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ION OPTICS OF THE MASS SPECTROMETER ION SOURCE

 ABSTRACT

Ve Lo

The ion beam transmission efficiency of the ion
source is an important factor in determining the sen-
sitivity of a mass spectrometer. Vauthier (1955) has
shown for a 51mp1e source that the transmission effi-
ciency is very.low. The present. thesis examines the
transmission eff1c1eney ‘0ot a more complex source.

r S T T T
The first part of the thesis deals with the ion
optical propertles of a multiple,slit ion source.
The region of ion withdrawdl has been sketched by com-
puting the ion trajectories passing through the exit
slit. It was found that for the more complex source
the region of ion withdrawal is also much smaller than
the total ionization space. It is not practical to
confine the ionization region to the small volume from
which ions are withdfawn. The effect of a source mag-
netic field has been taken into account. The pertur-
bation of the trajectory due to the field is small,
and therefore the mass dlscrlmlnatlon ‘due to the source
magnetic field is 1mpercept1b1e for heavy ions unless
the field is.-of the order -of a few webers/m2
The multiple slit ion source produces a divergent
ion beam, only a small fraction of which penetrates
the exit slit. ' Obviously a ‘system producing a beam
converging at the exit slit to.a narrow parallel ribbon
will be most efficient. 1In order to devise such a
system a theory of the inverse problem of particle
motion is developed in the second part of the thesis.
A procedure was fouhd to determine a potential distri-
bution required to guide a group of particles along
a set of prescrlbed paths. There are two important
limitations to the choice of paths:
(é)”’there dre certain paths_ Wthh are not
" complete; that is a partlcle follow1ng
such a path is turned back at certain
\p01nts which we call mirror’ p01nts



(b) The particles which do not satisfy
the initial conditions of uniform
energy and direction may deviate con-
siderably from their .projected .paths
leading to what we have.called an
unstable situation. -

Fortunately the complete-paths are stable, and the in-
complete paths are unstable. Of the two types of
convergent paths studied, namely, exponentially de-
creasing and damped oscillatory paths, the system of
damped oscillatory paths is stable. -
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ION OPTICS OF THE MASS SPECTROMETER ION SOURCE
ABSTRACT

The ion beam transmission efficiency of the ion
source is an important factor in determining the sen-
sitivity of a mass spectrometer. Vauthier (1955) has
shown for a simple source that the transmission effi-
ciency is very low. The present thesis examines the
transmission efficiency of a more complex source.

The first part of the thesis deals with the ion
optical properties of a multiple slit ion source.
The region of ion withdrawal has been sketched by com-
puting the ion trajectories passing thrbugh the exit
slit. It was found that for the more complex source
the region of ion withdrawal is also much smaller than
the total ionization space. It is not practical to
confine the ionization region to the small volume from
which ions are withdrawn. The effect of a source mag-
netic field has been taken into account. The pertur-
bation of the trajectory due to the field is small,
and therefore the mass discrimination due to the source
magnetic field is imperceptible for heavy ions unless
the field is of the order of a few webers/mz,

The multiple slit ion source produces a divergent
ion beam, only a small fraction of which penetrates
the exit slit. Obviously a system producing a beam
converging at the exit slit to a narrow parallel ribbon
will be most efficient. In order to devise such a
system a theory of the inverse problem of particle
motion is developed in the second part of the thesis.
A procedure was found to determine a potential distri-
bution required to guide a group of particles along
a set of prescribed paths. There are two important
limitations to the choice of paths:

(a) there are certain paths which are not
complete; that is a particle following
such a path is turned back at certain
points which we call mirror points.



(b) The particles which do not satisfy
the "initial conditions of .uniform
energy and direction may deviate con-
-siderably from their projected .paths
leading to what we have called an
unstable situation.

Fortunately the complete paths are stable, and the in-
complete-paths are unstable. Of the two types of
convergent paths studied, namely, .exponentially de-
creasing and damped osc1llatory paths, the system of
damped oscillatory paths is stable.,
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Abstract

The lon beam transmission efficiency of the ion source
is an important factor in determining the sensitivity of a mass
spectrometer., Vauthier (1955) has shown for a s;mple source
that the transmission efficiency is very low. The present
thesis examines the transmission efficlency of a more complex
source,

The first part of the thesis deals with'thelion optical
properties of a multipie slit ion source. The region of ion
withdrawal has been sketched by computing the ion’trajectories
passing through the exit slit. It was found that for the more
complex source the region of ion withdrawal 1s also much smaller
than the total lonlzation space. It 1s not practical to confine
the 1onizétion region to the small volume from which ions are
withdrawn. The effect of a source magnetic field has been taken
into account. The perturbation of.the traJectory due to the
field is small, and therefore ‘the mass discrimination due to the
source magnetlic field is imperceptible for heavy ions unless
the field is of the order ofla few webers/mz.

bThe multiple slit ion source produces a divergent ion beam,
only a small fraction of which penetrates the exit slit. Obviously
a system producling a beam converging at the exit slit to a narrow
parallel ribbon will be most efficient. In order to devise such
a system a theory of the inverse problem of particle motion is

developed in the second part of the thesis. A procedure was
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found to détermine a potential distribution required to guide
a group of particles along a set of prescribed paths. There
are two lmportant limitations to the choice of pathsﬁ
(a) There are certain paths which are not complete;
that 1is, a particle following such a path is tufned
back at certain points which we call mirror points.
(b) The particles which do not satisfy the initial condi-
tions of uniform energy and direction may deviate
conslderably from their pfojected paths . leading to
what we have calied an unstable situation.
Fortunately the complete paths are stable, and the incomplete
paths are unstable. Of the two types of convergent paths studied,
namely, exponentially decreasing and damped oscillatory paths,

the system of damped oscillatory paths is stable.
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Chapter I

Sensitivity of mass spectrometer

1.1 Introduction

The mass spectrometer has become an important tool in
the study of geological problems, as well as in many other
branches of physics and chemistry. No matter what particular
application with which the mass spectrometrist is involved he
1s interested in certain fundamental properties of his instru-
meht. Specifically he 1s concerned with its ability to separate
adequately ion beams of different ratios and its ability to
produce ion beams of sufficient intensity for accurate measure-
ment. This thesls is concerned more directly with the second
consideration.

The sensitivity of a mass spectrometer depends laréely
upon the sensitivity of the measuring system and the efficliency
of the ion source. The shot noise represents a fundamental
limitation of the ion beam magnitude which can be measured, but
practical consideration may also present further limitations.
It is very much more difficult to specify the fundamental
limitatiohs of the ion source efficiency.

To a casual observer the efficiency of the source would
appear to be particularly poor. For the mass spectrometer
operated in this laboratory one molecule out of a million
molecules reaches the magnetic analyser tube in form of an
lon, which compareé well with the figures quoted by Mayne
(1960) as 10~% to 10-7. It is natural to look more deeply

into the loss of such a large fraction of the sample.



The effilciency of the source may be thought of as a pro-
duct of two factors: the first is the ionization efficiency,
that 1is, the fraction of neutral molecules ionized by.the,
electron beam; and the second is the ion beam‘tranemission,
efficiency, that is, the fraction of beamfultimately entef-
ing the magnetic analyser tube; _Toiincfease the ionization-
efficiency, we may increase either'the‘ioniZing.electron curQ
rent or the prevalling gas pressure; Unlimited electrcnvcuf-
rent, however, cannot be obtained ffom an electfon gun without
impairing the stability or reducing thevlife‘cf thevfilament.

' On the other hand, the prevailing’gas pressure cannot be in-
creased indefinitely.without enhancing the'Scattering cf’the
ion beam by'the neutral gas molecules’and causing other problems.

The electrons may be concentrated in a tight beam by a
uniform magnetic field in the direction of. the electron beam
and thus the scattering‘of the beam can‘be~minimized.g‘Since
the electrons spifalvaround'the magneticilinestfvfonce;ethe
effective path length of antelectroneis increased;eiThe effec-»
tive path length is given by | |
| T S T
where L and L! are respectively the normal path 1ength in. the
absence of magnetic field and the effective path length in the
presence of magnetic fleld, and Vo and»VZtare respectively-
the transverse and longitudinal velocityfcomponents;:1As}nen-
tioned-in Appendix A it is questionable‘whether the increase
in path length is Significant. |



“The ion optical system of the iron source consists of a
stack of parallel plates carrying long but nérrow, parallel,
coplaner slits (fig. 1.1). The function of the system is to
draw the lons from the lon chamber, to accelerate them to the
desired energy, and to inject!them into the magnetic analyser
tube as a narrow‘nondivérging beam. Such lons, according to
Vauthier (1955), are drawn from a narrow strip, whose width
18 equal to the exlt slit (fig. 1.2). Conslder the ion source
of the mass spectrometer of this 1dboratory. The width of the
region of ionization (roughly equal to the width of the electron
beam) is about 0.5 cm.; the width of the exit slit is 0.01 cm.
The éfficiency of lon beam transmission, therefore, is equal to
0.02., "!

1.2 1Ion optics of the source (review):

The basic design of the ion source used in modern gas source
mass spectrometry has not changed since its first appearance in
1947, then designed by Nier. The ion source used in this labora-
tory, which is a version of the Nier source, 1is shown in fig.
1.1. The ion optics of the complete system is not known, except
the approximate analyses of the speclalized verslions gilven by
Jacob (1950), Vauthier (1955), Dietz (1959), and Boerboom (1960).

Jacob (1950) considered the ion optics of a system consist-
ing of a cathode, entranée plate, and anode ‘plate. He measured
the axial potential of the system in an electrolytic tank (Ein-
steln and Jacob, 1948); the data according to him could be

represented, close to the cathode, by

V= ASinh(Kk=x)



where V 18 the potential, A and kx are the constants; and -
away from the cathode by

V= Aexr(xx)
A closed solution of the paraxial trajectory equation (see
page 15)

‘z\l'ju + V'y’+ v”y =0 (1.1)
where the prime denotes differentiation wlith respect to x , was
given by him. The method besides being approximate cannot be
used over a wide range, because the approximation of the axial
potential by an exponential function is not valid.over such a
wide range. Vauthier,(1955) considered a single plate with a
narrow slit and uniform field on its right hand side. In the
paraxial equation (1.1), he dropped off the first term and the
rest he integrated numerically. Obviously such a method is
only approximate. Dietz (1959) considered a system consisting
of a cathode, entrance plate, and deflector plates. He measured
the pptential distribution in the system from an analog model
on conducting paper and drew the trajectories using the trigono-
metric method (Jacob, 1951). 1In regard to the use of conducting
paper, it has been the experience of the present writer (Naidu,
1962) that the precision of potential measurement is limited to
about +5%. Furthermore, the trigonometric method fequires the
potential difference between the two consecutive refracting
surfaces to be small, which 1is difficult to attaiﬁ,particularly
close to the slit, where the gradient'is very large. Hence, to
meet the conditions of the method, we have to take a large

number of small steps, which, inevitably, introduces a large



5000 V ,
__ | /T Repeller plate
G «— Filament
5000 V y o0.04" s1it
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|

(Magnetic analyser tube)

Fig. 1.1

Approximate sketch of the multiple slit ion source
used in the mass spectrometer of this laboratory

(adopted from J. S. Stacey's thesis, 1962).
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numerical error. Lastly, Boerboom considered a system of
three plates, but he ignored'while computing the lon tra-
Jectorles the pérturbation field due to the slits. PFurther-
more, he has not discussed the ion beam transmission effi-
clency of the source.

We shall compute the ion trajectories in the ion
source (fig. 1.1) which is far more complex than any discus-
sed by the previous authors. The basic problem is to find
what fraction of the total number of ions formed in the ioni-
zation space (A in fig. 1.2) finds its way through the exit

slit. This, naturally, demands a complete study of the system.

1.3 Statement of the problem and scope of the present work.

In the prevlious sections we have attempted to cutline
the factors limiting the sensitivity of a mass spectrometer.
Poor ion beam transmission appears to be a main limiting fac-
tor. The broad purpose of the present work is to study the
process of lon beam transmission, in the hope that such a
study may contribute to the design of a better sourcé. With
this in mind, we set forth the following problems:

(a) To study the ion optical properties of the sys-
tem shown in figure 1.2; thereby to maximize the parameters
for optimum efficiency.

(b) To consider an inverse problem; that is, hav-
ing specifiled the beam shape for maximum efficiency, to ob-
tain the potential distribution required to gulde the ions
along the specified paths.

The mathematlical theory of paticle motian thraugh a system



of 8lits representing &n average source 1s developed in the
second chapter. The potential distribution in the system is
obtalned analytically, and the trajectory equation is integrated
numerlically.

The theory of the 1nverse problem and 1ts application to
ion beam transmission are presented in the tﬁird chapter. A
new method of estimating the effect of the thermal energy is
developed.

The last chapter summarizes the maln contributions of the

present thesis.
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Chapter II
Multiple slit lon source

Synopsis

The motidn of charged particles throﬁgh a systém ofi‘parallel
and coplaner slits in the presence of crossed electromagnetic
field 1s consldered. The equation of a trajectory in non-
parametric, time independent form is derived from baslc considera-
tions. The approximations leading to a linear paraxilal equation
ére clearly stated. The so;ution of the paraxial trajectory
equation is approached in two different ways; that is, (a) part-
by-part approach and (b) global approach. The part-by-part
approach provides a physical insight iInto the problem and it is
relatively simple but less precise; on the other hand, the global
approach, though more precise, 1s mathematically involved.
Finally the efficiency of the ion beam transmission is diséussed

in the light of 1ilon opticaliproperties of the system.

2.1 Equation of trajectory

-

The force exerted by an electriciand magnetic field B on

a charge q and mass m moving with a velocity 1? is glven by
— P G
F= 9(E+UXE)

where we assume v(c¢ , and where ¢ is the velocity of light.

) -y‘ =2 —b - (2.1)
S om oA o
= g (E + ¥x05)
Let us conslder the motion 1ln the x,y-plane, where
. N R .
E = UEx TJE'} (2'2)

and

Z = ¥ Ga '(2.3)
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A
y,
.Ey
J_—* Ex
E, -
> X
0
Fig. 2.0

Right-handed co-ordinate system used

throughout the present work.
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subscripts %, , and z 1identify the =x,.%, and % components of
the field respectively (fig 2.0). On substituting equations
(2.2) and (2.3) into (2.1), we obtain the system of equations

X = Um (Ex +82%) (2.4)

and

'3 .= q'/fm( E} - Gzi) (2.5)

‘where the dot(.) indicates differentiation with respect to time
t. We may now exbress the equations (2.4) and (2.5) in non-
parametric form, ie, independent of time t. Multiplying (2.4)
with dx and (2.5)\with dﬁ , integrating, and adding we
finally obtain

goev=Lm(%2ayr) (2.6)

where 9-4V is the net change in the potential energy of a

particle plus the initial energy. From (2.6) we obtain

@)= % (357)

+\4/2-
2 249 Ay
@ ()

where the prime stands for the differentiation with respect

to x. But

— a ( x
b= dt(x?)
.Z /n'
= Yz + Y x
and substituting into (2.5) we obtain

" Av

1Rt w (e R (2 ) =

»
-
4




‘L.(E - 6, [2a &V
= - y— U )

™My _'_\am.
or

24V Yy ]
Ty TR B s B () L, (2.7)

The above equation 1s the basic equation describing the motion

of a charged particle under the influence of a two dimensional
electric fleld and a magnetic field along the z-axis, When

B2 =0, the equation reduces to

_ 8
(%__:_\\,27;-),3/{+ Ex"j'— E} = o (2.8)
Equation (2.8), for the case of an electric field, was derived
by Euler (1773) using the variational principle. For the sake
of simplicity we shall express Ex and &y in tefms of the
potential difference .

AV = Vo =V 4 €
= X
where V, is the potential at x,, the starting point and €& the

initial energy divided by the charge. Since

Esx = '%’.‘\;—

- -2V

and Ey = 7y
SoExs §R

P
Ey = 7—%'

The new symbol ¥ actually refers to the energy of the particle
(1t has all the properties of a potential function), and we hence
continue to call it potentlial. Introducing these changes into

the equations (2.7) and (2.8), we obtain

28 1" . ! —

(2.9)
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and

29y | /- _ (2.10)
?———l——.‘*v’z)-}- Qz'y - Qy - 0

Paraxial'approximations:

Equation (2.9) may be considerably simplified if we restrict
ourselves to the paraxial region, that is, the region clése to
the x-axis. If the potential & 1is symmetric about the x-axis,

we may write
R(x,Y4)= Q,,‘") + B, 60 yz-f&l(x)«)‘!- ey Q}{x)yn(z.n)

The above equation has to satisfy the Laplace equation. On
substituting (2.11) into thé Laplace equation and letting the
coefficients of 4™ (M=0.- 2n )& o we obtain

QXYy)= §,- 6?;'«7’-,» AV TN S W 34 15,2'12)

o 2 41 (,57\')!?

where the superscripts on &, denote the order §f differentiation
with respect to x. Equation (2.12) may be looked upon as the
Taylor's series expansion of ® around the x-axis. Sufficiently
close éo the axis, we may truncate the series to first two

terms, viz:

Q(rl = &0 - all 2
P o5l

Therefore
e

— s 2
R R

and finally
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We further assume that (+Yy’?) =), since 7/<<1 . Intro-

ducing these approximations into equation (2.9), we obtain™

28,y + &y’ Qo”'y‘*e*/—avi_&":o (2.13)

and when B3 =0

28,4+ 8w+ 0 =0 (2.14)
Equations (2.13) and (2.14) contain the physical and geo-
metrical parameters; 1in order to reduce them to as few as
possible, we introduce the dimensionless quantities X,Y,

and ‘® defined by

X = wX
y = WY
R, = k{

where «w and « are the constants with the dimensions of
|
length and potential respectively. We finally obtain the

dimensionless form

" c{>' A PN+ 8, - p
AN+ RY RVt w0 | (2.15)
and

y 1 / _
28Y "+ @'+ @)y =0 (2.16)

where the quantity w 3%/ is dimensionless.,

29
™ K
It is interesting to note some of the properties
of equation (2.16):
(a) since the equation is independent of k , the
trajectory is independent of the actual magnitude of the
potential, but dependent on the geometry of the potential

distribution.

*Equation 2.13 was first derived by Boerboom (1957)
using variational calculus.
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(b) 1if we replace X by -x equation (2.16) remains
invariant. Physically speaking, a particle may travel in a
positive:or negative direction; such an ambiguity in direction

will play an important role in the next chapter.

2.2 Method of solution
A closed solution of the paraxial equation can be obtained
only for a few simple forms of the potential @. : for example,

when the potential is of the form given by

& = &x*+bx+(C
(2.17)

Without going into the details, the solution of equation (2.16)
may be given by(Shibata,i1960)v

Y= A cosfax 2 +B sm/a 2
where ' '

z = ‘/—'ﬁ"\f\(me*x{'aa-;%\-) >0
and £=J%_li_.sm-|(J%+sz) a <o
Uﬁfortunately, the potential even for a single slit, not to
speak of a system of slits, cannot be represented by (2.17);
therefore, the above method is of little use and we have to
resort to numerical integration.

_ ~One could, of course, approxlmate any potential over a
sufficiently small range by (2.17) and then apply the closed
solution given above. But such a procedure, besides being as
time-consuming as a numerical integratlion, is definitely a dis-
advantage over the numerical integration, in particular in

studying the motion of particles which do not satisfy the para-.

xlal conditions.
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The Runge-Kutte method, though not the most accurate one-:
the question of error is a difficult one;-is nevertheless a
stable method, and that is what was mostly needed for our work.
The question of round-off errors is discussed in Appendix B.
Before turning to the study of the actual slit system,
an important point that was so far neglected by the previous
workers (Vauthier, 1955) is discussed below. If a particle
were to start at X=o0 from rest, that 1s & = o ; 1t follows
from the equation (2.16).that the direction Y’(O) along which
the particle moves and Y (o) , the distance from the axis,
are no longer independent of each other. From (2.16) it follows
that

"
V(o) = - % Y (o)

that is, the direction of motion is fixed for a given value of
N(0) . This leads to the following complications which
was overlooked by the previous workers., For numerical integra-

tion the equation (2.16) is usually written in the form

NCx) = -t B0 Y + 3y
2 & Cx) (2.18)
Using a step-by-step method, starting at X=0 , the right
hand side becomes %% , an indeterminate form. This difficulty

was overcome by Vauthier by assuming & (X) very small but not
zero., The present author has found that the above assumption leads
to considerable error. The indeterminateness, however, can be

removed by applying L'Hospital's rule.
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If a magnetic field 1s present, an additional complication
arises, which is discussed in Appendix B,
The numerical computations were carried out on the IBM 7040

at the Computing Centre of the University of British Columbia.

2.3 Subproblems

After having derived the trajectory equatlion and having
discussed the necessary numerical methods to solve the equation
we proceed to analyse the mathematlcal model of a multiple slit
gource (fig 1.2). We adopt two different approaches, namely:

(a) The analysis by parts, that is, the model is consildered
part by part, in particular, the effect of each part on the
ion trajectory.

(b) The global analysis, that is, the system i&s considered
as a whole, _
Although the analysis by parts is not as rigorous as the global
analysis, it provides a considerable 1nsight into the problem,
Thé global analysis, on the other hand, is much more accurate
but leads, as we shall see later, to a system of non-linear
algebraic equations, the solution of which is a problem in
itself. Since the physical understanding of the effect of each
part upon the ion trajectory 1s more important than the rigour
in the analyslis we have emphasised oﬁ the analysis by parts.

WQ shall now divide the problem into five parts and treat
each one of the@ as a separate subproblem.

(a) Entrance slit plate with uniform field on both sides
of the plate (fig 2.la).
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Fig., 2.1

Geometry of various subproblems.
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(b) Entrance slit plate and repeller plate. (fig 2.1b).
(c) Entrance slit and exit slit plate (fig 2.1lc)
(d) Deflector plates (fig 2.14d)

(e) Magnetic field in the source region (fig 2.le)

In case of each one of the above subproblems we first obtain the

potential distribution using the method of conformal transfor-

mation, and then integrate the paraxial equation.

Subproblem (a)

A convenient method of solving a two dimensional boundary

value problem is by the method of conformal tran&formation.
Under a conformal transformation, the Laplace equation and

homogenous boundary conditions remain invariant. A mapping
function that maps the u-axis of the w-plane into two semi-

infinite plates §n the z-plane (see fig 2.3 for details of

mapping) 1s given by

% = F(LJ-*-—‘—'J (2.19)
where P 1s constant. If the slit width is i1 (i=/T ), we
obtain from (2.19)

f= -‘t/L‘

The boundary value problem now reduces to finding the solution of

the Laplace equation in the w-plane, which satisfles the boundary

conditions:
V zo on the u-axis

V£ Re(Fuw)

W —> co

V = E, K*( F/LJ)
Ww—0
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Consider a function V(«,v) as defined by

Viuv)= R«(P(QN+E£)) (2.20)

we see that the above function satisfies the Laplace equation
and the boundary conditions. To map this potential onto the

z-plane, we note that equation (2.19) may be expressed as

W:%—P(iim)

w = EL.B(Z- _——I—/Z?'-QF") *

On substituting in (2.20) we obtain

and

Vix,y) = 4 (& Re (2 +%4p) +ERe(2 -/;?,,—;1):] (2.21)
Allard and Russell (1963) considered a similar problem (but
assumed E,= 0 ) and gave numerical values of potential distri-
bution around the slit. However, they did not express the
potential distribution in a convenient form as in equation

(2.21)., 1If we let Y=o , we obtaln the axial potential

Ve(x)= 4 E.(X'fm)-t-llEZ(X—\/x’-fo'zs) (2.22)
We are now in a position to integrate the paraxial equation
noting a;(X) = 'V,,“)~V¢, (x) . Two cases have been investigatedi
(L)e,=0,e50 (exact value is not necessary), that is a
particlé under the influence of.accelerating field only.
(11) E.x0,E;%0 that is, the particle is under the influence
of the repeller field and the accelerating field.

A few typical trajectories for case (1) of the particles starting
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from rest are shown in fig,.(2.3), The general shape of the
trajectories is illustrated in fig. (2.4). It has, as shown,
two cross-overs Xc, and Xc, , the positions of which depend
upon the starting plane f(x.) and the ratio B.fe, . Fig=-
ures (2.5) and (2.6) illustrate the relationship between the
position of cross-overs and the parameters X. , the start-
ing plane, and in’ , the ratio of repeller field to the
accelerating field. We see from fig. (2.5) that, when

most of the ions (x.¢-3) are focused a short distance away
from the'slit. The portion of the trajectory from the second

cross-over onwards may be approximated by a quadratic function

where m is a constant depending upon ¥, and E/g , and

S 1s the slope of the trajectory at the second cross-over
and also a function of X, and f./e;, . It may be interesting
to note that equation (2.23) is also the equation of trajec-
tory iIn a uniform field; therefbre, 1t appears that the effect
of the slit width does not extend beyond a distance equal to
a few slit widths.

In the presence of £, , however, the ions are no
longer focused a short distance from the slit, but, depending
upbn E./e, , over a considerable length along the axis. (See
section 2.5 for further discussion.)

The approximations made to linearize the trajectory equa-
tion giving the paraxial equation are usually very restrictive

and are valid only within the close neighborhocd of the axis. Most
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Fig. 2.4

Graphical i1llustration of a representative trajectory.
The position of cross-over X, and X02 depends upon

the starting plane P(X,) and Ey/Ej.
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authors seem to be satisfied with the approximations without
stating how far from the axls one can go without violating
them. But we felt it necessary to sketch the reglon around
the axis where the paraxial approximation will lead to an
error less than a certain predetermined value.

The potential distribution around the axis 1s approxi-
mated by a series

VOay) = v - Ylyrave Lep” iy

The series is found to be convergent within a domain bounded
by a curve A in fig. (2.17). If we take the first two terms
only, as was done in the paraxial approximation, the region
where the first two terms are adequate 1s shown by curve B
in fig. (2.7). To test the net effect of the various approxi-
mations, and thus to determine the region of validity, we
approximate the exact equation (2.16) to the increasing degree
of severity:

(a) Exact equation

ROYT L DY -y =0 (2.2k4a)

L+ oy

(b) Taking the first two terms

2(v, - v" 2 "
e XYy Y
T G e

(c¢) Non-linear paraxial equation

(2.24p)

23 " NI Y
(|+Y’1)+ BY 4 By e (2.24c)

and (d) Linear paraxial equation

7] / / 1 _
2 @o\( + @,,\\’ + ?éa Y = 0 (2024(1)
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The above equations were integrated numerically and‘the'tré—
Jectbries were compared for a simple case dealt with in this
sub-problem. It was found that, if a particle were to start
anywhere within the shaded regilon in figure (2.8), the resulting
trajectory is within 5% of the exact tréjectory obtained from
equation (2.24a). Indeed, the linear paraxial equation glves
better results as compared to the other two approximate equations
in the paraxial region.
Subprbblem (b)

In the previous subproblem we have considered a single
slit and a 'uniform' field on either side ( E, the accelerating
field on thé right ﬁand slde, and E, the repeller field on
the left). Here we shall consider a repeller piate and the
entrance slit plate as shown in fig 2.lb. It is interesting
to know the effect of the repeller plate, particularly when it
18 close to the entrance slit plate, 1ie, when d 1is small; and
how it differs from that of the uniform field (ié. d » » ), which
we considered in the previous subproblem.

In order to obtain the potential distribution, we use, as
before, the method of Schwaré-Christoffel. The transformation

function 1is given by

. [ . -
g = -irfwas ttin ) ] - (2.25)
where the constants P and & are given implicitly by
l-a*
(2.26)

1]

N
=
N
'
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It is interesting to note that, if we let d »» , &—>0 and p-e# 3
then. the transformation function (2.25) reduces to (2.19) as
expected. And also as d—>o , a-{ and P-—} , equation

(2.25) reduces to
o ‘-_ - » -L

L= -tz W

which 1s Just the linear transformation. To solve the system

of equations (2.26), we shall eliminate P between them and

rewrite

. z ( 2 -y e ) (2.27)
Let | % o= é—
and Nn= &

The above equation becomes

p= b (i) (2:21")
The above'equation may be solved in a number of ways; for
instance, Newtbn-Rapson, Regula Falsi, etc; but here we shall
adopt a different method which does not requife us to guess at
the initial approximation of the root. We shall express (2.27'¢
in the form of a differentlal equation, viz.: ‘
dan’ _ l‘-(l—ql)z

dé 8

and integrate numerically with the initial values
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(this follows from the fact that as d—»>® , & —0 )  The
solution is shown in figure (2.10). Having obtained the
transformation function, we proceed to solve for the poten-~
tial distribution, first in the w-plane and then map onto

the z-plane.

The boundary conditions to be satisfied are

V=V on = o, lul ya
YV = V,+av  on v=95, lul g a
V = EPa W = 00

The last boundary condition follows from the fact that in
the z-plane

V = E Re(?)

2 —eo

From the transformation function (2.25) it follows that

2= -thw

W — o
V = E Re(-(PW) = epyp

To find the potential distribution in the w-plane, we con-

sider the followlng cases and superpose them later:

(a)Va=V, on the u-axis and uniform field in the w)>0 plane
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Va = Vo‘I’EP'V'

(b) Vo= AV  on the u-axis u ) -a and zero on the rest of

the u-akis.

Ay -
Vy, = = tan~! _¥
b n (tan “w-a )
(¢) Vo = -Av on the u-axis, uda and zero on the u-axis(u<s)
Ve = ~2% ( tan! VYV
¢ 7T ( eyl

Therefore, the net potential in the w>0 plane is given by

V=Va + Vy + V¢

C. Vo= v, o+ ERU %{ta,;'%a_tmf%] (2.28)
Now, in order to map the potential distribution onto the z-plane,
we have to invert the transformation function (2.25), which is
equivalent to the processbof solving it as a nonlinear equation

for a given value of z. It 1s then expressed as a éystem of

two nonlinear equations

= [ - -
. X= PV + F.jﬁf’[%a”-a¥3\“ t““'-g%ﬁ; . (2.292)
and
: 2 2
- P Sl PR G R Sy 2.29b
Y=-FPu+b 24 [‘n (U+)* 412 ] ( :

Since 4= 1= o 1t follows that x=y=0 ; using these as initial

conditions, we can solve the above system of equations by the
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method we have devised for (2.27). However, since we are,
interested in the axial potential only (paraxial approximation),

it is sufficient to consider (2.29a) and let M —a

X= PV +p —5?' mn"'( )

&[X P<1+ -5!:—_._1)2_)

which may be integrated numerically with the initial conditians

“X=v=0. We are now in a position to integrate the paraxial
trajectory equation.

The computer was programmed to accept the values of d

and “%e¢ ( &v repeller field, and £ accelerating field),
then to compute the constants f and a , and to invert the
transformation function at each step. A few of the computed
trajectories are shown in fig (2.11). The trajectories (a) and
(b) are drawn to show the effect of proximity of the repeller
plate; trajectory (a) is drawn for d=-10 and trajectory (b)
for d — c= keeping the repeller field the same,‘ie,ég'=%?eomoz
The mere presence of the repeller plate without any repeller
voltage ( &v=1p ) seems to affect the trajectdry of the particle
as shown by ¢ and d in the same figure. This, of course, we
would expect, because the repeller plate will distort the
potential distribution. The relation between the position of
the cross-overs (xcl and XCZ) and the ratio &V/& is shown in
figure 2.12. The relationship is very similar to that when the
plate is at infinity (compare with fig 2.6)
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To summarize, we see that the effect of:a,repeller volt-
age 1s in no way much different from that of a répeller'field
(i.e. when d = - o ) unless it is close to the slit (d { 10).

If d is very small (d —> 0), the effect of the entrance slit
plate is considerably masked by the repeller plate, and in the
end, when 4 = O, there 18 no perturbation field at all.

The principal effect of the repeller field 1s to shift
the crosé-over along the x-axis, thus to produce a lineérlY'
diffused focus which, in the absence of a repeller field, would
have been sharp. Indeed, it is easy to adjust the répeller
field such that some of the particles are focused just in front
of the exit slit. If somehow all moledules are'ionized'within
a Small space, we could, by adjusting thé repeller field, foéus’
all the ions 1n front of the exit slit (sée-séction 2.5 for
further discussion). o
Subproblem (c): |

In this subproblem we shall consider the effect of the
exit slit, particulérlylon the angle of divergence of the beam.
The geometry of the problem is illustrated in fig. (2.13). Since

L > 1, the mutual coﬁpling between the slits is negligible;
therefore, each slit may be considerediseparétely; - The bétential
distribution in the three different regions, using (2.21), may |

be expressed by

reglon I . Re[ 1E.(2 +-[;T37715)]

region II , ' | :

Vo= Re[LE,(2+/75075) + L E/((L-2)
“t-2)%+ 0.25.52 )J
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region III

Vi = Re E'—L e.(z-1) -z -1)*4 olzss’]+ B L

(2.30)

(centre of co-ordinates at the centre of the entrance slit.)
The paraxial trajqctory equation is now intégrated where the
axial potential & is to be obtained from (2.30) depending
upon the region. A

The angle of divergence of the beam for the different
values of the exit slit 1s shown in fig. (2.14) for a particle
starting at X, = -4, Y, = 1.0 . For any other particle, start-
ing at a height, say Yo = o , the same relationship holds
true except that the vertical scale is to be multiplied by «
. The slope of the trajectory that just passes through the
exit slit--grazing trajectory--can be determined from the
figures (2.14a) and (2.14). Firstly, one determines Y, of the
grazing trajectory for a given exit slit width (s) from figure
(2.14a) and finally, using figure (2.14), the slope of the
trajectory.
Subproblem (d): o

In this subproblem we shall consider the defléction"of
the beam passing between two plates, which are’kept at different
potentials (fig. 2.15). We shall assume a uniform field on
both sides of the plates. A narfow monoenergetic beam enters
the gap from left to right. First of‘all, we solve the boundary
value problem to determine the potential distribution. It is

again convenient to use the method of conformal transformation
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which is 1llustrated in Fig. (2.2). The boundary conditions
to be satisfled by the poténtial function are
' V = V, on u<lo VY=o

)
Vo= vl } on w 70_‘l V:O
V — E Re(Pw)

v —E Qe(%Q) W —0

W —> ¢°
Such a function is given by

V(U\"v'_) = V,‘f‘ﬁe[P(ElW'*' EL/LJ)]+ FVLJ}Vl) tad'l('_vuc)

(2.31)

where .
P'-:," (’/q

Potential distribution may be mapped onto the z-ﬁlane using
transformation function (2.19).

The paraxial approximations are no ionger valid because
the potential distributidn 1s not symmetric about thé'axis |
(since Vix v, );' therefore, we shall have to 1ntegraté the
exact equation (2.10). We may simplify the'potehtiai distri-
bution considerably by letting El = E2 , and thus we have the
deflecting field given by | |

(i) tan! (Y
BV = % art () (2.32)

which is illustrated in fig. (2.16). Except in the immediate
vicinity of the gap, the fleld is normal to the radius vector
and inversely prqportional to the radial distance, Introducing

the above approximation, the trajectory équation may be written as

noogi_ A L

Xt Yo (2.33)
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The equation (2.33), though simple, is not very useful when we
have to trace the trajJectory across the gap. We have, therefore,
preferred to integrate the exact equation. A beam originally
parallel to the x-axls is deflected by the plates as shown in
fig. (2.17). It should be noted that the beam still remains
parallel after its passage through the gap. The total deflec-
tion from the axis is linearly related to 5&V/e (fig. 2.18).
One may cbmpute the total deflection at any distance X(X‘> 1)'
for a given vélue of ©&V/t from the figures (2.17) and (2.18);
as for example, suppose we wish to find the deflection at a
distance X = 10 and #%e = 1. From fig, (2.17) we measure
the deflectlon at X = 10 ( ®% = -0.5). Plot this point on
fig. (2.18) and draw a line Jjoining to the centre of co-ordinates,
thus giving a new relation between the deflection and ©&¥Ye
Using the new relation, it 1s easy to determine the total ef-
fect for any value of bV/e . Similarly, we can determine
the angle of deflection at any point X from figures‘(2.17)
and (2.19).
Subproblem (e):

In this subproblem we shall cbnsider ion frajectories
in the presence of a magnetic‘field. ‘A magnetic field of the
order of a few hundred gauss 1s often used to gulde the iloniz-
ing electron beam in the source region. We shall assume a
uniform magnetic field normal to the plane of a paper. The
paraxial trajectory equatlon taking into account the magnetic

field is given by

23X+ BN+ B+ W TG =0
™ °

KK
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(2.34)
(see p. 14)
where 83 stands for the magnetic field, and W is equal
to the entrance slit width. The presence of the magnetic field
introduces an additional term into the paraxial equation and

makes it inhomogeneous., If Yy and Y are the fundamental

2
solutions of the corresponding homogeneous equation, the parti-

cular solution may be given in terms of Yl and Y, as follows:

X x Y
DY = \k_f”ﬁ“?QVgﬁ>dx— Yuf'ii&iﬁﬁ%ﬁjx,
o T BN TR (2.35)

where :
AlYLY) =YY -y, v )

Therefore, the effect‘of the magnetic field is glven by (2;35).
Since Gz is constant, 1t may be taken outside the ihtegral
sign; and hence the effect 1s proportional to the field strength.
In practice, however, to obtain the particular solution, it is
convenient to integrate the equation with the homogeneous ini-
tial conditions (i.e. Y(o)= Y%0)= o ). There appears to exist
a certain difficulty as pointed out before to initiate the

numerical solution. The inhomogeneous part is singular at the

starting point because &= 0 at the starting point.
/" S _g}_/ ’ @o’/v Bz W 2q
=1 ( A N vmé,)
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By virtue of the initial conditions_( Yio)= Y%o)= 0o ), the

first two terms vanish, but the last term becomes infinite.
If, however,
: P, — | x=xo| _
’ X —> Xo ‘
the integral 1s convergent as shown byvthe Cauchy test (see
Appendix B). This, however, does not help to initilate the
numerical éolution. We have to adopt a physical viewpoint:
whén the velocity of the ion is small ( & —» o ), the force
due to thé magnetic field will be small, hence one may ignore
the inhomogeneous part when initiating the numerical solution.
The equation (2.34) was integrated numerically for the

followlng values of the constants:

€& = .1, .5 webers/m>

€ = 10° volt/meter

W = 1073 meter |

%% = 1,7592 x 105 coloﬁmb/kilogram

(electrén) |
The trajectories are shown in fig. (2.21). The particular solu-
tion of (2.34) for ‘Baz= | "2  and other constants as above |
is in fig. (2.22). This figure may be used to compute the ef-
fect of the magnetic field for any other set ofvconétants (e.g.
for Pb (engd ion it may be obtained by multiplying by a
factor 0.00145).

An important question is often asked regarding the mass

discrimination due to the magnetic field in the source region.
Consider two ions (i1sotopes) of masses M and m+ &m

k]

so that
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. . b

[ = 1450
The traJectories of the two ions will be separated by
( 3%- = 0.008 for fB**(cty)t and Fb°%cHy)]  ions). Nor-
mally, the separation of heavy ions (; m >y ) is very small,
and certainly much smaller than the exit slit even for the
field of the order of 1 weber/mz, Mofeover, the separation
may be minimized by placing the exit slit in the neighborhood
of &Y = 0. In some cases it may be possible to filter out

the lighter ions by adjusting the magnetic field.

2.4 Global analysis:

In the previous section we analysed the ion optical
system (fig. 1.2) considering each part separately. We now
proceed to treat the problem on a global basis. The primary
task is to find the potential distribution within the space
bounded by the various plates. We assume as before the slits
to extend to * ¢ in the direction of the y-axis. Boerboom
(1957, 1959, 1960) considered a system of three such slits
and obtained the axial potential. The following treatment
1s essentially based on his work and also gives a method
of inverting the transformation function. We shall use the
method of conformal mapping to solve the boundary value pro-
blem.

The mapping function 1s given in the differential

form as

LU K Cama)™ b tw=p) (=) )T g (e

!

A

ey (wap)” (“+b5‘(”+ﬁ)+u‘ﬂ+cj‘(u+\f‘ (2.36)
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where oa,b,b, %, and « are constants and satisfy

the relation
12¢2976%F> a

Equation (2.36) may be written as

Q

(N 2
/ / a-p
2% = |<(-( AC + AD+3c_+BD)+Ac<—T—N_aL)+ AD(u bL)

+ G6e’ <°‘ “)-e-eo( )]

(2.37)'

where

(55

b*-c*

‘ ( r—ci)
T N\ b=

[
t

0O

1"
N
9{2
- ~
A
.

wl P
SN

(2.38)

Integration of equation (2,37) yields the tranéformation'function.

2= K [( AC+AD + B0+ 80" ) w + AC(£—“—P-)M(

)

+AD<b Pl) (w+b)+ec( )ln ‘G'—I?\)

+ oo’ (E_-.t ) M<:+Cc)] | (2.39)
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There are six unknowns, and therefore we seek six independent

equations connecting them. We can get three of them by inte-

grating equation (2.37) about a4, b, and € over an infinitely

small semicircle,

7 d _-irk(a= k) (a9 ")(a—l)
' b T QGCA—»L"‘)CU« er)

lda-di) = =Kk (b™pH) (6™ §*)( b=1*)
2b Ca=bt) b c*)

ﬁ(dg*d'p)a -k CC‘L__P'L)CC‘L_?’L)CC‘L_JL) '
e (e b7) C c™a?)

S

(2.40)

The remalning three relations we obtain by'integrating equation

(2.37) across the three slits. The three equations are-

. -p '
Lz [TlapCuiagt) w4,
P (w-a*) (Wb (u= )

..gi ’ ’ .
Lw,= K (W)= (=) g,
L (W=a) (umet) (uscr)

-1
CW, = |<f (Wi FL)LH—"l)(w—’)/(l' |
bW at) (W) (W) (2.41)
After integration equations (2.41) become |

it

b ¢
3 E-sz-r1(e+p)h%§££+1YM%fﬁ%+ Mn%ig)

LW,

o

K[ 2xq, +2(e+r~")|n(“+$)+ Yl (___‘27*5 +261n (7*‘)
a) ¢9- b) (e-9)

y = - A (a+ (1+b l+c
W= K[_ < 4 ZCHIQ)"\(, ) __) +2alnLU__E))j

(2.42)
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where <= '‘Ac+AB+ B+ pp/

g = AC (01" Pl)
A&

Y = AD (bi"P?)
2b

e = B¢ (a%p?)
and 2a .

6= o0’ (kY | - (2.83)
In (2.40) to make the right.;;;d side real and positive, we
have to assume KX of the type |
K= ~tf , » ‘
where { is a positive unknown constant. Substituting (2.38)
in (2.43), we obtain

o« = |
-d= (B4¢) L
- (dz-du) = b’. L
- Cds-da) 2 ol | (2.44)

Making use of'(2.44); we may write equations (2.40) and (2.42)

as

4, = 4 (a9 (a=a) (i-a?)
. 2 A (bi;qL) ( C‘}._G\L)

(Aa-d) = L Lo=FDCT=0)(C %Y
2 b ( b d‘)(c"- b")

(da-ds) = £ (=pPC-)0UeY)
2¢ Ce*- 1.)( P b‘L) .

I = [2L|° + 24, |n< :jt\\) +2 (da-dy) "‘(L:j-'%)"' 2(0(3-%)'”(%)7
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W| = [2111’ nglh (%—T—_—%) +-1(dz o) |Vn< _) + J.Cda-dz)lr\(z:;)]
W, = :

z [zL +2d.h«(f“)+z(dwd)ln( b)+z(d;4)h(:+cﬂ

(2.45)

The set of six nonlinear equations given by (2.45) may be solved

for six unknowns. The transformation function (2.39) may now

be written as

z :;[— 4w+ d.lp\(%::qa) +v (d,_-.;l.)'r\(%—b- )+(J3 d )‘V\(“"C):]

W4C
or
= (4= d SV e ) - (dg-da) tant!
X (‘vx.} (a2 M\MM) (d:,d)((fam —
—tani_ Y _\._ . ! v—‘; -1_v
tar ) - Cdad (el tmm)]
(2.46)

Y-—[ Ml 4 Ay (uza)aw, (dz—a!)ln(“ 'o)Jrv1

2 M+ o) v L“+b)+v

z w4+ pr

+ (d1-d2) In (u=0)% vl]

(2.47)
From (2.46 and 2.47) it follows that the vV -axis is mapped

onto the x-axis and the 4w -axis onto the y-axis. To find the
inverse transformation of (2.46) and (2.47), we express these
equations as a system of two ordinary equations with x and y

as independent variables and integrate them with the followilng
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as initial conditions
X=Y=uUu= ¥»=20 ‘
Having obtained the transformation function, we proceed

to solve the potential problem first in the w-plane and later

map onto the z-plane using the inverse transformation In
the w-plane the potential function has to satisfy the,foilow-'

ing boundary conditions:

Vz=o On (a;—d)

V= OV On (d,b):wwi(-?fg)
Vv -_-vz | On (b,c).

v ="v, On (-b,-¢)

VeV,  0n (¢, and (-¢,-e2)

(2.48)

(see figure 2.24)
To solve the boundary value problem, we con51der only one of

the boundary conditions at a time and assume V=0 on the
rest of the u-axis. These solutions are then to be added-td~

gether to give the required solution. This kind of supérposi-

tion is permissible for linear differential equation such as

the Laplace equation. The soiution is then given by

Vi) = ev [ Cad' ) - et (w-'_v -t'w__y_-ﬂ :

a wta

!g{ ko VY _ tom - tanml_ v
7T U nW-C | W+ b
1@ [,faNFLLZ; + tan 1Y ]
JT C~- W : <+ Q.
| | | (2.49)
This i

1s valid everywhere except at certain points on the u-axié'
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(.e. a,b,60,9%,1,-0,-b,-¢c,-¢,-9,-1 ). This completes the

formal solution of the boundary value problem.

2.5 Efficiency of ion beam transmission: |

The present sectlon is devoted to the drawing together
of the results of the different subproblems discussed in section
2.3. We shall also discuss the_ion obticel properties of the
system, particularly with reference to the ion beam trahemis-
sion efficiency, that ie,,the fraction of the beam ultimetely
entering the magnetic analyser tube. | | |

Since the elit wldths are much smaller than the separa-
tion between the two consecutivevplates, the mutual’Couplihg’ |
is expected to be negligible. The repeller plate, however, is
not always as far as 1s required (d > 10) for minimum coupling.
The following discussien, nevertheless, is based on the assump-
tion that the repeller plate 1s at a:distance eqﬁallofigfeatér
than ten times the entrance slit_widtﬁ. ,Further;'it Was‘not
felt necessary to compute the ion tfajeetéfiesfﬁeiﬁg the_ﬁefe:
precise potenﬁial distribution given by (2.49). The preCision
thus gained would be unmeaningful cohsidering'thelerrers_intro-,_:-
duced by the paraxiallapproximations and the'aseumptioh of'zero’
initial ehergy.

The typical ion trajectories in the absenéevofta repeller’
field are shown in the figﬁre (2.25); _They have, 1n'genefal,
two cross-overs., Furthermore, all the lons starting frem rest

are bound to pass through the entrance s1it™ and cross the axis

*A particle will not strike the plates because they
are at a higher potential than the surrounding space.
If, however, the particle has finite initial energy,
this will not be true for all particles.
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at a short distance (_*‘z =1 ) from the slit and thus produce

a fairly sharp focus. The portlon of the trajectory to the right
of the second cross-over may be approximated by a simple quadratic
expression (2.23), which is, incidently, the ion trajectory in a
uniform field.

The trajectories are dlvergent; hence only a few particles
are capable of passing through the exit slit which is often much
smaller than the entrance slit (about a tenth of entrance slit
width). By a process of actual observation whether a given tra-
Jectory starting at a point P(Xos,Y.) passes through the exit slit
kept at a distance of forty slit widths, we have sketched in fig.
(2.26) a region -- a narrow horizontal strip of width approxi-
mately equal to the exit slit width. A particle.starting any-
where within the region is bound to pass through the exlt slift,
and all ions formed outside the region are naturally lost comp-
letely. This is called the area of ion withdrawal.

However, the situation is somewhat different in the pre-
sence of a repeller fleld in the lonization space. Now the second
cross-over is no longer sharp as before but linearly diffused
along the axis. It is natural to expect to Be able to adjust
the repeller fleld such that the cross-over point lies just in
the neighbourhood of the exit slit. Unfortunately, it is not
possible to do so for all the ions as we see in fig. (2.27).

Only a small fraction of ions coming from a certain specific
region of the ionization space will cross the axls near the exit

slit. In fig. (2.29) we have given a relation between the
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repeller field and the position of the strip of ion withdrawal.
For a given value of a repeller field, we see from fig. (2.29)
that there are two values of X, » two strips of ion with;
drawal (fig. (2.27)). The shape of the strips is shown in fig.
2.28 for E‘/EI = 0,002. Thus, in the presence of a repeller
field the ions from a vertical strip are focused in the neigh-
bourhood of the exit slit.

If somehow the ionization could be confined to the narrow
strip; we should be able to withdraw almost all the ions. But
unfortunately, in practice, it is difficult to confine the ioni-
‘zation to such a restricted space (2 to 3 mm). However, we can
ad just the repeller field such that the region of withdrawal
corresponds to the region of high ion density. The peaks in the
experimentally observed relation between the repeller field and
the ion current (fig. (2.30)) may be explained by the above con-
clusion based on the theoretical considerations. |

The effect of the exif 81lit 1itself on the lon trajectory,
especially the change in the angle of inclination as an ion
passes through the exit slit is found to be very small (less
than 10%). Also the effect of the magnetic field is small,
unless the field is of the order of a few webers/mz. Further-
more, there will be no perceptible mass discrimination due to
the source magnetic field unless the field is large.

In summary,.the ilon beam transmission efficiency could be
increased only 1f we could confine the ionization to a restricted

space and adjust the repeller field accordingly.
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Chapter III

The Inverse Problem of Particle Motion

Synopsis:

In this chapter we introduce the concept of the inverse pro-
blem of particle motion. In the usual problem we seek thé tra-
Jectory of a particle,having been given the electrostatic poten-
tial distribution. In the inverse problem, we seek the poten-
tial distribution to guide a particle along a preécribed path.

Starting from the basic trajeétory equation apd Laplace
equation we have shown that for any prescribed path a unique
potential distribution can be obtalined. Next, we generaliée the
problem: a unique potential distfibution cén be obtalned for a
set of prescribed paths satisfying certain geometrical relations.

Finally, using the theory, two types of ion sources are
proposed. The stabillty analysis, however, shows that only one
of them 1is stable, and therefore practical. The last section
deals with the practical realization of the required potential
distribution. |

3.1 Theory of Inverse Problem:

Usually we are glven a potential distribution and required
to find the particle trajectories, But in the most applications
we desire the particles to follow certain paths; for instance,
certéin desirable paths in the ion source of a mass spectrometer
are shown in fig. 3.1. This gives rise to the inverse problem:

that is, to find a potentilial distribution to guide the particles
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explanation see text p. 85

Fig. 3.1
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along the prescribed paths. 1In this section we are going to
develop the basic theory of the lnverse problem of particle
motion, |

The author is unaware of any previous work on this
problem except a suggestion, first made by Plerce (1954), that
the paraxial equation (2.16) may be regarded as an equation
for the potential on the axis if v and its derivatives
are given,

The following are the two basic theorems in the
theory of the inverse problem:

(a) There exists a potential distribution to guide

a particle along any desired path.
(b) A group of particles may be guided along a set
 of paraxial paths.

The proof of the above theorems is glven below. We shall
confine ourselves to the two dimensional case; however, the
arguments may be extended to the three dimensional case, too.
In the trajectory equation v ?’ and '7” are now known (or
prescribed) functions of x. The trajectory equation and
Laplace eqﬁation form a System of partial differential equa-

tions.

V&= By v 2,8 =6 (3.1)

(The coefficients of &, and & are functions of x only.)

&3(1 + Q = 0
M (3.2)
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We have to solve the above system of equations for the poten-
tial Q' . The technique of solving the equations is as follows:
The equation (3.1) is solved first, given the potential & along
the prescribed path, to obtain &, & x ,and 5}\} in the neigh-
bourhood of the path. Knowing ©x and tbv/ we can compute the
normal derivative %%i . The potential & and its normal
derivative 0®& constitute the Cauchy problem. Now in order

to find the SZEential & everywhere in the X, y-plane, we

have to solve the Cauchy problem for (3.2). The potential

is assumed to be analytic as required for the uniqueness of the
Cauchy problem (Hellwig, 1964).

The first order partiai differential equation (3.1) is
equivalent to a system of ordinary differential equations defin-
ing the characteristics of the equation (see Courant and Hilbert,
p. 62). If we introduce a parameter S, arc length along the

charaéteristics, the system of ordinary equations becomes

Q.
R

—_ /
as ¢
.0_‘2 = - |
As
A _ -a2bwy ‘
e —L (3.3)

l—v?’Z‘
where, as usual, the prime indicates differentiation with respect
to x. Every surface generated by (3.3) is an integral surface of

(3.1). A unique surface, however, may be defined from the initial

value problem for (3.3), Let us define a space curve C by
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prescribing X, % and & as a function of a parameter t
(arc length) such that the projection ¢, of c' on the x,y-
plane coincideS‘with the prescribed path of a particle. Now,
in the neighbourhood of (, , we seek an integral surface

®C x,y) which passes through € , that is, a solution of
(3.1) for which

' Rt) = (A, Ye))

holds identically in t. To solve the initial value problem,
let us dréw through each point of C a characteristic, that 1is,
the solution of (3.3); this is possible in a unique way within
a certain neighbourhood. We thus obtain a family of character-

istics

X = ICS,t)

Y= Yt
Q = R (s, ¢) L (3.4)
These curves will genérate a surface GQClejk) if, using the

first two functions, we can express S and t in terms of x

and 1} . To be able to do thls, we must show that the Jacobian

Q)

A= OX 0% 2y . 2x
2S5 ¢ 2s ¢t

is non-vanishing. Using equation (3.3) we obtain

A=—’A5"/yt-'1'3¢t
= Mg (Axy°
1e (5F)

which is non-vanishing for all values of 'y’ . The geometrical
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interpretation of the condition that the Jacobian is non-vanish-
ing is that at every point on (C, the projection of the tangent
direction and characteristic direction on the x,y-plane are dis-

tinét. In fact in our case, since

d _ /
Z\_t - A}(Pm\)
ana ?k__ = -
As
. (il) . -1,
A x| Chhan ‘ar
A 4
(_%L) '<d_;i)(’&ft= -

the base characteristic and the path of a particle are orthogonal.
We therefore conclude that for any simple * prescribed path a
solution of equation (3.1) may be found in the neighbourhood of
the path; and therefore, %%» , the normal gradient may be found.
The potential distribution in the x,y-plane may be obtained as

a solution of the Cauchy problem for equation (3.2). This esta-
blishes theorem I. We next proceed to the second theorem.

We recall that in the solution of (3.1) as an initial
value problem, the potential ¥ was prescribed arbitrarily
along the path of a particle. This may now be chosen such that
a group of particles moves along a set of paraxial paths ﬁhat are
prescribed again arbitrarily. The trajectory equation of the

neighbourhood particles in the paraxial approximations is given

by Waters (1958):

29"+ /' ms (uxk?0+ §")m =0
’ ‘ (3.5)

*
The path may not have any double points.
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where M 1is the normal distance of a neighbouring par-
ticle from the central trajectory, and « K the padius of curva-
ture of the central trajJectory at a given point. In equation
(3.5) we may assume that A+ and I< are known (or prescribed)
functions and solve the equation for & . Thus, one may obtain
Q> for any prescribed path of a particle. But unless the
set of paths is sultably chosen,the potential & will be dif-
ferent for each individual path. The condition that the set
of paths must satlsfy so that a unlque pofential function may be
obtained 1is as follows: |
Let
M= c( v+ at4at?+ ..o,y th)
(3.6)
where t 1s arc length, and C a variable constant -- by varying
¢ one may obtain a series of paths. If we substitute (3.6)
into (3.5), we find that the resulting equation does not contain
the variable constant € . Hence, a set of paths prescribed by
varying C - gives rise to a unique potential function & .
Since in (3.6) a,,a,, 4,-----+ &n are arbitrary, the set of paths
represented by (3.6) is quite general; however, the function
(3.6) must be continuous and must possess continuous derivatives
up to the second order with respect to %
A simple case of considerable importange is where the x-
axls is the central path. Then, the equation (3.1) and (3.5)

reduce to

&4} = O (307) .

29"+ 8y + 8y = 0  (3.8)
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It may be noted that any potential distribution which is sym;
metric about the x-axis satisfies (3.7). To obtain the potential
at any point fC(X,Y) , Wwe solve the Cauchy problem, which in this
case 18 particularly simple: Let o Cx) be the axlal potential,

then the potentlial at any given point f is given by

R{Xyy) = Ke’(Qo(x'*UJ’) (3.9)
(see Morse and Feshbach, p. 689)
The Cauchy problem is known to be sensitlve .to the small
fluctuations in Q% and may glve rise to large errors; but
since we are basically interested in the paraxial region where
the errors, if any, will not be large; this is not a very serious

drawback.

3.2 Efficient ion source:

The sensitivity of a mass spectrometer is largely limited
by the inefficient ion source. Only one molecule out of a mil-
lion molecules reaches the analyser tube as an ion. In the pre-
vious chapter we have discussed the ion optical properties of
the conventional source. There, we have seen that unless the
ionization is confinea to a very small reglon, we cannot improve
the efficiency by merely adjusting the various geometrical and
field parametefs of the source. We feel that the entire design
of the source may have to be discarded in favour of a more com-
plex system. The question we now have to face is how are we

going to devise a new system that would have high efficiency.
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One way 1s to try a numbef of them until we hit upon a right
one. This 1s obviously a tedious and uncertain process. The
theory of the inverse problem, which we have developed in the
last section, comes to our ald in obtailning a system that has
the desired properties; thus, the long and laborious trial
and error method can be avoided.

Imagine a set of paths slowly cdnverging into a thin
parallel beam as shown in fig. (3.1)* . Initially the paths
are wlde apart and therefore cover a large portion of the ioni-
zation space. The paths in fig. (3.1la) are exponentially con-
verging while those in fig. (3.1b) are damped oscillatory. The
central path is however, the x-axls. We now apply the theory
developed in the previous section to find the potential dis-
tribution such that the particles are éuided along these paths.,

A class of cdnverging paths may be represented by

'y = O @XPC—van)

where QA is a variable constant, and b and wn are fixed

constants. Substituting in (3.8), we obtain

&' - bn T @ 4 WHbnxTon) pn o

X i-n
(3.10)
The equation reduces to a particularly simple form for b=\
and Nz |
7 /
Q' -R'+28 =0
(3.11)

*We are considering two different systems having the same pro;
perties. It will be clear later why we consider two systems.
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¢ (osc)(osc)
b=t,n=3] o075, fbe10,n=2
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|~
41—

b=075, n=|
b=10,n=l

b=075,n=2
16}
20r- b=0.25, n=3
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whose solution is given by

QO: ext( x/2) SW\Q (x-R)

(see Kamke, p. 412)
A series solution of (3.10) can be obtained for b= | and

M=z 2 . Then the equation reduces to

R/ —2x&+ 4 (2% &, = o

(3.12)

Consider the seriles

) kR A H.
‘(‘iQo:' Qo + A, 20 4+ Ay X ¢ = oo T

Substituting in (3.12) and letting the coefficients of X and

its higher powers go to zero, we obtain the recurrence relation

N+ Nn+2) Gnea = 2N QApy + € Qn-2 —4Qn = ©

which enables us to find the constants Ay, Aa, -----on QAn
having been given a4, and a, . The series is.convergent
(though the number of terms required to attain an accuracy
within 1 0.001% increases rapidly for x) 2). For large
intervals, that is . XY 2, and for other values of b and n
it is convenient (and efficient from the point of machine time)
to solve (3.10) numerically. These solutions are shown in fig.
(3.3).

~ From fig. (3.3) it is obvious that the solutions are os-
cillatory and unstable. The potential along the path is oscil-
latory and hence alternatively positive and negative. Let us

imagine a particle starting at A in fig. (3.2) with a unit
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initial energy and moving along the axis. The particle is ac-
celerated until it reaches the point .8 and thereafter decel-
erated until it reaches the point C where 1ts energy goes
to zero. It cannot proceed any further unless the sign of the
charge on the particle 1s changed. Since this 1is not physically
possible, it goes back to €& and then to A . The point ¢
may be called a mirror point. There are as many mirror points
as the number of zeros of equation (3.10). Therefore, the con-
vergilng paths are not necessarily accelerating path% nor complete
paths, 1.e., free of mirror points. Such a behaviour is quilte
consistent with the properties of the;éQuatibmnofimotibnquhapter
II, eq. (2.16).

The equation (3.8) is almost symmetric for &, and Y.

It may be written as

(3.12)

or

no_o_ Eg (4 &
=i lR ' R 5.13)

They would have been exactly symmetrical but for the figure 2 in
the equation. By exéct symmetry we mean, if = ji(x) in
(3.12) and &,279CY 1in (3.13), we would have obtained exactly
the same solutions. In any case the presence of the figure 2

does not completely destroy the symmetry for if in eq. (3.9)

® = exr(-bx")
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the trajectories will be unstable oscillatory functions; but
such trajectories are not of interest. On the other hand, if

Qo-_'illgcbx’n)

we should obtain oscillatory trajectbries.ILet us consider a

simple function

R, = exPCbx")

(3.14)
The equation (3.8) reduces to
"= 1)
whose solution is given by
M= A e . sin T (x-g)
L‘
(3.15)

where A and [ are arbitrary constants. Since Q' is a mono-
tonically increasing function, the resulting paths are both ac-
celerating and complete, that 1s, without any mirror points.
Though the first system is not of much practical importance.
{because of the presence of the mirrof points) as compared to the
second system with the damped oscillatory paths; it 1s interest-
ing to consider both for comparison. Furthermore, we shall show
in the next section that the first system 1s essentially unstable.
The Cauchy bOundar& value problem was solved as shown in
Section (3.1). The potential distribution in the x,y-plane is
shown in figures (3.4) and (3.5). A typical ion trajectory is

shown by the dashed curve in each of these figures.
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3.3 Stability analysis:

The basic assumptions in the theory of the inverse
problem are that a particle startS'with the'eameiinitial energy_
and 1n a direction proportional to the height of the starting
point. These assumptions are, however, rarely satisfied in a
'real! source, for the thermalﬂenergy spread_is bound to_exist
and aiso_the probabllity of emisslion in'all directione:is equal.i
The present section 1s, therefore, devoted to the studjiof the' |
effects oftmore realistic initial conditions,'conditions not
satisfying the requirements of the theory. One consequence |
is that some of the particles may: deviate considerably from
their projected paths, 1eading to an unstable situation :The_
systems leading to unstable paths are impractical and therefore,;
every oroposed system must bé carefully examined - The two cases
we have studied here present an example of a stable and an un-
stable system. The. gross effect of the thermal energy spread
has been considered by several authors: Pierce'(1954), Cutler
and Hines (1955), and Kirsteinen (1963). Assuming the MaxWei- ,
lian velocity distribution and equal probability of-emiesion‘
in all directions at the cathode, these authors attempted.to
find the longitudinal current density'distrinution at'any plane'
X = const. But, such‘a method is not very useful tovstudy
the stability of a system because the stability 1nformation‘
could be obtained easily by considering Just one"narticle
instead of a whole ensemble of particles as in their method
We shall, therefore, adopt a method due to Poincare (1905)

‘and Moulton (1926) with certain modifications to sult our needs.
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The paraxial trajectory equation of an ion whose initial

energy differs from the mean by € is gilven by

208+e) " + &ly/ 4+ RN Y =0

(3.16)
where & 1s the solution of

28,40 + ®y, + &Y =0

(3.16")

where %, We can express the

1s the path of a normal particle.
solution of (3.16) in terms of

Y= e T e a0

(3.17)

where Y, | PRy SRR N are the perturbation functions.

Substituting (3.17) into (3.16) and letting the coefficilents of

€ and its higher powers tend to zero, we obtain a system of

differential equations:

il
0

28,y + &yl wly 42y,

1@0‘33 + ?52:“3;_ + 6?;"},_ + 29! -

©

. .18
2Q34 + &kﬂ‘+&y?”+17&ﬂ::o e )
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All perturbation functions may be required to satisfy the initlal

conditions '

/\j =D

n

y’:o ok xzo
n

fov a4 n (nxo0)

while the principal solution "} satisfies the given initial
conditions. Let Up and YV, be the fundamental solutions
of (3.16’ ) satisfying the initial conditions
Uos = |
Up =
Vo
g

(o)

1)

[1)

so that we may writé
' ,\JO= a Up + b My

where o and b are the initial conditions. The first per-

turbation functiqn may be written as*

. II’,L ; "
y,.z—wfﬁfzﬁf_dx + U [ A%V A

A (uv.,v,) & (Uo,v,)

(3.19)

where Ly, ,
A (Uo,y Vo) =20Uo V' = Uugar) - (Wasnexian)

*
To obtailn this refer to Morse and Feshbach, p. 530; in

5.2.19 let ¢,=c¢, = o , because of our initial conditions.
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Substituting for 4, 1in (3.19) we obtain

Aj,: ,,,,,Df:z(& Mo-rbva)u - u‘a,f~2(aMZ+bv2)gL

A ((Uey V) A (Uo,)
(3.20)

or

l A (o) B (UoyVy)

+ b r [ 1'1)‘ Mo - uc[-lﬁ}g’b‘a d-
l; a (uo,’vo) A (Uoyvh) K]
(3.21)

Compare each of the brackets on the right-hand side of
(3;21) with (3.19). Each of them represents a perturbation func-
tion corresponding to one of the fundémental solutions, U, and
Vo ; hence we may write |

/yl: C\ul—rb’l}"

where W, and "V, are the first order fundamental perturbation
functions corresponding to the fundamental solutions W, and
Vo respéctively. Following a similar procedure, we can

show that
’\Jh = U\btn-i'b‘l/"n

for all values of Y1 . The fundamental perturbation functions
may be obtained by solving the equation (3.16/) and (3.18) nu-

mérically,treating them as a system of ( m+ | ) equations. This
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approach to finding the perturbation functions overcomes the
necessity Qf evaluating them for each set of inlitial conditions;
in this respect thls method 1s superior to that of Poincaré
and Moulton.

For the sake of simplicity let us specify the normal ini-

tial conditions as

and the initial energy as unity ( ® (o) = | ). The normal
trajectory of a particle with more réalistic initial conditions

is then given by

n ,
Rj = &Us + bV, + & ; eUn + b TZe”fv*n
(3.22)
The fundamental solutions UWe,V, and the first three fundamental
perturbation functions for both the systems are illustrated in
figures (3.6) to (3.13). These may be used to compute the total
perturbation for any given set of more realistic initial condi-
tions. ‘
The fundamental perturbation functions for the 8ystem I
increase monotonically in the region where the particles are
being accelerated, and outside this region they tend to oscillate
(not shown in the figures). Hence it is expected that the more
realistic initial conditions will be ampiified to such a stage
where the particles deviate so much from their projected paths

that it leads to what we have called instability. Therefore,
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the system I isvbasically unstable. The system II, on the other
hand, is characterized by damped oscillating perturbation func-
tions (fig. 3.11 to 3.13) so that the more realistic initial
conditions are damped out, leading to a stable system.

The system I,besides being unstable,is not useful as an
ion source without an additional accelerating system as it itself
does not accelerate the ions., Thls, however, 1s not necessary
in the system II.

It may be noted that the'field in the ionizatlon space is
very weak; therefore we expect a small energy spread (apart from

the thermal energy spread) in the resulting ion beam.

3.4 Eiectrode configuration:

There are in practice at least two ways to realize the
prescribed potentlial distribution:

(a) set up a system of electrodes having the shape of

" the equipotential lines (planes in three dimensions),
(b) set up the potential distribution on.the faces of a
rectangular box as done by Orr .(1963).

The dimensions of the system could be quite arbitrary. However,
to satisfy the paraxial approximations involved in the theory
(see page 9), we must restrict the actual zone of ionization
to a strip of height less than unity on any chosen scale.  Note
that this does not put any restrictions on the actual dimensions
so long as we choose the proper scale, but the potentials have

to be properly scaled. All potentials given here are with
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respect to the initial energy, which was taken as unity for
simplicity. If the source is to be operated say at 100°
when the average energy 1s 0.01 volt, the potentials shduld.

be scaled down by a factor of 102.



\

105

Chapter IV

Summary and contributions of the present wrilter

4.1 Summary:
The sensitivity of a mass spectrometer is a function of
the sensitivity of the current measuring system and of the ion

source. The latter can be expressed as the product of the ef-

}ficiency‘of ionization and the efficiency of ion beam transmis-

/

sion. The preliminary examination of the various sources of
limitations has indicated thaf the low efficiency of ion beam
transmission may be a factor limiting the sensitivity of the
lon source. .

A detalled mathematical analysis of the ion optical pro-
perties of the source was undertaken with the aim of evaluating
the efficiéncy of ion beam transmission. A mathematical model
representing an average source--a stack of plates carrying paral-
lel and coplaner slits--was investigated. First we developed
the equation of trajéctory in the generalized two'dimensional
electric and normal magnetié field. Seriés of approximations--
paraxial approximations--were Iintroduced to linearize the equa-
tion of trajectory. Further, the initial energy of the ions
was assumed to be zero for the sake of simplicity.

The problem was approached in two different ways:

(a) part-by-part approach

(b) global approach
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The parﬁ-by-part approach, though not very preclse, provides
consliderable insignt into the mechanism of ion beam transmission.
On the otherAhand, the'global approach 1s far more precise but

' the precision thus gained would be meanlingless considering the
errors introduced by the paraxial approximations and the as-
sumption of zero initial energy. The model was broken down

into several parts and the effect of each part on the lon tra-
Jectory was studied.

The combination of repeller plate and the entrance slit
plate plays an important. role in the mechanism of ion beam trans-
mission. All the ions formed within the limits of these two
plates pass through the entrance slit and form a divergent beam.
If the repeller plate is at a distance greater than ten times
the entrance slit width ( & } 10), it is as if belng at infinity
and may be replaced by a uniform field, the repeller field.

In the absence of the repeller field a divergent beam is
formed with its apex at a short distange.(about one slit width)
from the entrance slit. The width of the beam grows on and is
several slit widths (entrance slit width) at the exit slit;
hence only a small fraction of the total beam can pass through
the exit slit, which is normally a tenth of the entrance slit
and the rest of the beam 1is, therefore, lost completely. We
have shown that the lons which pass through the exit slit are
drawn from a small horizontal strip of width equal to the exit
slit (fig. 2.26).

When the repeller field is present, the situation is dif-



107

ferent. The beam is still divergent, but the apex 1s not sharp
but diffused along the_axis.' By adjusting the repeller field,
we can focus the ions from a certain part-of the ionization
space in the nelghbourhood of the exit slit. Such a strip of
ion withdrawal is, for example, shown in fig. (2.28). The posi-
tion of the strip may be moved to and fro by varying the repel-
ler fileld according to the relationship shown in fig. (2.27).

The effeét of the exit slit; particularly on the angle
of divergence of an ion trajectory as it passes through the
exit slit is very small--about 10% of the normal angle of diver-
gence in the absence of the exit slit.

The deflection of the ion beam produced by the deflecting
plates is linearly related to thé deflecting potential (i.e.,
the potential difference between the plates). It is found that;
for small deflections, the shape of the beam remains unchanged
after deflection.

' The presence of the magnet1c field in the ion source region,
if the field'is weak (a few tens of gauss), is merely to slightly
perturb the shape of the ion trajectory. 1In the weak field no
perceptible mass discrimination is observed.

To increase the efficiency of the ion beam transmission
of the present source, we will have to confine the region of
ionization to the region of ion withdrawal (2-3 mm wide strip),
which in practice, is very difficult to attain. However, we can
maximize the efficlency by letting the reglon of ion withdrawal

fall exactly over the region of highest ion density.
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A system producing a divergent beam, as is thé present
multiple slit source, is baslically inefficient. On the other
hand, a system capable of producing a convergent beam will be
- more efficient. Instead of pursﬁing a trial and error method
until we hit upon the desired system, we posed to ourselves
an inverse problem, that is, given any path,to find the poten-
tial distribution so as to guide a particle along the prescribed
path. 1In this connection we have proved the following two
basic theorems:

(a) There exists a potential distribution to guide

 a particle along any desired path.

(b) A gfoup of particles may be guided along a set

 of baraxial paths.

A case of considerable importance is where the central
trajectory is the x-axis. We have considered two types of con-
vergent paths as shown in fig. (3.1 ) -- exponentially converg-
ing and damped oscillatory paths. Although, in principle, we
may choose the paths of any shape (but always paraxial) quite
afbitrarily,_there are certain limitations:

(a) incomplete paths -- a particle may be turned back

"~ at a certain point.

(b) wunstable system -- abnormal particles, i.e. those
not satisfying certain initial conditions of uniform
energy and direction deviate considerably from their
projected paﬁhs,

The two systems we have considered here illustrate the above
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limitations. The paths shown in fig. (3.la) are incom-
plete and the system is also unstable; while the damped
oscillatory paths shown in fig. (3.1lb) are complete and

the corresponding system is stable, therefore practical.

4.2 Contributions of the present writer:

Following are the contributions of the present

writer:

(a) CQmplete analysis of the ion optical proper-

~ ties of the multiple s8lit source. That the
efficiency of the source is low on account of
the small region of ion withdrawal was shown
for the first time.

(b) Theory of the inverse problem and its applica-
tion to efficient ion source. This is consi-~
dered to be the major contribution.

(¢) Mathematical tools such as the solution of
certain algebraic equations and the inversion
of transformation functions expressing them
as differential equations, and the development
of a method to take into account the effect of
the‘thermal energy and random initial direction
may also be considered as contributions of the

present writer.
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Appendix A

1. An example of ion source efficliency calculation:
 The following are the observations made on the mass
spectrometer at the Geophysics Laboratory of the University of

British Columbia (A.B.L. Whittles, personal communication):

| -11 8
Total ion current . . . . 2.4 x 10 amp. (1.5 x 10
| ~1lon/sec)
-6 14
Mass flow . . . . . . . 0.3 x10 gm/hr (2.4 x 10
mol/sec)

Efficlency of the ion

source . . . .. . . . 0.6 x 10

2. Theoretically expected lon currents:

i‘f: Lxo xe x £°
where

oo, poslitive ion current

L .. ... ... . path length of electrons

P « « « ¢« v+ .« . . . gas pressure |

" . . .. .. ... electron beam intensity

E v e e e e e Townsend}s coefficient of
ionization

Reasonable estimates of these parameters are

L = 2 cm,

5§ = 10 electron/cm/mm Hg
e = 10" m Hg

T 500 x lO"6 amp
AN

= 10 amp.
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3. Effect of the source magnetic field on the electron path
lengths: ‘

Let V, and Vy be the velocity‘components in the z-
and r-directions respectively.

2

61-6'\/,: VY'%

where G: is the magnetic field in the source region and Y,

the radius of the spiral orbit.

d'% - \/‘z' GHT

d® = Yy Ak
Y

[

AL = /(d%)L-f (v, dg) o

—— e e e

YA VRV

/ T
dL = 1+ !fL AL
/ Vz)

where AL’ is the electron path length in time interval AL

where L~ is the total path length.
Since V, { v, for a well collimated beam, L/, =1 and also

the total path length 1s independent of the magnetic field.
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Appendix B

1. Numerical error estimation:

The commonly used numerical method of solving a set
of ordinary differential equations is after Runge (1895) and
Kutte (1901). For this method the bounds on the total error
committed at the end of each step, though difficult to evaluate
an exact expfession for, may be estimated from the data obtained
at several consecutive steps (Scraton, 1964) or obtained by con-
sidering different step sizes. If at three consecutive steps,
ay, , &Y, and AY, are computed with constant step size, an

estimate of error is given by Scraton (1964)

Error = <'° oy, + 19 AY,_ + AYs"shA}n"'gh}z,-qh?; /30

- On the other hand, if by, and 5?, are the computed values at

a certain point with step sizes W and 2h respectively, the
approximate total error is given by Hildebrand.. (1956)
Error = IAYf A\]l/%o

A few numerical experiments were carried out to estimate
the truncation and round-off errors. The round-off error was
estimated by carrying out the computation with different number
of significant digits: 4, 8, 12 and 16 on a variable word length
machine, IBM 1620. The table below shows the results of the com-

putation.
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Significant digits Relative round-off
error
4 La
8 : 1%
12 1072
16 0

(reference zero)

The bulk of computation was, however, carried out on
the IBM 7040 with single precision, that is, 9 digits. The
round-off error, therefore, is presumed to be less than one
percent. |

To obtain the above accuracy, 1t 1s not necessary to
have the step size small everywhere but only close to the slit
where the trajectory undergoes rapid changes, and away from it
we can take larger steps. The Runge-Kutte proéess allows the
variation of step size at any step; therefore, we have linearly
increased the step size -- the‘smallest step is equal to 0.05 at
the slit and increases to 2 at 40 units from the slit.

2. Mathematical complications introduced when the magnetic field
is taken into consideration:

For numerical integration of equation (2.15), we write

in the form

Y“ - -1 " (x) Y(x) +4>'(x):\('(x) tc/&
* ¢ (x)
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where C = B32. w. /22
m K
Since at X = Xo
@:O
and By + P’y =0
the above equation reduces to
" c
Y — L 95— = oo
Ve V__
in other words, the equation has a singularity at X=X, .
Assuming, however, @& = &X ag X—>o0 , it is easy to

see from the Cauchy's convergence test that the integral

\(=ff‘licﬁ%dx
is convergent, but the numerical process cannot be initiated
at that point. This difficulty can be overcome by adopting a
physical view--the force due to the magnetic field tends to zero
as veloclity tends to zero; therefore, we may drop off completely
the term containing the magnetic field when initiating the numeri-

cal process,
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