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ABSTRACT

Theoretical investigation into the feasibility ofx
making laser strain meter measurements over large distances
through the uncontrolled atmosphere indicate that such observa-
tions are likely possible with present day technology. The
observing device, here-in called a free air laser strain meter,
would use laser output at three frequencies, appropriately
spaced in the spectrum, coupled with the dispersion of the’
atmosphere to separate "geometrical" fluctuations from “re-
fractive" flucﬁ%ations of the optical path length between the
end mirrorsvof ghé strain meter. The geometrical fluctuations
can be averaged to reveal tectonic changes in distance be-
tween the end mifrors.

Theoretical expressions for averaging times, con-
fidence limits, strain sensitivity, accuracy of observations,
fringe count rate, fringe visibility, aperture size and laser
power are derived in terms of the relevant physical, geo-
physical, and atmospheric parameters.

Free air laser strain meters, like conventional laser
strain meters, appear to be capable of measuring earth strain
over distances of several Kms. up to the limit of frequency
stability of the laser in the presence of moderate atmospheric
turbulence. In the free air laser strain meter the laser fre-
quency stability and not atmospheric effects is the ultimate

factor limiting strain sensitivity.



iii

Over distances of several kilometers free air laser

strain meters are theoretically able to make strain measurements

more sensitively, . { Q%-&a 10711 - 10712 ) , and more
rapidly, ( observation interval At «~ 10 minutes - 1 hour ) ,

than any other device, known or proposed, operating through the
uncontrolled atmosphere. The successful operation of free air
laser strain meters would represent an improvement over present
methods by a factor of 103 - 104 in sensitivity of observation.
The realization of free air laser strain meters would provide
geophysicists in the fields of geodesy and tectonics with a

tool of unusual capabilities and as such would be recognized as

a major advance.
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CHAPTER I

PREFACE

Throughout history advances in man's ability to
accurately measure distances both atomic and galactic have
resulted in profound changes in his world view. This is
illustrated by contrasting the ancient Greeks with that of
any of their contemporaries. While other Europeans held that
the world was flat with "edges' which were to be avoided the
Greeks of the time held the world to be a rigid sphere sus-
pended in the space of the heavens. This enlightenment on
behalf of the Gréeks is owed to Eratosthenes who measﬁred
the radius 9f-the‘g19be in about 240 B.C. [1]. It is no
accideﬁtvthat Eratosthenes accomplished this while head 6f the
Library of Alexandria, Egypt, for it was from the Egyptians,
who had Qeveloped it to resurvey the arable lands of the Nile
Valley after its annual flood, ihat;the Greeks learned the

science of geodesy.

Modern geodetic measurements can establish the
coordinates of any location on the earth's surface to within
a circle a few meters in diameter [2]. This advance in accuracy
of measurement reveals many undulations in the shape of the
geoid and has changed man's view of the planet's interior from

static to dynamic,



While it is conceded that on the basis of geologic
evidence large tectonic motions have occurred in the earth's
crust producing correspondingly large changes of geodetic
coordinates, time dependence is not a consideration in most
~geodetic surveys. Tectonic changes in_gebdetic coordinates,
except in cases of catastrophe, occur at rates small enough
to have been of no concern to classical geodesy. However with
the development of the laser strain meter and long baseline
radio interferometry the observation of tectonic motions in
real time both locally and globally is possible [3]. These
advances in man's ability to measure distance will once again
alter his world view and render geodesy a time dependent

discipliﬁe.\

As part of this general trend this thesis is pre-
sented as a propdsal to combine the particular advantages of
~geodimeters, i.e., operating abilify over long distances through
the uncontrolléd atmosphere, with those of the laser strain
meter, i.e., high strain sensitivity resulting from the direct
interference of photons, to realize a "free air lasér strain
meter" to be applied to geodetic and tectonic studies. To
introduce this thesis and present background information pertinent
to its understanding it is necessary to briefly discuss the two
methods of observing tectonic motions, the geodetic survey
method and the laser strain meter method; and in addition discuss
two notable achievements in the field of outdoor optical inter-

ferometry.



The presentation of the thesis has been a somewhat
difficult task as it draws from several diverse areas of physics.
I have chosen to simplify the presentation by including several
calculations and supporting arguments in a series of appendices

to which the reader can refer if so moved by curiosity or doubt,



CHAPTER II

INTRODUCTION

A. GEODETIC MEASUREMENTS OF TECTONIC MOTIONS

1. The Geodimeter

The geodimeter [4] is an electro-optical distance
measuring device which uses the transit time of a light signal
between source and receiver to measure distance. The geodi-
meter emits a collimated light beam whose intensity is modu-
lated at radio frequencies by means of a Kerr cell linked
to a crystal oscillator. The light beam is directed to a
distant retfo-reflecting device_and.the.returned modulated
light beam is photo-detected by a receiver on the geodimeter.
The total phase difference between the emitted and received
modulated light signals is proportional to the round trip
distance between geodimeter and reflector. This phase dif-
ference is measured electronically to within a multiple of
27 and thus the emitter-receiver distance is determined to
within an integral number of wavelengths of the modulated
beam. Repeating the measurément at several modulation fre-
quencies reduces the ambiguity in the order number of inter-
ference between the emitted and received ;ignal and hence
reduces the ambiguity in the emitter-receiver distance. In
~general, observations at three closely spaced modulation fre-
quencies along with knowledge of the approximate emitter-

receiver distance obtained from maps, aerial photographs, or



‘rougher surveys are sufficient to allow a precise measure of
the required distance. Geodimeters can work effectively up

to distances of 20-50 km.

2. Accuracy of Measurement

The largest single source of errdr in all terrestrial
electronic distance measurement is the uncertainty in the mean
signal propagation velocity due to an uncertainty in the mean
group refractive index value of the atmosphere along the propa-
~gation path. The mean refractive index value along the beam is
often estimated from measurements of atmospheric pressuré, tempera-
ture and humidity taken at one or more points along the light path.
Under fa§ou;ab1e meteorological conditions distance measurement
reproducible to one or two pérts in 10° can be made. This cor-
responds to an error of $1-2 cm. in a 10 km. distance. More
commqnly; however, survey closure errors of Several parts in

10° are encountered [5].

A more sophisticated and potentially more accurate
method of measuring the mean refractive index along the light
path is through the observation of the relative atmospheric
dispersion of two or three different color geodimeter beams.
This method reflects a true spatial average of the refractive
index along the 1ight path and hence is in principle superior
to the method of spot sampling of atmospheric pressure, tempera-

ture and humidity.



In the case of dry air the magnitude of the rela-
tive dispersion between geodimeter beams of two different colors
is proportional to the mean air density and hence the mean
refractive index along the light path. The observation of this
dispersion gives sufficient information to calculate the spatial
average density for dry air and hence the desired mean refrac-
tive index., In préctice however, the atmosphere contains variable
amounts of water vapour with a dispersion different from that of
air [A-2]. The\two-color dispersion method, by neglecting the
presence of waté; vapour, is subject to errors in the estimated
value of mean re}ractive index of up to several parts in 10°®
depending on athSpheric conditions [7]. This shortcoming of
the two-color.di;persion method can be reduced by spot sampling
the humidity at bkints along the light péth. The two-colour
dispersion metho% 5upp1emented with an'independent measure-
ment of the mean Lumidity along the light beam can in principle
provide an estimate of the mean refractive index along the ray
path accurate toKone part in 107 ([7].

The addition of a third color will render the dis-
persion method sensitive to spatial averages along the beam
of pressure, temperature, and humidity; thus allowing an esti-
mate of the mean refractive index accurate to 2-3 parts in 108
[7]. The three-color dispersion method ignores variations in

CO, content of the atmosphere, the next most significant atmos-

pheric variable after water vapour. However the variations in



CO, content expected to be encountered in the uncontrolled
atmosphere are so small as to cause refractive index varia-

tions of only one part in 10%® [21].

A further limitation on the accuracy of geodimeter
length measurement is the uncertainty in the light beam modu-
lation frequency. The frequéncy stability of geodimeter oscil-
lators is approximately one part in 107 and so geodimeter
measurements to higher accuracies are not possible without a
calibration of the instrument against some more accurate oscil-
lator. Since the use of geodimeters to observe tectonic motions
requires repeated measuréments of a given distance separated
by an interval of several months, oscillator stability is an

important consideration in such observations.

3. Results

One of the most thorough'and extensive programs of
measuring tectonic motions by the geodetic survey method has
been carried out continuously since 1959 in California by the
State of California Department of Water Resources [8]. 1In a
program intended to aid the design and 1afoﬁt of the aquaducts
for the two billion dollar California State Water Project a
network of over 3000 km. of geodimeter lines has been laid out
in a criss-cross fashion over the San Andreas and related fault

systems. Geodetic length determinations of these lines are



repeated at intervals of the order of months. Atmospheric
refractive index corrections to the geodimeter measurements

are made from data obtained by spot sampling of the atmospheric
pressure temperature and humidity at points along the geodi-
meter line. The accuracy of measurement as indicatéd by closure
errors is typically one part in 10%, although this figure can

vary somewhat according to observing conditions.

Movement on the California fault system is found to
vary, in a rather complex manner from location to location,
from iero to over 4 cm./year. Changes in the rate of fault
movement are found to be related to the occurrence of earth-
quakes within the regions. Anomalous length changes of geo-
dimeter lines.generally-foreshadow local earthquakes. The
result of the California measurements strongly indicate that
1afge movements and high rates of movement precede an earth-
quake by hours or days and that continuous or near continuous
monitoring of suspected earthquakevsites could be used to

forecast earthquakes and issue short-range warnings.

The development of two-color dispersion laser geo-
dimeter systems has reached the field testigg stage [9] and
although a complete three-color dispersion system has not yet
operated the elements of such aAsystem have been used separately
[7}. Such devices can be expected to be capable of automatic
and continuous strain monitoring with strain sensitivities of

107 - 10-8 in the near future.



B. LASER STRAIN METER MEASUREMENTS OF TECTONIC MOTIONS

1. The Laser Strain Meter

Laser strain meters generally consist of a unimodal
frequency stabilized laser; the output of whiéh is directed
into an interferometer whose reflecting elements are fixed to
the sélid earth. The interferometer is coupled to a readout
system which monitors the interference fringe pattern. A
change in thevlength of the interferometer caused by earth
strain is accompanied by a change in the order number of the
interference; and is measured directly in terms of the wave-
length of the laser output by counting fringes. Automatic
and continuous monitoring of the interference fringes results

in a record of earth strain as a function of time.

Laser straih meters are constructed using both the
Michelson and Fabrey-Perot type interferometers. One method
of using the Michelson scheme involves the construction of an
equai-arm interferometer in.which the mirror constituting one
arm is not coupled to the earth but held rigid while the mirror
constituting the other arm is fixed to the solid earth and is
free to respond to earth strain. Any resuléing inequalities
in the lengths of the arms of the-interferometer produce changes
in the fringe pattern from which changes in ambient strain

conditions are inferred.
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The Fabrey-Perot interferometer is most often used
in the construction of laser strain meters. In one illustra-
tion of the Fabrey-Perot scheme, Fig, II-1, both mirrors are
fixed to the solid earth and an evacuated pipe interposed bet-
ween them leaving only small air gaps at each end. In this
scheme the laser beam traverses an evacuated path between the
mirrors. This prevents changes in the optical path length bet-
ween the end mirrors caused by pressure, temperature, and
humidity fluctuations from being observed as "apparent' strain,
indistinguishabie from '"real" strain by such an instrument,

The air gaps between the end mirrors and the transparent ends

of the evacuated pipe are kept as small as possible for the

same reason. Most laser strain metefs use a retro-reflecting
deﬁice; often a plane mirror mounted at the focus of a converging
lens; as the end:element of the Fabrey-Perot resonator. This
insures that the beam will always be returned to:its prOpér
posifion on the front element of the Fabrey-Perot etalon in

spite of misalignments which occur due to tectonic activity.

When the laser is coupled to the interferometer it
is desirable to reduce the light reflected from the optical
surfaces of the interferometer back into the laser to a minimum.
Allowing reflected light to re-enter the laser can reshlt in
the stimulation of unwanted modes of oscillation and must
therefore be suppressed. This is generally done in laser
strain meters by deliberate slight misalignment of the inter-

ferometer surfaces as well as by the use of quarter-wave
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coatings. Quarter-wave coatings are effective in suppressing
reflections from the optical surfaces because of the high

monochromaticity of the laser output.

The fringe counter usually employs two photomul-

tiplief tubes focussed on opposite sides of a fringe. As

the fringes move in response to earth strain the output of the
photomultiplier becomes unbalanced, the magnitude and sign of
the imbalance being a measure of the fringe displacement. A
means is provided for the fringe counter to move rapidly to a
successive fringe when the fringe displacement reaches a given
limit, usually one fringe width. Fringe counters capable of
counting to one hundredth part of a fringe and as rapidly as

a megacycle have been built.

Two Fabrey-Perot interferometers at right angles
provide a set of reference axes relative to which components

€y and

e,, .0f the strain tensor eij can be measured.

The off diagonal components e and can be measured

12 €21

by introducing a third strain meter oriented at 45° to the first

two.

Laser strain meters exhibit some notable and advan-
tageous properties not commonly found in measuring devices.
The laser strain meter responds linearly to earth strain over

an "infinite" range of amplitude. They also exhibit a flat



13

amplitude response with zero phase shift over all frequencies
of tectonic activity from secular strain (D.C.) up to the

highest frequencies observable by the readout system.

2. Accuracy of Measurement

Strain, being defined only at a point, cannot be
strictly observed by any extended device. The laser strain
meter measures the average strain over an extended region‘
comparable in dimensions to the length of the strain meter
arms. Although %hortening the arms of the strain meter faci-
litates a truer measure of point strain it also results in a
lower strain sens?tivity. In addition the quantity usually
of geophygiéal_intérest is the ambient strain field which is
measured best by é'strain meter of considerable extension,

For these reasons?laser strain.meters range in length from
a few_mefers to 1 ’km.

The accuracy of measurement of laser strain meters
is limited mainly by the stability of the laser frequency
Sv(t) [A-1, eqn. A-1-4]. If D is the length between the
mirrors of a Fabrey-Perot laser strain mefef and - AD(t) 1is the
change in the length D in an interval of time <t ; then the
accuracy with which the strain, 92%11 , 1s determined cannot
exceed Sv(t) = Qﬁéll . Thus laser strain meters presently
have short period strain sensitivities as high as one part in

10'2 [14] and long term strain sensitivities of one part in

100 [15].
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3. Results

Laser strain meters are able to observe most all
of the seismic activity normally recorded by standard seismic
equipment such as earthquake events and microseisms. Hoﬁever
because of their flat response to tectonic activity down to
zero frequency (secular strain) they have been most useful
in studying long term, low frequency tectonic motions. In
this regard they are unrivalled and consequently have revealed
a variety of tq;tonic phenomena, some of which are not observable
by other device;.

Laser:strain meters which are set up straddling
known fault zones are able to observe movement on the fault in
real time. These measurements reveal that creep on the fault
is episodic, appéaring periodically with a back-and-forth

motion super-imposed on it [14].

Laser strain meters are used to observe tides in
the solid earth caused by lunar gravitational attraction.
Earth tides are observed to have a 12 hour period with a strain
amplitude of about 5 parts in 108 [16] which corresponds roughly
to a vertical amplitude at the equator of the earth of 30 cm.
The amplitude of earth tides is observed by laser strain meters
to be about ten times larger than normal in the vicinity of a
large fault confirming theoretical predictions of the build up
of strain around faults in the earth's crust., Laser strain
meters have also been used to observe fundamental modes. of

oscillation of the earth following large earthquakes.
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Tectonic processes which are attributed to local
mountain building processes are also observed by laser strain
meters located in cordillera regions [16].‘ These phenomena
appeér as micro-tremors accompanied by unrecovered step changes
in the ambient strain of a few parts in 10%, Successive strain
steps ﬁsually have the same sign which is indicative of some

cumulative geologic process.

One of the most interesting phenomena revealed by
laser strain meters are residual unrecovered strains of the
order of parts in 108 observed at distances of thousands of
km. from earthquake eﬁicentres which appear to be directly
associated with the seismic event [17]. Recent evidence sug-
gesfs that a rapid imposition of strain at teleseismic dis-
tances may brecede earthquakes by periods ranging from several
minutes to several hours. In this regard Vali and Bostrom
[15] report observing on a laser stfain meter located in
Washington State U.S.A. an appfoximately linear accumulation
of strain amounting to 49 parts in 10° over a period of 30
minutes preceding a Central American earthquake of magnitude

5.7.

Extending laser strain meters, as they are currently
conceived, to lengths of several km. would facilitate a measure
of the relative tectonic motion of adjacent crustal blocks of
unprecedented accuracy; exceeding the accuracy of the geodetic

measurements by a factor of 10® - 10° depending on the length
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of time over which the observation is made. This is not achieved
in practice simply because of the technical difficulties and

cost involved in constructing evacuated systems several km,

in length., The encumberance of the evacuated pipe extending

the full distance between the points over thch relative dis-
placements are to be measured has limited laser strain meters

to lengths of 1 km. or less.

C. OUTDOOR OPTICAL INTERFEROMETRY

oy

The 6pservation of interference between two light
beams which have traversed an appreciable distance along
separate paths tﬁrough the uncontrolled atmosphere (free-air)
is diffiéuli becéﬁse of atmosphéric turbulence. Fluctuations
in atmospheric co;ditions are accompanied by corresponding
fluctuations in ;éfractive index. The atmospheric refractive
index flﬁctuationg produce several degenerating effects in
the light beams thch reduce interference effects toAlevels
which are often below‘observable limits. 1In spite of the
difficulties inherent in free-air interferometry at optical
wavelengths, free-air interferometry has been applied by several

workers to problems in geodesy and meteorology. The work of

Y. Vaisala and K. E. Erickson is notable in this regard.

1. Y. Vaisala

In 1929, Y. Vaisala [18] developed a light inter-
ference comparator capable of measuring geodetic baselines

up to lengths of 0.864 km. through the uncontrolled atmosphere
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to accuracies which are claimed to be one part in 107. The

comparator is shown schematically in Fig. II-2,

FIG. II-2

LT 1)

THE VAISALA COMPARATOR

Light from a white incandescent source L 1is
collimated by a lens C and directed into two axially aligned
Fabrey-Perot resonators defined by pairs of half silvered
mirrors M;M, and M;M; . White light interference fringes
are observed in the telésc0pe T when the two interfering
beams have equal optical path lengths. This occurs when the
distance M;Ms is an integral multiple of the distance M;M;
The distance M;M; 1is established in the field by inserting
a quartz\gauge block 1 meter in length between the mirrors.

A white light‘source is used for accuracy sincé white light
fringes disappear if the optical path difference between the
beams is but a few wavelengths whereas a monochromatic source

will produce interference fringes between beams whose path
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lengths differ by many millimeters.

The use of the Vaisala comparator ideally involves
level terrain with the light beam about 1 meter above the ground.
Temperature readings are taken simultaneously with the fringe
observations at several points along the light path. The
markers between which the comparator measures distance are-
usually set in large concrete blocks, buried underground for
stability. The comparator can be used in any weather for
distances of up to 0.1 km. but night-time observations are

needed for long baseline work.

The Vaisala comparator has been used to establish
several standard geodetic baselines around the world: Argentina
0.480 km.; the Netherlands 0.576 km.; Germany 0.864 km. and
Finland 0.864 km.

2. K. E. Erickson

Erickson (19) has used free~air inter ferometry to in-
vestigate the accuracy with which optical length comparison
can be made without close control or sampling of the atmos-
phere. Erickson's theoretical proposal involves the obser-
vation of channel spectrum interference between white light
beams which have traversed different paths through free-air
in the comparator. Erickson's theory indicates the possibility
of establishing the order numbers of interference for fringes

of the spectrum by counting the number of fringes in the channel
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spectrum separating three standard wavelengths. Knowing the
order numbers of interference for each of these three points

in the channel spectrum and the refractivity formula for the
atmosphere he is then able to calculate the contribution to

the interference order arising out of purely geometrical path
differences between the beams. It was hoped that this method
applied to a device such as a Viisdla comparator would faci-
litate accurate determinations of geodetic baselines by optical
means not requiring any measurement of atmospheric parameters

along the lighQXpath.

\

Erickson's theory requires the relative refractivity
of the atmqspheré to be independent of atmospheric conditions.
This condition does not hold for variable amounts of water
vapour in the athsphere. As a consequence of this Erickson's
method ipvolving?three wavelengths does not facilitate free-
air length compafisons much more accurate than those achieved
by the Vaisild comparator, one part in 107, and requires a
measure of atmospheric water vapour content along the light
paths. However, it should be noted that Erickson's method
extended to four wavelengths can cope with atmospheric varia-
tions in water vapour content. This involves determining
the order of interference at a fourth point in the channel
spectrum and extending the spectral range far into the ultra-

violet.
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To demonstrate the practicability of his theory
Erickson constructed a free-air interferometer, shown sche-

matically in Fig. II-3.
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THE INTERFEROMETER OF K. E. ERICKSON

Radiation frdm the white light source is divided
by the beam splitter and each fraction of the beam is sent in
opposite directions around an outdobr path of total length
0.115 km. The channel spectrum interference pattern is
recorded photographically by a cémera. The beams were within
1.5 meters of the ground over their entire path where atmos-
pheric conditions are normally least favourable. Under con-
ditions too poor to obtain a channel spectrum the fringes
remained visible but were unsteady and warped. Under good
conditions the fringes were visible continuously and long,

unbroken records of fringe motion were obtained. The aperture
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of Erickson's interferometer was of the order of 3 cm. across.

It was noted that under very unfavourable conditions the small
scale atmospheric refractive index inhomogeneities were suffi-
ciently intense to destroy phase coherence across the aperture
~causing the interference fringes to rapidly appear and disappear.
This effect was observable in photographs of the fringes taken
at 64 frames per second. Erickson concludes that good channel
spectrum fringes could be obtained over distances of 0.5 km.

or more.
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CHAPTER I1I

FREE AIR LASER STRAIN METERS

A. CONCEPTION

The free air laser strain meter is a conception for
extending laser strain meter measurements to distances of several
kilometers or more through the uncontrolled atmosphere. There
are two principle impediments to the realization of free air
laser strain meters. The first is the difficulty of observing
interference between optical signals which have traversed an
appreciable distance along separate paths of a turbulent atmos-
phere. The second is the difficulty of interpreting any inter-

ference fringes observed in terms of tectonic displacements.

The difficulty of interpretation can be overcome
by the use of three lasers of different frequencies. The
dispersion of the atmosphere at optical frequencies will allow
the separation of the fluctuations in optical path length bet-
ween the end mirrors into "refractive" and ""geometric' contri-
butions. Tectonic activity can be revealed by filtering the
data and observing any trends in the series of path length

fluctuations.

It is proposed to overcome the difficulty of observ-
ing interference fringes by the use of a '"double rectangle"
interferometer and restricting the area of acceptance of the

rectangular aperture to a 'coherence patch'" size. Light from
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laser sources is no more immune to the degenerating effects

of atmospheric turbulence than optical radiation froh any

other source, however, lasers offer the advantages of large
spatial and temporal coherence at the output and high intensity
both of which will be useful in minimizing observation diffi-

culties.

One physical arrangement for a free air laser straiﬁ
meter, which makes no claim to being optimal, is shown in
Fig. IIi-l. Itkconsists of three frequency stabilized lasers
Ly , L, and L3 with frequencies vy , v, , v,
respectively whoée outputs are combined by mirrors M; , M,
M3 and dirgctediby mirror M, to a retro-reflecting mirror
Mg at a distance{ D . A portion of the combined original
output of the thréé lasers is transmitted by M, and directed
into a prism p; ! In a similar manner a portion of the com-
bined return beamfis directed by mirror Ms located at O
into a prism pz} . The prisms separate the wavefronts into
three optical chaﬁnels which bring them to interfere in pairs
at fectangular diffracting apertﬁres I, , I, and I3 are
fringe counters C, , C, and C; . The fringe counts in
a series of continuous consecutive intervals are the raw data
from which tectonic changes in the length D are calculated

by the readout system,
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B. THEORY

1. Separation of "Geometrical" and "Refractive" Optical

Path Length Fluctuations

Consider cartesian coordinate axes, Fig. III-2,
with the origin at O , Fig. III-1l, oriented so that the
x-axis points in the direction of the retro-reflecting mirror

Mg

at a distance D(t) . The parametric curves E% (2 'tl)

- i

and Ck (2 ,t2) represent the geometrical atmospheric paths,
i

to the retro-reflector and back, at times t and t2 res-

1
pectively, of a single ray of wavelength Ai i=1,2, 3

of the combined output beam.

dR, (£ ,t)
A (B-1-1)

- _ 1
Cxi(z't) = az

where

- A A A
R)\.(Z It) =X)\.(th)l+Y)\.(£ It)J +Z)\.(f; It)k
1 1 1 1

—b

is the position vector of an oriented element dck of the
i

ray-path EA (£,t) and ¢ 1is a parameter, O < £ < D(t) ,
- e 44 oA A
proportional to distance along the x-axis; 1, j , k are

unit vectors along the x , vy and =z axes respectively.

Fig. III-2 shows the atmospheric ray-paths
taken by single rays of the combined laser beam at times tl
and t2 respectively. The individual rays.of each wavelength
Ki i=1, 2, 3 are shown as taking separate but closely

spaced ray-paths at times tl and t2 due to atmospheric

dispersion. The "mean ray-path" EX 4,t) is also indicated
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in each case.
The arc length of the curves 8x (£ ,t) 1is
i
SA (£) given by
i

i

’ D(t) . o . 1/2 1
Sxi(t)v= f [CM( 1,8) - T z,t)] at
(@]

[.‘ . - ]1/2
S)\i(z,t) =L ¢ (2.,t) - CK'(Z.t)

be a parameterized differential arc length segment of the
geometrical curve éx_( 4,t) representing the ray-path
between the end mirror; of the strain meter for radiation of
- wavelength A; at time t.
Then: D(t)
5, () = S, (£.t) al (B-1-2)
i i

o.

At every point ﬁ%.( 4 .,t) along the ray-path the
atmospheric refractive index f;r éadiation of wavelength Ai
has the value nx'(ﬁhl('z,t) ) . The optical path length for
a ray of wavelength ;i travelling from O ( mirror M )

to, the retro-reflector ( mirror M_. ) and back is LX (t) .
i

6
D(t)

L, (t) = 2 ny, (R, (£,t))s, (£,t)
1 1 1 1

(o} (B~1-3)



28

Here it has been assumed that the retro-reflector
simply returns the ray back along its incoming path. This
assumption is a good one for purposes of this analysis since
the refractive index conditions are virtually,unchanged over
time intervals comparable to the transit time of a photon
between mirrors M5 and M6 . It should be emphasized,

however, that this assumption is not necessary for the develop-

ment of this analysis and could be dispensed with, resulting
in a slightly more difficult mathematical treatment but no
significant difference in the end results.

The nét change in optical path length for radiation

. of wavelength Xi' between times t; and t, is aLki(tltZ)

| D(t,)

BLK-(tltz) = 2 nx.( Rx.( z,tz))sx.( z,tz) as
: 1 : 1 1 1

| (B-1-4)

D(t,) o

-2 n, ( ﬁx.( z,tl)) s
1

( 2,t,) 44
i . 1

Aj

Now the refractive index n, (ﬁk is given by

)
i i

n, @& (2,0)) =1+£0,) F[p®R (nt).2E, G.t) ]
1 1 1 1

+ 06 p@, (1), T (R (1,8 ) ]
1 - 1
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AL
i

where P (ﬁ% ( ¢.,t)) , T (R
: i
are the partial pressure of "dry air", temperature, and

(¢2,t) ) , and p(ﬁk (2,t))
i

-

partial pressure of water vapour at position R%. along the
ray-path of wavelength Ai i=1,2,3 respeétively [A-Z,
eqn. A-2-6 ] .

Substituting the formﬁla for refractive index into

eqn. B-1-4 results in egn. B-1-5

D(t,) | Dlt,)

6L)\ (tltz) = 2 sxi( !o.tz)dz - s)\i(z,tl)dﬁ

D ‘ .
+2f(%i) g . F_P(in(z,tz)), -T(in(l,tz))]sxi( z,tz)dz
(o]

I
\
Dley) ‘ 1
- F[pm% (), T(R7\ (2.£)) )]sy (4.t))as
‘ i
'D({-z) |
+2g(A,) o[ ey (4.50) « TR, Caitp)) ]y (tity)as
h R 1
O

D(t

)
1
S o[ PR, (st TR, (n,£)) ]s, (4 .e)ds
i i i
O

(B-1-5)
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Egqn. B~1-5 can be written

A A

5L, (£18y) = U (£185) + £0))V, (EE,) + g(A W, (& t,)
1 1

ész(tltz) = Ukz(tltz) + f(kzxvxz(tltz) + g(Kz)sz(tltz)
' (B-1-6)

BL)\B(tltz) = U)\3(t1t2) + f(?\'3)V7\3(tlt2) + g(7\3)W}\3(tlt2)

where
| D(t2) D(tl)
Uxi(tltz) = 2 g 57\ (2, ty ya ¢ - s% (2, t )yd 4
(o] (o] j
rD(t )
vy, (E18y) = 2 F[P(R (4,£)), T(Rx (4, »] R )d ¢
-f F[P(ﬁxi("tl))'T(ﬁii("tl))]SA_”'tl)d‘
o : : 1
FD‘tz) |
W, (£t ) = 2 o ®, i(z,tz)),T,(R)\ik(z‘,tz))]sxi(z,_tz)dz

(B~1-7) 1
(tq)

D )
J G[p(R (JZt))T(R (zt))]s (4,t)d
O
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Suppose for the moment the small differences
between the individual rays forming the triplet of rays at

-

time tl and t2 ’ Cxi(z 'tl) and cki(z ,tz), can be
ignored and the'triplet of rays in egn. B-1-5 can be replaced
by a "mean ray-path", C(4 »ty) and C(£,ty) , at times

tl and t2 respectively.

= 4
C(z,t) _d_..g_(Z_L_t_L_

where

: 3 i _ .
R( 2,t) = 3 }: xx.(ﬂ.t)) i+ (Eflyx.(z.t) 3
. 1

Wl

i=1 "1 =

( )
. ] 7\-

1

This definition of the "mean ray-path" is such that the mean
ray is geometrically centered in the triplet of rays.
Substituting the mean ray-~-path for the individual

ray-paths in each case in egn. B-1-7 yields eqn. B-1-8

I

61“1(tlt2) U(tltz) + f(xl)v(tltz) + g(xl)w(tltz)

6Lx2(tlt2) U(tltz) + f(KZ)V(tltz) + g(%2)W(tlt2)

6LA3(tlt2) = U(tltz) + f(x3)v(tlt2) + g(k3)W(tlt2)

(B~-1-8)
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where

r 1
D(t,) D(t,)

Ut t,)= 2[ S(L,t,)d L - S(4,t)d 2
LO (o] J
D(t ) :

V(t t,)=2 J Plp(R(e,£)) T(R(L, ¢ ))]su £ )ds
) |
D(tl)

F{pmu.tl»,wm.tl)>]su,t1>az (B-1-9)

O
D(t,)

Wit t)=2|| G[p(R(z £,)), T(R(Lt))) |8 (£, t,)d 4

I
|
D(t2)

f [ p(R(at)) TR (L, £ ]s (2t a2
(o}

and of course
' 1/2
s(st) = [ C(ae) - Suo ]

D(t)

S(t) s(st)d
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Eqns. B-1-8 can be expressed in matrix form

Y ' Y [ )
6L7\l(tlt2) 1 £(x) g(r)) Ut t,)
6Lx2(t1t2) =11 £(,) g(,) Vit t,) (B-1-10)
oLy, (£1%5) 1 F()  g(hy) V.W(tltz))
" J \ J ~

The inhomogeneous terms in eqns. B-1-10 ,
6Lx.(t1t2) R i=1, 2, 3, are equal to the net
chan;e in optical path length in the interval A t = t2 - tl
of a sinéle ray of wavelength Ai traversing the distance

between the end mirrors of the free air laser strain meter.
The inhomogeneous terms in egns. B-1-10 are proportional to

the net fringe counts observed. If A A and A

1’ 2’ 3
are the wavelengths "in vacuo" of the radiation from lasers

L, » L. and L, respectively and if Ckl(tltz) ’
ckz‘tltZ) and CA3(tlt2) are the net fringe counts in
the interval At = t, - & observed in the interference

patterns formed by diffracting apertures I 12 , and

l ’
I3 respectively, then
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aLxl(tlﬁz) = 7y Cp(tyty)

SLRZ(tltz) = xz C2(tlt2) .
, (B-1-11)

5Lx3(tlt2) = A3 C3(tyt,)

The matrix of coefficients in eqns. B-1-10 are
known.from the refractive index formula for the‘atmosphere.

The unknowns V(tltz) and W(tltz) - are
associated with changes in the optical path length of the
ray in the inﬁerval At = t, - t1 which are mainly re-
fractive in origin.l Non-zero values of V(tltz) and
W(tltz) arise mainly from changes in the atmospheric para-
meters of pressure, temperature and humidity along the ray
path. |

The unknown U(tltz) . however, is equal to the

change in geometrical length of the mean ray-path between

the end mirrors of the strain meter in the interval

At = t2 - tl , as can be seen from its definion in eqgns.

B-1-9.

It should perhaps be emphasiééd-that the substi-
tution of the mean ray-path 6(2 ,t) for the triplet of
ray paths E&_( £ .,t) in egns. B-1-7 does not manifest
itself as a pﬁysical approximation in the measurement process.
It merely defines mathematically a "mean ray" in terms of

a triplet of rays. The "mean ray", so defined, is no more or
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less of an abstraction and hence no more or less "real" than
any of the members of the ray triplet. Thus it follows that
the mean ray (or more to the point, fluctuations in the mean
ray) is as adequate as any for use in making physical obser-
vations provided a means of measuring it is available.

A measﬁre of the net fluctuations in the geo-
metrical length of the mean ray is provided by a solution of
the egns. B-1-10 and the existence of this measure is guaran-
teed by the non~sihgular nature of the matrix of coefficients.

It can be shown that U(tltz) is made up of

contributions from two unrelated effects. From egn. B-1-9

D(tl) D t2)
U(tltz) = 2 (S(z,tz)-S(ﬁ.tl))dz + S(E.tz)dz
- (B-1-12)
which can be written
Ul t,) = B5(t;¢t,) +2SD(tlt2) (B-1-13)
where D(tl)
6S(tlt2) = 2 (S(z,tz) - s(z,tl))dz (B~1-14)
O
D(tz)
and 26D (t ty) = 2 S(4,t,)Ax (B-1-15)

()
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At this point in the analysis the necessary

approximation will be made that
25 D(t t,) = I D(t,) - D(tl)] (B-1-16)

This is tantamount to assuming that the mean ray-path never
deviafes strongly from the straight line path between the
end mirrors and that the arc length of the mean ray-path
between subsequent positions of the retro-reflector (which
differ due to tectonic activity) can be approximated by the
straight line distance.

That this is a good approximation is borne out
experimentally by observations of stellar images in astro-
noﬁical telescopes in which the r.m.s. value of the fluctua-
tions in the angleKOf arrival of the ray is about 1"-2" of

=5 yad. [ 25, P. 225 1. Theoretical

arc or roughly 10
predictions by Chernov [ 26, P.17] for r.m.s. fluctua-
tions in the angle of arrival of a light ray after
horizontal transmission through the earth's atmosphere of
a distance of 10 km. yields a somewhat larger value of the
order of 10-_3 rad. However the error in the value of the
net fluctuation in geometrical length of the mean ray-path
introduced by this assumption varies as the cosine of the
angle of arrival of the ray at the retro-reflector and is
likely to be much less than one part in 106.

In egn. B-1-13, © S(tltz) is a random con-
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tribution to the ﬁet fluctuation in geometrical path length
of the mean ray which varies rapidly with time resulting from
differences in the choice of atmospheric ray-paths taken be-
tween the end mirrors Mg and M at times t1 and t, .
In egn. B-1-13, 26D(tlt2) is a contribution tq

the net flucfuation in the total geometrical path length of
the mean ray arising out of tectonic changes in distance D
between the end mifrors Mg and M, - Bs such 26D(t1t2)
contains contributions from the entire spectrum of tectonic
motions from high frequency seismic activity on down to earth
tides and seculgr crustal deformations. All of these contri-

\
butions to 25 D(tlt , with the exception of secular crustal

deformation, by definition; go to zero when averaged over

sufficiently 1on§ time intervals.

It iéAideally desirable to “"filter" a series of
{

continuous consecutive observations of U(t;t.

i 1—1) t=1,

i

2, 3 ... n

i
t

Utgty q) = BS(t;t; ;) + 20 D(tt;

1)

to remove the effects of the atmospheric contribution

5 S(+ ) revealing the tectonic changes in distance 9 D(T ).
The next section will deal with the statistical analysis of
free air laser strain meter observations to reveal tectonic

motions.
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2. Statistical Analysis of Free Air laser Strain Meter

Observations to Reveal Tectonic Motions

The data from free air laser strain meter observa-
tions consists of continuous consecutive sampled values of
the fluctuations of the geometrical length of the mean ray
between the end mirrors of the strain meter, U(ti'ti—l)
i=1, 2, 3 ... n. There are undoubtedly many ways to
process this data in order to filter out the atmospheric
contributions to the fluctuations in geometrical ray-path
length. The filtering could be done optimally, in the
Weiner sense, with knowledge of the power spectra of both
the atmospheric fluctuations in geometrical ray-path length
and of’earfh strains. The observed power spectrum of earth
strains from periods of 2.35 hours tb 4 sec. has been
published by Vali [ 397 but to the author's knowledge,vno
observations of the power spectrum of geometrical fluctua-
tions in atmospheric ray path length have been made. Another
alternative is a least squares fit of a curve to the entire
set of data. .

The method of data analysis presented in this
séction is a rather simple one and while making no claim to
be optimum, serves to illustrate the relationship between the
confidence level of the observations of tectonic motion and
the relevant physical, geographical and atmospheric parameters.

Let e(t) Dbe the extra distance, over 'the
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straight line distance, that a photon travels when traversing
the mean ray-path from mirror M to mirror M6 and back at

time t.
e(t) = 2[ s(t) - D(t) ] (B-2-1)

e (t) is a random variable with probability density function
P (t)(B ) , O0<pB £ o . The expected value (ensemble
c A

average) of ¢ (t) is given by

€)= [gp_(y) (p)B

The random variable bs(tlt2)5= in egn. B-1-13
is rela#ed to. e(t) by
(a8 = clty) - eltp) (B-2-2)
where
At = t2—t1 .

The random variable 6ls(A t) has probability
density function P S(s ) , - ® < B S @ . The

expected value of 5S(A t) 1is given by
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55( at) = B Pévs(B )yas
0S( at) = e(t) - e(t)
8s(at) =0 (B-2-3)

Leti { U(A ti)} = { 58 (A ti) + 20D(A ti) }

i=1, 2, 3 ... n be a sequence of continuous consecutive

sampled observations of the fluctuations in geometrical
2 :
length of the mean ray path U( A t) in the intervals
At, = t, - t; i, . Define X(t _) to be the net fluc-
i i i-1 r .
tuation in geomeﬁrical ray-path length in the interval
& F .
Ty = iZ; Ati . O<r«<n . lThus

!
!
{

r
X(r ) = ), ulat)

i=l

X
X(r ) = _E; 6S(a t;) + 2 _f; 6D (4 t,)
1= 1=

In this context "t" is an absolute time wvariable and
" 11

T is a relative time variable. T = 0 at the beginning

of the free air laser strain meter observations.
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It will be assumed that the values X(r r)
r=1, 2, 3 ...n represent sampled values, at intervals
At of a continuous; differentiable function X(r ). This
is tantamount to assuming that changes in geometric length of
the mean ray-path caused by both atmospheric fluctuations and
tectonic motions are continuous and "smooth". A hypothetical
plot of X(Tr) vs. 7 1s shown in Fig. III-3. AIt consists
of broad band tectonic contributions 20 DY Ati) to the
fluctuations in geometric ray-path length "contaminated" by
large amplitude atmospheric "noise", with mean value zero.

Let 28D be the average value of X(r7 i) over

1

the first in sample points TL Tg  ccc Tm ¢ where m 1is an

even integer of fixed value, corrésponding to an interval of

length AT \ centred about T

N3

AT = mpt - (B-2-4)

In general, if the entire length of observations
of X(T1) represented'by the sampled values >X( Ti)’ i=1,
2, 3 ... n, 1is divided up into g intervals each of length
AT =mA t (where m 1is an even integer-of fixed value and

n=mqg ) then; 20 D, k=1, 2, 3 ... g 1is the average

value of X(Ti) over the m sample points of the kth
interval corresponding to times Ty i =m(k-1) + 1.,

m(k-1) + 2 ... m(k-1l]) +m , centred about Tm(k-1/2) -



X(T

28D,

28D,
\/ ¥ T Tn (k- V2)
— o
K=1 K=2
AT=wm AT FIG. III-3 -

ANALYSIS OF FREE AIR LASER STRAIN METER OBSERVATIONS

(Y
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A curve fitted to a plot of 25 D vs.

k T m(k-1/2)
as shown in Fig. III-3, will reveal actual tectonic changes
in the straight line distance D between the end mirrors of

the strain meter providing

lv] s 2 8D, 1 = Dy k=1, 2, 3 ...q

where Y. représeﬁted in Fig. III-3 by the error bars, is
the'expected difference or "error" between the sample mean of

m samples of © S(aA t) and the populatioﬁ mean O S(A t) = O.
The tectonic éhanges in length between the end mirrors of the
strain meter will be observed with a “signal—to—néise:ratio"

of s or better if

s > 1

(B-2-5)

The residual of the averaged atmospheric fluctuation
in geometrical ray-path length, Y » 1is é monotonically de-
creasing function of the averaging interval AT =m At .

It is necessary to select an averaging interval AT long
enough that [YI is less, by a factor s , the signal-
nqise ratio, than the expected difference in the distance be-
tween the end mirrors of the strain meter in the same interval.

Thus the averaging interval is clearly dependent in general on
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the statistics of the atmospheric fluctuations in geometrical

ray-path length as well as the spectrum of tectonic activity.
The following observation should be noted regarding

knowledge of X(v ) as afforded by free air laser‘strain

meter observations. Firstly, the sampling of X(T ) at inter-

vals AT will alias fluctuations in the geometrical

1
2AT

This folding of the spectrum about the Nyquist frequency will

length of the mean fay whose frequencies exceed

alias fluctuations with frequencies /A o 2/AT 3/AT <.
back to d.c. Tectonic contributions 25 D(r ) to fluctuations
in the gebmetri%al ray-path length at these frequencies are
assuredly of vefy small amplitude, however no such assurance

can be given regérding the atmospheric cdntributions 5 s(r) .
However the central limit theorem states that (the mean of
5S(r) averéged over an interval AT = mA-t) is a random

variable, gaussian distributed about the population mean,

——

YR B
5s(7) =0 , with standard deviation given by 2 '-f%——

regardless of the high frequency spectral distribution of

5S(71) providing the sampled values of 0 S(T ) are inde-

pendent. Independent samples of the random variable D S(T )
can be assured if the sampling interval Arf is greater than
the period of the lowest frequency componénts in fhe spectrum
of ©®s(t) .

Secondly, the reconstruction of the curve revealing
tectonic changes in length 20 D(T7 ) from the "sampled" values
26Dk at interxrvals of AT can be accomplished by the use

of many sophisticated "holds". For purposes of this analysis
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it will be assumed that a simple "polygonal hold" is used.
This is equivalént to a piece-wise straight line approxi-
mation to 25 D(7 ).

Let

_ 2[6Dk+l— o ] o1, 2, 3...q
2h, = !
AT

Then hk is the linear rate of change of the distance D

between the end mirrors-of the strain meter in the interval

AT =T m(k+l/2) = T m(k-1/2) . An observed change in the

distance D , 6Dk+l —ika , 1in the interval

At = Tm(k+1/2) = "m(k-1/2) will be called "significant

at a signal-noise ratio s " and duly attributed to tec-
tonic processes if

Iyl = et K
g s

1,2, 3 ...q

(B-2-6)

otherwise the observation will be ealled "insignificant at
a signal-noise ratio s " and it will be assumed that no
"significant" tectonic éhange in the distance D has
occurred in that interval.

By the central limit theorem the probability
density function for +y  the residual of the average of
m samples of the atmospheric fluctuations in ray-path

length 0 S§ , 1is gaussian about zero with standard deviation
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2
2 5 8
m
1/2 2
. ('a) _ exp - B
Y 27 6S2 5 652
m
(B-2-7)
where 552 is fhe variance of 0s

«©

65 f 8% Pyg (B )dp

- Q0

Let 7 ( |g|)2 },1' 0<q(]g]) s 1 , be the

. AT
probability that |y| < : after averaging over m
samples of 5 S

| 2]hy|ar
— 8
n (g = 2[ . (p)ds
o

In this sense 17 (|g] ) is the "confidence level" of the
observation of the tectonic change in distance. il (|§|) is

the probability that an observation of tectonic motion which

has been called "significant"” (as it represents a change in the
2|hk'AT
s

i - B - B '
distance R Dyia Dy-1 for which lv| = )
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is in fact "genuinely significant". The larger the choice of
Igl the less likely is the possibility of the modulus of
the average of m samples of © S exceeding IYI and

the larger the confidence in the observation.

The following change of variable

' | (B‘2-8)

in egqn B-2~7 defines a probability density function for ¥Y'

N
which is gaussian with parameters zero and one.

1 B
P, (8) = exp - [ ]
Y \/27. 2
(B-2-9)
Let n']g'| be the probability that

le'| < gihkéAl 1/8957_ after averaging over m

samples of bs .
2 [Py |ar A
s
5l

S

Il

1 (gD 2 pY. (g)dp (B-2-10)
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Clearly n' (|§'|) = 7 |g|) . Thus q (Ig'l) is
the "confidence level" of the laser strain meter observation
and e is the confidence parameter. The confidence

level is related by definition to the confidence parameter by

(e ]y = ere [JEL (B-2-11)

It follows from egns B-2-9 and B-2-10 , [ A-3-4] » that

| 1 2fhy [ JE
N gt =erf 3o T —Viés2z | (B-2-12)

It further follows from eqns. B-2-11 and B-2-12 that

le'] = s 5 52 (B-2-13)
where lg"| is the value of the confidence parameter

appropriate to the required confidence level of observation.
Egns B-2-12 and B-2-13 relate the confidence
lével of a free air laser strain meter observation to the
length of the observing interval, the modulus of the mean
rate of change of distance between the end mirrors of the
strain meter and the r.m.s. fluctuations in geometrical ray-

path length. The dependence of the confidence level of the
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tectonic observations on the mean square fluctuations in geo-
metrical ray-path length 852 requires a theoretical
expression for 582 the derivation of which is the
subject for the next section.

This is an interesting problem in its own right
with many perplexing physical and philosophical aspects. How-
ever for those who are prepared to accept the final mathematical
result of section 3, egn. B-3-14, this section can be considered
a digfession from the subject of ffee air laser strain meters.
Such readers need only familiarize themselves with the definition

of the symbols involved in egn. B-3-14 and proceed to section 4.
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3. ‘ Statistical Analysis of Fluctuations in Ray-Path of a

ILaser Beam Propagating Through a Turbulent Atmosphere

a) The Problem of Random Flights

Egqn. B-2-2 shows that the random variable 5S( p t)

is simply related to the random variable e (t)

bs(at) = e(t)) - e(t)) (B-2-2)

W
\
\
\\
v
i

and hence the statistics of 5S( At) are determined by the
statistics of ¢ (t) . Now ¢ (t) , egn. B-2-1, can be

expressed as b
A

D(t)

'
i

e:(t)‘i= 2 [l - cosa ( z,t)] s(g.,t)d s

(o]

(B-3-1)

where s(42 ,t) ; [ 8(2 ,t) . C( 2.t) ]1(2 is a random
variable, the parameterized differential arc length segment
of the ray at time t as a function of and a (g.t)
is the total 3-dimensional angle between the x-axis and the
ray-path at time t as a function of g - The probability
density function Py S(B ) is determined by the probability
density function P (B) where 1 (t) is given by

egn. B-3-1.
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It has been pointed out by Wang and Uhlenbeck [33]
that the derivation of the probability density function for a

random variable z(t)

z(t) = I K(2,t)y(2)de

where K(e,t) is a given kernel and y(L) a random variable
with known probability density function other than gaussian

is an unsolved problem in the theory of Brownian motion.

It is clear from eqn. B-3-1 that the problem of the
derivation of the probability density function for e(t) 1is
a member of this class. However a solution for e(t) is
obtainable if_tﬁe atmospheric ray-path can be approximated
by a series of straight lines. When cast in this approxi-
- mating form the problem is easily soluble by methods of ana-
lysié developed by theoreticians working on problems of Brownian

Motion and in particular "the problem of random flights".

The problem of random flights is to calculate the
probability that a particle, initially at the origin, will occupy
a_given volume element of space after a finite number of arbitrary
displacements whose probability density functions are known.

The solution to this problem is due originally to A. A. Markov

and has been generalized to n-dimension by Chandrasekhar [27].
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A problem pertinent to the feasibility of free
air laser strain meters is to calculate the probability density
function for the total path length travelled by a particle
engaged in random flight after the particle has achieved a
given straight line total displacement from its initial posi-
tion. Although this problem is related to the problem of
random flights it éppears that neither Markov nor Chandrasekhar

investigated it.

To Bpgin the problem of caiculating the distribu-
tion of atmospheric ray-path lengths of a single ray of a
laser beam it is necessary to assume that the atmospheric
refractive indexifluctuations can‘be divided into two classes
depending on the%r scale. One class, characterized by scales -
of dimension 2°é or larger, causes deflection of the laser
beam as a whole while preserving the structure of the wave
front; whereas th; other class, characterized by scales of
dimension less than Lo éauses internal degradation of the
laser beam such as '"crumbling of the wave front" and fluctua-
tions in intensity and phase coherence across the beam while
pfeservingvthe beam's direction of travel. This assumption
immediately permits one to approximate the ray-path over a

straight line total distance D by a series of straight line

segments of length &, where Lo << D .
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Over distances of the order L, or less it is
assumed that a single ray may undergo many rapid fluctuations
in direction about its initial direction but that its mean
direction is constant; whereas over distances larger than
%0 it is assumed that a single ray may experience many large

fluctuations in direction which add appreciably to its total

path length.

The assumption that the ray-path can be characterized
by a length L, such that for distances larger than L5 the
fluctuations in direction of the ray are essential whereas for
distances smaller than Lo they are trivial and can be ignored
is both drastic and curious. Support for making such an
assumption comes from the theory of Brownian motion where an

exactly analogous assumption is made concerning velocities

(rather than displacements) of Brownian particles.

It is fundamental to the theory of Brownian motion
[27] to assume that there exists a time scale At such that
for iﬁfervals of time +t<At the velocity U of a Brownian
particle is essentially constant whereas its acceleration
%% can suffer many and possibly large fluctuations; whereas
for intervals of time 1t>At the velocity U of a Brownian
particle can vary appreciably. This assumption restricts the
validity of the theoretical predictions to times 1 >> At .
The justification for this assumption in the case of Brownian

motions comes solely from the success of the theoretical predic-

tions.
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b) calculation of the Probability Density Function for

€ (t)

We shall begin by assuming gaussian probability

density functions for the azimuth 6 and elevation ¢ of

o -
the unit tangent vector €& to the ray-path C(<X£,t) ,

Fig. III-4
1 8?
P_( ﬁ) = —p—== exp - == - o<pBg®
© N Y. 292
. 2 :
P¢(B)= = 1 exp ——g—_z_ - oS
21 p2 2¢

Beckmann (22) has pointed out that regardless of the detailed
distribution of the microséale fluctuations in refractive index,
ﬁhe fluctuations in direction of the ray will be gaussian dis-
tributed by the Central Limit Theorem.

Chernov (26, P. 22) assuming a gaussian auto-
correlation funétion of refractive index fluctuations on a micro-

o
above prob ability density functions Pe(,p) and P¢(B ) and

xr2/ 2 .
scale c (r) = exp | - rg has also derived the

shown that for isotropic atmosphere turbulence

o7 .7 _2dm R
ro
where r, is the "inner scale" of turbulence, ;2 the mean

square refractive index fluctuation and the formulae is valid

for propagation distances L>> Iy o measured along the ray-path.
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The total angle a between the ray and the
"straight line path" or the extension of the initial direction

of propagation, represented by the x-axis in Fig. III-4, is-

given by
coOs a = cos 8 cos ¢
If a, © ., ané o) are-all small angles then
1-1/2a2 = (1-1/2 8%) (1-1/2¢2)
a2 = 92 + ¢2
2

The probability density functions for 86

readily calculated (A-3-1)

- 2
1 _g° :
P2(B) = —Jp==—=== exp | - —= 0B S
02 1P V2r @2 02 292 A
1 _EE_ <g X
Po(B) = —===—==— exp - — . O BT
¢> " P Jonp2 #2 2 ¢2

and the probability density function fo;’ a? . P2 (v)

P2(y) = Pgo(p) @ P2 (B)



where "®" symbolizes convolution. Pe¢2( B) can be readily

calculated (A-3-2) to be

1
P2(p) == exp % 0 B o
(B=3~2)
where —
— _ a/nl .
h oy

-
Consider the atmospheric ray-path C(AR.,t) Dbetween

v
mirrors M and\\ M6 and back of a free air laser strain meter

5

to be approximatéd by straight line segments of length 2,0
and let L% beibnthe total angle between the straight line path,
represented by thé x-axis, and the kth segment of the ray-path
k=1, 2, 3 b...”n , Fig. III-5.

The e>:;:tra disténce, over the straight line distance,
travelled by the ;:,ay on the kth segment of its path during its

to-and-fro journey between the end mirrors is A€,

i

b€y = 2[2'0 —fek]

k=1,2, 3 .... n

bey = 2[20-/2»0 cos akj ”

If ay is a small angle



|
i
[}
i
L -l
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// !
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82 :
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2
se. = & oy k=1, 2, 3... n.

The total extra path length, over the straight line distances,

travelled by the ray is

¢ B B oae

The problem of calculating the probability dis-
tribution for €, the extra path length, as opposed to
calculating its mean square value is complicated by the fact
that integrals (or summations) taken along the curved ray-path
cannot be replacea by integrals (or summations) along the
straight line path as is frequently done in problems of this
sort. . | ‘

Thus with tﬁe curved ray-path approximated by
straight line segments of length ‘Qb ; the deflections in
azimuth and elevation, Gk and ¢k , refer to the angles

between the present direction of the kth line segment and

the extension of the k—lthv line segment. The total deflection

in azimuth and elevation, @k and Qk , relative to the
extension of the initial direction of propagation (or the

X-axis) 1is given
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¢k=¢l+¢2+¢3+'“¢k

Since each angle ek and ¢k is a gaussian
random variable with variance 5? and 57 ; it follows
that é?k and ébk are gaussian random variables with

variances given by

As before the
angle between
straight line

and elevation

Thus a

N

where

& - x &2
K
‘_7_ = ~>
\\ @K k @

e

small angle approximation holds and the total

thei kth segment of the ray-path and the

patﬁ, a ., 1s related to the total azimuthal

k
angies Gak and Q§k by

s

R A ]

has a probability density function

P o (B) =% exp - £

A 3
6% P - K D
- .7

% = K%

and k is the number of deflections.

If the turbulence is assumed to be isotropic, then
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and

2 lhﬁf “"Z)—Q 0
r

o]

Given the probability density function for 0(]2< .
P.2(g) ., it follows immediately that the probability density
k¢

. _ 2 . ..
function for Aek = 40 “% v PAEk(g) , is given by

| . |
Pre, (B) = g e —79==5 (B-3-3)

k o %x . o %k
It is clear that since € = ? A€ that the probability
=1
density function for € will be given by the convolution

of a series of n inhomogeneous probability density functions

P (B )’ , each differing by the parameter a 2
AGk ) k

Pe (v) = PAe,l‘ B) = %ez(m 2 ... 8 PAen(B)

This is an exceed.ingly awkward solution and can only
be given in terms of a series summation, the length of the sum
varying with the distance D . We shall instead derive an
approximate solution and justify it by the following arguments.

The solution to the corresponding homogeneous



63

problem'is simple and was derived by Markov and Chandrasekhar.
It should be noted that the above prohlem is "quasi-homogeneous"
in the sense that all members of the set Qf n probability
density functions are of the same mathematical form - an
expoﬁential - and differ only among themselves by different
values of the parameter :;% . If consecutive fluctuations
in the'fay direction can be considered uncorrelated (this does
not imply independence - for they are dependent) then the
variance of the probability distribution function for € is
fhe sum of the variances for the random variables 5§]<
which make up its sum. |
Thus wé shall obtain an approximate probability

density.function for €(t) by convolving n homogeneous
exponentialé together to obtain the mathematical form of
P€(t)( p) and then scale it appropriately by insisting that
the variance of Pe(t)(g ) by equal to the sum of the variances
of Agy k=1, 2 , 3 ... n.

- The convolution of a homogeneous set of n ex-
ponential probability density functiéns can be easily done
using the Faltung Theorem. If

1
Be(B) = 3exp - &

a

is a member of the set and

0,¢(s) = | exp(-sp) B (p)dp  (B-3-4)

(]
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as its Laplace transform then

o=

QAG (s) =

10}
+
o =

(see Appendix A-3-3)

By the Faltung Theorem the ILaplace transform of

Pe (B) is Qe (s) where

1 1 .
Q¢ (8) = — ,
€ an S +%

(B=3-5)

This is a tabulated Laplace transform and has inversion .Pe (g )

i

given by
n-1 . B
Pe (g) = —HJi——"— exp | - | e

a (n-1)!

The free parameter "a" shall be fixed by the condition on the

variance of Pg ( B) .

The variance of Pze (p) 4is given by the integral
K
oo
2
be 2 = —"ET—;— exp | - E-z dg
k kL a° kL o
o o © o o

which can be shown (29, P. 317) to be
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Therefore the sum of the variances is given by

n — ' - 2 n 2
Z reL = 2 L£a?) Z K
k=1

k=1
= — = % n(n+l) (2n+1)
n({n+1l) (2n+1

which for large n can be approximated by

n 3 ' 2 . .
Zi E = 93— (‘96 c‘02) :
=L

The variance of Pe (B ) is given by the integral’

- 'ﬁ n+l B‘

) _

= —_— exp |- = da

€ j a™ (n-1)¢ a P
Q

which can be shown (29, P. 317) to be

?: a2 n(n+1)

which for large n can be approximated by



We shall insist that €2 = Z;AE

2
k
so
3 —_— 2
2 2 n3 ,
a n = j% % )
Therefore _3
A
¢13
which gives a probability density function for € (t)
n-1 .
P (g) = 3|72 P ex e
€(t) ' P n g 2\" Pl L2
(13 ao) (n-1)! E § °
where
- 2k |
o |

'\‘ )
and since the ray never deviates strongly from the straight

line path
ng—% " (B-3-7)
Setting
/3 iie
75 - ¢ (B-3-8)
VG; 6 % '

the probability density function for € (t) can be written

-1
_Qi_él_- exp [— ap ] oL B @

Per) (B) = —(mmoyT

(B-3-9)
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c) Calculation of the Probability Density Function

for &S(At)

The change in geometrical ray-path length &§S(At)

is a random variable given by
8S(st) = e(tz) - €(t1)

and has probability demsity function Pgc(y) , - oSy o

where

Pys() = P, () @ P, (-8)

o©

[ re,e0p, (Bov)ds (3-3-10)

- 00

Pés(Yj

However since PGS(Y) is not defined for negative values of
L . \ .

the argument eqn. B-3-10 must be considered séparately for

y>0 and ¥ <0
P, (B)P, (B-y)dp (B-3-11)

1. ¥y >0 | PﬁS(Y). =

2. y <0 Pss(Y) = [ P (B)P_ (B-Y)dB

Or—— § <L — 8

Since e(t,) and e(t,) are identically distri-
buted random variables it is obvious that PGS(Y) is an even

function of y so.considering only the case y > 0 and



substituting eqn. B-3-7 into eqn. B-3-11

2

n (o]
Pas () =|—1—| [ 6" (8-1)"expl-aslexpl-a(8-v) a8
(n-1)!

n 2 <
Pys(v) =|——| explay] [ [8(B-v)1" Texpl-2q8]as
(n-1)! Y

This is a tabulated integral [29] and
+1 2 -4
Pes(¥) =| 3 "F —¥"?K (a3 , v> O
’ r(n)v/« 2

where T(n) is the gammé function and Kn-» is the modified
2

Bessel function of order n-% . Since Pss(y) is even it

follows that

q,n+} 2 n-%
Psa(Y) = ( —— |y K__, (al¥]) (B-3-12)
6 7 = vl n-y (al

The variance &S? is given by

8§82 = I Y? Pog(v)dy

- 00
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where pdS(Y) is given by eqn. B-3-12

682 = 2 I y?2 Psg (Y)dy
)

_ » [
65T - ™ [ ™7k Galvhay

This is also a tabulated integral [29] and

(B-3-13)

Sﬁbstituting eqns. B-3-6, B-3-7, and B-3-8 into éqn. B-3-13

~gives

357 - 32w(i:)2£2D’
3ro

(B-3-14)
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4. Free Air Laser Strain Meter Observations
Substituting egns. B-3-14 and B-2-4 into eqn.
B-2-13 vyields

lg’l = ______L__O_ 3 At (B-4-1)
S M AR 327 At

Egn. B-4-1 is a relationship between the observation
time " At " required to observe, with é specified confidence
level "n " and signal-noise ratio "s" and in the presence
of mean square atmospheric refractive index fluctuations
" uz" , a tectonic'change in distance assumed to be proceeding .
at a linear rate "hk" and the distance "D" over which the
~observation is to be made. The quantities "r_" , "J%" » and
na k" are essentially atmospheric constants equal numerically
to the "inner scale of turbulence", the "outer scale of turbu-
lence" , and the "cofrelation time for atmospheric ray-paths",
respectively. The magnitude of the confidence parameter,

" lg'|" , appropriate for the specified confidence level "7( "
is givén by egn. B-2-11.

Solving egn. B-4-1 explicitly for 4Ac yields

Cra2r a1Y? [ 2 R n|B1]1%° (a2
At = 3 2 Ihk‘ r,




Choosing

D = 5 km (5x105 cm. )
r, = 1 cm.
L = 10° cm.
lhkl = i‘cm./year (3.l7x10"8 cm/sec)
1071 ¢ 2§12
At = 2x10-1 sec
s = 2

(For a discussion concérning the appropriate magnitude of the
above physical.quantities - see Appendix A-4)
Then |
-+ 55 |§’12/3 sec€AtT £ 1.25 x 10° |5Il2/3 sec.
| o (B-4-3)
depending on the value of the mean square refrac¢tive index
fluctuations. ‘
o Evaluating egn. B-4-3 for a 99 percent confidence
level of observation requires the confidence parameter [!g(
to equal 2.58. At a 99 percent confidence level of observation

it follows that

104 séc £ AT € 2.35 x 103 sec.

(B-4-4)
Thus egn. B-4~-4 indicates that under conditions of
weak atmospheric turbulence, uz "-'10—14 , a free air

laser strain meter has a probability of 0.99 of observing,
over a distance of 5 km. and with a signal-noise ratio of 2:1,

a tectonic change in distance proceeding linearly at a rate of
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1 cm/year in 104 seconds (1.73 minutes) of observing time.
If D is changing at the rate of 1 cm/year the
net change in D in 104 seconds is 6D = 3.29 x 10°° cm.

The resulting strain sensitivity of the free air laser strain

meter:-undaer such conditions would be

5§D _ 3.29x10°°
D 5x10°
LB - 6.6 x 1077 (B-4-5)

This strain sensitivity exceeds the limit of presently attainable
laser frequency stabilities for such intervals (12).

- Under moderate-to-intense atmospheric turbulence,
W 2 ﬂ’lo‘lz , the free air laser strain meter can make the same

observation at a 99 percent confidence level in 2.35 x lO3

et

seconds (39 minutes). At a rate of 1 cm/year the displacement
occurring in 2.35 x 103 seconds is 5§D = 7.45 x 10™° cm.
The resulting strain sensitivity of the free air laser strain

meter under such conditions would be

6D _ 7.45x10°° -
D 5x10°
2D - 1.5x 10710 (B-4-6)

This strain sensitivity corresponds to presently attainable
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laser frequency sﬁabilities for such intervals (12).

Viewed in another manner these results indicate
that a free air laservstrain meter could make "sampled observa-
tions" of tectonic changes in distance proceeding at rates of
1 cm/year or better over a distance of 5 km. with samples
measurements occurring every 1.73 minutes in the presence of
weak atmospheric turbulence and every 39 minutes in the presence
of moderate—to—inténse atmospheric turbulence.

In the free air laser strain meter there are several
factors limiting the distance over which observations can be
made. Among thése are: atmospheric degeneration of phase co-
herence and subséquent loss of fringe visibility, increase of
atmospheric modulétion of the laser frequency and subsequent
jitter in the frihge pattern, and the frequency stability'of
the laser itself}ﬁ.It will be seen in Chapter III, Section C
that given su%ficient laser power and sufficiently fast
fringé counters tﬁe limiting effects of the atmosphere can be
made arbitrarily:small, however, the laser frequency stability
places an intringic limit on the system.

If the laser frequency stability as a function of

&v(T)
v

operating time = then a "coherence time"

§ t(t) can be defined as
1
t(t) = ?;;(;y— (B-4-7)

A necessary operating condition for a free air

laser strain meter is that
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2D<K ¢ st () (B-4-8)

6t( t) decreases monotonically With increasing 1 and all
else being equal, At increases monotonically with D .
Thus an arbitrary increase in the observing distance D ,
evén if permitted by other constraints, would lead eventuallyA
to a violation of condition B-4-8. Thus the limiting condition
on observing distance imposed by the coherence length of the

laser is

<<
2D 6y (ar)

327 A 4 /3 - Is 24 plEl|?/3
3 2 lhk' ro

\

5. Accuracy of Observation

a. Error Propagation Analysis

The major source of error in free air laser strain
meter observations is due to uncertainties in the elements of
the matrix of coefficients coupled with observational errors
in the inhomogeneous terms in egn. B-1-10. Inaccuracies in
these quantities will result in incorrect values for the
solutions of U(A 1) , the fluctuations in geometrical ray-

path length. The "observational egns." - egns. B-1-10
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5L

6L

can be written

[ )

SLA' + ql

r

1

1

1

0 gy

75

-

f(%z)

f(K3)

g(r,)

g(%3)j

f(xl) + €12

g(hy) + €,
g(h,) +€,4

g(r3) + €55

-

-

—

U + pl
vV + P,

W + Py

>

where the "barred" quantities refer to the exact values and

are their absolute errors.

The observational egn. B-1-10 can be written

qa, € ., .and p
_I__._::
where
L =
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ﬁ+pl

I
Il
<
+
o]
N

“
|
[
b
i
i
{.

1
1.

The "exact" egn. can be written

[~ g . Lol %4
L = ¢X
where { o

5L

A
~r ———
L = 8L

A




77

154
B
<4

(1 ) B0y

not
n

=

2

20,

Ll r,) E(xB)J

Now
o d
I = X+p
~
L = L + g
¢ - ET
where
4 'y
Py
B = Py
P3
G
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( o )
3 = QQ
aq
L 3
>
1+vyy; v V13,
E = I+y Vo 1+ vy, v
V31 V32 1+ vy
'\
and it is assumed that vy .. << )1 .

1]
By substitution it follows that the observational

~

eqgns

can be written
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but

1=
u
1
1
<

SO

+p = CH(I-y) Trg’

li<
i

~ -] ~_
X+p = CTT + TH(g=-»T)

.
—

, 5

Therefore one can identify

The column vector P representing absolute errors

and W

in the unknown u ., V ,

can be decomposed into
systematic and random errors

B = P-'syst + Brana
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where

lIL-Q_

Prang = & 4 (B-5-2)

b. Systematic Errors

The systematic errors in.fhe matrix of coefficients
manifest themselves as a "scaling" by a constant factor of the»
observed rate of tectonic motion and cannot be eliminated ex-
cept by more.aCCurate knowledge of the dispersion formula for
the atmosphere. An estimate of the magnitude of this scaiing

can be made based on present knowledge of the dispersion formula

for the atmosphere.

From egn. B-5-1

; -1 ~
Pj syst .~ Tij vjk T )

o

The only systematic errors affecting the measurement are the
erxors in U , the fluctuation in geomet;ical ray-path
length, given by Py .
3 3 . o
-
P} gyst = 325-1 kgl C.t; Vi I (B-5-3)
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This calculation requires values for the elements of the
matrix vy .
The elements of the matrix A are related to

the errors in the matrix of coefficients by definition

i
I
fi=
+
S
ot

which gives rise to nine equations in nine unknowns.

1 + Vi, + v12 + Vi3 = 1

vy tl o+ oy, +v,s =1

VV31 + Vio + 1 + v33 = 1
Vi, [“TO‘Z-) B ?_(7\1)] .+ Vis [f(y\3) - ?()\1)] o %—2
"’21[-{(7‘2) - f“‘l)] +t Vas [?(7\3) —'“f(?\?_)] = €,
v, [T0y) - F0,) - vy, [Fop - T0)] = g,
Vi [Q’(?\z) - g(hl)] + vy3 [g(x3) - g(xl)] = el3
_v21[5(7\2) - 5(7\15] + Vo, (§(>\3) - ?3'()\2)] = €,
”32[5()‘3) B 3(52)] - v31[§(7‘3) - E(%l)] = €,

Solving the first set of three equations for Vii,),, Y43+ reduces



82

them to a set of six equations,

vig B+ vig 8, = §,
Vipg % + vy3 8, = €,
- - €
oy By b vyy (B, =44) 52
Vo 81 * va3 (85 783 ) = 54
b
\ “v3y {8y = Ay ) — vy B, = &,
“vy, (8, - 87 ) = vy 8, = &
!
B
.
where 1{
A = -
L= £0,) - £0y)
Coby = £(R3) - £(Ry)
5, = gy) - g())

The solutions to the nine equations are

€3(a,0)) - §,05,-5))
Ay 8y =45 8,

Vii



Choosing laser wavelengths
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Qa8 = €34,
80169 T A5 8y
€34, - €, 8,
8186, T8, 8y
65 6,578) - €,53(8,744)
b1(,-87) - 8;(8y-4)
&, 5, €3 4y
b1 (6,-87)-8; (A4,-8,)
€38, _ €, 5
Ay(6,-87) - 6,(8,-4)
€6 ,-0,) - €,(5,-5,)
6,8 5=07) - 8,08, -8,)
€,06, - €34,
6,(5-4y) - 8,(8,-5,)
€2 5 - &3 4
5, (6,-b) - b, (6,-6])
Ay =108 , Ay=0.5u,

,» it follows from the dispersion formula For the

%3 = 0.3 p

atmosphere (A-2 egqns. A-2-7 and A-2-8) that Al = 1.8D4 x 10_6 v
b, =5.384 x 10°° , 6 =2.265x10° , &, =6.297x 10°° .
The refractive index formula claims an accuracy of one part in

109 (20) in which case eij are of the order of 1 x '10_9

randomly distributed about zero.

Thus from the above solutions it follows that



(B-5-4)

and are also randomly distributed about zero.

From eqn. B-5-3 it follows that the syStematic error

in U(At) is Py syst
P = E"l (V..8L, + Y., 8L, + V. .85, )
1l syst 11 11 Xl 12 Az 13 7A
\ 3
+ o7l 8L, + 6L, + v, .5
12 V2105 + V4, Oy 23°Ly )
1 2 3
ol '
+ Cpy ( vy 8Ly vy, B, o+ vy, 0m, )
1 2 3
(B-5-5)
However the exact solution for U(N t) is given by
~_1 ~ -1 a1l
& + C &
U= Cpy 6L7\1 tGa Ch, 13 °In,

Thus the exact value of the fluctuation in geometrical ray-path
length U(4t) gets scaled by the systematic errors to a
value of u(at) + Py syst . The scaling factpr is given

by the ratio .
U(a t) + Py gyst
U(dt)
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The scaling factor can be estimated by assuming that to

a first order (neglecting dispersion) the fluctuations in optical

path length are all equal for wavelengths %l ’ Az and A3
Thus |
| 6. = 8L, = &1
M W A3
and
~ -1
Py syst = C11 OBy (vip * vip * vi3)
1
~_1 - 5
*oCrp O (Vap * Vap t Vas )
~-1
+ Cy3 GLA3( V3p + V35 + Vag )

If it is assumed, on the basis of egn. B-5-4, that the vij

are drawn from a gaussian distribution about zero with standard

=3 then

deviation of the order of 2 x 10 can be

Py syst

estimated to be

A 12

= +2y3x1073 ['cli 51.. +C lISL +c lSL)\]
1

Py syst

and the scaling factor is given by
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UM ) + Py oy 1 *23x1073
(s ©) 1

U(a t) + Py syst
U(at)

= 1.0 * 0.00346 .

Since this:xaliné factor is present in each deter-
mination of U(4 t) it will also be present in their mean
and so will be reflected in the observed tectonic motions.

In otﬂér words, present day knowledge of the atmospheric
dispersion would\;esult in systematic errors in the observed tec-

tonic motions of the order of t0.3% .

c. Random Errors

!

The random errors in free air laser strain meter

observations are fhe result df inaccuracies in the fringe count.
Keepihg the réndqm errors below a maximum acceptable 1e§e1 will
place limitationé on the accuracy to which fringes must be
counted. |

From egqn. B-5-2

.1 .

Pi vana = Cij 9

The only random errors affecting the measurement are the errors

in U , the fluctuation in geometrical ray-path length, given



by

If fringes are counted on each channel to * €& parts of a

fringe, then

and
- +€2-1, & -2 €5-3 5o
Pi yana = T€C11M E &C1o% T 3 Ay (B7576)
The worst case occurs when all ej have the same sign. Thus

Tl +% a4+
Py randa € €]C11 21 ¥ Ci12 M2t C13 A3

If wavelengths "?\l = 10p, A

are chosen

" “-1 ~-1 , -1
Py rand RS 6>\3 [33.3 C,] +1.66 Cy; + C13]
(B-5-7)

Now

ol

-] cof.[ .
Ci' = v
J det. 'Cij]

\~
and from the definition of Cij it follows that
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-1 gin) [a0,1+ g0 [6,-5,]
€1 = 17 b, 6, -0, 06
1°2 7429
a1 30y) By - £ 5
12 5, 5, -8, 5,
o B s LA WA s Uil
13 = 5 5. - 5.5

1 2 2 1

and using the above wavelengths and dispersion formula for the

atmosphere (A-2 egns A-2-7 and A-2-8) it follows that

g0 £ 6.487 x 107 E(r)) T 7.749 x 107°
g(r,) = 6.714 x 107° mé) 2 7.930 x 1072
5(%3) by 7.180 x 1072 ‘5(7\3') € 8.288 x 103
and so
“C'H T -93.7
t% ~ 163.5
tTl o~ _es.s

Substituting these figures into eqn. B-5-7 gives

P1 rand $ 8.74 x 10-'2 € cm.
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d. Accuracy of Fringe Counting

The proposed method of observation of the free air
laser strain meter relies on averaging a series of continuous
consecutive obsérvations of the net fluctuations in the geo-
metrical ray-path length to reduce the atmospheric effects (which
have a long term mean of zero) to "insignificant" levels. The
quantity "yY " represented by the error bars in Fig. III-3 is
the expected difference or "error" between the sample mean of
M samples of the atmospheric fluctuation in geometrical ray-
path length, 8S(at) , and its populatioﬁ mean, 5s(At)= 0 .
The exact value of §S 1is contaminated by the effects of both

systematic and random errors

§S = §85

obs exact pl syst * P1 rand :

The systematic errors are inherent in the observing method and

can be combined with &S to give &S

exact atmos

GSobs = GSatmos + p1 rand

The quantity 682 appearing in egn. B-2-13 should

. 2 . . .
ideally be 8 Satmos but will in the course of free air laser
strain meter observations be substituted for by 5Sibs .
) ) 2
= &
Gsobs satmos 1 rand



90
In order to permit this it is necessary that

2 2
pl rand « 6Satmos.

V) T re o1, 4+ e a1, 1 e o1 2

P] rana = (T§ Ci7 ™ & cpyn, tE€5Ciz )

If the fringe observation errors are assumed to be

uncorrelated in each channel with a mean value of zero then

3 _ -1 _ .2 o E—
Pl rand = (§ C31 M7 + (€T3 A7 + (€T3 Ay)

Using the above values for A r A , and A

2 62>\2

P1 rana © _ 3

—>-1,2 “_1,2 -_1,2
[(33.3 Cll) + (1.66 c12) + (Cl3) ]

d using the ab lues for ¢;r , €71 a ¢t
and using e above values for C1l ’ C12 an C13
P L,angq = 8-83 x 1073 €% en® (B-5-8)
2 . . :
The value of ssatmos is given by egn. B-3-14

to be
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_532  3r (n 2)2 .CozDz
atmos 3 r2
o)
Taking
u2 - 10—12
«Qo = 103 cm
D = 5 x lO5 cm
r0 = 1l cm

(For a discussion concerning the appropriate magnitude of

quantities - see Appendix A-4)

g2 = 8.39 x 107° cm?

If it is requiredifhat
v ?

.2
Py rand“< 65

2 .
atmos

then
8.83 x 107> €2¢< 8.39 x 107°
€2 << 1073
or
-2

these
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Thus it is seen that counting fringes to an accuracy
of $10°2 parts of a fringe is sufficient to facilitate free
air laser strain meter observations over a distance of 5 km in

the presence of moderate atmospheric turbulence.

Present methods of fringe observation in conventional
laser strain meters are accurate to small fractions of a fringe.
The 1 km. long_laser strain meter in the Cascade Tunnel of the,
Stevens Pass in the state of Washington, U.S.A. counts fringes
to an accuracy of #10°% parts of a fringe (39). A small laser
strain meter has been designed by Salisbury and Gangi (42) which
is capable‘of measuring strains of one part in 10!° over a dis-
tance of 1 meter. This strain meter operates with an 0.6328u
He - Ne laser and such measurements correspond to fringe obser-
vations of %3.06 x 10”* parts of a fringe. Moreover it is
"claimed (39) that the fluctuations in the number of photons in
the laser output due to inherent noise characteristics of the
laser are so low that measurements accurate to +10-5 vparts

of a fringe are practical.
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C. FRINGE OBSERVATION

1. Degenerating Effects of the Atmosphere on a Laser Beam

The degenerating effects of a turbulent atmosphere
on a laser beam propagating through it can be roughly divided
into two classes; 'whole beam" effects and "internal” effects,
depending on whether the effect is primarily caused by turbul-
ence scales larger or smaller than L, - "Whole beam effects"

include:

(1 Déviations of direction of the entire beam -
"quivéring".
(2) Lateral displacements of the entire beam -
"spotJdahc{ng".
| (3) Fluctuations in cross-sectional area of the

entire beam - "breathing".

The whole beam effects are those which contribute
to the extra réy-path length over the straight line distance,
e(t) , and hence to &S(At) . Whole beam effects produce.
fluctuations in the transit time of the beanm and in the caée

of laser output manifest themselves as a frequency modulation.

Since an electromagnetic disturbance can be described
as a complex scalar function of position defined by an ampli-
tude and a phase (if polarization effects are ignored) it follows

that the remainiﬁg "internal' degenerating atmospheric effects
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can be divided into two sub-classes - "amplitude effects'" and

"'phase effects". "Amplitude effects" can be described as:

- (4) Fluctuations in intensity of various regions

within the beam - "boiling".

5

"Phase effects'" can be described as:

(5) Fluctuations in transit time between individual
rays of the beam producing "crumbling of the wave front" or

"phase fluctuations’ over the beam's cross section,

H

\
For the operation of a free air laser strain meter only effects -

\

(4) and (5) are\potentially troublesome. .

Since the atmospheric refractive index, even under
the most turbulent conditions, is a continuous function of
position, it follows that the fronts of constant phase, which

|

can be assumed to be plane at the exit pupil of the laser,
/' .
always remain connected surfaces in space as the beam propa-

_gafes through tﬂg atmosphere. Thus a laser beam propagating
through a turbulent atmosphere can be described as being
"locally coherent'. This is intended to describe fhe fact
that surrounding any given point on a front of constant phase
there exists a "coherence patch'" over which the phase front
can be approximated, to any desired accuracy, by a plane.

The dimensions of the coherence patch decrease monotonically
with increasing specified degree of coherence and with in-

creasing distance of propagation. If the portion of the

incoming wavefront incident on the diffracting apertures in



95

the interferometers I, , I, and I; , Fig. III-1, has
dimensions comparable to a region of high coherence, then

interference fringes with a correspondingly high visibility

will result.

Thus by sufficiently restricting the diffracting

aperture and correspondingly increasing the power output of

the laser a free air laser strain meter can be made to operate
in a condition unperturbed by the degenerating effects of

atmospheric turbulence.
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2. Fraunhofer Diffraction from a Double Rectangular

AEerture

The interferometers I, , I, and I3 of a free
air laser strain meter, Fig. IIi-l, will consist of double
rectangular diffracting apertures. The optical system will
be arranged so that light transmitted by mirror M, is inci-
dent on rectangular aperture #1 and light from the retro-
reflector off mirror Ms 1is incident on rectangular aperture
#2. It is assumed that the aperture dimensions are equal
and small enougﬁ to ensure reasonable coherence across the
aperture. It is further assumed that the airy disc of the
optical channel preceding the diffrécting aperture is large
enough to ensure‘the existence of a region of the wavefront
for interference which is unperturbed by diffraction of the
optical channel.:»The light incident on aperture #1 with
angular frequency w; and the light incident on aperture #2,
having traversed the turbulent atmosphere, will be partially
coherent and have instantaneous angular frequency w2 ,
w2 # w3 . The instantaneous frequency w, varies randomly,
with mean value w; , due to the effective frequency modula-

tion imposed on the laser beam by the turbulent atmosphere.

Consider two rectangular diffracting apertures #1
and #2, Fig. III-6, in the gn-plane and assume that the optical

disturbance can be represented by a continuous single valued



APERTURE
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#2
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FIG.

11I-6

FRAUNHOFER DIFFRACTION FROM A DOUBLE RECTANGULAR APERTURE

L6
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complex function of position, the square of the modulus of
which is proportional everywhere to the intensity of the

optical disturbance at that point.

The total disturbance at a point xy in the xy-plane
is given by the sum of the contributions, added according to
phase, from the source elements d&dn in the &n-plane. If

the optical disturbance in the &n-plane is represented by
¢ (En) = A(En)exp-iB(&n;t)d&dn

where A(gn) 1is the amplitude per unit area
and B(gn;t) 1is the total phase over the &n-plane
Then the source element d&dn at £&n , in the En-plane,

produces a disturbance at xy , in the xy-plane, given by

T/T

dB = ’—‘7(5—21 exp-i(B(En;t) - ¢)dEdn

where ¢ is a phase angle resulting from the transit time from

the point &n to the point xy
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The total disturbance at xy 'is given by

A(En) : 27T
B(xy) = I I ——7——-exp-1[8(£n;t) - Z—ldg&dn (C-2-1)
Ty
En
plane
From Fig. III-6
r? =+ (x - )P+ (y-m)? (C-2-2)
i
and ‘
R2 = 1> + x2 + y? (C-2-3)
therefore from eqns. C-2-2 and C-2-3
r2 = R? + g% + n? - 2(x¢ + yn) (C-2-4)
completing the square in eqn. Cc-2-4
r2 = |(R? + g2 + nz)% . Xg _*yn _ _(xg + yn)
(RZ + EZ + nZ)/Z RZ + gz + nz

(C-2-5)
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Fraunhofer diffraction holds when

X,y; &,m << R (C-2-6)
Or wien

_XE * yn << 1

R2*€2+n2
so

e -

R - X& * yn o (C-2-7)
R

T

If A(En)  and B(gEn;t) are assumed to be constant over the

En-plane eqn. C-2-1 can be written

r A C ~a
B(xy) = —i— J dn l dE exp-i(w it - 3§1) +
c -

b
dn J df exp-i(wzt - 2%1)
2 .

) Sy O

(C-2-8)

where w1 , w2 are the effective angular frequencies of the
laser output observed over apertures #1 and #2 respectively.

Make a change of variables in the first integral

g = - & = r(ng?)
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Eqn. C-2-8 then becomes

r A c b
B(xy) = —-2- J dn Idg exp-i(wit - 2%3) + exp-i(uzt - ZKr)
R -Cc a | : |
: b
_ r A <
B(XY) = '—9"’ ]dﬂ Jdi COS(wlt - 21T1") + COS(OJzt - _Z_T_T_I'_)
R A
-Cc a
2nr?

-i(sin(w;t - ) + sin(w.t - 211))

Using the formulae for the addition of sines and cosines

2r A e b
B(xy) = g Jdn Idg cos(Qt - % (r' + r))cos(f,t - %(r' - 1))
' -C a :
-1 sin (O;t - % (r' + r))cos(fa2t - % (r' -‘r))
(C-2-9)
where
Ql = wl'.'{-' :0,)2 V . ;, ‘ IQZ - ml "‘VU)Z : -'(“C-Z-lO)
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From eqn. C-2-7 it follows that
r' + r = 2(R - %ﬂ) r' - r = 2§§ (C-2-11)

+ Substituting eqns. C-2-11 into eqn. C-2-9 gives'

. ZroA ¢ b 2 2w xE
B(xy) = —x Jdn Idi cos(Qt + r—(l;{l - R))cos (22t - = )
-c a
\‘\l
B 27 yn - C 21 xE
-1 sin(Q,t + T~(E— - R))cos(Qat - T E—)
(C-2-12)

The integration of eqn. C-2-12 is straightforward and gives

2r A
AR AR . 2 .
B(xy) = g X 7Y sin —%%S sin 1= (b-a)cos(%% (b+a) - Q.t)

. [cos(?-’{-‘i - mt) + i sin(ER - Qlt)] (C-2-13)
The intensity of the light in xy-plane is given by

I(xy) = B*B
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I(xy) = 16c?(b-a)?|-% AR

X
= cosz[xﬁ(b+a) - ta]

(C-2-14)

Sincé the light incident on the two apertures is only
partially'coherent the resultant intensity patterﬁ I(xy). must
be modified to allow for the partial coherence. Eqn. C-2-14
can be written

s 2TX oy . 2271'2(:
sin Tﬁ(b a) sin e

(Fe-a]" (3"

A 2
I(xy) = 16c2(b-a)2[r§ }

J

-
1 - Sinz[zf{b+a) - Q t}
AR 2

The effect of the partially coherent radiation is to reduce
the visibility of the interference fringes to the value V

0 <V<1l , [34]. Thus

sin AR(b a) sin AR

, R
I(xy) = 16c2(b-a)2(r§ ]

X (b-2) 2 2nyc)?
AR XK

1 -V sinz[%%(b*a) -szt] (C-2-15)

—
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A sketch of the intensity pattern I(xy) for fringe visibility
V~ 0.4 is shown in Fig. III-7. From formula C-2-15 it is
clear that the fringes are displaced in the positive or nega-
tive x-direction at a rate proportional to, and depending on

the sign of, 2Q.

If the optical path length L 1is changing at a rate
dL ' . . . . ~dT _ 1 dL
of IT the transit time T 1is changing at a rate T - T It
If the velocity of light is assumed to be constant, a linear
rate of change of the transit time of the light signal imposes

a constant d.c. shift on the effective frequency of the light

signal of an amount Aw = w, %% .

Therefore
Aw = w1 - wy = 9% g%
and

The net fringe count for the wavelength XA in an

interval t;t, is given by

2 t

20, (t)dt = i:é J

1 t,

C,(tit2) = 3—

Lt

2dL)\(t)

I dt

b ——
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FIG. I11-7

INTENSITY PATTERN, I(xy), FROM FRAUNHOFER DIFFRACTION
THROUGH A DOUBLE RECTANGULAR APERTURE

FRINGE VISIBILITY V ~ 0.4
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C, (t1tz) = § (L (t2) - Ly (t1))

)\Cx(tltz) = 5Ll(t1tz) (C-2-16)

Eqn. C-2-16 evaluated for A; , Az and A3 1s seen to be

identical with eqns. B-1-11.
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3. Fringe Visibility

The coherence length (i.e. the maximum difference
in path length that can be introduced between two light signals
and still produce observable interference effects) of laser
Y

output frequency stabilized to S is equal to

Vv
c
Rcoh NV

A limitation on the distance D over which a free air laser

strain meter can operate is simply
<
2D << 2coh

For a laser with a frequency ~10!* Hz. and a shért term fre-
quency stability of one part in 10!! the coherence length is
of the order of 300 km. Since a short term frequency stability
Sv(T) of one part in 10'! is not difficult to achieve over
intervals 1t of the order of 10~ % sec (the transit time of
a photon between the end mirrors of a free air laser strain
meter) [A-1], it appears that the frequency stability of lasers
is ample for the realization of free air laser strain meters
of lengths up to 100 km. However the degeneration of phase

coherence within the beam due to atmospheric turbulence and the
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subsequent decrease of fringe visibility proves to be a more

severe limitation on operating distance than coherence length.

The complex coherence function (t) between

prpz
the optical disturbance at points p; = (£;n1) 1in aperture #1
and pz = (£2n2) in aperture #2, Fig. III-8, is defined [3§5,

chapt. 10] as

*
oy, (£+7) 07 (¢)

YP‘P*:T) ) [op, (B)op ()8, (£)op (©)]% e
!
where the bar denotes a time average and where
¢5, = AG1mi)exp-i 8(Einy;t)dEdn
! (C-2-18)
6. = A(Eana)exp-i B(£2n2;t)dEdn

P

are the optical disturbances over the element of area d&dn
surrounding points p; and p, respectively. Substituting

eqns. C-2-18 into eqns. C-2-17 yields

Yplpz(T) = exp-i [B(&ini;t+1) - B(E2n2;t)]d&dn

If relative time delay 1t between the interfering

light signals is small compared to the coherence time 1/6v ,
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APERTURE #1 APERTURE #2

b= (592

. h‘ (51"1{1)

FIG. III-8

COHERENCE BETWEEN APERTURES #1 AND #2
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where d8v 1is the spectral width of the "monochromatic'" radia-

tion, then

(r) = (0)

prpz prpz

Since free air laser strain meters must always operate under

these conditions, it follows that

Ypips © gxp—i [B(Einist) - B(E2n2;t)]dEdn (C-2-19)

For purposes of calculating the fringe visibility let

B(Eini;t) wt

(C-2-20)

B(Eznz;t) = wt + 68(&n;t)

where w is the mean frequency of the two apertures and
8(£2n23;t) is a random phase angle at the point p, = (£2n2)
measured relative to the.mean phase angle across the aperture.
8(Ea2n2;t) results from the degenerating effects of atmospheric

turbulence on the beam. From eqns. C-2-19 and C-2-20

Yoips exp-i 6 (E2n2;t)d&dn
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A mean complex coherence function, <y> , for the
radiation incident on the two apertures can be calculated by

an integral over the source area S of the En-plane

> =% [ teos oceanast) - i sin oceansst)1acan

En
plane

where <+<> indicate an average over the &n-plane. Since

8(E2n2;t) 1is not defined outside of aperture #2

c b
<Y> = o 1_5 Jdn st [cos 6(E2nz;t) - i sin 8(&2n2;t]
-C a

Because the phase fluctuations across aperture #2 are random

with mean value zero it follows that

b
dn ISin 0(Ean2;t)dE = 0
a

aY—m—0n

and

b

C
Vs lerl = gepry [dn [cos e(gansit)de
(o] a

Now

8(E2n2;t) = B(E2n2;3t) - wt
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where B(&2n2;t) 1is the instantaneous total phase angle at
the point p, and wt = Bo is the mean phase angle across

aperture #2. Hence

C b
Ve by Jdn [de(-3e-s)? ¢ st - L)
C a

(C-2-21)

Interchanging the order of integration and time averaging

"
\

§
c b

o1 b [ ]

-C a

If it is assumed that the dimensions of the diffracting
aperture are smail enough to allow only small phase deviations

across the aperture then

_ c b
vi.,_1 135y
A Jdnjds ~(8-8,)?
- C a .

If the fringe visibility is required to be larger than a given

minimum, VO , then

c b
ety |dn[de BB T 21-vy)
-C a
<(B-Bg)%> ° 2(1-v)) (C-2-22)
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If the atmospheric phase fluctuations of the laser output are

homogeneous and isotropic then <(B-BO)2> in eqn. C-2-22 is

recognised as the phase structure function DBB(p) , [A-2]
- 2 =
<(B-By)*> = Dggelp)

L .
n2)21% - . Thus for a fringe

where o = [(§ - §2)% + (n,

visibility of v, or better
<
DBB(D) - 2(1'V0) (C'Z'ZS)

Eqn, C-2-23 imposes a restriction on the area of the
incoming wavefront, and hence on the dimensions of the rectan-
gular diffracting apertures, acceptable for use in a free air’
laser strain meter. The area of the incoming wavefront accept-
ablekfor interference in a free air laser strain meter, to
produce fringes of visibility Vb or greater, must not have
linear dimensions exceeding Po > where for o < Po €an.

C-2-23 is satisfied.

The nature of the phase structure function for laser
radiation propagating through a turbulent atmosphere has been
investigated by Beckmann [22] and Fried and Cloud [32]. Fried
and Cloud have carried out a very thorough analysis starting
with an autocorrelation function for atmospheric refractive

index fluctuations Cuu(r) whose form is predicted by the
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Kolmogoroff theory of turbulence to be

| 2
¢, (r) = |1 - L3 (C-2-24)

where Ro is the '"outerscale'" of turbulence, they developed

a theoretical phase structure function for horizontal propa-

gation of laser output DBB(p)

2 5
Dy, (p) = 5.82 W?k?D RS 03 (C-2-25)

where k = Z% is the wave number of the laser radiation and

D is the distance of horizontal propagation, nu? 1is the mean

square refractive index fluctuations.

Beckmann begins with a gaussian autocorrelation

function for refractive index fluctuations

Cuu(r) = exp[-%i] (C-2-26)

where R 1is the "correlation distance' and proceeds to derive

a theoretical phase structure function for horizontal propagation

of laser output DBB(p)

2
D,,(p) = 4/7 u? k?DR{1 - exp|- & (C-2-27)
BB ) RZ
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A comparison of the theoretical predictions of
Fried and Cloud with those of Beckmann requires a relation-
ship between the "correlation distance" R , egn. C-2-26,
and the outér scale of turbulence RO , egqn., C-2-24., When
attempting such a comparison a good deal of confusion of
definitions is encountered. This difficulty has been pointed

out by Strohbehn (24).

According to conventional definitions (23), (24) ,
(31) the parameter R in Beckmann's formula, egn. C-2-26,
corresponds to Fhe "inner scale" of turbulence r, - For
the atmosphere .}orv 1l ecm (19), (25), (32) . However both
beckmann and Chernov refer to the parameter R as the "cor-
relation distance" and suggest much large values for it.
Chernov (26) sets' R =60 ecm , however this value, based on
experimental evidénce presented by Liebermann (26, Pp. 5, 8)
seems appropriate for sea water and not for the atmosphere.
Beckmann claims a value of R appropriate for the atmosphere
is R =6 x lO3 cm but apparently offers no justification for
the use of so large a number. Thus it is clear that whatever is
meant by the parameter R in Beckmann's expression for the phase

structure function DBﬁ(p ) + egn. C-2-27 , it is not the

inner scale turbulence, r, -



Possible insight into the nature of the confusion
is gained by considering the work of Fried and Cloud. Their
theoretical investigations led them to the conclusion that the
generallphase structure function for horizontal transmission
depends in a fairly complicated way on both the inner and outer
scales of turbulence, r, and ’Ro respectively [32]. However
subsequent investigation [40] showed that the dependence on
the Quter scale of turbulence Ro was most dominant and that
the phase structure function could be approximated everywhere
to a high degree of accuracy by eqn. C-2-25. Thus Fried and
Cloud are aBle to show that, to a good approximation, the
only atmospheric variables needed to describe the phase struc-
ture function are the mean square refractive index fluctua-

tions p? , and the outer scale of turbulence, R_ .

o

If one assumes this result to be generally true
(and Beckmann expresses that hope) then since Beckmann's phase
structure function contains only two atmospheric variables,
u?Z and R , it is clear that R must be intimately related
to the outer scale of turbulence Ry - If the autocorrela-
tion function of Fried and Cloud, based on the Kolmogoroff
theory of turbulence, is accepted along with their empirical
estimates for R, then R can be simply related to R, by
defining R to be the distance over which the autocorrelation

function of Fried and Cloud decreases to 1l/e of its value

at zero.
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If the '"correlation distance' of atmospheric refrac-
tive index fluctuations R is defined as the distance over
which the autoéorrelation function drops to 1l/e then a com-
parison of Beckmann's results with those of Fried and Cloud
can be made by measuring R in units of R, From the

definition of R and eqns. C-2-24 and C-2-26 it follows that

3
(z(1-1/e)1% Ry

-
1]

~
1l

1.42 R (C-2-28)
and Beckmann's eqn. C-2-27 becomes

i 2
DBB(D) = 5.68 Y7 u2D Ro 1 - exp|- __E__? (C-2-29)
2.03R°

Using Fried and Cloud's results it follows from eqns.

C-2-23 and C-2-25 that

2 5
5.82 2 kznnf'pg T2-vy)

which implies
— -

2 13
2(1-VO)R03 5
o $p = . (C-2-30)
5.82 np2 k2D
— —
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Using Beckmann's results it follows from eqns. C-2-23

and C-2-29 that

2
5.68 v u? k2D R_|1 - exp(- —E—p < 2(1-V,)
: 2.03R
0
which implies
Y L
4 -
p Sp = - 2.03R) log |1 - 2(1-Vo) (C-2-31)
5.68 v u® k®D R
Clearly, o , the largest permissible dimensions

o
for the diffracting apertures, depends on the wave number k

"and the mean square atmospheric refractive index fluctuations
TR decreasing monotonically with increasing values of both.
Table III-1 shows the resulting values for Po when eqns.
C-2-30 and C-2-31 are evaluated for D = 5 x 105 cm (5 km.),

- 3 - » . . . -
Ro = 10° cm and fringe visibility V = 0.5
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Fried § Cloud, Eqn. C-2-30

Beckmann, Egqn. C-2-31

i2 = 10'12 EZ = 10'10 EZ = 10'12 HZ = 10‘10
A1=10u po=0.920 cm po=0.0583 cm po=3.19 cm po=0.319 cm
A2=0.5u po=0.0249 cm po=0.00158 cm p0=0.159 cm 0=0.0159 cm
A3=0.3u p0=0.0136 cm po=0.000860 cm po=0.0960 cm po=0.00960 cm

TABLE III-1

In their analysis of the effects of a turbulent atmos-

phere on the propagation of laser output, Fried and Cloud used

a model atmosphere whose mean square fluctuation in refractive

index were much smaller, in the optical region of the spectrum,

than those indicated in table III-1.

10'!“ < EZ < 10'12
10'12 < EZ < 10‘10

is "improbably high'" and that

HZ n 10'12

They preferred

, whereas Beckmann's analysis used

Beckmann himself points out that 2 ~ 10°!'°

is "a more likely

value" for the mean square atmospheric refractive index fluctua-

tion.

The only "overlap'" in the range of mean square refractive

index fluctuations that each author feels is applicable to his

respective theory is the value u% ~ 10°!2

The following
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values of Po are considered to be representative of the
mean of the two theories for fringe visibility 0.5 and

¥2 ~ 107'?, moderate-to-intense turbulence.

wavelength “diffracting aperture dimensions
A1 = 10 p Py v 1 cm

X2 = 0.5y Po ™ 107! cm

As = 0.3 q py v 5 x 1072 cnm
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4. Fringe Counting Rate

The fluctuations in transit time of the whole beam
of the laser output appear at the receiver as a modulation u
on the operating frequency w of the laser. If B8 1is the
total mean phase averaged across the aperture of the radiation

impinging on aperture #2 then

g = Bo + Y (C-4-1)
.\\‘ |
‘ w' =w+u (C-4-2)
. dB
where w' = g% is the instantaneous frequency, w = 3?2

is the mean frequency and u = g% is the modulation frequency.

u is a random vgriable with mean value zero.

‘From eqn. C-2-10 and C-2-14 it is obvious that the
instantaneous fringe counting rate is simply w' - w = u
Thus the fringe counting device of a free air laser strain

meter must be able to respond at rates of u or higher.

Beckmann [22] has theoretically investigated the
problem of parasitic frequency modulation of laser output
induced by passage of the beam through a turbulent atmosphere.
Starting with the autocorrelation function for refractive

index given by eqn. C-2-26 and assuming that the field of
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atmospheric refractive inhomogeneities is '"frozen in'", that

is neglecting turbulent diffusion compared to wind as a means
of transporting refractive inhomogeneities, Beckmann divides
the vector problem of wind induced frequency modulation into

its longitudinal and transverse components.

Beckmann finds the frequency modulation caused by
up or downwind components of drift to be insignificant compared
to crosswind drift, a result which could be anticipated in-

tuitively.

Beckmann's choice of autocorrelation function for

refractive index fluctuations leads to a parasitic modulation

u which is gaussian with mean value zero and variance u?

given by
— . 4/7 u? k*D , 2 2
2 = -4-
u? crosswind = 47K, (vy +v,) (C-4-3)
u? upwind = 2.84 u? szovx : (C-4-4)
where Vv = vxg + vyj + vzk is the wind velocity. The standard

deviations of the frequency modulations are

1
/T §2 KD (2 ’

Ocrosswind = vio+ v (C-4-5)
1.42R Y z

Supwind = [2.84 W2 k2R v, ]* (C-4-6)
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From these results it can be seen that the laser
frequency modulation due to crosswind effects is far greater
than that due to upwind effects - a result one would anticipate
intuitively. From egn. C-4-5 it can be seen that for a wind

velocity of 10 m/sec. , moderate to intense atmospheric

2 12

turbulence, i.e. N ~ 10 , D~ 5 km and Rom 10 m
that the standard deviation in the fringe count rate is of the
oxder of 2 x lO4 fringes per second. Thus a fringe observa-
tion system with a band width of 55 KHz would be able to

make free air laser strain meter observations 99% of the time
under such conditions. Fringe counters currently operating on
conventional laser strain meters have band-widths of up to

1 MHz and would facilitate free air laser strain meter observa-

tions under the most disturbed atmospheric conditions imaginable.
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D. POWER REQUI REMENTS

The amplitude and phase of laser radiation are
complimentary variables in the quantum mechanical sense that
the observation of one introduces an uncertainty into the
value of the other. The particular uncertainty relationship

enjoyed by these variables ([36] is
ANAB = 1 ' (D-1-1)

where N is the number of photons associated with the laser
|

output available for use in the observation and B is the

total phase.

A free air laser strain meter fringe counter capable
of counting at a.rate of 106 fringes per second with an
accuracy of ilofz parts of a fringe is effectively making an
observation of 8 with an uncertainty AB ~ 2T X 10-"2
in an interval AT ~ 10—6 sec. This observation by eqgn.
D-1-1, introduces an uncertainty in N of the order
AN ~ 15.9 Since observing devices in general
cannot operate anywhere near the limits of observational
accuracy imposed on them by quantum mechanics, the observation

of B to an accuracy of i'AB will require N

photons where N > AN . In general
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The constant a is usually large and depends on
the sensitivity and noise characteristics of the observing
device. An estimate of the number of photons power requirements
for free air laser strain meters can be easily obtained from
consideration of the infgrymation capacity of radiation detectors.
Counting fringes to an accuracy of i'lO_2 part of
a fringe in a cumulative fashion, as required by the operation
of a free air laser stréin meter, demands, in effect, that the
fringe counter be capable of discerning 50 distinct
levels of intensity on each fringe. If all levels of intensity
on the fringe are assumed "a priori" to be equally probable,
the information obtained by the observer upon discovering his

observing device to be "focussed" on a given level is

- log, | ———— | = 5.65 bits
50

In addition, to facilitate cumulative fringe counting,
the observing device must be able to extract a sign (+ ve or
- ve) for each observed level to indicate whether the fringe
motion which brought the observing device to that position
on the fringe was to the left or to the right. This observation
requires an additional one bit per level. 1In this manner the
observation of each distinct level of the fringe intensity
furnishes 6.65 bits of information to the observer.

Thus cumulative fringe counting at a rate of lO6
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fringes per second to an accuracy of 'i‘lO—2 part of a fringe
requires an information channel capacity of 3.33 x lO8 bits
per seéond.

Jones [37] has investigated the information
efficiency of various radiation detectors and has found them
to vary widely in efficiency from 10—l bits per photon for

the 1p21 photomultiplier tube, 7.2 x lO_3

5

bits per
photon for the human eye, to 2.0 x 16— bits per photon
for the 6849 image orthicon tube. The information efficiency
of the radiation detectors employed in laser strain meters
should be in the upper end of this range of values since the
observing deQices are at liberty to exploit photoamplifying
schemes such as those used in photomultiplier tubes. A sug-
gested value for the information efficiency of the photo-
detectors of laser strain meters is therefore 10_2 bits
per photon.

[ Although Jones' analysis strictly only applies
to radiation from non-laser sources the use of his figures in
this thesis is a prudent and conservative choice since the
use of laser sources with their very low inherent noise charac-
teristics can only be expected to improve these figures. ]

Thus cumulative fringe counting to the nearest 10-2
part of a fringe at a rate of 106 fringes per second requires
a flux of 3.33 x 1010 photons per second incident en the

radiation detectors. The geometry of the diffracting apertures

and the placement of the radiation detectors of a free air laser
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strain meter could probably be arranged so that the radiation
detectors intercept 0.1% of the total number of photons entering
the apertures. Since half of these photons must'enter through
aperture #2 it follows that the operation of a free air laser
strain meter requires a flux of 1.67 x 1013 photons per

second incident on the second aperture from the distant retro

reflector.

The area of the second apexture is of the order of

2

o 0(?\) therefore the photon flux at the second aperture

~must be of the order of

w

\

13
I(A) ~ 1.6Zx 10 Ehgtons (D-1-2)
p 5 (A) cm® sec

If it is assumed that the laser radiation diverges at an

angle 8(7A) , then after propagating a distance d it

is spread over an area A(N)

apy) = I 6(7)? a2 cm2 (D-1-3)

An estimate for the angle of divergence 8 (M)
can be obtained by assuming the beam diverges at its dif-

fraction limit in which case
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(D-1-4)

where A is the wavelength of the radiation in question
and do is the diameter of the exit pupil of the laser.

If is assumed that the diameter of the exit pupil

of the laser is do =1 cm then evaluation 8 (M) for
Ay = 10w, A, =0.5u Ay = 0.3y it follows that
-3
9(%1) = 1.22 x 10 rad
_5 :
9(%2) = 6.1 x 10 rad
-5
e(x3) = 3.66 x 10 rad .

It has been pointed out by Bender [ 43 7] that
atmospheric scattering places an upper limit on the degree
of éollimation achievable in a laser beam of roughly
10—5 rad . However given that the diffraction limit of the
laser system exceeds 10—5 rad it appears practicable to
design an optical system capable of achieving collimation
very near the diffraction limit. Laser theodolites used
in construction are advertized which have achieved an azimuthal

5

collimation of 6 x 10 ° rad at 0.6328u . This even

exceeds the "diffraction limit" as calculated by the above
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formula however it is achieved at the expense of rather
poor elevation collimation. For these reasons it seems
reésonable to retain the above calculated values as rep-
resentative of the angle of divergence of the beams.

If E is the power output of the laser in
watts, then the photon flux of the beam at a distance D

from the exit pupil is

1) = E % 107 photons (D~1-5)
A(A) hv cm2 sec

where h is Planck's constant h = 6.63 x lO_-27 erg—-sec.

and v = ¢c/A is the opefating frequency of the laser.
Iet Eo(k) be the power output required (in

the absence of atmospheric attenuation and fluctuations) to

supply the necessafy flux I(A) ({given by eqn. D-1-2) ’

at the second diffracting aperture of a free air laser strain

meter. Thus from egns. D-1-2 and D-1-5

Eo(k) = 167 A(A) hv X 106 watts

2
90(7\)
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Substituting for A(A) and for Vv

2

2
B () = LT OZ() D° he | 146 Lorre
o 2(%)
Po .
(D-1-6)
1f D=5x 10° cm (5 km)
c=3x lOlO cm/sec
B
= 1073 '- - -3 _
Xl = 10 “em(10p) 9(%1) = 1.22x10 “rad po(Kl) =1 cm
-5 _ -5 -1
Kz = 5x10 “cm(0.5u) 9(%2) = 6.1x10 “rad po(%z) = 10 “cm
_ -5 ’ _ -5 ~2
A, = 3x10 cm(O.}u) 9(k3) = 3.66x%x10 rad pO(K3) = 5x10 “cm

Then EO(%l) = 390 x 10"3 watts
EO()\Z) bt 1-94 watts (D"l_7)
EO(X3) = 4.66 watts.

1In estimating the above power requirements no allow-
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ance has been made for atmospheric absorption_or fluctuations
in intensity due to atmospheric turbulence. Atmosphere ab-
sorption at these frequencies is less than 1% per thousand
feet [38] . Thus atmospheric attenuation of the power of
the laser output as a function of distance D can be ex-

pressed as

E(A) = EO(A) exp -a,%— (D-1-8)
o)

where Do ~ 3.1 x 104 cm (1000 f£t) and a ~ 0.01 .

Internal fluctuations in intensity of the beam,
however, require a considerable increase in power over EO(A)
to be overcome. Beckmann [22] has shown that the logarithm
of the relative amplitude of the beam, A/Aé , is a random

variable gaussian distributed about zero with standard

deviation.
1/2
o _ | e4vT u 2 p’
log A/AO 3Rg
(D-1-9)
Since the intensity I = A2 and log A/Ao = 2 log I/Io

it follows that the relative intensity of the beam is log-

normally distributed about zero with standard deviation
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1/2

X 6aVr y 2 p? (D-1-10)
3R> |
O

9109 I/IO =

From these results it follows that for random fluctuations in

the intensity I

1/2

I > I exp - 5.15

2 .3
. 64"(%;1 D (D-1-11)
3R

for 99.5% of the time.
Combining egns. D-1-6 , D-1-8 , and D-1-11 it

follows that for a 99.5% confidence level the required power

is
-— 1/2 ,
2,...2 3 3
1.67
E(A) = T O (MDhe 1456 oxp | 5015 §§J[£E§EL— 2D
AD O(?\) 3RO
(D-1-12)

PV NS

e

R kb e s gt e A
SR A e e e

watts

e
i R
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Thus if D = 5 x 107 cm

Iz _ 10712

R = 103 cm

o]

@ = 0.01

b, = 3.1x 10% cm

-27
h = 6.63 x 10 ergs—sec
c = 3 x lOlo cm/sec
— . - -3 —
7\1 = 10u he(xl) = 1.22 x 10 “rad po(7\l) = 1 cm
\

A, = 0.5 8(A.) = 6.1 x 10 °rad o (M) = 10 tem
2 * o 2 ’ o'"2
A, = 0.3u  O6(r,) = 3.66 x 10 °rad 6 (A.) = 5x10 2cm
3 =7 3 . o'3

It follows that the required laser powers are:

E(?xl) = 1,19 watts
E(7\2) = 5.92 watts

E(7\3) = 14.2 watts .



CHAPTER IV

CONCLUSIONS

A. SUMMARY OF RESULTS

The research presénted in this thesis indicates that
laser strain meters capable of making sampled measurements of
earth strain, accurate to the limit of the frequency stability
of the laser, while operating through uncontrolled atmosphere
over distances of several kilometers are indeed feasible with

existing technology.

The observing device, here-in called a 'free air laser
strain meter", would consist of three frequency stabilized
lasers, appropriately spaced in the spectrum, whose outputs
are combined into a single beam and directed through the
atmosphere to a distant retroreflector. The combined return
beam would be separated according to wavelength and portions
the size of a '"coherence regidn" woﬁld be directed into three
"double rectangular interferometers where it interferes with a
portion of the beam direct from the respective laser. At each
interferometer a means of cumulative fringe counting is provided.
The cumulative fringe counts in an interval At are used to
compute the net fluctuation in geometrical ray-path length in
the interval. A series of continuous consecutive observations
of the fluctuations in geometrical ray-path length can be
averaged over an interval At to remove the atmospheric fluc-
tuations and reveal any tectonic changes in length that have

taken place between the end mirrors of the laser strain meter.
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The dispersive nature of the atmosphere to electro-
magnetic radiation of optical freéuencies facilitates a mathe-
matical separation of the "geometrical" and "refractive" contri-
butions to the fluctuations in optical path length. In fact

if o U(tltz) is the geometrical fluctuation in ray-path length

in the‘lnterval At = t2 - tl and V(tltz) ' W(tltz) are
so-called refractive contributions then
{ AR A "\

L)\l(tltz) 1 £(x))  g(}) U(t,t,)

L)\z(tltz) = |1 f(7\2) g(7\2) V(tltZ)

LK3(t1t2)_ 1 f(x3) g(K3) W(tltz)

J \ / \ /

where L)\l = Al Cl(tltz)

In, = P2 C2(51%))

In, = 73 C3(t1%)
kl ’ Az , %3 are the wavelengths "in wvacuo" of the laser

output and C%l(tlt2) ’ sz(tltz) ’ Cx3(tlt2) are the res-
pective cumulative fringe counts in the interval At . The
elements of the matrix of coefficients are derived from the

formula for atmospheric refractive index.

n=1+ £(ANF(P,T) + £(N)g(p,T)

The accuracy of present day knowledge of the refractive index
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formula and contemporary cumulative fringe counting abilities
facilitate measurement of tectonic motions to an accuracy of
roughly %1 % or better.

The relationship between the confidence level
of the free air laser strain meter observations énd the averaging

time for the atmospheric geometrical ray-path fluctuations

N 2 |n | =, 1/ %3
7l(|§|)=erf \/-p‘=2 ':::_27'?—&—

N
i\

i

was derived

Solved explicitly for Aw this gives

1/3 2 2/3
o 327 At s w 4 ol ¥ sec.
Az = 3 2|h. ]

These results indicate that a tectonic motion of
lhk[ = 1 cm/year between reflectors a distance D = 5 km

apart can be detected with a 99% confidence level (|B" = 2.58 )

and a signal-noise ratio s = 2 in.the presence of moderate-
to-intense atmospheric turbulence “? ~ 10712 in about

AT = 39 minutes of observation time.
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Free air laser strain meters appear to be theoretically
capable of measuring changes in the regional ambient strain

12

state of parts in 10 in the presence of weak atmospheric

turbulence and parts in lOlO in the presence of moderate-to-
intense atmospheric turbulence. 1In each case the free air laser
straih meter appears to be theoretically capable of measuring
earth strain up to the limif of the laser frequency stability
for the corresponding observation interxrval.

The intensity distribution I(xy) £from the double
rectangular Fraunhofer diffraction pattern cast by laser radiation

of frequency W, and wavelength A passing through apertures

of dimensions 2c , b -a , 1is

.2 TX 2m1yc .
n“ == (b-a 2
S1 AR ( ) sin AR

2] ¢
I(xy) = 1=V sin [——(b+a)-§2t]
[‘ITX(b_a) ]2 [ 2ﬂc]2 AR
AR AR
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W - W . .
where §, = —l—f——l y, U =uw - w2z 1is an effective frequency

modulation of the radiation incident on the second aperture
as a result of its journey through a turbulent atmosphere.
V 1is the fringe visibility. The fringe count rate , is

proportional to the rate of change of optical path length L

Wi
Q = =31
2 c

dL

t

and thus cumulative fringe counting for an interval At
actually measures the net change in optical path length in

units of A .

The effective band width required of a fringe counter
for a free air laser strain meter to have a 99% operating
capability is
1/2

- "2 12
1.42 R Y z

Upandwidth = 2-37

2 2, . .
where k = 3y + Vy » V, are components of wind velocity
transverse to the strain meter axis, Ro is the outer scale
of turbulence and p? is the mean square refractive index

fluctuation.

Thus it is seen that a fringe counter with a megacycle
band width is adequate for free air laser strain meter observa-

tions in the presence of intense atmospheric turbulence and high
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winds over distances of several kilometers.
To insure high fringe visibility it is necessary to
restrict the diffracting aperture to small dimensions p £ Po

where Po is the dimension of a coherence patch. 1If Vo is

the minimum acceptable fringe visibility then two theoretical

expressions for P have been derived.
3/5
: 2/3
o = 2(1 Vgifo cm.
° JIs.82 y2 % p
2(1-v ) 1/2
L, 2 o
Po = -2.03 R 1n 1l - — cm.

5.68 T p? k2 DR_

the difference in these two formulae being the choice of
autocorrelation function for refractive index variations.
For a minimum fringe visibility of Vo = 0.5 and
observations made over 5 km in the presence of moderate-to-
intense atmospheric turbulence the following values of fo

were calculated

%l = 10w po(Kl)nvl.cm
-1
7\2 = 0.5y po(7\2) ~ 10 cm
-2
7\3 = 0.3u po(7\3) ~ 5 x 10 cm
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The restriction on aperture size implies a minimum
restriction on required laser power. Information efficiencies
of present day photo detectors are of the order of 102 bits/
photon. Cumulative fringe counting at rates of a megacycle
with accuracies of ilo'zfringe implies a channel
capacity of 3.33x108 bits/second and requires a flux of roughly

167x 1003 photons/sec into the second diffracting aperture.

Atmospheric attenuation of laser power can be

expressed as
E(A\) = E (1) exp -2(%2)
o

where o ~ 0.01 and D, v 3.1 x 10" ecm .

Internal fluctuations in intensity I of the
laser beam about its mean intensity Io due to atmospheric
turbulence are such that

L

64/7 p? D3

R3
3 Ro

>
I~ Io exp - 5.15

for 99.5% of the operating time.

Combining the effects of atmospheric attenuation
and intensity fluctuations it follows that sufficient operating

power for free air laser strain meter observations is provided
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by a laser whose output is

[~ ]
— , j1/2
2 2 2.3
g LS E Q) D'he 106 | 515 64%}'% D° | , 20D | ..o
A oS (V) 3 Ry Po

where 8(n) is the angle of spread of the laser beam, h
is Planck's constant and c is the velocity of light.

For observations over D = 5 km with diffraction
limited laser beams and in the presence of intense atmospheric

turbulence the following laser powers are required

Al = 10u E(Xl) ~ 1.19 watts
Xz = 0.5u E(kz) ~ 5.92 watts

k3 = 0.3u E(A3) ~ 14.2 watts
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B. APPLICATIONS OF FREE AIR LASER STRAIN METERS

1. Tectonic Research

The successful operation of free air laser strain
meters would provide geophysicists in both the field of tec-
tonics and the field of geodesy with a tool of unusual capa-

bilities and as such would be recognized as a major advance.

As a research tool in tectonics, free air laser strain
meters are able to directly observe many long term tectonic
processes with threcedented accuracy and ease. Such observa-
tions along with:the gross geological feature of the earth are
among the essentiél elements to be accounted for by theories
of earthquake mechanism, mountain building, ocean floor spread-
ing and continental drift. The observation and measurement
of such phenomenazby free air laser strain meters could play

an important role in the development of such theories.

Free air laser strain meter observations could be of
crucial importance in resolving many problems in tectonics.
Measurements made across the rift valleys of the world parti-
cularly in East Africa, the Middle East and Iceland as well
as between islands straddling an oceanic ridge would yield
information of some considerable importance to the development

of current theories of tectonics.
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2. Earthquake Prediction

A major goai of earthquake engineering research is
the prediction of earthquakes, hours, days or even weeks in
advance. A major parameter used in evaluating earthquake
precursors is the combined state of regional strain. Experience
in California [8] with geodimeter distance measurement between
points straddling known faults show 'an extremely high rate of
movement prior to and during the earthquake with some relaxa-
tion following, Fig. IV-1. This suggests that large movements
and high rates of movement a few hours or minutes prior to an
earthquake may provide an effective criterion for short-range
earthquake warnings. Continuous or near confinuous monitoring
of suspected sites would be necessary to provide this kind of

forecast",

Current efforts to use strain precursors to study
earthquake and faulting mechanisms involves the use of geodi-
meters to accurately measure the distance between two points
set in the ground on repeated occasions, often separated by
months, and account for any changes in length observed in terms
of tectonic activity. The accuracy of geddimeter distance
measurement is between one part in 10° and one part in 10’
and as such is an order of magnitude less than the precision
required to investigate, in detail, the earthquake precursor
parameter of earth strain [9]. In addition geodimeters lack
the long term stability needed to conduct continuous measure-

ments of earth strain build up.
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Researchers in the United States of America have
developed the Geodetic Laser Survey System (GLASS) capable
of making distahce measurements accurate to several millimeters
over distances of up to 40 km. This corresponds to an ability

to measure strain precursors of about 5 parts in 10°%.

The research presented in this thesis indicates that
free air laser strain meters could make strain measurements
a factor of 102 to 10" more accurately than GLASS over a distance
of 5 km. Providing laser power was available larger observing
distances would result in proportionately higher strain sensi-
tivities. The free air laser strain meter derives its advantage

in sensitivity from the fact that it

a) interferes photons and not a modulated 1light

signal

b) directly observes the change in distance
8§D without measuring the distance D . 1In
so doing it retains the same absolute sensi-
tivity to changes in distance over its entire

range of operating abilities.

The ability of a free air laser strain meter to make
consecutive observations of changes in the ambient regional
strain at intervals of a few minutes makes it ideally suited
to the purpose of earthquake prediction. In addition the

potentially high strain sensitivity, 107!'° - 107 '%, of the
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free air laser strain meter holds hope for prediction of tele-
seismic events. Strain precursors of teleseismic events have
been observed up to half an hour before a teleseismic event [15].
Theoretical predictions for the magnitude of such strains be
approximately in the range 10-° - 10°'%, [17]. Smylie [41]

has recently calculated;for a "real earth" model, the theoretical
displacement fieldé resulting from faulting within the earth.
Knowledge of such displacement fields coupled with a world-wide.
or continental wide network of laser strain meters may lead to an
effective systeﬁ\of earthquake prediction. As a result one cén
reasonably look forward to the day when "earthquake warnings"
(similar to hurriéane warnings) will be issued resulting in the

saving of thousands of lives each year.

i
;
i
y
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3. Engineering

Contemporary trends toward larger man made structures
raises more complex problems regarding structural stability

and integrity of dams, bridges, and buildings.

Dams, for example, are subjected to large isostatic
readjustments. Such motions often involve displacements of inches

or feet and will force deformation within the structure itsélf.

Standard engineering methods of surveying to establish
such motions are clearly less sensitive and convenient than the
use of a free air laser strain meter. A retro reflector mounted
on the structure (dam, bridge, or building) will facilitate remote
sensing of the deformation. In this way quick answers can be
obtained to such questions as internal deformations of the struc-
ture, displacements in the surrounding land mass, and the inter-

play between the two.
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APPENDIX A-1

A-1. THE GAS LASER

1. Operating Characteristics

The principles of operation of gas lasers are dis-
cussed extensively by various authors [10] in contemporary
textbooks and journals of optics. For this reason only those
characteristics of gas lasers pertinent to the operation of
laser strain meters will be introduced in the following dis-

cussion.

The gas laser oscillator is just one of several types
of laser oscillators capable of generating coherent electro-
magnetic radiation at optical wavelengths. Basically, a gas
laser consists of a plasma tube filled with a mixture of gases
and excited by an electrical discharge. The gas mixture is
selected to sustain a population inversion among the atoms of
the gas populating the excited atomic or molecular energy
levels. Under these conditions a photon emitted by the spon-
taneous decay of an atom in the highly populated higher energy
state has a larger probability of stimulating the emission of
another such photon than of being absorbed by an atom in a
lower energy state. The result is a cascading, avalanche-like
emission of stimulated photons, which rapidly becomes highly
directional, aligned parallel to the plasma tube, lasting as
long as the population inversion is maintained. The ends of

the plasma tube are brewster windows producing an output of

1ineariy polarized radiation.
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The conversion of a '"laser'", which acts as an optical
amplifier, to a 'laser oscillator" with definite modes of
oscillation requires feedback. This is provided simply by
placing mirrors at each end of the plasma tube creating an
optical resonant cavity. Output from the laser oscillator
is obtained by making one mirror partially reflecting. For
purposes of this fhesis the distinction between a laser and
a laser oscillator will be dropped and the word "laser'" will

be used to refer to a ''gas laser oscillator".

N

\

i

The rédiation field in a laser cavity is sustained
in discrete modes defined by the cavity dimensions and labelled
TEanq ; in a similar manner to the modes in a microwave
resonator. The numbers m , n and q define the number of
modes in the standing electromagnetic wave iﬁ the x, y and z-
directions respeétively; where 2z 1is taken to be parallel to
the axis of the ﬁlasma tube. The configurations of the electro-
magnetic field in x-y directions are called spatial modes with
m and n being typically in the range 0 to 3. The configura-
tions of the electromagnetic field in the z-direction are called
temporal modes with q being ~10°. The disparity in the mag-
nitude of the subscripts m , n and q has resulted in a

notation convention for describing laser modes only in terms of

the spatial subscripts; TEan .
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For temporal mode resonance the length L between
the end mirrors of the laser cavity must be an integral number

of half wavelengths A of the laser radiation

A = — cm. (A-1-1)
This corresponds to a frequency of laser oscillation v

v =-%% Hz . | (A-I-Zj

where ¢ is the velocity of light in the laser medium. The
frequency separation between temporal modes corresponding to

consecutive values of q 1is Avy

A\)L = %I.‘. HZ.' (A"l’:’))

In general as many tempbral modes.of oscillation
as can be accommodated under the doppler broadened gain profile
will be operating simultaneously in a laser, Fig. A-1-1.
Since each temporal mode (being at a slightly different fre-
quency from its neighbour) will produce an independent set of
interference fringes it is desirable for purposes of laser

interferometry to eliminate all but one temporal mode. This
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is usually accomplished by both shortening the length of the
laser cavity and consequently increasing AvL until only one
mode appears; énd raising the loss level of the plasma tube
until all modes but the one near Ve s the centre frequency
of the gain profile, exhibit gain of less than one. When this
is achieved the laser is said to operate in a unimodal fashion.
Unimodal lasers with very large power outputs are difficult

to construct, however, unimodal TEMé0 lasers with power output

up to 10 watts are available commercially.

W

\

i

The spatial modes of the laser oscillation determine
the intensity distribution across the output beam. The spatial
modes present in a. laser oscillation are controlled by the
shape and alignmgnt of the optical resonator as well as the
nature of the edge losses present in the plasma tube. For
purposes of lasef interferometry the TEMo mode is desirable.

o
This mode does not contain any phase shifts in the electromag-
netic field across the output beam. The TEMoo mode also
offers the advantage of smallest spot size and.lowest angular
divergence of the output beam for a given size of exit pupil.
The output beam of a unimodal laser operating in the TEMoo

mode has a gaussian intensity distribution with plane or

spherical fronts of constant phase.



149

2.. Ffequency Stability

The stability of the frequency of oscillation of
laser output is a matter of prime importance in laser inter-
ferometry since frequency stability is synonymous with Qave-
length stability. The frequency stability of a laser Sv(r)

is given by
= Sv(t) -1-
S\’(T) = __\)_ (A 1 4)

where 6&v(t) 1is the range of frequency over which the out-
“put of a laser varies in time <t when operating at a frequency
v . The frequency stability of a laser is characterized by

a long-term and a short-term stability depending on whether

T 1is greater or less than some characteristic time, usually
.of the order of hours. A quantity closely related to frequency
stability and of equal importance in laser interferometry is
frequency resettability, ‘Rv , which describes the accuracy

with which the frequency v, can be reproduced after the

laser is perturbed and readjusted.

R = —2 (A-1-5)

where v - Vo is the average deviation of a number of settings

from the desired frequency Vo -
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The ultimate short term frequency stability of a
laser is determined by the natural spectral width, é&v |,
of the atomic transition occurring in the laser. This line

width has been calculated by Schawlow and Townes [11] to be

8m h v (Avc)?
W

§v = Hz. (A-1-6)

where Av is the spectral width at half intensity of the
doppler broadened spectral line of the laser transition, W

is the output power of the laser and h is Planck's constant.
This equation predicts a frequency spread of about 10~2 Hz.

or a maximum frequency stability S (t) .. ~ 10°!% - 10°17

for typiéal optical lasers [12]. However the frequency sta-
bility achieved in practice is limited by the Q of the optical

cavity to values several orders of magnitude less than the

theoretical maximum,

Since the practical limit on laser frequency stability
is the Q of the optical resonator, laser frequency stability
depends almost entirely on the stability of the cavity dimen-
sions. The principle causes of laser frequency fluctuation
are changes in ambient pressure and temperature and detuning
due to external mechanical and acoustical vibrations. Passive
methods of frequency stabilization such as mechanical and

thermal isolation and the use of invar spacers between the
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mirrors are inadequate for accurate laser interferometry and
for such purposes active methods of frequency stabilization

. are used.

Active frequency stabilization systems all employ
a cavity length control element (usually a piezoelectric
crystal) on which one of the cavity mirrors is mounted. The
control element is driven by a servo signal whose magnitude
and polarity correspond to the magnitude and sign of the
deviation of tﬁg laser frequency from the desired frequency.
The various actgve frequency stabilizing systems differ one
from the other in the technique by which the error signal is
derived. In general, schemes for stabilizing lasers fall into
two classes; those in which the error signal is derived from
the laser itse1f tself-stabilizing)‘and those in which the

error signal is derived from an external reference cell

(externally stabilized).

in thé self—stabilizihg scheme an a.c, voltage is
applied to the piezoelectric crystal which, by varying the
cavity dimensions, frequency modulates the laser. Frequency
modulation is accompanied by an amplitude modulation of the
beam intensity by virtue of the shape of the gain profile.
The beam amplitude modulation is in phase with the applied
voltage for frequencies v > V. and opposed in phase for

frequencies v < V. - The output beam intensity is monitored



152

by a photodiode and phase detected producing an error signal
which when applied to the control element will keep the laser
frequency v near Ve the centre frequency of the gain

profile.

The sensitivity of this method of frequency stabili-
zation suffers from the disadvantage of being dependent on
the shape of the gain profile near Ve which can be badly
flattened by the Lamb dip resulting in a low sensitivity to
frequency drifts. Nevertheless this frequency stabilization
scheme is able to stabilize laser oscillations to two parts
in 10° for many days [13] and allow a resettability of several

parts in 10° [12].

One of the most successful external stabilization
schemes involves resonant absorption of part of the linearly
polarized laser output in an absorbing cell; the absorption
profile of which has been Zeeman split by the appiication of
an axial magnetic field [13]. The ébsorption cell medium
‘becomes dichroic; preferentially absorbing right hand cir-
cularly polarized light for frequencies v > Ve and pre-
ferentially absorbing left hand circularly polarized light
for frequencies v < v_. . An error signal is derived by
alternately sampling the LHCP and RHCP output from the

absorber using a KDP electro optic switch driven by a square

wave generator and requiring that both outputs be of equal
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intensity. This error signal applied to the length control
element keeps the laser frequency Vv near ve - This system
is theoreticaliy capable'of long term frequency stabilities

of two parts in 10!2? and has achieved frequency stabilization

of four parts in 10!° for eight minutes [13].

Vali [39] has pointed out that the utilization of
resonant absorption in a narrow molecular rotation-vibration
line of methane at 3.39u has been used to frequency stabilize
a laser resulting in a resettability of better than one part

in 10!! and possible frequency stability of one part in 10!2,

Other methods involving the use of the diépersive
properties of the inverted population to construct a frequency
discriminator are used to stabilize lasers. These methods
have resulted in laser frequency stabilities of one part in
10'° for a period of eight hours during which for periods of
a minute or so the laser was frequency stabilized to one part

in 102,

The very short term (t ~ 1 - 1073 seé.) frequency
stability of lasers is investigated by heterodyning two similar
frequency stabilized lasers together since no direct means of
counting at optical frequencies exists. Such experiments reveal
beat frequencies of 1-20 Hz. over periods ranging from a few
tens of milliseconds to a few seconds indicating that for
periods of this order 1aser-frequencies can be stabilized to

one part in 10!?® [12].
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APPENDIX A-2

A-2. THE REFRACTIVE INDEX OF THE ATMOSPHERE

1. Formula for Refractive Index

The quantum theory of atomic and molecular polariza-
bility coupled with the classical theory of electromagnetism yield
the Lorentz-Lorenz relation which gives the refractive index n
of a dielectric in terms of its specific refractivity R(X)

and its density p .

nz - 1. R(A)p | ‘ (A-2-1)

n, + 2

The specific refractivity is considered to be invariant under
changes in density for a given dielectric and to be a function
only of the waveléngth of the incident radiation A . If the

dielectric is a homogeneous, singlé component fluid then

4 No a (1)

R(A) = 3—' -—-—M—-—— (A"Z‘Z)

where No is Avogadros number, M is the molecular weight of
the material and a(A) 1is its molecular polarizability. 1If the

dielectric consists of several components then

my -1 ; =] R,(No; (A-2-3)
1 :
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where Ri(x) is the specific refractivity of the ith component

and p; 1is the partial density of the ith component.

Although the earth's atmosphere contains many gaseous
components the Lorentz-Lorenz relation is capable of giving the
atmospheric refractive index to accuracies of parts in 1010 if

the summation in eqn. 3-3 is terminated at i=3 , [20]. Thus

. = R, (}\)pl + Rz(}\‘)pz + R3()\)pg (A-2-4)

where R, , R, and R; are the specific refractivities of
CO,-free "air", water vapour, and carbon dioxide respectively

and p, , p2 and p; are their respective partial densities%*,

If the amount of CO, present in the atmosphere is
assumed to be constant at 0.035 molar % then the atmospheric

refractive index can be expressed as
= Ri(\)p; + R2(M)p, (A-2-5)

where R;(A) is the specific refractivity of dry "air" and

*"Ajir" is defined as a mixture of gases containing 78.09 molar %
N2, 20.95 molar % Oz, 0.93 molar % Ar, 0.03 molar % CO, whereas
"atmosphere'" refers to that mixture of gases surrounding the
planet earth. The specific refractivities of N,, 0, and Ar are

so similar they are all included in the first term, R;(}).
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p; is the corresponding partial density. The assumption of
constant CO., content in the freely circulating atmosphere

is supported by‘experimental evidence. The variability of CO;
content in atmospheric samples has been found to be less than

a few thousandths of one percent from its normal value of 0.035

molar % [21].

An empirical formula for atmospheric refractive index

corresponding to eqn. 3-5 is given by Owens [20] as

n)\=1+u>\

n, =1+ £Q)F(P,T) + g)G(p,T)  (A-2-6)

where the dispersion factors f(A) and g(A) are given by

£(0) 683939.7 4547.3

= [2371.4 + + x 10°¢ (A-2-7)
. 130 - 1/x2 38.9 - 1/)2
g(A) = |6487.31 + 58.058 _ 0.71150 , 0.08851) _ ;,-s (A-2-8)
)\2 )“0 )\G

and the density factors F(P,T) and G(p,T) are given by

-4
F(P,T) = % E-o- p(57.90 x 10°8 - 9.325$ x 10

, 0.25844 (A-2-9)

TZ



157

G(p,T) =k [E * p(l + 3.7 x 107" p}{-2.37321 x 1072 + Z;Z%EEP

+
T2 T3

N
710.792 ., 7.75141 x 10 } (A-2-10)

wavelength of light in microns

and A=
T = temperature of atmosphere in °K
P = partial pressure of dry air in millibars
P = ﬂ%rtial pressure of water vapour in millibars.

The deviations from unity of the atmospheric refrac-
tive index is represented by u and is measured in p-units.
One p-unit is a refractive index deviation of 10°%. Formula
3-6 gives the absolute value of the refractive index accurate

to one part in 10° over the range

o o
2302 A < A < 20,586 A
0 < P < 4000 mb.

0 < p < 100 mb,

240°K < T < 330°K
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2. Statistical Properties of the Atmospheric Refractive

Index

The earth's atmosphere is in a state of turbulent motion.
The values of wind velocity as well as the atmospheric pressure,
temperature, and humidity undergo irregular fluctuations in
space and time which cause random spatial and temporal fluctua-
tions in the atmospheric refractive index n . The atmospheric
refractive index n can be considered to be a random field
dependent on the three cartesian spatial coordinates x , y ,

>
z and time t . If R = xi + yj + zk 1is the position vector

relative to cartesian axes ox , oy , and oz with unit

A A

vectors i , j , and k respectively then from eqn. A-2-6
-+ >
n(R,t) = 1 + u(R,t)

. >
A complete statistical description of n(R,tr) 1is given
by the set of joint probability density functions

> > -+ .
Bi(u(Rl)u(Rz)...u(Ri); Ty , Tz....Ti) i=1,2, 3,.... where

Bi(u(ﬁlju(ﬁz)...u(ﬁi); Ty Tz....Ti) is defined as the probability
that all u(ﬁi) be in the range u to u + dp at.times T4
respectively. A complete statistical description of most random
processes thus involves an infinite set of such functions. 1In
practice an incomplete but computationally useful description

of a random process results if '"i" is allowed to assume values

> > >
i = 1,2; corresponding to B;(uM(R1); 11) and Br(W(RYIu(R2) ;1)1 T2)
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Moments of various orders corresponding to density

functions B; and B, are defined

o n X
u (Ry t1) u (RT)B1 (u(Ry) 5Ty )du

]
oO——38

= >
WP (Ry 1) (Ry T2)

i
o+——38

b n.?r 11 > g
Ju Ry 1) Re 12)82 (0 (Ri)w (Ra) 57172)du;dus
(o]

Again from a practical standpoint the most important of these

are the lowest order moments

W(Ry t1) = j p(Rit) By (u(Re) 372 ) du (A-2-11)
(o]

u (R, TI)U(az T2) = f u(R, Tx)u(ﬁz TZ)BZ(H(EI)U(ﬁz);TI T2)duy dua
o

O 8

(A-2-12)

which are the mean value U and the auto covariance u? as a

function of space and time respectively.

If the atmospheric refractive index fluctuations are
considered to be homogeneous and isotropic the statistical
description of them is invariant with respect to translations

and rotations of the coordinate axes. If the atmospheric
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refractive index fluctuations are considered to be stationary
their statistical description is invariant with respect to
translations in time. The assumption of isotropy permits the
vector E appearing in eqns. A-2-11 and A-2-12 to be replaced
by its modulus R . |

W(R1T1) = | w(R,T)By (u(Ry);Ta)du (A-2-13)

QY———8

p(Rit1)u(Rat2)B2 (M(R1Ju(R2);T1T2)dus du,

O———8

1 o0
w(RiT1)u(Ratz) =",I
i)

(A-2-14)

The assumptions of homogeniety and stationarity permit one to

arbitrarily set kl 0 T, = 0 and to define variables

r = R - Ry and  t T2 - Ty . Thus

=|
"

[ W(RiT1) By (i (Ry) 371 dn (A-2-15)
0

and

p(Rit1)u(R2T2) B(R2 - R1), (12 - 11))

u(Rit1)u(Rzt2) B(r,t) (A-2-16)
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The auto covariance normalized by division by the variance

of the refractive index fluctuations uZ2 gives the auto-

correlation function c(r,t)

c(r,t) = B(r,t) . (A-2-17).

T:'.NH P

The assumptions of homogeniety, isotropy and stafi&na-
rity of atmospheric refractive index fluctuations requires some
sc;utiny. Clearly the real atmosphere conforms to none of these
ideal descriptions. The atmosphere is characterized spatially
by large vertical and horizontal gradients in pressure, tempera-
ture, and humidity; and temporally by seasonal and daily varia-
tions in these same parameters. However for calculating the
effect of atmospheric turbulence on the propagation of laser
output, particularly the effect on the phase coherence, the

assumptions are justified.

Kolmogorov has pointed out and experiment has verified
[23, p. 79] that the small scale components of turbulence tend
toward homogeniety and isotropy. The assumptions of homogeniety
and isotropy are justified since it is the small scale turbulence
which will be the primary cause of degeneration of phase coherence
in the laser signal [24]. The larger scales of turbulence will
tend to deflect the beam as a whole while preserving the struc-
ture of the phase fronts. While the statistical description

of atmospheric turbulence is admittedly time dependent and hence
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non-stationary on a time scale of days, the assumption of
stationarity is justified on the short time scales involved

in the investigétion of phase coherence in the laser signal.

The transit time of a photon along a free air laser strain

meter of length 3 km is of the order of 10™° sec and the
statistics of atmospheric refractive index fluctuations are

very nearly stationary over such short time intervals.

Assuming the autocorrelation function for atmospheric refractive
index fluctuations is a single parameter function of r ,
Cuu(r) , it remains only to assign a specific dependence on

r and to define the parameter in physical terms. While it

has been shown experimentally [24] that there does not exist

a refractive index autocorrelation function valid for all
atmospheric conditions several theoretical predictions concern-
ing the nature of the refractive index autocorrelation function
have been made. Chernov [20, p. 29] presents a simple proof
that ény refractive index autocorrelation function Cuu(r) must

exhibit the property that

d Cuu(r)'
I = 0 (A-2-18)

r=0

This is a necessary consequence of the fact that the atmospheric
refractive index is a continuous and differentiable function of

position. The Kolmogoroff theory of turbulence predicts a
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2
refractive index autocorrelation function [32] Cuu(r) = l-b(r/Ro)-g
where b 1is a constant and Ro is the outer scale of turbulence.
While this autocorrelation function and others such as
Cuu(r) = exp - (r/Ro) violate the condition required at r=0
they are used by many authors who consider them to be adequate
representations of atmospheric refractive index fluctuations.
Tatarski [25] has shown the atmospheric parameters of pressure,
temperature and humidity behave approximately in which case the
autocorrelation. functions of the atmospheric refrattive index
and wind veloci£§ are the same [24] except for a constant of
proportionality. However, the autocorrelation function of the
velocity distribution in a homogeneous turbulent medium tends
to be gaussian [23, p. 94] and so for this reason as well as
mathematical simpiicity some authors assume the autocorrelation

for atmospheric refractive index fluctuations to be gaussian

Cuu(r) = exp - (rz/r;)
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APPENDIX A-3

MATHEMATICAL APPENDIX
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A-3-2
—2
Given Pez(B) = exp| - B~ 0<g < »
/2np2e? 267 |
2
p¢2(3)= 1 exp-L OSBSm
| V2np2e? 292
a2_62+¢2
4
!
to calculate P.2(8) .

Now af = 8% + ¢2
LA

and if the atmospheric turbulence

is isotropic

Substituting B2 =vin Pg(B)
and B2 =nin P(8)
results in
PeZ(v) = 1 exp| - y_—
/ra?v a?
_ 1
P¢z(n) = exp| -
/ran

Now P,2(8) = Pg2(v) & P¢2(ﬂ)



where

since

1067

"®" symbolized convolution,

Paz(ﬁ) =

Paz(E)

P, 2(E)

Paz(g)

Pez (V)

P¢2(n)

[}

£

[

Po2 (MDPy2 (E - A)dA

[ Pg2 (P2 (5 - A

!
2|~
S

the integral can be easily shown to equal

square

|

dx

YA(E-2)

)

dx
JE2/4 - (A-£/2)2

by completing the
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let A' = X - 3/2
g £/2
I dx J - ax
o VA(E')\) _5/2 E/Z )1 _' 42;2
let u = 2.
EZ
1 1
i __(_i_A___ = I _.E_/_z._dl‘l._ = sin"'u =
o AE-D) £/2/1-u? 1
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_ 1 _ B
If PAe(B) = exp

The Laplace Transform of PAe(B) is given by

= -sB
Qe () = [e78 B, (8)a8
o
"\ o —
| 1 1
QAe(S) = I exp -B[s + ] ds
~7
. zoa L 2oa J
— . -
_ exp - B|s+: '
. _ 1 ( ”oo?']
Que (5) =
R.Oa s + 1_
2 a?
I
Qe (5) = == |—2
zoa s + l—r




170

If x is a random variable, gaussian distributed with

parameters 0 and 1 , then x has probability density function

P_(B) = 1 exp - %i
x vZT

The probability that - a

A

< . .
X - a is given by

a
p( -a*x%a)=2 JPX(B)dB
o

a

82
R
(o]

IN

< <
p(-a-x-a):
v

3

By definition

Al

z
erf z J exp[-B82]1d8
o

by the change of variables B! B/YZ it is clear that

p(- a $x%a)= erf[3-]
V2
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- APPENDIX A-4

A-4. GEOPHYSICAL AND ATMOSPHERIC PARAMETERS

The magnitudes assigned the various geophysical and
atmospheric parameters used in this thesis are subject, in some
instances, to considerable debate. The following discussion is
presented as an attempt to justify the values chosen for compu-

tation in this thesis.

1) "D'" - The distance D over which the tectonic
observations are to be made was arbitrarily set at 5 km. D = 5 km.
was chosen in the hope that it was large enough to ensure obser-
vations of regional, as opposed to local, tectonic movements.

D =5 km. is large enough in most cases for observing stations
straddling a fault zone to be set back from the area of active
faulting and thus each be situated on relatively large and stable

geologic platforms. .

2)'1hkl”- The choice of hy|= 1 cm/year was made on
the basis of evidence [8] that this figure is typical of fault
motion on major fault systems. It is also typical of projected

continental drift velocities.

3) "s" - The choice of a signal-to-noise ratio S = 2

is entirely arbitrary.

4) "At" - The appropriate magnitude for At can be
described as the smallest time interval possible (to ensure rapid
data acquisition) over which the atmospheric ray-paths can be
considered uncorrelated. An estimate of At can be obtained

from the frequency of scintillation of light sources observed



through an uncontrolled atmosphere. The power spectra of such
fluctuations in light intensity have been determined experimen-
tally under a variety of atmospheric conditions. These power
spectra all show a broad peak extending from 5 Hz - 250 Hz

(25, p. 220), (30).\ Since the temporal fluctuations in images
viewed through a turbulent atmosphere shown no appreciable fourier
components with periods longer than 2 x 10'_l sec this value was
chosen for the magnitude of At . The magnitude of | At is not
very critical in determining the observation interval AT since

At Atl/3

5) Tu}bulence scales - A good deal of‘confusion per-
sists in the literature regarding "scales of turbulence". To
begin with, the "ipner (outer) scale of turbulence" is usually
vaguely defined (31) as a measure of, but not necessarily equal
to, the dimensions of the smallest (largest) inhomogenieties
present in the veiocity field. There is a generally accepted
practice of associating‘the inner and outer scales of turbulence
with the so-called "micro-scale" and "integral scale" derived
mathematically frﬁm the spatial autocorrelation function C(r)
for the field.

The micro scale, A , is the intercept on the r-axis

of a parabola fitted to the autocorrelation function at the

origin

-

d” Cc(r

Ir:o



Physically, the micro scale must exist for reasons of continuity
but many analytical autocorrelation functions such as the ex-
ponential do not have a "micro scale”.

The "integral scale", Lo , 1s defined as the value
of r which is numerically equal to the integral of the auto-

correlation function from zero to infinity.

- ®
LO = j C(r) dr
]

Physically, the integral scale is expected to exist since
correlation functions approach zero for large values of the
.argument.

The guassian autocorrelation function is an analytical
autocorrelation function widely used in theoretical work because

of its mathematical manageability

C(xr) = exp |- = .

The parameter R 1is usually referred to as the correlation dis-
tance - the value of r at which the autocorrelation function
has dropped to l/e of its value at the origin. Unfortunately
the gaussian autocorrelation function is blessed with the curious

mathematical property that its micro scale is larger than its

integral scale and the association between the inner and outer

scales of turbulence and the micro- and integral scales res-—
pectively cannot be made when gaussian autocorrelation functions

are used.
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6. "ro“ - Since the smallest scale of turbulence present
in the atmosphere has been determined by radar scattering and
other methods to vary from several millimeters (25) to several

centimeters (32) a value of r, = 1 cm was chosen for ease of

computation. The magnitude of r, is not a critical factor in
‘ =2/3

determining the observation time AT since A< ®& r, .
7. "ﬁb“. "Ro" ~ The magnitude of the parameter .ﬁo ’

the straight line segments used to app;oximate the curved ray-path,
is difficult to estimate. The mathematical analysis presented in
this thesis is valid under the assumption r, &< J%1<KLI) .
Since r, 1 cm and D lO6 cm a mathematically convenient
choice for ;tb is 103 cm or 10 meters. However there are
physical reasons for this choice of A% as well,

It would obviously be physically reasonable to equate
16 with the outer scale of turbulence, Ro . In most physical
problems, e.g. fluid flow through a pipe, the outer scale of
turbulence is defined by obvious physical constraints,e.g. the
inner diameter of the pipe. The atmosphere is a turbulent fluid
confined by only one wall, the surface of the earth; thus one
expects the size of the largest units of turbulence to depend on
altitude, h .

Fried and Cloud (32) present a graph of experimentally
determined values of R vs. h . They claim an empirical

o
fit to the data is given by

h is in meters

b = 4 meters .



Thus assigning J% = Ro = 10 meters is consistent
with a laser beam propagating parallel to the ground at an
average height of 25 meters. This is physically reasonable for
a free air laser strain meter making observations over a distance
of 5 km. The calculated observing interval A< only depends
on  A2/3

8. n "

2 . .
" - The mean square fluctuations in atmos-

pheric refractive index as a function of height h (meters)
"above sea level based on microwave refractometer ocbservations

is given empirically by Fried and Cloud (32) as

- -1 _ b |
K- = 1.2 x 10 exp h ho = 1600 m .

Because of the effects of water vapour, present at microwave
frequencies, but greatly reduced at optical frequencies, Fried
and Cloud prefer an alternative formula

= 6.7 x 1071 exp|- B h = 3200m .

(o

=2
)

which, they claim, agrees more closely with values for uz

derived astronomically.

——

Beckmann (22) chooses larger values for pz and
uses 10"1%< :? <107 | Beckmann points out, however,
that :5. = 1019  is an "improbably high value" and
considers :§-= 10—12 to be "a more likely value".

Consortini et al (44) have recently published data

derived from fluctuations in laser beams transmitted over a



horizontal path which reveal measured mean square refractive

14 13

index fluctuations between 7 x 10 and 2 x 10~ .

Thus for purposes of this thesis 107% < p?< 10712
Weak atmospheric turbulence corresponds to “2 = 10_14 and

moderate~to-intense atmospheric turbulence corresponds to

u? = 10712,

AR R
MR R .
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LIST OF SYMBOLS

partial pressure of dry air [m.m. Hg]

atmospheric temperature [°K]

partial pressure of water vapour [m.m. Hg]

cartesian spatial coordinates, r = (x2 + y2 + z )1/2
unit vectors along axes ox , oy , 0z

absolute time

relative time measured from the beginning of the free
air laser strain meter observations

distance over which strain measurements are to be made
through the uncontrolled atmosphere

linear approximation to the rate of change of distance
between the ends of the strain meter in the kth
averaging interval

sampling interval of the fluctuations in atmospheric
ray-path length, egual to the correlation time for
light rays passing through the uncontrolled atmosphere
averaging interval for suppression of atmospheric
fluctuations in ray-path to reveal tectonic changes

in distance

signal noise ratio of the free air laser strain meter
observations

confidence parameter of free air laser straln meter
observations, O < €' g o

confidence level of free air laser strain meter
observations, TN(|g']) = erf(|g]|//2) , 0 < n(]g']) =1

mean square refractive index fluctuation
inner scale of atmospheric turbulence
outer scale of atmospheric turbulence

arc length of atmospheric ray-path at time t
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L straight line segment, a series of which are used to
approximate the atmospherlc ray-path, is equal
in magnitude to the outer scale of turbu?en

U (at) the net fluctuation in geometric ray-path length in
the interval At .

X(1) the fluctuation in geometric ray-path length as a
function of time <

2 curve parameter for mathematical representation of
atmospheric ray-path. & 1is proportional to distance
travelled parallel to the x-axis.

e(t) the extra distance, over the straight line distance,
travelled by a photon when traversing the ray-path
between the end mirrors of a free air laser strain

meter
A
§S fluctuation in geometrical ray-path length
a(2) total angle between the direction of the ray and
the x-axis
A wavelength in vaccuo of laser radiation
k = %1 .wavenumber of laser radiation
v frequenéy of laser radiation

w = 27V angularlfrequency of laser radiation

g£,n coordinates in the plane of the rectangular diffracting.
apertures

x,y coordinates in the plane of the ffinge observation

\'s fringe visibility

B total phase of laser radiation

p spatial variable in a plane normal to the direction of
propagation of the laser beam

DBB(p) phase structure function

Cuu(r) autocorrelation function of refractive index fluctuations

V0 minimum acceptable fringe visibility

p | maximum allowable dimensions for diffracting .apertures



-
v =

h

C

8(A)

Vv

X
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~ ~ ~

i+ vyj + vzk wind velocity

Planck's constant
velocity of light
angle of divergence of laser beam

1% power attenuation distance for laser beam
gating through the atmosphere. D, ™ 3.1 x 10

ropa-
v cm.
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