.
~£3- 1990 Eqn.  ->¢- 1991 Eqn. & 1992 Eqn.
Figure Plredicted yields for 1994 production based on regressioh

A-20

equations derived from light & heat data from 1987 to 1992,

50



Yield (kg/m~2)
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1994 Predicted Yields
Light(CL ) and Temperature(CH 9) Based

I T T 1 i U i T

10 15 20 25 30 35 40 45
1994 Week Number

| —— Actual Yield -5~ 1993 Eqn. —>- 1987 to 1993 Eqn. J

Figure  Predicted yields for 1994 production based on regression
A-2| equations derived from light & heat data (1993 and '87 - 93)

50




1987 STEPWISE REGRESSION RESULTS

Year: 1987
Data Set: D-RYALL (MR87.SYS from Systat)

Variables: VAR(3) = Yield in kg/m®

VAR(4) = 9 week cumulative light readings in W/m?
VAR(5) = 9 week cumulative heat units, degrees celsius
(each 9 wk. period = sum of 9 wk. avg temp *C - 90)
Statistical Method:

Stepwise Regression for light VAR(4) and heat units VAR(5).
All results based on dependent variable VAR(3), yield in kg/m*

113

> DEPENDENT VARIABLE  VAR(3), Yield in kg/m® <-
MINIMUM TOLERANCE FOR ENTRY INTO MODEL = .010000

FORWARD STEPWISE WITH FIRST 4 VARIABLES FORCED IN MODEL
ALPHA-TO-ENTER= .150 AND ALPHA-TO-REMOVE= 150 MAX # STEPS= 6

STEP# 0 R= .000 RSQUARE= .000
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F P
IN
-"-1 CONSTANT

ouT PART. CORR

“_2 VAR(4) 0.75591487 . . J1E+01 .45E+02 0.0000

3 VAR(S) 0.59594473 . . AE+01 19E+02 0.0001

STEP # 1 R= .756 : : RSQUARE= 571
TERM ENTERED: VAR(4)

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F P
IN

“:I CONSTANT

2 VAR(4) 0.00001021 0.00000152 .076E+01 .1E+01 .45E+02 0.0000
ouT PART. CORR

3 VAR(5) -0.13153800 . ) 0.27982 0.58103 0.4513
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1987 STEPWISE REGRESSION RESULTS

STEP# 2 © R= .761 RSQUARE= .579
TERM ENTERED: VAR(S)
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE - F'P'
IN

1 CONSTANT

2 VAR(4) 0.00001207 0.00000288 .089E+01 0.27982 .18E+02 0.0002

3 VAR(5) -0.00434545 -0.00570082 -.016E+01 0.27982 0.58103 0.4513

OUT = PART.CORR

none

THE SUBSET MODEL INCLUDES THE FOLLOWING PREDICTORS:

CONSTANT

VAR(4)

VAR(S)

DEP VAR: VAR@) N: 36 MULTIPLE R: 0.761 SQUARED MULTIPLE R: 0.579
ADJUSTED SQUARED MULTIPLE R: .553  STANDARD ERROR OF ESTIMATE: 0.28657972
VARIABLE ~ COEFFICIENT STDERROR STD COEF TOLERANCE T P(2 TAIL)
CONSTANT  0.52199056 ~0.30523030 0.00000000 . 1.71015 0.09663
VAR(4) 0.00001207 ~0.00000288 0.89406748 0.2798160  4.18631 0.00020
VAR(5) -0.00434545 ~ 0.00570082 -0.16279360 0.2798160 -0.76225 0.45132

ANALYSIS OF VARIANCE
SOURCE SUM-OF-SQUARES DF MEAN-SQUARE  F-RATIO P

REGRESSION - 3.72465308 2 1.86232654 22.67592009 0.00000064
RESIDUAL 2.71022192 33 0.08212794

DEPENDENT VARIABLE VAR(3)
MINIMUM TOLERANCE FOR ENTRY INTO MODEL = .010000

FORWARD STEPWISE WITH FIRST 4 VARIABLES FORCED IN MODEL
ALPHA-TO-ENTER= .150 AND ALPHA-TO-REMOVE= .150 MAX # STEPS= 6
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1989 _STEPWISE REGRESSION RESULTS

Year: 1989
Data Set.  D-RYALL (MR89.SYS from Systat)

Variables: VAR(3) = Yield in kg/m?
VAR(4) = 9 week cumulative light readings in W/m?*
VAR(5) = 9 week cumulative heat units, degrees celsius
(each 9 wk. period = sum of 9 wk. avg temp *C - 90)

Statistical Method.
Stepwise Regression for light VAR(4) and heat units VAR(5).
All results based on dependent variable VAR(3), yield in kg/m?

> DEPENDENT VARIABLE  VAR(3), Yield in kg/m® <-
DEPENDENT VARIABLE  VAR(3)
* MINIMUM TOLERANCE FOR ENTRY INTO MODEL = 010000
| 'FORWARD STEPWISE WITH FIRST 4 VARIABLES FORCED IN MODEL
ALPHA-TO-ENTER= .150 AND ALPHA-TO-REMOVE= .150 MAX # STEPS= 6

STEP# O R= .000 RSQUARE= .000

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F ‘P’
IN '

"1 CONSTANT

ouT PART. CORR

"2 VAR@) 0.76284622 . . AE+01 52E+02 0.0000

3 VAR(5) 0.43172526 . . .1E+01 8.47615 0.0061

STEP# 1 | R= .763 RSQUARE= 582
TERM ENTERED: VAR(4)
'VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F P’
IN |

1 CONSTANT

2 VAR(4) 0.00001285 0.00000179 .076E+01 .1E+01 .52E+02 0.0000
ouT PART. CORR

3 VAR(5) -0.73518613 . . 0.24047 42E+02 0.0000




116
1989 STEPWISE REGRESSION RESULTS

STEP# 2 R= .899 RSQUARE= .808
. TERM ENTERED: VAR(5)
VARIABLE COEFFICIENT STD ERROR STD COEF .TOLERANCE F P
IN
1 CONSTANT
2 VAR(4) 0.00002708 0.00000251 .161E+01 0.24047 .12E+03 0.0000
3 VAR(5) -0.05799486 -0.00891219 -.097E+01 0.24047 .42E+02 0.0000
ouT PART. CORR

none

THE SUBSET MODEL INCLUDES THE FOLLOWING PREDICTORS:

CONSTANT

VAR(4)

VAR(5)

DEP VAR: VAR(3) N: 39 MULTIPLE R: 0.899 SQUARED MULTIPLE R: 0.808
ADJUSTED SQUARED MULTIPLE R: .797 STANDARD ERROR OF ESTIMATE: 0.22600488
VARIABLE  COFFFICIENT STD ERROR  STD COEF TOLERANCE T P(2 TAIL)
CONSTANT 4.252326557 0.64683641 0.00000000 . 6.57404 0.00000
VAR(4) 0.00002708 , 0.00000251 1.60766401 0.2404687 .11E+02 0.00000
VAR(S5) -0.05799486 . 0.00891219 -0.96937144 0.2404687  -6.50736 0.00000

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

REGRESSION  7.73327686 2 3.86663843 75.70035554 0.00000000
RESIDUAL 1.83881545 36 0.05107821
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1990 _ ___STEPWISE REGRESSION RESULTS

Year: 1990
Data Sett  D-RYALL (MR90.SYS from Systat)

Variables: VAR(3) = Yield in kg/m? _
VAR(4) = 9 week cumulative light readings in W/m?
VAR(5) = 9 week cumulative heat units, degrees celsius
{each 9 wk. period = sum of 9 wk. avg temp *C - 90)

Statistical Method:
Stepwise Regression for light VAR(4) and heat units VAR(5).
All results based on dependent variable VAR(3), yield in kg/m?

-> DEPENDENT VARIABLE VAR(3), Yield in kg/m® <-
DEPENDENT VARIABLE VAR(3)
MINIMUM TOLERANCE FOR ENTRY INTO MODEL = .010000

FORWARD STEPWISE WITH FIRST 4 VARIABLES FORCED IN MODEL
ALPHA-TO-ENTER= .150 AND ALPHA-TO-REMOVE= .150 MAX # STEPS= 6

STEP# O R= .000 RSQUARE= .000
VARIABLE. COEFFICIENT STD ERROR STD COEF TOLERANCE F 'P'
IN |
-—; CONSTANT
ouT PART. CORR
"—2 VAR(4) 0.67698642 . . JAE+01 .31E+02 0.0000

3 VAR(S) 0.53005288 . . 1E+01 .14E+02 0.0005
STEP# 1 R= 677 RSQUARE= 458
TERM ENTERED: VAR(4) '
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F P
IN
_1 CONSTANT ' _ '

2 VAR@4) 0.00001443 0.00000258 .068E+01 .1E+01 .31E+02 0.0000
ouT PART. CORR

3 VAR(S) -0.28777015 . . 0.16902 3.25039 0.0798
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1990 - STEPWISE REGRESSION RESULTS

STEP# 2 R= .709 RSQUARE= .503
TERM ENTERED: VAR(5)
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F 'P'
IN

1 CONSTANT

2 VAR(4) 0.00002444 0.00000609 .115E+01 0.16902 .16E+02 0.0003

3 VAR(5) -0.03380935 -0.01875293 -.052E+01 0.16902 3.25039 0.0798
OouT ~ PART. CORR

none

THE SUBSET MODEL INCLUDES THE FOLLOWING PREDICTORS:

CONSTANT
VAR(4)
VAR(5)

DEP VAR: VAR(3) N: 39 MULTIPLE R: 0.709 SQUARED MULTIPLE R: 0.503
ADJUSTED SQUARED MULTIPLE R: .476 STANDARD ERROR OF ESTIMATE: 0.43162224

VARIABLE COEFFICIENT STD ERROR  STD COEF TOLERANCE T P(2 TAIL)

CONSTANT 2.38053976~- 1.27331469  0.00000000 . 1.86956 0.06970
VAR(4) 0.00002444 - 0.00000609  1.14660486 0.1690213 4.01265 0.00029
VAR(5) -0.03380935~ 0.01875293 -0.51516956 0.1690213 -1.80288 0.07978

ANALYSIS OF VARIANCE

'SOURCE ~ SUM-OF-SQUARES DF MEAN-SQUARE  F-RATIO p

REGRESSION  6.79227052 2 3.39613526 18.22960904 0.00000340
RESIDUAL 6.70671922 36 0.18629776
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1991 | STEPWISE REGRESSION RESULTS

Year: 1991 :
Data Set: D-RYALL (MR91.SYS from Systat)

Variables: VAR(3) = Yield in kg/m?
VAR4) = 9 week cumulative light readings in W/m?
VAR(5) = 9 week cumulative heat units, degrees celsius
(each 9 wk. period = sum of 9 wk. avg temp *C - 90)

Statistical Method.
Stepwise Regression for light VAR(4) and heat units VAR(5).
All results based on dependent variable VAR(3), yield in kg/m?

> DEPENDENT VARIABLE VAR(3), Yield in kg/m* <-
DEPENDENT VARIABLE VAR(3)
MINIMUM TOLERANCE FOR ENTRY INTO MODEL = .010000

FORWARD STEPWISE WITH FIRST 4 VARIABLES FORCED IN MODEL
ALPHA-TO-ENTER= .150 AND ALPHA-TO-REMOVE= .150 MAX # STEPS= 6

STEP# 0 R= .000 RSQUARE= 000
VARIABLE  COEFFICIENT STD ERROR STD COEF TOLERANCE F P
IN

"1 CONSTANT

ouT PART. CORR

2 VAR@) 0.65059951 . . AE+01 26E+02 0.0000

3 VAR(S) 0.26286050 . . AE+01 2.67207 0.1108
STEP# 1 R= 651 RSQUARE= 423

TERM ENTERED: VAR(4) -

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F P
N

"4 CONSTANT

2 VAR(4) 0.00001201 0.00000234 .065E+01 .1E+01 .26E+02 0.0000
ouT PART. CORR

3 VAR(5) -0.54492557 . . 0.37242 .15E+02 0.0005
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1991 STEPWISE REGRESSION RESULTS
STEP# 2 R= .771 RSQUARE= .595
TERM ENTERED: VAR(S)
VARIABLE COEFFICIENT STD ERROR S8TD COEF TOLERANCE F 'P
IN
-1 CONSTANT .
2 VAR(4) 0.00002193 0.00000326 .119E+01  0.37242 45E+02 0.0000
3 VAR(S) -0.04803047 -0.01249225 -.068E+01 0.37242 ASE+02 0.0005
ouT PART. CORR

none

THE SUBSET MODEL INCLUDES THE FOLLOWING PREDICTORS:

CONSTANT
VAR(4)
VAR(5)

DEP VAR: VAR(3) N: 38 MULTIPLE R: 0.771 SQUARED MULTIPLE R: 0.595
ADJUSTED SQUARED MULTIPLE R: .571 STANDARD ERROR OF ESTIMATE: 0.31662425

VARIABLE COEFFICIENT ‘ STD ERROR  STD COEF TOLERANCE T P(2 TAIL)

CONSTANT 3.76864580 © 0.92989756 0.00000000 . | 4.05275 0.00027
VAR(4) 0.00002193 - 0.00000326 1.18780098 0.3724207 6.73468 0.00000

VAR(5) -0.048030477 0.01249225 -0.67811428 0.3724207 -3.84482 0.00049

ANALYSIS OF VARIANCE
SOURCE SUM-OF-SQUARES DF MEAN-SQUARE  F-RATIO P

REGRESSION 5.14490480 2 2.57245240 25.66013879 0.00000014
RESIDUAL 3.50878204 35 0.10025092
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1992 . STEPWISE REGRESSION RESULTS

Year: 1992
Data Set:  D-RYALL (MR92.SYS from Systat)

Variables: VAR(3) = Yield in kg/m?
VAR(4) = 9 week cumulative light readings in W/m?
VAR(5) = 9 week cumulative heat units, degrees celsius
(each 9 wk. period = sum of 9 wk. avg temp *C - 90)

Statistical Method: .
Stepwise Regression for light VAR(4) and heat units VAR(5).
All results based on dependent variable VAR(3), vield in kg/m?

-> DEPENDENT VARIABLE VAR(3), Yield in kg/m* <-
DEPENDENT VARIABLE  VAR(3)
MINIMUM TOLERANCE FOR ENTRY INTO MODEL = .010000

FORWARD STEPWISE WITH FIRST 4 VARIABLES FORCED IN MODEL
ALPHA-TO-ENTER= .150 AND ALPHA-TO-REMOVE= .150 MAX # STEPS= 6

STEP# 0 R= .000 RSQUARE= .000
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F 'P'
IN

"1 CONSTANT

ouT PART. CORR _ |

“'-2VAR(4) 0.78102804 . . .1E+01 .56E+02 0.0000

3 VAR(5) -0.24309995 . . AE+01 226114 0.1414

STEP # 1 R= .781 RSQUARE= .610
TERM ENTERED: VAR(4)

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F 'P'
IN

1 CONSTANT

" 2 VAR(4) 0.00001186 0.00000158 .078E+01 .1E+01 .56E+02 0.0000
ouT PART. CORR

3 VAR(S) -0.45593461 . . 0.63726 9.18502 0.0046
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1992 _STEPWISE REGRESSION RESULTS

STEP # 2 R= .831 RSQUARE= 691
TERM ENTERED: VAR(5) :
VARIABLE COEFFICIENT = STD ERROR STD COEF TOLERANCE F 'P'
IN

1 CONSTANT

2 VAR4) 0.00001513 0.00000179 .100E+01 0.63726 .72E+02 0.0000

3 VAR(5) -0.03003183 -0.00990927 -.036E+01 0.63726 9.18502 0.0046
ouT PART. CORR

none

THE SUBSET MODEL INCLUDES THE FOLLOWING PREDICTORS:

CONSTANT
VAR(4)
VAR(5)

DEP VAR: VAR(3) N: 38 MULTIPLE R: 0.831 SQUARED MULTIPLE R: 0.691
ADJUSTED SQUARED MULTIPLE R: 673 STANDARD ERROR OF ESTIMATE: 0.29923584

VARIABLE COEFFICIENT STD ERROR  STD COEF TOLERANCE T P{2 TAIL)

CONSTANT 2.39584015“ 0.73325947 0.00000000 . 3.26738 0.00244
VAR(4) 0.00001513 - 0.00000179 0.99584564 0.6372618 8.46172 0.00000
VAR(5) -0.03003183, 0.00990927 -0.35667547 0.6372618 -3.03068 .0.00457

ANALYSIS OF VARIANCE
SOURCE SUM-OF-SQUARES DF MEAN-SQUARE  F-RATIO P

REGRESSION 7.01081632 2 3.50540816 39.14816096 0.00000000
RESIDUAL 3.13397316 35 0.08954209
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1993 STEPWISE REGRESSION RESULTS

Year: 1993
Data Set: D-RYALL (MR93.SYS from Systat)

Variables: VAR(3) = Yield in kg/m?
VAR(4) = 9 week cumulative light readings in W/m?
VAR(5) = 9 week cumulative heat units, degrees celsius
(each 9 wk. period = sum of 9 wk. avg temp *C - 90)

Statistical Method.
Stepwise Regression for light VAR(4) and heat units VAR(5).
All results based on dependent variable VAR(3), vield in kg/m?

-> DEPENDENT VARIABLE VAR(3), Yield in kg/m’ <-
DEPENDENT VARIABLE VAR(3)
MINIMUM TOLERANCE FOR ENTRY INTO MODEL = .010000

FORWARD STEPWISE WITH FIRST 4 VARIABLES FORCED IN MODEL
ALPHA-TO-ENTER= .150 AND ALPHA-TO-REMOVE= .150 MAX # STEPS= 6

STEP# © R= .000 RSQUARE= .000
VARABLE  COEFFICIENT STD ERROR STD COEF TOLERANCE F P
IN

1 CONSTANT

ouT PART. CORR

"2 VAR@) 0.67378618 . . E+01 .29E+02 0.0000

3 VAR(5) 0.31215946 . . AE+01 3.77874 0.0600

STEP# 1 R= .674 RSQUARE= 454
TERM ENTERED: VAR(4)

VARIABLE ~ COEFFICIENT STD ERROR STD COEF TOLERANCE F P’
IN

"1 CONSTANT

2 VAR(4) 0.00001149 0.00000213 .067E+01 .1E+01 .29E+02 0.0000
ouT PART. CORR

3 VAR(S) -0.19585125 . . 0.60300 1.35618 0.2523
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1993 . STEPWISE REGRESSION RESULTS

STEP# 2 R= .689 » RSQUARE= .475
TERM ENTERED: VAR(5)
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F P’
IN

1 CONSTANT '

2 VAR(4) 0.00001349 0.00000273 .079E+01 0.60300 .24E+02 0.0000

3 VAR(S) -0.00920407 -0.00790353  -.019E+01 0.60300 1.35618 0.2523
ouT PART. CORR

none

THE SUBSET MODEL INCLUDES THE FOLLOWING PREDICTORS:

CONSTANT
VAR(4)
VAR(5)

DEP VAR: VAR(@3) N: 37 MULTIPLE R: 0.689 SQUARED MULTIPLE R: 0.475
ADJUSTED SQUARED MULTIPLE R: .444 STANDARD ERROR OF ESTIMATE: 0.32356666

VARIABLE COEFFICIENT STD ERROR STD COEF  TOLERANCE T P(2 TAIL)

CONSTANT 0.77455001/ 0.54026852 0.00000000 . 1.43364 0.16081

VAR(@4) 0.00001349 - 0.00000273 0.79121212  0.6030001 4.94405 0.00002

VAR(S) -0.00920407 - 0.00790353 -0.18636692 0.6030001 -1.16455 0.25231

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE  F-RATIO P

REGRESSION 3.21974609 2 1.60987305 15.37673359 0.00001753
RESIDUAL 3.55964310 .34 0.10469539




1987 - 1993

STEPWISE REGRESSION RESULTS

Year: 1987 - 1993

Data Set.  D-RYALL (MR8793.SYS from Systat)

Variables: VAR(3) = Yield in kg/m®
VAR(4) = 9 week cumulative light readings in W/m?
VAR(5) = 9 week cumulative heat units, degrees celsius

Statistical Method:

(each 9 wk. period = sum of 9 wk. avg temp *C - 90)

Stepwise Regréssion for light VAR(4) and heat units VAR(5).
All results based on dependent variable VAR(3), vield in kg/m®

125

-> DEPENDENT VARIABLE = VAR(3), Yield in kgym’ <-

DEPENDENT VARIABLE

VAR(3)

MINIMUM TOLERANCE FOR ENTRY INTO MODEL = .010000

FORWARD STEPWISE WITH FIRST 4 VARIABLES FORCED IN MODEL

ALPHA-TO-ENTER= .150

AND ALPHA-TO-REMOVE= .150 MAX # STEPS= 6

STEP# O R= .000 RSQUARE= .000
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F P
IN
'——; CONSTANT
ouT PART. CORR
_“2 VAR(4) 0.71031954 . . E+01 .23E+03 0.0000

3 VAR(S) 0.34628936 . . AE+01 31E+02 0.0000
STEP # 1 R= .710 RSQUARE= .505
TERM ENTERED: VAR(4)
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F P
IN
—1 CONSTANT ‘

2 VAR(4) 0.00001190 0.00000079 .071E+01 .1E+01 .23E+03 0.0000
ouT PART. CORR

3 VAR(S) -0.18303353 . . 0.60489 7.76440 0.0058
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1987 - 1993 STEPWISE REGRESSION RESULTS

STEP# 2 R= 722 RSQUARE= .521
TERM ENTERED: VAR(3)
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F ‘P
IN

1 CONSTANT : .

2 VAR(4) 0.00001364 0.00000100 .081E+01  0.60489 .19E+03 0.0000

3 VAR() -0.00809330  -0.00290450 -.017E+01  0.60489 7.76440 0.0058
ouT PART. CORR

none

THE SUBSET MODEL INCLUDES THE FOLLOWING PREDICTORS:

CONSTANT
VAR@)
VAR(5)

DEP VAR: VAR(3) N: 227 MULTIPLE R: 0.722 SQUARED MULTIPLE R: 0.521
ADJUSTED SQUARED MULTIPLE R: .517 STANDARD ERROR OF ESTIMATE: 0.34617793

| .
VARIABLE COEFFICIENT STD ERROR STD COEF  TOLERANCE T  PRTAIL

CONSTANT 0.77072466 - 0.21153971  0.00000000 . 3.64340 0.00033

VAR(4) 0.00001364. 0.00000100 0.81444264 0.6048929 .14E+02 0.00000
VAR(5) -0.00809330., 0.00290450 -0.16564933 0.6048929 -2.78647 0.00579

ANALYSIS OF VARIANCE
SOURCE SUM-OF-SQUARES DF MEAN-SQUARE  F-RATIO | P

REGRESSION 2921550328 2 14.60775164 .121895E+03 0.00000000
RESIDUAL 26.84397160 224 0.11983816
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EMPIRICAL MATH MODEL

STATISTICAL RESULTS FOR EQUATIONS 3.1 and 4.1

Light & Heat (3,6,9 week) Combined Step-Wise Regression
1992 Equation for Yield Prediction

Definition of Variables:

VAR(10) = Yield (kg/m*2)

VAR( 5) = Cumulative Light for 3 weeks (W/m*2)
VAR( 6) = Cumulative Light for 6 weeks (W/m*2)
VAR( 4) = Cumulative Light for 9 weeks (W/m*2)
VAR(16) = Cumulative Heat for 3 weeks (*C)
VAR(15) = Cumulative Heat for 6 weeks (*C)
VAR(14) = Cumulative Heat £for 9 weeks (*C)

EQUATION LAYOUT:

VAR(10) = CONSTANT + a,VAR(5) + a,VAR(6) + a,VAR(4) + a,VAR(16) + a,VAR(15) + a,VAR(14)

Where 'CONSTANT' and a, to a, are to be determined.

Step-Wise Regression Results (Based on 1992 Data)

DEPENDENT VARIABLE VAR(10) = Four Week Ahead Actual Yield

MINIMUM TOLERANCE FOR ENTRY INTO MODEL = .010000

FORWARD STEPWISE WITH FIRST 8 VARIABLES FORCED IN MODEL

ALPHA-TO-ENTER= .150 AND ALPHA-TO-REMOVE= .150 MAX # STEPS= 14

. ) s

STEP # 0 R= .000 RSQUARE= .000

VARIABLE COEFFICIENT STD ERRCR STD COEF TQLERANCE ¥ 'p!

IN
1 CONSTANT

ouT PART. CORR
2 VAR(5) 0.83258920 . '. J1E+01  .88E+02 0.0000
3 VAR({6) 0.78185025 . . .1E+01  .61E+02 0.0000
4 VAR(4) 0.68540368 . . L1E+01 L 35E+02 0.0000
5 VAR(16) 0.60663037 . . L1E401 L 23E+402 0.0000
6 VAR(15) 0.5681925¢ . . L1E+401 L19E+402  0.0001
7 VAR (14) 0.53326428 . . L1E+01 L 15E+02  0.0003

STEP # 1 R= .833 RSQUARE= . 693

TERM ENTERED: VAR(5)

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T F 'pY

IN
1 CONSTANT
2 VAR(5) ' 0.00003932 0.00000419 :083E+01 .1E+01 .88E+02 0.0000

ouUT PART. CORR



3 VAR{6) ~0.07246533 . . 0.09069 0.20060 0.6568
4 VAR(4) -0,11529719 . . 0.25680 0.51196 0.4787
5 VAR(16) 0.11202455 . . 0.54637 0.48294 0.4913
6 VAR(15) 0.10239134¢ . . 0.60371 0.40261 0.5295
7 VAR(14)  0.06869768 . . 0.63510 0.18019 0.6736
STEP # 2 R= .834 RSQUARE= ,695
TERM ENTERED: VAR(6) g
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F 'p!
IN
*1 CONSTANT
2 VAR(5) 0.00004532  0.00001405 .096E+01 0.09069 .10E+02 0.0026
3 VAR(6) -0.00000332 -0.00000742 -.013E+01 0.09069 0.20060 0,6568
ouT PART. CORR
4 VAR(4) -0.12780013 . 0.03675 0.61435 0.4381
5 VAR(16) 0.12679220 . 0.53004 0.60454 0.4418
6 VAR(15) 0.12233083 . 0.57265. 0.56211 0.4582
7 VAR(14) 0.09128331 . 0.59089 0.31090 0.5805
STEP # 3 R= .837 RSQUARE= ,700
TERM ENTERED: VAR(4)
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F 'p!
IN
1 CONSTANT
2 VAR(S5) 0.00003448  0.00001977 .073E+01 0.04630 3.04195 0.0894
3 VAR(S6) 0.00001098 . 0.00001972 .044E+01 0.01298 0.31025 0.5809
4 VAR(4) -0.00109713 -0.00139975 -.037E+01 0,03675 0.61435 0.4381
ouT PART. CORR ‘
5 VAR(16) 0.12114063 . 0.52853 0.53617 0.4688
6 VAR(15) 0.11464885 . 0.56987 0.47950 0.4931
7 VAR(14) 0.09119794 . 0.59087 0.30193 0.5661
STEP # 4 R= .839 RSQUARE= ,704
TERM ENTERED: VAR(16)
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F 1pt
IN
1 CONSTANT
2 VAR(5) 0.00003387  0.00001991 .072E+01 0.04622 2.89251 0.0976
3 VAR(6) 0.00000930  0.00001998 .037E+01 0.01281 0.21668 0.6444
4 VAR(4) -0.00104205 -0.00141062 -,035E+01 0.03664 0.54570 0.4649
5 VAR({16) 0.00831282  0.01135264 .09129784 0.52853 0.53617 0.4688
ouT PART. CORR
6 VAR(15) -0.00178971 . 0.05454 0.00011 0.9916
7 VAR(14) -0.04931388 . 0.09570 0.08532 0.7719
STEP # 5 R= .839 RSQUARE= .704
TERM ENTERED: VAR(15)
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F tpt’
IN
1 CONSTANT
2 VAR(S) 0.00003382  0.00002069 .072E+01 0.04405 2.67310 0.1110
3 VAR(6) 0.00000933  0.00002045 .037E+01 0.01257 0.20809 0.6511
4 VAR(4) =0.00104297 -0.00143331 -.035E+01 0.03650 0.52950 0.4717
5 VAR(16) 0.00868756  0.03721875 .09541359 0.05058 0.05448 0.8168
6 VAR(15) ~0.00022289 -0,02105054 .00416809 0.05454 0.00011 0.9916

ouT PART. CORR




3 VAR(6) ~0.07246533 0.09069 0.20060 0.6568
4 VAR(4) -0.11529719 0.25680 0.51196 0.4787
5 VAR(16) 0.11202455 0.54637 0.48294 0.4913
6 VAR(15) 0.10239134 0.60371 0.40261 0.5295
7 VAR(14) 0.06869768 0.63510 0.18019 0.6736
STEP # 2 R= .834 RSQUARE= ,695
TERM ENTERED: VAR(6) .
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F =
IN
1 CONSTANT
2 VAR(5) 0.00004532  0.00001405 .096E+01 0.09069 .10E+02 0.0026
3 VAR(6) -0.00000332 -0.00000742 -.013E+01 0.09069 0.20060 0.6568
ouT PART. CORR
4 VAR(4) -0.12780013 0.03675 0.61435 0.4381
5 VAR(186) 0.12679220 0.53004 0.60454 0.4418
6 VAR(15) 0.12233083 0.57265 0.56211 0.4582
7 VAR(14) 0.09128331 0.59089 0.31090 0.5805
STEP # 3 R= .837 RSQUARE= .700
TERM ENTERED: VAR (4)
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F a:1
IN
1 CONSTANT
2 VAR(5) 0.00003448  0.00001977 .073E+01 0.04630 3.04195 0.0894
3 VAR({6) 0.00001098  0.00001972 .044E+01 0.01298 0.31025 0.5809
4 VAR(4) -0.00109713 -0.00139975 -.037E+01 0.03675 0.61435 0.4381
ouT PART. CORR
5 VAR(16) 0.12114063 0.52853 0.53617 0.4688
6 VAR(15) 0.11464885 "0.56987 0.47950 0.4931
7 VAR(14) 0.09119794 0.59087 0.30193 0.5861
STEP # 4 R= .839 RSQUARE= ,704
TERM ENTERED: VAR (16)
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F Tpr
IN
1 CONSTANT
2 VAR(5) 0.00003387  0.00001991 .072E+01 0.04622 2.89251 0.0976
3 VAR({6) 0.00000930- 0.00001998 .037E+01 0.01281 0.21668 0.6444
4 VAR(4) -0.00104205 -0.00141062 -.035E+01 0.03664 0,54570 0.4649
5 VAR(16) 0.00831282  0.01135264 .09129764 0.528%3 0.53617 0.4688
ouT PART. CORR
6 VAR(15) -0.00178971 0.05454 0.00011 0.9916
7 VAR(14) ~0.04931388 0.09570 0.08532 0.7719
STEP # 5 R= .B839 RSQUARE= ,704
TERM ENTERED: VAR(15) .
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F 'pr
IN
1 CONSTANT
2 VAR(5) 0.00003382  0.00002069 - .072E+01 0.04405 2.67310 0.1110
3 VAR(6) 0.00000933  0.00002045 .037E+01 0.01257 0.20809 0.6511
4 VAR(4) -0.00104297 -0.00143331 -.035E+01 0.03650 0.52950 0.4717
5 VAR(16) 0.00868756  0.03721875 .09541359 0.05058 0.05448 0.8168
6 VAR(15) -0.00022289 -0.02105054 .00416809 0.05454 0.00011 0.9916
OUT PART. CORR

129
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7 VAR (14) -0.11478835 . . 0.01651 0.45398 0.5050

STEP # 6 R= .841 RSQUARE= .708
TERM ENTERED: VAR (14)
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F 'p’
IN
1 CONSTANT
2 VAR(5) 0.00003552 0.00002100 .075E+01 0.04342 2.86024 0.0999
3 VAR(6) 0.00000548 0.00002139 .022E+01 0.01167 0.06558 0.7994
4 VAR (4) -0.00066667 -0.00154883 -.022E+01 0.03176 0.18527 0.6696
5 VAR(16} -0.00112719 -0.04024149 .01237968 0.04395 0.00078 0.9778
6 VAR(15) 0.03107864 0.05107220 .058E+01 0.00941 0.37030 0.5469
7 VAR (14} -0.02212007 -0.03282987 -.049E+01 0.01651 0.45398 0.5050
OuT ’ PART. CORR
none
DEP VAR: VAR(10) N: 41 MULTIPLE R: 0.841 SQUARED MULTIPLE R: 0.708
ADJUSTED SQUARED MULTIPLE R: .657 STANDARD ERROR OF ESTIMATE: 0.38140815
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAILY
CONSTANT 0.34917888 0.62100805 0.00000000 . 0.56228 0.57762
VAR (5) 0.00003552 0.00002100 0.75201265 0.0434212 1.69123 0.09994
VAR (6) 0.00000548 0.00002139 0.21962994 0.0116716 0.25608 0,79943
VAR (4) ~0.00066667 0.00154883 -0.22379827 0.0317579 -0.43044 0.66960
VAR (16) -0.00112719 0.04024149 -0.01237968 0.0439517 -0.02801 0.97782
VAR (15) 0.03107864 0.05107220 0.58119010 0.0094117 0.60852 0.54688
VAR (14) -0.02212007 0.03282987 -0.48579463 0.0165150 -0.67378 0.50501

ANALYSIS OF VARIANCE

SOURCE . SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P
REGRESSION 11.99853611 6 1.99975602 13.74665598 0.00000007
RESIDUAL 4.94605413 34 0.14547218

DURBIN-WATSON D STATISTIC 1.510
FIRST ORDER AUTOCORRELATION .240

Final Regréssion Equation:

YIELD = 0.3491788 + 0.00003552 (CL,) + 0.00000548 (CL,) - 0.00066667 (CL,) - 0.00112719 (CH,) +
0.03107864 (CH,) - 0.02212007 (CH,)

Where CL, and CH, are the Cumulative Light and Cumulative Heat for 'a' weeks
respectively.




EMPIRICAL MATH MODEL

STATISTICAL RESULTS FOR 'ALTERNATIVE REGRESSION METHOD'

Light & Heat (3,6,9 week) Combined Step-Wise Regression
1992 Equation for Yield Prediction (4 weeks ahead yield)
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Definition of Variables:

VAR(9) = 4 weeks ahead Yield (kg/m*2)

VAR(3) = Cumulative Light for 3 weeks (W/m*2)
VAR(4) = Cumulative Light for 6 weeks (W/m*2)
VAR (5) = Cumulative Light for 9 weeks (W/m*2)
VAR(6) = Cumulative Heat for 3 weeks (*C)
VAR(7) = Cumulative Heat for 6 weeks (*C)
.VAR(8) = Cumulative Heat for 9 weeks (*C)

EQUATION LAYOUT:

VAR(9) = CONSTANT + a,VAR(3) + a,VAR(4) + a,VAR(5) + a,VAR(6) + a,VAR(7) + a,VAR(8)

Where 'CONSTANT' and a, to a, are to be determined.

Step-Wise Regression Results (Based on 1992 Data)

DEPENDENT VARIABLE VAR (9)

MINIMUM TOLERANCE FOR ENTRY INTO MODEL = .010000

FORWARD STEPWISE WITH FIRST 9 VARIABLES FORCED IN MODEL

ALPHA-TO-ENTER= .150 AND ALPHA-TO-REMOVE= .150 MAX # STEPS= 14

STEP # 0 R= .000 RSQUARE= .000

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F ‘Pt

IN
1 CONSTANT

ouT PART. CORR
2 VAR(3) 0.81997755 . . .1E+01  .78E+02 0.0000
3 VAR{4) 0.71710795 . . .1E+01  ,40E+02 0.0000
4 VAR(5) 0.58652376 . . .1E+01  .20E+02 0.0001
5 VAR(6) 0.55901034 . . L1E+01 L 17E+02  9.0002
6 VAR(T7) 0.50429635 . . L1E+01 L 13E+02  0.0009
7 VAR(8) 0.45908945 . . .1E+01  .10E+02 0.0029

STEP # 1 R= .820 RSQUARE= 672

TERM ENTERED: VAR({3)

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F ‘P’

IN
1 CONSTANT

2 VAR(3) 0.00003977 0.00000450 .082E+01 .1E+01 .78E+02 0.0000




PART. CORR

‘ouT
3 VAR(4) -0.34723606 . 0.09725 5.07284 0.0303
4 VAR(S) -0.37278569 . 0.27466 5.97175 0.0194
5 VAR (6) 0.03765418 . 0.56170 0.05253 0.8200
6 VAR(7) -0.04839489 0.58919 0.08686 0.7699
7 VAR(8) -0.08879462 0.62907 0.29404 0.5909

STEP # 2 R= .844 RSQUARE=  .712

TERM ENTERED: VAR (4)

VARIABLE COEFFICIENT  STD ERROR STD COEF TOLERANCE  F  'P!

IN
1 CONSTANT
2 VAR(3) 0.00006913  0.00001372 .143E+01 0.09725 .25E+02 0.0000
3 VAR(4) -0.00001641 =-0.00000729 ~.064E+01 0.09725 5.07284 0.0303

ouT PART. CORR
4 VAR(5) -0.14479167 0.03967 0.77089 0.3858
5 VAR(S) 0.09267208 0.55079 0.31185 0.5800
6 VAR(7) 0.02907883 0.56169 0.03047 0.8624
7 VAR(8) 0.00493994 0.58369 0.00088 0.9765

STEP # 3 R= .B47 RSQUARE=  .718

TERM ENTERED: VAR(5)

VARIABLE COEFFICIENT  STD ERROR STD COEF TOLERANCE  F  'P'

N
1 CONSTANT ,
2 VAR(3) 0.00005730  0.00001927 .118E+01 0.04965 8.84633 0.0052
3 VAR(4) -0.00000079 -0.00001923 .03076607 0.01405 - 0.00170 0.9674
4 VAR(S) -0.00000705 =-0.00000803 -.039E+01 0.03967 0.77089 0,3858

out - PART. CORR
5 VAR (6) 0.08444639 0.54852 0.25138 0.6192
6 VAR(7) 0.01526350 0.55640 0.00816 0.9286
7 VAR(8) 0.00355501 0.58364 0.00044 0.9833

STEP # 4 R= .848 RSQUARE=  .720

TERM ENTERED: VAR (6)

VARIABLE COEFFICIENT  STD ERROR STD COEF TOLERANCE F  'B!

N
1 CONSTANT
2 VAR(3) 0.00005673  0.00001950 .117E+01 0.04948 8.46182 0.0063
3 VAR(4) -0.,00000189 -0.00001956 .07355506 0.01387 0.00938 0.9234
4 VAR(S5) -0.00000679 -0.00000814 -.038E+01 0.03951 0.69702 0.4095
5 VAR (6) 0.00665415  0.01327160 .06055901 0.54852 0.25138 0.6192

our PART. CORR
6 VAR(7) -0.20307304 0.05696 1.46242 0.2349
7 VAR(8) -0.15773190 0.12118 0.86748 0.3582

STEP # 5 R= .855 RSQUARE= .731

TERM ENTERED: VAR (7)

VARIABLE COEFFICIENT  STD ERROR STD COEF TOLERANCE F  'P!

N
1 CONSTANT .
2 VAR(3) 0.00005066  0.00002001 ,104E+01 0.04637 6.40679 0.0162
3 VAR(4) 0.00000303  0.00001985 .012E+01 0.01328 0.02336 0.8794
4 VAR(S5) -0.00000791 -0.00000814 -.044E+01 0.03900 0.94485 0.3379
5 VAR(6) 0.05386681  0.04120735 .049E+01 0.05616 1.70881 0.1999
6 VAR(7) -0.03271546 -0.02705307 -.045E+01 0.05696 1.46242 0.2349
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ouT PART. CORR
7 VAR(8) 0.03349897 0.03169 ., 0.03707 0.8485
STEP # 6 R= .855 RSQUARE=  .732
TERM ENTERED: VAR(8)
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F 'p
IN
1 CONSTANT )
2 VAR(3) 0.00005016  0.00002047 '.103E+01 0.04561 6.00256 0.0198
3 VAR(4) 0.00000414  0.00002094 .016E+01 0.01229 0.03906 0.8445
4 VAR (5) -0.00000853 =-0.00000886 —-.047E+01 0.03380 0.92609 0.3429
5 VAR(6) 0.05684290  0.04456955 .0S52E+01 0.04940 1.62658 0.2111
6 VAR (7} -0.04159460 '~0.05366335 -.057E+01 0.01490 0.60078 0.4438
7 VAR (8) 0.00611141  0.,03174018 .09750775 0.03169 0.03707 0.8485
ouT PART. CORR
none
DEP VAR: VAR(9)  N: 40 MULTIPLE R: 0.855 SQUARED MULTIPLE R: 0.732
ADJUSTED SQUARED MULTIPLE R: .683 STANDARD ERROR OF ESTIMATE:  0.36795680

T P(2 TAIL)

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE

CONSTANT 0.46699163 0.70285733 0.00000000 . 0.66442

VAR (3) 0.00005016 0.00002047 1.03422418 0.0456141 2.45001

VAR (4) 0.00000414 0.00002094 0.16075081 0.0122872 0.19764

VAR (5) -0.00000853 0.00000886 -0.47190541 0.0338014 -0.96234

VAR (6) " 0.05684290 0.04456955 0.51732383 0.0494018 1.27538

VAR (7) -0.04159460 0.05366335 -0.57251194 0.0148984 -0.77510

VAR(8) 0.00611141 0.03174018 0.09750775 0.0316941 0.19255
ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO

REGRESSION 12.18925463 6 2.03154244 15.00486965 0.00000003

RESIDUAL 4.46794287 33 0.13539221

SCOOOODOO

.51104
.01976
.84454
.34288
.21108
. 44380
.84850

Final Regression Equation:
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YIELD = 0.46699163 + 0.00005016(CL,) + 0.00000414 (CL) - 0.00000853 (CL,) + 0.05684290 (CH,) -

0.04159460 (CH,) + 0.00611141 (CH,)

Where CL, and CH, are the Cumulative Light and Cumulative Heat for 'a' weeks

respectively. -
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EMPIRICAL MATH MODEL (HUMIDITY TRIAL)

STEP-WISE STATISTICAL RESULTS FOR:

Light & Heat & Humidity (3, 6 9 week) Combined Step-Wise Regression
1992 Equation for Tomato Yield Prediction

Definition of Variables:

VAR( 9) = Yield (kg / m*2)
VAR( 3) = Cumulative Light for 3 weeks ( W/ m”*2)
VAR( 4) = Cumulative Light for 6 weeks ( W/ m”2)
" VAR( 5) = Cumulative Light for 9 weeks ( W / m*2)
VAR( 6) = Cumulative Heat for 3 weeks ( *C)
VAR( 7) = Cumulative Heat for 6 weeks ( *C)
VAR( 8) = Cumulative Heat for 9 weeks ( *C)
VAR(19)= Humidity, Vapor Pressure Deficit Avg. for 3 weeks (kPa)
VAR(20)= Humidity, Vapor Pressure Deficit Avg. for 6 weeks (kPa)
VAR(21)= Humidity, Vapor Pressure Deficit Avg. for 9 weeks (kPa)

EQUATION LAYOUT:

VAR(9) = CONSTANT + a,VAR(3) + a,VAR(4) + a,VAR(5) + a,VAR(6) + a,VAR(7) +
a,VAR(8) + a,VAR(19) + a,VAR(20) + a,VAR(21)

STEP # "l R= .820 RSQUARE= .673
TERM ENTERED: VAR(3) :

VARITABLE \ COEFFICIENT STD ERROR STD COEF TOLERANCE F 'p!
IN
1 CONSTANT :
2 VAR(3) 0.00003767 0.00000405 .082E+01 .1E+01 .86E+02 0.0000
ouT PART. CORR
3 VAR (4) 0.52099545 - 0.07492 .15E+02- 0.0003
4 VAR(S) 0.51599741 0.21251 .15E+02 0.0004
5 VAR(6) 0.41882792 0.46353 8.72209 0.0052
6 VAR(7) 0.34316870 0.52028 5.47287 0.0243
7 VAR(8) ©0.319897085 0.57098 4.67641 0.0365
8 VAR(19) 0.28913879 0.98058 3.74035 0.0600
9 VAR(20) 0.07158818 0.94214 0.21120 0.6483
10 VAR(21) - 0.08411291 0.94064 0.29214 0.5918
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STEP # 2 R= ,873 RSQUARE= .762
TERM ENTERED: VAR (4)
VARIABLE COEFFICIENT  STD ERROR STD COEF TOLERANCE  F rp
IN
1 CONSTANT
2 VAR(3) -0.00001041 -0.00001279 -.023E+01 0.07492 0.66273 0.4203
3 VAR(4) 0.00002623 0.00000671 .109E+01 0.07492 .15E+02 0.0003
ouT PART. CORR '
4 VAR(S5) 0.10479260 . 0.03056 0.44414 0.5090
S VAR(6) 0.37222300 . . 0.44360 6.43334 0.0152
6 VAR(7) 0.26183291 . 0.48968 2.94410 0.0939
7 VAR(8) 0.23000082 . . 0.53551 2.23421 0.1428
8 VAR(19) 0.37526138 . ) 0.97720 6.55608 0.0143
9 VAR (20) 0.07520101 . . 0.94195 0.22749 0.6360
10 VAR(21) 0.00796328 . . 0.91989 0.00254 0.9601
STEP # 3 R= .874 RSQUARE= .764
TERM ENTERED: VAR (5)
VARIABLE COEFFICIENT  STD ERROR STD COEF TOLERANCE  F p
IN '
1 CONSTANT _
2 VAR(3) 20.00000220 -0.00001783 .04782375 0.03909 0.01517 0.9026
3 VAR(4) 0.00001524 0.00001782 .063E+01 0.01077 0.73185 0.3974
4 VAR(S5) 0.00000493  0.00000739 .029E+01 0.03056 0.44414 0.5090
ouT PART. CORR
5 VAR (6) 0.36826236 . 0.44176 6.11890 0.0178
6 VAR(7) 0.25623690 . 0.48704 2.74058 0.1059
7 VAR(8) 0.21882036 . 0.52530 1.96132 0.1693
8 VAR(19) 0.36258689 ) 0.88100 5.90342 0.0198
9 VAR(20) 0.05869590 ) 0.91519 0.13483 0.7155
10 VAR(21) -0.01704183 . 0.86984 0.01133 0.9158
STEP # -4 R= ,892 RSQUARE= .796
TERM ENTERED: VAR (6) .
VARIABLE COEFFICIENT  STD ERROR STD COEF TOLERANCE  F p
IN '
1 CONSTANT
2 VAR(3) -0.00000697 -0.00001690 -.015E+01 0.03858 0.17012 0.6823
3 VAR(4) 0.00001438  0.00001678 .060E+01 0.01077 0.73421 0.3968
4 VAR(5) 0.00000382  0.00000697 .023E+01 0.03044 0.29924 0.5875
5 VAR(6) 0.01910167  0.00772209 .027E+01 0.44176 6.11890 0.0178
ouT PART. CORR
6 VAR(7) -0.40366647 ; . 0.03388 7.39734 0.0098
7 VAR(8) -0.33029798 ) . 0.08036 4.65334 0.0374
8 VAR(19) 0.44322527 . . 0.86712 9.29007 0.0042
9 VAR(20) 0.43539595 . 0.51259 8.88867 0.0050
10 VAR(21) 0.47428924 ) 0.33216 .11E+02 0.0020
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- STEP # 5 R= .911 RSQUARE= .829
TERM ENTERED: VAR(7)
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F 'p!
IN
1 CONSTANT .
2 VAR(3) -0.00001305 -0.00001582 -.028E+01 0.03781 0.68038 0.4146
3 VAR(4) 0.00001548 0.00001556 .064E+01 0.01076 0.98936 0.3262
4 VAR(5) 0.00000457 0.00000647 * .027E+01 0.03038 0.49934 0.4841
5 VAR(6) 0.09029463 0.02713664 .127E+01 0.03073 .11E+02 0.0020
6 VAR(7) -0.03759139 -0.01382135 -.099E+01 0.03388 7.39734 0.0098
CuUT PART. CORR
7 VAR(8) 0.07802977 . . 0.01576 0.22666 0.6368
8 VAR(19) 0.62193128 . . 0.80748 .23E+02 0.0000
9 VAR(20) 0.44746344 . . 0.51031 9.26293 0.0043
10 VAR (21) 0.39482351 . . 0.29592 6.83292 0.0129
STEP # 6 R= .911 RSQUARE= .831
TERM ENTERED: VAR(8)
VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE F 'p!
IN
1 CONSTANT
2 VAR(3) ~0.00001474 -0.00001638 ~-.032E+01 0.03603 0.81047 0.3738
3 VAR(4) 0.00001801 0.00001660 .075E+01 0.00965 1.17767 0.2849
4 VAR(S) 0.00000341 0.00000698 .020E+01 0.02666 0.23875 0.6280
5 VAR(6) 0.09749132 0.03130811 .137E+01 0.02357 9.69657 0.0036
6 VAR(7) -0.05104955 -0.03152920 ~.134E+01 0.00665 2.62155 0.1139
7 VAR(8) 0.00704359 0.01479472 .026E+01 0.01576 0.22666 0.6368
ouT PART. CORR
8 VAR(19) 0.62017524 . . 0.80438 .23E+02 0.0000
9 VAR(20) 0.44201762 . . 0.49757 8.74159 0.0055
10 VAR(21) 0.41669313 . . 0.28649 7.56419 0.0093
STEP # 7 R= .946 RSQUARE= .896
TERM ENTERED: VAR(19)
VARIABLE : COEFFICIENT STD ERROR STD COEF TOLERANCE F 'p!
IN
1 CONSTANT
2 VAR(3) -0.00003216 -0.00001353 -.070E+01 0.03338 5.64930 0.0229
3 VAR(4) 0.00003744 0.00001382 .155E+01 0.00881 7.33993 0.0103
4 VAR(S) -0.00000444 -0.00000579 ~.026E+01 0.02448 0.58794 0.4482
5 VAR(6) 0.12470081 0.02555106 .176E+01 0.02238 .24E+02 0.0000
6 VAR(7) -0.05877324 . ~0.02512748 -.155E+01 0.00662 5.47093 0.0250
7 VAR(8) 0.00357863 0.01178866 .013E+01 0.01570 0.09215 0.7632
8 VAR(19) 0.69266441 0.14602588 .028E+01 0.80438 .23E+02 0.0000
ouT PART. CORR
9 VAR(20) -0.06834448 0.20402 0.16425 0.6877
. 0

10 VAR(21) ~0.37137923 .06060 5.59960 0.0236
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STEP # 8 R= .947 RSQUARE= .896
TERM ENTERED: VAR (20)

VARIABLE COEFFICIENT  STD ERROR STD COEF TOLERANCE  F P!
N
1 CONSTANT :
2 VAR(3) -0.00003287 -0.00001380 -.072E+01 0.03284 5.67163 0.0228
3 VAR(4) 0.00003840  0.00001418 .159E+01 0.00856 7.33172 0.0104
4 VAR(S) -0.00000448 -0.00000586 -.027E+01 0.02448 0.58473 0.4496
5 VAR(6) 0.12635311  0.02617240 .178E+01 0.02184 .23E+02 0.0000
6 VAR(7) -0.06235919 ~0.02691998 -.164E+01 0.00590 5.36601 0.0265
7 VAR(8) 0.00442500  0.01210936 .016E+01 0.01524 0.13353 10,7170
8 VAR(19) 0.76449037  0.23073661 .031E+01 0.32983 .11E+02 0.0022
9 VAR(20) -0.18221414 -0.44960168 .04886636 0.20402 0.16425 0.6877
ouT PART. CORR
10 VAR(21) -0.36916807 . . 0.05480 5.36484 0.0267
STEP # 9 R= .954 RSQUARE= .910
TERM ENTERED: VAR(21)
VARIABLE COEFFICIENT  STD ERROR STD COEF TOLERANCE  F 'p!
IN
1 CONSTANT
2 VAR(3) -0.00003803 -0.00001320 -.083E+01 0.03190 8.29517 0.0068
3 VAR(4) 0.00003563  0.00001342 .148E+01 0.00850 7.04483 0.0120
4 VAR(5) ' 0.00000361  0.00000654 .021E+01 0.01749 0.30470 0.5846
5 VAR(6) 0.13616252. 0.02503952 .192E+01 0.02121 .30E+02 0.0000
6 VAR(7) -0.06272876 -0.02538418 -.165E+01 0.00590 6.10671 0.0186
7 VAR(8) -0.01112060 -0.01324475 -.041E+01 0.01132 0.70497 0.4070
8 VAR(19) 1.29369637  0.31549768 .053E+01 0.15685 .17E+02 0.0002
9 VAR(20) 0.13726317  0.44581701 .03681137 0.18449 0.09480 0.7600
10 VAR(21) -2.61590639 -1.12938969 -.051E+01 0.05480 5.36484 0.0267
ouT PART. CORR
none

THE SUBSET MODEL INCLUDES THE FOLLOWING PREDICTORS:

CONSTANT
VAR (3)
VAR (4)
VAR (5)
VAR (6)
VAR(7)
VAR (8)
VAR (19)
VAR (20)
VAR (21)
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DEP VAR: VAR(9) N: 44 MULTIPLE R: 0.954 SQUARED
MULTIPLE R: 0.910 ADJUSTED SQUARED MULTIPLE R: .887
STANDARD ERROR OF ESTIMATE: 0.22643645

VARIABLE COEFFICIENT STD ERROR STD COEF TOLERANCE T P(2 TAIL)

CONSTANT 1.35770256 0.84447452 0.00000000 . 1.60775 0.11714
VAR (3) -0.00003803 0.00001320 -0.82807586 0.0319035 -2.88013 0.00683
VAR (4) 0.00003563 0.00001342 1.47884509 0.0084953 2.65421 0.01200
VAR (S) 0.00000361 0.00000654 0.21434412 0.0174902 0.55199 0.58456
VAR (6) 0.13616252 0.02503952 1.91743544 0.0212117 5.43791 0.00000
VAR (7) -0.06272876 0.02538418 -1.65176495 0.0059029 -2.47118 0.01864
VAR (8) -0.01112060 0.01324475 -0.40521191 0.0113229 -0.83962 0.40698
VAR (19) 1.29369637 0.31549768 0.53170290 0.1568509 4.10049 0.00024
VAR (20) 0.13726317 0.44581701 0.03681137 0.1844946 0.30789 0.76004
VAR (21) -2.61590639 1.12938969 -0.50810503 0.0548028 -2.31621 0.02671

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P
REGRESSION 17.69865677 9 1.96651742 38.35351215 0.00000000
RESIDUAL 1.74329777 34 0.05127346

DURBIN-WATSON D STATISTIC 2.100
FIRST ORDER AUTOCORRELATION -.083

RESIDUALS HAVE BEEN SAVED

Final Regression Equation for Light, Heat, & Humidity (3. 6, 9 wk.)

Yield (kg/ m®) = 1.3577 - 0.00003803 (CL;) + 0.00003563 (CLg) + 0.00000361 (CLy)
+0.1361 (CHj) - 0.0627 (CHg) - 0.0111 (CHg) + 1.293 (VPD,)
+0.1372 (VPDy) - 2.6159 (VPD,)

Where CL, , CH, , and VPD, are the Cumulative Light, Cumulative Heat, and
Average Vapor Pressure Deficit (VPD) for 'a' weeks respectively.
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1994 Predicted Yield - 4 Weeks Ahead

3 Light, 3 Heat, & 3 Humidity (VPD)

RMSE=0.472

Yield (kg/m ™ 2)
g

5 10 15 20 25 30 35 40 45 50
Week Number

— Actual Yield —&— 8L, 3H, 3VPD, Egn.

Figure A-22 Predicted yield for 4 weeks ahead using 3 light, 3 heat,
3 humidity variables. (CL3,6,9, CH3,6,9, VPD 3,6,9)




