A PKP STUDY OF THE EARTH'S CORE USING THE WARRAMUNGA SEISMIC ARRAY

by
AIMÉE ELIZABETH SURRENDRA BERTRAND
B. Sc. University of the West Indies, 1970

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE
in the Department of GEOPHYSICS

We accept this thesis as conforming to the required standard

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, 1 agree that the Library shall make it freely available for reference and study. 1 further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Geophysics

The University of British Columbia Vancouver 8, Canada

Date $12^{\text {th }}$ Angus 1972

PKP core phases recorded at the U.K.A.E.A. - type seismic array, WRA, in Northern Territory, Aus tralia over the distance range 113° to 176° are used to determine a velocity-depth model for the earth's core. Paper recordings played out at high speed ($40 \mathrm{~mm} / \mathrm{sec}$) from analog magnetic tape with amplitude gain control and narrow bandpass filters provided the data available for analysis. Such data enabled precision measurement of relative times between seismic traces.

Four distinct traveltime branches were observed. Two of these are the well-known $P_{K P_{A B}}$ and PKP $_{D F}$ branches which are transmitted through the outer and inner cores, respectively. The two additional branches are forerunners to the DF branch at distances less than 143°. In recent years, the existence of one of these branches designated PKP $_{G H}$, has been accepted to account for observed precursors. However, the existence of a distinct second branch, designated PKP $P_{1 J}$, has been a subject for debate. Since the precursor•branches provide information about the "transition region" between the fluid outer core and the solid inner core, the identification in this study of two distinct sets of forerunners is of some importance.

Traveltime and traveltime gradient ($d T / d \Delta$) measurements of each phase observed on the seismograms were made. The $d T / d \Delta$ values were measured by a least-squares technique. These. measurements were strongly perturbed by structure beneath the array and it was necessary to correct for the effect by an empirical approach. The corrected $d T / d \Delta$ values were smoothed by the method of summary values and, for comparison, by a potynomial regression technique. The smoothed $d T / d \Delta$ values for all four
branches were inverted by the Herglotz-Weichert method in order to obtain a velocity-depth model for the earth's core. The final velocity model, UBC1, determined in this manner was the one which gave the best fit to all observations in this study.

Near a depth of $4000 \mathrm{~km} .$, UBC1 required a slight reduction in the Jeffreys-Bullen (1940) velocities in order to obtain traveltimes that agreed with the observations for the outer core. The model exhibits three velocity discontinuities at depths of $4393 \mathrm{~km}, 4810 \mathrm{~km}$, and 5120 km . The magnitude of the velocity inereases at the discontinuities are $0.10,0.24$ and $0.92 \mathrm{~km} / \mathrm{sec}$, respectively. These discontinuities define two shells surrounding the inner core. In the outermost shell, 417 km thick, the velocity gradient is near zero in magnitude. In the second shell, 300 km thick, the velocity gradient is slightly negative.

iii

ACKNOWLEDGEMENTS

I greatly appreciate the advice and encouragement given to me by my supervisor Dr. R. M. Clowes.

Special thanks should be given to Dr. J.R. Cleary, Mr. H.G. Doyle and the Department of Geophysics and Geochemistry, Anstralifan National University for their hospitality to Dr. Clowes while he obtained the data used in this study. The help of Dr. C. Wright in providing many of the computer programs used in this study is deeply appreciated.

Financial assistance for this project was provided by a University of the West Indies Postgraduate Scholarship, a National Research Council Bursary, and National Research Council operating and computing grants numbered A-7707 and C-1257, respectively of Dr. R. M. Clowes.

TABLE OF CONTENTS

Page

1. INTRODUCTION 1
1.1 The Project 1
1.2 Previous Work on Core Structure 2
1.2.1 Discovery of Central and Inner Core 2
1.2.2 Velocity Solutions for Earth's Core 4
1.3 Seismic Velocities and Physical Properties of the Core 14
1.3.1 Central Desity of the Core 14

- 1.3.2. Solidity of the Inner Core 15
1.4 The Warramunga Seismic Array 17
1.5 Use of an Array in Determining Structure 19

2. MEASUREMENT AND ANALYSIS 21
2.1 Determination of $d T / d \Delta$ and Azimuth From a Seismic Array 21
2.1.1 Some Possible Methods 21
2.1.2 Details of the Least Squares Method 23
2.2 Measurement Techniques 26
2.2.1 Data Available for the Study 26
2.2.2 Measurement of $d T / d \Delta$ and Azimuth 29
2.2.3 Sources of Systematic Error in $d T / d \Delta$ and Azimuth Measurements 34
2.3 Smoothing of Corrected $d T / d \Delta$ Values 52
2.3.1 Smoothing of $d T / d \Delta$ by the Method of Summary Values 52
2.3.2 Smoothing of $d T / d \Delta$ by UBC TRIP 63
2.4 Inversion of Smoothed $d T / d \Delta$ Data Using the Herglotz- Wiechert Integral 66
2.4.1 Description of the Herglotz-Wiechert Technique 66
Page
2.4.2 Application of the Herglotz-Wiechert Method to dT/ds Values for the Earth's Core 70
3. DISCUSSION 73
3.1 General Observations 73
3.2 Specific Observations 76
3.2.1 I dentification of Phases 76
3.2.2. Turning Points and End Points for the Travel- time Branches 77
3.2.3 Amplitude Observations 80
3.2.4 A Record Section for the Core Phases 82
3.3 Discussion of the Analyzed Data 83
3.3.1 Corrected $d T / d \Delta$ Measurements 83
3.3.2 Traveltime Measurements 87
3.4 Velocity Model UBC1 93
4. CONCLUSION 100
BIBLIOGRAPHY 103
APPENDICES
APPENDIX 1. Seismic Ray Theory 107
APPENDIX 11. List of Earthquakes Used in Study 116
APPENDIX 111. Ellipticity and Focal Depth Corrections 120to Measured Traveltimes
APPENDIX IV. Method of Summary Values 123
APPENDIX Va UBC TRIP - Triangular Regression Package 126Vb List of dT/dA Smoothed by UBC TRIP 129

FIGURES

1.1 Velocity models of Gutenberg and Richter 3
1.2 Bolt's $1964 T_{2}$ velocity model 7
1.3 Adams and Randall 1964 velocity model 9
1.4 Buchbinder's 1971 velocity model 12
1.5 Warramunga Array, Australia 16
2.1 Diagram to illustrate a least squares technique of determining $d T / d \Delta$ and azimuth 22
2.2 Example of data used in the study 27
2.3 Matching waveform technique used to determine relative arrival times at each seismometer 30
2.4 Measured traveltimes 33
2.5 Reduced traveltimes 34
2.6 Refraction of a planar seismic beam incident on a dipping interface between a half-space and the overlying layer. 41
2.7 Measured $d T / d \Delta$ 49
$2.8 \mathrm{dT} / \mathrm{d} \Delta$ corrected for local structure beneath the array 50
$2.9 d T / d \Delta$ smoothed by the method of summary values 62
2.10 Comparison of $d T / d \Delta$ smoothed by polynomial regression and method of summary values 65
3.1 Traveltime - distance plot of seismograms 81
3.2 Fit of smoothed $d T / d \Delta$ curves to corrected data 84
3.3 Fit of smoothed traveltime curves to data 85
3.4 Fit of smoothed reduced traveltime curves to data 86
3.5 Traveltime residuals ($0-\mathrm{C}$) 89
3.6 Traveltime differences 90
3.7 The velocity model UBC1 for the earth's core 92
A-1 Seismic ray theory 108
A-2 Seismic ray theory for discontinuous increase in velocity at a boundary. 112
A-3 Seismic ray theory for discontinous decrease in velocity 114 at a boundary.

LIST OF TABLES

TABLE

1.1 Coordinates of the individual seismometers of the
Warramunga array
2.1(a) Summary points for the DF branch 56
(b) Summary points for the GH branch . 57
(c) Summary points for the 1 J branch 58
(d) Summary points for the $A B$ branch 59
2.2 List of $d T / d \Delta$ smoothed by method of summary values 60
2.3 Equations for $d T / d \Delta$ smoothed by polynomial regression 64
3.1 Equations for traveltimes smoothed by polynomial reg- 88
3.2(a) Position of traveltime cusps in velocity model UBC1 96
(b) Velocity-depth relationship for velocity model UBC1 96
3.3 Traveltimes for model UBC1 97

1.1 The Project

The core of the earth is less accessible than most of our planetary neighbors and its properties are almost as difficult to determine. Physical characteristics of the earth's core can only be inferred from measurements made near the surface. Seismological investigations have proved most successful in this regard. The analysis of seismic body waves which have penetrated the earth's core (e.g. PKP, SKS and other phases) is one such method which has provided detailed information concerning the physical properties of the core.

The present study uses PKP phases recorded at the Warramunga seismic array in Northern Territory Australia as a means of deriving a velocity-depth model for the earth's core. Emphasis is placed on the controversial 'transition region' - that region, a few hundred kilometres thick, which separates the 'fluid' outar core from the 'solid' inner core. The PKP phases which travel through the earth's inner core are often designated PKIKP. The precursors or forerunners to the PKIKP phases provide information on the nature of the transition region. These precursors are normally too small to be readily identified on individual seismograms, except for large earthquakes. The significance of the array study is that these precursors, in addition to the major PKIKP phases, can be identified, not just by their traveltimes, but even more definitively by their apparent velocities or traveltime gradients ($d T / d \Delta$).

The remainder of this chapter is devoted to a brief discussion of the work done in the past regarding the structure of the earth's core. The relationship of seismic velocities with the physical properties of the core are briefly described. The Warramunga seismic array is described in some detail, and mention is made of the use of an array in determining
structure. Chapter 2 is devoted to details of the measurement and analysis techniques used, and the results obtained. Chapter 3 concerns a discussion of the results. \vec{A} brief digression on the basic seismic ray theory involved in this study is presented in Appendix 1.
1.2 Previous work on core structure
1.2.1 Discovery of the Central and Inner Core

At the turn of this century, observational seismologists noted that up to distances of about 100°, both P and S waves were recorded with more or less uniform amplitudes; beyond 100°, the amplitudes decayed rapidly with complete extinction of short period waves at distances greater than 1050. Short period P waves appeared consistently and strongly again at distances greater than about. 1430 , but at these distances, were delayed some two minutes compared with the extension of the traveltime curve for distances less than 105°. The corresponding short period S waves did not reappear. The explanation suggested (Gutenberg, 1914) was that at a depth of about 2900 km , there was a sharp discontinuity at which the velocity of P waves fell by approximately 40%. This discontinuity marked the boundary between solid material (mantle) and liquid material (since S waves were not transmitted throught it). Thus, the existence of a liquid core of the earth was postulated.

It was not long before more sensitive seismographs showed that the P wave traveltime curve, which extended from 143° to 180°, was associatednear its beginning with small amplitude P-wave onsets, extending as far back as 110°. The immediate explanation of these observations was that the waves were motion which was diffracted at a cusp in the traveltime curve near 143°. A competing hypothesis, suggesting the existence of an inner core in which the P velocity was greater than in the outer core, was advanced in 1936 by the Danish seismologist l. Lehmann. This hypothesis

I.I.. Velocity models of Jeffreys and Cutenberg-Richter

I. Ib. Traveltine Curves

I.Ic. Ray paths through core comesponding to traveltine curves

Piewre I.I Velocity Models of Jeffreys and Gutenberg-Ricinter.
proved consistent with observations of the traveltime curves at all distances: It was accepted instead of the diffraction hypothesis, after Jeffreys (1939) showed by an extension of Airy's theory of diffraction near a caustic, that for waves with periods of approximately l sec., diffraction.could not occur more than 3° from the cusp at 143°.

With the discovery of the inner core, all the main boundaries within the earth had apparently been located, and the bulk of P and S wave observations could be explained by the geometry of a tripartite earth consisting of a mantle, inner and outer core. Thenext step was to obtain velocitydepth solutions consistent with observations for a tripartite earth, and in particular for the core of the earth.
1.2.2 Velocity Solutions for Earth's Core

Gutenberg and Richter (1937) favored a velocity distribution in which the velocity of P waves increased with depth down to the mantlecore boundary at about 2900 km , where it dropped sharply from $13.7 \mathrm{~km} / \mathrm{sec}$. to approximately $8 \mathrm{~km} / \mathrm{sec}$. The velocity then increased slowly to $10.2 \mathrm{~km} / \mathrm{sec}$ at a depth of 4850 km , thereupon increasing rapidly andcontinuously to $11.4 \mathrm{~km} /$ sec.over a depth of 300 km , and finally decreasing slowly to $11.3 \mathrm{~km} / \mathrm{sec}$, at the earth's center. They therefore postulated a transition region 300 km thick to exist between the inner and outer core, with the inner core boundary at a depth of 5150 km . Jeffreys (1939) model differed from that of Gutenberg and Richter in that it showed a velocity decrease from a depth of 4980 km to 5120 km , followed by a sharp increase of $1: 8 \mathrm{ki} / \mathrm{sec}$. at the boundary of the inner core. The velocity decrease in the zone surtounding the inner core was needed to explain his observed traveltimes. The two models are shown in Figure l.la, and the form of the corresponding traveltime curve is shown in Figure l.lb. Note the difference in the lengths of the branch $B C$. The ray which leaves the focus at the shallowest angle necessary to enter the core corresponds to the point A on the curve, and successively steeper rays trace the traveltime curve $A B C D E F$. Rays corresponding to the branches $A B$ and $B C$
penetrate only the outer core, the cusp at B being a direct consequence of the discontinuous decrease in velocity at the mantle-core boundary and the subsequent, P velocity variation in the outer core, and is associated with a caustic (i.e. large amplitudes). The branch $C D$ of the traveltime curve represents rays which undergo total internal reflection at the boundary of the inner core. Rays that represent the branch DF penetrate the inner core; the point F thus corresponds to a ray travelling diametrically through the earth. The paths of these rays are illustrated in Figure l.ic, in which the points of emergence of rays that correspond to the points in Figure 1.16 are shown by the same letters.

The hypothesis of a single velocity jump in the transition region between the inner and outer cores proved inadequate, however, with the discovery (Gutenberg, 1957, 1958) of short Reriod precursors to the DF branch in the approximate distance range $125^{\circ}<\Delta<143^{\circ}$. These precursors arrived at the stations up to 15 seconds earlier than the DF'arrivals. Gutenberg (1957) suggested, on the basis of experiments ${ }_{\wedge}{ }^{n}$ viscosity by Kuhn and Vielhater (1953), that the PKP wave pulse may become dispersed into a frequency - dependent wave train in a transition zone between a liquid outer core and a more viscuous inner core. However, his suggestion became unacceptable when no gradual increase in wave periods could be observed in the time interval from the beginning of the short period precursors to the arrival of the DF phases. Another possible mechanism for the early PKP onsets was discussed by Knopoff and MacDonald (1958), in a study of the effects of a postulated magnetic field in the inner core. They predicted that a toroidal fieid of about 5×10^{6} oersted was required to split PKIKP pulses into two components differing in transmission time by 12 secs. at $\Delta=140^{\circ}$, and that the pulse separation would be independent of frequency. They observed however, that a field of that strength was unlikely, since the seismological evidence for the equality of the traveltimes of the axial and equatorial PKIKP waves, with
allowance for ellipticity, placed an upper limit of order 5×10^{5} oersted on the magnitude of the magnetic field, provided the field was toroidal.

Bolt ($1959,1962,1964$) suggested that the precursors to the PKIKP waves ($D F$ branch) could be caused by an additional discontinuous increase in velocity at a shallower level than the previously accepted boundary of the inner core. The replacement of a single velocity discontinuity by two adjacent jumps has the following consequences for the traveltime curve: let the jumps occur at radii R_{1} and R_{2} inside the core of radius $R_{C}=3,473 \mathrm{~km}$ where $R_{2}<R_{1}<R_{C}$. As shown in Figure 1.2a, the family of rays through the mantle and outer core which are defined by decreasing valves of ray parameter $p=d T / d \measuredangle$, first generate the locus ABC as previously described. At C, a ray becomes tangential to the spherical surface of radius R, and for steeper angles of incidence (smaller p) the rays are totally internally reflected to generate the receding branch GG. The velocity contrast or magnitude of the velocity jump at R, determines the critical angle for total internal reflection, and hence determines the point at which refraction beneath R_{1} commences - i.e. it determines the position of the point G. The rays refracted normally in the shell of the core between radii R, and $R_{2}\left(R_{1}>R_{2}\right)$ generate the advancing branch $G H$. At H, a ray once aga!n becomes tangential to the spherical surface of radius R_{2}, and the totally reflected rays generate the receding branch. HD. As before, the magnitude of the velocity jump at R determines the position of the cusp at D, where refraction beneath R_{2} begins. The rays refracted beneath R_{2} (that is, through the inner core) generate the advancing branch DF which has monotonically decreasing gradient p.

The main point of the double-jump hypothesis is immediately
apparent - it produces an additional section of the PKP curve - CGH - to which the observed precursors to PKiKP (DF branch) may be referred (cf. Figure 1.1 for one velocity jump). By extension of the preceding arguments to a triple velocity jump hypothesis, it can be seen that the

$P=D R / D A(S E C / O N E)$

－己山 पOFzntos s，

 ：乙山 UOFqnTOS
results would be the addition of two branches of precursors to the DF branch.
For any hypothesis to be useful, it must be shown to lead to complete traveltime curves which do not violate accepted constraints such as those provided by ray theory. For example, ray theory demands that the receding branches CG and HD generated by totally reflected rays must be concave $_{60}$ upwards, while the advancing branches generated by refracted rays must be concave downwards. The branches CG and GH must extend practically straight from C and G respectively, with the main curvature near G and H. Since the velocity increases discontinuously at R_{1} and R_{2}, it is expected that the only cusp to be associated with large amplitudes would be the one at B. These constraints are discussed more fully in Appendix 1. Empirical constraints are provided by observed traveltimes for the individual branches.

Using the velocity tables of Jeffreys (1939) as his starting point, Bolt found that he could retain the caustic at B, and at the same time eliminate the negative velocity gradient of Jeffreys' solution only by a reduction of Jeffreys' velocity just beneath the region producing the caustic. His final procedure was to take the velocity as constant at $10: 03 \mathrm{~km} / \mathrm{sec}$. from this region to the first discontinuity (i.e. from $0.52 R_{c}$ to $0.48 R_{c}$ or depths of $4,564 \mathrm{~km}$ to $4,602 \mathrm{~km}$), assume the velocities in the shell bounded by R_{1} and R_{2} and in the inner core to be constant, and to calculate solutions for R_{1} and R_{2} by building up times for the three superimposed shells. Three solutions, T_{1}, T_{2} and T_{3} were determined, of which his preferred solution, T_{2}, is illustrated in Figure l.2b. The corresponding velocity model is shown in Figure $1.2 c$ and the resulting $d T / d \Delta$ vs Δ curve in $1.2 d$. Bolt corcluded that "there is in the core a discrete shell with thickness of order 420 kms , and with a mean P velocity near $10.31 \mathrm{~km} / \mathrm{sec}$. This shell surrounds the inner core having mean radius $1,220 \mathrm{kms}$ and mean P velocity $11.22 \mathrm{~km} / \mathrm{sec}$. The material in the intermediate shell is not likely to have marked rigidity.

I. 3b. A-R Traveltine Ourvos.

I. 3c. An Velocity Hodel.

$$
\begin{array}{lll}
\text { Cusp } & T & \Delta \\
(D E G)
\end{array} \underset{\substack{\Delta \\
(S E d D G G)}}{d T / d \Delta}
$$

$$
\mathrm{B}^{-} \text {I8m 37.2s } \quad 144 . I \quad 3.50 \mathrm{I}
$$

$$
\text { I8m: 48. Is } \quad \text { I } 30.0 \quad 3.455
$$

$$
20 \mathrm{nI} I 3.2 \mathrm{~s} \quad 156.4 \quad 2.764
$$

$$
\begin{array}{lll}
\text { I\&m } 46.9 \mathrm{~s} & I 25.0 & 2.650
\end{array}
$$

$$
20 \mathrm{~m} \mathrm{I7.4s} \quad 160.5 \quad \text { 2. I6I }
$$

$$
\begin{array}{lll}
\operatorname{IOm} 33.2 \mathrm{~s} & 110.0 & \text { I. } 956
\end{array}
$$

I. 3a. A-R Velocity Solution

I. 3d. $A-R d t / \alpha \Delta$ todel.

$$
\begin{aligned}
& \begin{array}{l}
R_{I}, V_{I},-I 978 \mathrm{~km}\left(0.57 \mathrm{R}_{\mathrm{c}}\right) \\
9.87-10.00 \mathrm{~km} / \mathrm{se}
\end{array} \\
& R_{G}, V_{G},-I 579 \mathrm{~km}\left(0.455 \mathrm{R}_{\mathrm{e}}\right) \\
& 9.98-10.4 I \mathrm{~km} / \mathrm{sec} \\
& \begin{array}{c}
R_{D}, \nabla_{D},-I 249 \mathrm{kni}\left(0.362 R_{c}\right) \\
I 0 . I 5-I I . I 6 \mathrm{~km} / \mathrm{se}
\end{array}
\end{aligned}
$$

The inner core is likely to be solid." Julian . et al , (1972) have since reported that they may have observed the phase PKJKP on seismograms recorded at the LASA array in Montana. The PKJKP phase is one which travels through the inner core as an S wave and elsewhere as a P wave. A liquid inner core would prevent the conversion from P to S.

Adams and Randall's (1963) analysis of seismograms written from certain New Zealand earthquakes in the range 148°, $\Delta<156^{\circ}$ confirmed the existence of the latter part of the GH branch introduced by Bolt, and observations published by Nguyen-Hai (1961) are now known to belong to this branch. In 1964, Adams and Randall used traveltime data from 24 earthquakes and one series of nuclear explosions, together with observations published by other workers, to determine yet an additional branch to the traveltime curve derived by Bolt. This additional branch, IJ in their notation, was introduced to explain the earliest precursors observed, and necessitated the introduction of an additional velocity discontinuity at a radius $r=0.57 R_{c}$ (depth of $4,390 \mathrm{~km}$) where R_{c} is the radius of the earth's core. This discontinuity is above the level of $r=0.54 R_{c}$, which is the depth to which rays would have to penetrate the core before a caustic would be formed at B, as in Bolt's model and consequently their model does not exhibit this feature. The second discontinuity was placed at a depth of $5,112 \mathrm{~km}$. Their results were obtained by differentiating the traveltime data to oftain a P- Arelationship. The Herglotz-Wiechert inversion technique, to be described later, was then used to obtain a velocity-depth model for the core. The details of their final model are shown in figure $1.3 a$ with the corresponeing traveltime curve, velocity model, and $P-\Delta$ curves in figures $1.3 b, 1.3 c$, and 1.3d respectively. Thus Adams and Randall (1964) suggested the existence of two shells, each between 300 and 400 km thick, surrounding the inner core, with a small negative velocity gradient in each shell required to explain the observed traveltimes. Hannon and Kovach (1966) velocity filtered data from several events in the range 130° to 160°. The data were recorded at the extended

Tonto Forest Array in Arizona. The velocity filtering technique, in the form of time delaying and summation across the large array, in conjunction with conventional amplitude and traveltime analysis,yielded evidence of two short period precursors, $1 J$ and $G H$, to the $D F$ arrival at distances.less than 140°. At least one of these precursors became an intermediate arrival to $D F$ and $A B$ at distances greater than 145°. Their results supported the model of Adams and Randall (1964).

From an analysis of traveltime and amplitude distance date of the World Wide Standardized Seismograph Network (WWSSN), Ergin(1967) found evidence for the existence of the GH and IJ branches of Bolt and Adams and Randall, and attributed the branches to two discontinuous increases in velocity at depths of $4,500 \mathrm{~km}$ and $4,685 \mathrm{~km}$ respectively. Delays in PKIKP traveltime observed at 153° and 162° were interpreted as the result of two low-velocity layers within the inner core. Ergin obtained two $A B$ branches instead of one, as in previous models, the second branch being 3-6 seconds later than the first, and interpreted as the result of a decrease in velocity at a depth of $4,015 \mathrm{~km}$. To obtain $A B$ traveltime near 180° and beyond, he found that lower velocity was needed at the base of the mantle, and that this reduction in velocity resulted in the propagation of direct P up to 130° and beyond. Based on amplitude variations, the beginning of the PKIKP branch (that is, the point D in the previous models) was put at around $\Delta=125^{\circ}$, and waves observed along the DF branch at distances shorter than 125°, down to 106° were interpreted as ordinary reflections from the core boundary, which were not quite extinguisned at the critical angle.

Bolt (1968) found no evidence for the delays at 153° and 162° reported by Egin (1967). A group of small DF arrivals about 1 second earlier than expected in the range $156^{\circ}<\Delta<160^{\circ}$ seemed to indicate either that the curvature in that range had been overestimated, or the presence of a slight discontinuity in the inner core near a depth of 5,520 km.

I. 4o. Buchoinder's Velocity Rodel.

I. 4%. Buchbinder's Reduced Tines.

R_{G}, V_{G},	$\begin{array}{r} -1821 \\ 9.99 \end{array}$	$\begin{aligned} & \mathrm{km}\left(0.524 \mathrm{R}_{\mathrm{c}}\right) \\ & -10.00 \mathrm{~km} / \mathrm{sec} \end{aligned}$
R_{S}, V_{J},	$\begin{aligned} & -\mathrm{I} 52 \mathrm{I} \\ & \mathrm{IO} . \mathrm{I} \end{aligned}$	$\begin{aligned} & \mathrm{Ikm}\left(0.437 \mathrm{R}_{\mathrm{c}}\right) \\ & \mathrm{I} 5-\mathrm{IO} . \mathrm{I} 7 \mathrm{~km} / \mathrm{sec} \end{aligned}$
$\mathrm{R}_{0}, \mathrm{~V}_{0}$,	$\begin{array}{r} -\mathrm{I} 226 . \\ 10.26 \end{array}$	$\begin{aligned} & \mathrm{km}\left(0.353 R_{\mathrm{c}}\right) \\ & 26-\mathrm{IO} .83 \mathrm{~km} / \mathrm{sea} \end{aligned}$
Cusp	$\underset{(\mathrm{Deg})}{\Delta}$	$\begin{aligned} & \text { DT/D } \Delta \\ & \text { (Sec/Deg) } \end{aligned}$
G	140.0	3.18
J	142.0	$2.6 I$
H	I56.0	2.08
D	120.0	I. 9 I

I. 4a. Buchbinder's Velocity Solution

I.4d. Buchbinder's dt/da Fodel.

Fiçure I.4. Buchbinder's I97I Velocity Lodel.
quakes and confirmed, once more, the existence of the GH branch of precursors as postulated by Bolt. On his model, GH extended from 130° to 153°, but the possibility of it extending beyond 153° was not ruled out. In contrast, he obtained no evidence in support of the additional !J branch as suggested by Adams and Randall.

Buchbinder (1971) examined traveltimes and amplitudes of PK.F and higher multiple K phases from a worldwide distribution of short period seismograms. In his resulting velocity model, the velocity at the bottom of the mantle is $13.44 \mathrm{~km} / \mathrm{sec}$. resulting in a negative velocity gradient, the velocity decreasing from $13.6 \mathrm{~km} / \mathrm{sec}$. at a depth of $2,700 \mathrm{~km}$ to $13.44 \mathrm{~km} / \mathrm{sec}$. at the core-mantle boundary, placed at a depth of $2,892 \mathrm{~km}$. The caustic B is placed at $\Delta=143^{\circ}$. The observed traveltimes and amplitudes of PKP were interpreted to give the turning points D and G near 120° and 140° respectively rather than at 110° and 125° as in previous models. Together with the traveltimes and amplitudes of the higher multiple K phases these resulted in a velocity discontinuity of $0.01 \mathrm{~km} / \mathrm{sec}$. at a depth of $4,550 \mathrm{~km}$ to account for the earliest forerunners of PKP, and a second discontinuity of $0.02 \mathrm{~km} / \mathrm{sec}$ at a depth of $4,850 \mathrm{~km}$ to account for the later forerunners. Since he could not resolve the forerunner data into branches, he was not able to define the discontinuity precisely, but instead produced the two branches of forerunners to illustrate the possible range of traveltimes and amplitudes. The top of the inner core boundary was placed at a depth of $5,145 \mathrm{~km} \pm 10 \mathrm{~km}$, and represented a discontinuity of $0.576 \mathrm{~km} / \mathrm{sec}$. These results are listed in Figure 1.4a. Figures 1.4b, c and d show Buchbinders velocity model, .. the reduced traveltimes, and the $P-\Delta$ curves correspo nding to his model. The branches CGG' and IJJ' of Buchbinder's model correspond to the IJ and GH branches, respectively, of the model of Adams and Randall (1964). A significant difference is that on Buchbinder's model, the sections $G G^{\prime}$ and $J J^{\prime}$ of the respective branches
-14-
represent phases partially reflected off the coriesponding boundaries, whilst they represent the transmitted phases on the Adans and Randall model.
1.3 Seismic Velocities and Physical Properties of the Sore.
1.3.1 Central Density of the Core

The velocities of P and S body waves, α ard β respectively, are given by the equations (Bullen, 1953).

$$
\rho \alpha^{2}=k+4 / 3 \mu \cdot \rho \beta^{2}=\mu
$$

where k is the bulk modul us or incompressibility of the medium p is the density, and μ is the corresponding rigidity. from these equations, we can obtain the quantity

$$
\emptyset=k / p=\alpha^{2}-4 / 3 p \beta^{2}
$$

The variation of density p with depth for a non-homagenous region is given by (Bu!len, 1963).

$$
d \rho / d z=\theta g \rho / \phi
$$

where g is the gravitational force per unit mass and

$$
\begin{equation*}
\theta=d k / d p-g^{-i} d \phi / d z \tag{1}
\end{equation*}
$$

Here the quantity p denotes hydrostatic pressure. For a chemically hamogenous medium, θ is unity. For values greater than unity, θ gives a measure of the addition of heavy material in excess of purely hydrostalic compression of a homogenous medium.

The Jeffreys' model for the core, with its large negative velocity gradient in the transistion region yields a value of $d \phi / d z \simeq-15 \times 10^{3} \mathrm{Em} / \mathrm{sec}$ Assuming gravity at a depth of $5000 \mathrm{k} . \mathrm{m}$ to be approximately $600 \mathrm{cin} / \mathrm{sec}^{2}$, equation (1) becomes

$$
\theta=d k / d p+25
$$

Reasonable values for $\mathrm{dk} / \mathrm{dp}$ in the core, based on the theory of solid stets. range from 3 to 5 units. Consequently, with a velocity decrease in tre transistion region, as in the Jeffrey's model, Θ becomes approximately 30 units. This value for θ is not only greater than at any other region
in the earth, but implies the admixture of a considerable proportion of material which is denser than inthe outer core. This entails, in turn, a large density increase at the inner core boundary, and a central denisty of about $20 \mathrm{~g} / \mathrm{cm}^{3}$. On the other hand, Bolt's. (1964) T_{2} model has zero velccity gradient in the transition region, and θ is then of the order of 5 units, implying a central density of about $15 \mathrm{gm} / \mathrm{cm}^{3}$. This lower value of central density is more compatible with results of recent laboratory experiments using transient shock wave techniques to infer the elastic properties of iron at 4 megabars These results indicate a maximum terrestrial central density of the order of $13 \mathrm{~g} / \mathrm{cm}^{3}$.

The effect of positive velocity gradients in the transition region, such as those in Buchbinder's (1971) model would be to reduce the index θ even further, and to bring the central density even lower than in the Bolt case. The effect of combined positive and negative velocity gradients, as in the Adams and Randall (1964) model, would, providing the negative gradient is reasonably small, result in a central density for the core slightly higher than that predicted in the Bolt case.

It is apparent, then, that core velocity models do provide empirical restraints on acceptable density profiles with the core, and vice versa. 1.3.2 Solidity of the Inner Core

That the outer core is in a fluid state has been established by the failure to observe transmitted S waves in the appropriate distance range. The velocity of S waves is a direct function of the rigidity of the medium, which, for a liquid, has the value zero.

At the boundaries of the transition region in the Bolt (1964) model, the velocity of P waves, α, increases by 3% and 9%, corresponding to 6% and 18% increases in α^{2}. If the transition region were in a liquid state, the velocity of P waves through it would be given by (since $\mu=0$)

$$
k=p \alpha^{2}
$$

The jump in α^{2} of 6% at the first boundary requires a corresponding increase

Fieure I.5. The Warramunga seianic array. The inset shows the location of the array in the stable shield area.
in k of about 6%, since the density ρ is not likely to increase by any large amount. Bullen (1963) has indicated that an increase in k of this magnitude is unilikely, and consequently the equation has to be modified to include the rigidity term μ i.e.

$$
k+4 / 3 u=p x^{2}
$$

With this modification, some of the increase in α^{2} at the boundary can be taken up by the rigidity term, resulting in a smaller increase in k at the boundary. This implies that the materiai in the transition zone has significant rigidity, and is therefore not completely liquid as in the outer core. Similarly, the larger jump in α^{2} of 18% at the boundary of the inner core requires an even larger increase in rigidity in the inner core, indicating the inner core to be completely solid. Bullen (1963; p.243) advances fur ther arguments in favor of a solid inner core.

That the inner core is solid has been confirmed recently by observation of the PKJKP phase by Julian et al(1972)
1.4 The Warramunga Seismic Array

The Warramunga seismic array (WRA) situated near Tennant Creek in Northern Territory, Australia is one of four seismic arrays of the United Kingdom Atomic Energy Authority (U.K.A.E.A.) type which were deployed as a means of detecting and identifying uriderground nuclear explosiions. The other three arrays are located in Canada (YKA), Southern India (GBA) and in Brazil. Another British designed array (EKA), smaller than any of the others, is located in Scotland.

WRA began operation in 1965. It is situated on granite outcrops in the stable Precambrian shield area, approximately 500 km from the nearest point of the Australian coast (see inset, Figure 1.5). It is a medium aperture array consisting of twenty short-pericd vertical component Willmore Mk II seismometers with a natural period of one second and a damping factor of 0.6 . The seismometers are arranged in two lines approx-

Table 1.1. Coordinates of the Individual Seismometers of the Warramunga Scismic Array

Seismometer	Latitude E	$\begin{aligned} & \text { Longitude } \\ & \text { S } \end{aligned}$	Cartesian Coordinates		Elevation, fcet
B1	134.34776	19,96097	-0.310	-1.476	1294.85
B2	131.35250	19.94417	0.183	0.373	1284.27
B3	134.35681	19.92453	0.638	2.558	1265.89
134	134.36050	19.90 .497	1.025	4.724	1252.65
135	134.36954	19.87971	1.762	7.519	1218.72
B6	134.36552	19.85645	1.863	10.095	1200.07
B7	134.38080	19.84227	3.150	11.662	1268.09
Bs	134.35213	19.81541	3.291	14.635	1176.96
B9	134.38530	19.79286	3.623	17.132	1184.94
B10	134.39418	19.76862	4.554	19.816	1188.50
R1	134.34055	19.94411	-1.033	0.391	1281.07
R2	134.36555	19.04590	1.552	-0.140	1265.19
R3	134.35831	19.95000	3.934	-0.264	1236. 49
R4	134.40502	19.95181	5.998	-0.465	1228.55
R5*	-134.42764	19.95949	8.052	-1.314	1217.83
R6	134.45578	19.95525	10.998	-0.846	1155.42
R7	134.47742	19.95667	13.263	-1.004	1167.15
R8	134.50191	19.95726	15.826	-1.074	1212.53
R9	134.51631	19.95912	17.334	-1.281	1190.65
R10	134.54195	19.96109	20.016	-1.502	1161.54

* moved to new site 18 September, 1968.

R2 and R6 have subscquently been moved to new sites.
The geographic coordinates of the origin of the cartesian coordinate system are $19.94777^{\circ} \mathrm{S}, 134.35051^{\circ} \mathrm{E}$.
imately at right angles to each other (see Figure 1.5), each line being 22.5 km long and consisting of ten seismometers equally spaced. The geographic coordinates of the individual seismometers and the Cartesian coordinates relative to the point of intersection of the two arms of the array are listed in Table 1.1.

The seismometers are operated at a displacement magnification of about 250,000. The signals from each seismometer are telemetered to a central recording station where they are recorded simultaneously with a digital time code on 24-track FM magnetic tape. The precision timing and FM telemetry system are described in detail by Truscott (1964), and Keen et al. (1965). All data are forwarded to the U.K.A.E.A. center in England.

A duplicate recorder is operated by the Australian National University. As a means of improving its efficiency, a small array consisting of two lines, each of length 2.5 kilometres and containing five vertical component seismometers, was installed in 1967, parallel to the main arms of the array. This small array or 'cluster' discriminates against random noise by direct summation, and triggers the tape recording system only when the conelator output exceeds a specified trigger level. The mode of operation is similar to that of the 24 element cluster in use at YKA and is described in Whiteway (1965).
1.5 Use of an Array in Determining Structure

Before the development of seismic arrays, the traveltimes of P and S waves provided the most reliable means for investigating the structure of the earth's interior. Differentiation of the smoothed traveltime-distance ($T-\Delta$) curves yielded the first derivative, $d T / d \Delta$, as a function of distance, L. This derivative was then used in the Herglotz-Wiechert integral (to be described later) in order to determine a velocity-depth profile for the region under consideration. Extensive use of this method has yielded velocity-depth profiles that are in reasonable agreement except in the upper 1000 kms of
of the mantle and the anomalous transition region of the core. However, an array can be used to measure $d T / d \Delta$ directly, and is capable of supplying more fine-structure detail than the conventional traveltime method. Also, the signal enhancing ability of an array makes possible the detection and identification of phases too small to be detected on a single seismogram. These properties of an array are utilized fully in this study.

Past use of seismic arrays in the investigation of the structure of the earth's interior has been confined almost exclusively to studies of the earth's mantle. Such studies were pioneered by Niazi and Anderson (1965) who investigated the upper mantle structure beneath western North. America by measurement of P-wave traveltime gradients at the Tonto Forest Array (TFSO) in central Arizona. The first studies of this nature at WRA were made by Cleary et al (1968) who concluded, among other things, that the $d T / d \Delta$ measurements were strongly perturbed by variations in structure underneath the array. Wright (1968) using $\mathrm{dT} / \mathrm{d} \Delta$ measurements at WRA from 30 ear thquakes in the Marianas Islands and surrounding regions found evidence for a low velocity layer at a depth close to 800 km in the mantle. His complete work on the lower mantle using WRA data is contained in his doctoral thesis (Wright, 1970).

As the present study is of similar type to that made ty Wright, many of the techniques of measurement and analysis devised and used by him have been adopted for use in this study. These will be fully described in Chapter 2.

MEASUREMENT AND ANALYSIS

2.1 Determination of $d T / d \Delta$ and azimuth from a seismic array.

2.1.1 Some Possible Methods

$=$
In order.to obtain a velocity distribution for the earth's core, knowledge is required of the variation of the traveltime gradient, $d T / d \Delta$, with depth in the core. This is obtained by determining $d T / d \Delta$ for those seismic waves which are known to pass through the earth's core, arriving at the surface at distances in the range 110° to 180° for PKP. Both $d T / d \Delta$ and the azimuth of arrival at a seismic array can be estimated from the arrival times at the individual seismometers in at least three ways:
(1) A Correlation Method:

The appropriate time delays corresponding to tuning to a particular azimuth and $d T / d \Delta$ for each of the two lines are inserted for each seismometer of the array, and a summed output determined for each line. The normalised output amplitudes of the summed lines are cross-correlated assuming a sinusoidal signal and the correlator output, determined as a function of azimuth and $d T / d \Delta$, gives maximum value at the signal azimuth and velocity, (Birtill and Whiteway, 1965).

This method was expiored in some detail by Wright (1970) who concluded that it gave insufficiently high precision to be of any use in his work on mantle P-wave velocities. Even higher precision is required when dealing with the earth's core, since the $d T / d \Delta$ values for the core are at most half as large as the $d T / d \Delta$ values for the mantle. A new correlation technique which may give more reliable azimuth and $d T / d \Delta$ measurements has been described by Muirhead (1968).

Figure 2.1 Diagram to illustrate a least-squares method of estimating $\mathrm{dT} / \mathrm{d} \Delta$ and azimuth.
(2) A Fourier Transform Technique:
$d \boldsymbol{\Delta} / \mathrm{dT}$ and azimuth values are determined at a number of different frequencies by measurement of differences in phase angle of Fourier spectral densities across a fixed array. (Shima et al, 1964). Again, however, this method does not appear to be precise enough for use in deep earth investigations.
(3) A Least-Squares Technique:

The best straight line is fitted to the set of arrival times at the individual seismometers by the method of least squares. The individual arrival times are functions of the azimuth of arrival, the arrival time at the origin of the array and the traveltime gradient or apparent velocity. Consequently their least-squares fit results in the best possible estimate of all three parameters, for the particular event being analysed. Since this method was used in obtaining the dT/dD measurements in this study, it will now be described in more detail.
2.1.2 Details of the Least Squares Method

The least squares method has been described by Kelly (1964) and Otsuka (1966). Let the origin 0 in Figure 2.1 be the point of intersection of the two arms, of WRA, and take a cartesian coordinate system with the y and x axes pointing north and east respectively, in the direction of the two arms of the array. For a medium aperture array such as WRA, and at the distances in question, the wave front can be assumed to be plane provided the structure of the crust and upper mantle in the vicinity of the array is reasonably simple. Consider a seismometer at S_{i}, distance R_{i} from 0_{1} and let $\angle S_{i} O_{y}$ by θ_{i}. Suppose a P wave arrival crosses the array from azimuth \emptyset with apparent
surface velocity V, and let the arrival time at S_{i} be T_{i} subject to an error e_{i}. Let the arrival time at the origin of the array be To. It can be seen from Figure 2.1 that

$$
\begin{aligned}
T_{0} & =T_{i}+R_{i} \operatorname{Cos}\left(\phi-\theta_{i}\right) / v+e_{i} \\
\therefore e_{i} & =T_{0}-T_{i}-V^{-1}\left(R_{i} \operatorname{Cos} \phi \operatorname{Cos} \theta_{i}+R_{i} \operatorname{Sin} \phi \operatorname{Sin} \theta_{i}\right) \\
& =T_{0}-T_{i}-v^{-1}\left(y_{i} \operatorname{Cos} \phi+x_{i} \operatorname{Sin} \phi\right)
\end{aligned}
$$

where $y_{i}=R_{i} \operatorname{Cos} \theta_{i}$ and $x_{i}=R_{i} \operatorname{Sin} \theta_{i}$. Furthermore, if we Let $P=\sin \phi / V$ and $Q=\cos \phi / v$, then

$$
e_{i}=T_{0}-T_{i}-\left(y_{i} Q+x_{i} P\right)
$$

and if N is the number of seismometers in the array,

$$
\begin{aligned}
\sum_{i=1}^{N} e_{i}^{2} & =\sum_{i=1}^{N}\left(T_{0}-T_{i}-\left(x_{i} P+y_{i} Q\right)\right)^{2} \\
& =f\left(P, Q, T_{0}\right)
\end{aligned}
$$

To obtain best estimates of the three unknowns P, Q, and To, and hence best estimates of azimuth \emptyset, apparent velocity V, and traveltime To at the origin of the array, the least squares condition that the sum of the errors, or $f(P, Q, T o)$, be a minimum is used. Thus

$$
\partial f / \partial P=\partial f / \partial Q=\partial f / \partial T_{0}=0
$$

This gives rise to the three normal equations:

$$
\begin{aligned}
& \sum_{i=1}^{N} x_{i}\left(T_{0}-T_{i}-\left(x_{i} P+y_{i} Q\right)\right)=0 \\
& \sum_{i=1}^{N} y_{i}\left(T_{0}-T_{i}-\left(x_{i} P+y_{i} Q\right)\right)=0 \\
& \sum_{i=1}^{N}\left(T_{0}-T_{i}-\left(x_{i} P+y_{i} Q\right)\right)=0
\end{aligned}
$$

or, if we let: $\sum_{i=1}^{N} x_{i} y_{i}=[x y], \sum_{i=1}^{N} x_{i}{ }^{2}=[x x]$ etc, the equations can be written:

$$
\begin{aligned}
& {[x x] P+[x y] Q+[x T]-[x] T_{0}=0} \\
& {[x y] P+[y y] \dot{Q}+[y T]-[y] T_{0}=0} \\
& {[y] P+[x] Q+[T]-N T_{0}=0}
\end{aligned}
$$

The values of x_{i} and y_{i}, the cartesian coordinates of the individual seismometers, are known and the values of T_{i} are determined by measuremen of the arrival times at each of the seismometers. Consequently the three normal equations can be solved to give the best estimates of P, Q; and To. From these, we obtain:

$$
\begin{aligned}
& V=\left(P^{2}+Q^{2}\right)^{-\frac{1}{2}} \quad \equiv \text { apparent velocity of } P \text { wave } \\
& d T / d \Delta=r_{0} / V \quad \text { at the deepest point of the } \\
& \text { ray }\left(r_{0}\right. \text { is the mean radius } \\
&\text { of the earth })
\end{aligned}
$$

and $\rrbracket=\operatorname{Tan}^{-1}(P / Q) \equiv$ azimuth of arrival at the array.
A knowledge of To, the arrival time at the origin of the array, and the N.O.A.A. (National Oceanic and Atmospheric Administration of the U.S.) origin time of the event enables the traveltime to be determined.

Knowledge of the errors in the calculated quantities, particularly in the $d T / d \Delta$ values, are essential if statistical significance tests are to be applied in the smoothing of the data at a later stage. On the assumption that the errors e_{i} in the measured onset times are independent Gaussion variables, each with mean zero and variance Kelly (1964) showed that the root-mean-square errors in $V_{1}, d T / d \Delta$ and \emptyset are given by:-

$$
\begin{aligned}
&(\delta V / V)_{\text {r.m.s. }}=(\delta(d T / d \Delta) / d T / d \Delta)_{r \cdot m \cdot s}=\sigma V /(N D)^{\frac{1}{2}}\left(\operatorname{Var} x \operatorname{Cos}^{2} \phi-\right. \\
&\left.2 \operatorname{Cov}(x, y) \operatorname{Sin} \phi \operatorname{Cos} \phi+\operatorname{Var} y \operatorname{Sin}^{2} \phi\right)^{\frac{1}{2}} \\
&(\delta \phi)_{r . m . s .}= \sigma V /(N D)^{\frac{1}{2}}\left(\operatorname{Var} x \operatorname{Sin}^{2} \phi+2 \operatorname{Cov}(x, y) \operatorname{Sin} \phi \operatorname{Cos} \phi\right. \\
&\left.+\operatorname{Vary} \operatorname{Cos}^{2} \phi\right)^{\frac{1}{2}} \\
& \text { (in radians) } \\
& \text { where }= \operatorname{Var} x \operatorname{Vary}-(\operatorname{Cov}(x, y))^{2} \\
& \operatorname{Var} x= 1 / N \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2} \\
& \operatorname{Var} y= 1 / N \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2} \\
& \operatorname{Cov}(x, y)= 1 / N \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
& \bar{x}= 1 / N \sum_{i=1}^{N} x_{i} \\
& \bar{y}= 1 / N \sum_{i=1} y_{i} .
\end{aligned}
$$

The estimation of the quantity σ, poses a slight problem.
Corbishley (1970) approached the problem by estimating a random reading error for a number of events occurring in a small region of the earth. Wright (1970) preferred to calculate a value of : σ for each set of relative onset times on the grounds that the error in each onset depends on four main factors: (1) The waveform of the event, since low frequency events give less clearly defined peaks and zeros. (2) The signal-to-noise ratio since random bursts of noise cause spurious changes in waveform from one seismometer to the next. (3) The instrumental constants of the seismometers which vary slightly from seismometer to seismometer and (4) rapid variation in local structure, an azimuth-and-distance-dependent feature. Each value of residual ϵi is calculated $\operatorname{after} P, Q$ and $T o$ have been determined. Assuming that the residuals have zero mean and variance σ^{2} characteristic of that particular set of arrival times, then

$$
\sigma^{2}=\sum_{i=1}^{N} \epsilon_{i}^{2} / N-3
$$

The value of σ thus determined contains not only random reading errors, but also systematic errors due to possible differences in instrumental constants of the individual seismometers and rapid variations in local structure.

2.2 Measurement Techniques

2.2.1. Data Available for the study

As mentioned previously, data acquired by the Australian
National University for WRA are recorded on 24 Channel FM analog magnetic tape. At the time the data used in this study were acquired,
BLUE LINE Cln $\sim \sim \sim$

coser
a system of digital conversion and analysis had not been instituted. Consequently, the usual procedure was to play back the data onto chart paper.

Firstly, the seismic signals on tape were filtered using narrow bandpass filters (0.4 to 2.0 Hz) having identical characteristics. A 16 -channel chart recorder was the only one available at the time, and the twenty seismic traces were therefore played out in a two-step procedure. The signals from one line of the array, together with the signals from the end seismometers of the other line and a timing signal were reproduced in one pass. The line positions were reversed and the procedure repeated. It was of ten noted that the amplitude of the seismic traces varied considerably over the time range of interest. This necessitated duplication of certain parts of the records at higher or lower gain settings in order to obtain amplitudes best suited for analysis. The playback speed ($40 \mathrm{~mm} / \mathrm{sec}$) used in obtaining the paper records enabled high resolution timing to be achieved. An example of the paper seismograms is shown in Figure 2.2. Note the clear waveforms which enabled precision measurement of the relative distances between peaks or troughs of a given cycle across the array.

Seismograms from the 115 ear thquakes used in this study were reproduced in the above manner. Theyrepresented data over the distance range of 113° to 176° al though this range is not uniformly covered due to the location of active seismic zones with respect to WRA. The majority of events occurred over the distances of 130° to 150°. Among other things, this uneven spread of the data later resulted in some difficulty in smoothing the measured $d T / d \Delta$ values. The sparseness of data in the ranges 120° to 130° and 150° to 160° led to difficulty in determining precisely the end points of the
precursor branches of the traveltime curve, a point which will be -discussed later. A list of the earthquakes used in this study is given in Appendix 11 .
2.2.2 Measurement of $d T / d \Delta$ and Azimuth

If precision in measurement of $d T / d \Delta$ comparable to precision obtained from an array such as LASA is to be obtained on a medium aperture array such as WRA, onset times must be measured with a standard deviation of between 0.01 and 0.03 seconds. The measurement of P onset times with such accuracy is extremely difficult, if not impossible. Measurement, instead, of relative P times obtained by matching P waves recorded at each seismometer can yield accuracy of the required degree. Since the method was first described by Evernden (1953), the technique of measuring relative onset times by matching waveforms has been commonly used in the calculation of phase velocities of surface waves across tripartite arrays. Matching surface waves with periods of 20 seconds or larger to an accuracy of 0.2 seconds is comparable to matching P waves with periods of about 1 second to an accuracy of 0.01 sec . With the chart speed of $40 \mathrm{~mm} / \mathrm{sec}$ used for the paper records, waveforms could be matched to an accuracy of $\pm 0.5 \mathrm{~mm}$, which corresponds to an average timing error of 0.012 sec . Thus the precision in timing measurement was satisfactory.

The technique used in matching the waveforms is as follows:
(1) The paper speeds on the two lines of the array, the Red and Blue lines, were determined by averaging at least five sets of measurements of the distance between $5-\sec$. intervals in the region of measurement of $\mathrm{dT} / \mathrm{d} \Delta$, for each line. The two values thus obtained were further averaged to give an overall value for the particular event. It was

Fíure 2. 3. Matching technique for determining relative arrival times at each scismometer. From the record at pit $R 4(a)$, a family of curves with difforent amplitudes is constructed (b), and matched with tho records at tho other pits (c), (d).
found in practice that this overall speed was within $0.10 \mathrm{~mm} / \mathrm{sec}$ of the speed of either line, thus eliminating the necessity of a correction term. (2) Parallax corrections in millimetres were determined for each trace by observing the distance deviations in the onset of square wave pulses applied simultaneously to all traces at the start of the record. The corrections were never more than 1 mm with the vast majority centering around 0.5 mm .
(3) A trace was selected from both lines of the array, which appeared to be the least contaminated by noise or other interferences (Figure 2.3a). One cycle of the phase whose $d T / d \Delta$ value was to be measured, was traced onto transparent paper. The vertical line corresponding to a chosen reference time mark was drawn on the transparent paper, as was the horizontal line indicating the zerosignal level of the trace. In order to compensate for variations in amplitude between traces for a particular event, the selected curve was used to construct, on the same transparent paper, a series of curves of different amplitudes, as shown in Figure 2.3b. (4) Using this transparent paper as an overlay, the curves on it were matched with each seismometer output for that event, and the position of the first zero of each seismometer output was determined relative to the reference time mark. In addition the relative times of the first peak and first trough of the appropriate cycle for each trace were measured. Thus three sets of relative onset times were determined for the particular phase of the particular event. In some cases, onl.yone or two sets of relative times could be determined, depending on the clarity of the waveform.

The reason for determining more than one set of onset times, and hence $d T / d \Delta$ and azimuth, for a particular phase is to compensate to some extent for the changes in waveform fromone seismometer to another. These changes may be due to rapid variations in local structure beneath the array or even to multiple arrivals caused by structure at the deepest point of the ray. Random noise effects could also play an important part in causing changes of waveform for the precursors to the PKIKP phases, which were often far smaller than PKIKP in the early parts of the appropriate distance ranges. Each set of arrival times, and consequently each $d T / d \Delta$ and azimuth determination for a particular phase, was regarded as independent.

By means of a computer program (Wright, 1970) the arrival times were used to calculate a least square value of $d T / d \Delta$, azimuth \emptyset and arrival time To at the origin of the array. Residuals of the measured times relative to their least squares fit, were determined. If a seismometer residual was found to exceed 0.02 seconds, the corresponding onset time was discarded and the entire procedure repeated using the remaining times. In poorer fits from lower quality data, a rejection value of a 0.04 seconds was used. This rejection procedure ensured that the standard deviations of the onset times were kept less than 0.03 seconds, and consequently ensured the high precision of this method of determining $d T / d \Delta$ and azimuth. The root-mean-square errors in the least squares $d T / d \Delta$ and azimuth determination were also calculated by the program to facilitate future weighting of the data.

Figure 2.4. Measured Traveltimes

This matching waveform technique and subsequent calculations were carried out for any coherent signal observed on the seismograms within the time range of interest. It was of ten necessary, in the early parts: of the appropriate distances ranges, to resort to the high amplitude data in order to measure the precursors to PKIKP.

If a particular phase was identified as belonging to one of the time travel branches on the basis of its $d T / d \Delta$ value and a rough estimate of its travel time: the actual travel-time was determined by measuring the onset time of a clear wave and subtracting from it the origin time as given by N.O.A.A. It was of ten difficult to pick the onset of the phase on the seismogram accurately, because of the background noise and in some cases where all phases arrived closely together, because of interference from preceding phases, for example in the range $140^{\circ}-145^{\circ}$. This resulted in quite a large scatter of travel-times and, as will be seen later, in the residuals with respect to the smoothed traveltimes. To ensure uniformity, ellipticity and, focal depth corrections as described in Apperdix 111 were applied to the traveltimes.

The 115 events analysed in the above manner yielded a total of $574 d T / d \Delta$ and 188 traveltime measurements for all PKP phases. Figures 2.4 and 2.5 show the traveltime and reduced traveltime measurements. These will be discussed further in Chapter 3. The $d T / d \Delta$ measurements are shown in Figure 2.7. The large scatter exhibited by the $d T / d \Delta$ values is mainly a consequence of systematic errors in their measurement. These errors now will be discussed in more detail.

- Systematic errors in $d T / d \Delta$ and azimuth measurements can be attributed to four main sources: (1) The effect of differences in seismometer constants (2) Differences in elevation of the individual seismometers (3) Ellipticity of the earth and (4) The effect of structure beneath the array.
(1) The effect of differences in the seismometer constants. Muirhead (1968) investigated the problem of phase shifts due to small differences is seismometer constants in a medium aperture array, and showed that for an instrument with a natural frequency of 0.9 Hz recording a sinusoidal motion of a period of 1 sec., the first zero of cross-over point of the recorded wave would be 0.04 sec . later than if the instrument had a natural frequency of 1.1 Hz . He also showed that the effect of differences in the damping constants of the seismometers was of the second order and could be safely neglected. The seismometer calibration scheme in operation for U.K.A.E.A. arrays is described by Keen et al (1965). The natural frequencies of the instruments at WRA show small differences from one seismometer to another, with a maximum difference of about 0.18 Hz between R6 and B9. In addition, the frequencies vary slightly from day to day, again with a maximum variation of about $0.20 \mathrm{H} \overline{\mathbf{z}}$ from 0.9 to 1.1 Hz . In principle, it is possible to remove such errors. Wright (1970) investigated this problem fully, and obtained corrections to $d T / d \Delta$ with a maximum valve of about $0.05 \mathrm{sec} /$ deg - . He concluded that "the effect of differences in the natural periods of the seismometers on the onset times is, in almost all instances, too small to produce appreciable scatter of systematic errors in the values of $d T / d \Delta$ and azimuth". He investigated
parameters of the order of $8-10 \mathrm{sec} / \mathrm{deg}$ in magnitude, and consequently a correction of $0.05 \mathrm{sec} / \mathrm{deg}$ to these values is almost negligible. In the case of the earth's core, however, where the PKIKP branch has a value of $d T / d \Delta$ ranging from about $2.0 \mathrm{sec} / \mathrm{deg}$ to $0.0 \mathrm{sec} / \mathrm{deg}$ at 180°, a correction of that magnitude is more significant. Nevertheless, in the face of corrections for local structure (to be described later) which amounted in some instances to as much as $0.9 \mathrm{sec} / \mathrm{deg}$, the correction for differences in seismometer constants seemed insignificant, and was consequently ignored in this study. (2) Differences in Elevation of Individual Seismometers. The difference in elevation of the highest and lowest seismometers of the array is less than 0.05 km . At the large distances involved, the systematic difference in arrival time due to this difference in elevation is less than 0.01 sec. assuming a P wave velocity of $6 \mathrm{~km} / \mathrm{sec}$ at the earth's surface, and can consequently be ignored. (3) Ellipticity of the Earth. The ellipticity correction to traveltimes is given by the following equation (see Appendix III).

$$
\delta T=f(\Delta)\left(h_{0}+h_{1}\right)
$$

It is also possible to correct the $d T / d \Delta$ values for ellipticity by calculating δT for a number of imaginary epicentres at-regular intervals of distance and azimuth, and differentiating the resulting tables to obtain $\delta(d T / d \Delta)$. - the ellipticity correction for the $d T / d \Delta$ measurements. Wright (1970) carried out this procedure and obtained maximum corrections of about $0.024 \mathrm{sec} / \mathrm{deg}$. On the basis of larger corrections to be determined such as those involved in correcting for structure under the array and in restraining the smoothed $d T / d \Delta$ values to an acceptable travel time curve, he prefferned to ignore the ellipticity corrections to $d T / d \Delta$. The
same procedure is adopted in this study for similar reasons. (4) Effect of Structure Underneath the Array. By far the most serious source of systematic errors in $d T / d \Delta$ and azimuth values determined at WRA, is that due to the structure of the crust and upper mantle in the vicinity of the array. One stringent requirement of an ideal arraysite is that the geology should be reasonably homogenous and uncomplicated by major elastic discontinuities. Initially, it was expected that the WRA situated in the middle of the Australian stable shield fulfilled these requirements. However, when the array records of the nuclear explosion Longshot were analysed towards the end of 1966, they yielded a value of dT/ds which was about 11% higher than the value expected on the basis of the Jeffrey-Bullen tables. Studies by Cleary and Hales (1966) and Carder et al (1966) strongly suggested that at the distance in question, the $J-B$ tables, and hence the expected $d T / d \Delta$ value was in error by less than 1%. This provided the first hint of an anomalous structure under the array, and the large discrepancy between the measured and expected $d T / d \Delta$ values was attributed to this structure. From the results of the sersmic experi ment WRAMP, Underwood (1967) inferred the presence of a near-surface dipping structure underneath the array. Unfortunately, he used too little data to enable a really detailed model of the region beneath the:array to be determined. As more $d T / d \Delta$ and azimuth measurements accumulated, it became evident that the structure beneath the array could not be approximated by a single plane dipping interface, and in fact, appeared to diverge considerably from that simple approximation.

Owing to the fact that details of the structure underneath
the array are not yet available, and that the structure appears to be oneof great complexity, an empirical method of correcting the $d T / d \Delta$ and azimuth measurements for structure must be used. Wright (197.0) devised such a method of correction based entirely on Niazi's (1966) theory on the effect of a dipping layer measurements of $d T / d \Delta$ and azimuth. The method involves selecting a realistic model of the crust and adjusting the dip angle and dip direction, keeping the P wave velocities constant, until the apparent velocity and azimuth calculated by Niazi's theory agreed with the measured values of $d T / d \Delta$ and azimuth. The weakness of this method lies in the fact that any number of models fit the data, and any structure with a specific velocity contrast could be replaced by an equivalent structure with a different velocity contrast and dip angle. If, however, certain limits based on observational evidence are placed on parameters such as the dip angle of the structure, and expected apparent velocity, the method is capable of yielding fairly accurate results. Niazi (1966) has shown how data from earthquakes at almost equal distances and at opposite azimuths from the array can be used to separate the effects of a structure consisting of a single plane dipping interface from errors in a given $d T / d \Delta$ curve. Cleary, Wright and Muirhead (1968) used this technique to work out a simple model of the crust beneath the arnay, and determined the dipping interface to have a dip angle around $6^{\circ}-7^{\circ}$, dip direction of around 230°, and a velocity ratio of 0.7. The corresponding parameters deduced by Underwood (1967) were a dip angle of 5°, dip direction of 200° and velocity ratio of about 0.9. Wright (1970), using the same method as in 1968, estimated a dipping interface with dip angle of about 6.5° to 7°, and dip direction $215^{\circ}-235^{\circ}$, with a velocity contrast of 0.7 to give the best corrections for $d T / a \Delta$ and azimuth. Consequently,
the predominant evidence indicates that the dip angle of the inclined plane assumed to be responsible for the large $d T / d \Delta$ and azimuth anomalies is about 6° or 7°, with a velocity contrast of approximately 0.7. The dip direction is somewhat more flexible, but seems to be near 220°.

It should be noted that the above structures used to correct the $d T / d \Delta$ and azimuth measurements are all single dipping plane structures, whereas, it appears that the structure underneath the array is far more complicated and may consist of a number of different dipping planes. However, an important fact, noted by Wright (1970) is that the effect of several plane dipping interfaces on $d T / d \Delta$ and azimuth measurements is indistinguishable from that of a single interface, and consequently, the assumption that the structure under neath the array could be approximated by a single plane dipping interface is justified. The effect of a single !plane dipping interface is to introduce approximately sinusoidal variations in azimuth and $\mathrm{dT} / \mathrm{d} \Delta \mathrm{as}$ a function of azimuth that are 90° out of phase. The $d T / d \Delta$ anomaly is least in the dip direction and the azimuth anomaly changes from negative to positive.

A close look at the $d T / d \Delta$ and azimuth measurements made in this study reveal not only startling discrepancies between expected and observed values but also great fluctuations in the amount of the discrepancy (Figure 2.7). Quite of-ten it was possible to correlate the magnitude of the anomaly with azimuth. Although the azimuth range was not uniformly covered, the residuals of the measured $d T / d \Delta$ values with respect to the expected values exhibit a quasi-sinusoidal variation. The azimuth residuals also indicate some degree of sinusoidal variation but changed more rapidly than do the $d T / d \Delta$ residuals and are not coincident with them. On this

Figure 2.6 Refraction of a planar seismic beam incident on a dipping interface between a half-space and the overlying layer.
basis, the assumption of a single plane dipping interface underneath the array as used in the empirical method of correction, seems to be a justifiable one.

For purposes of analysis a computer program written by C. Wright was used to work out the effect on $\mathrm{dT} / \mathrm{d} \boldsymbol{\Delta}$ and azimuth, of any combination of dipping interfaces for a seismic event whose azimuth and distance are accurately known. The program is based entirely on Niazi's theory, which will be briefly outlined below.

The geometry of a thin planar beam of seismic waves incident on a dipping interface from beneath is shown in Figure 2.6. The intersection of the dipping interface with an imaginary horizontal plane (i.e. the direction of strike) is taken as the x axis. OP and $O Q$ are the intersections of the vertical plane containing the incident beam with the imaginary horizontal plane and the dipping interface, respectively. The dip angle is denoted by symbol 6 , and the angle between the seismic beam and vertical axis $0 Z, i . e$. the true angle of incidence, is denoted by i. The angle \emptyset between $O P$ and the x-axis is the true azimuth from which the beam has been incident on the interface. i_{0} is the angle of incidence at the free surface. The refraction of the rays takes place according to Snell's law with il and not i being the angle of incidence, where i is the angle subtended between the ray and the normal to the interface $O N$. Consequently, the angle of refraction will be r^{\prime}, which is different from $r=i_{o}$ In the process of refraction, in general, the rays do not remain in the vertical plane, but appear to be arriving at the surface from a new azimuth, the apparent azimuth \emptyset^{\prime}, the corresponding apparent dip being δ^{\prime}. Niazi (1966) has shown that the direction
cosines of the beam reaching the surfaces are given by

$$
\begin{aligned}
& l=(-m \beta+n \gamma) / \alpha \\
& m=\left(\cos r^{\prime}-n \cos \delta\right) / \sin \delta \\
& n=\cos r^{\prime} \cos \delta \pm \alpha \sin \delta \sin r^{\prime}
\end{aligned}
$$

where α, β, γ are the direction cosines of the line perpendicular to the apparent plane of incidence, ide. to both the incident rays and $O N$, and $\alpha^{2}+\beta^{2}+\gamma^{2}=1$. If v_{1} and v_{2} are the wave velocities in the upper and lower medium respectively, then
since
$\sin r^{\prime}=v_{1} \sin i^{\prime} / v_{2}=v_{1}\left(1-(\sin i \sin \phi \sin \delta+\cos i \cos \delta)^{2}\right)^{\frac{1}{2}} / v_{2}$

$$
\cos i^{\prime}=\sin i \operatorname{Sin} \phi \operatorname{Sin} \delta+\operatorname{Cos} i \operatorname{Cos} \delta
$$

$$
\begin{aligned}
& \alpha=\operatorname{Tan} \delta \operatorname{Cot} i-\operatorname{Sin} \phi / R \\
& \beta=\operatorname{Cos} \phi / R \\
& \gamma=-\operatorname{Tan} \delta \operatorname{Cos} \phi / R
\end{aligned}
$$

where

$$
R^{2}=\left(1+\operatorname{Tan}^{2} \delta \cot ^{2} i+\operatorname{Tan}^{2} \delta \operatorname{Cos}^{2} \phi-2 \sin \phi \operatorname{Tan} \delta \operatorname{Cot} i\right)^{\frac{1}{2}}
$$

The apparent angles of incidence, apparent azimuth and new apparent velocity of the rays can then be obtained from the direction cosines 1, m, n as follows:

$$
\begin{aligned}
\operatorname{Cos} i_{0} & =n \\
\phi^{\prime} & =\operatorname{Tan}^{-1}(m / l) \\
v^{\prime} & =v_{1} / \sin i_{0} \\
& =v_{1} /\left(1-n^{2}\right) \frac{1}{2}
\end{aligned}
$$

The actual procedure was as follows. A dipping interface between the crust and mantle was taken as having a velocity ratio of 0.7. Taking a fixed dip direction of 10° and a fixed dip angle of 0.5 , the azimuth \emptyset was varied at intervals of 20° from 0° to 360°. It was assumed from the $\mathrm{J}-\mathrm{B}$ tables that the expected values of $d T / d \Delta$ for the $D F$ branch lay in the range of $2.022 \mathrm{sec} /$ deg. at 113° to $0.3 \mathrm{sec} / \mathrm{deg}$. at 176 (where 113° to 176° was the distance range of the DF data), corresponding to expected apparent velocities of $55 \mathrm{~km} / \mathrm{sec}$ to about $380 \mathrm{~km} / \mathrm{sec}$. Consequently, keeping the dip direction and angle fixed at the values chosen, four quantities were calculated at each value of azimuth from 0° to 360° at 20° intervals. These four values were:
(1) The apparent azimuth \varnothing, and consequently the azimuth anomaly.
(2) The measured apparent velocity V^{\prime}, and consequently
(3) The measured $d T / d \Delta$ obtained from V^{\prime}.
(4) The ratio of measured velocity/expected velocity
where the expected velocities used varied from $55 \mathrm{~km} / \mathrm{sec}-100 \mathrm{~km} / \mathrm{sec}$ in $2 \mathrm{~km} / \mathrm{sec}$ steps from $100 \mathrm{~km} / \mathrm{sec}-200 \mathrm{~km}$ in $10 \mathrm{~km} / \mathrm{sec}$ steps and from $200-380 \mathrm{~km} / \mathrm{sec}$ in $20 \mathrm{~km} / \mathrm{sec}$ steps. Thus the entire range of expected apparent velocities corresponding to the entire : range of expected $d T / d \Delta$ values for $D F$ was covered. The dip direction was then varied from 10° to 360° at 10° intervals, and keeping the dip angle fixed at 0.5, the entire procedure was repeated at each new dip direction. The dip angle was increased by 0.5° from 0.5° to 10.0°, and at each new dip angle value, the calculations were again performed for dip directions from 10° to 360° as before. Thus, an entire set of tables was generated to enable corrections to be applied to the $\mathrm{dT} / \mathrm{d} \Delta$ and azimuth measurements for the DF bnanch.

The corrections were made as follows: The true azimuth \emptyset, and measured $\mathrm{dT} / \mathrm{d} \Delta$ and azimuth, and therefore the azimuth anomaly of the event were noted. The tables were checked for a point where at the same true azimuth \emptyset the corresponding $\mathrm{dT} / \mathrm{d} \Delta$ value and azimuth anomaly in the tables agreed as closely as possible with the measured $d T / d \Delta$ and azimuth anomaly. The dip direction and dip angle so specified were then assumed to be the parameters of the plane dipping interface responsible for this particular set of anomalies in $d T / d \Delta$ and azimuth measurement. In this manner, a dip direction and dip angle were worked out for each $d T / d \Delta$ and azimuth determination for the DF branch.

On the assumption that the same method of correcting for local structure could be applied to the other phases as well, the entire procedure was repeated for the measured values of the $G H$, IJ and $A B$ traveltime branches. For the $G H$ and IJ data, expected apparent velocities of 30 to $37 \mathrm{~km} / \mathrm{sec}$ corresponding to $\mathrm{dT} / \mathrm{d} \Delta$ values of about 3.6 to $3.0 \mathrm{sec} / \mathrm{deg}$ were used, respectively, at approximately $2 \mathrm{~km} / \mathrm{sec}$ intervals. The range of $\mathrm{dT} / \mathrm{d} \Delta$ values for IJ branch was taken onthe basis of the measured $d T / d \Delta$ values which seemed to have their majority of values in this range and the correspoinding range of expected $\mathrm{dT} / \mathrm{d} \Delta$ values per the Adams and Randall (1964) model. The range of expected $d T / d \Delta$ values for the $G H$ branch was estimated in the same manner as in the IJ case, but it was extended to a maximum value of about $2.9 \mathrm{sec} / \mathrm{deg}$ in order to cover the range of expected $d T / d \Delta$ values in the Bolt (1968) model as well. For the AB corrections expected apparent velocities of $25-31 \mathrm{~km} / \mathrm{sec}$ corresponding to $\mathrm{dT} / \mathrm{d} \Delta$ values ofa bout 4.4 to $3.6 \mathrm{sec} / \mathrm{deg}$ were used, again at roughly $2 \mathrm{~km} / \mathrm{sec}$ intervals. Thus, a dip direction and dip angle was worked out for each $\mathrm{dT} / \mathrm{d} \Delta$ and azimuth determination for the GH, IJ and
$A B$ branches.
In effect, all that was done was to take a measured $d T / d \Delta$ and azimuth value that had been assigned to a particular branch, place limits on the expected truevalue of $d T / d \Delta$ for thát branch, and search the tables for a combination of dip angle and dip direction, until the azimuth anomaly and $d T / d \Delta$ of the measured data agreed with that of the tables, for the particular \varnothing (true azimuth) in question.

A certain amount of ambiguity is involved in this method of correction. For example, it is quite possible for a measured $\mathrm{dT} / \mathrm{d} \Delta$ and azimuth value, assigned to the DF branch, to be corrected to an expected $d T / d \Delta$ value, lying somewhere on the $G H$ or the $I J$ branches, and for a measured IJ value to be corrected to an expected value lying somewhere on the DF branch. The two restraining factors used to remove this ambiguity were (1) As previously mentioned, a fixed range of expected $d T / d \Delta$ values, based on the distribution of the measured values and on expected values taken from existing models for the appropriate distance range, was assigned to correct a particular branch. These ranges did not overlap for the different branches. (2) Evidence has shown that the dip angle of the dipping interface responsible for the anomaly is close to 7°, and consequently the dip angles obtained in the corrections should all be close to, or around this value. An important fact in connection with this is that the larger the anomaly in the measurement, the larger was the dip angle of the plane needed to correct this anomaly. Consequently, if a measured IJ value was desired to be corrected to some expected value lying, for example on the $G H$ or $A B$ branches, the dip angle needed to effect this correction would be much larger than that needed to correct the measured value to some point on the expected IJ branch. In particular, it was observed that the measured $\mathrm{dT} / \mathrm{d} \Delta$ and azimuth
values for the early part of the IJ branch could be corrected to be on the $G H$ branch, thus resulting in a traveltime model similar to Bolt's (1964) model. On the basis of the larger dip angles, greater than 10°, needed for this correction, and since the phase IJ was clearly observed on array seismograms in that distance range (Bolt did not observe this phase at all), the correction to Bolt's model was rejected.

The dip angles of the correcting planes were found to be centered around the value of $6^{\circ}-7^{\circ}$, al though in some cases the dip angle reached as low as 0.5°. In even fewer cases, it reached as high as 10°. The dip directions were concentrated around $\because 100^{\circ}$ and 200° but a few dip directions as low as 10° on as high as 350° were obtained. Of ten the three measurements in any one event would have closely similar dip angles and dip directions; as would most events around the same azimuth \emptyset, but it was possible though unusual to have all three measurements in any one event with vastly differing dip angles and dip directions. This disparity was due to the changes in the magnitude of the anomalies for the three measurements In turn these could be due to systematic changes in waveform from one seismometer tó another as á, result of random noise effects, extremely rapid variations in the local structure, irregulaties in the source region or the deepest point of the ray path,or more than one phase arriving at nearly the same time.

The appropriate dip vectors were divided into groups so that each group contained dip vectors of approximately the same value, and the distance and azimuth ranges in each group were not too large. The
data for the DF branch was divided into 25 groups, the $1 J$ into 15, the $G H$ into 19 , and the $A B$ into 21 . The distance range varied from 5° to 10° and the azimuth range from 3° to 10°. The purpose of the division into groups was to obtain an average di-p vector for each group under the assumption that all the events in the particular group were affected by this 'average' structure determined, and that the fine structure variation in each group was merely a consequence of the empirical method of correction, and somewhat divergent from the degree of physical reality obtainable by this method.

The averaging of the dip vectors was approached as a problem of the statistics of a spherical distribution. This approach is commonly adopted in paleomagnetic studies and is described by Fisher (1953) and Watson (1956). The dip direction L and dip angle A of the mean dip vector are givenby:

$$
\begin{aligned}
& L=\operatorname{Tan}^{-1}\left(\Sigma \omega_{i} m_{i} / \Sigma \omega_{i} l_{i}\right) \\
& A=\operatorname{Sin}^{-1}\left(\Sigma \omega_{i} n_{i} / R\right)
\end{aligned}
$$

where m_{i}, n_{i} and l_{i} are the direction cosires of the dip vectors in the distribution, R is the length of their resultant vector and w_{i} is the weight of the individual vectors. The weights are normalized so that their sum is equal to the number of observations N in the group. A measure of the distribution of the individual vectors with respect to the mean vector is given by the quantity

$$
K=N-1 / N-R
$$

The higher the value of K the more closely are the individual vectors grouped around their mean.

The measured azimuth, apparent velocity and dip vector for each observation in a particular group were used to calcula te the angle of incidence i_{0} of the waves at the earth's surface as described in Niazi's theory. The direction cosines $l_{i}, m_{i} n_{i}$ were estimated for each vector from its' angle of incidence, and the quantities L, A and K were calculated for the entire group: The observations were rearranged if necessary to obtain satisfactory estimates of K. The weights W_{i} were taken as the square of the reciprocal of the root-mean square error on the corresponding $\mathrm{dT} / \mathrm{d} \Delta$ measurement.

The averaged dip vectors obtained in the manner were used to prepare tables as described previously and the final corrected $d T / d \Delta$ values were estimated from these tables.

It should be mentioned at this point that the statistical approach used for the problem of averaging the dip vectors is not strictly the correct one since the dip angle itself is known with greater precision than the dip direction, and the probability distribution is somewhat anisotropic. A correct statistical model would be one intermediate between a spherical and a circular distribution but the procedure then becomes somewhat too complex to be justified by the nature of the problem.

The $d T / d \Delta$ values as originally measured are shown in
Figure 2.7. They exhibit considerable scatter and fitting a smooth curve through the values for each branch would be extremely difficult. The same $d T / d \Delta$ measurements corrected for structure in the manner just described are displayed in Figure 2.8. The improvement is selfevident and the scatter in the observations has been reduced sufficiently so that smoothing techniques could be applied meaningfully.

2.3 Smoothing of Corrected $\mathrm{dT} / \mathrm{d} \Delta$ Values

In the reduction of random errors by smoothing techniques, it is highly desirable that the errors be reduced as far as possible without losing valuable information, and that the magnitude of the reduction be estimated. Three possible techniques of smoothing in common use are: (1) To subtract a twelfth of the four th difference from, or, add a quarter of the second difference to each observed value except the two end points. (Jeffreys, 1937). This method has two severe disadvantages. Firstly, the magnitude of the reduction cannot be properly estimated since the errors in neighbouring points tend to be correlated, and secondly, it does not remove as much of the error as the uncertainties would allow (Jeffreys, 1934) nor does it give any control over the amount of smoothing to be applied. (2) To fit a simple function such as a polynomial or a series of polynomials to the data by least squares. In this way, it is possible to get as much smoothing as desired or justified, but the standard errors in the coefficients of the function are not a convenient measure of the reduction of the error unless the coefficients themselves have some physical significance. A variation of this technique was used for comparison as discussed in Section 2.3.2. (3) The method of summary values devised by Jeffreys $(1937,1961)$ in which the amount of smoothing can be controlled, no valuable information is lost as ascertained by a significance test, and the magnitude of the reduction can be estimated. This method is superior to the other two and was adopted for smoothing purposes in this study. Appendix IV contains a description of this method.

2.3.1 Smoothing of $\mathrm{dT} / \mathrm{d} \Delta$ by the Method of Summary Values

The method of summary values involves fitting a linear and quadratic curve to each of several groups of the data. The curvature
in each group is estimated beforehand to be reasonably small. From an appropriate calculation (Appendix IV) the coordinates of intersection of the linear and quadratic forms can be determined and are known as the summary points. They best represent the data in the appropriate range. The summary points determined for the several groups are interpolated to give the complete smoothed curve.

A computer program based on the theory of Appendix IV was written by C. Wright and was used in this study. The corrected $d T / d \Delta$ values for any one branch were divided into groups in which the distance ranges were small, and the curvature also estimated to be small. The program was used to calculate the summary points and their corresponding uncertainties for each range of the branch. The summary points were then interpolated at 0.01° intervals by means of divided differences, the size of the interval being chosen so as to facilitate comparison of the calculated values with the measured values in which the distance coordinates were given to 0.01°. The residuals between the calculated and measured $d T / d \Delta$ values were determined_and in order to determine whether adequate smoothing had taken place a chi-squared test was performed on these residuals. The x^{2} value for each residual was taken as the product of the weight for the corresponding $d T / d \Delta$ measurement and the square of the residual, the total χ^{2} for each range being the sum of the individual x^{2} of the points in that range. An overall x^{2}, the sum of the x^{2} for each of the ranges in the particular branch was calculated also.F or adequate smoothing, and assuming the error to be wholly random, x^{2} must be in the range $v \pm \sqrt{2 v}$ where v is the
number of degrees of freedom. Thus v is equal to the number of fixed parameters less the number of adjustable parameters. In this case v is equal to the number of observations used, less the number of summary points for the case being considered (i.e. for one range with M points, the number of summary points is 2 , and $\boldsymbol{v}=M-2$, so that the x^{2} for that range must be within ($M-2$) \pm $\sqrt{2(M-2)}$. If there are N ranges in the entire branch, then the number of summary points is 2 N , and if the entire number of observations in the branch is M_{0}, then the overall x^{2} must be in the range $\left(M_{0}-2 N \pm \sqrt{2\left(M_{0}-2 N\right)}\right.$ If x^{2} is too large (i.e. if the residuals are too large) then the summary points do not represent the data in the range as accurately as they could, the curvature is being underestimated, and significant features are being lost. To correct this problem, the number of ranges should be increased so that the summary points fall closer to the data in any given range and the residuals are thereby reduced. If \boldsymbol{x}^{2} is too small, insufficient smoothing is taking place and possibly meaningless detail is being retained in the curve. To correct this problem, the number of ranges should be increased, so that the residuals in any given range would increase also.

In practice, owing to the heavy concentration of data in some distanceranges, and relative lack in the other regions, some difficulty was encountered in attempting to obtain a satisfactory value of x^{2} for each of the ranges, and at the same time a satisfactory overall x^{2} for the entire branch. After somewhat exhaustive attempts to obtain a satisfactory solution with regard to the x^{2} for each range, the overall x^{2} for the branch and the retention of reasonably small distance ranges, the following procedure was adopted: that solution
for which the maximum number of ranges gave satisfactory values of x^{2} and the overall value of x^{2} for the entire branch remained satisfactory was allowed to stand. The result of this procedure is that the larger part of the branch is adequately smoothed but there were possibly one or two regions on it that were either undersmoothed or oversmoothed. Since at this stage the data was being smoothed to determine a correction term corresponding to constraining the data to an acceptable traveltime curve, this lack of adequate smoothing over the entire branch is not too important (Wright g! 1970).

In order to constrain the smoothed data to an acceptable traveltime curve and consequently to reduce any remaining systematic errors even further, the area under each smooth curve (i.e. in each range) was evaluated by Simpson's rule of integration and subtracted from the traveltime difference between the end points of the range. If T_{1} and T_{2} are the traveltimes at the end points of the range of integration Δ_{1} and Δ_{2} respectively, and if σ_{1} and σ_{2} are the respective standard errors in T_{1} and T_{2} and if, also, the area under the smooth curve in that range is A with a standard errorg, then the correction C is given by:

$$
\begin{aligned}
C & =\left(\left(T_{2} \pm \sigma_{2}\right)-\left(T_{1} \pm \sigma_{1}\right)-\left(A \pm \sigma_{3}\right)\right) / \Delta_{2}-\Delta_{1} \\
& =\left(T_{2}-T_{1}-A\right) / \Delta_{2}-\Delta_{1} \pm\left(\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}\right)^{\frac{1}{2}} / \Delta_{2}-\Delta_{1}
\end{aligned}
$$

where the second term on the right is the error in the correction term C. This correction C was calculated for each of the ranges in the different branches, and applied to each of the $d T / d \Delta$ values in these ranges, a procedure which merely involved changing the baseline of the $d T / d \Delta$ values in the individual ranges. The traveltime curves to which the smoothed $d T / d \Delta$ data were restrained are the $J-B$ tables for the $D F$ and $A B$ branches (which branches for comparison were also restrained to the Bolt (1968) tables) and the Adams and Randall (1964)

TABLE 2.1(a) Smmary points for dF rrancll
314 DATA POINTS
RISTRAINI: TO J.B. TRAVEL-TIML CURVE

INITIAL SUMMARY POINTS:

$\stackrel{\Delta}{(D E: G)}$	$\begin{gathered} \text { dT/ds } \\ (\mathrm{Sl:C/Din}:(\mathrm{C} \end{gathered}$	$(S E C / D E G)$	x^{2}	v	$\begin{gathered} C \\ (S E C / D E G) \end{gathered}$
115.45	1.956	0.018	49.32	45	$+0.000$
118.98	1.946	0.017			
122.10	1.858	0.030			
123.68	1.857	0.033	21.02	18	+0.083
125.55	1.890	0.016			
131.26	1.862	0.017	38.06	35	+0.034
134.06	1.886	0.010			
138.08	1.867	0.010	48.41	78	-0.039
143.06	1.748	0.012			
16S.22	0.896	0.016	148.11	128	+0.023

Total $x^{2}=304.92$ on 304 degrees of freedon

FINAL SUMMARY POINTS:

$\stackrel{\Delta}{(D E G)}$	$\begin{aligned} & \mathrm{dT} / \mathrm{d} \Delta \\ & (\mathrm{SEC} / \mathrm{DEG}) \end{aligned}$	$(\mathrm{SEC} / \mathrm{DEG})$	x^{2}	v
115.30	1.962	0.016		
			49.48	45
118.78	1.952	0.013		
122.56	1.940	0.016		
125.38	1.924	0.016	29.64	32
131.58	1.895	0.011		
134.93	1.846	0.010		
138.04	1.828	0.010		
147.81	1.706	0.015		
155.31	1.432	0.019		
165.32	0.910	0.016		

Total $x^{2}=313.01$ on 301 degrees of freedom.
o = STD. ERROR ON dT/dA VALUI: OF SURMARY POTNT
$v=$ NO. OF DISGRAES OF FREBEOOM
$C=$ CORRECTION FOR RESTRAINING DATA TO TRAVIELJME CURVI:

TABLE 2.1(b) SIMMARY POINTS FOR GI BRANCI
105 DATA POINTS
(a) RIESTRAINI:D TO A-R TRAVELTIME CURVE

INITIAL SUMMARY POINTS:

Δ $(D E G)$	$\mathrm{dT} / \mathrm{d} \Delta$ $(S D C / D E G)$	σ $(S E C / D E G)$	x^{2}	ν	C $(S E C / D E G)$
136.08	2.653	0.020	69.36	84	-0.008
141.77	2.624	0.021			
143.97	2.605	0.019	19.21	17	-0.008
151.83	2.501	0.037			

Total $x^{2}=88.57$ on 101 degrees of freedom

FINAL SUMMARY POINTS:

$\stackrel{\Delta}{(D E G)}$	$\begin{aligned} & \mathrm{dT} / \mathrm{d} \Delta \\ & (\mathrm{SEC} / \mathrm{DEG}) \end{aligned}$	$(\mathrm{SEC} / \mathrm{DEG})$	x^{2}	ν
136.20	2.645	0.018		
			79.42	84
141.93	2.613	0.017		
143.75	2.601	0.015		
151.94	2.494	0.024	15.21	1.7
(158.0	2.300			

Total $x^{2}=94.63$ on 101 degrees of freedom.
*Taken from $\Lambda-R$ curve in order to extend branch beyond 152°
(b) RI:STRAINEI) TO BOLT TRAVELTIJME CURVE

Total $x^{2}=93.74$ on 101 degrecs of frecdom.

* Taken from Bolt's curve in order to extend branch beyond 152°

-58-

TABLE $2.1(c)$ SUMMARY POINTS FOR IJ RRANCH
81 DATA POINTS
RESTRAINED TO A+R TRAVEL-TINE CURVE
.INITIAL SUMMARY rOINTS:

$\stackrel{\Delta}{(D E G)}$	$\begin{gathered} \mathrm{dT} / \mathrm{d} \Lambda \\ (\mathrm{SEC} / \mathrm{DEG}) \end{gathered}$	$(S E C / D E G)$	x^{2}	v	$\begin{gathered} C \\ (S E C / D E G) \end{gathered}$
135.68	3.155	0.032	47.42	60	+0.024
140.46	3.317	0.015			
146.62	3.195	0.017			
150.82	3.054	0.030	19.54	17	+0.003

FINAL SUMMARY POINTS:

$\stackrel{\Delta}{(D E G)}$	$\begin{gathered} \mathrm{dT} / \mathrm{d} \Delta \\ (\mathrm{SEC} / \mathrm{DEG}) \end{gathered}$	$(\mathrm{SEC} / \mathrm{DEG})$	x^{2}	v	C
135.68	3.459	0.030			
.140.46	3.320	0.013	57.23	60	
146.65	3.198	0.016			
150.87	3.056	0.021			
Total	75.84 of	egrees of	reedom.		

TABLI: $2.1(d)$ SUMMARY POINTS FOR AB BRANCH
70 DATA POINTS
(a) REGTRAINID TO J.B.

INITIAL SUMMARY POINTS:

$\stackrel{\Delta}{(D E G)}$	$\begin{aligned} & \mathrm{dT} / \mathrm{d} \Delta \\ & (\mathrm{SEC} / \mathrm{DEG}) \end{aligned}$	$\stackrel{\sigma}{(\mathrm{SEC} / \mathrm{DRG})}$	x^{2}	v	$\begin{gathered} C \\ (S E C / D E G) \end{gathered}$
146.01	3.670	0.017			
149.896	4.010	0.024	33.01	37	40.145
*157.642	4.279	0.034			
161.599	4.416	0.032	3.56	12	
165.716	4.488	0.026			
173.441	4.495	0.008	29.73	21	-0.093

* Not used in interpolation because of unsatisfactory behaviour of curve in that region.

FINAL SUMMARY POINTS:

$\stackrel{\Delta}{(D E G)}$	$\begin{gathered} \mathrm{dT} / \mathrm{d} \Delta \\ (\mathrm{SEC} / \mathrm{DEG}) \end{gathered}$	$(S E C / D E G)$	x^{2}	v
146.01	3.814	0.015		
149.896	4.165	0.020	35.67	37
161.599	4.319	0.030		
165.716	4.395	0.028		
173.441	4.419	0.033		
Total	63.61 on	rees of.	edom.	

(b) RESTRAINED TO BOLT

FINAL SUMMARY POINTS:

TABLE 2.2. DT/D SMOOTHED BY THE METHOD OF SOMAARY valuES

tables for the IJ and GH branches, this latter branch also being restrained to the Bolt (1968) tables for the sake of interest. Since none of these tables provided standard errors in their traveltimes, it was not possible to estimate the error on the correction C for any of the ranges.

With the appropriate correction C applied to each group in the particular branch, the corrected $d T / d \Delta$ values of the entire branch were once again smoothed by the method of summary values to obtain the new summary points. These were interpolated at 1° intervals to give the final smoothed $d T / d \Delta$ values.

The initial and final summary points used in obtaining the final smoothed $d T / d \Delta$ values for the respective branches are listed in Tables 2.1 (a) to 2.1 (d) inclusive. Note that the GH branch has been restrained to the traveltime curves of both Adams and Randall and Bolt. The $A B$ branch was restrained to both $J-B$ and Bolt. Owing to lack of data in the range 150° to 160° for $A B$, it was not possible to obtain satisfactory summary points for this region, so the procedure adopted was to smooth the data in the ranges $145-150^{\circ}$ and $160-175^{\circ}$ separately, and to fill in the gap so created with the values of J-B and Bolt respectively. In addition, values of $d T / d \Delta$ for the $A B$ branch that were greater than $4.5 \mathrm{sec} / \mathrm{deg}$ were restrained to this value, as it is the maximum given for $P_{c} P$ phases in the 1968 tables.

The final smoothed $d T / d \Delta$ values are listed in Table 2.2
Figure 2.9 shows these values restrained to the different traveltime branches. From the figure, it is seen that the $G H$ branch restrained

to Bolt's data has greater curvature near 150° than the one restrained to that of Adams and Randall. The $A B$ branch restrained to the J-B traveltimes has greater curvature near its beginning than the one restrained to Bolt's times. Also, it is shifted to a lower level near the latter part of the range. On the basis of the best fit to the data, the $\mathrm{dT} / \mathrm{d} \Delta$ curve for the GH branch restrained to Adams and Randall's traveltimes and the $d T / d \Delta$ curve for the $A B$ branch restrained to the $J-B$ traveltimes were selected for the purpose of inversion. The curves as shown for branches $I J$ and DF were used in the inversion procedure.

2.3.2 Smoothing of $d T / d \Delta$ data by UBC Triangular Regression Package - TRIP

Mainly for the sake of comparison, the $d T / d \Delta$ values corrected for local structure were also smoothed by polynomial regression using the U.B.C. computer program U.B.C. TRIP (1972). The method is briefly described in Appendix V.a.

The regression equations determined as giving the best fit to the data are listed in Table 2.3. The independent variables for the DF, GH, IJ and $A B$ branches were taken as $\left(\Delta-113^{\circ}\right)$, $\left(\Delta-132^{\circ}\right)\left(\Delta-134^{\circ}\right)$ and $\left(\Delta-145^{\circ}\right)$ respectively where the numerical quantities are the turning points of the respective branches. The turning points were taken as that distance, truncated to a whole number, at which the individual phaseswere first observed. Smoothed curves at 1^{0} intervals for the different branches were generated from the appropriate regression equations. The calculated valves are listed in Appendix Vb, and are shown in Figure 2.10. For comparison, the smoothed curve obtained by the method of summary values is shown in dashed lines. The lesser

TABLI 2.3: REGRESSION EQUATIONS FOR SHOOTHE:H dT/dA DNTA

DF BRANCI			314 data points		
$\mathrm{R}^{2}=0.9643$					
J NDEPENDENT	VARIMBLI:	COEFFICHENT	STD, ERROR	F-rROS	TOLIERANCE
constant		1.9587	0.0180		
($4-113^{\circ}$)		-0.1384/10	$0.2528 / 10^{3}$	0.0000	1.0000
$\left(\Delta-115^{\circ}\right)^{2}$		$0.1095 / 10^{2}$	$0.1384 / 10^{4}$	0.0000	1.0000
$\left(\Delta-113^{\circ}\right)^{3}$		-0.3608/104	$0.1146 / 10^{5}$	0.0000	1.0000
$\left(8-113^{\circ}\right)^{4}$		$0.2432 / 10^{6}$	$0.5876 / 10^{7}$	0.0001	1.0000
$\begin{aligned} \mathrm{P}=\mathrm{dT} / \mathrm{d} \Delta= & 1.9587-0.01384(\Delta-113)+0.1095\left(\frac{\Delta-113}{10}\right)^{2} \\ & -0.0360\left(\frac{\Delta-113}{10}\right)^{3}+0.0024\left(\frac{\Delta-113}{10}\right)^{4} \end{aligned}$					

GH BRANCH
106 data points
$\mathrm{R}^{2}=0.7573$

INDEPENDENT VARIABLE	COFFFICIENT	STD.FRKOR	F-PROB	TOLERANCL:
CONSTANT	2.6878	0.01990		
$\left(\Delta-132^{\circ}\right)$	$-0.1694 / 10$	$0.5931 / 10^{3}$	0.0000	1.0000
$\left(\Delta-132^{\circ}\right)^{2}$	$0.1326 / 10^{2}$	$0.8486 / 10^{4}$	0.0000	1.0000
$\left(\Delta-132^{\circ}\right)^{3}$	$-0.4839 / 10^{4}$	$0.1301 / 1.0^{4}$	0.0004	1.0000
$P=2.6878-0.01694$	$(\Delta-1.32)+0.1326\left(\frac{\Delta-132}{10}\right)^{2}$	$-0.0484\left(\frac{\Delta-132}{10}\right)^{3}$		

```
IJ BRANCH
81 data points
```

$\mathrm{R}^{2}=0.8156$

INDIPENDENT. VARIABLE	COIFFICIENT	STI.ERROR	F-PROB.	TOLERANCI
CONSTANT	3.4556	0.0255		
$\left(\Delta-134^{\circ}\right)$	$-0.1833 / 10$	$0.1376 / 10^{2}$	0.0000	1.0000
$\left(\Delta-134^{\circ}\right)^{2}$	$-0.3761 / 10^{3}$	$0.3076 / 10^{3}$	0.0223	1.0000
$P=3.4556-0.0183(\Delta-134)-0.03761\left(\frac{\Delta-13 A}{10}\right)^{2}$				

INDEPENDE:VT	VARIABLE	COEPFICIENT	STD. ARUOR	F-Pleob	TOLERANC:
CONSTANT		3.5480	0.0194		
$\left(4.145^{\circ}\right)$		0.1172	0.8280/10 ${ }^{3}$	0.0000	1.0000
$\left(0.145^{\circ}\right)^{2}$		-0.5964/10 ${ }^{2}$	$0.2310 / 10^{3}$	0.0000	1.0000
$\left(\mathrm{A}-145^{\circ}\right)^{3}$		$0.1203 / 10^{3}$	$0.4134 / 10^{\circ}$	0.0.0550	1.0000

$P=3.5480+0.1172(16-145)-0.5964\left(\frac{1-145}{10}\right)^{2}+0.1203\left(\frac{1-145}{10}\right)^{3}$

curvature near the start of the $A B$ branch fitted by polynomial regression can be attributed to the lack of data in the range 150° to 160°. Thus excellent agreement between the sets of curves was.: obtained. However, the smoothed $d T / d \Delta$ values interpolated from the summary points were used for the inversion process. 2.4 Inversion of Smoothed $d T / d \Delta$ values using the Herglotz-Wiechert Integral
2.4.1 Description of the Herglotz-Wiechert inversion technique

As was shown in Appendix l.for a spherical and symmetrical earth model, the ray parameter p is given by

$$
p=\dot{r} \sin i / v=d T / d \Delta
$$

Also, the integrals for the distance Δ_{12} and traveltime T_{12} for a ray of parameter p terminating at levels r_{1} and r_{2}, where r_{1} > r_{2}, were derived:

$$
\begin{align*}
\frac{1}{2} \Delta_{12} & =p \int_{r_{2}}^{r_{1}} r^{-1}\left(\eta^{2}-p^{2}\right)^{-\frac{1}{2}} d r \tag{1}\\
\frac{1}{2} T_{12} & =\int_{2}^{r_{2}} \eta^{2} r^{-1}\left(\eta^{2}-p^{2}\right)^{-\frac{1}{2}} d r \tag{2}
\end{align*}
$$

where $\eta=r / v$ for convenience. These integrals may be solved either by numerical approximation or by direct integration when the velocity function is suitably defined. Consider the latter case for a multilayered earth where the velocity in each layer is described by a power law of the form $v=a r^{b}$, with a and b constants. Note that b is identical with \mathcal{g} of Appendix 1 . Thus $v(r)$ is continuous but $d v / d r$ is in general discontinuous at each tabulated point. If $v=a_{12} r^{b_{12}}$ in the layer bounded by radii r_{1} and r_{2}, substitution in equations (1) and (2) yields (Engdahlet al, 1968)

$$
\begin{align*}
& \frac{1}{2} \Delta_{12}=\left(1-b_{12}\right)^{-1}\left(\cos ^{-1}\left(p / \eta_{1}\right)-\cos ^{-1}\left(p / \eta_{2}\right)\right) . \tag{3}\\
& \frac{1}{2} T_{12}=\left(1-b_{12}\right)^{-1}\left(\left(\eta_{1}^{2}-p^{2}\right)^{\frac{1}{2}}-\left(\eta_{2}^{2}-p^{2}\right)^{\frac{1}{2}}\right) . \tag{4}
\end{align*}
$$

where η_{1} and η_{2} are the values of n at r_{1} and r_{2} respectively. For the ray which reaches it's deepest point within the layer, the value of P is equal to η_{2}, so that (3) and (4) become

$$
\begin{align*}
& \Delta_{12}=2\left(1-b_{12}\right)^{-1} \cos ^{-1}\left(p / \eta_{1}\right) \tag{5}\\
& T_{12}=2\left(1-b_{12}\right)^{-1}\left(\eta_{1}^{2}-p^{2}\right)^{\frac{1}{2}} \tag{6}
\end{align*}
$$

The radius of penetration r_{p} for this particular ray is determined from the velocity relationship and is easily seen to be given by

$$
\begin{equation*}
r_{p}=\left(a_{12} p\right)^{c_{12}} ; c_{12}=\left(1-b_{12}\right)^{-1} \tag{7}
\end{equation*}
$$

Using equations (3) to (6), the traveltime and distance of any ray or ray segment can be determined by building up the times and distances over the proper number of layers, each layer being represented by new values of a, b, and η. The values of a and b are calculated from a given velocity distribution for that layer bounded by radii r_{1} and $r_{2}\left(r_{1}>r_{2}\right)$ where

$$
\begin{align*}
& b_{12}=\ln \left(v_{1} / v_{2}\right) / \ln \left(r_{1} / r_{2}\right) \tag{8}\\
& a_{12}=v_{1} r_{1}-b_{12} \tag{9}
\end{align*}
$$

and v_{1} and v_{2} are the given values of $v a t r_{1}$ and r_{2} respectively.
The theory embodied in equations (3) to (9) has several important applications. It can be used in ray tracing to investigate complexity in traveltime curves caused by regions of high velocity gradients or low velocity layers or to correct epicentral distances for focal depth (see Section 2.2.1). Of importance to this study, however, is the fact that it can be used to derive $T-\Delta$ and $P-\Delta$ curves for a specified velocity distribution, thus enabling models to
be generated for comparison with the observational data. As well, the equations can be used to strip the earth to any required depth h by calculating the contribution Δ_{12} of the region down to h to the total distance Δ in question. The adjusted distance or the distance corresponding to the stripped earth is given by $\left(\Delta-\Delta_{12}\right)$ and the adjusted traveltime by ($\mathrm{T}-\mathrm{T}_{12}$).

Equations (3) to (9) formed the basis of the computer program (Wright, 1970) written to invert the $d T / d \Delta$ values by the HerglotzWiechert method and so generate a corresponding velocity distribution. Provided that $\eta=r / v$ is a monotonic decreasing fuction of depth beneath the surface, equation (I) can be solved to yield (Bullen, 1963).

$$
\begin{equation*}
\ln r_{0} / r_{1}=\pi^{-1} \int_{0}^{\Delta_{1}} \cosh ^{-1}\left(p / p_{1}\right) d \Delta \tag{10}
\end{equation*}
$$

where r_{0} is the mean radius of the earth, r_{1} is that radius where the velocity of the wave is $V_{1}, P_{1}=\eta_{1}$ is the parameter of a ray that penetrates to a depth $r_{0}-r_{1}$ and reaches the surface at a distance Δ_{1} from the source, and $V_{1}=r_{1} / p_{1}$. For convenience (10) can be written

$$
\begin{equation*}
r_{1}=r_{0} \exp \left(-\pi^{-1} \int_{0}^{\Delta_{1}} \ln \left(P / F_{1}+\left(\left(P / P_{1}\right)^{2}-1\right)^{\frac{1}{2}}\right) d \Delta\right) \tag{i1}
\end{equation*}
$$

To evaluate $v_{1}, d T / d \Delta$ as a function of distance from 0 to Δ_{1} is required so that r_{1} can be calculated from (11). $V=r_{1} / \rho_{1}$ can then be estimated. If a discontinuity exists, the earth must be stripped of the region down to the discontinuity before the calculations can proceed for the region beneath the discontinuity. If h is the depth to the discontinuity and $d T / d \Delta$ values are known from the observational data over the distance range Δ_{2} to $\Delta_{1}\left(\Delta_{1}>\Delta_{2}\right)$,
some existing model is used to fill in the distance range from 0° to Δ_{2} Then the contributions to the distances in the range Δ_{2} to Δ_{1} due to that region to depth h, for values of $d T / d \Delta$ between $p\left(\Delta_{2}\right)$ and $p\left(\Delta_{1}\right)$ are calculated by summation over the appropriate number of layers. The contributions are then subtracted fromthe appropriate distances between Δ_{2} to. Δ_{1} so that a $d T / d \Delta$ curve characteristic of a stripped earth of radius ro - h is obtained. The computations then proceed as before, using equation (11) with the difference that r_{o} is now replaced by $r_{o}-h$, and the distance range of integration is that of the stripped distances corresponding to Δ_{2} to Δ_{1}. The first stripped distance, i.e. corresponding to Δ_{2} should be equal to 0 , meaning that the depth h to the discontinuity used in the stripping technique is the maximum depth attained by the ray path of parameter $\rho\left(\Delta_{2}\right)$. The stripped distances increase from Δ_{2} to Δ_{1}. The computer program mentioned previously enabled the earth to be stripped to any appropriate discontinuity by evaluating (3) from an assumed velocity-depth model above the discontinuity. The quantity p in equation (3) refers to the observational $d T / d \Delta$ values to be inverted, π_{1} and n_{2} represent the $d T / d \Delta$ values, calculated from the velocity model assumed above the discontinuity for the corresponding velocity values V_{1} and V_{2}. Thus a table of $d T / d \Delta$ values versus stripped distance is obtained. It is interpolated to give values at 1^{0} distance intervals, beginning at the first stripped distance of 0°. This is to facilitate evaluation of the radius of penetration r_{1} in equation (ll) by means of simpson's rule of integration. r_{1} is evaluated for every third point in the table (i.e. the range of integration is from 0° to 2°, then 0° to 4°, then 0° to 6° etc. to obtain values of $r 1$, at $2^{\circ}, 4^{\circ}, 6^{\circ}$, etc.) \sin, $v=r / p$, and both r and p are known, the velocity v for the appropriate depth could
be calculated. Consequently, a velocity versus depth table can be derived from the measured $d T / d \Delta$ values in conjunction with an assumed velocity model above the discontinuity.

Finally, equations (3) and (4) are used to calculate the true distances and traveltimes at $d T / d \Delta$ intervals of $0.02 \mathrm{sec} / \mathrm{deg}$. for both the assumed and the calculated velocity distribution. These values together with the correspoinding $d T / d \Delta$ values, radius and depth of penetration as well as the velocity values at each $d T / d \Delta$ interval of $0.02 \mathrm{sec} / \mathrm{deg}$. were the final output of the computer program. Close examination of this table enabled assessment of any adjustments in velocity and discontinuity-depth values which might be necessary to ensure a better fit to the data. The entire procedure can be repeated for additional discontinuities.

2.4.2 Application of the Herglotz-Wiechert method to $d T / d \Delta$ values for the earth's core.

The boundary between the earth's mantle and core is discontinuous with a sharp decrease in compressional wave velocity from about $13.6 \mathrm{~km} / \mathrm{sec}$ to $8.1 \mathrm{~km} / \mathrm{sec}$. ($J-B$ values). Consequently, if the smoothed $d T / d \Delta$ for the $A B$ branch are to be inverted to obtain a velocity distribution for the outer core, the earth must be stripped to the mantle-core boundary. For this purpose, the velocity distribution corresponding to the J-B values was assumed to the mantle-core boundary at a depth of 2894 km . This distribution and the smoothed $d T / d \Delta$ values for the $A B$ branch were used to determine the velocity-depth distribution for the outer core. Because of the large discontinuous decrease in velocity at the core-mantle boundary, some difficulty was encountered in obtaining a satisfactory velocity-depth distribution, and an alternative but by no means poorer,procedure was adopted. The outer core
was assigned an initial velocity-depth distribution corresponding to the J-B tables. From this initial model the corresponding $d T / d \Delta$ and traveltimes values were calculated. The model was adjusted until a satisfactory fit of the calculated and the measured value was obtained.

The smoothed $d T / d \Delta$ data for the iJ branch were used to determine the depth to the first discontinuity in the transition region. This was done by using the velocity-depth distribution determined for the $A B$ branch, together with: the J-B distribution abouve the mantle-core boundary, to strip the earth to the depth where it was assumed that the discontinuity producing the receding BI branch was situation. This depth was adjusted until the stripped distance for the first IJ data point was as near 0° as possible. This ensured that the advancing IJ branch would start at the desired distance of about 134°. If this first stripped distance was positive, it meant that the depth to the discontinuity chosen was too shallow, with the result that the advancing IJ branch would start earlier than desired, while the receding BI branch would be correspondingly too long. Likewise, a negative stripped distance meaning that the discontinuity was too deep would result in a receding branch too short, and a later turning point for the advancing branch. The depth to the discontinuity was adjusted to give satisfactory results regarding the turning point of the advancing branch and the length of the receding branch. The corresponding velocity-depth values and traveltimes for the $I J$ branch were calculated as previously described. They were used in conjunction with the calculated velocities above the discontinuity (i.e. the $A B$ velocities and JB model) to determine a satisfactory turning point for the GH branch using the smoothed $d T / d \Delta$ data.for $G H$. This was repeated for the DF branch, fine adjustments of calculated velocities were necessary to obtain the best possible fit with the calculated traveltimes while at the same time ensuring that the
turning points for the various branches remained satisfactory, and that the measured $d T / d \Delta$ values required no significant adjustment.

In this manner, the measured $d T / d \Delta$ values for all four observed traveltime branches. were inverted to obtain a velocity model for the earth's core. This model is discussed further in Chapter 3, along with a general discussion on the results of the measurement and analysis procedures used in this study.
3.1 General Observations

During the measurement and analysis procedures described in Chapter 2, a number of peculiar observations were made. Generally, there has been no documentation in the published literature of similar observations. Because such observations may be relevant to other workers in the field, this section is devoted to a discussion of them.

While analysing the DF branch in the range 113° to 120°, a phase with a slightly lower $d T / d \Delta$ value and higher amplitude than the phase identified as PKP $_{\text {DF }}$ was consistently observed less than one second after the DF phase arrived. This second arrival with different apparent velocity may simply be a diffracted effect due to irregularity in structure at the source or at some point in the path of the array. Rapid lateral variation in elastic parameters near the array site may also be a possible explanation. The first arrival with higher $d T / d \Delta$ value and earlier traveltime may even suggest the presence of an additional discontinuity quite near to the inner core boundary, the second arrival in this case being the true DF phase. More data is needed before such a possiblility could be investigated. That this anamalous observation may be azimuthally dependent is suggested by the fact that the events in question arrived from azimuths near 300° and 60°, and at different distances.

In the range 120° to 130°, similar effects were noted somewhat sporadically, with great variation in the amplitude of the first arrival with respect to the second. Of particular interest in this range, however, is that at distances of $120.6^{\circ}, 121.7^{\circ}$ and 121.8°,
the second arrival, approximately 1.5 seconds after the DF arrival had higher $d T / d \Delta$ value and amplitude than the $D F$ phase. These may well be observations of the receding branch HD, and their amplitudes with respect to the amplitudes of the DF phase agree with Buchbinder's (1971) predictions.

Four events in particular deserve special mention. Those are events numbers $25,26,29$, and 30 in the distance range 125° to 130°, all arriving from azimuths near 150°. These were the first events over the entire range to show any sign of precursors, but analysis of the precursors yielded puzzling results. For the first three events, precursors were observed just 3 to 4 seconds before the arrival of the DF phase. Analysis of their $d T / d \Delta$ values yielded results varying from 1.0 to $1.5 \mathrm{sec} / \mathrm{deg}$ for the first two events and 1.7 to $2.0 \mathrm{sec} / \mathrm{deg}$ for the third. The four th event showedaprecursor only 1 to 2 seconds before $D F$, and with similar values as the above mentioned precursors. The $d T / d \Delta$ value for $\mathrm{PKP}_{\mathrm{DF}}$ was low for all four events - approximately 1.4 to $1.5 \mathrm{sec} / \mathrm{deg}$ - and this was a general observation for all events in the azimuth range 100° to 160°. All four events showed a second set of presursors some 5 to 7 seconds before $\mathrm{PKP}_{\mathrm{DF}}$. Their $d T / d \Delta$ values were, on the average, slightly higher than the DF values, and on the basis that the $0 F$ values were low, they could have been, in the extreme, taken as belonging to the GH traveltime branch. This was not done, however, because their traveltimes, according to any existing models were too slow to belong to this branch. The focal depths of the events ruled out the possibility of them being $\mathrm{PPKP}_{G H}$ arrivals. A third set of precursors was noted on all four events approximately 8 to 9 seconds (and in one case 15 seconds) before $D F$, but their $d T / d \Delta$ values were too low to be meaningful. These observations could be an azimuthal
effect as the events all occur at azimuths near 150°, but at different distances. No satisfactory explanation for the precursors can be given.

At least ten events in the range 134° to 139° showed precursors which were unusual. Some of these arrived approximately 4 seconds before PKP $_{\text {DF }}$ with $d T / d \Delta$ values of about 3 to $4 \mathrm{sec} / \mathrm{deg}$ while others arrived only 1 to 2 seconds before $D F$ with $d T / d \Delta$ values of $2.6 \mathrm{sec} / \mathrm{deg}$. Yet others had $d T / d \Delta$ values of about 3.3 to $3.7 \mathrm{sec} / \mathrm{deg}$ but arrived only one second before DF. (The above mentioned values are the $d T / d \Delta$ values uncorrected for local structure. Such a correction, on the basis of the $P_{K P} d T / d \Delta$ value, would result in about a 5% increase in their magnitude). The possibility of these phases being $P P K P_{1 J}$ and $\operatorname{PPKP}_{G H}$ were ruled out on the basis of focal depth of the events in question. It may be possible that they are due to some source of multiple arrivals deep in the crust (as for example faulting near the base of the crust (Wright, 1970)). On the basis of traveltimes and $d T / d \Delta$ values it is likely that some of them are observations of the receding branches $B I$ and $J G$.

In the distance range 131.6° to 138.9°, some 20 events showed phases arriving 2 to 4 seconds after the DF phase. In the majority of cases, these 2 nd arrivals had slightly higher $d T / d \Delta$ values and amplitudes than the DF phase. They could probably be observations of the receding brand $H D$, but if Buchbinder (1971) is correct, their amplitudes at the distances in question should be lower than that of the DF arrivals. This lower amplitude behaviour was observed in only four of the 20 events. The high-amplitude data of 9 of these events also showed precursors some 2 to 4 seconds before the DF arrival, with $d T / d \Delta$ values approximately equal to or only slightly lower than the $d T / d \Delta$ values for the $D F$ phase. Wright (personal communication, 1972) has made similar observations of the precursors
over the same distance range from seismograms recorded at the Yellowknife seismic array. However, no satisfactory explanation for these phases can be made at the present time.

3.2 Specific Observations Concerning PKP Phases

3.2.1 Identification of Phases

Since ultimately the model generated in this study depends upon the identification of the individual phases, a few comments on this subject would seem to be appropriate. The DF phase was easily identified up to distances of about 140° as being the most prominent arrival on the record. This is in addition to identification on the basis of $d T / d \Delta$ and traveltime measurements. At distances of about 140° to about 146°, identification became somewhat difficultdue to the near-simultaneous arrivals of all the phases. Beyond 146°, it was easily identified on the basis of traveltime and apparent velocity. Identification of the $A B$ phase likewise proved easy in the distance range 150° to 176° because of $i t s d T / d \Delta$ values and longer traveltime which effectively separated it from the other phases. Even in the early part of its range from about 145° to 150°, no problem was encountered in separating PKP $_{A B}$ from $P K P_{1 J}$, both of which tend to have similar values of $d T / d \Delta$ near 145°. The $A B$ phase always arrived after the $I J$ phase and its uncorrected $d T / d \Delta$ value was always slightly higher than that of the IJ phase.

In the range 132° to 138°, separation of the $I J$ and $G H$ phases proved easy on the basis of their $d T / d \Delta$ and traveltime measurements. However, in the range 138° to 142° where the time separation of the two phases narrowed greatly and the true $d T / d \Delta$ values were sometimes masked by local structural effects, identification became more difficult and was of ten made after close examination of the $d T / d \Delta$ values obtained using rejection levels of both 0.02 and 0.04
seconds on the seismometer residuals. The greatest weight was attached to the 0.02 sec . rejection measurement since this is the higher precision measurement. In one or two instances, the identification was made solely on a traveltime basis if it was not possible to discriminate from one $d T / d \Delta$ value to another. Near 145°, the GH branch was masked by the IJ branch. In the latter part of the range beyond 145°, the two phases could once more be easily separated on the basis of their $d T / d \Delta$ and traveltime measurements.

On the basis of the measured $d T / d \Delta$ values and traveltimes, limited amplitude information (which will be discussed in Section 3.2.3) and an overall detailed analysis of all seismograms, it is believed that the PKP phases used in this study have been correctly identified.
3.2.2 Turning Points and End Points for the Traveltime Branches

At this point, it should be noted that it was not possible to determine precisely the turning point of the branch DF due to lack of data in the immediate region before 113.6°. As previously mentioned, the turning point was taken as the truncated value of 113.6 for use in the inversion techniques. This is not unreasonable as Adams and Randall (1964) place it at 110°, Bolt (1964) at 111.3°, Shurbet (1967) near 110°, and Ergin (1968) near 114°. Buchbinder (1971) placed the turning point near 120° on the basis of amplitude data.

The GH phase was first identified at a distance of 132.2°. The $d T / d \Delta$ values (uncorrected) for this phase were lower than the expected value by approximately 23%, but it arrived at the expected time per the Adams and Randall model. Since the $D F d T / d \Delta$ values on the same event were also 23% lower than expected, the phase was accepted as belonging to the GH branch. The same applies to the second observation of $G H$ at a distance of 134.8°. The first clear
and strong GH phase was observed at a distance of 134.8°. Thus, the turning point for the $G H$ branch was selected as being 132.0°.

Possible $1 J$ precursors occurring approximately 12 to 13 seconds before DF could be barely recognized at distances of 132.0°, $133.11^{\circ}, 134.5^{\circ}$, and 134.7°, but were too small, even on high amplitude data, to be analysed. The first identification of $\mathrm{PKP}_{\mathrm{IJ}}$ was also made on the record at a distance of 134.8°. Although its amplitude was similar to that of the background noise, $d T / d \Delta$ measurements could be made. Thus, it is likely that the iJ branch has its turning point in the range of 132° to 135°. For the purpose of inversion, it was selected as being 134°.

Failure to observe either the GH or IJ phases at shorter distances may be due, apart from the obvious explanation that the phases simply do not exist in this part of the range, to several other reasons. For example, after 1967, the array was triggered by an arrival at the cluster with a 13 second delay loop for recording. If $G H$ or IJ were present for distances less than 132° their amplitudes were insufficient to trigger the array, but the DF phase would trigger it. Unfortunately at these distances, the 13 seconds would not necessarily be sufficient to enable recording of the earliest precursons. This could have an important bearing in determining the turning points of the branches for, according to Buchbinder (1971), the turning point is that distance at which the amplitudes increase at greater distances but decrease rapidly at smaller distances, Any phases observed before the turning point are attributed to those phases partially reflected from the discontinuity and partially transmitted through it. Consequently, if the GH and IJ phases existed in the early part of the range, their amplitudes are so small, that by Buchbinder's criterion they do not in any case belong to the totally
transmitted advancing branches which were determined in this study. Another possible reason for failure to observe these phases, but which essentiadly leads to the same conclusion as above, is that the high-amplitude data was at times far too noisy for any coherent signals to be picked out. In other cases, there was a lack of high-amplitude data all together. In Section 3.1, four events which showed precursors in the range 125° to 130° were discussed. None of these precursors appeared even remotely to belong to either of the IJ or GH branches. This fact suggests that these phases do not exist in the range.

Owing to the sparseness of data in the range 150° to 160° it was not possible to define absolutely the end points of the $I J$ and GH branches. The last clear observation of IJ occurred at a distance of 150.89°. Events at distances 152.7° and 157° showed no evidence of the phase so that it seems likely that the end point of the branch is somewhere near 151°. This cannot be said with any certainty because of lack of data in this region. The last clear observation of GH also occurred at 150.89°. The event at 157.2° yielded a phase at the expected time of $G H$, but with $d T / d \Delta$ values lower than the expected value by about 25%. Since the $D F d T / d \Delta$ value was also low by approximately the same amount, the phase observed at 157.2° was accepted as belonging to the GH branch. Thus, the end point for the branch had to be greater than this distance and was chosen to be 158°.

The turning point for the $A B$ branch was assumed to be somewhere in the range 143° to 145°. Strong arrivals of a phase that looked like $A B$, were recorded at distances of 142.31° and 142.59° but inclusion of these values in the smoothing of the $A B$ data resulted in an undesirable flattening out of the $A B$ branch.

These arrivals possibly belong to the receding BI branch. Because of this ambiguity, they were not included in the $d T / d \Delta$ data for the $A B$ branch. For purposes of inversion, the turning point for this branch was selected as being'at 145°. The phase was observed out to 175°, the greatest distance for any event analysed in this study. 3.2.3 Amplitude Observations

Although absolute amplitudes from one event to another could not be compared because of lack of information as to the gain used on each seismogram, it was possible to compare . \quad the relative amplitudes of the different phases for any one particular event. This showed that at distances less than 142°, the largest phase on the seismogram is the DF phase, followed in magnitude by the GH, then the IJ phases. The GH amplitude varied from about $\frac{1}{4}$ to $1 / 3$ that of DF near 135°, to about $4 / 5$ that of DF near 140°. The 1 J amplitude varied from about $1 / 10$ to $1 / 4$ that of DF near 135° to $\frac{1}{2}$ to $3 / 4$ that of DF near 140°. Thus the variance in amplitude of the IJ phase was more pronounced than the GH phase in the distance range less than 142°, although it always remained smaller than the GH phase at these distances. At distances greater than 142° PKP $_{1 J}$ became more prominent than $\quad \mathrm{PKP}_{G H}$, but both were still smaller than the DF phase. Then, at about 145°, $1 J$ exceeded DF in amplitude while GH was approximately equal to or only slightly larger than DF in amplitude. IJ continued to be the most prominent phase for the rest of its distance range attaining a maximum amplitude 10 times that of DF. The GH amplitude usually lay just beneath the IJ amplitude. The $A B$ phase, entering at about 145° did so with amplitude greater than the DF amplitude but by 160°, its: amplitude had fallen to approximately the same or slightly less than the DF amplitude. Of particular interest is the fact that while Adams and Randall (1964)

Figure 3.1 A Record Section for the Phases DF,GH,IJ, AB. The IJ Phase is shown darkened.
indicate that the $G H$ phase is the most prominent on the record at distances between 145° and 153°, in this study the $1 J$ phase is the most prominent at these distances. Close examination of the behaviour of the theoretical amplitudes determined by Buchbinder (1971) indicate good agreement with the observationsjust discussed. 3.2.4 A Record Section for Core Phases.

Figure 3.1 is a traveltime - distance section for seismograms in the range where the precursor branches $G H$ and IJ were present. In compiling this record section, only 5 of the possible 20 traces have been reproduced for the sake of clarity.

The phases are identified by their $d T / d \Delta$ values on the record. In particular, the IJ phase is shown darkened throughout the record. This phase has not easily been observed in the past, and its clear observation is one of the significant results of this study.

Many of the observations discussed in the previous three sections are exemplified in this figure. The first seismogram at 134.80° is the one on which the IJ phase was first observed, and the GH phase was clear and prominent. The amplitude of the IJ branch with respect to the other branches can be seen to increase until at a distance of about 146° it exceeds the DF phase in amplitude. It becomes the most prominent phase, followed by GH , for the rest of its distance range. The decrease in time separation between the phases near 143° can be clearly observed. By 146.17°, the $1 J$ (and possibly GH) phase becomes a later arrival to the DF phase. At 147.6° the IJ phase is seen arriving after the $G H$ phase. The $A B$ phase is first observed at 145.24°. The decrease in slope of the traveltime branches from IJ to DF can be clearly observed.

3.3.1 Corrected $d T / d \Delta$ Measurements.

The corrected $d T / d \Delta$ measurements smoothed by the method of Summary values and by a polynomial regression technique were shown in Figures 2.9 and 2.10. The effect of restraining the $A B$ curve to both the Bolt traveltime tables and the JB traveltimes indicated that the restraint to the $J-B$ times gave a better fit to the corrected $d T / d \Delta$ data particularly in the early part of the $A B$ range where the curvature is steep. Even so, the best fit to the data in this region would have been one with greater curvature than that given by the $J-B$ restraint but this necessitated having summary points at almost the same distance but with widely differing $d T / d \Delta$ values. This could not be obtained with the distribution of available data for the region. The $A B$ curve smoothed by polynomial regression lies between the two curves smoothed by summary values, but in the early part of the range it tends to lean heavily in favour of the J-B restrained curve. Owing to the lack of data in the range 150° to 160° the curve here has slightly less curvature than would be expected. For the same reason, the curves smoothed by summary values in this region behaved somewhat erratically and were simply replaced by the expected J-B values.

The IJ branch smoothed by both methods agree reasonably well, as does the DF branch. The GH branch restrained to the Adams and Randall traveltime curve and smoothed by the summary values method agrees almost exactly with that obtained by the polynomial regression method. Owing to the fact that the Bolt restraint for this branch was truncated at 156° instead of 158° (Bolt places his GH end point at 156°) and that his traveltimes all lie beneath the Adams and Randall traveltimes for the same distances, the curve restrained to his model was shifted to higher $d T / d \Delta$ values and at

Figure 3.2 Fit of smoothed DT/DAcurves on to corrected data.

Figure 3.3 Fit of smoothed traveltime curves on to data.

Figure 3.4 Fit of smoothed reduced traveltime curves on to data.
the same time fell off more sharply near 156°.
The smoothed $d T / d \Delta$ values used in the actual inversion procedure were the $A B$ values restrained to $J-B$, the $I J$ and $D F$ data, and the GH data restrained to the Adams and Randall model. The fit of these curves to the corrected $d T / d \Delta$ measurements is shown is Figure 3.2. As determined by the x^{2} tests (Section 2.3.1)for the final summary points used in deriving these curves, the fit is good for all the branches observed in this study.

3.3.2 Travel-time Measurements

The traveltime measurements, after corrections for ellipticity and focal depth had been applied, were smoothed using the U.B.C. TRIP program as described in Appendix Va. The independent variables were the same as those used in the smoothing of the data, and the resulting regression equations are listed in Table 3.1. These equations were used to calculate the traveltimes at 1^{0} intervals. The corresponding traveltimes and reduced traveltime curves are superimposed on the data in Figures 3.3 and 3.4 respectively. That the fit is a good one is evident from the parameter R^{2} (which is discussed in Appendix $\underset{\text { Va) }}{ }$ for the different branches as shown in Table 3.1. Basically, the closer R^{2} is to the value unity, the better is the fit of the regression equation to the data. R^{2} has the lowest value of 0.986 for the $G H$ branch.

It should be noted that no corrections for structure beneath the array were applied to the measured traveltimes on the assumption that at the large distances involved, such corrections would be negligible.

The residuals $(0-C)$, between the smoothed and measured times are shown in Figure 3.5. A positive residual implies a late arrival with respect to the smoothed times and vice versa. The
 DF RRAXCll 105 data points
$r^{2}=0.9985$

INDETENDEKY	vari Ari.1:	COLPFIClE:T	STD. ARROR	F --PROB	TOLI:RANCI
COnstant		1119.4653	0.3729	0.0000	1.0000
($4-113$)		1.7650	$0.6556 / 10^{3}$	0.0000	1.0000
$(A-113)^{2}$		$0.1222 / 10$	$0.3536 / 10^{3}$	0.0000	1.0000
$(A-11 z)^{3}$		$-0.2681 / 10^{3}$	$0.2779 / 10^{4}$	0.0000	1.0000
Ta. 1119.465	3+1.7656	123) +1.222	$\left(\frac{\Delta-113.0}{10}\right)^{2}$	0.2681	$\left(\frac{-1}{10} 13\right)^{3}$

Cll brancil			34 data	ints
$\mathrm{R}^{2}=0.9863$				
INDEPENDENT VARIABLE	COEFFICIENT	STD.ERROR	F-IROB	TOLERANCI:
COiNSTANT	1141.2908	1.1931		
$\left(4-132^{\circ}\right)$	3.2137	0.0566	0.0000	1.0000
$\left(4-132^{\circ}\right)^{2}$	-0.2175/10	$0.7953 / 10^{2}$	0.0000	1.0000
$T=1141.2908+3.2137(\Delta-132)-2.175\left(\frac{\Delta-132}{10}\right)^{2}$				

IJ BRENCI	26 data points			
$\mathrm{R}^{2}=0.9915$				
INDEPESDENT VARIARJ.E	COEFFICIENT	STi . EPPOR	F-PROB	TOLERANCE
CONSTんYT	1140.2857	1.1746		
$\left(\Delta-134^{\circ}\right)$	3.7487	0.0655	0.0000	1.0000
$\left(\Delta-134^{\circ}\right)^{2}$	-0.19410	0.0142	0.01808	1.0000
$T=1140.2857+3.7487(\Delta-134) .-1.9410\left(\frac{\Delta-134}{10}\right)^{2}$				

$A B \mathrm{BPABCO}$	23 data points			
$R^{2}=0.9079$				
INDI:PH:NGLANT VARIMILE	COEFFICIENT	STH. ARROM	F-PROB	TOLI:RAVCl:
conetant	1180.8818	0.7517		
($4-145^{\circ}$)	3.8276	0.0432	0.0000	1.0000
$\left(1 .-14.5^{\circ}\right)^{2}$	$0.13923 / 10$	$0.6171 / 10^{\circ}$	0.0338	1.0000
$T=1130.8818+5.8376$	$(1-145)+1.3 .23\left(\frac{\Delta-1.5}{10}\right)^{2}$			

Travel-Time Residuals

Figure 3.5 Traveltime Residuals ($0-\mathrm{C}$).

Travel-Time Differences

Figure 3.6 Traveltime Differences.
residuals show the least scatter for the DF branch. Thisisa natural consequence of the fact that the unsmoothed times for the branch closely defined the regression curve. The larger scatter in the unsmoothed IJ and GH times (Figure 3.3) are duplicated. by their corresponding.residuals. The scatter of the residuals for the $A B$ branch may be more a consequence of the sparseness of the data points over the large distance range of the branch, so that the regression curve could not be precisely defined by the data. Also the onset of this phase is of ten difficult to pick.

The traveltime differences of the smoothed times with respect to various traveltime models already in existence are shown in Figure 3.6. The smoothed $A B$ and DF times agree more closely with the corresponding $J-B$ values, but the smoothed $A B$ times may indicate that lesser curvature is required in the $J-B$ curve near 155°, so that the new times are about 1 second later than the present $J-B$ times. It should be remembered, however, that the smoothed $A B$ traveltime curve may not be an adequate representation of the true situation owing to the lack of data over the range. The IJ branch requires greater curvature than the Adams and Randall model near its beginning and lesser curvature near its end point. The GH branch is shifted to lower traveltime than those defined by the Adams and Randall model, and to higher times with respect to the Bolt model. It requires greater overall curvature than that demanded by both models. Again, the behaviour of the smoothed traveltimes of the precursor branches near their end points may simply be a consequence of the least squares fit in which too large emphasis is placed on values near the end points of the branches. Obviously, any error in these end points would tend to bias the resulting smoothed times near these regions in a

Figure 3.7 Velocity Model UBC1. for Earth's Core.
corresponding manner. This fact is important when it comes to adjusting the final velocity model in order to obtain agreement between the calculated and the smoothed times. On account of this biasing of times near the end points of the precursor branches, exact agreement of the model times and smoothed times in these regions is not to be exclusively demanded. It is of more impor tance, however, that the agreement be within the limits imposed by the scatter of the traveltime residuals themselves, for the respective branches. 3.4 Velocity Model UBC1

Figure 3.7 shows the velocity model, UBC1, which represents the best fit to all data analysed in this study. of all the models described in Section 1.2, it most closely resembles that suggested by Adams and Randall (1964).

The basic difference in the two models lies in the location of the turning points for the different branches and in the magnitude of the change in $d T / d \Delta$ along the receding branches. From these two differences arise the other dissimilarities: depth to the corresponding discintinuities, magnitude of the velocity jumps at these dicontinuities, and traveltime gradients in the two shells defined by the discontinuities.

In the process of fitting the $A B$ branch to the data, it was found that the $J-B$ values of velocity for the outer core had to be reduced slightly from a depth of about 4000 km downwards, in order to get agreement between the calculated and measured traveltimes and $d T / d \Delta$ values. Too great a reduction at this depth however, resulted in an undesired feature, the formation of a caustic in the early part of the $A B$ branch and traveltimes that were too slow. Thus, a good restraint was put on the magnitude of the velocity reduction.

The first velocity discontinuity in UBCI giving rise to the receding branch BI of the traveltime curve is at a depth of 4393 $\mathrm{km}(0.569 \mathrm{Rc})$. The end point of the branch $A B$ is at 144.4°. The turning point of the advancing branch $1 J$ is located at 134.2° and the magnitude of the jump at this discontinuity is $0.108 \mathrm{~km} / \mathrm{sec}$. The value of $d T / d \Delta$ near B is $3.52 \mathrm{sec} / \mathrm{deg}$ and near 1 it is 3.48 $\mathrm{sec} / \mathrm{deg}$. The turning point I in UBC1 is 4.2° later than that in the $A \in R$ model and this results in the slightly deeper discontinuity for the UBC1 model. The change in $d T / d \Delta$ along the receding branch Bl for UBCI is slightly less than that in the $A \& R$ model, and this, together with the later turning point \mid for UBC1, results in a smaller velocity jump. The depth to the first discontinuity in model UBCT is well above the level 0.54 Rc (depth 4497 km) to which rays would have to penetrate in order to form a caustic at a distance of about 143°. It should be noted that the large amplitude arrivals near this distance (see Figure 3.1) were associated with arrivals of the IJ phase, rather than as the result of a caustic at B.

The second discontinuity giving rise to the receding JG branch,occured at a depth of 4810 km . in UBC1. The magnitude of the velocity jump at the discontinuities $0.237 \mathrm{~km} / \mathrm{sec}$. The end point of the 1 J branch occurs at 131.9° with $d T / d \Delta$ value of $2.66 \mathrm{sec} / \mathrm{deg}$. The later starting point for G, and the smaller change in $d T / d \Delta$ along JG for model UBCl results in a smaller velocity jump for this model than in the $A \& R$ model.

The effect of using the higher $\alpha T / d \Delta$ values for the $G H$ branch, due to restraining the smoothed data to the Bolt traveltime curve rather than the $A \& R$ curve, was to raise the discontinuity to about 4765 km and to cause a slightly higher velocity jump of $0.287 \mathrm{~km} / \mathrm{sec}$ at
the discontinuity. The change in $d T / d \Delta$ along JG remained the same as before, but the turning points J and G were slightly earlier and later respectively. However, UBC1 was generated from the $d T / d \Delta$ measurements restrained to the $A \& R$ curve.

The velocity gradient in the first shell defined by the first two discontinuities of UBC1 is initially positive then slightly less than zero and the thickness of the shell is 417 kms . Adams and Randall required a more negative gradient.in the region on account of their larger velocity jump at the discontinuity.

The third discontinuity at the inner core boundary, producing the receding branch $H D$, occurs at exactly the same depth as that obtained by Jeffreys (1939) - 5120 km . This implies an inner core of radius 1251 km . The magnitude of the velocity jump at the discontinuity is $0.92 \mathrm{~km} / \mathrm{sec}$ while the end point H or branch $G H$ is located at 158.6° with $d T / d \Delta$ value of $2.16 \mathrm{sec} / \mathrm{deg}$. The turning point D is located at 113.2° with $d T / d \Delta$ value of $1.96 \mathrm{sec} / \mathrm{deg}$.

The second and third velocity discontinuities define a second shell surrounding the inner core. This shell is 310 km . thick and has slightly negative gradient. This negative gradient can only be eliminated by placing the turning point D at a later distance and the end point H at at an earlier distance. The depth to the second discontinuity would increase and the velocity jump at the discontinuity would decrease, enabling the gradient in the second shell to be non-negative. Such requirements cannot be met by the data. The velocity distribution in the inner core closely follows that of Buchbinder (1971).

A direct consequence of the smaller negative velocity gradients and smaller velocity jumps in the transition region of

TABLE $3.2 a$ POSITION OF CUSPS FOR MODEL UBC1:

CUS P	\triangle	T		DT/D ${ }^{\text {d }}$
	(DEG)	BIN	SEC	(SEC/DEG)
B	144.4	19	38.7	3. 52
I	134.2	19	2.2	3. 48
J	152.6	20	2.3	2. 74
G	131.9	19	4.1	2.66
H	158.6	20	12.1	2. 16
D	113.2	18	39.4	1.96

RESULTS OBTAINED BY RESTRAINING GH DATA TO BOLT'S TRAVELTIME CUFVE:

J	151.6	19	58.9	2.82
G	132.3	19	4.8	2.74
H	158.9	20	11.9	2.16

TABLE 3.2b VELOCITY-DEPTH VALUES FOR UBC1.

DEPTH	VELOCITi	DEETH	VRLOCITY	DEPTH	VELOCITY
(KM)	($\mathrm{MM} / \mathrm{SEC}$)	(KM)	(KM/SEC)	(KM)	(KH/SEC)
28911	13.6700	3659	9.1100	4810	10.0009
2894	8.1000	3728	9.2000	4810	10.2370
2964	8.1800	3798	9.2800	4829	10.2698
3033	8.2600	3858	9.3700	4900	10.2440
3103	8.3500	3937	9.4800	5000	10.2070
3172	8.4400	4076	9.5000	5120	10.1600
3242	8.5300	4146	9.5500	5120	11.0300
3311	8.6300	4215	9.6200	5400	11.1300
3381	8.7400	4393	9.8000	5600	11.2400
3450	8.8300	4393	9.9080	5300	11.2600
3520	8.9300	4488	10.0105	6200	11.2800
3589	9.030 .0	4500	10.0000.	6371	11.2800
	RESDLTS	OBTAINED BY EESTRAINING GH DATATO BOLT'S mRaVELTIME CURVE			

4500
4765
4765
4829

DISTANCE	DF		GH		IJ		AB	
(DEG)	MIN	SEC	MIN	S EC	MIN	SEC	MIN	SEC
130.0	19	12.0						
131.0		13.9						
132.0		15.8	19	4.4				
133.0		17.7		7.1				
134.0		19.5		9.7	19	1.6		
135.0		21.4		12.4		5.1		
136.0		23.2		15.1		8.5		
137.0		25.0		17.7		11.9		
138.0		26.9		20.3		15.3		
139.0		28.7		22.9		18.7		
140.0		30.5		25.5		22.0		
141.0		32.3		28.1		25.6		
142.0		34.0		30.7		28.9		
143.0		35.7		33.3		32. 3		
144.0		37.4		35.9		35.6		
145.0		39.2		38.5		38.8	19	40.4
146.0		40.9		41.1		42.0		44.2
147.0		42.6		43.7		45.2		.48.1
148.0		44.2		46.3		48.4		52.0
149.0		45.3		48.8		51.5		56.1
150.0		47.4		51.3		54.6	20	0.2
151.0		48.9		53.8		57.7		4.4
152.0		50.4		56.3	20	0.6		8.6
153.0		51.8		58.7				12.8
154.0		53.2	20	1.2				17.0
155.0		54.5		3.6				21.2
156.0		55.8		6.0				25.5
157.0		57.2		8.4				29.8
158.0		58.5		10.7				34.1

model UBC1 is that they would cause the central density of the earth's core to have a lower value than that necessitated by the Adams and Randall model (see Section 1.3.1) without greatly affecting the rigidities of the transition region and the inner core (Section 1.3.2.).

The position of the traveltime cusps and the velocity depth relationship for UBC1 are shown in Tables 3.2a and 3.2b respectively. The uncertainties in the depths to the discontinuities are estimated at being of the order of 10 km on the basis of obtaining satisfactory turning points for the various branches.

The traveltimes of model UBC1 listed in Table 3.3 agree with the smoothed traveltimes determined in this study within the limits imposed by the scatter of the residuals. The greatest discrepancy was obtained for the early part of the GH branch. It appeared that the smoothed times were too early by about two seconds in this vicinity. This was undoubtedly the result of a biasing of the regression curve towards early times owing to the first measured arrival time being early, possibly as a result of epicentre mislocation. The model times for the GH branch tend to be shifted downwards by an average of about 1 second with respect to the Adams and Randall times, and upwards by about 3 to 5 seconds with respect to Bolt's traveltimes in the latter and earlier part of the branch respectively. The model times for the IJ branch agree almost exactly with the model times of Adams and Randall, the only difference being that the UBC1 times are about 0.2 seconds earlier up to about 146°, and 0.1 seconds later beyond this. The model times for the $A B$ and $D F$ branches agree with those of the J-B traveltime tables.

It must be emphasized that model UBC1 is that model which
gave the best fit to the $d T / d \Delta$ and traveltime measurements made in this particular study. A more efficient distribution of data than that used in the study could result in small modifications (such as changes in location of the turning points of the branches, with resulting effects) to this model.

Measurements of traveltime and traveltime gradients $d T / d \Delta$, have been made at the Warramunga seismic array for PKP phases from 115 earthquakes over the distance range 113° to 176°. The data have been used to obtain a velocity-depth model for the earth's core.

The $d T / d \Delta$ measurements at WRA were strongly perturbed by local structure beneath the array and an empirical method of correcting for this effect was employed. The corrected $d T / d \Delta$ values were smoothed by the method of summary values and a polynomial regression technique. Both methods gave results which were in reasonably good agreement. The traveltime gradient measurements smoothed by the summary value method were the ones actually used in inverting the data to obtain a velocity model since they had been restrained to acceptable traveltime curves in order to remove any random error.

The smoothed $d T / d \Delta$ values were inverted by the HerglotzWiechert method to derive a velocity-depth model for the earth's core. This model, UBC1, was the one which gave the best fit to the measured $d T / d \Delta$ and traveltime data.

The significance of this study is that it revealed clearly the existence of two precursor branches - IJ and GH - to the main DF traveltime branch for the earth's core. Previously, only one of these branches, the GH one, had been widely accepted. This single precursor branch resulted in a transition region for the earth's core containing two velocity discontinuities and one "shell" surrounding the inner core. On the other hand, the existence of two precursor branches, $G H$ as well as $I J$, gives rise to three velocity discontinuities
and two shells surrounding the inner core. This additional branch, PKP $P_{I J}$, accounting for the earliest precursors to $P K P_{D F}$ at distances less than 145°, has been consistently observed in this study. The corrsequences of its observation are manifested in the form of a triple-discontinuity, double-shell transition region for model UBC1.

The first velocity discontinuity of $0.11 \mathrm{~km} / \mathrm{sec}$ occurs at a depth of 4393 km . The region between the core-mantle boundary at a depth of 2894 km . and this discontinuity generates the $A B$ traveltime branch for the earth's core. This branch has its' turning point at 144.4° and initial slope of $3.52 \mathrm{sec} / \mathrm{deg}$.

The second discontinuity with an associated velocity jump of $0.24 \mathrm{~km} / \mathrm{sec}$ occurs at a depth of 4810 km . The region between the first and second discontinuities, a shell approximately 417 km . thick generates the earliest precursor branch $1 J$. This branch begins at 134.2° with an initial slope of $3.48 \mathrm{sec} / \mathrm{deg}$ and terminates at 152.6° with a slope of $2.74 \mathrm{sec} / \mathrm{deg}$.

The third velocity discontinuity of magnitude $0.92 \mathrm{~km} / \mathrm{sec}$ occurs at the inner core boundary at a depth of 5120 km . The region between the second and third discontinuities, a shell approximately 300 km thick, generates the second precursor branch GH. This branch has its turning point at 131.9° with an initial slope of $2.66 \mathrm{sec} / \mathrm{deg}$ at that point and extends to 158.6° with a slope of $2.16 \mathrm{sec} / \mathrm{deg}$.

The region beneath the third discontinuity, i.e. the inner core of radius $1251 \mathrm{~km} .$, generates the main traveltime branch, $D F$, for the earth's core. The turning point of this branch is 113.2° and its' initial slope is $1.96 \mathrm{sec} / \mathrm{deg}$. The branch terminates at 180.0° with zero slope.

The consequences of a double-shell transition region would
be manifested in other core phases as well. Thus, phases other than PKP (such as SKP,PKS,SKS) should be closely examined for corroborative evidence of a triple-discontinuity transition region. Such a region would have the same effect, producing two additional branches to the traveltime curve, on all core phases although the magnitude of the effect would vary. Some problems could arise in such a study. The phases SKS, PKS, and SKP never occur as first arrivals and the first two require horizontal component seismometers for optimum recording. Also, since the periods of these phases are considerably longer than that for PKP, identification and subsequent measurement of the precursors could be more difficult.

Amplitude measurements in addition to $d T / d \Delta$ and traveltime studies similar to those made in this project would be most useful in defining closely the turning points of the traveltime branches. This could have important consequences on the final core model derived.

While it is not expected that the proposed velocity model, UBC1, for the earth's core will be accepted as the ultimate one, major changes to this model are not presently envisaged. The methods used in this study have enabled a more definitive identification of the traveltime branches and it is upon such indentification that any reliable velocity model depends.

Adams, R.D. and M.J. Randall, 1963. Observed Triplication of PKP, vol. 200, NO. 4908, 744-745

Adams, R.D. and M.J. Randall, 1964. The fine structure of the Earth's core, B.S.S.A., vol. 54, NO. 5, 1299-1313

Adams, R. D. and M. J. Randall, 1969. Distance corrections for deep focus earthquakes. Geophys. J. R. astr. Soc., vol. 18 329-330.

Arnold; E.P., 1968, Smoothing traveltime tables. B.S.S.A., vol. 58, 1345-1351

Birtill, J.W. and F.E. Whiteway, 1965. The application of phased arrays to the analysis of seismic body waves. Phil. Trans. Roy. Soc. Lond. A, vol. 258, 421-493

Bolt, B.A., 1959. Traveltimes of PKP up to 145 . Geophys. J.R. astr. Soc., vol. 2, 190-198

Bolt, B.A., 1962 Gutenberg's early PKP observations. Nature vol. 196, 122-124

Bolt, B.A., 1964. The velocity of seismic waves near the Earth's centre. B.S.S.A., vol. 54, 191-208

Bolt, B.A., 1968. Estimation of PKP traveltimes. B.S.S.A., vol. 58, NO. 4, 1305-1324

Cleary, J. R., C. Wright and K. J. Muirhead, 1968. The effects of local structure
upon DT/DAmeasurements at the Warramunga seismic array. Geophys.
J., vol. 16, 21-29

Buchbinder, G.R.R., 1971. A velocity structure of the Earth's core. B.S.S.A., vol. 6I, NO.2, 429-456

Bullen, K.E., 1938. Ellipticity corrections to waves through the earth's central core. M.N.R.A.S., Geophys. Suppl., vol. 4, 317-331

Bullen, K.E., 1963. An introduction to the theory of Seismology, 3rd Edition, Camb. Univ. Press, Cambridge

Carder, O.S., D.W. Gordon and J.N. Jordan, 1966. Analysis of surface foci traveltimes. B.S.S.A., vol. 54, 815-840

Cleary, J.R, and A.L. Hales, 1966. An analysis of the traveltime of P waves to North American stations, in the distance range 32 to 100 . 8.S.S.A., vol. 56, 467-489

Corbishley, D.J., 1970. Multiple array measurements of the P wave traveltime derivative. Geophys. J., vol. 19, 1-14

Engdahl, E. R., J. Taggart, J. L. Lobdell, E.P. Arnold and G. E. Clawson, 1968. Computational methods. B. S. S. A., vol. 58 1339-1344.

Ergin, K., 1967. Seismic evidence for a new layered structure of the Earth's core. J.G.R., vol. 72, N0.14, 3669-3687

Evernden, J.F., 1953. Direction of approach of Rayleigh waves and related problems - 1. B.S.S.A., vol.43, 335-374

Fisher, R.A., 1953. Dispersion on a sphere. Proc. Roy. Soc. Lond, A, vol. 217, 295-305

Gogna; H.L., 1968. Traveltimes of PKP from Pacific earthquakes. Geophs. J., vol. 16, 489-514

Gutenberg, B., 1914 Ueber Erdbebenwellen, VIIA Nach. Ges. Wiss Goettingen. Math. Physik, KI.; 166-218.

Gutenberg, G., 1957. The Boundary of the Earth's Inner Core. Trans. Amer. Geophys. Union., vol. 38, 750

Gutenberg, B., 1958. Caustics Produced by Waves Through the Earth's Core. Geophys. J., vol.3, 238

Gutenberg, B. and C.F. Richter, 1937. P' and the Earth's Core. M.N.R.A.S., Geophys. Suppl., vol. 4., 363

Hannon, W.J. and R.L. Kovach, 1966. Velocity filtering of seismic core phases. B.S.S.A., vol. 54, 441-454

Jeffreys, H., 1934. On smoothing and differentiation of tables. Proc. Camb. Phil. Soc., vol.30, 134-138

Jeffreys, H., 1937. On the smoothing of observed data. Proc. Camb. Phil. Soc., vol. 33, 444-450

Jeffreys,H., 1939. The times of core waves (second paper). M.N.R.A.S., Geophys. Suppl., vol. 4, 594-615

Jeffreys, H., 1961 Theory of probability. Third Edition, O.U. P. 214-216.
Jeffreys, H., and K.E. Bullen, 1940, 1967. Seismological Tables British Association for the Advancement of Science, Gray Milne Trust, London

Julian, B.R., D.Davies and R.M. Sheppard, 1972. PKJKP. Nature, vol. 235, 317-318

Keen, C.G.,J. Montgomery, W.M.M. Mowat, J.E. Mullard and D.C. Platt, 1965. British seismometer array recording systems, The Radio and Electronic Engineer, Vol. 30, 297-306

Kelly, E.J., 1964. Limited network processing of seismic signals. Massachusetts Inst. Technol. Group Rept. 44

Knopoff, L. and J.G.F. Macdonald, 1958. Magnetic field and central core of the earth. Geophys. J., vol. 1, 216

Kuhn, W. and S. Vielhauer, 1953. Boziehungen zwischen der Ausbreitungvon Longitudinal und Transversalwellen in relaxierden medien 2. Phyzik. Chem., vol. 202,214.

Lehmann, I., 1936. P'. Publ. Bur. Central Seism. Intern., Ser A, Trav. Sci., vol. 14, 87-115

Muirhead, K.J., 1968. Eliminating false alarms when detecting seismic events automatically. Nature, vol. 217, 533-534

Nguyen-Hai, 1961. Propagation des ondes dans le noyeau terrestre d'apres les seismes profonds de Fidji. Ann. Geophys., vol. 17, 60-66

Niazi, M., 1966. Corrections to apparent azimuths and traveltime gradients for a dipping Mohorovicic discontinuity, B.S.S.A., vol. 56, 491-509

Niazi, M., and D.L. Anderson, 1965. Upper mantle structure of western North America from apparent velocities of P waves. J.G.R., vol. 70, 4633-4640

Otsuka, M., 1966. Azimuth and slowness anomalies of seismic waves measured on the central California Seismic Array., B.S.S.A., vol. 56, 223-239 and 655-675

Shima, E., K. McCamy and R.P. Meyer, 1964. A Fourier transform: method of apparent velocity measurement. B.S.S.A., vol. 54, 1843-1854

Shurbet, D.M., 1967. The earthquake P phases which penetrate the earth's core. B.S.S.A., vol. 57, 875-890

Stacey, F.D., 1969. Physics of the earth's interior. Wiley, New York

Truscott, J.R., 1964. The Eskdalemuir sesmic array. Geophys. J., vol. 9, 59-67

Underwood, R., 1967. The seismic network and its applications. Ph.D. Thesis, Australian National University, Canberra

Watson, G.S., 1956. Analysis of sispersion on a sphere. M.N.R.A.S., Geophys. Suppl., vol. 7, 153-159

Whiteway, F.E., 1965. The recording and analysis of seismic body waves using linear cross arrays, The Radio and Electronic Engineer, vol. 29, 33-46

Wright, C., 1968. Evidence for a low velocity layer for P waves at a depth close to 800 km . Earth Planet. Sci. Letters, vol. $5,35-40$
-106 -
BIBLI OGRAPHY
(cont'd)

Wright, C., 1970. P wave investigations of the Earth's Structure ușing the Warramunga Seismic Array. Ph.D. Thesis, Australian National University, Canberra

APPENDIX I

A Short Review of Seismic Ray Theory

If the velocities of elastic waves were uniform within the earth, then seismic rays would be straight lines following, chords as in figure A.la, and the traveltime from a surface focus to an observatory at an angular distance \triangle from the focus would be

$$
\begin{equation*}
T=2 R / V \sin \Delta / 2 \tag{1}
\end{equation*}
$$

However, observations of traveltimes indicate that they increase less strongly with distance than is indicated by (1), and the $T-\Delta$ curves are more curved than this equation would suggest. The velocity at depth is thus greater than at the surface and seismic rays are refracted as in Figure A.lb.

Bullen (1963) has developed the theory applicable to an earth in which the velocity increases with depth. Figure A.lb shows the geometry of a ray in a multi-layered earth in which the velocity v increases with depth from the surface. It is assumed that the Earth is spherical and completely symmetrical about its centre in all its properties, and diffraction effects are ignored. Applying Snell's law to each of the boundaries A, B in Figure $A-1 b$. then

$$
\begin{equation*}
\operatorname{Sin} i_{1} / v_{1}=\operatorname{Sin} f_{1} / v_{2} ; \operatorname{Sin} i_{2} / v_{2}=\operatorname{Sin} f_{2} / v_{3} \tag{1,a}
\end{equation*}
$$

But from the two triangles,

$$
q=r_{1} \sin f_{1}=r_{2} \sin i_{2}
$$

From equation (Ja)

$$
\begin{align*}
\sin i_{1} / v_{1}= & r_{1} \sin f_{1} / v_{2}=r_{2} \sin i_{2} / v_{2}=r_{2} \sin f_{2} / v_{3} \\
& r \sin i / v=\text { constant }=p \tag{2}
\end{align*}
$$

or more generally,
where i is the acute angle between the ray and the radius at any point. p is called the parameter of the ray, and is constant for all points along the ray. The value of p differs from member to m ember of a given family of rays, and at the deepest point of penetration of any ray, where

A-I(a)Path of a seismic ray through a hypothetical uriform earth.

A-I(b) Seisric ray in three-layer earth.

AII(d).

Figure A-1 Seismic Ray Theory.
$\sin i=1$, is equal to the value of r / v at that point
Consider two rays of a family of rays with parameters p, and $p+d p$, traveltimes T and $T+d T$ subtending angles of Δ and $\Delta+d \Delta$ at 0 as shown in Figure A.lc, respectively. Let $P_{0} N$ be the normal to the ray through Q_{0}. Then

$$
\operatorname{Sin} i_{0}=N Q_{0} / P_{0} Q_{0}=V_{0} \cdot \frac{1}{2} d T / r_{0} \cdot \frac{1}{2} d \Delta
$$

and hence from equation (2),

$$
\begin{equation*}
p=r \sin i / v=d T / d \Delta \tag{3}
\end{equation*}
$$

Let P be any point of a ray whose parameter is p, with polar coordinates $(r, 0)$ as showin in figure $A . l d$ and let the arc length $P_{0} P$ be s. Then, from

$$
\begin{equation*}
r / v d \theta / d s=p \tag{2}
\end{equation*}
$$

and substituting for ds from the polar relation

$$
(d s)^{2}=(d r)^{2}+(r d \theta)^{2}
$$

equation (4) yields the relationship

$$
\begin{equation*}
d \theta= \pm p r^{-1}\left(n^{2}-p^{2}\right)^{-\frac{1}{2}} d r \tag{5}
\end{equation*}
$$

where for convenience, the parameter $\eta=r / v(=p$ at the deepest point of the ray). Integrating (5) between P_{0} and the deepest point of the ray, we obtain the expression for Δ,

$$
\begin{equation*}
\frac{1}{2} \Delta=p \int_{p}^{r_{0}} r^{-1}\left(n^{2}-p^{2}\right)^{-\frac{1}{2}} d r \tag{6}
\end{equation*}
$$

and the corresponding expression for T where

$$
\begin{equation*}
\frac{1}{2} T=\int_{r_{p}}^{r_{0}} n^{2} r^{-1}\left(n^{2}-p^{2}\right)^{-\frac{1}{2}} d r \tag{7}
\end{equation*}
$$

At this point, it is convenient to introduce the important functions ξ ond ξ where $\mathcal{G}=d \ln v / d \ln r=r / v d v / d r$, and $\xi=2 / 1-\mathcal{G}=2 d \ln r / d \ln \eta$. It can be shown that the downward curvature of a ray with its lowest point at some level r in the earth is given by $1 / v d v / d r$, and this curvature must be less than the curvature $1 / r$ of the level surface $a t r$, if the ray is to exist This condition implies that $\mathcal{G}<1$, or $\delta>0$, or $d \eta / d r>0$.

Introducing the functions \mathcal{Q} and β intc equations (6) and (7), and then differentiating the resulting equations lead to the expressions (Bullen, 1963)

$$
\begin{align*}
& d \Delta / d p=\xi_{0}\left(\eta_{0}^{2}-p^{2}\right)^{-\frac{1}{2}}+\int_{\xi_{p}}^{\xi_{0}}\left(n^{2}-p^{2}\right)^{-\frac{1}{2}} d \xi \tag{8}\\
& d T / d p=-\rho \xi_{0}\left(\eta_{0}^{2}-p^{2}\right)^{-\frac{1}{2}}+\int_{\delta_{p}}^{g_{0}} p\left(\eta^{2}-p^{2}\right)^{-\frac{1}{2}} d \xi \tag{9}
\end{align*}
$$

where the subscripts 0 refer to the values of the parameters at the earth's surface.

These equations are fur ther simplified by introducing the dimensionless variables $\mu=\eta / \eta_{0}, \lambda=\rho / \eta, T=t / \eta_{0}$, to become

$$
\begin{align*}
& d \Delta / d \lambda=-\delta_{0}\left(1-\lambda^{2}\right)^{-\frac{1}{2}}+\int_{\xi_{0}}^{\delta_{0}}\left(\mu^{2}-\lambda^{2}\right)^{-\frac{1}{2}} d \xi_{\delta}=-x+y . \tag{10}\\
& d T / d \lambda=-\delta_{0} \lambda\left(1-\lambda^{2}\right)^{-\frac{1}{2}}+\int_{\delta_{0}}^{\delta_{0}} \lambda\left(\mu^{2}-\lambda^{2}\right)^{-\frac{1}{2}} d \beta \tag{11}
\end{align*}
$$

Consider the relationship between Δ and T corresponding to different types of variation of v with r. Normal or 'ordinary' behaviour of . v with r entails that v increases slowly as r decreases, and that the rate of change of v is changing slowly. This implies that \mathcal{G} is negative and moderate in value, $d \mathcal{G} / \mathrm{dr}$ and $\mathrm{d} \xi / \mathrm{dr}$ are small, also $d \eta / d r$ is positive and \mathcal{G}_{0} is negative. From the relation $p=\eta_{0} \sin i_{0}$ p decreases steadily between n_{0} and zero as i_{0} goes from 90° (i.e. $\Delta=T=0$) to 0°. Since ξ_{0} is negative and $p=\eta_{0}$ when Δ is zero, it follows that for small values of Δ, X in equation (10) is large and positive. Owing to the smallness of d / dr and the range of integration for small Δ, Y is also small, so that for small $\Delta, d \Delta / d \lambda$ is large and negative, and consequently $d^{2} T / d \Delta^{2}$ is negative tending to o for small Δ. For small Δ, then, equations (10) and (11) can be written

$$
\begin{align*}
d \Delta / d \lambda & =\xi_{0}\left(1-\lambda^{2}\right)^{-\frac{1}{2}} \tag{12}\\
d T / d \lambda & =-\xi_{0} \lambda\left(1-\lambda^{2}\right)^{-\frac{1}{2}} \tag{13}\\
\Delta & =\xi_{0} \cos ^{-1} \lambda \tag{14}\\
T & =\delta_{0}\left(1-\lambda^{2}\right)^{\frac{1}{2}}=\xi_{0} \sin \left(\Delta / \xi_{0}\right)
\end{align*}
$$

The above equations hold for small Δ for normal behaviour of v, and for rays terminating at the surface of the earth $r=r_{0}$. For that segment of a ray, taken as lying wholly on one side of the ray's lowest point and terminating at the levels r, and r_{2} say, the values of Δ and T are from (14) and (15).

$$
\begin{align*}
& \Delta_{12}=\frac{1}{2} \xi_{0}\left(\cos ^{-1}\left(\lambda / \mu_{1}\right)-\cos ^{-1}\left(\lambda / \mu_{2}\right)\right) \tag{16}\\
& T_{12}=\frac{1}{2} \xi_{0}\left(\left(\mu_{1}^{2}-\lambda^{2}\right)^{\frac{1}{2}}-\left(u_{2}^{2}-\lambda^{2}\right)^{\frac{1}{2}}\right) \tag{17}
\end{align*}
$$

and the contributions to Δ, T and $d \Delta / d \lambda$ for the pair of segments of a whole ray which lie between levels r_{0}, and r_{1} are given respectively by

$$
\begin{align*}
& \xi_{0}\left(\cos ^{-\lambda}-\cos ^{-1}\left(\lambda / \mu_{1}\right)\right) \tag{18}\\
& \oint_{0}\left(\left(1-\lambda^{2}\right)^{\frac{1}{2}}-\left(\mu_{1}^{2}-\lambda^{2}\right)^{\frac{1}{2}}\right) \tag{19}\\
& \xi_{0}\left(-\left(1-\lambda^{2}\right)^{-\frac{1}{2}}+\left(\mu_{1}^{2}-\lambda^{2}\right)^{-\frac{1}{2}}\right) \tag{20}
\end{align*}
$$

Consider a region L in which the behavior of $v i=$ normal being
represented by

$$
\xi=\xi_{0}, \quad \xi=\xi_{0} \quad \text { or } \quad v=v_{0} \exp \left(r \xi_{0}\right)
$$

extending down to a level r_{1}, to be underlain by a layer N extending for some distance beneath r_{1}. Suppose the velocity increases discontinuously at the level r_{1}, so that the velocity immediately above r_{1}, va, is less than $v b$, the velocity just beneath r_{1}. Thus μb is less than μ_{a}. Let g have the constant value $k g_{0}$ in layer N where $k<1$, so that $\xi_{b} b<\xi_{j}$. Rays for which $\mu_{a} \leqslant \lambda \leqslant 1 \quad$ lie entirely in L and equations (12) (15) apply for this region. From equation (12), it is seen that $d \Delta / d \lambda$ is initially negative and finite as previously described, becomes less and less negative as λ decreases. The behavior is shown in section $A B$ of the curve in figure $A .2 a$. Rays for which $\mu b \leq \lambda \leq \mu_{a}$ also lie entirely in L but consist of rays internally reflected off the boundary at r_{1} and for these rays, from equations (18) - (20), we have

$$
\begin{align*}
\Delta & =\xi_{0}\left(\cos ^{-1} \lambda-\cos ^{-1}(\lambda / \mu a)\right) \tag{21}\\
T & =\xi_{0}\left(\left(1-\lambda^{2}\right)^{\frac{1}{2}}-\left(\mu_{a}-\lambda^{2}\right)^{\frac{1}{2}}\right) \tag{22}\\
d \Delta / d \lambda & =\xi_{0}\left(-\left(1-\lambda^{2}\right)^{-\frac{1}{2}}+\left(\mu_{a}-\lambda^{2}\right)^{-\frac{1}{2}}\right) \tag{23}
\end{align*}
$$

From equation (23) at $\lambda=\mu_{a}, d \Delta / d \lambda$ jumps discontinuously to $+\infty$ thereby decreasing through finite positive values as λ decreases, becoming zero at some point given by $\left(1-\lambda^{2}\right)=\left(\mu_{a}^{2}-\lambda^{2}\right)$

For rays whose lowest points are in $N, \quad \lambda<\mu b$ and the appropriate

A-2(b).

A-2(c).

Figure A-2. Behaviour of $d \Delta / i \lambda-\lambda, \lambda-\Delta$, and $T-\Delta$, curves for diccontinous incroese in velocity at a boudary.
equations are:

$$
\begin{align*}
\Delta & =\xi_{0}\left(\left(\cos ^{-1} \lambda-\cos ^{-1}(\lambda / \mu a)+k \cos ^{-1}(\lambda / \mu b)\right)\right. \tag{24}\\
T & \left.=\xi_{0}\left(\left(1-\lambda^{2}\right)^{\frac{1}{2}}-\left(\mu a^{2}-\lambda^{2}\right)^{\frac{1}{2}}+k\left(\mu b^{2}-\lambda^{2}\right)^{\frac{1}{2}}\right)\right) \tag{25}\\
d \Delta / d \lambda & =\xi_{0}\left(-\left(1-\lambda^{2}\right)^{-\frac{1}{2}}+\left(\mu_{a}^{2}-\lambda^{2}\right)^{-\frac{1}{2}}-k\left(\mu b^{2}-\lambda^{2}\right)^{-\frac{1}{2}}\right) \tag{26}
\end{align*}
$$

As λ decreases to the value μ_{b} in layer $N, d \Delta / d \lambda$ from (26) jumps discontinuously to $-\infty$, and as λ decreases beneath the value $\mu b: d \Delta / d \lambda$ increases through finite negative values resulting in the section $C D$ of the $d \Delta / d \lambda$ curve. Equations (14), (15), (21), (22) and (2't), (25) show that Δ and T are continuous functions of λ far rays in L and N. The $d \Delta / d \lambda$ (or $d \Delta / d p$)curve is illustrated in Figure A.2a, and the cortesponging p- $\boldsymbol{\Delta}$ and $\mathrm{T}-\boldsymbol{\Delta}$ curves in Figures A .2 b and $\mathrm{A}, 2 \mathrm{c}$ respectively. of importance is the fact that neither of the cusps 6 and C are associated with large amplitudes since $d \Delta / d \lambda$, and therefore $d \Delta / d e_{0}$ (where e_{e}, the angie of emergence is given by $p=\eta \operatorname{Cos} e_{0}$) at these points are not equal to zero. Branch BC corresponds to rays reflected off the discontinuity (receding branch) whilst $A B$ and $C D$ correspond to rays $r \in f r a c t e d ~ t h r o u g h ~$ layers L and N respectively. On the branch $B C, d \Delta / d \lambda$ and therefore $d^{2} T / d \Delta^{2} \quad$ is zerc at both B and c (where $\lambda=\mu b$ and μ_{a} respectively) and consequently $B C$ was virtually straight for sone distance from B, any marked curvature being near C, and branch CD likewise runs virtually staight for some distance from C , any marked curvature being near D. It can be seen that the above discussion applies to the velocity discontinuities in the transition region, and imposes the constraints on the traveltime curve mentioned in section 1.2.

For the case of a discontinuous: decrease in velocity, as at the mantle-core boundary, the situation is somewhat different. In this case, $V b<V a$ and $\mu b>\mu a$, and we assume that layer N extends downward far enough for μ to return through the value $\mu \mathrm{l}$. before the bottom of N is reached. For rays with lowest points in L, equations (12) - (15) still apply. For rays which penetrate N, (24) -

Figure $A-3$. Behaviour of $d \Delta / d \lambda-\lambda, \lambda-\Delta$, and $T-\Delta$ curres for discontinous decroase in velocity at a bjindorif.
apply, but since $\lambda<\mu_{a}$ for these rays, there are no rays with lowest points in the upper part of N for which $\mu_{a}<\lambda<\mu b$. Consequently at $\lambda=\mu a \quad$ there are discontinuities $S \Delta$ and $S T$ in Δ and T given by subtracting (14) from (24) and (15) from (25) respectively:

$$
\begin{align*}
& \delta \Delta=k \xi_{0} \cos ^{-1}\left(\mu_{a} / \mu b\right) \tag{27}\\
& \delta T=k \xi_{0}\left(\mu b^{2}-\mu a^{i}\right)^{-\frac{1}{2}} \tag{28}
\end{align*}
$$

For rays penetrating $N, \quad d \Delta / d \lambda$ from equation (26) has the value $+\infty$ at $\lambda=\mu 0$ and decrease as λ decreases from μa. Thus Δ and T decrease rapidly as λ decreases from μa, and provided N is deep enough reach minima given by the value of λ satisfying the equation.

$$
\begin{aligned}
& \text { blue of } \lambda \text { satisfying the equation. } \\
& \left(1-\lambda^{2}\right)^{-\frac{1}{2}}+k\left(\mu b^{2}-\lambda^{2}\right)=\left(\mu a^{2}-\lambda^{2}\right)^{-\frac{1}{2}}
\end{aligned}
$$

This minimum is the cusp D shown in Figure $A .3 c$ and since $d \Delta / d \lambda$ is zero at this point, D corresponds to a caustic. As before, at point $c d^{2} T / d \Delta^{2}$ is zero, and consequently the branch is virtually straight some distance from C, any marked curvature being near the caustic D. The corresponding $d \Delta / d \lambda-\Delta$ and $\lambda-\Delta$ curves are shown in Figures $A .3 a$ and $A .3 b$. The above discussions cover the variation in velocity obtained in the earth from the base of the mantle to the center of the earth's core. It is intended that they provide insight into the nature of the traveltime curves generated by velocity discontinuities in this region and the constrains imposed upon these curves by ray theory.

APPENDIX 2 LIST OF EARTHQUAKES USEO IN STUDY

Event No.	Date	Origin Time		Latitude	$\frac{\text { Longitude }}{(\text { Degrees })}$	$\frac{\text { Distance }}{\text { (Degress) }}$	$\frac{\text { Focal Depth }}{(\mathrm{Km} .)}$	Magnitude	$\frac{\text { Azimuth }}{\text { (Degrees) }}$
		1	Sec						
1	Jan. 14/69 23	2	7.9	13.175 N	29.203W	113.47	33.0 N	5.5	301.6
2	Oct. $21 / 698$	29	12.1	33.292 N	119.193W	114.11	10.0	5.1	51.6
3	Oct. 1867 I	11	44.8	79.8 N	2.4 E	116.50	33.0	5.7	351.5
4	June 12/69 15	13	31.1	34.405 N	25.061 E	116.60	25.00	5.8	299.2
5	liov, 23/67 13	42	1.6	80.2 N	1.0 W	116.70	10.0	5.8	352.3
6	Dec.19/68 16	30	0.0	37.232 N	116.477 W	116.80	0.0	6.3	57.6
7	Sept. 16/69 14	30	0.0	37.314 N	116.460 W	116.82	0.0	6.2	57.5
8	Oct.8/69 14	30	0.0	35.257 N	116.450 W	116.83	0.0	5.5	57.6
9	Oct.29/69 22	1	51.4	37.143 N	116.064 W	117.12.	0.0	5.7	57.8
10	Sept.6/63 14	0	0.1	37.135 N	116.047 W	117.13	0.0 G	5.6	57.8
11	Dec.25/68 12	17	20.8	35.130 N	24.330 E	117.27	40.0	5.0	299.9
12	Nov.21/67 17	2	25.0	72.70 N	8.5 E	119.20	51.0	5.5	343.9
13	Nov. 30/67 7	23	51.5	41.50 N	20.5 E	120.6	29.0	6.0	307.0
14	April 18/69 17	43	53.7	24.283 N	107.738W	120.92	33.0	5.0	73.1
15	Sept.26/67 11	11	23.7	33.60 S	70.5 W	121.70	84.0	5.8	155.6
15	Jan. 21/70 17	51	38.5	7.017 N	104.298W	121.80	33.0 N	6.2	94.1
17	Nov.1/69 11	8	20.9	23.148 N	107.934W	122.36	33.0 N	5.6	74.7
18	Dec.13/69 21	33	21.9	32.7085	69.972 W	122.71	105.00.	5.6	155.6
19	Oct.27/69 8	10	58.3	44.923 N	17.232 E	122.91	33.0 N	5.3	311.1
20	Sept.20/69 15	26	41.5	1.785 N	101.031W	123.0	33.0 N	5.5	101.2
21	Apr.26/69 6	2	49.0	30.645 S	71.542W	123.87	33.0 N	5.9	153.0
22	Nov.27/67 5	13	12.6	30.8 S	71.00 W	124.0	62.0	5.4	153.6
23	June 23/69.7	8	27.7	$18.373 N$	104.546 W	124.59	36.0	5.3	81.0
24	0c:.7/67 1	14	4.1	29.6 S	71.1 W	125.0	42.0	5.3	152.8
25	Nov.15/67 21	31	51.5	28.7 s	71.2 W	125.70	15.0	6.2	152.2
26	Nov. 13/69 7	51	29.5	27.8 s	71.65 W	126.29	33.0 N	5.8	151.2
27	Jan.6/68 23	27	21.2	27.8 S	71.1 W	126.50	33.0	5.8	151.7
28	Apr.17/69 17	37	22.4	23.26 s	67.786 W	127.11	82.0	5.0	154.2
29	Sept.2/69 3	47	9.1	27.745 S	66.191 W	128.47	174.00	5.5	156.2
30	Aug.20/67 15	3	36.2	25.2 S	69.0 W	129.70	109.0	5.6	152.2
31	Sept.8/67 8	59	59.3	23.4 S	70.7 W	130.50	33.0	5.5	149.2
32	Sept.21/69 2	0	54.3	23.552 S	68.080 W	131.55	120.00	5.5	152.1
33	Dec.29/68 16	29	31.1	23.975 S	66.673 W	131.77	205.0G	5.5	153.9
34	Sept.13/69 10	52	58.6	22.883 S	63.367 W	132.00	106.00	5.4	151.4
35	May 16/68 22	45	19.2	22.8835	68.6 W	132.00	104.0	5.0	151.1
36	Dec.25/67 10	41	31.6	21.50 s	70.4 W	132.20	53.0	5.8	148.2
37	June 6/69 22	25.	37.3	22.5115	63.418W	132.27	125.00	5.0	151.1

APPENDIX2 LIST OF EARTHQUAKES USED IN STUDY

Event No.	Date	Origin Time			$\frac{\text { Latitude }}{\text { (Degates }}$	$\frac{\text { Longitude }}{\text { (Degress) }}$	$\frac{\text { Distance }}{\text { (Degrees) }}$	$\frac{\text { Focal Depth }}{\text { (kra) }}$	Magnitude	$\frac{A \times i m u t!}{(\text { aegress }}$
			Min	Sas:						
38	July 25/69	6	6	42.4	25.552.	63.310 W	131.63	579.00	55	158.5
39	Oct 20/69	15	20	36.5	17.300 N	95.188 W	133.11	87.0	5.4	847
40	$\mathrm{Stpt} 17 / 67$	7	56	22.7	17.2 N	94.1 W	134.10	45.0	5.2	85.1
41	Oct.22/69	10	21	52.1	18.0865	71.542 W	13446	230	54	144 !
42	June 15/68	5	11	17.2	14.4 N	929 W	134.60	25.0	5 is	89.2
43	Julyl9/69	4	54	54.1	17.2545	72. 519w	134.58	54.00	5.9	142.7
44	June 22/69	14	30	107	16.929 N	93608 W	13452	151.0	5.1	856
45	Aug 23/68	22	36	513	21.986 S	63.547 W	134.70	38.0	6.5	1291
46	Sept. 3/57	21.	7	308	10.6 s	79.8 リ	134.72	50.0	50	1409
47	Nov $7 / 68$	10	13	398	16.388 s	73.460 W	134.70		58	1553
48	0ct 31/68	9	15	45.9	16.2895	73.298 w	134.89	67.00	57	1410
49	Jan 3/68	18	44	24.5	18.6 s	69.9 W	134.90	116.0	5.4	1466
50	Sept.25/68	10	38	38.4	15.571 N	92.638 w	135.15	137.8	5.7	817
51	Sept. 28/68	13	53	35.3	13160 S	76 382W	135.31	70.00	6.0	1349
52	Sept.15/69	7	14	25.8	18.552 S	69.021 W	135.40	177.00	5.2	1476
53	0ct.5/67	9	41	31.4	14.5 S	754 W	13550	100.0	56	137.2
54	Sept 27/67	6	2	395	7.3 s	81.3 w	13570	37.0	51	124.1
55	Aug 23/68	23	14	52.7	21.8195	63.530 W	134.96	$54!00$	5.2	1562
56	June 11/69	21	15	32.6	8 5905.	79 688w	136.10	81.0	50	12.7 .0
57	April 21/69	2	19	71	14.098 N	91.015 W	136.33	82.0	55	903
58	19712/69	14	12	53.0	141425	72.747 W	136.89	113.0	5.2	139.7
59	Ju'y24/69	2	59	21.0	11.8515	75.130 W	137.10	1.0	59	135.0
60	Oct.20/69	18	0	28.7	11.8595	75.164W	13707	12.0	5.1	1349
61	Oct.6/69	0	37	59.6	11.7375	75.100 W	137.20	3.0	5.1	134.9
62	Oct. 6/69	6	36	45.2	11.782 S	74.999 W	137.23	4.0	5.3	; 34.0
63	Nov.16/69	10	30	1.7	13.351 N	89.650 N	137.43	79.0	49	91.8
64	Sept.6/68	7	49	42.0	5.757 S	$80.261 W$	137.44	66.00	5.3	123.3
65	Nov.18/67	12	15	55.4	13.37 N	89.07 W	138.00	78.0	$5 . \mathrm{i}$	92.0
56	Dec. $27 / 66$	21	22	14.8	13.20 N	88.81 W	138.20	66.0	5.5	92.4
67	July $18 / 69$	23	17	. 10.6	18.2415	53.314 W	138.28	19.00	5.6	154.3
68	Junel1/58	5	52	33.5	13.90 N	88.81w	138.40	199.0	5.3	31.4
69	June6/69	1.5	16	1.7	12.467 N	88.000 W	138.75	48.0	5.0	33.7
70	Nov. 9/68	17	1	41.1	37.961 N	88.464 W	138.37	19.0	5.3	54.8
71	June 20/68	15	51	56.5	5.6 s	77.3 W	139.80	33.0	5.8	125.9
72	June21/68	0	26	7.8	5.75	77 3W	139.80	22.0	5.6	126.1
73	June 19/68	8	13	35.0	565	77 2W	139.90	28.0	6.4	126.0
74	Det.4/67	6	2	16.4	10.7 N	86.0 W	14010	33.0	5.3	97.2

Event No.	Date	Origin Time			$\frac{\text { Latitude }}{\text { (Degrees) }}$	$\frac{\text { Longitude }}{\text { (Degrees) }}$	$\frac{\text { Distance }}{\text { (Degrees) }}$	$\frac{\text { Foca: Depth }}{(\mathrm{km} .)}$	Magni	$\frac{\text { Azimuth }}{\text { (Degrees) }}$
75	0ct.3/67	18	16	3.2	10.9 N	85.9 W	140.30	21.0	5.8	97.0
76	Sept.20/69	5.	8	57.6	58.297 N	32.189 W	140.46	33.0 N	5.6	348.9
77	Aug. $27 / 67$	13	8	55.9	12.3 N	86.2 W	140.40	183.0	5.2	94.7
78	Oct.15/67	8	0	50.3	11.9 N	86. OW	140.50	162.0	6.2	94.5
79	June24/69	0	35	5.5	11.661 N	85.717 W	140.66	100.0 G	5.3	95.9
80	June15/68	7	8	48.1	5.6 N	82.6 W	140.80	16.0	6.0	106.6
81	Oct.11/67	20	28	10.2	10.3 S	$71.2 W$	141.40	585.0	5.0	137.8
82	May 16/68	8	25	9.2	3.75	76.6 W	141.60	113.0	5.4	124.3
83	Jan. 1/70	1	43	46.7	8.598 N	$83.525 W$	141.69	48.0	5.2	101.6
84	Nov.8/67	3	10	53.3	16.8 N	$85.9 W$	141.70	28.0	5.4	87.9
85	May 31/69	11	7	17.1	1.753 S	77, 744W	141.84	.172.0	5.1	120.7
86	Dec.16/68	3	7	24.1	7.123 N	$82.243 W$	142.31	16.0	5.3	104.6
87	May $28 / 69$	13	30	8.9	2.086 S	76.927 W	142.30	177.00	5.5	122.0
88	Apr i:25/69	3	34	17.7	7.450 N	82.075 W	142.59	25.0G	5.4	104.2
89	May 5/69	5	34	23.5	36.023 N	10.390 W	145.21	29.0	5.5	304.9
90	Sept.24/69	3	58	56.5	52.559 N	31.841 W	145.72	33.0	5.2	345.0
91	Dec. $24 / 69$	5	4	44.5	35.953N	10.396 W	145.24	33.0 N	5.1	304.3
92	Feb.28/69	2	40	32.5	36.008 N	10.573 W	145.36	22.0	7.3	304.9
93	Sept.24/69	4	20	52.9	52.499 W	31.849 W	145.78	$33.0 n$	5.0	345.0
94	Sept.6/69	14	30	39.5	36.941 N	11.887 W	146.05	33.0 N	5.7	307.1
95	Nov.14/69	6	52	5.3	$4.934 N$	76.846 W	146.17	$53 . \mathrm{C}$	4.7	112.0
96	Aug. 31/68	21	47	38.5	4.505 N	76.359 W	146.39	97.5	4.6	113.1
97	Sept. $22 / 67$	8	8	4.3	0.75	20.1W	147.60	33.0	5.3	233.6
98	Nov.21/67	21	50	24.3	48.2 N	27.8 W	148.30	33.0	5.0	237.0
99	Sept.1/68	4	48	$5 \leq .2$	0.995 S	24.512W	150.63	33.0 N	5.2	227.3
100	Sept.1/68	8	19:	57.2	0.889 S	24.519 W	150.70	33.01%	5.0	27.7
101	Oct.20/69	13	11	37.0	10.795 N	72.480 W	152.61	40.0 G	5.7	105.4
102	Oct. $20 / 69$	13	11	33.5	10.795 N	72.480 W	152.68	55.0	5.1	105.4
103	Oct.16/68	1	55	32.7	19.152 N	69.838 W	157.19	36.0	5.2	87.3
104	Sept.20/68	6	0	3.5	10.735 N	62.659 W	161.22	107.00	5.2	116.7
105	Oct.22/69	12	52	22.2	10.921 N	62.552 W	161.41	79.0	5.4	116.4
106	Sept.22/69	13	47	52.2	4.977 N	32.625 W	160.45	33.0	5.7	222.
107	Sept.3/68	15	37	0.2	20.631 N	62.238 W	154.42	33.0	5.5	84.6
108	May 15/69	20	43	33.4	16.573 N	61.341 W	164.77	50.0	5.7	99.5
109	Dec.24/67	20	3	10.9	17.4 N	61.1 W	165.10	24.0	6.4	97.3
110	Dec. $25 / 69$	22	31	2.3	16.083 N	59.771 W	166.03	8.0	6.0	103.7
111	Dec. $25 / 69$	21	32	$27 . .3$	15.772 N	59.650 W	166.04	7.0	6.4	105.1

Event No. Date		Origin Time			$\begin{aligned} & \frac{\text { Latitude }}{\text { (Degrees) }} \end{aligned}$	$\frac{\text { Longitude }}{\text { (Degrees) }}$	$\begin{aligned} & \text { Distance } \\ & \text { (Degrees) } \end{aligned}$	$\frac{\text { Focal Depth }}{(k m .)}$	Magnitude	$\frac{\text { Azimuth }}{\text { (Degrees) }}$
		Hr	Min.	Sec.						
112	Dec. 26/69	8	46	15.2	15.839 N	59.57W	166.13	22.0	5.2	105.1
113	Dec.26/69	20	3	28.8	15.791 N	59.555 W	166.13	33.0 N	5.4	104.9
114	Jan.8/68	20	22	15.6	8.2 N	38.2 W	166.30	33.0	5.4	212.7
115	Sept.24/69	18	3	19.0	15.237N	45.776 W	175.31	33.0 N	5.8	178.5

ELLIPTICITY AND FOCAL DEPTH CORRECTIONS

TO MEASURED TRAVELTIMES

Bullen $(1939,1938,1963)$ has shown that the ellipticity correction $6 T$ to the traveltime for geocentric latitudes is given approximately by the formula -

$$
\begin{equation*}
\delta T=f(\Delta)\left(h_{0}+h_{1}\right) \tag{1}
\end{equation*}
$$

where h_{0} and h_{1} are the differences between the actual and mean radii of the earth at the epicentre and observing stations respectively, and are listed by Bullen, (1937). Also $f(\Delta)$ is given by Bulled (1938). The value of h, for WRA is +5.0 km while $f(\Delta)$ ranges from 0.10 to 0.095 for $P K P_{D F}$ and 0.100 to 0.074 for $P_{K P} P_{A B}$.

Time corrections for focal depth were determined for earthquakes with focal depth less than 200 km . from the tables given by Bolt (1968), and the corresponding distance corrections resulting in a surfacefocus for the event were estimated from near-earthquake P tables. For focal depths greater than 200 km , the equation developed by Adams and Randall. (1969) for deep-focus ear thquakes, and derived especially for use with PKP phases was used:

$$
\begin{equation*}
\delta=\left(0.05+0.025 h+0.0028 h^{2}\right) p \tag{2}
\end{equation*}
$$

where δ is the correction in degrees, h is the focal depth in units
 δ is determined from the above formula and the corresponding time correction found from tables of near-ear thquake traveltimes using the appropriate values of 6 and h.

APPENDIX 111

ELLIPTICITY AND FOCAL DEPTH CORRECTI ONS
TO MEASURED TRAVELTIMES
(cont.)
Thus all the events were adjusted to have surface foci. A check was made on the distance and time corrections obtained for all the earthquakes in the above manner by using a computer program designed to calculate these corrections for ray paths of specified parameter travelling through the earth. The method used in this program was to calculate the quantities Δ_{12} and T_{12} as described in Appendix 1 for radii down to the focal depth given, using an assumed velocity model for the crust and mantle. It was found that good agreement was obtained at most focal depths except for those in the vicinity of about 500 kilometres. In these cases the corrections given by the program were smaller by a maximum of about 0.12 deg. than the value obtained using the Adams and Randall equation. The latter values were assumed to be the correct ones. In either case, at the large distances in question, an error of 0.12 deg. is small, compared to the error in epicentre determiniation which can be as large as 0.5°

All the epicentre coordinates listed in Appendix $\|$ are the preliminary determinations complied by N.O.A.A. On the basis of the J-8 traveltime tables. Recent traveltime studies, for example Cleary and Hales (1960), have revealed systematically shorter traveltimes at teleseismic distances than those of Jeffreys and Bullen. Con-

APPENDIX 111

ELLIPTICITY AND FOCAL DEPTH CORRECTIONS TO MEASURED TRAVELTIMES
($\operatorname{con}^{1} t$)
sequently, significant systematic errors in epicentre and focal depth determination may exist but until the traveltime controversy is satisfactorily resolved, very little can be done about this.

The effect of errors in epicentre location on $d T / d \Delta$ measurements is to increase the scatter of the data especially in those regions of the curve where $d^{2} T / d \Delta^{2}$ is large as in the neighbourhood of a caustic. Errors in focal depth determinations, particularly for deep focus earthquakes, may well produce as much scatter in the $d T / d \Delta$ values as epicentre mislocations. The view is commonly held that focal depth determinations of greater than 60 km are somewhat unreliable. In this study, more than $1 / 3$ of the events had focal depths greater than 60 km , and many of these were restrained in some manner to a particular level. However, as discussed in Section 2.2.3, systematic errors in the $d T / d \Delta$ measurements are more significant than any others.

APPENDIX IV

METHOD OF SUMMARY VALUES

Jeffreys (1937, 1961) devised the method of summary values as a smoothing technique. The following description follows more closely that of Arnold (1968).

Consider a number of observed values of the function $p=f(\Delta)$ for a certain range of the argument in which there is very little curvature. If a straight line is fitted to the points in this range by the method of least squares, any two points $\left(P_{1}, D_{1}\right)$ and $\left(P_{2}, D_{2}\right)$ on this straight line can be taken to represent the data, but in general, the errors in P_{1} and P_{2} will not be independent thus making estimation of the magnitude of the reduction of error difficult. Moreover, if in this range the curvature is appreciable, the errors have been overestimated and valuable information may be lost. If curvature is accounted for by passing a quadratic through the data and choosing the points (P_{1}, D_{1}) and $\left(P_{2}, D_{2}\right)$ to be the intersections of the linear and quadratic forms, then curvature may be safely neglected and at the same time the uncertainties in P_{1} and P_{2} are rendered independent. Arnold (loc cit) has shown that the ith equation of condition for a quadratic form is

$$
\begin{equation*}
\frac{\Delta_{i}-D_{2}}{D_{1}-D_{2}} P_{1}-\frac{\Delta_{i}-D_{1}}{D_{1}-D_{2}} P_{2}+a\left(\Delta_{i}-D_{1}\right)\left(\Delta_{i}-D_{2}\right)=\rho_{i} \tag{1}
\end{equation*}
$$

If the weight of one observation is $w=1 / \sigma_{i}^{2}$ where σ_{i} is the standard error in P_{i}, the three normal equations for P_{1}, P_{2} can be formed by multiplying equation (1) by the respective coefficients.

APPENDIX IV

METHOD OF SUMMARY VALUES

(con't)

The conditions that the errors in P_{1}, P_{2} and a be independent, are that the coefficients of the off-diagonal elements of the left-hand side of the equation be zero, i.e.

$$
\begin{align*}
& \sum \omega_{i}\left(\Delta_{i}-D_{1}\right)\left(\Delta_{i}-D_{2}\right)=0 \tag{2}\\
& \Sigma \omega_{i}\left(\Delta_{i}-D_{1}\right)\left(\Delta_{i}-D_{2}\right)^{2}=0 \tag{3}\\
& \Sigma \omega_{i}\left(\Delta_{i}-D_{1}\right)^{2}\left(\Delta_{i}-D_{2}\right)=0 \tag{4}
\end{align*}
$$

Under these conditions, a cannot contribute to P_{1} and P_{2} and it may assume any value, but there are three equations and only two unknowns. However, if (4) is subtracted from (3), it reduces to (2) so that either (3) or (4) is superfluous, and a unique solution for D_{1} and D_{2} is possible. To find D_{1} and D_{2}, the moments are formed:

$$
\begin{aligned}
& \eta=\sum \omega_{i} ; \eta \mu_{1}=\sum \omega_{i} \Delta_{i} ; \delta_{i}=\Delta_{i}-\mu_{i} \\
& \eta \mu_{2}=\sum \omega_{i} \delta i^{2} ; \eta \mu_{3}=\sum w_{i} \delta_{i}^{3}
\end{aligned}
$$

Equation (2) then becomes, putting $d_{1}=D_{1}-\mu_{1}$ and $d_{2}=D_{2}-\mu_{2}$

$$
\begin{equation*}
\mu_{2}+d_{1} d_{2}=0 \tag{5}
\end{equation*}
$$

and equation. (3) reduces to

$$
\begin{equation*}
\mu_{3}-\mu_{2}\left(d_{1}+d_{2}\right)=0 \tag{6}
\end{equation*}
$$

Substrtuting for either d_{1} or d_{2} from (5) into (6), we have

$$
\begin{equation*}
d^{2}-\left(\mu_{3} / \mu_{2}\right) d-\mu_{2}=0 \tag{7}
\end{equation*}
$$

Solution of equation (7) yields the values of D_{1} and D_{2}, and Arnold

APPENDIX IV.

METHOD OF SUMMARY VALUES
($\operatorname{con}^{1} t$)
has shown how by substitution of equations (2) and (3) into the normal equations, the values of P_{1} and P_{2} are

$$
\begin{aligned}
& P_{1}=\left(D_{1}-D_{2}\right) \frac{\sum \omega_{i}\left(\Delta_{i}-D_{2}\right) P_{i}}{\sum \omega_{i}\left(\Delta_{i}-D_{2}\right)^{2}} \pm \frac{\left|D_{1}-D_{2}\right|}{\sqrt{\left(\sum \omega_{i}\left(\Delta_{i}-D_{2}\right)^{2}\right)}} \\
& P_{2}=\left(D_{2}-D_{1}\right) \frac{\sum \omega_{i}\left(\Delta_{i}-D_{1}\right) P_{i}}{\sum \omega_{i}\left(\Delta_{i}-D_{1}\right)^{2}} \pm \frac{\left|D_{1}-D_{2}\right|}{V\left(\sum \omega_{i}\left(\Delta_{i}-D_{1}\right)^{2}\right)}
\end{aligned}
$$

where the uncertainties are independent, and reduce to the square roots of the inverse of the coefficients of P_{1} and P_{2}. P_{1} and P_{2} are called the summary values and represent $p(\Delta)$
in the range of argument used.
The summary values method of smoothing can also be used to fit a quadratic (Jeffreys, 1937) so that the errors at three points are independent of each other and of a possible cubic term. This method appears to be somewhat of an improvement on the first method of summary values, but it breaks down if the data are unevenly distributed or are not capable of precisely defining a curvature.

APPENDIX Va.

> U.B.C. TRIP

TRIANGULAR REGRESSION PACKAGE

One method of smoothing data is to fit a polynomial to the data by the method of least squares. The computer programme, U.B.C. Trip, was designed with this (among other things) in mind.

A polynomial of degree, say m, is requested, being thought by visual examination to give the best fit to the data. The Trip program uses the data to calculate the coefficients of m regression equations, the first equation being a simple linear equation of the form $y=b_{0}+b_{1 x}$, where y is the dependent and x the independent variable.

Successive equations are this linear equation augmented by a term in the next higher power of the independent variable; up to: the power m. Thus, the second regression equation would be $y=b_{0}+b_{1} x+b_{2} x^{2}$ and the final regression equation would be $y=b_{0}+b_{1} x+b_{2} x^{2} \ldots \ldots \ldots \ldots+b_{m} x^{m}$ After the coefficients of each of the equations have been calculated by obtaining the best possible fit of the equation to the data by the usual least squares technique (i.e. by calculating the equation to minimise the sum of the squares of the distances of the predicted values of y from the observed values (the program calculates several significant quantities that give an indication of the quality of the fit.. ,
One of these quantities is the parameter R^{2}, the square of the multiple correlation coefficient, where $\quad R^{2}=\sum_{i=1}^{N} \omega_{i}\left(\hat{y}_{i}-\bar{y}\right)^{2} / \sum \omega_{i}\left(y_{i}-\bar{y}\right)^{2}$ and \hat{y}_{i} is the i th predicted value of $y,\left(\hat{y}_{i}=b_{0}+b_{1} x_{i}\right) . \quad y_{i}$ is the i th observed value of y, w_{i} is the weight of the i th observation, and y is the mean of the observed values of $y . R^{2}$ always takes a value of between zero and unity, and its significance liesin the fact that the closer it is to the value unity, the better does the corresponding regression equation fit the data,
since the physical meaning of R^{2} is that $i t$ represents that proportion of the total observed variance of the dependent variable y which is accounted for by the regression line. In addition, the program calculates quantities known as the F-ratio and F-probability for each of the coefficients b_{i}, already in the equation where the F ratio is given by

$$
F_{i}=\left(b_{i} / \text { Std.Error in } b_{i}\right)^{2}
$$

and the F-probabilty is the probability of obtaining a value of Fi greater than or equal to the one calculated, given that $b_{i}=0$. If this probability is less than 0.05 , it is concluded that the coefficient b_{i} is significantly different from 0 , and therefore meaningful..

The tolerance of each potential independent variable not yet in the regression equation (provided the present equation has not yet attained the degree m) is also calculated. This quantity is the proportion of the variance of the independent variable \times which cannot be explained by the independent variables already in the equation, and if this tolerance falls beneath 0.001 , the next higher power of x is not allowed in the equation. In addition, the F-probability of each potential independent variable x, not yet in the equation (again provided the equation has not yet attained the maximum degree m) is calculated, and this is simply the F-probability that the coefficient of the next higher power of x would have if it were admitted to the present regression equation. Unless requested otherwise, the critical value of : F-prob. is assumed to be 0.05 , and if the calculated value of F-prob. is less than 0.05 , the next higher power of x would be added to the equation and the entire process repeated using the new equation. If F-prob. is greater than 0.05 however, the next higher power of x is not added to the equation and the
calculations stop. In practice, it was requested that the critical value of F-prob. be 1.0 , so that all the powers of X up to the degree requested, were used to calculate a final regression equation, irregardless of whether the coefficients of the powers were significant or not as indicated by their F-prob, values. The residuals $y_{i}-\hat{y}_{i}$ were calculated, and a printer plot of the data together with points predicted by the final regression equation obtained. The values of R^{2} and F-prob. for each of the coefficients in the final regression equation were then examined, along with the residuals and the printer plot. If the F-prob. of the last coefficient in the equation was found to be greater than 0.05, a new polynomial fit of degree $m-1$ was requested. If it was found to be less than 0.05 , a polynomial fit of degree $m+1$ was requested. The final regression equation chosen as best representing the data, was that one in which R^{2} was the nearest to the value unit, the F-prob. of more of the coefficients were greater than 0.05, the residuals appeared to be evenly distributed about a mean value, and from visual examination of the printer plot, the fit of the regression equation to the data seemed satisfactory.

APPENDIX Vt. DT/DA SMDOTHED BY POLYMOMIAL RESRESSIJN

| DISTANCE | DT/DA (SEC/DEG) | |
| :--- | :--- | :--- | :--- |
| (DEG) | DF | GH |

113.0	1. 959			
114.0	1.950			
115.0	1. 945			
116.0	1.936			
117.0	1.929			
118.0	1.922			
119.0	1.918			
120.0	1.914			
121.0	1.911			
122.0	1.908			
123.0	1.906			
124.0	1. 904		.	
125.0	1.903			
126.0	1.901			
127.0	1. 900			
128.0	1.898			
129.0	1. 896			
130.0	1.893			
131.0	1. 889			
132.0	1. 885	2.688		
133.0	1. 880	2.678		
1.34 .0	1.874	2.668	3.456	
135.0	1. 867	2.658	3.437	
136.0	1.859	2.648	3.417	
137.0	1. 849	2.640	3.397	
138.0	1.838	2.628	3. 355	
140.0	1. 812	2. 622	3. 332	
141.0	1.797	2.617	3. 309	
142.0	1.780	2.613	3.285	
143.0	1.762	2.607	3. 260	
144.0	1. 742	2.602	3.235	
145.0	1.720	2.595	3.208	3.548
146.0	1.696	2.588	3.181	3.659
147.0	1.679	2. 579	3.154	3.760
148.0	1.644	2.568	3.125	3. 849
149.0	1.615	2.555	3.096	3.929
150.0	1.584	2.540	3.066	4.000
151.0	1.550	2.523	3.035	4.063
152.0	1.517	2.502		4.118
153.0	1.481	2.479		4. 166
154.0	1.443	2.451		4.208
155.0	1.403	2.421		4.244
156.0	1.36 .1	2.386		4.276
157.0	1.318	2.347		4.304
158.0	1. 273	2.300		4.329
159.0	1.226			4.351
160.0	1. 178			4.371
161.0	1.129			4.390
162.0	1.077			4.409
164.0	0.971			4.448
165.0	0. 916			4.470
166.0	0.859			4.494
167.0	0.802			4.501
168.0	0.743			4.501
169.0	0.684			4.503
170.0	0.624			4.506
175.0	0.316			4.509

