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A b s t r a c t 

The primary purpose of this study is to compare the six models (cross-

sectional, two-wave, and multiwave, with and without controls) and determine which 

of the models most appropriately estimates school effects. For a fair and adequate 

evaluation of school effects, this study considers the following requirements of an 

appropriate analytical model. 

First, a model should have controls for students' background characteristics. 

Without controlling for the initial differences of students, one may not analyze the 

between-school differences appropriately, as students are not randomly assigned to 

schools. 

Second, a model should explicitly address individual change and growth 

rather than status, because students' learning and growth is the primary goal of 

schooling. In other words, studies should be longitudinal rather than cross-

sectional. Most researches, however, have employed cross-sectional models because 

empirical methods of measuring change have been considered inappropriate and 

invalid. This study argues that the discussions about measuring change have been 

unjustifiably restricted to the two-wave model. It supports the idea of a more recent 

longitudinal approach to the measurement of change. That is, one can estimate the 

individual growth more accurately using multiwave data. 

Third, a model should accommodate the hierarchical characteristics of school 

data because schooling is a multilevel process. This study employs an Hierarchical 

i i 
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Linear Model (HLM) as a basic methodological tool to analyze the data. 

The subjects of the study were 648 elementary students in 26 schools. The 

scores on three subtests of Canadian Tests of Basic Skills (CTBS) were collected for 

this grade cohort across three years (grades 5, 6 and 7). The between-school 

differences were analyzed using the six models previously mentioned. Students' 

general cognitive ability (CCAT) and gender were employed as the controls for 

background characteristics. 

Schools differed significantly in their average levels of academic achievement 

at grade 7 across the three subtests of CTBS. Schools also differed significantly in 

their average rates of growth in mathematics and reading between grades 5 and 7. 

One interesting finding was that the bias of the unadjusted model against adjusted 

model for the multiwave design was not as large as that for the cross-sectional 

design. Because the multiwave model deals with student growth explicitly and 

growth can be reliably estimated for some subject areas, even without controls for 

student intake, this study concluded that the multiwave models are a better design 

to estimate school effects. This study also discusses some practical implications and 

makes suggestions for further studies of school effects. 
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1. Introduction 

1.1. Background of the Problem 

The evaluation of the effectiveness of school systems has received 

considerable attention by educators, policy makers and the public (Murnane, 1987). 

The public continues to demand educational accountability. They want to know 

whether they are receiving a good return for the money they invest in education, 

and they call for improved accountability procedures. To meet these demands, 

educators and policy makers are interested in monitoring student achievement and 

identifying 'effective' schools—those that enhance student achievement more than 

other schools. They have systematically collected 'performance indicators' of school 

effects while examining the following important questions: Which characteristics of 

teachers and schools are associated with student achievement? To what extent? 

How can limited resources be allocated most effectively? 

Many researchers have examined the relative efficiency of various school 

policies and management practices on student learning over time. They have asked 

whether educators should concentrate on certain types of policies or should finance 

others. Data on performance indicators have been used for evaluation and policy 

decisions at different levels of the educational system and recently have been used 

in school award programs in California, Florida, and South Carolina (Mandeville & 

Anderson, 1987). 

Attempts to identify 'effective schools' have created many controversies over 

1 
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the kind of data to be collected, the appropriate methodology and the interpretation 

of results. Data on performance indicators should be carefully collected and 

interpreted for comparing schools. Some school districts and provincial evaluation 

programs make only simple comparisons of schools' mean scores on some 

standardized tests. Even though this is the easiest way to compare schools, it is not 

a fair and adequate evaluation. Through formal and informal selection procedures, 

schools differ in their student composition. School settings could be considered 

'treatments' in a quasi-experimental design. Because random assignment to schools 

is not possible, every possible variation among schools associated with student 

background should be controlled to reject other plausible rival hypotheses regarding 

between-school differences. Otherwise, the school (treatment) effect can be 

confounded with other unspecified factors (Campbell & Stanley, 1966). Without 

considering the differences in the characteristics of students when they enter school, 

such as their general cognitive ability, prior achievement, and family background, 

it does not make sense to identify schools that are exceptional in their performance. 

A comparison of school means will falsely suggest that schools with more 

advantaged students do better than those with less advantaged students. 

Moreover, unless all the variables associated with student background are 

controlled, estimates of school effects will be biased. Students' family background 

variables alone do not appear to be sufficient for controlling initial differences 

(Willms, 1985). A premeasure, parallel to the outcome measure of interest, is known 

to be by far the most important control variable to adjust for student background 
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(Alexander & Pallas, 1983). Therefore, many researchers have tended to move away 

from cross-sectional designs toward longitudinal designs (Willms, 1985; Gray, 1988). 

However, true longitudinal designs—designs measuring individual change 

over time—have not been widely used until recently. Researchers who collected 

data at two or more points in time analyzed them as if they were separate 

cross-sectional studies. Many authors persuaded empirical researchers not to use 

the difference score, which is the natural way of measuring change, and to reframe 

the questions about change into the questions about status. (Harris, 1963; Cronbach 

& Furby, 1970; Linn & Slinde, 1977). More recently, however, a few researchers 

have argued that the previous discussions about the difference score caused a lot of 

misunderstandings about the measurement of change. They emphasize the 

advantages of multiwave longitudinal models over traditional cross-sectional models 

(Rogosa, Brandt, & Zimowski, 1982; Rogosa & Willet, 1983; Willet, 1988). 

The development of appropriate analytical models of school effects is 

necessary for fair and adequate evaluation of school practices, and for effective 

decisions about school policies. Such a model should be able to take account of all 

the relevant factors that affect student achievement. It should provide also more 

valid estimates of school effects to compare schools. This may be one of the reasons 

that researchers on teacher and school effectiveness have produced inconsistent 

findings until now. There have been discrepancies between the models they have 

used and the inferences they have drawn from the models. 
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1.2. Definition of Terms 

The following terms, wi th their accompanying definition, w i l l be used 

throughout this study. 

Cross-sectional design: A research design which employs data collected at a 

single point i n time. 

Longitudinal design (Growth design): A research design which employs data 

collected at more than one time point. This design includes both two-wave and 

multiwave designs. 

Two-wave design: A research design based on measures at two time points, 

such as a Pretest-Posttest Design (Campbell & Stanley, 1966, p.13), or a posttest 

design wi th prior measures of ability or academic achievement. 

Multiwave design: A research design based on measures at more than two 

time points, such as a time series design in which same individuals are assessed on 

three or more occasions. 

Difference score: Simple gain score between two time points. 

Rate of growth: The average increase in students' scores over a fixed period. 

1.3. Identification of the Problem 

The question whether schooling has significant effects on student outcomes 

has attracted researchers for at least three decades. They have tried to assess 

causal relationships between school characteristics and student achievement using 
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various models. The review by Bridge, Judd, & Moock (1979) summarizes the works 

done during the late sixties and seventies. Recently, several review articles have 

noted the conceptual and methodological problems which hampered the earlier 

studies of school effects. There have been two major methodological problems: the 

problem of measuring change (Bryk, 1980; Rogosa & Willet, 1983; Willet, 1988), and 

the problem of analyzing multilevel data (Burstein, 1980; A i t k i n & Longford, 1986; 

Goldstein, 1987; Raudenbush & Bryk, 1988). There is no doubt that student 

learning and growth is of central interest to educational researchers and that such 

growth occurs i n hierarchical settings. 

U n t i l now, measuring 'change' has not received the attention it deserves. 

Many influential authors condemned the difference score as unreliable or invalid. 

Cronbach & Furby (1970) suggested that questions of learning should be framed as 

questions of 'status' rather than questions of 'growth'. Rogosa and Willet (1983), 

among others, recently argued that this was simply an inappropriate 

conceptualization of 'change': it had been conceptualized as an 'increment' in the 

time period between premeasure and postmeasure rather than as a process of 

continuous development over time (Willet, 1988, p. 347). This misconceptualization 

suggested that measuring change was limited exclusively to two-wave designs. But 

recent longitudinal approaches describe 'change' as continuous growth based on 

more than two time points. By collecting additional waves of data, individual 

growth can be measured more appropriately and accurately (Willet, 1988; Bryk & 

Raudenbush, 1988). 
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The purpose of the present study is to compare various models for assessing 

school effects, and to demonstrate the benefits of modelling growth rather than 

status. The analyses provide estimates of school effects based on three research 

designs: cross-sectional, two-wave, and multiwave. W i t h each design, I compare a 

model that includes no adjustment for students' gender and ability wi th one that 

includes control for students' gender and prior ability. The study is restricted to the 

comparisons of academic performance and does not address broader questions about 

school effectiveness. The study has implications for those collecting indicators of 

school performance at school, school district, or provincial levels, because it 

examines how performance data should be collected and interpreted for a fair 

evaluation of school effects. 

1.4. Research Questions 

This study assesses differences among schools using the six models listed 

below: 

Ia. Cross-sectional model of grade 7 status without control for students' gender and 

prior ability. 

Ib. Cross-sectional model of grade 7 status wi th control for students' gender and 

prior ability. 

Ha. Longitudinal model of growth based on measures at two points in time, without 

control for students' gender and prior ability. 
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lib. Longitudinal model of growth based on measures at two points in time, with 

control for students' gender and prior ability. 

Ilia. Longitudinal model of growth based on measures at three points in time, 

without controls for students' gender and prior ability. 

Illb. Longitudinal model of growth based on measures at three points in time, with 

controls for students' gender and ability. 

In comparing these models, four research questions were addressed. 

1. Are there significant differences among schools in their average levels of 

academic achievement at the end of grade 7, after controlling for students' gender 

and prior ability? (Model Ia & Model lb) 

2. Are there significant differences among schools in their students' average 

rates of growth in academic achievement between grades 5 and 7, after controlling 

for students' gender and prior ability? (Model Ilia & Model Illb) 

3. To what extent do estimates of average rates of growth (adjusted for 

gender and prior ability) based on a two-wave model differ from those based on a 

multiwave model? (Models Ila, lib & Models Ilia, Illb) 

4. To what extent are estimates of average levels of achievement or average 

rates of growth biased if there is no adjustment for students' gender or prior ability? 

The second chapter reviews the major literature related to two basic problems 

in most educational studies and discusses the procedures developed to resolve these 

problems. The Hierarchical Linear Model (HLM) that was employed as a key 
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methodological tool of this study is also reviewed. Chapter 3 outlines the sample, 

the data collected, and the models used in the present study. The fourth and fifth 

chapters present the results and conclusions from the investigation. 



2. Review of Literature 

This chapter outlines two questions relevant to the current research 

questions: Why and how should we measure change? How can we analyze multilevel 

data that describe many educational processes? These are not separate issues. As 

Burstein (1980) claimed, the specification of appropriate analytical models can be 

the answer for both questions. Among several statistical models that have been 

developed to address these problems, this study reviews the Hierarchical Linear 

Model (HLM) in detail (Bryk & Raudenbush, 1988; Raudenbush & Bryk, 1986, 

1988). The HLM has been used in a variety of educational studies, such as studies 

of school effectiveness (Raudenbush & Bryk, 1986; Willms & Raudenbush, 1989), 

and studies of individual growth trajectory or measurement of change (Bryk & 

Raudenbush, 1987, 1988; Willms & Jacobsen, 1990). This chapter also examines 

various applications of the HLM. 

2.1 Measurement of Change 

Research studies attempting to compare schools in terms of their performance 

indicators must address an important question: Should we use a 'snapshot' of 

achievement as an indicator of school quality? Or should we use the rate of growth 

as an indicator of school quality? The review comprises three categories of design: 

cross-sectional, two-wave, and multiwave designs. 

9 
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Cross-Sectional Designs 

In earlier studies, researchers tried to assess schooling effects at a single 

point in time with a cross-sectional design. They tried to explain the relationships 

between certain schooling inputs and student outcomes measured at one time point, 

after controlling for students' background characteristics. A major concern about 

the cross-sectional design was related to the problem of 'selection bias'. Unless all 

of the relevant variables were controlled, the estimates of school effects would be 

biased. This was one of the major criticisms about the historical report by Coleman, 

Hoffer, and Kilgore (1981). They analyzed data from the first wave of the High 

School and Beyond (HSB) study and attempted to estimate differences between 

public and private schools in their average performance level. They controlled for 

differences between the two sectors in their background characteristics using 

student-level variables such as family income, parental education, race, ethnicity, 

and family structure. But the study was limited in that the most important control 

variable, a measure of prior achievement or aptitude before high school was not 

available in the 1980 data. The accuracy of their estimates depended on their 

statistical model to control for selection bias. Many critics attempted to address this 

problem (Alexander & Pallas, 1983; Willms, 1985). Therefore, when the 1982 data 

became available, subsequent analyses of the data were able to estimate the sector 

effects more accurately using a longitudinal design—see Haertel, James & Levin 

(1987) for a detailed review. 

In addition, longitudinal designs have a conceptual advantage over 
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cross-sectional designs, because they deal with individual 'growth' rather than 

'status'. A cross-sectional design can at best represent the prevailing 'status' 

measured at one time, whereas the fundamental questions of educational research 

ought to be concerned with individual learning that implies change and growth 

(Willet, 1988, p.346). 

Two-Wave Designs 

The most frequently used longitudinal design has been a two-wave design, a 

traditional Pretest-Posttest design (Cook & Campbell, 1979). The typical pretest-

posttest design consists of an assessment of individual performance using the same 

measure before and after treatment. If subjects are not randomly assigned to 

groups, we need to adjust for preexisting differences among groups to assess the 

valid treatment effect. There are several ways of adjusting for pre-treatment group 

differences—see Anderson, Auquier, Hauck, Oakes, Vandaele, & Weisberg (1980) for 

a detailed review. Analysis of covariance (ANCOVA) and the use of difference 

scores or gain scores are two of the most popular methods of analyzing pre- and 

postmeasure data. We compute the mean gains across groups and then the 

treatment effect is nothing but the difference in these mean gains among treatment 

groups. 

Nevertheless, the statistical properties of the difference score have become the 

focus of criticism in theories of measurement. Many authors condemned the 

difference score as an unfair measure of individual growth because of its low 
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reliability, and the fact that it is negatively correlated with initial status (Bereiter, 

1963; Linn & Slinde, 1977; Cronbach & Furby, 1970). 

First, they argued that the difference score cannot be both reliable and valid 

simultaneously. Based on the classical test score model, they argued that the 

difference score cannot be interpreted as a valid estimate of individual growth unless 

the premeasure and postmeasure were highly correlated. They also argued that this 

requirement for construct validity makes the difference score intrinsically unreliable 

according to the following expression of reliability: 

P d = 2 2 
°x1

 + ax2 ~ 2axl

ax2PxlPx2 

Second, in addition to low reliability~many empirical findings have shown 

that the correlation between the difference score and the pretest ( r x l D ) is typically 

negative. Based on this, Linn and Slinde (1977) argued that the difference score is 

inappropriate to measure individual change, because it gives "an advantage to 

persons with certain values of the pretest scores" (p.125). Concerned with the 

negative bias of sample correlation, some authors recommended the use of the 

residual change score which is uncorrelated with initial status (Cronbach & Furby, 

1970). But it is hardly interpretable in many cases and does not provide much 

different estimates of individual growth from those based on the simple difference 

score. 

Those purported problems of the difference score are basically due to 
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measurement error and not the problems of the difference score per se. The 

negative bias of r x l D is caused by measurement error in the estimation of 

correlations. The sample correlation r x i r ) is not a good estimate of the correlation 

between true change and true initial status psl^. The only correlation of any real 

interest is the population correlation between true change and true initial status 

(Rogosa, Brandt & Zimowski, 1982). This correlation can be estimated if we can 

separate the true parameter variance from the observed variance. Low reliability 

of the difference score is also related to measurement error. The important ideas 

are that reliability is a ratio of true variance to observed variance, and that the 

difference scores are notoriously unreliable because the observed variance is 

exceedingly large due to the fact that it includes the variance due to measurement 

error from both occasions. 

The true variance, however, includes the variance due to systematic 

differences among individuals. The classical test score framework overlooks the 

possibility of variation in the rates of growth among individuals: some might grow 

faster or slower than others. Individuals may change at different rates during 

different time periods. When true differences in the rates of growth exist, the true 

variance becomes larger, and the ratio of true variance to observed variance 

(reliability) can be high, even higher than the reliability of the scores themselves. 

In other words, the difference score is not intrinsically unreliable if there are 

substantial differences among individuals in their rates of growth. 

Even when the estimated reliability is low, the difference score can be an 
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accurate and useful measure of change, because "low reliability does not necessarily 

imply lack of precision" (Rogosa et al., 1982, p.731). If individuals grow at the same 

rate, the reliability of the difference score will be low no matter how precisely the 

difference score is measured. That is, low reliability comes from systematic 

variations among individuals as well as measurement error. Rogosa and Willet 

(1983) have successfully demonstrated the statistical properties of the difference 

score under different circumstances, and showed that the difference score is an 

unbiased estimate of individual growth. 

Multiwave Designs 

The difference score between two data points might be unreliable due to large 

measurement error and the lack of variation among individual growth. However, 

the precision of the difference score can be improved with data collected at more 

than two time points. The precision of the parameter estimates increases as the 

number of data points increases. Moreover, two-wave data require external 

information about precision, whereas precision can be estimated with multiwave 

data. In addition, the two-wave design does not give enough information about 

individual growth. The model fails to unambiguously provide evidence about the 

shape of individual growth: whether it is linear or nonlinear over time. With only 

two waves of data, growth is assumed to be linear. Even if the constant rate of 

growth model (linear model) appears to be appropriate locally—quite likely in most 

cases, it is still interesting to see whether the rate of growth might be nonlinear in 
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the long run. 

Hence, Willet (1988) suggested the collection of additional waves of data 

instead of trying to fix up the flaws of two-wave designs with other fallible 

statistical controls. With multiwave data, a researcher can more confidently specify 

an appropriate statistical model for assessing individual growth. 

The alteration from a question of 'status' to a question of 'change', and the 

extension of a simple two-wave longitudinal design to a multiwave design, appear 

to be quite logical. But unfortunately, multiwave data have been used rarely in the 

literature of measuring change. Researchers have disregarded the advantages of 

multiwave data: if the simple difference score is intrinsically unreliable, why should 

one bother to collect additional data anyway? But such arguments are no longer 

reasonable when the difference score can be both reliable and valid, and the 

multiwave design can improve the precision of growth parameters of the two-wave 

design. 

2.2 Analysis of Multilevel Data 

Another troublesome and long-standingmethodological concern in educational 

research has been related to the problem of analyzing multilevel data. Schooling is 

a multilevel process. Students receive schooling in classrooms, classrooms are 

nested within schools, and schools are nested within school districts. Educational 

decisions are made at different levels of this hierarchy (Barr & Dreeben, 1983). But 
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traditional models in educational research have employed single-level analyses. By 

ignoring the obvious multilevel structure, these single-level models did not match 

with the nested multilevel educational processes (Haney, 1977). Thus, Burstein 

(1980) called for the development of an appropriate statistical model that could 

specify the processes occurring within each level of an hierarchy. Such models 

should specify how schooling inputs measured at different levels of aggregation 

influence student outcomes. 

Burstein (1980) summarized the following four methodological difficulties of 

analyzing nested data: 

"(1) cross-level inference or aggregation bias, 

(2) choice of the appropriate unit of analysis, 

(3) contextual analysis, and 

(4) specification of appropriate analytical models for multilevel data." (p. 161) 

Aggregation Bias 

Issues of 'cross-level inference' arise when researchers make inferences about 

individual behavior from analyses based on school-level data. The aggregate 

analyses have been common in educational research because disaggregated data are 

usually difficult to obtain and complex to analyze. However, aggregate analyses are 

likely to provide biased estimates of student-level effects. If the purpose of the 

study is to evaluate the educational effects on individual student's performance, it 

would not be appropriate to use aggregate data because the level of aggregation 
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should match the level at which one wishes to make inferences (Haney, 1977). 

Choosing the Appropriate Unit of Analysis 

Concerns about 'aggregation bias' have been closely related with the issue of 

'choosing the appropriate unit of analysis.' Researchers first noticed the problem 

of ignoring 'classroom' factors and choosing 'student' as a unit of analysis. If 

'treatment' is implemented in a classroom setting, ignoring the classroom factor 

(grouping factor) may violate the assumption of independent response required for 

performing analysis of variance. Such violation will lead to liberal tests of 

significance and increase the probability of Type I error (Aitkin, Anderson & Hinde, 

1981). To avoid this problem, some researchers (for example, Wiley, 1970; Glass & 

Stanley, 1970) suggested that the appropriate unit of analysis is the class where 

instruction is received simultaneously by all students. On the other hand, the 

researchers who supported the choice of students as the unit of analysis, asserted 

that student reaction is individual and thus the focus of the evaluation should be on 

individual student—see Wittrock & Wiley (1970) for a detailed discussion. Some 

researchers chose to analyze their data in both ways, that is, at both the student 

and classroom level. But this strategy provided no guidance on how to proceed if 

the results diverged, as occurred in the evaluation of Project Follow Through 

(Haney, 1977). 

Burstein (1980), among others, argued that the 'choice of unit' is not the 

right question. Because relationships between variables at one level influence 
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relationships at other levels, choosing a single correct unit is simply a digression. 

The emphasis should be on choosing an appropriate analytical model which allows 

the estimation of random variation at both levels rather than choosing a specific 

unit of analysis (Burstein, 1980, p.196). 

Contextual Effect 

Another consideration for examining school effects is the 'contextual effect' 

of group membership. The 'contextual effect' is "the effect that a group's aggregate 

characteristics have on outcomes, over and above the effects due to the individual-

level characteristics." (Raudenbush & Willms, 1988) 

For example, the school mean of ability has been used to represent the ability 

context of the school. A contextual effect for ability occurs when school mean ability 

is related to individual outcomes after controlling for the effect of individual ability 

and other relevant individual-level factors. Individual ability affects performance. 

Moreover, school mean ability may affect instructional practices by causing schools 

to adjust their instruction to the level of the students' ability. As a result, 

individual students wi th in the school can be expected to learn more or less than 

they would have in other schools. In school effects research, the contextual effect 

is viewed as independent of one's own ability whereas the so-called 'frog-pond' effect 

represents the interaction effect between school mean ability and individual ability. 

They are not easily separated. Furthermore, the contextual effect includes the 

influence of wider social, economic and political factors of community that are 
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usually intractable, such as community support for education, local resources, and 

residential segregation (Dyer, 1970; Willms & Raudenbush, 1989). That is, the 

contextual effect includes all the effects that are not directly manipulable by school 

after controlling for students' background characteristics. 

Therefore, they are somewhat difficult to estimate. Research, however, has 

shown that it is important to examine school effects with and without controls for 

contextual effects, that is, Type A and Type B effects (Raudenbush & Willms, 1988). 

And the contextual effects that are not easily manipulable by school should be 

distinguished from substantive school policies and practices when the purpose is to 

hold teachers and principals accountable. They are not responsible for the factors 

which lie beyond their control. With an appropriate model, we should be able to 

specify all the relevant group-level variables which affect individual outcomes. 

Specification of Appropriate Analytical Model for Multilevel Data 

All the above problems call for one solution: the specification of an 

appropriate analytical multilevel model (Raudenbush & Bryk, 1988). An appropriate 

statistical model should identify and sort out the effects attributable to the different 

levels within the educational system. If we can specify such a model, all the other 

problems which threaten the valid inferences of multilevel data can be resolved. 

Several analytical models have been developed (Dyer, 1970; Dyer, Linn, & Patton, 

1969; Marco 1974; Aitkin & Longford, 1986; Goldstein, 1986; Raudenbush & Bryk, 

1986). Among them, this review now turns to the recently developed hierarchical 
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linear model. 

2.3. Hierarchical Linear Model 

Since the publication of Burstein's (1980) review, several groups of 

researchers have developed statistical models which can resolve the problems 

associated with multilevel data. These models have been called variance component 

models (Aitkin & Longford, 1986), mixed linear models (Goldstein, 1986), and 

hierarchical linear models (Raudenbush & Bryk, 1986,1987). Despite the differences 

in algebraic operations, the above methods share common properties. First, they 

provide explicit structural models for nested processes occurring within each level. 

These models explicitly specify how the explanatory variables at a higher level of 

aggregation influence outcomes at a lower level. Second, these methods allow 

researchers to specify and test the random effects of each unit. That is, a researcher 

can test whether the slopes of the control variables are homogeneous across schools. 

Whether the extent of random effects are statistically significant, the variation 

among subgroups and among schools is of interest. Among these methods this study 

will adopt the term, 'hierarchical linear model' developed by Raudenbush and Bryk, 

which will be labelled HLM for convenience. 

This review first describes the applications of the HLM for the studies of 

school effectiveness and individual growth. Then, it describes a three-level HLM, 

which is a promising approach to the combined problem of school effectiveness on 

individual growth. 
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Application of the HLM for Studies of School Effectiveness (Multilevel 

Data) 

The general framework for analyzing school effects is multiple regression, 

with schooling outcome regressed on variables describing student intake and school 

characteristics. Although many researchers have noticed mismatches between the 

single-level linear models and the multilevel educational processes, such traditional 

linear models have been widely used because there have been no viable alternatives. 

One of the promising approach to resolve these problems was the 

'slopes-as-outcomes' model (Burstein, Miller & Linn, 1979). This approach allows 

researchers to explore the effects of schooling inputs on the structural relationships 

within schools (slopes) as well as to examine the effects of schooling inputs on 

average performance (intercepts). In spite of these advantages, this method has not 

been widely used because of a number of technical difficulties: precision of the 

estimated slopes (unreliability of slopes), distinction between parameter and 

sampling variance, and multiple slopes as outcomes (Raudenbush & Bryk, 1986). 

Recent advances in statistical theory, such as EM (Estimation and Maximization) 

algorithm or Bayesian estimation, have contributed to overcome some of these 

difficulties. As a 'slopes-as-outcomes' model, the HLM utilizes both intercept and 

slope coefficients as outcome variables at the next stage. It provides a powerful tool 

that permits a separation of within-school variation from between-school variation, 

and therefore allows the researcher to distinguish parameter variance from observed 

variance. 
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A two-level H L M for analyzing school effects can be specified with two sets 

of equations. The first set comprises within-school equations which describe the 

relationships between an outcome measure and students' background variables, such 

as socioeconomic status, home environment, previous achievement, and level of 

general ability. The second set comprises between-school equations which describe 

the relationships between the regression coefficients from the first set (i.e., 

intercept and slopes) and various school-level variables, including school policy and 

context variables. 

Following the notation of Willms and Raudenbush (1989), the within-school 

regression model can be written as; 

Yy = £ j 0 + /SjiXiji + - + ̂ jiAjk + H (D 

where is the outcome score for student i (i=l,...,np in school j (j = l,...,J). There 

are k independent variables, X^ k , which describe students' background 

characteristics. The /3jk's are within-school regression coefficients and the are 

student-level residuals. If the background variables are centered around their 

means for the entire sample, the estimates of the intercept, /3j0, are the background-

adjusted school means. They describe how well a student with sample-average 

background characteristics can be expected to score in each school. The estimates 

of slopes, (3^, /3j2, j3jk describe the effect of each background variable on the 

outcome score. When Y^'s and X^'s are standardized, the coefficients are equivalent 

to the partial correlations between the outcome and the background variables. 
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At the second stage, researchers are interested in whether these estimates of 

intercepts (JSj0) and slopes (jSjl,...,)8jk) are a function of particular school policies and 

practices. The second-level equation can be described as: 

0jk = e o k + + + u j k (2) 

where the /3jk are the regression coefficients from the within-school equations. Each 

j8jk is regressed on school policy variables, Pj, and on school context variables, Cj. 

The between-school regression slopes, 0 l k and 0 2 k , capture the effects of school-level 

variables on the within-school structural relationships (/3jk). The between-school 

residuals, Ujk, denote the unique contribution of each school that is not explained 

by school-level variables in the model. When we do not specify the school-level 

variables in the model, Uj k represent overall school differences. The variation of 

these residuals is particularly interesting because it represents the extent to which 

schools vary in their background-adjusted achievement. 

Equations (1) and (2) can be combined into a single equation. Only two 

student-level variables and two school-level variables were considered here. 

Yg = 6 0 0 (grand mean) 

+ BoiXyx + 0o2^ij2 (controls for student background) 

+ 0IQPJ + ®2(Pi (effects of school-level variables) 

+ e-uPjXy! + e^PjXija + 621CjXijl + esgCjXjjg (interaction effects) 

+ U^X^ + Uj2^ij2 + UJO (school-level residuals) 

+ (student-level residuals) (3) 
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If the student background variables and school characteristic variables are 

centered around their means for the entire sample, the intercept coefficient, 80o 

represents the grand mean of the entire sample. The slope coefficients, 601 and 802 

denote the effects of student background variables, and 0 1 O and Q2Q denote the 

effects of school-level variables. The statistical test for the homogeneity of 

regression slopes among groups asks whether the variation of /30j, or /32j is 

statistically significant. In other words, researchers can test whether the effects of 

student-level variables differ across schools and i f so, whether the variation is 

associated wi th particular school-level variables. They might conclude that certain 

school policies are effective for some schools but not for the others. Moreover, the 

above equation permits researchers to test whether school-level variables have the 

same effect oh student outcomes across the subgroups wi th different background 

characteristics. euPjX^, 8i2PjXij2> 02i9i^iji' a n c* ®229r̂ ij2 represent the effects of 

the interactions between school-level variables and student background variables 

(e.g., aptitude-treatment interaction). Researchers might conclude that certain 

school policies are more effective for some students than others within a school. 

The equation also distinguishes the school-level residuals (U^X^, L^X^, Uj0) from 

the student-level residuals (e^). 

In equation (3), the distinction between policy variables and context variables 

was made i n the sense that the first are endogenous to school systems but the latter 

are exogenous. Based on the interests of different groups, the emphasis can be 

either on the particular effects of school policy or on the overall effects of schooling 
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including both contextual and policy effects (Raudenbush & Willms, 1988). 

However, researchers often do not have measures of school policies and 

practices (Pj), or data describing contextual factors (Cj). In this case, equation (3) 

simplifies to become: 

Yy = 6 0 0 (grand mean) 

+ Boi-X^ + 602X̂ 2 (controls for student background) 

+ UjiXy! + UjgXp + U j 0 (school effects) 

+ £jj (student-level residuals) (4) 

Then the school-level residuals represent overall school effects (Type A 

effects). 

Application of the HLM for Measuring Change . 

An hierarchical linear model can be used for the measurement of change. In 

a longitudinal HLM, time is 'nested' within each subject analogous to subjects 

nested within school. Therefore, the first level of the HLM (within-subject) 

represents the initial status and individual growth rate for each subject. In the 

second level (between-subject), the growth parameters of each subject become 

outcome variables and are explained by subject-level background characteristics. 

The within-subject equation can be described with a set of regressions that 

model outcome scores on time: 
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Yit = Wio + Wiiajt + U i t (5) 

where Yit is the outcome score for student i at time t (t=0,l,2,..), and is the age 

of student i at time t. If is centered for the first occasion, then iri0 describes the 

initial status of the student i and TT^ denotes the rate of growth of student i. The 

residual, uit, includes both sampling and measurement error, which is the chief 

advantage of HLM in growth measure applications. An important feature of 

equation (5) is the assumption that the growth parameters vary among individuals. 

The between-subject equation can be formulated to represent this variation. 

In this equation, the individual growth parameters are a function of students' 

background variables. The between-subject equation include two sets of equations. 

One equation examines the relationships between initial status (-7ri0) and students' 

background variables: the other examines the relationships between rate of growth 

(TTJ-]) and students' background variables. 

^io = Poo + Po-Pii + /302xi2 + ei0 (initial status) (6a) 

^ i i = Pio + ^nXii + /3i2Xi2 + e i i <>ate o f growth) (6b) 

The HLM estimates how reliably these growth parameters are measured. By 

separating within-subject variance from between-subject variance, it allows 

researchers to partition the observed variance in the estimated regression 

coefficients into two components: sampling variance and parameter variance. 

Reliability is the ratio of the true parameter variance to the observed variance, 

analogous to that of classical test score theory. If most of the variability in growth 
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trajectory were due to sampling error, it is almost impossible to find any systematic 

relationships between these estimates and the background variables at the second 

stage. Then one can not detect the significant relations, even if they exist, because 

the data do not provide enough power. In that case, the percentage of total variance 

explained may be very small even when the between-subject model is accounting for 

most of the explainable variance, that is, the parameter variance. 

Along with the reliability, the HLM utilizes the empirical Bayes methods for 

estimating the parameters of interest. The empirical Bayes methods correct the 

ordinary least square (OLS) growth parameters (slopes) according to their 

reliabilities. If those slopes are not very reliable, the empirical Bayes estimates are 

based primarily on the estimated mean slope for the sample. Therefore, outliers 

resulting from a large sampling error in the OLS slopes are controlled. Empirical 

Bayes method shrinks these outliers in toward the overall sample mean. As a 

result, the HLM enables a more accurate measurement of slopes than does OLS. 

A Three-level Hierarchical Linear Model 

Applications of the HLM for multilevel data and for measuring change can 

be combined to provide a promising resolution of these two methodological problems 

(Raudenbush & Bryk, 1988). For a cross-sectional design of school effects, a 

two-level hierarchical linear model provides a useful tool for conceptualization of the 

multilevel character of schooling processes. But the cross-sectional design 

represents the effects of schooling on students' status, which is one instance of 
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accumulated growth over time. Conceptually, the model which estimates schooling 

effects on students' growth seems more appropriate than the model which estimates 

schooling effects on students' status. However, the problem with a two-wave 

longitudinal design is that this growth rate is measured less reliably. But reliability 

increases as the number of data points increases. A multiwave design provides a 

stronger basis for causal inference i n nonexperimental studies than a cross-sectional 

or a two-wave design does (Cook & Campbell, 1979). A two-level hierarchical linear 

model which was discussed earlier naturally extends to a three-level model as we 

examine the school effects on individual growth. 

A three-level hierarchical linear model can be conceptualized in the following 

way. The first two levels of the model are identical to those of the two-level model 

for individual growth. The first level, that is, within-subject level, represents 

individual growth as a function of individual growth parameters plus random errors: 

Yijt = ^ijo + ^i*Hjt + uijt (7) 

where Yyt is the outcome score for student i in school j at time t. 

The second level of the model, between-subject level, represents the 

relationship between growth parameters (ITJJ0 and TT^) and students' background 

characteristics (Xy). 

^ijo = /̂ ooj + /^oijXij + eijO (initial status) (8a) 

TTij! = /S 1 0j + /S11jXij- + e i j : L (rate of growth) (8b) 
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The third level of the model, between-school level, enables specification of 

how school characteristics influence the distribution of growth within schools. 

j800j = 80oo + BooiPj + ^002^) + ^ooj (effects of school-level variables on 
average initial status for each school) (9a) 

^oij = ^oio + ®onPj + ^012^' + U 0 ij (effects of school-level variables on the 
within-school slopes of status and background) (9b) 

/310j = 6 1 0 0 + 8 1 0 1Pj + 6 1 0 2Cj + U 1 0j (effects of school-level variables on 
average rate of growth for each school) (9c) 

fill} = ^no + ^mPj + ^112^ + U n j (effects of school-level variables on the 
within-school slopes of growth and background) (9d) 

The empirical Bayes estimation employed in the HLM makes it possible to 

estimate individual growth trajectory more precisely than does OLS. Therefore, the 

model is more sensitive to the effects of school-level variables at the next stage. 

Researchers using a three-level model with multiple time points per student are 

likely to discover important effects of schools on student growth—effects that could 

not be discovered with cross-sectional or two-wave data. 



3. Research Methodology 

3.1 Subjects and Data Collection 

The subjects of this study, which were a subsample of the data collected by 

Wil lms and Jacobsen (1990), included a large cohort of students enrolled in one 

school district who had completed their seventh grade during the 1987-1988 school 

year. There are 32 elementary schools i n the district, which serves two cities and 

surrounding suburban areas. It also includes a large rural, agricultural area. The 

population is of mixed socio-economic status and includes several racial and ethnic 

groups. 

In the fall of 1988, when the data were collected from the district records, the 

students of this grade cohort had just begun their eighth grade. The majority of the. 

students were the same age—born in 1974. But approximately 20 percent were one 

or two years older as they had repeated one or two grades at some time during their 

elementary schooling. Approximately 2 percent of the students were one or two 

years younger than their cohort. The entire cohort included 1122 students. In May 

of each year from 1984 to 1989, while the students were in grades 3 to 7, the district 

administered the Canadian Tests of Basic Skil ls (CTBS) and the Canadian Cognitive 

Abilit ies Test (CCAT) . Among the entire cohort of 1122 students, only the students 

who had complete C T B S data from grades 5 to 7 were selected. In addition, 

students were required to have complete C C A T data for grades 3, 4 and 5, because 

the average C C A T score across three years was computed to denote student's level 

30 
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of general cognitive ability. Based on these criteria, six schools were excluded from 

the analysis because they had fewer than ten students who met the selection 

criteria. The estimates of school effects based on small samples may not be reliable, 

making it difficult to interpret significant between-school differences. The achieved 

sample, therefore, included 648 students in 26 schools. The sample size for each 

school ranged from 12 to 55. A demographic description of the achieved sample is 

attached in the Appendix. 

A concern about the resultant final sample was that it might be biased 

because low ability students would be more likely to have incomplete test data. Out 

of 474 students in the cohort who did not meet the selection criteria, C C A T data at 

grade 7 were available for 207 students. The difference in average C C A T score 

between the excluded group and the final sample was small even though it was 

statistically significant (p<.05); 103.195 compared wi th 105.997. The standard 

deviations of the two groups were almost the same; 12.65 compared with 13.00. 

Furthermore, the differences between the group means did not vary significantly by 

schools. Therefore, I do not think that attrition bias would be substantially critical, 

especially not for the longitudinal models, because loss of subjects with slightly 

lower ability would have little effect on the average rate of growth for each school. 

Outcome measures in this study were the scores of three subtests on C T B S : 

reading comprehension, vocabulary and the composite scores of mathematics 

(mathematics has three subtests—computation, concepts, and problem solving). The 

Canadian Tests of Basic Skil ls (CTBS) are norm-referenced achievement tests 
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designed to reflect the continuous nature of ski l l development i n the elementary-

school (King, 1982). They are more concerned with generalized intellectual skills 

that are crucial to the educational development rather than separate measures of 

achievement in content subjects. Grade-equivalent (GE) scores were used to express 

the continuous development of basic skills, which were necessary for measuring 

growth. Instead of usual grade equivalent scores, this test employs 

'months-of-schooling' as the outcome metric. This is simply a multiple of G E scores. 

For the 'months-of-schooling' metric, G E scores wi l l be multiplied by 10 (i.e., 59, 69 

instead of 5.9, 6.9, respectively) and the variance w i l l be multiplied by 100 (i.e., 

.12119 instead of .00121). This does not make any differences in interpreting 

individual growth and gives more accuracy to the estimates because we keep more 

decimal points. 

The most important student-level background variable in this study was the 

level of general cognitive ability which was measured by the Canadian Cognitive 

Abilit ies Tests (CCAT) . The C T B S and the C C A T were standardized on the same 

population of students and administered under the same conditions at 

approximately the same time. This has made it possible to examine the 

relationships between achievement and ability under nearly ideal conditions. In 

addition, the average C C A T scores of verbal, quantitative, and non-verbal subtests 

across three years were computed to get more reliable estimates of general ability. 

Gender was also employed as another control variable for students' 

background characteristics because prior research suggested significant gender 
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differences in student achievement (Willms & Jacobsen, 1990). 

3.2 Data Analysis 

The following models were employed to analyze the data in this study. 

Model Ia (Cross-sectional Model without Controls) 

This model has been frequently used in school award programs because of its 

simplicity. But the evaluation purely based on average school performance at a 

single point in time would not be fair for schools with more disadvantaged students 

in terms of their background characteristics. If we do not control for the init ial 

differences, the estimates of school effects would be biased. Therefore, for more 

improved accountability procedure, it might be an interesting question how much 

differences there are between the estimates of school effects using the model without 

controls for students' background (Model Ia) and those with controls (Model lb). 

In Model Ia and lb, my outcome measures were grade 7 C T B S scores in three 

subject areas (mathematics, reading comprehension, and vocabulary). 

The data were analyzed using a two-level hierarchical linear regression model. 

This model enables us to analyze the multilevel data as discussed in Chapter 2. The 

data can be described with two sets of equations. The first level of the model simply 

estimates school mean scores for each school and assumes all other variations are 

just random errors. The within-school equations are as follows: 
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Y7ij = 0Qj + ey 

where Y 7 ij is an outcome measure at grade 7 for student i (i=l,2...,nj) who is in 

school j (j = l,2 26). 

The parameter, /30j, simply represents the average performance of school j, 

and was employed as an outcome measure in the second level of the model: 

Poj = e o o + U 0 j 

where 6 0 0 is a grand mean, that is, an average performance of 26 schools in the 

sample. Therefore, the between-school residual term, U0j, includes the overall school 

effects including both context and policy effects of each school and school-level 

random errors. Unfortunately, no variables about specific school policies and 

practices were available in this study. Therefore, this analysis examined only Type 

A effects; that is, overall effects including both school policy and contextual effects 

(Willms & Raudenbush, 1988). Because the relevant variables at school level were 

not specified, the estimates of school effects in this analysis can be considered upper 

limits. 

Model lb (Cross-sectional Model with Controls) 

This model has been the most popular statistical model for school evaluation. 

Since schools do differ in terms of their student composition, this model is designed 

to control for some of the most important differences of students' background 

characteristics. Two control measures, CCAT and gender, were employed in this 
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investigation. No family background variables were controlled in this study. But 

many researchers argued that measures of general ability are known to be more 

powerful controls for students' background characteristics than the family 

background variables (Alexander, Cook & McDill, 1978). In particular, CCAT is a 

very powerful control on CTBS, since those two tests were standardized on the same 

population at almost the same time. Gender was another control variable in this 

analysis because gender differences have appeared to be significant in some content 

areas (Fennema, 1980; Martin & Hoover, 1987). The first level of the model, 

therefore, examines the relationships between student outcomes and two 

background variables: 

The intercept parameter, /30j, denotes the expected grade 7 status for a 

'typical' child because the background variables were centered such that zero values 

represent what we refer to a typical child: one with a CCAT score of 100 (the 

normalized standard mean score for the test). 

The slope parameters, and /32j- denote the effects of CCAT and gender on 

student outcomes, respectively. All three parameters were employed as outcomes 

in the next level of the model. The between-school level equations are as follows: 

Y7ij = /30j + /^(CCAT)^ + ̂ (Gender)^ + £ i j 

0Oj = 0oo + U, oj (intercept) 

£ij = ©oi + Ujj 

/32j = 0 O2 + U 2 j 

(slope for CCAT) 

(slope for gender) 
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where the residual terms, U0j, and U 2j represent the overall school effects on 

student outcomes because the school-level variables are not specified in this model. 

The variation of these residuals is of interest to see whether there were significant 

differences among schools. The variances of the school-level residuals were tested 

by a chi-square test of variance. In addition, a researcher can test whether the 

regression slopes for CCAT or gender are parallel across schools. This is one of the 

interesting questions a researcher might have but could not ask with the ordinary 

analysis of covariance method. If there are significant differences in slope 

coefficients among schools, the HLM allows them to vary; if not, the slopes can be 

fixed across schools as with OLS. 

Model Ila (Two-wave Longitudinal Model without Controls) 

The difference scores (gain scores or change scores) have had a long history 

in educational research because questions in education are naturally concerned with 

students' gain and change over time. Until recently, a two-wave model has been 

used most frequently for measuring individual change. 

Model Ila is almost identical with Model Ia except that the student-level 

outcome measures are the difference scores between grades 6 and 7 instead of grade 

7 scores. Individual difference scores were partitioned into two parts: average 

difference scores for schools and individual random errors, assuming the deviations 

from the average school gain scores represent only the random fluctuation among 

individuals. 
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The within-school level equation is followed as: 

Y67ij = 0Oj + e i j 

where Y 6 7 i j is the difference score between grades 6 and 7 for student i (i=l,2,...,nj) 

in school j (j=1,2,...,26). Then the parameter, /30j-, denotes the school average 

difference score. 

The second level of the model is identical with that of Model la. 

^OJ = e oo + U 0 j 

The between-school equation estimates the grand mean, which is the average 

difference score of the sample. Then the school-level residual, U0j, represents 

everything other than the average difference score of the sample, which includes 

both systematic differences among schools (overall school effects) and random 

errors. Again, the chi-square test of variance was used to test the variation of 

school-level residuals. 

The HLM also provides reliability estimates—the ratio of the parameter 

variance to the observed variance—by differentiating between-school variance from 

within-school variance. The reliabilities of the two-wave models compared with the 

cross-sectional models and the three-wave models are of interest in this study. 

Model lib (Two-wave Longitudinal Model with Controls) 

This model is similar to Model lb because it also controls for differences in 
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students' background characteristics. But the key difference between the two is that 

the difference score is used as a student outcome in this model. 

The first level of the model is as follows: 

Y 6 7 i j = /30j + /^(CCATOij + j 8 9 ( G e n d e r ) s + £ i j 

where Y 6 7 i j- is the difference score between grades 6 and 7 of student i in school j 

and the slope parameters, /3-y and /32j represent the effects of CCAT and gender, 

respectively. The intercept parameter, jS0j represents the expected difference score 

between grades 6 and 7 for a typical child with a CCAT score of 100. 

The second levels of the model are identical with those of Model lb. 

0qj = eoo + U 0 j 

Pii = e o i + U x j 

#2j = 6 0 2 + U 2 j 

As in the Model lb, the residual terms, U0j, U-y, and U 2j represent the overall 

school effects on student outcomes. The variances of them were statistically tested. 

The slope coefficients, 6 0i and 6 0 2 were also tested to see whether the effects of 

CCAT and gender are the same across schools. 

Model Ilia (Three-wave Longitudinal Model without Controls) 

In this model, three waves of data which is the simplest form of multiwave 

design were employed. 
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Ideally, one can employ a three-level hierarchical linear model as discussed 

in Chapter 2: that is, between temporal points within subjects, between subjects 

within schools, and between schools. Unfortunately, computer programs which can 

estimate three-level hierarchical linear models have only recently been fully 

developed. The alternative way to handle this is to use the OLS method to estimate 

the parameters of the first level. Then using the growth parameters obtained by the 

OLS, the usual two-level hierarchical linear model can be employed for the two 

higher levels (Willms & Jacobsen, 1990). The problem with this method might be 

the precision of individual growth parameters. However, the growth estimates were 

based on multiple time points. If more and more time points were added, the 

precision of the growth parameters estimated by the OLS and by the HLM would 

be quite close. I compared the estimates of growth rate using three data points and 

those using four or more data points whenever they were available, and found the 

estimates were quite stable. Therefore I expect the results do not significantly differ 

from those using a three-level hierarchical model. 

The first level of the model can be described as: 

Y i j t = ^ijO + ^ i j l ( T i m e ) i t + uijt 

where Yyt is a growth measure for student i in school j at time t (t= 1,2,3). The 

variable, (Time)it, denotes the number of months of schooling that the student i in 

school j had received before testing occasion t. In this study, (Time)it was set to be 

zero for the second testing occasion (grade 6) since the estimates of expected values 
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near the center of the data would be more reliable than those at the extremes with 

O L S regression. 

The intercept parameter, TT^Q, represents the status for each student at the 

end of grade 6, which in this study refers to the G E score attained after 69 months 

of schooling (including kindergarten). The slope parameter, TT^, represents the 

individual rate of growth over three years. Both of the parameters can be used as 

outcome measures at the second level. However, this study did not employ the 

grade 6 status as an outcome measure at the second level because the relationships 

between the grade 6 status and the background variables were not of any practical 

interest in this study. The rates of growth also allow me to compare the results 

with those from the previous two-wave models. 

The second (between-subject) level of the model can be described as: 

^ i j i = PQJ + e i j 

where /30j denotes the average rate of growth for school j and represents the 

random fluctuation among students. 

The third (between-school) level of the model becomes: 

POJ = eoo +
 U 0 j 

where 0 O O denotes the grand mean, the average rate of growth for the sample. The 

between-school residual term, U 0 j , includes the overall school effects as well as the 

random fluctuation among schools. A n hierarchical linear model allows one to 
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partition the error variance into three parts (within subject, wi thin school and 

between school) and provides more precise estimates of growth parameters. 

Model Illb (Three-wave Longitudinal Model with Controls) 

The first level of the model is identical with that of Model I l i a to estimate the 

grade 6 status and the rate of growth: 

Y ijt = ^ijo + ^iji(Time) i t + u i j t 

The second level of the model investigates the relationships between 

individual rate of growth and the background variables: 

7rij]L = /30j + j S ^ C C A T ^ + jS?j(Gender)y + ey 

where (30- represents the average rate of growth for a typical child, and /3-y and jS2j 

represent the slope parameters for C C A T and gender, respectively. 

Both intercept and slope parameters of the second-level become the 

school-level outcomes at the next level: 

0qj = e o o + u 0 j 

H = 0 i o + U U 

02) = 6 20 + U 2 j 

The school-level residual terms, U0j, U^, and U2j are of primary interest to 

examine between-school differences in their average rate of growth. The slope 



42 

parameters, 6 1 0 and Q2o> w e r e examined to see whether the regression slopes of 

three background variables were parallel across schools. 

Estimation of Bias 

The difference between estimates of school mean performance based on an 

unadjusted model and those based on an adjusted model was computed to denote the 

estimates of bias between two models. 

The bias can be written as follows: 

Bias = S*j - Sj 

where S*- denotes the estimates of school average performance from the unadjusted 

model, and Sj denotes the estimates of school average performance from the adjusted 

model. Then the mean absolute bias between two models was used to indicate the 

extent of overall bias of the unadjusted model against adjusted model: 

Mean absolute bias = 21 S*j - Sj | /26 

I examined the extent of bias of Model Ia, Ila, and Ilia against Model lb, lib, 

and Illb, respectively. Furthermore, the biases of the two-wave models (Model Ila 

and lib) against the multiwave model (Model Illb) were also of interest. 



4. Results 

This chapter reports the findings generated by this study. The study 

compares the estimates of school effects based on six models (two cross-sectional, 

two two-wave, and two multiwave models) across three CTBS subtests 

(mathematics, reading comprehension, and vocabulary, respectively). Tables la 

through Illb show the results of the HLM for each model. The chapter also 

examines the between-school differences in average grade 7 status and in average 

rates of growth, and it examines the effect of two control variables (CCAT and 

gender) and the reliability estimates of school means. Table IV shows whether the 

regression slopes of two control variables are homogeneous across schools. Table 

V describes the extent of bias between adjusted models and unadjusted models 

across three subject areas. 

School Differences in Grade 7 Status 

Table la and lb summarize the HLM results of the cross-sectional model with 

and without controls for student intake (Model la vs. Model lb) for mathematics, 

reading, and vocabulary. The first row of Tables la and lb show the average 

estimates of grade 7 status for three subtests. The unadjusted estimates of grade 

7 status (Table la) were higher or close to the expected score, which is 79 in terms 

of months-of-schooling, across all three subtests. The adjusted estimates of grade 

7 status (Table lb), however, were below the expected score for all three subtests. 
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Table la 

HLM Results for Cross-sectional Model Without Controls (Model la) 

Estimated Parameters Mathematics Reading Vocabulary 

(Fixed Effects) Effect (S.E.) Effect (S.E.) Effect (S.E.) 

Constant 80.761** (.777) 77.514** (.708) 78.224** (.645) 

Estimated Variance 
Components 
(Random Effects) Estimate ( x 2 ) 2 5 

Estimate ( x 2 ) 2 5 

Estimate ( x 2 ) 2 5 

Observed Variance 
Parameter Variance 
Reliability 

15.979 
10.610** 
.664 

(78.693) 
13.425 
7.559** 
.563 

(60.119) 
11.211 

* * 

5.673 
.506 

(53.921) 

Notes: * p<.05 
** p<.01 



Table lb 

HLM Results for Cross-sectional Model With Controls (Model lb) 

Estimated Parameters Mathematics Reading Vocabulary 
(Fixed Effects) Effect (S.E.) Effect (S.E.) Effect (S.E.) 
Constant 77.809** (.641) 74.639 (.490) 75.670** (.413) 
CCAT .588* (.024) .573* (.026) .529** (.026) 
Gender -.095 (.605) .382 (.671) -2.414** (.674) 

Estimated Variance 
Components 
(Random Effects) Estimate ( x 2 ) 2 5 

Estimate ( x 2 ) 2 5 
Estimate ( x 2 ) 2 5 

Observed Variance 10.401 6.041 4.363 
Parameter Variance 7.640** (275.83) 2.622** (195.93) .890** (156.14) 
Reliability .735 .434 .204 

Notes: * p<.05 
** p<.01 
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The adjusted estimates were lower than the unadjusted estimates because the 

average CCAT of this sample (105.336) was higher than the national norms of 100. 

The constant represents the expected score for a 'typical' student in terms of 

months of schooling. When we control for the higher CCAT of this sample, a 

'typical' student of this sample had GE scores that were around one month below 

the expected score for mathematics (77.8 compared with 79), four months below the 

expected score for reading comprehension (74.6 compared with 79) and three 

months below the expected score for vocabulary (75.7 compared with 79). 

The next two lines of Table lb show the effects of two background variables 

for Model lb. The level of prior ability (CCAT) was significantly related to grade 

7 status across all three subtests. The effect sizes of CCAT on three outcomes were 

almost identical. Gender differences were negligible at this grade in both 

mathematics and reading; however, males outperformed females by over two months 

of schooling on the vocabulary subtest. 

The results for mathematics are consistent with the findings from previous 

research on gender differences. In reviewing studies of mathematical achievement 

and gender differences, Fennema (1980) reported that no significant differences 

appeared consistently between males and females during the elementary years of 

schooling. Martin and Hoover (1987) also reported that there was no gender 

difference in the composite scores of ITBS mathematics from grades 3 to 8, while 

females did somewhat better in computation and males showed a better 

understanding of mathematical concepts. Even though the gender differences are 
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relatively small during elementary education, researchers generally agreed that the 

gender gap in mathematics becomes larger during secondary education (Maccoby & 

Jacklin, 1974; Fennema, 1980; Willms & Jacobsen, 1990). 

Previous research on reading comprehension has also shown a slight but 

consistent advantage of females in general reading ability (Martin and Hoover, 1987; 

Maccoby & Jacklin, 1974). The gender difference derived in this study was small 

and not statistically significant. 

Vocabulary was interesting, quite different from other subtests. Females had 

a significantly lower mean on vocabulary at the end of grade 7. Generally, female 

superiority on verbal tasks at the earlier stage of development has been one of the 

solidly established generalizations in the field of gender differences. Some of the 

research has found no consistent gender differences, but whenever the difference 

was found, it was usually females who obtained higher scores (reviews by Maccoby 

and Jacklin, 1974). However, these differences favoring girls seem to be reversed 

during the later years of primary schooling. Martin and Hoover (1987) reported 

very similar results to this study. Instead of the consistent advantage for males or 

females that was found on the other subtests, they found a cross-over in the results 

for vocabulary. In grades 3 and 4, females had a slightly higher mean than males. 

But in the later grades, males had the significantly higher mean, and the 

improvement in performance by males was consistent. 

The bottom half of the tables show the estimates of observed variance and 

parameter variance, and reliability of estimates of school means. The parameter 
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variance represents the variation among schools with the variance due to 

measurement and sampling errors removed. This is similar to the true score 

variance of classical test score theory. The chi-square tests showed that parameter 

variance was statistically significant (p<.01) across al l subtests. In other words, 

there were significant differences between schools in their grade 7 status, even after 

controlling for the effects of students' background variables. 

The last row of the tables show the reliability coefficients of intercept 

parameters. The primary purpose of this study was to examine the between-school 

differences i n the average performance (intercept) rather than the between-school 

differences in structural relationships (slope). Therefore, only the reliability 

coefficients of intercept parameters were examined here. The between-school 

differences were most reliably estimated for mathematics and least reliably 

estimated for vocabulary: .664 and .735 for mathematics, .563 and .434 for reading, 

and .506 and .204 for vocabulary, without and with controls, respectively. 

School Effects on the Rate of Growth 

The second research question (see Chapter 1) is concerned with students' 

rates of growth between grades 5 and 7 rather than their grade 7 status. The first 

line of Table Ha and l i b present the estimates of average rate of growth during the 

last two years of elementary schooling, with and without controls for student 

background for the three subtests. The unadjusted and the adjusted two-wave 

models (Model Ha and Model l ib) suggested that the average rate of growth of this 



Table I la 

HLM Results for Two-wave Model Without Controls (Model Ila) 

Estimated Parameters Mathematics Reading Vocabulary 

(Fixed Effects) Effect (S.E.) Effect (S.E.) Effect (S.E.) 

Constant 8.516** (.387) 8.064** (.374) 6.514** (.315) 

Estimated Variance 

Components 

(Random Effects) Estimate ( x 2 ) 2 5 . Estimate ( x 2 ) 2 5 

Estimate ( x 2 ) 2 5 

Observed Variance 3.997 4.001 2.852 

Parameter Variance 2.230** (63.558) .952 (34.102) .636 (34.072) 

Reliability .558 .238 .223 

Notes: * p<.05 
** p<.01 



T a b l e l i b 
HLM Results for Two-wave Model With Controls (Model lib) 

Estimated Parameters Mathematics Reading Vocabulary 
(Fixed Effects) Effect (S.E.) Effect (S.E.) Effect (S.E.) 
Constant 8.519** (.398) 7.758** (.394) 6.312** (.337) 
CCAT .070* (.019) .063* (.025) .047* (.021) 
Gender .132 (.478) -.952 (.629) -1.408* (.534) 

Estimated Variance 
Components 
(Random Effects) Estimate (x\5 

Estimate (x 2 ) 2 5 
Estimate (X 2) 2 5 

Observed Variance 3.997 3.943 2.897 
Parameter Variance 2.264** (65.492) .934 (35.390) .706 (34.900) 
Reliability .567 .236 .245 

Notes: * p<.05 
** p<.01 
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sample was lower than expectation, that is, less than ten months-of-schooling. The 

average rate of growth for vocabulary was approximately three and a half months 

below the norm for both Models Ila and lib (6.5 and 6.3, respectively, compared 

with 10). The CCAT was significantly related to the rates of growth across three 

subtests. Gender differences were not significant in mathematics and reading, but 

males outgrow females by one and a half months of schooling in the vocabulary test. 

The effects of adjustment of the two-wave models were not as large as those of the 

cross-sectional models. The chi-square tests suggested that the between-school 

differences in their rates of growth between grades 6 and 7 were statistically 

significant for mathematics but not for reading and vocabulary subtests. Because 

of the large measurement errors related to the two-wave data, the reliability of 

estimates of average gain were lower than that of the cross-sectional models: .56 for 

mathematics, .24 for reading, and .25 for vocabulary. 

Tables Ilia and Illb present the HLM results of multiwave models with and 

without controls (Model Ilia vs. Model Illb). The first row of Tables Ilia and Illb 

shows the estimates of average rate of growth between grades 5 and 7. For this 

particular sample, students seem to be levelling off in vocabulary and reading: that 

is, the growth rate between grades 5 and 7 was much less than ten (8.9 and 9.3, 

respectively), whereas in mathematics it was close to ten (9.9). 

One of the most interesting findings from this analysis was that the effects 

of student background variables were no longer significant when we employed 

growth rates based on multiwave data as the outcome measure. Even the CCAT did 



Table I l i a 

HLM Results for Multiwave Model Without Controls (Model Ilia) 

Estimated Parameters " Mathematics Reading Vocabulary 

(Fixed Effects) Effect (S.E.) Effect (S.E.) Effect (S.E.) 

Constant 9.896** (.306) 
* * 

9.374 (.217) 8.885** (.171) 

Estimated Variance 

Components 

(Random Effects) Estimate (x 2 ) 2 5 
Estimate (x 2 ) 2 5 

Estimate (x 2 ) 2 5 

Observed Variance 2.459 1.296 .862 

Parameter Variance 1.874** (116.97) , .552** (46.654) .121 (30.649) 

Reliability .762 .426 .140 

Notes: * p<.05 
** p<.01 



T a b l e I l l b 

HLM Results for Multiwave Model With Controls (Model Illb) 

Estimated Parameters Mathematics Reading Vocabulary 

(Fixed Effects) Effect (S.E.) Effect (S.E.) Effect (S.E.) 

Constant 9.845** (.310) 9.295** (.227) 8.923** (.182) 

C C A T .011 (.011) .016 (.012) -.002 (.012) 

Gender -.173 (.279) -.166 (.313) -1.108* (.309) 

Estimated Variance j 
Components 

(Random Effects) Estimate (x 2 ) 2 5 
Estimate (x 2 ) 2 5 

Estimate (x 2 ) 2 5 

Observed Variance 2.448 1.311 .853 

Parameter Variance 1.866** (117.26) .562** (47.315) .121 (31.225) 

Reliability .761 .431 .142 

Notes: * p<.05 
** p<.01 
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not have significant effects on students' rates of growth across the three subtests. 

Considering the highly significant effects of CCAT in the cross-sectional models, this 

finding has practical implications. Even when the data on students' background 

characteristics are not available, the growth measure based on multiwave data can 

be a better indicator of school performance, even without controls for student 

intake. 'Selection bias', which occurs when we do not specify all the relevant 

variables in the model is no longer a big problem for a multiwave longitudinal model 

as for a cross-sectional model. 

However, significant gender differences in vocabulary growth rate (Table Illb) 

were noteworthy (p<.05). Female growth rate in vocabulary was significantly 

smaller than the male growth rate during the last three years of elementary 

schooling. Since boys are supposed to catch up in vocabulary during the later 

grades of elementary schooling, the average growth rate of boys between grades 5 

and 7 may be significantly larger than that of girls. One suggestion might be that 

a non-linear model should be used when modelling vocabulary growth rate between 

grades 3 to 7. 

The test results for the parameter variances among schools are shown in the 

bottom portion of the tables. As we move towards the longitudinal models, the 

parameter variance gets much smaller because growth measures indirectly control 

for differences in prior achievement, that is, grade 5 and 6 scores. For mathematics 

and reading, there were significant differences among schools in their effects on 

growth rate between grades 5 and 7. The parameter variance of mathematics was 
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much larger than that of reading. This suggests that mathematics is more related 

to school instruction than is reading. The parameter variance among schools for 

vocabulary was smallest and was not statistically significant at the .05 level of 

significance. This is consistent wi th what we would expect given home influences 

on students' vocabulary. Vocabulary is not so directly related to instruction given 

at school as are the other skills. It depends more on one's language experiences in 

his or her home. It is possible that schools do not differ significantly in their effects 

on students' vocabulary over a period of three years, even though the richness of 

language experiences in a school program may affect students' vocabulary ski l l over 

a longer period. 

Another interesting finding of this study comes from the reliability of the 

average growth measure based on a multiwave model. The reliability of the growth 

model (Model Illb) was as high as that of the cross-sectional model (Model lb): .761 

compared wi th .735 for mathematics, .431 compared with .434 for reading, and .142 

compared with .204 for vocabulary. The between-school differences in their rates 

of growth based on the multiwave model (Model Illb) were more reliably estimated 

than those based on the two-wave model (Model l ib) for mathematics and reading: 

.761 compared with .567 for mathematics, .431 compared with .236 for reading. 

Differences between Two-wave Model and Multiwave Model 

The two-wave model consistently underestimated the average rate of growth 

across three subtests: 8.159 compared with 9.295 for mathematics, 7.758 compared 
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with 9.295 for reading, and 6.312 compared wi th 8.923 for vocabulary. Moreover, 

the standard errors of these estimates were much larger for the two-wave model 

than for the multiwave model: .398 compared with .310 for mathematics, .394 

compared with .228 for reading, and .337 compared wi th .182 for vocabulary. In 

other words, the average growth rate was less precisely estimated and negatively 

biased for the two-wave model. The effects of C C A T were weak for the multiwave 

model compared wi th the two-wave model. The gender differences i n vocabulary 

were statistically significant at the .05 level of significance. In other words, males 

grew faster than females between grades 5 and 7 in the vocabulary subtest. 

Compared wi th mathematics and reading, the reliability estimate of the 

growth parameters for vocabulary was disappointingly low (.142). For mathematics, 

the between-school differences i n their rates of growth were reliably estimated using 

the multiwave model, even more reliably estimated than the between-school 

differences i n their grade 7 status using the cross-sectional model. For vocabulary, 

however, the reliability of the estimates of between-school differences in their 

growth rates was low, even lower than that based on the two-wave model. One of 

the factors that might affect reliability is the variability among schools. For 

vocabulary, growth rate would not greatly vary among schools after the background 

variables were controlled. Schools do not have explicit effects on students' 

vocabulary power as they have in the other two tests. The small variability in the 

vocabulary growth rates among schools might explain why between-school 

differences in their vocabulary growth rate were most unreliably estimated. 
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Homogeneity of Regression Slopes 

The analysis also determined whether the effects of background variables on 

student outcomes varied significantly across schools. For example, some schools 

might be particularly effective for males but not for females, or vice versa, or some 

schools might be more effective for the students wi th higher cognitive ability. This 

is one of the questions that can be determined wi th an H L M analysis. 

Therefore, in a preliminary H L M analysis, al l the slopes were allowed to be 

random. Nine models—three (Model lb, l i b , and Illb) for each subtest—were 

examined. Table IV shows that the variances among schools i n their effects of prior 

ability and gender were not statistically significant at the .01 level of significance. 

It was not possible to say that some schools were more effective for males than for 

females, or for students wi th higher ability than for students wi th lower ability. 

Therefore, al l the slopes were fixed to be parallel in the main analyses of this study. 

When slopes are fixed, the intercepts can be estimated more reliably. 

Bias of Models 

The first part of Table V shows the extent of bias of unadjusted cross-

sectional models (Model la) against adjusted cross-sectional models (Model l ib) 

across the three subtests. The extent of bias ranged from -.2391 to 6.5342 for 

mathematics, from -.0624 to 6.6879 for reading, and from -.6271 to 6.6692 for 

vocabulary. The mean absolute bias ranged from 2.6002 (vocabulary) to 2.9713 
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Table IV 

Homogeneity of Regression Slopes 

subtests model slopes parameter 
variance 

chi-
square 

P 

Mathematics Model lb CCAT .00713 40.647 .025 
gender 1.5693 23.104 >.5 

Model lib CCAT .00227 28.943 .266 
gender 4.06588 42.960 .014 

Model Illb CCAT .00092 32.037 .157 
gender .3873 20.286 >.5 

Reading Model lb CCAT .00102 22.872 >.5 
gender 1.79341 28.121 .302 

Model lib CCAT .00375 33.039 .130 
gender 1.33986 19.867 >.5 

Model Illb CCAT .00077 24.225 >.5 
gender .06767 12.215 >.5 

Vocabulary Model lb CCAT .00189 16.270 >.5 
gender 6.37617 36.098 .07 

Model lib CCAT .00664 35.834 .074 
gender 1.76095 24.370 >.5 

Model Illb CCAT .00108 25.765 .420 
gender .50950 25.991 .408 
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Table V 

Extent of Bias 

Mathematics Reading Vocabulary-

Model l a vs lb 

min bias -.2391 -.0624 -.6271 

max bias 6.5342 6.6879 6.6692 

mean absolute bias 2.9713 2.8802 2.6020 

Model Ila vs l i b 

min bias .051 .1961 .0999 

max bias .7557 .459 .3099 

mean absolute bias .3566 .3059 .2025 

Model I l i a vs I l lb 

min bias -.0144 .0259 -.074 

max bias .1456 .1434 -.0051 

mean absolute bias . .0531 .0783 .0374 

Model Ila vs I l lb 

min bias -4.3068 -2.9839 -3.2154 

max bias 1.2205 -.0968 -1.9182 

mean absolute bias 1.5248 1.2314 2.4087 

Model l i b vs I l lb 

min bias -4.5459 -3.2492 -3.4617 

max bias .8182 -.4675 -2.0573 

mean absolute bias 1.7608 1.5373 2.6112 
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(mathematics). Therefore, estimates of school mean performance based on 

unadjusted models differ from those based oh adjusted models, on average, by about 

three months of schooling. Moreover, estimates based on an unadjusted model are 

biased in favor of schools with higher ability students. For example, the school with 

the highest mean CCAT (115.509) had the highest unadjusted means across all 

outcomes (91.947 for mathematics, 88.000 for reading and 88.632 for vocabulary). 

When differences in students' background characteristics were controlled, however, 

the school with lower mean CCAT (109.231) had higher adjusted means, even 

though the simple means were much lower than the school with the highest mean 

CCAT (79.423 for mathematics , 77.346 for reading, and 79.115 for vocabulary). 

Therefore, mean differences among schools based on the unadjusted cross-sectional 

model may not be appropriate for comparing schools. A simple comparison of school 

means will falsely suggest that schools with advantaged students do better than 

those with less advantaged students. 

The second part of Table V shows the extent of bias of unadjusted two-wave 

models (Model Ila) against adjusted two-wave models (Model lib). The extent of 

bias ranged from .051 to .7557 for mathematics, from .1961 to .459 for reading, and 

from .0999 to .3099 for vocabulary. The mean absolute bias ranged from .2025 for 

vocabulary to .3566 for mathematics (i.e., less than one-half of one month of 

schooling). Thus, the bias was far less than that of the unadjusted cross-sectional 

model. The bias between the unadjusted two-wave model and the adjusted two-wave 

model was not as crucial as was the bias between two cross-sectional models. 
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The third part of Table V shows the extent of bias of unadjusted multiwave 

models (Model Ilia) against adjusted multiwave models (Model Illb). The extent of 

bias ranged from -.0144 to .1456 for mathematics, from .0259 to .1434 for reading, 

and from -.074 to -.0051 for vocabulary. The mean absolute bias was the smallest 

amongst three designs (.0531 for mathematics, .0783 for reading, and .0374 for 

vocabulary). This also supports the result that the effect of students' background 

characteristics was not significant for the multiwave models. This suggests that one 

could use the rate of growth as a performance indicator of school quality and get 

fairly accurate estimates of school effects without controlling for students' 

background characteristics. 

The last parts of Table V examine the extent of bias among four longitudinal 

models. The adjusted multiwave model (Model Illb) was assumed to be the best 

longitudinal model amongst the four models. The extent of bias ranged from 

-4.5459 to 1.2205 for mathematics, from -3.2492 to -.0968 for reading and from 

-3.4617 to -1.9182 for vocabulary. The mean absolute bias of unadjusted two-wave 

model (Model Ha) against Model Illb ranged from 1.2314 to 2.4087. The mean 

absolute bias of the adjusted two-wave model (Model lib) against the adjusted 

multiwave model (Model Illb) ranged from 1.5373 to 2.6112. These differences were 

substantially large compared with the bias between two-wave models and the bias 

between multiwave models. This shows that the two-wave models provide fairly 

biased estimates of students' growth compared with the multiwave models. The 

two-wave model is not an appropriate model to estimate students' rate of growth. 



5. Summary a n d Conclusion 

This study examined several statistical models designed to detect school 

differences in their effects on student outcomes. Almost al l research studies on 

school effectiveness has been concerned wi th school effects on students' average 

performance or variability at one particular time. That is, studies have been 

cross-sectional rather than longitudinal. Even though the goal is to assess student 

learning, which implies change and growth (Willet, 1988), most empirical methods 

of measuring change have been considered inappropriate and invalid (Harris, 1963; 

Cronbach & Furby, 1970). Therefore, questions which should be addressed under 

a longitudinal framework were analyzed wi th cross-sectional designs. 

This study supports the idea of a more recent longitudinal approach to the 

measurement of change. It claims that not only the idea of measuring change is 

important, but also the empirical methods of measuring change can be improved by 

collecting additional waves of data. The discussions about measuring change have 

been unjustifiably restricted to the two-wave design. But the two-wave model is 

simply not a very good design of measuring individual growth. We can get better 

estimates of individual growth with multiwave data. 

Therefore, the primary purpose of this study was to examine how much the 

multiwave models could improve the estimates of individual growth over two-wave 

models. To accommodate the hierarchical characteristics of educational processes 

and get more precise estimates of growth, the recently developed hierarchical linear 

62 
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regression model (HLM) was employed in this study. 

The major findings of this study are as follows: 

(1) Across the three subtests of CTBS, schools differed significantly in their 

average levels of academic achievement at the end of grade 7, after controlling for 

students' prior ability and gender. The effects of students' prior ability were 

significant across all outcomes but gender effects were not significant for 

mathematics and reading comprehension scores. 

(2) There were significant differences among schools in their average rates 

of growth in academic achievement between grades 5 and 7 for mathematics and 

reading comprehension. For vocabulary, however, the between-school differences 

in their average rates of growth were not significant. Prior ability and gender were 

not significantly related to growth rates for the multiwave models across all three 

subtests. 

(3) The average bias of an unadjusted cross-sectional model against an 

adjusted cross-sectional model was substantial—about three months of schooling, 

whereas the average bias of an unadjusted multiwave model against an adjusted 

multiwave model was less than one-tenth of one month of schooling. The bias of 

two-wave models against multiwave models was also substantial. 

(4) The estimates of school effects based on multiwave models were more 

reliable than those based on two-wave models. Although more reliable, they were 

still not very reliable (.76 for mathematics, .43 for reading and .14 for vocabulary). 
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Within-school sample size, reliability of the tests, and variability among schools are 

some of the factors that affect reliability. 

The above findings lead to the following conclusions and practical implica­

tions. 

(1) For the cross-sectional analysis, simple comparison of school means 

without controlling for students' intake characteristics is not appropriate for a fair 

and adequate evaluation of school effects. The bias of an unadjusted model against 

an adjusted model was quite large. In other words, if one does not control for 

differences among schools in their background characteristics, the estimates of 

school effects will be biased against less advantaged schools. This also suggests that 

it might be equally important to control the relevant school-level variables, even 

though this study was not able to include these school-level variables. Unless all the 

relevant variables at both student and school level are specified, the estimates would 

be biased especially for the cross-sectional models. 

(2) The two-wave model did not estimate the students' growth rates reliably 

because of large measurement errors. The reliability estimates of adjusted 

differences between schools based on the two-wave model were lower than those 

based on the cross-sectional model. Nevertheless, this does not imply that the 

growth score is intrinsically unreliable. The reliability estimates based on 

multiwave models were much higher than those based on two-wave models. They 

were even higher than those based on cross-sectional models when there were 
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considerable differences among schools i n their true rates of growth, as was the case 

for mathematics and reading. By reducing the measurement errors involved i n the 

difference score, the multiwave model can estimate individual rates of growth more 

precisely and reliably. Since low reliability of the difference score has been one of 

the key problems of measuring change, it was interesting to see how much 

differences in reliability one additional data point can make. Moreover, precision 

of the estimates would be increased further i f one had additional waves of data. 

(3) Students' background variables were not significantly related to the rates 

of growth based on the multiwave model across al l three outcomes. This suggested 

that one could use rates of growth as a performance indicator of school quality and 

get fairly accurate estimates of school- effects without controlling students' 

background characteristics. This might be one of the conveniences of using 

multiwave models instead of using cross-sectional models. It would be practically 

better and easier for an evaluator to collect additional waves of data rather than to 

collect all the relevant background information that are related to selection into 

schools. 

(4) The variance among schools in their effects was largest for mathematics 

and smallest for vocabulary. This means that schools vary most in their 

mathematics performance and least in their vocabulary performance. This is 

consistent with what one would expect given family influences on vocabulary. Since 

vocabulary is more related to students' home background rather than to specific 

school practices, the average rate, of growth would not vary much among schools 
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after controlling for students' background variables. Because schools varied little 

i n their adjusted growth rates in vocabulary, reliability estimates were low. 

Because students' learning and growth is the primary goal of education and 

because growth can be reliably estimated for some subject areas, those estimating 

between-school differences should be advised to use rates of growth based on 

multiwave data as performance indicators instead of commonly used adjusted school 

differences based on cross-sectional models. This study examined the conceptual 

advantages of a multiwave model over cross-sectional or two-wave models. The 

empirical results were consistent with expectations. However, there are several 

points to be considered that were not addressed in this study. 

First, this study did not include a wide range of students' background 

variables such as SES , or any school-level variables denoting specific school policies 

and practices. To make the comparisons as clear as possible, this study employed 

the simplest form of between-school differences. One of the interesting results of 

the study was that rate of growth based on multiwave model can estimate the school 

effects fairly accurately without controlling for student background. A study that 

includes more student-level variables, especially SES might be of interest. 

Moreover, this study estimated only Type A effects. It would be a useful extension 

to also estimate Type B effects. That is, a model that includes school-level variables 

describing school policy and context would be useful to help explain why schools 

vary. 

Second, this study did not include the basic analysis of covariance model with 
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grade 6 scores used as covariates to adjust grade 7 scores. Because of the low 

reliability of the difference score between two data points, researchers have 

preferred the ANCOVA model to the two-wave model. The parameters for the 

ANCOVA model, however, could not be estimated with the HLM because of the 

multicollinearity between grade 6 scores and grade 7 scores. A possible way to solve 

this problem is centering the grade 6 scores around each school mean. But this 

study excluded this analysis because it was beyond the scope of this study. 

However, a comparison between the ANCOVA model and the multiwave model 

might be another interesting topic for future study. 

Third, this study also employed the simplest form of multiwave model, that 

is, a three-wave model. The effects of schooling on students' rates of growth 

between grades 5 and 7 were only examined in this study. Therefore, it can only 

show the short-term effects of schooling on student outcomes. A future study that 

includes four waves or five waves of data can show different school effects, which 

are based on the long-term effects of schooling. 
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Appendix 

Demographic Descriptions of the sample 

n C C A T CTBS math CTBS read CTBS vocab Female 

mean (SD) mean (SD) mean (SD) mean (SD) mean 

1 19 115.509 (10.678) 91.947 (7.982) 88.000 (8.888) 88.632 (10.377) .474 

84.105 (5.537) 76.947 (8.229) 80.158 (8.604) 

69.316 (9.019) 67.263 (9.291) 68.895 (8.906) 

2 38 109.382 (12.176) 82.576 (9.194) 80.342 (10.207) 82.105 (9.781) .575 

74.632 (8.704) 71.289 (9.392) 75.632 (8.952) 

60.868 (10.351) 60.632 (11.262) 62.316 (10.730) 

3 26 109.231 (13.955) 79.423 (13.949) 77.346 (13.532) 79.115 (9.425) .538 

70.577 (11.024) 68.731 (12.824) 70.962 (8.417) 

63.923 (10.677) 62.038 (10.698) 62.154 (9.922) 

4 39 108.739 (10.906) 83.026 (10.539) 79.359 (11.354) 80.103 (10.218) .462 

74.590 (11.255) 72.641 (9.598) 73.385 (7.308) 

62.667 (9.847) 59.846 (9.502) 63.000 (9.481) 

5 32 108.052 (14.618) 79.000 (12.297) 77.375 (12.045) 78.844 (11.274) .531 

69.656 (9.973) 71..594 (10.320) 74.750 (9.253) 

61.500 (11.769) 59.875 (9.366) 61.156 (10.287) 

6 42 107.960 (10.609) 82.786 :(8,883) 80,095 (10.670) 81.238 (8.826) .524 

73.857 (7.216) 70.071 (9.506) 74.048 (8.052) 

61.905 (8.213) 62.548 (6.922) 63.738 (7.126) 



n C C A T CTBS math CTBS read CTBS vocab Female 

mean (SD) mean (SD) mean (SD) mean (SD) mean 

7 26 107.679 (13.685) 82.692 (9.277) 80.346 (11.070) 79.731 (11.557) .692 

72.115 • (8.392) 71.077 (11.842) 72.423 (11.236) 

63.846 (7.588) 62.038 (9.718) 60.296 (12.321) 

8 17 107.422 (11.299) 80.412 (13.496) 77.118 (8.184) 79.353 (10.099) .647 

73.059 (9.430) 72.471 (8.676) 71.824 (7.519) 

60.059 (7.636) 59.706 (9.218) 62.765 (8.671) 

9 38 106.833 (14.873) 79.237 (11.790) 78.526 (11.747) 76.342 (13.581) .447 

71.842 (10.394) 71.184 (11.759) 70.842 (10.839) 

61.974 (10.265) 58.158 (11.890) 60.263 (10.894) 

10 19 106.360 (13.210) 78.263 (10.572) 75.211 (10.628) 76.474 (11.172) .526 

68.947 (10.926) 66.684 (10.149) 69.316 (11.036) 

64.158 (9.002) 61.000 (10.451) 60.632 (10.383) 

11 24 105.910 (12.621) 84.458 (11.018) 78.375 (12.272) 75.833 (14.743) .542 

77.167 (11.397) 71.250 (8.684) 71.833 (9.707) 

62.917 (9.908) 59.583 (10.866) 60.625 (8.821) 

12 17 105.216 (12.510) 80.294 (10.658) 76.706 (10.209) 78.118 (9.911) .647 

74.529 (10.248) 70.118 (10.222) 73.176 (11.293) 

59.882 (8.746) 56.824 (10.858) 59.000 (8.746) 

13 16 104.979 (11.818) 80.062 (10.109) 78.562 (10.106) 79.937 (11.958) .375 

72.312 (7.097) 69.312 (8.171) 69.625 (12.126) 

57.625 (8.801) 57.437 (10.282) 58.375 (7.429) 



n C C A T CTBS math CTBS read CTBS vocab Female 

mean (SD) mean (SD) mean (SD) mean (SD) mean 

14 26 104.917 (15.447) 74.346 (15.263) 73.269 (11.148) 79.192 (10.358) .423 

67.038 (12.456) 66.538 (12.238) 71.038 (9.493) 

59.615 (10.269) 58.885 (8.687) 59.000 (10.844) 

15 34 104.662 (16.167) 85.618 ''(9.474) 79.626 (13.660) 79.441 (11.368) .588 

79.029 (8.997) 74.471 (7.684) 74.412 (9.494) 

63.059 (10.245) 58.059 (13.071) 62.206 (12.715) 

16 16 103.615 (10.365) 81.812 (8.573) 78.437 (12.915) 77.937 (13.279) .438 

71.687 (8.822) 68.250 (7.611) 72.875 (6.292) 

61.437 (7.023) 58.062 (7.886) 60.812 (8.207) 

17 12 103.319 (14.344) 84.583 (10.613) 78.417 (9.020) 75.417 (10.630) .500 

71.083 (10.122) 68.750 (11.522) 69.000 (11.176) 

62.667 (10.057) 58.250 (8.476) 57.583 (12.280) 

18 22 102.977 (10.397) 80.909 (12.290) 77.409 (14.050) 78.409 (7.980) .635 

69.545 (12.046) 69.000 (12.024) 71.545 (9.277) 

59.864 (11.281) 57.273 (10.058) 63.273 (8.509) 

19 16 102.896 (15.933) 80.062 (9.740) 78.937 (10.096) 77.625 (10.059) .250 

70.375 (10.589) 69.250 (9.462) 70.750 (10.618) 

57.437 (11,314) 60.812 (12.117) 59.312 (9.707) 

20 55 102.730 (12.011) 82.400 (10.477) 78.545 (10.378) 78.800 (11.616) .455 

76.709 (8.425) 70.764 (9.355) 74.036 (10.331) 

60.836 (8.346) 58.673 (10.885) 60.509 (10.358) 



n CCAT CTBS math CTBS read CTBS vocab Female 

mean (SD) mean (SD) mean (SD) mean (SD) mean 

21 36 102.509 (10.118) 85.000 ,1(8.380) 80.083 (8.673) 78.750 (9.646) .444 

72.917 (6.809) 68.778 (9.363) 70.278 (8.345) 

60.777 (8.901) 57:389 (9.986) 59.222 (9.469) 

22 13 101.308 (11.987) 75.231 (7.247) 71.231 (10.353) 75.692 (7.642) .538 

65.154 (10.953) 64.923 (8.311) 65.538 (7.891) 

56.000 (7.937) ' 55.231 (10.895) 55.923 (10.851) 

23 12 99.500 (10.519) 75.833 (7.987) 72.667 (13.845) 72.833 (10.945) .667 

65.417 (7.669) 63.750 (12.563) 67.583 (9.949) 

53.917 (10.945) 55.250 (8.497) 54.583 (8.775) 

24 14 99.405 (10.580) 73.929 (8.704) 72.071 (6.650) 72.929 (10.759) .500 

67.286 . (6.696) 64.214 (6.5770 66.429 (6.734) 

55.214 (4.388) 55.429 (5.854) 55.214 (5.563) 

25 19 97.009 (10.261) 75.316 (11.076) 69.316 (9.995) 73.947 (8.714) .474 

67.316 (9.099) 64.947 (11.198) 68.316 (7.667) 

54.158 (7.603) 51.579 (7.904) 56.632 (8.355) 

26 20 96.742 (11.830) 76.100 (9.684) 71.450 (10.324) 70.300 (8.921) .450 

70.750 (8.595) (12.792) 65.600 (8.535) 

64.950 (7.783) 52.550 (13.221) 57.200 (7.811) 


