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ABSTRACT

The aim of this paper is to outline and apply a
perceptivist philosophy of education and ' a
constructivitist theory of knowledge acquisition to a
problem in secondary mathematics education. A working
summary of perceptivism and constructivism 1is provided
and a program and lesson materials are diécussed within
the context of perceptivist-constructivist ideas.

The main thesis of this paper is that the way to
translate perceptivist-constructivist ideas into
_practice in mathematics is to emphasize activities that
lead to actual perceptions. The traditional problem
-with this is that often the computational abilities
needed to deal with reality are too much for most
students to deal with. The information age innovation
that makes a utilitarian mathematics education more
possible now, where it was not possible previously, is
the development of the personal computer. The computer
can act as an information proéessing "step up
transfo:mer" tc boost students past computation to
real, perceptual mathematics.

The practical part of the paper consists of
lessons aimed at a partial realization of perceptivism-

constructivism in the classroom. The lessons concern
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concepts and skills from the -traditional secondary
mathematics curriculum areas; arithmetic, algebra,
elementary function theory and calculus. The paper
conclﬁdes with a report on field tests of the materials

in the secondary classrooms of the author.
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CHAPTER I
A;PROBLEM IN MATHEMATICS EDUCATION

Mathematics education in North America 4is in
trouble. Compared to other 1leading industrial
societies mathematics achievemenf in North America is
"lagging behind (McKnight, 1987). Since Dewey there has
been no guiding theory in education as a whole or
mathematics education in particular. 'Withdut a guiding
theory we are not likely to do better. One of the main
purposes of this thesis is to provide arguments to
establish that a guiding philosophy of education is now
available -- Perceptivism-constructivism. A second
major purpose is to establish by way of argument and
demonstration that the philosophy provides suggestions
about ways in which mathematics education might be
improved. In particulér it can be used to generate
suggestions and provide a rationale for ways in which
the computer can be used to improve mathematics
"education. This thesis presents various computer
integrated mathematics lessons and a computer
integrated calculus unit. A field test of the calculus
unit is reported and discussed.

This chapter is concerned with a group of problems
centered around declining achievement in mathematics

and lack of effort in using the computer as a resource
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to remedy the problem. The problem is twofold. First,
mathematics performance kindergarten to grade 12,
beyond mere computation, is especially poor. Second,
without a guiding philosophy it 1is unlikely that the
computer can be éxploited to improve achievement and
increase meaningful mathematics. The argument in this
chapter 1is developed in five stages. (a) The details
.0of ©poor performance in mathematics by secondary
students is discussed. (b) A stress on applications is
one suggestion in the literature to improve
performance, (¢) A second suggestion in the literature
is to emphasize the meaningfulness of the technical
details. (d) The computer 1is able to assist the
development of applications and meaningfulness by
relieving the student of the burden of computation.
(e) It is then afgued that philosophy can suggest ways
in which the freedom the computer gives from the burden
of computation can be exploited to help improve

mathematics performance.

Second rate skill levels

High school graduates are not equipped to deal
with the mathematical complexities of modern

technological society. Henry Pollak (1987), a noted



industrial mathématician, summarized what skills
industry expects entry level employees to have. These
include the ability to set up problem mathematically,
the ability to apply a fluid repertoire of mathematical
techniques to solve problems, the ability to abstract
mathematical formulations from real world situations,
the ability to work cooperatively on problem solving,
the ability to see mathematical concepts and principles
in common and complex situations. Students also needed
an attitude disposed to toleration of open ended, not
well formulated problems and a belief in the utility of
mathematical techniques to render problems into a well
formulated form. The present regimen of low level
calculation does not provide such skills and abilities
or in any way adequately prepare students for the work
place or for further education. Commenting on this
problem, Usiskin (1985) remarks:

The biggest problem 1in secondary school

mathematics today is recognized by all,

regardless of feelings toward new math or

back to basics. It is that a large number -

perhaps a majority - of high school graduates

lack the mathematical know-how to cope

effectively in society, qualify for the jobs

they would like, or qualify for the training

programs (including those in college) leading

to the jobs they would like.
(Usiskin, 1985, p.8)
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College and university officials note the poor
level of <college entering mathematical competénce.
Leitzel and Osborne summarize in these terms.

About 45% of the graduating seniors in the

United States enter some form of post-

secondary education, and about 45% of this

group lack the mathematical skills and

understandings needed for success in post-

secondary school mathematics.

(Leitzel and Osborne, 1985, p.150)

A survey of uhdergraduate programs in mathematics and
computer science documented that 15% of current
enrolment in mathematics courses at public two year
colleges is for.remedial mathematics. Another 37% of
the enrollment is for precalculus courses that should
presumably have been completed in high school (Albers,
Anderson and Loftsgaarden, 1987).

On a national level (U.S.A.), the National
Assessment of Educational Progress in mathematics
clearly showed that low level computational skills_were
at historically reasonable levels but that a majority
of students do not understand basic concepts nor could
they apply skills in problem-solving situations
(Carpenter, Brown, Kouba, Linquist, Silver and

Swafford, 1987). Internationally; compared with other

industrial nations, particularly those in the Orient,"
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average North American students are not competitive
(McKnight, Crosswhite, Dossey, Kifer; Swafford, Travers
and Cooney, 1987). McKnight notes How our
"underachieving curriculum" expects less of our
students, has them spend less time studying mathematics
and has fewer students enrolled in advanced mathematics
than students in other countries. The International
Assessment of Mathematics and Science found a similar
lack of mathematical ability compared to leading
jurisdictions.,

Forty perceht of Korea’s 1l3-year-old students

understand measurement and geometry concepts

and are. successful at solving even more

complex problems. Less than 10 percent of

those from Ontario (French) and the United

States have the same level skills ‘

(Lapointe, Mead and Phillips, 1989, p.10).

There 1s reason to believe that of all the
students we "pass" in school, many do not get a good
mathematics education. The New Jersey College Basic
Skills Placement Test 1is given to virtually all
students entering New Jersey public colleges and some
private institutions. After analyzing the 1984 results
the Council reported: |

Qf those students who completed a traditional

college preparatory program in mathematics
(Algebra 1, Geometry and Algebra 2), less
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than 4 percent were proficient in elementary

algebra. Even more startling only 36% of
these students were proficient in
computation. Among students who completed

only one year of algebra (N=2,030), only one

student was proficient.

(Morante, Faskow and Menditto 1984, p.30)
Voelker (1982), in a similar study of secondary school
science, stated that "90 percent of all high school
graduates fail" to meet <criteria for scientific
literacy. Passing courses does not seem to equate to
understanding what went on.

North American high school seniors have this year
(1989) fallen to 12th and last place in mathematical
achievement among industrialized nations according to
the U.S. Department of Education (1989). Other studies
indicate similar deficiencies among biology and
chemistry students. North  American industrial
performance has already fallen behind Japan’s, a fact
that may not be entirely coincidental with our problems
in education.

The need for an emphasis on applications

The need to move mathematics education toward a
more relevant, applied format has been recognized for a
long time. Carson, in 1913, wrote:

Among the many <changes in mathematical
education during the last twenty years
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cne element at least appears throughout; a
desire to relate the subject to reality, to
exhibit it as a living body of thought which
can and does influence human 1life at a
multitude of points.

(Carson, 1913, p.35)

The 1989 National Council of Teachers of Mathematics
(NCTM) Standards Document emphasized that mathematics
education need not get bogged down in an endless

attempt to refine computation.

It is a common assumption that mathematics
computations are necessary before one can
study algebra or geometry or investigate
applied problems. This assumption is not
warranted. Too many students are refused an
opportunity to learn the mathematics that
would make it possible for them to be
productive members of society because they
are not proficient at skills which are now
done best on a calculator or computer.
' (NCTM, 1989, p.30)

Similarly, Ralston argues that there is no reason to
spend time refining computational skills if the skills
are not required. Rather, time and effort should be
shifted to making mathematics an intellectually
integrating and expanding activity.
The focus of all mathematics teaching must
soon become teaching students to understand
mathematics rather than teaching them to
manipulate symbols; that’s what the computers

are for.
(Ralston, 1985, p.39)
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Fey and Good comment in a similar vein that we must aim
higher up on the cognitive scale. Rather than
focussing predominantly on 1low level computational
skills, leaving the intellectual meaningfulness of the
technicalities to chance, mathematics education must
evolve toward becoming a means of understanding and
communicating about the real world.
It should be possible for every teacher to
place greater stress on situations in which
mathematics is used to model the structure of
real-life situations. There is a growing
supply of resource material for this purpose
and its use will force attention to

important themes in the curriculum of the

future.
(Fey and Good, 1985, p.52)

Mathematics must become more meaningful

Preoccupation with calculation, at the expense of
the broader intellectual context of mathematics, forces
students to cover the material whether they understand
it or not. It does not seem unreasonable to think that
students would quickly pick up on how to play the game.
A cynical, mechanical approach to learning would seem
natural. Nigel Ford claims:

There is increasing support'for the idea that

the way students think, believe and value is

by no means synonymous with exposure to, and

performance of, exercises in the
comprehension, recall and manipulation of
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information and ideas. Most course-based
activities certainly do not preclude the
possibility that in terms of a student’s
personal acceptance and valuing of, and
commitment to information and ideas, he 1is

doing no more than "going through the
motions" with shallow and short-term, if any,
effects.

(Ford, 1979, p.215)

Roy Forbes notes that the National Assessment of
Educational Progress (NAEP) 1979 results indicate that
"back to basics"™ mathematics emphasis 1in the years
preceeding 1979 maintained 1low level skills at the
expense of understanding.

During a period when the public has placed

great emphasis on the "basics," assessment

data show that mathematics achievement has

declined, especially in problem-sclving and
understanding of concepts.

(NAEP, 1979, p.7)

Present emphasis on reform includes bringing
mathematics education back from a curriculum driven by
emphasis on extensive computation toward more
meaningful mathematics for students. The NCTM
Standards Document lists at least four important goals
relating to bringing mathematics back to the student.

* Mathematics should be studied as an

integrated whole so. that students

understand it as a dynamic discipline and
~an integral part of our culture.
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* Mathematics should help build students’
abilities to reason logically.

* Mathematics should be taught in a natural
context.

* Students should be encouraged to create,
invent. and participate.
(NCTM, 1989, p.35)

Only by meaningfully involving the student, is there a
possibility of discouraging 3just "going through the
motions" and of encouraging actual learning. Only in
this way c¢an a "nation at risk" revitalize its
"underachieving curriculum", especially in mathematics.
The computer - a resource to be utilized

The computer seems to have an enormous potential
in mathematics education. Walker (1984) makes the
claim that "the potential of computers for improving
education is greater than that of any prior invention,
including books and writing."™ But the computer is just
a piece of technology and its potential may not be
realized. Educational television held tremendous
potential but has had little effect. The technology
will not develbp its own use as de Cecco remarks:

All these facilities and equipment [(computer,

C.A.I.], I must remind you, are much more

sophisticated than any theory of teaching we

presently have. The temptation in a

technological society is to allow our

fantastic machines to determine our research

problems and our educational practice. It is
far more important that we subordinate these
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machines to the theoretical and practical
instructional problems which, undoubtedly,
the machines can help us solve.

(de Cecco, 1968, p.418)

By relieving the learner of a considerable amount
of computational burden the computer expands the
potential for understanding. The rest of society seems
to have discovered this fact, with the apparent
exception of the -education community. The NCTM
Standards Document says:

Most current mathematics programs fail to

reflect the impact of the technological

revolution affecting our society. The
availability of low-cost calculators,
computers and related new technology have
already dramatically changed the nature of
business, industry, government, sciences and
social sciences. Unfortunately, most
students are not educated to participate in

this new society.

(NCTM, 1989, p.25)
Released from the burden of computation, the student
would be able to pursue the meaning of mathematics, its
personal relevance, applicability and general
intellectual usefulness, as the medium of quantitative

literacy. Usiskin claims that history provides many

examples of how technology and techniques liberate.

The history of mathematics is filled with the
development of techniques that take difficult
problems and. make them automatic. Usually
these automatic procedures provide a benefit;
with tedious calculations out of the way,
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understanding the ideas and purposes of the

mathematics itself becomes easier.
(Usiskin, 1985, p.1l6)

The freedom from calculation given by the computer
could be used.to explore applications of mathematics.
Computational skills are not needed to the degree they
were in the pre-information age <culture, before
computers. Technology will force a reworking of the
curriculum in which the importance of low level skills
will have to be reassessed. Use of computers may turn
the curriculum on its head.

For nearly every function of interest, the
computer utilities make all ... gquestions
accessible in some intellectually honest and
mathematically powerful form to students who
have not followed the conventional regimen of

skill development. They open a fast track to
the polynomial, trigonometric, exponential

and algebraic functions that model
interesting phenomena in the physical,
biological, economic and social worlds.

Computing offers an opportunity to turn the
secondary school mathematics curriculum on
its head. Instead of meeting applications as
a reward for years of preparation, students
can now begin with the most natural and
motivating aspect of mathematics -- its
applications.

(Fey and Good, 1985, p.48)

What is needed, to indicate what to do with the freedom
given by the computer, 1is a philosophy of education

that shows where to look for the meaning of
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mathematics. In education, this is at hand in the form

of Perceptivism-Constructivism.

Philosophy can help show the way

Because education has been without a philosophy
for so long we have been buffeted from one fad to the
next without any rudder to steady the course. Brauner

describes the situation in these terms:

Ever since the public school stopped trying
to implement the program derived from the
Pragmatism of John Dewey ... they have been
without a working philosophy of education.
That thirty-year intellectual drought has led
to such a shortage of working theories in the
area of teaching practises that ©policy
considerations provide what 1little Dbasis
there is for justifying the current
curriculum and its methods. Indeed, the
grounds for public school practise have been
so parched for s¢ long that a whole
generation of teachers has grown to
retirement age without ever knowing just how
it is that a working philosophy of education
can inform classroom practises ...

(Brauner, 1986, p.l)

This not to say that a philoéophy of education 1is a
blueprint. It is not as if there is some formal way to
logically deduce specific educational practises from
metaphysical, epistemological or axiological premises.
What is being considered here is a looser notion, that

of conditions for rational action. A reflective

practitioner needs good reasons for what he does. This
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looser notion means that other theoretical views may
also be consistent with certain practises and that many
existing practises may be sound. But what is needed is
a consistent philosophy to provide a systematic
theoretical foundation on which to build innovation in
practise. Meaningful, applied mathematics, facilitated
by the computer, for example, would be a part of most
new programs. But the grounds for'and structure of the
program might be very different depending on the
reasons behind the progranm. |

In chépter II, the writer will describe two parts .
of Perceptivism that bear on the problem of how to use
the computer to improve the meaningfulness and
applicability of secondary mathematics. The two parts
of the theory concern an orientation to the world and
an orientation to what it means to be educated. This
theoretical foundation will then be used to generate
suggestions as to what to do with the freedom £from
calculation that the mathematical use of the computer

gives.
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CHAPTER II

A BRIEF DESCRIPTION OF A PART OF PERCEPTIVISM

As a theory of education, Perceptivism has three
major parts; an orientation to the world, an
orientation to being educated and a moral and social
theory. Chapter‘ II describes the first two parts
insofar as they might bear on the mathematical uses of
the computer.
Orientation to the world

Perceptivism is being developed at the University
of British Columbia by Dr. C.J. Brauner. Brauner’s
philosophy rests on a certain orientation to the world.
According to Brauner (1985) anything that exists gives
off impulses.  These impulses contain information or
data. Constellations or packages of these impulses,
that impinge on an organism, can be received as
signals. Any and all signals received generate
impressions. Some impressions are left wunnoticed,
others are attended to. Private subjective packaging
of impressions can give ‘rise to notions,
individualistic ways of "seeing things". Such formulae
for packaging impressions, if they ever achieve
widespread public usage can become concepts. A concept

for Brauner,
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is a public formula for focusing attention on
a limited number of characteristics of the
entity under consideration.

(Brauner, 1986, p.1l7)

By using publicly available packaging formulae language
users can communicate and "see things" in similar ways.
In fact the concepts shape the perception.

The concepts of ordinary language are the

instruments by which aspects of experience
both real and imagined are singled out and

imbued with significance. In a mature
language setting concepts generate
perception.

(Brauner, 1986, p.l1l6)

In Brauner’s view, human perceptidn is a process
of a person selectively 'attending to the impulses
received. Concepts, being publicly available and
usually widely tested, are usually beneficial ways of
packaging impressions. Without the stability of
concepts the world would be chaotic. This author has
obtained Brauner’s agreement that the latter’s views in
this regard are similar to Cassirer’s.

The construction of our perceptive world

begins with such acts of dividing up the

ever-flowing series of sensuous phenomena.

In the midst of this steady flux of phenomena

there are retained certain determinate

{perceptive) units which, from now on, serve

as fixed centers of orientation. The
particular phenomenon could not have any
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characteristic meaning except if thus
referred to those centers. All further
progress of objective knowledge, all
clarification and determination of  our
perceptive world depends upon this ever
progressing development.

(Cassirer, 1923, p.l1l65)

The fixed centers of orientation are concepts and
conceptual systems. These fixed <centers make
perception possible. Brauner claims that

Concepts, notions and dispositions are the

prime instruments for sensitizing people to

particular constellations of impressions in
their physical, social, mental or moral

surroundings. ,

(Brauner, 1986, p.l1l1)

It is only through the development and use of the
best conceptual repertoire available that an individual
can be meaningfully called educated (as opposed to
schooled) . The theoretical structures used by the
individual determine what he sees and how he
understands. Brauner is in agreement with Cassirer.

There is no factuality ... as an absolute

immutable datum; but what we call a fact is
always theoretically oriented in some way,

seen 1in regard to some ... context and
implicitly determined thereby. Theoretical
elements do not somehow become added to a
"merely factual,"™ but they enter into the

definition of the factual itself.
(Cassirer, 1923, p.475)
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The world becomes "knowable" only through the mediation
of sensory and conceptual equipment. The uneducated
are literally blind to certain features of the world
because they lack certain basic modes of pérception.
Brauner seems to be in substantial agreement with
J.M. Jauch.

When we try to understand nature, we should:

look at the phenomena as if they were

messages to be understood. Except that each

message appears to be random until we

establish a code to read it. This code takes

the form of an abstraction, that 1is, we

choose to ignore certain things as irrelevant
and we thus partially select the content of

the message by a free choice. These
irrelevant signals form the "background
noise" which will limit the accuracy of our
message.

But since the code is not absolute there
may be several messages in the same raw
material of the data, so changing the code
will result in a message of equally deep
significance in something that was merely
noise before and conversely: in a new code a
former message may be devoid of meaning.

Thus a code presupposes a free choice among
different, complementary aspects, each of
which has equal claim to reality, if I may
use this dubious word.

Some of these aspects may be completely
unknown to us now but they may reveal
themselves to an observer with a different
system of abstractions.

(Jauch, 1973, p.237)

In Figure 1, the writer offers a visual summary of
Perceptivism’s orientation to the world. The writer’s

view of mathematics, a version of mathematical realism,
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implicit in the figure is elaborated in the Appendix.

In Figure 1, substance Y gives off impulses which are

received as signals. Signals can be packaged as
impressidns._ The central octagon consists of private
dispositions (impressions, notions) and of public
fofmulae (concepts, theories). Concepts can build

together to form a conceptual system,
Orientation to'being educated

A conceptﬁal system generates a mode of perception
by setting out conditions of choice and grouping and so
we partially select the content o¢f the message.
Irrelevant signals form ‘Jjust ‘“"background noise".
Impressions of events are formed and perceptions
generated 1in the interaction of the system of
interpretation and the signals. Individuals develop
dispositions to perceive in different ways and so come
to have private notions of the way the world is. If
these notions are recognizable as part of the publicly
verifiable conceptual repertoire the individual has
certain concepts. Perception presupposes a relatively
free, but culturally delimited, choice among different

complementary modes of perception. Perceivers have the
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capacity to see things in a number of fundamentally
different ways.

In order to be considered educated, a person must
be equipped with the conceptual world-builders of the
culture. Brauner claims:

Perceptivism is built around the idea that

the educated person has a greater command of

more worthwhile ways of perceiving things

than someone who has not had the opportunity

to get an education. Hence the purpose of

education is to equip the learner with the

capacity to perceive things in the different

ways that the most worthwhile approaches to

understanding provide.

(Brauner, 1988, p.2)
Brauner has identified nine basic modes of perception.
(a) The first basic mode of perception is standard
perception. By using the most widely accepted and
justified concepts, principles and theories of ordinary
language standard perception is generated, for example,
recognizing a table, seeing politeness in others.
(b) The second mode is mythic perception. By drawing
on religion, folklore and mythology, the images and
elements depicted generate mythic perception, for
example, Wayne Gretzky as hero, Mick Jagger as
adolescent sex symbol, Rambo as law and order man.

(c) The third mode is theoretic perception. The areas

of the physical sciences such as physics, chemistry and
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biologyvgenerate theories of such power that those who
understand them achieve theoretic perception. For
example, water boiling is the escape of high kinetic

energy particles, sunset is the Earth rotating around

to obscure your view of the Sun. (d) The fourth mode
is thematic perception. Fields such as philosophy,

history and classical studies, often grouped as the
humanities, develop their accounts through major
themes. The themes are unverifiable, unfalsifiable but
yet not totally arbitrary points of wview that then
serve as a basis for thematic perception, for example,
the Marxist theory of surplus value which makes it
possible to see business as exploitation of the worker,
Veblen’s theme of conspicuous consﬁmption which shows
up Hawaiian suntans in B.C.’s winter as ostentation.
(e) The fifth mode is thesistic perception.
Disciplines such as psychology, sociology, geography,
law, political science, economics, education, sometimes
referred to collectively as the social sciences, shape
perception through the use of quasi-quantitative,
partially verifiable theses. For example, Freud’s
theory of the unconscious makes dreams viewable as the
expression of repressed thoughts. Keynes theory of

economic equilibrium uses the analogy of an engine to
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be tuned, sometimes giving more fuel to increase the

R.P.M. and sometimes less to decrease the R.P.M., in

order to explain the business cycle. (f) The sixth
mode is relational perception. Disciplines such as

logic and mathematics provide the conceptual machinery
needed to allow formal understanding and the perception
of abstract form, for example, . seeing change as

functional variation, recognizing a reductio ad

absurdum in conversation. (g) The seventh mode 1is
primary perception. The discursive arts such as

literature, poetry and theatre, use words to create
the most far reaching portraits of human experience,
for example, Paul Scott’s conception of imperialism in
retreat in The Raj Quartet, Melville’s depiction of New
England Puritanism in its relation to 1life in Moby
Dick. (h) The eighth mode is primal perception. The
nondiscursive arts such as dance, music, painting and
sculpture provide the forms which allow the renewed,
primal peréeption of appearance, for example, a Van
Gogh starry sky, a Picasso face. (i) The ninth mode is
operational perception. Through the use of technical
concepts it becomes possible to see how mechanisms

work, how to make new ones, how to fix old ones, for
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example, how to fix a carburetor and how to repair a
flat tire.

Table 1 is Brauner’s summary of the nine modes of

.perception. For each mode of perception the sources
and types of concepts used are given. These concepts
generate a certain type of perception.' Brauner

includes an example of each_ type of perception.
Mathematics is part of relational perception. The
relational propositions to which Brauner refers are the
axioms, theorems and proofs of the various branches of
mathematics (arithmetic, algebra, geometry, analysis,
probability and statistics). An example of relational
perception might be to see a mathematical function in a
set of collected, raw data or to see an algebraic
equation in a problem expressed in ordinary language.
Acquiring the mathematical mode of perception opens up
for the learner a new way of seeing the world and
promotes a genuine understanding of a traditionally
obscure discipline. Morris Kline’s remarks here are
most relevant.

The meaning - and purpose of almost all of

mathematics do not 1lie in the series of

logically related collections of symbols but

in what these collections have to tell us

about our world.
(Kline, 1953, p.1l5)
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Table 1 :
Brauner’s outline of the (nine) modes of perception.
(Brauner, 1986, p.13)
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Education rooted in perception

The central idea of concepts generating perception
creates an image of the learner not as a blank sheet to
be trained in stimulus response patterns but as a
rational, emefging perceiver, actively engaged in
managing various conceptual systems. The higher level
cognitive tasks undertaken in eduéation take place in a
conceptual ecosystem with various possible perceptions
competing for acceptance? A conceptual survival of the
fittest determines which perceptions survive and_bear
fruit and which wither on the vine. Learning is not
just a matter of making the correct response but of
balancing and selecting from possible conceptual
alternatives. | Perceptivism aims at developing
rationality, a preparedness to respond to novelty with
open, but not empty, minds. The world is always novel.
The student must be prepared to use existing knowledge
to respond in informed ways to new problems of 1life.
The goal of education then is not simple mastery of
facts or concepts but facility in applying knowledge to
understand the world. Brauner states:

Instead of teaching it [curriculum] for

concept mastery alone and thereby limiting it

to the top twenty percent in academic
ability, . an important <change has Dbeen
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introduced. Perceptivism initiates the
search for content on the basis of the
perception that is desired and then insists
that the concepts needed to produce it are
taught in such a way that the learner
actually achieves the sought for perception.
(Brauner, 1987, p.27)

Brauner claims that the majority of secondary school
students find concept mastery too abstract. In
mathematics especially then, the meaningfulness and
applicability of the learning will be minimal because
the best the students can do is to perform the rituals
by rote, without really understanding. By basing
curriculum and instruction on perception the problem
can be attenuated. i —
The way to make teaching less abstract, while
preserving the integrity of the concepts
involved, is to make sure that the student
has the actual perception that the concepts
fosters. Indeed having the relevant
perception is so important if the range and
effectiveness of academic teaching are to be
extended = to the entire student body,
Perceptivism would reconstruct the entire
curriculum around preferred perceptions.
(Brauner, 1987, pp.12-13)
Perceptivism tries to balance the need to respect the
individual interests and understandings of the student
with the need to expand understanding by developing the

publicly available modes of perception. Relying on the

spontaneous interests and abilities of the student is
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blind, it leaves the student uneducated, unempowered.
Focusing on concept mastery without respecting the
interests and abilities of the learner is empty because
the concepts wither on the vine, when unused. and
unrelated to the experience of the learner. What has
previously made the balance so difficult to achieve in
mathematics  education was the assumed lengthy
involvement in technical calculation, with many
students never emerging from the computational jungle.
| The computer makes the balance advocated by
Perceptivism more attainable.

One of the motivations for writing this thesis 1is
to provide an antidote to the current educational trend
toward narrow, pedantic, academic specialization. In
education this results in a fragmented approach to
knowledge. Perceptivism is helpful in addressing the
following issues:

(1) Ainformation organization, by discussing modes of

perception that interact to interpret experience, and
so to shape action (Table 1).

(i1i) knowledgé synthesis, by discussing relationships
of bodies of knowledge, that knowledge be not just a
grab bag of isolated facts but a relevant system of

information that informs life.
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(1ii) application of knowledge, by stressing the

organization of knowledge for use i.e. for perception.
This brings knowledge out of passive retention and into
use (Figure 1).

(iv) using knowledge to bring about an informed,

rational view of self and world. This rationality is

based not on intensive, exclusive absorption with one
aspect- of human knowledge but an extensive, ihclusive
repertoire of perceptual possibilities and their
interaction.
Ways of seeing

According to Perceptivism, perception is mediated
by (nine) basic conceptual schemes. The schemes make
possible different ways of seeing the world. The
schemes form a conceptual ecosystem with all the
analogous interactions of a biological ecosystem.
Higher learning and the construction of meaning take
place in a dynamic perceptual environment,
characterized by conceptual conflict, competition and
completion.

What does it mean to perceive the world in
different ways? Is this possible? Perceptivism claims
it is. The following examples are offered to render

the suggestion plausible.
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What is a sunset? Common sense has it that the
Sun drops in the sky and disappears below the
horizon. But science tells us that a sunset is
the Earth, with the observer attached, rotating
around to. obscure the observer’s view of the Sun.
This 1s the same event perceived in different
ways, the latter being a nonstandard perception.
The moon, 1is 1t a perfect spherical smooth
heavenly globe or a planetary rock-like body? The
use of the telescope shows the moon to be
mountainous and cratered and not a perfect
heavenly globe as it might be more romantically
perceived using the naked eye. The controversy
surrounding‘Galileo's initial observations using
the telescope attest to the social turmoil new
perceptions can initiate.

Medieval art depicted man without physiological
detail. Da Vinci and Michelangelo painted with
attention to such detail. Whether the human body
is looked at only on the surface or also at the
level of "the bone beneath the skin" generates the
differences in the human body as perceived in
Giotto’s Lamenfation over Christ as opposed to

Michelangelo’s Creation of Man.



31

4, What 1is a table? It appears initially to be a
stable, impenetrable_object. But zoom in on the
"surface of the table with an electron microscope
and it 1s mostly empty space with some atoms
spreéd out. at regular intervals. The electron
microscope makes possible the achievement of a
nonstandard perception of the table.

5. Rather than looking at the objects in the sky aﬁ
night, 1look at the 1light in the sky. See it
reflecting, blurring, diffusing. See the darkness
next to the light. The van Gogh "starry sky" is
perceivable. This is a different perception of a
commonly observed phenomena. Each of the examples
one to five show how to pay attention to and
package signals and impressions in different ways
using concepts. This theoretical principle is a
cornerstone of Perceptivism’s view of being
educated.

Let the writer summarize with an analogy. This
analogy 1is with reference to the Hofstadter (1979)
diagram (Figure 2). We cannot perceive reality
directiy, unmediated by selection and processing. We
can only perceive projections of reality, each of which

contain only partial information. It is as if we can
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Figure 2. Hofstadter’s depiction of Complementarity:
seeing in different ways (Hofstadter, 1979,
p.1)
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only see the walls on Hofstadter’s photograph, while
reality remains the directly unperceivable generator of
the projections. Only by paying attention to all the
. 3
information contained in the various projections, is it
possible to get an adequate conception of reality.
Herbert Feigl’s comment should be taken seriously.

There are not two different sorts of reality,

but there are two ways of providing a

conceptual framework for its description. 1In

fact, at least so it seems to me, there are a

great many "perspectives"™ or frames - the

extremes being the purely egocentric as the

"lower limit" and the completely physical

account as the "upper limit". In between are

the many halfway (or part way) houses of the

possible manifest images.

(Feigl, 1967, p. 145)

There is nothing magical about seven, eight or
nine modes of perception. Progress depends, in part,
on the development of more conceptual schemes. Indeed
when the writer began working with Brauner in September
1987, the latter wrote about seven modes of perception.
He has added explicit mention of two additional modes,
the primal and the operational. The primal concerns
nondiscursive art such as painting, sculpture and
music. The operational was first brought up in

discussion in January 1988. It reflects a mode of

perception, important always, but especially since the
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Industrial Revolution, reflecting a knowledge of the
mechanisms by which technology works. It depends on an
operational abstraction, from experience, of the
working principles of a piece of technology, social or
physical (e.g. how a clock works, how to fix a bicyCle,
what to look for when your car doesn’t work). But the
important message in all of this is not the number of
modes but the principle of the plasticity of human
understanding behind the specifics.
Perceptivism and mathematics education

In a compact form, Chapter II was written to
summarize Perceptivism in as an applicable form as
possible. Students can be equipped with the modes of
perception which will allow them to see the world the
way an educated person  does. The trouble,
traditionally, with the realization of this program in
mathematics has been computational complexity. The
personal computer now lessens this problem and so opens
up the possibility of more relevant, meaningful
mathematics for more students.

It is only through the development and use of the
best conceptual repertoire possible that an individual
can be meaningfully called educated (as opposed to

schooled). The theoretical structures used by the
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individual determine what is seen and how it is seen.
A mathematics education that stops at mere fact or
concept mastery and does not reach the level of
perception is just schooling. A mathematics education
preoccupied with its own liturgy that fails to locate
itself within the conceptual ecology of its time 1is
doomed to isolation and irrelevance. A mathematics
education that wants to strive towards the goals of a
perceptivist education needs the computer to overcome
the computational difficulties inherent in the required
applied, conceptual, interdisciplinary approcach to
mathematics Perceptivism implies. It is only within
this type of information age framework that we can
respond to Steen’s challenge.

The paradox of our times is that as

mathematics becomes increasingly powerful,

only the powerful seem to benefit from it.

The ability to think mathematically--broadly

interpreted--is absolutely crucial to

advancement in virtually every career

Confidence in dealing with data, skepticism

in analyzing arguments, persistence in

penetrating complex problems, and literacy,

in communicating about technical matters --

these are the enabling arts offered by the

new mathematical sciences. Whatever else the

MAA" may do in the remaining years of this
century, ‘it must work to ensure that these

'The Mathematical Association of America
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new liberating, mathematical arts are made
available to all students.
(Steen, 1987, p. 6)

Mathematiﬁs must do better because a mathematical
education is no longer a luxury. In an increasingly
technological, competitive world, quantitative,
mathematical literacy is fast becoming essential. And
the luxury of catering to the abilities of ten to
twenty percent of the populatién is gone. Modern
social conditions demand the retention of most of the
population in school mathematics for twelve years. The
technological progress in society at large, in the form
especially of calculators and computers is providing
both problems and hints of solutions. But without an
overall -working philosophy we will Jjust drift like a
ship without a rudder somehow thinking the computer

will, of itself, solve our problems in mathematics

education.
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CHAPTER III
A BRIEF DESCRIPTION. OF CONSTRUCTIVISM

Constructivism is a theory of knowledge
acquisition. It would appear to be compatible with the
philosophy of education developed by Brauner (1988)
called Perceptivism. Both of these perspéctives
provide a coherent framework for this thesis. This
chapter is concerned with three central claims of most
versions of Constructivism. The first claim is that
all knowledge is actively constructed rather than
passively received. The second claim is that all
experience is theory laden so that past experience and
notions, in Brauner’s (1988) sense, are important to
meaningful learning. The third claim is that alternate
conceptions of things are endemic in the construction
of meaning. An integral part of higher learning then
is sorting out the tangle of conceptions that compete
for attention.
Knowledge is actively constructed

It may be tempting to think of the learner as
something of a blank sheet ready to be written on. If.
a clear presentétion of new ideas is given, with
practise and reward to follow, learning seems probable.

Somehow the rational activity of the learner is left
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out. Simplified behaviorism seems to imply that a

stimulus-response model works and that given the right

empirical conditions learning is inevitable.

Strike argues:

Kenneth

Behaviourists have interpreted traditicnal
empiricism in such a way that epistemology is
seen as unrelated to learning. Learning in

turn is not seen as a rational activity.

It

is something that happens to people under

proper empirical conditions.
(Strike, 1982, p.51)

But the working out of understanding by the learner is

critical in Constructivism. The constructivist

principle is implicit in Dewey for example.

No thought, no idea, can possibly be conveyed

as an idea from one person to another.

When

it is told, it is to be one to whom it is
told, another fact, not an idea. ... Only by
wrestling with the conditions of the problem
at first hand, seeking and finding his own

way out, does he think.
(Dewey, 1974, p.98)

Piaget was also a constructivist. He thought that most

contemporary teaching of mathematics and science was

inappropriate insofar as it rested on the simple

transmission of knowledge rather than the development

of intellectual independence.

To understand is to discover ... the goal of
intellectual education is not to know how to
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repeat or retain ready-made truths. It is in
learning to master the truth by oneself at
the risk of losing a lot of time and of going
through all the roundabout ways that are
inherent in real activity.

(Piaget, 1973, p.218)

This type of a simplified transmission account of
learning seems to be implicit in much of what goes on
in mathematics classrooms. The NCTM Standards Document

for example, claims that

In most classrooms, the conception of
learning 1is that students are passive
absorbers of information, storing it in
easily retrievable fragments as a result of
repeated practise and reinforcement.
Research findings from psychology indicate
that learning does not occur by passive
absorption (Resnick, 1986). Instead,
individuals approach each new task with prior
knowledge, assimilate new information and
construct their own new meanings. A

(NCTM, 1989, p.28)

Similarly, Howson argues that many secondary classrooms

operate on the basis of simple transmission.

One is 1likely to find a stereotyped form of
teaching in the bulk of secondary schools
classrooms, a form which relies heavily on
the textbook and the traditional pattern of

exposition-examples-exercises. Apparatus 1is
rarely used, and class teaching is still the
norm.

(Howson, 1985, p.75)
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As a result much of what is learned is simply forgotten
because it is not believed, but simply memorized and
regurgitated. This cannot be regarded as a fault of
the students - we must accept this as a basic flaw in
course design and delivery.

What constructivists advocate is a central concern
with the learner as constructor of meaning. Basic
abilities to handle, process and apply information to
construct meaning are more important than isolated
specific performances. Lochhead writes:

What I see as critical to the new cognitive

science 1is the recognition that knowledge is

not an entity which can-be simply transferred

from those who have to those who don’t

Knowledge is something which each individual

learner must construct for and by himself.

This view of knowledge as an individual

construction ... is usually referred to as

constructivism,
(Lochhead, 1985, p.14)

All experience is theory laden

All experience is theory laden so that secondary
students come to class with a répertoire of experiences
and concepts. Many of these may be private,
subjective, undeveloped notions in Brauner’s (1988)
sense. For them their subjective constructions of
reality function as viable models. The learner can

describe, understand and adapt to the world only
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through these existing conceptions. Because they are
capable of producing concepts, relations and routines,
learners can actively search for new regularities and
meanings with which to model reality. But the
descriptive means and models used in these subjective
constructions are not totally arbitrary or unlimited
because of the unifying bonds of culture and language

the learner shares with others. New knowledge ié
constituted and arises within a framework in which
there are three systems of constraints. First, there

are the subjective structures of personal, intuitive

knowledge. Second, there is the common web of public
culture and language. Third, there . are the
constraining limits of objective reality. Learning

then becomes a renegotiation of the terms of reference
for constructing meaning, within the 1limits of these
constraints. The parallels with Brauner’s Perceptivism
are obvious, Education becomes a process of creating
in the young an appreciation of the fact

that many worlds are possible, that

meaning and reality are created and not
discovered, that negotiation is the art of

constructing new meanings by which
individuals can regulate their relations with
each other. It will not, I think, be an

image of human development that locates all
of the sources of change inside the
individual, the sole child. For if we have
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learned anything from the dark passage in
history through which we are now moving it is
that man, surely, is not ‘in island, entire
of itself’ but a part of the culture that he
inherits and then recreates. The power to
recreate reality, to reinvent culture, we
will come to recognize, is where a theory of
development must begin this discussion of
mind.
(Bruner, 1986, p.149)

The role of'alternate conceptions

Within the constructivist paradigm education can
be viewed as a process designed to transform a novice
to become more of an expert in a particular knowledge
domain. Referring back to Brauner’s orientation to the
world the learner qust pe able to sort out the noise
from the message. Which signals are to be attended to,
how are the signals and impressions to be packaged to
construct meaning? Available are a competing swarm of
notions and concepts. Because the expert is in
possession of reliable theories he can often select and
use the most effective conceptual scheme in the
situation and can often understand a problematic
situation quickly. The novice may fumble and fail, not
knowing what to pay attention to. Simple, infoimal
understandings that result from perceptions generated
by relevant concepts are at the core of an expert’s

experience of mathematics and science. In contrast,
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novices are likely to use rote algorithms without the
guidance of the perceptions generated by more powerful
concepts and theories. When information can be managed
with simple, informal, intuitive understandings this
could be called expert processing because there 1is
likely to be quick, intuitive access to relevant formal
- procedures. When random rote procedures are all that’s
available, with no way to sort out the relevant from
irrelevant conceptions, this could be called remedial
processing because access to powerful, formal
procedures 1is chaotic. Education’s efforts must.focus
on expert processing.

Constructivism'focusses attention on the role of
education in creating expert processing, as outlined in
the previous paragraph. Learners must have a sense
that reliable knowledge of significant worth has been
passed on to them. They must have a sense 0f ownership
of various ways of looking at the world. They must
have a sense that an educated response to life matters.
They can do this only if they are willing and able to
think and act independently, choosing from a repertoire
of modes of perceptions, according to what is sensible
and reasonable based on the concepts and notions they

currently hold. This would represent a rational
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response with an open but not empty mind. A child
accustomed to rote acceptance of rules and procedures
of faith will have allowed memory to take priority over
reasoning power and so would at best be capable of only
an uneducated response based on some private notions.

Constructivism holds that inquiry and learning
occur against a background of the learner’s current
concepts. Cufrent ideas will be interacting with new,
often incompatible, ideas. Learning involves Jjuggling
various plausible alternate ways of looking at things.
Becoming educated involves an ongoing rational
reorganization and expansion of the learner’s active
goncéptual repertoire. This is a proceés of
accommodation that requires the active participation of
the learner, that needs to take account of past
experience and that needs to force alternate
conceptions to compete for survival. Posner, Strike,
Hewson & Gertzog (1982) write about the processes of
acéommodating and assimilating rival views of things
and the struggle to construct meaningful, applicable

understanding that this involves.

Accommodation may ... have to wait until some
unfruitful attempts at assimilation are
worked through. It rarely seems

characterized by either a flash of insight,
in which old ideas fall away to be replaced
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by new visions, or as a steady 1logical
progression from one commitment to another.
Rather, it involves much fumbling about, many
false starts and mistakes, and frequent
reversals of direction.
(Posner, Strike, Hewson & Gertzog, 1982, p.223)
In chapters II and III the writer has attempted to
give a brief description of Perceptivism and
Construction as theories. These theories will be used
later to shed light on the central problem of this
paper -- can the computer be used to improve the
secondary school mathematics curriculum and
instruction? Chapters IV and V to follow will attempt
to interpret Perceptivism and Constructivism, on the
basis of the descriptions given, in such a way as to
make them relevant to the thesis problem, the

educational role of the computer in improving

mathematics education.
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CHAPTER IV
AN INTERPRETATION OF PERCEPTIVISM

The specific purpose of this chapter is to relate
a certain theoretical perspective in education to a
particular problem in “mathematics education. The
theoretical perspective is called Perceptivism-
Constructivism. It has beeﬁ described in Chapters II
and III. The problem in mathematics education is that
a large percentage of the student population is getting
an inadequate mathematics education. In particular,
meaningful mathematics is lacking. Too many students
seem to be 3just "going through the motions" getting
schooled but not educated. Realistic applications are
more important than ever in an advanced technological
society yet are poorly understood by students (IAEP,
1988, pp.10-35). Against this background the enormous
potential of the computer seems to be wasted because
the computer is not being effectively utilized. These
problems have been detailed in Chapter I. Chapter IV
and V will interpret Perceptivism and Constructivism as
they may bear on practise. Chapter VI will detail a
calculus unit designed by the author, using
perceptivist- constructivist principles, and delivered

at Templeton Secondary in Vancouver, Chapter VII will
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report on field tests. of the <calculus unit and
interpret the results. Chapter VIII wili report
conclusions and make recommendations.
The substantive role of the computer

The computer has so far been treated as an anomaly
in mathematics education because there has been no
guiding philosophy or theory of knowledge'acquisition
to inform its effective use. There is the temptation
to think the technology will soclve problems 1in
education by itself. Perceptivism-Constructivism 1is
the information age philosophy of mathematics education
needed to advance mathematics education in the computer
age. It provides the opportunity, to use an industrial
analogy, to free students from digging ditches by hand
so they may be freed to construct sky scrapers. By
taking over the manipulative tasks, the computer frees
students to become actively engaged in the
understanding, application and interpretation of the
major mathematical concepts that shape quantitative
human percepti@n in the information age. Fey énd Good
argue:

Computing offers an opportunity to turn the

secondary school <curriculum on its head.

Instead of meeting applications as a reward
for years of preparation, students can begin
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with the most natural and motivating aspect
of mathematics -- its applications. .
(Fey & Gooed, 1985, p.49)

Years of preoccupation with low level calculation may
not be needed. The computer can take care of much of
this. Ralston claims:

No sound argument can be adduced to support a

thesis that claims that high school students

must be very skillful at polynomial algebra,

trigonometric identities, the solution of

linear or quadratic systems of equations or

any of the myriad manipulative tasks that are

part of the current high school mathematics

curriculum.

' (Ralston, 1985, p.37)

What I am suggesting 1s that we '"plug the
computer" into the conceptual processing unit in
Brauner’s model (see Figures 1 and 3). Science has
been able, as shown in Figure 3, to change the way we
see the world because, in part, it has extended the
fange of impulses we can detect (e.g. via telescopes,
radar, electron microscopes). In an analogous manner
the computer can extend the possibilities for
information processing through concept wutilization.
The range of useful mathematical procedures made
available to all through the computer can change the

way we see the world. Quantitative, mathematical

literacy can become an active mode of perception as

«
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Figure 3. Computer used to amplify power of concepts.
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previously laborious, unmanageable calculation 1is
automated.

With the computer, two principles of Perceptivism
seem more realizable. First, it should be possible for
instruction to be aimed at actual percepﬁion and use.
Mathematics should not start and end with itself but
must contribute immediately to our understanding of the
world and how we perceive it. With the computer,
application need not be delayed. Second, mathematics
can now be structured to involve the synthesis of
student knowledge rather than its specialization,
fragmentation and isolation. Students can understand
the world using the dynamic interactions of cohceptual
systems managed in part by computers. Students can
learn about the applicability, limits and
interconnections of various ways of percsiving the
world (refer to Figure 3).
| Trajectories - using the computer to do mathematics

Consider the following illustration of these two
principles in action in a computer learning activity
for students (refer to Figure 4). Trajectories provide
an opportunity to display the use of gquadratic and
trigonometric functions in modelling real world

phenomena. Actual cases could be demonstrated or
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appealed to; cannon balls, footballs, rocks, arrows,

shot puts, streams of water. In the two dimensional
case the function which models the trajectory is given

below, where g is the gravitational constant, V the
velocity of the projectile and 6 the projection angle

(Kraushaar, 1982, pp.117-120).

y = x tan (8) - gx* (1 + tan?(0))

2V?

Get the students to plot some trajectories, as below.
The functions listed below yield the trajectories in

Figure 4.
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Functions: )
X*,27-((9.8x%) /2000) (1+.073)
x*.58=((9.8x% /2000) (1+.340)
x*1,0~((9.8%% /2000) (1+1.00)
X*1.7-((9.8%% /2000) (1+3.00)
x*11-((9.8x%) /2000) (1+130.)
(10000-%%) /200

nnnnnon

K

The following questions illustrate how students can be

encouraged to reflect oh their computer activity.

i) Which angle causes the projectile to go furthest?

shortest distance? ... Why?

ii). Which angle causes the projectile to go half the
maximum distance? ‘

iii) What happens to the projectile if 6 = 90?2 ... 8 =
02 ... explain

iv) Explain what happens. if-g changes, for example,
from 9.8 m/sec? on Earth to 1.6 m/sec? on the Moon

to 0 m/sec? in outer space.

V) Explain and document what happens as v increases,
® and g constant. Give examples from everyday
experience, for example, playing football,

squirting friends with a hose.

Notice in Figure 5 how points on the x-axis can be
hit with two trajectories. Get students to explore how
the angles for the two trajectories are related. Have

them develop a theory of the "lob". Ask them to apply



S3

——
: s hY
4 AS
. ’vl }/f'—-'—‘\
P L~

» - Y,

."j / - "l' -\\\n.
: g e \ S,
: ") // S \\

¢ ,r" . A N
lJ (l' \'| 4\‘.
'l‘ //: ,l ."\,
N L N\
"l.r/ / *' \ \n.'.

&:‘i ....... bo ot 8 4 s o.ﬁ.c—.h‘.‘-..o- ...... R 1......:~.-.-.:.;.~‘. ......... ® el a e
2-AXIS: B8...1148 _STEP S
Y-AXIS: O6...68 STEP 7

Figure 5. Lob vs. Clothesline Trajectory

the theory to ordinary experiencé, for example,
throwing passes in football against man-to-man as
opposed to zone defense, squirting a friend with water

while he’s standing behind a wall. Figure 5 uses these

functions:
y = x*4.70-((9.8x% /2000) (1+22.11)
y = x*0.21-((9.8x% /2000) (1+00.05)
y = x*1.96-((9.8x% /2000) (1+03.85)
y = x*0.51~((9.8x% /2000) (1+00.26)

Extension of the concept - the trajectory envelope

By appealing to the idea of targets within range
and targets out of range for a certain v, students can

develop and explore the idea of a trajectory envelope.
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For given v, and g the equation of the envelope 1is;

2 2
= (Yo _y 2
y = ( - ) X
2
2 (=)
Function:

vy = (10000-x%) /200

» e ‘.a.—.pg---2-)1-)-2-6-6-.aoo-n.o-u-ov..-o."o.-n...u..c..- .. .
X:gﬁ?g? 8.?.110 STEP S
Y-AXIS: 9...60 STEP S

Figure 6. The envelope of trajectories

Figure 6 shows the envelope for a trajectory with
V,’=1000 and g=10. The envelope curve divides the
target space into three reéions; |
i) points outside the curve which cannot be hit with

the given v,
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ii) points on the curve which can be hit at only one
angle,

iii) points inside the curve which can be hit with two

angles.
Let students. explore, documeﬁt and discuss the
possibilities. The computer takes care of the
computational chores leaving the tasks of

interpretation, analysis and synthesis up to the
student. Computer managed calculation facilitates
concept development (refer to Figure 3).

The business of hitting a target in the target

space, with a given V, involves finding the angle 0.

This can be done using the formula,

L

Figure 7. Hits Inside the Envelope
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- -1 2 _ w2 _
8 = tan In tWJ;m X Zle

X

where 1, = (Vo?)/g, the range factor for the
projectile.

Figure 7 show a point being ‘hit with two different
trajectories (see Kraushaar, 1982, pp.117-120). Have
students hit some points with teacher chosen
coordinates. They will find, gradually of course, that
for éome (x,y) the discriminant will be negative so
there will be no angle (i.e. no solution), for some
(x,y) the discriminant will be zero so there is just
one solution (i.e. one angle) and for some (x,y) the
discriminant will be positive so there will be <two
solutions (i.e. two angles). For example, Figure 38
shows two points inside the trajectory envelope each of

which can be hit with two different trajectories.

Functions:

y = x*1.00-((9.8x% /2000) (1+01.00)
y = x*1.43-((9.8x%) /2000) (1+02.04)
y = x*3.27-((9.8x% /2000) (1+10.69)
y = (10000-x2)/200

For another example, assume that the point (55,30) is
to be hit. Since it is inside the envelope, expect two

angles. Substituting them,



57

Figure 8. Hitting Specific Locations Inside the

Envelope

8 = tan™| 100 t‘\Jloo2 (55)2 = 2 (100) (30)
: . 55

6 = 68°13’

0 = 50°24’

If a point on the =x—-axis is chosen two angles are

obtained. Consider (50,0),

0 = tan'l[lOO +4/(100)2 = 502 - 2(100) (0) }

35
8 = 75°20'
6 = 14°40/

If (47,40) on the envelope

discriminant becomes zero so only one

is chosen, the

angle is obtained
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@
L]

tan"[ 100 i‘\/(lOO)z - (47)% - 2(100) 40 :[
47

8 = 65°4

If (60,60) outside the envelope is chosen, no angle is

obtained because the discriminant is less than zero.

60

= tan™ 100 iv-5432.89
60 .

9 = tan™ [ 100 +4/(100)% - (60)% - 2(100) 60 :l

10

The trajectory exercise illustrates three
important points about the perceptivist use of the
computer in mathematics education. First, by taking
care ©of elaborate and extensive calculation the
computer allows perception of trajectories. Second,
actual views of objects moving, stop motion photographs
and computer simulations can be compared so the student
can actually believe what is happening. Third,
interaction of <conceptual systems 1s encouraged.
Ordinary language descriptions of football passes,
squirting with water~and cannon shots can be compared
with concepts from physics such as velocities,
acceleration due to gravity, angle bf launch, range,
height and these in turn can be related to quadratié

functions, trigonometric functions, coordinates, curves



59
from mathematics. This would promote conceptual
discrimination and help assimilation and accommodation
rather than leaving ideas in isoclation (to wither and
die from lack of use). Brauner argues:

Whether it. 1is in the sciences, the

humanities, the social sciences or the

logical sciences, secondary abstractions aim

to generate an uncommon mode of perception

that 1is sometimes at odds with ordinary

perception. As a result ... education has a

strong responsibility to provide the kind of

help that makes the unique mode of perception

aimed at a genuine and likely outcome.

(Brauner, 1988, p.24)
The trajectory project offers such an opportunity to
learn new ideas in the context of a "genuine and likely
outcome, "

The author wishes to provide the reader with more
examples of " a mathematics education rooted in
perception, What the reader should see operating
'throughout is the 1learning resulting in actual
perception, the computer plugged into the conceptual
system to facilitate information processing (Figure 3)
and the mathematics operating across some of the nine

modes of ©perception (Table 1) in an integrating

fashion.
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Perceptivist-constructivist modelling

The acquisition of the concept of a function, and
the ability to use it, is one of the central tasks in
secondary mathematics. It is the basis of real world
modelling because it bridges the gap between reality
and experience. It does this Dbecause the cohcept
exists at five levels; as a set of ordered pairs, as a
table of wvalues (data), as a graph, as a rule
(equation) and as a sentence in English. The main goal
of present grade eleven and twelve secondary
mathematics is to build a working knowledge of linear,
quadratic polynomial, exponential and logarithmic and
trigonometric functions.

Perceptionist-constructivist modelling involves
four main components; a real world problem, data, a
mathematical model and predictions (See Figure 9).
Reality gives off impulses that may be selectively
attended to with the -use of concepts. In the case of
mathematics these concepts would be those such as
number, operation, variable, equation, curve, function,
slope, integral; These concepts shape our perception
of the world. Data can be collected from experiences
and organized in tables and graphs. A model can then

be constructed and often a rule devised. The (model)
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rule will in turn influence the way we see the world.
Predictions can be made with the model and tested
against real data. The interaction between reality and
model is consistently there. Reality, through data,
puts constraints in our model. Our models and concepts
shape the way we perceive the world: For example, the
periodic variation of (a) properties of chemical
elements (Figure 10), (b) rise and fall of
civilizations (Figure 11) (c) impulses from heartbeat
(Figure 12) and (d) occurrence of sunspots (Figure 13).
The concept of periodicity is critical to seeing what’s
occurring in these various diverse phenomena.

Traditional mathematics education often gets
trapped in the realm of the model, forgetting the other
three realms and their interaction. What results is an
intellectually sterile mathematics. The Perceptivist-
constructivist alternative 1is to proceed quickly to
applications so that the full, accurate picture can
begin to take shape in the student. What makes this
possible now, whereas it was Jjust a pipe dréam in the
past, 1is the computing power of our information age

personal computers, as Fey and Good argue.
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For a given function f(x), find--

1. f(x) for x = a;

2. X so that f(x) = a;

3 ¥ so that maximum or minimum values of
f(x) occur;

the rate of change in f near x = a;

the average value of f over the interval
(a, b) '

For nearly every function of interest,
computer utilities make all five questions
accessible in some intellectually honest and
mathematically powerful form to students who
have not followed the conventional regimen of
skill development.

o

(Fey & Good, 1985, p. 48)

Computer assisted exploration of the exponential

function

The exponential function, and its inverse the
logarithmic function, can be discussed with regard to
variocus applications in business, ecology, medicine and
science. The functions model such phenomena as
compound interest, forgetting, radiocactive decay, drug
absorption, probability, population growth and
inflation. Graphs, tables of values and solutions to
equations are available at the push of a button. The
student’s task shifts to the mastery and application of
the concepts that weld together the experience and the
model. The perceptivist notion of the educated person
becomes approachable as mathematics shifts from number
cfunching to the informed application of quantitative

reasoning to real world problems.
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Following are three examples of the use of the
exponential function in situations students are likely
to be able to perceive as relevant to their 1lives:
(a) population growth, (b) inflation, and (c¢) the
compounding growth of long term investments. The first
set of graphs (Figure 14), shows the effect of 100
years of population growth starting at our present
Earth population of 5 billion and projecting 1, 2, 3-
and 4 percent annual population growth rates. Carrying
capacity 1is arbitrarily introduced as 30 billion.
Useful discussions and exercises could be developed
around issues such as:
1. What does the growth rate figure mean? How‘might
it be determined? How is Canada doing in this.regard?
2. What happens if we exceed the carrying capacity of
the Earth? What would the graph look like? What would
this mean in human terms?
3. What would a successful solution to the
"population problem"” look like graphically?
Graphically speaking what 1is the "population problem"?
Do you think there is a problem or is it all just so

much worrying about nothing?
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Functicns:

y=S#(1+,02)tx
y=S%#(1+,.03)2™x
y=S#(1+,.04)1x
y=S#(1+,0121x

y=30
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X-AXIsS: B8...1860 STEP e

Y-AaXIS: A,,.180 STEP >

Figure 14. Exponential Function and Population Growth

(Smaller growth rate corresponds to lower
curve)

Perceptivism, by way of its orientation to the
world and to being educated, is suggesting what to do.
Get beyond mere fact or concept mastery to actual
perception of the world. Constructivism is showing how
to do it. - Exploit the computer to allow active
cdnstruction by the learner. The computer is making

the information processing  practicable. The student
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uses the calcu;ating power of the computer to get
beyond the technical details in order to attain concept
mastery, understanding through use and actual
perception.

The second group of graphs, (Figure 15), shows the
effect of inflation on a $2.SO hamburger over the next
100 years at 3, 5, 10 and 15 percent annual inflation.
A future reference point of $50 for the burger is
included. Discussions and questions could focus on the
effects of inflation on student’s standard of 1living
over the next 50 years of their lives (their income
producing years). Financial planning strategies could
be discussed and even attempted by students. A lot of
the algebra and contrived word problems in senior
mathematics classes are useful for future scientists
and mathematicians and to act as a filter devices for
higher education institutions Dbut serve simply to
mystify and alienate the vast majority of students.
Computer assisted mathematics offers an opportunity to
make a useful and relevant mathematics education
available to <considerably more students than at
present,

The third set of graphs, (Figure 16), illustrates

compound amount of an investment. Emergency, short
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Functions:

y=S2.80%(1+.03) Tx

y=2.80%(1+,03)tx

y=2.350%(1+,10)1Tx R

y=2.30%(1+.15)Tx

y=S0

: l" II" .o'.{

" :" 4.:""

/ f

:- !| l' ’

{ | '

' { {

_ f o # -
i l" 4 ! / '/
:.' ‘f i /l‘ ’ .-/.f"‘

'. ? / o ’ o — ‘

!. 4 - - ...—--"'"/

E' .~/ 4 7 i _-/ —'-'-—--

X—-AXIS: 8...108 STEP b

Y-AXIs: 6...189 STEP S

Figure 15. Exponential Function and Inflation

(smaller inflation rate corresponds to
lower curve)
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term and 1long term savings could be discussed.

Functions:
y=ES#(1+.05) 1y

f ,l" ,/ y=S#(1+,10) tu
: f J K y=S# (1+,15) 1ty
: ,’I .l' s y=30
{ | / S
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vY-AXIS: 6...16868 STEP S

Figure 16. Exponential Function and Compound Interest

Interpolation could be used to find the value of the
investment at various times. The writer’s experience
in the classroom indicates that even students of
limited ability can make progress with the ideas here
if the computer relieves them of the burden of the
actual computations. Conceptual development in
mathematics can then occur and so it becomes possible
for the student to develop an informed, educated,
quantitative understanding of their experiences of the
world. By permitting mathematics to function simply as

a filter mechanism we fail to educate by simple
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default. In failing to exploit the educational
potential of the computer in mathematics education we

are leaving uneducated the 70% filtered out.

Functions as models of reality

If mathematics education is to achieve a measure
of intellectual respectability within a perceptivist
philosophy o¢of education it must show it is more than -
some esoteric tautology. It can do this by showing the
student now that it can help us to see the world in new
and wuseful ways. The computer seems to be an
indispensable tool needed to overcome the computational
difficulties encountered in applying mathematical
functions to model real world phenomena (see Figure 3).
This is not to say there 1is no place for the
transmission of information. But students must quickly
be given the :esponsibility of constructing meaning
from the information, explaining by relating it to
previous knowledge, orienting new knowledgé with
respect to o0ld and integrating competing ways of
looking at things so that they can achieve the desired
perceptions. The essential facilitator in this process

is the computer. The NCTM standards documents argues:
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Computer technology providesA tools,

especially spreadsheets and graphing

utilities, that make the study of function

concepts and their applications accessible to

all students in grades 9-12. This technology

makes it possible for students to observe the

behaviour o¢f many types of functions,

including direct and inverse variation,

general polynomial, radical, step,

exponential, logarithmic, and sinusoidal.

All students should use a graphing utility to

investigate how the graph of y = af (bx + ¢)

+ d is related to the graph of y = f£(x) for

various changes of the parameters a, b, ¢,

and d.

(NCTM, 1989, p. 155)

The Bouncing Ball

"Bouncing ball" details the development of a model
of bouncing ball released from above the ground and
allowed to Dbounce. A combination of exponential,
absolute value and cosine functions is found to model
the damped motions of the bouncing ball reaéonablyA
well. Opportunities to allow for different elasticity
for the ball, different gravity and variable damping
effect can be explored by students. The performance of
an actual ball (e.g. lacrosse) could then be modelled
and compared with the performance of a different ball
(e.g. tennis).

The bouncing ball needs three functions to model
it:

1. the sine or cosine to get up and down,
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2. absolute value to do away with negative values,
3. exponential to get the damping effect.

After playing with exploratory exercises such as
those following (Figures 17 and 18), students would be
in a position to model the behavior of specific
bouncihg balls, with different frequencies, amplitudes
and decay rates. Questions about comparisons with what
would happen on the moon and the possibility of a ball
bounce that didn’t decay but bounced higher and higher
each bounce, could be set. Preformal experimentation
hopefully will encourage student independence and
confidence.

Tide Equation

"Tide equation" explores the ability to meodel
tides. The sine function seems adequate. It is useful
to note, in this case, how a graphing program can help
provide five of the basic features of a function:; value
for a given value of x, value of x to produce a given
y, Slope at a point, minimum or maximum values on an
interval and average value on an interval.

Water depth in a tidal region can be modelled with
the sine function. Amplitude and frequency can be
modelled and discussed in a way that connects with

existing knowledge. The average value of a continuous
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Bouncing ball,
y=70*(“.71?c-.02*x))*abscsinc;SO*xa)

y=70#(2.71M(=,08%x) ) ®abs{cos(.

Functicon:
Fumection:

Figure 17.
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function can be meaningfully investigated here, that
is, average water depth over a tidal cycle. This

average value can be calculated as follows;

b
. T(X) dx

(-b-a)

the definite integral being done on the machine.

Variations on the basic exercise might include
changing the model to reflect deeper water and seasonal
changes in tidal depth. A discussion of actual tides
will unpack much of the information so compactly stored
in the mathematical model.
Motion with Resistance

"Motion. with Resistance" gives a full formal
account of how falling cbjects behave while
accelerating towards earth while experiencing air
resistance. - What is of value here is the exploration
possible on the computer given the expressions for
velocity and distance. The concepts of terminal
velocity, average drag coefficient and acceleration due
to gravity can be investigated numerically. The data
can be used to explain the difference in behavior
between a lead ball and a feather falling to Earth.

This represents the kind of informed, gquantitative
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Figure 19. Water depth variation in tidal cycles
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discussion of aspects of the world that mathematical
competency should enable.

Functimn:
y=3#5in (), S*#x)+20
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Figure 21. Average tidal depth _
If an object is dropped from a height h above the

Earth, air resistance ignored, the velocity (v) and
distance (d) are given by
v = at = 32t
d = .5at? = 16t%?, where a is acceleration due to
gfavity
Velocity increases indefinitely with respect to time
and supposedly all objects fall at the same rate since
there is no mention of mass. With air resistance the
situation is different (see equations 16 and 17 below).

Some devices even depend on the effects of air

—— —

[ I S,
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The computer facilitates the investigation of this type
of motion under the constraint of resistance, in which
v = (v, + V,) *exp(-pt)-~v, , |
where v, is terminal velocity,
P is drag coefficient,
v, is original Qelocity[
t is time, and exp(x) is e*
For simplicity assume v, = 0 and use v, = g/p to get
g is acceleration due to gravity.
v = g/p * exp(-pt) - g/p (16)
Also the height of the object above ground is given by;
Yy =Y, -yt + 1/p * (v, + v,) * (l-exp(-pt))
where y is.height above ground.
For simplicity use v, = g/p and assume v, = 0.
Y=Y -9g/p*t+1/p * (g/p * (l-exp (-pt)) (17)
Notice below that the velocity does not increase
indefinitely but rather a terminal velocity is
attained. Experimentation should then proceed to
determine what physical and corresponding mathematical
factors will influence terminal velocity (Figure 22).
The height ¢of c¢cbjects in free fall can be studied
using equation 17. Obviously feathers | behave
differently from cannon balls. Below, different free

falls are plotted and the studént can explore the
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N ys3(22/0,S)#(2.711t(=0,.S#%))=32/0.5
M y=(32/1.S)# (2. 711 (=1.5#%x))=32/1.5
il y=(32/.20)%# (2,711 (=,20%#%))=32/.20
My=S(32/.12)# (2. 71T (=, 19%%) )=32/.19
Vy3(3S2/.18)# (2,711t (=, 16#x))=32/.16
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Y- ﬂXI : —-268,..200 STEP 7]

\Eigure 22. Terminal Velocity in Motion with Resistance

falls are plotted and the student can explore the
different possibilities.
1. Person with parachute p = 1.5
v, = 21 ft/sec.
2. Person with no parachute p = .15
v, = 213 ft/sec.
3. Person unbuttoned overcoat p=.5

v, = 64 ft/sec. (Figure 23)

oD

(1)

i)
)
tv)
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Functions:
Ny=SS000=21.3#x+1/1,S#(21.30#(1=2,711T(=1.5%%x))
Ny=S000=-213. %#x+1/,15# (212, ) #(1=-2. 711 (=, 15#x) )
Y=S000=64. Q#%x+1/0.S#(64,0)#(1=2. 71T (=.T0%*x))
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Figure 23. Position as Function of Time with Terminal
Velocity

Damped Oscillatory Motion

"Damped Oscillatory Motion" attempts to model the
gradually reducing back and forth motion of a pendulum
or vibrating spring. A sine functioh will capture the
periodic behavior and adjustments can be made for
amplitude and period. Multiplying by an appropriate
exponential function will then cause the amplitude to
gradually decrease over time, duplicating the behavior

of the physical system. Actual pendulum or spring
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systems can be studied and modelled using appropriate
constants. Once again, informed, quantitative
discussion of aireal world situation is the vehicle for
constructing meaningful understanding.

Vibrating springs and pendulums gradually fading
out are both examples of decaying periodic behavior.
Modelling periodic phenomena with decreasing amplitudes
can be accomplished using a trigonometric fﬁnction t
and an exponential function exp(-bx). The equation is
of the form A*Vt(X)*exp(-bx). Students can study the
examples provided and attempt to model an actual spring
or pendulum in oscillation, by adjusting parameters in
the general function. See Figure 24. At this point in
their development students should also be able to
research applications of this type of functional
variation. They should also be able to generate
reverse damping and suggest applications, for example
destructive vibration, amplification and sound theory.
Uninhibited Growth Model

"Growth Models" ©provides outlines for three
different models of growth:.(a) uninhibited exponential
growth (and decay), (b) inhibited exponential growth to
a limit, (c) inhibited exponéntial growth to 1limit

where the rate is proportional only to the remaining
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Funztions:
N y=Iesin(2#x=3,14) #(2.71t(=%x/5)1)
W) y=4#sin(Z#x=-3.14) *#(2.71tM(=x/3))
m) y=8%sin(3#x%=3.14) #(2,711t(=x/3))
w) y=3#sin(lex=3.14) #(2.711t(=-%x/5))
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Figure 24. Damped Oscillatory Motion

room for growth (unlike the previous case where the
rate also depends on the population size remaining).
Application exercises in business, ecology, medicine,
population theory, economics, physics, socioclogy and
psychology give the student a chance to see and explore

the diverse applications of the three models.
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If a populétion reproduces itself at a rate
proportional to its size, a normal sort of situation,

then the population P is given by
P(t) = P, exp(kt) where k 1is the percent of
growth per year as a decimal

fraction.
Figure 25 below is an investigation of future world
population under the dual éssumptions cf uninhibited

growth and percentage increases ranging from .5% - 3%.

Funztions:
i) y=SS#2. 711 010%%)
1) y=Ge2, . 71 1(.015%x%)
i) y=S#2, 71T, 020%%)
W) y=SR2, 7110, O30%x)
w y=S#Z, 71 (L0085 %x%)
vi) Y=EI#2, 71T 000%%)

W)
S S ‘ (v,
S %
PR S S gl
. . . . - . . . ',l' ry
: 4 -
Co ] Vs - i)
A Al
i . e V)
L il i
_-____:':_:::.—-:-_——— =(v)
—_— e (vi}
SR P e imea, i ermeieen e
X-AXIS: -108...4i88 STEP
Y-AXIS: 8...58 STzP S 19

Figure 25. World populatioh projections
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Exponential Decay

If a popuiation declines at a rate proportional to
the pfesent population then,

P(t) = P, exp(-kt)

where k is the percent of yearly decline as a
decimal.

The constant k for carbon-14 is .00012. The table
of values in Table 2 and graph in Figure 26 can be used
to show, for example, that the half life of the isotope
is something like 5750 years and that if only 70% of an
object’s C-14 remains the object is about 3000 years

old.

- Inhibited Growth Model
If a population is constrained by certain limits

to growth such dP = kP (L-P) where L is the limit and k
dt

the growth rate then the population is given by

P(t) = P*L
P, + exp(-LKt) * (L-P,)

The inflection point of the curve where the rate of

change reaches a maximum and then declines is P = ,[5L.
The graph in Figure 27 and table of values in

Table 3 depict world population under the constraint of

L = 30 billion.
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Table 2
Decay of carbon-14

Age of obiect Percent C-14 remaining
X 100*(2.7T(-.00012*x))

0. 100.00
1000. 88.72
2000. 78.72
3000. " 69.84
4000. . 69.84
5000. , 54.98
6000. 48.78
7000. - 43,28
8000. 38.40
9000, 34.07
10000. 30.23
11000. 26.82
12000. 23.80
13000. 21.11
14000. 18.73
15000. 16.62
16000. 14.75
17000. 13.08
18000. 11.61
19000. 10.30
20000. 9.14

If the issue could be carried on using the model as
a quantitative basis. Table 4 and Figure 28 depict
an analogous growth situation in which disease
gradually spreads to infect the entire population
of a town of 2,000 people. The physical basis for
the mathematical similarity could be discussed with

students.
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y=100#(2, 711 (=, 00012%x))
y=790 :
=30
e
‘ \M‘n.
: ’ e
T~
: T
T ———
X-AXiIg: A4...20068 STEP 1888
Y-AXIS: 8,..109 STEP )
Figure 26. C-14 decay
Inhibited Growth (L-P)
A third model of growth assumes dP = k (L-P) where

dt

L-P 1s the available room for growth and P=0 when t=0.

The population at any time is given by

P(t) =

L(l-exp(=-kt))
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Functions: ,
N y=(S%Z0)/(S+2. 71 (=30%,01%#%x)#(20-5))
W) y=(S#30) /(S+2. 711 (=30%,001#%)#(20=5))
1) y=(S#Z20) / (S+2. 711 (=30%, 00S#x) #(30=S) )
v) y=(S%#30) /(S+2. 711 (=30%, 020%%) #(30-5) )
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Figure 27. World population, inhibited growth mcdel

Table 3

World population figures for the inhibited growth model
(2% annual growth rate)

Years from present World population in billions
(5%30) / (5+2.7T (=30%.020%*x) * (30-5)

0.0 5.00
2.5 14.15
5.0 23.98
7.5 28.40

10.0 29.63

12.5 29.93

15.0 29.98

17.5 30.00
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Table 4
Disease spread in a city using the inhibited growth
model

Time in weeks ' Number of people infected
(10%¥2000) / (10+2.7T (-2000*.003*x) * (2000-10)

0.00 10.00
0.10 18.11
0.20 32.70
0.30 58.69
0.40 104.25
0.50 181.25
0.60 307.81
0.70 497.19
0.80 751.35
0.90 1045.08
1.00 1331.22
1.10 1567.13
1.20 1736.31
1.30 1845.87
1.40 1912.21
1.50 1950.76
1.60 1972.62
1.70 1984.85
1.80 1991.64
1.90 1995.40
2.00 1997.47

Assume the limit L, percentage of the population that
will buy a product is 100% i.e. L=1. Suppose it has
been determined that the percent acceptance increase
rate k = .07 so that the population buying the product
is given by

P(t) = l(l—exp(;.07t))
The graph in Figure 29 shows the number of times to

advertise to get any given degree of acceptance.
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Figure 29. Percentage buying a product, inhibited
growth



91

As the examples above illustrate, the computer can
make the meaningful application of mathematics a
reality for more students than ever before. The
evidence suggests that mathematics educators have no
program in place to take advantage of the powers of the
computer to help enable students to master the
fundamentals of quantitative literacy. This failure
remains a chronic problem in mathematics education.
Computer integrated mathematics programs must be made
available that learners can explore domains of learning
before describing them. Learners need to study
concrete properties and relations before formulating
abstract relations. Computer aided perception for many
may be criticai to attaining basic literacy.

The computer facilitates the realization of
Perceptivist-Constructivist mathematics education. The
computer, because of its information processing power,
makes Perceptivist-Constructivist mathematics a
realistic possibility rather than 3just an academic
fantasy. V Perceptivist-Constructivist theory in tuxrn
makes the computer the technologicél basis for concept
development, concept application and thus meaningful
learning of mathematics. The informed use of the

computer can help get us beyond computation for the few
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and moving toward meaningful mathematics for all. The.
examples proyided across Brauner’s modes of perception
have included examples from physics, business,
population ecology, meteorology, economics and
medicine. All the examples can be discussed in
ordinary language as well as technical languége. If we
are guided by an ihformation age philosophy such as
Perceptivism, the range of examples can be expanded to
build a curriculum rooted in perception. In this way
mathematics education can move toward mathematics for
all because it is mathematics about something to which
we can all relate -- the world we share. It is
mathematics using something to which we all have

access, our ordinary language.
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CHAPTER V
AN INTERPRETATION OF CONSTRUCTIVISM

The present chapter is an attempt to interpret
three basic principles of Constructivism as outlined in
Chapter III. The first principle indicated that
instruction should actively involve the learner in the
construction of meaning. By relieving thevburden of
computation the computer is able to encourage this.
The second principle indicated instruction should draw
on and relate to existing experience in a way that
relates to existing knowledge. The third principle
indicated that instruction should allow for the
accommodation and assimilation of ©provisional or
alternate conceptions. With the computer taking care
of the tedious, the student can explore - many
conceptions of things that might be competing for his
belief, rather than simply relying on the authority of
the teacher. Understanding for use means more than
just recalling and repeating, it involves actually
believing,
The active construction of meaning

Constructivists make a distinction between
informétion and knowledge. When the purpose of
instruction is to transmit information, explanations

are all that is required. Knowledge, the gaining of
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expertise in information processing and application,
cannot be simply transmitted. It must be constructed
with the active participation. of the learner.
Knowledge 1s something the learner can and must
construct by himself. Discovery, re-invention, or
active reconstruction is necessary.

Discovery, re-invention or active reconstruction
in méthematics is uéually difficult, at least in part,
because of technical,  computational difficulties. The
computer can help with this; witness the trajectory
example. There is also the problem of an abstract,
formal approach to mathematics. Rather than starting
with intuitive ideas and basic familiarity, proceeding
to exploration and discovery and finally developing a
polished, refined, axiomatized theory; mathematics
teaching often dumps the finished product on the
student. The extreme abstraction and compactness of
the theory make it incomprehensible. The finished
product is the goal but premature formalism is not the
means. Eric McPherson notes with regard to geometfy
that it is a curriculum strand long dominated by the
"pointlessness 0f premature and misdirected formalism*"
and that the traditional curriculum was often "too much
of a preparation for a remote future that for many

students never came" (McPherson, 1985, p. 67).
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wason echos a similar concern with an elitist,
abstract curricula which seem to eliminate the
possibility of meaningful mathematics for so many.
Each stage 1is seen as a preparation for the
next: primary prepares for lower secondary,
lower secondary for upper secondary, which in
its turn prepares for tertiary -education.
Yet by this stage only a minute proportion of
the age cohort may remain within the formal
education system; has all this "preparation"
been just a waste of time and effort for the
great mass of the students who are no longer
there?
(Howson, 1986, p. 29)
The computer can make reconstruction a real
alternative to dumping the finished product on
students. Consider this exercise, given by the author
to grade twelve students at Templeton Secondary in
Vancouver., The exercise 1is to reconstruct the
fundamental theorem of algebra from a graphing
perspective. The concept of a degree n polynomial
equation having solutions where the graph of its
associated function crosses the x axis can be easily
investigated using graphing software and suitably
selected equations with real variables. For degree one
a straight 1line <c¢an only cross the x axis once.

Different possibilities exist however and students

should be asked to discover these (Figure 30). Second
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degree equations are represented by parabolas (Figure
31). One possibility is that it crosses twice. What
‘are the other. possibilities? Students can work
backwards making up equations using the factor theorem
(e.g. 0 = (x=-3) (x+5) => x* + 2x - 15 = 0). What
solution ©possibilities are there for degree two
equations, including the possibility of multiple and
complex roots? Possibilities for degree three (Figure
32), degree four (Figure 33), degree five (Figure 34)
and degree six (Figure 35) are suggested and the
student must discover the other solution possibilities.
Discovery, re-invention or —reconstruction 1s the
student’s job. What makes this possible now, where it
was impraétical in the past, is the computational power
of the computer. It is easy for students to explore a
wide range of possibilities and satisfy themselves as
to their conclusions. The NCTM Standards document
claims:

Calculators and computers with appropriate

software transform the mathematics classroom

into a laboratory much like the environment

in many science classes, where students use

technology to investigate, conjecture, and

verify their findings. In this setting, the

teacher encourages experimentation and

provides . opportunities for students to

summarize ideas and establish connections

with previously studied topics.
(NCTM, 1988, p. 128)
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Function:
y=3%(x=1)+S*(x+4)
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Figure 30. Computer solution of degree one equations

Function:
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Computer solution of degree two equations
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Functien:
YEXTI=C#xT2-10%%+24
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Figure 32. Computer solution of degree three equations

Function:
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Figure 33. Computer solution of degree four equations
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YEXTI=3#XP4=1 1 ¥ TI+27#XP2+10%x-24
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Computer solution of degree six equations
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Aggealing to existing knowledge

Kilpatrick (1987) argues that the constructivist
must take account of existing experience and knowledge.
Teaching, using procedures that aim at generating
understanding, becomes sharply distinguished from the
transmission of information, using procedures that aim
at repetitive behaviour, in that assimilation and
accommodation of competing conceptions must be
facilitated. Processes inferred as inside the
student’s head become more interesting thap overt
behaviour. Linguistic communication becomes a process
for guiding student learning rather than simply
transferring knowledge. Taking into account what
students think now and how they might be encouraged to
change 1is critical. Student deviations from the
teacher’s expectations become means for understanding
their efforts to understand. Less emphasis is put on
teacher presentations of information more emphasis.on
teaching interviews as attempts to infer cognitive
structures and modify them.

The computer can facilitate this type of process
by shifting the focus of c¢lassroom activity from
information transmission to knowledge construction.
The burden of construction is placed with the student,

with the help of the computer, so that the teacher then
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becomes a construction consultant. Much of class time
for the teacher can be spent Watching, diagnosing and
suggesting learning strategies. The public nature of
computer monitor encourages such consultation both
between students and teacher and between students
themselves. |

The computer can relate new ideas to existing
knowledge by facilitating the study of practical
examples to which the student can already relate. The
trajectory simulation, motion with resistance, and
damped oscillatory motion are all examples of problems
which can be discussed and are probably familiar to the
student within the context of ordinary language, in
Brauner’s sense. This is likely to "provide a handle"

and to help relate the new mathematical understanding

to existing knowledge. This seems to deliver on
Brauner’s <c¢laim that ordinary 1language, and the
standard peréeption it generates, is pivotal in

assuring knowledge at the level of perception, and not
just knowledge that consists of factual recall or

concept mastery. Brauner argues:

The key to the conversion of imagery back
into linguistic form for use in thinking and
communication is ordinary language .... To
learn effectively they [students] need two
things that are often not provided:
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1. To be shown where new concepts stand in
relation to familiar concepts, and
categories of experience.

2. To be encouraged to form trustworthy
ordinary language accounts of the key
concepts and the categories of experience
to which they belong.

(Brauner, 1986, p. 19)

The computational power of the computer can also
help t¢o make the unfamiliar and imposing relate to
existing experience and so make it less esoteric. A
simple example is the use of gquadratic functions and
relations to make a face. Various properties of the
algebraic representation of the function or relation
can be mirrored in noses, eyes, ears etc. Mathematical
variations can be examined in a more familiar context,
that of moving, stretching and expanding (fig. 36).
Problems could be set such as making a circular face, a
parabolic face or an ellipical face.

The networking of ideas and experiences,
facilitated by. computer assisted applications, is
likely to increase the meaningfulness of mathematics.
The NCTM claims:

Instruction that focuses on networks of

mathematical ideas rather than solely on the

nodes of the networks in isoclation will serve

‘to instill in students an understanding of,

and appreciation for, both the power and

beauty of mathematics. Developing

mathematics as an integrated whole also

serves to increase the potential for
retention and transfer of mathematical ideas.
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Connecting mathematics with other disciplines
and with daily affairs underscores the
utility of the subject.

(NCTM, 1989, p. 149)

Functions:
y=.20#x12-7

y=sqr (16=x%12)
y==sqr (1E=%x12)
y==sqQr (4=(x~1)121+7
y==sqr (2=(x-4)12)1+8
y=sqr (2-(x-=4)112)+8
y=sqr (2=(x+4)12)+8
y==sqr (Z—-(%+3)1t2)+8

Alternate conceptions and conceptual conflict

Posner, Strike, Hewson and Gertzog (1982) have
explained how for the constructivist, learning is
conceptual change. Through active construction and

accommodation with pre-existing knowledge, the learner
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changes the way he or she conceptualizes and so the way
he or she perceives the world. Rather than keeping
stimuli separate and simple, cognitive conflict should
be created. Allowing activities to develop even if
"errors" occur allows student’s conceptions to compete
for belief. The student Qill only learn if he believes
the new conceptions.because they work better. It is
important for teachers to react constructively to
"erfors" and that they reward conceptual change and not
just rote learning. The constructivist social contract
in the classroom is not one that dwells on students
doing what the teacher says but rather one that dwells
oﬁ the student’s obligation to construct meéning and
the teacher’s obligation to be a helpful consultant on
the project. Constructivist teaching then depends on a
trusting relationship. A teacher must trust students
to solve problems and construct meaning. Students must
trust teachers to respect their honest efforts. Given
the often opposing tendencies of spontaneous student
interest and the demands of the academic disciplines
this trusting relationship will often be a difficult
situation to create and so pose a constant challenge to
constructivist teachers.

Because the computer can make calculations so

rapidly students c¢an be encouraged to investigate
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whatever possibilities they find plausible. This makes
the program of conceptual change much more possible.
Students don’t need to rely on teacher authority. The
example of the fundamental theorem of algebra problem
is a case in point. Students can investigate for
themselves and decide what to believe and why to
believe it. There is no reason for the teacher to try
to simply transmit information. There is every reason
to aim at the construction of understanding through
conceptual change. This is precisely the benefit of
"plugging the computer" into the‘information processing
system (Figure 3). The boost in processing ability
empowers the student to assume responsibility for the
meaningful construction of understanding.
Summary

The integrated use of the computer in mathematics
education can help give more students more guantitative
literacy than is presently the case. The information
age understanding we need to move beyond computation
and concept mastery to actual perception is the
combined Perceptivist-Constructivist theory. The parts
of the theory which are relevant to the problem
addressed iﬂ this thesis center on five |Dbasic
principles. First, instruction should be aimed at

actual perception and use. Mathematics should not
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start and end with itself but »must contribute
immediately to our understanding of the world and how
we perceive it. With the computer this application and
use need not be delayed. Second, instruction should
involve the synthesis of and interaction of all the
student’s knowledge on an ongoing basis, rather than
its specialization, fragmentation and isolation. Only
in this way can ideas be forced to compete for belief.
Knowledge and understanding that is not believed 1is
quickly forgotten. Third, instruction should actively
involve the learner in the construction of meaning.
Knowledge is something that learners must construct for
and by themselves. There 1s no alternative.
Discovery, re-invention or active reconstruction is
necessary. The computational power of the computer
makes this active involvement, in an abstract field
such as mathematics, less of a scholarly dream and more
of a realistic goal. Fourth, instruction should draw
on and relate to existing experience in a way that taps
existing knowledge and understanding. Meaningful,
applied problems which relate to the experience of the
student can be studied immediately with the computer
because it can "crunch the numbers". Fifth,
instruction should allow for the evolution and

development of alternate and provisional conceptions.
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With the computer taking care of the tedious, the
student c¢an explore many conceptions of things that
might be competing for his belief, rather than simply
relying on the authority of the teacher. Understanding
for use means more than just recalling and repeating.
It involves actually believing, on a non-inferential,
perceptual basis.

These five principles will be operationalized in
Chapter VI, a Perceptivist-Constructivist calculus
unit. Chapter VII will report on field tests of the
unit. Chapter VIII draws conclusions and makes

recommendations.
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CHAPTER VI
PERCEPTIVIST-CONSTRUCTIVIST CALCULUS ON
THE COMPUTER

The computer makes the exploration and use of a
numerical approach to calculus possible. "What you can
do with 1it" Dbecomes answerable right away. The
theoretical derivation of algorithms, and associated
manipulative techniques, can be left for college (i.e.
later). The central ideas of calculus--limit, area
.under a curve, rate of change, and slope of a tangent
line, can be tied to an existing notion of function.
The emphasis of the program is providing students with
a firm conceptual grasp of the uses of calculus rather
than with the associated manipulative techniques.
Rationale |

Mathgrapher, written by Steven Losse and published
by Human Relations Media, and other computer graphing
packages, have derivative, slope at a point, and area
under a curve (definite integral) options. The slope
is calculated using a secant approximation. The area
under a curve is calculated from trapezoidal
approximation. Problems from business, physics,
psychology, sociology, economics, medicine and ecology
can be shown to have solutions that involve definite

integral or derivatives at a point. 1In this way we can
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attempt to build understanding rather just rote recall
and so approach the NCTM standard addressed to

calculus.

This standard does not advocate the formal
study of calculus in high school for all
students or even for all college-intending
students. Rather, it calls for opportunities
for students to systematically, but
informally, investigate the central ideas of
calculus--limit, area under a curve, rate of
change, and slope o0f a tangent line--that
contribute to deepening of their under-
standing of function and its utility in
representing and answering questions about
real-world phenomena.

The instructional approach to these
concepts for all students, including college-
intending students, should be highly
exploratory and based on geometric and
numerical experiences that capitalize on
computer and calculator-based graphing
utilities. The instructional activities
should be aimed at providing students with
firm conceptual underpinnings of calculus,

rather than with the associated manipulative
technigues. [emphasis added]

M. K. Heid remarks in a similar vein how symbolic
manipulation programs at the college level offer the

hope of calculus beyond mere computation.

If students were allowed free use of
symbolic = manipulation programs such as
muMath, calculus teachers could concentrate
on development of concepts and as a result
construct exams which test more than
technique. The entire calculus curriculum
would need to be rethought.

(Heid, 1983, p.218)
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Numerical integration proceeds on Mathgrapher by
trapezoidal approximation. Infinite'processes can be
introduced by gradually increasing the number of
trapezoids énd seeing if the area approaches a limit
(i.e. gets closer and closer to some specific wvalue).
Exercises follow that point out the geometric meaning
of definite integral as area under a curve.

If the derivative of some function (F({x)) 1is
denoted F' (x) then the area under the curve from a to b
is the total amount of F from.a to b. For example, if
the velocity of an object, which is the derivative of
distance, is given as v(t) = 5t°’ then total distance

travelled by the object, from time a to b with the

changing velocity, isS} 5t?dt. The fundamental theorem

a

of calculus is not even mentioned. Rather problems
from business, physics, psychology, sociology, ecology
and medicine show how computer graphs and definite
integral give values of quantities on intervals, as the
functions are changing value. What comes first is the
actual perceptions and applications, with enough
familiarity with symbolism to make the work of the
computer meaningful. What will come later, wheﬁ
needed, is the justification, verification and

formalization.:
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Notice how the above approach recapitulates the
development of theory 1in mathematics and science.
Initial 1insights, hunches and ideas are explored,
refined, some abandoned, some generalized to gradually
give shape to a finished product. The Perceptivist-
constructivist. app:oach tc mathematics gives the
student the opportunity, likewise, to work gradually
toward a finished product. The Perceptivist-
constructionist claim would be that such a process of
"reinventing" the knowledge would be more 1likely to
produce meaningful learning than giving the student the
polished, refined, finished product outright and asking
them to make sense of it.

Numerical differentiation proceeds on Mathgrapher
by secant approximation. Infinite processes, as with
numerical integration, can be introduced by gradually
decreasing the size of the interval on which the secant
is formed and seeing if the slope of the segment so far
approaches a limit (i.e. gets closer and closer to some
specific value). Mathgrapher does not have a visual
process to depict numerical differentiation. Other
packages could be used, or some could be done by hand,
to display the geometric meaning of slope at a point

("definite derivative") as tangent.
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- The meaning of the mathematics is once again

developed by using it. Problems from a wide range of
disciplines show how rate of <change is a wuseful
concept. Minimum-maximum theory can be investigated
simply by graphing, generating a table of values on an
interval and looking‘for critical points. Finding the
slope leads to the idea of slope 0 at critical points.
By rooting the initial calculus experience in
intuitively plausible activities, easily connected to
previous knowledge and experience, the student can
achieve a meaningful integration and organization of
pivotal ideas. They are then more 1likely to
understand, retain and apply the ideas rather than just
memorize and then forget them.
Numerical differentiation

Calculus 1is concerned with finding areas under
curves and slopes o©of curves. The former i1is called
integral calculus, the latter differential calculus.

Mathgrapher finds slope at a point by secant
approximation. Choose a point x and create a gap .on
each side, x + Ax and x - Ax. The computer estimates

the slope to be;

f (x + Ax) - f(x - Ax)

2 Ax
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Narrow the gap to get a better approximation. For the

curve y = x° find the slope at different points (see
Figure 37).

Function

/'=,‘/ 1';

e e e ,.-‘—~_¢_-~- ..............................
= al :

A—AliIS: -2, e STEP b}

Y-axXiIs: —-2248 208/ STEP 4

Figure 37. Slope by secant approximation

Is a steady answer approached as the secant x spread
gets smaller and smaller? Numerical differentiation is
based on 3 ideas

1. The slope of the tangent at P and the élope of

the secant AB are approximately equal.

2. The smaller the value chosen for Ax, the

secant x spread, the closer the slope of the .



114
secant AB will be to the slope of the tangent
at P.
3. If the Ax 1is small enough, the slope of AB

will be close enough to the slope at P. The

conventional notation for the problem above is

d(x*) = slope (some number at x = 5).

dx

This is called the slope at x = 5 (in a way
the "definite derivative") and is a number.

If a general expression for the slope of the
curve at any point x is desired, then

d (x’), is called the derivative and
dx

is a function that gives the slope at any
point x (as a matter of fact the derivative
is 2x).
Doing differential calculus involves finding rates
of change. Consider an example from medicine. A
patient’s temperature as a function of time is given by
.y = -.1x* + 1.2x + 98.6.
Then at t = 3 is .6°/day, at 7 days, -.2°/day, at 10
days -.8°/day, as illustrated in Figure 38.
Calculus can be used in geography. A city’s
population starts from 100,000 and grows to an amouht

P = 100,000 + 2000%t?, At time t = 5 years dP/dt is
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20,000 people/year and at 10 years it .is 40,000

people/year. This is illustrated in Figure 39.

Y- imitrZoi. ZuKe0g,
LA-HiS: B, . .12 STEP i
Y-aX1S: 86, .. 118 STEP S L

Figure 38. Time vs. patient temperature

o~ .

e e e e e et e e e
V=005 00+ 830K+ 2

a-riXIS: a8...415 STEPR 1

Y—-®AXITIZ: &...53808088 KTZPR el ed

Figure 39. Time vs. city’s population

Here 1is an example from business. A

estimates it will sell n T.V. sets after spending x on
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advertising X in thousands of dollars. At
x = 100 dn/dx is 100 T.V.’s/1000 advert, at x = 200
dN/dx is - 100 T.V.’s/1000, at x = 300 dN/dx is =300
T.V.’s / 1000. At some point advertising is a waste of
money (see Figure 40).

Functions
Ry T 2R ZTO0R Y +E

-—

Figure 40. Dollars spent on advertising vs. T.V. sets
sold

Consider another example from medicine. The
percentage (expressed as a decimal fraction) of doctors
who accept a new medicine is given in Figure 41. At 6

months dP/dx is 6% per month, at 12 months it is 1.8%
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per month and at 18 months it .55% per month. The rate

of change slows as the limiting value is approached.

Function:

y=l=exp (=0, 2%x%)

A : . .

X-Aax%i(sS: 6...2¢4 STEP 1

vY-AxXIsS: 8...1 STEP i

Figure 41. Time vs. fraction of doctors accepting a
medicine

Geometry provides this example. Consider a 40 cm.

long piece of string being used to form a rectangle of

width x and length 20 - x so that area 20x - x2.
Notice the maximum area is attained at x = 10. The
slope there 1s 0. Optimization theory <could be

introduced and explored (see Figure 42).

Another example. from business is the following.
An up and down company finds that its sales during the
X" month of the year is given by the function
y = 40,000 (sin{x) + cos(x)). Using the graph it can

be found that
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';:.;‘A-"—;':.;‘_'B I(-.': “:?..2. S .. ... R
X-\gIS: oL, ..28 STER 4
Y-a&XIS: A...1208 STEF S

Figure 42. Width of rectangle vs. area of rectangle
formed

S’ at x 2 mo is -$52930/mo

at x 7 mo is $3870/mo
at x = 8 mo is -$45318/mo
at x = 12 mo 1is $55125 /mo
The significance of positive, negative and zero slope
can be discussed with reference to the calculus (see
Figure 43). |
The computer creates the possibility o¢f having
calculus come alive immediately with meaningful
applications to which the student can relate. Calculus

is then less a mystery and more a useful way of seeing

the world.
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Figure 43. Time of year versus sales

Numerical integration

Consider the curve y = x’ on the interval 0<x<10.
Use the integral option on the Mathgrapher program to
find trapezoidal approximations to the area. Fill in
the chart below and cdmpare it with versions of
Figure 44 generated by the computer.

No. Trapezoids Area
2

5
10
15
20
25
30
100
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M~ :

b i

| e : ~

R N ) s

A e N T =]

P it - : T
1 » ..u.....;..n...o.-p-.-.v-__?__p-v. [ I Bore e e e e o e e
X-AXIS: -2, 268 STEP S
V-rXig: —1¢é..,.988 STEP s

Figure 44, y = x

Is a steady answer approached as the number of
trapezoids increases? Numerical integraﬁion is based
on 3 ideas;

1. The sum of the areas of approximating
trapezoids is approximately equal to the area
under the curve.

2. The finer we make the divisions the closer we
get to the actual area.

3. If we use a sufficiently fine division we will
get as close to the actual area as needed to

the for the application at hand.
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The conventional notation for the problem above is

Sko x?* dx. This is called the definite integral from
0 to 10. It is a number,‘the area under the curve. If
a general expression for an integral is desired, (i.e.
x? dx) this is called the indefinite'integral and is a
function that is a general expression for the area (as
a matter of fact it is Y = §3-+ C)

The area under the graph y = x* is found below

with trapezoidal approximation. More trapezoids can be

used to improve the approximation by forcing it to a
T 7
timit. g;{z dx = 693.2.
-12

Business cén use ideas from integral calculus. A
northern climate ski company determines its sales (8)
of skis in x™ month is given by the function below,
where S is in thousands of dollars for that month. The

total sales for the year is given by,

12 i
5; 7*(l-cos(®/6*x)) = $84,000. See Figure 45.

[}

Consider an example of the applicatibn of calculus
in physics. A particle moves in such a way that it
keeps going faster and faster according to the equation

v(x) = 3x* + 2x. The distance the particle goes
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Figure 45. Month vs. sales in that month’

‘between time 1 and time 2 is the definite integral.

For example from time, =

goes,

3*x? + 2*x dx

This

procedure

= 148.

generalized

1 to time,

= 5 the particle

See Figure 46.

allows

for

the

computation of quantities determined by variables that

are

calculation--for example,

undergoing

change

through the

course

of the

work as force changes, power as current changes.

distance as velocity changes,
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Figure 46. Time versus velocity

Another example of calculation of quantities in
flux concerns the rate of use of electricity. A family
uses electrical energy according to the equation below,
where k 1is in kilowatt-hours,‘and X 1is time. During

the first four hours the family uses;

4
g\ 10*x*exp(-x) dx = 9.1 kwh. See Figure 47.

0

For a whole day the family uses;

24 X
g 10*x*exp(-x) dx = 9.98 kwh. See Figure 48.
0 .
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y=10%*xeexp (=x%)
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Figure 47. Time versus Rate of Energy Use: 4 hours
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Figure 48. Time versus Rate of Energy Use: 24 hours


http://iJUJi.lJl.lJ

125
A whole web of questions can be addressed to connect

the calculation to reality.

1. why the use distribution as it is?
2. what implications are there for the power company?
3. is the model realistic? .....

Consider an application of the integral from
geometry, the area between the curves. With regard to
thé geometric idea of area between two curves, consider
the area between the two curves belcw. The area from x

= -2 to x = 3 is given by;

s _
g (x°+3)-x? = 15
-2

The procedure is general and the computer takes care of
the computation (see figure 49).
The average value A of a continuous function f is

b
given by S:, f(x) dx . This corresponds to some
(b-a)

value of the function such that the rectangular area
A* (b-a) 1s the area under the curve from a to b. For
example, the following situation could occur in the
field of medicine. The amount A of drug in a patient’s
" bloodstream at time x after a dosage is administered is
given by the function A = 3e™®, where A 1is in

milligrams per millilitre. The amount of drug in the
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Functione:
v=wr

y=xT2+3

9=(mf2+3)—(x+2)
P o R B B B B = 2 e
U PUURUDURE (8 B B we = o 2y o B N R R
X-fiXXS5: —-S...5 STEP i
Y—-rXdiS: aA,. .8 STEP S5

Figure 49. Area between two curves

body is going down as the body metabolizes the drug.
The average amount of the drug in the body over the

interval [a,b] is given by

b
E; 3*exp(~.86*x) dx
: ( b-2a)
Over the first two hours the average is

S :
S; 3*exp(-.86*x) dx = 2.87/2 = 1.435 ml (Figure 50)

0

2

Consider another example for geometry. If a plane
figure is rotated about the x axis in space, a solid is
formed. The volume of the solid of revolution is given

by
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Figure 50. Average value of a function

b
E; nx [f(x)]? dx,

where a, b are the bounds of the plane region
rotated. For example if the curve y = exp(X) between x
= 1 and x = 2 is rotated about the x axis the shape

generated has volume, given by

2
S; n* [exp(x)]? dx = 86.1. See Figure 51.

-1



128

Fumctiong:

. vEeupuy)
J- T *[exp(x)]*2 dx = 86.1 - o
-1 ) Y=30. 14%(aupiu) )t
i
: |
i !
H [
: |
H ) I
: : i
i }
T oy
N |
: f
B i
_ K
: 7
A
B 4|
: g
5 - A1 S e
e SR1N! —_——
=-axklsS -5...9 STEP 1
Y-axis 2...5848 STEP pays

Figure 51. Volume of revolution

Summary

The examples in this chapter have shown that the

use of the computer represents the possibility of

1.
2.

The

turning the mathematics curriculum on its head.
providing powerful techniques for the use of all
students (not Jjust the 10% who meaningfully
complete Algebra 12 now).

introducing meaningful applications of mathematics
immediately.

computer aided, numerical appfoach to calculus

described in this chapter is aimed at the following:
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Enabling students to see the world through
mathematical eyes and to perceive mathematics as
useful intellectual training.
Engaging mathematical ideas with ideas from other
disciplines and with ideas in the student’s active
cognitive repertoire to coﬁbat the tendencies of
fragmentation, isolation and alienation of
knowledge from the working beliefs of the learner
in daily life.
Actively involving the learner in the construction
of knowledge by offering meaningful examples,
reducing the emphasis on brute calculation and
increasing student independence and
experimentation.
Networking new knowledge to past experience
through applications with a view to integrating,
rather than further fragmenting knowledge.
Allowing the construction and acceptance of new
knowledge to take ©place through numerical,
concrete experience and experimentation. New
knowledge gradually becomes believable, rather
than just memorizable, as it 1is used, tested and
elaborated upon by the learner. Finally,.rather

than initially, the knowledge can be formalized.
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The perceptivist-constructivist theory of computer
integrated mathematics provides the insight needed to
start working systematically toward the realization of
the kind of calculus program suggested by the NCTM

standards document, which in part suggests:

Computing technology makes the fundamental
concepts and applications of calculus
accessible to all students. The area under a
finite portion of a curve, for example, can
be approximated geometrically by
partitioning

All students c¢ould use a graphing utility to
investigate and solve optimization problems,
including the maximum-minimum problems
traditionally associated with the first
college-level <course in <calculus, without
computing a derivative. T

Using - interactive graphing utilities,
college-intending students could examine
other characteristics of the graphs of
functions, including continuity, asymptotes,
end behavior (i.e. behavior as x =-> o) and
concavity

Computing technology = also permits the
foreshadowing of analytic ideas for college
intending students. From a computer-graphics
perspective, for example, a differentiable
function can be viewed as a function having
the property that a small portion of its
graph, when highly magnified, approximates a
line segment....

Instead of devoting large Dblocks of time to
developing a mastery of paper-and-pencil
manipulative skills, more time and effort should
be spent on developing a conceptual understanding
of key ideas and their applications. All students
should have the benefit of a computer enhanced
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. introcduction to some of the types of problems for
which the calculus was developed.
(NCTM, 1989, pp.182-183)

The realization of this program is facilitated to
the extent that perceptivism can show what to do,
constructivism can show how to do it and the computer
can show how to make the computational complexities
manageable. The student becomes actively involved,
through real 1life applications, in the process of
seeing the Qorld in terms of the <calculus. This
represents more than schooling--it represents

education.
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CHAPTER VII

REPORT ON A FIELD TEST OF THE CALCULUS UNIT

The aim of this chapter 1s to report on field
tests of the Perceptivist-constructivist calculus unit
outlined in Chapter VI. The unit was given to 41 grade
twelve students at Templeton Secondary School in
Vancouver, B.C., from September' 1988 to April 1989.
This chapter will first discuss the purpose of the
field tests. The instructional sequence given to the
students will then be outlined. Following this,
teacher notes and student questionnaire results will be
summarized and discussed in terms of ’Eye_Jextent to
which théy suggest Perceptivist-constructivist
principles were realized in the claséroom.
Purpose of the field test

The major goal of this paper has been to show how
Perceptivist-constructivist principles can inform the
effective utilization of the computer to improve the
meaningfulness of mathematics education in secondary
schools. Perceptivism suggests that curriculum and
instruction must aim beyond mere factual recall and
concept mastery to actual perception and use. The
philosophy also suggests that students must become

proficient in the discriminate selection and skilled
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use of the different modes of perception.
Constructivism suggests that students must become
actively involved in the construction of meaning, that
they must integrate past and present experience in an
ongoing, meaningful way and that students must
challenge new concepts to survive competition for
belief and use with older, established concepts. The
purpose of the field test was to determine the extent
to which the teacher and students could see the
theoretical principles being realized in the computer
mathematics classroom.

The author designed an instructional wunit in
calculus, bésed in part on applied calculus exercises
adapted from Bittinger and Morel (1982). Notes were
kept by the author and a student questionnaire was
given to determine if the teacher and students could
see a valid experimental Perceptivist-constructivist
treatment taking shape in the classroom. This, in
turn, could set the stage for later experimental work
in which the performance of a computer assisted
experimental group could be compared with that of a
noncomputer control group. This study stops short of
this comparison. M. Kathleen Heid (1988) has in fact

made a comparison type study of performance using the
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computer as a tool to teach applied calculus. Although
no mention of Perceptivist-constructivist principles is
made, her program meets most df the criféria set out in
the five principles. Heid summarizes her study of the
effect of computer motivated resequencing of skill and
concept development on student performance in the
following manner: |

During the first 12 weeks of an applied

calculus course, two <classes of college

students (n=39) studied calculus concepts
using graphical and symbol-manipulation

computer programs to perform routine
manipulations. Only the last 3 weeks were
spent on skill development. Class

transcripts, student interviews, field notes,
—and -test results were analyzed for patterns
of understanding. . Students showed better
understanding of course concepts and
performed almost as well on a final exam of
routine skills as a class of 100 students who
had practiced the skills for the entire 15
weeks.
(Heid, 1988, p.3)

Instructional sequence

The wusual topics in applied differential and
integral calculus were presenﬁed to the students. They
worked on slopes, rates of change, minimum-maximum,
area under a curve, area between two curves, average
value of a function, volume of revolution  and
antiderivative applications. A major difference ffom

traditional, noncomputer courses was the "concepts
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first" approach to curriculum and instruction. The
teaching of concepts, and the perceptual possibilities
they open up, preceded the teaching o¢of routine
calculation skills in sequence as well as priority.
Problems from a wide range of disciplines were used to

develop student understanding of the important

concepts. Graphing and calculations were done by the
computer. Set up, reporting and analysis were done by
the student. Students were later shown how to handle

only polynomial functions by hand. Hand-in assignments

and exams were used for evaluation.

Instruction could more immediately invelve the
student in problem solving and seeing the ideas of
calculus in action. This was because:

1. Computers facilitated computation, especially
graphing, differentiation and integration.

2. Computers easily provided data for discussion so
that the development of ideas didn’t need to take
place in the abstract. |

3. Computers - made realistic problems manageable
through information processing such as parameter
changing, generating tables of values, equation

solving and curve fitting.
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Formal, abstract ideas like limits were delayed until
some intuitive understanding is present. Students were
actzpely involved in exploration from the start because
they did not need to simply rely on the teacher to
transmit knowledge. New concepts were developed,
merged and assimilated with old as the computer manages
the technical calculations.

It might be argued that giving students functions
on which to operate and then having the computer do the
calculations is 1likely to leave the students with a
sense of magic and mystery as bad as that generated by
the blind manipulation of formulae. Indeed it might be
preferable, in the best of all possible worlds, to
derive all functions ffom first principles, or at least
using regression. But this approach is
counterproductive with beginners due to its complexity.
The goal here was to proceed as directly as possible,
past factual recall and concept mastery, to actual
percepticn, The temptation to proceed using a
premature formalism and insincere promise or relevance
later has demonstrated its shortcomings. The balance
must be shifted‘ back toward relevance, meaning and
perception first with formalism, for those who need it,
to be delivered later.

Field notes
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The author regularly collected field notes while

walking around the classroom observing and helping

students. The results of these notes are summarized
here. The results should be interpreted as the
substance of an hypothesis generating study. What 1is

offered is a preliminary set of observations, which may
be confirmed or not by future, neutral observers.
Because the computer did  the éalculations;
students got right to solving problems. The teacher
spent little time instructing formally. Most of the
teacher’s time was spent ©observing and helping
individual students with problems. Formal lessons were
usually less than ten .minutes in length. Freed from
the duty of lesson presentation the teacher can become
more involved in the learning process with the
individual, offering specific help at required times.
Observation suggests that the teacher will spend the
majority of class time engaged ' in this activity.
Rather than "something—for-everybody" lessohs, teaching
was directed to the overcoming of particular obstacles
to learning. Because the teacher was actively involved
in the actual learning process as it occurred,
formative evaluation was an ongoing process.
Perceptivist principles were observable as
translating into practise in the classroom. Students

were observed discussing temperatures, populations,
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profits, etc., as these ideas related to the relevant
mathematics. One student described the course as "“easy
to relate to because of the use of actual things, for
example, divorces, memorization, dosage of medicine."
Another student explained, "It was much easier to catch
onto the concept initially when we could visualize the
problem. The applications to other areas 1like
economics, business, population, especially'helped in
the dnderstanding process." On one occasion, two
students were observed talking about the difference
between the population of a .city and its rate of
change. The nature of the problems that could be set
demanded a perception of what was going on before the
relevant mathematics was brought to bear.‘ The problems
also demanded students engage different ideas to solve
a problem, ideas from ordinary language, science,
mathematics, economics, etc. The trajectory, for
example, sparked numerous discussions about footballs,
streams of water, etc. and the ideas needed to explain
their behavior such as Velocity, path, distance, arc,
etc. The learning situation then became cooperatively
experimental as students tried out their ideas to see
if the computer would verify their hunches. Some
students felt guilty. One a student remarked, "I found

it too easy to rely on the computers for many questions
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when I could easily have done the-calculations in my
head."

Construcﬁivist principles could also be observed
emerging in practise. Independent 1learning through
active construction was promoted in that 1little time
was spent giving information. Because problem solving
was student directed, premature formalism was not a
concern. A student remarked, "It was beneficial
because it  encouraged students to think  for
themselves." For example, with the exercise concerning
the fundamental theorem of algebra, the problem was
simply set with the only hint being--use the rational
roots theorem to work backward from the roots to the
equation. The calculating power of the computer tﬁen
empowered student initiated investigation. One student
explained, "The computer was a great teacher aid. By
playing with the computer, I did not know that I was
actually learning calculus." (The computer made
learning of calculus easier.) The same situation
applied with éraphing curves to make (see Figure 36)
faces. 'Ideas can be tried out; the computer shows
whether they work. Past experiences were drawn upon
and concept assimilation Was promoted through dialogue.
A cooperative construction of meaning was observable as
students reflected on computer cal;ulations. One

student commented, "The students can draw the graphs on
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the screen eaéily. Then we can spend more time to
think about what the information that the graphs is
(sic), instead of waste time to draw the graph." In
function modelling exercises, for example, past
experience could be drawn on and conflicting views
simulated on the computer. Students were frequently
observed discussing details of problem situations.
Questionnaire results

The questionnaire (Table 5) was given to the
students at the end of the unit. The questions aim at
determining the degree to which students are aware of
the five  basic principles of the Perceptivist-
constructivist program being realized in practise. (see
pp.105-107) The students had‘no explicit knowledge of
the principles themselves, however. Question 1, 2[ 3
and 17 concerned actual perception, principle 1.
Questions 4, 5, and 18 concerned synthesis of
knowledge} principle 2. Question 6, 8, 9 and 7
concerned active construction of knowledge, principle
3. Questions 11, 12, 10 and 19 concerned relation to
past experiences, principle 4, and questions 13, 14,
15, 16 and 20 concept assimilation and accommodation,
principle 5. Thirty student replies were received.
A) Analysis of mean response to each question

The mean response to each question was calculated

together with the standard deviation and t-score
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(critical wvalue 2.16). The questions are given 1in
Table 5. Results are summarized in Table 6. H, was
that student response was a neutral 3. There seems to
be some evidence to suggest that students see
principles one, two and fiﬁe as being partially
realized in pfactise. The null hypothesis seems
acceptable however with regard to principles 2 and 3.

| Consider the items for principle one, actual
perception (see Table 6). H, was rejected for each of
items 1, 2, 3 and 17. The alternative is accepted for
each item and consequently for the group. Thus it 1is
accepted that the students  realized the principle of
actual perception.

For principle two, synthesis of knowledge, H, was
rejected for each of the items 4, 5 and 18. Thus, it
would appear that this principle was realized by the
students. This provides evidence, together with the
results concerning principle one that perceptivist
principles were realized in the <classroom. In
particular, it provides some evidence that the computer
facilitated the setting and solving of meaningful
calculus problems which promoted actual perceptién and
encouraged interdisciplinary thinking.

For principle ‘three, active <construction of
knowledge, H, was accepted for items 6, 8 and 9 while

the null hypothesis was rejected for item 7. Students
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did not realize this principle. This was disappointing
in the face of the goal of this unit. Apparently, the
"black box" aspect of the computer was bothersome to
some students who felt guilty or short changed by not
actually aoing the <calculation for themselves (see
field note p.138, for example). This suggests further
work might need to be done in reaching a compromise
between compute: calculation and manual calculation.

For principle four, relation‘to past experience,
H, was rejected for items 10 and 19 but accepted for
items 11 énd 12. The evidence here is mixed. The
positive results on items 10 and 19 do suggest students
were able to relate to the work the negative results on
items 11 and 12 may suggest they don’t realize why.

For ©principle five, concept assimilation and
accommodation, H, was accepted for item 13 but rejected
for items 14, 15, 16 and 20. The preponderance of
evidence indicates the principles were realized. of
special importance is the evidence that students seemed
to feel that the computer allowed them to become
involved with ideas without relying so much on the
authority of the teacher. Evidence for principle five,
togethef_with evidence for principles three and four to
a lesser extent, suggest constructivist principles were

partially realized in the‘computer classroom.
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Table 5 _
Student Questionnaire - Computer Calculus Unit

Directions

1) Please circle the number of the response which most closely
matches your agreement or disagreement with the statements as
you understand them.

2) There 1is definitely no right or wrong, favourable or
unfavourable response - just your honest opinion counts.

3) Please think about and review to yourself what happened in
the computer classroom. Base your responses on what you
recall actually happened in the computer classroom. )

Questions

1) There were many real world examples used to show the uses of
calculus. :

2) The questions used made me think about how situations would
actually look if I were to experience them myself.

3) The computer took care of most of the calculations for me.

4) The computer questions made me use knowledge from different
sources e.g. physics, business, common sense.

S) When I could get problems that required knowledge from
different sources it helped me understand the mathematics.

6) It was easier for me to get involved in 1learning calculus
with the help of the computer.

7) I found the calculus unit boring. I couldn’t relate to it.

8) When the computer did the calculations I could concentrate on
what the results meant.

9) Not knowing the details of how the computer made its
calculations left me with an incomplete understanding.

10) I didn’t enjoy the calculus unit because it was too abstract
and incomprehensible.

11) I had to draw on knowledge I already had to answer many of
the calculus problems.

12) Mathematics 1s no more nor less comprehensible with the
computer than without it.

13) The teacher spent a lot less time, compared to a regular
classroom, making class presentations, lectures etc.

14) I worked more on my own or in student groups in the computer
classroom instead of relying on the teacher for instruction.

15) The computer encouraged me to discuss things more with other
students to try to figure out what was going on.

16) The use of the computer in solving different problems helped
me understand and believe in calculus rather than accept it
on the teacher’s authority.

17) Calculus does not have any uses.

18) Calculus 1is not related to any subject areas outside of
mathematics.

19) Calculus is not useful in relating things in my life past,
present or future.

20) By introducing different subject areas into calculus problems
I got confused. It didn’t help me understand.

Rasponses
Strong Agree Agree Neutral Disagree Strong Disagree

1 5 4 3 -2 1

20) 5 4 3 2 1
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B) Analysis of responses by individual students

Positive responses (4-5) on questions 1, 2, 3, 4,
s, 6 8 9 11, 12, 13, 14, 15, 16 (group 1),
positively stated questions, ihdicate the realization
of principles in practise. Negative responses to 17,
18, 7, 10, 19, 20 (group 2), negatively stated
questions, also offer evidence for the realization of
principles. ‘Students scores were analyzed on this
basis, the results are summarized in Table 7. H,, the
null hypothesis, is that a student’s fesponse is a
neutral 3. H, is that student response is not neutral.

Ten student’s scores were H, on both positive and

negative questions. Six students had H, on positive
but H, on negative. Eight students had H, on positive
and H, on negative. This latter group of fourteen

students gave some indication of seeing Perceptivist-
constructivist principles being realized in practise.
Six students scored H, on both group of questions. As
tenuous as the results are, there is some evidence to
suggest that some students see Perceptivist-
constructivist theoretical principles being realized in
the computer classroom.

There 1is, in summary, tentative evidence for the
realization of some perceptivist-constructivist goals
in the computer-mathematics classroom. Field notes

suggest that a teacher should be able to observe the
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realization of some of the five principles in the
classroom. The questionnaire results indicate that
students in total see some principles realized and that
a majority of individual students see perceptivist-
constructivist principles partially realized in the

computer-mathematics classroom.
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Analysis of responses by individual students
(critical t=2.57)

Score

Student
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29

3.1

(contradict)

30

3.4

Group 1
sS.D. t H,/H, Mean S.D.
.7 4.28 H, 2 .6
.8 4.76 H, 3 .8
1 3.7 H, 1.6 .7
1.2 .63 H, 2.6 .5
.9 1.25 H, 1.5 .8
. 4.16 H, 1.5 .S
.9 4.16 H, 1.5 .5
1 3.7 H, 1.1 .4
.9 1.25 H, 1.8 .7
.8 3.33 H, 3.0 .6
1.1 .69 H, 1.6 .7
.7 2.1 H, 3.8 .4
.8 2.38 H, 2.1 .7
.8 2.4 H, 3.0 .6
.6 7.5 H, 2.1 .9
.6 7.5 H, 2.5 1.1
1.1 .69 H, 1.5 .5
.7 2.63 H, 2.1 4
.7 1.57 H, 2.0
.6 3.75 H, 2.6 .
.7 2.63 H, 2.5
.5 3.84 H, 2.1 .
1.1 -1,03 H, 1.6
(Contradict}
1 .74 H, 2.3 .7
1.1 3.10 H, 1 0
1.3 2.00 o .5 .8
.9 1.67 H, .8
1 74 H, R .5
.6 .62 - H, 3.5 4

.9 1.66 H, 2.3 .9

Group 2
t

-4.0
0
-4.83
-2
-1.52
- =7.5
-7.5
-11.88
-4.13

-4.8
5.0

-5.62
-2.50
-1.37
-1.52
-5.62
-4.82

-2.41
-5.0
-1.5
-1.5

+3.00

-1.89
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CHAPTER VIII
CONCLUSION AND RECOMMENDATIONS

The main.thesis of this paper has been that a
major way to improve secondary mathematics education is
to translate Perceptivist-constructivist principles
into practise by emphasizing curriculum that actively
involves the learner as constructor of knowledge and
that leads the learner to actual perception. The
traditional problems with this type of pragmatic,
utilitarian agenda have been that a large amount of
information transmission, from teacher to student, was
assumed necessary and that the computational
difficulties inherent in perceptions of reality were
overwhelming. The information age technological
innovation that mitigates the effects of both of these
problems is the personal computer with appropriate
software. Theoretical arguments, practical examples
and a report on a field test have been provided in
support of these claims.

In this final chapter conclusions will be stated
and discussed. . The conclusions focus on a) the five
basic principles of a Perceptivist—canstructivist
computer integrated mathematics program and b) the
extent to which the principles were observed as

translating into practise by a teacher and students in
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a grade 12, computer calculus field test. Suggestions
for further research will follow. Once organized,
informed computer wusage is practical in secondary
mathematics, many questions suggest themselves., A
selection of ten such questions, will be discussed.
Finally, some recommendations will be offered. These
recommendations are ‘in three areas of conéern. (a)
Professional development must equip teachers to deal
with new classroom complexities. The competent
professional must be able to deal with philosophy,
learning theory, mathematics and computer technology.
(b) Organized programs should be developed . to
systematically expleoit the <computer 1in secondary
mathematics. Random or "friday fun" usage wastes a
valuable resocurce and is unlikely to do much good. {c)
Finally, boards and ministries of education need to
rethink curricula in terms of active construction,
constructivism, and actual perception, perceptivism.
In the long term, the entiré ;urriculum needs to be
redone along Perceptivist-constructivist lines.
Conclusions

The writer of this paper has shown how a
philosophy of education, perceptivism, a theory of
knowledge acquisition, constructivism and their joint

application to the problem of computer usage in
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secondary mathematics, c¢an suggest ways to improve

secondary mathematics education. Detailed examples of

how the theory might actually translate into practice
have been given. Five basic principles are developed
in the paper.

1. Aim at actual perception of real world situations.
In so doing the learner 1is encouraged to get
beyond factual recall and concept mastery to
perception with, and use 0f, concepts. This
process goes beyond mere academic schooling to
utilitarian education in that knowledge becomes
applied. The computer facilitates this completion
of the educational process in mathematics by
managing the computational complexities. . Refer to
Figure 1 in Chapter I, for example.

2. Promote synthesis and interaction of knowledge
domains. By forcing different modes of
perception, and the languages that symbolize them
to interact, a fluid dynamic conceptual repertoire
is encouraged. Rather than having a specialized,
fragmented academic approcach to knowledge the
learner works toward an eclectic, integrated,
utilitarian one. The learner managés information
by choosing from and applying the best of a

collection of well tested conceptual systems, as
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the situation dictates. The computer facilitates
this process by boosting information processing
capability. Refer to Table 1 and- Figure 3 in
Chapter II for an example.

Encourage the active construction of knowledge by
the student rather than its passive reception.
Active réconstruction, re-invention or rediscovery
is mnot optional for understanding, it is
necessary. With the computer, relevant practical
applications bf mathematics are manageable at once
so that the student can relate to the concepts
more immed%gtely_ and begin reconstruction, re-
invention and/or rediscovery. - Computer héndling
of algdriﬁhms can make students less dependent on
the teacher and more dependent on their own _
resources. Refer, for example, to Figure 36
graphing a face in Chapter V,

Facilitate the incorporation of past knowledge and
experience into the learning situation. By so
doing the teacher encourages the student to draw
on knowledge from ordinary language -or other
domains. This process exploits existing
competence, promotes the integration of experience

and so empowers -students to use all their



152

abilities. Refer, for example, to the trajectory

project in Chapter IV.

5. Allow for conceptual conflict and accommodation to
help clarify ideas. By plunging into applications
right away, the computer enables students to
explore different ideas as their understanding is
taking shape. Competing ideas can vie for belief.
The computer is exploited here to carry out this
doing-is-believing exercise. The computer
empowers students to do things with concepts and
so to believe in, retain and reuse them; As an
example, see the fundamental theorem of algebra
exercise in Chapter V.

Evidence has been supplied to indicate that the
theory <c¢an actually be translated into practise.
Details of a computer calculus field test has been
given and discussed. The evidence here is tentative
and with limitations but does give some preliminary
support to the hypothesis that the theory can actually
be translated into practise. The program’s lessons and
instructional techniques need to be developed further.
What the writer has promoted is the idea that theory
can help practise and that there is reason to believe
that theoretically motivated suggestions work in the

classroom.
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Suggestions for further research
Many questions suggest themselves as the

possibility OE“ extensive computer wusage in the

mathematics classroom becomes a real possibility.

Certain theoretically motivated claims have been made

that would need empirical verification. For example,

more field work is needed to provide evidence relevant
to answering the following duestions.

1. Can the computer shift mathematics away from
computation toward application? Can this be done
without lowering performance levels? Heid (1988),
for example, has shown how £first year computer
calculus » students do almost as well as
traditionally instructed studénts on basic skills
and better on conceptual understanding. Further
research needs to be done to determine the
benefits of computer use and tne trade-offs
computer usage may necessitate.

2. By introducing interfering, competing ideas, does
use of applications <clarify or confuse? Do
students benefit from conceptual conflict and
competition involved in applied computer
mathematics or do they simply suffer information
overload? It may well Dbe necessary to

differentiate curriculum and instruction.
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Different ability levels may tolerate different
levels of conceptual conflict.

Can teachers develop and teach an applied
mathematics curriculum? Under what conditions can
teachers be prepared to handle the philosophy,
instructional theory, computer proficiency and
understanding of applications needed to teach
Perceptivist-constructivist mathemétics? The
adequacy of present teacher, present teacher
training and in-service programs needs to be
analyzed.

Whenever results favourable to Perceptivist-
constructivist computer mathematics are obtained,
do they represent genuine substantive improvement
or Jjust Hawthorne effect? Evidence is required
over the long term as to whether or not the
computer is just a technological fad that produces
results because of its novelty.

Is there more student time-on-task with the
computer exploration approach than with the
traditional teacher leéﬁure approach? The
expectation might be that the computer can help to
engage the student as an active constructor of
knowledge.and( as a result, yield more time-on-

task. But perhaps simple transmission is superior
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beéause of direct teacher control of the learning
environment. Student investigation may be chaotic
and off task.
Do students draw on and integrate past experience
while using Perceptivist-constructivist based
computer mathematics activities more than with
traditional lecture presentations?
Are alternate conceptions more eaéily resolved
with computer help than with lecture
presentations? Is the freedom from thé burden of
computation exploited by the student to
investigate different approaches?’
Is there more cooperative learning with computer
mathematics than with traditional-methods? Does
the public nature of the computer encourage
student cooperation?
Is interdisciplinary computer learning retained
longer than learning with traditional methods?
Does interdisciplinary <computer learning, - by
increasing realism and relevance, help the student
to relate to the mathematics, incorporate it into
his active cognitive repertoire and so retain it
longer. Or is the T"realism and relevance"
perceived as introducing more complexities, making

an already difficult subject impossible?
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10. 1Is interdisciplinary computer learning accepted
and used more thah learning from traditional
teaching? Ford (1979) wrote about the prevalence
of students '"going through the motions" but
believing 1little. The way the computer empowers
the student to see the world in a new way would
hopefully motivate the student to feel a sense of

'ownership. Whether this is so needs empirical

investigation.:
Recommendations

On the theoretical level, mathematics teachers who
wish to use the computer need -a background 1in
Perceptivism and Constructivism, or some other
educational theories, to provide a basis for
understanding what they will be trying to do with the
computer. Professional in-service and teacher training
must provide opportunities in this area.

Action plans need to be developed to mobilize
mathematics teachers into using the computer.
Hardware, software, programs of computer integration
and sequences of lessons should be developed and made
available. Pilot programs need to be developed so that
comparisons between traditional and computer
integrated, Perceptivist-constructivist mathematics

classes can be made.
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Only when the computer 1s systematically and
knowingly exploited, using sound theoretical
principles, can computer mathematics legitimately be
empirically compared to traditional. Programs such as
outlined in Table 8 are needed as are classroom tested
computer lesson packages. The programs are needed to
systematically exploit the various computer
capabilities 1in an. attempt to achieve Perceptivist-
constructivist goals. Table 8 suggests one
configuration of lesson sequences that might be offered
in grades 8-12. This would constitute, in outline
form, an initial attempt to, as Brauner (1987)
suggested, restructure the curriculum in terms of the
pérceptions students are required to attain. The
computef would be not Just an add-on to such a
curriculum but an integral part of it. Refer to
Figure 3.

Table 8 would hopefully be useful in the
development of a coordinated plan for the improvement
of mathematics education involving philosophy,
mathematics and the computer. The basic computer
capabilities, 1listed horizontally, across the table,
would be systematically exploited, throughout grades 8-
12, to deliver curriculum. The curriculum would aim at

achieving actual perception. Curriculum topics, and
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the actual perceptions they aim to produce, would
gradually fill the table as educational consensus 1is
reached concerning the practical implications of the
Perceptivist-constructivist principles. The completed
table would Dbe a design specification on a
Perceptivist-constructivist, computer integrated
mathematics program. In grade 8, number might be a
central concept and various computer capabilities could
be exploited to enable actual perceptions involving
number (e.g.. mean, decimal repeater, bar graph). In
grade 12, function might be a central concept and
various computer capabilities such as graphing and
symbolic manipulation as outlined in Chapter IV, could
be used to boost student information processing quickly
to the level at which perception is poésible. The
importance of the recommendation here lies not in the
_ specific details in the table but in the call for
consensus and cooperation to reconcile the demands of
philosophy, mathematics and the computer to produce a
contemporary, information age mathematics program.

Boards and ministries of education need to realize
that the potential of the computer is not confined to
mathematics. The insights provided by Perceptivism-
constructivism indicate that the information age

promise of the computer involves the growing
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interdependence of different knowledge domains and the
information management function of technology in this
interdependence. Meaningful mathematics requires
meaningful education és a whole. A curriculum based on
the modes of perception and aimed at students achieving
actual perceptions should be the long term goal of

computer assisted, information age, educational reform.
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APPENDIX

The role of mathematical realism in perceptivism
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In order to facilitate explanation, Figure 1 on
page 19 simplifies a theoretical point of considerable
importance. A version of mathematical realism 1is
implicit in the diagram to the extent that it &ppears
to be possible to perceive mathematical aspects of -
reality. The computerized mathematical applications
supplied by the writer are meant to demonstrate that
the meaning of mathematics is revealed tb the studeht
through its use in the perception and description of
aspects of reality.

In discussions with the writer, Brauner (personal
communication, September 15, 1889) has pointed out that
Perceptivism 1is not the handmaiden of mathematical
realism as the writer might have implied. Brauner
insists that Perceptivism says nothing about reality.
This writer finds Brauner’s Perceptivism compatible
with mathematical realism whereas Brauner himself does
not. Brauner seems to be content with a
conventionalist position that sees mathematics as a
self consistent logical system. Whether that system
accounts for things in the world of experience is
viewed as having nothing to do with mathematics as
such.

In Table 1 on page 25, along side the heading

"examples", Brauner provides examples of perceptions in
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the different modes. He 1is careful to distinguish
between éeeing in mythic, thesistic, theoretic,
standard, primal, primary and operational perception
and identifying or recognizing with regard to thematic
and relational perception respectively. In the latter
two qéses Brauner wants to hold that T"actual
perception" is not possible but at best only the
identification or ;ecognition of some conventional
pattern in pre-existing perceptions is possible.

What this writer finds objectionable in Brauner’s
characterization of the two "exceptional cases" is the
implicit view that "direct, uninferred" perception is

possible in the other cases, but not in relational or

thematic perception. But perception, seeing, is never
direct. At best only an inferred reality 1is
observable. To the extent that mathematical concepts

and theories are used and confirmed in the public
cognitive forum, mathematical realism would hold that
they give at least probable knowledge about aspects of
reality, Jjust as concepts and theories from other
domains of knowledge. A free choice is available, from
among the various accepted conceptual and theoretical,
perception-enabling, world builders but they are all on
a par with respect to epistemclogical immediacy except

on some dubious or arbitrary grounds. None can Dbe



173
assumed to give a more "direct" perception of reality
than any other. For this reason the writer holds that
it is reasonable to claim that mathematics can give at
least probable knowledge of aspects of reality. A more
detailed discussion of this issue of realism is
available in Copeland (1985).

The extension the writer gives to basic
Perceptivism, in the direction of mathematical realism,
is based on ' both philosophical and pedagogic
considerations. The pedagogic considerations center on
the simplicity and directness of realism as a way to
motivate and explain the uses of mathematics to
students. Philosophically, the view stands up nicely
to the competition. Even 1in standard perception
concepts o©of ordinary language such as "table" or
"horse" mediate perception. In mathematics the same
thing happens. What mathematical realism interprets is
the view that the relations perceived are actual
relationships in the world. Quine, as for example,
argues that

~From among the various conceptual " schemes

best suited to these various pursuits, one--
the phenomenalistic--claims epistemological

priority. Viewed from within the
phenomenalistic conceptual scheme, the
ontologies of physical objects and
mathematical objects are myths. The quality

of myth, however, is relative; relative, in
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this case, to the epistemological point of

view. This point of view 1s one among

various, corresponding to one among our

various interests and purposes. '
(Quine, 1953, p.19)

There 1is no fact, Brauner agrees, apart from some
theoretical point of view. Mathematical knowledge can
have as much or as little immediacy to reality as any
other form of knowledge. Beth, in arguing for a new

version of mathematical realism, compares mathematicalv
pérception, which Brauner does not accept, with

scientific perception in physics, which he does.

Deductive theories cannot, in general,
provide an adequate  description of~
mathematical structures; therefore, it seems
likely that our knowledge of such structures
has, at least partly, an intuitive, an
immediate character ... It does not follow
of course that all mathematics consists of
such knowledge, or that the deductive
theories of modern mathematics should be
judged exclusively by their conformity to our
mathematical intuition. It seems wiser to
suppose, with Bernays, that mathematics
results from our rationally remodelling those
fundamental insights which originate from our

mathematical intuition. In the respect
mathematics might be reasonably compared to
physics.

(Beth, 1959, p.643)

What this writer is claiming is that a realistic
interpretation of Perceptivism is a philosophical and
pedagogic possibility that provides a useful way of

thinking about mathematics, mathematics education and
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the mathematical uses of the computer. Other forms of
Perceptivism may also be defensible and useful. This
would be neither surprising nor upsetting since the
debate between realism, idealism, intuitionism and

formalism is still an open question.
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