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ABSTRACT 

Carbon stars are r e l a t i v e l y uncommon, luminous, cool stars 

whose spectra exhibit exceptionally strong bands of carbon-con­

taining molecules. This i s d i r e c t evidence of extensive nucleo­

synthesis, as w i l l occur i n the la t e stages of s t e l l a r evolu­

t i o n . The two aspects investigated here are the i r luminosities 

and atmospheric carbon and nitrogen isotope r a t i o s . 

The luminosities are derived through the study of those 

carbon stars which are members of double star systems. Since 

the companion star i s apparently normal and thus of known lumi­

nosity, the carbon star luminosity i s d i r e c t l y a t t a i nable. 

Photometry and spectroscopy of suspected binaries y i e l d absolute 

v i s u a l magnitudes for a dozen stars as bright as - 4 . 7 , and bolo-

metric magnitudes primarily in the range - 4 to - 8 . This means 

they are s l i g h t l y mere luminous than normal giants. 

The i s o t o p i c r a t i o s have been deduced by a comparison of 

synthetic spectra with the observed near infrared s t e l l a r 

spectra. The synthetic spectra were calculated by d i r e c t i n t e ­

gration of the flux emerging from an appropriate model atmo­

sphere, and contain l i n e s primarily of the Bed band system of 

the CN molecule. A new analysis technique, used i n time series 

analysis, which i s based on the mutual coherence of the spectra 

being compared and makes f u l l use of the enti r e spectrum, has 

been employed. By varying the parameters describing the 

synthetic spectrum, including the isotopic r a t i o , the coherence 



can be maximized and the i s o t o p i c r a t i o of the s t e l l a r spectrum 

deduced. R e s u l t s f o r f i v e c a r b o n s t a r s y i e l d 1^c/i3Q r a t i o s i n 

the range 2.5 t o 30. A s e a r c h was a l s o made f o r t h e i s o t o p e s 
l*C and i s j } ; i *c was not found, w h i l e a t e n t a t i v e l y p o s i t i v e 

r e s u l t i s r e p o r t e d f o r 1 5 N . 
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INTRODUCTION 

A two dimensional system of s t e l l a r c l a s s i f i c a t i o n based on 

a star's luminosity and temperature does not f u l l y characterize 

the nature of that star. This i s most readily apparent among 

the late-type giants where abundance differences r e s u l t i n many 

dif f e r e n t classes of stars showing widely d i s s i m i l a r spectra.. 

This thesis is about some aspects of one of these classes 

of stars: the carbon stars. The generic name "carbon s t a r " 

refers to many di f f e r e n t kinds of stars, a l l of which have one 

thing i n common: their spectra show the presence of carbon-con­

taining molecules in greater strength than i n normal stars of 

simi l a r temperature and luminosity. The classes of carbon stars 

are: 

1. R stars - these stars correspond to the normal K stars, 

showing spectra with a comparable set of atomic l i n e s plus 

bands of C^ and enhanced CN and CH. 

2. N stars - generally cooler than the fl sta r s ; exhibit extre­

mely heavy blanketing by the bands of C £ and CN. Most N 

stars are long period variables. 

Every carbon star i s eithe r of type R or N. This, the 

o r i g i n a l c l a s s i f i c a t i o n system, depends on the r e l a t i v e 

v i s i b i l i t y of the blue spectral region, with N stars being 

more heavily blanketed there. 

3. J stars - R or N stars with exceptionally strong 1 3 C l 4 N 

bands (especially at 6168 A) and usually also with strong 

neutral l i t h i u m . 
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4. CH stars - show an abnormally strong G band and other bands 

of CH, and generally weak metals. These are a l l high 

v e l o c i t y stars and hence belong to population I I . , 

5. Ba II stars - exhibit strong l i n e s of Ba, Sr and other heavy 

metals, plus enhanced CH. 

6 . Hrl stars - the hydrogen deficient stars, show strong C 2 but 

weak CH bands. Host Hd stars are also variables of the 

E CrB type. 

The CH, Ba II and Hd stars are subgroups of the R stars. 

7. CS (or SC) stars - show conspicuous CN bands, enhanced 

atomic l i n e s {Ba I I , etc.) but very weak bands of ZrO or C 2 , 

making i t d i f f i c u l t to decide at low dispersion whether they 

are C or S stars. 

Other chemically peculiar cool stars are the ju s t mentioned 

S stars which show oxide bands {especially ZrO, plus LaO, YO) 

and MS stars which are intermediate between S stars and the 

normal cool M s t a r s , which are characterized by bands of TiO., 

The primary factor producing this variety i s the C/a r a t i o ; 

because of the great s t a b i l i t y of the CO molecule v i r t u a l l y a l l 

the C or 0 i s t i e d up i n the form of CO, so that stars with an 

excess of carbon form carbon stars while those with excess 

oxygen form M or S stars. The CS stars are presumably stars 

with a C/0 r a t i o of almost exactly unity so that small amounts 

of both C and 0 are avail a b l e to.form other molecules. C l e a r l y 

other factors are also important, to produce such d i f f e r e n t 

types as the CH and Hd stars; these include the population type 
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(metal abundance) , mass and age to name but the most obvious. 

The t h i n g I want t o emphasize i s t h a t the carbon s t a r s as a 

whole a r e a very d i v e r s e group indeed. although each subgroup 

i s a more co h e s i v e s e t , there i s s t i l l no a p r i o r i reason to 

assume t h a t the N s t a r s ( f o r example) are s u f f i c i e n t l y c l o s e l y 

r e l a t e d t h a t they can be described by the same b a s i c parameters. 

In f a c t I s h a l l show t h a t t h e i r l u m i n o s i t i e s ( i n p a r t i c u l a r ) 

cover q u i t e a wide range. The p h y s i c a l p r o p e r t i e s of carbon 

s t a r s have r e c e n t l y been reviewed by W a l l e r s t e i n (1973). 

as a guide t o carbon s t a r s p e c t r a . F i g . 1 i l l u s t r a t e s many 

of the more prominent and p e c u l i a r f e a t u r e s t h a t may be present 

i n the v i s u a l and near i n f r a r e d r e g ion of c o o l carbon s t a r s . C a 

i s r e p r e s e n t e d by the Swan and P h i l l i p s band systems, degrading 

towards the bl u e and r e d , r e s p e c t i v e l y . CH bands from both the 

V i o l e t and Red systems are present, a l s o degrading i n o p p o s i t e 

d i r e c t i o n s ; the Red bands show three separate bandheads 

r e s u l t i n g from d i f f e r e n t branches of the band. The i s o t o p i c 

bands (not shown) o f t 2 c * 3 c are o f f s e t from the main bands by 

approximately +8 A per u n i t v i b r a t i o n a l quantum number change 

( A T ) f o r the Swan bands while f o r the red bands of C 2 and CM the 

o f f s e t i s on t h e order of +40 A. CH i s present as the G band 

and s e v e r a l o t h e r bands i n the 3900 - 4400 A r e g i o n ; the 

M e r r i l l - S a n f o r d bands near 4900 A are almost c e r t a i n l y due to 

S i C ^ ; CaCl bands are o c c a s i o n a l l y seen i n some s t a r s . [The two 

redward bands of CaCl shown belong t o the Red system and a r e 

degraded to the blue; the 593 4 A band belongs to the Orange 
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system. According to Pearse and Gaydon (1941) t h i s band i s 

degraded t o the red whereas the spectra of Hybski (1973) appa­

r e n t l y show the band extending to the blue i n t o the Na D l i n e s . ] 

Polyatomic molecules have a l s o been detected i n carbon s t a r s : a 

C 5 band has been de t e c t e d at 4 050 A while HCN and C^H^ l i n e s 

have been i d e n t i f i e d i n the 1^ r e g i o n . Bands of CO do not 

appear i n the v i s u a l r e g i o n , the c l o s e s t being the A V = 3 sequence 

at 1.6^.. The atomic l i n e s i n d i c a t e d are not by any means 

exhaustive but merely show some of the s t r o n g e r and/or 

i n t e r e s t i n g f e a t u r e s . 

T h i s t h e s i s i s d i v i d e d i n t o two p r i n c i p a l p a r t s . Part I 

deals with an i n v e s t i g a t i o n i n t o the a b s o l u t e magnitudes of 

carbon s t a r s . , P a r t I I presents a new technique f o r determining 

carbon i s o t o p e r a t i o s from molecular bands and c a r r i e s out t h a t 

a n a l y s i s f o r f i v e carbon s t a r s . The remainder of t h i s i n t r o ­

d u c t i o n d e a l s with the o r i g i n of the carbon s t a r s . 

Although the o r i g i n o f carbon s t a r s i s o u t s i d e the scope of 

t h i s t h e s i s i t i s worthwhile t o b r i e f l y c o n s i d e r the mechanisms 

which have been proposed to c r e a t e carbon s t a r s from the normal 

oxygen s t a r s . S i n c e carbon s t a r s have C/0 > 1 i t i s c l e a r t h a t 

some n u c l e a r p r o c e s s i n g must have occurred; t h i s means e i t h e r 

hydrogen-burning by the CNO c y c l e or 3-alpha helium-burning. A 

means of t r a n s p o r t i n g the processed m a t e r i a l t o the s u r f a c e , 

where we can see i t , must a l s o be provided. As i t now appears 

l i k e l y t h a t the observed s u r f a c e abundances of carbon and n i t r o -
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gen are only with d i f f i c u l t y compatible with CNO p r o c e s s i n g 

{e. g. K i l s t o n 1975, summary by Irgens-Jensen 1976), a process 

i n v o l v i n g helium-burning r e a c t i o n s , at l e a s t i n p a r t , must be 

considered, producing lower N/C r a t i o s . 

The e v o l u t i o n a r y stage t h a t seems best a b l e to p r o v i d e f o r 

both the p r o c e s s i n g and t r a n s p o r t a t i o n requirements occurs 

during the helium s h e l l - f l a s h phase. During t h i s e v o l u t i o n a r y 

phase the s t r u c t u r e of the s t a r i s as f o l l o w s : there i s an i n e r t 

core c o n s i s t i n g of the products of helium-burning, C and 0, 

above t h i s i s a t h i c k helium-burning s h e l l , f o l l o w e d by an i n e r t 

helium r e g i o n , a t h i n hydrogen-burning s h e l l and a deep convec­

t i v e envelope extending to the s u r f a c e . As the s t a r e v o l v e s the 

helium-burning s h e l l g r a d u a l l y narrows u n t i l a thermal i n s t a ­

b i l i t y develops: the energy r e l e a s e d by the helium-burning 

r e a c t i o n s i s not a b l e t o escape due to a combination o f t h e high 

heat c a p a c i t y o f the s h e l l and the pressure i n the s h e l l not 

i n c r e a s i n g p r o p o r t i o n a l l y t o the d e n s i t y change ( c f : Sackmann 

1977) . S i n c e the helium-burning r e a c t i o n s are very temperature 

s e n s i t i v e a helium f l a s h o c c u r s . A c o n v e c t i v e zone then deve­

l o p s , extending almost up to the hydrogen-burning s h e l l . A f t e r 

a while the f l a s h i s quenched {Sackmann 1977) and the c o n v e c t i v e 

zone decreases and d i s a p p e a r s ; quiescent helium-burning then 

continues' u n t i l the next f l a s h s t a r t s . Se thus have an e v o l u ­

t i o n a r y stage where carbon i s produced { v i o l e n t l y ) and t r a n s ­

ported upwards; s i n c e the c o n v e c t i v e zone was, however, 

contained i n the i n t e r i o r i t i s not yet c l e a r how the carbon 

reaches the s u r f a c e . 
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Three basic approaches have been proposed to overcome t h i s 

d i f f i c u l t y . 1. The deep envelope {DE) model {Sackmann, Smith 

and Despain 1974) makes the ad hoc assumption that the i n t e r i o r 

convective zone actually does physically merge with the convec­

tive envelope. Though there i s nothing impossible about this 

scheme {e.g. by convective overshooting) the fact remains that 

no model star yet calculated has exhibited such a continuous 

convective region. 2. The plume model {Scalo and Olri c h 197 3) 

supposes that, at the maximum extent of the i n t e r i o r convective 

zone, protons can tunnel through the th i n inert helium zone into 

the convective s h e l l . They would there react with the carbon, 

setting up convective plumes l i n k i n g the convective s h e l l with 

the envelope, thus acting as conduits for the processed material 

into the envelope. The disadvantages of t h i s scheme are that 

the plume properties can not be calculated from f i r s t p r i n c i ­

ples, and that just the right number of protons need to enter 

the convective s h e l l to produce the observed d i s t r i b u t i o n of 

s-process elements. 3. Iben's {1975) scheme, which i s a 

dire c t result of the evolutionary sequence of s t e l l a r model 

cal c u l a t i o n s , sees the convective envelope dip down int o the 

helium-burning residue. During the f l a s h the regions within and 

above the helium-burning s h e l l are pushed outward, and the 

helium-burning products are distributed throughout the region 

occupied by the convective s h e l l , which does not quite extend as 

fa r as the hydrogen-burning s h e l l . a f t e r the flash has stopped 

the envelope again descends, continuing past i t s previous 
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position (in mass) u n t i l i t encompasses the top part of the 

residue l e f t behind by the convective s h e l l . This material w i l l 

then be convected to the surface., Successive flashes w i l l bring 

more and more processed material into the envelope. 

Each of these models w i l l enhance the envelope carbon abun­

dance more than the nitrogen, since nitrogen i s not produced 

during helium-burning. They a l l also suffer from the d i f f i c u l t y 

that the just produced carbon w i l l be processed through the CNO 

reactions as i t passes through the hydrogen-burning region and 

also during the i n t e r - f l a s h periods. An envelope base tempe­

rature cool enough to prevent 1 2 C destruction also hinders the 

production of 1 3C. Iben's scheme at least has the feature that 

the luminosity due to hydrogen-burning i s considerably reduced 

during the time that the envelope i s actually dipping into the 

helium-burning residue; the other two schemes necessarily t r e a t 

the structure as constant during the mixing phase, while Iben's 

mixing i s caused by the s t r u c t u r a l changes. On the whole, 

Iben's model i s to be preferred at present, primarily because 

i t s e s s e n t i a l features are d i r e c t l y calculable and involve no 

additional hypotheses. 
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Part I. ABSOLUTE MAG NIT ODES 

The p o s i t i o n of carbon stars in the evolutionary sequence 

i s not well understood. I t i s not clear, for example, whether 

most stars become carbon stars or i f only some do, whether the 

carbon star phenomenon i s recurrent or occurs only once, or how 

the core products of nucleosynthesis are transported to the 

surface., Moreover, as has been mentioned, carbon stars are not 

a homogeneous group; some are found in globular c l u s t e r s while 

others (N stars) are strongly concentrated toward the g a l a c t i c 

plane. The problem i s compounded by the fact that many of the 

basic observational data are imprecise, making comparison with 

t h e o r e t i c a l studies d i f f i c u l t . In p a r t i c u l a r , carbon star 

temperatures and luminosities are not accurately determined. I 

s h a l l here address myself to the absolute magnitude problem. 

Most previous studies of this question have employed 

s t a t i s t i c a l methods to derive mean absolute magnitudes fo r large 

groups of s t a r s ; t h i s approach does, however, tend to obscure 

the range of luminosities that actually e x i s t s . The only way to 

reveal t h i s range i s to determine the absolute magnitude of as 

many i n d i v i d u a l carbon stars as possible. Since t h i s requires a 

knowledge of the distance to the star t h i s can only be done f o r 

carbon stars which are members of clusters or binary systems. 

This part of the thesis begins with a b r i e f summary of work 

dealing with carbon stars in c l u s t e r s and s t a t i s t i c a l studies.. 

This i s followed by a description of the photometric and 
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spectroscopic data available pertaining to carbon stars which 

are members of binary systems and a discussion of the pertinent 

points of each i n d i v i d u a l system, plus a general discussion of 

the derived magnitudes. [Much of the material discussed in t h i s 

part has already been published (Olson and Richer 1975).] 
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CARBON STARS IN CLUSTERS 

The data on carbon stars in the l i n e of sight to c l u s t e r s 

has been summarized by Gordon (1968). Assuming that the carbon 

stars a c t u a l l y are cluster members she finds absolute v i s u a l 

magnitudes ranging from •0.5 to -3.5. Unfortunately the suppor­

ting observational data i s rather sketchy and the absolute 

magnitudes hence somewhat uncertain. Since that time several 

other cases have been discovered and more data gathered on other 

suspected cl u s t e r members. Table 1 summarizes the current 

status of carbon stars i n c l u s t e r s . 

The carbon star near NGC 2477 i s approximately two c l u s t e r 

r a d i i from the cl u s t e r center. , I t s r a d i a l v e l o c i t y of +5.5 ± 3 

km/s agrees well, however, with that of an early M-star (+7 ± 3) 

which i s a cluster member on the basis of i t s proper motion; 

furthermore the galac t i c f i e l d v e l o c i t y at the distance of the 

cluster i s *27 km/s, making t h i s star a probable member. The 

magnitude range shown i s caused by nonuniform reddening across 

the c l u s t e r . 

Hartwick and Hesser (1973) f i n d that i f the carbon star 

which i s 2* from the center of NGC 2660 i s a cluster member i t s 

Mv = -2.0 and i t has a mass of about 1.8 MS. 

The r a d i a l velocity of MSB 75 (-46 ± 3 km/s) makes i t a 

probable member of the very old cluster NGC 7789 (-45 ± 7 km/s) 

when compared with the f i e l d v e locity (-25 km/s). 

walker (1972) has found another very red star {(B-V) = 



TABLE 1. SUMMARY OF DATA ON CARBON STARS IN CLUSTERS 

l "" - • -
i Cluster 

T ' T-
J Star 1 V 

1 
B-V l 

1 
1 

Clus. 
E (B-V) 

- r - T-
1 (ni-M) 1 
1 app ] 

Cluster 
Type Age 

• T 
J MV 

• i -" 
I Ref 

J NGC 2477 j 1 10-7 J 
2. 9 

1 
1 
1 
1 
1 

0. 20 
0.40 

I 11-2 J 
l 11-8 J 

Open 10» I -0-5 
J -1-1 

1 U 2 

I NGC 2660 j j 11. 53 ! 4. 26 
1 
J 
J 

0.38 J 13.55 1 Open 10« J -2-0 3 3 

1 NGC 7789 J MSB 75 ] (10.2) | 
1 
1 
1 

0. 26 i 12.1 | Open 10 9-10 J -1.9 J 4,8 

i SMC-NGC 419 ] Anon 1 | 16-3 
1 
1 
J 

I 19.4 J Glob 109 1 -3. 1 1 5 

1 SMC-Kron 3 I #24 | 16-48 j 2- 37 
1 
1 
J 

J 19.4 I Glob 10 9-10 I -2-9 J 5 

i SMC-NGC 121 I V8 ] <16.4> <1- 9> 
1 
I 
] 

J 19.4 J Glob 10io J -3.0 1 5 

i u> Cen ] RGO 5 5 | 
| RGO 70 | 
i anon J 

11. 56 
11.61 
12. 16 

i 1. 
1. 
1. 

55 
80 
50 

i 

I 

1 
1 
I 

] 14.28 J Glob 10io 3 -2-72 
| -2.67 
1 -2.12 

3 7,9 
1 10,6 
1 1 1 

i LMC 1 many 1 15.7 i 1 
1 
j 

. 1 -

J 18.7 f 1 -3 1 12 
L .1 - JL 

1 
1 
j 

. 1 - i - ! .i „ 

Refs: 1. Catchpole and Feast (1973) 7- Harding (1962) 
2. Hartwick et a l . (1 972) 8. Haqen (1970) 
3. Hartwick and Hesser (1973) 9- Arp (1965) 
4. Gaustaa and Conti (1971) 10- Dickens (1972) 
5. Feast and Lloyd Evans (1973) 11- Bond (1975) 
6. Cannon and Stobie (1973) 12. Hesterlund (1964) 
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+4.2, Mv = -1.9) i n NGC 419 i n t h e Small Magellanic Cloud, 

although no s p e c t r a o f t h i s s t a r e x i s t , i t seems probable t h a t 

i t i s a carbon s t a r . The t h r e e SMC s t a r s i n T a b l e 1 are a l l 

l o c a t e d r i g h t at the t i p of the r e d - g i a n t branch {Feast and 

Ll o y d Evans 1973), as are the three known CH s t a r s i n to Cen 

{Smith and Wing 1973; Bond 1975). A l l carbon s t a r s so f a r found 

i n g l o b u l a r c l u s t e r s have been l o c a t e d at the t i p of the g i a n t 

branch. 

The approximately 400 carbon s t a r s found by Besterlund 

(1964) i n the LMC have a mean estimated v i s u a l magnitude o f 15.7 

with a spread of about h a l f a magnitude, i n d i c a t i n g an a b s o l u t e 

v i s u a l magnitude of about -3., 

Because of the s c a r c i t y of C- s t a r s near c l u s t e r s and the 

d i f f i c u l t y i n e s t a b l i s h i n g whether a s t a r i s a c l u s t e r member i n 

our galaxy, the l a r g e numbers of carbon s t a r s i n the Large 

Magellanic Cloud hold great promise i n regard t o absolute magni­

tude s t u d i e s . Recently a s m a l l sample o f these have been 

s t u d i e d by C r a b t r e e , R i c h e r and Westerlund (1976) ; they range i n 

apparent magnitude from 13.9 to t h e i r i n s t r u m e n t a l l i m i t of 

16.8, r e s u l t i n g i n a b s o l u t e v i s u a l magnitudes as b r i g h t as -4.6 

{using m-M = 18.5} . 
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STATISTICAL STUDIES 

Since most carbon stars are f i e l d stars, t h e i r absolute 

magnitudes can only be calculated on a s t a t i s t i c a l basis using 

the observed r a d i a l v e l o c i t i e s and/or proper motions i n con­

junction with the apparent magnitudes. 

Sanford (1944) found <Hv> = -0.4 ± 0.4 for 62 S-stars and 

-2.3 ± 0.2 for 171 N-stars. The E-stars were further subdivided 

by Vandervort (1958) who derived <Mv> = + 0.44 ± 0,29 from 43 RO 

and R2 stars, and -1.10 ± 0.49 from 42 R5 and B8 star s . Richer 

(1971) calculated <Mv> = -2.7 ± 0.7 for 33 sta r s c l a s s i f i e d C3 

to C7 on h i s i n f r a r e d c l a s s i f i c a t i o n system; these stars were 

mostly of type N. 

Baumert (1972) has calculated near infrared 1.04 micron 

narrowband absolute magnitudes <M(104)> of -1.7 ± 0.5 and -4.3 

+ 0.6 for R and N-stars, respectively. To convert these numbers 

to vis u a l magnitudes the colour index (V-I(104)) was formed f o r 

a sample of stars in common with the l i s t s of Richer (1971) and 

of Mendoza and Johnson (1965). This resulted i n <V-I(104)> = 

+ 2.4 ± 0.9 (st. devn) for the R-stars and +3.9 ± 0.7 for the 

S-stars. The average (B-?) i n d i c e s for the samples were +1.67 

and +3. 13, as compared to the more complete sample values of 

• 1.67 f o r Vandervort's R-stars and +3.10 for Richer's N-stars, 

in d i c a t i n g that the samples used are representative of the 

general population. The re s u l t i n g Mv*s are +0.7 and -0.4, 

s i g n i f i c a n t l y f a i n t e r than the previous r e s u l t s . 
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r 
J 
1. 

Author • T 
I Type Hv N 

"T 
I Type 
i _ _ t _ 

H V N i 
i 

i 
I I 

1 T" — r - i 

Sanford 
(1944) 

i H ) -0.4 ± 0.4 | 62 1 N ] -2.3 ± 0.2 | 171 

Vandervort 
(1958) 

1 RO J 
. 82 | 

•0.44 ± 0.29 | 43 | j i 
| R5 J 

1 R8 | 
-1. 10 ± 0.49 | 

\ j 

42 | i ! 
Richer 
(1971) i j 

-1. 10 ± 0.49 | 

\ j 

1 C3 | 
1 C7 j 

-2.7 ± 0.7 | 33 

Baumert 
(1974) 

1 R 1 M(104) = | 
-1.7 ± 0.5 | 

Hv = ••0.7 # | 

115 1 N | H (104) = 
-4.3 ± 0.6 

Hv = -0.4 # 

| 202 

i . . . i 1,, , L . •j i... —x., .,„ . j 

# See text., 

T A B L E 2., SUMMARY OF S T A T I S T I C A L A B S O L U T E M A G N I T U D E S OF 
CARBON S T A R S 
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Peery (1975), assuming that most of the dispersion i n 

colour of Bau inert* s photometric data i s due to i n t e r s t e l l a r 

reddening, has deduced boloraetric magnitudes for a saaple of N 

i r r e g u l a r variables i n the range -4 to -6, again considerably 

brighter than Baumert*s value for a s i m i l a r group. Baumert 

(1975) subsequently revised his value for this group of stars by 

-1.5 magnitudes by deleting a single star from his sample. Thus 

i s seems plausible' that s i m i l a r errors may be responsible for a 

large part of the above mentioned discrepancy. 
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CAfiEON STARS IN BINARY SYSTEMS 

The other major approach to determining absolute magnitudes 

of i n d i v i d u a l carbon stars makes use of binary systems with one 

member a carbon star. This method i s e s s e n t i a l l y i d e n t i c a l to 

that used for carbon stars in c l u s t e r s ; namely, determine the 

distance modulus to the system (cluster) and use the apparent 

magnitude to ca l c u l a t e the absolute magnitude. To do this one 

must: a) establish the r e a l i t y of the physical proximity of the 

C-star and i t s suspected companion (or the cluster) , and b) 

calculate the distance modulus of the companion (cluster)., 

The distance modulus of a cl u s t e r i s f a r easier to derive 

accurately than that of a single star, however, since i n that 

case we have access to a l l the cl u s t e r members. Comparison of 

the observed colour-magnitude diagram with the zero age main 

sequence yie l d s the distance modulus and reddening as well as 

the age of the clus t e r and the mass of the carbon s t a r , though 

t h i s i s more strongly dependent on the evolutionary model 

sequence used., A cluster distance modulus i s obtainable to an 

accuracy of a few tenths of a magnitude. In contrast to t h i s 

the modulus of a single star must be computed from a knowledge 

of i t s absolute magnitude, which, i n turn, must be in f e r r e d from 

some observational parameter that has been calibrated i n terms 

of absolute magnitude. In practice t h i s would normally e n t a i l 

HK spectral c l a s s i f i c a t i o n , photometry for B-stars, or H/s 

plus uvby photometry f o r A and F-stars.. Whereas the absolute 

magnitude c a l i b r a t i o n s for si n g l e stars of early type may be 
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comparable i n accuracy to the cluster moduli, l a t e r types can 

often not be placed to better than a magnitude. In t h i s inves­

t i g a t i o n the f i r s t two methods have been employed., 

The most conclusive ways of proving the r e a l i t y of a 

suspected binary system would be to observe eith e r an o r b i t or 

one star e c l i p s i n g the other. No such cases are known among 

carbon stars although a few do show composite spectra, 

indicating a very close companion. , That these are the resu l t of 

a chance superposition i s highly unlikely. As the angular 

separation of the two stars increases there i s an increasing 

need for corroborating evidence of their physical association. 

Agreement of t h e i r r a d i a l v e l o c i t i e s , or common proper motion, 

would strongly support this conclusion, as would the presence of 

the same set of i n t e r s t e l l a r absorption l i n e s i n both stars, 

although t h i s would be d i f f i c u l t to apply to carbon stars 

because of the complexity of their spectra. F i n a l l y , the 

absolute magnitude derived for the carbon star ought to be 

"reasonably* 1 close to the range indicated by the s t a t i s t i c a l 

studies and those carbon stars which are members of c l u s t e r s 

(see previous sections). 
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The Observational Data 

The l i s t of candidate carbon stars which may be members of 

binary systems has been compiled from several sources. The 

i n i t i a l l i s t was prepared by Dr. H. B. Richer during h i s obser­

ving run at Cerro Tololo i n 1969, when, while taking spectra of 

the C-stars, he noticed that several stars had f a i r l y close 

companions. Three systems were added when his photometry 

indicated that the (U-B) indices of the supposedly single carbon 

stars were much too blue compared to (B-V). The results f o r 

these systems have already been published (Richer 1972). A 

secondary l i s t was kindly supplied by Dr. H. E. C r u l l , J r . , 

(1972) of the U.S. Naval Observatory at Washington, D.C., while 

a few systems were chosen from the A.A.V.S.O. charts and some 

were gleaned from the l i t e r a t u r e . Kith the aid of the Palomar 

Sky Survey prints and v i s u a l observations of the candidates 

through the department*s 30-cm (12-inch) telescope, t h i s p r e l i ­

minary l i s t was narrowed down to those systems with companions 

thought bright enough to be feasibly investigated further. 

Photometric and spectroscopic observations of some of these 

systems were obtained at the K l t t Peak National Observatory near 

Tucson, Arizona, during the periods Sept., 10-12 (photometry) 

and Sept. 18-24 (spectroscopy) of 1972, by the author. In 

addition, Dr. Richer has obtained some VRI photometry from Cerro 

Tololo during the periods Oct. 12-14, 1971 and June 5-7, 1974. 

UBV and photometry was obtained of 17 suspected systems 

using the K i t t Peak #2 36-inch (91-cm) telescope and the 
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reductions were done by a computer program written by the author 

using standard reduction methods; taking into account the red 

leak of the U f i l t e r . The red leak f i l t e r i s a standard 0 

f i l t e r with the U bandpass region blocked, allowing a d i r e c t 

measure of the leak in the red region. Ose of t h i s f i l t e r i s 

necessary for the C-stars because of t h e i r extremely red 

colours., 

The photometer deflections through the u l t r a v i o l e t , blue, 

visual and red leak f i l t e r s are denoted by u, b, y and r l , r e ­

spectively, and the raw colours are 

Cy = -2.5 log (b/y) 

Cu = -2.5 log (u\/b) ( 1) 

where u* = u - r l . These are related to the magnitude and colors 

above the atmosphere via 

y (Q) = y - km * sec z 

Cy(0) = Cy - ky * sec z (2) 

Cu (0) = Cu - ku * sec z 

where ky = k1 • k2 * Cy{0), and sec z i s the a i r mass of the 

observation* The calculated extinction c o e f f i c i e n t s f o r each of 

the three photometric nights are tabulated i n Table 3A, along 

with standard K i t t Peak values (Barnes 1974). F i n a l l y OBV 

colours are calculated from 

V = c l + c2 * (B-V) + y (0) 

B-V = c3 «• c4 * Cy (0) (3) 

U-B = c5 • c6 * Cu (0) 



1 Date (1972) 
1-

k1 k2 l ku km 

Sept. 10/11 

Sept. 11/12 

Sept. 12/13 

0.107 

0.087 

0.088 

-0. 006 

-0. 029 

-0.025 

0.234 

0. 136 

0.269 

0.117 

0.101 

0.145 

Average; 

S t . Devn: 

0.094 

±0.011 

-0.020 

±0.012 

0.213 

±0.069 

0. 121 

±0.022 

Std. KPNO 

values 
0.100 -0. 020 0.340 0. 150 

TABLE 3A. OBSERVED PHOTOMETRIC EXTINCTION COEFFICIENTS 

i 1 r i 1 
\ Colour | V | B-V | U-B | 
, j. 4 

I I I I ] 
| S t . Devn | 0.019 | 0.016 \ 0.023 | 
I 1 I 1 I 
t 1 1 1 i 

TABLE 3B.„ PHOTOMETRIC ERRORS FOR STANDARD STARS 
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where the " c n c o e f f i c i e n t s are calculated from observations of 

standard s t a r s . The expected uncertainties are given in Table 

3S. Since the magnitudes of the very red carbon stars are 

calculated, in part, from an extrapolation of the r e l a t i o n 

defined by the (bluer) standards, one would expect the uncer­

t a i n t i e s of the C-star magnitudes to be somewhat greater than 

those of bluer stars, and may be systematically i n error. No 

attempt has been made to t r y to combat t h i s problem. The VHI 

reductions were c a r r i e d out in a s i m i l a r manner. 

Blue plates of 127 A/mm dispersion at were secured of 

the companions i n 10 systems, as well as several MK and v e l o c i t y 

standards. Spectral c l a s s i f i c a t i o n was done r e l a t i v e to the 

known standards using the c r i t e r i a outlined i n the K i t t Peak 

Spectral Atlas (Abt et a l . 1968). The r a d i a l v e l o c i t i e s were 

measured on the Grant oscilloscope measuring engine i n t h i s 

u n i v e r s i t y ^ Physics Department. The i n t e r n a l errors r e s u l t i n g 

from the measurement of (typ i c a l l y ) a dozen l i n e s were about 16 

km/s (st. devn), whereas a comparison of measured and standard 

v e l o c i t i e s gave standard deviations of 15.2 and 11.8 km/s for B, 

A and F-stars and f o r G and K-stars, respectively, i n d i c a t i n g 

that there were no systematic errors present. 

Several a d d i t i o n a l spectra have also been obtained at the 

Dominion Astrophysical Observatory, V i c t o r i a . These were 

obtained with the 183-cm (72-inch) telescope at a dispersion of 

78 A/mm. The i n t e r n a l accuracy of these plates i s about 10 km/s 

(st. devn) from a half dozen l i n e s . Also a v a i l a b l e ware 200 
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A/ran bl u e p l a t e s of many o f the suspected companions obtained by 

Dr. Richer at Cerr o T o l o l o i n September 1971. U n f o r t u n a t e l y 

these p l a t e s turned out t o be unusable f o r r a d i a l v e l o c i t y 

measurements as there were l a r g e random unexplained systematic 

s h i f t s between the s t e l l a r s p e c t r a and the comparison a r c s , 

amounting i n some cases t o e q u i v a l e n t v e l o c i t i e s of s e v e r a l 

hundred km/s. 

A l i s t o f suspected carbon s t a r b i n a r y systems f o r which 

o b s e r v a t i o n s e x i s t i s given i n T a b l e 4, along with two suspected 

systems c o n t a i n i n g S - s t a r s . Columns 1, 2 and 3 gi v e the name 

and e q u a t o r i a l and g a l a c t i c c o o r d i n a t e s of the C - s t a r . Column 4 

r e f e r s to the EN s p e c t r a l type, the Keenan-Morgan C-type as 

d e f i n e d on the Okayama system (Yamashita 1972), and R i c h e r ' s 

(1971). i n f r a r e d C-type. Column 5 give s the companion's name, 

while column 6 g i v e s the angular s e p a r a t i o n of the two s t a r s i n 

seconds of a r c and the p o s i t i o n angle of the v e c t o r from the 

C-st a r to the companion, measured c o u n t e r c l o c k w i s e from the 

north p o i n t ( i . e . N-E-S-W). The o b s e r v a t i o n a l data t h a t a r e 

r e l e v a n t t o determining the r e a l i t y o f the systems and the 

C- s t a r s * a b s o l u t e magnitudes are given i n T a b l e s 5 through 8. 

The l a s t column of Table 4 g i v e s which of these f o u r t a b l e s con­

t a i n s the ob s e r v a t i o n s f o r t h a t system. 

The s t a r s have been d i v i d e d i n t o four groups depending on 

the p r o b a b i l i t y t h a t the systems are r e a l and the s t a t u s of the 

o b s e r v a t i o n a l data. Those systems which have s e v e r a l items of 

sup p o r t i n g evidence and no neg a t i v e ones are con s i d e r e d to be 



24 

Name 
HD 
DM 

R.A. 
Dec. 
(1900) 

1 
b 

RN 
KM 
Rh 

Comp. Sep. , 
P. A. 

X Cas 01 49.8 

• 58 46 

13-1.2 

-2.6 

Ne 

C5,4e 

60 

70 

0 Cam 

22611 

+62 596 

03 33.2 

+62 19 

141.2 

6.0 

+62 594 

C5 , 4 

208 

349 

30710 

+15 691 

04 44.9 

• 15 37 

183.8 

-17.9 

N 

C5,3 

C4 

34467 

+35 1046 

05 12.5 

• 35 41 

171.2 

-0.9 

N 

C6,3 

C4 

24 

44 

UV Aur 

34842 

+32 957 

05 15.3 

+ 32 24 

174.2 

-2.4 

Ne 

C8,1Je 

C9 

ADS 3934B 3 

4 

TO Tau 

38218 

•24 943 

05 39.1 

• 24 23 

183.8 

-2.4 

N 

C5,4 

C5 

TABLE 4. SUSPECTED BINARY SYSTEMS WITH OBSERVATIONS 



1 — r " - T — — — - r - • ~T T 
I Name I R.A. , I 1 I RN l Comp. I Sep. I Th J 
| HD | Dec. | b i KM | | P.A. I No j | DM (1900) 

1 I Rh _ J I 
. J T j ] ] 

| MSB 22 ! 06 20.5 
-27 01 j 

234.9 

- 17.5 

I N 

| C4,4 
| i 5 i 

| -26 2983 ! ! I C6 
. . . . 1 

i 
i i , ' 1 • T i 

1 BY Mon 1 07 02 . 1 

-07 24 

221.1* 

-0.0 
I H 
I C5,5 

! | 28 1 6 j 

| - 7 1742 j | | C6 
j 

i j j 
j T J 

i W CMa 1 07 03.4 1 225.4 | N J -11 1801 I 158 i 5 | 
J 54361 ! -11 46 1 -1.8 I C6,3 j I i | 
| -11 1805 j 

• i 

i C5 I i 
1 3 

i * j I T —1 
\ MSB 31 

j 
07 45.0 

-00 38 
j | R8 

j 
i 4 

J 119 

1 5 J 

i i j j ~l 1 
08 42.4 1 252.6 | R8 i HD 75022 J 110 | 5 ( 

I 75021 I -29 21 I I | 1 ! j 
| -29 6735 

i j 
| 

. J 
! ! I 

r i J T • * 

I V Hya 1 10 46.8 1 i | 46 i 5 i 

| ^20 3283 1 -20 4 3 1 I ! | 186 i ! 
1 - X - j J. a. . j . . . J 

TABLE 4., (Cont.) 
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Name 
HD 
DM 

R . a., 
Dec. 
(1900) 

1 
b 

RN 
K15 
Rh 

1 1 I 
Comp. | Sep. 

P. A. 

SZ Sgr 

161208 

•18 4634 

17 39.1 

-18 37 
8.7 

5.5 

N 

C7,3 

C5 

2 

215 

T Dra 

+58 1772a 

17 54.9 

• 58 14 

86.8 

29.9 

Ne UY Dra 15 

225 

HK Lyr 

173291 

+36 3243 

MSB 64 

+ 5 3950 

18 39.4 

+ 36 51 

66.1 

17.5 

N 

C7,4 

C 5 

18 42.6 

+ 05 20 

37.3 

3.4 

C6 

28 

S Set 

174325 

8 4726 

18 44.9 

-08 01 

2 5.8 

-3.4 

N 

C6 ,4 

C 5 

UV Aql 

176200 

+14 3729 

18 54.0 

+ 14 14 

46.6 

5.0 

C 6 

20 

. J t 

TABLE 4. (Cont.) 
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I X 
I Name | 
1 HD | 
{ DM | 

R. A. 
Dec. 

C1900) 

- T 

1 \ 
b | 

RN 
KM 
Rh 

i 
I Comp. 

- i -

i 

Sep. 
P. A. 

~~i i 
1 Tb 1 
1 No \ 

j J j ] - +-
i 

I X Sge | 20 00.7 I 59.7 | N I 6 1 6 | 

| 190606 I + 20 22 I -5 .9 | ! [ j j 
| +20 4417 I 

! 
C6 i ! 1 i 

| Sv Cyg J 20 06.4 ! 83.2 | N3 | +47 3032 i 145 1 5 J 

i 191738 | +47 33 ! 8.0 | C7,4 ! ! 140 ! ! 
I + 47 3031 I 

! ! i ! i i 
| RS Cyg j 20 09.8 ! 75.9 | Ne | +38 3956 ! 132 | 7 J 

| 192443 | + 38 26 i 2.4 j C8,2e ! J 355 i 1 

| +38 3957 | 

J j C5 J +38 3960 56 

106 
| ! 

I « Cyg | 20 16.5 ! 84.2 | Ne | +47 3078 ', 64 1 7 i 

I 193680 f •47 3 5 I 6.6 J C8,2 I ! 51 I ! 
] +47 3077 j 

.4 
i 

C em j ( ! ! 
T : 1 J * 
| MSB 41 1 20 45.2 

+ 32 51 J 
75.8 | 

-6.7 | 

N 1 cp. 1 
J 

10 I 6 | 

| +32 3954 | I i I cp. 2 i 18 ! j 
v ._ _. . 1, -J. _ J~ _ _ j — X 1 

TABLE 4. (Cont.) 
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r -

i 

Name 
HD 
DM 

T 
i R.A. 
1 Dec. 
| (1900) 

-T T " 
1 1 1 
1 b ] 

" T _ 

RN J 
KM | 
Rh | 

i 

Comp. 
T-

_ J _ 

Sep. 
P. A. 

| Tb J 
I No | 

i ' j i T 
i i 

H V Agr | 21 00.7 

| -00 36 

1 49.6 | 

I -29.6J 

He | 

C em | 
j ! 8 | 

| 21 59.5 1 94.? ) N | ! 9 1 6 1 

209596 | +45 05 1 -7.9 | 
! 

_ J • i 
J | J i~ t —1 

| 21 59.7 | 78.6 | R3 J ! 1 8 j 

209621 ] +20 34 1 -27.1 | C2,2CH | J i ! 

+20 5071 
! i j C2 | ! 

I .„ 1 
} j . J • 1 1 

BZ Peg I 22 01.5 J 87.6 | Ne j 15 I 6 1 

209890 | +33 02 | -17.8 | C9,1e J I 1 ! 

+32 4335 
! ! 

C em j i 
i i 

MSB 73 J 22 40.7 

| +48 57 

1 10 2.8 ] 

I -8.4 ] 

N | | 6 
325 

•+*"• i 

1 6 1 

•48 3827 J i ! i j i i 
SO And \ 23 59.4 | 114.0 J N 1 ! 15 1 5 | 
225217 | +43 00 I -18.5 1 C6,4 | 1 1 1 

•42 4827 I 1 1 C5 1 } ! i 
i i , _. i — j . ,. j. -J... I 

TABLE 4. (Cont.) 
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Name 
HD 
DM 

8 Cyg 

185456 

+49 3064 

S Cyg 

3 +57 2134 

R. A. 
Dec. 
(190 0) 

19 34.1 

+ 49 58 

20 03.4 

+57 42 

1 
b 

82.7 

13.8 

91.8 

13.7 

RN 
KM 
Sh 

S4 ,9 

S5,2e 

T T 1 
Comp. | Sep. 

P. A. 

+49 3065 91 

14 

31 

TABLE 4. (Concl. ) 
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r e a l (Table 5) , while the systems with strongly discordant data 

are considered to be not real (Table 7). Systems with few 

supportive (or mildly conflicting) data are considered i n Table 

6; these systems frequently lack some v i t a l observation and 

cannot be decided one way or the other on the basis of the 

present observational data. F i n a l l y there are those systems 

(Table 8) for which so l i t t l e data i s available that i t would be 

meaningless to claim t h e i r r e a l i t y or otherwise. 

The Tables 5 to 8 have, because of space l i m i t a t i o n s , been 

divided i n t o three parts each (A, B and C) . The photometry of 

parts A refe r s to the carbon stars {columns 2 - 4) and the i r 

companions (columns 5 - 7) . for the years indicated [ 1969 = 

Sept./Oct. 1969 (Richer 1971); 1971 = Sept. 1971 from Cerro 

Tololo (by Dr. Richer, mostly unpublished); 1972 = Sept. 1972, 

author's data from K i t t Peak]., A l l the H/s photometry was done 

in 1972. The carbon star V magnitudes at maximum ( c o l . B. 2) are 

derived from the present photometry (p) unless otherwise i n d i ­

cated. The colour excesses (col. A.7) and absolute magnitudes 

(col. B.5) of the companions are based on the c a l i b r a t i o n s of 

Johnson (1966) and Blaauw (1963), respectively. Column C.4 

gives the r a d i a l velocity of the g a l a c t i c f i e l d at the distance 

of the companion, calculated from the Oort g a l a c t i c rotation 

formula and corrected for the standard solar motion. Columns 

C. 5 and C.6 give the dereddened colour index (cf. Appendix III) 

and the calculated brightest absolute v i s u a l magnitude of the 

carbon sta r . F i n a l l y , column C.7 gives the author's confidence 

l e v e l , on a scale from 0 to 10, in these derived absolute magni-
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tudes., This i s a combination of the confidence l e v e l of a 

physical connection between the component stars and the r e l i a ­

b i l i t y of the companion's luminosity c l a s s . 

The l e t t e r s also appearing i n some of the columns of parts 

B and C refer to the sources of the data. These are; 

A - A.A.V.S.O. magnitude estimates (Barnes 1974), 

E - Eggen (1972) , 

F - Franz and White (1973), 

G - Gordon (1968) , 

ft - Mendoza and Johnson (1965), 

W - Wilson (1953) , 

p - brightest V magnitude from part A of Table 5, 

a,b,c,d,e - Sanford's (1944) probable error of velocity: 

a=±1, b=±2-3, c=±4-5, d=+6-8, e=±> 10 (km/s) . 

VI - V i c t o r i a - 7 8 A/mm spectra. 

KP - Ki t t Peak - 128 A/mm spectra. 

CT - Cerro Tololo - 200 A/mm spectra - companions. 

- 124 A/mm IH spectra - C-stars. 

The carbon star r a d i a l v e l o c i t i e s mentioned on the previous 

l i n e have been measured on a system developed here and described 

in Appendix I. The VBI photometry i s presented i n Table 9, 

while a few additional double stars from Crull»s (1972) l i s t 

which have not been investigated a t a l l are given i n Table 10. 

These companions* magnitudes are guesses from the Palomar Sky 

Survey p r i n t s . 
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Star 
v 

B-V 
U-B 
1969 

C-star 
V 

B-V 
D-B 
1971 

h 

V 
B-V 
U-B 
1972 

Companion 
V V H beta 

B-V B-V E(B-V) 
U-B U-B 
1971 1972 

+-
I UV aur | 
I * • 1 j 9.59 | 

1.42 | 
-0.26 | 

9.39 || 
1.67: H 

-0.13 I] 

| 10.96 | 
| 0.21 | 
| -0.30 | 

2.679 
0.20 

I -26 2983 | 
1 % 1 

8.58 | 
3.47 | 
1.00 | 

8.56 j 
3.26 | 
1.35 I j j (12.8) ! | 0.0 

I SZ Sgr | 
i % 1 

8.44 | 
2.31 | 
1.72 j | j (11.8) I | 0.21 

I TO Tau | 
1 % 1 

8.42 | 
2.95 | 

8.29 | 
2.72 j 
1.36 | 

8.45 || 
2.73 || 
1.1)9 || 

(11-7) 
I i 

0.44 

1 H CMa | 6.77 | 
2.53 | 
4.68 | 

6.55 | 
2.38 | 
4. 24 j 

7.48 || 
2.50 || 
<*-32 J | 

8.76 
0.00 

-0. 69 

I 8.82 | 
j -0.01 | 
1 -0.69 | 

; 2.642 
0.24 

| SU and | 8.22 | 
2.58 | 
4. 13 | 

8. 19 | 
2.45 ] 
4. 85 | 

12.77 
0. 38 
0.01 | j 0.07 

| SV Cyg | j 8.55 || 
3.19 || 
5. 2 : | | 

| 9.75 | 
| 1.21 | 
1 1-24 | 

0.11 

1 MSB 64 | j 9.60 | 
3.79 | 

9.51 | | 
3. 46 | | 

11.81 
0.73 
0.49 

| 11.85 | 
I 0.72 | 
| 0.48 | 

2.818 
0.58 

| HD 75021 | 7.08 J 
1.94 | 
3. 17 j j j 7.58 

1. 45 
1.60 

i . . _ — . . i „,. 

0.35 

; J j 11 " I i 

| MSB 31 | 
I # | 

9.0 | ! I I 10. 8 
0. 2 | | 

I V Hya | 
i * i 

6.7 1 ! i ! 11. 58 i I 
i * i t J... X, — X- - J - A — J _ . . . . . JL 

% C-star photometry includes companion. 
# See text. 

TABLE 5.a DATft ON OBSERVED SYSTEMS - PROBABLY REAL 
PHOTOMETRY 
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r - - — -T— • T — ' " " 1 

I Star | V (max) | 
C-star | 

AV 
C-star i Spectrum 

Co m p ! Comp j V max,C* | 
-V(cp) j 

1 i i 

1 l j T T 

I OV Aur | 7.4 F | 3.2 F I B9 V KP ! -0. 1 j -3.5 j 

] -26 2983 1 8.55 p I | A5 V CT | + 1.8 j -4.25 j 

I SZ Sgr J 8.4 p | 1 A7 V CT ! +2.0 | -3.4 | 

] TO Tau | 8.3 p | 0.2 p | A2 I I I : CT 
KP ! -0.6 | # I 

-3.4 1 

I » CMa | 6.55 p | 0.9 p | 32 V KP 
CT j -2.5 { -2.2 j 

| SO And | 8.2 p | | FO V: VI •2.4 | -4.6 I 

J SV Cyg | 8.4 A | 0.5 A | K1 III KP +0.8 | -1.4 ] 

| MSB 64 ] 9.4 p | i A6 IV: CT 
VI 

1 • 1.5 J -2.4 | 

| HD 75021 } 7.1 p I 0. 1 H | K1 III G, E 
CT j +0.8 | -0.5 ) 

• 

I MSB 31 | 9.0 | | A6 III-V: G | • 1.9 | 
* 1 

... _ —+ 

-1.8 | 

I V Hya | 6.7 J | KO I I I : G +0.8 | - 4.3 ] 
i _*,,„ J - t . j — _ i- 1 

# See text. 

TABLE 5.B DATA OH OBSEfiVED SYSTEMS - PROBABLY REAL 
HAGHITODES AND SPECTRA 
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T T T 1 
Star Radial Velocity 

I 1 C-star Comp Gal | | C-star | C-star | 
1 1 i i J 
1 1 J T 1 J • 

I OV Aar | - 1 0 a | - 1 7 KP j • 6 | | 3 . 0 | - 3 . 6 | 10 

| - 2 6 2 9 8 3 | • 2 3 e | 
- 6 CT J ! + 3 8 | | 4 . 1 1 - 2 . 4 | 1 0 

| SZ Sgr | • 19 b | j - 1 0 | | 2 . 4 | - 1 . * I 1 0 

I TO* Tau | - 2 4 c J 
- 1 9 CT | ! • 1 5 | | 2 . 8 | - 3 . 9 | 8 

| W CMa | • 2 1 d | • 1 9 G | + 3 7 J | 2 . 2 | - 4 . 7 | 
* I 

7 

| SU And | - 6 b | 
- 1 1 CT | 

- 6 VI ] - 2 0 | | 2 . 4 | - 2 . 2 | 9 

| SV Cyg 1 - 8 c | - 1 5 KP | - 1 4 | | 3 . 1 | - 0 . 5 | 6 

| MSB 6 4 | - 1 7 c | 
•4 CT | 

+ 1 VI { - 1 0 || 3 . 0 | - 0 . 8 | 7 

| HD 7 5 0 2 1 ) • 1 1 a J # 

_ _ i 

+ 18 | | 1 . 6 | • 0 . 3 | 8 

l I j f i i * 

| MSB 3 1 | •4 J j j j j + 0 . 1 i 

I V Hya | 
i - , ;..., . J 

- 8 ] 
I 

_ — j . . — .... i. - _ J. 
- 3 . 5 | 

. i . 

(B-V)o Mv 

See text. 

TABLE 5.C DATA ON OBSERVED SYSTEMS - PROBABLY REAL 
VELOCITIES AND DERIVED MAGNITUDES 
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* • •' — . - - J — ' — i 
] 1 C-star 11 Companion 
1 1 V V V If V V H beta j 
I Star J B-V B-V B-V M B-V B-V E(B-V) J 
| I D-B U-B U-B J | U-B U-B 

E(B-V) J 

1 1 1969 1971 1972 | J 1971 1972 
i i . i... i • * i i 
i i t t J j 1 t 
| RY Hon j 8.10 j 7.91 J II 1 12.29 J —— 1 
1 i 4. 15 | 4.03 | | | | 0.49 1 0 . 1 - 1 . | 
1 ! —— 

• ~ I II 1 0.01 J 

1 RZ Peg J 9.25 j 12.31 J | — 1 

I | | 3.93 | | | 0. 57 | | 0.0 J 
1 1 1 2.66 j i l 0. 13 1 1 

| OV Aql | ! 8.39 | j j 12. 05 J J —— 1 

I | | 3.55 J 11 1.53 ] | 0.88 J 
• > • — 1 H 1. 50 I I 

| HD 34467 J 9.20 j 9.20 H 1 12.90 J 2.826 J 
| | 2.75 | ] 2.78 | J I 0.53 | — 1 — 

• I 4. 28 J | I 0.30 J 

| MSB 41 | J 9.61 | 9.52 I) 10. 72 I 10.81 1 — i 
| | | 4. 14 | 4.36 H 0.89 | 0.88 J 0.0 i j I — J N 0.44 1 0.44 J 
J cp.2 | j j J j 11.94 | 12.00 I —— 1 
I I | | j | 1.08 1 U10 I 0.0 i 
I I 1 II 0.80 I 0.86 I 

I X Sge | 8.36 8.53 | 13. 18 | J —— 1 
1 1 3.29 ] 3. 35 | t) 0.77 | ] 0.41 | 
1 1 —— > — i 1 I 0. 16 1 1 

| HD209596 1 J j 10.18 H 1 12.96 J 2.608 J 
| | | | 2.40 11 1 0.85 | — j 
1 1 1 1 4.05 H 1 0.39 1 

I MSB 73 | J j 10.29 H 1 12.74 J 2.615 1 
1 1 | 1 2.30 I | 1 0.74 | 0.29 1 
| | \ 1 3.44: | l 1 0.08 J 
1 1 -4. 1 1 1 ;l I i j . T 1 j • i i i 
i R Cyg | J 1 6.80 || 1 9.88 1 2.899 j 
I | 1 j 1.91 H } 0.09 | 0.0 1 
1 1 1 1 2. 18 | J 1 0 .11 J 
1 S Cyg | 1 J 11.24: H i 9.17 I — 1 
1 1 i 1 2.01 || | 1.00 | 0.0 1 
1 1 3 1 1.00 I I I 0.80 I 
t. ... j... . 1 . 11 _ j . — i _ 1 

TABLE 6.1 DATA ON OBSERVED SYSTEMS - POSSIBLY REAL 
PHOTOMETRY 
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i 
i 

....... . _.j.-

St ar | 

— - • r 
7 (max) | 
C-star | C-

A 7 
star 

Spectrum 
Comp 

~T~ 

Mv 
Comp 

— i 
7 max,C* i 
-V (cp) | 

t ] ! i • 

i * j" T 

! HY Mon [ 7.9 p J 1. 5 A i F3 1 7 CT i • 2. ! -4.4 | 

j fi.2 Peg | 8.2 A | 4. 0 A F9 7 CT | *4.2 | -4.1 J 

J U7 Agl { 8.4 p j G4 7 : CT j +1.8 
* ! -3.7 J 

J HD 34467 | 9.2 p | j •2. 1 j -3.7 j i MSB 41 | 9.5 p | G6 III G I +0.4 -1.3 } 

j c p . 2 J I K 71 1 -2.5 ] 

X Sge | 8.4 p | F2 7 71 j +2.8 I -4 .7 I 

I HD209596 | 10.2 p | j F8 I I I - 7 G 
7 1 

+ 1.0 
or 
+4.0 

1 -2.8 | 

j MSB 73 | 10.3 p | 

i 

F6 I I I - 7 G + 1.0 
or 
•3.5 

-2.4 | 

i * * 1 1 1 
8 Cyg J 6.8 A | 7. 1 A ! A5 7 KP • 1.8 -3.1 { i S Cyg j 9.5 A | 5. 7 A I K0 III KP i +0.8 I -0.2 | 

J. i„ . . X , - X - J # See te x t . 

TABLE 6.B DATA ON OBSEE7ED SYSTEMS - POSSIBLY REAL 
MAGNITUDES AND SPECTBA 
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T "3 
Star Radial Velocity 

C-star Comp Gal 

-H-

(B-V)o 
C-star 

Mv 
C-star 

RY Mon 

RZ Peg 

UV kql 

HD 34467 

MSB 41 

cp.2 

X Sge 

HD 20 9 5 96 

MSB 73 

R Cyg 

S Cyg 

• 2 c 
+4 CT 

-27 d 
-21 CT 

+ 21 b 

+ 15 d 

-11 e 

• 32 

-15 

-17 

+ 9 
+21 

VI 
G 

-9 

+ 26 e 
+ 32 CT 

-18 c 

-13 b 

+ 1 VI 

+ 3: VI 

+ 1 VI 

-10 

4.0 

3.9 

2.9 

2.5: 

4. 1 

3.1 

-30 H -15 KP 

-2 3 KP 

+2 1.9 

2. 0 

-2. 4 

• 0. 1 

-1.9 

-1.6 

-0.9 

•1.8 

-1.8 
or 

+ 1. 2 

-1.4 
or 

• 1. 1 

-1.3 

• 0.6 

TABLE 6.C DATA ON OBSERVED SYSTEMS - POSSIBLY REAL 
VELOCITIES AND DERIVED MAGNITUDES 



r - i — — r r 
{ i C-star 11 Companion 
1 | V V V | | V V H beta 
J Star | B-V B-V B-V B-V B-V E(B-V) 
j | U-B U-B U-B | | U-B U-B 
I 1 1969 1971 1972 | ] 1971 1972 

• i i 
. • ! I T 

I T Dra J | j 12 .48 || J 1 0 . 9 9 j 
J \ | i 5.6 : | | I 1.16 | ! j } 

•mm mm i 1 . 15 j 

| n Cam | i j 7 .55 |j I 9 . 6 3 | 2 . 816 
1 1 i 4. 29 ) J I 0 . 21 | 0 . 3 0 ! I j j 4 . 49 J S | - 0 . 0 5 i 

1 0 Cyg ] j I 10 .08 I I I 7 . 8 7 | 
| | i i 5. 18 11 | 0 . 8 0 I 0 . 0 | J I ! I I I 0 . 51 | 

| BS Cyg J 7 . 4 8 | j 8.32 jj | 7 . 0 9 J 2.561 
1 1 2 . 8 6 | i 3.45 11 | 0 . 5 0 J 0 . 7 5 
1 1 3 . 9 0 | 3.61 N 1 " 0 . 4 5 | 

J cp . 2 J 1 II | 9 . 24 | — 
I 1 | i I j J 1.93 J 0.31 
1 1 • II 1 2 . 2 4 1 

t _ _ _ j _ J — *.. l L J J ~ 

TABLE 7.A DATA ON OBSERVED SYSTEMS - NOT REAL 
PHOTOMETRY 



r - r~ • T T - " - - T -

j Star J V (max) 
C-star 

| AV 
| C-star 

l 

Spectrum 
Comp 

I 

Comp | 
V max,C* 
-V(cp) 

I i * 1 r • 

1 T Dra J 9.6 A | 2.5 A 
] 
K2 III-IV KP | + 1. | -1.2 

| 0 Cam J 7.2 A | 0.6 A j B8 V KP j 0. , I -2.4 

J U Cyg J 7.1 A I 3.5 A i G2 III KP j •0.4 | -0.8 

| RS Cyg \ 7.2 A | 0.7 A i BO.5 l b KP j -6.1 | • 0.1 

1 cp.2 J I * j K7 II KP -2 | -2.0 

i • , ,. J ,.. .3 - _ - X - . — . X -

# See t e x t . 

TABLE 7.B DATA ON OBSERVED SYSTEMS - NOT REAL 
MAGNITUDES AND SPECTRA 



1 — _ T _ _._ _ - r r - r - T" 

! Star 1 Radial Velocity 
| C-star Comp Gal j i (B-V) o i 

C-star | 
Hv | 

C-star | 
Wt 

i 1 I i i i . j | r 
1 I 1 t t j J 

j T Dra I -23 a | -84: KP | !! ! -0.2 | 0 

j 0 Cam | -3 c | -35 KP | -10 i i 4.1 \ -2.4 I 0 

! U Cyg I +13 a | -25 KP | -15 i i . 5.2 j -0.4 | 0 

RS Cyg I -50 a | -14 
I 1 - 2 

KP | -7 
W j || J -6 j 0 

j cp. 2 1 1 -18 KP J -9 i i j -4 j 

i _ —I ._ .. . X. . . J — .. . , . J.. _ —X-

TABLE 7.C DATA ON OBSERVED SYSTEMS - NOT REAL 
VELOCITIES AND DERIVED MAGNITUDES 
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r T - - r r - •—8 
) 1 C-star | | Companion 
I | V V V i 1 v V H beta | 
1 Star | B-v B-V B-V i | B-V B-V E{B-V) | 
| ) U-B U-B U-B II U-B U-B 

E{B-V) | 

1 1 1969 1971 1972 II 1971 1972 
% i i i j J i i 
I i 

l I i i * • T 
| X Cas | j j 11.01 || I 11.15 | 2.665 | 
! | | ) 4.99 11 | 0.53 | — I 
J I { J •mm mm | j \ 0.02 | 

| HD 30710 | 9.43 | 9.17 { |j 14.04 j J 
| | 2.75 | 2.58 J II 1.39 | | 
j j 4.27 | 3.44 | J I 0.97 | J 
I HK Lyr | 7.97 | H 14.26 J J 
I t | 3. 24 J || 0.84 | | 
| | || 0.01 j J 
I S Set | 6.70 1 j 6. 87 j j 

| ^ dm * mm Z j 
| | 2.93 | 2.91 j | 1 1.9: | 
j J " 1 j 5. 48 J J I 2.1: | 

j EV Aqr | s 9.20 | || 14.92 J J 
| | 1 4.56 | || 1.22 I | 
j J I I 

l l 0.20 j J 
] HD209621 } j 8.82 | II 13.10 5 | 
] ) 1 1.42 | || 1.43 i i 
I I 1 1.13 | || 1.23 J i 
i .,, i . .- X i _x_ -j-i. J - . . . _ X. . , . J 

TABLE 8.A DATA ON OBSERVED SYSTEMS - INADEQUATE DATA 
PHOTOMETRY 
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t T 
I Star J V (max) 

C-star 

T - - - r 
| AV J 
J C-star | 

Spectrum 
Comp 

- r — i — 

I M v | 
| Comp | 
i i 

V max,C* 
-V(cp) 

! . I T 

I X Cas | 9.6 A ! 2.3 A | -1.6 

| HD 30710 | 9.2 p ! ! | j -4.8 

| HK Lyr | 8.0 p | i | -6.3 

I S Set i 6.7 p | 0.7 A ) -5.5 

| RV Agr | 9.2 p | j I -5.7 

3 HD209621 | 8.8 p 
j J 

G (?) VI I j - 4 . 3 

I , 1 — 1 J L I I 

TABLE 8.B DATA OH OBSERVED SYSTEMS - INADEQUATE DATA 
MAGNITUDES AND SPECTRA 
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1 - . — 1 " 

I Star I 

i i 

Radial 
C-star 

- " r r T T -a 
Velocity {| (B-V)o | Mv 1 St J 
Comp Gal j j C-star | C-star | j 

t i I I! I 
I X Cas | -55 a | ! I I ! ! I 
| HD 30710 | + 38 c | i i i i i i 
| HK Lyr | -5 a 1 II | j j 
| S Set | 0 a | i i i i i i 
I EV Agr | -1 b j ! i l J 1 J 

! l -4 CT } 
! !! I ! I 

| HD209621 I -381 a ) ! 11 i S ! 
1 J - - x. .. i t~i L a J 

TABLE 8.C DATA ON OBSERVED SYSTEHS - INADEQUATE DATA 
VELOCITIES AND DERIVED MAGNITUDES 



*_" T 

J Star | V V-B V-I 
— i — i 

1 Year | 

| UV Aur | 10.01 2.43 4.26 | 71 | 

J -26 2983 | 8.72 2.15 3.56 1 71 | 

J SZ Sgr | 8. 74 1.99 3.45 | 74 | 

| 8 CMa | 6.59 1.74 3.02 | 71 | 

1 1 6.65 1.78 3. 20 I 74 \ 

| MSB 64 | 9.40 2.41 4.Q5 \ 74 J 

] HD 75021 | 7.26 1.51 2.88 | 71 | 

I V Hya | 8.36 3.03 4.69 i 74 | 

| BY flon J 8.26 2.47 4.06 I 71 ) 

I BZ Peg | 8-42 1 .92 3.34 ] 74 | 

i DV Agl | 9.05 2.46 3.93 I 74 | 

| X Sge | 8.58 2.20 3.59 | 74 | 
1,- . „ ...1 j _ _ J 

TABLE 9. FBI PHOTOMETRY 
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i : r 
HA Dec 
1900 

Star Spec Sep 

+-

V 
cp 

V Cnc 08 16.0 

+ 17 36 

S2,9e 7. 1 10 >13 

HD 76115 08 49.1 

+ 75 50 

SO 8. 0 31 14 

—1 

BT Cap 20 11.3 

-21 38 ] 
I 
1_ 

C5,3 8.6 26 15 ADS 13616 

TABLE 10. SOME UNINVESTIGATED DOUBLE STABS 
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Discussion of Individual Systems 

UV Aur The spectral type of the 3.4" distant 

companion i s B9 V, i n excellent agree­

ment with Gordon's (1968) type of BB.5 V; the photometric data 

may, however, have been contaminated by the brighter carbon 

star. Franz and White (1973) have measured V = 10.92 and B-V = 

0.12 f o r the companion; t h i s agrees well with the present V 

value but i s bluer by 0.09 mag. The Q index [Q = (0-B) 

0.72 (B-V) ] corresponding to the B9 spectral type points to the 

star being above the main seguence, while the Ĥa value indicates 

an absolute magnitude of -1.5 (Stromgren 1966). As these data 

could also have been contaminated an absolute magnitude of -0.1 

has been adopted; t h i s corresponds to a point barely above the 

main sequence at B9. Recently Garrison (1977) has expressed the 

opinion that t h i s star i s brighter than luminosity c l a s s V, 

possibly as bright as c l a s s I I I . This agrees quite well with 

the assigned absolute magnitude. A normal star of t h i s spectral 

type i s expected to have a mass of 3.5 to 4 m (Allen 1973}, and 

Iben (1967) indicates that such a star would be -1 - 1.5 x 10 s 

years old. Since the post main sequence evolution of the 

companion carbon star i s much fas t e r than t h i s we can assign i t 

a main sequence mass of *t4'H»; as i t may subsequently have 

suffered mass l o s s , however, t h i s i s only an upper l i m i t to i t s 

present mass. Since the v e l o c i t i e s agree reasonably well and 

are s i g n i f i c a n t l y d i f f e r e n t from the expected g a l a c t i c f i e l d 

velocity there i s no reason to suppose that these stars do not 

form a physical pair. The carbon star absolute magnitude i s 



variable between -3.6 and -0.4. The period of t h i s v a r i a b i l i t y 

i s approximately 390 days. 

-26° 2983 These stars with composite spectra have 

SZ Sgr been discussed by Richer (1972), and no 

further observations have been obtained. 

He derives absolute magnitudes of -2.4 and -1.4, respectively, 

under the assumptions that the U magnitudes are influenced only 

by the early-type companion and that the reddening can be 

obtained from the nearby f i e l d stars. As there i s no reason to 

doubt the v a l i d i t y of these assumptions, these magnitudes w i l l 

be adopted, 

TO Tau This system was also discussed by 

Richer, who derived a carbon star 

absolute magnitude of -3.9 based on the same assumptions as 

above and using a spectral type f o r the companion of A2 I I I . 

One a d d i t i o n a l spectrum has been obtained of t h i s s t a r . 

Onfortunately i t i s rather weak and does not permit either v e r i ­

f i c a t i o n or disproval of Richer*s assigned luminosity c l a s s . 

The only features d e f i n i t e l y present between H-gamma and H-delta 

are 4315 (Fe I ) , G-band (CH) , 4260 (?) and 4226 (Ca I ) ; a l l 

attributable to the carbon star. Even i f the luminosity sensi­

t i v e blend 4173-8 i s weakly present i t would be more d i f f i c u l t 

to detect on the weak plate because of the higher dispersion 

used (128 vs 200 A/mm). I t i s interesting to note, however, 

that SZ Sgr, wherein the carbon star i s r e l a t i v e l y brighter i n 

the bluei region than TO Tau, also shows (in Richer*s F i g . 1) a 
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l i n e at the same position, i n d i c a t i n g that t h i s feature may be 

from the carbon star spectrum. I f t h i s i s the case the 

companion's absolute magnitude must be decreased by 1.8 mag to 

+1.2, corresponding to a main sequence s t a r . Because of the 

small separation (zero) there i s l i t t l e room fo r doubt as to the 

physical r e a l i t y of t h i s system, even though corroborating 

r a d i a l velocity data i s lacking. Thus the absolute magnitude of 

TO Tau i s either -3.9 or -2.1. 

W CHa Despite the large separation of the two 

stars (158") there are several reasons 

for supposing t h e i r physical proximity., Primary i s the obser­

vation that W CMa illuminates a r e f l e c t i o n nebula which i s 

probably part of the CMa 0B1/CMa fi1 complex (Herbst, Racine and 

Richer 1977). The spectral type of the companion i s B2 V, given 

by several spectra and confirmed by the Q-value (-0.69) as well 

as the luminosity indicated by the YLp index, and not B5 as given 

by Gordon (1968). The g a l a c t i c f i e l d r a d i a l velocity at the 

distance,of t h i s star i s +37 km/s, s i g n i f i c a n t l y d i f f e r e n t from 

both the B-star i t s e l f (+19 km/s) and the C-star (+21 km/s) 

which agree quite well., Since the solar motion component i n 

t h i s d i r e c t i o n contributes +18 km/s to these v e l o c i t i e s i t i s 

clear that the B-star motion d i f f e r s greatly from the g a l a c t i c 

f i e l d . Furthermore the declination components of the proper 

motions agree very well {+0.0 23" and +0.019" ± 0.020" 

(st. devn)) although the r i g h t ascension components are somewhat 

discordant (-0.036" and +0.017" ± 0.027") (SAO Catalog 1966). 

I t should be noted, however, that the C-star v e l o c i t y (though of 
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poor quality) does not d i f f e r greatly from the LSE v e l o c i t y and 

hence i s not inconsistent with a much fa i n t e r absolute 

magnitude., 

SU And The FQ spectral type i s based on two 

medium well to weakly exposed spectra. 

As these make i t rather d i f f i c u l t to determine the luminosity, 

class V has been assumed because of the width of the Balmer 

l i n e s . Because of the excellent agreement of the v e l o c i t i e s 

t h i s system seems to be on a s o l i d basis. 

SV Cyg The r a d i a l velocity data f o r these stars 

can't be used to v e r i f y the r e a l i t y of 

t h i s system as both of the v e l o c i t i e s agree well with the galac­

t i c f i e l d v e l o c i t y and the system i s i n a d i r e c t i o n (^=83°) 

where the velocity i s rather i n s e n s i t i v e to distance. Since the 

derived C-star absolute magnitude i s i n the r i g h t ballpark, 

however, and there i s no contradictory data t h i s system cannot 

be ruled out as r e a l . 

MSB 64 The luminosity c l a s s i f i c a t i o n of the 

companion i s based on the width of the 

Balmer l i n e s ; i f the star i s on the main sequence the absolute 

magnitude w i l l be f a i n t e r by 0.4 magnitudes.. The V i c t o r i a 

r a d i a l v e l o c i t y agrees well with the infrared C-star v e l o c i t y 

but not with Sanford's " ^ ' - q u a l i t y { ± 5 km/s according to 

Sanford) blue velocity. Better r a d i a l v e l o c i t i e s are obviously 

needed to s e t t l e t h i s question. 
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HD 75021 Most of the data on these stars have 

MSB 31 been taken from Gordon {1968). New pho­

tometry of HD 75021 has yielded improved 

colours, and the sp e c t r a l type i s a compromise of Gordon, Eggen 

{1972) and a low dispersion spectrum. Proper motion data for 

t h i s double agrees in declination (-0.010" and -0.0 08" + 0.0 13 

(st. devn)) but not in right ascension (-0.028" and +0.00 2" 

± 0.013) (SAO 1966) . Gordon says the r a d i a l v e l o c i t i e s agree to 

within the measurement errors but the ga l a c t i c v e l o c i t y gradient 

i n this d i r e c t i o n i s very small and hence t h i s datum does not 

carry much posit i v e weight. The magnitude data for the compa­

nion to MSB 31 i s based on a photographic magnitude by Sanford 

(1940) of 11.0 and Gordon's spectral type. Although she cannot 

distinguish between luminosity classes I I I and V, the main 

sequence class has been assumed i n Table 5. The small 

separation of t h i s pair lends c r e d i b i l i t y to the r e a l i t y of t h i s 

system. 

V Hya VBI photometry of t h i s double gives 

(V-E, V-I) colours for the companion of 

(0.81, 1.56), consistent with a spectral type of K1 or K2 I I I , 

or K0 I I I : , the sp e c t r a l type given by Gordon (1968). I f t h i s 

system i s r e a l , V Hya i s both the reddest and i n t r i n s i c a l l y 

brightest star investigated here.. 
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R¥ Hon This star lacks s u f f i c i e n t data to be 

either accepted or rejected as a r e a l 

system. The photometry i s consistent with an unreddened F6 V 

star, considerably l a t e r than i s indicated by the available 

spectrum, which has been given the greater weight. , Should t h i s 

system be r e a l the photometric spectral type would set a f a i n t 

l i m i t to the C-star absolute magnitude of -0.9. 

RZ Peg This star also lacks data. Here, 

however, at least the spectral type i s 

not open to question as both the photometry and the spectrum 

agree. a r a d i a l velocity for the companion would be most int e r ­

esting here as the suggested C-star absolute magnitude would be 

among the f a i n t e s t known fo r N-stars i f the system i s r e a l . I t 

i s i n t e r e s t i n g to note that the carbon star shows emission i n 

the infrared Ca I I t r i p l e t (Richer 1971). 

0? Aql This double lacks both a r a d i a l v e l o c i t y 

and r e l i a b l e spectral c l a s s i f i c a t i o n . 

The spectral type i s based on a rather weak spectrum; hence the 

uncertain luminosity c l a s s . The photometry i s consistent with a 

K2 giant and supergiant but only marginally acceptable as a main 

sequence star and then as a late K dwarf. This double i s best 

l e f t u n t i l more data i s available. 

HD 34467 This double i s severely lacking i n data. 

The OBV photometry i s consistent with 

spectral types B9 V, A8 V and gF, while the Ĥs value i s compat­

i b l e with the B9 V and A8 V types only.. I f the a8 V type i s 
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assumed (this requires the least reddening and sets the f a i n t 

l i m i t to the C-star) the carbon star would have an absolute 

magnitude of -1.6 i f the system i s r e a l . 

MSB 41 The C-star velocity does not agree well 

with either of the companions but i t s 

poor quality makes thi s of l i t t l e s i g n i f i c a n c e . 

X Sge The photometry i s ind i c a t i v e of a 

s l i g h t l y l a t e r spectral type f o r this 

companion than i s given by the spectrum. The weakness of the 

Ca I 4226 l i n e and the 6—band i s strongly supportive of the 

e a r l i e r type however; perhaps the star i s metal poor. Sanford's 

C-star v e l o c i t y i s confirmed by the presently measured infrared 

v e l o c i t y , while the companion's v e l o c i t y seems to be s i g n i ­

f i c a n t l y d i f f e r e n t although t h i s i s based on only three wide 

l i n e s and thus i s of low weight. This system does not seem to 

be r e a l . 

HD 209596 The C-star absolute magnitudes for these 

MSB 73 doubles are based on Gordon's (196 8) 

spectral types for the companions and 

the present improved photometry. The v e l o c i t y f o r HD 209596 's 

companion i s based on but four broad l i n e s on a weak plate; 

these do agree f a i r l y well however. 
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S Cyg This star i s a member of the t r i p l e star 

ADS 13385 . The K-star i s the A-com-

ponent while the S-star i s a binary with 0.6" separation (BC) . 

No data i s available f o r the C-component because of i t s close 

proximity and the faintness of the system (BC) as a whole. 

T Dra The large velocity differences between 

0 Cam the carbon stars and the suspected com-

U Cyg panions r u l e out these doubles as r e a l 

BS Cyg systems. According to the A.A.V.S.O. 

data the v i s u a l magnitude variation of 

RS Cyg has been ste a d i l y decreasing from at least the early 

60's. The amplitude has changed from about 1.i| mag to the 

present 0.5 magnitude. 

S Set This star i s i n a very r i c h region of 

the Milky Way and has several f a i r l y 

close companions. The photometry reported here r e f e r s to the 

brightest of these. Because of the crowded f i e l d t h i s star i s 

not worth investigating further., 
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Discussion 

The r e l a t i o n between the absolute vis u a l magnitudes of the 

C stars and t h e i r companions i s shown in Figure 2. The f a i n t 

l i m i t s shown i n t h i s f i g u r e are at least p a r t i a l l y affected by 

observational se l e c t i o n . , Nonetheless, there seems to be some 

indicatio n of a trend in the sense that the early A and B type 

companions are associated with the brightest C s t a r s , and the 

higher weighted late-type giants are associated with f a i n t e r C 

stars. Use of the bolometric absolute magnitudes (see below), 

instead of the v i s u a l magnitudes, s t i l l shows t h i s trend (Figure 

3) : carbon stars with B type companions tend to be more luminous 

than those with A and K type companions. Since the early-type 

stars are expected to be younger (on the average) and t h e i r 

evolved companions therefore more massive ( i n i t i a l l y at least) 

t h i s may be taken as a mild indication f o r a mass - luminosity 

r e l a t i o n f o r carbon stars. , 

If the stars for which only Gordons (1968) absolute magni­

tudes are available as well as the S stars are deleted, and i f 

we apply the weights indicated in the l a s t column of Tables 5 

and 6 the group properties can be derived. The average absolute 

v i s u a l magnitude of the remaining 13 N stars i s -2.3 ± 1.1 

(st. .devn).. , Since the average i n t r i n s i c (B-V) colour of these 

stars i s *3.0 (cf. the " S t a t i s t i c a l Studies" section), and there 

i s nothing obviously peculiar about them other than having 

companions, they can be taken to be a t y p i c a l sample of N s t a r s . 

Since most of the energy from carbon stars i s radiated in 
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the i n f r a r e d , t h e i r v i s u a l absolute magnitudes are not as 

ph y s i c a l l y meaningful as t h e i r bolometric absolute magnitudes. 

To properly c a l c u l a t e the bolometric corrections, however, one 

needs photometric information extending far into the infrared, 

and such data e x i s t for but a few dozen stars (Mendoza and 

Johnson 1965). Fortunately, their data show that there exists a 

good co r r e l a t i o n between the calculated bolometric corrections 

and the V-R colour index f o r both R and N s t a r s . These r e l a ­

tions are shown i n Figure 4., Since one would expect the stars 

in Figure 4 to be reddened by different amounts, i t i s s u r p r i ­

sing at f i r s t that the c o r r e l a t i o n i s as t i g h t as i s indicated. 

The e f f e c t of i n t e r s t e l l a r reddening i s , however, not only to 

make the observed colours redder, but also to increase the r a t i o 

of the nonvisual to v i s u a l flux (since most of the f l u x i s i n 

the i n f r a r e d ) , thus causing an overestimate of the bolometric 

corrections based on the reddened colours. Hence reddening w i l l 

cause a star to move more or l e s s along the l i n e s of Figure 4, 

rather than across them, retaining the tightness of the 

r e l a t i o n . 

To derive bolometric corrections the observed (V-R) 

colours, where available (Table 9; Mendoza and Johnson 1965) 

were corrected f o r the reddening shown by the companions 

according to E(V-R) =0.75 E(B-V). The bolometric corrections 

were then read o f f from Figure 4. These are expected, i n most 

cases, to be good to a few tenths of a magnitude. The r e s u l t i n g 

bolometric absolute magnitudes have been plotted i n Figure 5 

versus the deduced i n t r i n s i c (V-R) colours. For reference the 
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normal giant and supergiant branches from MO to M6 are also 

included (Blaauw 1963; Jchnson 1966). I t i s thus apparent that 

the late-type carbon stars are not confined to a narrow lumi­

nosity range, but i n fact populate a wide band (about H magni­

tudes wide) corresponding to the region between the normal giant 

branch and the supergiants. 
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Figure U. Bolometric Correction vs V-R 



60 

Figure 5 . M (bol) vs (V-R) 
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Part I I . CARBON ISOTOPE ABUNDANCE RATIOS 

Carbon exists i n nature i n only two stable isotopic forms 

{viz. **C S * 3 C ) . The t e r r e s t r i a l » 2C/*3C r a t i o i s approx­

imately 90, while reported r e s u l t s for carbon stars range from a 

low of 2 to highs of greater than 100. For normal late-type 

stars (mostly K giants) r a t i o s have recently been reported 

primarily i n the 10 to 30 range (Tomkin, Luck and Lambert 1976; 

Dearborn and Eggleton 1976). 

A knowledge of the *zc / » 3 C r a t i o s i n carbon stars i s 

important because of the constraints i t places on the models of 

C stars, which should t e l l us something about t h e i r evolutionary 

state, nucleosynthesis reactions {to produce the isotopes) and 

structure {convection zones to transport them to the surface). 

In carbon stars we can observe carbon primarily in three 

forms: the molecules CO, CN and C 2; the observational problems 

involved i n determining the abundance r a t i o s d i f f e r depending on 

which molecule and spectral region i s to be studied. The CO 

vibrati o n - r o t a t i o n bands are a l l i n the infrared (from 5^ to 

1..6p. f o r AV = 1 and 3, resp.) and thus are not accessible using 

conventional methods; the CN and C 2 bands in the blue and visual 

regions are a l l very crowded, resulting in great problems with 

l i n e blending* The Red system of CN i n the near infrared avoids 

both these problems: the spectral region i s readily available 

using both photographic N-type emulsions and the newer s o l i d 

state detectors, and the r o t a t i o n a l band structure i s s u f f i -
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c i e n t l y open that i n d i v i d u a l r o t a t i o n a l l i n e s are frequently 

resolved, even at moderate dispersions. 

Past values of the 1 2 C / l 3 C r a t i o i n carbon stars have been 

derived using three main techniques. Most quoted values have 

been obtained using some variant of the standard curve-of-growth 

method. Line blending i s often severe, r e s u l t i n g i n r e l a t i v e l y 

few usable l i n e s ; i n the extreme, Byl l e r (1966) based his 

results on only 2 l i n e s . Even more serious i s the question of 

locating the continuum, in a strong-CN star l i k e Y CVn the 

spectrum hardly ever approaches anything that can be c a l l e d a 

continuum l e v e l . In t h e i r analysis of UD Sur Querci and 

Querci (1970) determined th e i r continuum through an i t e r a t i v e 

procedure based on the temperature and l i n e s that should be on 

the f l a t part of the curve of growth. The i s o - i n t e n s i t y method 

of F u j i t a (1970) avoids the problem of the continuum by using 

the central depths of the l i n e s and a pseudo-curve-of-growth 

analysis. This method i s , however, very s e n s i t i v e to the 

ex c i t a t i o n temperature adopted. The t h i r d method (Climenhaga 

1960) uses calculated synthetic spectra which are then matched 

to the observed spectrum. His synthetic spectra were calculated 

using the empirical Minnaert formula and the matching was done 

v i s u a l l y . 

The present investigation i s a greatly improved version of 

Climenhaga's basic approach.. Since i t i s well known that carbon 

stars are at least giants and probably somewhat brighter [see 

Part I of t h i s t h e s i s ] t h e i r atmospheres must be quite extended, 
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and one would not expect methods which are based on a uniform 

s l a b model of t h a t atmosphere t o n e c e s s a r i l y produce r e l i a b l e 

r e s u l t s . Thus I decided t o c a l c u l a t e s y n t h e t i c s p e c t r a by 

d i r e c t l y i n t e g r a t i n g the f l u x through an a p p r o p r i a t e model atmo­

sphere. I t would a l s o be d e s i r a b l e t o have an a n a l y s i s t e c h -

nigue that was independent of the p r e j u d i c e s o f the observer. 

I d e a l l y such a technique should make use of the e n t i r e 

i n f o r m a t i o n content of the spectrum, r a t h e r than j u s t c e r t a i n 

s e l e c t e d p i e c e s , i t should a l s o be r e l a t i v e l y i n s e n s i t i v e to 

those s p e c t r a l f e a t u r e s t h a t one i s not i n t e r e s t e d i n 

(e. g. t e l l u r i c l i n e s ) . For s p e c t r a such as these of molecular 

bands i n carbon s t a r s , where the vast m a j o r i t y of s p e c t r a l 

f e a t u r e s a re i n f a c t due to the molecule (s) being s t u d i e d , I 

b e l i e v e t h a t the method based on the coherence spectrum (to be 

d e s c r i b e d l a t e r ) s a t i s f i e s the above c o n d i t i o n s . I t a l s o has 

the f u r t h e r advantage of being i n s e n s i t i v e to the assumed 

continuum l e v e l . 

The o n l y model atmospheres a p p r o p r i a t e t o the c o o l carbon 

s t a r s i n v e s t i g a t e d here t h a t I have been ab l e t o o b t a i n a re 

those of Johnson (197 4). These were c a l c u l a t e d on a l o o s e g r i d 

of parameters t o ex p l o r e the e f f e c t s of temperature, s u r f a c e 

g r a v i t y , composition and o p a c i t i e s . , The model parameters a r e 

o u t l i n e d i n Table 11; most of the models are arranged i n 

sequences with one or two of the parameters v a r i a b l e . The 

number of p o s s i b l y u s e f u l models i s 17. The models were 

c a l c u l a t e d under the u s u a l assumptions of a plane p a r a l l e l atmo­

sphere, LTE and using s t r a i g h t mean o p a c i t i e s . I n s p i t e o f 
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i Parameter 

T — ~ — r 

1 Range J 

" "" "•' i 

p r i n c i p a l l y J 

J C/0 1 [ 1 , 5 0 ] | 2,5 | 

I T (ef f } (°K) j [2000,3500] | 3 500 | 

1 C/H | [ 0 . 1 , 1 0 0 ] (C/H)« | 

i l o g g i [ 0 , + V ] | 0 (giants) j 

| N/H ] [ 1 , 1 2 0 ] (N/H)« | 

t _ _ _ _J _ „. _ i _ _ J 

TABLE 1 1 . MODEL ATMOSPHERE PARAMETERS 
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these l i m i t a t i o n s they are s t i l l b e t t e r than the uniform s l a b 

model. 

T h i s p a r t of the t h e s i s opens with a b r i e f d e s c r i p t i o n of 

the o b s e r v a t i o n a l m a t e r i a l used here. T h i s i s fo l l o w e d by a 

d e s c r i p t i o n of how to c a l c u l a t e s y n t h e t i c s t e l l a r s p e c t r a , both 

a t h e o r e t i c a l summary and the p r a c t i c a l d e t a i l s a p p r o p r i a t e to 

molecular band s p e c t r a . The a n a l y s i s t echnique i s then 

presented, along with some comments on i t s advantages and a few 

t e s t s i l l u s t r a t i n g i t s a p p l i c a b i l i t y . Next the r e s u l t s of the 

carbon i s o t o p e r a t i o a n a l y s i s are shown, i n c l u d i n g remarks on 

the microturbulence and carbon content o f the carbon s t a r s , as 

w e l l as a se a r c h f o r the **C and 1 5 N i s o t o p e s . A resume of the 

pros and cons of the a n a l y s i s technique concludes t h i s p a r t . 
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The Observational Material 

The basic observational material f o r t h i s part of the study 

consists of near infrared photographic spectra of f i v e carbon 

stars (Table 12). The spectra were obtained by Dr. H. B. Richer 

at the 122-cm (48 inch) telescope of the Dominion Astroph y s i c a l 

Observatory i n V i c t o r i a during the period Nov.,21, 1970 to 

Dec. 18, 197G. The plates are at a dispersion of 13 a/mm on IN 

hypersensitized emulsions covering the wavelength region 7500 -

8800 A. 

The region of the spectra from 780 0 a to 8300 A was 

d i g i t i z e d with the department's automated Joyce-Loebl Micro-

densitometer and reduced to an intensity versus wavelength array 

using computer programs developed by H. Fast (1973), as follows. 

D i g i t i z i n g scans were made along the s t e l l a r spectrum as well as 

across the c a l i b r a t i o n s t r i p s and the spectrum i t s e l f at several 

d i f f e r e n t wavelengths. Grain noise was then reduced by the 

application of a d i g i t a l f i l t e r to remove s p a t i a l frequencies 

greater than 1/3 of the Nyguist frequency. Next an equal-wave­

length-interval array of log (intensity) was generated; the wave­

length scale was defined using "unblended" s t e l l a r (CN) l i n e s of 

known wavelength while the i n t e n s i t y scale was determined from 

int e r p o l a t i o n between the several c a l i b r a t i o n curves. , Note that 

the photographic density of each spectrum point was f i r s t 

corrected to compensate for the non-uniform exposure (streaks) 

caused by the image s l i c e r of the spectrograph. F i n a l l y the 

highest points were selected as representing the continuum and 
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r 1
 • — T T —i 

| Star | Plate # | Date 

I 00 Aur | 6485 | Nov. 21, 70 \ 

I X cue | 6486 j Nov. 21 , 70 ] 

| I cvn | 6487 j Nov. 21, 70 | 

| 19 Psc | 6542 | Dec. 18, 70 J 

| Z Psc j 6543 I Dec. ,18, 70 | 
i i ..in j 

TABLE 12., HIGH DISPERSION CARBON STAR SPECTRA 
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the array transformed to a normalized in t e n s i t y array. 

Indicative of the extremely heavy l i n e blanketing i s the f a c t 

that t y p i c a l l y there were no more than a half dozen such 

"continuum" peaks throughout the entire 400 A region of 

i n t e r e s t . This r e l a t i v e l y poorly determined continuum l e v e l has 

no effect on the subsequent analysis however; t h i s w i l l be dealt 

with more f u l l y i n a l a t e r section. 

The one additional parameter to be derived from the spectra 

was the instrumental broadening; i t was assumed that the i n s t r u ­

mental p r o f i l e was a Gaussian with a half-width to be deter­

mined. To t h i s end the Argon comparison arc l i n e s of a sample 

plate were d i g i t i z e d and converted to i n t e n s i t y . Not a l l the 

l i n e s could be used, however, as the arc l i n e s were more heavily 

exposed near the i n s i d e edge and were frequently saturated 

there. This resulted i n an under-estimation of the true l i n e 

strength and thus an overestimation of the width at the deduced 

h a l f - i n t e n s i t y l e v e l . Using nineteen l i n e s which were d e f i -

n i t e l y not saturated resulted in an average half-width of 0.56 A 

± 0.09 (st. devn). 
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SYNTHETIC SPECTRA - THEORY 

Following Mihalas (1970) the flux radiating from a s t e l l a r 

atmosphere i s given by 

= 2 f°° S „ ( T J E 2{^} d r , (4) 
J a 

where F v i s the flux per unit frequency i n t e r v a l , Bz i s the 

second exponential i n t e g r a l defined by 

E 2{x) = exp(-xt)/t2 dt (5) 
i 

and S v i s the source function, here, for pure absorption l i n e s , 

approximated fey the Planck black body function 

B„<T) = C 2 h ^ / c 2 J [ 1/<exp{hVkT)-1) ] (6) 

to conform to the LTE assumption of the model atmospheres. 

The o p t i c a l depth scale i s given by 

T*> = / [ k(ccnt) * l ^ ] / k (std) d-r(std) (7) 

where r(std) i s the standard o p t i c a l depth as given by the model 

atmosphere, k (std) i s the model opacity at a standard wave­

length, k{cont) i s the continuous opacity and l u i s the opacity 

contribution of the l i n e s 

lv = £ °V(sp) N(sp) (8) 
S P 

for a l l species (sp). N i s the number density of the appro­

priate species and ocv i s the absorption cross-section of one 

atom (molecule) of that species at frequency •» under the 
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conditions at that point i n the atmosphere. 

The absorption cross-section per atom (molecule) at f r e ­

quency -2-> i s 

CrreVmc)- f 4\, [»(i)/n (T) ] (9) 

where f i s the o s c i l l a t o r strength of the appropriate 

t r a n s i t i o n , i s the absorption line p r o f i l e normalized to 

unit area, and n(i)/n(T) i s the fr a c t i o n of the t o t a l number of 

atoms (molecules) that are i n the lower state of the t r a n s i t i o n . 

For a Gaussian l i n e p r o f i l e 

<K, = U / f f ^ ) exp[-[(»-];.)/^} (10) 

where i s the l i n e width and D 0 i s the c e n t r a l frequency. 

The l i n e width A D b i s the Doppler width qiven by 

^ = \ ^ i i / c £2kT/M* t t
2 l */ 2 (11) 

For a single r o t a t i o n a l l i n e of a diatomic molecule the 

o s c i l l a t o r strength i s given by (Carbon 1973) 

f.. = f o ~±L -11 - — S(HL) (12) 
l ' 9oo Z : t S e < r O 0 ) l 2 (2J«+1) 

where; f o o = (0,0) -band o s c i l l a t o r strength, 

v.. , v o o = wavenumbers of t r a n s i t i o n ( i , j ) and the (0,0) band 

o r i g i n , 

q v V, = Franck-Condon factor for the (v*,v M)-band, 

^31 Rc (f v V,) J 2 = sum of squares of the e l e c t r o n i c t r a n s i t i o n 

moments, 
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(2S*1) = m u l t i p l i c i t y of the electronic t r a n s i t i o n . 

(2-6^,,) = 1 f o r 52 states, = 2 for any other loser state, 

(2J"+1) = r o t a t i o n a l degeneracy of the lower state, 

S(HL) = Honl-London factor, normalized to 

J^S(HL) (J'»-»J») = 2J"+1. 
J" 

(13) 

The Honl-London factor i s a measure of the l i n e strength. 

Extensive formulae for t r a n s i t i o n s between various types of 

el e c t r o n i c states are given by Schadee (1964). I t should be 

noted, however, that his formulae for 2 TT - 2 XI t r a n s i t i o n s (the 

CN red system) must be multiplied by 2 to s a t i s f y the above 

normalization c r i t e r i o n . (N.B. In the notation used here a 

single prime refers to the upper l e v e l of a t r a n s i t i o n , a double 

prime r e f e r s to the lower level.) 

The f r a c t i o n a l number of molecules in the lower state of 
t r a n s i t i o n ( i j ) i s given by (Tatum 1967) 

This eguation applies to Hund*s coupling case (b) which i s 

appropriate here since both the CN and C^ t r a n s i t i o n s of 

i n t e r e s t come from a lower "T - -state. , In t h i s eguation 4> = 1/2 

for a heteronuclear molecule, whereas for a homonuclear molecule 

0 i s a function of the nuclear spin; the energy of the lower 

l e v e l [T(el) *G(v") *-F(Jn) ] i s separated i n t o three terms repre­

senting the e l e c t r o n i c term value, the v i b r a t i o n a l energy and 

the r o t a t i o n a l energy; the denominator £Q(T) ] i s the t o t a l 

M i ) 2<f> (2J" + 1) exp{-[ hc/kT][T{el) *G (v")+F{J") J} 
OH) 

n (T) Q(el) Q(vib) Q(rot) 
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i n t e r n a l p a r t i t i o n function, again separated into e l e c t r o n i c , 

v i b r a t i o n a l and r o t a t i o n a l contributions. , These are given by 

Q(el) =2^9(el) exp{-(hc/kT)T{el)} (1.5) 
i l l states 

where g(el) i s the degeneracy of the e l e c t r o n i c state 

g(el) = (2 -5 0 | A ) (2S + 1), (16) 
v 

Q(vib) exp{-(hc/kT)G(v)}, (17) 
v = o 

and 
Q(rot) = kT/hcB(v"). (18) 

C o l l e c t i n g these terms and e x p l i c i t l y putting i n a Gaussian 
l i n e p r o f i l e we arrive at the f i n a l expression 

° ^ = ) 2cbf O G --± 1— (2S*1)(2-X ) S(HL) • 

(19) 
exp£-{hc/kT) X . ] 

• * e x p[-(D - u . ) V A V 3 
Q(T) A l ^ 

where the energy of the lower l e v e l has now been denoted by X ; . 

The f i r s t group of terms i s a constant for each i n d i v i d u a l l i n e , 

the second group contains terms depending on the atmospheric 

l e v e l (temperature) whereas the l a s t term depends primarily on 

the frequency. 
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SYNTHETIC SPECTRA - PRACTICE 
Molecular Parameters 

The relevant molecular data for CN and C 2 have been 

summarized i n Tables 13 and 14. The energy lev e l s (3c* •) and 

frequencies {V\'.) of the i n d i v i d u a l r o t a t i o n a l l i n e s have been 

computed for CN from the formulae of Fay, Marenin and van 

C i t t e r s (1971) and for C 2 from Marenin and Johnson (1970). For 

the bands used here the errors i n these c a l c u l a t i o n s are usually 

less than 0.1 cm-* for **C*«N and »2C»zc and 0.2 c*-» for i 3 C * * N 

up to N values of at least 60, the maximum used here; these 

equal 0.06 and 0.13 A. Thus one would expect the errors f o r the 

other i s o t o p i c bands to be l e s s than 0.25 A, since the atomic 

masses are approximately equally accurate. To ensure that the 

wavelengths of the l i n e s are as accurate as possible the 

computed wavelengths have been replaced by actual observed wave­

lengths wherever these are available. Observed wavelengths f o r 

the l i n e s from the (2,0), (3,1), (7,4) and (8,5) bands of the 

Red system of 1 2C 1*N have been taken from the extensive tabu­

l a t i o n of Davis and P h i l l i p s (1963); a few of the branches (P 

and R 2 ) i n particular) have been extrapolated somewhat past the 

tabular cutoffs, with the aid of the computed wavelengths, as 

the observed c u t o f f s were caused by the r e l a t i v e l y cooler source 

temperatures they used. Observed wavelengths f o r the corre­

sponding bands of 1 3C**N are from Wyller (1966), and f o r the 

P h i l l i p s system of » 2 C l 2 C from B a l l i k and Ramsay (1963). In a 

very few instances missing r o t a t i o n a l l i n e s have been i n t e r ­

polated; i n general missing l i n e s have not been added, since i t 
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i s assumed that the f a c t that they are missing indicates that no 

l i n e was i n f a c t observed at the expected wavelength, probably 

caused by perturbations of the energy l e v e l s . 

Note that the above l i n e s are the only l i n e s included in 

the synthetic spectra. This s p e c i f i c a l l y excludes a l l atomic 

l i n e s , l i n e s of i 2 C 1 3 C , and a l l t e l l u r i c l i n e s , even though the 

l a t t e r may be r e l a t i v e l y numerous i n some portions of the 

spectra. 

The p a r t i t i o n functions were calculated, as a function of 

temperature, fo r CN and C^ using the energy l e v e l s i n Tables 15A 

and 15B, and the above calculated v i b r a t i o n a l [G(v)] and rota­

t i o n a l £8{v") ] parameters of the lower l e v e l f o r each molecule. 

Schematic layouts of the r o t a t i o n a l structure of the 

appropriate states of CN and C^ are presented i n Figures 6 and 

7, with the t r a n s i t i o n s giving r i s e to the f i r s t few r o t a t i o n a l 

l i n e s of each branch l a b e l l e d . Note that the drawn f i n e 

structure separations of the l e v e l s are not to scale. The stan­

dard nomenclature i s used to label the l e v e l s according to their 

parity (+,-) , symmetry (s,a) , r o t a t i o n a l quantum number (N) and 

angular momentum (J) (for the Cz s i n g l e t states J=N) . The 

various branches are known as P, Q or S branches depending on 

whether AJ = -1, 0 or +1, respectively, and the i n d i v i d u a l rota­

t i o n a l l i n e s are l a b e l l e d by the N value of t h e i r lower l e v e l s . 

The CN bands consist of 6 primary branches (AN=AJ) and 6 

s a t e l l i t e branches (4N#AJ) with 4 of the s a t e l l i t e branches 

being i n t e r n a l {overlapping primary branches) and 2 {P(a and 
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S ) 2) external; the i n t e n s i t i e s of most of the s a t e l l i t e l i n e s 

are much les s than the primary l i n e s . Because 1 2 C l 2 C i s a homo-

nuclear molecule with zero nuclear spin the anti-symmetric 

level s are forbidden, hence tr a n s i t i o n s can arise only from 

alternate l e v e l s . 



f o e = 2.19 x 10 -3 

£ 0 O = 9117.37 cm-* 

g o o = 0.50015 

g a o = 0. 12685 

q i ( = 0.19400 

q 7 4 = 0. 12095 

g 8 5 = 0.08440 

4> - 1/2 for a l l l e v e l s 

ZZ |'He | 2 = constant 

B(v=0) = 1.890658 cm -J 

(2S+1) = 2 

<2~VJ = 1 

Arnold and Nicholls 1972 

Arnold and Nicholls 1972 
« 

n 

n 

ti 

Tatum 1967 

Carbon 1973 

TABLE 13. , SUMMARY OF RELEVANT MOLECULAR DATA FOR THE 

RED SYSTEM OF CN (A 2 TT- " X 2 £ * ) 
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3.76 x 10-3 Cooper and Nicholls 

^ oo — 8268.33 cm-i 

91 O O 
0.4157 Spindler 1965 

0.0589 41 

*4» = 0. 1216 tt 

0.1429 tt 

0.0602 tt 

0.0962 tf 

«73 = 0. 1.135 n 

* 8 * = 
0.1085 it 

4> = 1 for s l e v e l s Tatum 1967 

cp = 0 for a l e v e l s 

|B el 2 = 0.36 f o r AV=0 Cooper and Nicholls 

= 0.42 AV=3 (extrapolation) 

= 0.44 AV=4 _ ii _ 

B(v=2) • •=; 1.774422 

(2S+1) = 1 

(2-6 ) = 1 

TABLE 14. SUMMARY OF RELEVANT MOLECULAR DATA 

PHILLIPS SYSTEM OF 
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i " T - - T 1 

] State 
I _ 

T(el) (cm-*) I 9 (el) 1 

* T j • 

1 B «r. ! 25,751.8 i 2 | 
I A 2 TT I 9,117.37 i 4 1 

1 X 2 I 0.0 1 2 | 
_x , I 

TABLE 15A. KNOWN ENERGY LEVELS OF THE CN MOLECULE 

r T ~ - r " - ~~i 

| State I T(el) <cm-i) 1 g(el) 1 

I E | 55,034.6 1 1 1 
I D | 43,240.23 1 1 1 

I e | 40,7 96.65 1 6 | 

I C *TT, | 34,261.9 1 2 | 

I d | 20,022.50 1 6 | 
i y * | 16,000 1 1 J 

I c 
M. 

| 13,312. I 3 | 

| 10,000 I 2 ] 

i & 1 1 1 < 
] 8,391.00 I 2 | 

I b | 6,434.27 I 3 | 

I a 3 T T U | 716.24 I 6 | 

l x | 0.0 i 1 i 

i . . _ i , .. _ j. j 

TABLE 15B. KNOWN ENERGY LEVELS OF THE C,, MOLECULE 
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Figure 6a. Rotational Energy Level Structure for the Red System of CM (lower levels) 
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Molecular Equj.libriurn Calculation 

In order to calculate the l i n e and continuous opacities 

throughout the model atmosphere the densities of CH, C 2, H and 

H 2 are required i n addition to the electron density, which i s 

given d i r e c t l y i n the model. To this end the equations of 

molecular equilibrium were solved for a l l the same species used 

in the models by Johnson. The computer program used f o r the 

solution b a s i c a l l y follows the procedure used by Vardya {1965), 

although i t has been modified to force the t o t a l pressure to 

equal the known pressure of the model. The basic program was 

kindly supplied by Dr. J . R. Auaan. 

The abundances used were the same as those used by Johnson; 

i . e . for H, He, C, N and 0 as spec i f i e d for each model and the 

other elements from the solar composition as deduced by Lambert 

and his co-workers (Lambert 1968; Lambert and Earner 1968a, b, 

c; Warner 1968; Lambert and Mallia 1968). Dissociation 

constants were taken from polynomial f i t s to the data from the 

JANAF theraochemical tables (I960) or from the c o e f f i c i e n t s of 

Vardya (1965) or Morris and Hyller (1967), again as spec i f i e d by 

Johnson. 

Since the JANAF di s s o c i a t i o n constants are of a d i f f e r e n t 

form from those required by Vardya's (1965) procedure i t w i l l be 

useful to consider the necessary conversion technique. The 

JANAF tables refer to e q u i l i b r i a of the kind 

n, A • n z B ==̂  n^ AB 
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where A and B represent the reactants i n the i r reference states, 

AB represents the product and n,, n 2 and n 3 are the number of 

molecules of each kind. The tabulated equilibrium constants 

(K') are then defined as 

K« (AB) = — (21) 

where [A] = the p a r t i a l pressure of reactant A i n atmospheres.. 

Note that the units of the K* s are defined by the number of 

reactant molecules for each par t i c u l a r reaction and are of the 

form (atm 3 1 ) . 

As an example consider the s p e c i f i c case of the molecule 

NH: 

1/2 H-j, 1/2 H a ^ 1 NH (22) 

since the reference states of N and H are N 2 and H 2. Thus 

[ N H ] 

K* (NH) = , (23) 
[H,,]*/ 2 [ N 2 ] t / 2 

also, e.g. K«(H) = [H ] / [H.,]*/2 for 1/2 Ez =?= 1 H. 

The type of equilibrium constant (K) used by Vardya i s defined 

as 

K (AB) = p(AB) / p(A) p(B) (24) 

where p(A) - the p a r t i a l pressure of reactant A i n dynes cm - 2. 
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Hence we derive 

[ NH] K» (NH) 
K (NH) = = . (2 5) 

[N ] [ H] K» (N) K» (H) 

F i n a l l y , to convert to cgs units divide by (in t h i s case) 

1.013250 x 10* dy c r * / atm. 

To check that the calculated number density d i s t r i b u t i o n of 

CN (in particular) corresponded to that of the actual model 

atmospheres two t e s t s were performed. Using CN opacities from 

Johnson, Harenin and Price (1972), hydrogenic (H, H~, Ha) 

continuous opacity as given i n "Theory and Observation of Normal 

S t e l l a r atmospheres" (1969, ed. Gingerich), and Mutschlecner-

Keller (1970, 1972) atomic l i n e blanketing as modified by 

Johnson (1974) the output fluxes were computed as a function of 

frequency for several different models; these flux curves 

compared very well with Johnson* s calculated fluxes. Secondly 

the CN density d i s t r i b u t i o n was calculated from the tabulated 

values of the volume absorption c o e f f i c i e n t at 1^ and the 

(interpolated) value of the CN mass absorption c o e f f i c i e n t at 1̂*. 

(Johnson, Harenin and Price 1972). For this purpose i t was 

assumed that the only opacity sources were CN and the hydrogenic 

species; although the models also incorporate CO and HgO opacity 

t h i s should be a good approximation f o r the 1^ wavelength used 

here, atomic l i n e blanketing was not included as i t i s not 

clear how Johnson calculated i t at the 1^ standard wavelength, 

where he has a discontinuity i n applying the blanketing. The 

r e s u l t i n g CN density was then compared with that from the 
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equilibrium c a l c u l a t i o n s . The general agreement i s quite good 

over the entire depth of the atmospheres, a range of several 

orders of magnitude, although in places the disagreement can 

r i s e to as much as a factor of 2.5., In view of the excep­

t i o n a l l y large uncertainty in the dissociation energy of the CN 

molecule t h i s i s s t i l l thought to be quite acceptable agreement 

(Johnson 1975) . 
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Spectrum Parameters 

The main f a c t o r i n f l u e n c i n g the appearance of the s y n t h e t i c 

spectrum i s the amount of CN i n the atmosphere. S i n c e the 

a v a i l a b l e s e t of model atmospheres was c a l c u l a t e d on a r a t h e r 

coarse g r i d of parameters [C/0, T ( e f f ) , C/H, l o g g] there i s 

need f o r a f i n e r g r a d a t i o n i n the amount of CN to permit a 

b e t t e r match to the observed spectrum., I t was decided to do 

t h i s by a l t e r i n g the metal [C, N, OJ abundance by some f a c t o r 

[X(CNO)], thus p r o v i d i n g f o r i n t e r p o l a t i o n i n model sequences 

with v a r y i n q C/H r a t i o while keeping the C/O r a t i o the same. 

Since most of the C and 0 w i l l form CO and o n l y the l e f t o v e r C 

can be used f o r CN and C 2 the CN abundance should s c a l e as 

X(CNG ) 3 / 2 and C a as X{CNO) 2; th a t t h i s i s i n f a c t the case, to a 

good approximation, has been v e r i f i e d by r e c a l c u l a t i n g the mole­

c u l a r e q u i l i b r i u m u s i n g the s c a l e d abundances. ; Furthermore, 

s p e c t r a o f neighbouring models along a C/H-varying sequence can 

be reproduced from each other q u i t e w e l l by t h i s method. 

Heedless t o say, by tampering i n t h i s way we no longer have a 

proper model atmosphere, and t h a t the more we have t o change the 

X{CNO) f a c t o r the matchup becomes l e s s s a t i s f a c t o r y . . , Since we 

are not p r i m a r i l y i n t e r e s t e d i n the s t r u c t u r e of the atmosphere, 

however, but r a t h e r i n the r e s u l t i n g spectrum, I f e e l t h a t t h i s 

i s an a c c e p t a b l e procedure and w i l l produce q u i t e s a t i s f a c t o r y 

i n t e r p o l a t i o n s as long as X (CNO) i s "not too f a r " from u n i t y . 
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Real s p e c t r a l l i n e s have Voigt p r o f i l e s rather than 

Gaussian. This has been handled by using a Gaussian p r o f i l e 

i n the l i n e core, and 

(2 7) 

i n the wings. This i s a good approximation for small values 

of a. 

Thus the synthetic spectrum depends on f i v e parameters. 

These are: 

1. the model atmosphere used, 

2. the CNO scaling factor [X(CNO)J, 

3. ,• the microturbulence [ J, 

4. the l i n e p r o f i l e wing strength [ a ] , 

5. the isotope abundance r a t i o s . 
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Computational Procedure 

The computer program used to calc u l a t e the emergent fl u x 

consists of a short main program and a few opacity subroutines 

written i n Fortran, plus a longer section to handle the actual 

integration through the atmosphere and a few subroutines to do 

simple interpolations written i n IBM Assembly Language. By 

using Assembly Language for the more intensive part of the 

program the execution time has been reduced by a factor of 

approximately 2.5. , 

Following i s a schematized description of the program 

layout. ; 

1. P a r t i t i o n functions [Q(T) ] and exponential i n t e g r a l s 

[ E 2 ( r s + d )] were calculated separately and e x p l i c i t l y put 

into the program. 

2. Read i n spectrum parameters: wavelength l i m i t s , micro-

turbulence (%t) * X (CNO) factor, l i n e p r o f i l e parameter 

(a) , i s o t o p i c abundance r a t i o s . 

3. Calculate the wavelength i n t e r v a l £A>; ] about the current 

wavelength within which a l l s p e c t ral l i n e s must be used; 

A ^ T = f (£ t,a). 

4.., For each l e v e l of the atmosphere: 

a. Read i n model parameters: T{std), T, n(e), K, f, 8(H), 

H<H2), N(CH), N(C 2). {Note that the N»s have been 

calculated by the molecular equilibrium program.) 

b. Calculate: B{T), k(cont)[N (H), N(H £), n{e)], 

k(std) [ = *,/] 
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c. Calculate normalization factors f o r the various 

isotopes of CN and for C a, scaled by the X (CNO) factor 

[ = const x N (Isotope)/<a^ D • Q ]. , 

5. Integrate continuous opacity - gives continuum flux at 

ends of region to be synthesized. 

6. a. Increment wavelength counter 

b. Read i n more s p e c t r a l l i n e parameters u n t i l we have 

a l l l i n e s within A ) ^ of the current wavelength 

7. For each atmospheric l e v e l : 

a. Sum opacity contributions of a l l l i n e s (within A / \ J ) 

using the appropriate p r o f i l e and number density 

b. Add on continuous opacity 

c. Integrate - gives output flux 

d* Normalize to continuum 

8. Go to 6. 

When finished - broaden output spectrum by convolving with 

a Gaussian instrumental p r o f i l e . (This i s a separate program.) 

The integration routine: 

1. Normalize given k values: k (v, l e v e l ) / k (1|u, std, level) . 

2. F i t a (smooth) spline curve to the points. 

3. Integrate along curve: — > T{*J, l e v e l ) . 

4. Calculate: B V[T (level) ] • E ££r(^, l e v e l ) ] , 

(E 2 values interpolated i n the precalculated table.) 

5. Integrate by summation under the B » E £ curve: —> Flux. 
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ANALYSIS TBCHNIQDE 

The method of analysis selected to compare the observed 

s t e l l a r spectra with the calculated synthetic spectra makes use 

of the coherence spectrum of the two traces to be compared. 

This method has been borrowed from the f i e l d of time series 

analysis and i s there used to detect s i m i l a r i t i e s between two 

time s e r i e s . I t i s especially suitable when both time series 

contain noise; since neither the observed s t e l l a r spectrum {with 

i t s photographic noise) nor the synthetic spectrum (lacking 

atomic and t e l l u r i c lines) i s i n fac t an accurate representation 

of the actual s t e l l a r spectrum t h i s s i t u a t i o n c e r t a i n l y exists 

here. [Note that the word "spectrum" w i l l be used with two 

dif f e r e n t meanings: 1) the o r i g i n a l astronomical meaning of an 

intensity vs wavelength representation, and 2) the time series 

meaning of (something) vs frequency representation.. An astro­

nomical spectrum i s i d e n t i c a l with a time s e r i e s . The p a r t i ­

cular meaning intended must be found from the context.] 

The technique involves c a l c u l a t i n g the auto- and 

cross-covariance functions of the two input time series, and 

their power spectra by Fourier-transforming these into the 

frequency domain and then normalizing the cross-spectrum by the 

auto-spectra, res u l t i n g i n the coherence spectrum., The 

coherence plays the r o l e of a c o r r e l a t i o n c o e f f i c i e n t at each 

frequency. As a f i n a l step, to reduce the information i n the 

entire coherence spectrum to a manageable quantity, the average 

coherence was calculated f o r a l l frequencies at which the 
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auto-power s p e c t r a l density of the s t e l l a r spectrum was above 

some cutoff f r a c t i o n of the peak power. This thus re s u l t s i n 

one number characterizing the goodness of f i t between the two 

inputs., I s h a l l c a l l t h i s number the coherency. 
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Computational Details 

Let the two input time series be denoted by x*(t) and 

y* i t ) , t=1,N. The data are f i r s t reduced to give a zero mean 

value and detrended by subtracting a s t r a i g h t l i n e f i t t e d to the 

points. Next the time series are tapered by multiplying 10% 

from each end by a cosine-squared b e l l function. The series are 

then detrended again, extended with zeroes to give a length fl, 

where B i s a power of 2 (for reasons of computational economy), 

and f i n a l l y extended again to a length of 2fl (so as to eliminate 

a l i a s i n g i n the power spectra), giving x and y (see Figure 8). 

In the next step we calculate auto- and cross-covariance 

functions Rx, By and Bxy,. These are defined as 

8 x(r) = r: x(n) x (n+r) r=0,H-1 (28) 

and 

B ^ ( r ) = - £2 x (n) y(n+r) r=0,M-1 (29) 

and are most economically computed by the roundabout method of 

Fourier transforming the time series via the fast-Fourier-trans­

form (FFT) technique to give X (k) and Y(k) f o r k=0 to H-1, then 

computing the raw auto- and cross-spectral estimates 

G x(k) = X (k) • X*(k), 
(30) 

Gxy{k) = |X*(k) • Y(k)|, k=0,M-1 

and computing the inverse FFT of these to y i e l d 8^ and Bxy,. 

The covariance functions are now multiplied by an 

appropriate "window function"; t h i s has the e f f e c t of smoothing 
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the spectra i n frequency space. The window used here i s the 

Parzen weighting function 

WP(r) = 1-6 (r/m)z*6 (r/m)3, r=0,m/2 

= 2(1-(r/m) «) 3 , r=m/2*1,m (31) 

= 0, r>m 

where m i s the length of the non-zero part; the shorter t h i s 

e f f e c t i v e length, the greater the frequency smoothing. The use 

of the Parzen window ensures that the res u l t i n g coherence 

function stays between i t s t h e o r e t i c a l l i m i t s of ±1. 

Smoothed auto- and cross-spectral power densities are then 

computed from the windowed covariances by applying a forward FFT 

and calcu l a t i n g the power densities as i n equations (30). The 

squared coherence function i s then calculated as 

C(k) = - — ^ l - - , k=0,H-1 (32) 
G x(k) G y(k) 

where the ~*s represent the smoothed spectra. 

F i n a l l y , to exclude spurious coherence values, the average 

coherence i s calculated only for those frequencies at which the 

signal-to-noise r a t i o of the s t e l l a r auto-power spectrum i s 

high, i . e . where the power i s at least some s p e c i f i e d f r a c t i o n 

of the peak. 
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I n i t i a l time s e r i e s : 

(t) , 7» (t) , t=1,N. 

Detrended: 

(t) , y" (t) , t=1,N. 

1 i 

N 
10 

9N N 

10 

T a p e r i n g f u n c t i o n : 

T ( t ) 

0 M 

F i n a l s e r i e s : 
2M 

x ( t ) = x M (t) «T (t) , t=1,2H. 

M= 2m such t h a t K/2<N<H. 

Figure 8. Pretreatment of Spectra 
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Comments 

This analysis technique i s b a s i c a l l y an extension of the 

cross-correlation concept, k simple cross-correlation y i e l d s a 

sequence of values [ H x y ( r ) 3 f o r t l i e various lags (r), with, i f 

t h e c o r r e l a t i o n i s good, a peak near the zero-lag point; the 

amplitude of t h i s peak i s then an i n d i c a t i o n of the "goodness of 

f i t " . Such an approach, however, makes no use whatsoever of the 

remainder of the c o r r e l a t i o n function, which has most of the 

information content of the o r i g i n a l inputs. The coherence 

function i s the transform of the correlation function and as 

such s t i l l contains a l l the information while changing i t into a 

form we can use more e a s i l y . 

The zero-mean condition on the o r i g i n a l time seri e s i s a 

requirement f o r t h i s technique to be applicable at a l l , the 

slope removal i s not required but serves to minimize low 

frequency power that may s p o i l the power spectra (and coherence) 

quite spuriously., Because of t h i s and the necessary norma­

l i z a t i o n , the coherence i s independent of both the mean l e v e l of 

the ( s t e l l a r and synthetic) spectra and the amplitude of the 

features. This means that an error in the drawn continuum l e v e l 

i s of no consequence, which i s a big plus for carbon s t a r 

spectra where the continuum i s determined by only a few points. 

Mote also that the smoothing of the power spectra (by the window 

function) i s a required part of the procedure; otherwise the 

computed coherence w i l l equal unity for a l l frequencies. 

The above description has been drawn la r g e l y from the very 
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good explanation of Bendat and P i e r s o l (1971); much relevant 

material may also be found i n Jenkins and Satts (1968). 
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Tests 

As an example and to test the accuracy of the method, a 

short (20 A) sample spectrum was generated with a l l f i v e 

parameters [model, X (CHO) factor, ? , a, *3C/* 2C] chosen 

randomly from a set known to produce plausible looking spectra. 

Parameter s e l e c t i o n and program execution were done in such a 

manner that the p a r t i c u l a r parameters chosen was not known at 

the time. Random noise with peak amplitude 10% of the continuum 

was then added and the res u l t smoothed, thus simulating a t r u l y 

unknown spectrum. Various synthetic spectra were then produced 

and the parameter space was searched u n t i l the maximum coherency 

location was found. ~ Since i t was soon apparent that the a (line 

wing shape) value was quite small, a l l spectra were calculated 

with a=0 as t h i s considerably reduced the computation time 

required., 

When the coherency peak had been located, i t s parameters 

were compared to that of the "unknown" spectrum. Several 

d i f f e r e n t sets of random noise with 10% and 20% peak-to-peak 

amplitudes were then added to the unknown and the analysis 

repeated for each such new unknown. The derived parameter 

values are summarized in Table 16. The actual value of a was 

0.01, only s l i g h t l y d i f f e r e n t from zero; a s i g n i f i c a n t l y larger 

value (say 0.03) produced spectra which were re a d i l y d i s t i n ­

guishable since the i n t e r - l i n e i n t e n s i t y i n several c r i t i c a l 

places was systematically depressed by the p r o f i l e wings. 

Several things are worth noting: the deduced 1 3C/ 1 2C r a t i o 
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1 "T " T - - —I 

Noise I Coherency Peak | Mea n l 
i Nr Amplitude i Model X (CNO) 1 3 C / 1 2 C 1 Level J 

I 1 10% . i K 1 5 j 1 - 8 5 | 2.83 | 0.083 1 0.219 | 

I — ti — K16 | 1.20 I 2.86 | 0.091 I 0.215 | 

1 •— fi 5 K24 1 0.63 | 2.93 | 0.091 1 0.212 J 

1 2 10% ! " 1 0.?2 I 2.80 | 0.080 | 0.210 1 
| 3 10% I " I 0.65 | 2.94 | 0.079 1 0.214 | 

i *» 10% i II I 0.73 | 2.88 | 0.092 | 0. 198 ] 

1 5 10% I " 1 0.74 I 2 . 8 9 I 0.084 I 0.202 | 

i 6 20% I n | 0.85 I 2.97 | 0.080 | 0. 185 | 

1 7 20% l II | 0 . 7 7 | 2.81 | 0.084 | 0. 205 | 
1 * ' J | 

i 1 | J 1 1 

| actual unknown 
! 

K24 | 0.80 
I 2.90 J 0.080 i 0.207 J 

| Mean K24 values i ! 0 . 7 3 I 2 . 8 9 \ 0.084 1 0.204 | 

1 ± std. devn. ! ! 0.07 I 0.06 | 0.005 1 0.010 | 
i . ;. „ _ A - . j a -j. _. _ , „ j 

TABLE 16. COHERENCY PEAKS FOR A TEST CASE 
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i s i n no case very f a r from the actual value; neither the 

deduced 1 3 C / 1 2 C r a t i o nor the microturbulence depends strongly 

on the model atmosphere assumed, in s p i t e of the d i f f e r i n g 

X{CNO) values required; the mean levels of the spectra agree 

quite well with the unknown, again i n d i c a t i n g that the scaling 

by the X (CHO) factor works. Visual inspection of the various 

unknowns frequently showed systematic differences s u f f i c i e n t to 

assign s i g n i f i c a n t l y d i f f e r e n t * 3C/* 2C r a t i o s ; that the 

coherency method was not s i m i l a r l y affected shows the advantage 

of employing an analysis technique that uses the e n t i r e spectrum 

rather than just selected features. 

I t i s also important that appropriate values be used in the 

coherency analysis; the two variables are the cutoff point of 

the window function (eqn 31) and the cutoff l e v e l f o r the power 

spectrum to determine which coherence points are to be included 

in the f i n a l average. The window function has here been termi­

nated at the l i m i t of the covariance function [ i . e . m (eqn 31) = 

M-1 (eqn 28) ] i n order to get maximum frequency smoothing while 

also not completely discarding any part of the covariance. The 

power cutoff must be selected at a high enough le v e l that most 

of the high frequency noise points are eliminated, yet not so 

high that a l l the weaker " r e a l " s p e c tral features are also 

discarded. To explore t h i s , various cutoffs from 2% to 20% were 

used i n the analysis of UU Aur. , The parameter values of the 

coherency peaks for the several cutoffs are summarized below. 

For low cutoffs the peak coherency r i s e s quite sharply up to 

about the 5% point; [The 1% point (whose peak was not located) 
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i s also part of t h i s trend.] after t h i s the increase i s much 

slower., This indicates that at the 5% l e v e l most of the 

I 
Cutoff 1* » 3 C / 1 2 C Coherency 

20 % 

10 % 

7.5 

5 % 

3 % 

2 % 
I 

. 16 | 5 1 .035 | .983 

.140 4.7 | .037 | .9582 

• 138 4.9 | .039 | .9534 
.137 4.8 J .040 | .9497 

.125 5.4 1 .057 | .9410 

. 105 5.6* | .07 | .9378 

spurious coherence caused by "noise" has been eliminated., We 

also see that f o r cutoffs in the range 58 to 10% the deduced 

coherency peak locations are v i r t u a l l y i d e n t i c a l , whereas 

outside t h i s range the peak location deviates from these. For 

a l l subsequent analysis a coherency cutoff of 5% has been used. 

Examination of the f i n a l r e s u l t s for the s t e l l a r spectra 

reveals that the deduced 1 3 C / l 2 C r a t i o i s not a strong function 

of the micr oturbulence. I t i s somewhat more sensitive to the 

value of the X(QUO) factor. Thus, of the parameters characteri­

zing the synthetic spectra, the coherency peak i s most strongly 

dependent on the t o t a l amount of CH i n the atmosphere [X(CN0) ] 

and the isotope r a t i o ; i . e . on the actual amounts of l 2C**N and 

*3C**N present.„ 

An examination of the f i n a l synthetic spectrum, which gives 
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the best coherency when compared to the st a r being analyzed (cf. 

Figures 9 and 13), often reveals that the f i t i s not equally 

good over the entire region synthesized, i.e..some sections f i t 

better than others. This i s not very surprising i n view of the 

extent of the synthesized region. Since the idea i s to get as 

good a f i t as possible while using only a few parameters, the 

longer the section synthesized the more the f i t can d r i f t away 

from perfection. Part of t h i s disagreement i s unquestionably 

caused by the r e l a t i v e l y poorly determined zero l e v e l of the 

observed spectrum. This i s especially true here for Y CVn (in 

Figure 13) which i s very heavily blanketed over a large part of 

the synthesized region. 



PEST K26 MODEL 

a 

7900 ^ 7920 7940 

Figure 9. Calculated and Observed Spectra of 19 Psc 
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BESOLTS 

The Batios 

The detailed set of calculated coherency values i s 

presented in appendix IV; the deduced parameter values are also 

summarized i n Table 17. Column 2 of the table gives the mean 

value of the observed spectrum and the average CN index (Baumert 

1972); columns 4 to 8 a l l refer to the parameters of the deduced 

coherency peak for the model atmosphere i n column 3. The uncer­

tainty of the derived »3 c / i 2 c r a t i o s i s estimated to be <20% f o r 

each i n d i v i d u a l model. This i s based on the deviations shown by 

the test cases, the curvature of the coherency curves near the 

peak, and the s l i g h t variations that could be caused by a 

dif f e r e n t power cutoff l e v e l i n the analysis. a further uncer­

tainty i s introduced by the model atmosphere i t s e l f , depending 

on how c l o s e l y i t approximates the real s t e l l a r atmosphere. 

This factor i s unknown, but since there i s no obvious dependence 

on the model chosen [models K12 and K26 are grossly d i f f e r e n t ] 

we can assign an uncertainty to the average r a t i o of <25%. Note 

that the accuracy of the K24 model for 19 Psc i s not as good as 

the others as only a small number of coherency points were 

calculated to check that the peak was in general agreement with 

the other two models. ,. 

Scalo (1977) has summarized previous 1 2 C / 1 3 C ratio deter­

minations for 22 carbon stars that were deduced from obser­

vations of the CN Bed bands. Comparison with the present 
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1 — 
1 
J Star 

T T " — 1 r - _ r — " T " r 1 — 
1 
J Star 1 Sean | 

\ <CN> I 
Hodel | X(CSO) ! ?' 

I 

» 2 C J 
Mean 

_ i 

Peak 
Coh *y 

! i J | 1 J T" 

1 19 Psc J 0.414 J K26 | 0. 10 J 3.?5 1 0.04 J 0.455 ! .94 10 
i 77 | K24 J 0. 19 1 3.75 1 G.057 | 0.443 ! .9380 
! I K12 I 0. 80 1 3.5 ! O.05O | 0.491 I .9 369 

j Z Psc J 0.411 | K26 | 0.11 1 3.4 ! 0.058 | 0.432 ! .9415 
I 79 | K12 | 0.95 i 3.25 i 0.054 | 0.476 ! .9378 

I X Cnc | 0.313 | 

| 89 | 

K26 | 0. 17 1 3.8 j 0.032 | 0.345 j .9515 

! UU Aur I 0.318 I 

| 100 | 

K26 J 0.14 1 4.8 j 0.040 1 0.351 j .94 97 

I Y CVn I 0.226 | K26 | 0.20 1 5. 0 ! 0.40 1 0.200 i .9545 
i 119 | K12 | 1 .3 1 5.3 ! 0.45 J 0.265 i .9356 

i j . .. _ i 

TABLE 17. S0flflA8Y OF DERIVED SPECT1AL PARAMETEBS 
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r e s u l t s y i e l d the following: 

r 

19 Psc 5 values i n the range 15-25 here 21 

2 Psc 1 value of 50 here 18 

X Cnc 1 value of 22 here 31 

00 Aur 2 values of 20 6 25 here 25 

Y CVn 5 values in the range 2-5 here 2.4 
J 

Clearly the r a t i o s for 19 Psc f 00 Aur and Y CVn agree quite 

well. In view of the very great s i m i l a r i t y of the spectra of 

19 Psc and Z Psc, including the l 3 C features, I can not accept 

such a great difference i n the isotope r a t i o s f or these two 

stars. Both of the values f o r Z Psc and X Cnc were determined 

by the i s o - i n t e n s i t y method, which i s quite sensitive to the 

excitation temperature adopted. Although t h i s method has 

recently been improved ( F u j i t a and T s u j i 1976) by making use of 

the s a t e l l i t e l i n e s i n the stronger *2CN bands for comparison 

with the *3CN l i n e s , thus using l i n e s of more nearly equal 

strength, t h i s technique was not used for either of these stars. 

For t h i s reason I do not place great trust i n those values and 

must prefer those deduced here. 

With the recent a v a i l a b i l i t y of infrared spectra, isotope 

r a t i o s have been determined from the av=2 CO bands at 2.2^ for a 

number of stars, including some carbon stars. These bands are 

strong f o r both carbon isotopes and the r o t a t i o n a l l i n e s are 

well separated. The l 2C/ 1 3C r a t i o s deduced from these bands are 

usually s i g n i f i c a n t l y lower than r a t i o s determined from other 
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molecules, such as CN. For the s t a r s s t u d i e d here Johnson and 

Mendez (1970) give the f o l l o w i n g " e s t i m a t e s " : 19 Psc 8-12, X Cnc 

10-12, OU Aur 10-12, I CVn 3-4; though without any d e t a i l s of 

t h e i r a n a l y s i s . Thompson (1973) has, however, shown that these 

bands are not s u i t a b l e f o r i s o t o p e r a t i o d e t e r m i n a t i o n s because 

of t h e i r extreme degree of s a t u r a t i o n , thus making the appear­

ance of the spectrum r a t h e r i n s e n s i t i v e to the amount of 1 3 C 

present., Perhaps more r e l i a b l e r a t i o s c o u l d be determined from 

the A V=3 bands at 1.6<u, which should s u f f e r l e s s from s a t u ­

r a t i o n ; t h i s r e g i o n i s , however, more h e a v i l y o v e r l a i d by bands 

of CN and C 2 ( c f . Qu e r c i and Q u e r c i 1975)., No a n a l y s i s of 

these bands has yet been done. 
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Turbulence 

The microturbulence i s one of the more important factors 

influencing the appearance of the spectrum. The value of the 

microturbulent v e l o c i t y f o r a " t y p i c a l " carbon star i s , however, 

not known. For comparison Gustafsson, Kjaergaard and Andersen 

(1974) found a value of 1.7 km/s with l i t t l e scatter for a 

sample of G and K giants. Tonkin, Luck and Lambert (1976) 

derived a mean value of 1.3 km/s f o r giants and 3.0 km/s f o r l b 

supergiants, while Luck (1977) found 2.4 km/s for supergiants. 

That t h i s question i s s t i l l open i s indicated by the f a c t that 

values have been c i t e d for ©cori (M2 la) ranging from 2 to 10 

km/s (Gautier et a l . (1976); Hinkle et a l . (1976)). For carbon 

stars K i l s t o n (1975) derived values for 8 stars i n the range 5 

to 7 km/s, including 19 Psc (5.6) and Y CVn (6.3), while F u j i t a 

and T s u j i ' s (1964) study of Y CVn resulted i n 6.6 km/s. 

For the stars studied here the microturbulent v e l o c i t y has 

been l e f t as a free parameter to be determined. The derived 

values have already been summarized i n Table 17. I t should be 

remarked r i g h t away that, on the basis of some rather extensive 

t e s t s , under no conditions i s i t possible to achieve a s a t i s ­

factory v i s u a l match f o r 19 Psc with a microturbulent v e l o c i t y 

as high as 6 km/s. This r e s u l t was established p r i o r to the 

main coherency ca l c u l a t i o n s and i s confirmed by them. Further, 

note that the derived values are not strongly dependent on the 

choice of model atmosphere. In view of the apparent trend that 

higher microturbulence corresponds to a greater depression of 
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the mean l e v e l of the observed spectrum, and to a larger CN 

index, i t i s tempting to speculate that the heavy l i n e 

blanketing i n some carbon stars i s d i r e c t l y caused by a high 

value of the microturbulence. The observed change of mean l e v e l 

with turbulence i s , however, about three times as large as one 

would expect from the variations of the synthetic spectra. 

Nonetheless, and in spi t e of using only f i v e s t a r s , at l e a s t 

part of the observed range i n blanketing and CN strength i s 

probably caused by the microturbulence. 

Macroturbulence has not been included i n t h i s analysis. As 

has been mentioned, non-Gaussian (Voigt) lin e p r o f i l e s were 

considered, but were not included in the f i n a l analysis f o r 

several reasons: the high degree of l i n e crowding would 

terminate the extension of almost a l l p r o f i l e wings, visual 

inspection of the r e s u l t i n g spectra did not indicate that the 

p r o f i l e wings were generally important, and the necessary 

increase in computation time to calcu l a t e the extended wings was 

thus not deemed worthwhile. Because of the r e l a t i v e l y poor 

(1/2 A) instrumental resolution i t i s not possible to make a 

direct measurement of the s t e l l a r l i n e widths. Macroturbulences 

for normal late-type giants are on the order of 5 km/s 

(e.g. Luck 1977). 
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A Note on the Carbon Abundance 

A rough check on the nuclear processing that has occurred 

i n these s t a r s may be made by comparing the r e l a t i v e strengths 

of the CN and C 2 features i n their spectra; i n particular I want 

to examine the r e l a t i v e importance of CNO hydrogen burning and 

helium burning as revealed by the C, N and 0 content of the 

stars. 

In order to form a carbon s t a r by the mixing of nuclear 

processed material up to the surface, the C/0 ra t i o of the 

processed material must be greater than unity., I f only hydrogen 

burning CNO processing has occurred then the maximum producible 

C/0 r a t i o i s about 7 for a wide range of processing temperatures 

and the corresponding N/C r a t i o i s about 25. As shown by 

Irgens-Jensen (1976) mixing t h i s with an unprocessed envelope to 

give surface C/0 > 1 also produces N/C > 10. One of the model 

atmospheres (K12) i s a close approximation to t h i s state 

(C/0=2,N/C-28). For comparison a model with greatly enhanced 

carbon was also selected (K26) (C/0=50,N/C=0.02) ; such 

abundances can not have resulted from CNO burning. 

Computed spectra using these two atmospheres were compared 

with the observed spectrum of 19 Psc. Because of the r e l a t i v e l y 

low carbon content the K12 spectrum i s v i r t u a l l y free of C^ 

li n e s ; the C 2 content of the K26 atmosphere i s higher by a 

factor of at l e a s t 10 2. In the 140 A section of calculated 

spectrum, a f t e r adjusting the K26 model to produce a mean l e v e l 

equal to that of 19 Psc (no adjustment was necessary for K12), 
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11 places were found where K26 was s i g n i f i c a n t l y lower than K12.„ 

A l l of these places correspond to locations of G 2 l i n e s and the 

differences were roughly proportional to the expected strengths 

of the C 2 features; thus i t i s safe to state that these addi­

t i o n a l features were caused by the C 2 and were not an a r t i f a c t 

of the (grossly) d i f f e r e n t atmospheric structures. Comparison 

of these 11 features with the observed spectrum of 19 Psc showed 

that i n every case the K26 spectrum was a better match than K12 

and that i n 9 out of the 11 cases the observed features were 

even stronger than i n K26. As a control 10 places were found 

where the K12 spectrum was lower than K26 (opposite of the 

above); at these locations the comparison with 19 Psc showed 

that K12 and K26 each matched better 4 times with 2 places 

equally well matched. Thus i t i s seen that the s t e l l a r features 

are most l i k e l y r e a l l y caused by C 2 and not by atomic or 

t e l l u r i c l i n e s , and that these features are stronger than those 

produced by the K12 model atmosphere (and possibly by K26 a l s o ) . 

Samples of a few of the observed C^ features are shown in Figure 

10. 

In order to increase the C 2 strength i n the synthetic 

spectra we must either a) increase the CNO abundances as a 

whole, fe) increase only the C abundance, or c) decrease the N 

abundance [decreasing O has the same eff e c t as b)]. , Only a l t e r ­

native a) i s compatible with r e t a i n i n g the C:S:0 r a t i o s as 

produced by CNO processing but the required increase (~ x10*) i s 

so large that the resu l t i n g CNO/H ra t i o i s incompatible with any 

hydrogen l e f t i n the atmosphere. Hence the only reasonable 
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alternative i s to increase the C/N r a t i o ; t h i s can be done most 

readily by assuming that carbon from the helium burning regions 

has been admixed with the surface material. 

Thus i t i s seen that the synthetic spectrum based on a 

model atmosphere closely resembling the expected res u l t of CNO 

processing f a i l s to reproduce the observed features. Only 

additional carbon enhancement (as from helium burning) can 

reasonably produce s u f f i c i e n t Ĉ, to match these features. 

Thompson (1977), using the AV=3 sequence CO bands in three 

carbon stars, has recently also reported s i m i l a r r e s u l t s . It 

may also be noted here that for those stars where more than one 

model atmosphere was used i n the determination of the 1 2C/* 3C 

r a t i o , the resulting peak coherency was always greater for the 

model containing more carbon. Presumably t h i s r e f l e c t s the f a c t 

that the a d d i t i o n a l C 2 features produced a better matching 

synthetic spectrum. 
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The Search for »+C and ££N 

One of the reasons carbon stars are interesting objects i s 

that they are i n an advanced stage of evolution and often show 

the evidence for t h i s by the surface enhancement of some 

elements (e.g. * 3C and Tc). The case of Technetium i s 

especially i n t e r e s t i n g since i t i s unstable, with a h a l f - l i f e of 

2 x10 s years, and i s apparently present only i n s t a r s which are 

long-period or i r r e g u l a r variables (Peery 1971). Since these 

elements must have been brought to the surface from the i n t e r i o r 

regions where they were made i t i s not inappropriate to also 

search for other elements which have been s i m i l a r l y transported 

to the surface. I have here made a search for **C and 1 SN, the 

remaining CN nu c l e i that can be produced during CNO processing. 

Since **C i s unstable, with a h a l f - l i f e of 5700 years, i t s 

presence would be proof of very recent mixing i n a st a r . 

The production of **C has been investigated by Cowan and 

Rose (1977) who concluded that enrichment i s possible in the 

i n t e r s h e l l region [between the helium- and hydrogen-burning 

s h e l l s ] of a star undergoing helium s h e l l flashes i f hydrogen-

r i c h material i s injected into t h i s region. Subsequent admix­

ture of t h i s material with the envelope could r e s u l t i n a 

measurable surface abundance of **C, depending on the r e l a t i v e 

masses of the i n t e r s h e l l region and the envelope. The quanti­

t a t i v e aspects of t h i s study have, however, been questioned by 

Despain (1977), who concluded that the »*c surface enhancement 

would be n e g l i g i b l e [**C/*2C < 7 x10~*]. Cowan and Rose also 
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conclude that s i g n i f i c a n t enhancement of l sH w i l l occur i f 

" r e l a t i v e l y large aaounts" of matter are rap i d l y mixed in t o the 

i n t e r s h e l l region. Despain, too, found 1 SN enrichment on a 

short time scale. The production of 1 SN i s e s p e c i a l l y 

interesting since the hydrogen burning CNO reactions operating 

at equilibrium w i l l very guickly (a few years) r e s u l t in an 
l sN/*»N r a t i o of about 4 x 1 0 _ 5 for any burning temperature, yet 

the t e r r e s t r i a l r a t i o i s 3 .7 x10~ 3. Either the *SN i s exposed 

to CHO processing temperatures below and at the base of the 

envelope f o r only a very short time, or i t s observed abundance 

i s the resu l t of a different process altogether 

(e.g. s p a l l a t i o n ) . Querci and Querci (1970) have te n t a t i v e l y 

i d e n t i f i e d *su i n gg A U r with an **N/lsN abundance r a t i o of a 

few times 10 3. 

Wavelengths f o r the (2,0) band of the Bed system of CN were 

calculated for the various isotopic forms [ t*C l 4N, tzCi^H, 

» 3C* SNJ and these l i n e s were added to the input l i s t for the 

synthetic spectrum calculations. Since none of these forms have 

been observed i n the laboratory, i t was not possible to ensure 

that the correct wavelengths were used (as was done for » 2 c » 4 N 

and 13C**N) and the computed wavelengths had to be used 

uncorrected. As was pointed out by Fay, aarenin and van C i t t e r s 

(1971) the value of the o r b i t a l e l e c t r o n i c angular momentum (L) 

used in these c a l c u l a t i o n s can't always be approximated by the 

L-values of the free-atom or h i t a l s . Changing the L-value by one 

causes a change in the calculated wavelengths of 0.25 A (for 
1 3C 1 SH).• ... Uncertain t i e s caused by errors i n the is o t o p i c masses 
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are n e g l i g i b l e . 

A redetermination of the coherency peak, now a function of 

four variables [one of l*C and 1 SN added at a time], was deemed 

impractical. Instead the previously deduced values of X(CNO), 

^ and » 3 c / 1 2 C were considered to be f i x e d and various small 

amounts of **C or l sN were added, thus reducing the problem to 

but one variable. In view of the expected minor perturbations 

caused by these species t h i s should be an adequate procedure. 

In order to check the s e n s i t i v i t y to the amount of added 

material several tests were done. Synthetic spectra of the f u l l 

140 A region were calculated with i*c**N added f o r several 

values of **C/ 1 2C from 0 to 0.02; several d i f f e r e n t sets of 

random noise were then added to these spectra and the coherency 

calculated with respect to the noiseless spectra. Samples of 

the r e s u l t of these t e s t s are shown i n Figure 11. Coherency 

curves are shown for eight different combinations of input 
l*C/ 1 2C r a t i o and noise. Each combination i s represented by 

three curves, for power cutoff l e v e l s of 10, 5 and 3% {top, 

middle, bottom) ; the v e r t i c a l placement of a curve i s a r b i t r a r y , 

only the curve shape i s important. The tests are divided i n t o 

three groups with input isotope r a t i o s of 0, 0.001 and 0.004, as 

indicated on the f i g u r e . The noise amplitude was 60% of the 

continuum for the tests shown; the t h i r d t e s t s for r a t i o s of 0 

and 0.004 were done with more slowly varying noise (the noise 

was interpolated between the random values, which were calcu­

lated only every seventh point) i n an attempt to better simulate 
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the character of the noise " l i n e s " being added. As can be seen, 

the peak locations in the coherency curves are usually inde­

pendent of the power cutoff l e v e l although i t is, p o s s i b l e to get 

an occasional discordant curve. C l e a r l y the curves f o r a r a t i o 

of 0.001 are not always distinguishable from 0; to get a 

r e l i a b l e non-zero measure the coherency peak should be at a 

r a t i o > 0.004, and the peak value should be s i g n i f i c a n t l y higher 

than the zero intercept. 

The r e s u l t s when the s t e l l a r spectra are analyzed for 1*C 

and 1 5N are shown i n Figures 12 and 13, respectively. The 

curves for X Cnc, UO Aur and Y CVn are not distinguishable from 

the test cases without *»C; the curves for 19 Psc and Z Psc are 

peculiar i n that the dropoff rate with increasing **C i s much 

slower than f o r the test cases and the other three stars. 

Although the reason for t h i s is not known, the p e c u l i a r i t y i s 

not, however, of such a nature as to indicate the presence of 

i*C. Thus, f o r a l l f i v e s t a r s , **C was not detected and **c/ 1 2C 

< 0.004, the d e t e c t a b i l i t y l i m i t . 

For *SN sim i l a r remarks apply to 19 Psc, Z Psc, X Cnc and 

00 Aur. The coherency curves f o r Y Cvn, however, d e f i n i t e l y 

indicate the presence of *5N. To explore t h i s further synthetic 

spectra were calculated wherein the amounts of * ZC I SN and l 3 C l 5 N 

were varied independently. The resulting coherency values are 

presented i n Table 18; the v e r t i c a l and horizontal scales i n d i ­

cate the * 5 N / * * N r a t i o used t o ca l c u l a t e the abundances of 

i 2 C * s u and * 3C 1 SN, respectively; the curve i n Fig. 13 i s given 
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by the diagonal e n t r i e s . If * S N i s present the peak coherency 

should occur along the diagonal, t h i s i s not the case here. The 

observed peak corresponds to the presence of * 2 C L S N , with 

* S N / i * H ~ 0.006, but without * 3 C * 5 N . I t should be noted, 

however, that i t corresponds to a " C I S H / I Z G I + K r a t i o of 0.0025, 

which i s below the d e t e c t a b i l i t y threshold, so the absence of 

I 3 C » S N i s not too surp r i s i n g . The observed behaviour may also 

be interpreted as some sort of contamination from the * 3C 1 4N 

features, which are displaced from the i 2 c L S N features by only 

about 5 A, although i t i s not clear how, by e f f e c t i v e l y 

including a second set of «i3c* • H * * features the coherency could 

be improved by the amount indicated. 

An examination of the spectra (Figure 14) reveals 8 

features that are s i g n i f i c a n t l y changed by the inc l u s i o n of 1 S N . 

The observed spectrum of Y CVn i s better represented by the 

"with isN" spectrum in 5 of these cases, 2 are equally well 

matched and 1 i s d e f i n i t e l y not compatible with 1 S N . In view of 

the uncertainties in the wavelengths of the C a sN l i n e s , a new 

wavelength set calculated with a d i f f e r e n t L-value was 

substituted and a new set of synthetic spectra calculated. The 

resultant coherency array had the same feature as before, 

although the peak was not as high; the spectrum showed a 

s l i g h t l y d i f f e r e n t set of * S N s e n s i t i v e features, t h i s time none 

of these was incompatible. 

The fact remains that there are features i n the spectrum of 

Y CVn that can not be explained by the constituents of these 
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synthetic spectra, nor by any t e l l u r i c l i n e s or atomic l i n e s 

that appear i n the Sun or arcturus. E s p e c i a l l y noteworthy i s 

the feature at 8037.4 A; t h i s i s a continuum point i n 19 Psc, 

2 Psc, X Cnc and 00 Aur. The most plausible o r i g i n of these 

features, without invoking i s tzc* 3C (or even * 3 C l 3 C ) , 

expecially i n view of the large amount of 1 3 C i n Y CVn. This 

location i s also depressed i n WZ Cas, which, though not analyzed 

here, i s reputed to have a high 1 3 C content. To check t h i s 

p o s s i b i l i t y the wavelengths of the * 2 c* 3C and 1 3 C » 3 C l i n e s were 

calculated, yielding wavelengths v i r t u a l l y i d e n t i c a l to those 

used by Querci and Querci (1970). These c a l c u l a t i o n s are 

probably accurate since t h e i r observed features at these wave­

lengths a l l f e l l on the l i n e a r part of the curve of growth and 

yielded a l 2 C / l 3 C r a t i o about equal to that derived from the CN 

l i n e s . Though comparison with Y CVn i s d i f f i c u l t because of the 

heavy CN blanketing, i t does show some indication that there i s 

absorption caused by 1 2 C 1 3 C . The addition of these species can 

not, however, explain the observed "*su« features, as most of 

these avoid the calculated wavelengths., On the other hand there 

i s also the occasional observed feature which stands up consi­

derably higher than the synthetic spectrum. 

The arguments in favour of the presence of 1 SN are: 1) the 

existence of the coherency peak, with the c h a r a c t e r i s t i c s we 

expect to be s i g n i f i c a n t , since the indicated absence of 1 3C* SN 

i s not s i g n i f i c a n t , and 2) most of the spectral features that 

would indicate the presence of C 1 5N are i n f a c t observed. 

Contrary points are: 1) the single observed feature that does 
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not f i t , though the uncertain wavelengths makes t h i s of doubtful 

value, and 2) the observed matching features may be caused by 

something else. Since the positive arguments seem to be 

stronger, we are led to make a tentative i d e n t i f i c a t i o n of l sN 

in Y CVn with an abundance r a t i o i+H/ l sN ~ 150. 
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A RJCAP OF THE COHERENCY TECHNIQUE 

Since tbe coherency technique i s a new t o o l for analyzing 

s t e l l a r spectra i t seems appropriate to make a summary of i t s 

s a l i e n t features in the l i g h t of what has been learned here. 

F i r s t : i t s advantages. 

1. I t i s an objective method, requiring minimal subjective 

input by the observer. 

2. Errors in the l e v e l of the drawn continuum and i n the scale 

of the observed spectrum have no e f f e c t whatsoever. 

3. The information content of the entire spectrum i s used. 

This makes i t p a r t i c u l a r l y applicable to molecular spectra 

where the features of i n t e r e s t are spread over a large range 

of the spectrum. 

4. Particular l i n e s do not need to be selected for a n a l y s i s ; 

the problem of blends does not enter., This means i t should 

be applicable to the analysis of lower resolution spectra. 

5. weak l i n e s , that are not correlated with the features of 

i n t e r e s t , ( t e l l u r i c , atomic, etc.) do not a f f e c t the r e s u l t . 

6. Isolated extraneous strong features have no e f f e c t . , 

Second: some possible drawbacks. 

1. A l l the major components should be included in the synthetic 
spectrum to be compared against. 

2. This means that the number of s i g n i f i c a n t variables d e s c r i ­

bing the synthetic spectra can become large. This has not 

been a problem here because of the nearly complete dominance 

of the carbon star spectra by the CN molecule. 
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3. Minor components are not accurately measurable. In t h i s 

context "minor" means features which are of comparable 

strength to other spectral features ("noise") not included 

in the synthetic spectra. Even i f some of these minor l i n e s 

can be resolved, the coherency peak i s l i k e l y to to be 

s i g n i f i c a n t l y affected by the noise. 

A l l things considered, i t i s a good way to get an objective 

measure of the major spectral variables. Though I have no 

concrete reason for saying so, having used spectra of only one 

dispersion, I f e e l that better resolution i n the observational 

data should ease the analysis by making the e f f e c t s of the 

variables more re a d i l y separable and give the coherency 

"surface" a stronger curvature near the peak, thus making i t 

better defined. Some variables (e.g. the microturbulence) may 

even be d i r e c t l y measured using t r a d i t i o n a l techniques, thus 

reducing the number of remaining variables. 
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SUMMARY 

The investigation of carbon stars i n binary systems 

included most such suspected systems. Nine systems have been 

judged probably r e a l ; another half-dozen have been assigned 

lower weights, while for several more there i s i n s u f f i c i e n t e v i ­

dence to permit even a tentative judgement. Because of t h e i r 

faintness i t has not been possible to acquire spectra of many of 

the companions; accurate r a d i a l v e l o c i t i e s i n particular would 

be valuable to allow one to confirm or r e j e c t the systems as 

r e a l . The mean absolute v i s u a l magnitude of the carbon stars i s 

-2.3, while the bolometric magnitudes range between -4 and -8.,, 

The average carbon star i s thus somewhat more luminous than the 

normal giants, but the dispersion i n luminosity i s quite large.. 

There i s also some ind i c a t i o n of a mass - luminosity r e l a t i o n 

for carbon st a r s . 

A new, objective method of analyzing spectra, which 

requires minimal subjective input, has been introduced and 

demonstrated. I t i s p a r t i c u l a r l y useful for carbon star 

spectra, which show extensive molecular bands with severe l i n e 

blending and an uncertain continuum. The f e a s i b i l i t y of calcu­

l a t i n g r e a l i s t i c synthetic spectra of carbon stars has also been 

demonstrated. The * Z C / * 3 C r a t i o s deduced with t h i s technique 

are i n general agreement with r a t i o s obtained v i a the curve-of-

growth method from the same near infrared CN bands. The 

analysis also revealed an interesting possible c o r r e l a t i o n 

between the oicroturbulence and the CN index. The presence of 



1 32 

*5N has been t e n t a t i v e l y i d e n t i f i e d i n I CVn, while **C was not 

found i n any of the s t a r s analyzed. The presence of * SN i s 

p o t e n t i a l l y a very important r e s u l t ; t o c o n f i r m i t we need t o 

i d e n t i f y some s p e c i f i c l i n e s of 1 2 C 1 S N . To t h i s end a thorough 

l i n e i d e n t i f i c a t i o n study f o r ¥ CVn, using h i g h - d i s p e r s i o n 

s p e c t r a , would be very v a l u a b l e . 

There i s s t i l l a gr e a t shortage of r e a l i s t i c model atmo­

spheres f o r carbon s t a r s ; i n p a r t i c u l a r t h e r e i s a need f o r 

models with abundances t h a t r e f l e c t the helium-burning 

r e a c t i o n s . , Since a CHO-type composition does not r e s u l t i n 

enough carbon to make adequate amounts of C2# and a carbon-

enhanced model y i e l d s too much CN to g i v e r e a s o n a b l e s p e c t r a 

without g r e a t l y s c a l i n g i t down, i t would appear t h a t some 

nitr o g e n - p o o r ( s o l a r abundance o r l e s s ) and carbon-enhanced 

models may be what are needed. 
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APPENDIX I 

RADIAL VELOCITIES OF CARBON STARS 

Radial v e l o c i t i e s for most types of stars are usually 

measured i n the blue spectral region (3700 - 4600 A) f o r two 

reasons: v i z . t h i s i s where the photographic plates are most 

e f f i c i e n t , and there i s a good se l e c t i o n of atomic l i n e s 

available for a l l s p e c t r a l types. Carbon stars are, however, 

usually extremely weak i n the blue, and hence long exposures are 

required to get good blue spectra. The near infrared (7000 

9000 A) i s a much more e f f i c i e n t region for taking spectra of 

carbon stars (using N plates), while s t i l l further i n t o the 

infrared photographic plates become i n e f f i c i e n t and/or obser­

vational methods become more elaborate. This region i s , 

however, heavily blanketed by bands of CN and C 2, making i t well 

nigh impossible to f i n d any unblended atomic l i n e s . This 

problem i s even more severe at low dispersions when almost every 

spectral feature i s a blend of several l i n e s . , 

Since several of the carbon stars i n the l i s t of suspected 

binary systems had poorly determined v e l o c i t i e s (Sanford 194 4) 

i t was deemed desirable to acguire better data in t h i s regard. 

Furthermore f u l l y 1/6 of the stars on Sanford's l i s t have 

v e l o c i t i e s determined from a single c l a s s i f i c a t i o n dispersion 

spectrum only. I f one could come up with a set of standard 

wavelengths for use on low dispersion near infrared spectra t h i s 

s i t u a t i o n could be greatly improved. 
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The spectra used for th i s study were obtained by Dr. H. B. 

Richer at Cerro Tololo in 1969. They are at 124 A/mm dispersion 

and cover the spectral range 7400 - 8900 A; also used were some 

high dispersion {13 A/mm) spectra of the same region obtained at 

the Dominion Astrophysical Observatory, V i c t o r i a . . 

Tracings of the high dispersion spectra were used to choose 

a set of l i n e s which were reasonably strong and had no {or few) 

comparably strong nearby neighbours. These l i n e s were then 

measured on the low dispersion spectra of the 11 sta r s with 

" a M - g u a l i t y v e l o c i t i e s {Sanford 1944) l i s t e d in Table 19. A l l 

these stars are late-type carbon stars except V A r i , which i s a 

CH star . Since the near in f r a r e d spectra of most carbon stars 

show very l i t t l e v a r i a t i o n (Richer 1971), t h i s i s not important 

and the standard wavelengths are applicable to a l l carbon stars 

showing the CN bands in s u f f i c i e n t strength to make most of the 

l i n e s measurable. 

The s t e l l a r spectra were d i g i t i z e d using the department's 

automated Joyce-Loebl Hicrodensitometer, with a sampling in t e r ­

val of 5 microns (about 0.6 A), and the l i n e position measure­

ments were made by a computer program (see next Appendix) which 

f i t s s p l i n e functions to the observed points and then calculates 

both the l i n e center-of-gravity and minimum from the reconstruc­

ted spectrum. The wavelengths of both of these were then 

plotted versus the expected velocity of the star (corrected f o r 

the earth's o r b i t a l motion) and only those features with the 

tightest c o r r e l a t i o n retained., 



1 40 

Seventeen l i n e s were thus chosen to define the r a d i a l velo­

c i t y system; these are l i s t e d i n Table 20. The same features 

are also indicated on the tracing of T Ind i n F i g . 15. Because 

of the great complexity of carbon star spectra the l i s t e d f e a ­

tures may not be used unquestioningly, however, but only i f the 

l i n e shape i s such as to conform to that i n the stars used i n 

defining the system. These necessary q u a l i f i c a t i o n s are noted 

in Table 21. A rough idea cf how frequently a feature may be 

found acceptable can be estimated from the number of l i n e s used 

to define that rest wavelength (column "NH i n Table 20). Note 

that features 1 and 4 in the tracing i n F i g . 15 would not be 

considered acceptable by these c r i t e r i a . 

This technique was applied to nine of the program stars. 

An average of 12 l i n e s were measured for each star r e s u l t i n g in 

an average probable error of the mean of 4 km/s. This i n t e r n a l 

accuracy i s comparable to Sanford*s H c M - q u a l i t y v e l o c i t i e s , as 

defined by his error bars. 
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r - . . — r-
| Star | 

T_ 
Expected ] 
Velocity | San ford 

Sp. 
(1944) 

— i 
Type 1 

Richer (1971) | 
: J i ' 

1 v Aqi 1 • 65 | N 1 C5 | 
1 AQ Sgr | • 42 | N \ C5 | 
| T Ind | + 24 | N I C5 J 

j DS Peg j • 19 | N 1 C5 | 
I HD 173291 | + 10 | N 1 C5 | 
| TT Tau | -12 \ N i C5 | 
I HD 180953 j -16 J N \ C5 | 
I AQ and | -19 | N 1 C6 | 
| TT cyg I -33 | N 1 C6 | 
| SS Cyg | -37 | Ne 1 C5 J 

1 v A r i | -191 I HO, CH 1 C5 | 
1 ,., J _ _ a. „ —i _ _ _ .j 

TABLE 19.. STARS WITH MAM-QOALTTY VELOCITIES USED TO ESTABLISH 
STANDARD WAVELENGTHS IN THE INFRARED 
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r~" T" 

| Feature | 
1 No. . | 

Best 
Wavelength 

" X " 

i 
Main 

Contributor 

_ T _ 
| St. Devn 
| (km/s) 

i 

N 

i ! i HK-
1 1 I 7 4 7 9 . 2 8 7 i CN 1 6.1 I 9 

I 2 | 7 6 9 2 . 4 7 7 i CN 1 8.5 I 11 

I 3 | 7 7 1 4 . 8 0 4 i Ni, Cz I 1 0 . 3 ! 11 

I 4 | 7 7 6 5 . 8 4 0 ! C 2, CN I 4 - 0 I 8 

I 5 | 7 8 5 1 . 0 3 5 ! CN (bh) | 15 . 5 j 10 

| 6 | 7 9 9 5 . 1 4 6 ! CN I 1 o.o I 10 

1 7 . • | 7 9 9 9 . 5 9 8 ! CN I 1 3 . 4 ! 11 

i 8 | 8 0 2 1 . 0 4 1 I CN I 12 .4 ! 10 

1 9 \ 8 1 8 7 . 6 4 4 I CN I 1 3 . ? } 8 

| 10 | 8 2 9 7 . 7 0 0 i CN 1 1 1 . 8 ! 8 

I 11 | 8 3 3 8 . 2 9 7 ! CN I 7 .9 J 8 

1 12 | 8 3 4 3 . 6 2 9 i CN \ 1 0 . 3 | 7 

I 13 | 8 4 0 5 . 2 1 1 i CN I 1^.3 J 9 

I It I 8426.466 ! CN, Ti | 10 .0 } 9 

| 15 | 8 4 8 7 . 9 6 8 ! CN 1 6 .7 j 5 

I 16 | 8 4 9 8 . 9 4 1 I Ca I I , CN 1 1 1 . 9 I 10 

| 17 | 8 6 6 2 . 2 3 8 ! Ca II I 1 2 . 6 J 7 

i ... J - . j . . X -

TABLE 20., STANDARD WAVELENGTHS AND ACCOBACIES OF FEAT08ES 
DEFINING THE RADIAL VELOCITY SYSTEM 
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r— : • r-
j Feature | 
1 No. ) 
i. i 

Set 
on 

—, 1 

I Additional q u a l i f i c a t i o n s J 

i 1 ! Min I Reasonably symmetrical minimum. j 
J 2 I CG 1 
I 3 I CG 

i 4 J CG | Ought to have the t y p i c a l width. j 
| 5 i J3in } Min should be close to steep edge. j 

I 6 J CG 1 Must resolve 7992 l i n e . j 
| 7 I CG \ 
i 8 I CG 1 

| 9 I 13 in J Must have sharp min close to steep edge. J 

I 10 J Min I Must have sharp min close to steep edge. | 

I. 11 Min \ Must have sharp min 6 very steep edge. j 
\ 12 Min J Must have sharp min. | 
1 13 J Min I Should be f a i r l y deep l i n e . | 
J 14 CG 1 

I 15 i Min I Extremely sharp minimum. | 
! 16 i CG+Min 1 

| 17 
. i 

CG 
« 

I a l l l i n e s to be set on the minimum (Min) should have | 
\ t h e i r minimum following smoothly from the adjacent { 
\ maximum without any abrupt changes i n the slope of the | 
I p r o f i l e . j 

I Lines to be 
| be reasonably 
I t y p i c a l width 

set on the center-of-gravity (CG) should | 
symmetrical. These l i n e s generally have a j 
of 3 to 4 pts (about 2 A). 1 

* j 

TABLE 21, aCCEPTaNCE CRITERIA FOR WaV ELENGTH STANDARDS 



Figure 15. I d e n t i f i c a t i o n of Wavelength Features for Hear Infrared Badial Velocity System 







APPENDIX II 

USE OF HICBODENSITCHETEB AND C08PU_TEH PEOGEAHS 

TO 8EASUBE BADIAL VELOCITIES 

The method of measuring r a d i a l v e l o c i t i e s outlined in the 

previous Appendix and described i n more d e t a i l here i s , unfor­

tunately, rather laborious and time-consuming. Although t h i s 

University does have a Grant oscilloscope measuring machine, 

t h i s instrument does not have s u f f i c i e n t s e n s i t i v i t y to permit 

setting on many of the weak features indicated in F i g . 15, The 

wavelength standards derived here do not, of course, depend on 

the measurement technique but only require that the instrument 

used be s u f f i c i e n t l y s e n s i t i v e with a 5 micron s l i t width to 

show contrast comparable to that of Fig. 15. For the following 

i t i s assumed that the reader i s fam i l i a r with the operation of 

the Joyce-Loebl Autodensidater (see e.g. Olson 1971). 

The Autodensidater i s used to generate a d i g i t i z e d spectrum 

punched on paper tape. This spectrum must be: decoded and stored 

before further processing i s done. The positions of the 

comparison arc l i n e s are found using the "ARC" program and a 

dispersion curve i s f i t t e d to those positions. F i n a l l y the 
HSTELLAB2" program i s used to f i n d the positions of the s t e l l a r 

features and calculate their wavelengths. 

Since the comparison arc l i n e s must be recorded at the same 

time as the s t e l l a r spectrum, a mask has been constructed to f i t 

immediately i n front of the Autodensidater analyzing s l i t . This 
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permits rapid switching back and fort h between the s t e l l a r and 
arc spectra. 

A scan should normally s t a r t near 7450 A and end past 8700 

A. The mask should be used to switch over to record the com­

parison arc for those l i n e s marked in F i g . 15, except 8654 A 

which i s too close to the s t e l l a r 8662 A l i n e . To get t h i s 

l i n e , return past 8521 A and record only the arc; t h i s w i l l 

allow c a l c u l a t i o n of the o f f s e t to 8654 A. The paper tape 

should fee started by keying i n the characters " 000*999*" and 

ended by a "D". 

The card deck setups for the six applicable programs are 

given below* Input i s i n either free format of integer, real or 

l o g i c a l type (I, R, L) or l i t e r a l data in »A» format. 

The tape i s decoded using the "DENSITY" program: 

i 

\ $R0N DENSITY 1=DensityFile 

I 1. NrPts 

| SEND 

NrPts should be a multiple of 2000; max. = 30000. 

The plate density values should next be printed out using 

the "PRINTT" program: 

i~—————————————————————— 
I 
| $RUN PRINTT 1=DensityFile 
I 

I 
I 
i 
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The arc l i n e positions are calculated and punched on cards 

using the "ARC" program. This program requires the point index 

of the peak of each l i n e as input; t h i s can be gotten from the 

printed density values. 

$RUN ARC 1=DensityFile 8=*P0NCH* 

1. Line positions Max = 50 (I..,) 

Repeat card 1 as required. 

SEND 
I 
1 . ; ; , 

The dispersion curve c o e f f i c i e n t s are calculated by the 

"OLQE'* program.. The input i s the same as that required by the 

OBC l i b r a r y program *OLQF. 

i — : 

I $RUN OLQF 

| 1. Nr of Pts, Order to f i t , *0", "T". 

j 2. Pos«n, wavelength 

I Card 2 repeated "Nr of Pts" times. 

| SEND 
i ; — i . . 

This program should be run with judicious deletion of l i n e s 

u n t i l the f i t i s adequate. 

(3I,L) 

(2R) 
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The wavelengths of the s t e l l a r features are calculated 
using the "STE1LA82*' program: 

$R0N STELLAR2 1=DensityFile 

1. Dispersion curve c o e f f i c i e n t s Max = 5 (58) 

2. Line positions Max =100 (I.--) 

Repeat card 2 as required. 

SEND 

The density values near the s t e l l a r l i n e s may be plotted to 

a s s i s t in judging whether a l i n e p r o f i l e i s acceptable: 

$R0N PLOTT 1=DensityFile 

1. L i t e r a l t i t l e (20A4) 

2. Low 6 High pt indices of region to be plotted; 

Low S High density values to be plotted. (41) 

Repeat card 2 as desired. 

$EHD 

The r a d i a l velocity may now be calculated by the usual 

method from the measured l i n e wavelengths and the rest 

wavelengths of Table 20. 
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L i s t i n g of Computer Programs 
C "DENSITY" 
C 

INT EG ER*2 IDATA, IDPLT (30000) 
NC00NT = 0 
MISSTP = 0 
NCALLS =0 
CALL FEE AD (- 2, • ENDFILE • , 1) 
CALL F8EAD (5,*I:»,NBATA,610) 

10 IF (NDATA.LT.1) NDATA=30000 
NDATA = (NDATA+1999)/2000*2000 
DO 9 J = 1, NDATA 
NCALLS = NCALLS • 1 
CALL JCLBL (IDATA,NCOUNT,NBOGUS,MISSTP,&8) 
IF (IDATA.EQ.fOOO) GO TO 8 
IDPLT (J) = IDATA 

9 CONTINUE 
8 WRITE <6,4) NCALLS,NCOUNT,MISSTP 
4 FORMAT|'NR OF JCLBL CALLS',1 OX,• = •,16,/,'NR OF DATA COUNTS' 
• * BY JCLBL =',I6,/,»NR OF TAPE ERRO RS » , 1 OX , » =' , 16) 
ND=((NCALLS+1999)/2000)*2000 
DO 1 J = 1,ND,2000 
K = J + 1999 
WRITE (1) (IDPLT(I), I=J,K) 

1 CONTINUE 
STOP 
END 

C 
SUBROUTINE JCLBL (IDATA,NCOUNT,NBOGUS,MISSTP) 
INTEGER*2 IDATA,IA(4) 
NZERO = 0 

201 DO 200 N =1,4 
CALL PTAPE (1,8210,6210) 
I = IABS(I) 
IF (I.GT.128) 1 = 1 - 128 
IF (I.EQ.42) GO TO 202 
IF (N.EQ.4) GO TO 205 
IA(N) • = . 1 - 4 8 
IF (IABS (I-53).LE.5) GO TO 200 
IF (I.EQ.68) IDATA = 1000 
IF (IDATA.EQ.1000) RETURN 
IF (I.EQ.O) NZERO = NZERO + 1 
IF (NZERO.LT.9000) GO TO 201 
IF (NZERO.GE.9000) IDATA = 1000 
RETURN 

200 CONTINUE 
202 IF (N.EQ.4) GO TO 204 

IF (NCOUHT.EQ.O) GO TO 201 
205 MISSTP = MISSTP + 1 

DO 206 J = 1,4 
CALL PTAPE (1,6210,6210) 
IF (IABS(I) .GT. 128) I = IABS(I)-128 
IF (J.EQ.4. AND.I.EQ.42) WRITE (6,101) NCOUNT 
IF (J.EQ.4.AND.I.EQ.42) NCOUNT = NCOUNT • 1 
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L i s t i n g of Computer Programs 

IF (I.EQ.42) GO TO 207 
206 CONTINUE 
207 IDATA = 0 

NCOUNT = NCOUNT • 1 
WRITE (6,101) NCOUNT 

101 FORMAT {« DDE TO TAPE ERROR, DAT A=0 AT POINT =VI6) 
RETURN 

204 IDATA = 100*1 A (1) • 10*IA{2) + IA{3) 
NCOUNT = NCOUNT • 1 
RETURN 

210 WRITE (6,152) NCOUNT,NZERO 
152 FORMAT {' END OF TAPE AT PT»,15,1QX,•NZERO =',I5) 

RETURN 1 
END 

C "OLQF" 
C 

DIMENSION X(50) ,Y(50) ,YF{50) ,YD{50) , WT (50) ,S (10) ,SG{10), 
* A (10), B{10) ,P(10) , YL{50) 
REAL*8 DISP,XO,YO,LAM 
LOGICAL LK 
CALL FREAD (—2,* ENBFILE* ,1) 

210 LK=.FALSE. , 
CALL FREAD (5,*3I,Lj*,M,K,NWT,LK,£220) 
DO 200 I = 1, M 
CALL FREAD (5 , * 3R: •, X (I) ,Y (I) ,WT (I) ) 

200 CONTINUE 
CALL OLQF (K,M,X,Y,YF,YD,WT,NWT,S,SG,A,B,SS,LK,P) 
KP = K + 1 
KPP = K • 2 
WRITE (6,150) K 

150 FORMAT < *4 *,T50,* DEGREE OF CHOSEN POLYNOMIAL WAS*,14,//, 
* T10, 9X«,T26,»Y»,T38,»Y—FITTED RESIDUALS *,5X, 
* »RESID 1ST ORD*,7X,* SIGMA*,13X,* P*,/) 
XO = DBLE (X (1) ) 
YO = DBLE (Y { 1) ) 
DISP = (DBLE (Y (M) )-YO)/(DBLE (X (M))-XO) 
DO 230 J = 1, M 
LAM = DISP * (X(J)-XO) + YO 
YL(J)=LAH-Y(J) 

230 CONTINUE 
WRITE (6, 151) (X(I),Y{I) , YF (I) , YD (I) , YL (I) , SG (I) , P (I) ,1=1, KP) 

151 FORMAT {1X,E16.7,E16.6,E16.6,F12.3,4X,F12.3,4X,2E16.8) 
WRITE (6,152) (X (I) ,Y (I) ,YF(I) ,YD (I) , YL (I) , I=KPP,H) 

152 FORMAT (1X,E16.7,E16.6,E16.6,F12.3,4X,F12.3) 
GO TO 210 

220 WRITE (6, 150) NWT 
STOP 
END 
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Li s t i n g of Computer Programs 

C "ABC" 
C 

INTEGER*2 18(4000) 
INTEGER IPOS(50)/50*0/ 
REAL PP (6),WL (9)/7503. 87,751 4.65,7635. 10 ,7948. 17, 80 1 4. 79, 

* 8103.74,826 4.52,8377.61,8521.44/ 
REAL*8 S,SS 
LOGICAL PCHHL/.FALSE./ 
READ (1) (IN (I), 1=1, 2000) 
READ (1,E8D=200) (IN (I) ,1=2001 ,4000) 

200 CALL FREAD (—2,* ENDLINE*,* ST REAM *) 
CALL .. FREAD (5,M V:»,IPOS) 
CALL FREAD {-2,* NUMBER*,BP) 
WRITE (6,152) 

152 FORMAT (•1STAR NAME =*,T40,*PLATE NO =*,T80,*ARC POSNS*,//) 
IF (NP.EQ.15) PCHWL = . TRUE. 
DO 204 J J = 1, NP 
P = 0.0 
MID = IPOS(JJ) 
¥0 = IN (MID-1) 
Y1 = IN (MID) 
Y2 = IN(MID+1) 
B = 2.0*Y1 - 1.5*Y0 - 0.5*Y2 
C = 0.5*Y0 - Y1 + 0.5*Y2 
IF (C.EQ.0.0) GO TO 317 
P = -0.5*B/C + FLOAT(MID—1) 

317 DO 300 J = 1, 10 
JA = MID-J 
IF (IN(JA-1) .GT. IN (JA) ) GO TO 301 

300 CONTINUE 
301 DO 302 J = 1, 10 

JB = MID+J 
IF (IN (JB* 1) . GT. IN (JB) ) GO TO 303 

302 CONTINUE 
303 IMN = IN(JA) 

IF (IN (JB) • GT.IMN) IMN = IN(JB) 
IMX = IN (MID) 
BT = IMX-IMN 
DO 305 IL = 3,8 
HLV = IMN + 0.1*IL*HT 
DO 306 J = JA, MID 
IF (IN {J) . L E. HL V .AND. IN (J* 1) .G T. HLV) GO TO 307 

306 CONTINUE 
307 PP(IL-2) = J * (HLV-IN(J))/{IN(J+1)-IN(J)) 

DO 308 J = MID,JB 
IF (IN(J) .GE. HLV .AND. IN (J+1) . LT. HL V) GO TO 309 

308 CONTINUE 
309 PP(IL-2) =(J+(HLV-IN(J) ) / (IN (J*1)-IN (J)) *PP (IL-2) ) /2 .0 
305 CONTINUE 

N = 6 
314 S = ODO 

SS .= ODO 
DO 310 J = 1, N 
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S = S •• DBLE(PP(J) ) 
SS = SS •«• DBLE(PP (J) )**2 

310 CONTINUE 
AVG = S/N 
SD = DSQBT ((SS-S**2/DFLOAT{N))/DFLOAT(N-1)) 
IF (SD.LE.0.1 .OB. N. LE. 3} GO TO 311 
XD =0.0 
DO 312 J = 1, N 
IF { ABS {AVG—PP (J) ) .GT. XD) XD = ABS {A VG-PP (J) ) 

312 CONTINUE 
8 = 0 
DO 313 J = 1, N 
IF (ABS{AVG-PP{J))«GE* XD) GO TO 313 
M = M*1 
PP(M) = PP{J) 

313 CONTINUE 
N = M 
GO TO 314 

311 WHITE (6,150) MID,P,AVG,N,3D 
150 FOBMAT {'OMIDPT =',I5,10X,'PEAK =*,F10.3,10X,'CENTER = *, 

+ F10.3,10X,I2,« PT ST.DEV =•,F6.3) 
IF (PCHWL) GO TO 320 
IF (JJ.LE. 9) WRITE (8,151) AVG 
GO TO 204 

320 IF (JJ.LE.9) WRITE (8,151) AVG,WL(JJ) 
151 FORMAT (F1O.3,*10.2) 
204 CONTINUE 

STOP 
END 

C "PRINTT" 
C 

INTEGER*2 ID(2000) 
200 READ (1,END=201) ID 

WRITE (6,150) ID 
150 FOBMAT (2515) 

GO TO 200 
201 STOP 

END 
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C "STELLaR2" 
c 

DIMENSION X (25) , Y(25) ,IPS (100) ,X0 (100) 
DIMENSION T (220) ,SS (220) ,SS1 (220) ,SS2 (220) 
REaL*4 COF(5) 
INTEGER*2 IN{4000) 
EPSLN = 1.0E-4 
READ (1) (IN(I) ,1=1,2000) 
READ (1,END=207) (IN (I) , 1=2001,4000) 

207 CALL FREAD (5,*R 7; • ,COF) 
CALL FREAD (-2, * NUMBER* , NCF) 
CALL FREAD {- 2, ' ENDLINE* ,'STREAM') 
CALL FREAD (5,'I V:',IPS) 
CALL FREAD (-2,* NUMBER*,NPOS) 
WRITE (6, 150) 

150 FORMAT (»1STAR = *,T40,* PLATE NO =•,T80,•STELLAR LINES',//) 
WRITE (6,159) (COF(J), J=1,NCF) 

159 FORMAT {* WAVELENGTH COEFFS: »,5G16.7) 
WRITE (6,161) 

161 FORMAT { *0*,T29,'MINIMUM*,T6 0,*CENTER OF GRAVITY',T97, 
• • DEPTH WIDTH ARE A* ,/,T25, » POSH WAVELENGTH' ,T62, 
• »POSN WAVELENGTH*,T98, • (DU) (DP) (DD.DP)*) 
DO 2 50 NT = 1, NPOS 
MID = IPS (NT) 
IB = MID - 10 
IE = MID +10 
DO 251 J = 1, 10 
IX = MID - J 
IF (IN (IX* 1 )-IN{IX).GE.100) GO TO 252 
IF (IX.LE.3) GO TO 252 

251 CONTINUE 
GO TO 253 

2 52 IB = IX +1 
253 DO 254 J = 1, 10 

IX = HID + J 
IF (IN(IX-I)-IN (IX) .GE.100) GO TO 255 

254 CONTINUE 
GO TO 256 

255 IE = IX - 1 
256 NPTS = IE - IB * 1 

IF (NPTS. LE. 10) WRITE (6,155) MID 
155 FORMAT (*0NOT ENOUGH PTS FOR SPLINE AROUND MINIMUM AT*,15) 

IF {NPTS.LE.10) GO TO 250 
IX = 0 
DO 257 J = IB, IE 
IX = IX * 1 
X (IX) = FLOAT (J) 
Y (IX) = IN (J) 

257 CONTINUE 
M = 10*NPTS - 9 
DO 300 J = 1, M 
T (J) = IB • 0.1 * (J-1) 

300 CONTINUE 
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CALL SPLINE {NPTS,M,EPSLN,X,Y,T,PBOXIN,SS,SS1,SS2) 
XM = FLOAT (MID) 
CALL SPLINV (XM,V,SL,SD) 
IF (SL.EQ.0.0) GO TO 249 
ISP = IFIX (SIGN(1.1,SL)) 

260 SLP = SL 
XMP = XM 
XM .= XMP - 0.5*ISP 
CALL SPLINV (XM,V,SL,SD) 
IF (SL.EQ.0.0) GO TO 249 
IS = IFIX (SIGN(1.1,SL)) 
IF (IS.EQ.ISP) GC TO 260 

263 A A = (SL-SLP) /(XM-XMP) 
BB = SL - AA*XM 
XMN = -EB/AA 
CALL SPLINV (XMN,V,SLN,SD) 
ISN = IFIX(SIGN{1. 1,SLN) ) 
IF {ISN.NE.ISP) GO TO 261 
IF (ABS (XHN-XMP) .LE. 0.0015) GO TO 265 
XMP = XM 
SLP = SL 
ISP = IS 
GO TO 262 

261 IF (ABS (XMN-XM) .LE.0.0015) GO TO 265 
262 XM = XMN 

SL = SLN 
IS = ISN 
GO TO 263 

265 XM = XMN 
249 DO 301 J = 3, M 

I F (T(J).GT.XM) GO TO 302 
IBOTH = J 

301 CONTINUE 
302 IBB = J*1 

DO 303 I = IBB,M 
IF (SS(I) .LE.SS ( 1-1) ) GO TO 305 
JB = 1 - 1 0 
JL = I - 20 
IF (JL.LE.IBB) JL = IBB - 1 
I B = (JL+I)/2 
IF (JH . L T o I H ) JB = IH 
D = SS (JB) - SS (JL) 
IF (D.LE.0.0) GO TO 303 
XT = (SS(I)-SS (JL))*(JB-JL)/D+JL 
XT = IB • 0. 1* (XT-1.0) 
IF (T(I)-XT.LT.0.4) GO TO 303 
LRT = (I*JR)/2 
GO TO 306 

303 CONTINUE 
305 LBT = 1-1 
306 IBB = IBB - 3 

IE = IBB-2 
DO 307 IX = 1, IE 
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I = IBB - IX 
IF (SS (I) .LE. SS (1*1) ) GO TO 308 
JB = I + 20 
JL = I • 10 
IF {JR. GE.IBB) JB = IBB • 1 
IH = (I*JR)/2 
IF (JL.GT.IH) JL = IH 
D .= SS (JR) - SS(JL) 
IF • (Di.GE.0wQ) GO TO 307 
XT = (SS(I)-SS(JL) ) * (JR-JL)/D • JL 
XT = IB • 0. 1*{XT-1.0) 
IF (XT-T (I) .LT.0.4) GO TO 307 
LLT = (I+JL) /2 
GO TO 309 

307 CONTINUE 
308 LLT = 1+1 
309 IF (SS(LLT).GT.SS(LRT)) GO TO 310 

VEL = SS (LLT) 
DO 311 J = IBB, LET 
IF (SS(J) .GT. VEL) GO TO 312 

311 CONTINUE 
312 LRT = J-1 

GO TO 314 
310 VEL = SS (LRT) 

DO 313 J = LLT, IBB 
IF (SS (J) . LE. VEL) GO TO 315 

313 CONTINUE 
315 LLT = J 
314 XLEN = (LRT-LLT)/10.0 

HHT = VEL - SS (IBOTH) 
10 = 1 
IF (XLEN.GT.1.0) GO TO 319 
AREA = Q.O 
10 = 0 
XBT =1.0 
GO TO 325 

319 AH = 0.0 
DO 320 J = LLT, LRT 
AR = AR + (VEL-SS (J) ) 

320 CONTINUE 
AREA = AR/10.0 
AR2 = AR/2.0 
AR = 0.0 
DO 321 J = LLT, LRT 
AR = AR + (VEL-SS (J) ) 
IF (AR.GE.AR2) GO TO 322 

321 CONTINUE 
322 FR = (AR2- (AR- (VEL-SS (J) ) ) ) / (VEL-SS(J)) 

XWT = J-1+0.5 + FR 
XHT = IB*0. 1* (XHT-1.0) 

325 31 = 0.0 
H2 = 0.0 
DO 331 J = 1, NCF 

http://Di.GE.0wQ
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W1 .= 81 + CO? (J) *XH** (J-1) 
W2 = 82 + COF(J) *X»T** (J-1) 

331 CONTINUE 
IF (IO.EQ.O) 82 = 0.0 

323 8RITE (6,160) NPTS, HID,XM,131 ,XBT,W2, HHT, XLEN, ABEA 
160 FORMAT («0«,I2,* PTS AT»,15,4X,2F11.3,15X,2F11.3,15X, 

+ 2F8.1,F12.3) 
250 CONTINUE 

STOP 
END 

C 
SUBROUTINE SPLINE (N,M,EPSLN,X,Y,T,PROXIN,SS, SS1 ,SS2) 

C COMPUTES NATURAL CUBIC SPLINE. ALSO GETS INTEGRAL OVER KNOTS. 
C FINALLY, EVALUATES SPLINE (6S«,S»«) AT VARIOUS ABSCISSAE. 
C SOURCE: GREVILLE IN <MATH METHODS FOR DIGITAL COMPUTERS> 
C VOL II RA1STON/HILF INTERPOLATION ON N PAIRS, 
C (X,Y)-VALUES AT M T-VALUES. INTEGRAL = PROXIN. 
C SPLINE AND DERIVATIVES IN M SS-,SS1~,SS2-VALUES. 
C SS2(X) ARE FOUND BY SOR WITH CONVERGENCE PARAMETER EPSLN. 

REAL X{25) ,Y (25) ,B (25) 
REAL T{220) ,SS{220) ,SS1 (220) ,SS2 (220) 
REAL H(25) , DELY (25) , H2 (25) ,DELSQY (25) , S2 (25) ,C (25) , S3(25) 
N1 = H-1 
H(1) = X(2)-X{1) 
DELY (1) = (Y(2)-Y(1))/H(1) 
DO 52 I = 2,N1 
H(I) = X(I*1)-X(I) 
H2 (I) = H (I-1)+H (I) 
B(I) = 0.5*H(I-1)/H2(I) 
DELY (I) = (Y ( 1 + 1) - Y (I) ) / H(I) 
DELSQY (I) = (DELY (I)-DELY (I- 1) )/H2 (I) 
S2(I) = 2.0*DELSQY(I) 

52 C(I) = 3.0*DELSQY(I) 
S2{1) = 0.0 
S2(N) = 0.0 
OMEGA = 1.071797 

5 ETA =0.0 
DO 10 1 = 2 , N1 
W = (C (I) -B (I) *S2 (I— 1) - (0. 5- B (I) ) *S2 (I* 1) -S2 (I)) *OMEGA 
IF (ABS(W) .LE.ETA) GO TO 10 
ETA = ABS(H) 

10 S2 (I) = S2(I) + W 
IF (ETA.GE. EPSLN) GO TO 5 
DO 53 I = 1, N1 

53 S3 (I) = (S2 ( 1 + 1)-S2 (2) )/H(I) 
AR = DELY (N 1) +H (N 1) *S2 (N 1) /6.0 
AL = DELY(1)-H{1) *S2 (2)/6.0 
PROXIN =0.0 
DO 62 I = 1, N1 

62 PROXIN = PROXIN*0.5*H(I) *{Y(I) *Y ( 1*1) ) 
# -H (I) **3*(S2 (I) +S2 (1+1) )/24. 
IF (M.LE.O) RETURN 
GO TO 15 
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ENTRY SPLINV(ARG,SP,SP1,SP2) 
C COMPOTES SPLINE AND ITS 1ST 2 DERIVS AT *ABG«; RETNS SP,SP1.. 

M = 1 
TCI) = ARG 

15 DO 61 J = 1, M 
I = 1 
IF (T(J)-X(1) ) 58,17,55 

55 IF (T(J)-X(N) ) 57,59,580 
56 IF (T(J)-X(I)) 60,17,57 
57 I = 1+1 

GO TO 56 
58 SS(J) = AL* (T (J)-X (1) ) •¥ (1) 

SS1(J) = AL 
SS2(J) = 0.0 
GO TO 61 

580 SS {J) = AR* <T |J) -X (N) ) +Y (N) 
SS1 (J) = AR 
SS2(J) -= 0.0 
GO TO 61 

59 I = N 
60 I = 1-1 
17 HT1 .= T{J)-X(I) 

HT2 = T{J)-X(I+1) 
PROD = HT1*HT2 
SS2(J) = S2(I)+HT1*S3(I) 
DELSQS = <S2 (I)+S2 (1*1)+SS2(J))/6.0 
SS(J) =. Y (I) +HT1 *DELY (I) *PROD*DELSQS 
SS1(J) = DELY (I) • (HT1 + HT2) *DELSQS+PROD*S3 (I) /6 . 0 

61 CONTINUE 
SP = SS(1) 
SP1 = SS1 (1) 
SP2 = SS2(1) 
RETURN 
END 
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C "PLOTT" 
C 

R£AL*4 MULT,TITLE(20) 
INTEGER*2 IN (4000) ,HEX00/ZF0 F0/, NX,NH, 

* F{9)/» {1«,*H9»,»,I» ,»5,*,« »,* * , * X, * , * 1H • , •*) */ 
READ (5,1001) TITLE 

1001 FORMAT (20A4) 
CALL FREAD (- 2, * ENDFILE ' , 1) 
READ (1) (IN (I), 1=1,2000) 
READ (1,END=2030) (IN (I) ,1=2001, 4000) 

2030 CALL FREAD (5,»4I:•,NMIN,NMAX,IBOT,ITOP,£9999) 
IF (NMAX.LE.NKIN .OR. NMAX.LE.O) GO TO 2030 
IF (NMIN.LE.0) NHIN = 1 
IF (NMAX.GT.4000) NMAX = 4000 
IF (I80T.LT.0 .OR. IBOT.GE.999) IBOT = 0 
IF (ITOP.LE.O .OR. ITOP. GT. 999) ITOP = 999 
IF (ITOP-IBOT.GE. 124) GO TO 2010 
IF (999-IBOT.GE. 124) GO TO 2011 
ITOP = 999 
IBOT - 875 
GO TO 2010 

2011 IF (ITOP.GE. 124) GO TO 2012 
ITOP = 124 
IBOT = 0 
GO TO 2010 

2012 I HID = (ITOP+IBOT) / 2 
ITOP = IMID * 62 
IBOT = IMID - 62 

2010 MOLT = 124.0 / FLOAT(ITOP-IBOT) 
ZEE •••= 1.001 - MOLT* I BOT 
SC = 1.0 / MULT 
WRITE (6,1051) TITLE,IBOT,ITOP,SC 

1051 FORMAT { • 1 * ,20A4 ,//, » BOTTOM VALUE = • ,15 , 10 X, ' TOP VALUE =•, 
• I5,15X,*SCALE =*,F7.3,« / PRINT POSN*,//) 
DO 2001 NPT = NMIN, NMAX 
NX = IN (NPT)*MULT + ZER 
IF (NX.GE.1 .AND. NX.LE.125) GO TO 2040 
IF (NX.LE.O) WRITE (6,226) NPT 
IF (NX. GT. 125) WRITE (6,227) NPT 
GO TO 2001 

2040 NH = NX/100 
F{5) = NH * HEXOO 
NX = NX-100*NH 
F{6) = NX/10*256 + NX-NX/10*10 • HEXOO 
WRITE (6,F) NPT 

2001 CONTINUE 
GO TO 2030 

9999 WRITE (6,1052) 
10 52 FORMAT ( ,1 i) 

STOP 
226 FORMAT {»9« , 15, • <•) 
227 FORMAT (*9',I5,125X,,>*) 

END 
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THE RATIO OF TOTAL TO SELECTIVE ABSORPTION 

I t has long been known that the r a t i o of t o t a l to s e l e c t i v e 

absorption [R ] for the (OBV) photometric system i s not a 

constant depending only on the shape of the i n t e r s t e l l a r red­

dening curve, but i s also a function of the colour of the star 

being observed (e.g. Blanco 1956). This a d d i t i o n a l e f f e c t i s 

caused by the wide bandpass of the (UBV) f i l t e r s , allowing the 

e f f e c t i v e wavelengths of the f i l t e r s to s h i f t with d i f f e r e n t 

s t e l l a r i n t e n s i t y gradients. This must be taken in t o account i f 

we want to derive the i n t r i n s i c colours of the carbon stars or 

t h e i r distances, since t h e i r colour excesses w i l l not be the 

same as f o r the bluer companions. 

Previous studies of t h i s e f f e c t show that the value of R 

increases toward l a t e r spectral types, but the actual numerical 

r e s u l t s for very cool stars are not agreed upon. Blanco and 

Lennon (1961) found an increase from 3.1 for early-type stars to 

3.7 for oc Ori (M2 l a , B-V=1.86), the r a t i o being i n s e n s i t i v e to 

colour excess for the early-type stars but st e a d i l y decreasing 

with colour excess from about type KO onwards. Schmidt (1956) 

found R to increase with colour excess for a l l spectral types 

except N, and found a value of 4.25 for three carbon stars, 

which was r e l a t i v e l y i n s e n s i t i v e to the excess. S i m i l a r l y , 

Honeycutt (1972) found R to be r e l a t i v e l y constant at a value of 

3.8 f o r two carbon stars with B-V = 2.5. 
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In an attempt to eliminate these discrepancies and to 

define the variation of the B-values with i n t r i n s i c colour and 

colour excess t h i s problem was re-examined. 

The r a t i o of t o t a l to s e l e c t i v e absorption i s given by 

B = A(V) / E(B-V) = A(V) / [A(B)-A(V) ] (33) 

rCrxa) <(>/<» icA) «") 
where A (i) = -2.5 log \ — \ . , (3 4) 

The transmission function of the i ' t h f i l t e r - c e l l combi­

nation i s given by <p.(>)r and the star's s p e c t r a l i n t e n s i t y d i s ­

t r i b u t i o n by I { M # and the transmission function of X units of 

i n t e r s t e l l a r matter by T"X<» 

where TO) = 10 ** -f S m ( > ) - S m (oo) 3/2.5 . (35) 

&m{>) i s the usual ordinate of the i n t e r s t e l l a r reddening curve 

and S m ( ° o ) i s the value of the i n t e r s t e l l a r absorption extrapo­

lated to i n f i n i t e wavelength. 

The reddening curve has been taken from Ohderhill and Wal­

ker (1966) and normalized to give A (V) =0 and E(B-V) = 1: 

om(>) = 2.23 - 1.83) for \-* •< 2.25 

om{» = 1.42 (>-» - 1.59) for A" 1 > 2.25. , (36) 

The parameter om(«s) i s e s s e n t i a l l y a free parameter and has been 
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set to 3.12 to give a value of R = 3.20 for early-type st a r s . 

This i s a widely accepted value which seems to hold f o r most 

regions i n the galaxy. Johnson (1968) concludes that 3.0 i s the 

minimum possible value and c i t e s several cases of much higher 

values.. Other authors prefer S values i n the range 3.1 to 3.2 

(e.g., Johnson and Borgman 1963, Schmidt-Kaler 1965). 

The f i l t e r transmission functions have been taken from 

Matthews and Sandage (1963), while the s t e l l a r i n t e n s i t y d i s t r i ­

butions are mainly from Willstrop (1965), supplemented by the 

early-type c a l i b r a t i o n s of Hayes (1970) and of Oke and Schild 

(1970). S i l l s t r o p * s data cover the wavelength range 4000 A to 

6500 A at 25 A i n t e r v a l s for many types of stars, including one 

S-star, one R-star and two N-stars. The short wavelength range 

necessitated extrapolation to the f i l t e r l i m i t s of 3600 A and 

7200 A. This did not a f f e c t the r e s u l t s , however, since the 

agreement with Hayes and with Oke and Schild (corrected f o r Bal-

mer l i n e absorption) for those stars i n common was guite good. 

Nor were the late-type stars affected (where the extrapolation 

was l e s s certain) , as a r e s u l t of the low spectral i n t e n s i t y 

shortward of 4000 A and the low f i l t e r transmission longward of 

6500 Ai The numerical integrations used points at 100 A in t e r ­

vals after i t had been ascertained that closer spacing affected 

the r e s u l t s n e g l i g i b l y . 

The r e s u l t s are presented i n Figures 16 and 17. Note that 

the r e s u l t for the N-stars (B-V=2.4) i s i n good agreement with 

that found by Schmidt, while the value for the M-stars (B-V=1.6, 
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B=3.7) compares favourably with the observational r e s u l t of Lee 

(1970), who found 8 = 3.6 ± 0.3 from i n f r a r e d photometry of 

(i-stars., The results for blackbodies of various temperatures 

are also shown i n F i g . 17. These have been used as a guide in 

extrapolating the observed variation to redder stars. 

To quantize these r e s u l t s , polynomials were f i t t e d to the 

reddening curves of Fig. 16; polynomials were again used to 

define the v a r i a t i o n of the c o e f f i c i e n t s with i n t r i n s i c colour. 

The c o e f f i c i e n t s of t h i s second set of polynomials are given i n 

Table 22., 

During the course of these calculations i t was noticed that 

the v i s u a l absorption A (?) i s a function of the star*s i n t r i n s i c 

colour as well as the actual amount of intervening i n t e r s t e l l a r 

matter (X). Osing the d e f i n i t i o n of X as i n eqn. 35 t h i s r e l a ­

tion i s given by 

A{V) = [1.042 - 0. 020* (B-V) Q J X - 0.00385 X* (37) 

to good accuracy for a l l types of s t a r s . This e f f e c t i s caused 

by the s h i f t of the e f f e c t i v e wavelength of the V f i l t e r and 

simply means that the redder stars are absorbed l e s s . This term 

w i l l produce a d i f f e r e n t i a l change i n A(V) of about 0.1 magni­

tude for a colour excess of E (B-V) = 1.0 only i f two stars d i f ­

fer i n i n t r i n s i c colour by (B-V) > 3.0. Hence t h i s term would 

usually be quite n e g l i g i b l e . 

The accuracy of the calculated fi values can be no better 

than that of the zero point value B = 3.2, which i s generally 
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assigned an uncertainty of ± 0.2 or 0.3 {p.e.). The r e l a t i v e 

accuracy for comparison of early and late-type s t a r s , however, 

should be somewhat better than t h i s . 







1 i 
} 

g ( o , i ) I q d , i ) q (2,i) 
"T" 

1 
-+-

q (3,i) 

0 3- 28067 2. 02458 x10~2 1. 69810 X 1 0-2 -2- 39331 x10- 3 

1 2. 47655 x10" I 3. 24753 X 1 0-2 -5. 09329 X 1 0-3 -8. 2 1006 x10~ 4 

2 -3. 92830 x10- I 6. 86755 x 10-2 -2. 18495 X 1 0-2 2. 29100 x10- 3 j 

3 4. 51732 x10~ l -6. 65211 X 1 0-2 , 7- 44 152 X 1 0 ~ 3 -3. 9 8584 x10- 4 

-1. 46818 x10- I 1. 69069 X 10-2 3. 39048 X 1 0-6 -8. 545 19 x10~ S 

5 1. 49948 x10- 2 -1. 40081 X 10-3 -1. 34500 x10~* 1. 72167 x10~ s 

q (m) = II q * (B-V)0 * * i 
i«0 

B[ E (B-V) , (B-V) 0 1 = g g(oi) * E<B-V)**m 

TABLE 22. COEFFICIENTS OF POLYNOMIALS TO DETERMINE R FROM E{B-V) AND (B-V) c 
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APPENDIX IV 

COHERENCY TABLES 

This appendix contains, i n tabular form, the computed 

coherency values for each synthetic spectrum when compared with 

the various observed s t e l l a r spectra. The tabular entries are 

the average coherency values calculated with a 5% power cutoff 

l e v e l . The model parameters for each entry are indicated on the 

l e f t for the microturbulence and l 3 C / 1 2 C r a t i o [Rj and along the 

bottom f o r the X (CNO) value. Note that these parameter values 

are not always i n a uniform sequence; i r r e g u l a r i t i e s are 

sometimes indicated by double l i n e s separating the columns. 

Each table i s also marked with the parameter values of the 

deduced coherency peak and the mean synthetic spectrum l e v e l [ S ] 

at the peak. 

The location of the coherency peak was determined by mental 

interpolation i n the table, with the aid of pencil and graph 

paper.. An attempt was made to derive the peak location by 

least-squares f i t t i n g a three-dimensional e l l i p s o i d to the cohe­

rency data, but t h i s was not successful as, i n f a c t , an e l l i p ­

soid i s a poor approximation of the actual functional dependence 

of the coherency on the three parameters. 
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19 Psc with model K12 

Coherency peak at (X,^,B#S) = <0 . 80,3 . 5 , 0 . 050 , 0.491) 

r — T" T" ~r — — r . " r — - r - — — a 
I 4.0 i j j j ! ! 

.07 | J j .93462 j ! I i 

.05 | 1 .93530 ! .936 23 I .93504 | ! j 

.03 | i .93258 ] ! J ! 
I 3.5 J 1 • j ; j ; 

.10 J | j .92939 | I I 1 

.07 | i .934 99 | .93202 | • j 

.06 1 | i .93633 ] I i g 

.05 | .93147 | .93579 .93692 | .93573 | .93346 | .9305 3 | 

.03 | I .93348 | .93527 | 1 1 
j j J ! ! j J j • * * 

I 3.0 
! ! i j J j ! 

.07 | ' ! ! .93393 | .93132 | | j 

.05 J I .93491 1 .93601 J .93516 j 1 .9303 6 J 

.03 | ! ! .93280 | .93490 | ! ! 
_. L. * j. • t 

0.50 0.65 0.80 0.95 1.10 J | 
1.25 | 

i , ,. , i 
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19 Psc with model K24 

Coherency peak at (X,|,R,S) = (0. 19,3.75,0.057,0.443) 

I —:— • 1 — -j T j | T l 

•**5 ] J 

1 1 j || | 
.05 | J | .93674 J i i i i 

4.0 | | 
.10 | | | .9324 6 J ! II 
.07 | | J .93680 | I i l ! 
.05 1 | .93617 | .93779 | | .93299 || | 
.03 | | J .9349 8 J ! t ! ! 

3.5 | | j | 
i i i i 

.07 1 | I .93670 | i i i i 
• 05 | | | .93772 | ! ' I ! 
.03 | | | .9354 1 I i i i i 

3.0 | | j | 
1 II 1 

.05 J .93041 | | .93628 | .93410 | .93040 || .92263 | 

1. ., - J LA. 1 
0. 10 0.15 0.20 0.25 0.30 0.40 | 
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19 Psc with model K26 

Coherency peak at (X,^,E#S) = (0.10,3.75,0.04,0.455) 

1 . T . -
(4.0 | 

~l T~ 
1 I 
1 i 

t _ T" 
i ! 

1 .07 J ; j | .93835 1 j i 
J .05 | I .94022 | j ! 
1 .03 | i i | .93950 I 

| 3.75 ] j | j \ T 1 

i .04 J j j .94034 | .94098 j j ! 
J 3.5 | 
I .10 | j j I .93294 i ! ! 
1 .07 | ! ! | .93780 | ! ! 
I .05 | | .93977 J | .94054 | . 9 3 2 4 9 | | 

1 .03 | ! ! | .94008 | 

1 3.0 | j | ! j j J 

J .05 | .93322 
J j 

| .93976 J .93176 | .91370 J 

I— x - _ -L J 1 1_ 1 j 
0.05 0.08 0.09 0. 10 0. 15 0.25 | 
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2 Psc with model K12 

Coherency peak at (X , £ , 8 , S ) = (0 .95,3.25,0.054,0.476) 

r - T " " T •"- — r - r- a 

| 4.0 

.07 J J .93629 J 

| i 
.05 | .93276 1 .93570 ] .93611 | 

i 

I 3.5 
.10 I 1 .93427 | ! j j 1 

I 

.07 | 

.06 | 

.05 | .93395 

I .93745 | 
| .93776 | 
| .93717 J 

.93597 \ 

.9 3767 | .93667 | .93473 | .9322 7 | 

! .03 1 | .93093 | .93453 | ! j 
I 3.Q j J j j 

! .07 | 1 .93691 j .93583 | .93363 { | 

! • Q5 | .93360 J .93682 | .93775 | .93705 ] | 

! .03 | ! ! .93482 j .93665 J | 
ft 

I 2.5 

.05 | 

i i 
.93536 | 

| j 

1 

! ...„",.• i„ • . 4 „,, ,,, f- J 
0.65 0. 80 0.95 1.10 1.25 1 

1.40 | 
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Z Psc with model K26 

Coherency peak at <Xr^,8,S) = (0. 11,3.4 ,0. 058,0.432) 

1 — ' •, - . . — T " ••• ----- j— r r " - i " r r • t 

4.0 | j , j j 
.10 1 

• { 
.93911 | J I I 

.07 | J .94058 J J l l .06 | | | .94025 | I I .05 | 1 .93911 | 1 i 1 

.03 J ! ! .93300 J j !! 
3.5 | j j ; j J J 

.10| j } .93936 | J J J 

. 07 | j .94081 | .94133 | .94099 | .93992 )| 

.06 J 1 j .94144 | 

.05 | .93594 | .9403 6 | .94129 | .94122 || .9378 4 | 

.03 | ! ! .93427 | ! .93773 J| .9390 3 | 
3.0 ] j j j J || 

. 10 | I I .93784 | | J j 

.07 | .93819 | ! .94071 J ! .93926 J J .9339 5 | 

.05 | I J .94035 | ! .94116 I| .9380 0 | 

.03 | I ! I ! l l .9388 7 J 

f. t 1 
I 0.08 0.09 0. 10 0. 1 1 0. 12 0. 15 | 

a 
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X Cnc with model K26 

Coherency peak at (X,^,B,S) = (0. 17,3.8,0.032,0.345) 

1 

4.5 

05 

03 

T T T T 

.94883 .94906 

.94906 

. 94449 

4.0 
.07 

.05 

.04 

.03 

.02 

3.5 

.05 

.03 

.02 

3.0 

.05 

,94531 

,94954 

,95067 
,94565 

95092 
95134 

.95042 

.95144 

.94881 
95072 
95001 

94759 

94887 

,95077 
,94613 

9434 8 

95132 .95144 ,95058 

,94643 

-XX 
0. 13 0. 15 0. 16 0.17 0. 19 0.20 ~ J 
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UO Aur w i t h model K26 

Coherency peak a t (X,^,B,S) * (0.14,4.8,0.040,0.351) 

6.0 

.05 

5.5 
.07 

.05 

.04 

5.0 
.07 

.05 

.04 

.03 

.94736 

.94724 

9476 3 ,94753 

,94873 

.949 29 

.94810 

. 94710 

. 94891 

.94 893 

.94944 

.94 947 

.94809 

.94721 

4.75 
.07 

.05 

. 04 

.03 

4.5 

.05 

.94938 

.94739 

.94936 

.94955 

.94825 

.94889 

.94 966 

.94889 
94915 

.94906 94772 

0.10 0.11 0. 1 2 0. 13 0. 14 0. 15 
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Y CVn with model K12 

Coherency peak at (X,^,R,S) = (1.3,5.3,0.45,0,265) 

% • 1 1 "i i r n 1 
I 6.0 | t | | | || | 

| .40 i .93475 1 .93482 J .93436 | .93361 | j ( J 

I j. + , + + + j 

I 5.5 J | i | | || | 

| .50 | | | .93556 | | || | 
| .40 | | .93553 | .9356 1 | .93528 | .93498 || | 
I .30 | | | .93459 | | || | 

I 5.0 | I I I I I I I 
I I I I I I I I I 
I .50 | I I | | .93487 || | 
| .40 | | | . 93517 J .93521 | .93495 || . 93436 | 
| .30 I I I I I .93446 || | 
I I I I I I I I I 
I H _ ^ 1 i -I - H 1 
I I I I I I I I I 
I 4.5 I I I I I I I I 
I I I I I I I I I 
I I I I I I I I I 
I .40 | I I I I .93293 || | 
I I I I I I I I I 
I I I I I I I I I j. i j i 1 1. i~t ( 

| 1.00 1.20 1.40 1.60 1.80 2.20 | 
t 1 
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Y CVn with model K26 

Coherency peak at (X,^,R,S) = {0.20,5.0,0.40,0.200) 

r -j , t , 

5.5 

5.0 

4.0 

3.5 

.40 | .95368 | .95364 

j | | 
1 

T J ! ! 1 
.50 | .95260 | .95401 | .95355 | 1 
.40 | I .95453 | .95337 | | 
.30 | J .95366 

1 I 1 
.70 | J .95108 | .95226 | \ 

.50 | | .95350 | .95379 ) .95248 | 

.40 | j | .95340 | J 

.30 | | .95276 I .95171 | ] 

.50 | | .95116 | | 

.60 J J .94618 
| j j 

.50 | .94395 | .94701 | .94740 | | 

.40 | | .94690 I 1 1 

.30 | | .94503 1 1 1 
i . . j . -JL. 1̂  J 

0. 15 0 .20 0 .25 0 . 3 0 | 

C(0.21,4.9,0.41) 
C{0.22,4. 8,0.42) 

.95452 

.95443 
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APPENDIX V 

PARAMETERS OF SPECIFIC MODEL ATMOSPHERES 

r ™' ! - ..--r- T "1 

| Model i K12 | K24 
! 

K26 1 

| T(eff) ! 3500 | 3500 I 3500 1 

I log g 1 0 1 0 0 1 

| He/H 1 • 1 I .1 1 -1 I 

1 C/H 1 3. 55 X10-S | 3.55 x10-3 1 3.55 X10-2 | 

1 N/H 1 9. 75 x 10- • J 8. 15 X1Q-* I 8.15 X10-* | 

1 O/H » 1. 78 X10-5 J 7. 10 x10-» | 7.10 x10~* | 

1 c/o I 2 | 5 I 50 | 

1 — —i . _..„ i . . L, . . i 


