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Abstract 

The present state of planetary exospheres is determined largely by satellite and ground 

based observations which are predominantly measurements of the emissions of exospheric 

constituents. Such observations are responsible for the growing recognition of the impor

tance of nonthermal collisional processes in determining the distribution and escape of 

species in planetary exospheres. Nonthermal processes provide an important enhanced 

escape mechanism for lighter species such as hydrogen. They may also make escape pos

sible for heavier species, such as oxygen, nitrogen and carbon, for which thermal escape is 

very small. Nonthermal processes have been employed in order to understand discrepan

cies in the terrestrial helium budget. They have also been used to reconcile discrepancies 

between observed and calculated escape fluxes for hydrogen on Earth. Nonthermal pro

cesses have also been utilized to explain features observed in the exospheres of other 

planets. These include the measured deuterium-to-hydrogen ratio on Venus and the ex

tended hot oxygen corona on Mars. Given the importance of nonthermal processes it is 

clear that exospheric conditions are determined to a large extent by collisional processes 

and that the collisionless model must be reconsidered. 

The formation of translationally energetic (or hot) oxygen coronae via the nonthermal 

process of dissociative recombination of 0^ in the atmospheres of Venus and Mars is 

examined using both hydrodynamic and kinetic theory approaches. Of interest is the 

distribution of hot oxygen at altitude resulting from production and transport from lower 

altitudes. It is found that an extended hot oxygen corona can be predicted from either 

approach, although the magnitude and extent of the predicted coronae vary significantly. 

Product velocity distribution functions describing the rate of production of hot atoms 



for the atomic systems H - H + , D-H - f , O - H , and O - D are calculated for a variety of 

nonthermal processes, including direct-elastic and charge-exchange collisions. The cal

culations are carried out using a kinetic theory approach, and utilize direct numerical 

integration techniques. The calculations incorporate realistic, quantum-mechanical col

lision cross sections for each system so as to accurately describe the kinematics of the 

collision process. Energy exchange rate coefficients for each of the atomic systems are 

calculated and compared with results obtained using a more complicated Monte Carlo 

approach. The product velocity distribution functions are also used to estimate the es

caping fractions of H and D as a result of nonthermal direct elastic energization by hot 

oxygen atoms. These kinetic theory calculations are compared to work done by other 

workers using Monte Carlo methods incorporating approximate and quantum mechanical 

cross sections. The calculations show that the fraction of hot deuterium produced via 

direct energization by hot oxygen, while less than the fraction of hot hydrogen, is not 

negligible as previously believed. 

A n altitude dependent, kinetic theory approach is used to calculate the rate of escape 

of atmospheric constituents, in the context of escape resulting from energization of neutral 

atmospheric species via nonthermal processes. The reduction of the escape rate by the 

ambient atmosphere is included through an altitude dependent parameter describing 

the probability of escape, although the effect of thermalization via collisions with the 

background is neglected. Temperature and density profiles used in the calculations are 

taken from available atmospheric data and from atmospheric models, and escape fluxes 

of hydrogen and deuterium are estimated for Venus and Earth. 

111 



Table of Contents 

Abstract ii 

List of Tables vii 

List of Figures ix 

Acknowledgements xii 

1 Introduction and Basic Theory 1 

1.1 Introduction 1 

1.2 A n Overview of the Exospheric Problem: Basic Theory 3 

1.3 Nonthermal Processes 10 

1.4 Kinetic Theory and the Boltzmann Equation 16 

1.5 A n Overview of the Thesis 17 

2 Diffusion and Boltzmann Equation Models of Hot Oxygen Coronae 22 

2.1 Introduction 22 

2.2 Constant Temperature Model 31 

2.3 Non-constant Temperature Model 41 

2.4 The Linear Boltzmann Equation Model 54 

2.4.1 Discretization Procedure and Solution 58 

2.5 Collisional and Diffusional Timescales 77 

2.6 Summary 80 

iv 



3 Nonthermal Production of Energetic Hydrogen and Deuterium 83 

3.1 Introduction 83 

3.2 Collision Cross Sections 92 

3.2.1 Quantum Mechanical Scattering 93 

3.2.2 Calculation of the Phase Shifts 95 

3.2.3 Cross Sections for H+-H and D+-H 96 

3.2.4 Cross Sections for O-H and 0-D 101 

3.3 Energy Exchange Rate Coefficients 107 

3.3.1 Theory 109 

3.3.2 Time Evolution of the Average Test Particle Energy 114 

3.3.3 Results and Discussion 116 

3.4 Product Velocity Distribution Functions 137. 

3.4.1 Theory 137 

3.4.2 Total Collision Rates 144 

3.4.3 Rate of Production of Escaping Atoms 145 

3.4.4 Results and Discussion 146 

3.5 Summary 177 

4 Kinetic Theory Calculations of Nonthermal Escape Fluxes 179 

4.1 Theory 182 

4.2 Summary 189 

5 Summary and Suggestions for Future Research 195 

A Density Profiles in a Collisionless Exosphere 199 

B Details from Chapter 2 206 
B . l Modified Fourier's Law 206 

v 



B.2 Symmetrization of the Collision Kernel 208 

B.3 Symmetrization of the Discretized Collision Operator 210 

B.4 Solution of the Eigenvalue Problem 212 

C The Differential Col l i s ion Cross Section 215 

D Scatter ing Theory 219 

D . l Quantum Mechanical Scattering 219 

D.2 Calculation of the Phase Shifts 223 

D. 3 Semi-Classical (WKB) Phase Shift Approximation 228 

E Detai ls of the P roduc t ion of Ho t Atoms 230 

E. l Derivation of £ 2 - # 230 

E.2 Derivation of g + g 231 

E.3 Transformation from d£2 to d3d£ 231 

E.4 Transformation from x to the scattering angle 9 232 

E.5 Derivation of the hard sphere product velocity distribution function . . . 233 

E.6 Interpolation scheme for the calculation of integrals over reduced energy . 238 

F Der iva t ion of the H a r d Sphere Col l i s ion Frequency 240 

Bib l iography 244 

vi 



List of Tables 

1.1 Planetary escape velocities and energies 8 

1.2 Planetary exospheric values for hydrogen escape 8 

2.3 Diffusional versus collisional timescales for Mars 78 

2.4 Diffusional versus collisional timescales for Venus 79 

3.5 Energy exchange rate coefficients for H + - H 117 

3.6 Energy exchange rate coefficients for H + - H from Hodges and Breig . . . 117 

3.7 Energy exchange rate coefficients for H + - D 124 

3.8 Energy exchange rate coefficients for 0 -H and 0-D 129 

3.9 Timescales for the time evolution of the average energy for H 133 

3.10 Timescales for the time evolution of the average energy for H + 134 

3.11 Comparison of timescales for the time evolution of the average energy . . 136 

3.12 Energy exchange rate coefficients for H + - H 159 

3.13 Energy exchange rate coefficients for H + - D . . 160 

3.14 Energy exchange rate coefficients for O-H and O-D 161 

3.15 Comparison of energy exchange rate coefficients for hard spheres 161 

3.16 Rate of production of escaping H on Venus 164 

3.17 Rate of production of escaping H on Earth 165 

3.18 Rate of production of escaping H on Mars 166 

3.19 Rate of production of escaping H on Earth from Hodges & Breig . . . . 169 

3.20 Rate of production of escaping D on Venus 170 

3.21 Rate of production of escaping D on Earth 170 

vii 



3.22 Rate of production of escaping D on Mars 171 

3.23 Rate of production of escaping H on Venus from 0 - H and O D interactions 172 

3.24 Rate of production of escaping H on Earth from 0 - H and O D interactions 172 

3.25 Rate of production of escaping H on Mars from 0 - H and O D interactions 173 

3.26 Escape fraction for hot H from 0 - H elastic collisions on Venus 176 

3.27 Escape fraction for hot H and hot D from elastic collisions with 0 . . . . 176 

A.28 Exospheric particle classes 203 

viii 



List of Figures 

1.1 Stratification of the terrestrial atmosphere 4 

2.2 Observed Martian density profiles 27 

2.3 Observed Venusian density profiles 28 

2.4 Stratification of the atmosphere by collisional property 29 

2.5 Martian hot oxygen density (diffusion equation) 35 

2.6 Venusian hot oxygen density (diffusion equation) 36 

2.7 Martian hot oxygen density temperature dependence (diffusion equation) 38 

2.8 Venusian hot oxygen density temperature dependence (diffusion equation) 39 

2.9 Hot oxygen densities at large altitudes for Venus and Mars 40 

2.10 Solutions of the collisionless, sourceless momentum conservation equation 48 

2.11 Time dependence of hot oxygen density and temperature on Mars . . . . 63 

2.12 Time dependence of hot oxygen density and temperature on Venus . . . 64 

2.13 Time evolution of the Martian exospheric distribution function 66 

2.14 Time evolution of the Venusian exospheric distribution function 67 

2.15 Energy distribution function of hot oxygen on Mars 68 

2.16 Energy distribution function of hot oxygen on Venus 69 

2.17 Maxwellian fit of the energy density distribution 71 

2.18 Maxwellian fit of the Venusian energy density distribution 72 

2.19 Hot oxygen density profile for Mars derived from ballistic component . . 73 

2.20 Hot oxygen density profile for Venus derived from ballistic component . . 74 

3.21 Schematic of the charge-exchange and LTA 91 

ix 



3.22 Interaction potentials for H + - H 97 

3.23 Differential cross sections for H + - H 98 

3.24 Differential cross sections for D + - H 99 

3.25 Total elastic collision cross sections 100 

3.26 Interaction potentials for O-H 102 

3.27 Total elastic collision cross sections 104 

3.28 Total elastic collision cross sections 105 

3.29 Differential cross sections for O-H/O-D 106 

3.30 Fits to the LTA momentum transfer cross section 120 

3.31 Temperature dependence of k% for the LTA 121 

3.32 Dependence of energy exchange rate coefficients on bath temperature for 

H+-H 122 

3.33 Dependence of energy exchange rate coefficients on bath temperature for 

D+-H 126 

3.34 Details of the integrand in calculation of the energy exchange rate coefficient 127 

3.35 Convergence of the energy exchange rate coefficient 128 

3.36 Time evolution of the average energy in a relaxing H + - H system 131 

3.37 Time evolution of the average energy in a heating H + - H system 132 

3.38 Comparison of the time evolution of the average proton energy 135 

3.39 Schematic of an elastic binary collision 138 

3.40 Coordinate system for the calculation of collisional production 141 

3.41 Product velocity distributions for the D P E cross section for H + - H . . . . 148 

3.42 Product velocity distributions for the C E cross section for H + - H 149 

3.43 Product velocity distributions for the LTA cross section for H + - H . . . . 150 

3.44 Product velocity distributions for H + - H 152 

3.45 Product velocity distributions for the DIR cross section for H + - D . . . . 154 



3.46 Product velocity distributions for the C E cross section for D + - H 155 

3.47 Product velocity distributions for the DIR cross section for O - H 156 

3.48 Product velocity distributions for the D I R cross section for O - D 157 

3.49 Dependence of charge exchange rate coefficients on bath temperature for 

D+-H 163 

3.50 Product velocity distribution functions for O - H and O-D escape producing 

collisions 175 

4.51 Geometry for a plane-parallel atmosphere 190 

4.52 Temperature and density profiles used as input for flux calculations on Venusl91 

4.53 Density profiles used as input for flux calculations on Earth 192 

4.54 Density profiles used as input for flux calculations on Earth 193 

4.55 Temperature profile used as input for flux calculations on Earth 194 

A.56 Graphical illustration of exospheric particle classes 202 

C . 57 Typical scattering configuration 216 

D. 58 Wave function scattering by a central potential 222 

E . 59 Geometry of the dynamics of an elastic collision 233 

xi 



Acknowledgments 

I would like to acknowledge the support, patient advice, and many helpful suggestions 

of Dr. B . D. Shizgal throughout the course of my graduate studies. His input and 

guidance have contributed greatly to this work. I would like to acknowledge the members 

of my supervisory committee, Dr. D. Oldenburg, Dr. G. Fahlman, and Dr. R. F. Snider, 

for their constructive comments and advice during the writing of this work. 

I also thank the many graduate students and post-doctoral researchers who took 

time from their own work to discuss various aspects of this work, to help out with 

the specifics of computer code, or just commiserate when things weren't working. K i , 

Andrew, Duncan, Heli, Francois, and Gianpierro - your support was much appreciated. 

I would also like to thank my sister, Julia, and my entire family for their unconditional 

support and encouragement throughout my graduate work. Their unwavering support 

and love helped me to focus on completion of this work through some difficult and 

tumultuous times. Without them, I am certain that I would not have been able to 

successfully complete this work. 

I wish to acknowledge the Chemistry Department and the computing resources which 

were made available to me throughout the course of this work. 

Finally, I would like to gratefully acknowledge the sources of financial support through

out my graduate studies. To the Natural Sciences and Engineering Research Council, the 

Canadian Society of Exploration Geophysicists Trust Fund, Canadian National Scholar

ship Program, the Department of Geophysics and Astronomy, and Dr. B . D. Shizgal I 

extend my many thanks for making my graduate studies possible. 

xn 



Chapter 1 

Introduction and Basic Theory 

1.1 Introduction 

The understanding of the composition, dynamics, and evolution of planetary atmo

spheres is important in many fields, including geophysics, astronomy, and atmospheric 

science. A critical part in the determination of the overall behaviour of planetary atmo

spheres is the behaviour of the exosphere. The exosphere is the high altitude region of a 

planetary atmosphere characterized by vanishingly small gas densities.1 As densities are 

so low, the mean free path of particles in the exosphere are exceedingly long, and gas 

kinetic energies may be sufficient to permit atoms to escape the planetary gravitational 

potential. The altitude where the mean free path is equal to the scale height, defined 

later, is the bottom of the exosphere, known as the exobase. Below the exosphere, the 

atmosphere is predominantly turbulent, well mixed, and dense enough to be collision 

dominated. In this region of the atmosphere, hydrodynamic or fluid theory is often used 

to characterize gas behaviour. Above the exobase, in the exosphere, densities are low, 

collisions are rare, and gases are distributed primarily according to diffusive equilibrium 

rather than turbulent mixing. Under such conditions, the kinetic theory of gases is more 

appropriate to describe the behaviour and character of exospheric species. 

In the real atmosphere, the transition from one regime to the other is gradual and 

continuous. However, early exospheric models considered the exobase as a discontin

uous division between collisional and collisionless regions of the atmosphere. Despite 

1 



Chapter 1. Introduction and Basic Theory 2 

this unrealistic treatment of the atmosphere, the discontinuous exobase model has been 

extensively employed in the interpretation of observations of Lyman-o: and Balmer-a 

emissions of atomic hydrogen in the exosphere.2-8 

Atoms in a range of altitudes above and below the exobase can attain speeds in excess 

of the planetary escape speed and escape from the planetary atmosphere. The escape 

process may thus be viewed as an 'evaporative' process where high energy particles 

are preferentially removed from the atmosphere. This thermal picture of escape was 

formulated by Jeans,9 and the escape flux resulting from this evaporative escape process 

is known as Jeans flux. Comparison of escape fluxes inferred from satellite measurements 

to those predicted by Jeans based on neutral exospheric temperatures clearly indicated 

that the thermal escape process alone was insufficient. It was suggested by Cole 1 0 that 

excitation of 'cold' atmospheric species could take place via nonthermal processes such 

as charge exchange. Such translationally energetic (or 'hot') nonthermal product atoms 

would then have sufficient energy to escape from the planetary atmosphere. Such hot 

atom populations have been observed by satellite and ground based techniques in the 

Earth's exosphere, 1 1 ' 1 2 and inferred from measurements made of Venus 1 3 , 4 and Mars . 6 ' 1 4 

The interest in hot atoms in the atmospheres of Venus and Mars is motivated by sev

eral factors. A thorough understanding of the hot atom populations is necessary to un

derstand observations of emissions in planetary exospheres made by instruments aboard 

spacecraft and from the ground. The long term evolution of planetary atmospheres, 

including the loss of hydrogen and oxygen related to the removal of water, requires an 

understanding of the transport and distribution of atomic species in the upper atmo

spheres of the planets. Accurate calculation of escape fluxes requires an understanding 

of the magnitude and extent of planetary hot atom populations. Such a description is 

also important in understanding and describing the interaction of planetary atmospheres 
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with the solar wind. For example, the effect of photoionization of energetic atoms in plan

etary exospheres and the subsequent interaction with the solar wind (pick-up, knock-on, 

and precipitation of photo-ions). There is also the 'direct' interaction of the solar wind 

'striking' the upper atmospheres of Venus and Mars, since these planets do not have 

(very strong) magnetic fields to deflect or slow the solar wind. 

A good overview of basic exospheric physics which emphasizes nonthermal escape was 

given in a recent paper by Shizgal and Arkos. 1 5 The review by Chamberlain 1 6 provides 

a very detailed theoretical description of the collisionless exosphere. Additional reviews 

dealing with the problem of the description of exospheric processes have been written by 

Hunten and Donahue,1 7 Tinsley, 1 8 Fahr and Shizgal1 and more recently by Hunten, 1 9 ' 2 0 

and Mahajan and Kar . 2 1 

1.2 An Overview of the Exospheric Problem: Basic Theory 

The basic concepts of planetary atmospheric escape were given by Jeans9 and ex

tended to the conventional collisionless thermal escape model by Chamberlain. 1 6 A pic

ture of the stratification of the atmosphere is illustrated in Figure 1.1. 

The lower region of the atmosphere where turbulent mixing of gases leads to a homo

geneous composition is called the homosphere. Above this region, turbulence ceases and 

the vertical distribution of individual atmospheric gases is determined by their respec

tive masses. In this region, called the heterosphere, the density profile n ?(r) of the ith 

constituent is determined by the balance of gravity and gas pressures. When these two 

opposing forces are equal we have the condition of hydrostatic equilibrium, given by 2 2 

dpi 
dr = nirriig 

(1.2.1) 
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Figure 1.1: Atmospheric divisions as a function of altitude for the terrestrial atmosphere. 
Indicated are the various divisions of the atmosphere, including the homosphere, hetero-
sphere, and exosphere. The curves represent average temperature profiles for the bulk 
neutral atmosphere for quiet and active solar periods. From Banks & Kockarts . 2 2 
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where g = GM/r2 is the gravitational acceleration, m; and T8 are the mass and (con

stant) temperature of the ith constituent, k is the Boltzmann constant, G is the universal 

gravitational constant, M is the planetary mass, and pi = ra,-fcT,- is the (partial) hydro

static pressure as given by the ideal gas law. If we substitute for g in equation (1.2.1) we 

have 

.dm GM 
kTi— = -ra,-m;—r-

or rz 

Integrating both sides yields 

rni drii _ GMrrii r dr 
•j Tii0 Tl{ kTi Jr0 

In (n t-/n 0) = ^̂ 7*' (l/r ~ l/ro) 

m{r) = n0exp[r/Hi(r)-r0/Hi(r0)] (1.2.2) 

where r0 is some reference level, n0 is the density of species i at r0, and where we have 

defined the scale height for species i as 

JcT-r2 hT 

*w = ̂  = ^ ) (1-2-3) 

Equation (1.2.2) is the barometric or hydrostatic density distribution. It is important 

to note that while we have included the correct radial dependence of the gravitational 

acceleration in deriving equation (1.2.2) the result is nonphysical in that the density n,-(r) 

is finite as r —> oo. This is a result of the fact that our assumption of hydrostatic equi

librium is no longer valid. As the density becomes vanishingly small, collisions become 

extremely rare and hydrodynamics breaks down. 

If we write z = r — r0, we have 
-GMrrii 

m(r) — n0exp 

= n0exp 

kTi 
GMrrii 

i kTir0 

(l/(r0 + z)-l/r0) 

(1/(1 + * / r 0 ) - 1) 
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Assuming that z/r„ < 1, we have that g « g(r0), constant, we may expand the first term 

of the exponential, yielding 

GMrrn 
rii(r) — n 0exp 

= n0exp 

kTirl 
z (1.2.4) 

The barometric density distribution given by equation 1.2.4 now vanishes as r —> oo, 

as we would physically expect, although we no longer correctly account for the radial 

dependence of the gravitational acceleration. 

The exobase or critical level, r c , is defined as the altitude for which the mean free 

path, the average distance between particle collisions, given by 

1 = - ^ - (1.2.5) 

is equal to the barometric scale height of the heaviest constituent, that is, £(rc) — H(rc). 

In equation (1.2.5), a is the energy independent total elastic collision cross section for 

the diffusing species and the background and N = i s the total density. 
i 

In the standard Chamberlain model, 9 ' 1 6 the atmosphere is considered collisionless 

above the exobase and collision dominated below it. Particles that reach the exobase 

from below and move upwards with speeds in excess of the escape speed, given by 
2GM 

c e s c = y — (1.2.6) 

will escape from the gravitational field of the planet. This model assumes that above 

the exobase the particles move on collision free trajectories determined by the plane

tary gravitational field. The classification of exospheric species into classes of particles 

such as ballistic, satellite, and escaping based on this model is discussed at length by 

Chamberlain, 1 6 and Fahr and Shizgal,1 and is summarized in Appendix A . In these 



Chapter 1. Introduction and Basic Theory 7 

models a Maxwellian distribution of particle velocities 

mc2 

2*rj ( 1 ' 2 ' 7 ) 

is assumed to exist at the exobase. The escape flux of particles moving radially outward 

with speeds in excess of the escape velocity (at the critical level) is determined by aver

aging over the outward directed velocity for speeds greater than the escape speed, that 

is 

e=o /•oo f6=0 

Fj = 2n / fmax cos 0 c3 d(cos 6) dc (1.2.8) 

so that the thermal or Jeans escape flux is given by 9 

Fj = y J ^ ( l + Ac)e'A< (1.2.9) I V rmr 

In equation (1.2.9), Tc and nc are the temperature and density of the escaping species at 

the exobase respectively, and the escape parameter, A c , is defined by 

A c = | ^ (1.2.10) 

kTc

 v ; 

where the total energy for escape is Eesc = \mc2

esc. The escape speeds and escape energies 

for hydrogen, deuterium, and oxygen from the terrestrial planets are shown in Table 1.1. 

Mars, the least massive of the three planets, has the lowest escape energy. The escape 

flux is determined by the ratio of the escape energy relative to the thermal energy, that is, 

by A c in equation (1.2.10). Table 1.2 compares the values of A c for the terrestrial planets; 

the very large value for Venus, arising from the low exospheric temperature, is evident. 

For Venus, thermal escape is insignificant at present, and nonthermal processes play a 

dominant role. However, Donahue2 3 has discussed the escape of primordial atmospheres 

from planetesimals for which A c is small and Jeans flux is significant. 

It is important to note that in equation (1.2.8) the three dimensional velocity in

tegral is carried out only over the upper half of the velocity space (6 > 0). Since the 
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Planet cf° (km/sec) EL (eV) (eV) EZc (eV) 
Earth 10.8 0.61 1.22 9.69 
Venus 10.2 0.54 1.08 8.60 
Mars 4.8 0.12 0 .25 1.91 

Table 1.1: Planetary escape velocities and energies. The values given are for an alti
tude corresponding to the exobase level for each planet (see Table 1.2). Neutral atmo
spheric temperatures are taken from Niemann et a l . , 2 4 Banks and Kockarts 2 2 and Fox 
and Dalgarno 2 5 for Venus, Earth and Mars, respectively. 

Planet rc (km) Tc {°K) A c Fj/rtc (cm/sec) 
Earth 500 1000 7.06 7.94xl0 2 

Venus 200 275 22.89 1.65xl0- 4 

Mars 250 300 4.65 3.39xl0 2 

Table 1.2: Planetary exospheric values for hydrogen escape. The exobase or critical level 
is at the altitude given by rc, the exobase temperature is given by T c , and the escape 
parameter at the exobase by A c . The Jeans' flux Fj is given with respect to the exobase 
density n c of hydrogen. 
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Maxwellian distribution function is isotropic, the flux would be zero if the lower hemi

sphere of the velocity space were not artificially removed. This model of atmospheric 

escape is an oversimplification. The actual distribution function at the exobase is not 

Maxwellian, because the escape process preferentially removes energetic atoms and non

thermal processes introduce them. The distribution that leads to an outward flow must 

be anisotropic, that is 

/(r,c) = r a a ;(r,c) + /™(r , c ,c?) (1.2.11) 

where 0 is the angle between the velocity c and the outward radial direction. Since the 

average of the Maxwellian distribution over all velocities is zero, the drift velocity is given 

by 

u(r) = | / ™ ( r , c ) c d c (1.2.12) 

It is reasonable to expect that escaping particles originate not only from the exobase 

but from a range of radial positions in the vicinity of the exobase. Hence, the differential 

escape flux found using equation (1.2.12), F(r)dr = n(r)u(r), depends on the radial 

position. The net escape flux is determined by the integral of F(r)dr over a range of 

radial distances in the vicinity of the exobase.26 This picture of atmospheric escape, 

as detailed by Lindenfeld and Shizgal 2 6 and Shizgal and Blackmore, 2 7 which considers 

both thermal and nonthermal escape as collisionally induced phenomena is discussed in 

Chapter 4. 

For rarified regions, such as in the exosphere, the behaviour of gases is best described 

by the kinetic theory of gases. Of principle interest to most workers in exospheric physics 

is the description of the bulk physical properties of the exospheric constituents, including 

the density, temperature, and heat conductivity. An important problem in this calcu

lation of the bulk physical properties is the proper treatment of the transition between 



Chapter 1. Introduction and Basic Theory 10 

the collision dominated lower atmosphere and the nearly collisionless upper exosphere. 

A quantity which categorizes kinetic theory problems in the exosphere is the Knudsen 

number, Kn, defined as the ratio of the mean free path of the gas and the local scale 

height, 

For small values of the Knudsen number, Kn <C 1, the system is considered to be 

collision dominated, and hydrodynamic equations such as the Navier-Stokes equation, 2 8 

are valid. In the other limit, Kn 1, the system is considered nearly collisionless, and 

it is necessary to employ kinetic theory in order to properly characterize the behaviour 

of gases. If the velocity distribution function of the system constituents is considered to 

be close to equilibrium, it is possible to use 'standard' methods such as the Chapman-

Enskog method, 2 9 to study the transport properties of the gas. Far from equilibrium 

systems, such as frequently encountered in atmospheric physics, are more difficult. Such 

systems are of interest in the present work. The region between the two Knudsen limits 

is considered a transition region with regard to the collisional properties of the system. 

It is here that hydrodynamics begins to break down. Kinetic theory remains valid for all 

Knudsen values (e.g. the hydrodynamic equations are readily derived from the equations 

of kinetic theory), although the generation of a rigorous kinetic theory solution valid over 

the entire range of Knudsen values is a formidable problem. 

1.3 Nonthermal Processes 

Nonthermal processes generally refer to collisional processes between exospheric species 

and translationally energetic species (both ions and electrons), generally of ionospheric 

origin. This includes processes such as charge exchange between hot plasmaspheric pro

tons and neutral exospheric hydrogen or deuterium (thought to be important for both 
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Earth and Venus), 

H+ + H H* + H + 

D + H+ D + + H* 

The products of such processes, labelled with an asterisk (*) are translationally energetic 

and incompletely thermalized. The result is the conversion of translationally energetic 

protons to translationally energetic hydrogen atoms, H*, with speeds in excess of the 

escape speed. A n important nonthermal process in the Martian exosphere is the disso

ciative recombination of Oj" with electrons, that is, 

The dissociation energy of the ion is divided between the product oxygen atoms which 

become translationally excited. Hot oxygen atoms may explain the maintenance of the 

nighttime terrestrial ionosphere by increasing the flux of energetic hydrogen from the 

plasmasphere via elastic collisions. In addition, hot oxygen in the plasmasphere cou

pled with charge exchange could provide an important source for plasmaspheric 0 + and 

heating of plasmaspheric ions. 3 0 

The present state of planetary exospheres is determined largely by satellite and ground 

based observations which are predominantly measurements of the emissions of exospheric 

constituents. These include Lyman-a and Lyman-/? emissions of atomic hydrogen at 

121.6 nm and 102.6 nm, respectively, emission of helium at 58.4 nm, and emission of 

atomic oxygen at 130.5 nm. Such observations are responsible for the growing recogni

tion of the importance of nonthermal processes in planetary exospheres. For example, 

the existence of a population of energetic H atoms on Venus was confirmed by emission 

observations by the ultraviolet photometer on Mariner 5 . 1 3 ' 2 Lyman-a emission indicated 

an exospheric altitude dependence characterized by two very different scale heights corre

sponding to thermal and hot H components not predicted by the Jeans' model. Evidence 

+ e 0* + 0* 
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of a similar hot corona of atomic oxygen in the Martian and terrestrial exospheres has 

also been discovered. 3 1 ' 7 ' 3 2 ' 6 ' 3 3 ' 3 4 Another observation not predicted by calculations of 

thermal escape rates are the mass spectrometer measurements by the Pioneer Venus Or-

biter, which recorded an enrichment of the deuterium to hydrogen (D/H) ratio in the 

exosphere of Venus by a factor of 100 relative to the terrestrial value. 3 5 - 3 7 This enrich

ment of deuterium relative to hydrogen is believed to arise from the enhanced escape of 

hydrogen relative to deuterium. Observations of terrestrial H escape flux also conflict 

with predictions based on thermal escape. The thermal Jeans' flux increases with exo

spheric temperature, in contrast to the results by Liu and Donahue 3 8 - 4 0 and Hunten and 

Strobel, 4 1 which demonstrated that the flux of hydrogen in all forms is equal to approx

imately 1.5xl0 8 c m _ 2 s _ 1 independent of exospheric temperature. It was consequently 

shown that a nonthermal charge-exchange model could account for the discrepancy be

tween the calculated H escape flux and the predicted thermal H escape flux.42"45 

Nonthermal processes provide an important enhanced escape mechanism for lighter 

species such as H . They may also make escape possible for heavier species, such as oxygen, 

nitrogen and carbon, for which thermal escape is very small. Nonthermal processes have 

been employed in order to understand a discrepancy in the terrestrial helium budget. 4 6 ' 4 7 

The production of 4 He is predominantly from the radioactive decay of 2 3 8 U , with an 

estimated flux of Fprod ~ (0.9 — 1.9)xl06 c m - 2 s e c - 1 . 4 8 For helium, the exospheric escape 

energy on Earth is approximately 2.5 eV; with typical exobasic conditions (nc = 106 

c m - 3 , Tc = 1000K) the thermal Jeans flux is Fj = 0.4 cm~ 2sec _ 1 , yielding a ratio of 

Fprod/Fj ~ (2 —4)xl0 6 (the abundance of 3 He is almost entirely extraterrestrial in nature, 

and does not affect the 4 He flux balance). Clearly, the calculated rate of outgassing of 
4 He is far greater than the loss due to thermal Jeans escape and the atmospheric helium 

content should be far above what is observed. In order to reconcile this, there must exist 

additional loss processes which remove helium from the atmosphere. Furthermore, as 
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helium is chemically inert there are no reactive processes to account for the observed 

discrepancy. Some sort of enhanced nonthermal escape mechanism is required in order 

to supplement the required remaining escape flux. Lie-Svendsen et a l . 4 7 and Rees and 

Lie-Svendsen4 9 recently studied several potential nonthermal mechanisms and suggested 

that the exothermic charge exchange reaction 

H e + + N 2 -» He + N+ + 9 eV 

originally proposed by Maier 5 0 could produce He atoms of sufficient energy for escape. 

The impact of nonthermal processes in planetary exospheres in the development of 

evolutionary models is extremely important. The Pioneer Venus Orbiter measurements 

of D / H enrichment on Venus mentioned previously have lead to the suggestion of a layer 

of water tens to hundreds of meters thick in the distant past. 5 1 ' 5 2 For Mars, a similar 

history of past water abundance has been suggested53 based on estimates from surface 

morphology from satellite data, 5 4 Earth based spectroscopy of H D O , 5 5 and measurements 

of isotopic fractionation1 of gases trapped in Shergottite-Nakhlite-Chassignite (SNC) 

meteorites. 5 6 , 5 7 However, the nonthermal processes which may have contributed to the 

loss of water on Mars and Venus appear to be different. Venus probably had its water 

primarily in the form of water vapour 5 8 because of the higher atmospheric and surface 

temperatures. This large amount of atmospheric water vapour would have created a dense 

population of atomic hydrogen via photodissociation, and conditions would have been 

favorable for bulk hydrodynamic loss. This process has been suggested to explain both the 

observed isotopic fractionation of noble gases and removal of large amounts of hydrogen 

(and thus, possibly, water). Unless exospheric temperatures were higher in the past 

than today, it appears that thermal escape is, in general, negligible on Venus. On Mars, 

nonthermal and thermal processes may have both played a large role in removing much 

1This refers to the preferential removal of lighter isotopes of a gas, leading to a modification of the 
expected isotopic ratio 
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of the original water, possibly aided by impact erosion early in the planet's his tory. 5 8 , 5 3 

A fair amount of water, in the form of ice, may still be trapped in the Martian regolith 

and polar caps. A mechanism for removal of the excess oxygen following dissociation of 

water and loss of hydrogen is still not definitively identified. 

The noble gases are another important constraint for models of planetary atmospheric 

evolution. Neutral noble gases atoms are chemically inert and do not have sinks due to 

interaction with crustal or other atmospheric species. Removal of noble gas atoms at the 

present time requires transformation of the neutrals to ionic species which can then take 

part in reactions similar to that specified for He previously. Removal of the noble gases 

in the distant past may have been achieved by bulk hydrodynamic flow, but would have 

required significantly higher densities of hydrogen in planetary atmospheres.59 Either 

method ('or both) may lead to the observed patterns of isotopic fractionation found in 

the noble gases of the terrestrial atmospheres. Other isotopic fractionations, such as the 

enrichment of 1 5 N over 1 4 N on Mars, can be explained on the basis of nonthermal processes 

similar to those described for oxygen. For example, the dissociative recombination process 

N+ + e ~ ^ N * + N* (1.3.1) 

can create a population of energetic nitrogen on M a r s . 6 ' 3 3 ' 8 ' 6 0 The mass spectrometers on 

the Viking landers measured an isotopic ratio 1 5 N / 1 4 N = 6 .0x l0 - 3 , which is about 1.62 

times the terrestrial value of 3 .68xl0 - 3 . This isotopic enhancement (or fractionation) of 

the heavier isotope with respect to the lighter one is due to the fact that the energy given 

to the products of a reaction such as (1.3.1) is just enough for the 1 4 N to escape but 

too small for the heavier 1 5 N . Measurements of such isotopic fractionations, including 

the fractionation of the noble gases and their deviation from the patterns found in the 

solar wind and meteorites, yield significant information about early planetary volatile 

budgets and atmospheric evolution and form important constraints on the development 



Chapter 1. Introduction and Basic Theory 15 

of evolutionary models of the terrestrial atmospheres. 6 1 , 5 9 ' 6 2 ' 5 6 , 6 3 " 6 5 ' 3 0 

The study of the Martian exosphere is particularly timely in light of the upcoming 

international effort to observe both the surface and atmosphere of Mars. The Martian 

neutral atmosphere, ionosphere, and the solar wind plasma interaction will be measured 

by instruments aboard satellites to Mars toward the end of the decade; these include 

Planet B (Japan), and Mars 98 (Russia and ESA). Some of the planned missions to 

Mars involve experiments to obtain signatures of the hot atom populations in the Mar

tian exosphere.7 Some information on the magnitude of this population has already been 

derived from solar wind deceleration measurements made by instruments aboard the 

Phobos 2 spacecraft in the late 1980's.14 Additional measurements concerning the at

mosphere and surface of Mars will be obtained with the Hubble Space Telescope and 

instruments aboard the Mars Surveyor and Pathfinder orbiter/lander pairs, launched in 

the late 1990's. A l l of these studies will collectively yield important information and con

straints for models of nonthermal processes, and will provide the impetus for the further 

development of models of atmospheric evolution and planetary climate change. 

Given the importance of nonthermal collisional processes it is clear that exospheric 

conditions are determined to a large extent by collisional processes and that the colli

sionless models must be reconsidered. A primary goal of this thesis is the description of 

the effect of nonthermal collisional processes on exospheric escape. Escape rates provide 

important boundary conditions for processes in the lower atmosphere, including reactive 

processes, diffusive transport, planetary outgassing, and photochemical effects. For exam

ple, of tremendous importance to models predicting terrestrial atmospheric evolution is 

the transport and escape of hydrogenous compounds injected into the atmosphere at the 

Earth's surface. Gases such as methane, carbon dioxide, and water vapour are involved 

in several chemical reactions as they are transported higher into the atmosphere.66 The 
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effect of these reactions, in addition to solar radiation induced photo-ionization and dis

sociation, is to break down the original gases and eventually leave molecular and atomic 

hydrogen at the highest altitudes. The rate of the escape of hydrogen is extremely im

portant in the understanding and prediction of the long term stability and concentration 

of these compounds in the terrestrial atmosphere. 

1.4 Kinetic Theory and the Boltzmann Equation 

For the description of gas behaviour in dense systems, the use of hydrodynamics and 

fluid mechanics is appropriate and adequate. However, when a system becomes rarified 

and collisions become infrequent, such descriptions are no longer va l id . 6 7 For such cases, 

the state of a gas is described by the velocity distribution function, /(r,c,t). In general 

the distribution function is a function of seven independent variables; the position, the 

time, and the velocity. The distribution function is defined as the number of particles 

per unit volume at a position r and time t with velocities in the range c to c + dc. The 

total density at a given r and t is found by integrating over all velocities 

n(r,t) = J f(r,c,t)dc 

The evolution of the distribution function is described by gas kinetic theory. The equa

tion that specifies the distribution function for a dilute gas is the Boltzmann equation, 2 9 ' 6 8 

—* 

where F represents all external forces acting on the system and the sum ^ is taken over 
n 

all collision partners. The collision operator J n is given b y 2 9 

J„[/] = JJif'f'n - ffn)cr(g^)gdndcn (1.4.2) 
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where g is the relative velocity of the colliding pair, fi is the scattering angle giving the 

orientation of the final relative velocity vector, g', relative to g, and cr(g, fi) is the differ

ential scattering cross section describing the details of the binary collision. The square 

brackets [/] indicate that the distribution function / is the argument of the operator J n . 

The primed distribution functions in equation (1.4.2) are pre-collisional values and the 

unprimed distribution functions are post-collisional values. 

1.5 An Overview of the Thesis 

Chapter 2 examines the creation of extended hot oxygen distributions ('coronae' ) 

in the exospheres of the terrestrial planets. Calculations of hot atom densities based 

on the so called two-stream model have been carried out by Nagy et a l . 6 9 ' 7 The two-

stream model splits the distribution function in a plane parallel atmosphere into two 

parts; one, f+(r,v), represents particles moving upwards, whereas the other, f~(r, u), 

represents particles moving downwards. This is a very simplified description of the actual 

anisotropic velocity distribution function. In the first paper, these workers considered 

a two-stream approximation as well as a diffusion approach to model the production 

and thermalization of hot oxygen in the Venus exosphere. The thermalization is with the 

ambient CO2, 0 and H , and modeled by a hard sphere cross section. Uncertainties in their 

model included the energy distribution of the product oxygen atoms from dissociative 

recombination and the ion and electron densities and temperatures. Their calculations 

clearly indicated that there is an extended oxygen corona on Venus. 

jp6,33 a n ( j L a m m e r a n d Bauer 8 carried out Monte-Carlo simulations of the dissociative 

recombination process to model the oxygen corona on Mars. There are many uncertainties 

in the dynamical and atmospheric parameters and these calculations are only estimates 

of the actual exosphere. Nevertheless, the existence of an extended oxygen corona on 
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both Venus and Mars is clear. It is far more extended on Mars than on Venus owing to 

the smaller gravitational field. 

Shematovich et a l . 3 4 ' 7 0 presented a detailed kinetic theory analysis of the formation 

of the oxygen geocorona from dissociative recombination of O j , resonant charge ex

change with hot plasmaspheric oxygen ions, and other sources. They begin with a set 

of Boltzmann-type kinetic equations and considered a stochastic/Monte-Carlo method 

of solution, and showed that the oxygen geocorona is formed primarily by energization 

of the thermal oxygen component with superthermal 0 ( X D) and 0 ( 1 S) atoms produced 

from O2 photodissociation and dissociative recombination of and N 0 + . 

The primary motivation of Chapter 2 is to achieve a qualitative description of the 

hot exospheric oxygen distribution, and assess the importance of collisional processes in 

determining the final hot oxygen density distribution. Several new approaches to mod

eling of the hot oxygen corona are considered. A hydrodynamic model based on the 

solution of the constant-temperature diffusion equation is used to describe transport of 

the translationally energetic ('hot') exospheric oxygen atoms through a thermal, station

ary background gas. This model is based on the time-independent continuity equation, 

and includes a hot atom source term. As its name suggests, the temperature of the hot 

atoms is set to some (arbitrary) fixed value, and densities are calculated from the result

ing diffusion equation. This model is extended to include a self-consistent temperature 

profile in order to more accurately determine the effect of thermalization on the density 

profile of the hot oxygen atoms. 

A method of deriving exospheric atom densities based on solutions of the local Boltz

mann equation is also examined. Rather than calculating the density, drift velocity, and 

temperature, this method solves directly for the hot oxygen velocity distribution func

tion. The distribution function implicitly includes information about the density and 

temperature in a self-consistent fashion. However, as the local form of the Boltzmann 
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equation is used, it is necessary to make several assumptions in order to extract altitude 

profiles for the density of the hot oxygen. The first assumption made is that it is possi

ble to transform linearly between time and altitude via a (fixed) bulk drift velocity for 

the hot oxygen atoms. This restricts the model to a range of altitudes over which the 

distribution function does not change too appreciably. Hence, it is necessary to calculate 

the distribution function close to the exobase level, and then calculate the hot oxygen 

density for altitudes above the exobase using methods employed in collisionless models. 1 6 

Chapter 3 describes the production of hot hydrogen and deuterium by nonthermal 

processes. In particular, it focuses on the production of hot hydrogen via charge ex

change reactions with protons and deuterium and the formation of hot deuterium via 

charge exchange reactions with hydrogen. Realistic quantum mechanical differential col

lision cross sections are used to describe the kinematics of these collisional systems. The 

examination of these processes using quantum mechanical cross sections has been done 

previously. Shizgal 7 1 and Clarke and Shizgal 7 2 calculated collision cross sections for the 

hydrogen-proton system, and examined the resulting escape rate of hydrogen from Venus 

and the relaxation dynamics of hot protons in a bath of thermal hydrogen, respectively. 

Hodges and Breig 7 3 used Monte Carlo integration to examine energization of hydrogen 

via nonthermal collisional processes with hot protons. They later 7 4 examined the effect 

of similar processes on the production of hot deuterium. 

The energization of hydrogen and deuterium via elastic collisions with energetic oxy

gen atoms is also examined. A particular motivation for a detailed examination of the 

differential energization of deuterium and hydrogen by this process is that it has been 

suggested by several groups as a possible explanation for the observed enrichment of the 

deuterium/hydrogen ratio measured on Venus. McElroy and co-workers35 considered such 

an energization process, although they assumed that scattering proceeded as an isotropic 

process. They found that energization of thermal hydrogen to energies above the escape 
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energy of Venus was possible via direct elastic collisions with hot atomic oxygen, but 

that the same process for deuterium was negligible, hence explaining the enhancement of 

the D / H ratio. This result was questioned by Cooper et a l . 7 5 and Gurwell and Yung, 7 6 

who used more realistic anisotropic quantum mechanical cross sections. They found that 

the production of escaping hydrogen was overestimated by the isotropic model, and that 

production of escaping deuterium was not negligible. 

The current work extends the results of the previous work on nonthermal processes. 

The rate at which energy is transferred between colliding species for a variety of nonther

mal processes is calculated using both a hydrodynamic and kinetic theory approach. The 

product velocity distribution function (PVDF) , which gives the distribution of velocities 

of the product atom as a result of a collisional interaction, is calculated and used to de

rive escape fractions for a variety of nonthermal processes and atomic systems. Quantum 

mechanical cross sections are calculated in order to accurately describe the kinematics 

of the collisional processes. A l l of the calculations of the current work are formulated 

so as to avoid resorting to Monte Carlo simulations or integrations as in many of the 

previous works. This reduces computational times and computer resources required, and 

also eliminates the need to fit or smooth results to remove statistical fluctuations. 

In Chapter 4 we utilize the results of Chapter 3 to calculate nonthermal escape fluxes. 

The problem of escape of hydrogen from Earth has been examined by many workers. 

Lindenfeld and Shizgal 4 5 employed a simple collisional model to obtain an expression of 

the charge exchange induced flux and showed that the total of the charge exchange and 

Jeans' hydrogen escape flux was roughly constant. This was consistent, with the results of 

Liu and Donahue, 3 8 - 4 0 who demonstrated that the escape flux should be approximately 

1.8xl08 c m _ 2 s - 1 . Maher and Tinsley 7 7 estimated the hydrogen escape rate on Earth at 

1.5xl08 c m _ 2 s _ 1 , while Yung and co- workers78 used a one dimensional photochemical 

model to calculate total and charge-exchange escape fluxes of 3.02xl0 8 cm~ 2 s _ 1 and 
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1.41xl08 c m _ 2 s - 1 for hydrogen, and 3.5xl0 4 cm _ 2 s _ 1 and 5.4xl0 3 c m _ 2 s _ 1 for deuterium, 

respectively. 

Escape rates for hydrogen on Venus have also been examined in some detail. McElroy 

et a l . 7 9 , 3 5 found hydrogen escape via collisions with hot oxygen atoms from dissociative 

recombination of yielded fluxes of 8xl0 6 c m - 2 sec - 1 for hydrogen. Shizgal 7 1 used a ki

netic theory treatment to calculate escape rates of 1.1 and 6.2 x 107 c m _ 2 s - 1 for hydrogen 

on the dayside and nightside exosphere, respectively. Hunten 2 0 has reviewed published 

estimates of globally averaged escape rates for hydrogen from nonthermal processes, and 

reports that current values are in the range of (0.2-2.7) x 107 c m _ 2 s _ 1 

Lammer and Bauer 8 employed a Monte Carlo technique to simulate the thermalization 

and transport of hot oxygen atoms produced by dissociative recombination of on 

Mars. They estimated an escape flux of 6x 106 c m _ 2 s - 1 , corresponding to a mass loss 

of oxygen atoms at a rate of 0.14 kg/s. Other estimates of the oxygen escape rate are 

given by Fox 8 0 at 3x 106 cm~ 2s- 1,and by McElroy 8 1 at (6-7) x 106 c m ^ s " 1 . 

In the current work, the escape flux is determined by integration of the hot atom 

product velocity distribution function over all speeds above the escape speed. The escape 

flux is considered to occur over a range of altitudes, and so an altitude integration is 

performed to determine to the net escape flux. This integration proceeds over all altitudes 

at which nonthermal production of escaping atoms is non-negligible. The model thus 

incorporates altitude dependent production of translationally energetic atoms via charge 

exchange/direct elastic collisions. It does not account for thermalization of the hot species 

by elastic collisions with the background gas, which would involve a solution of the full, 

altitude dependent Boltzmann equation. It does, however, include realistic quantum 

mechanical collision cross sections to describe the kinematics of the interaction between 

colliding pairs of particles. 



Chapter 2 

Diffusion and Boltzmann Equation Models of Hot Oxygen Coronae 

2.1 Introduction 

Direct observation and theoretical modeling have combined to demonstrate the exis

tence of an extended, enhanced population (or corona) of translationally energetic ('hot') 

oxygen atoms in the exospheres of the terrestrial planets. On Earth, Yee 1 1 used air-

glow measurements of twilight radiative emission from the transition between the states 

0+( 2 P) and 0 + ( 2 D ) at 732-33 n m 1 1 ' 3 1 to observe nonthermal oxygen above the terres

trial exobase. Hedin 1 2 showed that a significant population of hot oxygen can be inferred 

by comparing data available from mass spectrometer measurements and in-situ satellite 

drag observations, with values of 1-3 x l O 4 c m - 3 at 1100 km and 1-3 x l O 5 c m - 3 at 550 km 

for low to moderate solar conditions, and l - 4 x l 0 5 c m - 3 at 925 km for high solar activ

ity. Direct rocket based observations have also been made of the geocorona. Analysis of 

the photometric measurements of oxygen emissions at 557.7 nm during rocket flights in 

198082 showed a variable increase in the concentration of atomic oxygen as compared to 

MSIS (mass-spectrometer/incoherent scatter) models. The Berkeley E U V airglow rocket 

spectrometer made measurements of the atomic oxygen dayglow emissions at 98.9-135.6 

nm between the altitudes of 150 and 960 k m , 8 3 and inferred a peak value of the geocorona 

of 1 0 6 c m - 3 at 550 km, with a temperature of 4000 K . 

Theoretical modeling of the Earth's oxygen geocorona has been relatively extensive. 

While the current work does is not concerned with calculations of the oxygen geocorona, 

22 
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a brief description of theoretical work done by others is included for completeness and for 

comparison with Venus and Mars. Early theoretical results showing the formation of a 

hot oxygen geocorona were calculated by Rohrbaugh and Nisbet 8 4 using dissociative re

combination of O j and N 0 + as sources. Their results showed hot oxygen concentrations 

on the order of 104 c m - 3 at approximately 750 km, and 102 c m - 3 at 3000 km. Shizgal 

and Lindenfeld 8 5 employed a kinetic theory treatment in the calculation of the energy 

distribution of hot 0 3 P atoms, and found that the distribution function was strongly per

turbed at higher energies from the equilibrium Maxwellian, although the total number 

density of hot oxygen atoms produced was still too low to compete with thermalization 

at low altitudes. Yee 1 1 calculated hot oxygen densities from dissociative recombination 

sources using a two-stream transport code. He found that above altitudes of approxi

mately 1200 km that nonthermal oxygen atoms dominate the thermal, ambient oxygen 

population, with a density of the order of 104-105 c m - 3 . A dissociative recombination 

source was also considered by Schmitt and workers,86 who calculated thermal and non

thermal OxD density profiles coupled by a thermalization cross section. They used the 

630 nm airglow measurements made by the Visible Airglow Experiment aboard the At

mosphere Explorer Satellite-C to normalize the thermalization cross section and arrived 

at hot atom densities on the order of 0.1-1 c m - 3 at 750 km. Richards and workers3 0 

examined other potential sources of hot atoms in the thermosphere. They found that 

quenching of metastable species could provide significant new sources of hot oxygen be

yond the previously considered dissociative recombination sources, although they only 

examined local production and did not address the transport of the hot atoms into the 

exosphere. More recently, Shematovich and workers3 4 use a Monte Carlo model based on 

a non-linear Boltzmann equation to examine the thermal and nonthermal components 

of the oxygen geocorona. They find that a hot population of 0 ( 3 P ) atoms is indicated, 

with a density of about 104 c m - 3 and temperature of 4100 K at 600 km. 
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For Venus, the suggestion of a corona of hot oxygen came from interpretation of 

observations made by the ultraviolet photometer on Mariner 5 2 and the objective grating 

spectrometer on Mariner 10 , 8 7 ' 8 8 in 1967 and 1974, respectively. These results were 

more recently clearly confirmed by optical measurements made by extreme ultraviolet 

spectrometers on Venera 11 and 12 8 9 in 1978 and measurement of the 130.4 nm dayglow 

by the Pioneer Venus Orbiter Ultraviolet Spectrometer in 1978. 4 ' 6 9 

To explain the existence of a hot oxygen corona about Venus, Nagy et a l . 6 9 used the 

two-stream transport model of Yee 1 1 in their interpretation of the Pioneer Venus data. 

They found daytime hot oxygen concentrations on the order of 104 c m - 3 at 1600 km 

altitude. That study used preliminary ion density data which were higher than currently 

accepted values, and so the predicted hot oxygen concentrations were relatively high. 

A radiative transfer model by McElroy et a l . 7 9 predicted values of similar but smaller 

magnitude, with differences between the two models attributed to a different choice of the 

primary dissociative recombination branch of Of , exobase level, and ion density profile. 

Paxton 9 0 also managed to get reasonable agreement with observed dayglow emission 

values by adjusting the branching ratios for dissociative recombination of Of . Calculation 

of the hot oxygen density on Venus was repeated by Nagy and Cravens7 using updated 

densities, and densities on the order of 102-103 c m - 3 at 1600 km altitude were found, a 

factor of ten or more less than the previous calculation. 

Modeling based on density profiles collected by the Viking Mission to Mars in 1977 

has indicated that a hot oxygen corona should exist out to many Martian r a d i i . 7 , 6 ' 8 ' 3 2 

I p 6 ' 3 3 and Lammer & Bauer 8 use a Monte Carlo simulation to model the diffusion and 

thermalization of hot oxygen up to the exobase in order to derive the hot oxygen energy 

density distribution at the exobase. They then assume a collisionless exosphere in order 

to apply Liouville's theorem to calculate the hot oxygen density profile for the upper 

exosphere. Their results give hot oxygen densities of the order of 0.5-2xlO 3 c m - 3 at 
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1600 km, depending on the choice of dissociative recombination coefficient. The existence 

of a hot oxygen corona on Mars has been largely verified by Phobos and Phobos 2 

missions to Mars in 1989,33 although the interpretation of the magnitude and extent of 

the corona is somewhat uncertain. 9 1 Recent analysis by Kotova et a l . 1 4 of solar wind 

plasma and magnetic data obtained by Phobos 2 lead them to suggest that the Martian 

hot oxygen coronae densities could be even higher than those predicted by the Monte 

Carlo calculations of previous workers. 

Most workers assume that the source of the hot oxygen atoms for both Mars and 

Venus is due to dissociative recombination of 0^ , which has the general form 

0+ + e~ =» O + 0 + A E (2.1.1) 

This energy, AE, which is liberated by the dissociation of the molecule, is available 

to the product oxygen atoms. The amount of dissociation energy available depends on 

the final state of the product atoms, as the dissociative recombination of can take 

place along a number of branches or channels, 6 9 , 8 0 

0+ + e" =*> 0 ( 3 P) + 0 ( 3 P) + 6.98eV(0.22) 

0 ( 3 P) + C f D ) + 5.02eV(0.55) 

0 ( 3 P ) + CfS) + 2.79eV 

C f D ) + 0( 1D) + 3.05eV 

=> C f D ) + CfS ) + 0.83eV 

It is assumed that the available energy is split between the two product atoms equally. 

From Table 1.1, the 0 escape energy for oxygen at the Venusian and Martian exobases is 

approximately 8.6 and 1.9 eV, respectively. Thus, only the first two dissociation channels 

provide enough energy (3.99 eV and 2.51 eV per oxygen atom, respectively) to permit 
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direct escape from Mars, and none of the above channels provide sufficient energy for 

direct escape of oxygen from Venus. 

The branching ratios for the O f dissociative recombination process are still only 

poorly known. 9 2 - 9 4 That is, the relative populations of the various product states of 

atomic oxygen, in addition to translational energy available to each product atom, are 

poorly constrained. An estimate of the branching ratios of two channels which give rise to 

product atoms with sufficient energy to escape from Mars is given in brackets next to the 

appropriate reaction. 9 0 We assume that all dissociation takes place along the (dominant) 

second channel only, with a dissociative recombination coefficient ccdr = 3 .0x l0 - 7 cm 3 

sec - 1 . 6 ' 8 The source of hot oxygen is then given by 

S(z) = aDR[Ot][e-} 

= « D H [ 0 + ] 2 (2.1.2) 

where the square brackets [A] represent the density of species A. Following prior con

vention, we have assumed that the electron density is equal to the O f density.6 Altitude 

profiles of the O f density and the background gas densities are taken from available 

atmospheric profiles collected by planetary missions to M a r s 9 5 ' 2 5 ' 6 and Venus, 9 6 ' 2 4 and 

are illustrated in Figures 2.2 and 2.3 respectively. The densities are extrapolated beyond 

the tabulated values assuming that they follow a barometric distribution, as given by 

equation (1.2.4). 

A representation of the process of hot oxygen atom creation and subsequent diffusion 

giving rise to exospheric coronae is given by Figure 2.4. Production of hot oxygen atoms 

occurs primarily in the lower atmosphere where the density of O f is sufficiently high that 

dissociative recombination is frequent. As can be seen in Figures 2.2 and 2.3, the density 

of O f peaks peaks near 140 km altitude and decays rapidly above and below the peak 

altitude. The translationally energetic product oxygen atoms diffuse upward from their 
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Figure 2.2: Observed Martian density profiles. The data are from Viking missions of 
1977. The solid curve is the 0^ density profile, the dotted curve is the background 
oxygen density profile, and the dashed curve the background carbon-dioxide density 
profile. From Fox and Dalgarno. 2 5 
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Figure 2.3: Observed Venusian density profiles. The data are from observations made 
by the Pioneer Venus orbiter and probe. The solid curve is the 0̂ " density profile, 
the dotted curve is the background oxygen density profile, and the dashed curve the 
background carbon-dioxide density profile. From Nagy and Cravens. 7 
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Figure 2.4: Stratification of the atmosphere by collisional property. In the collisionally 
dominated and transition regions, collisions drive energetic atoms toward equilibrium 
with the thermal background. Above the exobase, in the 'collisionless' region, particles 
move in trajectories solely under the affect of the planetary gravitational field. Hot 
atoms in this region have extremely long mean free paths and so may form an extremely 
extended corona of energetic atoms. A typical hot particle's path is shown on the right 
hand side of the figure. 

altitude of creation until they achieve diffusive equilibrium. However, as the background 

density is still substantial at lower altitudes, the hot oxygen atoms have a high probability 

to suffer thermalizing collisions. Above the exobase, densities are sufficiently low that 

collisions are practically negligible, and atoms are free to move in accordance with their 

translational energy. The formation of an extended hot oxygen corona is thus a problem 

of the description of production and transport of hot atoms at low altitudes to above the 

exobase. 

This chapter examines of the creation of hot oxygen 'coronae' in the exospheres of 

Venus and Mars using two new approaches to the production and diffusion of hot oxygen 

in planetary exospheres. The first model for the formation of the hot oxygen coronae is 
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given by solution of the diffusion equation, which describes diffusion of the translationally 

energetic exospheric oxygen atoms through a cold background gas. The general diffusion 

equation for a minor species of density n diffusing through a background is given b y 2 2 

dn d 
~di = ~d~z 

_.. . f dn n 
dz H(z)\\ 

where D(z) is the diffusion coefficient, given b y 2 2 

+ S(z) (2.1.3) 

= (2.1.4) 

and S(z), the source of the hot oxygen atoms due to dissociative recombination of Oj", 

is given previously by equation (2.1.2). It is assumed that the collisional interaction 

between the hot oxygen and background gases is described by a hard sphere model. The 

collision frequency and average relative speed are thus given, respectively, by 

v(z) = nback{z)ohsVave 

Vave = ( ^ L + ***S (2.1.5) 

V \™>hot rnbackJ 

where riback is the thermal oxygen altitude density profile, Th0t and Tback a r e the hot oxy

gen and thermal oxygen temperature profiles, and ahs is the hard sphere collision cross 

section. The collision frequency and average velocity in equation (2.1.5) have assumed 

that the colliding species' distribution functions are Maxwellian. The diffusion coefficient 

is thus determined by the altitude dependent temperature of the hot oxygen atoms and 

density profile of the background thermal oxygen. For the first model examined in this 

chapter, we assume an altitude independent (constant) temperature for the hot oxygen 

atoms. This is equivalent to assuming that there is no thermalization or energy exchange 

between the diffusing hot oxygen and the background gas. The simple diffusion model is 

then extended by incorporating an altitude dependent temperature, which is calculated 
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self-consistently using coupled density and energy equations based on standard hydro-

dynamic theory. 9 7 , 9 8 The incorporation of an energy equation accounts for the effect of 

thermalization or energy transfer between the hot oxygen and the background. 

A model of hot atom densities based on solutions of the local Boltzmann equation 

is also examined. The velocity distribution function of the hot oxygen atoms are calcu

lated at the altitude of the exobase and hot oxygen density profiles are then generated 

using Liouville's theorem. 1 6 The Boltzmann collision operator rigorously accounts for the 

thermalizing effect of (elastic) collisions, and so temperature and density profiles are cal

culated in a self-consistent fashion. As for the other models in this chapter, we assume 

the use of 'hard sphere' or energy independent collision cross sections. 

The models introduced in this chapter are relatively simple descriptions of the pro

duction and transport of hot atoms. Our goal is thus to investigate whether such models 

are sufficient to qualitatively describe the altitude distribution of densities of hot exo

spheric oxygen and to compare with similar studies using more complicated models by 

other w o r k e r s . 1 1 ' 6 9 , 7 9 ' 7 , 6 ' 3 3 ' 3 2 , 8 There are many uncertainties to consider in contrasting 

and comparing results between the various models. Poor constraints on the values of the 

dissociative recombination branching ratios, the dissociative recombination coefficient, 

neutral temperature and density altitude profiles, and the hot oxygen-background col

lision cross section contribute greatly to discrepancies between the various approaches. 

They also degrade the accuracy of the predictions of hot atom densities. 

2.2 Constant Temperature Model 

As illustrated in Figure 2.4 the generation of an enhanced population of hot atoms 

at high altitudes in the exosphere requires transporting hot atoms from their altitude of 

production. It was of interest to determine whether simple diffusion of energetic atoms 
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through a stationary thermal background was capable of producing qualitative agreement 

with densities inferred from satellite and ground based emission studies and calculated 

by other workers using Monte Carlo and other techniques. 

If it is assumed that the density of the minor species has reached a steady-state value, 

the time derivative on the left-hand side of equation (2.1.3) may be set to zero to yield 

the steady state diffusion equation 

d_ 

dz 
x \ dn n 

+ S{z) = 0 (2.2.1) 
dz ' H{z)\\ 

where D(z) is the diffusion coefficient given previously by equation (2.1.4). Equation 

(2.2.1) is then integrated in altitude from z0 to z to yield 

= -W)LS(z)dz'+c- (2-2-2) 

where C\ is the constant of integration. This equation is a linear first-order differential 

equation, and may be solved by use of an integrating factor," exp(/i(z)), where 

The integrating factor is applied to equation (2.2.2), and after some rearrangement and 

collecting of constants, we find 

n{z) = e~h^ f eh{2,) {P(z') + C x } dz' + C2e~h^ (2.2.3) 

where for clarity we have defined 

P W s -W)Cs(z')dz' (2'2-4) 

The two constants in equation (2.2.3) may be evaluated easily if boundary conditions are 

applied at the lower (z = z0) boundary. From equations (2.2.2) and (2.2.3), with z = z0, 

we thus find 

dn(z0) n(z0) 
1 dz + H(z0) 

C2 = n(z0)eh^ (2.2.5) 
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For the case of a constant scale height, H(z) = H(z0), and no source, S(z) = 0, equation 

(2.2.3) reduces to the barometric solution given by equation (1.2.4), 

•(z - z0) n(z) = n(z 0)exp (2.2.6) 
L H{z0) j 

Similarly, for a constant temperature but radially dependent gravitational acceleration, 

with the scale height given by 

kT 
H(z) = 

mg(z) 

we find after some algebraic manipulation that the argument of the integrating factor is 

given by 

h(z) = 
R + z0 R4-
H{z0) H(z) 

where R is the planetary radius. Substituting this result in equation (2.2.3) we arrive at 

'-(z'-z'0y 
n(z') = n(2^)exp 

H(z'0) 
(2.2.7) 

which is identical in form to the barometric density equation except it is a function of a 

'reduced altitude' (or 'geopotential height') 

z'-z' (* - *o)l 1 + 
z - zn 

R + z0, 

rather than altitude. 

To determine the hot oxygen density using equation (2.2.3) it is necessary to provide 

a temperature profile for the hot oxygen in order to calculate the altitude dependent 

scale height. For this model, some (arbitrary) constant temperature T0 is chosen. There 

is no a priori justification for a particular choice of this (constant) temperature, other 

than the physical argument that it should be between the background thermal oxygen 

temperature and the temperature equivalent to the initial hot oxygen dissociation energy. 
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The solution of equation (2.2.3) involves a double integral. The integrations are done 

using a Simpson's Rule with 150 altitude steps. In order to accurately calculate the 

integrated hot atom source density, -P(z), we do a 250 point Simpson's Rule integration 

between each pair of altitude points from the Simpson's Rule integration over z' in equa

tion (2.2.3), and simply add the contributions from each to yield -P(zt')- This is necessary 

as the altitudes of interest span several thousand kilometers and so a straightforward in

tegration of the source over the entire span of z' requires excessive numbers of integration 

points (and time). The initial altitude is (arbitrarily) chosen below the exobase level, 

and is 90 km for Mars and 100 km for Venus. As a check of the accuracy of the numerical 

solution of equation (2.2.3), as detailed above, it was compared to the analytic solutions 

given by equations (2.2.6) and (2.2.7) for the case where the source is set to zero, and the 

scale height is constant or dependent only on the gravitational acceleration, respectively. 

Once the accuracy of the numerical solution of equation (2.2.3) was verified for the 

above test cases, the effect of an altitude dependent scale height (via equation(1.2.3)) 

and/or diffusion coefficient on the density profile of the hot oxygen was examined. A 

value of 8500 K was chosen as the (constant) temperature for the hot atoms.8 For the 

background thermal oxygen on Mars, a (constant) temperature of 180 K was inferred 

from the thermal oxygen density profile of Figure 2.2, given the assumption of baromet

ric behaviour. A temperature of 280 K was derived similarly for the thermal oxygen 

temperature on Venus. A hard sphere (total) collision cross section of 2 . 0 x l 0 - 1 5 cm 2 is 

used. The solutions for the hot oxygen density profiles for Mars and Venus are shown in 

Figures 2.5 and 2.6. 

The density profiles are physically reasonable given the changes in the scale height 

and the diffusion coefficient. The solid curve in both figures indicates the case where 

both the scale height and diffusion coefficient are held constant. The curve marked 

with open triangles illustrates the case where only the scale height is allowed to vary 
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Figure 2.5: Martian hot oxygen density profiles derived from solutions of the diffusion 
equation. The hot oxygen temperature is taken to be a (constant) 8500 K , and the 
background temperature is a (constant) 180 K . The various curves depict the behaviour 
of the hot oxygen density to the variation of gravity g and diffusion coefficient D. The 
solid curve is for both g and D constant with altitude, the open triangle marked curve 
is for variation of g (and thus scale height) only with altitude, the filled triangle marked 
curve is for variation of D only with altitude, and the dashed curve is for the density with 
both g and D varying with altitude. The open circle symbols indicate the background 
('cold') oxygen density. 
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Figure 2.6: Venusian hot oxygen density profiles derived from solutions of the diffusion 
equation. The hot oxygen temperature is taken to be a (constant) 8500 K , and the 
background temperature is a (constant) 280 K . The labeling of the curves is as for Figure 
2.5. 
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with altitude. For this case, the hot atom density is maximal at altitude. Physically, 

this is expected given that the scale height increases with altitude as the gravitational 

acceleration decreases, all other parameters held constant. The case where only the 

diffusion coefficient is allowed to vary with altitude is indicated by the curve marked with 

solid triangles. The integrated hot atom source density, P(z), given in equation (2.2.4) 

depends inversely on the diffusion coefficient, which depends inversely on the collision 

frequency. Since the background density is decreasing with altitude, from equation (2.1.5) 

we have that P(z) decreases with an altitude dependent diffusion coefficient, and so 

the density at altitude decreases. The rate of decrease is larger for Venus, where the 

background density (and hence collision frequency) decreases more rapidly with altitude. 

If both the scale height and diffusion coefficient vary with altitude, as indicated by the 

dashed curves in the figure, the density profile lies between the values produced when 

only one or the other is allowed to vary. 

The density profiles are shown out to an altitude of 6000 km, well beyond the limited 

altitude range of input density profiles as given in Figure 2.2. There are several reasons for 

an interest in hot atom densities for such large altitudes. The first is that the enormous 

enhancement of the hot atom density over the thermal background does not become 

apparent until above approximately 500 km on Mars. Additionally, the hot atom densities 

at high altitude are important in determining the nature and magnitude of interactions 

with the solar wind. 1 4 

The dependence of the hot atom density profile on temperature was also examined, 

and the results are illustrated in Figures 2.7 and 2.8 for Mars and Venus, respectively. 

Since we do not have any detailed information on the hot atom temperature profile, a 

constant temperature profile was used, with the value varied between 500 and 8500 K . 

A n increase of hot atom density at higher altitudes is visible with an increase in the hot 

temperature, for both Mars and Venus. The effect becomes less pronounced above 5000 
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Figure 2.7: Martian hot oxygen density temperature dependence. The (constant) hot 
oxygen temperature was varied between 500 and 8500 K , and the scale height (gravity) 
and diffusion coefficient were allowed to vary with altitude. The solid, short-dashed, 
long-dashed, dot-dashed, and dot-dot-dashed curves represent hot oxygen temperatures 
of 500 K , 1000 K , 2500 K , 5000 K , and 8500 K , respectively. The open circle symbols 
indicate the background ('cold') oxygen density. 
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Figure 2.8: Venusian hot oxygen density temperature dependence. The (constant) hot 
oxygen temperature was varied between 500 and 8500 K , and the scale height (gravity) 
and diffusion coefficient were allowed to vary with altitude. The labeling is as in Figure 
2.7. 
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Figure 2.9: Hot oxygen densities at large altitudes for Venus and Mars. The solid and 
dashed lines indicate the hot oxygen densities for Venus and Mars, respectively. The hot 
atom temperature is fixed at 8500 degrees for both planets. 
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K , especially for Mars, where the low gravitational acceleration and high temperatures 

combine to yield scale heights of the order of thousands of kilometers. The effect of the 

stronger gravitational acceleration on Venus is most apparent for temperatures below 

8500 K , where hot atom densities are lower than their Martian counter-parts at altitudes 

above approximately 1000 km. 

When comparing the hot oxygen density profiles of the two planets, we see that they 

are remarkably similar in magnitude at the 6000 km altitude of Figures 2.7 and 2.8. The 

hot oxygen density is greater below this altitude on Venus than Mars. The stronger 

dissociative recombination source at low altitudes on Venus appears to offset the effect of 

a lower gravitational acceleration and hence much larger scale height for the hot oxygen 

on Mars for altitudes up to approximately 6000 km. The hot oxygen density profiles are 

plotted together for altitudes up to 12 000 km in Figure 2.9. It is clear that for altitudes 

greater than roughly the planetary radius of Venus that the hot oxygen corona of Mars 

decays much more slowly due to the lower gravity, and is thus much more extensive, 

despite the stronger dissociative recombination source on Venus. 

2.3 Non-constant Temperature Model 

In the previous section we assumed that the hot oxygen atoms were at some (arbi

trary) constant temperature. This is equivalent to neglecting energy transfer between the 

diffusing hot oxygen and the thermal background. In order to extract information about 

the altitude dependence of the temperature of the hot oxygen atoms in the planetary 

coronae, we must account for the partial thermalization of the hot atoms as they collide 

with the thermal background. To extend the model of the previous section to allow for 

temperature variation with altitude, we employ a standard hydrodynamic approach com

monly used in analysis of particle transport and temperature distribution in the middle 
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and upper atmosphere. 

As previously, we consider a system of hot atomic oxygen diffusing through a thermal 

background of oxygen. The thermal oxygen is assumed to be at diffusive equilibrium. We 

are interested in the transport of the translationally energetic, nonequilibrium hot oxygen, 

and the steady-state altitude dependence of its density and temperature. Following 

standard hydrodynamic theory used for the solar w i n d 1 0 0 , 1 0 1 we rewrite equations (1.4.1) 

and (1.4.2) in terms of the the random velocity, multiply by 1, mscs and | m s c 2 , and then 

integrate over velocity space to obtain the continuity, momentum and energy transport 

equations for the hot oxygen (denoted by the subscript s): 

Continuity: 

dn* 
dt 

+ V-(n s u s ) = *f* + N (2.3.1) 

Momentum: 

nsms dt 

Energy: 

+ namaua • V(u,) + V • Ps - n.m.G = ^ + M (2.3.2) 

^ + « . - v ( | p . ) + |p.(V-u.) + V - q , + P,:Vu. = + £(2.3.3) 

In equations (2.3..1)-(2.3.3), ns, us, Ts, qa., and Ps are the hot oxygen density, drift 

(average) velocity, temperature, heat flow, and (anisotropic) pressure tensor, respectively. 

We have also defined N, M , E as the (altitude dependent) production terms for the 

hot oxygen number density, momentum, and energy, respectively. The terms 

and ^ on the right-hand side of equations (2.3.1)-(2.3.3) correspond to the moments 

of the Boltzmann collision integral, equation (1.4.2), and represent changes of density, 

momentum, and energy as a result of collisions. They are not shown explicitly as they 

depend on the type of interaction between colliding particles (e.g. hard sphere) and on 
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the form of the distribution functions of the interacting species. In our coupled system 

of transport equations, we have ignored external force terms except for that due to the 

gravitational acceleration, G . 

At lower altitudes, collisions with background species are plentiful and the velocity 

distribution functions for diffusing species are generally considered to be close to the 

equilibrium Maxwellian distribution. As collisions decrease with altitude, larger tem

perature and diffusion velocity differences can be maintained by diffusing species, and 

the distribution function can depart from the equilibrium Maxwellian distribution of the 

thermal background gas. At the lowest level of approximation, we assume that the dis

tribution function of the diffusing hot species is completely described by the first five 

moments of the hot atom distribution function: the density, ns, the three components of 

the drift velocity u s, and the temperature, Ts. We assume the pressure tensor is isotropic 

(off diagonal elements are zero), and that the stress tensor, heat flow, and higher order 

moments are zero. Thus, the system of transport equations reduces to 

d n ° + V • (nsus) = ^ + N(z) (2.3.4) 

du 
dt 

n , m s — + nsmsus • V(u s) + Wps - n3msG = ^ + M(z) (2.3.5) 

^ + U * - V ( J ^ ) + fj>.(V-u.) = + E(z) (2.3.6) 

The collision terms on the right-hand side of equations (2.3.4)-(2.3.6) may be evaluated 

rigorously for arbitrary interactions between species for the case where both species' 

distribution functions are Maxwellian. In this case, for arbitrarily large differences in 

drift velocities and temperatures, we have 

5jt = o 
^ = nsmsvst{ut - u s)$ s t 

SE, _ n s m s l / s t 
[3k{Tt - Ts)Vst + mt(us - ut)2$st] 
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where $ s i and tyst are velocity dependent 'correction factors' given for hard spheres b y 9 7 ' 9 8 

$st 8 est + 

est + 

(-st 4e3

t 

2est 

erf(e s i) + 

1 

1 + 2e2 

St 
e x p ( - 4 ) 

erf(e 5 t) + | e x p ( - e 2
i ) 

and where the subscript t denotes a parameter for the background species, which is taken 

to be thermal atomic oxygen. In the equations above, erf() is the error function, 

eri(x) 
» rx 

7T JO 

2 ^ 

7* 
dt 

ust is the momentum transfer collision frequency, 

_ 8 ntnst 

Vth&HS 
3A/7T ms 

and Tst and pst are the reduced temperature and mass, respectively, defined as 

msTt + mtTs 

Tst = 

Ust 

ms + mt 

msmt 

ms + mt 

The hard sphere collision cross section is denoted by crjjS- The parameter est is the ratio 

of the magnitude of the difference in drift velocities to the average 'thermal' speed, that 

is 

u, 
tst 

Vt th 

where 

Vth 
2kT, St 

Pst 

is defined as the 'average' thermal speed of the gas mixture. We choose to set the 

background drift velocity to zero (e.g. a stationary background gas). Our problem is 

thus reduced to finding the density, drift, and temperature profile of the diffusing species. 
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If we assume that all motion is along the vertical (z) direction, and look for steady-

state solutions, our transport equations reduce to 

yz(nsus) = N(z) (2.3.7) 

d d 
nsmsus-—^- + k— (n3Ts) + nsmsg = -nsmsvstus<&st (2.3.8) 

oz oz 

k 4 ( n , r , ) + W ^ = £ ( 2 ) - ! ^ x 
2 oz 2 oz mt 

[3k(Ts - Tt)Vat - mtu2

s<f>st] (2.3.9) 

where we have defined the gravitational acceleration as G E — gk. If it is assumed that 

the drift speed is much less than the average 'thermal' speed of the gas mixture, so that 

c, j < 1, it may be shown that 

$st = 1 

Vst = 1 

In addition, we must specify the production terms N(z), M(z), E(z). We assume, 

as in the previous section, that dissociative recombination of is the only source of 

energetic hot oxygen atoms, so that 

N(z) = aDR[Ot}2 (2.3.10) 

where osor « (1 — 3) X 1 0 - 7 cm 3 /sec and the units of ./V are c m _ 3 s e c _ 1 . The dissociative 

recombination reaction is assumed to be 'single channel', with the product 5.02 eV of 

energy for the dissociation branch shared equally between the two product oxygen atoms. 

The product atoms will thus have an initial temperature Tproct given b y 6 7 

\kTVT0d = 2.5 eV (2.3.11) 
Li 

and that the average energy per atom will be 

3 
Eav — ~^kTpr0(i (2.3.12) 
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The energy source term E(z) is then simply given by N(z) x Eav, with units of ergs 

c m - 3 s ec - 1 . We also assume that the distribution of hot atom trajectories following the 

dissociation reaction is isotropic; in this case, hot atoms are equally likely to have upward 

motion as downward, and the net momentum gain is zero (M(z) = 0). 

As an example of such singularities, and in an attempt to gain insight into their phys

ical meaning, we rewrite our original coupled system of transport equations, equations 

(2.3.7)-(2.3.9), assumed a 1-D plane parallel atmospheric geometry, steady state, and 

neglected sources and collisions, yielding 

^-{nsus) = 0 (2.3.13) 
dz 

nsmsus-^- + k— (nsTs) + nsmsg = 0 (2.3.14) 
dz dz 

\usk^- {nsTs) + l n s k T s ^ = 0 (2.3.15) 
2 dz 2 dz 

If we now assume a constant temperature and gravitational acceleration, we may write 

equation (2.3.14) as 

dns ns 

~dz~ = ~H-Cy{n*g) ( 2 - 3 - 1 6 ) 

where we have used, from the continuity equation, that nsus = C, constant, and that 
dus dns 

-q— = —C-Q—/n2

s. We have also defined a (constant) scale height, H = kTs/msg. To 
solve for the density profile, we rewrite equation (2.3.16) as 

H-Cyin^g), 
-dz = - ' v s y , d n 2.3.17 

nig 

Integrating both sides, 

J ' * = f n\g 
dn 

~(z-z0)/H = ln(n,/n0) + (\ - -M 
2gH \n2

s n2J 
(z — z ) 

yexp(A/y2) = e x p ( - v 0 ) + A) (2.3.18) 
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where A = C2 l{2gHn2) = u2/{2gH) and y = ns/n0. The final result is transcendental 

for y. For fixed values of A, plots of y exp(A/y2) vs. y (or exp( — (*~ °̂) + A) vs. z) may 

be drawn. Examples are given in Figure 2.10. The gravitational acceleration and scale 

height are held constant at 3.3 m/s 2 and 30 km, respectively, and are chosen to represent 

typical values near the Martian exobase for atomic oxygen. The flow speed u0 is chosen 

to be 300 m/s and 30 m/s, respectively, for curves labeled A and B , yielding values of 

the parameter A equal to 0.454 and 4.54x 1 0 - 3 , respectively. 

The curve defined by equation (2.3.18) has a minimum at ymin = \/2A. Using this 

value in equation (2.3.18), we may solve for z = zmax, 

Zmaoc = [A- m(v/2Ae)] H + z0 

Thus, for given values of the hot oxygen density, ns, and A, there are altitudes above 

which the solution to equation (2.3.18) does not exist, and forcing the numerical algorithm 

past these altitudes results in meaningless solutions. Graphically, this is illustrated in 

Figure 2.10 by the continuation of the solid curves (the RHS of equation (2.3.18) below 

the minimum of the dashed curves (the LHS of equation (2.3.18). 

We may rewrite our conservation equations for the above case in a slightly different 

form in order to gain further insight into the source of the singularity. For the case of 

no sources, no collisions and constant temperature, we had conservation and momentum 

equations given by : 

d , 
— (nsus) = 0 
Oz 

n s m s u 3-7r— + k—(nsTs) = - nsmsg 
Oz Oz 

Substituting the continuity equation into the momentum equation, we have 

kTsC\ dus nsmsus — = - namsg 
u2 ) dz 

where we have made use of 
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Figure 2.10: Solutions of the collisionless, sourceless momentum conservation equation 
for a plane parallel geometry. The gravitational acceleration and scale height are held 
constant at 3.3 m/s 2 and 30 km, respectively, and are chosen to represent typical values 
near the Martian exobase for atomic oxygen. The flow speed uQ is chosen to be 300 m/s 
and 30 m/s, respectively, for curves labeled A and B. The solid lines represent plots of 
exp(— (z~^°> -\-A) vs. z from equation (2.3.18), with the z axis given by the top horizontal 
axis. The dashed lines represent plots of y exp(A/y 2 ) vs. y from equation (2.3.18), with 
the y axis given by the bottom horizontal axis. The vertical axis is common to both 
plots. 
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nsus - C, ^ = -C^-jnl 
dz dz 

After further manipulation, we may rewrite our momentum equation in the form 

U - — Y i 1 = -«.9 (2-3.19) 
\ ms J dz 

The important point to note from equation (2.3.19) is that while the left-handside may 

vanish for either du/dz = 0 or u2 = kT/m, the right-handside vanishes only if u = 0. 

That is, the zeroes on the LHS are not balanced on the RHS, and the two sides vanish 

independently of each other. This imbalance may be resolved by following the approach 

used in the examination of the solar w i n d . 1 0 2 ' 1 0 0 , 1 0 1 Rewriting our conservation equations 

in spherical coordinates, we have 

1 d / 2 \ r> 
~r~7T~ [nsusr I = 0 
H dr v ' 

d U s . u 9 i t \ n s m s u s - r — + k—(nsls) = — namsg — nsmsvstus 

dr dr 
3 , d , m . 5nskTsdusr2 nsmustvst^, / m m^ 
2 dr 2 r 2 dr mt 

For the case of no sources, no collisions and constant temperature, we may rewrite our 

momentum equation as for the plane parallel case, yielding 

/ 2 kTs\ dus ( 2kT,\ 
ms J dr s ^ 3 msr J 

We may now force the left- and right-handsides to vanish identically by requiring that 

u 2 = kT/m at the point r = This point is known as the 'critical point' of the 

solution of the flow velocity. As we add more parameters to our system of conservation 

equations (e.g. temperature, heat flow) we alter the nature of such singularities, removing 

some and adding others. 1 0 3 

The system of equations given by (2.3.7)-(2.3.9) have excluded such physical processes 

as heat flow (conduction). As the conductivity (and hence the heat flow) in the upper 
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atmosphere is large, it may be that heat flow terms cannot simply be discarded from the 

energy equation. In fact, such terms may dominate the drift terms, and it was decided 

that a model which incorporated heat flow should be investigated. We choose to close 

the transport equations including the heat flow with phenomenologic laws rather than 

with the introduction of another, higher order transport equation. For example, the 

phenomenologic heat flow equation (Fourier's Law) may be wr i t t en , 9 8 ' 1 0 4 

q s = - A s < V T t - X'tsVTs + Rst(us - ut) (2.3.20) 

where the various coefficients are detailed in Appendix B , and are strongly dependent 

on the form of the interaction between species in the gas mixture. It has been shown 1 0 5 

that for a range of altitudes spanning the thermosphere and above, the Navier-Stokes 

(Fourier's Law) expression for the heat flow vector 

q s = - A , t V r f (2.3.21) 

may be used in place of equation (2.3.20). Inserting this term into the energy equation, 

and neglecting nonlinear flow terms in the momentum and energy equations as 'small', 

our system of equations now becomes 

d 

dz 
d 

(nsus) = N(z) (2.3.22) 

k-£- (nsTs) = - nsmsg - nsmsvstus (2.3.23) 
oz 

= - = ^ 3 ^ . - 7 1 ) + B W (2.3.24) 

Previously, we looked for a solution of the continuity equation for the density, given fixed 

temperature, for the case where the flux was given by the expression for a minor species 

diffusing in a background and neglecting thermal diffusion, that is equation (2.2.1), 

d<t>s 

d z 
= N{z) 

<f>s = - D s i 

dns ns 

(2.3.25) 
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where Dst is the mutual diffusion coefficient, and Hs is the scale height for species s. 

It may be shown that when nonlinear terms in the momentum equation are ignored 

that our coupled system of equations (2.3.22)-(2.3.24) reduce to equation (2.3.25) for 

the case where the temperature of the diffusing species is constant with altitude. From 

equation (2.3.8), we have for this case that 

us = -Dst ns Hs 

(2.3.26) 

where the flux is defined as <f>s = nsus, and the mutual diffusion coefficient Dst and scale 

height Hs are defined as 

D St msvst 

H, = «• 
msg 

respectively. Multiplying equation (2.3.26) by the density ns yields the result of the 

previous section, equation (2.3.25). Similarly, from inspection it is seen that in the case 

where heat-flow is retained and nonlinear flow terms are discarded, that the momentum 

equation (2.3.23) also reduces to equation (2.3.26). 

The continuity, momentum, and energy equations given by equations (2.3.7)-(2.3.9) 

form a coupled system of simultaneous differential equations. As both the scale height 

and diffusion coefficient are temperature dependent, they become altitude dependent if 

the temperature is not held constant. We considered solving the system using a simple 

'stepping' finite differencing; that is, we rewrite the equations so that a simple first or

der forward-difference gave us the value of either the density, drift, or temperature at 

the next altitude step in terms of the values of the other parameters at the previous 

(current) altitude step. Thus, given a set of input values at the 'bottom' of the atmo

sphere, one could simply 'step' up in altitude to get the new values of each parameter, 

governed by the transport equations. The difficulty in this method appeared to be a 
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strong instability/discontinuity at an altitude where the drift velocity became equal to 

some equation-dependent 'sonic' speed, analogous to the singular point(s) in the solar 

wind momentum equation. It appears such singularities are inherent to the truncated 

transport equations used in transport theory, 1 0 3 and that there is some difficulty (in gen

eral) in the determination of the singular points and integrating/stepping a solution past 

them. 

In recasting the equations with the inclusion of the heat flow (and exclusion of the 

nonlinear drift terms), we hoped to avoid the particular singularity which hampered the 

direct 'stepping' method. The equations given by (2.3.22)-(2.3.24) can be put in the 

non-dimensional form 

^ = N(0 (2-3.27) 

ON _ A/" msgz0 _ F msu0z0vst _ • N_ ro q oo \ 

d£ ~ T kT0 T kT0 TV { l - 6 - ^ ] 

dT 

q£ = V (2.3.29) 
OV *kn0zlw« E{z)zl dX 

dt ~ X(T)mt

 N { T T t / T ° > ~ X(T)T0 ~ X(T)T°dTs

 { 2 - 3 M ) 

where we have used 

7Y = ns/n0 

U = us/u0 

T = Ts/T0 

' t = z/z0 

F = N-U 

V = 
dT 

V = 
dt 

N = 
N{z)z0 

u0n0 

KT.) = 
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We now have the four unknowns F, N, T, V, where F = N * U. It should be noted that 

we have chosen to solve for F, and not U as it simplifies the form of the equations by 

eliminating the appearance of derivatives on the R H S of equation (2.3.27). 

The set of 'heat-flow' equations was integrated using a standard fourth-order Runga 

Kut ta integrator, with a set of initial conditions specified at the lower boundary only. 

The lower boundary altitude was selected such that we could assume that there was no 

production of hot atoms; hence, N, U, F at the lower boundary were set to zero. The 

temperature T was set equal to the background temperature. The source terms are the 

same as for the previous coupled transport equation case. When the temperature was 

set to a constant it was found that the system yielded results for the density profile that 

were in rough agreement with those found by direct integration of the diffusion equation 

(as for the constant temperature model results earlier in this chapter). 

Transport models based on moment equations derived from the Boltzmann equation 

are regularly used to address flow problems in planetary atmospheres and in the solar 

wind. These transport models consist of truncated sets of coupled differential equations 

involving moments of the distribution function of the flowing species. As the number of 

moments retained in the expansion increases, large departures from equilibrium for the 

distribution function can be treated more accurately. However, the choice of the level 

of truncation also determines the number of singular points in the system of equations. 

These points are of importance in both steady-state and time-dependent systems. 1 0 3 

While some of these singular points are well known (e.g the sonic point in the 'solar 

wind' equations 1 0 0), in general they must be investigated uniquely for each particular 

system. These singular points cannot be integrated over using standard methods, and 

require special attention, which again must be applied on a system-by-system basis . 1 0 3 

For simpler systems, it may be possible to easily identify the singular points (e.g. equa

tion (2.3.19)), but for more complex system such a simple treatment does not necessarily 
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stabilize the numerical system. It is clear from the behaviour observed when numeri

cally integrating equations, although the nature of the singularity/singularities and their 

treatment is not certain. 

2.4 The Linear Boltzmann Equation Model 

The problem of thermalization of translationally energetic particles in a moderator 

of atomic or molecular constituents is a well known problem in nuclear physics. 1 0 6 A n 

example is the problem of the moderation of high energy neutrons resulting from fission 

reactions. Energetic neutrons are created with a narrow range of initial energies, and 

diffuse through a moderator, losing energy through collisions with the moderator nuclei. 

If the moderator is composed of nuclei of moderate to high mass, the average spread of 

final energies between individual neutrons after some number of collisions is relatively 

small, and it is possible to characterize the movement of a large number of neutrons 

through the moderator by means of some average velocity. The loss of energy to the 

moderator is then viewed as a continuous process, since it is assumed that the average 

energy (velocity) change due to collisions with moderator nuclei at any given time is 

minimal. The approximation of thermalization as a continuous process is known as the 

Continuous Slowing Down Approximation, or CSDA. Application of the CSDA is not 

limited to neutron moderation; its validity has been in explored in electron degradation 

problems as w e l l . 1 0 7 ' 1 0 8 

We may model the diffusion of hot oxygen atoms resulting from the dissociative re

combination of ions in a manner similar to the CSDA for neutrons in a moderator. 

The height distribution of the hot oxygen atoms and their thermalization through colli

sions with the ambient background atmosphere is analagous to the 'depth of penetration' 
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and rate of thermalization of energetic neutrons moving through a moderator. The den

sity and temperature of the hot oxygen atoms may be self-consistently calculated as 

moments of the distribution function of the hot oxygen atoms. The hot oxygen distribu

tion function is given by the Boltzmann equation, equation (1.4.1). In the current work, 

we choose to neglect external force fields (such as magnetic and gravitational fields). In 

addition, with the CSDA the velocity appearing in the second (or diffusion) term on the 

left-hand side of equation 1.4.1) is a assumed to be constant, with a value equal to the 

average speed of the hot atoms. The time and diffusion terms may thus be combined to 

yield an equation of the form 

% = -![/] + S (2.4.1) 

where S is the (steady) source of the translationally energetic atoms, J is the Boltzmann 

collision operator, given by equation (1.4.2), describing elastic collisions between the hot 

and (single) background species, and / — f(c,t) is the velocity distribution function 

for the hot species. Equation (2.4.1) is a local model for the time evolution of the 

distribution function at some (fixed) altitude. We have assumed that the moderating 

background gas is in equilibrium and is distributed with a Maxwellian distribution of 

velocities. In applications of the CSDA to nuclear physics, hot particle energies are of 

the order of keV-MeV, and the distribution function of the hot atoms remains sharply 

peaked about the average velocity. For the present case, the hot particle energies are of 

the order of eV, and so we expect that there will be some broadening of the hot atom 

distribution function as a result of collisions with the background. 

The Boltzmann equation given by equation (2.4.1) yields the hot oxygen distribution 

function as a function of time, at some particular altitude. This altitude is a parameter in 

the model, and dictates the strength of the source of hot oxygen atoms, the background 

densities, and other physical parameters for the model. If we assume, as in the CSDA, 
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that there is limited thermalization of the hot oxygen atoms and that their distribution 

function remains relatively narrow, then the average velocity of the hot oxygen atoms is 

approximately constant. Thus, the time dependent distribution function may be trans

formed to an 'altitude dependent' distribution function through the linear transformation 

given by 

z = vhott (2.4.2) 

where Vhot is an average velocity characterizing the motion of the hot atoms. With this 

transformation, we may consider the time variation of the distribution function as an 

altitude variation. However, since the CSDA requires that the hot atom distribution 

function not thermalize (or broaden) 'too much', we are limited to altitudes 'close' to the 

true altitude chosen to parameterize the local Boltzmann equation. In order to extend the 

model to yield the altitude distribution of hot atom densities high into the exosphere, we 

adopt the method used in many collisionless models of the exosphere,16 detailed shortly. 

The form of the hot oxygen source distribution is largely unknown, 6 ' 8 and is assumed 

to be a narrow Gaussian centered about the O2 dissociative recombination energy of 2.5 

eV per atom. The altitude dependent source strength is given by equation (2.1.2). The 

normalization of the source function is chosen equal to the source strength. The initial 

(t — 0) hot atom distribution function is set equal to a Gaussian of the same form as 

the source Gaussian, and is normalized to 1. With our steady source of hot atoms, we 

expect that any final steady state solution should exhibit a departure from Maxwellian. 

We may rewrite the collision operator J in equation (2.4.1) in its kernel representation,109' 

yielding 

^ - J~dx'{K(x,x')f(x',t)}-Z(x)f(x,t) + S(x) (2.4.3) 

where x = rrihotc2/2kTb is the hot atom energy normalized to the background energy, 

and K(x,x') is the non-symmetric collision kernel (that is, K(x',x) ^ K(x,x')). The 
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(elastic) collision frequency between hot atoms and the background, Z{x), is given by 

Z{x) = / K(x,x')dx' (2.4.4) 
Jo 

or by 

Z(x) = JJ fa(g,n)gdfldc 

in order to ensure that detailed-balance or conservation of particle number is satisfied. 

Integrating equation (2.4.1) over x, we find that 

(2.4.5) 

where 

/•oo 
/ 'S(x) dx = S 
Jo 

Integration of equation (2.4.5) yields 

n(t) = St (2.4.6) 

This model gives a density that is linearly increasing with time, with a rate of increase 

directly proportional to the strength of the source at the altitude of interest. The den

sity may also be calculated directly from the normalization of the velocity distribution 

function, 

roo 

n(t) = / f(x,t)dx (2.4.7) 

Similarly, it may be shown that the average reduced hot atom energy is given by 
/•oo 

E(t) = / xf(x,t)dx (2.4.8) 
Jo 
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2.4.1 Discretization Procedure and Solution 

We solve the Boltzmann equation using the quadrature discretization method (QDM), the 

basis of which is described in detail elsewhere111 . The method involves the determination 

of the velocity distribution function, f(y), at a discrete grid of points, {yi}. The grid 

points correspond to a set of quadrature points which are the roots of a set of orthogonal 

polynomials based on the weight function w(y) = y2exp[—y2]. We may thus write 

N 

/ e-yy2g(y)dy = Yw™9(ym) 
m=l 

or 

J fOO 

g(y) dy 
0 

N 

Y w m g ( y m ) 

m=l 

where 

Wm = wmev™/y2

m 

We rewrite equation (2.4.3) as a function of reduced speed y = yfx, noting the change 

in the volume element from dx to 2y dy, and then apply our QDM discretization to yield 

QJ^L = £ Wm2ymK(y2

m,y2)fi(y2,t) - Z{y2)U{y2, t) + S(yf) (2.4.9) 
O Z m=l 

If the grid of points y\ at which the distribution function is evaluated are chosen to 

coincide with our grid of speed points ym then equation (2.4.9) is reduced to a set of 

linear equations which may be represented in vector form as 

8t 

where 

(9f 
-w: = M-f + S (2.4.10) 

M M , , = Wm 2ym Kn\y2

m,y2) - Z(yi) 6(ym - yi) 
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For a hard sphere collision model, Kns(x, x') is the well k n o w n 1 0 9 , 1 1 2 non-symmetric 

Wigner-Wilkens kernel, 

Kns(x, x') = ^-AQ^ieviiQVx1 + Ry/x) + ex~x' evi{Ry/x~' + Qy/x) 
LJ V X 

±[evi(Qy/x1 - Ry/x) + ex~x' ed(Ry/x~' - Qv*)]} (2.4.11) 

where the +(—) sign refers to x > x' (x < x'), and 

Q = 

R = 
x / 7 

- V 7 

7 = mback/mhot 

A = crtotnba, 
l2kTbai 

ck\ 
ck 

with erf(x) the standard error function. It can be shown (see Appendix B.2) that the 

non-symmetric kernel in equation (2.4.11) may be defined in terms of a symmetric kernel 

K'(x,x% 

Kn'(x,x') = 

Transforming to speed, we then have 

Kns(y2

m,y?) = 

\J x% 
Ks(x,x') 

yi 

(2.4.12) 

(2.4.13) 

To complete the symmetrization of M requires that we make a few further changes to 

the form of equation (2.4.10). These are detailed in Appendix B.3, with the result that 

equation (2.4.10) becomes 

§ - = B-f + S 
OT 

(2.4.14) 

where 
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and B is a symmetric matrix defined by equations (B.3.11) and (B.3.13). In equation 

(2.4.14), we have defined a dimensionless 'time' 

r = At 

and where 

/ W 

fi = \l^ffi ( 2 - 4 - 1 5) 

The solution of equation (2.4.14) is relatively straightforward, and is detailed in Appendix 

B.4. The final result is 

fi{r) = Uitl [^(0) + Qir] + pUit3 (FJ(0) e~x>T + Q , - J l l i — J . \ (2.4.16) 

where 

U" 1 = U T 

Q = U TS 

A, > 0 

Fi(r) = U T / 4 (r ) 

and equation (2.4.15) is used to transform between / and / . 

As mentioned previously, to determine the altitude density profile, as given by equa

tions (2.4.17)-(2.4.19), we require the Maxwellian distribution function for the hot atoms 

at the exobase level. Hence, we need to determine the change in the distribution func

tion between the altitude of production of the hot atoms and the exobase. To accomplish 

this, we make a transformation from time to altitude in equation (2.4.16). A n initial 

altitude near the production peak and below the exobase is selected to parameterize the 

local Boltzmann equation. Equation (2.4.16) is then used to find the time dependent 

velocity distribution function for the hot atoms produced at this altitude. The timescale 
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over which we follow the development of the distribution function is dependent on the 

distance between the production altitude and the exobase (that is, we assume that using 

our transformation from time to altitude approximates following hot atoms from their 

production at some initial altitude to the exobase altitude). The distribution function at 

the exobase level is fitted to a Maxwellian distribution function parameterized by some 

density and temperature, which are used to calculate the density profile as a function of 

altitude above the exobase as follows. 

In the absence of collisions, particles moving through an exosphere follow trajectories 

determined by the direction and magnitude of their velocities and the strength of the 

gravitational field. Based on the various types of possible trajectories, classes of particles 

may be defined. Of interest in our particular case are those classes of particles which 

can give rise to an extended population of hot atoms. The exospheric density profile is 

calculated by partial integration of the hot atom Maxwellian distribution function at the 

exobase. The integration is carried out over the permitted ranges of velocity and angle 

corresponding to those particle classes which lead to extended hot atom populations. The 

details of the particle classifications and the calculation of the densities is discussed by 

Chamberlain 1 6 ' 4 3 and reviewed in detail by Fahr and Shizgal,1 and is detailed in Appendix 

A. The resulting expressions for the densities of the various exospheric components are 

nb = -^=nbar 17(3/2, Xcy) - y/l - ?/2exp 

ne = ^ { [ T ( 3 / 2 ) - 7 (3 /2 , Xcy)] 

~-Xcy2 

W i 7(3/2, Acy/(l + y)) 1(2.4.17) 1 + 2/ 

- \Jl - y2exp 
i + y 

F(3/2)-7(3/2, Acy/(l + y))H (2.4.18) 

nbs = 4=^r7(3/2, Acy) (2.4.19) 
y/TT 

where y = rc/r, the ratio of exobase position to the exospheric radial position being con

sidered, A c = Eescj{kTc) is the exobase escape parameter given previously by equation 
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(1.2.10), ribar — nc exp [—Ac(l — y)] is the barometric density distribution given previ

ously by equation (1.2.4), and T and 7 are the standard gamma and incomplete gamma 

functions, respectively. The subscripts b, s, e refer to ballistic, satellite, and escaping 

components, respectively. 

In order to calculate a time dependent hot oxygen density and temperature, we solve 

for the hot oxygen distribution function, from equation (2.4.16), and then take the appro

priate moments of the distribution function (equations (2.4.7) and (2.4.8), respectively). 

The integrations are done numerically using the Q D M points and weights mentioned 

previously. A hard sphere (total) collision cross section of 2 . 0 x l 0 - 1 5 c m 2 is used. These 

calculations are carried out for both Venus and Mars. Figure 2.11 shows the time de

pendent hot oxygen density and temperature for Mars, as calculated for two different 

altitudes, 150 and 220 km. The time dependent hot oxygen density and temperature for 

Venus, as calculated for the altitudes of 150 and 180 km, are shown in Figure 2.12. 

For both cases, we note that the density is a linear function of time, as predicted 

by equation (2.4.6) for a steady source. We also note the sharp exponential decay of 

the temperature from the initial value of 2.5 eV toward the background oxygen value of 

180 K and 280 K for Mars and Venus, respectively. In both cases, the rate of decrease 

of the temperature of the hot atoms is greater for the lower altitude. Physically, this 

conforms to our expectation that the background atoms thermalize the hot atoms via 

elastic collisions much more quickly at lower altitudes, where the background density 

is higher. Note that while the initial drop in temperature for the hot oxygen atoms is 

large, the temperature does not fully equilibrate with the background because energy is 

continually added to the hot oxygen population via the steady dissociative recombination 

source. 

The distribution functions are shown at both altitudes for several times in Figure 2.13 

for Mars and Figure 2.14 for Venus. The total number of particles will grow (linearly) 
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Figure 2.11: Time dependence of hot oxygen density and temperature on Mars. The 

graphs are for altitudes of (a) 150 km and (b) 220 km. The time t is calculated from 

t = T/A, where A = 7ro?2n;,aefcyĵ m™'*  1 5 altitude dependent. The value of A and the 

source strength are (a) 0.0183 & 1199.2 and (b) 0.00157 k 7.08, in units of sec"1 and c m " 3 

sec - 1 , respectively. The solid and dashed curves indicate the time dependent temperature 

and density, respectively. 
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Figure 2.12: Time dependence of hot oxygen density and temperature on Venus. The 
graphs are for altitudes of (a) 150 km and (b) 180 km. The time t is calculated from 
t = T/A, where A = ird2nhacksJ2'^^ is altitude dependent. The value of A and the 
source strength are (a) 0.25 k 28747.7 and (b) 0.037 k 2187.5, in units of sec"1 and c m " 3 

sec - 1 , respectively. The solid and dashed curves indicate the time dependent temperature 
and density, respectively. 
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with time due to the steady hot oxygen source. The much higher 0^ density on Venus 

results in a significantly higher rate of production of hot oxygen particles; however, the 

background thermal oxygen density is also larger, and so thermalization is also increased. 

The distribution function near the equilibrium (background) energy grows rapidly on 

both planets, once production and thermalization of hot oxygen atoms reaches steady-

state. The steady-state distribution function will thus be bi-modal, with a peak about the 

production energy and a peak about the thermal energy. The degradation in energy of 

atoms from their initial hot production energy to a peak about the thermal (background) 

energy is clearly visible. The shape of the distribution function as it evolves in time is 

similar for the two altitudes illustrated. However, the rate of evolution of the hot oxygen 

distribution function and the number density of hot oxygen atoms (as given by the area 

under the distribution function curve) varies significantly between the two altitudes for 

both planets, as is clear from Figures 2.13 and 2.14. 

Previous workers 1 1 ' 7 ' 6 ' 3 3 ' 8 employed Monte Carlo simulations and their energy distri

bution functions are plotted as histograms for energy 'bins' of discrete widths of 0.05 eV. 

We compare with their results by taking the value of our distribution (as a function of 

energy) at the midpoint of a given energy bin and multiplying by the bin width. This 

yields the hot atom density per bin width at the exobase, as shown in Figures 2.15 and 

2.16. It should be noted that a residual 'peak' remains at the dissociation energy of the 

hot oxygen, 2.5 eV. This is because we consider a constant source of hot atoms. 

A Maxwellian (or sum of Maxwellians) is fitted to the energy distribution, yielding 

an exobase temperature and density. The best fit for the altitude of 150 km for both 

Mars and Venus is shown in Figures 2.17 and 2.18. For Mars, the fit is comprised of two 

Maxwellians, a cold one with density 3 500 c m " 3 and temperature 800 K , and a hot one 

with density 800 c m - 3 and temperature 7 500 K . For Venus, the fit is also comprised of 

two Maxwellians, a cold one with density 10 000 c m - 3 and temperature 800 K , and a 
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(b) 

Figure 2.13: Time evolution of the Martian hot oxygen distribution function from an 
initial Gaussian distribution at 2.5 eV due to a steady source at that same point. The 
graphs are for altitudes of (a) 150 km and (b) 220 km. The solid, short dashed, long 
dashed, and dot-dashed curves correspond to dimensionless times of r = 0.1, 0.2, 0.4, 
and 1.0 in (a) and r = 0.1, 0.2, 0.4, and 1.9 in (b). The time t is calculated as described 
in Figure 2.11. 
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Figure 2.14: Time evolution of the Venusian hot oxygen distribution function from an 
initial Gaussian distribution at 2.5 eV due to a steady source at that same point. The 
graphs are for altitudes of (a) 150 km and (b) 180 km. The solid, short dashed, long 
dashed, and dot-dashed curves correspond to dimensionless times of T = 0.1, 0.2, 0.4, 
and 1.0 in (a) and r = 0.1, 0.2, 0.4, and 1.9 in (b). The time t is calculated as described 
in Figure 2.12. 
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Figure 2.15: Energy distribution of hot oxygen on Mars. The graphs are for altitudes of 
(a) 150 km and (b) 220 km. The dotted, dashed, and solid curves are for dimensionless 
times r = 0.4, 1.0, and 1.9, respectively. The results of Ip 6 and Lammer and Bauer 8 are 
shown for comparison. 
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Figure 2.16: Energy distribution of hot oxygen on Venus. The graphs are for altitudes of 
(a) 150 km and (b) 180 km. The dotted, dashed, and solid curves are for dimensionless 
times T = 0.4, 1.0, and 1.9, respectively. The result of Ip 6 is shown for comparison. 
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hot one with density 1 200 c m - 3 and temperature 7 500 K . We use equation (2.4.17) to 

calculate the hot atom density profile for altitudes above the exobase. 

The results for the ballistic component are shown in Figure 2.19 for Mars, together 

with the results of Ip 6 and Lammer and Bauer, 8 and in Figure 2.20 for Venus, together 

with the results of Ip 6 and Nagy and Cravens. 7 

The difference in predicted hot atom densities between Venus and Mars originates in 

the escape parameter, A c , which is the controlling parameter in the collisionless exospheric 

model, equations (2.4.17)-(2.4.19). From the Maxwellian fits to the energy distributions, 

we extracted a hot component temperatures of 7500 K for hot oxygen on Venus and Mars, 

respectively. Referring to Table 1.1 for escape energies for oxygen from Venus and Mars, 

we thus find that the escape parameter, A c = Eesc/(kTc), is approximately 13.3 for Venus 

and 3.0 for Mars. This is crucial since the exospheric density profile is approximately 

given as a barometric distribution with an exponential decay parameterized by A c Thus, 

even though the hot oxygen density on Venus is higher at the exobase level, it decays 

much more rapidly with altitude due to the much higher escape parameter, yielding the 

observed discrepancy between predicted hot oxygen densities for the two planets. This 

discrepancy would be expected to grow significantly larger at higher altitudes. 

For both Mars and Venus there is a discrepancy between the currently calculated 

exospheric densities and the profiles of previously published results. The discrepancy is 

on the order of 2-10 times smaller than other densities for Mars, and of the order of 2-30 

times smaller for Venus. It should be noted, however, that order of magnitude differences 

exist between models of previous workers. In order to assess possible reasons for the 

discrepancies between the current model results for the hot oxygen densities and those of 

previous workers, it is first important to compare and contrast the assumptions and input 

parameters for each. The input density profiles are identical for each, as is the choice 

and magnitude of a hard sphere collision cross section between the hot oxygen atoms 
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Figure 2.17: Maxwellian fit to the hot oxygen energy distribution function at 150 km. 
The fit, indicated by the plus symbols, is composed of two separate Maxwellians, a cold 
one with density 3 500 c m - 3 and temperature 800 K , and a hot one with density 800 
c m - 3 and temperature 7 500 K . The results of Ip 6 and Lammer and Bauer 8 are shown 
for comparison. 
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Figure 2.18: Maxwellian fit to the Venusian hot oxygen energy distribution function at 
150 km. The fit, indicated by the plus symbols, is composed of two separate Maxwellians, 
a cold one with density 10 000 c m - 3 and temperature 800 K , and a hot one with density 
1 200 cm and temperature 7 500 K . The result of Ip 6 is shown for comparison. 
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Figure 2.19: The hot oxygen density profile for Mars derived from the ballistic component 
calculated from the Maxwellian fits to the energy distribution function at 150 km. The 
densities resulting from the 'hot' and 'cold' Maxwellian fits are given by the short and 
long dashed curves, and their sum, the total density of the fit, is given by the solid curve. 
See Figure 2.17 for details on the fit parameters. The results of Ip 6 (IP) and Lammer 
and Bauer 8 (LB) are shown for comparison. 
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Figure 2.20: The hot oxygen density profile for Venus derived from the ballistic compo
nent calculated from the Maxwellian fits to the energy distribution function at 150 km. 
The densities resulting from the 'hot' and 'cold' Maxwellian fits are given by the short 
and long dashed curves, and their sum, the total density of the fit, is given by the solid 
curve. See Figure 2.18 for details on the fit parameters. The results of Ip 6 (IP) and Nagy 
and Cravens 7 ' 3 2 (NC) are shown for comparison. 
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and the background. The exobase altitudes are identical. The Monte Carlo and present 

models both approximate the source as fixed at a single altitude, with a dissociation 

energy of 2.5 eV available to each hot product oxygen atom. The current model assumes 

a Gaussian spread of dissociation energies about the dissociation energy while the Monte 

Carlo work utilizes a delta function at the dissociation energy. The current model utilizes 

the Boltzmann collision operator to account for thermalization of the hot oxygen atoms 

by the thermal background; in the Monte Carlo work, collisions and the amount of 

energy exchanged between the hot atom and the background per collision are treated as 

stochastic processes, and are calculated using random number generators and altitude 

dependent background density profiles. In neither the work of Ip 6 or Lammer and Bauer 8 

is there a detailed description of the statistics used in generation of their final energy 

density distribution functions and densities, so it is not possible to comment further on 

the specifics of their simulations. 

In the current model, as well as in the two stream models of Nagy and Cravens7 

and Monte Carlo models of Ip 6 and Lammer and Bauer, 8 the exospheric density profile 

for the hot oxygen atoms is assumed to be given by the ballistic component of the 

collisionless exospheric density model, equation (2.4.17). The density and temperature 

of the hot oxygen distribution function fit to a Maxwellian distribution at the exobase 

level is required in order to calculate this ballistic density profile. Aside from the present 

work, only Lammer and Bauer explicitly indicate fitting the exobase distribution function 

with a Maxwellian distribution in order to extract an altitude density profile. Their work 

is also the only work to give the exobase altitude density and temperature used as input 

for the collisionless ballistic density profile, citing a two component fit consisting of a hot 

component (2 000 c m - 3 and temperature 7 500 K) and a cold component (15 000 c m - 3 

and temperature 850 K) . 

The current model calculates the collisionless exospheric densities using equation 
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(2.4.17). The accuracy of this formulation was checked numerically for Earth against 

previously published results in Fahr and Shizgal 1 and Chamberlain, 1 6 and excellent agree

ment was attained. We were also able to reproduce the results of Lammer and Bauer 8 for 

the Martian hot oxygen density profile using their exobase density and temperature fit 

parameters. It was thus concluded that the calculation of the exospheric densities from 

equation (2.4.17) was not in error in the current work. 

The most probable remaining source of error is the collision model used to describe 

the thermalization of the hot oxygen atoms. The probabilistic approach of Monte Carlo 

is replaced in our kinetic theory method by the time dependent Boltzmann equation. We 

generate the exobase altitude energy distribution function without need for fitting. The 

model calculates the time dependent variation of the velocity distribution function at a 

single, fixed altitude and uses the linear transformation given by equation (2.4.2) to ap

proximate altitude variation of the distribution function. The effect of thermalization is 

exaggerated since the background density remains fixed at the chosen altitude, ignoring 

the decrease in background density with altitude. While the Boltzmann equation model 

does account for collisional thermalization of the hot atoms with the background it does 

not properly describe diffusive transport of hot atoms over the range of altitudes over 

which production is non-negligible. The true exobase velocity distribution function of 

the hot atoms includes the effect of hot atom production from a range of altitudes. In 

addition, since our transformation between time and altitude is linear, with a proportion

ality constant given by the (constant) average velocity, we require that the hot atoms not 

thermalize 'too much' (and thus change their average velocity). This limits the model 

to regions 'close' (in a mean free path sense) to the exobase. As seen from Figure 2.11 

for Mars, and especially in Figure 2.12 for Venus, even with these limitations the ther

malization (and thus change in the average velocity) of the hot atoms is not negligible, 

and so the simple linear transform of equation (2.4.2) does not adequately describe the 
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diffusion process of the hot oxygen atoms. 

A significant approximation in both this model and in the Monte Carlo simulations is 

that the atmosphere above the exobase level is collisionless, and that equations (2.4.17)-

(2.4.19) adequately describe the altitude distribution of hot atom densities in the ex

osphere. The validity of this approximation is examined in the following section by a 

simple comparison of timescales describing the rate at which diffusion and thermalization 

proceed. 

2.5 Collisional and Diffusional Timescales 

In order for the hot atoms to form a planetary corona, they must travel from their 

place of creation (generally low in the atmosphere) into the upper parts of the exosphere. 

This requires transport from a generally collisional regime near the production peak to a 

(nearly) collisionless one in the upper exosphere. Diffusion acts to transport hot atoms 

away from the source region while collisions thermalize the hot atoms. 

The relative strength of these processes can be compared by examining timescales 

representative of the speed at which they take place. A collisional timescale is given by 

where v, the hot atom-background collision frequency, is defined previously in equation 

(2.1.5). A measure of the 'diffusive timescale' is given by 

As v increases, TCOU(Z) decreases, but D{z) decreases, and Tdiff(z) increases. A n example 

of how these processes compare is given in Table 2.3 for Mars and Table 2.4 for Venus. 

The first column of the tables shows the altitude, the second and third the timescales 

Tcoll{z) = 1/v (2.5.1) 

rdlff(z) = H2(z)/D(z) (2.5.2) 
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Altitude (km) Tcoii (sec) T d i f f (sec) Tcoll/Tdiff 

150.0 3.94e+00 9.64e+04 4.08e-05 
200.0 2.49e+01 1.61e+04 1.55e-03 
250.0 1.28e+02 3.30e+03 3.90e-02 
300.0 7.31e+'02 6.12e+02 1.19e+00 
350.0 4.16e+03 1.14e+02 3.66e+01 
400.0 2.36e+04 2.11e+01 1.12e+03 
450.0 1.34e+05 3.90e+00 3.45e+04 
500.0 7.65e+05 7.23e-01 1.06e+06 
550.0 4.35e+06 1.34e-01 3.25e+07 
600.0 2.47e+07 2.47e-02 1.00e+09 
650.0 1.41e+08 4.57e-03 3.08e+10 
700.0 8.01e+08 8.44e-04 9.49e+ll 
750.0 4.55e+09 1.56e-04 2.92e+13 
800.0 2.59e+10 2.87e-05 9.02e+14 
850.0 1.47e+ll 5.29e-06 2.78e+16 
900.0 8.38e+ll 9.75e-07 8.59e+17 
950.0 4.77e+12 1.80e-07 2.65e+19 

Table 2.3: Diffusional versus collisional timescales for Mars. The values are for 8500 K 
oxygen diffusing through a background of 180 K oxygen. A hard sphere (total) collision 
cross section of 2 . 0 x l 0 - 1 5 cm 2 is used. The Martian exobase for oxygen is located at 
approximately 250 km. 

for collisions and diffusion, respectively, and the final column shows the ratio of the 

timescales. 

From the tables it is clear that at low altitudes collisions are extremely important in 

altering the hot atom distribution before there is much chance to diffuse from the source 

region. For both Mars and Venus, the ratio of the timescales for collisions is less than or 

equal to the the diffusional timescale for altitudes exceeding the exobase level. We would 

thus expect that thermalization of the hot atom population would continue beyond the 

exobase level, and that the final hot atom energy distribution should be somewhat more 

thermalized than the collisionless exosphere models would predict. 
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Altitude (km) Tcou (sec) Tdiff (sec) Tcoll/Tdiff 

150.0 3.55e-01 1.74e+05 2.03e-06 
200.0 7.75e+00 8.25e+03 9.40e-04 
250.0 1.34e+02 4.93e+02 2.71e-01 
300.0 2.00e+03 3.41e+01 5.86e+01 
350.0 3.03e+04 2.32e+00 1.30e+04 
400.0 4.59e+05 1.58e-01 2.91e+06 
450.0 6.96e+06 1.07e-02 6.47e+08 
500.0 1.05e+08 7.31e-04 1.44e+ll 
550.0 1.60e+09 4.97e-05 3.22e+13 
600.0 2.42e+10 3.38e-06 7.17e+15 
650.0 3.68e+ll 2.30e-07 1.60e+18 
700.0 5.57e+12 1.56e-08 3.57e+20 
750.0 8.45e+13 1.06e-09 7.97e+22 
800.0 1.28e+15 7.20e-ll 1.78e+25 
850.0 1.94e+16 4.89e-12 3.97e+27 
900.0 2.94e+17 3.32e-13 8.86e+29 
950.0 4.46e+18 2.25e-14 1.98e+32 

Table 2.4: Diffusional versus collisional timescales for Venus. The values are for 8500 K 
oxygen diffusing through a background of 280 K oxygen. A hard sphere (total) collision 
cross section of 2 . 0 x l 0 - 1 5 cm 2 is used. The Venusian exobase for oxygen is located at 
approximately 200 km. 
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The strength of the dissociative recombination reaction is directly proportional to 

the density of ambient Of . Since the O f density peaks relatively low in the both the 

Venusian and Martian atmospheres (about 140 km for both) and decays rapidly with 

altitude, the production of hot oxygen is non-negligible only over a very small region of 

altitudes. Thus, for both Venus and Mars we would expect that the predominant source 

of exospheric hot oxygen from dissociative recombination would be near 140 km (see 

Figures 2.2 and 2.3). However, it is important to consider the collisional and diffusional 

timescales when examining production of hot atoms. If the bulk of the hot atoms are 

produced over altitudes where collisions are dominant (or TCOU is small), we would expect 

relatively few hot atoms to escape full or partial thermalization. This would result in a 

much reduced coronal temperature and extent. 

2.6 Summary 

The formation of hot oxygen coronae in the atmospheres of Venus and Mars via 

the nonthermal process of dissociative recombination of O f was examined using both 

hydrodynamic and kinetic theory approaches. Both methods predicted an extended hot 

oxygen corona. The constant temperature hydrodynamic model predicted hot oxygen 

densities in the order of 3xl0 3 -4xl0 5 c m - 3 at an altitude of about 1500 km on Mars 

for hot product temperatures between 1000-8500 K . For a similar altitude on Venus, 

the predicted hot oxygen densities are of the order of 10-2xl0 6 c m - 3 . Variation of the 

temperature, especially below 5000 K , produced sizable differences in the predicted hot 

atom density profile, and showed how sensitive the final density profile was to the choice 

of hot oxygen temperature. 

A time dependent Boltzmann equation was used to include the effect of thermaliza

tion of the hot oxygen atoms through collisions with the cold background and include 
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the hot oxygen temperature in a consistent manner. The time dependent hot oxygen 

velocity distribution function was then calculated, with energy degradation described by 

the Boltzmann collision operator. A simple linear transformation was used to derive the 

hot atom distribution function as a function of altitude. The distribution at the exobase 

level was fitted using hot and cold Maxwellian distributions, which yielded exobase tem

perature and densities. These parameters were used in the collisionless theory of Jeans 

and Chamberlain to calculate hot atom densities at altitudes above the exobase. The 

present calculations yielded hot oxygen densities of the order of 102 at an altitude of 

about 1500 km on both Mars and Venus. The hot product temperature for both planets 

was 7 500 K . The predicted hot atom densities calculated in this way differ from Monte 

Carlo derived values by a factor of approximately 2-10 on Mars, and 2-30 on Venus, al

though the predicted hot oxygen desnsities are still well above measured thermal oxygen 

densities for both planets. The current and previous models use common input profiles, 

collision cross sections, source distributions, exobase altitudes, and a collisionless model 

to generate exospheric densities, so these factors cannot account for the discrepancy. It 

should be noted, however, that there are differences of up to an order of magnitude be

tween the results of previous workers due to small changes in model parameters, and so 

the magnitude of the deviation of the current results are not unreasonable. 

The C S D A , which requires a roughly constant average velocity in order to legitimize 

the use of a linear transformation, is less applicable on Venus than on Mars, where 

there are higher background densities and hence higher rates of thermalization of the 

hot oxygen atoms. This is particularly true for our model, which fixes the background 

density at the source altitude despite the fact that we transform from time to space in our 

local Boltzmann equation. The Monte Carlo simulations, which follow particle motions in 

altitude directly, account for the change in background density, and so would be expected 

to yield lower levels of thermalization (that is, a higher population of energetic oxygen 



Chapter 2. Diffusion and Boltzmann Equation Models of Hot Oxygen Coronae 82 

atoms). This is confirmed for both Mars and Venus through comparison with results of 

previous workers. 



Chapter 3 

Nonthermal Production of Energetic Hydrogen and Deuterium 

3.1 Introduction 

The present state of our understanding of the distribution of hydrogen in planetary 

exospheres is determined predominantly by measurements of the emissions of exospheric 

hydrogen. These include Lyman-a and Lyman-/? emissions of atomic hydrogen at 121.6 

nm and 102.6 nm, respectively. 

For the terrestrial exosphere, hydrogen densities have typically been inferred by fit

ting observed emission rates to calculated intensities based on a spherically symmetric 

exospheric density distribution. 6 6 Information about hydrogen densities near the exobase 

have been provided by measurements of Lyman-a by low-altitude satellites such as OSO-

4, O G O - 4 , 1 1 3 ' 1 1 4 and OGO-6 . 1 1 5 There have also been ground based resonant fluorescent 

measurements of the geocoronal Balmer-a spectral line at 656.3 n m , 1 1 6 although there 

has been some difficulty in filtering out contamination in the measured emissions from 

multiple scattering. 1 1 7 He et a l . 1 1 8 have used a radiative transfer model to attempt to 

reconcile theoretical models of the thermospheric and exospheric hydrogen density with 

these data. In all cases, it has been determined that an extended population of hot 

hydrogen exists about the Earth. 

The first measurements of Lyman-o; emissions which indicated the presence of a hot 

hydrogen corona around Venus were made by the ultraviolet photometer on Mariner 5 1 3 

83 
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during the flyby of 1967. The data indicated two, distinct, exospheric scale heights. Ini

tially it was thought that the scale heights were indicative of two different species, such 

as atomic and molecular hydrogen or atomic hydrogen and deuterium. This explanation 

was reconsidered by several workers 2 , 5 who suggested instead that the Mariner 5 data 

were more consistent with a two-temperature hydrogen exosphere. Photodissociation of 

molecular hydrogen was suggested as the source of the hot hydrogen atoms. Analysis of 

data collected by the ultraviolet spectrometer on Mariner l f j 8 7 , 8 8 during its Venus flyby in 

1974, in addition to data obtained by the Lyman-a photometers on the Venera 9 and 10 

orbiters 3 in 1975 and Venera 11 and 12 8 9 in 1978, supported the theory of a two temper

ature hydrogen exosphere. High quality data available from the ultraviolet spectrometer 

aboard the Pioneer Venus Orbiter, 4 which reached Venus in 1978, confirmed the result. 

It appears that more likely sources of the hot hydrogen are the nonthermal interactions of 

ionospheric protons with exospheric oxygen and hydrogen or elastic collisions of hydrogen 

with hot oxygen. 3 2 

Although data is less extensive for Mars, Lyman-a emissions similar to those mea

sured on Venus have been recorded in the Martian exosphere by ultraviolet spectrometers 

aboard Mariner 6 and Mariner 7 1 1 9 - 1 2 0 in 1969 and aboard Mariner 9 1 2 1 in 1971. Calcu

lations of the hot hydrogen distribution about Mars indicate that the hydrogen corona 

is much less extensive than that of Venus, 3 2 about a factor of 100 times smaller. While 

such calculations are limited by the lack of available information on ionospheric densities 

and temperatures involved in the production of the hot hydrogen, the lack of a strong 

Lyman-a signature for hot hydrogen about Mars is consistent with the relatively large 

thermal hydrogen population inferred from available d a t a . 1 2 0 ' 9 5 

These observations of the exosphere together with insitu mass spectrometric measure

ments provide density and temperature profiles of neutral and charged constituents. For 

example, the mass spectrometer on the Pioneer Venus Orbiter measured an enrichment 
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of the deuterium to hydrogen ( D / H ) ratio in the exosphere of Venus by a factor of 100 

relative to the terrestrial value. This enrichment of deuterium relative to hydrogen is 

believed to arise from the enhanced escape of hydrogen due to nonthermal processes. 

Nonthermal processes refer to collisions between exospheric species and translationally 

energetic species (both ions and electrons), generally of ionospheric or plasmaspheric 

origin. This includes processes such as the collision of hot plasmaspheric protons with 

exospheric hydrogen, 

H+* + H -> H* + H+ (3.1.1) 

which effectively converts the energetic protons to translationally excited hydrogen atoms, 

H * , with speeds in excess of the escape speed. This nonthermal process is of great impor

tance in reconciling discrepancies between predictions of hydrogen escape fluxes utilizing 

the thermal Jeans' flux and observations. Models of the chemistry and transport pro

cesses of the terrestrial mesosphere Liu and D o n a h u e , 3 8 - 4 0 Hunten and Strobel 4 1 and 

Maher and Tins ley 7 7 demonstrated that the flux of hydrogen in all forms is equal to 

approximately 1.5-1.8xl0 8 c m - 2 s - 1 , independent of the exospheric temperature. How

ever, the Jeans escape flux calculations predict that the hydrogen escape flux should 

increase with an increase in the hydrogen temperature at the exobase, Tc. The nonther

mal charge exchange process given by equation (3.1.1) was first suggested by C o l e 1 0 in 

order to reconcile this discrepancy. It has since received a great deal of attention by 

many o t h e r s . 1 2 2 ' 4 2 ' 4 3 ' 1 2 3 ' 2 6 ' 4 4 ' 5 ' 4 5 ' 7 8 The energetic protons for this process are produced 

by photodissociation of hydrogenous compounds in the ionosphere. It has been verified 

by several workers 4 3 ' 4 5 ' 6 6 that the charge exchange induced escape flux decreases with 

the hydrogen exobase temperature, Tc, and that the sum of the nonthermal and Jeans' 

fluxes is constant, independent of exospheric temperature and consistent with the meso-

spheric models. This has been demonstrated very clearly by Shizgal and Lindenfeld, 4 5 
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who employed a simple hard sphere collisional model to obtain an analytic expression 

of the charge exchange induced flux. They showed that the charge exchange induced 

escape, Fce, is given by 

Fce = nH+yj2kTc/imiHe-x<[{l + r) - V l T ^ ' l / V (3.1.2) 

= 2kcenH+nH 

where the important parameter is r = TC/TH+ — 1, and nn+ is an effective density. For 

sufficiently large TH+/TC temperature ratios, equation (3.1.2) gives a rate coefficient of 

the form 

kce = 3.6xl(n 6s-7(l - T C / T H + ) (3.1.3) 

For temperature values of T#+ = 4000 K and TC — 1000 K , this gives a value of 

4 . 8 x l 0 _ 6 s _ 1 close to the estimate obtained by others. 4 2 Despite the approximate na

ture of equation 3.1.2, this result has still been found very useful in the interpretation of 

ground based Balmer-a observations of geocoronal h y d r o g e n . 1 2 4 , 1 1 8 ' 6 6 It is of considerable 

interest to extend the work of Shizgal and Lindenfeld to more realistic charge exchange 

cross sections. 

In the Venusian exosphere, the charge exchange process is essentially the dominant 

escape mechanism since the thermal escape is very slow because of the low exospheric 

temperature (see equation (1.2.9) and Table 1.2). Some important nonthermal charge-

exchange processes of importance, in addition to reaction (3.1.1) are reactions involving 

deuterium ions, 

H+* + D -> H * + D+ (3.1.4) 

D+* + H -> D* + H + (3.1.5) 

It is believed that the enhanced escape of hydrogen due to these and other nonthermal 

processes may have had significant bearing on the history of possible water loss on Venus. 
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Current interpretations of the deuterium/hydrogen ratio measured by the Pioneer Venus 

Orbiter appear indicative of the relative importance of nonthermal loss of hydrogen on 

Venus in the pas t . 5 8 ' 5 1 ' 5 2 A difficulty with interpretations suggesting the loss of an 'Earth 

equivalent ocean' of water is that mechanisms yielding enhanced escape of hydrogen do 

not wholly account for removal of water; 3 7 oxygen must also be removed at a rate con

sistent with the stoichiometry of water. This is particularly difficult on Venus where the 

escape energy of such massive constituents is high (see Table 1.1). Mechanisms includ

ing incorporation of excess oxygen into crustal rocks or early m a g m a s , 1 2 5 ' 3 7 ' 1 2 6 enhanced 

nonthermal escape of hot oxygen, 1 2 7 and tectonic resurfacing 5 8 have been suggested, al

though at this time it is still unclear whether any or all of these processes could have 

been sufficiently vigorous over geologic timescales to absorb the required excess oxygen. 

Another important process in the energization of hydrogen is the 'resonant' charge 

exchange process between oxygen and hydrogen, 

H + * + 0 _> H * + 0 + (3.1.6) 

and the equivalent process for deuterium, 

0 + * + D —> 0 + + D* (3.1.7) 

Both reaction (3.1.6) and (3.1.7) have been considered as important mechanisms for the 

enhancement of hydrogen escape. 3 5 Reaction (3.1.6) is able to proceed rapidly in either 

direction with the overall direction of reaction depending strongly on the relative rate of 

production of H + and 0 + at the altitude of interest. 

It is also possible to produce hot hydrogen and deuterium through momentum transfer 

collisions with hot exospheric oxygen. Such energization of atomic hydrogen via elastic 

collisions with translationally energetic oxygen is of the form 

0* + H - » 0 + H * (3.1.8) 
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where the hot oxygen may or may not become thermalized completely in the collision. 

This process also acts as a sink for hot exospheric oxygen. The analogous process for 

deuterium would be of the form 

0* + D 0 + D* (3.1.9) 

This energy transfer process was suggested in the early 70's by B r i n k m a n n . 1 2 8 McElroy 

et a l . 3 5 employed this mechanism to demonstrate that H would readily escape from Venus 

whereas D would not, thus providing the enhancement of D over H consistent with the 

Pioneer Venus mass spectrometer measurements. 

Cooper et a l . 7 5 employed the quantum mechanical differential elastic cross sections 

for O - H collisions to calculate the energy transfer and the velocity distributions of the 

product hot hydrogen. They also determined the escape fraction of hydrogen by this 

process and demonstrated that the angular distribution of the differential cross section is 

important. They showed that the fraction of product H atoms above the escape speed is 

8.5% with the quantum cross sections and 18.8% if isotropic scattering is assumed. The 

value of this fraction calculated by McElroy et a l . 3 5 for isotropic scattering is 15%. 

Hodges 1 2 9 recently recalculated the differential cross sections and found some errors in 

the scattering calculations of Cooper et al.. Hodges did not report any results for escape 

for either H or D . Gurwell and Y u n g 7 6 reconsidered the enhanced escape of H over D 

with this same mechanism. Instead of the actual quantum cross sections, they employed 

Henyey-Greenstein 1 3 0 analytic fits to the cross sections. They calculated product velocity 

distribution functions for both H and D , and calculate that the fraction of H atoms 

above the escape energy for isotropic scattering is 15.8%, in agreement with McElroy et 

al. However, they calculate that the fraction of H atoms above the escape energy with 

the actual differential cross sections is 4.6% in disagreement with Cooper et al.. They 

did their calculations with the background gas at both OK and 300K. For the cold gas 
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case, the product distributions can be determined analytically whereas with the thermal 

background, they carry out their calculations with a Monte Carlo simulation. 

Nonthermal processes provide an important escape mechanism for heavier species, 

such as oxygen, nitrogen and carbon, for which the thermal escape is negligible. A n 

important nonthermal process in the Martian exosphere is the dissociative recombination 

of O f with electrons, mentioned in Chapter 2 by equation (2.1.1); that is, 

0+ + e" -* O* + 0* 

with the product oxygen atoms translationally excited. This process produces a large 

population of energetic (or 'hot') atoms, and there is evidence of such hot coronae of 

atomic oxygen in the Martian and terrestrial exospheres. 1 1 ' 3 1 ' 7 ' 3 2 ' 6 ' 3 3 ' 3 4 If the hot oxygen 

atoms do not escape and are ionized in the upper atmosphere, they may in turn excite 

other species via charge exchange reactions. An example of such resonant charge exchange 

reactions of hot ionospheric atomic oxygen with neutral atomic hydrogen and oxygen are 

given by 

0 + * + H -» 0* + H + (3.1.10) 

0+* + 0 -> 0* + 0+ (3.1.11) 

Reaction (3.1.10) may also act as a sink for both thermal and hot hydrogen. Dissociative 

recombination of Of, as given previously above, is believed to be the main mechanism 

for the production of a hot oxygen corona on Mars , 6 - 8 although with its high atmospheric 

concentration of carbon-dioxide, the dissociative recombination reaction 

C O f + e ^ C O + O* (3.1.12) 

may also be important in the formation of hot oxygen on Mars, 3 2 although its effectiveness 

in producing hot oxygen may be limited by the reduction of C O f via reactions such as 

C O f + 0 Of + CO 
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The representation of the dynamics of nonthermal processes is given by the collision 

cross sections used to approximate the physics of such processes. In many past works 

examining the role of charge exchange in the production of hot species , 7 7 ' 4 3 ' 5 ' 4 4 ' 4 5 the so 

called 'Linear Trajectory Approximation' (or L T A ) has been used. This approximation 

assumes that exospheric charge exchange takes place with no momentum transfer, in 

effect simply exchanging the incoming velocities of the two collision partners to arrive 

at their post-collisional values . 1 3 1 ' 7 3 The difference between the actual charge-exchange 

process and the L T A are illustrated schematically in Figure 3.21. 

While the L T A of the charge exchange cross section has made detailed (and even 

analytic) analysis of this process possible, it has been shown that the approximation 

appears to overestimate the effect of charge exchange on the exospheric escape flux of 

the hot product . 1 3 1 More accurate and realistic representation of the collision dynamics 

between ions and atoms in the charge exchange process is of great interest, and has 

been examined in some detail for certain systems, such as H - H + and D - H + . 7 1 ' 7 3 ' 7 4 ' 7 2 In 

addition, the velocity distribution function ( V D F ) of the product hot atom, and hence 

the escape flux, is sensitive to the form of the collision cross section, it is vital that it 

accurately reflect the physics of the process, and that these cross sections be included in 

models describing the escape process. 

Given the importance of nonthermal collisional processes in the exosphere, it is clear 

that the standard collisionless models have to be reconsidered. For this reason, our goal is 

to calculate the non-equilibrium and nonthermal V D F of the product hot atoms resulting 

from nonthermal collisional processes. A consistent description of these product velocity 

distribution functions ( P V D F s ) is required to, ultimately, accurately estimate escape 

fluxes resulting from nonthermal mechanisms. This is done in Chapter 4. 

The current chapter is concerned with the calculation of the P V D F s for several atomic 
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Figure 3.21: Schematic of the charge-exchange and LTA. The charge-exchange collisional 
process is illustrated in (a), where an electron is transferred from the neutral to the ion, 
and momentum is transferred from the ion to the neutral. The LTA is shown in (b), 
where again an electron is transferred from the neutral to the ion, but no momentum is 
transferred between the ion and neutral. The result is that the collision appears simply 
to have switched the initial velocities of the ion and neutral, u = v' and v = u', with no 
change in direction. 
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systems and nonthermal processes. In section 3.4 we investigate a kinetic theory descrip

tion of the production of nonequilibrium, hot products resulting from nonthermal pro

cesses. To calculate these P V D F s , we require an accurate representation of the energy 

and angle dependence of various nonthermal collision processes. As mentioned previously, 

this entails the calculation of quantum mechanical differential and total collision cross 

sections. We detail the calculation and form of realistic quantum mechanical collision 

cross sections in section 3.2. The systems examined include direct-plus-exchange ( D P E ) 

elastic collisions, direct elastic (DIR) collisions, charge exchange (CE) and L T A collisions 

for H - H + and D - H + , and direct elastic collisions for 0 - H and 0 -D. The resulting P V D F s 

are used to calculate energy exchange rate coefficients, which are compared to calcula

tions using a simple hydrodynamic approach. The energy exchange rate coefficients are 

used to examine the time evolution of the average energy for hot products resulting from 

nonthermal processes as well as providing a check on our kinetic theory approach of the 

same calculation. The P V D F s are also used to calculate the escaping fractions of the hot 

products, and compare these results with those of previous w o r k e r s . 1 3 1 ' 7 1 ' 7 3 ' 7 4 ' 7 6 

3.2 Collision Cross Sections 

As mentioned in the introduction to this chapter, early work in the field approximated 

the charge exchange mechanism by considering the transfer of momentum during the 

charge exchange collision to be minimal (i.e. the L T A ) . If the pre- and post- collisional 

velocities of the ion and atom are indicated by the pairs (c-,ĉ ) and (c,-,ca), this is 

equivalent to the simple interchange of particle labels, that is c'- = ca and = c,-. 

Alternately, this is also equivalent to a charge exchange cross section which is a delta 

function in the backward scattering direction, 0 = ir, and that there is no contribution 

from elastic scattering during the collision. 
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In order to more accurately represent the details of the kinematics of the collision 

process, it is necessary to calculate the collision cross section using quantum mechanical 

methods. The importance of the angle and energy dependence of real, quantum cross 

sections was noted by Cooper et a l . 7 5 in their study of O H . This has been demonstrated 

by S h i z g a l 1 3 1 ' 7 1 for hydrogen-proton and hydrogen-deuterium systems and was recently 

re-confirmed by Hodges and B r e i g 7 3 ' 7 4 and Hodges. 1 2 9 

3.2.1 Quantum Mechanical Scattering 

The procedure for the calculation of quantum mechanical (QM) differential cross sections 

is well known. A detailed description of these calculations is given in Appendix D . l , 

standard textbooks on quantum mechanics, 1 3 2 " 1 3 4 and in the l i t e ra ture ; 1 3 5 ' 1 3 6 ' 7 3 ' 7 2 here 

we simply summarize the important results. 

The collision of a pair of particles of masses m i , m 2 may be reduced to the motion 

of a single particle of reduced mass p = raira2/(rai + m 2 ) moving in a potential due 

to the scattering center, given by V(r). In quantum mechanics, this scattering problem 

involves the solution of the Schrodinger wave equation. The amplitude of the scattered 

wave, denoted by J-', may be related to the differential collision cross section by (see 

Appendix D.2) 

- ^ ( 2 / + l)P,(cosr;)e^ sin<5, (3.2.1) 

and so, from equation ( D . l . 14), the differential elastic cross section is 

_1_ oo 2 

o(E,0) = y^(2/ + l)P,(cos0)e i 5' sin5, (3.2.2) 

From equation (CO.5), the total elastic cross section is given by 

oUE) = — £ ( 2 / + l ) s i n 2 £ , (3.2.3) 
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Equations (3.2.2) and (3.2.3) above assume only single channel scattering (that is, a single 

interaction potential describes the particle interaction). For most real systems of atoms 

and molecules, there are several elastic scattering channels for any given energy. In such 

cases, the elastic differential scattering cross sections are given by combining the contri

butions of each channel according to their quantum mechanical statistical we ight . 1 3 7 ' 1 2 9 

The momentum transfer cross section is defined as a weighted integral of the differ

ential cross section over all angles, or 

amt(E) = J a(E, 6) (1-cos 6) dSl (3.2.4) 

It appears in the final form of the energy exchange rate coefficient, discussed later in 

this chapter. In addition, the momentum transfer collision cross section is often used in 

aeronomical calculations. 1 3 7 

The linear trajectory approximation (or L T A ) cross section is often used to approxi

mate the charge-exchange process. As was mentioned briefly in the introduction to this 

section, this model cross section is the equivalent of a charge exchange cross section which 

is a delta function in the backward scattering direction, 9 = TT, and assumes that there is 

no contribution from elastic scattering during the collision. The definition for the L T A 

cross section i s 7 2 

, l t M = & « L ± ^ > ( , 2 . 5 ) 

2ir sm(7r — e) 

where e is a positive number between 0 and 7r, and o^s j s s o m e (arbitrary, energy 

independent) total hard sphere cross section; the L T A approximation is given in the 

limit e —> 0+. Another definition of the L T A , which incorporates energy dependence, is 

given b y 7 3 

<TLTA(E,e) = < ^ ± 8 { 6 - v ) (3.2.6) 
Z 7 T 
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where u^t(E) is some (energy dependent) total cross section for charge exchange. It is 

easy to show using equation (CO.5) that the total L T A cross section is given by cr^J and 

a^t(E), respectively; similarly, using equation (3.2.4), the momentum transfer L T A cross 

section is given by 2<r^4

s and 2<r^t(E), respectively. The L T A and the overestimation of 

energy transfer resulting from the neglect of momentum transfer in this approximation 

to the charge exchange process, is discussed later in this chapter. 

3.2.2 Calculation of the Phase Shifts 

This phase difference between asymptotic solutions of the radial wave equation with and 

without the potential is known as the phase shift, denoted 8i. In general, the phase shifts 

are calculated by finding the nodes r0 of Ri from equation (D.2.18), yielding 

The solutions Ri are found by direct integration of the radial Schrodinger equation us

ing a Runga-Kutta-Gil l (Adam-Bashforth, Milne) method. This method is accurate and 

relatively quick for the small number of phase shifts required at low energies. For higher 

energies, more phase shifts are required, and if the collision pair has several interaction po

tentials (such as for 0 - 0 + ) , direct numerical integration may require on the order of a day 

to calculate all the required phase shifts. For these energies, the phase shifts can be cal

culated using the Wentzel-Kramers-Brillouin ( W K B ) or semi-classical approximation. 1 3 3 

A brief outline of the W K B formulation for the phase shifts is given in Appendix D.3. In 

general, the W K B approximation is appropriate for those energies above the centrifugal 

barrier for the effective potential (see equation (D.2.18) in Appendix D . l ) , where there is 

no orbiting and only a single classical turning point . 1 3 3 For energies falling between the 

Q M and W K B regimes, the lower-order phase shifts are calculated quantum mechanically 

and the higher-order phase shifts are calculated with the W K B method. The transition < 
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from Q M to W K B calculations is made when agreement is reached between phase shifts 

calculated by the two methods. 

3.2.3 Cross Sections for H+-H and D+-H 

The quantum description for the collisional process between hydrogen and protons is well 

established. For the range of energies of interest in this work, approximately 1 x 1 0 - 4 

to 10 eV, values for the elastic and charge exchange cross sections have been calculated 

by Hunter and K u r i y a n , 1 3 5 Davis and Thorson , 1 3 6 Hodges and B r e i g , 7 3 , 7 4 and Clarke and 

Shizgal. 7 2 As in Clarke and Shizgal, 7 2 we use the interaction potentials given by Peek 1 3 8 

and W i n d , 1 3 9 interpolated using a cubic spline to ensure a smooth fit. The potentials are 

shown in Figure 3.22. 

At collision energies below the first excited state of hydrogen (10.2 eV), the scattering 

process for H - H + involves only two electronic states of the H f ion. These states, labeled 

by the subscripts u and g, are known as the gerade (lS„g) and ungerade (2PC T u) states. 

From equation (3.2.3), for the H - H + system, we thus have 

<rd(E,9) = \\F+{9) + T-{9)\2 (3.2.8) 

for the differential 'direct' elastic scattering cross section, and 

ace{E,9) = l | j r + ( 7 r _ 0 ) _ P_(TT-9)\2 (3.2.9) 

for the charge exchange cross section, where F+ and T- refer to scattering amplitudes 

derived from phase shifts calculated using the potential for the gerade or singlet state 

(lS(Tg) and the ungerade or triplet state (2Pcr u), respectively. Both equations (3.2.8) 

and (3.2.9) assume that the particles are distinguishable. The total cross sections for the 

'direct plus exchange' (DPE) and charge exchange (CE) cross sections are given by 

<rte(E) = 2TT f {<rd(E,9) + ace(E,9)} sm9d9 
Jo 
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Figure 3.22: Interaction potentials for H+-H. The solid curve is for the gerade or lSa 

state, and the dashed curve is for the ungerade or 2Pau state. The unit of energy for V(r) 
is the ionization energy of atomic hydrogen, while the unit of internuclear separation is 
the Bohr radius, a0 = 0.5292 cm. 
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Figure 3.23: Differential cross sections for H + - H . The differential scattering cross sections, 
in square Angstroms, are shown for fixed energy as a function of the scattering angle, 
9. In (a), the energy is 0.01 eV; the top part of the figure shows the differential cross 
sections for direct (solid line) and charge exchange (dashed line) cross sections, and the 
bottom part of the figure shows the direct plus exchange ( D P E ) differential elastic cross 
section. In (b), the energy is 1.0 eV; the top part of the figure shows the differential cross 
sections for direct elastic scatter, the middle portion shows the differential elastic cross 
section for the charge exchange cross section, and the bottom figure shows the direct plus 
exchange ( D P E ) differential elastic cross section. 
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Figure 3.24: Differential cross sections for D + - H . The differential scattering cross sections, 
in square Angstroms, are shown for fixed energy as a function of the scattering angle, 
8. In (a), the energy is 0.01 eV; the top part of the figure shows the differential cross 
sections for direct (solid line) and charge exchange (dashed line) cross sections, and the 
bottom part of the figure shows the direct plus exchange ( D P E ) differential elastic cross 
section. In (b), the energy is 1.0 eV; the top part of the figure shows the differential cross 
sections for direct elastic scatter, the middle portion shows the differential elastic cross 
section for the charge exchange cross section, and the bottom figure shows the direct plus 
exchange ( D P E ) differential elastic cross section. 
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Figure 3.25: Total elastic collision cross sections. Figure (a) is for H + - H , Figure (b) is 
for H + - D . In both (a) and (b), A denotes total cross sections for direct plus exchange 
( D P E ) and B denotes total cross sections for charge exchange ( C E ) . The solid lines are 
for the standard total elastic cross section and the dashed lines are for the momentum 
transfer cross sections for each respective type of cross section ( D P E or C E ) . 
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= ^E(2;+1){SIN2^.+ + sin 2 <$,,_} (3.2.10) 
k 1=0 

and 

crc

t

e

ot(E) = 2TT ['ace(E,6) sm 6 d6 
Jo 
C O 

= I a E ( 2 f + l ) s m a ( * I l + - h-) (3.2.11) 
K 1=0 

respectively, where again + or — refers to a value calculated using either the gerade 

or ungerade potential. Some examples of differential cross sections for hydrogen-proton 

scattering calculated as described here are illustrated in Figure 3.23, with total cross 

sections shown in Figure 3.25. 

We assume that the potentials of Figure 3.22 and equations (3.2.8)-(3.2.11) are ap

plicable to deuterium-proton scattering when the reduced mass for the D + - H system is 

used in the calculation of the phase shifts. This is equivalent to ignoring the 'coupling 

coefficient' between the lowest two electronic states of D + - H , and appears justified given 

that the coupling potential is four orders of magnitude smaller than the other interaction 

potentials. 7 4 Differential cross sections for deuterium-proton scattering are illustrated in 

Figure 3.24 and total cross sections are shown in Figure 3.25. 

3.2.4 Cross Sections for 0 - H and O-D 

As discussed previously, an important nonthermal mechanism on Mars and Venus is the 

production of translationally energetic oxygen atoms from dissociative recombination and 

the subsequent energy transfer to H and D , equations (3.1.8) and (3.1.9). 

The present work considers the use of quantum mechanical collision cross sections for 

0 - H and O-D and the determination of the enhanced product velocity distributions of 

hot H and D . The collision cross sections were evaluated as detailed previously in this 

chapter, with the primary difference being that in this case there are four interactions 
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Figure 3.26: Interaction potentials for 0 - H . The labels A , B , C , and D denote the curves 
for the 4n, 2 E , 4 E , and 2 n states, respectively. The unit of energy for V(r ) is the 
ionization energy of atomic hydrogen, while the unit of internuclear separation is the 
Bohr radius, a0 = 0.5292 cm. 
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potentials, or four scattering channels, corresponding to the electronic states 4II, 2 S ~ , 

4 E ~ and 2II. These potential energy curves were taken from Figure 1 of Hodges , 1 2 9 and 

are shown in Figure 3.26. We assume that deuterium-oxygen collisions are governed by 

the hydrogen-oxygen interaction potentials, with the only change being the reduced mass 

of the system. 

The potentials for the 2 n and 2 E - are also listed in Table 1 of van Dishoeck et a l . 1 4 0 , 1 4 1 

The bound state potential 2 n was fitted to a Morse potential of the form, 

V(r) = De[l -exp(-Bx)}2 

where x = r — re and 8 = 30(l + Xix + A 2 x ) . 1 4 2 ' 1 4 3 We chose the values De = 4.582, 

r e = 1.838, B0 = 1.239, Ai = 0.001 and A2 = 0.037. The other three potentials were 

digitized from the work of Hodges, 1 2 9 and a spline fit was used to interpolate in the 

table. A n important part of the potentials is their asymptotic forms for large r. These 

are of the form 9.13/r 6 (in au) for the S states and 9.22/r 6 for the n state, 7 5 and 

represent the long range interaction of the two polarizable atoms as dipoles. The way 

in which the tabulated potential functions are made to go over to these long range 

forms is somewhat arbitrary. It is not known at what radial positions these asymptotic 

forms become valid and it appears that the tabulated potentials do not extend into this 

region. Consequently a rather arbitrary merging of the tabulated potentials with the 

asymptotic portion is made. Hodges alludes to this difficulty in attempting to reconcile 

some differences between his cross sections and those reported by Cooper et al. The 

actual forms of the potentials in the intermediate range (6-10 au) will have to await 

further quantum mechanical calculations. At short range, the potentials are fitted with 

polynomials of the form a/r + b + cr, as in Hodges. 1 2 9 

These potential functions were used to calculate four sets of phase shifts and four sets 

of cross sections. The cross section for O - H and O-D collisions are the sum of these cross 
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Figure 3.27: Total elastic collision cross sections. Figure (a) is for O - H , Figure (b) is for 
O - D . The labels A , B , C , and D denote the total cross sections corresponding to the 4 n , 
2 S , 4 S , and 2 n states, respectively. 
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Figure 3.28: Total elastic collision cross sections. The labels A and B for the solid curves 
denote the total elastic cross sections for O-D and 0 - H , respectively, as given by the 
weighted average of the total cross sections for each of the 4 states of O - D / O - H . The 
dashed curve indicates the analogous elastic momentum transfer cross section; at this 
scale, it is identical for 0 - H and O-D. 
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Figure 3.29: Differential cross sections for (a) 0 -H and (b) O-D. The differential scatter
ing cross sections, in square Angstroms, are shown for fixed energy as a function of the 
scattering angle, 6. The differential cross sections are shown for an energy of 1.0 eV, are 
are a weighted sum of the four states for each system. 
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sections weighted by the statistical weights, W{, determined from the degeneracies of the 

electronic states, that is, 

o(E) = J2WME) 
i 

where i denotes one of the four channels. The energy variation of the total cross sections 

for O - H and O-D collisions are shown in Figure 3.27. While similar, the results are slightly 

different for the two systems. The oscillatory curve is for the 2 n state, while the smooth 

curves correspond to the 4 n , 2 E ~ , and 4 E ~ states. Hodges found that the cross sections 

for the 2 E ~ and 4 E ~ states (the two lowest curves in the figure) are indistinguishable, 

whereas here we find a slight difference. Cooper et a l . 7 5 reported a significant difference 

between these two cross sections. 

It would appear that the manner in which the potentials at small r are merged to 

the asymptotic form is responsible for slight differences in the cross section but probably 

not the large difference noted in the results of Cooper et al., as discussed by Hodges. We 

agree with his conclusion that the large difference that they report is unreasonable. The 

statistically weighted cross sections for H-0 and D-0 collisions are shown in Figure 3.28, 

along with the momentum transfer cross section for elastic scatter. There is a small but 

real difference between the weighted total elastic cross sections, in contrast with Hodges' 

supposition that these cross sections are the same. This is important since the object of 

these calculations is to study the enhancement of escape of H over D. Differential cross 

sections for both types of collisions at 1.0 eV are illustrated in Figure 3.29. The large 

forward scattering peak is evident in both cross sections. 

3.3 Energy Exchange Rate Coefficients 

A n aspect of interest in the production of hot atoms involved in the nonthermal 

escape process is the rate at which energy is transferred between various atmospheric 
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constituents. Calculation of the energy exchange rate coefficients enable us to compare 

the relative efficiency with which various nonthermal processes operate. We may also use 

them to study the time evolution of the average energy of between species of differing 

(initial) temperatures. 

Energy exchange rate coefficients are reported by Hodges and Bre ig , 7 3 who examine 

charge exchange and momentum transfer effects in hydrogen-proton collisions. They 

carry out quantum mechanical calculations of hydrogen-proton cross sections for both 

processes. However, they choose to use Monte Carlo integration techniques to treat the 

Boltzmann collision operator, citing complexities in the relationships of pre- and post-

collisional encounter velocities produced by wide-ranging variations in the collision cross 

section. 

We show in this section that such Monte Carlo techniques are not required for the 

calculation of the energy exchange rate coefficients. We follow the method and notation 

of Shizgal and F i t z p a t r i c k 1 4 4 - 1 4 6 and Shizgal . 1 4 7 

The derivation of the energy exchange rate coefficient involves the calculation of the 

energy moment of the Boltzmann equation. This yields the rate of change of the average 

energy of particles of species 1. In general, the energy exchange rate coefficient depends in 

a complicated way on the details of the differential collision cross section and the form of 

the velocity distribution functions of both species involved in the collision process. This 

involves solving an equation containing the Boltzmann collision operator, as detailed in 

equation (1.4.2). It was demonstrated by Shizgal and F i t z p a t r i c k 1 4 4 ' 1 4 5 that it is possible 

with some simplifying assumptions to reduce the problem of the calculation of the energy 

exchange rate coefficients to a single integral over the total momentum transfer collision 

cross section. 
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3.3.1 Theory 

The rate at which species 1 transfers energy to the background, species 2, for a uniform 

system in the absence of external forces is given by the energy moment of the collision 

operator in the Boltzmann equation, that is 

E =~dT = J 2m^-mdCl 

= ni(r)n2(r) JJJ {/i(r,ci)/2(r,c'2) - /i(r,ci)/2(r,c2)} x 
-micl ga(g1fl) dfl dc2 dci (3.3.1) 

where the Boltzmann collision term was given by equation (1.4.2). We assume that both 

velocity distribution functions are Maxwellian distributions at different temperatures, 

f M r M ( m i V2 

f i ( C i ) = \2MJ 6 X P 

m,c;-/2 

2W 

If primed/unprimed velocities in the collision integral in equation (3.3.1) are interchanged, 

we have that 

/ / /1/2 ^ m i c i V dto dc2 dci = j j / i / 2 ^rriic'fgo- dtt dc2 dci 

where 2 9 

g'(r(g', ft') dfl' dc[ dc'2 = gcr(g, ft) dfl dc\ dc2 

and where we have also used microscopic reversibility; that is, we assume that every 

forward collision has a corresponding inverse collision. Since summing over all possible 

collisions is equivalent to summing over all possible inverse collisions, the value of the 

integration is unchanged by the interchange of primed and unprimed variables. Equation 

(3.3.1) can thus be written 

RE = nxn2 JJJ / f / f ^ m a (cf - c 2) gadVldc2dCl (3.3.2) 
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W i t h the transformation to dimensionless velocity coordinates, 

* = (0*C (3.3.3) 

equation (3.3.2) becomes 

^ = j]J 9°Md*^ (3.3.4) 

Hodges and B r e i g 7 3 evaluate equation (3.3.4), an eight dimensional integral, using Monte 

Carlo integration. They cite, as justification for resorting to Monte Carlo techniques, 

that direct integration of equation (3.3.4) is 'impractical'. However, the techniques for 

the reduction of equation (3.3.4) to a one dimensional integral over a total cross section 

are well k n o w n , 1 4 4 - 1 4 6 and are outlined below. 

The center of mass velocity and relative velo'city are given, respectively, b y 2 9 

g = c2 - Ci 

G = M1c1 + M2c2 (3.3.5) 

where 

Mi = m , / m 0 

m0 = m x + m 2 

We have standard relations 2 9 between particle velocities and the center of mass and 

relative velocities, namely 

ci = G - M 2 g 

c2 = G + M l g 

c't =' G ' - M 2 g ' 

c/2 = G' + M l g ' (3.3.6) 
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We may define a reduced center of mass velocity, S, and relative velocity £ , 

£ = MU2-MU, (3.3.7) 

where 

MXT2 

M i T 2 + M2Tx 
M2TX 

MXT2 + M2TX 

We may relate S and £ to G and g by 144 

(mxl2kTx + m2/2kT2)^ [G + M 1 M 2 ( J 1

1 - T 2 ) / ( M 1 T 2 + M2Ti)*\ 

2kT( 

S (3.3.8) 

where p = m i r a 2 / m 0 is the normal reduced mass, and T e / / = (M\T2 + M2Tx)jm0 is the 

effective temperature. Inverting equation (3.3.7), we have 

i2 = MIE + MU (3.3.9) 

We note that equations (3.3.7) and (3.3.8) are valid for the pre-collisional (primed) ve

locities by simply replacing variables with their primed counterparts. 

For elastic collisions, we also have 2 9 

g g - 2 ( g - k ) k (3.3.10) 

where the unit vector k is the 'apse line' or line joining the two particles at the point of 

closest approach during a collision; it corresponds to the external bisector of the angle 

between the relative velocities before and after the collision, g' and g (see Figure E.59). 
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Equation (3.3.10) is a result of the principles of conservation of momentum and energy. 

From equations (3.3.6) and (3.3.10) we have 

c'x = G - M 2 g + 2 M 2 ( g - k ) k (3.3.11) 

where by conservation of momentum G ' = G . Using the primed analogue to equation 

(3.3.9), and utilizing equation (3.3.11), we then have 

& = MfE-M%{l + a)t' + M%at (3.3.12) 

where a = Mi(Ti/T2 — 1). After some algebra (see Appendix E), we find 

g - & = 4 ( M 1 ^ ) l ( l + « ) ( ^ k ) ( S - k ) + 4 M 2 « ( l + a ) ( $ . k ) 2 (3.3.13) 

From conservation of energy (see Appendix E), we have that 

d^di2 = dEd£ (3.3.14) 

and so equation (3.3.4) becomes 

RE = ^kT^JJJ [ 4 ( A * i A * 2 ) * ( l + « ) ( £ • k ) ( S - k ) + 4A4 2 a ( l + « ) (£ • k) 2] x 

e-~-? (^J11^2
 (adCldSdZ (3.3.15) 

The first term in equation (3.3.15) is odd in the cosine of the angle between k and S, and 

so vanishes when integrated over dS; that is, if we choose our coordinate system such 

that the polar direction is along 2, then dS = sinO d9 d(f> E2 dE, and so k • S = kE cos 9, 

which means that / kE cos 9d(cos 9) = 0. Thus, equation (3.3.15) becomes 

RE = ^kT^M2a(l + a) ^f^j J e~* dE> J J (£-kfe^H^ d£l df-

= ^ k T l AM2a(l + a) ' 4 . jT e~* E2 dE x 

JJ ( £ - k ) V * 2 iadVld^ 
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0 0 —2 3 

47T / e~~ E2 dZ = 71-2 

The integral over dZ may be done analytically. 

i 
and we have 

RE = ^ ^ 4 ^ 2 0 ( 1 + OL) {^y^j 4TT yy {lcozx)2e-?eodSldi 

where we have defined x a s the angle between k and £ . Wi th the transformation (see 

Figure E.59) 

cos 2 x = ^ ( l - c o s 0 ) 

and the definition of the momentum transfer cross section, equation (3.2.4), we thus have 

/•oo , 
RE = N{TUT2) e-U6.<rntd£ (3.3.16) 

Jo 

The momentum transfer cross section is a function of energy through the relative velocity 

between the colliding pair, i.e. crmt = c r m t ( £ ) , where the physics of the collision process 

is given by the energy and angle dependence of the differential cross section er(£, 9) used 

to calculate a m t . We note that a m t is implicitly a function of the effective temperature, 

Tefj; explicitly the dependence is 

The factor in front of the integral in equation (3.3.16) is defined by 

N { T l i T 2 ) = 8-^J2JL^klk{T2-Tl) 
7rm 0 V f* 

It is clear from the form of the coefficient N that as the temperature difference between 

the two species diminishes that the rate of energy transfer also decreases, becoming zero 

when the temperatures are equal. In practice, the integral in equation (3.3.16) is done 
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numerically. For the hard sphere cross section, Odifs = ^ 2 /4 , where d is the atomic 

diameter, we may carry out the integration in equation (3.3.16) analytically, yielding 

RE = * ^ f i ! £ » k { T , - T i ) ( 3 . 3 . 1 7 ) 

If we make the substitution E = 3&T/2, the above result is identical to that obtained by 

Shizgal and Fi tzpatr ick. 1 4 6 

We may rewrite equation (3.3.16) in the form of a rate equation, 

dEi 
dt 

where 

= mn2kE k(T2 - Ti) (3.3.18) 

kE = ^ t o ^ n - e ? ^ (3.3.19) 
7 r m 0 V p Jo 

is the energy exchange rate coefficient, with units c m 3 s - 1 . It should be noted that while 

the energy exchange between the two species goes to zero as the temperatures equilibrate 

(T2 ~ T i ) , the energy exchange rate coefficient is still well defined and non-zero. 

3.3.2 Time Evolution of the Average Test Particle Energy 

The calculation of the energy exchange rate coefficients is motivated by two points. First, 

it provides a check on the calculation of the more complex double integral calculation 

of the product velocity distribution functions ( P V D F s , calculated in the next section of 

this chapter). Second, we may calculate the time evolution of the average energy per test 

particle (species 1), given some initial energy and some (constant) background or bath 

temperature. Studying the time evolution for different momentum transfer cross sections 

allows us to compare how efficient various collision processes are in transferring energy. 

We may re-write equation (3.3.18) as 

1 dEi 
n x n 2 dt 

= kskiTi-Tx) (3.3.20) 
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where E\ is the total energy of all particles of species 1. We define E\ = E\jn\ = 

\kT\ as the average energy per particle (of species 1), and also define Ethermai = E2 

as the (constant) average energy per particle (of species 1) at the background (species 

2) temperature. Then, defining the ratio E* = E\\' Ethermai i w e m a y write our energy 

evolution equation as 

i dE* kE 

— = p * ( r 2 - r i ) 
U2 Ot ^thermal 

Since Ethermai = 2kT2, we find that this reduces to 

l d B ' = | t« ( i - r , /T , ) n2 dt 3' 

Defining a dimensionless energy exchange rate coefficient = ke/ko, where k0 is some 

(arbitrary) reference value, and a dimensionless time, r = At = n 2A; 0t, our time dependent 

equation thus becomes 

where we have used E* = Ei/Ethermai = T i / T 2 . This result may be discretized using a 

first order forward difference to yield 

E*+1 = E* + Ar2-kE (1 - Et) 

= E* + AE* (3.3.21) 

Clearly, when Ti > T 2 , AE* < 0, and energy is transferred from species 1 to species 2, 

the background, and vice versa. As well, we note that when T i = T 2 , AE* = 0, and there 

is no further energy exchange (equilibrium). Thus, depending on the initial temperatures 

(energies) of the interacting species, we can have either relaxation (cooling) or excitation 

(heating) of species 1. 
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3.3.3 Results and Discussion 

The calculation of the energy exchange rate coefficient, using equation (3.3.16), involves 

a single integral over the reduced relative velocity £. From a computational standpoint, 

this one-dimensional integral is much more efficient and accurate than than the original 

triple integral of equation (3.3.1). The momentum transfer cross section(s) required for 

the £ integration are calculated at 91 energies, from 1 x 1 0 - 4 to 10 eV, and at 361 angles 

(half degree increments), and are illustrated in Figure 3.25. The integral over d^ is done 

using a transformation to reduced energy, z = £ 2 , or 

f°° 2 1 f°° 
/ e-^ £5 omt d£ = -I e~ V omt dz 
Jo 2 Jo 

and applying an interpolation scheme with z points located at the 91 energies used when 

calculating the differential cross section (the interpolation scheme is detailed in Appendix 

E) . 

We compute values of in units of c m 3 s _ 1 , for several momentum transfer cross 

sections, corresponding to differential cross sections for elastic direct (DIR), charge ex

change ( C E ) , and the linear trajectory approximation (LTA) for the charge-exchange 

cross section. The temperatures of the ion-neutral pairs are chosen to approximate the 

observed or estimated range of temperatures for exospheric conditions on the terrestrial 

planets (Venus, Earth and M a r s ) . 5 , 1 4 8 

For hydrogen-proton collisions, Table 3.5 summarizes the results for the DIR, C E , 

and L T A cross sections for several combinations of hydrogen and proton temperatures. 

We note that the L T A cross section overestimates the energy exchange rate coefficient 

for charge exchange by approximately 30% for all combinations of proton and hydrogen 

temperatures. We observe a uniformly monotonic increase in the energy exchange rate 

coefficient for all cross sections as the hydrogen temperature is increased for a fixed 

proton temperature except for the direct (DIR) elastic interaction, which remains roughly 
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Cross T[H] 
T[H+] Section 500 1000 1500 

6000 DIR 2.30 2.29 2.28 
C E 8.87 9.19 9.51 

L T A 11.12 11.43 11.74 

4000 DIR 2.27 2.29 2.30 
C E 7.47 7.84 8.19 

L T A 9.67 10.06 10.43 

2000 DIR 2.07 2.14 2.19 
C E 5.82 6.27 6.69 

L T A 7.80 8.33 8.81 

Table 3.5: Energy exchange rate coefficients for several H+-H cross sections. The tem
peratures of both hydrogen and the protons, in degrees Kelvin, are indicated in the table. 
The tabulated values of the energy exchange rate coefficients are in units of 1 0 - 9 c m 3 

s- . 

Cross T[H] 
T[H+] Section 500 1000 1500 

6000 DIR 
L T A 

20.78 
22.07 

20.48 
21.27 

19.90 
20.99 

4000 DIR 
L T A 

17.67 
18.58 

17.77 
18.16 

17.50 
18.08 

2000 DIR 
L T A 

13.23 
13.71 

13.70 
14.02 

16.02 
16.72 

Table 3.6: Energy exchange rate coefficients for several H + - H cross sections as reported 
by Hodges and Bre ig . 7 3 The temperatures of both hydrogen and the protons, in degrees 
Kelvin, are indicated in the table. The tabulated values of the energy exchange rate 
coefficients have been converted to units of 1 0 - 9 c m 3 s - 1 for comparison with Tables 3.5 
and 3.12. 
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constant for all temperatures considered. 

The results for hydrogen-proton collisions may also be compared with the work of 

Hodges and Bre ig , 7 3 which is summarized in Table 3.6. Comparing tabulated values for 

the L T A we note that there is a discrepancy between their results and the present work, 

on the order of a factor of roughly 1.6 to 1.9. It should also be noted that while Hodges 

and Breig designate the elastic cross section as the regular 'direct' elastic collision cross 

section, it appears that they have mislabelled it, and in fact those results are for the 

D P E collision cross section. If we sum the DIR and C E rate coefficients in Table 3.5 

to yield the D P E result, we get a similar discrepancy as with the L T A . The calculation 

of the energy exchange rate coefficients is repeated in an independent calculation later 

in this chapter, and the same discrepancy is observed; it is unclear as to its origin. 

It may be a systematic statistical problem with their Monte Carlo integration scheme, 

but without repeating their calculation exactly this is difficult to determine absolutely. 

The cross sections from both works have been compared and show excellent agreement, 

so that cannot be the source of the discrepancy. In addition, their L T A results exhibit 

strange variation as the hydrogen temperature is changed for a fixed proton temperature. 

For a proton temperature of 2000 K , the L T A rate coefficient appears to increase with 

increasing hydrogen temperature; however, for a proton temperature of 4000 K , the rate 

coefficient appears to increase then decrease, and for a proton temperature of 6000 K the 

rate coefficient decreases. The results of the current work show a uniform increase in the 

energy exchange rate coefficient as the hydrogen temperature is increased, regardless of 

the proton temperature or the cross section used, with exception of the DIR interaction. 

In order to determine which behaviour was correct, we fitted the momentum transfer 

cross section for the L T A with a power law of the form 

omt(E) = aEp 
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where E is the energy in eV, and crmt(E) is in A 2 . Several sets of parameters were 

assessed to fit amt(E), and are illustrated in Figure 3.30. The solid curve is the true L T A 

momentum transfer cross section. The short dashed, long dashed, and dot-dashed curves 

represent values of a and p corresponding to 83/-0.28, 80/-0.35, and 40/-0.45 respectively. 

These fits attempt to account for the sharp increase in the L T A cross section at low energy. 

A fourth fit, given by the dot-dot-dashed curve and corresponding to fit parameters of 

91/-0.12, respectively, fits only the high energy portion of the cross section. 

W i t h this form of the momentum transfer cross section, the integral in equation 

(3.3.19) may be carried out analytically to yield an energy exchange rate coefficient of 

the form 

k E = *!L J ^ k l A { * W r ( p + 3) 
7rm0 V n 

where T is the standard gamma function. The energy exchange rate coefficients as a 

function of the effective temperature, T e / / , are plotted in Figure 3.31. 

Regardless of the fit, it appears that for the L T A cross section we find that the 

energy exchange rate coefficient increases monotonically with an increase in the effective 

temperature, T e / / , verifying the pattern seen in Table 3.5. 

The dependence of the rate coefficients with the bath and test particle temperatures, 

T2 and T i , is shown in Figure 3.32. The solid curve is for the D P E cross section and the 

dashed curve is for the C E cross section. A (constant) value of 7\ = 1500 K is used for 

both curves. The values of ^ ( T i , T 2 ) are normalized by the value of & E ( T 2 = 2~i), and so 

the relative magnitudes of the D P E and C E curves cannot be compared directly. From 

the figure we see that the energy exchange rate coefficients increase almost uniformly. 

The disparate masses of the two collision partners makes the identification of the hot 

atom and background important for deuterium-proton collisions. The energy exchange 

rate coefficient, as given by equation (3.3.19), is explicitly dependent on the effective 
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Figure 3.30: Fits to the L T A momentum transfer cross section. The solid curve is the 
true L T A momentum transfer cross section. The short dashed, long dashed, dot-dashed 
and dot-dot-dashed curves represent fit parameters a and p corresponding to 83/-0.28, 
80/-0.35, 40/-0.45 and 91/-0.12 respectively. 
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Figure 3.31: Temperature dependence of kE for the L T A . The solid curve is the true 
L T A momentum transfer cross section. The short dashed, long dashed and dot-dashed 
curves represent fit parameters a and p corresponding to 83/-0.28, 80/-0.35 and 40/-0.45 
respectively. The plus symbols correspond to a fit with parameters 91/-0.12. 
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Figure 3.32: Dependence of energy exchange rate coefficients on bath temperature for 
H+-H. The value of kE{Tx,T2) is plotted relative to the value of kE(T2 = Tx) as a function 
of T2 for fixed values of T i . The solid curve is for the direct-plus-exchange (DPE) cross 
section, dashed curve for the charge exchange (CE) cross section. A constant temperature 
T i = 1500 K is used for both curves. 
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temperature, T e / / through the factor \ J 2 n k ^ e f f . In addition, k g is implicitly dependent 

on the effective temperature through the definition of £, as mentioned in connection with 

the momentum transfer cross section appearing in equation (3.3.19). 

For hydrogen-proton collisions, we had merely to consider a single process for the 

formation of hot hydrogen, as given by equation (3.1.1), 

H+* + H D P E ' C E , ' L T A H* + H + 

However, to produce hot deuterium, we have from processes given in equations (3.1.4) 

and (3.1.5) that 

H+* + D D P ^ I R H+ + D* 

C E ^ L T A H » + D + ^ 

D+* + H D P J ^ m D+ + H* 

C E ^ L X A D * + H + ( H ) 

where the labels D P E , DIR, C E , L T A indicate the types of processes which produce the 

products on the right-hand side of the reaction. In each case, we consider the neutral 

reactant as species 1 (test particle) and the ion reactant as species 2 (bath). Thus, process 

I above can have two different sets of products, depending on the type of cross section 

considered; the same is true for process II. 

We tabulate the energy exchange rate coefficients for the above processes in Table 

3.7. Columns labeled T refer to the reaction given by the processes labeled I above, 

while columns labeled 'IF refer to the reaction given by the processes labeled II above. 

Thus, a DIR reaction which is labeled 'I' refers to the first branch of process I, while a 

C E reaction labeled TI ' refers to the second branch of process II. It should be noted that 

entries for DIR 'IF and C E / L T A T are thus representative of the transfer of energy to 
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T [neutral] 
Cross 500 1000 1500 

T[ion] Section I II I II I II 

6000 DIR 1.741 1.76 1.731 1.78 1.72 1.78 
C E 8.026 6.098 8.812 6.482 8.336 6.850 

L T A 9.714 7.790 9.861 8.193 10.00 8.568 

4000 DIR 1.78 1.69 1.781 1.73 1.78 1.76 
C E 6.667 5.259 6.849 5.691 7.027 6.097 

L T A 8.382 6.870 8.567 7.351 8.745 7.789 

2000 DIR 1.663 1.55 1.691 1.63 1.72 1.69 
C E 5.027 4.241 5.258 4.784 5.478 5.258 

L T A 6.606 5.693 6.868 6.327 7.116 6.869 

Table 3.7: Energy exchange rate coefficients for several H + - D cross sections. The tem
peratures of both deuterium and the protons, in degrees Kelvin, are indicated in the 
table. Values under columns marked T are for reactions where the test particle is the 
deuterium atom, with a bath of hot protons; values under columns marked 'IF are for 
reactions where the test particle is hydrogen, with a bath of hot deuterium ions. The 
tabulated values of the energy exchange rate coefficients are in units of 1 0 - 9 c m 3 s - 1 . 

produce hot hydrogen atoms, rather than hot deuterium atoms, via reactions with hot 

deuterium ions. 

Comparing values from Tables 3.5 and 3.7, we observe that energy exchange rate 

coefficients corresponding to production of hot deuterium via DIR collisions with protons 

are approximately 80-90% of the corresponding value for hydrogen-proton production of 

hot hydrogen. For C E / L T A collisions, the deuterium energy exchange rate coefficients 

are approximately 70-80% of the hydrogen-proton values. We believe this is due to the 

less efficient transfer of energy between particles of disparate masses. 

The dependence of the rate coefficients with the bath and test particle temperatures, 

T 2 and T i , for deuterium and hydrogen is shown in Figure 3.33. The solid curve is for the 
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DIR cross section and the dashed curves is for the C E cross section. A constant value 

of Xi = 500 K is used in the calculation of both curves. The values of kg(Ti,T2) are 

normalized by the value of kE(T2 = Xi) . From a comparison with Figure 3.32, we can see 

that the behaviour of the DIR curve is very different from that for the hydrogen-proton 

system. At first it was thought that the curvature of the DIR curve was due to numerical 

error, such as poor convergence in the integration of equation 3.3.19. To eliminate this 

possibility, the details of the integrands and convergence of the integration yielding the 

rate coefficients were examined. The results are shown in Figures 3.34 and 3.35. Since 

the integrands are well behaved and the convergence of the integral is smooth, we deduce 

that the result is in fact physical and not numeric. It may simply be a result of the 

change in efficiency of energy transfer for colliding partners of disparate mass. 

The energy exchange rate coefficients for O-H and O-D direct elastic collisions are 

tabulated in Table 3.8. We can see immediately that the energy exchange is much less 

efficient for these systems than for hydrogen-proton and deuterium-proton systems, owing 

to the very large difference in mass between the O-H and O-D colliding pairs. The energy 

exchange rate coefficients for O-D are larger than those for O-H, reflecting the larger mass 

of deuterium and the larger reduced mass of the O-D system. 

We may, as mentioned in the preceding section, calculate the time evolution of the 

average energy of species 1 using equation (3.3.21). We chose three temperature pairs 

from those used for the calculation of the energy exchange rate coefficient: TJJ+ = 6000 

K/TH = 500 K , TH+ = 4000 K/TH = 1000, and TH+ = 2000 K/TH = 1500. These 

were chosen as they represented the full range of possible temperature ratios previously 

considered. In addition, we have examined both the case where, initially, T\ > T2 

and where T2 > T\. In plotting the results, we have used dimensionless time units 
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Figure 3.33: Dependence of energy exchange rate coefficients on bath temperature for 
D+-H. The value of kE(T1,T2) is plotted relative to the value of kE(T2 = Tx) as a function 
of T2 for a fixed value of Tx = 500 K . The solid curve is for the direct elastic (DIR) cross 
section, the dashed curve for the charge exchange (CE) cross section. 
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(a) (b) 

Figure 3.34: Details of the integrand in calculation of the energy exchange rate coefficient 
for D H + . The neutral temperature, T i , is in both cases fixed at 500 K . In (a), the 
deuterium ion temperature is fixed at values of 500, 1875, 3250 and 4625 K , corresponding 
to the labels A - D , respectively. In (b), the proton temperature is fixed at 500, 2333, 4166 
and 6000 K , corresponding to the labels A-D, respectively. 
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Figure 3.35: Convergence of the energy exchange rate coefficient for DH+. The solid 
curve is for the DIR cross section, the dashed curve for C E . The sum of the integration 
to calculate the energy exchange rate coefficient, as a function of energy, is shown for the 
highest T 2 temperatures of Figure 3.34. 
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Cross T[H] or T[D] 
T[0] Section 500 1000 1500 

6000 OH 
OD 

0.179 
0.258 

0.207 
0.284 

0.226 
0.303 

4000 OH 
OD 

0.170 
0.241 

0.201 
0.272 

0.222 
0.294 

2000 OH 
OD 

0.159 
0.219 

0.194 
0.258 

0.217 
0.284 

Table 3.8: Energy exchange rate coefficients for O-H and O-D direct elastic cross sections. 
The temperatures of O and H / D , in degrees Kelvin, are indicated in the table. The 
tabulated values of the energy exchange rate coefficients are in units of 10~9 cm 3 s _ 1 . 

corresponding to those used by Clarke and Shizgal, 7 2 

Tca
 = At 

where 

A = ri2cr0yj32TrkT2/m 

and where cr0 — lcm2. If we choose n 2 = 1 c m - 3 , then for a background of hydrogen 

at 500, 1000, and 1500 K we find values of A corresponding to 2.04,2.88 and 3.53 x 106 

s - 1 ; hence, a unit of r is of the order of sub-microseconds of real time for these choices 

of parameters. 

Comparing the definition with that given for T in equation (3.3.21), we immediately 

see that 

Tcs = '^-^32TrkT2/m 

KQ 

For the case of Ti > T 2 , we choose the protons as species 1, and hydrogen as the bath. 

The results are plotted in Figure 3.36. For the case of T\ > T 2 , we choose hydrogen 
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as species 1, and the proton as the bath; the results are plotted in Figure 3.37. It is 

clear from the figures that the rate of energy transfer depends on the initial temperature 

(energy) ratio; as is indicated by the energy exchange rate coefficients of Table 3.5, as the 

temperature disparity becomes more pronounced, the rate at which energy is exchanged 

between the components increases, and the rate at which cooling or heating occurs is 

greater than for smaller temperature differences. 

As in Clarke and Shizgal, 7 2 we define two timescales to better quantify the time 

evolution process. For a cooling (relaxation) system, we define T\je as the time required 

for the energy ratio, E/Ethermah to decay to 1/e of its original value, and T I . I as the time 

it takes for the energy ratio to decay to 1.1. For a heating (excitational) system, we 

define T\/e as the time for the energy ratio to increase to e times its original value, and 

T i . i as the time it takes for the energy ratio to reach 1/1.1 = 0.91. These timescales are 

tabulated for both cases in Tables 3.9 and 3.10. 

As a check of our time evolution calculations, we compared energy relaxation times 

for protons with initial energies of 0.646eV (4993 K) and 1.27eV (9816 K) in a hydrogen 

bath at 298K, using both the cross sections given previously in this chapter and those 

used by Clarke and Shizgal. 7 2 The time evolution results are illustrated in Figure 3.38, 

while a comparison of relaxation times is given in Table 3.11. 
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Figure 3.36: Time evolution of the average energy in a relaxing H + - H system. Solid 
curves are for the direct-plus-exchange (DPE) cross section, dashed curves for the charge 
exchange (CE) cross section. Time is in reduced dimensionless units r, correspond
ing to those used by Clarke and Shizgal. 7 2 The labels A , B, and C correspond to pro
ton/hydrogen temperatures of 6000 K/500 K , 4000 K/1000 K , 2000 K/1500 K , respec
tively. 
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Figure 3.37: Time evolution of the average energy in a heating H + - H system. Solid 
curves are for the direct-plus-exchange (DPE) cross section, dashed curves for the charge 
exchange (CE) cross section. Time is in reduced dimensionless units r , correspond
ing to those used by Clarke and Shizgal. 7 2 The labels A , B , and C correspond to pro
ton/hydrogen temperatures of 6000 K/500 K , 4000 K/1000 K , 2000 K/1500 K , respec
tively. 
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T[H] 
Cross 500 1000 1500 

T[H+] Section T1/e T J . I r 1 / e T J . I r1/e T J . I 

6000 
D P E 
C E 

LTA 

0.0158 
0.0197 
0.0158 

0.188 
0.226 
0.189 

4000 
D P E 
C E 

LTA 

0.0680 
0.0864 
0.0684 

0.162 
0.203 
0.162 

2000 
D P E 
C E 

LTA 

n/a 
n/a 
n/a 

0.0683 
0.0904 
0.0688 

Table 3.9: Timescales for the time evolution of the average energy of H for several H + - H 
cross sections. The temperatures of both hydrogen and the protons, in degrees Kelvin, 
are indicated in the table. The tabulated values are timescales, in dimensionless units, for 
H being heated by H + (i.e. timescales are for the time evolution of the average energy of 
the hydrogen). A n entry of 'n/a' means that the particular timescale is not applicable for 
those particular temperatures. The timescales are defined in the text. The dimensionless 
time units are those of Clarke and Shizgal, 7 2 T = At, where A is defined in the text and 
is of the order of 2.04 - 3.53 x 106 s _ 1 . 
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T[H] 
Cross 500 1000 1500 

T[H+] Section r 1 / e T1a r1/e T1A r 1 / e T1A 

6000 
D P E 
C E 

LTA 

0.0381 
0.0500 
0.0383 

0.206 
0.287 
0.209 

4000 
D P E 
C E 

LTA 

0.0921 
0.1228 
0.0929 

0.180 
0.243 
0.182 

2000 
D P E 
C E 

LTA 

n/a 
n/a 
n/a 

0.0733 
0.0977 
0.0739 

Table 3.10: Timescales for the time evolution of the average energy of H + for several 
H + - H cross sections. The temperatures of both hydrogen and the protons, in degrees 
Kelvin, are indicated in the table. The tabulated values are timescales, in dimensionless 
units, H + being cooled by H (i.e. timescales are for the time evolution of the average 
energy of the protons). An entry of 'n/a' means that the particular timescale is not 
applicable for those particular temperatures. The timescales are defined in the text. The 
dimensionless time units are those of Clarke and Shizgal, 7 2 T = At, where A is defined 
in the text and is of the order of 2.04 — 3.53 x 106 s _ 1 . 
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Figure 3.38: Comparison of the time evolution of the average proton energy. The average 
energy per proton divided by the average energy per proton at the bath temperature is 
plotted against dimensionless time units r corresponding to those used by Clarke and 
Shizgal. 7 2 In all cases, the initial average energy per proton is taken to be 0.646 eV 
(approx. 4993 K ) , and the (constant) background temperature is 298 K . The solid, short 
dashed, and long dashed curves represent the time evolution of the energy ratio for the 
D P E , C E , and direct (D) cross sections, respectively, as calculated using cross sections 
as defined in Clarke and Shizgal. The dash-dot and dash-dot-dot-dot curves represent 
the time evolution for D P E and C E cross sections, respectively, as calculated using cross 
sections as defined previously in this chapter. 
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E0 = 0.646 eV E0 = 1.27 eV 
T l / e T l . l T l / e n . i 

D P E 
C E 
LTA 

0.030 
0.040 
0.031 

0.202 
0.291 
0.205 

0.023 
0.029 
0.023 

0.216 
0.309 
0.219 

DPE+ 
CEt 
LTA2t 

0.016 
0.022 
0.006 

0.103 
0.137 
0.050 

0.012 
0.017 
0.004 

0.111 
0.148 
0.053 

DPE* 
CE* 
LTA2* 

0.016 
0.022 
0.006 

0.080 
0.105 
0.029 

0.012 
0.030 
0.004 

0.077 
0.101 
0.024 

Table 3.11: Comparison of timescales for the time evolution of the average energy per 
proton for the H + - H system. The (constant) temperature of the background H is taken 
as 298 K , and the initial proton energy is 0.646 eV (approx. 4993 K ) . The values reported 
in the table are the timescales T i / e and T\_\, defined in the text, for the D P E and C E 
cross sections defined previously. The D P E , C E , LTA entries are for calculations using 
cross sections from this work, D P E , CE , LTA2 entries marked T are calculations using 
cross sections from Clarke and Shizgal, and D P E , C E , LTA2 entries marked * are the 
reported results from Clarke and Shizgal. 7 2 A l l times are reported in the dimensionless 
time units of Clarke and Shizgal, T — At, defined in the text. 
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3.4 Product Velocity Distribution Functions 

3.4.1 Theory 

The rate of production, Q, of fast moving particles depends on the rate of binary en

counters between the two species involved in a collision and on the velocity distribution 

functions of the two species. We therefore write that 2 6 

Q ( r , C l ) = m(r)n2(r) Jj /i(r, ci)/ 2(r, c'2)go(g, 9,') dQf dc2 (3.4.1) 

where g, f i ' and o(g,tt') are as defined previously in Chapter 1. The units of Q(r, Ci), 

above, are c m - 6 s2. The densities of the collision pair are nx(c) and n2(c) and their 

distribution functions are /i(r, c[) and / 2 (r , c'2), respectively. Altitude dependence enters 

through the density profiles n\ and n 2 and the temperature profiles, T(r) , contained in 

the distribution functions. The differential cross section, cr(g, ft'), is required in equation 

(3.4.1), and plays an important role in the velocity dependence of Q(r, c\). We call 

Q(r, ci) the product velocity distribution function (PVDF) for species 1. 

It should also be noted that the distributions in equation (3.4.1) are for the incoming 

(or pre-collisional) particles, and the integration is over the velocity of the product ion 

(for a reaction of the type specified by processes (3.1.1) or (3.1.4), for example). With 

the kinematics of the collision, the velocities of the products (ci, c2) can be related to 

the velocities of the reactants (ĉ , c2) so that Q(r, ci) is a function of the velocity of 

the translationally energetic product. The hot atom production is thus due to 'inverse' 

collisions, with the primes denoting the atom velocities before collision. A schematic of 

the collision process is shown in Figure 3.39. 

In fact, it is clear from equations (1.4.2) and (3.4.1) that the rate of production, 

Q(r, Ci) is-identical to the 'gain' (inverse) term of the Boltzmann collision operator. 

A difficulty in the calculation of Q(r, ci) is that in general the distribution functions 
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Figure 3.39: Schematic of an elastic binary collision. Particles 1 and 2 enter into an 
elastic collision with velocities u' and v', and leave with velocities u and v, respectively. 
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of nonthermal species are far from equilibrium and are not Maxwellian. However, in 

order to render the problem tractable it is assumed that the two species are adequately 

described by Maxwellian distributions at different temperatures, 

/ t ( c : ) = ( 2 ^ ) 2 e X P 2kTi 

Substituting this form for the distribution functions in equation (3.4.1), we have, for 

some fixed altitude r, 

Q(ci) = n m 2 (^^J J/ e-^c'?-x^g<jdttdc2 (3.4.2) 

where we have defined A; = rrii/2kTi. For a fixed value of the velocity c i , we have 

c 2 = g + C i 

dc2 • = dg 

dg = g2 dg dfl 

where dQ is the solid angle about the direction of g. With these changes, we may write 

Q{ci) = nln2{^^j K(Cl) (3.4.3) 

where 

K(Cl) = Jj e-Xlc?-X2C?gsadfl'dndg (3.4.4) 

As in the section detailing the calculation of the energy exchange rate coefficients, we 

have G as the center of mass velocity, and g' and g as the relative velocities before and 

after a particle cross section. If we substitute for G into the expressions for the particle 

velocities, as given by equation (3.3.6), we find 

c[ = c i + M 2 ( g - g') 

c 2 = C l + M l g ' + M 2 g 
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Squaring these expressions yields 

c'2 = c 2 + M 2

2 ( ^ + ^ 2 - 2 g . g ' ) + 2 M 2 ( c 1 - g - c 1 - g ' ) 

c'22 = c 2 + ( M 2 V + M 1 V 2 + 2 M 1 M 2 g • g ' ) + 2 ( M 2 c 1 • g + M 1 c 1 • g , ) 

and so 

\ic'? + \2c'2

2 = Ac\ + Bg2 + ac i • g + Bcx • g' + 7 g • g' (3.4.5) 

where we have used conservation of energy, g = g\ and made the definitions 

A = Ai + A 2 

B = 2M 2

2 A a + (M2 + M 2 ) A 2 

a = 2M 2 (Ai + A 2) 

B = 2(M1X2-M2Xl) 

7 = 2 M 2 ( M i A 2 - M 2 A i ) (3.4.6) 

Substituting equation (3.4.5) into equation (3.4.4), we have 

^ ( C i ) = e - ^ / g*e-B> J{g,Cl)dg (3.4.7) 
J 0 

where 

J(g,Cl) = JJe-^Wc^^o*{g^')d^d9 

= f e~aC^J^dn (3.4.8) 

and 

Ja, = j e - ^ r g ' + 7 g . g ' ] ( T ( 5 ) n y ^ ( 3 4 J ) 

In equation (3.4.9), it should be noted that the solid angle dQ' is about the direction of 

g', whereas dQ, is about the direction of g. The geometry is illustrated in Figure 3.40. 
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Figure 3.40: Coordinate system for the calculation of collisional production. The direc
tion of gis taken as the polar direction. 
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Using the above geometry and the addition theory for non-coplanar angles, 1 4 9 

cos ip' — cos 8 cos ij) + sin 8 sin ij) cos (f> 

we may write equation (3.4.9) as 

Jn, = r J<l)e-'l92cose-'3ci9COsecos^ o(g,9)d(cos9) (3.4.10) 
Jo 

where we have used the definition of the solid angle, dQ' = sin 8 d8 d(j>, and made the 

definition 

/•27T 

J, = / e - ^ l 5 sin0 sin*/, cos 
Jo 

= 2TT I0(8c\g sin 8 sin^>) 

where I0(z), the modified Bessel function of order zero, 1 5 0 is given by 
l r W) = -
7T Jo 

e±zcosed8 

If we substitute all of the above intermediate results into equation (3.4.8), and use the 

definition dQ = sin#^ d8^ d(f>psi, we have 

J(g,Cl) = {2TT)2 T e-™2™eo(g,8)K^d(cos8) (3.4.11) 
J 0 

where 

Krp = r e-DlCOS^I0(D2sm4>)d(cosi(;) 
J 0 

Di = agci + figcx cos 8 

D2 = flgci sin 8 

Dl + Dj = g2c\(a2 + 82 + 2a 8 cos 9) 

The integral may be done analytically, 1 5 1 yielding 

K = 2smh(xjD2 + D2) 

\JD\ + D\ 
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If we now combine equations (3.4.12), (3.4.11), (3.4.7) and (3.4.3), we have 

\ 7T J Ci JO 

J { 9 ^ ] = 2 ( 2 ^ C 1 

= r . ^ - ' . M t ^ ^ T O ^ , ) (3.4.12) 
Jo <7v a; + pz + zap cos 0 

Before implementing the result of equation (3.4.12), we wish to non-dimensionalize our 

various parameters. We define the velocity v0 — 2kT*/m*, where T*,m* are arbitrary 

temperature and mass values, and then define dimensionless variables x = ci/v0, z = 

g/v0, A' = Av2

0, B' = Bv2

0, a' = av2, B' = /3v2

0, 7 ' = -yv2

0, and a' = a/cr0, where 

A, 5 , a, / 3 , 7 are defined previously in equation (3.4.6), and C T 0 is some factor chosen to 

non-dimensionalize the differential cross section. With these definitions we may now 

write equation (3.4.12) as 

Q(x) = Vgnin2 i^v7^1^2^ 87r2<70 J z3 e~B'z2 J(z,x)dz 

J{ztx) = r e-A'x2e-<'z2cose(T'(z,0) x 
Jo 
s i n h ( W ^ / 2 + ^ 2 + 2a^cos(J) ^ 

, „ „ =—-a(cos0) (3.4.13) 

Since J is dimensionless, all the dimensions for Q(x) are contained in the multiplicative 

factors in front of the integral; it is easy to verify that the units of Q(x) are s 2 c m - 6 . 

It is possible to perform the integrations in Q(x) and J analytically for a suitable 

choice of differential cross section. For the hard sphere cross section (see Appendix C ), 

(7(2,0) = d2/4:, we have 

' v W V 7rd2 

Q(x) = v y ^ n i l ^ - ^ j ^={N(r,s,u+)-N(r,S,u.)} (3.4.14) 

where 

• Ax = a'2 + P'2 
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A2 = 2a'{3' 

N(r,s,t) = -
1 

erf(s) 
VrTi2 

t 
exp 

st 

t = u± 

u± = { 
j (a> + P)y/£ for + 

The details of the derivation are given in Appendix E. 

3.4.2 Total Collision Rates 

The preceding section described the rate of production of fast moving particles of speed 

c\ by binary encounters between two species; that is, Q(c\) represents the rate at which 

collisions which create particles of species 1 with speed c\ occur. In order to calculate 

the total number of collisions between species 1 and 2 we must integrate over all possible 

speeds c\. It should be noted that, in the absence of any particle sources or sinks, 

integration of the Boltzmann collision operator over dc\ must be equal to zero because 

of particle conservation;29 that is, particles of species 1 and 2 may be moved between 

different elements of velocity space by elastic collisions, but the total number of particles 

remains constant. We have, from equation (1.4.2), 

Either term above defines the total collision rate between species 1 and 2. Using the 

definition of the production rate, equation (3.4.1), and the definition of the collision 

0 

and so 
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frequency, 

Z{ci) = JJ f2a(g,tt)gdQ,dc2 

fi o-tot(g) g dc2 (3.4.15) 

we may thus calculate the total collision rate using either of 

Qtot = { J 

j <5(ci)rfci 
(3.4.16) 

( j f1Z(c1)dc1 

These total collision rates may also be compared with the work of Fitzpatrick and 

Shizgal 1 4 5 for the hard sphere case in order to verify the calculation of the product 

velocity distribution functions/collision frequencies. 

3.4.3 Rate of Production of Escaping Atoms 

Once we have calculated the product velocity distribution function, Q(ci), we are in

terested in making some statement about the number of hot atoms which are able to 

escape. A detailed discussion of the calculation of a rigorous, altitude dependent escape 

flux which includes the moderating effect of the ambient background atmosphere is dis

cussed in Chapter 4. For the moment, we may use the product velocity distribution 

functions to compare the relative rates of production of escaping atoms. This incor

porates the nonthermal production of hot atoms and the use of realistic collision cross 

sections. 

It is assumed that any hot atom produced by nonthermal excitation (via any of the 

elastic collision mechanisms we have previously detailed in the calculation of the energy 

exchange rate coefficients: DIR, C E , or the LTA) with velocity greater than the escape 

velocity escapes from the planetary atmosphere. Thus, in order to calculate the rate of 

production of escaping atoms, we simply integrate the product velocity distribution func

tion (or the gain term of the Boltzmann collision operator) normalized by the densities 
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of the colliding species, over all velocities C\ greater than the escape velocity, 

Air f°° 
a e s c = / Qic^cldcr (3.4.17) 

n\Tl2 Jccsc 

where cesc = \j2GM/r. It may be easily verified using equation (3.4.1) that aesc has 

units of a rate, cm 3 s _ 1 . Equation (3.4.17) ignores reverse collisions, which reduce the 

overall rate at which escaping atoms are produced. We incorporate reverse collisions by 

adding the loss term of the Boltzmann collision operator to Q{c\) before integrating; that 

is, 

aesc = / [Q{ci)- hZ{cx)]cldc1 (3.4.18) 
nin2 JCesc 

where Z(ci) is the collision frequency between species 1 and 2, defined previously. 

We may also utilize the PVDFs in order to estimate the fraction of hot atoms created 

by a nonthermal process which can escape from the atmosphere. This is given by 

Air r°° 
air

s:c = a e s c / / Q{c1)c\dc1 (3.4.19) 
n\n2 Jo 

3.4.4 Results and Discussion 

The calculation of the PVDF ' s in the present work follows closely the presentation and 

calculations done by Shizgal. 7 1 It is a direct method in comparison to the Monte Carlo 

integration used by Hodges and Breig 7 3 to calculate the so-called 'differential scatter

ing coefficients'. The calculation of the product velocity distributions (PVDFs), from 

equation (3.4.13), requires a double integration, over the scattering angle 6 and reduced 

energy z. This integration requires the differential elastic cross section(s), o(g,9). The 

cross section(s) are calculated at 91 energies, from 1 x 1G 1 - 4 to 10 eV, and at 361 angles 

(half degree increments), and are illustrated in Figures 3.23 and 3.24. In the calculation 

of the PVDFs , we use a Simpson's Rule with one-half degree spacing of grid points for the 



Chapter 3. Nonthermal Production of Energetic Hydrogen and Deuterium 147 

6 integration. An interpolation scheme using z points located at the 91 energies used in 

calculating the differential cross section is used to perform the z integration (the scheme 

is detailed in Appendix E). The linear trajectory approximation adopted in the tables 

and graphs that follow is that given by equation (3.2.6), unless otherwise indicated. 

Some examples of the product velocity distribution function normalized by the species' 

densities, Q(ci)/n-iri2, for H + - H are illustrated in Figures 3.41-3.43. We have chosen the 

same pairs of temperatures as in the calculation of the energy exchange rate coefficients 

because they approximate ion and neutral temperatures approximating exospheric con

ditions on the terrestrial planets. For comparison with the work of Hodges and Breig, 7 3 

we have also calculated and plotted the 'differential scattering rate coefficient' defined as 

Aire 

P ( C I ) = —L}\f\ (3.4.20) 

dec 

where P(c\) is equivalent to — calculated by Hodges and Breig. In equation (3.4.20), 

J[/] is the Boltzmann collision operator, as defined by equation (1.4.2). The units of P(c\) 

and Q ( c i ) / n i n 2 in the figures are 10 1 6 cm 2 and 10 1 4 s2, respectively. In the calculation of 

the collision operator, we use equation (1.4.2), with the gain term given by the product 

velocity distribution function, Q(ci), as defined in equation (3.4.1), and the loss term 

given by the species 1 distribution function times the collision frequency, Z(ci) , which is 

given by equation (3.4.15). For the collision frequency integration we use 400 Simpson's 

Rule points to ensure convergence for all values of c\. It should be noted that the vertical 

scale varies between figures in order to accentuate the details in the form of the PVDFs . 

Figures 3.41-3.43 have similar features. The plots of P(ci) may be interpreted as 

indicative of the transfer of energy from the hot protons to the cold hydrogen. The 

negative portions of the curve are due to the removal of hydrogen for those velocities 

(the 'loss' term of the Boltzmann collision operator), while the positive portions are due 

to the addition of hot hydrogen for those velocities (the 'gain' term of the Boltzmann 
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Figure 3.41: Product velocity distribution functions for the direct-plus-exchange 
(DPE)cross section for H + - H . In (a), the hydrogen temperature is fixed at 500 K , and 
the proton temperature is varied, with values of 2000 K (long dashed), 4000 K (short 
dashed), and 6000 K (solid). In (b), the proton temperature is fixed at 6000 K , and 
the hydrogen temperature is varied, with values of 1500 K (long dashed), 1000 K (short 
dashed), and 500 K (solid). In (c) and (d) we have plotted -P(ci), as defined in the text, 
for the same temperatures and with the same labeling as for (a) and (b), respectively. 
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Figure 3.42: Product velocity distribution functions for the charge exchange (CE) cross 
section for H + - H . In (a), the hydrogen temperature is fixed at 500 K , and the proton 
temperature is varied, with values of 2000 K (long dashed), 4000 K (short dashed), and 
6000 K (solid). In (b), the proton temperature is fixed at 6000 K , and the hydrogen 
temperature is varied, with values of 1500 K (long dashed), 1000 K (short dashed), and 
500 K (solid). In (c) and (d) we have plotted -P(ci), as defined in the text, for the same 
temperatures and with the same labeling as for (a) and (b), respectively. 
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Figure 3.43: Product velocity distribution functions for the linear trajectory approxima
tion (LTA) cross section for H + - H . In (a), the hydrogen temperature is fixed at 500 K , 
and the proton temperature is varied, with values of 2000 K (long dashed), 4000 K (short 
dashed), and 6000 K (solid). In (b), the proton temperature is fixed at 6000 K , and the 
hydrogen temperature is varied, with values of 1500 K (long dashed), 1000 K (short 
dashed), and 500 K (solid). In (c) and (d) we have plotted P(c\), as defined in the text, 
for the same temperatures and with the same labeling as for (a) and (b), respectively. 
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collision operator). It is clear from subfigure (c) in Figures 3.41-3.43 that for a fixed 

hydrogen temperature, increasing the proton temperature increases the average energy 

of the cold hydrogen. Graphically, this is illustrated by the increase in the position of the 

peak and width of the positive portion of the P(ci) curve, respectively. From subfigure (d) 

in Figures 3.41-3.43, we see that for a fixed proton temperature, increasing the hydrogen 

temperature results in a smaller number of hydrogen atoms being energized, but with a 

greater average increase in energy. Graphically, this is illustrated by the decrease in the 

depth of the negative portion of the P(c\) curves and the change in position of the peak 

and width of the positive portion of the P(c\) curve, respectively. 

The pattern of change with hydrogen and proton temperatures is the same for each 

of the D P E , C E and LTA cross sections; however, the relative magnitude of the changes 

varies between them. A comparison of the PVDFs for the three cross sections for fixed 

hydrogen and proton temperatures is shown in Figure 3.44. For subfigures (a) and (c), the 

proton temperature is 6000 K and the hydrogen temperature is 500 K , representing the 

largest difference in colliding partner temperatures. For subfigures (b) and (d), the proton 

temperature is 2000 K and the hydrogen temperature is 1500 K , representing the smallest 

difference in colliding partner temperatures. The difference between the large energy and 

small energy cases is evident by the difference in vertical scale between subfigures (a) 

and (b) or (c) and (d) and the change in shape of the PVDF ' s and differential scattering 

coefficients. 

The D P E includes both direct elastic momentum transfer and charge exchange, and 

so the result that this cross section is most efficient at producing hot hydrogen is not 

unexpected. For only charge exchange, the effects are reduced by approximately 30-

40% when considering the plots of -P(ci); we may thus deduce that charge exchange is 

relatively efficient, as compared to direct elastic momentum transfer collisions, since the 

C E values are 60-70% of the magnitude of the D P E values. This roughly holds even 
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Figure 3.44: Product velocity distribution functions for the D P E , C E , and LTA cross 
sections for H + - H . In (a), the hydrogen temperature is 500 K and the proton temperature 
is 6000 K . In (b), the hydrogen temperature is 1500 K and the proton temperature is 
2000 K . For both cases, we show the resulting PVDFs for the LTA (long dashed), C E 
(short dashed), and D P E (solid) cross sections. In (c) and (d) we have plotted P(c\), as 
defined in the text, for the same temperatures and with the same labeling as for (a) and 
(b), respectively. 
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when considering the plots of the PVDFs , Q(ci), when considering the higher energy 

portion (greater than approximately 10 km/s). The LTA cross section behaves similarly 

to the C E one, except that it appears to overestimate both the rate at which energy 

is transferred from the protons to the hydrogen and the change in the average energy 

of the cold hydrogen. These overestimations are visible as a subtle shift toward higher 

velocities in the Q(c\) plots, and a change in the width and depth of the positive and 

negative portions of the P{c\) plots. 

We also plot P V D F s and differential scattering coefficients for the deuterium-proton 

system. These are illustrated in Figures 3.45-3.46 for the DIR and C E interactions 

for a range of ion and neutral temperatures. The features of these curves are very 

similar to those for the hydrogen-proton curves, and most of the discussion for that 

system also applies to this one. The disparate masses of the two colliding partners makes 

energy transfer slightly less efficient for the deuterium- proton or deuterium ion-hydrogen 

systems than for the hydrogen-proton system. This is reflected in the vertical scale of 

the P V D F ' s compared to those for the hydrogen-proton system. 

The PVDFs and differential scattering coefficients for the oxygen-hydrogen and oxygen-

deuterium systems are shown in Figures 3.47-3.48. The figures represent results for the 

DIR interaction for a range of collision pair temperatures. The general shape and features 

of these curves are very similar to those of the previous systems. The magnitude of the 

P V D F s decrease as we move from D-H, O-D, and 0-H, and we also note that the peak of 

the PVDFs shift toward higher velocities. For the case where the colliding partners are 

close in temperature the differential scattering coefficients, -P(ci), show some structure 

for velocities below approximately 5 km/s. 

There are several checks we may perform in order to verify that we are correctly 

calculating the PVDFs . One good initial check is that the condition given by equation 

(3.4.16) is satisfied; we have verified that this is correct within 2-7% depending on the 
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Figure 3.45: Product velocity distribution functions for the direct elastic (DIR)cross 
section for H + - D . In (a), the deuterium temperature is fixed at 500 K , and the proton 
temperature is varied, with values of 1000 K (dot-dashed), 2000 K (short dashed), 4000 
K (long dashed), and 6000 K (solid). In (b), the deuterium temperature is fixed at 1500 
K , and the proton temperature is varied, with values of 1500 K (dot-dashed), 2000 K 
(short dashed), 4000 K (short dashed), and 6000 K (solid). In (c) and (d) we have plotted 
P(ci) , as defined in the text, for the same temperatures and with the same labeling as 
for (a) and (b), respectively. 
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Figure 3.46: Product velocity distribution functions for the charge-exchange (CE)cross 
section for D + - H . In (a), the hydrogen temperature is fixed at 500 K , and the deuterium 
ion temperature is varied, with values of 2000 K (long dashed), 4000 K (short dashed), and 
6000 K (solid). In (b), the hydrogen temperature is fixed at 1500 K , and the deuterium 
ion temperature is varied, with values as in (a). In (c) and (d) we have plotted -P(ci), as 
defined in the text, for the same temperatures and with the same labeling as for (a) and 
(b), respectively. 
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Figure 3.47: Product velocity distribution functions for the direct elastic (DIR) cross 
section for 0 -H. In (a), the hydrogen temperature is fixed at 500 K , and the oxygen 
temperature is varied, with values of 2000 K (long dashed), 4000 K (short dashed), and 
6000 K (solid). In (b), the hydrogen temperature is fixed at 1500 K , and the oxygen 
temperature is varied, with values as in (a). In (c) and (d) we have plotted P(c\), as 
defined in the text, for the same temperatures and with the same labeling as for (a) and 
(b), respectively. 
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(c) (d) 

Figure 3.48: Product velocity distribution functions for the direct elastic (DIR) cross 
section for O-D. In (a), the deuterium temperature is fixed at 500 K , and the oxygen 
temperature is varied, with values of 2000 K (long dashed), 4000 K (short dashed), and 
6000 K (solid). In (b), the deuterium temperature is fixed at 1500 K , and the oxygen 
temperature is varied, with values as in (a). In (c) and (d) we have plotted P(ci), as 
defined in the text, for the same temperatures and with the same labeling as for (a) and 
(b), respectively. 
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temperature ratio chosen. Graphically, from Figures 3.41-3.43, this means that the area 

under the negative and positive portions of the P(ci) curves must be equal, since particle 

conservation requires that the integral of the collision operator over all C i must be zero. 

As a second check of the accuracy of our PVDFs , we use them to calculate the energy 

exchange rate coefficients calculated in a previous section of this chapter. That is, we 

calculate 

We use equations 3.3.17 and (3.3.19) to obtain the energy exchange rate coefficient, kE, 

from RE as given above. The results of this calculation are given in Tables 3.12, 3.13 and 

3.14. By comparison with the earlier results (using equation (3.3.16)), given in Tables 

3.5, 3.7 and 3.8, we see that the two very different methods of calculation agree to better 

than 10% over most of the temperature ranges, and never differ by more than 20%. 

To further quantify the relative accuracy of the two methods, we compare the results 

for the energy exchange rate coefficient for the hard sphere cross section (the hard sphere 

cross section is used because for this choice it is possible to calculate the analytic solution 

of equation (3.3.16), given by equation (3.3.17)). The results are summarized in Table 

3.15 in the form of the ratio of kE from equation (3.3.16) divided by the value from equa

tion (3.4.21). For all pairs of temperatures, equation (3.3.16) reproduced the expected 

analytic solution given by equation (3.3.17) to better than 1%, and so the deviation from 

unity in Table 3.15 may be attributed entirely to the accuracy with which we are to 

calculate the triple integral of equation (3.4.21). 

We perform another check on the PVDFs by calculating the charge exchange reaction 

rate. That is, we calculate the rate of both the forward and backward reaction for 

deuterium and hydrogen, 

(3.4.21) 

D+ + H D + H+ 
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Cross T[H] 
T[H+] Section 500 1000 1500 

6000 DIR 2.47 2.58 2.72 
C E 8.94 9.26 9.57 

LTA 11.66 12.02 12.37 

4000 DIR 2.42 2.61 2.91 
C E 7.78 8.25 8.73 

LTA 10.08 10.59 11.10 

2000 DIR 2.18 2.50 2.62 
C E 5.90 6.48 7.32 

LTA 7.90 8.56 9.48 

Table 3.12: Energy exchange rate coefficients for several H+-H cross sections, calculated 
by integration of the product velocity distribution functions. The temperatures of both 
H and the protons, in degrees Kelvin, are indicated in the table. The tabulated values 
of the energy exchange rate coefficients are in units of 10~9 cm 3 s _ 1 . 
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T [neutral] 
Cross 500 OT 1500 

T[ion] Section I II I II I II 

6000 DIR 1.897 1.874 1.987 1.994 2.101 2.145 
C E 8.388 6.301 8.577 6.748 8.772 7.170 

LTA 10.124 8.015 10.298 8.487 10.476 8.915 

4000 DIR 1.953 1.770 2.109 1.950 2.345 2.238 
C E 7.026 5.328 7.275 5.851 7.548 6.372 

LTA 8.807 6.928 9.059 7.510 9.331 8.066 

2000 DIR 1.797 1.670 2.094 1.928 3.065 2.908 
C E 5.139 4.233 5.485 4.756 6.052 5.376 

LTA 6.735 5.654 7.119 6.236 7.716 6.884 

Table 3.13: Energy exchange rate coefficients for several H + - D cross sections, calculated 
by integration of the product velocity distribution functions. The temperatures of both 
deuterium and the protons, in degrees Kelvin, are indicated in the table. Values under 
columns marked 'I ' are for reactions where the test particle is the deuterium atom, with 
a bath of hot protons; values under columns marked 'II' are for reactions where the test 
particle is hydrogen, with a bath of hot deuterium ions. The tabulated values of the 
energy exchange rate coefficients are in units of 10~9 cm 3 s - 1 . 
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Cross T[H] or T[D] 
T[0] Section 500 1000 1500 

6000 OH 
OD 

0.184 
0.261 

0.211 
0.287 

0.230 
0.306 

4000 OH 
OD 

0.179 
0.247 

0.209 
0.278 

0.229 
0.300 

2000 OH 
OD 

0.185 
0.236 

0.223 
0.279 

0.256 
0.317 

Table 3.14: Energy exchange rate coefficients for O-H and O-D direct elastic cross 
sections. The temperatures of O and H / D , in degrees Kelvin, are indicated in the table. 
The tabulated values of the energy exchange rate coefficients are in units of 1 0 - 9 cm 3 

s"1. 

T[H] 
T[H+] 500 1000 1500 
6000 0.95 0.95 0.94 
4000 0.96 0.95 0.92 
2000 0.98 0.96 0.88 

Table 3.15: Comparison of energy exchange rate coefficients for the hard sphere cross 
section using equations (3.3.16) and (3.4.21). The temperatures of both H and the 
protons, in degrees Kelvin, are indicated in the table. The values reported in the table 
are the ratio of the result from equation (3.3.16) divided by that of equation (3.4.21). 
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The calculation is done both by direct integration of the the loss term and direct integra

tion of the P V D F , as given by equation (3.4.16), and is illustrated in Figure 3.49. The 

results of Hodges 7 4 are also shown in the figure. It is noted that he calculates different 

rates for the forward/reverse charge exchange reaction, since he does not neglect the cou

pling coefficient in the calculation of the cross sections for D H + , although it is difficult 

to account for the magnitude of the difference between them given that the coupling 

coefficients are of the order of 1 0 - 4 the size of the coefficients of the primary channels. 

As mentioned previously, we have neglected the cross-coupling interaction, and so our 

rates for the forward and reverse reactions are identical. It is clear, however, that there 

is good agreement with Hodges' calculated rate coefficients. It should be noted that, as 

in most of the work done by Hodges, Monte Carlo integrations are used to perform all of 

the velocity integrals. Our calculation, in the form of a triple integral, does not have to 

resort to the Monte Carlo methodology in order to extract the rate coefficients. 

The results of the calculation of the rate of production of escaping hot hydrogen atoms, 

aesc, are given in Tables 3.16 -3.18. The same set of proton and hydrogen temperatures 

are used as in the calculations of the energy exchange rate coefficients. Values in columns 

marked A are calculations using equation (3.4.18) and include reverse collisions; values 

in columns marked B use equation (3.4.17), ignoring reverse collisions. We assume a 

hydrogen exobase altitude of 200 km for Venus, 3 5 5 00 km for Earth, 4 4 and 250 km for 

Mars. 6 The escape velocities for these altitudes are 10.2 km/s, 10.78 km/s, and 4.85 

km/s, respectively. 

We see several interesting trends in the values of the rate of production of escaping hot 

hydrogen for the terrestrial planets, as given in Tables 3.16 -3.18. The LTA cross section 

results overestimate the rate of production of hot atoms by 20-50% for Venus and Earth, 

and 5-30% for Mars, in good agreement with the discrepancy of 30-50% reported by 

Shizgal. 1 3 1 This is observed for production of hot atoms including and excluding reverse 



Chapter 3. Nonthermal Production of Energetic Hydrogen and Deuterium 163 

Figure 3.49: Dependence of charge exchange rate coefficients on the effective temperature 
for D + - H . The value of the charge exchange rate coefficients are plotted as a function of 
the effective temperature, T e / / . The solid curve is from integration of the P V D F , the 
dashed curve from integration of the Boltzmann collision operator loss term. The circle 
and plus symbols are the results of fits to Monte Carlo calculations by Hodges7 4 for the 
rates of D+-H and D - H + , respectively. 
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T[Hj 
Cross 500 1000 1500 

T[H+] Section A B A B A B 

DIR 
6000 C E 

LTA 

DIR 
4000 C E 

LTA 

DIR 
2000 C E 

LTA 

0.850 0.851 
3.282 3.282 
4.130 4.130 

0.475 0.475 
1.894 1.894 
2.542 2.542 

0.092 0.092 
0.404 0.404 
0.603 0.603 

0.934 1.040 
3.385 3.426 
4.166 4.207 

0.544 0.644 
1.986 2.024 
2.575 2.613 

0.120 0.214 
0.428 0.463 
0.591 0.626 

0.966 1.706 
3.289 3.572 
3.988 4.271 

0.574 1.273 
1.901 2.166 
2.407 2.672 

0.116 0.773 
0.307 0.552 
0.402 0.647 

Table 3.16: Rate of production of escaping H on Venus for several H + - H cross sections. 
The temperatures of both hydrogen and the protons, in degrees Kelvin, are indicated in 
the table. The tabulated values of aesc are in units of 1 0 - 9 cm 3 s - 1 . Columns marked ' A ' 
are for production of hot atoms including the effect of reverse collisions; columns marked 
' B ' neglect reverse collisions. 
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T[H] 
Cross 500 1000 1500 

T[H+] Section A B A B A B 

DIR 0.741 0.741 0.116 0.773 0.854 1.336 
6000 C E 3.033 3.033 3.140 3.161 3.104 3.289 

LTA 3.859 3.859 3.906 3.927 3.796 3.981 

DIR 0.392 0.392 0.449 0.500 0.486 0.942 
4000 C E 1.656 1.660 1.753 1.772 1.717 1.891 

LTA 2.256 2.256 2.299 2.318 2.193 2.366 

DIR 0.064 0.064 0.085 0.133 0.089 0.520 
2000 C E 0.297 0.297 0.323 0.341 0.246 0.407 

LTA 0.450 0.450 0.450 0.468 0.322 0.484 

Table 3.17: Rate of production of escaping H on Earth for several H + - H cross sections. 
The temperatures of both hydrogen and the protons, in degrees Kelvin, are indicated in 
the table. The tabulated values of aesc are in units of 1 0 - 9 cm 3 s _ 1 . Columns marked ' A ' 
are for production of hot atoms including the effect of reverse collisions; columns marked 
' B ' neglect reverse collisions. 
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TJfl] 
Cross 500 1000 1500 

T[H+] Section A B A B A B 

DIR 2.196 4.311 1.582 8.630 1.211 11.466 
6000 C E 4.597 5.385 3.044 5.675 2.072 5.914 

LTA 5.107 5.894 3.411 6.042 2.345 6.187 

DIR 1.703 3.626 1.179 7.624 0.881 10.310 
4000 C E 3.622 4.322 2.308 4.666 1.486 4.953 

LTA 4.183 4.883 2.696 5.053 1.756 5.223 

DIR 0.971 2.653 0.541 6.248 0.308 8.740 
2000 C E 2.171 2.764 1.127 3.154 0.465 3.485 

LTA 2.711 3.304 1.427 3.455 0.592 3.612 

Table 3.18: Rate of production of escaping H on Mars for several H+-H cross sections. 
The temperatures of both hydrogen and the protons, in degrees Kelvin, are indicated in 
the table. The tabulated values of aesc are in units of 1 0 - 9 cm 3 s - 1 . Columns marked ' A ' 
are for production of hot atoms including the effect of reverse collisions; columns marked 
' B ' neglect reverse collisions. 
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collisions. 

As may be expected given their similar size and escape velocities, the results for a e s c 

for Venus and Earth are very similar. From Tables 3.16 and 3.17 the data for both planets 

indicate that for cases where a large separation occurs between the temperatures of the 

protons and hydrogen that the LTA cross section yields larger aesc values than either 

the C E or the DIR cross sections; as the temperature of the hydrogen increases, the 

temperature discrepancy diminishes, and the LTA predicted aesc values fall below those 

using the DIR cross section, although they continue to exceed aesc values using the C E 

cross section. We observe a monotonic increase of the values of aesc with an increase in 

hydrogen temperatures, for fixed proton temperature, for calculations of aesc excluding 

reverse collisions. Physically, this is reasonable; imparting some fixed amount of energy to 

a distribution of particles of higher average energy results in more particles reaching the 

escape energy. The situation is roughly reversed when we include reverse collisions, where 

aesc decreases as we increase the hydrogen temperature, for a fixed proton temperature. 

For low hydrogen temperatures the rate of reverse collisions is insufficient to offset the 

rate of transfer of nonthermal energy, and so the values for aesc including and excluding 

reverse collisions are roughly identical. However, as the hydrogen temperature increases, 

the rate of reverse collisions increases, and so the discrepancy between the values of aesc 

including and excluding reverse collisions increases. It is important to note that even 

for the highest value of the hydrogen temperature considered here, 1500 K , the most 

probable hydrogen speed is still only approximately 5 km/s, less than the escape speed. 

We would expect that even with the aid of nonthermal energy exchange, the number of 

hot hydrogen atoms produced which avoid thermalization to escape is relatively modest, 

given the high escape velocity. 

The situation is much different for Mars, primarily because of its much lower escape 

speed. From Table 3.18 the predicted values of aesc are 1.5-3 times that for Venus or 
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Earth. When reverse collisions are neglected, we observe a monotonic increase of the 

values of aesc with an increase in hydrogen temperatures, for fixed proton temperature. 

However, when we include reverse collisions, the observed values of aesc increase and 

then decrease with increasing hydrogen temperature for fixed proton temperature. This 

behaviour is most likely related to a change in the balance between the rate of production, 

the rate of thermalization, and the value of the mean thermal hydrogen speed relative 

to the escape speed. As for Venus and Earth, for low hydrogen temperatures, the rate 

of reverse collisions is insufficient to offset the rate of production, and the values of aesc 

including and excluding reverse collisions are approximately the same. As the hydrogen 

temperature increases, the mean thermal hydrogen speed begins to exceed the escape 

speed, and so we sample more of the hydrogen distribution when we calculate the rate 

of production of escaping hydrogen. That is, the peak of the hydrogen distribution is 

very close to the escape speed, and the bulk of the hydrogen atoms are involved in the 

integration of the reverse collision term. As the hydrogen speed increases further, even 

more of the hydrogen distribution is sampled, and the mean thermal hydrogen speed is 

in excess of the escape speed. The rate of reverse collisions is now calculated integrating 

over the bulk of the hydrogen distribution (as opposed to the tail of the distribution when 

the mean thermal speed of the hydrogen is less than the escape speed, as for Venus and 

Earth), and so the rate of reverse collisions increases faster than the rate of production 

of hot atoms, slowing the overall rate of production of hot hydrogen atoms. For a species 

with a much heavier mass, such as oxygen, we would expect that the mean thermal speed 

would be much lower for a given temperature, and that the values of aesc would be similar 

to that of Venus and Earth for hydrogen. 

We may again compare our results with those of Hodges and Breig, 7 3 whose results for 

the production of hot hydrogen for Earth are summarized in Table 3.19. Once again we 

see a (variable) discrepancy between our results and their work, similar but not identical 
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Cross T[H] 
T[H+] Section 500 1000 1500 

6000 DIR 
LTA 

6.79 
7.34 

6.60 
6.88 

6.26 
6.43 

4000 DIR 
LTA 

3.56 
4.18 

3.54 
3.86 

3.25 
3.49 

2000 DIR 
LTA 

0.58 
0.78 

0.55 
0.67 

0.43 
0.50 

Table 3.19: Rate of production of escaping H on Earth for several H + - H cross sections 
taken from the results of Hodges and Breig. 7 3 The temperatures of both hydrogen and 
the protons, in degrees Kelvin, are indicated in the table. The tabulated values of aesc 

are in units of 1 0 - 9 cm 3 s - 1 . 

to the discrepancy in the values of the energy exchange rate coefficients. As before, it is 

difficult to comment on the source of this discrepancy. 

The same calculation of rates of production of escaping particles is done for deuterium-

proton systems. These results are reported in Tables 3.21-3.22. The interpretation is 

similar to those done for hydrogen-proton collisions. We can see from the tables that it is 

more difficult to produce escaping deuterium than escaping hydrogen, regardless of the 

type of interaction considered. The values in the tables of rate of escape production of hot 

deuterium by collisions with protons are roughly a factor of 2-10 times smaller than those 

for hydrogen- proton collisions. In addition, direct elastic collisions are much less efficient 

at production of hot neutrals than charge exchange reactions. This is because although 

some momentum is transferred in each charge exchange collision, the pre-collisional ion 

keeps most of its energy when it becomes a post-collisional neutral. 

The same calculation of rates of production of escaping particles is done for oxygen-

hydrogen systems, and oxygen-deuterium systems. These results are reported in Tables 
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T [(neutral) 
Cross 5 0 0 - iOOfj 1500 

T(ion) Section A B A B A B 

6000 DIR 
C E 

0.117 
1.340 

0.117 
1.340 

0.145 
1.370 

0.145 
1.370 

0.176 
1.394 

0.191 
1.400 

4000 DIR 
C E 

0.042 
0.450 

0.042 
0.450 

0.055 
0.465 

0.055 
0.465 

0.071 
0.484 

0.085 
0.489 

2000 DIR 
C E 

0.184 
0.018 

0.184 
0.018 

0.310 
0.020 

0.333 
0.021 

0.520 
0.021 

1.800 
0.026 

Table 3.20: Rate of production of escaping D on Venus for several H + - D cross sections. 
The temperatures of both deuterium and the protons, in degrees Kelvin, are indicated in 
the table. The tabulated values of a e s c are in units of 1 0 - 9 cm 3 s - 1 . Columns marked ' A ' 
are for production of hot atoms including the effect of reverse collisions; columns marked 
' B ' neglect reverse collisions. 

T(neutral) 

T(ion) 
Cross 

Section A 
500 

B A 
1000 

B A 
1500 

B 

6000 DIR 0.072 0.072 0.096 0.096 0.122 0.127 
C E 1.069 1.069 1.102 1.103 1.132 1.135 

4000 DIR 0.023 0.023 0.033 0.033 0.044 0.050 
C E 0.314 0.314 0.330 0.330 0.350 0.351 

2000 DIR 7.3x10- 4 7.3xl0" 4 1.3x10" 3 1.4xl0" 3 2.5x10" 3 7.7xl0- 3 

C E 0.009 0.009 0.010 0.010 0.011 0.013 

Table 3.21: Rate of production of escaping D on Earth for several H + - D cross sections. 
The temperatures of both deuterium and the protons, in degrees Kelvin, are indicated in 
the table. The tabulated values of aesc are in units of 1 0 - 9 cm 3 s - 1 . Columns marked ' A ' 
are for production of hot atoms including the effect of reverse collisions; columns marked 
' B ' neglect reverse collisions. 
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T(neutral) 
Cross 500 1000 1500 

T(ion) Section A B A B A B 

6000 DIR 
C E 

1.45 
4.51 

1.61 
4.57 

1.39 
3.95 

3.49 
4.73 

1.17 
3.11 

5.90 
4.89 

4000 DIR 
C E 

1.04 
3.23 

1.18 
3.29 

0.99 
2.77 

2.92 
3.47 

0.82 
2.07 

5.17 
3.65 

2000 DIR 
C E 

0.43 
1.38 

0.56 
1.43 

0.38 
1.04 

2.09 
1.63 

0.25 
0.50 

4.11 
1.85 

Table 3.22: Rate of production of escaping D on Mars for several H + - D cross sections. 
The temperatures of both deuterium and the protons, in degrees Kelvin, are indicated in 
the table. The tabulated values of aesc are in units of 1 0 - 9 cm 3 s - 1 . Columns marked ' A ' 
are for production of hot atoms including the effect of reverse collisions; columns marked 
' B ' neglect reverse collisions. 

3.24-3.25. The values here are smaller by several orders of magnitude than rate of pro

duction for hydrogen-proton or deuterium-proton systems, mainly due to the disparate 

masses of the collisional pair. It should be noted that for all of the terrestrial planets, 

the production of deuterium is only approximately l/10th that of hydrogen due to direct 

elastic collisions with hot oxygen. While energy transfer overall is more efficient for col

lision partners with similar masses, the lighter hydrogen has more particles created with 

velocities in the high energy 'tail ' of the P V D F , which is the portion that contributes to 

the rate of production of escaping hot product atoms. 

We may utilize equation (3.4.19) in order to approximate the fraction of escaping 

hot atoms produced by a given nonthermal process. This estimate does not account for 

thermalization effects or reverse collisions. We assume that the hot oxygen atoms have an 

initial velocity of 5.6 km/s, corresponding to approximately 2.5 eV, and that the hydrogen 
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T[H] fc T[D] 
Cross 500 1000 1500 

T[0] Section A B A B A B 

6000 OH 
OD 

0.0203 
0.0047 

0.0204 
0.0047 

0.0598 
0.0101 

0.0916 
0.0102 

0.0906 
0.0196 

0.3159 
0.0240 

4000 OH 
OD 

0.0060 
0.0006 

0.0061 
0.0006 

0.0290 
0.0024 

0.0606 
0.0025 

0.0470 
0.0067 

0.2704 
0.0111 

2000 OH 
OD 

0.0006 
6.0xl0- 5 

0.0007 
6.0xl0- 5 

0.0069 
0.0001 

0.0382 
0.0002 

0.0082 
0.0007 

0.2257 
0.0050 

Table 3.23: Rate of production of escaping H on Venus for direct elastic collisions between 
O-H and O-D. The temperatures of the hydrogen, deuterium, and oxygen atoms, in 
degrees Kelvin, are indicated in the table. The tabulated values of a e s c are in units of 
1 0 - 9 cm 3 s _ 1 . Columns marked ' A ' are for production of hot atoms including the effect 
of reverse collisions; columns marked ' B ' neglect reverse collisions. 

T[H] fc T[D] 
Cross 500 1000 1500 

T[0] Section A B A B A B 

6000 OH 
OD 

0.0128 
0.0027 

0.0129 
0.0027 

0.0425 
0.0060 

0.0592 
0.0060 

0.0728 
0.0122 

0.2228 
0.0140 

4000 OH 
OD 

0.0033 
0.0003 

0.0033 
0.0003 

0.0193 
0.0012 

0.0359 
0.0012 

0.0367 
0.0037 

0.1856 
0.0055 

2000 OH 0.0002 0.0003 0.0043 0.0207 0.0063 0.1518 
OD 1.4xl0- 5 1.5xl0~5 1.5xl0- 5 1.5xl0~5 0.0003 0.0021 

Table 3.24: Rate of production of escaping H on Earth for direct elastic collisions between 
0 - H and O-D. The temperatures of the hydrogen, deuterium, and oxygen atoms, in 
degrees Kelvin, are indicated in the table. The tabulated values of a e s c are in units of 
1 0 - 9 cm 3 s _ 1 . Columns marked ' A ' are for production of hot atoms including the effect 
of reverse collisions; columns marked ' B ' neglect reverse collisions. 
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T[H] fe T[D] 
Cross 500 1000 1500 

T[0] Section A B A B A B 

6000 OH 
OD 

0.330 
0.250 

0.781 
0.283 

0.189 
0.256 

1.789 
0.714 

0.081 
0.194 

2.497 
1.262 

4000 OH 
OD 

0.226 
0.152 

0.668 
0.185 

0.117 
0.164 

1.677 
0.612 

0.036 
0.117 

2.327 
1.162 

2000 OH 
OD 

0.102 
0.052 

0.533 
0.084 

0.034 
0.057 

1.489 
0.493 

0.001 
0.024 

1.956 
1.031 

Table 3.25: Rate of production of escaping H on Mars for direct elastic collisions between 
O-H and O-D. The temperatures of the hydrogen, deuterium, and oxygen atoms, in 
degrees Kelvin, are indicated in the table. The tabulated values of aesc are in units of 
1 0 - 9 cm 3 s - 1 . Columns marked ' A ' are for production of hot atoms including the effect 
of reverse collisions; columns marked ' B ' neglect reverse collisions. 

is at a temperature of 0, 100, 200 and 300 K . We summarize the results of the production 

of hot hydrogen from elastic O-H collisions on Venus in Table 3.26, along with results 

calculated by Cooper et a l . , 7 5 McElroy et a l . 3 5 and Gurwell and Yung. 7 6 It should be 

noted that the results of McElroy et al. assume isotropic scattering in their calculations. 

Cooper et al. perform calculations for both 'real' and isotropic scattering systems, and 

assume a Maxwellian distribution for the hot hydrogen product. Gurwell and Yung use 

a Henyey-Greenstein (HG) functional fit to the integrated angular distribution functions 

derived from the cross section calculations of Cooper et al. for a relative impact energy of 

0.15 eV. They assume that the same fit is applicable to the OD system. They modify the 

anisotropy parameter in the H G function to approximate forward and isotropic scattering. 

They use several different approximations to the branching ratios for the 0^ dissociative 

recombination process, noting that while there is fairly large variation in the values of 
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the branching ratios the average energy of the final hot oxygen distribution is generally 

fairly uniform. Their final calculation of product hot atom velocity distributions is done 

by Monte Carlo. 

Our calculation assumes that the hot oxygen distribution function is Maxwellian, with 

a peak about the energy of the main dissociation branch (+5 eV). We also assume that 

the product hot atoms are Maxwellian. We utilize the (anisotropic) quantum mechanical 

differential cross sections directly for our calculation. As can be seen from the table, our 

calculated escape fractions lie between those of Cooper et al. and Gurwell and Yung, 

using anisotropic scattering, and those of McElroy et al. and Gurwell and Yung using 

isotropic scattering. Gurwell and Yung note the discrepancy between their results and 

those of Cooper an co-workers, especially for the case of anisotropic scattering, especially 

since they used the cross section data of Cooper et al. in the H G fit. However, as has 

been mentioned previously, published values for O-H cross sections in Cooper et al. are 

most likely in error, and it would therefore seem likely that calculations based on them 

would also be in error. The product velocity distribution functions Q(c\) for both O-H 

and O-D for various initial hydrogen and deuterium temperatures are shown in Figure 

3.50). The results for both systems show a distribution of production of hot product 

speeds dominated by a peak at lower speeds and with a long tail which slowly decays 

with increasing speed. Their form is remarkably similar to the results of Gurwell and 

Yung, as given in their Figure 5. 

The same calculations may be performed for O-D. Escaping production fractions for 

both O-H and O-D direct elastic collisions for all three terrestrial planets are given in 

Table 3.27. McElroy et a l . 3 5 predicted that deuterium escape resulting from collisions 

with hot oxygen was negligible compared to hydrogen escape resulting from the same 

process. This was because their scattering model resulted in a maximum scattered prod

uct velocity which was less than the escape velocity on Venus for all branches of the O2 
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Figure 3.50: Product velocity distribution functions for 0 -H and O-D due to direct elastic 
scattering. The 0 -H results are illustrated in (a), O-D results in (b). Initial oxygen most 
probable velocity is 5.6 km/s. In both figures, the hydrogen/deuterium temperatures are 
100 K (long-dashed), 200 K (short-dashed), and 300 K (solid), respectively. 
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T[H] (K) Present Work C l C2 Mc GY1 GY2 

0 9.73 6.0 
100 9.91 5.1 11.6 
200 10.16 6.9 15.5 
300 10.41 8.5 18.8 15.0 4.6 15.8 

Table 3.26: Escape fraction for hot H from O-H elastic collisions on Venus. The results 
of Cooper et a l . 7 5 for forward and isotropic scattering are given in C l and C2; results 
of McElroy et a l . 3 5 in Mc; and results of Gurwell and Young 7 6 for forward and isotropic 
scattering, in GY1 and GY2, respectively. The pre-collisional hot oxygen atom is assumed 
to have a velocity of 5.6 km/s. 

Venus Earth Mars . 
T[H] or T[D] (K) H D H D H D 

0 9.73 6.91 8.38 5.95 27.62 22.71 
100 9.91 6.97 8.62 6.01 28.36 23.02 
200 10.16 7.04 8.84 6.06 29.54 23.37 
300 10.41 7.12 15.0 9.07 32.00 23.82 

Table 3.27: Escape fraction for hot H and hot D from elastic collisions with 0 . Columns 
marked H are results for hot product hydrogen, D are results for hot product deuterium. 
The pre-collisional hot oxygen atom is assumed to have a most probable velocity of 5.6 
km/s. • 
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dissociative recombination reaction. 7 6 From the table it is clear that while the produc

tion of deuterium with velocities at or above the escape velocity for any of the terrestrial 

planets is not as efficient as for hydrogen, it is hardly negligible, especially for Mars 

where the escape energy for deuterium is only 0.25 eV. We agree with the assessment of 

Gurwell and Yung that the differential production of hot H and D on Venus is insufficient 

to account for the observed fractionation observed by the Pioneer Venus Orbiter. The 

magnitude of the D / H fractionation on Venus would require a mechanism which is much 

more selective in removal of hydrogen. 

3.5 Summary 

Product velocity distribution functions describing the rate of production of hot atoms 

for a variety of nonthermal processes, including direct-elastic and charge-exchange colli

sions were calculated using realistic, quantum- mechanical collision cross sections. The 

atomic systems H - H + , D - H + , O-H, and O-D were examined. The product velocity dis

tribution functions for the various systems and nonthermal processes were compared and 

contrasted. 

The product velocity distribution functions were used to yield a direct estimate of the 

escaping fractions of H and D as a result of nonthermal direct elastic energization by hot 

oxygen atoms. These kinetic theory calculations were compared to work done by other 

workers. Some discrepancies were found in the magnitude and form of the collision cross 

sections used in this work and that of some other workers. It was found that the current 

calculations, incorporating quantum mechanical cross sections, were in reasonably good 

agreement with predictions of other workers based on anisotropic cross sections. They 

agreed with more the more recent works in that the fraction of hot deuterium produced 

via direct energization by hot oxygen is not negligible, though less than the escape fraction 
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of hot hydrogen produced in the same way. In the current calculations, no fitting was 

required in the extraction of the escape fractions, nor was it necessary to fix the relative 

impact energy or approximate the differential collision cross section using functional fits. 

Energy exchange rate coefficients were calculated using both a direct hydrodynamic 

approach and integration of the product velocity distribution functions calculated previ

ously. The results of these calculations for H - H + were compared with results obtained 

using a more complicated Monte Carlo approach. It was found that while roughly simi

lar in magnitude, the current approach correctly predicted the overestimation of energy 

exchange by the hot ion in the linear-trajectory approximation to the charge-exchange 

process. A similar calculation of charge exchange rate coefficients was carried out for 

D - H + , and it was found that the current results were in good agreement with the Monte 

Carlo results of other workers, but required no fitting or smoothing of statistical fluctu

ations. 



Chapter 4 

K i n e t i c Theory Calculat ions of Nonthermal Escape Fluxes 

The exospheric escape problem has been examined by many previous workers for a 

variety of different species and for a large number of different planetary bodies. The 

standard collisionless approach 9 , 1 6 to the escape of atmospheric species assumes that an 

equilibrium Maxwellian velocity distribution function exists at the exobase. This distri

bution is integrated over all upward directed velocities of magnitude equal to or greater 

than the escape speed, as illustrated in equation (1.2.8), in order to yield the escape 

flux. The result is the well known Jeans' flux, given by equation (1.2.9). Other similar 

approaches to the calculation of the escape flux include examinations of the steady-

state, collisionless solution (6f /6t = 0, J = 0) of the Boltzmann equation, reviewed by 

Chamberlain 1 6 and others.9'1 

The problem of non-Maxwellian effects associated with thermal escape was examined 

by Lindenfeld and Shizgal . 2 6 ' 1 5 2 They studied the escape of hydrogen from Earth, and 

found that the perturbation of the escaping minor constituents distribution function leads 

to an escape flux somewhat less than that predicted by Jeans theory. The steady-state 

case of the Boltzmann equation, where the gravitational term is explicitly ignored (but 

incorporated as a boundary condition) was examined by Shizgal and Blackmore. 2 7 They 

used a plane-parallel model for the atmosphere, and performed an altitude dependent 

kinetic theory calculation for escape of hydrogen and helium from Earth, and hydrogen 

escape from Mars, and found good agreement with Monte Carlo calculations. Lindenfeld 

and Shizgal 4 5 employed a simple collisional model to obtain an expression of the charge 

179 
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exchange induced flux that can be compared with the thermal escape flux. They cal

culated a charge exchange rate coefficient for Earth with a value of 4 . 8 x l 0 _ 6 s - 1 , close 

to the estimate of 5 x l 0 - 6 s - 1 obtained by Bertaux, 4 2 and showed that the total of the 

charge exchange and Jeans' hydrogen escape flux was roughly constant. This was con

sistent with the results of Liu and Donahue, 3 8 - 4 0 who demonstrated that the escape flux 

should be approximately 1.8xl08 c m _ 2 s - 1 . A more realistic model which includes the 

actual density and temperature profiles was carried out by Maher and Tinsley. 7 7 Their 

estimates of hydrogen escape fluxes for low and middle latitudes on Earth are 1.5xl08 

c m - 2 s - 1 . A comprehensive assessment of terrestrial hydrogen and deuterium fluxes was 

carried out by Yung et a l . 7 8 They used a one-dimensional photochemical model extending 

from the middle atmosphere to the exobase to model sources and sinks of both hydrogen 

and deuterium. They calculated net and charge-exchange escape fluxes for hydrogen of 

3.02xl0 8 c m _ 2 s _ 1 and 1.41xl08 c m - 2 s - 1 . The same calculations for deuterium yielded 

values of 3.5xl0 4 c m - 2 s - 1 and 5.4xl0 3 c m - 2 s - 1 , respectively. 

It has been estimated 3 7 that the average escape flux for proton charge-exchange pro

duced hot hydrogen on Venus is 1.7xl07 c m - 2 sec - 1 , although it may have been as much 

as 1000 times larger in an early atmosphere much richer in hydrogen. Deuterium escape 

is thought to be approximately one-tenth as efficient. McElroy et a l . 7 9 ' 3 5 examined the 

nonthermal energization of hydrogen and deuterium via the dissociative recombination 

processes involving using a radiative transfer formulation. They found fluxes of ap

proximately 8xl0 6 c m - 2 sec - 1 for hydrogen, while concluding that the analogous process 

for deuterium was negligible. Kumar et a l . 1 5 3 estimated that the hydrogen escape flux due 

to charge exchange with hot protons was 1.2xl06 c m - 2 sec - 1 . A Monte Carlo simulation 

of hydrogen escape on Venus by Hodges and Tinsley 1 5 4 estimated the planetary average 

escape rate due to charge exchange was 2.8xl0 7 c m - 2 s - 1 . Shizgal 7 1 performed a kinetic 
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theory calculation of escape rates for nonthermal hydrogen on Venus using quantum colli

sion cross sections for hydrogen-proton charge exchange collisions. He found escape rates 

of 1.1 and 6.2 x 10 7 cm~ 2 s _ 1 for the dayside and nightside exosphere. These values were 

smaller than those reported by Kumar et a l . , 1 2 3 who performed a simpler rate calculation 

to find escape fluxes of 2.7 and 13.3 x 107 cm~ 2 s _ 1 , respectively. 

Calculations of hydrogen escape for Mars are few, as temperature and density data 

are poor for hydrogen. Using Mariner observations, Barth et a l . 1 2 1 and Anderson 1 2 0 es

timate a value between (1-2) x 108 cm~ 2 s - 1 . Lammer and Bauer 8 employed a Monte 

Carlo technique to simulate the thermalization and transport of hot oxygen atoms pro

duced by dissociative recombination of on Mars. They estimated an escape flux of 

6x 10 6 c m _ 2 s _ 1 , corresponding to a mass loss of oxygen atoms at a rate of 0.14 kg/s. 

Other estimates of the oxygen escape rate are given by Fox 8 0 at 3x 10 6 cm- 2 s - \ and by 

McElroy 8 1 at (6-7) x 106 c m ^ s " 1 . 

In Chapter 3, we considered the result of the nonthermal charge exchange process, 

employing realistic differential cross sections. Others 7 1 , 7 6 have also considered the pro

duction of hot atoms from charge exchange processes. However, it is notable that dis

tributions of hot atoms calculated in this way for Venus do not yield temperatures in 

tremendous agreement with the observed two temperature exosphere.71 A n important 

consideration may involve the partial thermalization of the energetic atoms produced 

owing to collisions with other ambient species, something not incorporated into the mod

els of Chapter 3. Due to thermalization, it is expected that the escape rate will be 

reduced, bringing the theory into better agreement with observations. To account for 

the competition between thermalization and reactive processes in a rigorous fashion re

quires an altitude dependent kinetic theory treatment of the Boltzmann equation, and is 

currently beyond the scope of this work. However, it is possible to make approximations 

of the thermalization process in order to yield escape fluxes which reflect the effect of 
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the ambient neutral atmosphere on hot atom escape rates. This is addressed in further 

detail in the theory section of this chapter. 

It is also clear that the theoretical structure of the exosphere must be reconsidered in 

order to include the effect of escape due to collisional nonthermal processes. The collision

less picture is not a true reflection of the actual exosphere, although one could consider 

the exosphere as almost collisionless with infrequent nonthermal collisional processes as 

a first order deviation from the collisionless state. 1 2 2 ' 5 However, in order to properly de

scribe the transition between the collision dominated and collisionless regimes properly, 

the notion of a sharp discontinuity at the exobase that divides the atmosphere between 

hydrodynamic kinetic regimes has to abandoned. Instead, the escape process should 

be considered as occurring from a range of altitudes above and below the exobase.2 6'1 

This concept originates in the older works of Biutner, 1 5 5 Jensen 1 5 6 and Jockers, 1 5 7 and 

has been considered by Shizgal and Lindenfeld 2 6 ' 4 5 and Shizgal 7 1 and more recently by 

Johnson. 1 5 8 ' 1 5 9 It forms the basis for the treatment of the escape process used in this 

chapter. 

4.1 Theory 

The basic concept of the model proposed by Lindenfeld and Shizgal 2 6 is that transla

tionally energetic species are produced by elastic or reactive collisions. These energetic 

particles are moving in all directions but only those moving radially outward can escape, 

provided they do not suffer further collisions that change the direction and magnitude 

of their velocity so as to prevent it. Since the density decreases approximately baro

metrically (see equation (1.2.4)), the rate of collisions decreases with increasing altitude, 

and hence the population of translationally energized particles decreases. However, with 

the decrease in the density the mean free path increases and the probability of escape 
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increases. Thus, the rate of escape as a function of altitude attains a maximum value 

occurring in the vicinity of the exobase. The net escape flux may be written as an integral 

over radial position, 

The units of Fnet are those of a flux, c m - 2 s _ 1 . In equation (4.1.1), ro is some reference 

level deep enough in the atmosphere that the escape probability is zero while ri is the 

altitude above which the atmosphere can be considered 'collisionless' and there is no 

collisional production of hot, nonthermal atoms. F(r), the rate of production of energetic 

atoms per unit volume escaping from radial position r, is given by 

where Q ( r ? c i ) is the velocity dependent production rate of energetic particles at radial 

position r and p(r, ci), is the probability that a particle with speed c\ at position r will 

escape. The explicit form of p(r, Ci) exhibits a very weak dependence on the speed.2 6 

The probability for escape, p(r,c\), increases to approximately 1/2 with altitude while 

Q(r, Ci), the production of energetic particles through collisions, decreases with altitude. 

The units of F(r) are c m - 3 s _ 1 . 

It is assumed that Fnet represents the net escape flux from the entire range of altitudes, 

but only along the direction dr. If it is further assumed that the flux from the atmosphere 

or system is isotropic, then the overall planetary escape rate is found by multiplying Fnet 

by the area of the spherical shell defining the uppermost boundary of the system. 

We consider a system with two species. Particles of type 1 are the escaping, colli-

sionally energized species, while particles of type 2 comprise the (thermal) background. 

Collisions occur only between the two different types; non-linear self collisional types of 

processes are not considered. If we choose a 'plane parallel' atmosphere, with geometry 

as shown in Figure 4.51, the probability of escape of a particle with speed Ci, moving in a 

(4.1.1) 

(4.1.2) 
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direction making an angle 9 with the zenith direction and which suffered its last collision 

at an altitude r is given b y 1 6 0 , 2 6 

where Z(ci) is the dimensionless collision frequency for particles of species 1 with the 

where A is the non-dimensionalizing factor for Z(c\), g is the relative velocity, fl is the 

solid angle about the scattering direction, and a is the differential scattering cross section. 

If the total elastic collision cross section for collisions between the two particle types 

is assumed to be the hard sphere cross section, nd2, where d is the mean diameter of 

the colliding pair, d = (d\ + d2)/2, it can be shown (see Appendix F) that the collision 

frequency is given by 

(4.1.3) 

background, n^r') is the density of the background gas, and the range of 6 for escaping 

particles is taken as 0 < 0 < TT/2. The velocity dependence of equation (4.1.3) arises 

through the collision frequency, Z(c\), which is defined as 

(4.1.4) 

where A = d2 (^p -J 2 , and where we have defined a dimensionless energy x = the 

mass ratio 7 = m 2 / m i , and used the standard definition of the error function erf(x). 

The escape probability p(r, Ci) from equation (4.1.2) is given by the average of P(r, cx,Q) 

over all possible escape angles 6, that is 

(4.1.6) 
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where we have defined 

dt 
/

CO 

e-stC 

and where y is the vertical optical depth, 

y = Trd2J\2(r')dr' (4.1.7) 

Equation (3.4.1) gives the rate of production of particles of type 1, with speed ci , 

due to collisions. Only those particles with speeds exceeding the escape speed will per

manently escape the planetary atmosphere. Thus, in calculating the net escape flux, 

equation (4.1.1), we want to include only those particles of type 1 which have speeds 

exceeding the escape speed. Thus, the rate of production of hot atoms with speeds 

exceeding the escape speed becomes26 

Q(r,d) = H{Cl - C e , c )n i ( r )n 2 ( r ) Jj / i ( r , c ' ^ r , c'2)ga dft dc2 (4.1.8) 

H(C\ — Cesc) 

where 

0 C\ < Cesc 

1 Ci > C e sc 

is simply the standard Heavyside function. If it is assumed that the velocity distribution 

functions of both the background and the escaping species have reached equilibrium, we 

get the equilibrium rate of production of hot atoms, 

Qeq(r,Cl) = H(c1-Ce8C)n1(r)n2{r)JJf»f(<!l)f»I{<!2)ga-dSldc2 

where 

h ( C l ) = \2^f) G X P 

fM( ( m2 \ 3 / 2 

/ 2 ( C 2 ) = (2M) 6 X P 

micf 
2kT 
m2c'2

2 

2kT 



J 
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In this case, it is possible to easily replace the velocities (c'1; c'2) with (c l 5 c 2) in the 

velocity distribution functions using simple conservation of energy, raic/

1

2+m2c2

2 = mic 2 + 

m 2c 2; that is, 

h ( C l ) / 2 (c2) = [ — ) j 

/ mi \ 3 / 2 / m 2 \ 3 / 2 

\2M) \2wkTJ 

exp 

exp 

A M (ci) / 2

M (c 2 ) M i 

and so we have 

mic 2 + m 2c 2 

2kT 
mic' 2 + m 2c 2

2 

2kT 

g e 9 ( r , C l ) = H(Cl - Cesc)ni(r)n2(r)f^(Cl)AZ(x) (4.1.9) 

where we have simply used the definition of the collision frequency, equation (4.1.4). 

With equations (4.1.9) and (4.1.6) in equation (4.1.1), we find that the net equilibrium 

escape flux is given by 

7eq 
net J f^(Cl)Z(x)H(Cl - Cesc) x 

/ 1 E2(y(r)Z(x)/y/Trx)n1(r)n2(r) dr dci (4.1.10) 

A 
2 

Using the definition of y from equation (4.1.7) to change the variable of integration from 

r to y' = yZ/y/TTx, and with r 0 and r x taken as 0 and oo respectively, it is possible to 

show that equation (4.1.10) reduces to the Jeans flux, Fj, defined by equation (1.2.9). 

If we rewrite equations (4.1.1) and (4.1.2) using the P V D F s from the previous chapter, 

we can see that our net escape flux is given by 

/•oo rr\ 
Kit - j j " i ( r ) w 2 ( ^ M r

5

c i ) ( 5 ( c i ) c ? r dci (4.1.11) 

where Q( c i ) is the product velocity distribution function given in Chapter 3. We note 

that the calculation is carried out only over those speeds in excess of the escape speed; 

file:///2wkTJ
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in effect, we sample only the 'tail ' of the PVDFs . The PVDFs are calculated using the 

realistic, quantum mechanical cross sections for H + - H , H + - D , 0 - H or O-D as illustrated 

in the previous chapter. The probability of escape, p(r,c\), is given by equation (4.1.6). 

As mentioned previously, it depends only weakly on the velocity, and is not particularly 

sensitive to the energy dependence of the total cross section. It is thus calculated using 

a hard-sphere cross section representing collisions between species 1 and the background 

gas (not necessarily species 2) which dictates the probability of escape. We may add 

the reverse collision term to equation (4.1.11) in order to estimate the effect of reverse 

collisions in reducing the production of hot atoms. It should be noted, however, that 

this is not strictly correct, as the reverse collision term is calculated with the assumption 

that the hot atom distribution function is Maxwellian (and as we saw in Chapter 3, the 

P V D F is clearly indicative of non-Maxwellian hot atom distributions). 

In order to calculate net escape fluxes, we require some estimate of the temperature 

and density profiles of species 1 and 2, in addition to the density profile of the escape 

inhibiting background and the species 1-background total cross section. Especially for 

Mars, most of these parameters are, at best, poorly known or poorly constrained. The 

choices for our input profiles are shown in Figures 4.52- 4.55 for Venus and Earth. The 

predominant gas at exospheric altitudes is atomic oxygen for all three planets, and so it 

is adopted as the background in each case. We estimate a total hard sphere cross section 

for species 1-background collisions from our quantum calculations; we choose a value of 

3 3 x l O " 1 6 cm 2 for 0 -H and for O-D. 

The escape flux for hydrogen on Venus was calculated for both day- and night-side 

conditions. The integration was carried out from a starting altitude of 120 km up to the 

level of the ionopause, the base of the ionosphere, assumed to be 800 k m . 1 5 3 For day-side 

conditions where the probability of escape, p(r) was neglected, the calculated net escape 

fluxes for direct elastic and charge-exchange produced hot hydrogen were 2.8xl0 5 c m - 2 
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s _ 1 and 2.6xl0 5 c m - 2 s _ 1 , respectively. When p(r) was included, the net escape flux was 

reduced to 9.7xl0 3 c m - 2 s _ 1 and 8.9xl0 3 c m - 2 s _ 1 , respectively. For night-side conditions 

where the probability of escape, p(r) was neglected, the calculated net escape fluxes for 

direct elastic and charge-exchange produced hot hydrogen were 7.0xl0 6 c m - 2 s _ 1 and 

5.0xl0 6 c m - 2 s - 1 , respectively. When p(r) was included, the net escape flux was reduced 

to 3.0xl0 6 c m - 2 s _ 1 and 2.0xl0 6 c m - 2 s _ 1 , respectively. The calculated values are slightly 

lower than most values reported by other workers, as given in the introduction to this 

chapter. If we consider only the night-side values for charge-exchange, the calculated 

fluxes are of roughly the correct magnitude. It also appears, from our results, that 

direct collisional excitation of hydrogen by hot protons may also provide a reasonable 

enhancement to the net escape of hydrogen. 

The escape flux for hydrogen from the Earth's atmosphere was calculated for a back

ground oxygen temperature of 917 K . The integration was carried out from a starting 

altitude of 100 km up to an altitude of 6000 km. For the case where the probabil

ity of escape, p(r) was neglected, the calculated net escape fluxes for direct elastic and 

charge-exchange produced hot hydrogen were 1.3xl09 c m - 2 s _ 1 and l . l x l O 9 c m - 2 s _ 1 , 

respectively. When p(r) was included, the net escape flux was reduced to 1.9xl07 c m - 2 

s - 1 and 1.4xl07 c m - 2 s _ 1 , respectively. These values without p{r) appear slightly higher 

those predicted by other workers, while those with p(r) are slightly lower. 

The current calculation calculates a rate of production of hot hydrogen with speeds in 

excess of the escape speed only. Inclusion of the probability of escape p{r) reduces the net 

escape flux substantially; this is because p{r) is near zero at lower altitudes (where the 

production of hot atoms is highest) and grows to a maximal value of | at high altitudes 

where densities are lower and production of hot hydrogen is much lower. 
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4.2 Summary 

A n altitude dependent, kinetic theory approach was used to calculate the rate of es

cape of atmospheric constituents. This was approached in the context of escape resulting 

from energization of neutral atmospheric species via nonthermal processes, with the kine

matics described by realistic, quantum mechanical collision cross sections. The reduction 

of the escape rate by the ambient atmosphere was included through an altitude depen

dent probability of escape, p(r), although the effect of thermalization via collisions with 

the background was neglected. Temperature and density profiles used in the calculations 

were taken from available atmospheric data and from atmospheric models, and escape 

fluxes of hydrogen were estimated for Venus and Earth due to direct elastic collisions and 

charge-exchange. 
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Figure 4.51: Geometry for a plane-parallel atmosphere. 
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Figure 4.52: Temperature and density profiles used as input for flux calculations on 
Venus. The labels A , B , C, and D denote the proton density, proton temperature, atomic 
hydrogen density, and background oxygen density, respectively. Solid curves represent 
dayside values and dashed curves represent nightside values. The data are taken from 
Pioneer Venus orbiter measurements as reported by Brinton and workers 1 6 1 and Kumar 
and workers. 1 5 3 The dayside/nightside hydrogen temperature is assumed to be constant, 
with a value of 300/110 K as deduced from Pioneer Venus orbiter measurements. 



Chapter 4. Kinetic Theory Calculations of Nonthermal Escape Fluxes 192 

Figure 4.53: Density profiles used as input for flux calculations on Earth. The values 
are taken from the work of Shizgal and Lindenfeld, 4 5 and are shown for an exospheric 
temperature of 1000 K . The labels A , B , and C denote the background oxygen density, 
proton density, and atomic hydrogen density, respectively. The proton density is assumed 
to be constant, with a value of 2.0x 1 0 - 4 c m - 3 . The solid/dashed curves for the oxygen 
and hydrogen profiles are barometric , with a constant/altitude varying scale height. 
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Figure 4.54: Density profiles used as input for flux calculations on Earth. The values are 
taken from Yung and workers.7 8 The labels A , B, and C denote deuterium, oxygen, and 
hydrogen density profiles. The solid curves represent densities for the neutral species and 
the dashed curve represents the density of the ion of that particular species. 
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Figure 4.55: Temperature profile used as input for flux calculations on Earth. The 
data are taken from Yung and workers,7 8 and are representative of exospheric neutral 
temperatures. 



Chapter 5 

Summary and Suggestions for Future Research 

This work was intended to examine the importance of nonthermal processes in the 

exospheres of the terrestrial planets. Specifically, the role of nonthermal processes in the 

production of hot oxygen and generation of extended coronae was examined. Nonthermal 

processes such as charge-exchange and direct elastic energization were described using 

a kinetic theory approach, and were contrasted for several atomic systems. The kinetic 

theory description of hot atom production was extended to calculate escape fluxes from 

the terrestrial planets. 

The formation of hot oxygen coronae in the atmospheres of Venus and Mars via 

the nonthermal process of dissociative recombination of O f was examined using both 

hydrodynamic and kinetic theory approaches. It was found that an extended hot oxy

gen corona could be predicted from either approach. The magnitude and extent of the 

predicted coronae were found to vary greatly. For the hydrodynamic constant tempera

ture model the choice of the hot product atom temperature profile had great impact on 

the hot oxygen densities at altitudes well above the exobase, although variation of the 

temperature did not affect the qualitative prediction of sizable enhancement of oxygen 

densities over the thermal background. The kinetic theory model included the effect of 

thermalizing collisions with the cold background and yielded the time dependent dis

tribution function for the hot oxygen atoms. The time dependence was transformed to 

altitude dependence, and the distribution function at the exobase was used to calculate 

hot oxygen densities in the exosphere. It was found that the assumptions made in this 

195 
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model caused an overestimation of the effect of thermalizing collisions, and density pro

files extracted in this manner were on the order of an order of magnitude lower at an 

altitude of approximately 1600 km than those predicted by workers using other methods, 

although still far above thermal densities. 

Product velocity distribution functions describing the rate of production of hot atoms 

for the atomic systems H - H + , D - H + , O-H, and O-D were calculated for a variety of 

nonthermal processes, including direct-elastic and charge-exchange collisions. The cal

culations were carried out using a kinetic theory approach, and were done utilizing di

rect numerical integration techniques. The calculations incorporated realistic, quantum-

mechanical collision cross sections for each system. Energy exchange rate coefficients 

were calculated in a similar manner, and compared with results obtained using a more 

complicated Monte Carlo approach. Timescales describing the time evolution of the av

erage energy of a test particle in a bath were calculated using the energy exchange rate 

coefficients. The overestimation of energy exchange by the hot ion in the linear-trajectory 

approximation to the charge-exchange process was re-confirmed by both these studies. 

The product velocity distribution functions were also used to estimate the escaping frac

tions of H and D as a result of nonthermal direct elastic energization by hot oxygen 

atoms. These kinetic theory calculations were compared to work done by other workers 

using Monte Carlo methods incorporating approximate and quantum mechanical cross 

sections, and were found to be in good agreement with predictions based on anisotropic 

cross sections. The calculations also showed that the fraction of hot deuterium produced 

via direct energization by hot oxygen, while less than the fraction of hot hydrogen, is not 

negligible. 

An altitude dependent, kinetic theory approach was used to calculate the rate of 

escape of atmospheric constituents. This was approached in the context of escape re

sulting from energization of neutral atmospheric species via nonthermal processes, with 
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the kinematics described by realistic, quantum mechanical collision cross sections. The 

reduction of the escape rate by the ambient atmosphere was included through an altitude 

dependent probability of escape, p(r), although the effect of thermalization via collisions 

with the background was neglected. Temperature and density profiles used in the calcu

lations were taken from available atmospheric data and from atmospheric models, and 

escape fluxes of hydrogen were estimated for Venus and Earth, and were in reasonable 

agreement with estimates obtained by other workers. 

There are many possible future research topics which could follow up on and extend 

the work done in this thesis. One of the more important immediate research objectives 

would be the rigorous incorporation of thermalization of hot atom products by the am

bient atmosphere. In full generality, this would involve the solution of the full, altitude 

dependent Boltzmann equation, given previously by equation (1.4.1). This problem is 

extremely formidable as it stands. It could be made tractable by assuming that all 

species except for the hot atoms are in equilibrium. In a first instance, the problem 

could be further simplified by assuming a spatially homogeneous distribution function 

and a plane-parallel atmosphere. A problem similar to this was examined by Shizgal 

and Blackmore, 2 7 where they examined the nonequilibrium escape flux and calculated 

density and temperature profiles. In their model, time dependence and the external force 

(gravity) term in the Boltzmann equation were explicitly neglected, although the effect 

of gravity was incorporated into boundary conditions in their discretization procedure. 

In that work, nonthermal production of hot atoms was not examined and a hard sphere 

cross section was used to describe the collision process. It would be of interest to, as 

a first step, extend their work with the incorporation of the nonthermal processes and 

realistic cross sections examined in this thesis. A further improvement to the model could 

include the inclusion of spherical geometry. 

Other immediate extensions to this present work are also possible. A set of coupled 
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Boltzmann equations examining modification of the ambient neutral velocity distribu

tion function by interaction with a hot atom source, based on the Boltzmann equation 

work done in Chapter 2, would be an obvious choice. An example of this would be the 

differential effect of hot oxygen, produced by dissociative recombination, on hydrogen 

and deuterium in the atmosphere of Venus. Such a study would show the time depen

dent development of the the distribution functions as a result of nonthermal collisional 

processes and thermalization. 

Of great importance, especially for Mars, is the accumulation of more extensive and 

accurate temperature and density profiles. Many of the uncertainties in the models are 

a result of poor spatial or temporal resolution of these parameters. The accumulation 

of further data on the atmospheric composition of Mars by instruments aboard plane

tary missions en-route to the planet (or planned for the near future) could also do much 

to extend the work done on escape fluxes in this thesis. The availability of solar cycle 

dependent temperature and density profiles for major ions and neutrals would provide 

much needed constraints on the modeling of nonthermal collisional production of hot 

atoms in the upper atmosphere. Further measurements of the extent of isotopic fraction

ation patterns on the terrestrial planets would greatly aid in models of the strength and 

importance of nonthermal processes in the early evolution of the planetary atmospheres. 



Appendix A 

Density Profiles in a Collisionless Exosphere 

The calculation of densities for a collisionless exosphere has been examined in many 

different ways . 1 6 ' 2 2 ' 4 3 ' 1 1 In this appendix, the terminology and notation of the review 

article by Fahr and Shizgal 1 is adopted. 

In the absence of collisions, particles moving through an exosphere follow trajectories 

determined by the direction and magnitude of their velocities and the strength of the 

gravitational field. This may be quantified by considering the parameterization of any 

given particle by its total energy E and its angular momentum L. We define c and r as 

the speed and radial position, with their exobase (or critical level) values denoted by cc 

and rc. The conservation of energy and angular momentum yield 

E\ot = T + V = ET 

\mc2 - (GMm/r) = \mc\ - (GMm/rc) 

and 

Lr = r x mc = Lc 

=̂  rc sin 0 = rccc sin 9C 

respectively, coupling the values at the exobase with the values higher in the exosphere. 

The quantities G and M are the universal gravitational constant and the planetary mass, 

and m is the particle mass. Transforming to dimensionless units X — c/cesc and y — rc/r, 

where cesc = \J(2GM/rc) is the exobase escape speed, yields 

X2

c-l = X2-y (A.0.1) 

199 
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yXcsm9c = X sin9 (A.0.2) 

The angle 9 is the interior angle between the outward radial direction r and c. The various 

types of particle classes and trajectories, detailed by Chamberlain, 1 6 can be identified by 

the values of X and 9 for any given particle. 

Escaping particles are those with energies E > 0; that is, they have translational 

energy exceeding the gravitational potential 'well' of the planet. Those that are non-

escaping have E < 0, with the value E = 0 marking the division between the two classes. 

If we define 

Xt = Xsm9 

Xr = X cos 9 

we see from equation (A.0.1) that the boundary E — 0 is equivalent to 

X2 = X2 + X2 = y 

or a circle of radius ^/y in (Xr,Xt) phase space. Particles with (Xr,Xt) inside this circle 

execute closed, elliptical orbits while particles with (Xr,Xt) outside the circle execute 

open hyperbolic ones. The other important concept in the division of particle classes is 

whether or not a particle trajectory intersects the exobase level, r c . A particle whose 

trajectory touches the exobase at only one point (a "glancing" trajectory) will have 

9C = 7r/2; that is, from equation (A.0.2), Xc is perpendicular to r. Any trajectory 

crossing r c must have 9C ^ ir/2. If we substitue 9C = ir/2 into equation (A.0.2), square 

it, and then substitute for X2 from equation (A.0.1), we have after some simplification 

that 

X ' ~ ] 4 ^ X r = xl (A.0.3) 



Appendix A. Density Profiles in a Collisionless Exosphere 201 

where 

1 + 2/ 
Equation (A.0.3) defines the particle trajectories which do not cross the exobase; it is of 

the form 

a2 b2 

which defines a hyperbola with foci at c = a2 + b2 = ±Xb/y and eccentricity e = c/a = 

1/y. If we define the polar angle of the hyperbola as 0P, we have for any point on the 

hyperbola that 

Xt = X sin 8P 

XT = X cos 0P 

or, substituting into equation (A.0.3) and simplifying, 

smOp = ^-{X2 + l-y)12 (A.0.4) 
Ji. 

The various classes of particles are listed in Table A.28, and may be graphically illustrated 

for fixed values of y, as in Figure A.56 (which corresponds to a radial position giving 

y = 1.5). 

The densities of particular classes of particle at altitudes above the exobase are cal

culated by assuming that the distribution function at the exobase is a Maxwellian. From 

equation (1.2.7), we have 

= / fM(cc)dc 
J partial 

/ m. \ " 

— 2-jrn 
TIL ,c partial 

mc2 

2kTc 

c2 dc sin 0 dO (A.0.5) 
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i b M j p i n j : 

ri\- / \ \ 
by / \X$C* 

Y Satellite Xt 
1 Satellite A, 

Ballistic / \ 

Fly
by 

Capture 
Xr 

Figure A.56: A graphical illustration of exospheric particle classes in the phase plane of 
(Xr,Xt). The altitude used for this particular figure corresponds to a value of y = 1.5. 
The quantities y, Xb and 0P are defined in the text of this Appendix. The escaping and 
ballistic particle regions are shaded to clarify the regions of phase space reprsented by 
those particle classes. Based on figures by Fahr and Shizgal.1 
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Particle Class Orbit X limits limits Region of (Xr, Xt) 
(B)allistic k 
(S)atellite 

elliptic (b) 0<X<^y o < e < Tr inside large circle 

(E)scaping k 
(I)ncoming 

hyperbolic (nb) X>^y 0 < 0 < 7T outside large circle 

(B)allistic elliptic (b) 
and cross rc 

0 < X < Xb 

Xb<X<^/y 
0 < 9 < 7T 

o<e<ep 

inside small circle 
between circles k 
inside hyperbola 

(E) scaping hyperbolic (nb) 
and cross rc 

X>^y o < e < ep outside large circle 
k inside hyperbola 

Table A.28: Exospheric particle classes. The incoming particles are sometimes divided 
into a fly by and capture component. The abbreviations 'b' and 'nb' under the 'Orbit' 
column refer to bound or non-bound orbits of the type specified. Based on Fahr and 
Shizgal. 1 

If we use the definition of the escape parameter from equation (1.2.10), 

E 
\ -'-'esc 

c = TFe 

GMm 
kTcrc 

change to dimensionless variables y,X as previously, and use equation (A.0.1), equation 

(A.0.5) becomes 

3 

nk = 2Trnbar(—)[[ e~XcXX2 dX sin0<i0 (A.0.6) 
\ T T J J Je,Xpartial 

where nbar = nc exp [—Ac(l — y)] is the barometric density, equivalent to that given in 

equation (1.2.4). If the integration in equation (A.0.6) is carried out over all (0, X) the 

total density n i o t is given by the barometric density, nbar. The densities of the various 

particle classes are given by performing partial integrations over (0,X) based on the 
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limits given in Table A.28. For the ballistic and satellite (B&S) components we have 

7T J JO JO 

If we make the change of variable s — Xc X2, and also use / sin 0d0 = d(cos0) = 2, 

2irnbar (—\ f f^e XcXX2dX sm0d0 

this becomes 

ribs 
2 r^cv 

V 7 T JO 

2 

e ss* lds 

«6ar7(3/2, \cy) (A.0.7) 

where we have used the 'incomplete' gamma function 

f(a,z) = fe~H a - x dt 
Jo 71 

Since the total density is simply the some of all the components, we can easily find the 

escaping and incoming (E&S) components with the relation 

nei = ntot - nbs 

- nba 1 - — 7(3/2, \cy) 
Y 7T 

(A.0.8) 

The ballistic (B) component requires partial integrations over different two ranges. Tak

ing the limits of each integration from Table A.28, and making note of the angular 

symmetry of the second integration region, we have 

nb 
2irn bar 

7T 

7T rXb 

FI 
Jo Jo 

-\CX v2 XldX s\n0d0 

+ 2 
fSp(X) r^/y 

Jo Jxb 

- \ C X V2 XUX sin0d0 

We may carry out the integrals over 0 to yield 

nb = 4:irnbar — 
\ 7T 

3 j. 
jXbe~^xX2dX + [V*e-x<xX2(l-cos0p)dX 

\Jo Jxh 
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Treating the first integral as we did the integral in the nbs case, with the change of 

variable s = XC(X2 - X2) in the second term and with equation (A.0.4) to substitute for 

cosOp we have 

nb = 4irnbar I — I 
7(3/2,\cy) 

2\V2 2A 

1 r*cy/(l+y) . 

/ e-se~x<x yjX2(l - y*) - y\l - y) dX 
J 0 

After some further simplification, we find that our expression for nb becomes 

nb 

1+1/ 
7(3/2, A cy/(l + y)U(A.0.9) = ~^nbar |T(3/2, Xcy) - yjl - y2 exp 

Using equations (A.0.7) and (A.0.9), one can determine the satellite component, ns 

The density for the escaping particles is given by 

27vnb 

3 (A \ 2 r°° 
7J j^e~XcXx2(l ~cos°p)dx 

= 2Tvnbar (^j 2 ]\~X<XX2 (l - yjl - y2(X2 + 1 - y ) / X 2 ) dX 

- \ C X V2 Xz dX sin 6 d6 

XA2 

Xc\2 r°° 

Vv 

Splitting the integral we have 

ne - 2imhnr (— 
7T ly/v 

e - \ c X K 2 d x 

- J™e-x*xX2yJl - y2(X2 + 1 - y)/X2 dX^ 

Performing some manipulations and substitutions similar to the ballistic case yields 

nP = 
nba {[r(3/2)- 7(3/2, Xcy)] (A.0.10) 

y2 exp -Ky2 

1 + y 
[r(3/2)- 7(3/2, Xcy/(l + y))}\ (A.0.11) 

where T is the gamma function, defined as 

1 e~Hz-ldt 
o 

The incoming component n8- can be determined from equations (A.0.8) and (A.0.11). 
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Details from Chapter 2 

B . l Modified Fourier's Law 

A modified form of Fourier's Law used to specify the heat flow is given by. 98 

q s = -KstWTt - K'tsVTs + Rst(us - ut) 

where the coefficients Kst, K'u, and Rst are strongly dependent on the form of the in

teraction between the species of the gas mixture. The general form of the coefficients is 

given by 

Kst — CstJt/Hst 

K't3 = —FstJt/Hst 

Rst = (CstAts + FtsAst)/Hst 

where 

Ast 

C, st 

PsVstUst [5 

2 

2<' 
ss 

Tt mt Tat, 

lst rns ±s TJ 2 

Vss + V, st 

+ 
fJ-st 

V.sf 

(ms + mT)Tst V5 s t 

nsms L ru,t\2 (T,K2 

} 5 2; \ 5 / ^ 7 ^ 
2TstZstJ + 2msTst

Zs\ 

ntmt 

Pst Ts 4 mt 5 Tt 

(ms + mt)Tst V 5 m s

 s t 2 T s t 

5 fist Ts 

+ 2 ^ 7 ^ . 

'rrh \ I 

- B® 

206 
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_ 5 kps 

s ~ o 
z ms 

Hst — FstFts + CstCts 

with Vst, T3t, and as defined previously in the 'Transport Equations' section. We have 

also made the definitions 

8n, fkTq\2 

3 v ^ V 
Vst = 

ms + m t 

2Z„ _ 5IL i 5 m 5 ( i - z s Q ( r t - r . ) 
• si 

m-tUst (Tt - Ts) 

(ms + mt)2 Tst 

mtUst (Tt - Ts) 

(ms + mt)2 Tst 

'St 

B (3) 
st 

m; 
(ms + mt)2 

1 + 

2 ms + mt Tst 

o rntlst 

- U i + Zz'lt + ^ ( 6 - 1 1 ^ ) 
0 -Lst 

3m 2 (Tt - Tsf 

(ms + mt)2 TI 

The coefficients zst, z'st, z"si, and z's" are given by 97 

Zst 

'st 

1 -
5 

5 _ 2 0 ^ - 5 0 ^ 
2 5 ni*w) 

Zst = 

n2^ 
nS.w) 

n2'1) 

where 0 ^ are the Chapman-Cowling collision integrals,2 9 defined 

/ kTat \ * r°° 

as 

2itp 
— J / exp(-7 2 ) 7

2 / d 7 r t 

ht I Jo 
[CO 

Qlt = 27T / ( 1 - COS* 0 ) ^ ( ^ , 0 ) 8 ^ 0 
Jo 

dO 

1st 
( Vst 
\2kTst 

9st 
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where o is the differential cross section and g is the relative velocity between particles s 

and t. For hard spheres, we have 6 8 

HSryihi) _ HSni 
kTst \ 2 

'Qlt — aHS 

2TTfJ,st J 2 

B.2 Symmetrization of the Collision Kernel 

For a hard sphere collision model, we had from equation (2.4.11) that 

Kns(x, x') = l-AQ2J^{evi(QV^ + Ry/x) + ex~x' exi{R\/x~> + Qy/x~) 
Zi V cc 

±[exi{Q\/x~> - Ry/x~) + ex~x' erf (Ry/x1 - Qy/x~)}} 

where the +(—) sign refers to x > x' (x < x'), and 

(B.2.1) 

Q = 
1 
2 

R = 1 
2 

7 = mback/mhot 

A = 
hs SkTback 

V Kmhot 

This is multiplied by the symmetrizing factor 

Jx (x-x')/2 

y^Le-(x-x<) 

so that 

Ks(x,x') = Fs-Kns(x,x') 
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or 

Ka{x,x') = -AQ2J^L={e(x'-x)l2 [erfYQVz7 + Ry/x) ± e r ^ Q v x 7 - Ry/x)] 
2 y \Jx' x 

+ e (*-* ')/2 [ e r f(i2v^ + Qy/x~) ± ed(Ry/x1 - Qy/x~)]} (B.2.2) 

is symmetric in its arguments. The +(—) sign refers to x > x' (x < x'), or in terms 

of the magnitude and order of the arguments, +(—0) where the first argument is larger 

(smaller) than the second. If Ks(x,x') is symmetric in its arguments then 

Ks{x,x') = Ks(x',x) 

Exchanging the arguments of equation (B.2.2) yields 

K'(x',x) = l-AQ2.[-^={eix-x')/2 [erf(Qv^ + RVx') ± ed{Qy/x - Ry/x')] 
2 y \Jx x' 

+ e (* '-*)/2 [erf'R^ + Q^i) ± erf(Ry/x~ - QVx1)]} (B.2.3) 

If we recognize that the error function is anti-symmetric in its argument, i.e. erf(—z) = 

—erf ( 2 ) , and then rearrange equation (B.2.3), we have 

K'(x', x) = I ^ Q 2 . G={e(*'-*>/2 [ed^Qy/x1 + Ry/x) ± -er{(Qy/x~' - Ry/x)] 
2 y \Jx x' 

+ e ( * - * ' ) / 2 [erf(i2vV + Qy/x~) ± -ed{Ry/x~' - Qy/x~)]} (B.2.4) 

where +(—) sign refers to x < x' (x > x'), or in terms of the magnitude and order 

of the arguments, +(—) where the second argument is smaller (larger) than the first 

This is exactly opposite to what we had in equation (B.2.2). To synchronize the sign 

convention between the two equations we choose the convention that the +(—) sign refers 

to x > x' (x < x') irrespective of the actual order of the arguments. With this convention 

equation (B.2.4) becomes 

K'(x',x) = \AQ2J-^={e^x'-^12 [eri(Qy/x~' + Ry/x) ± erf(Qvx7 - Ry/x)] 
2 y yjx x' 

+ c (*-* ')/2 [erf(i?V^+ Qs/x") ± eri{Ry/x~' - Qy/x')]} (B.2.5) 
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and comparison with equation (B.2.2) verifies that Ks as defined in equation (B.2.2) is 

indeed symmetric in its arguments. The non-symmetric kernel Kns may thus be replaced 

by 

Kns(x,x') = 1 \fx 

or, re-written in terms of speed quadrature points, 

X

 e(*-*') Ks(x,x') 

KnS(ylyl) = Jy-e^)K°{ylyl) 
v y> 

B .3 Symmetrization of the Discretized Collision Operator 

From Chapter 2, we had the equation 

Yt = M-f + S (B.3.6) 

We first define a dimensionless 'time' 

T = At 

where A is the quantity defined in equation (2.4.11), yielding 

^ = M-f + S (B.3.7) 
OT 

where M and S are simply M and S divided by A. The eigenvalue problem corresponding 

to the equation (B.3.7) is 

MV»(n) = A„V(n) (B.3.8) 

or 

/"CO 

/ dx M(x,x')^n\x) = Xn^n\x') (B.3.9) 
J 0 
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where 

A /"CO 

M = dx M(x,x') 
Jo 

M(x,x') EE [Kns(x,x')-Z{x')6(x-x')]/A 

Our goal is to transform this eigenvalue problem into one of the form 

B^n> = \n<t>{n) 
(B.3.10) 

where B is a real, symmetric matrix. We know the symmetrizing factor for the kernel 

from equation (2.4.12), and so we define 

\ £ 2 
f - e * - * ' B(x,x') M(x,x') 

and then substitute this into equation (B.3.9) to yield 

rOO 

Jo d X \ 

v ' cx—x' {^e*-*' B(x,x')il>W(x) = \ni>{n)(x') 
2 

We then transform to a quadrature in speed, with x' = y2 and x = y2, 

3=1 V y i 

or 

N 

3=1 \ Wie~y'. 

Rearranging, we finally have 

N 
I 
3 = 1 

WJ . / » '-51 *!•> 
e y> 

where 

(B.3.11) 

(B.3.12) 

BtJ = 2y/ywWiW3 Bjti (B.3.13) 
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is, by inspection, symmetric in (since B is a symmetric matrix). Comparing equa

tions (B.3.10) and (B.3.12), we see that 

*!B) = V^^B) (B.3.14) 

If we redefine our original eigenvectors according to equation (B.3.14), 

/ Wi 
U = ^f, (B.3.15) 

we find after some manipulation that equation (B.3.7) becomes 

df * . ~ 
= B-f + S (B.3.16) 

where B is a symmetric matrix defined by equations (B.3.11) and (B.3.13), and 

V e~y2 

B.4 Solution of the Eigenvalue Problem 

From equation (2.4.14), we had 

= B-f + S (B.4.17) df 
dr 

This is analagous to the eigenvalue problem of the f o r m 1 6 2 , 1 6 3 

BU = A -U (B.4.18) 

where B is a symmetric matrix and U is the matrix of eigenvectors of B. If we make the 

definition 

f = U F 

in equation (B.4.17), we find that 
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or after multiplication by U 1 from the right-hand side 

OF ^ ^ „ 
— = D - F + Q 
OT 

(B.4.19) 

where 

Q = U _ 1 S 

D = U _ 1 B U 

The matrix D is a diagonal matrix of the eigenvalues of B. It can be shown that all the 

eigenvalues are inherently negative, except for A i which we expect to be zero since it 

represents the equilibrium eigenfunction. We choose to redefine the eigenvalues with the 

negative sign explicitly shown, i.e. A = — A. We then have 

Ai = 0 < A 2 < A 3 < . . ' . < A n 

With this convention we may write the jth component of equation (B.4.19) as 

dFj 
dr 

If we use an integrating factor, this may be rewritten as 

.d_ 
dr 

ex>TFj = Qj 

or integrating both sides 

dr 

Carrying out the integration on the right-hand side and rearranging yields 

"1 _ e-A>i 
F3(T) = FMe-^ + Qj 
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N 
With our previous definition of f = U • F , or fj = ^VijFj, we finally arrive at 

3 = 1 

N 
Mr) = Uitl [*i(0) + Q a r] + [ Fj(0) + Q, 

3=2 

1 - e~A> 

.A,-

where we have used L'Hopital's Rule to account for the indeterminacy caused by the zero 

eigenvalue in the j = 1 term. 
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The Differential Collision Cross Section 

The scattering cross section is of great importance in any detailed analysis involving 

the Boltzmann equation. It appears explicitly in the definition of the collision operator 

in equation (1.4.1), and describes the physics of the binary collisions for the system. The 

physical meaning of the cross section is made clear by considering a typical scattering 

configuration, such as is illustrated in Figure C.57, where a uniform beam of particles is 

incident on a (repulsive) scattering cemter. For the particular case of a two-body collision, 

both the incident beam and the target become single particles, but the description of the 

process remains the same. 

The incident beam is characterized by its intensity 7, also called the incident flux 

density, which gives the number of particles per unit time which cross a unit area per

pendicular to the incident direction. There is a finite region of interaction over which the 

incident beam is deflected (or scattered) from its incident direction after which the effect 

of the scatterer diminishes and the scattered beam continues linearly in the scattered 

direction. 

Referring again to Figure C.57, we may quantify this process as fol lows. 1 3 2 ' 1 3 3 For a 

central force type of potential (i.e., dependent only on radial distance), there is symmetry 

about the axis of the incident beam, and the element of solid angle may be written as 

dii = 2TT sin(0) d9 (C.0.1) 

The angle 0 is the angle between the incident and scattered directions, and is not supris-

ingly known as the scattering angle. For any given incident particle, the amount of 

215 
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Figure C.57: A typical scattering configuration. An incident beam of particles interacts 
with a scattering center, and part of the beam is scattered through an angle 9 into a 
solid angle dQ. 

scattering is determined by the impact parameter b (the perpendicular distance between 

the direction of incidence and the scattering body) and the energy E of the particle. If 

the incident intensity or flux is given as 7, the number of particles per second scattered 

into the solid angle dQ (that is, between 6,9 + d9) will be proportional to both 7 and dQ, 

AN = aldQ (C.0.2) 

where a is a constant of proportionality, and is called the differential cross section. We 

assume that different values of b cannot lead to the same scattering angle (that is, that 

9 is single valued function of b). Thus, the particles scattered into 9,9 + d9 are those 

incident particles with an impact parameter between b, b + db, 

AN = 2%Ibdb (C.0.3) 

Equating equations (C.0.2) and (C.0.3), and making use of the definition of the solid 
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angle from equation (C.0.1), we find that the differential cross section is given by 

\db 
o = « » ( » ) ' • » ' ( C ' a 4 ) 

The absolute value signs are used in equation (CO.4) because b and 6 may vary in opposite 

directions despite the fact that particle number A i V must always be positive. Physically, 

the differential cross section is the collisional obstacle or area presented by the scatterer 

to the incident beam. The term 'cross section' is appropriate since the dimensions of o 

are length-squared or area. The total scattering cross section is simply the integral of 

equation (CO.4) over all directions, 

&tot — Jodtl 

= 2TT r o sin(0) dd (C.0.5) 
Jo 

A special form of the differential cross section that is regularly used in kinetic the

ory is the hard-sphere cross section, often also referred to as the "billiard ball" model. 

It approximates each scattering particle as a rigid sphere of a fixed radius r0 with an 

interaction potential defined as 

constant > 2r0 

V(r) = I 
oo < 2rG 

The hard-sphere differential cross section arising from this potential is 

adiff 
(2r 0) 2 

4 

A n important feature of the hard-sphere differential cross section is its independence of 

both energy and angle. The total cross section is found by integrating over all solid 

angles, 

°tot ~ J adiffdil 

r sin(0)i 
Jo = 2-K J sm(e)de 

= ird2 
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where d = 2r 0, the hard-sphere diameter. 

Though not a particularly realistic model of particle interaction, the hard-sphere cross 

section is useful. It is often used to reduce the complexity of the collision operator in the 

Boltzmann equation, and is also useful in the examination (analytically) of cross section 

dependent properties that would be extremely difficult or impossible to calculate with a 

more realistic model. Finally, it can be useful as a test of computer codes, since there 

are many results for a large class of problems utilizing the hard-sphere cross section. 



Appendix D 

Scattering Theory 

D. l Quantum Mechanical Scattering 

The description of the scattering (or collision) process is well described in most stan

dard texts on quantum mechanics. 1 3 2 - 1 3 4 In this section we give an outline of the theory 

describing Q M scattering, and the procedure for the calculation of the phase shifts and 

hence the differential and total elastic collision cross sections. 

We are interested in finding the wave function ij>(r) for a particle with a given en

ergy E moving in a potential field V(r). This problem involves solving the Schrodinger 

equation, 1 3 2 ' 1 3 3 

HV>(r) = E^[v) (D.l.l) 

where 

H , g + 

is the Hamiltonian operator and represents the total energy. If we substitute for the 

linear momentum operator, p = — ihW, and use the definitions 

k ~ A 

A s * 
P 

p = kh, 

219 
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1 
2' 

E = ~-pg2 = 
p2 h2k 2 1,2 

2p 2p 

the Schrodinger equation can be rewritten as 

2p 
•V2 + V(r) 

%2k2 

(D.1.2) 

In equation (D.1.2), p is the reduced mass and k is the wave number. If we assume that 

the potential V(r) is spherical, and define 

U(r) = pV(r) (D.1.3) 

then equation (D.1.2) becomes 

W2 + k2-U(r) iP(r) = 0 (D.1.4) 

At large radial distances we expect the potential V(r) to fall off to zero, and the effect of 

a scattering body on another particle is assumed to be negligible. If the potential term 

of equation (D.1.4) is set to zero we have the 'free-motion' Schrodinger equation 

V2 + k2 V(r) = 0 (D.1.5) 

A solution of equation (D.1.5) is 

^in(r) = Ae >kr (D.1.6) 

which is a plane wave (that is, k • r, the phase of the wave, is a constant). We expect 

that in the absence of a scatterer that the wave function would be of this form, and 

that the inclusion of a scattering potential simply adds an additional component to the 

incident wave function. We approximate the effect of a collision by examining the change 

in the incident particle wave function after interaction with the potential field of the 

central scattering body. This is similar to the treatment of diffraction effects in optics or 
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acoustics. 1 3 2 As the incident particle, in the form of a plane wave as given by equation 

(D.l.6), approaches the scatterer it begins to feel the potential field of the scatterer. We 

assume that scattering from a point target produces a spherical wave of the form 

eikr 
^c(r) = F{B)-— (D.1.7) 

r 

where the J-(9) is the scattering angle dependent scattering amplitude, and allows for 

angular anisotropy in the scattered wave function. The total scattered wave function is 

a superposition of the wave functions in equations (D.l.6) and (D.1.7), 

^ ( r ) = A e ' k - r + j r ( 0 ) - — (D.1.8) 

r 

Since the scattered spherical wave decays as 1/r as we move away from the collision 

interaction region, the total wave function asymptotically approaches a plane wave again. 

The effect of a the scattering body on the incident wave function is illustrated by Figure 

D.58. 

We may now relate the quantum mechanical wave function terminology with the 

classical derivation of the collision cross section given in Appendix C. The intensity of 

the incident beam is defined as 

= | A | 2 ^ (D.1.9) 

and that of the scattered beam as 

he = \ipsc\ 2g 

= ( D . U 0 ) 

where g = p/p is the relative velocity of collision. The number of particles per second 

scattered through an angle 6 into an area dS (perpendicular to the scattered beam) is 

AN = LJS 
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Figure D.58: Wave function scattering by a central potential. A n incoming plane wave 
is partially transmitted/reflected as another plane wave and partially scattered as a 
spherical wave by the potential field due to the scattering body. 

= mt*JidS (D. i . i i ) 
H fj. 

If the incident beam is normalized such that \A\2 = 1, then 

Iin = — (D.1.12) 

If we put equation (D.1.12) into equation ( D . l . l l ) , and use the definition that dS/r2 = 

dfl, we find that 

AN = \F{6)\2 IindVl (D.1.13) 

Comparing this with the form of equation (C.0.2), we immediately find that the quantum 

mechanical differential cross section is given by 

a = \f(0)\2 (D.1.14) 
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D.2 Calculation of the Phase Shifts 

To calculate the scattering amplitude J7, we must match equation (D.l.8) to the 

asymptotic form of the solution of the Schrodinger equation including the interaction 

potential, equation (D.l.4), which was written as 

[V2 + k2 - U(r)] ii>(r) = 0 

The solution for the wave function may be written as an expansion of the form 
oo 

tf(r) = £ C W , M ) 
z=o 

where we assume that 

1>i(r,8) = Ri(r)Pi(coaO) 

The /th term in the expansion of ip is known as the /th partial wave. In general, the solu

tion of equation (D.l.4) is a three dimensional problem, where ij) = ij)(r,0,<j)). However, 

with a spherical potential, there is spherical symmetry (that is, there is no dependence of 

o on the angle <f> as one looks along the incident beam axis), and so the problem reduces 

to a two dimensional one. We may thus write 

}_d_ 28Ri 
Pl + ^ L 2 P , 

r 2 r 2 dr \ dr 

where L is the quantum mechanical angular momentum operator 1 3 3 with the <j) depen

dence omitted. If the P/'s are chosen to be the Legendre polynomials, then they are the 

eigenvectors of the angular momentum operator, that is 

i2p> = ^ H w ) = -i{i+i)p< 
If this is substituted into equation (D.l.4), the original problem reduces to determining 

the i?/'s from the radial Schrodinger equation, 
1 d ( 23Ri 

r 
r2 dr \ dr ) + ( f c 2 - c / e / / ( r ) ) / i , ( r ) = 0 (D.2.15) 
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where we have defined an 'effective potential' 

Ueff = U(r) + 

If we consider the'free motion' (U(r) = 0) version of equation (D.2.15), 

we may rewrite it in the form of Bessel's equation of half-integral order, 

r ' | £ + 2 r ^ + ( * V + .-(/ + l ) ) « ( r ) = 0 

The general solution is of the form of a linear combination of two independent solutions, 

Ri(r) = Cnji(kr) + C2mi(kr) 

where j\ is the spherical bessel function, n; is the spherical Neumann function, and Cu 

and C21 are coefficients to be determined by boundary conditions. Since the spherical 

Neumann functions diverge at the origin, and we require that Ri be finite everywhere, 

we set C21 = 0. Our 'free motion' solution is thus 

= Cuji(kr)Pi(cose) (D.2.16) 

It can be shown 1 3 4 that this is exactly equivalent to an expansion in Legendre polynomials 

of our plane wave 'free motion' solution of equation (D.1.6). Since we are interested in the 

form of tj) as r —• oo (that is, far from the interaction region), we examine the asymptotic 

behaviour of the radial portion of equation (D.2.16), 

,-w \ ^ sm(kr — lir/2) / T ^ ^ , „ x 
#,(»•-> 00) = Cu—-—: — (D.2.17) 

kr 

We now consider the case where the potential in equation (D.2.15) is not zero. If we 

restrict ourselves to the region far from the interaction region, r >̂ 0, and assume 
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that the potential U(r) is negligible in this region, then we find that equation (D.2.15) 

again reduces to Bessel's equation of half-integral order. The general solution is a linear 

combination of spherical Bessel and Neumann functions, as previously. However, we 

cannot simply exclude n/ as before since the origin is no longer included in the region of 

interest. Setting 

Cu — 7; cos Si 

Cii — —7; sin Si 

we have the solution 

Ri(r) = 7; [ji(kr) cos Si — nj(fcr) sin S{\ (D.2.18) 

For r —• oo, this takes the form 

sin(fcr - /7r/2 + SA 
Rt(r - c o ) = 7 i 

and thus the asymptotic wave function is given by 

sm(kr — fa/2 + Si) „, „s ,^ n ^s 

jjji = 7 ; — i ' T u PticosO) (D.2.19) 
kr 

Comparing equations (D.2.17) and (D.2.19), we see that the inclusion of the potential 

causes a small shift Si in the phase of the radial part of the asymptotic wave function. 

This phase difference between asymptotic solutions of the radial wave equation with 

and without the potential is known as the phase shift. In general, the phase shifts are 

calculated by finding the nodes r0 of Ri from equation (D.2.18), yielding 

tan 6, = ^rH (D-2.20) 
ni(kr0) 

In order to finally find the scattering amplitude we now match the expected form of 

the asymptotic wave function, equation (D.l.8), to equation (D.2.19) . 1 3 3 ' 1 3 4 If we express 



Appendix D. Scattering Theory 226 

the sine function as a sum of exponentials, 

sin z = -(eiz-e~iz) 
2^v ; 

this yields 

Cu - - • • " i k r 

S 27^ [eikre~ilT/2 ~ e-ikreil*'2] P,(cos 9) + F{9) • &— = 
OO 

2ib [JkTz~iiV'2ziSl ~ e-tkreil*/2e-iS'} P,(cos 9) 

1=0 
oo 

1=0 

Since e~lkr and e , f c r are linearly independent, the coefficients of these terms must sepa

rately be equal. For the terms involving e~lkr, we have 

oo oo 
Y,CuPi(coS9) = £ 7 , P , ( c o s 0 ) e - i 5 < 
f=0 1=0 

If we multiply by P;»(cosfl), integrate over d(cos9), and use the orthogonality condition 

for the Legendre polynomials, 

[+i P,Pi,d(coS6) = ^-rS„, 
J-i 21 + 1 

we find 

7/ = CueiS> (D.2.21) 

If we make use of the fact that the asymptotic expansion of the plane wave in equation 

(D.1.6) is given by equation (D.2.16), we have 

^ = &n(r) = e i k r 

= J2C^Ji(kr)Pi(cos9) 
i 

If we multiply by P//(cosfl) and integrate over d(cos0), again using the orthogonality 

condition for Legendre polynomials, and then make use of the definition for the spherical 
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Bessel functions, we have 

Clljl^2J+T6u' = / - i eikrcos9M^se)d(cos9) 

= 2ilji(kr) 

or 

Cu = (2l + l)il (D.2.22) 

We are now (finally!) ready to solve for the scattering amplitude itself. Equating the 

coefficients of the e%kr terms yields 

oo oo 

Cu P/(cos 0)e-il7r'2 + 2ikF{6) = £ 7, P,(cos 6) e-'(W2-««) 

If we substitute for Cu and 7/ from equations (D.2.22) and (D.2.21), and simplify as for 

the e~tkr case, we find 

1 00 

HO) = ^ £ ( 2 / + l)P,(cos0) 1 

After taking a factor elSl out of the brackets and using the definition of the sine function, 

we finally arrive at the form 

F(9) = - £ ( 2 / +l)P,(cos0)e i 5 <sin£, 
rC 

(D.2.23) 

It should be noted that the phase shifts 61 = 8i(k) are energy dependent. From equation 

(D.l.14), the differential cross section is thus 

|2 
(D.2.24) 

1 
£ (2/ + l)P/(cos0)e^ sin£/ 

and from equation (CO.5), the total cross section is 

47T ° ° 

(D.2.25) 
/=o 
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D.3 Semi-Classical (WKB) Phase Shift Approximation 

For systems with many interaction potentials or with 'heavy' collision partners, the 

number of phase shifts required to accurately construct the collision cross sections may be 

very large, and the computer time required for rigorous quantum mechanical calculations 

may be on the order of days. It is thus desirable to be able to find an approximate 

form for the phase shifts Si. Such a form is given by the Wentzel-Kramers-Brillouin 

(WKB) or semi-classical approximation. 1 6 4 , 1 3 3 In general, the W K B approximation is 

appropriate for those energies above the centrifugal barrier for the effective potential (see 

equation (D.2.18), where there is no orbiting and only a single classical turning point. 1 3 3 

A brief outline of the W K B formulation for the phase shifts is given here; further detail 

is available in many standard textbooks 1 6 4 ' 1 3 3 and papers. 1 6 5 - 1 6 7 The W K B phase shift 

is given by 

where k is the wave number, U(r) is the potential given by equation (D.1.3), and r0 is 

the classical turning point. There is no inherent restriction as to the size of the W K B 

phase shifts given by equation (D.3.26), unlike other approximations (e.g. Born phase 

shifts using equation (D.3.26), which involves a single integration, than to perform the 

integration of the radial Schrodinger equation, equation (D.2.15), involved in the Q M 

calculation of the phase shifts. 

We may put equation into a computationally more convenient form. Using the defi

nitions 

(D.3.26) 

shifts). From a computational point of view, it is much quicker to compute the phase 

b = 
(1 + 1/2) 

k 
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k2 = 
2pE 

where E is the energy of the colliding particle, equation (D.3.26) becomes 

kb 
Z Jr0 

k L V V(r) 
r 2 E 

dr 

If we now make the change of variable y = r0/r, we have 

6WKB = k b _ k r o + r ^ 
I Jo 

1 b2y2 V(r) i 

E 
/y2dy 

( , / l & V V(r) i 

Jo y2 
k{-7r + r0 

To perform the integral, which is of the form 

/ g(x)dx 
Jo 

we make the transformation x = (y + l ) /2 , yielding 

1 1 fy + l 

dy - 1 

L29 dy 

Using a standard Gauss-Legendre quadrature, with points and weights yi and iw,-, we thus 

have 

1 = 1 

where we have simply defined a 'new' set of points and weights, p,- = (yi + l ) /2 and 

Wi = Wi/2. 
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Details of the Production of Hot Atoms 

E . l Derivation of £{2 - £ 2 

From equation (3.3.12) we have 

^ 2 = M i S 2 + M2(l + ocfC2 + M2a2 e - 2xjMlM2(l + <*)£' • S + 

•2\jMxM2a£ • S - 2M2{\ + a)a£' • £ (E . l . l ) 

where we have used £ ' = Ei from conservation of momentum and energy and equation 

(3.3.8). Now, using equation (3.3.8) for £, and the analagous expression for we have 

(since g = g' for elastic collisions) that 

e = ^ (E.i.2) 

From equations (3.3.8) and (3.3.10) we have 

£' = £-2k(k-£) (E.1.3) 

Substituting equations (E.l.2) and (E.1.3) into equation ( E . l . l ) , 

= M{E2 + M2(l + a)2? + M2a2e - 2yjMiM2{l + a)£ • S + 

AX[M~M2{1 + a)(k • £)(£ • 3 ) + 2^M1M2a£- 3 + 

-2A* 2 (1 + a)a £ 2 + 4 M 2 ( 1 + a)a (k • £)2 (E.1.4) 

Similarly, we have from equation (3.3.9) that 

£ = M{~2 + M2e - 2y/MiM2£ • 2 (E.1.5) 

230 
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Thus, combining equations (E.1.4) and (E.1.5), and simplifying, we have 

& - £ = M2(l + a2 + 2a)e + M2a'e + 
4\/M1M2{l + a)(k-£)(t-E) + 

-2M2(l + a)a(2 + AM2(1 + a)a(k • £)2 - M2£2 

= AyjMxM2{\ + a)(£ • k)(S • k) + AM2a(l + a)($ • k)2 

E.2 Derivation of £ 2 + $ 

By equation (3.3.8), Mi + M2 = 1, and so we obtain the desired result, 

E.3 Transformation from d^ d£2 to d"E d£ 

We wish to make a transformation of coordinates from the reduced variables ti£ a d£2 

to d3d£. As for equation (3.3.4), we use the standard definition of the Jacobian for 

coordinate transformations, 

From equation (3.3.9) we have 

(Mx+M^+e) 

J d£x d£2 d3d£ 

J 
0 ( * i . * 2 ) -

I dE d£ 
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We use equations (3.3.7) and (3.3.8) and vector differentiation to obtain 

J = 

-\JM2 yfM[ 

= Mi + M2 

= 1 

E .4 Transformation from x to the scattering angle 9 

The geometry of the dynamics of an elastic collision process is illustrated in Figure 

E.59, where 9 is the scattering angle and x 1S the angle between k and £ (or, equivalently, 

since k is the external bisector of the scattering angle, between k and £'). From the figure, 

we have 

cos x = 

From basic trigonometric identies, 1 5 0 we know that 

2 cos(2^) + 1 
cos z = ^— 

so 

2 COs(7T — 9) + 1 
COS Y = 

2 

where we have used standard trigonometric identities for angle addition, 1 5 0 and the fact 

that cos(—z) = — cos(z). 
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Figure E.59: Geometry of the dynamics of an elastic collision. 

E.5 Derivation of the hard sphere product velocity distribution function 

We wish to calculate the product velocity distribution function Q(x) for the case 

where the differential cross section is given by the hard sphere approximation. From 

equation (3.4.13), this requires us to integrate 

/•oo , 
Iz = / zze~Bz I9(z)dz (E.5.6) 

Jo 

where 

zJ-i y/Ai + A2p 

and where we have defined 

Ax = a'2 + 3 

A2 = Iclp 

= cos 9 
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For the hard sphere differential cross section, we have (see Appendix C) that 

CT' = 1 

To carry out the integration over u in equation (E.5.7), we make a change of variable 

u 

fi = 

dp = 

Qu + gu + idB'p 

u2 - (a'2 + f3'2) 

u 
a'i3' 

2a! 8' 

du 

and so 

U{z) exp 
1 fa'+P' 

Z Ja'-P' 

fu2-(a'2 + f3'2Y 
2a'/?' 

sinh(a:zu) u 

u 
du 

\y>z2((a'2 + f3'2y 

ra'+P' 

Ja'-P 1  
exp -iz2 

2a! B' 
' u2 \ 
2a>8>) 

x 

smh(xzu) du (E.5.8) 

This is of the form 

e~Au2 s i n h ( 5 « ) du (u = J 

e~Au2e-Budu 

Kt - K: (E.5.9) 

If we complete the square in the argument of the exponential of equation (E.5.9) we have 

for the first term 

Kt = \eB2'iA j e-(^+Bu+By4A) d u 
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where the final form follows directly from integral tables. 1 5 0 Similarly, 

B \ 
K: \fAe^eri(u^A- 2VX 

From equations (E.5.8) and (E.5.9) we may identify 

A 

B 

B2/AA 

B/2y/A 

uVA 

jz2 

2a'8' 
xz 

a''F . 

= x 
a'8' 
~2~y 

UZ\ 

2a'(3' 

Putting it all together, we thus may write equation (E.5.8) as 

h{z) = N8 K{yjA1 + A2) - Kiy/A! - A2) 

where we have collected coefficients and defined 

K(u) 

1 1 M r _eC2

e-y'z2A1/A2 

u = 

2z*]l A2l> 

exi(uz'+ C) - eri{uz - C) 

u 

c 4 y 

Substituting equation (E.5.10) into (E.5.6), 

h = \{^'eC2 L z e 
-(~i'AilA2-B>)zi 

K{sJAx + A2) - K(\/AI - A2) dz 

(E.5.10) 

(E.5.11) 

(E.5.12) 
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With equation (E.5.11) giving the form of K(u), equation (E.5.12) thus reduces to the 

form (ignoring factors in front of the integrals) 

where 

I(jAx + A2) - I(y/A1 - A2) 

f°° -? 2 

I(ri±) = / yz [eri{n±y + 8)- eri(r)±y - 8)] dy Jo 

(E.5.13) 

and 

V = < 
y/Ax + A2 = a' + 0' for + 

y/Ax - A2 = ct'-B' for -

Since the two terms in I(r]±) differ only by the sign of the argument of the erf() function, 

we really only have to do the integral 

= / ye erf(r/y + 8)dy Jo 

We do this integral by parts; let u = evi(ny + <5), dv = ye ^ so du = ^ 7 ? e ^ w + ^ 2 dy and 

v = - e " ^ 2 / 2 ^ , and thus 

h(r}) = -—-ev{(ny + 8) +-= exp - ((£ + vV + Wy + <H dy 
2£ 0 y/ffJo V / J 

The integral is of a standard form, and may be done using integral tables. 1 5 0 Noting that 

erf(oo) = 1, we find that 

where 

Cx 

2€ 

V 1 
exp 

v2*2 - (I + v2)s2 

t + v2 
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Similarly, with erf(—z) = —erf(2), we find 

f°° -t 2 

Jo 

2£ ' ~x~"\y/?+v*t 

Thus, combining our results for I+ and J_, we have 

Hv±) = evi(8) exp vis2 - (( + viW erf 
r}6 

Defining r = £, s = 8, and t = n, we thus have 

N(r,s,t(u±)) = I(V±) 
1 
r er f(s)-

Vr + t2 exp rs 
r + t2 

erf 
/ st 
\Vr~T¥j\ 

(E.5.14) 

where, from equations (E.5.11) and (E.5.13), we identify 

r = 

s = X\ 

iA 
A< 

4 7 ' 

t(u±) = u± 

With equation (E.5.12) and (E.5.14), we thus have 

h = ^ ^ ^ C

x 2 ^ [ J V ( r , f l , t ( u + ) ) - J V ( r , a , t ( u _ ) ) ] (E.5.15) 

We can substitute this into equation (3.4.13), and find that the product velocity distri

bution for the hard sphere interaction is given by 

Q(x) = u * 7 r 3 / 2 n i n 2 

' v T O \ *d2 

7T 
- j = {N(r, s, u+) - N(r, s, u_)} 

where we have eliminated the exponentials since A' = Aif^rf. 
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E.6 Interpolation scheme for the calculation of integrals over reduced energy 

We are faced with integrals over reduced energy z2 = E/E0, of the form 

roo 
I(z) = / znf{z)dz (E.6.16) 

Jo 

where f(z) may represent a differential cross section, a momentum transfer cross section, 

or some other function of the reduced energy. To avoid having to interpolate values for 

f(z), as would occur with a Simpson's Rule or Gaussian quadrature based integration 

scheme, we instead choose our integration points to coincide with the tabulated energy 

values at which f(z) is known. We then assume that f(z) varies linearly with energy 

over each integration interval. Thus, we write 

roo 
/ znf(z)dz « (E.6.17) 
Jo 

where 

f = ai + diE 

and where zf = Ei/E0. The coefficients a; and /?; are constants for any given interval i, 

chosen such that / ; is equal to the tabulated values on the boundary intervals, that is 

/(*,-) -- ai + faEi 

f(zi+1) = ai + 8iEi+1 (E.6.18) 

Subtracting the two equations yields 

p _ fi+i — fi 
Ei+i — Ei 

where fi = f(E{). We may then substitute /?,• back into either of equation (E.6.18) to 

give 

_ fjEj+i — fj+iEj 
Ei+i — Ei 
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Transforming equation (E.6.17) to energy, and using our linear approximation for f(z) 

over the interval i, we have, for interval i, 

/ z«Udz = — / - fi dE 

= ^ p i 7 j / + 1 « < n - 1 ) / 2 ( « < + A ^ ) ^ 

= ^ p p ( « « j f " ^ + ft E'"+ 1"2 <K) 

The final integral above may easily be evaluated analytically, yielding 

T.(r\ - 1 (.-x- 2 f p ( n + 1 ) / 2
 F ( n + l ) / 2 l . o 2 r ( n + 3 ) / 2 ( n + 3 ) / 2 l \ 

We choose the boundaries of the intervals to coincide with the values Ei at which f(E) 

is tabulated. This method can be extended to other forms similar to equation (E.6.16), 

including (for example) 

/ •CO 

I(z) = j exp[-z2]zn f(z)dz 



Appendix F 

Derivation of the Hard Sphere Collision Frequency 

The definition of the velocity dependent collision frequency between two species is 

defined by 2 9 as 

v{ci) = JjUc2)agdQdc2 (F.0.1) 

where a is the differential scattering cross section describing the physics of the interaction 

between the two species, g is the magnitude of the relative velocity between the particles, 

dfl is the solid angle describing the orientation of the collision process, and f2 is the 

velocity distribution function for the 'background' species (labelled 2). Hence, v{c\) is 

the collision frequency for 'test' particles (labelled 1) of speed c\ with the background. For 

an arbitrary or unknown differential cross section and background velocity distribution 

function, it is necessary to numerically compute the collision frequency. 

It is possible, however, to simplify equation (F.0.1) if a few assumptions are made 

about the type of interaction and the distribution of the background particle velocities. 

As most workers are primarily interested in obtaining information about the velocity 

distribution, density, or temperature of the 'test' particles, it is common practice to as

sume that the background distribution is in local equilibrium and is given by an isotropic 

Maxwellian distribution, 

240 
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where we have defined 

vth = \f2kT2/mi 

7 = m 2 / m i 
7 3 / 2 

^ 2 = 3 / 2 3/2 

Since the background distribution is isotropic we may rewrite equation (F.0.1) in the 

form 

v{cx) = Jf2(c2)(Tt0tgdc2 (F.0.2) 

where we have simply used the definition of the total scattering cross section from Ap

pendix C to eliminate the integration over the solid angle. 

In addition, if the form of the interaction between the two species is poorly known 

or poorly constrained, it is often assumed that the particles interact as 'hard spheres' 

during the collision process. Substituting for the total hard sphere cross section from 

Appendix C we have 

u(Cl) = ird2 jf2{c2) g dc2 (F.0.3) 

We may now make a change to spherical coordinates, where g is taken to lie along the 

polar axis, making an angle 6 with the velocity of the test particle, Ci. Thus, we have 

for a constant c\ that 

g = c2 - C i 

t ig = dc2 

= g2 sin 8 dO d<f> dg 

c\ = c2 • c2 

= g2 + cl + 2gCl cos 8 (F.0.4) 
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Making the change of variable of integration from c2 to g, and using the results in 

equation (F.0.4), we now have 

v{cx) = N2nd2JJJexp -\(g2 + c\ + 2gcx cos 9) vth g3 sin 9 d9 d<f> dg 

Since there is azimuthal symmetry, the integration over (j> simply yields a factor of 2 i r . If 

we make the change of variable p = cos we have 

u(ci) = 2N2n2d2 f 
Jo exp vth g / exp 

7 

Jth 
{2gc1[i) dp dg 

The integral over p is simply an exponential and may be done easily, yielding 

i/(d) 2N2TT2d2v2

h r°° 
2 7 C l Jo exp exp 

2*/gci 

Jth J 
— exp 

-2jgcx 

Jth 
92dg 

If we make the change of variable from velocity to reduced speed, 

V = g/vth 
we then have 

v{x) = 
N27T2d2vfh / o o 

7 £ 'th f00 T 1 
— / exp [~7(x2 + y2) (exp [2~jxy] - exp [-2 7zy]) y2 dy 

J 0 We may rewrite this as 

N2ir2d2vK r~ 
v(x) = ^ V t h (exp [ - 7 (s - y)2] - exp [ - 7 (x + y)2}) y2 dy (F.0.5) 

The integral over y in equation (F.0.5) may be performed using ???, yielding 

v{x) 
N2*2d2v}h 

7 £ 
xe 1 X ( 1 x2 1 

where erf(x) is the standard error function, 

erf(x) -- -^= / e s 2 ds 
y/TtJo 
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Substituting back in the definition of N2, and simplifying the result in the brackets, we 

finally have 

v(x) 
\/^d2vth 

x/7 
--yx + 2 \^fx 

+ 2x^/7 \eri(xfyx) (F.0.6) 

If we wish instead to express the collision frequency as a function of reduced energy, 

x = 

- x 

mlc\l2kT2 

2 / 2 
Cl/Vth 

2 

we have 

(F.0.7) 

where we have defined 

A = y/ird2vth 

It should be noted that since the background distribution is normalized to 1, the units 

of the collision frequency v are not sec - 1 , but rather cm 3/sec. A dimensionless collision 

frequency may be readily defined as 

v{x") 
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