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ABSTRACT 

Several methods are available for the treatment of missing data. Most of the methods are 

based on the assumption that data are missing completely at random (MCAR). However, data 

sets that are M C A R are rare in psycho-educational research. This gives rise to the need for 

investigating the performance of missing data treatments (MDTs) with non-randomly or 

systematically missing data, an area that has not received much attention by researchers in the 

past. 

In the current simulation study, the performance of four MDTs, namely, mean 

substitution (MS), pairwise deletion (PW), expectation-maximization method (EM), and 

regression imputation (RS), was investigated in a linear multiple regression context. Four 

investigations were conducted involving four predictors under low and high multiple R 2 , and nine 

predictors under low and high multiple R 2 . In addition, each investigation was conducted under 

three different sample size conditions (94, 153, and 265). The design factors were missing 

pattern (2 levels), percent missing (3 levels) and non-normality (4 levels). This design gave rise 

to 72 treatment conditions. The sampling was replicated one thousand times in each condition. 

MDTs were evaluated based on accuracy of parameter estimates. In addition, the bias in 

parameter estimates, and coverage probability of regression coefficients, were computed. 

The effect of missing pattern, percent missing, and non-normality on absolute error for 

R2estimate was of practical significance. In the estimation of R 2 , E M was the most accurate under 

the low R 2 condition, and PW was the most accurate under the high R 2 condition. No M D T was 

consistently least biased under low R 2 condition. However, with nine predictors under the high 

R 2 condition, PW was generally the least biased, with a tendency to overestimate population R 2 . 

The mean absolute error (MAE) tended to increase with increasing non-normality and increasing 

percent missing. Also, the M A E in R2
estimate tended to be smaller under monotonic pattern than 

under non-monotonic pattern. MDTs were most differentiated at the highest level of percent 

missing (20%), and under non-monotonic missing pattern. 
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In the estimation of regression coefficients, RS generally outperformed the other M D T s 

with respect to accuracy of regression coefficients as measured by M A E . However, E M was 

competitive under the four predictors, low R 2 condition. M D T s were most differentiated only in 

the estimation of Pi, the coefficient of the variable with no missing values. M D T s were 

undifferentiated in their performance in the estimation for b2,.. .,bp, p = 4 or 9, although the M A E 

remained fairly the same across all the regression coefficients. The M A E increased with 

increasing non-normality and percent missing, but decreased with increasing sample size. The 

M A E was generally greater under non-monotonic pattern than under monotonic pattern. Wi th 

four predictors, the least bias was under RS regardless of the magnitude of population R 2 . Under 

nine predictors, the least bias was under P W regardless of population R 2 . 

The results for coverage probabilities were generally similar to those under estimation of 

regression coefficients, with coverage probabilities closest to nominal alpha under R S . A s 

expected, coverage probabilities decreased with increasing non-normality for each M D T , with 

values being closest to nominal value for normal data. M D T s were most differentiated with 

respect to coverage probabilities under non-monotonic pattern than under monotonic pattern. 

Important implications of the results to researchers are numerous. First, the choice of 

M D T was found to depend on the magnitude of population R 2 , number of predictors, as well as 

on the parameter estimate of interest. With the estimation of R 2 as the goal of analysis, use of E M 

is recommended i f the anticipated R 2 is low (about .2). However, i f the anticipated R 2 is high 

(about .6), use of P W is recommended. Wi th the estimation of regression coefficients as the goal 

of analysis, the choice of M D T was found to be most crucial for the variable with no missing 

data. The RS method is most recommended with respect to estimation accuracy of regression 

coefficients, although greater bias was recorded under RS than under P W or M S when the 

number of predictors was large (i.e., nine predictors). Second, the choice of M D T seems to be of 

little concern i f the proportion of missing data is 10 percent, and also i f the missing pattern is 

monotonic rather than non-monotonic. Third, the proportion of missing data seems to have less 
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impact on the accuracy of parameter estimates under monotonic missing pattern than under non­

monotonic missing pattern. Fourth, it is recommended for researchers that in the control of Type 

I error rates under low R 2 condition, the E M method should be used as it produced coverage 

probability of regression coefficients closest to nominal value at .05 level. However, in the 

control of Type I error rates under high R 2 condition, the R S method is recommended. 

Considering that simulated data were used in the present study, it is suggested that future research 

should attempt to validate the findings of the present study using real field data. Also , a future 

investigator could modify the number of predictors as well as the confidence interval in the 

calculation of coverage probabilities to extend generalization of results. 
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CHAPTER 1 

INTRODUCTION 

Researchers employing multivariate data analysis techniques (e.g., multiple regression, 

discriminant analysis, and canonical correlation) commonly encounter the problem of dealing 

with missing data on one or more variables (Gleason & Staelin, 1975). In particular, the problem 

of missing data is most acute in field experiments (Lepkowski, Landis, & Stehouer, 1987) and 

surveys (Kim & Curry, 1977). With missing data, it may be necessary to apply a suitable 

treatment during the statistical analysis. The basic aim of treating missing data is to improve the 

accuracy of the parameter estimates of interest. This may reduce the likelihood of making a 

wrong statistical inference. 

Missing data may be planned by a researcher or unplanned. The present study is 

primarily concerned with unplanned missing data. Common causes of unplanned missing data 

include omission and attrition. Omissions occur when some respondents fail to answer some 

items on a questionnaire. Such may occur in the middle of a survey or at the end. Omissions that 

occur in the middle of a survey instrument may be due to a respondent simply not seeing a 

question, or forgetting to go back to skipped questions. Attrition occurs when subjects drop out 

prematurely. Examples of studies where attrition is common include panel surveys or cohort 

studies with designs that involve repeated measurements. The resulting data are unbalanced, 

sometimes with unequal numbers of measures for each respondent. 

The easiest method for handling missing data is to discard all cases with missing values. 

However, Raymond and Roberts (1987) noted a serious limitation of this approach is that it 

encourages researchers to overlook available data. Further, as the number of variables increases, 

increasing amounts of data are ignored, even if the total number of missing values remains 

constant. 

Several techniques, referred to as missing data treatments (MDTs), have been proposed 

for handling missing data. One popular method is the pairwise deletion or piecemeal method. 

With this method, all available data are used to compute means and variances, while all available 
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pairs of values are employed in the computation of covariances. Another common procedure is 

mean substitution in which missing values are replaced by the mean of the variable. In addition, 

numerous regression imputation procedures have been proposed. These methods make use of 

information present in the covariates to estimate the missing values for a variable of interest. The 

more complex procedures include the iterated linear regression methods, one form of which is 

known as expectation-maximization method (EM). 

Listwise deletion, pairwise deletion, and mean substitution are already included in 

various statistical computer softwares. In the present study, I investigated the performance of 

commonly used MDTs that are popular in computer software, and also E M which is currently 

much talked about in electronic forums, SEMNET and AERA-D*. Important research issues 

discussed below guided the investigation. 

Research Issues 

There are a number of issues pertaining to current knowledge about MDTs that require 

attention. Firstly, whereas MDTs have been around for over six decades, the number of studies 

on some MDTs has remained inadequate. In particular, Roth (1994) noted that although the 

number of studies that have assessed the bias of simple MDTs (e.g., mean substitution and 

pairwise deletion) is substantial, research on more complex MDTs like E M is limited. The small 

number of studies on MDTs did confine comparisons of the E M method to listwise and pairwise 

deletion methods, and paid little or no attention to other treatments. 

Few studies have systematically incorporated the various patterns of missing data, and 

most researchers have made use of randomly deleted data. Although most MDTs were developed 

for use with randomly missing data, such data sets are rare in psycho-educational research where 

missingness in one variable is likely to be related to measurements in another variable within the 

same data set. Only two studies that made use of non-randomly missing data were found in the 

* SEMNET is an electronic forum for academic exchanges on topics related to structural equations modeling. AERA-D is an 
electronic forum for exchanges on methodological issues among members of the American Educational Research Association. 
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literature. Azen, Van Guilder, and Hil l (1989) compared the performance of three approaches 

(complete cases, pairwise deletion, and E M algorithm) in estimating regression parameters and 

missing values under varying design conditions that included pattern of missing data. However, 

they did not investigate how the MDTs might affect the test of hypotheses about the regression 

coefficients. In addition, their simulation consisted of only 50 replications under design 

conditions whose selection criteria were arbitrary. 

Kromrey and Hines (1994) compared the performance of MDTs by investigating the 

effects of systematically missing data on the parameter estimates of a multiple linear regression 

model. As in Azen et al., they did not investigate the relative performance of MDTs in 

hypothesis testing. Also, they used only a two-predictor regression model. Two predictor linear 

regression models are rarely found in applied research. There is need to compare different MDTs 

within or across data sets with different non-random patterns of missing data and under 

simulation conditions that are more representative of real data. The common procedure in most 

M D T studies is that samples with known statistical properties are randomly selected from a 

population, and portions of the samples are then randomly deleted and treated with various 

MDTs. For each MDT, the bias or accuracy of parameter estimates is assessed with respect to the 

population parameters. 

Many of the probability statements yielded by methods of statistical inference are based 

on the assumption of normality. In particular, the OLS estimation of regression parameters is one 

of the statistical procedures most commonly understood to be affected by distribution 

assumptions (Mooney & Duval, 1993). To make inferential statements using OLS, we need to 

assume that the random residual in the model is normally distributed (Draper & Smith, 1981, 

p.23). This assumption is required because the sampling distribution of the OLS estimator is 

based on the random residual of the model. If we assume normality when non-normality actually 

holds, our hypothesis tests could lead to false rejection of the null hypothesis, that is, our 

confidence intervals and hypothesis tests could have a greater than nominal probability of Type I 

error. Alternatively, such hypothesis tests could lead to Type I error rates that are smaller than 
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the nominal value, and this can be problematic i f they come with a corresponding reduction in 

statistical power. 

Whereas researchers have investigated the effectiveness of various M D T s under different 

sample sizes, proportion of missing data, size of correlation, and number of variables, very few 

studies have explicitly investigated the relative performance of M D T s under violation of 

multivariate normality. A s observed by Fleishman (1978), many of the psychological variables 

found in practice are skewed and/or kurtotic to various degrees. In a study based on over 500 

score distributions which were reasonably representative samples of psychometric, achievement, 

and ability measures, Miccer i (1989) found that only 6.8% of the distributions exhibited both tail 

weight and symmetry approximating that expected of normal distributions. In addition, 100% of 

the distributions were significantly non-normal at an alpha level of .01. This shows how 

prevalent non-normal distributions are in psycho-educational research and the importance of 

investigating how M D T s might function under non-normality of distributions. 

Current Study 

Previous researchers have investigated the accuracy of parameter estimates after different 

treatments of missing data. However, most of these studies have tended to focus more on 

normally distributed data sets in which data were missing completely at random ( M C A R ) . Little 

is known about the bias and accuracy of parameter estimates when different M D T s are used to 

treat systematically missing data. Also , little is known about the performance of M D T s under 

violation of normality. In addition, researchers have tended to ignore investigating how 

hypothesis testing might be affected under various design conditions. In the present study, 

systematically missing data were used, and non-normality was incorporated as a factor in the 

design. 

The present study was based on multiple linear regression models in which data were 

missing only in the predictors (X's). The related problem of missing values in the outcome 

variable (Y) is less interesting in the sense that i f the predictors are complete, then the missing 
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cases contribute no information to the regression equation of Y on the set of predictors under 

conditions of M C A R (cf. Little, 1992). Multiple regression models have been used in a majority 

of previous studies. Raymond and Roberts (1987), Beale and Little (1975), and Little (1992) 

compared MDTs in a linear regression context. With respect to non-randomly missing data, 

Azen, Guilder, and Hil l (1989) and Kromrey and Hines (1994) also investigated the effectiveness 

of MDTs in a multiple linear regression context. Further, as noted by Little (1992), the focus on 

regression models is justified by the fact that many studies in social and behavioral sciences often 

make use of these models. Considering that regression imputation and the E M method have not 

received much attention, I investigated the accuracy and bias of parameter estimates, as well as 

the coverage probability for population regression coefficients under expectation-maximization 

method (EM), mean substitution (MS) method, pairwise deletion (PW) method, and simple 

regression imputation (RS) method. 

Shchigolev (1960/1965) noted that the two most useful measures in the evaluation of 

errors are the mean absolute error of estimation (MAE) and the mean square error of estimation 

(MSE). Note that the M A E is not the same as the mean absolute deviation of the parameter 

estimate, and the M S E is not the same as the standard deviation of the parameter estimate. The 

difference arises from the fact that for mean absolute deviation and standard deviation, the 

deviations are from the mean. However, for M A E and MSE, the deviations are from the true 

population value. Both the M A E and the M S E provide information on the spread (closeness) of 

the parameter estimates around the true population value, the only advantage of M S E over M A E 

being that M S E is more mathematically tractable, an advantage that was not of necessity in the 

present study. Therefore, the M A E was used to evaluate the accuracy of parameter estimates in 

the present study. The M A E was obtained by first computing the absolute error of estimation, 

defined as the absolute deviation of each parameter estimate from the model value, then 

calculating the mean of the absolute values. In addition, as suggested by Judge, Hi l l , Griffiths, 

Lutkepohl, and Lee (1988), an optimal performance was obtained when both M A E and bias of 

parameter estimates were smallest. Therefore, as in Anderson, Stone-Rumero, and Tisak (1996), 
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the bias of parameter estimates, defined as the difference between the true parameter (that derived 

from the population model) and the mean of the estimators was also computed. The following 

research questions guided the conduct of the present study: 

1. What are the effects of missing pattern, percent missing, and non-normality on absolute error 

of parameter estimates of a multiple regression model (MRM) when missing data are treated 

with selected MDTs? 

2. What is the relative performance of MDTs with respect to accuracy and bias of parameter 

estimates under various conditions? 

3. What is the relative performance of MDTs with respect to coverage probabilities of 

regression coefficients at the conventional alpha level of .05? 

In real world settings, missing data are the rule rather than the exception (Kolb & Dayton, 

1995). The common practice of deleting cases with missing observations is of questionable 

validity since, typically, there is little evidence supporting that the data are missing randomly. 

Unfortunately, researchers have continued to give greater attention to evaluating MDTs under 

M C A R condition, simply because commonly used MDTs are based on the M C A R assumption. 

Whether data sets violate the M C A R assumption or not, researchers will continue using MDTs. 

It is therefore important to evaluate MDTs using non-MCAR data, as this is what researchers 

commonly encounter in the field. Consequently, the researchers would be able to make informed 

judgment concerning which M D T to apply for various types of data. This may improve the 

accuracy of decision-making in research, with the possibility of influencing practice in psycho-

educational settings. 

The E M method of treating missing data is based on normal theory. However, most field 

data are non-normal (Micceri, 1989). By employing simulation methodology, it would be 

possible to provide evidence of conditions under which normal theory based E M method breaks 
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down. Such findings would be of importance to practitioners in understanding when not to apply 

the E M method. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter begins with a review of types of missing data. This is followed by a 

description of methods of treating missing data, and an analysis of previous studies involving 

MDTs that were identified through manual and electronic searches. The databases searched 

included ERIC: Educational Resources, Education Index, and Psychlnfo. The search began by 

using the title words "missing data" and "incomplete data." This led to a number of books and 

articles with the following descriptors: statistical data, statistical regression, multiple regression, 

models, maximum likelihood, mathematical modeling, multivariate analysis, and algorithms. 

These descriptors were used for a more in-depth search. 

Types of Missing Data 

According to Cochran (1983), missing data may be of two types, namely, unit non-

response or item non-response. This section describes these two types of missing data. 

Unit Non-response 

Sometimes, none of the variables of interest is measured for a unit or subunit in a survey. 

For example, the mailed questionnaire may not be returned, or the interviewer may not find 

anyone at home. Cochran (1983) called this type of non-response "unit non-response." Unit non-

response occurs if a unit is selected for the sample and is eligible for the survey, but no response 

is obtained for the unit or the obtained response is unusable. Causes of unit non-response include 

language problems, total refusal to respond, or the responses given are classified as unusable. 

The problem of how to handle unit non-response goes back to the 1930s, the same period 

when many of the standard techniques and results in probability sampling were developed 

(Cochran, 1983). Quota sampling is an early example of a group of methods whose aim was to 

cut down or eliminate non-response when data are being collected in the field (King, 1983). This 
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method is based on full probability sampling of a target population. The method was developed 

to cut down on field costs by taking stratified samples for public opinion surveys. It enables one 

to obtain a desired number of completed cases in a relatively short period of field time. Sudman 

(1967) noted that the method involves drawing sampling locations down to the block level with 

exactly the same technique of multistage selection with probabilities proportional to size as in full 

probability sampling. 

Miss ing data are encountered in randomized experiments as well , and the development of 

methods for making estimates of the effects of the treatment from experiments with missing data 

also began in the 1930s. According to Cochran (1983), the technique most widely used in field 

experiments applies the standard least squares model for the analysis of the complete results of 

field experiments to the missing data that are present. This is an approach that makes use of 

"fil l ing in" or "imputing" values for all the missing observations by formulae so that the standard 

analysis of the completed data gives the same estimates as the least squares analysis of the 

missing data. This approach does not require that the units (e.g., respondents) for whom the data 

are missing be a random subsample of the units in the experiment (Cochran, 1983). 

Item Non-response 

In a survey, it sometimes occurs that for certain questions, either no answer is given or 

the answer is judged to contain a gross error and is deleted during editing. Usually, such 

questions are sensitive. Examples of such questions may concern income, or when the 

respondent does not have the information. This type of missing data is called an item non-

response (Cochran, 1983). 

Cochran (1983) provided a more detailed explanation of circumstances that may lead to 

item non-response. He noted that item non-response occurs i f questions that should be answered 

are not answered, or i f the answers are classified as unusable. Sometimes, item non-response 

occurs because response to an instrument or question is broken off after being partly completed, 
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but the partial response is not classified as a unit non-response. Item non-response may occur 

because the respondent does not have the information needed for one or more questions, because 

the respondent refuses to answer specific questions, or because the interviewer or respondent 

skips the question. Item non-response may occur for blocks of questions: an interviewer may 

miss a branch point in an interview, or a respondent may refuse to answer all questions on a 

specific subject, say, income or the final questions in an interview. Such data sets tend to display 

non-random patterns because the cause of missingness is related to the measurement process and 

instrument design. 

According to Cochran (1983), the earliest paper on item non-response was that of Wi lks 

in 1932. In that paper, a random sample from a bivariate normal distribution was considered. 

Wi lks (1932) considered the following situation under M C A R condition. Suppose in n ) 2 

observations, Xx and X2 were both measured. Also , suppose that in nio observations, Xx is 

measured but X2 is missing. Further, suppose that in n02 observations, X2 is measured but Xx 

is missing. Wi lks found maximum likelihood estimates of the parameters px, j l 2 , O",, r J 2 , and 

A A 

p , and gave large sample formulas for the variances and covariance of px and p2 . However, 

he noted that his estimates were not particularly simple to compute. Therefore, he proposed mean 

substitution as a simpler method for treating missing data. In this case, i f the no2 units in which 

Xx was missing were a random sample, the mean of all the n 1 2 + n i 0 measured values of Xx is 

used as an estimate of px . 

Methods of Treating Missing Data 

Existing techniques of handling unplanned missing data may be classified into two broad 

categories: deletion methods and imputation (filling in) methods. 
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Deletion Methods 

Listwise Deletion. This method, also referred to as complete case analysis, is the most 

obvious method of handling missing data. The method involves discarding cases with any 

missing values. In this approach, entire data records with missing data are deleted. Advantages 

of listwise deletion are ease of implementation and the fact that valid inference is obtained when 

missingness depends on the regressors (Little, 1992). Other advantages are that it always 

generates consistent covariance and correlation matrices, and test statistics used with complete 

data can be used without modification (Kim & Curry, 1977). 

Although listwise deletion is commonly used (Gilley & Leone, 1991), a serious limitation 

of the approach is that it encourages researchers to overlook available data. Also, it sacrifices 

huge amounts of data (Reinecke & Schimdt, 1996; Malhotra, 1987; Stumpf, 1978; Little, 1992), 

with the possible result of a decrease in power (Gilley & Leone, 1991) and an introduction of bias 

in parameter estimation (Donner, 1982; Little & Rubin, 1987). If the number of predictors is 

large, then even a sparse pattern of missing data in the predictors can result in a substantial 

number of missing cases (Little, 1992). Researchers should therefore avoid the use of listwise 

deletion as a treatment method for missing data as it involves the complete loss of individual 

cases. If the M C A R (missing completely at random) assumption is not fulfilled, the values of the 

covariance matrix based on listwise deletion procedure are underestimated (Reinecke & Schimdt, 

1996). 

Pairwise Deletion. In this method, all possible cases with valid data are used to calculate 

means and variances, while all available pairs of values are used in the computation of 

covariances (Little & Rubin, 1987). As noted by Reinecke and Schimdt (1996), this method 

provides more benefit than the listwise deletion because it uses all available information. Like in 

listwise deletion, pairwise deletion assumes that missing data are M C A R . When the sample size 

is small and the number of cases with missing information is high, or when the predictor variables 
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are highly correlated, the resulting covariance matrix of the predictors generated by pairwise 

deletion of missing data may not be positive-definite. A symmetric matrix A and its associated 

quadratic form are positive definite if x'Ax > 0 for all nonnull x. If a covariance matrix is not 

positive-definite, regression coefficients based on it are indeterminate (Kim & Curry, 1977; 

Little, 1992), because all required computations are not possible. 

In contrast to listwise deletion, the values of the covariance matrix based on pairwise 

deletion method are overestimated. Comparisons as to which of the matrices give more 

consistent and efficient results are lacking in the literature (Allison, 1987; Brown, 1994). 

Imputation Methods 

Mean Substitution. One of the simplest techniques used in the imputation of missing data 

is the mean substitution method, also known as unconditional mean substitution. This method, 

proposed by Wilks (1932), simply substitutes missing values by the mean of the non-missing 

values for that variable. 

Although mean substitution preserves data and is easy to use, it also tends to attenuate 

variance estimates (Roth, 1994). Computed variance estimates decrease as more means are added 

to calculations. For example, a researcher may have 40 subjects, but 5 have missing data. Mean 

substitution might suggest that we add 5 means to the 35 scores. This would increase the N in the 

calculation of variance, but would not increase the deviations around the mean added by the 5 

additional cases. Subsequently, covariance estimates are also attenuated (Little, 1988; Malhotra, 

1987). Researchers may also believe they have more degrees of freedom than is warranted, 

because substituted means are not independent from other observations in the data. 

Regression Imputation. Regression imputation is yet another method for treating missing 

data. This method, proposed for the first time by Buck (1960), begins with the estimation of the 

mean and covariance matrix from the sample mean and covariance matrix based on complete 
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cases. These estimates are then used to regress the variable with missing data on a variable with 

complete data. Using the resulting linear regression equation, missing data are imputed case by 

case. Put differently, this method computes predicted estimates for any missing entry by using a 

linear regression equation. 

Expectation-Maximization (EMI Method. The E M method for estimating missing data is 

one of the various maximum likelihood (ML) imputation approaches. M L methods for imputing 

missing data generally assume that the observed data are a sample drawn from a multivariate 

normal distribution and M C A R (DeSarbo et al., 1986). Little and Rubin (1987) described one 

such method for general patterns of missing data with ignorable non-response. In this method, it 

is assumed that the data are M A R and the objective is to maximize the likelihood function. If the 

likelihood is differentiable and unimodal, maximum likelihood estimates can be found. However, 

if this is not possible, then iterative methods like the Newton-Raphson algorithm or the method of 

scoring can be applied. Both these methods involve calculating the matrix of second derivatives 

of the loglikelihood. For complex patterns of incomplete data, the entries in this matrix tend to be 

complicated functions. As a result, to be practicable the methods can require careful algebraic 

manipulations and efficient programming. 

Little and Rubin (1987) noted that an alternative computing strategy for incomplete-data 

problems, which does not require second derivatives to be calculated or approximated, is the 

Expectation-Maximization (EM) method. This method is remarkably simple, both conceptually 

and computationally. Graham, Hofer, and Piccinin (1994) stressed the importance of the fact that 

different E M methods are required for different kinds of analysis. However, they noted that in 

many analyses involving the general linear model, the iterative E M method could be extensively 

useful because the covariance matrix can be used as input. The iterative E M method replaces 

missing values by estimated values, estimates parameters, reestimates the missing values 

assuming the new parameter estimates are correct, reestimates parameters, and so forth, iterating 
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until convergence (i.e., until there is no improvement in the estimated parameters). This 

procedure is available in B M D P A M (Dixon, 1988). A n important difference between the 

scoring algorithm and the E M method is that the former requires inversion of the information 

matrices of p. and Z at each iteration. 

The E M method consists of two steps: an E step (estimation step) and an M step 

(maximization step). According to Little and Rubin (1987), the E step is used to calculate the 

conditional expectations of the "missing data" given the observed data and current estimated 

parameters. The calculated conditional expectations are then substituted for the "missing data." 

The quotations around "missing data" imply that E M does not necessarily substitute the missing 

values. The M step of the E M algorithm performs maximum likelihood estimation of 9 just as i f 

there were no missing data, that is, as i f they had been substituted with estimates at the E step. 

The mathematical treatment of iterative E M algorithm as used in the present study, and discussed 

in greater detail in Little (1983) and Little and Rubin (1987), is as follows: 

Suppose that the hypothetical complete data y = ( y y ) is a random sample from the K-

variate normal distribution, with mean fl and covariance matrix £ . This belongs to the regular 

exponential family 

where A and B are scalar functions, 9 is an r by 1 vector of parameters, and t(ys) is an r by 1 

vector of complete data sufficient statistics. In this case, the sufficient statistics t(ys) is given by 

the sample means 

f(y,.0) = 
B(ys)expfyTt(ys)} 

A(9) 
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and the uncorrected sample sum of squares and cross-products matrix d , with (j,k) th element 

rfj*=Xw*« j,k = \,...,K. 
1=1 

The complete data maximum likelihood estimates are given by 

A 

A djk _ _ 
c*=-fi—yjVk' j,k = l,...,K. 

Now suppose we have incomplete data p . The E step of the E M algorithm consists in finding 

expected values of the sufficient statistics: 

yja = E(y j\p;na,I.a) 

djka=E(dJk\p;pa,I,a) 

where p,a and Z a are current estimates of p, and Z . The M step consists in forming new 

estimates \lh, Zh by substituting y . and djka for y .and djk, respectively. It remains to 

describe the calculation of y j a and dJka. This clearly depends on the pattern of missing data. 

Note that 

1 N, 

.? 1=1 
and 

djka=^E(yijyik\P^a^a)-
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To calculate the terms in these sums, consider unit i with present items /?, and missing items 

mi. With independent observations, given (pa , X a ) , 

A 

E(yi\p\lia^a) = E(yij\pi,pa,Zu) = yiju 

and 

E(yuync\p>l1a>'Za) = E(yijyik\pi;pa,Tla) 

which is equal to 

A A 

y aa y ika+Cov( yu • ̂  I P.- ; ̂ . za). 

If y i ; / is present, that is, belongs to pi, then yija is simply the observed value y-, and 

C"ov(y,j:.yik)\p, \H-a , £ a ) is zero. If y}j is missing, then yija is the predicted value of y- from a 

linear regression of y . on the variables present in unit i, with intercept and regression 

coefficients calculated from pa and Z a . If ytj and yik are both missing, 

Coviy^,yik\pt; / i a , £ a ) is the residual covariance (or if j = k , variance) from the regression of 

y . and yk on the variables present in unit i, calculated from E a . Summing over units, 

_ l Ns A 

1 V s i=l 

and 

1 r A A 

^ = —{ yija yiM+cov(yij,yik\Pi;pa,i:a)}. 

Hence, the complete E M algorithm is as follows: 
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(i) Calculate initial estimates fla and Ha. 

(ii) Complete the data matrix by calculating 

A f y.. if yu is present 
y i j a \E(yu\p,;fia,I,a) if ytj is not present 

where E(yij\pi\pa,'La) is obtained by the linear regression of yy- on variables 

present in unit i, with coefficients calculated from p,a and Z a . 

(iii) Form means and sums of squares cross product matrix of the completed data matrix; 

whenever y.. and yik are missing add to the (j, k)th element of the sums of squares 

cross product matrix the residual covariance (variance if j = k) of y, and yk given the 

variables present in unit i, calculated from E a . 

(iv) Calculate new estimates pb and S 6 from the means and adjusted cross-products 

matrix, and iterate until convergence. 

Little and Rubin (1987) suggested four options of obtaining initial values of the 

parameters. The options are: (1) to use listwise deletion; (2) to use pairwise deletion (all-

value); (3) to form the sample mean and covariance matrix of the data filled in by one of the 

imputation methods (e.g., linear regression); and (4) to form means and variances from 

observed values of each variable and set all correlations equal to zero. Option 1 provides 

consistent estimates of the parameters if the data are M C A R and there are at least K + 1 

complete observations. Option 2 makes use of all the available data but can yield an estimated 

covariance matrix that is not positive definite, leading to problems in the first iteration. 

Options 3 and 4 generally yield inconsistent estimates that are positive semidefinite and hence 
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usually workable as initial estimates. Based on the characteristics of the four options, option 3 

(linear regression) was chosen for computing the initial value for use in iterative E M method. 

Previous Research on MDTs 

A number of factors were identified in the literature that may influence the performance 

of MDTs. These factors include pattern of missing data, sample size, proportion of missing data, 

magnitude of correlations among dependent and independent variables, number of predictors, and 

non-normality. However, the effect of these factors on absolute error in parameter estimates and 

control of Type I error rates when various MDTs are used in the treatment of missing data, has 

not received adequate attention. In the following section, important findings from previous 

studies on the effects of some of the factors are presented. Strengths and weaknesses in these 

studies, if notable, are also highlighted. 

Proportion of Missing Data 

Researchers should consider a number of factors when choosing a missing data treatment. 

One of the most obvious factors is the amount of missing data. Generally, the choice of M D T is 

not critical if the amount of missing data is small (Frane, 1976; Gilley & Leone, 1991). Monte 

Carlo studies suggest there is little difference in the parameter estimates and answers to research 

questions when less than 10% of the data are missing in random patterns (Raymond & Roberts, 

1987) or systematic patterns (Malhotra, 1987). 

The choice of MDTs seems to become more important as the amount of missing data 

approaches 15 - 20% of the data set (Raymond & Roberts, 1987) and most important as missing 

data approaches 30-40% (Malhotra, 1987). However, when missing data approaches 30 - 40% of 

the data set, one might question the wisdom of conducting any analyses (Roth, 1994). Therefore, 

in this study, use was made of data sets in which 10 - 20% was missing. 
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Violat ion of Normality 

A regression model often used in research settings takes the form 

Y = po + PiXu+P2X2,+...+ PpXp,+el 

where Y is the dependent variable, P0 is an intercept, Px,...,Pp are unknown regression 

coefficients for Xu,...,Xpi, respectively, and £, is a random residual for the i * observation, i = 

1, 2,...,n. D i l lon and Goldstein (1984) suggested that i f we are only concerned with obtaining 

"good" estimators of regression coefficients, then the following four assumptions are necessary: 

1. The expected value of the residual vector £ i is zero, i.e., E(e) = 0. 

2. There is no correlation between the i * and y* residual terms, and the residuals exhibit constant 

variance, i.e., E(ez') = o2!. In scalar notation, this corresponds to the following two 

assumptions: Zs(e,-e,-) = 0 for i ^ j and £(£,£,) = E(e2) = o2 for i = j. These two assumptions are 

better known as the assumptions of no serial correlation and homoscedasticity. 

3. The covariance between the X ' s and the residual terms e, is zero, an assumption that is 

automatically fulfilled i f the X variables are nonprobabilistic, so that the nxp data matrix X 

consists of fixed numbers. 

4. The rank of the data matrix X is p, the number of columns in X , and less than n, the number 

of observations, i.e., r(X) = p, where p < n. This assumption means that there are no exact 

linear relationships among the X variables. It is better known as the assumption of no 

multicollinearity. 

However, typically we want to go beyond mere point estimation and make statements or 

inferences about population regression coefficients on the basis of sample coefficients; or, more 

generally, we want to use the sample-based regression model to draw inferences about the 

population model. Therefore, we need to impose distribution assumptions on the residual terms. 
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Because the ordinary least squares (OLS) estimators are linear functions of e, (since Y, is a linear 

function of £,), the probability distributions of the OLS estimators will depend on the 

specification of the probability distribution of e,. The classical multiple linear regression model 

assumes that each e, is normally distributed with mean 0, common variance (7 I, and 

uncorrected residuals. 

Given normality, each element of b, the OLS estimator of p, is normally distributed with 

mean equal to the corresponding element of the true P and variance given by o2 times the 

appropriate diagonal element of the inverse matrix (X'XY1. Although it is assumed that the 

matrix X is fixed, yielding different values in repeated sampling, Dunteman (1984) noted that this 

assumption can be relaxed to provide for predictors that are randomly selected (called stochastic 

regressors) for each sample replication and the classical model based upon the assumption of 

fixed regressors will still apply assuming that X is multivariate normal. That is, the parameters 

are estimated in exactly the same way, and hypothesis testing of these parameters proceeds 

identically. 

Few studies have specifically evaluated the effectiveness of MDTs when the assumption 

of normality is violated. Non-normality may affect the performance of MDTs, especially with 

large proportions of missing data. In their study, Graham, Hofer, and MacKinnon (1995) found 

that estimates obtained for skewed data were somewhat less accurate than for normal data, and 

that the expectation-maximization (EM) estimates were satisfactory when skew was in the 

interval + 3. 

Missing Pattern 

Simonoff (1988) and Little and Rubin (1987) stated that heuristic methods of treating 

missing data require the assumption that data are missing completely at random (MCAR). 

However, most field data do not miss randomly, and very little is known about the effectiveness 
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of MDTs for such data sets (Little, 1992; Roth, 1994). Graham, Hofer, and Piccinin (1994) noted 

that non-randomly missing data occur when some variables are correlated with some important 

attribute of the individuals tested with those measures. Examples of non-randomly missing data 

include situations when respondents have trouble understanding the meaning of a question and 

skip it, and omissions due to failure to complete the survey. Such omissions normally form 

clusters at the middle or end of a questionnaire, with the possibility of forming a non-monotonic 

pattern of missing data. Another example of non-randomly missing data pattern encountered in 

the analysis of social science data is the monbtonic pattern. Such a pattern is normally a result of 

attrition in panel survey. In such a pattern, for j = \,...,K — 1, X . is observed whenever X j + [ 

is observed. Further elaboration on monotonic and non-monotonic patterns is on page 48. 

Kromrey and Hines (1994) and Brockmeier, Kromrey, and Hines (1996) compared the 

effectiveness of five and eight MDTs, respectively, for non-randomly missing data within the 

context of two-predictor regression models in which missing data occurred on only one of the 

predictors. They found that existing MDTs that are intended for use with randomly missing data 

might be used with non-randomly missing data as well. However, they cautioned researchers to 

be careful in the selection of MDTs as there were substantial differences in their effectiveness 

across different types of data. For example, it is not clear how MDTs perform under various 

conditions of non-normality. Further, the researchers' results were limited to the two-predictor 

regression model in which systematically missing data occurred on only one of the predictors. 

They recommended that extensions to regression models with more predictors and to data sets 

with missing data on more than one predictor needed additional research. The present study was 

an attempt to address these issues. 

The pattern of missing data is closely related to what Little and Rubin (1987) called the 

mechanism of missing data. The key issue in understanding the mechanism of missing data is to 

establish whether missingness is related to the data values (Little, 1992). According to Little and 
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Rubin (1987), knowledge (or absence of knowledge) of the mechanism that led to certain values 

being missing is a key element in choosing an appropriate analysis and in interpreting the results. 

For example, when the probability that X , is missing for a case is independent of data values, 

then the mechanism is said to be both missing completely at random (MCAR) and missing at 

random (MAR). However, when the probability that X , is missing for a case depends on the 

value of X , X „ for that case, then the mechanism is said to be M A R and not M C A R . 
z p 

Further, when the probability that X , is missing depends on the value of X , for that case, then 

the mechanism is not M A R because Xx is not fully observed. Engel and Meyer (1996) noted 

that a major problem in any attempt to handle missing data in survey research is to cope with 

nonignorable non-response. Nonignorable non-response arises whenever the missing data pattern 

is neither missing completely at random (MCAR) nor missing at random (MAR). 

Little (1992) provided a more formal definition of missing data mechanism in the 

following manner. Let Z denote the n by (p + 1) data matrix, including observed and missing 

values, and let Z 0bS denote the set of observed values of Z , and let Z m i s denote the set of 

missing values. By introducing a missing-data indicator matrix R , with (/, / )* element R{j =1 if 

Xtj is observed and /?,y=0 if Xtj is missing, the notion of a missing-data mechanism is 

formalized in terms of a model for the conditional distribution p(R\Z,(p) of R given Z , 

indexed by unknown parameters (p. Data are missing at random (MAR) if the distribution 

depends on the data Z only through the observed values Z o h s ; that is, 

p(R\Z,(p) = p(R\Zobs,(p) for all Z . Data are missing completely at random (MCAR) if the 

distribution of R does not depend on the observed or missing values of Z ; that 

According to Graham, Hoffer, and Piccinin (1994), most mechanisms of missing data 
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may be classified as either "accessible" or "inaccessible." A missing data mechanism is 

accessible when the cause of missingness has been measured and is available for use in the 

analysis. If a researcher includes a measure of causes of missingness during data collection, and 

draws a random sample of the cases with missing data after data collection, then the researcher 

can use this information to account for missingness. In this case, the mechanism of missingness 

is accessible. Graham et al. suggested that an instrument for measuring the mechanism of 

missingness should include items on the reading speed of the participants, the participant's lack 

of motivation to complete survey, the participant's rebelliousness, and whether the participant 

refuses to participate because of the nature of scores on the dependent variable. However, 

researchers have not followed this approach. 

Graham et al. gave two possible ways in which inaccessible missing data mechanisms 

can arise. Firstly, such mechanisms can arise when the variable containing the missing data itself 

is the cause of missingness. For example, the mechanism would be inaccessible if the people 

who drop out of a drug use prevention study do so because they currently are high-level drug 

users. Secondly, inaccessible mechanisms also can arise if another unmeasured variable is the 

cause of missingness and that variable is correlated with the one containing the missing data. 

On the other hand, Little and Rubin (1987) referred to "accessible" missing data 

mechanisms as "nonignorable." However, according to Graham et al., the term "accessible" 

refers strictly to the mechanism and the term "ignorable" refers to a combination of the 

mechanism and the analysis used. Knowledge of the mechanism of missing data is important 

because there may be a need for the inclusion of that mechanism of missingness in the statistical 

model by including a distribution for response indicator variables that take the value of 1 if an 

item is recorded and the value of 0 otherwise (Graham et al.). 

Little and Rubin (1987) described three examples of planned mechanisms of missing data 

in survey research. These are the processes of sample selection, double sampling, and censoring. 

Graham et al. described two unplanned mechanisms of missing data in survey research which are 
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of interest in this study; omission and attrition. 

Omission is a mechanism of unplanned missing data. The occurrence of such omissions 

may be somewhere in the middle of the survey instrument or at the end. Omissions that occur in 

the middle of a survey instrument may be due to a respondent simply not seeing a question, or 

forgetting to go back to skipped questions. A respondent may have trouble understanding the 

meaning of the question and may skip it. A participant may fail to answer a particular question 

because s/he is afraid of possible negative consequences of answering it, or because the question 

evokes negative feelings he or she does not want to experience. A n omission may also be due to 

failure to complete the survey. Graham et al. (1994) noted that i f time is not a limiting factor, then 

two main reasons for an incomplete survey are lack of ability and lack of motivation. A 

participant may lack the ability to finish because he or she is a slow reader or because of language 

problems. 

Attrition is yet another mechanism of unplanned missing data. It occurs when a 

respondent is measured in an attribute for at least one wave of measurement, but is absent entirely 

for additional waves of measurement. Attrition may be due to a random or non-random process. 

A n example of a non-random cause of attrition is when a subject is i l l for the measurement 

session. In this case, the cause of attrition is completely independent of the measurement. 

Underlying values not observed in a given data set may determine whether information is missing 

or not. For example, in an attitudinal survey, a respondent with low cognitive skills may refuse or 

be unable to give answers to many questions. In this case, the pattern of missing data w i l l exhibit 

clustering. Such a cause of attrition is not completely independent of the measurement ( K i m & 

Curry, 1977). 

There is also the possibility of having a non-random cause of attrition related to the 

dependent variable itself. For example, students with disability may be more likely to drop out of 

a study than are students who are not disabled. The present study involved non-randomly missing 

data structures in which missingness may have been through omission or attrition. 
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Studies with Randomly Miss ing Data 

Limited number of studies using randomly missing data suggests that E M method 

produces less biased estimates than listwise deletion (Graham & Donaldson, 1993). Haitovsky 

(1968) conducted a simulation study with highly correlated data and found the method of 

pairwise deletion to be markedly superior to listwise deletion. K i m and Curry (1977) found a 

similar outcome for weakly correlated data as well . 

T i m m (1970) used simulation method to assess the ability of three methods in predicting 

correlation and variance-covariance matrices for observations missing at random. Instead of 

randomly generating numerous matrices, numbers were selected for use from the literature. With 

a, -1 
Z = p, Kaiser's (1968) measure of average intercorrelation T = , guided the selection, 

p-l 

where Cd, is the largest eigenvalue of p and p is the number of variables. Values of OC range 

from zero to unity. Three matrices for (X = 0.2, 0.5, and 0.8 were chosen with p = 2, 5, and 10. 

Having obtained the variance-covariance matrices from the literature, Kaiser and 

Dickman (1962) procedure was used to generate complete data matrices of size N = 50, 100, and 

200 from a multivariate normal population with p = 0 and Z = p. From these complete data 

matrices, two incomplete data matrices were obtained each with 1%, 10%, and 20% of the data 

deleted at random. Using these data with two replicates, the effect of sample size, number of 

variables, and average intercorrelation were examined when three M D T s were used. The three 

methods investigated were mean substitution, regression technique, and a modified form of 

Dear's (1959) technique in which the matrix Y is decomposed into its known and unknown 

components afterwhich a principal components solution is used to estimate the missing values. A 

major weakness of the study is that only two replications were used! This makes it difficult to 

have a reasonable degree of confidence on the results of the simulation study because of lack of 
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accuracy. 

Timm (1970) found no uniformly best technique for the estimation of variance-

covariance matrices when observations were missing at random. However, the Dear and 

regression methods were generally superior to the mean substitution method for high and 

intermediately correlated variables, but less satisfactorily under low intercorrelation of variables. 

Timm (1970) observed that in the comparison of techniques for the estimation of Z , the 

Euclidean norm Z - Z , an additive function of eigenvalues, provides a convenient measure of 

"closeness" and is defined as 
A 

2 

z - z = Tr (z-z)(z-zy Because the distribution of the 

Euclidean norm measure is unknown, Timm (1970) formulated the following rule to compare the 

MDTs: "Choose that technique which minimizes E Z - Z ; ,where i denotes the various 

techniques used in the estimation of Z . " As a measure of the overall comparative efficiency of 

any pair of procedures, the ratio of the Euclidean norms was used. For example, the efficiency 

index for two MDTs (A and B) in estimating Z is given by 

< # ( Z , / Z B ) ^ J M 

z - z , 

However, Timm (1970) found that any missing data treatment given preference in the estimation 

of Z by employing the Euclidean criterion or the average relative efficiency index may not 

necessarily function best in minimizing the largest eigenvalue mean square error. 

Gleason and Staelin (1975) provided an approach similar to Timm's method for 

determining which technique produces from incomplete data a correlation matrix most similar to 

the correct matrix (i.e., the one calculated from complete data). This dissimilarity measure is 
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defined as follows. Let ||A|| denote the Euclidean norm of the matrix A, let R denote the 

correlation matrix for complete data, p the number of variables, and Ra the correlation matrix 

estimated from incomplete data using method a. Then 

° " 1 

Ra-R{ 

2 \ 

P(P-I) 

represents root-mean-square deviation of predicted versus actual values for the off-diagonal 

correlations. The formula can be used to determine which of the MDTs yields the better 

estimates. To compare different MDTs for predicting missing data, Gleason and Staelin (1975) 

constructed the following measure of the quality of various estimates. Let xtj be the value in a 

complete data matrix that corresponds to a missing entry in an incomplete matrix; let ov be the 

variance, in the complete matrix, of the variable in which the entry lies; let x^a) be the estimate 

of xtj derived by method a; and let K denote the set of entries missing from the matrix. Then a 

measure of the dissimilarity between true and estimated values for method a is given by 

e „ = . 
(7i mpK 

where i, j are elements of K, K is the proportion of missing entries, m is the sample size, and p 

is the number of variables. This number is the root-mean-square standardized residual. 

Beale and Little (1975) compared six methods for handling missing data: 

(1) Ordinary least squares (OLS) using complete observations only 

(2) Buck's (1960) method 

(3) Iterated Buck, or corrected maximum likelihood 
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(4) OLS on observations with y present, after fitting missing values of the independent 

variables only, 

(5) Method 4, but with missing observations given fractional weights and 

(6) Method 5, but using a covariance matrix for all variables, found by method 3, to find 

the fitted values and estimate the weights. 

Data were generated from a multivariate normal population with one variable identified as the 

dependent variable, and between two and four independent variables. Samples of size 50, 100 or 

200 were used. Deletion of 5, 10, 20 or 40 percent of the observed values was conducted 

randomly. Their criterion for judging the effectiveness of each M D T was the residual sum of 

squares of deviations of the observed and fitted values of the dependent variables when the 

deleted values were restored. This may be 

written as 

s = X(y,-*0-IvJ. 

where b0 and bj are the regression coefficients estimated from missing data by one of the six 

MDTs, and xVj and y(. are the true values of all variables without deletions. A small value of S 

represents a successful method. Findings showed that Buck and iterated Buck outperformed OLS 

using complete observations only. 

Finkbeiner (1979) discussed a maximum likelihood method of estimating the parameters 

of the multiple factor model when data were missing at random from the sample. He used a 

Monte Carlo study to compare the M L method with five other heuristic methods of dealing with 

missing data. The five methods were complete data, mean replacement, pairwise deletion, 

regression replacement, and principal components. Two proportions of missing data were 

chosen: one to have only a little data missing and the other a lot, both for samples of size 64. For 

each sample, random, independent normal numbers were generated by the Box and Muller (1958) 
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method with 50 replications for each of the two patterns. A l l the six M D T s were used to analyze 

each of the 100 samples. Sampling distributions for each method on each missingness pattern 

were developed. 

Three pieces of information were used in examining estimation effectiveness: sampling 

means and dispersions of parameter estimates, mean squared error of parameter estimates, and an 

index of common factor recovery. For the first, the least biased, minimum dispersion estimate 

was considered optimal. For the second, the best method produced the smallest mean squared 

error most consistently, regardless of bias. For the last, the average of the squared multiple 

correlation coefficients of congruence was used. This index is referred to as a "congruence 

coefficient." It varies in value from zero to one, with zero indicating no recovery of the 

population common factor space and 1 indicating perfect recovery. The three best methods were 

maximum likelihood, mean replacement and complete pair only. 

Tir r i and Silander (1998) proposed an imputation procedure for the treatment of missing 

data called stochastic complexity. They recommended the method for multivariate categorical 

data. The method is related to multiple imputation, which uses independent realizations of the 

posterior predictive distribution of the missing data under some complete-data model and prior. 

Intuitively, the approach involves modeling the set of data records as a matrix of incomplete 

discrete data. The missing data are estimated by assuming a functional form for the probability 

distribution of the cases (i.e., a model class). Based on the given model class assumption, an 

information-theoretic criterion can be derived to select between the different complete data 

matrices for the more likely one. Stochastic complexity represents the shortest code length 

needed for coding the complete data matrix relative to the model class chosen. A weakness of the 

method is that the exact criteria are very hard to compute for many interesting models, but it can 

be approximated by the Bayesian marginal likelihood computed by integrating over all the 

possible models in the chosen model class. 
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In their validation study, Tir r i and Silander (1998) produced synthetic missing data 

problems from real data sets by randomly deleting known portions of the data. Sample size was 

controlled for. They performed a classification analysis to study the practical implications of 

different procedures for handling missing data. For each data set, they created three different sub-

samples of sizes 10%, 25% and 50% of the original data set. Each time 50% of the data was 

reserved for the subsequent out-of-sample classification analysis. In each sample, 5%, 10%, 20%, 

35% and 50% of the elements were deleted, thus creating artificial missing data problems 

satisfying M C A R assumption. Mean substitution and stochastic complexity were used to create 

complete data matrices by imputing the missing values. Results showed that the stochastic 

complexity based approach performed well in recovering the original missing data. 

Studies with Non-randomly Miss ing Data 

Most missing-data treatment techniques require the assumption that data are missing at 

random. However, data sets in which values are randomly missing are rare in the fields of 

psychology and education. Research on the extent to which M D T s developed for randomly 

missing data may be useful for non-randomly missing data is therefore important. This area of 

research has received little attention. 

Azen et al. (1989) carried out a simulation study to compare the performance of three 

methods (listwise deletion, pairwise deletion, and expectation maximization) in estimating 

regression coefficients and missing values, for situations with varying proportions of missing data 

(5% and 25%) and varying magnitudes of correlations ( R 2 = .5 and .9). Two evaluation criteria 

were used. The first criterion, C i , was a measure of how well the M D T estimated regression 

coefficients: 

£(b , - p,-) 
C , = 

[2G2(2 + 2p - p 2]/[n(l + 2p)(l - p)] 
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The denominator of C\ is a normalizing factor equal to the expected value of the 

numerator conditioned on no missing data. The second criterion, C2 , was a measure of how well 

the M D T imputed the data in the sense that it measured how well each M D T estimated the mean 

vector and covariance matrix: 

C 2 = (3nf)"1ZZd2

iymin d2,y 

where the summation is over all missing values, and 

d\} =nW, y + ( X * , y - X # , 7 ) 2 

min d2ij = V(X y ) - CXHC'1
WUCWX 

X ' , ; = E(X j ; IW,-, A) 

X # , y=E(X, yIW„ A # ) 

and A* is the estimated covariance matrix, min d2^ is that part of d2y which results if A was 

estimated perfectly, and is a constant over all MDTs. 

For estimating regression coefficients at 5% missing, analyses revealed that all three 

methods performed well for R = 0.5 condition. However, pairwise deletion was generally 

inferior for R 2 = 0.9 condition. E M and listwise deletion performed equally well regardless of the 

magnitude of correlations, when the percentage of missing data was only 5 per cent. When the 

percentage missing increased to 25, E M was generally the best. In addition, PW was competitive 

only for situations with weak correlations and/or little missing data. With a pattern of censored 

missing data, the PW method performed better than the E M method. 

For estimating regression coefficients at 25% missing, analyses of variance showed that 

the E M method was generally the preferred method. Pairwise deletion was competitive for weak 

correlations. In addition, an analysis of variance showed that E M method performed statistically 

better for the random and related patterns of missing data than it performed with censored data. 

A limitation of the study by Azen et al. (1989) is that they made use of only 50 

replications. Efron (1980) suggested that although as few as 100 replications could provide a 
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stable estimate of various statistics, a tenfold increase in the number of replications would 

provide desirable accurate results. Also, Azen et al. (1989) did not consider two important 

imputation methods; mean substitution and regression imputation. There is need for studying the 

effectiveness of these methods in comparison to pairwise deletion and E M algorithm using a large 

number of replications (say, at least 1,000) in order to offer more reliable guidance to field 

researchers. 

Kromrey and Hines (1994) investigated the effects of non-randomly missing data in two 

predictor regression analyses. They examined differences in the effectiveness of mean 

substitution, simple regression, multiple regression, listwise deletion, and pairwise deletion on 

estimates of R 2 and regression coefficients. They used bootstrap samples drawn from three large 

sets of actual field data, representing Likert-type rating data, achievement test data, and 

psychological trait data. The study design was a 3 x 3 x 6 x 5 , with three between-subject factors 

(parent population, sample size, proportion of data missing) and one within-subjects factor 

(MDT). For comparison, they computed the effect sizes obtained from the M D T conditions 

relative to the complete sample condition. Kromrey and Hines found that the differences among 

the MDTs increased as the proportion of missing data increased. They also found that multiple 

regression imputation consistently yielded overestimates of R 2 . Conversely, the use of mean 

imputation consistently yielded underestimates of R 2 . The simple regression imputation 

procedure overestimated R 2 only in the psychological trait data, where the overestimation was 

consistent. Listwise deletion underestimated R 2 , except in the psychological trait data, where an 

inconsistency in the direction of the effect was realized. Although they found that no M D T 

yielded consistently best estimates of R 2 across the data sets, sample sizes, and proportion of 

missing data, pairwise deletion and the simple regression imputation appeared to perform better 

in most situations than the use of mean substitution and multiple regression imputation. 

In the estimation of regression coefficients, Kromrey and Hines (1994) found that 

listwise deletion provided the best overall performance. The imputation techniques (multiple 
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regression, simple regression, and mean substitution) did not perform wel l in estimating 

population R 2 as well as the regression coefficients when applied to non-randomly missing data. 

Whereas Kromrey and Hines provided support for the use of certain M D T s in situations where 

data are missing non-randomly, they stressed the importance of careful selection of missing data 

treatment because of the substantial differences in the effectiveness of the M D T s . The differences 

in the effectiveness of the treatments across different types of data highlighted the need for 

further research to identify the types of data matrices that may be more amenable to analysis by 

those methods. 

Whereas Kromrey and Hines (1994) offered important guidelines on the effectiveness of 

M D T s , there is need to extend their findings by including E M in the comparisons. A key 

limitation in the study by Kromrey and Hines (1994) is the extent to which the results may be 

generalized. The study was limited to missing data occurring on only one predictor in a 2-

predictor model. Such a model is rare in psycho-educational research. There is need for further 

research to examine the use of M D T s when missing data occur systematically on more than one 

predictor. 

In a more recent study, Brockmeier, Kromrey, and Hines (1996) investigated within the 

context of a two-predictor multiple regression analysis with non-randomly missing data, the 

effectiveness of eight missing data treatments on multiple R 2 and each standardized regression 

coefficient. They recommended the use of stochastic regression in estimating population R 2 

except when the proportion of missing data is high (60%). They also recommended the use of 

pairwise deletion and listwise deletion in estimating the sample estimate when percent missing is 

low (10%). When examining the standardized regression coefficients, none of the M D T s were 

found effective when missing data was 60%. They recommended the use of deletion and 

stochastic regression procedures to generate unbiased parameter estimates when percent missing 

is low. A limitation of the study is that they used a two-predictor model only. 
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Fraser and Halperin (1998) compared listwise deletion, pairwise deletion, and maximum 

likelihood method in the estimation of the mean vector and covariance matrix of a random sample 

from a multivariate normal distribution. A monotonic missing pattern was used, formed by three 

time periods in a longitudinal study. The parameters of interest were the mean, variance, and 

covariance. Specifically, they wanted to discover whether maximum likelihood would 

outperform the quick methods that were simpler and easier to obtain. There were four between-

group factors in their design. These were number of variables in each time period (2, 3, 2) and (3, 

2, 1), correlation among the variables (R 2 =.32 and .71), number of observations for variables in 

the first block (50 and 70), and attrition rate (20% and 40%). The within-factor was the missing 

data treatment (listwise deletion, pairwise deletion, and maximum likelihood). 

A split-plot factorial analysis was used for which only the interactions, which included 

the missing data methods, were discussed. Findings showed that attrition rate discriminated 

among the missing data methods for the mean and variance. For the mean vector, the interaction 

between estimation methods and the attrition rate was significant with an effect size in the 

medium to high range according to Cohen's (1988) guidelines. The other design factors did not 

differentiate among the methods. For the mean, pairwise deletion was recommended for 20% 

attrition, but maximum likelihood was recommended for 40% attrition. For the variance, 

pairwise deletion was recommended at both 20% and 40% attrition rates. The only significant 

interaction was that of estimation methods and attrition rate, with an effect size in the middle to 

higher range. For the covariance, none of the design factors were able to discriminate among the 

missing data methods. 

Studies in Structural Equations Modeling 

A number of researchers have conducted studies involving MDTs in the context of 

structural equation modeling. A structural model is specified in part by 

r| = Br| + T£ + £ 
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where r\ is a vector of endogenous variables, cj is a vector of exogenous variables, C, is a vector of 

unobserved, exogenous disturbances, and B and Y are matrices of coefficients. C, and ^ are 

assumed to be uncorrected. For convenience, all variables are assumed to have means of zero, 

thus eliminating the need for intercept terms in the model. To achieve identification, one must 

usually impose restrictions on B, T, and var(Q. Important special cases of the above equations 

include multivariate regression (B = 0), multiple regression (B = 0 and r\ is a scalar) and recursive 

systems (B is subdiagonal and var(Q is diagonal). 

Al l i son (1987) proposed a maximum likelihood method which he claimed to be both 

consistent and efficient in estimating parameters for the general linear structural relations model 

when data are missing. The method capitalizes on the ability of statistical software for structural 

equations modeling to estimate simultaneously the same model for two or more samples. For 

missing data problems, the sample is divided into subsamples, each having a different set of 

variables present. The model is then estimated simultaneously for all subsamples, constraining 

corresponding parameters to be equal across subsamples. 

To facilitate estimation of the above model with missing data, Al l i son (1987) modified 

the model to the equivalent form 

TJ* = B*r|* + C*, 

'B r 
0 0 

allowing for the possibility that t| may not be directly measured. This is accomplished by adding 

equations that specify the effects of the latent variables on a set of observed indicators: 

y = A^r | +e. 

Here, y is a vector of observed variables, and £ is a vector representing random measurement 

error. A y is a matrix of coefficients that must usually be restricted in some way to achieve 

identification. 

where ri*=(r|, £ ) ' , £*=(£. £ ) ' , and B*= This class of models is greatly expanded by 
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To allow for missing variables, Allison (1987) suggested that any variable that is missing 

from any of the subsamples must be an indicator of a latent variable. Any missing covariances 

are set to zero, missing means to zero, and missing variance to one. The coefficients in the A y 

matrix are then used to "switch" the variable "on" or " o f f depending on whether it is present or 

absent in a particular subsample. Specifically, in subsamples with data missing for a particular 

variable y„ all elements in row i of A^ must be fixed at zero. One must also fix var(e,) = 1 and 

cov(e„ £,•) = 0 for i * j. These constraints ensure that the pseudo-values of zero and one in the 

sample covariance matrix for that subsample will be fitted exactly. 

In subsamples with data present for that variable y„ the treatment depends on whether or 

not the model allows for random error in the measurement of that variable. If the model does not 

allow for random error, one of the 'kij coefficients should be fixed at zero and var(e,) should be 

fixed at zero. If random error is allowed, no special constraints are needed; the X coefficient and 

the error variance should be left as free parameters to be estimated. Finally, all other parameters 

are constrained to be equal across subsamples. With the LISREL computer program, Allison 

(1987) demonstrated the superiority of maximum likelihood estimation when data are missing at 

random but not observed at random. 

Muthen, Kaplan, and Hollis (1987) gave a general latent variable model that includes the 

specification of a missing data mechanism. In their model, M C A R was not a prerequisite for 

unbiased estimation in large samples, as when using the traditional listwise or pairwise deletion 

approaches. Using artificial data, they found that likelihood estimation was superior to traditional 

estimation methods in situations involving data that were not missing completely at random. 

Arminger and Sobel (1990) constructed a nonlinear method, called pseudo-maximum 

likelihood estimation (PML), which can be used with missing data. They illustrated how 

maximum likelihood estimation of parameters using missing data (see Little and Rubin, 1987) 

can be extended directly to the P M L estimation of the same parameters. 
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Brown (1994) assessed the relative efficacy of five indirect methods for dealing with 

missing data in structural equation models using simulated data. The five methods studied were 

listwise deletion, pairwise deletion, mean substitution, hot-deck imputation and similar response 

pattern imputation. However, Brown's study was restricted to a cross-sectional design, and he did 

not consider other estimation methods, like the E M algorithm in his comparison although he 

recommended this for future research. 

Reinecke and Schimdt (1996) compared listwise deletion, pairwise deletion, and similar 

response pattern imputation with a non-iterative maximum likelihood procedure developed for 

nested missing values in panel data. The similar pattern method is used to impute the item non-

responses in each wave while the non-iterative maximum likelihood procedure is used to consider 

unit non-response because of panel attrition. They found that listwise deletion method led to an 

unacceptable waste of information across and within panel waves. However, pairwise deletion 

method led to a reasonable amount of explained variances with the best model fit. The non-

iterative maximum likelihood procedure produced reasonable estimates of the covariance matrix 

taking into account unit non-response, and imputing the item non-responses in each wave did not 

contribute to the explained variances and the overall model fit. 

Employing simulation methodology, Marsh (1998) addressed the use of sample 

covariance matrices constructed with pairwise deletion for data missing completely at random. In 

the study, 3 levels of sample size (N = 200, 500, 1,000) and 5 levels of percent missing (0, 1, 10, 

25, and 50) were used. A population covariance matrix was generated from a simple population 

model in which three latent factors were defined by three measured variables such that each of the 

nine measured variables had a nonzero loading on one and only one latent factor. Population 

values were .7 for all factor loadings, .51 for all measured variable uniqueness, and .4 for all 

correlations among the three latent factors. Five sets of 100,000 cases were simulated from this 

population covariance matrix by G E N R A W , a program for data generation within LISREL 8 by 

Joreskog and Sorbom (1993). The cases differed only in respect to the five levels of missing 
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values to allow for comparisons. For each set, the probability that a particular data point was 

missing was specified to be 0%, 1%, 10%, 25%, or 50%. A random variable was paired with 

each data point using the random variable routine in SPSS, and this random variable was used to 

select values that were missing. 

The investigation emphasized the effects of missing values both on the %2 test statistic, 

subjective indices of fit, and parameter estimates and on how these effects interact with sample 

size. Three indices of fit, namely, relative noncentrality index (RNI), nonnormed fit index 

(NNFI) and root mean square error of approximation (RMSEA) were considered. Evaluation of 

parameter estimates was based on their means and standard deviations. To assess the relative size 

of the various effects and to provide a nominal test of statistical significance, two-way analyses of 

variance were conducted in which the effects of the three sample sizes and five levels of missing 

data were considered. One potentially serious limitation of the pairwise deletion approach is the 

occurrence of a non-positive definite covariance matrix. Of the 4,000 covariance matrices 

generated in the simulation study, only 27 non-positive definite covariance matrices were 

observed. This occurred only in the cell with N = 200 and percent missing of 50. 

Surprisingly, contrary to the findings of Brown (1994), mean estimates of factor loadings, 

of factor correlations, and of uniqueness were similar across all the cells of the design. In sum, 

estimates based on pairwise deletion were unbiased even when percent missing was large and the 

sample size was small. 

Marsh (1998) also found that consistent with expectations, the sizes of standard 

deviations varied inversely with sample size and directly with percent missing. Sample size, 

percent missing, and their interaction substantially influenced the magnitudes of observed 

standard deviations. With respect to the fit indices (RNI, NNFI, RMSEA) , the pattern of the 

effects was similar to that observed for the %2 test statistic. Results also showed that the %2 test 

statistics were largely successful in eliminating the effect of missing values, although there were 
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still small effects associated with sample size and the interaction of sample size and percent 

missing. 

Marsh (1998) recognized the potential limitation of generalizing the results from his 

study. Whereas a wide range of sample sizes and percent missing were considered, the results 

were based on only one population generating model, and the variance-covariance matrix 

constructed under pairwise deletion contained no misspecification error (i.e., only "true' models 

that should be able to explain the data were considered). Hence there is need to explore a wider 

range of conditions in further simulation research. One other limitation of the study was the use 

of M C A R , an assumption that is unreasonable in most applications. 

Summary 

Missing data can be of two types, namely unit non-response and item non-response. The 

distinction between unit non-response and item non-response was discussed. For example, unit 

non-response may occur when a respondent totally refuses to respond in a questionnaire. Item 

non-response may be a result of an instrument or question being broken off after being partly 

completed. 

Several methods of treating missing data were presented. These methods may generally 

be classified into two categories: deletion methods and imputation methods. Deletion methods 

include listwise deletion and pairwise deletion. Imputation methods include mean substitution, 

regression imputation and expectation maximization procedure. 

Factors that may influence the performance of MDTs were discussed. These included 

missing pattern, percent missing, non-normality, number of predictors and magnitude of 

correlation. In particular, it was noted that the effects of missing pattern and non-normality on 

parameter estimates after different treatments of missing data had not received enough attention 

by researchers. 
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MDTs were essentially developed for use under the assumption of M C A R . Therefore, 

previous researchers tended to evaluate MDTs using data sets under the M C A R condition, with 

little regard of the fact that the M C A R condition is difficult to obtain in real research settings. 

Two common systematic missing patterns were identified: monotonic and non-monotonic 

patterns. 

A number of limitations of previous studies were noted. Of importance were the small 

number of replications, and failure by researchers to use regression models with more than two 

predictors. 

It was also noted that an area that needed further research is the effectiveness of 

regression imputation and E M method when compared with MS and PW methods. In doing so, it 

is important to consider the role of other factors like pattern of missing data, size of R 2 , number of 

predictors, sample size and percent missing, the levels of which must be based on a sound 

rationale. 

Various criteria for the evaluation of MDTs were presented, indicating that different 

researchers used different criteria, the choice depending mainly on the parameter estimate of 

interest. Such criteria included effect size, Euclidean norm, RMSE, MSE, sampling means and 

standard deviations, as well as the average of the squared multiple correlation coefficients of 

congruence. 

Notable findings in previous research include that of Azen et al. (1989) who found that in 

the estimation of regression coefficients, with 5 percent missing, both E M and PW performed 

well when multiple R 2 = 0.5. However, PW was inferior to E M when multiple R 2 = 0.9. At 25 

percent missing, E M performed better than PW, although PW was competitive when R 2 = 0.5. 

On the other hand, with a pattern of censored data, the E M method did not perform well in the 

estimation of parameters as it was biased. The bias was possibly due to the non-linearity of the 

regression relationship among variables. Kromrey and Hines (1994) found that RS and MS 

methods did not perform well in estimating population R 2 and regression coefficients when 
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applied to non-randomly missing data. Fraser and Halperin (1998), using a monotonic missing 

pattern, found that the P W method was better than maximum likelihood method for variance 

estimation at both 20% and 40% missing. 
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CHAPTER 3 

METHOD 

To answer research questions presented earlier, MDTs were evaluated under various 

conditions using simulated data. In the present chapter, the advantages of using simulation 

methodology, issues in data generation, factors influencing the effectiveness of MDTs, the study 

design, the procedure, and analysis and evaluation criteria are discussed. 

Advantages of Simulation Methodology 

Simulation methodology may be used to study the properties of statistical techniques 

under diverse settings. The main goal of conducting a simulation study is to collect evidence for 

evaluating specific procedures. As noted by Efron (1980), computer intensive studies can both 

advance statistical theory, and provide improved methods of solution where no good theory 

exists. Examples of areas where such methodology can be applied include examination of 

robustness properties, assessment of small sample versus asymptotic agreement, or comparison of 

a statistical method with its competitors (Johnson, 1987). Rubin (1991), like Efron (1980), also 

noted that simulation methodology is an inherently statistical idea in that it capitalizes on the 

proposition that the fine detail available in an analytic solution is often not necessary. In practice, 

inferences about a parameter 6 can be as beneficially drawn from several hundred equally likely 

values of 6 , as from formulas giving the mean and variance of an infinite number of such draws. 

In fact, Rubin (1984) made an argument that several hundred random draws often may yield 

better practical inferences than traditional analytic solutions based on asymptotic approximations. 

First, asymptotic approximations can provide a less accurate picture of inferential uncertainty 

than simulated draws when the likelihood function is not nearly normal. Second, implemented 

simulation techniques allows the investigator to explore a variety of underlying models and 

thereby avoid fixation with possibly inappropriate models that have neat analytic or asymptotic 

solutions. 
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Issues in Data Generation 

A simulation study requires the consideration of how to generate the observations to be 

used in the study. In this study, multivariate random numbers from populations with specified 

skew, kurtosis, and intercorrelations were used. Although several random number generating 

methods are available, many of the generators currently in use are seriously flawed (L'Ecuyer, 

1988, 1990, 1994). Therefore, it was important to select a random number generator with 

extreme caution. 

L'Ecuyer (1994) provided important requirements for a good random number generator. 

He argued that a good general-purpose generator must have specified statistical properties, 

namely, adequate period length, ease of implementation, efficiency, portability, and 

reproducibility. He recommended the use of higher-order congruential generators instead of 

multiplicative linear congruential generators. EQS (Bentler, 1989), a statistical program that uses 

a higher-order congruential generator, was used to generate data. 

Factors Influencing MDT Performance 

A number of factors may influence the performance of MDTs when used to treat missing 

data in research situations. In this study, the factors that were considered include Non-normality 

(NM), Sample Size (SZ), Proportion of Missing Data (PM), and Pattern of Missing Data (PT). 

However, there is a possibility that in a multiple regression context, the Number of Predictors (p), 

and the magnitude of multiple R 2 may also have an impact on the effectiveness of MDTs. For 

this reason, four studies were conducted. In the first study, there were four predictors under low 

R 2 condition; in the second study, there were four predictors under a high R 2 condition; in the 

third study, there were nine predictors under a low R 2 condition; and the fourth study involved the 

use of nine predictors under high R 2 condition. 
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To be closer to what researchers have encountered, the values used at different levels of 

the manipulated factors were largely based on the findings from a comprehensive review of 

papers in four journals, namely, American Educational Research Journal, Journal of Applied 

Psychology, Journal of Educational Psychology, and Journal of Educational Research. In the 

review, I found that a total of 177 studies in the 1990 to 1995 issues of these journals [excluding 

articles in the 1993 Journal of Applied Psychology, 78(4) to 78(6)] used multiple linear 

regression analysis. Of the 177 studies, 9.04% (16) were in the American Educational Research 

Journal, 46.33% (82) were in the Journal of Applied Psychology, 29.94% (53) were in the Journal 

of Educational Psychology, and 14.69% (26) were in the Journal of Educational Research. These 

studies were reviewed to help identify which values of the design variables are commonly found 

in psycho-educational research so that representative levels could be selected for use in this study. 

Table 1 is a breakdown of the number of studies in each journal that used multiple regression 

analysis. 

Table 1: Number of studies using multiple regression in four journals 

Y E A R 
1990 1991 1992 1993 1994 1995 T O T A L 

AERJ 2 5 3 1 1 4 16 
JAP 8 22 13 8 10 21 82 
JEP 18 7 8 12 2 6 53 
JER 6 5 4 6 3 2 26 

T O T A L 34 39 28 27 16 33 177 

Note: 
AERJ = American Educational Research Journal 
JAP = Journal of Applied Psychology 
JEP = Journal of Educational Psychology 
JER = Journal of Educational Research 

The following is a description of my findings based on the review of the four journals regarding 

proportion of missing data, sample size, non-normality, number of predictors, and magnitude of 

R ' that can be considered typical in psycho-educational research. 
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Proportion of Missing Data 

A review of the four journals mentioned above showed that most studies reported 

response rates at the unit level, but not at the item level. Of the 177 studies that used OLS 

regression analysis, 29.38% (52) reported response rates. I derived non-response rates based on 

these response rates. The mean non-response rate was 28.8 percent, with a standard deviation of 

21.03 (N = 52). The distribution was multimodal, with the smallest mode being 22.86. The 

lower quarfile was 12.83, the median 22.86, and the upper quartile 41.38. Considering that these 

values included both unit non-response and item non-response, it is most likely that the second 

quartile is the upper bound and the first quartile is the lower bound for item non-response. Based 

on these findings, the levels for percent missing in the present study were 10%, 15%, and 20%. 

These values were similar to what other researchers had used. For example, Raymond and 

Roberts (1987) had three levels: 2%, 6%, and 10%, and Azen et al. had two levels: 5% and 25%. 

The number of data points deleted to create missing data patterns in the present study was 

computed as percent missing multiplied by the total number of data points in the predictors. 

Sample Size 

Of the 177 studies using multiple regression, 19 used data sets with more than 1,000 

cases (e.g., High School and Beyond data with N = 14,825). Such data sets were found to 

severely skew the distribution of sample sizes in a positive direction. I eliminated sample sizes 

greater than 1,000 because most surveys would use values below this. However, this did not 

totally eliminate skew as the resulting distribution was still positively skewed, but not as severely 

skewed as when sample sizes greater than 1,000 were included. It was also difficult to ascertain 

the sample size used in a number of studies. In all, 148 sample sizes below 1,000 were reported. 

The mean sample size was 218 with a standard deviation of 192 (N = 148). The minimum 

sample size was 20 and the maximum, after eliminating those above 1,000, was 983, giving a 
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range of 963. The first quartile was 94, the median 153, and the third quartile 265. In order to 

have typical sample sizes in this study, samples of size 94, 153, and 265 were used. 

Non-normality 

Whereas the normality assumption is a prerequisite in multiple regression analysis, 

Micceri (1989) and Sawilosky and Blair (1992) observed that many data sets in real situations are 

skewed and/or kurtotic, thus violating the normality assumption. When investigating the effects 

of non-normality, it is extremely important to consider non-normality in the degree found in the 

literature. Before discussing the levels of non-normality used in this study, it is perhaps 

important to present an observation on how often researchers report violation of assumptions in 

their studies. Of the 177 articles that were reviewed, reports on regression diagnostics were 

contained in only five studies! This shows how researchers have often failed to report important 

issues before doing multiple regression analysis. Two of the five studies contained reports on 

violation of normality assumption, one had reports on multicollinearity diagnostics, one had 

reports on violation of homogeneity of variance assumption, and one had reports on outlier 

diagnostics. The study in which outlier diagnostics were reported also reported deletion of 

missing data. The review did not help in choosing appropriate levels of non-normality. So, I 

relied on previous reviews to choose levels of non-normality. 

After observing various empirical distributions, Pearson and Please (1975) found that 

typical non-normality had skew less than 0.8 and kurtosis between -0.6 and 0.6. However, 

Sawilosky and Blair (1992) who based their report on the findings of Micceri (1989) later 

provided eight real-world distributions different from what was reported by Pearson and Please 

(1975). Three types of psychometric distributions were identified as typical; discrete mass at zero 

with gap, extreme asymmetry, and extreme bimodality, with (skew, kurtosis) = (1.65, 0.98), 

(1.64, 1.52), and (-.08, -1.70), respectively; the values for kurtosis having been such that normal 

kurtosis is 0.0. Whereas these were considered typical distributions, Micceri (1989) noted that 
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typical kurtosis estimates ranged from -1.70 to 37.37. In their simulation study, Graham, Hofer, 

and MacKinnon (1996) used distributions with skew -.68 to 3.30 and kurtosis -.04 to 13.11. 

Based on previous findings, it is highly probable that typical distributions in 

psychometric scores would have skew hardly exceeding 3.0. However, typical distributions of 

psychometric scores seem to have kurtoses that vary widely, from -2.0 to approximately 40.0. 

Therefore these range of values were used as a guide in this study. The distributions used in this 

study were a normal distribution (skew = 0 and kurtosis = 0), a low level of non-normality (skew 

= 1 and kurtosis = 3), a medium level of non-normality (skew =1.8 and kurtosis = 6), and a high 

level of non-normality (skew = 3, kurtosis = 25). 

Number of Predictors 

In the reviews of four journals described earlier, of the 177 studies that used multiple 

regression analysis, 174 reported number of predictors. The mean number of predictors was 7.5 

with a standard deviation of 5.94 (N = 174). The minimum value was 2 and the maximum was 

40, giving a range of 38. The first quartile was 4, the median 5 and the third quartile 9. The 

distribution was unimodal, with a mode of 4. Based on these outcomes, this study included 4 and 

9 predictor regression models. 

Size of Multiple R 2 

Researchers usually want to explain maximum variance in the criterion variable. This is 

more particularly so when using multiple regression analysis. With this in mind, and using the 

177 studies that employed multiple regression analysis, I recorded the maximum value of R 2 in 

each study. The value of R 2 was reported in 148 studies. The mean R 2 was .43 with a standard 

deviation of .22 (N = 148). The distribution of R 2 was bimodal. In other words, the studies that 

were reviewed could be categorized into two groups, those that had low R 2 from 0.01 to 0.30, and 

those that had moderate to high R 2 from 0.40 to 0.90. Seaman, Algina and Olejnik (1985) noted 
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that correlations encountered in behavioral science research often occur in the interval from .2 to 

.7, values that are consistent with those found in my review. Based on these findings, the two 

levels of R 2 used in this study were L O W (with R 2 approximately 0.2) and H I G H (with R 2 

approximately 0.6). 

Pattern of Miss ing Data 

T w o patterns of missing data considered in this study were monotonic pattern and non­

monotonic pattern. These patterns were selected because they represent two major categories of 

systematically missing data discussed in Little and Rubin (1987) and Little (1992). The 

monotonic pattern of missing data arises when the variables can be arranged so that for 

j = \,...,K - 1, Xjr is observed whenever Xy+i is observed. Little and Rubin (1987) noted that 

attrition from a panel survey leads to data of this form. To illustrate the mechanism of non­

monotonic pattern of missing data, assume that Y is a measure of pupils' ability in Figure 2. If 

Xp represents father's income, then pupils of high ability may be too sensitive to respond, and 

pupils of low ability may not know their father's income. On the other hand, pupils with moderate 

ability may be in a position to respond to Xp. Figure 1 shows the monotonic pattern, and Figure 2 

shows the non-monotonic pattern used in the present study. The criterion variable (Y) and p 

predictors, p = 4 or 9, were all continuous. In both figures, rectangles stand for available values. 

To create dependency of missing values in the set of predictors on the magnitude of Y-values, the 

data were sorted using Y before deletion, with the lowest score being at the top and the highest 

score being at the bottom. Deleting data using templates with configurations given in Table 2 and 

3 respectively created the patterns in Figure 1 and 2. The same numbers of data points were 

deleted for both monotonic and non-monotonic patterns for corresponding X ' s . In other words, 

for each variable across pattern, the same number of data points was deleted. 



V A R I A B L E 
Y X i X 2 X p _ i 

Figure 1: Monotonic pattern of missing data 

V A R I A B L E 
Y X j X 2 X p _ ! 

Figure 2: Non-monotonic pattern of missing data 
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Table 2 
Number of data points deleted to create missing patterns in the 4-predictor model 

Sample 
Size 

Percent 
Missing 

Number of Data Points Deleted Total Sample 
Size 

Percent 
Missing 

x, X 2 X 3 X 4 

94 10 0 8 15 15 38 

15 0 12 22 22 56 

20 0 15 30 30 75 

153 10 0 13 24 24 61 

15 0 18 37 37 92 

20 0 24 49 49 122 

265 10 0 22 42 42 106 

15 0 31 64 64 159 

20 0 42 85 85 212 

Table 3 

Number of data points deleted to create missing patterns in the 9-predictor model 

Sample 
Size 

Percent 
Missing 

Number of Data Points Deleted Total Sample 
Size 

Percent 
Missing 

x, x2 X 3 
X 4 x5 x6 X 7 x8 X 9 

Total 

94 10 0 2 6 8 10 12 14 16 18 86 

15 0 8 10 12 14 16 20 22 26 128 

20 0 10 12 16 18 24 26 30 34 170 

153 10 0 8 10 12 14 18 20 26 30 138 

15 0 12 14 18 22 26 32 38 44 206 

20 0 18 20 24 28 34 44 50 58 276 

265 10 0 14 18 20 24 30 36 44 52 238 

15 0 22 26 32 38 46 54 64 76 358 

20 0 30 34 42 50 60 72 86 102 476 
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Study Design 

Four separate studies were conducted in this investigation because the design included 2 

levels of population R 2 (approximately 0.2 and 0.6) and 2 levels of number of predictors (4 and 

9). Study 1 was with four predictors under low R 2 condition, Study 2 was with four predictors 

under high R 2 condition, Study 3 was with nine predictors under low R 2 condition, and Study 4 

was with nine predictors under high R 2 condition. A s shown in Table 4, there were four levels of 

non-normality, three levels of sample size, three levels of percent missing, and two levels of 

missing pattern. Each study was a 4 (non-normality) x 3 (percent missing) x 2 (missing pattern) 

fully crossed factorial design, across 3 levels of sample sizes, giving rise to 72 conditions. The 

within-factor was M D T including mean substitution, pairwise deletion, regression imputation, 

and E M method of treating missing data. 

Table 4 
Design Factors and Levels for the Study 

Design Factors 

Distribution R Predictors Sample Size Pattern Percent Missing 
(Sk., Kurt.) 
(0, 0) Low (.2±.05) 4 94 Monotonic 10 
0 .3) High ( .6± .05) 9 153 Non-monotonic 15 
(1-8,6) 265 20 
(3, 25) 

Procedure 

Population correlation matrices were used to generate multivariate normal random 

variables using data generation algorithms built in E Q S (Bentler, 1989), a widely used structural 

equations modeling program. Another reason for choosing E Q S is that it has a built-in procedure 

developed by Fleishman (1978), whose equations were extended to cater for multivariate data by 

Vale and Maurel l i (1983). The procedure makes it possible to generate data with specified skew 

and kurtosis, while keeping the correlations invariant. This is necessary i f comparisons are to be 
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made across different data sets. The correlations used in the study represent typical values found 

in educational and psychological research as identified in the review of studies. 

The two levels of number of predictors 4 and 9, gave rise to 5 and 10 variables, 

respectively, if Y is included. The use of 5 variables implies a 5 by 5 zero order correlation 

matrix and the use of 10 variables implies a 10 by 10 zero order correlation matrix. Considering 

that these correlation matrices are symmetric, one needs 10 bivariate correlations to construct a 

zero order correlation matrix for 5 variables, and 45 bivariate correlations to construct a zero 

order correlation matrix for 10 variables. In order to construct correlation matrices for each level 

of R 2 , a set of sixty correlations from .01 to .60 in increasing steps of .01 was used, from which 

10 and 45 correlations, respectively, were randomly selected using a table of random digits. Only 

positive values were considered because the direction of relationship would not affect 

generalizability. The interval .01 to .60 was selected because in the review of 177 articles in four 

journals discussed earlier, the distribution of minimum correlations across all studies had a 

median of .01 and the distribution of maximum correlations had a median of .60. The randomly 

selected correlations were then rearranged from top to bottom of a lower triangular matrix, with 

the first column representing correlations between Y and X's and the remaining columns 

representing inter-correlations among the X's. Using matrix data input in SPSS computer 

software (SPSS Base System Reference Guide, Release 6.0, 1993), the variance in Y explained 

by the X's (i.e., multiple R 2) was obtained. If the resulting value of R 2 was not as desired (i.e., 

0.20 ± .05 for L O W R 2 or 0.60 ± .05 for HIGH R 2), then another correlation was randomly 

chosen from the set of 60 to replace a single entry in the correlation matrix. The replaced element 

was dictated by whether the value of obtained R 2 was larger or smaller than desired. This 

procedure was repeated until the desired R 2 values were obtained within R 2 ± .05. Once the 

matrices were generated, they were examined for positive definiteness. The steps used in 

constructing correlation matrices are summarized as follows: 
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1. Start with a set of sixty correlations from .01 to .60 in increasing steps of .01. 

2. Randomly select correlations in (1) to get the elements in the lower triangle of a 5 x 5 or 

a 10 x 10 correlation matrix. 

3. For the correlation matrix generated in (2), determine the value of R 2 using matrix data 

input in SPSS. 

4. Check whether the R 2 in (3) is as desired (within R 2 ± .05). If R 2 is as desired, then use 

the correlation matrix for data generation. If not, then randomly select another correlation 

from (1) to replace one value in the correlation matrix. The correlation to be replaced was 

selected on the basis of whether the value of R 2 in (4) was more or less than the desired 

value. 

5. Repeat (4) until the desired R 2 is obtained. 

The population correlation matrix for the model, Y = .140X] + .206X 2 + .244X 3 + 

.137X 4 , having R 2 = 0.19264, was as follows: 

Y X i X 2 X 3 X 4 

1 

.26 1 

.25 .14 1 

.30 .26 .01 1 

.23 .20 .16 .13 1 

For the four predictor model, Y = .321X, + .253X 2 + .333X 3 + .220X 4 , having R 2 = 0.59437, the 

correlation matrix was as follows: 

Y x, x 2 x 3 X 

1 
52 1 
51 .34 1 
60 .32 .26 1 
45 .03 .28 .45 1 
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The population correlation matrix for Y = .113Xj + .060X2 + .140X3 + .056X4 + .097X5 + .128X6 

+ .144X7 + .168X8 + .130X9, having R 2 = .21267 was as follows: 

Y X] X 2 X3 X4 X5 Xg X 7 X 8 X 9 

r 1 1 
.21 1 

.15 .04 1 

.21 .16 .01 1 

.20 .19 .14 .13 1 

.18 .10 .09 .02 .17 1 

.19 .11 .13 .07 .08 .03 1 

.22 .18 .15 .09 .16 .07 .06 1 

.23 .05 .08 .01 .20 .13 .04 .05 

.21 .03 .12 .14 .10 .14 .07 .02 

For the nine predictor model, Y = .119Xi + ,304X2 + .053X3 + .264X4 + .053X5 + .336X6 -

.284X7 + .260X8 + .024X9 having R 2 = 0.58590, the correlation matrix was as follows: 

Y x, x 2 x 3 x 4 x 5 
Xg X 7 X 8 X9 

" 1 
.21 1 
.45 .08 1 
.35 .26 .32 1 
.46 .21 .12 .31 1 
.21 .18 .14 .16 .09 1 
.55 .10 .39 .32 .37 .13 1 
.13 .28 .41 .42 .23 .39 .30 1 
.45 .11 .22 .34 .20 .48 .16 .18 1 
.34 .20 .36 .07 .10 .12 .24 .19 .46 1 

With the resulting correlation matrices, E Q S (Bentler, 1989) was used to generate 1000 

random samples with (skew, kurtosis) = (0, 0), (1, 3), (1.8, 6), (3, 25) with three sample sizes of 

94, 153, and 265. The seed for data generation was 524697. 

Simulation Program 

A simulation program was written that created the pattern of missing data, performed a 

simultaneous linear multiple regression analysis upon implementing a M D T , and appended the 
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parameter estimates and standard errors of regression coefficients in an output file. The routine 

for creating missing pattern was verified manually by examining hard copies of a set of data files. 

For MS, the mean of the variable was substituted for all the missing cases in that variable. For 

PW, the mean and variance for each variable were estimated using all available observations for 

that variable, and the covariances between pairs of variables were estimated using only cases that 

were complete in both variables. For RS, the missing values were predicted from a linear 

regression equation between X, and the predictor with no missing values, X ! . For E M , the initial 

means, variances, and covariances were based on the values under RS. Figure 3 shows a 

flowchart of the E M method for imputing the missing values in X , as implemented in the 

simulation program. The accuracy of MS and PW algorithms were checked using SPSS 

statistical program (SPSS Inc., 1993). The accuracy of RS was checked using B M D P A M 

(Dixon, 1988) with the command 

/ESTIMATE 
M E T H O D = REGR 
T Y P E = C O M P L E T E 

Similarly, the accuracy of the E M algorithm was checked using B M D P A M (Dixon, 1988) with 

the command 

/ESTIMATE 
M E T H O D = REGR 
T Y P E = M L 

Considering that the matrix X'X may not be positive definite under pairwise deletion 

method, the simulation program was tailored to flag such samples. The Gauss-Jordan 

decomposition approach, adapted from Numerical Recipes (Press, Teukolsky, Vetterling, & 

Flannery; 1992), was used for matrix inversion. As described in Marascuilo and Levin (1983), the 

matrix of predictors X was not augmented by a column of ones in the first column because the 

estimation of Po was not required. By partitioning the variance-covariance matrix of the original 
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data set into X x x and Z „ , the vector of regression coefficients was calculated using the equation 

A " ' A 

b = £ xx ~Lxy. The/? standard errors of b i , b 2,...,bp were calculated using 

lMSresX xx 

N-l 

where MSres denotes the estimate of the residual variance about the estimated regression equation 

for p predictor variables and N is the sample size. The parameter estimates from the simulation 

program were congruent to those from B M D P A M (Dixon, 1988) to six decimal places. 



Calculate ~Lmodel, the 
model variance-
covariance matrix. 

Estimate and impute 
missing values in each 
X , from linear regression 
equation of X , on X j . 

Calculate the variance-
covariance matrix, 
for Y , X j , . . 
predictors 

.Xp, for p 

No 
Regress the current X , on 
X i . Replace imputed values 
with new values using 
current regression equation. 

Yes 

Stop 

Figure 3: Flowchart for EM method used in the study 
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Evaluation Criteria 

According to Larsen and Marx (1981), four qualities of a good estimator are 

unbiasedness, efficiency, consistency, and sufficiency. Unbiasedness is one way to decide 

whether or not an estimator's distribution is suitably centered. In other words, i f 8 is a parameter 

to be estimated, then its estimator W should be somewhat "centered" with respect to 8. If it is 

not, the estimator w i l l tend either to overestimate or underestimate 8, a condition that is not 

desirable. A n estimator is said to be unbiased i f "on the average", it w i l l yield the true parameter 

value; that is, i f the underlying experiment is repeated with infinitely many samples of size T, the 

average value of the estimates from all those samples w i l l be equal to the true value. More 

formally, let Yu Y2, Yn be a random sample from/y(y; 6). A n estimator W = h(Yi, Y2, Yn) is 

said to be unbiased i f E(VV) = 8, for all 6. The term bias should be used to describe a situation in 

which there is a tendency for an estimator to consistently overestimate or underestimate 

parameters across a large number of samples. 

Unbiased estimators are not unique (Larsen & Marx, 1981). This implies that an unbiased 

estimator may not necessarily be the best. In order to select the best estimator, we need to 

compare their dispersions and choose the estimator with the smallest dispersion, so that the 

probability of its being close to the true 8 w i l l be large (Larsen & Marx, 1981). This property of 

a good estimator is called efficiency. Put differently, suppose Wi and W2 are two unbiased 

estimators of 8. Then, W\ is said to be more efficient than W2 i f the variability of W\ is less than 

that of W2. 

Although the concepts of unbiasedness and efficiency lead to the most basic 

characterizations of point estimates, consistency is another important property of a good 

estimator. Consistency is attractive because it says that as the sample size increases indefinitely, 

the distribution of the estimator becomes entirely concentrated at the parameter value 

(Goldberger, 1991). Roughly speaking, an estimator is consistent i f Wn, the n'h member of an 
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infinite sequence of estimators, Wj, W2,..., W„,..., lies arbitrarily close to the parameter being 

estimated, as n becomes large (Larsen & Marx, 1981). This has two immediate implications: (1) 

Wn is asymptotically unbiased and (2) the variance of Wn converges to 0. In mathematical terms, 

an estimator W„ = h(Y\, Y2, Y„) is said to be consistent (for ff) if it converges stochastically to 

0, that is, if for all £ > 0 and 8 > 0 , there exists an n(e,8) such thatP(jW n -d\ < fi) > 1-8, 

for n > (e,<5). 

Sufficiency is the fourth property of a good estimator. It is related to the amount of 

"information" a given estimator contains. If Yu Y2, Y„ is a random sample from/Ky; ff), then 

the statistic W = h(Y\, I2. • • •> Y„) is said to be sufficient for 6 if, for all 6 and all possible sample 

points, the conditional probability density function of Y\, Y2, ..., Yn given w does not depend on 

8, either in the function itself or in the function's domain. 

Whereas the present study was not concerned with the evaluation of estimators, there 

exists some correspondence between the properties of a good estimator and the evaluation criteria 

applied in the study. The two criteria used in the evaluation of MDTs in the present study were 

accuracy (precision) and bias of parameter estimates. As noted by Roth (1994), the accuracy of 

parameter estimates is usually the criterion for the evaluation of MDTs. The concept of accuracy 

of parameter estimates is not equivalent to that of efficiency of an estimator, although the two 

concepts are related because they both make use of dispersion procedures. For example, it is 

possible to investigate the relative accuracy of two estimators, the mean and the median. But 

when only one estimator is used as in the present study, it is the spread of the parameter estimates 

around a population value that is of interest, and the magnitude of the spread should depend on 

which M D T was used. Raymond and Roberts (1987) defined accuracy of parameter estimates as 

the amount of dispersion found around a population parameter. 

Judge, Hi l l , Griffiths, Liitkepohl, and Lee (1988) stressed the importance of considering 

the bias of estimators. Note that the bias of estimators is similar to the bias of parameter 
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estimates, but the two are not equivalent. The term bias in parameter estimates may be used to 

describe a situation in which there was a tendency for an M D T to consistently overestimate or 

underestimate parameters across a large number of samples following treatment of missing data 

by that M D T (Roth, 1994). In other words, analysis of bias in parameter estimates involves the 

examination of any consistent errors due to MDTs. Judge et al. (1988) noted that the estimator 

with the smallest dispersion (i.e., the most accurate), should be preferred even if it is biased. In a 

similar manner, the M D T under which the parameter estimate of interest has the smallest 

dispersion around the true value should be preferred even if it is biased. Although Finkbeiner 

(1979) used both accuracy and bias of parameter estimates for assessing the optimal performance 

of MDTs, the best M D T was that with the smallest dispersion regardless of bias. 

There is no consistency among researchers on which measure of dispersion is the most 

preferred in the evaluation of MDTs. Based on my literature review, previous researchers have 

used Euclidean distance, root mean square error (RMSE), mean square error (MSE), and residual 

sum of squares of deviations, among others. According to Judge et al. (1988) and Barford (1985), 

two important methods for establishing estimation accuracy are mean square error (MSE) and 

mean absolute error (MAE), the choice of which one to use being arbitrary. Either way we obtain 

a positive quantity. The smaller either quantity is, the greater the accuracy of the parameter 

estimate. Intuitively, both M S E and M A E represent the average loss or risk incurred in the 

estimation of the parameter. Lyon (1970) noted that M S E and M A E are linearly related, with 

M S E being about 1.25 times larger than M A E when sample size is greater than 4. The advantage 

of M S E over M A E is that M S E is more mathematically tractable, a characteristic not required in 

the present study. Shchigolev (1960/1965) noted that M A E offers an excellent option as a 

criterion for evaluating the accuracy of parameter estimates if the quality of the measurements is 

poor, a condition that is quite likely with missing data. For this reason, M A E was used as the 

criterion for M D T evaluation in the present study. The M A E was defined as 
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1 A 

— y 

A 

where B is the number of parameter estimates (1,000 in this study), 6b is the b& parameter 

estimate, and 6 is the population parameter. Bias was defined as follows: 

Bias= E(6)-9 

A 

whereE(6) is the mean of the 1,000 parameter estimates per cell, and 6 is the true parameter 

value. 

In the third and last part of the analysis, the performance of MDTs was assessed with 

respect to actual coverage of confidence intervals when nominal alpha is .05. This was achieved 

by first constructing confidence intervals using each sample regression coefficient and its 

corresponding standard error. The formula used in the construction of the confidence intervals 

was [b,-- 1.96SE(b,)] < p\< [b, + 1.96SE(b,)], where b, is the sample estimate of p„ the population 

regression coefficient for predictor variable X„ and SE(b,) is the standard error of b,. A l l 

confidence intervals spanning the actual population regression coefficient used in data generation 

were counted and converted into percentages. Good coverage probabilities were those that were 

closest to 95%. The best M D T was selected on the basis of magnitude of mean absolute error of 

estimation. However, if the corresponding bias was the least, then the performance of that M D T 

was considered optimal. 

Analysis 

There were four analyses. First, as in Milligan (1980, 1981, 1989a) and Donoghue 

(1995), a fully crossed factorial analysis of variance was conducted in order to determine the 

effects of pattern, percent missing and non-normality on absolute error of estimation across 

different sample sizes. The independent variables were missing pattern, percent missing, and 

non-normality. Second, M A E for parameter estimates in each cell was calculated and graphed. 
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Third, bias in parameter estimates in each cell was calculated and graphed. Fourth, mean 

coverage probability was calculated and graphed. The graphs were used as an aid for evaluating 

the performance of MDTs. 

Given the very large amount of data (72,000 regression analyses for each MDT), many of 

the main effects and some two-way interactions were statistically significant (p < .001). The 

purpose of the A N O V A was to summarize the data and help to highlight important effects. 

Therefore, a measure of effect size was adopted in place of traditional significance testing. 

Usually, rf would be used in this context, where 

^ 2 _ effect 

As noted by Donoghue (1995), this index has a disadvantage in large designs in that the 

denominator contains not only error variance and systematic variance of interest, but also 

irrelevant systematic variance of other factors in the design. The larger the design becomes, the 

more apparent this effect becomes. This defect was worsened by the fact that some factors had 

very large effects, thus obscuring the effects of other factors. For this reason, as recommended by 

Donoghue, the following alternate equation for effect size was used: 

2 _ SSeffect 
'lull ~ 

Considering that statistically significant effects may not necessarily be of practical 

significance, a practical criterion of 7J 2

ai t > .03 was selected. Although this criterion is somewhat 

arbitrary, it was chosen because computer intensive studies in other areas have used similar 

criteria (e.g., co2 > .03 was used by Anderson & Gerbing, 1984, and Gerbing & Anderson, 1985; 

n 2

a i t > .03 was used by Donoghue, 1995). 
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Summary 

In the present chapter, the advantages of simulation methodology were highlighted. The 

greatest advantage of simulation methodology is that it allows the investigator to manipulate 

design conditions that would otherwise be impossible to include in a study. 

Issues in data generation were also presented. It was noted that the choice of random 

number generator is crucial in any simulation study of this nature. Higher-order congruential 

generators are generally preferred to multiplicative linear congruential generators. 

Several factors were identified that may influence the performance of MDTs in a multiple 

linear regression context. These include sample size, missing pattern, percent missing, non-

normality, size of multiple R 2 , and number of predictors. It was also noted that the selection of 

typical levels of design factors is necessary to enhance generalizability of findings. In the present 

study, the choice of levels of design factors was based on a review of four psycho-educational 

research journals. However, the review did not help in the choice of levels of non-normality. 

Previous research on typical levels of non-normality was used in this case. 

The design of the present study was discussed. Four separate studies were conducted in 

the investigation (2 levels of number of predictors by 2 levels of multiple R 2 ). In each study, the 

independent variables were missing pattern (2 levels), percent missing (3 levels), and non-

normality (4 levels). The within-factor was M D T (mean substitution, pairwise deletion, 

regression imputation, and E M method). 

Upon generation of data using EQS (Bender, 1993) at 3 levels of sample size (N = 94, 

153, 265), a customized simulation program was used to delete part of the data to create 

monotonic and non-monotonic patterns. The program was then used to impute the deleted data 

with different MDTs. The simulation program ran a simultaneous multiple linear regression 

analysis. The standard multiple regression output (multiple R2

esumate, regression coefficients, and 

standard errors of the regression coefficients) was saved and imported into SPSS for analysis. 
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A 2 x 3 x 4 fully crossed factorial A N O V A was conducted using absolute error of 

estimation for R 2
e s u m ate a n d regression coefficients as the dependent variables. The design factors 

were missing pattern, percent missing, and non-normality. Analysis was at each level of sample 

size. The effect size (r| 2) was chosen as a criterion for practical significance. Accuracy, as 

measured by mean absolute error of estimation for R2
estimate and mean absolute error of estimation 

for regression coefficients, was used to evaluate the M D T s . Bias in R2
estimate and regression 

coefficients was used to determine which M D T s yielded estimates "close" to the true parameter. 

Lastly, coverage probability for regression coefficients was used to determine the Type I error 

rates under each M D T . Results are presented in the next chapter. 
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CHAPTER 4 

RESULTS 

In this chapter, results from the four studies are presented in the following order: 

1. Study 1: Four predictors under low R 2 condition 

2. Study 2: Four predictors under high R 2 condition 

3. Study 3: Nine predictors under low R 2 condition 

4. Study 4: Nine predictors under high R 2 condition. 

Tables and graphs for mean absolute error are presented for monotonic and non-monotonic 

missing patterns, arranged in increasing order of sample size, percent missing, and non-normality. 

For ease of comparison, results in tables and graphs are consistent across studies, and graphical 

plots at each level of sample size have the same scale. Similarly, tables and graphs for bias in 

parameter estimates are provided in Appendix A and B , respectively. 

Study 1: Four Predictors under Low R 2 Condition 

Effects on Absolute Error for R 2 ^ ^ 

The effects of design variables on absolute error for R2

estimate are listed in Table 5. Using 

r|2

ait > .03 as the criterion, the table shows that none of the effects was of practical significance 

under all M D T s with samples of size 94 and 153. Under sample size 265, the effect of percent 

missing on error of estimation was of practical significance under E M and R S , the largest effect 

being under E M . 

Relative Performance of M D T s in the Estimation of Population R 2 

Table 6 contains means and standard deviations of absolute error for R2

estimate- The 

influence of non-normality on the performance of M D T s at sample size 94 is revealed in Figure 

4. The performance of all M D T s as measured by the mean absolute error of estimation 

deteriorated with increasing non-normality. Under monotonic missing pattern, P W treatment of 
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missing data was the worst and E M treatment the best. However, there was little differentiation 

in the performance of E M , RS and MS, especially when data were normal (skew = 0 and kurtosis 

= 0). This differentiation increased with increasing non-normality. Under non-monotonic pattern, 

it was again E M that outperformed other MDTs, followed by RS, MS and PW, in that order. This 

finding was similar to that for monotonic pattern, except that MDTs differed more in performance 

under non-monotonic pattern than under monotonic pattern. MDTs differed the least when data 

were normal, and differed most at the highest level of non-normality (skew = 3 and kurtosis = 

25). E M and RS methods performed almost equally well. 

Table 5: Effects on absolute error for R 2 „ « i m a f P fulfilling the n 2„i, > .03 criterion 

Treatment Sample Size Effect df SS e f f e c t SS e r r o r 7? 2

a l t 

EM 94 
153 
265 Percent Missing 2 1.77 48.67 .035 

MS 94 
153 
265 

-

PW 94 
153 
265 

-

RS 94 
153 
265 Percent Missing 2 1.77 50.24 .034 

Note: EM = Expectation-maximization method, MS = Mean substitution, PW = Pairwise deletion, RS -
Regression imputation, 
- = No effect of practical significance. 

The influence of non-normality on the performance of MDTs at sample size 153 is 

revealed in Figure 5. The findings were similar to those under sample size 94, except that mean 

absolute error of estimation under sample size of 153 was much smaller. Figure 6 shows the 

influence of non-normality on the performance of MDTs at sample size 265. In this case the 

mean absolute error of estimation was much smaller than under sample size 94 and 153. 
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Table A . l in Appendix A contains bias in R2

estimate under low R 2 condition with four 

predictors. The bias in R2

estimate across all sample sizes varied from - .04 to .06, a range of .10. 

Figure B . l in Appendix B is a set of typical graphical plots for bias in R2

esumate ( N = 94) showing 

that all the M D T s had positive bias at 10% missing. A t this level, the smallest bias was under 

E M . A t 15% missing, the smallest bias was under E M for monotonic pattern. 
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Table 6 

Means and standard deviations* of absolute error for R 2estimate 

Monotonic Missing Pattern Non-monotonic Missing Pattern 

N Percent 

Missing 

Normality 

(sk., kurt.) 

EM 

Imputation 

Mean 

Substitution 

Pairwise 

Deletion 

Regress. 

Imputation 

EM 

Imputation 

Mean 

Substitution 

Pairwise 

Deletion 

Regress. 

Imputation 

94 10 (0,0) 

(1.3) 
(1.8,6) 
(3,25) 

0589(045) 

0628(050) 

0701(057) 

0885(080) 

0598(046) 

0639(051) 

0714(058) 

0912(082) 

0635(050) 

0684(053) 

0761(060) 

0965(087) 

0594(046) 

0634(050) 

0708(058) 

0898(081) 

0532(041) 

0550(041) 

0607(045) 

0706(059) 

0585(046) 

0622(047) 

0691(053) 

0852(072) 

0616(047) 

0657(049) 

0726(056) 

0894(077) 

0548(042) 

0568(042) 

0624(047) 

0719(060) 

15 (0,0) 

(1,3) 

(1.8,6) 

(3,25) 

0570(043) 

0612(046) 

0678(054) 

0850(076) 

0583(044) 

0628(048) 

0697(056) 

0886(080) 

0630(049) 

0672(052) 

0745(059) 

0947(085) 

0577(043) 

0621(047) 

0688(055) 

0865(078) 

0526(038) 

0570(043) 

0681(056) 

0432(031) 

0575(044) 

0609(046) 

0665(051) 

0821(069) 

0603(046) 

0642(049) 

0712(055) 

0884(078) 

0523(039) 

0540(039) 

0584(044) 

0689(057) 

20 (0,0) 

(1,3) 

(1.8,6) 

(3,25) 

0557(041) 

0602(044) 

0666(052) 

0824(072) 

0576(042) 

0623(046) 

0691(055) 

0869(077) 

0620(048) 

0664(050) 

0735(057) 

0931(085) 

0565(041) 

0612(045) 

0678(053) 

0842(074) 

0496(036) 

0515(037) 

0554(042) 

0667(054) 

0561(042) 

0595(044) 

0647(050) 

0792(067) 

0599(045) 

0636(048) 

0709(054) 

0910)108) 

0506(037) 

0524(038) 

0563(042) 

0672(055) 

153 10 (0,0) 

(1,3) 

(1.8,6) 

(3,25) 

0457(034) 

0474(036) 

0526(042) 

0683(058) 

0462(035) 

0480(037) 

0534(042) 

0700(060) 

0487(038) 

0505(040) 

0564(044) 

0723(061) 

0460(034) 

0477(037) 

0530(042) 

0690(059) 

0421(032) 

0413(032) 

0444(035) 

0521(042) 

0453(034) 

0457(036) 

0496(040) 

0619(052) 

0471(036) 

0483(038) 

0535(042) 

0669(060) 

0431(032) 

0423(033) 

0455(036) 

0528(043) 

15 (0,0) 

(1.3) 

(1.8,6) 

(3,25) 

0448(033) 

0468(034( 

0514(039) 

0662(056) 

0453(033) 

0475(035) 

0525(040) 

0685(058) 

0483(037) 

0500(039) 

0555(044) 

0710(060) 

0451(033) 

0472(035) 

0520(040) 

0671(057) 

0432(031) 

0418(032) 

0442(034) 

0528(040) 

0460(034) 

0455(035) 

0487(039) 

0602(050) 

0461(036) 

0472(037) 

0523(041) 

0661(060) 

0439(032) 

0423(033) 

0447(035) 

0531(041) 

20 (0,0) 

(1,3) 

(1.8,6) 

(3,25) 

0461(033) 

0480(034) 

0519(038) 

0656(054) 

0466(034) 

0489(035) 

0534(040) 

0685(057) 

0481(037) 

0495(039) 

0547(043) 

0698(059) 

0464(033) 

0485(035) 

0526(039) 

0666(055) 

0456(032) 

0455(032) 

0476(034) 

0558(040) 

0469(034) 

0464(035) 

0499(038) 

0604(048) 

0454(035) 

0469(036) 

0519(047) 

0669(062) 

0456(032) 

0453(033) 

0475(034) 

0558(040) 

265 10 (0,0) 

(1.3) 
(1.8,6) 
(3,25) 

0346(027) 

0351(027) 

0383(030) 

0483(038) 

0348(027) 

0353(027) 

0386(030) 

0491(039) 

0359(027) 

0372(029) 

0413(032) 

0521(043) 

0347(027) 

0352(027) 

0385(030) 

0487(039) 

0341(025) 

0338(025) 

0359(027) 

0415(031) 

0349(026) 

0352(027) 

0377(028) 

0453(036) 

0346(027) 

0357(027) 

0397(030) 

0488(039) 

0344(026) 

0341(026) 

0363(027) 

0417(032) 

15 (0,0) 

(1,3) 

(1.8,6) 

(3,25) 

0361(028) 

0368(028) 

0397(030) 

0484(037) 

0370(028) 

0370(028) 

0400(030) 

0495(038) 

0369(029) 

0369(029) 

0409(032) 

0513(042) 

0370(028) 

0370(028) 

0399(030) 

0489(038) 

0372(027) 

0377(027) 

0394(028) 

0453(031) 

0366(026) 

0368(027) 

0391(029) 

0459(034) 

0340(026) 

0353(027) 

0394(029) 

0485(039) 

0370(026) 

0374(027) 

0392(028) 

0451(031) 

20 (0,0) 

(1.3) 

(1.8,6) 

(3,25) 

0393(029) 

0400(029) 

0424(030) 

0496(036) 

0390(029) 

0398(029) 

0425(031) 

0508(037) 

0355(027) 

0367(028) 

0405(031) 

0504(041) 

0392(029) 

0400(029) 

0425(031) 

0502(037) 

0422(028) 

0427(028) 

0443(029) 

0508(032) 

0388(027) 

0389(027) 

0411(028) 

0482(034) 

0337(026) 

0353(027) 

0394(029) 

0490(039) 

0415(028) 

0420(028) 

0437(029) 

0506(032) 

* All values in the table are preceded by an omitted decimal point. Standard deviations are in parentheses. Standard errors of the 
means can be obtained by dividing each standard deviation by 1000 s 4. 
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Figure 4: Mean absolute error for R2

estimate across levels of non-normality ( N = 94) 
Note: N = Sample size, P M = Percent missing, R S Q = R2

esumate 
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Effects on Absolute Error for Regression Coefficients 

The effects of design variables on absolute error for bi are listed in Table 7. For b 2 and 

b 4 , no effect of practical significance was observed. For b 3 , however, the effect of non-normality 

was of practical significance for all M D T s and at each level of sample size. 

Using r | 2

a i t > .03 as the criterion, the table shows that for b i , the effect of non-normality 

was of practical significance under E M and R S . The effect of pattern of missing data was of 

practical significance under M S and P W . Also , the effect of pattern of missing data was the 

strongest, with little differentiation between E M and RS where its effect was of practical 

significance. 

Table 7 
Effects on absolute error for regression coefficients fulfilling the criterion of f i 2 ^ > .03* 

Sample size M D T b, b 2 b 3 b 4 

94 E M _ N L (033) 
MS - - N L (034) -
PW - - N L (034) -
RS - - N L (034) -

153 E M NL(031) - N L (036) 
MS PT (030) - N L (037) -
PW PT (030) - N L (037) -
RS NL(031) - N L (037) -

265 E M N L (038) - NL(041) _ 

MS PT (080) - N L (043) -
PW PT (079) - N L (043) -
RS N L (041) - N L (042) -

* Values of r | 2

a U are in parentheses preceded by an omitted decimal point. 
Note: E M = E M imputation, MS = Mean substitution, PW = Pairwise deletion, RS = Regression 
imputation, PT = Pattern, N L = Non-normality, - = No effect of practical significance. 

Relative Performance of M D T s in the Estimation of Regression Coefficients 

Table 8 contains mean absolute error and the corresponding standard deviation for b i . 

M D T s provided similar results for b 2 , b 3 , and b 4 , and for this reason, only results for bj are 
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presented. The influence of non-normality on the performance of MDTs at sample size 94 is 

revealed in Figure 7. The performance of all MDTs deteriorated with increasing non-normality as 

measured by mean absolute error for b\. This was regardless of missing pattern. At sample size 

94, under monotonic pattern of missing data, MDTs overlapped in pairs; MS and PW formed one 

pair and E M and RS formed another pair. This outcome was observed at all levels of percent 

missing. Under monotonic pattern of missing data, E M and RS consistently outperformed MS 

and PW. 

At sample size 94 with non-monotonic pattern, again pairing of MDTs similar to those 

under monotonic pattern was observed, with E M and RS outperforming MS and PW. Whereas 

the mean absolute error of estimation under E M and RS was smaller with non-monotonic pattern 

than with monotonic pattern, the mean absolute error of estimation under MS and PW was 

smaller under monotonic pattern than under non-monotonic pattern. The influence of non-

normality on the performance of MDTs at sample size 153 and 265 are revealed in Figures 8 and 

9, respectively. The outcome was similar to that under sample size 94. 

In sum, the best performance was under E M and RS, regardless of missing pattern. 

However, at each level of percent missing, the mean absolute error of bi under E M and RS was 

smaller under non-monotonic pattern than under monotonic pattern. Also, at each level of 

percent missing, the mean absolute error of estimation under MS and PW was smaller with 

monotonic pattern than with non-monotonic pattern. 

Table A.2 in Appendix A shows bias in bi. Figure B.2 in Appendix B shows graphs for 

the bias in bi (N = 94). The bias across all conditions of the design variables had a range of .16. 

The smallest bias was under RS across all levels of the design variables. However, the bias under 

E M was very close to that under RS. Whereas E M and RS consistently underestimated Pi, MS 

and PW, which had equivalent estimators, consistently overestimated Pi. The bias under non­

monotonic missing pattern was generally larger than that under monotonic missing pattern. The 
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maximum range in bias in estimating p2, P 3 , and p4 was .04, a relatively' smaller value compared 

to that of Pi. This indicates that the largest bias was for Pi Therefore, graphs for p2, P3, and p4 

were omitted. 
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Table 8 
Means and standard deviations* of absolute error of estimation for bi 

Monotonic Missing Pattern Non-monotonic Missing Pattern 

N Percent 
Missing 

Normality 
(sk., kurt.) 

EM 
Imputation 

Mean 
Substitution 

Pairwise 
Deletion 

Regress. 
Imputation 

EM 
Imputation 

Mean 
Substitution 

Pairwise 
Deletion 

Regress. 
Imputation 

94 10 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0765(056) 
0828(062) 
0907(071) 
1030(087) 

0837(061) 
0899(068) 
0979(077) 
1109(101) 

0837(061) 
0897(068) 
0978(077) 
1108(101) 

0722(057) 
0834(063) 
0913(072) 
1035(089) 

0658(047) 
0701(049) 
0768(055) 
0919(064) 

0959(071) 
1024(081) 
1094(091) 
1295(128) 

0959(071) 
1023(080) 
1091(091) 
1292(128) 

0639(047) 
0674(049) 
0741(055) 
0895(065) 

15 (0,0) 
(1,3) 

(1.8,6) 

(3,25) 

0749(055) 
0816(061) 
0896(070) 

1021(088) 

0860(063) 
0920(070) 
0997(079) 

1128(106) 

0860(063) 
0921(069) 
0998(078) 

1128(105) 

0755(056) 
0820(062) 
0897(070) 

1019(089) 

0629(046) 
0680(048) 
0742(053) 

0913(067) 

1045(076) 
1103(086) 
1168(095) 

1380(134) 

1044(076) 
1101(086) 
1164(095) 

1372(133) 

0607(046) 
0656(048) 
0720(053) 

0912(070) 

20 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0738(055) 
0803(061) 
0880(069) 
1011(088) 

0886(065) 
0941(072) 
1015(081) 
1150(108) 

0885(065) 
0941(072) 
1015(081) 
1149(108) 

0737(055) 
0802(061) 
0877070) 
1001(089) 

0623(045) 
0673(049) 
0747(055) 
0906(071) 

1109(079) 
1160(089) 
1220(099) 
1430(137) 

1108(079) 
1158(089) 
1214(099) 
1421(137) 

0598(045) 
0648(049) 
0726(054) 
0920(075) 

153 10 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0575(043) 
0620(046) 
0687(051) 
0820(071) 

0643(047) 
0681(051) 
0742(058) 
0873(078) 

0642(047) 
0681(051) 
0741(058) 
0873(078) 

0580(044) 
0621(046) 
0686(052) 
0814(071) 

0514(036) 
0558(037) 
0613(041) 
0731(051) 

0817(057) 
0861(066) 
0910(076) 
1120(105) 

0816(057) 
0860(066) 
0907(075) 
1114(105) 

0490(036) 
0526(037) 
0581(040) 
0703(050) 

15 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0564(042) 
0604(045) 
0666(051) 
0800(070) 

0668(048) 
0707(053) 
0762(061) 
0895(082) 

0667(048) 
0705(053) 
0761(061) 
0893(083) 

0568(042) 
0606(045) 
0664(051) 
0790(070) 

0502(034) 
0548(036) 
0593(040) 
0709(051) 

0919(061) 
0962(070) 
1005(080) 
1215(109) 

0918(061) 
0961(070) 
1001(079) 
1207(109) 

0471(034) 
0513(035) 
0565(040) 
0695(052) 

20 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0548(041) 
0590(044) 
0651(050) 
0783(068) 

0697(049) 
0732(055) 
0787(063) 
0911(085) 

0695(049) 
0730(055) 
0784(063) 
0910(085) 

0552(041) 
0591(044) 
0650(050) 
0771(067) 

0490(034) 
0525(036) 
0571(039) 
0691(051) 

0994(065) 
1034(073) 
1074(082) 
1272(112) 

0993(065) 
1033(073) 
1069(082) 
1264(111) 

0462(034) 
0502(035) 
0553(039) 
0690(053) 

265 10 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0439(033) 
0466(036) 
0517(039) 
0640(053) 

0491(036) 
0513(039) 
0560(044) 
0674(059) 

0491(036) 
0513(039) 
0560(044) 
0674(059) 

0441(033) 
0465(036) 
0515(040) 
0633(053) 

0390(028) 
0434(030) 
0471(032) 
0593(040) 

0710(046) 
0763(052) 
0796(058) 
0993(081) 

0710(046) 
0761(052) 
0793(058) 
0988(081) 

0359(027) 
0391(028) 
0431(031) 
0561(039) 

15 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0428(032) 
0455(034) 
0508(037) 
0614(051) 

0517(037) 
0541(040) 
0580(046) 
0692(060) 

0517(037) 
0541(040) 
0580(046) 
0692(060) 

0430(032) 
0454(034) 
0502(038) 
0607(051) 

0385(027) 
0424(029) 
0460(031) 
0571(039) 

0826(050) 
0873(055) 
0903(061) 
1089(084) 

0825(050) 
0872(055) 
0899(061) 
1083(084) 

0346(026) 
0386(027) 
0427(030) 
0554(038) 

20 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0415(031) 
0441(033) 
0488(036) 
0602(048) 

0545(039) 
0567(042) 
0604(047) 
0708(063) 

0545(039) 
0566(042) 
0604(047) 
0708(063) 

0412(031) 
0436(033) 
0480(036) 
0585(049) 

0385(027) 
0419(028) 
0448(031) 
0558(039) 

0915(052) 
0955(057) 
0982(063) 
1150(086) 

0915(052) 
0954(057) 
0977(063) 
1143(086) 

0350(026) 
0389(027) 
0423(030) 
0551(039) 

* All values in the table are preceded by an omitted decimal point. Standard deviations are in parentheses. Standard errors of the means can be 
obtained by dividing each standard deviation by 100014. 
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Figure 7: Mean absolute error for bi across levels of non-normality (N = 94) 
Note: N = Sample size, P M = Percent missing. 
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Figure 8: Mean absolute error for b! across levels of non-normality (N = 153) 

Note: N = Sample size, P M = Percent missing 
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Figure 9: Mean absolute error for b] across levels of non-normality (N = 265) 
Note: N = Sample size, P M = Percent missing 
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Coverage Probability for p\ 

Coverage probabilities under monotonic pattern were found to differ from those under 

non-monotonic pattern only for (3]. M D T s were not differentiated in their coverage probabilities 

for p2, p3, and p4, whose graphs looked the same and the averages extremely close. For this 

reason, only the coverage probabilities for Pi are reported. 

Table 9 contains mean coverage probabilities for Pi, under various design conditions. 

These means are plotted for sample size 94, 153 and 265 in Figures 10, 11, and 12, respectively. 

The graphs show that coverage probability decreased with increasing non-normality at al l levels 

of sample size. Also , there was little differentiation in coverage probability between M S and P W , 

and between E M and R S , and this was regardless of missing pattern. However, the difference in 

coverage probability between the pairs M S / P W and E M / R S was larger under non-monotonic 

pattern than under monotonic pattern. A l l M D T s had coverage probabilities above 90% with 

normal data under monotonic missing pattern. M S and P W had poor coverage probabilities 

(below 90%); with the lowest coverage probability (below 65%) occurring at sample size 265 

under non-monotonic pattern when percent missing was 20. 
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Table 9 
Mean coverage probability (%) for fti 

Monotonic Missing Pattern Non-monotonic Missing Pattern 

N Percent Normality EM Mean Pairwise Regress. EM Mean Pairwise Regress. 
Missing (sk., kurt.) Imputation Substitution Deletion Imputation Imputation Substitution Deletion Imputation 

94 10 (0,0) 96.3 93.6 93.5 95.9 98.8 89.3 88.9 98.8 
(1.3) 95.5 93.2 93.2 94.9 98.7 87.7 87.6 98.6 

(1.8,6) 93.2 90.9 90.7 92.8 97.9 84.5 84.4 97.6 
(3,25) 87.8 84.3 83.8 87.4 94.8 78.0 78.2 95.1 

15 (0,0) 97.4 93.3 93.2 97.0 99.1 85.3 85.2 99.0 
(1.3) 96.0 92.0 91.8 95.0 99.1 83.7 83.5 99.1 

(1.8,6) 93.7 90.0 89.8 93.6 98.6 81.8 81.7 98.4 

(3,25) 89.1 83.8 83.9 88.9 95.3 75.0 74.4 95.2 

20 (0,0) 98.0 93.4 92.6 97.6 99.5 83.3 82.8 99.4 
(1.3) 96.7 91.9 91.0 96.2 99.0 80.6 80.5 99.0 

(1.8,6) 94.7 89.8 89.4 94.5 98.3 79.1 79.1 98.2 
(3,25) 89.4 84.4 83.4 89.3 95.0 73.2 73.0 94.6 

153 10 , (0,0) 97.0 94.7 94.6 97.0 99.3 85.1 84.8 99.2 
(1.3) 96.4 93.0 93.1 96.1 98.6 82.5 82.1 98.7 

(1.8,6) 93.8 90.0 89.9 93.6 97.8 79.8 79.3 97.7 
(3,25) 88.0 84.4 84.0 87.9 93.6 71.4 71.3 94.0 

15 (0,0) 97.3 94.5 94.1 97.4 99.8 80.2 80.1 99.8 
(1.3) 96.4 92.4 92.2 96.0 99.3 77.4 76.9 99.3 

(1.8,6) 94.3 89.1 89.2 94.0 98.4 74.9 74.8 98.7 
(3,25) 89.3 83.5 83.2 89.1 94.1 68.0 68.4 94.2 

20 (0,0) 98.0 93.5 92.9 97.8 99.9 76.7 75.9 99.9 
(1.3) 97.3 91.4 91.4 97.1 99.3 74.5 73.5 99.4 

(1.8,6) 95.6 88.5 88.1 95.6 98.6 72.1 72.6 98.7 
(3,25) 90.7 83.5 82.8 91.3 95.4 66.7 66.6 95.2 

265 10 (0,0) 96.9 94.1 93.9 96.6 98.8 79.2 78.9 98.8 
(1,3) 95.7 93.2 92.9 95.6 97.9 76.3 75.6 98.1 

(1.8,6) 93.1 90.2 90.0 93.1 97.1 74.3 74.0 97.4 
(3,25) 85.0 82.6 82.2 85.2 90.4 64.4 63.8 91.0 

15 (0,0) 97.3 93.1 92.7 97.4 98.9 72.2 71.5 99.2 
(1,3) 96.6 92.7 92.2 96.2 98.1 69.6 69.2 98.6 

(1.8,6) 94.6 90.0 89.2 94.6 97.4 66.8 65.7 97.8 
(3,25) 87.2 82.5 81.6 87.1 91.6 59.4 59.0 91.7 

20 (0,0) 98.1 91.3 90.6 98.1 99.4 64.3 63.9 99.6 
(1.3) 97.3 90.9 90.3 97.1 98.3 63.7 63.0 98.7 

(1.8,6) 95.4 87.7 97.0 95.2 97.8 60.9 60.4 98.2 
(3,25) 88.5 81.7 81.0 88.8 92.6 56.5 56.2 92.9 
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Figure 10: Mean coverage probability for fjj (N = 94) 
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Figure 11: Mean coverage probability for [3] (N=153) 
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Figure 12: Mean coverage probability for PJ (N = 265) 
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Summary 

In the foregoing sections, effects on absolute error for R2

estimate and Pi were reported, 

together with the relative performance of M D T s . In addition, M D T s were compared with respect 

to the coverage probabilities of population regression coefficients when nominal alpha is .05. 

There were no effects on absolute error for bi of practical significance at sample size 94 

or 153. However, at sample size 265, the effect of percent missing was of practical significance 

under E M and RS only. 

Wi th respect to mean absolute error for R2

estimate, the performance of all M D T s 

deteriorated with increasing non-normality. The best performance was under E M , the worst 

under P W . The smallest bias in R2

estimate across different conditions of the design variables was 

not under a single M D T . There was more differentiation in the performance of M D T s with non­

monotonic missing pattern than with monotonic missing pattern. In each case, M D T s differed 

more at higher levels of non-normality than at lower levels, except at the highest level of sample 

size with 20% missing. 

The effect of missing pattern on absolute error for bi was of practical significance under 

M S and P W , but only when sample size was moderate or large (153 or 265). Non-normality 

showed an effect of practical significance on absolute error for b i under E M and R S when sample 

size was moderate to large (153 to 265). The strongest effect on absolute error for b] was that of 

missing pattern under both M S and P W when sample size was 265. It appears that with respect to 

effects on absolute error for b i , M S and P W were alike in their performance. Also , E M and R S 

were alike in that the absolute error for bi under the two M D T s was affected by non-normality. 

A s for the relative performance of M D T s in estimating population regression coefficients, 

M D T s differed mainly on the coefficient of the predictor with no missing data (bi in this case). 

Therefore, only the findings regarding bi are reported. For b i , the performance of M D T s 

deteriorated with increasing non-normality. This was regardless of missing pattern. Overall , RS 

and E M outperformed M S and RS in estimating pi with respect to accuracy of parameter 
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estimates. The smallest bias in b | was also under RS . Whereas M S and P W consistently 

overestimated Pi, E M and RS consistently underestimated Pi. The performance of M S was 

undifferentiated from that of P W across the two patterns. However, E M and RS were more 

differentiated from M S and P W under non-monotonic than under monotonic missing pattern. 

Coverage probabilities decreased with increasing non-normality. Both E M and RS 

provided coverage probabilities that were closer to the nominal value of 95% than did M S and 

P W . 

In sum, the findings from this study suggest that with fewer predictors (four in this case) 

under low criterion-predictor relationships, E M and R S generally were superior to M S and P W 

with respect accuracy in parameter estimation. However, the smallest bias was under R S . How 

the outcomes w i l l change when R 2 is high was examined in the next study. 
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Study 2: Four Predictors under High R 2 Condition 

Effects on Absolute Error for R^sumate 

This study was identical to Study 1 in design and analysis, except that the data were 

generated using high multiple R 2 (0.59437). Table 10 contains the effects of design variables on 

absolute error for R2

estimite that fulfilled the criterion of r | 2

a i t > .03, showing that at sample size 94, 

the strongest effect was that of missing pattern under E M . There was no effect of practical 

significance under MS at sample size 94. Percent missing affected the performance of E M and 

RS more than it affected MS and PW. On the other hand, non-normality affected the 

performance of MS and RS more than it affected E M and RS. 

At sample size 153, there was no effect of practical significance under M S . Under PW, 

the effect of non-normality was of practical significance. Under E M and RS, the effects of 

pattern and non-normality on absolute error were of practical significance. However, their 

interaction effect was also significant, and thus their main effects have to be qualified. These 

ordinal interaction effects are displayed in Figures 13 and 14, showing that absolute error were 

generally smaller under monotonic missing pattern than under non-monotonic missing pattern. 

However, the difference in absolute error with normal data was smaller than the difference in 

absolute error at the highest level of non-normality (skew=3 and kurtosis=25). 

At sample size 265, the effect of percent missing on absolute error for R2

estimate under MS 

was of practical significance. Under PW, the effect of non-normality was of practical 

significance. Under E M and RS, the effects of pattern and non-normality on absolute error for 

R2estimate were of practical significance. However, their interaction effect was also significant, and 

thus their main effects have to be qualified as was the case at sample size 153. These ordinal 

interaction effects are displayed in Figures 15 and 16, showing that absolute errors were generally 

smaller under monotonic pattern than under non-monotonic pattern. However, the difference in 

absolute error across missing pattern was smaller for normal data than for non-normal data. 
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Relative Performance of MDTs in the Estimation of Population R 2 

Table 11 contains means and standard deviations of absolute error in R2

estimate under 

various design conditions. The means are plotted in Figures 17, 18, and 19 for sample sizes 94, 

153 and 265, respectively. The figures show that the performance of all MDTs deteriorated with 

increasing non-normality as measured by the absolute bias in R2

estimate estimate. Overall, PW had 

the best performance and E M the worst. 

MDTs were more differentiated at the highest level of percent missing (20%). Also, at 

each level of percent missing, MDTs were most differentiated for normal data, and least 

differentiated at the highest level of non-normality (skew = 3 and kurtosis = 25). 

Table A.3 in Appendix A contains bias in R2

estimate under high R 2 condition with four 

predictors. Bias in R2

e s umate varied from -.25 to .04 across all sample size conditions, giving a 

range of .29. This suggests a substantial difference in bias among MDTs in the estimation of 

population R 2 . Figure B.3 in Appendix B is a set of graphical plots for the bias in R 2

e s u m a t e 

(N = 94), showing that all the MDTs, except PW, tended to underestimate R 2 . The smallest bias 

was under PW at all levels of the design variables. 
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Table 10 
Effects on absolute error for R 2 ^ ; ^ fulfilling the rj 2^ > .03 criterion 

Sample size M D T Effect SSeffect SS r e sidu ai df 

94 E M Percent missing 3.60 74.87 2 .046 
Pattern 27.08 74.87 1 .266 

MS - - - -
PW Non-normality 2.78 57.82 3 .046 
RS Pattern 21.43 74.51 1 .223 

Percent missing 3.46 74.51 2 .044 
Non-normality 3.87 74.51 3 .049 

153 E M Pattern 35.68 51.73 1 .408 
Percent missing 3.48 51.73 2 .063 
Non-normality 2.25 51.73 3 .042 
PatternxNon-normality 1.73 51.73 3 .032 

M S - - - - _ 

PW Non-normality 1.62 25.21 3 .061 
RS Pattern 30.48 52.03 1 .369 

Percent missing 3.65 52.03 2 .066 
Non-normality 4.07 52.03 3 .073 
PatternxNon-normality 2.44 52.03 3 .045 

265 E M Pattern 41.99 34.06 1 .552 
Percent missing 3.94 34.06 2 .104 
Non-normality 2.03 34.06 3 .056 
PatternxNon-normality 2.94 34.06 3 .079 

MS Percent missing 1.54 39.38 2 .038 
PW Non-normality .97 15.13 3 .060 
RS Pattern 37.32 34.68 1 .518 

Percent missing 3.96 34.68 2 .102 
Non-normality 3.66 34.68 3 .095 
PatternxNon-normality 3.97 34.68 3 .103 

Note: E M = E M imputation, MS = Mean substitution, PW = Pairwise deletion, RS = Regression 
imputation, - - No effect of practical significance. 
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Table 11 
Means and standard deviations' of absolute error for R ^ m ^ . 

Monotonic Missing Pattern Non-monotonic Missing Pattern 

N Percent 
Missing 

Normality 
(sk., kurt.) 

EM 
Imputation 

Mean 
Substitution 

Pairwise 
Deletion 

Regress. 
Imputation 

EM 
Imputation 

Mean 
Substitution 

Pairwise 
Deletion 

Regress. 
Imputation 

94 10 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0630(049) 
0666(051) 
0721(056) 
0884(067) 

0608(047) 
0644(050) 
0707(054) 
0902(067) 

0538(040) 
0585(044) 
0674(051) 
0913(083) 

0615(047) 
0654(047) 
0714(055) 
0898(068) 

0967(055) 
1091(059) 
1108(064) 
1511(087) 

0620(048) 
0648(051) 
0691(055) 
0878(069) 

0515(039) 
0548(043) 
0624(049) 
0796(076) 

0788(054) 
0900(059) 
0941(063) 
1400(087) 

15 (0,0) 
(1,3) 

(1.8,6) 

(3,25) 

0813(055) 
0826(058) 
0851(062) 

0952(074) 

0720(053) 
0745(054) 
0785(058) 

0933(069) 

0535(040) 
0582(044) 
0668(051) 

0900(082) 

0752(054) 
0777(056) 
0813(060) 

0948(073) 

1388(054) 
1532(058) 
1541(066) 

1935(092) 

0729(054) 
0771(058) 
0801(062) 

1043(080) 

0510(039) 
0548(043) 
0621(049) 

0808(083) 

1167(057) 
1338(060) 
1370(067) 

1867(093) 

20 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

1063(061) 
1060(066) 
1069(071) 
1113(085) 

0880(059) 
0897(061) 
0922(066) 
1020(077) 

0533(040) 
0582(044) 
0671(053) 
0927(115) 

0957(060) 
0969(064) 
0990(069) 
1075(082) 

1797(052) 
1924(058) 
1930(067) 
2281(095) 

0870(060) 
0923(065) 
0961(069) 
1234(088) 

0517(040) 
0559(045) 
0629(052) 
0831(080) 

1597(055) 
1765(059) 
1788(068) 
2245(097) 

153 10 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0568(043) 
0581(044) 
0619(047) 
0744(056) 

0523(042( 
0542(043) 
0591(045) 
0741(056) 

0411(031) 
0436(033) 
0502(038) 
0699(052) 

0535(042) 
0554(043) 
0600(046) 
0747(056) 

1019(044) 
1177(047) 
1208(052) 
1642(075) 

0550(041) 
0585(043) 
0627(046) 
0834(063) 

0393(030) 
0408(032) 
0461(037) 
0616(050) 

0803(046) 
0959(048) 
1005(052) 
1515(075) 

15 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0799(049) 
0794(052) 
0810(054) 
0873(064) 

0671(048) 
0680(049) 
0712(051) 
0817(061) 

0409(031) 
0433(033) 
0498(038) 
0691(051) 

0713(049) 
0720(050) 
0748(053) 
0843(062) 

1467(042) 
1625(046) 
1656(052) 
2091(077) 

0696(047) 
0745(050) 
0790(053) 
1059(073) 

0393(031) 
0410(033) 
0462(037) 
0618(052) 

1230(045) 
1417(048) 
1465(054) 
2012(077) 

20 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

1074(052) 
1056(056) 
1046(061) 
1065(072) 

0867(052) 
0855(055) 
0868(058) 
0931(067) 

0408(031) 
0430(033) 
0492(038) 
0689(053) 

0953(053) 
0940(057) 
0947(060) 
1001(070) 

1837(040) 
1982(045) 
2004(051) 
2410(079) 

0862(052) 
0927(054) 
0964(058) 
1267(081) 

0402(032) 
0420(034) 
0471(038) 
0637(056) 

1643(043) 
1830(046) 
1870(052) 
2382(080) 

265 10 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0541(036) 
0536(037) 
0546(040) 
0612(048) 

0479(035) 
0477(036) 
0496(039) 
0594(046) 

0307(024) 
0328(026) 
0378(029) 
0533(040) 

0495(035) 
0493(037) 
0509(040) 
0602(047) 

1067(033) 
1243(036) 
1297(041) 
1783(063) 

0516(034) 
0560(038) 
0599(042) 
0848(060) 

0299(024) 
0314(026) 
0354(029) 
0484(039) 

0832(036) 
1012(038) 
1078(043) 
1648(063) 

15 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0807(039) 
0792(042) 
0782(047) 
0772(059) 

0670(039) 
0659(042) 
0659(045) 
0700(054) 

0306(024) 
0326(026) 
0375(029) 
0526(040) 

0715(040) 
0704(042) 
0702(046) 
0728(056) 

1490(031) 
1665(034) 
1719(040) 
2200(061) 

0683(039) 
0752(042) 
0797(046) 
1097(066) 

0308(025) 
0325(026) 
0363(029) 
0491(040) 

1256(034) 
1462(036) 
1531(041) 
2125(062) 

20 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

1096(040) 
1076(045) 
1056(051) 
1003(066) 

0880(042) 
0859(046) 
0847(051) 
0839(061) 

0305(024) 
0324(026) 
0372(029) 
0519(040) 

0969(041) 
0951(046) 
0936(051) 
0913(064) 

1879(030) 
2037(033) 
2082(039) 
2509(060) 

0868(042) 
0954(044) 
1001(049) 
1336(071) 

0325(026) 
0343(028) 
0376(030) 
0505(042) 

1678(032) 
1879(034) 
1941(040) 
2474(061) 

* All values in the table are preceded by an omitted decimal point. Standard deviations are in parentheses. Standard errors of the means can be 
obtained by dividing each standard deviation by 100054. 
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Figure 17: Mean absolute error for R e s t i m a t e across levels of non-normality (N = 94) 
Note: N=Sample size, PM=Percent missing, RSQ = R 2

e s t i m a t e 
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Figure 18: Mean absolute error for R 2

e sum ate across levels of non-normality (N = 153) 
Note: N=Sample size, PM=Percent missing, RSQ = R2

estimate 
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Figure 19: Mean absolute error for R2

estimate across levels of non-normality (N = 265) 
Note: N=Sample size, PM=Percent missing, RSQ = R 2
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Effects on Absolute Error for Regression Coefficients 

The effects of design variables on absolute error for regression coefficients, which 

fulfilled the criterion T | 2

a i t > .03, are in Table 12. Percent missing had no effect of practical value. 

Miss ing pattern had an effect of practical significance only for bias in b i , the intensity of which 

increased with sample size. This was true for all M D T s . In addition, the effect of non-normality 

on absolute error for all regression coefficients was of practical significance under all M D T s , 

except E M . The strength of this effect also increased with sample size. Notice that for absolute 

error for bi under E M , it was only the effect of missing pattern that met the criterion r] 2

a i t > .03. 

Table 12 
Effects on absolute error for regression coefficients fulfilling the criterion of r\2*u > .03* 

Sample size M D T b] bj bj b^ 

94 E M PT (157) N L (050) N L (074) N L (033) 
MS PT (082) N L (055) NL(081) N L (036) 

N L (043) - - -
PW PT (082) NL(056) N L (080) N L (037) 

N L (043) - - -
RS PT (162) N L (052) N L (075) N L (039) 

N L (050) - - -

153 E M PT (278) N L (056) N L (085) N L (040) 
MS PT(164) N L (057) N L (096) N L (049) 

N L (043) - - -
PW PT (163) N L (057) N L (096) N L (049) 

N L (042) - - -
RS PT (302) N L (060) N L (083) NL(051) 

N L (055) - - -

265 E M PT (419) N L (069) N L (107) N L (037) 
M S PT (292) N L (069) NL(122) NL(.061) 

N L (045) 
PW PT(291) N L (068) NL(123) NL(061) 

N L (045) - - -
RS PT (462) N L (073) NL(113) N L (059) 

N L (042) 
* Values of r) 2

a l t are in parentheses preceded by an omitted decimal point. 
Note: E M = E M imputation, MS = Mean substitution, PW = Pairwise deletion, RS = Regression 
imputation, PT = Pattern, N L = Non-normality, - = No effect of practical significance. 
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Relative Performance of M D T s in the Estimation of Regression Coefficients 

Table 13 contains cell means and standard deviations of absolute error for bi. The 

influence of non-normality on the performance of M D T s at sample size 94 is revealed in Figure 

20. The figure shows that in general, the mean absolute error was smaller under monotonic 

pattern than under non-monotonic pattern, and that M D T s were more differentiated as percent 

missing increased. However, under both missing patterns, the M S and P W methods were 

undifferentiated. 

Overall , R S performed the best under both monotonic and non-monotonic missing 

patterns, and E M performed the worst. However, at 15% and 20% missing under non-monotonic 

pattern, E M performed better than M S and P W at the highest level of non-normality (skew = 3 

and kurtosis = 25). 

Figure 21 shows mean absolute error for bi at sample size 153. Under monotonic 

missing pattern, R S performed the best and E M the worst. This was true with non-monotonic 

pattern as well , except that at 15% and 20% missing under non-monotonic pattern, E M performed 

better than both M S and P W at the highest level of non-normality (skew = 3 and kurtosis = 25). 

Also , at 15% and 20% missing under non-monotonic pattern, the performance of R S , M S and P W 

was undifferentiated except at the highest level of non-normality where R S outperformed the rest. 

Figure 22 is a set of graphs for mean absolute error for bi at sample size 265. The figure shows 

that results at this level of sample size were similar to those under sample size 153. 

Table A . 4 in Appendix A shows the bias in bi under high R 2 with four predictors 

( N = 94). Figure B.4 in Appendix B shows typical graphs for the bias in bi. The bias in bj varied 

from -.177 to .195, giving a range of .37. The smallest bias was under RS across all levels of the 

design variables. However, the bias under E M was very close to that under R S . Whereas M S and 

P W consistently overestimated Pi, E M and R S consistently underestimated Pi. The range in bias 

for b2 to b 4 , with a maximum of .08, was far smaller than that for bj. Therefore, their graphical 

plots were omitted. 
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Table 13 

Means and standard deviations' of absolute error for bi 

Monotonic Missing Pattern Non-monotonic Missing Pattern 

N Percent Normality EM Mean Pairwise Regress. EM Mean Pairwise Regress. 
Missing (sk., kurt.) Imputation Substitution Deletion Imputation Imputation Substitution Deletion Imputation 

94 10 (0,0) 0721(053) 0670(051) 0668(051) 0604(046) 1346(067) 1098(072) 1097(072) 0944(054) 
(1,3) 0814(060) 0770(063) 0767(062) 0704(053) 1514(076) 1232(091) 1230(091) 1146(065) 

(1.8,6) 0924(068) 0885(075) 0883(074) 0819(061) 1564(085) 1329(107) 1325(106) 1226(071) 
(3,25) 1198(091) 1197(115) 1195(115) 1108(084) 1825(104) 1845(171) 1840(171) 1641(098) 

15 (0,0) 0790(056) 0742(055) 0739(055) 0625(047) 1533(067) 1311(077) 1310(077) 1175(058) 
(1,3) 0873(063) 0844(067) 0842(067) 0722(054) 1643(076) 1429(096) 1427(096) 1346(069) 

(1-8,6) 0976(071) 0957(079) ' 0954(079) 0830(062) 1652(084) 1512(113) 1506(112) 1389(076) 

(3,25) 1242(092) 1277(123) 1274(123) 1117(085) 1800(102) 2008(177) 2000(176) 1705(102) 

20 (0,0) 0890(062) 0820(061) 0815(061) 0669(050) 1696(069) 1468(082) 1466(082) 1410(062) 
(1,3) 0964(067) 0918(073) 0914(072) 0759(056) 1745(077) 1573(101) 1570(100) 1522(072) 

(1.8,6) 1059(074) 1026(084) 1023(084) 0860(063) 1741(085) 1652(117) 1642(116) 1533(079) 
(3,25) 1317(096) 1343(129) 1340(129) 1149(086) 1759(101) 2112(180) 2100(180) 1709(102) 

153 10 (0,0) 0595(043) 0525(038) 0524(038) 0463(035) 1366(052) 1039(059) 1038(059) 0922(045) 
(1,3) 0664(047) 0587(046) 0586(046) 0543(040) 1523(060) 1158(075) 1156(075) 1123(053) 

(1.8,6) 0758(054) 0677(054) 0677(054) 0642(046) 1548(069) 1230(089) 1223(089) 1177(061) 
(3,25) 1021(073) 0954(084) 0954(083) 0914(067) 1776(089) 1673(142) 1667(141) 1581(083) 

15 (0,0) 0703(048) 0597(043) 0595(043) 0493(037) 1582(053) 1269(064) 1267(064) 1184(047) 
(1,3) 0764(053) 0665(052) 0662(052) 0573(042) 1679(060) 1374(079) 1371(079) 1349(055) 

(1-8,6) 0947(059) 0747(061) 0745(061) 0669(048) 1673(069) 1436(094) 1427(094) 1368(063) 
(3,25) 1082(078) 1024(093) 1022(093) 0935(068) 1738(087) 1845(145) 1834(144) 1628(086) 

20 (0,0) 0811(049) 0672(047) 0668(047) 0553(040) 1695(051) 1423(066) 1422(066) 1413(047) 
(1,3) 0858(055) 0728(056) 0724(056) 0621(045) 1743(058) 1514(081) 1511(081) 1529(056) 

(1.8,6) 0922(061) 0801(065) 0798(065) 0703(050) 1718(067) 1566(096) 1554(096) 1521(065) 
(3,25) 1134(080) 1062(097) 1061(097) 0956(068) 1699(085) 1940(147) 1926(147) 1665(087) 

265 10 (0,0) 0537(036) 0424(032) 0424(032) 0383(029) 1378(040) 1023(047) 1023(047) 0903(036) 
(1,3) 0578(040) 0482(036) 0482(036) 0441(033) 1527(047) 1129(059) 1127(059) 1102(043) 

(1.8,6) 0639(045) 0548(042) 0548(042) 0511(038) 1541(056) 1179(070) 1174(070) 1141(051) 
(3,25) 0831(059) 0768(060) 0762(060) 0718(052) 1717(075) 1562(109) 1556(108) 1507(071) 

15 (0,0) 0656(039) 0494(036) 0493(036) 0427(031) 1583(039) 1243(049) 1243(049) 1187(035) 
(1,3) 0682(043) 0548(041) 0548(040) 0473(035) 1672(046) 1333(061) 1331(061) 1346(043) 

(1.8,6) 0726(048) 0609(046) 0609(046) 0534(039) 1664(054) 1374(073) 1366(073) 1360(051) 
(3,25) 0883(062) 0813(066) 0813(066) 0724(053) 1686(075) 1725(111) 1715(111) 1577(073) 

20 (0,0) 0783(042) 0578(039) 0576(039) 0502(033) 1729(038) 1411(050) 1411(050) 1429(035) 
(1,3) 0803(046) 0617(045) 0616(045) 0534(037) 1765(044) 1489(062) 1487(062) 1535(042) 

(1.8,6) 0837(051) 0672(050) 0672(050) 0587(041) 1734(053) 1522(074) 1513(073) 1520(050) 
(3,25) 0970(064) 0862(070) 0862(070) 0754(054) 1637(074) 1829(112) 1818(112) 1585(074) 

* All values in the table are preceded by an omitted decimal point. Standard deviations are in parentheses. Standard errors of the means can be 
obtained by dividing each standard deviation by 100VA. 
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Figure 2 0 : Mean absolute error for bi across levels of non-normality (N = 94) 
Note: N = Sample size, P M = Percent missing. 
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Figure 21: Mean absolute error for bi across levels of non-normality (N = 153) 
Note: N = Sample size, P M = Percent missing. 
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Figure 22: Mean absolute error for bj across levels of non-normality (N = 265) 
Note: N = Sample size, P M = Percent missing. 
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Coverage Probability for 

MDTs mostly differed in coverage probabilities for Pi and not for p 2 , P3,...,Po. For this 

reason, only the results for Pi are reported. 

Table 14 contains mean coverage probabilities for Pi at different levels of sample size. 

The means at sample size 94 are displayed in Figure 23. The figure shows that coverage 

probability decreased with increasing non-normality for all MDTs under both monotonic and 

non-monotonic patterns of missing data. RS provided the best coverage probability under both 

monotonic and non-monotonic missing patterns, followed by E M , M S and PW, in that order. 

However, under monotonic missing pattern, MDTs differed most in coverage probability of p i at 

20% missing, and least at 10% missing. 

A l l MDTs performed poorly under non-monotonic missing pattern. Under this pattern, 

coverage probabilities ranged from 41.8% at the highest level of percent missing (20%) and 

highest level of non-normality (skew = 3 and kurtosis=25) to 86.4% at the lowest level of percent 

missing (10%) and normal data. Thus, with non-monotonic missing pattern, the only result close 

to the nominal value was 86.4%, and this was under RS for normal data at 10% missing. 

Figure 24 shows coverage probabilities at sample size 153. RS provided the best 

coverage probability under both monotonic and non-monotonic patterns. However, all MDTs had 

poor coverage probabilities with non-monotonic missing pattern. At 10% missing, MDTs had the 

most differentiated coverage probabilities for normal data, and the least differentiated coverage 

probabilities at the highest level of non-normality (skew = 3 and kurtosis = 25). 

Figure 25 shows coverage probabilities at sample size 265. Under monotonic missing 

pattern, RS outperformed the other MDTs with respect to coverage probabilities, followed by 

MS, PW and E M , in that order. Again, all MDTs had poor coverage probabilities under non­

monotonic pattern, ranging from 9.6% under E M to 58.1% under RS. 
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Table 14 

Mean coverage probability (%) for fli 

Monotonic Missing Pattern Non-monotonic Missing Pattern 

N Percent Normality EM Mean Pairwise Regress. EM Mean Pairwise Regress. 
Missing (sk., kurt.) Imputation Substitution Deletion Imputation Imputation Substitution Deletion Imputation 

94 10 (0,0) 92.2 92.3 91.1 94.9 71.8 69.2 66.5 86.4 
(1.3) 88.3 88.6 86.5 91.0 65.0 64.2 62.2 76.8 

(1.8,6) 83.9 83.0 82.0 87.3 61.7 61.5 59.2 73.6 
(3,25) 69.8 69.4 68.4 72.5 55.8 50.3 48.6 60.0 

15 (0,0) 91.6 90.2 88.4 95.8 69.1 58.2 55.2 82.2 
(1.3) 86.2 86.5 83.7 91.7 65.4 55.4 52.4 74.6 

(1.8,6) 82.4 80.7 78.2 87.2 63.1 56.1 52.6 71.3 

(3,25) 69.3 67.6 65.6 74.6 59.6 46.7 44.7 62.0 

20 (0,0) 90.3 87.8 83.7 95.6 65.2 51.6 46.9 75.4 
(1,3) 85.3 82.5 80.4 90.7 64.2 50.0 46.3 70.0 

(1.8,6) 81.3 78.7 75.4 86.5 63.0 49.4 45.6 68.9 
(3,25) 69.0 67.0 64.4 74.2 63.3 44.3 41.8 65.1 

153 10 (0,0) 91.4 93.5 92.5 96.4 52.1 58.0 54.5 78.2 
(1.3) 86.7 89.6 88.0 92.6 44.7 53.8 50.9 63.6 

(1.8,6) 80.4 83.3 81.4 86.9 44.7 52.0 49.9 59.5 
(3,25) 65.6 69.1 67.0 70.6 43.9 43.5 41.1 48.4 

15 (0,0) 88.5 90.1 87.1 95.7 42.8 43.4 38.5 67.5 
(1,3) 81.4 85.0 82.8 91.5 41.0 41.5 38.0 56.1 

(1.8,6) 77.2 80.2 76.2 85.5 44.2 42.4 40.2 55.1 
(3,25) 65.0 66.5 64.6 71.3 49.5 36.9 34.1 52.0 

20 (0,0) 86.1 87.3 82.9 94.8 41.3 33.6 29.7 57.6 
(1.3) 79.0 82.7 78.6 90.5 43.4 33.5 30.2 51.0 

(1.8,6) 74.9 77.5 74.0 84.2 44.8 36.7 32.7 51.0 
(3,25) 63.6 66.3 64.5 72.2 53.4 34.6 30.7 54.1 

265 10 (0,0) 87.0 90.0 88.7 94.5 21.9 36.4 33.7 58.1 
(1.3) 82.3 86.5 84.4 89.4 20.3 33.8 31.2 43.7 

(1.8,6) 76.4 81.4 78.0 84.2 23.7 34.0 31.9 42.3 
(3,25) 61.4 66.5 65.0 68.8 28.2 26.7 25.3 33.8 

15 (0,0) 80.5 86.8 84.2 93.0 13.2 20.9 18.4 34.2 
(1,3) 75.9 84.0 79.5 88.7 15.6 21.0 18.6 31.3 

(1.8,6) 72.9 77.5 73.9 83.4 20.8 23.8 21.6 32.4 
(3,25) 61.2 65.5 61.1 69.8 32.6 22.1 19.7 35.0 

20 (0,0) 74.5 79.8 76.2 91.1 9.6 13.7 11.4 22.1 
(1-3) 70.2 78.0 72.7 86.0 14.9 15.1 13.1 23.0 

(1.8,6) 66.6 74.0 68.3 81.3 20.5 17.9 15.5 28.5 
(3,25) 57.9 62.7 58.1 69.7 36.7 19.3 17.4 38.7 
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Figure 23: Mean coverage probability for i3i (N = 94) 
Note: N = Sample size, P M = Percent missing. 
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Figure 24: Mean coverage probability for (3) (N = 153) 
Note: N = Sample size, P M = Percent Missing 
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Figure 25: Mean coverage probability for Pi (N = 265) 
Note: N = Sample size, P M = Percent missing. 
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Summary 

In the previous sections, the effects of design variables on absolute error for parameter 

estimates were presented. Whereas pattern effects were of practical significance under E M and 

RS at sample sizes 153 and 265, respectively, the interaction effect of pattern and non-normality 

on absolute error for R2

estimate was also of practical significance under E M and RS. However, this 

was not the case under MS and PW. Under MS, only the effect of percent missing was of 

practical significance at sample size 265. Under PW, it was only the effect of non-normality that 

was of practical significance at all levels of sample size. It appears that MS was the least 

sensitive to the effects of pattern and non-normality. PW was also insensitive to pattern effects, 

though it was affected by non-normality. 

With respect to absolute error for R2

estimate, the performance of all MDTs deteriorated with 

increasing non-normality. Regardless of missing pattern, PW outperformed the other MDTs, and 

generally E M produced the largest mean absolute errors for R2

esumate- However, the performance 

of MDTs was more differentiated under non-monotonic missing pattern than under monotonic 

pattern. MDTs were more differentiated at the highest level of percent missing (20%) than at the 

lowest level (10%). Also, under monotonic pattern, and at each level of percent missing, MDTs 

were most differentiated for normal data and least differentiated at the highest level of non-

normality. 

With respect to R 2

e s u m a t e ,
 m e smallest bias was under PW. This was at all levels of the 

design variables. Except for PW, the MDTs tended to underestimate population R 2 . Thus, in the 

estimation of R 2 , PW method was the most accurate and least biased. 

It was only for bi that missing pattern had an effect of practical significance. This was 

true for all MDTs. In addition, the effect of non-normality on absolute error for regression 

coefficients was of practical significance under all MDTs, except E M . 

Overall, RS was the most accurate under both monotonic and non-monotonic missing 

patterns, and E M the least accurate in estimating Pi. The mean absolute error for bi was smaller 
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under monotonic pattern than under non-monotonic pattern, and the M D T s became more 

differentiated as percent missing increased. In the estimation of p\, RS was the most accurate and 

least biased. 

RS generally provided the best coverage probability under both monotonic and non­

monotonic missing patterns. However, all M D T s had poor coverage probabilities under non­

monotonic missing pattern. Also , coverage probability generally decreased with increasing non-

normality. 



Study 3: Nine Predictors under Low R2 Condition 

Effects on Absolute Error for R 2 ^ ™ ^ . 

The effects of design variables on absolute error for R2

estimate are listed in Table 15. Using 

T\ 2

au ^ -03 as the criterion, the table shows that with a sample of 94, the effect of non-normality 

was of practical significance under each M D T , with the largest effect being that of non-normality 

under M S , and the smallest under P W . With sample size 153, the effect of non-normality on 

absolute error for R2

estimate was of practical significance under all M D T s . The largest effect was 

that of non-normality under M S , and the smallest was under P W . With sample size 265, the 

effect of non-normality was of practical significance under all M D T s . The largest effect was that 

of non-normality under P W and the smallest under E M . 

Table 15 
Effects on absolute error for R 2 , ^ ^ . fulfilling the criterion of T ) 2 ^ > .03 

Sample size M D T Effect SS eff e c t residual df 

94 E M Non-normality 3.57 72.01 3 .047 
M S Non-normality 5.21 102.34 3 .048 
PW Non-normality 4.10 105.30 3 .037 
RS Non-normality 3.57 84.47 3 .041 

153 E M Non-normality 1.55 33.82 3 .044 
MS Non-normality 2.23 47.65 3 .045 
PW Non-normality 1.95 54.62 3 .034 
RS Non-normality 1.60 39.24 3 .039 

265 E M Non-normality 0.62 19.90 3 .030 
MS Non-normality 0.82 23.87 3 .033 
PW Non-normality 1.05 27.91 3 .036 
RS Non-normality 0.73 21.40 3 .033 

Note: E M = E M imputation, MS = Mean substitution, PW = Pairwise deletion, RS = Regression 
imputation. 

Relative Performance of M D T s in the Estimation of Population R 2 

Table 16 contains means and standard deviations of mean absolute error for R2

e s timate 

under various design conditions. The influence of non-normality on the performance of M D T s at 

sample size 94 is revealed in Figure 26. The performance of all M D T s deteriorated with 
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increasing non-normality. The smallest mean absolute bias was under E M for both monotonic and 

non-monotonic missing patterns, and at all levels of percent missing. A l so , E M and RS tended to 

give smaller absolute errors under non-monotonic pattern than under monotonic pattern. Under 

non-monotonic missing pattern, E M overlapped with RS and M S overlapped with P W . In sum, 

with a sample of 94, and regardless of missing pattern, E M performed the best. 

The influence of non-normality on the performance of M D T s at sample size 153 is 

revealed in Figure 27. The performance of all M D T s deteriorated with increasing non-normality 

as measured by the mean absolute error for R2

estimate- For both monotonic and non-monotonic 

missing patterns, E M performed the best, followed by R S , M S and P W , in that order. Wi th 

sample size 153, E M performed the best regardless of missing pattern and percent missing. 

However, under non-monotonic missing pattern, the difference in performance between E M and 

R S became smaller with increasing percent missing. 

The influence of non-normality on the relative performance of M D T s at sample size 265 

is revealed in Figure 28. The performance of all M D T s deteriorated with increasing non-

normality, although mean absolute error was generally much smaller than that under sample size 

94 and 153. With monotonic missing pattern, E M performed the best, followed by R S , M S and 

P W , in that order. M D T s differed most in performance at the highest level of non-normality 

(skew = 3 and kurtosis = 25). Also , the relative performance among E M , M S and R S became 

more and more undifferentiated with increasing percent missing. 

Wi th non-monotonic missing pattern at 10% missing, E M and R S performed the best. 

This was true at 15% missing, although M S performed equally well . A t 20% missing, M S and 

P W performed the best, and E M performed the worst. 

Table A . 5 in Appendix A contains bias in R2

estimate under low R 2 condition with nine 

predictors. Bias in R 2

e s U mate varied from - .04 to .09 across all conditions of the design variables, 

giving a range of .13. These values were plotted in figure B.5 , a typical set of graphs for bias in 

R2estimate- A t sample size 94, the smallest bias was under R S followed by P W . Similar to the 
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results under low R 2 with four predictors, not a single MDT produced the smallest bias across all 

design conditions. 
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Table 16 
Means and standard deviations* of absolute error for R ^ - i m ^ 

Monotonic Missing Pattern Non-monotonic Missing Pattern 

N Percent 
Missing 

Normality 
(sk., kurt.) 

EM 
Imputation 

Mean 
Substitution 

Pairwise 
Deletion 

Regress. 
Imputation 

EM 
Imputation 

Mean 
Substitution 

Pairwise 
Deletion 

Regress. 
Imputation 

94 10 (0,0) 
(1.3) 

(1.8,6) 
(3,25) 

0651(050) 
0699(053) 
0807(060) 
1047(085) 

0712(054) 
0766(059) 
0883(067) 
1153(093) 

0789(055) 
0822(059) 
0917(067) 
1159(092) 

0696(053) 
0747(057) 
0859(065) 
1108(090) 

0587(042) 
0596(046) 
0663(053) 
0823(070) 

0729(052) 
0761(057) 
0843(064) 
1068(086) 

0764(055) 
0789(058) 
0881(064) 
1083(086) 

0653(047) 
0656(050) 
0719(057) 
0864(074) 

15 (0,0) 
(1.3) 

(1.8,6) 

(3,25) 

0588(043) 
0632(048) 
0732(056) 

0972(081) 

0665(050) 
0716(055) 
0828(064) 

1103(091) 

0754(054) 
0783(057) 
0872(064) 

1093(089) 

0643(048) 
0688(053) 
0792(062) 

1041(087) 

0521(039) 
0538(041) 
0604(048) 

0764(065) 

0691(051) 
0719(055) 
0803(061) 

1015(082) 

0719(052) 
0745(055) 
0833(061) 

1033(084) 

0581(043) 
0584(045) 
0648(052) 

0806(070) 

20 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0531(040) 
0576(044) 
0666(052) 
0893(077) 

0616(047) 
0670(053) 
0778(062) 
1046(090) 

0717(052) 
0751(055) 
0836(063) 
1066(095) 

0582(044) 
0629(049) 
0723(058) 
0952(083) 

0479(037) 
0507(038) 
0571(044) 
0737(061) 

0651(048) 
0681(052) 
0761(058) 
0956(079) 

0678(049) 
0709(051) 
0792(058) 
0991(079) 

0517(039) 
0537(041) 
0600(047) 
0774(067) 

153 10 (0,0) 
(1.3) 

(1.8,6) 
(3,25) 

0467(035) 
0504(036) 
0563(041) 
0738(058) 

0506(039) 
0547(040) 
0611(045) 
0806(065) 

0569(042) 
0596(043) 
0653(048) 
0827(065) 

0499(039) 
0539(040) 
0601(044) 
0786(063) 

0396(030) 
0410(031) 
0457(034) 
0559(046) 

0492(037) 
0517(039) 
0574(044) 
0722(059) 

0552(041) 
0577(042) 
0630(046) 
0775(061) 

0445(033) 
0453(034) 
0498(038) 
0582(049) 

15 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0421(032) 
0453(033) 
0507(037) 
0677(054) 

0467(036) 
0505(038) 
0565(042) 
0759(061) 

0550(041) 
0579(042) 
0631(046) 
0794(063) 

0455(035) 
0490(037) 
0547(041) 
0724(058) 

0377(028) 
0389(030) 
0426(032) 
0533(043) 

0467(036) 
0484(037) 
0534(041) 
0672(055) 

0523(039) 
0548(040) 
0599(044) 
0734(060) 

0406(031) 
0410(031) 
0447(034) 
0552(046) 

20 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0410(030) 
0440(032) 
0489(036) 
0653(050) 

0449(035) 
0491(036) 
0549(041) 
0738(059) 

0530(039) 
0559(040) 
0609(044) 
0770(060) 

0438(033) 
0472(034) 
0524(038) 
0694(054) 

0389(029) 
0405(030) 
0433(032) 
0544(042) 

0447(034) 
0464(035) 
0504(039) 
0629(053) 

0500(038) 
0526(038) 
0575(042) 
0720(061) 

0393(030) 
0406(031) 
0439(033) 
0559(043) 

265 10 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0331(024) 
0347(026) 
0382(028) 
0508(040) 

0351(026) 
0370(028) 
0410(031) 
0549(044) 

0397(030) 
0417(031) 
0458(034) 
0589(046) 

0349(026) 
0367(027) 
0405(030) 
0538(043) 

0318(023) 
0325(024) 
0347(025) 
0427(032) 

0352(026) 
0369(027) 
0401(030) 
0495(041) 

0385(030) 
0385(030) 
0441(033) 
0554(043) 

0335(024) 
0335(024) 
0361(027) 
0431(033) 

15 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0335(025) 
0346(026) 
0376(028) 
0489(038) 

0350(026) 
0366(028) 
0401(030) 
0529(043) 

0388(029) 
0405(031) 
0444(033) 
0576(045) 

0348(026) 
0362(027) 
0395(029) 
0513(041) 

0352(025) 
0368(026) 
0378(026) 
0461(033) 

0352(026) 
0360(027) 
0382(029) 
0470(038) 

0373(029) 
0390(029) 
0426(032) 
0530(041) 

0346(025) 
0355(026) 
0369(027) 
0460(033) 

20 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0361(026) 
0370(027) 
0390(028) 
0488(036) 

0361(027) 
0373(028) 
0403(030) 
0524(042) 

0380(029) 
0395(030) 
0430(033) 
0544(043) 

0363(026) 
0373(027) 
0399(029) 
0507(039) 

0427(027) 
0442(028) 
0447(029) 
0525(033) 

0370(026) 
0369(027) 
0386(029) 
0461(037) 

0359(028) 
0376(029) 
0410(031) 
0515(040) 

0399(027) 
0417(028) 
0429(028) 
0530(033) 

* All values in the table are preceded by an omitted decimal point. Standard deviations are in parentheses. Standard errors of the means can be 
obtained by dividing each standard deviation by lOW. 
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MONOTONIC 
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Figure 26: Mean absolute error for R 2

e s t i m a t e across levels of non-normality (N = 94) 
Note: N = Sample size, P M = Percent missing. 
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Figure 27: Mean absolute error for R2

estimate across levels of non-normality (N = 153) 
Note: N = Sample size, P M = Percent missing. 
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Figure 28: Mean absolute error for R 2

e sumate across levels of non-normality (N = 265) 
Note: N = Sample size, P M = Percent missing. 
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Effects on Absolute Error for Regression Coefficients 

The effects of design variables on absolute error for regression coefficients are listed in 

Table 17. N o effects fulfilled r i 2

a i t > .03 as the criterion for 02, . . . , b 9 . Using the same criterion, the 

table shows that the effect of non-normality was of practical significance under R S only at sample 

size 94 and 153. The strength of the effect of non-normality increased with increasing sample 

size. 

With sample size 265, the effect of pattern (PT) on absolute error for bi was of practical 

significance under all M D T s . Pattern effects were strongest under E M algorithm. In addition to 

pattern effects, the effect of non-normality was of practical significance under R S only at all 

levels of sample size. 

Table 17 
Effects on absolute error for regression coefficients fulfilling the criterion of r | 2 a i i > .03* 

Sample size M D T b] bj bj b_4 bj bj bj bj b_9 

94 E M 
MS 
PW 
RS NL(033) -

153 E M 
MS 
PW 
RS NL(046) -

-

265 E M 
MS 
PW 
RS 

PT(101) -
PT(039) -
PT(038) -
NL(071) -
PT(045) -

-

* Values of T ) 2 ^ are in parentheses preceded by an omitted decimal point. 
Note: E M = E M imputation, MS = Mean substitution, PW = Pairwise deletion, RS = Regression 
imputation, PT = Pattern, NL= Non-normality, - = No effect of practical significance. 

Relative Performance of M D T s in the Estimation of Regression Coefficients 

Table 18 contains means and standard deviations of absolute error for b] under various 

design conditions. The influence of non-normality on the performance of M D T s at sample size 
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94 is revealed in Figure 29. The performance of all M D T s deteriorated with increasing non-

normality as measured by the mean absolute error for b i . This was regardless of missing pattern. 

Wi th sample size 94 under monotonic missing pattern, E M and RS both outperformed 

M S and P W , with E M and R S performing at the same level when percent missing was the lowest 

(10%). However, RS performed better at moderate to high levels of percent missing (15% to 

20%). A s for M S and P W , there was little differentiation in performance across all levels of 

percent missing. Two pairings were apparent, that of M S and P W and that of E M and R S . The 

gap between the two pairings increased with percent missing. 

Wi th non-monotonic missing pattern, RS and E M again outperformed M S and P W . 

However, RS performed the best under conditions of low to moderate levels of non-normality. 

A t the extreme level of non-normality (skew = 3 and kurtosis = 25), E M performed slightly better 

than R S . The mean absolute error for b) under M S and P W was larger under non-monotonic than 

under monotonic missing pattern. The M D T s differed most in their performance for normal data. 

Figure 30 is a set of graphical plots of the mean absolute error at sample size 153. Under 

monotonic missing pattern, the results were similar to those under sample size 94, where E M and 

RS both outperformed M S and P W . There was little differentiation in the performance of M S 

and P W at all levels of percent missing. A s for E M and R S , difference in performance increased 

with percent missing, with R S doing better than E M as percent missing increased. 

Wi th sample size 153 under non-monotonic pattern, RS performed the best, followed by 

E M , with M S and P W tying in third place. However, E M outperformed RS under conditions of 

extreme non-normality (skew=3 and kurtosis=25). M D T s differed most for normal data, and 

least at the highest level of non-normality. 

Figure 31 is a graphical plot of mean absolute error at sample size 265. Wi th monotonic 

missing pattern, R S performed the best, although differentiation between E M and RS was 

smallest at the lowest level of percent missing (10%) and largest at the highest level of percent 

missing (20%). M S and P W were at par in third place. 
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Wi th non-monotonic missing pattern, R S performed the best. The M D T s differed least at 

the extreme level of non-normality (skew = 3 and kurtosis = 25), and most with normal data. 

Whereas M S and P W performed equally at all levels of percent missing, their performance 

relative to E M was differentiated most at the highest level of percent missing (20%), and 

differentiated least at the lowest level of percent missing (10%). 

In sum, the effects of missing pattern and non-normality on absolute error for regression 

coefficients were of practical significance only for b i . Mean absolute error increased with 

increasing non-normality. The M D T s were most differentiated with respect to mean absolute 

error for b- only. The best overall performance in the estimation of [}• was under R S , followed by 

E M . The performance of M S and P W was undifferentiated under both monotonic and non­

monotonic missing pattern. Also , differentiation among M D T s was less prominent under 

monotonic pattern than under non-monotonic pattern. Under non-monotonic pattern, the M D T s 

differed most with normal data. 

Table A . 6 in Appendix A shows the bias in b\. Figure B.6 is a typical set of graphs of 

bias in bi, showing that the smallest bias across all levels of the design variables was under P W . 

The bias in bi varied from -.08 to .09 across al l design conditions, giving a range of .17. 

Whereas E M and M S consistently overestimated Pi, P W and RS consistently underestimated Pi. 

The bias for b2 to b 9 was much smaller compared to that for bi, with a maximum range of .05. 

Therefore, the graphs for bias in b2 to bo were omitted. 
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Table 18 
Means and standard deviations* of absolute error for b 

Monotonic Missing Pattern Non-monotonic Missing Pattern 

N Percent 
Missing 

Normality 
(sk., kurt.) 

EM 
Imputation 

Mean 
Substitution 

Pairwise 
Deletion 

Regress. 
Imputation 

EM 
Imputation 

Mean 
Substitution 

Pairwise 
Deletion 

Regress. 
Imputation 

94 10 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0682(050) 
0739(055) 
0815(063) 
0929(084) 

0784(059) 
0833(065) 
0913(073) 
1035(098) 

0785(059) 
0835(065) 
0915(073) 
1037(098) 

0696(052) 
0746(057) 
0822(064) 
0938(084) 

0686(041) 
0729(041) 
0759(042) 
0860(043) 

0880(067) 
0927(077) 
0989(087) 
1142(118) 

0883(067) 
0928(077) 
0989(087) 
1142(118) 

0607(041) 
0659(042) 
0711(043) 
0903(054) 

15 (0,0) 
(1,3) 

(1.8,6) 

(3,25) 

0683(048) 
0736(053) 
0802(061) 

0916(082) 

0808(060) 
0852(067) 
0923(075) 

1045(099) 

0810(060) 
0856(067) 
0928(075) 

1050(100) 

0679(051) 
0727(055) 
0796(062) 

0908(081) 

0709(039) 
0751(039) 
0775(041) 

0866(042) 

0923(069) 
0966(079) 
1027(090) 

1193(123) 

0928(070) 
0968(080) 
1026(090) 

1192(123) 

0614(039) 
0682(040) 
0728(044) 

0955(061) 

20 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0664(047) 
0714(051) 
0780(059) 
0891(079) 

0822(061) 
0859(061) 
0935(076) 
1062(102) 

0827(062) 
0869(069) 
0944(077) 
1073(103) 

0653(049) 
0698(053) 
0765(061) 
0880(080) 

0711(037) 
0743(037) 
0759(038) 
0845(044) 

0960(072) 
1000(082) 
1052(092) 
1224(125) 

0969(073) 
1004(083) 
1053(093) 
1226(126) 

0655(039) 
0723(041) 
0758(044) 
0969(062) 

153 10 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0552(037) 
0568(041) 
0622(045) 
0727(061) 

0607(045) 
0628(049) 
0688(053) 
0798(070) 

0608(045) 
0630(049) 
0690(053) 
0801(071) 

0547(039) 
0547(039) 
0624(046) 
0726(063) 

0630(036) 
0680(036) 
0699(038) 
0829(038) 

0708(053) 
0755(059) 
0807(065) 
0970(092) 

0709(053) 
0755(059) 
0807(065) 
0968(092) 

0483(033) 
0537(034) 
0577(037) 
0802(044) 

15 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0544(037) 
0564(039) 
0613(042) 
0712(058) 

0620(046) 
0645(049) 
0700(054) 
0803(072) 

0622(047) 
0646(050) 
0702(055) 
0806(072) 

0529(038) 
0549(040) 
0600(074) 
0696(059) 

0651(034) 
0695(035) 
0711(036) 
0821(037) 

0766(056) 
0811(061) 
0857(068) 
1018(096) 

0769(056) 
0812(061) 
0858(068) 
1015(096) 

0523(033) 
0592(034) 
0627(036) 
0868(049) 

20 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0544(036) 
0565(038) 
0608(042) 
0710(057) 

0627(047) 
0653(051) 
0709(056) 
0820(073) 

0630(048) 
0657(051) 
0713(056) 
0823(074) 

0507(037) 
0529(039) 
0578(043) 
0684(058) 

0679(034) 
0712(034) 
0724(035) 
0811(037) 

0819(059) 
0862(064) 
0906(071) 
1067(099) 

0822(059) 
0863(064) 
0906(071) 
1065(099) 

0576(033) 
0647(035) 
0676(037) 
0880(050) 

265 10 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0408(030) 
0435(031) 
0481(034) 
0580(043) 

0445(034) 
0480(037) 
0527(041) 
0643(053) 

0445(034) 
0481(037) 
0528(041) 
0644(053) 

0390(030) 
0425(031) 
0470(035) 
0574(045) 

0598(031) 
0664(032) 
0682(033) 
0803(035) 

0591(042) 
0637(048) 
0672(054) 
0828(073) 

0591(042) 
0636(048) 
0671(054) 
0826(073) 

0398(026) 
0475(028) 
0516(030) 
0742(038) 

15 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0419(029) 
0440(031) 
0481(034) 
0574(042) 

0458(035) 
0498(038) 
0544(043) 
0659(055) 

0459(035) 
0499(038) 
0545(043) 
0660(055) 

0377(029) 
0409(031) 
0453(034) 
0553(044) 

0638(029) 
0690(030) 
0702(032) 
0798(034) 

0663(045) 
0709(051) 
0737(057) 
0891(077) 

0664(045) 
0709(051) 
0735(057) 
0888(077) 

0466(027) 
0551(029) 
0582(031) 
0798(040) 

20 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0431(029) 
0452(030) 
0486(033) 
0574(040) 

0473(036) 
0510(040) 
0553(044) 
0667(056) 

0475(036) 
0512(040) 
0555(045) 
0668(057) 

0369(028) 
0398(030) 
0441(033) 
0538(041) 

0659(028) 
0697(029) 
0700(031) 
0777(033) 

0721(047) 
0764(053) 
0790(059) 
0939(078) 

0722(047) 
0764(053) 
0788(059) 
0935(078) 

0534(027) 
0611(029) 
0630(032) 
0821(042) 

* All values in the table are preceded by an omitted decimal point. Standard deviations are in parentheses. Standard errors of the means can be 
obtained by dividing each standard deviation by 1000^. 
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Figure 29: Mean absolute error for bi across levels of non-normality (N = 94) 
Note: N = Sample size, P M = Percent missing. 
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Figure 30: Mean absolute error for bi across levels of non-normality (N = 153) 
Note: N = Sample size, P M = Percent missing 
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Figure 31: Mean bias in b] across levels of non-normality (N = 265) 
Note: N = Sample size, P M = Percent missing 
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Coverage Probability for $± 

Coverage probabilities under monotonic pattern differed from those under non­

monotonic pattern only for Pi. In addition, M D T s were not differentiated in their coverage 

probabilities for p 2 , p 3 , . . . , ^ 9 . For this reason, only the findings for Pi are reported. Table 19 

contains mean coverage probabilities for Pi. These coverage probabilities are displayed in 

Figures 32, 33 and 34 for sample sizes 94, 153 and 265, respectively. The graphs show that 

coverage probability decreased with increasing non-normality for all M D T s . 

A t sample size 94, all M D T s had coverage probability above the criterion level of 95% 

for normal data when missing pattern was monotonic. This suggests that M D T s worked well 

with monotonic pattern. With non-monotonic pattern, E M and RS were least differentiated with 

respect to coverage probability which, with the exception of coverage probability at extreme non-

normality (skew = 3, kurtosis = 25), were above 95%. This was maintained at all levels of 

percent missing. For normal data, P W produced coverage probability above 95%, and this was 

maintained across all levels of percent missing. The coverage probability for M S was the worst, 

starting below 92% for normal data, and deteriorating with increasing non-normality to 81%. 

Coverage probabilities for p, at sample size 153 are plotted in Figure 33. The 

performance of E M , R S , and P W was undifferentiated at al l levels of percent missing under 

monotonic pattern. Wi th non-monotonic pattern, the difference in coverage probabilities for E M 

and R S was undifferentiated, except at the highest level of non-normality when R S produced a 

smaller coverage probability than E M . The difference in coverage probabilities among M D T s 

was largest at extreme non-normality. The graphs also show that the M D T s were most 

differentiated with respect to coverage probability under non-monotonic pattern than under 

monotonic pattern. These findings are similar to those under sample size 94. The performance of 

M D T s at sample size 265 was similar to that under sample sizes 94 and 153. 
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In sum, al l M D T s produced coverage probabilities above 95% for normal data under 

monotonic missing pattern, with M S producing the smallest coverage probability. However, 

coverage probabilities decreased with increasing non-normality. The M D T s were most 

differentiated under non-monotonic missing pattern than under monotonic missing pattern. 
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Table 19 

Mean coverage probability (%) for bi 

Monotonic Missing Pattern Non-monotonic Missing Pattern 

N Percent Normality EM Mean Pairwise Regress. EM Mean Pairwise Regress. 
Missing (sk., kurt.) Imputation Substitution Deletion Imputation Imputation Substitution Deletion Imputation 

94 10 (0,0) 98.3 95.9 97.7 97.9 99.9 91.7 95.0 99.8 
(1.3) 98.0 94.3 96.6 97.0 99.9 88.9 92.7 99.7 

(1.8,6) 96.5 92.1 94.6 95.6 99.8 86.8 90.2 99.4 
(3,25) 92.4 89.2 92.2 91.8 97.3 82.8 86.8 96.3 

15 (0,0) 98.9 96.4 98.4 98.6 100.0 89.4 95.6 99.9 
(1,3) 98.7 94.7 97.6 98.0 99.9 88.1 93.4 99.7 

(1.8,6) 97.9 92.4 96.7 96.6 100.0 85.9 90.5 99.9 

(3,25) 94.1 89.4 93.4 93.5 97.6 81.3 87.8 96.6 

20 (0,0) 99.3 95.9 98.9 98.8 100.0 88.6 96.5 100.0 
(1,3) 99.0 94.3 98.3 98.0 100.0 86.3 94.7 100.0 

(1.8,6) 98.0 91.6 96.7 97.5 100.0 84.4 91.6 99.6 
(3,25) 95.2 89.4 94.5 94.4 99.5 80.7 88.8 96.8 

153 10 (0,0) 98.4 96.2 97.9 98.0 99.8 89.5 93.5 99.4 
(1,3) 98.2 95.6 97.3 97.4 99.4 87.1 92.1 99.3 

(1.8,6) 96.4 92.4 95.4 95.6 99.0 84.6 89.4 98.9 
(3,25) 91.8 88.2 91.3 91.3 95.0 78.9 82.9 94.2 

15 (0,0) 99.0 96.0 98.3 98.5 99.8 87.8 93.9 99.5 
(1,3) 98.7 94.4 97.7 98.2 99.6 84.6 92.1 99.6 

(1.8,6) 97.3 92.4 96.1 96.5 99.3 82.0 90.2 99.2 
(3,25) 93.2 87.9 92.5 92.4 96.3 77.1 83.6 93.9 

20 (0,0) 99.3 95.6 98.6 98.9 96.2 86.4 94.2 99.8 
(1,3) 98.6 94.1 98.0 98.5 95.6 82.8 93.5 99.5 

(1.8,6) 98.3 92.0 97.1 97.5 92.4 79.6 91.1 99.4 
(3,25) 95.0 87.5 93.8 93.9 88.2 75.5 84.6 94.1 

265 10 (0,0) 98.8 96.1 97.7 98.2 97.7 88.3 92.7 99.4 
(1,3) 96.8 94.1 96.2 96.7 95.9 84.1 88.2 98.9 

(1.8,6) 95.8 91.5 94.3 94.8 94.3 80.8 84.9 97.6 
(3,25) 90.7 84.7 88.5 90.1 84.7 72.3 75.9 86.3 

15 (0,0) 99.5 95.6 98.2 99.2 98.1 83.4 91.3 99.3 
(1,3) 97.6 93.3 96.4 97.3 96.9 79.5 87.0 98.4 

(1.8,6) 96.1 91.0 94.8 96.0 95.0 76.4 84.3 97.4 
(3,25) 91.4 83.8 90.7 91.4 86.2 68.5 75.9 84.1 

20 (0,0) 99.4 95.4 98.4 99.4 98.8 79.2 91.5 99.4 
(1,3) 98.5 92.7 97.0 98.0 97.9 75.7 88.1 98.5 

(1.8,6) 97.4 90.4 95.6 96.7 96.1 73.6 86.0 97.2 
(3,25) 92.2 83.6 92.3 92.8 89.0 65.6 77.7 83.8 
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Figure 32: Mean coverage probability for P i (N = 94) 
Note: N = Sample size, P M = Percent missing 
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Figure 33: Mean coverage probability for (j, (N = 153) 
Note: N = Sample size, PM = Percent missing. 
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Figure 34: Mean coverage probability for (N = 265) 
Note: N = Sample size, P M = Percent missing. 
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Summary 

The effect of non-normality on absolute error for R2

esnmate was of practical significance under each 

M D T at all levels of sample size. The performance of all M D T s with respect to error for R2

estimate 

decreased with increasing non-normality. E M performed the best under sample size 94 and 153, followed 

by RS , M S and P W , in that order. A t sample size 265, the absolute error for R2

estimate was much smaller 

than at either sample size 94 or 153. The superiority of E M was for both monotonic and non-monotonic 

missing patterns. Also , at sample size 265, the relative performance among E M , M S and RS became 

more and more undifferentiated with increasing percent missing. 

The effects of design variables on absolute error for b] were also presented in the previous 

sections. Using r | 2

ai t > .03 as the criterion, the effect of non-normality was of practical significance under 

RS only. With sample size 265, the effect of pattern was of practical significance under all M D T s . 

Pattern effects were strongest under E M algorithm, and weakest under P W . In addition to pattern effects, 

the effect of non-normality was of practical significance under R S . N o effects fulfilled the r | 2

a I t > .03 

criterion for b2,-. -,bg. 

The accuracy in parameter estimation under all M D T s deteriorated with increasing non-

normality. This was regardless of pattern of missing data. Generally, E M and RS were more accurate 

than M S and P W . However, RS tended to perform better at moderate to high levels of percent missing 

(15% to 20%). The smallest bias with respect to R 2 was not under a single M D T across levels of the 

design variables. A t sample size 94, the smallest bias was under RS followed by P W . However, at 

sample size 153 and 265, the smallest bias was under E M . 

In the estimation of p i , RS was the most accurate under al l design conditions. However, the 

smallest bias in the estimation of Pi was under P W . This occurred at all levels of the design variables. 

E M and M S consistently overestimated Pi, and P W and R S consistently overestimated p, . 

Coverage probabilities under all M D T s were above the criterion level of 95% with monotonic 

missing pattern for normal data, and decreased with increasing non-normality. However, M D T s differed 
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in coverage probability only for P,. In addition, the graphs for p 2, p 3,...,p 9 were similar to those for Pi. 

For this reason, only the results for P- were reported. E M generally had the best coverage probability and 

M S the worst. 



Study 4: Nine Predictors and High R 2 Condition 

Effects on Absolute Error for R 2„, i m,,„. 

The effects of design variables on absolute error for R estimate are listed in Table 20. Using T| a i t > 

.03 as the criterion, the table shows that with a sample of 94, only the effect of non-normality was of 

practical significance under each M D T , with the largest effect being that of non-normality under pairwise 

deletion. 

For sample size 153, the effect of percent missing on absolute error was of practical significance 

under E M , M S , and R S . Wi th pairwise deletion, it was the effect of non-normality that was of practical 

significance. The largest effect was that of percent missing under mean substitution. 

For sample size 265, the effect of pattern was of practical significance under E M algorithm only. 

The effect of percent missing was of practical significance under E M , M S , and R S . A s with sample of 

153, the effect of non-normality was of practical significance only under P W . The largest effect was that 

of percent missing under E M . 

Table 20 
Effects on absolute error for R2^,-,^ fulfilling the T | 2 ^ T > .03 criterion 

Sample size M D T Effect SS eff e c t SSresidual df Tfalt 

94 E M Non-normality 3.12 92.12 3 .033 
MS Non-normality 3.65 76.41 3 .046 
PW Non-normality 6.77 63.89 3 .096 
RS Non-normality 4.26 90.91 3 .045 

153 E M % Missing 7.23 76.64 2 .086 
MS % Missing 3.36 63.42 2 .420 
PW Non-normality 3.86 38.68 3 .091 
RS % Missing 5.99 73.29 2 .076 

265 E M % Missing 10.34 59.40 2 .148 
Pattern 2.18 59.40 1 .035 

MS % Missing 6.07 51.73 2 .105 
PW Non-normality 2.24 22.22 3 .091 
RS % Missing 9.28 57.49 2 .139 

Note: E M = E M imputation, MS = Mean substitution, PW = Pairwise deletion, RS = Regression imputation. 
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Relative Performance of MDTs in the Estimation of Population R 2 

Table 21 contains cell means and standard deviations of mean absolute errors for R2

estimate under 

various design conditions. The influence of non-normality on the performance of MDTs at sample size 

94 is revealed in Figure 35. 

Although the performance of all MDTs deteriorated with increasing non-normality, this 

deterioration was most pronounced after skew =1.8 and kurtosis = 6. This was observed for both 

monotonic and non-monotonic missing pattern and for all levels of percent missing. 

The relative performance of MDTs was undifferentiated at the lowest level of percent missing 

(10%), under both monotonic and non-monotonic missing patterns. However, at higher levels of percent 

missing (15% and 20%), PW yielded the best estimates and E M the worst for normal data, a trend that 

continued up to skew = 1.8 and kurtosis = 6. At the extreme level of non-normality (skew = 3 and 

kurtosis = 25), differentiation of performance of MDTs was least. Whereas mean absolute error for 

R2estimate increased with percent missing for E M , MS, and RS at each level of non-normality, the 

magnitude of the error under PW at each level of non-normality changed marginally for both missing 

patterns as well as under all conditions of percent missing. Figures 36 and 37 show the influence of non-

normality on the performance of MDTs at sample sizes 153 and 265, respectively. The results were 

similar to those under sample size 94. 

In sum, the four MDTs differed most in their performance as percent missing increased, though 

their performance was most differentiated for normal data. MDTs were also differentiated more under 

non-monotonic missing pattern. PW had the best performance and E M the worst. 

Table A.7 in Appendix A contains bias in R2

estimate under high R 2 condition with nine predictors. 

Bias in R2

estimate varied from -.13 to .07 across all sample size conditions, giving a range of .20. The 

values in Table A.7 were plotted in Figure B.7, a typical set of graphs for bias in R2

estimate- Although there 

was no single M D T under which the bias was smallest at all levels of the design variables, PW generally 

had the smallest bias. Whereas PW consistently overestimated R 2 , E M , MS, and RS tended to 

underestimateR . 
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Table 21 
Means and standard deviations' of absolute error for R 2

e s t i m a t B 

Monotonic Missing Pattern Non-monotonic Missing Pattern 

N Percent 
Missing 

Normality 
(sk., kurt.) 

EM 
Imputation 

Mean 
Substitution 

Pairwise 
Deletion 

Regress. 
Imputation 

EM 
Imputation 

Mean 
Substitution 

Pairwise 
Deletion 

Regress. 
Imputation 

94 10 (0,0) 
(1,3) 
(1.8,6) 
(3,25) 

0520(042) 
0583(045) 
0665(049) 
0963(070) 

0524(041) 
0593(044) 
0683(050) 
0975(069) 

0545(039) 
0603(042) 
0698(049) 
0998(070) 

0525(041) 
0591(044) 
0678(049) 
0958(069) 

0547(043) 
0583(046) 
0634(049) 
0887(070) 

0535(040) 
0566(043) 
0625(047) 
0867(062) 

0535(039) 
0581(041) 
0665(047) 
0951(069) 

0538(041) 
0573(045) 
0631(048) 
0897(073) 

15 (0,0) 
(1,3) 
(1.8,6) 

(3,25) 

0668(051) 
0688(055) 
0731(058) 

0966(075) 

0627(049) 
0666(053) 
0725(056) 

0992(073) 

0529(038) 
0579(042) 
0674(048) 

0963(069) 

0641(050) 
0678(054) 
0732(057) 

0985(074) 

0751(051) 
0779(057) 
0779(059) 

1022(081) 

0618(047) 
0632(049) 
0667(051) 

0894(066) 

0522(038) 
0568(041) 
0652(046) 

0944(074) 

0679(049) 
0713(054) 
0748(057) 

1020(082) 

20 (0,0) 
(1,3) 
(1.8,6) 
(3,25) 

0878(043) 
0871(063) 
0876(066) 
1053(081) 

0775(056) 
0781(060) 
0807(062) 
1026(076) 

0520(039) 
0563(042) 
0653(048) 
0938(068) 

0825(058) 
0829(062) 
0847(064) 
1052(079) 

1005(059) 
1014(066) 
1011(069) 
1223(093) 

0763(054) 
0750(056) 
0756(057) 
0949(071) 

0514(038) 
0554(042) 
0648(048) 
0964(081) 

0913(058) 
0936(064) 
0952(067) 
1236(099) 

153 10 (0,0) 
(1,3) 
(1.8,6) 
(3,25) 

0502(039) 
0527(041) 
0567(044) 
0753(059) 

0483(038) 
0515(040) 
0565(043) 
0762(058) 

0409(031) 
0451(033) 
0523(038) 
0754(055) 

0490(039) 
0521(041) 
0569(043) 
0764(058) 

0567(040) 
0607(042) 
0637(045) 
0813(064) 

0478(036) 
0497(037) 
0534(039) 
0686(053) 

0401(031) 
0441(033) 
0510(037) 
0725(056) 

0508(038) 
0544(040) 
0584(042) 
0781(062) 

15 (0,0) 
(1,3) 
(1.8,6) 
(3,25) 

0684(046) 
0692(050) 
0705(053) 
0828(065) 

0621(045) 
0633(048) 
0655(051) 
0806(062) 

0401(031) 
0441(033) 
0513(037) 
0742(055) 

0644(046) 
0659(049) 
0680(052) 
0822(064) 

0801(046) 
0827(051) 
0836(055) 
1003(075) 

0620(043) 
0628(044) 
0641(046) 
0779(061) 

0392(030) 
0432(033) 
0499(037) 
0707(055) 

0705(045) 
0741(049) 
0760(052) 
0971(074) 

20 (0,0) 
(1,3) 
(1.8,6) 
(3,25) 

0951(052) 
0937(058) 
0928(063) 
0979(077) 

0843(052) 
0833(057) 
0832(060) 
0913(070) 

0398(030) 
0436(033) 
0505(037) 
0727(054) 

0886(052) 
0878(058) 
0879(061) 
0956(074) 

1094(050) 
1113(057) 
1101(064) 
1254(088) 

0829(050) 
0821(053) 
0814(056) 
0930(070) 

0387(031) 
0428(033) 
0499(037) 
0704(058) 

0980(050) 
1014(056) 
1017(062) 
1225(087) 

265 10 (0,0) 
(1,3) 
(1.8,6) 
(3,25) 

0481(033) 
0489(035) 
0507(039) 
0601(049) 

0448(032) 
0456(035) 
0480(038) 
0594(047) 

0311(023) 
0335(025) 
0385(029) 
0572(043) 

0457(032) 
0466(035) 
0490(038) 
0602(048) 

0588(035) 
0617(039) 
0628(044) 
0790(059) 

0459(033) 
0470(036) 
0494(038) 
0621(047) 

0306(023) 
0330(025) 
0381(029) 
0557(041) 

0503(034) 
0535(037) 
0557(041) 
0743(056) 

15 (0,0) 
(1,3) 
(1.8,6) 
(3,25) 

0733(039) 
0730(043) 
0724(048) 
0743(059) 

0657(039) 
0654(043) 
0655(047) 
0703(055) 

0307(023) 
0331(025) 
0380(029) 
0558(042) 

0680(039) 
0679(043) 
0680(047) 
0724(057) 

0872(040) 
0904(045) 
0901(051) 
1049(072) 

0666(040) 
0664(043) 
0665(046) 
0769(059) 

0301(023) 
0326(025) 
0375(028) 
0542(040) 

0767(040) 
0802(044) 
0809(049) 
1003(070) 

20 (0,0) 
(1,3) 
(1.8,6) 
(3,25) 

1008(041) 
0995(047) 
0978(052) 
0930(069) 

0899(042) 
0884(047) 
0868(052) 
0839(065) 

0304(023) 
0327(025) 
0375(028) 
0548(041) 

0940(042) 
0928(047) 
0915(053) 
0887(067) 

1156(041) 
1189(048) 
1187(055) 
1324(080) 

0895(043) 
0896(048) 
0887(052) 
0965(068) 

0302(023) 
0324(025) 
0370(028) 
0533(042) 

1047(042) 
1095(048) 
1103(054) 
1288(079) 

* All values in the table are preceded by an omitted decimal point. Standard deviations are in parentheses. Standard errors of the means can be 
obtained by dividing each standard deviation by 1000̂ . 
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Effects on Absolute Error for Regression Coefficients 

Table 22 shows the effects of design variables on absolute error in b i , b 2 , . . . , b c , . The 

effect of missing pattern was strongest for b i , the regression coefficient of the predictor with no 

missing data. More specifically, under E M , the effect of missing pattern on absolute error for b] 

was of practical significance at all levels of sample size. Under M S and P W , pattern effects were 

significant only for sample size 265. There were no effects of practical significance for bs. 

Under M S and P W , the effect of non-normality on absolute error of b i was of practical 

significance under sample size 265 only. However, under R S , the effect of non-normality was of 

practical significance at all levels of sample size. The effect of non-normality on absolute error 

for b] under E M was not of practical significance. Only non-normality had an effect of practical 

significance for b 2 to be,. 

Table 22 
Effects on absolute error for regression coefficients fulfilling the criterion of r\2^_ > .03* 

Sample 
size M D T b, b 2 b 3 b 4 b 5 bfi b 7 b 8 

b 9 

94 E M PT(042) NL(063) NL(038) NL(050) NL(068) NL(042) NL(045) 
MS - NL(061) NL(032) NL(048) NL(073) NL(039) NL(045) -
PW - NL(060) NL(032) NL(047) NL(074) NL(039) NL(043) -
RS NL(038) NL(066) NL(034) NL(051) NL(071) NL(038) NL(047) -

153 E M PT(182) NL(057) NL(036) NL(054) NL(087) NL(056) NL(056) 
MS - NL(056) NL(031) NL(056) NL(089) NL(050) NL(061) -
PW - NL(056) NL(030) NL(054) NL(089) NL(050) NL(060) -
RS PT(058) - - - - - -

NL(054) NL(061) NL(033) NL(058) NL(089) NL(048) NL(057) -

265 E M PT(382) - - - _ _ 

- NL(082) NL(047) NL(071) NL(098) NL(069) NL(073) NL(039) 
MS PT(050) - - - - - -

NL(031) NL(083) NL(041) NL(063) NL(105) NL(059) NL(077) NL(035) 

PW PT(050) - - - - _ _ _ 

NL(031) NL(084) NL(041) NL(063) NL(105) NL(060) NL(077) NL(034) 
RS PT(182) - - - - - - _ 

NL(088) NL(089) NL(045) NL(071) NL(100) NL(058) NL(075) NL(038) 

* Values of r i 2

a l t are in parentheses preceded by an omitted decimal point. 
Note: E M = E M imputation, MS = Mean substitution, PW = Pairwise deletion, RS = Regression 
imputation, PT = Pattern, N L = Non-normality, - = No effect of practical significance. 
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Relative Performance of MDTs in Estimation of 

Table 23 contains means and standard deviations of absolute error for in bi at various 

design conditions. The means at sample size 94 are plotted in Figure 38. The figure shows that 

mean absolute error for bi increased with non-normality. RS performed the best, regardless of 

missing pattern. However, under monotonic pattern of missing data, MDTs were least 

differentiated in performance at 10% missing, the degree of differentiation increasing with 

percent missing. RS consistently gave the best performance, followed by E M . 

With non-monotonic pattern, again RS outperformed the other MDTs, although its 

performance relative to E M was most prominent with normal data. At the extreme level of non-

normality, little difference in performance was observed between RS and E M . Whereas E M 

consistently outperformed both MS and PW at 10% missing under non-monotonic missing 

pattern, MS and PW had a slight advantage over E M at 15% and 20% missing at low to moderate 

levels of non-normality. MDTs were more differentiated under non-monotonic pattern than 

under monotonic missing pattern. 

Figure 39 shows mean absolute error for bi at sample size 153 across levels of non-

normality. Under monotonic pattern, the MDTs differed more in performance as percent missing 

increased. Unlike the finding at sample size 94, where MS and PW performed poorer than E M 

with monotonic pattern, little differentiation in performance was observed between M S , PW and 

E M at sample size 153 under low to moderate percent missing. At 20% missing, MS and PW did 

better than E M at all levels of non-normality. Under non-monotonic pattern, RS performed the 

best, followed by MS and PW. E M performed the worst. The MDTs differed most in 

performance with normal data, the differentiation becoming more blurred with increasing non-

normality. At the most extreme non-normality and 20% missing, the performance of all MDTs 

was least differentiated. 

Graphical plots of mean absolute error in bi at sample size 265 are displayed in Figure 

40, showing that under monotonic pattern, RS was best, followed by MS and PW. E M performed 
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the worst. Under non-monotonic pattern, however, RS only excelled with normal data at ten 

percent missing. The performance of M S and P W was best. However, the relative performance 

of M S and RS as well as P W and RS was least differentiated with normal data, and most 

differentiated at the highest level of non-normality (skew = 3, kurtosis = 25). 

In sum, RS performed the best under monotonic missing pattern at sample size of 265. 

Under non-monotonic pattern, M S and P W outperform RS at moderate to high levels of percent 

missing (15% to 20%). 

Table A . 8 shows the bias in bi under nine predictors and low R 2 condition. Figure B.8 is 

the corresponding set of graphs for bias in bi for N = 94, showing that for non-monotonic pattern, 

the smallest bias across all levels of the design variables was under M S and P W . The bias in b, 

varied from - .10 to .07 across all design conditions, giving a range of .17. Whereas M S and P W 

consistently overestimated p i , E M and RS consistently underestimated Pi. The bias for b 2 to bo 

were much smaller compared to that for b i , with a maximum range of .10 under b 7 . Therefore, 

the graphs for bias in b 2 to bg were omitted. 
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Table 23 
Means and standard deviations* of absolute error for b 

Monotonic Missing Pattern Non-monotonic Missing Pattern 

N Percent 
Missing 

Normality 
(sk, kurt.) 

EM 
Imputation 

Mean 
Substitution 

Pairwise 
Deletion 

Regress. 
Imputation 

EM 
Imputation 

Mean 
Substitution 

Pairwise 
Deletion 

Regress. 
Imputation 

94 10 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0573(041) 
0639(046) 
0696(052) 
0784(071) 

0625(046) 
0669(052) 
0728(058) 
0816(077) 

0625(046) 
0670(052) 
0730(058) 
0817(078) 

0579(043) 
0631(047) 
0687(052) 
0770(068) 

0682(040) 
0761(039) 
0793(040) 
0932(043) 

0726(053) 
0796(063) 
0863(074) 
1004(104) 

0727(053) 
0797(063) 
0865(074) 
1006(104) 

0587(041) 
0663(041) 
0717(044) 
0929(057) 

15 (0,0) 
(1,3) 

(1.8,6) 

(3,25) 

0591(040) 
0647(044) 
0699(051) 

0797(068) 

0654(049) 
0693(054) 
0747(060) 

0833(080) 

0654(049) 
0696(054) 
0752(060) 

0840(080) 

0575(043) 
0618(046) 
0664(051) 

0747(064) 

0835(038) 
0891(038) 
0903(038) 

0992(038) 

0791(059) 
0863(070) 
0928(082) 

1101(115) 

0794(059) 
0867(070) 
0931(082) 

1106(115) 

0605(038) 
0699(037) 
0740(040) 

0970(050) 

20 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0609(040) 
0653(043) 
0701(048) 
0783(063) 

0677(051) 
0709(055) 
0760(061) 
0844(083) 

0679(052) 
0716(056) 
0767(062) 
0854(084) 

0567(043) 
0609(045) 
0660(049) 
0741(063) 

0865(035) 
0915(036) 
0912(037) 
0981(039) 

0834(062) 
0893(073) 
0953(085) 
1136(118) 

0841(062) 
0901(073) 
0961(085) 
1146(118) 

0686(038) 
0781(039) 
0806(041) 
1009(055) 

153 10 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0477(033) 
0503(035) 
0550(039) 
0639(053) 

0496(036) 
0519(038) 
0564(043) 
0634(056) 

0496(036) 
0519(038) 
0565(043) 
0634(056) 

0452(033) 
0476(035) 
0521(038) 
0593(051) 

0794(035) 
0873(034) 
0882(036) 
0989(036) 

0580(044) 
0644(051) 
0709(058) 
0871(086) 

0581(044) 
0645(051) 
0711(058) 
0872(087) 

0498(032) 
0582(034) 
0624(035) 
0864(042) 

15 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0505(034) 
0531(036) 
0574(039) 
0661(052) 

0509(037) 
0534(039) 
0578(044) 
0657(058) 

0510(037) 
0535(040) 
0579(044) 
0657(058) 

0452(033) 
0478(035) 
0524(039) 
0608(050) 

0855(031) 
0917(031) 
0915(033) 
0991(033) 

0621(047) 
0687(053) 
0741(061) 
0921(090) 

0622(047) 
0687(053) 
0743(061) 
0922(090) 

0564(033) 
0656(034) 
0684(035) 
0909(043) 

20 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0553(035) 
0576(036) 
0616(038) 
0689(051) 

0517(039) 
0540(041) 
0582(046) 
0661(060) 

0520(039) 
0542(042) 
0588(046) 
0655(060) 

0450(034) 
0476(034) 
0519(038) 
0600(049) 

0922(029) 
0965(028) 
0956(031) 
0992(034) 

0672(050) 
0735(056) 
0790(064) 
0974(093) 

0675(050) 
0737(056) 
0792(064) 
0976(094) 

0625(031) 
0716(033) 
0737(036) 
0939(043) 

265 10 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0370(027) 
0391(028) 
0425(030) 
0508(038) 

0350(027) 
0379(029) 
0415(033) 
0508(043) 

0350(027) 
0379(029) 
0415(033) 
0510(043) 

0323(025) 
0346(026) 
0383(029) 
0470(037) 

0792(028) 
0881(028) 
0890(030) 
1002(030) 

0472(034) 
0532(041) 
0572(047) 
0729(047) 

0473(034) 
0473(034) 
0574(047) 
0730(066) 

0424(027) 
0527(029) 
0562(030) 
0815(035) 

15 (0,0) 
(1,3) 

(1.8,6) 
(3,25) 

0428(028) 
0437(029) 
0460(031) 
0534(037) 

0367(028) 
0395(031) 
0435(034) 
0527(044) 

0368(028) 
0395(031) 
0435(034) 
0528(044) 

0333(025) 
0355(026) 
0387(029) 
0470(037) 

0868(025) 
0929(025) 
0930(027) 
1001(029) 

0533(037) 
0587(045) 
0625(051) 
0793(071) 

0534(037) 
0587(045) 
0627(051) 
0793(071) 

0522(027) 
0627(028) 
0653(030) 
0886(035) 

20 (0,0) 
(1,3) 

(18,6) 
(3,25) 

0481(029) 
0488(030) 
0506(032) 
0574(036) 

0372(029) 
0400(031) 
0443(035) 
0535(045) 

0373(029) 
0401(031) 
0443(035) 
0537(045) 

0334(025) 
0357(026) 
0390(028) 
0475(035) 

0913(022) 
0958(023) 
0953(025) 
0997(028) 

0573(040) 
0628(047) 
0664(053) 
0834(073) 

0574(040) 
0630(047) 
0666(053) 
0835(073) 

0604(025) 
0704(026) 
0722(029) 
0922(035) 

* All values in the table are preceded by an omitted decimal point. Standard deviations are in parentheses. Standard errors 
of the means can be obtained by dividing each standard deviation by 1000 v \ 
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Figure 38: Mean absolute error for b) across levels of non-normality (N = 94) 
Note: N = Sample size, P M = Percent missing. 
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Figure 39: Mean absolute error for bi across levels of non-normality (N = 153) 
Note: N = Sample size, P M = Percent missing. 
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Figure 40: Mean absolute error for b! across levels of non-normality (N = 265) 
Note: N = Sample size, P M = Percent missing. 
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Coverage Probability for p\ 

The M D T s differed in their coverage probabilities for p i only. The graphs for coverage 

probability of Pi, p 2 , P 3 , . . . , P Q were similar to those of Pi. For this reason, only the findings for pi 

are reported. 

Table 24 contains coverage probabilities at various levels of the design variables. Figure 

41 is a set of line graphs at sample size 94. The graphs show that coverage probability decreased 

with increasing non-normality. Coverage probabilities under all M D T s were above the criterion 

level of 95% for normal data. This suggests that all M D T s worked well for normal data 

irrespective of missing pattern or percent missing. M D T s were most differentiated under non­

monotonic pattern. E M and R S were the best and M S the worst. 

Figure 42 shows coverage probabilities for Pi at sample size 153, indicating that coverage 

probabilities decreased with increasing non-normality. The relative performance of M D T s was 

most differentiated under non-monotonic than under monotonic missing pattern. RS had the best 

coverage probabilities and M S the worst. 

Figure 43 is a set of graphical plots of mean coverage probabilities for Pi at sample size 

265, showing that coverage probability decreased with increasing non-normality. The graphs also 

show that the M D T s were most differentiated under non-monotonic than under monotonic 

missing pattern. A l l M D T s performed close to the criterion level of 95% for normal data under 

monotonic pattern. 

Under non-monotonic pattern, all M D T s had coverage probabilities below the expected 

value. A t ten percent missing, RS had coverage probability closest to the expected value, except 

at the highest level of non-normality (skew = 3 and kurtosis = 25). A t this point, P W had the best 

coverage probability. This outcome was also observed at fifteen percent missing. A t 20% 

missing, P W had the best coverage probability and E M the worst (below 65%). 
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Table 24 
Mean coverage probability (%) for fti 

Monotonic Missing Pattern Non-monotonic Missing Pattern 

N Percent 
Missing 

Normality 
(sk, kurt.) 

EM 
Imputation 

Mean 
Substitution 

Pairwise 
Deletion 

Regress. 
Imputation 

EM 
Imputation 

Mean 
Substitution 

Pairwise 
Deletion 

Regress. 
Imputation 

94 10 (0,0) 97.9 95.9 97.1 97.4 98.6 89.5 92.2 97.2 
(1,3) 96.3 93.4 95.3 95.6 96.5 86.6 89.3 96.2 

(1.8,6) 93.8 90.7 92.6 93.6 94.3 82.9 86.1 93.5 
(3,25) 89.2 87.2 89.4 89.9 85.3 76.6 79.3 84.4 

15 (0,0) 98.7 95.7 97.2 98.4 98.8 86.1 91.1 98.7 
(1,3) 97.2 93.5 96.2 96.7 96.3 83.9 88.3 97.4 

(1.8,6) 95.8 91.0 94.0 94.9 94.8 81.6 85.0 95.9 

(3,25) 90.6 86.8 90.0 91.2 85.9 75.1 79.4 84.5 

20 (0,0) 99.3 95.6 97.6 98.4 99.3 85.7 91.8 98.6 
(1,3) 97.9 93.0 96.2 97.3 98.2 83.0 89.2 97.8 

(1.8,6) 97.3 90.9 94.4 96.0 96.1 81.2 87.2 96.1 
(3,25) 92.5 86.5 91.2 92.5 88.5 74.9 81.7 85.7 

153 10 (0,0) 97.9 96.4 97.2 97.3 89.0 88.5 91.0 97.5 
(1,3) 96.5 94.5 95.4 96.3 82.2 84.4 86.9 94.4 

(1.8,6) 93.8 90.6 93.2 93.9 79.9 81.5 83.5 91.7 
(3,25) 87.5 85.2 87.9 88.4 64.5 73.3 76.1 73.6 

15 (0,0) 98.2 95.6 97.9 98.0 90.1 85.9 90.3 96.8 
(1,3) 96.4 94.4 96.7 97.0 85.1 81.7 86.7 93.7 

(1.8,6) 93.9 91.0 93.8 95.3 81.7 79.0 83.8 90.6 
(3,25) 87.4 85.0 89.8 • 89.3 70.1 72.4 76.4 71.9 

20 (0,0) 98.2 95.2 98.1 98.4 90.8 84.8 90.5 97.2 
(1,3) 96.3 93.2 97.1 97.2 85.2 80.6 87.3 93.5 

(1.8,6) 94.6 90.5 95.2 95.2 81.5 77.4 83.8 91.0 
(3,25) 88.6 85.7 91.9 90.6 72.8 70.5 77.3 74.4 

265 10 (0,0) 96.4 95.7 97.0 97.5 67.5 87.0 89.1 93.3 
(1,3) 95.2 93.7 95.4 96.1 53.9 81.4 84.2 87.3 

(1.8,6) 92.8 91.3 92.9 93.8 51.6 77.3 79.7 81.8 
(3,25) 84.6 84.1 87.1 87.0 38.6 68.1 70.3 56.2 

15 (0,0) 96.1 95.6 97.6 97.6 61.8 81.4 87.1 91.3 
(1,3) 94.3 94.0 96.3 97.2 51.6 77.1 81.4 82.2 

(1.8,6) 91.1 90.9 94.7 94.4 50.2 73.8 78.1 77.2 
(3,25) 84.0 84.0 88.7 87.0 41.8 65.4 67.9 53.8 

20 (0,0) 95.3 95.7 98.3 98.1 59.4 80.1 87.3 89.1 
(1,3) 92.6 93.4 97.1 97.6 50.3 74.7 82.0 79.1 

(1.8,6) 90.8 91.0 95.2 95.4 51.3 71.2 78.7 74.5 
(3,25) 83.8 95.4 90.2 89.4 47.1 64.1 69.5 53.4 
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Figure 41: Mean coverage probability for p\ (N = 94) 
Note: N = Sample size and P M = Percent Missing. 
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Figure 42: Mean coverage probability (N = 153) 
Note: N = Sample size and P M = Percent Missing 
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Figure 43: Mean coverage probability (N = 265) 
Note: N = Sample size and P M = Percent Missing 
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Summary 

In the previous sections, the effects of pattern of missing data, percent missing and non-

normality on absolute error for parameter estimates were reported. The effects of non-normality 

on absolute error for R2

es-imate were the most prominent across M D T s at sample size 94. However, 

at sample size 153, the effect of percent missing was the most dominant across M D T s . The effect 

of missing pattern only showed at sample size 265 under E M . 

In the estimation of population R 2 , M D T s differed marginally when 10% of the data was 

missing, regardless of missing pattern. M D T s were differentiated more under non-monotonic 

than under monotonic missing pattern. In addition, M D T s were most differentiated for normal 

data, and also when percent missing was highest. Overall , the performance of P W was the best 

and E M the worst. 

The effects of design factors on regression coefficients were also reported in the previous 

sections. O f all factors, the effect of missing pattern on absolute error for bi was the strongest. 

For the remaining regression coefficients, except for b 5 , it was the effect of non-normality that 

was of practical significance, with the strongest effect being at sample size 265. 

Wi th respect to mean absolute error for regression coefficients, the M D T s differed most 

in the estimation of p - , and least in the estimation of p 2 , p3 , . . .po . In general, RS performed the 

best with respect to accuracy. However, with non-monotonic missing pattern at sample size 265, 

and 15% to 20% missing, M S and P W tended to outperform the other M D T s . Also , M D T s were 

more differentiated under non-monotonic pattern than under monotonic pattern of missing data. 

The smallest bias in R 2 at different levels of the design variables was not under a single 

M D T . However, the bias under P W was in most cases the smallest. Whereas P W consistently 

overestimated R 2 , E M , M S , and RS tended to underestimate R 2 . For Pi, the smallest bias was 

under M S and P W with non-monotonic pattern. M S and P W consistently overestimated Pi,and 

E M and R S consistently underestimated Pi. 
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With respect to coverage probability of p i , all M D T s performed well under monotonic 

missing pattern for normal data. Coverage probabilities decreased with increasing non-normality. 

Both E M and RS had similar coverage probabilities at sample size 94. A t sample size 153, the 

performance of R S was the best and M S the worst. For non-normal data under non-monotonic 

missing pattern at sample size 265, all M D T s generally had poor coverage probabilities, the worst 

being under E M at extreme non-normality. 



150 

CHAPTER 5 
DISCUSSION 

In the present study, the relative performance of MS (mean substitution), PW (pairwise 

deletion), RS (regression imputation) and E M (expectation-maximization) methods was 

investigated in four studies under different conditions of sample size, missing pattern, percent 

missing and non-normality. Four similar studies were conducted using multiple regression 

models. Study 1 had four predictors with multiple R2 of .19, Study 2 four predictors with 

multiple R 2 of .59, Study 3 nine predictors with multiple R 2 of .21, and Study 4 nine predictors 

with R 2 of .58. What follows in this final chapter is a comparative discussion of findings from the 

four studies in relation to existing literature. 

Effects on Absolute Error of Parameter Estimates 

The effects of missing pattern, percent missing and non-normality on absolute error in 

R 2 es t ima te were of practical significance upon treatment of missing values with MS, PW, RS and 

E M . As expected, there were sizeable effects for missing pattern, percent missing and non-

normality. Mean absolute error was generally smaller under monotonic pattern, and smallest at 

10% missing. In addition, mean absolute error was smallest for normal data. 

When the number of predictors was four and multiple R 2 was .19, percent missing 

seemed to be the most important factor related to absolute error for R 2

e s t i i r a t e - This was especially 

so under E M and RS. However, this effect was only of practical significance with large samples 

(N = 265). 

When the number of predictors was four and multiple R 2 was .59, the effect of percent 

missing was of practical significance under MS at sample size 265, and under RS and E M at all 

levels of sample size. Whereas non-normality seemed to have an influence on absolute error 

mainly under PW, it was the ordinal interaction effect of missing pattern and non-normality that 

had effects of practical significance under RS and E M . Under RS and E M , mean absolute error 
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2 
for R estimate was smaller for monotonic pattern than for non-monotonic pattern. However, the 

difference in mean absolute error across patterns was much greater at higher levels of non-

normality. 

When the number of predictors was nine and multiple R 2 was .21, the effect of non-

normality on absolute error for R2

estimate seemed to be the most important, and this was under all 

M D T s . A t sample size 94 and 153, the effect of non-normality was strongest under M S . 

However, at sample size 265, the strongest effect was under P W . 

Under multiple R 2 of about .58 with nine predictors, non-normality seemed to be an 

important factor only at sample size 94. This was with the exception of P W that was affected by 

non-normality at all levels of sample size. A t sample sizes 153 and 265, percent missing 

appeared to be the most important factor. However, with E M , pattern effects dominated at 

sample size 265. 

The above results show that percent missing was the most important factor when number 

of predictors was four. However, with nine predictors, non-normality became the most important 

factor. This was regardless of the strength of the criterion-predictor relationship. Miss ing pattern 

effect was the most important under E M . 

The effect of non-normality on absolute error for regression coefficients appeared to 

dominate under all M D T s . Miss ing pattern only affected b i , the coefficient of the variable with 

no missing data. The strength of these effects tended to get larger with increasing sample size. 

Relative Performance of M D T s 

Table 25 shows the best M D T s in the estimation of R 2 and P i with respect to maximizing 

accuracy as measured by the mean absolute error of estimation, as well as M D T s that provided 

coverage probability closest to the expected value of 95% for each study. Table 26 shows the 

least biased M D T s in the estimation of R 2 and Pi. The tables indicate that under four predictors 
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and low R 2 condition, E M was the best with respect to accuracy in the estimation of population 

R 2 . This finding also held true under nine predictors and low R 2 condition. However, there was 

no M D T that was uniformly least biased under the low R 2 condition. 

Under high population R 2 (about .60), P W had the most accurate and least biased 

estimates, with a tendency to overestimate R 2 . This result was consistent with that of Azen et al. 

(1989) who found that although E M was generally the preferred method, P W performed better 

than E M for systematically missing data when population R 2 was 0.5. The limitation with P W is 

the fact that it can yield correlations outside the acceptable range. In a similar manner, 

covariance matrices based on P W may not be positive definite. Since many analyses based on the 

covariance matrix, including multiple regression, require a positive-definite matrix, modifications 

may be necessary when this condition is not satisfied. 

Table 25: Best M D T s in the estimation of parameters and coverage probability 

4 Predictors 9 Predictors 

R 2 

l x estimate 
b, Coverage 

Probability 
R 2 

1 V estimate bi Coverage 
Probability 

L o w R 2 E M RS E M / R S E M RS E M 

High R 2 P W RS RS P W RS R S 

Table 26: Least biased M D T s in the estimation of parameters 

4 Predictors 9 Predictors 

R 2 

l v estimate 
b, R 2 

I x estimate bi 

L o w R 2 None R S None P W 

High R 2 P W RS P W M S / P W 
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Kromrey and Hines (1994) reported that P W and RS performed better in most situations 

than M S in the estimation of R 2 . The findings in the present study seem to be in agreement with 

that of Kromrey and Hines, but only as far as the relative accuracy of P W and M S is concerned. 

A s for the relative accuracy of RS and M S , the present study showed that R S outperformed M S 

under the condition of low R 2 . However, under the condition of high R 2 , M S generally 

outperformed R S . 

Generally, the mean absolute error for R2

estimate increased with increasing non-normality, a 

finding consistent with that of Graham, Hofer and MacKinnon (1996) who showed that estimates 

obtained for skewed data were somewhat less accurate than for normal data. M D T s also appeared 

to be more differentiated under non-monotonic than under monotonic pattern, suggesting that the 

choice of M D T may be more crucial when the missing pattern is non-monotonic. A l so , M D T s 

were most differentiated at the highest level of percent missing (20%), suggesting that the choice 

of M D T was most important at this level. This finding is consistent with that of Kromrey and 

Hines (1994) and Raymond and Roberts (1987) who found that the differences among M D T s 

increased as the proportion of missing data increased, although Raymond and Roberts (1987) 

used randomly deleted data. Therefore, the choice of M D T s is less critical i f the amount of 

missing data is small (about 10%). In the present study, E M had the best overall performance 

under low multiple R 2 condition (R 2 about .2), and P W had the best performance under high R 2 

condition (R 2 about .6). However, under low R 2 condition, at sample size 265, and 15% to 20% 

missing data, P W and M S also performed well . N o M D T consistently provided the smallest bias 

under the low R 2 condition under four predictors and nine predictors. Under high R 2 condition, 

P W consistently provided the smallest bias regardless of number of predictors. Whereas P W had 

the tendency to overestimate R 2 , the other M D T s had the tendency to underestimate R 2 . 

In the estimation of regression coefficients, the greatest accuracy was under RS for each 

study. However, R S had the least biased estimates under four predictors only. Wi th nine 
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predictors, P W had the least biased estimates. The bias under M S with nine predictors and high 

R 2 condition was least differentiated from that of P W . 

In the estimation of regression coefficients, the performance of all M D T s deteriorated 

with increasing non-normality, and this was regardless of missing pattern. This result may be due 

to the fact that M D T s are based on normal theory, and as such, their performance is expected to 

deteriorate with increasing non-normality. Also , the mean absolute error for bi tended to be 

smaller under monotonic pattern than under non-monotonic pattern. There was a tendency for 

M D T s to differ more at higher levels of percent missing than at lower levels. O f particular 

interest was the fact that the M D T s were most differentiated with respect to accuracy in the 

estimation of (3i, the regression coefficient of the predictor with no missing values. 

Some researchers (e.g., Little, 1988; Muthen, Kaplan, & Hol l i s , 1987) have suggested the 

superiority of the E M method in the treatment of missing data. Al l i son (1987) reported that even 

with non-normal data, maximum-likelihood estimates should have reasonably good properties 

relative to competing estimators. Graham et al. (1996) found that estimates obtained with non-

normal data using E M treatment were satisfactory. However, they were cautious to make no 

claim that the parameter estimates based on the E M method would be adequate when data were 

more non-normal than in their study. In their study, five variables were used, with univariate 

skew ranging from -.68 to 3.30 and univariate kurtosis ranging from 

-.25 to 13.11. In the present study, E M outperformed RS in the estimation of population R 2 

under low R 2 (about .2). However, in the estimation of Pi, RS had more accurate estimates than 

E M regardless of size of correlation. R S also had the least bias with four predictors. Both RS 

and E M underestimated Pi, and this can be explained by the fact that the marginal distribution of 

the predictor is distorted because the imputations do not reflect variation in the distribution of the 

predictor given the criterion. Wi th nine predictors under high R 2 condition, P W and M S had the 

least bias, both M D T s overestimating Pi. 
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One possible explanation for the overwhelmingly favoured E M method (see Beale & 

Little, 1975; Gleason & Staelin, 1975; Little, 1979), is that the proportions of missing data 

investigated in previous studies were often disturbingly high, ranging from about 10 percent to 40 

percent. Wi th 40 percent of the data missing, one would have to question seriously the 

appropriateness of conducting any analysis. The finding in the present study that the RS method 

performed about as well as the E M method is important in the sense that RS is less complex than 

E M method. With regard to comparisons of the accuracy of parameter estimates after different 

treatments of missing data, there is need to exercise some caution because different criteria were 

used in different studies. 

M D T s and Coverage Probabilities 

The relative effectiveness of M D T s in producing coverage probabilities that captured (31 

at alpha = .05 under various design conditions was investigated. Overall , coverage probabilities 

under RS were closest to the nominal value. However, E M too had coverage probabilities close 

to the nominal value under low R 2 condition. It was also found that M D T s produced the best 

coverage probabilities with normal data, and the coverage probabilities decreased with increasing 

non-normality. This expected result might be attributed to the fact that the confidence intervals 

constructed were based on the assumption of normality. If this assumption was violated, then 

Type I error rates were likely to increase. Coverage probabilities under monotonic missing 

pattern were generally closer to the nominal value of 95% than under non-monotonic missing 

pattern, with M D T s being less differentiated under monotonic than non-monotonic missing 

pattern. Generally, for non-normal data, coverage probabilities fell below the nominal value with 

non-monotonic missing pattern. As reflected by the estimation and coverage probability for (3i, 

the E M method broke down under non-monotonic pattern at sample size 265. 
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Implications of the Study 

Considering that the choice of M D T in a multiple regression context not only depends on 

the magnitude of R 2 and number of predictors, but also on the parameter estimate of interest, the 

following implications for researchers seem pertinent: 

(1) The choice of M D T should be of little concern to researchers i f the proportion of 

missing data is 10 percent or less and the missing pattern is monotonic. In particular, 

in the estimation of R 2 and regression coefficients, as well as coverage probability, 

the results showed that M D T s were more differentiated with increasing percent 

missing. However, the differentiation was much larger under non-monotonic missing 

pattern than under monotonic missing pattern, implying that the choice of M D T is 

more crucial when the missing pattern is non-monotonic. 

(2) The accuracy of parameter estimates after treating missing data was found to 

deteriorate with increasing non-normality. The results showed that the mean absolute 

error of parameter estimates was largest at the highest level of non-normality, and 

smallest for normal data. Coverage probability was found to decrease with increasing 

non-normality. In general, coverage probability was closest to nominal value for 

normal data. 

(3) Wi th the estimation of R 2 as the goal of analysis, use of E M is recommended i f the 

anticipated R 2 is low (about .2), regardless of number of predictors. However, i f the 

anticipated R 2 is high (about .6), use of P W is recommended, regardless of number of 

predictors. Although P W performed the worst and E M the best under four predictors 

and low R 2 condition, E M was the best and P W the worst under four predictors and 

high R 2 condition. Under nine predictors and low R 2 condition, E M was the best, 

except at sample size 265 and 20 percent missing under non-monotonic pattern where 

M S performed the best. Under nine predictors and high R 2 condition, results showed 
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that P W had the best performance in terms of both accuracy and bias, and E M had 

the worst performance at all levels of the design variables. 

(4) Wi th the estimation of regression coefficients as the goal of analysis, the choice of 

M D T is most crucial for the variable with the least amount of missing data. Based on 

the accuracy and coverage probability of regression coefficients, the RS method is 

recommended regardless of the number of predictors or the magnitude of the 

anticipated R 2 . However, P W and M S methods tended to give less biased estimates 

than R S when the number of predictors is large (i.e., nine predictors). Researchers 

should avoid the use of E M when the missing pattern is non-monotonic and sample 

size is moderate to large (153 and 265) under nine predictors and high R 2 condition 

because the method breaks down. 

A contribution of the present study is that it addressed important and meaningful research 

questions on the relative effectiveness of selected M D T s . This should advance our understanding 

of the performance of the M D T s under various design conditions, enabling researchers to select 

M D T s more appropriately. In the present study, use was made of simulated data. It is important 

that real data sets are used in future research to validate these results. A l so , four and nine 

predictors were used in the study. A future investigator could modify the number of predictors. 

Finally, whereas the 95% confidence was used in the calculation of coverage probabilities in the 

present study, a future investigator could use the 99% confidence interval to extend generalization 

of results. 

Strengths and Limitations of the Present Study 

A s noted by Kromrey and Hines (1994), a critical issue in the generalizability of results 

involving M D T s is the consideration of regression models with more predictor variables in which 

missing data occur on more than one predictor. However, previous researchers tended to use 
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two-predictor regression models in which missing data occurred on only one predictor. Such 

situations are rare in psycho-educational research. In the present study, four and nine predictor 

models were used, with data missing on all but one predictor, thus allowing for more realistic 

generalizations. 

Also , unlike some of the previous studies with few replications, 1000 replications was 

utilized in the present study. This means that the results of the study more accurately represent the 

relative performance of M D T s that were examined. 

Knowledge of coverage probabilities is an important component in the evaluation of any 

statistical procedure. Previous studies on M D T s failed to investigate this component. In the 

present study, this vital component was included. 

Another important aspect of the present study was that levels of independent variables 

were determined by consulting the literature. This made the results of the present study more 

generalizable and more consistent with reality. However, a limitation of the present study was 

that the levels of non-normality were restricted by the parabolic parameter space as presented in 

Fleishman (1978). This implies that it was not possible to combine a level of skew with any other 

level of kurtosis. Such a restriction may sacrifice generalizability, but only as far as levels of 

non-normality are concerned. 

In his review of missing data research, Roth (1994) stressed the conspicuous deficiency 

of studies contrasting simple M D T s like mean substitution and pairwise deletion to the more 

complex ones like expectation-maximization ( E M ) or other maximum likelihood methods. Also , 

data were randomly deleted in most previous research, and there has been little work with 

different patterns of missing data. A n attempt was made in the present study to address these 

issues by including the E M method, and comparing M D T s within and across different patterns of 

missing data. 

In conclusion, it was found that percent missing, missing pattern, and multivariate non-

normality had an effect on absolute error for standard multiple linear regression estimates. Under 
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low R 2 condition, E M was the best in estimating population R 2 . Under high R 2 condition, P W 

method had the best overall performance in estimating population R 2 . In the estimation of 

regression coefficients, RS had the best overall performance irrespective of magnitude of multiple 

R 2 and number of predictors. However, the estimates under RS were least biased only under the 

four-predictor analyses. Coverage probabilities under E M were closest to nominal value under 

low R 2 condition. Under high R 2 condition, R S had coverage probabilities closest to nominal 

value. 
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Table A.1: Bias in Ruinate: 4 predictors and low R 2 condition 

Monotonic Missing Pattern Non-monotonic Missing Pattern 

N Percent Normality EM Mean Pairwise Regress. EM Mean Pairwise Regress. 
Missing (sk., kurt.) Imputation Substitution Deletion Imputation Imputation Substitution Deletion Imputation 

94 10 (0,0) .014266 .015673 .026846 .014973 .005228 .013706 .022897 .007649 
(1,3) .018106 .019812 .031224 .018943 .007193 .018463 .025382 .009785 

(1.8,6) .024917 .026993 .037877 .025909 .011700 .024425 .030684 .014437 
(3,25) .044387 .048456 .055844 .046140 .018653 .041704 .039049 .021012 

15 (0,0) .004107 .006573 .023575 .005265 -.006121 .006203 .017708 -.003531 
0,3) .007670 .010544 .027176 .008997 -.004370 .010777 .019654 -.001796 

(1.8,6) .014246 .017606 .032999 .015753 -.000070 .016326 .024421 .002472 
(3,25) .032844 .038732 .048037 .035135 .004499 .030531 .027681 .006057 

20 (0,0) -.006420 -.002734 .019325 -.004837 -.017661 -.001691 .012267 -.015170 
(1,3) -.003002 .001253 .022340 -.001200 -.016012 .002508 .013185 -.013770 

(1.8,6) .003556 .008459 .027135 .005566 -.011744 .007848 .016764 -.009607 
(3,25) .020912 .029022 .039035 .023670 -.008049 .020940 .014695 -.007253 

153 10 (0,0) .000732 .001733 .015641 .001221 -.007253 -.007671 -.000044 .011790 
(1,3) .003823 .005051 .018485 .004405 -.005508 -.006549 .003639 .012977 

(1.8,6) .008844 .010328 .022917 .009531 -.004189 -.003493 .007838 .016326 
(3,25) .024834 .027645 .037445 .026056 -.001080 -.000199 .020305 .022359 

15 (0,0) -.009078 -.007223 .013557 -.008211 .001855 -.019266 -.007887 .007804 
(1,3) -.005969 -.003768 .016143 -.004966 -.016849 -.018915 -.005019 .008681 

(1.8,6) -.001081 .001506 .020180 .000068 -.016576 -.016417 -.001591 .011663 
(3,25) .014051 .018620 .033150 .015916 -.014807 .008383 .015062 -.013461 

20 (0,0) -.018985 -.016116 .010855 -.017809 -.029701 -.015390 .003777 -.027609 
(1,3) -.015807 -.012512 .013049 -.014487 -.029573 -.013031 .004287 -.027720 

(1.8,6) -.010946 -.007183 .016538 -.009472 -.027707 -.010339 .006982 -.025957 
(3,25) .002832 .009186 .027708 .005117 -.026062 -.000917 .009241 -.025397 

265 10 (0,0) -.007386 -.006653 .008374 -.007020 -.015480 -.008296 .004675 -.013391 
(1,3) -.005643 -.004833 .010253 -.005246 -.015897 .006384 .005419 -.013636 

(1.8,6) -.002768 -.001867 .013036 -.002336 -.015145 -.004821 .007477 -.012881 
(3,25) .008313 .009743 .023768 .008959 -.014766 .002636 .011517 -.012973 

15 (0,0) -.017002 -.015550 .007074 -.016337 -.026665 -.016087 .001471 -.024455 
(1,3) -.015346 -.013766 .008743 -.014634 -.027575 -.014810 .001919 -.025484 

(1.8,6) -.012460 -.010733 .011215 -.011693 -.027056 -.013548 .003764 -.025039 
(3,25) -.001774 .000732 .020888 -.000691 -.028262 -.008132 .006587 -.027139 

20 (0,0) -.026380 -.024027 .005421 -.025409 -.037143 -.023661 -.001555 -.035151 
(1,3) -.024784 -.022240 .006816 -.023751 -.038160 -.022753 -.001321 -.036445 

(1.8,6) -.021948 -.019174 .008922 -.020844 -.037845 -.021912 .000417 -.036238 
(3,25) -.011708 -.007810 .017423 -.010320 -.039238 -.017029 .001553 -.038617 
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Table A.2: Bias in bi: 4 predictors and low R2 condition 

Monotonic Missing Pattern Non-monotonic Missing Pattern 

N Percent 
Missing 

Normality 
(sk., kurt.) 

EM 
Imputation 

Mean 
Substitution 

Pairwise 
Deletion 

Regress. 
Imputation 

EM 
Imputation 

Mean 
Substitution 

Pairwise 
Deletion 

Regress. 
Imputation 

94 10 (0,0) -.003553 .017797 .017631 .001535 -.015127 .063690 .063519 -.004284 
(1,3) -.004239 .017267 .017107 .000842 -.023164 .067521 .067273 -.013102 

(1.8,6) -.004028 .017329 .017177 .000737 -.025374 .069068 .068474 -.015662 
(3,25) -.004694 .020150 .019912 -.000223 -.040202 .092975 .092001 -.034090 

15 (0,0) -.002918 .028086 .027854 .003538 -.016335 .079435 .079254 -.007360 
(1,3) -.003073 .028157 .027920 .003369 -.023698 .082609 .082403 -.015818 

(1.8,6) -.002566 .028646 .028395 .003654 -.024992 .084241 .083585 -.017569 
(3,25) -.003445 .033081 .032771 .002614 -.036547 .107390 .106197 -.034251 

20 (0,0) -.004045 .037464 .037158 .003816 -.019630 .089585 .089379 -.012553 
(1,3) -.004454 .037401 .037099 .003539 -.025813 .092595 .092344 -.020017 

(1.8,6) -.003874 .037881 .037598 .003947 -.026716 .094172 .093448 -.021432 
(3,25) -.005430 .042480 .042179 .002244 -.036299 .116431 .115084 -.036463 

153 10 (0,0) -.006552 .015227 .015104 -.001045 -.017654 .061592 .061544 -.006370 
(1,3) -.007023 .015361 .015234 -.001416 -.024650 .066959 .066828 -.014007 

(1.8,6) -.006630 .016109 .015986 -.001080 -.026071 .069333 .068876 -.015805 
(3,25) -.005940 .018269 .018112 -.000828 -.039287 .091827 .091088 -.032804 

15 (0,0) -.007904 .024452 .024255 -.000362 -.020207 .076926 .076864 -.010307 
(1,3) -.008693 .024608 .024398 -.001026 -.025955 .081724 .081608 .026066 

(1.8,6) -.008465 .025439 .025229 -.000875 .084090 .083573 -.017916 -.035630 
(3,25) -.008599 .028423 .028191 -.001100 .105499 .104583 -.032104 

20 (0,0) -.007575 .033347 .033133 .000565 -.021086 .087511 .087449 -.013943 
(1,3) -.008272 .033511 .033312 -.000050 -.025291 -.091779 .091682 .019459 

(1.8,6) -.008249 .034237 .034051 -.000098 -.024773 .094038 .093512 -.019415 
(3,25) -.008856 .038024 .037844 -.000414 -.032505 .113444 .112478 -.031413 

265 10 (0,0) -.006541 .015030 .014940 -.000822 -.006541 .015030 .014940 -.000822 
(1,3) -.006653 .015191 .015100 -.000898 -.006653 .015191 .015100 -.000898 

(18,6) -.006538 .015429 .015344 -.000805 -.006538 .015429 .015344 -.000805 
(3,25) -.005659 .017387 .017280 .000014 -.005659 .017387 .017280 .000014 

15 (0,0) -.007400 .023945 .023794 -.000024 -.007400 .023945 .023794 .000024 
(1,3) -.007536 .024159 .024016 -.000128 -.007536 -.024159 .024016 -.000128 

(1.8,6) -.007468 .024466 .024326 -.000097 -.007468 -.024466 .024326 .000097 
(3,25) -.006843 .026869 .026731 .000674 -.006843 -.026869 .026731 .000674 

20 (0,0) -.008453 .032562 .032388 .000090 -.008453 .032562 .032388 .000090 
(1,3) -.008719 .032793 .032638 -.000087 -.008719 .032793 .032638 -.000087 

(1.8,6) -.008777 .033140 .032993 -.000147 -.008777 .033140 .032993 -.000147 
(3,25) -.008820 .035666 .035538 .000063 -.008820 .035666 .035538 .000063 
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Table A.3: Bias in R2estimate: 4 predictors and hiah R2 condition 

Monotonic Missing Pattern Non-monotonic Missing Pattern 

N Percent Normality EM Mean Pairwise Regress. EM Mean Pairwise Regress. 
Missing (sk., kurt.) Imputation Substitution Deletion Imputation Imputation Substitution Deletion Imputation 

94 10 (0,0) -.043071 -.032549 .006910 -.035688 -.095194 -.037159 -.001864 -.073098 
(1,3) -.038364 -.026508 .012208 -.030401 -.107712 -.036615 .000183 -.085818 

(1.8,6) -.032025 -.019128 .018052 -.023750 -.107743 -.032931 .004372 -.086825 
(3,25) -.006893 .011155 .039464 .002736 -.145121 -.036613 .010853 -.131758 

15 (0,0) -.072550 -.055330 .003996 -.061662 -.138762 -.057195 -.009321 -.116293 
(1,3) -.068037 -.049376 .008624 -.056655 -.153030 -.060504 -.008062 -.133318 

(1.8,6) -.061726 -.041904 .013712 -.050136 -.153357 -.058508 -.004159 -.135452 
(3,25) -.037447 -.011666 .032307 -.024891 -.190371 -.069734 -.001821 -.182862 

20 (0,0) -.102963 -.078183 .000198 -.089139 -.179676 -.077683 -.016991 -.159654 
(1,3) -.098870 -.072418 .003744 -.084586 -.192358 -.082682 -.015700 -.176377 

(1.8,6) -.093023 -.065212 .007473 -.078548 -.192811 -.081983 -.012635 -.178327 
(3,25) -.070800 -.035847 .020160 -.055429 -.226364 -.098519 -.012941 -.222622 

153 10 (0,0) -.048001 -.038459 .003937 -.041188 -.101753 -.042653 -.004898 -.079005 
(1,3) -.044315 -.033656 .007585 -.036928 -.117484 -.045083 -.004322 -.095044 

(1.8,6) -.039674 -.028173 .011506 -.031941 -.120161 -.043950 -.001821 -.098610 
(3,25) -.021813 -.006575 .029001 -.012702 -.162644 -.055057 .002803 -.149232 

15 (0,0) -.077549 -.061168 .001876 -.066905 -.146712 -.063369 -.011451 -.122958 
(1,3) -.074276 -.056434 .005151 -.063061 -.162431 -.067912 -.011314 -.141598 

(1.8,6) -.070005 -.051070 .008595 -.058485 -.165459 -.068711 -.009097 -.146305 
(3,25) -.052585 -.028829 .023926 -.039816 -.208631 -.089476 -.007394 -.200648 

20 (0,0) -.106965 -.083823 -.000534 -.093800 -.183666 -.082938 -.017718 -.164268 
(1,3) -.103710 -.078908 .002210 -.090011 -.198169 -.089170 -.017852 -.182995 

(1.8,6) -.099457 -.073376 .005050 -.085493 -.200403 -.090644 -.015960 -.186945 
(3,25) -.083699 -.051473 .017084 -.068645 -.240913 -.116290 -.016857 -.238137 

265 10 (0,0) -.051019 -.042208 .001108 -.044514 -.106710 -.047061 -.007823 -.083144 
(1,3) -.048718 -.039454 .003460 -.042001 -.124264 -.051691 -.008146 -.101166 

(1.8,6) -.046054 -.036391 .006005 -.039181 -.129720 -.053893 -.006644 -.107582 
(3,25) -.032769 -.020787 .018571 -.024861 -.178230 -.074161 -.005797 -.164564 

15 (0,0) -.080257 -.065187 -.000349 -.070342 -.149003 -.066694 -.013685 -.125639 
(1,3) -.078058 -.062408 .001715 -.067940 -.166520 -.073567 -.014329 -.146217 

(1.8,6) -.075346 -.059222 .003932 -.065106 -.171866 -.076811 -.013067 -.153113 
(3,25) -.062479 -.043555 .015243 -.051156 -.219971 -.105540 -.014288 -.212453 

20 (0,0) -.109551 -.087571 -.002185 -.096749 -.187856 -.086303 -.019511 -.167753 
(1,3) -.107484 -.084790 -.000373 -.094517 -.203705 -.094695 -.020210 -.187895 

(1.8,6) -.104830 -.081495 .001530 -.091743 -.208198 -.098943 -.018821 -.194088 
(3,25) -.092830 -.065960 .011134 -.078886 -.250940 -.131747 -.021038 -.247438 
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Table A.4: Bias in bi: 4 predictors and high R2 condition 

Monotonic Missing Pattern Non-monotonic Missing Pattern 

Percent Normality EM Mean Pairwise Regress. EM Mean Pairwise Regress. 
Missing (sk., kurt.) Imputation Substitution Deletion Imputation Imputation Substitution Deletion Imputation 

10 (0,0) -.044364 .026069 .025725 -.021430 -.132160 .100736 .100575 -.088402 
(1.3) -.044122 .026840 .026485 -.021743 -.148362 .110025 .109789 -.108142 

(1.8,6) -.043598 .027679 .027321 -.021862 -.150516 .114023 .113351 -.111796 
(3,25) -.035885 .035400 .035054 -.018999 -.168047 .158559 .157811 -.145154 

15 (0,0) -.058228 .042136 .041695 -.029849 -.152025 .125779 .125605 -.114983 
(1.3) -.057623 .043638 .043176 -.029758 -.162449 .134388 .134122 -.131328 

(1.8,6) -.056943 .044909 .044435 -.029670 -.161765 .138342 .137455 -.132865 
(3,25) -.050522 .054138 .053716 -.027550 -.164706 .181136 .180042 -.153287 

20 (0,0) -.073890 .056536 .055978 -.041796 -.168786 .142991 .142765 -.139666 
(1,3) -.073106 .058172 .057663 -.041416 -.173436 .151206 .150919 -.150438 

(1.8,6) -.071935 .059611 .059151 -040749 -.171206 .155421 .154344 -.149302 
(3,25) -.066650 .069425 .069051 -.039302 -.161881 .195152 .193755 -.155670 

10 (0,0) -.046467 .024243 .024096 -.022734 -.136399 .100432 .100355 -.091043 
(1,3) -.046337 .024550 .024394 -.023342 -.151974 .110715 .110517 -.110951 

(1.8,6) -.045778 .025053 .024904 -.023499 -.153833 .114722 .114057 -.114661 
(3,25) -.039826 .029514 .029379 -.021443 -.171656 .153399 .152608 -.149686 

15 (0,0) -.062653 .039902 .039632 -.031998 -.158198 .125311 .125201 -.118249 
(1,3) -.063226 .040630 .040343 -.033101 -.167713 .134493 .134260 -.134406 

(1.8,6) -.063030 .041503 .041223 -.033529 -.166458 .138504 .137603 -.135336 
(3,25) -.058190 .047533 .047246 -.032212 -.167809 .174731 .173572 -.155699 

20 (0,0) -.075770 .051262 .050928 -.043572 -.169523 .141382 .141242 -.141259 
(1,3) -.076477 .051749 .051429 -.044743 -.174145 .149399 .149108 -.152651 

(1.8,6) -.076460 .052451 .052159 -.045344 -.171165 .153037 .151970 -.151277 
(3,25) -.073103 .058327 .058094 -.044910 -.162976 .185987 .184636 -.159007 

10 (0,0) -.046282 .024345 .024173 -.021832 -.137794 .101371 .101335 -.090241 
(1,3) -.045909 .024531 .024356 -.021873 -.152678 .111219 .111081 -.110171 

(1.8,6) -.045558 .024702 .024540 -.021889 -.154090 .115099 .114524 -.113651 
(3,25) -.041959 .026978 .026785 -.020685 -.169893 .149754 .149025 -.147836 

15 (0,0) -.061748 .037609 .037369 -.031900 -.158278 .123975 .123940 -.118681 
(1,3) -.061452 .038125 .037896 -.031964 -.167210 .132569 .132390 -.134581 

(1.8,6) -.061205 .038441 .038228 -.032089 -.166410 .136006 .135228 -.135922 
(3,25) -.058529 .041565 .041341 -.031495 -.166441 .167875 .166842 -.155049 

20 (0,0) -.076647 .049888 .049602 -.043747 -.172854 .140906 .140858 -.142859 
(1,3) -.076710 .050160 .049903 -.044036 -.176512 .148401 .148209 -.153502 

(1.8,6) -.076655 .050354 -.050126 -.044308 -.173384 .151357 .150425 -.152026 
(3,25) -.074796 .053468 .053238 -.044188 -.161446 .179177 .177942 -.156020 
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Table A.5: Bias in Ro ta te : 9 predictors and low R2 condition 

Monotonic Missing Pattern Non-monotonic Missing Pattern 

N Percent Normality EM Mean Pairwise Regress. EM Mean Pairwise Regress. 
Missing (sk., kurt.) Imputation Substitution Deletion Imputation Imputation Substitution Deletion Imputation 

94 10 (0,0) .052831 .059312 .050712 .045430 .053235 .056189 .043350 .034993 
0.3) .057554 .061613 .055008 .049185 .057184 .057450 .043191 .034861 

(1.8,6) .068053 .069384 .065000 .058658 .065366 .064697 .048981 .040809 
(3,25) .093996 .088722 .088315 .080302 .088336 .078952 .054953 .049918 

15 (0,0) .042348 .051091 .038944 .032150 .045819 .046922 .030176 .021457 
(1,3) .048042 .052648 .043937 .036539 .049473 .047485 .029153 .021458 

(1.8,6) .059131 .059179 .054209 .046359 .058149 .052881 .034892 .027905 
(3,25) .084774 .075178 .076173 .066702 .078671 .061385 .036271 .034405 

20 (0,0) .033224 .039240 .027276 .020160 .036377 .034118 .014620 .007609 
(1,3) .039237 .039235 .032185 .024548 .040572 .033331 .013703 .008001 

(1.8,6) .050370 .043741 .042017 .034070 .048783 .037227 .018858 .013979 
(3,25) .075960 .054680 .062433 .053163 .066895 .040351 .018218 .018735 

153 10 (0,0) .024081 .037727 .022876 .018704 .023693 .035168 .015583 .007499 
(1,3) .027003 .039441 .025580 .021066 .026480 .036124 .014916 .006825 

(1.8,6) .033505 .044340 .031796 .027030 .032271 .040693 .019070 .011250 
(3,25) .055026 .062047 .052002 .045564 .049620 .053392 .022516 .017264 

15 (0,0) .013263 .032734 .010793 .005506 .014975 .028709 .001444 -.006379 
(1,3) .016091 .033953 .013235 .007658 .017794 .028972 .000218 -.006835 

(1.8,6) .022644 .038081 .019311 .013459 .023191 .032933 .003764 -.002739 
(3,25) .043891 .053315 .038164 .030784 .038522 .042412 .003946 .001574 

20 (0,0) .002158 .026110 -.002039 -.007942 .005806 .020213 -.013383 -.020132 
(1,3) .005529 .026781 .000791 -.005350 .008749 .019928 -.014600 -.020100 

(1.8,6) .012498 .030075 .007104 .000792 .014139 .022724 -.011206 -.015933 
(3,25) .033418 .041906 .024703 .017326 .026310 .029411 -.013422 -.013770 

265 10 (0,0) .004579 .020329 .003728 .000501 .003144 .018141 -.003967 -.011415 
(1,3) .006521 .021854 .005526 .002107 .005299 .018829 -.004977 -.012436 

(1.8,6) .010616 .025318 .009463 .005910 .008633 .021799 -.002985 -.010177 
(3,25) .025436 .038053 .023430 .018729 .019797 .030759 -.003701 -.008634 

15 (0,0) -.005299 .017434 -.007048 -.011483 -.005627 .014069 -.017567 -.024917 
(1,3) -.003380 .018667 -.005359 -.009935 -.003845 .014442 -.019538 -.026099 

(1.8,6) .000668 .021685 -.001566 -.006268 -.000708 .017014 -.017849 -.023887 
(3,25) .015257 .032797 .011519 .005518 .008221 .023300 -.020797 -.023545 

20 (0,0) -.015384 .013401 -.018555 -.023676 -.014619 .008777 -.031385 -.037650 
(1,3) -.013325 .014295 -.016832 -.022071 -.013399 .008754 -.033816 -.038862 

(1.8,6) -.009165 .016764 -.013045 -.018375 -.010731 .010739 -.032510 -.036887 
(3,25) .005661 .026275 -.000244 -.006610 -.034483 .015989 -.036778 -.037600 
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Table A.6: Bias in bi: 9 predictors and low R2 condition 

Monotonic Missing Pattern Non-monotonic Missing Pattern 

Percent Normality EM Mean Pairwise Regress. EM Mean Pairwise Regress. 
Missing (sk., kurt.) Imputation Substitution Deletion Imputation Imputation Substitution Deletion Imputation 

10 • (0,0) .009833 .009915 -.006128 -.012206 .046551 .046828 -.030872 -.046161 
(1,3) .012007 .012088 -.004135 -.009414 .051793 .051944 -.040177 -.052405 

(1.8,6) .013377 .013477 -.002674 -.007032 .054007 .053769 -.042492 -.053081 
(3,25) .017202 .017423 -.000692 -.002672 .071107 .070396 -.069777 -.067768 

15 (0,0) .015750 .015961 -.008358 -.019312 .058620 .059061 -.041426 -.055151 
(1,3) .017836 .018095 -.006379 -.016617 .063432 .063626 -.051031 -.060677 

(1.8,6) .019042 .019393 -.004937 -.013997 .065537 .065216 -.053646 -.061220 
(3,25) .023199 .023591 -.002933 -.009596 .083412 .082471 -.081168 -.072703 

20 (0,0) .020966 .021316 -.010513 -.022902 .066610 .067359 -.049185 -.056977 
(1,3) .022899 .023283 -.008691 -.020235 .071151 .071629 -.058033 .061282 

(1.8,6) .024120 .024609 -.007232 -.017759 .073683 .073595 -.059195 -.060863 
(3,25) .028878 .029354 -.005511 -.014754 .091164 .090313 -.082623 -.070609 

10 (0,0) .009867 .009773 -.005260 -.015038 .045468 .045503 -.031524 -.054054 
(1,3) .011752 .011684 -.003581 -.012758 .050471 .050409 -.041568 -.061210 

(1-8,6) .013083 .013041 -.002348 -.010711 .051916 .051574 -.044378 -.061964 
(3,25) .016113 .016123 .000048 -.006159 .069493 .068918 -.071630 -.076080 

15 (0,0) .015659 .015460 -.007083 -.019716 .056634 .056676 -.042634 -.059257 
(1,3) .017369 .017194 -.005917 -.018070 .061270 .061194 -.052341 -.065164 

(18,6) .018684 .018536 -.004998 -.016479 .062941 .062529 -.054350 -.065314 
(3,25) .021626 .021543 -.003385 -.012894 .080118 .079382 -.079808 -.075771 

20 (0,0) .020790 .020510 -.009701 -.025059 .065799 .065861 -.051334 -.063507 
(1,3) .022727 .022481 -.008400 -.023304 .070028 .069976 -.059848 -.067817 

(1.8,6) .024085 .023885 -.007472 -.021714 .071950 .071494 -.061095 -.067414 
(3,25) .027615 .027512 -.005445 -.018000 .088507 .087753 -.081332 -.074605 

10 (0,0) .010831 .010839 -.004703 -.016976 .045312 .045329 -.031007 -.056489 
(1,3) .011962 .011955 -.003757 -.015561 .050204 .050133 -.041230 -.063826 

(1.8,6) .012407 .012397 -.003389 -.014727 .051504 .051205 -.043945 -.064762 
(3,25) .015673 .015649 -.000770 -.010625 .068176 .067690 -.068839 -.076688 

15 (0,0) .016277 .016234 -.007415 -.023142 .056651 .056693 -.042119 -.061757 
(1,3) .017399 .017356 -.006549 -.021787 .061140 .061079 -.051694 -.067169 

(18,6) .017859 .017824 -.006119 -.020807 .062256 .061927 -.053800 -.067625 
(3,25) .021071 .021028 -.003894 -.017447 .078447 .077838 -.075765 -.076355 

20 (0,0) .020799 .020700 -.010693 -.027943 .064524 .064590 -.050922 -.064597 
(1,3) .021857 .021772 -.009978 -.026779 .068494 .068452 -.058832 -.068192 

(18,6) .022322 .022261 -.009663 -.025880 .069789 .069426 -.059756 -.067639 
(3,25) .025640 .025576 -.007823 -.023140 .085074 .084377 -.077983 -.073861 
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Table A.7: Bias in R^imata: 9 predictors and high R2 condition 

Monotonic Missing Pattern Non-monotonic Missing Pattern 

N Percent Normality EM Mean Pairwise Regress. EM Mean Pairwise Regress. 
Missing (sk., kurt.) Imputation Substitution Deletion Imputation Imputation Substitution Deletion Imputation 

10 (0,0) -.017995 -.009956 .025089 -.013499 -.028137 -.010155 .022230 -.019576 
(1,3) -.011074 -.001459 .030886 -.005921 -.026974 -.003873 .026239 -.017799 

(1.8,6) -.001342 .009484 .039016 .004122 -.021177 .004594 .032855 -.012141 
(3,25) .026631 .043122 .065413 .032964 -.005060 .037215 .048783 .000882 

15 (0,0) -.051404 -.039536 .019039 -.043741 -.065173 -.038214 .015042 -.052603 
(1,3) -.044442 -.030618 .024243 -.036097 -.064187 -.031898 .018343 -.052256 

(1.8,6) -.034444 -.019071 .031202 -.025821 -.057584 -.022675 .023618 -.046445 
(3,25) -.009133 .012538 .053658 -.000012 -.046609 .004988 .033044 -.041798 

20 (0,0) -.081299 -.064520 .009862 -.072634 -.096991 -.062968 .005055 -.085631 
(1,3) -.074832 -.055274 .014020 -.065539 -.095711 -.056517 .007326 -.085894 

(1.8,6) -.065674 -.043592 .019326 -.056088 -.089486 -.047601 .010928 -.080946 
(3,25) -.041498 -.010947 .037520 -.032317 -.084568 -.025069 .011960 -.083590 

10 (0,0) -.036562 -.029355 .015445 -.031404 -.048530 -.029235 .013361 -.037181 
(1,3) -.032284 -.023989 .019739 -.026709 -.048734 -.025062 .016540 -.037021 

(1.8,6) -.026089 -.016858 .025384 -.020246 -.044695 -.019270 .021409 -.033354 
(3,25) -.003966 .009549 .046896 .003173 -.038882 .000362 .035683 -.030228 

15 (0,0) -.063702 -.053764 .011637 -.057242 -.077228 -.053296 .008996 -.065527 
(1,3) -.059797 -.048354 .015178 -.052861 -.077823 -.049514 .011582 -.066571 

(1.8,6) -.053840 -.041053 .019909 -.046613 -.073998 -.043663 .015786 -.063397 
(3,25) -.032704 -.014338 .037531 -.024599 -.071683 -.028357 .025573 -.065662 

20 (0,0) -.093607 -.081002 .006842 -.085963 -.108987 -.079821 .003031 -.096971 
(1,3) -.090231 -.075987 .009479 -.082191 -.109711 -.076410 .004875 -.099037 

(1.8,6) -.084793 -.069016 .013109 -.076503 -.106715 -.071468 .007742 -.097020 
(3,25) -.065806 -.043205 .026572 -.056964 -.108682 -.060447 .014062 -.104516 

10 (0,0) -.043399 -.037496 .009098 -.038952 -.056210 -.039073 .007455 -.045490 
(1,3) -.041188 -.034554 .011784 -.036420 -.058064 -.036977 .009473 -.046868 

(1.8,6) -.037866 -.030653 .015164 -.032911 -.056347 -.033968 .012447 -.045487 
(3,25) -.020277 -.010110 .031287 -.014378 -.057637 -.024000 .024606 -.049238 

15 (0,0) -.072425 -.063715 .006886 -.066362 -.086826 -.064416 .004503 -.075533 
(1,3) -.070719 -.061155 .009166 -.064405 -.089589 -.063159 .005985 -.078775 

(18,6) -.067832 -.057591 .012047 -.061379 -.088402 -.060668 .008435 -.078224 
(3,25) -.050912 -.036962 .026188 -.043600 -.094420 -.055867 .017096 -.088534 

20 (0,0) -.100549 -.089379 .004104 -.093538 -.115445 -.088847 .000707 -.104511 
(1,3) -.099016 -.086914 .005969 -.091833 -.118679 -.088481 .001677 -.109063 

(1.8,6) -.096217 -.083300 .008242 -.088963 -.118034 -.086515 .003559 -.109263 
(3,25) -.080272 -.062953 .020309 -.072286 -.127192 -.084163 .009566 -.122996 
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Table A.8: Bias in bi: 9 predictors and high R2 condition 

Monotonic Missing Pattern Non-monotonic Missing Pattern 

Percent Normality EM Mean Pairwise Regress. EM Mean Pairwise Regress. 
Missing (sk., kurt.) Imputation Substitution Deletion Imputation Imputation Substitution Deletion Imputation 

10 (0,0) -.011287 .001953 .001858 -.012416 -.057029 .026934 .026994 -.040914 
(1,3) -.007595 .005145 .004984 -.009720 -.065066 .031838 .031892 -.049455 

(1.8,6) -.004372 .007152 .006943 -.007985 -.065198 .034185 .034207 -.050841 
(3,25) .004262 .014062 .014011 -.003194 -.077835 .047597 .047385 -.074398 

15 (0,0) -.026645 .007626 .007540 -.014560 -.080429 .041427 .041620 -.051136 
(1,3) -.023158 .010240 .010120 -.012398 -.085836 .047062 .047222 -.061345 

(18,6) -.020280 .011878 .011760 -.011009 -.084729 .049653 .049714 -.062781 
(3,25) -.010855 .018699 .018673 -.006710 -.093152 .066573 .066442 -.088411 

20 (0,0) -.034395 .009464 .009587 -.020381 -.084472 .048176 .048583 -.063265 
(1,3) -.031407 .011364 .011453 -.018546 -.089198 .053214 .053615 -.072875 

(1.8,6) -.029057 .012553 .012714 -.017468 -.087593 .056135 .056588 -.073021 
(3,25) -.020205 .019898 .020006 -.013120 -.093497 .074165 .074469 -.094165 

10 (0,0) -.019732 .003859 .003686 -.009888 -.077828 .031150 .031165 -.041626 
(1,3) -.017092 .006027 .005900 -.008104 -.086020 .035997 .036049 -.052341 

(1.8,6) -.015059 .007503 .007415 -.006893 -.086306 .037559 .037587 -.054869 
(3,25) -.006938 .012914 .012878 -.002294 -.096188 .053765 .053806 -.080782 

15 (0,0) -.028588 .006187 .005901 -.013086 -.084891 .037233 .037215 -.052358 
(1,3) -.026289 .008288 .008040 -.011926 -.091186 .042616 .042658 -.062658 

(1-8,6) -.024436 .009665 .009457 -.011232 -.090582 .044540 .044591 -.064355 
(3,25) -.016528 .015051 .014888 -.007673 -.097244 .062523 .062738 -.087630 

20 (0,0) -.039642 .008587 .008156 -.016926 -.091750 .045712 .045734 -.060522 
(1,3) -.037745 .010272 .009892 -.016041 -.096106 .050882 .050965 -.070347 

(1.8,6) -.035971 .011498 .011195 -.015570 -.095059 .053045 .053113 -.071748 
(3,25) -.029493 .016256 .016091 -.013042 -.097851 .072051 .072274 -.091367 

10 (0,0) -.021870 .004424 .004406 -.008603 -.078951 .030216 .030201 -.039014 
(1,3) -.019896 .005821 .005806 -.007473 -.088048 .034897 .034864 -.050516 

(1.8,6) -.018535 .006777 .006772 -.006806 -.088706 .036440 .036395 -.053299 
(3,25) -.012584 .010609 .010603 -.003608 -.099820 .052223 .052186 -.079756 

15 (0,0) -.032584 .007716 .007656 -.012830 -.086684 .039610 .039605 -.051024 
(1,3) -.030834 .009050 .008999 -.011945 -.092939 .044699 .044642 -.062034 

(1.8,6) -.029581 .009929 .009902 -.011423 -.092888 .046124 .046108 -.064270 
(3,25) -.024657 .013471 .013453 -.009254 -.099939 .062823 .062794 -.088026 

20 (0,0) -.041984 .009583 .009470 -.017201 -.091298 .045849 .045860 -.059978 
(1,3) -.040564 .010794 .010703 -.016522 -.095787 .050734 .050730 -.070199 

(18,6) -.039316 .011600 .011551 -.016131 -.095224 .052342 .052321 -.071788 
(3, 25) -.035205 .015281 .015263 -.014199 -.020604 .023871 .023883 -.021451 
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APPENDIX B 
GRAPHS FOR BIAS IN PARAMETER ESTIMATES 
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Figure B. 1: Bias in R 2

e s t imate under four predictors and low R 2 condition 
Note: SZ = Sample size, P M = Percent missing. Values in parentheses under Normality Level 

represent skew and kurtosis, respectively. 



180 

M O N O T O N I C 
P A T T E R N 

S Z : 94 P M : 10 P T : A 

3 -.01 

(0.0) (1,3) (1,8,6) (3,25) 

Norma] ity Level 

N O N - M O N O T O N I C 
P A T T E R N 

S Z : 94 P M : 10 P T : B 

(0,0) (1,3) (1.8,6) (3,25) 

Normality Level 

S Z : 94 P M : 15 P T : A S Z : 94 P M : 15 P T : B 

(0,0) (1,3) (1.8,6) 

Normal ity Level 

(3,25) (0,0) (1,3) (1.8,6) (3,25) 

Normal ity Level 

S Z : 94 P M : 2 0 P T : A 

(0.0) 

L E G E N D : 

(1.3) (1.8,6) 

Normality Level 

(3,25) 

E M MS 

S Z : 94 P M : 2 0 P T : B 

PW 

(0.0) 0,3) (1.8,6) 

Normality Level 

RS 

(3,25) 

Figure B.2: Bias in bi under four predictors and low R 2 condition 
Note: SZ = Sample size, P M = Percent missing, A = monotonic pattern, B = Non-monotonic 

pattern. Values in parentheses under Normality Level represent skew and kurtosis, 
respectively. 
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Figure B.3: Bias in Romaic under four predictors and low R 2 condition 

Note: SZ = Sample size, P M = Percent missing. Values in parentheses under Normality Level 
represent skew and kurtosis, respectively. 



182 

M O N O T O N I C 
P A T T E R N 

S Z : 94 P M : 10 P T : A 

(0.0) (1,3) (1.8,6) 

Normal ity Level 

(3,25) 

N O N - M O N O T O N I C 
P A T T E R N 

S Z : 94 P M : 10 P T : B 

(0,0) (1,3) (1.8,6) 

Normali ty Level 

S Z : 94 P M : 15 P T : A S Z : 94 P M : 15 P T : B 

(«,") (1.3) (1.8,6) (3,25) 

Normali ty Level 

S Z : 94 P M : 2 0 P T : A 

(0,0) (1,3) (1.8,6) (3,25) 

Normality Level 

L E G E N D : 
E M 1̂ MS 

(0,0) (1,3) (1.3,6) (3,25) 

Normali ty Level 

S Z : 94 P M : 2 0 P T : B 

(0.0) (1,3) (1.8,6) 

Normali ty Level 

PW RS 

Figure B.4: Bias in bi under four predictors and high R 2 condition 

Note: SZ = Sample size, P M = Percent missing. Values in parentheses under Normality Level 
represent skew and kurtosis, respectively. 
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Figure B.5: Bias in R2

estimate under nine predictors and low R 2 condition 

Note: SZ = Sample size, P M = Percent missing. Values in parentheses under Normality Level 
represent skew and kurtosis, respectively. 
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Figure B.6: Bias in b) under nine predictors and low R 2 condition 

Note: SZ = Sample size, PM = Percent missing. Values in parentheses under Normality Level 
represent skew and kurtosis, respectively. 
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Figure B.7: Bias in R 2

e s t imate under nine predictors and high R 2 condition 

Note: SZ = Sample size, P M = Percent missing. Values in parentheses under Normality Level 
represent skew and kurtosis, respectively. 
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