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ABSTRACT 

Construct comparability studies are of importance in the context of test validation for 

psychological and educational measures. The most commonly used scale-level 

methodology for evaluating construct comparability is the Multi-Group Confirmatory 

Factor Analysis (MGCFA). More specifically, the use of normal-theory Maximum 

Likelihood (ML) estimation method and Pearson covariance matrix in M G C F A has 

become increasingly common in day-to-day research given that the estimation methods 

for ordinal variables require large sample sizes and are limited to 20-25 items. The thesis 

investigated the statistical properties of the M L estimation method and Pearson 

covariance matrix in two commonly found contexts, measures with ordinal response 

formats (binary and Likert-type items) and measures with mixed item formats (wherein 

some of the items are binary and the remainder are of ordered polytomous items). Two 

simulation studies were conducted to reflect data typically found in psychological 

measures and educational achievement tests, respectively. The results of Study 1 show 

that the number of scale points does not inflate the empirical Type I error rates of the M L 

chi-square difference test when the ordinal variables approximate a normal distribution. 

Rather, increasing skewness lead to the inflation of the empirical Type I error rates. In 

Study 2, the results indicate that mixed item formats and sample size combinations have 

no effect on the inflation of the empirical Type I error rates when the item response 

distributions are, again, approximately normal. Implications of the findings and future 

studies were discussed and recommendations provided for applied researchers. 
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CHAPTER I 

BACKGROUND TO THE PROBLEM 

Construct comparability or construct equivalence is a prerequisite for valid and 

meaningful test score comparison between groups. There are three assumptions for 

construct comparability. 

1. The set of manifest measures (observed variables) should evoke the same conceptual 

or cognitive frame of reference used to make item responses in each group. 

2. The pattern of the relationships between observed variables and latent variable(s) are 

equivalent across groups. 

3. The observed variables are influenced to the same degree and perhaps by the same 

error variances across groups. 

When these three assumptions are fulfilled, one can claim that a measurement instrument 

or a test has captured the same underlying latent variable across groups and the construct 

is being measured equivalently in two or more groups. 

In the literature, construct comparability or construct equivalence is referred to by 

a variety of terms such as factor structure, structural, or dimensional invariance or 

equivalence (e.g., Joreskog, 1971; Sireci, Bastari, & Allalouf, 1998; Sireci, Xing, & 

Fitzgerald, 1999; Tippets & Michaels, 1997) and measurement invariance, measurement 

equivalence or factorial structure invariance (e.g., Byrne, 1998; Byrne, Shavelson, & 

Muthen, 1989; Drasgow & Kanfer, 1985; Horn & McArdle, 1992; Reise, Widaman, & 

Pugh, 1993; Steenkamp & Baumgartner, 1998; Vandenberg & Lance, 2000). As 

evidence of test fairness, construct comparability is typically examined at the scale level 
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by looking at the equivalence or invariance of the factor structures and/or measurement 

models across relevant groups (e.g., gender, ethnic, language). 

From the perspective of structural equation modeling (SEM), construct 

comparability can be examined by multi-group confirmatory factor analysis (MGCFA). 

The M G C F A model emphasizes testing for both measurement and structural invariances 

(Byrne, 1998; Joreskog, 1971). Measurement invariance is tenable when the relations 

between observed variables and latent construct(s) are identical across relevant groups. In 

particular, individuals with the same standing on a latent variable but sampled from 

different subpopulations should have the same expected observed score on a test of that 

variable. According to Horn and McArdle (1992), measurement invariance refers to 

"whether or not under different conditions of observing and studying phenomena, 

measurement operations yield measures of the same attribute" (p. 117). Without 

measurement invariance, observed means are not directly comparable (Drasgow & 

Kanfer, 1985). For a strict form of measurement invariance, the observed variables are 

also expected to be equally reliable across groups. In addition, structural invariance 

implies that the structural relations among the factors are equivalent across groups 

(Byrne, 1998). It is worth noting that the testing for structural invariance is not needed 

when one has a unidimensional or a single-factor structure. 

Given that construct comparability studies involving multi-group confirmatory 

factor analysis (MGCFA) plays an important role in establishing the validity of the 

inferences and group comparisons one can make from their measure, this thesis will 

investigate the statistical properties of this methodology in two commonly found 

contexts, measures with ordinal response formats (binary and Likert-type items) and 
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measures with mixed item formats (wherein some of the items are binary and the 

remainder are of an ordered polytomous format). In short, the purpose of this dissertation 

is to investigate the practice of using maximum likelihood factor analysis of a Pearson 

covariance matrix to test measurement invariance hypotheses in the framework of 

M G C F A . With an eye toward contextualizing and articulating the research purpose 

further, the remainder of this chapter will describe the scaling and statistical methodology 

in the context of examples of widely used measures of self-esteem and depressive 

symptomatology, the Rosenberg Self-Esteem Scale and the Center for Epidemiological 

Studies Depression Scale (CES-D). This chapter will close with the statement of the 

research purpose. Chapter two is the literature review and statement of the research 

questions deriving from the purpose, Chapter three is the research methodology and study 

design, Chapter four presents the results of the studies, and the closing chapter is a 

discussion of the findings and their implications. 

Multi-Group Confirmatory Factor Analysis Methodology 

Multi-group confirmatory maximum likelihood factor analysis has become the 

most commonly recommended scale-level technique to evaluate construct equivalence of 

a measurement instrument across different groups (e.g., gender, language, ability, age 

level) in educational, social and behavioral science, and marketing research. Many of the 

measurement instruments used in the aforementioned fields of research contain the 

following two types of ordinal-scaled items: binary/dichotomous items, and ordered 

polytomous items (Byrne, 1998). 
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The fundamental idea underlying the confirmatory factor analytic models or 

measurement models in multi-group confirmatory factor analysis is the use of a set of 

observable variables (i.e., items) to represent the latent variable(s), which in most of the 

cases are neither observable nor directly measurable. Typically, the latent variable(s) of 

interest are conceptualized as continuous (i.e., measured on interval scales) and normally 

distributed. When the ordinal-scaled items are used as proxies for the latent continuous 

variable(s), the assumptions of interval measurement scale and multivariate normality are 

likely to be violated. 

Two commonly encountered problems associated with ordinal-scaled items are 

measurement scale coarseness and multivariate nonnormality. Measurement scale 

coarseness is caused by a crude classification (or measurement) of the latent variables to 

ordinal scales with small numbers of response categories. Because of the discrete nature 

of ordinal scales, the distributions of the response data obtained from binary items and/or 

ordered polytomous items are conducive to multivariate nonnormality. 

Binary items are typically associated with multiple-choice items on achievement 

and aptitude tests that use a dichotomous scoring scheme (Koch, 1983) or statements in 

psychological and sociological measures that are dichotomously scored according to a 

scoring key (e.g., true/false, yes/no) (Zumbo, 1999). Although ordered polytomous items 

can also be referred to as Likert-type items, the use of these two terms is context specific. 

The term "ordered polytomous items" is more frequently used in the context of large-

scale educational achievement assessments wherein the constructed-response items are 

scored using an ordered polytomous scale (i.e., partial credit scores). In the context of 

attitudinal and psychological measurement, questionnaire items (e.g., self-report 



5 

statements) and rating scales (e.g., bipolar semantic differential scales) with an ordered 

categorical response format are called "Likert-type items" and "rating scale items", 

respectively. 

Much of the ordinal questionnaire data in the social and behavioral research are 

derived from a single item response format. For example, all of the items on a scale are 

five-point Likert scales. Mixed item format data are more often found in educational 

measurement wherein many achievement tests in use today are "blended" instruments 

that include a mixture of item formats such as binary and ordered polytomous items. The 

mixed item response formats are also ordinal in nature. 

Conventional wisdom is that the coarseness of a measurement scale can be refined 

by having more response categories such as the use of five or seven response categories 

in the Likert-type attitudinal and psychological measures. As a result, the ordinal data 

may approximate a symmetric distribution. Nonetheless, Likert-type items with four scale 

points or less are commonly found in the social and behavioral science research. 

Likewise, many of the achievement tests used in the educational setting are comprised of 

mixed format items with a relatively small number of response categories (e.g., a test 

comprised primarily of binary items and a few 3-category ordered polytomous items). 

This implies that the use of coarse measurement scales is practically unavoidable. 

According to Micceri (1989), nonnormality in the form of extreme asymmetry or 

lumpiness is typical in real data. He found that only 6.8% of the 440 distributions of 

achievement and psychological data he collected from applied research studies and 

standardized test databases exhibited both tail weight and symmetry approximating that 

of the Gaussian distribution. None of the distributions passed the Kolmogorov-Smirnov 
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test of normality. Micceri's findings indicate that the majority of the data in education and 

psychology do not follow univariate normal distributions, let alone a multivariate normal 

distribution. However, one could not know whether the number of scale points might 

have associated with nonnormality because Micceri did not report the range of the 

number of scale points used in those data. 

Ideally, data derived from an ordinal scale should be analyzed using estimation 

methods that are designed for use with such data. For example, the Weighted Least 

Squares (WLS, Joreskog & Sorbom, 1996) or Asymptotic Distribution Free (ADF, 

Browne, 1984) estimation of model parameters using the polychoric correlation and 

asymptotic covariance matrix is theoretically sound for ordinal and mixed item format 

data, especially when nonnormality of the item distributions is of great concern. In 

practice, ordinal data are often treated as if they were continuous. The reason for doing so 

will be discussed in a later section of this chapter. When ordinal data are used with 

normal theory based Maximum Likelihood (ML) estimation method and Pearson 

covariance matrix in the single-group confirmatory factor analyses, the chi-square 

goodness of fit statistic is generally inflated due to departures from multivariate normality 

in the observed variables, albeit negligible bias is found in the model parameter 

estimates. Hence, using the normal theory M L chi-square statistic as a measure or formal 

test statistic of model-data fit under the conditions of multivariate nonnormality will lead 

to an inflated Type I error rate for rejecting a true model. The impact of analyzing ordinal 

data with the M L estimation method and Pearson covariance matrix in the framework of 

M G C F A is yet to be investigated. Given that the use of mixed item formats has become 

increasingly important in educational measurement, what are the consequences of 
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ignoring the categorical nature of the mixed item format data when the normal theory M L 

estimation method and Pearson covariance matrix are applied to such data in MGCFA? 

Ordinal Variables, Measurement Scale Coarseness, and Multivariate 

Nonnormality in the Context of an Example 

In order to motivate the discussion of the statistical and psychometric theory, let 

us consider the following example of a four-point Likert item, which is taken from the 

Rosenberg Self-Esteem Scale (Rosenberg, 1965, 1979): "I am able to do things as well as 

most other people." The item responses are scored on a 4-point scale such as (1) Strongly 

Disagree, (2) Disagree, (3) Agree, and (4) Strongly Agree. This item, along with other 

items, serve as a set of observed ordinal variables, xs, to measure the latent continuous 

variable x*, namely self-esteem. For each observed ordinal variable x, there is an 

underlying continuous variable x*. If x has m ordered categories, x is connected to x* 

through the non-linear step function: x = * if r M < x* < r,- / = 1,2,3,..., m, where 

r0 = - o o , r, < r2 < r3 < . . .T f f l _, , and rm = +oo are parameters called threshold values. For a 

variable x with m categories, there are m-1 unknown thresholds (Joreskog & Sdrbom, 

1996). Given that the above item has four response categories, there are three thresholds 

with the latent continuous variable. 

Figure 1 depicts the threshold model for an ordinal variable x that has three 

response categories and two thresholds with item thresholds forx*: tau l(x,), tau 2 (x2) 

(values of-1 and 1). The model assumes that underlying the ordinal variable is a 

continuous variable that determines the categories of x as it crosses different thresholds. 

In other words, the thresholds serve as decision criteria that elicit examinees' responses to 

a particular category on an ordinal scale. If x* is less than x b x is in category one, for 
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x , < x* < x 2 , x is in category two, and if x* exceeds x 2 , x is in category three. It is 

important to note that the actual intervals or distances between these adjacent categories 

are generally unknown and need not be equal. Taking the self-esteem item as an example, 

we cannot say that a person who responds to "Strongly Agree" is twice more likely than a 

person who responds to "Disagree" to have a high self-esteem. Rather, we can only infer 

that a person who responds to a higher category (i.e., Strongly Agree) has higher self-

esteem than a person who responds to a lower category (i.e., Disagree). 

- 3 - 2 - 1 0 1 2 3 

tau 1 tau 2 

Figure 1. A three category, two threshold x and its corresponding x*. 

When a latent continuous variable is represented by its coarsely categorized 

version, imperfection of scaling can lead to the violations of normality assumptions in the 

categorized data. There is a general consensus in the measurement community that 

dichotomizing a normally distributed continuous variable or collapsing it into three or 

more categories can lead to the loss of information (i.e., response reduction) and results 

in the attenuation of Pearson correlations or covariances (Bollen & Barb, 1981; Cohen, 

1983). The loss of information is also attributed to a nonreversible transformation of the 
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original continuous distribution to the ordinal/Likert distribution. As a result, the shape of 

the distribution of the ordinal variable may differ sharply from that of the latent 

continuous variable. Compared to the infinite values of a continuous variable, a collapsed 

variable (i.e., ordinal variable) takes on a relatively small number of possible values on 

the continuum. Furthermore, unequal threshold discretization may take place. Hence, the 

scale points of the ordinal variable are discrete rather than continuous. Discrete ordinal 

scales with unequal thresholds would produce nonnormally distributed ordinal variables. 

The Statistical Model 

The general structural equation model consists of two components: the 

measurement model and the structural model. Confirmatory factor analysis makes use of 

only the measurement model. In an ideal situation, the measurement model is: x* = A£ + 

8, where x* is ap x 1 vector of continuous indicators of latent variables (i.e. 

multinormally distributed observed variables), A is ap x n regression coefficients matrix 

(a.k.a. factor loadings matrix) that relates n latent factors to each of the p observed 

variables designed to measure them, <f is a n x 1 vector of latent variables or factors, and 8 

is ap x 1 vector of errors of measurement of x*. It is assumed that £ are uncorrected 

with 8. Also, the errors of measurement are uncorrected, that is, the covariance matrix of 

8 is diagonal. In multi-group confirmatory factor analysis, researchers are interested in 

finding out whether or not the same measurement model is invariant across subgroups. It 

is expected that the estimated or implied covariance matrix S g , is as close as possible to 

A, /V /V t /V /V A 

the sample covariance matrix S„: S„ ~ A O „ A _ , + ̂  = E across groups, where A is 

ap x n matrix of loadings of the p measured variables on the n latent variables, cp is a n 
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x n matrix of covariances among the latent variables, T is a p x p matrix of covariances 

among the measurement errors, and g denotes group membership. 

Maximum Likelihood Estimation Method 

To date, M L is the default estimation method in almost all of the computer 

programs designed for M G C F A . The M L fitting function F[S; £ (# ) ] measures how close 

a given £ is to the sample covariance matrix, S. In other words, to find the values of A g , 

O g , and ¥ that generate an estimated covariance matrix, £ g t h a t is as close as possible 

to the sample covariance matrix S. The M L fitting function is defined as 

FML [S; £(0)] = ?r(iSS_1) + [log|s| - log|5J] - q, where £ is the implied covariance matrix, S 

is the sample covariance matrix, and q is the number of observed variables. If S and £ are 

equal, the fitting function will equal zero (Long, 1983). In M G C F A , the M L estimation 

produces a chi-square statistic for each hypothesis testing of invariance. The tenability of 

an invariance hypothesis is determined by the statistical significance of the chi-square 

difference test (i.e., change in %2/change in dj) between two nested models. For example, 

a nonsignificant chi-square difference test statistic derived from two nested models (i.e., 

baseline model versus full measurement invariance model) indicates that the full 

measurement invariance hypothesis is tenable. 

Violations of Measurement Scale and Multivariate Normality Assumptions 

As discussed earlier, coarsely categorized observed variables violate the 

measurement scale assumption of the latent continuous variables. According to Bernstein 

and Teng (1989), there are two different effects of categorization: one due to 
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categorization per se (number of scale points) and the other due to differential 

categorization (differential item distributions). The ML-based x2 statistics are highly 

sensitive to categorization effects when the item distributions differ. In addition, single-

group CFA studies found that the number of response categories has little effect on the x2 

likelihood ratio test of model fit when categorical variables approximate a normal 

distribution. However, increasing skewness, particularly differential skewness (items 

skewed in different directions) can lead to inflated x2 values (Byrne, 1998). 

Given that ordinal-scaled items are discrete rather than continuous indicators of 

the latent variables, data derived from the ordinal-scaled items do not conform to a 

multivariate normality distribution. Hence the measurement model for x* does not hold 

for the ordinal-scaled items. Moreover, measurement errors induced by a crude 

categorization of the latent continuous variables may lead to the violations of the 

covariance structure. Because the Pearson correlation or covariance is attenuated in the 

ordinal variables, the covariance structure model may hold for the latent variables, but 

not generally for the observed variables. The normal theory M L estimation method 

assumes that the observed variables are distributed as multivariate normal. Therefore, M L 

estimation based on the distorted sample covariance matrix is likely to be biased. Similar 

to correlations, the differences between the covariance structures become less significant 

when five or more categories are used and the marginal distributions become similar 

(Bollen, 1989). 

Tests of Measurement Invariance 

The methodology for testing the factor structure invariance of a measurement 

instrument across groups originates from Joreskog's (1971) work in "simultaneous factor 
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analysis in several populations" (SIPASP which is equivalent to MGCFA). Within the 

Joreskog tradition, tests of factorial invariance begin with a global test of the equality of 

covariance structures (i.e., matrices) across groups (i.e., H0 : S, = S 2 = . . . E G , where G 

denotes the number of groups). Failure to reject the null hypothesis is interpreted as 

evidence of factorial invariance across groups; except for mean structure, the groups can 

be treated as one. Contrariwise, rejection of the null hypothesis leads to testing a series of 

increasingly restrictive hypotheses in order to identify the source of non-invariance. 

These hypotheses relate to the invariance of (a) the factor loadings (i.e., 

H0 : A, = A 2 = . . .A c ) , (b) the error or uniquenesses (i.e., H0 : ®l = ®2 = . . . ® c ) , and (c) 

the factor variances and covariances (i.e., H0 : O, = 0 2 = ...<1>G). The tenability of 

Hypothesis (a) is a prerequisite to the testing of Hypotheses (b) and (c). 

In seeking evidence of construct equivalence of a measurement instrument in the 

M G C F A framework, applied researchers are typically interested in testing for the 

equivalencies of the following parameters simultaneously across groups: (1) factor 

loadings (A,s), (2) error variances (5s), and if one has more than one factor, (3) factor 

variances-covariances (®s). These sets of parameters are tested in an increasingly 

restrictive way, namely from a weak baseline model with no between group constraints to 

a strict or full invariance model in which all the above mentioned parameters are 

constrained to be equal across groups. It is important to note that the evaluation of the 

construct equivalence of a measurement instrument with a unidimensional construct or a 

single factor involves only the testing for measurement invariance, implying that the 

factor loadings (lambda) and error variances (theta-delta) are of primary interest. 
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Prior to the testing for the invariance of the specific parameters, researchers who 

follow the Joreskog tradition will begin with the testing for a global test of the equality of 

covariance matrices ( £ g = X s )• According to Byrne (1998) and Muthen (1988), this 

practice is not necessary because the global test often leads to contradictory findings with 

respect to equivalencies across groups. For instance, sometimes the global null 

hypothesis is found tenable, yet subsequent tests of hypotheses related to the invariance 

of particular measurement or structural parameters must be rejected (Joreskog, 1971). In 

contrast, the global null hypothesis may be rejected, yet tests for the invariance of 

measurement and structural invariance hold (Byrne, 1988). 

Implications of Treating Ordinal Data as Interval Data 

In factor analysis, the use of interval scale-based correlation measure such as the 

Pearson product moment correlations with ordinal data results in differential attenuation 

in the correlations among the observed item responses that affect the factor solution. In 

M G C F A , bivariate normality between pairs of observed variables or items is an 

important assumption for the computation of the Pearson covariance matrices. When the 

distributional properties of the observed variables are neither bivariate nor multivariate 

normally distributed within groups and/or between groups, the use of Pearson covariance 

measure is expected to cause distortions to the covariance matrices, which are the key 

input for the M L estimation. As a result, the M L estimation would yield inflated chi-

square values for the hypothesis tests of measurement invariance. Therefore, the chi-

square difference test between two nested models that is used to make statistical 

decisions about the tenability of an invariance hypothesis cannot be trusted. 
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To provide some context for the discussion of the impact of treating ordinal data 

as interval data in M G C F A , let us consider a Likert-type measure used in the life and 

social sciences: the Center for Epidemiological Studies Depression Scale (CES-D; 

Radloff, 1977). The CES-D consists of 20 Likert-type items that are used as indicators of 

depression symptoms (i.e., latent variable or construct). The item response format is a 4-

point Likert scale. Data were collected by the UNBC Institute for Social Research and 

Evaluation1 in a general population health survey from 310 adult males (age: range 17-

82, mean = 46.1, standard deviation = 12.1), and 290 adult females (age: range 18-87, 

mean = 42.2, standard deviation =13.4 years) who resided in communities in Northern 

British Columbia. The items are presented as follows: 

For each statement, circle the number (see the guide below) to indicate how often you felt 

or behaved this way during the past week. 

0 = rarely or none of the time (less than 1 day) 

1 = some or a little of the time (1-2 days) 

2 = occasionally or a moderate amount of time (3-4 days) 

3 = most or all of the time (5-7 days) 

not even 1-2 3-4 5-7 
1 day days days days 

1.1 was bothered by things that usually don't bother me. 0 1 2 3 

2.1 did not feel like eating; my appetite was poor. 0 1 2 3 

3.1 felt that I could not shake off the blues even with 0 1 2 3 
help from my family or friends. 

11 would like to thank Professor Alex Michalos and Professor Bruno Zumbo for making this data available 
to me to use in this demonstration. 
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4.1 felt that I was just as good as other people. 0 

5.1 had trouble keeping my mind on what I was doing. 0 

6.1 felt depressed. 0 

7.1 felt that everything I did was an effort. 0 

8.1 felt hopeful about the future. 0 

9.1 thought my life had been a failure. 0 

10.1 felt fearful. 0 

11. My sleep was restless. 0 

12.1 was happy. 0 

13.1 talked less than usual. 0 

14.1 felt lonely. 0 

15. People were unfriendly. 0 

16.1 enjoyed life. 0 

17.1 had crying spells. 0 

18.1 felt sad. 0 

19.1 felt that people dislike me. 0 

20.1 could not get "going". 0 

Note: - Items 4, 8, 12, and 16 are reverse coded. 
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2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

In seeking evidence of construct equivalence or measurement invariance of the 

CES-D across gender, it is not uncommon for researchers to treat the Likert variables as 
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if they were continuous for the computation of Pearson correlation or covariance matrices 

and then proceed with the use of normal theory M L estimation method in M G C F A . 

Because all the items in both gender groups yielded similar response distributions, 

taking into account reverse coding, only the frequency charts for item 1 are presented in 

Figures 2 and 3. The frequency charts of the remaining items for each gender group can 

be found in Appendix A. 

300 

not even 1 day 1-2 days 3-4 days 5-7 days 

during the past week I "was bothered by things that usually don't bother 

Figure 2. Distribution of responses on CES-D item 1 (I was bothered by things that 

usually don't bother me) for males. 
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300 

200 

100 

not even 1 day 1-2 days 3-4 days 5-7 days 

during the past week I "was bothered by things that usually don't bother 

Figure 3. Distribution of responses on CES-D item 1 (I was bothered by things that 

usually don't bother me) for females. 

As in item 1, the distributions of all the Likert-type item responses are positively 

skewed2. Nonnormality is present not only within group but also across groups. Clearly 

the assumptions of univariate, bivariate and multivariate normality are violated. If the 

CES-D data are treated as if they were continuous, the tests for multivariate normality 

revealed the following statistics for skewness (males, z = 68.58,/? = .000; females, z = 

44.25,p = .000), kurtosis (males, z = 24.31,/? = .000; females, z = 19.80,/? = .000), and 

for third and fourth moments considered jointly (males, %2[2, 7V= 310] = 5294.81,/? = 

.000; females, %2[2, N= 290] = 2349.79,/? = .000), indicating that the assumption of 

multivariate normality is seriously violated. 

Although a few options have been suggested for dealing with ordinal variables 

and nonnormality in SEM/CFA, each option has its own limitations (see Table 1). 

2 Note that, as expected in a general population survey rather than a clinical population, the item responses 
provided by the survey respondents for items 4, 8, 12, and 16 will be negatively skewed (as seen in 
Appendix A). However, these data, and the meaning of the survey questions, are reverse coded before the 
psychometric analysis so that all the items are interpretable in the same scale direction - a larger scale score 
value meaning more depressive symptomatology. 
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Table 1 

Different Options for Conducting MGCFA 

Estimation Method 

Item 
Level 

Correlation 
Measure 

Normal theory 
Maximum 

Likelihood' 

Weighted Least 
Squares 1/)/•'-" 

with Asymptotic 
Covariance 
Matrix or 

Diagonally 
Weighted Least 
Squares with 
Asymptotic 

Variance Matrix 

Categorical: 
• - Variable 
Methodology 

Satorra-
Bentler 

Scaled Chi-
Square' 

Items 

Pearson 
Covariance 

Matrix 

V 
(Byrne, 1998) 

c Asymptotic 
Covariance 

Matrix 
requires 
large N 

Polychoric 
Correlation 

Not 
recommended 

for small N 

Limited to 
approximately 
20-25 items 

and Not 
recommended 

for small N 

Limited to 5 
response 

categories; 
Not suitable 

for large 
model sizes 
and small TV 

Item 
Parcels 

Pearson 
Correlation 

False factor 
structure/ 

Dimension 
Note. 1 Generalized Least Squares method typically has the same function and outcome as M L except 

that when models are misspecified (Olsson, Foss, Troye, & H o w e l l , 2 0 0 0 ) , so this method is not 

included i n the table. 2 Asymptotic Distribution Free method is equivalent to the Weighted Least 

Squares. 3 Satorra-Bentler Scaled Chi-Square is equivalent to the M L - R o b u s t . /V = Sample sizes. 

I will describe the various options depicted in Table 1. Many researchers will face 

a dilemma while considering what is the most appropriate estimation method for 
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MGCFA. Given that the CES-D data are extremely skewed, if researchers proceed with 

their analyses using the interval-level Pearson covariance matrices and the normal theory 

M L estimation method, serious distortions are expected to occur in the standard errors of 

parameter estimates and chi-square goodness-of-fit statistics. Consequently, results 

obtained from the testing for the various hypotheses of measurement invariance may not 

be valid. Many researchers will choose to use the appropriate correlation measure, that is, 

the polychoric correlation along with its corresponding asymptotic covariance matrix and 

proceed with the Weighted Least Squares (WLS) or ADF estimation method. Another 

alternative is the use of the Diagonally Weighted Least Squares (DWLS) estimation 

method, which requires the computation of the polychoric correlation and the asymptotic 

variance matrix. However, all these methods are not feasible due to the small sample 

sizes in the CES-D data. Compared to the M L estimation method, the WLS/ADF, and 

DWLS require relatively large sample sizes, i.e., at least 2,000-5,000 observations per 

group (Browne, 1984). The use of M L with the polychoric correlation is rare in practice 

and again the requirement of large sample sizes may prohibit researchers from choosing 

this option. It is worth noting that, as input to the LISREL, the polychoric correlation also 

has higher rates of nonconvergent and improper solutions due to nonpositive-definite 

matrices (e.g., Heywood cases). 

The use of the M L estimation method and polychoric correlation is more accurate 

than the ML-Pearson correlation combination in terms of pairwise correlations, parameter 

estimates and estimated standard errors. However, the polychoric correlation performs 

worse than the Pearson correlation on the M L chi-square statistics and other practical fit 

indices such as goodness-of-fit index (GFI) and adjusted goodness-of-fit index (AGFI), 
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and root mean square residual (RMR), leading to frequent rejections of a correctly 

specified model (Babakus, Ferguson, & Joreskog, 1987). Using A D F and Categorical 

Variable Methodology (CVM, Muthen, 1984), Muthen and Kaplan (1992) and Potthast 

(1993) found that the chi-square values were still inflated when observed variables were 

based on nonnormal ordered categorical data, particularly when models were large and 

sample sizes were small. 

The C V M is limited to small model sizes and also needs large sample sizes for the 

computation of the asymptotic covariance matrix. Furthermore, it makes a very strong 

assumption that underlying each categorical observed variable is an unobserved latent 

counterpart that has a continuous scale and these latent variables are assumed to be 

multivariate normally distributed (Bentler & Wu, 1995). This strict assumption is hard to 

follow because we can only assume that the latent variables are continuous and 

multivariate normally distributed, but in reality, the distributions of the latent variables 

are unknown and may be nonnormally distributed. 

The final option is the use of item parcels. By using this technique, researchers 

can combine the nonnormally distributed categorical items into item parcels, which result 

in data with more data points and have distributions that are more continuous and 

normally distributed. This technique can also solve the problem of large numbers of items 

because its use will allow fewer parameters to be estimated and thus produces more 

stable results than the item level analyses. However, the usefulness of item parcels is 

offset by the obfuscation of the true factor structure or dimension (Bandalos, 1999). 

Clearly, the requirement of large sample sizes in the estimation methods for 

ordinal variables poses problems to researchers because CES-D data tend to have 
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relatively small sample sizes; in this case there are 310 and 290 for males and females, 

respectively. M L is more suitable for small sample sizes and can handle large numbers of 

items. Hence, the option of using M L and Pearson covariance matrix seems to be the 

most viable option in this case. Some researchers have recommended the use of the 

Satorra-Bentler (SB) scaled chi-square in dealing with data nonnormality, but its utility in 

M G C F A is still unknown and it is computationally more intensive because it requires the 

computation of an asymptotic covariance matrix. Also, if the skewness of the 

distributions varies dramatically across items, the SB scaled chi-square statistic is likely 

to yield spurious factors (Green, Akey, Fleming, Hershberger, & Marquis, 1997). 

Given the above arguments, M G C F A was conducted on the CES-D data by using 

the M L estimation method and the Pearson covariance matrix. As Cudeck (1989) pointed 

out, the analysis of correlation matrices may result in the following problems in MGCFA: 

(1) modify the model being analyzed, (2) produce incorrect %2 and other goodness-of-fit 

measures, and (3) give incorrect standard errors. These reasons justify the use of the 

Pearson covariance matrix. The M G C F A results of the cross-gender measurement 

invariance were presented in Table 2. 
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Table 2 

Multi-group Confirmatory Factor Analysis Results for the Measurement 

Invariance of CES-D across Gender 

Hypothesis x2 

Baseline Model1 1208.74 340 
(No between-group 
constraints) 

Strong Invariance2 1264.50 360 
(Number of factors and 
Factor loadings invariant) 

Full Invariance3 1396.60 380 
(Number of factors, 
Factor loadings, and, 
Error variances invariant) 

Note. 1 Configural invariance.2 Configural invariance and Metric invariance. 3 Configural 

invariance, Metric invariance, and Item Uniqueness invariance. 

From Table 2, the difference in chi-square values between the baseline model and 

the strong invariance model is statistically significant, Ax 2 = 55.76, Adf= 20,p = .000, 

indicating that the hypothesis of strong invariance is not tenable. The difference in chi-

square values between the baseline model and the full invariance model is also 

statistically significant, A x 2 = 187.86, Adf =40,p = .000, indicating that the hypothesis of 

full invariance is not tenable. Clearly, the hypotheses of measurement invariance are 

rejected but, because the Likert variables are extremely nonnormal in both gender groups, 
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these hypothesis tests of measurement invariance are operating at unknown Type I error 

rates. 

Problem Statement 

The question of to what extent the M L estimation method is robust to the 

violations of measurement scale and multivariate normality assumptions in M G C F A is 

yet to be answered. Specifically, what are the Type I error rates (likelihood or probability 

of rejecting true measurement invariance models) of the M L chi-square difference test 

when ordinal data are analyzed with the normal theory M L estimation method and 

Pearson covariance matrices across different numbers of scale points and response 

distributions? It is also of interest to examine whether the use of large numbers of scale 

points and mixed item formats can compensate for multivariate nonnormality and thus 

reduce the Type I error rates of the M L estimation method in M G C F A . As Zumbo and 

Zimmerman (1993) pointed out, the shape of distribution is a better criterion than the 

measurement level when one decides whether to use parametric or nonparametric 

statistical methods. Hence, it is important to examine to what extent the shape of the 

response distribution can justify the use of M L estimation method with ordinal and mixed 

item format data in M G C F A . 

To address the above problems, the effects of the number of scale points, the 

mixtures of item formats, the distribution of the responses across groups, and the sample 

size combinations on the Type I error rates of ML-based chi-square difference tests for 

two hypotheses of measurement invariance (i.e., strong and full invariance) were 

investigated in the current study. Although Type II error and power issues in multi-group 

confirmatory maximum likelihood factor analysis are important, the focus of the current 

study was on Type I error because the Type I error rates of any statistical test need to be 
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established before one can even turn to the issue of statistical power (and hence Type II 

error rates). 

It is important to note that the research literature on single-group confirmatory 

factor analysis does not give us precise direction on the use of the chi-square test for 

MGCFA. That is, the single-group situation is of limited generalizability because the 

M G C F A involves a test statistic that is the difference between two chi-square test 

statistics (of nested models), each of which could be biased but may result in an 

acceptable difference of chi-square of the M G C F A - that is, the single-group biases may 

cancel out in the M G C F A . 

Significance of the Current Study 

The robustness properties of various parametric tests such as Mest, analysis of 

variance, bivariate correlation, multiple regression, and single-group C F A have been 

researched extensively in the published literature. Measurement scales used in education 

and the social and behavioral sciences are typically ordinal in nature. Researchers tend to 

use ordinal-scaled variables in statistical procedures that assume that these variables 

possess an interval scale of measurement. Most of the M G C F A applications to date have 

been concerned with items or observed variables measured on an ordinal scale. Given 

that the M L estimation method with Pearson covariance matrix is the most commonly 

used approach in M G C F A , it is important for the current study to investigate the 

robustness properties of the M L estimation method when the measurement scales are 

violated due to the use of small numbers of scale points and unequal threshold 

discretization of ordinal Likert scales. 

Popular SEM texts such as Byrne's (1998) Structural Equation Modeling with 

LISREL, PRELIS, and SIMPLIS: Basic Concepts, Applications, and Programming and 
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Joreskog and Sdrbom's (1996) LISREL 8: User's Reference Guide recommend the use of 

M L estimation method with the Pearson covariance matrix. Byrne (1998, p. 137) 

contended that the use of M L is acceptable when one has Likert-type item responses with 

large numbers of response categories. Joreskog and Sdrbom (1996) stated, "If the sample 

size is not sufficiently large to produce an accurate estimate of the asymptotic covariance 

matrix (in WLS), it is probably better to use M L or GLS" (p. 239). Nevertheless, no 

M G C F A studies to date have investigated the optimal number of response categories and 

the sample size requirement for use with the M L estimation method in the presence of 

ordinal and mixed item format data. A thorough investigation of these important issues in 

the current study is deemed necessary to justify the use of M L estimation method with 

ordinal and mixed item format data in MGCFA. 

A commonly encountered problem among the M G C F A researchers is that the use 

of large numbers of items in a measurement instrument may prohibit them from using the 

ordinal-scale estimation methods such as WLS/ADF and C V M . For multi-group 

conditions, the WLS/ADF and C V M estimation methods require a huge capacity of 

computer memory because the computation of the asymptotic covariance matrices is 

heavy. The use of C V M is also restricted to five response categories. In addition, none of 

the ordinal-scale estimation methods perform better than the M L estimation method in 

terms of the chi-square statistics when the model sizes are large in single-group CFA. 

Given the limitations of the ordinal-scale estimation methods, the use of M L in M G C F A 

seems to be the only convenient solution. David Kaplan (SEMNET, 1996) has postulated 

that the problems in single-group C F A might also occur in M G C F A . He pointed out that 

a dissertation examining the effects of multivariate nonnormality in M G C F A might be 
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worthwhile. To my knowledge, such a research topic has not been studied. Hence, it is 

important for the current study to examine the effects of multivariate nonnormality in the 

M G C F A . 

The measurement imprecision of a construct is obviously serious when the 

continuous latent variable is measured using ordinal scales. However, the problem is not 

due to the use of ordinal measurement per se but the common practice of treating ordinal 

data as if they were measured at the interval level and analyzing such data with statistical 

methods which assume interval measures. In many of the single-group C F A studies, the 

use of normal theory M L estimation method and Pearson covariance matrix with ordinal 

data was found to result in substantial distortions of standard errors of parameter 

estimates and model-data fit indices. The impact of treating data derived from the ordinal 

scales such as binary and Likert-type scales as continuous in the M G C F A is worth 

investigating. 

This study also focuses on the impact of conducting multi-group confirmatory 

maximum likelihood factor analysis with mixed item format data. A systematic 

investigation of this issue is deemed to be important given that the assessment of 

educational outcomes since the 1990s has increasingly taken the form of measurement 

instruments that combine multiple-choice items with constructed-response items. 

In summary, M G C F A are typically carried out on binary and Likert-type variables 

in measurement invariance research. In the applications of M G C F A for the testing of 

measurement invariance, it has been common practice for researchers to treat Likert data 

as if they were continuous for the computation of the Pearson covariance or correlation 

matrices and for use with the normal theory-based M L estimation method (e.g., Bandalos 
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& Benson, 1990; Byrne, 1994; Byrne, Shavelson, & Muthen, 1989; Drasgow & Kanfer, 

1985; Reise, Widaman, & Pugh, 1993; Sireci, Xing, & Fitzgerald, 1999; Steenkamp & 

Baumgartner, 1998; Tippets & Michaels, 1997). It is important to note that the M L 

estimation method makes the implicit assumption that the observed variables have a 

multivariate normal distribution in the population. Likert-scaled items could hardly 

follow a multivariate normal distribution. Many of the M G C F A studies have failed to 

report a test of multivariate normality in justifying of the use of the M L estimation 

method. Using data simulation, the Type I error, rates of rejecting a true measurement 

invariance model based on the chi-square difference tests produced by the M L estimation 

method in the current study will inform the applied researchers the operating 

characteristics of the M L estimation method in the presence of ordinal and mixed item 

format data. 
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CHAPTER II 

LITERATURE REVIEW 

This chapter begins with a review of studies that have examined the consequences 

of treating ordinal data as if they were continuous and analyzing with the normal theory 

statistical methods. More specifically, the common psychometric problems of treating 

ordinal data as interval data in Pearson correlation, multiple regression, and single-group 

confirmatory factor analysis; and the impact of the number of Likert scale points on 

reliability and validity are reviewed. The issue of analyzing ordinal and mixed item 

format data with multi-group confirmatory maximum likelihood factor analysis has not 

been studied before. Hence, the single-group C F A literature is reviewed with an eye 

toward the study design variables: number of scale points or response categories, shape of 

distribution, model size, size of parameters, model specification, sample sizes, and the 

combination of estimation method and correlation measure. This informs the study design 

used in the current study. A thorough review of the different estimation methods is 

deemed to give some methodological contribution to the readers who are interested in 

pursuing research in CFA. Toward the end of the review, several research questions are 

raised for the current study. 

With the advent of Stevens' (1946) levels of measurement, the applications of the 

conventional parametric tests to data obtained from ordinal-scaled measures such as 

binary and Likert-type items have generated vigorous debates. A continuing concern is 

that ordinal data are discrete and multivariate nonnormal but the parametric statistical 

methods assume multivariate normality. A substantial body of research has addressed the 

problems of using observed ordinal variables to measure the underlying continuous 
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variables, especially the risks involved in treating the ordered categorical or ordinal data 

(e.g., Likert data) as i f they were continuous. Almost all the studies have used computer 

simulation data for which the true values were known so that the estimated values can be 

compared to the true values. Discrepancy between the true and estimated values allows 

the determination of the amount of biases. The impact of using ordinal data with several 

parametric statistical methods was examined by varying the number of scale points and 

the form of distributions. 

Ordinal Data with Pearson's Correlation Measure 

Measurement bias or error caused by using ordinal data obtained from the Likert 

items in Pearson's correlation has long been debated in psychology and sociology (e.g., 

Bollen & Barb, 1981; Labovitz 1970; O'Brien, 1979). Labovitz (1970) has strongly 

advocated for treating ordinal data as interval because he found that the average Pearson 

correlation between the true scoring system for continuous data and the assigned scoring 

system for rank-ordered data, especially the equal distance scoring system was quite high. 

However, Labovitz's findings are valid only for uniform and normal underlying 

distributions. B y looking at various forms of distributions and sample sizes, O'Brien 

(1979) found that transformation errors resulting from using the equal distance scoring 

system were very severe when the underlying distribution was neither uniform nor 

normal. For the condition of nonnormal underlying distribution, the value of average 

Pearson r decreased with increasing sample size. O'Brien also found that the Pearson r 

between an interval variable and its categorized version was not a monotonic function of 

the number of categories used to rank the data. Instead, r was a decreasing function of the 

number of categories. Similar nonmonotonic relation appeared in the correlation of a 

collapsed variable with itself. 
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In contrast to O'Brien (1979), Bollen and Barb's (1981) simulation studies have 

shown that Pearson's r between two different collapsed variables was a monotonic 

function of the number of categories. The number of categories and the strength of the 

relations between the continuous variables were varied in their study. Each normally 

distributed variable was collapsed into a number of categories ranging from two to ten 

based on equal latent thresholds. Each pair of normally distributed variables was 

constructed to correlate at one of five magnitudes: 0.2, 0.4, 0.6, 0.8, or 0.9. The 

difference between the average correlation for the continuous and the collapsed variables 

was negligible when five or more categories were used. Similarly, the differences 

between the original continuous correlation and the reproduced continuous correlation 

converged at five or more categories regardless of the magnitude of the original 

correlation. Furthermore, the standard deviations of the correlations for the collapsed 

variables were much larger than the standard deviations of the correlations of the original 

variables. With five or more categories the standard deviations of the correlations for the 

collapsed and continuous variables were close. 

Number of Likert Scale Points, Reliability and Validity 

The optimal number of rating categories for Likert scale items has been a focus in 

the construction of rating instruments. The use of too many rating categories may limit 

the rater's power of discrimination (e.g., raters are confused by too many choices). In 

contrast, a coarse scale with too few rating categories will limit the choices of the raters 

(e.g., raters find that none of the choices on the scale represent their rating). With regard 

to reliability (internal consistency and interrater reliability), many researchers contended 

that the optimal number of scale points or categories to maximize reliability was seven 

(e.g., Cicchetti, Showalter & Tyrer, 1985; Nunnally, 1967; Ramsay, 1973; Symonds, 
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1924). When more than seven categories were used, the increase of internal consistency 

reliability was negligible. Some other researchers have suggested the use of 5-point, 4-

point, or 3-point scales in maximizing the reliability (e.g., Bendig, 1954a, 1954b; Jenkins 

& Taber, 1977). According to Cronbach (1950), there is no merit to increasing reliability 

of an instrument unless its validity is also increased at least proportionately. Komorita 

(1963) and Komorita and Graham (1965) found that the utilization of a dichotomous 

scale would not significantly decrease the reliability of the information obtained when 

compared to that obtained from a multi-category scale. In addition, they suggested that 

the use of a two-point response scale could eliminate or minimize an extreme response 

set. Both Cronbach (1950) and Komorita and Graham (1965) stated that the ultimate 

criterion in determining the optimal number of scale points is the effect that a change in 

the number of scale points has on the validity of the scale. 

Matell and Jacoby (1971) and Chang (1994) have systematically examined the 

relationship between the number of scale points and both the reliability and validity. In 

the Matell and Jacoby study, Likert scale points ranging from 2 to 19 were used to 

investigate the effects of number of scale points on both the reliability and validity. The 

test-retest reliability and internal consistency were found to be independent of the number 

of scale points. As with reliability, validity was not affected by the number of scale points 

even after correcting the predictive and concurrent validity coefficients for criterion 

attenuation. The findings were consistent with those reported by Bendig (1954a) and 

Komorita and Graham (1965). 

Chang (1994) used C F A models in relation to a multitrait-multimethod (MTMM) 

covariance matrix to examine the impact of 4-point and 6-point Likert-type scales on 



internal consistency reliability and criterion-related validity, respectively. The following 

measurement models were nested models, which allow the comparisons of their model-

data fit indexes (i.e., goodness-of-fit indexes): 

i. A null model (a no-factor model) in which only the error/uniqueness variances 

were estimated. 

ii. A simple CFA model that included the estimation of the factor loadings, trait 

correlations, and error variances. This model tested the hypothesis that 

covariation among the observed variables was due only to trait factor and their 

intercorrelations. Acceptance of this model would support for the equivalence 

of the 4-point and 6-point Likert-type scales, indicating that items measured by 

the two scale formats were congeneric indicators of the same traits. A second 

simple CFA model was a tau-equivalence model wherein the factor loadings 

corresponding to the same traits were constrained to be equal. 

iii. Two M T M M models with the addition of two method factors corresponding to 

the 4-point and 6-point scales. Acceptance of these two models and rejection of 

the previous two models would indicate the presence of a method effect due to 

different number of scale points. As in ii, both congeneric and tau-equivalence 

constraints were applied to the parameters. 

iv. Three models which estimated three traits and one method factor, instead of 

two method factors as was in the previous two models. The same tau-

equivalence constraint used in the second model in iii was used here. In the 

first model, one common method factor was parameterized. Comparing the 

second model in iii with this model would determine whether reliability and 
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validity were affected differently by the 4-point and 6-point scales or if the two 

scales had the same contamination. In the other two models, one method factor 

was estimated for items with the 4-point scale and 6-point scale, respectively. 

Comparing these two models would answer the question of which of the scale 

formats had less method contamination, 

v. The nine items with the 4-point scale loaded onto three trait factors, whereas 

the nine items with the 6-point scale loaded onto another set of three trait 

factors. The three traits were correlated in each set of items. The items used 

with the 4-point and 6-point scale formats measured different traits. 

The M T M M covariance matrix was analyzed using M L estimation method. The 

chi-square/df ratio test was used as one of the goodness-of-fit indexes. Method variance 

due to number of scale points represents systematic error. If it is left unaccounted for in 

the separate CFA, the internal consistency reliability can be artificially high. This 

measurement artifact was found to have affected the 6-point scale more than the 4-point 

scale. By using the M T M M , systematic error due to method variance can be accounted 

for. When the method variance was factored out from the trait variance, Chang found that 

both the reliability and the validity (i.e., heterotrait-monomethod/HTMM correlations) 

were substantially reduced for the 6-point scale. The 4-point scale had higher reliability 

than the 6-point scale within the M T M M framework. The number of scale points in a 

Likert scale affects internal consistency reliability and H T M M validity but not 

heterotrait-heteromethod/HTHM validity (or criterion-related validity). 

By using the C F A M T M M models, Chang's study has given a new insight into the 

methodology of investigating the number of Likert scale points in relation to internal 



34 

consistency reliability and criterion-related validity. However, the study used only one set 

of real data and the sample size was relatively small (N = 165). 

Ordinal Data with Multiple Regression 

Ochieng (2001) investigated the implications of using Likert data in multiple 

regression. He found that the largest bias in the estimation of the model R-squared, the 

relative Pratt Index, and Pearson correlation coefficients occurred for two or three-point 

Likert scales. However, the bias did not substantially reduce any further beyond the four-

point Likert scale. Interestingly, type of correlation matrix had no effect on the model fit. 

Skewed response distribution was found to result in large biases in both R-squared and 

Pearson correlation, but not in the Relative Pratt Index. 

Ordinal Data with Single-Group CFA 

Several studies have shown that the use of ordinal data such as Likert-type data 

can introduce biases to the standard errors of estimates, chi-square fit statistics, and 

practical fit indexes in the single-group CFA (Babakus, Ferguson, & Joreskog, 1987; 

Boomsma, 1983; Curran, West, & Finch, 1996; DiStefano, 2002; Dolan, 1994; Finch, 

West, & MacKinnon, 1997; Green, Akey, Fleming, Hershberger, & Marquis, 1997; 

Hutchinson & Olmos, 1998; Muthen & Kaplan, 1985, 1992; Olsson, 1979; Potthast, 

1993; Rigdon & Ferguson, 1991). In this section, the variables that had been examined in 

the Monte Carlo computer simulation studies of single-group C F A were reviewed. 

Number of Scale Points 

The majority of the studies have focused on a 5-point Likert scale (Babakus et al., 

1987; DiStefano, 2002; Hutchinson & Olmos, 1998; Muthen & Kaplan, 1985, 1992; 

Potthast, 1993; Rigdon & Ferguson, 1991). There was a consensus in the C F A simulation 

studies that the optimal number of scale points to minimize biases in parameter estimates, 
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standard errors of estimates, chi-square statistics, and practical fit indexes was five. A s 

Pearson's correlation matrix is an integral component of the parameter estimation in 

L I S R E L , the attenuation of Pearson correlation coefficients can seriously affect the C F A 

results. Attenuation was found to occur with observed variables having less than five 

categories. In those studies that used only 5-point Likert scale, the choice of a single scale 

point served as a constant variable. Clearly the number of scale points was not a factor of 

interest. In the Muthen and Kaplan (1985) study, both equal and unequal thresholds were 

used for the 5-point Likert variables. 

A few studies have manipulated the number of scale points and compared their 

effects on the C F A parameter estimates, standard errors o f estimates, chi-square statistics, 

and practical fit indexes. Olsson (1979), Dolan (1994) and Green et al. (1997) compared 

the effects of 2-, 3-, 4-, 5-, 7-, and 9-scale points, 2-, 3-, 5-, and 7-scale points, and 2-, 4-, 

and 6-scale points, respectively. Green et al. used and transformed nonnormally 

distributed X scores to item data with 2, 4, and 6 categories. The same threshold values 

were applied to all nonnormally distributed data. For the 2-category, the threshold value 

was set at .5. A value of 1 was assigned i f X < .50 and a value of 2 i f X > .50. For a 4-

category, a value of 1 was assigned i f X < .25; 2 i f .25 < X < .50; 3 i f .50 < X < .75; and 

4 i f X > .75. For a 6-category, a value of 1 was assigned i f X < .17; 2 i f .17 < X < .33; 

3 i f .33 < X < . 5 0 ; 4 i f .50 < X < . 6 7 ; 5 i f . 6 7 < X < .83; and 6 i f X > .83. In Olsson's 

and Dolan's studies, probabilities under normality and asymmetry were used to create the 

threshold values. 
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Shape of Distribution 

At this point, it is important to note that, although it is technically not accurate, I 

will follow the convention in the research literature of referring to symmetric ordinal 

(Likert) data as "normal" or "normally distributed" data. 

In the Muthen and Kaplan (1985) study, five distributions ranging from normal to 

severely nonnormal were generated for the observed variables: (1) all observed variables 

were normal with zero skewness and kurtosis, (2) all observed variables with a mild 

negatively skewness (-0.742) and kurtosis (-0.334), (3) all observed variables with a 

moderate negatively skewness (-1.217) and kurtosis (0.846), (4) all observed variables 

were strongly censored (skewness = -2.028 and kurtosis = 2.898), i.e., a 'piling up' of 

observations at one of the extreme categories, and (5) all observed variables have zero 

skewness but high kurtosis (2.785). In their 1992 study, these same distributions were 

used in addition to a negative kurtosis (-1.30) distribution. The symmetric distribution 

corresponds to a desirable condition because it allows the study of the effects of 

categorization without the interference of skewness or kurtosis. 

Three forms of distributions were varied in Curran et al. (1996): Distribution 1 

was a multivariate normal with univariate skewness and kurtosis equal to zero, 

Distribution 2 was moderately nonnormal with univariate skewness of 2.0 and kurtosis of 

7.0, and Distribution 3 was severely nonnormal with univariate skewness of 3.0 and 

kurtosis of 21.0. Five distributions in the Babakus et al. (1987) study were as follows: (1) 

all observed variables were normally distributed with zero skewness, (2) all observed 

variables follow a U-shaped distributions (0.273, 0.183, 0.090, 0.183, and 0.273), (3) all 

observed variables follow extremely skewed distributions with a skewness vector of 
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(1.50, 1.50, 1.50, 1.50), (4) two observed variables follow moderately and the other two 

extremely skewed distributions with a skewness vector of (0.50, 0.50, 1.50, 1.50), and (5) 

two observed variables follow a moderately skewed, one a normal distribution, and one 

an extremely skewed distribution with a skewness vector of (0.50, 0.50, 0, 1.50). These 

same distributions were used by Rigdon and Ferguson (1991). In Olsson's (1979) study, 

the degrees of skewness were varied as follows: (1) all skewness were the same (0, 0.50, 

1, and 2), (2) half the variables have one value of skewness, the remaining variables a 

second value. The chosen combinations of skewness were 0.50 and -0.50; 0.50 and 0; 1 

and -1; 1 and -0.50; 1 and 0; 1 and 0.50; 2 and -2; 2 and -1; 2 and -0.50; 2 and 0; 2 and 

0.50; 2 and 1, and (3) the variables were divided into three equal groups, each with one 

value of skewness. The combinations were -0.50, 0 and 0.50; -1,0 and 1; -2, 0 and 2. 

Four different levels of nonnormality were included in Potthast's (1993) study. 

Distribution 1 was a normal distribution with zero skewness and kurtosis. Distribution 2 

was a distribution with minimal skewness (0.19) but negative kurtosis (-1.12). 

Distribution 3 was a leptokurtic (very peaked) distribution with zero skewness but 

positive kurtosis (2.90). Finally, distribution 4 was a distribution with both high skewness 

(2.52) and kurtosis (5.80), representing a strongly censored distribution. 

Only two forms of distributions were used by Dolan (1994): normal and mild 

asymmetry distributions. Green et al. (1997) have used a different methodology to yield 

four distributions: (l)uniform distribution, (2) unimodal, symmetric distribution, (3) 

negatively skewed distribution, and (4) half items negatively skewed, half items 

positively skewed (opposite skewed). They transformed normally distributed Z scores to 

yield four types of nonnormally distributed scores by varying the values of the 
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parameters (p and q) of the beta distribution. The probability density function for the beta 

distribution is 

P(X)= (P + i-V l x ( p- l )(\-x) {«-x\ 
(p-\)\(q-\)\ 

where X is a random variable that can take on values between 0 and 1. The sets of Z 

scores were transformed to Xs so that the scores followed (1) uniform distribution (p = 1 

and q = 1), (2) a symmetric, unimodal distribution (p = 4 and q = 4), (3) a negatively 

skewed distribution (p = 3 and q = 1.5), and (4) both negatively skewed (p = 3 and q = 

1.5) and positively skewed (p = 1.5 and q = 3) distributions. 

The distributions in Hutchinson and Olmos (1998) were varied to four forms: (1) 

a normal distribution with zero skewness and kurtosis; (2) a rectangular distribution with 

zero skewness and kurtosis of -1.326; (3) a symmetric and leptokurtic distribution with 

zero skewness and kurtosis of 2.668; and (4) a skewed and leptokurtic distribution with 

skewness of 2.558 and kurtosis of 5.919. 

Finch et al. (1997) used three forms of distributions: (1) normal, (2) moderately 

skewed (skewness = 2 and kurtosis = 7), and (3) extremely skewed (skewness = 3 and 

kurtosis = 21). In their second simulation study, three mixed distributions were 

examined: (1) all variables were mildly and moderately nonnormal, (2) all variables were 

moderately to severely nonnormal, and (3) three variables were severely nonnormal and 

the other six were normally distributed. 

In the DiStefano (2002) study, only two distributions were investigated. The 

distributions were approximately normally distributed and nonnormally distributed. To 

generate the approximately distributed data, for each of the five categories, the area under 

the curve was approximating 5%, 21%, 48%, 21%, and 5% (skewness = 0, kurtosis = 
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0.30). For nonnormal ordered categorical data, the percentage of responses in each 

category was approximately 75, 15, 5, 3, and 2, for categories 1 through 5 (skewness = 

2.5, kurtosis = 6.0). 

Model Size 

Muthen and Kaplan (1985) used a one-factor model with four variables whereas 

Curran et al. (1996) used an oblique three-factor model with three variables per factor. 

Olsson (1979) has chosen the use of two one-factor models with 6 and 12 variables, 

respectively. In Babakus et al. (1987), a single-factor model with four variables was used. 

The model used in Rigdon and Ferguson's (1991) study consisted of two correlated 

factors with four variables loading exclusively on each factor. Potthast (1993) employed 

four increasingly complex oblique models: one-factor model with 4 variables, two-factor 

model with 8 variables, three-factor model with 12 variables, and four-factor model with 

16 variables. Each model had four variables per factor. Dolan (1994) used a one-factor 

model with 8 variables whereas Green et al. (1997) employed a one-factor model with 20 

variables. 

Two model sizes were used in Hutchinson and Olmos's (1998) study. Model 1 

was a two-factor oblique model with 8 variables and model 2 was a four-factor model 

with 16 variables. Each factor has four observed variables. Finch et al. (1997) used a 

three-factor model with 9 variables (3 variables per factor). DiStefano (2002) has 

examined two sizes of models: two-factor model with 12 variables (4 variables in the first 

factor and 8 variables in the second factor), and three-factor model with 16 variables (4 

variables in each first and second factor and 8 variables in the third factor). 
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Size of Model Parameters 

In Muthen and Kaplan's (1985) study, correlations of the underlying variables 

were all equal and medium-sized, that is, 0.49. A l l factor loadings (lambda) were 0.70, 

the factor variance was 1.0, and error/uniqueness variances were all 0.51. Olsson (1979) 

used two levels of factor loadings: all were equal (0.80) and all were varied (0.30-0.70). 

Factor loadings of 0.70, interfactor correlations (phi) of 0.30, factor variances of 1.0, and 

error variances of 0.51 were used in Curran et al.'s (1996) study. The factor loadings in 

Babakus et al's (1987) study were at two levels: all were equal to 0.80 and all were varied 

to 0.40, 0.60, 0.60, and 0.80. The factor loadings used in the Rigdon and Ferguson (1991) 

study were at two levels: high (0.90, 0.80, 0.80, 0.70) and low loadings (0.70, 0.60, 0.60, 

0.50). Meanwhile, the factor correlations were also at two levels: high (0.70) and low 

(0.40). In the Potthast (1993) study, the factor loadings were all equal to 0.70, the factor 

correlations were 0.30, factor variances were fixed at 1.0, and error variances were 

constrained to zero. The factor loadings used in Dolan's (1994) study were 0.80, 0.90, 

0.70, 0.80, 0.70, 0.90, 0.80, and 0.90 and the factor variances were fixed at 1.0 and the 

eight diagonally error variances were 0.36, 0.21, 0.49, 0.36, 0.49, 0.21, 0.36, and 0.21. In 

the Hutchinson and Olmos (1998) study, the values of the factor loadings were 0.60, 

0.70, and 0.80, and the factor correlations were 0.50. The population values for the factor 

loadings in Finch et al. (1997) were uniform and moderately high, that is 0.70 and the 

error variances were 0.51. The population values for the structural coefficients were 

specified as such beta 1: 0.60, beta 2: 0.20, and beta 3: 0.12. The magnitude of the direct 

effect of latent exogenous variable on latent endogenous variable was specified to be 

equal to the magnitude of indirect effect of latent variable one on three via two. 



Two sizes of factor loadings were used in DiStefano (2002): 0.30 and 0.70. The 

sizes of factor loadings were varied for four population models. In Population 1 A, the 

loadings on the first four-variable factor (two variables with 0.70 and two with 0.60) were 

high; and the loadings on the second factor (two with 0.50, four with 0.40, and two with 

0.30) were moderate. Population IB has an opposite condition where the loadings on the 

first factor was moderate (two with 0.40 and two with 0.30) and the loadings on the 

second factor were high (two with 0.70 and six with 0.60). The sizes of the loadings in 

Populations 2 A and 2B were manipulated as (1) high loadings for each of the four-

variable factors (0.60-0.70) and moderate loadings for the eight-variable factor (0.30-

0.50), and (2) moderate loadings for each of the four-variable factors (0.30-0.40) and 

high loadings for the eight-variable factor (0.60-0.70). The factor correlations were held 

constant at 0.30. 

Model Specification 

To date few CFA studies have focused on the model specification. Correct model 

specification is an important structural assumption because if the sample structure does 

not accurately reflect the population structure, severe distortions will be introduced into 

the final C F A solution. In view of this problem, Curran et al. (1996) had included four 

model specifications. Model 1 was accurately specified such that the sample model 

reflected the population model. Model 2 contained two factor loadings that were 

estimated in the sample but did not exist in the population. Although a misspecification 

of inclusion happened, model 2 was considered as an accurately specified model because 

the expected value of the parameter estimation was 0. Model 3 excluded two factor 

loadings from the sample that did exist in the population and was a misspecification of 
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exclusion. Model 4 was the combination of Models 2 and 3 and involved a 

misspecification of both inclusion and exclusion. 

Sample Sizes 

The sample sizes used in Muthen and Kaplan's 1985 and 1992 studies were 500 

and 1000, respectively. Only sample size of 1000 was used in Olsson (1979). In the 

Curran et al. (1996) study, four sample sizes were used: 100, 200, 500, and 1000. Two 

sample sizes were included in Babakus et al.'s (1987) study: 100 and 500. Rigdon and 

Ferguson (1991) included three sample sizes in their study: 100, 300, 500. The sample 

sizes used by Potthast (1993) were 500 and 1000. Dolan (1994) used three sample sizes: 

200, 300 and 400. In the Green et al. (1997) study, only one sample was used, that is, N = 

1000. The sample sizes used in Hutchinson and Olmos (1998) were 500 and 1000. 

Sample sizes of 150, 250, 500 and 1000 were studied by Finch et al. (1997). Only two 

sample sizes were included in the DiStefano (2002) study: 350 and 700. In short, all the 

sample sizes used in the single-group CFA studies were small and moderate. 

Combination of Estimation Method and Correlation Measure 

Muthen and Kaplan (1985) examined the performance of the normal theory-based 

ML and GLS on the estimation of S(y) parameters as well as on the chi-square and 

variability measures (true and estimated standard errors). The performance of these 

estimators in relation to the degree of skewness and kurtosis of the Likert observed 

variables was investigated in their study. The ADF estimator was examined for its 

performance on the estimation of E(y) parameters. Muthen and Kaplan also compared the 

performance of ML, GLS and ADF on the estimation of I(y*) parameters. In addition, 

the performance of CVM on the estimation of I(y*) parameters and sampling variability 

was studied specifically for dichotomized observed variables. Sample covariance matrix 
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was analyzed for each of the estimators. For the analyses of nonnormal ordered 

categorical variables, the A D F (for x models) and the C V M (for x* models) are two 

relatively new promising approaches. With strong skewness and/or kurtosis, these two 

estimators outperform the normal theory-based M L and GLS estimators. The A D F is not 

based on the assumption of multivariate normality so that nonnormal distributions do not 

cause any problems in the estimation. As a normal theory estimator, the M L assumes 

multivariate normality and the fourth-order moments are equal to zero and the 

multivariate kurtosis is ignored. Because the ADF does not assume multivariate 

normality, the fourth-order moments are equal to zero, and the multivariate kurtosis is 

incorporated into the computation of test statistics. The C V M does not require the use of 

Pearson correlations because it fits the model based on the estimated latent correlations of 

the underlying variables. Muthen and Kaplan (1985, 1992) found that the normal theory 

estimators perform quite well even with ordered categorical and moderately 

skewed/kurtotic variables when the sample size is not small, TV=1000. The distortions of 

M L and GLS chi-squares and standard errors were negligible if most variables have 

univariate skewness and kurtoses in the range -1.0 to +1.0. They contended that when 

most skewnesses and/or kurtoses are larger in absolute value than 2.0, and correlations 

are 0.5 or higher, distortions of the M L and GLS chi-square values and standard errors 

are very likely to occur, although the parameter estimates are robust. 

Olsson (1979) analyzed ordinal data with the M L estimator. He found that the 

skewness of the variables, rather than the number of scale points, was the major 

determinant of lack of fit of the factor model. He also noted that ordinal factor analysis of 

the Pearson correlations for the dichotomous variables (phi coefficients) could lead to 
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inconsistent and attenuated estimates in addition to incorrect standard errors of estimates 

and incorrect chi-square test of model fit. 

Three estimators were included in Curran et al.'s (1996) study. They were M L , 

ADF, and SB. The SB provides corrected chi-squares and is an alternative to the normal 

theory M L estimator when the observed data do not meet the assumption of multivariate 

normality. The M L chi-square showed no bias across all sample sizes under multivariate 

normal distributions but was significantly inflated with increasing nonnormality. Under 

the condition of nonnormality, Type I error rate increased indicating that a correct model 

was significantly more likely to be falsely rejected based on the M L chi-square statistic. 

The ADF chi-square was substantially inflated at smaller sample sizes even under 

multivariate normal distributions. At sample size of 500 and above, the A D F was 

unbiased regardless of distribution. The SB scaled chi-square performed well across 

almost all sample sizes and all distributions even under severely nonnormal distribution 

at sample size of 200 and above. 

Using only the M L estimator, Babakus et al.'s (1987) study has shown that the 

polychoric correlation performs better than Pearson product moment, Spearman's rho, 

and Kendall's tau-6 correlations on the estimation of factor loadings and their respective 

standard errors. The Pearson correlations performed as the second best correlation 

measure. Although the polychoric correlation produced the best results in terms of the 

accuracy of parameter estimates and estimated standard errors, it produced the poorest fit 

statistics, leading to frequent rejections of a true or correctly specified model. Also there 

was a higher rate of nonconvergent and improper solutions when the polychoric 

correlations were used as input in LISREL. With respect to the practical fit indexes, the 
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polychoric correlation performed poorly on GFI, AGFI, and RMR, especially for small 

sample size. Under normal distribution, Babakus et al. noted that both GFI and AGFI 

were related directly to sample size but not to the magnitude of true factor loadings. The 

RMR was affected inversely by both sample size and true factor loadings. All correlation 

measures performed poorly under severe nonnormal distribution. When sample size was 

increased from 100 to 500, both categorical and continuous data analyzed with all four 

correlation measures resulted in much smaller standard errors of factor loadings. 

Rigdon and Ferguson (1991) compared the performance of M L , GLS, WLS, 

DWLS, and ULS. They found that both GLS and M L were susceptible to nonconvergent 

and improper solutions. Compared to the M L , the GLS produced a higher rate of 

nonconvergent and improper solutions. The other estimators (WLS, DWLS, and ULS) 

combined produced only about 1.6% improper solutions. Both nonconvergent and 

improper solutions were most common under severe nonnormal distribution and when 

sample size was 100. In order, the WLS, DWLS, and M L estimators were found to have 

produced estimates with the smallest mean square errors over all experimental conditions. 

However, these relative positions were dependent on sample size. As sample size was 

increased from 100 to 300 and 300 to 500, the relative performance of the M L estimator 

improved to match that of the WLS estimator. No combination of the polychoric 

correlation coefficient with any of the five estimators produced estimated standard errors 

that were unbiased under all conditions. 

Severe nonnormal distribution of the ordinal data induced large biases in the 

estimated standard errors. When the strength of the measurement relations was high, high 

skew level of the distribution produced the fewest large biases. The DWLS and WLS 
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estimators produced large biases across all the experimental conditions with the DWLS 

estimator producing the more often. And large sample size did not reduce the likelihood 

of large biases in the estimated standard errors. For instance, the M L estimator produced 

larger biases when sample size was increased. At sample size of 100, the M L performed 

relatively well whereas the GLS, WLS, DWLS, and ULS occasionally produced 

extremely biased estimated standard errors. When sample size increased to 300, the 

extreme bias values disappeared for all the estimators except DWLS. The ULS and WLS 

produced the smallest mean square error. In terms of fit statistics, when the polychoric 

correlation was used, the model-data fit as indicated by the GFI, AGFI, and RMR 

improved as sample size increased and as the true values of model parameters become 

larger. In contrast, when the M L or GLS estimator was used, the model-data fit as 

indicated by GFI and AGFI improved when measurement relations become weaker 

whereas the strength of relations between constructs would have no effect. The model-

data fit was poorer for ordinal data with a skew distribution. 

With respect to the chi-square statistics, no combination of the polychoric 

correlations with any of the five estimators produced chi-square values that followed the 

chi-square distribution. The M L , GLS, DWLS, and ULS estimators all produced greatly 

inflated chi-squares. On the contrary, the WLS produced chi-square values that were 

much too low. For the M L , GLS, DWLS, and ULS estimators, lower values for the chi-

square statistic were also associated with (1) larger sample sizes, (2) weaker 

measurement relations (factor loadings), and (3) normal distributions. Meanwhile, for the 

WLS estimator, lower values of the chi-square statistic were associated with higher 

values of both factor loadings and correlations. The impact of sample size and 
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distribution was not evident. In short, the polychoric correlation coefficient is best to use 

with the WLS for ordinal data. 

Using only C V M estimator, Potthast (1993) found that biases in the parameter 

estimates were minimal. However, the estimated factor correlations showed more bias 

than the factor loadings. In terms of the standard errors of indicator loadings, for small 

samples a negative bias in excess of 10 per cent was observed in the three largest models. 

For large samples the negative bias existed in the nine-parameter model, in this case a 

model with two factors, when positive or highly positive kurtosis was present. Under all 

conditions of nonnormality, the bias became more severe as the number of parameters 

increased from 15 to 22. Standard errors of indicator loadings were negatively biased 

relative to the standard deviation of the estimates in the models of 9 or more parameters, 

regardless of sample size. For a fixed level of nonnormality, this bias increased with 

increasing model size. A pattern of increasing negative bias was found as the level of 

nonnormality in the indicators or observed variables changed from negative to zero to 

positive and highly positive kurtosis. For the standard errors of factor correlations, 

increasing nonnormality caused increasing negative bias in the standard errors of the 

factor correlations. With a fixed sample size, an increase in model size produced larger 

negative bias in the standard errors of the average factor correlation. For smaller model 

sizes, less than 15 parameters, the chi-square values were not inflated. Contrariwise, for 

larger model sizes with 15 and 22 parameters, the chi-square values became excessively 

inflated. For sample size of 500, chi-square values were inflated. These problems 

worsened as positive kurtosis increased. At small sample size and when observed 

variables had strongest nonnormality, the true model with 22 parameters was rejected and 



the chi-square value was inflated. In the case of zero kurtosis, large model chi-square 

values were extremely inflated. The weight matrix was clearly unstable for large models, 

especially when the observed variables have extreme skewness and kurtosis. 

In short, the C V M estimated the parameters with slight positive bias that was not 

significant for any combination of model size, sample size, and nonnormality in the 

observed variables. In the model of more than four parameters, the bias worsened as 

model size and nonnormality of the observed variables increased. The negative bias 

diminished but did not disappear as sample size increased from 500 to 1000. The chi-

square statistics were inflated and the number of rejections of the true model was higher 

except in the four-parameter model and cases of negative or zero kurtosis in the nine-

parameter model. The Potthast findings indicate that the effects of using the C V M 

methodology with large models and small sample sizes for the C F A of ordered 

categorical variables are serious. Underestimated standard errors and/or highly 

overestimated chi-square statistics are inevitable under these conditions, especially when 

the observed variables are extremely nonnormally distributed. 

Dolan (1994) found that the use of Pearson correlation with M L resulted in too 

large rejection rates of Anderson-Darling (AD) statistics when number of response 

categories was less than five. Unlike the %2, the A D statistic is sensitive to departure from 

the expected (null) distribution at the tails of the observed distribution. For the five-

category, the A D statistics and rejection rates were acceptable when the response 

distribution was symmetric. Under nonnormality, both AD statistics and rejection rates 

were too high. However, the AGFI were all over 0.90. Negative biases were found in the 

mean and standard errors of factor loadings even when the response categories were 
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seven. The M L with polychoric correlation yielded the similar results except that the 

actual standard errors of the estimates were much smaller. The M L estimator yielded 

lower chi-square values when the response categories were up to four categories for all 

distributions except the opposite skewed distribution. Under the opposite skewed 

distribution, the chi-square values decreased up to 6-response category and model 

rejection also decreased. The values of the comparative fit index (CFI) were less than 

near perfect fit only if skewness varied across items. 

The following eight measures of fit were examined for their performance in the 

Hutchinson and Olmos (1998) study: CFI, critical N, incremental fit index (IFF), measure 

of centrality (MOC), nonnormed fit index (NNFI), relative fit index (RFT), root mean 

square error of approximation (RMSEA), and chi-square statistic. Both the sample size 

and model size were found to have greatest effect on CN, RFI, and M O C . In addition, 

model size had an extremely large effect on chi-square but not on chi-square/df ratio. 

Better fit was obtained from a smaller model. Increasing nonnormality had an effect on 

the decrement of fit for the large model size (i.e., four-factor model). But when the chi-

square/df was used, this interaction disappeared. The M L resulted in better fit for normal, 

rectangular, and symmetric-leptokurtic distributions whereas the WLS yielded better fit 

for extremely skewed and leptokurtic distribution. All fit indices except C N were 

adversely affected by increasing level of nonnormality. The most affected fit index was 

the RFI, especially at N = 500, data were skewed and leptokurtic, and the model was 

large. CFI, IFI, and NNFI were the least affected by the design variables except level of 

nonnormality. Only C N was less susceptible to nonnormality. M O C was most affected by 

the design variables. However, it was never the most affected by any single design 
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variable. The chi-square statistic was influenced by the same main and interaction effects 

as the MOC, with the exception of sample size. RFI was found to be sensitive to the main 

effects of sample size, model size, and level of nonnormality. 

The findings reported in Hutchinson and Olmos (1998) were consistent with those 

of Muthen and Kaplan (1992) and Potthast (1993). That is, chi-square indicated poor fit 

for nonnormal data, especially when the model was large. Consistent with Babakus et al. 

(1987), the Hutchinson and Olmos findings showed that greater skewness led to lower 

values of GFI and AGFI. In addition, increasing nonnormality led to poorer fit for all of 

the fit indexes except CN. The WLS did not compensate for nonnormality except for chi-

square, M O C , and RMSEA. Unlike the x2, RMSEA performed generally well in that its 

values were neither affected by sample size nor model size. While the RMSEA did reflect 

poorer fit when the data were skewed and leptokurtic, it was one of the few indexes to be 

amended by WLS. When data are symmetric and only moderately kurtotic, the use of 

WLS appears to afford little disadvantage over M L . It was also found that the NNFI was 

sensitive to model specification and independent of sample size. . 

The use of ADF and WLS is only applicable to large data sets. For applied 

researchers, analyzing ordered polytomous or Likert data without the benefit of large data 

sets and when data are nonnormal, the use of ADF and WLS is not feasible. They are 

forced to resort to the traditional M L estimator, which is the standard default method in 

almost all of the statistical software packages. Hutchinson and Olmos's (1998) findings 

suggested that M L could be used albeit minimally biased, provided that the data are not 

extremely nonnormal. The limitation of Hutchinson and Olmos's study is that all items 

are based on the same level of normality or nonnormality, which is unrealistic in practice 
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where distributions of items would vary within a given data set. It is useful to examine to 

what extent mixed levels of nonnormality can have effects on the various goodness-of-fit 

indices, especially the commonly reported chi-square test statistic in CFA. 

Under multivariate normality, Finch et al. (1997) found that relative bias in the 

standard errors of indirect effect estimates produced by the M L was negligible. 

Furthermore, the relative bias in the standard errors of the direct effect structural 

coefficients was negligible. The standard errors of direct and indirect estimates became 

increasingly negatively biased as the observed variables became increasingly nonnormal, 

especially under moderate and severe nonnormal distributions. Under severe 

nonnormality, M L estimator underestimated the standard errors of the indirect effect by a 

moderate percentage of 23%. When sample size was large, the relative bias in the 

standard errors of the structural coefficients decreased. 

Normal theory M L standard errors'were too small or underestimated when the 

normality assumption was violated. In contrast, the ADF standard errors were unaffected 

by the distributional characteristics of the variables, but were substantially negatively 

biased in small sample size. The practical effect of negatively biased standard errors 

would be the rejection of the null hypothesis too frequently. Under the nonnormality, the 

M L robust standard errors performed much better at all sample sizes. The pattern of bias 

in the standard errors of direct and indirect effects was also not influenced by variation in 

the population values of the factor loadings. 

Under the conditions of mixed nonnormality, no practical significant effects of 

either sample size or level of nonnormality were observed on the relative bias in the 

structural coefficients or the indirect effect estimates for either M L or ADF. When all 



variables were mildly and moderately nonnormal, no appreciable effect of sample size 

was found on the estimated standard errors of the indirect effect using normal theory M L -

robust. Bias in the standard errors was negligible. However, modest levels of relative bias 

in the standard errors of structural coefficients were observed for the M L and ML-robust. 

The relative bias in the ADF standard errors decreased with increasing sample 

size. Under the moderately to severely nonnormal distribution, no consistent effects of 

sample size on M L but estimates of the standard errors of the structural coefficients were 

negatively biased. Under the mixed normally and severely nonnormal distribution, the 

M L and ML-robust standard errors of the structural coefficients were severely biased at 

sample size of 150. These nonnormality effects decreased when sample size became 

larger. 

In the DiStefano (2002) study, under the normal distribution, increasing model 

size did not greatly affect the pattern of bias observed under both M L and WLS. 

Similarly, increasing sample size did not greatly reduce the level of bias in the observed 

parameter estimates. The use of the M L and Pearson correlation introduced little bias in 

factor correlations. In contrast, the WLS-polychoric correlation combination produced 

moderate levels of negative bias in factor correlations and the bias levels decreased when 

sample size was increased to 700. Similar to the bias levels of parameter estimates, the 

ML-Pearson correlation caused little bias in the standard errors of parameter estimates. 

The WLS-polychoric correlation introduced a large degree of bias, especially when the 

sample size was smaller. Both mixed positive and negative biases were produced by the 

WLS-polychoric correlation for the error variance parameters. Compared to WLS-

polychoric correlation, the ML-Pearson correlation resulted in less inflation in chi-square 
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values at a small sample size and a large model. All fit indexes (x 2, GFI, SRMR, NNFI, 

RMSEA) were within acceptable ranges except for WLS-polychoric correlation estimates 

of chi-square and standardized root mean square residual (SRMR) at smaller sample size. 

Under the nonnormal distribution of ordinal data, ML-Pearson correlation 

introduced little bias in factor loadings and factor intercorrelations. On the contrary, the 

WLS-polychoric correlation was robust to nonnormality and increasing sample size did 

not greatly affect bias levels in parameter estimates. In terms of standard errors, the M L -

Pearson correlation produced high level of negative bias whereas the WLS-polychoric 

correlation produced high level of bias only at smaller sample size, in this case Af = 350. 

The WLS-polychoric correlation also produced higher chi-square and SRMR at smaller 

sample size. The SB scaled chi-square was found to be able to reduce the level of bias of 

standard errors of parameter estimates and the inflation of chi-square. 

An important unpublished dissertation is Boomsma's (1983) study on the" 

robustness of M L estimation against nonnormality. The Monte Carlo simulated data used 

in the study were generated according to four C F A models with number of variables 

ranging from 6 to 10 and the size of correlations varying across the full range. For each 

model he generated data according to various combinations of number of scale points (2-

7) and skewness (a symmetric condition was also included). 300 replications were run for 

each combination. By holding the covariance structure true in the population, Boomsma 

was able to study the effects of skewness, without the confounding effect of 

categorization of the latent continuous variables into ordinal variables. Under the 

symmetric and skewed distributions, he found very little bias in parameter estimates. The 

effects of number of scale points and categorization with no skewness were found to be 
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very minor in terms of the true model rejection rates of the M L chi-square measure of fit. 

However, when the skewness value was larger than 1.0, the true model rejection rates 

were highly inflated. One caveat of the study is that only one sample size, that is, 400 was 

investigated. 

Number of Replications 

The number of replications in the computer simulation studies ranged from 100 to 

400. 

In summary, single-group CFA studies have shown that nonnormally distributed 

data could affect the performance of normal theory M L and GLS estimation methods in 

terms of the biases in standard errors of parameter estimates and fit indexes. When the 

observed variables have excessive skewness and/or kurtosis, the M L and GLS estimates 

of the standard errors and the associated chi-square statistic are incorrect. The number of 

scale points per se has relatively little impact on the chi-square goodness-of-fit test when 

the distribution of the categorized or ordinal variables is approximately normal. As the 

distributions of the categorized variables become increasingly and particularly 

differentially skewed, the chi-square values and the Type I error rates become inflated. 

Ordinal Data with Measurement Invariance 

Cheung and Rensvold (2002) have examined the impact of between-group 

constraints on the AGFI as indicators of measurement invariance based on the various 

invariance tests in the multi-group CFA. Two model sizes were used in their study: two-

factor and three-factor models with 3, 4, and 5 items per factor. The factor loadings for 

the three items were 1.00, 1.25, and 1.50; for four items were 1.00, 1.25, 1.25;, and 1.50; 

and for five items were 1.00, 1.00, 1.25, 1.50, and 1.50. The factor correlations were 

either 0.30 or 0.50 and the factor variances were set at either 0.36 or 0.81. 
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Cheung and Rensvold found that model complexity (i.e. number of items per 

factor and number of factors) could affect most of the goodness-of-fit indices (except for 

RMSEA). Only the standard error of the RMSEA was affected by model complexity. The 

Cheung and Rensvold study is limited to the use of M L as the sole estimation method and 

only two sample sizes (150 and 300) were used per group. They have reported that the 

data were generated to two multivariate-normal samples of size N. In short, no other 

details about the data characteristics (e.g., type of measurement scales) were given. 

However, this study has given a breakthrough in methodology by introducing the idea of 

looking at the changes in various practical GFIs used in M G C F A . According to Cheung 

and Rensvold, there is no standard against which a researcher can compare changes in 

practical GFIs in M G C F A for determining if the changes in the practical GFIs are 

meaningful when measurement invariance constraints are added to a model. 

In their study, nearly all of the practical goodness-of-fit indices (noncentrality 

parameter, RMSEA, Akaike's information criterion, Browne and Cudeck criterion, 

Expected value of the cross-validation index, Normed fit index, Relative fit index, 

Incremental fit index, Tucker-Lewis index, Comparative fit index, Parsimonious normed 

fit index, Parsimonious comparative fit index, Gamma hat, Rescaled Akaike's 

information criterion, Cross-validation index, McDonald's noncentrality index, and 

Critical N) except the GFI were examined for their differences between two nested 

models. Although Cheung and Rensvold did include the chi-square difference test and 

the normed chi-square (%2/df) in the result section, these statistical fit indices were not 

used as criteria for evaluating the various hypotheses of invariance. Rather they were 

used to examine the quality of the simulation. Cheung and Rensvold suggested that ACFI, 
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AGamma hat, and AMcDonald's NCI were robust statistics for testing the between-group 

invariance of C F A models. However, "robust" to which type of violation is not 

mentioned in their study. A general criterion for not rejecting the null hypothesis of all 

types of invariance was proposed in the study. According to them, a value of ACFI 

smaller than or equal to -0.01 indicated that the null hypothesis of invariance should not 

be rejected. For AGamma hat and AMcDonald's NCI, the critical values are -.001 and 

-.02, respectively. Such criteria are not based on theoretical rationales. 

Tests of Latent Mean Invariance 

In the construct comparability and measurement invariance literature, fewer 

studies have included the test of latent mean differences, which are subsumed under the 

test of structural invariance. The logic is that a test of measurement invariance 

(associations of observed scores to the latent variable) should precede tests of structural 

invariance (association of latent variables with each other) and latent mean invariance. In 

other words, one needs to understand what is being measured before testing associations 

among what is measured (Anderson & Gerbing, 1988). If the associations between items 

and the latent variable differ across comparison groups, inferences about the latent 

variable or construct are not valid because the measures are calibrated to the latent 

variable differently. When measurement invariance does not hold, it is meaningless for 

researchers to proceed with the testing of latent mean invariance. Due to the observed 

variables' or items' psychometric properties that are not generalizable across subgroups of 

a population, group comparisons based on latent mean differences cannot be made. 

Bollen (1989), Horn and McArdle (1992), and Vandenberg and Lance (2000) advocate 

for a strict requirement of measurement invariance (i.e., factor loadings invariance) 
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evidence before testing restrictions on means and intercepts. Contrariwise, Byrne, 

Shavelson, and Muthen, (1989) adopt a more liberal perspective by suggesting that 

further testing for latent mean differences is warranted under the condition of partial 

metric invariance. 

Hancock, Stapleton, and Berkovits (1999) have addressed the methodological 

issue of to what extent cross-group equality constraints must hold in order for the 

integrity of latent structural inference and of latent mean inference to be maintained. 

They presented an analytical treatment of loading invariance within multisample 

covariance structure models and of loading and intercept invariance within multisample 

latent mean structure models. Their study showed that conditions of partial measurement 

invariance and even configural measurement invariance need not preclude the belief of 

comparable constructs across population. The inference regarding construct 

comparability may be considered to rest in large part in the theoretical hands of the 

researcher and only to some extent by tests of measurement invariance. Improper cross-

group measurement constraints may begin with those assigning scale to the factor(s) of 

interest. Fixing a factor's variance to 1 in both or more groups directly implies latent 

homogeneity of variance whereas fixing a loading path to 1 in both or more groups 

implies a one unit change in the factor yields the exact same amount of change in the 

associated indicator variable. If these implicit invariances do not hold in the population 

even prior to imposing any other explicit and even proper cross-group constraints, then 

inaccurate assessment of structural relations will likely result. 

For covariance structure models, there are two options. First option, one should 

minimize loading constraints across groups. Rather, one would choose a loading for each 
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factor that can be argued on strong theoretical grounds to be the same value in the 

populations of interest, use this parameter to identify the factors' scale and then test and 

interpret the key structural parameters as they occur in the unstandardized solutions. 

Researchers should also conduct sensitivity analyses in order to determine the effects of 

their choice of scale indicator variables on the stability of the inferences regarding key 

unstandardized structural parameters. Second option, one may choose a loading for each 

factor somewhat arbitrarily, and then test and interpret the key structural parameters as 

they occur in the standardized solution. 

For latent means models, the minimum requirement for valid latent mean 

inference is that the factor scale indicator properly chosen in both or more groups also 

has equivalent intercepts, thereby making the alternative of a standardized solution 

approach not feasible. Theoretically, one should identify a variable believed to have 

invariant relations with the factor across groups and no differential bias such that equal 

amounts of the factor would be expected to yield equal amounts of this particular 

variable. Again, sensitivity analyses should be conducted by varying the choice of 

variable with fixed unit loading and constrained intercept in order to examine the effect 

of such choice on the resulting latent mean difference. 

Summary of Research Concerns 

The purpose of this dissertation was to investigate the recommendation made by 

Byrne (1998), Joreskog and Sorbom (1996) and others (Chou, Bentler, & Satorra, 1991; 

Hu, Bentler, & Kano, 1992) to use maximum likelihood estimation and the Pearson 

covariance matrix when one encounters ordinal data with large numbers of items and 

insufficient sample sizes in the context of M G C F A . In essence, this dissertation 

addressed the question that day-to-day researchers face: How does the formal test statistic 
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such as chi-square goodness-of-fit statistic (likelihood ratio test statistic) for various 

hypotheses testing of measurement invariance in M G C F A operate following Byrne, 

Joreskog and Sdrbom, and others' recommendation? This is an important question 

because this recommendation is widely followed in the research literature of education 

and psychology. According to Breckler (1990), a review of SEM applications in 

psychological research over the past 15 years reveals most to be based on Likert-type 

scaled data with the estimation of parameters using M L estimation method. However, it 

is important to note that I am not suggesting that the M L is the most appropriate method 

of analysis but rather that it is a common method and hence widely seen in the 

educational and psychological research literature. 

It is evident from the literature review that treating ordinal data as if they were 

continuous for use with the normal theory statistical methods such as Pearson correlation, 

multiple regression, and single-group confirmatory maximum likelihood factor analysis is 

not a promising practice. Specifically, analyzing data obtained from Likert-type items 

with small numbers of response categories as well as with severe skewness and kurtosis 

can cause serious distortions in the Pearson correlations/covariances, M L chi-square 

statistics, and standard errors of parameter estimates for single-group CFA. The use of 

statistical methods designed for multivariate normal data for the analysis of ordinal data 

in the M G C F A may lead to more complex problems because of coarsely categorized 

scales, nonnormal item response distributions across groups, and unequal sample sizes 

across groups. As,we know that the optimal number of response categories in single-

group C F A is five, the optimal number of response categories in M G C F A is yet to be 

determined. There is no doubt that polychoric correlation and its corresponding 
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asymptotic covariance matrix and the weighted least square (WLS) estimator should be 

used for dealing with ordinal data. The polychoric correlation is an estimate of the 

correlation between two latent variables underlying their respective observed variables, 

where the latent variables are assumed to have a bivariate normal distribution (Joreskog 

& Sdrbom, 1996). One caveat is that the use of polychoric correlation and WLS is limited 

to less than 25 items. In addition, large sample sizes (at least 3,000 to 5,000 in each 

group) are required in order to obtain correct weight matrix for asymptotic covariance 

matrices and stable parameter estimates in CFA. Hence, it is important to examine the 

usefulness of Pearson covariance matrices and M L estimation method for analyzing 

ordinal data with large numbers of items and small sample sizes. Mixed item formats are 

widely used in the construction of measurement instruments. Yet little is known about the 

effects of using mixed item format in MGCFA. To my knowledge, these issues have not 

been addressed in M G C F A . 

Given the above arguments, the research questions of this study are outlined as 

below: 

Research Questions 

1. What are the effects of ordinal-scaled data on the Type I error rates of the strong and 

full measurement invariance hypotheses across a number of scale points (ranging 

from 2 to 9 categories)? 

2. What are the effects of ordinal-scaled data on the Type I error rates of the strong and 

full measurement invariance hypotheses across item formats (single- and mixed-item 

formats)? 
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3. What are the effects of ordinal-scaled data on the Type I error rates of the strong and 

full measurement invariance hypotheses across response distributions (normal and 

skewed)? 

4. What are the effects of ordinal-scaled data on the Type I error rates of the strong and 

full measurement invariance hypotheses across sample size combinations? 

All the questions are investigated by looking at the M G C F A results of the 

empirical rejection rates of the two hypotheses of measurement invariance. 
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C H A P T E R III 

M E T H O D O L O G Y 

Two simulation studies were conducted to answer the research questions listed at 

the end of Chapter II. Study 1 focused on the context wherein one has a measure with all 

of the items having the same response format. Examples of single response formats 

abound in the psychological research literature, for example, a psychological measure of 

self-concept with 35 items to which the response options are on a four-point rating scale 

of agreement. Study 2 focused on the situation wherein one has a measure or test with a 

mixture of binary items and polytomously scored items. This mixed response format is 

most commonly seen in large-scale educational testing, such as the Third International 

Mathematics and Science Study (TIMSS) wherein an achievement test booklet may have 

35 items of which 30 are scored correct/incorrect (i.e., binary) and the remaining 5 are 

scored on a three-point scale of incorrect (score of 0), partially correct (score of 1), and 

correct (score of 2). The total test scores for this mixed item format test range from zero 

to 40. 

Study 1 represented the commonly found test and measure format in 

psychological measurement whereas Study 2 represented the test format found in some 

large-scale educational achievement tests. The simulation methodology used for these 

two studies reflected this disciplinary distinction. Of course, one should not interpret the 

above statements to imply that mixed item formats never occur in psychological 

measures nor that all educational achievement tests are of mixed item format. 
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Study 1: Ordinal Data with A Single Item Format 

A Monte Carlo approach was used to investigate the research questions. In 

essence, the examinees' responses to the binary and Likert-type items were simulated to 

mimic processes in responding to the ordinal scales under controlled conditions. The use 

of real data would not be able to realize this goal. 

To date, the effects of ordinal variables on model-data fits have been extensively 

examined with commonly used statistical methods such as SEM or single-group CFA. 

None has been done so far for ordinal variables with multi-group CFA. In view of this, a 

large population of ordinal responses was simulated in order to adequately examine the 

effects of the independent variables stated in the research questions and to assess the 

Type I error rate resulting from the use of ordinal data in the testing of the full and strong 

invariance hypotheses in the M G C F A framework. 

The methodology was adapted from similar studies on ordinal data in correlation, 

multiple regression, and single-group CFA described in the literature review. A single-

factor first-order measurement model with 30 indicators (items) was used for the 

M G C F A . The factor structure was assumed to be unidimensional both within and across 

groups. In this context, the model specifications were correct in both groups. Hence, the 

invariant single-factor CFA model across groups serves as the true model. There were 

two rationales for the use of a single-factor model. First, the majority of the measurement 

instruments in the educational and psychological research assess a unidimensional latent 

construct or unidimensional sub-scale scores. For example, the Coopersmith Self-Esteem 

Inventory for Children, Form B (Coopersmith, 1975) test items were designed to measure 

a unidimensional construct, that is, self-esteem. Second, large numbers of items (i.e., 
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more than 25 items) and small sample sizes (i.e., less than 1000 observations per group) 

were purposely selected in this study to reflect many common testing situations. The 

reader should recall from the literature review that with large numbers of items and small 

sample sizes, the recommended polychoric or tetrachoric correlations and WLS/ADF, 

DWLS, and C V M estimation methods for dealing with ordinal data could not be used. 

Study Design 

The simulation study was set up as an 8 x 6 x2 factorial design. The design 

variables were eight scale points (ranging from two to nine), two item distribution shapes 

(normal and positively skewed), and six sample size combinations ranging from 200 per 

group to 800 per group. This resulted in 96 cells in the simulation design with 100 

replications per cell. M G C F A was conducted on each combination of the design 

variables. Each cell consisted of the dependent variable (i.e., Type I error rates) derived 

from the M G C F A results of testing for the two hypotheses of measurement invariance: 

Full and Strong Measurement Invariance. 

At this point I will provide more details on each of the factors in the simulation 

experiment. 

Number of Scale Points 

For this study all of the items comprising a measurement instrument have the 

same number of scale points. For instance, all items have a 5-point scale. The number of 

scale points varies from 2 to 9, which reflect common practice of binary and Likert scales 

used in psychological research. 
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Distribution of the Item Responses 

The shapes of the distributions for the observed ordinal variables were of two 

conditions: normal (symmetric) and nonnormal (positively skewed). For a normal 

distribution, all the observed ordinal variables are of equal intervals, resulting in 

symmetric responses in the middle of the scale range. There are two possible conditions 

of nonnormality in the observed ordinal variables, namely positively and negatively 

skewed. For a positively skewed distribution, the ordinal variables are of unequal 

intervals with responses bunching to the left whereas for the negatively skewed 

distribution, the ordinal variables are of unequal intervals with responses bunching to the 

right. In the current study, only positively skewed distribution was investigated because 

the majority of the ordinal data in the applied social and psychological research tended to 

be positively skewed. 

Study 1A: Equal Latent Thresholds 

The ordinal variables with equal interval scale points and normal (symmetric) 

distribution was similar to that used in many of the single-group C F A studies (e.g., 

DiStefano, 2002; Dolan, 1994; Finch, West, & MacKinnon, 1997). The responses for 

ordinal scales with equal interval were assumed to be normally distributed and the range 

of the scale points included a standardized scale of z = -3 to z = +3 (Bollen & Barb, 

1981). The scale points were divided equally for each ordinal item response process in 

which the ordinal scale points were simulated. The cutting points are determined by 

considering the area under the normal curve between ± 3 standard deviations. On the 

average this range includes nearly all (i.e., over 99.7%) of the cases. Therefore, the 

generated symmetric ordinal data are, in essence, interval data. In order to determine the 

number of unit intervals per category, the six-unit interval between ± 3 is divided by the 
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number of categories. Let us consider a four-category case. The six intervals are divided 

by four, which results in 1.5 intervals for each category. If the value of the normally 

distributed variable is less than or equal to -1.5, the categorized or collapsed variable is 

coded as 1. If the value of the normal variable is greater than -1.5 and less than 0, the 

collapsed variable is coded as 2. If the value of the normal variable is greater than 0 and 

less than 1.5, the collapsed variable is coded as 3. Finally, if the value of the normal 

variable is greater than 1.5, the collapsed variable is coded as 4. The thresholds used for 

scale points ranging from 2 to 9 were appended in Appendix B. 

Study IB: Unequal Latent Thresholds 

For ordinal variables with unequal intervals, the thresholds were set to generate 

item responses that were positively skewed. Consider a four-category case. Three 

thresholds were needed in order to collapse the latent continuous variable into a four-

category observed variable starting at the latent z-score of zero. This leads to one interval 

for each category. If the value of the normal variable is less than or equal to 0, the 

collapsed variable is coded as 1. If the value of a normally distributed variable is greater 

than 0 and less than 1, the collapsed variable is coded as 2. If the value of the normal 

variable is greater than 1 and less than 2, the collapsed variable is coded as 3. For the 

value of the normal variable greater than 2, the collapsed variable is coded as 4. The 

thresholds used for collapsing the latent continuous variables into each number of scale 

points were attached in Appendix B. 

In studies 1A and IB, six combinations of equal and unequal sample sizes were 

considered for the two groups: 200 vs. 200; 500 vs. 500; 800 vs. 800; 200 vs. 500; 200 

vs. 800; and 500 vs. 800. These were the typical sample sizes across two groups used 

with the M L estimation method and Pearson covariance matrix in M G C F A applied 
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research. It is expected that a large number of parameters are to be estimated but so far 

the minimum sample sizes needed for the two groups in multi-group confirmatory 

maximum likelihood factor analysis are still unknown. Hence, it is of this study's interest 

to examine the sample sizes required to maintain the Type I error rate for the M L 

estimation method in MGCFA. 

Study 1C: Controlling the Skewness of the Observed Variables 

Study 1C was designed to control the skewness of the observed variables so that 

the effect of the number of scale points could be determined without the confounding 

variable of skewness - this confounding was present, by design, in Study IB. Based on 

the results of Study 1B, the degree of skewness was varied into skewness values of 1.22, 

1.34, and 2.03. A uniform or normal distribution (zero skewness) was included as a 

baseline condition. Because the confounding effect of skewness in Study IB was more 

profound at 2, 3, and 5 scale points, only these scale points were examined for their 

separate effects on the empirical Type I error rates of the M L chi-square difference test 

based on the maximum likelihood estimation in the hypotheses testing of full and strong 

measurement invariance. The levels of skewness of the observed variables are presented 

graphically in Figures 4-15. Studies 1A and IB varied sample size combinations but 

Study 1C only used 200 respondents per group (this was based on the findings in Studies 

1A and IB that sample size combination did not have an impact on the empirical Type I 

error rate). 
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Figure 4. Histogram for two-point variable with a skewness value of 0. 
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Figure 5. Histogram for two-point variable with a skewness value of 1 .22. 
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Figure 6. Histogram for two-point variable with a skewness value of 1.34. 
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Figure 7. Histogram for two-point variable with a skewness value of 2.03. 
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Figure 8. Histogram for three-point variable with a skewness value of 0. 
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Figure 9. Histogram for three-point variable with a skewness value of 1.22. 
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Figure 10. Histogram for three-point variable with a skewness value of 1.34 
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Figure 11. Histogram for three-point variable with a skewness value of 2.03 
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Figure 12. Histogram for five-point variable with a skewness value of 0. 
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Figure 13. Histogram for five-point variable with a skewness value of 1.22. 
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Figure 14. Histogram for five-point variable with a skewness value of 1.34. 
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Figure 15. Histogram for five-point variable with a skewness value of 2.03. 

Simulation Procedure 

Computer code was written to generate the latent responses set for 100,000 

examinees. The resulting data set serves as a population from which observed response 

conditions were generated. A simulation iteration begins by specifying a common 
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population covariance matrix, S, as £ = A O A +0 for the two subgroups. The 

o o o o o 

population model was a single-factor CFA model, with 30 items as indicators of the 

latent variable. The CFA model was invariant across the two groups. The population 

model parameters are summarized in Table 3. 
Table 3 

Model Parameters for Simulation 

Parameter Value 

Factor variance 1.00 

Item loadings 0.30-0.90 

Error variances 0.19-0.91 

The model parameters were composed of the following: (1) item/factor loadings 

with lambdas ranging from 0.30 to 0.90, (2) factor variance was set to 1.0 for 

identification and scaling purposes, and (3) the covariance matrix of the errors was 

defined to be diagonal with elements 9i = 1 - A2, assuming that the errors of 

measurement were uncorrelated. The values of lambda were selected to reflect the range 

of true item loadings commonly encountered in practice. To provide a realistic set of 

values, a set of educational research data (TIMSS data) was analyzed by using Principal 

Components Analysis. The resulting item loadings were used to specify the population 

covariance matrices. Other data could have been used but the TIMSS data are widely 

available hence enhancing the ease of replicability. In addition, values of the item 



loadings in the ranges of 0.30 to 0.90 were also used in the majority of the reviewed 

single-group C F A simulation and applied psychological studies. 

Taking one cell as an example, I outline the steps of my simulation, for Studies 

1A, IB, and 1C as follows: 

1. A population covariance matrix Z was created and normal continuous data was 

generated based on the item loadings typical of real data. 

2. To approximate data from binary scales (2-scale point), the generated continuous 

data were cut into two ordered categories. An algorithm was written to classify 

thresholds in the generated continuous data to obtain approximately normally 

distributed (equal latent thresholds) and positively skewed (unequal latent 

thresholds), ordered categorical data with two categories. The one cut point or 

threshold used to categorize the continuous data into two ordered categories was 

chosen in accordance with area under the normal curve. For Likert-scale data, say 

a five-scale point, the generated continuous data were converted to five ordered 

categories using four cut points or thresholds. Again, an algorithm was used to 

classify item thresholds in the generated continuous data to obtain both normally 

and nonnormally distributed, ordinal data with five categories. 

3. Both equal and unequal intervals in the Likert response categories or scale points 

were considered in this study. It has been common practice to design Likert scales 

with equal intervals in the applied research. In reality, not all the Likert scales 

have equal intervals. Therefore, it is of this study's interest to examine the effects 

of using Likert scales with unequal intervals in M G C F A . The shape of the 



distributions of the Likert variables were created by adjusting item threshold 

values corresponding to both normal and positively skewed conditions. 

4. The simulated data were imported to the PRELIS. Boostrapping was used to 

generate 100 Pearson covariance matrices for each group and LISREL 8.53 was 

used to run the M G C F A with Maximum Likelihood Estimation Method. 

5. The LISREL output was transferred into text files. The files were exported to a 

statistical software package (SPSS) to include only the indexes of interest (i.e., 

100 chi-square values and degrees of freedom for each hypothesis). The A%2, Adf, 

jc-values, and decision categories for full and strong invariance hypotheses were 

computed. These data were then read by a syntax file for the computation of mean 

rejection rates (empirical Type I error rates) for full and strong measurement 

invariance hypotheses. All the decision categories and the independent variables 

were entered into a single data file for later analysis: the Binary Logistic 

Regression analyses for examining the main effect of each independent variable 

and their interaction in predicting the decisions for full and strong invariance, 

respectively. 

6. In short, the ordinal data used in this study represent characteristics encountered 

in the empirical research. The use of a single-factor CFA model across two groups 

approximate a realistic measurement model which is most frequently tested in the 

applied research for studying construct equivalence or factor structure 

comparability across two different groups. Number of scale points, sample size 

combinations, and shape of distributions were created after reviewing empirical 
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M G C F A studies in the applied literature between 1980 and 2002 in psychology 

and education. 

Study 2: Mixed Item Format Data 

Study 1 was based on data with a single item format in which the numbers of 

ordinal scale points were identical across all items whereas Study 2 focused on multiple 

item formats in which data with a mixture of binary and polytomous items were 

examined. Study 2 was a 6 x 3 factorial design, resulting in 18 cells. The design variables 

were mixed item formats and sample size combinations. 

The mixed item formats were varied according to the proportion of ordered 

polytomous items as follows: 

1. 67% (20) binary items and 33% (10) polytomous items (3 scale points), 

2. 50% (15) binary items and 50% (15) polytomous items (3 scale points), and 

3. 33% (10) binary items and 67% (20) polytomous items (3 scale points). 

These item format proportions reflect the real achievement assessment data found in 

large-scale educational testing contexts such as T I M S S or the National Assessment of 

Educational Progress (NAEP) . Given that most of the achievement data, when partial 

scores are allotted, use 3-category polytomous items, the polytomous items in the 

simulation were limited to item responses with 3 scale points. The sample size 

combinations were the same as those stated in Study 1. 

Simulation Procedure 

Given that the mixed response format is most commonly found in large-scale 

educational testing, the simulation model will reflect the item response models commonly 
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found in educational measurement - item response theory. Note that item response theory 

was only used as a model for generating item responses and not for test analysis. 

For unidimensional binary items, the item responses were generated from the 

three-parameter logistic (3PL) item response theory model (Birnbaum, 1968), 

W = c , + ^ -> 

' l + exp[-1.7a,.(f?-&,.)] 

where at, bt and ci are the item i discrimination, difficulty, and guessing parameters, 

respectively. The Pi (0) denotes the probability of answering correctly to item i by a 

randomly selected examinee with ability 9. The 3PL item parameters a, b, and c of each 

binary item were real item parameter estimates taken from the TIMSS Mathematics 

Achievement Test (1995, 1999). The sample distributions of these item parameter 

estimates are summarized in Table 4. The full information of all the 20 item parameter 

estimates is appended in Appendix C. 
Table 4 

Means for the Binary Item Parameters Used in This Study 

a aa b (Jb C °c 

0.984 0.073 0.078 0.078 0.233 0.025 

Using a random number generator to produce numbers uniformly distributed on 

the interval [0,1], the probabilities were converted to either 0s or Is to reflect examinee 

item scores. When the random number selected was less than or equal to Pt(0), a "1" 

was assigned to an examinee for item i, and a "0" otherwise (Hambleton & Rovinelli, 

1986). 
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It is useful to describe the Hambleton and Rovinelli methodology at this point as a 

series of steps. 

Step #1: Examinees were simulated by randomly drawing an ability value from 

the normal distribution with a mean of zero and unit variance. 

Step #2: For each examinee one now has the item parameter values (as described 

above) and the ability 9 value. With the item and person statistics at hand one can 

compute each examinee's P^O), i.e., their probability of a correct response. 

Step #3: For each item and examinee, the examinee's probability of a correct 

response is compared to a uniformly distributed random number between 0 and 1, 

u. When the probability, Pt (0), was greater than the random draw, u, the 

examinee's item response was coded as responding correctly to the item, 1. When 

the probability was less, the examinee was coded as responding incorrectly, 0. 

Thus, as with real testing, individual simulated examinees sometimes respond incorrectly 

to items they should have been able to answer correctly. Step three, in essence, makes 

the item response generation a stochastic process, which is what is needed for simulation 

studies. That is, at the end of step two there is nothing stochastic, per se, in the simulation 

because at that point in the simulation Pt (6) is fixed. Comparing Pt (0) to a random 

number, between 0 and 1, makes the process stochastic and hence sometimes examinees 

respond incorrectly to items they should have been able to answer correctly — hence 

making the simulated data like real data, if Pi (6) > u then the item response is one. 

For the polytomously scored items, the generalized partial credit model 

(GPCM)(Muraki, 1992) was used to generate unidimensional polytomous item responses, 

which were categorized into r. +1 ordered score categories (0, 1, . . . , ri) for z'-th item. 



The model states that the probability of getting item score Uj =q for a randomly 

sampled examinee with ability 0 to the i-th item is given by 

P i e ) ^ o W i = q \ g ) = ex P ri : , o l .7 a , (*-W„>] ? = 0 , 1 , . . . , , , 

where ai is the slope parameter of item i; bt is the location parameter of item /; and djv 

are a set of threshold parameters of item i with associated constrains di0 = 0 and 

Z r; = 1 J, v=0(Muraki, 1992). 

Because nearly all of the polytomous items in the TEvlSS Mathematics Test 

consist of three-category items, polytomous items simulated in this study were all three-

category polytomous items. A total of 20 polytomous item parameters (as, bs, ds) were 

obtained from the TIMSS data. A summary of the sample distributions of the item 

parameter estimates is shown in Table 5. The full information of each item parameter 

estimates can be found in Appendix D. 

Table 5 

Means for the Polytomous Item Parameters Used in This Study 

a a a b a b 
d2 °d2 

0.757 0.017 0.658 0.018 -1.046 0.048 1.046 0.051 

The approach described by Gonzalez-Roma, Hernandez & Gomez-Benito (2002) was 

used to generate ordered polytomous items. For each examinee, a latent trait estimate 0 was 

generated from a normal standard distribution, JV(0,1). The GPCM probabilities were 

summed across categories to create a cumulative probability for each score level, and 

then the probability of responding above category k [ P* (0)] was computed. For each 
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simulated item and examinee a single random number (u) was randomly sampled from a 

uniform distribution over the interval [0,1], and the item scores were assigned as follows: 

k = 3 if P2\G) > u 

k = 2 i f P2\0)<u<P*(Q) 

k = l if P*(6)<u. 

It is important to note that the logic of the scoring rules for the ordered polytomous items 

are opposite of the binary items because in the ordered polytomous items P*k (0) is the 

probability of responding above category k. 

In total, two population data were simulated with equivalent parameters (i.e., 

measurement invariance across the two populations). The population data consist of 20 

binary and 20 polytomous items. Three population data with different proportions of 

polytomous items were created by a random selection of the items. The skewness values 

of the population data according to the three conditions of mixed item formats are 

presented in Table 6. The response distributions for each of the mixed item format 

conditions were approximately normal. 

Table 6 

Mean Skewness of the Mixed Item Format Population Data 

Mixtures of Item Formats Mean Skewness 

67% Binary and 33% Polytomous Items -0.39 

50% Binary and 50% Polytomous Items -0.44 

33% Binary and 67% Polytomous Items -0.40 



Testing for Measurement Invariance Hypotheses 

Before the testing for the invariance of particular parameters across groups, a 

baseline model was first determined for each group. In this sense, all sets of parameters 

were estimated separately in the two groups (no between-group constraints). According 

to Byrne (1998), there are four specific hypotheses that need to be considered in the 

testing for the invariance of a measurement instrument: (1) the number of underlying 

factors is equivalent across groups, (2) the pattern of factor loadings is equivalent across 

groups, (3) structural relations among the factors are equivalent across groups, and (4) the 

reliabilities of item pairs from each subscale of the instrument are equivalent across 

groups. However, note that the testing for hypothesis three is not relevant to one-factor 

CFA models. 

Figure 16 summarizes the two measurement invariance hypotheses that were 

tested in this study. 
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Baseline Model 
(No between-group 

constraints) 

Strong Measurement 
Invariance Model 

(Number of factors and 
Factor loadings are 

constrained to equality) 

Full Measurement 
Invariance Model 

(Number of factors, Factor 
loadings, and Error 

variances are 
constrained to equality) 

Figure 16. M G C F A nested models for the testing for two hypotheses of measurement 

invariance. 

Estimation Method 

The M G C F A was conducted by using the Pearson product moment covariance 

matrices along with the normal theory M L estimation method in the LISREL 8.53. There 

were 100 replications for each cell. 

Dependent Variables 

For each combination of the conditions, M G C F A was conducted for the tests of 

two hypotheses of measurement invariance. Effects of ordinal data and mixed item 

formats on the tests of hypotheses of measurement invariance were analyzed through the 



84 

mean rejection rates of the true models (Type I error rates). The continuous data with 

equal interval and normal distribution served as a baseline for comparisons and a quality 

check on the simulated data. 

Analysis for the Simulation Results 

Empirical Type I Error Rates 

The empirical Type I error rates for each invariance hypothesis were computed as 

follows: Empirical Type I error rates = number of rejections divided by 100 

replications. 

In order to determine whether an empirical Type I error rate is inflated or not, the 

two-tailed confidence interval (at a Bonferroni corrected confidence interval of 99%) was 

computed using the normal approximation. Appendix E shows a table of the lower and 

upper confidence limits for each empirical alpha. The empirical alpha of .13 or below is 

within the two-tailed confidence interval. Hence, if an empirical alpha fell in the range of 

0 and .13, the empirical Type I error rate is not inflated. 

Binary Logistic Regression Analysis 

Binary logistic regression was used to determine the main and interaction effects 

of the independent variables on the decisions of full and strong measurement invariance. 
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C H A P T E R I V 

R E S U L T S 

In this chapter the simulation study outcomes will be presented and analyzed. 

Each study is presented in the order they are described in the previous chapter, the 

Methodology Chapter. 

Study 1: Ordinal Data with A Single Item Format 

It should be recalled that study one consists of three sub-studies: Studies 1 A, IB, 

and 1C. Together these sub-studies were designed to determine the effects of analyzing 

ordinal data with the normal theory Maximum Likelihood estimation method and Pearson 

covariance matrices in the M G C F A framework on the Type I error rates of the chi-square 

difference test (difference in chi-squares between two nested models) for testing full and 

strong measurement invariance hypotheses. The study was designed to have a large 

number of items (with all items loading on one factor) and small sample sizes to depict 

the research situation wherein the use of (a) polychoric correlation along with its 

corresponding asymptotic covariance matrix as well as LISREL's Weighted Least 

Squares method or Browne's (1984) Asymptotic Distribution Free method or (b) 

Muthen's (1984) Categorical Variable Modeling are not feasible. The ordinal data with a 

single item format were simulated to represent typical binary, Likert-type or rating scale 

data used in psychology. Many of the measurement instruments such as questionnaires, 

attitude and opinion surveys, rating scales, and, interest inventories consist of items with 

a single ordered categorical response format. One hundred replications were run in each 

of the conditions. 
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Check on the Simulation Methodology 

As a first step, a quality check was made of the data generation process. M G C F A 

was run with 100 replications for the continuous data under varying sample size 

combinations before introducing any categorization. Table 7 shows that the mean 

rejection rates for the full and strong measurement invariance hypotheses are, as expected 

for multivariate normal item responses, within their two-tailed confidence interval (at a 

Bonferroni corrected confidence interval of 99%). Taking sampling variability into 

account, none of the chi-square test statistics are inflated. This indicates that the true 

models, namely full measurement invariance and strong measurement invariance models 

all hold for the simulated multivariate normal data. The empirical Type I error rates of the 

normally distributed continuous data also serve as a baseline for the comparison with the 

empirical rates of the symmetric and of the positively skewed ordinal data. 
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Table 7 

Empirical Type I Error Rates of ML Chi-square Difference Test for the Full and Strong 

Measurement Invariance Hypotheses under Continuous Condition 

Sample Sizes 

(nl: n2) Hypothesis 

Fl SI 
200 200 .04 .05 

500 500 .01 .02 

800 800 .05 .06 

200 500 .05 .08 

200 800 .03 .04 

500 800 .03 .05 

Note. Those empirical Type I error rates that have the nominal alpha (.05) outside of their 

two-tailed confidence interval (at a Bonferroni corrected confidence interval of 99%) would 

be in bold font. Fl and SI denote Full and Strong Invariance Hypotheses, respectively. 

Study 1A: Equal Latent Thresholds 

As discussed in Chapter Three, each of the latent continuous variables in the 

simulation were categorized into a number of scale points ranging from two to nine 

following the equal latent thresholds used by Bollen and Barb (1981). Using equal 

thresholds, the observed ordinal data were symmetric. 

Symmetric Ordinal Variables. 

The empirical Type I error rates of the M L chi-square difference test for the full 

and strong measurement invariance hypotheses across different number of scale points 

are presented in Table 8. The empirical rejection rates are zero for the two scale points. 



At three and higher scale points,all of the Type I error rates had the nominal alpha (.05) 

within their two-tailed Bonferroni-corrected confidence interval. Likewise this protection 

of the nominal Type I error rate was upheld for equal and unequal sample sizes. 

Table 8 

Empirical Type I Error Rates of ML Chi-square Difference Test for the Full and Strong 

Measurement Invariance Hypotheses Across Number of Scale Points (Symmetric 

Distributional Condition) and Sample Size Combinations 

Sample 
Sizes Hypothesis Number of Scale Points 
(nl: ni) 

2 3 4 5 6 7 8 9 
200 200 Fl .00 .09 .03 .04 .01 .03 .04 .00 

SI .01 .08 .02 .05 .03 .03 .04 .00 
500 500 Fl .00 .08 .04 .03 .04 .05 .03 .02 

SI .00 . .08 .04 .08 .05 .05 .03 .08 
800 800 Fl .00 .05 .03 .02 .04 .03 .02 .05 

SI .00 .07 .04 .04 .02 .02 .02 .04 
200 500 F l .00 .13 .02 .02 .04 .04 .07 .02 

SI .00 .08 .04 .01 .02 .04 .09 .01 
200 800 F l .00 .08 .01 .00 .04 .07 .03 .03 

SI .00 .06 .05 .02 .04 .04 .03 .02 
500 800 F l .00 .09 .01 .05 .04 .02 .01 .01 

SI .00 .07 .03 .06 .05 .00 .00 .04 

Note. Those empirical Type I error rates that have the nominal alpha (.05) outside of their two-tailed 

confidence interval (at a Bonferroni corrected confidence interval of 99%) would be in bold font. Fl and 

SI denote Full and Strong Invariance Hypotheses, respectively. 

Logistic Regression Analysis 

Table 9 shows the results of logistic regression analysis for the simulation results 

in Table 8. The logistic regression was used to predict the two categories of decision for 

the full measurement invariance (1 - reject, and 0 - accept) from the number of scale 

points, sample size combination, and the interaction. The Wald Test values indicate that 
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neither the number of scale points nor the sample size combination main effects were 

statistically significant predictors for the decision for the full measurement invariance 

hypothesis. Likewise their interactions are not statistically significant at the alpha level of 

.05. The Hosmer and Lemeshow Test indicates a good model-data fit, x2 = 12.05, df= 8, 

p = A49. 

In Table 10, the logistic regression analysis shows that the number of scale points, 

sample size combination, and their interaction do not predict the decision for strong 

measurement invariance. The W a l d Test values for each of the factors and their 

interaction are not statistically significant. The Hosmer and Lemeshow Test indicates a 

good fit of the L R model to the data fit, x2 = 11 • 16, df= 8, p = . 193. 

Table 9 

Logistic Regression Analysis of Decision for Full Measurement Invariance as A Function 

of Number of Scale Points and Sample Size Combination (Symmetric Distribution) 

Variable Wald Test df_ Sig 

Number of Scale Points 0.79 1 .372 

Sample Size Combination 6.69 5 .245 

Number of Scale Points* 
Sample Size Combination 

6.06 5 .301 
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Table 10 

Logistic Regression Analysis of Decision for Strong Measurement Invariance as A 

Function of Number of Scale Points and Sample Size Combination (Symmetric 

Distribution) 

Variable Wald Test df Sig. 

Number of Scale Points 0.00 1 1.000 

Sample Size Combination 0.94 5 .967 

Number of Scale Points* 3.16 5 .676 
Sample Size Combination 

Study IB: Unequal Latent Thresholds 

Given that the underlying thresholds are typically unknown and need not 

necessarily be equal, which is the case in most of the data collected from the social and 

behavioral sciences, unequal latent thresholds were thus used for the categorization of the 

latent continuous variables in the simulation into observed variables with a number of 

scale points ranging from two to nine. 

Positively Skewed Ordinal Variables. 

Table 11 shows the results of the empirical Type I error rates of the M L chi-

square difference test for the full and strong measurement invariance hypotheses across 

different number of scale points under the condition of a positively skewed distribution. 

From Table 11, it seems evident that the empirical Type I error rates are inflated due to 

the increasing skewness rather than the increased number of scale points. The highest 

skewness is at 2 scale points. Then there is an increasing of skewness between 3 and 9 

scale points. When the univariate skewness values are around 0.61, the empirical Type I 



error rates for the two hypotheses of measurement invariance are all less than or closer to 

the nominal alpha level of .05. Wi th a skewness value of 0.91, all the empirical Type I 

error rates for the full measurement invariance hypothesis are inflated whereas most of 

the empirical Type I error rates for the strong measurement invariance have the nominal 

alpha (.05) within their two-tailed Bonferroni-corrected confidence interval of 99%. The 

empirical rejection rates are increasingly inflated when the skewness values are increased 

from 1.07 to 3.48. The majority of the empirical Type I error rates have a nominal alpha 

(.05) outside of their two-tailed Bonferroni corrected confidence interval of 99%. 

Table 11 

Empirical Type I Error Rates of ML Chi-square Difference Test for the Full and Strong 

Measurement Invariance Hypotheses across Number of Scale Points (Positively Skewed 

Distributional Condition) and Sample Size Combinations 

Sample 
Sizes Hypothesis Number of Scale Points 
(nl: nl) 

2 3 4 5 6 7 8 9 
s = 3.48 s= 0.61 s = 0.91 s= 1.07 s = 1.17 s= 1.24 s = 1.29 s= 1.63 
k =10.09 k = -0.55 k = 0.02 k = 0.41 k = 0.68 k = 0.91 k= 1.04 k = 2.21 

200 200 F l 1.00 .03 .21 .32 .46 .64 .61 .99 
SI .99 .03 .12 .23 .25 .29 .29 .34 

500 500 F l 1.00 .02 .15 .43 .49 .63 .60 .94 
SI .99 .05 .07 .21 .23 .33 .35 .26 

800 800 F l 1.00 .01 .19 .36 .48 .55 .65 .97 
SI 1.00 .03 .06 .12 .25 .24 .31 .28 

200 500 F l 1.00 .02 .20 .35 .44 .65 .65 .97 
SI 1.00 .03 .15 .19 .16 .22 .28 .31 

200 800 F l 1.00 .04 .16 .33 .50 .60 .54 .96 
SI 1.00 .02 .14 .13 .22 .29 .33 .23 

500 800 F l 1.00 .02 .14 .44 .37 .62 .68 .98 
SI 1.00 .03 .11 .20 .23 .28 .35 .28 

Note. Those empirical Type I error rates that have the nominal alpha (.05) outside of their two-tailed 
confidence interval (at a Bonferroni corrected confidence interval of 99%) would be in bold font. 
Fl and SI denote Full and Strong Invariance Hypotheses, respectively, s = Skewness; k = Kurtosis. 
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Logistic Regression Analysis 

The Wald Test results from Tables 12 and 13 indicate that number of scale points 

is a statistically significant predictor for the decisions for full and strong measurement 

invariance. Sample size combination is not a statistically significant predictor. For each 

of the invariance decisions, the interaction between the number of scale points and 

sample size combination is not statistically significant. Although the main effects of the 

number of scale points were statistically significant for both hypotheses, the Hosmer and 

Lemeshow Test indicates a bad model-data fit for the Logistic Regression Analysis of the 

decision for full measurement invariance, x 2 = = 1513.11, df= 8,p - .000. Likewise, the 

model-data fit does not hold for the logistic regression analysis of the decision for strong 

measurement invariance, x2 = 949.36, df= S,p = .000. 

Table 12 

Logistic Regression Analysis of Decision for Full Measurement Invariance as A Function 

of Number of Scale Points and Sample Size Combination (Asymmetric Distribution) 

Variable Wald Test df_ Sig. 

Number of Scale Points 40.58 1 .000 

Sample Size Combination 0.59 5 ; .988 

Number of Scale Points* 1.16 5 .949 
Sample Size Combination 
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Table 13 

Logistic Regression Analysis of Decision for Strong Measurement Invariance as A 

Function of Number of Scale Points and Sample Size Combination (Asymmetric 

Distribution) 

Variable Wald Test df Sig 

Number of Scale Points 25.05 1 .000 

Sample Size Combination 0.53 5 .991 

Number of Scale Points* 1.63 5 .897 
Sample Size Combination 

Going back to Table 11, the inflated empirical Type I error rates do not really 

reflect the effects of the number of scale points because the Type I error rates at 2 scale 

points are the highest, then they level off at 3 scale points and increase throughout the 

remaining scale points. The Type I error rate inflation may reflect the increasing of 

skewness. As discussed in the previous paragraph, the highest Type I error rates are 

found at 2 scale points in which the skewness is also the highest. From 3 to 9 scale 

points, there is an increasing skewness. Hence, the logistic regression was conducted with 

skewness. Tables 14 and 15 indicate that skewness is the only variable that is significant. 

The Hosmer and Lemeshow Test statistics indicate a lack of fit for the logistic regression 

models for the decision for full measurement invariance (%2 = 19.24, df=S,p = .014) and 

for the strong measurement invariance (x2 = 77.85, df= 8,p = .000), respectively. 
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Table 14 

Logistic Regression Analysis of Decision for Full Measurement Invariance as A Function 

of Skewness and Sample Size Combination (Asymmetric Distribution) 

Variable Wald Test df Sig. 

Skewness 137.92 1 .000 

Sample Size Combination 1.82 5 .874 

Skewness* 2.10 5 .835 
Sample Size Combination 

Table 15 

Logistic Regression Analysis of Decision for Strong Measurement Invariance as A 

Function of Skewness and Sample Size Combination (Asymmetric Distribution) 

Variable Wald Test df Sig. 

Skewness 83.98 1 .000 

Sample Size Combination 2.78 5 .734 

Skewness* 1.46 5 .918 
Sample Size Combination 

In order to have a better control of the skewness, the logistic regression analyses 

were re-conducted with the data that consist of 3 to 9 scale points. Only the number of 

scale points was examined here. The logistic regression results are presented in Tables 16 

and 17. 
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Table 16 

Logistic Regression Analysis of Decision for Full Measurement Invariance as A Function 

of Number of Scale Points (3-9) and Sample Size Combination (Asymmetric Distribution) 

Variable Wald Test df Sig. 

Number of Scale Points 175.51 1 .000 

Sample Size Combination 1.65 5 .895 

Number of Scale Points* 2.21 5 .819 
Sample Size Combination 

Table 17 ., ' 

Logistic Regression Analysis of Decision for Strong Measurement Invariance as A 

Function of Number of Scale Points (3-9) and Sample Size Combination (Asymmetric 

Distribution) 

Variable Wald Test df Sig. 

Number of Scale Points 41.18 1 .000 

Sample Size Combination 2.05 5 .843 

Number of Scale Points* 1.33 5 .932 
Sample Size Combination 

As seen in Tables 16 and 17, the main effects of the number of scale points 

remain statistically significant even though the skewness was controlled by taking out the 

data for 2 scale points. For both the decisions for full and strong measurement invariance, 

the Hosmer and Lemeshow Test statistics indicate poor model fits (full: x2 = 156.88, df-

S,p = .000; strong: x2 = 49.81, df= 8,p = .000). 



Due to the nature of the simulated data, it is not clear whether the inflation of the 

Type I error rates is due to number of scale points or skewness. 

Study 1C: Controlling the Skewness of the Observed Variables 

Because the effects of the number of scale points were confounded by the 

skewness of the observed variables in Study I B , Study 1C was designed to disentangle 

the confounding effects o f skewness by controlling the skewness of the observed 

variables. 

Disentangling the Effect of Skewness from the Number of Scale Points. 

Table 18 shows the empirical Type I error rates of the M L chi-square difference 

test for the full and strong measurement invariance hypotheses when the confounding 

effects of skewness are disentangled from the number of scale points. Because the sample 

size combinations and their interaction with skewness were found to have no impacts on 

the empirical Type I error rates, only one condition of the sample size combination, that 

is, 200 : 200 was investigated in Study 1C. 



Table 18 

Empirical Type I Error Rates of ML Chi-square Difference Test for the Full and Strong 

Measurement Invariance Hypotheses When the Effects of Skewness and Number of Scale 

Points Are Disentangled (Sample Size Combination of200 : 200) 

Number of Scale Points 
Distribution Hypothesis 2 3 5 

Not Skewed Fl .00 .04 .05 
(s = 0) SI .01 .04 .04 

Positively Skewed Fl .21 .44 .62 
(s = 1.22) SI .13 .29 .17 

Positively Skewed Fl .32 .63 .74 
(s=1.34) SI .19 .31 .34 

Positively Skewed Fl .94 .98 .98 
(s = 2.03) SI .72 .78 .72 

Note. Those empirical Type I error rates that have the nominal alpha (.05) outside of their two-tailed 

confidence interval (at a Bonferroni corrected confidence interval of 99%) would be in b o l d f on t . 

Empirical Type I error rate that is marginally within the two-tailed confidence interval is italized. 

Fl and SI denote Full and Strong Invariance Hypotheses, respectively, s = Skewness. 

Using eyeballing, it appears that increasingly skewness and numbers of scale 

points have led to the inflation of empirical Type I error rates. When the skewness values 

are above 1.0, the empirical Type I error rates are increasingly higher and have the 
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nominal alpha outside of their two-tailed Bonferroni-corrected confidence interval of 

99%. • ' • 

Logistic Regression Analysis 

The inferential statistics based on the logistic regression analyses,show that 

skewness is indeed a statistically significant predictor for the decision for full 

measurement invariance (see Table 19). The interaction between number of scale points 

and skewness is not statistically significant at the .05 alpha level. The chi-square and p-

value of the Hosmer and Lemeshow Test indicate a good model fit, %2 = 11.23, df = l,p-

.129. 

Table 19 

Logistic Regression Analysis of Decision for Full Measurement Invariance as A Function 

of Number of Scale Points and Skewness 

Variable Wald Test df Sig 

Number of Scale Points 1.89 1 .170 

Skewness 17.75 1 .000 

Number of Scale Points* 0.13 1 .722 
Skewness 

As indicated by the Wald Test statistic and its respective /?-value in Table 20, 

skewness is the only statistically significant predictor for the decision for strong 

measurement invariance. Neither number of scale points nor its interaction with skewness 

is statistically significant at the .05 alpha level. The Hosmer and Lemeshow Test 

indicates a good model fit, f = 14.19, df= 7,p = .048. 
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Table 20 

Logistic Regression Analysis of Decision for Strong Measurement Invariance as A 

Function of Number of Scale Points and Skewness 

Variable Wald Test df Sig. 

Number of Scale Points 1.55 1 .213 

Skewness 32.29 1 .000 

Number of Scale Points* 0.97 1 .325 
Skewness 

Study 2: Mixed Item Format Data 

In this study, the data were simulated to reflect achievement data that have a 

mixture of binary items and ordered polytomous items. A quality check on the simulated 

data was conducted by testing the full and strong measurement invariance hypotheses at 

the population level for each mixed item format combination. As can be seen in Table 21, 

the differences in chi-squares between models, that is, baseline vs. full invariance, and 

baseline vs. strong invariance are not statistically significant at the alpha level of .05. 

The results indicate that the factor structure of the artificial achievement test is invariant 

across groups. Thus, any sample data drawn from the population data are expected to 

yield equivalent factor structures for the two groups in the M G C F A framework. 
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Table 21 

Maximum Likelihood Chi-square Goodness-of-Fit Statistics between Models 

Mixed Item Format Model Chi-square p 
Difference Statistic 

67% Binary Items Baseline vs. 32, Adf= 60 1.00 
33% Polytomous Items Full Invariance 
(20:10) 

Baseline vs. Strong Ax2 = 2\,Adf= 30 .89 
Invariance 

50%) Binary Items Baseline vs. AX2 = 38, Adf= 60 .99 
50%o Polytomous Items Full Invariance 
(15:15) 

Baseline vs. Strong AX2 = 23, Adf= 30 .82 
Invariance 

33%o Binary Items Baseline vs. AX2 = 39, Adf= 60 .98 
67%) Polytomous Items Full Invariance 
(10:20) 

Baseline vs. Strong Ax2 = 23, Adf= 30 .82 
Invariance 

Note. Numbers of binary and polytomous items are in parentheses. 

Table 22 reports the results of empirical Type I error rates of the M L chi-square 

difference test for the full and strong measurement invariance hypotheses across mixed 

item formats and sample size combinations. For both hypotheses, the empirical rejection 

rates of the M L chi-square difference test have the nominal alpha (.05) that fall within 

their two-tailed confidence interval (at a Bonferroni corrected confidence interval of 

99%). 
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Table 22 

Empirical Type I Error Rates of ML Chi-square Difference Test for the Full and Strong 

Measurement Invariance Hypotheses Across Mixed Item Formats and Sample Size 

Combinations 

Sample 
Sizes Hypothesis Mixed Item Formats 
(nl: nl) 

67% Binary 50% Binary 33% Binary 
33% Polytomous 50% Polytomous 67% Polytomous 

200 : 200 F l .01 .02 .01 
SI .00 .00 .00 

500 : 500 F l .00 .01 .00 
SI .02 .01 .02 

800 : 800 Fl .00 .01 .00 
SI .01 .01 .00 

200 : 500 Fl .00 .03 .00 
SI .02 .00 .01 

200 : 800 Fl .00 .03 .00 
SI .00 .02 .00 

500 : 800 Fl .00 .02 .02 
SI .01 .01 .01 

Note. Those empirical Type I error rates that have the nominal alpha (.05) outside of their two-tailed 

confidence interval (at a Bonferroni corrected confidence interval of 99%) would be in bold font. Fl and 

SI denote Full and Strong Invariance Hypotheses, respectively. 

Logistic Regression Analysis 

For both hypotheses, none of the predictors in the logistic regression analyses are 

statistically significant at the alpha level of .05. The inferential statistics in Tables 23 and 

24 support the results of the empirical Type I error rates as shown in Table 22. It is 

evident that mixed item formats, sample size combination, and their interactions do not 

have an impact on the decisions for full and strong measurement invariance. 
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Table 23 

Logistic Regression Analysis of Decision for Full Measurement Invariance as A Function 

of Mixed Item Formats and Sample Size Combination 

Variable Wald Test df Sig. 

Mixed Item Formats 0.00 1 1.000 

Sample Size Combination 2.07 5 .840 

Mixed Item Formats* 
Sample Size Combination 

1.10 5 .954 

Table 24 

Logistic Regression Analys 's of Decision for Strong Measurement Invariance as A 

Function of Mixed Item Formats and Sample Size Combination 

Variable Wald Test df Sig. 

Mixed Item Formats 0.68 1 .411 

Sample Size Combination 1.31 5 .934 

Mixed Item Format* 0.84 5 .974 
Sample Size Combination 
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CHAPTER V 

DISCUSSION 

In this chapter, I will first restate the purposes of the study and then discuss the 

Monte Carlo simulation study findings and their implications in the order of the previous 

chapters. The methodological and educational contributions of the study, the limitations 

of the study, and the suggestions of future studies will also be discussed. 

This study examined the impact of analyzing ordinal data and mixed item format 

data with the normal-theory Maximum Likelihood estimation method and Pearson 

covariance matrix in the framework of multi-group confirmatory factor analysis. The 

empirical Type I error rate of the M L chi-square difference test for full and strong 

measurement invariance hypotheses was systematically examined under varying 

conditions of numbers of scale points, response distributions, mixed item formats, and 

sample size combinations. Given that much of the data in the social and behavioral 

science (psychology) research are of binary and Likert-type data, Study 1 focused on the 

effects of analyzing ordinal data with the normal theory Maximum Likelihood estimation 

and Pearson Covariance Matrix in the M G C F A framework. The increasing use of the 

mixed item formats in achievement tests and of the M G C F A for evaluating the 

comparability of the factor structures of such tests across different groups set the stage for 

Study 2, which was designed to examine the effects of analyzing mixed format data with 

the normal-theory Maximum Likelihood estimation method and Pearson covariance 

matrix in M G C F A . 

The Weighted Least Squares (Joreskog & Sdrbom, 1996) or Asymptotic 

Distribution Free (Browne, 1984) estimation of the model parameters using polychoric or 
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tetrachoric correlation and asymptotic covariance matrix and Muthen's (1984) 

Categorical Variable Methodology are theoretically sound estimation methods for dealing 

with data derived from an ordinal scale in the multi-group confirmatory factor analysis 

methodology. Unfortunately, the positive effects of these methods are offset by the 

following practical limitations: (a) due to computer memory constraints they are limited 

to approximately 20-25 items for computing the asymptotic covariance matrices, and (b) 

they are not recommended for small sample sizes (less than 1,000 per group) because of 

the instability of the weight matrix. In addition, ADF does not work well as a means of 

compensating for the effects of nonnormality unless the model is small (i.e., 9 observed 

variables or 24 degrees of freedom). Muthen and Kaplan (1992) found that A D F chi-

square was quite sensitive to model size even for the multivariate normal continuous 

variables. Likewise, the standard errors of parameter estimates produced by ADF 

estimator were seriously downward biased as the model size increased. 

Given that data with mixed binary and ordered polytomous items are of ordinal 

nature, the above-mentioned problems related to ordinal variables also apply to such data. 

Hence, the performance of the M L estimation method and Pearson covariance matrix in 

analyzing ordinal data and mixed item format data in the multi-group confirmatory factor 

analysis framework is worth investigating. 

Study 1: Ordinal Data with A Single Item Format 

As a data simulation check, as expected, the use of the Maximum Likelihood 

estimation and Pearson covariance matrix with continuous and multivariate normal data 

did not result in the inflation of the empirical Type I error rates for the full and strong 

measurement invariance hypotheses. The results are not surprising given that the M L 
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estimation method and Pearson covariance matrix are built upon the multivariate 

normality and interval measurement assumptions of the observed variables. 

Study 1A: Equal Latent Thresholds 

Under the conditions of a symmetric distribution, the number of scale points has 

little or no effect on the empirical Type I error rates of the M L chi-square difference test. 

The use of a coarse measurement scale such as a 2- or 3-point scale under the symmetric 

distribution did not lead to an inflation of the empirical Type I error rate for the full and 

strong measurement invariance hypotheses. This indicates that when the assumption of 

multivariate normality of the ordinal variables is not violated the ordinal data, regardless 

of number of scale points, could be analyzed with the normal theory M L estimation 

method and Pearson covariance matrix in M G C F A . These findings are consistent with 

the single-group C F A (Babakus et al., 1987; Boomsma, 1983; Muthen & Kaplan, 1985, 

1992; Olsson, 1979) that found that when categorical variables approximate a normal 

distribution, the number of categories has little effect on the chi-square likelihood ratio 

test of model fit. 

Study IB: Unequal Latent Thresholds 

Surprisingly, the number of scale points has little or no effect on the empirical 

Type I error rates when the observed variables are skewed due to unequal thresholds. The 

M G C F A of the simulation data indicate that the M L chi-square difference test statistics 

are robust to a small degree of skewness (< 1.0). When the skewness value is larger than 

1.0, the empirical Type I error rates of the M L chi-square difference tests become 

inflated. The inflation increases as the distributions become increasingly skewed. This is 

in line with Boomsma (1983) and Muthen and Kaplan's (1985, 1992) findings on normal 

theory estimators. Based on single-group CFA with Likert-type data, Muthen and 
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Kaplan's (1985, 1992) results showed that for univariate skewnesses and kurtoses in the 

range of-1.0 to 1.0, the chi-square goodness-of-fit tests obtained from the normal theory 

estimation methods such as M L and GLS were quite robust to a moderate degree of 

nonnormality. The M L and GLS chi-square tests were found to be highly sensitive to 

univariate skewness greater than two in absolute value, which reflects a severe degree of 

nonnormality. Boomsma's findings showed that when the mean absolute value of the 

skewnesses of the observed variables was larger than 1.0, the use of the M L estimation 

with ordinal variables would affect model fit in structural equation modeling. 

Under the worse case scenario in the present study, where the number of scale 

points is two and the response distribution is severely skewed, the empirical Type I error 

rates are profoundly inflated. The full and strong measurement invariance hypotheses 

were rejected more often than would be expected (at .05 level) even with a two-tailed 

Bonferroni corrected confidence interval of 99% on the empirical Type I error rates. The 

findings are consistent with Olsson (1979), who noted that ordinal factor analysis of the 

Pearson correlations for the dichotomous variables (phi coefficients) resulted in 

inconsistent and attenuated estimates in addition to incorrect standard errors of estimates 

and incorrect chi-square test of model fit. On a related note, when dichotomizing 

continuous variables to produce binary variables, the choice of cutting points can affect 

the values of the expected phi coefficients. According to Mislevy (1986), factor analyses 

of phi coefficients (Pearson correlation coefficients) of binary variables produced by the 

same underlying correlational structure but dichotomized at different points can lead to 

factor models with different structures and possibly different numbers of factors. Hence, 
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linear M G C F A should not be conducted with binary item responses that are severely 

skewed. 

The use of equal and unequal sample sizes between the two groups does not 

result in an inflated empirical Type I error rate of the M L chi-square difference test for 

the full and strong measurement invariance hypotheses. Sampling variability has no 

impact on the statistical test of measurement invariance across the two groups. Increasing 

sample sizes across groups does not reduce the empirical Type I error. This is parallel to 

the single-group C F A findings. Under multivariate normality, Curran, West, and Finch 

(1996) found that the M L chi-square test statistic rejected the expected number of models 

across all sample sizes. 

In short, the findings of the present study suggest that the use of a response scale 

with a greater number of response categories, when the response distributions are 

severely skewed, does not attenuate the inflation of the empirical Type I error rates of the 

true measurement invariance models. 

The effects of the number of scale points and categorization with equal thresholds 

(which results in a symmetric distribution) seem to be negligible on the false rejection 

rates of the invariance hypotheses when the ordinal data are used with the M L estimation 

method and Pearson covariance matrix in MGCFA. Unfortunately, normally distributed 

response distributions are rare in psychology and education (Micceri, 1989). The 

skewness of the variables, rather than the number of scale points, is the major 

determinant of lack of fit of the measurement invariance models. As in Bollen and Barb 

(1981)'s investigation of the impact of using coarsely categorized measures on Pearson's 

r, the difference between the correlation of the continuous measures and that of the 
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collapsed variables are relatively small when equal latent thresholds were used for 

collapsing the continuous variables. Collapsing in this manner leads to variables that are 

symmetric and, as the number of response categories increases, to variables that 

approximate a normal distribution. The use of equal latent thresholds did not attenuate the 

Pearson correlations/covariances. 

One can use Bollen and Barb's findings, as well as the findings by Muthen and 

Kaplan to postulate an explanation for my findings. That is, severe skewness (taken 

together with small number of categories) will distort ordinary Pearson product moment 

correlations/covariances. When the distorted Pearson covariance matrix is used as the 

input to the LISREL multi-group confirmatory maximum likelihood factor analysis, the 

standard errors of parameter estimates are underestimated and the M L chi-square 

difference test statistics are declared to be statistically significant more often than 

expected. This leads to the inflation of the empirical Type I error rates. As a result, an 

applied researcher may conclude erroneously that the factor structure of a measurement 

instrument is not invariant across groups - i.e., the research would conclude that the 

measure functions differently across groups. 

Study 1C: Controlling the Skewness of the Ordinal Variables 

In study IB the effect of number of scale points and skewness are naturally 

confounded. When the confounding effects of number of scale points and skewness were 

disentangled, the increasingly inflated empirical Type I error rates of the M L chi-square 

difference test were found to be due to increasing skewness. This confirms that the 

inflation of the empirical Type I error rates is mainly attributed to the multivariate 

nonnormality of the observed ordinal variables. When these variables approximate a 

normal distribution, the number of scale points does not have an impact on the empirical 
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Type I error rates. This is consistent with the earlier findings, discussed above, by 

Muthen and his colleagues. 

Implications of Findings 

The combination of the M L estimation method and Pearson covariance matrix in 

M G C F A of ordinal data was robust to small numbers of scale points when the observed 

ordinal variables were approximately normally distributed. In other words, the empirical 

Type I error rates for the M L estimation method tended to be conservative for the 

symmetric distribution. However, when the assumption of multivariate nonnormality was 

severely violated (i.e., skewness value is larger than 1.0), the normal theory M L chi-

square difference test statistic as a test of measurement invariance could lead to an 

inflated Type I error rate for model rejection. The M L estimation method committed an 

inflated empirical Type I error rate for testing both full and strong measurement 

invariance hypotheses in the M G C F A framework. 

Unlike other computer simulation studies on reliability, validity, multiple 

regression, and single-group CFA, the implications of the current study into the question 

of the optimal number of scale points or response categories in M G C F A when M L 

estimation and Pearson covariance matrix are employed with ordinal data are not 

straightforward. When the multivariate normality of the observed ordinal variables is not 

violated, it seems evident that there is no noticeable difference of the empirical Type I 

error rates of the M L chi-square difference test between a dichotomous or binary scale 

and a 3-, 4-, 5-, 6-, 7-, 8-, or 9-category ordinal scale. It is important to ensure that equal 

latent thresholds are applied to the categorization of a continuous scale. However, this is 

not the case in most of the applied research. Given that the number of rating scale 

categories, behavioral anchors, wording, and response category descriptions can affect 
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the thresholds, the use of unequal latent thresholds is more realistic. Furthermore, many 

observed variables in the social and behavioral sciences are positively skewed. For 

example, depressive symptoms, child abuse, and psychopathology in the general 

populations are positively skewed (Curran et al., 1996). 

The findings of dichotomous-scored data are consistent with the caveats 

expressed by Cohen (1983), who quantified the substantial losses in information 

(accuracy) that can occur when a continuous scale of measurement is dichotomized. 

Apparently, a violation of the multivariate normality assumption can seriously invalidate 

statistical hypothesis testing of measurement invariance. 

This study has several important implications for practice. Regarding the M L 

estimation method and Pearson covariance matrix, the findings provide support for and 

extend cautions raised, by the single-group CFA research. M L estimation method and 

Pearson covariance matrix are robust to the violation of the interval measurement scale 

under the condition of multivariate normality. When the response distributions of the 

observed ordinal variables are severely skewed (> 1.0) across the two groups, the chi-

squared difference test between the nested models cannot be used for making statistical 

decisions about measurement invariance across groups because of the inflation of 

empirical Type I error. Apparently, number of scale points does not compensate for 

multivariate nonnormality. The distributional assumption of the observed variables is the 

most important assumptions in multi-group confirmatory maximum likelihood factor 

analysis. One can also conclude that the shape of the distribution is more important than 

the levels of measurement as the criterion for deciding whether to use normal theory 

estimation method in structural equation modeling. This is akin to Zumbo and 



I l l 

Zimmerman's (1993) findings on the two-sample Student Mests in which the authors 

concluded that "when deciding whether to use parametric or nonparametric statistical 

methods for a two-sample location problem, the shape of the probability distribution is a 

better criterion than levels of measurement for making such'a decision" (p. 398). 

Study 2: Mixed Item Format Data 

Mixed item formats do not affect the empirical Type I error rates of the M L chi-

square difference tests in the hypotheses testing of full and strong measurement 

invariance. The proportion of the polytomous items in the mixed item format data has no 

impact on the empirical Type I error when such data are treated as continuous and 

analyzed with the M L estimation and Pearson covariance matrix. Keep in mind that the 

distributions of the mixed item format data were approximately symmetric across groups 

or subpopulations. This is the first study of this kind so there is no literature to compare it 

to. 

Implications of Findings 

The use of M L estimation and Pearson covariance matrix is appropriate for 

analyzing data with mixed item formats, especially for data with large numbers of items 

and small sample sizes. Practically, the findings indicate that multiple-choice items and 

constructed-response items are psychometrically equivalent. Both item formats measure 

the same unidimensional construct provided that the item distributions are normally 

distributed. This provides support for substantive research on using mixed format test and 

factor structure invariance. Studies conducted by Bennet, Rock, and Wang (1991); 

Bridgeman (1992); Lukhele, Thissen, and Wainer (1994); Perkhounkova, Hoover, and 

Ankemann (1997); and Thissen, Wainer, and Wang (1994) showed that multiple-choice 
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and constructed-response items measured the same basic trait or proficiency. The 

incorporation of mixed item formats in large-scale achievement assessments is a good 

example of the use of multiple measures for enhancing the validity of inferences made 

from the test scores. 

Contribution of the Study to the Measurement Literature 

Methodological Contribution 

Although a variety of techniques have been used to assess measurement 

invariance, there is a general agreement that the multi-group confirmatory factor analysis 

model represents the most powerful and versatile approach to testing for cross-group 

measurement invariance. Construct comparability is typically assessed by M G C F A . The 

current study findings provide the applied researchers with some statistical properties of 

MGCFA. 

One way to ameliorate the distorting effects of employing Likert-type measures of 

underlying continuous variables is to construct measures in a way that increases the 

number of response categories into which a respondent's answers can be placed. 

However, the current study findings postulate that even a fine grained of measure can 

result in responses that are not normally distributed due to the examinees' characteristics. 

The response distribution matters the most in multi-group confirmatory maximum 

likelihood factor analysis research. 

Although there has been no earlier study of mixed response formats involving 

binary and ordered-polytomous variables, some related methodological research has 

examined the analysis of structural equation models with mixed type of ordered 

polytomous and continuous variables. Muthen's C V M and Lee, Poon, and Bentler's 

(1992) two-stage estimation procedures are devoted to analyze mixed polytomous and 



continuous data. Such multistage procedures have at least three pitfalls. First, the 

complexity of the procedures makes it unattractive to the applied researchers. Second, the 

analyses are computationally unwieldy and this makes it impossible to work with large 

and moderately large (more than 25 items) sets of items. Finally, large sample sizes (at 

least 3,000 per group) are needed to obtain a stable weight matrix. This study provides 

some insight into the use of M L estimation method with mixed item format data (i.e., a 

mixture of binary and ordered polytomous items) in M G C F A when large numbers of 

items and small sample sizes are the issues. 

The findings of the current study echo Hutchinson and Olmos's (1998) 

recommendations that applied researchers analyzing polytomous data without benefit of 

the large sample sizes required to estimate the weight matrix in WLS should obtain fairly 

accurate, albeit minimally biased, measures of fit with M L , provided that their data are 

not extremely nonnormal. The study findings also contribute to the SEM literature on 

multivariate nonnormality. Kaplan (SEMNET, 1996) contended that the single-group 

CFA findings on multivariate nonnormality might be generalizable to M G C F A . He called 

for research on the issue of multivariate nonnormality in M G C F A . To my knowledge, 

this is the first study responding to Kaplan's important call. 

Educational Contribution 

While applying M G C F A to the factor structure invariance or measurement 

invariance and construct comparability studies, researchers must take into account the 

nature of the measurement scale and the characteristics of the data. It is important to 

advocate a multi-method approach to investigating construct comparability - item-level 

IRT and scale-level M G C F A methods. Empirical evidence of scale-level measurement 
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invariance via M G C F A is essential because without measurement invariance, it is 

difficult to interpret observed mean score differences meaningfully. 

Both the International Test Commission Guidelines and the Standards for 

Educational and Psychological Testing (AERA, APA, & N C M E , 1999) have emphasized 

the importance of reporting statistical evidence for test comparability in dual- and multi-

language tests. To ensure that a test or measurement instrument is comparable across 

groups, one needs to verify that the test or measurement instrument has the psychometric 

properties of measurement invariance. Construct comparability or factor structure 

invariance is one of the two requirements (the other requirement is lack of item bias or 

DIE items) for measurement invariance (Hambleton & van der Vijver, 1996). In test 

construction, the evaluation of the dimensionality of a test across groups provides another 

piece of evidence regarding test fairness. Construct comparability is also an important 

assumption in test equating and linking (Kolen & Brennan, 1995). Hence, this study gives 

some methodological insights into the utility of multi-group confirmatory maximum 

likelihood factor analysis in construct comparability research. 

M G C F A allows the testing of specific invariance hypotheses about whether 

certain features of a common factor model can be taken as invariant across populations. 

Measurement precision of a measurement instrument, for example, a questionnaire can be 

determined by looking at whether the factor loadings of an item can be construed as 

invariant. These results can then be compared to the IRT DIE analyses, keeping in mind 

that the item loadings in the measurement models of M G C F A are akin to the item slopes 

in the IRT framework. When the factor distributions and unique variances differ from one 
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group to the next, one can suspect the existence of varying population distributions and 

measurement precision. 

From a psychometric point of view, it is important to study the various 

measurement invariance models because they imply different measurement properties. 

For example, the baseline model in M G C F A is equivalent to the testing for configural 

invariance. Following Thurstone (1947), the most basic and fundamental 

conceptualization of a construct is the pattern of zero and nonzero loadings, not the 

particular magnitude of the nonzero loadings. Therefore, in order to conclude that a 

construct can be conceptualized in the same way across groups, a set of items has to be at 

least cross-group congeneric, not necessarily tau equivalent. However, the researcher 

should refrain from making quantitative comparisons until more stringent forms of 

invariance such as strong (tau-equivalence) and full invariance (parallel) have been 

established. The current study has provided an illustration on how to conduct these 

various invariance hypotheses testing. 

Finally, an M G C F A of Likert-type item is essential to psychological research 

wherein these scale types are widely used but that is not the only domain using Likert 

scales. The Programme for International Student Assessment (PISA 2000), a large-scale 

achievement assessment, for example, has incorporated Likert-type questionnaires to 

measure students' attitudes toward learning along with the achievement tests. The 

findings of the current simulation study will remind educational researchers, especially 

those who are involved in high-stakes international assessments, of the importance of 

checking for multivariate normality before proceeding with their M G C F A . 
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Limitations of the Study and Future Research 

The greatest limitation to this research is that only one model size was examined. 

Future research should systematically explore varying model sizes and model complexity 

(e.g., models with cross-loadings). In addition, in the present study all the items have the 

same response distributions. Although a good place to start in conducting simulations of 

this nature, empirical research characterizing the kinds of patterns of response 

distributions found in real data is needed and these findings can then inform simulation 

studies. For example, no research to date has investigated how having response 

distributions vary across the items of a test might affect the M L chi-square difference test 

in M G C F A . In addition, the item response distributions may vary across groups. 

There are still many situations and issues that need to be investigated. It is not 

certain that a normal distribution accurately reflects the true distribution of many 

underlying variables. For example, some underlying variables are inherently not normal. 

Future simulation research should examine the operating characteristic of the M L chi-

square difference test when the latent variable is not normally distributed. According to 

Coenders, Satorra, and Saris (1997), the WLS estimation method and polychoric 

correlation coefficient/asymptotic covariance matrix should not be used with ordinal data 

that have a nonnormally distributed latent variable. 

Collapsing the categories may alleviate problems due to skewness and kurtosis of 

the ordinal variables. This method was used by Muthen (1984) in a simultaneous study of 

causal model characteristics across gender in research about attitudes toward blood 

donation. Certain variables were collapsed to three or four categories. Although some 

information is lost when doing this, the compensatory effects may outweigh the loss. 
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Future research should address the systematic effects on standard error bias and chi-

square overestimation, when ordered categories are collapsed in M G C F A . 

Finally, research on the power of the M L chi-square difference test and model 

misspecification in M G C F A deserves considerable attention as does the matter of 

statistical power. Like much of the previous published research, the present study 

focused on the Type I error rate because that needs to be maintained before one can even 

discuss statistical power. 

Recommendations 

The objective of the current study was to investigate how the M L estimation 

method functions when the observed ordinal variables are treated and analyzed as if they 

were continuous, as per Byrne's (1998) recommendation. The M L chi-square difference 

test becomes liberal (i.e., inflated) when the response distributions significantly depart 

from normality, resulting in rejection of the true models more often than expected. 

The outcomes of the M G C F A of ordinal and mixed item format data echo 

Boomsma's findings on single-group CFA. Thus, I would like to make the same 

conclusion and recommendation that we shall not dissuade researchers to apply 

maximum likelihood estimation and Pearson covariance matrix in M G C F A , when the 

observed variables are discrete but symmetric. However, I do not recommend the use of 

such method when the mean absolute value of the skewness of the observed variables is 

larger than 1.0 because it would artificially inflate the chi-square values and empirical 

Type I error rates. As a consequence, crucial decisions of measurement invariance of an 

instrument are not valid. 
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It is fair to remind readers that the sample sizes used in the simulation studies are 

small to moderate. The use of equal and unequal sample sizes across groups, typical of 

the cross-group sample sizes in real psychological and educational data, does not have 

any impact on the statistical analysis of construct comparability. For large sample sizes, 

the chi-square difference test statistics should not be used because any hypotheses would 

be rejected by large sample sizes. 

Is there a minimum number of scale points that a researcher should employ in the 

construction of items to be used in correlation/SEM analysis? Based on the current study 

findings, the answer is 'yes' or 'no', depending on the response distributions. If the 

response distributions approximate a normal distribution, then the number of scale points 

is not an important factor. In contrast, i f the response distributions are skewed, then 

researchers should avoid the use of 2 scale points. The use of dichotomous variables in 

correlation or covariance analysis can be problematical in cases where the underlying 

continuous distributions for such variables are even moderately skewed. Correlations 

computed for such dichotomous variables provide very poor estimates of the true 

correlations between the continuous forms of these variables. A logical recommendation 

to researchers engaged in M G C F A using M L estimation method and Pearson covariance 

matrix might be to avoid entirely the use o f dichotomous variables; however, such a 

recommendation is not realistic. 

It should be noted, however, that deciding on the number of scale points one 

should use is not just a matter of statistical significance testing. A n important 

consideration in deciding on the number of scale points to use is whether the population 

for whom the scale was developed can comprehend the task and respond to the 
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statements using the response categories. For example, if the target population for the 

test (or measure) is primary school children (typically ages 5 - 7 years old) then a two- or 

three-point response format may be more appropriate than five-point response format 

because children at that developmental stage may not be able to handle the subtlety of the 

discrimination needed to use a five-point response format. Likewise, the response points 

may be best described with a picture (e.g., a cat with various degrees of a smile indicating 

greater agreement) rather than the words "none", "a little", and "a lot". Of course, pilot 

testing is needed to determine if a response scale is appropriate. 

As my results show, when the response distribution is severely skewed, the M L 

chi-square difference test as a formal statistical test of measurement invariance will lead 

to an inflated Type I error rate for hypothesis rejection. Consequently, in practice a 

researcher may mistakenly reject or modify a model by releasing the constraint of certain 

parameters because the distribution of the observed variables is not multivariate normal 

rather than because the model itself is not invariant across groups. According to Zumbo, 

Sireci, and Hambleton (2003), a viable alternative would be to avoid the distribution 

theory and statistical hypothesis testing of confirmatory factor analysis for evaluating 

construct comparability. In short, what these authors are suggesting is to abandon the 

reliance on statistical distribution theory when the assumptions are clearly violated. 

Instead, they suggest the use of (multi-group) exploratory factor analysis, M G E F A , 

which is more descriptive in nature. In addition, because the sampling distribution of the 

factor model statistics is not of concern, one can use robust and scale-appropriate 

correlation matrices involving full-information estimation, polychoric or outlier-resistant 

estimators with MGEFA. This recommendation reflects the inherent trade-offs one needs 
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to make in day-to-day psychometric and data analysis - sometimes one needs to trade-off 

the strength of the sampling theory and its focus on a population model, for the 

deleterious effect of violating those same assumptions. 



121 

REFERENCES 

American Educational Research Association, American Psychological Association, & 

National Council on Measurement in Education. (1999). Standards for educational 

and psychological testing. Washington, DC: American Psychological Association. 

Anderson, J . C , & Gerbing, D.W. (1988). Structural equation modeling in practice: A 

review and recommended two-step approach. Psychological Bulletin, 103, 411-423. 

Babakus, E. , Ferguson, C.E., & Joreskog, K. (1987). The sensitivity of confirmatory 

maximum likelihood factor analysis to violations of measurement scale and 

distributional assumptions. Journal of Marketing Research, 24, 222-228. 

Bandalos, D. (1999, April). The effects of item parceling in structural equation modeling: 

A Monte Carlo study. Paper presented at the Structural Equation Modeling Special 

Interest Group of the American Educational Research Association Annual Meeting, 

Montreal, Quebec. 

Bandalos, D., & Benson, J. (1990). Testing the factor structure invariance of a computer 

attitude scale over two grouping conditions. Educational and Psychological 

Measurement, 50, 49-60. 

Bendig, A.W. (1954a). Reliability and the number of rating scale categories. Journal of 

Applied Psychology, 38, 38-40. 

Bendig, A.W. (1954b). Reliability of short rating scales and the heterogeneity of the rated 

stimuli. Journal of Applied Psychology, 38, 167-170. 

Bennet, R.E., Rock, D.A., & Wang, M . (1991). Equivalence of free response and 

multiple-choice items. Journal of Educational Measurement, 28, 77-92. 

Bentler, P.M., & Wu, E.J.C. (1995). EQS for Windows: User's guide. Encino, CA: 

Multivariate Software Inc. 



122 

Bernstein, I.H., & Teng, G. (1989). Factoring items and factoring scales are different: 

Spurious evidence for multidimensionality due to item categorization. 

Psychological Bulletin, 105, 461'-477. 

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's 

ability. In F.M. Lord and M.R. Novick (Eds.), Statistical theories of mental test 

scores. Reading, MA: Addison-Wesley. 

Bollen, K.A. (1989). Structural equations with latent variables. New York: John Wiley 

& Sons. 

Bollen, K.A. , & Barb, K.H. (1981). Pearson's r and coarsely categorized measures. 

American Sociological Review, 46, 232-239. 

Boomsma, A. (1983). On the robustness ofLISREL (maximum likelihood estimation) 

against small sample size and nonnormality. Unpublished doctoral dissertation, 

University of Groningen, Groningen, The Netherlands. 

Breckler, S.J. (1990). Applications of covariance structural modeling in psychology: 

Cause for concern? Psychological Bulletin, 107, 260-2'/'1. 

Bridgeman, B. (1992). A comparison of quantitative questions in open-ended and 

multiple-choice format. Journal of Educational Measurement, 29, 253-271. 

Browne, M.W. (1984). Asymptotically distribution-free methods for the analysis of 

covariance structures. British Journal of Mathematical and Statistical Psychology, 

37, 62-83. 

Byrne, B.M. (1988). The Self Description Questionnaire III: Testing for equivalent 

factorial validity across ability. Educational and Psychological Measurement, 48, 

397-406. 



123 

Byrne, B.M. (1994). Testing for the factorial validity, replication, and invariance of a 

measuring instrument: A paradigmatic application based on the Maslach Burnout 

Inventory. Multivariate Behavioral Research, 29, 289-311. 

Byrne, B.M. (1998). Structural equation modeling with LISREL, PRELIS, and SIMPLIS: 

Basic concepts, applications, and programming. Mahwah, NJ: Lawrence Erlbaum 

Associates, Publishers. 

Byrne, B.M. , Shavelson, R.J., & Muthen, B. (1989). Testing for the equivalence of factor 

covariance and mean structures: The issue of partial measurement invariance. 

Psychological Bulletin, 105, 456-466. 

Chang, L. (1994). A psychometric evaluation on 4-point and 6-point Likert-type scales in 

relation to reliability and validity. Applied Psychological Measurement, 18, 205-

215. 

Cheung, G.W., & Rensvold, R.B. (2002). Evaluating goodness-of-fit indexes for testing 

measurement invariance. Structural Equation Modeling, 9, 233-255. 

Chou, C P . , Bentler, P.M., & Satorra, A. (1991). Scaled test statistics and robust standard 

errors for non-normal data in covariance structure analysis: A Monte Carlo study. 

British Journal of Mathematical and Statistical Psychology, 44, 347-357. 

Cicchetti, D.V., Showalter, D., & Tyrer. (1985). The effect of number of rating scale 

categories on levels of interrater reliability: A Monte Carlo investigation. Applied 

Psychological Measurement, 9, 31-36. 

Coenders, G., Satorra, A. , & Saris, W.E. (1997). Alternative approaches to structural 

equation modeling of ordinal data: A Monte Carlo study. Structural Equation 

Modeling, 4, 261-282. 



Cohen, J. (1983). The cost of dichotomization. Applied Psychological Measurement, 

7, 249-253. 

Coopersmith, S. (1975). Coopersmith Self-Esteem Inventory, Technical Manual. Palo 

Alto, CA: Consulting Psychologist Press, Inc. 

Cronbach, L . J . (1950). Further evidence on response sets and test design. Educational 

and Psychological Measurement, 10, 3-31. 

Cudeck, R. (1989). Analysis of correlation matrices using covariance structure models. 

Psychological Bulletin, 105, 317-327. 

Curran, P.J., West, S.G., & Finch, J.F. (1996). The robustness of test statistics to 

nonnormality and specification error in confirmatory factor analysis. Psychological 

Methods, 1, 16-29. 

DiStefano, C. (2002). The impact of categorization with confirmatory factor analysis. 

Structural Equation Modeling, 9, 327-346. 

Dolan, C V . (1994). Factor analysis of variables with 2, 3, 5 and 7 response categories: A 

comparison of categorical variable estimators using simulated data. British Journal 

of Mathematical and Statistical Psychology, 47, 309-326. 

Drasgow, F., & Kanfer, R. (1985). Equivalence of psychological measurement in 

heterogeneous populations. Journal of Applied Psychology, 70, 662-680. 

Finch, J.F., West, S.G., & MacKinnon, D.P. (1997). Effects of sample size and 

nonnormality on the estimation of mediated effects in latent variable models. 

Structural Equation Modeling, 4, 87-107. 



Gonzalez-Roma, V., Hernandez, A., & Gomez-Benito, J. (2002). An evaluation of the 

multiple-group mean and covariance structure analysis model for detecting 

differential item functioning in graded response items. Paper presented at the 

International Test Commission (ITC) Conference on Computer-Based Testing and 

the Internet. Winchester, UK. 

Green, S.B., Akey, T .M. , Fleming, K.K. , Hershberger, S.L., & Marquis, J.G. (1997). 

Effect of the number of scale points on chi-square fit indices in confirmatory factor 

analysis. Structural Equation Modeling, 4, 108-120. 

Hambleton, R.K., & Rovinelli, R.J. (1986). Assessing the dimensionality of a set of test 

items. Applied Psychological Measurement, 10, 287-302. 

Hambleton, R.K., & Van der Vijver. (1996). Translating tests: Some practical guidelines. 

European Psychologists, 1, 89-99. 

Hancock, G.R., Stapleton, L . M . , & Berkovits, I. (1999, April). Loading and intercept 

invariance within multisample covariance and mean structure models. Paper 

presented at the Annual Meeting of the American Educational Research Association, 

Montreal, Quebec. 

Horn, J.L., & McArdle, J.J. (1992). A practical and theoretical guide to measurement 

invariance in aging research. Experimental Aging Research, 18, 117-144. 

Hu, L.T., Bentler, P.M., & Kano, Y. (1992). Can test statistics in covariance structure 

analysis be trusted? Psychological Bulletin, 112, 351-362. 

Hutchinson, S.R., & Olmos, A. (1998). Behavior of descriptive fit indexes in 

confirmatory factor analyses using ordered categorical data. Structural Equation 

Modeling, 5, 344-364. 



126 

Jenkins, G.D., Jr., & Taber, T.D. (1977). A monte carlo study of factors affecting three 

indices of composite scale reliability. Journal of Applied Psychology, 62, 392-398. 

Joreskog, K .G. (1971). Simultaneous factor analysis in several populations. 

Psychometrika, 36, 409-426. 

Joreskog, K. & Sdrbom, D. (1996). LISREL 8: User's reference guide. Chicago, IL: 

Scientific Software International. 

Kaplan, D. (1996). Multivariate Normality. SEMNET. 

Koch, W.R. (1983). Likert scaling using graded response latent trait model. Applied 

Psychological Measurement, 7, 15-32. 

Kolen, M.J., & Brennan, R.L. (1995). Test equating methods and practices. New York: 

Springer. 

Komorita, S.S. (1963). Attitude content, intensity, and the neutral point on a Likert scale. 

Journal of Social Psychology, 61, 327-334. 

Komorita, S.S., & Graham, W.K. (1965). Number of scale points and the reliability of 

scales. Educational and Psychological Measurement, 4, 987-995. 

Labovitz, S. (1970). The assignment of numbers of rank order categories. American 

Sociological Review, 36, 515-524. 

Lee, S-Y., Poon, W-Y., & Bentler, P.M. (1992). Structural equation models with 

continuous and polytomous variables. Psychometrika, 57, 89-105. 

Long, J.S. (1983). Confirmatory factor analysis: A preface to LISREL. Beverly Hills, 

CA: SAGE Publications, Inc. 

Lukhele, R., Thissen, D., & Wainer, H. (1994). On the relative value of multiple-choice, 

constructed response and examinee selected item on two achievement tests. Journal 



127 

of Educational Measurement, 31, 234-250. 

Matell, M.S., & Jacoby, J. (1971). Is there an optimal number of alternatives for Likert 

scale items? Study I: reliability and validity. Educational and Psychological 

Measurement, 31, 657-674. 

Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. 

Psychological Bulletin, 105, 156-166. 

Mislevy, R.J. (1986). Recent developments in the factor analysis of categorical variables. 

Journal of Educational Statistics, 11, 3-31. 

Muraki, E. (1992). A generalized partial credit model: Application of an E M algorithm. 

Applied Psychological Measurement, 16, 159-176. 

Muthen, B.O. (1984). A general structural equation model with dichotomous, ordered 

categorical, and continuous latent variable indicators. Psychometrika, 49, 115-132. 

Muthen, B.O. (1988). LISCOMP: Analysis of linear structural equations using a 

comprehensive measurement model: User's guide. Chicago, IL: Scientific Software 

International. 

Muthen, B., & Kaplan, D. (1985). A comparison of some methodologies for the factor 

analysis of nonnormal Likert variables. British Journal of Mathematical and 

Statistical Psychology, 38, 171-189. 

Muthen, B., & Kaplan, D. (1992). A comparison of some methodologies for the factor 

analysis for non-normal Likert variables: A note on the size of the model. British 

Journal of Mathematical and Statistical Psychology, 45, 19-30. 

Nunnally, J.C. (1967). Psychometric Theory. New York: McGraw-Hill. 

O'Brien, R.M. (1979). The use of Pearson's r with ordinal data. American Sociological 



128 

Review, 44, 851-857. 

O'Chieng, O.O. (2001). Implications of using Likert data in multiple regression analysis. 

Unpublished doctoral dissertation, University of British Columbia, Vancouver. 

Olsson, U. (1979). On the robustness of factor analysis against crude classification of the 

observations. Multivariate Behavioral Research, 14, 485-500. 

Olsson, U.H., Foss, T., Troye, S.V., & Howell, R.D. (2000). The performance of M L , 

GLS, and WLS estimation in structural equation modeling under conditions of 

misspecification and nonnormality. Structural Equation Modeling, 7, 557-595. 

Perkhounkova, Y., Hoover, H.D., & Ankemann, R.D. (1997, March). An examination of 

construct validity of multiple-choice versus constructed response tests. Paper 

presented at the Annual Meeting of the American Educational Research Association, 

Chicago, IL. 

Potthast, M.J. (1993). Confirmatory factor analysis of ordered categorical variables with 

large models. British Journal of Mathematical and Statistical Psychology, 46, 273-

286. 

Radloff, L.S. (1977). The CES-D Scale: A self-report depression scale for research in the 

general population. Applied Psychological Measurement, 1, 385-401. 

Ramsay, J.O. (1973). The effect of number of categories in rating scales on precision of 

estimation of scale values. Psychometrika, 38, 513-533. 

Reise, S.P., Widaman, K.F., & Pugh, R.H. (1993). Confirmatory factor analysis and item 

response theory: Two approaches for exploring measurement invariance. 

Psychological Bulletin, 114, 552-566. 

Rigdon, E.E. , & Ferguson, Jr. (1991). The performance of the polychoric correlation 



129 

coefficient and selected fitting functions in confirmatory factor analysis with ordinal 

data. Journal of Marketing Research, Vol. XXVIII, 491-497. 

Rosenberg MI. (1965, 1979). Rosenberg self esteem scale [RSE, RSES]. In K. Corcoran 

& J. Fischer (Eds.), Measures for clinical practice: A sourcebook. New York: Free 

Press. 

Satorra, A., & Bentler, P.M. (1988). Scaling corrections for chi-square statistics in 

covariance structure analysis. In American Statistical Association 1988 Proceedings 

of the Business and Economic Section (pp. 308-313). Alexandria, VA: American 

Statistical Association. 

Sireci, S.G., Bastari, B., & Allalouf, A. (1998, April). Evaluating construct equivalence 

across adapted tests. Paper presented at the Annual Meeting of the American 

Psychological Association, San Francisco, CA. 

Sireci, S.G., Xing, D., & Fitzgerald, C. (1999, April). Evaluating adapted tests across 

multiple groups: Lessons learned from the IT industry. Paper presented at the 

Annual Meeting of the National Council on Measurement in Education, Montreal, 

Quebec. 

Steenkamp, J-B E.M. , & Baumgartner, H. (1998). Assessing measurement invariance in 

cross-national consumer research. The Journal of Consumer Research, 25, 78-90. 

Stevens, S.S. (1946). On the theory of scales of measurement. Science, 103, 677-680. 

Symonds, P.M. (1924). On the loss of reliability in ratings due to coarseness of the scale. 

Journal of Experimental Psychology, 7, 456-461. 

Thissen, D., Wainer, H., & Wang, X.B. (1994). Are tests comprising both multiple-

choice and free-response items necessarily less unidimensional than multiple-choice 



130 

tests: An analysis of two tests. Journal of Educational Measurement, 31, 113-123. 

Thurstone, L .L . (1947). Multiple factor analysis. Chicago: University of Chicago Press. 

Tippets, E. , & Michaels, H. (1997, March). Factor structure invariance of accommodated 

and non-accommodated performance assessments. Paper presented at the 

Annual Meeting of the National Council on Measurement in Education, Chicago, IL. 

Vandenberg, R.J., & Lance, C E . (2000). A review and synthesis of the measurement 

invariance hypothesis literature: Suggestions, practices, and recommendations for 

organizational research. Organizational Research Methods, 3, 4-69. 

Zumbo, B.D. (1999). A handbook on the theory and methods of differential item 

functioning (DIF): Logistic regression modeling as a unitary framework for binary 

and likert-type (ordinal) item scores. Ottawa, ON: Directorate of Human Resources 

Research and Evaluation, Department of National Defense. 

Zumbo, B.D., Sireci, S.G., & Hambleton, R.K. (2003, April). Re-visiting exploratory 

methods for construct comparability: Is there something to be gained from the ways of 

old? Paper presented in the symposium Construct Comparability Research: 

Methodological Issues and Results, at the National Council on Measurement in 

Education Annual Meeting, Chicago, IL. 

Zumbo, B.D., & Zimmerman, D.W. (1993). Is the selection of statistical methods 

governed by level of measurement? Canadian Psychology, 34, 390-400. 



131 

APPENDIXES 

Appendix A 

Note that items 4, 8, 12, and 16 are reversed coded before analysis with the M G C F A , 
therefore their skew will be the opposite of what is displayed in this Appendix. 

not even 1 day 1-2 days 3-4 days 5-7 days 

during the past week I did not feel like eating 

Figure Al. Distribution of responses on CES-D item 2 (I did 

not feel like eating) for males. 
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during the past week I felt that I could not shake off the blues even wi 

Figure A2. Distribution of responses on CES-D item 3 (I felt that 

I could not shake off the blues even with help) for males. 
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Figure A3. Distribution of responses on CES-D item 4 (I felt 

that I was just as good as other people) for males. 
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Figure A4. Distribution of responses on CES-D item 5 (I had 

trouble keeping my mind on what I was doing) for males. 
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not even 1 day 1-2 days 3-4 days 5-7 days 

during the past week I felt depressed 

Figure A5. Distribution of responses on CES-D item 6 

(I felt depressed) for males. 

not even 1 day 1-2 days 3-4 days 5-7 days 

during the past week I felt that everything I did was an effort 

Figure A6. Distribution of responses on CES-D item 7 

(I felt that everything I did was an effort) for males. 
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during the past week I felt hopeful about the future 

Figure A 7. Distribution of responses on CES-D item 8 

(I felt hopeful about the future) for males. 
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during the past week I thought my life had been a failure 

Figure A8. Distribution of responses on CES-D item 9 

(I thought my life had been a failure) for males. 
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during the past week I felt fearful 

Figure A9. Distribution of responses on CES-D item 10 

(I felt fearful) for males. 
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Figure AW. Distribution of responses on CES-D item 11 

(My sleep was restless) for males. 
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Figure Al 1. Distribution of responses on CES-D item 12 

(I was happy) for males. 
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Figure Al2. Distribution of responses on CES-D item 13 

(I talked less than usual) for males. 
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Figure Al 3. Distribution of responses on CES-D item 14 

(I felt lonely) for males. 
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during the past week People were unfriendly 

Figure A14. Distribution of responses on CES-D item 15 

(People were unfriendly) for males. 
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Figure A15. Distribution of responses on CES-D item 16 

(I enjoyed life) for males. 

not even 1 day 1 -2 days 3-4 days 5-7 days 

during the past week I had crying spells 

Figure A16. Distribution of responses on CES-D item 17 

(I had crying spells) for males. 
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Figure Al 7. Distribution of responses on CES-D item 18 

(I felt sad) for males. 

not even 1 2 days 3-4 days 5-7 days 

during the past week I felt that people dislike me 

Figure Al 8. Distribution of responses on CES-D item 19 

(I felt that people dislike me) for males. 
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during the past week I could not get going 

Figure A19. Distribution of responses on CES-D item 20 

(I could not get going) for males. 

not even 1 day 1-2 days 3-4 days 5-7 days 

during the past week I did not feel like eating 

Figure A20. Distribution of responses on CES-D item 2 (I did 

not feel like eating) for females. 
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Figure A21. Distribution of responses on CES-D item 3 (I felt that 

I could not shake off the blues even with help) for females. 
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Figure A22. Distribution of responses on CES-D item 4 (I felt 

that I was just as good as other people) for females. 
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Figure A23. Distribution of responses on CES-D item 5 (I had 

trouble keeping my mind on what I was doing) for females. 

300 

200 

100 

not even 1 day 

during the past week I felt depressed 

Figure A24. Distribution of responses on CES-D item 6 

(I felt depressed) for females. 
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Figure A25. Distribution of responses on CES-D item 7 

(I felt that everything I did was an effort) for females. 
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during the past week I felt hopeful about the future 

Figure A26. Distribution of responses on CES-D item 8 

(I felt hopeful about the future) for females. 
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Figure A27. Distribution of responses on CES-D item 9 

(I thought my life had been a failure) for females. 
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Figure A28. Distribution of responses on CES-D item 10 

(I felt fearful) for females. 
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Figure A29. Distribution of responses on CES-D item 11 

(My sleep was restless) for females. 
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Figure A30. Distribution of responses on CES-D item 12 

(I was happy) for females. 
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Figure A31. Distribution of responses on CES-D item 13 

(I talked less than usual) for females. 
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Figure A32. Distribution of responses on CES-D item 14 

(I felt lonely) for females. 
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Figure A33. Distribution of responses on CES-D item 15 

(People were unfriendly) for females. 
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Figure A34. Distribution of responses on CES-D item 16 

(I enjoyed life) for females. 
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Figure A35. Distribution of responses on CES-D item 17 

(I had crying spells) for females. 
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Figure A36. Distribution of responses on CES-D item 18 

(I felt sad) for females. 
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Figure A3 7. Distribution of responses on CES-D item 19 

(I felt that people dislike me) for females. 

not even 1 day 1-2 days 3-4 days 5-7 days 

during the past week I could not get going 

Figure A38. Distribution of responses on CES-D item 20 

(I could not get going) for females. 



Appendix B 

Scale Interval Thresholds 

Table B l 

Threshold values for the scale intervals in symmetric response distribution with equal 
intervals 

1 
0.0000 2 

3 
4 

5 

6 
7 

8 

-1.0000 1.0000 3 
4 

5 

6 
7 

8 

-1.5000 0.0000 1.5000 
4 

5 

6 
7 

8 

-1.8000 -0.6000 0.6000 1.8000 
5 

6 
7 

8 

-2.0000 -1.0000 0.0000 1.0000 2.0000 6 
7 

8 
-2.1429 -1.2857 -0.4286 0.4286 1.2857 2.1429 7 

8 -2.2500 -1.5000 -0.7500 0.0000 0.7500 1.5000 2.2500 8 
-2.3333 -1.6667 -1.0000 -0.3333 0.3333 1.0000 1.6667 2.3333 

Table B2 

Threshold values for the scale intervals in positively skewed response distribution (left 
bunching) with unequal intervals 

1 
1.5000 2 

3 
4 

5 

6 
7 

8 

0.0000 1.5000 3 
4 

5 

6 
7 

8 

0.0000 1.0000 2.0000 
4 

5 

6 
7 

8 

0.0000 0.7500 1.5000 2.2500 
5 

6 
7 

8 

0.0000 0.6000 1.2000 1.8000 2.4000 6 
7 

8 
0.0000 0.5000 1.0000 1.5000 2.0000 2.5000 7 

8 0.0000 0.4286 0.8571 1.2857 1.7143 2.1429 2.5714 8 
0.0000 0.3750 0.7500 1.1250 1.5000 1.8750 2.2500 2.6250 



Appendix C 

IRT Parameters for the Binary Items in TIMSS Mathematics Achievement Test 

ltem# a SEfora b SEforb c SEforc 

1 0 . 8 0 7 0 . 0 3 3 -0.176 0.051 0.196 0 . 0 2 0 

2 0 . 9 3 9 0 . 0 3 9 -0.137 0 . 0 4 3 0.172 0.018 

3 1.390 0 . 0 9 3 0 . 9 4 0 0 . 0 3 3 0 . 4 2 8 0.010 

4 0.881 0 . 0 4 5 0 .088 0 . 0 5 3 0 .273 0 . 0 2 0 

5 1.096 0 .059 0.141 0 . 0 4 6 0 .396 0.017 

6 0 .650 0.031 0 .329 0 . 0 3 9 0 0 

7 0 .827 0 . 0 5 5 -0 .684 0 . 0 9 3 0.194 0 . 0 3 7 

8 1.258 0.109 0.777 0 . 0 4 5 0 . 2 3 6 0 .018 

9 0 . 8 4 4 0 .062 0 . 2 6 3 0 . 0 6 5 0.153 0 . 0 2 5 

10 1.014 0.129 1.353 0 . 0 7 3 0.301 0 .018 

11 0 . 8 8 6 0 . 0 8 6 0 .942 0.061 0 .188 0.021 

12 0 . 7 0 2 0 . 0 6 5 0 .507 0 . 0 8 5 0.176 0 . 0 2 9 

13 1.858 0.110 0 . 4 0 2 0 . 0 2 6 0 .120 0.012 

14 0.916 0 .076 -0.167 0 . 0 9 4 0 . 3 0 8 0 . 0 3 5 

15 1.497 0.136 1.259 0 . 0 4 9 0.281 0 . 0 1 3 

16 0 . 9 8 0 0 . 0 8 3 -0.533 0.107 0 . 3 6 6 0 . 0 4 0 

17 0.391 0 .037 -2.464 0 . 2 8 4 0.219 0 . 0 5 6 

18 0.556 0.041 -1.827 0.175 0 . 2 0 5 0 . 0 5 2 

19 0.841 0 .072 - 0 . 0 8 8 0 . 0 9 8 0.281 0 .036 

2 0 1.353 0 . 0 9 7 0 .625 0 .037 0 .160 0.016 

Note, a = slope parameter; b = location parameter; c = guessing parameter; SE = standard error. 
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Appendix D 

IRT Parameters for the 3-point Polytomous Items in TIMSS Mathematics Achievement 

Test 

Item # a SE for a b SEforb d1 SEfordl d2 SEford2 

1 0.466 0.011 0.662 0.023 -0.887 0.047 0.887 0.052 
2 0.459 0.011 0.752 0.026 -0.910 0.051 0.910 0.057 
3 0.569 0.013 0.525 0.020 -1.277 0.053 1.277 0.056 
4 0.869 0.028 1.238 0.026 0.095 0.029 -0.095 0.043 
5 0.497 0.010 0.425 0.020 -1.491 0.056 1.491 0.058 
6 0.828 0.021 0.917 0.018 -0.120 0.028 0.120 0.035 
7 0.652 0.012 0.299 0.016 -1.647 0.053 1.647 0.054 
8 0.557 0.012 1.250 0.025 -2.077 0.070 2.077 0.076 
9 0.815 0.016 0.445 0.014 -0.652 0.032 0.652 0.034 

10 0.863 0.017 0.791 0.014 -1.342 0.048 1.342 0.050 
11 0.755 0.018 0.381 0.015 0.093 0.027 -0.093 0.029 
12 0.780 0.022 0.837 0.023 -1.893 0.094 1.893 0.097 
13 0.648 0.012 0.454 0.016 -1.520 0.052 1.520 0.053 
14 0.585 0.011 0.284 0.017 -1.887 0.059 1.887 0.060 
15 1.719 0.053 0.687 0.013 -0.701 0.044 0.701 0.045 
16 0.861 0.016 0.372 0.013 -1.073 0.039 1.073 0.040 
17 0.739 0.017 0.332 0.016 0.114 0.027 -0.114 0.030 
18 0.525 0.011 1.319 0.027 -2.195 0.075 2.195 0.081 
19 0.892 0.017 0.420 0.013 -0.537 0.030 0.537 0.031 
20 1.057 0.021 0.760 0.013 -1.011 0.040 1.011 0.041 

Note, a = slope parameter; b = location parameter; d = step parameter; SE = standard error. 
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Appendix E 

Criteria for Identifying Inflated Empirical Type I Error Rates of ML Chi-square Statistics 

Two-tailed confidence interval (at a Bonferroni corrected confidence interval of 99%) 

empirical alpha Lower Upper 

. 1 5 . 0 5 8 . 2 4 2 

. 14 .051 . 2 3 0 

. 1 3 . 0 4 3 . 2 1 7 

. 1 2 . 0 3 6 . 2 0 4 

.11 . 0 2 9 .191 

. 1 0 . 0 2 3 . 1 7 7 

. 0 9 . 0 1 6 . 1 6 4 

. 0 8 . 0 1 0 . 1 5 0 

. 0 7 . 0 0 4 . 1 3 6 

Note: The confidence intervals were computed based on the normal approximation. 


