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ABSTRACT

Many of the measures obtained in educational research are Likert-type responses on
questionnaires. These Likert-type variables are sometimes used in ordinary least-squares
regression analysis. However, among the key implications of the assumptions of regression is
that the criterion is continuous. Little reseérch has been done to examine how much information
is lost and how inappropriate it is to use Likert variables in ordinary least-squares multiple
regression. Therefore, this study examined the effect of Likert-type responses in the criterion
variable and predictors for various scale points, on the accuracy of regression models using
normal and skewed observed response patterns. This was done for the case of three predictors
and one criterion. Similarly, eight levels of Likert-type categorization ranging from two to nine
scale points were considered for both predictors and‘criterion variables.

It was found that the largest bias in the estimation of the model R-squared, the relative
Pratt Index, and Pearson correlation coefficient occurred for two or three-point Likert scales.
The bias did not substantially reduce any further beyond the four-point Likert scale. Type of
correlation matrix had no effect on the model fit. However, skewed response distribution
resulted in large biases in both R? and Pearson correlation, but not in Relative Pratt index, which
was not affected by the response distribution.

Practical contribution and significance of the study is that it has provided information
and insight on how much information is lost due to bias, and the extent to which accuracy is
compromised in using Likert data in linear regression models in education and social science
research. Itis recommended that researchers and practitioners should recognize the extent of
the bias in ordinary least-squares regression models with Likert data, resulting in substantial loss
of information. For variable importance, the relative Pratt index should be used given that it is
robust to Likert conditions and response distributions. Finally, when interpreting reported

regression results in the research literature one should recognize that the reported R-squared
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values are underestimated and that the Pearson correlations are also typically underestimated --

and sometimes substantially underestimated.
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CHAPTERI
BACKGROUND TO THE PROBLEM
Introduction
Categorical variables used in survey and social science research often have a built-in
order property except when used as labels, in which case they are referred to as nominal scales.
An ordered categorical variable Y is often as a result of coarse grained measure of an underlying

continuous variable 1. For example, a dichotomous variable is observed as Y=1 when n exceeds

some threshold value t, and as Y = 0 otherwise (Olsson, Drasgow, & Dorans, 1982). In
psychology, sociology, and biometrics, as well as econometrics, examples abound for which it is
reasonable to assume that a éontinuous variabl.e underlies a dichotomous or polytomous
observed variable. A typical example of ordered cafegory is the Likert scale, which has five
scale points at equal interval. It is assumed that the underlying latent variable is continuous. Due
to the popularity of Likert scales, similar scales based on different number of scale points, and
referred to as Likert-type scales have been developed.

Many of the measures obtained in educational research are Likert-type responses on
questionnaires. These Likert-type responses are considered ordered-categorical observed
variables where the underlying variable is completely unobserved (i.e., latent). Furthermore, as
the normally distributed latent variable increases beyond certain threshold values, the observed
variable takes on higher scores, referred to as scale points. As is commonly found in the
educational research literature, these variables are often referred to as Likert variables wherein,
for example, such a variable with four possible observed values is commonly referred to as a
“four-point Likert scale”. Similarly, a variable with five observable values is referred to as a

five-point Likert scale.



Likert variables are frequently used in ordinary least-squares regression analysis.
Importantly, however, among the key assumptions of regression is that the criterion is
continuous. Little research has been done to examine how much information is lost and how
inappropriate it is to use Likert variables in ordinary least-squares regression.

Information loss

In using Likert variables, it is assumed‘in‘ the literature that the larger the number of
scale points the closér the estimation of the resultin_g statistics from the observed responses are
to the population parameters of the underlying latent continuum. This is based on the premise
that the underlying continuum is continuous and normally distributed. Similarly, the observed
variables are also assumed to be continuous and normally distributed. However, real life
response data derived from Likert scales are discrete and are not necessarily normally
distributed. This results in underestimation of the population parameters of the underlying
construct in the resulting statistics. The consistént underestimation of the population parameters
is known as bias or in this case, loss of information. Thus, the loss of information referred to
here is loss relative to the latent continuum.

In linear regression model fit, the loss of information is relative to the statistics one
would obtain with latent variables as compared to thé observed Likert variables. For example, if
it is bias. in R-squared, then it is the résult of comparing R-squared ‘from Likert variables in the
model to the R-squared obtained from continuous and normally distributed latent variables. The
present study focuses on how different the models based on Likert variables would be,
compared to the models based on.the ideal latent continuum that is continuous and normally
distributed.

Implications of Likert variables

In order to place the discussion of the implications of using Likert variables in regression

analysis in context, let us consider a survey of students' life satisfaction Y as predicted by the



following three variables namely, family relations X}, friendships X>, and recreational activities
X;. The questionnaire read as follows:

How satisfied are you with: (Please circle your response)

| Very Evenly Very

Dissat. Balanced Satis.

QL1. Your family relations, generally 1 2 3 4 5 6 7
QL2. How you feel about life as a whole 1 2 3 4 5 6 7
QL3. Your friendships , 1 2 3 4 5 | 6 7
QLA. Your recreation activities 1 2 3 4 5 6 7

It is not uncommon for researchers to conduct an ordinary least-square regression analysis like:
Criterion (i.e., dependent) variable: QL2 (Life és a Whole)
Predictor (i.e., independent) variables: QL1 (Family Relations)
QL3 (Your Friendships)
QL4 (Your Recreation Activities)
What follows are some frequency charts from real data gathered in Northern Britisﬁ Columbia

by the Institute for Social Research and Evaluation (N=270) shown in Figure 1 to 3.
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Distribution of responses on QL 3 (Your friendships)



From these charts it can be seen that the response patterns are, as typically found in surveys in
this field; skewed. The results of conducting the ordinary least-squares regreséion are: R-
équafed = 0.467, and the standardized regression equation (with the béta-weights) is

ZOL2 =0.262* ZQL1 + 0.511*ZQL3 + 0.048*ZQL4, (1)

resulting in relative Pratt. indices (Thomas, Hughes, & Zumbo, 1998) of 0.264, 0.698, and 0.038
for QL1, QL3, and QL4 respectively. Relative Pratt indices measure thé proportion of the model
R-squared that is attributable to each predictor — this is sometimes used as a measure of the
variables importance in the model.

‘Speaking again more generally, if a simple additive regression model were t§ be fit
(excluding the interaction terms), four possible combinations of continuous and Likert variables
that would emerge are: (1) when the criterion variable Y is continuous and all the three
predictors are also continuous, (2) when the criterion variable is continuous and the predictors
are Likert, (3) when the critérion variable is a Likert and all the predictors are continuous, and
(4) when the criterion variable is Likert and all the .predictors are Likert. In all the four cases of
éombinations of continuous and Likert variables a simple regression model based on the
standard ordinary least-square estimation can be written as follows:

Yi=bo+ b; Xy +bth2+b3Xi3+ei (2)
where i =.] ,2,....n number of observations or participants in the study. The error term e; is that
part of the criterion ;/ariable Y, not accounted for by the three predictors, and also includes
measurement errér. The key assumptions of the regression model in essence, concerns the
properties of the errors and the distribution of ¥ conditional on the predictors. It is assumed that
at each value of the predictors, there is a sub-population with a marginal distribution of Y. The
population regression line passes through the mean of each sub-population in the marginal

distribution. Observations within each of the sub-populations in each predictor are assumed to

be independent of each other. Furthermore, for the purpose of inference, each of the sub-




populations must be normally distributed with equal variance. The assumption of continuous
distribution of Y is implicit in the stated conditions. The predictor X; observation is assumed to
be fixed and independent of the errors. However, the errors in Y; are normally distributed and
are uncorrelated, for every pattern of X; observations [N (0, o.’); Cov (e, ) =0, i7].

The regression model is assumed to be linear in the coefficients of the predictors, while
the predictors in turn are not a linear function of each other. In conducting regression analysis,
the researcher is expected to test for the assumptions, and determiné to what extent the
assumptions hold in the given data. Unfortunately, most data in social science are derived from
attitudinal and other affective measures that are Likért (Dawes, 1972). Consequently,
researchers must often estimate and analyze relationships between continuous concepts, using
the reported Likert data. This poses a measurement problem because the degree of association
(i.e., R%) and the estimation of the criterion variables (i.e., the predicted ¥), whether continuous
or Likert scale points, with the predictors may differ when continuous or Likert predictor
variables are used. Moreover, the implicit assumption in linear regression models that the
criterion variable is continuous, is often violated. Furthermore, studies have shown that when
correlation coefficients based on categorized measures are used, their inaccuracy distorts the
subsequent analysis and interpretation, resulting in lack of precision in measurement ( Bollen &
Barb, 1981; Cox, 1974). Therefore, it is important to determine the extent to which the
distortions lead to imprecision, and what information is lost in the process. In other words, how
misguided are researchefs and practitioners in the currernt research practice in linear regression
models, of analyzing continuous concepts with ordinal categorical measures?

It is important to note at this point, that Likert variables do occur naturally in educational

and social research settings although, as a common practice researchers may also create ordinal



categories for convenience in data analysis. The difference in this case with the Likert scale
points is that the underlying variable is not latent, but strictly observable responses.

The general problem of correlating ordinal categorized or collapsed continuous measures
have been studied as far back as the beginning of the century (Pearson; 1913), and later revisited
in the middle of the 1970s by researchers (Cox, 1974; Grether, 1976; Henry, 1982; Kim, 1978;
Labovitz, 1975; O’Brien, 1979). However, the main issue in the studies was the effect of ordinal
categorical variables on Pearson’s correlation, and whether ordinal categorical data should be
treated as interval data. The impact of ordinal categorization on multiple regression models was
not addressed. All the studies concentrated on the bivariate case of Pearson’s correlation. No
studies so far have considered the multivariate case involving multiple regression models.

Several studies have been conducted on the effect of ordinal categorical variables (herein
referred to as Likert variables) on identification of factors and components in factor analysis,
confirmatory maximum likelihood factor analysis, and principal component aﬁalysis ( Babakus,
Fergﬁson, & Joreskog, 1987; Bernstein & Teng, 1989; Green, Akey, Fleming, Hershberger, &
Marquis, 1997, Mufhen & Kaplan, 1985; Nunnally & Bernstein, 1994). Results from these
studies indicate that the effect of ordinal categorization of data leads to misrepresentation of the
underlying factors and wrong identification of the dimensionality of the latent variables. The
distribution (skewness and kurtosis) of the observed ordinal categorical or Likert variables also
result in inﬂated goodness of fit indices such as chi-square values, which in turn lead to increase
in type I error rate (Muthen & Kaplan, 1985). Curran, West, and Finch, (1995; 1996) stated that
when observed ofdinal categorical variables were non-normally distributed, the chi-square |
values were larger than expected (i.e., inflated) leading to identification of spurious'of factors.
The standard errors of the correlation between the factors were also underestimated. Thus, non-
normality leads to se;/ere underestimation of standard errors of paraﬁeter estimate and renders

their interpretation untrustworthy.




Other studies were conducted on the effect of Likert variables on the reliability of the
scores of the criterion variable (Matell & Jacoby, 1971; Chang, 1994) with mixed and
conflicting results. In each of the two studies it was found that reliability measures did not
improve with the increased refinement of the Likert scale points. Thus, the size of the resulting
reliability coefficient was deemed to be independent of the number of Likert scale points. Eom
(1993) studied the interactive effects of ordinal categorization on measures of circularity in
multivariate data and found significant effects of categorization. However, no attempt has been
made in studying the effect of ordinal categorization on multiple linear regression models. It is
recognized that ordinal categorization resulting in Likert scale points have implications to the
dccufacy of results in multivariate analysis and specifically, multiple regression, to the extent
that some methods have been proposed to resolve the problem using logit and probit models
(Ananth & Kleinbaum, 1997; Cliff, 1994; Long, 1999; Winship & Mare, 1984), and yet little
has been done on linear regression models. In particular, the extent of information loss in these_
models is not known.

Problem Statement

Given the results of the studies on the effect of ordinal categorization resulting in Likert
scale points, on the observed variables in linear regression, and the occurrence of errors in the
measures, what information is lost in using Likert data in ordinary least-square linear regression
models? To address this problem, and the implications of the associated variables, the effect of
the distribution of the responses, number of Likert scale points, and the underlying_ latent
variable were investigated.

Rationale of the Study

A common practice in educational and social science research is to use ordinal

categorized scale such as Likert scales, to measure observable variables, and to infer a

continuous latent variable. The inference is based on analysis of data using multivariate methods
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such as linear regression models, which implicitly assume that the observed criterion variable is
continuous and meets the basic assumptions for linear regression models. However, the analysis
of ordinal categorical variables is conducted as if they were continuous. While studies have
demonstrated that measuremént errors emerge from this practice, the extent of information loss
and therefore the levels of imprecision are not known. This impacts on the accuracy of
interpretation of results and generalizability of findings.

Severgl Likert-type scales have been adapted for use, ranging from two to ten scale
points. However, the number of Likert scale points has been hypothesized to influence the
accuracy of the criterion measures (Chan, 1994). Bollen and Barb (1981) found that the Pearson
correlation between two continuous variables was higher than thé correlation between the same
variables when they were divided into ordinal categories i.e. transformed to Likert scales. The
greatest attenuation occurred when few ordinal categories were employed for either variable in
the correlation. Findings indicated that coarse ordinal categorization (1.e. féwer Likert scale
points) of continuous variables resulting in Likert variables, was found to have a negative
impact on parameter estimates and standard errors. Likert variables with moré Likert scale
points provided more accurate measures than those with fewer scale pbints. Based on the
previous studies on correlations, it was hypothesized that the use of Likert variables in multiple
regression analysis would result in inaccuracy and information loss. Several studies on Likert
scales have focused on Pearson correlation, factor analysis and structural equation modeling but
little has been done on the impact of Likert data on multiple regression analysis. Therefore,
there was a need to study the extent of the inaccuracy for better measurement precision.

Other than the number of scale points in Likert variables, the distribution of the observed
variables and that of the underlying latent variable have been shown in previous studies to

influence the accuracy of parameter estimates, and model fit in factor analysis (Babakus, et.al,

1987; Muthen & Kaplan, 1985; Muthen & Kaplan, 1992). Given that multiple regression
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models have not been investigated, the present study investigates the extent of the impact of the
distributién of responses in Likert variables on the aécuracy of the ordinary least-square
regression models, which are frequently used in education and social science research, and also
addresses, in paﬂicular normal and non-normal (positive and negatively skewed) distributions.
In the light of the need to investigate the use of Likert variables in multiple regression
analysis, the research literature is first reviewed in chapter two leading to the methodology and

study design in chapter three. The results are presented in chapter four and the discussion as

well as the implications of the findings is presented in chapter five.




CHAPTERII
LITERATURE REVIEW
Introduction
Concern for the effect of ordered categorization on correlations and its interpretation
goes as far back as 1913 in an exposition in which Pearson discussed the analysis and
inter_pretation' of Pearson's r correlation from coarsely ordered categorized variables. Although
studies abound on the effects of ordinal categorization of continuous variables on some
multivariate analysis results, little has been done in linear regression models. Studies on Likert
variables have tended to concentrate on factor analysis using generalized least-square methods
and maximum likelihood, and structural equation modeling (Green et.al, 1997). An additional
variable cher than the number of Likert scale points is the effect of the distribution of the
underlying latent variable, and the distribution of responses of ordinal categoﬁzed yariables
(Muthen & Kaplan, 1985, 1992). Both the distribution and nuﬁber of Likért scale points
affected the correct identification of factors and model fit resulting in spurious factors. The main
concern in the studies was the imprecision resulting from ordinal categorization and therefore
Likert scales. However, the concern in the present study is the loss of information in fitting
regression models with Likert data, as most studies tended to concentrated on Pearson
correlation and factor analysis. Relevant studies were reviewed for theoretical and
methodological contributions to address the model fit in linear regression models using Likert
data.

Likert Data and Pearson Correlation

Collapsing measures in continuous variables to create Likert scales introduces errors,
which presents potential problems in the measures of association among the variables (Bollen &

Barb, 1981). An earlier study by Labovitz (1975) demonstrated that ordinal categorical variables

resulting into Likert data, could be analyzed as continuous variable with interval scale with
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equal accuracy. The basis of the claim was that Likert data are linear monotonic transformations
ef the uncierlying continuous variables. Thus, Likert data could be treated as continuous data
and analyzed as if continuous. O’Brien (1979) reexamined the study by Labovitz (1975) and
found contrary results with respect to the Pearson’s correlation. The main focus of O’Brien’s-
| study was how the collapsed or ordered variables correlated with its true continuous or interval‘
measure. The correlation betweeﬁ continuous or interval variable and its categorized version
was not a monotonic function of the number of categories as previously claimed. This implied
that Likert data could not be analyzed as if conﬁnuous, as proposed earlief. However, O’Brien
did not address the correlation between two different categories and variables. Moreover, only
normal and uniformly underlying distributions were considered. Non-normal distributions were
not considered.

As a follow-up to the O’Brien (1979) study, and using simulated data, Bollen and Barb
(1981) investigated how the correlations between continuous variables were affected by
analyzing collapsed or categorized scales of the same continuous variables. In addition to this
analysis, they investigated whether the number ef categories affected the accuracy of the
Pearson’s correlation between the categories and the continuous variables. Continuous variables
with a normal distribution were generated and eollapsed into a number of categories ranging
from 2 to 10. Collapsing the scale resulted in variables that were symmetric and approximately
normal. Each pair of the variables, collapsed and continuous, was constructed to correlate at one
of five magnitudes: 0.2,0.4, 0.6, 0.8, and 0.9. Fifty samples of 500 observatioﬁs each were
generated for each correlation. The variables were collaﬁsed into smaller number of categories
and the resulting correlation between the collapsed variables compared to that of the original
continuous variables.

Findings indicated that differences in the correlations of the continueus and the

categorical variables decreased with the increase in the number of categories. The standard error
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of the collapsed correlation was greater than that of the continuous variable correlations. Results
of the study were in support of Labovitz’s (1975) study and contrasted with O’Brien’s (1979)
study. While the O’Brien study found that the correlation of a collapsed variable with itself was
a non-monotonic function of the number of categories, the Bollen and Barb (1981) study found
that the correlation between two different collapsed variables and that of each its own versions
were monotonic functions of the number of categories in each case. The study concluded that
the more categories used, the more accufate the measure of correlation. It was recommended in
the study that further investigations be conducted tb determine the effect of the distributions, in
particular, non-normal distributions. Furthermore, the question of correlated measurement error
as a result of collapsing the scales needs to be investigated, as correction for attenuation is not -
appropriate when measures are correlated. The study recommended that implications of ordinal
categoriéal variable to correlation estimates involving more than one variable be explored, as
this was not addressed in the study as we}l as in the previous ones.‘ :

Because Pearson correlation is often used in the computation of reliability coefficients,
bias in the estimation of the Pearson correlation due to Likert scale points have psychometric
implications which has led to pertinent questions with regard to the effect of Likert data on the

reliability estimates of instruments.

Likert Data and Reliability Estimates

Use of Likert data has been shown to result in underestimation of reliability estimates.
These findings has psychometric implications and therefore, research concerns. Cicchetti,
Showalter and Tyler (1985) conducted a simulation study of the effect of the number of Likert

scale points on the reliability of measures of a clinical scale. The aim of the study was to

investigate the extent to which the inter-rater reliability of a clinical scale is affected by number
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of categories or Likert scale points. Results indicated that reliability increased up to the 7-point
Likert scale and thereaﬁer remained unchanged when the Likert points were increased.

The study investigated how inter-rater reliability under different conditions compare for
dichotomous, Likert and continuous scales of measurement with categories ranging from 2 to
100 scale points. The average levels of inter rater agreement were 30%, 50%, 60% and 70%,
across the main diagonal of a rater 1 by rater 2 contingency table. These levels were chosen to '
be consistent with clinical applicaﬁons. The sample size for each condition simulated was 200.
Given the large number of rater pairings as the categories approached 100 scale points, 10 000
replications were used in each condition. Seleciion criterion of the reliability measure was based
on the fact that the criterion would (1) measure levels of inter rater agreement rather than
similarity in ranking, (2) correct for amount of agreement expected by chance, and, (3) validly
be applied to all the three types of scales being investigated. Thus, the intra-class correlatioii
coefficient identical to Cohen’s kappa was chosen. |

'fo compare the extent to which inter-rater levels were affected by categories of scale
points, difference in the size of intra-class R (weighted kappa with quadratic weights) were
compuied at each level of the categories. Significance of the data was based on the guidelines
proposed by Cicchetti and Sparroizv (1981) in which clinical significance of intra-class reliability
values were rated as follows: those less than 0.40 as poor, 0.40 to 0.59 as fair, 0.60 to 0.70 as
good, and 0.75 to 1.00 as excellent.

Level of inter-rater agreement was lowest for Z-point Likert scale and highest at the 100-
point Likert scale. The reliability measure increased as the number of Likert scale points
iilcreased with most dramatic increases being at 2 and 3-point Likert scales. Beyond the 7‘-point
Likert scale, increase in reliability measure was not substantial. Thé result from this study

differed from the previous ones on reliability in that the methodologies used varied across

 studies, while some of the results such as those by Komorita and Graham (1965) were found to
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be sample specific. The reliability measures used in previous studies were Cronbach’s alpha é.nd
Pearson correlation which are well known measures of internal consistency and not inter rater
reliability, and so the Cicchetti et al (1985) study differ from the rest of the studies on Likert
scale and reliability in this regard. The study demonstrated how inter rater reliability measures
were affected by number of Likert scales. Increase in scale points up to 7-point Likert scale
improved the reliability ratings. However, beyond the 7-point scale there was no significant
increase and improvement of the reliability coefficient.

Krieg (1999) examined bias induced by coarse measurement scale in Pearson correlation
and reliability coefficients. Equations for calculating the induced bias were derived, based on |
the probability density function of the séale and the rule for assigning values to the scale.
Expectations of the value of the mean, variance, covariance, correlation coefficient and
reliability coefficient were also derived. The study demonstrated that bias in the correlation
coefficient, and reliabilify coefficient vary depending on factors such as the mean and variance
of the quantities being measured, the number of scale points, the rule for assigning quantities to
scale points and number of items in the instrument. Equations for the limits of the biases were
provided.

Krieg (1999) also extensively reviewed brevious studies on the effect of categorization
or coarseness of scale on reliability measures of scores and Pearson correlation, starting with the
Symond (1924) study on the number of scale points on reliability. The Symond study found that
using a 7-point Likert scale was the most suitable and optimal as the relative gain in using more
sc}ale points beyond seven was not worthwhile. This was followed by a review of Champney
and Marshall’s (1939) study that tested the Symond findings. Champney and Marshall showed
that the Symond study produced larger thaﬁ expected bias in the estimation of reliability
coefficient and correlation coefficient. This was because bias in the covariance and variance

were not previously considered by earlier studies. They suggested that coarseness of a scale
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affected the covariance in the numerator and the standard deviations in the denominator in the
correlation coefficients, and should be considered when computing bias.

Other studies such as Bendig (1953) and Komorita and Graham (1965) gave mixed
results. Bendig (1953) found that reliability coefficient based on Hoyt’s analysis of variance
remained unaffected by the numi)er of scale points for individual ratings and intra-class
correlation methods. This was contrary to findings from other studies on reliability and Likert
scales.

In the Komorita and Graham (1965) study, respondents were asked to use either 2 or 6-
point Likert scales. The number of items and the homogeneity of the items were also varied.
Increase in the number of items increased reliability of the items with low .homOgeneity but not
for those with high homogeneity. Also reviewed was the Matell and Jacob (1971) study in
which respondents used 2 to 19—point Likert scale. The study found that internal consistency as
measured by coefficient alpha, and test-retest reliability coefficients wére not affected by
number of scale points. |

Nine simulation studies relating effects of Likert scales on reliability coefficients and
correlation coefficients were also reviewed, starting with the Lissitz énd Green (1975) study. In
the Lissitz and Green study, 10 items with three levels of covariance were simulated. Numbers
of scal¢ points were varied by transforming normally distributed data to discrete uniform
distribution. Coefficient alpha, test retest reliability and correlation between observed and true
scores were computed. It was found that all the coefficients increaséd as the number of scale
points increased at all levels of covariance.

The second simulation study was the Jenkins and Taber (1971) study, .in which the
number of items, covariance between items, and measurement error were varied. The study

found that under all the stated conditions, coefficient alpha, test retest reliability and the
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correlation between observe and true scores increased as the number of scale points increased
from 2 'to 5, but leveled off thereafter.

Other simulation studies that followed concentrated on the effect of coarse measurement
on Pearson correlation. In particular, studies by Wylie (1976), Martin (1973, 1978) and Bollen
and Barb (1981) showed that using coarse measurement (i.e. Likert scales) reduced the Pearson
correlation between two variables. Cohen (1983) demonstrated through simulations that
dichotomized variables reduce sfatistical power for detecting a relationship between two
variables. Dichotomization of the variables lowered the Pearson correlation coefficient between
two variables. In the simulaﬁon study by Cicchetti et al (1985), it was shown that inter rater
reliability increased as the number of scale points increases up to 7-point scale. In the case of
regression models, Russel, Pinto, and Bobbko (1991) as.well as Russel and Bobbko (1992)
showed through simulations that effect sizes in moderated regression analysis vary according to
number of scale points. Effect of coarse measurement on the estimation and testing of structural
equation models was also demonstrated by Bollen (1989) using simulated data.

Based on the classical test theory model, bias in correlation coefficients resulting from
coarse measurement is provided in Krieg (1999). The measurement model is given by:

X=T+E | 3)
where T'is a real-valued constant or variable that represents the quantity to be measured, and £
representé random independent measurement errors. X is the observed score. In coarse
measurement (e.g. Likert scales), the observed score is transformed to a measurement scale by a
function Y = f (X), where ﬁnction fmay vary depending upon the scaling procedure. Conversion

- of response data to a scale that is coarser than' the observed quantities to be measured results in
bias. Biases are expressed as the difference between the moments of X and the moments Y.

Moments are determined by the distribution of X. The values Y results from making
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measurements with an N-point scale which is represented as the weighted sum of N variables, Z;

that are mutually exclusive, taking on values O to 1, and are multinomially distributed such that:

4)

S; is the value of the ith scale point. The expected value of Y is:

E(Y)=35,P
5

P; is the probability that S,; occurs and is dependent on the distribution of X and the
function f (X). Bias of Y is defined as:

B=Y-X | (6)
such that the bias of the expected value of Yis B, = E () = E (Y) — E(X). (7)
Bias for the variance is defined as: o

B, = Var[Y] ~Var[X] (8)
where Var[Y] is the variance of Y and Var/X] is the variance of X. Bias of the covariance is

derived from the definition of covariance as follows:

4
=

Cov[Y,Y,]= Cov [Z Z,.8:>.2,,8,,1

i=1 Jj=1

)

Therefore bias of the covariance is as follows:

B =Cov [Y,Y3] - 012 - (10)
Bias of the correlation coefficient is a function of the bias of variance and covariance

used in the calculations. Thus, Krieg (1999) shows that the bias for the correlation coefficient is:
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0-12 +ﬁc 0-12 (11)

ﬂpzpy_pn: -
\/(0-12 +ﬂv1)(o-22 +p,,) 9192

where the correlation of ¥; and Y, is given by p, while p;; is the correlation between X; and X5,

and o7, and o3 are the standard deviation of X; and X,. To calculate the bias of the correlation
coefficient, one would need to calculate the Cov [Y;, Y/, Var [Y;] and Var [Y;] and then py.
Similarly, p;, is calculated from o;, 0z ‘and o;,. The value of o, is the covariance of X; and
X;. Bias in reliability coefficient is treated as bias in correlation coefficient in that reliability
coefficient is regarded as a correlation measufe between two parallel yariables.

In the study by Krieg (1999), bias in the correlation coefﬁcignt was demonstrated for
population correlation p = 0.8 acroés scale points ranging from 2 to 10. The number of scale
points for each variable was set to be equal. The minimum scale was —3, and the maximum was
+3. Simulation was done as a check for the calculated biases in the correlation coefficient. A.
sample size of 1000 was used in the simulation. Bias in the correlation coefficient was negative,
implying that éoarse measures attenuated the correlation coefficient. Bias obtained from
computational formulae (11) stated, those obtained from simulation results, and those from
Bollen and Barb study, as well as Sheppard’s formula were compared for a population
correlation p = 0.8. For scaie points greater than three, the absolute amount of bias decreased as
the number of scale ﬁoints increased. The difference in the amount of bias across the methods,
decreased with increase in number of scale points. This observation was more evident for scales
beyond the 6-point Likert scale. While the study showed a systematic decrease in bias in the
correlation across the methods with equal interval between scale points and stated conditions,
little is known of the effe;:t of unequal interval on the degree of bias. This was investigated in

the present study.
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Krieg recommended the use of the correction formula as the degree of bias is almost
equivalent to those observed in simulation result suggesting that the formulae is equally
accurate. However, a limitation of using the formula is the fact that the data must meet the
assumptions fnade and the stated conditions, othérwise the corrections may not be accurate. This
is not the case in practice. Often, the response data is not normally distributed. It is also
suggested in the study to use polychoric correlations for data when two continuous variables
have been transformed into coarse measures as recommended by Olsson (1979) or to use
polyserial correlation when only one continuous variable is transformed into a coarse measure
while the other one is not.

Pearson Correlation and Non-normal Likert Data

Wiley (1976) investigated the effect of coarse grouping and skewéd (observed)
marginal distributions on the Pearson correlation coefficient. While most studies assumed
normal distributions for both variables in the correlation, the effect of skewed observed
distribution was previously not addressed. Twelve non-normal bivariate distributions were
constructed to investigate the effects that coarsely gfouped skewed marginal distributions have
on the cbrrelation coefficient, and the accuracy of the correction method used in grouping. The
study showed that the correlation coefficient is sevérely limited in the values it can assume
when the marginal distributions are highly oppositely skewed and one or both of the marginal
distributions has only two intervals. The study showed that the correction formula is accurate for
norrnai distributions only. The study concluded that the use of asymmetrical, dichotomous
variables should be avoided in correlation analysis and that the correction for coarse grouping
should be applied on experimental basis to correlations computed for joint distributions of
coarse categorized variables.

The.three research questions were as follows: first, whether thé marginal asymmetry of

coarsely categorized variables were likely to have the same restrictive effect on the correlation
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coefficient as do asymmetrical dichotomous variables. Second, whether there is a minimum
number of class intervals that a researcher should emﬁaloy in the construction of variables to be
used in the éorrelation analysis, and third, how accurate is the correcfion formulae used for
coarse grouping wheﬁ applied to correlation coefficients computed for such variables.

To answer the research questions, the following procedure was used: three different
types of bivariate distributions with the following pairs of marginal distribution were
constructed (1) extreme negative skewed and extreme positive skeWed (2) moderate negative
skew with moderate positive skewed and (3) slight negative skew and slight positive skew. It
was hypothesized that skewed marginal distl_*ibutions lower the correlation between two
variables.

Four correlation coefficients namely, 0.4, 0.5, 0.6, and 0.8 were chosen because the first
three frequently occur in social science research, while the fourth correlation coefficient of 0.8
was chosen in order to examine the effect of reduced scale intervals on the extreme values of
Pearson correlation. Each marginal distribution was constructed to have 24 class intervals. The
intervals‘were then collapsed into 12, 8, 6,4, 3, and 2 categories by combining interval so that
the correlation coefficient could be computed for evéry combination of interval grouping for the
two variables.

The study compared the actual and corrected values of the correlation coefficient
computed for each combination of collapsed class intervals for a given bivariate distribution.
The computed values of the éorrelation coefficient dropped below the theoretical values of the
correlation coefficients for fewer intervals among the variables. This was more pronounced at
the 2 interval scales and extremely skewed distributions. Although corrected correlatio'n
coefficients were consistently below thé actual values of the correlation coefficient, they were

more accurate than the computed correlation coefficients and were least affected by skewness of

the marginal distributions.
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An implication of the study is that correction formula for coarse grouping could be used
for intervals greater than three with a reasonable limit of accuracy, for skeWed and normal
marginals, as long as the underlying assumptions are met. The correction formula for corrected
correlation coefficient used in the study was that proposed by Peters and Van Voorhis (1940)

given as follows:

. Py
p —_—
p cx p cy

(12)

Where p;; is the actual computed value of the correlation coefficient for a bivariéte
distribution whose marginals had i and j class intervals respectively (p24 24 was used to represent
the value of pﬁpulation correlation in the study). The Pearson correlation p,, is the correlation
of coarsely grouped variable X with its continuous form of X, while p., is the corre'lation of
coarsely grouped variable Y with its continuous form of Y. The formula was shown by Peters
and Van Voorhis (1940) to yield larger biases in the estimation of Pearson correlation for
intervals less than 15.

The second implication of the study is that the use of dichotomous variables in
correlation analysis can be problematic in cases where the underlying continuous distributions
of such variables are even moderately skewed. Dichotomous variables yield very poor estimates
of the true Pearson correlation between the continuous forms of there variables. Howev.er,
because of the non-continuous nature of many dichotomous variables such as sex, ethnicity,
religious affiliation, it is unrealistic to exclude dichotomous data in correlatioﬁ analysis. Often,
such variables are included in multiple regressi'on analysis as predictors of practical criteria like
academic and job performahce, absenteeism, grade point average etc. It is therefore important to

be cognizant of the extent of bias that occurs as a result of coarse measurement and Likert scales
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both as criterion and predictors. This provides a justification for determining the extent of bias
in multiple regression analysis with Likert data.

Likert Data and Scale Intervals

Cohen (1983) provided an exposition on the cost of dichotomization of continuous
variables for Pearson correlation under the bivaﬁate normality condition. He considered the case
of dichotomizing one variable only at the mean, and when both variables are dichotomized at
the mean. The effect of dichotomization on effect size and power were assessed for Pearson
correlation of r = 0.2, 0.4 and 0.5 under different sample sizes.

A common practice in social science research is to dichotomize continuous variables in
order to simplify the data analysis. The decision is not prudent as the loss of iﬁformation 1s
substantial, especially in small sample sizes and for data with skewed distribution. Cohen (1983)
criticized dichotomization arguing that it results in underestimating effect sizes and reduces the
power of statistical hypotheses tests. Specifically, dichotomization results in proportions of
variance accounted for that are approximately 0. 64 times as large as when it is performed on
one of the two variables being correlated.

Cohen (1983) showed that, assuming a bivariate normal popﬁlation with a Pearson
correlation of 7, if one variable is dichotomized at tﬁe mean so that two equal intervals result,
then the observed correlation between the dichotomized variable, X; and the continuous
variable, Y was equal to 0.798 of Pearson correlation #. This procedure resulted in X; accounting
for 0.637 as much variance in Y as the original continuous X. When dichotomization was doﬁe
one standard deviation away‘ from the mean, the resulting correlation was 0.66 of Pearson
correlation r, while dichotomization at one and a hélf standard deviation away from the mean
resulted in 0.52 of Pearson correlation r,v with the explained variance dropping to 0.27 of as

much variance in Y explained by the oﬁginal X. The further away from the mean the

dichotomization, the worse the estimation of Pearson correlation between the two variables got.
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It was also observed that dichotomization lowered the t-values associated with the resultant
Pearson éorrelation, and lowered the latter’s chance of being statistically signiﬁcant. This was
more apparent in small sample sizes. For large sample sizes, t-values were lowered to three
fifths of their expected values in the original continuous X variable. It was evident that, for
Pearson correlation values ranging from 0.3 to 0.6 typically occurring in social science research,
dichotomization was very costly in terms of info.rmationvloss.

Effects of dichotomization on statistical power aﬁd effective sample size were also
addressed. Dichotomization of X variable at the mean results in the reduction of the population
Pearson correlation to 0.798 times the original r-value i.e. 0.798 of r. For example, for » = 0.3,
the correlation dropped to 0.239. The power is reduced from 0.78 (for a sample size of n = 80)
to 0.57. However, for the non-dichotomized X, a Pearson correlation r of 0.3 produces a power
of 0.57 with a sample size of n= 50. From this example, dichotomization is equival¢nt to
discarding 30 of the 80 subjects for a correlation coefficient of 0.3. The loss in effective sample
size when X is dichotomized at the mean is about 38% for Pearson correlation of coefficient of
0.2 to 0.5, at alpha of 0.05. It was further demonstrated that, for dichotomization at one standard
deviation from the mean there, was a loss of 55% of the subjects over a range of population
correlatioﬁ ranging from 0.2 to 0.5.

To appreciate the costly effect of dichotomization, an alternative consideration was the
number of subjects needed to offset dichotomization for a given population correlation. For a
population correlation coefficient of 0.3, the sample size needed for power to be equal to 0.8 for
a two-tailed test is 84, at alpha of ‘0.05. For optimal dichotomization at the mean the required
samplé size is 133. For a Pearson correlation of 0.2 the sample size increases from 193 to 304.

Thus, the cost of dichotomization in terms of power and additional sample size is substantial

and needs to be addressed.
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The effect of dichotomizing both variables, X and ¥, results in a four-fold table. The
Pearson correlation transforms to a phi-coefficient. The dichotomization of Xy and. Y resultsin a
reduced correlation of 0.637 of the original correlation ». This is beéause 0.637 is actually the
square of 0.798, the result of applying 0.798 correction twice, in Xy and Y. In terms of variance
reduction, the effect of double dichotomization at the mean is the redﬁétion of the population
correlation 0.63727° to 0.405r°. The consequence to power of reducing correlation coefficient
for double dichotomization can be translated into reduction in effective sample size. For a
correlation of 0.3 and a sample size of n = 40, the reduction in power is from 0.47 to 0.21 at an
alpha of 0.05, attainable from original data with n = 16. Thus, double dichotomization is |
equivalent to discarding 60% of the cases. Evidently, dichotomization results in a costly loss of
information produced by a drop in correlation coefficient. |

| The loss in information as a result of dichotomization is not due to attenuation that is
typical of random measure error, but rather an outcome of systematic loss of measurement
information. An instance where dichotomization occurs is in blocking in analysis of variance.
Since blocking is equivalent to partialling out, the reduction in the Pearson correlation .produces
the same kind of distortion that occurs when unreliable variables are partialled out. The situation
is worseﬁed when the blocking variable is dichotomized and when it is unreliable (Cohen,
1983).

The effect of dichotomization in factor analysis is evident when a batch of scaled items
is dichotomized. The resulting p.hi-coefﬁcient and the factor loadings yielded are approximately
two thirds as large as the product moment correlation cogfﬁcients in the original data with
communalities less than half as large (Cohen, 1983). In attitudinal scales involving Likert type
scales with 4 or 6-point agree-disagree scales, dichotomization is effected at the middle of the

scale to simplify the analysis. This results in loss of up to two thirds of the variance accounted

for on the original variable and a concomitant loss of power equivalent to discarding about to




26

two thirds of the sample. Such losses cannot be aptly justified. Thus, the implications of using
categorized or Likert data in correlation analysis and regression models need to be investigated
and the loés of information resulting from the practice be addressed in the light of validity
evidence and meaningful data interpretation.

Martin (1978) investigated the effect of Likert scaling on the correlation coefficient. The
" study investigated the conséqueﬁées of varying the number of Likert scale intervals on a
statistical model and the distortion in the Pearsoﬁ correlation due to restricted number of scale
points. A simulation data set was used to evaluate the effect of scaling on the correlation
coefficient using a simplified standard form of the bivariate normal distribution. For this
distribution, the means of X and Y were assumed to be zero, and variances were assumed to be

" one, resulting in the following joint distribution of x and y:

£ y) = ————exp( (x* - 201y + %)) (13)

2mf1-p>  2(-p7)
where p represents the correlation between two variables in X and Y with means of zero and

variances of one. To create interval scale points, relative frequency distributions on both X and

Y were determined based on the joint probability distribution function:

Py = [ [ £ y)dyax (9

The frequency of a given response falling between two given values (a, b) in X, and
simultaneously between two Y values (¢, d) can be determined by using the above double
integral function. This is the relative frequency of occurrence for a bivariate normal distribution
given a certain level of correlation. The procedure was used to calculate the frequency for éll X
and Y cdmbinations of scaling between the mean, and 3.2 standard deviations away from the
mean with a sample size of 1000. The total distribution was aggregated to provide ﬁequency

distribution for different number of scaling units. This was done for equal width of observation
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resulting in equal interval. Pearson correlation was then computed for different scales of X and
Y.

Pearson correlation for continuous X and Y were computed and set to 0.1, 0.2, 0.5, 0.7,
0.8, and 0.9. Estimates of these correlations using different combinétions of scale points of 20,
16, 14, 10, 8, 6, 4, and 2 of X and Y were compared to the true correlations derived from the
continuous data.

The largest information loss occurred within smaller number of scale points in both X
and Y._Fbr example, an r = 0.800 using a 4-point scale in both X and Y results in » = 0.588. The
resulting 7 then dropped from 0.640 to 0.346, close to 50% drop from the original. There was a
substantial drop in the magnitude of the Pearson correlation as the scale points decreased.
Amount of information lost by collapsing the scales was greater when th¢ original correlation
was high than when the correlation was low. Furthermore, the amount‘of information lost is
detefmined by the smaller nlimber of scale points when the numbervof scale points is unequal
for the two variables. For example, #° for 20 scale points of X anél 2 scale points of Y is
approximately the same as the #* for 14 scale points of X and 2 scale points of Y. The
determining factor in the two cases is the 2-point scale.

Comparison of the Pearson correlation results to those of biserial correlation aﬁd
tetrachoric correlation for continuous and dichotomized scales showed that Pearson correlation
yielded a larger loss of information. However, Sheppard’s correction formula provided better
estimates than both biserial and tetrachoric correlations provided the assumptions were met. The
overall observation is that ordinal categorization resulted in substantial information loss.

A limitation.of the study is that the simulation was based on normally distributed data
for equal interval scale points, addressing only one aspect of the measurement problem
associated with Pearson correlation besides the limited sample size. Unequal interval and non-

normal distribution of Likert data were not addressed for a wide range of sample sizes from low
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to high. Further studies need to be considered regarding the effects of skewed distributions and
unequal intervals of scales in Likert data. Evidently, Likert scaling of the variables had a
meaningful significant effect on the magnitude, model fit and interpretation of datAa as model
builders are limited by the loss of information.

Likert data and Structural Equation Modeling

Johnson and Screech (1983), using simulated data, investigated the effect of measuring
continuous variables with multiple indicators collapsed into ordinal categories (Likert scale
points). The study found that categorization errors occurred, which increased with small sample
size and fewer number of categories used. They observed that when continuous variables are
collapsed into ordinal categories, the measurement errors introduced were correlated. This
condition violated the assumption of classical measurement theory of independence of errors.
Thus, the impact of measurement errors introduced by ordinal categorization of variables needs
to be investigated, as it is not known.

In the study, a structural equation model with three latent variables was .simulated. Each
of the latent variables had two categorized indicators. Random errors were introduced in the
underlying categorized indicator variables. Using SPSS, a data set was generated using random
variables that simulated a normal distribution with mean of zero and a variance of one for a
population of 5000.The resulting z-scores were then used to create the latent variables and the
indicators. Combinations for conditions of the Variables was created by crossing the beta
coefﬁciénts of 0.4 and 0.6, and the lambda coefficients of 0.6 and 0.9.These represented the
conditions in which the relationship among the unmeasured variables are hi gh <‘)r low, and the
error of measurement were high (lambda coefficient of 0.60) or low (lambda coefficient of 0.9)‘.
Seven different models were genérated for each condition with ordinal categories, 2, 3, 4, 5, 10,

20, and 36. The sample size for each category and the distribution (normal and uniform) were

varied, resulting in 56 different conditions of errors and ordinal categorization. To test for linear
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relationships among the categories and the continuous variable, tracelines were plotted for the
underlying variables and the categorized indicators.
Results showed that non-linearity was more pronounced when two ordinal categories

were used than in the larger ordinal categories. Errors in the correlation were substantial for

smaller ordinal categories, uniform distribution and high lambda (0.9). ‘While the size of the beta’

coefficients did not have‘ an effect on the residuéls, the size of lambda systematically affected
the residuals. High lambda values resulted in large residuals and low values resulted in smaller
residuals. It was noted that the fewer the number of categories, the lower the value of lambda
(correlation between latent variables and indicator variables), and the greater the variability in
the estimates. Thus, ordinal categorization resulted in distortions in multiple indicator models.
The distortion reflected the non-linear relationship of the ordinal categorical variables with
continuous variables, producing correlated errors. From the results, it was concluded that small
ordinal categories such as 2, 3, and 4 should be used with caution, especially in small sample
sizes--because of the low efﬁéiency of estimates.

The study did not address the effect of ordinal categorization when the underlying
variables had a non-normal distribution. It was recommended that the behavior of the parameter
estimates and correlated residuals in the models for ordinal categorical variables be investigated
in future studies. In the étudy, intervals in each ordinal categorical variable were assumed to be
equal. Studies were yet to be conducted on the effects of ordinal categorization on the observed
variable for unequal interval scale. Although the study looked at the effects of ordiﬁal
categorization on multiple indicators, no mention was made on the effects on multiple linear
regression models, as thé sfudy was based on structural equation modeling, which examines
modcl fit and the relationship among latent and observed variables as well as residuals.
Moreover, thé assumptions on the estimation procedures differ in structural equation modeling

from those in multiple linear regression models. Thus, the study’s contribution to the current
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investigation can be viewed from its methodological approach and important results obtained
pertaining to the effects of variable categorization and the effects of varying the underlying
distribution. |

A major concern on the effect of ordinal categorization of continuous criterion variables
which results in Likert scale points is the impact of Likert variables on the idéntiﬁcation of the
dimensionality of the latent variables represented by the observed categorized variables.
Coupled with ordinal categoriza_tion, which results in Likert scales points, is the influence of the
underlying distribution of tile observed and latent variables. Due to these concerns, several
studies have examined the impact of Likert vaﬁables on the identification of dimensionality
under different ordinal categorization scheme and distribution.

Bernstein and Teng (1989) demonstrated that multi-categorical item responses resulted
in spurious factors and hence wrong identification of the dimensions of the categorized dafa.
Three procedures were examined namely: Principal Component Analysis, Exploratory
Maximum Likelihood Factor Analysis, and Confirmatory Factor Analysis using LISREL for
five levels of ordinal categorization of items. Data was simulated for 1000 observations based
on responses to 20 items (Xj;, with i denoting observation, and j denoting the item) using the
equation: |

X, = aF; + (1-a°)"” ¢; (15)

The pattern parameter a, took values 0.5, 0.71, and 0.87, generating three desired values
of the pattern p of inter-variable correlations (0.25,.0.5, and 0.75). F; is the factor score for
subject i, and e; is the randqm error fdr subject i on item j. Both F; and e;; are in standard score
form. Six correlation matrices were generated from Xj; within each level of p, corresponding to
the latent, binary 0.5, binary 0.16, binary high and low (H/L), multi-categorical-equal interval

(MC-equal), MC-H/L high and low. All the 18 resulting matrices were yoked to a common

random number seed.
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Results were analyzed for the procedures stated, namely reliability and inter-variable
correlation, Principal Component Analysis, Exploratory Maximum Likelihood Factor Analysis
and the Unifactor Confirmatory Factor Analysis using LISREL. Item categorization led to
incorrect inferences concerning the dimensionality of the data for all the stated procedures used.
For principél component analysis, evidenée for a spurious second factér appeared most strongly
at lower levels of inter-variable correlation, low reliabilify and with. dichotomous items. This
was reflected by the sizevof eigen values across the levels of inter-variable correlation and
categories from low to high. For multi-categorical H/L data the number of factors increased f'or‘
high reliability and inter-variable correlation. In the case of exploratory and confirmatory factor
analysis, spurious factors emerged at higher categories of the data and high inter-variable
correlation and reliability.

Similar results were found for the unifactor confirmatory factor analysié (LISREL). At
the three levels of inter-variable correlation and reliability, all the levels of categories resulted in
spurious factors. It was all noted that spurious factors emerged, independent of the sample sizes
used (N=100, 200, 500, and. 1000). Bermnstein and Teng explained their results as being an
artifact of the heterogeneity of the item distribution for the multi-categorical items. Their results
indicated that spurious factors emerged more often in multi-categorical than in dichotomous
data. This contradicted results from earlier studies.

A limitation of the Bernstein and Teng study is that the data were generated with a
normally distributed underlying factor. It would have been informative to include uniform and
non-normal distributions. For dichotomous items, both symmetric and non-symmetric
distributions were represented, whereas for multi-categorical items, only non-symmetric
distributions were examined. Analysis of both symmetric and non-symmetric distributions in the
mult_i-categorical items would provide additional information on the effect of ordinal

categorization on the dimensionality of the underlying data. Even then, the study significantly
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contributed to understanding of the effects of ordinal categorization on dimensionality of data,
given that most social science data involve ordinal categorization of continuous criterion
variables with underlying continuous latent normal distribution. The study is relevant to the
- present investigation of the effect of ordinal categorization on multiple regression models in
terms of the methodological contribution. The effect of ordinal categorization of items resulting
in Likert data and frequently used normal distribution was also investigated. A few questions
need to be addressed: namely, the effect of non-normality on the Likert data, and whether all the
commonly used methods of model fit (Maximum Likelihood, Generalized Least-square and
Ordinary Least-square method) as well as the recently developed, Asymptotic Distribution Free
(ADF) method, would yield the same result and accuracy. |

Muthen and Kaplan (1985; 1992) addressed these questions by considering factor
analysis with non-normal Likert variables with various models and sample sizes. In their initial
study, Muthen and Kaplan (1985) compared two methods of model fit (Maximum Likelihood,
ML, and Generalized Least-square, GLS method) for factor analysis of normal and non-normal
Likert variables. The study found no significant differences between the methods. However, in
their 1992 study, Muthen and Kaplan included additional methods of model fit together with an
increase in the size of models. The new methods of model fit included were, the asymptotic
distribution free estimator (ADF) developed by Browne (1982), which does not assume
normality, and the Categorical Variable Method (CVM) estimator developed by Muthenv(1984)
that explicitly takes into acéount the categorical nature of the variables, while assuming that the
underlying variable is continuous and normally distributed. All the model fits were compared to -
each othér and to CVM.

The study tested the hypotheses that first, estimators based oﬁ normal distribution were

independent of the number of variables and factors. Second, the number of degrees of freedom

is a significant factor in the robustness of the chi-square test of model fit, and third, the
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underlying distribution of the vaﬁables was not a significant factor in the robustness of the chi-
square test of model fit. Two sample sizes, 500 and 1000 were simulated for each method of
model fit. Data was generated for continuous réndom normal variable with known factor
structure. The resulting variables were then categorized in such as way as to yield six different
levels of non-normal categorical variables Y, with factor analyses modelé with the same number
of factors but different parameter values. Four models of increasing siies were considered. For
non-normality, a negative kurtosis and skewness were considered as they were hypothesized to
result in an underestimation of chi-square values.

The first simulated model was a six-variable two-factor model (with 8 degrees of
freedom). The second was a nine-variable three-factor model (with 24 degrees of freedom), the
third was a twelve- variable three-factor model (with 51 degrees of freedom), and the fourth one
was a fifteen-variable three-factor model. One thousand repliqations were conducted for 2
sample sizes (N= 500 and 1000), 6 types of non-normality, and 4 model sizes. Data was
simulated for one Likert scale and one continuous scalé. A large replication was done in order to
adequately assess standard errors, and the behavior and rejection frequency (type I error rate) of
the chi- square. |

Results indicated that ADF performed better than GLS and ML.. The previous study
(Muthen & Kaplan, 1985) however, indicated that there were no significant differences between
GLS and ML. Compared to ADF, the chi-square values in GLS were consistently
underestimated for higher categories and non-normality conditions. For ADF, there was a
downwafd biaé in the estimation of the standard errors. In both ADF and GLS, bias was more
pronounced in the low sample size of 500 than it was for the 1000. For continuous data, which

served as a baseline for comparison with the other ordinal categorization, all model fit methods

considered performed well. In the case of ordinal categorical data, GLS was sensitive to sample
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size, level of ordinal categorization and nQn-nOMality. This was evident from the large standard
errors in the conditions stated. Bias was constant across sample sizes and model sizes.

Results indicated that ADF chi-square valués were sensitive to model sizes and low
sample size. It was also found that for moderate size models, and for those models with fewer
variables, chi-square values and standard errors were not as robust to non-normality as
previously presented. The study concluded that ADF does not appear to function sufficiently
well as a means of compensating for the effect of non-normality as previously assumed, unless
the model is small and the sample size is large. Findings were that GLS standard errors are
mainly affected by degrees of non-normality, while GLS chi-square, ADF chi-square, and ADF
standard errors, are affected by both non-normality and model size.

The study did not address the effects of ordinal categorization on the model fit methods
for underlying unifdrm distribution of the variables. Only one categorization procedure was
simulated and compared to continuous data. Different categories needed to be studied to
adequately address the effeét of ordinal categorization of model fit. However, the study
highlighted the importance of non-normality as a significant factor in the appropriateness of
model data fit. The importance of the assumption of normality in the case of linear regression
analysis and model fit can be viewed from this perspective. Therefore, this study has a
significant contribution and relevance in terms of the methodology used to inveétigate violation
of the assumption of normality and how non- normality affects model fit.

Green, Akey, Fleming, Hershberger and Marquis (1997) investigated the effect item
ordinal categorization with various Likert scal¢ points on chi-square fit statistics for
confirmatory factor analysis to assess whether increése in categories results in the identification
of spurious factors as previously reported by Bernstein and Teng (1989). In fact, the study was a

follow up to the Bernstein and Teng study with the same simulation procedures and a few

additional variables, which distinguished the study from that of Bernstein and Teng. Four types
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of continuous single factor data were simulated for a 20-item test. The four distributions of the
item responses were (1) uniform distribution for all items (2) symmetric and unimodal (3)
negatively skewed for all items and (4) negatively skewed for ten items and positively skewed
for the rest of the ten items. For each of the four types of distributioﬁs, iterﬁ responses were
divided to yield 2, 4, and 6 equidistant response categories (equal interval). Distributional
properties of the responses were crossed with number of scale points. The crolssed factorial
design facilitated the conclusion about the effects of .the number of Likert scale points on the
chi-square indices, separate from the effects associated with the uncierlying distributions. Data
generation method was as follows: items were generated following a normal distribuiion with |
one underlying dimension. Four different transformations were applied to the normally
distributed data to yield four types of non-normally distributed scores that were continuous with
the ranges 0 to 1. Non-normally distributed scores were transformed to produce Likert data with
2, 4, and 6 Likert scale points. Continuous and Likert data were factor analyzed to assess how
well a single factor model fit different types of data.

Confirmatory maximum likelihood factor analyses were conducted to evaluate the
existence of a single factor for each of the five distribution types in continuous and Likert
Vaﬁables; Because the null hypothesis was assumed to be correct, the mean of the chi-square
statistics was expected to be equal to the degrees of freedom. Standard chi-square goodness of
fit measure as well as Bentler’s Comparative Fit index (CFI; Bentler, 1990) was computed. Also
computed was the Satora-Bentler scaled chi-square as it was hypothesized to be robust to non- -
normality and therefore less prone to suggest spurious factors than the non-scaled ADF chi-
square.

Results indicated that chi-square statistics for evaluating the one-factor model was more
inflated at the Z-ﬁoint Likert scale responses than at the 4, and 6-points Likert scales. Chi-square

statistic became less inflated with the increase in the number of Likert scale points. The degrees
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of freedom were inflated fdr uniform distribution and for negatively skewed distribution. Chi-
square values were more inflated for Likert data than for continuous data. As the Likert points
increased, the mean chi-square values approaciled that of the continuous data. Across the
distributions, the Satora-Bentler chi-square scaled statistic was close to the expected ,value7
except for skewed distribution and for two category data. For different skewness, both scaled
and unscaled chi-square indicated spurious factors, even for large number of Likert scaie points.
Increase in number of Likert scale points improved the chi-square statistic in terms of type I
error rate. The CFI was sufficiently large (CFI>O.99) and close to one, for all fnodel fits except
in the case of 2-point Likert scale data. Results obtained are contrary to what Bernstein and
Teng (1989) found, which was that the spurious factor increased with increase in number of
Likert scale points. The study indicated that as the categories increased the spurious factors
reduced. Therefore, the fewer the Likert scale points, the less accurate the results. It was found
that categorization effects depended on the number of scale points, distribution of responses and
the undérlying factor.

A limitation of the study was that intervals in the Likert scale points were assumed to be
| equal with same thresholds. In reality, not all Likert scales have equal interval and incrementaliy
equal thresholds, from the respondents’ pqint of view, and response distribution patterns.
Unequal interval scale data should have been generated to investigate this aspect of scale
categorization, given that interval scales may be affected by wording and verbal anchor, and
therefore different thresholds.

The strength of the study compared to that of Bernstein and Teng’s study is that the
results are supported by independent studies on correlation coefficients and ordinal
categorization (Bollen & Barb, 1981) as well as studies on factor ahalysis and ordinal
categorization (Babakus, Ferguson & Joreskog, 1987). The study has a significant

methodological contribution as it addresses the effects of ordinal categorization with varying
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underlying distributions on the accurate identification of factors. Only two studies so far have
addressed the two variables simultaneously, namely the Bernstein and Teng study, and the

Green, Akey, Hershberger, and Marquis (1997) study.

Summary of Research Concerns

Research concerns that emerged from the studies reviewed on the effect of ordinal
categorization and therefore Likert variables on correlation, factor analysis, aﬁd confirmatory
factor analysis using structural equation modeling are that Pearson’s r correlation was
underestjmated for low number of ‘categon'es and uniform distributibn. However, the estimation
improvéd‘ and was close to that of continuous variables for more Likert scale points than in
fewer Likert scale points. Early studies such as that of Labovitz (1975) did not find any
differences in the use of ordinal categories with those of continuous variables and conéluded
that ordinal categorical data could be analyzed as if continuous. This is can be explained by the
fact that, besides the study’s methodological limitations, ordinal categorical variables were
hypothesizéd to be a monotonic transformation of the underlying continuous variable.

O'Brien (1979) found cohtradicting results to that of Labovitz and stated that the
correlation between continuous variable and ordinal categorical versions of the same scale was
not é monotonic function of fhe number of ord.inal categories, as We_ll as Likert scales, as had
been previously proposed. O'Brien used only normal and uniformly diétributed data. The effect
éf non-normal distribution of the data was not investigated and was recommended for future
research. This has been investigated in the cuirent study on linear regression models and Likert
variables.

Bollen and Barb (1981) conducted a follow up study to that by O'Brien (1979) and found

that the difference in the correlation of the continuous variable and the ordinal categorical

variable decreased with the increase in the number of categories. The average standard deviation




38

of the correlation in the categorized variable was greater than that of the correlation in the
continuous variable. The stvandafd deviation of the correlations decreased with the increase in
number of categories. Thus, the number of categories has a meaningful impact on the
correlation of the variables as demonstrated in‘the study by Bollen and Barb (1981). Moreover,
the impact of ordinal categorization on Pearson correlation has important implications to
psychometric properties inferred from instruments in terms of underestimated reliability
coefficients. The present study differs from that of Bollen and Barb in that it is a case of ordinal
categorization (resulting in Likert data) effects on multivariate regression models, compared to
previous studies of the effect of ordinal cafegorization on Pearson's product moment correlation,
which takes into account only one predictor and one criterion.

It was recommended in previous studies (Bollen & Barb, 1981) that studies be
conducted on multiple correlations to address the effects of ordinal categorization on multiple
correlation measures and precision. Results are expected to differ from the case of bivariate
correlation measurel (Pearson correlation), as the beta-weights for each predictor in the multiple .
correlation depend on other predictors in the regression equation. The modeled R’ is the squared
correlation between the criterion variable Y and optimal linear combination of the predictor
variables X;. It is for this reason that the multivariate case in Likert data was studied separately.
Therefore, the present study addressed the effect of the number of Likert scale points in the
model fit on linear regression models. However, with regar_d to distribution of the data, Bollen
and Barb study also failed to address the issue bf non-normality of the data. The present study
extends beyond Bollen and Barb’s study as both positive and negatively skewed distributions of
responses were studied.

In studies involving structural equation modeling and confirmatory factor analysis,
ordinal categorization of variables which resulted in Likert scales was observed to introduce

errors, which in turn produce distortions in indicator models (Johnson & Screech, 1983). Errors,
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which are due to transformation, grouping and misclassification in categorization, attenuate the
correlation of the variables involved. This results in distortion of the hypothesis and parameter
estimates. The simulated model included three 1atent variables and six indicator variables, frorﬁ
which categorized variables were cfeated. Conditions were created for low and high correlation
of lateﬁt variables (beta coefficients) with low and high lambda coefficients. Measurement
errors were also correlated. The test for linearity indicated that non-linearity was most
pronounced for lower categories than for higher categories. When the correlation between latent
variables and the indicator variables was high and uniformly distributed, the Correlation among
the residuals was also high, especially in the case of vlow number of categories. The fewer the
categories, the lower the lambda, and the larger the variability in the estimates. Therefore, the
number of categories waé a significant determinant in the model fit, although the optimal
number is not known. The study recommended that further investigation on the impact on the
number of categories be conducted in future. Sample size was also noted to significantly affect
parameter estimate, with large variability occurring at low sample sizes and fewer categories.

Important results in factor analysis studies involving Likert variables were the impact of
ordinal categorization which lied to identification of spurious factors (Bernstein & Teng, 1989;
Green et.al 1997) and hence the wrong dimensionality. In Bernstein and Teng study, it was
concluded that the increase in the number of Likert scale points resulted in more spurious
factors, while in the Green ef al study, it was concluded that the nuniber of spurious factors
reduced with the increase in number of Likert scalé points. This led to conflicting findings that
needed to be resolved. A research concern raised by the Green et. al, study was the common
assumption of equal interval among Likert scales. While this is a common practice, the reality is
that not all scales have uniform or equal interval between categories. Thus, the impact of

unequal interval, which often occurs in practice, was addressed in the present study.
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For structural equation modeling, the chi-square values were found to be inflated for
fewer Likert scale points than for more scale points leading to poor model fit. In the study by
Muthen and Kaplan (1992) in Wﬁich models of various sizes were fit using confirmatory factor
analysis, for non-normal distribution in Likert variables, it was found that the generalized least-
square GLS method performed poorly comparéd to the other methods. The standard errors
increased in lower sample sizes, and fewer Likert scale points for highly non-norrhal
distributions. In the study by Curran, West and Finch (1996), factor loadings and factor
correlations were found to be underestimated within fewer Likert scale points and skewed
distributipn than at more scale points. Evidently, the number of categories has a meaningful
impact on the number of factors identiﬁed. and correlation of the factors. In the studies reviewed,
four variables were of major research concern and were examined in the cﬁrrent study. These
were the effects of the number of categories in the variables, the underlying distribution, and the
pattern of response for equal, and unequal interval. |

An observed trend in the studies reviewed show that researchers moved from
investigaﬁng the inipact of Likert scales and categorical scales on Pearson correlation to factor
analysis'and structural equation modeling and were inclined to overlook multiple regression
models. Researchers were fascinated by structural equation modeling and so structural equation
| modeling dominated the research topics in which polychoric and tetrachoric correlations were |
viewed as solutions to problems associated with correlations of discrete and categorical data in
factor analysis. This instigated further work and discussion on the implication of Likert scales
on factor analysis. Meanwhile, research consumers continued to use multiple lineaf regression
models and hence the need to investigate the implication of using Likert data on linear
regression models.

Aithough the studies reviewed were hot conducted using regreésion models, they were

essentially examined to facilitate the identification of appropriate variables that have been
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previously hypothesized to affect model fit in Likertbdata, and to provide direction for the
methodélogical investigétion of the current problem, as well as to answer the research questions

| , posed. Pertinent research questions arose in the review of the effect of Likert data on Pearson
correlation, especially with regard to the effect of response distribution. Therefore, due to these
concems, the present study addressed these questions and extended Bollen and Barb’s (1981)
study. The overall main concern was the impagt of Likert data on the model fit in linear
regression models in terms of bias in R” and relative importance of the predictors. Research
questions were as follows:

Research Questions

1. What are the effects of Likert data on the estimation of R’ across number of scale
points, type of correlation matrices, response distributions and Likert conditions?

2. What are the éffects of Likert data on variable ordering and relative importance as
measured by relative Pratt index d across number of Likert scales, types of
correlation matrix, response distributions and Likert conditions?

3. What are the effects of Likert data in the estimation of the Pearson Correlation
coefficients across number of Likert scales, types of correlation matrix, fesponse
distributions and Likert conditions?

The last research question is an extension of Bollen and Barb’s study. The following method

was used to answer the research questions posed.
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CHAPTER III
METHODOLOGY
Introduction

This was a simulatfon study in which the measurement process i.e. the process of
responding to Likert scales was simulated. In essence, simulations were conducted to mimic the
actual measurement process in responding to the Likert scales under controlled conditions
epabling the researcher to determine how much information is lost. Thus, real data could not be
" used to realize this goal.

Little has been done in the area of Likert scales and regression models and so a large
population of responses was simulated to adequately assess the influence of the independent
variables stated in the research questions and to investigate the amount of biaé resulting from the
use of Likert data. The methodology has been adapted from similar studies on ordinal
categorization of variables in correlation studies, factor analysis and structural equation
modeling. Ordinal categorization of equal interval Likert scale points was adopted from the
Bollen and Barb (1981) study. However the study goes beyond the Bollen and Barb study as it
considers the effect of ordinal categorization resulting in Likert scaling on R? for different
responsé distributions and, in particulér, Likert scales in multiple regression models and not the
bivariate cases as in the Bollen and Barb study. In addition to this, the present study examined
the case of unequal interval Likert scale points for different response patterns and various
combinations of Likert and‘contiﬁuous data across the predictors and criterion variable.

Three response patterns, three combinations of Likert conditions of both criterion and
predictor variables that are either continuous of Likert, three types of corrélation matrices
depicting the relationship between the variables, and eight different scale points ranging from

two to nine Likert scale points were studied using a fully crossed factorial design to assess the

unique impact of each of the independent variables hypothesized.
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Proc’edure‘

A program to generate a latent response set for 500,000 respondénts was written to simulate
the data.. The resulting data set served. as a population from which observed response conditions
were generated. By using a large finite population the study sidesteps the matter of sampling
variability and focused on the population-level results. For each combination of the conditions
of responses, multiple ordinary least-square linear regression analysis was conducted for the
predictors and criterion variable. Effect of Likert data on the regression model fit as well as
information loss was analyzed through percent bias in the resulting R’ relative Pratt index and
Pearson correlation coefficients across the independent variables and conditions stated. -

Study Design
The study design was as follows: Responses were generated using 3 correlation matrices,

3 response patterns, and 8 Likert scales, ranging from 2 to 9 scale-points. Ordinary least-

square regression wa;s, conducted on 3 combinatiqns of Likert data conditions and

continuous data for predictors and criterion variable. This resulted .in a 3x3x3x8 factorial
design with 216 cells. Each cell consisted of the three dependent variables derived from the
multiple linear regression analysis results.

Selection of Variables

To avoid problems associated with sampling, a population of 500,000 latent responses
was simulated from which OBsewed response patterns and conditions were manibulated. The
independent variables were: patterns of responses, type of correlation matrix, combination of
Likert conditions and continuoﬁs data, and Likert scale-points. The dependent variables
were: percent bias in each of R?, relative Pratt index, and Pearson correlation coefficients.

Response Patterns

Three response distributions, also referred to as response patterns, were simulated. These

were (1) equal interval resulting in symmetric “normal looking” responses in the middle of
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the scale range (“Equal” or response pattern 1) as shown in figure 4, (2) unequal interval
negatively .skewed, resulting in responses bunched to the right of the scale (“Right” also
referred as right bunching or response pattern 2), and (3) unequal interval positively skewed,
resulting in responses bunched to the left of the scale (“Left” also referred to as left
bunching or response pattern 3).

The first response pattern with equal interval scale points and symmetric distribution is
similar to that used by Bollen and Barb (1981) in investigating the correlation coefficient.
Thresholds in this pattern were simulated in a similar manner for all the conditions.
Responses in this pattern were assumed to be normally distributed, and so across a
standardized scale of z = -3 to z = +3, the scale points were divided equally for each ordinal
item response process (see figure 4) in which the Likert scale points were simulated (see
Table 5 in Appendix A). However, in the two cases of unequal interval, thresholds were set
to generate responses that were positively and negatively skewed resulting in responses
bunched to the left, and those bunched to the right.

Figure 4 depicts the thresholds for the symmetric response distribution with equal
intervals. The top of Figure 4 lists a standard normal distribution and the bottom of Figure 4
lists three exambles of the Likert scaling, namely 2-, 3-, and 4-point Likert scales. It is
impértant to note that what is being divided in the response process is not the area under the
Normal curve but rather the spatial distance along the continuum. What this représents is the
item response model in which the response one provides depends on how much of the latent
variable one possesses. For example, starting from the far left and using the 2-point scale, if
oné only has —1.5 standard units of the latent variable then they would respond “1” to the
question. On the other hand, in the same context, if one has 0.5 standard units of the latent

variable they would respond “2”.
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The thresholds in the pattern of responses that were negatively skewed (right bunching),
were created using cut-off points on the continuum of a standard normal distribution for z =
-3 to z =13 as shown in Table 6 of Appendix B..For a two-poiﬁt Likert scale, the threshold
was set at the point, z = -1.5, below which the response value was 1 and above which the
response value was 2. This was done for all the three predictors and criterion. Similarly, for
a tﬁree-point Likeft scale, two threshold points were created. The two scale points were z =-
1.5 and z = 0. Thus, below z = -1.5, the response value was 1, betweenz=0 and z=-1.5,
the response values was 2, and above threshold z = 0, the response value was 3. In the case
of positively skewed responses or bunched to the left pattern, the threshold points were
created as shown in Table 7 in Appendix C.

As an illustration, using the previous example of the students’ life satiéfaction survey,
the results of a pilot study with a simulated sample of 1000 subjects, yielded the histograms
for selected response patterns ‘based on the Likért scale points indicated. Figure 5 is the
histogram for the Y c;riterion .responses with a nor@al distribution and a continuous scale
response. Figures 6 to 9 are histograms for 9 scale points, 8 scale points, 6 scale points and 4
scale points for equal intervals respectively. Figures 10 to 12 are histograms for negatively
skewed reéponse pattern bunched to the right for 9, 8 and 4 scale points Shown in Figure 13
is a histogram for responses in a criterion variable Y with eight scale-point responses

bunched to the left or positively skewed.



46
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Figure 4

Likert responses from equal interval thresholds.
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Figure 5

Histogram for a continuous Y scale normally distributed response pattern.
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Figure 6

Histogram for 9 scale-point equal interval response pattern.
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Figure 7

Histogram for 8 scale-point equal interval response pattern.
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Figure 8

Histogram for 6 scale-point equal interval response pattern.




Y4EQUAL

500

Frequency

1.0

Y4EQUAL

Figure 9

Histog_rafn for 4 scale-point equal interval response pattern.
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Figure 10

Histogram for 9 scale-point unequal interval response pattern bunched to the right.
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Histbgram for 8 scale-point unequal interval response pattern bunched to the right.

Y4RIGHT

Frequency

Y4RIGHT

Figure 12

Histogram for 4 scale-point unequal interval response pattern bunched to the right.
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Figure 13

Histogram for 8 scale-point unequal interval response pattern bunched to the left.

Correlation Matrices

Correlation matrices selected for simulating the population of responsés were based on
the typical occurrence in social science research of the relationship among predictors and
criterion variables, in which (1) predictors are moderately correlated with each other and
low correlation with the criterion, (2) predictors have a low correlation with each other but a
moderate correlation with the criterion, and (3) predictors have a moderate to high
correlation with themselves and moderately high correlation with the criterion variable. The .
correlation matrices were based on examples of the relationship between predictors and
criterion variables often found in educational settings and social science research (Stevens,
1986). These were used in the estimation of R?, beta-weights, and Pearson correlation
coefficients between each predictor and criterion. The resulting beta-weights and the
Pearson correlation coefficients were used to compute the relative Pratt index for each
predictor under each combination of conditions.

It was hypothesized that the type of correlation matrix together with Likert variables
would impact the estimation of R? , relative Pratt index, and Pearson correlation coefﬁcient

for each combination of the conditions of the independent variables. Shown in Table 1 is the
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correlation matrix for prédictors with low inter-variable correlation with the criterion, but
moderate inter-variable correlation among themselves. This matrix is referred to as the low
inter-variable correlation matrix (Coﬁelation matrix. 1) in the study. The resulting R’ and
beta weights of the model fit of the matrix for continuous data are shown immediately below
Table 1. Also shown are méasures of variable importanée ﬁamely, the relative Pratt indices

for each predictor variable in the correlation matrix.

Table 1

Correlation matrix with low inter-variable correlation of predictors and the criterion, and

moderate inter-variable correlation among the predictors.

Y X; X X3
Y 1 '
X; 20 1

X, .10 .50 1

X3 30 .40 .60 1

R-squared = 0.118
Betal =0.157, Pratt 1 =0.269
Beta2 =-0.188, Pratt2=-0.158

Beta3 = 0.350, Pratt 3 =0.890

Table 2 shows the correlation matrix for which the predictors have low inter-variable
correlation among themselves but moderate inter-variable correlatiQn with the criterion
variable. This matrix is referred to as the moderate inter-variable correlation matrix
(Correlation matrix 2) in the study. The resulting R’, beta weights as well as relative Pratt

indices derived from the model fit with continuous data in the pilot study are shown

immediately below the matrix in Table 2.




Table 2

The correlation matrix with moderate inter-variable correlation of predictors and the criterion,

and low inter-variable correlation among predictors.

Y X1 X2 X3

Y 1

X; 60 1

X, 50 20 1

X3 70 30 20 1

R-squared = 0.753
Betal =0.378, Pratt 1 =0.3020
Beta2 = 0.321, Pratt 2=0.2136

Beta3 = 0.522, Pratt 3 = 0.4853

The third correlation matrix shown in Table 3 depicts a situétion where the predictors
have moderate to high inter-variable correlation among themselves and moderately high
with the criterion variable. This is referred to as the high inter-variable correlation matrix
(Correlation matrix 3) in the study. The resulting R’ beta-weights, and relative Pratt indices
of predictors in the model fit for the continuous data in the pilot study are shown

immediately below Table 3.
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Table 3

The correlation matrix with moderately high inter-variable correlation of predictors and the

criterion, and moderate to high inter-variable correlation among the predictors

Y X X Xy

Y 1

Xy .60 1

X, 70 70 1

X; 70 60 .80 1

R-squared = 0.562
Betal =0.185 Pratt 1 =0.1972
Beta2 = 0.275 Pratt 2 =0.3425
Beta3 = 6.370 Pratt 3 = 0.4069
Throughout the study the type. of correlation matrix as a variable is also referred to as
CORMTX with three levels namely low, moderate, and high inter-variable correlation matrices.
In the study, low inter-variable correlation matrix is also referred to in the results and discussion
as correlation matrix 1 (low correlation matrix), and moderate inter-variable correlation is
referred to as moderate correlation matrix or correlation matrix 2, whereas high inter-variable
correlation matrix is also referred to as high coﬁelation matrix or correlatibn matrix 3.

Variable Combination of Likert ‘conditions

Three variable combinations of Likert conditions of the predictors and criterion variables
were studied. The case of continuous predictors and continuous criterion variables were
examined for each population generated from the correlation matrices. The results of the

regression analysis in the continuous data served as baseline against which the other conditions

were compared in order to assess information loss across the stated conditions. The three
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variable combinationé of Likert conditions (VARCOMB) referred to are variable combination 1,
variable combination 2, and variable combination 3, and were defined as follows:
(1) When all predictors are continuous and the criterion is Likert (Variable combination
1).
2) When all predictors are Likert and the criterion is continuous (Variable combination
2). |
(3)  When all predictors are Likert and the cri_terion is also Likért (Variable combination
3).
‘Regression analyses were limited to the following situation (which was seen in the example
from the students’ life satisfaction study at the beginning).

For the left bunching of the responses (positively skewed response distribution):

Yeont,orma = Pi1Xileft + B2 Xoleft +f:X; left (16)
Yleft zﬂIchontnormal+ﬂ2 chontnormal+ﬂ3X3c_0ntnormal (] 7)
Yleft = B, X left + poXoleft + BsX; left (18)

Importantly, it should be noted from above that the patterns in the regressions are not mixed.
Left and right bunching responses were ordinal categorical with Likert conditions, while the
conﬁnuous predictors and criterion referred to were continuous and normally distributed.
Similar regressién models were fit for right bunching (negatively skewed response distribution)
and for the equal interval symmetric disfribution of responses.

Likert scale points

For all conditions, the Likert variables ranged from 2 to 9 scale points, which are commonly
found in questionnaires and instruments in social science research. It was hypothesized as in the
previous studies, that the number of scale points affects parameter estimates. The number of

scale points was created through the simulation of responses with specified thresholds shown in
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Appendix A, B, and C (See Table 5, 6 and 7 respectively). A schematic representation of the
study design with all the independent variables is shown on Table 4.

Table 4

Schematic representation of the study design for the population generated from each of the three

correlation matrices (Low, Moderate and High inter-variable correlation matrices) response

patterns and Likert conditions

COMBINATIONS __ Variable Variable Variable

(VARCOMB) Combination 1 Combination 2 Combination 3
(Likert criterion Y (Continuous criterion  (Likert criterion Y
and Continuous Y and Likert and Likert
predictors X) - predictors X) predictors X)

PATTERNS Equal Right Left Equal Right Left Equal Right Left

(Response patterns)
CATEGORIES .29 2-9 2-9 2-9 2-9 2-9 2-9 29 29

(Likert Scale points)

Levels of categories (number of Likert scale points), other than the cont‘inuous one, were
selected because low number of categqries (coarse categorization) were previously hypothesized
in correlation studies, to result in large standard errors of Pearson’s correlation (Bollen & Barb,
1981) and spurious factors in both factor analysis and confirmatory factor analysis (Green et.al,
1997; Johnson & Screech, 1983), while high number of categories (refined categorization of
scale) resulted in low standard errors in the correlation estimates and fewer spurious factors.

These findings were disputed by Bernstein and Teng (1989) and resulted in a follow-up study by

Green et al (1997).
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Because of the conflicting results in the correlation studies regarding the effect of
number of Likert .points, it was prudent to examine a wide range of Likert scale points from low
to high. Based on the literature, it was therefore hypothesized that R?would be impacted by
fewer ﬁumber of scale points than more scale points.

Both equal and unequal interval Likert scales were addressed in thé present study, as
suggested in previous studies by Bernstein and Teng (1989) as well as Green et al (1997). This
is because all previous studies assumed equal interval and normal distribution between
categorical scales in responses. In reality not all ordinal» categorical response scales are of equal
interval and normal distribution. This is a limitation of the commoniy used Likert scales, which
assumes equal interval in categories. Each of the dependent variables was analyzed separately to
~ assess the specific effects of ordinal categorization (Likert scaling) on each measure and an
overall.implication to the linear regression model and Pearson correlation.

Relative Pratt index and Variable importance

In performing regression analysis researchers and stakeholders often ask which
predic_tors are important, and which ones contribute most to the estimation of the criterion
variable. Several indices have been proposed in determining relative importance of predictors in
regression models among which are the relative Pratt index (Thomas, Hughes and Zumbo,
1998), Beta weights, t-values, commonality components, semi-partial correlation s7; and partial
correlations pr;. However, Pedhazur (1982) and Darlington (1990) have suggested that beta
weights and- partial correlations should not be used on their own as measures of variable
importance as the two statistics lack additive and proportionality properties within the criterion
variance. Therefore, the rélative Pratt index with its additive property and which sums up to one

for all the predictors in the equation emerges as the most suitable measure of relative

importance. Relative importance of variable X; in a regression model is determined by the
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proportion of thevvariance in the criterion variable accounted for by X; (Bring, 1994, 1996;
Kruskall, 1987; Pratt, 1987, Thémas, Hughes, & Zumbo, 1998).

Because of its additive and proportionality property as well as simplicity in
interpretation and computation, ‘th¢ relative Prétt index lends itself as a promising and prudent
choice of an index to use in determining relative importance and ordering of variables (Thomas,
Hughes, & Zumbo, 1998; Thomas & Zumbo, 1996). The relative Pratt index is based on the
axiomatic derivation of the product of the simple correlation and beta coefficient of a variable. X;
from the regressibn equation of the form:

Y = BX), +BXot... BX, 19

The relative Pratt index d; associated with predictor X; is then computed as follows:

4 =L (20

The resulting quotient is the proportion of model R’ accounted for by the predictor
variable X; while f; is the beta weight associated with the predictor X; andr; is the Pearson
correlation between X; and the criterion variable Y. Thus, the relative Pratt index is used in
variance partitioning of R’ for each predictor.

Values of relative Pratt index d; that meet the condition,;

@>£;, | 1)

where p is the number of predictors in the equation, are the oply ones that are usually interpreted
(Thomas, et al. 1998). While relative Pratt index has been endofsed as an appropriate measure
of relative importance of predictor variables in linear regression models (Thomas, et al. 1998),
little is known of the effect of Likert data on its accuracy, consistency and performance under

different conditions of Likert scale and response distribution. The present study addressed this

concern through graph plots and response modeling of the p‘ercent bias in relative Pratt indices
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for each combination of the independent variables. A similar procedure of data analysis was

adopted for percent bias in R’ and Pearson correlation coefficients for each condition. What

follows are the results of the data analysis.
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CHAPTER1V
RESULTS
Introduction

To answer the research questions, analysié was conducted separately for R’, relative
Pratt index, and Pearson correlation coefficient to determine the effect of Likert data on these
dependent variables and the overall effect on the linear regréssion models. For each of these
dependent variables a-statistical model was fit using the independent variables; namely, number
of Likert points, type of correlation matrix, variable combination, and distribution of response
patterns.

For each dependent variable, the pércent bias (relative to the continuous case) was used
as the object of analysis. This contrasting to the continuous case reflects the simulation
methodology's focus on mimicking measurement. Zumbo and Zimmerman (1993) introduced a
simulation strategy whereby one mimics the measurement process and therefore is able to
experimentally study the effects of measurement on data analysis. This dissertation follows the
Zumbo aﬁd Zimmerman strategy (also see Nanna & 'Sawilosky, 1998). Whereas most
sirﬁulatibn studies have tended to preéent only graphical plots and tabular displays, statistical
modeling of the simulation output was conducted in the present study to provide (1) statistical
evidence of the effects, and (2) further insighf into the potential interaction effects of the
independent variables (Zumbo & Harwell, 1999). That is, given that there are potentially
several rather complex (i.e., of high order) interaction effects among the independent variables,
the statistical modeling allows one t§ select a rﬁost parsimonious descriptibn of the results.
Note that all of the independent variables were treated as categorical explanatory variables in

the modeling except for the number of Likert scale points, which was treated as a quantitative

variable in the modeling.
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As Zumbo and Harwell state, the fundamentél premise of using‘ the statistical modeling
is that si.mulation plays the same role in methodological research as experimentation plays in
other sciences (see also, Hoaglin & Andrews, 1975). Note, however, that for the present
simulation the statistical modeling serves a descﬁptive purpose. That is, the output from the
simulation is a population result (Based ona population size of 500,000) and hence will have
little variation upon replication. The statistical model fit, hence, aids in describing the
potentially complex response surface (i.e. hyperplane) of the simulation results (Box & Draper,
1987; Khuri & Cornell, 1987; Snee & Hare, 1992).

In what follows each dependent variable will be discussed in order of R?, relative Pratt

index, and the Pearson correlation.

Effect of Likert data on R-équared '

Although it was used for all of the dependent variables, the percent bias will be
described in detail only for R°. To evaluate the effect of Likert data on R’ resulting from the
linear regression model fit, differences between R’ derived from the regression model based on
the experimental conditions and those derived from the baseline model with continuous
predictors and continuous criterion variables were computed. Bias was defined by the
expression:

BiasA= R’ noa-R’con (22)
where R%,,q is the value of R? from the model with Likert condition and R, is the value of
R? of the model with continuous data. Given that various values of R comt Were used in the
model, if was considered prudent to transform differences in R’ (bias) as a percentage of the R’
from the continuous baseline regression model with continuous variables. The resulting
quotieﬁt was referred.to as percent bias and is cdmputed as follows:

Percent biasAR? = {Rz mod-Rza,,,,}/ R’ cont X 100. , (23)
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Statistical Model fit

A statistical model was fit for percent bias in Iéz as the dependent variable. As evident in
Table 8, there were main effects‘ for number of Likert points (CATEGORY), response pattern
O’ATTERN), and variable combination (VARCOMB). The main effect of correlation matrices
was, strictly speaking, not statistically significant. However, given that the p-value was close to |
the cut-off of 0.05, this effect was considered to be marginally significant and worthy of
consideration. Effect sizes of the variables are as follows: for the correlation matrices, eta
squared are 0.035 (small), for variable combination, eta squared is 0.062 (mc;derate), while for
response pattern distribution eta squared is 0.046 (small). In the case of number of Likert scale
points (CATEGORY), eta squared is 0.520 (large). The effect size of Likert points
(CATEGORY) is much larger than those of the other independent variables. Thus, number of
Likert points seems to have a larger effect than the rest of the variables. The following critéria,
based on‘ Cohen (1992) and Kirk (1996), was used to interpret effect sizes: 0.01 to 0.058 small,
0.059 to 0.137 moderate, and greater than 0.138 és large._ All two, three and four-way
interactions of the explanatory variables in the statistical model fit were not significant. To

assess the effects of the explanatory variable further, post hoc tests were conducted for each of

the significant main effects.
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Table 8

Statistical model fit for Percent bias in R-square for type of matrix, Variable combination,

fesponse pattern, and Likert scale points

Source df - Mean Square F Sig.
CORMTX 2 421.666 2.974 054
VARCOMB 2 761444 5.371 .006
PATTERN 2 556.993 3.929 .022
CATEGORY | 1 24892.208 175.586 .000
CORMTX * VARCOMB * PATTERN 8 4.080 .029 1.000
* CATEGORY
CORMTX * VARCOMB * PATTERN 16 29.297 207 1.000
CORMTX * VARCOMB * CATEGORY 4 11.936 .084 .987
CORMTX * PATTERN * CATEGORY 4 15.859 112 978
VARCOMB * PATTERN * CATEGORY 4 13.001 .092 985
VARCOMB * PATTERN 4 46.642 329 .858
VARCOMB * CATEGORY 2 312.417 2.204 114
PATTERN * CATEGORY 2 385 .003 997
Error . 162 141.767

Total ‘ . 216

For the independent variable correlatiori matrices, pairwise compaﬁsons were conducted
between the means of percent bias of R? at low, moderate and high correlation matrices.
Figurel4 displays the mean percent bias in R’ for the three levels of the correlation matrix
CORMTX. There were statistically signiﬁcant differences in the means of percent bias between
low inter-variable correlation matrix and moderate correlation, and iow inter-variable
Correlétion matrix and high inter-variable correlation matrix (p<0.05). However, there were no
significant differences in the mean percent bias of R’ between moderate and high correlation |

matrices.
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Mean Percent bias of R-squared

low correlation moderate correlation  high correlation

type of correlation matrix

Figure 14

Bar Graph of the main effect of type of correlation matrix for percent bias in R-squared.

Post hoc tests were done on the mean percent bias for the main effect of variable
combinations. Figure 15 displays the mean percent bias for the various variable combinations.
Eor the pairwise comparisons of the mean percent bias, there were statistically significant
differences between means in variable combination 2 (Continuous Y and Likert X) and variable
combination 3 (Likert Y and Likert X), using a Bonferroni correction at a nominal alpha of 0.05.
There were no significant differences in the means of percent bias for the other pairwise

comparisons.
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2

Mean Percent bias of R-squared
N

LikertY Cont. X Cont.Y LikertX LikertY Likert X

variable combination of dependent and independent

Figure 15

Bar Graph of the main effect of type of variable combinations for pércent bias in R-squared.

For the main effects on response patterns, post hoc tests were again done through
pairwise comparison of the mean percent bias of R’ among the three response patterns at a
nominal alpha of 0.05 using a Bonferroni correction. Figure 16 displays the mean percent bias in
R? for the three response patterns. There were statistically significant differences between
response pattern 1(equal interval) and 2 (right bunching), and response pattern 1 and 3 (left

bunching). There were no statistically significant differences between response pattern 2 and 3.
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Figurel6

Bar Graph of the main effect of response patterns for percent bias in R-squared.

Post hoc fests for the main effects of number of Likert points on percent bias of R’ were
conducted through pairwise comparison of the scales at 95% confidence interval. The results are
summarized in Table 9. Ther_e were statistically Signjﬁcant differences between the 2-point
Likert scale and the rest of the scale points. Similarly, there were statistically signiﬁcaht
differences between the 3-point Likert scale and Likert scale points of 6, 7, 8 and 9. However,
there were no statistically significant differences between the 3-point Likert scale, and the 4-
point Likert scale as well as 3-point Likert scale and 5-point Likert scale. Comparivson of the 4-
point Likert scale with the rest of the scales from 5-point scale to 9-point scale showed no
significant differences. Table 9 provides a summary of the mean and conﬁdeﬁcé interval bounds

at 95%. Note that an asterisk (*) denotes a statistically significant comparison. Figure 17

depicts the relationship between number of Likert scale points and the percent bias in R
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Incorporating the results from Table 9, it is noted that the bias flattens at the four-point Likert
scale and beyond.
Figure 17 provides a graphical display of how the mean percent bias in R-squared reduces as the

number of scale points increase and flattens at four Likert scale points.

Mean Percent bias of R-squared

two thr.ee fOIJI' ﬁ\'/e si-x se\;en 'eig-;ht nine

number of categories in the Likert scale

Figure 17

Main effect of number of Likert scale points on percent bias of R-Squared.




Table 9

Confidence intervals of the mean differences of percent bias in R*for all Likert scale points

-10.58646

COMPARISON  MEANI - MEAN2 95% CI OF DIFFERENCE
1:2v3 * -31.62559 -41.91889 to -21.33229
2:2v4 * -38.28406 -48.57736 to -27.99076
3:2v5 * -41.49404 -51.78734 to -31.20074
4:2v6 * -42.97422 -53.26752 to -32.68092
5:2v7 * -43.81377 -54.10707 to -33.52047
6:2v8 * -44.29653 -54.58983 to -34.00323
7:2v9 * -44.58969 1.54.88299 to -34.29639
8:3v4 - -6.65777 -16.95107 to + 3.63553
9: 3v5 -9.86845 -20.16175 to +0.42485
10: 3v6 -11.34863 -21.64193 to -1.05533
11: 3v7 -12.18818 -22.48148 to -1.89488
12: 3v8 -12.67094 -22.96424 to -2.37764
13: 3v9 -12.96410 -23.25740 to -2.67080
14: 4v5 -3.21074 -13.50404 to +7.08256
15: 4v6 -4.69092 -14.98422 to +5.60238
16: 4v7 -5.53047 -15.82377 to +4.76283
17: 4v8 -6.01323 -16.30653 to + 4.28007
18: 4v9 -6.30639 -16.59969 to +3.98691
19: 5v6 -1.48018 -11.77348 to +8.81312
20:'5v7 -2.31973 -12.61303 to +7.97357
21: 5v8 -2.80249 -13.09579 to + 7.49081
22: 5v9 -3.09565 -13.38895 to +7.19765
23: 6v7 -0.83955 -11.13285 to +9.45375
24: 6v8 -1.32231 -11.61561 to +8.97099
25: 6v9 -1.61547 _11.90877 to +8.67783
26: 7v8 -0.48276 -10.77606 to +9.81054
27: V9 -0.77592 -11.06922 to +9.51738
28: 8v9 -0.29316 to +10.00014

* significant at p < 0.05

68
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Effect of Likert data on the relative Pratt index

The purpose of computing the relative Pratt index is to determine variable importance
among the set of predictors in a regression model. This serves as a criterion of ordering the
variables or examining relative importance in the régression model. To evaluate the effect of
Likert data on the measures of variable ifnportance in the linear regression models, the relatiye
Pratt index was computed from the Pearson correlation coefficients and beta wei ghts for each -
predictor variable and for each regression model fit. The difference between the models’ relative
" Pratt indices based on Likert data, and the corresponding baseline relative Praft indices for
continuous data, was then transformed into percent bias of the relative Pratt index for each
predictor variable under the three treatment conditions and Likert scales. The relative Pratt
index associated with Variéble X, was referred to as Pratt 1 index, that associated with variable
X was referred to as Pratt 2 index, and that assoéiated with X3 was referred to as Pratt 3 index.
For each i:)redictor variable, the computed percent bias of the relative Pratt indices were
analyzed separately to assess the effect of Likert data on the three indices uhder the conditions
of the stated independent variables. It was hypothesized that percent bias in the relative Pratt
index would affect variable importaﬁce and therefore variable ordering of the predictors under
the stated conditions of type of correlation matrix, response distribution, variable combination
and number of Likert scale points.

Statistical Model fit

Separate statistical model fit were conducted for percent bias in Pratt 1, Pratt 2, and Pratt

3, respectively.
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Pratt Index One

The results of the model fit for the percent bias in Pratt 1 is shown in Table 10. First, it is
important to note that the main effect of response distribution PATTERN was not statistically -
significant, and nor were any interactions involving this independent variable. There was a
statistically significant three-way interaction of CORMTX by VARCOMB by CATEGORY. It
will be evident in the results listed below that due to the type of interaction, the main effects will
not be interpreted.

Given the three-way interaction, a simple effects analysis was conducted to decompose
the interactioil. That is, at each level of VARCOMB (variable combination) a two-way model
was fit for CORMTX by CATEGORY - indicating that the three-way interaction implies that
the two-way interactions depend on the values of the third independent variable, VARCOMB.
Table 11 lists the three two-way interactions. At variable combination 1 (Likert Y and
- Continuous X), interaction effects of CORMTX by CATEGORY were noti significant.
However, at Variable combination 2 and 3, the interaction effects of CORMTX by
CATEGORY were statistically signiﬁcarit. Figures 18 to 20 show the interaction plots for the |
three two-way interactions listed in Table 11. From the Figures it is evident that for:

(a) Variable combinaﬁon 1 (Likert Y and Continuous X) there was no bias (Figure‘18).

(b) Variable combination 2 (Continuous Y and Likert X) thé high correlation case was

substantially more biased than the low and moderate correlation cases across the
Likert scale points. Furthermore, the peréent bias at two Likert scale points was
substantially more for the high correlation case than for the low and moderate
correlation cases (Figure 19).

'(c) Variable combination 3 (Likert Y and Likert X) there was little to no bias for the low

and moderate correlation cases irrespective of the number of scale points. However,
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for the high correlation case the percent bias peaks at three Likert scale points and
then tends toward zero as the number of scale points increases (Figure 20).
Table 10

Statistical model fit for the percent bias in Prattl for type of correlation matrix, variable

combination, response pattern and number of Likert scale points

Source Sum of Squares df Mean Square F Sig.

CORMTX 998.963 2 499.482 105.531 .000.
VARCOMB 892.175 2 446.087 94.250 .000
PATTERN 4.014 2 2.007 424 655
CATEGORY 238.577 1 238.577  50.407 .000
CORMTX * VARCOMB 698.046 4 174512  36.871 .000
CORMTX * PATTERN 4.258 4 1.064 225 924
CORMTX * CATEGORY 254.934 2 127.467 26.931 .000
VARCOMB * PATTERN 46.461 4 11.615  2.454 .048
VARCOMB * CATEGORY  243.531 2 121.765 25.727 .000
PATTERN * CATEGORY  9.002 2 4501 951 .389
CORMTX * VARCOMB * . 4.872 8 .609 129 .998
PATTERN |
CORMTX * VARCOMB * 181.353 4 45338  9.579 .000
CATEGORY
CORMTX * PATTERN * 14.854 4 3.714 785 537
CATEGORY
VARCOMB * PATTERN * 4.710 4 1.178 249 910
CATEGORY
CORMTX * VARCOMB * 9.249 8 | 1.156 244 982
PATTERN * CATEGORY |
Error 766.750 162 4.733

Total ' 8327.964 216




Table 11
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Statistical model fit at variable combination levels for Correlation Matrix by Category for Pratt

1

CATEGORY

- Variable Source Sum of Squares df  Mean F Sig.
combination of Square
dependent and
independent
Likert Y Cont. X CORMTX * .709 2 355 1.368 .262
| CATEGORY
Cont. Y Likert X CORMTX * 334.405 2 167.202 10.903 .000
CATEGORY '
Likert Y Likert X CORMTX * 101.173 2 50.587 13.455 .000
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Figure 18

Percent bias in Pratt 1 for variable combination 1 (Likert Y and Continuous X) within type of

correlation matrix and number of Likert scales.
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Figure 19

Percent bias in Pratt 1 for variable combination 2 (Continuous Y and Likert X) within type of

correlation matrix and number of Likert .scales.
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Pratt Index Two

The same analyses as Pratt 1 were conducted for Pratt 2. Note, however, as reported in
the methodology Chapter, Pratt 2 is negative in the low correlation matrix case. The magnitude
Qf the percent bias for low correlation is larger than in Pratt 1 for the same correlation matrix.
The statistical model fit (shown in Table 12) results in a statistically significant 3-way
interaction of CORMTX by VARCOMB by CATEGORY. Therefore, the simple effects two-
way models were fit for each level of VARCOMB. The results of the 2-way interaction effects
are listed in Table 13 and the interactions are plotted in Figures 21 to 23. From the Tables and
Figures it is evident that for:

(a) Variable combination 1 (Likert Y and Continuous X) the Table and Figures give
contradictory interpretations. That is, although the test of the two-way interaction
shows a statistically significant intcréction, the plot in Figure 21 indicates that there
is no intéraction — in fact, the Figure indicates that there was no bias acéross all of the
number of scale points (Figure 21). This apparent contradiction can be accounted for
by noting that the sum of squares of the interaction term was, relative to the other
two interactions in Table 13, quite small. This information indicate that the
magnitude of the interaction effect was moderate (an eta-squared of 0.128).

(b) Variable combination 2 (Continuous Y and Likgrt X) the high and moderate
correlation cases showed very little .percentage bias at two Likért scale points where
the moderate case was slightly more biased. For the low correlation case, however,
there is 80 percent negative bias at two Likert scale points and nearly 20 percent
negative bias at nine scale points (Figure 22).

(c) Variable combination 3 (Likert Y and Likert X) was similar to Variable combination -

| 2 except that the difference in percent bias was larger than in Variable combination 2

between moderate and high correlation cases for at two scale points (Figure 23).



Table 12

Statistical model fit for percent bias in Pratt 2 for type of correlation matrix, variable

combination, response pattern and number of Likert scale points

Source Sum of Squares Df Mean Square F Sig.
CORMTX 16744.062 2 8372.031 217.769 .000
VARCOMB 3717.458 2 1858.729 48.348 .000
PATTERN 19.930 2 9.965 259 772
CATEGORY 2492.421 1 2492.421 64.832 .000
CORMTX * VARCOMB - 8903.093 4 12225.773 57.896 .000
CORMTX * PATTERN 11.252 4 2.813 073 .990
CORMTX * CATEGORY 5568.378 2 2784.189 72.421 .000
VARCOMB * PATTERN 13.505 4 3.376 .088 .986
VARCOMB * CATEGORY 1182.580 2 591.290 15.380 .000
PATTERN * CATEGORY  14.154 2 7.077 184 .832
CORMTX * VARCOMB *  61.384 8 7.673 200 991
PATTERN

CORMTX * VARCOMB *  2976.225 4 744.056 19.354 .000
CATEGORY |

CORMTX * PATTERN * 46.397 4 11.599 302 .876
CATEGORY |

VARCOMB * PATTERN *  5.876 4 1.469 .038 997
CATEGORY

CORMTX * VARCOMB *  25.461 8  3.183 .083 1.000
PATTERN * CATEGORY

Error 6228.015 162  38.445

Total 74987.212 216
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Table 13
Statistical model fit for variable combination levels for Correlation matrix by 'Category for Pratt

2

Variable Source . Sum of Squéres df  Mean Square F Sig.
combination of

dependent and

" independent
Likert Y Cont. X CORMTX * 2.197 2 1.099 4.831 .011
| CATEGORY
Cont. Y Likert X CORMTX *  4858.342 2 2429.171 40.382 .000
CATEGORY ' |

Likert Y Likert X CORMTX *  3684.064 2 1842.032 32.791 .000
CATEGORY
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Figure 21

Percent bias in Pratt 2 for variable combination 1 (Likert Y and Continuous X) within

correlation matrices and number of Likert scales.
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Pratt Index Three

Table 14 contains the overall model fit for percent bias in Pratt 3. Again, the three-way
interaction of VARCOMB by CORMTX by CATEGORY is statistically significant. The simple
effects two-way interactions of CORMTX by CATEGORY for the various levels of |
VARCOMB are listed in Table 15. Furthermore, the plots of the interactions are provided in
Figures 24 to 26. For variable combination 1 there v;/as no interaction. However, for variable

combinations 2 and 3 the moderate correlation situation-was distinct from the low and high

correlation cases; and in addition, the effect was largest at 2 scale points.
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Table 14-

Statistical model fit for percent bias in Pratt 3 for type of correlation matrix, variable

combination, response pattern and number of Likert scale points

Source Sum of Squares df = Mean Square  F Sig.
CORMTX 483.290 2 241.645 84.864  .000
VARCOMB 617.007 2 308.504 108.344 .000
PATTERN 2.309 2 1155 406 667
CATEGORY 302.153 1 302.153 "106.113  .000
CORMTX * VARCOMB 256.073 4 64.018 22.483  .000
CORMTX * PATTERN 7.144 4 1.786 627 .644
CORMTX * CATEGORY | 165.571 2 82.786 29.074  .000
VARCOMB * PATTERN  17.408 4 4352 1.528 .196
VARCOMB * CATEGORY  203.407 2. 101.703 35.717  .000
PATTERN * CATEGORY 3.942 2 1.971 692 502
CORMTX * VARCOMB * 7.847 - 8 981 344 947
PATTERN
CORMTX * VARCOMB * 87.708 4 21.527 7.701 .000
CATEGORY
CORMTX * PATTERN * .603 _ 4 151 .053 995
CATEGORY _
VARCOMB * PATTERN * 5.116 -4 1.279 449 773
CATEGORY
CORMTX * VARCOMB * 1.608 8 201 071 1.000
PATTERN * CATEGORY

Error 461.288 162 2.847
Total 4830.270 216




Table 15
Statistical model fit for levels of variable combinations for correlation matﬁx by category for

Pratt3

Variable Source Sum of Squares df Mean Square F Sig.
combination of '

dependent and

independent

Likert Y Cont. X CORMTX * 227 2 .114 1.320 274
CATEGORY

Cont. Y Likert X CORMTX * 75.415 2 37.708 9.942  .000
CATEGORY

Likert _Y.Likert X CORMTX * 177.637 2 88.819 18.203 .000

CATEGORY
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In summary, for the three Pratt indices taken together, there was no effect of response
pattern. However, the rerhaining three independent variables show complex and differing
interaction patterns for each of the Pratt Indices and combination of independent variables --
with variable combination appearing to consistently have the largest effect on the interactions.
Percent bias was substantially large in Pratt 2. Given that Pratt 2 value was negative and the
associated beta weight was also negative, this coﬁld indicate that the predictor was a suppressor
variable, hence the large bias in the resulting relatiye Pratt index. Also, given that (a) the percent
bias in the Pratt indices ranged from -80% to 40% and that this variation was explained by
various patterns of interactions among the independent variables, and (b) that the primary use of
the Pratt indei( is to order the predictor variables in terms of importance, the consistency in

variable ordering across the variables' experimental conditions was investigated.

Likert Data and Variable Imnbrtance

To investigate the effect of Likert data on variable ordering, it was first noted that the
values of Pratt 3 were greater than Pratt 1 and Pratt 2 in the baseline condition. Two indicator
Vaﬁébles were created for continuous and Likert data i.e. for baseline and treatment conditions,
showing that Prétt 3 was greater than Pratt 1 and 2,. and for the relationéhip between Pratt 1 and
2. A cross tabulation was done to compafe variable ordering in the continuous (baseline) data
and in Likert data. The result indicated that variable order remained consistent i.e.. invariant
across the treatment conditions in spite of the presence of bvias in the Pratt indipes.

Thus, irrespective of scaling, the order of importance remained invari_ant and variable X3
with the largest Pratt index remained the most important and furthermore the relationship

between variables X; and X, was also invariant of Likert scaling. Therefore, the order of
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importance was not affected by the Likert data across the conditions. Consistency of the relative
Pratt index was maintained under different conditions of correlation matrix, vériable
combination response patterh and number of Likert points. The relative proportion of variance
attributed to each variable did not change under the studied conditions.

Effect of Likert Data on Pearson Correlation

To assess the effect of Likert data on the Pearson correlation for each predictor X; (i.e.
X;, X; and X3) and the criterion Y, the correlations 7y, 7y, and .3 were computed fof each
variable combination, response pattern, correlation matrix, and Likert scale points as well as for
the continuous distribution of X and Y. For the continuous case, the resulting Pearson's
correlation was labeled as 7,y; con. Thus, for the first predictor X; and Y, the correlation was 7y,
cont While for the second Xz. and fhird predictor X3 the resulting correlations with Y were ry.2 cont
and ry,;3 com respectively. Pearson correlation was computed for data in each of the three
correlation matr_ices'. The value Qf yai cont ih all the continuous conditions ranged from 0.202 to
0.600. These correlation values represent common vand typical range of values that are
frequently encountered in social science researéh. Similarly, Pearson correlation was computed
in the data for the eight Likert scales in each of the three variable combinations and response
pattern. The resulting correlations were referred to as 7ys; moder for €ach condition and Likert data.

To obtain the amount of bias in the estimation of Pearson correlation #yy; moder, the
difference betwegn Pyxi cont AN Pyxi moder Were computed as follows: |
Bias Ary: = Fyxi model = Tyxi cont (25)
The resulting bias was then expressed as a percentage of the Pearson correlation #,; con as

follows:

Percent bias = [Bias Ary,/ Fyxi cond] x 100 (26)
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The percent bias computed at each combination of the condition of the independent variables
was used to analyze the effect of Likert data on the Pearson correlation under the stated
conditions. The type of correlation matrix was not expected to impact on the estimation of
Pearson correlation between the predictoré and the cﬁteﬁon, and so analysis was conducted for
each predic’;or and criterion at each level of variable combinations, type of respohse pattern
and number of Likert scales. The number of Likert scale points, variable combination and type
of response pattern were hypothesized to impact the estimation of Pearson correlation of each
predictor with the criterion. Percent bias in the Pearson correlations 7y,;, 7yx2 and 7,3 for the
correlation o_f Xiand Y, X; and Y, as well as X3 and Y were denoted by X1PBIAS-r, X2PBIAS-
T aﬁd X3PBIAS-r respectively. Percent bias in each of the three correlations was analyzed
separately.

Statistical Model fit

To provide insight on the effect of Likert scales on the estimation of Pearson
correlations, statistical models were fit for each combination of the conditions namely, type of
correlation matrix, response pattern, variable combination, and number of Likert scale points
using percent bias as the object of analysis.

Statistical model fit for X1PBIAS-r

The results of statistical model fit for the percent bias in X1PBIAS-r are shown in Table
16. There were significant main effects for variable combination (VARCOMB)_ response
pattern (PATTERN) and number of Likert scale points CATEGORY. However, the type of
correlation matrix (CORMTX) was not statistically significant. There were statistically
significant three-way interaction ¢ffects for VARCOMB by PATTERN by CATEGORY. A

simple effects analysis was conducted to decompose the three-way interaction effects. Thus, at

each level of VARCOMB (variable combination) a two-way model was fit for PATTERN by
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CATEGORY. This indicated that the two-way interaction effects depended on the third variable

namely VARCOMB.

Table 16

Statistical model fit for Percént bias X1PBIAS-r in Pearson correlation for type of correlation

matrix, variable combination, response patterns, and number of Likert scale points

Source df Mean Square F Sig.
VARCOMB 2 3605.473 42.414 .000
PATTERN 2 31556.566 371.221 .000
CORMTX 2 15.889 187 .830
CATEGORY 1 4266.517 50.190 .000
VARCOMB * PATTERN * CORMTX 8 0.07143 .001 1.000
* CATEGORY ‘
VARCOMB * PATTERN * CORMTX 8 1.315 015 1.000
VARCOMB * PATTERN * CATEGORY 4 511.149 6.013 .000
VARCOMB * CORMTX * CATEGORY 4 .946 011 1.000
PATTERN * CORMTX * CATEGORY 4 241 003 - 1.000
VARCOMB * PATTERN 4 7126.916 83.839 .000
VARCOMB * CORMTX 4 15.074 177 950
VARCOMB * CATEGORY 2 1435.174 - 16.883 .000
- PATTERN * CORMTX 4 - 1.211 014 1.000
PATTERN * CATEGORY 2 1993.454 23.450 .000
CORMTX * CATEGORY 2 1;423 017 983
Error 162 85.007
Total 216

The significant main effects were not analyzed. Table 17 lists the two-way interactions

at the three levels of variable combination. At variable combination 1 (Likert Y and Continuous

X) the twb—way interaction effect of PATTERN by CATEGORY was significant. This implied

that percent bias in Pearson correlation X1PBIAS-r varied across similar categories for different
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response patterns. Similar results are noted for variable combination 2 (Continuous Y and Likert
X). At variable combination 3 (Likert Y and Likert X) the interaction effect of PATTERN by
CATEGORY was not significant. Figures 27 to 29 show the interaction plots of the two-way
interaction effects listed in Table 17.

Table 17

Statistical model fit for Percent bias X1PBIAS-r in Pearson correlation for levels of variable

combination in response pattern distribution and number of Likert scale points

Variable Source Sum of Squares  df Mean Square F Sig.
combination of

dependent and

independent

VARCOMB

Likert Y Cont. X  PATTERN * 3047914 2 1523.957 22.782  .000
CATEGORY »

Cont. Y Likert X ~ PATTERN * 2982.329 2 1491.164 21.952  .000
CATEGORY

Likert Y Likert X PATTERN * 1.261 2 .631 .008 .992
CATEGORY | |

From the Figures it is evident that for:

(a) Variable combination 1 (Likert Y and Continuous X) percent bias was largest
for the positively skewed response patterns. The least bias was in the case of
equal interval and symmetric response distribution in which the percent bias
tended to zero as the number of scale points increaéed (see Figure 27). The
negatively skewed and equal éonditions showed similar bias patterns except

for the two Likert scale point case.



(b)

(©
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Variable combination 2 (Continuous Y and Likert X) yielded the same

~ percent bias as in variable combination 1 (Likert Y and Continuous X) as

expected given that the correlation is symmetric with regard to X and Y (see

Figure 28).

Variable combination 3 (Likert Y and Likert X) right and left bunching of
response patterns performed the same. Percent bias was lérgest at the two-
point Likert scale for all the response patterns but systematically reduced
beyond the three-point Likért 'séale. For the equal interval response
distribution pefcent bias was relatively larger in variable combination 3
compared to variable combination 1 and 2 across the numbef of Likert scales.
This implied that percent biaé varied across variable combinations for a given

response pattern (see Figure 29).
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Statistical model ﬁt for X2PBIAS-r

A statistical model was fit for percent bias X2PBIAS-r in the Pearson correlation for the
second predictor X, and Y, for all possible combination of main and interaction effects of the
independent variables (see Table 18). Results of the model fit in X2PBIAS-r were very similar
to those of X1PBIAS-r. The main effect for CORMTX was not statistically significant, although
those of PATTERN, VARCOMB and CATEGORY were statistically éigniﬁcant. There was a

statistically significant three-way interaction effect of VARCOMB by PATTERN by

CATEGORY.




Table 18

97

Statistical model fit for percent bias X2PBIAS-r in Pearson correlation for type of correlation

matrix, variable combination, Likert scale points, and response patterns

Source df Mean Square F Sig.
VARCOMB 2 3527.842 39.866 .000
PATTERN 2 31870.728 360.155 .00
CORMTX 2 31115 352 704
' CATEGORY 1 4221.468 47.705 .000
VARCOMB * PATTERN * CORMTX 8 947 011 1.000
* CATEGORY
VARCOMB * PATTERN * CORMTX 8 3.270 037 1.000
VARCOMB * PATTERN * CATEGORY 4 503.196 5.686 .000
VARCOMB * CORMTX * CATEGORY 4 2.119 024 999
PATTERN * CORMTX * CATEGORY 4 755 .009 1.000
VARCOMB * PATTERN 4 7116.063 80.415 .000
VARCOMB * CORMTX 4 32.101 363 835
VARCOMB * CATEGORY 2 1418.853 16.034 .000
PATTERN * CORMTX 4 3.835 043 996
PATTERN * CATEGORY 2 1955.075 22.093 .000
CORMTX * CATEGORY 2 2438 028 973
Error 162 88.492
Total 216

Given the significant three-way interaction like in the case of X1PBIAS-r, a simple

effects analysis was conducted to decompose the interactions. At each level of VARCOMB

two-way model fits were conducted for PATTERN by CATEGORY as well as that of

VARCOMB by PATTERN. A significant two-way interaction of PATTERN by CATEGORY

implied that percent bias of Pearson correlation varied across response patterns for a given set of




98

category of Likert scale points. Table 19 lists the two-way interactions at each level of variable
combination.

At variable combination 1 ( Likert Y and Continuous X) there is a si gﬁiﬁcant PATTERN
by CATEGORY interaction. At variable combination 2 ( Continuous Y, Likert X) there were
significant main effects for PATTERN and significant two-way interaction effects between
PATTERN and CATEGORY, while at variable combination 3 (Likert Y and Likert X) the two-
way interaction effect of PATTERN by CATEGORY was not significant. This result in
variable combination 3 differs from those in variable combination 1 and 2 indicating the
influence of number of Likert scales when both criterion and predictor are Likert. Figures 30 to

32 show the interaction plots for the two-way interaction listed in Table 19.

Table 19

Statistical model fit for Percent bias X2PBJIAS-r in Pearson correlat'ion for levels of variable

combination in response pattern distribution and number of Likert scale points

* Variable Source Sum of Squares df Mean Square F - Sig.

combination of -

dependent and

independent

Likert Y Cont. X PATTERN *  2896.048 2 1448.024 21.877  .000
CATEGORY

Cont. Y Likert X PATTERN *  3025.342 2 1512.671 22.062  .000
CATEGORY

Likert Y Likert X PATTERN * 1546 2 773 .008 992
CATEGORY '
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From the Figures it is evident that for:
; (a) Variable combination 1 (Likert Y and Continuous X) to variable }combination 3 (Likert
1 Y and Likert X) the left bunching cases showed substantially more negative bias than
the right or equal conditions. However, for the left bunching case, bias reduced at the
two scale points whereas the bias increased for right bunching. The least bias was in the
case of equal interval and symmetric response distribution in which the percent bias
tended to zero as the number of scale points increased (see Figure 30).

(B) Again, as expected vériable combination 2 (Continuous Y and Likert X) yielded the
same percent bias as in variable combination 1 (Likert Y and Continuous X) as shown in
Figure 31.

(c) Variable combination 3 (Likert Y and Likert X) percent bias was largest at the two- |
point Likert scale for all the response patterns but systematically reduced beyond the
three-point Likert scale. For the equal interval and symmetric response distribution
percent bias was relatively larger in variable combination 3 compéred to variable
combination 1 and 2 across the number of Likert scales. This implied that percent bias
varied across variable combinations for a given response pattern. Percent bias in left

bunching response pattern (positively skéwed) was the same as in right bunching

response pattern (negativély skewed). This is evident in Figure 32.
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Likert X) within response pattern and number of Likert scales.




102

pattern
- g0 equal
h N
% right
o ——--
X oc00f i i ] ] ] left
two three four five six seven  eight nine

Number of categories in the Likert scale

Figure 32
Percent bias X2PBIAS-r in Pearson correlation for variable combination 3 (Likert Y and Likert

X) within response pattern and number of Likert scales.

Statistical model fit for X3PBIAS-r

Statistical model fit was conducted for percent bias X3PBIAS-r in Pearson correlation
for the predictor X3 and Y, with the independent variables CORMTX, VARCOMB, PATTERN
and CATEGORY. All possible combinations of the interaction between the independent

variables were included in the model as shown in Table 20.



Table 20

103

Statistical model fit for Percent bias X3PBIAS-r in Pearson correlation for type of correlation

matrix, variable combination, response pattern and number of Likert scale points

Source df Mean Square F Sig.
Corrected Model 53 20448516 254.530 .000
Intercept 1 123663.558 1539.283 .000
CORMTX 2 25.777 321 726
PATTERN 2 31411.382 390.988 .000
VARCOMB 2 4129.448 51.401 .000
CATEGORY 1 4010.012 49.914 .000
CORMTX * PATTERN * VARCOMB 8 7.094E-02 .001 1.000
* CATEGORY

CORMTX * PATTERN * VARCOMB 8 1.511 .019 1.000
CORMTX * PATTERN * CATEGORY 4 5.727E-02 .001 1.000
CORMTX * VARCOMB * CATEGORY 4 3.159 .039 997
PATTERN * VARCOMB * CATEGORY 4 513.228 6.388 000
CORMTX * PATTERN 4 1.411 018 999
CORMTX * VARCOMB 4 25.203 314 .869
CORMTX * CATEGORY 2 2919 .036 964
PATTERN * VARCOMB 4 7204;292 89.674 .000
PATTERN * CATEGORY 2 1976.278 24.599 .000
VARCOMB * CATEGORY 2 1.3 13.654 16.351 .000
Error 162  80.338

Total 216

The resulting statistical model fit based on the univariate analysis of variance was

* similar to those of X1PBIAS and X2PBIAS-r. There were three significant main effects, of

- VARCOMB, PATTERN and CATEGORY. However, the type of correlation matrix CORMTX

was not significant. Like in the Pearson correlation of the other two predictors and criterion,

there was a significant three-way interaction effect among the three variables, VARCOMB by
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PATTERN by CATEGORY. This was followed by a further analysis of simpie effects to
decompose the interaction by fitting two-way stafistical models at each level of variable
combination VARCOMB. Shown in Table 21 are the two-way model fits of interactions at each
level of ;'ariable combination and Figures 33 to 35 display the interaction plots.

Table 21

Statistical model fit for Percent bias X3PBIAS-rin Pearson correlation for levels of variable

combination in response pattern distribution and number of Likert scale points

Variable Source Sum of Squares df Mean Square F Sig.
combination of

dependent and

independent

Likert Y Cont. X  PATTERN * _ 2999.652 2 1499.826  22.119 .000
CATEGORY

Cont. Y Likert X PATTERN *  3002.932 2 1501466  22.157 .000
CATEGORY '

Likert Y Likert X PATTERN *  2.887 2 1.443 020 .980
CATEGORY

It is noted that the results of percent bias in Pearson correlation for the first,
second, and third predictors with the criterion are similar and are therefore replicated .
across the correlations irrespective of the magnitude of the correlations. Thus, percent
bias was inﬂuenqed only by the independent variables in the study except type of
correlation matrix, and not the magnitude of the Pearson correlation. This implies that

the findings can be generalized to all the range of Pearson correlation values studied.
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CHAPTER V
DISCUSSION
Introduction

The study examined the impact of using Likert data in linear regression fnodels through
bias in the model fit. When ordinary least square linear regression models were fit for the Likert
data and compared to tile same models with continuous data, bias occurred inthe estimation of
R?, relative Pratt index, and Pearson correlation. Amouﬁt of bias increased with the decrease in
the number of Likert scale points under the stated conditions of the independent variables. Bias
in the es‘timation of the dependent variable was addressed in terms of percent bias at each
combination of conditions namely, type of correlation matrix, distribution of response pattern,
and variable combination of Likert conditions in both predictors and criterion. The four-point
Likert scales were found to be opﬁmal in that there was no substantial gain of information in
using more than four Likert scale points.

Type of correlation matrix did not affeét the estimation of Pearson correlation.
However, for Pratt indices, percent bias was substantially large at Pratt 2 for low correlation
matrix but negligible at Pratt 1 and Pratt 3 across all the correlation matrices. This could be
éxplained by the negative value of Pratt 2 in the low correlation matrix. The associated beta
weights were also negative, implying that the predictor was a suppréssor variable. Thus, the
effect of Likert data on Pratt indices with suppressors will need to be investigated. Relative Pratt
index was least affected by response distribution and remained robust across the range of
response distributions. The response distﬁbutioﬁ, and violation of normality assumption affected
the estimation of R resulting in bias in R? and Pearson correlation coefficient.

Equality of intervals of scale had an effect on the estimation of the three dependent
variables in that bias was larger for unequal interval Likert data than for the equal interval case.

While bias was observed in the relative Pratt index across the independent variables, it was not
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significant, except for the number of Likert scale poinfs. Thus, the relative Pratt index is robust
to response distribution, type of correlation matrix, and type of Likert combin.ation condition.
This.has implications to research practice in that the robust relative Pratt index is a prudent
choice for determining variable importance among other indices given the limitations of beta
weights, communality measures, and partial correlations (Courville & Thompson, 2001;
Darlington, 1990; Pedhazur, 1982).

The study is unique in terms of methodology in that it is the first study in which
statistical model fits have been used to investigate the effects of Likert data on linear regression
models and Pearson correlation coefficient. Previous studies also used simulation methods and
presented tabulaf and graphical comparison of results but did not provide statistical evidence
and insight of their findings othér than the displays of R and Pearson correlation coefficients.

In previous studies on Pearson correlation and Likert data, normality assumption was
madé for the response data. This study examinéd violation of the assumption using skewed
distribution in the Likert data and its implications. Previous studies also assumed the equality of
intervais in Likert scales. The present study investigated both equal and unequal intervals of
- Likert data and its impact on the model fit in linear regression models. Similar to previous
studies, several Likert scale points were generated together.with the combination of the
independent variables for each model fit. Bias in the statistics and model fit resulted in
information loss, which has validity implications in terms of interpretatioﬁ of data, construction
of tests and survey instruments Where Likert scales are frequently use.

The discussion presenteci addresses four aspects of the study, (1) the bias in R?, Pearson
correlation coefficient, and relative Pratt index in linear regression models when using Likert
data, (2) the relationship of the present findings to previous studies on the statistics, (3)
theoretical, research and practical implications of the present findings, (4) future research and

directions. Finally, recommendations are suggested for research practitioners and consumers.
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Bias in the estimation of R-squared

Results of R? estimation and the percent bias were presented at each independent
variable éondition and combination. For types of correlation matrix, percent bias in R’ increased
with the reduction in Likert points. Percent bias was largest at the low intér-variable correlation
matrix and liowest at the high inter-variable correlation matrix. Across the three types of
correlation matrices, percent bias was largest at the 2-point Likert scale and least at the 9-point
Likert scale. This confirmed the hypothesis on the effect of type of correlation matrix on the
estimation of R in Likert data. Furthermore, increase in percent bias associated with the
decrease in Likert point, confirmed the hypothesis that the amount of bias increases with the
overall decrease in Likert séale points.

Bias in the estimation of R’ in Likert data was affected by the distribution of response
patterné for different skewed conditions, non-normal conditions and for equal as well as unequal
intervals. Three conditions of non-normal b(skewed) for equal and unequal interval conditions of
response patterns were evaluated. There was a Systematic reduction in the large percent bias
from the 2-point Likert scale to the 9-point Likert scale as the number of Likert points increased.
This trend was observed across the three distributions of response patterns.

At the two skewed distributions of left and right bunching (positive and negatively
skewed distribution) with unequal interval, percent bias was largest at the 2-point Likert scale
but‘redu.ced rapidly at the 3-point Likért scale, leveling off at the 4-point Likert scale. The
overall biases in the two skewed distributions were larger than for the symmetric and eqqal
interval distribution pattern. Thus, the hypothesis on the effect of type of response distribution
on the estimation of R’ for Likert scale was confirmed. It can be concluded tﬁat bias in R
increased with skewness in the response distributions.

For equal and unequal interval percent bias was largest for the unequal interval skewed

distribution of responses at the 2-point Likert scale in both left and right bunching (positive and
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negatively skewed distribution). Percent bias varied in the skewed distribution across the
correlation matrices and variable combinations. This was more pronounced, and larger in
variable qombinatio_n 3, when both X and Y are Likert, and for low intér variable correlation
matrix than in the rést of the Likert conditions. The effect of coarse categorization on both
predictors and criterion results in larger biases than when only the predictors are categorized or
when only the crit.en'on is categorized. SkeWed distributions further accentuated the amount of
bias in the estimation of R,

Percent bias of the estimation of R across variable combination of Likert conditions
increased with the decrease in number of Likert scales. The amount of bias was the same in the
two skewed distributions but larger than for the symmetric distribution of response patterns.
Percent bias was largest at the 2-point Likert scale in all the three variable combinations of
Likert conditions i.e. when Y is Likert and Continuous X, when Y is continuéus and X is Likert,
and When both Y and X are Likert. Percent bias rapidly reduced from the 2-point Likert scale to
3-point Likert scale and leveled off after the 4-point Likert scale in vaﬁable combination 1 and
2, when Likert Y and Continuous X, and when Continuous Y and Likert X. Percent bias
persisted after the 4-point Likert scale although this varied across correlation matrices and
patterns of response. This confirmed the hypothesis on the effect of Likert data on both
predictors and criterion on the estimation of R

Statistical modeling of the percent bias within the four independent variables of number
of Likert points, types of inter variable correlation m.altrix, distribution of response patterns, and
variable combination of Likert condition showed only three main effects. Three of the
independent variables affected the estimation of R? in Likert data in terms of bias. These were,
number of Likert scale points, pattern of responses and variable combination of Likert

conditions. Type of correlation matrix was not significant. Thus, the type of correlation matrix

did not affect percent bias in Likert data. This was a surprise finding as it was hypothesized that




112

type of correlation matrix would inﬂueﬁce estimates of R’ in Likert data. There were no
statistically significant interaction effects among the independent variables.

Post hoc tests on the significant main effects of number of Likert points, response
patterns and variable combinations of Likert conditiQn revealed that as the number of Likert
points reduced, percent bias increase, and that percent bias was higher for skewed response
distribution with unequal interval than in symmetric distribution with equal intervals. Percent
bias was also highest for the variable combination in which both predictors and criterion were
Likert, confirming the research hypothesis on the effect of categorization. These findings
confirm What Cohen (1983) proposed with regard to bias and the high cost of dichotomization
of both criterion and predictor in a simple bivariate case. This can be extended to the case of
multiple regression models and coarse categorization of both predictors and criterion.

‘Relationship of Finding to Previous Research

Findings on the model fit indicate that Likert data impacted on the fit of linear regression
models by yielding biases in the estimatioﬁ of R?, which resulted in consistent underestimation
of R?. Bias increased with the decrease in Likert scale points. Hardly any researéh had been
done on the impact of Likert data on linear regression model fit, except in the studies by Russell,
Pinto, and Bobko (1991), and Russell and Bobko (1992) in which the effect of Likert data on the
effect sizes of moderated linear regression models in terms of changes in R° were examined.
Even then, amount of bias and information loss in th}e model fit was not addressed. The impact
of Likert data on the estimation of linear regression models was not addressed in the two
studies.

Other studies é.ddressed the impact of Likert data on multivariate analysis such as factor
analysis and in structural equation modeling, but not linear regression models. However, it was

evident that Likert data resulted in poor model fit as supported by studies on the impact of

Likert data on factor analysis and structural equation modeling (Bernstein & Téng, 1989;
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Bollen, 1989; Curran, West & Finch, 1996; Gréen et. al, 1997; Muthen & Kaplan, 1985, 1992).
These studies did not address the impact of Likert data in linear regression model fit. Therefore,
ﬁndingé of the current study provide interesting and unique insight to the problem of usiﬁg
Likert data in linear regression models in terms of bias in the médel ﬁt and relative loss of
information as well as precision. This has validity implications in tﬁe interpretation of data from

theoretical, practical and research methodology point of view.

Implications of Findings

Theoretical implications Qf the findings on bias in the estimation of R’ and the
information loss resulting in the fit of linear regression model is that ordinal and logistic
regression models should be used where the criterion and predictors are Likert or categorized.
As shown in the study by Cohen (1983), the cost of dichotomization in terms of information loss
and precision is substantial, which results in distortions of interpretation of the data. This can be
extended and generalized to Likert scales in whicﬁ the number of Likert poinfs was noted to
impéct on the fit of linear regression modéls in terms of bias in the estimation of R’.

Krieg (1999) provided an éna_lytic approach to resolve the issue of bias in Pearson
éorrelation and compared the resulting Pearson correlations with Sheppard’s correction formula.
Results of the proposed analytic approach to addressing bias in »Pearson correlation is not
applicable to multiple regression model due to the multivariate nature of such models and the
underlying assumptions, and so this simulation study provided a clear insight of the extent of the
bias in linear regression models, and the need to be cognizant of the information loss resulting
from using Likeﬁ data in such regression models. Interpretation of linear regression models with
Likert data should be done with caution given the amount of bias associated with the use of such
data.‘

Research implication of the findings oﬁ the bias in R’ is that ordinary least square

regression method should not be used with Likert data as this has a negative impact on the
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accuracy of the interpretatioﬁ of the data. A common practiée of collapsing data into ordinal
categories to simplify analysis should also be avoided, as this results in information loss. Where
possible, continuous data it its original form should be used. However, there are occasions when
the researcher is compelled by circumstances in the study, or the construct of interest, to use
Likert scales with few scale points. For researchers in cognitive and developrﬁental psychology
as well as related disciplines, the optimal choice of number of Likert scale point.s may depend
on the context and situation. For example, children and certain subpopulation of adults may find
Likert scales with more than two or three Likert scale points cognitively demanding or
confusing. In such situations_ researchers may use dichotomized scales or three-point Likert
scales. Oﬁ the other hand, when fine-grained distinction among respondents is demanded by
specific research questions, then the researcher may decide to adopt four or more Likert scale
points.

As a general recommendation to avoid the bias resulting from using ordinary least
squares regression to analyze Likert data, ordinal logistic regression models should be used (see
Ananth & Kleinbaum, 1997). One of the reasons. for the occurrence of bias in ordinary least
square regression is that it is assumed in the mddel, that the criterion is continuous. Thus, an
ordinal categorical or Likert criterion is bound to result in bias in the estimation of R? whenever
ordinary least square linear regression is used. Although Krieg (1999) recommends the use of
graphical scales in place of Likert scales as a means of overcoming bias, researchers may find
the former method more cumbersome than the latter.‘ Note that a gfaphical scale is one in which
the respondent is provided a continuoﬁs line anchored at the two ends. The respondent is
instructed to indicate their response by marking a point on the line. The researcher then needs to
convert this marking to some sort of numerical code on a common metric — €.g., measuring the

distance from the far left of the line. Whatever the researcher chooses to do, two assumptions

must hold: (a) there is a common metric across individuals, and (b) the metric (i.e., the units) are
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meaningful to the respondent. Therefore, for example, if one measures the response in
centimeters then a one-centimeter difference is meaningful to the respondent — i.e., the
resolution of measurement needs to be meaningful to the respondent. Because Likert scales are
often used by researchers, ordinal logistic regression models are recommended in place of
ordinary least square linear regression model for analyzing Likert data._

Beyond the four-point Likert scales, there was negligible improvement in the
information gain in regression as bias remained almost constant and low. For normally
distributed Likert response data, bias asymptotically reduced with the increase in Likert points.
Researchers need to consider amount of bias associated with using Likert scales with few scale
points and skewed distribution as demonstrated in this study. When reading research in which
Likert scales with fewer than four scale points have been{ used, the results will have
considerably more bias in the estimation of R’ than when four or more scale points have been
used.

Practical implication of the findings on tﬁe impact of Likert data on the estimation of R’
is that the researcher needs to be cognizant of the presence of bias that is inherent in Likert
scales with respect to ordinary least square linear regression model fit. However, beyond the
four-point Likert scale point, reduction in percent bias was negligible and so using more than
four scale points may have little gains in terms of information and precision.

Unequal interval and varying threshold difference for skewed distribution resulted in
larger percent bias in estimating R’ than the case of equal intervals, although in practice the
assumption of equal interval and normally distributed response pattern is hardly ever met. The
number of scale points and the distribution of response patterns need to be considered. |

In order to assess the impact of Likert data on the interpretation of regression models in
terms of yariable importance and ordering, beta weights, zero order correlation of the each

predictor and the criterion, and the resulting R’ were computed for each combination of the
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independent variables. Due to lack of additive and ratio properties of beta weights in relation to
the criterion, variable importance was assessed using relative Pratt index, which is a functional

transformation of beta weights, zero order correlation of the respective predictors and overall R’

Bias in Relative Pratt Index

Bias in relative Pratt index for each predictor was computed and transformed into
percent bias. Plots of the percent bias for each combination of conditions of the independent
variables against number of Likert scale points showed that percent bias was largest for 2-point
Likert scale, but reduced drastically after the 3-point Likert scale. Howe\;er, af and beyond the
4-point Likért scale, change in percent bias was negligible for the sMetﬁc distribution with
equal interval and not significant in the skewed distribution of response patterns. Percent bias in
the estimation of relative Prétt index was relatively larger in the case of variable combination
where both criterion and predictors were Likert than when only one of the variables were Likert.
The order of variable importance was invariant across variable combinations of Likert
conditions of the independent variables stated. Thus, relative Pratt index remained consistent
and robust in identifying variable order across types of correlation matrix, response pattern
distribution, number of Likert scale points and variable combination of Likert conditions.

Statistical modeling of the percent bias in relative Pratt index based on the four
independent variables revealed a replicate of pattern of results for percent bias in the three
predi.ctors, X1, Xz, and X3 fof each model fit. There was é si gniﬁcant main effect of number of
Likert scale points for variable combination of Likert condition in Whiéh Y is continuous and X
is Likert for all the correlation matrices and distribution of response patterns. Thus, the number

of Likert scale points influenced the amount of bias in the estimation of relative Pratt index. The

fewer the number of Likert scale points, the larger the percent bias in the estimation of relative
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Pratt indéx. Percent bias was more pronounced in variable combination of Likert condition in
which Y is continuous and X is Likert, and where Y is Likert and X is Likert.

The type bf correlation matrix and the distribution of response patterns did not affect
percent bias in relative Pratt index. Therefore, order and relative importance of the predictors
were maintained across the stated conditions. The hypothesis that type of correlation matrix, and
response distribution would affect the relative Pratt index was not confirmed. Relative Pratt
i_ndex was found to be robust to skewness of the distribution and type of correlation matrix of
the response data. However, the hypothesis on the effect of number of Likert scales and variable

combination of Likert condition on the model fit was confirmed.

Relationship of Findings to Previous Research

No previous studies have been conducted on the stability of relative Pratt index in Likert
data either for Likert criterion and continuous predictors or for Likert predictors and continuous
criterion. The research hypothesis on relative Pratt index was postulated on the premises that,
through the zero order correlation and beta weights associated with each predictor, relative Pratt
index woﬁld vary within each combination of the independent variables for Likert data. Bias in
relative Pratt index was not affected by the distribution of response data but by number of Likert
points in the scales. The fewer the Likert points the larger the bias.

The largest percent bias occurred at the two-point Likert scale. However, relative
importance of the predictors among themselves was not affected by the relatiye change in bias.
Relative Pratt index was therefore robust to distribution of response, type of correlation matrix
and Likert condition. The most important and significant effect was the number of Likert scale
points with regard to amount of bias, the fewer.the number of Likert points the larger the

amount of bias.
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Implications of Findings

Theoretical implications of the findings on thé effect of Likert data on relative Pratt
index is ‘thét given the addit_ive property of the relative Pratt index and the fact that it is not
affected by the distribution of the data, the index can therefore be uséd to compute relative
importance of variable in both Likert and continuous data with considerable accuracy,
computational ease and interpreti;le clarity compared to other measures of variable importance.

‘Research implication of the findings on the effect of Likert data on relative Pratt index is
that giv.en. the robustness of the index across Likert data distribution and types of correlation
matrices, researchers may use relative Pratt index in place of other indicators of relative
importance such as beta weights, semi-partial correlation coefficients, and communality
measures associated with specific predictors. The latter indicators lack additive and ratio
properties (Darlington, 1990; Pedhazur, 1982), and are therefore implicitly prone to biases and

inaccuracy under different distributions as well as when assumptions made in the model are

violated.

Practical implications of the findings on relative Pratt index is similar to the research
implicativon in that practitioners can now use an index that is additive (sum of the relative index
measure add up to one for all the predictors in the regression equation) and robust to response
distribution data and Likert condition. While relatively large percent bias was observed to
persist at fewer Likert scale poihts, relative order of importance of the predictors remained

invariant among the predictors across the range of Likert scales.

Bias in Pearson Correlation Coefficient

To assess the effect of Likert data on the Pearson correlation coefficient of each
predictor and the criterion, percent bias of the estimation of the Pearson correlations were

plotted and a statistical model fitted for each predictor and criterion. Type of correlation matrix
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was not expected to affect the estimation of Pearson correlation. However, the distribution of
responseé, nurhber of Likert points, and variable combination of Likert conditions were
hypothesized to affect the estimation of Pearson correlation.

For Likert Y and Continuous X, percent bias in Pearson correlation varied significantly
across response distribution. Percent bias was larger in the skewed response distributions with
unequal interval than for symmetric distribution with equal interval. Similarly, for Continuous Y
and Likert X, perceht bias in Pearson correlation was lafger for skewed response distributions
with unequal interval than for symmetric response distribution with equal interval. At variable

combination of Likert condition with both Likert Y and Likert X, the type of response

~ distribution had no effect on percent bias in Pearson correlation coefficients, unlike in the other

two conditions of variable combination of Likert condition. Instead, percent bias varied with
number of Likert scale points. This implied that bias in Pearson correlation wés not significantly
affected by type of response distribution when both variables were categoﬁzed, but rather by the
number of Likert scale points. However, the type of response distribution only affected percent

bias in the estimation of Pearson correlation when only one of the variables was categorized.

" The fewer the Likert points, the higher the percent bias observed. Similar results and conclusion

were replicated for bias in Pearson correlation of the criterion and each predictor across the
combination of independent variables. These findings can be generalized for low and high
values of Pearson correlation coefficients.

'Relationship of Findings to Previous Research

While research abounds oh the impact of Likert data on Pearson correlation (Bollen &
Barb, 1981; Krieg, 1999), findings of those studies were noted to be varied and contradictory,
and because of the extra variables as predictorsb in multiple regression analysis compared to
bivariate measures in Pearson correlation, the findings cannot be generalized to multivariate

regression analysis. Instead, extensions of the studies need to be conducted to address concerns
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raised in the studies such as the effect of the type of underlying distribution of the response data
and fhe amount of bias in Pearson correlation resulting from Likert scaling.

This study extended the work of Bollen and Barb (1981) on the effect of Likert data on
Pearson correlation coefficient by taking into account non-normal skewed distribution, and
unequal interval with varying increase in thresholds. While Bollen and Barb studied the effect of
Likert data using Likert Y and Likert X with normal distribution, the present study addressed
the effeet of Likert Y and Continuous X, as well as Continuous X and Likert Y in addition to
both Likert Y and X. This was done for both normal and skewed distributions with equal and
unequal interval. Furthermore, Bollen and Barb’s study was based on samples generated while
results of the present study.are based on populations, and so bias in Pearson correlation under
the Likert conditions are adequately addressed x;vithout confounds from sample te sample
variations.

It was found that skewed distribution and unequal interval contributed further to the bias
in the estimation of Pearson correlation in addition to the number of Likert scale points. This
confirmed the hypothesis on the effects of these variables and further supported findings by
Wiley (1976) on the effect of the skewed distribution with equal intervals to the estimation of
Pearson correlation in Likert data. Findings of the present study are unique as they are based on
both skewed distribution and unequal interval Likert data with varying differences in the
threshold values. Combination of these conditions had not been addressed in previous studies on
Likert data. Bias resulting in using Likert data in estimating Pearson correlation indicate a
substantial loss of information and so appropriate correlation coefficients such as the phi
correlatien coefficient, biserial correlation coefﬁcieht, and polyserial correlation coefficient
should be used as the bias in these correlations is expected to be less than iﬂ Pearson correlation

(Krieg, 1999).
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Implications of Findings

Findings on the bias of estimation of Pearson correlation coefficient have theoretical,
research, and practical implications which need to be addressed. The theoretical implication of
findings is that Pearson cofrelation has been shown not to be as robust under non-normal
distribution as previously thought. The effect of non-normal skewed distribution with unequal
interval produced large biases especially in Likert scales with few scale points. This implies that
assumptions made regarding the use of Likert data With continuous 'underlying normal
distribution do not hold. Violation of fhese assumptions leads to underestimation of the Pearson
correlation coefficient across different scale points. The use of Sheppérd’s correction formulae
to reduée or eliminate bias was shown by Krieg (1999) not to be adequate in estimating Pearson
correlation when the results were compared to simulation studies by Bollen and Barb (1981),
and those by Krieg (1999). Therefore, polyserial or polychoric correlation should be used in
place of Pearson correlation for Likert data, given that bias results in such uses (Olsson,
Drasgow & Dorans, 1982).

Research implication of bias found in estimating Pearson correlation With Likert data are
that loss of information resulting from the bias leads to distortions of conclusions made on
findings based on such correlation studies. Pearson correlation has élso been used in
computation of reliability coefficients for Likert scales. Bias resulting from the computation of
 reliability coefficients based on Pearson correlation leads to underestirﬁation of reliability
measures of the instruments and distortion on the psychometric.properties of the instrﬁment
(Chang, 1994; Cicchetti et.al. 1985; Matell & Jacoby, 1971). Studies on the effect of Likert
scale on the estimation of reliability coefficient showed that the fewer the number of Likert

scale points the lower the reliability coefficient estimate.
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This study did not specifically investigate the effect of Likert data on reliability
estimates. However, the impact of Likert data on Pearson correlation, which has been used to
estirﬁate reliability coefﬁcieﬁt, has psychometric implications to inferences made from such
computation, in that the reliability coefficient computed is consistently underestimated. While
studies on the effect of Likert data on reiiability have not been conclusive on the impact of
Likert data together with other variables such as the distribution of responses, discrete and
continuous data, inferences can be made from the present findings on the effect on Pearson
correlation, as the latter fs often used in the computation of reliability coefficierits.

Practical implications of the findings of the bias in estimating Pearson correlation is that
practitioners may adopt different correlation coefficients for discrete and Likert data in place of
Pearson correlation as the étudy has shown substantial bias associated‘ with the estimation of the
Pearson correlation coefﬁcient when using Likert data. This was more pronounced in skewed
distribution, in fewer Likert scale points, and When both variables were Likert. Bias and loss of
information was largest when both variables were dichotomized. These findings support Cohen
(1983) findings on the high cost of dichotomization of variable. Tetrachoric correlation is
recommended in such circumstances, as an efficient substitute of Pearson correlation as it has
lower amount Qf Bias although large sample sizes are required to realize this (Martin, 1978).

Significant Contribution of the Study

The present study advances the current literature on the impact of Likert data on linear
regression models. Most re_search has concentrated on the impact of Likert data on factor
analysis, and Pearson correlation at the expense of multiple linear regression models. The
present study therefore fills the gap and expands on the literature on Likert data and multiple '
regression models using ordinary least-square estimation which frequently occurs in social
science research. Furthermore, it was considered in the study that both criterion Y, and the

predictors X in the regression model were measured random variables. This is a common
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practice in social science research context. The study also expanded on the early work of Bollen
and Barb (1981) of the impact of Likert scales on Pearson correlation and highlighted the
propert_iés and advantages of using the relative Pratt index in determining relative variable
importance in multiple linear regression models with Likert data.

The practical contribution and ‘signiﬁcance of the nresent study is that it provides
information on the extent to which information is lost when researchers choose to treat and
analyze Likert variables as if continuous in linear regression models. Combinations of
continuous and categorical Vvariables among prédictors and criterion variables were investigated
to provide an in-depth understanding of the extent of information loss that is essential in the
valid and accurate interpretation of linear regression models that are frequently applied in
education, and social science research.

The study examined to what extent accuracy is cornpromised in using Likert variables
and the validity implications on the interpretation and utilization of findings derived from linear
regression models. Based on the findings it is recommended that treating Likert variables as if
continuous in linear regression models will need to be revisited and appropriate methods
adopted for Likert data, fof better precision and accurate interpretation of results, given the
impapt of the number of Likert scale points and the occurrence of non-normal data in practice.
For Pearson correlation, the largest bias occurred within the dichotomized scales and lower
Likert scale points, and when the response distribution was non-normal (skewed) implying that
phi-correlation, tetrachoric and polyserial correlation should be used in place of the Pearson
correlation for polytomous items or Likert variables for either predictors or criterion. With
regard to relative .importance and variable ordering, the relative Pratt index was found to be
robust to response distribution and numbef of Likert scale points as well as tynes of inter-

variable correlation matrices. Note that variable condition 2 (i.e., continuous Y and Likert X)
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can be found in practice when one uses the total scale score (even when each item of the scale

are Likert-type) as the criterion and individual Likert items as predictors.

Limitations of the Study

The study is based on simulated data and not real responses of a Likert scale with known
psychometric properties. This could be a criticism of the method. However, simulations provide
an opportunity for manipulation of variables, which is a positive research characteristic of an
experimental design. The number of Likert scales ranged from 2 to 9 scale points, which were
selected as they typically occﬁr in social science iiterature. Due to logistic_reésons, it was not
possible to study more scale points. Even then, the range"of scale points considered represents
what is typically encountered in surveys and social science research. .Other studies have
addressed Likert scale points ranging from 2 to 10 (Krieg, 1999) 2 to 12 (Wiley, 1976), 2 to 20

(Martin, 1978). However, as this study shows there is no significant information gain in using

Likert scales with more than four scale points. This is particularly evident in skewed Likert data -

that is frequently encountered by researchers.

Future Research

Only three predictors and one criterion were included in this study. However, in future
studies, more predictors should be studied to examine whether the number of predictors, and
implicitly, the size of the correlation matrix has an effect on the estimation of the dependent
variables in the study. No interaction terms were included in the linear regression model in this
study. Future studies should assess the impact of Likert data on linear regression models with
interaction terms and the estimation of R”.

In this study the number of Likert scale points were set to be ecjual for both criterion and

predictors. However, different combination of number of Likert scale points in the criterion and
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predictors should also héve been included to further enhance generalizability of the findings to
all Likert conditions. The effect of Likert data on relative Pratt index with negative values and
the possible presences of suppressor variables were not separately addressed, as special cases of
the impaét of using Likert data on linear regression models. The stability of relative Pratt index
in linear regression models with interaction terms was also not addressed, as only non-
interaction terms were included in the model.

Future research should a&dress limitations, together with research questions arising from
the study as well as the literature on the impact of Likert data on linear regression models. The
impact of Likert data on the éstimation of threé dependent variables studied namely R?, Pearson
correlation coefficient, and relative Pratt index waé done using a population of responses. To
further examine the stability of the resulting indices under different sample sizes and sample-to-
- sample variations, future studies will need to replicate the current study but using several sample
sizes.

In the present study three types of inter-variable correlation matrices generated from
three predictors were used. However, future studies will need to include more than fﬁree
predictors with larger inter-’variable correlation matrices to determine if the size and magnitude
of the inter-variable correlation matrices have an impact on the model fit in linear regression
models using Likert data within the independent variables.

The Likert condition of the criterion and th¢ predictors were set to be the same for each
combination of condition of the independent variable i.e., whenever the criterion had a four-
point scale so were the predictors. However, future studies will need to cénsider the impact of
Likert data on the three dependent variables namely R’, Pearson correlation, and relative Pratt
index in terms of bias in the estimation, and the stability of the indices for different Likert
conditions and scale points in the criterion and the predictors i.e. a mixed ratio of Likert scale

points for criterion and predictors. Furthermoré, a mixed data format with some predictors
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Likert and some continuous with a Likert criterion should also be explored to determine the
effect of the Likert data on:bia;s and stability of the three dependent variables under the
conditions of the independent variables already stated. The effect of Likert data on linear
regression models was studied for models without interaction terms. Future studies will need to
address the effect of Likert data in linear regression models with interaction terms in the model. -
In the case of relative Pratt index, further studies need to address the stability and bias of the
relative Pratt index in Likert data as well as the relationship between ‘negative relative Pratt
index and moderators and suppressor variables in the linear regression model.

The underlying assumptioh in ﬁtting a linear regression model is that the response data
is normally distributed. This study has shown that under non-normal distribution and’Likert data
condition both R’ and Pearson correiation weré underestimated. However, only two levels of
skewness (positive, and negative) were addressed. The effect of non-normal response
distribution with different kurtosis_and more than three levels of skewness will need to be
éxamined in order to further determine the impact of skewness and kuﬁosis on the estimation of
R? and Pearson correlation coefficient in Likert data. In addition to fhis, non-normal latent
distribution will also need to be investigated as the present study and earlier studies focused on
noﬁnally distributed latent variables. |

The assumption of equal interval in the Likert scales was also studied by cdnsidering
equal and unequal interval scales. Unequal intervals were created using the method proposed by |
Bollen and Barb (1981) based on the partitioning of the normal distribution of the response data
to reﬂecf differences in threshold. Future studies will need to consider other methods of creating
unequal intervals with different threshold to determine if the impact of unequal interval was
invariant across method. Given the degree of bias iin estimating R’, future research should
iﬁveétigate how probit and logit in ordinal regression models compare with ordinary least-

square regression model fit.
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For relative Pratt index, it was observed that skewness, and by implication, violation of
normality assumption of the response distribution was found not to impact variable ordering and
importance. Future studies will need to address the impact of Likert data oﬁ skewness and
negative relative Pratt index and its meaningful interpretation, as questions have been raised
concerning negative values of the index and occurrence of multicollinearity in linear regression
models (Bring, 1996; Pratt, 1987; Thomas, Hughes & Zumbo, 1998). Fui‘thermore, the stability
of relative Pratt index in linear regression models with moderators and suppressor variables
using Likert data will also need to be addressed. |

A population of responses was simulated to avoid sample-to-sample variation of the
dependent variables and to adequately address the iséue of bias in the estimation of R, Pearson
correlati.on coefficient, and the relative Pratt index across the independent variables. However,
to study the stability of the estimates of the dependent variables, the study should have
addressed the effect of various sample sizes across combinations of the independent variables

and Likert data on the linear regression model. This will be addressed in future studies.

Recommendations

It is recommended that researchers and practitioners recognize the substantial bias and
loss of information that occurs in using Likert data in linear regression models. It is suggested
from the results of the study that researchers use other methods of regfession model fit such as
ordinal regression, and logistic regression models when using ordinal categorical or Likert data
to overcome bias and loss of information (for a review of the extensive literature, see Ananth &
Kleinbaum, 1997; McCullagh, 1980). Ordinal regression models take into account the fype of

response distribution, and ordinal and categorical nature of the responses through appfopriate

probability transformation functions.
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Ordinal regression as a recommended approach for analyzing ordinal or Likert data is
now commonly used in biomedical research work e.g. epidenﬁology. Corﬁputer programs for
ordinal regression model fit are now readily available in computer software such as SPSS and
SAS. Given that educational researchers often encpuntef ordinal data in the fénn of Likert
scalés, and fit ordinary least-square linear regression models, it is recommended that they move
in the same direction as their biomedical research counterparts and adopt ordinal regression
model fit to overcome information loss as manifested in the ordinary least-square linear
regression model fit.

Violation of the normality assumption on the distribution of the data also resulted in
bias. Selection of appropriate models and application of suitable data transformation is
recommended in determining and minimizing bias in both R’ and Pearson correlation in Likert
data. Readers and consumers of research need to treat with caution results and inferences
derived from linear regression models using Likert data with non normal response distribution
because of the large bias encountered in the model fit.

Few Likert scale poiﬁts resulted in large biases. It is recommended that four Likert scale
points or more be used. However, little or no substéntial gain in information results in using
more than four Likert points as evidenced by the study. Dichotomization of data results in
substantial loss of information. Therefore, researchers should not dichotomize data unless it is
inevitable for example, in variables such as gender. Appropriate correlation measures for
bivariate dichotomized data such as phi-coefficient, and biserial correlation may be used instead
of Pearson correlation. For Likert scales, polyserial and polychoric correlétion may .be used.
Howe\./er, caution should be tak¢n because polychoric correlation matrices maybe non-Gramian.
This leads to difficulties in obtaining inverses of the matrices with no definite solutions in

computing beta-weights.
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For variable ordering and relative importance, it is recommended that the relative Pratt
index be used in place of other indices as it is robust to type of response distribution, type of
correlation matrix and Likert scaling except for the number of Likert points. However, the order
of variables remains unchanged irrespective of the number of Likert scale points despite the bias

in the magnitude of the relative Pratt index.
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