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ION OPTICS OF THE MASS SPECTROMETER ION SOURCE 

ABSTRACT 

The ion beam transmission e f f i c i e n c y of the ion 
source i s an important factor i n determining the sen­
s i t i v i t y of a mass spectrometer. Vauthier (1955) has 
shown for a simple source that the transmission e f f i ­
ciency i s very.low, .The present ..thesis examines the 
transmission e f f i c i e n c y ol a more complex source. 

The f i r s t part of the thesis deals with the ion 
op t i c a l properties of a m u l t i p l e , s l i t ion source. 
The region of ion withdrawal has been sketched by com­
puting the ion t r a j e c t o r i e s passing through the exit 
s l i t . It was found that for the more complex source 
the region of ion withdrawal i s also much smaller than 
the t o t a l i o n i z a t i o n space. It i s not p r a c t i c a l to 
confine the i o n i z a t i o n region .to the small volume from 
which ions are withdrawn. The ef f e c t of a source mag­
netic f i e l d has been taken into account. The pertur­
bation of the tr a j e c t o r y due to the f i e l d i s small, 
and therefore the mass discrimination due to the source 
magnetic f i e l d is' imperceptible for heavy ions unless 
the f i e l d is- of the order of a. few webers/m^, 

The multiple s l i t ion source produces a divergent 
ion beam, only a small f r a c t i o n of which penetrates 
the exit s l i t . : Obviously a system producing a beam 
converging at the exit s l i t .to,..a narrow p a r a l l e l ribbon 
w i l l be most efficient'.' ' In order" to devise such a 
system a theory of the inverse problem of p a r t i c l e 
motion i s developed i n the s.ecpnd. part of the t h e s i s . 
A procedure was 'found to determine a potential d i s t r i ­
bution required to guide a group of, p a r t i c l e s along 
a set of prescribed paths. There are two important 
l i m i t a t i o n s to the choice of paths: 

(a) "there are c e r t a i n paths^ which are not 
complete; that i s a p a r t i c l e following 
such a path i s turned back at c e r t a i n 
points which we c a l l ' mirror' points. 



(b) The p a r t i c l e s which do not s a t i s f y 
the i n i t i a l conditions of uniform 
energy and d i r e c t i o n may deviate con­
siderably from t h e i r projected paths 

, leading to what we have.called an 
unstable s i t u a t i o n . 

Fortunately the complete-paths are stable, and the i n ­
complete paths are unstable, Of the two types of 
convergent paths studied, namely, exponentially de­
creasing and damped o s c i l l a t o r y paths, the system of 
damped o s c i l l a t o r y paths i s stable.,. 
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ION OPTICS OF THE MASS SPECTROMETER ION SOURCE 

ABSTRACT 

The ion beam transmission e f f i c i e n c y of the ion 
source i s an important factor i n determining the sen­
s i t i v i t y of a mass spectrometer. Vauthier (1955) has 
shown for a simple source that the transmission e f f i ­
ciency i s very low. The present thesis examines the 
transmission e f f i c i e n c y of a more complex source. 

The f i r s t part of the thesis deals with the ion 
op t i c a l properties of'a multiple s l i t ion source. 
The region of ion withdrawal has been sketched by com­
puting the ion t r a j e c t o r i e s passing through the exit 
s l i t . It was found that for the more complex source 
the region of ion withdrawal i s also much smaller than 
the t o t a l i o n i z a t i o n space. It i s not p r a c t i c a l to 
confine the i o n i z a t i o n region to the small volume from 
which ions are withdrawn. The effect of a source mag­
netic f i e l d has been taken into account. The pertur­
bation of the t r a j e c t o r y due to the f i e l d i s small, 
and therefore the mass dis c r i m i n a t i o n due to the source 
magnetic f i e l d i s imperceptible for heavy ions unless 
the f i e l d i s of the order of a few webers/m^. 

The multiple s l i t ion source produces a divergent 
ion beam, only a small f r a c t i o n of which penetrates 
the exit s l i t . Obviously a system producing a beam 
converging at the exit s l i t to a narrow p a r a l l e l ribbon 
w i l l be most e f f i c i e n t . In order to devise such a 
system a theory of the inverse problem of p a r t i c l e 
motion i s developed i n the second part of the t h e s i s . 
A procedure was found to determine a potential d i s t r i ­
bution required to guide a group of p a r t i c l e s along 
a set of prescribed paths. There are two important 
l i m i t a t i o n s to the choice of paths: 

(a) there are c e r t a i n paths which are not 
complete; that i s a p a r t i c l e following 
such a path i s turned back at c e r t a i n 
points which we c a l l mirror points, 



(b) The p a r t i c l e s which do not s a t i s f y 
the i n i t i a l conditions of uniform 
energy and d i r e c t i o n may deviate con­
siderably from t h e i r projected paths 
leading to what we have c a l l e d an 
unstable s i t u a t i o n . 

Fortunately the complete paths are stable, and the i n ­
complete paths are unstable. Of the two types of 
convergent paths studied, namely, exponentially de­
creasing and damped o s c i l l a t o r y paths, the system of 
damped o s c i l l a t o r y paths i s stable. 
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Abstract 

The i o n beam transmission e f f i c i e n c y of the i o n source 

i s an important f a c t o r i n determining the s e n s i t i v i t y of a mass 

spectrometer. Vauthier ( 1 9 5 5 ) has shown f o r a simple source 

that the transmission e f f i c i e n c y i s very low. The present 

t h e s i s examines the transmission e f f i c i e n c y of a more complex 

source. 

The f i r s t part of the t h e s i s deals with the i o n o p t i c a l 

proper t ies of a m u l t i p l e s l i t i o n source. The region of i o n 

withdrawal has been sketched by computing the ion t r a j e c t o r i e s 

passing through the ex i t s l i t . I t was found that f o r the more 

complex source the region of i o n withdrawal i s also much smaller 

than the t o t a l i o n i z a t i o n space. I t i s not p r a c t i c a l to confine 

the i o n i z a t i o n region to the small volume from which ions are 

withdrawn. The e f f e c t of a source magnetic f i e l d has been taken 

into account. The per turbat ion of the t r a j e c t o r y due to the 

f i e l d is smal l , and therefore the mass d i s c r i m i n a t i o n due to the 

source magnetic f i e l d i s imperceptible f o r heavy ioris unless 
2 

the f i e l d i s of the order of a few webers/m . 

The mul t iple s l i t i o n source produces a divergent ion beam, 

only a small f r a c t i o n of which penetrates the e x i t s l i t . Obviously 

a system producing a beam converging at the e x i t s l i t to a narrow 

p a r a l l e l r ibbon w i l l be most e f f i c i e n t . In order to devise such 

a system a theory of the inverse problem of p a r t i c l e motion i s 

developed i n the second part of the t h e s i s . A procedure was 
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found to determine a po t e n t i a l d i s t r i b u t i o n required to guide 

a group of p a r t i c l e s along a set of prescribed paths. There 

are two important l i m i t a t i o n s to the choice of paths: 

(a) There are ce r t a i n paths which are not complete; 

that is, a p a r t i c l e following such a path i s turned 

back at c e r t a i n points which we c a l l mirror points. 

(b) The p a r t i c l e s which do not s a t i s f y the i n i t i a l condi­

tions of uniform energy and d i r e c t i o n may deviate 

considerably from t h e i r projected paths leading to 

what we have c a l l e d an unstable s i t u a t i o n . 

Fortunately the complete paths are stable, and the incomplete 

paths are unstable. Of the two types of convergent paths studied, 

namely, exponentially decreasing and damped o s c i l l a t o r y paths, 

the system of damped o s c i l l a t o r y paths i s stable. 
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Chapter I 

S e n s i t i v i t y of mass spectrometer 

1.1 Introduct ion 

The mass spectrometer has become an important t o o l i n 

the study of g e o l o g i c a l problems, as w e l l as i n many other 

branches of physics and chemistry. No matter what p a r t i c u l a r 

a p p l i c a t i o n with which the mass spectrometrist i s involved he 

Is in teres ted i n c e r t a i n fundamental proper t ies of h i s i n s t r u ­

ment. S p e c i f i c a l l y he i s concerned with i t s a b i l i t y to separate 

adequately ion beams of d i f f e r e n t r a t i o s and i t s a b i l i t y to 

produce ion beams of s u f f i c i e n t i n t e n s i t y f o r accurate measure­

ment. This t h e s i s i s concerned more d i r e c t l y with the second 

c o n s i d e r a t i o n . 

The s e n s i t i v i t y of a mass spectrometer depends l a r g e l y 

upon the s e n s i t i v i t y of the measuring system and the e f f i c i e n c y 

of the ion source. The shot noise represents a fundamental 

l i m i t a t i o n of the ion beam magnitude which can be measured, but 

p r a c t i c a l considera t ion may also present f u r t h e r l i m i t a t i o n s . 

I t i s very much more d i f f i c u l t to s p e c i f y the fundamental 

l i m i t a t i o n s of the ion source e f f i c i e n c y . 

To a casual observer the e f f i c i e n c y of the source would 

appear to be p a r t i c u l a r l y poor. For the mass spectrometer 

operated i n t h i s laboratory one molecule out of a m i l l i o n 

molecules reaches the magnetic analyser tube i n form of an 

i o n , which compares wel l with the f i g u r e s quoted by Mayne 

(I960) as 10~4 to 10~7. It Is n a t u r a l to look more deeply 

in to the loss of such a large f r a c t i o n of the sample. 
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The e f f i c i e n c y of the source may be thought of as a pro­

duct of two fa c t o r s : the f i r s t Is the i o n i z a t i o n e f f i c i e n c y , 

that i s , the f r a c t i o n of neutral molecules ionized by the 

electron beam; and the second Is the ion beam transmission 

e f f i c i e n c y , that i s , the f r a c t i o n of beam ultimately enter­

ing the magnetic analyser tube. To Increase the i o n i z a t i o n 

e f f i c i e n c y , we may increase either the i o n i z i n g electron cur­

rent or the p r e v a i l i n g gas pressure. Unlimited electron cur­

rent, however, cannot be obtained from an electron gun without 

impairing the s t a b i l i t y or reducing the l i f e of the filament. 

On the other hand, the p r e v a i l i n g gas pressure cannot be i n ­

creased i n d e f i n i t e l y without enhancing the scattering of the 

ion beam by the neutral gas molecules and causing other problems. 

The electrons may be concentrated i n a ti g h t beam by a 

uniform magnetic f i e l d i n the d i r e c t i o n of the electron beam 

and thus the scattering of the beam can be minimized. Since 

the electrons s p i r a l around the magnetic l i n e s of force, the 

e f f e c t i v e path length of an electron i s increased. The ef f e c ­

ti v e path length i s given by 

where L and L 1 are respectively the normal path length i n the 

absence of magnetic f i e l d and the e f f e c t i v e path length In the 

presence of magnetic f i e l d , and V r and V z are respectively 

the transverse and lon g i t u d i n a l v e l o c i t y components. As men­

tioned i n Appendix A i t Is questionable whether the Increase 

i n path length i s s i g n i f i c a n t . 
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The i o n o p t i c a l system of the iaton source consis ts of a 

stack of p a r a l l e l p la tes c a r r y i n g long but narrow, p a r a l l e l , 

coplaner s l i t s ( f i g . 1.1). The f u n c t i o n of the system i s to 

draw the ions from the ion chamber, to accelerate them to the 
i 

desired energy, and to i n j e c t them into the magnetic analyser 

tube as a narrow nondiverging beam. Such ions , according to 

Vauthier (1955), are drawn from a narrow s t r i p , whose width 

i s equal to the ex i t s l i t ( f i g . 1 . 2 ) . Consider the i o n source 

of the mass spectrometer of t h i s labora tory . The width of the 

region of i o n i z a t i o n (roughly equal to the width of the e lec t ron 

beam) i s about 0 . 5 cm. ; the width of the ex i t s l i t i s 0.01 cm. 

The e f f i c i e n c y of ion beam transmission, therefore , i s equal to 

0 . 0 2 . , 

1 .2 Ion o p t i c s of the source (review): 

The basic design of the ion source used i n modern gas source 

mass spectrometry has not changed since i t s f i r s t appearance i n 

1947, then designed by N i e r . The ion source used i n t h i s labora ­

tory , which i s a vers ion of the Nier source, i s shown i n f i g . 

1 . 1 . The ion o p t i c s of the complete system i s not known, except 

the approximate analyses of the s p e c i a l i z e d versions given by 

Jacob ( 1 9 5 0 ) , Vauthier ( 1 9 5 5 ) , Die tz ( 1 9 5 9 ) , and Boerboom ( i 9 6 0 ) . 

Jacob (1950) considered the ion o p t i c s of a system c o n s i s t ­

ing of a cathode, entrance p l a t e , and anode p l a t e . He measured 

the a x i a l p o t e n t i a l of the system i n an e l e c t r o l y t i c tank ( E i n ­

s t e i n and Jacob, 1 9 4 8 ) ; the data according to him could be 

represented, c lose to the cathode, by 
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where V i s the p o t e n t i a l , A and K are the constants ; and 

away from the cathode by 

V - A «-xf (. < 

A c losed s o l u t i o n of the p a r a x i a l t r a j e c t o r y equation (see 

page 15) 

where the prime denotes d i f f e r e n t i a t i o n with respect to x , was 

given by him. The method besides being approximate cannot be 

used over a wide range, because the approximation of the a x i a l 

p o t e n t i a l by an exponential f u n c t i o n i s not v a l i d over such a 

wide range. Vauthier (1955) considered a s ingle plate with a 

narrow s l i t and uniform f i e l d on i t s r i g h t hand s i d e . In the 

p a r a x i a l equation (1.1), he dropped o f f the f i r s t term and the 

rest he integrated numerica l ly . Obviously such a method i s 

only approximate. Die tz (1959) considered a system c o n s i s t i n g 

of a cathode, entrance p l a t e , and d e f l e c t o r p l a t e s . He measured 

the p o t e n t i a l d i s t r i b u t i o n i n the system from an analog model 

on conducting paper and drew the t r a j e c t o r i e s us ing the t r i g o n o ­

metric method (Jacob, 1951). In regard to the use of conducting 

paper, i t has been the experience of the present w r i t e r (Naidu, 

1962) that the p r e c i s i o n of p o t e n t i a l measurement i s l i m i t e d to 

about ±-5$. Furthermore, the trigonometric method requires the 

p o t e n t i a l d i f f e r e n c e between the two consecutive r e f r a c t i n g 

surfaces to be small , which i s d i f f i c u l t to a t t a i n , p a r t i c u l a r l y 

close to the s l i t , where the gradient i s very l a r g e . Hence, to 

meet the condi t ions of the method, we have to take a large 

number of small steps, which, i n e v i t a b l y , introduces a large 
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numerical e r r o r . L a s t l y , Boerboom considered a system of 

three p l a t e s , but he ignored while computing the ion t r a ­

j e c t o r i e s the perturbat ion f i e l d due to the s l i t s . Fur ther ­

more, he has not discussed the ion beam transmission e f f i ­

c iency of the source. 

We s h a l l compute the ion t r a j e c t o r i e s i n the ion 

source ( f i g . 1.1) which i s f a r more complex than any d i s c u s ­

sed by the previous authors. The basic problem i s to f i n d 

what f r a c t i o n of the t o t a l number of ions formed i n the i o n i ­

za t ion space (A i n f i g . 1.2) f i n d s i t s way through the e x i t 

s l i t . T h i s , n a t u r a l l y , demands a complete study of the system. 

1.3 Statement of the problem and scope of the present work. 

In the previous sect ions we have attempted to out l ine 

the f a c t o r s l i m i t i n g the s e n s i t i v i t y of a mass spectrometer. 

Poor i o n beam transmission appears to be a main l i m i t i n g f a c ­

t o r . The broad purpose of the present work i s to study the 

process of i o n beam transmission, i n the hope that such a 

study may contr ibute to the design of a bet ter source. With 

t h i s i n mind, we set f o r t h the f o l l o w i n g problems: 

(a) To study the ion o p t i c a l proper t ies of the sys­

tem shown i n f i g u r e 1.2; thereby to maximize the parameters 

f o r optimum e f f i c i e n c y . 

(b) To consider an inverse problem; that i s , hav­

ing s p e c i f i e d the beam shape f o r maximum e f f i c i e n c y , to ob­

t a i n the p o t e n t i a l d i s t r i b u t i o n required to guide the ions 

along the s p e c i f i e d paths. 

The mathematical theory of particle motion througa a system 
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of s l i t s representing an average source i s developed i n the 

second chapter. The p o t e n t i a l d i s t r i b u t i o n i n the system i s 

obtained a n a l y t i c a l l y , arid the t r a j e c t o r y equation i s integrated 

numerically. 

The theory of the inverse problem and i t s application to 

ion beam transmission are presented i n the t h i r d chapter. A 

new method of estimating the e f f e c t of the thermal energy i s 

developed. 

The l a s t chapter summarizes the main contributions of the 

present th e s i s . 
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Chapter II 

Multiple s l i t ion source 

Synopsis 

The motion of charged p a r t i c l e s through a system of p a r a l l e l 

and coplaner s l i t s i n the presence of crossed electromagnetic 

f i e l d i s considered. The equation of a tr a j e c t o r y i n non-

parametric, time independent form i s derived from basic considera­

tions. The approximations leading to a l i n e a r paraxial equation 

are c l e a r l y stated. The solution of the paraxial t r a j e c t o r y 

equation Is approached i n two d i f f e r e n t ways; that i s , (a) part-

by-part approach and (b) global approach. The part-by-part 

approach provides a physical insight into the problem and i t i s 

r e l a t i v e l y simple but les s precise; on the other hand, the global 

approach, though more precise, i s mathematically involved. 

F i n a l l y the e f f i c i e n c y of the ion beam transmission i s discussed 

i n the l i g h t of ion o p t i c a l properties of the system. 

2.1 Equation of traj e c t o r y 

The force exerted by an e l e c t r i c and magnetic f i e l d Hi on 

a charge q and mass m moving with a v e l o c i t y V i s given by 

where we assume V « c , and where c i s the v e l o c i t y of l i g h t . 

m - ^ ( ? + n7x i f ) ( 2 * 1 ) 

Let us consider the motion i n the x,y-plane, where 

I E , (2-2) 
and 

t = K (3-* (2.3) 



1 0 

Right-handed co-ordinate system U 3 e d 

throughout the present work. 



11 

subscr ipts X ; ^ } and £ i d e n t i f y the x , > , and £ components of 

the f i e l d r e s p e c t i v e l y ( f i g 2.0). On s u b s t i t u t i n g equations 

(2.2) and (2.3) in to (2.1), we obtain the system of equations 

X =• fy* ( E a + (2.4) 

and 

^ = K ( E K C . x ) (2.5) 

where the d o t ( . ) i n d i c a t e s d i f f e r e n t i a t i o n with respect to time 

t . We may now express the equations (2.4) and (2.5) i n non-

parametric form, i.e., independent of time t . M u l t i p l y i n g (2.4) 

with <*i and (2.5) with ^ , i n t e g r a t i n g , and adding we 

f i n a l l y obtain 

<£. AV = i w ( x 2 4 ^ ) (2 . 6 ) 

where ^ ^ v i s the net change i n the p o t e n t i a l energy of a 

p a r t i c l e plus the i n i t i a l energy. From (2 . 6 ) we obtain 

where the prime stands f o r the d i f f e r e n t i a t i o n with respect 

to x. But 

and s u b s t i t u t i n g in to (2.5) we obtain 
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or 

1 + - ^ + A V ( , 4 ^ * ) S m 0 (2.7) 

The above equation i s the basic equation describing the motion 

of a charged p a r t i c l e under the influence of a two dimensional 

e l e c t r i c f i e l d and a magnetic f i e l d along the z-axis. When 

E»z=0, the equation reduces to 

Equation (2.8), f o r the case of an e l e c t r i c f i e l d , was derived 

by Euler (1773) using the v a r i a t i o n a l p r i n c i p l e . For the sake 

of s i m p l i c i t y we s h a l l express E x and E-y i n terms of the 

p o t e n t i a l difference . , 

A v - Vo -V -r € 

where Ve i s the p o t e n t i a l at a* , the s t a r t i n g point and £ the 

i n i t i a l energy divided by the charge. Since 

and 37 

£* = Ti. 

The new symbol ^ a c t u a l l y refers to the energy of the p a r t i c l e 

( i t has a l l the properties of a p o t e n t i a l function), and we hence 

continue to c a l l i t p o t e n t i a l . Introducing these changes into 

the equations (2.7) and (2.8), we obtain 

/ / 

(2.9) 
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and 

(2.10) 

Paraxial approximations: 

Equation (2.9) may be considerably s i m p l i f i e d i f we r e s t r i c t 

ourselves to the paraxial region, that i s , the region close to 

the x-axis. I f the p o t e n t i a l § i s symmetric about the x-axis, 

we may write 

The above equation has to s a t i s f y the Laplace equation. On 

substituting (2.11) into the Laplace equation and l e t t i n g the 

c o e f f i c i e n t s of (jm C^-o- a n ')% o we obtain 

«K*>>J= ^ : ' ^ ^ + ^ . c - i j r x « % i 2 , 1 2 ) 

where the superscripts on denote the order of d i f f e r e n t i a t i o n 

with respect to x. Equation (2.12) may be looked upon as the 

Taylor's series expansion of c? around the x-axls. S u f f i c i e n t l y 

close to the axis, we may truncate the series to f i r s t two 

terms, v i z : 

Therefore 

and f i n a l l y ^ a." 
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We f u r t h e r assume that 0 + y ' 2 ) - ^ 1 , since ^'<<1 . I n t r o ­

ducing these approximations in to equation (2.9), we o b t a i n * 

2 * ? o y + * . ' y + ^ o
/ / ^ + s * / ¥ « i . * 0 (2.13) 

and when 6^ =. o 

A 6? G ^" ^ #07' + «S>0"^ = o (2 .14) 

Equations (2.13) and (2.14) contain the p h y s i c a l and geo­

m e t r i c a l parameters; i n order to reduce them to as few as 

p o s s i b l e , we introduce the dimensionless q u a n t i t i e s x , Y j 

and <J> defined by 
ac =. oo X 

where w and k are the constants with the dimensions of 

length and p o t e n t i a l r e s p e c t i v e l y . We f i n a l l y obtain the 

dimensionless form 

and 

A*.Y" + *„v+ -O ( 2 A 6 ) 

where the quantity u> &%J~K i s dimensionless . 

I t i s i n t e r e s t i n g to note some of the proper t ies 

of equation ( 2 . 1 6 ) : 

(a) since the equation i s independent of k , the 

t r a j e c t o r y i s independent of the actual magnitude of the 

p o t e n t i a l , but dependent on the geometry of the p o t e n t i a l 

d i s t r i b u t i o n . 

Equation 2.13 was f i r s t derived by Boerboom (1957) 
using v a r i a t i o n a l c a l c u l u s . 
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(b) i f we replace X by - x equation (2.16) remains 

invariant. P h y s i c a l l y speaking, a p a r t i c l e may t r a v e l i n a 

positive.or negative d i r e c t i o n ; such an ambiguity i n d i r e c t i o n 

w i l l play an important role i n the next chapter. 

2.2 Method of solution 

A closed solution of the paraxial equation can be obtained 

only f o r a few simple forms of the po t e n t i a l "I. : f o r example, 

when the p o t e n t i a l i s of the form given by 

=. cx x^-t- b x -t- C 
(2.17) 

Without going into the d e t a i l s , the solution of equation (2.16) 

may be given by(shibata ?•i960) 

y - A cos/a t -t- 6 Sin 1 
where 

£ =. -p=r In ( J A X l t b x t C + x/^ + 

^ t - ^ • Sin-' ( A * ' " ) 

Unfortunately, the po t e n t i a l even f o r a single s l i t , not to 

speak of a system of s l i t s , cannot be represented by (2.17); 

therefore, the above method i s of l i t t l e use and we have to 

resort to numerical integration. 

One could, of course, approximate any po t e n t i a l over a 

s u f f i c i e n t l y small range by (2.17) and then apply the closed 

solution given above. But such a procedure, besides being as 

time-consuming as a numerical integration, i s d e f i n i t e l y a d i s ­

advantage over the numerical integration, i n p a r t i c u l a r i n 

studying the motion of p a r t i c l e s which do not s a t i s f y the para­

x i a l conditions. 
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The Runge-Kutte method, though not the most accurate one— 

the question of e r ror i s a d i f f i c u l t one—is nevertheless a 

stable method, and that Is what was mostly needed f o r our work. 

The question of round-off e r rors i s discussed i n Appendix B. 

Before turning to the study of the ac tual s l i t system, 

an Important point that was so f a r neglected by the previous 

workers (Vauthier , 1955) i s discussed below. I f a p a r t i c l e 

were to s tar t at o from res t , that i s $ e =. o ; i t f o l l o w s 

from the equation (2.16) that the d i r e c t i o n Y^°) along which 

the p a r t i c l e moves and Y<°) > t n e distance from the ax is , 

are no longer independent of each other . Prom (2.l6) i t fo l lows 

that 

Y ; ( o) = - Z L . \CO) 

£' 
that i s , the d i r e c t i o n of motion i s f i x e d f o r a given value of 

V ( o ) . T h i s leads to the f o l l o w i n g complications which 

was overlooked by the previous workers. For numerical i n t e g r a ­

t i o n the equation (2.16) i s u s u a l l y wr i t ten i n the form 

Y"c X ) = - J - § " C X ) Y + % / ( > 0 Y / 

2 $ t * ) (2.18) 

Using a s tep-by-step method, s t a r t i n g at X - 0 , the r ight 

hand side becomes ^ , an indeterminate form. T h i s d i f f i c u l t y 

was overcome by Vauthier by assuming $/-*) very small but not 

zero . The present author has found that the above assumption leads 

to considerable e r r o r . The indeterminateness, however, can be 

removed by applying L 1 H o s p i t a l ' s r u l e . 
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If a. magnetic f i e l d i s present, an additional complication 

arises, which i s discussed i n Appendix B. 

The numerical computations were c a r r i e d out on the IBM 7040 

at the Computing Centre of the University of B r i t i s h Columbia. 

2.3 Subproblems 
After having derived the t r a j e c t o r y equation and having 

discussed the necessary numerical methods to solve the equation 

we proceed to analyse the mathematical model of a multiple s l i t 

source ( f i g 1.2). We adopt two d i f f e r e n t approaches, namely: 

(a) The analysis by parts, that i s , the model i s considered 

part by part, i n p a r t i c u l a r , the e f f e c t of each part on the 

ion t r a j e c t o r y . 

(b) The global analysis, that i s , the system i s considered 

as a whole. 

Although the analysis by parts i s not as rigorous as the global 

analysis, i t provides a considerable insight into the problem.^ 

The global analysis, on the other hand, i s much more accurate 

but leads, as we s h a l l see l a t e r , to a system of non-linear 

algebraic equations, the solution of which i s a problem i n 

i t s e l f . Since the physical understanding of the e f f e c t of each 

part upon the ion t r a j e c t o r y i s more important than the rigour 

i n the analysis we have emphasised on the analysis by parts. 

We s h a l l now divide the problem into f i v e parts and treat 

each one of them as a separate subproblem. 

(a) Entrance s l i t plate with uniform f i e l d on both sides 

of the plate ( f i g 2.1a). 
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(b) Entrance s l i t plate and r e p e l l e r plate ( f i g 2 . 1 b ) . 

(c) Entrance s l i t and ex i t s l i t plate ( f i g 2 . 1 c ) 

(d) Deflector plates ( f i g 2 .Id) 

(e) Magnetic f i e l d i n the source region ( f i g 2 . 1 e ) 

In case of each one of the above subproblems we f i r s t obtain the 

pote n t i a l d i s t r i b u t i o n using the method of conformal transfor­

mation, and then integrate the paraxial equation. 

Subproblem (a) 

A convenient method of solving a two dimensional boundary-

value problem i s by the method of conformal transformation. 

Under a conformal transformation, the Laplace equation and 

homogenous boundary conditions remain inva r i a n t . A mapping 

function that maps the u-axis of the w-plane into two semi-

i n f i n i t e plates i n the z-plane (see f i g 2 . 3 f o r d e t a i l s of 

mapping) i s given by 

£ - K t J + ( 2 . 1 9 ) 

where P i s constant. If the s l i t width i s i-1 (I=/HT ) , we 

obtain from ( 2 . 1 9 ) 

The boundary value problem now reduces to f i n d i n g the solution of 

the Laplace equation i n the w-plane, which s a t i s f i e s the boundary 

conditions: 

V - o on the u-axis 

V —> E, Re ( f u) 
W — * co 

V _> £, U ( P/u) 
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•+ E. 

V = 0 

J s. 

V = 0 

Z = X + < Y 

W = U + ' V 
\ 

\ 

« %o. -̂L . 
-1 0 1 

F i g . 2.2 
Conformal mapping of the w y o plane onto the whole of 
Z-plane by Schwarz-ChristofFel method. 



21 

Consider a f u n c t i o n V ( " , v - ) as defined by 

V ( u , v ) = R< ( > ( e i w + i i ) ) ( 2- 2°) 
VJ ' 

we see that the above f u n c t i o n s a t i s f i e s the Laplace equation 

and the boundary c o n d i t i o n s . To map t h i s p o t e n t i a l onto the 

z -plane , we note that equation (2.19) may be expressed as 

and 

- te ( 2- t l ^ - ^ 1 ) • 

On s u b s t i t u t i n g i n (2.20) we obtain 

A l l a r d and R u s s e l l (1963) considered a s i m i l a r problem (but 

assumed o ) and gave numerical values of p o t e n t i a l d i s t r i ­

bution around the s l i t . However, they d i d not express the 

p o t e n t i a l d i s t r i b u t i o n i n a convenient form as i n equation 

(2.21). I f we l e t Y= o , we obtain the a x i a l p o t e n t i a l 

V«(x) = { E, (x •+Jx-+0-25 ) t-i E a ( x -J*^7s) (2.22) 

We are now i n a p o s i t i o n to integrate the p a r a x i a l equation 

not ing 3?Cx) = \ ( f l ) - V t f (*) . Two cases have been i n v e s t i g a t e d : 

( i ) E z = o ; £ , ^ o (exact value i s not necessary) , that is , a 

p a r t i c l e under the inf luence of a c c e l e r a t i n g f i e l d o n l y . 

( i i ) Ei*ro,E,*cO that i s , the p a r t i c l e i s under the inf luence 

of the r e p e l l e r f i e l d and the a c c e l e r a t i n g f i e l d . 

A few t y p i c a l t r a j e c t o r i e s f o r case ( i ) of the p a r t i c l e s s t a r t i n g 
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from rest are shown i n f i g . ( 2 . 3 ) . The general shape of the 

t r a j e c t o r i e s i s i l l u s t r a t e d i n f i g . ( 2 . 4 ) . I t has, as shown, 

two cross-overs x c , and *c 2 , the p o s i t i o n s of which depend 

upon the s t a r t i n g plane fCXo) and the r a t i o £ - I / E , . F i g ­

ures (2 .5) and (2 .6) i l l u s t r a t e the r e l a t i o n s h i p between the 

p o s i t i o n of cross-overs and the parameters x c , the s t a r t ­

ing plane, and £ , 7 E ( > the r a t i o of r e p e l l e r f i e l d to the 

a c c e l e r a t i n g f i e l d . We see from f i g . (2 .5) that , when 

most of the ions (*o<-3j) are focused a short distance away 

from the s l i t . The p o r t i o n of the t r a j e c t o r y from the second 

cross-over onwards may be approximated by a quadratic f u n c t i o n 

where ro i s a constant depending upon * 0 and E^/H , , and 

>s i s the slope of the t r a j e c t o r y at the second cross-over 

and also a f u n c t i o n of xc and E*-/e, . I t may be i n t e r e s t i n g 

to note that equation (2.23) i s also the equation of t r a j e c ­

tory In a uniform f i e l d ; therefore , i t appears that the e f f e c t 

of the s l i t width does not extend beyond a distance equal to 

a few s l i t widths. 

In the presence of , however, the ions are no 

longer focused a short distance from the s l i t , but, depending 

upon e V / E , , over a considerable length along the a x i s . (See 

sect ion 2.5 f o r f u r t h e r d i s c u s s i o n . ) 

The approximations made to l i n e a r i z e the trajectory equa­

t i o n g i v i n g the p a r a x i a l equation are u s u a l l y very r e s t r i c t i v e 

and are val id only within the close neighborhood cf the a x i s . Most 
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E 2 + E i 

F i g . 2.4 

Graphical i l l u s t r a t i o n of a representative t r a j e c t o r y . 
The p o s i t i o n of cross-over X C l and X c ^ depends upon 
the s t a r t i n g plane P(XQ) and E g / E ^ . 
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authors seem to be s a t i s f i e d with the approximations without 

s t a t i n g how f a r from the axis one can go without v i o l a t i n g 

them. But we f e l t i t necessary to sketch the region around 

the axis where the p a r a x i a l approximation w i l l lead to an 

error l e s s than a c e r t a i n predetermined value . 

The p o t e n t i a l d i s t r i b u t i o n around the axis i s approxi­

mated by a ser ies 

The ser ies i s found to be convergent w i t h i n a domain bounded 

by a curve A i n f i g . (2.17). I f we take the f i r s t two terms 

only , as was done i n the p a r a x i a l approximation, the region 

where the f i r s t two terms are adequate i s shown by curve B 

i n f i g . (2.7). To test the net e f f e c t of the various approxi­

mations, and thus to determine the region of v a l i d i t y , we 

approximate the exact equation (2.16) to the increas ing degree 

of s e v e r i t y : 

(a) Exact equation 

(b) Taking the f i r s t two terms 

(c) Non- l inear p a r a x i a l equation 

* $ . Y " . 
D 

O + Y'V ( 2 . 2 4 C ) 

and (d) L inear p a r a x i a l equation 

(2.24d) 



P i g . 2.7 - Domain of convergence of ser ies expansion. 
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The above equations were integrated numerically and the t r a ­

j e c t o r i e s were compared f o r a simple case dealt with i n t h i s 

sub-problem. I t was found that, i f a p a r t i c l e were to start 

anywhere within the shaded region i n figure ( 2 . 8 ) , the r e s u l t i n g 

t r a j e c t o r y i s within 5$ of the exact t r a j e c t o r y obtained from 

equation (2.24a). Indeed, the l i n e a r paraxial equation gives 

better r e s u l t s as compared to the other two approximate equations 

i n the paraxial region. 

Subproblem (b) 

In the previous subproblem we have considered a single 

s l i t and a 'uniform' f i e l d on either side ( E, the accelerating 

f i e l d on the right hand side, and Ej. the r e p e l l e r f i e l d on 

the l e f t ) . Here we s h a l l consider a r e p e l l e r plate and the 

entrance s l i t plate as shown i n f i g 2.1b. I t i s i n t e r e s t i n g 

to know the e f f e c t of the r e p e l l e r plate, p a r t i c u l a r l y when i t 

i s close to the entrance s l i t plate, l e , when d i s small; and 

how i t d i f f e r s from that of the uniform f i e l d ( i e , d->oo ), which 

we considered i n the previous subproblem. 

In order to obtain the p o t e n t i a l d i s t r i b u t i o n , we use, as 

before, the method of Schwarz-Christoffel. The transformation 

function i s given by 

to + (2.25) 

where the constants IP and a are given i m p l i c i t l y by 

(2.26) 
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Conformal mapping of the w )>o plane onto the whole of 
Z-plane by Schwarz-ChrlstofFel method. 
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I t i s i n t e r e s t i n g to note that , i f we l e t d -**> , ^ 0 and p , 

then the transformation f u n c t i o n (2.25) reduces to (2.19) as 

expected. And also as , a ~ * [ a n d *° "*a > equation 

(2.25) reduces to 

which i s just the l i n e a r t ransformation. To solve the system 

of equations (2.26), we s h a l l e l iminate p between them and 

rewrite 

Let '? ^ d" 

and V| - a 

The above equation becomes 

* _ 2 ( a ^ , ^ . ^ ] (2.27-) 
» + 1 

The above equation may be solved i n a number of ways; f o r 

instance, Newton-Rapson, Regula F a l s i , e t c ; but here we s h a l l 

adopt a d i f f e r e n t method which does not require us to guess at 

the i n i t i a l approximation of the root . We s h a l l express (2.27'$ 

i n the form of a d i f f e r e n t i a l equation, v i z . : 

,2 
8 v 1 J 

and integrate numerical ly with the i n i t i a l values 



( 



34 

n. o 

( t h i s f o l l o w s from the f a c t that as d -* 0 0 / * -> 0 ). The 

s o l u t i o n i s shown i n f i g u r e (2.10). Having obtained the 

transformation f u n c t i o n , we proceed to solve f o r the poten­

t i a l d i s t r i b u t i o n , f i r s t i n the w-plane and then map onto 

the z - p l a n e . 

The boundary condit ions to be s a t i s f i e d are 

V - V 0 0 ^ 1 / - = . o , l u \ > a 

V - V 0 + . A V <?n o / = 0 , I IA I N< a 

The l a s t boundary c o n d i t i o n f o l l o w s from the f a c t that i n 

the z-plane 

Prom the transformation f u n c t i o n (2.25) i t f o l l o w s that 

To f i n d the p o t e n t i a l d i s t r i b u t i o n i n the w-plane, we con­

sider the f o l l o w i n g cases and superpose them l a t e r : 

(a) VV = Ve on the u - a x i s and uniform f i e l d i n the w>0 plane 
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(b) V b - AV 

the u - a x i s . 

on the u - a x i s n )> -a and zero on the rest of 

(c) V c - - A v on the u - a x i s , u>a and zero on the u - a x i s 

Vc = ( t a n ML- ̂ 
Therefore , the net p o t e n t i a l i n the w?0 plane i s given by 

V - - V , + v b ^ v f 

( 2 . 2 8 ) 

. w + a 

Now, i n order to map the p o t e n t i a l d i s t r i b u t i o n onto the z -plane , 

we have to Invert the transformation f u n c t i o n (2.25)> which i s 

equivalent to the process of s o l v i n g i t as a nonlinear equation 

f o r a given value of z . I t i s then expressed as a system of 

two nonlinear equations 

Z C k L IA - a (/ +<Tv J 

and 

Y - -
2 

2<A L- 1/2. 

(2.29a) 

(2.29b) 

Since M - OA = o i t f o l l o w s that x-^=o j u s i n g these as i n i t i a l 

c o n d i t i o n s , we can solve the above system of equations by the 



1 

Re] 

(a) 

>eller p l a 

B = V / E ! 

; e / f i e l d 

=- 0 . 0 2 , d = - 1 0 

\ 
\ 

\ 

(b) 

Y (c) 

(d) 

E2 / E ! =• 0 

EZ/E-L = 0 

B - 0 . 0 

, 0 0 2 , d-» 

.0 

CO 

N X 

\ \ v\ k \\ 
0 . 5 

(c). 

1 k • 9 " 

J.—" 

H q 

1 

""' vV^v^, 
\ \ « 

! ^ — J 2 T ~ 

P i g . 2 . 1 1 





38 

method we have devised f o r (2.27') • However, since we are, 

in teres ted i n the a x i a l p o t e n t i a l only (paraxia l approximation), 

i t i s s u f f i c i e n t to consider (2.29a) and l e t AA — 

which may be integrated numerical ly with the i n i t i a l condit ions 

vX - v = o . We are now i n a p o s i t i o n to integrate the p a r a x i a l 

t r a j e c t o r y equation. 

The computer was programmed to accept the values of d 

and * V E ( A V r e p e l l e r f i e l d , and £ a c c e l e r a t i n g f i e l d ) , 

then to compute the constants P and a , and to i n v e r t the 

transformation f u n c t i o n at each step. A few of the computed 

t r a j e c t o r i e s are shown i n f i g (2.11). The t r a j e c t o r i e s (a) and 

(b) are drawn to show the e f f e c t of proximity of the r e p e l l e r 

p l a t e ; t r a j e c t o r y (a) i s drawn f o r d=-\o and t r a j e c t o r y (b) 

f o r d —* c~ keeping the r e p e l l e r f i e l d the same, i e , =• c-ooi 

The mere presence of the r e p e l l e r pla te without any r e p e l l e r 

voltage ( A V = - D ) seems to a f f e c t the t r a j e c t o r y of the p a r t i c l e 

as shown by c and d i n the same f i g u r e . T h i s , of course, we 

would expect, because the r e p e l l e r plate w i l l d i s t o r t the 

p o t e n t i a l d i s t r i b u t i o n . The r e l a t i o n between the p o s i t i o n of 

the cross-overs ( x C l and xCg) and the r a t i o A v / k i s shown i n 

f i g u r e 2.12. The r e l a t i o n s h i p i s very s i m i l a r to that when the 

plate i s at i n f i n i t y (compare with f i g 2.6) 
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To summarize, we see that the e f f e c t of a r e p e l l e r v o l t ­

age i s i n no way much d i f f e r e n t from that of a r e p e l l e r f i e l d 

( i . e . when d = - °° ) unless i t Is close to the s l i t (d <^10). 

I f d i s very small (d —> 0) , the e f f e c t of the entrance s l i t 

plate i s considerably masked by the r e p e l l e r p l a t e , and i n the 

end, when d = 0, there i s no per turbat ion f i e l d at a l l . 

The p r i n c i p a l e f f e c t of the r e p e l l e r f i e l d i s to s h i f t 

the cross-over along the x - a x i s , thus to produce a l i n e a r l y 

d i f f u s e d focus which, i n the absence of a r e p e l l e r f i e l d , would 

have been sharp. Indeed, i t i s easy to adjust the r e p e l l e r 

f i e l d such that some of the p a r t i c l e s are focused just i n f r o n t 

of the e x i t s l i t . I f somehow a l l molecules are i o n i z e d w i t h i n 

a small space, we could , by adjust ing the r e p e l l e r f i e l d , focus' 

a l l the ions l n f r o n t of the e x i t s l i t (see sec t ion 2.5 f o r 

f u r t h e r d i s c u s s i o n ) . 

Subproblem (c ) : 

In t h i s subproblem we s h a l l consider the e f f e c t of the 

ex i t s l i t , p a r t i c u l a r l y on the angle of divergence of the beam. 

The geometry of the problem i s i l l u s t r a t e d i n f i g . (2.13). Since 

L >̂ > 1, the mutual coupl ing between the s l i t s i s n e g l i g i b l e ; 

therefore , each s l i t may be considered separately . The p o t e n t i a l 

d i s t r i b u t i o n i n the three d i f f e r e n t regions, using (2.21), may 

be expressed by 

region II 
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Entrance s l i t 
width 1 E x i t s l i t 

width S 

L - 4 0 

P i g . 2.13 

Entrance and E x i t s l i t p la tes , 
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E x i t s l i t width (S) 

Pig. 2.14 
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region I I I 

(2 .30) 

(centre of co-ordinates at the centre of the entrance s l i t . ) 

The p a r a x i a l t r a j e c t o r y equation i s now integrated where the 

a x i a l p o t e n t i a l <3? i s to be obtained from (2 .30) depending 

upon the r e g i o n . 

The angle of divergence of the beam f o r the d i f f e r e n t 

values of the ex i t s l i t i s shown i n f i g . (2 .14) f o r a p a r t i c l e 

s t a r t i n g at X 0 = - 4 , Y Q = 1.0 . For any other p a r t i c l e , s t a r t ­

ing at a height , say Y Q = <L , the same r e l a t i o n s h i p holds 

true except that the v e r t i c a l scale i s to be m u l t i p l i e d by a . 

The slope of the t r a j e c t o r y that just passes through the 

ex i t s l i t - - g r a z i n g trajectory-—can be determined from the 

f i g u r e s ( 2 . l 4 a ) and (2 . 14) . F i r s t l y , one determines Y 0 of the 

grazing t r a j e c t o r y f o r a given e x i t s l i t width (s) from f i g u r e 

( 2 . l 4 a ) and f i n a l l y , using f i g u r e ( 2 . 1 4 ) , the slope of the 

t r a j e c t o r y . 

Subproblem (d): 

In t h i s subproblem we s h a l l consider the d e f l e c t i o n of 

the beam passing between two p l a t e s , which are kept at d i f f e r e n t 

p o t e n t i a l s ( f i g . 2 . 15) . We s h a l l assume a uniform f i e l d on 

both sides of the p l a t e s . A narrow monoenergetic beam enters 

the gap from l e f t to r i g h t . F i r s t of a l l , we solve the boundary 

value problem to determine the p o t e n t i a l d i s t r i b u t i o n . It i s 

again convenient to use the method of conformal transformation 
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P i g . 2.15 

D e f l e c t o r places kept at d i f f e r e n t p o t e n t i a l s . 

Beam passes from l e f t to r i g h t . 



P o t e n t i a l d i s t r i b u t i o n around 
the d e f l e c t i n g places 



D e f l e c t i o n of beam 
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F i g . 2.17 
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which i s i l l u s t r a t e d i n P i g . (2 .2 ) . The boundary condit ions 

to be s a t i s f i e d by the p o t e n t i a l f u n c t i o n are 

V - V z on ' w <o , V = o 

V = V, o n l A > d , V-0 

V - » E ft«(Pw) w 

V — > E R e ( p /u) 

. w —>> o 
Such a f u n c t i o n i s given by 

J ] * J (2.31) 

where 

P = - % 

P o t e n t i a l d i s t r i b u t i o n may be mapped onto the z-plane using 

transformation f u n c t i o n (2.19). 

The p a r a x i a l approximations are no longer v a l i d because 

the p o t e n t i a l d i s t r i b u t i o n i s not symmetric about the axis 

(since V^\JZ ); therefore , we s h a l l have to integrate the 

exact equation (2.10). We may s i m p l i f y the p o t e n t i a l d i s t r i ­

but ion considerably by l e t t i n g E-j_ = E 2 > and thus we have the 

d e f l e c t i n g f i e l d given by 

n U 1 (2.32) 

which i s i l l u s t r a t e d i n f i g . (2 .16) . Except i n the immediate 

v i c i n i t y of the gap, the f i e l d i s normal to the radius vector 

and i n v e r s e l y p r o p o r t i o n a l to the r a d i a l d i s t a n c e . Introducing 

the above approximation, the t r a j e c t o r y equation may be written 

**Y"+ Y'- ^T7[ -° AV I 

1*1 >° (2.33) 



1 ?o». / 

(M
in

.)
 

/ A 

/ o 

/ a 

60' / 

igle of i n c l i n a t i o n 
r i o n t r a j e c t o r y 
b +25 u n i t s 

2 1 / 0 

60' 

-1 AV/E-L -2 

120' 

F i g . 2.18 



D e f l e c t 
t r a j e c t 

ion of the 
ovj at +25 

c e n t r a l 
u n i t s 

V 

• 1.0 -

E 2 / E 1 = 1.0 

L /o 1 
=1 

-1.0 

P i g . 2.19 



49 

The equation (2.33)> though simple, i s not very u s e f u l when we 

have to trace the t r a j e c t o r y across the gap. We have, therefore , 

preferred to integrate the exact equation. A beam o r i g i n a l l y 

p a r a l l e l to the x -axis i s d e f l e c t e d by the p l a t e s as shown i n 

f i g . ( 2 . 1 7 ) . I t should be noted that the beam s t i l l remains 

p a r a l l e l a f t e r i t s passage through the gap. The t o t a l d e f l e c ­

t i o n from the axis i s l i n e a r l y r e l a t e d to A V / E ( f i g . 2 . l 8 ) . 

One may compute the t o t a l d e f l e c t i o n at any distance X(X ) 1) 

f o r a given value of ^ v / L from the f i g u r e s (2.17) and ( 2 . l 8 ) ; 

as f o r example, suppose we wish to f i n d the d e f l e c t i o n at a 

distance X = 10 and A V / E . - 1. From f i g . (2.17) we measure 

the d e f l e c t i o n at X = 10 ( A V / £ = - 0 . 5 ) . P lot t h i s point on 

f i g . ( 2 . l 8 ) and draw a l i n e j o i n i n g to the centre of co-ordinates , 

thus g i v i n g a new r e l a t i o n between the d e f l e c t i o n and 6 V / E . 

Using the new r e l a t i o n , i t i s easy to determine the t o t a l e f ­

f e c t f o r any value of ^ V e . . S i m i l a r l y , we can determine 

the angle of d e f l e c t i o n at any point X from f i g u r e s (2.17) 

and ( 2 . 1 9 ) . 

Subproblem (e) : 

In t h i s subproblem we s h a l l consider i o n t r a j e c t o r i e s 

i n the presence of a magnetic f i e l d . A magnetic f i e l d of the 

order of a few hundred gauss i s of ten used to guide the i o n i z ­

ing e l e c t r o n beam i n the source r e g i o n . We s h a l l assume a 

uniform magnetic f i e l d normal to the plane of a paper. The 

p a r a x i a l t r a j e c t o r y equation taking in to account the magnetic 

f i e l d i s given by 

z $ Y "+ <$,'Y ' -r <£>„"Y + \W !~I±\ = O 
V l< rvi 0 
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(2.34) 

(see p . 14) 

where 8* stands f o r the magnetic f i e l d , and w i s equal 

to the entrance s l i t width. The presence of the magnetic f i e l d 

introduces an a d d i t i o n a l term into the p a r a x i a l equation and 

makes i t inhomogeneous. If Y-̂  and Yg are the fundamental 

solut ions of the corresponding homogeneous equation, the p a r t i ­

cular s o l u t i o n may be given i n terms of Y-, and Y9 as f o l l o w s : 

Therefore , the e f f e c t of the magnetic f i e l d i s given by (2.35). 

Since 6?- i s constant, i t may be taken outside the i n t e g r a l 

s i g n ; and hence the e f f e c t i s p r o p o r t i o n a l to the f i e l d strength. 

In p r a c t i c e , however, to obtain the p a r t i c u l a r s o l u t i o n , i t i s 

convenient to integrate the equation with the homogeneous i n i ­

t i a l condit ions ( i . e . y(o)-\{/co)=. o ). There appears to ex is t 

a c e r t a i n d i f f i c u l t y as pointed out before to i n i t i a t e the 

numerical s o l u t i o n . The inhomogeneous part i s s ingular at the 

s t a r t i n g point because q> = o at the s t a r t i n g p o i n t . 

Y i 
r* —— 

*• (2.35) 

where 
A ( Y 0 Y g Y , Y v - Y ^ Y ' J 
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By v i r t u e of the i n i t i a l condit ions ( y to) - Y ' ( O ; = . o )', the 

f i r s t two terras vanish, but the l a s t term becomes i n f i n i t e . 

I f , however, 
\*-Xc\ 

X —> Xp 

the i n t e g r a l i s convergent as shown by the Cauchy test (see 

Appendix B ) . T h i s , however, does not help to i n i t i a t e the 

numerical s o l u t i o n . We have to adopt a p h y s i c a l viewpoint : 

when the v e l o c i t y of the ion i s small ( $ —? o ), the force 

due to the magnetic f i e l d w i l l be small , hence one may ignore 

the inhomogeneous part when i n i t i a t i n g the numerical s o l u t i o n . 

The equation (2.34) was integrated numerical ly f o r the 

f o l l o w i n g values of the constants: 
2 

g> = .1, .5 webers/m 

E = 10^ vol t /meter 

w = I O " 3 meter 

\ = 1.7592 x 10^ coloumb/kilogram 
(electron) 

The t r a j e c t o r i e s are shown i n f i g . (2.21). The p a r t i c u l a r s o l u ­

t i o n of (2.34) f o r Qir - 1 w/v>1 and other constants as above 

i s i n f i g . (2.22). T h i s f i g u r e may be used to compute the ef ­

f e c t of the magnetic f i e l d f o r any other set of constants (e .g . 

f o r PbCch 3 )^ ion i t may be obtained by m u l t i p l y i n g by a 

f a c t o r 0 . 0 0 ^ 5 ) . 

An important question i s often asked regarding the mass 

d i s c r i m i n a t i o n due to the magnetic f i e l d i n the source r e g i o n . 

Consider two ions (isotopes) of masses and mt , 

so that 
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W~~ I t 
_ 1 £J?1 

The t r a j e c t o r i e s of the two ions w i l l be separated by 

( = 0 . 0 0 8 f o r P b * ° « a n d Pb50sC^3)£ i o n s ) . Nor­

mally , the separation of heavy ions ( w » i ) i s very small , 

and c e r t a i n l y much smaller than the ex i t s l i t even f o r the 

f i e l d of the order of 1 weber /m 2 „ Moreover, the separation 

may be minimized by p l a c i n g the e x i t s l i t i n the neighborhood 

of *Y = 0 . In some cases i t may be p o s s i b l e to f i l t e r out 

the l i g h t e r ions by adjust ing the magnetic f i e l d . 

2 . 4 Global a n a l y s i s : 

In the previous sec t ion we analysed the ion o p t i c a l 

system ( f i g . 1 . 2 ) consider ing each part separately . We now 

proceed to t reat the problem on a g lobal b a s i s . The primary 

task i s to f i n d the p o t e n t i a l d i s t r i b u t i o n w i t h i n the space 

bounded by the various p l a t e s . We assume as before the s l i t s 

to extend to 1 <*> i n the d i r e c t i o n of the y - a x i s . Boerboom 

(1957* 1959* i 9 6 0 ) considered a system of three such s l i t s 

and obtained the a x i a l p o t e n t i a l . The f o l l o w i n g treatment 

i s e s s e n t i a l l y based on h i s work and also gives a method 

of i n v e r t i n g the transformation f u n c t i o n . We s h a l l use the 

method of conformal mapping to solve the boundary value pro­

blem. 

The mapping f u n c t i o n i s given i n the d i f f e r e n t i a l 

form as 

cK u) 

(*)+*)"' ĉ +i0/' tw+b)'<:̂  + <i)+,( o" V * o + l ( 2 . 3 6 ) 
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where a, k , b , ? , c and « are constants and s a t i s f y 

the r e l a t i o n 

Equation (2 .36) may be written as 

= K [ ( AC + 3 D ) + AC ) + AO f ££) 
+ CC 

where 
(2.37) 

(2.38) 

Integrat ion of equation (2 .37) y i e l d s the transformation f u n c t i o n . 

+ 6 D ' ( ^ ) ' n ( ^ ) ] ( 2 . 3 9 ) 



59 

There are six unknowns, and therefore we seek six independent 

equations connecting them. We can get three of them by i n t e ­

grating equation (2.37) about a , fc5 and c over an i n f i n i t e l y 

small semicircle. 

1 » « C f t ' ^ J , H C « l - e l ) 

n M r - ^ Q = . - u ( b ^ - ^ X ^ - %L)C b K ^ ) 7T 

T t C ^ - c U ) ^ - ^ ( c - - ^ ) C ^ - f j ( c - - , v J 

(2.40) 

The remaining three r e l a t i o n s we obtain by integrating equation 

(2.37) across the three s l i t s . The three equations are 

t UJ , -

J, c^-^K^^K^-^J (2.4i) 

After integration equations (2.41) become 

CP 

L K (i-b) ct - i ; J . 

(2.42) 



6 0 

w h e r e < =. ' A C + A ( 5 + e c ' - f S>D' 

A- Ac (£z£) 
A a, 

y - AD ( b r - ^) 
2 b 

a n d a.cv 

6 - 0 D' C£l±lJ ( 2 . 4 3 ) 
A C 

I n ( 2 . 4 0 ) t o m a k e t h e r i g h t h a n d s i d e r e a l a n d p o s i t i v e , we 

h a v e t o a s s u m e o f t h e t y p e 

w h e r e t i s a p o s i t i v e u n k n o w n c o n s t a n t . S u b s t i t u t i n g (2.38) 

i n ( 2 . 4 3 ) , we o b t a i n 

< - I 

- a = ( ft-i c) .1 

- c d3-<U) = o-i ( 2 . 4 4 ) 

M a k i n g u s e o f ( 2 . 4 4 ) , we m a y w r i t e e q u a t i o n s ( 2 . 4 0 ) a n d ( 2 . 4 2 ) 

a s 
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(2 .45) 

The set of s ix nonlinear equations given by (2 .45) may be solved 

f o r s ix unknowns. The transformation f u n c t i o n (2 .39) may now 

be wri t ten as 

or 

b L v U-A n + a / (A. 

u+b / ' V u - c u + c J 

(2.46) 

2- 0 - f - c ) V y> - j 

(2.47) 

Prom (2.46 and 2.47) i t fo l lows that the V" - a x i s i s mapped 

onto the x -axis and the u. - a x i s onto the y - a x i s . To f i n d the 

inverse transformation of (2.46) and ( 2 .47), we express these 

equations as a system of two ordinary equations with x and y 

as independent v a r i a b l e s and integrate them with the f o l l o w i n g 
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as i n i t i a l condit ions 

Having obtained the transformation f u n c t i o n , we proceed 

to solve the p o t e n t i a l problem f i r s t i n the w-plane and l a t e r 

map onto the z-plane using the inverse t ransformation. In 

the w-plane the p o t e n t i a l f u n c t i o n has to s a t i s f y the f o l l o w ­

ing boundary c o n d i t i o n s : 

V - o OK ( a, - «0 

V - 0 * ( b, c) 

(see f i g u r e 2.24) 

To solve the boundary value problem, we consider only one of 

the boundary condi t ions at a time and assume V = o on the 

rest of the u - a x i s . These solut ions are then to be added to ­

gether to give the required s o l u t i o n . T h i s k ind of superposi­

t i o n i s permissible f o r l i n e a r d i f f e r e n t i a l equation such as 

the Laplace equation. The s o l u t i o n i s then given by 

' re L K - B I M V - \ u-a u + «JJ 

rt L I A - c U- b j K [_ * + 'C u-fb J 

34 
JT c - u t4 U J 

(2.49) 

T h i s Is v a l i d everywhere except at c e r t a i n points on the u-axis 
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( i . e . <yt b 11, f, %) i , - a J - b J - t, -1 , - f, - | ). T h i s completes the 

formal s o l u t i o n of the boundary value problem. 

2.5 E f f i c i e n c y of ion beam transmission: 

The present sect ion i s devoted to the drawing together 

of the r e s u l t s of the d i f f e r e n t subproblems discussed i n sect ion 

2.3. We s h a l l a lso discuss the ion o p t i c a l proper t ies of the 

system, p a r t i c u l a r l y with reference to the ion beam transmis­

sion e f f i c i e n c y , that i s , the f r a c t i o n of the beam u l t i m a t e l y 

enter ing the magnetic analyser tube. 

Since the s l i t widths are much smaller than the separa­

t i o n between the two consecutive p l a t e s , the mutual coupling 

i s expected to be n e g l i g i b l e . The r e p e l l e r p l a t e , however, i s 

not always as f a r as i s required (d ^ 10) f o r minimum c o u p l i n g . 

The f o l l o w i n g d i s c u s s i o n , nevertheless , i s based on the assump­

t i o n that the r e p e l l e r plate i s at a distance equal or greater 

than ten times the entrance s l i t width. Further , I t was not 

f e l t necessary to compute the ion t r a j e c t o r i e s . u s i n g the more 

precise p o t e n t i a l d i s t r i b u t i o n given by (2.49). The p r e c i s i o n 

thus gained would be unmeanlngful consider ing the e r rors i n t r o ­

duced by the p a r a x i a l approximations and the assumption of zero 

i n i t i a l energy. 

The t y p i c a l i o n t r a j e c t o r i e s i n the absence of a r e p e l l e r 

f i e l d are shown i n the f i g u r e (2.25). They have, i n general , 

two c r o s s - o v e r s . Furthermore, a l l the ions s t a r t i n g from rest 

are bound to pass through the entrance s l i t " * and cross the axis 

A p a r t i c l e w i l l not s t r i k e the p l a t e s because they 
are at a higher p o t e n t i a l than the surrounding space. 
I f , however, the p a r t i c l e has f i n i t e i n i t i a l energy, 
t h i s w i l l not be true f o r a l l p a r t i c l e s . 
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at a short distance from the s l i t and thus produce 

a f a i r l y sharp f o c u s . The p o r t i o n of the t r a j e c t o r y to the r i g h t 

of the second cross-over may be approximated by a simple quadratic 

expression (2.23), which i s , i n c i d e n t l y , the i o n t r a j e c t o r y i n a 

uniform f i e l d . 

The t r a j e c t o r i e s are divergent ; hence only a few p a r t i c l e s 

are capable of passing through the ex i t s l i t which i s of ten much 

smaller than the entrance s l i t (about a tenth of entrance s l i t 

width) . By a process of ac tual observation whether a given t r a ­

jec tory s t a r t i n g at a point PCx 0 , ^ 0 ) passes through the e x i t s l i t 

kept at a distance of f o r t y s l i t widths, we have sketched i n f i g . 

(2.26) a region — a narrow h o r i z o n t a l s t r i p of width approxi ­

mately equal to the e x i t s l i t width. A p a r t i c l e s t a r t i n g any­

where w i t h i n the region i s bound to pass through the ex i t s l i t , 

and a l l ions formed outside the region are n a t u r a l l y l o s t comp­

l e t e l y . T h i s i s c a l l e d the area of ion withdrawal. 

However, the s i t u a t i o n i s somewhat d i f f e r e n t i n the pre ­

sence of a r e p e l l e r f i e l d i n the i o n i z a t i o n space. Now the second 

cross-over i s no longer sharp as before but l i n e a r l y d i f f u s e d 

along the a x i s . It i s n a t u r a l to expect to be able to adjust 

the r e p e l l e r f i e l d such that the cross-over point l i e s just i n 

the neighbourhood of the e x i t s l i t . Unfortunately , I t i s not 

p o s s i b l e to do so f o r a l l the ions as we see i n f i g . ( 2 . 2 7 ) . 

Only a small f r a c t i o n of ions coming from a c e r t a i n s p e c i f i c 

region of the i o n i z a t i o n space w i l l cross the axis near the e x i t 

s l i t . In f i g . (2 .29) we have given a r e l a t i o n between the 
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4 6 
R e p e l l e r V o l t a g e 

P i g . 2.30 
E x p e r i m e n t a l l y o b s e r v e d r e l a t i o n s h i p b e t w e e n t h e r e p e l l e r 

v o l t a g e a n d t h e i o n c u r r e n t . 
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E Z / E , = 0.0 

F i g . 2.31 
E f f e c t of r e p e l l e r f i e l d on the shape of the s t r i p s . 
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r e p e l l e r f i e l d and the p o s i t i o n of the s t r i p of ion withdrawal. 

For a given value of a r e p e l l e r f i e l d , , we see from f i g . ( 2 . 2 9 ) 

that there are two values of X0 , two s t r i p s of ion w i t h ­

drawal ( f i g . ( 2 . 2 7 ) ) . The shape of the s t r i p s i s shown i n f i g . 

2 . 2 8 f o r f *7E, = 0 . 0 0 2 . Thus, i n the presence of a r e p e l l e r 

f i e l d the ions from a v e r t i c a l s t r i p are focused i n the neigh­

bourhood of the ex i t s l i t . 

I f somehow the i o n i z a t i o n could be confined to the narrow 

s t r i p , we should be able to withdraw almost a l l the i o n s . But 

unfor tunately , i n p r a c t i c e , i t i s d i f f i c u l t to confine the i o n i ­

z a t i o n to such a r e s t r i c t e d space ( 2 to 3 mm). However, we can 

adjust the r e p e l l e r f i e l d such that the region of withdrawal 

corresponds to the region of high ion d e n s i t y . The peaks i n the 

experimentally observed r e l a t i o n between the r e p e l l e r f i e l d and 

the ion current ( f i g . ( 2 . 3 0 ) ) may be explained by the above con­

c l u s i o n based on the t h e o r e t i c a l c o n s i d e r a t i o n s . 

The e f f e c t of the ex i t s l i t i t s e l f on the Ion t r a j e c t o r y , 

e s p e c i a l l y the change i n the angle of i n c l i n a t i o n as an ion 

passes through the e x i t s l i t i s found to be very small ( less 

than 1 0 $ ) . Also the e f f e c t of the magnetic f i e l d i s small , 
2 

unless the f i e l d i s of the order of a few webers/m . Fur ther ­

more, there w i l l be no percept ible mass d i s c r i m i n a t i o n due to 

the source magnetic f i e l d unless the f i e l d i s l a r g e . 

In summary, the ion beam transmission e f f i c i e n c y could be 

increased only i f we could confine the i o n i z a t i o n to a r e s t r i c t e d 

space and adjust the r e p e l l e r f i e l d a c c o r d i n g l y . 
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Chapter I II 

The inverse Problem of P a r t i c l e Motion 

Synopsis : 

In t h i s chapter we introduce the concept of the inverse pro­

blem of p a r t i c l e motion, i n the usual problem we seek the t r a ­

jec tory of a p a r t i c l e , having been given the e l e c t r o s t a t i c poten­

t i a l d i s t r i b u t i o n . In the inverse problem, we seek the poten­

t i a l d i s t r i b u t i o n to guide a p a r t i c l e along a prescr ibed path. 

S t a r t i n g from the basic t r a j e c t o r y equation and Laplace 

equation we have shown that f o r any prescr ibed path a unique 

p o t e n t i a l d i s t r i b u t i o n can be obtained. Next, we general ize the 

problem: a unique p o t e n t i a l d i s t r i b u t i o n can be obtained f o r a 

set of prescr ibed paths s a t i s f y i n g c e r t a i n geometrical r e l a t i o n s . 

F i n a l l y , using the theory, two types of ion sources are 

proposed. The s t a b i l i t y a n a l y s i s , however, shows that only one 

of them i s s table , and therefore p r a c t i c a l . The l a s t sec t ion 

deals with the p r a c t i c a l r e a l i z a t i o n of the required p o t e n t i a l 

d i s t r i b u t i o n . 

3.1 Theory of Inverse Problem: 

Usual ly we are given a p o t e n t i a l d i s t r i b u t i o n and required 

to f i n d the p a r t i c l e t r a j e c t o r i e s . But i n the most a p p l i c a t i o n s 

we desire the p a r t i c l e s to f o l l o w c e r t a i n paths; f o r Instance, 

c e r t a i n des i rable paths i n the ion source of a mass spectrometer 

are shown i n f i g . 3.1. This gives r i s e to the inverse problem: 

that i s , to f i n d a p o t e n t i a l d i s t r i b u t i o n to guide the p a r t i c l e s 
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Converging paths. 
The shaded s t r i p stands f o r the i o n i z a t i o n space. 
The ions are to be guided along a set of converging 
paths. 

Damped o s c i l l a t o r y paths. 
The ions are to be guided along the paths. 
The damped o s c i l l a t o r y paths are i n a way~ 
complementary to converging paths. For more 
explanation see text p . 85 . 

F i g . 3 .1 
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along the prescr ibed paths. In t h i s sect ion we are going to 

develop the basic theory of the inverse problem of p a r t i c l e 

motion. 

The author i s unaware of any previous work on t h i s 

problem except a suggestion, f i r s t made by Pierce (1954), that 

the p a r a x i a l equation (2.16) may be regarded as an equation 

f o r the p o t e n t i a l on the axis i f ^ and i t s d e r i v a t i v e s 

are g iven . 

The f o l l o w i n g are the two basic theorems i n the 

theory of the inverse problem: 

(a) There e x i s t s a p o t e n t i a l d i s t r i b u t i o n to guide 

a p a r t i c l e along any desi red path. 

(b) A group of p a r t i c l e s may be guided along a set 

of p a r a x i a l paths. 

The proof of the above theorems i s given below. We s h a l l 

confine ourselves to the two dimensional case; however, the 

arguments may be extended to the three dimensional case, too . 

In the t r a j e c t o r y equation <̂  t ^ ' and y" are now known (or 

prescribed) funct ions of x. The t r a j e c t o r y equation and 

Laplace equation form a system of p a r t i a l d i f f e r e n t i a l equa­

t i o n s . 

(The c o e f f i c i e n t s of $ x and fc? are funct ions of x o n l y . ) 

(3.1) 

I'D - Q 
(3 .2) 
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We have to solve the above system of equations f o r the poten­

t i a l . The technique of s o l v i n g the equations i s as f o l l o w s : 

The equation (3.1) i s solved f i r s t , given the p o t e n t i a l § along 

the prescr ibed path, to obta in <̂ >, ^ ^ and i n the neigh­

bourhood of the path. Knowing Ox. and we can compute the 

normal d e r i v a t i v e ^ . The p o t e n t i a l cb and i t s normal 

d e r i v a t i v e const i tute the Cauchy problem. Now i n order 

to f i n d the p o t e n t i a l <̂  everywhere i n the x, y -plane , we 

have to solve the Cauchy problem f o r (3.2). The p o t e n t i a l 

i s assumed to be a n a l y t i c as required f o r the uniqueness of the 

Cauchy problem (Hellwig, 1964). 

The f i r s t order p a r t i a l d i f f e r e n t i a l equation (3.1) i s 

equivalent to a system of ordinary d i f f e r e n t i a l equations d e f i n ­

ing the c h a r a c t e r i s t i c s of the equation (see Courant and H i l b e r t , 

p . 62). I f we Introduce a parameter arc length along the 

c h a r a c t e r i s t i c s , the system of ordinary equations becomes 

Ay _ 

- - _ 2 - (3.3) 
7 d 5 |_v ~v' 2-

where, as u s u a l , the prime i n d i c a t e s d i f f e r e n t i a t i o n with respect 

to x. Every surface generated by (3-3) i s an i n t e g r a l surface of 

(3.1). A unique surface, however, may be defined from the i n i t i a l 

value problem f o r (3.3). Let us define a space curve C by 
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p r e s c r i b i n g x ; , and ĉ> as a f u n c t i o n of a parameter t 

(arc length) such that the p r o j e c t i o n c0 of c on the x , y -

plane coincides with the prescr ibed path of a p a r t i c l e . Now, 

i n the neighbourhood of c0 , we seek an i n t e g r a l surface 

t j ^ C x ^ ; which passes through C , that i s , a s o l u t i o n of 

(3.1) f o r which 

fciC-t) =. $ ( x it) , y tt)) 

holds i d e n t i c a l l y i n t . To solve the i n i t i a l value problem, 

l e t us draw through each point of C a c h a r a c t e r i s t i c , that Is , 

the s o l u t i o n of (3.3); t h i s i s poss ible i n a unique ,way w i t h i n 

a c e r t a i n neighbourhood. We thus obtain a f a m i l y of character­

i s t i c s 

x - x C s , trj 

These curves w i l l generate a surface ^ C i , ^ i f , u s i n g the 

f i r s t two f u n c t i o n s , we can express s and "t i n terms of x 

and ^ To be able to do t h i s , we must show that the Jacobian 

A = • l l _ l l • ?2L 

i s non-vanishing . Using equation (3*3) we obtain 

A = y' yt. + x t 

which Is non-vanishing f o r a l l values of y/ . The geometrical 
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i n t e r p r e t a t i o n of the c o n d i t i o n that the Jacobian i s non-vanish­

ing i s that at every point on c 0 the p r o j e c t i o n of the tangent 

d i r e c t i o n and c h a r a c t e r i s t i c d i r e c t i o n on the x ,y -plane are d i s ­

t i n c t . In f a c t In our case, since 

cwA tl =- -I 

\ A X.I tk<\A ^ 

the base c h a r a c t e r i s t i c and the path of a p a r t i c l e are orthogonal . 

We therefore conclude that f o r any simple * prescr ibed path a 

s o l u t i o n of equation ( 3 . 1 ) may be found i n the neighbourhood of 

the path; and therefore , , the normal gradient may be found. 

The p o t e n t i a l d i s t r i b u t i o n i n the x ,y -plane may be obtained as 

a s o l u t i o n of the Cauchy problem f o r equation ( 3 - 2 ) . T h i s es ta ­

b l i s h e s theorem I . We next proceed to the second theorem. 

We r e c a l l that In the s o l u t i o n of ( 3 . 1 ) as an i n i t i a l 

value problem, the p o t e n t i a l ^ was prescr ibed a r b i t r a r i l y 

along the p a t h of a p a r t i c l e . T h i s may now be chosen such that 

a group of p a r t i c l e s moves along a set of p a r a x i a l paths that are 

prescr ibed again a r b i t r a r i l y . The t r a j e c t o r y equation of the 

neighbourhood p a r t i c l e s i n the p a r a x i a l approximations i s given 

by Waters ( 1 9 5 8 ) : 

( 3 . 5 ) 

* 
The path may not have any double p o i n t s . 
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where M. Is the normal distance of a neighbouring par­

t i c l e from the c e n t r a l t r a j e c t o r y , and k the pad-iu-o of curva­

ture of the c e n t r a l t r a j e c t o r y at a given p o i n t . In equation 

(3*5) we may assume that M- and K are known (or prescribed) 

funct ions and solve the equation f o r <̂> . Thus, one may obtain 

§ f o r any prescr ibed path of a p a r t i c l e . But unless the 

set of paths i s s u i t a b l y chosen,the p o t e n t i a l § w i l l be d i f ­

ferent f o r each i n d i v i d u a l path. The c o n d i t i o n that the set 

of paths must s a t i s f y so that a unique p o t e n t i a l f u n c t i o n may be 

obtained i s as f o l l o w s : 

Let 

M = c ( i - + a i - t ~ - t qxt-2+ -. a n !.:V1 ) 

(3 .6) 

where t i s arc length , and C a var iable constant - - by varying 

c one may obtain a ser ies of paths. If we subst i tute (3 .6) 

in to (3 .5)* we f i n d that the r e s u l t i n g equation does not contain 

the var iable constant C . Hence, a set of paths prescr ibed by 

varying C gives r i s e to a unique p o t e n t i a l f u n c t i o n >̂ 

Since i n (3 .6) ex, , a , _ , 4̂  -- o<r\ are a r b i t r a r y , the set of paths 

represented by (3 .6) i s quite general ; however, the f u n c t i o n 

(3 .6) must be continuous and must possess continuous d e r i v a t i v e s 

up to the second order with respect to * 

A simple case of considerable importance i s where the x-

axis i s the c e n t r a l path. Then, the equation (3.1) and (3 .5) 

reduce to 

§y = o (3.7) 

2 ^ " + Sly'-* o (3 .8) 
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I t may be noted that any p o t e n t i a l d i s t r i b u t i o n which i s sym­

metric about the x -axis s a t i s f i e s (3.7). To obtain the p o t e n t i a l 

at any point fCx,v) t we solve the Cauchy problem, which i n t h i s 

case i s p a r t i c u l a r l y simple: Let cpcx) be the a x i a l p o t e n t i a l , 

then the p o t e n t i a l at any given point P i s given by 

(see Morse and Feshbach, p . 689) 

The Cauchy problem i s known to be s e n s i t i v e to the small 

f l u c t u a t i o n s i n <̂>o and may give r i s e to large e r r o r s ; but 

since we are b a s i c a l l y in teres ted i n the p a r a x i a l region where 

the e r r o r s , i f any, w i l l not be l a r g e ; t h i s i s not a very serious 

drawback. 

3.2 E f f i c i e n t ion source: 

The s e n s i t i v i t y of a mass spectrometer i s l a r g e l y l i m i t e d 

by the i n e f f i c i e n t ion source. Only one molecule out of a m i l ­

l i o n molecules reaches the analyser tube as an Ion. In the pre­

vious chapter we have discussed the ion o p t i c a l proper t ies of 

the conventional source. There, we have seen that unless the 

i o n i z a t i o n i s confined to a very small region, we cannot improve 

the e f f i c i e n c y by merely adjust ing the various geometrical and 

f i e l d parameters of the source. We f e e l that the ent i re design 

of the source may have to be discarded i n favour of a more com­

plex system. The question we now have to face i s how are we 

going to devise a new system that would have high e f f i c i e n c y . 
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One way Is to t r y a number of them u n t i l we h i t upon a r i g h t 

one. This i s obviously a tedious and uncer ta in process . The 

theory of the inverse problem, which we have developed i n the 

l a s t sec t ion , comes to our a i d i n obtaining a system that has 

the des i red p r o p e r t i e s ; thus, the long and laborious t r i a l 

and error method can be avoided. 

Imagine a set of paths slowly converging into a t h i n 

p a r a l l e l beam as shown i n f i g . (3.1) . I n i t i a l l y the paths 

are wide apart and therefore cover a large p o r t i o n of the i o n i ­

z a t i o n space. The paths i n f i g . (3.1a) are exponential ly con­

verging while those i n f i g . (3.1b) are damped o s c i l l a t o r y . The 

c e n t r a l path Is however, the x - a x i s . We now apply the theory 

developed i n the previous sec t ion to f i n d the p o t e n t i a l d i s ­

t r i b u t i o n such that the p a r t i c l e s are guided along these paths. 

A c l a s s of converging paths may be represented by 

^ =. cx e/x|o Q- b oc 

where ^ i s a var iable constant, and b and v\ are f i x e d 

constants . S u b s t i t u t i n g i n (3.8), we obtain 

(3.10) 
The equation reduces to a p a r t i c u l a r l y simple form f o r b = i 

and •n = i 

(3.11) 
•* We are consider ing two d i f f e r e n t systems having the same pro­

p e r t i e s . I t w i l l be c l e a r l a t e r why we consider two systems. 



F i g . 3.2 
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FIG. 3-3 AXIAL POTENTIAL FOR CONVERGING PATHS 

Y= a exp ( -bx n ) 
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whose s o l u t i o n Is given by 

i~ 

(see Kamke, p . 412) 

A s e r i e s s o l u t i o n of (3.10) can be obtained f o r b=. I and 

r\ ~ T. . Then the equation reduces to 

(3.12) 
Consider the ser ies 

^ 6 •=- a 0 -> c \ , x + x 1 ^ 

S u b s t i t u t i n g i n (3.12) and l e t t i n g the c o e f f i c i e n t s of *- and 

i t s higher powers go to zero, we obtain the recurrence r e l a t i o n 

which enables us to f i n d the constants c v ^ >
 a?> , ^ 

having been given fl„ and A , . The s e r i e s i s convergent 

(though the number of terms required to a t t a i n an accuracy 

w i t h i n 1. 0.001$ increases r a p i d l y f o r x ^ 2). For large 

i n t e r v a l s , that i s x)> 2, and f o r other values of b and 0 

i t i s convenient (and e f f i c i e n t from the point of machine time) 

to solve (3.10) numer ica l ly . These so lut ions are shown i n f i g . 

(3.3). 
From f i g . (3-3) i t i s obvious that the so lut ions are os­

c i l l a t o r y and unstable . The p o t e n t i a l along the path i s o s c i l ­

l a t o r y and hence a l t e r n a t i v e l y p o s i t i v e and negat ive . Let us 

imagine a p a r t i c l e s t a r t i n g at A i n f i g . (3.2) with a u n i t 
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i n i t i a l energy and moving along the a x i s . The p a r t i c l e i s ac­

celerated u n t i l i t reaches the point [ 6 and thereaf ter d e c e l ­

erated u n t i l i t reaches the point C where i t s energy goes 

to zero . I t cannot proceed any f u r t h e r unless the sign of the 

charge on the p a r t i c l e i s changed. Since t h i s Is not p h y s i c a l l y 

p o s s i b l e , i t goes back to G and then to A . The point C 

may be c a l l e d a mirror p o i n t . There are as many mirror points 

as the number of zeros of equation (3.10). Therefore , the con­

verging paths are not n e c e s s a r i l y a c c e l e r a t i n g path's nor complete 

paths, i . e . , f ree of mirror p o i n t s . Such a behaviour i s quite 

consistent with the proper t ies of the equation .of motion (Chapter 

I I , eq . (2.16). 

The equation (3.8) i s almost symmetric f o r and ^ . 

I t may be wri t ten as 

or 

(3.12) 

They would have been exact ly symmetrical but f o r the f i g u r e 2 i n 

the equation. By exact symmetry we mean, i f ^ ~ $ c *-) i n 

(3.12) and f^O i n (3.13), we would have obtained exact ly 

the same s o l u t i o n s . In any case the presence of the f i g u r e 2 

does not completely destroy the symmetry f o r If i n eq. (3.9) 
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the t r a j e c t o r i e s w i l l be unstable o s c i l l a t o r y f u n c t i o n s ; but 

such t r a j e c t o r i e s are not of i n t e r e s t . On the other hand, i f 

§ o - eoLf £ b ocT> ) 

we should obtain o s c i l l a t o r y t ra jec tor ies . Let us consider a 

simple f u n c t i o n 

$ •=. -ex f C b ) 
(3.14) 

The equation (3.8) reduces to 

whose s o l u t i o n i s given by 

(3.15) 

where A and 6 are a r b i t r a r y constants . Since § i s a mono-

t o n i c a l l y i n c r e a s i n g f u n c t i o n , the r e s u l t i n g paths are both ac­

c e l e r a t i n g and complete, that i s , without any mirror p o i n t s . 

Though the f i r s t system i s not of much p r a c t i c a l importance 

(because of the presence of the mirror points)' as compared to the 

second system with the damped o s c i l l a t o r y paths; i t i s i n t e r e s t ­

ing to consider both f o r comparison. Furthermore, we s h a l l show 

i n the next sec t ion that the f i r s t system i s e s s e n t i a l l y unstable . 

The Cauchy boundary value problem was solved as shown i n 

Section ( 3 .1 ) . The p o t e n t i a l d i s t r i b u t i o n i n the x ,y -plane i s 

shown i n f i g u r e s (3.4) and ( 3 -5 ) . A t y p i c a l i o n t r a j e c t o r y i s 

shown by the dashed curve i n each of these f i g u r e s . 
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FIG. >3-4 SYSTEM I POTENTIAL DISTRIBUTION FOR CONVERGING PATHS 



FIG. 3-5 SYSTEM II POTENTIAL DISTRIBUTION FOR DAMPED OSCILLATORY PATHS 
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3.3 S t a b i l i t y a n a l y s i s : 

The basic assumptions i n the theory of the inverse 

problem are that a p a r t i c l e s t a r t s with the same i n i t i a l energy 

and i n a d i r e c t i o n p r o p o r t i o n a l to the height of the s t a r t i n g 

p o i n t . These assumptions are, however, r a r e l y s a t i s f i e d i n a 

' r e a l ' source, f o r the thermal energy spread i s bound to ex is t 

and also the p r o b a b i l i t y of emission i n a l l d i r e c t i o n s i s equal . 

The present sec t ion i s , therefore , devoted to the study of the 

e f f e c t s of more r e a l i s t i c i n i t i a l c o n d i t i o n s , condi t ions not 

s a t i s f y i n g the requirements of the theory. One consequence 

i s that some of the p a r t i c l e s may deviate considerably from 

t h e i r projected paths, l e a d i n g to an unstable s i t u a t i o n . The 

systems leading to unstable paths are i m p r a c t i c a l , and therefore , 

every proposed system must be c a r e f u l l y examined. The two cases 

we have studied here present an example of a stable and an un­

stable system. The gross e f f e c t of the thermal energy spread 

has been considered by several authors: Pierce (1954), C u t l e r 

and Hines (1955), and K i r s t e i n e n (1963). Assuming the Maxwel-

l i a n v e l o c i t y d i s t r i b u t i o n and equal p r o b a b i l i t y of emission 

i n a l l d i r e c t i o n s at the cathode, these authors attempted to 

f i n d the l o n g i t u d i n a l current densi ty d i s t r i b u t i o n at any plane 

^ = const . But, such a method i s not very u s e f u l to study 

the s t a b i l i t y of a system because the s t a b i l i t y information 

could be obtained e a s i l y by consider ing just one p a r t i c l e 

instead of a whole ensemble of p a r t i c l e s as i n t h e i r method. 

We s h a l l , therefore , adopt a method due to Poincare (1905) 

and Moulton (1926) with c e r t a i n modif ica t ions to s u i t our needs. 
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The p a r a x i a l t r a j e c t o r y equation of an ion whose i n i t i a l 

energy d i f f e r s from the mean by £ i s given by 

(3.16) 
where ^ i s the s o l u t i o n of 

(3.16') 
where ^ 0 i s the path of a normal p a r t i c l e . We can express the 

s o l u t i o n of (3.16) i n terms of 

(3.17) 

where > ^ ^ ^ 7 ^ are the per turbat ion f u n c t i o n s . 

S u b s t i t u t i n g (3.17) in to (3.16) and l e t t i n g the c o e f f i c i e n t s of 

e and i t s higher powers tend to zero, we obtain a system of 

d i f f e r e n t i a l equations: 

2$ (3.18) 
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A l l per turbat ion funct ions may be required to s a t i s f y the i n i t i a l 

condit ions 

a m 

rUl -O oJ: z - - o 

w h i l e the p r i n c i p a l s o l u t i o n s a t i s f i e s the given i n i t i a l 

c o n d i t i o n s . Let u„ and V0 be the fundamental so lut ions 

of (3.16 ' ) s a t i s f y i n g the i n i t i a l condi t ions 

u 0 s. | 

U 0 - z> 

V 0 - o 

< * | 

= a U 0 -+ b 1>c 

so that we may write 

1 

where cv and k are the i n i t i a l c o n d i t i o n s . The f i r s t per-

turbat ion f u n c t i o n may be wri t ten as 

H - VC f * X y * ° d x + U 0 ( t i l * t: 

( 3 . 1 9 ) 

where 
A ( U 0 , V 0 J =2^.(UoVe - Up u c) (u)^an,oKca^) 

To obtain t h i s r e f e r to Morse and Feshbach, p . 530; i n 
5.2.19 l e t c, - c t - o , because of our i n i t i a l c o n d i t i o n s . 
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S u b s t i t u t i n g f o r ^ 0 i n (3.19) we obtain 

or 

•r U A . 

- a f - 2 Up Up 

(3.20) 

X 

4- U 0 * -r U, ] 
(3.21) 

Compare each of the brackets on the r ight -hand side of 

(3.21) with (3.19). Each of them represents a per turbat ion func­

t i o n corresponding to one of the fundamental s o l u t i o n s , U 0 and 

'V'o ; hence we may write 

^ , =• <̂  U , -+• b 1>j 

where ^ , and i>, are the f i r s t order fundamental per turbat ion 

funct ions corresponding to the fundamental so lut ions and 

V~e r e s p e c t i v e l y . Fol lowing a s i m i l a r procedure, we can 

show that 

^ = a. + b V-n 

f o r a l l values of Y\ . The fundamental per turbat ion funct ions 

may be obtained by s o l v i n g the equation (3.16') and (3.18) nu­

m e r i c a l l y , t r e a t i n g them as a system of ( t i t I ) equations. T h i s 
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approach to f i n d i n g the per turbat ion funct ions overcomes the 

necessi ty of evaluat ing them f o r each set of i n i t i a l c o n d i t i o n s ; 

i n t h i s respect t h i s method i s superior to that of Poincare 

and Moulton. 

For the sake of s i m p l i c i t y l e t us spec i fy the normal i n i ­

t i a l condit ions as 

and the i n i t i a l energy as u n i t y ( C o) i J . The normal 

t r a j e c t o r y of a p a r t i c l e with more r e a l i s t i c i n i t i a l condit ions 

i s then given by 

n „ • 
^ r ^ u . o + b f " , + a Z_ e h l i * + b ^ l 6 t W n 

(3-22) 
The fundamental so lut ions w.o } v e and the f i r s t three fundamental 

per turbat ion funct ions f o r both the systems are i l l u s t r a t e d i n 

f i g u r e s (3.6) to (3.13). These may be used to compute the t o t a l 

per turbat ion f o r any given set of more r e a l i s t i c i n i t i a l c o n d i ­

t i o n s . 

The fundamental per turbat ion funct ions f o r the system I 

increase monotonically i n the region where the p a r t i c l e s are 

being accelerated, and outside t h i s region they tend to o s c i l l a t e 

(not shown i n the f i g u r e s ) . Hence i t i s expected that the more 

r e a l i s t i c i n i t i a l condi t ions w i l l be a m p l i f i e d to such a stage 

where the p a r t i c l e s deviate so much from t h e i r projected paths 

that i t leads to what we have c a l l e d I n s t a b i l i t y . Therefore , 
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the system I i s b a s i c a l l y unstable . The system II , on the other 

hand, i s character ized by damped o s c i l l a t i n g per turbat ion func­

t i o n s ( f i g . 3.11 to 3.13) so that the more r e a l i s t i c i n i t i a l 

condi t ions are damped out, l eading to a stable system. 

The system I ,besides being u n s t a b l e , i s not u s e f u l as an 

ion source without an a d d i t i o n a l a c c e l e r a t i n g system as i t i t s e l f 

does not accelerate the Ions. T h i s , however, i s not necessary 

i n the system I I . 

I t may be noted that the f i e l d l n the i o n i z a t i o n space i s 

very weak; therefore we expect a small energy spread (apart from 

the thermal energy spread) i n the r e s u l t i n g i o n beam. 

3.4 E lectrode c o n f i g u r a t i o n : 

There are i n p r a c t i c e at l eas t two ways to r e a l i z e the 

prescr ibed p o t e n t i a l d i s t r i b u t i o n : 

(a) set up a system of e lectrodes having the shape of 

the e q u i p o t e n t i a l l i n e s (planes In three dimensions), 

(b) set up the p o t e n t i a l d i s t r i b u t i o n on.the faces of a 

rectangular box as done by Orr (1963)• 
The dimensions of the system could be quite a r b i t r a r y . However, 

to s a t i s f y the p a r a x i a l approximations involved i n the theory 

(see page 9), we must r e s t r i c t the ac tual zone of i o n i z a t i o n 

to a s t r i p of height l e s s than u n i t y on any chosen s c a l e . Note 

that t h i s does not put any r e s t r i c t i o n s on the ac tual dimensions 

so long as we choose the proper sca le , but the p o t e n t i a l s have 

to be proper ly sca led . A l l p o t e n t i a l s given here are with 
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P i g . 3.14 

The r e l a t i v e merit of the new source and the m u l t i p l e s l i t 
source. Compare the regions of ion withdrawal. 
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respect to the i n i t i a l energy, which was taken as unity f o r 

si m p l i c i t y . I f the source i s to be operated say at 100° 

when the average energy i s 0.01 vo l t , the potentials should 
2 

be scaled down by a fact o r of 10 . 



105 

Chapter IV 

Summary and contr ibut ions of the present wri ter 

4.1 Summary: 

The s e n s i t i v i t y of a mass spectrometer i s a f u n c t i o n of 

the s e n s i t i v i t y of the current measuring system and of the ion 

source. The l a t t e r can be expressed as the product of the e f -

j f i c i e n c y of i o n i z a t i o n and the e f f i c i e n c y of ion beam transmis­

s i o n . The pre l iminary examination of the various sources of 

l i m i t a t i o n s has indica ted that the low e f f i c i e n c y of ion beam 

transmission may be a f a c t o r l i m i t i n g the s e n s i t i v i t y of the 

ion source. 

A d e t a i l e d mathematical a n a l y s i s of the i o n o p t i c a l pro­

p e r t i e s of the source was undertaken with the aim of evaluat ing 

the e f f i c i e n c y of ion beam transmission. A mathematical model 

representing an average source—a stack of pla tes c a r r y i n g p a r a l ­

l e l and coplaner s l i t s—was i n v e s t i g a t e d . F i r s t we developed 

the equation of t r a j e c t o r y i n the general ized two dimensional 

e l e c t r i c and normal magnetic f i e l d . Series of approximations— 

p a r a x i a l approximations—were introduced to l i n e a r i z e the equa­

t i o n of t r a j e c t o r y . Further , the i n i t i a l energy of the ions 

was assumed to be zero f o r the sake of s i m p l i c i t y . 

The problem was approached i n two d i f f e r e n t ways: 

(a) p a r t - b y - p a r t approach 

(b) g l o b a l approach 
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The p a r t - b y - p a r t approach, though not very p r e c i s e , provides 

considerable i n s i g h t in to the mechanism of i o n beam transmission. 

On the other hand, the g lobal approach i s f a r more precise but 

the p r e c i s i o n thus gained would be meaningless consider ing the 

errors introduced by the p a r a x i a l approximations and the as­

sumption of zero i n i t i a l energy. The model was broken down 

Into several parts and the e f f e c t of each part on the ion t r a ­

jec tory was s tudied . 

The combination of r e p e l l e r pla te and the entrance s l i t 

plate plays an important, ro le i n the mechanism of ion beam t rans­

m i s s i o n . A l l the ions formed w i t h i n the l i m i t s of these two 

pla tes pass through the entrance s l i t and form a divergent beam. 

If the r e p e l l e r pla te i s at a distance greater than ten times 

the entrance s l i t width ( & ^ 10), i t i s as i f being at i n f i n i t y 

and may be replaced by a uniform f i e l d , the r e p e l l e r f i e l d . 

In the absence of the r e p e l l e r f i e l d a divergent beam i s 

formed with i t s apex at a short distance (about one s l i t width) 

from the entrance s l i t . The width of the beam grows on and i s 

several s l i t widths (entrance s l i t width) at the ex i t s l i t ; 

hence only a small f r a c t i o n of the t o t a l beam can pass through 

the ex i t s l i t , which i s normally a tenth of the entrance s l i t 

and the rest of the beam i s , therefore , l o s t completely. We 

have shown that the ions which pass through the e x i t s l i t are 

drawn from a small h o r i z o n t a l s t r i p of width equal to the ex i t 

s l i t ( f i g . 2.26). 

When the r e p e l l e r f i e l d i s present, the s i t u a t i o n i s d i f -



107 

f e r e n t . The beam Is s t i l l divergent , but the apex i s not sharp 

but d i f f u s e d along the a x i s . By adjust ing the r e p e l l e r f i e l d , 

we can focus the ions from a c e r t a i n part of the i o n i z a t i o n 

space i n the neighbourhood of the ex i t s l i t . Such a s t r i p of 

ion withdrawal i s , f o r example, shown i n f i g . (2.28). The p o s i ­

t i o n of the s t r i p may be moved to and f r o by varying the r e p e l ­

l e r f i e l d according to the r e l a t i o n s h i p shown i n f i g . (2.27). 

The e f f e c t of the e x i t s l i t , p a r t i c u l a r l y on the angle 

of divergence of an ion t r a j e c t o r y as i t passes through the 

ex i t s l i t i s very small—about 10$ of the normal angle of d i v e r ­

gence i n the absence of the ex i t s l i t . 

The d e f l e c t i o n of the ion beam produced by the d e f l e c t i n g 

plates i s l i n e a r l y re la ted to the d e f l e c t i n g p o t e n t i a l ( i . e . , 

the p o t e n t i a l d i f f e r e n c e between the p l a t e s ) . I t i s found that , 

f o r small d e f l e c t i o n s , the shape of the beam remains unchanged 

a f t e r d e f l e c t i o n . 

The presence of the magnetic f i e l d i n the ion source region, 

i f the f i e l d i s weak (a few tens of gauss), i s merely to s l i g h t l y 

perturb the shape of the ion t r a j e c t o r y . In the weak f i e l d no 

percept ible mass d i s c r i m i n a t i o n i s observed. 

To increase the e f f i c i e n c y of the i o n beam transmission 

of the present source, we w i l l have to confine the region of 

i o n i z a t i o n to the region of ion withdrawal (2-3 mm wide s t r i p ) , 

which i n p r a c t i c e , i s very d i f f i c u l t to a t t a i n . However, we can 

maximize the e f f i c i e n c y by l e t t i n g the region of ion withdrawal 

f a l l exact ly over the region of highest ion d e n s i t y . 
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A system producing a divergent beam, as i s the present 

m u l t i p l e s l i t source, i s b a s i c a l l y i n e f f i c i e n t . On the other 

hand, a system capable of producing a convergent beam w i l l be 

more e f f i c i e n t . Instead of pursuing a t r i a l and error method 

u n t i l we h i t upon the desi red system, we posed to ourselves 

an inverse problem, that i s , given any path , to f i n d the poten­

t i a l d i s t r i b u t i o n so as to guide a p a r t i c l e along the prescr ibed 

path. In t h i s connection we have proved the f o l l o w i n g two 

basic theorems: 

(a) There e x i s t s a p o t e n t i a l d i s t r i b u t i o n to guide 

a p a r t i c l e along any desi red path . 

(b) A group of p a r t i c l e s may be guided along a set 

of p a r a x i a l paths. 

A case of considerable importance i s where the c e n t r a l 

t r a j e c t o r y i s the x - a x i s . We have considered two types of con­

vergent paths as shown i n f i g . (3.1 ) — exponent ia l ly converg­

ing and damped o s c i l l a t o r y paths. Although, In p r i n c i p l e , we 

may choose the paths of any shape (but always paraxia l ) quite 

a r b i t r a r i l y , there are c e r t a i n l i m i t a t i o n s : 

(a) incomplete paths — a p a r t i c l e may be turned back 

at a c e r t a i n p o i n t . 

(b) unstable system — abnormal p a r t i c l e s , i . e . those 

not s a t i s f y i n g c e r t a i n i n i t i a l condi t ions of uniform 

energy and d i r e c t i o n deviate considerably from t h e i r 

projected paths. 

The two systems we have considered here i l l u s t r a t e the above 
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l i m i t a t i o n s . The paths shown i n f i g . (3.1a) are incom­

plete and the system i s also unstable ; while the damped 

o s c i l l a t o r y paths shown i n f i g . (3.1b) are complete and 

the corresponding system i s s table , therefore p r a c t i c a l . 

4.2 Contr ibut ions of the present w r i t e r : 

Fol lowing are the c o n t r i b u t i o n s of the present 

w r i t e r : 

(a) Complete a n a l y s i s of the ion o p t i c a l proper­

t i e s of the mul t iple s l i t source. That the 

e f f i c i e n c y of the source i s low on account of 

the small region of ion withdrawal was shown 

f o r the f i r s t t ime. 

(b) Theory of the inverse problem and i t s a p p l i c a ­

t i o n to e f f i c i e n t ion source. T h i s i s c o n s i ­

dered to be the major c o n t r i b u t i o n . 

(c) Mathematical t o o l s such as the s o l u t i o n of 

c e r t a i n algebraic equations and the i n v e r s i o n 

of transformation funct ions expressing them 

as d i f f e r e n t i a l equations, and the development 

of a method to take in to account the e f f e c t of 

the thermal energy and random i n i t i a l d i r e c t i o n 

may also be considered as c o n t r i b u t i o n s of the 

present w r i t e r . 
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Appendix A 

1. An example of ion source e f f i c i e n c y c a l c u l a t i o n : 

The f o l l o w i n g are the observations made on the mass 

spectrometer at the Geophysics Laboratory of the U n i v e r s i t y of 

B r i t i s h Columbia ( A . B . L . Whi t t les , personal communication): 
-11 / 8 T o t a l ion current . . . . 2.4 x 10 amp. (1.5 x 10 

ion/sec) 
ft l 4 

Mass flow 0.3 x 1 0 " ° gm/hr (2.4 x 10 

moVsec) 
E f f i c i e n c y of the ion 

source 0.6 x 10 

2. T h e o r e t i c a l l y expected i o n currents : 

i + = L * <r x p x i ' 
where 

V p o s i t i v e ion current 

L path length of e lec t rons 

}p gas pressure 

i " e l e c t r o n beam i n t e n s i t y 

>f Townsend's c o e f f i c i e n t of 

i o n i z a t i o n 

Reasonable estimates of these parameters are 

L- 2 cm. 

s = 10 electron/cm/mm Hg 
-4 

10 mm Hg 
= 500 x 10" 6 amp 

10"^ amp. 
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3 . E f f e c t of the source magnetic f i e l d on the e l e c t r o n path 

lengths : 

Let and V Y be the v e l o c i t y components i n the z -

and r - d i r e c t i o n s r e s p e c t i v e l y . 

6 , • e • \/Y - v/". w 

where ft* i s the magnetic f i e l d i n the source region and Y*» 

the radius of the s p i r a l o r b i t . 

where e^L.' i s the e l e c t r o n path length i n time i n t e r v a l 

L' = /\/RlpaL 

where L i s the t o t a l path length . 

Since VY <̂  v* f o r a wel l co l l imated beam, L/(_ - 1 and also 

the t o t a l path length Is Independent of the magnetic f i e l d . 
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Appendix B 

1. Numerical er ror es t imat ion: 

The commonly used numerical method of s o l v i n g a set 

of ordinary d i f f e r e n t i a l equations Is a f t e r Runge (1895) and 

Kutte (1901). For t h i s method the bounds on the t o t a l e r ror 

committed at the end of each step, though d i f f i c u l t to evaluate 

an exact expression f o r , may be estimated from the data obtained 

at several consecutive steps (Scraton, 1964) or obtained by con­

s i d e r i n g d i f f e r e n t step s i z e s . If at three consecutive steps, 

&y ( , and AY^ are computed with constant step s i z e , an 

estimate of e r r o r i s given by Scraton (1964) 

E r r o r = ( 1 0 & Y , + '9 Ay^ + AYa-3 h y[-h - 1 K 7^)^30 

On the other hand, i f £> y, and ^Y, are the computed values 

a c e r t a i n point with step s izes W and zh r e s p e c t i v e l y , the 

approximate t o t a l e r ror Is given by Hildebrand.. (1956) 

E r r o r = | *Y,- A ~ \ | / 3 0 

A few numerical experiments were c a r r i e d out to estimate 

the t runcat ion and round-off e r r o r s . The round-off er ror was 

estimated by c a r r y i n g out the computation with d i f f e r e n t number 

of s i g n i f i c a n t d i g i t s : 4, 8, 12 and 16 on a var iable word length 

machine, IBM 1620. The table below shows the r e s u l t s of the com­

p u t a t i o n . 
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S i g n i f i c a n t d i g i t s Rela t ive round-off 
e r ror 

4 

8 

12 

16 

The bulk of computation was, however, c a r r i e d out on 

the IBM 7040 with s ingle p r e c i s i o n , that i s , 9 d i g i t s . The 

round-off e r r o r , therefore , i s presumed to be l e s s than one 

percent . 

To obtain the above accuracy, l t i s not necessary to 

have the step size small everywhere but only close to the s l i t 

where the t r a j e c t o r y undergoes rapid changes, and away from i t 

we can take l a r g e r steps. The Runge-Kutte process allows the 

v a r i a t i o n of step size at any step; therefore , we have l i n e a r l y 

increased the step s i z e — the smallest step i s equal to 0.05 at 

the s l i t and increases to 2 at 40 u n i t s from the s l i t . 

2. Mathematical complications introduced when the magnetic f i e l d 

i s taken into c o n s i d e r a t i o n : 

For numerical i n t e g r a t i o n of equation (2.15), we write 

i n the form 

4$ 

1$ 

10" 5 $ 

0 
(reference zero) 
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where C = • U) • / 2<t-
V m K 

Since at v 

= O 

and c^^Y -t <$'Y ' - o 
the above equation reduces to 

'/ c 
Y —> J- ^ r - —> c*> 

2 - ^ 

i n other words, the equation has a s i n g u l a r i t y at X =X0 . 

Assuming, however, ±. a X a s X —» o , i t i s easy to 

see from the Cauchy 1 s convergence tes t that the i n t e g r a l 

i s convergent, but the numerical process cannot be i n i t i a t e d 

at that p o i n t . T h i s d i f f i c u l t y can be overcome by adopting a 

p h y s i c a l view—the force due to the magnetic f i e l d tends to zero 

as v e l o c i t y tends to zero ; therefore , we may drop of f completely 

the term containing the magnetic f i e l d when i n i t i a t i n g the numeri­

c a l process . 
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