```
    CARBON STARS: ABSOLUTE MAGNITUDES AND
    CARBON AND NITROGEN ISOTOPE RATIOS
    by
        BERNT INGEMAR OLSON
        B.Sc., Simon Fraser University, 1969
    M.Sc., University of British Columbia, 1971
A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
    the REQUIREMENTS FOR THE DEGREE OF
        DOCTOR OF PHILOSOPHY
        THE FACULTY OF GRADUATE STUDIES
        in the Department
            of
        GEOPHYSICS AND ASTRONOMY
We accept this thesis as conforming to the
        required standard
```

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, l agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Geophysics and Astronomy

The University of British Columbia
2075 Wesbrook Place
Vancouver, Canada V6T lW5

Date August 19, 1977

ABSTRACT

Carbon stars are relatively uncommon, luminous, cool stars whose spectra exhibit exceptionally strong bands of carbon-containing molecules. This is direct evidence of extensive nucleosynthesis, as will occur in the late stages of stellar evolution. The two aspects investigated here are their luminosities and atmospheric carbon and nitrogen isotope ratios.

The luminosities are derived through the study of those carbon stars which are members of double star systems. Since the companion star is apparently normal and thus of known luminosity, the carbon star luminosity is directly attainable. Photometry and spectroscopy of suspected binaries yield absolute visual magnitudes for a dozen stars as bright as -4.7, and bolometric magnitudes primarily in the range -4 to -8 . This means they are slightly more luminous than normal giants.

The isotopic ratios have been deduced by a comparison of synthetic spectra with the observed near infrared stellar spectra. The synthetic spectra were calculated by direct integration of the flux emerging from an appropriate model atmosphere, and contain lines primarily of the red band system of the $C N$ molecule. A new analysis technique, used in time series analysis, which is based on the mutual coherence of the spectra being compared and makes full use of the entire spectrum, has been employed. By varying the parameters describing the synthetic spectrum, including the isotopic ratio, the coherence
can be maximized and the isotopic ratio of the stellar spectrum deduced. Results for five carbon stars yield ${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}$ ratios in the range 2.5 to 30 . A search was also made for the isotopes ${ }^{14} \mathrm{C}$ and ${ }^{15 \mathrm{~N}}$; ${ }^{14} \mathrm{C}$ was not found, while a tentatively positive result is reported for 15 N .

TABLE OF CONTENTS

Introduction 1
Part I. Absolute Magnitudes 9
Carbon Stars in Clusters 11
Statistical Studies 14
Carbon Stars in Binary Systems 17
The Observational Data 19
Discussion of Individual Systems 46
Discussion 54
Part II., Carbon Isotope Abundance Ratios 61
The Observational daterial 66
Synthetic Spectra - Theory 69
Synthetic Spectra - Practice 73
Molecular Parameters 73
Molecular Equilibrium Calculation 82
Spectrum Parameters 86
Computational Procedure 88
Analysis Technique 90
Computational Details 92
Comments 95
Tests 97
Results 105
The ${ }^{12 C} /{ }^{13} \mathrm{C}$ Ratios 105
Turbulence 109
A Note on the Carbon Abundance 111
The Search for 14 C and 15 N 115
A Recap of the Coherency Technique 129
Summary 131
References 133
Appendix I. Radial Velocities of Carbon Stars 138
Appendix II. Use of Microdensitometer and Computer
Programs to Measure Radial Velocities 147
Appendix III. The Ratio of Total to Selective Absorption 161
Appendix IV. Coherency Tables 169
Appendix V. Parameters of Specific Model Atmospheres 179

LIST OF TABLES

1. Summary of Data on Carbon Stars in Clusters 12
2. Summary of Statistical Absolute Magnitudes 15
3A. Observed Photometric Extinction Coefficients 21
3B. Photometric Errors for Standard Stars 21
3. Suspected Binary Systems with Observations 24
4. Data on Observed Systems. Part 1 32
5. Data on Observed Systems. Part 2. 35
6. Data on Observed Systems. Part 3 38
7. Data on Observed Systems. Part 4 41
8. VRI Photcmetry 44
9. Some Uninvestigated Double Stars 45
10. Model Atmosphere Parameters 64
11. High Dispersion Carbon Star Spectra 67
12. Molecular Data for the Red System of $C N$ 76
13. Molecular Data for the Phillips System of C_{2} 77
15A. Known Energy Levels of the CN Molecule 78
15B. Known Energy Levels of the C_{2} Molecule 78
14. Coherency Peaks for a Test Case 98
15. Summary of Derived Spectral Parameters 106
16. Coherency for y CVn vS $1^{12} C^{15} N$ and ${ }^{13} C^{15} \mathrm{~N}$ 122
17. Stars with "A"-quality Velocities Used to Establish Standard Wavelengths in the Infrared 141
18. Standard Wavelengths and Accuracies of Features Defining the Radial Velocity System 142
19. Acceptance Criteria for Wavelength Standards 143
20. Coefficients of Polynomials To Determine R from

LIST OF PIGURES

1. Prominent Features of Carbon Star Spectra 4
2. $M \nabla$ (Carbon Star) $¥ \underline{M} M \nabla$ (Companion) 57
3. M(bol) (Carbon Star) \quad (Sㅗ (bol) (Companion) 58
4. Bolometric Correction $V S \quad V-R$ 59
5. $M($ bol $)$ vs $(V-R)_{0}$ 60
6. Rotational Energy Level Structure for the Red System of CN 79
7. Rotational Energy Level Structure for the Phillips System of c_{2} 81
8. Pretreatment of Spectra 94
9. Calculated and Observed Spectra of 19 Psc 102
10... C_{2} Features in the Spectrum of 19 Psc 113
10. Coherency Curves for the $14 C$ Test Cases 118
11. Coherency Curves for Stars vs ${ }^{4} \mathbf{C}$ Abundance 120
12. Coherency Curves for Stars $v \leq 15 N$ Abundance 121
13. HisN Features" and the Spectrum of Y CVn 126
14. Identification of Wavelength Features for Near Infrared Radial Velocity System 144
15. R VS $E(B-V)$ for various types of stars 166
16. $R \quad[\mathbf{D}, \mathrm{E}(B-V)=0]$ YS $(B-V)_{0}$ 167

ACKNOWLEDGEMENTS

I would like to express my appreciation to my supervisor, Dr. Harvey Richer, for his continued aid, encouragement and enthusiasm throughout this project. Special thanks go to Dr. Hans Fast for providing the computer programs for spectrogram reduction, and to Dr. Jason Auman for many invaluable discussions and suggestions dealing with the model atmospheres and molecular calculations. I am also indebted to Dr. Hollis Johnson, without whose model atmospheres this thesis would not have been possible in the present form, and especially to Dr. Tad Ulrych, for introducing me to the coherence spectrum technique. The friendly assistance of the staff at Kitt Peak made my visit there very enjoyable, while numerous friends have considerably enhanced the enjoyment of doing this thesis. Finally the U.B.C. Computing Centre was invaluable in the production of the physical copy, while all typing, diagrams and layout were done by myself.

INTRODUCT ION

A tuo dimensional system of stellar classification based on a star's luminosity and temperature does not fully characterize the nature of that star. This is most readily apparent among the late-type giants where abundance differences result in many different classes of stars showing widely dissimilar spectra.

This thesis is about some aspects of one of these classes of stars: the carbon stars. The generic name "carbon star" refers to many different kinds of stars, all of wich have one thing in common: their spectra show the presence of carbon-containing molecules in greater strength than in normal stars of similar temperature and luminosity. The classes of carbon stars are:

1. A stars - these stars correspond to the normal K stars, showing spectra with a comparable set of atomic lines plus bands of C_{2} and enhanced CN and CH .
2. N stars - generally cooler than the R stars; exhibit extremely heavy blanketing by the bands of C_{2} and $C N$. Most N stars are long period variables.

Every carbon star is either of type R or N. This, the original classification system, depends on the relative visibility of the blue spectral region, with N stars being more heavily blanketed there.
3. J stars - R or N stars with exceptionally strong ${ }^{13} C^{14} N$ bands (especially at 6168 A) and usually also with strong neutral lithium.
4. CH stars - show an abnormally strong G band and other bands of CH , and generally yeak metals. These are all high velocity: stars and hence belong to population II.
5. Ba II stars - exhibit strong lines of Ba, Sr and other heavy metals, plus enhanced CH .
6. Hd stars - the hydrogen deficient stars, show strong C_{2} but yeak CH bands. Most Hd stars are also variables of the R CrB type.

The $C H, B a I I$ and $H d$ stars are subgroups of the R stars.
7. CS (or SC) stars - show conspicuous CN bands, enhanced atomic lines (Ba II, etc.) but very weak bands of Zro or C_{2}. making it difficult to decide at low dispersion whether they are C or S stars.

Other chemically peculiar cool stars are the just mentioned S stars which show oxide bands (especially zro, plus LaO, Yo) and MS stars uhich are intermediate between S stars and the normal cool M stars, which are characterized by bands of TiO.

The primary factor producing this variety is the cos ratio; because of the great stability of the co molecule virtually all the c or o is tied up in the form of $C 0$, so that stars with an excess of carbon form carbon stars while those with excess oxygen form M or S stars. The $C S$ stars are presumably stars with a c/o ratio of almost exactly unity so that small amounts of both C and 0 are available to form other molecules. clearly other factors are also important, to produce such different types as the $C H$ and f stars: these include the population type
(metal abundance), mass and age to name but the most obvious.

The thing I want to emphasize is that the carbon stars as a Whole are a very diverse group indeed. Although each subgroup is a more cohesive set, there is still no a priori reason to assume that the N stars (for example) are sufficiently closely related that they can be described by the same basic parameters. In fact I shall show that their luminosities (in particular) cover quite a wide range. The physical properties of carbon stars have recently been reviewed by Wallerstein (1973).

As a guide to carbon star spectra, Fig. 1 illustrates many of the more prominent and peculiar features that may be present in the visual and near infrared region of cool carbon stars. C_{2} is represented by the Swan and Phillips band systems, degrading towards the blue and red, respectively. $C N$ bands from both the Violet and Bed systems are present, also degrading in opposite directions; the Red bands show three separate bandheads resulting from different branches of the band. The isotopic bands (not shown) of ${ }^{12} \mathrm{Cl}^{3} \mathrm{C}$ are of fset from the main bands by approximately +8 A per unit vibrational quantum number change (Δv) for the S wan bands while for the red bands of C_{2} and $C N$ the offset is on the order of +40 A . $C H$ is presentas the G band and several other bands in the 3900-4400 a region; the Merrill-Sanford bands near 4900 A are almost certainly due to SiC_{2}; Cacl bands are occasionally seen in some stars. [The two redward bands of CaCl shown belong to the Red system and are degraded to the blue; the 5934 A band belongs to the orange

Figure 1. Prominent Peatores of Carbon Star Spectra
system. According to Pearse and Gaydon (1941) this band is degraded to the red whereas the spectra of Rybski (1973) apparently show the band extending to the blue into the Na D lines.] Polyatomic molecules have also been detected in carbon stars: a C_{3} band has been detected at 4050 A while $H C N$ and $C_{2} H_{2}$ lines have been identified in the 1μ region. Bands of co do not appear in the visual region, the closest being the $\Delta v=3$ sequence at 1.6μ. The atomic lines indicated are not by any means exhaustive but merely, show some of the stronger and/or interesting features.

This thesis is divided into two principal parts. part I deals with an investigation into the absolute magnitudes of carbon stars. Part II presents a new technique for determining carbon isotope ratios from molecular bands and carries out that analysis for five carbon stars. The remainder of this introduction deals with the origin of the carbon stars.

Although the origin of carbon stars is outside the scope of this thesis it is worthwhile to briefly consider the mechanisms Which have been proposed to create carbon stars from the normal oxygen stars. Since carbon stars have $\mathrm{C} / 0>1$ it is clear that some nuclear processing must have occurred; this means either hydrogen-burning by the cNo cycle or 3-alpha helium-burning. A means of transporting the processed material to the surface, where we can see it, must also be provided. As it now appears likely that the observed surface abundances of carbon and nitro-
gen are only with difficulty compatible with cNo processing (e. g. Kilston 1975, summary by Irgens-Jensen 1976), a process involving helium-burning reactions, at least in part, must be considered, producing lower N/C ratios.

The evolutionary stage that seems best able to provide for both the processing and transportation requirements occurs during the helium shell-flash phase. During this evolutionary phase the structure of the star is as follows: there is an inert core consisting of the products of helium-burning, C and 0 , above this is a thick helium-burning shell, followed by an inert helium region, a thin hydrogen-burning shell and a deep convective envelope extending to the surface. As the star evolves the helium-burning shell gradually narrows until a thermal instability develops: the energy released by the helium-burning reactions is not able to escape due to combination of the high heat capacity of the shell and the pressure in the shell not increasing proportionally to the density change (cf: Sackmann 1977). Since the helium-burning reactions are very temperature sensitive a helium flash occurs. A convective zone then develops, extending almost up to the hydrogen-burning shell. After a while the flash is quenched (Sackmann 1977) and the convective zone decreases and disappears; quiescent helium-burning then continues until the next flash starts. We thus have an evolutionary stage where carbon is produced (violently) and transported upwards; since the convective zone was, however, contained in the interior it is not yet clear how the carbon reaches the surface.

Three basic approaches have been proposed to overcome this difficulty. 1. The deep envelope (DE) model (Sackmann, Smith and Despain 1974) makes the ad hoc assumption that the interior convective zone actually does physically merge with the convective envelope. Though there is nothing impossible about this scheme (e.g. by convective overshooting) the fact remains that no model star yet calculated has exhibited such a continuous convective region. 2. The plume model (Scalo and ulrich 1973) supposes that, at the maximum extent of the interior convective zone, protons can tunnel through the thin inert helium zone into the convective shell. They would there react with the carbon, setting up convective plumes linking the convective shell with the envelope, thus acting as conduits for the processed material into the envelope. The disadvantages of this scheme are that the plume properties can not be calculated from first principles, and that just the right number of protons need to enter the convective shell to produce the observed distribution of s-process elements. 3. Iben's (1975) scheme, which is a direct result of the evolutionary sequence of stellar model calculations, sees the convective envelope dip down into the helium-burning residue. During the flash the regions within and above the helium-burning shell are pushed outward, and the helium-burning products are distributed throughout the region occupied by the convective shell, which does not quite extend as far as the hydrogen-burning shell. After the flash has stopped the envelope again descends, continuing past its previous
position (in mass) until it encompasses the top part of the residue left behind by the convective shell. This material will then be convected to the surface. Successive flashes will bring more and more processed material into the envelope.

Each of these models will enhance the envelope carbon abundance more than the nitrogen, since nitrogen is not produced during helium-burning. They all also suffer from the difficulty that the just produced carbon will be processed through the cNo reactions as it passes through the hydrogen-burning region and also during the inter-flash periods. An envelope base temperature cool enough to prevent 12 C destruction also hinders the production of ${ }^{13} \mathrm{C}$. Iben's scheme at least has the feature that the luminosity due to hydrogen-burning is considerably reduced during the time that the envelope is actually dipping. into the helium-burning residue; the other two schemes necessarily treat the structure as constant during the mixing phase, while Iben's mixing is caused by the structural changes. on the wole, Iben's model is to be preferred at present, primarily because its essential features are directly calculable and involve no additional hypotheses.

ABSOLOTE MAGNITODES

The position of carbon stars in the evolutionary sequence is not well understood. It is not clear, for example, whether most stars become carbon stars or if only some do, whether the carbon star phenomenon is recurrent or occurs only once; or how the core products of nucleosynthesis are transported to the surface. Moreover, as has been mentioned, carbon stars are not a homogeneous group; some are found in globular clusters while others (N stars) are strongly concentrated tovard the galactic plane. The problem is compounded by the fact that many of the basic observational data are imprecise, making comparison with theoretical studies difficult. In particular, carbon star temperatures and luminosities are not accurately determined. I shall here address myself to the absolute magnitude problem.

Most previous studies of this question have employed statistical methods to derive mean absolute magnitudes for large groups of stars; this approach does, however, tend to obscure the range of luminosities that actually exists. The only way to reveal this range is to determine the absolute magnitude of as many individual carbon stars as possible. Since this requires a knowledge of the distance to the star this can only be done for carbon stars which are members of clusters or binary systems.

This part of the thesis begins with a brief summary of work dealing with carbon stars in clusters and statistical studies. This is followed by a description of the photometric and
spectroscopic data available pertaining to carbon stars which are members of binary systems and a discussion of the pertinent points of each individual system, plus a general discussion of the derived magnitudes. [Much of the material discussed in this part has already been published (Olson and Richer 1975).]

CAREON STARS IN CLUSTERS

The data on carbon stars in the line of sight to clusters has been summarized by Gordon (1968). Assuming that the carbon stars actually are cluster members she finds absolute visual magnitudes ranging from +0.5 to -3.5. Unfortunately the supporting observational data is rather sketchy and the absolute magnitudes hence somewhat uncertain. Since that time several other cases have been discovered and more data gathered on other suspected cluster members. Table 1 summarizes the current status of carbon stars in clusters.

The carbon star near NGC 2477 is approximately two cluster radii from the cluster center., Its radial velocity of $+5.5 \pm 3$ km / s agrees well, however, with that of an early M-star (+7 \pm) which is a cluster member on the basis of its proper motion: furthermore the galactic field velocity at the distance of the cluster is $+27 \mathrm{~km} / \mathrm{s}$, making this star a probable member. The magnitude range shown is caused by nonuniform reddening across the cluster.

Hartwick and Hesser (1973) find that if the carbon star which is $2^{\prime \prime}$ from the center of NGC 2660 is a cluster member its $\mathrm{MV}=-2.0$ and it has a mass of about 1.8 Me .

The radial velocity of MSB $75(-46 \pm 3 \mathrm{~km} / \mathrm{s})$ makes it a probable member of the very old cluster NGC $77.89(-45 \pm 7 \mathrm{~km} / \mathrm{s})$ When compared with the field velocity ($-25 \mathrm{~km} / \mathrm{s}$).

Walker (1972) has found another very red star ($(B-V)=$

TABLE 1. SUMMARY OF DATA ON CARBON StaRS IN CLUSTERS

Refs: 1. Catchpole and Feast (1973)
2. Hartwick et al. (1972)
3. Hartwick and Hesser (1973)
4. Gaustad and Conti (1971)
5. Feast and Lloyd Evans (1973)
6. Cannon and Stobie (1973)
7. Hardinq (1962)
8. Haqen (1970)
9. Arp (1965)
10. Dickens (1972)
11. Bond (1975)
12. Westerlund (1964)
+4.2. MV = -1.9) in NGC 419 in the Small Magellanic Cloud. Although no spectra of this star exist, it seems probable that it is a carbon star. The three SMC stars in Table 1 are all located right at the tip of the red-giant branch (Feast and Lloyd Evans 1973), as are the three known CH stars in ω cen (Smith and Wing 1973; Bond 1975). All carbon stars so far found in globular clusters have been located at the tip of the giant branch.

The approximately 400 carbon stars found by mesterlund (1964) in the LMC have a mean estimated visual magnitude of 15.7 with a spread of about half a magnitude, indicating an absolute visual magnitude of about -3.,

Because of the scarcity of c-stars near clusters and the difficulty in establishing whether a star is a cluster member in our galaxy, the large numbers of carbon stars in the Large Magellanic Cloud hold great promise in regard to absolute magnitude studies. Recently a small sample of these have been studied by Crabtree, Richer and westerlund (1976): they range in apparent magnitude from 13.9 to their instrumental limit of 16.8. resulting in absolute visual magnitudes as bright as $\mathbf{- 4 . 6}$ (using $\mathrm{m}-\mathrm{M}=18.5$).

STATISTICAL STUDIES

Since most carbon stars are field stars, their absolute magnitudes can only be calculated on a statistical basis using the observed radial velocities and/or proper motions in conjunction with the apparent magnitudes.

Sanford (1944) found $\langle M v\rangle=-0.4 \pm 0.4$ for 62 R-stars and -2.3 ± 0.2 for 171 N -stars. The B -stars were further subdivided by Vandervort (1958) who derived $\langle M v\rangle=+0.44 \pm 0.29$ from 43 RO and R2 stars, and -1.10 ± 0.49 from 42 R5 and R8 stars. Richer (1971) calculated $\langle M v\rangle=-2.7 \pm 0.7$ for 33 stars classified c3 to $c 7$ on his infrared classification system; these starswere mostly of type N .

Baumert (1972) has calculated near infrared 1.04 micron narrouband absolute magnitudes $\langle M(104)\rangle$ of -1.7 ± 0.5 and -4.3 ± 0.6 for R and $N-s t a r s, ~ r e s p e c t i v e l y$. To convert these numbers to visual magnitudes the colour index (V-I (104)) was formed for a sample of stars in common with the lists of Richer (1971) and of Mendoza and Johnson (1965). This resulted in $\langle V-I(104)\rangle=$ $+2.4 \pm 0.9$ (st. devn) for the R-stars and $+3.9 \pm 0.7$ for the N-stars. The average $(B-V)$ indices for the samples vere +1.67 and +3.13 , as compared to the more complete sample values of +1.67 for Vandervort's R-stars and +3.10 for Richer's N-stars, indicating that the samples used are representative of the general population. The resulting Mv's are +0.7 and -0.4, significantly fainter than the previous results.

\# See text.

TABLE 2. SUMMARY OF STATISTICAL ABSOLUTE MAGNITUDES OF CARBON STARS

Peery (1975), assuming that most of the dispersion in colour of Bamert's photometric data is due to interstellar reddening, has deduced bolometric magnitudes for a sample of N irregular variables in the range -4 to -6 , again considerably brighter than Baumerts value for a similar group. Baumert (1975) subsequently revised his value for this group of stars by -1. 5 magnitudes by deleting a single star from his sample. Thus is seems plausible that similar er rors may be responsible for a large part of the akove mentioned discrepancy...

CAREON STARS IN BINARY SYSTEMS

The other major approach to determining absolute magnitudes of individual carbon stars makes use of binary systems with one member a carbon star. This method is essentially identical to that used for carbon stars in clusters; namely, determine the distance modulus to the system (cluster) and use the apparent magnitude to calculate the absolute magnitude. To do this one must: a) establish the reality of the physical proximity of the C-star and its suspected companion (or the cluster), and b) calculate the distance modulus of the companion (cluster).

The distance modulus of a cluster is far easier to derive accurately than that of a single star, however, since in that case we have access to all the cluster members. Comparison of the observed colour-magnitude diagram with the zero age main sequence yields the distance modulus and reddening as well as the age of the cluster and the mass of the carbon star, though this is more strongly dependent on the evolutionary model sequence used. A cluster distance modulus is obtainable to an accuracy of a few tenths of a magnitude. In contrast to this the modulus of a single star must be computed from a knowledge of its absolute magnitude, which, in turn, wust be inferred from some observational parameter that has been calibrated in terms of absolute magnitude. In practice this would normally entail MK spectral classification, E ${ }^{\circ}$ photometry for B-stars, or H_{β} plus uvby photometry for A and F-stars. Whereas the absolute magnitude calibrations for single stars of early type may be
comparable in accuracy to the cluster moduli, later types can often not be placed to better than a magnitude. In this investigation the first two methods have been employed.

The most conclusive ways of proving the reality of a suspected binary system would be to observe either an orbit or one star eclipsing the other. No such cases are known among carbon stars although a few do show composite spectra, indicating a very close companion. That these are the result of a chance superposition is highly unlikely. As the angular separation of the two stars increases there is an increasing need for corroborating evidence of their physical association. Agreement of their radial velocities, or common proper motion, would strongly support this conclusion, as would the presence of the same set of interstellar absorption lines in both stars, although this would be difficult to apply to carbon stars because of the complexity of their spectra. Finally, the absolute magnitude derived for the carbon star ought to be "reasonably" close to the range indicated by the statistical studies and those carbon stars whichare members of clusters (see previous sections).

The observational Data

The list of candidate carbon stars which may be members of binary systems has been compiled from several sources. The
 ving run at Cerro Tololo in 1969, when, while taking spectra of the C-stars, he noticed that several stars had fairly close companions. Three systems were added when his photometry indicated that the ($U-B$) indices of the supposedly single carbon stars were much too blue compared to ($B-\nabla$). The results for these systems have already been published (Richer 1972). A secondary list was kindly supplied by Dr. H. E. Crull, Jr. (1972) of the U.S. Naval Observatory at Washington, D.C., while a few systems were chosen from the A.A.V.S.O. charts and some were gleaned from the literature. With the aid of the palomar Sky Survey prints and visual observations of the candidates through the department's $30-c m(12-i n c h)$ telescope, this preliminary list was narrowed down to those systems with companions thought bright enough to be feasibly investigated further.

Photometric and spectroscopic observations of some of these systems were obtained at the Kitt Peak National Observatory near Tucson, Arizona, during the periods sept. 10-12 (photometry) and Sept. 18-24 (spectroscopy) of 1972. by the author. In addition, Dr. Richer has obtained some VRI photometry from Cerro Tololo during the periods 0ct. 12-14, 1971 and June 5-7, 1974.

UBV and $H \beta$ photometry was obtained of 17 suspected systems using the Kitt Peak \#2 36-inch. (91-cm) telescope and the
reductions were done by a computer program written by the author using standard reduction methods; taking into account the red leak of the U filter. The red leak filter is a standard U filter with the U bandpass region blocked, allowing a direct measure of the leak in the red region. Use of this filter is necessary for the c-stars because of their extremely red colours.

The photometer deflections through the ultraviolet, blue, visual and red leak filters are denoted by u, b, y and $r l, r e-$ spectively, and the raw colours are

$$
\begin{align*}
& C_{Y}=-2.5 \log (b / y) \\
& C u=-2.5 \log \left(u^{*} / b\right) \tag{1}
\end{align*}
$$

where $u^{\prime}=u$ - rl. These are related to the magnitude and colors above the atmosphere via

$$
\begin{align*}
y(0) & =y-k g * \sec z \\
c y(0) & =c y-k y * \sec z \tag{2}\\
C u(0) & =c u-k u * \sec z
\end{align*}
$$

Where $k y=k 1+k 2 * C y(0)$, and $\sec z$ is the air mass of the observation. The calculated extinction coefficients for each of the three photometric nights are tabulated in Table 3 A , along with standard Kitt Peak values (Barnes 1974). Finally UBV colours are calculated from

$$
\begin{align*}
V & =c 1+c 2 *(B-V)+Y(0) \\
B-V & =c 3 * C 4 * C y(0) \tag{3}\\
V-B & =c 5+c 6 * C u(0)
\end{align*}
$$

TABLE 3A. OBSERVED PHOTOMETRIC EXTINCTION COEFPICIENTS

table 3b. Photometric errors for standard stars
where the "cs coefficients are calculated from observations of standard stars. The expected uncertainties are given in Table 3B. Since the magnitudes of the very red carbon stars are calculated, in part, from an extrapolation of the relation defined by the (bluer) standards, one would expect the uncertainties of the C-star magnitudes to be somewhat greater than those of bluer stars, and may be systematically in error. No attempt has been made to try to combat this problem. The VRI reductions were carried out in a similar manner.

Blue plates of $127 \mathrm{~A} / \mathrm{mm}$ dispersion at H_{γ} were secured of the companions in 10 systems, as well as several MK and velocity standards. Spectral classification was done relative to the known standards using the criteria outlined in the Kitt Peak Spectral Atlas (Abt et al. 1968). The radial velocities were measured on the Grant oscilloscope measuring engine in this university's Physics Department. The internal errors resulting from the measurement of (typically) a dozen lines were about 16 $k m / s$ (st. devn), whereas a comparison of measured and standard velocities gave standard deviations of 15.2 and $11.8 \mathrm{~km} / \mathrm{s}$ for B, A and F-stars and for G and K-stars, respectively, indicating that there were no systematic errors present.

Several additional spectra have also been obtained at the Dominion Astrophysical Observatory, Victoria. These were obtained with the 183-cm (72-inch) telescope at a dispersion of $78 \mathrm{~A} / \mathrm{mm}$. The internal accuracy of these plates is about $10 \mathrm{~km} / \mathrm{s}$ (st. devn) from a half dozen lines. Also available were 200

A/mm blue plates of many of the suspected companions obtained by Dr. Richer at Cerro Tololo in September 1971. Unfortunately these plates turned out to be unusable for radial velocity measurements as there were large random unexplained systematic shifts between the stellar spectra and the comparison arcs, amounting in some cases to equivalent velocities of several hundred km / s.

A list of suspected carbon star binary systems for which observations exist is given in Table 4 , along with two suspected systems containing s-stars. Columns 1, 2 and 3 give the name and equatorial and galactic coordinates of the C-star. Column 4 refers to the $R N$ spectral type, the Keenan-Morgan c-type as defined on the Okayama system (Yamashita 1972), and Richer's (1971) infrared c-type. Column 5 gives the companion's name, while column 6 gives the angular separation of the t wo stars in seconds of arc and the position angle of the vector from the c-star to the companion, measured counterclockwise from the north point (i.e. $N-E-S-W)$. The observational data that are relevant to determining the reality of the systems and the C-stars' absolute magnitudes are given in Tables 5 through 8. The last column of Table 4 gives which of these four tables contains the observations for that system.

The stars have been divided into four groups depending on the probability that the systems are real and the status of the observational data. Those systems which have several items of supporting evidence and no negative ones are considered to be

TABLE 4. SUSPECTED BINARY SYSTEMS WITH OBSERVATIONS

TABLE 4., (Cont.)

TABLE 4. (Cont.)

TABLE 4. (Cont.)

TABLE 4. (Cont.)

TABLE 4. (Concl.)
real (Table 5), while the systems with strongly discordant data are considered to be not real (Table 7). Systems with few supportive (or mildly conflicting) data are considered in Table 6; these systems frequently lack some vital observation and cannot be decided one way or the other on the basis of the present observational data. Finally there are those systems (Table 8) for which so little data is available that it would be meaningless to claim their reality or otherwise.

The Tables 5 to 8 have, because of space limitations, been divided into three parts each (A, B and C). The photometry of parts A refers to the carbon stars (columns 2-4) and their companions (columns 5-7) : for the years indicated [1969 = Sept./Oct. 1969 (Richer 1971); $1971=$ Sept. 1971 from Cer ro Tololo (by Dr. Richer, mostly unpublished); $1972=$ Sept. 1972 , author's data from Kitt Peak]. All the H_{β} photometry was done in 1972. The carbon star V magnitudes at maximum (col. B. 2) are derived from the present photometry (p) unless otherwise indicated. The colour excesses (col. A. 7) and absolute magnitudes (col. B.5) of the companions are based on the calibrations of Johnson (1966) and Blaauw (1963), respectively. Column C. 4 gives the radial velocity of the galactic field at the distance of the companion, calculated from the oort galactic rotation formula and corrected for the standard solar motion. Columns C. 5 and C. 6 give the dereddened colour index (cf. Appendix III) and the calculated brightest absolute visual magnitude of the carbon star. Finally, column c. 7 gives the author's confidence level, on a scale from 0 to 10 , in these derived absolute magni-
tudes. This is a combination of the confidence level of a physical connection between the component stars and the reliability of the companion's luminosity class.

The letters also appearing in some of the columns of parts B and C refer to the sources of the data. These are:

```
A - A.A.V.S.O. magnitude estimates (Barnes 1974).
E - Eggen (1972),
F - Franz and White (1973).
G - Gordon (1968).
M - Mendoza and Johnson (1965),
W. - Wilson (1953).
```

p - brightest V magnitude from part A of Table 5,
a,b,c,d,e - Sanford's (1944) probable error of velocity:
$a= \pm 1, b= \pm 2-3, c= \pm 4-5, d= \pm 6-8, e= \pm>10(k \mathrm{~m} / \mathrm{s})$.
VI - Victoria - $78 \mathrm{~A} / \mathrm{mm}$ spectra.
KP - Ritt Peak - 128 A/am spectra.
CT - Cerro Tololo - $200 \mathrm{~A} / \mathrm{mm}$ spectra - companions.
- 124 A/mm IR spectra - C-stars.

The carbon star radial velocities mentioned on the previous line have been measured on a system developed here and described in Appendix I. The VRI photometry is presented in Table 9, While a few additional double stars from crull's (1972) list which have not been investigated at all are given in Table 10 . These companions' magnitudes are guesses from the Palomar Sky Survey prints.

\% C-star photometry includes companion.
\# See text.
TABLE 5.A DATA ON OBSERVED SYSTEMS - PROBABLY REAL PHO TOMETRY

\# See text.

TABLE 5.B DATA ON OBSERVED SYSTEMS - PROBABLY REAL MAGNITUDES AND SPECTRA

\# See text.

TABLE 5.C DATA ON OBSERVED SYSTEMS - PROBABLY REAL VELOCITIES AND DERIVED MAGNITUDES

TABLE 6.A DATA ON OBSERVED SYSTEMS - POSSIBLY REAL PHOTOMETRY

\# See text.
TABLE 6. B DATA ON OBSERVED SYSTEMS - POSSIBLY REAL magnitudes and spectra

TABLE 6.C DATA ON OBSERVED SYSTEMS - POSSIBLY REAL VELOCITIES AND DERIVED MAGNITUDES

TABLE 7.A DATA ON OBSERVED SYSTEMS - NOT REAL PHOTOMETRY

TABLE 7.B DATA ON OBSERVED SYSTEMS - NOT REAL
MAGNITUDES AND SPECTRA

TABLE 7.C data on obs ERVED SyStems - not real \quad ELOCITIES AND DERIVED MAGNITUDES

TABLE 8.A DATA ON OBSERVED SYSTEMS - INADEQUATE DATA PHOTOMETRY

TABLE 8.B DATA ON OBSERVED SYSTEMS - INADEQUATE DATA MAGNITUDES AND SPECTRA

TABLE 8.C DATA ON OBSERVED SYSTEMS - INADEQUATE DATA VELOCITIES AND DERIVED MAGNITODES

TABLE 9. VRI PHOTOMETRY

TABLE 10. SOME ONINVESTIGATED DOUBLE STARS

Discussion of Individual Systems

UV Aur
The spectral type of the $3.4^{\prime \prime}$ distant companion is $B 9 \mathrm{~V}$, in excellent agreement with Gordon's (1968) type of B8.5 V; the photometric data may, however, have been contaminated by the brighter carbon star. Franz and white (1973) have measured $V=10.92$ and $B-V=$ 0.12 for the companion; this agrees well with the present V value but is bluer by 0.09 mag. The Q index $[Q=(0-B) \quad-$ $0.72(B-V)]$ corresponding to the $B 9$ spectral type points to the star being above the main sequence, while the H_{β} value indicates an absolute magnitude of -1.5 (Stromgren 1966). As these data could also have been contaminated an absolute magnitude of $\mathbf{- 0 . 1}$ has been adopted; this corresponds to a point barely above the main sequence at B9. Recently Garrison (1977) has expressed the opinion that this star is brighter than luminosity class V, possibly as bright as class III. This agrees quite well with the assigned absolute magnitude. A normal star of this spectral type is expected to have a mass of 3.5 to 4 Me (Allen 1973), and Iben (1967) indicates that such a star would be $\sim 1-1.5 \times 10^{8}$ years old. Since the post main sequence evolution of the companion carbon star is much faster than this we can assign it a main sequence mass of $\approx 4 \mathrm{MO}$; as it may subsequently have suffered mass loss, however, this is only an upper limit to its present mass. Since the velocities agree reasonably well and are significantly different from the expected galactic field velocity there is no reason to suppose that these stars do not form a physical pair. The carbon star absolute magnitude is
variable between -3.6 and $\mathbf{- 0 . 4}$. The period of this variability is approximately 390 days.
$-26^{\circ} 2983 \quad$ These stars with composite spectra have SZ Sgr been discussed by Richer (1972), and no further observations have been obtained. He derives absolute magnitudes of -2.4 and -1.4 , respectively, under the assumptions that the U magnitudes are influenced only by the early-type companion and that the reddening c an be obtained from the nearby field stars., As there is no reason to doubt the validity of these assumptions, these magnitudes will be adopted.

TO Tau This system was also discussed by Richer, who derived a carbon star absolute magnitude of $\mathbf{- 3 . 9}$ based on the same assumptions as above and using a spectral type for the companion of A2 III. One additional spectrum has been obtained of this star. Unfortunately it is rather weak and does not permit either verification or disproval of Richer's assigned luminosity class. The only features definitely present between H-gamma and $H-d e l t a$ are 4315 (Fe I), G-band (CH), 4260 (?) and 4226 (Ca I); all attributable to the carbon star. Even if the luminosity sensitive blend $4173-8$ is weakly present it would be more difficult to detect on the weak plate because of the higher dispersion used (128 vs $200 \mathrm{~A} / \mathrm{mm}$). It is interesting to note, however, that $S Z$ Sgr, wherein the carbon star is relatively brighter in the blue region than $T 0$ Tau, also shous fin Richer's fig. 1) a
line at the same position, indicating that this feature may be from the carbon star spectrum. If this is the case the companion's absolute magnitude must be decreased by 1.8 mag to +1.2. corresponding to a main sequence star. Because of the small separation (zero) there is little room for doubt as to the physical reality of this system, even though corroborating radial velocity data is lacking. Thus the absolute magnitude of To Tau is either $\mathbf{- 3 . 9}$ or $\mathbf{- 2 . 1}$.

W CMa Despite the large separation of the two stars (158") there are several reasons for supposing their physical proximity. Primary is the observation that \boldsymbol{m} CMa illuminates a reflection nebula which is probably part of the CMa OB1/CMa R1 complex fHerbst, Racine and Richer 1977): The spectral type of the companion is B2 V, given by several spectra and confirmed by the Q-value (-0.69) as well as the luminosity indicated by the H_{β} index, and not $B 5$ as given by Gordon (1968). The galactic field radial velocity at the distance of this star is $+37 \mathrm{~km} / \mathrm{s}$, significantly different from both the B-star itself (+19 km/s) and the c-star (+21 km/s) which agree quite well. Since the solar motion component in this direction contributes $418 \mathrm{~km} / \mathrm{s}$ to these velocities it is clear that the B-star motion differs greatly from the galactic field. Furthermore the declination components of the proper motions agree very well $1+0.023^{\prime \prime}$ and $+0.019^{\prime \prime} \pm 0.020^{\prime \prime}$ (st. devn)) although the right ascension components are somewhat discordant ($-0.036^{\prime \prime}$ and $+0.017^{\prime \prime} \pm 0.027^{\prime \prime}$) (SAO Catalog 1966). It should be noted, however, that the c-star velocity (though of
poor quality) does not differ greatly from the LSR velocity and hence is not inconsistent with a much fainter absolute magnitude.

SU And
The f0 spectral type is based on two medium well to weakly exposed spectra. As these make it rather difficult to determine the luminosity, class v has been assumed because of the width of the Balmer lines. Because of the excellent agreement of the velocities this system seems to be on a solid basis.

SV Cyg
The radial velocity data for these stars can't be used to verify the reality of this system as both of the velocities agree well with the galactic field velocity and the system is in a direction ($\ell=83^{\circ}$) Where the velocity is rather insensitive to distance. Since the derived c-star absolute magnitude is in the right ballpark, however, and there is no contradictory data this system cannot be ruled out as real.

MSB 64 The luminosity classification of the companion is based on the width of the Balmer lines; if the star is on the main sequence the absolute magnitude will be fainter by 0.4 magnitudes. The Victoria radial velocity agrees well with the infrared c-star velocity but not with Sanford's "c"-quality ($\pm 5 \mathrm{~km} / \mathrm{s}$ according to Sanford) blue velocity. Better radial velocities are obviously needed to settle this question.

HD 75021
MSB 31

Most of the data on these stars have been taken from Gordon (1968). Neu photometry of HD 75021 has qielded improved colours, and the spectral type is a compromise of Gordon, Eggen (1972) and a low dispersion spectrum. Proper motion data for this double agrees in declination $\left(-0.010^{\prime \prime}\right.$ and $-0.008^{\prime \prime} \pm 0.013$ (st. devn)) but not in right ascension ($-0.028^{\prime \prime}$ and $+0.002^{\prime \prime}$ $\pm 0.013)(S A O$ 1966) (Gordon says the radial velocities agree to within the measurement errors but the galactic velocity gradient in this direction is very small and hence this datum does not carry much positive weight. The magnitude data for the companion to MSB 31 is based on a photographic magnitude by Sanford (1940) of 11.0 and Gordon's spectral type. Although she cannot distinguish between luminosity classes III and V, the main sequence class has been assumed in Table 5. The small separation of this pair lends credibility to the reality of this system.
v Hya
VRI photometry of this double gives
(V-R, V-I) colours for the companion of (0.81, 1.56). consistent with a spectral type of K1 or K2 III, or KO III:, the spectral type given by Gordon (1968). If this system is real, v fya is both the reddest and intrinsically brightest star investigated here.

RY Mon This star lacks sufficient data to be either accepted or rejected as a real system. The photometry is consistent with an unreddened F6 V star, considerably later than is indicated by the available spectrum, which has been given the greater weight. Should this system be real the photometric spectral type would set a faint limit to the C -star absolute magnitude of $\mathbf{- 0 . 9}$.

RZ Peg
This star also lacks data. Here, however, at least the spectral type is
not open to question as both the photometry and the spectrum agree. A radial velocity for the companion would be most interesting here as the suggested C-star absolute magnitude would be among the faintest known for N-stars if the system is real. It is interesting to note that the carbon star shows emission in the infrared Ca II triplet (Richer 1971).

UV Aq 1
This double lacks both a radial velocity and reliable spectral classification. The spectral type is based on a rather weak spectrum; hence the uncertain luminosity class. . The photometry is consistent with a K2 giant and supergiant but only marginally acceptable as a main sequence star and then as a late K dwarf. This double is best left until more data is available.

HD 34467
This double is severely lacking in data. The obv photometry is consistent with
spectral types $B 9 V$, $A 8 V$ and $g F$, while the H_{β} value is compatiblewith the $B 9 V$ and $A 8 V$ types only. If the A8 V type is
assumed fhis requires the least reddening and sets the faint limit to the C-star) the carbon star would have an absolute magnitude of -1.6 if the system is real.

MSB 41
The c-star velocity does not agree well with either of the companions but its poor quality makes this of little significance.
X Sge The photometry is indicative of a slightly later spectral type for this companion than is given by the spectrum. The weakness of the Ca I 4226 line and the G-band is strongly supportive of the earlier type however; perhaps the star is metal poor. Sanford's C-star velocity is confirmed by the presently measured infrared velocity, while the companion's velocity seems to be significantly.. different although this is based on only three wide lines and thus is of low weight. This system does not seem to be real.

HD 209596
MSB 73

Abstract

The c-star absolute magnitudes for these doubles are based on Gordon's (1968) spectral types for the companions and

 the present improved photometry. The velocity for HD $209596^{\prime \prime}$ s companion is based on but four broad lines on a weak plate; these do agree fairly yell however.S Cyg
This star is a member of the triple star ADS 13385. The $K-s t a r$ is the $A-c o m-$ ponent while the S-star is a binary with $0.6^{\prime \prime}$ separation (BC). No data is available for the C - component because of its close proximity and the faintness of the system (BC) as a whole.

T Dra	The large velocity differences between
U Cam	the carbon stars and the suspected com-
UCyg	panions rule out these doubles as real
RS Cyg	systems. According to the A.A.V.S. 0.
	data the visual magnitude variation of

RS Cyg has been steadily decreasing from at least the early 60's. The amplitude has changed from about 1.4 mag to the present 0.5 magnitude.

S Sct
This star is in a very rich region of the Milky Way and has several fairly close companions. The photometry reported here refers to the brightest of these. Because of the crowded field this star is not worth investigating further.

Discussion

The relation between the absolute visual magnitudes of the C stars and their companions is shown in Figure 2. The faint limits shown in this figure are at least partially affected by observational selection. Nonetheless, there seems to be some indication of a trend in the sense that the early A and B type companions are associated with the brightest C stars, and the higher weighted late-type giants are associated with fainter C stars. Use of the bolometric absolute magnitudes (see below), instead of the visual magnitudes, still shows this trend (Figure 3): carbon stars with B type companions tend to be more luminous than those with A and K type companions. Since the early-type stars are expected to be younger (on the average) and their evolved companions therefore more massive (initially at least) this may be taken as a mild indication for a mass - luminosity relation for carbon stars.

If the stars for which only Gordon's (1968) absolute magnitudes are available as vell as the R stars are deleted, and if we apply the weights indicated in the last column of Tables 5 and 6 the group properties can be derived. The average absolute visual magnitude of the remaining 13 N stars is -2.3 ± 1.1 (st. devn). Since the average intrinsic ($B-V$) colour of these stars is +3.0 (cf. the "Statistical Studies" section), and there is nothing obviously peculiar about them other than having companions, they can be taken to be a typical sample of N stars.

Since most of the energy from carbon stars is radiated in
the infrared, their visual absolute magnitudes are not as physically meaningful as their bolometric absolute magnitudes. To properly calculate the bolcmetric corrections, however, one needs photometric information extending far into the infrared, and such data exist for but a few dozen stars Mendoza and Johnson 1965) : Fortunately, their data show that there exists a good correlation between the calculated bolometric corrections and the $V-R$ colour index for both R and N stars. These relations are shown in Pigure 4. Since one would expect the stars in Pigure 4 to be reddened by different amounts, it is surprising at first that the correlation is as tight as is indicated. The effect of interstellar reddening is, however, not only to make the observed colours redder, but also to increase the ratio of the nonvisual to visual flux (since most of the flux is in the infrared), thus causing an overestimate of the bolometric corrections based on the reddened colours. Hence reddening will cause a star to move more or less along the lines of Figure 4, rather than across them, retaining the tightness of the relation.

To derive bolometric corrections the observed (V-R) colours, where available (Table 9; Mendoza and Johnson 1965) were corrected for the reddening shown by the companions according to $E(V-R)=0.75 E(B-V)$. The bolometric corrections were then read off from Figure 4. These are expected, in most cases, to be good to a few tenths of a magnitude. The resulting bolometric absolute magnitudes have been plotted in figure 5 versus the deduced intrinsic (V-R) colours. For reference the
normal giant and supergiant branches from MO to M6 are also included (Blaauk 1963; Johnson 1966). It is thus apparent that the late-type carbon stars are not confined to a narrow luminosity range, but in fact populate a wide band fabout 4 magnitudes vide) corresponding to the region betueen the normal giant branch and the supergiants.

Pigure 2. $\quad \mathrm{V} \nabla$ (Carbon Star) $\forall S$ (Conpanion)

Pigure 3. M(bol) (Carbon star) Ys $H(b o l)$ (Companion)

Figure 4. Bolometric Correction vs $V-R$

Figure 5. $\mathrm{H}(\mathrm{bol})$ ZS (V-R)

CARBON ISOTOPE ABUNDANCE RATIOS

Carbon exists in nature in only two stable isotopic forms (viz. ${ }^{22} \mathrm{C}$ 6. ${ }^{13} \mathrm{C}$). The terrestrial ${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}$ ratio is approximately 90 , while reported results for carbon stars range from a low of 2 to highs of greater than 100. For normal laterype stars (mostly K giants) ratios have recently been reported primarily in the 10 to 30 range (Tomkin, Luck and Lambert 1976: Dearborn and Eggleton 1976).

A knowledge of the $12 \mathrm{C} /{ }^{13} \mathrm{C}$ ratios in carbon stars is important because of the constraints it places on the models of C stars, which should tell us something about their evolutionary state, nucleosynthesis reactions (to produce the isotopes) and structure (convection zones to transport them to the surface).

In carbon stars we can observe carbon primarily in three forms: the molecules $C 0, C N$ and C_{2}; the observational problems involved in determining the abundance ratios differ depending on which molecule and spectral region is to be studied. The co vibration-rotation bands are all in the infrared (from 5μ to 1.6μ for $\Delta v=1$ and 3. resp.) and thus are not accessible using conventional methods; the $C N$ and C_{2} bands in the blue and visual regions are all very crowded, resulting in great problems with line blending: The Red system of $C N$ in the near infrared avoids both these problems: the spectral region is readily available using both photographic N-type emulsions and the newer solid state detectors, and the rotational band structure is suffi-
ciently open that individual rotational lines are frequently resolved，even at moderate dispersions．

Past values of the ${ }^{12 C / 13 C}$ ratio in carbon stars have been derived using three main techniques．Most quoted values have been obtained using some variant of the standard curve－of－growth method．Line blending is often severe，resulting in relatively feu usable lines；in the extreme，$⿴ 囗 ⿱ 一 一 廾 刂 l e r ~(1966) ~ b a s e d ~ h i s ~$ results on only 2 lines．Even more serious is the question of locating the continuum，in a strong－CN star like Y CVn the spectrum hardly ever approaches anything that can be called a continuum level．In their analysis of $u 0$ aur querci and Querci（1970）determined their continuum through an iterative procedure based on the temperature and lines that should be on the flat part of the curve of growth．The iso－intensity method of Fujita（1970）avcids the problem of the continum by using the central depths of the lines and a pseudo－curve－of－grouth analysis．This method is，however，very sensitive to the excitation temperature adopted．The third method（Climenhaga 1960）uses calculated synthetic spectra which are then matched to the observed spectrum．His synthetic spectra were calculated using the empirical Minnaert formula and the matching was done visually．

The present investigation is a greatly improved version of Climenhaga＇s basic approach．Since it is well known that carbon stars are at least giants and probably somewhat brighter［see Part I of this thesis］their atmospheres must be quite extended，
and one would not expect methods which are based on a uniform slab model of that atmosphere to necessarily produce reliable results. Thus I decided to calculate synthetic spectra by directly integrating the flux through an appropriate model atmosphere. It would also be desirable to have an analysis technique that was independent of the prejudices of the observer. Ideally such a technique should make use of the entire information content of the spectram, rather: than just certain selected pieces, it should also be relatively insensitive to those spectral features that one is not interested in (e.g. telluric lines). For spectra such as these of molecular bands in carbon stars, where the vast majority of spectral features are in fact due to the molecule(s) being studied, I believe that the method based on the coherence spectrum (to be described later) satisfies the above conditions. It also has the further advantage of being...insensitive to the assumed continuum level.

The only model atmospheres appropriate to the cool carbon stars investigated here that I have been able to obtain are those of Johnson (1974). These yere calculated on a loose grid of parameters to explore the effects of temperature, surface gravity, composition and opacities. The model parameters are outlined in Table 11: most of the models are arranged in sequences with one or two of the parameters variable. The number of possibly useful models is 17. The models were calculated under the usual assumptions of a plane parallel atmosphere, LTE and using straight mean opacities. In spite of

table 11. MODEL ATMOSPHERE PARAMETERS
these limitations they are still better than the uniform slab model.

This part of the thesis opens with a brief description of the observational material used here. This is folloved by a description of how to calculate synthetic stellar spectra, both a theoretical summary and the practical details appropriate to molecular band spectra. The analysis technique is then presented, along with some comments on its advantages and a feu tests illustrating its applicability. Next the results of the carbon isotope ratio analysis are shown, including remarks on the microturbulence and carbon content of the carbon stars, as well as a search for the 14 C and is^{N} isotopes. A resume of the pros and cons of the analysis technique concludes this part.

The Observational Material

The basic observational material for this part of the study consists of near infrared photographic spectra of five carbon stars (Table 12). The spectra were obtained by Dr. H. B. Richer at the $122-\mathrm{cm}$ (48 inch) telescope of the Dominion Astrophysical Observatory in victoria during the period Nov. 21, 1970 to Dec. 18. 1970. The plates are at a dispersion of $13 \mathrm{~A} / \mathrm{mm}$. on IN hypersensitized emulsions covering the wavelength region 7500 88.00 A.

The region of the spectra from 7800 A to 8300 a was digitized with the department's automated Joyce-Loebl Microdensitometer and reduced to an intensity versus wavength array using computer programs developed by H. Fast (1973), as follows. Digitizing scans were made along the stellar spectrum as well as across the calibration strips and the spectrum itself at several different wavelengths. Grain noise was then reduced by the application of a digital filter to remove spatial frequencies greater than $1 / 3$ of the Nyquist frequency. Next an equal-wave-length-interval array of log (intensity) was generated; the wavelength scale was defined using "unblended" stellar (CN) lines of known wavelength uhile the intensity scale was determined from interpolation between the several calibration curves. Note that the photographic density of each spectrum point was first corrected to compensate for the non-uniform exposure (streaks) caused by the image slicer of the spectrograph. Finally the highest points were selected as representing the continuum and

TABLE 12. GIGH DISPERSION CARBON STAR SPECTRA
the array transformed to a normalized intensity array. Indicative of the extremely heavy line blanketing is the fact that typically there were no more than a half dozen such "continuum" peaks throughout the entire 400 a region of interest. This relatively poorly determined continuum level has no effect on the subsequent analysis however; this will be dealt with more fully in a later section.

The one additional parameter to be derived from the spectra was the instrumental broadening; it was assumed that the instrumental profile was a Gaussian with a half-width to be determined. To this end the Argon comparison arc lines of a sample plate were digitized and converted to intensity. Not all the lines could be used, however, as the arc lines were more heavily exposed near the inside edge and were frequently saturated there. This resulted in an under-estimation of the true line strength and thus an overestimation of the width at the deduced half-intensity level. Using nineteen lines which were definitely not saturated resulted in an average half-width of 0.56 A ± 0.09 (st. devn).

SYRTHETIC SPECTRA - THEORY

Following Mihalas (1970) the flux radiating from a stellar atmosphere is given by

$$
\begin{equation*}
F_{\nu}=2 \int_{0}^{\infty} S_{\nu}\left(\tau_{2}\right) E_{2}\left(\tau_{2}\right) d \tau_{2} \tag{4}
\end{equation*}
$$

where F_{ν} is the flux per unit frequency interval, E_{2} is the second exponential integral defined by

$$
\begin{equation*}
E_{2}(x)=\int_{1}^{\infty} \exp (-x t) / t^{2} d t \tag{5}
\end{equation*}
$$

and S_{ν} is the source function, here, for pure absorption lines, approximated ty the Planck black body function

$$
\begin{equation*}
B_{\nu}(T)=\left[2 h v^{3} / c^{2}\right][1 /(\exp (h v / k T)-1)] \tag{6}
\end{equation*}
$$

to conform to the LTE assumption of the model atmospheres.

The optical depth scale is given by

$$
\begin{equation*}
\tau_{\nu}=\int_{0}^{\tau_{\nu}}\left[k(\operatorname{con} t)+1_{\nu}\right] / k(\operatorname{std}) d \tau(\operatorname{std}) \tag{7}
\end{equation*}
$$

where $\tau(s t d)$ is the standard optical depth as given by the model atmosphere, k (std) is the model opacity at a standard wavelength, k (cont) is the continuous opacity and l_{ν} is the opacity contribution of the lines

$$
\begin{equation*}
1_{\nu}=\sum_{s p} \alpha_{\nu}(s p) \quad N(s p) \tag{8}
\end{equation*}
$$

for all species (sp). N is the number density of the appropriate species and α_{2} is the absorption cross-section of one atom (molecule) of that species at frequency ν under the
conditions at that point in the atmosphere.

The absorption cross-section per atom (molecule) at frequency u is

$$
\begin{equation*}
\alpha_{2}=\left(\pi e^{2} / \mathbb{m C}\right) f \phi_{2}[n(i) / n(T)] \tag{9}
\end{equation*}
$$

where f is the oscillator strength of the appropriate transition, ϕ_{2} is the absorption line profile normalized to unit area, and $n(i) / n(T)$ is the fraction of the total number of atoms (molecules) that are in the lower state of the transition. For a Gaussian line profile

$$
\begin{equation*}
\phi_{\nu}=\left(1 / \sqrt{\pi} \Delta \nu_{D}\right) \exp \left\{-\left[\left(\nu-\nu_{0}\right) / \Delta \nu_{D}\right]^{2}\right\} \tag{10}
\end{equation*}
$$

where $\Delta \nu_{D}$ is the line width and J_{0} is the central frequency. The line width $\Delta \nu_{D}$ is the Doppler width given by

$$
\begin{equation*}
\Delta \nu_{D}=\xi_{0} \nu_{i j} / c, \quad \xi_{0}=\left\{2 \mathrm{kT} / \mathbb{M}+\xi_{t} 2\right\}^{1 / 2} \tag{11}
\end{equation*}
$$

For a single rotational line of a diatomic molecule the oscillator strength is given by (Carbon 1973)
where: $f_{o 0}=(0,0)$-band oscillator strength,

$$
\begin{aligned}
& \tilde{\nu}_{i j}, \tilde{\nu}_{\infty 0}=\text { wavenumbers of transition }(i, j) \text { and the }(0,0) \text { band } \\
& \\
& \quad \text { origin, } \\
& q_{v^{\prime} v^{\prime \prime}}=\text { Franck-Condon factor for the }\left(v^{\prime}, v^{\prime \prime}\right) \text {-band, } \\
& \sum\left|R_{e}\left(\overline{(}_{v^{\prime} v^{\prime}}\right)\right|^{2}=\text { sum of squares of the electronic transition } \\
& \text { moments, }
\end{aligned}
$$

$(2 S+1)=$ multiplicity of the electronic transition, $\left(2-\delta_{0, \Lambda^{\prime \prime}}\right)=1$ for \sum states, $=2$ for any other lower state, $\left(2 J^{\eta}+1\right)=$ rotational degeneracy of the lower state, $S(H L)=$ Honl-London factor, normalized to

$$
\begin{equation*}
\sum_{J^{\prime}} S(H L) \quad\left(J^{\prime \prime} \rightarrow J^{\prime}\right)=2 J^{n+1} \tag{13}
\end{equation*}
$$

The Honl-London factor is a measure of the line strength. Extensive formulae for transitions between various types of electronic states are given by Schadee (1964). It should be noted, however, that his formulae for $2 \pi-2 \sum$ transitions (the CN red system) must be multiplied by 2 to satisfy the above normalization criterion. (N.B. In the notation used here a single prime refers to the upper level of a transition, a double prime refers to the lower level.)

The fractional number of molecules in the lower state of transition (ij) is given by (Tatum 1967)

$$
\begin{equation*}
\frac{n(i)}{n(T)}=\frac{2 \phi\left(2 J^{\prime \prime}+1\right) \exp \left\{-[h c / k T]\left[T(e l)+G\left(V^{\prime \prime}\right)+P\left(\mathrm{~J}^{\prime \prime}\right)\right]\right\}}{Q(\mathrm{el}) Q(\mathrm{vib}) Q(\text { rot })} \tag{14}
\end{equation*}
$$

This equation applies to kund's coupling case (b) which is appropriate here since both the $C N$ and C_{2} transitions of interest come from a lower \sum-state. In this equation $\phi=1 / 2$ for a heteronuclear molecule, thereas for a homonuclear molecule ϕ is a function of the nuclear spin; the energy of the lower level [$\left.T(e l)+G\left(V^{\prime \prime}\right)+F\left(J^{\prime \prime}\right)\right]$ is separated into three terms representing the electronic term value, the vibrational energy and the rotational energy; the denominator $[Q(T)]$ is the total
internal partition function, again separated into electronic, vibrational and rotational contributions. These are given by

$$
\begin{equation*}
Q(e 1)=\sum_{\text {all states }} g(e l) \exp \{-(h c / k T) T(e l)\} \tag{15}
\end{equation*}
$$

where $g(e l)$ is the degeneracy of the electronic state

$$
\begin{gather*}
g(e l)=\left(2-\delta_{0, \Lambda}\right)(2 S+1), \tag{16}\\
Q(v i b)=\sum_{V=0}^{v_{\max }} \exp \{-(h c / k T) G(v)\}, \tag{17}
\end{gather*}
$$

and

$$
\begin{equation*}
Q(\text { rot })=k T / h c B\left(v^{\prime \prime}\right) . \tag{18}
\end{equation*}
$$

Collecting these terms and explicitly putting in a Gaussian line profile we arrive at the final expression

$$
\begin{align*}
& \text { - } \frac{\exp \left[-(h c / k T) X_{i}\right]}{Q(T) \Delta \nu_{D}} \cdot \exp \left[-\left(\nu-\nu_{i j}\right)^{\left.2 / \Delta \nu_{D}{ }^{2}\right]}\right. \tag{19}
\end{align*}
$$

where the energy of the lower level has now been denoted by χ_{i}. The first group of terms is a constant for each individual line, the second group contains terms depending on the atmospheric level (temperature) whereas the last term depends primarily on the frequency.

SYNTHETIC SPECTRA - PRACTICE
 Molecular Parameters

The relevant molecular data for $C N$ and C_{2} have been summarized in Tables 13 and 14 . The energy levels (X_{i}) and frequencies $\left(\psi_{i j}\right)$ of the individual rotational lines have been computed for $C N$ from the formulae of Fay, Marenin and van Citters (1971) and for C_{2} from Marenin and Johnson (1970). For the bands used here the errors in these calculations are usually
 up to N values of at least 60 , the maximum used here; these equal 0.06 and 0.13 A. Thus one would expect the errors for the other isotopic bands to be less than 0.25 A , since the atomic masses are approximately equally accurate. To ensure that the wavelengths of the lines are as accurate as possible the computed wavelengths have been replaced by actual observed wavelengths werever these are available. Observed wavelengths for the lines from the $(2,0),(3,1),(7,4)$ and $(8,5)$ bands of the Red system of $12 \mathrm{Cl}^{14} \mathrm{~N}$ have been taken from the extensive tabulation of Davis and Phillips (1963); a few of the branches (P_{12} and R_{21} in particular) have been extrapolated somewhat past the tabular cutoffs, with the aid of the computed wavelengths, as the observed cutoffs were caused by the relatively cooler source temperatures they used. Observed wavelengths for the corresponding bands of ${ }^{13} C^{14 N}$ are from Wyller (1966), and for the Phillips system of 12C12C from Ballik and Ramsay (1963). In a very few instances missing rotational lines have been interpolated; in general missing lines have not been added, since it
is assumed that the fact that they are missing indicates that no line was in fact observed at the expected wavelength, probably caused by perturbations of the energy levels.

Note that the above lines are the only lines included in the synthetic spectra. This specifically excludes all atomic lines, lines of ${ }^{12} C^{13} \mathrm{C}$, and all telluric lines, even though the latter may be relatively numerous in some portions of the spectra.

The partition functions were calculated, as a function of temperature, for $C N$ and C_{2} using the energy levels in Tables 15A and 15B, and the above calculated vibrational [G(v)] and rotational [B(v")] parameters of the lower level for each molecule.

Schematic layouts of the rotational structure of the appropriate states of $C N$ and C_{2} are presented in Figures 6 and 7. with the transitions giving rise to the first few rotational lines of each branch labelled. Note that the drawn fine structure separations of the levels are not to scale. The standard nomenclature is used to label the levels according to the ir parity (+ , -) sfmmetry (s, a), rotational quantum number (N) and angular momentum.(J) (for the C_{2} singlet states $J=N$). The various branches are known as P, Q or R branches depending on Whether $\Delta J=-1,0$ or +1 , respectively, and the individual rotational lines are latelled by the N value of their lower levels. The $C N$ bands consist of 6 primary branches ($\Delta N=\Delta J$) and 6 satellite branches $(\Delta N \neq \Delta J)$ with 4 of the satellite branches being internal (overlapping primary branches) and 2 (P_{12} and
R_{12}) external; the intensities of most of the satellite lines are much less than the primary lines. Because ${ }^{12 C 12 C}$ is a homonuclear molecule with zero nuclear spin the anti-symmetric levels are forbidden, hence transitions can arise only from alternate levels.

```
\(f_{00}=2.19 \times 10^{-3}\)
\(\tilde{\mathcal{L}}_{00}=9117.37 \mathrm{~cm}-1\)
\(q_{00}=0.50015\)
\(q_{20}=0.12685\)
    4
\(q_{31}=0.19400\)
\(q_{74}=0.12095\)
\(9_{85}=0.08440\)
\(\phi=1 / 2\) for all levels
Tatum 1967
\(\sum\left|R_{e}\right|^{2}=\) constant \(\quad\) Carbon 1973
\(B(v=0)=1.890658 \mathrm{~cm}^{-1}\)
\((2 S+1)=2\)
\(\left(2-\delta_{0, \Lambda^{\prime \prime}}\right)=1\)
```

TABLE 13. SUMMARY OF RELEVANT MOLECULAR DATA FOR THE RED SYSTEM OF CN ($\left.{ }^{2} T_{i n v}-X^{2} \Sigma_{g}{ }^{+}\right)$

```
\(f_{00}=3.76 \times 10^{-3}\)
Cooper and Nicholls 1975
\(\tilde{U}_{00}=8268.33 \mathrm{~cm}^{-1}\)
\(q_{00}=0.4157 \quad\) Spindler 1965
\(q_{30}=0.0589\)
*
\(\mathrm{q}_{41}=0.1216\)
\(q_{52}=0.1429 \quad\) :
\(q_{51}=0.0602\)
\(q_{62}=0.0962 \quad\) "
\(\mathrm{q}_{73}=0.1135\)
\(q_{84}=0.1085 \quad\) "
\(\phi=1\) for s levels Tatum 1967
\(\phi=0\) for a levels
\(\sum\left|R_{e}\right|^{2}=0.36\) for \(\triangle v=0\)
    \(=0.42 \quad \Delta v=3\)
    \(=0.44 \quad \Delta \nabla=4\)
                                    - " -
\(B(v=2)=1.774422\)
\((2 S+1)=1\)
\(\left(2-\delta_{0, \Lambda^{\prime \prime}}\right)=1\)
Cooper and Nicholls 1975
Spindler 1965
```

$*$

4
"
:
"
"
"

Tatum 1967

Cooper and Nicholls 1975 (extrapolation)

- " -

```
B( \(v=2)=1.774422\)
\((2 S+1)=1\)
\(\left(2-\delta_{0,1^{\prime \prime}}\right)=1\)
```

TABLE 14. SUMMARY OF RELEVANT MOLECULAR DATA FOR THE PHILLIPS SYSTEM OF $C_{2}\left(A^{1} \pi_{u}-X^{1} \sum_{q}^{+}\right.$)

TABLE 15A., KNOWN ENERGY LEVELS OF THE CN MOL ECULE

TABLE 15B. KNOUN ENERGY LEVELS OF THE C_{2} MOLECULE

Figure 6b. Rotational Energy Level Structure for the Red System of CN (upper levels)

Pigure 7. Rotational Energy Level Structure for the Phillips System of C_{2}

Molecular Equilibrium Calculation

In order to calculate the line and continuous opacities throughout the model atmosphere the densities of $C N, C_{2}, \quad H$ and H_{2} are required in addition to the electron density, which is given directly in the model. To this end the equations of molecular equilibrium uere solved for all the same species used in the models by Jobnson. The computer program used for the solution basically follows the procedure used by vardya (1965), although it has been modified to force the total pressure to equal the known pressure of the model. The basic program was kindly supplied by Dr.J. R. Auman.

The abundances used were the same as those used by Johnson; i.e. for H. $H e, C, N$ and O as specified for each model and the other elements from the solar composition as deduced by Lambert and his co-workers fambert 1968; Lambert and Warner 1968a, b, c; Warner 1968; Lambert and Mallia 1968). Dissociation constants were taken from polynomial fits to the data from the JANAF thermochemical tables (1960) or from the coefficients of Vardya (1965) or Morris and Wyller (1967), again as specified by Johnson.

Since the Janaf dissociation constants are of a different form from those required by Vardya's (1965) procedure it will be useful to consider the necessary conversion technique. The JANAF tables refer to equilibria of the kind

$$
\begin{equation*}
\mathrm{n}_{1} \mathrm{~A}+\mathrm{n}_{2} \mathrm{~B} \rightleftharpoons \mathrm{n}_{3} \mathrm{AB} \tag{20}
\end{equation*}
$$

where A and B represent the reactants in their reference states, $A B$ represents the product and n_{1}, n_{2} and n_{3} are the number of molecules of each kind. The tabulated equilibrium constants (K') are then defined as

$$
\begin{equation*}
K^{\prime}(A B)=\frac{[A B]^{n_{3}}}{[A]^{n_{1}}[B]^{n_{2}}} \tag{21}
\end{equation*}
$$

where $[A] \equiv$ the partial pressure of reactant A in atmospheres. Note that the units of the K ' s are defined by the number of reactant molecules for each particular reaction and are of the form (atm ${ }^{n_{3}-n_{2}-n_{1}}$).

As an example consider the specific case of the molecule NH:

$$
\begin{equation*}
1 / 2 \mathrm{~N}_{2}+1 / 2 \mathrm{H}_{2} \rightleftharpoons 1 \mathrm{NH} \tag{22}
\end{equation*}
$$

since the reference states of N and H are N_{2} and H_{2}. Thus

$$
\begin{equation*}
K^{\prime}(N H)=\frac{[N H]}{\left[\mathrm{H}_{2}\right]^{1 / 2}\left[\mathrm{~N}_{2}\right]^{2 / 2}} \tag{23}
\end{equation*}
$$

also, e.g. $K^{\prime}(H)=[H] /\left[H_{2}\right]^{2 / 2}$ for $1 / 2 H_{2} \rightleftharpoons 1 H$. The type of equilibrium constant (K) used by Vardya is defined as

$$
\begin{equation*}
K(A B)=p(A B) / p(A) p(B) \tag{24}
\end{equation*}
$$

where $p(A)=$ the partial pressure of reactant A in dynes $c \mathbb{m}^{\mathbf{- 2}}$.

Hence we derive

$$
\begin{equation*}
K(N H)=\frac{[N H]}{[N][H]}=\frac{K^{\prime}(N H)}{K^{\prime}(N) K^{\prime}(H)} \tag{25}
\end{equation*}
$$

Finally, to convert to cgs units divide by (in this case) $1.013250 \times 10^{6} \mathrm{dy} \mathrm{cq} \mathrm{m}^{-2} /$ ata.

To check that the calculated number density distribution of CN (in particular) corresponded to that of the actual model atmospheres two tests vere performed. Using $C N$ opacities from Johnson, Marenin and Price (1972), hydrogenic (H, H^{-}, H_{2}) continuous opacity as given in "Theory and Observation of Normal Stellar Atmospheres" (1969, ed. Gingerich), and MutschlecnerKeller (1970, 1972) atomic line blanketing as modified by Johnson (1974) the output fluxes were computed as a function of frequency for several different models; these flux curves compared very well with Johnson's calculated fluxes. Secondy the $C N$ density distribution was calculated from the tabulated values of the volume absorption coefficient at 1μ and the (interpolated) value of the $C N$ mass absorption coefficient at 1μ (Johnson, Marenin and Price 1972). For this purpose it was assumed that the only opacity sources were $C N$ and the hydrogenic species; although the models also incorporate co and $\mathrm{H}_{2} \mathrm{O}$ opacity this should be a good approximation for the 1μ wavelength used here. Atomic line blanketing was not included as it is not clear how. Jchnson calculated it at the 1μ standard wavelength, Where he has a discontinuity in applyiag the blanketing. The resulting $C N$ density was then compared with that from the
equilibrium calculations. The general agreement is quite good over the entire depth of the atmospheres, a range of several orders of magnitude, although in places the disagreement can rise to as much as a factor of 2.5. In view of the exceptionally large uncertainty in the dissociation energy of the $C N$ molecule this is still thought to be quite acceptable agreement (Johnson 1975).

Spectrum Parameters

The main factor influencing the appearance of the squthetic spectrum is the amount of $C N$ in the atmosphere. . Since the available set of model atmospheres was calculated on a rather coarse grid of parameters [C/O. T(eff). C/H, $\log g$] there is need for a finer gradation in the amount of $C N$ to permit a better match to the observed spectrum. It was decided to do this by altering the metal [$C, N, 0]$ abundance by some factor [X(CNO)], thus providing for interpolation in model sequences with varying C / H ratio while keeping the $c / 0$ ratio the same. Since most of the C and 0 will form $C O$ and only the leftover C can be used for $C N$ and C_{2} the $C N$ abundance should scale as $X(C N O){ }^{3 / 2}$ and C_{2} as $X(C N O)^{2}$; that this is in fact the case, to a good approximation, has been verified by recalculating the molecular equilibrium using the scaled abundances. Furthermore, spectra of neighbouring models along a C/H-varying sequence can be reproduced from each other quite well by this method. Needless to say, by tampering in this way we no longer have a proper model atmosphere, and that the more we have to change the $X(C N O)$ factor the matchup becomes less satisfactory. Since we are not primarily interested in the structure of the atmosphere. homever, but rather in the resulting spectram, I feel that this is an acceptable procedure and will produce quite satisfactory interpolations as long as $X(C N O)$ is ${ }^{\text {not }}$ not far" from unity.

Real spectral lines have voigt profiles rather than Gaussian. This has been handled by using a Gaussian profile

$$
\begin{equation*}
\phi_{2}=-\frac{1}{\sqrt{\pi} \Delta \nu_{D}} \exp \left\{-\left(\frac{\nu-\nu_{0}}{\Delta \nu_{D}}\right)^{2}\right\} \tag{26}
\end{equation*}
$$

in the line core, and

$$
\begin{equation*}
\phi_{2}=-\frac{1}{\sqrt{\pi}} \frac{a}{\Delta \nu_{D}} \sqrt{\sqrt{\pi}}\left(\nu-\nu_{0}\right)^{2} \tag{27}
\end{equation*}
$$

in the wings. This is a good approximation for small values of $\underline{\text { a }}$ -

Thus the synthetic spectrum depends on five parameters. These are:

1. the model atmosphere used,
2. the CNO scaling factor [X (CNO)].
3. the microturbulence $\left[\xi_{t}\right]$,
4. the line profile wing strength [a],
5. the isotope abundance ratios.

Computational Frocedure

The computer program used to calculate the emergent flux consists of a short main program and a few opacity subroutines written in Fortran, plus a longer section to handle the actual integration through the atmosphere and a few subroutines to do simple interpolations written in. IBM Assembly Language. By using Assembly Language for the more intensive part of the program the execution time has been reduced by a factor of approximately 2.5.

Following is a schematized description of the program layout.

1. Partition functions [Q(T)] and exponential integrals [$\left.E_{2}\left(\tau_{s t d}\right)\right]$ vere calculated separately and explicitly put into the program.
2. Read in spectrum parameters: wavelength limits, microturbulence $\left(\xi_{t}\right)$, $X(C N O)$ factor, line profile parameter (a), isotopic abundance ratios.
3. Calculate the wavelength interval $\left[\Delta \lambda_{i}\right]$ about the $c u r r e n t$ wavelength within which all spectral lines must be used: $\Delta \lambda_{i}=f\left(\xi_{t}, a\right)$.
4. For each level of the atmosphere:
a. Read in model parameters: $\tau(s t d), T, n(e), K, \rho, \mathbb{N}(H)$, $N\left(\mathrm{H}_{2}\right), N(C N), N\left(C_{2}\right)$. (Note that the N's have been calculated by the molecular equilibrium program.)
b. Calculate: $B(T), k(c o n t)\left[N(H), N\left(H_{2}\right), n(e)\right]$, $k(s t d)[=k, \rho]$
c. Calculate normalization factors for the various isotopes of $C N$ and for C_{2}, scaled by the $X(C N O)$ factor $\left[=\right.$ const $\left.\times N(i s o t o p e) / \Delta \lambda_{D} \bullet Q\right]$.
5. Integrate continuous opacity - gives continuumflux at ends of region to be synthesized.
6. a. Increment wavelength counter
b. Read in more spectral line parameters until we have all lines within $\Delta \lambda_{i}$ of the current wavelength
7. For each atmospheric level:
a. Sum opacity contributions of all lines (within $\Delta \lambda_{i}$) using the appropriate profile and number density
b. Add on continuous opacity
c. Integrate - gives output flux
d. Normalize to continuum
8. Go to 6.

When finished - broaden output spectrum by convolving with a Gaussian instrumental profile. (This is a separate program.)

The integration routine:

1. Normalize given k values: $k(\nu$, level) $/ k(1 \mu$, std, level) . 2. Fit a (smooth) spline curve to the points.
2. Integrate along curve: $->\tau(\nu$, level).
3. Calculate: $B_{\nu}[T(l e v e l)]$ - $E_{2}[\tau(\nu$, level $)]$, (E_{2} values interpolated in the precalculated table.)
4. Integrate by summation under the $B e_{2}$ curve: $-->$ Flux.

ANALYSIS TECHNIQUE

The method of analysis selected to compare the observed stellar spectra with the calculated synthetic spectra makes use of the coherence spectrum of the two traces to be compared. This method has been borrowed from the field of time series analysis and is there used to detect similarities between two time series. It is especially suitable when both time series contain noise: since neither the observed stellar spectrum (with its photographic noise) nor the synthetic spectrum (lacking atomic and telluric lines) is in fact an accurate representation of the actual stellar spectrum this situation certainly exists here. [Note that the word "spectrum" will be used with two different meanings: 1) the original astronomical meaning of an intensity vs wavelength representation, and 2) the time series meaning of (scmething) vs frequency representation. An astronomical spectrum is identical with a time series. The particular meaning intended must be found from the context. J

The technique involves calculating the auto- and cross-covariance functions of the two input time series, and their power spectra by Fourier-transforming these into the frequency domain and then normalizing the cross-spectrum by the auto-spectra, resulting in the coherence spectrum. The coherence plays the role of a correlation coefficient at each frequency. As a final step, to reduce the information in the entire coherence spectrum to a manageable quantity, the average coherence was calculated for all frequencies at which the
auto-power spectral density of the stellar spectrum was above some cutoff fraction of the peak pouer. This thus results in one number characterizing the goodness of fit between the two inputs. I shall call this number the coherency.

Computational Details

Let the two input time series be denoted by $x^{\prime}(t)$ and $y^{\prime}(t)$. $t=1, N$. The data are first reduced to give a zero mean value and detrended by subtracting a straight line fitted to the points. Next the time series are tapered by multiplying 10% from each end by a cosine-squared bell function. The series are then detrended again, extended with zeroes to give a length M, where M is a power of 2 (for reasons of computational economy), and finally extended again to a length of 2 M (so as to eliminate aliasing in the power spectra), giving x and Y (see Figure B).

In the next step we calculate auto- and cross-covariance functions R_{X}, R_{Y} and $R_{X Y}$. These are defined as

$$
\begin{equation*}
R_{x}(r)=\frac{1}{M} \sum_{n=1}^{M-r} x(n) x(n+r) \quad r=0, M-1 \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{X Y}(r)=\frac{1}{M} \sum_{n=1}^{M-r} x(n) \quad Y(n+r) \quad r=0, M-1 \tag{29}
\end{equation*}
$$

and are most economically computed by the roundabout method of Fourier transforming the time series via the fast-Fourier-transform (FFT) technique to give $X(k)$ and $Y(k)$ for $k=0$ to $M-1$, then computing the raw auto- and cross-spectral estimates

$$
\begin{gather*}
G_{X}(k)=X(k) \cdot X^{*}(k), \tag{30}\\
G_{X Y}(k)=\left|X^{*}(k) \bullet Y(k)\right| \cdot k=0, M-1
\end{gather*}
$$

and computing the inverse FFT of these to yield R_{X} and $R_{X Y}$.

The Covariance functions are now multiplied by an appropriate "window function"; this has the effect of smoothing
the spectra in frequency space. The window used here is the Parzen weighting function

$$
\begin{align*}
\operatorname{GP}(r) & =1-6(I / m)^{2+6}(I / \mathrm{m})^{3}, & & r=0, m / 2 \\
& =2\left(1-(r / \mathrm{m})^{2}\right)^{3}, & & r=m / 2+1, m \tag{31}\\
& =0, & & r>m
\end{align*}
$$

where m is the length of the non-zero part; the shorter this effective length, the greater the frequency smoothing. The use of the Parzen window ensures that the resulting coherence function stays between its theoretical limits of ± 1.

Smoothed auto- and cross-spectral power densities are then computed from the windowed covariances by applying a forward fFT and calculating the power densities as in equations (30).. The squared coherence function is then calculated as

$$
\begin{equation*}
C(k)=\frac{\left|\tilde{G}_{X Y}(k)\right|^{2}}{\tilde{G}_{X}(k)} \frac{\tilde{G}_{Y}(k)}{} \quad k=0, M-1 \tag{32}
\end{equation*}
$$

Where the ~'s represent the smoothed spectra.

Finally, to exclude spurious coherence values, the average coherence is calculated only for those frequencies at which the signal-to-noise ratio of the stellar auto-power spectrum is high, i.e. Where the power is at least some specified fraction of the peak.

> Initial time series: $x^{\prime}(t), y^{\prime}(t), t=1, N$.

Detrended:

$$
x^{\prime \prime}(t), y^{\prime \prime}(t), t=1, N .
$$

Tapering function:

$$
T(t)
$$

Comments

This analysis technique is basically an extension of the cross-correlation concept. A simple cross-correlation yields a sequence of values $\left[\mathbb{R}_{x y}(r)\right]$ for the various lags (r), with, if the correlation is good, a peak near the zero-lag point; the amplitude of this peak is then an indication of the "goodness of fit". Such an approach, however, makes no use whatsoever of the remainder of the correlation function, which has most of the information content of the original inputs. . The coherence function is the transform of the correlation function and as such still contains all the information while changing it into a form we can use more easily.

The zero-mean condition on the original time series is a requirement for this technique to be applicable at all, the slope removal is not required but serves to minimize low frequency power that may spoil the power spectra (and coherence) quite spuriously. Because of this and the necessary normalization, the coherence is independent of both the mean level of the (stellar and synthetic) spectra and the amplitude of the features. This means that an error in the drawn continuum level is of no consequence, which is a big plus for carbon star spectra where the continum is determined by only a fey points. Note also that the smoothing of the power spectra by the window function) is a required part of the procedure; otherwise the computed coherence will equal unity for all frequencies.

The above description has been drawn largely from the very
good explanation of Bendat and Piersol (1971); much relevant material may also be found in Jenkins and watts (1968).

Tests

As an example and to test the accuracy of the method, a short (20 A) sample spectrum was generated with all five parameters [model, $X(C N O)$ factor, $\left.\xi_{t}, a, 13 C / 12 C\right]$ chosen randomly from a set known to produce plausible looking spectra. Parameter selection and program execution were done in such a manner that the particular parameters chosen was not known at the time. Random noise ath peak amplitude 10% of the continum was then added and the result smoothed, thus simulating a truly unknown spectrum. Various synthetic spectra were then produced and the parameter space was searched until the maximum coherency location was found. Since it was soon apparent that the a line wing shape) value was quite small, all spectra were calculated with $a=0$ as this considerably reduced the computation time required.

When the coherency peak had been located, its parameters were compared to that of the "unknown" spectrum. Several different sets of random noise with 10% and 20% peak-to-peak amplitudes vere then added to the unknown and the analysis repeated for each such new unknown. The derived parameter values are summarized in Table 16. The actual value of a was 0.01. only slightly different from zero; a significantly larger value (say 0.03) produced spectra which: were readily distinguishable since the inter-line intensity in several critical places was systematically depressed by the profile wings.

TABLE 16. COHERENCY PEAKS FOR A TEST CASE
is in no case very far from the actual value; neither the deduced ${ }^{13} \mathrm{C} /{ }^{12 \mathrm{C}}$ ratio nor the microturbulence depends strongly on the model atmosphere assumed, in spite of the differing $X(C N O)$ values required; the mean levels of the spectra agree quite well with the unknown, again indicating that the scaling by the $X(C N O)$ factor yorks. Visual inspection of the various unknowns frequently showed systematic differences sufficient to assign significantly different ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ ratios; that the coherency method was not similarly affected shows the advantage of employing an analysis technique that uses the entire spectrum rather than just selected features.

It is also important that appropriate values be used in the coherency analysis; the two variables are the cutoff point of the windor function (eqn 31) and the cutoff level for the power spectrum to determine which coherence points are to be included in the final average. The window function has here been terminated at the limit of the covariance function [i.e. m (eqn 31) = M-1 (eqn 28) $]$ in order to get maximum frequency smoothing while also not completely discarding any part of the covariance. The power cutoff:must be selected at a high enough level that most of the high frequency noise points are eliminated, yet not so high that all the weaker "real" spectral features are also discarded. To explore: this, various cutoffs from 2% to 20% were used in the analysis of UU Aur. The parameter values of the coherency peaks for the several cutoffs are summarized below. For low cutoffs the peak coherency rises quite sharply up to about the 5% point; [The 1% point (whose peak was not located)
is also part of this trend.] after this the increase is much slower. This indicates that at the 5% level most of the

spurious coherence caused by "noise" has been eliminated. He also see that for cutoffs in the range 5% to 10% the deduced coherency peak locations are virtually identical, whereas outside this range the peak location deviates from these. for all subsequent analysis a coherency cutoff of 5% has been used.

Examination of the final results for the stellar spectra reveals that the deduced ${ }^{13} \mathrm{C} / \mathbf{1 2}^{2} \mathrm{C}$ ratio is not a strong function of the microturbulence. It is somewhat more sensitive to the value of the $X(C N O)$ factor. Thus, of the parameters characterizing the spinthetic spectra, the coherency peak is most strongly dependent on the total amount of $C H$ in the atmosphere [X (CNO)] and the isotope ratio; i.e. on the actual amounts of $12 \mathrm{C}^{14 \mathrm{~N}}$ and $13 \mathrm{Cl}^{14} \mathrm{~N}$ present.

An examination of the final synthetic spectrum, which gives
the best coherency when compared to the star being analyzed (cf. Figures 9 and 13), often reveals that the fit is not equally good over the entire region synthesized, i.e. some sections fit better than others. This is not very surprising in view of the extent of the synthesized region. Since the idea is to get as good a fit as possible while using only a few parameters, the longer the section synthesized the more the fit can drift away from perfection.. Part of this disagreement is unquestionably caused by the relatively poorly determined zero level of the observed spectrum. This is especially true here for Y CVn (in Figure 13) which is very heavily blanketed over a large part of the synthesized region.

BEST K26 MODEL

19 PC

Figure 9. Calculated and Observed Spectra of 19 Pst

Mumbrolhmarlapothy

Fiqure 9. (concluded)

RESULTS

The ${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}$ Ratios

The detailed set of calculated coherency values is presented in Appendix IV: the deduced parameter values are also summarized in Table 17. Column 2 of the table gives the mean value of the observed spectrum and the average $C N$ index (Baumert 1972): coluans 4 to 8 all refer to the parameters of the deduced coherency peak for the model atmosphere in column 3. The uncertainty of the derived ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ ratios is estimated to be $<20 \%$ for each individual model. This is based on the deviations shown by the test cases, the curvature of the coherency curves near the peak, and the slight variations that could be caused by a different power cutoff level in the analysis. A further uncertainty is introduced by the model atmosphere itself, depending on how closely it approximates the real stellar atmosphere. This factor is unknown, but since there is no obvious dependence on the model chosen [models $k 12$ and $K 26$ are grossly different] we can assign an uncertainty to the average ratio of <25\%. Note that the accuracy of the $K 24$ model for 19 Psc is not as good as the others as only a small number of coherency points were calculated to check that the peak was in general agreement with the other two models.

Scalo (1977) has summarized previous ${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}$ ratio determinations for 22 carbon stars that were deduced from observations of the $C N$ Red bands. Comparison with the present

TABLE 17. SUMMARY OF DERIVED SPECTRAL PARAMETERS

results yield the following:

| 19 Psc | 5 values in the range $15-25$ | here 21 |
| :--- | :--- | :--- | :--- |
| Z PSC | 1 value of 50 | here 18 |
| X Cnc | 1 value of 22 | here 31 |

Clearly the ratios for 19 Psc, UU Aur and Y CVn agree quite well. In view of the very great similarity of the spectra of 19 Psc and 2 Psc, including the ${ }^{13}$ C features, I can not accept such a great difference in the isotope ratios for these two stars. Both of the values for 2 psc and X Cnc were determined by the iso-intensity method, which is quite sensitive to the excitation temperature adopted. Although this method has recently been improved (Fujita and Tsuji 1976) by making use of the satellite lines in the stronger 12 CN bands for comparison with the ${ }^{13 C N}$ lines, thus using lines of more nearly equal strength, this technique was not used for either of these stars. For this reason I do not place great trust in those values and must prefer those deduced here.

With the recent availability of infrared spectra, isotope ratios have been determined from the $\Delta v=2$ co bands at 2.2μ for a number of stars, including some carbon stars. These bands are strong for both carbon isotopes and the rotational lines are well separated. The ${ }^{12} \mathbf{C} /{ }^{13} \mathrm{C}$ ratios deduced from these bands are usually significantly lower than ratios determined.. from other
molecules, such as CN. For the stars studied here Johnson and Mendez (1970) give the following "estimates": 19 Psc 8-12, X Cnc 10-12. UU Aur 10-12, Y CVn 3-4; though without any details of their analysis. Thompson (1973) has, however, shown that these bands are not suitable for isotope ratio determinations because of their extreme degree of saturation, thus making the appearance of the spectrum rather insensitive to the amount of ${ }^{13} \mathrm{C}$ present. Perhaps more reliable ratios could be determined from the $\Delta v=3$ bands at 1.6μ, which should suffer less from saturation; this region is, however, more heavily overlaid by bands of $C N$ and C_{2} (cf. Querci and Querci 1975).. No analysis of these bands has yet been done.

Turbulence

The microturbulence is one of the more important factors influencing the appearance of the spectrum. The value of the microturbulent velocity for a "typical" carbon star is, however. not known. Fcr comparison Gustafsson, Kjaergaard and andersen (1974) found a value of $1.7 \mathrm{~km} / \mathrm{s}$ with little scatter for a sample of G and K giants. Tomkin, Luck and Lambert (1976) derived a mean value of $1.3 \mathrm{~km} / \mathrm{s}$ for giants and $3.0 \mathrm{~km} / \mathrm{s}$ for Ib supergiants, while Luck (1977) found $2.4 \mathrm{~km} / \mathrm{s}$ for supergiants. That this question is still open is indicated by the fact that values have been cited for α ori (M2 Ia) ranging from 2 to 10 km/s (Gautier et al. (1976); Hinkle et al. (1976)). For carbon stars Kilston (1975) derived values for 8 stars in the range 5 to $7 \mathrm{~km} / \mathrm{s}$, including $19 \mathrm{Psc}(5.6)$ and Y CVn (6.3), while Fujita and Tsuji's (1964) study of Y CVn resulted in $6.6 \mathrm{~km} / \mathrm{s}$.

For the stars studied here the microturbulent velocity has been left as a free parameter to be determined. The derived values have already been summarized in rable 17. It should be remarked right away that, on the basis of some rather extensive tests, under no conditions is it possible to achieve a satisfactory visual match for 19 Psc with microturbulent velocity as high as $6 \mathrm{~km} / \mathrm{s}$. This result was established prior to the main coherency calculations and is confirmed by them. Further, note that the derived values are not strongly dependent on the choice of model atmosphere. In view of the apparent trend that higher microturbulence corresponds to a greater depression of
the mean level of the observed spectrum, and to a larger $C N$ index, it is tempting to speculate that the heavy line blanketing in some carbon stars is directly caused by a high value of the microturbulence. The observed change of mean level with turbulence is, however, about three times as large as one would expect from the variations of the synthetic spectra. Nonetheless, and in spite of using only five stars, at least part of the observed range in blanketing and $C N$ strength is probably caused by the microturbulence.

Macroturbulence has not been included in this analysis. As has been mentioned, non-Gaussian (Voigt) line profiles were considered, but were not included in the final analysis for several reasons: the high degree of line crowding would terminate the extension of almost all profile wings, visual inspection of the resulting spectra did not indicate that the profile wings were generally important, and the necessary increase in computation time to calculate the extended wings was thus not deemed worthuhile. Because of the relatively poor (1/2 A) instrumental resolution it is not possible to make a direct measurement of the stellar line widths. Macroturbulences for normal late-type giants are on the order of $5 \mathrm{~km} / \mathrm{s}$ (e.g. Luck 1977).

A Note on the Carbon Abundance

A rough check on the nuclear processing that has occurred in these stars may be made by comparing the relative strengths of the $C N$ and C_{2} features in their spectra; in particular I want to examine the relative importance of cNo hydrogen burning and helium burning as revealed by the C, N and o content of the stars.

In order to form a carbon star by the mixing of nuclear processed material up to the surface, the c/o ratio of the processed material must be greater than unity. If only hydrogen burning cNo processing has occurred then the maximum producible C/O ratio is about 7 for a wide range of processing temperatures and the corresponding N / C ratio is about 25 . As shown by Irgens-Jensen (1976) mixing this with an unprocessed envelope to give surface $C / 0>1$ also produces $N / C>10$. One of the model atmospheres (K12) is a close approximation to this state $(C / 0=2, N / C=28)$. For comparison a model with greatly enhanced carbon was also selected (K26) (C/O=50,N/C=0.02); such abundances can not have resulted from cNo burning.

Computed spectra using these two atmospheres were compared With the observed spectrum of 19 Psc. Because of the relatively 10\% carbon content the $K 12$ spectrum is virtually free of C_{2} lines; the c_{2} content of the $k 26$ atmosphere is higher by a factor of at least 10^{2}. In the 140 a section of calculated spectrum, after adjusting the K 26 model to produce a mean level equal to that of 19 Psc (no adjustment was necessary for $k 12$),

11 places were found where K 26 was significantly lower than K 12. All of these places correspond to locations of C_{2} lines and the differences were roughly proportional to the expected strengths of the C_{2} features; thus it is safe to state that these additional features were caused by the C_{2} and were not an artifact of the (grossly) different atmospheric structures. Comparison of these 11 features with the observed spectrum of 19 Psc showed that in every case the $K 26$ spectrum was a better match than $K 12$ and that in 9 out of the 11 cases the observed features were even stronger than in $K 26$. As a control 10 places were found where the K 12 spectrum was lower than $K 26$ (opposite of the above); at these locations the comparison with 19 Psc showed that. K12 and K26 each matched better 4 times with 2 places equally well matched. Thus it is seen that the stellar features are most likely really caused by c_{2} and not by atomic or telluric lines, and that these features are stronger than those produced by the $K 12$ model atmosphere (and possibly by $k 26$ also). Samples of a few of the observed C_{2} features are shoun in figure 10.

In order to increase the C_{2} strength in the synthetic spectra we must either a) increase the cNo abundances as a whole, b) increase only the C abundance, or c) decrease the N abundance [decreasing 0 has the same effect as b)]. Only alternative a) is compatible with retaining the $C: N: O$ ratios as produced by cNO processing but the required increase $\left\{\sim \times 10^{4}\right\}$ is so large that the resulting $C N O / H$ ratio is incompatible with any hydrogen left in the atmosphere. Hence the only reasonable

Figure 10. C_{2} Features in the Spectrum of 19 Psc
alternative is to increase the C / N ratio; this can be done most readily by assuming that carbon from the helium burning regions has been admixed with the surface material.

Thus it is seen that the synthetic spectrum based on a model atmosphere closely resembling the expected result of cNo processing fails to reproduce the observed C_{2} features. only additional carbon enhancement (as from helium burning) can reasonably produce sufficient c_{2} to match these features. Thompson (1977), using the $\Delta v=3$ sequence co bands in three carbon stars, has recently also reported similar results. It may also be noted here that for those stars where more than one model atmosphere was used in the determination of the ${ }^{12} /{ }^{13} \mathrm{C}$ ratio, the resulting peak coherency was always greater for the model containing more carbon. Presumably this reflects the fact that the additional C_{2} features produced a better matching synthetic spectrum.

The Search for 14 C and 15 N

One of the reasons carbon stars are interesting objects is that they are in an advanced stage of evolution and often show the evidence for this by the surface enhancement of some elements (e.g. 13C and Tc). The case of Technetium is especially interesting since it is unstable, with a half-life of 2×10^{5} years, and is apparently present only in stars which are long-period or irregular variables (Peery 1971). Since these elements must have been brought to the surface from the interior regions there they were made it is not inappropriate to also search for other elements which have been similarly transported to the surface. I have here made a search for ${ }^{14} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$, the remaining $C N$ nuclei that can be produced during cNo processing. Since ${ }^{14} \mathrm{C}$ is unstable, with a half-life of 5700 years, its presence would be proof of very recent mixing in a star.

The production of ${ }^{14} \mathrm{C}$ has been investigated by Cowan and Rose (1977) Who concluded that enrichment is possible in the intershell region [between the helium- and hydrogen-burning shells] of a star undergoing helium shell flashes if hydrogenrich material is injected into this region. Subsequent admixture of this material with the envelope could result in a measurable surface abundance of ${ }^{14} \mathrm{C}$, depending on the relative masses of the intershell region and the envelope. The quantitative aspects of this study have, however, been questioned by Despain (1977). Who concluded that the ${ }^{14 C}$ surface enhancement would be negligible $\left[{ }^{14} \mathrm{C} / 1^{2} \mathrm{C} \leq 7 \times 10^{-4}\right]$. Cowan and Rose also
conclude that significant enhancement of 15 N will occur if "relatively large arounts" of matter are rapidly mixed into the intershell region. Despain, too, found $i 5 \mathrm{~N}$ enrichment on a short time scale. The production of 15 N is especially interesting: since the bydrogen burning cNo reactions operating at equilibrium will very guickly (a few years) result in an ${ }^{15} \mathrm{~N} /{ }^{14} \mathrm{~N}$ ratio of about 4×10^{-5} for an burning temperature, yet the terrestrial ratio is 3.7×10^{-3}. Either the 15 N is exposed to CNO processing temperatures below and at the base of the envelope for only a very short time, or its observed abundance is the result of a different process altogether (e.g. spallation). Querci and Querci (1970) have tentatively identified 15 N in UO Aur yith an $14 \mathrm{~N} / 15 \mathrm{~N}$ abundance ratio of a fey times 10^{3}.

Wavelengths for the $(2,0)$ band of the Red system of $C N$ were calculated for the various isotopic forms [14C14N, ${ }^{2}{ }^{2}{ }^{15} \mathrm{~N}$, $\left.{ }^{13} \mathrm{C}^{15 N}\right]$ and these lines vere added to the input list for the synthetic spectrum calculations. Since none of these forms have been observed in the laboratory, it was not possible to ensure that the correct wavelengths were used (as was done for ${ }^{12} \mathrm{C}^{14} \mathrm{~N}$ and ${ }^{13} \mathrm{Cl} 4 \mathrm{~N}$) and the computed wavelengths had to be used uncorrected. As was pointed out by Fay, Marenin and van citters (1971) the value of the orbital electronic angular momentum (L) used in these calculations can't always be approximated by the L-values of the free-atom orbitals. Changing the L-value by one causes a change in the calculated wavengths of 0.25 (for $\left.{ }^{13} \mathrm{C} 15 \mathrm{~N}\right)$: Oncertainties caused by errors in the isotopic masses
are negligible.

A redetermination of the coherency peak, now a function of four variables [one of 14 C and 15 N added at a time], was deeqed impractical. Instead the previously deduced values of X (CNO). ξ_{t} and ${ }^{13} C / 12 C$ were considered to be fixed and various small amounts of 14 C or ${ }^{15} \mathrm{~N}$ were added, thus reducing the problem to but one variable. In view of the expected minor perturbations caused by these species this should be an adequate procedure.

In order to check the sensitivity to the amount of added material several tests were done. Synthetic spectra of the full 140 A region were calculated with $14 \mathrm{Ci4N}$ added for several values of ${ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}$ from 0 to 0.02 ; several different sets of random noise vere then added to these spectra and the coherency calculated with respect to the noiseless spectra. Samples of the result of these tests are shown in Figure 11. Coherency curves are shown for eight different combinations of input $14 \mathrm{C} /{ }^{12 \mathrm{C}}$ ratio and noise. Each combination is represented by three curyes, for power cutoff levels of 10,5 and 3% (top, middle, bottom) : the vertical placement of a curve is arbitrary, only the curve shape is important. The tests are divided into three groups ith input isotope ratios of $0,0.001$ and 0.004 , as indicated on the figure. The noise amplitude was 60% of the continuum for the tests shown; the third tests for ratios of 0 and 0.004 were done with more slowly varying noise (the noise was interpolated between the random values, which were calculated only every seventh point) in an attempt to better simulate

Pigure 11. Coherency Curves for the ${ }^{4}$ C Test Cases
the character of the noise "lines" being added. As can be seen, the peak locations in the coherency curves are usually independent of the power cutoff level although it is possible to get an occasional discordant curve. Clearly the curves for a ratio of 0.001 are not always distinguishable from 0 ; to get a reliable non-zero measure the coherency peak should be at a ratio ≥ 0.004, and the peak value should be significantly higher than the zero intercept.

The results when the stellar spectra are analyzed for ${ }^{14} \mathrm{C}$ and 15 N are shoun in Figures 12 and 13, respectively. The curves for X Cnc, $U U$ Aur and Y CVn are not distinguishable from the test cases without ${ }^{19} \mathrm{C}$; the curves for 19 Psc and 2 Psc are peculiar in that the dropoff rate with increasing 14 C is much slower than for the test cases and the other three stars. Although the reason for this is not known, the peculiarity is not, however, of such a nature as to indicate the presence of 14C. Thus, for all five stars, ${ }^{14} \mathrm{C}$ was not detected and ${ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}$ < 0.004, the detectability limit.

For 15 N similar remarks apply to 19 Psc, Z Psc, X Cnc and UU Aur. The coherency curves for Y Cvn, hovever, definitely indicate the presence of ${ }^{15 N}$. To explore this further synthetic spectra were calculated wherein the amounts of $12 \mathrm{C}^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}^{15} \mathrm{~N}$ vere varied independently. The resulting coherency values are presented in Table 18; the vertical and horizontal scales indicate the $15 \mathrm{~N} /{ }^{14} \mathrm{~N}$ ratio used to calculate the abundances of $12 C^{15 N}$ and $13 C^{15 N}$, respectively; the curve in Fig. 13 is given

TABLE 18. COHERENCY FOR Y CVN VS 12Ci5N AND ${ }^{23} \mathrm{C}^{15} \mathrm{~N}$
by the diagonal entries. If 15 N is present the peak coherency should occur along the diagonal, this is not the case here. The observed peak corresponds to the presence of $12 \mathrm{C} \mathbf{1 5 N}^{2}$, with $15 \mathrm{~N} / 14 \mathrm{~N} \sim 0.006$, but without ${ }^{13} \mathrm{Cis} \mathrm{N}$. It should be noted, however, that it corresponds to a ${ }^{13} \mathrm{C}^{15} \mathrm{~N} /{ }^{12} \mathrm{C}^{14} \mathrm{~N}$ ratio of 0.0025 , which is below the detectability threshold, so the absence of ${ }^{13}{ }^{3}{ }^{15} \mathrm{~N}$ is not too surprising. The observed behaviour may also be interpreted as scme sort of contamination from the ${ }^{13} \mathrm{C}^{14} \mathrm{~N}$ features, which are displaced from the $12 C^{15 N}$ features by only about 5 A , although it is not clear how, by effectively including a second set of "13C14" features the coherency could be improved by the amount indicated.

An examination of the spectra (Figure 14) reveals 8 features that are significantly changed by the inclusion of 15 N . The observed spectrum of Y CVn is better represented by the "with $15 \mathrm{~N}^{\prime \prime}$ spectrum in 5 of these cases, 2 are equally well matched and 1 is definitely not compatible with 15 N . In view of the uncertainties in the wavengths of the $C^{15} \mathrm{~N}$ lines, $a \mathrm{n}$ w wavelength set calculated with a different l-value was substituted and a new set of synthetic spectra calculated. The resultant coherency array had the same feature as before, although: the peak was not as high; the spectrum showed a slightly different set of 15 N sensitive features, this time none of these was incompatible.

The fact remains that there are features in the spectrum of Y CVn that can not be explained by the constituents of these
synthetic spectra, nor by any telluric lines or atomic lines that appear in the Sun or Arcturus. Especially noteworthy is the feature at 8037.4 A ; this is a continuum point in 19 psc, 2 Psc. X Cnc and $u d$ Aur. The most plausible origin of these features, without invoking 15 N , is $12 \mathrm{C}^{13} \mathrm{C}$ (or even ${ }^{13} \mathrm{C}^{13} \mathrm{C}$), expecially in view of the large amount of ${ }^{23} \mathrm{C}$ in y CVn. This location is also depressed in WZ Cas, which, though not analyzed here, is reputed to have a high ${ }^{13}$ C content. To check this possibility the wavelengths of the ${ }^{12 C}{ }^{13} \mathrm{C}$ and ${ }^{13} \mathrm{C}{ }^{13} \mathrm{C}$ lines were calculated, fielding wavelengths virtually identical to those used by Querci and Querci (1970). These calculations are probably accurate since their observed features at these wavelengths all fell on the linear part of the curve of grouth and yielded a ${ }^{12 C / 13 C}$ ratio about equal to that derived from the $C N$ lines. Though comparison with Y CVn is difficult because of the heavy $C N$ blanketing, it does shon some indication that there is absorption caused by ${ }^{12 C 13}$. The addition of these species can not, however, explain the observed 115 N " features, as most of these avoid the calculated wavelengths. On the other hand there is also the occasional observed feature which stands up considerably higher than the synthetic spectrum.

The arguments in favour of the presence of $1 s_{\mathrm{N}}$ are: 1) the existence of the coherency peak, with the characteristics we expect to be significant, since the indicated absence of $13 \mathrm{C}^{\mathbf{1} 5 \mathrm{~N}}$ is not significant, and 2) most of the spectral features that would indicate the presence of cisN are in fact observed. Contrary points are: 1) the single observed feature that does
not fit; though the uncertain wavelengths makes this of doubtful value, and 2) the observed matching features may be caused by something else. Since the positive arguments seem to be stronger, we are led to make a tentative identification of s_{N} in Y CVn with an abundance ratio $14 N / \sin ^{N} \sim 150$.

MaKhmanhankM MA Nincmanhoumh M M MuncmanhmalyM MJ.

A RECAP OF THE COHERENCI TECHNIQUE

Since the coherency technique is a new tool for analyzing stellar spectra it seems appropriate to make a summary of its salient features in the light of what has been learned here. First: its advantages.

1. It is an objective method, requiring minimal subjective input by the observer.
2. Errors in the level of the drawn continuum and in the scale of the observed spectrum have no effect whatsoever.
3. The information content of the entire spectrum is used. This makes it particularly applicable to molecular spectra where the features of interest are spread over a large range of the spectrum.
4. Particular lines do not need to be selected for analysis; the problem of blends does not enter. This means it should be applicable to the analysis of lower resolution spectra.
5. Geak lines, that are not correlated with the features of interest, (telluric, atomic, etc.) do not affect the result.
6. Isolated extraneous strong features have no effect.

Second: some possible drawbacks.

1. All the major components should be included in the synthetic spectrum to be compared against.
2. This means that the number of significant variables describing the synthetic spectra can become large. This has not been a problem here because of the nearly complete dominance of the carbon star spectra by the $C N$ molecule.
3. Minor components are not accurately measurable. In this context "minor" means features uhich are of comparable strength to other spectral features ("noise") not included in the synthetic spectra. Even if some of these minor lines can : be resolved, the coherency peak is likely to to be significantly affected by the noise.

All things considered, it is a good way to get an objective measure of the major spectral variables. Though I have no concrete reason.. for saying so, having used spectra of only one dispersion, I feel that better resolution in the observational data should ease the analysis by making the effects of the variables more readily separable and give the coherency "surface" a stronger curvature near the peak, thus making it better defined. Some variables (e.g. the microturbulence) may even be directly measured using traditional techniques, thus reducing the number of remaining variables.,

SUMMARY

The investigation of carbon stars in binary systems included most such suspected systems. Nine systems have been judged probably real; another half-dozen have been assigned lower weights, while for several more there is insufficient evidence to permit even a tentative judgement. Because of their faintness it has not been possible to acquire spectra of many of the companions; accurate radial velocities in particular would be valuable to allow one to confirm or reject the systems as real. . The mean absolute visual magnitude of the carbon stars is -2.3, while the bolometric magnitudes range between $\mathbf{- 4}$ and -8 . The average carbon star is thus somethat more luminous than the normal giants, but the dispersion in luminosity is quite large. There is also some indication of a mass - luminosity relation for carbon stars.

A new, objective method of analyzing spectra, which requires minimal subjective input, has been introduced and demonstrated. It is particularly useful for carbon star spectra; which show extensive molecular bands with severe line blending and an uncertain continum. The feasibility of calculating realistic synthetic spectra of carbon stars has also been demonstrated. The $12 \mathrm{C} /{ }^{13} \mathrm{C}$ ratios deduced with this technique are in general agreement with ratios obtained via the curve-ofgrouth method from the same near infrared $C N$ bands. The analysis also revealed an interesting possible correlation between the qicroturbulence and the $C N$ index. The presence of

15 N has been tentatively identified in $Y \mathrm{CV}$, while ${ }^{14 \mathrm{C}}$ was not found in any of the stars analyzed. The presence of 15 N is potentially a very important result: to confirm it we need to identify some specific lines of ${ }^{12} \mathbf{C l}^{15} \mathrm{~N}$. To this end a thorough line identification study for $Y C V n$, using high-dispersion spectra, vould be very valuable.

There is still a great shortage of realistic model atmospheres for carbon stars; in particular there is a need for models vith abundances that reflect the helium-burning reactions. Since a CNO-type composition does not result in enough carbon to make adequate amounts of C_{2}, and a carbonenhanced model yields too much $C N$ to give reasonable spectra without greatly scaling it down, it would appear that some nitrogen-poor (solar abundance or less) and carbon-enhanced models may be what are needed.

REFERENCES

Abt, H. A. Meinel, A. B., Morgan, W. W. and Tapscott, J. W. 1968. An Atlas of Low-Dispersion Grating Stellar Spectra.

Allen. C. $\begin{gathered}\text {. 1973. Astrophysical guantities, Athlone Press, }\end{gathered}$ London.

Arnold, J. O. and Nicholls, R. We 1972, J.Q.S.R.T. 12, 1435.
Arp. H. C. 1965, Stars and Stellar Systems, Vol. 5, Galactic Structure, p. 401.

Ballik, E. A. and Ramsay, D. A. 1963, Ap.J. 137. 84.
Barnes. J. V. 1974, private communication.
Baumert. J... H. 1972. Ph. D. thesis. Ohio State University.
Baumert; J. H. 1974 , Ap.J. 190, 85.

Bendat, J. S. and Piersol, A. G. 1971, Random Datá Analysis and Measurement Procedures, Wiley-Interscience, New York.

Blaauw. A. 1963, Stars and Stellar Systems, Vol. 3, Basic Astronomical Data, p. 383.

Blanco, V. M. 1956, Ap.J. 123, 64.
Blanco, V. M. and Lennon, C. J. 1961, A.J. 66, 524.
Bond. H. E. 1975, Ap.J. 202, L47.
Cannon, R. D. and Stobie, R. S. 1973, M. N. 162. 207.
Carbon, D. F. 1973. Ap.J. 183. 903.
Catchpole, R.M. and Feast, M. W. 1973, N.N. 164. 11 .
Climenhaga, J. L. 1960. Publ. D.A. O. 11, 307.
Cooper, D. M. and Nicholls, R. W. 1975, J.Q.S.R.T. 15, 139.
Cowan, J. J. and Rose, W. K. 1977, Ap.J. 212, 149.
Crabtree, D. R., Richer, H. B. and Westerlund. B. E. 1976, Ap.J.Lett. 203. L81.

Crull. H. E. 1972, private communication.

Davis, S. P. and Phillips, J. G. 1963, The Red System of the CN Molecule, University of California Press, Berkeley.

Dearborn, D. S. P. and Eggleton, P. P. 1976, Q.Jl.R.A.S. 17. 448.

Despain, K. H. 1977, Ap.J. 212. 774.
Dickens, R.J. 1972, M.N. 159, 7P.
Eggen, O. J. 1972. Ap.J. 174. 45.
Fast. H. 19.73. private communication.
Fay, T., Marenin, I. and van Citters, W. 1971, J.Q.S.R.T. 11, 1203.

Feast, M. T. and Lloyd Evans, T. 1973, M. N. 164, 15P.
Franz, O. G. and White, N. M. 1973, Bull. A. A. S. S. 43.
Fujita, Y. 1970, Interpretation of Spectra and Atmospheric Structure in cool Stars, Univ. of Tokyo Press, Tokyo.

Fujita, Y., and Tsuji, T. 1964, Proc. Japan Acad. 4 O. 404.
Fujita, Y. and Tsuji, T. 1976, Proc. Japan Acad. 52. 296.
Garrison, R. F. 1977, private communication.
Gaustad, J. E. and Conti, P. S. 1971, P.A.S.P. 83, 351.
Gautier, T. N., Thompson, R. I., Pink, J. and Larson, H. P. 1976. Ap.J. 205, 841.

Gingerich, O. J. (ed.) 1969. Theory and observation of Normal Stellar Atmospheres, M.I.T. Press, Cambridge.

Gordon. C. P. 1968, P.A.S.P. 80, 597.
Gustafsson, B., Kjaergaard, P. and Andersen, S. 1974, Astr.Ap. 34. 99.

Hagen, G. L. 1970, Atlas of Open Cluster Colour-Magnitude Diagrams. Publ. D.D.O.. Vol. 4.

Harding, G. A. 1962, Observatory 82, 205.
Hartwick. F. D. A. and Hesser, J. E. 1973, Ap.J. 183, 883.
Hartwick, F. D: A.. Hesser, J. E. and McClure, R. D. 1972, AP.J. 174. 557.
Hayes, D. S. 1970, Ap.J. 159. 165.

Herbst, W., Racine, R. and Richer, H. B. 1977, P.A.S.P. (in press).

Hinkle, K. H. Lambert, D. L. and Snell, R. L. 1976, Ap.J. 210 , 684.

Honeycutt, R.K. 1972, P.A.S.P. 84, 823.
Iben, I., Jr. 1967, A.R.A.A. S. 571.
Iben, I., Jr. 1975, Ap.J. 196. 525.
Irgens-Jensen, S. 1976, Astr.Ap. 51. 107.
JANAF Thermochemical Tables 1960-69, (Midland, Mich.: Dou Chemical Co.)

Jenkins. G. M. and Watts, D. G. 1968, Spectral Analysis, Holden-Day, San Francisco.

Johnson, H. L. 1966, A.R.A.A. 4. 193.
Johnson, H. L. 1968. Stars and Stellar Systems, yol. 7, Interstellar Matter, p. 167.

Johnson, H. L. and Borgman, J. 1963. B.A.N. 17. 115.
Johnson, H. L. and Mendez, M. E. 1970, laj 75, 785.
Johnson, H. R. 1974, NCAR Technical Note / STR-95.
Johnson, H. R. 1975. private communication.
Johnson, H. R., Marenin, I. R. and Price, S. D. 1972, J.Q.S.R.T. 12. 189.

Kilston, S. 1975. P.A.S.P. 87. 189.
Lambert, D. 1968, M.N. 138. 143.
Lambert; D. and Mallia, E. 1968 , M.N. 140, 13.
Lambert, D. and marner, B. 1968a, M.N. 138, 181.
Lambert, D. and Warner, B. 1968b, M.N. 138, 213.
Lambert, D. and Warner, B. 1968c, M.N. 140, 197.
Lee, T. A. 1970, Ap.J. 162. 217.
Luck, R.E. 1977, Ap.J. 212, 743.
Marenin, I. Re and Johnson, H. R. 1970, J.Q.S.R.T. 10, 305.

Matthews. T. A. and Sandage, A. R. 1963, Ap.J. 138, 30. Mendoza V, E. E. and Johnson, H. L. 1965, Ap.J. 141, 161. Mihalas, D. 1970, Stellar Atmospheres, H. H. Freeman and Company, San Francisco.

Morris. S. and Wyller. A. A. 1967, Ap.J. 150, 877. Mutschlecner, P. and Keller, C. 1970, Solar Phys. 14, 294. Mutschlecner, P. and Keller, C. 1972, Solar Phys. 22, 70.

Oke, J. B. and Schild, R. E. 1970, Ap.J. 161, 1015.
0lson, B. I. 1971, M. Sc. thesis, University of British Columbia.

Olson, B. I. and Richer, H. B. 1975, Ap. J. 200. 88.
Pearse, R. H. B. and Gaydon, A. G. 1941, The Identification of Molecular Spectra, Wiley \mathcal{E} Sons, London.

Peery. B. F., Jr. 1971, Ap.J. Lett. 163, L1.
Peery, B. F., Jr. 1975. Ap.J. 199. 135.
Querci, M. and Querci, F. 1970, Astr.Ap. 9, 1.
Querci, M. and Querci, F. 1975, Astr.Ap. $4 \underline{2}$. 329.
Richer, H. B. 1971. Ap.J. 167. 521.
Richer, H. B. 1972. Ap.J. Lett. 172, L63.
Rybski, P. M. 1973, P.A.S.E. 85, 653.
Sackmann, I.-J. 1977. Ap.J. 212, 159.
Sackmann, I.-J., Smith, R. L. and Despain, K. H. 1974, Ap.J. 181. 555.

Sanford, R. F. 1940. P.A.S.P. 52. 408.
Sanford, R.F. 1944, Ap.J. 99, 145.
Scalo, J. M. 1977. Ap.J. $\underline{2} 15$, 194.
Scalo, J. M. and Ulrich, R.K. 1973, Ap.J. 183. 151.
Schadee, A. 1964, B.A.N. 17, 311.
Schmidt. K. H. 1956, Mitt. Univ. Sternwarte Jena, No. 27.

Schmidt-Kaler, Th. 1965, Landolt-Bornstein, Neue Series $\nabla I / 1$, p. 297.

Smith, M. G. and Wing. R. F. 1973, P.A.S.P. 85, 659.
Smithsonian Astrophysical Observatory Star Catalog 1966, Smithsonian Publication 4652 .

Spindler, ReJ. 1965, J.Q.S.R.T. 5, 165.
Stromgren, B. 1966, A.R.A.A. 4.433.
Tatum; J. B. 1967. Ap.J.Supp. 16, No. 124, 21.
Thompson, R. I. 1973. Ap.J. 184, 187.
Thompson, R. I. 1977, Ap.J. 212, 754.
Tomkin, J., Luck, R.E. and Lambert, D. L. 1976, Ap.J. 210, 694.
Underhill, A. E. and 月alker, G.A. H. 1966, M.N. 131, 475.
Vandervort, G. L. 1958, A.J. 63, 477.
Yardya, M. S. 1966, M.N. 134. 347.
Walker, M. F. 1972. M.N. 159. 379.
Wallerstein. G. 1973. A.R.A.A. 11, 115.
Warner, B. 1968, M.N. 138, 229.
Westerlund, B. E. 1959, Uppsala Astr. Obs. Ann. 4. nr 7.
Westerlund, E.E. 1964, I.A.U. Symp. 20, The Galaxy and the Magellanic Clouds, p. 239.

Willstrop, ReV. 1965, Memoirs R. A. S. 69, 83.
Wilson. R. E. 1953, General Catalogue of Stellar Radial Yelocities (Carnegie Institution of Fashington, Washington, D.C.).

Wyller, A. A. 1966, Ap.J. 143, 828.
Yamashita, Y. 1972, Ann. Tokyo Astr. Obs. 13, 169.

APPENDIX I

RADIAL VELOCITIES OP CAEBON STARS

Radial velocities for most types of stars are usually measured in the blue spectral region (3700-4600 A) for two reasons: viz. this is where the photographic plates are most efficient, and there is a good selection of atomic lines available for all spectral types. Carbon stars are, hovever, usually extremely weak in the blue, and hence long exposures are required to get good blue spectra. The near infrared 17000 9000 A) is a much more efficient region for taking spectra of carbon stars (using N plates) , uhile still further into the infrared photographic plates become inefficient and/or observational methods become more elaborate. This region is, however, heavily blanketed by bands of $C N$ and C_{2}, making it well nigh impossible to find any unblended atomic lines. This problem is even more severe at low dispersions when almost every spectral feature is a blend of several lines.

Since several of the carbon stars in the list of suspected binary systems had poorly determined velocities (Sanford 1944) it was deemed desirable to acquire better data in this regard. Furthermore fully $1 / 6$ of the stars on Sanford's list have velocities determined from a single classification dispersion spectrum only. If one could come up with a set of standard wavelengths for use on low dispersion near infrared spectra this situation could be greatly improved.

The spectra used for this study were obtained by Dr．H．B． Richer at Cerro Tololo in 1969．They are at $124 \mathrm{~A} / \mathrm{m} ⿴ 囗 十 ⺝ 丶 d^{2}$ dispersion and cover the spectral range $7400-8900 \mathrm{~A}$ ；also used were some high dispersion $(13 \mathrm{~A} / \mathrm{mm})$ spectra of the same region obtained at the Dominion Astrophysical Observatory，Victoria．

Tracings of the high dispersion spectra were used to choose a set of lines which were reasonably strong and had no for few） comparably strong nearby neighbours．These lines were then measured on the low dispersion spectra of the 11 stars with ＂a＂－quality velocities（Sanford 1944）listed in Table 19．，All these stars are late－type carbon stars except V Ari，which is a CH star．Since the near infrared spectra of most carbon stars show very little variation（Richer 1971），this is not important and the standard wavelengths are applicable to all carbon stars showing the $C N$ bands in sufficient strength to make most of the lines measurable．

The stellar spectra were digitized using the department＇s automated Joyce－Loebl Microdensitometer，with a sampling inter－ val of 5 microns（about 0.6 A），and the line position measure－ ments were made by a computer program（see next Appendix）which fits spline functions to the observed points and then calculates both the line center－of－gravity and minimum from the reconstruc－ ted spectrum．The wavelengths of both of these were then plotted versus the expected velocity of the star（corrected for the earth＇s orbital motion）and only those features with the tightest correlation retained．

Seventeen lines yere thus chosen to define the radial velocity system; these are listed in Table 20. The same features are also indicated on the tracing of T Ind in Fig. 15. Because of the great complexity of carbon star spectra the listed features may not be used unquestioningly, however, but only if the line shape is such as to conform to that in the stars used in defining the system. These necessary qualifications are noted in Table 21. A rough idea of how frequently a feature may be found acceptable can be estimated from the number of lines used to define that rest wavelength (column "N"in Table 20). Note that features 1 and 4 in the tracing in. Fig. 15 would not be considered acceptable by these criteria.

This technique was applied to nine of the program stars. An average of 12 lines were measured for each star resulting in an average probable error of the mean of $4 \mathrm{~km} / \mathrm{s}$. This internal accuracy is comparable to Sanford's "c"-quality velocities, as defined by his error bars.

TABLE 19. STABS WITH "A"-QUALITY VELOCITIES OSED TO ESTABLISH STANDARD WAVELENGTHS IN THE INFRARED

TABLE 20. STANDARD GAVELENGTHS AND ACCURACIES Of FEATURES defining the radial velocity system

TABLE 21. ACCEETANCE CRITERIA FOR WAVELENGTH STANDARDS

Figure 15. Identification of gavelength Features for Near Infrared Radial Velocity system

USE OF MICRODENSITCMETEB AND COMPUTER PROGRAMS TO GEASURE RADIAL YELOCITIES

The method of measuring radial velocities outlined in the previous Appendix and described in more detail here is, unfortunately, rather laborious and time-consuming. Although this University does have a Grant oscilloscope measuring machine, this instrument does not have sufficient sensitivity to permit setting on many of the weak features indicated in fig. 15. The wavelength standards derived here do not, of course, depend on the measurement technique but only require that the instrument used be sufficiently sensitive with a 5 micron slit width to show contrast comparable to that of Fig. 15. For the following it is assumed that the reader is familiar with the operation of the Joyce-Loebl Autodensidater (see e.g. Olson 1971).

The Autodensidater is used to generate a digitized spectrum punched on paper tape. This spectrum must be decoded and stored before further processing is done. The positions of the comparison arc lines are found using the "ARC" program and a dispersion curve is fitted to those positions. Finally the "STELLAR2" program is used to find the positions of the stellar features and calculate their wavelengths.

Since the comparison arc lines must be recorded at the same time as the stellar spectrum, a mask has been constructed to fit immediately in front of the Autodensidater analyzing slit. This
permits rapid switching back and forth between the stellar and arc spectra.
A. scan should normally start near 7450 a and end past 87.00 A. The mask should be used to switch over to record the comparison arc for those lines marked in Fig. 15, except 8654 A Which is too close to the stellar 8662 A line. To get this line, return past 8521 and record only the arc; this will allow calculation of the offset to 8654 A. The paper tape should be started by keying in the characters " 000*999*" and ended by a "D".

The card deck setups for the six applicable programs are given below. Input is in either free format of integer, real or logical type (I, R, L) or literal data in A. format.

The tape is decoded using the "DENSITY" program:
\square
NrPts should be a multiple of 2000: max. $=30000$.

The plate density values should next be printed out using the "PRINTT" program:
\$RUN PRINTT $1=$ DensityFile

The arc line positions are calculated and punched on cards using the "ARC" program. This program requires the point index of the peak of each line as input; this can be gotten from the printed density values.

The dispersion curve coefficients are calculated by the "OLQP" program.. The input is the same as that required by the UBC library program *OLQF.
\$RUN OLQF

1. Nr of Pts, order to fit, "O", "T".
2. Pos'n, Wavelength

Card 2 repeated "Nr of Pts" times.
\$END

This program should be run with judicious deletion of lines until the fit is adequate.

The wavengths of the stellar features are calculated using the "STELLAR2" program:

The density values near the stellar lines may be plotted to assist in judging whether a line profile is acceptable:

The radial velocity may now be calculated by the usual method from the measured line wavelengths and the rest wavelengths of Table 20.

Appendix II
Listing of Computer Programs

```
C "DENSITY"
C
    INTEGER*2 IDATA,IDPLT(30000)
    NCOUNT = 0
    MISSTP = 0
    NCALLS = 0
    CALL FREAD (-2,'ENDFILE',1)
    CALL FREAD (5,'I:',NDATA,&10)
    10 IF (NDATA.LT.1) NDATA=30000
    NDATA = (NDATA+1999)/2000*2000
    DO 9 J = 1, NCATA
    NCALLS = NCALLS + 1
    CALL JCLBI (IDATA,NCOUNT,NBOGUS,MISSTP,&8)
    IF (IDATA.EQ.1000) GO TO 8
    IDPLT(J) = IDATA
    9 \text { CONTINUE}
    8 WRITE (6,4) NCALLS, NCOUNT,MISSTP
    4 FORMAT('NR OF JCLBL CALLS', 10X,'=',I6./.'NR OF DATA COUNTS'
    4.'BI JCLBL =',I6,/**NR OF TAPE ERRORS',10X,'=',I6)
    ND=((NCALLS*1999)/2000)*2000
    DO 1 J = 1,ND,2000
    K = J + 1999
    WRITE (1) (IDPLT(I), I=J,K)
    1 CONTINUE
    STOP
    END
C
    SUBROUTINE JCLBL (IDATA,NCOUNT,NBOGUS,MISSTP)
    INTEGER*2 IDATA,IA(4)
    NZERO = 0
201 DO 200 N = 1.4
    CALL PTAPE (I,&210,&210)
    I= IAES(I)
    IP (I.GT.128) I = I - 128
    IP (I.EQ.42) GO TO 202
    IF (N.EQ.4) GO TO 205
    IA(N)=I-48
    IF (IABS(I-53).LE.5) GO TO 200
    IF (I.EQ.68) IDATA = 1000
    IF (IDATA.EQ.1000) RETURN
    IF (I.EQ.O) NZERO = NZERO + 1
    IF (NZERO.LT.9000) GO TO 201
    IF (NZERO.GE.9000) IDATA = 1000
    RETURN
200 CONTINUE
202 IF. (N.EQ.4) GO TO 204
    IF (NCOUNT.EQ.O) GO TO. 201
205 MISSTP = MISSTP + 1
    DO 206 J = 1,4
    CALL PTAPE (I,&210,8210)
    IF (IABS(I).GT. 128) I = IABS (I)-128
    IF (J.EQ.4.AND.I.EQ.42) WRITE (6,101) NCOUNT
    IF (J.EQ.4.AND.I.EQ.42) NCOUNT = NCOUNT + 1
```

Appendix II
Listing of Computer Programs
IF (I.EQ.42) GO TO 207
206 CONTINUE
207 IDATA $=0$
NCOUNT $=$ NCOUNT +1
जRITE $(6,101)$ NCOUNT
101 PORMAT (' DUE TO TAPE ERROR, DATA=0 AT POINT =', 16)
RETURN
204 IDATA $=100 * I A(1)+10 * I A(2)+$ IA(3)
NCOUNT $=$ NCOUNT +1
RETURN
210 - 2 RITE $(6,152)$ NCOUNT, NZERO
152 PORMAT ("END OF TAPE AT PT', I5, 10X, $\mathrm{AZERO}=$ ', I5) RETURN 1
END

DIMENSION $X(50), Y(50), Y P(50), Y D(50), W T(50), S(10), S G(10)$,

* A (10) , B(10), P(10), YL(50)

REAL* 8 DISP, XO, YO, LAM
LOGICAL LK
Call fread (-2, Endfile', 1)
210 LK=. FALSE.
CALL FREAD (5, 3I, L: ', M, K, NKT, LK, E220)
DO $200 \mathrm{I}=1$, M

200 CONTINUE
CALL OLQF (K, M, X,Y,YF,YD,WT, NWT,S,SG,A,B,SS,LK,P)
$K P=K+1$
$K P P=K+2$
WRITE $(6,150) \mathrm{K}$

+ 'RESID 1ST ORD", 7X,'SIGMA', 13X, 'P", /)
$\mathrm{XO}=\mathrm{DBLE}(\mathrm{X}(1))$
YO $=\operatorname{DBLE}(\mathrm{Y}(1))$
DISP $=(\operatorname{DBLE}(Y(M))-Y O) /(\operatorname{DBLE}(X(M))-X 0)$
DO $230 \mathrm{~J}=1$, M
LAM $=$ DISP * (X(J)-XO) + YO
$Y L(J)=L A M-Y(J)$
230 CONTINUE
WRITE(G, 151) (X(I), Y(I), YF(I), YD(I), YL (I), SG (I), P(I), I=1, KP)
151 FORNAT (1X,E16.7,E16.6,E16.6,F12.3.4X,F12.3,4X,2E16.8)
WRITE $(6,152)(X(I), Y(I), Y P(I), Y D(I), Y L(I), I=K P P, N)$
152 FORMAT (1X, E16.7,E16.6.E16.6,F12.3.4X,F12.3)
GO TO 210
220 UBITE $(6,150)$ NBT
STOP
END

Appendix II
 Listing of Computer Programs

```
C "ARC"
C
    INTEGER*2 IN(4000)
    INTEGER IPOS(50)/50*0/
    REAL PP (6).WL (9)/7503.87,7514.65,7635.10,7948.17,8014.79,
    * 8103.74,8264.52,8377.61,8521.44/
    REAL*8 S,SS
    LOGICAL PCHQL/.FALSE./
    READ (1) (IN (I), I= 1,2000)
    READ (1,END=200) (IN(I),I=2001,4000)
200 CALL FREAD (-2,'ENDLINE'.'STREAM')
    CALL FREAD (5,'I V:',IPOS)
    CALL FREAD (-2,'NUMBER',NP)
    WRITE (6.152)
152. FORMAT ('1STAR NAME ='.T40.'PLATE NO ='.T80.'ARC POSNS'.//)
    IF (NP.EQ.15). PCHWL = .TRUE.
    DO 204 JJ = 1, NP
    P}=0.
    MID = IPOS(JJ)
    YO = IN(MID-1)
    Y1 = IN(MID)
    Y2 = IN (MID+1)
    B = 2.0*Y1 - 1.5*Y0 - 0.5*Y2
    C = 0.5*YO - I1 + 0.5*Y2
    IF (C.EQ.0.0) GO TO 317
    P}=-0.5*\textrm{B}/\textrm{C}+\textrm{FLOAT}(MID-1
317 DO . 300 J = 1, 10
    JA = MID-J
    IF (IN(JA-1).GT.IN(JA)) GO TO 301
300 CONTINUE
301 DO. 302 J = 1, 10
    JB'= MID+J
    IF:(IN(JB+1).GT.IN(JB)) 60 T0 303
302 CONTINOE
303 IMN = IN(JA)
    IF (IN(JB).GT.IMN) IMN = IN(JB)
    IMX = IN(MID)
    HT = IMX-IMN
    DO 305.IL = 3.8
    HLV = IMN + 0.1*IL*HT
    DO 306 J = JA, MID
    IF (IN(J).LE.HLV .AND. IN(J+1).GT.HLV) GO TO 307
306 CONTINUE
307 PP(IL-2):= J + (HLV-IN(J))/(IN(J+1)-IN(J))
    DO 308 J = MID,JB
    IF (IN(J).GE.HLV .AND. IN(J+ 1).LT.HLV) GO TO 309
308 CONTINUE
309 PP(IL-2) =(J+(HLV-IN(J))/(IN (J+1)-IN(J)) +PP(IL-2))/2.0
305 CONTINUE
    N=6
314 S = ODO
    SS = ODO
    DO 310 J = 1.N
```

Appendix II

Listing of Computer Programs

```
    S = S + DBLE(PP(J))
    SS = SS + DBLE(PP(J))**2
310 CONTINUE
    AVG = S/N
    SD = DSQRT ((SS-S**2/DFLOAT(N))/DFLOAT (N-1))
    IF (SD.LE.O.1 .OR. N.LE.3) GO TO 311
    XD = 0.0
    DO 312 J = 1.N
    IF (ABS(AVG-PP(J)).GT. XD) XD = ABS(AVG-PP(J))
    312 CONTINUE
    M = 0
    DO 313 J = 1, N
    IF (ABS(AVG-PP(J)).GE.XD) GO TO 313
    M=M+1
    PP(A) = PP(J)
313 CONTINUE
    N = M
    GO TO 314
311 WRITE (6,150) MID,P,AVG,N,SD
150. FORMAT ('OMIDPT =',I5,10X,'PEAK =', F10.3, 10X,' CENTER ='.
    +F10.3,10X,I2,' PT ST.DEV =' .F6.3)
    IF (PCHWL) GO TO }32
    IF (JJ.LE.9) WRITE (8,151) AVG
    GO TO 204
320 IF (JJ.LE.9) WRITE (8,151) AVG,WL(JJ)
151. FORMAT (F10.3.F10.2)
204 CONTINOE
    STOP
    END
```

	"PRINTT"	
	INTEGER*2 ID (2000)	
200	READ $11 ;$ END= 2	01) ID
	GBITE (6,150$)$	ID
150	FORMAT (2515)	
	GO TO 200	
201	STOP	
	END	

Appendix II
Listing of Computer Programs

DIMENSION X(25),Y(25),IPS(100),XO(100)
DIMENSION T (220), SS (220), SS 1 (220),SS2(220)
REAL*4 COF (5)
INTEGER*2 IN(4000)
EPSLN $=1.0 \mathrm{E}-4$
READ (1) (IN (I), $I=1,2000)$
READ (1,END=207) (IN (I), $I=2001,4000$)
207 CALL FREAD (5,'R V:', COF)
CALL FREAD (-2, 'NUMBER', NCF)
CALL FREAD (-2,'ENDLINE', 'STREAM')
CALL FBEAD (5,'I V:',IPS)
CALL FREAD (-2, ${ }^{\prime}$ NUMBER', NPOS)
GRITE (6, 150)

WRITE (6,159) (COF (J), J=1,NCF)
159 PORMAT (' HAVELENGTE COEFFS: . 5 G 16.7)
FRITE $(6,161)$

+ POSN WAVELENGTH',T98, (DU) (DP) (DU.DP) ')
DO 250 NT $=1$. NPOS
MID $=\operatorname{IPS}(N T)$
$I B=M I D-10$
$I E=M I D+10$
DO $251 \mathrm{~J}=1,10$
$I X=M I D-J$
IF (IN(IX+1)-IN(IX).GE. 100) GO TO 252
IF (IX.LE. 3) GO TO 252
251 CONTINUE
GO TO 253
252 IB $=$ IX +1
253 DO $254 \mathrm{~J}=1$, 10
$I X=M I D+J$
IF (IN(IX-1)-IN(IX).GE. 100) GO TO 255
254 CONTINUE
GO TO 256
255 IE = IX - 1
256 NPTS $=$ IE $-I B+1$
IF (NPTS.LE. 10) WRITE $(6,155)$ MID
155 FORMAT (ONOT ENOUGH PTS FOR SPLINE AROUND MINIMUM AT'. I5)
IF (NPTS.LE.10) GO TO 250
$I X=0$
DO $257 \mathrm{~J}=\mathrm{IB}$. IE
$I X=I X+1$
$X(I X)=F L O A T(J)$
$Y(I X)=I N(J)$
257 CONTINUE
$M=10 * N P T S-9$
DO $300 \mathrm{~J}=1$. M
$T(\mathrm{~J})=I B+0.1 *(\mathrm{~J}-1)$
300 CONTINUE

Appendix II

Listing of Computer Programs
CALL SPLINE (NPTS,M,EPSLN, X,Y,T, PROXIN,SS,SS1,SS2)
XM = FLOAT (MID)
CALL SPLINV (XM, V,SL,SD)
IF.(SL.EQ.O.0) GO TO 249
$\operatorname{ISP}=\operatorname{IFIX}(S I G N(1.1, S L))$
260 SLP $=$ SL
$X M P=X M$
$X M=X M P-0.5 * I S P$
CALL SPLINV (XM, V,SL,SD)
IF (SL.EQ.0.0) GO TO 249
$I S=$ IFIX (SIGN(1.1,SL))
IF (IS.EQ.ISP) GO TO 260
$263 \mathrm{AA}=(S L-S L P) /(X M-X M P)$
$B B=S L-A A * X M$
$\mathrm{XMN}=-\mathrm{EB} / \mathrm{AA}$
CALL SPLIND (XMN, V,SLN,SD)
ISN $=\operatorname{IFIX}(S I G N(1.1, S L N))$
IF (ISN.NE.ISP) GO TO 261
IF (ABS (XAN-XMP).LE. 0.0015) GO TO 265
$X M P=X M$
SLP $=$ SL
$I S P=I S$
GO TO 262
261 IF (ABS (XMN-XM).LE. 0.0015) GO.TO 265
262 XM $=\mathrm{XMN}$
SL $=$ SLN
IS $=$ ISN
GO TO 263
$265 \mathrm{XM}=\mathrm{XMN}$
249 DO $301 \mathrm{~J}=3$, M
IF (T (J) .GT.XM) GO TO 302
IBOTM $=\mathrm{J}$
301 CONTINUE
302 IBB $=\mathrm{J}+1$
DO $303 \mathrm{I}=\mathrm{IBB}, \mathrm{M}$
IF (SS(I).LE.SS (I-1)) GO TO 305
$J R=I-10$
$J L=I-20$
IF (JL.LE.IBB) JL $=I B B-1$
$I H=(J L+I) / 2$
IP (JR.IT.IH) JR = IH
$\mathrm{D}=\mathrm{SS}(\mathrm{JR})-\mathrm{SS}(\mathrm{JL})$
IF (D.LE.O.O) GO TO 303
$X T=(S S(I)-S S(J L)) *(J R-J L) / D+J L$
$X T=I B+0.1 *(X T-1.0)$
IF (T(I)-XT.LT.O.4) GO.TO 303
$L R T=(I+J R) / 2$
GO TO 306
303 CONTINUE
305 LRT $=\mathrm{I}-1$
306 IBB $=$ IBB - 3
$I E=I B B-2$
DO 307 IX $=1$. IE

Appendix II

Listing of Computer Programs

```
    I = IBB - IX
    IF (SS(I).lEE.SS(I+1)) GO TO 308
    JR = I + 20
    JL=I + 10
    IF (JR.GE.IBB) JR=IBB + 1
    IH = (I+JR)/2
    IF (JL.GI.IH) JL = IH
    D = SS(JR) - SS(JL)
    IF (D.GE.0.0) GO TO 307
    XT = (SS(I)-SS(JL))* (JR-JL)/D + JL
    XT = IB + 0.1*(XT-1.0)
    IF(XT-T(I).LT.0.4) GO TO 307
    LLT:= (I+JL)/2
    GO TO 309
307 CONTINUE
308 LLT = I+1
309 IF (SS(LLT).GT.SS(LRT)) GO TO 310
    VEL = SS (LLT)
    DO 311J = IBB, LRT
    IF (SS(J).GT.VEL) GO TO 312
311 CONTINOE
312 LRT = J-1
    GO TO 314
310. VEL = SS (LRT)
    DO 313.J=LLT, IBB
    IF:(SS(J).LE.VEL) GO TO 315
313 CONTINOE
315 LLT = J
314 XLEN = (LRT-LLT)/10.0
    HHT = VEL - SS (IBOTM)
    IO = 1
    IF (XLEN.GT.1.0) GO TO 319
    AREA = 0.0
    IO = 0
    XVT = 1.0
    GO TO 325
319 AR = 0.0
    DO 320 J = LLT, LRT
    AR=AR + (VEL-SS(J))
320 CONTINUE
    AREA = AR/10.0
    AR2 = AR/2.0
    AR = 0.0
    DO 321 J = LLT, LRT
    AR = AR + (VEL-SS(J))
    IF:(AR.GE.AR2) GO TO 322
321 CONTINUE
322 FR = (AR2-(AR-(VEL-SS (J)))) / (VEL-SS(J))
    XWT = J-1+0.5+FR
    XWT = IB+0.1*(XHT-1.0)
325./1 = 0.0
    V2=0.0
    DO 331 J = 1, NCF
```

Appendix II
Listing of Computer Programs

```
    W1 = W1 + COF (J) *XM** (J-1)
    W2 = W2 + CoF(J)*XWT**(J-1)
331. CONTINOE
    IF (IO.EQ.O) H2 = 0.0
    323 WRITE (6,160) NPTS,MID,XM,W1,XWT;W2,HET,XLEN,AREA
    160 FORMAT ('0',I2,' PTS AT',I5,4X,2F11.3,15X,2F11.3,15X,
    + 2F8.1,F12.3)
    250 CONTINUE
    STOP
    END
C
    SUBROUTINE SPLINE (N,M,EPSLN,X,Y,T,PROXIN,SS,SS1,SS2)
C COMPUTES NATURAL CUBIC SPLINE. ALSO GETS INTEGRAL OVER KNOTS.
C FINALLY, EVALUATES SPLINE (ES',S'') at varIouS abSCISSAE.
C SOURCE: GREVILLE IN <MATH METHODS FOR DIGITAL COMPUTERS>
C VOL II RALSTON/WILF INTEREOLATION ON N PAIRS,
C (X,Y)-VALUES AT M T-VALOES. INTEGRAL = PROXIN.
C SPLINE AND DERIVATIVES IN M SS-,SS1-,SS2-VALUES.
C SS2(X) ARE FOUND BY SOR wITH CONVERGENCE PARAMETER EPSLN.
    REAL X(25), Y(25), B(25)
    REAL T(220),SS(220),SS1(220),SS2(220)
    REAL H(25), DELY(25),H2(25),DELSQY (25),S2(25),C(25),S 3(25)
    N1 = N-1
    H(1) = X (2)-X(1)
    DELY(1) = (Y(2)-Y(1))/H(1)
    DO 52 I = 2,N1
    H(I) = X(I+1)-X(I)
    H2(I) = H(I-1)+H(I)
    B(I)=0.5*H(I-1)/H2(I)
    DELY(I):= (Y(I+1)-Y(I))/B(I)
    DELSQY(I) = (DELY(I)-DELY(I-1))/H2(I)
    S2(I) = 2.0*DELSQY(I)
    52C(I)=3.0*DELSQY(I)
    S2(1)}=0.
    S2(N)=0.0
    OMEGA = 1.071797
    5 ETA = 0.0
    DO 10 I = 2. N1
    H=(C(I)-B(I)*S2(I-1)-(0.5-B(I))*S2(I+1)-S2(I))*OMEGA
    IF (ABS(W).LE.ETA) GO TO 10
    ETA=ABS(目)
    10 S2(I)=S2(I)+日
    IF (ETA.GE.EPSLN) GO TO 5
    DO 53 I = 1, N1
    53 S3(I)=(S2(I+1)-S2(2))/H(I)
    AR=DELY(N1) +H(N1)*S2(N1)/6.0
    AL = DELY(1)-H(1)*S2(2)/6.0
    PROXIN = 0.0
    DO 62 I = 1, N1
    62 PROXIN = PROXIN*0.5*H(I)*(Y(I) *Y(I*1))
    # -H(I)**3*(S2(I)+S2(I+1))/24.
    IF (M.LE.O) RETURN
    GO TO 15
```


Appendix II

Listing of Computer Programs
ENTRY SPLINV (ARG, SP, SP1,SP2)
C COMPUTES SPLINE AND ITS 1ST 2 DERIVS AT 'ARG'; RETNS SP,SP1.. $M=1$
$T(1)=A R G$
$15 \mathrm{DO} 61 \mathrm{~J}=1 \mathrm{M}$
$I=1$
IF.(T(J)-X(1)) 58.17,55
55 IF (T (J) -X(N)) $57,59,580$
56 IF (T (J) $-X(I)) 60.17 .57$
$57 \mathrm{I}=\mathrm{I}+1$
GO TO 56
$58 \mathrm{SS}(\mathrm{J})=\mathrm{AL*}(\mathrm{~T}(\mathrm{~J})-\mathrm{X}(1))+\mathrm{Y}(1)$
SS1(J) = AL
$\operatorname{SS2(J)}=0.0$
GO TO 61
$580 \mathrm{SS}(\mathrm{J})=\mathrm{AR} *(\mathrm{~T}(\mathrm{~J})-X(N))+Y(N)$
SS1(J) = AR
SS2 (J) $=0.0$
GO TO 61
$59 \mathrm{I}=\mathrm{N}$
$60 I=I-1$
17 HT1 $=T(J)-X(I)$
$\mathrm{HT} 2=T(\mathrm{~J})-\mathrm{X}(\mathrm{I}+1)$
PROD $=$ HT1*HT2
SS2(J) = S2(I) + HT $1 * S 3(\mathrm{I})$
DELSQS $=(S 2(I)+S 2(I+1)+S S 2(J)) / 6.0$
$\operatorname{SS}(J)=Y(I)+H T 1 * D E L Y(I)+P R O D * D E L S Q S$
$\operatorname{SS} 1(\mathrm{~J})=\operatorname{DELY}(\mathrm{I})+(\mathrm{HT} 1+\mathrm{HT} 2) * D E L S Q S+$ PROD*S3(I)/6.0
61 CONTINUE
$S P=S S(1)$
SP1 = SS1 (1)
SP2 = SS2(1)
RETURN
END

Appendix II
Listing of Computer Programs

```
C "PLOTT"
C
    REAL*4 MULT,TITLE(20)
    INTEGER*2 IN(4000),HEX00/2F0 FO/,NX,NH,
    * F(9) /'(1','H9',',I',5,',' ', ', 'X,',1H',**)
    READ (5,1001) TITLE
1001 FORMAT (20A4)
    CALL FREAD (-2,'ENDFILE',1)
    READ (1) (IN (I), I=1,2000)
    READ (1,END=2030) (IN(I),I=2001,4000)
2030 CALL FREAD (5,'4I:',NMIN,NMAX,IBOT,ITOP,&9999)
    IF (NMAX.LE.NMIN .OR. NMAX.LE.O) GO TO 2030
    IF (NMIN.IE.O) NMIN = 1
    IF (NMAX.GT.4000) NMAX = 4000
    IF (IBOT.IT.O .OR. IBOT.GE.999) IBOT = 0
    IF (ITOP.LE.O .OR. ITOP.GT.999) ITOP = 999
    IF (ITOP-IBOT.GE. 124) GO TO 2010
    IF (999-IBOT.GE. 124) GO TO 2011
    ITOP =999
    IBOT = 875
    GO TO 2010
2011 IF (ITOP.GE.124) GO TO 2012
    ITOP = 124
    IBOT = 0
    GO TO 2010
2012 IMID = (ITOP+IBOT) / 2
    ITOP = IMID * 62
    IBOT = IMID - 62
2010 MOLT = 124.0 / FLOAT (ITOP-IBOT)
    ZER = 1.001 - MULT*IBOT
    SC = 1.0/ MULT
    GRITE (6.1051) TITLE,IBOT,ITOP,SC
1051 FOGMAT ('1',20A4.//', BOTTOM VALOE =',I5,10X,'TOP VALUE =',
    +I5.15X.'SCALE =',F7.3.'/ PRINT POSN*.//)
    DO. 2001 NPT = NMIN, NMAX
    NX = IN (NPT) * MULT + ZER
    IF (NX.GE.1 . AND. NX.LE. 125) GO TO 2040
    IP (NX.LE.0) WRITE (6,226) NPT
    IF (NX.GT.125) WRITE (6.227) NPT
    GO TO 2001
2040 NH=NX/100
    F(5) = NH + HEXOO
    NX = NX-100*NH
    F(6) =NX/10*256 + NX-NX/10*10 + HEX00
    MRITE (6,F) NPT
2001 CONTINUE
    GO TO 2030
9999 WRITE (6,1052)
1052 FORMAT ('1')
    STOP
    226 FORMAT (*9'.I5,*<')
    227 FORMAT ('9',I5,125X,'>'0)
    END
```


APPENDIX III

THE RATIO OF TOTAL TO SELECTIVE ABSORPTLON

It has long been known that the ratio of total to selective absorption [R] for the (UBV) photometric system is not a constant depending only on the shape of the interstellar reddening curve, but is also a function of the colour of the star being observed (e.g. Blanco 1956). This additional effect is caused by the wide bandpass of the (UBV) filters, allowing the effective wavelengths of the filters to shift with different stellar intensity gradients. This must be taken into account if we want to derive the intrinsic colours of the carbon stars or their distances, since their colour excesses will not be the same as for the bluer companions.

Previous studies of this effect show that the value of R increases toward later spectral types, but the actual numerical results for very cool stars are not agreed upon. Blanco and Lennon (1961) found an increase from 3.1.for early-type stars to 3. 7 for α Ori (M2 Ia, $B-V=1.86$), the ratio being insensitive to colour excess for the early-type stars but steadily decreasing with colour excess from about type ko onuards. Schmidt (1956) found B to increase with colour excess for all spectral types except N, and found a value of 4.25 for three carbon stars, Which was relatively insensitive to the excess. Similarly, Honeycutt (1972) found R to be relatively constant at a value of 3. 8 for two carbon stars with $B-V=2.5$.

In an attempt to eliminate these discrepancies and to define the variation of the R-values with intrinsic colour and colour excess this problem vas re-examined.

The ratio of total to selective absorption is given by

$$
\begin{equation*}
R=A(V) / E(B-V)=A(V) /[A(B)-A(V)] \tag{33}
\end{equation*}
$$

where $A(i)=-2.5 \log \left\{\frac{\int_{0}^{\infty} \tau^{X}(\lambda) \phi_{i}(\lambda) I(\lambda) d \lambda}{\int_{0}^{\infty} \phi_{i}(\lambda) I(\lambda) d \lambda}\right\}$.
The transmission function of the i'th filter-cell combination is given by $\phi_{i}(\lambda)$, and the star's spectral intensity distribution by $I(\lambda)$, and the transmission function of X units of interstellar matter by $\tau^{X}(\lambda)$

Where

$$
\begin{equation*}
\tau(\lambda)=10 * *-\left[\delta_{m}(\lambda)-\delta_{m}(\infty)\right] / 2.5 \tag{35}
\end{equation*}
$$

$\delta^{(}(\lambda)$ is the usual ordinate of the interstellar reddening curve and $\delta_{m(\infty)}$ is the value of the interstellar absorption extrapolated to infinite wavelength.

The reddening curve has teen taken from Underhill and Halker (1966) and normalized to give $A(V)=0$ and $E(B-V)=1$:

$$
\begin{align*}
& \delta_{m}(\lambda)=2.23\left(\lambda^{-1}-1.83\right) \text { for } \lambda^{-1}<2.25 \\
& \delta_{m}(\lambda)=1.42\left(\lambda^{-1}-1.59\right) \text { for } \lambda^{-1}>2.25 . \tag{36}
\end{align*}
$$

The parameter $\delta_{\text {II }}(\infty)$ is essentially a free parameter and has been
set to 3.12 to give a value of $\mathrm{B}=3.20$ for early-type stars. This is a widely accepted value which seems to hold for most regions in the galaxy. Johnson (1968) concludes that 3.0 is the minimum possible value and cites several cases of much higher values. Other authors prefer R values in the range 3.1 to 3.2 (e.g. Johnson and Borgman 1963, Schmidt-Kaler 1965).

The filter transmission functions have been taken from Matthews and Sandage (1963), while the stellar intensity distributions are mainly from Willstrop (1965). supplemented by the early-type calibrations of Hayes (1970) and of oke and Schild (1970) . Willstrop's data cover the wavelength range 4000 A to 6500 A at 25 A intervals for many types of stars, including one S-star, one R-star and two N-stars. The short wavelength range necessitated extrapolation to the filter limits of 3600 a and 7200 A. This did not affect the results, however, since the agreement with Hayes and with oke and Schild (corrected for Balmer line absorption) for those stars in common was quite good. Nor were the late-type stars affected (where the extrapolation was less certain), as a result of the low spectral intensity shortward of 4000 and the low filter transmission longward of 6500 a. The numerical integrations used points at 100 a intervals after it had been ascertained that closer spacing affected the results negligibly.

The results are presented in Figures 16 and 17. Note that the result for the N-stars $(B-V=2.4)$ is in good agreement with that found by Schmidt, while the value for the M-stars $(B-y=1.6$,
$\mathrm{B}=3.7$) compares favourably with the observational result of lee (1970). who found $R=3.6 \pm 0.3$ from. infrared photometry of M-stars. The results for blackbodies of various temperatures are also shown in Fig. 17. These have been used as a guide.. in extrapolating the observed variation to redder stars.

To quantize these results, polynomials were fitted to the reddening curves of Fig. 16; polynomials were again used to define the variation of the coefficients with intrinsic colour. The coefficients of this second set of polynomials are given in Table 22.

During the course of these calculations it was noticed that the visual absorption $A(V)$ is a function of the star's intrinsic colour as well as the actual amount of intervening interstellar matter (X). Using the definition of X as in eqn. 35 this relation is given by

$$
\begin{equation*}
A(V)=\left[1.042-0.020^{*}(B-V)_{0}\right] x-0.00385 \mathrm{X}^{2} \tag{37}
\end{equation*}
$$

to good accuracy for all types of stars. This effect is caused by the shift of the effective wavelength of the y filter and simply means that the redder stars are absorbed less. This term uill produce a differential change in $A(V)$ of about 0.1 magnitude for a colour excess of $E(B-V)=1.0$ only if tyo stars differ in intrinsic colour by (B-V) $>$ 3.0. . Hence this term would usually be quite negligible.

The accuracy of the calculated R values can be no better than that of the zero point value $R=3.2$, which is generally
assigned an uncertainty of ± 0.2 or 0.3 (p.e.). The relative accuracy for comparison of early and late-type stars, however, should be somewhat better than this.

Figure 16. R ys $R(B-V)$ for various types of stars

Figure 17. $\quad \mathrm{A}[\mathrm{C} \mathrm{E}(\mathrm{B}-\mathrm{V})=0]$ VS $(\mathrm{B}-\mathrm{V})_{0}$

$$
\begin{gathered}
G(m)=\sum_{i=0}^{5} q(m, i) *(B-V)_{0} * * i \\
R\left[E\{B-V),(B-V)_{0}\right]=\sum_{m=0}^{3} q(m) * E(B-V) * * m
\end{gathered}
$$

TABLE 22. COEEFICIENTS OF POLYNOMIALS TO DETERMINE R FROM E (B-V) AND (B-V)

APPENDIX IV

COHERENCY TABLES

This appendix contains, in tabular form, the computed coherency values for each synthetic spectrum when compared with the various observed stellar spectra. The tabular entries are the average coherency values calculated with a 5% power cutoff level. The model parameters for each entry are indicated on the left for the microturbulence and ${ }^{13} \mathrm{C} /{ }^{12 C}$ ratio [R] and along the bottom for the $X(C N O)$ value. Note that these parameter values are not always in a uniform sequence; irregularities are sometimes indicated by double lines separating the columns. Each table is also marked with the parameter values of the deduced coherency peak and the mean synthetic spectrum level [\bar{S}] at the peak.

The location of the coherency peak was determined by mental interpolation in the table, with the aid of pencil and graph paper. An attempt was made to derive the peak location by least-squares fitting a three-dimensional ellipsoid to the coherency data, but this was not successful as, in fact, an ellipsoid is a poor approximation of the actual functional dependence of the coherency on the three parameters.

19 Psc with model K12
Coherency feak at $(X, \xi, R, \bar{S})=(0.80,3.5,0.050,0.491)$

19 Psc with model K24
Coherency peak at $(X, \xi, R, \bar{S})=(0.19 .3 .75,0.057 .0 .443)$

19 Psc with model K26
Coherency peak at $(X, \xi, R, \bar{S})=(0.10,3.75,0.04,0.455)$

2 Psc with model K12
Coherency peak at $(X, \xi, R, \bar{S})=(0.95,3.25,0.054,0.476)$

Z Psc with model K26
Coherency peak at $(X, \xi, R, \bar{S})=(0.11,3.4,0.058,0.432)$

X Cnc with model K 26
Coherency peak at $(X, \xi, R, \bar{S})=(0.17,3.8,0.032,0.345)$

UU Aur with model K26
Coherency peak at $(X, \xi, R, \bar{S})=(0.14,4.8,0.040,0.351)$

Y CVn with model K12

Coherency peak at $(X, \xi, R, \bar{S})=(1,3,5.3,0.45,0.265)$

Y CVn with model K26
Coherency peak at $(X, \xi, R, \bar{S})=(0.20,5.0,0.40,0.200)$

$C(0.21,4.9,0.41)=.95452$
$C(0.22,4.8,0.42)=.95443$

APPENDIX V

PARAMETERS OE SPECIEIC MODEL ATMOSPHERES

