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_— ABSTRACT

The behavior of elastic body waves in a dipping

layer overlying an elastic medium has been theoretically

investigated by a multiple reflection formulation.

Although the diffracted wave is not included in this
formulation, its importance is studied by investigation of

the amplitude discontinuities within the wedge.

For a plane SH wave incident at the base of the

. dipping layer perpendicular to strike, a series solution has

. been obtained. Numerical values of the amplitude, phase
and phase velocity are'calculated on the surface. For waves
propagating in the up-dip direction the amplitu&e versus
frequency curves for a constant depth to the interface change
slowly with increasing dip for dip angles less than 20°,
However for waves propagating in the down-dip direction the

- character of the amplitude curves change rapidly. In these
cases, it is found that the diffracted wave plays an impor-
tant role. In addition to satisfying the boundary conditions
at'the surface and the lower boundary of. the wedge, the dif-
fracted wave must also satisfy additional conditions along a
‘dipping interface between the wedge boundaries due to the
geometrical nature of the reflected wave solution. It is
found that the phase velocities vary rapidly with both period

of the wave and depth to the interface.

For incident plane P and SV waves, the complexity
of the problem due to the converted waves does not allow. the
solution to be expressed in series form. However, a com-

putational scheme has been developed which allows the
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calculation of the disturbance due to the multiply reflected
waves. - For both incident P and SV waves, numerical valﬁes
of displacements and disblacement ratios are calculated on
the_sﬁrface. It is found that the displacement ratios

for incident SV waves are much more sensitive fo dip than
are there for incident P waves. For incident P and SV

© . 'waves propagating in the down-dip direction with a propa-
gation direction ol,B = 120°, the amplitude ratio Versué
‘frequency curves.for constant depth to interface do not have
significant peaks for dip angles greater than 15°, The
maximum discontinuitiés caused by the outgoinngave are

also calculated to determine the role of the diffracted
wave. As subsidiary problems the enefgy relations between
waves at an interface between elastic media are determined
in‘terms of propagation'direction in a cylindrical system
~and the complex propagation direction is interpreted using

the Rayleigh wave.,

The final study is to determine by a reflected
wave formulation the displaéements due to periodic and
impulsive line sources of SH waves in the wedge overlying
“an elastic medium.. A formal solution is found by which
“the contributions due to head and reflected waves are
detérﬁined by evaiuation of the integrals by the method

of steepest descent. Using ray paths, the contributions
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of the inteérals have been interpreted. The range of
existence of head wa?es has been examined and the discon-
tiﬁuities associated with diffracted waves studied. In
the case of a free or rigid lower boundary of the wedge,

the dispersion relation has been determined.
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CHAPTER 1

GENERAL INTRODUCTION

1.1 'Preliminary Remarks

iElastic waves pléy very important roles in the
'determination'of’the crustal structure and the'intérnal
constituiion of the earth. In the past decadévnew ana-
lysis techniqﬁes coupled with advances in instrumentation
héve lead to rapid expansion of our knowledge concerning
tﬁe éeismic properties of the earth. However, the ana-
.1yses are restricted by the limited number of models which
are available - mainly for horizontally layered structures.
In earthquake seismology, Surface waves have been parti-
‘cularly usefulnfor interpretation as they yield an average
structure over the propagation path and hence the hori-
2ontaily layered formulation has'pfoved to be adequate in
»most cases. However, body wave applications (e.g., Phinney
(1964), Ellis and Basham (1968),_Ibrahim (1969)) have only
been moderately’successful as body wave amplitudes depend
on a localized region beneath the observation point which
may be geologically éomplex as indicated by the reflection
studieé of Clowes et al (1968). Hence it is necessary
énd'impbrtant to investigate the behavior of waves in a
dipping layer to obtain anvundérstanding of the more complex

models.



1.2 Summary of Previous Studies

The interpretation df horizontally layered struc-
fures has been dominafed by the theoretical studies of
Haskeli (1953, 1960, 1962). He considered an input wave
at the base'of a horizontaily layered system and by apply-
ing the boundary conditions obtaiﬁs propagater matrices
which carry the displaéements and stresses from one boundary
to the next eventually obtainingba relation betwéen.the
’inpuf wave at the lower boundary and the surface motion.
‘Fof.incident P and SV wéves, the frequency domain input
function may be eliminated by taking the ratio of the
Vertical and horizontal displaceménts. For inéident P,
the experimental V/H ratio vérsus frequency, and for inci-
, dent SV, the experimental H/V ratio, can then be compared
wifﬁ théoretical Haskell ratios\to determine crustal struc-
._turé. ‘Haskell's.formulation_is also applicable to iurface
wave studies. |

Sevefal studies for non-parallel boundaries have
‘been doné, mainly relating_to surface waves. Hudson (1963),
Nagumo (1961) and Sato (1963) dealt with SH waves in a
wedge-shaped medium. Hudson studied SH waves from a line
source in avwedge-shaped medium with a rigid lower surface.

He obtained a solution composed of multiply reflected



and difffacfed waves. Using this solution he investi-
gated the effect of diffraction at the apex of the wedge
by means of an approxihate form of the diffracted pulse
and found that the diffracted wave amplitude decreases

as b/ T”Y: (where 7Y and 7| are the distances of the
“source and observation point from the vertex). Nagumo
considered two dimensidnal'elaétic wave propagation in
a.liquid layer overlying a rigid bottom.. He found that
mode solutions exist. From the solution he investigated
dispersion relations of thé wave. Sato studied the dif-
fraction problem of SH waves at an obtuse-angled corner
due to incident plane SH pulse parallel to one of the
free boundarieé and calculated diffracted wave forms
Which he found_diminished;rapidiy away from the vertex,
LapWood (1961), Kane and Spence (1963), Hudson and Knopoff
:_ (1964), McGarr and Alsop (1967) and others have studied
Rayleigh wave tfansmission in a wedge-shaped medium.v
Lapwood-investigated wave forms from a line pulse source
on one of fhe free boundaries of a right angle, using
integral transformation"énd'approximation procédures.
Kane and Spénce (1963) and Hudson and Knopoff (1964)
considered Rayleigh wave transmission on elastic wedges
with free boundaries. The firSt authors employed an itera-
tion procedure and the latter employed a Green's function

technique in order to calculate transmission coefficients



of the Rayleigh wave. Using an approximate.variational
method, McGarr and Alsop (1967) computed the reflection and
transmission coefficients for Rayleigh waves normally inci-
dent on vertical discontinuities. Conversely, there have
only been a few studies- (Fuchs (1966)) and Kane (1966))

on the effect of non-parallel boundaries for body waves;
nevertheless body waves constitute an initial section of a
.seismogram which is very often used in analyses. Fuchs
synthesized seismograms due to a primary P signal propa-
gating along the median plane iﬁ a solid wedge with free
boundaries, by taking a summation of reflected waves. He
determinéd the dispersion of the body waves and particle
motion. Kane employed a tree diagram which is obtained by
reflecting the wedge rather than the rays and a vector
which carries nine pieces of data. Thus, he calculated
theoretical seismograms due to ﬁn input plane P pulse

. for the teleseismic response of an array of stations
located on a uniformly dipping crust. In this way he
demonstrated the signal distortion effects of the geometry.
However the amplitude characteristics which are used for
interpretation of crustal structure were not investigated

nor was the diffracted wave.

1.2 Scope of This Thesis

The objective of this thesis is to extend the theory
of body wave propagation in a dipping structure using a re-
flected wave formulation. Although the forms of the dif-
fracted waves are not investigated, determination of the
amplitude discontinuities due to the reflected wave within

the wedge indicates its importance.



'Fifst, in'Chapter 2, a plane SH wave incident
at the base éf a dipping layer is considered as in this-
Case:no converted waves are present. A solution by
multiple reflection is obtained and the amplitude charac-
teristics and phase velocity calculated on the surface
in tefms'of depth to the interface, period of the wave,
and dip angle. The discontinuities which result from
tHe last reflection and which are related to diffracted
waveé are determined. This development in Chapter. 2
serves as a guide for solving the moreAdifficult problems

of Chapters 3 and 4.

In Chapter 3, the corresponding problem is studied
for incident PAand SV waves. The complexity does not
allow-a serieslsolution to be obtained; however, a com-
putational scheme is devéloped_which allows the calcula-
‘tion of the displacement and phase velocities. As sub--
sidiarylproblems, the enérgy relations between waves at
" a boundary are given in terms of the propagation direction

and the complex propagation direction interpreted.

In'Chaptér 4, propagation of SH waves from a
.pefiodit and impulsive line source in a dipping layer
overlying an elastic medium is investigated using a
reflected wave formulation. .The contributions due to
head and refiected waves are determined by evaluating

the integrals by the method of steepest descent and a



comparison made with a horizontally layered case through
the case of numerical examples. The range‘of existence
of head waves is determined and the discontinuities

associated with diffracted waves studied.

The study is summarized and suggestions made

for further investigations in the final chapter.

The theory for multiply reflected waves as developed
in this thesis could serve as a useful starting point for the
study of diffraction. Techniques such as the geometrical
theory of diffraction as developed by Keller (1562) appear to
be applicable; however, they may not be practical due to the
complexity introduced. In this theory for small wavelengths,
Keller uses diffraction laws similar to laws of reflection

-and refraction which are derived from Fermat's principle.
Away from the diffracting surfaces, he is able to use dif-
fracted rays just like ordinary rays. By the use of the
reflected wave solution and such a diffracted wave procedure,
it may be possible to obtain a more satisfactory description

of elastic waves in a wedge.



CHAPTER 2

'MULTIPLE REFLECTION OF PLANE SH WAVES
BY A DIPPING LAYER

2.1 Introduction

The calculation of the amplitude characteristics
- of waves propagating in horiiontally layered media has
been greatly simplified by the matrix formulation of
Haskell (1953,'1960, 1962). The appiication 5f this
formulation has proved.to Be é powerful method for deter-
mining the érust and upper mantle structure using surface
waves. Howéver, body wave applications have only been
moderately successful. Even though for surface waves the
regional structure may conform closely enough to the layered
'theory to allow a successful interpretation, the body wave
amplitudes may'not be useful for interpretation as they
depend only on a localized area beneath the station which
'may be geologically complex. It is, therefore, important
to study the effect of‘diﬁping boundaries on the charac-
"terisfics observed at the surface. Fernandez and Careaga
‘(1968) have suggested that_a model of this type may be

required to explain body Wave observations at La Paz,

“As an initial study of body waves interécting
with a wedge overlying an elastic medium, all waves internally
reflected between the free surface and the dipping layer due
to a plane SH wave incident on the wedge perpendicular to

the direction of strike will be considered. The objective



is to caicuiate the amplitude characteristics in terms of
distance from the vertéx, depth from the surface, and the
peribd of the wave.. On the basis of the results of pre-
vious workers, it.is‘expected that the multiply reflected
waves.will play the most important role in a seismogram at
observation points distant from the vertex and will be

- explicitly investigated in this study. For the diffracted
wéve, the boundary conditions are expressed and calcula-
tions made to indicate its importance in particular situa-

tions.

This simple case in which there is no coupling
between wave types 'sexves as a guide for solving the
~more difficult problems of incident P and SV waves as well’
as being of interest in its own right. Further, as surface
wave, refracted wave and reflected wave components are
" obtained by evaluating the contribution of poles, branch
‘points and saddle points respectively in terms of multiple
'-refleétion; the solution of the present problem is an.impor-
~tant step leading to the solution of these more complex

problems.

2.2  Wave Equatibn and Fundamental Solution

In this problem with a dipping boundary it is
found convenient to choose a cylindrical coordinate system

(r,e B ) rglated to a cartesian system (5%,»%—’2,) as



shown in Figure 2-1. For a plane SH wave propagating in
the x-y plane, the motion is independent of 2 and the
displacement has only a z-component. Assuming a time

s twt . .
variation of the form ¢ , the equation of motion

1 SU
.K72%k=? Ei?“é;g;f (2.1)
‘becomes in éYlindrical‘coordinafes
(Eo+les + e u-0 2.2

™ 96
where ﬁbz w/cb |
We choose as the fundamental solution of this equation

Al eu‘éwcos(e.—oc)_

tude A propagating in the (- direction.

which is a plane wave of ampli-

The only non-zero component of stress is : i

o= M35 - ‘ @3

2.3 Reflectionvand Refraction Coefficients

We now consider two elastic media divided by 8= 04
with waves from medium (2) incident on the interface
(Figure 2-2). The solutions in media (1) and (2) can be

written as



Fig. 2-1l, Cylindrical coordinate system 7(’1’9;, Oy z)‘: uséd
in this problem. )

0T



Fi&o 2-2. Refleetion and refraction at a boundary inclined
at an arbitrary angle 83 .

Tt
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eu"ewmosw# 8)

W= AT&' (2.4j

Lﬁsz‘COS(GI— o) LR ”{‘COS<6"T) |
w=A € - + Age _,

The boundary conditions at the interface require continuity

in displacement and stress. At B6=064 we can there-

fore write

unrf Uas |
(PZ@);:< P&Q)z

The condition of equality of phase at O=04 -leads to

(2'.5)

RpiCOS(84—8) = Rpa COS(BA— 01)= R, COS(B4=T)  (2.6)
”~~'Usi‘n-g~(2.3) and<sub.stitutvi_ng (2.4) into (2.5), we obtain

Are _ 551 N(64— oQ*AISM(_eA—B)
AL : ASiﬂ(gd— g8)— 5530(60\—7?)

- o | (2.7)
Ars _ 58in(0a=0l) = 55N (8a—T) ‘
AL ASIN(Oa—B) — 5 SN (64—7)

where A= Cbz/Cb\ and »82/»(1//14
_Usirig (2.6) and the géometric' relationships between the

l.angles O() 6 T - and the angles (,QL X (’5 ) (/,'r_
(Figure 2-2), we have ' | -

AN
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T 20g+ 2 75 ol

| (2.8)
B =064 + —279- - Siﬂ_ (’Z"f COS(GA‘;“OC)) |

and |

Sin(6a- T)——“Sm(ed oL)

Sin(84=§) = =/ 1= (1/4%) C05*(6a=c0

(_2‘9), e

with 9(}\(0(_( @d+x

Finally, substituting (2.9) into (2.7) we obtain

Avg _ SIN(8a= ot + (1/6) /A"~ C0S* (4= )
Av o SIN(Ba—ol) = (1/5) /"= Cco52(6a-ot)
| : . | - o (za0)
Ars _ 25N (6a—oL) .
Ac  sin(ea-

o)~ (1/8)/aF=C05*(84~ o)

Thus, we have been able to denote the reflection

and refraction coefficients in terms of the initial propa-
~gation direction

, the dip anglé, and the elastic constants.

In the case where the waves are incident on the

boundary from medium (1), the same process yields the fol-

1ow1ng equations:

Arg  ASIN(BA-0L) — 8\/t~a C0S%(Bd— o)
CAv ASIn(Be-) T 51— 4"co5™(Ga— L)
CAws_ _265in(ea-a))

AL BSIN(Ba—d) + &8/ 1— A%co5* (64 ob)

(2.11)
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and

= 290\-{-270*0(- )
B (2.12)
B =04t FTC+Sin (ACOS(E-)(;\ oc)) o

with O, + JC \o’v<,60\+2m f

15 A C08*(Bh—c0)> | then =A% Cos% (6= o)

must be replaced by -(J\/A COSZ(9¢ ol) — | for the

solution to remain finite at infinity.

For waves incident on the free surface, we have
Ave= At |
: (2.13)
T=2T— K S

‘w>ith.O<O<,,<j‘[,

2.4 Multiple Reflection Solution for a Wedge

{ TCO0S(6— L
Lﬁbz (. )incident on

| Consider a wave A€
the boundary 8= 83 from medium (2) (Figure 2-3) and assume
a resulting reflected wave %}” and refracted wave )

of the forms
pr= Al A
V A, /\

bﬁbx’Y‘COS(@ fm

bﬁbﬁrCOS(e“ ﬁ)l



Eigo 2-3 °

o
Vi
. I,t N
4
. /j
J
,

sl

Multiple refleetion and refraction for a wedge-

shaped medium with a wave incident with propaga-—

tion direction o

-
N
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Using equations (2.8) and (2.10), the boundary conditions

are satisfied for

| /\/ : S5in (84— o) + (1/8)J A= cos*(8a—o)
AN

SIN(Ba—a) ~ (1/8)] 5= C052(84—oL)
| | - (2.14)
T, = 204+ 270 —ol
and
_ 251N (6a— )
! Sin(@a—ol) = (1/8)/a*—CcoS®(Ga—ol)
) (2.15)

.B‘:: 04 + QEL'“'Siffl ”l“(:OSS(ed"CK)

-To satisfy the‘boundary condition at §=( , we assume

'a reflected wave

| u”&T‘CS@ )
}& /A\A bl O<.

By equation (2.13), the boundary condition ‘is satisfied

provided that
/ .
T, = RIL—B,

- To satisfy the boundary conditions at § = G4 , we must

 assume the reflected and refracted waves
' R VR, T COS(0— T2)
){"f: AZ'A\.AL.G '

Lﬁbzﬁ“COS(@-'ﬁz)
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which saftisfy the boundary conditions for

ASIN(Ga— )= 5J I-A*COS* (64— T1,")

. A — - ~
e ASIN(OA~ 1)+ 8/ | — &2 c05*(8a— ')

| (2.16)
W= 204 + 270 — 1
and
A - - 2ASIN(04— )
ASIN(Ba~ 1)+ §/1—a*cos?(6a— 1)
_ _ : (2.17)

B, = 64+ 2 I0+ sin ' (8C08(Ba~ ")
uisi__ng equ’ationvs (2.11) and (2.12).

These steps are then repeated. However, it is
not an infinite process for it terminates whenever:
_ ' ' A ’ i
70 < 'D’;L<3'C+eak _ o.r j'[,< 'an<jt,+eo\ for in these
cases the wave propagates down the wedge without further
collision with the boundaries. The last term of the series

in medium 1 is of the form

( > bﬁbmcos(e ¢>

where LJ = T ynax
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This gives rise to a discontinuity in the displacement,

A(TEA) R

at A= _%5’1’-— jt, . Therefore, the solution for the dif-
fracted waves must be of a form that will give continuity of
displacement and stress at Q= Q;J—]'C as well as satisfy-

| ing the boundary conditions at 8=0 and 8= B

As \Qé shall see in the next section, the discontinuity at

0= @w——_')'t, is in most cases small indicating that the
multiple reflection solutio-n usually dominates the seismo-
gram.b Further, Sato (1963) has shown that the amplitude

o.f ‘the di_ffracted wave decreases rapidly away from the region
of the ray theqry'discontinuity and hence will be small at

surface points distant from the vertex. We then write

Y m VR TCOS(8= T,
qu::f\in;;<)E: /\qL Ei bi ( ﬂ%)

(2.18)
Al : Lﬁb (e 7&&)
M= A, Z(ﬂ: A ) Tees
= A;,%;(R A )e"ﬁb'ms 07T
(2.19)

L
T

N'/: /A\*Z R A >€uﬁb,rc08(e (P
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wlr\eTe '
A _ AS\V\(@A “6% D— g\/1—~A COS™(64- Trer) '(2 20)
O ASINa )T S 1= AT CosH 0 w)
| | n=2
A= , ZS!H(@d"OQ | ) 21)'
| .
sm(ed oL)—(!/SNA —-cosl(ea\ oL) |
(N 266( ‘>+ Bl | |
| (2.22)
’6;;3 275'"(3/\7% .
(3( = 60\““% ~SH’\_‘<2‘§"COS(@A"OQ> - (2.23)
L= m»ﬂax ,‘
- N (2.24)
_LI== 771Vﬂax'""‘

The solution can then be written in one of two forms depend-

ing on whether the last reflection is from ©0=0 or
@ﬁ:bed; . In the first case we have
U =N, + N, . Sor 02647 ~JC
— VA Y. . ~(2.25)
*N\+Ml- - _5_07\ N-ILE 6% B4 |
with

L& W & Tot0s
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and in the second case we have

=MEM - Sor 0£0E£TM-X
, » . (2.26)
W= N, + M, _ For W,-JUE 6 £ 64

vith  JU £ 7, & TU+ 64

The amplitude A, the phase ‘. , and the phase
velocity (C, (in the direction 0 = constant) may be

written as:

Af% \/R@(’b{t)z -+ Im(%)z | ‘(2.27)

= tarf‘_( Im(u.)/ Re(%)) | C(2.28)

F{e( O denqCUJ an(- ><A.R£l(¢kﬂv

¢ = —w | o
R o Re(u\) “\‘ Im(’b{;) (2.29)

2.5 Numerical Computation and Discussion

For the numerical'computationé, the values chosen
for the parameters were /(,(2//{1‘: (“882 and Cpa/Cp1=1.265
which correspond to the crust - upper mantle model used by

Haskell (1960).

2.5.1 'Amplitude Discontinuity at 0= ¢%}’

As discussed in the previous section, the last
reflection, which does not collide with a boundary, gives

rise to a displacement discontinuity and corresponding to
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this a S Tfunction in the Stress at -6==ﬂ%—'7c . The
magnitude of the_displacement discontiﬁUity versus dip angle
isbshowﬁ’in Figure 2-4 for various angles of incidence as
appiicablé to teléSeiSmic waves. In the case‘where the
mégnitude.is small the reflected wave_solutidn adequately
describes the physical problem.- HowéVer, if the disCon?
tinuity isllarge, then a diffracted wave w1th a large ampli-
tude.in the region of G ¢%;—7C is requlred_to provide

continuity in displacement and stress.

We see that for the incident wave prOpagatlng in
the up-dip direction (oL<lﬂO° . the discontinuity is small
for dip angles less than 15°. Howéver; for incident waves
propagating in the down—dip»diréction (c(;>q0f) the dis-

- placement discontinﬁity is large for some ranges of small
dip angles. In these cases the‘diffracted wave is'impor-
‘tant because the internally reflected wave bfopagates out
df;the wedge after é small number pfAreflections._ How-
éver, for surféce points distant from the vertex, it is
expected_thaf the reflected wave amplitude wili givé a
good approximation in most regions to the true amplitude
as the discontinuity surface_becomes.distant from the ffee

surface.

AN

It should also be pointed out that in addition

to the discontinuity within the wedge, discontinuities are
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generated by the vertex on reflectloh ‘of the incoming

wave and each refraction into medium (2). In the reflected
wave theory these appear as dlsplacement and stress dis-
'cont1nu1t1es radlatlng from the vertex. The effect of
"these w111 not normally be large on the surface of the
wedge except close to the vertex as the amplltude decreases
rather rapidly with distance and the wave will be part;ally.
_reflected at the lower boundary of the wedge. However
iu_any study of diffracted waves their relative impor-

tance should be'investigated.

2.5.2 Surface Amplitude Characteristics

"One effect of interest is the effect of a varia-
tion of dip angle on the amplitude characteristics at the

~surface for a constant depth to the boundary and fixed
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Fig. 2-4., Displacement discontinuity along the edge of out-
going reflected wave for unit amplitude incident
waves with propagation direction K.
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propagation direction. In Figures 2-5a and 2-5b the ampli-
tude surfaces are piotted for the parameters dip angle
and 6‘:;2J§jt}{/cb‘ﬁ*' (H is depth to the boundary)
for ol = 60° and 120°. For fixed H and Cpl thé§e are

then amplitude surfaces for varying dip angle and period.

For an incident wave with propagation direction

ol = 60°, we see that the émplitude characteristics change
slowly with increasing dip angle except in the range near
 25°. However, for an incident wave with ol = 120° the
amplitude characteristics change rather rapidly with fre-
quency over the range of dip angles considered. The curves
2-5a and_Z—Sb are typical of the characteristics for inci-
dent waves propagating in the up-dip and down-dip direction
respectively. One of the reasons for this 1is indicated
in Figure 2-4. For a propagation direction ol = 60°, the
amplitude discontinuity is small at Q==@n-jc for

6&<§£LV5 but for a propagation‘direction oL = 120°,
‘the discontinuity is significant over most of the range of
dip angles considered. This indicates that in these regions
of rapid changes of the amplitude characteristics, the
multiple reflection solﬁtion as presented here does not
fuliy describe the physical situation but that the dif-
fracted wave is likely to play an important role. From a
physical viewpoint, this larger diffracted wave for waves

propagating in the down-dip direction arises as the wave
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only collidés with the boundary a very few times before it
propégates out of the wedge énd hence this wave, which

leadé to the diffracted wave, is still of significant ampli-
tude. .Hencetwe see that except for large dip angles and
vwaves with large incident angles propagating in the down-
'dip direction the reflected wave solution adequately des-

~cribes the physical problem.

Also of interest ére the amplitude surfaces for

the parametérs G- and propagation direction for a constant
dip angle. These are Shown in Figures 2-6a and 2-6b for dip
angles of 0° and 10°. These two graphs are similar in the
range of propagation direction 45° to 90° in that for in-
creasing propagation direction this amplitude versus @&
curves oscillate-more rapidly. It should be noted that the
curve for a dip angle of 10° and propagation direction

oA = 45° has one additionalloséillation between & = 0

and 6~ = 49 as compared to the curve with no dip. For
'prqpagation directions greater than 110° the amplitude
turVes change rapidly with increasing angle. Again it
should be noted from Figure 2-4 that we expect the diffracted
wave to play a significant role for this range of propaga-

tion directions.

Finally, the amplitude surfaces for the paraméters

T;=,£ZEif; and dip angle (Figure 2-7) are considered. The

Co T
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major feature of these curves is the increase in the rate
of oscillation for the amplitude versus T curves as the
dip éngle increases. Hence for a constant distance from the
vertex the spectral character of a seismogram is exﬁected

- to chénge rapidly with a changing dip angle.

"2.5.3 Phase Velocity at the Free Surface

In Figure 2-8, the phase velocity curves are plofted
for é dip angle‘bf 10° fbr variqus propagation directions
ol | . These differ markedly from the phase velocity for
the horizontally layered casé (thin lines) as dispersion is
present which depends on both the period of the wave and
"depth to boundary. The amplitude of the phase velocity
oscillations increases with increasing propagation angle
until an angle is reached which corresponds to vertical
- incidence for the horizontally layered case. Beyond this
angle the oscillations then decrease. Clearly, measure-
_ménts of phase ﬁelocity on a wedge-shaped medium will
deviate markedly from the horizdntally layered case due
to variations with both period of the wave and depth to

thé interface.
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An explanation of the large variations in the
phase veiocify which occur for incident waves in the up-
dip.direction is as follows. In this case wavesApropa—
gaie toward the»vertex and then have theif direction
'reversed and propégate out of the wedge. For small inci;.
dent anglés ( oC‘= 75°), the amplitudes upon feversal of
directioh will still be large resulting in a éignificant
contribution to the phase velocity with-iitfle change
in the transfer function coﬁpared to'fhe horizontally

layered situation.
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CHAPTER 3

MULTIPLE REFLECTION OF PLANE P AND SV WAVES
BY A DIPPING LAYER

3.1 'Introduction,

In thé previous chapter the problem of a plane
SH waves incident at the base of a dipping layer was con-
sidered. ‘A solution by multiplevreflection for waves
'Aincident at ény'angle perpendicular to strike has been
obtained for the amplitude, phase and phase velocity.
In this chéﬁter the case of incident P and SV waves is
considered. Experimental investigateors who use displace-
ment characteristics to interpret crustal structure (e.g.,
Phinney, 1964) have been limited in their calculations to
horizontally layered structures. Consequently, the present
énalySis will éxpand the number of models available for

interpretation purposes.

3.2 EQuations of Motion and Boundary Conditions

Iﬁ this problem, it is again convenient to choose
a cylindrical co-ordinate system (IY\ o, 2 ) related to
a cartesian system ( X, %, % ) as shown in Figure 2-1.
- For plane P and SV waves propagating in the x-y plane, the
motion is independent of >2, and the displacement has only
7™ and B components. The equations of motion in cylindri-

cal coordinates are:
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oMU 80 2u 5, }
PS5t = (A 25 T T) a5 NCRS
e &@ w0
§ == atp? = (/”H',‘Z )’Y‘ 50 +2/LL a’T\ (3.2)
where: '
L | dUe
=" 8’\“ (T ”“H”_ T 56 (3.3)
e 3 U |
2«@%: ’“”"”"“(T’Me) — "‘f""‘““a eT‘ (3.4)

™ oT
and £ is density; 2. and ‘/A' , Lamé's constants;

W+ and Yg , displacements in the 7 and 6 directions.

The stress components are expressed by

69 K®+2//x((r %Qée -+ uT) (3.5)
} B’U\e _ Ue \ 3Ur

Using’eQuations (3.3) and (3.4) in the equations of motion,

we obtain

@ — 2@ ‘ \ O@ ‘ 32@

.' 9'63 ERoY WDx 3%00 |
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.and in the stress relations,

4 :

we obtain

Substituting (3.11) and (3.12)
.have

| 3

2 9U |
60 = P CL®—2FCh S (3.9)
Ug
To= ZFCb(aq,\ - &)5> | (3.10)
where'(:&::.ikf;%éﬁ. and (= /‘§é~ , the P and
S wave velocities respectively. Assuming a time variation
of the form gf“’b . equations (3.1), (3.2), (3.7) and
- (3. 8) become | | |
D -1 2 /1 300, |
=" %257 @(?‘é“é‘“} (3:11)
| | | 20\ 2 oWz
A ::-—-—~7;<;‘_.._~_. — == (3.12)
'.6 ﬁém T 20 ?éb om
A S
:Vl@*“ﬁaﬁ;ﬂ) (3.13)
2 ~~ 2 _
V.(,d%{ ﬁb Wz= (3 14)
o w : | v__b_(,U _82 IS
where %‘0\: ‘—(S—; . N ﬁb_ ——(—;—t; and V a,\{‘z + 'T‘a')" + ’]‘2862

into (3.9) and (3.10), 1

@za/taw

Y 5-—j° 2@ +zfc‘;‘{ o

( (1 28

™ % aﬂ”h 20

Zz

2\
J (3.15)
z T W

o chb{ﬁz ar\”r 56

>+T€ = Na} (3.16)
b
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We choose as the fuﬁdamental solution of equations (3.13)
and (3.14), E'_@LﬁaWCOS(G*oC) and F}@L)‘Ezwco‘s(e——@) ’
plane waves propagating in the e and B Adirections
respectively. Substituting the fundamental soclutions into

(3.11), (3.12), (3.15) and (3.16) we have the following

" expressions for displacements and stresses:

u,:—?Ecosm e ko COS(®~ot)

' LRy COS(6~
%b Fsin(e-g8)e b b (=) (3.17)

Ue= “i(é;E Sm(e-—oxv)gkﬁorws(ﬁ o)

LRp1C0S(6—B)

(3.18)

be T;os(e B)E

)

06

i

$1Ca- 205 c0s (o~ OQ}ESL%TCOS(G o)

Jéb'rcos@ B)
| (3.19)

—~4PC, Fcos(e-p)sin@-g) e

To=-2pciic CoS(0-ct)sin (o) g aT COS(E~ L)
(1~ 2cos*(6~ ﬁ)\F R CoS(0- ﬁ} (3.20)
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3.3 Reflection and Refraction Coefficients

In this section the reflection and refraction
coefficients in terms of.the initial propagation direction
~and the elastic cénStants will be considered. First con-
L sider two elastic media separated by ©O= 0g with
waves from medium (2) incident on the interface (Figure
3?1). The solutions of the equations'of'motioﬁ, (3.13) and

(3.14), in media (1) and (2) can be written as

| \ﬁ_aTCOS(e"‘O( 5—)
@Ffﬁ§€ | '

~ LR COS (0~
(0z= Bﬂg.eb bl ' ( 67‘5‘) -
| _iRa2TCOS(8-00)  , (Ra2TCOS(6~clye)
@,=CinE T ~+Cm6 | o (3.21)
~ (Rp2TCOS(0-8) i coS (6—
U\)gz"’ Din 8 b2 : ( B)"r D)"jz_ebﬁb’zq\ S(e 5’]@0’>
where
Sor L=1,2
' Thé boundary conditions at @::led\ are
Ur = Ure
Ue, = U2 . S - (3.22)
—~~ YA '
69‘ = ee},‘, .



Figo 3“’10

®©
Reflection and refraction of waves at a boundary
inclined at an arbitrary angle 04 with the nomen=-

clature for angles between rays and the horizontal
and boundary surfaces . indicated. '
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For a solution of the form (3.2»1), the dispiace-
ments and stresses in medium (1) and medium (2) are from

expressions (3.17) to (3.21)

TCOS(08- (i
u __b____.,_ A'{‘;COS(G O(,'r}) (/ﬁal ( ’Y‘:f)

2 Bresin(e- prayet T TE)

Mm-—-—o—fg“ CHCOS( )ebfeaﬂcos(e og)
a2

| ,T°CO e?oé )
5 CraC0S(o-ckra)E o RaaT COS(0 otra)
f(az

u‘%b;jrcosw B)

L’ :};bz mS\ﬂ(@ 5)6

—L 'E"“— D’Y‘,Q, Sﬂ/i (6 (915@) 6bﬁb2¢TCOS(G~ Pre)

(3.23)

o W TCOS (6~
Uei = ¢ ?Q /A\r:)zSIﬂ(@ O(yjl) bTé! cos( OCT&)

RpTCOS(6~-
| %b BT&COS(Q 5«‘&)6/ ! ( BH-)

u.ezz_ b"““C;HSIH(G—?oL) n"emrcos(e oL)

| RV~ COS ol

—{—zcman(e dﬂ)eb ” (6= )
Qa .

LA Dmcos(e 6)6bﬁbz7\CQS(9 5)
b2

(6~ .
-0 Dycos(o- graye T TP
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58,= £ A~ 208 CoS* (0 clra} Apser 2T “"”9
49 Cb\ coS(6- Bﬁz)SH/)(G—- S,rf)B,r&@L&b'TCOS(e“ Brs)

06, = E{C;*“Zcﬁz cosz(e.-og}cm LRaz 1 COS(O-00)
d‘*fzicaz ZcszOS *(6- o(ﬂl)fcr,o bﬁo\z'rcos(s_o{m‘)
45, G308 (6~ £)SiN(0-8) Dya L AT COSCO )

frfzcbhcosw Bet)STN(O~Br)Dys gL COS(O )
(3.24)

"VZﬁcm ’)“8—~COS(@ ys)SiN© ~ olrs) Ars ot RaiTCOS(0~dlrs)
*‘{\“‘QUCOS (9 F%r:%%3T§(35ﬁbfrcxys(e 6759

», 25326?2 T6,= COS(@*oL)Stﬂ(@_oxv>cih6bﬁaz”¥\608(6—o¢)
T COS(B-0ly0)SIN(O—clya) Crg éﬁaﬂcos(e-ocw) |
+ { | v-20052‘(@ ;5)} Din em‘ébﬁmS(e -8)
T {‘ - ZCOSZ(G—-(SM)} Drg eiﬁbz”ﬁcos_(ef@m)

Application of the boundary conditions (3.22) leads imme-

diately to the equality of phase which for incident P or
SV waves yijields respectively
RazCOS (B4 —0L) | |
i} ' } = Rp2COS(EA—0lre)= ﬁszos(@d" Bre) (3.25)
=% 4,05 (64~ Ars)= Ro1CO0S(8a—Brs)

which is Snell's Law expressed in a cosine form.

om
Rb2c0S(Ba—R)

The boundary conditions (3.22) then yield the fol-

lowing equations
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To solve equations (3.26) in the case of either
an incident P or SV wave, the angles oAvrg s B’Y‘l ;.
olys  and (8T5 must be determined in terms of the

" incident and boundai‘y angles. For a P wave incident from

medium (2), the following geometric relationships are evi-

dent from Figure 3-1.

O(f': @d\ﬁ‘ ”i‘jt" Lo{_

L= B4t 5 3 - U Ut L
@&:@&\—ﬂt+b%i j_,_" \ | mzu
O(,/y‘__gl:; ed\‘{" _ZTJ—C’— Lo(_,r:s‘_

2
for 60\<O(.é @Aﬂn_ﬂ:{ . Usigg (3.25) we then obtain

2 . .
Loy = 04+ S T0t S117{COS(BA— L= 264+ 270 ok
Bro=6+ %%%in"{(cbz/cm) CoS(64 L)}
i \ . -
Olys = E4+ ZTC = SI1T {(Car/ Caz) COS (Ba— oL}

- Bﬂ"’? Oyt “,JQ*R—"SIH—l{(cbs/Caz)COS(ed\“oO}_ .

where the principal value of the. inverse sine is taken in

_ (3.28)-

each case. It‘ is easily veri_f_ied _that (3.28) also holds

for 9&‘!"& < DL<e(L+jC' For incid’ent SV waves, we find

O = 94+—‘E+Siﬂ l{(Caz/Cw)COS(@d (8)}

. (3.29)
Bro= ed+-w—7c:+5m {cos<@d~5>} =204+ 2JC— 6 »



42

olrg= B4t - TE~SIA {(Car/ Coa) COS(B4— B}
| : i  ~ _ (3.29)
B = B4t 75 =i Y(Co1/Cpa) COS(6y— 8}

Henée, by setting Dj,=0 in (3.26) and substitution of
. (3.28),»the reflection and refraction coefficients for an
incident P wave can be determined,  Similafly, by setting
Cﬁnz?(D and the use of (3.29)‘a110ws us to determine
the reflection and refraction coefficients for an incident

SV wave.

For P waves incident on the boundary from medium

(l).we determine the following expressions for the angles.
o= 6y +v—71:75_—* SH’\”I{COS(GA* o)} = 26,4270~
o |- o g o

- B =G0+ 50— 51 {(Cni/Ca)COS(64~ 000}
, 3 o o
olrs= 64+ 7:%_* Sif 1 (Caz/ cmcoS(ea——oo}

Bv‘& =

and for S wave<

oLU, 6(*4-———713 Sin {(cm/cb‘)cos (64— 5)}

(3.30)

570 +sin {(cbz/ Ca1)COS(0A— oo}

Bry =64+ —-/,%JD*S\V\-{COS(G&——.@)}:264+,276~§ |
- o o (3.31)
s = 04+ 5 T + ST {(Car/ Cor)cOS (04— 8O}

Brs = Oat ZT0F SIT{(Can/CoCOS(64- B
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Equations (3.26) may then be used to detérminé the reflec-
tioﬁ and refraction coefficients for waves iﬁcident‘from
medium (1)'byvthé use of (3.30) and (3.31) and the follow-
ing substitutions: | |
£ £ , 27 80, Cai?Caz , Caz> Ca Cpi= Co2z,
~and Cbz.")'cb( . It should be noted that Avs and Brs
are in this case amplitudes in medium-(Z) énd (jrﬂ aﬁd

Dva  amplitudes in medium (1).

Tlnally, we .consider waves incident on the free
~surface @ 0 (Flgure 3- 2) The solutions of (3.13) and

(3.14) in medium (1) can be written as

LﬁafPCOS(8~%X) o UﬁaﬂACOSCQ"TXﬂl)

. @ Am ‘ _'f— AT‘.Q,e

"~ LRy TCO S(o- 8) m‘”e TCOS(G )
Dy B € bl | BT,Q@ bl Bw

(3.32)

Following the same procedure 'as before we find the equa-

‘tions between the amplitude coefficients to be

(= 2Vn 08y GV COSBanSTNBra) [ Ave| _

- P L, 20 ‘ y
COSO(momd@_ | ‘_ ZCOS_BT,Q, J B (3.33)
2 Vi, COS* oA~ | =4V Cospsing .0 Ain -
cosolSine.  2C08*f~ | J U B

For P wave incidence the following relations are

éeen to hold



Fig. 3-2. Reflection of waves at a free surface with nomenclature for angles between rays
’ and the free. surface indicated, : ’
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COSolpg= COSOL
COS Brg = (Cer/Ca) COS o<,
Sinel= /|- COSoL

Sinolm=—/1-C0S"L o | (3.54)

Sin BWL; =/ |- (Cbn/Cm)ZCOSzo(

Ao, = —%JC + Sm"{cosa} :27f/+oL

By = %—jc +Sim~l{(Cbﬂ/Cm>C05d}
“and for an incident SV wave :

COS olyp = (Cas/Cb\) CoSB o
COSByp=COSB .

Simﬁz\/|~c_oszﬁ | |
 SiNnolyg= = /1= (Ca/ CorY cosB (3.35)
SINBpy =~ /T=C05°B
Oy =20+ i {(Car/Cor) COS B

Brr =270 +5in'{cosp=27t-8
Using (3.34) and (3.35) in (3.33), we obtain for incident

P waves ' :

- 4\l c0S7el Sinoly 1= VE cosx — (1-2V&cos2el)”
™ 3 2 - ; : 2 2
T bW COS DL STNal[T-1g COS% + (12 Vi Cos%) ™

N

| © (3.36)
2C0SeL Sinol (1= 2V, COS%L)

| Bm: - Ai
45 CoS%L S Tnel 1 Ve cosi +(1-2Vi cos®ol)”
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and for incident S waves

A= B -3V, COSBSINB(I—2c08*B) |
T 4c08*BSing [VE—C0STE + (1-2C0878)*

LVCOS2BSIV)§\/VD2‘_COS?-5 +(l—-2,C052{3)2'

Bre

In e#pressions (3.36) and (3.37), it should be
noted that when the argument A in a square root is negative,
theﬁv J;K‘ must be repiaced by ——CJ?Q- for the solu-
tion to remain finite at infinity. As a check on the ampli-
tude coefficients in this fofm, the energy flux equations

have been derived in Appendix I.

3.4 Computation of Displacement in the Case of a Dippihg Layer

To determine the amplitude at any}point in a wedge
we must-sum the_complex‘amplitudes of all waves which arrive.
Frbm (3.23) we sece .that this requires the calculation of the
amplitude coefficient and propagation direction for each wave.
In the process of computétion, complex angles have been
employed in order that the cases for total reflection and
incident angles greater than the critical angle are auto-
matically involved in results. In Appendix II, investiga-

tion of a Rayleigh wave written in terms of complex angles
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shows that the real part of the angle indicates the propa-
gation direction and the imaginary part gives the decrease

of amplitude.

As a P and S wave arise from the initial refréc—
tion and from each reflection ffom the free surface and
the boundary between media, the rays increase in.number
és 25n+1 where N is the order of reflection. The
reflection process is terminated whenevér the propagation
direction is between JC and 75#*8@_ for in that case
_the wave propagates out of the wedge. For computation pur-
poses é further artificial termination wasvinfroduced by
neglecting all waves whose amplitude was less than E£=(O'4
(the displacement amplitudes are normalized by the. displace-

ment amplitudes which the incident wave would have on the

free surface in the absence of the boundary).

For computational purposes, it is important to
hote that the amplitudes and propégation direction for a
wavefront is the same at all points. Hence, if the émpli-
tudes (M ) and propagation.directions (M ) are determined
for all waves reverberating in the wedge, then the totai
‘amplitude of motion at any point may easily be éalculatéd.
Further, as the M and m of reflected waves depend directly
on M and M of the iﬁput wave, it 1s important at the
initial refraction and each reflection to store M and m

for waves which may generate further waves. The rather
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complex compugation scheme used can best be understood by
examination of the flow chart (Figure 3-3)}. ™M and ML

for the refracted waves are first calculated and stored

in veétors in order that they later can be used to cal-.
culate the amplitude and phase at any point in the wedge.

As the P wave is to be followed through the wedge, the
amplitude and propagation direction of the S wave ( Mg

and Mls ) are also temporarily stored in a vector which will
later be used to investigate waves due to S wave conversion,
M and m are then calculated and stored for the ray
which propagates thrbugh the system as P (at the same time

.storing {45 and ’ﬁls in thersubsidiary vector) until P
either propagates out of the system or the amplitude is

less than & . The waves genefated by the S wave of this

- order and higher order waves they may generate are then

examined (with attention again first fQCUSSed on the P),

. then those generated by the next lowest order until finally

the'refracted's and its resulting waves are examined. Upon

completion of this calculation the vertical and horizontal

diSplacement and the vértical—horizontal displacement rétio

may then be calculated for different (§

In these computation the values chosen for the
parameters were Cp|/Ca;=0.5784% , Caz/Ca=1.267

Cbz/Cay=0.73119 and £./f,=1|.|75" which cor-
respond to crust-upper mantle model employed by Haskell (1962);



[fnput parameters|

[N=1]

Determine M and m for’
refracted P . and 3 and
store in STP, STS.

Store Mg ,ms in REC3(N).

¥
:1,1 =N+ 1]
Determine whetTher reflection Determine wether reflection
from free surface or boundary. from free surface or boundary.
Determine M and m for reflect- Determine M and m for reflec-
ed P and S for incident P ed P and S for incident S
and store in STP,STs. (using Ms and ms from RECS(N))
Store Mg,mg 1n RECS(N). and store in STP and STS.
: : Store Mg,ms in RECS(N). =
No . \O
‘ y . No 3
JC < RefmeyS T+6ye — M, <€
Yes Yes No
? H ~] MO . - 1 A
3 MK E ATG S Refms(NFS T804
)%S Yes :
N=N—|
- [Caluculation of total displace-
T N=0 — 3 ment and vertical-horizontal
C A | | displacement ratio
Fig. 3-3. Flow diagram showing the computational scheme [Print]
used to caluculate the amplitudes and propa- .
gatlon directions of the reflected waves in [Endl
the wedge and thus the displacement and dis-

placement ratio at any point. Notation is
given in Taple 1.
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Table 1. Notation used in Fligure 3-3,

STP(K, 2) —‘complex storage matrix for P amplitudes
and propagation directions

STS(K,2) - complex storage matrix for S amplitudes
~and propagation directions

RECS(L,2) - complex matrix to temporarily. retain S
amplitudes and propagation directions
of S rays which may generate further
significant amplitudes

N-1 - no. of reflections a wave has undergone
M - amplitude
m -~ complex propagation direction

Subscripts p and s indicate P and S wave types

3.5 Displacement Discontinuities

As discussed in the previous chapter, the last
reflection which does not collide with boundaries gives
rise to a diffracted wave which in the reflected wave
solution appears as a displacement discontinuity. When
the displécement discontinuify is small, only a small
diffracted wave is required to provide continuity in dis-
~placement and stress and hence the reflected wave solution
adequately describes the physical problem. Large discon-
tinuities will require large diffracted waves; however,
at large distances from the vertex the solution is still
expected to be adeduate as diffracted waves decrease rapidly

with distance.
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For incident P waves the magnitude of the maximum
discontinuity of both the radial component from the last
P wave and the tangential component from the exiting S
wave is shown in Figure 3-4 for incident waves with propa-
gation directions ¢ = 60° and 120°. Several points
should be noted. The discontinuity in the case of down-
dip propagation is much larger than for the up-dip direc-
tion., This ié expected since féwer reverberations occur
before the wave propagates outbof the wedge. The discon-
tihuity from‘P wavés is relatively large in comparison to
that for S waves and rapid changes in the amplitdde result
as the méximum discontinuity is associated with diffgrent'
exiting waves for different dip‘angles. The particularly
rapid decreases observed result when an SV wave generating
an eXiting reflected P wave reaches the critical angle. |
The maximum P wave discontinuity at the next calculated
pdint (calculation interval = 0.25°) is then due to another

wave which may be of much lower amplitude.
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Fig. 3-4. Maximum displacement discontinuity of the radial
compounent from the exiting P waves and tangential
component from the exiting SV waves for an incident

P wave with propagation directions o(=60° and «=120°,
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.......

placemenf discontinuities are negligibié for dip angles
~less than 21_°bfor an in;:'ident..wave with 5.;_- 60° incii-
’~céting that this Solﬁtion very cloéely appfo#imates the
ﬁcémplefe Solution. Again the»discontinuity is larger for 

the incident wave propagating in the down-dip direction.

However in the éasé‘fsr | 6 '= 120° the large
'}'discontinuity for the outgoing P wave is fbr large dip
'~anglés rather than the smaller dip angles (,64<<;ZO°_)
asrfound for the incident P wavé case. The physical |

‘reason for this is not clear.

As discussed in Chapter 2, discontinuities exist
~in medium (2) due to‘the réflection of the incident wave

. and refraction of waves back.into the 1owér medium. Except'

close fo the Vertex; the émplitudeé of the feéulting dif-

fracted waves are expected to be small.

"+ 3.6 Surface Displacements and Displacement Ratios

_3.6.1 Incident P

Horizontal and vertical displacements are plotted

versus fhe parameters Szzﬁch/Ca,T .. (H is depth

to the interface)'and‘illustréted in Figure 3-6. For an
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initial,prdpagation direction of 60° the vertical component

changes very slowly with incfeaSihg dip angle. The hori-

~the major changes in character occur for ey‘:>JZCF' where'

zontal displacement changes rather more rapidly; however

from Figure 3-4, we see that the rdle of the diffracted

."ray becomes important. For ol = 120°, a more rapid change

" in character of both the vertical and horizontal surfaces
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is evident with increasing dip angle. This is particularly
true in the horizontal where for edl7'ﬂ70. the surface

is rafher featureless. However it should be noted that

the discontinuity curves in this case indicated that the
diffracted wave may be important over most of the range

of dip angles.

The ‘displacement ratios V/H which are of interest
in practical analysis are shown in Figure 3-7. For the
initial ﬁropagation direction ol = 60°, the ratios are very
similar for dip angles less than 10°. For dip angles
greater thén 10°, the peaks move to larger values of §
and increase markedly in amplitude. For ol = 120°, the
ratios change much more rapidly even at small dip -angles
with thg peaks moving to increasing ¢ again. However
in this case the amplitude decrecases until for H4= 20°

the V/H ratio is almost constant for variable &

3,.6.2. Incident SV

From Figure 3-8, it is seen that the displacement
surfaces exhibit significant character. One particular
feature is that for dip angles greater than 18°, the period
of the variation of horizontal displacement becomes short and
the corresponding amplitude small for B = 60°. It should be

noted that this change occurs before diffracted waves become
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6=2/37tH/C ¥ for incident P waves with propagation
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angles 5°%%6,% 30°,
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significant. For = 120° the horizontal displacement
oscillations become very small for dip angles gréater than
10° while thé vertical displacement oscillations more slowly
decrease in amplitude with increasing dip angle and at the

same time the period of the variation lengthens.

The above features are most evident in ihe dis-
placement ratio curves H/V (Figure 3-9). For even small
dip angles marked differences from the horizontally layered
curves are evident. At the larger dip angles for propaga-
tion direction 8 = 60° we see the rapid oscillations due
~to the horizontal component and for S=120° the ratio

becomes featureless.
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CHAPTER 4

HhAD AND REFLLCTED WAVES FROM AN SH LINE SOURCE IN A
DIPPING LAYER OVERLYING AN ELASTIC MEDIUM

4,1 Introduction

A number of workers (e.g., Lapwood (1961), Hudson
(1963), and Hudson and Knopoff (1964)) have investigated
the propagatlon of surface and dlffracted waves in wedge-
shaped medla. Hudson (1963) pointed out that the solution
in the case'of a rigid lower boundary could be divided into
two partsi- thevmultiply reflected and diffracted wave
solutions. FHowever, the early part of the seismogram cbn—
sistiﬁg of head and multiply reflected waves which are
often used in interpretation has not been_well studied for
a dipping layer overlying an elastic medium. In the present
chapter the author will estaElish one method of solution
and will theoretically investigate the problem for an SH

"~ line source in an elastic wedge overlying an elastic medium.

In Chapter 2, a solution for the problem of multiple
‘reflection of plane SH waves by a dipping layer has been
found. By integration of a solution of this type, the dis-
vturbance due to a line source is sought which does not in-

1 clude fhe diffracted.wave term. However, for a transient
input, an observation point distant from the vertex receives

the reflected and refracted waves earlier than the diffracted



waves which result from collisions‘with the vertex. There-
fore the present solution should apply to the compositioﬁ
of the initial section of Fhe seismogram. The formal
“solution is evaluated by the steepest descent technique

as reéommendéd by Honda and Nakamura (1954) for evaluation
of branCH line integrals and as applied by Emura (1960)
and others. In this way the wave forms and the ranges of
existeﬁce of the head waves are determined for various dip
anglés for comparison with the case of a horizontal layer.
For all computatiqns'thé following elastic parameters cor-
responding to those of Haskell (1960) are used in the S
wave velocity in tﬁe ﬁppef layer Cpj = 3.64 km/sec, the

velocity ratio LA:C%%/be:|,27 , and the rigidity ratio
o= Ma/My=1,88

As surface waves are obtained from the contribu-

- tions of poles, the surface wave problem reduces to find-
'ing polés of the finite seriés expression of our solution.
Further, the discontinuities in displacement associated
Qith the diffracted waves have been found and hence this
problem is separated from the determination of the solu-
tion due to other waves. .The solution'of the present prob-
lem is tﬁerefore an important step for the consideration

of surface and diffracted waves.

4.2 Equation of Motion and Boundary Conditions

The ﬁropagétion of SH waves through a system con-
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sisting df ah elastic medium of rigidity Ay density
£ , and a dip angle 6‘%-62 , oveflying an elastic
' médiQm of rigidity /42'and density £, (Figure 4-1) will
be considered. The free surface is O=—§; and the
boundarybbetween the elastic media is ©=6, . A car-
tesian system ( X, %—, % ) is related to the cylindrical
 _coordinates ( q“,‘e , & ) by the standard relationships
x: TCOSH » %f—TSiﬂ@ , and Z= % . The motion is
generated by a line source ( S ) of SH waves located. at

(A, 0 ) in the cylindrical coordinate system.

For the above problem, the motion is independent

of Z , and the displacement has only a z-component.
Then, assuming a time variation of the form e}urt , the
equation of motion
| 9%y
Cpy 0b*

VU= L=1,2 (4.1)

- becomes in cylindrical coordinates

& .18, 1& . 1‘) = . |
<8T2+ TafYﬁrTz(gey_ B ) UL O L=1,2  4.2)

where CbL::JCELL/C?L is the velocity of the S waves and
Rii=w/Cut



Free surface

Fig. 4-1, Geometry of the.problem: the line source (3S) is
, located at (d,0) the receiver (R) at (r,6) in the
wedge bounded by the free surface (6=-8) and the
boundary (0=6;) between the two media,

79
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The onlfAnoﬁ-zero component Qf stress 1s

l(P?@) /“(,QUU . | - (4.3)
The boundary conditipns then become

(P2Q>‘:O , aQt 0=-0, . (4.4).

- and

M; 'U\)Z,

(P‘w)t: < PZS)_JL

To solve the line source problem, a plane wave

at 6=0, (4.5)

solution satisfying the boundary conditions will first
be obtained. The line source solution can then be obtained
by integration of this solution with respect to the cylindri-

cal angle.

4.3 Steady State Plane Wave Solution

The 1n1t1a1 displacement due to a plane wave 1is

, expressed in the form

y LRy 1 (d— x)cosoc + Sind;
210 A{,‘@ bt 1 ( WJ“\ ‘ }

LT coS(di+161) —LRe A COSl

Ace

il

(4.6)

I



66

whére ‘o(L is the angle between the x-axis and wave normal

bf the SH waves and may take on complex values in thé eva-
‘luation of the effect due to a line sdurce. For ©820 , ?Aé
represents waves downgoing from the x-axis, while for 8‘((),
| QL; : fepresents waves upgoing from the x-axis.

In those cases where the waves interact with the boundaries,
the former collides with the dipping boundary first and the
ﬂ-latter with the free surface first. In Chapter 2, the
refléction and refraction of SH waves in a dipping layer

has been ihvestigated in detail. The solution by multiple

reflection is obtained in the same manner.

for’any observaiion point in the wedge; four

. expressions ére required to express the motion depending

'Qn whether the initial diréction of the wave is positive
or.negative énd whether the final reflection is from the
“boundary (1) or the free surface (2). Using the same pro-
cedure as the derivétion of (2.18) and (2.19), these ekpres-

'SiOIls are ‘ ' ’ .

| N (e 4\ _URuTCoS (ot 2(n-1)8,+2N8,~0)~ L Bk COS;
5T m=A_(JC Ay)E o

LB T COS (ki + 2MO 2N B2+6) = LB, A COSL

S =A (L Ay e
(

«) (B TCOS (A +2M0,+2MN62—~6) — LR b4 COS,,

Ez _ (4.9)

..,> LB T CO5 (ol +2(n+1) 8, +2716, +0)~ LRy ACOSCL:
(4.10)

D
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where the maximum numbers of reflections from the boundary

N band N/

(4.7) to (4.10) to be determined by

JUt0, 22

or

N“D@HFZN 6,2 Jo0,

TUre,Z 2N0, + 2N6. = JTU—62

and N/ by

T+ 6,2 2N ‘8t 2N0, 2 7@ O,

or-

T+ 62 2(N'+1)8,+2N6,= TU—62

‘The expressions for the direct wave and the wave once

rare seen by examination of the phase in

reflected from the free surface are from (4.6)

S,= =ALE
énd'

S /\

vRpmcos (o + [es) LR ACOSLL

bfebn oS (i +2@,—r 6)— LRy

0Soly

(4.

.

(4

(4.

(4.

(4.

11)

12)

.13)

14)

15)

16)
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.The reflection coefficients for a wave which started as
a downgoing wave with respect to the x-axis are similar to

- expression (2.20); ﬁamely

ot g_ ASIN{BF 2(f- (64 62) Folif — &) 1-A"C0S Y04 2(R-(Bt02) + oL i
®ASIN{Bt2(R-D(0 .+ 2+ ot} T 5/ 1-a7Cos {022 (BB Ea)Foli)

(4.17)

and for a wave which started as an upgoing wave with respect

to the x-axis is

\— ASIN{0212R0 TR0t} =5 I~ A0S0+ 28O+ 2 (B~ t ot}

® ASTN{ Bot 2B T2(E-)Bat i} T8 - A0S 8+ 250+ 2(B- )0, Holi}
' ' ' (4.18)
' 43 - and ) are defined by-zk::CbZ//Cbl and S:Z/Mz/}i‘ i

The solution QA( on and close to the surface
~due to the initial disturbance and satisfying the boundary
conditions (4.4) and (4.5) is, (using the same method as

~ for the derivation of 2.25 and 2.26)

W= So+ S+ SIN-D+ S5 (N=D+ S (N=)+ S, (N0

: - (4.19)
- for conditions (4.11) and (4.13)

W= 5, % 5, + 5100 + 52 (N-) + 5, N0+ S,(00)

(4.20)
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for conditidns (4.11) and (4.14)

W= 5,F D6 +5(N)+S<\‘)+5 (N=D)+ S, (N=D)
(4.21)
for conditions'(4.12) and (4.13)

S+5+5 +SU)+5(V) S (N)

| (4.22)
for conditions (4.12) and (4.14)."1t should be pointed
out fhat these formal solutions are not a physical solu-
tioq for an incident blane ﬁave of a-particuiar real angle.
oLy, but are the plane wave forms satisfying the boundary
. conditions from which the-line source solution will be

obtained.

The iést terms of the series expressions (4.7)-
(4.10) give rise to discontinuities in displacement and
" stress which serve as boundary conditions for the dif-
fracted waves. These will be investigated in detail in

. a later section. Neglecting these last terms of the series,

U= S 5.t S, (N \)+S (N—|)+S (N=O SZ(N’ D
is valid everywhere in medium 1.
For evaluation of the displacement due to a line

~source, it is convenient to express formulae (4.7)-(4.10)

and (4.15) and (4.16) as
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- A SR

O . b@" blKoCOS(C’L
L“Go)
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Lo COS(O(
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.24)

25)

26)

27)

28)

/ZQ/L
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fn,e
/

tO\V‘\@

TS| n(
24%—1)6‘
210,
6)/ e TCOS(
z(fn—i)
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noe
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(4.
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| 'thz

/ {A- TCOS(P MO +2NnBs+ 9} ; gt T “sin‘(2ng, +Z%Oz+ 6)
t on @fn_z '

r8inENe, +2m Gz‘f’@)/{o\" 1COS(2no+2ne.Te)}

(4. 30)'

n- , |

/{d TCOS<L7L6|+Z7162_ Of + 1 sin“(ane, 'f‘,Z”}'L@z 9)
tanBp, =

TSsm(zer@, t—?fn@ﬂ @)/{d\ Tcoﬂz%@ﬁzn@z e)}

- (4.31)

-

Rmz:

Hd=rcos(zm+)e, +zne_z+@;} TSI (R0 210,10)
tonbn, = |

TSN (2(n+ D@ +2n6;, re}/{d\ Tcos(zmﬂ/@ +2102+0)}
o (4.32)

R o= Wot~frcosze\}‘*—tf T*sin*|e)
Cango= 1sinfe| /{d- Tcos|el}

(4.33)

R:i‘- / {4~ ’}"cos(ze& 6)}’?‘—% 151N (26, 6)

(4.34) -
tanbo= 1sin(26,t6)/{d-Tcos(26,+e)}
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4.4 Formal Steady State Solution for a Line source

In order to generallze the results to the case

of a line source the operator

JC%'boo

’ﬁbJ del; | I (4.35)

is applied to the plane wave solution. In particular, the
displacement 1&0 due to the initial disturbance can be

wrltten using (4.6) as
| stioo
. /
U‘O_"' szx o OKO(L
-LOO"

JC +L0O

/\ ‘kbj -uﬁb\ﬂd %)COSO@%["A’ S\ﬂoL }JKOQ (. 36)

il

”'/\ Téb.75‘4 (?%b\R/)

EQuation (4.36) can easily be derived from the results of
Nakamura (1960). When féw{{ois large, (4.36) can be approxi-

mated by the asymptotic formula,

LRy Rot b ‘ (4.37)

which are the outgoing waves from the line source.
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Using (4.19) to (4.22) and (4.23) to (4.28), the
solution in the wedge corresponding to a line source (4.36)

can be obtained as

JoA Loo

U= ﬁbJ U, Aol - : (4.38)

~ {0

4.5. Evaluation of the First Series Term of the Integral

In this section the integration of the terms which
are prodﬁced by waves which are reflected once by the bbun-
dary between the media are evaluated. (As a guide to the
evaluation of the higher order series terms, the contribu-
tions due to waves twice reflécted from the boundary bet-

- ween the media are calculated in the Appendix II1.) From
(4.23)-(4.26) and (4. 38), we see that they have the fol-

low1ng forms

JT+ 00

}%j /_\ LT%\RLQCOS(Oi 93)0&@- | (4.39)
l£ L

where

" ASIN(PT+ o)~ 5[ 1—a2coSH (B + oly)
= = - = (4.40)
L BSIN(ET i) 8 1 -ATCOSH( B+ ot)
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and (= , 2 and M= —+ ,— . From the eugations
+ P m
(4.17) and (4.18), gﬁ‘ =0, and gzj‘ =20,+ 62 and R

m
and 6!& are given by the equations (4.29) to (4.32).

For this integration, the original path L is

taken in the plane for which R,Q(K5>>O . The integrand

of (4.39) contains the two-valued funption ?LS:‘/E“QZCOSZ(Qm‘fo(;)
and its branch points are given by the relation COS(QW+0{L>=
‘t 7]—5— and are therefore located on the real axis of
the ol -plane at the points B(Bg=0e— F™) B'(65=IT~0o—B™) -
(Figure 4-2) where Coseoz—-}f:’ry, the refractive index.
To facilitate evaluAation, it is assumed that the medium 1is
very slightly absorptive by éetting n= TNo— LE whefe

£ is a véry small positive quantity. (This assumption
does not affect the final results which correspond to £
- but is only a techniqué to facilitate evaluation of the
intégrals_.) The branch point .B is .then displaced by
8/ \/_l—:”’ﬁ%- parallel to the po's'it.ive ima‘ginary axis on

“the o(;-plane.

We choose the branch cut given by Re (;\,5):0

which is defined by:
COS(%+¢.“)Sin(xﬁ-q‘_“)cosh%siﬂh%2fﬂoa |
COS™(x+ ¢,”’°)coshzﬂg~—smf’(%+ gySinh Y > T, (44D
A= %*‘ LY | | | |



Fig. Ll"'z.

" througn the saddle point; L,,Lz-

|
NS
Sl

ST

N
RN

RS

N

m

—¢"

. . N
ﬂ [T Y = rn— =
D oy
<

hVE]

The o -plane (o =x+iy) on which Re(rs)>0 and the regions of positive and negative

Im(Ag), separated by the curves Lg and L'g , indicated, Notatlon: S~saddle-point;

B,B’ - branch points; L -~ original path of integration; Ls- path of steepest descent
paths of branch line integral; Lga- branch cut '

Re(h)=0; and Ly - curve along which Im(As)=0.
s B 5
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In Figure 4-2, LB. is Re(%s): 0O, Lp is I (xs):.—o
and the signs of IanX§)in the c¢li{-plane are indicated

by plus and minus. When for large distances from the

~ LRy Ry COS(oli- 07Y)

origin, e vanishes along the path

L , the path of integration can therefore be shifted
‘ : m
on the Riemann surfaces. The region where Im[COS(OLL”e‘g)]<O
Ry R, COSE~65)
orT ¢
the origin is shown by hatching. The original path L~ ,

along which the relations Im(Sinol))<0 and Im(Ag)< 0

hold, can be replaced by Lg and (L, , Lz ), where [,g

vanishes at a large distance from

passes through the saddle point & and ( L,l, LLg ) goes
around the branch point B . The dotted lines denote
that they are on the second Riemann sheet where Re(,’&s\)<o .

Each of them is drawn along the path of steepest descent,

COS(%*@:’;}COSP}"&‘-‘—‘\ | - | (4.42)
Aand', | »
cos(x-6ls)coshd=cos(6s= 673) e

respectively.

4.5.1 Contribution from the Saddle Point (Reflected Waves)

From (4.42), [ s makes an angle J’ZE' with the x-

axis. In the neighbourhood of the saddle point the



77

following approximations are valid:

L T _
t-oly=pe'® S BCRE
'~ and
v 3 S )
COS(cli = 61y =|-0i$7/2 | | o (4.45)

The contour integral along LJS for (4.39) is then

4b-bﬁm =% RuRie £

A ﬁth‘wi)€ AL (4.a6)

m :
- Expanding the term A‘ (C}"L) near the saddle point and using

Watson‘s lemma (Jeffreys, 1956) we obtain

| /27T —U@mRmﬂ"
1k3"“ Ay f%b‘ /\ ( O ) o (4.47)
' l L _ ,

>

where, if ell > 68

INCOE SIin(d™ 01y) =5 1/8— CoS* (™ +
| 1L Sim(gé"m_}_ 6$)+5\/(/A2_ 6052(¢lm+ eT;)

(4.48)

. e
" and, if @\ﬂ_<68

Ammm);__ SiN(B™ 97)+15/COS (B +6/y)— 1 /a* __ezz,fp
R SIn(gM ey)- 16 [CosT BT B )~ 1/

(4.49)
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where

S/ cos%( BT+ 01y )~ | /AF
Sfﬂ(gél'm’-g— @'l"}l)

tan =

4.5.2 Contribution from the Branch Point (Head Waves)

Next the contribution from the integral along
L., L, 1is considered. ls, and {,, are taken along the

. JC m .
path of steepest descent around B and tend to 'j;’fem_%“b%
Setting = \)W\<¢m+oti,>’ we have from
. I
4. o= . '
(4.39), UL, = &blAu X

| 'J{W*WVAQL[.%TA _Tt 5\/‘/A9‘—-I+W2} ~iBy RﬁCOS@{L’"@Tg}G{ '
L TTa/l/a-1+72 7~ gll/ﬁa_lJr,bﬁz |

v

| | (4.50)
o 4sp Al /e =]+ 1> iR COS(oL-6y)
B (SRS (E O Aok
It should be noted that along L':z, near B that P\,e(),5>>o

and Im (Xg) > 0. | - (4.51)

| from (4.43) along ”Llfz we can write |
Cos(btz,*—efz):'COS(65~@$)~L"C - T>0 (4.52)
therefore

OKOLL:.COVC/SM(O(f@T;) - ‘ (4.53)
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along Lz near B . Putting oly= GB+M+ LYV (4.54)

for very small 7 and 1 , we have approximately

. . Mo\ . '
(U LWSIN(Be— 0, )=tT | (4.55)
On the other hand, along ng, we have

Sin(dit @™ )= 5in(Be+ Ut L)

(4.56)
== /At —g—(u-wv)
and from (4.55)
. ——— . T
Sin(e+ ™)~ [i-1/5= ©

A,S{n(egw@'&b) (4.57)

Hence, in the limit when

Sin(ety+@™) = [I-1/8*
“along L., , we have usiﬁg (4.51)

B \/Z(l___’/az)‘/‘}- r . JC

N s
JSin* e+ g™+ | /55— | = Te T

M"J\SM(GB'@@) / (4.58)
As | | |

““/_ﬁblR’{z’C- ) \/_JE |
j\/?(;@ " d\TJ: 2 (f?,b; Rm )3/,2 ' (4.59)
' . | £ ,

0
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we have

2J2TT b O |
UL L~ =AY -
N (B> (R
. ‘ | ‘é;@ﬁ%qﬁﬁ;COS(eg*'9:5){~§%7CL
(1=1/2)#{ sin(6s— o7} *

X

(4.60)

4.6 Aperiodic Solution

For computation of synthetic seismograms, it is

convenient to choose a displacement of the form

BH=-oh—=  A»0,c>O

Performing the operation
o0 o
~Lwe
S Refdwf 3" ds -
0 - 00 _ _

on (4.37), (4.47) and (4.60) we obtain the following solu-

tiops
(1) Direct Waves
— v \
o [2CuRe 2 t— to)2 13/
biN\-0 {‘-ﬁ-( = ?>‘}
3 . ~lt—tp JG (4.61)
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where ‘
tp= RO/Cbx
(2) Waves reflected once from the interface

a , A 75 A Am(@w’)
&Cbﬁg c* {t+@? - Gt )}CW

H

CoSL/,Vt(m 4 JC”L 2 J e
for @iSL' > 65‘ |
us A o %
M EERE O T :@1@2%”/‘*.
cosf 2 tanEs Ptuz T NGO
B 16 | T 2Y) o
) fo_r Oy < @B , where R m: R’fﬁ«/cb‘

© (3) Head Waves'

1?{' =A-” ercé | fébn |

Ll \/" (t_I/AQ-)l//{— (Rxﬂ. 3/2 {S\H 6 6;[2)}8/2
A o | o gm |
= {h— t- t"") }1/4 cosf tan =L -ZFJE}

(4.64)

where 'tm _ Rig COS(GB @:};)
- H71lL ™ _ C -
: bi
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4.7 Interpretation of the Travel Time

In a study of wave propagation from a point sogrce

in a horizontal layer, Honda and Nakamura (1954) evaluated

the contributions from branch points and a saddle point

and associated the time factors of these contributions with
head waves and reflected waves. Similarly, in this section
we will determine the reflected and head wave travel times

. o . m L m

and find that they are given by ﬁtii and Ht|& R

the time factors of the saddle point and branch point con-

tributions.

Consider first the path SAR in Figure 4-3. Then

_SA+AR SR

tSAR- Chp - o .

JIACOS62 ~1C0S (62— B)+{ASING2+ TS N(Ga- O

Cp)

_Jid-Tc05(20:- 0+ 1TSIN%(26.-6) Ry L+
i Cp | Cpp RN

~Also, the travel time along the path SBCR is given by

Cogep = + T

ChiSin(g+62)  COpz \

_-d\ST\V\Gz‘?’Y\SW\(@z“@)}_\_ 15iN(62-6)
tan(6s+62) J CoiSin(0p+6y)

(4.6Sj

(4.66)



. ‘Figo 4"'30

Free surface . Y 8

- Basic ray paths used in physical interpretation of
contributions from branch and saddle points.

€R
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= —éw‘ i( d COSO,~ TCOS(02-6))COS(+ 62)

X o N : (4.66)

- +(d 3N+ Tsin(es~6) sin(6s+ 02}

+ .
- R 5ty |
_ Cb] COS(QB B_H>_th
since -
COS(0g+62)=Cbi/Coz

_ m

Hence we have verified the interpretation of .thg and

m o

Ht1£ as the reflected and head wave respectively

for M=+ and =1 . In a similar manner, ét7;
and Htﬁz, can be interpreted for different values of

m and 0 as shown in Figure 4-4. Obviously, for

the observation point distant from the vertex, these waves
‘arrive earlier than the diffracted waves which are pro-
duced by collisions of waves with the vertex. Hence this
éolutian should adequately describe the early section of

the seismogram.

4.8 Range of Existence of Head Waves

'._THeirange of existence of head waves can be deter-
mined by considering the process by which the integral (4.39)
is evaluated. In Figure 4-2, when (98'7'6Tz , we can form
a closed contour which connects with the original path and
which includes contributions of the saddle point and the
branch point on‘application of Cauchy's theorem. On the

other hand when @B<< @T; , a closed contour cannot be



(a)

I'(_c)-

(b)

(d)

.‘ Figo 4-40

ﬁay paths of thé'head and reflected waves expressed
by the first series term of the integrals.
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made without excluding the integral around the branch
point. Therefore in the first case we have contributions
from both the branch point (head waves) and saddle point

(reflected waves) while in the second case there is only

- a saddle p01nt contrlbutlon (reflected waves). It is

clear that the critical condltlon to dec1de the existence
of head waves is Op= eL& . Obtdlnlng Bg and eLQ
by the use of (4.17), (4.18) and (4.29), (4.30), (4.31),
(4.32) respectively and using the critical condition we
obtain the following'transcendental équations:

-l 1rsin(262.-9) |

ton T 7C05(204— >-cos A0z (4.67)

ot 'rsm(ze-rz@”@) a0

A= Trcos (262610 T 0 A T (4.68)
o 1sin(26:+202-6) i |
tan = C0S'2-=0,-26, 4.0y

A—TCOS(26,+262— e)

-1 . ' ) + V | _ ‘ o . o
tan rSiN(40:+202+6) =COS'——)S-—62~2,@, (4.70)

A=TCOS(46,+20,+6)

In Figure 4-5, the range of existence of head
waves whose paths are illustrated in figure 4-4 is shown
fof, 0,=5° ~and the observation point on the line 8=0,
The abscissa is the ratio of source to observation point 
disfances from the abex while the ordinate is the maximum

©2  for which head waves exist. As expected from the small


http://C4.es

.A

2,

W |

w 20k

r ‘

O

Ll

Q

LS )

N ,

DO

C) () 25>

Fig, 4-5. Maximum value of 92 for whwbh tne heao waves shown in Flgn 4 4, exist versus the

ratio of source to observation dlstan es, The observation and source points are
5° from the free svr;aoe. : : v
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-path difference, the range of existence of (a) and (b)
are close as are (c¢) and (d). The range of existence also
decreases with incréasing number of reflections and

decreasing ratio g{/’ﬁ‘

For an observation point at 5° from the free
surface and a source-vertex to observation-vertex distance
"ratio of 10.0, Figure 4-6 shows the rénge of existence of
head ‘waves with changing e‘ , which corresponds to a change
of depth of the line source. It is noted that with in-
creasing 9* , the dip angle for which the head waves (a)
and (b) exist linearly increases while for head waves of

. type (c) and (d) it linearly decreases.

4.9 Discontinuities

Discontinuities in displacement and stress in
:medium (1) arise because theifirst collisidn.of the wave

with a boundary changes from the free surface to the boundary
between the media as VoLL passes through zero. This colli-
sion with the vertex resuit§ in a diffracted wave which is
not cohsidered in this solﬁtion. When both initially up-
~going and down-going waves and the interface of the last
reflection are considered, we have four cases of the com-
bination of the discontinuity as shown in Figure 4-7,

The cross-hatched areas indicate the regions for which the



89

=~ 40
g
L)
oz
©)
L
O
Led
o
Q 20
z
d
o — = 0.0
O - '
L
=
L L
0
0 5 o 5

6 (DEGREES)

Fig. 4-6, Maximum value of the wedge angle (6,+6,) for
which the head waves of the types shown in Fig.
4-4, exist for an observation point at 5° from
the free surface and d/r=10.0.
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Fig. 4-7. Discontinuities in medium (1)due to interaction of the wave with the vertex, The
1ined areas indicate the regions for which the geometric wave from the last reflection
exists with the term from which it arises indlcated in brankets.
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geometric wave from the last reflection exists. From equa-

tions (4.11)-(4.14) the equations of these lines of dis?

continuity are

(1) Sf‘: @=2(N—-’\)6|+2N9,@*76 | | (4.71)
?) S g=Iu-2NB,-2N62 (4.72)
(3)5_l ; @';2{{\3’6,+2N’@2~jt’ (4.73)
(4) S, 8= Ju-2(N'+1)6,~ 2NO, (4.74)

.The dié;ontinuities indicate a discrepancy of my
solution from the ;oﬁplete solution of the physiéal prob-
lem., In-order to obtain a quantitative estimation of the
displacement diséontinuities, plane waves incident toward
the vertex and ﬁropagating at vefy small angles upward
(m=-) and downward {(m=+) have been examined; The result-

ing -discontinuities are shown in Figure 4-8,

For this géometry the reflected wave solution is
a good approximation to the compiete solution for E%a<:(3°.
 However for B, >21° the diffracted wave plays an impor-
tant role. However, this formulation should adequately
'descfibevthévearly part of the seismogram as the diffracted

waves from the vertex wiil arrive later than the initial

phases.

It is seen that coincidence of the discontinuities
in Figures 4-7b and 4-7c leads to at least partial cancel-

lation of the discontinuities. Two special cases are of
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FPig. 4-8. Relative amplitudes of the displacement disconti-

nuities due to a plane initial wave close to the
?—axis for propagation upward (m=-) and downward
m=+).
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interest as total cancellation results,

(1) Lower boundary free or rigid
When the lower boundary of the wedge is either
free or r1g1d then /\k and f\ﬁ' are +1 or -1 respectlvely

The condition

__J5 -

leads to (4.71) = (4.74) or (4.72) = (4.73) so that the
two lines of the discontinuities are coincident and no
discontinuities exist. Hence the solution is complete and

no diffracted waves exist.

(2) Surface Source

_ If the linebsdurce is placed in the surface
(6,=0 ) then from (4.17) and (4.18) f\fe /\1,e .
" For the particular situation | ‘

JC
Q=7
N+ N | ,
we have (4.71) = (4.74) or (4.72) = (4.73) and the two
discontinuities coincide, hence in this case no dlscon-

. t1nu1t1es exist in medlum 1).
In this discussion the discontinuities in medium
(2) are again expected to be less important than those in

medium (1).



94

4.10 Dispersion Equation for the Lower Boundary Free and Rigid

In this section the dispersion equation is derived:
for a dipping structure in the simple case where medium (2)
is either air or rigid. When medium (2) is air or rlgld

+
P\& and - /\& become +1 or -1 respectlvely
For 2’)’7’( (6,+62) << ] we can write

COS(oli r27n(o, +8,))= COSOLV“,?WE(E?&GL}SMO’W

‘In this case

—b@m deosole | _ () ) vy im0 T2MBFSinet;

S(N) A€

‘ - 8 b%b\T(26(+2@z>51Y’\OLL
. LRy TCOS (M +28,-6) LR TCOS(o; +2mO+ 2 mao~0) |
x{e e rod

(4.75)

-bﬁb\d\wso’(, {_(_1.‘)'” Lﬁm”f(—?m@ﬁ?mez)smdb

S (N)

l._(_ 6 ’Jfﬁbl'r‘(ZGifZ@,g)Si no.y

Lk TCOS(oL- - . | . '
X {ebfbrf S( ‘ s—z?wz@%% 'éﬁmm)s@+2<M1‘1)6‘+2(7ﬂ+1)62+64""} |

(4.76)
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Similarly the expressions for S,—(N) and S;(N) can be
obtained. Operating with . |
S R '
ﬁm ' Aol
~igo. |

poles appear from the relation

(_:t éLﬁO‘T(Ze\+2’91)SIHOLL:O

which yields
SIN(&u, 1 (8+62)Sinai)=0
cosﬁ%bm(eﬁf@)ém o) = O |
For real o, , we can -theﬁ write

W C-¥ (M | o
Lor(6,+86,) J..L.) ) =
Cn (& = (Cm l {(%-—7' TG 77

where qu, is the phase velocity as COScoli =‘—_>Cb\/Cw/L

( O<o(,;,<jt ). This expression is the same as that

- obtained by Nagumo (1961) fér a sloping rigid bottom.
Further, if we put ’Y‘(eptfez):—'H' (. H is the depth in.
the case of a }horizontal layer), the dispersion relation
(4.77) coincides‘with that of the horizontally layered |
~ case. Nagumo (1961) has called ‘C,n‘, and_vﬂz% the
“formal phase and group velocity to differentiate from the

observed velocities.
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4.11 The Horizontal Laver Solution

It is interesting to derive thc solution for a
horizontal layer using my method as the transition of the
solution to the horizontal layer case may suggest a me thod
for obtaining the surface wave solutions for tﬁe dipping
iayer. For the diffracted wave problem; it is useful to
study this transition as the quantitative and qualitative
behaviour of the discontinuities as they approach zero for
zero dip angle may indicate the nature of the diffracted

solution.

The same (x:,qy) coordinate system is used with
the x-axis now being horizontal (Figure 4-9). The source
is placed at ( d_7C) ) in the layer of thickness H=H,+Hz.
Employing the same procedure as for the dipping layer, we
twt

obtain the displacement for the time variations @&
. >

IC - Lo
= [ ROl Shufl s s
...Lm \

c

n éaﬁm{(o\-%)005o¢;+(2(fmz(+ nH2)+%)STna}

n e—iﬁbi{(&‘%>6050(a+(2(%Hﬁ”%Hp_)“%’)SW*OU,}

o PhmfdmCosSt 3l (e +ﬂHz>+%)smo<c}ﬂ det;

TTHLEO

— ~LRy R0 COS (L~ 6 ~ iR Ro COS (ki 6y
= $,, AL[SL bi1Ro COS( 0)*"6 FpiRa COS( | )

~L0

+Z‘i/\7{ ~Lfebx{(d—%>cosfx;+(/1(m~oH,+nH;)——%)smozg}
n=y

(4.78)



Free surfagce

S(d,o) | X R{x,y)
X G - J{F
(1)
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'Fig. 4=9. Coordinate syétem'for'the~horizontal layer case..
' with the source (S) at (d,0) and the receiver (R)
at (x;¥)- : ' _ g .
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L (=B R COS(li=6F) iR Ry COS(ct—05,)
t2 Alle +e a1
~URuiR ., COS(ols - O ~ LRy R COS(cli=B,,)17
_f@ 7 ( nJﬂ'ebblﬂz ( 7u?ﬂddé

| where

A ASinoi—5/1-4*C0S el | 79y
Uasind+§/T- R cosi, |
Ro=1(d—y+%" tong,= 4/ (4-x)
Ro= (- x)+(2~a+ F tanf,=(2H+%)/(d-2x)

Rtm: J (4= {2(nH,~ Hs)""é}z N0, ={2nH-H)= 4} (A2
| Rine= JU-x+(zmH+9)=  tan Ora= (mH+ W)/ (4=
R;u = \/(d-?é)z-‘r (2nH~- U)* tan @nl ”9 nR- %)/(d\ %)

Rone= J(d-2+ {2mH+H)+Y)  Ttan e;2= {2(nH +H\)+";ﬁ/(d -%)

, (4.80)
As cquation (4.78) is of the same form as (4.38), formulae

(4.62)or (4.63) and (4.64) can be applied for the reflected
and head waves respectlvely Therefore the variations of
the wavef01ms depend only on the values f{%& s @Z} and‘
GB . Equation (4.78) can also be derived from (4.38),

the formal dipping layef solution, if we take the limit

) /Y\”"7 oo s 6[“‘)0 BZ“)O '

?

as

TSING, = H. and  TSINO,=H, (4.81)
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In the case of a horizcntél 1ayer; surface wavés
appéar'from contributions of'pqles. As our solution trans-
forms to the horizontal layer solution, we could investigate
surface waves in the case of a dipping layer if the finite
series expreésion of our solution can be changed into a

compact form which corresponds to a normal mode expression.

4.12 Computation of Displacement Seismograms

For the direct wave, head waves, and waves once
reflected from the boundary, displacements have been cal-
culated for the three cases shown in Figure 4-10. Elastic
constants are again those employed by Haskell (1960). Ray
pdths of waves which chtribute to the seismogram are shown

in Figure 4-11.

‘The componeﬁt waves are shown bn the time-displacement
plot of Figure 4-12 and the arrival times éorresponding to

the ray paths indicated by lettered arrows. A detailed
‘feature is the small amplitude of the head waves compared

to the direct and reflected waves. This is expected from
inspecfion of equations (65)4and (66) which show that the

head waves decrease as l//(j{?;)3/z and the reflected

waves as l//(ﬁﬂ;,lzz . Although the travel times éhanged
significantly, the wave forms of the refracted and reflected
wéves do not undergo large changés for the three cases

illustrated.
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(c) Jols (1)
| (2)

Fig. 4-10. Three cases for which theoretical 'seismograms
were caluculated. The parameters used were:
Hi= 9.59 km, Hp= 3.00 km, D= 99.6 km, d= 10.0
km, and the displacement parameter c= 0.05 sec,
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(b)

(¢c)

(d)

(e)

Fig., 4-11, Ray paths which contribute to the theoretical
seismograms, -
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Fig. 4~12. Displaéements of the component waves for the
geometrics given in Figs. 4-10a, 4-10Db, and 4=10c,
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Figure 4-13 represents the'seismggrams synthesized
from the components of Figure 4-12. The seismograms.look
very different; However, the different arrivals are all
recogﬁizable except for the head wave (b) is embedded in
the wave forms of the direct wave (¢) and the reflected
~wave (d) in the case of the horizontal layer. A very
noticeable feature is the late arrival of the reflected
wave (e) in the case of the horizontal layer. More multiply
refiécted waves will appear as later phases. As the dis-
tance between the observation point and the vertex is 10.0 km
and the velocities of medium (1) and medium (2) are 3.64 km/sec
and 4.62 km/sec respeétivély, the diffracted waves hardly
contribute to the section of the seismogram shown here as
the diffracted wave arriving 4 to 5 sec after the first
érrivél is due‘to a head wave of small amplitude interacting

with the vertex.
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CHAPTER 5
SUMMARY, CONCLUSIONS AND FURTHER STUDIES

5.1 Summary and Conclusions

‘In this péper, the behavior éf elastic waves
in a dipping layer overlying an elastic medium has been
investigated in terms of body wéves in order to expand
the models‘avaiiable for the interpretation of crustal

structure.

In Chapfer 2, the reflected wave solution for a
plane SH intident ét the base of a dipping layer and per-
pendicular to strike has been developed and numericalv
examples presented. For wéves propagating in thé up-dip
direction with angle of incidence in the range of that
for teleseismic S waves (45°< o < 75°%), it is fdund'that
the reflected wave solution closely approximates the com-
pléte solution for small dip angles as the boundary con-
ditions are approximately safisfied. However, for waves
propagating in the down-dip difection, the displacement
discontinuity along the edge of the final wave which does
‘not collide with the interfaces becomes large. In this
case the wave has reverberated only a very few times within
the wedge ahd'hence is still of significant amplitude.

The size of this disébntinuity has been determined and

hence serves as a guide as to whether the ray solution
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is applicable. For a transient input to the wedge, the
reflected waves willbarrive earlier than the diffracted
waﬁes and hence even for large discontinuities, this type

of solution should apply to the composition of the initial
section of a seismogram. The diffracted wave must provide
continuit? in displécement and stress along the edge of the
final wave as well as those imposed ét the surface and the

boundary between the media.

-~

In Chapter 3, the behaviour of P and SV waves iﬁ~
cident at the base of a dipﬁing lafer and perpendiéular
to strike has been investigated by means of a reflected
wave solution develoﬁed using a cylindrical coordinate
system. Due to the cémplexity of this problem, a series
solution is not presented as was done for the SH problem;
howéver, a computational scheme is givenbby which the
amplitudes and propagatién directions of all the contri-
buting waves are determined. In.this way the displacement
at any point in the wedge due tb reflected waves may be
found. Numerical examplés of displacements and displace-
ment‘ratios ét the surface are presented for incident waves _
propagating in both up?dip (0&,.5 = 60°) and down-dip (K, @ = 120°%)
directions. It is found that the displécement ratios versus‘
frequency curves for constant depth to interface become flat

for incident P and SV waves propagating in the down-dip
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direction for dip angles greater than 15°. This is very
different from the case of up-dip direction. TFor the P
wave propagating in the up-dip direction ( ol = 6C°), the
peaks are large fdr large dip angles and for dip angles
greater than 10° the peaks shift to lower frequency and
‘become narrower with decreasing dip. A feature of parti-
cular note is that the H/V displacement ratio curves for
incident SV are much more sensitive to small changes of dip
at small dip angles than are the V/H displacement ratio
curves for incident P waves. It appears therefore that

a study of SV waves‘would be more likely to'yield informa-
tion concerning dipping interfaces than would P waves.

For waves-propagating_in the dowﬁ—dip direction, it is
found that the displacement discontinuity may be large even
for small dip angles indicating that the diffracted wave
is of significant amplitude. Howéver, since the reflected
waves will arrive earlier than the diffracted waves for a
transient input to the wedge, the reflected wave solution
should again apply to the composition of the initial sec-
tion of the seismogram. The complex propagation direction
used in this chapter has been interpreted in Appeﬁdix II
usihg the example of a free Rayleigh wave to show that the
real part of the angle indicatesAthe propagation direction

and the imaginary part gives the decrease of amplitude.

In Chapter 4, the propagation of. SH waves from a
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line source in a dipping layer overlying an elastic medium
has been investigated using multiple reflection formulation.
A formél solution which does not include diffracted waves
‘has.been obtained. The first two series terms of the in-
tegral haye been evaluated using the method of‘steepest
descent to obtain displacements.for both a harmonic and an
aperiodic time variation and contributions havé been inter-
preted usiﬁg ray paths.in terms of head and reflected waves.,
If in the integral the branch points are smaller than the
saddle points, head waves do not appear. Hence the range
of existence of the various types of head waves may be
determined. Using the same technique, thevsolution in the
case of a horizontal layer has also been found and compari-
son made with the dipping layer through numerical examples.
The wave forms of the arrivais do not differ greatly;
however, the character of the syntheﬁic seismogram markedly
changes due to changes in arrival times. Discontinuities
in displacement which are associated with the diffracted
wave have been studied. For special cases it is found

that the reflected wave solution is the complete solution.
In the other cases, this solution can be applied to the

initial section of the seismogram,
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5.2 Suggestions for Further Studies

As a result of this study, the following lines

of investigation are suggested:

(1) The calculation of a synthetic seismogram
at a station in a wedge with an elastic base for an incident
plane wave pulse. | |

(2) The calculation of the amplitude characteris-
tics of a multiple reflection in the case of both dipping
.and horizontal layers by a combination of the technique
developed in this thesis and Haskell's method (Haskell,
1953).

(3) The problem of P and SV line sdurces in a
wedge overlying an elastic medium in terms of head and
reflected waves neglecting the diffracted waves.

(4) The exact solution in terms of multiply re-
flected waves and multi-reflected head waves in the case
of a line source in a dipping layer with an elastic base
for transient time variations using the method of Cagniard
(1962).

‘(5) An investigation of surface wave propagation
in the presence of a dipping layer overlying an elastic
medium. In the case of a horizontal layer, surface waves
appear from a contribution of poles. When the dip angle

approaches zero, the solution found in Chapter 4 reduces
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to the case of a horizontai layer. Hence surface waves
in‘the presence of a dipping layer could be investigated
if the finite series solution can be written in a compact
form which corresponds‘to a normal mode expression,

(6) An attack on the ﬁroblem of diffracted waves
using the multiple reflection wave solution and the dis-
continhities found'in this solution which are related to

the diffracted waves.
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APPENDIX I
ENERGY RELATIONS

As a. check on - the amp11tude relatlons derlved in
the text, the method used by Ew1ng et al (1957) has been‘_'
'.used to derlve expre551ons for . energy partltlon between

Vthe'lnc1dent, reflected and refracted waves.

o To calculate k1net1c energles, we note that the

—

'iveloc1t1es 1L ‘are related to the d1sp1acements wn by
| il——LLU%(and hence may be obtalned dlrectly from equatlone'
(3. 17) and (3. 18) . The energy flux for the waves can then
gbe obtalned by mu1t1p1y1ng the k1net1c energy per unit |
'volume ‘QHF(QLT*'QA6> : by the veloc1ty of propagatlon
nd the area of wavefront 1nvolved For a P weve 1nc1dent
on the surface,'lts energy flux per unit erea‘must be equal
a'tohthe sumrqf“the'energiee‘in the reflected endNrefracted -

_wgves We have.
fzcazcmcaz}sm(oc ed)l
2?2042C¢£602{SIH(OCY£ o) o -

'+25>2cb2Dmcb2\sm(Bu el wan
2,9|Ca|/A\'r5- Ca \Sm(o(mc 600\. | ‘. /

+ Zﬂ Cbl BW} Cbt ‘3”’\(5%& GA)L |

A_fOIIOWing,COmputatiOnally'more-usefu1sform is obtained
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;ﬁsing (3.28)

‘ »;‘ﬁ (C»fk> + 4( vbj( ij (e l{az)ZCOSZ(QA__ e |

"\ Cin Cin |sin(@a—o)
— : 3 , ‘
Awr JT=0/ Vaz 'Cos*(6a—ol) _
‘+ MD( ) 1sin(éa-o)) BT e
_L.t_( >(B'f5‘) \/‘ (Vbi/ Vaz) COS*(Ga—ol)
) \SH’\(GOL O(.)\

"%..The correspondlng equatlon for S waves is

$— (DTJL) \ (\/M)(Cﬂ) \/l (Vaz/l/bz) oS (B ﬁ)

\Din) T A\ Vez)\Din)  [Sin(ea-p)
Ve Y[ Brrs / [~ (Vo1/ Vib2) COSZCGd" B) i |
)('Dm) {slm(ed Bl | u} t3)

. 4'+.‘5<yb2

| o Ars) /1 (1/Vo2) co5*(6a—~E)
+4~§(Vb2>( m/ ISH’\(@A B)| ’

.': For P and SV waves 1nc1dent on the boundary from medium (1)

_the relatlons are respect;vely '



Ai Ain ‘SWK@A OL)\

éV C'PS-\ \/f VazCOSZ(eo\"‘OL) .» »_("A'-i.,4j_ | |
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"'<M>+érvb\(8”)¢ D

| . Vi, D’Y‘ﬁi /| VszOS (60\ oL)
—Hré bz(/\ ) ‘Sm(@d OQ\

I

B*rl) \' -. (AM)Z/ | — (l/ Vb\) COSZ( 64" 5)
B A\' Vo \ Bin \5!!0(60\ 6)\ |

o ‘ Viaz C‘Y‘j‘- \/l (Vaz/l/b\) Cosz(ed (B) ”
+ ‘i— 5(%1)(8 ) !5‘”(90\ 5)] o (-A B9
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~ APPENDIX II
EXPRESSION OF A FREE RAYLEIGH WAVE USING COMPLEX ANGLES

In the calculation of the displacements, complex

~ angles have been used in order that the cases of total

"‘: reflection and incident angles greater than the critical

are invdlved in the results. :Although Rayléigh waves are
';Unpt produced in. this problem, the expression of'Rayleigh

waves in terms of complex angles is of interest. Consider

-'.A'an elasticvhalf?Space with free surface 9=0 (Figuré A-1)

The solution in the medium can be written as

u&m'r‘coS( 6—olg)

'~(>R, f\R, 63 : o
. - (A-2.1)
' L.&_b\’rCOS(e 82-)
: (/UR BK
'The bvoun'dary conditions at =0 are
i 96 0 .
o (A-2.2)
’Y‘e O
iSubStituting (A?Z.l) into the béundary conditions ﬁsing
(3 15) and (3 16), we have
O—va\ COS 0(,2_)/6\&"!" Zf-Vb‘ BRSIY\ QRCOSBR e
(A-2.3)

ATEL Nolg COSolg + ( |—2C0S%B)Be=0
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and
Vpi COSolg= COSPg o (A-2.4)
From (A-2. 3)', we have

(l 22 o5 )1~ 2C0S?BR)
ﬂzr)/b‘SMO\RCOSoLRSmB COS@K—~O (A-2.5)

. ‘c | h ~ 2 2.
Substituting (A-2.4), and writing XX=cC0Sc¢lgand V= Vp

gives
3 .2.4' 2 __&_/ —_ =
l6(1-V)x +(16—7)%+ 2 O_ (A-2.6)
Assuming Poisson's relatlon "T}L , ?ields
_3?')?’ x°*-56 %" +’729¢ =(=0 | (A-2.7)

The real root of this equation is X =3,549 which cor-
responds to-COSoZ,sz'_ |.884 and using (A-2.4), COSER:
1+ 1.088 . Recalling the relations
arCCcoS(~2)=IT— AYCCoSR

&YCcos P=(arccoshp (P=7real >1)

we obtain

oLe=1.247L oT To—1.2471

' . . (A'_'Z.S).
Be=0.4068L 0T JU-0.4068( |
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If . in equatlons (A 2. l), we use _
| COS(P+ (,%) COSPCOSh% + LSiNn PSmh%
5'”(Pib%)=5m-PCOSh% =S Lcospsmhfg :
:Qe haVe‘. B e o

th) /A LﬁmT(l88%COSG+kA Sﬂ78|ﬂ6> ,

0. Cl?vl8
-—Age-“owcbn” e w
+ iR, 'Y‘(1088C089+ l,o +2'785me)
,wa BR€ " | . _, L
W - oq~2’7 . - (AZlO)
-_Bge—"omwcb\% Con ‘O% T

We See.that the di1atati6n and‘rotation_pfopégate with

. the velocity (Zﬂﬁﬂfcbrwhich‘coincides_with the»vé16¢ity

éf thé_fre¢ Rayleigﬁ WaVe. ‘As a result we seé that for
:a~Rayieigh wave wfitteﬁ;in térmé of éémpiex ang1és, the
‘}reallpart of the angle indicatés thé proﬁagation‘diréctionv‘
and the - 1mag1nary part glves the decrease of amplltude
‘w1th the two solutlons of (A- 2 8) representing waves propa-l

gating in opp051te d1rect10ns ( () afki JC | _)(
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APPENDIX I1I

- EVALUATION OF THE SECOND SERILS TERMS OF THE INTEGRAL

:AS,a_guideIto cempﬁtatien'of‘higher order terms
~in- the series, a .summar_y of the evaluation procedures and
resuifs for tﬁe.contribﬁtions‘by waves twice reflected from
VAthe boundarf’befween the‘eiasfic media are evaluated here.

;[FThe second terms of the series have the form '
gt Loo ’ S

e Lﬁb\ u_COS(OLu 62,&)

-29, T‘)QJA A T A o (A-3.1)

"‘LOO

_wherev

e Asm<¢"“+oc) §J| Acosz(ﬁﬁ"*mb)-
A A5m(¢ +oc)+8/l~a cosZ(¢m+o¢)

o (A-3.2)
“m. ASM(525m+oLL)-‘S\/l—AzC032(¢m+o(~) i
ASm(¢ o( )+5J1~A COS* (s +ots) |
';mm Q-l‘z and %1 +,
From equatlons (4 17) and (4 18)
| _¢+ ez CB= 26+62_ |
| (A-3.3)

+ - ' v o |
- @t= 20, +3e2 & =»4e,+ 36, . - -
_RJZ# and 659. have been given by equations (4.29) to (4.32).
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As ‘the integrands of (A-3.1) contain the expreé-
sions B |
- 2 2
- QAsi= /1= A%COSH (B o) | S
-O\Y\Ok__“ R C e - o o S (A-3.4)

a1 FOSA (@)

,:wlhich' are both two-valued, a four-sheeted Riemann surface
1s fequi'red ‘for‘ their representation. The branch cuts, along
| Wthh the four sheets coalesce are defined by Re (}\,SJ=O
Re ()qsz) O . For evaluation purposes the medium
is assumed to be very slightly absorptive as before. The
’Asheet’s I, I_I III and IV are defined corresponding to the

zcomblnatlons (A-3.5)

(Retrsi<o, Re(;tszpo) (Re(/xswo Re(As2)>0),
( Re(As) >0, Re(?uszK O) , ‘(Re(?»s\KO ,Re(xs2)<0),

: ;reSpectlvely The or1g1na1 path of 1ntegrat1on can be shifted
‘-"on any sheet of the Riemann surface for the factor

8 bﬁb\R2LCOS(dp ei"Q)vanlshlng along the path at a large
distance from the origin -The original path [, is taken
on sheet II where the relatlons Im(SlHoL )<O I'm,(ﬂ,s[)<0

Im(ﬁsz)<0 hold along L. | -

“ As an example, 'when _ 65 > B¢ > Os
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wherevv v -

'98-90 ¢m I

| ;§m¢ f.,'”'
A'rccos( l/ A)

_63-<922

the original path can be shifted to big , ( La,_by.)fand
(LJ|,l42,) as. shown in. Flgure A-2, lJS passes through-

“the saddle point & , and ‘the contours (ng Lig) and

'(L”, Lz,) go- around the branch p01nts C;' and” B

respectlvely, each one of them being drawn along the path

of steepest descent given by

;COS(% ezﬂ)cosh%—J |
COS(x eu)cosh% COS(@c 822)
| COS(?C -63) Cosh %= COS (6‘34 62%)
- whéraf = T

o= zs-fi:Q}-

-'<A5;;¢)__,

E -Iv(A;3475

L (A-3.8)
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- PFig. A-2. The oi-plane showing branch cuts-and integral paths
for evaluation of the second series term of the.
integrals. Notation: B,C - branch points; S - saddle
point; L - original path of integration; Lg - path
of steepest descent through saddle point; and L (i=
1,2 ...§ - paths of branch line integral. .
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'_Integral Around (:

% The contour 1ntegrals along ( LJ3 144) can be
evaluated by the same procedure as before. By noting the
o relatlons o v;. o |
;j;_,,,,,,,_Re(PLsMO S Im(s)<0 SRR

- I - ' (A-3.10)

for the path Luﬁ'near C ‘on sheet I, for a harmonic time
variation_the contribution to the displacement is found to
e _ _ _' |
| —-A z\/zjc 8 | « |
L'.?L"f S o /2 3/2 . :
va (f(bn (R / | (A-3.11)

,' v | - bﬁb;R,2£COS(ec 62£)+2'LSO4 J'Cb
(I—l/ )‘/"‘{sm(e -e3) }3/2 e

fwhere o

s JRCEE e
tangu= ASIN(E™+6c)

(A-3.12)’

Integral Around R

The contour integrals along ( L\)(Jz) can also be

| évalua;ed by the same pfOceduré as before. By noting the
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| ~relations '
v.'Ria(;&S{):>()‘,.I?TL<;LS{):><>7 -
(A-3.13)

Re (A«S7~>>O I'm(%‘sz) >O

" for the path lJZ ‘near’ B 1y1ng on sheet II, for a harmonic
- :tlme varlatlon the contribution to the displacement is found

Abz/Z}ES o IR

U, ; N
- (ﬁb)‘/z( 22 (l |/A2)’/ 4{5 lh(@e 91,0.)}3/2 x

nbz

| Aﬁm(¢ +05)- éw—a cos%;bmeg) -LﬁmRzQCOS(GB"e%Q')i*-Z’_—Eb
- Asin(g" +93)+5¢ |- A"COSAH( ™+ 0p) |

- (A-3.14)
Int’egrélvthrough S
' The contour integral along Ly can also be eva-
- luated By the same procedure as before. For a harmonic
time variation the cpntribution'to the displacement is
| foﬁnd to be

o »ﬁmmu |

: “(A-3.15
- ;us A A (GZL)A (621)6 (& )
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| \'«rhere'ft-)r 6251, > @5> @c

A,;n('@ " asin(rrel) -5/ FooE )
A ASIH(¢M+62,Q +5J( Acosz(;é”breu)

(A 3 16)'

e "jAm(Aem) Asin(g" +62,1 SJ; RO F T o)
TT ecnUI e (IS en) f

-:'es>-'621>6c o
/A\ (ezﬂ,) ZL?I '

T L ez
: A (619“) same as’ (A 3. 16) ’

gJA CoS (¢”’”+ 621)—-1
A5m<¢m+ 922)

: tanﬁ

| .'(Afs.lsj”'

- 1f 93 7 ec, > @z}L -

A (622)

2L?,

Coe3a1e)

'Az( 053 e

* ‘Jm@ _éJA RO
S osin(@ET+ o)
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Aperiodic Solution |

_Wheh the motions are aperiodic‘and vary as
G T S A>0 ,C»0
PRI="Fmre= AZ0L, 700
‘the operatioﬁ
vw;‘f G
"-Ke dw ¢(6‘)8 A6
applled to (A-3. 11), (A-3. 14) and (A 3. 15) yields the fol-

lowing solutions:

Head waves,

- 17{ ___A’zﬁJCSI G | A
S | Laly

L 2 m . x
‘_"JE(l—J/A)V"‘(m)”2 {sm(ec oy o
: | - : - (A-3.21)
I't Jtzl
)}W X COS Ztan — +250++ 71:}
w};ere, Hl‘?zﬁ Rucosc(lic ,ezn> (8-3.22)
20z Co 1A

| M"A 'y (t—-t/&)w (R75)7* {Sin(os- 6%)}3/2- iz X

Asm(¢ +0g)— 51/ |- A"COSH P+ 05)

{| + utg l}t)ﬁ}w X Asm(¢m+65)+éf ~A"COSK B+ Op)

(A 3,23)




"5*f*Ref1ected waves
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| Xcosfztan‘ L% gét”

+JE}

S Cbl

. Where Hétéﬂ

.:./\: . f\ (622> /\2< 2&)

A /ZETR_ R th;z;l}w

2,9. _;‘_)-G}

| '4_'605{3 tan' t- -
for '-eu7ee> 6
| A .A | A@(Q&)

b /'ZCblRQ_ﬂ_ C Z |+ )}3/4

. -‘ ' COS{ tan ___C_M&_(_Zso‘ }
- foqr 937 622 >0
g A

/\L CERi;Tﬁz;f (:50a {'*L(‘——‘QEE;)‘}?/4

3 m
| COS{ ‘tan _t.—ﬂt&+zso‘+ 2%+ JB}

(A-3

(A-3.

(A-3.

. (A-3.

(A-3.

.23)

24)

25)

26)

27)
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, mo
for | 65 7 60> @z);
m m | e e
where Rt22= R,g_ﬁ /C_bl . - " o (A-3.28)

-~ If the branch points are smaller than the saddle
points head waves do not appear. The ray paths for arrivals
which travel along part of the path as head waves are shown

'in Figure A-3.

Hence, eXcepf fof diffractedeaves, we can formally
obtain a complete synthetic seismogram in the Case of a dip-
ping layer by applying this procedure to the third and higher

order series terms of the formal integrailsolution.



1300

From branch point B From branch point C

'Fig. A-3. Ray paths of the head waves expressed by the

: -~ second term of the ‘integrals with the four -~ =
conbinations of m(+,~) and £(1,2) corresponding to
the four second series. terms of the integral 1;’}’ <
in (A-3.1). o S
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