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ABSTRACT 

It i s suggested that the stratosphere may-

act as a wave-guide for certa i n types of acoustic-

gravity waves. An isothermal layer model i s 

proposed which introduces gravity terms into the 

equations governing wave propagation. An expression 

for the phase change on r e f l e c t i o n at a boundary 

of the layer i s derived. Numerical solutions to 

the equation for wave-guide, modes of propagation 

are obtained by,the use of a d i g i t a l computer. 

Results are given i n the form of dispersion 

curves. Cutoff i s found to occur at a frequency 

well above the Brunt resonant frequency for the 

stratosphere. The model stratosphere proposed 

i n t h i s study does not behave as a l o s s l e s s 

wave-guide for gravity:coupled acoustic waves. 

This i s shown to be consistent with the re s u l t s of 

a more complete study.by Press and Harkrider. 
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CHAPTER I 

INTRODUCTION 

One of the s t r i k i n g features of the temperature p r o f i l e 

of the earth's atmosphere (Figure 2) i s the prominent low 

temperature region which defines the stratosphere. It i s 

•characterized by quite steep temperature gradients at i t s 

upper and lower boundaries at approximately 30 and 10 km 

al t i t u d e respectively, and by a r e l a t i v e l y uniform temperature 
o 

of about 220 K throughout the intervening 20 km thickness. 

The a i r i n such a layer can be expected to exhibit 

resonance at some p a r t i c u l a r frequency of excitation, and the 

layer may be expected to act as a duct or waveguide f o r 

acoustic waves of certain frequencies. I f the resonant 

frequency of the a i r i n the layer is one of those frequencies 

which may be guided by the layer,'.then i t i s to be expected 

that the corresponding frequency might predominate. 

The natural frequency of o s c i l l a t i o n of a parcel of 

a i r i n a stable atmosphere i s ca l l e d the Brunt-Vaisa la. 

frequency. It i s given by the expression 

UB - S/C(Y- l)1/Z 

where g i s the g r a v i t a t i o n a l acceleration, c the speed of 

sound and ti the r a t i o of s p e c i f i c heats, c D/c . For the 

stratosphere Ug turns out to be approximately 0.021 rad/sec 
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T», ?if>' 

FIGURE 1. Ray path diagram for wave-guide modes. 

givin g a c h a r a c t e r i s t i c period of approximately 5.2 minutes. 

The investigation of wave-guide modes of propagation 

i s not a simple matter, but i t i s possible to use ray theory 

to demonstrate that such modes are possible, at least for 

simple acoustic waves. Consider a single layer of a i r with 

thickness h and acoustic v e l o c i t y Cq, surrounded by a i r with 

acoustic v e l o c i t y c£. To have unattenuated waveguide 

transmission within the layer of a i r , only those modes are 
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permissible which have constant phase i n planes perpendicular 

to the ray paths. 

In Figure 1, the e f f e c t i v e path length ABCD must equal 

path length BCDE. 

s = —•"k-1. + —. n - cos (2i) sin 0 sxn 0 v 

h (1 + cos (180° - 20)) sin 9 

= 2h sin Q 

The condition for constructive interference requires that 

the phase change from, say, A to D must be an i n t e g r a l 

multiple of 2rr. That i s , the change of phase due to the 

distance t r a v e l l e d by the wave, together with the t o t a l phase 

change on r e f l e c t i o n , must be equal to 2TTm, where m = 1, 2, 

3 y • • « • 

2h(L>J/c )sin Q .+ if = 2mTT. 
o 

Here, the t o t a l phase change produced by the two r e f l e c t i o n s 

i s represented by . At the c r i t i c a l angle of incidence 

0 .= 0 c and (j) = 0, leaving simply 

"Vc - h sTn. 6 • - I- 2  

o c 

In the diagram, 0 c i s the complement of the c r i t i c a l angle 

of incidence. The c r i t i c a l angle of incidence i s given by 
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c 
s i n (90° - 0 ) = -7 c c T 

o 

That i s , 

s i n 0 c = (1 - ( ^ r ) 2 ) 1 / 2 

Evidently, wave-guide modes are possible for acoustic waves 

having frequencies greater than 

lkJc ~ "TT v. 
H <^ 2 - <^>2 

o o 

Considering the fundamental mode (m = l ) , and temporarily 

assuming 

h ••= 20 km 

c =297 m/sec 

c» = 329 m/sec 
o • ' 

one finds that t h i s cutoff w i l l occur for (jj equal to 

0.108 rad/sec. Clearly, t h i s excludes the Brunt frequency 

(lOg = 0.02 rad/sec) which i s well below the acoustic cutoff. 

In constructing t h i s simple model, however, we have 

ignored completely the e f f e c t of gravity, and assumed that 

the boundaries to the layer were e f f e c t i v e l y s t a t i c . We 

s h a l l see how the i n c l u s i o n of gravity terms a f f e c t s the 

phase change. In subsequent sections we w i l l construct a 

model which takes these factors into account i n the form of 

more sophisticated boundary conditions, and pays rather more 

attention to the assumptions involved. 



-5-

CHAPTER II 

THE MODEL ATMOSPHERE 

In the derivations to follow, the low v e l o c i t y region 

corresponding to the stratosphere i s approximated by an 

is o l a t e d layer of a i r at a constant temperature of T degrees 

Kelvin. The surrounding layers, above and below, are 

represented by two i n f i n i t e l y thick layers both at a constant 

absolute temperature of T f. The thickness h of the low 

ve l o c i t y layer i s taken to be 20 kilometers, with T and T* at 

220°K and 270°K respectively. This i s shown, along with the 

ARDC standard 1959 atmosphere, i n Figure 2. The ambient 

pressure i s assumed to be a unique function of density, which, 

along with temperature, i s a function only of the al t i t u d e z. 

For waves having periods such as w i l l be encountered 

i n t h i s research, we are j u s t i f i e d i n neglecting the curva­

ture of the earth and i n tr e a t i n g the interfaces between the 

atmospheric layers as i n f i n i t e planes. Further, we s h a l l 

assume that we are s u f f i c i e n t l y far from the source of an 

observed disturbance that the waves propagating i n the 

po s i t i v e x d i r e c t i o n are plane and i n f i n i t e i n the y d i r e c t i o n . 

Their amplitude i s assumed to be small. Although waves i n an 

isothermal atmosphere are not refracted by density change 

( i . e . rays are straight l i n e s ) , the amplitudes of waves do 

depend on al t i t u d e because D varies with z. In t h i s sense 
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the waves are not s t r i c t l y plane waves. 

The a i r i t s e l f i s considered to be a perfect gas with 

the ordinary sound v e l o c i t y given by 

c = (J[RT)l/2 o v m 

where the constants take the following values: 

c 
Ratio of s p e c i f i c heats y = —P- = 1.40 

c v 
Universal gas constant R = 8314.9 MKS units 

Molecular weight m =29. 

Thus for the enclosed layer, the ordinary sound v e l o c i t y 

will be 297 m/sec and for the surrounding a i r 329 m/sec. 

Although we are keenly interested i n the eff e c t of 

gravity on wave propagation i n the layer, i t i s possible to 

make certai n simplifying assumptions about the nature of the 

g r a v i t a t i o n a l f i e l d . Taking as the radius of the earth the 
2 

figure 6371 km, and 9.80 m/sec as a t y p i c a l value of the 

acceleration due to gravity at the earth's surface, a rough 

c a l c u l a t i o n can be made of the magnitude of g at the upper 

and lower boundaries of the i s o l a t e d layer. At the lower 

boundary (a l t i t u d e of 10 km) we fi n d g approximately 
2 2 9.76 m/sec ; at the upper (30 km) boundary, 9.70 m/sec . It 

i s not unreasonable then, to treat g as being approximately 

constant; at 9*7 m/sec within the layer of in t e r e s t . 
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FIGURE 2. Temperature p r o f i l e s of the atmosphere. 
ARDC standard 1959 Atmosphere afte r Wares et a l 
i s shown with the isothermal layer representation 
of the stratosphere. 
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CHAPTER III 

THEORY 

By expansion of rigorous f i r s t order equations 

describing the behaviour of a perfect f l u i d where the pressure 

i s everywhere a unique function of the density, Bergmannhas 

derived non-static (time dependent) relat i o n s h i p s . In the 

p the pressure, B the bulk modulus, V the g r a v i t a t i o n a l 

p o t e n t i a l , and t the time. The subscripts refer to consecutive 

orders of expansion with the 0 subscript r e f e r r i n g to the 

s t a t i c solution. The f i r s t - o r d e r equations as given by 

Bergman are: 

Equation of continuity 

following equations u i s the v e l o c i t y Vector, the density, 

(1) 

Equation of motion 

(2) 

Equation of state 

1 V (3) 

Equation ( l ) can be written 
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The f i r s t two terms are the same as the expression i n 

the brackets i n equation (3). Substitution gives 

|T + V VPO + B J U ^ O (4) 

Time dependence of the form e 1 ^ i s assumed. 

i UJ + ux . V p Q + (O Q V u± = 0 . . . (1' ) 

± u J l°o^i + V P;1
 + f> x V v r 0 . . . . . ( 2 » ) 

i t O P l + u x . V p Q + B o V u± = 0 (4») 

From equation (1 T) 

V- ux - - ^ - ( i ^ + u, .V 

This i s substituted for ̂  u ^ i n equation (4) to 

get 

i t O P l + u x . V7 PD - Jo ( i ^ P i + • 7 = ° 

By rearranging terms^ we get 

B B 

(5) 
Equation (2) can be written 

(6) 

In the model atmosphere we have chosen V = g z and so 
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\J V = gk. Thus (6) becomes 

1 LO^o V 1 < 1 

The right hand expression can be substituted for u^ 

in equation (5)> giving 

or, more simply, 

B 

( VP x + k).( V P 0 - ̂  V^ G) -O)2BO^I = 0 

C o l l e c t i n g terms i n p ^ we have 

f>x { gk.(VP 0-^ Vfc,)- B o ^ 2 3 • -^Pl-(VP 0-^V^„) +^Yo^l} 

Divide both sides by B q , rearrange and solve for 

A - - ̂ 7-= j V - ^ (7) 

where we have defined a vector 

7/3p _ YIs 
po Bo 

G depends only on the ambient pressure and temperature, which 

i n turn are functions only of a l t i t u d e . 
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^z 

B 
1_ d/^o _1 d > o 
3 n T 7" " T*~ P 

For any f l u i d i n a uniform g r a v i t a t i o n a l f i e l d 

d P , 

2 B 

Also, since c = — 
° Po 

we can write G = 

For a perfect gas 

l(°o ^ c 2 j 

? P o RT 
z ' m 

RT 
~ fa

 g ^ z ' m 

1 d Po = mg 
" RT 

XT • 2 ft po X RT 
Now since c = — = 

o ^ m 

then 

po 
_1_ 3 /̂o = X 
ft 

Combining these r e s u l t s 

G = IS- + _g_ 
2 2 c c o o 

k = - 1) V k 
c 
o 
} 

Since )f > 1, G i s i n t r i n s i c a l l y negative for the 
atmosphere. 
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Equation (7) can now be written 

where G = - ()f - 1) g/ 2 
o 

By substituting the above value of p ^ (equation (7 T)) 

into equation (6») we have 

U l =7T7n WPI + gk( 
/-m/ ->2 <a H l (LO/c Q) P l - T T -

(°o^ L 1 OO 2 + g G 

The components of v e l o c i t y are: 

u •=' 

v •= 

pô > 1> x 

i o P l 
^ y 

± : 

^ 0 ( u T + gG) ° z 

Examination of Boundary Conditions 

Consider the case of a plane wave incident upon an 

inter f a c e from above, as i n Figure 3. 
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Incident Reflected 
Medium 1 has 

1 
j 

T, P, c, p 

i i i ^ ^ ^ " ^ 
e > ^ L — f & 

interface 

Medium 2 has 
Refracted T», P», c», ^ ' 

FIGURE 3. Reflection and r e f r a c t i o n at an interface. 

The general solutions can be written: 

i[(Pt-xkcosO + zksinQ] 

i[o>t-xkcosO - zksinO] 
p ± = A e" 

p = B e" r 
T = D e

i [ L O t - x k t c ° s O r + zk»sinO»] Pr 

where the primed q u a n t i t i t e s refer to the lower region and 

the unprimed quantities refer to the upper. 

Since we w i l l l a t e r be c a l c u l a t i n g the r e f l e c t i o n 

c o e f f i c i e n t , i t i s convenient to assign unit amplitude to 

the incident wave so that A = 1, B/A = R, the amplitude of 

the r e f l e c t e d wave, and D/A = C, the amplitude of the 

refracted wave. 
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(a) Pressure 

At an interface the pressure must be equal on both 

sides (p = p'). Taking terms up to 1st order only, we have 

p o + p i = P0
 + p i 

The unperturbed pressure may be written p Q = ^QS J 
2 

where terms of order ~f have been neglected. Thus, 

Po*3 + pl = Po « / + p i 

where z = f i s the equation of the interface. It i s true 

for a l l time, thus 

It ( p l " p i + <(*«>- f°o)e J ) = 0 

Approximately iu>(p 1 - p» ) + ( ̂  _pt) g w t = Q . 

(b) V e l o c i t y 

The v e r t i c a l component of v e l o c i t y must be continuous 

across an interface 

w = w» (10) 
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Application of Boundary Conditions at z = 0 

(a) Combining equations (9) and (9) we have 

i , ̂ p l , _g_ i u> , v 

^ + ^ - (Pa-Pi) 

O ' 

c ( i k , s i n 9 , + ^ + r f i f r ^ - rrffa < ^ W > 

a l l at z = 0 

c£ 2 ( f c T ^ o * * ^ 0 - ^ 0 « 

(11) 
(b) Combining equations (8) and (10) we have 

. i UJ (A£l + JL p ) = - 1 - ^ + _g_ p r ) 
^ o(L0 2+gG) * Z c 2 1 ^ ^ ( u J 2 + g G O * Z * 2 1 c 

»(t02+gG» ) 
iksine(l-R) + (l+R) = ik'sinO + -^r- C 

^ o(CU 2+gG) L c Q
2 V 1 - 2 

(12) 

Reflection Coe f f i c i e n t at z = 0 

The order to eliminate C and f i n d R, the Reflection 

c o e f f i c i e n t , multiply equation ( l l ) by ( i k ' s i n 0' + g/c£ 2) 

and equation (12) by (ik» s i n 0» + g/c> 2 + , /° 0 pr + S G > ) ) 
° ( ^ 0 - ^ 0 > * 

and subtract to get 
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p j > ( ^ ± g G i ) . ( . i k f s i n Q,» + g / c r ^ ) ( l + R ) 

w 7 
p 0 ( " 3 +gG) 

/ ( i k s i n © ) ( l - R ) + (1 + R)l 

(ik»sin©* + 

- i k s i n © -

R = -

g ( i k » s i n G r + ^ + 7 ^ ^ i " ° " " c 0
2 

c t v f o s 

(ik»sin©» + ) 
o (uAgG) _fo_ + . k s . n e _ ^ 

( i k , s i n e , + ^ . + ( u ^ G ) 

c * 2 (^o-poT g 

N o t e t h a t i f g i s s e t t o z e r o 

/) i k * sin©* - / ) ' i k sin© 
g=0 " ^ > Q i k » sin©* + ^ i k s i n Q 

> c sin©* -/0*c* s i n Q o f o 
> Qc s i n O * +£)*c' sin© hf>o< 

w h i c h i s t h e s i m p l e a c o u s t i c a l e x p r e s s i o n f o r t h e r e f l e c t i o n 

c o e f f i c i e n t . 

R e f e r r i n g a g a i n t o F i g u r e 3 we n o t e t h a t b y S n e l l * s 

l a w 
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c* cos 9 .= c cos 0 T 

c r 

cos 0 T = — cos 0 . 
c 

s i n :0» = (1 - c o s 2 0 » ) 1 / 2 = (1 - ( — ) 2 c o s 2 0 ) 1 / 2 

subject to the condition that cos © > c/c* 

r,t • f C 2 2 . , sl/2 s m 8' = - i ( — — cos 0 — 1) ' 
c 

Since c f and c are both r e a l , s i n 0' i s pure imaginary 

for angles of incidence greater than c r i t i c a l . 

The r e f l e c t i o n c o e f f i c i e n t then becomes: 

(-k̂ | ( ^ ) 2 c o s 2 e - i + - i j ) 
P M + & ) ~ c o . fl 
V - ^ ' k \/ „. o ~o „ oJiJ+eeT l k s i n e " ^ 2 (-M (-) cos 0-1 + ^ + ^ _ 7 _ O J 

c o 
c 
o R = - r 

(-k» l f ( ^ - ) 2 c o s 2 0 - l + -S-
|Q 0 (QU^+gG) 1 C c» 2 2 , _n \ • ' c ' _ .2 

g + iksinO 

(13) 

Note that t h i s expression i s of the form 

a - i k sin 0 R = - a + ik sin ,0 

where a i s pure r e a l . Therefore | R| = 1 . 
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Phase s h i f t on r e f l e c t i o n 

a - ib Let us write for convenience R = - a + ib 

Let us also define a t r i a n g l e containing an angle £ as i n 

Figure 4. 

Divide top and bottom by ( a 2 + b 2 ) 1 / 2 

x 

R _ '-fa + b f a + b J 

_ (cos 6 - i s i n (r ) 
~ (cos £ + i s i n <~ 5 

F i n a l l y , R = - e 2 l < ? 
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where 2 £ i s interpreted i n the phase change on r e f l e c t i o n . 

From the t r i a n g l e i n Figure 4 

arctan b/a 

£ = arctan 
^0(qj2+gG) 

( - k ^ ( ^ - ) 2 c o s 2 e - i + 

k s i n Q 

(14) 

R e f l e c t i o n at z = h 

Obviously, since the r e f l e c t i o n c o e f f i c i e n t does not 

depend on the choice of a coordinate system, £ must have 

the same algebraic form for any si m i l a r r e f l e c t i o n . We w i l l 

show that € has the same numerical value for the two 

interfaces which exi s t i n the model atmdsphere of t h i s 

problem. 

2 2 F i r s t , replace k by (M/c ) and cos 0 by (1 - s i n 0) 

i n equation (14) to get 

tan£ = 
( ^ / c ) s i n 0 

f 

( ( V f o ) g 
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Recall that at z = J" we can write 

p = p» 

/ RT 

• / » _ RT' 

state, thus /O//)* = ~ and from (7*) G = - ( ^ - l ) g / c 2 

Combining these, T =/0»T'. This i s true for steady 

(°o/po T 

(^/c ) s i n 0 
Now tan £ = ° 

2 c . o o o 

«(1-TA«) 4M - ^ ) - ( ^ ) W » H J J + ( T . / T - l ) g \ c c' o c' ' & 
4 o o o 

( I S A ) 

2 RT Since g i s assumed constant, and since c = , for a given o m 
(jj and angle of incidence the phase change on r e f l e c t i o n 

depends only on the temperatures of the layers. 

This demonstrates that the phase change i s the same 

for both r e f l e c t i o n s i n t h i s problem, since the temperatures 

of the layers are the same. Al t i t u d e i n i t s e l f does not 

change £ . This i s rather remarkable since the a i r 

densi t i e s are vastly d i f f e r e n t at the two interfaces. 
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Secular Equation 

Recalling that the equation describing the condition 

required for wave-guide propagation was 

2h (W/CQ) s i n Q + (p = 2mrr m = 1, 2, 3, ... 

We have shown the phase change on r e f l e c t i o n at both the 

upper and lower boundaries was 2 £ , thus the t o t a l phase 

change i s 4 6 > and i t i s now possible to write 

2h (w/c Q) s i n 6 + 4£ = 2mTT (15) 

m 1^ 2 ̂  3 ̂  •••• 

where £ i s defined i n equation (15A). 
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CHAP.TER IV 

NUMERICAL ANALYSIS 

In order to deduce some p h y s i c a l l y observable 

variables from the preceding theory, i t i s necessary to 

determine the relat i o n s h i p between LO and 0 . This i s 

accomplished by solving equation ( 1 5 ) which may be written 

^ j 2h (^) s i n 0 + 4 ^ 
v. o m 

where m i s an integer constant associated with the mode of 

propagation. 

It i s convenient to make the following substitution: 

(W/co) sin 0 = x 

This gives 

f(x) = ^ (2hx + 4 ) = m 
m — 1 , 2 , . . « 

where 

( 1 6 ) 

arctan 

C C 1 

o o 

2 , __g_ 
c'' 
o 

((JU - ) \ c' : 
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Equation (16) was solved numerically for x for many 

di f f e r e n t values of tO . 

In order to describe the techniques used for solution, 

we introduce a r b i t r a r i l y some temporary notation which 

s i m p l i f i e s the expression for the phase change £ . 

Let / 1 1 \ 
31 1 2 " ,2* c c' o o 

= g/< 

a o = g/c» ' 

a. = h 

a 5 = ( Y-l)g 

a, •= (1 - T/T')g 

a ? = (Tt /T - l)t 

The constants a^ through a^ depend only on the physical 

constants of the model atmosphere; they are a l l independent 

of U) and x. Using t h i s s i m p l i f i e d notation, the expression 

for f(x) becomes 

f(x) i r 
2rr I a 4 x + ^ arctan 2 I 2 2 

( U J - a ^ a c ) ( - p j a 1 - x + a^) 

- a. 

V 

(CU - a - a c ) 

m 
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Certain c r i t i c a l values of CAJ and X can r e a d i l y be 

seen on inspection of the argument of the arctangent 

function. 

2 • For instance, when (jj = a2a$> that i s when (jj = g / c ^ ^ - l ) 

the complicated term i n the denominator vanishes. • 

This the Brunt frequence COg, and we must watch our r e s u l t s 

c a r e f u l l y i n the neighbourhood of U)= Ci^. 

Also, i t can be seen that when x i s greater than 
2 

QJ a^ the denominator becomes imaginary. If we are to 

search for r e a l roots (a necessary condition for the wave­

guide modes we seek) x must be constrained to be l e s s than 2 2 or equal to 60 a^. This condition that x must be l e s s than 
2 1 1 

(jj ( — 2 ~ —2) ^n order to keep f (x) r e a l i s merely a restate-
c c 1 

o o 
ment of the requirement that the angle of incidence must be 

l e s s than the c r i t i c a l angle. This can be shown as follows: 

C C ' 
o o 

O J 2/c o
2 (sin 0 ) 2 < 0 U 2 ( ^ 2 - — ^ 2 ) 

c o 

(sin 0 ) 2 < 1 - ( ^ ) 2 

o 

(cos 0 ) 2 > ( ^ ) 2 

o 



-25-

The angle 0 i s the complement of the angle of 

incidence; hence 

si n i> c / c f for a r e a l root. — o o 

As usual s i n i ..= c / c f defines the c r i t i c a l angle, c o o 

Computation 

In order to gain insight into the behaviour of f ( x ) , 

a FORTRAN program was written for the IBM 7 0 Q 4 - H at the 

University of Toronto. For a p a r t i c u l a r value of LO the 

program computed and plotted values of f(x) and i t s f i r s t 

d e rivative f ( x ) for a wide range of values of x subject to 
2 

the l i m i t a t i o n x < QJ a, . 

The expression used for the derivative was 
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Several exploratory runs of t h i s f i r s t program were 

made, using d i f f e r e n t values of UJ with m = 1. In each case 

tested, f(x) either had no r e a l root at a l l , or else i t had 

a r e a l root and both f(x) and f'(x) were continuous near the 

root. On the strength of these r e s u l t s , a second FORTRAN 

program was written which used Newton's formula 

X n x n - l " fTTx ~) 
n-1' 

i n an automatic i t e r a t i v e procedure. 

Unfortunately, for values of UJ which approached the 

cutoff frequency COc, the derivative f•(x),became unstable 

and discontinuous, and i t was not possible to use methods 

which depend on continuity of the function and i t s derivative. 

Instead, i t became necessary to revert to a program of the 

f i r s t type, and to study f(x) i n d e t a i l for each value of 

UJ . Wherever a r e a l root of f(x),= m was found to exist, 

i t was calculated by a short program which performed a simple 

geometrical i n t e r p o l a t i o n between the closest points on the 

graph. 

Values of LO were chosen i n such a way as to ensure 

good coverage of the range between ordinary acoustic f r e ­

quencies (periods of a few seconds) and the cutoff 

frequency OJ^. A car e f u l study was made of the behaviour 

of f(x) at frequencies below c to make sure that no 

additional branches of the x(cO) curve could exist 
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undetected. P a r t i c u l a r attention was paid to frequencies 
l/2 

near UJg = g/c Q( Y-l) , the Brunt Frequency. 

Having calculated x(60) ..= ( (V/CQ) sin 0, i t i s a 

simple matter to compute certain p h y s i c a l l y observable 

parameters which are useful i n analysing the behaviour of 

the model. 

The horizontal component of the propagation constant 

(wave number) i s simply 

k x M - ( ^ ) c o S . x 2 l V 2 

o \ c \ o 

From t h i s equation the phase v e l o c i t y and the group 
CO X 

v e l o c i t y ^ may be derived. 
x 

The foregoing describes the method of computation. 

The r e s u l t s are presented and discussed i n subsequent sections. 
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CHAPTER V 

QUANTITATIVE RESULTS 

The detailed r e s u l t s of the computations for the 

fundamental mode i n the gravity-acoustic model of the strator-

sphere are presented i n Table 1. It shows the angular frequency 

at which the c a l c u l a t i o n was made, the calculated value of the 

variable x, and the corresponding value of the horizontal wave 

number- k x» 

Cutoff occurs atWJ =0.21 rad/sec for the fundamental 
c ' 

mode. Below that frequency, the function f(x) has no r e a l 

roots. A careful study was made of the behaviour of f(x) 

i i n the neighbourhood of the Brunt frequency, and i t can be 

conclusively stated that there i s no branch of the k x ( u J ) 

curve containing uj^. 

Table 2 i s derived from Table 1, and contains l i s t s 

of group and phase v e l o c i t i e s and the corresponding angular 

frequencies and periods. Data from Table 1 i s plotted in' 

Figure 5. Data from Table 2 i s plotted i n Figure 6 and the 

r e s u l t s of Press and Harkrider i n Figure 7« 

Similar calculations were made for other modes 

(m = 2, 3, 4).but they have been excluded as uninteresting, 

since., as would be expected, the cutoff frequencies were much 

higher. No anomalous behaviour was discovered for those 

modes. 
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TABLE 1 - COMPUTED RESULTS FOR m •= 1 

UJ x (x 10 3) k (x 10 2) x v ' 

2.210 0.16140621 0.74353431 
2.110 0.16120411 0.70987358 
2.010 0.16162911 0.67621192 
1.910 0.16187618 0.64254919 
1.810 0.16215156 0.60888520 
1.710 0.16246045 O.5752197I 
1.610 0.16280932 0.54155242 
1.510 0.16320650 0.50788293 
1.410 0.16366328 0.47421076 
1. 310 0.16419543 0.44053522 
1.210 0.16482115 0.40685540 
1.110 0.16556674 0.37317001 
0.810 0.16902441 0.27205659 
0. 710 O.17104694 0.23831610 
0.610 0.17350604 0.20454258 
0.510 0.17733682 0.17070651 
0.410 0.18360871 0.13674602 
0. 310 0.19601491 0.10246311 
0. 300 O . 1 9 8 O I 8 4 8 0.09899493 
0.290 0.20023009 0.09551460 
0.270 0.20710156 0.09192143 
0. 260 0.20565351 0.08850240 
0.250 0.21302164 0.08138840 
0. 240 0.21789300 0.07777002 
0.235 0.22077025 0.07593811 
0. 230 0.22405705 0.07408563 
0.225 0.22794032 0.07220453 
0. 220 0.23252976 0.07028790 
0.215 0.23828189 0.06831543 
CUTOFF 
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TABLE 2 - ANGULAR FREQUENCY, PHASE VELOCITY, 
GROUP VELOCITY AND PERIOD. 

Period, Minutes Phase Veloci t y Group Velocity 
rad/sec m/sec m/sec 

2.210 .04738 297.23 
2.160 .04848 297.08 
2.110 .04963 297.24 
2.060 .05983 297.07 
2.010 .05210 297.24 
1.960 .05343 297.06 
1.910 .05483 297.25 
1.860 .05630 297.05 
1. 810 .05786 297.26 
1.760 .05950 297.04 
1. 710 .06124 297.28 
1.660 .06308 297.02 
1.610 .06504 297.29 
1.560 .06713 297.00 
1. 510 .06935 297.31 
1.460 .07173 296.98 
1.410 .07427 297.34 
1. 360 .07700 296.95 
1. 310 .07994 297-37 
1. 260 .08311 296.91 
1.210 .08655 297.40 
1.160 .09028 296.86 
1.110 .09434 297.45 
0.960 .10908 296.70 
0.810 .12928 297.73 
0. 760 .13778 296.38 
0. 710 .14749 297.92 
0.660 .15867 296.09 
0.610 .17167 298.23 
0. 560 .18700 295.54 
0.510 .20533 298.76 
0.460 . .22765 294.46 
0.410 .25541 299.83 
0. 360 .29089 291.69 
0. 310 .33781 302.55 
0.305 .34334 288.42 
0. 300 .34907 303.04 
0.295 ..35499 287.33 
0.290 .36110 303.62 
0.280 .37400 285.22 
0. 2 70 .38785 305.08 
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Table 2, Cont'd 

(jJ> Period, Minutes Phase Veloci t y Group Velocity 
rad/sec m/sec m/sec 

0.265 .39517 282.45 
0.260 .40277 306.02 
0.255 .41067 279.83 
0^250 .41888 307.17 
0.245 .42743 276.37 
0.240 .43633 308.60 
0.2375 .44093 2?2.94 
0.2350 .44562 309.46 
0.2325 .45041 

309.46 
269.91 

0.2300 .45530 310.45 
0.2275 .46031 265.80 
0.2250 ,.46542 311.61 
0.2225 .47065 260.88 
0.2200 .47600 313.00 
0.2175 .48147 253.49 
0.2150 .48707 314.72 
CUTOFF 
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FIGURE 5. Graph of frequency against wave number for 
the isothermal layer model of the stratosphere. 
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FIGURE 6. Group v e l o c i t y and phase v e l o c i t y for wave­
guide modes i n the isothermal layer model. 
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Period, minutes 

FIGURE 7- Dispersion curves of Press and Harkrider 
(sketched from t h e i r Figure 5) compared with 
the dispersion curves for the gravitating 
stratosophere model. 
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CHAPTER VI 

DISCUSSION 

The behaviour of the gravity-acoustic model can be 

summarized quite simply. 

Waves having frequencies greater than 0.21 rad/sec 

(period of les s than 0.5 minutes) can be trapped i n the 

layer and propagate e n t i r e l y within i t , being r e f l e c t e d 

repeatedly from the top and bottom interfaces. The condition 

for constructive interference determines the eigenvalues of 

the angle of incidence for each value of , and consequently 

the horizontal component of wave number k x < Values of k x 

are presented i n Table 1. 

Waves having periods greater than. 0.5 minutes cannot 

s a t i s f y the condition of constructive interference for 

angles of ifricidence greater than the c r i t i c a l . a n g l e , and thus 

leak out of the guide into the surrounding media. 

The model.is not capable of, and was not intended to 

be capable of, representing the behaviour of the whole 

atmosphere. It i s useful only for examining the waveguide 

e f f e c t of the stratosphere, since the model does not 

accurately portray those parts of the atmosphere which l i e 

outside the layer. Our model atmosphere as a whole behaves 

as an i n f i n i t e l y deep gr a v i t a t i n g atmosphere, because, unlike 
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the true atmosphere, the model extends i n f i n i t e l y i n both 

directions.; As a consequence the natural gravity waves have 

i n f i n i t e v e l o c i t i e s and are not indicated i n our solution. 

Moreover, only those waves which s a t i s f y the secular equation 

of the layer (Equation 16) are portrayed accurately, and no 

conclusions can be drawn with respect to the subsequent 

paths of acoustic waves which have leaked out of the layer. 

One of the most i n t e r e s t i n g features of the r e s u l t s 

i s the fact that the cutoff frequency, for the gravity-acoustic 

formulation i s only 0.21 rad/sec, which .is a considerably 

higher frequency than the cutoff for the simple acoustic 

case (0.11 rad/sec). Thus i t would appear that by taking 

account of gravity i n the theory we have modified the boundary 

conditions i n a manner which permits waves which would be 

trapped i n the ordinary acoustic theory to escape from the 

layer. It i s i n s t r u c t i v e to re-examine the mathematics to 

see how such a phenomenon can.occur. 

Frequency dependence of phase change at the c r i t i c a l angle 

Unlike the simple acoustic model, the gravity-

acoustic model has a phase change which does not always 

approach zero as the angle of incidence approaches the 

c r i t i c a l angle. Let us denote, by x the value of ° J m 
(^JL>/C )sin 6 where (90° - ©) .= i . Of course, x need not T' o c 3 m 
be a root of the secular equation, but i t i s always equal to 
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or greater than the root, i f a root e x i s t s , because x i s 

the largest value that x can take while ensuring that f(x) 

; i s pure r e a l . Actually, x m approaches the value of the root 

as OJ approaches U) } the cutoff frequency. 

At the c r i t i c a l angle, the expression for the phase 

change on each r e f l e c t i o n becomes 

OJ 
2 £ = 2 arct an 

( « f - 0 | g/c» 2 

g(l-T/T») ' ^ ( t u 2 _ 0 j 2 ) " 

g ( l - T / T ' ) +
 c f 2 

oj 

where we have recognized gG = -U^ , the square of the Brunt 

frequency. 

On s i m p l i f i c a t i o n t h i s becomes 

2i 2 arctan 
g I Co \ g 2(l-T/T») f 1 / 

. With the set of physical parameters adopted i n t h i s 

model, every term i n the square brackets i s always p o s i t i v e 

except (u>2-li|). For values of LU< UJQ the term (CD2-U^) 

becomes negative. Indeed the sign of the whole argument of 

the arctangent changes when 

e o 2 ^ -">B> 
g (1-T/T*) < - 1 
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Using physical values for the gravity-acoustic model, 

t h i s i s found to occur when CO i s l e s s than 0.0163 rad/sec. 

It should be emphasized that t h i s c a l c u l a t i o n i s for 

the p a r t i c u l a r value of x corresponding to the c r i t i c a l 

angle; the secular equation i s i n general s a t i s f i e d by a 

d i f f e r e n t value of x. But the fact remains that the 

expression for the phase change on r e f l e c t i o n i s negative for 

acoustic frequencies and becomes po s i t i v e at some frequency 

below the Brunt frequency. 

This means that at acoustic frequencies, up to and 

including the acoustic cutoff frequency, the phase change on 

r e f l e c t i o n has a negative sign and thus tends to e f f e c t i v e l y 

shorten the acoustic path length between subsequent r e f l e c t i o n s . 

This has the same e f f e c t as a decrease i n h, the layer 

thickness, i n that i t raises the cutoff frequency. 

It i s i n t e r e s t i n g to note that i f the cutoff frequency 

had been lower, that i s i f Ci^ ;~ CO^ the effect of the change 

of sign of the phase change would have been to extend the 

cutoff to lower frequencies or even to introduce a stopping 

band and a new low frequency branch to the dispersion curve. 

Such was not the case with t h i s model, however, and 

although a careful check was made, no such branch was found 

to e x i s t . The cutoff frequency was so much higher than the 

frequency at which £ changed sign that no int e r a c t i o n was 

possible. The f(x) curve did undergo an abrupt change of 
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shape, however, when the sign of £• changed. 

Comparison 

The dispersion curves produced by the analysis of 

t h i s model can be compared with those derived.by Press and 

Harkrider for a multi-layered approximation to the Standard 

ARDC atmosphere. Figure 7 i s a sketch showing the res u l t s for 

the fundamental modes for the model described i n t h i s thesis 

and for a model studied by,Press and Harkrider having a h a l f -
at 

space b e g i n n i n g ^ 2 0 km (their Figure 5 ) . In both cases, the 

high frequency l i m i t of both the phase and group v e l o c i t i e s 

i s the sound.velocity of the channel with the lowest v e l o c i t y . 

In t h e i r case that channel i s the second low v e l o c i t y layer 

at about 8 5 km, while i n ours, naturally, i t i s the isothermal 

layer representing the stratosphere. 

It i s clear that i n the complete model the wave guided 

i n the stratosphere would leak through to the low v e l o c i t y 

channel i n the mesosphere. Thus the stratosphere would not 

be the perfect guide that we have proposed i n t h i s study. 

Nevertheless, for the wavelengths studied here the strato­

sphere would be a s u f f i c i e n t l y good guide that i t must be 

considered for many problems. In t h i s respect our approxi­

mate treatment i s superior to the more complete treatment 

of Press and Harkrider. The waves we have studied here 

would be included as slowly attenuated modes i n a complete 

theory. 
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Press and Harkrider t r i e d several variations of t h e i r 

model to determine which parts of the atmosphere govern the 

various segments and branches of the dispersion curves. One 

such version had the lower (20 km) temperature minimum 

e n t i r e l y absent. I t s removal l e f t the short period portion 

of the curve r e l a t i v e l y unchanged, but with the long period 

plateaus displaced. This was i n d i c a t i v e of dependence of 

the long period plateaus on the structure of the lower 50 km 

of the atmosphere. 

Another version had the second (85 km) low temperature 

zone removed. This resulted i n dispersion curves having the 

same high v e l o c i t y plateaus at long periods (over 5 minutes) 

as i n the Standard version, but with the very short period 

waves having v e l o c i t i e s corresponding to the 20 km channel. 

The v e l o c i t y minimum at 2i5 minutes was eliminated. This 

version demonstrates that the short period portions of the 

dispersion curves depend heavily on the structure of the 

atmosphere above 50 km, and i n p a r t i c u l a r on the low v e l o c i t y 

channel at 85 km. 

With t h i s background i t i s possible to discuss the 

detailed behaviour of the Press and Harkrider curves and to 

compare the r e s u l t s of our more simple model based on a 

grav i t a t i n g stratosphere. 

Waves having periods below about 2^5 minutes are 

apparently guided, by the upper (85 km) low v e l o c i t y channel 
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i n much the same way as we have postulated for the lower 

channel i n our model. The group and phase v e l o c i t y curves 

are quite similar i n shape for the two models* The reason 

that our curve cuts off at 0.5 minutes while the other i s 

unbroken to 2.5 minutes i s attributed to the much greater 

thickness and temperature contrasts which exist i n the case 

of the upper channel. The absence of branches corresponding 

to the lower channel for very small periods indicates that 

the two low v e l o c i t y channels are coupled, and that energy 

/from the lower leaks into the upper. 

In the Press and Harkrider model, energy begins to 

leak out of the upper channel at periods about 2.5 minutes. 

Although the group v e l o c i t y i s close to the sound v e l o c i t y 

of the lower channel, we know from the r e s u l t s of our own 

model that the branch from 2.5 minutes to 4.5 minutes does 

not correspond to waves guided simply by the lower channel. 

Instead i t must represent a more complicated mode involving 

at least the lower 50 km of the atmosphere. 

At periods greater than 4.5 minutes, acoustic-gravity 

waves are no longer guided by any of the structures of the 

lower atmosphere, but appear to represent the gravity branch. 

They, too, appear to be quite dependent on the structure of 

the atmosphere below 50 km. 
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Conclusions 

1. An is o l a t e d isothermal layer such as that proposed to 

represent the stratosphere does not behave as a l o s s l e s s 

wave-guide for frequencies i n the order of the Brunt 

frequency and lower. 

2. The e f f e c t of gravity on the boundary conditions i s to 

increase the cutoff frequency by modifying the expression 

for the phase change on r e f l e c t i o n . The eff e c t i s 

s u f f i c i e n t to change the cutoff by a factor of two. 

3. A wave-guide which conducts waves of periods greater than 

0.5 minutes requires increased layer thickness, 

increased temperature contrasts, a r i g i d earth's surface, 

or a l l three. 

4.. A simple isothermal layer model of the stratosphere i s 

not s u f f i c i e n t to account for the gravity-acoustic wave 

transmission properties of.the atmosphere over any 

frequency range. I f , however, we had. modeled the meso-

sphere channel instead, our re s u l t s would have been 

y a l i d for periods up to about 1 minute. 
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