WAVE-GUIDE- PROPAGATION OF ACOUSTIC-GRAVITY

- WAVES 1IN AN ISOTHERMAL: LAYER: MODEL OF THE STRATOSPHERE
. by
WILLIAM PETER: McREYNOLDS
"B.A.Sc., University of Toronto, 1958
- A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

- THE REQUIREMENTS FOR THE DEGREE OF

MASTER 'OF SCIENCE

in the Department
.of

GEOPHYSICS

We .accept this thesis as conforming to the

‘required standard

THE .UNIVERSITY OF BRITISH.COLUMBIA

April, 1965



In presenting this thesis in partial fulfilment of
the requirements for an advanced degree at the University of
British Columbia, I agree that the Library shall make it freely
available for reference and study., I further agree that permission
" for extensive copying of this thesis for scholarly purposes may be
granted by the Head of my Department or by his representatives.
It is understood that copying or publication of this thesis for

financial gain shall not be allowed without my written permission.

Department of C;eopAyleS
7 7

The University of'British Columbia,
Vancouver 8, Canada,

Date /3 /4/9m‘ /,, /]945“ .




ii

ABSTRACT

A. It is suggested that the stratosphere may
-act as a wave-guide for certain types of acouétic-
gravity waves. An isothermal layer modeljis |
proposed which introduces gravity ﬁerms into the
fequétions governing wave propagation. An expression
,for-the-pﬁgse qhange on reflection at a’boundar&
of the layer is derived. Numerical solutions to'
- .the equation .for wave-guide.ﬁodes'df;pnppagation

are obtained by the use of a digital computer.

Results are given .in the form of dispersion
.curves, Cutoff is fouqd,to.occur-at a frequency
- well abové-the'Brunt resonant frequency for the
stratosphere. 'The model sﬁratOSphere proposed
in this study does not behave as a lossless
wave-guide for gravity coupled acoustic waves.:
This is shown to be consistent with the results of

a more complete-study;by Press and Harkrider.



vi

ACKNOWLEDGEMENTS

I would like to thank Professor J.C. Savage for the
" guidance and counsel which he has provided during the
course of the research. ‘I am particularly gréteful for
the generousextension of these good offices long after he

left the: University of British Columbia.

On the administrative side, Professor J.A. Jacqbs

'has ‘been most helpful and encouraging at all times.

My gratitude also extends to Professors Clough and
Bernholtz ofétherniversfty of Toronto for the sympathetic

encouragement they have shown.in the last few months.

My wife has not only encouraged. but literally
supported this study for several months. It is highly

doubtful . that it would ever have been completed without her.



iii |

' TABLE- OF - CONTENTS

I VINTRODUCTION ® 0 ¢ 0 0 ¢ 0 0 00 0 00 2 2O 0P O 000 E PG 0 0 E 0 4 08 0
II THE‘MODEL ATMOSPHERE ® 0 0 0 0 @ 0 0 0 W 00 S eSO P 6 00 e b

III THEORY...OOO..OI.l.l-.Ol'..'.‘.."’..l!l“..‘0.0
- Examination of Boundary Conditions .....sec...
Reflection Coefficient at 2z = 0 ..scvvvevcoens
Phase Shift on Reflection ...cceceeceecrococcss

Reflection at'z= h 0 0 0 2 0006 060 80 0460 0000000000000
Secular Equation_‘.o........-.........-o-l-..-..

Iv v‘NIIME,‘{.]:CAI—I ANALYSIS ..O.l'...".."0".'..‘.._'..“

Computation 0.0000Q.o.lc..louoln.lo..ottolllltco
V ’QUANTITATIVE RESULTS '-o-oco;n-aooooo-o-aooc-ono

VI DISCUSSION u.vo-‘t-ccocuolooocciocvlaoocclcll'llc

Frequency dependence of phase change at

the critical angle  ...ceecvsoovesoscocosass
COMPAriSON  soccesoesceocroscsoscssoscsssssosnses
ConclusSions .eceeeccccsccscscccsososacossonsceses

B‘IBLI‘O.GR_APHY'O'l.l."‘l..'.....‘000‘..0.U.O0.0.0.00.‘.

.- Page
1

12
.15
18
19
21

22
25
28
35

36
42

43



iv

LIST OF FIGURES

Raypath diagram for wave-guide modes ...cecovvoss
Temperature profiles.of the atmosphere ..........
Reflection and reffaction at an interface .......
Phase angle st eteece et st et st etecsescsrcnas

Frequency 'vs. wave number for isothermal
Str‘atosphere».0CC..IO"OII...O..O..'..GCOCCOOCO

Group and phase velocities for wave-guide modes .

Comparison with curves .of Press and Harkriderv...

Page
2
7
13

18

32
33
34



LIST OF TABLES
Page
”lo Computed I‘esults fOl" m-_=lJ..............o...... 29

2. ‘Angular frequency, phase velocity, group
velocity and period .....cceevevieecocsccocosne 30



CHAPTER I

INTRODUCTION

One of the striking features of the temperature profile
of the earth's atmosphere (Figure 2) is the prominent low
temperature region which defines the stratosphere. It is
‘characterized by quite steep temperature gradients at its
upper and lower boundaries at approximately 30 and 10 km
altitude réSpectively, and by a relatively uniform temperature

0 .
of about 220 K throughout the intervening 20 km thickness.

The air in such a layer can be expected to exhibit
resonance at some particular frequency of excitation, and the
1ayef may be expected to act as a duct or waveguide for
acoustic waves of certain frequencies. If the resonant
frequency of the air in the layer is one of those frequencies
which may be guided by the layer,“then it is to be expected

that the corresponding frequency might predominate.

The natural frequency of oscillation of a parcel of
air in a stable atmosphere is called the Brunt-Vaisila

frequency. It is given by the expression
- 1
(AJB g/C(X‘l)/Z
where g is the gravitational acceleration, ¢ the speed of

sound and § the ratio of specific heats, cp/cV° For the

stratosphereldB turns out to be approximately 0.021 rad/sec
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- FIGURE 1. Ray path diagram for wave-guide modes.

o

giving a characteristic peried of approximately ‘5.2 minutes.

The investigation of wave-éuidevmodes of propagation
is not a simple matter; but it is;possible to use ray theory
to demonstrate that such modes are possible, at least for
simple acoustic waves. Consider a single layer of air with
thickness h and acoustic velocity Cy? surrounded by air.with
acoustic Yglocity cé. To have unattenuated waveguide

transmission within the layer of air, only those modes are



permissible which have constant phase in planes perpendicular

to the ray paths.

In Figure 1, .the effective path length ABCD must equal

path length :BCDE,

- h + h
sin © © sin ©

cos (2;)

~

h (1 + cos (180° - 20))

sin ©

= 2h sin O

The condition for constructive interference requires that

the phase change from, say, A to D must be an integral
multiple of 21, That is, the change of phase due to.the
distance travelled by the wave, together with the total phase
change on reflection, must be equal to 2™m, where m = 1, 2,

3, ... .

2h(W/  )sin 0 + ¢ = 2mm,
o

Here, the total phase change produced by the two reflections

is represented by (p . At the critical angle of incidence
0 .= Oc and = 0, leaving simply
w/c . h sin o m l, 2’ a o o o
o c

In the diagram,_OC is the complement of the critical angle

of incidence. The critical angle of incidence is given by



0

sin (90° - 0 ) =

oo

That is,

sin 0_ = (1 - (23)2)1/2

Evidently, wave-guide modes are possible for acoustic waves

-having frequencies greater than

. Tm 1
We = n
SR TS SR
<o c!
Considering the fundamental mode (m = 1), and temporarily
assuming
h = 20 km
c, = 297 m/sec
c! = 329 m/sec

one finds that this cutoff will occur for LL)C equal to
0.108 rad/sec. Clearly, this excludes the Brunt frequency

(W, = 0.02 rad/sec) which is well below the acoustic cutoff.
‘B

In constructing this simple model, however, we have
ignored completely the effect of gravity, and assumed that
the boundaries to the layer were effectively static., We
shall see how .the inclusion of gravity terms affécts the
phase change. In subsequent sections we will construct a
model which takes these factors into account in the form of
more sophisticated boundary cenditions, and pays rather more

.attention to the assumptions involved.



CHAPTER II

THE MODEL ATMOSPHERE

In the derivations to follow, -the low velocity region
.corresponding to the stratosphere is approximated by an
isolated layer of air at a constant temperature of T degrees
Kelvin., The surrounding layers, above and below, are
represenfed”by,two infinitely thick layers both at a constant
absolute temperature of T'. The thickpess h of the low
velocity ‘layer is taken to be 20 kilometers, with T and -T! at
220°K and 270°K respectively. This is shown, along with the
ARDC standard 1959 atmosphere, in Figure 2. The ambient
pressure .is assumed to be a unique function of density, which,

along with temperature, is a function only of the altitude z.

For waves having perieds such as will be encountered
in this research, we are justified in neglecting the curva-
ture of the earth and in treating the interfaces between the
atmospheric layers as infinite planes. Further, we shall
assume that we are sufficiently far from the source of an
.obéerved disturbance that the waves propagating in the
.positive x direction are plane and infinite in the y direction.
Their amplitude is assumed to be small. Aithough waves in an
isothermal atmosphere are not refracted by density change
(i.e. rays are straight lines), the amplitudes of waves do

depend on altitude because f)o varies with z, In this sense
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the waves are not strictly plane waves.,

The air itself is considered to be a perfect gas with

the ordinary sound velocity given by

c =

¥ RT 1/2
(o] ( m )

where the constants take the following values:

C

va

8314.9 MKS units

1]

Ratio of specific heats Y

‘Universal gas constant R

-l

Molecular weight m

29.

Thus for the enclosed layer, the ordinary sound velocity

will be .297 m/sec and for the surrounding air 329 m/sec.

Although we are keenly interested in the effeétlof
gravity on wave propagation in the layer, it is possible to
make certain simplifying assuﬁptions aboutvthe"hature of the
gravitational field. Taking as the radius of the earth the
figure 6371 km, and 9.80 m/sec2 as a typical value of the
.acceleration due to gravity at the eartht's surface, a rough
calculation can be made of the @agnitude of g at the upper
and lower boundaries of the isolated layer. At the lower
boundary (altitude of 10 km) we find g approxiﬁately
;9.76_m/secz; at the upper (30 km) boundary, 9.70‘m/secz. It
~is not unreasonable then, to treat g as being approximately

constant: at 9.7 m/sec2 within the layer of interest.
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FIGURE 2. Temperature -profiles of the atmosphere.
‘ARDC standard .1959 Atmosphere after Wares et al
is shown with :the isothermal. layer representatlon
.of the stratosphere,.



CHAPTER III

THEORY

By expansion of rigorous first order equations
describing the behaviour of a perfect fluid where the pressure
is everywhere a unique function of the density, Bergmarmmhas
derived non-static (time dependent) relationships. In the
following equations u is the velocity vector, f>'the density,
p the pressure, B the bulk modulus, V the gravitational
potential, and t the time. The subscripts refer to consecutive
orders of expansion with the 0 subscript referring to the
static solution. The first-order equations as given by

Bergman are:

Equation of continuity

%.@;_1+ V(po i) =0 @)

Equation of motion

v

,Oo s© * Vp1+/01<7‘v=0 (2)

Equation of state

3P , o

B
bt + ul . v p0.=(5—9 (%é-]; + El . V/O ) (3)
(o]

(o]

. Equation (1) can be written



The first two terms are the same as the expression in

the brackets in equation (3). Substitution gives

dpP;  — _
bt1+ul.Vpo+BOVul=0 C e e e (4

Time dependence of the form et is assumed.

iw(01+a,l°v /Oo+PoV51=°."' (1)
iM)(OOA,;l+Vp:1+/OlV V=0 e e e (27)
iwp; +uy .V pg + BV uy =0 ce e e . (4M)

From equation (1')
V. El=--/bl—; (1wWpP, +1, .V ©O)

This is substituted for / El in equation (4) to

get

[ ] wJ
1UJpl f u §7 P, f% (i p; + u ‘7‘K90
By rearranging terms, we get

_ B B
uy - (Vpo‘-(-’f V/&O)& iwpg -(Eiioo/&l=o
ce e e ()

Equation (2) can be written

u; = w/@ Lt LV V) C e e e (6)

In the model atmosphere we have choesen V = g z and so



-10-

E7 V = gk. Thus (6) becomes :
(67)

— 1 -—
gl=w(00 (vpl+ (Olgk)

The right hand expression can be substituted for El

in equation (5), giving

i = Bo .. B .
s (T a6 0T, - 22 V) = my - 5 148

or, more simply,

B
(Ve + O k).(TUp, - EEVFO) +6u2p1/)0 -szo(Ol =0

Collecting terms in f?l we have
= Bo 2 Bo 2
(Ol {gk’(vpo'(z?o V(Do)- B,w } - -éVPl-(VPO-(Z;VIOO) tw /Oopl} ’
Divide both sides by Bo’ rearrange and solve for
P1f _ w’
{Vpl'G ) _B-ﬁb 1’1}
Lr=- {gz.’a +w23

. (7)

where we have defined a vector

'a=vpo_vpo
(b : B
"o o
G depends only on the ambient pressure and temperature, which

in turn are functions only of altitude.
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A e aed

For any fluid in a uniform gravitational field,

dp |
$TZQ-= - f)o g

|

o [o”

. 2
Also, since <3

c

we can write G = 1 3%90 + k
é z 2
o
For a perfect gas

5p°=apo RT
Dz Jz " m

__Pogz%ﬁ_o,ﬂ

z m

i
Po
2 _ YPo _ ¥RrT

Now since c0 =

g - {—%+—%}E;-{(é’-l)—%}§
C C
0 o

C
o

Since ¥ > 1, a_is intrinsically negative for the

atmosphere.
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Equation (7) can now be written

_{ 351 G - (W/e,)* pl}

/Ol: {gG+w2] (77)

where G = - (¥ - 1) g/c 2
o

By substituting the above value of f)l'(equation (7))

into equation (6') we have

P
_ (W/e ) py - %1 G)}

"1 (oouotvpl gl (= w?+goa

The components of velocity are:

Lo i dP1
oA 2P

' POUJ DY

, O P
i §3Py (w/"‘o)2 Py - a.zl G
and w = - \{-)z + g ( 2 : )
{f)o(_.“\./ < u) ‘ + g G
: P
- —i (S5, -5 p)) (8)

P_o(udz + gG) 32 c

o

Examination of Boundary Conditions

Consider the case of a plane wave incident upon an

interface from above, as in Figure 3.
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. ‘Medium ‘1 has
Incident Reflected

-T, P, c, /O

interface

Medium 2 has

.T', Pl, C',(O

/

‘Refracted

-~ FIGURE 3. Reflection and refraction at an interface.

The general solutions can be written:

ei[UJt-xkcosg»+ zksin0 ]

p;, = A
l .
ifwt-~ : - i
p. =B e1[ t-xkcos® - zksin@]
i -xk? ' 'sind?
Pl =D elLU)t.xk cos® +Izk sino?']

where the primed quantitites refer to the lower region and

the unprimed quantities refer to the upper.

Since we will later Be-calculating the reflection

coefficient, it is éonvenient to assign unit amplitude to

‘the incident wave so that A = 1, B/A = R, the amplitude of

the reflected wave, and D/A C, the.amplitﬁ@e of the

refracted wave.
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(a) Pressure

At an interface the pressure must be equal on both

sides (p = p'). Taking terms up to lst order only, we have
P, + P = P! tp|

‘The unperturbed pressure may be written Py = /Qog f

where terms of order f 2 have been neglecﬁed. Thus,

Po€S * P~ PgeF * P

where z = ? is the equation of the interface. It is true

for all time, thus

%g(pl-p1+(po.- Pyl ) =0

Approximately itﬂ(pl - pi) + ( f%'-(oé)g wt =0 .

1w
wt! = ((Dol-(o(')) z (pl - pi) o o ¢ o (9)

(b) Velocity

The vertical component of velocity must be continuous

across an interface

w.=w! e e e e (10)
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Application of Boundary Conditions at z = 0

(a) Combining equations (9) and (9) we have

i w 2 P] + _g_ i

. _ p}) = (p,-p!)

(D‘;(vu)zn“gG')’ 8z _cc') ((Oo (Oéjg F17PL

o P] po(u) +gG’)

(53 +:§§p1) oop b0E (py-p])

5 (uP ; W24gG?)

C(ik'sin@' + £_ po (¢ ﬂﬂ) = ( g (14R)

I S Gy e T en s

ali at z = 0

C(ik'sin@?t + Lo (UJ +ﬁ—)) - Lo (w2+ggl)(1+R)

c? T f% fgo g f%-foé €

.. .. (1)

(b) Combining equations (8) and (10) we have

iw (9PL e oy iw 3 Ppf '
é% g o Po g o

palw?rger)
’ﬁo(u)2+ge)

{iksinO(l-R) + (1+R)}=[1k's]_no + —g—}
' c

2
'
c
o o

.. (12)

Reflection Coefficient at z = 0

The order to eliminate C and find R, the reflection
coefficient, multiply equation (11) by (ik'sin @' + g/céz)

?

(w2rgGr)

P
(cb-fgéy €

and equation (12) by (ik' sin 0t ¥ g/ci?

and subtract to get
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' 2 |
Lo (WH+gG!) (iyr gin o + g/cc')“z”)'(l + R)

( (o; 'Pc';j g.

= A(ikv sin O +.g'/c'v' 4 Lo (cu + ge')j{(e (w +gG"{
' © (fo (D & (0 (oo +gG)

ﬁik sin 8)(1 - R) + _éLz. (12'+—‘R)}
C

(o]

(ik*sino' + —g—)

2 » cr? :
!D‘j - w éggl 0 - - iksino-—&5
) (J'O (30 ‘ (1k's1n0 ,+_g_+ ﬁjfﬁ,j (W ;g__lG o
e
R = = .
(1k's1n0' + _g_ )
2 c!
(E)S ')Q» ; G) T " + iksinO-—gE
o fb (1k’s1n0'+~g— + sz;g ( ;gﬁ) %
0 v

Note that if g is set to zero

. - ﬁoik' sin@!? -/q):ik sin®
—n s - -
g=0 (9Q1k sin® ﬂﬂ%lk sin@

PoC sin@? -P'c' sind

o o

@3 c sin0! ﬁp'c' sind
o o

which is the simple acoustical expression for the reflection

coefficient.

Referring again to Figure 3 we note that by Snell's .

law
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c! cos.@ = c cos O

C'
cos 0t = Y cos O .

sin ' = (1 -~ cosZ,O')l/2 = (1 - (%})2 cos? 0)1/2

subject to the condition that cos @ > c/c!

1/2

t
sin 01 = - i(S- cos? 0 - 1)
C

Since c¢' and ¢ are both real, sin O' is pure imaginary

.for angles of incidence greater than critical.

The reflection coefficient then becomes:

}

0 (—kN (Ql)zcoszg-l
0, W +g6) ¢ :

ot
(fb Po)g (—kN (%})zcoszgfl

C
—_ o

e iksinO_—Z_
Po((klz+gG') iksin® 2 |
+

+

+

(00 (w?+gG)

(Fo—(ac'))g (—k?\{(%)zcoszg-i.

O
£
)
C
(o]
(-k* Y €1y200s20-1 + £
. c '2
C
[o]
£

+

Note that this expression is of the form

R = a - ik sin 0
a + ik sin .0

‘where a .is pure real. Therefore lRl1= 1.
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(a2+b2)1/2
b
&
a 1
FIGURE 4. Phase angle €
Phase shift on reflection
a - ib

Let us write for convenience R = - .
e e 1o o a + ib

Let us also define a triangle coniaining an angle € as in

Figure 4.

Divide top and bottom by (a? + b2)1/2

. a . b }
—a _ i —Db
{yaz + b2 Vaz + b2
{___EL___ ____h___.}
+ i
62 + b2 Vaz + b2

(cos € - i sin€ )
(cose¢ + i sing& )

Finally, R =-e
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where 2 € is interpreted in the phase change on reflection.
From the triangle in Figure 4

€ = arctan b/a

k sin O

( 5 (=~ k'vﬁi )2cos20 1+ Jg—)
J (W*+gG) .c

| wz G
o~ P')g (-k'ﬁ%)2c0520-1+%;——?;§—) _g__ o

€ = arctan

i e e e e (14)

Reflection at z = h

-Obviously, since the reflecﬁion coefficient does not
depend on the choice of a coordinate system, é must have
the same algebraic form for any similar refleétion. We will
show tﬁat € has the séme numerical vaiqe for the two
interfaces which exist in the.médel atmdsﬁhere.of this

problem.'

First, replace k by (“Vco) and cos2 0 by (1 - sinz.G)

in equation (14) to get

(U%/c ) sin O

tang = mm—— ~ ‘
N ) (TSN (©2)2ain%0 + )
fQ (W +gG) cg <5 o cé

-n? : 0( 2 ')
fopdE fiF & -2)- (@ ainto £ (o5
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Recall that at z f we can write

RT
p4> ==
RT!

n
?|

p'/e'
Combining these, FDT =/*'T?. This is true for steady
A .

) : ' L
state, thus (O/p' =L and from (7') G ==( b’-l)g/c2
(6} o T o

(UJ/CO) sin ©

Now tan € =
o c'
o L) £
(aﬁ g (X'é) c
2,1 _1 W2 . 2 g o
g(1-T/T*) —Vp (-3 '2)-(0 ) sin“0+ + T/ T-De
: c_ c o c!
o o ‘ o
L4 . L] L L (15.A)
.. . . 2  §RT .
Since g is assumed constant, and since c == ==, for a given

) and angle of incidence the phase change on reflection

depends only on the temperatures of the. layers.

This demonstrates that the phase change is .the same
for both refiections in this problem, Since.the temperatures
of the layers are the same. Altitude in itself does notv
change € . This is rather remarkable since the air

densities are vastly different at the two interfaces.
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Secular Equation.

. Recalling that the equation describing the condition

required for wave-guide propagation was
2h (w/co) sin 0 + (p= 2mm m=1, 2, 3, ...

We have shown the phase change on reflection at both the
upper and lower boundaries was 2 € , thus the total phase

change qo is 4€& , and it is now poessible to write

2h (w/clo) sin @ + 4 & = 2mm o e e e (15)

m‘v_= l, 2, 3, ¢ e 00

where € is defined in equatioen (15A).
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CHAPTER - IV
- NUMERICAL ANALYSIS
In order to deduce some physically observable
variables from the preceding theory, it is necessary to

determine the relationship between (W and 0. This is

accomplished by solving equation (15) which may be written

L {Zh ~(C£) sin Q@ + 4 é}=

2m
o

where m 'is an integer constant associated with the mode of

propagation,.
It is convenient to make -the following substitution:
(cho) sin 0 = x

This gives

£(x) = f% (2hx + 4 ) =m R ¢ XY

where

( ,

02 g_il:_l)( vU) (—=

€ = arctan

A

e(1-5; )52<————)- —g%+(w

02 c'
C o)
N\ °  TFT) e /
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Equation (16) was solved numerically for x for many

different values of (A).

In order to describe the techniques used for solution,
we introduce arbitrarily some temporary notation which

simplifies the expression for the phase change € .

O S S
Let 2 = (53 - =37
c c
o o
ay:= g/002
ag = /ey’
a,:=h
ag = (1 - 1/T')g
a, = (T'/T -~ L)g

The constants.a1 through a7 depend only on the physical
constants of the model atmosphere; they are all independent
of W and x. ‘Using this simplified notation, the expression

for f(x) becomes

. - ~
1 X
f(x) = = ja,x + 4 arctan ' : :
. 2T | AT ‘
| (u?-a3a5)(-WUzal-x2 + a3)
=y @P-aga)
_\aé(—%U a;-x" + ajs + —-)

g S

JEEEERS (17)
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Certain critical values of W and x can readily be
seen on -inspection of the argument of the arctangent

. function,

For instance, when(LP,= a3a5, that is when (WJ = g/co(x-l)
.the complicated term in the denominator vanishes. . . .
This the Brunt frequence W,, and we must watch our results

carefully in the neighbourhood of W= Uﬁ.

Also, it can-be seen thatAwhen .X 1is greater than
szal.the denominator. becomes imaginary, If we are to
search for real roots (a necessary condition for the wave-
guide modes we seek) x must be constrained to be less than
or equal,totvzal. This condition that.x2 must . Le less than

u)z(—lf -'—lz) in order to keep f(x) real is merely a restate-
~ c c!

o o .
‘ment of the requirement that the angle of incidence must be
‘less than the critical angle. This can be shown as follows:
2.1 .
x<w (-5 - )
. ot
o

.C
(o]

,(sin.@)z <1 - (‘2)2

(cos 0)2-2 (=2
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The angle © is the complement of the angle of

incidence; hence

sin iZ‘co/cé for a real root.

-As usual sin ic”= CO/Cé defines the critical anglé.

Computation

-In order to gain insight into the behaviour of f(x),
a FORTRAN program was written for the IBM 70904-II at. the
~University of Toronto. For a particular value of W the
program computed and plotted values of f(x) and its first
derivative»f‘(x) for a wide range of values of x subject to

the limitation x S(ﬂ?al

The expression used for the derivative was

a -2/ 1 [sm® -R'S 7
4 7
V(1 + ——)[. j

where S = xa6<a3_yLUZa1_x2 " (u;-agii{)
a
7

{ 2 (wf- N
.St = % = 36 &33— ‘wzal-xz + w aa3iij.'+ x36 —_—
' 7 ' V&Fal-xz
o 2 -
: -aaa
= ((»2-3235-3336)[a3-I"wzal—x2 - a3a6(w_aj_i))'

. R? = BRH (u;-a a -a3a6)(

fr(x) = %ﬁiél

QA=

Sy
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‘Several exploratory runs of this first program were
made, -using different values of (W with m =1, In each.case
‘tested, f(x) either had no real root at all, or else it had
a-real root and both f(x)'and f'(x) were continuous near the

root. On .the strength of these results, a second FORTRAN

.. program was written which used Newton's formula

£(xy_p)

x = x -
n  “n-=1" (x4
. £ (.n,-'l)
.in an automatic iterative procedure.

Unfortunately, for values of (W) which approached the
cutoff frequency U)c, the derivative f'(x). became unstable
and discontinuous, and it was not possible to use methods
which depend on continuity. of the-funétion and ité derivative,
Instead, it became necessary to revert to a program of the
first type,.and to study f(x) in detail for each value of
(JJ. Wherever -a real root.of f(x) = m was found to exist,
it was calculated by a short program which performed a simple
geometrical interpolation between the closest.points on the
graph.

Values of (W were chosen in such a way as to ensure
good coverage of the-range~betwéen ordinary acoustic fre-
quencies (periods of a few seconds) and the cutoff
frequency U)C. ‘A careful study was made of the behaviour
of £f(x) at frequencies below U)C to make sure that .no

‘additional branches of the x(w) curve could exist
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‘undetected. Particular attention was paid to frequencies

near(k@n= g/cb( Xél)l/z,‘the Brunt- Frequency.

Having calculated x(W) = ((+Vco)_sinr0, it is a
simple matter to compute certain physically observable
parameters which are useful in analysing the behaviour of

the model.

The horizontal component.of the propagation constant

(wave number) .is simply

, 2 1/2
ke (@) = (2)cos o = <— )
e o

- From this equation the phase velocity fg.and the group
x

‘velocity: k?g ~ may be derived.
x

The foregoing describes the method of computation.

The results are presented and discussed in subsequent sections.
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CHAPTER V

QUANTITATIVE RESULTS

The detailed results of the computations for the
fundamental mode in the gravity-acoustic model of the strato~ -
_sphere are presented in Table 1. It shows the angular frequency
at which the calculation was made, the calculated value of the
variable x, and the corresponding value of the horizontal wave

number. k_ .
umbe -

Cutoff occurs at(&% = 0.21 rad/sec for the fundamental
mode. Below that frequency, the function f(x) has no.real
roots. A careful study was made .of the behaviour of f(x)

;in the neighbourhood of the Brunt frequency, and it can be
~conclusively stated that there .is no:branch of . the kx(uJ)

.curve containing(UB.

Table 2 is derived from Table 1, and contains lists
of group and phase velocities and. the corresponding>angular
‘frequencies and periods. Data from Table 1 is plotted .in:

- Figure 5. Data from Table 2 is plotﬁed in Figure 6 and the

‘results of Press and Harkrider in Figure 7.

Similar calculations were made fof other modes
(m =2, 3, 4).but they;have>been excluded as uninteresting,
since, as would be expected, the cutoff frequencies were much
"higher. No anomalous behaviour was discovered for those

modes,
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“TABLE ‘1. - COMPUTED RESULTS FOR m = 1

w x (x .10%) k (x 10%)
2,210 .0.16140621 0.74353431
2.110 0.16120411 0.70987358

- 2.010 0.16162911 0.67621192
1.910 . 0.16187618 0.64254919
1.810 0.16215156 .0.60888520
1.710 0.16246045 .0.57521971
1.610 0.16280932 0.54155242
1.510 0.16320650 0.50788293
1.410 .0.16366328 0.47421076
1.310 -0.16419543 0.44053522
1.210 0.16482115 0.40685540
21.110 0.16556674 0.37317001
0.810 0.16902441 0.27205659
0.710 . 0.17104694 0.23831610
0.610 0.17350604 .0.20454258
0.510 0.17733682 0.17070651
0.410 0.18360871 0.13674602
0.310 0.19601491 0.10246311
0. 300 0.19801848 0.008990493
0.290 .0.20023009 0.09551460
10,270 0.20710156 0.09192143
.0.260 0.20565351 0.08850240
0.250 0.21302164 0.08138840
0.240 .0.21789300 0.07777002
0.235 0.22077025 0.07593811
0.230 0.22405705 0.07408563
0.225 0.22794032 0.07220453
.0.220 .0.23252976 0.07028790
. 0.215 0.23828189 0.06831543
CUTOFF e —
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_ TABLE 2 - ANGULAR. FREQUENCY, PHASE" VELOCITY,
GROUP VELOCITY.AND PERIOD.

w Period, Minutes Phase Velocity -Group Velocity

rad/sec m/sec 'm/sec
2.210 .04738 297.23 '
2.160 .04848 ‘ ’ . 297.08
2.110 . .04963 1297.24
- 2.060 ..05983 297.07
2.010 ..05210 .297.24
.1.960 . .05343 297.06
1,910 ..05483 . 297.25
1,860 . .05630 ' 297,05
'1.810 ..05786 297.26
:1.760 .05950 .297.04
-1.710 - .06124 .297.28
1,660 ‘ -.06308 297.02
~1.610 .06504 207.29
.1.560 .06713 ‘ 297.00
.1.510 . .06935 297.31
1.460 .07173 '206.98
1.410 .07427 297.34
. 360 .07700 ‘ , 296.95
. 310 .079904 +297.37
.260 .08311 296.91
.210 .08655 .297. 40
2160 .00028 . 2906.86
.110 .00434 : 1297.45
.960 - .10908 .296.70
.810 .«12928 207.73 :
. 760 213778 ' 296.38
.710 . .14749 297.92 :
.660 - .15867 -296.09
.610 .:17167 2908.23
. 560 . .18700 , 295.54
.510 . .20533 208.76
. 460 1 .22765 ‘ 1294.46
.410 . .25541 299,83
. 360 - +.29089 . 291.69
. 310 - ..33781 302.55
. 305 .34334 - 288.42
. 300 .+ 34907 303.04
.295 .+ 35499 -287.33
+290 . +36110 303.62
.280 . 37400 -285.22
.270 - . 38785 . 305,08

COO00C00O0O0O0ODCOOOOONMHR M R
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‘'Table 2, Cont 'd

oo Period, Minutes Phase Velocity Group Velocity
rad/sec - m/sec -m/sec
1 0.265 .39517 282.45

0.260 .40277 - 306,02
0.255 .41067 . 279.83
0.250 . .41888 307.17
‘0.245 ‘ 42743 276.37
0.240 - .43633 308.60 -
0.2375 .44093 ' 272.94
- 0.2350 . 44562 309.46
0.2325 “+45041 f 269.91
0.2300 .+45530 310.45
0.2275 .46031 _ 265.80
. 0.2250 . .46542 311.61
0.2225 .47065 ‘ 260.88
0.2200 .. 47600 313.00
.0.2175 - .48147 253.49
- 0.2150 . .48707 314.72 '

CUTOFF
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FIGURE 5. Graph of frequency against wave number for
the isothermal layer model of the stratosphere.
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FIGURE 6. Group velocity and phase velocity for Qave-

guide modes in the<isothepmal layer model.
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Dispersion curves of Press and Harkrider

FIGURE 7.
(sketched from their Figure 5) compared with
the dispersion curves for the gravitating

stratosophere model.
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CHAPTER' VI

DISCUSSION

.Thevbehaviéur of the gravity-acoustic model can be

summarized quite simply.

Wavesvhavingjfrequencies greater than 0.21 rad/sec
(periodAof.less\thanxOJS,minutes),can;be trapped. .in the
-layer and propagate - 'entirely within it, being reflected
repeatedly from the top and bottom interfaces. The condition
for constructive interference determines the eigenvalues of
. the angle of incidence for éach value-of(l), and consequently
the horizontal component.of.wave numberukx. Values of,kx

are -presented in Table ‘1.

WaveS"having;periods greater than 0.5 minutes cannot’
-satisfy the condition of constructive interference for
-angles of»ihcidence»greater than the critical angle, and. thus

~leak out of the guide. intoe the surrounding media.

The model is not capable of, and was not :intended. to
“be capable'of, representing the behaviour of the wholé
',atmOSphere. It is useful only for examining the waveguide
-effect of the: stratosphere, since the model does not
.accurately portra&'those partS»éf the atmosphere’whichzlie
outsiderthe-layen. Our model atmosphere .as._a whole behaves

.as an infinitely deep gravitating atmosphere, because, unlike
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the true atmosphere, the model extends :infinitely in both
directions.. As'a consequencé the natural gravity waves have
infinite velocities and are not indicated in our soelution.
Moreover, .only those waves which satisfy the secular equation
of. the layer (Equationtlé)vare portrayed accurately, and no
conclusions can be drawn with respect to the subsequent

.paths of acoustic‘waves which have -leaked out .of the layer.

One of the most .interesting features of the results
is ‘the fact that the cutoff frequency. for the gravity-acoustic
‘formulation'is only 0.21 rad/sec, which is a considerably
“higher frequency than the cutoff for the simple acoustic
Acase'gﬁ.ll.rad/seC). Thus it would appear that:by:taking
-account .of. gravity in the theory we have modified the boundary
-conditions-in a manner- which permits waves which would be
trapped in thé ordina?y,acoustic'theory/to.escape'from»the
~layer, Ituisuinstructive~fo~reaexamine-the~mathematics—to

.seehow.such a phenomenon can.occur.

Frequency dependence of phase:. change at the critical angle

Unliké'the simple acoustic ﬁodel,4the-gravity-
-acoustic model has .a phase change which does not always
approach zero as the angle of incidence approaches .the
critical angle. 'Let us denote. by . x .the value of
-(que)sin,O ‘where- (90° - 0) = i,. Of course, x_need not

“be.a root..of the secular equation, but it is always equal to
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or greater ‘than the root, if a rooet exists, because xmzis
-the largest value -that x can take -while ensuring'that-fﬁx)
,is pure real. Actually, xm;approaches the value of the root

as Q),approaches U)C,-the-cutoff frequency.

At the critical angle, the expression for the phase

~change on each reflection becomes

[
w 27 42
; €4 <l
2 = 2 ,arctan | - |
(. (uf -0} g/c’ =
g(l-—T/T') .(u)z_wz) __C'z
v B + £ °
g(1-T/T")" _,2
. o

where we have recognized gG:= -Uﬁz » the square of the Brunt

-frequency,.

On simplification this becomes

- 12 (Paid)
2€ = 2 arctan - @L (32)2-1 (i +~éo nd d%);>
g "°o g2 (1-1/T")

. With the set of physical parameters adopted in this

model, every term in th¢ square brackets is always positive
-except<(43—0£). For values of W< (L% the term Qx?-U§)
:becomes negative. Indeed the sign of the whole argument of
the arctangent .changes when

2 2 2
cg” W -wpg) < _ 1
g2 (-T/T') "7
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Using physical values .for. the gravity-acoustic model,

this is found to occur when (U is-less than 0.0163 rad/sec.

It should~be-emphasized“that»this calculation is for
‘the‘particular’value'éf x corresponding to the critical
_angle; the secular equation is in general satisfied by .a
-different value of x. But the fact remains that .the
expressionufor-the phase change on.reflection is negative for
acoﬁstic frequencies and becomes positive .at some frequency

-below.the Brunt frequency.

*This means-that at acoustic. frequencies, up to.and
,including,the,acoustic,qutoff frequency, the phase change on
reflection has a negative sign and thus tends to effectively
-shorten the acoustic path :length between subsequent reflections.
This has.the same effect as a decrease in h, the layer

thickness, in .that it raises the cutoff frequency.

It . is interesting to.ﬁote that if the cutoff frequency

~had:been lower, that.is-if(kg > W, the effect of the change

B
-of sign of the phase change would have been to extend the
~cutoff. to lower frequencies or even to . introduce a stopping

“band and a new-low frequency branch to the disperS&on curve.,

Such was not the-case with this model, however, .and
~ although .a careful check was made, no such branch was found
. to exist. The cutoff frequency was so much higher than the
frequency at which wé .changed  sign that~no_intenactioniwas

- possible. The f(x) curve did.undergo an abrupt. change -of
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shape, however, when the sign of & changed.

_Comparison

. The dispersion.cgrvés‘produced.by;the aqalysis of
this model can be compared with those derived.by.Press .and
-Harkrider for a multi~layered approximation to the Standard
WARDCJatmosphere. Figure‘7,is‘a-éketch showing,the‘results.for
the fundamental modes for the model described in this thesis
.and. for a model studied by.Press and-Harkrider having a half-
space~beginniné§§20 km (their Figure 5). 'In both cases, the
high frequency'limit'of both the phase .and group velocities
is the sound.velocity of the channel with the lowest velocity.
"In their case .that channel is the second low. velocity layer
at .about .85 km, while -in ours, naturally, it is the ‘isothermal

layer representing  the stratosphere,

Tt is clearathat.in the‘complete model the wave guided
in the stratosphere ‘would leak through to the low velocity
channel. in the mesosphere. Thus~the-stratospheré would not
be the perfect guide that we have:proposéd_in this study.
‘Nevertheless, for the wavelengths studied here the strato-
sphere:would be a sufficiently good guide that,it‘must,be
‘considered for many problems. ‘In. this respect our-approkie
mate-treaﬁmentuis.superior'to the more complete treatment
of Press and Harkrider. The waves we have studied. here
“would:be included as slowly attenuated modes in a‘complete

‘theory.
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Press and Harkrider tried several variations of their
- model to determine which parts of the atmosphere govern the
-various segments and branches of the dispersion.curves. -One
such version had the lower (20»km),temperature minimum
.entirely absent. Its removal left the short period portion
of the curve relatively -unchanged, but with the long period
plateaus displaced. This was.iﬁdicative of dependence of
.the -long peried plateaus .on the structure of the 1§wer 50 ‘km

.of the atmosphere.

Another version had the second (85 km) low.temperature
-zone removed. - This resulted in dispersion curves having the
same high velocity plateaus at long periods (over ‘5 minutes)
~as :in the Standard version, but with the  very short period
waves having velocities corresponding to the 20 km .channel.
'The velocity minimum at 2.5 minutes was eliminated. This
version demonstrates.that>the short period portions of the
dispersion curves depend heavily on the structure of. the
étmospherevabove 50 km; and in particular on the low. velocity

channel at 85 km.

With this background it is possible to. discuss the
detailed behaviour of the Press and- Harkrider curves and teo
compare the results of our.more:simple model based on a

gravitating stratosphere.

Waves having periods below. about 2.5 minutes are

apparently guided by the upper (85 kimn) low velocity channel
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in much the same way as we have postulated for the lower
channel in our model. The group and phase velocity curves
are quite similar in shape for the -two medels. The reason
that our curve cuts off at 0.5 minutes while the other is
~unbroken to 2.5 minutes is attributed to the much greater
thickness .and temperature contrasts which exist in the case
aof.thefupper‘channel. - The .absence of branches.corresponding
-to the lower channel for very small periods indicates- that
.the two:low velocity channels are coupled, and that energy

from .the lower. leaks into :the upper.

In fhe Press and- Harkrider model, ehergy-begins to
~leak out of the upper channel at. periods about 2.5 minutes.
+Although the group velocity is close to the sound velocity
of the lower channel, we-know from the results of our own
.model that the branch from 2.5 minutes to 4.5 minutes does
not correspond te waves guided. simply by the-lower channel.
-Instead it -must represent a more complicated mode involving

-at ‘least the lower 50 km of the atmosphere.

At periods greater than 4.5 minutes,  acoustic~gravity

‘waves are no-longer guided. by any of the structures of the

‘lower atmosphere, but appear to represent the gravity branch.

~They, too, appear to.be quite dependent.on the structure of

.the -atmosphere below. 50 km.
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‘Conclusions

1.

An isolated isethermal layer such as that proposed to

-represent . the stratosphere does not behave as a lossless

wave-guide for frequencies.in the order of the Brunt

frequency .and lower.

"The effect of gravity on the boundary conditions is to
-increase the cutoff frequency: by modifying the expression

.for the phase change on reflection. The effect is

sufficient to. change the cutoff‘by,a'factbr of two.

- A wave-guide which conducts waves of periods greater than
0.5 minutes requires increased. layer thickness,
.increased temperature contrasts, a rigid earth's surface,

-or -all . three.

A simple isothermal layer model of the stratosphere is

-not sufficient te account for the gravity-acoustic7wave

“transmission properties of. the atmosphere over any

frequency range. If, however, we had modeled the meso-

sphere channel instead, our.results would have been

valid .foer periods up to .abeut -1 minute.
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