# SELECTED LINGUISTIC SKILLS 

IN YOUNG DEAF CHILDREN
by
PERRY THOROLD LESLIE
B.Ed., University of British Columbia, 1967
M.A., University of British Columbia, 1970

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF EDUCATION
in the Department
of
Special Education

We accept this thesis as conforming to the required standard

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Sipecial Education.
The University of British Columbia Vancouver 8, Canada

# DISSERTATION ABSTRACT 

SELECTED LINGUISTIC
SKILIS IN YOUNG DEAF CHILDREN

## Perry Thorold Leslie

Ed.D. in Special Education

The University of British Columbia
July 1972

This investigation examined the performances of forty deaf children on tasks involving singular and plural simple-active-declarative and corresponding yes/no statements. The task items used be as Aux in both past and non-past tenses. The forty subjects were grouped, according to age, into four groups of ten representing six, seven, eight, and nine year olds.

A model, based on transformational-generative grammar theories, was developed to enable qualitative analysis of the responses. Analysis of the linguistic performance demonstrated that the young deaf children were rule governed in responses to the tasks. Many of the linguistic performances examined were found to parallel development of linguistic performances of very young hearing children.

Analysis of the data demonstrated that 9 year old deaf children performed significantly better than 6 year old deaf children on the task items. The task battery included comprehension and production task items. The production-generation items were significantly more difficult than the production-completion items. Young deaf children performed significantly
better on singular statement items than they did on plural statement items. The implications of the study mere explored and a resulting delineation of language teaching techniques was recommended for future research.

## TABLE OF CONTENTS

CHAPTER

Page
I INTRODUCTION ..... 1
II PROBLEM ..... 12
Statement of the Problem ..... 12
Related Research ..... 13
Definition of Terms ..... 16
Rationale ..... 17
Instrumentation ..... 18
III METHOD ..... 22
Sampling and Subjects ..... 22
Instruments ..... 22
Scoring ..... 23
Examiners ..... 23
Research Questions ..... 23
Design ..... 24
Experimental Hypotheses ..... 24
Procedure ..... 28
IV RESULTS ..... 29
Models for Analyzing the Data ..... 29
Results of the Quantitative Analysis ..... 30
Results of the Qualitative Analysis ..... 50
V DISCUSSION ..... 63
Interpretation of Results ..... 63
Implications ..... 71
Limitations ..... 73

## Page

Future Research ..... 74
REFERENCES ..... 76
APPENDICES ..... 82
A Task Battery ..... 83
B Demonstrations Items ..... 148
C Vocabulary Charts ..... 173
D Standard Administration Procedures ..... 176
E Check Lists ..... 182
F Summary of Correct Responses ..... 184
G Summary of Response by Task Level ..... 186
H Summary of Task 3 and 4 Responses for Selected Subjects ..... 221
I Summary ANOVA including Examiner as a Factor ..... 227

## LIST OF TABLES

TABLE
Page
1 Sources of Variation, Error Terms, and Degrees
of Freedom for ANOVA . . . . . . . . . . . . . . . . . .

2 Means and Standard Deviations for Age Levels 32

3 Means and Standard Deviations for Hearing Levels 34

4 Sumary of Analysis of Variance . . . . . . . . . . . . . 35
5 Summary of Age (A) Contrasts . . . . . . . . . . . . . . . 37
6 Surmary of Task (B) Contrasts . . . . . . . . . . . . . . 39
7 Summary of Age x Task (AB) Interaction Contrasts . . . . . 40
8 Summary of Age x Singular/Plural (AC) Contrasts . . . . . 42
9 Summary of Tense x Transform (DE) Contrasts . . . . . . . 44
10 Summary of Task $\times$ Tense x Transform (BDE)
Contrasts . . . . . . . . . . . . . . . . . . . 45
11 Summary of Age $x$ Task $x$ Singular/Plural $x$ Tense x Transform (ABCDE) Contrasts . . . . . . . . . . 47

12 Surmary of Examiner (X) Contrasts . . . . . . . . . . 48
13 Summary of Examiner x Singular/Plural
(CX(A)) Contrasts . . . . . . . . . . . . . . . . 49
14 Summary of Examiner x Tense ( $\mathrm{DX}(\mathrm{A})$ ) Contrasts . . . . . 51

## LIST OF FIGURES

FIGURE Page
1 Study Design ..... 25
2 Study Design (cont.) ..... 26
3 Model of Task Specific Rules ..... 31
$4 \quad A B$ Interactions ..... 41

## CHAPTER I

INTRODUCTION

The problems of developing communication in the deaf have been recognized and recorded as far back as the pre-Christian era when Aristotle noted a relationship between congenital deafness and dumbness.

> Aristotle ... placed strong emphasis on sound as the primary vehicle for conveying thought and therefore as the chief medium for education. Aristotle presumably believed, therefore, that since the deaf could neither give utterance to speech nor comprehend it from others, they were relatively incapable of instruction (Davis and Silverman, 1970, p. 375).

Here then was an early record of the recognition of the problem of comunication. From that time to the present day, educators, philosophers, physicians, engineers, parents, and laymen have struggled to cope with the deaf child's problems of communication.

Dr. Richard Silverman very aptly pointed out that "man's struggle toward enlightenment is slow, faltering, and, in many instances haphazard" (Ibid., p. 375). This has been borne out by developments in the education of deaf children for it was not until the middle of the sixteenth century that the deaf were considered educable. At this time Girolamo Cardano stated that the deaf could be taught to comprehend written symbols or combinations of symbols by associating them with the object or picture of the object they were intended to represent (Ibid., p. 376). This is still one of the standard introductory techniques for language instruction.

It was not until the latter part of the eighteenth century that public schooling for the deaf became a reality. In the 1770 's Abbé de l'Épée and Samuel Heinicke founded the first French and German public schools (Ibid., p. 377). These men differed in their methodological approach
to education of the deaf. De l'Épée was a proponent of a "manual" communication system while Heinicke was firmly convinced that an "oral" commuication system was best suited to educating deaf children. Over a period of years a growing concern regarding methodology became evident. Considerable research effort has been expended in examining the performances of children educated through differing communication systems (Quigley and Frisina, 1961; Birch and Stuckless, 1965; Montgomery, 1966; Quigley, 1969). It has been demonstrated that the results of the differing instructional methodologies, discussed above, were within one month of each other on a grade-score rating (Birch and Stuckless, 1966). Comparison of results of reading performance level studies (Annual Survey of Hearing Impaired Children and Youth, 1969; Furth, 1966; Quigley, 1969) revealed that, whether educated orally or through a simultaneous method of instruction deaf children do not develop reading skills commensurate with their hearing peers. It is probable, then, that concern over instructional methodology may be less important than other considerations in educating deaf children.

A reading study (Furth, 1966) revealed that eighty-eight per cent of the deaf sixteen year olds studied were functioning below a grade five performance level. These results made it apparent that education of the deaf, irrespective of methodology, has encountered difficulties in the area of reading.

One must bear in mind that the test batteries used were designed for hearing children and purported to measure reading skills. The tests presupposed language competency. However, deaf children approach a reading test with a very restricted competency in language, and therefore results are not necessarily a reflection of reading skills per se; rather, they reflect some combination of reading skills and language competencies.

Hence, Furth's report of deaf children's depressed performance on reading test batteries was a reflection of both reading skill and language competence deficiencies.

It would seem that a great deal of time and energy has been expended either supporting, decrying, or investigating the efficacy of a particular instructional methodology. Further, deaf children appear to be deficient in language competency yet little study has been directed toward examination of this variable. The present investigation, although restricted to some aspects of the language, attempted to provide some information related to language competency in deaf children.

To imply that the input methodology was the only concem of educators of the deaf would be inaccurate. While the manual-oral discussions continued, many teachers of the deaf have realized the importance of language. Consideration of comparisons between deaf and hearing children led teachers and researchers to the conclusions that the deaf child had a resultant deficiency in his "experiential background". Several research studies have dealt with the topic of the vocabulary of the deaf child (Fitzgerald, 1949; Foy, 1966; Kennedy, 1959; Richardson, 1957). There also have been several papers and programs prepared to assist the teacher with the guidance of the language acquisition process. Such programs as the "Barry Five Slate System", and "Wing Symbols", and the "Fitzgerald Key" were the results of these studies. However, these systems have not served as a complete model for the English language. Although simple statements were generally handled adequately, many complex structures were not readily described by the models.

The approach to developing language in the deaf child has been one of presenting the material to the child and expecting him to "learn"
correct usage through reference to a classification system. Eric Lenneberg (1967) makes reference to this approach to language and the point he makes is worthy of consideration:

In contrast to the hearing child, who is simply surrounded by a sea of sentences, well-formed and poorly formed and who builds up his sentence-making skills without knowing how, the deaf child is usually imediately introduced to theoretical gramar. In the course of the first year of language instruction, he is told that he must speak in "sentences" and that a proper sentence is made up of "nouns" and "verbs", that nouns must have "articles", and so on. These theoretical terms are written on the blackboard and also appear in some of the books that are used in the lower grades. Thus we have a situation in which the children are on the one hand quantitatively deprived of a large body of examples, and on the other hand are immediately given a meta-language, a language about the language which they do not yet have. Their own spontaneity of putting out the type of primitive sentences ... apparently the necessary developmental stage that must precede the complete unfolding of grammar in hearing children, is restricted by teachers who do not tolerate answers in "incomplete sentences". The child's flow of communication is constantly stopped by the teacher's instructions "to complete the sentence", which is accompanied by a theoretical discussion of how to do this ("verb is missing", "the article is not correct", etc.).

This mode of instruction raises an important question. Is it possible to instruct somebody how language works by giving him rules - particularly when he has little language as yet? (pp. 322-3).

Hearing children do not learn English through such a meta-language. They receive information about the structure of the language by listening to others speaking English. Once they have some ideas, or rules, describing language, they attempt to use them and they make mistakes. For the most part, they are not immediately stopped; generally the rules are reinforced or corrected by parental repetition and expansion of the child's sentence (e.g. child says "Daddy home" and mother says "Yes, Daddy is home"). In other words, the hearing child has his parents' productions as a model of the language and he has their repetitions or expansions of his productions to correct his ideas of the rules of English structure.

The deaf child, on the other hand, does not receive a similar language input and kence does not develop linguistic competency comensurate with his hearing peers. In fact, he often arrives at schcol, aged five, rith little, if any, vocabulary and an extremely limited understarding of English.' It rould seem reascnable for the teachers to take on the role of parents and provide adequate models for the child through whatever medium seems most appropriate. This approach to language development is fairly common in schools for the deaf but it is not sufficiently developed. All too soon the meta-language and corrections mentioned by Lenneberg do appear and the child is lost in his attempts to sort out the structures of English.

In order to improve the approach to language development it is imperative that the language acquisition processes of deaf children be more clearly understood. The information gained from such study is certain to assist the development of more comprehensive language programs for deaf children.

Recently, language competency has been reconsidered in the light of new models of language acquisition for hearing children (Katz and Postal, 1964; Chomsky, 1965). Development of new theories of language acquisition has led to a reconsideration of the linguistic competency of deaf children (Iorenbraun, 1969; Schmitt, 1969; Quigley, 1971).

Consideration of the rorks of these and other authors explains, to a degree, why there has been difficulty in developing effective materials and programs adapted to the deaf child; for until the recent development of Generative theory and Transformational gramar models (T-G gramar theory), there has been no sound comprehensive theory dealing mith the language acquisition process.

In order to clarify some of the concepts of these theories and
their applicability to the language of deaf children, a brief summary is presented below.

The writings of Noam Chomsky, Theorist, describe the basic thinking of generative grammar theorists. W. C. Ritchie (1967) gives a brief description of Chomsky's works:

In recent years ... Chomsky and his colleagues have ... concentrated on the construction of formal accounts of the linguistic "knowledge" that a native speaker possesses. ... Chomsky is attempting ... to account for the native speaker's ability to interpret any one of an infinite number of "possible" utterances in ... a language. ... Chomsky has proposed that the study of those influences on behavior which come under the heading of "knowledge" possessed by the organism is logically primary and therefore must be carried to a fairly advanced stage before behavior can be studied fruitfully. Chomsky's position seems to be that we cannot expect success in the study of "how" an organism "uses" stored information (or knowledge) in "behaving" until we have succeeded reasonably well in understanding "what" information it is that the organism has stored. (i.e., what "knowledge" the organism "possesses") ... From these considerations it follows that knowledge formation or acquisition (the process of storing information, e.g., about utterances) must take place before knowledge "use" (use of information already stored) (pp. 45-47).

Chomsky stated that we should not be atterpting to explain a child's language through analysis of his productions before we examine his 'knowledge' of the language. This, one would logically expect, means that the receptive level of the language is a more informative avenue of study, at least initially. However, Chomsky developed the theory beyond this point. He noted that children can of ten cope, both receptively and expressively, with language that they had not previously encountered in their environment. Of particular import was the fact that the child produced utterances that he had never heard; that is, he generated sentences that he had not prèviously encountered. A summary of Chomsky's thought on this phenomenon follows:


#### Abstract

A consideration of the character of the grammar that is acquired, the degenerate quality and narrowly limited extent of the available data, the striking uniformity of the resulting gramar, and...the independence of intelligence, motivation, and emotional state, over wide ranges of variation, leave little hope that much of the structure of the language can be learned by an organism initially uninformed as to its general character (Chomsky, 1965, p. 58).


Chomsky postulated that children have an innate capacity for language acquisition in general and that they must learn the rules of their native language. It is through a combination of the innate capacity and the acquired knowledge about utterances of the native language (resulting from reception and judgements regarding gramaticality) that a child eventually reaches a point where he produces utterances of the native language.

While this theory is derived from considerations of hearing children, it is assumed, by the researcher, to be equally applicable to deaf children. If one can assume that a hearing child is born with an innate capacity for language acquisition, it does not seem unreasonable to assume the same of a deaf child. Further, the hearing child combines the capacity for language acquisition with a wealth of auditory input (that is, models of English) to develop a theory about utterances of English and it appears logical to assume that the deaf child combines his innate capacity for language acquisition with a severely limited and distorted input to develop what well may be a theory grossly different from that of a hearing child-for whether the information received be oral, manual, written, or any combination thereof, it is not equal to the amount received by a hearing child, nor is the input encountered in as many different situations as is normal for a hearing child. If the assumptions are true it would then follow logically that the deaf child's use of his theory about English would result in the difficulties he experiences in trying to interpret our models. This problem is compounded
by hearing impairment as the child does not receive the full utterance clearly and therefore cannot make the appropriate corrections to his theory.

There is a need for information describing deaf children's linguistic competence. Studies attempting to describe children's linguistic competence are limited to the study of linguistic performance; that is, competence must be inferred from performance. It follows that statements about linguistic competence reflect a theory about what a child knows of language.

In order to examine language performances, there must be a grammar a set of rules - for the language being studied. The rules are designed primarily, to demonstrate the relationships within a language. Hence these rules are primarily for the teacher and researcher and not for the child. That is, the child does not consciously learn the rules in order to learn the language.

As previously mentioned, it was not until recent times that a good grammar for English was written. The T-G grammar theories presented by researchers such as Chomsky (op. cit.), Katz and Postal (1964), and others have contributed toward the construction of the most comprehensive models of the rules governing the English language. The T-G gramar theory is not yet a complete explanation of all possible utterances in English but it is better than anything available in the past and is still developing.

On a very simplistic level, the basics of the transformation aspects of the theory were explained by Roberts (1968):

Grammar is essentially about sentences...at the beginning we must confine our attention to the sentence and in particular to the very simple sentences that form the foundation of the more complicated sentences we generally use.

These simple sentences we call "kernel" sentences. ...A sentence that is not a kernel sentence is called a "transform". Transforms are made by making changes on the structure of kernel sentences, reworking them, or combining them (pp. 9,10,57.).

The interpretation of this complex theory is simplified and slightly dated in its references to kemel sentences; however, one or two brief examples may serve to clarify the role of transformational gramar in the study of children's language.

Questions that can be answered yes or no are called 'yes/no questions'. The transformation that changes a simple-active-declarative (SAD) statement into a yes/no question is called a 'yes/no question transformation', or, more simple, T-yes/no ( $T_{Q}$ ). Given the SAD sentence, "She is his mother.", the question form is "Is she his mother?". According to Roberts, the rules of the transformation are as follows:


The double arrows are markers indicating "transformation". The numerals represent the changing pitch patterns of the voice, ' $l^{\prime}$ indicates a low pitch while '3' is a relatively high pitch.

Given the statement "John waited.", the question form is, "Did John wait?". However, the rules goveming this transformation are more complex. The rules are:

$$
\begin{aligned}
\mathrm{NP}+\text { tense }+ \text { verbal }+2-3-1 \Longrightarrow \\
\text { John }+ \text { past }+ \text { wait }+2-3-1 \Longrightarrow \\
\text { tense }+\mathrm{NP}+\text { verbal }+2-3-3 \\
\text { past }+ \text { John }+ \text { wait }+2-3-3
\end{aligned}
$$

Note that there is a floating tense. In English, whenever this happens a special transformation (T-do) becomes obligatory the prord 'do' must be
added to 'carry' the tense. Hence:
past + John + wait $+2-3-3 \Longrightarrow$
do + past + John + wait + 2-3-3
As 'do + past' in English becomes 'did', the statement is "Did John wait?"
In the latter example, the rules of the grammar involved a combination of transformations ( $T_{Q}$ and $T$-do) to explain the correct statement. These examples present only the briefest glimpse of the complex way in which utterances of the English language are organized and related to each other through transformational grammar.

## Summary

While there has been considerable research dealing with the development of communication skills in the deaf, most of the emphasis has been on the efficacy of particular methodologies of instruction. As a result of developments in the field of linguistics, recent research has been directed toward assessment of the linguistic skills of deaf children.

The traditional methods of language instruction in schools for the deaf have involved the use of a meta-language and the teaching of rules governing correct English language productions. In the light of T-G grammar theories, it appeared that educators of the deaf child may have been presenting a set of governing rules that the child was unable to cope with. This approach to language development did not account for the deaf child's grammar - or set of rules - which may have been grossly deviant from the grammar of a hearing person.

The use of the T-G gramar theories may provide a means of describing the deaf child's competency with English through an organizational system for examining the set of rules or grammar he is using. These descriptions
of competency are, necessarily, theoretical because the descriptions are inferred from linguistic performance.

## CHAPTER II

PROBLEM
I. Statement of the Problem

There is some information on language performances of deaf children but these early studies are generally directed toward normative (Stuckless and Farks, 1966) or descriptive (Heider and Heider, 1940; Goda, 1964) information. In these types of studies the researchers were hampered by an inadequate theory of the grammar of the English language.

The T-G gramar theories provide a more complete and unifying model from which to work. Since 1967 there have been a few T-G gramar studies of deaf children's language skills. These studies have provided some much needed information concerming linguistic competence as reflected through performance in written and oral situations. There is, however, a continuing need for more information describing linguistic competencies of young deaf children. In particular there is a need for more detailed analysis of the comprehension and production of a limited number of structures. In order to improve the language teaching techniques there must be more information delineating the operational rules of a deaf child's gramar. One such study (Schmitt, 1969) deals with the generative rules of Kernel, Negative, Passive, and Passive-Negative structures in 8-17 year old deaf children. There are no studies dealing with the generative rules governing SAD structures and yes/no transforms of younger deaf children aged 6-9 years. It is during these early years at school that deaf children develop many language skills and patterns that they will continue to use throughout their lives. In view of their limited language input and the seemingly
deviant patterns of functioning developed, this investigation attempted to delineate some of the developmental and operational patterns of 6-9 year old deaf children working with SAD structures and yes/no transforms. All items were restricted to the use of be as Aux in each structure.

It should be noted that the present study dealt with written responses to a structured situation. The information sampled did not represent all of the English language competencies a deaf child possess. In fact, a very restricted reflection of linguistic competency resulted from experimental conditions. Subjects were taught response patterns for particular structures and then asked to transfer their learning to other structures given some data. The scope of the present study was restricted to examination of comprehension and production of singular and plural SAD structures and yes/no transforms using be as Aux in the present and past tenses.

## II. Related Research

There have been many studies of deaf children's language skills. The investigations of deaf children's language skills have generally been normative or descriptive; if analytic, they were bound by inadequate theories of English grammar. Several recent studies have utilized T-G grammar theories in examining the linguistic performances of deaf children. One study (Stuckless and Marks, 1966) attempted to develop normative data while others endeavored to describe the developmental patterns of language growth (Quigley, 1971; Marshall and Quigley, 1970; Taylor, 1969). These studies gathered important data on developmental processes. However, studies such as those mentioned above must be complemented by analytic studies. Description of the developmental patterns alone is insufficient;
there is also a need for information detailing the process whereby the child arrives at a Farticular point. The earliest study attempting to describe the generative rules used by a deaf child mas done by Coocer (1965). He conducted a study of morphological habits in an attempt to discover rules governing deaf children's gramar usage, and he thereby established that tests could be conducted with seven year olds through nonaural procedures, and that receptive control preceded productive control for most morphological patterns. However, the study did not deal with syntax and therefore no information mas available as to the development of rules governing structural aspects of the English language.

In 1967, another study (1foores, 1967) involving deaf children and their linguistic abilities was reported. The study was designed to investigate the ability of "cloze" procedures to identify and isolate morphological, syntactic, and semantic differences between deaf and hearing grouns. This study demonstrated that the hearing children performed significantly better than the deaf on items studied and stressed the fact that standard measurement devices do not tap the linguistic abilities of deaf children. Once again, however, there was no attempt to describe the rules governing the linguistic performance of the deaf child.

Another cloze procedure study (N'arshall, 1970) examined the effect of context on deaf children's performances. l'arshall found that relative redundancy of linguistic cues substantially affected cloze performance. These findings mere not in accord mith postulations for hearirg children and served, as in the l.oores' study, to emphasize that deaf children's performance is not predictable on the basis of knomledge of hearing chilciren's performance. !'arshall did not describe rules governing tre functioning of the grarmar of the deaf child.

In 1969 Iowenbraun attempted to deal with the question of hor a deaf child uses English. She exemired the development of syntactic rules in the oral language of deaf children. Of particular import to this thesis Was the first section of Lomenbraun's investigation. Oral responses to picture stimuli were recorded and analysed using a $\mathrm{F}-\mathrm{G}$ grammar theory. Quantitative and qualitative productions improved with age and did not closely parallel the sequence of skills taught in the language program of the school.

In general, studies reported above have not dealt with specific constructs of English but have dealt with more global concerms such as hom the deaf child uses English given some restricting conditions. Schmitt (1969) examined the competence of deaf children in a much more restrictive experiment. A T-G grammar theory guided the exploration of the abilities of $8,11,14$, and 17 year old deaf children to comprehend and produce simple sentences varying on the dimensions of transformation (Kernel, Negative, Passive, Passive-Negative) and time (past, present progressive, future). ©ualitative analysis of results focused on patterns of incorrect responses in an effort to detect incorrect underlying rules Which deaf children might have been using to process sentences. Three rules mere discovered which could account for most of the errors made. These were designated:
(a) the $M P_{2}-M P_{1}$ Rule, wich permits reversal of Noun Phrase 1 arci loun pharase 2 in transitive verb, reversible sentences;
(b) the Eassive-Active Rule, which specifies the ignoring of passive transformation markers and permits the processing of passive sentences as actives; and
(c) the No Negative Rule, wich specifies the ignoring of negative marisers ard permits the processing of negative sentences as positives.

Scrmitt stated that extersions and elaborations of his tecrniques should
have implications for language diagnosis and for future study of the language dynamics of deaf children. Extensions and elaborations of Schmitt's techniques rere employed in this study.

Schmitt also concluded that the discovery of incorrect underlying rules of syntactic competence had implications for language remediation and instruction.

Power (in progress) is studying deaf children's acquisition of the Passive Voice in an attempt to gain more information about the PassiveActive Rule described by Schmitt. Research techniques being employed are similar to Schmitt's techniques. The study deals with 10 to 18 year old deaf children.
III. Definition of Terms

The definitions used in this study are:
Pre-lingually deaf - a mean hearing loss greater than 65dB ISO in the better ear for the frequencies of 500,1000 , and 2000 Hz . with onset of deafness prior to two years of age.

ISO - International Organization for Standardization reference zero level for pure-tone audiometers.
linguistic competence - "the speaker-hearer's knowledge of his language" (Chomsky, 1965).
linguistic performance - the speaker-hearer's "actual use of language in concrete situations" (Chomsky, 1965).
knowledge of language - an innate capacity for language acquisition.
knowledge about utterances - a combination of the knomledge of language and linguistic input from the surrounding environment creating a primitive granmar.
comprehension - a subject attends to a stimulus sentence and selects a picture which represents the sentence.
production - a subject attends to a picture and selects or writes a sentence which represents the picture.

## IV. Rationale

Analyses of the results of this study were directed toward examining the linguistic competencies of young deaf children. The model for this examination is based on T-G grammar theory (Chomsky, 1965) which is assumed to underlie linguistic competence.

Previous discussion indicated that competence cannot be directly observed but that observation on tasks involving comprehension and production of language seemed to be an effective method of inferring the competence. The investigator designed four tasks (see Appendix A) for the purposes of collecting information regarding deaf children's comprehension and production of language.

The tasks used for these purposes in this study were designed to minimize extraneous experimental variables through the following procedures: (a) the tasks were paper and pencil, thereby eliminating oral-aural communication variables, (b) the tasks were constructed on four different levels. This enabled the experimenter to examine performances involving different skills, thereby gaining information as to competence and rules of operation on different structural tasks. It must be noted that the divisions made in the study were arbitrary and these divisions were not intended to reflect developmental stages; but, some structure was incorporated enabling data analysis. The results were not treated in a lock-step
stage theory fashion; rather attempts were made to demonstrate how particular deviant generative rules affected performance throughout the tasks of the study, (c) the measurements were completed in four sittings thereby avoiding historical variable contamination, (d) the tasks restricted the investigation to singular-plural SAD structures and yes/no transformations over the two tense forms and using be as Aux.

The SAD and yes/no transform structures were selected for study as they are two of the most basic grammatical competences (Menyuk, 1969; Schmitt, 1969). Further, there was no developmental and analytic information describing the young deaf child's competence with these structures.

The past and non-past tense variables were included to determine the effect of tense upon the student's performances.

The tasks were further restricted to tense-be considerations as that verb form has been commonly taught and used in schools for the deaf, and be has a high frequency of occurrence in many differing English structures. The tasks have been constructed to facilitate the measurement of competence in young deaf children.

The decision to investigate both comprehension and production skills was supported by the previously discussed theories presented by Chomsky and others.

Of the four tasks discussed below, justification for the first three tasks was supported by the research of Schmitt (1969).

## V. Instrumentation

The demonstration items were designed to teach the child how to respond to the tasks. The vocabulary and sentence structures used differed
from those used in the task items. (Vocabulary differences may be found in Appendix C). It may be noted that the demonstration items (Appendix B) were constructed in the present indefinite (to use traditional grammatical terminology) while the task items (Appendix A) were in the present progressive. Subjects were taught task response behaviors (Appendix D) for each of the task levels. That is, a subject was taught to read a statement and select the corresponding representative picture for task one. Similarly, the subject was taught to select a sentence for task two, complete a sentence for task three, and generate a sentence for task four. The subject was taught to respond to tense markers below pictures and in statements and to statement-question markers; however, he was not taught singular-plural agreement differentiation of the verb as all demonstration items were singular. Details of the administration procedures are included in Apperdix D.

The first task was designated "Comprehension". Comprehension was defined, for purposes of this study, as: (1) Subject (S) attended to the stimulus sentence. (2) S selected one of four pictures phich corresponded to the sentence. It was assumed, if the correct response was made, that the subject was able to extract the intended meaning of the structure and associate this meaning with the appropriate picture (in the case of SAD structures) or extract the meaning and associate it with the picture which would have resulted with the appropriate "yes" response (in the case of yes/no transforms). Results of studies indicated that this was the least difficult task (Cooper, 1965; Schmitt, 1969).

The second task was the first of three production tasks. Production, for purposes of this study, was defined in three ways, dependent upon the task. In the "Production-Selection" task - production was: (1) S attended
to a pictured situation plus tense marker (2) S selected one of four sentences printed below the picture. Only one of the four sentences was the appropriate descriptor while the remaining three sentences served as diagnostic distractors. It was assumed that the child extracted some meaning from attending to the pictures and that this meaning was encoded. Further, it was assumed that this encoded meaning was matched with the meaning of one of the four sentences presented below the picture. It was difficult to assume fixed order of associations in this task but it was logical that the procedure followed the sequence outlined above as it appeared to be the path of least resistance, that is - it appeared simplest, methodologically.

The third task - "Production-Completion" - involved another definition of production: (1) $S$ attended to a picture, tense marker, incomplete sentence frame and a punctuation marker (2) $S$ completed the sentence by selecting and arranging words provided in the task material.

This task then demanded a higher level of proficiency than the previous tasks (Schmitt, 1969). The subject must have encoded the pictured situation and then completed the structure to match his previously encoded structure.

The fourth task - "Production-Construction" - was more complex than the third and this necessitated another definition of production: (1) S attended to a picture, tense marker, and a blank line with a period or question mark at the end of the line, (2) $S$ constructed a sentence.

This last task appeared to be the most difficult as the subject was given only a picture and a punctuation marker for direction. It was assumed that the child, again, encoded the pictured situation and then constructed an appropriate sentence using his own generative rules.

The latter task was expected to be the most difficult experimentally as well as conceptually as past efforts had failed to elicit acceptable responses from subjects up to 14 years of age. It was expected that this barrier would be overcome through the sequencing of the tasks and the demonstration items (Appendices A and B).

The task items were not presented according to structural or tense category but rather by task category, all other variables being randomly distributed across the tasks. That is, the sequence of task presentation was: (item 1) Comprehension, (item 2) Production-Selection, (item 3) Production-Completion, (item 4) Production-Construction, (item 5) Comprehension, ... , with the tense and transformation variables being randomly distributed throughout all items. This approach was selected to assist the elicitation of Production-Construction responses and to avoid practice effect and/or incorrect pattern reproduction throughout one particular task. The organization of the tasks required the presentation of sixty four items. They were administered in four sittings in order to avoid subject fatigue. A review of the demonstration items preceded each sitting of the tasks.

METHOD

## I. Sampling and Subjects

The data for the study were drawn from students at the Jericho Hill School for the Deaf in Vancouver. The data were collected from all of the Jericho Hill School students satisfying selection criteria. The 10 subjects per age level were selected according to the following criteria: within six months of the age designation at the time of task administration; prelingually deaf; hearing levels greater than 65 dB (ISO) in the better ear (average loss at 500,1000 , and 2000 Hz. ); no apparent major handicaps other than deafness e.g. mentally retarded or emotionally disturbed. This was confirmed through medical records, teacher and supervisor corroboration. As discussed in Statement of the Problem, age levels selected were 6.0, 7.0, 8.0, and 9.0 years.

## II. Instruments

The four tasks were designed to reflect some of the subjects' operational rules for the English language. The diagnostic distractors for the first three tasks (Appendix A) represented linguistic errors typically made by deaf students.

Prior to the task administrations, each subject was shown the vocabulary charts (Appendix C). Each subject also completed the demonstration items (Appendix B) prior to administration of the tasks. Details of the procedure for administration follows in Procedure.

## III. Scoring

For purposes of a quantitative analysis, all responses were scored as correct (1) or incorrect ( 0 ) . Partially correct answers were considered in the content analysis of the data.

## IV. Examiners

Eight trained teachers of the deaf collected the data. All examiners were trained together in the same institution and were all able to communicate with deaf children through several media. The examiners received identical training in task, demonstration, and vocabulary administration. Each examiner was observed correctly administering the tasks prior to the experimental situation. Each examiner noted student responses on check lists (Appendix E) and followed the specifically stated Standard Administration Procedures (Appendix D). Each examiner administered the task items to five children from one age level. Examiners were randomly assigned to age levels, but because of transportation and timetabling restrictions, the students were not randomly assigned to examiners.

## V. Research Questions

1) Was there a significant increase in performance associated with increasing age? ( $6 \mathrm{yr} .<7 \mathrm{yr} .<8 \mathrm{yr} .<9 \mathrm{yr}$.
2) Was there a significant increase in task difficulty associated with levels $1-4 ?(1>2>3>4)$
3) Was there a significant difference between task performances on singular and plural Aux items?
4) Was there a significant difference between task performances on past and non-past items?
5) Was there a significant difference between task performances on simple-active-declarative statements and yes/no transforms?
6) Were deaf children using particular operational language rules which explained sore of their deviant language productions?

## VI. Design

Each subject was administered four sittings of the tasks. The sittings involved replications of task, singular/plural, tense, transformation, and sentence items. The design of the study is shown in Figures $I$ and 2.

Analysis of the results was effected through a five factor with repeated measures analysis of variance design. The levels of the five factors were: $A_{1}\left(6\right.$ yrs.) , $A_{2}\left(7\right.$ yrs.) , $A_{3}$ ( 8 yrs.), $A_{4}$ ( 9 yrs.); $B_{1}$ (Task 1), $\mathrm{B}_{2}$ (Task 2), $\mathrm{B}_{3}$ (Task 3), $\mathrm{B}_{4}$ (Task 4); $\mathrm{C}_{1}$ (Singular), $\mathrm{C}_{2}$ (Plural); $D_{1}$ (non-past), $D_{2}$ (past) ; and $E_{1}(S A D), E_{2}\left(T_{Q}\right)$. Factors $B, C, D$, and $E$ were crossed with another, and each was repeated over the four levels of A. The resulting sources of variation, along with their respective error terms and degrees of freedom, are given in Table 1.

## VII. Experimental Hypotheses

## Hypothesis 1

The average number of correct responses will increase with age.

| $k_{i}^{2}$ | $$ | $\begin{aligned} & H \\ & 2 \\ & i \end{aligned}$ | $k$ | $\frac{H}{n}$ |
| :---: | :---: | :---: | :---: | :---: |
| The dog is sitting． The bey is sittin： | $0>n$ | $3$ |  |  |
| Is the dog juriping？ Is the sinl lauch：n－？ | $2<$ | $\stackrel{\sim}{4}$ | $\cdots$ |  |
| The boy was laughing． The bov was crying． | $\theta$ ロハ | 0 | 0 | 4 |
| Was the girl drinking？ Was the ginl sleedinc？ | $2<$ | ＋ |  | $>$ |
| The boys are saimming． The bows are eatire． | $0>\infty$ | 70 |  | $\cdots$ |
| Are the boys sitting？ Are the coss furoinc？ | $2 \%$ | $\stackrel{\square}{0}$ | $\square$ | $H$ |
| The dogs were walking． The girls were drinking． | ODS | 0 | $\stackrel{3}{2}$ | H |
| Were the dogs eating？ <br> Were the girls sleeping？ | 21 | u |  |  |
| The boy is skipping． The bov is eating． | $0>0$ |  |  |  |
| Is the dog walking？ Is the bou swi－ming？ | $2 \%$ | 4 | $\cdots$ |  |
| The dog was sleeping． The dog was eating． | ロッい | 0 | 3 |  |
| Was the girl running？ <br> Was the girl walking？ | $2 \%$ | $\stackrel{4}{4}$ |  |  |
| The doys are laughing． The bovs are skioping． | ○ゝひ | 0 |  | $\cdots$ |
| Are the girls skipping？ Are the bovs iumping？ | $2 \div$ | $\hat{8}$ | 0 | $N$ |
| The girls were sitting． The girls were walking． | ロカル | 0 | $2$ |  |
| Were the girls eating？ Were the boys clapping？ | $2 \leqslant$ | 華 |  |  |

FIGURE 1
Study Design


FIGURE 2
Study Design (cont.)

TABLE 1
Sources of Variation, Error Terms, and Degrees of Freedom for ANOVA

| Source ${ }^{\text {a }}$ | Error Term | df | Source | Error Term | df |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Mean | R ( A ) | 1 | ACE | CER( A ) | 3 |
| A | $\mathrm{R}(\mathrm{A})$ | 3 | BCE | $\operatorname{BCER}(\mathrm{A})$ | 3 |
| B | BR(A) | 3 | ADE | DER(A) | 3 |
| C | $\mathrm{CR}(\mathrm{A})$ | 1 | BDE | $\operatorname{BDER}(\mathrm{A})$ | 3 |
| D | DR(A) | 1 | CDE | $\operatorname{CDER}(\mathrm{A})$ | 1 |
| E | ER(A) | 1 | BCR( A$)$ |  | 108 |
| R(A) |  | 36 | $\operatorname{BDR}(\mathrm{A})$ |  | 108 |
| $A B$ | BR(A) | 9 | $\operatorname{CDR}(\mathrm{A})$ |  | 36 |
| AC | CR(A) | 3 | $\operatorname{BER}(\mathrm{A})$ |  | 108 |
| BC | $\operatorname{BCR}(\mathrm{A})$ | 3 | CER(A) |  | 36 |
| AD | DR(A) | 3 | DER(A) |  | 36 |
| BD | $\operatorname{BDR}(\mathrm{A})$ | 3 | ABCD | $\operatorname{BCDR}$ ( A ) | 9 |
| CD | $\operatorname{CDR}$ ( A$)$ | 1 | ABCE | $\operatorname{BCER}(\mathrm{A})$ | 9 |
| AE | ER(A) | 3 | ABDE | $\operatorname{BDER}(\mathrm{A})$ | 9 |
| BE | BER(A) | 3 | ACDE | $\operatorname{CDER}(\mathrm{A})$ | 3 |
| CE | CER(A) | 1 | BCDE | $\operatorname{BCDER}(\mathrm{A})$ | 3 |
| DE | DER(A) | 1 | S(BCDE ) | $\operatorname{SR}(\mathrm{ABCDE})$ | 32 |
| BR(A) |  | 108 | $\operatorname{BCDR}(\mathrm{A})$ |  | 108 |
| CR(A) |  | 36 | $\operatorname{BCER}(\mathrm{A})$ |  | 108 |
| DR(A) |  | 36 | $\operatorname{BDER}$ (A) |  | 108 |
| ER(A) |  | 36 | $\operatorname{CDER}(\mathrm{A})$ |  | 36 |
| ABC | BCR(A) | 9 | ABCDE | $\operatorname{BCDER}(\mathrm{A})$ | 9 |
| ABD | $\operatorname{BDR}(\mathrm{A})$ | 9 | $A S(B C D E)$ | $\mathrm{SR}(\mathrm{ABCDE})$ | 96 |
| ACD | $\operatorname{CDR}(\mathrm{A})$ | 3 | $\operatorname{BCDER}(\mathrm{A})$ |  | 108 |
| BCD | BCDR( A ) | 3 | SR(ABCDE ) |  | 1152 |
| ABE | $\operatorname{BER}(\mathrm{A})$ | 9 |  |  |  |

Total: 2560

```
aMean = grand mean
A = age
B = task
C = singular/plural
D = tense
E = transformation
S = sentences
R = replicates
```


## Hypothesis 2

The average number of correct responses will decrease with task. (Task $1>$ Task $2>$ Task $3>$ Task 4 ). Hypothesis 3

There will be a larger average number of correct responses for singular statements than for plural statements. Hypothesis 4

There will be a larger average number of correct responses for past tense statements than there will be for present tense statements. Hypothesis 5

There will be a larger average number of correct responses for simple-active-declarative statements than for yes/no transforms.
VIII. Procedure

Subjects were selected according to the criteria noted above (Sampling and Subjects). Each subject completed the vocabulary, demonstration, and first sitting of the task items as per Standard Administration Procedures (Appendix D). The following day the same examiner administered the second sitting of the task items, again following instructions in Appendix D. The third and fourth sittings of the tasks were administered by the same examiner as per instructions (Appendix D), on the third and fourth days respectively. In a few instances, a subject completed the third and fourth sittings in one day, however, in each case, the subject was given an appropriate rest between sittings.

## CHAPTER IV

RESULTS
I. Models for Analyzing the Data

The data were analysed under two separate models. The first model was used to consider the quantitative results and the second model was used to consider the qualitative results. Each model will be discussed below.

Quantitative Analysis
Responses were scored as correct or incorrect ... 1 or $0 . .$. and it was therefore necessary to consider the effect of limitations of the number of criterion score values on the validity of using analysis of variance techniques. Hsu and Feldt (1969) investigated some specific problems that are pertinent to this study:

1. ... is the distribution of mean square ratios largely independent of the number of score units?
2. Do analysis of variance techniques, the short scale notwithstanding, have an advantage over the $\chi^{2}$-test of independence in detecting differences in central tendency? (p. 516).

Their conclusions were as follows:

1. ... With samples of 11 cases or more, no adjustment appears necessary in the tabled values of $F$ needed for significance at the 10 per cent, five per cent and one per cent levels.
2. When considering data with a limited number of score values, analysis of variance techniques have an advantage over the $\chi^{2}$-test of independence when the sample size is very small, when the study involves more than one factor, or when the primary interest is in the differences among means rather than the variances of the populations (p. 526).

The ANOVA's performed in this study indicated that there pere significant differences among levels of factors. In order to determine
how profiles ciffered, - statistical contrasts vere performed. Earlier discussion (Cnapter III - Experimental Hypotheses) implied that some contrasts were a priori (prediction of direction of differences) while others mere a posteiori (unspecified inter-action effects). Some of these contrasts were orthogonal while others were non-orthogonal. Games (1971) discussed several techniques for performing multiple comparisons of means. His article demonstrated that Bonferroni's test was the most suitable statistic for the present study. Bonferroni's t test permits orthogonal or non-orthogonal a priori or a posteiori contrasts. Results of the test are conservative.

Qualitative Analysis
A model, based on T-G gramar theories, was developed for purposes of analysis of the content of task responses. The model was task specific as considerations mere made for the unique properties of the be-irg verb in singular and plural statements (rules 13-18). The model allored for a complete description of a subject's performance on task items. The model is presented in Figure 3.

## II. Results of the Quantitative Analysis

Yeans and standard deviations for age levels. In order to demonstrate that the results were reflective of the age levels designated in the selection criteria, means and stancard deviations for the four age levels mere computed. Results are preserted in Table 2.

Means and standard deviations for hearirg levels. In order to demonstrate that the results were reflective of children with hearing levels designated in the selection criteria, means and standard deviations

Model of Task specif:c Rules

a


FIGURE 3
Model of Task Specific Rules

TABLE 2
Means and Standard Deviations for Age Levels

| Age Level | Mean (in months) | Standard Deviation <br> (in months) |
| :--- | :---: | :---: |
| $A_{1}-6$ yrs. | 74.5 | 3.9 |
| $A_{2}-7$ yrs. | 84.9 | 3.7 |
| $A_{3}-8$ yrs. | 97.7 | 3.3 |
| $A_{4}-9$ yrs. | 107.3 | 3.7 |

for the four age levels rere computed. Pesults are presented in Table 3.
A surmary of the analysis of variance is presented in Table 4.
The main effects for age (A), task (B) ${ }^{1}$, and singular/plural (C) were significant, and are examined in greater detail below.

Age contrasts (A). To determine the sources of variation among levels of the Age factor, Bonferroni $t$ tests were performed. A surmary of these contrasts is presented in Table 5.

The significant differences were between 7 yr . and 9 yr . levels. The mean for the 7 yr . olds was less than that of the 6 yr . olds, hence the 7 yr. olds and 9 yr . olds were also significantly different.

The first experimental hypothesis (Chapter III) indicated an expectation that the 6 year old $S$ s would have a mean significantly smaller than that for 7 year olds, which, in turn, should be significantly smaller than that for 8 year olds. However, a preliminary examination of the results (Appendix F) indicated that the 6 yr . olds' and the 7 yr . olds' means were similar and to contrast them would seem to be pointless. Schmitt's (1969) sarpling procedure provided three year mean differences between age groups in order to demonstrate significant changes in performance. On the basis of Schmitt's evidence and the mean differences (Table 5), the investigator selected 6 yr . olds and 9 yr . olds for the third contrast.

1. As assumptions of equal covariances in the pooled variance-covariarce matrix were not rei, a Creenhouse \& Geisser conservative $F$ test was performed for factors $B$ and $C(\dot{c}(1,36)$ for botn tests) with the results indicating significant differences at the .01 level. Greenhouse and Geisser $F$ tests for $A B$ and $A C$ interactions ( $d f(3,36)$ for both tests) indicated significance at the .05 level.

## TABLE 3

Means and Standard Deviations for Hearing Levels

| Age Level | Mean (in dB$)$ | Standard Deviations <br> (in dB) |
| :--- | :---: | :---: |
| $\mathrm{A}_{1}-6$ yrs. | 98.0 | 10.1 |
| $\mathrm{~A}_{2}-7$ yrs. | 100.5 | 13.8 |
| $\mathrm{~A}_{3}-8$ yrs. | 98.0 | 12.3 |
| $\mathrm{~A}_{4}-9$ yrs. | 95.5 | 16.9 |

TABLE 4
Summary of Analysis of Variance

| Source | df | Mean Square | F |
| :---: | :---: | :---: | :---: |
| MEAN ${ }^{\text {a }}$ | 1 | 181.6891 | 163.8406 |
| $A^{\text {b }}$ | 3 | 7.4838 | $6.7487^{* *}$ |
| $B^{\text {c }}$ | 3 | 15.1046 | 96.7340 ** |
| $c^{\text {d }}$ | 1 | 36.5765 | $45.0421 * *$ |
| $\mathrm{D}^{\text {e }}$ | 1 | . 3062 | 1.7579 |
| $\mathrm{E}^{\text {f }}$ | 1 | .1562E-02 | 0.0084 |
| $\mathrm{R}(\mathrm{A})^{\mathrm{g}}$ | 36 | 1.1089 |  |
| AB | 9 | . 5841 | $3.7413^{* *}$ |
| AC | 3 | 4.0213 | $4.9521^{* *}$ |
| BC | 3 | . 4463 | 2.4136 |
| AD | 3 | . 3072 | 1.7639 |
| BD | 3 | . 1593 | 1.1640 |
| CD | 1 | . $9179 \mathrm{E}-05$ | 0.0001 |
| AE | 3 | . 2588 | 1.3864 |
| BE | 3 | . 2963 | 1.8198 |
| CE | 1 | . $7656 \mathrm{E}-01$ | 0.3297 |
| DE | 1 | 1.4062 | $14.3253^{* *}$ |
| BR(A) | 108 | . 1561 |  |
| $\mathrm{CR}(\mathrm{A})$ | 36 | . 8120 |  |
| DR(A) | 36 | . 1742 |  |
| ER( A$)$ | 36 | . 1867 |  |
| ABC | 9 | . 1453 | 0.7858 |
| ABD | 9 | . 2201 | 1.6078 |
| ACD | 3 | . 2218 | 1.6739 |
| BCD | 3 | . $5728 \mathrm{E}-01$ | 0.5574 |
| ABE | 9 | . 8559E-01 | 0.5256 |
| ACE | 3 | . 4219E-01 | 0.1817 |
| BCE | 3 | . 1713 | 1.1850 |
| ADE | 3 | . 2072 | 2.1116 |
| BDE | 3 | . 5635 | $4.2421^{* *}$ |
| CDE | 1 | . $5624 \mathrm{E}-01$ | 0.5424 |

TABLE 4 (cont.)

| Source | df | Mean Square | F |
| :---: | :---: | :---: | :---: |
| $\operatorname{BCR}(\mathrm{A})$ | 108 | . 1849 |  |
| $\operatorname{BDR}$ ( A$)$ | 108 | . 1369 |  |
| $\operatorname{CDR}(\mathrm{A})$ | 36 | . 1325 |  |
| $\operatorname{BER}(\mathrm{A})$ | 108 | . 1628 |  |
| CER(A) | 36 | . 2321 |  |
| DER(A) | 36 | . 9816E-01 |  |
| ABCD | 9 | . 1694 | 1.6481 |
| ABCE | 9 | . 1161 | 0.8029 |
| ABDE | 9 | . 1548 | 1.1656 |
| ACDE | 3 | . 6978E-01 | 0.6730 |
| BCDE | 3 | . 1302 | 1.0509 |
| $S(\operatorname{BCDE})^{\mathrm{h}}$ | 32 | . 1640 | 1.6294 |
| $\operatorname{BCDR}$ ( A$)$ | 108 | . 1027 |  |
| $\operatorname{BCER}(\mathrm{A})$ | 108 | . 1446 |  |
| $\operatorname{BDER}$ ( A ) | 108 | . 1328 |  |
| $\operatorname{CDER}$ ( A ) | 36 | . 1036 |  |
| ABCDE | 9 | . 2979 | 2.4050 * |
| AS ( $\operatorname{BCDE}$ ) | 96 | . 1005 | 0.9982 |
| $\operatorname{BCDER}(\mathrm{A})$ | 108 | . 1238 |  |
| SR( $(\mathrm{ABCDE})$ | 1152 | . 1006 |  |

```
    * - probability < . 05
** - probability < .OI
a - grand mean
b - age
c - task
d - singular/plural
e - tense
f - transform
g - subjects nested within age
h - sentences nested within BCDE
```

TABLE 5
Summary of Age (A) Contrasts

** - equivalent to significance at . Ol level

Task contrasts (B). To determine the source of variation among levels of the Task factor, Bonferroni $t$ tests were performed. A summary of these contrasts is presented in Table 6.

The contrasts performed were determined by the second experimental hypothesis (Chapter III). Tasks two, three, and four were demonstrated to be significantly different mhile tasks one and two were not significantly different. However, it was concluded that tasks one, three and four were significantly different as the mean for task one was larger than the mean for task two.

Singular/plural contrasts (C). It was apparent that the subjects had less difficulty with singulars than they had with plurals (504 correct singulars vs. 188 correct plurals).

Age $x$ Task contrasts ( $A B$ ). The age-by-task ( $A B$ ) interaction was statistically significant (Table 4). Selected contrasts were performed to determine which tasks differentiated between age levels. A summary of the Bonferroni contrasts for $A B$ interactions is presented in Table 7.

Task one differentiated between 7, 8, and 9 year age levels. As the cell means for $A_{1} B_{1}$ was smaller than that of $A_{2} B_{1}$, it was apparent that task one also differentiated between 6 and 8 year levels.

Task three differentiated between 7 and 8 year olds, however, task four differentiated between 8 and 9 year old subjects.

The age-by-task interactions are graphed in Figure 4.
Age $x$ Singular/plural contrasts (AC). The interaction between age and singular/plural was significant (Table 4). In view of the significant difference in favor of the singular factor, age levels were contrasted within the 'singular' level of the singular/plural factor. A summary of the Bonferroni contrasts for these selected AC interactions is presented in Table 8.

TABLE 6
Summary of Task (B) Contrasts

Estimated Contrast
. 01 Confidence Interval for $\Psi_{j}$
$\hat{\Psi}_{4}=$ Task 1 vs. Task $2=.0578$
$-.0022 \leqslant \Psi \leqslant .1178$
$\hat{\Psi}_{5}=$ Task 2 vs. Task $3=.2000$
$.1400 \leqslant \Psi \leqslant .2600^{* *}$
$\hat{\Psi}_{6}=$ Task 3 vs. Task $4=.0609$
$.0009 \leqslant \Psi \leqslant .1209^{* *}$

Means

Task $1=.4250$
Task $3=.1671$
Task $2=.3671$
Task $4=.1062$
** - equivalent to significance at .Ol level

TABLE 7
Summary of Age $x$ Task (AB) Interaction Contrasts

Estimated Contrast . 01 Confidence Interval for $\Psi_{j}$
$\hat{\Psi}_{7}=A_{2} B_{3}$ vs. $A_{3} B_{3}=.1 .313$
$.0017 \leqslant \Psi \leqslant .2609$
$\hat{\Psi}_{8}=A_{3} B_{3}$ vs. $A_{4} B_{3}=.1125$

- . $0171 \leqslant \Psi \leqslant .2421$
$\hat{\Psi}_{9}=A_{2} B_{4}$ vs. $A_{3} B_{4}=.0813$
-. $0483 \leqslant \Psi \leqslant .2109$
$\Psi_{10}=A_{3} B_{4}$ vs. $A_{4} B_{4}=.1313$
$\psi_{11}=A_{2} B_{1}$ vs. $A_{3} B_{1}=.1875$
$\hat{\Psi}_{12}=A_{3} B_{1}$ vs. $A_{4} B_{1}=.1813$
$.0017 \leqslant \Psi \leqslant .2609$
$.0579 \leqslant \Psi \leqslant .3171$
$.0517 \leqslant \Psi \leqslant .3109^{* *}$

Cell Means

|  | $\mathrm{B}_{1}$ | $\mathrm{~B}_{2}$ | $\mathrm{~B}_{3}$ | $\mathrm{~B}_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}_{1}$ | .2812 | .3687 | .0687 | .0375 |
| $\mathrm{~A}_{2}$ | .2875 | .3125 | .7500 | .0312 |
| $\mathrm{~A}_{3}$ | .4750 | .3687 | .2062 | .1125 |
| $\mathrm{~A}_{4}$ | .6562 | .4187 | .3187 | .2437 |

** - equivalent to significance at . Ol level
where: $A_{1}=6$ yrs; $A_{2}=7 \mathrm{yrs} ; A_{3}=8 \mathrm{yrs} ; \mathrm{A}_{4}=9 \mathrm{yrs}$

$$
B_{1}=\text { Task } 1 ; B_{2}=\text { Task } 2 ; B_{3}=\text { Task } 3 ; B_{4}=\text { Task } 4
$$



FIGURE 4
$A B$ Interactions

TABLE 8
Summary of Age $x$ Singular/Plural (AC) Contrasts
$\hat{\Psi}_{13}=A_{2} C_{1}$ vs. $A_{3} C_{1}=.1500$
$-.0593 \leqslant \Psi \leqslant .3593$
$\hat{\Psi}_{14}=A_{3} C_{1}$ vs. $A_{4} C_{1}=.2438 \quad .0345 \leqslant \Psi \leqslant .4531^{* *}$

Cell Means
$A_{1} C_{1}=.2500$
$A_{3} C_{1}=.4000$
$\mathrm{A}_{2} \mathrm{C}_{1}=.2500$

$$
A_{4} C_{1}=.6437
$$

** - equivalent to significance at .Ol level
where: $A_{1}=6 \mathrm{yrs} ; A_{2}=7 \mathrm{yrs} ; A_{3}=8 \mathrm{yrs} ; \mathrm{A}_{4}=9 \mathrm{yrs}$

$$
C_{1}=\text { Singular }
$$

It was clear that 9-year-olds performed significantly better on singular noun and verb task items than did 8-year-olds. Six and 9 year age levels were significantly different as were 7 and 9 year age levels. In each case the better performance was associated with the nine year age level.

Tense $x$ Transform contrast (DE). This contrast was of particular interest as experimental hypotheses three and four (Chapter III) were not supported and selected contrasts of the interaction may explain the lack of significant main effects. Examination of cell means (Table 9) indicated that response patterns for levels of factor $D$ were different (e.g. $\mathrm{D}_{1} \mathrm{E}_{2}>\mathrm{D}_{1} \mathrm{E}_{1}$ and $\mathrm{D}_{2} \mathrm{E}_{2}<\mathrm{D}_{1} \mathrm{E}_{1}$ ). This pattern may account for non-significance of the hypothesis. A similar pattern was noted for the factor E cell means. However, there was a difference between cell means for $D_{1} \mathrm{E}_{2}$ and $\mathrm{D}_{2} \mathrm{E}_{2}$. The Bonferroni contrasts is presented in Table 9.

Task x Tense X transform contrasts (BDE). The differences between Tasks was highly significant (see Table 4). Because the task factor was so significant, selected contrasts were performed to investigate the contribution of within task variance to the three factor interaction. A summary of the contrasts is presented in Table 10.

The contrasts demonstrated that the task factor was responsible for considerable variation within the three factor interaction.

Age $x$ Task $x$ Singular/plural $x$ Tense $x$ Transform contrasts (ABCDE). The ABCDE interaction was of little consequence as all significance levels reported above were at the . 01 level while this interaction was at the . 05 level. However the first three factors were previously demonstrated to be significant, as mere several interactions noted above. These results may have been responsible for part of the five factor interaction. In

TABLE 9
Summary of Tense $x$ Transform (DE) Contrasts

| Estimated Contrast | .01 Confidence Interval for $\Psi_{j}$ |
| :---: | :---: |
| $\hat{\Psi}_{15}=D_{1} E_{2}$ vs. $\mathrm{D}_{2} \mathrm{E}_{2}=.0688$ | $.0090 \leqslant \Psi \leqslant .1286^{* *}$ |
| $\mathrm{D}_{1} \mathrm{E}_{1}=.2531$ | $\mathrm{D}_{2} \mathrm{E}_{1}=.2781$ |
| $\mathrm{D}_{1} \mathrm{E}_{2}=.3015$ | $\mathrm{D}_{2} \mathrm{E}_{2}=.2328$ |

** - Equivalent to significance at . 01 level
where: $D_{1}=$ Non-past; $D_{2}=$ Past

$$
E_{1}=\text { Simple-active-declarative; } E_{2}=\text { Yes/no question }
$$

TABLE 10
Summary of Task $x$ Tense $x$ Transform (BDE) Contrasts

Estimated Contrast
. 01 Confidence Interval for $\Psi_{j}$
$\hat{\Psi}_{16}=B_{2} D_{1} E_{2}$ vs. $B_{3} D_{1} E_{2}=.2938$
$\hat{\Psi}_{17}=B_{2} D_{2} E_{2}$ vs. $B_{3} D_{2} E_{2}=.1563$
$\hat{\Psi}_{18}=B_{2} D_{1} E_{1}$ vs. $B_{3} D_{1} E_{1}=.1063$
$\hat{\Psi}_{19}=B_{2} D_{2} E_{1}$ vs. $B_{3} D_{2} E_{1}=.2438$
$.1698 \leqslant \Psi \leqslant .4178^{* *}$
$.0323 \leqslant \Psi \leqslant .2803^{* *}$
$-.0177 \leqslant \Psi \leqslant .2303$
$.1198 \leqslant \Psi \leqslant .3678^{* *}$

Cell Means

|  | $\mathrm{D}_{1} \mathrm{E}_{1}$ | $\mathrm{D}_{1} \mathrm{E}_{2}$ | $\mathrm{D}_{2} \mathrm{E}_{1}$ | $\mathrm{D}_{2} \mathrm{E}_{2}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~B}_{1}$ | .4375 | .4812 | .4437 | .3375 |
| $\mathrm{~B}_{2}$ | .2875 | .4562 | .3875 | .3375 |
| $\mathrm{~B}_{3}$ | .1812 | .1625 | .1437 | .1812 |
| $\mathrm{~B}_{4}$ | .1062 | .1062 | .1375 | .0750 |

** - equivalent to significance at . 01 level
where: $B_{1}=$ Task $1 ; B_{2}=$ Task 2; $B_{3}=$ Task $3 ; B_{4}=$ Task 4
$D_{1}=$ Non-past; $D_{2}=$ Past
$E_{1}=$ Simple-active-declarative; $E_{2}=$ Yes/no question
order to investigate this possibility, five contrasts were performed to examine the interaction of age with differing levels of the remaining four factors. A summary of the contrasts is presented in Table 11.

The selected contrasts performed did not examine all possible pair-vise contrasts of the five factor interaction and the results, therefore, were not assumed to have isolated the total source of variance within the interaction. Rather, the intent was to demonstrate that the particular significances discussed earlier were, at least partially, responsible for the five factor interaction.

Examiner differences. Each examiner administered the tasks to five children from one age level. Hence, examiners were nested under age ( $\mathrm{X}(\mathrm{A})$ ). Use of more than one examiner may have resulted in differences in administration procedures. In order to investigate this possibility, the data were re-analyzed with a sixth factor (examiner) included in the ANOVA. The results of that analysis are presented in Appendix I.

Examiner contrasts. There was a clear differentiation of results collected by different examiners. In order to determine the source of variation in this factor, Bonferroni contrasts were performed. As a result of population (Chapter V, p. 65) and cell mean differences (Table 12), contrasts were made between examiners at the $A_{3}\left(8 \mathrm{yrs}\right.$ ) and $A_{4}$ ( 9 yrs. ) age levels. A summary of the contrasts is presented in Table 12.

Examiner x Singular/plural contrasts (CX(A)). The CX(A) interaction was significant at the . 01 level (Appendix I). Bonferroni contrasts were utilized to locate the sources of variation. Age levels three and four were selected for the same reasons discussed in the previous subsection (Examiner contrasts). A summary of the contrasts is presented in Table 13.

TABLE 11
Summary of Age $x$ Task $x$ Singular/Plural $x$ Tense $x$ Transform (ABCDE)

## Estimated Contrast

.05. Confidence Interval for $\Psi_{j}$
$\begin{array}{ll}\hat{\Psi}_{20}=A_{1} B_{4} C_{1} D_{1} E_{2} \text { vs. } A_{4} B_{1} C_{1} D_{1} E_{2}=.4000 & .1107 \leqslant \Psi \leqslant .6893^{*} \\ \hat{\Psi}_{21}=A_{2} B_{1} C_{1} D_{2} E_{2} \text { vs. } A_{4} B_{1} C_{1} D_{1} E_{2}=.5000 & .2107 \leqslant \Psi \leqslant .7893^{*} \\ \hat{\Psi}_{22}=A_{2} B_{3} C_{1} D_{2} E_{2} \text { vs. } A_{4} B_{4} C_{1} D_{1} E_{2}=.3500 & .0607 \leqslant \Psi \leqslant .6393^{*} \\ \hat{\Psi}_{23}=A_{2} B_{3} C_{1} D_{1} E_{2} \text { vs. } A_{4} B_{3} C_{1} D_{2} E_{2}=.6500 & .3607 \leqslant \Psi \leqslant .9393^{*} \\ \hat{\Psi}_{24}=A_{1} B_{1} C_{1} D_{1} E_{2} \text { vs. } A_{4} B_{1} C_{1} D_{2} E_{2}=.4500 & .1707 \leqslant \Psi \leqslant .7393^{*}\end{array}$

## Cell Means

$$
\begin{aligned}
& A_{1} B_{1} C_{1} D_{1} E_{2}=.4000 \\
& A_{4} B_{1} C_{1} D_{1} E_{2}=.7000 \\
& A_{2} B_{1} C_{1} D_{2} E_{2}=.2000 \\
& A_{4} B_{1} C_{1} D_{2} E_{2}=.8500 \\
& A_{1} B_{4} C_{1} D_{1} E_{2}=.0500
\end{aligned}
$$

$$
\mathrm{A}_{2} \mathrm{~B}_{3} \mathrm{C}_{1} \mathrm{D}_{1} \mathrm{E}_{2}=.1000
$$

$$
A_{4} B_{3} C_{1} D_{1} E_{2}=.4500
$$

$$
A_{2} B_{3} C_{1} D_{2} E_{2}=.2000
$$

$$
A_{4} B_{3} C_{1} D_{2} E_{2}=.7500
$$

$$
A_{4} B_{4} C_{1} D_{1} E_{2}=.5500
$$

*     - equivalent to significance at .05 level

Where: $A_{1}=6 \mathrm{yrs} ; A_{2}=7 \mathrm{yrs} ; A_{4}=9 \mathrm{yrs}$

$$
\begin{aligned}
& B_{1}=\text { Task } 1 ; B_{3}=\text { Task } 3 ; B_{4}=\text { Task } 4 \\
& C_{1}=\text { singular } \\
& D_{1}=\text { Non-past } ; D_{2}=\text { Past } \\
& E_{1}=\text { Simple-active-declarative } ; E_{2}=\text { Yes/no question }
\end{aligned}
$$

TABLE 12
Summary of Examiner (X) Contrasts
$\hat{\Psi}_{25}=X_{1} A_{3}$ vs. $X_{2} A_{3}=.1938$
$\hat{\Psi}_{26}=X_{1} A_{4}$ vs. $X_{2} A_{4}=.2188 \quad .0074 \leqslant \Psi \leqslant .4302{ }^{* *}$

Cell Means

$$
\begin{aligned}
& X_{1} A_{1}=.1562 \\
& X_{2} A_{1}=.2218 \\
& X_{1} A_{2}=.2125 \\
& X_{2} A_{2}=.1406
\end{aligned}
$$

$$
\begin{aligned}
& X_{1} A_{3}=.1937 \\
& X_{2} A_{3}=.3875 \\
& X_{1} A_{4}=.3000 \\
& X_{2} A_{4}=.5187
\end{aligned}
$$

** - equivalent to significance at . 01 level
where: $X_{1}=$ Examiner 1; $X_{2}=$ Examiner 2

$$
A_{1}=6 \mathrm{yrs} ; A_{2}=7 \mathrm{yrs} ; \mathrm{A}_{3}=8 \mathrm{yrs} ; \mathrm{A}_{4}=9 \mathrm{yrs}
$$

## TABLE 13

Summary of Examiner $x$ Singular/Plural (CX(A)) Contrasts
Estimated Contrast . 01 Confidence Interval for $\Psi_{j}$

| $\hat{\Psi}_{27}=X_{1} A_{3} C_{2}$ vs. $X_{2} A_{3} C_{1}=.4125$ | $.1407 \leqslant \Psi \leqslant .6843^{* *}$ |
| :--- | :--- |
| $\hat{\Psi}_{28}=X_{1} A_{4} C_{2}$ vs. $X_{2} A_{4} C_{1}=.6875$ | $.4157 \leqslant \Psi \leqslant .9593^{* *}$ |

## Cell Means

$$
\begin{aligned}
& X_{1} A_{3} C_{2}=.1750 \\
& X_{2} A_{3} C_{1}=.5875
\end{aligned}
$$

$$
\begin{aligned}
& X_{1} A_{4} C_{2}=.1437 \\
& X_{2} A_{4} C_{1}=.8312
\end{aligned}
$$

** - equivalent to significance at . Ol level
where: $X_{1}=$ Examiner $1 ; X_{2}=$ Examiner 2

$$
\begin{aligned}
& A_{3}=8 \text { yrs } ; A_{4}=9 \text { yrs } \\
& C_{1}=\text { Singular } ; C_{2}=\text { Plural }
\end{aligned}
$$

Examiner $x$ Tense contrasts ( $D X(A)$ ). The examiner by tense interaction was of lesser significance (. 05 alpha level; Appendix I). An attempt was made to locate the source of variance for the interaction through application of Bonferroni's test. Again, age levels $A_{3}$ ( 8 yrs.) and $A_{4}$ ( 9 yrs.) were investigated. A sumary of the contrasts is presented in Table 14.
III. Results of the Qualitative Analysis

Detailed analysis of the content of responses for all subjects was considered too large a task for this investigation as the intent was not to describe a complete grammar but to describe some of the operational rules of these children. Consequently, two subjects per age level were selected from the population studied. An attempt was made to select those subjects whose performance was average. That is, their results were neither the best nor the worst of the data collected. Subjects selected were numbers, $5,6,16,19,24,30,33$, and 40. A summary of their responses on tasks three and four is presented in Appendix H, while task one and two responses are presented in Appendix $G$.

Each subject's responses will be analysed and reported separately to assure clarity of analysis and reporting. The results of the analyses will be discussed in Chapter V.

Subject \#5 (Age: 6 yrs. 5 mos.). Task one. One error was noted on singular responses. Subject 5 selected a picture representing a plural noun and past tense markers when the correct response for this particular yes/no transform (\#301 - Appendix G) was a picture representing singular noun and past tense markers. All other responses involving singular markers were correct, regardless of tense or transform.

## TABLE 14

Summary of Examiner $x$ Tense ( $D X(A)$ ) Contrasts

| Estimated Contrast | . 05 Confidence Interval for ${ }_{\text {¢ }} \mathrm{j}$ |
| :---: | :---: |
| $\begin{aligned} & \hat{\Psi}_{29}=X_{1} A_{3} D_{2} \text { vs. } X_{2} A_{3} D_{1}=.2500 \\ & \hat{\Psi}_{30}=X_{1} A_{4} D_{1} \text { vs. } X_{2} A_{4} D_{2}=.2500 \\ & \hat{\Psi}_{31}=X_{1} A_{4} D_{2} \text { vs. } X_{2} A_{4} D_{1}=.1875 \end{aligned}$ | $\begin{aligned} & .1484 \leqslant \Psi \leqslant .3516^{*} \\ & .1484 \leqslant \Psi \leqslant .3516^{*} \\ & .0859 \leqslant \Psi \leqslant .2891^{*} \end{aligned}$ |
| Cell Means |  |
| $X_{1} A_{3} D_{2}=.1312$ | $\mathrm{X}_{2} \mathrm{~A}_{4} \mathrm{D}_{1}=.5187$ |
| $\mathrm{X}_{2} \mathrm{~A}_{3} \mathrm{D}_{1}=.3812$ | $\mathrm{X}_{1} \mathrm{~A}_{4} \mathrm{D}_{2}=.3312$ |
| $\mathrm{X}_{1} \mathrm{~A}_{4} \mathrm{D}_{1}=.2687$ | $\mathrm{X}_{2} \mathrm{~A}_{4} \mathrm{D}_{2}=.5187$ |

*     - equivalent to significance at . 05 level
where: $X_{1}=$ Examiner $1 ; X_{2}=$ Examiner 2

$$
\begin{aligned}
& A_{1}=6 \mathrm{yrs} ; A_{3}=8 \mathrm{yrs} ; \mathrm{A}_{4}=9 \mathrm{yrs} \\
& D_{1}=\text { Non-past } ; D_{2}=\text { Past }
\end{aligned}
$$

Every plural present response mas incorrect. In each instance subject 5 selected the picture representirg plural noun and past tense markers. All plural past task items were completed correctly.

Task two. A similar pattern to the task one singular responses تas noted. 4 ll sincular staterents were selected correctly nith the exception of one yes/no transform. In this instence the correct singular past staterent was not selected, rather a plural non-past Aux with a singular noun (N) \#as selected (\#114). When dealing with olurals, subject 5 again experienced difficulties. Of the eight plural iters, one was completed correctly (\#106). When presented with a plural non-past SAD item, subject 5 selected a statement containing a plural noun and singular past Aux ( $\boldsymbol{H} 1 \mathrm{IO}$ ). The remsining six errors were consistent in that a statement in the correct tense was selected, but the Aux was almays singular Then it should have been plural. In other words, the student operated with the tense rule but not the agreement rule (concord).

Task three. The first task three item presented (\#103) was completed incorrectly. Subject 5 used a past tense Aux for a non-past terse item.

Item 411 was correct structurally. A substitution error ('Cog' for 'boy') was noted but it ras not considered to be of any consequence in this study as the error did not occur more than once. The item mas, therefore, considered correct.

Singular past SAD items rere completed correctly while plural SAD items were competed incorrectly. In every instance a singular fux was selected for plural statecents and tro of the four rouns selected mere singular.

Subject 5 was unable to complete yes/no transform (Appendix $H$ ).

Singular yes/no transform items elicited a double SAD statement corresponding to the pictured situation. Plural yes/no transform items resulted in plural nouns being selected one half of the time with singular Aux selected throughout. Two of the four plural yes/no transforms were left incomplete (No response recorded in one of the spaces provided). With the exception of \#103, tenses were used correctly throughout the task.

Task four. Singular SAD items were generated correctly and plural SAD items were generated incorrectly. Two of the four incorrect plural items contained singular nouns and a singular Aux was used in every instance. As in task three, subject 5 was unable to deal with yes/no transforms. All yes/no generations were incorrect. In the case of singular items, a correct corresponding SAD was produced, while plural yes/no items elicited corresponding plural SAD structures with a singular Aux.

Tenses were used correctly throughout task four.
Sumary. Subject 5 demonstrated mastery of tense markers and a beginning of number concepts. She did not attach an inflectional ending to singular nouns and did use the 's' morpheme on all but one plural noun in task four. Subject 5 did not demonstrate knowledge of subject-verb concord in plural situtations as a singluar Aux was consistently selected. The subject was unable to generate or complete a yes/no transform but was able to perform correctly on 3 of 4 singular yes/no questions in both tasks one and tro. A summary of Subject 5's operational rules, relative to this study, are as follows:

Structural Description (SD) for both SAD and $T_{Q}$ statements

$$
\Longrightarrow \text { The }+N+n o+\left\{\frac{i s}{v i a s}\right\}+V+i n g
$$

Reference to the model of task specific rules (Figure 3) demonstrated that Subject 5 used rules 7 and 9 inconsistently, did not use rules 14 ,

17, 18, and 20 but used all other rules of the model correctly.
Subject \#6 (Age: 6 yrs. 3 mos.). Task one. Two singular items were completed correctly (one SAD and one $T_{Q}$ ). All of the six remaining singulars were treated as plurals. Tense usage was inconsistent in SAD structures and consistently past throughout $T_{Q}$ responses. Two plural items were also completed correctly (again, a SAD and a $T_{Q}$ ) but the remaining responses were inconsistent in tense and number.

Task two. Singular past SAD statements were selected for all singular SAD statements, regardless of tense, while the three errors in singular $T_{Q}$ statements were number errors of concord (i.e. were girl). One plural non-past $S A D$ and two plural past $T_{Q}$ statements were correctly selected but the remaining five selections indicated many concord inconsistencies (both tense and number).

Task three. None of the completions were correct. Subject 6 generally supplied a noun with a plural inflection inconsistently attached. This response pattern was noted throughout $S A D$ and $T_{Q}$ items. It was of interest that $T_{Q}$ items had two blanks in each completion item and the student generally supplied the same noun twice with inconsistencies in plural inflection. Item 415 elicited a $\overparen{V+\text { ing response. }}$

Task four. Subject six continued the pattern discussed above, that is supplying $N+\underline{s}$ for all items. However, it was of interest that in all instances but one a $\mathrm{V}+$ ing was supplied whenever the stimulus pic. ture included boys.

Sumary. Subject 6 generally appeared to function at a one word level on production tasks. Inconsistencies were noted throughout tasks on tense and number (both concord and plural inflections). A general operational rule for subject 6 on tasks $1-4$ is noted below:
$S D$ for $S A D$ and $T_{Q}$ structures


Reference to the model confirmed that rules $6-9$ were used inconsistently and there was no evidence of the other rules of the model being used.

Subject \#16 (Age: 7 yrs. 2 mos.). Task one. Subject 16 selected singular pictures for all singular SAD statements. Three of the four singular pictures selected were marked as non-past tense, hence 3 of 4 responses were correct (2 non-past and 1 past). Singular $T_{Q}$ statements elicited selection of three singular non-past pictures. None of the plural items resulted in correct responses. Three of four plural SAD item responses were singular non-past and three of four plural $T_{Q}$ item responses were plural. Subject 16 selected singular non-past more frequently than plural or past responses.

Task two. Two SAD items were correctly selected (I singular and 1 plural) otherwise the selections reflected what appeared to be a random choice of Aux. The $T_{Q}$ items resulted in one correct response (singular non-past) with singular Aux selected in all but one instance. Tense of the Aux was used inconsistently.

Task three. Subject 16 did not complete any of the items correctly. In every instance a correct noun was selected; however the plural inflection was used only twice in plural items. A pattern of combining what appeared to be an undefined inflection (was) with the noun was apparent throughout the task. This patterm led to two correct responses in $T_{0}$ items (singular past) as the 'ras' inflection filled the first blank and the noun filled the second thereby completing a $\mathrm{T}_{\mathrm{Q}}$ statement.

Task four. A similar pattern of inflectional 'was' plus noun
was noted throughout SAD singular and plural and singular $T_{Q}$ items. There were two unexplained responses (\#116 and \#104) where it appeared that $V+i n g$ was used. The plural $T_{Q}$ items seemed to confuse the subject as his patterm was broken. A non-past tense inflection appeared once (\#108); the order was reversed once (\#308); and the inflection was omitted once (\#112); another response did not fit any pattern (\#304).

Summary. Subject 16 generally appeared to be functioning with the rule that:
$S \longrightarrow \underline{\text { was }}+N+(s)$ with was as an undefined inflection and 's' selected inconsistently. According to the model the subject was using rules 6-9 inconsistently and demonstrated a partial understanding of rule 3 but there was no evidence of use of other rules.

Subject \#19 (Age: 7 yrs. 3 mos.). Task one. Four singular SAD items resulted in selection of plural pictures. Tense marker selections were inconsistent. $\mathrm{T}_{\mathrm{Q}}$ items caused subject 19 to select non-past singular pictures three times resulting in two correct choices. Plural SAD items resulted in selection of three plural pictures but again tense marker selection was inconsistent. Two of the four responses were correct. Plural $T_{Q}$ items elicited three singular and three non-past responses. Tense and number responses were inconsistent throughout the task.

Task two. Singular Aux statements were selected for singular SAD items three of four times. Plural Aux statements were selected for plural SAD items. However, tense errors resulted in only $50 \%$ accuracy on SAD items. $T_{Q}$ items resulted in inconsistent selection of singularplural, past-non-past Aux statements. Only $121 / 2 \%$ accuracy was noted for $T_{Q}$ items.

Task three. Throughout the task subject 19 supplied either
$\mathrm{V}+$ ing or $\mathrm{N}+(\mathrm{s})$. There did not appear to be any consistency of choice. In $T_{Q}$ transforms, the first blank was used and the second was not. In one plural $T_{Q}$ item the student used is and are in the tro blanks. Task four. Subject 19 generally supplied $V+$ ing for all items. Exceptions to this rule were: a plural noun generation for a plural SAD item; no response when the student could not find the desired verb on the chart; and one $N+V$ ing for a singular $T_{Q}$ item.

Summary. Subject 19 was inconsistent in tense and number differentiations. He generally supplied a noun if the verb was given, otherwise, he generated a verb. He appeared to use the following two rules: SD for $S A D$ and $T Y / N$ structures

1. $\Longrightarrow \mathrm{V}+\mathrm{ing}$, and
2. If given $\mathrm{v}+$ ing $\Longrightarrow N+(s)+\mathrm{V}+$ ing

The first rule did not correspond to the model of task specific rules; however the second rule appeared to be a crude application of rule 2 of the model.

Subject \#24 (Age: 7 yrs. 11 mos.). Task one. Responses for singular SAD and $T_{Q}$ items were in the correct tense in seven of the eight instances and correct number was used for five of the eight items. Plural SAD and $T_{Q}$ items resulted in five correct tenses and one correct number for the eight items.

Task two. Responses to singular SAD and $T_{Q}$ items were correct for seven of the eight items with the eighth item incorrect in both tense and number. Plural $S A D$ and $T_{Q}$ statements selected were in the correct tense seven times but the number of the Aux was correct only twice in eight responses.

Task three. It appeared that subject 24 experienced some task
confusion as he interchanged tux and noun positions in some statements. Singular $\operatorname{SAD}$ statements were completed correctly with the exception of the Aux being consisterity placed in tree wrong position (preceding the noun). Singular $T_{Q}$ statements were correctly completed. Plural SiD items again had the fix in the prong position and there mas continued difficulty with the number of the Aux. Plural $T_{Q}$ statements were correctly completed with the exception of the number of the Aux.

Task four. Singular SAD items again resulted in a $T_{Q}$ response; however it was noted that the verb was omitted in three of the four generatins. Singular $T_{Q}$ items resulted in generation of one correct response and three corresponding SAD statements and the verb was omitted once. Plural items demonstrated a continued confusion of $S A D$ and $T_{Q}$ responses (one-half were correctly generated) as well as continued difficulty with the number of the Aux. The verb was omitted in five of the eight generations.

Summary. Subject 24 generally appeared to comprehend singular statements but did not appear to comprehend or use a plural Aux in SAD or $T_{Q}$ items. There was a confusion of rules for completing or generating SAD and $T_{Q}$ statements. In some instances, task four items (generation) resulted in omission of the verb. Subject 24 appeared to complete the tasks according to the following rules of operation:

SD

$$
\begin{aligned}
& S A D \Longrightarrow n+n o+\left\{\frac{i s}{\text { was }}\right\}+(\sqrt{V+i n g})
\end{aligned}
$$

It was apparent that rules 19 and 20 of the model mere confused ard that rules 14,17 and 18 mere not used in the tasks; otherwise the rules of the model spear to have been utilized.

Subject \#30 (Age: 8 yrs. 6 mos.). Task one. All singular items were completed correctly and five of the eight plural items were also completed correctly. The three plural errors were the result of selection of pictures marked as non-past tense when the statements were past tense.

Task two. Seven of the eight singular items were correctly selected. One plural Aux was selected for a singular item. Seven of the eight plural items were incorrect as the result of selection of singular Aux statements.

Task three. All singular items were completed correctly and all plural items were incorrect. The errors were the result of singular Aux consistently being used for plural items.

Task four. All singular SAD statements were correctly generated and all singular $T_{Q}$ statements were correct with the exception of the determiner. As in previous tasks, the singular Aux was used for plural items. Generation of plural $T_{Q}$ transforms also resulted in omission of the determiner in every question.

Summary. Subject 30 generally demonstrated comprehension and production skills in all areas examined with the exceptions of plural Aux, and generation of $T_{Q}$ statements. The student's rules of operation were summarized as follows:

SD

$$
\begin{aligned}
& \left.S A D \Longrightarrow \text { The }+N+n o+\left\{\frac{i s}{\text { was }}\right\}+\sqrt{V}\right\} \text { ing } \\
& T Y / N \Rightarrow\left\{\frac{i s}{\left.\frac{\text { was }}{}\right\}+N+n o+V+\text { ing }}\right.
\end{aligned}
$$

The subject did not use model rules 14,17 and 18 and he reduced rule 20.

Subject \#33 (Age: 8 yrs. 8 mos.). Task one. A tense error was
made on one singular response and the other seven responses pere correct. Plural past pictures were selected for seven of the eight plural items. This pattern resulted in only three correct responses.

Task two. All singular statements were selected correctly. All plural items were incorrect as a result of selection of singular Aux statements.

Task three. With one exception, responses had exactly the same pattern as in task two. That is, singular statements were correct and singular Aux was used for plural statements. The only exception was the omission of one plural inflection of a noun for a plural $T_{Q}$ statement.

Task four. The generation items followed the same pattern as task three responses, with one exception. The noted difference in performance was that subject 33 generated $S A D$ statements for $T_{Q}$ transforms.

Summary. Subject 33 did not generate $T_{0}$ transforms but did appear to comprehend them. She could also complete a partially provided $T_{Q}$ structure (Task 3). Cenerally, the student was unable to deal with plural Aux regardless of tense. The operational rule summarizing task performance is as follows:
$S D$ for both $S A D$ and $T_{Q}$ structures

$$
\Longrightarrow \text { The }+N+n o+\left\{\frac{i s}{\underline{\text { was }}\}+V+i n g}\right.
$$

It was noted that the student appeared to be using all of the model With the exception of rules $14,17,18$, and 20.

Subject \#40 (Age: 8 yrs. 9 mos.). Task one. All singular items were completed correctly and six of the eight plural itens were also completed correctly. The two errors were confusions of tense and number.

Task tro. Seven of the eight singular statements were correctly selected while only two plural items were correct. The singular error was
the result of a selection of a plural instead of singular Aux statement. The six plural item errors were the result of selection of singular Aux statements.

Task three. All singular items were completed correctly. Three of four plural SAD statements were completed incorrectly as a result of selection of a singular Aux. It was noted that a plural inflection of a noun ras omitted in one item. Plural $T_{Q}$ items also utilized a singular Aux in three instances; however the fourth item was completed with a plural Aux in the wrong tense.

Task four. There was an apparent confusion of $S A D$ and $T_{Q}$ structures. All singular items were correctly generated except that one $T_{Q}$ statement was generated for a SAD item and vice versa. Seven of eight plural generations used a singular Aux. The eighth item used a plural Aux correctly but the determiner and plural inflection of the noun were omitted.

Summary. Subject 40 generally was able to comprehend and produce singular statements but experienced some difficulty with plural Aux items. It was noted that the plural inflection of the noun was sometimes omitted when the number of the noun and Aux were in conflict. There was a confusion of structural pattern for $S A D$ and $T_{Q}$ statements. There were five items where plural Aux was used correctly. One of the five items also included a reduction of the structure through the omissions of the determiner and plural inflection of the noun. Subject 40 appeared to operate on the tasks according to the following rules:

SD

$$
\begin{aligned}
& \mathrm{SAD} \Longrightarrow \text { The }+N+(n o)^{2}+(b e+c)^{I}+\sqrt{+}+\mathrm{ing} \\
& T Y / N \Longrightarrow(b e+c)^{I}+\text { the }+N+n o+V+\text { ing }
\end{aligned}
$$

It was also noted that rules 19 and 20 were confused at times. This was probably a confusion of task response and not necessarily a reflection of the subject's normal performance.

1. It was noted that (be +C ) was used inconsistently. Subject 40 generally used the singular Aux (rules 13, 15, and 16 of the model) but occasionally he used a plural Aux (rules 14, 17, and 18).
2. Number was used inconsistently - occasionally the plural inflection of noun was omitted if it mas in conflict with the number of the Aux.

## CHAPTER V

DISCUSSION

## I. Interpretation of Results

## Quantitative Results

The purpose of this study was to investigate the six research questions previously stated (p. 23). The results pertaining to the first five questions were considered in this section.

Age. The first research question queried the effect of age on performance. The main effect for the age factor was significant at the . 01 level. Further statistical investigation led to the conclusion that the source of variation was between six and nine year levels ( $A_{1}$ and $A_{4}$ ) and seven and nine year levels ( $A_{2}$ and $A_{4}$ ). The first of these findings appeared to be in agreement with the Schmitt (1969) results where a three year age difference was used to demonstrate significant differences. However, progress with older children ( 14 yrs. +) such as those in the Schmitt study is so much slower than that of young children (Annual Survey of Hearing Impaired Children and Youth, 1969) that smaller age ranges were expected to be significantly different.

The multiple contrasts of age-by-task interactions revealed that task three (production-completion) differentiated between seven and eight year olds ( $A_{2}$ and $A_{3}$ ) while the more difficult task four (production-construction) differentiated between eight and nine year olds $\left(A_{3}\right.$ and $\left.A_{4}\right)$. The decrease in mean performance levels between six and seven year olds ( $A_{1}$ and $A_{2}$ ) was considered to be a reflection of the previously discussed lack of language skills common to most young deaf children. Both groups generally
were functioning on a one or two word sentence level and were unable to deal with tense, number, and structural considerations. The two groups were, therefore, approximately equal in performance on the tasks.

Task. The second research question (p. 23) dealt with the levels of difficulty of the four levels of tasks. Statistical evidence confirmed that the levels of task were significently different. Bonferroni contrasts indicated that the sources of variation were significant differences between task levels two and three, and levels three and four with the differences in the predicted direction. There was no significant difference between tasks one and two. This result' led the investigator to reconsider the nature of the tasks. In retrospect it seemed that the second task was not a production item in that a stimulus picture and tense marker were observed and the subject then read four sentences and selected the correct one. The requirements of the task were similar to those of the first task-comprehension. In other words, the second task level was inaccurately named and should have been designated a comprehension task.

The difference between means for tasks one and two (Table 6) was in the predicted direction but the difference was not statistically significant at the . Ol level of significance. As both tasks one and two required attention to picture and sentence items, they were probably reflecting similar comprehension skills. Task trio may have been slightly more difficult (Table 6) as particular attention was required of several differing Aux constructions. An increase in skill associated with age was reflected in parts of the tasks.

Singular/plural. Results of the ANOVA indicated that the subjects experienced significantly core difficulty with plural than with sirgular markers. The result was not surprising and would have been of interest
only if the opposite results were found. It ras interesting to note that the tasks were sensitive to age-associated skill increases (Table 8). These differences were most apparent at the production level (Appendix F - tasks 3 and 4).

Tense and transform. The predictions of significant main effects for tense and transform factors were not supported. The significant interaction of these tro factors ras investigated. Results of the contrasts indicated that the source of variation was between non-past and past tenses of $T_{Q}$ statements, with non-past tense results being significantly larger. This finding is of interest in light of the language methodology in use in schools for the deaf. The language instructional techniques for young deaf children concentrate on past tense simple-active-declarative structures. It was expected that the language teaching at school would generalize to performance on the tasks. However, the demonstration items concentrate on singular, past-non-past, and $S A D-T_{Q}$ differentiations. It appeared that this emphasis was generalized to the task performances. The relative success with $T_{Q}$ items indicated that the children could comprehend and produce such structures. The three factor interactions involving task, tense, and transform were demonstrated to be, in part, the result of strong task differentiation (Table 10).

The five factor interaction was significant of the .05 level and this result was demonstrated (Table 11) to be, in part, the result of a combination of previously discussed significant main effects and interactions.

Examiner. The examiner variable was demonstrated to be significant at the . 01 level. Previous discussion (pp. 23-24) indicated that two examiners were randomly assigned to each age level but that students were not randomly assigned to examiner. This procedure resulted in a
confounding of factors. Four of the five $A_{3}(8 \mathrm{yr}$.$) students assigned to$ one examiner and all of the $A_{4}(9 \mathrm{yr}$.$) students assigned to another examiner$ were above average in their academic and social performances and were placed in off-campus classes. That is, their school program was under the jurisdiction of the school for the deaf but their classrooms were situated in regular public schools. These children were generally superior to their deaf peers in linguistic skills and were placed in off-campus classes to enable further development of social and academic skills and integration with their hearing peers.

The teachers, supervising teacher, principal, and superintendent were interested in comparing the results of these "advanced" children with the results of their peers. Their interest and terminology supports the premise that an exceptional group of children was assigned to these particular examiners.

The results of Bonferroni contrasts (Table 12) indicated that significant differences were located within the $A_{4}$ ( 9 yr. ) level. The significantly better group was composed of children who were in the off-campus classes. The examiner-by-singular/plural and examiner-by-tense tests for interactions indicated both $A_{3}$ and $A_{4}$ levels as having examiner differences. While the results of the examiner factor investigation were not easily interpretable due to confounding, it appeared that the population differences associated with examiner were of considerable importance. Qualitative Results

Qualitative analyses of the responses attempted to provide an answer to the sixth research question (p. 24). An interpretation of the results of each subject analysis follows:

Subject \#5. Subject 5 demonstrated a knowledge of the structure of

SAD statements but ras urable to cone with ${ }^{2}$ G statements at tre produciicn level (rule 20 of the model). This difficulty ras not apoarent at the comprehersion level (tasks ore and tro). The student res unable to deal with plural Aux statemer.ts. That is, the stucent did not understand that an 're' morpheme must be selected in the preserce of a plural row (rule 14) and that the 're' moroheme combired mith terse to produce either were or ane (rules 17 and 18). Subiect 5 appeared to be using all other rules in the model.

Subject \#6. Pesponses to all tesks demonstrated irconsistencies in performence dealing with number and tense. lumber inconsistency was noted in both plural inflection of nouns and Aux agreement. It was apparent that subject 6 was functioning at a one word level. There was scme indication of an arareness of rules of number for nouns; however, the rules were not consistently utilized and probably not fully understood.

If the child portrayed in the stimulus picture was a boy, subject six supplied a $V+$ ing response. Homever, the irg inflection can not be credited as it was provided on the vocabulary chart (Appendix C). Hence, the subject generally provided a verb if the subject mas a boy.

Consideration of the nature of the input of the vocabulary charts led to an interesting explanation of the subject's resoonse pattern. Each picture describing a verb has a boy poriraying the action. It apoeared that the subject used that information to develcp a rule. The oversight (usirg all boys for verb pictures) served to demonstrate tret the form of the linguistic irput is crucial to language leaming.

The procuction of a noun for a senterce is topical of early procuctions of young rearing children. This phenomenon $\because: \equiv s$ expleined by yokeill (1970):


#### Abstract

... the child combined no mords until 17 months. It is of considerable interest that most of the words noted above are 'nouns'; those that are not nouns are 'adjectives', i.e. attributes of nouns. 'Verbs' are completely missing ... , the syntactic category of nouns is unique in that it alone appears in every grammatical relation. The richness of nouns in holophrastic speech (production), therefore, possesses an advantage for communication. Because all gramatical relations are implicit, nouns can be used in every available relation without endangering the comprehension of adults. Verbs do not have this property (pp. 24-25).


Subject \#16. A consistent response pattern was noted in tasks one and two. Task one responses utilized non-past tense and task two responses employed a singular Aux for most of the items. The production tasks (3 and 4) also reflected a consistency in response pattern. Subject 16 appeared to function according to the rule that a sentence consisted of an undefined inflection (was) plus a noun. The response patterns throughout the four tasks indicated that the student was aware of the existence of rules in the language but had not yet been able to successfully define the rules. The one word sentence (noun) pattern was similar to that of the previous subject (\#6); however the appearance of the inflection indicated that the subject had progressed beyond that level and was attempting to define another operational rule. The use of was was probably a direct reflection on the demonstration items but it served to demonstrate that the subject was aware of further operational rules and willing to attempt to use an ill-defined concept of a rule. McNeill (1970) stated: "children form relationships with ease, but require time to learn the restrictions on relationships" (p. 104). He also pointed out that it is the role of experience to slowly develop these restrictions. Subject 16 was, then, attempting to use a relationship that was probably perceived during the demonstration items.

Subject ${ }^{\# 1} 19$. This student was also performing at a basic level in language skills. Tense and number inconsistencies were evident throughout tasks one and two and performance on tasks three and four was generally at the one word level with indications of two word structures emerging. Subject 19 generally produced a verb for task four items. This response was probably task specific, in that it was possible to accurately describe a situation with a verb from the vocabulary chart. In this particular study, the verb did designate the central communication of the situation and the student could replace the one word noun sentence with a verb with a resultant increase in commication of content of the item.

However, in task three performances the verb was given and the student then generally provided a noun to complete the statement. This response patterm indicated a partial understanding of sentence structure (i.e. $\mathrm{NP}+\mathrm{VP}$ ). There was also one instance of $\mathrm{N}+\mathrm{V}+$ ing generation for the task four items.

Subject \#24. The student was generally able to cope with sentence structures. There were definite indications that structural differentiations were made between $S A D$ and $T_{Q}$ statements. However, the inconsistency of performance indicated that the rules were not completely established in the student's grammar. Subject 24 did not appear to be using the number rule which requires that an 're' morpheme be used with be in the presence of a plural noun. Hence, all performances resulted in production of singular, or 's' morpheme, Aux constructions. This particular rule is specific to the verb to be and it was, therefore, not surprising that the rule was not yet leamed as "the contribution of experience will... be largest in those regions of grammar where general rules apply least." (!'cNeill, 1970, p. 104) and these young deaf children have had a very
limited linguistic experience. It was also of interest that subject 24 omitted the verb and progressive inflection when required to generate complete structures. This operation mas similar to findings reported by Bloom (1970) where " ... the operation of negation within a sentence increased its complexity, and thereby necessitated reduction in the surface structure" and " ... it appeared that reduction was the result of something more than a production limitation on sentence length" (pp. 156 and 165).

Task four responses required the use of many operational rules in order to generate correct statements. This increase in task complexity relative to tasks one, two, and three could have been responsible for the reduction of the structure.

Subject \#30. The results of subject 30's task performances were very similar to those of subject 24. The student did not use the 're' morpheme rule previously discussed (subject \#24) and also had a consistent reduction of structure for $T_{Q}$ statements. There were no omissions in SAD generations but the additional operation of one transformation ( $T_{Q}$ ) appeared to be related to the omission of the determiner. Hence, a reduction transformation, as proposed by Bloom, appeared to be operative in this student's performances.

Subject \#33. Subject 33 appeared to be using all but two rules of the model of task specific rules. This student was not using the 're' morpheme rule and was not differentiating between $S A D$ and $T_{Q}$ structures on task four performances. However, it appeared that the subject did have some skill with $T_{Q}$ structures as they were correctly completed (structurally) in tasks one, two and three.

Subject $\# 40$. This subject demonstrated more skills than any of the others discussed in this section. The student appeared to understand and
use the structural differences of $S A D$ and $T_{Q}$ statements as well and there was some correct usage of plural Aux statements. The student did not demonstrate mastery over the 're' morpheme rule but did demonstrate an awareness of the role of that rule. Considerations of concord also appeared to be responsible for the omission of plural inflection on some nouns. This subject appeared to understand all of the rules presented in the model but did not demonstrate performance mastery of those rules.

## II. Implications

Bloom (1970) states that:
It is now a basic assumption that the specification of 'what' the child learns ... and 'how' this learning takes place knowledge of the substance and process of language development can be a preeminent source of insight into the development of thought and the learning process (p. 1).

The tasks developed for this study were a means to an end. They were not intended as 'measures' of linguistic competence or performance in the sense of describing complete grammars for the children studied. Rather, the tasks provided an opportunity for collection of some data which would reflect some of the linguistics skills of young deaf children. This was a first attempt to describe the skills demonstrated through structured, paper and pencil tasks. This result was not surprising as $1 / \mathrm{cNeill}$ (1970) states that:

> There is a strong tendency among children to include nothing in the surface structures of sentences that cannot be related to deep structures - i.e., nothing for which there is no transformational derivation known (p. 106).

The results of this study demonstrated that the techniques used were useful for collection of data related to Bloom's 'what' and 'how' of language learning. It was apparent that there were developmental
differences associated with age and that these changes followed a consistent pattern. It was also demonstrated that some of the children could comprehend statements before they could produce similar structures.

Of particular import were the findings that the patterns of performance of the six to nine year old deaf children were not dissimilar to performances of much younger hearing children (Interpretation of Results). Very early developmental patterns of one-word sentences, development of plural inflections on nouns, emergence of undefined two word sentences, and one instance of the emergence of the use of plural Aux rules and reduction operation are also found in very young hearing children (Bellugi, 1967; Klima and Bellugi, 1964; Bellugi and Brown, 1964; Brown and Fraser, 1964).

The results of the study demonstrated that the children performed consistently throughout the tasks. They, therefore, were rule governed in their performances. The description of a complete model for the tasks enabled the investigator to locate the rules with which particular children were encountering difficulty. In this respect, the tasks combined with the model provided diagnostic information which would be of assistance to teachers. For example, it was apparent that the linguistically more advanced children were experiencing difficulty with the 're' morpheme rule. They did however demonstrate mastery of the plural inflection for nouns. The 're' morpheme rule is unique to the verb to be and this rule is likely to create difficulties. McNeill (1970) pointed out that a great deal of experience would be required to develop mastery over such a specialized rule. The be-ing verb is used frequently in English and yet results of this study indicated that operational rules for its use emerged much later, chronologically, than for hearing children. This slover develcpment has been attributed to a lack of experience (Furth, 1971).

The "lack of experience" explanation is insufficient for educators of the deaf in that the experiential deficit may never be overcome. A highly restricted rule such as the 're' morpheme rule would require an extremely large body of experiences to establish mastery of the rule. An alternative approach to development of mastery over such a restrictive rule has been suggested as an outgrowth of the delineation of the model of rules for the tasks. The procedure will be presented in a following section (IV. Future Research, No. 4).

## III. Limitations

1) The study examined only a small part of young deaf children's linguistic skills. The results are, therefore, not necessarily representative of their complete grammars.
2) Several examiners were used in the study and an examiner difference was demonstrated to be significant. While the reasons for the differences were discussed, the fact remained that results were confounded. Hence generalizability is restricted by constraints of the examiner factor.
3) The population studied was selected from one school for the deaf. Instructional methodologies and language programs differ from school to school. The results, therefore, are possibly not general among other schools for the deaf in populations of the ages studied.
4) All subjects in the study were pre-lingually deaf but there was no control over the type of language input they received prior to the study. McNeill (1970) pointed out the importance of experience in development of rule governed language performance. The amount of stimulation and input necessarily varied from child to child. Some children were residential students while others lived at home. However, examination of this variable
alone is insufficient as there is no standard level of language stimulation or input associated with either situation. Generalizability of results is, therefore, restricted by constraints of the historical factor of linguistic input.

## IV. Future Research

1) The task battery should be used with a very large group of 6-9 year old deaf children in order to determine the generalizability of findings.
2) More task batteries are needed to isolate other linguistic skill performances. The results of such studies would provide more information for describing deaf children's gramar and language acquisition processes.
3) More studies to complement the structured - paper and pencil results are needed. Collection of data in unstructured situations utilizing other expressive media (speech or sign) would provide information necessary for description of a deaf child's grammar.
4) Some very specific clinical research is required to develop more detailed and efficient teaching techniques for language instruction.

One such technique suggested from the delineation of rules for the model of task specific rules is outlined below.

It was apparent that the agreement or concord rules become complex when dealing with the verb to be. It appeared that the students were developing plural inflection of the noun to plural agreement of the Aux. If this Aux agreement rule could be broken down into steps involving only one operation at a time, the student may gain more insight into the operational restrictions of the rules involved.

A logical beginning (Stage I) for subject-verb agreement rould be use
of "The girl plays" and "The girls play". It is noted that the s inflection of the verb in the singular statement is moved to the noun in the plural statement.
(The + girl $+\varnothing+$ play $+\underline{s} \longrightarrow$ The + girl $+\underline{s}+$ play $+\varnothing$ ).
Stage II of the process would involve the use of the be-ing verb as a copulative. In this instance the s morpheme transformation could again be used for the agreement rule.
(The + ball + is + green $\longrightarrow$ The + balls + are + green). It could very easily be pointed out that the $s$ marker is present in the verb phrase for singulars and in the noun phrase for plurals.

The third stage would involve a similar procedure with the distinctions being made in the past tense.
(The + boy + was + happy $\longrightarrow$ The + boys + were + happy).
Stage four would involve introduction of be as Aux and the same pattern would be repeated. (non-past $\Longrightarrow$ The + boy + is + laughing $\longrightarrow$ The + boys + are + laughing. past $\Longrightarrow$ The + boy + was + laughing $\longrightarrow$ The + boys + were + laughing.)

This suggestion for study would provide a wealth of information about the amount and kind of experience necessary to develop mastery over a particular rule. This research would begin to answer some of the questions posed by McNeill (1970):

Since the role played by experience is greater with rules that carry more restrictions, we should focus attention on these most restricted cases ... (until this is done) nothing much can be said about even the basic questions. What amount of exposure, for instance, and what kind of material, is necessary to learn restrictions on general rules? (p. 105).

## REFEPENCES

Bellugi, U. The acquisition of nagation. Unpublished doctoral dissertation, Graduate School of Education, Harvard University, 1967.

Bellugi, U. and Brom, R. (Eds.) The acquisition of language. Monograoh of the Society for Pesearch in Child Development, 1964, 29, No. 92.

Birch, J. W., and Stuckless, E. R. The influence of early manual communication on the linguistic development of deaf children. American Annals of the Deaf, 1966, 111, 499-504.

Bloom, L. Language develooment: form and function in emerging grammars. Cambridge, Mass.: MT Press, 1970.

Braine, M. The ontogeny of english phrase structure - the first phase. Language, 1963, 39, 1-13.

Brown, R. and Fraser, C. The acquisition of syntax, in The acquisition of language. Monograph of the Society of Research for Child Development, 1964, 29, 43-97.

Chomsky, C. The acauisition of syntax in children from 5 to 10. Cambridge, Mass.: MIT Press, 1969.

Chomsky, N. Aspects of the theory of syntax. Cambridge, Nass.: MT Press, 1965.

Cohen, S. Redundancy in the written language of the deaf. Predictability of story paraphrases written by deaf and hearing children in CEC research studies on the psycholinguistic behavior of deaf children. Research Monograph B2, (Eds.) Rosenstein, J. and MacGinitie, W., 1965.

Cooper, R. The development of morphological habits in deaf children. CEC research studies on the psycholinguistic behavior of deaf children. Research Monograph B2, (eds.) Rosenstein, J. and lacGinitie, W., 1965.

Cooper, R. and Rosenstein, J. Language acquisition of deaf children, Yolta Review - Language Acquisition Monograph, Volta Bureau, Washington, D.C., 1966.

Davis, H. and Silverman, S. R. Hearing and deafness. New York: Holt, Rinehart and Winston, 1970.

Fitzgerald, M. A. Vocabulary development for acoustically handicapped children. American Annals of the Deaf, 1949, 94.

Flint, R. W., Blea, W., and Miller, J. B. 1965 NDEA institute in linguistics and reading. Volta Reviev, 1965, 68, 618-626.

Foy, R. Teaching reading to hearing impaired junior high school pupils. Volta Review, 1966, 69, 315-316.

Furth, H. Linguistic deficiency and thinking. Psychological Bulletin, 1971, 76, 58-72.

Furth, H. Research with the deaf. Volta Revievi, 1966, 68, 34-56.
Games, P. Multiple comparisons of means. American Educational Research Journal, 1971, 8 (3), 531-565.

Gentile, A. (ed.) Annual survey of hearing impaired children and youth, academic achievement test performance of hearing impaired students, united states: spring, 1969. Washington, D.C., Office of Demographic Studies, Gallaudet College, 1969.

Goda, S. Spoken syntax of normal, deaf, and retarded adolescents. Journal of Verbal Learning and Verbal Behavior, 1964, 3, 401-405.

Heider, F. K. and Heider, G. M. A comparison of sentence structure of deaf and hearing children. Psychological Yonographs, 1940, 52, No. 1 (Whole No. 232), 42-103.

Hsu, T. and Feldt, L. The effect of limitations on the number of criterion score values on the significance level of the F-test. Arerican Educational Research Journal, 1969, 6, 515-527.

Katz, J. J. and Postal, P. M. An Integrated Theory of Linguistic Descriptions. Cambridge, lass.: MIT Press, 1964.

Kennedy, E. Teaching the deaf child to read. American Annals of the Deaf, 1959, 104.

Klima, E. and Bellugi, U. Syntactic regularities in the speech of children, in Psycholinguistic papers. (Eds.) Lyons and Wales, Edinburgh: Edinburgh University Press, 1966.

Lee, L. Developmental sentence types: a method for comparing normal and deviant syntactic development. Journal of Speech and Hearing Disorders, 1966, 31, 311-330.

Lenneberg, E. Biological foundations of language. New York: John Wiley and Sons, 1967.

Lowenbraun, S. An investigation of the syntactic competence of young deaf children. Unpublished doctoral dissertation, Columbia University, 1969.

MacGinitie, W. Ability of deaf children to use different word classes. Journal of Speech and Hearing Research, 1964, 7, 141-150.

McNeill, D. The acquisition of language: the study of develcomental psycholinguistics. New York: Harper and Row, 1970

MeNeill, D. Developmental psycholinguistics, in The genesis of language. Cambridge, Mass.: MIT Press, 1966, (eds.) Smith and Miller. l'arshall, W. Contextual constraint on deaf and hearing children. American Annals of the Deaf, 1970, 115 (7), 682-689.

Narshall, W. and Quigley, S. Quantitative and qualitative analysis of syntactic structure in the written language of deaf children. Urbana, I11.: Institute for Research on Exceptional Children, 1970.

Nenyuk, P. Sentences children use. Cambridge, Mass.: IIT Press, 1969. Miller, W. and Ervin, S. The developmental granmar in child language, in Psycholinguistic papers. (Eds.) Lyons and Wales, Edingurgh: Edinburgh University Press, 1966.

Montgomery, G. W. Relationship of oral skills to manual communication in profoundly deaf students. American Annals of the Deaf, 1966, 111, 557-565.

Moores, D. F. Application of "cloze" procedures to the assessment of psycholinguistic abilities of the deaf. Unpublished doctoral dissertation, University of Illinois, 1967.

Perry, F. R. The psycholinguistic abilities of deaf children. The Australian Teacher of the Deaf, 1968, 9, Nos. 1 and 3.

Power, D. J. Deaf children's acquisition of the passive voice. Doctoral dissertation (in progress), University of Illinois, 1971.

Quigley, S. P. Development and description of syntactic structure in the language of deaf children. Progress Report, Project No. 232175, Department of Health, Education, and Welfare, U.S. Office of Education, March, 1971.

Quigley, S. F. The influence of fingerspelling on the development of language, communication, and educational achievement in deaf children. Institute for Research on Exceptional Children: University of Illinois, 1969.

Quigley, S. P., and Frisina, D. R. Institutionalization and psychoeducational development of deaf children. CEC research monograph, series A, No. 3, Council for Exceptional Children, 1961.

Restaino, L. Word associations of deaf children. CEC in Research studies on the psycholinguistic behavior of deaf children, CEC Research Monograph B2, (Eds.) Rosenstein, J. and MacGinitie, W., 1965.

Pichardson, P.C. A reading lesson using the fitzgerald key headings. Volta Review, 1957, 59.

Ritchie, V. C. Some implications of generative grammar for the construction of courses in english as a foreigh language. Language and Language Learming, 1967, 17, Nos. 1 and 2, 45-69.

Roberts, P. Modern grammar. New York: Harcourt, Brace and Forld, Inc., 1968.

Schmitt, P. J. Deaf children's comprehension and production of sentence transformations and verb tenses. Unpublished doctoral dissertation, University of Illinois, 1969.

Smith, F., and Miller., G. A. (Eds.) The genesis of language. Cambridge, Mass.: lit Press, 1966.

Slobin, D. Early gramatical development in several languages, in The structure and pyschology of language. (Eds.) Weksel and Bever. New

York: Holt Rinehart and Winston, 1967.
Stuckless, E. R. and Marks, C. Assessment of the written language of deaf students. Pittsburgh: University of Pittsburgh, Department of Special Education and Rehabilitation, 1966.

Taylor, L. A language analysis of the writing of deaf children. Unpublished doctoral dissertation, State University of Florida, 1969. Vernon, M. Sociological and psychological factors associated with hearing loss. Journal of Speech and Hearing Research, September, 1969.

APPENDIX

APPENDIX A
TASK BATTERY

Were the dogs eating?


Before




The girls were walking.
The girls is walking.
-The girls was walking.

- The girls are walking.


$?$

Are the boys sitting?


Before



$\square$ Was the boys jumping?
[Are the boys jumping?Is the boys jumping? 'Were the boys jumping?


?

The dog is sitting.


Now


Before


Before


Now


The boys were laughing.
[ The boys is laughing.
The boys are laughing.
-The boys was laughing.


$?$

Is the dog jumping?


Now


Now


Before



Were the girl running?
1 Is the girl running?
: Are the girl running?
1 Was the girl running?



The boy was laughing.


Before




Are the girls skipping?
Is the girls skipping?
!'Was the girls skipping?
"Were the girls skipping?



The boys are swimming.


Before


Before



The girls is sitting.
r- The girls are sitting.
"The girls was sitting.
$\therefore$ The girls were sitting.



208

Was the girl drinking?


Before


Before


Now

Is the boy swimming?
$\square$ Were the boy swimming?
-Are the boy swimming?

- Was the bey swimming?



Is the girl laughing?


213

! The dog were sleeping.
1 The dog was sleeping. The dog are sleeping.

- The dog is sleeping.



216

Was the girl sleeping?


Before



Before

$\square$ The boy were skipping.
$\square$ The boy was skipping.
$\square$ The boy are skipping.

- The boy is skipping.



Are the dogs jumping?


Now


Before


Now


Before
Are the girls eating?Were the girls eating?Is the girls eating?Was the girls eating?



The boy is sitting.


Before


Before



Was the dog walking?
II Is the dog walking?
? Are the dog walking?
Were the dog walking?



The boy was crying.


Before



Was the girl walking?
Were the girl walking?
Are the girl walking?
Is the girl walking?



Were the girls sleeping?


Before


Before


Now


Now

$\square$ The boy are eating.
$\square$ The boy was eating.
$\square$ The boy is eating.
$\square$ The boy were eating.



$?$

The boys are eating.


Before


Before


Now


Now


TThe boys was skipping.
$\square$ The boys is skipping.
$\square$ The boys were skipping.
-The boys are skipping.



The girls were drinking.


Now



Before

$\square$ The dog are eating.
T The dog is eating.

- The dog was eating.
- The dog were eating.



The dogs were walking.


Before


Before


[Is the boys clapping?
Was the boys clapping?
'Were the boys clapping?
II Are the boys clapping?



## APPENDIX B

DEMONSTRATION ITEMS

The ball is red.

The car is green.The ball is red.The ball is blue.The coat is red.


## The ball was green.



Before


Before


Before

The ball was green.The car was green.The coat is green.The ball is yellow.



Before

DH


Is the ball red?
YesNo
Is the car red?Is the ball red?Is the car green?Is the ball yellow?

is


?


Was the ball green?
$\square$ Yes
$\square$ No
Was the ball green?Is the car green?Was the bus green?Is the ball yellow?



Before $?$

## The Car is blue.



Now

The ball is yellow.The bus is green.The bus was green.The car is green.




Was the car red?
$\square$ NoYes
Is the ball yellow?Was the bus yellow?Is the bus yellow?Is the car green?


?

## APPENDIX C

VOCABULARY CHARTS




Dogs


Sitting


Walking


Swimming



Falling


Drinking


Skipping



Ball.


Coat


Blue


## APPENDIX D

STANDARD ADMINISTRATION PROCEDURES

Note: All responses requiring a pointing behaviour will be recorded on a check list (Appendix D).

Any reference to the examiner "expressing" anything is defined as speech and signing or fingerspelling.

## Vocabulary for Demonstration Items

Each vocabulary item shall be exposed to the subject - one frame at at time. The examiner will point to the picture and then to the printed word below the picture. The examiner will then express the word. The subject will then be asked to say and/or sign or fingerspell the word. This procedure is to be repeated for each of the vocabulary items on the chart.

## Demonstration Items

Item 1 The first of the demonstration items shall be exposed to the subject. The examiner will point to the sentence, "The ball is red.", and ask the subject to "Pick the picture that is the same.". The examiner will than give the subject an unsharpened pencil with an intact eraser for pointing. The subject will be reinforced, "Good Boy!" or other appropriate remark for a correct response. The examiner will then point to and express the word "ball" and the word "red" and to the picture selected saying "same-Good boy". If the response is incorrect, the examiner will point to and express the word "ball" and the word "red" and again ask the subject to "Pick the picture that is the same.". It is expected that the error will be corrected and the examiner will reinforce the reponse appropriately. Once a correct response is made and the words "ball" and "red" have been pointed out, the examiner points to and expresses the word "is" and then expressed "now" - pointing to the word "now" below the picture. The association of "is" and "now" will be repeated once using the same procedure
described above.
Item 2 The second item will be exposed to the subject. The examiner will point to the picture and the word "now" and ask the subjeat to "Pick the sentence that is the same.". The subject will be appropriately reinforced for a correct response. The examiner will point to the picture and express the words "ball" and "red" and associate them with the same words in the sentence selected, expressing - "same". If an incorrect choice is made the examiner will point to the picture and express the words "ball" and "red" and then ask the subject to "Pick the sentence that is the same.". The correct response should be made at that time or the examiner may repeat the same procedure. Once the correct response is made, the subject is appropriately reinforced and the words "ball" and "red" are associated with the same words in the sentence, expressing - "same". The examiner then points to and expresses the word "now" (below the picture) and then points to and expresses the word "is" (in the sentence). This association will be repeated once using the same procedure.

Item 3 The third item will be exposed to the subject. The examiner will point to the picture and word "now" and then present the subject with a sharpened pencil. The examiner will express "Pick words from here (pointing to the list of words to the right of the sentence) and finish the sentence:". If a correct response is made, the examiner will reinforce the subject appropriately and then re-expose the previous (second) item. The examiner will then point to the picture and tense marker of the second item and associate these with the correct response of the second item, expressing"The sentence is finished.". The examiner will then return to the third item, point to the picture and the tense marker and associate these with the correct completion, expressing - "The sentence is finished.". If an
incorrect response is made on item three, the examiner will re-expose item tro and point to the picture and tense marker and associate these with the correct sentence, expressing - "The sentence is finished.". The examiner will then return to item three, leaving item two exposed, and point to the picture and tense marker and express - "Pick words from here (pointing to the list of words to the right of the sentence) and finish the sentence.". The subject may, if necessary, refer to item two to complete the sentence. This procedure may be repeated, if necessary, to enable completion of the task item. Once the correct response is made, the examiner will reinforce the subject appropriately and refer back to item tro pointing to the picture, tense marker, and correct sentence, expressing - "The sentence is finished." and repeating this procedure for item three.

Item 4 The fourth item will be exposed to the subject. The examiner Will point to the picture and the tense marker and express - "Write the sentence.". If a correct response is made, the examiner will reinforce the subject appropriately and refer to the previous item (item three) and follow procedures identical to those outlined above (Item three). If an incorrect response is made, the examiner will re-expose the previous item (Item three and follow identical procedures to those outlined for incorrect responses in Item three. The examiner will remove the sharpened pencil.

Items 5-8 Similar procedures will be followed as for items $1-4$ respectively, with two exceptions: 1) the tense marker referred to will be "before". 2) After the tense marker is referred to, the picture will be temporarily covered to avoid concept confusion. The examiner will place a plain white square of tag board over the picture to effect this change.

Item 9 Item nine will be exposed to the subject. The examiner will point to the picture stimulus and the tense marker and then to the yes/no transform. The examiner will give the subject the unsharpened pencil with an intact eraser and express - "Pick the right one." referring to the "yes" and "no" selection choices. Responses will be recorded on the check list. The examiner will point to the sentence and the question mark at the end of the statement and express "question".

Items 10-12 Identical procedures to those outlined for items 2-4 will be followed with one addition. The review of picture, tense marker, and sentence will be expanded to include the pointing to the question mark at the end of the structure. At that time the examiner will express "question".

Items 13-16 Identical procedures to those outlined for items 9-12 will be followed. It is to be noted that the tense marker will be different.

Items 17-20 Identical procedures to those outlined for items l-8 will be used dependent upon tense marker. The only exception to this procedure will be that past tense markers will not require that the picture be covered as it is assumed at this point that the concept of the difference between "now" and "before" is established.

Items 21-24 Identical procedures to those outlined for items 9-16 will be followed, dependent upon tense marker. As in items 17-20, the past tense marker will not require that the picture be covered.

## Vocabulary for Task Items

Each vocabulary item shall be exposed to the subject - one frame at a time. The examiner will point to the picture and then to the printed word below the picture. The examiner will then express the word and the
subject will be asked to say, sign, or fingerspell, and where possible perform the action indicated by the word. This procedure is to be repeated for each of the vocabulary items on the chart.

## Task Items

Sixteen items will be exposed to the child in each sitting. For the first sitting the child will proceed through the Vocabulary for Demonstration Items, Demonstration Items, Vocabulary for Task Items, and the first sixteen task items. Each of the sixteen task items will be presented as a separate unit. That is, the subject will have only one item before him at a time. On the second day the demonstration items will be reviewed with a five second exposure for each of the 24 items. At that time the examiner will point to the picture, tense marker, sentence, and punctuation marker for each item. The subject will then proceed through the second sitting of sixteen task items. An identical procedure will be followed for the third and fourth sittings. The examiner will have no interaction with the subject during task administrations. The examiner mill record all responses on the check lists provided and also note any behaviour considered relevant to the study.

APPENDIX E
CHECK LISTS

## Check List

Name:
Admin. D, 1, 2, 3, 4

| Item |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 |  |  |
| 2 | 1 | 2 | 3 | 4 |  |  |
| 3 | 1 | 2 | 3 | 4 | 5 | 6 |
| 4 |  |  |  |  |  |  |
| 5 | 1 | 2 | 3 | 4 |  |  |
| 6 | 1 | 2 | 3 | 4 |  |  |
| 7 | 1 | 2 | 3 | 4 | 5 | 6 |
| 8 |  |  |  |  |  |  |
| 9 | 1 | 2 | 3 | 4 |  |  |
| 10 | 1 | 2 | 3 | 4 |  |  |
| 11 | 1 | 2 | 3 | 4 | 5 | 6 |
| 12 |  |  |  |  |  |  |
| 13 | 1 | 2 | 3 | 4 |  |  |
| 14 | 1 | 2 | 3 | 4 |  |  |
| 15 | 1 | 2 | 3 | 4 | 5 | 6 |
| 16 |  |  |  |  |  |  |
| 17 | 1 | 2 | 3 | 4 |  |  |
| 18 | 1 | 2 | 3 | 4 |  |  |
| 19 | 1 | 2 | 3 | 4 | 5 | 6 |
| 20 |  |  |  |  |  |  |
| 21 | 1 | 2 | 3 | 4 |  |  |
| 22 | 1 | 2 | 3 | 4 |  |  |
| 23 | 1 | 2 | 3 | 4 | 5 | 6 |
| 24 |  |  |  |  |  |  |
|  |  |  |  | $=$ |  | 4th |

APPENDIX $F$
SUMMARY OF CORRECT RESPONSES
箢


[^0]APPENDIX G
SUMMARY OF RESPONSE BY TASK LEVEL

rask a


TASK 3 - PART 1

() - pointed to particular words in list.

TASK 3 - PART 1

| 11103 | 11411 |
| :---: | :---: |
| T^SK 3 | 'T^SK 3 |
| Singular | Singular |
| present | Prosent |
| SA1) | S^D) |
| The clapping.was <br> is <br> werc <br> girls <br> arc <br> girl | Theare <br> is <br> wamping <br> was <br> boys <br> wore <br> boy |
| The clapping clapping. | The Jumping jumping. |
| The is girl clapping. | The boy jumping. |
| The girl is clapping. | The the doy jumping. |
| The is girl clapping. | The is boy jumping. |
| The girl is clapping. | The boy were jumping. |
| The was clapping. | The is Boy jumped jumping. |
| The girl is clapping. | The boy is jumping. |
| The hna is girls clapping. | The a bog jumping. |
| The gil clapping. | The is boys jumping. |
| Thegirl is clapping. | The boy is jumping. |
| The girl is clapping. | The is boy jumping. |
| The was girl clapping. | The was boy jumping. |
| The girl is clapping. | The boy is jumping. |
| The girl is clapping. | The boy are jumping. |
| The is girl clapping. | The boy jumping. |
| The girl was clapping. | The boy is jumping. |
| The is clapping clapping. | The boy is jumping. |
| The girl is clapping. | The boy is jumping. |
| The girl is clapping. | The boy is jumping. |
| The gril is clapping. | The boy is jumping. |

() - pointed to particular words in list.

TASK 3 - PART 1

| 11307 | 1407 |
| :---: | :---: |
| TASK 3 | TASK 3 |
| Singular | Singular |
| Present | Present |
| Y/N | $\mathrm{Y} / \mathrm{N}$ |
| $\ldots \quad$boy <br> wore |  |
| (is) <br> boy the $\qquad$ running? $\qquad$ the is running?) <br> (boy is) <br> The boy is running the boy is running? <br> boys the boy running? <br> Running the is boys running? <br> was running the $\qquad$ running? <br> Running the $\qquad$ running? <br> is the doy running? | (worc) <br> momom the $\qquad$ jumping? <br> wha the Jumping jumping? <br> (girls is) <br> The girl is jumping the girl is jumping? girls the girl jumping? <br> is arc w the werc jumping? <br> girl was is the jumping? jumping? <br> aawt the $\qquad$ jumping? <br> is the girl jumping? |
| boy the is running? boys the boy running? is the boy running? was boys the running? running? $\qquad$ the is dog running? was the boy running? $\qquad$ the is boy running? $\qquad$ the is boys running? <br> Running the $\qquad$ running? boy the $\qquad$ running? | girl the is jumping? was the girl jumping? is the girl jumping? was girl the jumping? jumping? $\qquad$ the is jumping? was the girl jumping? $\qquad$ the is girl jumping? $\qquad$ the is girls jumping? $\overline{\text { girl the }}$ $\qquad$ jumping? <br> girls the $\qquad$ jumping? |

() - pointed to particular words in list

TASK 3 - PART 1

() - pointed to particular words in list

TASK 3 - PART 2

|  | 11315 | 11115 |
| :---: | :---: | :---: |
|  | TASK 3 | T^SK 3 |
|  | Singular | Singular |
|  | Past | Past |
|  | S^D | SM1) |
|  | The $\quad$was <br> arc <br> were <br> boys <br> boy <br> is | Thedog <br> is <br> running. <br> arc <br> was <br> dogs <br> werc |
| 1 | (is) | ( dog) |
| 2 | The gom slecping. | The dog is running. |
| 3 | (was) | The wha dog running. |
| 4 | (was) | The d running. |
| 5 | The boy was slecping. | The dog was running. |
| 6 | The boy slecping. | The dogs running. |
| 7 | The is boy si slceping. | The dogs running. |
| 8 | The boy slecping slecping. | The dog was $r$ running. |
| 9 | The slceping slceping. | The dog running. |
| 10 | The was doy were sleeping. | The was dog running. |
| 11 | The is boy slecping | The is dogs running. |
| 12 | The is boy slecping. | The Dog running. |
| 1.3 | The boy was slecping. | The dog was running. |
| 14 | The was boys slecping. sleeping. | The was running. running. |
| 15 | The is boy slecping. | The is was running running. |
| 16 | The was boy slecping. | The Dog running. |
| 17 | The is boy slceping. | The bog is running. |
| 18 | The is girl slecping. | The dogs was running. |
| 19 | The slecping slecping. | The dogs running. |
| 20 | The was sleeping. | The dog running. |

TASK 3 - PART 2

|  | 11315 | 1115 |
| :---: | :---: | :---: |
|  | TMSK 3 | TMSK 3 |
|  | Singular | Singular |
|  | past | Past |
|  | SM1) | SAD |
|  | The_slecping.was <br> are <br> wore <br> boys <br> boy <br> is | The___running?dog <br> is <br> are <br> was <br> dogs <br> wore |
| 21 | The slecping slecping. | The walking running. |
| 22 | The boy slecping. | The arc dog running. |
| 23 | The the doy is slecping. | The dog is running. |
| 24 | The was boy slecping. | The was bog running. |
| 25 | The boy was slecping. | The dog was running. |
| 26 | The boy Mlik cry slceping. | The was running running. |
| 27 | The boy was slecping. | The was dog running. |
| 28 | The a bog slecping. | The was bog rumning. |
| 29 | The is wore slecping. | The is running. |
| 30 | The boy was slecping. | The dog was running. |
| 31 | The was boy slecping. | The dog was running. |
| 32 | The is boy slecping. | The is dog running. |
| 33 | The boy was slecping. | The dog was running. |
| 3.4 | The boy werc slecping. | The dog was running. |
| 35 | The boy slecping. | The dog running. |
| 36 | The boy was slecping. | The dog was running. |
| 37 | The is boy slecping. | The was dog running. |
| 38 | The boy was slecping. | The dog was running. |
| 39 | The boy was slecping. | The dog is running. |
| 40 | The boy was slecping. | The dog was running. |

TASK 3 - PART 2

| 11115 | 11403 |
| :---: | :---: |
| T^SK 3 | T^SK 3 |
| Singular | Singular |
| Past | Past |
| Y/N | Y/N |
|  |  |
| ```(girl) moa the swimming? (is) (girl) The girl was swimming the girl was swimming? Swimming the``` $\qquad$ <br> ```swimming? Bo the folc swimming? girl was in the swimming swimming? swimm the``` $\qquad$ <br> ```swimming? was the girl swimming?``` |  |
| girl the is swimming? <br> girl the was swimming? <br> was the girl swimming? <br> was girl tho swimming? swimming? $\qquad$ <br> the is swimming swinming? <br> girl swimming? $\qquad$ the is girl swimming? $\qquad$ the is girls swimming? <br> girlstho $\qquad$ swimming? <br> girls tho $\qquad$ swimming? | boy the is falling? is the boy falling? <br> was the boy falling? <br> was boy the falling? falling? $\qquad$ the was falling? $\qquad$ $\qquad$ the is boy falling? $\qquad$ the is boys falling? <br> Falling the $\qquad$ faliing? <br> Falling the $\qquad$ falling? |

TASK $3-P A R T 2$

|  | 7115 | 1703 |
| :---: | :---: | :---: |
|  | TASk 3 | TASK 3 |
|  | Singular | Singular |
|  | liast | Past |
|  | $\mathrm{Y} / \mathrm{N}$ | $\mathrm{Y} / \mathrm{N}$ |
|  | $\ldots \quad$girls <br> warc <br> girl <br> was <br> are <br> is |  |
| 21 | swimming the swimming? | Falling the falling? |
| 22 | was the girl swimming? | werc the boy falling? |
| 2.3 | Is the gi, rl swimming? | Is the doy falling? |
| 24 | was the girl swimming? | was the boy falling? |
| 25 | was the girl swimming? | are the boy falling? |
| 26 | Is the the girl swimming? | Is the boy falling? |
| 27 | was the girl swimming? | was the boy falling? |
| 28 | was the a girl swimming? | was the a bog falling? |
| 29 | is the wirl swimming? | is the arc falling? |
| 30 | was the girl swimming? | was the boy falling? |
| 31 | The the girls swimming? | The the boy was falling? |
| 32 | Is the girl swimming? | ls the boy falling? |
| 33 | wats the girl swimming? | was the boy falling? |
| 34 | were the girl swjmming? | was the boy falling? |
| 35 | was the girl swimming? | was the boy falling? |
| 36 | was the girl swimming? | was the boy falling? |
| 37 | was the girl swimming? | was the boy falling? |
| 38 | was the girl swimming? | was the boy falling? |
| 39 | was the girl swimming? | was the boy falling? |
| 40 | was the gri.l swimming? | was the boy falling? |

TASK 3 - PART 3

| $1 / 203$ | $1 \pi 3$ |
| :---: | :---: |
| T^SK 3 | TTSK 3 |
| Plural | Plural |
| Present | Prescnt |
| Y/N | Y7N |
|  | $\ldots$ the___ waswere <br> crying?girl <br> iss <br> girls <br> irc |
| (dogs) <br> oor the me running? <br> wha the dog running? <br> bogs the dog running? <br> The dog is running the $\qquad$ running? Jog the dogs rumning? dog is are the dogs were running? was dog the $\qquad$ running? <br> the the $\qquad$ running? is the dog running? | (is) <br> was the $\qquad$ crying? <br> (is) <br> (was) <br> The girl is crying the girl is crying? girls the girl crying? <br> are girls wore the $\frac{\text { is girl }}{\text { crying? }}$ crying? <br> crying the $\qquad$ crying? is the girl crying? |
| dog the is rumning? <br> the dogs running? <br> is the dogs rumning? <br> was dogs the running running? <br> the is dogs running? <br> was the dog running? <br> is the dog running? <br> the is dogs running? <br> Joy tho $\qquad$ running? <br> dog the $\qquad$ running? | girl the is crying? <br> girl the is crying? <br> is the girls crying? <br> was girl the cryings crying? <br> the is girl crying? <br> war the girl crying? $\qquad$ the is girl crying? $\qquad$ the is girls crying? <br> crying the $\qquad$ crying? wert the $\qquad$ crying? |

TASK 3 - PART 3

|  | 11203 | 11.303 |
| :---: | :---: | :---: |
|  | IASK 3 | TASK 3 |
|  | Plural | Plural |
|  | Present | Prescnt |
|  | $\mathrm{Y} / \mathrm{N}$ | $\mathrm{Y} / \mathrm{N}$ |
|  |  | $\ldots$ the__crying?was <br> werc <br> girl <br> is <br> girls <br> are |
| 21 | Was the are running? | Boys the crying? |
| 22 | was the hogs rumning? | Is the giril cryjng? |
| 23 | Is the was running? | Is the gril crying? |
| 24 | is the dog running? | is the girl crying? |
| 25 | was the dogs running? | was the girl cryjng? |
| 26 | Is the was dogs running? | Is the cry crying? |
| 27 | Is the dog running? | ARE the GIRL crying? |
| 28 | Wra the was dog running? | was the girl crying? |
| 29 | is the dog running? | is the werc crying? |
| 30 | Is the dogs running? | Is the girls crying? |
| 31 | dogs the is running? | The is the girls crying? |
| 32 | was the bog running? | Is the girl crying? |
| 3.3 | Is the dog rumning? | Is the girls crying? |
| 34 | Is the dogs running? | Is the girls crying? |
| 3.5 | was the dog running? | was the girls crying? |
| 36 | was the dog running? | were the girls crying? |
| 37 | is the dog running? | is the girls crying? |
| 38 | is the dog running? | Is the girls crying? |
| 39 | is the dog running? | Is the girls crying? |
| 40 | Is the dog running. | Is the grils crying? |

TASK 3-PART 3

| 11207 | 11.311 |
| :---: | :---: |
| T^SK 3 | TASK 3 |
| Plural | P]ural |
| Irescnt | Proscnt |
| Sへ1) | SへI) |
| The swimming.is <br> girls <br> werc <br> arc <br> was <br> girl | The falling.wcre <br> was <br> arc <br> boy <br> boys <br> is |
| (girl) | (is) |
| The loor swimming. | The Falll falling. |
| The girl swimming. | (is) |
| The w re girle swimming. | (is) |
| The girls is swimming. | The boy is falling. |
| The girl swimming. | The boy falling. |
| The swimming swimming. | The is boys boy falling. |
| The girl swimming swimming. | The [ boy falling falling. |
| The swimming swimming. | The tBBrna falling. |
| The is girl swimming swimming. | The is doy fell falling. |
|  |  |
| lhe is girl swimming. | The is boy falling. |
| The is was girl swimming. | The was boy falling. |
| The ! irls is swimming. | The boys is falling. |
| The was girls swimming. | The was boys falling. falling. |
| The is was swimming. | The is was falling. |
| The was goirl swimming. | The was boy falling. |
| The is girl swimming. | The is boy falling. |
| The dirls is swimming. | The is bays falling. |
| The Swimming swimming, | The ralling falling. |
| The girls swimming. | The boys falling. |

TASK $3-\mathrm{PART} 3$

|  | 11207 | 11311 |
| :---: | :---: | :---: |
|  | T^SK 3 | T^SK 3 |
|  | plural | Plural |
|  | Prosent | Proscnt |
|  | SAD | S^1) |
|  | The swimming.is <br> girls <br> are <br> was <br> girl | The falling.were <br> was <br> are <br> boy <br> boys <br> is |
| 21 | The swimming swimming. | The Falling falling. |
| 22 | The girl swimming. | The boy falling. |
| 2.3 | The girls is swimming. | The doys is falling. |
| 24 | The is girl swimming. | The is boy falling. |
| 25 | The grils were swimming. | The boys is falling. |
| 26 | The was are swimming. | The Is Boy falling. |
| 27 | The ls girl swimming. | The Are boy falling. |
| 28 | The was girl swimming. | The ar a dog falling. |
| 29 | The is swimming. | The is boy falling. |
| 30 | The rirls is swimming. | The boys is falling. |
| 31 | The girl was swimming. | The is Falling falling. |
| 32 | The is girl swimming. | The was boy falling. |
| 33 | The girls is swimming. | The boys is falling. |
| 3.4 | The girls are swimming. | The boy are falling. |
| 35 | The girls swimming. | The boys falling. |
| 36 | The girls are swimming. | The boys is falling. |
| 37 | The is girls swimming. | The is boys falling. |
| 38 | The girls was swimming. | The boys is falling. |
| 39 | The girls arc swimming. | The boys is falling. |
| 40 | The gril is swimming. | The boys is falling. |

TASK 3 - PART 4


TASK 3 - PART 4

| 11107 | 11211 |
| :---: | :---: |
| TASk 3 | TASK 3 |
| Plural | Plural |
| Tast | Past |
| $\mathrm{Y} / \mathrm{N}$ | $\mathrm{Y} / \mathrm{N}$ |
| $\ldots$ the__slecping?boys <br> isarc <br> wore <br> boy <br> was |  |
| slecping the $\qquad$ slccping? <br> A the was boys slecping? | is the arc laughing? (arathe girls laghing? |
| Is the slecping slecping? | Is the girl laughing? |
| was the boy slecping? | was the girl laughing? |
| were the boys sleeping? | was the grils laughing? |
| is the slecping? | Is the girl laughing? |
| was the boys slecping? | was the girl laughing? |
| was the bod sleeping? | lonah the girl laughing? |
| is the sleeping? | is the laughing? |
| was the boys slecping? | was the girls laughing? |
| boy was the slecping? | The the girl is latghing? |
| Is the boy sleeping? | was the girl laughing? |
| was the boys sleeping? | was the girls laughing? |
| was the boys sleeping? | was the girls laughing? |
| was the boy slecping? | was the girls laughing? |
| were the boy wes slecping? | was the girls laughing? |
| boys the is slecping? | was the boy laughing? |
| are the boys slecping? | was the girl laughing? |
| Is the boys slecping? | was the girls laughing? |
| Are the boys slecping? | Was the grils laughing? |

TASK 3 - PART 4


TASK 3 - PART 4

|  | 11215 | II111 |
| :---: | :---: | :---: |
|  | TASK 3 | TASK 3 |
|  | ilural | Plural |
|  | last | Past |
|  | SAD | S^1) |
|  | Thedogs <br> is <br> werc <br> are <br> dog <br> was | The crying.boy <br> is <br> are <br> was <br> werc <br> boys |
| 21 | The is bol (dog) slecping. | The boys crying. |
| 22 | The bog are slecping. | The is boys crying. |
| 23 | The dogs is slecping. | The boy is crying crying. |
| 21 | The was dog slecping. | The was boy crying. |
| 25 | The dog are slecping. | The boys were crying. |
| 26 | The is are dog slecping. | The is Boy crying. |
| 27 | The was dog slecping. | The was boys crying. |
| 28 | The was bogs slecping. | The is han boy crying. |
| 29 | The is slecping. | The is crying. |
| 30 | The dogs was slecping. | The boys was crying. |
| 31 | The was dogs slecping. | The boys was crying. |
| 32 | fhe was dog slocping. | The is boy crying. |
| 33 | The dogs was slocping. | The boys was crying. |
| 34 | The dogs was slocping. | The boys was crying. |
| 35 | The dogs slecping. | The is boys crying. |
| 36 | The dogs was slecping. | The boys was crying. |
| 37 | The is dogs slceping. | The was boys crying. |
| 38 | The dogs was slecping. | The boys was crying. |
| 39 | The dogs was slecping. | The boys was crying. |
| 40 | The dogs werc slecping. | The boy was crying. |

TASK 1 - PART 1


TASK $4-\mathrm{PART} 1$

|  | 11.36 | 11416 |
| :---: | :---: | :---: |
|  | T^Sk 4 | T^SK 1 |
|  | Singular | Singular |
|  | lresent | Present |
|  | Y/N | $\mathrm{Y} / \mathrm{N}$ |
|  | Is the boy drinking? | Is the boy walking? |
| 21 | 1) rinking? | walking? |
| 22 | the boy Drinking? | the boy walking? |
| 23 | Is the doy lorinking? | Is the doy walking? |
| 24 | is the boy Drinking? | the boy is walking? |
| 25 | Is tho boy Drinking? | Is the boy walking? |
| 26 | Is Boy Mikc Milk? | Is Malk Boy? (walk) |
| 27 | The hoy is Drinking? | The boy is walking? |
| 28 | The a bog? | The a bog? ? ? |
| 29 | is were | is worl (work) (waik) |
| 30 | Is boy Drinking? | Is boy walking? |
| 31 | The is Drinking? | The walking boy is? |
| 32 | was the boy brinking? | was the boy walking? |
| 3.3 | The doy is brinking? | The boy is walking? |
| 34 | Are the boy brinking? | Is the boy walking? |
| 35 | The boy Drinking? | The boy is walking? |
| 36 | the boy is clapping? | the boy walking? |
| 37 | The is boy Drinking? | is the boy walking? |
| 38 | is the boy Drinking? | is the boy walking? |
| 39 | Is The boy Drinking? | Is The boy walking? |
| 40 | Is the boy drinking? | Is the boy walking? |

TASK 4 - PART 1

| 11204 | 11208 |
| :---: | :---: |
| TASk 4 | TASK 4 |
| Singular | Singular |
| Prescnt | Prescnt |
| SAD | SM1 |
| The girl is cating | The girl is falling. |
| (cating) morro What lating. Now The girl is lating. Giris lating. Is is mating. liating. is the girl cating. | (falling) oop Wha Falling. Falling. The girlis Falling. Cirls Falling is. Falling. Ciri is the girl foll. |
| The is girl. <br> Tha <br> The apple is lating. <br> Was lating. <br> The is lating. <br> was quy (girl) <br> the lating is <br> Is The gir Eating. <br> fating. <br> lating. | The is girl. <br> The wsa Falling. <br> The girl is Falling. was Falling. <br> The is Falling. <br> was gourl. <br> the Falling is girl. <br> the girl Falling. <br> Falling. <br> Girl |

TASK 4 - PART 1

| 11201 | 11208 |
| :---: | :---: |
| TASK 4 | T^SK 4 |
| Singular | Singular |
| prescnt | Proscnt |
| Sへ1) | S^1) |
| The girl is cating. | The girl is falling. |
| lating. | Falling. |
| the liating girls. | the girl falling. |
| The lating girl. | The girl Falling. is The girl |
| ls the grill lating. | Is the grill Falling. |
| Was The ate. | The jump. |
| Is the girl Eating, | Is the girl Falling. |
| The wes lating. is lating. | The bnu girl. is $p$ |
| The girlis Eating. | The girl is Falling. |
| (g)rd was | Falling was. |
| was the girl cating. | The is girl falling. |
| The girl is eating. | The girl is falling. |
| The girl is oating. | The girl is falling. |
| The girl lating. | The girl Falling. |
| lho gixl cating. | the girl is falling. |
| is the girl cating. | The is girl Falling. |
| the girl is foot. | the girl was fell. |
| lhe girl is cating. | The girl is falling. |
| The gril is cating. | The gril is falling. |

T^SK $4-P \wedge R T 2$

|  | 17312 | 11212 |
| :---: | :---: | :---: |
|  | TASK 4 | T^SK 4 |
|  | SinguIar | Singular |
|  | Past | Past |
|  | Sへ1) | SA1) |
|  | The boy was clapping. | The girl was skipping. |
| 1 | (clapping) | (skipping) |
| 2 | nolol | obdo |
| 3 | (clapping) | wha skipping. |
| 4 | (clapping) | skpping. |
| 5 | The boy was Clapping. | The girl was skipping. |
| 6 | clapping. | skipping. |
| 7 | clapping. | skipping. |
| 8 | clappingr was. | skipping. |
| 9 | clapping. | skipping. |
| 10 | Was the doy clapping. | was the girl skipping. |
| 11 | The is boy. | The is girl. |
| 12 | The is clapping. | The is skipping. |
| 1.3 | The boys sitting. | The girl was skipping. |
| 14 | was clajping. | was skipping. |
| 15 | The is clapping. | 'lhe is skipping. |
| 16 | was boy. | was girl. |
| 17 | The clapping is boy. | the gril skipping. |
| 18 | The is clapping. | The is girl was skipping. |
| 19 | (ilapping. | SKipjing. |
| 20 | C-Clopping. | skipping. |

TASK 4 - PART 2

|  | 11312 | 11212 |
| :---: | :---: | :---: |
|  | TASk 4 | TMSK 4 |
|  | Singular | Singular |
|  | Pisit | Past |
|  | SAD | SAD |
|  | The boy was clapping. | The girl was skipping. |
| 21 | clapping. | skipping. |
| 22 | the boy clapping | the girl skipping. |
| 23 | The the doy is clapping. | Is girl skipping. |
| 2.1 | was the boy clapping. | was The girl |
| 25 | The boy was clapping. | The gril was skipping. |
| 26 | Is Malk ${ }^{(\text {walk })}$ Milk Boy. | Is was skipping. |
| 27 | The boy was clapping. | was the girl skipping. |
| 28 | The a bog. | Is olnuri girl. |
| 29 | is boy | is |
| 30 | The boy was clapping. | The girl was skipping. |
| 31 | The was clapping. | The is girl swimming. |
| 32 | Is The boy lialling. | The is girl skipping. |
| 33 | The boy was clapping. | The girl was skipping. |
| 34 | The boy was clapping. | The girl was skipping. |
| 35 | The boy clapping. | The girl Skipping. |
| 36 | the boy was clapping. | the girl was skipping. |
| 37 | The was boy clpping. | was the girl skipping. |
| 38 | The boy was capping. | The girl was skipping. |
| 39 | The boy was clapping. | The girl was Skipping. |
| 40 | The boy was clapping. | Was the gril skipping. |

TASK 4 - PART 2


TASK 1 - PART 2

|  | 1101 | 1101 |
| :---: | :---: | :---: |
|  | TASK 4 | TASK 4 |
|  | Singular | Singular |
|  | liast | Past |
|  | $\mathrm{Y} / \mathrm{N}$ | $\mathrm{Y} / \mathrm{N}$ |
|  | Was the girl sitting? | Was the girl crying? |
| 21 | sitting? | crying? |
| 22 | the gril sitting? | the is girl crying? |
| 23 | Is the girl sitting? | Is crying girl? |
| 2.4 | the girl was sitting? | the was girl? |
| 25 | were the girl sitting? | The girl was crying? |
| 26 | is Boy? | The ? |
| 27 | Was the girl sitting? | Was the girl crying? |
| 28 | the a girl? | The is girl? |
| 29 | is are | Beforc |
| 30 | was girl sitting? | was girl crying? |
| 31 | The sitting was? | was crying? |
| 32 | Is the girl sitting? | was the crying? |
| 33 | The girl was sitting? | The girl was crying? |
| 34 | were the girl sitting? | The girl was crying? |
| 35 | The girl is sitting? | was the girl crying? |
| 36 | The girl was sitting? | The girl was crying? |
| 37 | was the gril sitting? | The was crying? |
| 38 | was the girl sitting? | The girl was crying? |
| 39 | was the girl sitting? | Was the girl crying? |
| 40 | was the girl sitting? | The gril was crying? |

TASK 4 - PART 3

| 11.304 | 11108 |
| :---: | :---: |
| TMSK 4 | TASK 4 |
| Plural | Plural |
| Prosent | Proscnt |
| $\mathrm{Y} / \mathrm{N}$ | $\mathrm{Y} / \mathrm{N}$ |
| Are the girls clapping? | Are the boys running? |
| ```(clapping) Bro wha clapping? (clapping) The girls is Clapping? Girls? 1)rinkiAg, is? Claing is was? Claclyng. is the girl clapping?``` | no nnoun <br> BMOOM <br> wha Jumping? <br> 8 ? <br> The bays is running? <br> Running? <br> 108 <br> was is boy Running? <br> Walking? <br> is the doy Running? |
| The is girl? <br> The was clapping? <br> is girls sitting? <br> was clapping? <br> The is clapping? <br> tho god <br> The clapping is girl? <br> The is girls clapping? Clapping. <br> Boy? | The is boy? <br> The kunning? <br> is The boys running? <br> was Running? <br> The is Jumping? <br> Is boy? <br> the boy Running? <br> Running? <br> Running? <br> Boy? |

TASK 4 －PART 3

|  | 11304 | 11108 |
| :---: | :---: | :---: |
|  | 14SK 1 | TMSK 4 |
|  | Plural | plural |
|  | Prescnt | Proscnt |
|  | Y／N | $\mathrm{Y} / \mathrm{N}$ |
|  | Nre the girls clapping？ | Are the boys running？ |
| 21 | C1apping？ | Running？ |
| 22 | the gril clapping？ | the is boys running？ |
| 23 | Is the girl clapping？ | was boy running？ |
| 24 | the is girl Clapping？ | the is boy？ |
| 2.5 | Is the girls clapping？ | were the boys running？ |
| 26 | I：was Girl？ | The is Running？ |
| 27 | ARİ tIIE（GIRL CLAPITNG？ | Is the boys Running？ |
| 28 | The lauaul girl？ | Is The ran？ |
| 29 | is werc？ | is？ |
| 30 | Is girls Clapping？ | Is boys running？ |
| 31 | The is Girls sitting？ | boy Running？ |
| ． 22 | was the girl clapping？ | was the boy running？ |
| 3.3 | The girls is clapping？ | The boys is Running？ |
| 34 | Is the girls clapping？ | was the boys running？ |
| 35 | The girls Clapping？ | Was The doy？ |
| 36 | the girls is clapping？ | The Boys is running？ |
| 37 | is the girls clapping？ | boys the is Running？ |
| ． 3 | Is the girls clapping？ | the boy was the Running？ |
| 59 | Is the girls clapping？ | Is the boys running？ |
| 40 | Is therrils clapping？ | Nre boy running？ |

TASK 4 - PART 3


| 11216 | 11112 |
| :---: | :---: |
| TASK 4 | TASk 4 |
| P1ural | Plural |
| Prescnt | Present |
| S^D | S^D |
| The boys are drinking. | The girls are falling. |
| 1) rinking. <br> the boy Arc Drinking | Falling. <br> thc gril Falling. |
| The doys is Drinking. | The the girls lationg. |
| is the boy. | The girl is Falling. |
| werc the boys drinking. | The girls is lalling. |
| Is is Milk Boy. | Is the Boy Girl. |
| Is the boy Drinking. | The girl is Palling. |
| Is was boy. | Is girls. |
| is | is byoic |
| The boys is Drinking. | The girls is Falling. |
|  |  |
| The is Drinking Boys. | The ralling is. |
| The is boy brinking. | The was filling. |
| Tho boys is brinking. | The girls is falling. |
| The boys is brinking. | The girl is falling. |
| The boys Drinking. | Whe girls Falling. |
| The boys drinking. | the girls is falling. |
| The is boy Drinking. | The girls is falling. |
| the boy was Drinking. | The girls is falling. |
| The boys is drinking. | The girl is falling. |
| The boy was brinking. | The grils is falling. |

TASK 4 - PART 4


TASK 4 - PART 4

| 11116 | 11108 |
| :---: | :---: |
| TMSK 4 | TMSK 1 |
| plural | Plural |
| Past | Past |
| $5 \mathrm{M1}$ | SND |
| The girls were running. | The dogs were sitting. |
| Kunning. | logs. |
| the ars girls running. | the bog logs. |
| Is girl is Running. | The the dog. |
| Was the girl. | the dog was. |
| The girls were running. | The dogs was sitting. |
| The was girl. | Is the dogs. |
| was the girl Running. | The dog was sitting. |
| The is girl. | was bogs. |
| Before | is grils. |
| Tho girls was running. | The dogs was sitting. |
| Running girls. | The logs was. |
| The was girl Running. | The is Dogs sitting. |
| The girls was Running. | The dogs was sitting. |
| The girl was running. | The dog was sitting. |
| The girls is Jumping. | The dogs is sitting. |
| The girls was running. | The dogs sitting. |
| The was Girls Running. | Was the dog sitting. |
| the girl Jumping. | the dog was sitting. |
| The girl was running. | Tho dogs was sitting. |
| Wis the grils rumning. | The dog was sitting. |

TASK 4 - PART 4

|  | 11.308 | 11112 |
| :---: | :---: | :---: |
|  | T^SK 4 | T^SK 4 |
|  | Plural | Plural |
|  | Pist | Past |
|  | $Y / N$ | $\mathrm{Y} / \mathrm{N}$ |
|  | Were the boys walking? | Were the girls jumping? |
| 1 | (walking) | Bononono? |
| 2 | crying? | oblo |
| 3 | (walking) | wha running? |
| 4 | (walking) | Jumping? |
| 5 | The boys was walking? | The girls was jumping? |
| 6 | Buy? | Girls? |
| 7 | Boys is? | Jumping? |
| 8 | walking is was? | was girl is? |
| 9 | - walking? | Girls? |
| 10 | was the doy walking? | was the girl Jumping? |
| 11 | The is boy? |  |
| 12 | The is walking? | The Jumping? |
| 1.3 | was boys walking? | was the girls Jumping? |
| 14 | was walking? | The was Girl? |
| 15 | lhe is walking? | The is Girl? |
| 16 | boy was? | gor? |
| 17 | lhe walking is boy? | the Running? |
| 18 | The is walking? | was Jumping? |
| 19 | Walking? | Jumping? |
| 20 | Boys? | Girls? |

TASK 4 - PART 4

|  | 11308 | 1112 |
| :---: | :---: | :---: |
|  | TISK 4 | TASK 1 |
|  | Plural | Plural |
|  | past | Past |
|  | $\mathrm{Y} / \mathrm{N}$ | $\mathrm{Y} / \mathrm{N}$ |
|  | Were the boys walking? | Were the girls jumping? |
| 21 | Walking? | Falling? |
| 22 | the boy walking? | the is girls jumping? |
| 23 | Is the doys walking? | Is girl Jumping? |
| 24 | was the boy walking? | was the girl? |
| 25 | was the boys walking? | Nre the girls jumping? |
| 26 | Is Malk (walk) ? | The is girl? |
| 27 | The boy was walking? | Was the girl Jumping? |
| 28 | the wake log? | ls girl? |
| 29 | is boyy? | Before |
| 30 | was hoys walking? | was girls Jumping? |
| 31 | the was walking? | Girl Jumping? |
| 32 | was the boy walking? | was the girl Jumping? |
| 33 | The doys was walking? | The girl was Jumping? |
| 34 | were the boys walking? | was the girls jumping? |
| 35 | the boys walking? | The girls? |
| 56 | the hoys was walking? | The girls was jumping? |
| 37 | was the boys walking? | The was Girls jumping? |
| 38 | was the boys walking? | the girl was Jumping? |
| 39 | Was the boys walking? | Was the girl jumping? |
| 40 | The boy was walking? | Was the grils jumping? |

APPENDIX H
SURMARY OF TASK 3 AND 4 RESPONSES
FOR SELECTED SUBJECTS
( ) - indicates subject pointed to that particular word

Correct Model

|  | 103 | 33 | The girl is clapping. |
| :---: | :---: | :---: | :---: |
|  | 411 | 34 | The boy is jumping. |
|  | 307 | 35 | Is the boy running? |
|  | 407 | 36 | Is the girl jumping? |
| T | 315 | 37 | The boy was sleeping. |
|  | 115 | 38 | The dog was running. |
| A | 415 | 39 | Was the girl swimming? |
| 5 | 403 | 40 | Was the boy falling? |
| K | 207 | 41 | The girls are swimming. |
|  | 311 | 42 | The boys are falling. |
| 3 | 203 | 43 | Are the dogs running? |
|  | 303 | 44 | Are the girls crying? |
|  | 215 | 45 | The dogs were sleeping. |
|  | 111 | 46 | The boys were crying. |
|  | 107 | 47 | Were the boys sleeping? |
|  | 211 | 48 | Were the girls laughing? |
|  | 204 | 49 | The girl is eating. |
|  | 208 | 50 | The girl is falling. |
|  | 316 | 51 | Is the boy drinking? |
| T | 416 | 52 | Is the boy walking? |
| A | 312 | 53 | The boy was clapping. |
| S | 212 | 54 | The girl was skipping. |
|  | 404 | 55 | Was the girl sitting? |
| K | 104 | 56 | Was the girl crying? |
|  | 216 | 57 | The boys are drinking. |
| 4 | 412 | 58 | The girls are falling. |
|  | 304 | 59 | Are the girls clapping? |
|  | 108 | 60 | Are the boys running? |
|  | 116 | 61 | The girls were running. |
|  | 408 | 62 | The dogs were sitting. |
|  | 308 | 63 | Were the boys walking? |
|  | 112 | 64 | Were the girls jumping? |


|  |  | \# 5 | \# 6 |
| :---: | :---: | :---: | :---: |
| 103 | 33 | The girl was clapping. | The girl clapping. |
| 411 | 34 | The dog is jumping. | The boys jumping. |
| 307 | 35 | the boy is running the boy is running? | boys the boy running? |
| 407 | 36 | The girl is jumping the girl is jumping? | girls the girl jumping? |
| 315 | 37 | The boy was sleeping. | The boy sleeping. |
| 115 | 38 | The dog was running. | The dogs running. |
| A 415 | 39 | The girl was swimming the girl was swimming? | swimming the swimming? |
| S 403 | 40 | The boy was falling the boy was falling? | boys the boy falling? |
| 207 | 41 | The girls is swimming. | The girl swimming. |
| 311 | 42 | The boy is falling. | The boy falling. |
| 203 | 43 | The dog is running the running? | dog the dogs running? |
| 303 | 44 | The girl is crying the girl is crying? | girls the girl crying? |
| 215 | 45 | The dog was sleeping. | The dog dog sleeping, |
| 111 | 46 | The boys was crying. | The boys crying. |
| 107 | 47 | The boys was sleeping the boy was sleeping? | boys the sleeping? |
| 211 | 48 | $\qquad$ the girls was laughing? | girl the girls laughing? |
|  |  |  |  |


| 204 | 49 | The girl is Eating. | Girls. |
| :---: | :---: | :---: | :---: |
| 208 | 50 | The girl is Falling. | Girls. |
| 316 | 51 | The boy is Drinking? | Drimking? |
| 416 | 52 | The boy is walked? | Walking? |
| 312 | 53 | The boy was Clapping. | clapping. |
| 212 | 54 | The girl was skipping. | skipping. |
| 404 | 55 | the girl was sitting? | Girls? |
| A 104 | 56 | The girl was crying? | Girls? |
| 216 | 57 | The boy is Drinking. | Drinking. |
| 412 | 58 | The girl is Falling. | Girls. |
| 304 | 59 | The girls is clapping? | Girls? |
| 108 | 60 | The bays is running? | Running? |
| 116 | 61 | The girls was running. | Girls. |
| 408 | 62 | The dogs was | Dogs. |
| 308 | 63 | The boys was walking? | Boy? |
| 112 | 64 | The girls was jumping? | Girls? |



|  |  |  | \# 24 | \# 30 |
| :---: | :---: | :---: | :---: | :---: |
|  | 103 | 33 | The is girl clapping. | The girl is clapping. |
|  | 411 | 34 | The is boy jumping | The boy is jumping |
|  | 307 | 35 | is the boy running? | Is the boy running? |
|  | 407 | 36 | is the girl jumping? | Is the girl jumping? |
| T | 315 | 37 | The was boy sleeping | The boy was sleeping |
|  | 115 | 38 | The was bog running. | The dog was running |
| A | 415 | 39 | Was the girl swimming? | Was the girl swimming? |
| S | 403 | 40 | Was the boy falling? | was the boy falling? |
| K | 207 | 41 | The is girl swimming. | The girls is swimming |
|  | 311 | 42 | The is boy falling. | The boys is falling |
| 3 | 203 | 43 | is the dog running? | Is the dogs running? |
|  | 303 | 44 | is the girl crying? | Is the girls crying? |
|  | 215 | 45 | The was dog sleeping | The dogs was sleeping. |
|  | 111 | 46 | The was boy crying. | The boys was crying. |
|  | 107 | 47 | Was the boy sleeping? | was the boys sleeping? |
|  | 211 | 48 | Was the girl laughing? | was the girls laughing? |
|  | 204 | 49 | is The girl | The girl is Eating |
|  | 208 | 50 | is The girl | The girl is Falling |
|  | 316 | 51 | is the boy Drinking? | Is boy Drinking? |
| T | 416 | 52 | the boy is Walking? | Is boy Walking? |
|  | 312 | 53 | was the boy clapping. | The boy was clapping. |
| A | 212 | 54 | was The girl | The girl was skipping. |
| S | 404 | 55 | the girl was sitting? | was girl sitting? |
|  | 104 | 56 | the was girl? | $s$ girl crying? |
| K | 216 | 57 | is the boy. | the boys is Drinking. |
| 4 | 412 | 58 | the girl is Falling. | The girls is Falling. |
|  | 304 | 59 | the is girl Clapping? | Is girls Clapping? |
|  | 108 | 60 | the is boy? | Is boys running? |
|  | 116 | 61 | was the girl | The girls was running. |
|  | 408 | 62 | the dog was | The dogs was sitting. |
|  | 308 | 63 | was the boy walking? | was boys walking? |
|  | 112 | 64 | was the girl? | was girls Jumping? |

\# 40


## APPENDIX I

SUMNARY ANOVA INCLUDING EXAMINER AS A FACTOR

| Source | df | liean Square | Error Term | F |
| :---: | :---: | :---: | :---: | :---: |
| MEAN ${ }^{\text {a }}$ | 1 | 181.6891 | $\mathrm{R}(\mathrm{AX})$ | 234.9711 |
| $A^{\text {b }}$ | 3 | 7.4838 | $R(A X)$ | 9.6786 |
| $B^{\text {c }}$ | 3 | 15.1046 | BR(AX) | 98.1129 |
| $C^{\text {d }}$ | 1 | 36.5765 | $\operatorname{CR}(\mathrm{AX})$ | 60.8242 |
| $D^{\text {e }}$ | 1 | . 3062 | $D R(A X)$ | 2.0992 |
| $E^{\text {f }}$ | 1 | .1562E-02 | $\operatorname{ER}(\mathrm{AX})$ | 0.0081 |
| $X(A)^{\text {g }}$ | 4 | 3.7945 | $\mathrm{R}(\mathrm{AX})$ | 4.9073 |
| $A B$ | 9 | . 5841 | $\mathrm{BR}(\mathrm{AX})$ | 3.7947 |
| AC | 3 | 4.0213 | CR(AX) | 6.6872 |
| BC | 3 | . 4463 | $\operatorname{BCR}(\mathrm{AX})$ | 2.5315 |
| $A D$ | 3 | . 3072 | DR( $A X)$ | 2.1063 |
| BD | 3 | . 1593 | BDR(AX) | 1.2436 |
| $C D$ | 1 | . 9179E-05 | $\operatorname{CDR}(\mathrm{AX})$ | 0.0001 |
| AE | 3 | . 2588 | ER(AX) | 1.3347 |
| BE | 3 | . 2963 | $\operatorname{BER}(\mathrm{AX})$ | 1.7988 |
| CE | 1 | . $7956 \mathrm{E}-01$ | CER(AX) | 0.3051 |
| DE | 1 | 1.406 | DER(AX) | 16.1822 |
| $\mathrm{R}(\mathrm{AX})^{\mathrm{h}}$ | 32 | . 7732 |  |  |
| BX $(\mathrm{A})$ | 12 | . 1736 | $\mathrm{BR}(\mathrm{AX})$ | 1.1282 |
| CX(A) | 4 | 2.4976 | CR(AX) | 4.1534 |
| DX(A) | 4 | . 4007 | DR( $A X$ ) | 2.7471 |
| EX(A) | 4 | . 1289 | ER(AX) | 0.6647 |
| $A B C$ | 9 | . 1453 | BCR(AX) | 0.8242 |
| ABD | 9 | . 2201 | $\operatorname{BDR}(\mathrm{AX})$ | 1.7178 |
| ACD | 3 | . 2218 | CDR(AX) | 1.5290 |
| BCD | 3 | . $5728 \mathrm{E}-01$ | $\operatorname{BCDR}(\mathrm{AX})$ | 0.5518 |
| A.BE | 9 | . 8559E-01 | BER. (AX) | 0.5196 |
| ACE | 3 | . $4219 \mathrm{E}-01$ | CER(AX) | 0.1681 |
| BCE | 3 | . 1713 | $\operatorname{BCER}(\mathrm{AX})$ | 1.2621 |
| A.DE | 3 | . 2072 | DER(AX) | 2.3854 |
| BDE | 3 | . 5635 | BDER(AX) | 4.0714 |
| CDE | 1 | . $5624 \mathrm{E}-01$ | $\operatorname{CDER}(\mathrm{AX})$ | 0.5029 |
| BR(AX) | 96 | . 1539 |  |  |
| CR(AX) | 32 | . 6013 |  |  |
| DR(AX) | 32 | . 1458 |  |  |
| ER(AX) | 32 | . 1939 |  |  |
| $\operatorname{BCX}(\mathrm{A})$ | 12 | . 2538 | BCR(AX) | 1.4399 |
| $\operatorname{BDX}(\mathrm{A})$ | 12 | . 2070 | $\operatorname{BLR}(\mathrm{AX})$ | 1.6154 |
| $\operatorname{CDX}(\mathrm{A})$ | 4 | . 3203E-01 | $\operatorname{CDR}(\mathrm{AX})$ | 0.2207 |
| $\operatorname{BEX}(\mathrm{A})$ | 12 | . 1476 | EER. (AX) | 0.8963 |
| $\operatorname{CEX}(\mathrm{A})$ | 4 | . 8203E-01 | CER(AX) | 0.3269 |
| $\operatorname{DEX}(\mathrm{A})$ | 4 | . 1882 | DER(AX) | 2.1667 |

Summary of Analysis of Variance (cont.)

| Source | df | Mean Square | Error Term | F |
| :---: | :---: | :---: | :---: | :---: |
| ABCD | 9 | . 1694 | $\operatorname{BCDR}(\mathrm{AX})$ | 1.6317 |
| ABCE | 9 | . 1161 | $\operatorname{BCER}(\mathrm{AX})$ | 0.8552 |
| ABDE | 9 | . 1548 | $\operatorname{BDER}(\mathrm{AX})$ | 1.1187 |
| ACDE | 3 | .6978E-01 | $\operatorname{CDER}(\mathrm{AX})$ | 0.6239 |
| BCDE ${ }^{\text {i }}$ | 3 | . 1302 | $\operatorname{BCDER}(\mathrm{AX})$ | 1.0873 |
| $S(B C D E){ }^{1}$ | 32 | . 1640 | SR( $\operatorname{AXBCDE}$ ) | 1.6044 |
| BCR(AX) | 96 | . 1763 |  |  |
| BDR(AX) | 96 | . 1281 |  |  |
| CDR(AX) | 32 | . 1451 |  |  |
| BER(AX) | 96 | . 1647 |  |  |
| $\operatorname{CER}(\mathrm{AX})$ | 32 | . 2509 |  |  |
| $\operatorname{DER}(\mathrm{AX})$ | 32 | . 8690E-01 |  |  |
| $\operatorname{BCDX}(\mathrm{A})$ | 12 | . 9455E-01 | $\operatorname{BCDR}(\mathrm{AX})$ | 0.9108 |
| $\operatorname{BCEX}(\mathrm{A})$ | 12 | . 2153 | BCER ( AX) | 1.5865 |
| $\operatorname{BDEX}(\mathrm{A})$ | 12 | . $8826 \mathrm{E}-01$ | $\operatorname{BDER}(\mathrm{AX})$ | 0.6377 |
| $\operatorname{CDEX}(\mathrm{A})$ | 4 | . $3824 \mathrm{E}-01$ | $\operatorname{CDER}(\mathrm{AX})$ | 0.3419 |
| ABCDE | 9 | . 2979 | BCDER(AX) | 2.4881 |
| AS ( BCDE ) | 96 | . 1005 | SR( $\operatorname{AXBCDE}$ ) | 0.9829 |
| BCDR ( $A X)$ | 96 | . 1038 |  |  |
| $\operatorname{BCER}(\mathrm{AX})$ | 96 | . 1357 |  |  |
| $\operatorname{BDER}(\mathrm{AX})$ | 96 | . 1384 |  |  |
| $\operatorname{CDER}(\mathrm{AX})$ | 32 | . 1118 |  |  |
| $\operatorname{BCDEX}(\mathrm{A})$ | 12 | . 1569 | $\operatorname{BCDER}(\mathrm{AX})$ | 1.3102 |
| SX(ABCDE) | 128 | . $8824 \mathrm{E}-01$ | $\operatorname{SR}(\operatorname{AXBCDE})$ | 0.8630 |
| $\operatorname{BCDER}(\mathrm{AX})$ | 96 | . 1197 |  |  |
| SP: ( AXBCDE ) | 1024 | . 1022 |  |  |

```
* = probability < . }0
** = probability < . O1
a = grand mean
b = age
c = task
d = singular/plural
e = tense
f = transform
g = examiner nested under age
h = subjects nested under examiner and age
i = sentences nested under BCDE
```


[^0]:    

