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Abstract

This disquisition presents a qualitative study that investigated the complicit nature of
theory and practice in mathematics teaching. Situated within an ecological perspective,
this research interrogates the role that theory plays as a cognizing domain in which
one’s pedagogy of teaching mathematics co-exists and co-evolves. A systemic
exploration of mathematics and the teaching and learning of it is conducted and
assessed against tenets of complexity, sustainability, languaging, co-emergence,
integration, and recursion. This study reveals the impact that theoretical discourses
have on the kind of place and the forms of mathematics that are enabled and disabled
through the metaphors, perceptions of mathematical understanding, and conceptions
of time that are embodied and enacted by the teacher and her students.

This research involved the explication of the teacher’s assumed theoretical and practical
patterns of teaching mathematics. The expressive forms in which this disquisition is
written provide interpretive snapshots that document the teacher’s conceptual journey
from that of a heavily mechanistic, linear, and hierarchical mindset towards the
development of an ecologically coherent theoretical domain for teaching. The
classroom vignettes of the teacher, another teacher with whom she collaborated, and
the second and third grade students span a course of two and half school years. These
vignettes focus on the teacher's work in occasioning ecological forms of teaching,
learning, and mathematics in the classroom. The analysis of these episodes revealed
stark differences from that of her previous teaching practice not only in the nature of
the students” understandings, their ways of acting and being mathematical but also, in
the kinds of mathematics that arose during the lessons.
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A Forne-word ffm .‘f}ie Reader

Jo undenstand a living system such as. a tree, in an ecalogically syotemic way
means. that it is. not possibile te examine the twee by simply reducing it down to its
individual paxts ox analyzing it from part to whole. Rather, it means that ene does
indeed need to study the tiee’s leaves, branches, trunk, oot syotem, and its. intevaction

Jhe same can be said about the purpese of this disquisition. It is not meant te
be a necipe for how to teach mathematics well ox to sewe as simply a descriptive
account of a teaching practice. Jt is. in essence, a systemic explonation into. both the
embeddedness and the emevgence of theeny and practice in mathematics teaching.

- Given the nature of this research and the theoretical realm in which it is
situated, it was impostant for the work to be expressed in a foxm that alse
pessessed an ecalogical sensibiility. Upen fivot glance, it appears to be a collection
of separate compaositions. And although each piece is. an entity unto. itself, the intent
was not te nender the neseanch as. a piecing together of theery, data, and analysis but
instead, te bring a multivewsal pevspective to it and expose the co-existence and co-
evolution of theony-and-practice. Thus, the embodiment of this disquisition’s thesis. is
also evident in the organization of the teat as a whele and the divewity ef umiting

The organic way in which this disquisition is organized can be lifened to a
need to. view them in any panticular onder yet at the same time, all are intexconnected
making the tree a cofierent whole. Jene, the compaositions that weve sounced by video
and audio. taped classnoom sessions, journal enties, students’ werk, and wunning
Cach piece is. considered to be a smaller yet integral system of thinking that in turn
founs. larger conceptual clusters within an ecological mind-space. (nd together,
Apace.

expresoive sbuuctures:

Metaphevs and visuals have been used to neflect how it was that J wao.



Featured quotes on questions positicned en a blank page are the theonetical
antifacts that sexved as provecations for my funther veseanch. Jn this disquisition,
they are intended to. intexupt the rveaderd’s flow and signal a shift ox epening of
ancthfier conceptual apace.

of juataposition was used to set ideas. with ex againat each other in arder to explone
of welationships between one author’s thinking with that of another’s.

Jhe use of black and white or caloun for ceain teats and images emphasize
theoxetical underpinnings. that J. censidened te. be clearly defined as oppesed to these
J penceived to be ever-changing and indetevminate. Fon example, I made use of
blact and white in the visual-text collage en censtuctivist notions te convey what J,
conceived ao. theony that was “clear-cut” whereas colour was used in the enactive
vioual-text collage to express theory that J undevstood as imbued with ecological
qualities that weve unpredictabile, ever-changing, and net so cleax cut.

- Ghe actual figusing of teat such as a newspaper anticle, conversation, free foxm

poem, as well as whether it was exganized in a left te vight, tap to bottom, back and
forth, oporadic, on cincular manner sought to captuve the conceptual and

tﬁeaetdeaaememged.fﬁw[h—unaﬁwuhngem&@eaanewmtﬁe‘dwﬂ&mgmg
that was. present in my thinking.

Jt was cuitical that each piece of uwiting in some way highlighted the inevitabily
personal particulanities of this vesearch. Jo do. this, different “chasactess” were
developed. The chavacters in this disquisition axe my students, a teaching colleague,
and myocelf. In crder to analyze and intevpret my teaching from multiple
penspectives, my character takes. on several diffevent “pexaonalities”. In some of
the compoasitions, J am the main character and descrilie events. as. J. pexceive(d) and
experience(d) them cither ‘in the moment’ as they unfolded on by taking cn a
veflective stance. In other instances, I am ancther character altogether or am not

X




present in the piece at all. Jhis allowed me to intexpret the researnch fom a
connected yet mone distanced ox ‘outside’ pexspective. In still others, the reader will
JIn addition to the styles of uniting, characters, and pensonalities, the actual
fonta of the teat help to vioually distinguich between the diffexent ‘tones’ ox
pewspectives taken on in the analysis and intevpretation of the work. Finally, this
disquisition need not be a front to back, left te night, top to bottom read. In
necognizing the varicus paxts of this werk heve and in the table of contents, it io
hoped that the reader will engage with the same spirit as ene would exploring a
biving tree-- perhaps. examining its integrated and integual being from its base and
climbing up, hanging from a branch and gazing avcund, leaping from cne liméb to
ancther, ox even peering down at the always emenging whole from a distant Rill.







WE ARE CONNECTED T0O
THIS

As we continue to
pour chemical cock-
tails into the envi-
ronment and move fast
and furiously from
one technological ad-
venture to another,
it is no 1longer a
matter of choice but
a matter of fact that
in order for 1living
systems on the earth
to survive, we must
live within its 1lim-
its of sustainabil-
ity.?

Upon our clumsy
awakening to the en-
vironmental crisis,
we are presented with
the rude realization
that the impact of
our actions cannot be
‘contained’ and the
effects of them reach
farther and deeper
than we ever antici-
pated. The ongoing
devastation of the
world’s natural and
cultural systems
makes this point
clear: The results of
how we live are not
only felt by the lo-
cal human community
and our neighboring
communities, but what
we do affects all
that is on this earth
with us--the land,
water, air, and
every living Dbeing
that depends on these
sources for their

existence’. We are
not independent be-
ings. We are part of,
connected to, and
“just one particular
strand in the web of
life” explains Ca-
pra.’

“Yes but,
we recy-
cle!”

Deep,integral chan-
ges will not take
place if our actions
to reduce pollution
and decrease stress
on the earth’s natu-
ral systems remain
rooted in our desires
to improve human
health and maximize
profit at the cost of
all other forms of
nature.! If we are to
prevent further dam-
age to the environ-
ment it is critical
that we change our
mechanistic percep-
tions of the world to
ones that are eco-
logical.’

Simply put, this
means abandoning the
re-production of our
‘Cartesian-self-as-
sertive-Newtonian’
ways of being in or-
der to cultivate a
more integrative ex-
istence on this
earth. It entails re-
rooting our thinking
so that we may com-
prehend the world not
just in linear, ana-
lytical, rational,
and reductionist
terms, but in ways
that are nonlinear,
connected, intuitive,
and holistic. As
well, value needs to
be placed on coopera-
tion, quality, and
conservation instead
of anthropocentric,
exploitive, or com-
petitive acts’® of
domination and mind-
sets that focus on
‘the bottom dollar’.
This is not a simple
matter of ‘exchang-
ing’ our current ways
of 1living for eco-
logical ones. The
mechanistic, anthro-
pocentric traditions
that we embody in
our culture today
have been evolving
steadily since the
Industrial Revolution
and so too will it
take take time for

(continued on page 2)




ecocentric practices
to become taken-for-
granted patterns
within our thinking,
actions, and identi-
ties.

QUESTION:

But what does
this have to
do with the
teaching and
learning of

mathematics
in the class-
room?

ANSWER:
EVERYTHING!

For ecocentric
thinking to bring
about a paradigmatic
turn that possesses
longevity, depth, and

integrity, it cannot
be restricted to
the domain of

‘environmental clean-
liness’. It has to
become our natural,
everyday way of be-
ing. Learning to be
ecologically mindful
cannot be treated as
an ‘additional compo-
nent’ in children’s
education but an in-
tegral part of each
and every classroom.
In short, this means
that teachers and
students of mathe-
matics may not be
excused!

Perhaps a starting

“Okay, but
what does
this mean
and where
would one

start?”

place might be to
look for spaces in
which to propagate
nonlinear, connected,
fluid, and holistic
patterns of thinking
mathematically. At
the same time, mathe~
matics educators
could begin the proc-
ess of assessing the
embedded and taken-
for-granted linear
and mechanistic ritu-

als that are prac-
tised within the
field of mathemat-

ics education and in-
side classrooms.

By not excusing
ourselves from this
task, we can begin

working towards re-
connecting and devel-
oping mathematically
ecological ways of
being.

Notes

1. M. C. Bateson,1994,
1996; Bowers, 1993,
1995,2000; Suzuki, 1999.
2. M. C. Bateson, 1994,

1996; Bowers, 1993,
1995, 2000, 2001;
Suzuki, 1999.

3. Capra, 1993, 1996, p.
7.

4. Fox, 1990; Naess,
1985; 1986; 1996; Orr,

1992, Suzuki,
3

1997.

5. Bowers 1997, 2003;
Capra, 1993, 1996; Sny-
der, 1990;

6. Capra, 1996; Naess
1985, 1988; orr, 1992,
1994; Suzuki & Dressel,

1999.
7. As cited in Suzuki,
1997, p. 199.

What is a Tree?

A tree, we might say, is not
80 much & thing a8 a rhythm of
exchange, or perhaps a centre of
orgdanizational forces. Transpira-
tion induces the upward flow of
water and dissolved materials,
Tfacilitating an inflow from the
soil. If we were aware of this
rather than the appearance of a
tree-form, we might regard the
tree as & centre of a force-field to
which water is drawn....The ob-
Ject to which we attach signifi-
cance is the configuration of the
forces necessary to being a
tree....rigid attention to bounds
ries can obscure the act of being
itself.

-Neil Evernden, The Natural
Alien

This redefinition of some-
thing as familiar as a tree as at
first rings strange. But we can
recognize the morethan-tree-
form it describes, just as we
know that & forest is more than
just the trees that grow there,
and that our intercourse with
the world extends beyond the
edges of our skin. Our language
falls short of our apprehension
because of the way we have been
taught to identify the world. We
belong to, are made of, that
world that surrounds us, and we
respond to it in ways beyond
knowing.”
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Reflection

A mirror reflects an image
seen as the image is seen.
It does not change the looking.

To reflect on what we do,
or are, is something else.
It reveals what we could not see.'

! Pille Bunnell, 2000.




It happened years ago. Jennifer could not remember when exactly, but at
some point as a very young child she was drawn into the enchantment of the
“enveloping and sensuous earth”.’ Eyes wide and bright, Jennifer giggles as she
stories-out a cluster of her treasures to me. She speaks of wild landscapes just
beyond her grandparents’ orchard; tunneling on her stomach and disappearing into
the tall, sweet grass; lying on her back and watching the night sky for cascading
meteorites; and feeling the cool dampness underfoot as she creeps silently and
listens hard to find that mysterious chirping cricket. Among these treasures are
many more: ones of forests, of the ocean, others storied inside her ba-chan [Japanese
for grandmother] tanka poems, as well as Chinese proverbs told to her by her ba-ba
[Cantonese for father].

“I suppose” Jennifer reflects, “because my family life was rooted in a kind of
living that looked to nature for metaphors and life lessons, that I also seek to
understand the world as a living system that is interrelated to everything else. And 1
guess that is why I wonder how ecological forms of thinking might help us to better
understand this place we call the mathematics classroom.”

“Classroom mathematics and ecology? Interrelated? Please, tell me you're
kidding!” I gasped.

“T'know, I KNOW,” she replied and then paused. “But listen” she urged.

Anticipating a long, winding, twisting, turning kind of response, I prepared
myself. Straightening my posture, I took a deep breath as Jennifer began taking me
down her explanatory path.

“You see,” she began, “ecology and classroom mathematics have everything to
do with each other.”

Jennifer then told me that the word, ecology had come from the ancient
Greek word, oikos. It meant “the family household” and “the maintaining of its daily
operations.” Eventually, oikos was integrated into the term, oecologie, coined by
Ernst Haeckel in 1866. Described as “the study of the environmental conditions of
existence,” oecologie was eventually shortened to what we know today as ecology.”

“T remember exactly what was going on in my mind when I first learned
about the history of the word ”said Jennifer. “T'o be quite honest, I hadn’t given it
much thought at the time because I was preoccupied thinking about something
else. Even though I listened to what was being said, it was similar to having to
attend to a different matter when you already have your hands full with something
else! You see, I was taking a summer graduate course and the professor was
explaining to the class how the word ecology came to be. I remember smiling and
nodding as I listened and then quickly switching back to my previous thought. It
wasn't until much later that I realized the significance of the encounter.”




Jennifer explained that her conundrum had been trying to communicate to
other people the importance of being ecologically mindful in the mathematics
classroom.

“You see, it was easier for me to say what it didn't mean. Being ecologically
mindful wasn’t necessarily about taking environmental issues and making them into
mathematical problems. It wasn't about conducting scientific inquiries— you know,
taking ecological ways of thinking and using them as a magnifying lens to examine
the field of mathematics education and then perform experiments in the classroom.
It wasnt about forming a hypothesis, replicating procedures, generating
conclusions or formulating a unifying theory that could be transplanted into every
classroom. What I was finding it extremely difficult however, was how to explain in
simple words what being ecological did mean to the mathematics classroom. My
descriptions were cumbersome- that knowing and acting were embodied with-
and-in one’s way of being- or, a mindful comprehension of the integrative, holistic,
and nonlinear nature of teacher’s practices and children's learning of mathematics.
So, while I spent my time trying to sort out the ideas that I viewed as being
problematic in developing an ecological sensibility for teaching and learning
mathematics” said Jennifer, “I was completely ignorant of the fact that I did havea
way to express my understanding of ecology and mathematics education! Qikos.”

Jennifer told me that, upon reflection, it was the term, oikos that captured
exactly how she understood her mathematics class to be. Here, she explained that
she imagined it to be very much like a family household. As the children’s teacher,
she saw her role as caring for and sustaining the mathematical relationships and
interactions of her students.

“So just as environmental thinking focuses on human relationships with
nature,” Jennifer smiled, “it is a similar focus that I have for my teaching and
children’s learning of mathematics. It's about examining and assessing the kinds of
mathematical relationships, as well as the forms of mathematics that emerge in the
classroom, and responding to them in my manners of teaching mathematics”.

“And your reason for wanting to be ecologically mindful?”

“My wanting to be an ecologically responsive mathematics teacher comes
from caring for how mathematics exists in the classroom, my teaching, and the
children’s learning of it.” It is about being committed to sustaining relations that
are not only ecologically coherent in the classroom but also ones that promote a
sense of cohesiveness within the larger educational communities.”




Jennifer then picked up the book shed been reading before 1 had arrived.
Opening it to page 78, she read aloud:

We are living in a time of both creativity and concern about education,

and the decisions that are made for the classroom will feed directly into

the way graduates
“and children,” she added,

participate in society and the way they impact on the natural
“and social-cultural,” she said,

systems around them.*

Bringing our conversation to a close, Jennifer said, “and so you see, the
choices we make as mathematics teachers not only affect the kinds of mathematics
children learn in school, but equally, the ways in which children are taught to learn
and the ways they will interact with mathematics outside of school will affect the
world they live in. We, mathematics education, and ecology do not exist in separate
households but, rather, we share a common space.”

Notes

1. Abram, 1996, p. 15.

2. Also, an email correspondence with C. A. Bowers in which we discussed, Donald
Worster's (1990) book, Nature's economy: A history of ecological ideas. In
particular, the definition of ecology which is described by the author, p. 191-1922.

3. Naess, 1985, 1986, 1988, 1996; Varela, 1999.

4. M. C. Bateson, 1996, p.78.




SPACE WANTED

Looking to share a space
with ecology. Interested
in what ecologically co-
herent forms of teaching
and learning of math-
ematics could mean for
the classroom. Can move

in IMMEDIATELY.

(continued from page 36)

THE 3 FACES
OF ECOLOGY

According to M.
C. Bateson®, there
are three “faces” or
realms of ecology:
empirical, environ-
mental, and system-
ic. The author de-
fines empirical eco-
logy as biological,
meteorological, and
geographical studies
that focus on un-
derstanding how the
planet is changing
and how  these
changes affect the
interrelationships of
the world’s natural
systems. The en-
vironmental face of
ecology is concerned
with identifying the
level of impact that
our ways of living
have on the earth’s

“How can we break out
of our conventional
approaches and ima-
gine more productive
alternativesz”' Reply
to mailbox: T1I9MIM7TS

systems. It also
involves the de-
velopment of solu-
tions for environ-
mental problems
that will minimize
harmful stress on
the earth. It is with-
in the systemic
realm of ecology
where mathematics
teaching and learn-
ing can be most
radically explored.
This is because sy-
stemic thinking fo-
cuses on seeking
"the pattern which
connects”’ a system
or systems together
as interdependent
and interacting
wholes.

In the field of
mathematics educa-
tion, a “system?”
could be an in-
dividual teacher or a
student. It could
also be a collective

9

one
teacher to teach grades

Seeking primaxry

/3. Separate  rooin.

“Shared facilities”.

group such as a
mathematics class,
the school, and so
on.

The connecting
pattern or patterns
that interrelate

these systems to-
gether as a dynamic
whole encompass
the forms of kmow-
ledge, actions, and
identities that are
brought into being as
a result of the on-
going interactions in
the system({s) and
the ways in which
they are sustained
by the system(s).
By focusing on
relational qualities,
ecological ways of
thinking give rise to
viewing the world as
an integrated whole;
a dynamic and fluid
network in which all
living and social-
cultural systems are
interconnected. The

(continued on page 79)




(continued from page 78)

world is not con-
ceptualized as being
composed of a col-
lection of separate
entities, but instead,
as a highly complex
unity in which all
systems are inter-
related and there-
fore, interdepen-
dent.

It makes sense
then, that when
looking at math-
ematics teaching
from an ecological
perspective, it would
be conceived as
similar to that of
children’s mathema-
tical learning.’ Ma-
thematics teaching
as a fluid, complex
process implies that
it exists always, in
relation to the om-
going interactions of

the students, the
mathematics, and
the material and
nonmaterial envi-

ronment of the class-
room.’

And so it is by
taking a systemic
perspective from
within the con-

ceptual space of eco-

logy that the fol-

lowing query emer-
ges:

In what ways can
systemic manners of
thinking about
mathematics education
enable forms of
teaching and spaces
Jor children’s learning
of mathematics to
possess an ecological
sensibility?

NOTES

1. Stigler & Hiebert,
1997, p. 14.

2. M. C. Bateson,
19986.

3. G. Bateson, 1980,
1991.

4. A. B. Davis, 1996;
A. B. Davis,
Sumara, & Luce-
Kapler, 2000;
Kieren, Pirie, &
Calvert, 1999;
Martin, 1999;
Towers, Martin,
& Pirie, 2000.

§. Thom, 2002.
6. Kotagama, 1993,
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(continued from page 24)

Today we are
calling on the nations
and the peoples of the
world to change
personal attitudes
and practices. “To
adopt the ethic for
living sustainably,
people must reex-
amine their wvalues
and alter their be-
havior. Society must
promote wvalues that
support this ethic
and discourage those
that are incom-
patible with the su-
stainable way of life”
(from Caring for the
Farth: A Struggle for
Sustainable  Living.
Gland, Switzerland:
JUCN/UNEP/WWEF,
1991).

To whom is this call
addressed? The ethic
for sustainable living
has always been part
of our cultures, and
the people lived in line
with such a way of
life. It was the Wes-
tern materialistic-
consumerist strate-
gy, considered the es-
sence of “develop-
ment,” that shattered
the foundation of sus-
tainable living that is®

(continued on page B80)




Yes, but what gives nise to a systemic,
ecological  view of the wordd? ot the
mathematics classtoom for that matter?
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Y think that if we start by looking at how we are as individuals and then
connect this to how we exist as collective groups, you'll be able to appreciate
why a systemic understanding of the world and the mathematics classroom
s really about layers of living'. It creates a conceptual Space in which we can
make visible what often remains invisible-- the co-emergent, complex nature
of our

btological,
structure determined,

social,
and

@ zHAmN

CULTURAL

Okay, Let's begin!

As humans, we exist in the world as what Maturana and Varela would call,
‘autopoietic,” or self-making systems.” We possess both “organization” and
‘Structure”. Jt's our organization that distinguishes you and me as people
and not, say, fish or goats! And it's our structure that can be described as the
internal dynamics and relations that enable you and me to develop ways of
knowing, actmg and being that are uniquely our own. Simply put, your
structure is not the same as my structure and it is because of our structural
diversity that we can distinguish you and me as being djjferent people.

But how is it that we are structurally
different?

Maturana and Varela descrive “structural coupling” as the process by which
our structures evolve. The Changes that occur in our knowing, actions, and
[dentities arise from the recursive interactions between two or more living
organisms.

A nice sounding definition, but what does
this mean?

Well, if we take this idea of structure and think of a person’s understanding of
mathematics to be nis or her matnematical structure, in a way similar to how
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a person’s forms of knowing, dacting, and being are impacted by life
experiences *-- a person’s mathematical structure too undergoes changes as
a result of his or her mathematical interactions.

And so, because owne’s structure s
dependent on the kinds of mathematical
interactions one has and how they then
feed into what the person already
understands, these differences in
experience and impact create differences
between one person’s wmathematical
understanding and that of another
persons... hence, diversity in
mathematical structures.

Yes. And recursively, how we go on then, to teach or learn mathematics will
now be shaped by these structural differences. This also means that as a
class engages in mathematics, structural coupling is arising in the structures
of the individual students and their teacher. The growth that arises from this
process Is dynamic and continuous. It happens in us moment to moment as
we experievice human and nonhuman perturbations in the environment.

So it's the perturbations that make for
structural changes?

No, not exactly. It isn't the perturbation that determines how our structures

change. And, perturbations only exist if they are perceived by the person as

‘perturbatory”’ Rather, it's the individual based on his or her structure, who

specifies what will or won't be a perturbation, whether or not coupling will

occur, and if so, the kind of internal changes that will arise in his or her .
structure. Knowing this, we can say that we exist in the world as autopoietic

and “structurally determined” systems.”

Would this wean then, that in the
mathematics classroom, it is the child
who determines based on his or her
internal structure, what will and will not
Sserve as occasions  for  learning
mathematics?

Yes, and it's the child's mathematical understandings-- his or her structure,
that shapes and is shaped by future understandings.”
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But what about the teacher? Jsn't it the
teacher who teaches the class what
mathematics to learn?

Of course it should be expected that a teacher attend to children's
mathematical learning® in ways that are invocative’ and provocative.®
However, given a systemic view, we can't assume that the teacher exists as
the only source for occasioning children's mathematical perturbations.
Engaging in mental reflection about wathematics or taking part n
matnematical interactions with the human and novihuman environment can
also serve as possible sources for structural changes to occur.”

So, even If a teacher intends to have the
class learn, say.. a wnew strategy for
adding 3-digit numbers togetner, it is the
child, NOT the teacher who determines if
and what kind of learning will arise?

Exactly. And when structural changes do take place, new pathways or
relationships emerge and impact on the child's existing mathematical
understandings. So it's impossible for us to predetermine how our individual
structures will evolve since they are ever-changing because of the coupling
process.” This is what A. B. Davis, Sumara & Luce-Kapler mean when they
say that ‘learning is DEPENDENT ON, but cannot be DETERMINED BY
teaching” Mathematical learning takes place with the enviromment: as
unpredictable yet recursive growth of one's mathematical structure of
understandings.

Okay, 9 can see how we as individuals
are snaped by the interactions we have
with the environment but it seems to me
to be a very inward, insular way to view
the mathematics classroom, don't you
think? this kind of thinking moves in only
one direction-- from the environment to
the individual child.

Up to this point it has. However, a systemic view does bring forth a ‘co-
emergent worldview’', if you will, in that it recognizes the interdependenice and
complex circularity that exists between the environment and living systems.
Just as our internal Structures are ever-evolving through our interactions with
the environment, the environment is also undergoing structural changes.
these changes within us and within the larger environment recursively shape
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what will be possible in terms of future interactions and how each will respond
to the other” Lewontin elaborates on this complex circularity when he
explains that:
Che organism [living being] and the environment are not actually
separately determined. The environment (s not a structure
imposed on living beings from the outside but is in fact a creation
of those beings. The environment is not an autonomous process
but a reflection of the biology of the species. Just as there is o
organism without an environment, so there is no environment
without an organism.”

This co-evolution that takes place as we and the environment interact raises
an mportant issue when considering the mathematics classroom. It's not
only the environment that shapes the teacher's or a child's mathematical
ways of knowing, acting, and being, but it's also the teacher's or child's
interactions that dffect what future events and responses will take place
within the larger classroom.

Each needs the other.

That's right. Now can you begin to see how the world can be viewed as an
mtegrated whole by recognizing the interdependence of living systems and
their environments? Life unfolds by way of “‘natural drift” - as a result of the
recursive interactions between living systems and the environment. This co-
evolutionary view of the world differs from other perspectives that project
images of evolution as being a linear process of competitive domination where
Species and tneir environments are not interdependent but separate from
eacn other.

Yes. A subtle yet important difference, I
suspect.

What's more, a systemic, ecological view doesnt portray wathematics
teaching or children's mathematical learning as being individualistic and
linear in nature. They arise fluidly in relation to each other and with that of
the larger environment be it a mathematics class, a school, or even the
educational system. An ecological perspective brings attention to
understanding interrelationships within the mathematics classroom.

Yn the beginning of our conversation, you
mentioned that we are also social and
cultural beings, yes?
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Yes, that's right. Keeping in mind what we've discussed in terms of how we
are as individuals and how we and the environment co-emerge, let's move
outwards to the broader, social realm. By doing so, we can continue to discuss
“the pattern which connects” "our living as individuals to our collective actions,
identities, and ways of knowing as social systems.
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Maturana characterizes social interaction as being:

wWhen two or wiore structure determined systems interact
recurrently with eacn other in a particular medium, they enter in a
nistory of congruent structural changes that follows a course that
arises wioment after moment contingent on their recurrent
mteractions, to their own internal structural dynamics, and to
their interactions with the medium, and which lasts until... they
separate. In daily life, such a course of structural change in a
system contingent on the sequence of its interactions in the
medium n which it conserves organization and adaptation is
called ‘arift’’®

In terms of the classroom, this would mean that social mathematical
interactions arise when two or wore children work mathematically together.
Ymportantly, the learning occasioned from these mathematical interactions
not only shapes the further development of each child’s understandings but
also, the collective understandings of the partver or group and the larger
matnematical environment in which the interaction took place. These collective
forms of knowledge, actions, and identities and how they're created through
social interactions are what Maturana refers to as “arift’.

If we understand human social systems to be what Gregory Bateson and
Maturana refer to as systems that evolve through the cohesive, collective
interactions of the members, then what we know, how we act, and who we are
can't be taken as happening only within the realm of the individual. Such
growth also needs to be recognized as emerging from our collective manners
of living— the relations that are created through ongoing interactions and
that whicn connects us as interdependent, social beings.

And are social phenomena, like our
ndividual structures, unpredictable too?

Yes. Yust as we can't predetermine the evolution of an organism or its
environment because they are dynamically interactive, we can't predetermine
the collective matnematical activity that will take place in a mathematics
cdassroom. Yn terms of a cdass’ mathematical learning, it's naturally
unpredictable because children’s internal and collective structures are
constantly changing from moment to moment.”

Y see. So a child isn't only a “structurally
determined” learner but he or she is also
a member of larger social systems... such
as a mathematics class? '®
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Exactly! And in the cassroom it's not only the child but also the children and
their teacner interacting at the same time... as individual and collective wholes,
responding to environmental perturbations-- shaping and being shaped by
the wmathematical learning that ewmerges”” Like our individual
understandings, collective forms of learning aren't thought of as being
transmitted from an external entity. They are constantly emerging and co-
emerging through social interactions. Because of this, children's mathematical
growth can be descrived as being “much like paths that exist only as they are
laid down in walking.”<°

Can you explain in wore detail, the
nature of social interactions and what
forms they can take on?

In terms of their nature, I think of them as Maturana® does... like
‘conversations in progress” . Maturana explains that social interactions can be
brief, withdrawn from and then re-entered again or, they can be continuous.
Jt is these ‘conversations” within social systems that he considers necessary
i how it is we come to know and be in the world. Social dynamics are what
bind us as a pair or group of living beings together as a collective, social
system. Co-emergence takes place as we interact with and in relation to one
another... we are able to coordinate and re-coordinate how we think, our
actions, mhow we are’ basically, in order to maintain cohesive ways of being
with one another. In this way, social relationships that keep a collective unity
intact can be seen as similar and just as critical to the co-evolution that takes
place with individual organisms and their enviroviments.

Maturana’s idea of “languaging” is useful because it describes the process by
which social systems function and evolve as collective unities® Now, it's
important that you don't think of languaging as simply individuals engaged
n verbal conversation with themselves or others. Languaging involves the
physical, verbal, and mental ways we humans think and interact among one
anotner, but it s also the understandings that arise from such linguistic
interactions. It's how we are able to coordinate and recoordinate our ways of
being so that we can continue to interact within groups and develop collective
forms of knowing. 9In other words, ‘languaging” in the wmathematics
classroom entails the mathematical understandings that emerge from the
different ways n which members of the cass think and engage
mathematically with one another. Because we exist iv language and have the
potential to be languaging agents, it is possivle for new understandings to
arise. Knowledge systems evolve then, as a result of our social activity.
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S0 does this mean that it's through the
interactions of the class that collective
mathematical understandings which are
different from personal ones come into
being?

Yes. Now, let’s talk about our cultural ways of being.
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‘the practices of teaching and learning school mathematics are two examples
of “‘cultural benaviours” in our Soclety. Generally speaking, cultural behaviours
are social patterns that span generations. It's as a result of our living in the
languaging process of “cultural drift” that we establish collective ways of being
that are passed on and evolve from generation to generation.

So aultural ways of being are social
prnenomena that  continue  over
generations?

Yes. And the historical transformation that happens is a result of the
recurrent interactions and languaging between the older and younger
members of a cultural group.” In the same manner that drift is explained by
Maturana and Varela as necessary for us to evolve with the environment and
socially with others, so too is altural drift necessary for the continuity and
evolution of cultural systems.

Okay. Y see how cultural drift provides a
systemic way for us to understand say,
now human-centred and mechanistic
social patterns estavlished in  the
Yndustrial Revolution have continued into
today’s culture. But what 9 don't yet
understand (s what ecological thinkers
such as Bowers, Capra, Naess, and Orr**
mean when they say that our cultural
ways of being shape how we perceive
and therefore, exist in the world.

We do much more than simply live in the world-- remember our conversation
avout coupling?

Yes.
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Well, 9 believe that connected with this understanding is the fact that
THE WORLD we bring forth is notonly created through our individual and
social existence. It is also SPECIHED through our cultural knowledge, actions,
and identities. Cultural phenomena, when CONSERVED, seamlessly co-
emerge from one generdation to the next and create a world from our living
WITHIN CULTURAL "COGNITIVE CIRCLES.™ These cognitive circles arise from
our cultural ways of living and we justify the patterns that they occasion as a
matter "OF TRADITION" OR, less reflectively and more acceptingly expressed,
we say it is simply "JUST THE WAY THINGS ARE" 9n this way,
aultural patterns are embodied in our thinking, THEY BECOME US,
DISAPPEARING FROM THE SURFACE OF OUR CONSCIOUSNESS.

Surely, our cultural actions, beliefs, and
identities aren't that invisibly specific!

Hmm... consider the images we as members of Western culture attach to the
idea of what it means for a person to be an ‘individual. When we think about
what makes a person an individual, often embedded within this is the notion
of independence’. As a teacher, 9 find that parents often express to we that
it's important for their children as “individuals”, to be self-sufficient, able to
think for themselves, make independent decisions, and be their own people.
Yn valuing these qualities, we tedchers and members of older generations
encourage younger generations to develop their independence by providing
learning opportunities that focus on the ‘individual” or “autonomous” child.
Within our culture, independence and individuality serve as distinguishing
qualities of being successful. They engender a sense of freedom, self-reliance
and “standing out from the crowd”.

Well, isn’t that what we should be doing?
encouraging students to be independent
ndividuals?

Hold on for a moment. Let's contrast this image with what it means be an
ndividual in Japanese and Chinese cultures. Traditionally, within these two
cultural circles, the image of an “independent” individual is not the image that
comes to one’s mind. This s because in Japanese and Chinese cultures, the
younger members are taught by the older members that an individual is not
defined in terms of self-reliance or self-sufficiency but more in how the
ndividual contributes to the well-being of his or her family. You see, a
person’s identity exists in the collective sense of the family. This can be seen
1 how people address one another. Unlike in Western society where we are
distinguished on a first name basis such as “Jennifer” or in a first-name-last-
name order as “Jennifer Thom”, people in Japanese and Chinese
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cultures are addressed by their last name or in a last-name-first-name order
such as “thom-san” or “Thom-Yennifer”. Identity isn't derived from the
validation of one’s self but from the respect for the family as a collective whole.
Conservation of these relations is carried forth through one’s values and
actions that foster the well being of the family as a collective whole. Given
nstances such as these, we can better understand what Maturana” speaks
of when he says that it's "in the implicit or explicit accepted premises under
which their different kinds of discourse, actions, and justification for actions
take place” ...that cultures create taken-for-granted and, hence, invisible yet
distinctive cognitive circles.

Okay... yes... how cultural beliefs create
blinders... that shape how we experience
the world... but, if we are truly blind to our
ultural ways of being, is it even possible
for us to become aware of them?

One way for us to examine just how culturally embedded our lives are is to
consider the cultural experiences, beliefs, and values that emerge from the
recurrent interactions of a group and metaphorically become what Gregory
RBateson®™ and Bowers® refer to as cultural ‘maps”.

Amap?!

A map. Simply put, a culture’'s map identifies what its members will and won't
perceive as having significance by rooting these features within the culture’s
temporal, spatial, spoken, written, and symbolic language. Recause these
cultural distinctions permeate the group’s languaging, a culture’'s may as Neil
Postman would say, ‘does much more than construct concepts about the
events and things in the world, it tells us what sorts of concepts we ought to
construct”™

Can you give me an example of a feature
or Concept that we create or recreate in
our living out of these wmetaphorical
maps?

Just look back at how the idea of the individual is distinguished and played
out as a feature of Western and Asian cultural maps. The former very much
mfluences a person to value ways of thinking and actions that enable an
identity of independerice while the latter, emphasizes a person’s connection to
ner or his family and imbues a sense of interdependence. Same concept- “the
ndividual”, but completely different cultural conceptualizations.
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Yes, which lead to totally different ways
of interacting in the world.

Speaking from a systemic, ecological thinking space, its here in the
envelopment of the cultural realm that we live... nested within our individual
and collective layers of knowing and being. And it's here that we dwell in our
practices of teacning and learning mathematics. Jor me, the mathematics
classroom is imagined as an integrated space where living, social, and cultural
systems co-exist and co-evolve. In an ontological manner, we are living
systems within social systems within cultural systems. Encircled once more to
include all other living and natural systems on the earth, it is how we humans
come to exist as ‘just one particular strand in the web of life”” It's in this way
that the world isn't percelved as a collection of separate ‘parts”, but as a
aynamic whole; a complex unity of all living and social-cultural systems that
are fluidly interconnected and, therefore, necessarily interdependent. And it's
here in this conceptual space of knowing that a systemically ecological view of
the world and the mathematics classroom resides.
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SPACE WANTED

Looking to share a space
with ecclogy. Interested
in what ecologically co-
herent forms of teaching
and learning of math-
ematics could mean for
the classroom. Can move

in IMMEDIATELY.

{continued from page 36

@E’ ECOLOGY

Accorxding to M.

C. Bateson®, there
are three “faces” or
realms of ecology:
empirical, environ-
mental, and system-
ic. The author de-
fines empirical eco-
logy as TDiological,
meteorological, and
geographical studies
that focus on  um-
derstanding how the
planet is changing
and how these
changes affect the
interrelationships of
the world’s natural
systems. The en-
vironmental face of
ecology is concerned
with identifying the
level of impact thatb
our ways of living
have on the earth’s

HELP WANTED

“How can we break out
of our conventional
approaches and ima-
gine more productive
alternatives?”' Reply
to mailbox: T1I9MIM7S

systems. It also
involves the de-
velopment of solu-
tions for environ-
mental problems
that will minimize
harmful stress on
the earth. It is with.
in the systemic
realm of ecology
where mathematics
teaching and learm-
ing can be most
radically explored.
This is because sy-
stemic thinking fo-
cuses on seeking
“the patierm which
connects™ a system
or systems together
as interdependent
and interacting
wholes.

In the field of
mathematics educa-
tion, a “system?”
could be an in-
dividual teacher or a
student. It could
also be a collective
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teacher to teach grades
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group such as a
mathematics class,
the school, and so
on.

The  connecting
patiern or patterns
that interrelate
these systems to-
gether as a dynamic
whole encompass
the forms of know-
ledge, actions, and
identities that are
brought into being as
a result of the on-
going interactions in
the system{s) and
the ways in which
they are sustained
by the system{s).

By focusing on
relational gualities,
ecamgmal ways of
thinking give rise to
memg the world as
an integrated whole;
a dynamic and fiuid
network in which all
living and social-
cultural systems are
interconnected. The

(continued on page 79}




Settling In

Thjnking about how I (it's me, Jennifer!) might respond to this help wanted |

ad, I thought it best to bring it home’ as it were and invite Stigler and Hiebert's
question into this ecological thinking space of mine. However, once inside, I soon
realized that although this question certainly belonged in the realm of classroom
mathematics, it was going to be difficult if not impossible for me to have an open
conversation with it! Explained another way, it is like when you spot THE sofaina
furniture store but as soon as you get it home and put it into your living room, the
sofa does not look so fabulous anymore. Instead, it is clearly out-of-place because it
does not go with any of your existing furniture. For me, (and in spite of the authors’
good intentions) this seemed to be the case with bringing this question home;
neither the question nor the ecological space suited each other. You see, the manner
in w}ﬁch the question is posed:

How can we Break out ef our conventional appreaches and imagine
more productive alternatives? '

puts forth for me as a teacher, an ‘end-result’ mindset of improving preductivity in
the mathematics classroom; the need to isHeSe of or #isCaridl teaching practices
that are perceived to be 8il or commenplace and to acHuIre NeW tcaching OBIS so
that we may increase or maximize children’s learning of mathematics.

Before one is able to think of possible ways to respond to this question, its
linear, disconnecting posture has already “mapped” for us that manners of teaching
are commoditizable “relationships’, ones that we marry into and, if necessary,
divorce ourselves from. What is more, is that within the question’s reductionistic
confines, Stigler and Hiebert’s query closes itself off from the opportunity for deep
changes

to

take
root.

You see, even if we changed from one teaching style to another, radical shifts in the
mathematics classroom would not likely occur if our thinking continued to be
fashioned from the mechanistic pattern of productivity. The persistence of such a
mindset is disabling in that it denies the very possibility of Stigler and Hiebert's
~query being one that provokes teachers to become more integrative and creative.
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And becausc the authors’ question docs not allow for an cxamination of the
ecological coherence of the mathematics classroom, it creates the impossibility for

mathematics teaching and learning to be conceived as holistic, organic,
recursive, and co-emergent.

Determined to reconceptualize Stigler and Hiebert's query within an
ecological realm, I set out to find a question that would make sense in such a space.
The question needed to be one that encouraged a systemic, ecological way of
knowing: one that would allow for developing an understanding of how the ‘layers’
of our living are always and necessarily shaping how we teach mathematics.

Instead of provoking a knee-jerk reaction from the reader or myself, I wanted
this question to be taken as an open invitation to look deep and make visible what
often remains invisible- the cognitive circles and cultural maps we lay down in our
paths of teaching. Once brought to the surface, these experiences, beliefs, and values
can be examined and assessed in terms of the forms of mathematics teaching that
they enable or disable, the ways in which they become embedded within the
mathematical language of the classroom, and the impact they have on how children
come to know mathematics. Just then, a similar yet radically differently expressed
question invited itself into my thinking:

matﬁam&wteacﬁulg9and@damgw,ﬁmumnuwwoeedlwnmy
apaces. that nurture and sustain childen’s mathematical growth?

Not only does this question share Stigler and Hieberts concern for how
mathcmatics teaching and learning takes place in the classroom, but it also makes
sense within a systemically ecological thinking space. The question provides the
necessary focal structure for the reconceptualization of mathematcs teaching to
occur while the ecological mind-space allows a place for such an exploration to
unfold. Together they enable examination into how it is that what we know and
who we are emerge and become our manners of teaching mathematics.

Feeling as though I was beginning to settle into this new space of mine,
I wondered what to do next. Where might one begin to create openings for
ecologically minded ways of teaching and learning mathematics in the classroom? 1
tound myself moving back and forth between reading and pondering Stigler and
Hiebert’s question and considering how to explore my ecocentric one. It was in the
midst of this back and forthing that I realized both of these questions spoke of
concern for this place we call “the mathematics classroom”. It made sense for me
then, that the place to begin was to begin with “place”.
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Notes

1. Emphasis added, Stigler and Hiebert, 1997, p. 14.
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Sense of place complex? We tend not to think
so, mainly because our attachments to
places, like the ease with which we usually
sustain them, are unthinkingly taken for granted.
As normally experienced, sense of place quite
simply is, as natural and straightforward as
our fondness for certain colours and culinary
tastes, and the thought that it might be
complicated, or even very interesting, seldom
crosses our minds...'

' Basso, 1996, pp. xiii.
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Keith Bassos description of the ways in which we create and sustain our

relationships with places brings forth just how strong our connections to place are.
In doing so, he reminds the reader how taken-for-granted, forgotten, unnoticed, or
ignored the actual textures and patterns that make a place a place become. Primary,
basic, and essential, sense of place is undeniably and always a critical part of every
mathematics classroom.

If we perceive the world as a place in which we live as systems within systems,
then the mathematics classroom, as place, is not constituted simply by the presence
of four walls, some furniture, a teacher, students, and mathematics. Necessarily, this
place includes the relations that evolve from the intermingling of teacher, children,
their surroundings, and mathematics. If we think about how we come to know
places, then our sense of a mathematical place in the classroom emerges from the
spaces in which we perceive mathematics to arise and the forms it takes on. Put
another way, the classroom as a mathematical place and how we connect with it not
only comes from what we know and feel, but the kind of place it becomes grows out
of the interactions we have with it.' Thus, Twle do not define places; they do not
define us. Rather, in dynamic interplay, we come to form together” .’

As an elementary teacher, I have always been committed to a holistic way of
thinking about mathematics in the classroom, one that facilitated my development
in teaching mathematics and fostered children’s mathematical learning. But it was
not until recently after reading Basso's book, Wisdom sits in places, that I began to
think ecologically about the mathematics classroom as “place”. Moreover, as
ecological ways of being are not an everyday practice in our society or its
educational systems, it is understandable that one would not think of the
mathematics classroom in such a manner, much less be able to imagine what an
ecologically coherent mathematical place might mean. Sense of place and ideas
associated with place do not come about naturally or consciously for us. As a result,
they remain hidden or invisibly embedded within our taken-for-granted manners of
teaching mathematics.

Through my experiences in gaining a deeper understanding for how my
teaching shapes the mathematics classroom and trying to create a sense of place that
embodies ecological notions such as recursion, co-emergence, and fluid integration,
I have learned that this kind of work cannot be achieved by what we think may
be “breaking out of conventional approaches”. To do so in the attempt to get rid all
that undermines an ecological sense of place in the mathematics classroom would be

35




naive and superficial. Systemic, ccological changes nced to begin by first
considering what place means to the mathematics classroom. It involves looking
deep and engaging in the complex, recursive process of identifying and questioning
one’s taken-for-granted conventions of thinking about and teaching mathematics—
asking ourselves how they contribute to the sense of place that exists in the
mathematics classroom.

Why is this so important? Does it REALLY matter? I think so. Let me
explain by describing the different senses of place for mathematics that I have come
to know as both a learner and a teacher. 'I'hese vignettes chronicle my growing
understanding of place. They provide revealing glimpses into how deeply
mechanistic, commoditized, linear, and disconnected my common sense of place for
thc mathematics classroom was and the challenges I faced in making it into a
cohesive whole.

Notes

1. Basso, 1996; Camus, 1955; A. B. Davis, 1996.
2. A. B. Davis, 1996, p. 132
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Reflections ‘Revealing the Fragility of
Classtoom Mathematics
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It [mathematics] requires silence and neat
rows and ramrod postures that imitate its
exactitudes. It requires neither joy nor
sadness, but a mood of detached
inevitability: anyone could be here in my
place and things would proceed
identically.’

' Jardine, 1994, p. 109.
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A Student’s Place

fZﬁwugﬁmyyeamo{eZaanuﬁaaﬁng,lww@&eﬁwetﬁattﬁe
apaces whexe mathematico existed in the clasoncom, the founs it assumed, and my
anything te do. with myself ox my peens. I came to fnow that at oschecl, it is the
teacher who makes mathematica happen. Just life TV proguammens, J. would think
to myoelf, teachers always. ensured that mathematics began, ended, o weran at
exactly the same time each day. Ghey were conscientious not to let mathematico. spill
inte any other programos. of study such as science, sacials, axt, ax banguage. Und the
only time when mathematics. did extend past its designated slot was after school--

Cur lessons were similax to that of learning to. catch a ball. Finot we would
watch the teacher demonstrate fiow to. de the mathematics and then veady ox not, the
teactier would thiow problems up. onte the challbicard ox te uo in the foxm of a
teatliook. Scrambling te catch the mathematics, we would madly vecord the mess of
numbers. and symbols. in their covvect linear fashion, practise, practise, practice, and
then Ropefully, toss the mathematics covectly bach to eur teacher. Un cother days,
we would await the moments when timed dvills, pep quizzes, and tests became the
stage where we perfouned eur proficiency and ability te juggle addition, subtraction,
multiplication, and divisien facts.

J abse learned that the teacher lifed it beot when mathematico happened not
with other classmates but vather, silently in cun heads, and figuring cut selutions
oshould not involve fingera, dvawings, ex counting! Never questioning but always.
a place of ancnymity for mathematics in the classveom.
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Encountering familiar issues in a strange setting is like
returning on a second circuit of a Mébius strip and coming to
the experience from the opposite side. Seen from «
contrasting point of view or seen suddenly through the eyes of
an outsider, one’'s own familiar patterns can become
accessible to choice and criticism. With yet another return,
what seemed radically different is revealed as part of a
common space.’

' M. C. Bateson, 1994, p. 31.
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Glewords the end of completing my undevgraduate deguee in education at the
University of Victoria, I waas required te. identify my teaching area of cencentration.
Based en my intevests, it was a tess up. between the visual arts and mathematics
education. J. found it difficult te chocse ane over the other and se, J. chose the area
that J felt was in the mast need of wescuing. Ghe twe years of mathematico
education and mathematics courses that followed made for what J. considered te. be
two more jounneys around the Mibius stuip. Fhe finot tiip, which I have abready
described, was my childheod experiences learning mathematics in schecl. Ghe
second, from the perapective of a teacher-to-be, and the thivd, from a learner of

Duwring each of theoe returns, J. found myself questicning and shifting my
conceptions of what it meant to teach and learn mathematics. However, it was enly
afteuvards that J wealized it was en these journeys that I was visiting and
sevisiting the notion of mathematics’ place in the classnoom.
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Frnom Ghe Side of Fedagegy

of a mathematics student but caming at it from the epposite side-- ene of pedagogy,
-- puovided me with the contrasting point ef view necessarvy te veveal taken-for-
granted conceptions. J. held abiout classneom mathematics.

Jt began in my first mathematics education class. In thia cowse whene the
{faawwaaantﬁeteacﬁmga{mtﬁanaaca mepwfbomaiqagedm&acﬁmfw&e
actually experiencing hands-en minds-on’ adwztwafaxawwe&cea andao/.woomg
student undexstanding through video analysis. In deing se., this professer dispelled
many of my tafen-for-granted assumptions about school mathematics; enes that
included it as being an activity of simply “deing tashs and sclving probilemo.
quickly in one’s fead” ' and that “mathematics can be best learned in isolation.” *

What became apparent was that as teachevs we needed to be creative in
mathematics itself. Fovno. of teaching that communicated to. students there are many
ways to solve a probilem, avoiding what fie called “heavy-fianded” teaching that
of vepelling them from it’ became important foci in my grewth as a teacher.
Moreouver, this professor made me wealize that, just as mathematics should be
brought into being thiough the teacker, the children, and a variety of settings in the
classnoom, it was also impoxtant for teachiens to enable learners to develop.
mathematics that occuns in theix daily activities at heme® and in theiv community.

Learning from the opposite side of the Mibiua stiip-- from the pervopective of
a teacher-to-tie-- J began to undevstand the impact that teachers have on the hinds
bow J might enact a pedagegy that embodied a sense of connectedness for
mathematics with the classroom

Netea

1. Liedthe, 1995, p. 52.
2. Piedthe, 1995, p. 56.
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3. Liedthe, 1996-7; Liedtlie et al., 1998.
4. Liedtie, 2000.
5. Rinaldi, 1989.
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Fhird Gime Around

She poltowing Septemben, I found myself taing yet ansther tiip. axsund
the Mibiua strip. This. time again, from the pevspective of a learner. Here in twe of
mathematics took place in the dynamic ways that the fivst professor had describied.
These professons made it cleax to. us. that we would neither be given nox expected te
memoize foxmulas ox procedures. Feeling paniched, my fivot reaction was that J.
had registered for the unong mathematica classes-- how on eath was J te play the
game if these professons were not geing to. show us which mathematics we were to
toss back and fouth? |

Forunately J. persevered, continued to attend the classes, and for the firat
time in all of my years. of learning J. became convinced that “veal’” mathematics was.
not a game of catch but wather a something is buought inte being. Suddenly for me,
fuman and natural coentexts. We aspent cur time examining, questioning, and
watching mathematical pattexns emerge in different areas ouch ao biclegy,
ecenamics, and evenyday Ulife. Learning in this manner prevcked and enabiled me to
explone, devise, and create self-genevated metheds and mathematical foxmulations.
in place.




Cammon Space

a;ymamlam&mmmM.e.‘@mmiﬂeammat
them from the oppesite side(s), we experience them as diffenent ox new. Then
secunsively, upon examination and questioning what we think to be distinct events,
life the Mdibius strip, we came to vealize that the apparently disparate isoues do not
exist on separate planes. but vather, exiot within a cammon space.

For me, J. nealized as a wesult ef moving aleng what J. pexceived to be --
completely diffexent planes-- My experiences of elementary mathematico learning,
mathiematics education classes, and univevsity mathematics cowwes, was. that they
existed within a commeon conceptual space. Whether my experiences were that of a
learner o teachen-to-tbe, they were all situated within the vealm of sense of place fox
mathematics.

aaaﬁeguuungteacﬁu ﬂdcdnatentutﬂeceaomaamuutﬁafmedunagem
astudent weproductions but instead, an image of mathematics as an cengeing
engagement in which children and theix teacher “adventure” in a classreem wedd of
Rnowing together.’
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SPACE WANTED

Loooking to share a space
with ecclogy. Interested
in what ecologically co-
herent forms of teaching
and learning of math-
ematics could mean for
the classroom. Can move

in IMMEDIATELY.

continued from page 36)

@E E@@Z@;@%

A@uorﬁmg to L
C. Bateson®, there
are three “faces” or
realms of ecology:
empirical, enwviron-
mental, and system-
ic. The author de-
fines empirical eco-
logy as TDbiological,
meteorological, and
geographical studies
which focus on un-
derstanding how the
planet is changing
and how these
changes affect the
interrelationships of
the world’s mnatural
systems. The en-
vironmental face of
ecology is concerned
with identifying the
level of impact that
our ways of living
have on the earth’s

HELP WANTED

“How can we break out
of our conventional
approaches and ima-
gine more productive
alternatives?”’' Reply
to mailbox: T1I9MIM7S

gystems. It also
involves the de-
velopment of solu-
tions for environ-
mental problems
that will minimize
harmful stress on
the earth. It is with-
in the systemic
realm of ecology
where mathematics
teaching and learm-
ing can be most
radically explored.
This is because sy-
stemic thinking fo-
cuses on seeking
"the pattern which
connects”™ a system
or systems together
as interdependent
and interacting
wholes.

In the field of
mathematics educa-
tion, a ‘“system”
could be an in-
dividual teacher or a
student. It could
also be a collective
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VACANCY

Seeking one primary
teacher to teach grades
2/3. Separate room.
“Shared facilities”.

group such as a
mathematics class,
the school, and so
OXL.

The  connecting
patitern or patierns
that interrelate
these gystems to-
gether as a dynamic
whole ENCOMPAsSs
the forms of know-
ledge, actions, and
identities that are
brought into being as
a result of the on-
going interactions in
the systemz) and
the ways in which
they are sustained
by the system{s).

By focusing on
relational gualities,
eeo‘iagm@i ways of
thinking give rise to
memg the world as
an integrated whole;
a dynamic and fluid
network in which all
living amd social-
cultural systems are
interconnected. The

(continued on page 79)



Many, and perhaps most teachers begin their careers with
the conviction that they will avoid those teaching practices
that they found unhelpful or inappropriate when they were
students. .... However, ... most beginning teachers quickly find
themselves settling into patterns of teaching that are
strikingly similar to the ones they intended to avoid.'

" A. B. Davis, Sumara & Luce-Kapler, 2000, p. 41.
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Jurning The Soil:
The Beginning Years of Teaching

Columbia. When J. entered the teaching field, I distinctly vemember being eager on
one fand, to inspive a more connected sense of place for mathematico in the
classnoem but on the other hand, careful not to became ancthen “Mus. Fibonacci”.
Mus. Fibonacci (a stowybock character) is an elementavy scheol teacher who loves.
for the children in her class &ecauoewrytﬁmqhwwmtaanmtﬁema&caﬂpwﬁlem
for them to solve. For the main character, bearning mathematics becomes a “cunse’”
fe cannat escape:

“What if this keeps up for a whole year? How many minutes of
math madness would that be?”

“"What's your problem” says my sister.

365 days x 24 hours x 60 minutes,” I snarl.”

Like all beginning teachers, J. devated enovmous amounts of time te preparing
my lessons. J vead jounnals. fer mathematics teachers, went to wenbshops searching
[wtnewcdeaa collected xeaﬂ&ﬁe’matwaﬁatacannecttﬁecﬁddunamtﬁana&m
mgagewaycﬁddmmydaaa(a&tﬁewﬁde,&emgcauﬁu@nottacmtany
cunses!). But even theugh the childuen, their parents, and my colleagues seemed to
be pleased with my effoxts, J. did not feel as if I was accemplishing what I had
set out to do. My teaching and the childien’s mathematical learning ostill seemed
discennected.

Nates,

1. Scieszka and Smith, 1995.
2. Scieszha, and Smith, 19935, p. 27.
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What we conserve, what we wish

to conserve im our ;1S
Insight, I believe, refers to that depth of understanding
that comes by setting experiences, yours and mine,
familiar and exotic, new and old, side by side,
learning by letting them speak to one another.'

what determines what can and
change In our lives.:?

' M. C. Bateson, 1994, p. 14.
# Marurana, 1997b, p. 5.
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In the months that followed, I searched and scrutinized my mathematics

program to find the source of my unease. I poured over the curriculum guides to be
certain that [ was teaching the correct concepts and the skills for the different grade
levels. I revised the order and adjusted instructional sequences so that they moved
more efficiently. I continued to tweak or elaborate the content of my lessons,
depending on the needs of my students. Looking at the program as a whole, I felt
that I was engaging the children in mathematical work that enabled their learning
to be both “hands-on” and “minds-on” ', and that I was opening spaces where
mathematics could be integrated with other subject areas. Unable to find any
obvious problems, I continued to proceed along the current course.

'Then, several months later, 1 started to question the kinds of relationships
that existed between my teaching and the children’s learning of mathematics. I took
a reflective step back and examined my mathematics program for a pattern or
patterns that connected the children’s mathematical learning spaces together” as a
whole. In doing so, taken-for-granted ways of teaching began to emerge. I
discovered that these were not only rituals unique to myself, but surprisingly, they
were matter-of-fact ways of being for my colleagues too... even those of my
schoolteachers! For me, these teaching practices had simply become THE way to
facilitate children’s learning in the mathematics classroom. Intrigued with this
discovery, I decided to write my conventional manners of being down on paper. As
I did this, it became apparent to me just how incredibly matter-of-fact they were
and how deeply embedded in my teaching these “shared facilities”* had become.
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* BEFORE BEGINNING ANY LESSON, SORT THE CHILDREN ACCORDING TO
THEIR GRADE LEVEL. ONCE DONE, THEN PROCEED TO TEACH EACH
GROUP A DIFFERENT MATHEMATICS LESSON.

* WHEN PLANNING THE CURRICULUM FOR THE SCHOOL YEAR, SIMPLY
DIVIDE THE MATHEMATICAL CONCEPTS AND SKILLS FOR EACH GRADE
INTO TEN EQUAL PARTS. BY DOING SO, YOU CAN NOW ALLOCATE ONE OF
THE TEN SCHOOL MONTHS TO TEACHING “ADDITION”’, ONE MONTH TO
“SUBTRACTION”, ANOTHER MONTH TO ‘“MULTIPLICATION”, AND SO ON,
UNTIL THE END OF JUNE.

* ALWAYS MAKE SURE THAT CONSISTENT AMOUNTS OF TIME ARE GIVEN
TO MATHEMATICS LESSONS. SCHEDULE IT IN REGULARLY EACH DAY
(E.G., EVERYDAY BETWEEN RECESS BREAK AND LUNCH HOUR).

* MATHEMATICAL CONCEPTS SHOULD BE TAUGHT SEQUENTIALLY; FROM
AN INFORMAL, CONCRETE STAGE TO MORE FORMAL, ABSTRACT ONES.
TEACHING SHOULD FACILITATE THE STUDENT’S (THE AUTONOMOUS
CHILD) CONSTRUCTION OF KNOWLEDGE IN A CONCEPTUAL TO
PROCEDURAL TO RELATIONAL ORDER.

After reading this “must do list”, it was apparent that the sensibility of

wholeness and flow that I desired for the mathematics classroom did not exist.
Instead, was one that embodied rigid, mechanistic, and disconnected qualities.
'These could be seen, enacted in my scheduling of lessons at same time everyday, my
“taking inventory” of the mathematics curricula and then “packaging” them up into
discrete “units” of instruction, teaching separate grade-specific lessons, and my
always doing so in a manner that proceeded from the concrete to the abstract. The
kind of place that I had intended to root and the one that had actually become
embedded were in contradiction to each other. What served as tried and true
rituals for teaching mathematics had unthinkingly become that which was
furthering the “cultivation of discrete parts without respect or responsibility for the
whole”.* My teaching actions not only dismembered mathematics for the children
but, on another level, I had also dismembered mathematics from itself. I say this
because one might argue that my efforts to teach for the students’ conceptual then
procedural then relational knowledge could be viewed as in keeping with
facilitating connected understandings. However, despite the fact that I did this in
my teaching within each of the concepts and procedures, I was still teaching the
concepts as separate “parts” and attention was not paid to enabling the students’
connections among concepts, procedures or mathematical topics. One might
alsoargue that put together, these individual “units™ of instruction came to form a
complet € mathematics program. This might be true; however, the “units” still
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were not fluid or dynamic but rather, discrete and static.

In taking this reflective step back, I could see that it was not enough for me
to design a well put-together mathematics program and I began wondering what I
might do in order to engender a clear sense of flow in the mathematics classroom.
Even though I could see how some of my invisible or assumed ways of teaching
were undermining this, I did not know what kinds of “re-rooting” (conceptual or
otherwise) were necessary.

What I had learned however, was just as Basso describes, place is not
something that can be taken-for-granted— not even in the mathematics classroom.
Place is primary and basic yet at the same time, it is far more complex than had
originally crossed my mind! If places are indeed created and sustained through
interaction, then the mathematics classroom as place, only exists in being. Further,
it can be said that what distinguishes one mathematics classroom from another is
its sense of place. Together, it is the kinds of mathematics that emerge from ones
teaching and from children’s learning that become the defining textures and tones
of a mathematics classroom.

Notes

1. Liedtke, 1995, p. 51.
2. G. Bateson, 1980, 1991.
3. See “Vacancy” advertisement, p. 43.

4. Berry, 1983, p. 34.
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EDUCATION

“JUST HAND
THEM DOWN
THE MATHE-
MATICS”

... OR NOT?!

WHEN MATHEMAT-
ics is imagined and
enacted as objectified,
static knowledge that
is to be traditionally
passed down from
one generation to the
next, the teaching
and learning of
mathematics is dis-
abled from ever be-
coming anything else.
Under the air of
“hand-me-downs”, it
is easy to understand
why mathematics is
taught and Ilearned
out of a sense of obli-
gation or contempt
rather than a sense
of open desire or
wonder and why,
mathematics is all
too often considered
as that which is to be
mastered rather than
that which is to be
understood. In com-

moditizing mathe-
matics, we make ab-
surd the possibility
for us as teachers
and to those who we
teach mathematics to
perceive it as any-
thing else but a fixed
and inanimate entity.
In this way of con-
ceiving mathematics,
we make it inconceiv-
able for school ma-
thematics to become
something else other
than just a collection
of hand-me-downs.
The embeddedness
of these images with-
in one's taken for
granted ways of
thinking about math-
ematics not only
make it natural for
us to assume mathe-
matics to be an inani-
mate “thing”, but in
doing so, displaces
mathematics as that
which exists “out
there”. Given this
mindset, it is not sur-
prising why a teacher
would feel impelled to
set the class onto a
straight and narrow,
one-way course SO
that the students too,

become collectors of
mathematics. Given
53

this mindset, it
makes sense to in-
grain the ritualistic
practice of “acquir-
ing” mathematics in-
to school unit and
lesson plans, methods
of assessment, and
enact it in the class-
room; product orien-
ted practices which
focus on “desired”,
“expected”, or even
“measurable” = out-
comes of instruction--
that after instruc-
tion, the student will
have “mastered” the
mathematics taught
in the lesson before
“moving on” to the
next part of the cur-
ricular course. Of
course, the ways in
which children are in-
structed to take pos-
session of their
mathematical hand-
me-downs of con-
cepts, skills, and even
attitudes may vary.
Still, “teaching by
telling”, engaging stu-
dents in “hunting
for”, having them
“seek out” “hidden”
mathematics within
“real” world contexts,
and even “explor-
ations” “designed” for
children’s discovery

(continued on page 34)
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(continued from page 8)
of mathematics are
all examples of teach-
ing and learning
forms that keep a-
live, this tradition of
“handing down” of
mathematics.
Moreover, when
product-oriented
ways of thinking
about school mathe-
matics are coupled
with a “back to ba-
sics” mentality, the
teaching and learning
of mathematics be-
come subjected to the
weigh scale of “how
much” in regard to
the amount of mathe-
matical facts and
skills that children
are to learn, and little
or no emphasis is
placed on such things
as their mathemarti-
cal thinking or un-
derstanding. Given
this mindset, mathe-
matical processes
such as those identi-
fied by the National
Council of Teachers
of Mathematics' as
problem solving, rea-
soning, communicat-
ing, connecting, and
representing would
likely be deemed “not
essential” by most
teachers. If viewed as

“additional” knowl-
edge, teaching that
attends to children’s
development of math-
ematical processes
would then depend on
whether or not the
children have ac-
quired first, the pre-
specified mathemati-
cal facts and skills
with which to
“process” the mathe-
matics.

The point here is
that when children
are taught to learn
mathematics in the
tradition of hand-me-
downs and as a prod-
uct oriented matter
of collecting, hunting
down, or retrieving
pieces of knowledge,
it creates the impos-
sibility for mathemat-
ics to be taught and
learned in ways that
enable it to arise as
living and animate.

Now, identifying
the limitations of how
mathematics exists
in the classroom and
the possibility of it
becoming something
else is all fine and
good. But doing so
means that the con-
versation does not

54

end here. Rather, it
opens up a whole
host of questions
that require further
interrogation such
as:

¢ How can an ecological
way of thinking help
us to reconsider such
taken-for-granted per-
ceptions of classroom
mathematics and re-
imagine a more re-
sponsive view for the
teaching and learning
of it to exist in the
classroom?

e What shifts in think-
ing become necessary
in order to reimagine
classroom mathema-
tics as being some-
thing other than a line
of hand-me-downs
from teacher to child?

o What could it mean if
we assumed mathe-
matics to be “em-
bodied”?

« How could mathema-
tical problem solving,
reasoning, communi-
cating, connecting, and
expressing be under-
stood as something
other than additional
knowledge?

Notes

1. NCTM, 2000.
2. Baroody, 1993.




Part 2: Settling In(to AnNOTHER Space)

J ennifer picked up the newspaper and quickly leafed through it. Slowing
down as she came towards the “Letters to the Editor” section, she saw that
someone had responded to the “JUST HAND THEM DOWN THE
MATHEMATICS ... OR NOT?!” article she had been reading,

MOVING THINKING SPACES AND REASSESSING
0LD FURNITURE

IN RESPONSE TO LAST WEEK'S ARTICLE: I TOTALLY
agree with the author’s arguments and the questions are
important ones in making positive changes to the math
classroom. My concern though, is that real changes can’t
bhappen if this job of rethinking and “re-imagining”
mathematics in the classroom is approached with the attitude
of ‘getting rid of or simply ‘adding onto’ what’s already there!

What the author didn’t say was that it’s not about taking
ecological ways of thinking and coordinating them like new
pieces of furniture into a tired and run down living room so
that we can update our mind-spaces and have them look more
current. It’s about moving from invisible and mechanistic
places of knowing to ecological ones. It’s about rediscovering
and assessing the all too familiar furnishings that have been
set about (classroom) mathematics, and asking ourselves,
“how well do these furnishings go with this space?”

All for opening new spaces,
Joel

“...getting rid of...” mumbled Jennifer as she read Joel's letter “...adding on to
what already exists... no. Definitely not.” And so she continued on, reading bits of
the letter silently in her head and every so often, sputtering out particular words or
phrases.

“Preciscly!” Jennifer said with matter of fact certainty. Enabling decp changes
in her teaching was not about changing out of certain “approaches” and slipping into
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ncw ones. She agreed with Jocl that what she needed to do was to examine her
mathematics teaching from where she was now (conceptually) standing. Jennifer
wondered what she might see and see differently from an ecological perspective.
What kinds of furnishings had become so comfortable and such an integral part of
her mathematics teaching that they were now permanent and perhaps, invisible?
Jennifer questioned whether they would even suit an ecological mind-space. And
more to the point, she was anxious to know what kind of place, what kind of oikos
she was “mapping” out for her students’ mathematics. But where to start?

Jennifer pondered for several days about the specific direction or vantage
point she should position her thinking in order to examine these issues. It was only
in doing so that she realized there was one theme that kept emerging. It was
recursive in the sense that it was the “place” in her thinking, if you will, where
Jennifer found herself returning again and again. Moreover, it was not until this
moment that she recognized the ever-presence of this location. Here was the place
where she existed both in and away from the classroom. When she described it to
me, I immediately named it Jennifer's “in-between space”. Not because it was a
space of indecision for her but, rather, the in-betweeness had to do with how her
teaching and her research’ co-emerged and co-evolved. For Jennifer, teaching and
research neither existed as separate entities nor did they move sequentially from one
to the other as she had previously thought.

"As a pre-service and a beginning teacher 1 understood research to be
something that was done at the University that produced theory and in turn,
became a tool that 1 could use in my practice of teaching mathematics.” she
explained. “But now, what comes to mind is an image of teaching and research as
continually interacting with one another... they flow into and give rise to one
another. This to me is REAL teaching. It's praxis and not simply establishing and
maintaining of on€’s teaching practice.”

As 1 listened to Jennifer describe how her view of mathematics teaching and
research had changed, I realized that to characterize her in-between space as the
location where the two met or intertwined would be to miss the meaning
altogether. They did not meet. They were each other. It was clear that for Jennifer
teaching mathematics and her study of it were inseparably interconnected. In a
complex yet circular manner, Jennifer considered them to be interacting, co-
evolving systems— necessary parts of each other. Furthermore, the distinction she
made regarding her shift from teaching as a practice to teaching as praxis reveals
that mathematics teaching as praxis is not simply a routine that one performs but
instead, requires active engagement with, it implies a way of being that is critically
reflective and reflexively responsive. And evoked from within an ecological realm is
the importance of being ever-mindful of how one’s knowing, actions, and identity in
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tcaching mathematics arc firmly rooted in what we have alrcady lived and have
become embodied in how we are living, and what we will live. In other words,
teaching as praxis acknowledges the simultaneity and the complex circularity of that
which unfolds from on€’s teaching is also necessarily enfolded with all that interacts
with it. This space certainly was not an “in-between” space. It was not a conceptual
space located somewhere in the middle of teaching and research. Really, it was
anOTHER space.

Jennifer added, “I see this kind of reflexivity as being key in attempting to
understand how it is that my teaching and research give rise to each other”

I then asked her, “If you had to describe in your own words, the ‘guts’ of it all
in a nutshell, how might you do so?”

“Simplifying the complex?! Hmm... let’s see. I suppose I would have to say
that in a nutshell... for me that is, teaching learners mathematics and learning what it
means to teach mathematics flow together.”

And it was in this spirit and in this other place that Jennifer began the
process of bringing her teaching into the foreground and encircling it within
ecology.

Notes

1. The term “research” is meant to encompass both theoretical work and
work done “in the field.”
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J ennifer naively assumed that by putting her teaching out in the open and
inside the circle of ecology, immediate answers to her questions would be
revealed. However, as the days passed, it was only her impatience that
became apparent. Frustrated, she picked up a book that she had been reading

and turned the page. There in black and white print was the reminder she
needed.

Letting myself get written by a place. Bodily scars as
the agelines in the droopy skin on the backs of my hands
betray. Legibilities of having, once again, lived-through.
Sitting squat. Spending time. Waiting. Reserve. Quiet.
Composure. Patience. Letting the boredom arrive.
Wasting time. Doing nothing with great
deliberateness. Collecting dry bones. Boredom: this is
one great little demon we have banished from the
discourse of authorship and expression and self-
annunciation. Deliberately spending time in the old
place, feeling through moist weaknesses:
Perception of opportunities requires a sensitivity given through one’s own
wounds. Here, weakness provides the kind of hermetic, secret perceplion
critical for adaptation to situations. The weak place serves to open
us to what is in the air. We feel through our pores which way the
wind blows. We turn with the wind; trimmers. An opportunity requires... a
sense... which reveals the daimon of a situation. The daimon of a place in
antiquity supposedly revealed what the place was good for, its special
qualities and dangers. The daimon was thought to be a familiaris of the
place. To know a situation, one needs to sense what lurks in
it. (Hillman, 1987, p. 161)}

Although Jardine’s description details how he readies himself to write, his
practice of dwelling and “keeping watch” was exactly what Jennifer needed to
do. It was obvious to her now that she did not know what aspects of her
mathematics teaching needed interrogation and so to go searching for
something that you do not know became a ridiculous endeavour. Jennifer
decided it best if she let her mind wander back to that “other” place.
Dwelling there- in that place she described where teaching and learning and
what it means to tcach mathematics flowed together— she waited patiently,
all the while, keeping watch for what “lurked” in it.

' Emphasis added. Jardine, 1999, p. 35.
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Surfacing & Noticing
So SYennifer, what came out?

J wouldn't say that anything really CAME OUT... it was more like bubbles
making their way to the surface of the water-- and then bursting in the
moment of recognition. You know, like, there's one! There's anotner one! Once
you've caught sight of one of them all of a sudden, there they are! And you
see them for the first time not because they magically appeared. They'd been
there the whole time and were only invisible because you hadn't ever been
able to notice them before.

What do you mean? You hadn't ever been
able to notice them before?!

Well, even though my focus was on ecology and the mathematics classroom,
up until this point, it wasn't specifically about MY teaching.

Does it need to be?

Y think at some point it has to be. You see, it was only when I began
questioning the kind of place I was creating for my students’ learving of
matnematics that I saw the need to move deeper-- when I say deeper, I
wiean delving into the inner layers' of my teaching-- not just being attentive to
what's developing in my present teaching, but whats already been
developed, what's become its inner core or, the roots of my mathematics
teaching. Had Y not realized this, any growth I made would most likely be
superficial because I wouldn't have been considering the whole of my
teacning-- Y wouldn't have dwelt long enough to notice what was there. So like
Joel had mentioned, my ecological ways of being would have been at best,
‘add ons”.

Okay. YJust a minute. You figured out you
needed to look at the layers of your
teaching but you still hadn't figured out
what you needed to be noticing, right?

That's rignt. MORE dwelling! What 9 did know was that by exploring the
layers of my teaching, I might be able to articulate why I was so uneasy
about the sense of place Y was creating for my students in the mathematics
classroom... why it didn't feel right. But still I had vo idea what I should be
examining in my teaching.
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So what did you do?

Well, this time, Y took the whole of my mathematics teaching back to where
Id been-- you kniow, into the space of language and languaging.

‘Then what?

As Y surrounded my thinking with theoretical literature on languaging and
the pervasive nature of language, I began by asking myself, So how do these
concepts inform my understanding of teaching mathematics?

And... ?

Certain key ideas began to pool together. In fact, they were direct quotations
from the books and articles Id been reading.

Such as?

Well, like:
“Language THINKS US as we think within language.” ’

“METAPHOR IS NOT A MERE
EMBELLISHMENT, IT IS THE
BASIC MEANS BY WHICH
ABSTRACT THOUGHT IS MADE
PQOSSIBLE.” °

The map is NOT the territory.’

“..[language] does much more than construct
concepts about the events and things in the world: it
TELLS us what sorts of concepts we ought to
construct."’

And these ‘pooled” together because
they were all...

They all had to do with the metaphorical nature of how we think.
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So it was Just these specific authors’
Works?

Yes and no. It was tnese four quotations that kept making their way into my
mind-space of language and languaging but they weren't the only ideas I
was thinking with. They'd emerged from a background of other authors’ work
such as Sfard ®, Abramt’, Capra® M. C. Bateson®, van Manen®, Jardine', Orr'”,
Maturana and Varela®, Lakoff and Johnson'®... but yes, it was these specific
metavoices that really helped to pinpoint my position of noticing-- so that I
could begin to examine my mathematics teaching.

And so what was your position or
perspective of noticing? Can you explain it
to me?

Let me see. Well for starters, it was directed towards the way in which
metaphors become embodied in our forms of knowing, our actions, and our
(dentities. Remember when we were talking about language?

Yes.

By ‘metaphorical language” I mean, the spoken, written, spatial (how
pheniomena are portrayed to exist), temporal (how time (s conceptualized),
and symbolic forms of communication that distinctively structure owne’s
teaching. So briefly, there it is. My point of noticing was to examine the
metapnorical ‘furnishings” if you will, of teaching mathematics and directly
related to this, the kind of place I was bringing forth in the classroom.

Do you think that metaphorical forms of
communication can really impact one’s
mathematics teaching in such a profound
manner?

Yes I do. Just take a moment to think about it: Theoretical FOUNDATIONS”,
instructional “UNITS", conceptual FRAMEWORKS', ‘NETWORKS’ learving
TGSAWS®, cognitive "STRUCTURES®, "SCAFFOLDING”, ‘BUILDING” knowledge...
and so on. Metaphors. We are constantly reading them, hearing them, using
them, and thinking with them. So usual they become like what Joel wrote,
permanent fixtures in one's mind and over time, we no longer notice their
presenice. Unquestioned, these metaphors become embedded in our taken-
for-granted language-- language used to conceptualize mathematics
teaching and learning. Language that was directly impacting my teaching,
my students’ learning, and the kind of mathematics that was emerging.
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Wait a minute. Going back to what you
just said... you claimed that metaphors
were affecting the KIND of mathematics
that was emerging. Surely, math is math!
Metaphors have nothing to do with the
nature of mathematics.

On but they do! My previous mind-structure predetermined the mathematics
content that was to be taught and learvied. Because of this, I wasn't aware of
or didn't pay any attention to emergent kinds of mathematics”, integrative
kinds of mathematics'”®, or individual-within-collective mathematics.”

So what?

Well, it does matter. If you're not aware of how metaphorical language is
thinking you as you think with it, it's difficult to understand how it functions
and becomes an enabling and disabling feature in our manners of thinking
and ways of being.

Okay. So make senise of it for me at the
classroom level. I still want to know what
surfaced for you when you interrogated
your teaching. Lets go back to my
original question, what came out? What
surfaced as a result of your dwelling in
tnis theoretical realm and in this other
space of yours?!

What came to the surface of my consciousness were metaphors that carried
with them very vivid meanings of how I thought, taught, and identified my
role in the matnematics classroom. Jor the first time, I began to understand
now UNconiscious these metaphors were.

What do you mean?

Well, because I hadn't realized how pervasive and taken-for-granted they
were, the metaphors existed below the surface of my consciousness. They
were definitely there but up until this point, Ididn't have a theoretical way to
examine my teaching and so, it was impossible for me to notice these
metapnors. ‘they were Simply matter-of-fact ways of conceptualizing and
enacting my teaching.
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Jor example, how you MECHANISTICALLY
separated and organized the
mathematics content for each grade level
into teachaple UNITS of instruction?

Yes.

And so it was these embedded
metaphors that you began to notice
rising to the surface?

Exactly! And how it happened was just as I descrived for you at the start of
our conversation-- like bubbles making their way to the surface of the water
and punctuated by them bursting as soon as 9 spotted them. What 9 also
learned as Y searched to identify my taken-for-granted metaphors was that
they arose from the theoretical languages of my undergraduate
mathematics education and Ministry documents”, teacher texts, and
mathematics literature I was working with.” You see, it was here that the
relationsnip between wiy dactivities in reading and writing and how I
envisioned my work n the cdassroom... that is, planning, teaching, and
assessing children’s understanding of mathematics became clear. Almost
instantly, the metaphors thatd been totally invisible were now so obvious.
Recause they were visible, I could see the metaphorical images embedded in
everytning from the way Y imagined the wmathematics class to my
conceptualization of mathematics curricula.

What kinds of metaphors? Give me some
examples.
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Stage 1: Child's Language
The natural language a child uses to describe the
concept in a familiar situation, often a real-world story
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Stage 2: Material Language

The new language that might be used with
concrete or pictonial matenials as a child acts
out or represents the real-world story
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Stage 3: Mathematical Language
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Stage 4: Symbolic Language
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“from CONCRETE TO ABSTRACT”

(R. Reuille Irons & C. J. Irons, 1989)
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Based on the premise that If knowledge was about building
structures TEACHING mathematics for me became an activity of

directing my students’ thinking towards PREDETERMINED /carning
outcomes in regards to what they SHOULD know and facilitating

the ways in which they shoulqd CONSTRUCT such knowledge.

teaching mathematics

MOVING STUDENTS ON A COURSE towards PREDETERMINED lcarning m:

And as well, CURRICULA
were JIGSAW  PUZZLES for
teachers to assemble by
plecing  togetner concepts
and skills set out by the

Ministry and other
STANDARD mathematics
documents.

curricula

jigsaw puzzles

9,
et
M

67



Y agree that these are very Sstrong
metaphors... wechanistic, linear, and
hierarchical ones to be sure. But did they
really dffect the way you taught
matnematics? and if so, how?

Having made them visible, I also asked myself this same question: Were
these metaphors simply figures of speech or were they wiore than that? Were
these metaphors truly powerful forms of language? Language that not only
shapes how one perceives mathematics teaching and learning to be but also,
profoundly impacts how such events COME to be. So I turned my attention--
a little apprehensively, I must admit, towards examining if and how, these
metaphors Y had identified existed in my forms of teaching.

And...7!

Rather abruptly IJcame face to face with the notion that all knowing really is
doing and all doing really s being! And what's more, how unthinkingly
natural it all is.

You see, because I viewed mathematics to be a connected yet fixed body of
knowledge and curricula were puzzles to be assembled, my goal in creating an
integrated maths program was to connect the different pieces of mathematics
togetner to produce a ‘logical” and ‘conerent” picture for the students. In
thinking so, it made sense for me to insert their lessons in-- in a piecemeal
fashion for an hour each day between recess and lunch. And in keeping with
the view that mathematical learving was sequential and hierarchical, because
Ytaught a multi-age class, it made it necessary to sort the children according
to their grade level and teach two different lessons. My role as their teacher
was to guide each student's learning in a manner that enabled them to
construct sturdy frameworks of understanding, ones that began with
concrete foundations of experiential knowings upon which more formal,
symbolic representations were built. Jeven remember being asked on several
occasions as to how 9 defined myself as teacher!

And, how did you describe yourself?

Y was the children’s FACILITATOR... THE initiator of learning opportunities or to
stay with the metaphors, the provider of building materials.

After all of this, what was your reaction in
realizing that your teaching was indeed
enactions of the mechanistic linear, and
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hierarchical metaphors that you were
thinking with?

P youd asked me this question before finding this all out, I would've said
that Jd probably be shocked, disappointed... even horrified if 9 were to
discover that my teaching contradicted the ecological perspective that I
thougnt Jwas embracing.

What do you mean? You weren't shocked,
disappointed, or horrified? Really. Id
think that burying one's head in the sand
So to speak, would be a commwion reaction.

Strangely enougn, it was wmore of an affirmation... finally being able to
recognize the metaphors that had existed for so long beneath the surface of
my consciousness and then to see the embodiment of them in my teaching--
relief through affirmation... yes, that's what it was. Jor some time, I9d had a
nunch... a gut feeling that the connected sense of place Iwas trying to create
1 the matn dassroom wasn't quite there... but I couldn’t put my finger on it
as to why.

But you had, hadn't you? You had
identified rituals in your teaching that
were linear, mechanistic, and hierarchical?

Sure, I was able to point to teaching actions that Id unthinkingly inherited
and see them as problematic... such as planning a program by dividing and
ordering the wmathematical concepts and skills for each grade into a
September through June sequence! But doing so only indicated forms of
teaching I deemed as undesirable. It still didn't provide me with any kind of
understanding as to what was giving rise to them or how I might go about
Creating a more ecological sense of place for my teaching and my Students’
learning.

Yes, that's rignt. I agree.

Jt was only when I moved deeper into my teaching and examined my
metapnors... Hmm.... how can Y describe the process to you....

Jor me, this process was very wmuch like ‘lflingering the contaminated
wound” - explicating my metaphors and then watching them fester --how
the metaphors were being enacted in my mathematics teaching. Yes, that's
an accurate image.
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How horrible that sounds!

‘the image certainly impresses my experience as incredibly uncomfortable--
even painful. And in some ways, it was. Finding out that you're doing exactly
the opposite of what you are trying to do is definitely a distressing,
uncomfortable mind-space to be in... but at the same time and in a different
way, Y by no means considered the study of teaching as pathologic.

Although that's how Y think most people
would interpret your description.

Y know... but no. To come to this place in my thinking was critical. The
uncomfortableness of it all was not a prompt for identifying and remedying a
provlem so much as it was an opening for me to arrive at a new place of
understanding. You see, I considered the dis-ease of these events to be
integral and vital to my growth in teaching mathematics. It was because of
awelling in this mind-space that I was able to grab hold of what I could only
before express as being a hunch or a gut feeling and rnow, I was avle to
actually put words to it and finally say THERE it (s!

Making the invisible visible! When you
descrive your metaphors and explain how
they gave rise to your forms of teaching, it
really elucidates the point youve been
trying to make, that the metaphors and
metdaphorical patterns with which we
think have everything to do with one's
tedching of mathematics and the sense of
place that is created in the classroom.
What also becomes clear is that even
though you wanted to create a connected
sense of place through creating an
integrated mathematics program, the
metaphors you unconsciously rooted in
your wmind  citically  disabled — the
possibility for amore organic or ecological
kind of integrative wmathematics to
emerge. ‘(he metaphors only allowed for
mechanical piecemeal forms of tedaching
and learning-- definitely not those that
are dynamic, flowing, or unpredictably
open. Its exactly as you expressed
earlier in our last conversation-- that
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teaching learners wmathematics and
learning what [t wmeans to teach
mathematics really do flow together.
‘Chat all said, going back to Yoels
question, now that you'd figured out what
Turniture” didn't suit your ecological “living
room”, how did you go about finding
furnisnings that would?
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Even Deeper

Enactions exposed, Jennifer realized that the metaphors she had rooted in
her thinking had become her mathematics teaching. It was impossible for
her to consider them as merely figures of theoretical speech. Differently, she
now understood them to be the “consensual domains” in which her patterns
of thinking and forms of teaching mathematics were specified. In a very real
way, these metaphors and metaphorical manners were her rituals for place-
making in the classroom. Jennifer knew that her taken-for-granted ways of
teaching mathematics were not engendering the ecological and fluid forms
she wished to enact. Even so, she still felt a sense of awkwardness.

Jennifer had arrived at a new place of knowing in the other space.

It was in these moments of making sense of the limitations of her
metaphors and knowing that she wanted to enact ecologically coherent ones
that she was also confronted with the fact that one cannot simply change by

“exchanging” what one is thinking or doing in the classroom for something
else.
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AGAIN Z'm reminded that learning what it means to
teach mathiematics is not an autematic precess. Jt's not
smocth, it’s not stvaightfornwond, and it cextainly deesn’t
appear on demand.

KEEPING WATCH WHILE DWELLING REQUIRES PATIENCE.

Before Jennifer could begin to re-imagine metaphors that were
ecologically sound and work towards rooting them within her
classroom praxis, not only did she need to exercise a mindful kind of
patience but she also needed to move even deeper into that other
space. She had to critically question, assess, and then provoke shifts in
her thinking. This included an inquiry into mathematics and
mathematical understanding.
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How is mathematics conceived? And in doing
0, what Rinds of being does it become?
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PROCLAIMED THE QUEEN. OF SCIENCES

PRISTINE IN ITS SACRED CUSTOMS OF
PRECISENESS' AND LINEARITY... MATHEMATICS IS
ABSTRACTLY ELOQUENT AND REFINED... IT
OFFERS US TRUTHS SO ABSOLUTE SO PURE SO
UNAMBIGUOUS... IN ITS PREDICTABILITY AND
CERTAINTY AND EXPLICIT [INFALLIBILITY, IT
IS NOT TO BE QUESTIONED NOR HED
ACCOUNTABLE FOR ANYTHING EXCEPT ITSELF.
TREASURED HERLIOOMS OF LOGIC AND
RATIONAL KNOWLEDGE... UNIVERSAL AND
TRANSCENDENT... MATHEMATICS EXISTS IN
THE REAIM OF OBIECTIVITY... IT IS NEUTRAL
AND LIVES WITHOUT REGARD FOR US... OUR
BELIEFS... OUR VALUES... OUR ACTIONS... OUR
CULTURAL WAYS . .. IT LIVES "OUT THERF
AS THE FOUNDATIONS OF THE UNIVERSE

75




ORDERING AND STRUGTURING THE UNIVERSE

the
flowers

the snowflakes
the ferns and the trees

creative and beautiful

the stars and the planets
the shells of snails
the orbits
us

76




Lo
’%5 & % sazg) 71 ~% %
a"%ﬁ%& gﬁ'&w §§ %
aﬁvbg,ﬁ‘wﬁ % N
& . o '\g
% = G

- e $
o WftA our humanbém%. §

z‘quyy /ﬁ ” ..qgﬂ{t}y WMW d

' Lakoff & Niifiez, 2000; Wheeler, 1967.

* Devlin, 1994, 2000.

* Devlin, 2000, p. 92.

‘ Bunnell, 2001; Maturana, 1988b.

* A. B. Davis, 1995, 1996, 2001; Jardine, 1994; Lakoff & Niifiez, 2000.

77




Does the way one portrays mathematical
understanding matter? And if so, how does it
shape one’s perception of what it means for

leatners to understand mathematics?
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Theoretical Portra.its
of

M athematical Understanding
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Tle topic of mathematical understanding continues to be one of critical focus for
mathematics educators. As a result, there exists an array of models and
interpretations that address aspects of mathematical understanding from the very
general to the very specific. Two themes inherent in this particular collection of works
are that of cohesion and tension. Interestingly, there is a general agreement among
mathematics educators of what “good” mathematical understanding entails, while at
the same timé, the ways in which educators portray the nature of mathematical
understanding, how it comes to be or should be developed, and the forms that arise
create a contrast against one another.

First, several works from perspectives situated within what can be considered to
be part of a constructivist realm are showcased. Here, one will get a sense for what it
means to frame mathematical thinking and learning within this theoretical discourse
and how it portrays understanding as the building and rebuilding of mental schemas.
Second, research that seeks to move away from linear or constructivist minded
frameworks in order to interpret children's mathematical understanding as more
holistic and dynamic are explored. Finally, works that are located within an enactive

realm and that strive to illuminate mathematical understanding as being a co-

emergently complex phenomenon are examined and discussed.
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EXAMINING MATHEMATICAL UNDERSTANDING

FROM A CONSTRUCTIVIST PERSPECTIVE
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Model of Intelligence and Forms of Mathematical Understanding

Skemp’s (1979) model of intelligence offers a qualitative means for describing individuals’
mathematical understanding. The two-level, cybernetic model (see Figure 1) consists of two
internal systems: delta-one and delta-two. Delta-one is defined by Skemp as a sensori-motor
system that directs an individual’s physical mathematical actions based on information received
from the external environment. Delta-two serves as the site where construction and
reconstruction of an individual's mental mathematical schemas take place. It is this process of
schema construction and reconstruction that allows for the mathematical functioning of delta-one
to occur. Thus, it is “the construction and testing by delta-two within delta-one of the schemas
and plans that delta-one must have to do its job” (Skemp, 1979, p. 44). It is here in delta-two
where Skemp identifies mathematical understanding as developing. The specific ways in which
these internal systems function together is described by Skemp (1978, 1979) as evidenced
through ones “instrumental”, “relational”, and “formal” or, “logical” forms of mathematical

understanding.

ACTION — ACTION .
‘ P ' n—
| NFORMATION INFORMATION_

ZMZZOT—<ZMm

Figure 1. Skemp’s two-level cybernetic model of intelligence.
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Instrumental Understanding

Skemp explains instrumental understanding as being a function of delta-one. This form
of mathematical understanding enables a person to correctly apply previously learned procedures
to the solving of mathematical problems. Instrumental understanding in essence, is the learning
of “what to do” with the mathematics. It does not however, enable the leammer to develop
conceptual grasps for interpreting Why a method works or what the symbols might mean.
(Skemp, 1978, 1979). For example, by remembering the words and the order of the letters in the
acronym, “BODMAS” (Brackets Of Division, Multiplication, Addition, Subtraction), a person
can carry out the correct sequence of numerical operations for solving complicated calculations.

The way in which learners are able to develop instrumental mathematical understanding
is through rote methods of demonstration and further practising of a particular procedure or set
of skills until they become routine. Although the cognitive structures in delta-two that result
from instrumental learning enable a person to manipulate mathematical symbols and rules, the
person’s actions remain restricted because the connections that are formed in the delta-two
schemas exist only as relationships between symbols and rules, not among mathematical
concepts. The extent to which one is able to apply one’s instrumental understanding to different
mathematical contexts then remains limited to combining and performing procedures in the
prescribed sequence that they were learned.

Relational Understanding

Relational understanding is evidenced by a person who is able to generate appropriate
strategies for solving mathematical problems. This form of understanding involves the individual
making sense of why particular methods of mathematics may work and why others may not be
effective when solving certain problems (Skemp, 1978, 1979). In other words, relational
understanding implies the learner’s knowing of “what to do” and “why” certain mathematical
actions prove to be effective. The manipulation of mathematical concepts and schemas is

described by Skemp as a function of delta-one while the individual’s conscious or unconscious
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reflection of these concepts and schemas takes place in delta-two.

Unlike instrumental understanding, relational understanding gives rise to schemas that
connect mathematical concepts with procedures. This form of learning is thought to develop as
an individual alternates between activities of interacting mathematically in the external
environment and mentally reflecting on these experiences. As relational understanding can only
be achieved through the individual's conceptual integration of mathematics, this process requires
more time than does instrumental learning through rote methods. However once acquired,
relational mathematical understanding is seen to be more flexible because such knowledge is
connected to mathematical concepts and not to specific contexts, it can continue to develop. And
unlike instrumental learning where an individual recognizes a mathematical problem and then
applies and performs a prescribed procedure to solve for it, an individual with relational
understanding can derive mathematical procedures through conceptualizing or comprehending
the task at hand. Mathematical symbols do not exist simply as abstract objects on which an
individual performs actions but rather, they carry meaning for the individual in that the symbols
are objects to which conceptual understanding can be attached and enable the construction of
connected schemas of concepts and skills.

o) or Logi n

Skemp (1979) characterizes this form of understanding to be present when an individual
consciously connects symbolic mathematical language together with meaningful ideas and
logical reasoning. 'I'his can occur as either a delta-one activity or in both delta-one and delta-two.
If a person possesses delta-one logical understanding, the learner is able to reflecton his or her
mathematical actions through an “if... then” type of rationalization; that is, “if I perform the correct
methods to solve a given problem, then the result should be correct” type of thinking. On the
other hand, Skemp describes logical understanding that takes place in both deltas as being
when an individual is able to show through formal mathematical demonstration or proof that the

mathematics that has been applied makes sense through inferences that connect the given
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premises of the problems to established mathematical axioms or theorems. This type of formal
functioning that occurs within delta-two enables the individual to become aware of the
connections between delta-one and delta-two activities and establishes consistency between the
individual’s mathematical schemas and solutions.

Last, within each of these three forms of understanding- instrumental, relational, and
logical-formal- there can be “intuitive” and “reflective” dimensions to the learner's mental
functioning (Skemp, 1979). Intuitive mathematical functions are characterized as spontaneous
processes that occur in delta-one and do not necessarily include the delta-two system. When
intuition occurs in both deltas, this gives rise to the unconscious reflection of the individual.
However, it is only when the individual is consciously aware of his or her activities in both the

first and second deltas that this process can be considered reflective.

Hiebert’s Views On Mathematical Understanding

Hiebert and Wearne (1992, 1996) apply a constructivist definition found within cognitive
psychology (Brownell, 1935; R. B. Davis, 1984; Hiebert 8& Carpenter, 1992; Lesh, Post, & Behr,
1987) to define their view of what they consider to be mathematical understanding. They refer to
it as the learner’s development of mental connections and formation of networks that serve as
representations of mathematical ideas. For example, Hiebert and Wearne would consider a well-
connected understanding of multi-digit addition to be a network that consists of the child’s
connected knowledge of concepts regarding place value, basic facts, and the ability to generate
effective procedures to deal with the task at hand. They believe the process by which
understanding of mathematical ideas occurs is an unpredictable, recurrent, and nonlinear
progression. Furthermore, the flexibility of an individual’s mathematical understanding is seen as
an indication that the learner has constructed mental networks that have many points for
external information to enter and to trigger the individual's successful adaptation, acquisition,

and retrieval regarding appropriate strategies to solve mathematical problems.
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Building Bridges to Connect Informal and Symbolic Mathematics with Student
Understanding

Hiebert’s independent and collaborative research seeks to understand the relationships
that exist between children’s conceptual understanding of mathematical concepts and their
external abilities to recall and modify existing procedures, construct suitable methods, adopt
prescribed rules, and use symbolic mathematical language with understanding (Hiebert, 1989;
Hiebert & Carpenter, 1992; Hiebert et al., 1996; Hiebert & Wearne, 1993, 1996). A common
thread that runs through Hiebert's research concerns itself with previous studies (Carpenter,
Hiebert, & Moser, 1983; Lindquist, Carpenter, Silver, & Matthews, 1983; Hiebert & Wearne,
1986) and similar arguments that are raised by other mathematics educators such as Usiskin
(1996), Pimm (1987), and Carraher, Carraher, & Schliemann (1987) regarding students’ lack of
connection between symbolic mathematics found in the classroom and that which occurs in their
everyday life. His work emphasizes the need for less formal mathematical representations to serve
as a means by which meaningful connections for children’s understanding and application of
symbolic mathematics can be developed.

As well, Hiebert asserts that in order for students to be able to use the symbolic language
of mathematics to their advantage, essential connections regarding their informal, experiential
knowledge must be recognized by teachers and made explicit to their students (Hiebert, 1989).
Hiebert's framework (1989) (see Figure 2), which identifies three critical sites for linking written
symbols with understanding, highlights the necessity for children to develop meanings for the
ways in which symbolic mathematics can be used as a powerful language in solving problems.
This model makes clear the need for students to “make the symbols work for them” instead of
“working with the symbols™. Stressing the importance for the learner’s utilization and integration
of out-ofschool mathematical behaviours' with school mathematics, Hiebert's model clearly
identifies that the final stage of mathematical understanding should not be the learner’s ability
to perform symbolic mathematics but rather, the child’s meaningful understanding for and their

ability to reintegrate their use of symbolic mathematics into a variety of settings.
' For example, interpreting, judging, devising, estimating, and evaluating,
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Linking Written Symbols with Understandings

Site 1: Interpretation and Development of Meaning for Symbols

‘What do these symbols mean?
What am I being asked to do or find?

This site focuses attention on the written symbols and the ideas or objects that they represent:

 numerals as representing quantities (e.g.. § km or §apples)
« operations (ie. addition, subtraction, multiplication, and division) as actions on quantities in the natural
world
« 8igns as describing relationships between or among quantities
(eg. =, <,and>)

Site 2: Developing Meaning for Rules
Establishing what to do and why

This site includes the use of manipulatives when introducing rules or procedures, as an important step in
illustrating how a rule works and connects the symbolic answer to the concrete solution.

Site 3: Producing an Answer

Making an estimation

"Taking action (ie. applying the chosen procedure)

Examining the solution based on previous estimation

Apply or relate the symbolic problem back into an informal context (e.g.. “Would your answer hold true
when put back into a real-world context?)

Figure 2. Summary of Hiebert's (1989) three sites for linking symbolic mathematics with
understanding.

Problemetizing Children’s Learning of Mathematics

Teaching methods considered to foster rich, connected schemas of mathematical
understanding are ones that enable children to “problemetize” their mathematics (Hiebert et al.,
1996, 1997). Hiebert et al. distinguish problemetizing mathematics as being different from
problem solving approaches to learning that imply teacher demonstration and children's
imitation of identifying key words in a problem, selecting an appropriate method, and
performing prescribed calculations to solve a task. Rather, problemetizing of mathematics is
viewed as facilitating deep mathematical understanding because it focuses on students making

sense of and developing meaningful relationships between their mathematical ideas and
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mathematical actions. Hiebert et al. (1997) explain this approach to learning mathematics as
elucidating:

.reflective inquiry as the key to integrating ideas and actions. Problematic

situations, and methods of inquiry used to resolve them, elicit ideas and actions.

'T'his is what distinguishes problemetizing from traditional problem solving in

which an acquired procedure is applied. (p. 24) |
Within these types of mathematics lessons, the teacher strives to structure learning opportunities
that are not only interesting to the students but also introduce to them important mathematics.
Students are expected to make sense of the mathematics and methods they employ through
discussions led by the teacher that interrogate the effectiveness of particular methods, as well as
exploring different ways of representing their understandings through written, verbal, objects,
pictorial, symbolic, and informal means of mathematical language (Hiebert et al., 1996, Hiebert
& Wearne, 1992, 1993, 1996). As students seek to resolve problematic situations such as
determining the difference between 72 and 39, the teacher’s facilitating them into into actively
generating, adopting, or reflecting on mathematical strategies and ideas allows the students’
learning to be “tasks, and discussions... [which] connect with where students are and that are

likely to leave an important mathematical residue” (Hiebert et al., 1996, p. 17).

The Construction of Mathematical Understanding
R. B. Davis (1984) explains mathematical understanding in a manner similar to Minsky
and Papert’s (1972) view; that mathematical understanding is present when an individual is able
to integrate a new idea into a larger structure of previously constructed ideas. R. B. Davis (1992)
uses the metaphor of assembling a jigsaw puzzle to illustrate his view:

...that one assembles ideas in one’s mind much as one assembles a jig-saw puzzle.
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Each new candidate piece, like each new idea, can be used only if it fits into the
aggregate of pieces that have previously been assembled. (p. 228)
R. B. Davis (1992) states that if we consider mathematical proofs or even Skemp’s (1978, 1979)
“reflective, logical” understanding to be the results of mathematical activity, then mathematical
understanding must be taken to be the result of children’s working with mathematics. In this
way, R. B. Davis (1992) considers mathematics to be a result of children’s understandings:
Instead of starting with mathematical ideas, and then applying them, [teachers] should
start with problems or tasks, and as a result of working on these problems the children
would be left with a residue of mathematics... that mathematics is what you have left over

after you have worked on problems. (p. 237)

The Teaching of Mathematics

R. B. Davis poses a similar argument to one found in Hiebert et al.’s works (1996; 1997)
that stresses that rather than teaching children mathematics through methods of showing and
telling, connected understanding can only develop when children have established for themselves
a reason for doing mathematics. Solving tasks in this manner provides opportunities for students
to decide whether they will employ already established methods or construct mathematical
procedures on their own. This is explained below:

Instead of telling students what to do, and leaving them wondering about why

one does it this way, the new approach helps students understand the task or the

goal, and gives students the responsibility for inventing ways to solve the

problem. (R. B. Davis, 1992, p. 238)

In examining the role of the mathematics teacher, R. B. Davis and Vinner (1986) claim
that if we believe students “build up” their mathematical schemas through constructing and
reconstructing ideas based on their previous experiences, then mathematics teachers play an

integral role in the students’ learning. On the other hand, the teacher’s instructional actions
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cannot be viewed as those that ultimately determine the ways in which students form their
mathematical schemas. Mathematical schemas according, to their view, are assumed to be
constructed from and always influenced by the child’s previous mathematical experiences.

R. B. Davis and Vinner (1986) raise another issue with respect to student errors in
mathematics. 'I'hey assert that student errors should not necessarily be considered an indicator of
lack of understanding but could be, in fact, the student’s retrieval or selection of an inappropriate
mathematical idea. Since teachers cannot determine what mathematics a child will or will not
choose to retrieve, this becomes a responsibility of students to be aware of their mathematical
understanding. R. B. Davis and Vinner encourage learning settings that engage students in
nonroutine mathematical problems (Schoenfeld, 1985; Silver, 1994) as a way for learners to
further construct their mathematical understanding and learn skills in monitoring their

mathematical actions (R. B. Davis, 1984; R. B. Davis & Vinner, 1986).

Mathematical Ambiguities

R. B. Davis and Vinner (1986) identify five sources within students’ school and out-of-
school experiences that can obscure students” conceptual understanding in mathematics. These
are as follows: the language of mathematics, assembling mathematical representations from pre-
mathematical fragments, building mathematical concepts, the impact of specific examples, and
children’s misinterpretation of mathematical experiences. They argue that teachers should not try
to exclude ideas from contexts outside of mathematics because these, as all other mental
representations, serve as a necessary parts in children’s assembly of pre-mathematical ideas (R. B.
Davis, 1984; Lewin, 1986). So in a manner similar to Sierpinska’s argument for understanding
the importance of epistemological obstacles and Dubinsky’s method of genetic decomposition
for mathematics instruction, R. B. Davis and Vinner advise that we should not attempt to

prevent children from developing mathematical misconceptions but rather, enable them to
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become aware of misconceptions in their thinking and how overcoming them is necessary in

being able to make sense of mathematics.

Mathematics as a Language

In North America, the English language is viewed as the linguistic base with which
students enter school with and from which they begin to build mathematical ideas. The English
language is also identified as a source of many difficulties in terms of students’ mathematical
understanding (R. B. Davis, 1984; R. B. Davis & Vinner, 1986). Pimm (1987) explores the
possible reasons for this confusion.

Pimm (1987) puts forth the notion that just as English has specific ways in which it
functions as a language, mathematics too possesses its own linguistic register and has “a set of
meanings that is appropriate to a particular function of language, together with the words and
structures that express these meanings” (p. 75). He explains that within the mathematics register
there are “specialist terms” or, words that hold specific meanings in the context or discipline in
which they are functioning. Durkin and Shire (1991) refer to these specialist terms as “lexical
ambiguities” of mathematical language and make further distinctions between these words by

L

classifying them into four subcategories— “homonymy” *, “polysemy”?, “homophony” #, and “shifts
in applications™?
An example illustrating this difference between English and mathematics linguistic

registers is observed in the use of the word “any”. In ordinary everyday contexts, this word is

# Homonymy describes words that have the same form as in English but imply different meanings in mathemarics. For
example, the word “leaves” does not signify “leaves” on a tree or the verb “to leave”, but rather, describes the subtractive
action in mathematics.

° Polysemy characterizes mathematical words that may have two or more different but related meanings to their English
definitions. For example, the word “product” in English, can be defined as “something that has been made”, and in
mathematics, takes on a similar meaning, “a quantity obtained by multiplication”.

* Homophony is defined as two or more distinct words that have identical pronunciation but entirely different
meanings— as observed in the words “ewo”, “too”, and “to”, or “sum” and “some”, or “pi” and “pie”.

® Shifts in applications are similar to what Pimm (1987) describes as “notational metaphors® and these are mathematical
symbols that in combination with other symbols, convey particular meanings. Here we can see that the number “5” can
be applied in mathematics to communicate the nominal meaning of “the number five”, the ordinal meaning of “the fifth
number’, the cardinal meaning of 1, 2, 3, 4, 57, or the visual representation of °5”. For an in depth discussion regarding
these lexical ambiguities, please see Durkin 8 Shire (1991).
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most often taken to mean ‘some’ yet in mathematics, this word implies ‘every such as, “is any
odd number prime?” Interpeting this question in a nonmathematical manner, one’s answer
would most certainly be yes, as seen in the case of the number five or seven. However,
comprehending the word as meaning the latter, one would have to answer no, as not all odd
numbers such as nine, have only factors of one and itself. A second example is located in our use
of number words, that function in mathematics not only as adjectives as in “one” house, but can
also exist as nouns such as when we speak of prime “numbers”, implying that numbers have
distinct qualities. Moreover, given the mathematical fact that “four fours are sixteen”, number

words also operate as adjectives and nouns.

Building Mathematical Concepts, Specific Examples, and Students’ Misinterpretations

Metaphorical usage of English words in mathematics is evident in elementary school
when children learn to “carry” when regrouping numbers in addition, to “borrow” when renaming
numbers in subtraction, or making reference to the “face” when identifying surfaces of 3-D objects.
"These metaphors serve qas tools for students to think and build images about mathematical ideas
and concepts (Pimm, 1985, 1987)°. In other words, they are “functioning images... which [can]
connect the ideas of mathematics with objects and processes that [students] feel they know and
understand” (Pimm, 1987, p.97). Pimm cautions teachers that while metaphors are valuable tools
in helping children conceptualize mathematical ideas, it is necessary for teachers to help students
to define the usefulness of a metaphor by exploring it in many different contexts. By doing so
students can develop an understanding of where and when their use of metaphors is appropriate
and when it may be a mathematical act of over generalization.

In the same sense this does not mean that given linguistic ambiguities in mathematics,

teachers should try to teach for all possible meanings or misconceptions that may arise when

¢ Pimm (1985, 1987) identifies three types of metaphors existing in mathematics: “structural”, “idiosyncratic”, and
“standard” or “conventional” metaphors. Structural metaphors refer to the ways in which symbols are arranged together
and take on different meanings. Idiosyncratic metaphors are metaphors invented by the user to make sense of a
mathematical concept or idea. Standard or conventional metaphors are used and understood by many people. Examples
include *having” for positive numbers, “owing’ for negative numbers, 2 mathematical function is a “machine”, or an
equation is a “balance”.
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students learn a particular mathematical concept (R. B. Davis & Vinner, 1986). Rather, it is to be
expected that at different stages of a child’s learning, some aspects of mathematical concepts will
be fully developed while other aspects may be partially explored or not at all.

Besides metaphorical overgeneralization, there will be other times when children take
specific instances and construct generalizations from them. '{'his phenomenon, that R. B. Davis
and Vinner (1986) see as impacting on students’ mathematical understanding, can be observed
when students learn about the multiplication of whole numbers and form the conclusion that
multiplication of any numbers always produces a greater number. While they argue that it is fine
for teachers to let learners maintain their partial understanding of a concept as long as the
contexts in which the students are applying it is appropriate, R. B. Davis and Vinner also stress
the need for teachers to provide settings that provoke children to engage in reconstructing their
understanding of a concept. In the example of multiplication, reconstruction of the concept
would become necessary when the children begin to work with decimals, fractions, and negative
numbers. Finally, R. B. Davis and Vinner (1986) explain that because of the ambiguities that
exist in mathematics students may misinterpret what mathematics is being taught and thus,
teachers need to be cognizant that children’s focus on unnecessary or extraneous aspects of a

given concept can also lead to mathematical misconceptions.

Herscovics and Bergeron’s Analytic Framework
In their effort towards enabling teachers to teach for children’s mathematical
understanding, Ilerscovics and Bergeron (1981, 1982, 1988a, 1988b; Ilerscovics, 1989)
developed their analytical framework (see Figure 3), that has been used to describe key
characteristics of particular mathematical concepts such as ‘number’ (Herscovics & Bergeron,
1988b; Herscovics, Bergeron, & Bergeron, 1986a, 1986b), ‘length’ and ‘surface area’ (Héraud,
1988), and algebraic concepts such as ‘slope” (Dionne & Boukhssimi, 1988). Herscovics and

Bergeron (1988a) assert that the development of individuals’ conceptual understanding
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should always begin in their physical, concrete world. They advocate for teacher practices to be
those that value not only children’s written answers but place an equal emphasis on children’s
thinking processes. Herscovics and Bergeron consider their framework to be a tool that can aid
in epistemological analysis of mathematical concepts. Moreover, by accounting for the different
components of Herscovics and Bergeron's model when planning instruction for a particular

mathematical concept, teachers can design and provide richer mathematical learning settings.

| UNDERSTANDING OF PRELIMINARY PHYSICAL CONCEPT

Logica-physical | | gaico-physical
> procedural -éabstmﬁon
undarstanding

_1—117"?‘/\/ ——

Logica-math' Logico-math'l

procedusat - .
understanding ?abstr.actmn

UNDERSTANDING OF EMERGING MATHEMATICAL CONCEPT

| Intuitive
undearstanding

-3 Formalization

Figure 3. Analytic framework of mathematical processes (Herscovics, 1989).

The model is divided into two partially sequential but non-hierarchical tiers. Herscovics
and Bergeron’s two-tiered model conceptualizes mathematical understanding as being a partially
sequential process that begins first with the individual’s intuitive understanding of physical
concepts and then develops through a series of levels into an abstract, mathematical concept. The
arrows within the model indicate that forms of logico-physical and logico-mathematical
abstraction are generated from the individual's preliminary physical concepts. The other arrows
show that an individual's understanding of a mathematical concept does not require all three
parts within the first tier. This assertion is supported by Herscovics and Bergeron's (1988b)
observations of young kindergarten children who are seen to have mastered counting procedures
and the formalization of the concept of number but have not yet comprehended all the
invariancesregarding quantity and rank.
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The first tier is identified as “understanding of preliminary physical concepts™ and consists
of three distinct components of understanding; “intuitive”, “logico-physical procedures”, and
“logico-physical abstraction™. Here, intuitive understanding is based on the individual’s visual
perception, that provides non-numerical approximations. Logico-physical procedural
understanding is evidenced by an individual’s ability to relate his or her intuitive knowledge
through ‘physically acting out’ mathematical concepts. They describe logico-physical abstraction
to be when an individual synthesizes and constructs meaningful relationships such as reversibility
or generalizations between physical mathematical concepts (Herscovics, 1989; Herscovics &
Bergeron, 1981, 19082, 1983, 1984, 1988a). ‘

The second tier encompasses another three components— “logico-mathematical
procedural understanding”, “logico-mathematical abstraction”, and “formalization”, that
Herscovics and Bergeron consider to be integral parts of comprehending mathematical concepts
(Herscovics, 1989; Herscovics & Bergeron, 1981, 1982, 1983, 1984, 1988a). Herscovics and
Bergeron (1988a) define procedural understanding to be when a learner relates preliminary
physical concepts that underpin logico-mathematical procedures, such as counting methods for
determining quantity or rank by using them appropriately in a given context (Bergeron,
Herscovics, Bergeron, 1986; Herscovics et. al, 1986a). Logico-mathematical abstraction refers to
the individual's construction of connecting logico-mathematical invariants together with related
logico-physical invariants to form generalizations, such as coming to know that the
commutativity of addition as a property applies to all pairs of natural numbers (e.g., 4+3 and 3+4
both equal 7) (I11erscovics, Bergeron, & Bergeron, 1986b). Finally, formalization is characterized
by Herscovics and Bergeron as an individual's activity of axiomatizing and producing
mathematical proofs. At an elementary level, children’s discovery of axioms and finding logical
mathematical justifications would be taken as indicative of formalization. They also consider

formalization to include the enclosing of a mathematical notion into a formal definition as
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well as the use of mathematical symbolization for such notations. This type of formalization of
procedural understanding such as counting can be observed when a child writes out a sequence

of digits.

Mathematical Understanding as a Taxonomy

Mathematics educators Pegg and Currie (1998) agree with Piagetian views that assume
older children learn in a qualitatively better way than do younger children because they have more
developed mental structures. At the same time however, Pegg and Currie take a different stance
with respect to observing and analyzing students’ mathematical understanding. They support
the view put forth by Biggs and Collis (1982) as well as other researchers (Blake, 1978; Hallam,
1967) that different methods rather than ones that generalize students’ academic performances
based on Piagetian cognitive developmental stages are necessary in order to provide detailed
descriptions regarding students’ learning within discipline-specific contexts.

The prestructural, unistructural, multistructural, relational, and extended abstract levels
in Biggs and Collis SOLO (Structure of the Observed Learning Outcome) taxonomy are
described as being “isomorphic to, but logically distinct from, the stages of preoperational, early
concrete, middle concrete, concrete generalization, and formal operational, respectively” (Biggs
& Collis, 1982, p. 31). There are also four dimensions within each of the five levels that are used
to further categorize student responses. They are as follows: working memory capacity,
operations relating task content with cue or question and response, and general, overall structure
(see Figure 4). In keeping with Piagetian models, that focus on hypothetical cognitive structures
(HCS), SOLO also forms a concrete to abstract framework. In contrast, unlike HCS, that
characterizes the individual in terms of age and stage of development, the SOLO taxonomy
does not attempt to describe the learner, but rather, the quality of the learner's response(s)
within a specific context and, in terms of the theory’s levels and dimensions. By adapting

elements from Biggs and Collis’ (1982) theoretical framework of the SOLO taxonomy,
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Pegg and Currie assert that in this way, they are able to analyze students’ mathematical

understandings in a more detailed manner than allowed by Piaget’s developmental stages.

Just as Biggs and Collis created the SOLO taxonomy because they deemed Piaget’s

developmental stages as not appropriate for looking at children’s understandings, mathematics
educators Pegg and Currie (1998) integrate elements of SOLO to further elaborate on the van
Hiele theory (van Hiele, 1986; van Hiele-Geldof, 1984) (see Figure 5) in order to analyze
children’s geometric understanding. Pegg and Currie’s main criticism concerning the van Hiele
model of geometric thought is that the model “cannot address questions posed outside of the
direct notions of properties of figures, class inclusion, and deduction about which the theory is
explicit” (1998, p. 334-335)- What is common to the SOLO taxonomy and the van Hiele model

is that they both derive from Piagetian roots. The difference between the two models is

4
Response Structure
Developmental base 2 A
stiage with minimal SOLO | Relating Consistency
age description Capacity aperation and closure Cue Response
Farmal Extended Abstract | Maximal: cue + Deduction and | Inconsistencies X
Operations relevant data + induction. Can resolved. No felt X
(16 + years) interrelations generalize to need to give closed X R,
+ hypotheses situations not decisions—conclusions
experienced held open. or qualified
to allow logically R,
possible alternatives.
(R,. R,.or Ry
o] R,
Concrete Relational High: cue + Induction. Cun No inconsistency within X
Generalization relevant data + generalize within the given system. but since X
(13-15 ycars) interrelations given or cxper- closure is unique so incon- X

ienced context
using related
aspecis

sistencies may occur when
he goes outside the system

~
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data. and so can come to
different conclusions

Middle Concrete Multistructural Medium: cue + Can “‘generalize™” Although has a feeling X
(10-12 years) isolated only in terms of for consistency can be X
relevant data a few limited inconsistent because X .
and independent closes oo soon on basis
aspects of isolated fixations on @R
[ ]

with same data O
O
@)
Early Concrete Unistructural Low: cue + Can “‘generalize™” No felt need for X
(7-9 years) one relevant only in terms consistency. thus X
datum of one aspect closes too quickly: X
jumps to conclusions [ ]
on one aspect, and r— R
50 can be very [ ]
inconsistent [ ]
o]
C
e}
Pre-operational Prestructural Minimal: cue Denial, tautology. No felt need for = X
(4-6 years) and responsc transduction. consi y. R
confused Bound to Closes without even /;\
specifics seeing the problem o
e R
[ ]
[ ]
O
O
o]

aKinds of data used: X = irrelevant or inappropriate: @ = related and given in display: O = related and hypothetical, not given.

Figure 4. Biggs and Collis' (1982) five levels and brief descriptions of each level of the SOLO
Taxonomy and the taxonomy’s loose correspondence with Piaget's stages of cognitive
development.

that by integrating SOLO into the van Hiele model, geometric understanding changes from
being conceptualized as whether or not student has “mastered” levels of understanding (Pegg &
bavw, 1998), to categorizing students responses in a polychotomous manner whereby answers
can be grouped with similar characteristics and reflect various stages of cognitive growth (Pegg
& Currie, 1998).

Given the descriptions above, Pegg incomorates notions of response levels drawn from

the SOLO taxonomy (Biggs & Collis, 1982) to the van Hiele theory and, by doing so,

elaborates on the level descriptors to enable more inclusive criteria against which to compare and
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Level 1: Figures are identified according to their overall appearance. Properties play
no explicit role in this identification process.
Level 2: Figures are identified in terms of properties and are considered to be
independent of one another.
*Level 2A: Figures are identified in terms of one single property, such as the length of
sides of a figure.
*Level 2B: Several pfopertics are identified but exist in isolation of one another.
Level 3: Relationship between previously identified properties of a geometric figure
are now established.
*The student is able to order the properties so that one or more properties give rise or
imply other properties.

Level 4: Deduction is understood and students can develop mathematical proofs.

Figure 5 Pegg’s (1997) description of four levels of the van Hiele theory. (*) indicate SOLO-
derived adaptations made to the van Hiele theory.’

analyze students’ geometric understanding. Specifically, Pegg (1997, 1998) and Pegg and Davey

(1998) focus on the elaboration of the second and third levels regarding the van Hiele model.

" There is a confusing linguistic mismatching of the levels between the van Hiele model and Pegg’s (1997) revision of it.
"The van Hiele model begins with the basic level of geometric understanding and continues onto levels one through four.
Pegg's level one are assumed to be an elaboration to that of van Hiele's basic level. Pegg’s level 2A and 2B are taken to be
complementary to level one in the van Hiele model. As well, Pegg’s level 3 and level 4 are understood as being
elaborations of the second and third levels of the van Hiele model.
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Here, unistructural responses® and multistructural’ responses are considered to be within the
concrete symbolic mode” are associated with level 2 thinking (Pegg & Currie, 1998). Level 3

responses are evidenced when students can generate an overview of, or identify the important
elements within a task in order to form an appropriate generalization. Here, relational” responses
of concrete symbolic mode are deemed by Pegg and Currie (1998) as characteristic of level 3
thinking. This particular model of geometric thought has been used with a variety of learners
that ranges from primary students looking at basic two-dimensional shapes (Whitland & Pegg,
1999), to secondary (Currie & Pegg, 1997) as well as pre-service primary teachers (Lawrie, 1996).

Mathematical Understanding as Overcoming Epistemological Obstacles
Understanding as Both a Process and an Act
Sierpinska (1990) examines what it means for mathematical understanding to be
conceptualized as both a process and an act. She agrees that “/understanding is achieved slowly,
along with the accumulation of properties of objects, examples and development of concepts
concerning relations between classes of concepts” cited (Lindsay & Norman, 1984, p. 438). In
this manner, Sierpinska views mathematical understanding to be the process by which an

individual’s constant construction and reconstruction of ideas and meanings results in the

* Next to prestructural, unistructural responses are described by Biggs and Collis (1991) as being the second most
concrete form of understandings. A unistructural response involves the learner only having to comprehend the given
task or question by relating the question with a response that incorporates one of the concepts found within the
problem. For example, given a picture of two equilateral triangles and asked to respond in terms of what is the same
about the two figures, a unistructural response could be that both figures have three corners, three corners being one of
many possible similarities.

° Multistructural responses are defined by Biggs and Collis (1991) as when an individual is able to focus on two or more
relevant concepts at one time. While considered to be a more sophisticated level of understanding than that of
unistructural responses, a second characteristic of multistructural responses is evidenced by the individual's
comprehension of the concepts as being separate and not as related ideas. An example found within this level of
understanding could be a student who identifies, given a picture of the two equilateral triangles, that both triangles have
three corners each and that each of the triangles’ three sides are of equal length.

' Described by Biggs and Collis 1982) as being when individuals are capable of using and learning symbol systems.
‘Typically, this level of functioning takes place in late primary through secondary school years and requires the individual
to be able to internalize and generate representations of objects and events as words or images.

' “The relational response requires, in addition (to accessing a number of concepts), an overview of relevant concepts
while being able to monitor the process or task from beginning to end, thus allowing for a logically complete
conclusion” (Pegg & Currie, 1998, p. 337-338)
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establishment of connections between mathematical concepts. Sierpinska (1990) also draws on
Ricoeur’s (1989) notion regarding the dialectic nature of the process of understanding and as
acts within a process. Sierpinska (1990) adds that although she agrees with Ricoeur’s general
idea of the dialectic between an individual’s understanding and explaining as “starting with a
guess and developing through consecutive validations and modification of the guess” (p. 26), it is
difficult to directly apply this model to the comprehension of mathematical concepts. To do so
would necessitate the individual’s experience in working through a variety of situations, “because
the understanding of a concept is not normally reached through reading a single text. It
demands being involved in certain activities, problem situations, dialogues and discussions, and
the interpretation of many different texts” (Sierpinska, 1990, p. 26). Sierpinska integrates the ideas
of both Lindsay and Norman, and Ricoeur, to develop the notion for mathematical
understanding to exist as a process and act of constant construction, generalization, and
resynthesis of ideas and relationships between concepts through a spiraling “process” of dialectic
interpretation.

Processes of understanding are seen as lattices of acts of understanding linked by

various reasonings (explanations, validations) and a (relatively) ‘good’

understanding of a given mathematical situation (concept, theory, problem) is said

to be achieved if the process of understanding contained a certain number of

especially significant acts, namely acts of overcoming obstacles specific to that

mathematical situation. (Emphasis added, Sierpinska, 1994, xiv)

3‘ Histori irical A !

Sierpinska (1987, 1990, 1994) explains that in the act of understanding mathematics, new
ways of knowing are established. Distinguishing her theoretical work as being different from
other models of mathematical understanding that focus on “levels of understanding” (Herscovics
& Bergeron, 1988b; Pirie & Kieren, 1989; van Hiele, 1986), “cognitive structures” (Dubinsky &
Lewin, 1986; Lesh, Landau, & Hamilton, 1983), or the “dialectic coupling of procedural
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and relational forms of understanding” (Sfard, 2000; Skemp, 1978, 1979), Sierpinska classifies her
research as being that of a historico-empirical approach. This approach examines students’
understanding of mathematics from a perspective that focuses on the “obstacles to understanding
encountered both in the history of the development of mathematics and in today’s students.”
(Sierpinska, 1994, p. 120):

(Flrom the point of view of mathematics education, what is interesting are

[sic)lexactly these ‘accelerations and regressions’ and ‘epistemological gaps’, as

well as ‘epistemological obstacles’ and difficulties because it is assumed that to

learn is to overcome a difficulty. That an equilibrium has to be finally attained—

this [sic] is taken as a banality; the problem is that without first destabilizing the

student’s cognitive structures no process of equilibration will ever occur, i.e., no

learning of something radically new will ever occur. (Sierpinska, 1994, p. 121)
Sierpinska argues that in order to improve students’ mathematical understanding, teaching
should focus on intervenrtions that help students overcome epistemological obstacles.

So we must introduce the students into new problem situations and expect all

kinds of difficulties, misunderstandings and obstacles to emerge and it is our

main task as teachers to help the students in overcoming these, in becoming

aware of the differences; then the students will perhaps be able to make the

necessary reorganizations. (Sierpinska, 1994, p. 122)
Below are specific forms of knowing that Sierpinska sees as impacting on children’s
mathematical understanding.

Epistemologi bstacles

Sierpinska asserts that it is through the examination of students’ acts of understanding

that we can interpret thinking processes and epistemological obstacles” that are involved in

students’ construction of meaning regarding mathematical concepts. She makes the point that

*2 Sierpinska applies Bachelard's (1975, 1983) notion of “epistemological obstacles” to describe an individual’s
unconscious ways of knowing or understanding that constrain their ability to think about mathematical concepts in
general, elaborated, or more abstract ways.
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although specific methods of measuring students’ acts of understanding need to be developed,
strategies for teachers to engage students in confronting and overcoming epistemological
obstacles also need to be generated.

[IInstead of trying to replace the students’ ‘wrong’ knowledge by the ‘correct’ one,

the teacher’s effort should be invested into negotiations of meanings with the

students, invention of special challenging problems in which a student would

experience a mental conflict that would bring to his or her awareness that his or her

way of understanding is probably not the only possible one, that it is not universal.

(Sierpinska, 1994, xii)

Furthermore, the partial ordering of a learner’s acts of understanding would enable the student’s
depth of mathematical understanding to be compared against criteria and it could be measured
in terms of the number and quality of the acts of understanding demonstrated. As well, the
number of epistemological obstacles an individual may need to overcome could then be
identified.

Sierpinska (1990) argues that unlike intuitive knowledge, that she describes as “irresistible
and certain”, rational knowledge in mathematics is acquired through the individual’s exercise of
rigour and attention. Interrogating and synthesizing perspectives of understanding from Locke
(1985), Dewey (1988), and Hoyles (1986), Sierpinska (1990) generates four categories or acts of
conceptual mathematical understanding that she deems as necessary for students fo experience
and use in their studies of mathematics. They are as follows: “identification”, “discrimination”,
“generalization”, and “synthesis”. Iler subsequent work (Sierpinska, 1994) deals with the
elaboration of these categories whereby she integrates Vygotski’s (1987) theory of intellectual
operations. By doing so, Sierpinska forms a more detailed framework that provides descriptions
for the acts and processes involved in students” development of mathematical concepts and the

types of epistemological obstacles that may occur.
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The genesis of concepts in a child, according to Vygotski, is the genesis of his or
her intellectual operations such as generalization, identification of features of
objects, their comparison and differentiation, and synthesis of thoughts in the
form of systems. The very same operations lie at the foundations of
understanding. . .. The various genetic forms of these operations, discovered and
described by Vygotski, seemed to provide, almost immediately, the possible
genetic forms of understanding. Moreover, the theory can be used to explain
some of the curious ways in which students understand mathematical notions,
and why, at certain stages of their construction of these notions, they simply

cannot understand in a different or more elaborate or more abstract way.

(Sierpinska, 1994, p. 142-143)

Sierpinska (1994) distinguishes two key tenets within this idea of epistemological
obstacles and how they affect student understanding of mathematics. First, cognition is not seen
as an accumulative process but, instead, requires the individual’s reflection on past mathematical
actions in order for their reconstruction of understanding to occur. It is assumed then, that some
form of integration and reorganization is required by the individual in order for his or her way of
knowing or understanding to move from one level to another. The second assumption is that an
individual must rebuild fundamental understandings that give rise to different philosophical
considerations in order to overcome an epistemological obstacle. With this process of rebuilding,
Sierpinska adds that new knowings can give rise to future epistemological obstacles through our
awareness that an obstacle or obstacles exist in our mathematical understanding or, as a result of
the resolution of differences. Therefore, obstacles can be viewed as being positive in the sense
that we are able to overcome them or, negative in the sense that we acquire them.

[Wle must note that something (a belief, a scheme of thinking) functions as an

obstacle often only because either one is unaware of it, or because one does not
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question it, treating it as dogma. Overcoming an obstacle does not mean
switching to another system of beliefs or another persistent and believed
universal scheme of thinking but rather in changing the status of these
things to ‘one possible way of seeing things’, ‘one possible attitude’, or ‘a
locally valid method of approaching problems’ etc. (Sierpinska, 1994, p.
125)

Sierpinska (1994) makes it clear to the reader that, unlike Vygotski’'s genetic forms of
intellectual operations that are chronologically developmental stages, she distinguishes the four
categories as coexisting with one another and to be thought of as stages that one progresses
through in childhood and adulthood. So even if an adolescent or an adult was confronted with a
new mathematical concept, it would be likely that the individual would be working with a low
level of conceptual understanding of generalization and synthesis or perhaps with a vague
discrimination between the relevant and the irrelevant features of that particular concept.
Moreover, Sierpinska (1994) makes the argument that:

It seems that one cannot sensibly speak of epistemological obstacles in children

before they reach the age of conceptual thinking. Things went easier with the

younger children because they did not have to overcome epistemological

obstacles. The epistemological obstacles still remained to be constructed. (p. 158)

Mental ions: Identification i

When an individual begins to identify features of objects and can distinguish them as
being either more or less significant in view of some generalization, this can be considered to be a
more elaborate form of mental operation (Sierpinska, 1990, 1994). This is illustrated in the
following example:

... at some point in the process of understanding the topic of equations at the high-

school level, the student must identify the simultaneous occurrence of variables
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and the equal sign as features characteristic of equations before he or she starts to

conceptually think of equations as equality conditions on variables. (Sierpinska,

1994, P. 151)

Chain-Complexes

Sierpinska uses Vygotski’s term, “chain-complexes” to describe naive generalizations that
precede ones development of conceptual mathematical understanding. This type of
understanding can be observed in settings that involve actions of sorting or categorizing.
Sierpinska (1994) explains that a chain-complex occurs when “a child... adding objects or pictures
of objects to a given model, focuses on the last object added and is satisfied with any link
between the new object and this last one, disrespectful of any contradiction that may occur with
regard to the previously added objects” (p. 147). She uses an example from Vygotski’s research to
elucidate this for the reader:

... the child may select several objects having corners or angles when a yellow

triangle is presented as a model. Then, at some point, a blue object is selected and

we find that the child subsequently begins to select other blue objects that may be

circles or semicircles. The child then moves on to a new feature and begins to

select more circular objects. In the formation of the chained complex, we find

these kinds of transitions from one feature to another. (Vygotski, 1987, p. 139)

A second characteristic of chain-complexes is that they usually take place when an
individual is developing an understanding for a mathematical concept that involves the notion of
equity. In this case, it is not that the individual considers all the attributes of an object as being of
equal significance, but rather, that the individual is not able to stay focused on one particular
feature for any considerable length of time. “At one moment it can be, for example, the colour, at
another, the shape” (Sierpinska, 1994, p. 149). Here it is not possible for a student to abstract

common features identified from different contexts or to synthesize them into a
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mathematical concept because the individuals’ processes of understanding and the actual object
of their understanding is constantly undergoing change.
Pseudo-concept of generalization

When an individual becomes “aware of the non-essentiality of some assumption, or of the
possibility of extending the range of applications” (Sierpinska, 1990, p. 150), this act of
mathematical understanding is described by Sierpinska as “generalization”. An obstacle that can
occur within this category is a “pseudo-concept of generalization” (Sierpinska, 1993, 1994;
Sierpinska & Viwegier, 1989), such as when a child identifies geometric shapes according to
arbitrary colours so that any object resembling green pattern blocks would be considered
squares. This is taken to be a pseudo-concept of generalization because the child is making a
generalization but not the mathematical one- that all squares are four-sided polygons.

This epistemological obstacle is different from that of a chaincomplex because the
learner’s way of understanding serves as a more holistic or general manner of thinking about
mathematical concepts and does not change from situation to situation. Furthermore, due to the
pervasive nature of epistemological obstacles, they cannot be easily abandoned nor replaced
without considerable reorganization of one’s mathematical understanding.

On Abstraction

When one is able to maintain one’s thinking about the same single feature in order to
move beyond “complexization” (Vygotski, 1987) and towards the stage of generalization, one also
moves closer towards what Sierpinska refers to as true conceptualization. This is preceded by an
intermediary phase that she identifies as “potential concepts” (Sierpinska, 1994). Potential
concepts are considered as such because it is possible for the individual to develop an abstract
understanding of a mathematical concept once the individual is able to abstract the underlying
idea or ideas that is at the core of the concrete, factual, or contextual situations.

ion of esis: Cony

The formation of a mathematical concept requires the individual to be able to synthesize
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features of that concept into a coherent whole. Being able to do so implies that the student can
construct mathematical relations between two or more properties, facts, or objects (Sierpinska,
1990, 1994). Sierpinska’s research into epistemological obstacles and the role that they play in
students’ struggle to generate and understand mathematical concepts makes it clear to the
reader that students cannot achieve or demonstrate conceptual, mathematical thinking through
methods that assume learning by telling. Moreover:
Concepts cannot be given to the child, ready made, in the verbalized form or symbolic
representation. ‘The child has to construct them as generalizations of his or her
previous generalizations and it is quite natural that the adolescent’s first concepts may
bear little resemblance to the fully fledge ones developed by generalizations made by
mathematicians in their adult, mature, and often genius lives. And thus they become

obstacles to understanding the theories. (Sierpinska, 1994, p. 159)

Mathematical Understanding as APOS via Reflective Abstraction and Genetic Decomposition
The three main areas of research that Dubinsky has explored concern the manners in

which individuals construct mental schemas (Cottrill et al., 1996; Dubinsky, 19923, 1992b), the
role of reflective abstraction (Cottrill et al., 1996; Dubinsky, 1992b), and the interrelationship
between visual and analytic strategies (Zazkis, Dubinsky, & Dautermann, 1996) in students’
development of mathematical concepts. In his collaboration with Cottrill et al. (1996), Dubinsky
maintains a view that deep mathematical understanding is characterized by “an individual’s
tendency to respond, in a social context, to a perceived problem situation by constructing, re-
constructing, and organizing in her or his mind, mathematical processes and objects that deal
with the situation.® Cotrill et al. (1996) argue that mathematics cannot be regarded as a set of
static concepts that can be passively acquired by students but rather, sound mathematical
understanding necessitates students’ active struggle in constructing and reconstructing their
own mathematical thinking- their schemas. They make the contention that by not addressing

" In keeping with Piagetian views, Cotrill et al. characterize effective mathematical knowledge as being the successful
adaptation and accommodation of an individual’s schemas. * (p. 171).
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students’ incorrect conceptions, teachers reinforce by further embedding the students’
misconceptions into their mathematical schemas. Cotrill et al. (1996) describe mathematical
knowledge as being a spiraling cycle in which an individual’s reflection on mathematical actions,
processes, and objects are integrated together to produce mental schemas or networks.
Dubinsky (1992b) and Cottrill et al. (1996) refer to this cyclical process as the APOS* theory (see
Figure 6).

APOS Theory
Actions
Dubinsky (1992b) and Cottrill et al. (1996) explain mathematical actions as “any physical®
or mental transformation of [mathematical] objects to obtain other [mathematical] objects”
(Cottrill et al., 1996, p. 171). These actions can consist of one response or a sequence of connected
responses that occur when an individual reacts to a perceived external event. Further still, it is
when the individual reflects on his or her mathematical action(s) that their action(s) become a

process.
Processes

Cotrill et al. (1996) define a mathematical process to be:

. .. a transformation of an object (or objects) that has the important characteristic

that the individual is in control of. . . in the sense that he or she is able to describe,

or reflect on, all of the steps in the transformation without necessarily performing

them. (p. r71)
Once constructed, a process can be manipulated and combined with other mathematical
processes. For example, once an individual understands that “three add four makes seven”, this
understanding can be reversed and connected to the process of subtraction, “seven take away four

makes three”. It is these manipulations together with the individual's reflecting on the

* APOS is an acronym for “actions, processes, objects, schemas”™.
'® An example of a physical action could be a student recording or manipulating a mathematical calculation onto paper. A
mental action on the other hand, could be a student recalling some mathematical fact such as 6 + 6 = 12 from memory.
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Figure 6. Dubinsky’s (1992) model for the cyclical nature of mathematical actions, processes,
objects, and schemas.

mathematics at hand that give rise to new processes and can foster the development of
relationships between other process constructs to form a schema or, a mathematical object.
Objects

Dubinsky (1992b) and Cottrill et al. (1996) describe mathematical objects as being
“constructed through the encapsulation of a process. This encapsulation is achieved when the
individual becomes aware of the totality of the process, realizes that transformations can act on it,
and is able to construct such transformation” (Cottrill et al., 1996, p. r71). The student is able to
flexibly move their thinking back and forth between objects and processes of a mathematical idea.
Mathematical objects exist as dense and symbolic mathematical schemas with which an
individual is able to respond to many different contexts by de-encapsulating a mathematical

concept in order to retrieve the appropriate processes or actions.
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Schemas

As mentioned above, Dubinsky (1992b) and Cottrill et al. (1996) explain schemas to be
coherent mental networks made up of mathematical representations of actions, processes, and
objects. Once formed, these networks can also be interrelated with other schemas. Moreover, it
is through continual, reflective constructing and reconstructing of mathematical schemas that an
individual is able to make sense of, and deal with problematic situations by modifying or
developing new mathematical processes, objects, or schemas.

The Role of Reflective Abstraction in Mathematical Understanding

Dubinsky (1992b) regards Piaget’s notion of reflective abstraction as playing a critical role
in the development of students’ mathematical thinking. Morcover, Dubinsky (1992b) supports
Piaget’s (Beth & Piaget, 1966; Piaget, 1985) view that “first... reflective abstraction has no
absolute beginning structure and second, that it continues up on through higher mathematics
(Beth & Piaget, 1966, p. 203-208). By keeping in one’s mind the APOS model (see Figure 6)
while reading the following descriptions regarding the different forms of reflective abstraction,
one is able to understand how these types of mathematical abstraction play integral parts in an
individual's movement from one stage to the next in developing their mathematical thinking
from actions to processes, operations, and schemas (Cottrill, 1996; Dubinsky, 1992a, 1992b).

In contrast to empirical and pseudo-empirical forms of abstraction”, Dubinsky (1992a,
1992b) considers reflective abstraction to be the most sophisticated. He views reflective
abstraction to be necessary for advanced mathematical understanding because it is the process by
which students are able to internally coordinate their mathematical actions and form mental
mathematical generalizations about external objects or events. Within reflective abstraction,

Dubinsky further distinguishes five specific stages of thinking that enable deep mathematical

'® Based on Beth and Piaget 1966), Dubinsky (1992a, 1992b) defines empirical abstraction as being the least advanced
form of abstract thinking; as one’s ability to make generalization(s) regarding the common properties of a collection of
objects such as, “all the blocks are blue”. Pseudo-empirical abstraction is considered to be a more advanced form of
thinking than that of empirical abstraction but not as sophisticated as reflective abstraction. This type of internal
construction enables an individual to sort out mathematical properties that are being acted out on a set of objects. For
example, a person's action of aligning two sets of objects demonstrates that that person has an understanding of a one-
to-one correspondence among the sets of objects.
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understanding: “interiorization”, “coordination”, “encapsulation”, “generalization”, and “reversal”
(see Figure 6).

Interiorization occurs when the learner is able to consciously reflect on mathematical
actions and combine them with other actions. Through reflection and coordinating two or more
mathematical processes together, the individual is able to construct new mathematical objects
through encapsulating or converting the process(es) into a concept. Once an abstract
mathematical object or concept is formed, the learner is able to generalize this knowledge and
apply it to many different contexts. Further still, this understanding of relationships that exist
among mathematical processes, objects, or schemas allows the learner to think flexibly and thus,
reverse their thinking.”

ic ition

Dubinsky (1992a, 1992b) and Cottrill et al., (1996) propose “genetic decomposition” as a
possible means by which effective teaching methods can foster students’ mathematical
understanding as framed by the APOS model. Genetic decomposition attempts to identify the
elements of thinking that are necessary for students’ construction of schemas regarding a
particular math concept of say, limit’. Dubinsky and his collaborators (Cottrill et al.) characterize
genetic decomposition as a cyclical tool that begins with an analysis of the mathematics for a
particular concept and then compares it with students’ understanding in order to develop a
specific sequence for the learning of the mathematical concept. According to Dubinsky, before
any instruction takes place, analytic decomposition is necessary. This approach involves breaking
down into smaller chunks and then sequencing mathematical problems into specific steps so that
students will be led to construct the particular concept (sec Figure 7). Methods for instruction
are then designed and implemented, and observations are collected regarding the mathematical
activities of the students. These observations are then compared against the first genetic

dccomposition and nccessary revisions regarding the sequencing of the mathematical problems

' For instance, by understanding multiplication as the complimentary operation of division we can think about4 x 3 =
12 as being reverse expression of 12 + 3 = 4.
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or instructional strategies are made. The entire cycle of decomposition, implementation, and

comparison is then repeated until no more revisions are needed (see Figure 8).

Preliminary Genetic Decomposition
Our description of what might occur is organized in six steps that occur only very

-roughly in the given order and with a great deal of “backing and filling” as the
student constructs the concept of limit.

1. The action of evaluating the function f at a few points, each successive point
closer to a than was the previous point.

2. Interiorization of the action of Step | to a single process in which f(x
approaches L as x approaches a.

3. Encapsulate the process of Step 2 so that, for example. in talking about
combination properties of limits, the limit process becomes an object to
which actions (e.g., determine if a certain property holds) can be applied.

4. Reconstruct the process of Step 2 in terms of intervals and inequalities. This
is done by introducing numerical estimates of the closeness of approach, in
symbols, 0 < |[x —a| < dand |f(x) — L| <e. _ L

5. Apply a quantification schema to connect the reconstructed process of the
previous step to obtain the formal definition of limit. As we indicated in our
comments on the literature, applying this definition is a process in which one
imagines iterating through all positive numbers and, for each one called €,
'visiting every positive number, calling each 8 this time, considering each
value, called x in the appropriate interval, and checking the inequalities. The
implication and the quantification lead to a decision as to whether the defini-
tion is satisfied.

6. A completed €-8 conception applied to specific situations.

Figure 7. Cottrill et al.’s (1996) example of the genetic decomposition of the concept of limit.
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Figure 8. Cottrill et al’s (1996) diagram of the cycle regarding the process of genetic
decomposition, its implementation, and its revision.

114




B CONSTRUCT  RECONSTRUGT  FIT  GONNECT (R
BBUILD UP  PROMBLEMETIZE  INVENT

ELICITED - BY - THE - FAGILITATIVE - TEAGHER 8

| DESTABILIZING ~ CONFRONTING
= INTERNAL  MENTAL PROCEDURAL
& REFLECTIVE INFORMAL

© " UNPREDICTABLE LINEAR
& CONCRETE-TO-ABSTRACT

mmnemm ACTIONS
& 08JE CONCEPTUAL TOOLS
REPRESENTATIONS

OBSTACLES

MEASURABLE

GENETIC  DECONSTRUCTIBLES:

115



Emphasizing the Dynamic Nature

of Mathematical Understanding
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Visual and Analytic Strategies as Interrelated Qualities of Mathematical Understanding

Taking a different approach from that of investigating mathematical understanding
through the development of stages and sequences, Zazkis, Dubinsky, and Dautermann’s study
(1996) examines the possible relationship(s) between the visual and analytic strategies that
undergraduate students employed in solving algebraic problems. The students in this study
were given mathematical problems that could be solved using either a “visual” (see Figure ¢) or
“analytic” approach (see Figure 10). In terms of defining these two different strategies, Zazkis et
al. (1996) describe visualization as occurring when one forms a relationship between what one
sees in one’s mind as a mental construct and that which is experienced through on€’s senses in
the physical environment. Analytic thinking is characterized as being;:

any mental manipulation of objeets or processes with or without the aid of symbols.
[For example,] a biologist who analyzes the nature of a plant through decomposing
it into its parts, as well as thinking about the relationships among those parts and
synthesizing them into various other wholes such as leaves, flowers, and seeds.
Thus we include the naming of parts in our view of analysis, but we also include
intellectualizing them into various new wholes. (Zazkis et al., 1996, p. 442)
Their definition of Qr)nathematical analysis also includes the five previously mentioned forms of
reflective abstractions' that enable the individual to construct mental representations.

Zazkis et al.’s (1996) research explores previous claims that attribute visual strategies as
being less sophisticated (Eisenberg & Dreyfus, 1991; Gollwitzer, 1991; Presmeg, 1986a; Vinner,
1989) and even restrictive to students’ mathematical abilitiesin connecting visual representations
to symbolic forms of mathematics (Kruteskii, 1976; Presmeg, 1986a, 1986b). Interestingly,

Zazkis et al. (1996) found that the students did not use one or the other of visual or analytic

! Interiorization, coordination, encapsulation, generalization, and reversal.
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Our specific situation deals with the dihedral group of order four, denoted D4, and
we will consider students’ thinking about two problems: List the elements of this group,
and calculate the products, according to the group operation, of pairs of elements. We
chose to observe students working with these D4 problems because (a) each of the
interpretations described below represents roughly the same level of mathematical
sophistication, (b) both processes are simple enough to be carried out quickly and are
therefore manageable during a clinical interview, and (c) the situation itself is com-
plex enough to bring out distinctions in the students’ understanding.

The group D4 can be modeled in two ways. The approach that we take to be highly
related to visual thinking is expressed in terms of the symmeétries of a square. In this
view, the elements ot the group are the four rotations of the square around its cen-
ter—in 0, 90, 180, and 270 degrees, together with four reflections or “flips” (across
lines connecting the midpoints of the opposite sides and the two diagonals). The group
operation between two symmetries consists of performing one symmetry on a
square and then performing the other on the result. Using this approach, a mathematics
student might employ a physical model of the square to achieve an understanding
of its various rotations and flips. Figure 1 illustrates this method of calculating the
product of two symmetries. The student performs a vertical flip followed by a 90-
degree clockwise rotation to arrive at the reflection or flip across-the diagonal with

positive slope. - -
1 2 2 1 3 2
4 3 \ 3 4 R90 4 1

| ’ ]

Vertical flip followed by a 90-degree right rotation.

Figure 9. Sample algebraic problem and visual solution (Zazkis et al., 1996).
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A second approach to D4, which we take to be more representative of analytic
thinking, expresses the group in terms of permutations of four objects. The group
operation in this case consists of applying a specific algorithm to multiply these objects
and produce a permutation product. Thus a vertical flip of the square might be rep-
resented by the permutation

1234
2143

and a 90-degree rotation by the permutation
1234

(2341)'

After multiplying these permutations we get
1234

(3214)’

Figure ro. Zazkis etal.’s (1996) example of analytic solution for the same algebraic problem.

~ -

strategies but employed a combination of the two approaches. Consequently, they developed an
alternative model that does not dichotomize visualization and analysis but puts forth the idea of
the two as interrelated. 'T'hus, visual and analytic thinking are “interacting and mutually
supporting modes of thinking, rather than as two sides of a coin or as a dichotomy or
continuum’. (Zazkis et al., 1996, p. 454). Their visualizer-analyzer (VA) model conceptualizes the
two problem solving approaches to be interdependent and challenges Piaget's (1977) claim that
“some people are particularly visual, others mainly motor, auditory, etc.” (p. 684). Moreover,
Zazkis et al. align their view to be more in keeping with Clements’ (1982a, 1982b) work that
‘explores learners as not only being “visualizers” and “verbalizers” but also, “mixers™ those
individuals who “do not have a tendency one way or the other” (Clements, 1982b, p. 34).

Instead of describing student visualization and anajysis as being located on opposite ends
of a continuum, the VA model (see Figure 11 ) makes the assumption that:

{iJt could be that a preference for, and difficulties with, visualization (Bishop, 1986;

GOldenbérg, 1991; Tall, 1991; Vinner, 1989) is no more than an individual's

tendency to dwell on one side or another of the triangle, for example, when
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communicating her or his thinking an individual might be more comfortable

drawing pictures or writing formulas, but that does not change the fact that he or

she needs analytic thinking in determining what to draw, and he or she eventually

constructs a rich mental picture that determines what symbols to write. (Zazkis et

al., 1996, p. 453)
As Zazkis et al. assume visualization and analysis to be intertwined and therefore inseparable,
they state that it is not possible to make claims that strive to categorize students’ mathematical
thinking or prioritize one method over the other. This model serves to encourage mathematics
educators to conceptualize visual and analytic thinking as being equally important in students’

development of fluid and rich mathematical understanding.

Figure 11. Visualization/Analysis Model (Zazkis et al., 1996).

Schoenfeld’s Views on Mathematical Understanding
Schoenfeld (1989a) argues against linear, hierarchical frameworks that characterize
children’s mathematical knowledge as existing as a series of stages that begin with naive
understandings and move progressively towards formal mathematical knowledge. This is
because the structure of such frameworks does not highlight the fragmented and unstable nature
of children’s knowledge structures. Second, Schoenfeld does not conceptualize mathematical

understanding as being unidirectional but views it as occurring through a back and forth or
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bidirectional manner. Thirdly and in similar vein to Hiebert (1989) and Pimm (1987), Schoenfeld
(1989a, 1991) advocates for models that focus on children’s mathematical understanding as
continuous and not those that “trap” it in structures of linearity. Thus, by describing
mathematical understanding as being circular in nature emphasizes mathematical ways of
knowing as being constantly reintegrated and giving rise to more complex forms of knowledge.

Moreover, in order for educators to gain an understanding regarditlg children's
development of mathematical concepts, teachers must focus on examining the dynamics of
children’s mathematical actions as well as how they evolve through language and social
interactions (Schoenfeld, 19894, 1991, 1992, 1996). Mathematics as Schoenfeld describes it, is all
about deep, connected understandings; that is, understandings that occur not only within an
individual’s mind, but also collaboratively and socially through the interacting with others:

One often thinks of the stereotype, the isolate mathematician alone in his office,

struggling to prove a new theorem. This is certainly a part of mathematics, but

there is a social aspect of it as well, an aspect that Diaconis captured perfectly.

Coming to grips with mathematics involves “talking and explaining, false starts,

and the interaction of personalities. “All of it, not the least of which is the challenge

of the false starts, is indeed a great joy. (Schoenfeld, 1991, p. 328)

Schoenfeld (1992) applies Ryle’s (1949) description to distinguish instrumental knowledge as
being “knowledge that” and relational knowledge as “knowing how”. He also supports Hiebert's
(1985) view that there is not a distinct line or boundary that separates these two forms of
mathematical knowledge but rather, each informs and gives rise to the other.

According to Schoenfeld, mathematical understanding that is to be conceptualized as
fluid and dynamic cannot be explored through models that assume mathematical development
to be a monitonic process that entails the adding on of more knowledge to their knowledge
base. Instead, research that aims to describe mathematical understanding as fluid and dynamic

demands multiple perspectives that not only address specific issues of mathematical
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understanding but also connect individual theories to larger realms within mathematics
education:
.. we need focus and pluralism, and an occasional step back to look at the big
picture.... there should be broad diversity in what we look at, and the methods we
use to do the looking— I dont believe unified theories or methodologies are
around the corner- .... We need to work on our descriptions both of the forest and

of the trees within. (Schoenfeld, 1989a, p. 116)

A Model for Analyzing Students’ Mathematical Understanding

Schoenfeld’s (1989a) video analysis examines students’ conceptual understanding of
mathematics through different levels of detail as it unfolds during problem solving situations.
His research explores the possibilities of computer-based learning for enhancing mathematical
understanding as it pertains to students’ graphing of straight lines (see Figure 12).

Schoenfeld’s (1989a) analytic model enables comparisons to be made between students’
mathematical structures (the right-hand column) and preestablished mathematical forms (the
middle column) as well as defining a student’s level of complexity with respect to their
conceptual schema(s). As seen in the Figure 12, the lefthand column represents the particular
“lens” through which the researcher is examining student interactions; that is, the macro level
focuses on the student’s mathematical schemas, the middle level examines the entailments of
larger schemas, the micro level moves closer in to the connections associated with the
entailments of schemas, and the fourth level zooms in to the contexts that give.rise to the
student’s micro level of understanding. Schoenfeld’s leveled structure of analysis enables the
researcher to not only deconstruct mathematical concepts and students’ conceptual
understanding but also to tease out the relationships that exist amongst them.

Consequently, Schoenfeld (1989a, 1991) conceives deep mathematical understanding as

being that which allows for flexibility and proficiency because of its rich, well developed micro
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level of a knowledge base. Unstable mathematical understandings and misconceptions on the
other hand are taken to be a result of an individual's ill-grounded connections at the micro level.
Furthermore, Schoenfeld, like R. B. Davis (1992) views formal mathematics as a product or
residue of well-connected mathematical understanding. He emphasizes these points below:

If you understand how things fit together in mathematics, there is very little to

memorize. That is, the important thing in mathematics is seeing the connections,

seeing what makes things tick and how they fit together. Doing the mathematics

is putting together the connections and making sense of the structure. Writing

down the r&eulis—- the formal statements that codify your understanding- is the

end product, rather than the starting place. (Schoenfeld, 1991, p. 328)
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‘The use of the term “levels™ in this context does not presume that the structures
discussed are hierarchical, or that they have the customary entailments of
hierarchical structures.

Figure 12. An example demonstrating Schoenfelds (1989a) leveled analysis of rcgarding the
graphing of straight lines and the comparison between that of established mathematics and that
of student mathematical understanding.
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Problem Solving for the Development of Mathematical Understanding
Schoenfeld (1992) further elaborates on his analytic model (1989a) by taking a step closer
and looking at individuals’ mathematical knowledge bases. Here he examines what relevant
information students draw on during mathematical problem solving, and the ways in which they
retrieve and employ this information. For exémple, given the problem:
You are given two intersecting straight lines and a point P marked on one of
them, as in the figure below. Show how to construct, using a straightedge and

compass, a circle that is tangent to both lines and that as the point P as its point of

tangency to one of the lines.

Figure 13. Example of a mathematical problem and its solution used to analyze student problem
solving actions (Schoenfeld, 1992).
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a student’s mathematical understanding can be assessed against the table below:

Degree of Knowledge of facts . and procedures

Does the student:

a. know nothing about

b. know about the -
existence of, but
nothing about the
details of )

c. partially recall or
suspect the details,
but with little certainty

d. confidently believe

the tangent to a circle is

perpendicular to the radius
drawn to the point of
tangency (true)

any two constructible loci

suffice to determine the

location of a point (true with
qualifications)

the center of an inscribed
circle in a triangle lies at
the intersection of the

a (correct) procedure for
bisecting an angle

a (correct) procedure for
dropping a perpendicular
to a line from a point

an (incorrect) procedure for
erecting a perpendicular

to a line through a given
point on that line

medians (false)

Figure 14. Partial inventory of an individual’s resources for working out the construction problem
as described in Figure 13 (Schoenfeld (1992).

Here, informal knowledge is defined as'that knowledge that a student brings to bear on a
particular problem such as a student’s mathematical intuitions and their fnore formal knowledge
consists of mathematical facts, definitions, or algorithmic procedures. The ways in which these
forms of knowledge are expressed may vary depending on the individual's confidence or certainty

of them.

- The Structure of Memory: Access to Resources

Schoenfeld (1992) proposes another model that outlines his conceptualization of our
memory systcm and how the contents of memory arc organized, aceessed, and processed in a
sequential yet somewhaf circular manner (see Figure 15). Schoenfeld explains that visual,
auditory, and tactilc_ information is received through what he calls as “sensory buffers” or, short

term memory. Short term memory is described as the location where the thinking gets done. If
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sensory information is attended to within one’s short term memory, then it is converted into
forms that are further developed through the working and long-term memory systems. Working
memory is different from that of short and long term memory because not only does one’s
working memory take in information from these other two sites but it is also where metalevel
processes occur and enable one to construct mental representations. In addition to this, within

one’s working memory, one is able to structure planning, monitor, and evaluate one’s

Long-term
Working Memory
A Sensory Memory
P/mblem ’ Buffer - -l | Math
Metalevel knowledge
Stimuli processes: gem{ | Melacognitive
anni < knowledge
Task visual ;;nz:g
X nitoring
auditory . Beliefs
tactile | evaluation about:
Mental math
Representations self
Environment ‘1 Real-world
knowledge

OUTPUT

Figure 15. Schoenfeld’s (1992) conceptualization of the structure of memory.

alathematical actions. It is this activity that takes place in our working memory that enables us to
externalize our mathematical thinking through various physical, written, or verbal forms of
expression. Long-term memory system is considered as a “permanent knowledge repository”
(Schoenfeld, 1992, p. 350). Itis aneural network in which mathematical knowledge functions as
nodes and relational knowledge as the strands that connect these nodes together to form the

network.
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Schoenfeld’s (1985, 1987, 1989b, 1992) studies that examined and compared students’
executive or control skills (see Figure 16) to those of expert mathematicians (see Figure 17)
~ revealed that unlike the students who spent much of their time exploring the mathematical
problems, mathematicians spent the majority of their problem solving time making sense of the
situation, analyzing, and structuring their exploration; that is, in thinking through the situation at
hand, mathematicians produced solutions through generating and implementing devised
methods that demonstrated a high level of control and perseverance. In the context of
mathematical prdblem solving, “control” refers to the way in which an individual selects goals and
subgoals, monitors, revises, and assesses their progress of a problem solving activity. Control
also includes how one makes use of and sense of given or found information in attempts to solve
a problem. The second managerial strategy, “persevémnce” refers to an individual’s intuitive,
experiential sense in knowing when to continue with and not give up too soon on a chosen
strategy or action but also, knowing when to abandon a particular strategy or action and search

for a more effective or useful one.

Activity
Read |
Analyze
Explore
Plan
Implement
Venfy

I ' 1 1 »
5 10 ‘15 20
Elapsed Time (Minutes)

Figure 16. Timeline graph of a typical student attempting to solve a non-standard problem
(Schoenfeld, 1992,).
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Activity
Read
Analyze
 Explore
Plan
Implement
Verify

T I ' ]
o 15 20
Elapsed Time {Minutes)

Figure 17. Time-ine graph of a mathematician working on a difficult problem (Schoenfeld, 1992).

Based on these observations and implementing instruction that focuses on students’
development of control and perseverance in their mathematical thinking (see Figure 18),
Schoenfeld’s (1989b; 1992) work supports other researchers’ (Carraher et. al, 1987; Hart, 1989;
Hiebert, 1989; Taplin, 1995) contentions for perseverance and control as two critical qualities
necessary for well developed mathematical understanding. Schoenfeld advocates teaching
methods that engage students in reflecting and routinely explaining their mathematical actions
as well as in providing reasons for why their actions make sense within the given context. In
doing so, he states that these managerial skills will then become a natural way of thinking about

mathematics and enable more complex mathematical understandings to occur.
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Figure 18. Timeline graph of student’s problem solving actions after implementation of
instruction that focused on development of metacognitive problem solving skills (Schoenfeld,

1992).
‘The Metaphorical Nature of Mathematical Understanding: The Work of Anna Sfard

Sfard (1991, 1994, 1998, 2000) examines mathematical understanding as being rooted in

and growing from one’s use of conceptual metaphors. Metaphors, she explains, not only provide
us with a means by which to explain our thinking, but they also shape our ways of understanding
and knowing mathematics. This is expressed by Sfard below when she speaks of Reddy’s (1978)
notion of conduit metaphor and connects it to that of mathematician’s conceptions of what it
means to understand mathematics:
Rather than being just tools for a better understanding and memorizing,
conceptual metaphors are often the primary source of mathematical concepts. The
constitutive role of metaphor has been mentioned explicitly by the mathematicians

whom I havc interviewed in onc of my studics. (Sfard, 1994)
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In this way or another, all of them made it clear that without a metaphor, a new

concept is not a concept at all. They also repeatedly emphasized the

indispensability of the metaphor in the subsequent problem-solving process.

(Sfard, 1994, as cited in Sfard, 1997, p. 340)
Sfard (1998, 2000) also makes the observation that the two main types of educational metaphors
being used today in mathematics education characterize children’s mathematical understanding
in two different manners; that is, metaphors that describe mathematical understanding as a
process of “acquisition” and metaphors that describe mathematical understanding as developed
through “participation”. Acquistionist metaphors are defined by Sfard as views that describe
children’s conceptual understanding of mathematics to be a process by which “basic units of
knowledge. . . can be accumulated, gradually refined, and combined to form ever richer cognitive
structures.” (1998, p. 5). Furthermore, Sfard distinguishes that:

The picture is not much different when we talk about the learner as a person who

constructs meaning. This approach, which today seems natural and self-evident,

brings to mind the activity of accumulating material goods. The language of

“knowledge acquisition” and “concept development” makes us think about the

human mind as a container to be filled with certain materials and abut the learner

as becoming an owner of these materials. (1998, p. 5)
She contrasts the acquisition metaphor with a participation metaphor and states that “the PM
[participation metaphor] shifts the focus to the evolving bonds between the individual and
others.... Indeed, PM makes salient the dialectic nature of the learning interaction: The whole
and the parts affect and inform each other” (1998, p. 5). As well, she also notes that unlike the
acquisition metaphor that emphasizes mathematical knowledge as a product of learning and
teaching, the participaﬁon metaphor amplifies mathematical knowing occurring through
ongoing interaction within a mathematical community.

Sfard (1998) recognizes the need for metaphors to be flexible and diverse because ...too
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great a devotion to one particular metaphor and rejection of all others can lead to theoretical
distortions and to undesirable practical consequences” (p. 5):

We have to accept the fact that the metaphors we use while theorizing may be

good enough to fit small areas, but none of them suffice to cover the entire field.

In other words, we must learn to satisty ourselves with only local sense making.

A realistic thinker knows he or she has to give up the hope that the little patches

of coherence will eventually combine into a consistent global theory. It seems that

the sooner we accept the thought that our work is bound to produce patchwork of

metaphors rather than a unified, homogeneous theory of learning, the better for us

and for those whose lives are likely to be affected by our work. (Sfard, 1998, p. 12)

Sfard (1998, 2000) does not enter into current (mathematical) educational debates that
aim to delineate learning as being conceptualized through either acquistionist or participative
metaphors but rather, thinks that we should take the best qualities of both metaphorical ways of
thinking and use them not in a divisive manner but in an integrated manner. That is, that
discourse should focus on distingunishing contexts in which applications of each approach proves
effective. In addition to this, Sfard stresses that even if we wanted to subscribe to framing
mathematical understanding as say, solely participatory in nature, due to our cultural
embeddedness in acquisitionist language we cannot help but to think acquisitionally, with
objects and abstract properties~ it is a part of our taken for granted ways of being. Sfard (1997,
1998) states that both metaphorical ways of thinking offer qualities that the other cannot and in
doing so, argues that “the most powerful research is the one that stands on more than one
metaphorical leg” (Sfard, 1998, p. 11) because these metaphors provide tension from which
theories can be interrogated.

Stard identifics onc limitation that can occur when only using a participative approach to

teaching mathematics, and that is that this way of thinking about mathematical learning can
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lead to the “complete delegitimatization of instruction that is not problem based or not situated
in areal-life context” (1998, p. 11) and “tlhis is difficult, when mathematics at some point exists
within the symbolic, abstract realm” (Sfard, 1998, p. 36). Conversely, Sfard explains that when
applying a solely acquisitional approach to teaching mathematics together with the assumption
that learners build their own conceptual understanding of mathematics, the problem of bridging
individual and collective knowledge becomes difficult.

Connecting Mathematical Processes of Knowing with Objects of Knowledge: Operational and
Structural Conceptions of Mathematics

Instead of describing mathematical understanding as that which exists as either object or
action, Sfard’s research (1991, 1992, 2000) attempts to bridge this dichotomous gap and
establishes the need for the co-existence of both mathematical knowing and knowledge; that is,
that “an adequate combination of the AM and the PM would bring to the fore the advantages of
them” (1998, p. 11). In describing the conceptual development of mathematics, Sfard (1997)
characterizes it as being “a zig-zag movement with our conceptual schemes as constituting an
“autopoietic system”; that is, a “system which is continually self-producing” (Maturana & Varela,
1987, p. 355)- 'These qualities regarding mathematical understanding are pervasive elements
throughout Sfard’s diverse activities of research and reflect the value she holds for both structural
or abstract knowledge and operational or context-bound knowings. Sfard seeks to describe the
interrelationships that connect mathematical knowledge and knowing by examining the
processes that facilitate children’s formation of abstract, symbolic, concepts in mathematics.

Sfard’s (1991) identifies three hierarchical stages of mathematical conceptions. The stages
are referred to as: “interiorization”, “condensation”, and “reification” (see Figure 19). She defines
the interiorization as the stage in which a child is developing an operational concept of the
mathematics they are using to perform an action on a given problem. For example, “When 1 fill

each of these three boxes up to the top and count the total number of cubes, I can find out how
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much each container holds”. All operational concepts that are formed within the interiorization

stage are considered to be context-specific knowings.

condensation

interiorization

Figure 19. J. S. Thom’s (2004) diagram that characterizes Sfard’s (1991) configuration of the
three stages of mathematical conception.

The second stage— the condensation stage is described by Sfard as being when learners
are able to metaphorically, “stand back” and begin to reintegrate or make generalizations about
their mathematical understandings. It is this middle stage that elicits an interplay between the
synthesis of the child’s previous operational mathematical conceptions and move towards the
formation of an abstract, structural concept. Using, again, the example of the container, a child
may now think, “Each time I filled and counted the number of cubes each of the three containers
held. I wonder if there is a way that I can determine how many cubes the containers hold
without having to fill each box and count the cubes by ones?”

The final stage of reification is cxplained by Sfard as the point at which the lcarner is able
to comprehend the mathematical concept- in this case, the volume of rectangular prisms as an
“object” or a “thing” that is symbolic, dense, and versatile. So, being able to understand that, “If I
want to know how many cubes any box can hold, all I need to do is to measure (with cubes) and
multiply the length of the box by the width of the box by the height of the box.” Hence, by
condensing one’s knowing of operational, context-specific actions through ongoing analysis,

one’s mathematical knowledge can become reified into a flexible, structural form.
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The Limitations of Metaphors

Sfard (1997, 1998) points out that although metaphors enable us to think about
mathematics in powerfully abstract and symbolic ways at the same time, they are also shaped and
limited within the confines of our experiential knowledge. Below are ontological obstacles
identified by Sfard as they pertain to the integration of metaphors, metaphorical overprojection,
and metaphorical confinement. In keeping with Sierpinska and R. B. Davis & Vinner's views,
Sfard too considers it necessary for students to overcome these obstacles in order to integrate
many different metaphors and develop a sound, stable conceptual knowledge of mathematics.

hors

Sfard (1991, 1992, 1997) explains that one possible reason for students’ difficulties with
integrating metaphors is due to their inability to allow certain characteristics of the metaphor to
fade into the background in order to integrate new qualities that will extend their knowledge to
new or different mathematical situations. For example, when learning about the concept of
division, one must, in a sense “forget” one’s previous understanding that the operation of division
when applied to whole numbers “makes the quotient smaller” in order to develop an
understanding for why division “makes the quotient bigger” when working with fractions and
decimals.

M i jection

Instances when metaphorical overprojection take place involve situations where an
inconsistency lies in the student’s mathematical actions:

Without abandonment of certain characteristics there may be a danger of a logical

incompatibility with the new context or with metaphors contributing to the

construction of the new concept. Appropriate modifications, however, are

sometimes difficult to perform. Certain characteristics, being a vital component of

the source notion, would refuse to go. (Sfard, 1997, p. 368)

She provides the following example of a student who divides the factor x - 2’into both sides of
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the equation, (x-2)*(x + 3) = 2(x2). This is considered to be an overprojection of “an equation is
a balance” metaphor because when the student performs this operation on both sides of the
equation, the student is thinking that equality has been maintained when in actual fact, the root
x = 2 has been lost. Metaphorical overprojection can also occur when a student tries to integrate
two incompatible metaphors such as “number as quantity” with the concept of complex numbers.
If students cannot exclude or in some way forget’ the quantitative quality of numbers, there
results an incompatibility that limits and proves problematic to their conceptual understanding of
complex numbers.
Metaphorical Confinement

Metaphorical confinement as a third ontological obstacle occurs when a student’s
metaphor is not broad enough to allow for the development of different, related metaphors or
mathematical concepts. This form of confinement in mathematical understanding is present
when students can only visualize fractions as being “part(s) of a whole”; with this image, their
conceptual understanding is confined and because it cannot be opened to fractions existing as

“object(s) within a larger group of objects”, or as another way of expressing the divisive action.

136




constructs frameworks macro middle
micro levels  schemas short term
working long term networks - nodes
product knowledge object action
knowing interiorize condense
reintegrate reify  visual analytic
individual collective social mental
instrumental relational operational
structural metaphorical hierarchical
hierarchical combining intertwining
inseparable fragmented  unstable
continuous deep connected circular
somewhat circular distinet
dichotemizable  categosizaie  lsear
sequentia!  sequential prioritizable
naive to fermet  informal  formal
back and forth zigzag bidirectional
fluid dynamic adding on
correspondences  flexible proficient
organize manage  access process
persevere control reflect acquire

construct participate interact

137



138



Mathematical Understanding as Objects of Personal and Public Forms of Communication

In her recent work Sfard (2000) has shifted her perspective to a more enactive one.

Mathematical thinking is now regarded by Sfard (2000) as a form of communication; an integral
cognitive process which allows individuals to not only cxpress with others how and what they
are understanding about the mathematics at hand but also, mathematical thinking as
communication shapes how we individually and collectively make sense of mathematics. She
contends that our reasons for communicating are not to establish mathematical objects but
rather, mathematical objects are brought into being because we need them to develop conceptual
understanding in terms of our own internal thinking and in conversations with others. Sfard
(2000) explains that mathematical objects (physical, verbal, mental) arise as a product of our need
to communicate; not the other way around: We do not start with mathematical objects and then
communicate, we communicate and through this dialogic process, mathematical objects come
into being. In keeping with this Sfard (2000) makes the assertion:

I will argue that the claim of the primacy of communication imposes aliteral reversal

of this relationship: Instead of being merely helpful in constructing and sharing the

knowledge of preexisting mathematical objects, communication and its demands

must now be regarded as the primary cause for their existence. (p. 4)
For these reasons Sfard’s research (2000) and the collaborative work that she has done with
Kieran (Sfard & Kieran, 2000) reveal mathematical communication as having positive, neutral,
and even detrimental impact on students’ conceptual understanding. Together, Sfard, and Sfard
and Kieran's research lessens the gap between our conceptions of students’ internal, cognitive
thinking as being separate from their interactive and communicative ways of acting. As well, their
work brings forth the notion of internal and collective mathematical understanding as being
conceived together.

Sfard (1997; 2000) supports Maturana and Varela's (1987) view that cognition in its most

encompassing sense, co-evolves from our ways of knowing, our actions, and in our individual and
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collective identities. This is evident when Sfard speaks of mathematical understanding as being
shaped and evolving within ourselves and with others. Similarly to that of Gadamer (1989) who
describes understanding as being like that of a “conversation”™ dynamic, unpredictable, and
dependent on the conversants, Sfard (2000) too uses this metaphor when she characterizes
mathematical thinking as it occurs when individual students work collectively in a larger group:
Thinking, like conversation between two people, involves turn taking, asking
questions and giving answers, and building each new utterance-whether audible
or silent, whether in words or in other symbols—on previous ones in such a manner
that all are interconnected in an essential way. (p. 5)
Sfard (2000) argues that rather than simply viewing mathematical understanding as being that
which exists either in the objective, public realm or in the individual, private realm, we need to
also focus on the relationships that emerge between formal mathematics and that which is
considered to be informal and embodied; meaning, the connections which take place within
individual and collective conversations and the ways in which these interactions affect

mathematical understanding.

Mathematical Conceptualization as Complex Circularity

By integrating the latest works of Sfard, which illuminate students’ mathematical
thinking as being circular and complex with Sfard’s model of mathematical conception (i99r),
the latter shifts from that which was linear in structure, to a view of mathematical understanding
as being co-emergent and cyclical (see Figure 20). This co-emerging of theory is possible when
we examine the definition for “attended” focus. Sfard (2000) describes this as being the
mathematics or mathematical object which arises as the individual or group’s subject of
conversation. Here as in Sfard’s previous model of concept formation, this can be seen as

corresponding to the condensation stage. In both cases of attended focus and condensation

stage, there is an interactivity which involves the weaving together of several foci. Secondly, the

form of mathematics or mathematical thinking which resembles the reification stage can be seen
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in what Sfard (2000) describes as a “pronounced” focus of conversation; when “the learner{s] can
flexibly move back and forth if needed to other realms whereby effective communication mediates
these transitions” (p. 33). Thirdly, that which is considered to be the “intended” focus of
mathematical communication, specified on an individual level as being each person’s
interpretation of the pronounced and attended foci, fits with Sfard’s operational metaphors

located in the interiorization stage.

-operations! concept-metaphos
-~ + intendedtiocus

!
*gtructural concept-metaphor
* pronounced focus

-con},d{ensatmn
* stigndediocus

Figure 20.J. S. Thom'’s (2004) diagram which attempts to integrate Sfard’s theories regarding
mathematical conception (1991) and mathematical communication (2000).

Mathematical Understanding as Growth: The Pirie-Kieren Model

Pirie and Kieren's cognitive mappings of individuals and groups of students identify
mathematical understanding as being simultaneously individual and collective, dynamic,
occurring on many levels at once, and revealing qualities of transcendence and recursiveness (see

Figure 21 and 22). They consider learners to be autopoietic beings who determine what
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phenomena will be experienced as perturbations and who specify the ways in which they structure
their mathematical thinking (Kieren & Pirie, 1992). As well, Pirie and Kieren argue that

mathematical understanding does not occur as a result of student interactions with others or the

Figure 21. Model of a dynamical theory of the growth of mathematical understanding (Pirie &
Kieren, 1994a).
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Definitions of Levels of Mathematical Growth

Primitive doing or knowing: All the knowledge that a learner or group of learners
bring to the particular mathematics and from which all new understandings develop.
Image making: making distinctions in previous knowing and using it in new ways.
“Image” not only include physical and verbal forms, but mental representations as
well.

Image having: using a mental construct about a topic without performing the
particular activities that brought it about.

Property noticing: making note of distinctions, combinations or connections
between images, predicting how they might be achieved and recording such
relationships.

Formalizing: abstracting a method or common quality from the noted properties
which are not dependent on meaningful images.

Observing: reflecting on and coordinating formal activity, expressing coordinations
such as theorems.

Structuring: explaining or theorizing one’s formal observations in terms of a logical
structure.

Inventising: breaking away from preconceptions that brought about previous
understanding and creating new questions which might grown into a completely
different concept. :

Other Features of the Model

« Folding back: moving to an inner level in order to extend one’s current, inadequate

understanding when faced with problems at any level.

¢ “Don't need” boundaries: indicated by the model’s bold rings; conveys the idea that

beyond the boundary one does not need the specific inner understanding that gave

rise to the outer knowing.

e Each level beyond primitive knowing is composed of a complementarity of acting

and expressing necessary before one is able move to the next level; acting

encompasses all previous understanding, and expressing gives distinct substance to
. that particular level.

Figure 22. Definitions of terms and features regarding the Pirie-Kieren model for the growth of
mathematical understanding. (Adapted from Stoute, 2000).

environment but rather, comes to be through the structural changes within, between, and among
learners and the environment (Kieren, Gordon Calvert, Reid, & Simmt, 1995; Gordon Calvert,
1999; Simmt, 2000). Itis this part of the Pirie and Kieren's view on mathematical understanding
which emphasizes the notion that mathematical inter-activity as critically important for

mathematical learning to grow. Moreover, Pirie and Kieren define mathematical
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understanding as the embodiment of all verbal, physical, and written acts:

Mathematical understanding can be characterized as leveled but non-linear. It is a

recursive phenomenon and recursion is seen to occur when thinking moves

between levels of sophistication. Indeed each level of understanding is contained

within succeeding levels. Any particular level is dependent on the forms and

processes within and, further is constrained by those without. (Pirie & Kieren,

1989, p. 8)

A Descriptive Not Prescriptive Model

Pirie and Kieren make it clear that their model is not intended to be used to define or
prescribe a particular sequence of static levels which constitute students’ mathematical learning
but rather, a way of conceptualizing the learning of mathematics as unpredictable and complex
phenomena. As well, Pirie and Kieren (1994b) do not distinguish mathematical growth as being
monological pathways, or privilege one’s fluency to use formal language and mathematical
symbols as representing formal mathematical understandings. Mathematical understanding is
not only assumed to grow in complexity through the leamer or collective unity’s outward
movement, but also from inward movement or, what they call, folding back to previous levels of
knowing. Folding back is not a redoing of what has already been done, but moves the learner or
group of learners back to inner levels of mathematical knowings where they will reintegrate
understandings as a result of the perturbations experienced in previous outer levels before moving
on (Kieren & Pirie, 1991; Martin, 1999; "I'owers, Martin, & Pirie, 2000). ''his model also reflects
the notion of mathematical knowings existing simultaneously as a product, producer, and
process (A. B. Davis, 1995, 1996; A. B. Davis & Sumara, 1997, 2000; Kieren, Simmt, Gordon
Calvert, & Reid, 1996; Maturana & Varela, 1987). In this way, Pirie and Kieran advocate for
learning settings that encourage students’ engagement in folding back in order for the co-
emergencc of their sclf-referencing, remembering, and reintegration of mathematical knowings to

occur (Pirie & Kieren, 1992).
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Thus, the Pirie-Kieren model of mathematical growth (1989) reflects an enactive

perspective because it provides a theoretical lens which focuses specifically on the complex, co-

emergent, and unpredictable nature of mathematical understanding. Mathematical

understanding is viewed as occurring through interrelated, fluid processes and evolving in a
fractal-like manner (Kieren, 1990; Pirie & Kieren, 1989; Pirie & Kieren, 1994b). "I'hey describe
the model’s structure as neither hierarchical nor linear. The realms of mathematical knowings
found within this model exist as embedded, unbounded circles which are self-similar and
compatible with one another. Moreover, the Pirie-Kieren model reflects Maturana and Varela’s
(1987) axiom of “all doing is knowing, and all knowing is doing” (p. 26) because it locates

primitive doing or knowing as being the roots from which all other mathematical knowings

emerge (see Figure 23).

Figure 23. Model illustrating primitive knowing as the source of all other mathematical
knowledge (Kieren, 1990).
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| all doing is knowing, and all knowing is doing
| simudtaneously  individual  and  collective §
personal public private intemmal  extemmal §
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Despite the diversity of positions taken by mathematics educators regarding the
ways in which mathematical understanding is portrayed and the manner in which it
develops, it is evident in this literature collection that there is a general consensus among
the varying perspectives that “good” mathematical understanding involves the integration
of informal and formal mathematical knowledge, that it is flexibly fluid, and that it can be
applied to respond to many different situations.

The theoretical portraits located in constructivism emphasize the building of one’s
mathematical knowledge as schemas, one’s progression through specific stages, as well
as the maneuvering of one’s mathematics over a variety of conceptual obstacles. The
positions taken by the authors in the second set of literature are slightly different from
those seen in the first as these researchers seek to interpret the dynamié nature of
mathematical understanding and explore forms of knowledge as being interrelated
phénomcna. And finally, in the third grouping of litcraturc, the work of mathcmatics
educators who share an enactive perspective was examined. These more ecological
viewpoints serve to highlight the co-emergent and complex nature of mathematical
understanding, how it it is individually and collectively brought into being, and the

embodied forms in which it exists.
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Having taken a good lock at the metaphorical furnishings J had
J now faced the task of deciding whether (and why ) they veally suited
(er did not suit) the ecological mind-space in which J was now
duwelling. 3na:tdextadatﬁu ﬂﬂadtaca:mdwwﬁat&mdaaﬂtﬁmﬁmq
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New Furniture

So what of my mathematics cuviicula as jigoaw. puzzles metaphon?
TJhe metaphor creates the image of a mathematics cuviiculum as being a
set of pieces.. like concepts, ohills, demains ef mathematics....
Camplicated maybe, but as such, are ‘de- and unde-’ abile pieces and as
a whole-- clearly defined and separately visible. Se, when given to the
students and the pieces are assembiled cowectly, they weveal a coferent
picture from ito. intexlocking parts. Ofay yes, this. metaphor is a vewy
‘tidy’ and ‘systematic’ way for a teacher te think abieut mathematics.
cuviicula. But what this metaphor does not do is. veveal the ecological

. B. Davis, Sumara, and Luce-Kapler' make the distinction
complicated thinking as that which “aims te weduce phencmena to
elemental compaonents, oot causes, and fundamental baws.””? They wse
the example of a clock as a cemplicated mechanism and state that a
each of its paits’”’ and how the clock can be disassembled and
seassembiled. Jn contrast, a cempleax comprefiension of a clock entails
not only an undevstanding of its. parts and the “intevdependencics. of
ito. parts” but alse, the role that is played by the clock is necessarily
natucal envivonments.’

Fhe authiors makie the impartant peint that semething conceptualized in
a complicated mannex as in the case of the clock, C = A + B which
implies. that C (ie., the clock) can be tafien apart and put back together
again. Shinking in a cemplex way however, assumes. that C depends. on
“A” and “B” but that at the same time, it exists as something other than
just A + B. Gake for example a cake, which can be considered to be a
baked, you cannct take it apart again to get back what went into
mafking it. The cafe exists as. a complex foun because of the reaction
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So even if a teacher managed to. design a mathematics program that fit
mathematical tepics together in a way that produced a complete picture,
the cuviculum would vemain static. It would still be a set of distinct
pieces. and fence, necessarily a “cemplicated” NOT “complex”
cuwticular foum. The program would enly be a preduct of its parts and
not something that possesses the potential for pessibilities greatex than
that’ ox a cumticulum that embodies an awareness for the nole it plays
a complex view of the cuviculum. Semething moxe than a complicated
ane. A new metaphox.
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Qn ecologically cofevent metaphor of a mathematics cuviculum needs. to be one that
creates an image of a flexible, dynamic netwerkt that co-eveluves as a wesult of the
intexactions. of the teachier, children, and the envinenment.  mathematics cuwviculum
might then, not be thought of as a cemmeditized "thing'" ... that which “prescuifies”
what teachers axe to teach and what children axe to learn.’

o L . G.  Bateser’s .map
‘ v metaphor’ works well in
cunticula o matonati

co-emerges with mathematical learm_ng

cuicula can be
ecological pexopective.
Envisiened as a map, a
teacher can lacate
mathematical topics,
concepts, and oskills as
important landmantis. for
the class’ learning. Unce
& marked out, the teachen
can then think abeut how
they are connected to cne
another. Jnfevent in this

cannot “know” the landscape o the idea that what

cannot be skietchied out in

advance ave the actual
paths on which the childven will travel to get to the mathematical locations. ox the
undenstandings. they will establish when’ and after they come to these sites. Sa
although a teacher might be abile te mark cut the mathematical landmarks, it is
impoasoibile to predict the conditions of the ever-changing landscape (ie., the actual
tevwain that the class will encounten while engaged in the mathematical studies ).
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In b this, children’s
m ae:gpﬁa”fa” cal | wmt!wmmma( M?io’{e?éi‘dndtﬂq -"g??

{ learning can be liftened to
what Varela, Thempsen,

and Resch describe as

“paths that axe laid down
in walking”. (nd Clife
paths, they are varely if
inotead, spread out in
oeuewe dbtectiana and
ouutdi—&ac!éo Mathematics. cuwvicula and anxmnq lmagmed in this mannex
distinguishes them as co-emengent phencmena that are brought inte. being thuough the
otudents, theix teacher, and mathematical settings.

Differently from before, I have come to

f'i;,gew of teacher and children intevacting within
TRt 4, individual and  coflective  mathematical
%ﬁwm sealms... nested osyotems but not at all

disciete. The larger human and nonfiuman

e envivonment is not an eatexnal entity but an

gﬂtﬂ intexdependent one”’ Cnce a moot peint of my

Lt earlien thinking, it is now a critical ene. Juot

| ;i@‘d ' : as. children’s mathematical hnowings impact

¥ and ohape the classrocom envivenment, the

" envivonment now changed, impacts and

mathematics clase s the undovitondipe ot ettt toe

place{mthechwdwmandwan Jhese wealmo. exist as co-evolving systems--
dynamic and vecunsively welated to ene ancther.
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L includes the childven as wetl as
L o ;? 4 &%“ the mateial and nenmaterial
% 2 ?:? \'& ,& envivonment. Of course, J am a
%-%_ Ty oy .go‘ souwce of puovocation and
= tiy & mathematical  learning  but
) .
= \%‘ _ gﬁ‘ impotantly, J’m not the only
"%} , f one. (s “cifes”, teaching and
=t When the class is pexceived as
%‘“ a oystem of individual and
o collective velationships.
= connected with the material and
P immaterial envivenument’’,
! happen fuwom anything and

J think about a metapher for
mathematics, instead of notiona of “static integration” o “separate stvands” of
algebiva, geometry and se on, J imagine them to. be fluid and co-emergent entitico
that make mathematics a dynamic living whele. In this. way, mathematics can be
conceived as a ‘shape-shifter’-- arising and metamerphosing as it intevacts with the
contexts of which it is. a pad. Take for example, a linear equaticn as. one foxm
efmathematico nepresented algebnaically and the equation as a graph as being
ancthex... ox a pattewn as a numerical sequence ox as a thuee dimensional stuscture.

" MM of adgnamlﬁ rmng whole, -

M@mﬁﬂndtﬂkfne shrape | %,
o . -*g,s.w e e
Mygaidie” e L ﬁ@'ﬁ,ﬁi’ g MAEN Ed‘ ?CC‘GMCS} .
what comes to be, _ i playjuiness

& resudt of children’s fearning a beginnirg open to posaibilitios

: v,.153




mathematics can emexge as. a “residue” on a “sounce” " of children’s learning. Jt
dees. not have to be ‘fept’ as a “preduct”’ that is produced within the sequential
aynchrenicity of predetevmined “cutputs” fed by panticular “inputs”. It is not
framed in a deteuministic ox a predeteuministic view of clasorcem mathematics. Heve,
Beb Davis’ * notion of mathematical “vesidue” sewes as a useful beginning point
the origino ner the processes by which a paticular mathematics arises can be
precioely located. Jt arises fram the mathematical languaging of the individual and
bangen collective('s ). Mathematical “processes” such as preblem solving, connecting,
neasening, and expressing can be undevstood as “mathematical language” °; that
is, they are the physical, verbal, and mental mannews in which we can think,
(inter Jact, and exist mathematically. Und, mathematics as a “sounce” for children’s.
learning embeds. a sense of unpredictabiility and playfulness-- a beginning that io.
apmtaaeekmdaaﬁpmmh&aea

a wvadically diffevent metaphorical manner, focus is not enly on the
matﬁemattcaatﬁand not anly on mathematico. as individual and collective fnowing,
but alse on mathematics as. it esides seambessly and all at cnce within past,
present, and future conteats. of children’s learning.

Naotes

1. . B. Davis, Sumara, and Luce-Kapler, 2000.

2. A. B. Davis, Sumara, and Luce-HKapler, 2000, pg. 62

3. d. B. Davis, Sumara, and Luce-Hapler, 2000, pg. 62

4. A. B. Davis, Sumara, and Luce-Kapler, 2000,p. 62-63.

5. d. B. Davis and Sumara, 2000; A. B. Davis, Sumara, and Luce-Kapler, 2000;
Fels. and  Meyer, 1997 ; Meyer and Fels, 1997.

6. Jllich, 1971.

7. G. Bateson, 1972; Ghem, 2000; in convevsation with S. E. B. Pirie, March, 2001.

8. Varela et al., 1996, p. 205.

9. Leweontin, 1983; Varela et al., 1996;

10.A. B. Davis et al., 2000; Maxtin, 1999; Pirie and Fieren, 1992; Steffe and
Fzun, 1994.

11. A further considexation of R. B. Davis> ( 1992) neticn of mathematics as.

‘(mm)’.
12. R. B. Davis, 1992.
13. Maturana, 1997a, 19976, 1998.
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EDUCATION

“JUST HAND
THEM DOWN
THE MATHE-
MATICS”

.. OR NQT?!

WHEN MATHEMAT-
ics is imagined and
enacted as objectified,
static knowledge that
is to be traditionally
passed down from
one generation to the

next, the teaching
and learning of
mathematics is dis-

abled from ever be-
coming anything else.
Under the air of
“hand-me-downs”, it
is easy to understand
why mathematics is
taught and Ilearned
out of a sense of obli-
gation or contempt
rather than a sense
of open desire or
wonder, and why,
mathematics is all
too often considered
as that which is to be
mastered rather than
that which is to be
understood. In com-

moditizing mathe-
matics, we make ab-
surd, the possibility
for us as teachers
and to those who we
teach mathematics to
perceive it as any-
thing else but a fixed
and inanimate entity.
In this way of con-
ceiving mathematics,
we malke it inconceiv-
able for school ma-
thematics to become
something else than
just a collection of
hand-me-downs.

The embeddedness
of these images with-
in one’s taken for
granted - ways of
thinking about math-
ematics not only
make it natural for
us to assume mathe-
matics to be an inani-
mate “thing”, but in
doing so, displaces
mathematics as that
which exists “out
there”. Given this
mindset, it is not sur-
prising why a teacher
would feel impelled to
set the class onto a
straight and narrow,
one-way course so
that the students too,
become collectors of
mathematics. Given
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this mindset, it
makes sense to in
grain the ritualistic
practice of “acquir-
ing” mathematics in-
to school mathemat-
ics unit and lesson
plans, methods of as-
sessment, and en-
acted in the class-
room; product orien-
ted practices that fo-

cus on  “desired”,
“expected”, or even
“measurable” out-

comes of instruction--
that after instruc-
tion, the student will
have “mastered” the
mathematics taught
in the lesson before
“moving on” to the
next part of the cur-
ricular course. Of
course, the ways in
which children are in-
structed to take pos-
segsion of their
mathematical hand-
me-downs of con-
cepts, skills, and even
attitudes may vary.
Still, “teaching by
telling”, engaging stu-
dents in “hunting
for”, having them
“seek out” “hidden”
mathematics within
“real” world contexts,
and even “explor-

ations” “designed” for

children’s discovery
(continued on page 84)




(continued from page 8)
of mathematics are
-all examples of teach-
ing and learning
forms that keep a-
live, this tradition of
“handing down” of
mathemartics.
Moreover, when
product-oriented
ways of thinking
about school mathe-
matics are coupled
with a “back to ba-
sics” mentality, the
teaching and learning
of mathematics be-
come subjected to the
weigh scale of “how
much” in regard to
the amount of mathe-
matical facts and
skills that children
are to learn and little
or no emphasis is
placed on such things
as their mmathemati-
cal thinking or un-
derstanding. Given
this mindset, mathe-
matical processes
such as those identi-
fied by the National
Council of Teachers
of Mathematics' as
problem solving, rea-
soning, communicat-
ing, connecting, and
representing would
likely be deemed “not
essential” by most
teachers. Viewed as

“additional”™ knowl-
edge, teaching that
attends to children’s
development of math-
ematical processes
would depend on
whether or not the
children. have ac-
quired first, the pre-
specified mathemati-
cal facts and skills
with which to
“process” the mathe-
matics.

The point here, is
that when children
are taught to learn
mathematics in the
tradition of hand-me-
downs and as a prod-
uct oriented matter
of collecting, hunting
down, or retrieving
pieces of knowledge,
it creates the impos-
sibility for mathemat-
ics to be taught and
learned in ways that
enable it to arise as
living and animate.

Now, identifying
the limitations of how
mathematics exists
in the classroom and
the possibility of it
becoming something
else is all fine and
good. But in doing so,
means that the con-
versation does not
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end here. Rather, it
opens up a whole
host of questions
that require further
interrogation such
as:

« How can an ecological
way of thinking help
us to reconsider such
taken for granted per-
ceptions of classroom
mathematics and re-
imagine a more re-
sponsive view for the
teaching and learning
cf it to exist in the
classroom?

e What shifts in think-
ing become necessary
in order to reimagine
classroom mathema-
tics as being some-
thing other than a line
of hand-me-downs
from teacher to child?

* What could it mean if
we assumed mathe-
matics to Dbe “em-
bodied”?

* How could mathema-
tical problem solving,
reasoning, communi-
cating, connecting, and
expressing be under-
stood as something
other than additional
knowledge?

Notes

1. NCTM, 2000.
2. Baroody, 1993.




JE we takie seriously the view that mathematics is an ever-
changing entity perceived, cveated, and embodied as we
intevact with the wold’, then it does not make sense for
mathematics. to be cenceived as a fixed, inanimate,
disconnected “thing” that exists. “eut there”. When we
assume that the only mathematics we fnow or can ever
fnow emerges from our patterns of living as sccial-
culturnal beings then, mathematics is not an cobjective,
universal, transcendental weality but a living system that
s necessanily constitutive in nature. This means that
language.’ Jts. cofienence is. dependent en those whe

2 Lakoff & Nuitez, 2000.
* Bunnell, 2001; Maturana, 1988b.
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Scripting an Unscripted Lesson

V

The children gathered on the carpet to hear me read the story, Even Steven

and Odd Todd.' The beginning of this lesson was simple— there was no formal
introduction, no preamble, not even a motivational hook. I just opened the book
and started to read. This was not because I had not come prepared, I had. When 1
planned how I might share this story with the class, I decided that I did not want
to ask the children to look for, listen for, or think about anything specific. I did not
want to preface the book by telling them that it was a humorous tale about two
cousins who are clearly different from each other in one particular way. 1 did not
wish to tell them that in my earlier reading of the book I had found out that for
Even Steven, life unfolds as patterns of even numbers and for Odd Todd, life is all
about odd numbcrs. It was not that I wanted to “kecp” the mathematics from the
children but I set out to create a teaching-and-learning space where the class could
experience the story as it unfolded, in that particular moment. I wanted to let the
mathematics emerge in a different way than a predetermined, predictable one. In
not creating a pre-scripted lesson that was about me, “the teacher”, identifying “the
mathematics” that the children were to find in the story, this lesson remained open
to the mathematical possibilities that we might bring forth as we listened and
responded to the book as a class.

158




A maoment of digressive thought:

Problem Solving
Reasoning and Proof
Communication
Connections

Representatien Expressing

JE ene glances at the NCTM’s tist of the five “process” standards? ox veads
theough the descriptions that accompany them, it is possible fox teachens to intexpret
them ao five disciete mathematical “shills”. Given this, it is understandabile why a
teacher might then present them to the class as five separate topico.

Jt is only when carefully weading through the NCTM’s® decument, Jte
statement, “[p [rocesses can be learned within the Content Standards, and centent
can be learned within the Fnocess Standards'”, that a nenlinear image of
mathematics. and mathematical processes comes inte view. In contrast to linear,
mechanistic foumo of thinking that would have ws. imagine mathematical procesoes te
be mechanisms or devices that act as a conduit thveugh which we “transmit”
mathematics "inte" children, the NCIM proposes that mathematics content and
mathematical processes be undewstoed as being veciprocal in nature. The Council
takeo the peoition that the process standards are not to be conceived as ‘additional
knowledge” and cetainly net as a “means to a linear end” in mathematico.
document, it dees not mafte prominent, this non-linear and co-emengent image of
mathematics. and mathematical processes. Consequently, it wemainos faint and is
easily overlooked by the reader who weads from a bachground of trnaditicnally
cenjures up. notions such as complexity, civcularnity, and vecunsion, all of which help
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children’s mathematics

arise
can  from and be

shaped by

mathematical processes,
mathematical processes
can

also arise

from

and be

shaped
by

children’s mathematics.

complex cincularity that exiots with-and-in content and processes but alse, a
each other. Und it is. not that they simply exist in a cyclical sense; that cne prompts
the foumation of the otfier, but in an integral manner, mathematics content and

Now if we take the NCTM’s process standards and consider. them from an
ecological space that includes Maturana’s. definition of "languaging' (and in
keeping with this, Sfaxd’s notion of mathematical thinking as “communication” ), the
processes. identified as: probilem selving, communicating, veasening, expressing, and
cannecﬁngcan&eundmwadaaﬁeianamaafmatﬁemaﬁcal“eangwge”.aa
tﬁm&mgactmgandewwlmy Matﬁerrm&caépwcemeoaafamaa{matﬂematwae
enabile a class for example, to wiatanddeueﬂapaaaca@@ediueoqatem. I we
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aeamlesoly co-emenging with each othex, then each is, fundamental te. the ether and in
bowe we teach matfematics and how children learn mathematics.

When classwoom mathematics is. envisioned as. a living system that emerges
with the class’ mathematical and social-cullural founs of languaging, it alse
as. that which arises. as the vesult of children’s learning as well as that which sevves.
as. a beginning for their learning to occur. Mathematics exists as both a “residue”
and a “source” °. When mathematics arises from childien’s mental intra-actiens. ox
aocial intev-actions, it can be undewtood as being a “wesidue” ex, “cutcome of their
learning”.” This contrasts with pedagoegical views that assume learning can be
prespecified as “learning outcomes”. Un ecological examination dees not focus en
what the chitd SHOULD Arow but vather, en what mathematics the child actually
cames to. know. Fox instance, if a child explones how different sets. of cbjects can be
avianged in smallen, equal groups and awives at an undevstanding that “division
mafttes smallen”, this would be considered to be a mathematical wesidue of the child’s
bearning.

Netes.

1. Cristaldi, 1996.

2. NCIM, 2000.

3. MCIM, 2000. (lse, see p. 29.

4. NCIM, 2000, p. 30-31.

5. Baroady, 1993.

6. Maturana, 1998.

7. Maturana, 1997a, 19976, 1995.

8. Ao previously describied from an ecalogical perspective en page 150 and then on
page 167. Alse., see Pivie and Thom, 2001.

9. Qs previously described from an ecological perspective en page 150 and then on
page 167. (lso, see R. B. Dawis, 1992; Thom and Pirie, 2002.
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Mathematical I.mguage, La.nguaging, & Residues of Lm:mng

(a continuation of Scripting an Unscripted Lesson)

As I continued to read to the story to the class, the children began calling
out differences that they were noticing between the two characters:

“Even Steven gets up every morning at eight o'clock sharp.”
“Odd Todd likes to get up at nine oclock sharp.”
“Odd T'odd rides a tricycle.”
“Even Steven has four bicycles— they have two whecls cach.”
“Even Steven has six cats, eight gerbils, and ten goldfish.”
“... and twelve sprinklers in his garden!”

“Odd Todd has five buttons on his jacket and Even Steven has six on his
shirt.”

While I recorded the children’s observations onto a large piece of chart paper
Danica looked at what was being written down, glanced away for a moment, and
then announced that “Even Steven only likes things that are two, four, six, eight, ten,
twelve, and so on...and Odd Todd only likes things that are one, three, five, seven,
nine, and eleven”.

"The whole class nodded and smiled in agreement.

Mark then added, “Even Steven likes EVEN numbers”.

'This was immediately followed by Robby's comment, “and Odd Todd only
likes ODD numbers”.

However this time, only some of the class nodded or responded with “yeah!”
while other children said nothing, looked puzzled, or exclaimed, “what?!”

“Numbers that end in zero, two, four, six, and eight are even numbers and
numbers that end with one, three, five, seven, and nine are called odd numbers”
stated Mark.

Still, the class reacted with a mix of nods, furrowed brows, and a bunch of
“what?!s”. '
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Jumping into the conversation, I agreed with the two boys, “Yes, that's onc
way of thinking about numbers as being of two different kinds” and then began to
push this space that had now been opened by Mark and Robby a little further.
Recording the numbers on the chart paper as I spoke, I posed a question to the
whole class. “ If two, four, six, eight” I began, “and numbers that end with zero,
two, four, six, or eight, such as ten that is written as one-zero, twelve that is
written as one-two, thirty-four [recording 34]... sixty-eight [recording 68] can be
described as being even and one, three, five, seven, and nine, [recording 1, 3, 5, 7,
9] as well as numbers that end with one, three, five, seven, or nine such as eighty-one,
forty-three, eighty-five, sixty-seven, twenty-nine [recording 81, 43, 85, 67, 29] can
be described as being odd... what is it that makes certain numbers even and other
numbers odd?!... besides just looking at the digit that they end with?!”

Silence. The children said nothing. One second.. two seconds... three
seconds... waiting. They simply stared back at me, shrugging their shoulders.
Michelle leapt into the conversation and conjectured that “even numbers— you add
two to them... two, four, six, eight, ten”,

Moving into her space of thinking, I poked around a bit and said “yes, this is
true... but what about one, three, five, seven [pointing to the series that I had
already written down on the paper]... aren’t you also adding two to one to get three
and two to five to get seven...””

“Oh yeah” Michelle said, smiling.

“As well’ I added, “think about Even Steven... did he do everything in a
sequence of two then four, then six, then eight...? or Odd Todd, did he do
everything in a sequence of one, three, five, seven, and so on?”

“Hmmm... no” Michelle replied, shaking her head from side to side.

I then had the class form a large circle on the carpet. As I moved behind them
on the outside of the circle, I randomly asked some of the children to use counters
and to build one of the odd or even numbers listed on the chart paper with counters
and to place them in the middle of the circle. By doing so, we would be able to
continue the exploration but this time, take a closer look at the numbers in their
physical form. Although the children did not arrange the numbers they had built in
any particular order, except for separating the even numbers from the odd numbers,
we soon had physical expressions of 2, 4, 6, 8, 10, 12 andof 1, 3, 5, 7, 9, 11. I
asked the class to look at the numbers that had been built, to talk to one another,
and to see if there was anything that was “even” about the even numbers or anything
that could be considered as “odd” about the odd numbers.

After working with the students on either side of her, Shelby raised her hand
to speak and offered this: “T'he four, it's even because it has two and two.

I, as well as some of the other students nodded and smiled.
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“Yes. That makes scnsc... we can think of four as being evenly two and two.”
said, replying to Shelby’s comment.

Taking the idea that the group seemed to be embracing as making some kind
of sense to them, I encouraged the class to ‘pick it up’and play with it a little more.
“Okay, what about the other numbers that weve built here? Can we take Shelby’s
idea and... Is there anything that we could say about the other numbers, using her
idea of ‘even twos?”

Without any talk, the children clustered themselves into smaller working
groups, reached into the middle of the circle and set to arranging the counters for
each of the even numbers into pairs, by twos. When all the children had finished
working, I asked them what sense, if any, they were able to make from what they
had done.

'They explained to me that two was an “even two’, four was “two even twos”,
six was “three even twos™ and so on. And when I posed questions about larger
numbers like “what about thirty-six?”, I quickly got responses such as “thatd be
eighteen even twos™.

Noticing that the children had not said or done anything with the set of odd
numbers they had built, I pointed to them and asked, “what about these?”

'This provoked the children who were sitting nearest the odd numbers to
reach into the middle of the circle and begin to move the counters about. Soon
comments such as “this one doesnt have a partner”, “neither does this one”, and
“none of them do” began to surface in the conversation as the students arranged
each of the numbers by twos. Then, just as I had done with the even numbers, I
asked the class what they could say about larger numbers. “What about twenty-
nine?” or any odd number. Here, I got replies of “it would have fourteen even twos
and one leftover” and “if you put it into partners, one would always be left lonely”.

As we sat back and looked at the two sets of numbers now arranged evenly or
unevenly by twos, I asked the children if there was any sense in looking at these
numbers as being two different kinds, and what sense if any, was there in Mark’s
claim that you could simply look at the last digit to figure out if it was an even or an
odd number. The class agreed that any number could be described as being either
odd or even and when asked, some students indicated by nodding their heads that
yes, you could just look at the last digit of a number and determine whether it was
even or odd. What intrigued me were the different ways of thinking that the
children had created for making sense of odd and even numbers.

For instance, Danica explained, “A number bigger than ten, like forty-eight,
the forty is groups of ten... even... and the eight is four even twos... it's an even
number.”
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“And forty-ninc?” I asked.

“T'he forty is four groups of ten... that's even, and nine is an odd number
because it has four even twos and one leftover, so it's an odd number”, Danica
explained.

“Are you saying that you don't need to look at the other digits, only the last
one to determine if the number is odd or even?” I asked.

“Yes... because they are always even... tens... hundreds... they are always
something-zero” she said.

For other children, determining whether a number was even or odd was
based on different ways of thinking than Danica’s place-value-last-digit notion.
Some children concluded that if a number could be “split into equal halves” then it
would be an even number and “if it couldn’t, then it would be odd”. Other children
replied that if they could arrive at the number by counting up by twos from zero,
the number was even, and if they counted past the number using this rule, then the
number would be considered to be odd. Still other children said that through
building or visualizing the number as as a set of counters and then “partnering up”
the counters by twos, they would be able to determine if a number was odd or even,
depending if there was one as a remainder or not.
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Reflecting on this lessen, J was weminded of Theedone Reszalk’s bock, Jhe
Cublt of Infovmation! In it, he explains that as humans, it is ideas and not
emerge as a wesubt of our lived experience that ideas ceme to be and from which
not blindly accept Mark’s mathematical fact that even numbers are numbers that
endin 0, 2,4, 6,8, and edd numbers are ones that end in 1, 3, 5,7, en 9, o Shelliy’s
conjectune of “even twos” as “tuuths”. Rather, the class jumped inte the
mathematical spaces that had been cpened and explored these spaces in order to

(nother aftesthought: A curious space that was not epened because neither J.
te asoume that abl numbens axe even ox edd) was this:

Js thexe ecvex a numbex that is NOT odd ox even?

On anctfier occasion this. might Aave arisen naturally and tafen the class te a
different mathematical place. Neveutheless, this lessen sewed as an example of
mental images of numbers as a collection ef cbjects and symbols, as well as
powerful metaphions. of “even twes”, “partners” and “lanely anes”.

Ghe mathematical vesidue that came to be as events. of the children’s learning
wexe unpredictabile and distinctive yet integrated. Not only wao theve a collective
wecidue of the childuen’s learning; that numbens could be thought in texms. of being
even ox edd, but there wene alse mathematical knowings within this vesidue that were
alse collective and individual in nature. Gheoe included the childven’s notions of
place-value-and-locking-at-the-last-digit as well as the pattexns they established
thuough theix actions of ceunting and awvanging. Life diffenent shades of a colour,
each mathematical residue was distinctive while at the same time, each blended with
the others, adding depth and dimensien to the children's undevstanding of edd and
even numbens.

Nateos.

1. Reszak, 1994.
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Differently from mathematical wesidue, when mathematics.
becames that which occavions. children’s curiosities, it exiots,
as the sounce or a place-- a beginning for thein further
mathematical grewth to occur. For example, by posing the
queation, “Js. it tuwe that division always makes things
amallen?” enabiles a seunce from which many different
mathematical dixections. and apaces for children to take
their learning can eccur. Mathematico as. a source creates.
openings. for children to move mathematically and to
ouch a meaning of division would be appropriate and alsa
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Arisings

(A continuation of Mathematical Language, Languaging & Residues of Learning)

Settling down in front of me again, the children looked up, telling me that
they were ready to finish the story. I read on from where we had left oft. It was
when we came to the part in the story where Even Steven sets aside six pancakes for
his lunch and Odd Todd comes along and eats three pancakes that the children got
very excited. They stopped gazing at me and turned towards one another, gasping
in astonishment.

“He [Odd Todd] just made Even Steven’s pancakes odd!” one student
exclaimed.

Another child giggled and then whispered to her friend, “Odd Todd is very
clever!”

Even after we continued and finished reading the story, the children’s chatter
about how the even number of pancakes had been “turned into” an odd number of
pancakes had not diminished. When I asked them what it was that had them so
intrigued about the pancake incident, a flurry of responses came at me:

“I want to see what odd numbers I can make even!”
“Can ALL even numbers be made into odd ones?”

“Twonder how Odd Todd would eat his cousin’s 8 pancakes?... so they'd be odd.”
“Or Even Steven’s ten pancakes?!” “Or his thirty-six pancakes?!!!”
“I want to find out some other ways Even Steven could eat his twelve pancakes.”
“Does an odd number and another odd number always make an even number?”

Here within the same lesson, the mathematical ideas of odd and even
numbers emerged again; not as mathematical residue but this time, as
mathematical “sources”. The children’s questions created new places for them to
explore and develop their understanding of odd and even numbers. And for most of

the two days that followed, the class created smaller working groups and explored
the questions that they had posed.
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Do the metaphors with which we describe
éeginnéng,s and ends really matter?
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J suppase it is. passible one could argue, that even in mechanistic pattenns. of
thinking, mathematics can exist as both a beginning and an end in childven’s
learning. For example, rather than being defined in tevms of “source” and
“nesidue”, the metaphors of “input” and “cutput”’ could be used. By deing o0, ane
the same. Und if not, what exactly is the difference?

Yes. of course, mathematica CAN be thought in tevms of “inputs” and
“outputs” of children’s learning. Fowever, there are critical differences between
these metaphors and the ecelegical ones of “residue” and “seurce”. You see, the
mechanistic metaphor of “output” by its veny natuwe, evobes the idea of (school)
mathematics. as being a product that is produced on ne-preduced as a vesult ¢f a
chain of Clearning euvents taking place. “Input”’ cenjures up the notion of
identifialile, measunabile, and even presciibed "ingredients" being used on Cbeing
“added to” in order to preduce a cevtain mathematical cutput, vesult, ex product.
TJogether, these metaphors. embed a sensibility that assumes. specific events that give
woe to particulor mathematical cutcemes can be identified as ouch and that
mathematical outcomes “fueled”’ by mathematical inputs are predictable and
perhaps, can even be predetevmnined. Ghese ways. of thinfing abiout hew mathematics
exists in childven’s learning sexwve only to maintain a cenfining and veductionistic
view of classnocom mathematica.

In a vewy different way, the integrity of the ecological metaphors for
matfematics as being a “wesidue” and a “souwnce” for children’s learning is that they
de not embed a detevministic ex predetevministic view of classweem mathematics.
Rather, mathematics as “wesidue” evofies. a notion of something that has come to be,
what is left, cr what vemains. as a sesult of children’s learning. It is not a way of
thinfting that engendens a detexministic stance that presupposes that the origins of
mathematical nesidue can be precisely located on that the process(es) o the
languaging acts by which it came te be can be identified, specified, o veplicated. The
metaphoxs. focus attention on childven’s mathematics at hand-- the mathematics and
mathematical undewstanding that is. emerging. Juot as impentant, is. the ecclogical
metaphor of mathematics as. a “sounce” for childven’s learning. Jt contrasts with the
mechanistic image of mathematics as “input”’ in that the metaphor of “source”
buings. with it, a sense of beginning; a beginning that is not concewned with
predetexmining ox predicting what “should” follow but instead, highlights. the need
te be mindful and open toward the pessibilities. that “could” unfold-- anticipated ox
net. Imagining mathematico to be both vesidue and sounce infuses a sensibility that
is apen (as when the ground opens and water springs. fouth) and ever-changing (as
hous cne can never ofep. inte the same river twice). Jt offers different imageo
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clasarsom... images and meanings that mechanistic enes cannot.

171




A.fter having spent considerable time moving deeper into that other mind-

space, Jennifer emerged with a new understanding of what it meant to teach
mathematics. Her work in re-imagining metaphors that possessed an ecological
sensibility was occasioned only because she now knew the two systems of thinking
to be what Maturana calls consensual domains' . She realized how her previous way
of making sense of her teaching and her new ecological one highlighted and
diminished particular issues or concepts through their different’ metaphorical
languages. For Jennifer, it was impossible to conceive language as simply a tool for
communication.

We exist in language and it is thwough cur being in
thinking, how we teach, cur wayes of nesearching, and
ultimately, the finds of places that are created in the
mathematics classneam.

Notes

1. Maturana, 1988b.
2. “Different” here, does not necessarily mean “incompatible” or “disparate” but rather, “diverse”.
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"Atmosphere,” as the word suggests, is «a
vaporlike sphere which envelopes and affects
everything.... The sense of mood or atmosphere
is a profound part of our existence. By it we
know the character of the world around us.
Mood is a way of knowing and being in the
world.... the way in which space is lived and
experienced.’

' van Manen, 1986, p. 32
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[Elvery classroom, every school contains a
certain atmosphere [sense of place]. The
question is not whether there should be a
pervasive atmosphere in the [classroom or the]
school, but rather what kind is proper for i,
worthy of it.?

° Emphasis added, vem Manen, 1986, p. 31.
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Sense of place.
Place-making.

van Manen’s thinking abiout atmesphere echaoes the very
n;iigm&ahgwpﬂa«edﬁwea{ew@agicaﬁtﬁin&ingm:daﬂ
place.

Worthiness

e author mouves the convewsation inte the realm of
makes. important, the need to be awane of it, te. consider the
qualities. that make up a particubar atmosphere, and to
exexcise a mindfulness and care for the sence of place we
cextainly implicates the examination of ene’s metaphons.
from the embodiment of them. Jn deing oo, van Manen
hopes to provefie us to question the wonthiness of ocur
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Because this tacit knowledge influences both what and how
learning occurs-- for all participants.... In some instances, the
teacher must keep up with the social reconstituting of taken-
for-granted knowledge, and in other instances... the teacher
should take a leadership role that can only be fulfilled by
modeling and not simply by substituting a new set of taken-
for-granted beliefs for the older ones.’

° Emphasis added, Bowers & Flinders, 1991, p. 11.
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Fhe “leadenship vole” that Bowero and Flinders speak of
is. important in developing cne’s teaching of mathematics.
Relating with earlier sentiments, growth as a teacter is not
aliout breaking away from ane’s entive teaching and
seplacing it with something else. Not anly is. the possibility
of this queotionabile, such thinking enly exacerbates ‘this-
ox-that’, ‘eitfen-on’ afttitudes and weactions. Diffenently,
what Bewers. and Flinders argue for is. in Reeping with
what van Manen tee seefs. Situated in the mathematics
classrnoom, this entails. a teacher’s. MINDFUL censideration
what ane chooses to consewve in ene’s ways of knowing and
actions as a matfiematics teachier.

For me, this has meant assessing the wonthiness of the
metaphors. embedded in my teaching of mathematics,
assume that doing se should make the enactment of these
now thinking within a different theovetical sgyotem.
However, each day that I stepped inte the classwoem, J
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AGAIN T'm reminded that Eeamﬁng’ what it

even though J. have canscicusly cveated “diffexences” ' in fow I conceive
means to teach mathematics is not an
matfiematics. teaching, in the classxoom-- as pant of this place, I am still and
automatic process. It's not smooth, it's not
always will be uncensciously embedded in a webh of taften for granted

straig htforward, and it cbrta;ixﬁy doesn’t
weaaanaﬁtp - tabien. for guanted tanguage in which and by which I teach

appear on demand.
and children learn mathematico.?

Jhe challenge then becomes, which velaticnships need te be a cuitical pant
of one’s teaching conacicusness?
[

How might one g0 about catving out different spaces fot teaching and leamning?

Establish new relationships?

Expose a different kind of place for mathematics to gron?
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(souming teaching to. be praxis and net a practice imparts
undevstanding of place), the events that unfeld, ov the
emageandweua&waa&umqayotemaWHlﬂNaydema
dynamically xespending te ene ancther. Une’s teaching
then is not identified in se much WHAT it is but instead,
HOW it is-- how it is an intexdependent part of the whale.
So fox me, my work is. concenned with how my mathematics
classnoom.

s well, there is not the anxicus temptation to
systemATically tafe my new found metaphoro and fit
mathematico. teacking within the systemlc realm, the focus
them.’ Unce again moving off the mental line enabiles me
to fiead towands that “other” apace.

oikos...
relationships...
relationships as patterns...
.. as patterns of difference.

Se in the same way that Maturana and Varela speak of
knowledge as constitutive in nature; that i, as dynamic
stwuctunal relationships within a lving system and that
Bateson’s’ cencept a{mmdaacamwc&ngpatte)uwa{
differentiation is. alse what is at the heart of this werh.
Focusing on difference in an ecological manner means.
wecognizing difference as a welaticnship and net as a
thing.
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The diffevence that makes a differvence in my teaching of mathematico

Jn contrast te the metaphons embedded in my previous.
conceptualizations. of the mathematico class, mathematics, and
cuwwvicula as. a collection of individual “parts”, mathematics teaching as
a linear chain of events, and mathematical learning and undevstanding,
ao. building stwuctures, these new metaphons of maps, paths, living
aystems, wesidue, and sounce evofe notions of nonlinearity and
integration of mathematics to be undewstoed not as a proeduct of
mathematics itself for that matter, exist as “things” but all arise in the
different ways.




Fhese, I weuld say are the pattewns ef difference in my
metaphoxrs.
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Netea

1. G. Batesen, 1972, 1975.

2. Of courase, this. aloe includes the taken-for-granted language and languaging cof

3. Engaging in the examination of how “language thinks us as we think within
language.”

4. G. Bateson, 1972, p. 318.
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Embedding and Rooting an Ecological Sense
of Dlace for Mathematics in the Classroom
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What we conserve, what
we wish 1o conserve
in our living, is wha

Knowing the ground on which I walk.
indi the paths that umf@.?;d

determines what can
ana whot cannot

1

change in our lives.

' (Maturana, 1997b, p. 5)
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[c]hildren must feel that... the space,
materials, and projects, values and sustains
(sic) their interaction and communication.’

? Rinaldi, 1990 as cited in Edwards, 1993, p. 137.
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Attending to the Physical Space in the Classroom
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Stepping into a classroom is not unlike studying a painting. Both tell of
relationships— the assumptions, ways of knowing, and the kind of experiences that
have come to form a classroom’s sense of place or the subject matter of a painting. In
this manner, albeit through different methods, teachers and artists engage in the act
of portraiture. In creating a painting, these relationships are expressed through the
media and design of the work. The feeling of coldness and tension for example,
might be told through the painter’s use of colour and texture whereas coldness and
tension in the mathematics classroom is often conveyed through the austere and
rigid manner in which the subject is presented by the teacher. Connected to this is
how a teacher structures the actual physical space for learning and the types of
materials made available for students’ use that define the kinds of teaching-and-
learning patterns that exist.

Stepping Into Jennifers Classroom

What is most apparent upon entering Jennifer’s classroom is that there are

many different areas that make up the space. Like a house with many rooms but
without the walls and partitions, this class too has different “rooms”. Each of these
rooms or what she considers to be physical spaces for learning, are distinct in their
purpose and the kinds of mathematical interactions they enable.

At their desks: Worldng on their own At their desks: Worldng with a Partncr
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&

Small group work at their desks Large group work at the round table

'The children’s desks are arranged in 2 x 2 groupings in the middle of the room

from which the chalkboard, chart board, and overhead projector screen can be seen.
Although the desks store student belongings and each bares a child’s name, the
children frequently move about and use one another’s desks. This area allows the
students room to work on their own, with a partner, or in small groups. When in
larger groups, the children often choose to work at the large round table located
across from these desks.

Mcc’ting Placc On the floor

"Two carpeted spaces can be found on either side of the desk area. The larger
of the two is a meeting place of sorts, where Jennifer and her students gather in the
morning and at the close of each school day. This is also the place where the class
meets to share and examine the mathematics they have been working on. Like the
table groupings, the carpet allows the students to work on mathematics on their
own, in pairs, as a small group, but also, as one large class. This space, the round
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tablc, and the cluster of desks provide uscful places for the students to work with
mathematical manipulatives.

Phgsical mathematical work at the chalkboard

On the other side of the desk area is the smaller of the two carpeted spaces.
This one was created by Jennifer so that she and her students could use the
chalkboard, overhead projector, and pocket chart during mathematics lessons. All of
the equipment is positioned so that they are at appropriate height for the children
to access. This place of gathering is not so much for active, physical investigations of

In the “big” room On the Playground
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mathematics, but for the class to comc and record, display, or bring key
mathematical ideas into focus for further studies.

Finally, Jennifer uses still other physical spaces to extend the children’s
mathematical learning beyond the walls of the classroom. They include an adjoining
classroom that provides a large, completely open area in which to work, the
children’s homes, the natural environment, and a neighboring elementary school.
The latter three offer contexts where the students can take the mathematics that
they have developed in the classroom and explore the relationships that lie within
these other settings.

Materials Matter

Aong one of the walls in Jennifer’s classroom are three large shelving units:

one with blue drawers, one with yellow, and one with red. Each shelving unit
contains sixteen drawers, that hold a variety of materials used for mathematics. The
blue drawers contain mathematical games and puzzles.

'The yellow drawers contain calculators and different kinds of mampulauves
for mathematical investigations. They are used by the class as physical objects with
which to think about particular mathematics or with which to express their
mathematical thinking. They include such items as: as number cubes, tangrams,
calculators, zaks', geoboards, multi-link cubes, pattern blocks, attribute blocks, base
ten blocks, and double-sided counters. There are also many found items that the
children have collected from their homes and neighbourhood such as different kinds
of rice, pasta, beans, seeds, stones, chestnuts, and buttons. Here, the students make
use of these materials for purposes of sorting and classifying, estimating and
measuring (i.e., linear, area, volume, mass), computations, as well as number concepts
and counting strategies.

The third set of red drawers contain papers of all types: plain, lined, graph,
dot, and construction. These are used by the class to build or record their
mathematics.

Together, the materials and organization of spaces for learning in this
classroom create a portrait that tells of an open, accessible place that nurtures the -
growth of children’s mathematical thinking. The classroom as a physical and
expressive form of the relationships that are embedded here, communicates the
importance for mathematical interactions to be flexible and diverse.

Notes

1. These are interlocking polygons used for building 3-D structures.
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An environment is a living, changing system.
More than the physical space, it includes the
way time is structured and the roles we are
expected to play. It conditions how we feel,
think, and behave.'

' Emphasis added, Greenman, 1988, p. 5.
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“ABSOLUTE, true and mathematical TIME,
-of itself and from its own nature,
- flows equably
-without regard to anything external,
remains similar and immovable....”"

sure in its certainty
TIME lives its own independent existence...

SEPARATE and d i s ¢ o n n e ¢ t e d...

created and affected
by
no person
no space

no-thing...

TIME does not exist with us or because of us...
TIME is just “out there”.

... and even though...

TIME is undetectable through human perception’..

' Emphasis added, Newton, 1687 as cited in Koyré, 1958, p. 161-162.
# Abram, 1996.
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it is REAL.

and even though...

TIME is empty... spaceless... invisible... and...

pe
less....

it is REAL.

TIME is exactly infinite...
it can’'t be taken a-p-a-r-t
or pressed together...........
it can’t be dispose o
it just IS...... cee

trust it is there.
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“Time is just this: the number of a motion with respect to
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the prior and the posterior

»i

Time as relative --- as linear --- as

! Aristotle, 1969.
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straight as an arrow --- flatly fuses with events --- figuring the

197




spaces --- delineating relationships --- defining moments ---
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stringing beads --- one after another after another after
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another --- each as a middle that unfolds from a beginning
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and

towards an end --- forward

moving --- this kind of time

A
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--- these kinds of spaces --- can be measured --- numbered ---
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separated --- sorted --- sequenced --- fixed --- located ---
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walking the temporal tightrope --- PAST behind us --- that
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was then --- PRESENT --- this is now --- FUTURE AHEAD ---
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how

much

10151 0 T OO SRR ?
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K@D GOING .....coererereeere s sssessses sttt sesesmsenssesenesees
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Abram, 1996; Bowers, 1997; Maturana, 1995, 2001.
~2inn, 1994, p. 4.

T. C. McLuhan, 1987, p- 32-33.
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Enacting ‘Reconceptualizations of Time
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Creating a classncom that engendens a systemic sense of
i undenwstood, how it is enacted through ene’s teaching,
mathematics eccuns.

Ghe languaging effect that my uncenscicus linear image
actualized is a clear example of this. Distinguished by
grade levels, set within clearly marbed boundaries of a
Monday through Fniday, 11:20 am toe 12:00 pm and
September through June frameworfs, I consewed and
delineated a place for mathematics in the classrcom as a
meanos to. an end. Ghe mathematical centent of each lesscn
otudents. fouward in a concuete te abotract fashion to. the
neat preplanned lesson. Fogether, theoe leoscns fonmed
instuictional “units” that in tuwn became the year’s
matfematics program. In the larger ocheme of things,
each of these programs sewed as component pants within
the K-12 mathematico cumiculum.

My linear diffexencing eof time “mapped” in my
that functioned as linfs in a cuwiculor chain and
to the next. Jn deing se, a straightforwand linear time-
to. embody fluidity, nonlinearity, and recuraion-- citical
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TOhat if time was enacted as nonlinear, plowing, and recursive?

How might it be occasioned in the mathematics classtoom?

®

COhat rwole coudd it play in re-placing mathematics teaching and learning?

e

TOhat kinds of mathematics might then emerge?

]

e
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Raising Questions and Questioning the Answers
Linear Lime-Spaces for Mathematics in the Classroom
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My engagement in wendeving WHAT IF? fhas revealed all
J have furnished my mathematics program. Becoming
new metaphoxs.

ASSESSING THIS FURNITURE: Why de J erganize my
mathematics teaching into. tuwo. separate programos?

Honeostly, I could not ceme up with any meaningful
reasens for why J separated and taught twe cne year
mathematics. programs. Sure, I could say that erganizing
learn in second and thivd grade mathematico. J. could alse
program ocvewiew, units ef instwuction, and individual
leason plans. However, given the metaphors with which J.
waos. now working, none of these explanations. of cut and
camplicated' and fixed, they were deveid of anything that
now, the issue of time menging with space had never been
an important considenation of my teaching. It was not a
pant of my map. ef what it means to teach mathematics.
vtuaalized by evewybody-- administratons, teachers,
parents, and the students themoelves. But now the issue
of time was emenging as a diffevence of cuitical
importance that would net go away and demanded my
and compounding this with my desive to embed an
students’ mathematics, ethinfing my enactment of time

proved to occasion new pattewns of diffevence for the
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I continued to teach second and third grade students but began preparing

for the upcoming year of teaching by considering the kinds of temporal patterns
necessary for opening teaching and learning spaces that were organic and
generative. No longer wanting to teach mathematics in a grade to grade manner
but in away that focused on nurturing an ecological sense of place and the dynamic
growth of the children’s mathematical understanding, I made the decision to teach
a two year program as opposed to two separate one year programs or a single grade
class. By doing so, I was able to expand the time-space from ten to twenty months.
In contrast to my image of teaching and learning as a linear time-space, I envisioned
the first year of the program as being an enveloping and co-emergent layer that grew
out of the children’s previous inner layers of individual and collective mathematical
activity. *

The second year was too conceived as a living curricular system and one that
would create further layering of the children’s mathematics. The Pirie-Kieren model
of growth of mathematical understanding was a critical part of the structuring of
the program as it locates children’s embodied mathematical knowings as being
where all new knowledge develops and thus, the place where the two year program
would begin.

If time is to be enacted as nonlinear and recursive, then the space in which it
is a part must also emerge as such. Thinking systemically about the growth of
mathematical understanding necessitates teaching to be a dynamic and responsive
activity. Teaching and learning as living systems unfold moment to moment, co-
existing and co-evolving in relation to each other.® Although the two are viewed as
activities that cannot be prescripted, this does not assume that responsive teaching
does not require anticipative preparation on the teachers’ part or that it is a random
activity. As praxis, teaching responsively means being attentive and mindful
towards how one’s teaching impacts and is impacted by the class mathematical
work.

A mathematics curriculum envisioned as a map, enables teachers to locate
I identified important learning aims that included the goals of the Ministry*
mathematical topics, concepts, and skills that are considered to be important
and other documents (e.g., NC'I'M, BCAM'I'Y for the second and third grades but
landmarks for the class’ learning... what cannot be sketched out in advance, are the
instead of sequencing them or categorizing them according to grade levels, I
actual paths that the children will travel... to get to the mathematical locations... or
marked these aims on my two year map as important mathematical sites to be
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the understandings they will establish when and after they comce to these sites... the
explored. As I did this, I also considered contexts that would be open to many

map... cannot possibly show the diversity of the landscape... [children’s mathematical
different kinds of mathematical investigations® and ones that the class might revisit
paths are rarely if ever, straightforward but instead, spread out in several directions
later on in the year or even again in the second year. While I mapped out a
and entail twists, turns and switch-backs... Mathematics curricula and learning
a curriculum, I was ever mindful that it was just that-a map; distinguishing
imagined in this manner distinguishes them as co-emergent phenomena that are
pedagogical and mathematical features for teaching, and that the actual forms
brought into being through children, their teacher, and mathematical. settings.
that my tcaching and the students’ lecarning would take on were yet to unfold.

Because it was my intention for the program not to have a prescribed
teaching sequence, it was important for the learning spaces to be ones that not only
had an open flow in terms of mathematical content but also, ones that would
encourage the reintegration and renewal of the children’s mathematics. To do this,
provocative themes were created by myself, with the children themselves, and with
other teachers with whom I collaborated. These themes arose from the children’s
ongoing work and usually came in the form of curious questions or specific topics
such as Who are these things we call numbers?, Snowflakes, Number Gymnastics,
and Mathematics About Me. So instead of instructional units organized by
particular mathematics such as addition, subtraction, or geometry, these themes
focused my teaching and the students’ work on exploring mathematics as a diverse
and interconnected whole.’

| It was here that I realized how the integrity of this program would be
compromised if I continued the ritual of scheduling mathematics into 40 minute
daily intervals. Affirming my disbelief that children only have short attention spans,
I was inspired by the stories of the Reggio Emilia schools® and looked for ways in
which I might expand and enable flexible time-spaces to exist in the classroom. I
seeded the program with the idea of establishing a place that focused on students’
mathematical growth. It made sense then, for these themes to occur in time-spaces
that not only allowed for the children to work on ongoing projects, but also ones
which enabled the mathematics to shape-shift into different forms of mathematical
languaging, to branch off, intersect, and flow from real life contexts into purely
mathematical ones and vise versa. Instead of cutting up and inserting mathematics
lessons into 40 minute times slots, I opened up larger spaces of time within the day
and even entire school days to allow for this.
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Fox the past twe montho, the childven and J have been
werking on a vaniety of projects and investigations. that
different contexts. This week, the class watched the film
Notes en a Tviangle’ Reviewing the film on several
piqued the children’s. curicsities. The vantage points they
madted out-- all of which happened to. vevolue around the
idea of ‘three’, estabilished the opecific mathematical
apaces. for the childien’s explorations. Jnside these
learning aspaces, the students worked to develop.
undexstandings. for the thureeness of a tiiangle, the
thueeness of paxticular numbers, why thiee is. consideved
edd and when it becomes even, the vhythmic pattern of
vioual axt. Hene, concepts eof addition, multiplication,
number theory, pattewns, and geometry were brought inte

These time-apaces contvast with previous lessens in which
J clearly marked beginnings, middles, and ends (ie.,
mtwductwndwdapmentandcanc&wwn) Jﬁeywweao
that are generative and embiody a sence of flow... whexe
time and space axe taken to be inseparabile and give vise
te ane another within to the conteatual boundaries of the
class’ mathematical experiences. lsa highlighted is hou
mathematical concepts emenge from the class in a way that
assumes mathematica to be a lving system. In these
lessans, the mathematics tafen up were not explovations in
opposite. Studying the film as an entity-- as a
mathematical foun in itoelf allowed it to be viewed as a
connected to. one anotfier... heeping mathematics. intact and
a dynamic whiole.




Nates

1.d. B. Davis et ak., 2000.

2. Ghis. idea ef an inside cone parallels. the Firie-Kieven (19946.) dynamical model
being all the fnouwledge that a child ex guoup. of children bring to the particular
mathematico. and from which all new undewstandings develop. Jt is this embodied
mathematical fnowledge that J. assumed my students. pessessed upon entering the
twa year program.

3. M. C. Bateson, 1994.

4. Ministwy of Education, 1995.

5. For example, wesource material and educaticnal ltevature pubilished by the
for Mathematico Teachers.

6. Jn the same manner as the themes in this program, the mathematical
investigations were “open ended” in stuucture. Emphasis was placed on the
otudents’ active engagement in problem selving and problem peosing within
“nonvoutine” settings. For example, see Buown and Walten, 1983; Ganzales,
1994; Lesh, 1981; Schoenfeld, 1985; Sitver, 1994; Walter and Brown, 1993.

7. Jardine,1999.

8. New, 1993.

9. National Film Board, 1969.
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.‘lﬁe-’lﬂaa{ﬁeauwm

M. C. Batesen’s description of learning as traveling
along a Mdibius. strip. centinues te be a powerful image
that prompts me to examine and assess. the velationships
embedded in my teaching. Jt alse challenges me to
of learning in the classwoom. Jf mathematical growth is
knowing, it is an embodied phenemencn that develops
“epposite side... a contrasting peint of view... ox seen
suddenly thiwugh the eyes of an outsider”. ' Because of
this, childven’s Cearning cannct be achieved thiough
epetitious acts of reproduction ox sequential assembly
lines of tasks. Doing oo implies learning is a matter of
what one knows and adding te it in a piecemeal mannex.

Mathematical grouth as a wecursive event’ connctes the
actual changing of one’s mathematical understanding in
ways that are cam.plea; and ca»emagent While its
pwndwek:mmngaaxumalfaym,wﬂatd&ecmmwut
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Recursien in this. sense is not just a better undevstanding,
it is a new undexstanding that is moxe than the sum of it
paxts. Mathematics teaching that provches wecursive
foxms of learning is. mexe than C=A+B.

action, it is sceing the mathematics in a different way.
Similax to the change in potential possibiilities that eccur
as a weoult of stwuctunal coupling on duift, this io
wepresented in the Pivie and Kieren model by the “don’t
need Goundavies”; where ence beyond a don’t need
beundary, cene does net need the specific inner
undevstanding that gave rise to the ocuter Rnowing. Fox
example, a child whe takes nine counters, avanges. them
inte. pairo, finds. out that ene is leftover, learns that this
distinguisties. the number as being “edd” and then repeats
these actions to find out that eleven is. alse an edd number
io a qualitatively different kind of undevstanding than
that of a child whe works with varicus numbers and then
eaxplains that “any number is odd if yeu divide it in twe
equaégmupoandtﬁwelame[wﬂde]&ﬂam” .‘fﬁ)wugﬂ
cﬁzﬂdﬁaaaddedtamtﬂw&enedﬁmwndemtandmgﬁy
perfouming the stvategy ef paiving up. the countevs and
bocking fox one that is leftover to. find cut that eleven too
i an edd numbiex. he secend child however, has eaxploned
different numbierns. and identified a pattewn ox relationship.
that can be applied to. ANY number te detexmine whether
(ox net) it is odd. Ghis. child is. not making sense of the
mathematica in a nrepetitive manner ox on a situation
apecific basio. but conceptualizing the idea of odd numbers
in a different and geneval way-- for ANY instance. This
child’s thinking comes. from a place of fonmalizing that is,
bocated on the Pivie-FHiexen maodel beyond the don’t need
boundary which separates it from primitive Rnowing,
image making, image having, and propenty noticing.
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teaching in the classveem?

Jt places impextance en making opace for children to
place of knowing. Opening learning spaces lifke this not
only allow for students to relate to the mathematico in
multiple wayo, but it also creates the possibiility for

JIn wanting my students’ learning to be vecunsive’, cne of
my aims for the two year program is to estabilish
oppordunities. for the 4R to take place; to engage the
childnen to weflect on, nevisit, neintegrate, and renew their
mathematical undexstandings. This. means that learning is.
not just an event which happens when one enceunters
something for the firot time. It eccuns when one comes at
that something from an opposite side. Takting this image
of traveling along a mébius. stiip. and situating it in the
conteat of classnoom mathematics whene that “semething”’
is mathematics, J am curious as to. what an epposite side
(o, aides?!) might Cook Cike in the mathematico
clasonaom, what foums they might take, and what Binds.

Nates
1. M. C. Bateson, 1994, p. 14.

2. Hiexen and Firie, 199]1.
3. Dell, 1993.
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Jt places impodtance on making space for children to
place of fnowing. Opening learning spaces likke this not
enly allows for students. to nelate to the mathematics. in

JIn wanting my students’ learning te. be recunsive®, one of
my aimos for the two year program is to establioh
opportunities. for the 4Rs to take place; to engage the
childnen to weflect en, nevisit, neintegrate, and renew their
not just an event that happens when ane encountero
something fox the firat time. It accuns when one comes at
that something from an opposite side. Taking this image
of traveling along a méibius strip and situating it in the
conteat of classreom mathematics whene that “semething”
is mathematics, J am curious. as te what an epposite side
(ox, sides?!) might lock Uike in the mathematics
classwoem, what founs they might take, and what Binds.
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Making T hree Spaces for Recursion

Can You Guess Our Mystery Number?!!" were mathematical “gifts” created

and exchanged with the class’ math buddies at a different elementary school. This
project brought together several weeks of class investigations in which Jennifer
focused on the students’ development of different images for thinking with and
expressing numbers through the language of: manipulative models, pictorial,
informal or formal symbols (verbal or written), and real world situations through
dramatization and descriptions. The children worked with a partner to craft a set of
clues that would become the riddle for their chosen “mystery” number.
Accompanying this list of clues, the students had to also provide eight other
numbers in addition to the mystery one as possible choices from which their math
buddies could identify the mystery number.

Playful as this project was, Jennifer had taken care in designing it so that the
structure of the activity would encourage the students’ to reflect, integrate, and
reintegrate their conceptual understanding of number. By engaging the children in
both the making and receiving of the mathematical gifts, Jennifer effectively opened
three mathematical spaces for her students’ recursion- first, to reflect and integrate
their understanding of number, sccond, to create a riddle by reintegrating their
thinking and taking on a problem posing perspective, and third, to identify their
math buddies’ mystery number by using their understanding in a problem solving
manner.

Before the children set off on the riddle making project, Jennifer gathered the
class onto the carpet and asked them to think about the number investigations they
had done and what they now understood about numbers. She explained to her
students that by collecting’ these images and recording them as a web on the chart
paper, they could then use these to craft their clues. As the children volunteered
their ideas about specific numbers, Jennifer wrote them down on the chart paper.
For those who found this challenging, Jennifer encouraged them to think about a
specific numbcer and then fold back and pick out a particular image that would be
true or characteristic of that number.

After the class shared a few examples and nonexamples for certain numbers,
Jennifer then prompted the children to see if they could take their specific number
image and property notice or express it in a more formal manner; as a descriptor for
any number. Here, the children produced a variety of images and expressed that any
number could be characterized in terms of: the number by which you could skip
countup to it from zero or skip count down from it to reach zero, whether or not it
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fcll between two given values on the number line, whether the number was divisible
by a certain value, if it could be arranged into equal groups, if the number was more
than (or, how much more than) or less than (or, how much less than) a certain value,
whether it was considered to be even or odd, what the sum of the number’s digits
were, and characteristics of the number in terms of the place value of its digits.
Once these had been recorded on the chart, Jennifer helped the students to find
their partners and a place in the classroom so that they could get started on making
the mathematical gift for their buddies.

Entering the second learning space, Mark and Danica left the carpet and

went and found a table nearby to begin working on the project. After a brief
discussion about the possible numbers that it could be, the two decided that 8o
would be their mystery number. Taking a suggestion from one of their classmates,
Danica and Mark thought it a good idea to first brainstorm and record as many
different kinds of clues as they could think of and then choose the “best” ones for
their riddle.

That afternoon, Jennifer asked the class to share the clues they had been
working on and to discuss some of considerations they became aware of while
working with their partner. She reminded the students to use the web of ideas that
they had generated asa reference to help them critique their peers’ clues regarding
the variety and kinds of images being used. As well as giving clues that began with
“I'he number IS...", some partners had also incorporated clues that started with
“T'he number is NOT...” or “The number does NOT...”. When Jennifer commented
that this was a clever thing to do, the class agreed and they began discussing why
using “not” in their clues encouraged a different kind of thinking for the person
solving the riddle. Here, the idea of having to first understand the meaning of the
clue and then having to be able to figure out what the opposite of it would be,
delighted the children. On returning to their tables, partners giggled to each other
as they thought the process but in reverse so that they could craft these clues into
their riddles.

Now satisfied with their store of clues, Danica and Mark set to making
decisions as to which ones would be used for their riddle. It was here they noticed
that some of their clues made it obvious to the receiver what the mystery number
was while others were descriptive but not as telling. Mark and Danica sorted their
clues and organized in such a way that their riddle opened with general
characteristics about the number and then move towards ones that were more
specific. The two students also thought it clever to intersperse these with a few that
were redundant or unnecessary such as .. is less than 139” after already giving the clue
“...is between 2 and I12I". During another whole group discussion, the entire class
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agreed that the 'sum of the digits in the number’ cluc was the most telling of them all
and that it should appear as the final one. Finally, Danica and Mark moved onto
generating the eight other possible numbers for their riddle. They decided that
each of the eight numbers had to fit at least two or more but not all of the given
clues and they were careful to select only those that satisfied this criteria.

“T'his way”, Mark explained, “Tommy and Ewan will have to think [as to] why
these aren't the mystery number.”

“T'hey might think the mystery number is fifty [because it's between 2 and 121,
is an even number, is less than 139, does not have a 4 in the ones place, can be put
into groups of 5, and its more than 10] but it's not because its digits don’t make
eight’, added Danica.

By the close of the afternoon, the Mark and Danica’s gift was wrapped in a
riddle and ready to give to their math buddies.
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See i vau can flod our mystery number. Here ave the clses.

Uhe rumbes _|5_b€+W€€h ol ﬂhd 1&2\___
Teames 15 0_@¥e N NUMbel |
Tre numier _‘i_Je S5 Tha A lr BQ____.___

The nomzer (loe%_NoF  bate A L;Jﬂ_ﬁtﬂﬂﬂﬁ P;?ce?
menns CON b Pl fnto g fontsof b

Tre e S Ml _Q_‘}_hﬂ_n_ﬁl@. S -
1ae wial of ]l the digrs s the mumber is _ B_ O |

Here are your cholces! 2

W oiwioe ams hesn oo Srem TR the Rcursl Nomosr™ (licalEy, (3%,
Danica and Mark’s mystery number riddle for Ewan and Tommg
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One week later, Danica and Mark and Ewan and Tommy received their

mystery number riddles from each other. This third learning space that Jennifer
created in the structuring of this project required the children to take on a problem
solving role as opposed to their previous problem posing one. Not only were each set
of partners to identify what they thought the mystery number to be, but they also
needed to provide justifications for why the other eight numbers could not be the
mystery number.

We think your mystery number is _R{)
because: L

-w—-——————--mu.._.___._._._‘w____________m ,,,,,

It covlldnt he

nmmh;r,_____ |

""!m--—-—-———--—-“_._____,__.,m_______

Tt couldn t be '

JlxﬁthTQWQB of
‘f@ coufar ’t be

--—-;.......__.._._....,_,. e e s e
L -wm...-——-—-—.—-—.m___________

: '“‘“'—‘———“W-—-——————-m:._.__—_...m'

you add 5 and () zugether; yOu get_ a total

of m__ﬁ__ nog w_f&_%

Ewan and Tommg’s response to Danica and Mark’s riddle

Notes

1. This project was adapted from “Find the Secret Number”. See Liedtke, 1983, p.
89.
2. Martin, 1999.
226




In a different manner, sometimes recursion came as an occasion of
renewal. These were times-spaces in which the students revisited a
familiar context, thought about the mathematics they had brought
forth, and worked on connecting related but different ways of
thinking about the mathematics than they had before.
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A Snowflake of a Different Kind

As part of the snowflake studies that the class was investigating outdoors, in
photographs, on video, and through stories, the children constructed their own
Koch snowflake. Each student was to identify an interesting pattern that they
observed while creating the snowflake.

Christina’s snowflake




s the ostudents worked on their cwn te find a
pattern in their osnowflakes, there was
of the snowflafe. Thwoughout the lessen,
atudents were fheard talking to themoselves
“guowing”. (n ebsevvation life this elucidates.
the conception that the students held toward
theix mathematico. Jt peints. to the fact that
they did not see the purpose of the task to be
one of locating “the” answer er as the
webrieval of pureexistent static mathematics.
guowing pattewns. is the undexstanding that
this activity was about “feeping watch” for
the mathiematics to emerge.

Excited about the patterns they had found and fascinated that each one
continued on “forever”, the students decided to compose a short story that captured
the mathematics they saw arising from the snowflake.
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The Pattcrn of “sides” in Julie’s snowflake
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January: Shouji’s story describied the pattewn fe saw in the number of triangles
fie added to each subsequent bayer of the fractal.

: A [ “One.”

My owe” v buge 19 agn

.&P.E...Tt‘!’e%ﬂ\jh.

. * : “One triangle, one triangle, one
- .
triangle.

o B more. Aristgtes

“T'wo here, here, here, here, here,
and here.”

ii.ﬂmu !E!_--n’&ofe...:ffr'anaf{s- .

. @ “Eight, eight, eight, eight, eight,
eight.

vt 4RM. U E  more ~Ariangle

The Pattcrn of “triang|cs” n Shouji’s snowHake




Januavy: Clare was fascinated by the “coxnens” that weve emerging in the
Practal. When asked to explain what she consideved a “conner’” to. be,
sfie defined it as. an “elbow” in the snewflake; where the edge of the
fractal “tunned divection.” Thus, the cernerns that Clarve was counting

- “One, one, and one.”

Huecorrers

“Three, three, three.” [three in
| - between each of the three original
“corners’]

v JVife.ore._comers

i “Then it changes to nine corners
< and seven corners, nine and seven,
and nine and seven.” [She arrives at
a total thirty-six additional corners
by subtracting 3 and 9 from 48]

er b pooe. Cormers appeared

The Pattcm of “corners” in Clare’s snowflake
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The class revisited their snowflakes on three other occasions during

the school year. For each of these sessions, Shouji, Julie, and Clare
considered the total number of triangles, sides, or corners that they
had identified previously in each of their fractals. Re-viewing the first
and then the subsequent layers of the Koch snowflake, the children
worked to develop different ways of thinking and expressing the
snowflake’s growth incorporating their use of symbols and their
knowledge of number operations.
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Three more interPrctations 59 Julie
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@pril: Shouji's use

| of symbols express
the total numbex of

the tviangles as a

tiplicative and

-‘,;-._ :93 . I i L R L ) t.[. Z Lﬂ-t.

I arwn oﬁ Arimg) €5y £ prroscas,
1= 4, 2N
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: w& it = Rl | “groups of” image through
i _ .;é‘.!mm a*""_.x._inanje =% ‘eweryday’ language.

. A

- \ ::»fjw 4};__ _3_,;-3__3 ' June:  Shouji’s oymbelic
g _ﬁgrmpa_af 3_-&1;:3_5; p notation  descuibies  the

e Practal’s. growth as being a

R R e LT o

‘fé*,.}iﬂmmmﬁs;s. split ‘“f“;e an  ineunaing
r{iﬂﬁi o_’l‘ nwn&% equal W.
_—gﬁ_ =z ‘nibargﬁma@ .

turning “inte” groups of
an equal number “each”--
“One into ene triangle, six
ey s into one tuangle each,
each, and siaty-six inte
eleven tviangles each.”

Three more interPrctations bg Shouji
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(pril: Clare’s umitten work
communicates. frex
undevstanding cof the
fractal’s increase of
process that invelves

g hiabis o o i erend Kamek 4 Pasraatie s Ueacisl

B ard 3,«: =18%
rfh =3 ond 3—|-3 |

N
ond 3 F4s
MQI»%Z‘} |

June: Claxe’s wse eof osymbols llustrates hex
conceptualization of the fractal’s coxners
Fex understanding is viewed as similarx to
Sheuji's explanation but in this conteat, there
are three covnens of cene each, then twelve
cownens. of which three clusters have three
cornens. each and thnee clustens have cne each,
cluster have nine coxners each and thuee clustexs
have seven each.

&1

Three more intchrctations by Clare
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On still other occasions, the class returned to familiar contexts but

investigated them in completely different mathematical ways than they
had before.
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Re-viewing and Seeing Differently

TFhio. Fall, the class watched the film, Notes on a Triangle! For the neturning
atudents. now in the thivd grade, this was an epportunity for them to ve-view it and
this time (and, in a vew non-linear manner to that of last year) they sauw new
mathematico. coming to. life. (o a result, they laid dewn veny different learning
patha.

For example, some of the childien noticed that the tuiangles in the film
“weren’t all the same”. They watched the film ence mare and this prompted the
class to ostudy the tviangles more closely. Ghe childien used theiv fingers to mafte
tuangles, they drew them ox cut them cut of paper, and some went locking arcund
the wom gathering them. Faving a goed collection of tviangles, the class worbed
with a partner ox in a small groups to eaxplore what was the same and what was
desko. (i.e., oliding, flipping, wiating, and transpesing cne en top. of the cthier) to
on the “shape” of the tiangle. Seme childien used wlers to measune the sides of
side, surface, and conner. Having gotten te fnow these triangles se intimately, the
children naturally wanted to give them names!

"I cdll this triangle a[n] almost "I call this triangle the deferent
all equel triangle because sided triangle because it has
only two of it's sides are the 3 different lengths of sides.”
same.” Ethan Shane
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“I cdll this a triple side triangle because It has the same sides.” Steven

“they all have 3 corners [and] have 3 sidse.” Madelaine

“but they [differ in their] length of the sides.” Christina

What is the same about the trianglcs? What makes each of them different?

The class went on to explore how larger triangles could be composed from using
smaller triangles...

Annie’s trianglcs
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Christina’s triangics
...and what other shapes could be made from triangles.
trapezoid

parallelo-

gram

Robby’s “other shapcs” made from trfanglcs
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Mac’s “other shapcs” made from trianglcs

trapzoid

During the same time that the class was watching the film, five students had

been working on another project that involved their construction of many different
kinds of “pyramids” made from interlocking cubes. The children were sketching
diagrams of the top, side, and bottom views of their structures when they told me
that the bottoms of the pyramids looked like triangles:
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The group shared this with the class and this Icad into a study of how numbers too
could be considered to be “triangular”.

Timothg’s c!iagram of triangu]ar numbers and “how much” thcy increase each time

“I think the next number will be 45 because... 36 + 9 = 45 so 45 is the
next one.” Timothy

“I think the next number will be 45 because 28 is 7 more than 2. 36 is
eight more than 28. So 45 is 9 more than 36.” Steven

“I think the next number will be 45 because the pattern is odd, odd,
even, even.” Clare

242




“The first has one dot. The second number has two [more] dots. The
third you add three, the fourth you add four, the fifth you add five, the
sixth you add six, the seventh you add seven, the eighth you add eight.
The next one you add nine to it. So thirty-six... thirty-seven, thirty-
eight, thirty-nine, forty, forty-one, forty-two, forty-three, forty-four,
forty-five.”

Clare’s diag‘am that shows that the triangular numbers
increases bg a corrcsponding column of dots each time.
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1. Matienal Film Board, 1969.
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Recursion as Relations:
When Triangles Become Square

(Three months later...)

Last week, J. introduced the class to the film, Dance Squared. Since then, we have
been ve-viewing it and wsing it as a sewice from which to occasion thein further
mathematics. The students have been worbing togethex, posing prompts and
“square” (spuried on by thein inteveot in tiiangular numbers ). Reflecting on the
class’ curivsities and making plans fer tomovweuw’s mathematico, J. have decided to
focus their work on both Rinds of numbers. This witl be a chance fox the childven to
square numbexs. but alse, fox them (en theiv cun and with the class) te consider
each in lght of the otfier. Impestantly, had the students’ previous work with
tuangles NOT occasioned thein investigation inte tiangular numbens, this lesson
would neitfier have the same vecursive potential nox be appropriate.

(The next clag)

Sitting on the carpet, in the middle of the circle, the children helped one

another to build the first five triangular numbers with counters. Underneath this,
other students worked together to build a row containing the first five square
numbers.

Triangular and square numbers built with counters




As we were doing this, Robby whispered to Mark and struck up a very lively
conversation- lots of head-tilting back and forth, smiling, and “yeah!” going on.

J could not hear what they were talking abeut and oo I asked Robby if he weuld
share the convensation with the vest of the class. Robby flasked a bashful smile and
then raised his voice to explain what fe and Mark had been discussing.

He pointed with his finger to the second and the third triangular number and then
to the third square number and told me that, “that number and that number makes
this square if you take it and flip it upside down and put it on top of it”.

Robby’s cxPlanation o{: how thc third squarc numbcr 1S crcatcd From thc
second and third triangular numbers

My “WOW!” and the boys’ excitement for fow they selated the two number sevies
together in a spatial way drew sevenal other children into the discussion.

Soon, other students began trying to make sense of this for themselves by

talking with one another and displaying similar hand and body gestures to those of
Mark and Robby.

Wanting to maintain the focus and momentum of this investigation, J. vepeated what
Rebby had said but this time, J. alse built the numbers with countens as J spoke so

“If you take the second and third triangular numbers and put them together
like this” I said, demonstrating with the counters just as Robby had indicated
earlier, “it is the same as the third square number.”
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Ghis. prompted the rest of the class te continue the pattewn by combining cne
tuiangular numbey with the one that preceded it in oxdex te proeduce a square number.
Not only did the class. do. this visually and verbally as Rebiby and Mark had dene
but alsc, arvithmetically by adding the two values together, and physically by

ones, Danny weflected aloud and this time, he related the class’ mathematical

actions tegether into a connecting pattewn.

“It will be this number” Danny said as he pointed to the third triangular
numbscr, “but in the squarc number”. Pointing to the third squarc number, which
was nine, he explained that that is the resulting spatial structure and number when
the third triangular number is combined with the second triangular number.
Hence, six plus three makes nine.

I encouraged Danny to continue. Pointing with his finger in a left to right
direction, beginning with the first triangular number that was one, then moving to
the second triangular number that was three, and then to the second square number
that was four, he communicated the relationship between the two series of
numbers.

“T'his first number and the second triangular number will make the second
square number. And the second and the third triangular number makes the third
square number. The third one and the fourth one makes the fourth square number
and so on and so on...”

s J listened and watched how Danny was. thinking abiout these numbers, J. could
oee fis. undevstanding as alse being vecursive-- emerging from the mathematics. that
fiad abready unfolded and at the same time, bringing fouth ancther connection
between these numbers. Mark and Rebby's cbsewation that arcse from thein
thivd square numbler sewed as a place from which to begin our investigation. The
class’ funther collective work to apply this notien previded sevenal moxe examples
in which this relationship. exists. Und Danny’s. undevstanding revealed yet ancther
quality albiout the tuangular and square numbers. Ghis time, a mere foumal
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J nealize now, the impact that ene’s. conceptualization and
enactions. of time have en the place-making of a
vewy much stusctures fow it io to be experienced by both
teacher and students. Jt is a pewerful undexcunient that
relationohips. that are pessible or impessible in the
classroom.

J am alse learning to bet my ecological metaphors think
me as J think within them. Doing se puovides me
teaching and learning that have emenged so far are a
created a sense of place where students were expected to
to. mone complicated lines. of mathematical we-production.’
TInstead, these new spaces for learning embedy pattexns
of a temporal difference where past, present, and future
exiot all-at-once.’ Jime is inseparabile from space because
experience occuns. Jhe two are not distinct but exist as ene

co-deteunining entity of “time-space”. *
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1. Natienal Fitm Beard, 1961.
2. (Abram, 1996; Heidegger, 1962, 1972; Merbeau-Penty, 1968.
3. Jeidegger, 1972; Maturana 1995

4. Feidegger, 1962, 1972.
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... children... are taught at a tender age that the way to define
something is by what it supposedly is in itself, not by its
relation to other things.'

' G. Bateson, 1980, p. 18.
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To know something is to know what that something is in the
way it speaks to us, in the way it relates to us and we to it.?

2

van Manen, 1986, p. 44.
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... the pattern which connects... How are you related to this
creature? What pattern connects you to it?’

* G. Bateson, 1980, p. 9.
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/Nisht that include this creature we call mathematics?
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Creating PDatterns That Connect
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Interactional Spaces for /Mathematics in the Classroom
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Insight, 1 believe, refers to that depth
of understanding that comes by setting

In thinking ecologically about the mathematics class, it's impossible for me
to imagine my students as “autonomous individuals” anymore. tt doesw't
make sense within a systemic wmind-space for each student to exist as a
separate entity, acting on everything else as if everything else was part of the
EXTERNAL environment. So even though | continue to recognize each child
as aw individual, | conceive the children to be individuals within larger
collective and environmental systewms.

My efforts to nurture children’s mathematical growth involves continuing
to wake spaces for them to explore their wathematical thinking as
individuals. But rather thawn furthering their understanding through just a
process of adding on of ‘new’ mathematical experiences, attention s also cast
upon looking deeply and examining the understandings embedded in their
mathematics. It's making opportunities for students to not only engage in
individual wmathematical work but also for thewe to consider how they are
understanding the wmathematics by drawing on thelr mathematical
Rnowings and developing relationships amongst them— in this way,
reflecting om what they know and Lletting these understandings “speak to
one another”.

experiences... side by side, learning by
letting them speak to one another.
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Mccting with Mac: A Stucly of Oppositcs and Relatedness

Mac and| are sitting at a |argc table, reacly to P|a3 a game. Starting
with any number of cubes, we are to find at least two Possiblc ways to take

away ec]ual groups of cubes until no cubes remain. Mac is to record each of
the stories using whatever kind (s) of sgmbolic notation he wishes to use.

As we play this game, I'm interested in the understandings Mac
brings to the task. As well, since he hasw't had any formal Lessons involving
the operation of division or the “+” symbol, 'm curious as to how he'll
express the mathematical action of repeatedly removing a particular number
of cubes. 'm Looking for occasions tn which | can alert Mac to examine his
understandings and engage hime in thinking about how he might use what
he Rnows to develop other ways of thinking about the mathematics at hand.

Mac begins the game with a Pile of 10
cubes. “1 started with ten” He writes the

numeral, 10 onto a page in his notebook.

 take away two cubes.

Mac records -2 beside the 10 so that it

reads 10-2. “Because we took two away so it's ten

minus two.”

| take another two cubes away and repeat
this three more times.

Each time, Mac records and talks
as he wor‘(s, “minus two, minus two, minus

two, minus twol And the answer is... zero!”
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Based on what Mac’s saying and how he's recording the taking away of
groups of two, he views this game as a game of repeated subtraction. He's
comfortable and able to independently express the mathematical actions he
observes using both verbal wmathematical terms and recorded symbols. As
well, these forms of mathematical language seem. to be an integral part of
Mac’s thinking because he doesn’t wateh the events from start to finish and
then formulate his equation, he does so in tandem— as they are happening.
In this way, Mac “narrates” the mathematical story as it's unfolding.

Pushing the ten cubes into the middle of
the table, Mac starts again but this time,
decides to take away groups of five

cubes. “Ten minus five.”, writes 10-5, removes
the remaining, five cubes, “minus fie.”,

“equals zero”. He finishes his number story

bg writing, down -5=0.

Having completed two ways to remove
tew by grouping, | ask Mac to choose a
larger number for the wnext game. He
selects twenty to be the number and
proceeds to add tew cubes to the tew that
are already in the wmiddle of the table. |
then ask Mac if he knows of an amount
that could be takew away in equal
groups from twenty so that zero cubes
would remain.

“Hmm.” Mac looks at the twenty cubes on
the table. He Places his elbow on the
table and rests his head in his hand.
Pursing his liPs, he thinks out loud.
“Maybe you could do.. hmm..” Mac takes his
elbow off the table and rests his hand
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down beside his notebook. He looks at
his Fingers and then stares across the
room. Curling and uncurling the Fingcrs
of his right hand, Mac looks at me,

“Hemm... fives?”

| asswme Mac’s skip-counting by fives to twenty on his fingers. To be sure,
'Ll ask him to explain his response.

“And how do Yyou know that fives would
be a good one to choose?”

“Because you can count by fives to any number.” He
demonstrates this to me bg taking his
Pcncil and touclﬁing it down on the table
in two spots horizontal to each other with
a goocl size space between them.

[t appears that Mac’s thinking with an imaginary horizontal number Line
along which he skip-counts by fives to twenty. 'm not sure what he means
by “any” nunmber and so, 'm going to encourage him to continue.

“Like you can count by fives to twenty. Five, ten,
fifteen, twenty.” Now touching the two Points

but this time with his index Fingcr, Mac
s|<iP counts ]33 fives, Pointing in a left,
riglwt, left, and right fashion. He is also
moving, his head from side to side in a left
to right motion-- like a metronome,
marking the numbers as he counts and
Points.

259



http://sfei.p-cou.nti.kvg

5 10
15 20

Demonstration of Mac’s counting action

Now, it’s clear to me that Mac is NOT counting along a horizontal line but
BETWEEN two points that separate the numbers into those that end with 5
those that end with 0. His counting action wmight have arisew from the
hundred chart that we use often and hangs in the classroom.

The numbers 1-100 are organizcd on this chart in a 10x10 gricl. Because of
this, theg fallinto columns where each number increases bg ten as you move
to the next one direct!g below it and so, all of the numbers within a Particular
column share the same last digit.

s also possible that Mac’s counting wethod could be a result of the
rhythwmic pattern that is generated from skip counting aloud.

“1 started with twenty, minus five, minus five,
minus five, minus five, equals zero.” Mac records

20-5-5-5-5=0 into his book...

... while 1 take away the four groups of
five.

“50, that works.”
| gathcr the twentg cubes into the middle
of the table again.

Mac begins the next number story.
Moving the cubes with his left hand and
recording with his right hanc', he takes
away groups of two cubes each. “Twenty

minus two, minus two, minus two, minus two, minus
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two, minus two, minus two, minus two, minus two,
minus two, equals zero, So that works” In similar

fashion to his other number stories, Mac

records 20-2-2-2-2-2-2-2-2-2-2=0.

Up until now, Mac’s used groups of two and five to divide the cubes of tew
and twenty. He's doing this by applying the “opposite” process of repeated
subtraction. n other words, through repeated addition Mac’s sRip counting
to arrive at the target wwmber and then simply reverses the process by
transforming it into a repeated subtraction equation. Since skip counting
by multiples of two and five appears to be Mac’s strategy of choice, | wonder
what other thinking he might bring forth if t ask him to continue working
with the number twenty.

“Is there another wa 5?” | Place the cubes in
Front of Mac.

“Hmm... you could do it by tens. Mac quic‘(ly
writes 20 down into his notebook. “We
coulddo it bg tens.”

 take away a group of ten cubes.

Mac writes -10 to the right of the numeral
20.

| take away the rcmaining ten cubes.

“Minus ten”. He records -10 and then =0.

“Equals zero”.

I put the cubes back into the middle of
the table.
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An attempt to prompt Mac to think of yet another way to evenly divide the
twenty cubes.

“Oh.”
“T\rgj by fours.”  (An imPulsivc
suggcstion!)

“Okay.” Mac beg'ns ta”dng slowlg and
taking away groups of four cubes. Each
time, he looks to see how many cubes

remain.

Mac appears unsure. This is probably because four is NOT a number by
which he usually skip counts and therefore it isnt a number he associates
with twenty.

Rccorcling as he works, Mac complctcs
the cquation, 20-4-4-4-4-4=0,

Pointing to what Mac has recorded, |
bring attention to two of his ccluations.

“Now, looking at what you got here for
twenties... look at the twenty give away
groups of five [20-5-5-5-5=0] and Look at the
twenty give away groups of tew [20-10-
0=0]. Do you wnotice anything about the
nuwmber of groups Mac?”

with his Pencil, Max points to 20-10-10=0
and 20-5-5-5-5=0. “That this is just double of
this".

“‘wWh Y ts that?”
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“Because there’s two fives in ten so that's four”
Mac then demonstrates this bﬂ Pointing
to each 5" in his cquation. “There’s FOUR

fives there and TWO tens and one twenty. This is
FOUR fives... TWO tens and one twenty.”

BY Lnviting Mac to stand back and reflect on the two number stories, he
Lentifies the two equations as being related.

20-10-10=0

- 20-5-5-5-5=0

Mac’s cxPIanation of how 20-10-10=0 is the result of ‘doubling uP’ four groups of five.

Turning Mac’s attention to the other two nuwmber stories (L.e., 20-4-4-4-4-

4=0 and 20-2-2-2-2-2-2-2-2-2-2=0), 1 ask him what he can tell me that is
the same or different about them.

“There’'s just double twos as there are fours..
Pretend I didn't write that [Points to 20-2-2-2-2-
2-2-2-2-2-2=0] down and I just counted this
[Points to 20-4-4-4-4-4=0]-- how many fours.
There are, one, two, three, four, five. There's five
fours. So then, I would just have to double that to see

how many twos there'd be if I did twos. So there's .
ten twos.”

ntriguing! As Mac explains how he identifies tem groups of two as being in
five groups of four, 1 get a real sense of the flexibility of his understanding.
TaRing his previous idea of ‘doubling’ as a process of multiplying by two,
Mac’s thinking in this context effectively shape-shifts the process by
inversing Lt. In essence, the doubling now becomes ‘halving'.
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20-4-4-4-4-4=0

4
20-2-2-2-2-2-2-2-2-2-2=0

Mac’s explanation as to why there are twice as many grou s of 2s than groups of 4s
P Y y group group

Smiling at Mac, we resume the game.
g &

‘Okay, let’s see if we can use some of
that as we go along in this game.”

Mac nods his head. “Yes!”
“Plek another number.”

“Twenty-four.”

I add another four cubes to the Pilc that
is already in the middle of the table.

Macjumps in and quicklg splits the Pilc
of cubes in half or, into two groups of

twelve. “Twenty-four minus twelve minus twelve.”

He records 24-12-12=0. Mac explains that
he doesn’t need to count the remaining
Pile because he “knows” that it will also be
twelve.

Again, | want to prompt Mac to reflect on his thinking and consider how it
wmight bmpact his understanding now.

“.. taking that’, | Point to 24-12-12=0,

“can you think of another wumber story
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that you could tell?”
Mac looks at the cquation. “Groups of two.”

“And how many twos would you have?”

Mac examines the equation again and
then down to his hands that he is
holding Paims up. However, theg cannot
be seen because thcy are hidden
underneath the tablctop.

I tell him to bringthcm out!

Mac sl(iP counts bg twos and kceps
track bg umcolcling one Finger at a time
until he has six Fingcrs extended. “Two,
four, six, eight, ten, twelve. So double six [i.e.,
groups of two] is.. twelve. So I'd have twelve
twos. Okay” Mac sets to rccording the
number story, “Twenty-four minus two, minus two,

minus two, minus two, minus two, minus two, minus
two, minus two, minus two, minus two, minus fwo,
minus two, equals zero... twelve twos” 2H4-2-2-2-2-

2-2-2-2-2-2-2-2=0.

Mac’s carvying forth his understanding from the last task and applying it
here to help him determine how many groups of twos are in twenty-four. By
making use of the equation that divides twenty-four into half, Mac takes
one of the twelves and skip counts by twos to find out that there are six
groups of twos in twelve. He then simply doubles the nuwmber of twos to get
twelve groups of two. Like his other calculations, none of these are downe with
paper and pencil but through verbal, wental, and physical forms of
computation.
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“So, what's awnother way that we could
make...” | Put the twentg-mcour cubes

back into the centre of the table.

“We could do... try foursl” Mac reaches for the
cubes to bcg’n taking away groups of

1COUI".

'm ot sure why Mac is reaching for the cubes. Is it because he thinks that
since twenty-four is divisible by two that it'll also be divisible by four since
four s double of two and he wants to douwble check this with the cubes?

I 851( l'um to gUCSS ["IOW mang FOUI"S

he thinks there will be.

»

“Hrm..

Given that Mac doesn't guess or estimate, | take his idea of groups of fours to
be a conjecture and not something that Mac “knows” as a fact. | want to help
Mac to develop his thinking by connecting something he does Rwow in order
to solve for what he's trying to figure out. So instead of letting Mac
continue to use the cubes in what | suspect will be a strategy of trial-and-
ervor, | interrupt what he's doing and suggest that he reexamine what he’s
already done.

“How could you take something You
kwnow here...”

Mac moves from the cubes to his notes
and uses his cc]uation of 24-2-2-2-2-2-
2-2-2-2-2-2-2=0 as his jumping off
Point. “I could say... I would just take half of these
off” Pointing to the groups of twos,
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“because 1 know there’s twelve of these” Mac
covers up six of the groups of twos with
his hand so that the3 are no longcr
visible and cxplains to me, “So take half off
twelve  twos”. Tlﬂrough Mac’s actions, he
demonstrates the need to take away siX
twos in order to form the groups of fours
with the other six twos. “. so just count by
twos” Mac Procccds to count the
remaining twos. He l:)egins to skiP count
them bg twos and then realizes that he
isn’t wanting to find out ‘how much’
remains but rather, ‘how many groups’
of four there are in t\Nent3~{:our. He
switches his strategy. This time, he
takes his Pencil and Partitions off two
twos at a time while he counts the
number of fours. “Okay, that'd be one, two,
three, four, five, six . So there'd be six.. six fours. So
one, two, three, four, five, six” Mac l«:eps track
of the number of “us he’s writing,
to Produce 24-4-4-4-4-4-4=0 on paper.
Fina”y, Mac double checks his work by
taking the Pilc of 24 cubes and
Phgsica“g dividing it into six groups of

{:OUF CUbCS each.

‘Okay, taking what you know from the
fours, can you do something new?”

“I could do... hmm..” Mac looks at the cubes
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in front of him and then looks at me.
“Groups of eight”” Mac starts in and
imPlements his cloubling up strategy. “So
just..”, reaching for the Piles of four
cubcs, Mac Pushcs two clusters togcthcr
until thcg are all Pairccl up and are now in
groups of eight. “And there'd-be three groups.”

He Picks up his Pencil and records 24-8-

8-8=0. “.. minus eight, minus eight, minus eight,
equals zero. There we gol”

“okaaa. Is there any other way we could
shave twenty-four?”

Mac shakes his head. “Hmm. 1 don't think s0.”
He looks over the three groups of cight
cubes in the middle of the table moving
his eyes and head in a left to rigl‘rt

fashion. “N..nope!”

| Push the cubes together so that
they are back into a Pile of
twcnty~£our.

An attempt to enable Mac to not think with the image of groups of eight but
to start anew.

Mac looks at the cubes and sPutl:crs
out, “one” sof-tlg. He takes single cubes
away, You could do one.. minus one.. so twenty-
four minus...” Using, his left hand to move
the cubes away and his riglﬂt hand to
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record as he acts and tells the number
story out, Mac monitors the number of

ones being recorded in his equation. He
Produccs g o I B B O B I Y O Y B R R R B
|-1-1-I-1-1-1=0 “And the shortest way of sharing is
one group of twenty four” Mac records 24-
24=0 down into his book.

Ownce again, | ask Mac to review what he’s done. Because he’s been working
exclusively with the images of splitting in half and doubling of the
numbers, they don't allow for six or three to be possible values by which
twenty-four can be divided. ( try to open another space for him to work.

“So if You were to partner up the number
stories that you were able to figure out
from each other... So this one here

[pointing to the 24---I-I-I-I-l-I-I-I-I-I-I-I-
[-1-1-1-1-1-1-1-1-1=0] and then to [Pointing
to 24-24=0-~ the number story Mac had
written as the reverse or the oPPositc
story to the previous onel... giving

away owne whole group... connect them
with arrows, what other ones did youw...”

“Well, T first did a group of twelve and then from
that twelve, I decided to do groups of twos, and from
that two, I decided to put them together and I did
by fours, and then I just added two fours together
and I did eight! So those are all connected” Mac

summarizes ancl connects tI"IC numbcr

stories with arrows in that order. He also

connects 24-2-2-2-2-2-2-2-2-2-2-2-2=0
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and 24-4-Y4-4-4-4-4=0 zs being related
“because... four and two... because two
twos wmake wp four.” Rather than
keeping to the number stories about 24,
Mac moves on to a” of thc othcr
ec]uations he has written. He relates 20-
5-5-5-5=0 to 20-10-10=0 and 20-2-2-2-2-
2-2-2-2-2-2=0 to  20-4-4-4-4-4=0,
Framing the cquations in terms of

cloubling and halving, he exPIains that he
doesn’t see 10-2-2-2-2-2=0 and 10-5-5=0
as being related and so he leaves them
as theg are.

Instead of trying to bring him back to twenty-four, t shift the conversation
to exploring owne last number.

Mac tells me to Pick a number that can
be divided into two cqua' groups.

Given what Mac has said and my intent to engage hime to think still
duffercthg twant to choose a number that'll divide evenly by two but result
in an OPD composite number.

I choose cightcen and ask him i he
thinks it is an aPProPriate choice.

He pauses for a moment. “Yes”. With the
cightcen cubes in front of him, Mac sets
to work. “Okay” he exclaims. “Let's do.”.
Mac stops again. He Placcs his hand to
his [iPs as he looks at the cubes.
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“what do you Rnow about eighteen?”

Another pause. “.. How about nines”
Mac Play?u“g slaPPing his hand
down on the tab!e.

“What's nine about eighteen?”
“There’s two nines in eighteen.”

Agaiw, he's using the image of doubling or halving of a number.

He writes 18-9-9=0 onto the page. To
this, he adds what he’s coined, the
“shortest” number story. "We could also do
eighteen minus eighteen equals zero” and writes
18-18=0. He follows this with the “longest”
number story. “And we could dlso do eighteen

minus one.”. Mac talks out loud as he

records this on paper and evcntua”y
Procluccs 18-1-1-1-1-1-1-1-1-1-1-1-]-1-1-1-]-]-
[=0.

I ask Mac to review the three number
stories he’s written for cighteen. “Now

looking at any one of these, can Yyou
make up something new?”

“I codd.. this. Max chooses to rework

18-1-1-1-1-1-1-1=I-1-1-I-1-1-1-]-1-1-|=0.
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“How do You know that?”

“Because there’s two nines in one eighteen and we
could.. and this” pointing to 18-9-9=0, “is

opposite.”

Here, Mac describes how 9+9=18 and 18-9-9=0 are vaerseLg or ”opposite[Lg]”
related.

He Points to [8-18=0 and draws an arrow
so that now 18-9-9=0 is connected to
both 18-18=0 and 18-1-I-1-1-1-1-1-1-1-]-1-]-

I-1-1-1-1-1=0. “s0 you put those together too”.
Mac looks at me and conclucles, “so... that

makes it.”

Mac appears to be “finished” this game because he’s related all of the nuwmber
stories to one another.
] cha"cngc Mac to see if he can find

another number story. F‘ocusing his

attention on the string of “ones” in the
cquation 18-1-1-1-1-1-1-1--[-1-1-1-]-1-1-1-]-
=0, I invite him to, “see if You can find

Some more growps iwn there’.
“We could do groups of two.”
Again, putting his dowbling strategy to good use!

J acknowledgc two as being a Possibilitg
for ano‘chcr number storg and

encourage Mac to mal«e sense of it.
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“How do You know Yyou can do groups of

two? What tells you that's possible?”

“Because... you can... eighteen is an even number.”

“And that means....?”

“As an even number. You can use it and put groups of
two in.”

“Oka 5.”

Mac takes his Pencil, “Okay, eighteen minus
two, minus two, minus two.”and begins to
record his number storg. Mac continues
writing, while keeping track by skip
counting the “twos” he has written aloud

“two, four, six.. sixteen, eighteen”. “Equals zero” he
says as he finishes the cquation, 18-2-2-
2-2-2-2-2-2-2=0. Mac tells me that he

can show that nine twos makes eighteen
by “just counting the ones and see how many twos

there is.”

Mac’s using the same strategy he developed to determine how many fours

there are in twenty-four.

“We can count by two ones at once. One, two, three,
four, five, six, seven, eight, nine”. Mac counts the

nine twos that are made bg Pairing up
two ones at a time. “And one, two, three, four,
five, six seven, eight, nine”. He counts and
Poin’cs with his Pcncii to “Prove” that

there are indeed, nine twos to make
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cighteen in his cquation‘ “Now, we can put
these two together too” He draws an arrow to
connect  18-2-2-2-2-2-2-2-2-2=0 with
18~1-1-1-t-1=l-1=l-{-[-1-1-1-1-1-1-]-1=0 to
indicate the rclationsl‘)ip of cloubling the
single units or ones of this even number

in orcler to Proc]ucc a number story tlﬂat
has groups of twos in it.

Pointing to his first number story, 18-9-

9=0, | ask him to look at the “nine and
nine. can nine be told another way? n
terms of groups?”

Mac looks down at the cquation and
thinks out loud. “You can tell it as... three groups

of three! Or we can tell it as.. groups of nine”

Since he’s alrcaclg recorded eightcen
shared bg two groups of nine, he sets to
work on detcrmining how many groups

of three there would be.

“What would that Look Like for eighteen?”

“For eighteen... that would be.. there would be six
threes in eighteen because there’s two nines there.”

Mac Points to 18-9-9=0 in his notebook.

“S0 two nines in eighteen. So one of those two
[nines]. There would just be.. let's just pretend

each of these are three [i.e., three threes] so
that would make six” Mac Points to the first
nine and then the second nine in his
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equation. “So six groups of three... so six groups
of threel” Mac goes to write this down in
his book but stol:)s ancl |oo‘<s at me.

Here, the mathematical image Mac s thinking with-- “six groups of three”
lsnw't the same as how he imagined his other equations. | ask Mac how he
could reinterpret the story by telling it from the perspective he had expressed
the others.

“Eighteen, minus three minus three, minus three..
equdls zero” Mac records 18-3-3-3-3-3-3=0

into his notebook.

Here's an opportunity for Mac to bring together the image of vepeated
subtraction that he's been working with and the image he already had for
multiplication.

To do this, | repeat sometl‘:ing he’s said
Previouslg. “Now Mac, did you hear what

Yow said? Yow said, | HAVE SIX
GROUPS OF THREE.”

Yes..” Mac continues to look at me,
waiting for me to make my Point,

“what operation do you think of when
You hear GROUPS oF7?”

“T think of... I think of... like say, I wanted groups of
four” He takes the eightccn cubes and

arranges them into four groups of four
cubes and a group of two. “A group of four,

a group of four, a group of four, and a group of
four, and a group of two. Those dre groups.”
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“okzag.” I Push the counters back into a
Pile and Pick up Mac’s Pencﬂ and hand

it to him. “How would You write six
groups o-f three?”

He takes the Pencil, and says, “six’ and
then stops and asks me, “should I use

symbols or write it [i.e., in words]?”

'm curious what symbols (e.g., + or x) or words (e.g., “and” or “groups of”)
Mac wmight use to express how he’s thinking about six groups of three.

I tell Mac to record whatever way he
wishes to express how he is thinking
about it.

“Six times three equals eighteen”. Mac writes

6x3=18. He takes a look at this on the
paper and then cxplalns to me that it
does not make sense with the game we
are Playmg or the other cqu_atlons he
has rccorclccl; that the objcc:t of the
game is to TAKE AWAY the number in
equal groups until there is nothing left.

“So that wouldn't work because we're trying to make
it equal zero”

Now here’s a chance for Mac to consider the complimentary relationship
between the mathewmatical forms of 18-3-3-3-3-3-3=0 and 6x3=18. After
all, it's this mathematical back-and-forthing that Mac’s been doing while
he's been playing the game! Through his actions of doubling and halving,
he has been ultimately, determining how many equal groups will makre up
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the given number. Once he's done this, he thenw REVERSES his thinking so
that it moves it in the opposite or complimentary direction. He does this by
expressing the number as being taken away in equal groups until zero is
reached.

Mac studies the two cc]uations again.
This time, he does not consider them as
bcing unlike each other, but instead, as
both communicating cightcen as six

groups of three. The dhCFcrencc, he
cxPIains is that with 18-3-3-3-3-3-3=0 as
oPPosccl to 6x3=18, “we are not plussing” [the

groups of three] “we are minussing them..
When you are taking away it would be subtraction.
Its just like this [Pointing to the
multiplication symbol in 6x3=18], but it's
subtracting not adding.”

In his explanations, Mac not only identifies the inverse relationship between
repeated subtraction and multiplication but also, how multiplication can be
interpreted as (repeated) addition.

“They're opposite but they are dlso related”. Mac
clraws an arrow to connect the two
ec]uations together.

“Now, what do you wmean by they are
opposite BUT they are also related?”

“Because there are six groups of three. Well, they
are not redlly opposite because there’s six times
three and there’s six groups of three here except
for, this is plussing and this is minussing.”
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“So that [i.e., plussing and minussing]
Ls opposite then?”

“Yeah but they are dlso related because there is six
groups of three here except we're just taking them
away. We're not plussing them” Mac reaches

for the cubes on the table and shows me
a group of three bcing ADDED six times
to make cightccn and then, in an
“oPPositc-rclatccl” manner, how six
groups of three can be TAKEN AWAY.

Mac’s demonstration of 6x»=18 and 18-3-3-3-3-%-%=0

“Knowing what you Rwow about this
[i.e., the oPPosite re[ationshil:) of 18-3-

3-3.%3.3%_%=0 and 6x3=18], can you think
of any other possibilities?”

Mac cmPloys his cloubling strategg one
1Cina| time to so]vc 1Cor thc Iast numbcr
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story. I could do three groups of six because

there's two threes in a six. And I just counted by
twos” He shows me that 133 Pairing up the

threes in 18-3-3-3-3-3-3=0 is the way he
can check to make sure that the groups
of three will double up without any
remainders. Mac counts the number of
groups of six that can be made from the
six threes. “So one, two, three. So eighteen minus

six, minus six, minus six, equdls zero”. He records

18-6-6-6=0 into his notebook.

“So you did this one [Pointing to 18-3-3-
3-3-3-3=0] and then You found out the

oppositely-related  ome [pointing  to
6x3=18]~ six times three...”

“Sp, s0 this one would be related to this one too.”
Mac clraws an arrow to connect thcm

togethcr.

Do you think you could think of a
multiplication sentence that would be the

opposite of this one?” [pointing to 18-6-6-
6=0]

"Hrom..” Mac pauses for a moment. He
rewrites the cquation but replaccs the
subtraction sgmbols with ones of
addition. “Eighteen plus six plus six plus six equals

»

Z€Tro.
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] attempt to retell and act out the
cquation that Mac has written using
words and my hands to show the
additive action. “so if You had eighteen

things and then you add six and add
six and add six, You would end up with

»

ZEYo.

“No. That doesn’t make sense.”

§ | suggcst that we use the blocks to ’cry

and make sense of it.
Mac agrees.

| mirror the same actions that Mac
demonstrated when he showed me how
adding and taking away sixX groups of
three were oPPositc|3~re|atcd. “So we did
eighteen. minus six, so U'm doing the
actiown, right, you talk it out.”

Mac chimes in as | take away the groups

of six “.. minus Six, MINUS Six .... zero.”

“Now, let’s do the opposite.” still kcePing
the cighteen blocks in three groups of
six, | Per'Form the oPPosi’cc action of
BRINGING BACK the three groups of six
so that tlweg form the original Pile of
cightecn. “Soifweago..”

“Eighteen plus six..”
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J stoP wl‘lat | am doing and return thc
group of six cubes back again. “How
much are we starting with?”

“Zero” Mac narrates the story I'm actin
Y 1S

out. “Zero plus six, plus six, plus six,”
“‘wakes...?”

“Um... eighteen! OKay, zero plus six, plus six,

plus six, equdls eighteen” Mac writes

0+6+6+6=18.

| ask Mac to look at 18-6-6-6=0 and

0+6+6+6=18 to see if he agrees that thcg
tell oPPosite stories about eigl'\tecn.

“So they're Kind of.. So..” Max draws an arrow
to connect the two number stories
togc’chcr.

‘can you think of a wultiplication
story using numbers and symbols that's
the opposite of eighteen minus six minus
six minus six equals zero?”

Mac looks at the addition: equation he's just
recorded. “Three groups of six equals eighteen” He

then writes 3x6=18. “So Tll write it down... Three

minus.. umm... times six.. three times six equals
eighteen.” Fina”y , Mac REALLY finishes ()

the session bg clrawing an arrow from

“this one”[ 0+6+6+6=18] to [3x6=18] and then
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to “this one dlso” [18-6-6-6=0T. He cxplains
that the latter is “related because it's opposite”.

|8-3-3-3-3-3-3=0
6x3=18
18-6-6-6=0
0+6+6+6=I8
A 346-18

Mac’s diagram showing the rclationship s between the cquations

one of my intentions in working with Mac has been to enable him to develop
different ways of seeing and expressing the mathematics he brings forth....
not through prespecified sequences of IMMERSION but through wmaking
space for, being attentive to, and responding in that wmoment to the
EMERGENCE of Mac’s mathematics.

A second focus has been to opew learning spaces for Mac to set his
mathematics “side by side”.... put his ideas and expressive forms WiTH each
other and consider the patterms that exist among them. Mac’s growth of
understanding that arises from these spaces comes about through our
interactions and his interplay of making numerical and operational sense
of the game. Mac takes nuwmbers and reconfigures them into equal groups
through skip counting and physically re-arranging cubes... he folds back
on what he now Rnows and extends his thinking to create yet other solutions
by decomposing the number again or- recombining the groupings... he
examines his actions and develops wot only compatible but complementary
wmathematical forms through making use of different operations.

In the end of our session, Mac creates another conceptual layer that integrates
his understanding even more when he effectively brings all five equations
together. mportantly, he's wot linking one form to  another, but
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comprenending them as interacting systems of knowing 12. By setting his
mathematics “side by side”, Mac opens a space where he relates and integrates
the equations in ways that most definitely, “speak [mathematically] to one
another”.

283




Insight, 1 believe, refers to that depth
of understanding that comes by setting

... to hear [and become aware of] multiple points ot views, as well as to express and
clarify their own- is not seen as canceling the individual difterences, butas a means
of identitying them... within the context of the group [or, the larger environment*

experiences, yours and mine, familiar and
exotic, new and old, side by side, learning
by letting them speak to one another’

¢ New, 1993, p. 219.
°* M. C. Bateson, 1994, p. 14.




Gltinking systemicatly about chitdven’s mathematical
learning raises. the isoue that as well as nurturing students’
individual growth, emphasio. should be placed on fhow their
mathematico. relates to larger collective vealms. Deing se.
allows otudents. yet ancther epportunity to integuate
diffexent points. of viewing and to gain an understanding
for bow mathematico exists simultancously within
individual and collective spheres of knowing.

Above is a piece of my ‘thinking out’ ow paper. | have lots of these free
writings. t call them “free” because | write them very much in the spur of
moment. | don't pay attemtion to the particular words that 'm using or the
structure of the sentences. I'm wnot even writing to anybody. t'm simply
letting my thinking out and paper is the medivwm it happens to happen on.
They're also free because whew | write each one out t do so on a separate piece of
paper and thew put it with the rest of them. | don’t use thewm to write from,
mainly, | just collect them. And as | think out wmore, | sift through my free
writings and consider how the one I've just writtew interacts with the others.
And from time to time, two or more of these Ldeas will settle together or when
placed with some other, create a tension that enables new thinking to arise.
Thew | find myself asking, “what does it mean?” And so it goes. Funnily,
Uw veminded of my childhood-- sitting at the table with my sisters and
brother watching the green tea leaves swivl and sink to the bottome of our
cups, creating images and each of we trying to odecipher the imherent
meanings. So, back to wmy particular piece of free writing. As 1 vead it on
paper, it makes sense and it's been integral in my current thinking and
teaching. But I've never articulated it any further... out on paper. So, this is
the task t've set for myself. Two questions that emerge right away are: what
does this fragment of “thinking-out-om-paper” wean for classroom
mathematics and what might it Look Like in the classroom?

An example that immediately comes to mind and highlights the
individual and the collective as wecessary parts of the wathematics
classroom is the lesson in which | was reading the book, Even Stevem and
Odd Todd. Had the lesson only focused on the children’s individual ways of
thinking about odd and even nunbers, it is doubtful that they would have
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developed the web of understandings that resulted. As individual Rnowings,
all of the students’ responses made some Rind of mathematical sense-- that
is, vote or conceptual sense. But it wasn't until the students’ different ways
of thinking and their emerging ideas were brought together that the
mathematical tewsion wecessary to occasion their collective semse-making
was possible. tt was here in the collective vealm that the children wade
collaborative, conceptual sense of why certain nunmbers are considered to be
“odd” awd others to be “even”, why even and odd wumbers end with
particular digits, and what exactly is or is wot ‘two’ about them. Had the
lesson concluded with each student sharing his or her number Lmages
instead of bringing them together and exploring how these ideas were or were
not related to one another the children’'s wunderstanding of odd and even
numbers would have wmost likely existed as a collection of “free” ideas. Had
the lesson only focused ow the children’s thinking as a class, there wouldn't
have beew the temsion created by their individual wunderstandings.
dividual and collective understandings arve wot only necessary parts of the
mathematics classroom, they are necessary for the growth of each other. One
enables or disables the other.

Notes

1. Cobb, 1999; A. B. Pavis and Stwmwmt, 2003; tn conversation with S. €. B.
Pirie, October 2003.
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Connccting as 5hapc~s|1iﬁ:ing

Hold on for a minute. Could you go over
that again?

I suppose you could say that the mathematical thinking and emergent ideas
that lead to a growth of understanding arise in the dynamic of students
Simultaneously acting as individuals and as collectives.

So to use your favourite word, it's in the
flow.

Exactly! And thnrough which matnhematical ideas and understandings shape-
shift.

Okay... but can you just show me again,
an example of this shape-shifting of
ideas and understandings.

Well, last week, the children had been given each a small bag of mdms.
During this activity, the students worked on their own. estimating and then
finding out how many mdums there were in the bag, sorting them by colour,
graphing, and then determining the divisivility of the coloured sets by whole
numbers.

okay.

As I made my way to each of the children while they worked at their desks, I
got a bird’s eye view of the class’ results.

You did, but your students didn't.

No. And they weren't looking and comparing their data with one another.
Ynstead, they extended their initial analysis to general statements from
what they had found in their own bag of m&ms.

Like...

Well, like SJames, for example, observed that for ‘all colours except green
mdums, there were two or three mduwms.” And Holly explained that there were
either “lots” of a certain colour or “hardly any’ of it. Because these were small
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bags of candy, Holly considered “lots” to be four or wiore and one or two to be
‘hardly any.”

So they were generalizing from their own
particular instance.

Yes, and seeing the variations in the children's data, I wondered how I might
bring their thinking to a collective realm so that the students could consider
these conjectures within larger sets of data and other people’s ideas.

So, you weren’t just moving their thinking
nto this realm, but their ideas as well.

‘That’s right.

But how would the larger context do more
than create a collection of individual ideas?

Well, I was interested in what ideas might be born from the interaction.
.. and how they'd shape-shift.

Exactly. So the next week, the children revisited their work...

D ivided into groups of four or five, each student studied his or her bar graPh'

wrote one statement that reflected a quan’citativc asPcct of their bag of mé&ms and
shared it with their small group.
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Green and brown don't have very many. (Mark) There is 3 reds and 3 yellows. (Danica)
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There is no same number of colors. “There is Two pairs of the same numbers

(Robby) and another That's alone.” (Michelle)
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.. ‘another that's alone’?

I know! When I asked Michelle to tell me more about her statement, she
explained that ‘because there’s four here beside each other” and pointed to
the four dark brown mdums and the four green mdums. “And three that are the
same right there”, pointing to the three blue mdums and the three red mdums,
“.. there’s one that's all alone... it doesn't have a partner of a different colour”
she concluded, pointing to the ore orange mdum and then to the yellow mdum
column of which there wasn't any.

She's using the ‘partner” metaphor?... not
to descrive odd and even numbers but
the similarities that existed within her
sample. What happened next?

‘the students worked in pairs. Michelle with Danica and Mark with Robby.
his time, each student took their “true” statement and examined it in relation
to their partner's data.

‘To see whether or not it made sense for
both sets of data.

‘that'’s right.

But what if a statement didn’t reflect the
larger sample?

They were to work out how they might revise it so that it made sense and still
maintained its original idea.

Why didn’t they just throw away the idea
if itwas incorrect?

Because I wouldn't let them! That wasn't the point of the lesson. It wasn't
about right or wrongd ideas but to focus on the notion of re-crafting ideas in the

face of other evidence so that the integrity of their original thinking could be
maintained.

Oh okay... focusing on how one’s thinking
and ideas can shift-shape.

Exactly. So when I went to join the two boys...
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Mark was comparing Robbyy’s graph against the statement (i.c., green and brown

don’t have very many.) he had recorded on his sheet.

“How are you doing, Mark? Does it make sense?” | asked.

Mark rcPIiecl “Sort of... because he has three brown and that’s not very many
and no green.”

Having quali{:iccl three as “not very many’, Mark seemed satisfied to kecp his
response the same.

I then went to see how Danica and Michelle were coming, along with their work.
While | was doing this, Mark Picked up his Pcncil and underneath his first statement
recorded, green dosnt have any in Them. Robbg Pointcd to the sentence and commented
that yes, he didn’t have any green m&ms in his bag of candg but Mark did When 1
rcturncd, Mark told me that he had changccl his statement to that of oan green m&ms.
As this did not reflect his and Robbg’s samplc, | refterated that thcg were Now looking
at both graPhs to see if the statement still made sense. Mark immcdiatclg shook his
head and said no. | then asked them how theg migh’c shift it so that it would reflect the
Iargcr samplc of data.

“Keep the same answer.” Mark said.

“So... |<ccp green and brown don’t have very many?” | asked.
Mark nodded his head and drew an arrow from his first statement down past the
second one to show that he had changecl his mind.

green and brown don’t have very many.
green dosnt have any in Them.

In that episode, even though Robby
explained very clearly, why Mark's second
conclusion didn't fit for both sets of the
data. Robby's attempt to shift his
partner’s thinking didn't have as much
impact as I thought it mightve... until you
came back and began working with them.
Why do you think this happened? What
was |t about your interjections that
enabled Mark to reflect on his work and to
see tnat his statement still made sense?
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Y suspect first of all, it's because they weren't used to working in this way...
having to stay with an idea and push how they're thinking of it even when it
doesn't immediately appear to resonate with the new context. Mark didn’t
think that his statement was true of Robby's data so he shifted his idea to
only be about green mdums. But when he did this, it no longer represented his
results! ‘then, when Robby's pointed out the contraction, it might have been
not as effective in prompting Mark to revise his statement because Robby
moved from one set of data to the other. My interaction was slightly different
n that Y focused their attention on looking at the graphs together not
separately, and asked them how the idea might be altered to accommodate
both bags of mdums. Not only recognizing the contradiction but also, the
opportunity to make new sevise within this context.

T]'rc bogs then examined Robbg’s statement, There is no same number of colors.

in ligi'\t of their data. This time Robbg moved his head back and forth only to discover
that unlike his graph that had different amounts for every colour, Mark’s grap]’» had «...

lOtS O{: the Same... same numbcr”.

Ynteraction of the data occasioning
change?

Yes.

Mark had two each of blue and red mé&ms and one of each of brown & green.
Mark suggestcd that theg changc the statement to, “... we have the same number of
blue?”

Robbg looked at the two graphs but did not say angtl']ing.

“Yes” | said, acknowlcdging Mark’s suggestion but added «... then he’s switching
what his focus is because he’s looking at same amounts of colour, right?”

Robby looked at his statement and then bcgan thinldng aloud, “...the amount of
colour that....”

Mark and | turned to see what Robbg was trgingto work out.

“What do you mean?” | asked Robby.

“Do we have to combine them to get..” Robby asked, taking his Pcncil and
Pointing to both of the graphs.

“Yes” | cxPIainccl, “so you're ’ca”dng about same number of co/ours, right?”
“Yes” said Robbg.




Pointing to the statement on his Picce of paper, J Parapl'\raseci what he and Mark
had found. “You said that there’s NO same number of colours “ stated, Pointing to
Robbg’s graph. “But if you were to look at two bags of m&ms” 1 continued and Pointcd
to the two graphs, “5ou’ci find out that that wasn’t so.”

Robbg shook his head in agreement.

“Because here,” | Pointcci to Mark’s graph, “Mark got some [i.e., m&ms] that had
the same amount of green and brown and the same amount of blue and red. So, how
could you changc this idea so that it would make sense for both of the grapi'ls?”

You helped them to define the conceptual
space they're working in...

‘the matnematical relationships of the context.

Yes and at the same time, pointed out
the need for them to make new sernise of
that space.

Robbg and Mark looked at their graphs. Mark decided that the statement could
still maintain the notion of ‘same amount’ but rather than ‘colour’, he suggestecl that
PcrhaPs ’chcy could look at “same number in both [i.e., bags of m&ms]”.

Mark bcgan counting the total number of m&ms in Robbg’s samp]c, “three Plus
five is eight, Pius four... is nine” he said as he added the dark brown, orange, and

«

3e||ow m&ms. “..ls twelve, Plus two is fourteen” he continued, adciing the number of
blue mé&ms. “Fifteen” he concluded after adding on the one red m&m.

Robbg was also totaling up the m&ms in his samplc but in his hcad, nociciing
while Mark subtotaled aloud and giving one final nod when he reached fifteen.

Mark then totaled his number of m&ms <. and then Hou’ci £o two, four, six,
cight, ten, twelve” he said while counting the dark brown, green, and orange, and 9c“ow
m&ms bg twos and adding the four remaining, blue and red m&ms to end with «...
sixteen.”

“Ol(ag, he’s got fifteen and you've got sixteen”, | said and looked back and forth
at Robby and Mark. “So what could you do with that idea [i.e., ‘same amount’]? Could
you say something about the number of m&ms that would make sense for both
of those [Pointing to the grapi'is] ?”

“Magbc, not all bags of m&ms have the same number in them.” rcPlicci Mark.

“What do you think, Robbg?” | asked.
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Robbg nodded his head and said “‘yes”. He then wrote Not all m and m bags have

the same amount of m and mes. for his second statement.

You can see how the students’ thinking
progressed in the way they developed
the statement. Staying with the notion of
Same amount’ created the need for Mark
and Robby to reanalyze their data and
form a related yet different interpretation.

And the result wasn't the effort of just one individual. What came about was a
consequenice of matnematical interaction amongst the three of us, all thinking
around the idea of ‘same amount’.

What were Danica and Michelle doing?

the girls had taken Michelle's idea and ‘tested” it against both of their
graphs. They were smiling and calling me over to see what they'd found out.

“How’d you do?” 1 asked.

“Good!” Danica beamed. She Pickccl up her graPh and showed that “because |
have the same as hers... like two two”, Michelle’s statement remained “true”. Danica had
the same number of red and 5c"ow m&ms and the same number of blue and dark brown
mé&ms in her bag.

Michelle suPPortcd what Danica had cxPlaincd, reiterating that “we have two
Pairs that are the same” and also added, “and then we both have one that’s different.”
This latter statement was in reference to what Michelle had identified as “one that’s all
alonc,” which she described as “one that's all alone... it doesn’t have a Partncr of a
different colour.”

Like Mark, Michelle drew an arrow underneath the first statement to indicate that
the statement remained the same when comparcd against both sets of data. Andjust as
in Robbg and Mark’s case, Danica and Michelle were also cha”cngcd when thcg came
upon examining their graphs in relation to Danica’s statement.

Danica commented that “Michelle has three rcds, no gc“ows, and three blues.”
She then wrote:

Michelle has 3 reds but insted of 3 yellows she has 3 blues.
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Both gjrls agrcecl that this onlg made sense for Michelle’s graph and that it did not
aPPly to both of the graphs.

So then, what?

Well, just like Robby and Mark, they could say wnat it wasn't but they weren't
sure how to “shift-shape” the idea.

Bringing forth Danica’s notion of the ‘number of red and 3(:”ow m&ms’, |
rePcatcd what she had alrcadg said but focused their attention on the red and 3c”ow
m&ms. “And you found out that Michelle has no 3c”ows but the same amount of reds...
could you do somcthing... with the idea-~ looking at the idea of reds and 3c”ows’? what
could you say? Both graphs...”

<. have reds in them.... Both graphs have % reds.” Danica rcPliccl.

Michelle and Danica double checked the statement to make sure that it reflected both

sets of data. The two girls nodded and concluded “365!” Danica then recorded:
both gragphs have 3 reds.

Having examined and revised their ideas against their partner’s data, I had
the children form a working group of four.

l rcad out thc statements that thcy were to now Focus on:

* green and brown dont have very many.

* Not dll m and m bags have the same amount of m and ms.
* both gragphs have 3 reds.

* There is Two pairs of the same numbers and another That's alone.

As a small group, we reflected on the statements and talked about how two of them had
unclcrgonc changcs while the other two remained the same. The group then began to
“test” the statements to see whether thcy would satisfg all four sets of data. The
children laid their graphs out in a row and examined them, beginning with Michelle’s
claim, There is Two pairs of the same numbers and another That's alone.

Mark quiclclg Pointecl out that #t no |ongcr made sense because it did not reflect
his or Robbg’s graphs. The four children Procccdcd to studg the graphs, saying
nothing. To hclP them, | made the suggestion that thcg might look to make sense of
three of the graphs rather than all four at once.
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Robbg looked at the girls’ graphs, then Mark’s, and then his. Here, he corrected
Mark bg Pointing out that Mark’s graPh was coherent with Michelle’s pattern because it
too had two Pairs of colour sets that have the same number of m&ms. He had two of
each blue and red m&ms and one of each of dark brown and green m&ms. Robbg swept
his hand across his graph and cxPlaincd that it is when thcy come to his data that the
claim does not hold true.

“Mine is the hardest because it doesn’t have any Pairs. So, it has no‘ching to do
with that” Robbg said, Pointing to Michelle’s statement.

Loolcing from a different Pcrspcctivc, Danica made the observation that Mark’s,
Robb})’s, and her bag of m&ms all have two blue candies. However, she dismisses it
because she realizes that Michelle’s bag of m&m has three blue m&ms.

Michelle Pipcs in. “Bach of us has four of... well, not of the same colour... but
four of whatever m&ms.”

“Four of any colour” clarifies Robby.

“Yes.” Michelle agrees.

“Evcrybodg has four of every colour...” Danica concludes.

Michelle mulls this over, “four of....”

“Four of any colour” Robbg says again, correcting the Ianguagc of the
condlusion so that it would be true for all of the samplcs.

The group agrees with this and makes the corjccturc that a bag of m&ms will have four
m&ms of some colour. Michelle is not sure how certain thcg rca”g are that every bag of
m&ms will have four candies of a Particular colour and hesitates in committing this to
paper. She and the other three children decide that theg are not complc’celg certain and
that the term, “most” needs to be included in their statement. Michelle Picks up her

Pcncil and writes:

any
Most bags have four of the same colours.

Yn that episode, you weren't directly
nteracting with the students. You were
there, but the children seemed to be
working on their own... on their own, as a
collective entity.

Thelr thinking and work here is a nice example of what Id consider to be a
collaboratively collective form of shape-shifting.
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Ythink I know what you mean. Each time
a new aspect was proposed, it was
examined and assessed by the children
in terms of whether or not it helped to
further define the idea before it was
integrated  with  what they had.
Mathematical thinking and mathematics
in this collective, shape-shifting manner,
Is really, a recursive and co-evolving
process... emerging thoughts, melding or
not with that which already exists and
through revision, theres renewal of
thinking, of ideas...

The students moved on to Danica’s idea of three reds. Scanning the four
graphs, Danica shook her head and answered, “no”. Neither Mark or Robbg had three
red candies in their bags of m&ms. Danica adjusted her statement in response to the
new data and announced that “cvcrgonc has reds”.

Robbg, Mark, and Michelle all nod and unanimouslg agree with an enthusiastic

1»

“965
Still keeping the idea of red mdums...

But no longer on a specific quantity...

The new statement now satisfies all four samples.

Danica crafts it a bit more and records,

every body has atleast | red.

Robbg read out his statement, “Not all m and m bags have the same amount of m and
ms.” Mark, Robbg, and Danica skiP count bg a combination of twos, ones, and threes to
find out that Danica has fourteen mé&ms and Michelle has fifteen candies in total. The
bogs no longcr think that the statement makes sense.

Robbg ustifies this “because Michelle and mine have the same amount.”
rerea Robby’s statement, cmPhasizing the language init, “lt says that NOT ALL
bags of m&ms have the same amount. Does that mean that some bags COULD have the

same amount?”
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“Yes” rcPlx'ccl Robby and Mark. Robbg then drew a downward arrow from his

second statement to show that the third statement remained the same.

Not all m and m bags have the same amount of m and ms.

l

As he did this, ! Promp’ccd the other children to think about the meaning of the
statement and to articulate whg the use of the word, “not” made it work. “It wouldn’t
make sense if Robbg said... what?”

“Allthe bags of m&ms have the same amount in them.” said Mark.

with this, the group moved on to tcstingthc fourth and final corjccture that was
Mark’s claim that green and brown don’t have very many. lmmediatclg, the group saw that it
held true for Mark, Robbg, and Danica’s graPhs but not for Michelle’s. She had four of
each of green and brown candies and theg agreed that gjiven the small Packagc of
mé&ms, four was too many to be considered “not very mang”.

Wanting to integrate the languagc used in Robbg’s statement, Mark thought
aloud, “Not all bags of méms...”

Danica intcrjccted, “all bags dor’t have the cc]ual amount of browns in each
column. Like... nobody has the same amount in browns. ‘cause Mark has one, | have
two, Michelle has Four, and Robbg has three.”

Mark agrcccl with what Danica had said and was about to write “not all the bags
have the same number of brown.” when Robby spokc up.

“l have another one that he might want to use” he said. “It is... not all bags have
very many... not all bags have very mang greens.”

“But when you look at Michc"c’s, she has four.” arguccl Mark.

“1 said not all” rcsPondcc/ Robbg.

“SO..uun. 77 | said.

Mark Pauscd for a moment. “ would say that not all bags have the same number

of green and brown in them!” He recorded the revised conclusion:

not all m and m bags have the same number of green and brown.

Another recursion in his thinking that effectively integrated the notions of “not
all” and "sameness” together while still keeping the focus on green and brown
mdums.
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Adcling on one final lagcr to their analgsis, | gave the children two more sets of

data to consider:

FjwM F”‘saj;ix MM Math

T T
2 (Emana &
L

Laré’s éraph . Amanda’s graph

Now with six Sraphs to consider, the group found that Michelle’s statement
remained the same. As Lara had four dark brown candies and Amanda had five dark
brown and four red m&ms, both samPlcs satisfied the corjccturc that most bags would
contain four candies of a Par‘ticular colour.

Danica smiled as she nodded to indicate that her statement was also
satismcac’cory. According to the two new graphs, Amanda and Lara had at least one red
mé&m.

Robbg read his statement aloud, “Not all mand m bags have the same amount of
m and ms.” Fo“owing this, he totaled the number of m&ms for each of the two samplcs
in his head. Robbg concluded Lara and Amanda’s bags each contained sixteen m&ms.
“Does that hold true still?” | asked.

“Ycah, a bit” he rcplicd.

“Why are you saying a bit now. What have you found?!” 1 asked.

“Fifteen goes with mine and Michelle’s and... those ones” he cxPIaincd as he
Pointcd to Lara and Amanda’s graplws, ‘goes with Mark’s”.

“So would you want to changc your idea or [shif‘t]shapc it a little bit?” 1 asked.
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“Yes. Most of the bags have fifteen or sixteen” he said and then recorded this as his
Final statement.

Do you see that? Do you see what's emerging from Robby's thinking?

Yes! He's looking at a different, more
speclfic pattern in the data. He didn't
dentify it as ‘average” number of mdms
per bag, but that's the distinction he's
making what he’s getting at-- that of the
bags of mdums, more of them had a total
of either fifteen or sixteen candies than
not.

Mark read out his statement and quickly nodded “yes”; that it still made sense
for the six sets of data..According to the graPhs, both Amanda and Lara’s bags of
mé&ms had different quanti’cies of green and brown when comparecl with the other four
graphs.

Having tested and revised their conjecturcs across the six samplcs, the children
told me that al’chough thcg were “Prcttg sure”, thcg were not complctcly certain that the

‘FOUI" COﬂClUSiOﬂS WOUld hOlC] true ‘FOI" even largcr samPlcs O‘F mé&ms.

Y wonder what would make them very
certain of their conjectures. Did you ask
them?

Yes, and...

Kob[39 Figurcd that “3ou’d have to look at as many bags as Possiblc~~ twenty to
?or‘l:g” while Michelle was still not convinced that this would be cnouglﬂ samplcs to be
rca”g sure of her statement.

She said that she would need to look at many more-~ “about twcnty-?ivc bags
every dalj for twcnt3~ﬁvc clays!”

Danica agreecl with Robby and cxplaincd that a twenty bag data samplc would
suffice in testing the certainty of whether or not every bag of m&ms had at least one
red cancly. And Mark said that he would need to test between Fif'tg and scvcnty-ﬁvc
bags of m&ms to be certain of his conjccturc.

Bringing this session to a cdose, I asked the children to look at their statements

and to consider if and how thcg changcd as the number of samplcs increased.
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“Some of them changcd and some stagcd the same.” said Mark.

“Did anyone have an idea that staycd the same for the whole lot?” 1 asked.
All four students shook their hcacjs, “no”.

Having established that all of their conjcctures went through some kind of
revision, | was interested in their thinking on whg this haPPcncd.

“So cvcrgonc’s changccl at some Point. Okay. Whﬂ did theg change?” | asked.

The group cxP|aincd that each time thcy looked at the results of another bag of
m&ms, thcg realized that their conjccturcs were not alwags consistent with the new data
,“bccausc not all m&m bags are the same.”

Mark, Michelle, and Danica all noticed subtle shifts in the shapc of their
conjecturcs over the course of examining the six samplcs whereas Robby nodded his
head and exclaimed that his work underwent “HUGE changcs. I started with colours of
brown and green and then with all colours (.e., total number of m&ms in a bag) 2

Ry taking the mathematical patterns that the students identified from each
of their grapns and situating them within larger, collective realms Mark,
Danica, Michelle, and Robby got firsthand experience in how the
mathematical ideas shape-shifted... and how they evolved as a result of the
nteraction of their individual and group thinking.

And, the integrity of the final conclusions
that were born from these interactions...
they were really, much more than the
sum of the parts that fed into them. I
mean, the specific aspects generated by
the children as individual and collective
agents came together not in a piecemedal,
jigsaw puzzle way but in a co-emergent
manner. What they gave rise to were very
Sophisticated ways of thinking about the
. data.
More specifically and pervasive in all of the conclusions is the understanding of
what you can generalize from the data and what you cannot. As well, that
growtn of understanding isn't always a matter of discarding and replacing
ideas, but rather, seeking out patterns... relationships.... and through shape-
Shifting deeper, wore comprehensive notions within a concept can be
developed... developing thinking into a greater whole.
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Notes

1. This graph was adapted from AIMS, 1987, p. 70.
2. this metaphor first emerged while the students were investigating even
and odd numbers. See page 161.
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Striking a balance between those spaces in which the
children and 1 ave involved in direct mathematical
interactions and spaces where | am not part of their
imwmediate work is awother important aspect of
place-making in the classroom. When | am working
with a child or group, t am in the widst of, and
therefore, part of the co-emergence of wathematics
taking place. On the other hand, when | am wnot
directly interacting with the students, | become part
of the extended environment. Thus, providing
opportunities of a different Rind for myself and the
children.

For the childven, they become responsible for opening
and exploring their own wathematical spaces. For
we, | am able to attend to and learm about their
understandings from a more distant vantage point.
The spaces that are created as a result of the children’s
mathematical intra or inter-actions wot only
provide wme with glimpses into thelr understandings
but also, sources from which to further investigate
their thinking and perhaps engage them in folding
back or provoke theme to extend the wathematics
through divect Lnteraction.

303




Opening Mathematical Spaces Of Their Own

With a blue Pcncil crayon in hand and a Piece of paper to record
their mathematics, Sammg makes his way to the round table and Pu”s up a
chair for his best friend, Sam, so that thcg can work together. Sam sits

clown ancl looks around thc classroom.

“Sam,” Sammy taPs Sam on the shoulder.
“Let's do it Sammy asks Sam what he

krnows about the number, 72.

“How about..”

“What equals that number?!” Sammy raises his
right hand in the air. “Oh! T know!”

“How ‘bout. divided” Sam leans towards
Sammy and clasping his hands togcther

smiles, “... will make it equal...”

“How about times? We could say something that
equals that number.”

“Yeah!”

“What is it? Don't say anything! Just let me think.”
with his chin rcsting in his hand and his

elbow on the tablc, 'Sammg looks in
the oPPosite direction from Sam. Sammg

then records 8x9=72, which catches Sam
133 surPrise.

*How do you know that?”




“I know the times-table!”

Sam and Sammy are searching for something they already know to be
“true” about the nmumber, 72. They don't intend to develop a mathematical
description for the mumber but to re-member or fold back and collect an
bmage-- to search through thelr wmathematical understandings and Locate
something they know without question, to be a fact about the wumber.
Although sammy and Sawm specify that they are wanting a multiplication
fact, they aren't concerned about locating a specific one. Sammy’s image of
8x9=72 satisfies this because he simply retrieves it. He hasw't had to engage
in any mathematical activity to come up with this fact, he just Rnows this

to be true because of "the times-table!”

“My turn! Seventy-two plus seventy-two..”

“That  number plus that number divided by two
equdls that number... Two, two..” Sammy then

Procecds to add the two sets of twos in
72+72 togcther.

“It's one hundred forty-fourl So it's one-hundred
forty-four divided by twol” Samm3 attempts to

move Sam’s thinking along.

“Multiplied by two.”

Sam Pleacls with Sammg. “Let me count...
Seventy...”

“... eighty, ninety, one hundred..” Sam counts on,
first aloud and then whispering to
himselxc, keepingtrack of the number of
tens he is aclcling by umcolcling a Fingcr
each time. Once clone, he then writes
I4i4=2=72.
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what's going here? Sam’s announces that it's his turn to describe 72 and
the boys return to Sam'’s first idea to include “divided!”. They set to work on
developing a wathewmatical expression that uses this operation and now,
different aspects of their understanding are being revealed. Sam on the one
hand, approaches the task by using repeated addition to find the sum of 72
to 72 and records 144+2=3#2. From his working with specific numbers
and his insistence that sdmmg Let him skip count on his own to determine
what the sum for 72 +72 is, 'm assuming that Sam is using what images
he has to come up with the mathematical expression. He doesnt appear to
“know” this already wor do his actions indicate that he has a wore formal
understanding of the pattern he is working with... like, ‘if yow add a
nimber to itself or double it and thew divide it by two, yow'll end up with
the original nwmber.’

Now Samwmy ow the other hand, is trying to complete Sam’s thinking by
explaining that, “THAT NUMBER plus THAT NUMBER divided by two equals
THAT NUMBER”. His thinking is a more formal conceptualization. Where
Sam worRs with specific numbers, Sammy’s considering the mathematics
from a more distant perspective. He's thinking about how the actions of
repeated addition and dividing by two, work for ANY number and thew he’s
applying this wnderstanding to the specific context of #2. As well,
Sammy’s suggestion that Sam “multiply by two” Lmplies that he
understands repeated addition to be related to multiplication.

Pause.
Giggles.

Pause.

Sam suggests taking /2 away from a

ricliculouslg largc number.

More giggles.

Pause.
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“Aa-she-waal” Sammy rests his head on
his hand. “onl Let's say something about it.

Let's not do any of the sums.”

“It is between eight and something” Sam extends
his arms outwards and moves his bodg in
aleftto right motion.

Sam’s gestures tell we that he's thinking with the itmage of numbers
existing along a horizontal line. He expresses 72 as being located between
eight and another supposedly, Larger number.

“It's between seveny and eighty” Sammy
records It's between seventy and eighty.

“That's a good one.” Sam smiles at Sammy.
“Is it odd or even?!” whispers Sammy.

Sam takes the Pencil and writes It is a

even number. and then states, “It's a two digit

number.”

“I's a two digit number” Sammy, smiles
back at Sam.

Samwrites It is a two digit number.

Samwmy’s prompt for them NOT to just continue to perform operations on
F2 but offer other ways of thinking about 72 reveals that these two students
assooiate wumbers as possessing other properties rather thaw only being a
product of arithmetic actions.
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Sam and Sammy’s written work

I aPProacln the two boys. ‘sam and Sammy,
may | join your”

Sammg moves the PICCC of PaPcr
between the three of us and bc ns
readmg the equatlons that thc have
written about /2. He tells me what he has
alrcaclg told Sam-- that he knows 8x 9
to be 72 because he knows his times

- table.

This confirms my previous assessment that he's simply folded back and
collected an image. Now, | want to Rnow more about the thinking that gave
rise to what Sam has written for #2.

How did you think of doing one hundred forty-
four divided by two equals seventy-two?”



“Because seventy-two plus seventy-two equals one
hundred and forty-four. If we divided by two, we'd be
cutting one hundred and forty-four in half.”

ln this one sentence, Sam reveals many aspects about the understandings
that are embodied in the mathematical expression. Not only is the equation
numerically and operationally “correct”, but he's also able to step back and
talk reflectively about the velationships and distinctions he’s made about the
mathematics at hand-- property woticing. He considers repeated addition
and possibly, wmultiplication by “doubling” 72 as being the opposite or
tnverse action of division. He relates “cutting one hundred and forty-four
in half” as being the same as dividing the number by two. Because Sam is
focusing on specific values-- 72, 144, and 2, it's not possible to say whether
he’s got a generalized understanding for what happens when the combination
of operations are applied to ANY or ALL numbers.

| ask Sam and Sammg if thcy’ve recorded any
descriptions other than symbols.

Yeah” Sam Points to #5 on their sheet.
“It's between 70 and 80”.

“Yeah. We used words.”

“‘can we wmove onto that and Look at that?”

[rcads aloucl] “It is between seventy and
eighty.”

I ask Sam and Sammy whg this makes sense to them.
“Because it is”

“Because it's higher than seventy and lower than
eighty.”
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Samwmy's image of 72 as “higher” than 70 and "lower’ than g0 is similar
to Sam’s previous bodily gestures. He too is visualizing a number Line.
Samwmy's number line however, is a vertical one on which 2 is located
“between” 70 and 20 and “ranked” higher than 70 and lower than g0. But
where did this image come from? Is it simply a linguistic one that he
Learned by rote? Or is it an expression of conceptual number sense? | suspect
that it's connected to the game we play in class where the children try to
make the highest (or lowest) possible wnwmber by placing randomly
drawn digits-- 0 through 9 in either the hundreds’, tens’, or ones’ column. (n
this game, the class creates a VERTICAL number Line by recording all of the
possible numbers that could have been made with the drawn digits on the
chalkboard. This part of the game requires thew to identify and describe to
their peers whether or not and sometimes, justify why the number is
considered to be "higher' or "lower" in relation to the other numbers already
recorded. -

Moving on, | read out their next clescriptionm- “ttis
an even number” and ask the bogs to talk about it.

“Because if it [72] was a seventy-three, it would be
odd because the seven and the three are odd..”.
Sammy in a more confident tone of voice, “It's [72]
even because seventy-two can be divided by nine... it
can be.. divided into nine, into nine groups.” Sammy

then points to 8 x 9 = 72 on their paper.

“okay, so you're saying if seventy-two is even, it
can be divided...”

“Because eight times nine means eight groups of nine,
equals seventy-two.”

‘Okay...”  ask the boys what they think of 73. They

immediate% i unison, tell me that 73 ts an odd
nuwmber.
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“It would[n't] be divided into equal groups.... Because it
can't be divided by nine, it can't be divided into
nine groups.”

' interested to see whether Sammy will elaborate on
this wotion of equal groups by applying his
thinking to other numbers, 1 pose the question, “what
Lf it [the nuwmber] was seventy-one or seventy-four?”.
No responsel... “What wmakes an even wnumber...
evenrl”

“You can divide it into equal groups.”

“You can count by twos. Two's dan even number
[unfolds two of his Fingers], four

[unfolds four of his Fingcrs], six [lays his
riglﬁt hand over his left hand so as to
make more’ Fingcrs], .. dll the even numbers.”

Based on the fact that Sam. recorded 72 as an even number and Sammy
didnt disagree, | wmight have asswmed that they shared the same
understanding for why 72 is an even number. However, now that they've
revealed what they each wean by “even”, it's clear that Sammy and Sam
have two COMPLETELY different understandings.

Sammy understands “even” wuwmbers to be those numbers that can be
“divided into equal groups”. tn this case, 72 is considered to be an even
nunmber because it can be shared BVENLY into eight groups of nine without
any remainders. Of course, this is true of even numbers, but it's not this
quality that defines them as such. Sammy also explains 72 as being an
odd number that “can't be divided [evenlyl into groups of nine”. Because
F2 is both an odd wumber and a prime number, and as well, its digits-—-7
and = are odd and prime, it's diffieult to distinguish what he means by
“odd”.*
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In contrast, Sam’s thinking of even numbers comes from a mathematically
different place of knowing than Sammy’s. Sam’s understanding of what
makes a number even or wot is in fact, the appropriate one. As he
dewmonstrates for Sammy and me, a number can be distinguished as being
even (or not) by whether you can ‘arrive’ at the nwmber by skip counting by
twos.

[rcading #5] “it's a two digit number. what do You
mean by that?”

“Because there's two numbers,”
“It's got tens and ones.”

‘Oka Y. what's a tew and what's a oner

“There’s seven tens and..”
“ .. and there’s two ones.”

“‘What does seven tens mean?”

Sam cxplains that if you take the base
ten blocks and use five ten rods and one
urit cubc, the rcsulting number is 51. He
draws this with his Fingcr.

S

Sam’s drawing

Sammy ancl Sam explain to me that seven tens can also be thought O{Z as

“seven groups of ten” or “seven times ten”.

The boys are demonstrating that they know numbers can be identified as
having “digits” and in the case of #2, the digits “#” and the “2” make it a
number consisting of a total of two digits. At the same time, they are also
communicating their understanding of place value. According to Sammy,
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F2 can be considered as having “tens and ones”. Sam points out that 72
has “seven tens” and Sammy finishes by explaining that it also has “two
ones”. When Sam acts out that 5 “tens” blocks and 1 “units” block would
be 51, he reveals the understanding that the first digit of a two digit number
vefers to the groups of ten in that number and the second digit refers to the
number of ones or units it has. The boys’ further discussion of how seven
tens can also mean “seven groups of tew” or “seven times ten” tells me that
they Rnow the left-hand digit in the two digit wumber as having a value
that iLs tew times greater thaw the digit on the right.

| ask Sam and Sammy if there is angthing else that
thcg know about 72. 1 leave tl'me table SO tha’c thcg

can work on their own again.

“Let's just draw one more. Groups. Groups of
what?.. I Know! Let's draw a groups story and
then..”

Sammg grabs the Pcncil from Sam’s
hand and moves the paper in front of
him. “Let's draw.. Let's draw.. There's seven tens,

right? We can draw seven tens.”

Sam pauses. “Oh.. we draw ten groups of seven

and one group of two.”

“SEVEN groups of ten!”

“TEN groups of seven!”

“It's backwards.”
' “Put ten circles, with each..” Sam draws the

cliagram with his Fingcr to trg and exPIain
his thinking to Sammg.
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“It's seven strokes for seven tens, remember?”
“Oh yeahl”

“One, two, three, four, five, six, seven. Sammy
draws and counts out seven largc

circles.

“One, two, three, four, five, six, seven, eight, nine, ten.”
Sam draws ten M s in the first circle.

Samwmy's persistence that Sam’s image of tew growps of seven and two ones
is backwards and that they should be recording a diagram of seven tews and
two ones suggests that Sammy's thinking is firmly grounded in its place-
value meaning and thus, doesw't consider the former as being an equally
valid way to desceribe #2. Sam’s flexibility to move from one image to the
other however, tndicates that he does relate the two images as meaning #2.

The two children continue taking turns at clrawingthc cliagram until all seven
circles are filled with ten x s each and the last circle has two 73 sinit.

Sam and Sammg’s drawing of seven groups of ten and two ones.

| return to Sammg and Sam’s table. Sammy’s tc”ing Sam that he’s thought
of another way to describe 72.
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Just when Sammy explains that seven
tens and two ones make 72,

am exclams, ” and writes
) | , oups! d tes 7

groups of 10 and | group of 2 maKes this
number.

'm curious how they might express their thinking
with symbols and so t ask Sam and sSammy if

they can think of another way to describe it.

Sammy and Sam talk aloud as Sammg records 10+10+10+10+10+10+10+2=72
onto the paper. “Ten plus ten plus ten plus ten plus ten plus.. one, two, three, four, five... plus

ten plus ten equals 72

The students’ work dewmonstrates their fluency in woving from one
mathematical form of language to another-- spoken, written, diagrammatic,
and symbolic.

Sammy offers another suggcstion. “How

about minus?”
“How about repeated subtraction?!”

“Oh. I think I Know one.” Sammy Points to
I44+2=72  and says, “How  about one

hundred  forty-five minus seventy-three  equals
seventy-two? Just make this one higher” as he

Points to 144,

“Maybe we'll make a repeated subtraction.”

“How will that work?”
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“One hundred forty-four minus ten..” Sam bcg'ns
to record I44-10.

“Oh! 1 know!”
“... minus ten, minus ten..”

“You need four” Sammg kccps track of the
number of tens Sam has subtracted

from 144.
“minus ten”
“five”
(% . »
minus ten
“minus ten”
“seven”
“ 0 »
minus two
“ ”»
equdls...

Sam finishes the equa’cion.
l44-10-10-10-10-10-10-10-2=72.

f Point to #9. “How’d You come wp with this?”

Sam Points to 10+10+10+10+[10+10+10+2=72

and tells me “I can read the plus”
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Sammg adds: “Forty-two (sic) [Prcsumablg,
72] is multiplied twice-- two seventy-twos. [Poin’cs
to 72 in I44=2=72] And if you minus one of the,
take away one of the seventy-twos, but actudlly
don't say something [i.e., 72], do it another way,
ke  this one [swecps his Fingcr over

10+10+10+10+10+10+10+2=72]. You get seventy-
two. Equals another seventy-two [Points to =72

in 44 -10-10-10-10-10-10-10-2=72.]

BY asking Sammy to explain his thinking reveals yet other sophisticated
aspects of his wathematical understanding-- once again, qualities that
aren't visible from only looking at what's been written. Sammy explains
that instead of writing: I44 - 72 = 72, he'd writtew 144 - (10+410+10+10+10+10+10+2)
=72. The reason why he didw't record it in this form is simply because he
hasnt learned how to use brackets yet. Regardless of this it still doesnt
maRe it Lmpossible for him to think conceptually about the mathematics in
this  wmanner! Together with his  physical finger pointing to
0+10+10+10+10+10+10+2=72 and verbal reference to “take away ONE of the
seventy-twos but dow't actually say [itl, do it another way, like this one”
ilustrates that Sammy’s very much ‘standing back’ and reflecting on or
observing his formal understanding of the wathematics. He's NOT
speaking about the repeated subtraction of tew but IS using a specific case of
the distributive Law over addition:
- (Lo+10+10+10+10+10+10+2) = -10-10-10-10-10-10-10-2

Bven though Sammy hasw't generated a ‘theorem’ as such, he is in fact,
using a formalized understanding of addition in this context.

[ want to Rnow what Sam’s thinking and so, | don't
react to Sammy's explanation but continue to
Listen.
| “Seventy-two plus seventy-two equdls one hundred
and forty-four.” At the same time, Sam

strctchcs his ’chumb ancl ﬁ'ngcrs around
either end of the -10-10-10-10-10-10-10-2
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and says, “Seventy-two.”

“Sam just took another seventy-two by not saying it

I repeat what Sammg has just said but in a louder
voice to try and bring Sam into the conversation.

“Sam just took another seventy-two by wot saying
"

“By not. writing it [72] down” Sammy
sweeps his Fingers in a circle
around 144-10-10-10-10-10-10-10-2=72.

“By not... like... one hundred and forty-four minus... you
minus one hundred and forty-four by seventy-two.”
Sam also sweeps his Finger across
I44-10-10-10-10-10-10-10-2=72, “and you get
seventy-two. Because.. because..” and Points to

272,

“But you dlso minussed! .. Sam .. Sam dlso
minussed seventy-two but he dlso... one hundred
forty-four  minus  seventy-two  equals seventy-
two. He also minussed the seventy-two.”

BY encouraging them continue, 1 see that Sam’s also thinking of 72 in the
same manner as Sammy. Although the boys don't talk in general terms but
repeatedly use #8 and #9 as specific examples in their explanation of how
they “minussed sevewty-two”, neither Sam or Sammy spear of "144 minus
10, minus 10, minus ten.” and so on. It's clear to me that BOTH students
think of subtracting 72 in the form 10+10+10+10+10+10+10+2 as
they have expressed in #g.

Moving to their ninth description, | wonder if what Sammy and Sam have
recorded here could be true for any nwmber. In other words, can they extend
their thinking to a more general understanding of this concept?
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“I'd say ves, most of them..”

“Most probably.” Sam turns to Sammy. “Pick a

number. Pick a number and T'll try.”

“Okay. Try the first number we did”, reFerring
to the equation I1+(l+ll+Il+l+]l+/1+7+1=85
that they had written earlier. “Eighty-five

”

and..,

“Just pick any number. Just pick a number.”

Sam and Sammy are engaging in taking what they kwnow and applying
itto a wew context. 'm interested in how they might use the mathematics
as a “pattern” and wot, in a situation-specific manner. nterrupting thew, |
shift the conversation by bringing Sam and Samwmy back to their previous
conjecture.

‘Samwmy, you said that you thought it would work
for any number because it was alwmost opposite. what
did you mean by that?”

“It's subtracting instead of adding” Sammy
refers me back to what he’d recorded as
Haell e+ 7+ 1=85.

“.. to do this... maybe the number you pick,
you add it , you add it with the same number
that you... picKed... you get the big number..”

You times it by twol Minus it (ie., the

number) .

“Like eighty-five plus eightyfive equals one hundred
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and seventy.. and you minus it.” Sam Points to

Mt 4741
“To get rid of the extra half”

After listening to Sam and Samwmy explain their thinking again but this
time in wmore general terms, they are definitely demonstrating that what
they kinow Lsn't specific to particular numbers but a formalized pattern that
they've reflected on.

Watching from the cdgc, | was able to observe Sam and Sammy as
they oPcncd up and explorccl their own mathematical space. Their
mathematical activity occasioned opportunitics for me to get a close up
view of the complcx understandings that Sammy and Sam have developed
for whole Positive numbers.

Their work was not concerned with the generation of as many
arithmetic facts as tl’mey could think of, but instead, thinlcing creatively
about the number, 72 . By Folcling back, thcg clevcloped and extended their
mathematical ways in which to express it. And as Sam and Sammy did this,
one can see how their understanclings for whole Positivc numbers existed as
an intcgratcd system of knowing.

Notes

1. In hindsiglﬁt, had 1 asked him to cxplain whether %%, 55,77, or 75 was even or odcl, this
migl"ht have given me the insight into intchrcting his undcrstancling.



/Mathematics Beyond the Classroom

321




from which to come at G. Batesan’s concept of
“pattexns. which connect”.’ I woeuld life to teach
wﬁfaﬂwmtweﬁyuatﬁanatﬁawﬂfeaguewﬁaaﬂmeaa
(s well, because my students will already ﬂe
working with other students whe ave younger and
alder than them and, theve is not anather second
and thivd grade class in my scheel, it would be
ages. J. would Uike this. cellabioration te be an active,
ongoing engagement for the teachers and students.
cooperative  learning--  wheve long  teun
children’s mathematico to tafe wot, connect, and
gruow but abse, an occasion for ce-emewrgent and

T'wo weeks later...

How can I make this happen? Moxe specifically,
with whom?! Jt Ras. te be with a colleague who. not
only has a passion fer teaching mathematics but
also someone whe envisions. childven’s mathematical
learning in a similar manner as I de AND semecne
who wants to take on the challenge! I have made a
but none seem appropriate for this particular
project.

That afternoon...

I scanned my IN box of emails and noticed that I had received something

from my friend, Donna. I double clicked to open the message and found that she
had written me a letter asking how my year of teaching had been.
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Deonna and J. fivst met at the University while completing aun Masters. degrees in
mathematics. education. Jt had been two gears since we graduated and we always
now! Not enly wene Donna and I seeking to teach in ways that focused on the
growth of childven’s mathematical understanding, but upen eading the west of hex
email, J discovered that she would also be teaching second and thivd grade children

I double clicked on the REPLY icon. Typing a response back to her as fast as |
could, I told Donna what I had been up to in terms of my teaching and briefly
explained my thinking behind the collaborative project. I then asked her if she was
interested in working together and clicked on the SEND icon.

"That summer and into the beginning of the school year...

Donna and I began planning the “math buddies” program for our two classes.
Using the theme of connecting our students with their mathematics, we focused on
establishing interactive learning spaces that not only emphasized the children’s
conceptual connections with mathematics but also, connections that would grow
between the two classes and amongst the students as they worked together as one
collective group.

Since the program centred on the childien’s mathematical intevactions, we saw it to. be
a natural context for otudent-genevated probilem pesing and puoblem osolving
projecto. ,

Opver the course of two years and despite the fact that Donna and I worked in
different school districts, we co-created and taught mathematics classes
simultaneously in our own classrooms and together as a group. We communicated
to each other through e-mail, phone calls, and meeting each other in person. During
these meetings, we reflected on lessons taught and took a closer, critical look at the
kinds of teaching and learning that were arising. This gave us a chance to study the
students’ work and assess their mathematical understandings jointly, thereby,
gaining insight from each other’s perspective. It also allowed us to flesh out possible
lessons and consider the impact that the teaching we were proposing might have on
our classes’ learning. From here, we sketched out teaching-and-learning settings.
Lessons were not prescriptive nor planned far in advance but evolved from the
mathematics that surfaced in the classroom(s).
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Notes

1. See G. Bateson, 1980, p. 9.
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Keeping Our Classes Connected

Even when it was not possible for Donna and I to physically teach together,

we took it as an opportunity to find creative ways to keep the children connected.
One way we did this was by teaching similar lessons within similar time frames.
'This provided occasions for sharing and examining the mathematics that was being
developed in our classrooms. For example, as both of our classes were working on
developing strategies for solving two and three digit computations, Donna and I
presented work that children in the other class had produced. Our students were
invited to consider how the methods generated by their buddies were the same or
different from theirs and whether (or, not) and why the proposed strategies made
mathematical sense. Not only did this enable the students to share what they were
learning with the other class but it created spaces for them to critique each other’s
mathematics, to justify their thinking, and to offer new thoughts for their peers to
consider.

Robbg’s “take away one” subtraction strategy
L 2R R R IR IR R IR TR R IR R R IR TR R R R R YR S S Y

Mathematical Gifts
The math buddies program was where the students’ making and exchanging
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cxchanging of mathematical gifts began. These gifts contained the conceptual ideas
that the children happened to be exploring in class and by wrapping them up in
imaginative contexts, the students’ offerings turned into riddles, creative problems,
and puzzles for their buddies to “play” with. Most often, the children worked with a
partner during the posing and the solving of these projects.

Donna and I felt this te be impextant in order to maximize mathematical

Ghe childven's finst gift to thein buddies was a letter introducing themoselues. Jn
class, the students had been investigating numbiex cencepts and decided that it would
be fitting if, they intwoduced th s, in mathematicably imacinative ¢ .
the concepts they were leavning about, such as “1 am in the grade that comes before

four and two after Kindergarten” and “My favourite number is 12 less than 20 and 5
more than 3. Ghe children spent a geod part of the neat day measuring, collecting,
and analyzing the numerical data about themselves such as theiv feight, weight, age,
shoe size, fow many members in thein family, favcwrite number, etc., and then
developed mathematical descriptions for them. Denna’s students weve delighted to
receive the letters. This in tuwn, cpened up similar investigations ef data and
analysis for her students who responded with similar Clettens for my students to
sead.

P S S P P P PO P PO S P O O S O S b O o o o o o

“Reflect on the reflection”

Danica drawing reflective imagcs in the “water”
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Robby: “Using a mirror helps me to check what I've drawn.”

“Reflect on the reflection” was a gift that came out of the classes’ ongoing
studies of symmetry. Here, Donna’s students painted pictures on one half of a piece
of paper. They then gave them to my students who had to complete the other half of
the image by drawing its reflection in the water.

o sclve this puzzle, the students needed te locate the horizontal line of symmetry
and then with the aid of a miver, ‘flip’ each of the images and paint them in on the

AN N R R A 0 2 R R TEE 2R IR TR IR TR R R R TR TR Y

“Can you build my dcsign?”
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L ara, Grcgory, Mar|< and Brian’s clues for their block clcsxgn

A letter from the grouP’s math buddies. |

“Can you build my design” was a gift created by my students using pattern
blocks to make a geometric design (e.g., a flower). Working in pairs or small groups,
the children composed a written set of instructions telling their math buddies how
to build the block design and included a picture of what it looked like so that they
could compare it with what they had built.

name, and intexpret velative pesitions in space. Fon Donna’s class whe received the
challenge, this puzzle vequired them to visualize, identify, and locate the descuified
positions in space in oxder to build the design with pattevn Glocks. Unce they had
dene s, the children compared what they had built with the picture of the probilem
posers’ intended design and wote back to theiv buddies explaining what part(s)
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of the instuuctions wexe clear to undevstand, what steps wene difficult te figure out,
and why.
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Carter’s number stories about 1%.

“Let it roll’was a game my students made for their math buddies. It consisted of a
page full of dice showing values of 1-6 and a “target number”. Donna’s students
worked with a partner using as many of the dice to create different number stories

about the target number.

The exchanging of gifts and sharing of work gave rise to mathematics that flowed
back and forth, connecting our students and buinging eur classrcoms together. Jn
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a pat of what was taught-and-learned in the other classwcem and se en. Veny
much lifke a convexsation’ in progress, the mathematics that emenged existed in the

Natea

1. Gadamex, 1989.
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Celebrating Together

Us far as Donna and J wene concewned, teaching mathematics was neither an
one’s classvoom. In the math buddies progruam, ene of cur aims was to blur and at
times, ignove o vemove such boundanies we found to be lmiting. In this way, we
tandem thuwough osharing of students’ work, and in the children’s exchanging of
“celetivation days”.

Celebration days were when we brought our classes together and entire
school days were devoted to engaging in mathematics as a collective group.

Get’cing acquaintcd with one another
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Jhis was a scavenger hunt designed fon the children to learn about theix math
buddies’ attitudes and theughts vegarding mathematics. The childven asked students
in the other class questions life, “\Nhat do you like about mathematics?”, “What do you
find challenging about mathematics?”, and “Can you think of another way to describe the

number, 10?7, Ghe collection of questions wexe genenated by Donna and myoself as

LA R N N R N R IR I S 2 2 R IR TR R R TR R IR R R

Teaching our classes together gave Donna and I the opportunity to examine

the children’s mathematics as it emerged and discuss how to plan for subsequent
activities. Because we shared similar views on mathematical understanding and
considered it to be nonlinear, constantly growing, and ever fluid' in nature, the
mathematical explorations that we planned needed to be open and responsive to our
students’ thinking. This meant paying attention to the conversations and questions
initiated by the children as they watched a film, read a story, or participated in an
activity. Donna and I would then integrate the ideas brought forth by the children
into their mathematics for the rest of the day.

Jn the moxning the children had watched a mathematics film called Dance squared
and Donna had read a non-mathematical beok titled, Selina and the bear paw
quiitt’ Donna and J were curious as to what weuld happen if we presented the film

Sl'laring the story o Selina ac] the bear paw qui/t
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Weould eur classes engage in some find of collective, whele group mathematics?
What would the mathematics entail? Geemetric compositions of a square?
TJesoellations? Quilts?!

The day before, Donna and I collected materials that we thought the

children might find useful such as: wallpaper, rulers, scissors, pattern blocks, plastic
2-D shapes of the ones that appeared in the film and the story, chart paper, large
pieces of felt material, glue, scrap paper, pencils, a class set of chalkboards, and
coloured paper.

story created the context that shaped the aftewncon’s investigation. Cuer lunch,
Donna and J. assessed what we thought to be the main themes coming from the
childven’s. reactionos. to the film and the stony. Thein comments centred arvcund the
posailile geometric shapeo. that could be used in compeosing a square and the shapes.
needed to make the designs. and pictures inside the quilt squares. For instance, “the
shapes you would need to make the bear's claw”. Cther students spehe about the

transfowmations. of two-dimensional figures that would be necessary-- “how you'd
need to turn the shape™ in oxdexr to make a particular geametric design or picture for a
quilt square. Und given that the entive discussion was. divected toward that of quilts
and quilt squares, this. naturally became the setting for cur students’ project.

That afternoon, the group decided that each of them would work with their

math buddy from the other class to plan and produce one square that would then
form a quilt made by the entire group. Donna and I explained the two themes that
we had drawn from the group’s discussion and asked the students how these might
be worked into their quilt squares.
“The partners can decide what they want to do... they can do a design or a picture
on the quilt square” said one student.
“But they have to do that... they can't just put shapes all over the square... that don't
make sense” added another student.
“And, we can use the pattern blocks to figure out how to turn them... as tracers too”
explained a third student.
'The children dispersed from the middle of the gymnasium floor to find their math
buddy and to gather the materials that they needed.

332



Denna and J made cur way avound to all of the students either individually ox
togethier. Watching, listening, and asking the children to explain what thein work
entailed, revealed thuee geometric and spatial stvategies that the children were

Some students used paper and a pencil to sketch theirv picture and then used the
pattexn blocks by moving them about. By retating, flipping, erv using them in
combiination with other blocks, they wexe abile to. “fill” the vegions of their image with
appropriate shapes. Otfen children chose not to dvaw thein design but wsed enly the
pattewn blocks as manipulatives with which te plan cut and then tuace them to make

Danng and Jcrry’s Pa’ctcm block design

Still, other students velied on their mental image ox physical use of a single pattexn
block to perfoum transfovmations.
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Clarc cxplains, “If we use the triangle and Keep turning it this way again and again until it
gets back to the top, it'll make the petals of the flower.

Clare, Julia, and Sean’s c]uilt square dcsign

The students’ finished quilt

By the end of the day, the children had created a quilt that integrated the designs
and patterns they had experienced through the film, the storybook, and their ‘play
with manipulative materials.
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“Number %mnastics”

Showing Melissa whg 5 is an “odd” not “even” number

During one of our other celebration days, the children helped to create and

participate in “number gymnastics”. The students selected one of their “favourite”
numbers and used it to work through a series of tasks that challenged the students’
conceptual thinking and provided Donna and I a chance to observe their flexibility
of number sense regarding concepts we had taught during the year.

Ghe mathematical prompts came from a journal that J had kept during the cournse
of the scfiool year. Jn it contained a collection of cwiicus questions and cbsewations
made by Donna, the children, and myself.
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]0 +3+363=21Q

“Can you create and trace a pattern block design that has the same number of total sides as
your nurnber?”

“Look at your design. What fractions can you find?”

PEET LR

“Is your number odd or even? Can you show how you Know this?”
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G +F=\0

.

ComParing twelve and nineteen

. “ o _‘ ~ -7 "Compare your number with ?? (you choose)
N T “ . How much larger or smaller is it? Make a diagram
"~ or write with symbols to show how you Know this.”

ldcntiﬁjing cqual “Parts” of 15

“Show how you can “split” or “divide” your number into
smdller parts without remainders or leftovers.”

lclcnti{:ying cc]ual “Parts” of 19
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Notes

1. Pirie and Kieren, 1989, 1994b.
2. National Film Board, 1961.
3. Smucker and Wilson, 1995.
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Beyond Spaces of Inter-action
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Mathematics is not something we have to look up to. It is right
in front of us, at our fingertips, caught in the whorl of patterns
of skin, in the symmetries of the hands, and the rhythms of
blood and breath.’

' Jardine, 1994, p. 112.

340




Connccting Me, Connccting Us

Classroom mathematics beyond spaces
of interaction? What do you mean?

I mean attending and responding to children’s mathematical learning by
coming at it from a different direction. Instead of focusing on the emergence
and development of ideas n relation to the children’s interactions, it's about
making Spaces for them to see how their wmathematical ideas and
understandings can inform who they are and the contexts of which they are a
part.

So it's more on engaging children in
thinking about how the wmathematics
they already know connects to them, to
the world, and vice versa rather than their
bringing forth of mathematics?

Exactly.
Okay. So why Jardine 's thought?

Jt serves as anotner reminder that mathematics doesnt have to be
somethning that's “out there”. It's “right here” ... quite literally, in you and me...
our bodies as examples of mathematics... can't get more personal than that
can you?!

Yes. Literally what it means to ‘be”
mathematical.

So it was Yardine's idea that prompted me to see the need to open a learning
space tnat came at the children's learviing from a different direction and one
that literally connected them with their mathematics.

“Are you a square or an oblon§ » | asked the children.

“What?!” was the response | received from my students as tl')cg looked at me
intrigucd but also Perplexed ]35 the question | had Posed-- What did geometry or more
sPeciﬁcallg, a square or an oblong have to do with them?! Showing them a copy of

Leonardo da Vinci’s diagram:




Leonardo da Vind, Vitruvian Man, 1513,
dim. 25 x 19.2 cm

I cxplaincd to them that he had described a PchcctIy Proporl:ioncd “Vitruvian [hulman®
to be shapccl ke a square; thatis, the distance of one’s arm span is the same or close
to one’s head to toe measurement. After we discussed the ‘squarcncss’ of the body in
the cliagram, l turned the conversation to what it might mean if a person was not square
but oblong. Giving the students squares and ob!ongs to Physica"y manipulate, the class
then considered the criteria that defined a person as square and comParcd it to what
thcy knew about oblongs.

The class made the argument that an oblong is different from a square in that

when you turn a square so that it “sits” on a flat surface, it “always looks the same”.




But when you do the same to an oblong, “It doesn't always look the same because
oblongs have two longer sides and two shorter sides”.

From this, the children made the conjecturc that if a person was oblong, he or
she might be a “wide”, “side to side”, or “left to right” oblong. This meant that the
person would have to be “wider than they are tall”. 1n addition to this, thcy cxP‘ained it
was Possiblc that another person could be a “tall” or “up and down” oblong, In this case,
the person would have to be “taller than they are wide”.

So, here.... squares and oblongs. These
are the concepts the children were to think
with.

And  from their verbal and physical
descriptions, the children have conceptual
meaning for some of what makes a
square a square and an oblong an
oblong.

And theyve taken their spatial understandings-- dimensional properties
about squares and oblongs and connected these to dimensions of the body in
order to make distivictions between different body shapes.

The class then worked with a Partncr and carried out the studg. Thcy used a
taPc measure to find out their head-to-toe and arm-to-arm measurements and then
rounded the values to the nearest ten centimetres, and then identified what SI’IaPC thcy

were.
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Robbg and Madelaine. Are Yyou a square or an oblong? !
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Some found out that thcy were squares while other children discovered that thcg were
tall oblongs. Of a total of 21 studcnts, 9 were square and 12 were tall oblongs To the

children’s surPn'sc, there was not one wide oblong in the class.

The class graph

Most people are tall oblongs. There are 3 moer oblongs,
Amie then squares.
Madelaine
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I was exactly 102 cm (armspan).... about 100 cm.
I was exactly 124 ¢cm (head to toe).... about 120 cm.
I am [a tall] oblong.

Annie

I was exactly 118 cm (armspan).... about 120 cm.
I was exactly 129 cm (armspan).... about 130 cm.
I am a[n] up and down ob[l]ong.

Madelaine

I was exactly 120 cmn (armspan).
I was exactly 120 cm (head to toe).
[I am a] square.

Sharon

My partner was Holly and she was a [tall]
oblong because she is different both wayl[s].
Charlotte

Okay. So... yes, they were collecting the
data. UYes, they were measuring and
rounding numbers to the nearest ten.
Yes, the children were analyzing the
graph. But that's not what it was about
was it? I mean, that's some of what they
were learning, but the wmathematical
space that you opened was for the
hildren to think with the idea of a square
and an oblong n a context that hadn't
occurred to them. In order for them to
distinguisn what 2-D shape they were,
the cnildren had to first spatially
coordinate the two dimensions of length
and width, and then compare these
against the properties of the 2-D shapes.

Yes, that’s right.
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Thc Following year we continued the invcstigation. The cight second gradc

students who were now in third graclc were curious to find out if their boclg shapc had
changcd or remained the same from the Prcvious Yyear. The entire class wanted to know
if there would be more or less oblongs than squares and how this gcar’s results would
compare to that of last year’s data. Most of all, the children still wondered if it was even

Possiblc for someone to be a wide oblong!

So this space that you previously opened
has now been re-opened and extended
by tne children themselves.

.. and now it included different contexts in which they could further examine
the idea of square and oblong bodies. Their extension of the learning space
gave rise to the class’ posing of new questions.

The class graPh
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Like last year, there was a total of 21 students. After the class collected their new
data and analgzcd it, thcg found that 10 of the 21 children were squares, 1t were oblongs,

and sti”, there was not one person who could be considered to be a wide oblong.

Sitting in front of the two graphs, the children bcgan comparing them.

“Last year there were nine [students who were] squares and this year there are
ten [students who are] squares. 5o there’s one more squarc” said Ellie and Michelle.

Marg-Janc identified that “with both of the graphs, there are alwags more tall
oblongs.”

Danica and Shelbg made the claim that “most Pcoplc didr’t grow from last year.
Thcgjust stagcd the same.”

This comment caused a great deal of talk amongst the class as tl‘lcg qucstioncd
whether it made sense. According to the stuclcnts, each and every one of them knew for
sure that she or he had grown in the past year.

thn the class looked at the graphs again, | asked, “Can we tell how much
PcoPlc grew this year?”

Brian shook his head “no” but could not cxP[ain whg. Shane argucd that one
would need to ‘compare the measurements from last year [with this 9car] and see how
much it’s changecl.”

The class came to the conclusion that even though the graphs Providcd
information about the gcncral shaPcs of students, the graphs did not contain the
necessary details for ma|<ing statements about Pcoplc’s spcciﬁc measurements.

Picl(ing up on Danica and Shclbg’s idea-~ that most of the returning stucl%nts
had stayccl the same shaPc, | turned the class’ attention to another intchrctation of the
graph. Of the rcturning students and accorcling to the first graph, two of students had
been squares and six had been tall oblongs. This year there were four students who
were squares and four who were tall oblongs. | asked the class if the statement that
onlg two of the returning students had changecl shaPc from last year would be an
accurate one. ManH students were quick to agree because of the difference of two
between four and two ancl, six and four. Others felt that tth should be more skcptical
and indicated “maybc not” but could not cxPlain whg. When | asked the class what theg
would need to know in order to determine if students remained or changcd shaPc from
one year to the next, thcg said that you would have to find and compare the results of
each student. So, each of the returning students located themselves on last year’s
graph and comParcd the results with the current graph.
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So why did you do this?

Because, what Danica and Shelby had said had caused such a reaction from
the students, it needed to be brougnt around again in order that the class
could consider the claim more critically... so that they could take the two sets of
data and see wnat wieaning they could make from them.

So not just a superficial reading of the
graphs. 9 mean, not just looking for the
obvious facts... like how many of this or
that but given the fact that there are so
many of this or that, what are the
relationships that exist in the data..
rignt?

Yes. Shelby and Danica’s statement that most people hadn't grown from last
year occasioned the need for the class to go back into the data, see what
relevant information they could find, and then stand back and assess the
claim by sorting what they knew and what connections existed between the
two graphs. In other words, what is specific and lost in the graph such as
their names and measurements and what was retained and could be used
for comparison (i.e., their shapes).

Michelle saw that she was, “... the same thing as last year (i.e., tall oblong).” and
sPcculatcd that she had Probablg grown in both her length and her width but was still
taller than she was wide.

Madelaine giggled, “I was a tall oblong and I'm a tall oblong this year”.

“l was an oblong last year and now I'm a square this year?” exclaimed Annie.

“ turned from a tall oblong toa square” said Robbg.

Shane found that, “Last year I was an oblong and this year'ma square”.

This year Danielle had measured as a tall oblong and attributed the changc in her
shape to the fact that,“l’vc grown more than my arms have (stretches out her arms). My
legs have grown more because last yearlwas a squarc.”

Ho”y said, “|ast year | was an [tall] oblong and | guess | was a little bit shorter
and my arms weren’t as long, and this yearfma squarc”.

As for Marl<, last year he had been a square but “’m a tall oblong this year. Pve

Probablg grown more n my head to toe measurement this 5car.”
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So by having them go back and compare the data from both years on the
actual students thewselves as opposed to just looking at the graphs’ total
number of squares and oblongs...

.. they found out that in fact, only two of
the returning students had remained the
same shape; that is, tall oblongs while the
other six Students had changed. The
exact opposite of Danica and Shelby's
initial conjecture.

Exactly.

Still in search of wide oblongs, the children decided that such a bodg shapc
might not exist in the second and third gaclc and that thcg should £0 home and

measure one of their parents bccause, Pcrhaps older People werel!

‘they've extended this wathematical
space again by raising conjectures based
on the trends they've located in the data
they've collected on themselves.

Madelaine Prcdictccl that “more parents would be 5quare~shapcd than angthing
else”.

Mary-Jane had a hunch that “maybc we'll find a couplc of... wide oblongs.” And
the rest of the class anticipatcd that there would be more tall oblongs than angthing
else. That wcckcnd, the children collected the measurements of one of their parents
and brought the data to class the Fo”owing week. With it, the class Produccd a third

graph.
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What’s the shaPc of your Parcnt’? graph

Parents that are] “square [or] wide oblong are the same.” William.
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My parent (mom) is a tell eblong!
Elite ——

‘ \\"&y parent {daa) is o TALL OBLONG!

Shape

! Mﬁaﬂy parent {mor) is a wide eblang!

Larg

Mark

My parent (mom) is a squarel
(My dud (5 o square tooll)
fSFelby

My parent {mom) is a square! /

Jerry
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We put this graph with the other two and examined it first by itself and then in
relation to the other grapl'ls. Madelaine’s Prccliction that most parents would be squares
did not prove to be true. However, the class’ “guess” that there would be more tall
oblongs than anything else was correct. The children were most excited to discover that
Mary-~Jane’s hunch was a good one and that some parents were indeed, wide oblongs!

Mark then suggestcc! that “you grow taller than your armspan does [as you gct]
older.”

“f that is true, why did we end up with wide oblongs?” | asked.

Mark shruggcd his shoulders and laugl'uing, exclaimed, “magbe thcg shrunk!”
| asked the class what thcg thought might happcn if we continued to measure and grapl'v
Peoplc’s shapes. “Do you think we might... lcccp {:incling the pattern that Mark Pointcd
out? That there are always tall oblongs than ang’ching else?”

The students bcgan ta”dng to each other about what group of Peoplc theg
should samplc next. Robbg thought that the Kindcrgartcn class would be a good group
to survey to see if the pattern of tall oblongs would Pcrsist “because we've done older
Pcoplc-- our parents, and we’ve done medium PcoP|c~~ us, so we should do a smaller

[i.e., 9ounger] group.”

So from the three sets of data that the
class has collected, theyve identified a
pattern of tall oblongs that's consistent
with all three graphs.

And now they're moving to a different age group to confirm it.

In addition to engaging the children to
think critically and locate relationships in
the data, another layer has now emerged
n terms of their mathematics. They are
now, collecting new data and interpreting
in lignt of the other sets in order to
validate the patterns theyve found, right?

Yes.

The class agrcccl with Robbg’s idea and Keefer Prcdicbcd that the Pa’ctern would
continue. Jcrrg ﬁgurccl that thcrc woulc] bc more squarcs amongst tl'lc Kindcrgartcns
than any o{: thc otl'}cr groups survcgccl.
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Mark Pointcd out that one should not compare numbers without considcring the
total number of Pcoplc in each group-- “it chcnds how many Pcoplc are in there [ie,
in the grouP] J

| acknowlcdgcd Mark’s comment as being an imPor’cant one for the class to
consider. With all of the groups rougHg the same in size (e, 21, 21, 19, and 20) the
children and 1 decided that in this case it would not be a major concern.

All of the students Prcdicted that we would dcﬁni’ce!g find wide oblongs in the
Kinclcrgar'tcn group. When | asked them why thcy thougﬁt this would be so, Gregory
raised his hand and cxplaincd his “thcorg”.

“Thcg’rc hcigh’c is rca”g small, the Kindcrgartcns, thcy’re pretty small-- up and
down” he said noclding his head, “and thcg’re armspan is Probably more.” The entire
class agrccd with Gregory’s reasoning and on that note, we left the room to £o and

measure thcm.

What shapc ARE Kindcrgartcn children?

Wondcring...

and Fincling out!




The graph of the Kindcrgartcn class
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When we returned to our classroom and hung the new graPh with the Otl’lCl"S,
Jcrry looked at all four graphs on the chalkboard and said,

“One was right and one was wrong’. Here, Jerry’s comment was directed at the
class’ Prcdictions.

“Which one was right’.’” | asked.

“The tall oblongs” he said. “We thought that thcg might have more squares but
thcg actua“g have the same as the Parcnts.”

| asked the class, “What was somcthing that was surprising about the
Kinclcrgartcn’s graph?”

Keefer raised his hand and said “We thought that there were less tall oblongs
and we thought that there’s more wide oblongs.”

“And what did we find out?” 1 asked, PromPting Keefer to continue.

“That there’s actua”g more tall oblongs than wide oblongs”.

Bringing focus to all four of their graphs and the Are you a square or o[’)/ong?!
studg as a whole, 1 asked the class that gjven the results of their work, if we cannot
assume that Kindcrgartcns will be shorter than their armspans, what kinds of
assumPtions could we make based on the information thcg had collected and found in

this cxPloration. In other words, did the mathematics connect us? Or, not?!

Here, making my reason for this mathematical investigation clear to the
hildren...

that the study was for tnem to develop
layers in their analytic thinking-- about
how they can interpret data and locate
meaningful patterns by working across
sets of data.

“Pcoplc rca“g do come in all shapcs and sizes!” noted Madelaine.

AVERY general pattern!

“No kids are wide oblongs” said Gregory.

“Evcry graph, there are more tall oblongs than angthing else.” cxplainccl Jcrrg.

And Brian Pointcd out that according’co the gral:)hs, the group in which the most
square Pcoplc were children of the second and third graclc. One final mathematical
connection that cmcrgcd for the class was a Pattcm about how Peoplc’s bodies grew.

Robbg exPIainccl that in Kindergartcn, “you’re more tall than you are wide”.
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Sarah acldcd, “your armspan grows bigger and it evens out with your hcight” as you get
older.

The class then concluded that the most varictg of body shapcs haPPcns when
you become an adult. You either remain square,

“Or you grow taller [i.e., a tall oblong] » said Mark.

“Or your armspan goes longer than how tall you are.” said Robbg.

And here, examples of specific relationships or trends that the class has
located across the collected data.

9 can see viow how this learning space
that you opened by having the children
take already known geometric concepts
and applying them to a new context
enabled your students to not ownly to
think in mathematical ways but to do so
in a generative wmanner... through the
layers of thinking that the children
developed, they experienced how their
mathematical ideas and understandings
informed who they are and connected
them with the contexts of which they are
a part. From the questions and
conjectures they raised about certain
patterns that might exist within and
across groups of people naturally created
the need for your students to plan and
generate different sets of data that lead
to their activities in critically analyzing the
data... that occasioned rnew insights... and
m a recursive way, gave rise to new
nvestigations. Your students connected
a real-life phenomenon-- how people
grow, to explain their mathematical
findings. In essence, bringing the self, the
world, and wmathematics togetner.
Mathematics wasn't just a set of facts but
directly related to them.
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Connccting Ustolt

In my work to embed an ecological sense of place for
mathematics by opening spaces for children to intenact
and connect with mathematics, J. cannct neglect the spaces.
in which mathematics can connect us to it! By “it”, I
mean the moxe-than-fuman woerld.?

Another of what you'd call, a “free idea’?’

Yes. Thinking with G. Bateson's notion of patterns that connect’ and relating
it to what Abram speaks of as the more than huwman worla.

You're speaking of the natural world?

Yes, but not in an objectified or a disconnected manner... an environment that
we are connected to and with which we interact.

Right. And so, how do G. Bateson's and
Abram’s ideas come into play?

n making the need for spaces in which children can interact mathematically
with the natural world explicit... and not for the sake of discovering universal
trutns or facts.

You mean, thinking mathematically and
forming relationships through these
interactions.

Yes, exactly.

‘this connects with what you've quoted
earlier- from van Manewn®, it's about
enabling  children to  know  the
mathematics in a way that it speaks to
them... here, through contexts that are
other than human.

And now they might develop mathematical ways to speak to it... to respond in
such settings.

Like what?
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Eking a Closer Look at Snowflakes was a theme I developed to connect
the children with the natural world in mathematical ways. Because my teaching is
grounded in the idea that learning can arise from reconsidering that which we take
for granted as known terrain, the idea of my students reexamining the familiar
snowflake seemed fitting.

With a few snowfalls, the children’s dark clothes, magnifying glasses and
incorporating videos, photographs, and books about snowflakes, the “small white
stuff” became fascinating and complex mathematical pattern makers.

What kinds of patterns ?

‘the class was surprised that there could be so many different geometric
shapes in snowflakes— "diamonds’, circles, pentagons, trapezoids, hexagons,
squares, oblongs, triangles, 'skinny” ovals, flower and star shapes... Here's a
diagram made by IJsa:

6 cluturs of 2 oblorge

Isa’s closc-up study of a snowflake

Not only has she identified the geometric
Shapes within the snowflake but also, the
particular organization of them.

This was something that intrigued the class-- the actual number patterns in
the arrangement of the snowflakes. As they located new ones, they called
them out and Y recorded them on a large piece of chart paper.
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6 sticks 1 hexagon 12 oblongs

6 d amonds 1 star 12 petals

6 circles 1 flower 18 squares

6 pentagons 2 hexagons 18 points

6 trapezoids 120 icicles 12 triangles

6 groups of 2 triangles (6x2) (2+2+2+2+2+2) |
6 groups of 4 triangles (6x4) (4+4+4+4+4+4)
| 6 groups of 3 rays (6x3) (3+3+3+3+3+3)
| 6 groups of 3 points (6x3) (3+3+3+3+3+3)

- 6 groups of 2 squares (6x2) (2+2+2+2+2+2)

- 6 groups of 2 oblongs (6x2) (2+2+2+2+2+2)

6 groups of 3 circles (6x3) (3+3+3+3+3+3)

Snowflakes as gcomctric and numerical Pattcrn makers

Once done, the class looked at the chart to see If they noticed any other
patterns. Shouji made the observation that the number- of shapes was
always either one or an even number. Charlotte added to his statement by
- explaining that each of the snowflakes had structures that were “different but
all groups of six”. This she conjectured, was most likely because snowflakes
begin with a six sided "germ crystal’.

Hevice, the wmultiples of six that the
students were thinking of in terms of
repeated addition, ‘groups of, and
multiplication. Having now seen these
Shapes and patterns, in what direction
did this study then move?

Y challenged the children to create a mathematical response that would
capture the dynamic qualities of their particular snowflake. Initially, the
Students began with verbal and symbolic descriptions that then turned into
mathematical poems.

Poetry? In mathematics?

Yes! From the videos we'd watched, the children learned that a snowflake
grows outwards from its centre--from the germ crystal that Charlotte
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spoke of. this is why the students were always describing the snowflakes
from a centre-out perspective. In this manner, the children visualized the
formation as an animate and artistic unfolding... poetic in nature. It only
made sense then, that thelr responses be poetic in form. And reflected in each
of them Is the student’s spatial and nuwmerical thinking.

| small circle in my center

| of my circles is around another circle

6 small triangles [on] the edge of my largest hexagon

| hexagon around my 6 triangles

I medium size hexagon between a big hexagon and a
small hexagon

6 clusters of 2 squares in my big hexagon

I big hexagon around 2 small hexagons

6 triangles around a circle

6 rays in my middle

6 clusters of 2 forming a ring

I am telling you this while I am dancing in the air.

by Isa

| Flower with 6 petals,

| Star with 6 points,

| Hexagon,

[2 Little triangles,

6 Big triangles,

Twirling in the garden.
by Sharon
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| circle in its centre

two rings of six diamonds around its centre
6 branches from the middle to the edge

6 triangles around its outside

£
12 bumps on the edge of its largest hexagon... \kbﬁ

6 clusters of 2
bumps... 6x2=12

'@ i

- ® "
g “ .
ﬂ
3
K,
A 3.4

%/

6 pentagons on the tip of its branches
6 clusters of 5 points along its edge... 6x5=30... 5+5+5+5+5+5=30
filling the air with other dancing snowflakes.

by Shouii

‘Chrough  their poems, the children
communicate  the  specific  shapes,
locations, and number relationships they
see.

Like in Isa’s poem when she writes, ‘6 clusters of 2 squares in my big

hexagon”.

Or wnen Shouji writes, ‘6 custers of 5
points along its edge..” and then echoes it
two more times but in different ways
throughn his expressions of 6x5=30 and
5+5+5+5+5+5=30. Each of their poems
are responses in terms of how the
snowflake as a wmathematical form s
Speaking to tnem but speaking in the
poetic language of clusters, flowers, rays,
and branches.
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Notes

1. G. Bateson, 1980.

2. Abram, 1996.

3. 5ee page 278.

4. See G. Bateson, 1980, p- 9.
5. See van Manen, 1986, p- 44
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I yelled out: “You have to decide now which you are- a GIANT, a
WIZARD, or a DWAREF?"....

“Where do the Mermaids stand?”

Where do the Mermaids stand?

Along pause. A very long pause. “Where do the Mermaids stand?” says 1.
“Yes. You see, I am a Mermaid.”

“There are no such things as Mermaids.”

“Oh, yes, [ am one!”

She did not relate to being a Giant, a Wizard, or a Dwarf.... She took it for
granted that there was a place for Mermaids and that I would know just
where.

Well, where DO the Mermaids stand? All the “Mermaids™ all those who are
different, who do not fit the norm and who do not accept the available boxes

and pigeonholes?’

' Fulghum, 1989, p. 81-82.
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Spaces for Unpredictable Mathematics
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mysetf, J am twing in my praxio of teaching to be
mindful not to pigeonfiole anyone ox anything. Given an
ecological mind-space, all that I have explorved and
evenything J have coame to make sense eof, it makes no
asenoce that definitive categories on endpeints in childien’s
mathematical explovations weuld be desivable ex even
bearning of it is te be fluid and respensive, then it is
incofiexent to asoume that children’s ways of being
mathematical-- and this. includes. their sclutions, would be
wigid and abselute.

In making space for childien to adventure in theit
matﬁematwaﬁ&wmmgnwa:wtﬁattﬁewma&uayota&e

temains. an open-closure.

The tcacher will often be in the position,
unusual for mathematics teachers and
uncomfortable for many, of not knowing; to
work well without knowing all the answers
requires experience, confidence, and self-
awareness”.’

Jt alse. entails. that “tcachers must perccive the implications of the
students’ different approaches, whether they may be fruitful and, if not,
what might make them so.” *
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Is A Haif Or A Half Really A Half?

The class had been busy working on making halves. Jennifer had given them

a variety of everyday items such as collections of objects, dollar and coin values, two
dimensional shapes, and containers of dry and liquid materials. 'I'he children
worked in groups of three and four to find as many different ways of ‘halving’ the
items and justifying why despite the appearance of the halves of each of the items
looking diffcrent that they were in fact, equal.

It was just as the last group was about to finish sharing what they had found
in their investigation of a half that Jennifer looked around at the rest of the class and
noticed that Sammy sitting very still in a hunkered down and slouched position,
staring off into space- lips pursed and concentrating very hard... on something(!)
Before she could ask him what he was thinking about, Sammy sat up, leaned his
body forward, and pointed his right index finger towards the ceiling.

Looking first directly at Jennifer and then to his classmates with wide eyes and
a sense of urgency in his voice, Sammy sputtered out “I wonder... is a half of a half a
half?!”

For a brief moment the class was completely silent. No one said or did
anything. And then, just as quickly as the children had become quiet, all of a sudden,
they were abuzz- turning and looking at one another with furrowed brows and
asking “is a half of a half a half?” Shrugging their shoulders, they looked to Jennifer
for her response. Recognizing the mathematical playfulness of Sammy's question,
she simply raised her hands, shrugged her shoulders, and tossed it back to them.

“IS a half of a half a HALF?!” she said to the class. Jennifer was curious to see
the ways in which the children would move inside this unpredictable space that
Sammy had opened.

The class dispersed from the carpet and formed small working clusters around
the room. Jennifer moved about, helping each group to gather needed materials and
so they could begin to explore the question. As she worked with the students, she
observed that some groups were busy sketching out diagrams on pieces of paper
while others were having a conversation and talking about what a half of a half was.
Still others, took hold of actual objects— boxes, containers, sheets of paper, and
geometric shapes and then proceeded to draw imaginary lines to make a half of a
half. Emanating from all of this activity was a dull roar of “yes itis!” and “no it isn’t!”

After some time, the class came together and each group presented what they
felt was a convincing “answer” to Sammy’s question. Justifications for why a half of a
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half was a half had to do with the fact that when something is divided into two
equal pieces and each one of the pieces is a half of the original half piece. There were
other groups however, whose explanations pointed to the fact that when you divide
and take a half of a half, what you have taken or what is leftover is one quarter— nota
half.

Consequently, the class remained divided— in halff Grabbing a hold of
Sammy’s question and through several acts of mathematical tugging, pushing, and
pulling apart, the children arrived at two points of viewing and seemed adamant
that a half of a half had to be one or the other. Either it was a half or it was not.

Sammy sat quietly on the carpet for the entire discussion, looking and listening
to what his classmates presented. When the conversation came to a grinding hal,
Sammy sat up as he had before but instead of opening a mathematical space, he
jumped into the thick of it and brought the two confounding interpretations
together.

“It is and it isn’t.” Sammy said. “If you're only looking at the half” he explained,
“then it is a half. But if you are looking at the whole then it isn't, it would be a
quarter. It depends on how you are looking.”

By pointing out that it depends on how one is viewing the half of a half, Sammy
effectively transformed it from being a thing into a mathematical relationship that is
contingent on the context in which it is situated. The understanding that his shift
in thinking allows for, is that even though one might take an either-or approach and
statically define what a half of a half is (or is not), there is also the opportunity for
one to consider in a systemic manner, what the half of a half is part of(i.e., the half or
the whole)- how it is RELATED. By doing so, one can conceptualize how a half of
a half can be both a half and a quarter.

Notes

1. Burkhardt, 1988, p. 18.
2. Burkhardt, 1988, p. 18.
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One day, two years later, I found myself sitting on the edge of pessimistic

skepticism. It was in this space of mind I began thinking that perhaps, there are
only wizards, giants, and dwarfs in the mathematics classroom. Maybe there are no
such things as mermaids. So, two years later, I returned to Sammy’s question. [t was
as a litde “test” if you will- to see if such spaces really are as curious and
unpredictable as I think them to be. If indeed they are then even when reopened,
one cannot be certain what will unfold this time.




In Search Of Mermaids

I gathered up my students and took them to Sammy’s space.

“T'hat’s weird!” exclaimed Robby as he and the class were met with the
question, Is a half of a halt a half?

Like the students twe gears befone them,
the idea of a ‘half-- something sc
atrange and not se familiar.

The children did not need any coaxing from me to enter this mathematical space.
"T'hey jumped right in. Once inside, the class proceeded to take a good look around.
“Is a quarter of a quarter a quarter?” asked Danny.
“Is a third of a third a third? Is a tenth of a tenth a tenth?” said Clare.

Fhe children wene enchanted by the idea of
a fraction ef a fraction and the linguistic
shythm of it appealed to them too. From
fiere, the class went on to genervate several

queries.

Julie wanted to know if a whole of a whole could still be a whole while Ethan
wondered about a sixth of a sixth, and Shouji rounded out the list of questions by
asking whether or not a fifth of a fifth really was a fifth.

I recorded the children’s questions onto a large piece of chart paper and after
some discussion as to how we should continue, the class decided to break into
smaller groups of three or four and that each group could choose a different
question to investigate. The children also agreed that it would be best if they all
used a circle shaped pizza to be a common “whole” and for each group to make a
poster so that the results of their work could be displayed.

When all of the groups had finished their posters, the class sorted them in
order from the greatest fraction— one whole pizza, to the least that was the tenth of
a tenth of a pizza. We then taped the posters up across the length of the chalkboard
so that everyonce could scc the entire class work.

Julie’s group arrived at the conclusion that a whole of a whole could not be
anything but a whole. Shane’s group took the position that a half of a half was not a

370




half but rather, a quartcr, because the resulting slice of pizza was onc of a total of
four pieces.

Wanting to engage the students’ thinking further, I asked the children if they
agreed with Shanes groups presentation that a half of a half is always a quarter.
Robby nodded his head in agreement that a half of a half could be considered to be
one quarter as Shanes group had demonstrated but then pointed to the group’s
poster and also explained that “from a half, it is a half.”

What initially appeared as “weird” to
at a place of knowing where a half ef a
half could possess twe. identities. But unlifee
the class two gyears age, this class was
and with one that happened to be cne whole.
Und 00, Robby’s thinking did not become a
nesidual undervstanding as. Sammy’s. had, but
a osource that set the class off on a

The students agreed with Robby that the half of a half could be viewed in relation
to the whole or the half, but they also argued that a whole of a whole could not be
anything but a whole because the one pizza was its only reference.

'The class moved on to Danny’s group’s poster. Danny explained that a third
of a third could be a third because, “if this is one third (pointing to one of the three
pieces of pizza)... and you split it [i.e., into three pieces again] its like splitting a
package into a third.”

Isa stared at the resulting third of a third, shook her head, and then, said
nothing. Asked to comeup to the poster and show the class what she was thinking,
Isa offered a second interpretation. With her hand she covered up the thirds of the
pizza one at a time, and pointed out, “there would be three, six, nine-pieces. Its
one-ninth.”

Ethan said that “a quarter of a quarter is a quarter because it's one fourth of a
quarter.”

And Danny added, “four plus four equals eight and eight plus four... twelve,
and twelve plus four is sixteen... a sixteenth.”

Mac shared what his group had found out. “Yeah, I think it could be a fifth.
You could call it a fifth and it’s a fifth of a fifth. So it's just like pretending a fifth is -

371




likc awholc of a pizza.” He walked up to the poster and said, “if you look™ pointing
to the piece that was a fifth of a fifth, “and you... if you take all the pieces” meaning
the entire pizza, “thered be twenty-five little pieces, so itd be one twenty-fifth.”

Mark nodded his head and followed by explaining his group’s poster in a
similar manner; that a sixth of a sixth was a sixth “because there’s six of them in the
sixth.”

'The conversation was gaining momentum when Mac and Steven made their
way to the front of the class. Max pointed to the pizza and exclaimed “there’s
eighteen [pieces] in one half!”

“And then eighteen on the other side”, added Steven.

I joined in, “and eighteen plus eighteen is...”

“Thirty-six!” chimed Steven and Mac.

Smiling, Mac looked at the class and announced, “One thirty-sixth”.

Jhe class’ wesking thnough the six of the
seven pootexs. in this way and vecording the
weoulting fraction: Fivst, as. a part of the
oniginal pat, and secondly, as. a part of the
greatest uwhole.

It was when the class reached the last poster that something different and for
me, unexpected, happened. Robby and Danny raised their hands at the same time
and both called out that if the entire ‘tenth of a tenth’ pizza was cut into slices that
were all tenths of a tenth, there would be one hundred pieces in total.

Mark said, “There are ten groups of ten and so you have to do ten times ten.”
he said. '

Danny told the class that “if you put this altogether™ referring to the ten

tenths of of a tenth of the pizza, “that would make one tenth” of the whole pizza.
“So that would be another tenth...” he pointed out as he moved around the pizza in a
clockwise manner, one tenth of the pizza at a time. “Until you reach to here”. By
“here”, he meant back to the place where you started. “And you would find” Danny
said, “that there would be ten of these”, pointing to one group of tenths with his
finger. “And then thered also... they're tenths. So, you would find out that thered be
ten of them so you can think of them as ten times ten... they are tenths... so if you
split them up like that and you have to have ten pieces to make a whole... one
hundredth.”

372




Jt can be assumed that Rebby, Danny, and
whale numbey multiplication to this conteat
of fractions. Jhey wene thinking with a
“guoups. of” notien to account for the total
number of pieces (ie., ten groups of ten
altogether ).

JIn his secend vespanse, Danny conceptually
ten one hundiedths of a pizza vesults in a
one tenth of a whole pizza. He goes aen to
demonstrate that in exden to. detexmine the size
aecticning off each tenth into tentho again,
one multiplies the tenths (10) by the number
of groups. of tenths (10) that now exist (10
x 10). Ghis produces the total number cf
individual pieces in the entive pizza (100) of
which each one is one hundredth of the whole

I was about to let the children go when Clare smiled and excitedly waived
her hand back and forth.

“Yes, Clare” I said.

Beaming, it was obvious there was something important that she wanted to
share with us. Clare came up to the front of the class, pointed to the fraction

373




denominators on the posters, and beginning with onc half and moving through to
one tenth, announced:

“I'wo times two is four, three times three is nine, four times four is sixteen,
five times fives is twenty-five, six times six is thirty-six, and ten times ten is one
hundred” she chanted. “The numbers work” she concluded, matter of factly.

a numerical pattewn.

Encouraging her to continue, Clare randomly started with the third of a
third and then moved to the poster of a tenth of a tenth, She told the class that the
reason why the numbers “worked” was because the piece; for example, the tenth of
a tenth was becoming increasingly smaller.

Clare also pointed out that “if this one” she said referring to the pizza already
divided into two halves, “is split in half, then there'd be one group”. Clare showed
this with her hands cupped around half of the pizza. Here, she demonstrated that
“one group” meant one group of two pieces of half of the pizza, “and one group” she
said, being the other half of the pizza that also had two slices.

Moving on to further prove her point that the pieces of pizza were becoming
multiplicatively smaller, Clare went through the remaining posters in the same way
she had the first and verbally highlighted the repetitive additive pattern that was
connecting them all.

“There’s three, three, and three, [i.e., ninths]

four, four, and four, and four, [i.e., sixteenths]

five, five, five, five, and five, [i.e., twenty-fifths]

six, six, siX, SiX, six, six, and six [i.e., thirty-sixths]

ten, ten, ten, ten, ten, ten, ten, ten, ten, and ten [i.e., one hundredths].”

Jt is evident that Clarve was not menely
applying semembered facts but rathex,
all at once. The multiplicative pattexn that
ofte identified as “twa times twe is four, three
times. three is nine.” is welated to the
pieces. of pizza wepetitively smallex ao
evidenced in “thuee, three, three” and “founr,
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four, four, four..” and so en. Clare also
connects. wepeated addition to multiplication;
for example, “thuee, three, thuee” with “thuee
timeo. thuee io. nine.”

Looking back at the mathematics that
defined this (and, any of the othier) learning
apace(s), it could be argued that nothing
eatva-ondinavy happened. In re-veating the
become the class’ way of being mathematical.

Jhis was indeed veny diffevent frem what
that the woik te be done, the way(s) in
which to. accemplioh it, and the ideas and
undexstandings that wexe to be vealized could
not be puedicted but only existed in the

Jn the classvoem now, making sense of
mathematics such as whether a half of a
fatf is veally a Ralf had less to de with
“what is. it?” and more te do with “fow’ the
mathematics, this creature, was speaking te
the children-- fow it was welating to them
and fow they were relating te it. Fosing
questions from a question, meving inte, cut
of, and amengst ospatial and numerical
sealmo of thinking, and awviving at different
come a0 much as a sunprice but nather ao.
that which is. to. be expected.
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“Its not true... that mermaids do not exist.”*

? Fulghum, 1989, p. 83.
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SPACE WANTED

Looking to share a space
with ecology. Interested
in what ecologically co-
herent forms of teach-ing
and learning of math-
ematics could mean for
the classroom. Can move

in IMMEDIATELY.

(continued from page 36)

THE 3 FACES
oF ECOLOGY

BAccording to M.
C. Bateson®, there
are three “faces” or
realms of ecology:
empirical, environ-
mental, and system-
ic. The author de-
fines empirical eco-
logy as biological,
meteorological, and
geographical studies
that focus om wm-
derstanding how the
planet is changing
and how these
changes affect the
interrelationships of
the world’s mnatural
systems. The en-
vironmental face of
ecology is concermned
with identifyying the
level of xmpact that
our ways of living
have on the earth’s

HELP WANTED

“How can we break out
of our conventional
approaches and ima-
gine more productive

alternatives?”' Reply
to mailbox: T1I9IMIMTS

systems. It also
imvolves the dev-
elopment of solu-

tioms for envirom-
mental problems
that will minimize
harmful stress on
m@ eartho It is with-
in the systemic
relamn of ecology

where mathematics
teaching and learn-
ing cam be most
radically explored.
This is because sy-
stemic thinking fo-
cuses omn seeking
"the pattern which
connects™ a system
or systems together
as interdependent

and interacting
wholes.

In the fisld of
mathematics educa-
tiomn, a “system?
could be an in-

dividual teacher or a
student. It could
also be a
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VACANCY

Seeking one primary
teacher to teach grades
2/3. Separate room.
“Shared facilities”.

collective group
such as a
mathematics class,
the school, and so
on.

The  commecting
pattern or patterns
that interrelate
these systems to-

gether as a dymamic
whole @ICoMmpass
the forms of know-
ledge, actions, and
identities that are
brought into being as
a result of the on-
going interactions im
the sys-tem{s) and
the ways in which
they are sustained
by the sys-tem (s).
By focusing on
relational gqualities,
e@@l@gmaﬂ ways of
hinking give rise to
m@mng the world as
an integrated whole;
a dymnamic and ﬂui@i
network in which all
living and social-
cultural systems are
interconnected. The

(continued on page 79)




Off The Beaten Lrack
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J ennifer sat quietly. “Keeping watch”. But this time as she turned and looked

on, she saw Stigler and Hiebert's question from the opposite side. Now from the
INsidc of the space, she could sce that breaking out” of onc’s conventions is not
simply 2 matter of choice. Walking off the beaten track for Jennifer had proven to
be an ongoing and challenging task of re-rooting taken for granted conventions.

In teaching mathematics, she had often heard and observed that “good”
teachers were the ones who “moved with the flow”. In taking an ecological view
however, Jennifer now understood responsive teaching as being much more than
just moving with the flow of the classroom and theoretical system or systems.
Teaching responsively as praxis, involves continually questioning and responding to
the ways in which one€’s teaching contributes to such a flow; that is, the ecology or
the oikos of the classroom. Said another way, it means paying attention to the ways
in which our forms of teaching are enabled and disabled as a result of our assumed
manners of knowing, acting, and being.

“So that’s it?” I asked.

Jennifer smiled, and then offered me Gary Snyder’s comment— “as an open-
closure’™

There is nothing like stepping away from the road and heading into a

new part of the watershed. Not for the sake of newness, but for the
sense of coming home to our whole terrain. “Off the trail’ is another
name for the Way, and sauntering off the trail is the practice of the
wild. Thatis also where- paradoxically— we do our best work. But we
need paths and trails and will always be maintaining them. You must
first be on the path, before you can turn and walk into the wild.?

“By doing so” she said, “we can set Stigler and Hiebert's query and the issues
I've raised regarding the need for an ecological sense of place for mathematics in the
classroom, side by side.”

Jennifer explained to me, that even though we may be tempted to move off of
our conventional trails of teaching mathematics and think that our desire to do so
will change our direction and move us into the open terrain, we must first become
mindfully aware of the taken-for-grantedness that brings ease to our walking of such
paths. Only then, will we be able to make thoughtful decisions concerning which
paths we should maintain

and
when
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Notes

1. M. C. Bateson, 1994, p. 31.
2. Stigler and Hiebert, 1997, p. 14.

3. Snyder, 1990, p. 154.
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