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A b s t r a c t 

Every conformal automorphism on a compact connected Riemann surface S of genus g gives rise 

to a matrix A in the integral symplectic group S P ^ Z ) by passing to the first homology group. 

If g > 2 then A has the same order as the automorphism. We consider the converse problem, 

namely which elements of finite order in SP2g(Z) are induced by some automorphism on some 

Riemann surface S of genus g? A related problem is the determination of the conjugacy classes 

of torsion in S P ^ Z ) . To explain one of our main results let f(x) € Z[x] be an irreducible 

"palindromic" monic polynomial of degree 2g, that is one satisfying x2g f(l/x) — f(x) and 

/(0) = 1, and let £ be a fixed root of f(x). Then there is a one-to-one correspondence between 

the conjugacy classes of integral symplectic matrices with characteristic polynomial f(x) and 

the classes of certain pairs (a, a), where o is an ideal of Z[£] and a is an element of Z[£] satisfying 

certain conditions. In the special case where f(x) = 1 + x + x2 -\ h xp~l, p is an odd prime, 

this result says that the number of conjugacy classes of elements of order p in SP p _i(Z) is 

2(P~ 1)/ 2/II, where h\ is the first factor of the class number of the cyclotomic extension. 

If X e SP2g(1j) has a reducible characteristic polynomial of the form f(x)g(x), where f(x) 

and g(x) are integral "palindromic" polynomials and coprime with coefficients in Z , then we 

prove that X is conjugate to a matrix of the form X\ * X2, where the star operation is an 

analogue of orthogonal direct sum. 

We determine completely those conjugacy classes of elements of order p in SP p _i(Z) which 

can be induced by some automorphism on a Riemann surface with genus (p — l)/2. 

A complete list of the conjugacy classes of torsion in SP^{1.) is obtained. We give a complete 

set of realizable conjugacy classes in SP4(Z). 

We also study the Eichler trace of Z p actions on Riemann surfaces. If A denotes the set of 

all Eichler traces of all possible actions modulo integers and B = {x € Z [ £ ] | x + x G Z } / Z , we 

prove that the index of A in B is h\. There is group isomorphism between A and Q,, the group 

ii 



of equivariant cobordism classes of Zp actions. Finally, we determine which dihedral subgroups 

of GLg(C) can be realized by an action on a Riemann surfaces of genus g. 
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Chapter 1 
In t roduct ion 

This thesis consists of two parts. The first part is the conjugacy classification of elements of 

the symplectic group over a principal ideal domain and the realizability of integer symplectic 

matrices by analytic automorphisms of compact connected Riemann surfaces. The second part 

is about the "Eichler trace" of group actions of Z p , the cyclic group of odd prime order p, and 

£>2p) the dihedral group of order 2p, on compact connected Riemann surfaces. 

1.1 Motivations 

The first problem that we consider in this thesis is the determination of the conjugacy classes of 

matrices in the integral symplectic groups SP2n (T>), where V is a principal ideal domain, with a 

given characteristic polynomial. Classification up to conjugacy plays an important role in group 

theory. The symplectic groups are of importance because they have numerous applications to 

number theory and the theory of modular functions of many variables, especially as developed 

by Siegel in [32] and in numerous other papers. But our original motivation for studying this 

problem came not from algebra but rather from Riemann surfaces. 

Let 5 be a connected compact Riemann surface of genus g (g > 2) without boundary. Let 

T € Aut (S), the group of analytic automorphisms of S. Then T induces an isomorphism of 

Hi(S) = H\(S,Z), the first homology group of 5, 

T* : ffx(5) 

Let {a, b} — {a i , . . . , ag, b\,..., bg} be a canonical basis of -Hi (5), that is the intersection matrix 
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for {a, b} is 

where Ig is the identity matrix of degree g. Let X be the matrix of T* with respect to the basis 

{a, b}, i.e. 

Tt(ai,...,ag,bi,...,bg) = (ai,..., ag, & i , . . . , bg)X. 

Since T» preserves intersection numbers, X'JX = J, where X' is the transpose of X. Hence 

X E SP2g{1'), the symplectic group of genus g over Z . If we fix a canonical basis of H\(S), 

there is a natural group monomorphism 

A u t ( 5 ) ^ S P 2 9 ( Z ) , 

see [13]. Clearly, the matrices of T* with respect to different canonical basis are conjugate in 

SP2g(Z). 

Definition 1.1. A matrix X E SP29(Z) is said to be realizable if there is T E Aut (5) for some 

Riemann surface S such that X is the matrix of T* with respect to some canonical basis of 

ffi(S). 

Two questions naturally arise. 

1: Can every X E SP2g{1) be realized? 

2: If the answer to Question 1 is no, which ones can be realized? 

Note that Aut (5) is finite, so we only consider torsion elements of SP2g(Z). To answer 

these questions, we need some knowledge of the conjugacy classification of S P ^ Z ) . 

For example, consider elements of order p, where p is odd prime. Any action of Zp on 

S determines a representation p : Z p -¥ GLg(Y), where V is the vector space of holomorphic 

differentials on S. If T is a preferred generator of Z p then this representation yields a matrix 

p(T) E GLg(C). The trace of this matrix, x = tr(T), is referred to as the Eichler trace. It 
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is an element of the ring of integers Z[(], where ( = e p . Suppose there are t fixed points 

P i , . . . , Pt of T . The fixed point data is described as a set of integers modulo p, {ai,..., at}, 

one for each fixed point Pj, such that Tai acts on the tangent space at Pj by counterclockwise 

rotation through 2ir/p. The Eichler Trace Formula then determines the Eichler trace of T as 

where the kj are determined by the equations kja,j = 1 (mod p), 1 < j < t. See [13] for a proof 

of this result. 

Suppose we have two such automorphisms of order p, 

T\ : Si -» Si, T2 : S2 ->• 52, 

where Si and S2 have the same genus g. Let Xi, X2 be the symplectic matrices induced by Ti, 

T2 respectively. Then Xi and X2 are conjugate in SP2S(Z) if and only if their Eichler traces 

x{Ti) and x(T 2 ) are the same, see A. Edmonds &: J . Ewing [5] and P. Symonds [35]. 

The Riemann-Hurwitz formula for an order p element T € Aut (5) is 

9 = P9o + *r(t-2) (1.2) 

where go = g {S/T), the genus of S/T, and t = Fix (T), the number of fixed points of T . We 

shall show that ai + • • • + at = 0 (mod p) is a necessary and sufficient condition that there be 

some T with order p and fixed point data {ai,..., at}. This implies there are only finitely many 

possibilities for the Eichler trace for fixed g. Therefore, there are only finitely many classes of 

order p matrices in SP29(Z) which can be realized. The minimal polynomial of an element of 

order p is xp~l + xp~2 H \-x + l, which is irreducible over integer ring Z . Hence the minimum 

g such that there is a element of order p in 5P 2 s (Z) is g = PJYL > 1. We consider this special 

case, only v - ^ - classes of order p matrices in 5P p _ i(Z) can be realized. But we shall show that 

the number of conjugacy classes of order p matrices in SP p _i(Z) is 2 2 hi, where hi is the first 

factor of the class number h of Z[£]. So in general most of the order p matrices in SP p _ i(Z) is 

not realizable. Furthermore, we shall answer Question 2 for this case. 
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The second problem we consider is to determine how much information about the action 

of Z p is captured by the Eichler trace. We want to answer the following two questions. 

Question 3: What element x € Z[(] can be realized as the trace of some action? 

Question 4: What is the relationship between two actions, not necessarily on the 

same surface, if they have the same trace? 

The primary motivation for these two questions are the papers of J . Ewing ([6], [7]). 

1.2 M a i n Results 

In this section we will give main results of our thesis. Al l theorems in this section except for 

Theorem 8 and Theorem 9 are completely original. Proofs of the results in Theorem 8 and 

Theorem 9 have appeared previously (see [6], [7], [35]), but our approach is entirely new. To 

explain our results we need to develop some notation. Throughout this thesis T> will be a 

principal ideal domain with characteristic not 2, that means V is a commutative ring without 

zero divisors, containing 1, in which every ideal is a principal ideal. Let T denote the quotient 

field of V. Let M n x m ( £ > ) be the set of nxm matrices over V. For sake of simplicity we denote 

MnxmCD) by Mn(V) when n = m, and let In be the identity matrix in Mn{V). 

For A e Mni(D), B <E M„ 2(X>), we define the direct sum of A and B as 

A + B = ^ e Mni+n2(V). (1.3) 

Definit ion 1.2. The set of 2nx2n unimodular matrices X in M2 n (£>) such that 

X'JX = J (1.4) 

is called the symplectic group of genus n over V and is denoted by SP2n(D)- Two symplectic 

matrices X, Y of SP2n('D) are said to be conjugate or similar, denoted by X ~ Y, if there is a 

matrix Q € S-F^n^) such that Y — Q~lXQ. Let (X) denote the conjugacy class of X. 
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Remark. The definition is meaningful and clearly SP2n{V) is a subgroup of GL2n{T>), the general 

linear group with entries in V. It is well known that every symplectic matrix in SP2n(T>) has 

determinant one [1]. 

It is readily verified that X belongs to SP2n{T>) if and only if X' belongs to SP2n(V). Let 

X = 
A B 

where A, B,C, D E Mn(V). If X E SP2n{V) the following conditions are satisfied: 

AB' = BA', CD' = DC' and AD' - BC' = I (1.5) 

as well as 

A'B = B'A, C'D = D'C and A'D - C'B = I. (1.6) 

Conversely, if one of (1.5) or (1.6) is true then X E SP2n{T>). 

Given two matrices 

Ai B x \ A2 B2 

Xi=\ \€M2ni(V) and X2 = | e M 2 n 2 ( D ) , 

, C i P>i) \C2 D2j 

we define the symplectic direct sum of Xi and X2 by 

Xi*X2 = e % 1 + „ 2 ) ( P ) . 

/'A\ 0 Bx 0 ^ 

0 A2 0 B2 

Ci 0 Dx 0 

\0 C2 0 D2J 

It is easy to check that XX*X2 E SP2(ni+n2)(D) if and only if Xi E SP2ni{T>), for i = 1,2. 

(1.7) 

Given two matrices 

C\i C\2\ (D\\ D\2 

Yi=\ E M2nix2n2{V) and Y2 = | G M 2 t l 2 x 2 n i ( D ) 
^C2i C22l \D2i D22 



where Cy € MniXn2(T>), Dtj G Mn2Xni(V), we define the quasi-direct sum by 

Yi o y 2 = G M-2(ni+n2) (2>). (1.8) 

/ 0 C n 0 Ci2^ 

D i i 0 £> 1 2 0 

0 C21 0 C22 

\ 0 2 1 0 Z?22 0 J 

By an easy calculation we see that if m = n 2 = n, then F i o V 2 G SP\n(V) if and only if 

Yi,Y2€ SP2n(V). 

Definition 1.3. A matrix X G SP2n(V) is said to be decomposable if it is conjugate to a 

symplectic direct sum of two symplectic matrices which have smaller genera; otherwise, X is 

said to be indecomposable. When n is even, X is said to be quasi-decomposable if it is conjugate 

to XioX2 for some X\, X2 G SPn{V). 

Given a matrix X G M2n(T>), we denote the characteristic polynomial of X by 

fx{x) = \xI-X\. 

If X G SP2n(V), then fx(x) is "palindromic" and monic, that is 

x2nf(l) = f(x) and /(0) = 1. (1.9) 

This is because X'JX = J, X' = JX~lJ~l, 

and /(0) = det(X) = 1. 

fx(x) = \xI-X\ 

= \xI-X'\ 

= \xI-X~l\ 

= x2n\X~ll\\X-'\ 

Definition 1.4. A polynomial f(x) in V[x] of degree 2n (n > 1) is called an S-polynomial if 

it is a palindromic monic polynomial. A n S-polynomial f(x) G V[x] is said to be irreducible 



over T>, or is an irreducible S-polynomial in V[x], if it can not be expressed as the product of 

two S-polynomials (in V[x\) of positive degree. Otherwise, f(x) is termed reducible over V. A n 

S-polynomial of type-I is an irreducible S-polynomial which is also irreducible in the common 

sense, all other irreducible S-polynomials are said to be of type-II. 

Given a separable S-polynomial f(x) of degree 2n, let Mf be the set of all symplectic 

matrices, whose characteristic polynomials are f(x), over V, that is 

Mf = {X G SP2n(V) | fx(x) = /(a;)}. (1.10) 

We use Mf to denote the set of the conjugacy classes of Mf in SP2n{P>)-

In Chapter 3 we deal with the case that f(x) is a separable S-polynomial of type-I. Let £ 

be a fixed root of f(x). Then 1/C is also a root of f(x). Let TZ = £>[C], S = Then S is 

the quotient field of TZ. A n ideal (fractional ideal) in S is a finitely generated 7^-submodule of 

S which is a free X>-module of rank 2n. A n integral ideal is an ideal which is contained in TZ. 

Two ideals o, b are equivalent if there are non-zero elements X,fi€.TZ such that Aa = fib. 

We denote the equivalence class of o by [o] and let C denote the collection of equivalence classes 

of ideals. C is an commutative monoid with respect to multiplication of ideals. The identity is 

in 

Let Pf be the set of pairs (o, a) consisting of an integral ideal a and an element a G 1Z 

such that a = a A a' and a = a, where the tilde denotes that conjugate such that C = 

a = {a | a G a}, A = C 1 _ n / ' ( C ) a n d a > 1S t n e complementary ideal. Two such pairs (a,a) and 

(b,6) are said to be equivalent if there are non-zero elements A, /x G TZ such that Aa = fib and 

AAa = \x\xb. We denote by (a, a) the equivalence class of (a, a). Let Vf denote the set of all 

classes of Pf. 

Suppose X £ Mf. There is an eigenvector a = ( a i , . . . ,0:271)' G TZ2n corresponding to C, 

that is XC, = (a. Let a be the X>-module generated by ai,... ,a2n, and let a = A~1a'Ja. 

It is easy to check that a is an integral ideal in TZ and a — a. Furthermore we will prove 
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that (a, a) 6 P and that the correspondence \& : M/ -> Vf, {X) —> (a, a), is well defined (cf. 

Section 3.3). 

Theorem 1. $ is bijection. 

Theorem 2. If f(x) is a separable S-polynomial, then Mj ^ 0. 

If TZ is integrally closed, then C is an abelian group. Also we have that 

Pf — {(a, a) | oo = (a) and a = a} 

and V turns out to be an abelian group where multiplication is given by (a, a)(b, b) = (ab, ab) 

(cf. Section 3.4). Let Co denote the subgroup of integral ideal classes defined by 

Co = {o € C | oo = (a), a = a for some a € 7£} (1.11) 

Let U+ = {u € U \ u = u} and C = {ml \ u Elf}, where ?7 is the group of units in 71. Clearly, 

C C U+ and they are subgroups of U. We shall show 

Theorem 3. There is a natural short exact sequence 

i _> c/+/c A A Co -> i (1.12) 

w/iere 0([u]) = (V[(],u) and i/>({a,a)) = [a]. 

Consequently, for the special case V = Z , we shall show 

Theorem 4. Let qm be the number of elements in Mf, where f(x) is the m-th cyclotomic 

polynomial. Then 

m = 2 (mod 4), 

= < m ^ 2 (mod 4), and m is prime power, 

hi, m ^ 2 (mod 4), and m is not prime power, 

where 4>{m) is the Euler totient function. 
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If m is an odd prime p, then <p(p) — p — 1. Hence we have 

Corollary 1.1. The number of conjugacy classes of order p elements in SPp_i(Z) is 2^" hi. 

In Chapter 4 we introduce symplectic spaces and symplectic group spaces. Let V be a 

symplectic space of rank 2n. In Section 4.1 we define (I, &)-normal sets of V and prove 

Theorem 5. Let the I + k elements a\,... , a;, be an (I, k)-normal set of V. Then 

there are 2n — I — k elements aj+i,..., «n,ftk+i-, • • • >fin inV such that 

a i , . . . ,an,Pi,... ,Pn 

is a symplectic basis of V. 

We relate symplectic matrices to symplectic transformations, and shall give a necessary 

and sufficient condition for decomposition. Let f(x) be a reducible S-polynomial in V[x], 

f{x) =pi{x)---pm(x), 

wherep\{x),... ,pm E T>[x] are mutually coprime S-polynomials. Then there are m polynomials 

u\(x),..., um{x) E !F[x] such that 

ui(x)qi(x) H +um(x)qm(x) = 1, 

where qi{x) = f(x)/pi(x), for i = 1,... ,m. We shall show 

Theorem 6. Let X E Mf. Then X ~ X\ * • • • * Xm, for some Xi E MPi, i = 1,...,m, if and 

only if Ui(X)qi(X) E M2n(V), for i = 1 , . . . ,m. 

To every S-pair (a, a), defined in Section 3.2, we shall assign a symplectic structure and a 

Gm action on a, where Gm is the cyclic group on a fixed generator g of order m (cf. Section 4.3). 

Therefore a becomes a symplectic Gm-space, denoted by [a, a]. 

Theorem 7. Two symplectic direct sums [oi,aj] * ••• * [ar,ar] and [bi,&i] * ••• * [bs,6s] are 

isomorphic as symplectic Gm-spaces if and only if r = s, and there is an rxr invertible matrix 



Q = {Qij)> Qij € •?"[(], satisfying the conditions q^aj C bj (/or = 1,... ,r) and 

61 01 
Q, (1.13) 

wAere Q = (g^). 

In Chapter 5 we consider order p matrices in SP p _i(Z) . The proof of Theorem 1 gives us 

a way to find symplectic matrices of order p. First in this section we find a symplectic matrix 
27T1 

X of order p such that ^t(X) = {Z[(], 1), where ( = e ' . Then we give a complete answer to 

Question 2 for order p elements in SP p _i(Z). Let 

sin — 
^ = - r - f , for(fc,p) = l» (1-14) s i n £ 

be the cyclotomic units of Z[£]. By the Riemann-Hurwitz formula, an automorphism T : S —> S 

of order p, where S has genus PJY~, has exactly 3 fixed points. Let the fixed point data of T be 

{a, b, c}, where 1 < a, 6, c < p — 1, and a + 6 + c = 0 (mod p). We use M ( a , 6, c) to denote the 

symplectic matrix represented by T*. 

T h e o r e m 8. <b(M(a,b,c)) = {Z[(],uaubua+b) 

This is similar to a result of P. Symonds[35] which was proved by using the G-signature. 

But we use an entirely different method to approach it. 

Coro l lary 1.2. Let X € SP p _i(Z) be of order p. Then X is realizable if and only if 

V(X) = (Z[(],uaubua+b). 

for some integers a, b with 1 < a, b < p — 1 and a + b 7^ p. 

In Chapter 6 we shall give a complete set of conjugacy classes of torsion in 5Pi(Z). In 

addition, a list of realizable classes in SPi(Z) is obtained. 
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In Chapter 7 we shall answer Questions 3 and 4. Let A denote the set of all Eichler traces 

of all possible actions, that is 

A={XeZl(} X = t r ( T ) | (1.15) 

where T is any automorphism of order p on any compact connected Riemann surface S. A 

simple calculation with the Eichler Trace Formula (1.1) shows that x + X — 2 — t for any x £ A 

where x denotes the complex conjugate of x- Thus A C B, where 

# = {x€Z [C] X + * € Z J . (1.16) 

In Section 7.1 we shall show that B is a free abelian subgroup of Z [ £ ] of rank (p + l)/2 and 

determine a basis. Thus a reasonable first step in describing A is to determine the "index" of 

A in B. Unfortunately, it turns out that A is not a subgroup of B, so this does not make sense. 

On the other hand, the quotient set A — A/Z, that is the elements of A modulo the integers, 

is a group, in fact a subgroup of B = B/Z. We prove that B is a free abelian group of rank 

(p — l)/2 and that the index of A in B is finite. 

Theorem 9. The index of A in B is h\. 

This theorem has appeared previously, see the two papers [6] and [7] of J . Ewing. The 

first paper is quite technical. It contains Theorem 9, but stated in terms of Witt classes and 

G-signatures. The second paper is an elegant exposition of the first. Theorem 9 gives a partial 

answer to Question 3. We shall find free generators of A, thereby answering completely Question 

3. See Theorem 11. 

To an automorphism T: S —> S of order p we associate a "vector" [g;ki,... ,kt], where g is 

the genus of the orbit surface S/Zp, t is the number of fixed points, and the kj are the rotation 

numbers. The rotation numbers are unique modulo p, but their order is not determined. From 

the Eichler Trace Formula (1.1) it is clear that x — tr (T) does not depend on g or on the order 

of the kj. If a cancelling pair {k,p — where 1 < k < p — 1, appears amongst the set of 

rotation numbers {ki,--- ,kt}, then an easy calculation shows that their contribution to the 
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Eichler trace is 

1 1 
C f e - l + (p~k - l ~ ' 

Thus we can replace the cancelling pair {k,p - k} by any other cancelling pair {l,p — 1} and 

not change the Eichler trace. 

Given two such automorphisms 

T i : 5i —> S\, Ti: S2 —> S2 
I 

we have two "vectors" [g; ki,... ,kt], [h;li,... ,lu]. Let x i and X2 denote the respective Eichler 

traces. 

T h e o r e m 10. x i = X2 if, o,nd only if, t = u and the set of rotation numbers {ki,... ,kt} 

agrees with {li,... ,lu} up to permutations and replacements of cancelling pairs. 

T h e o r e m 11. A is a free abelian group of rank {p — l)/2. It is freely generated by the mod Z 

representatives of the (p — l)/2 elements: 

Xr,s = j- + ^T~[ + f^s^i' w h e r e 1 <r <s < p - l and 1 + r + s = 0 (mod p). 

We shall give some geometric content to these theorems by relating equivariant cobordism 

of Z p actions on compact connected Riemann surfaces to A. To explain this let 0, denote the 

group of equivariant cobordism classes of Zp actions. We show that the Eichler trace induces a 

natural group homomorphism (f> : A -» 

T h e o r e m 12. <\> : A—> is a group isomorphism. 

Finally, in Section 7.3 we study the realizability problem for dihedral groups in GLg(C). 

This is a special case of a general problem. A group G of analytic automorphisms of a Riemann 

surface S of genus g > 1 can be represented as a subgroup R(S,G) of GLg(C) by passing 

to the induced action on the vector space V of holomorphic differentials. The problem is to 

determine those subgroups of GLg(C) which are conjugate to R(S,G) for some S and some 

G. In 1983, I. Kuribayashi proved that an element A of prime order in GLg(C) is realizable if 
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and only if A satisfies the "Eichler trace formula" [14]. In 1986 and 1990, I. Kuribayashi and 

A. Kuribayashi determined all realizable subgroups of GLg(C) for g < 5 (see [15], [16], [17] and 

[18]). We consider the dihedral group D2p. Let D2p be a subgroup of GLg(C), and let A and 

B be generators with orders p and 2 respectively. D2p is called an IR-group if tr(A), tv(B) 

are integers < 1. If D2p is an IR-group for some choice of A, B then it is an IR-group for all 

choices. We shall prove 

Theorem 13. D2p is realizable if and only if it is an IR-group. 
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Chapter 2 
Prel iminar ies 

In this chapter we collect some of the preliminaries needed for later chapters. 

2.1 Direct Sum of Symplectic Matrices 

First we state some properties of symplectic direct sum and quasi-direct sum, 

(X1*X2)' = X[*X2, (2.1) 

(yl0y2)' = YJOY{, (2.2) 

(X1*X2)(YloY2) = (XxYj o (X2Y2), (2.3) 

(x1ox2)(y1*y2) = (x{Y2) o (X2YX), (2.4) 

{Xy*X2){Y1*Y2) = (XM) * (X2Y2), ( 2 . 5 ) 

( X i o x 2 ) ( y i o y 2 ) = {X1Y2)*{X2Y1). (2.6) 

We assume that all matrix multiplications are suitable. 

L e m m a 2.1. Let X\, X2, X3, Y\, Y2 be symplectic matrices. Then 

1. X\ * X2 ~ X2 * X\. 

2. (Xi * X2) * X3 = Xx * (X2 * X3). 

3. If Xx ~ Yi and X2 ~ Y2, then Xx*X2~Yi*Y2. 

In the following we assume X\ and X2 have the same genus 

4. X\ o X2 ~ X2 o X\. 
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5. X1oX2~{-X1)o(-X2). 

6. If X\ ~ X2, then Io X\ ~ / o ! 2 . 

Proof. (2) and (3) are easy. To prove (1) we let Q = I2ni oI2n2 e 5 P 2 ( „ 1 + n 2 ) ( Z ) , where nt is the 

genus of X{, i = 1,2. Then Q~l(Xi *X2)Q = X2*X\. Similarly we prove (4) by using Q = 7o7, 

(5) by using Q = / * ( - / ) . For (6), HX2 = Q'lXiQ, then {Q-1*Q-x){IoX1){Q*Q) = IoX2. • 

In general the converse of (3) in Lemma 2.1 is not true, but we have 

Lemma 2.2. Suppose X\, X2, Y\ andY2 are symplectic matrices, fx (x) = fY.(x) = fi{x), for 

i = 1,2. Suppose fi(x) and f2(x) are coprime. Then X\ * X2 ~ Y\ * Y2 if and only if X\ ~ Y\ 

and X2 ~ Y2. 

Proof. The sufficiency part has been proved. We consider the necessity. 

Note that any P € M2^ni+ri2^(V) can be expressed in the form 

P - Pi * P2 + PZ o P 4 , 

where Pi € M2ni(V), P2 e M2n2(V), P 3 G M2nix2n2(V), and P 4 G M2n2x2ni(V) are blocks of 

P . Let P be a symplectic matrix such that (Xx * X2)P = P{YX * Y2). We obtain XXPX = PiYu 

X2P2 - P 2 y 2 , X X P 3 = P 3 y 2 and X 2 P 4 = P 4 y 2 . Then / 2 ( X X ) P 3 = P 3 / 2 ( y i ) = 0, which yields 

P 3 = 0 since f2{X\) is invertible. Similarly, we get P 4 = 0. Hence P i , P 2 are symplectic, 

therefore X\ ~ y i and X2~Y2. • 

2.2 S-Polynomials 

Before we prove the following lemmas we make a Remark. 

Remark. Let f(x) = g(x)h(x), where f(x),g(x) and h(x) are polynomials over V. Then if two 

of them are S-polynomials so is the third. 

Lemma 2.3. Suppose that p(x) is an irreducible monic polynomial of degree n. 
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1 If xnp(^) — p(x), then p(x) is S-polynomial of type-I or p{x) = x + 1. 

2 If xnp{±) = -p(x), then p(x) = x - 1. 

Proof. (1) If n is even thenp(x) is an S-polynomial of type-I. Assume n be odd. Thenp(—1) = 0, 

so x + 1 is a factor of p(x); but p(x) is irreducible, hence p(x) = x + 1. 

(2) Similar to the proof of (1) since = 0. • 

L e m m a 2.4. Lei /(a;) 6e an S-polynomial and assume / ( ± 1 ) = 0. Then 

f(x) = (xTl)2g(x) 

where g(x) is also a S-polynomial. 

Proof. Differentiate both sides of x2nf( j ) = f(x) to see that 

2nx2n-lfC-)-x2n~2f'(1-) = f'(x). (2.7) 

But / ( ± 1 ) = 0, hence / ' ( ± 1 ) = 0, f(x) = (x^fl)2g(x). It is obvious that g(x) is an S-polynomial 

by the above Remark. • 

L e m m a 2.5. Suppose f(x) is an S-polynomial of type-II of degree 2n. Then 

f(x)=p(0)xnp(x)p(-) 
X 

where p(x) is an irreducible monic polynomial with degree n. 

Proof. We will prove this by using the Unique Factorization Theorem. 

If / ( ± 1 ) = 0 then f(x) = {x +~ l ) 2 , by Lemma 2.4. We can choose p(x) = 1^1. 

Now we consider the case / ( l ) ^ 0 and /(—1) # 0. Suppose that f(x) = p\{x) • • -pm(x), 

where p\ (x),..., pm (x) are irreducible monic polynomials of positive degrees n i , . . . , nm. By the 
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Remark, none of pi(x). ..pm(x) is an S-polynomial since f(x) is an irreducible S-polynomial. 

Since f(x) is an S-polynomial, 

Note that xnipi(^) is an irreducible polynomial, and neither x + 1 nor x - 1 are factors of 

f{x). There is k ^ 1, say k = 2, such that x^p^) = Pl(0)p2{x). It is easy to verify that 

Pi(x)p2(x) is an S-polynomial, and therefore f(x) = pi(x)p2(x). Let p(x) = pi(x). Then 

Proposi t ion 2.1. Every S-polynomial f(x) is a product of irreducible S-polynomials. Apart 

from the order of the factors, this factorization is unique. 

Proof. Without loss of generality we assume that neither x + 1 nor x — 1 are factors of f(x), 

because of Lemma 2.4. We know that f(x) can be written as a product of irreducible monic 

polynomials, 

where the pi(x) (i = 1,.. . , k) are S-polynomials of degree 2r; and qj(x) (j = I,...,I) are of 

degree Sj. Then 

/ ( x ) = x 2 " / ( I ) = x > 1 ( i ) - . . ^ p m ( I ) . 

P2(x) =p(0)xnp(±), and f(x) = p(0)xnp(^)p(x). • 

f(x) = pi{x)p2{x) • • • Pk(x)qi(x)q2(x) • • • qt(x) 

xnfil) = x2^Pl(l)x^p2^) • • • x2r*pk(l)xsiqiC-)xs>q2(1-) • • • x'lqtil) 

= pi{x)p2{x) • ••pk(x)x^q1(l)x^q2(l) • • • £ s<a,(±) 

So we have 

qi{x)q2{x) • • • qi(x) = xs'qi{l)xs*q2{D • • • 

Note that xsiqj(\) (j — 1,...,/) are irreducible polynomials. Then for each xsiqj(^), there 

is Ij ^ j such that xsiqj{\) = qj(Q)qi.(x). It is easy to check that qj(0)qj(x)xsJqj(j) is an 

irreducible S-polynomial. By rearranging the order of qj{x) we get 

f(x) = pi(x)p2(x) • • • pk(x) qi{0)qi(x)xSlqi(±) ••• qm{o)qm(x)xSmqm{±) 

The second part is simple. • 
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2.3 Strictly Coprime Polynomials 

We consider two polynomials 

f{x) = anxn + an-\xn~l H ha 0 , 

g(x) = bmxm + bm-ixm-1 + • • • + b0, 

in V[x]. Assume m > 0, n > 0, and an ^ 0, bm ^ 0. 

Definit ion 2.1. f(x) and ^(rr) are said to be strictly coprime over V if there are polynomials 

u(x) and v(x) in X>[x] such that 

u(x)f(x)+v{x)g{x) = 1 (2.8) 

Example . Let pn(x) — xn~x + xn~2 + • • • + 1. Then pm(x), pn(x) are strictly coprime over Z 

if and only if m, n are coprime. And pm(x) and pn{x) have a common factor of positive degree 

in Z[x] if and only if m, n have common factor great than 1. 

Recall that the resultant of f(x) and <?(a;) is 

Res (/, g) = det 

The result we want to establish is 

> m rows 

> n rows 

bo) j 

(2.9) 

Proposi t ion 2.2. Suppose either f(x) or g(x) is monic, that is either an = 1 or bm = 1. Then 

f(x) and g(x) are strictly coprime if, and only if Res (/,<?) «s a unit in V. 
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Proof. Without loss of generality, let an — 1. If f(x) and g(x) are strictly coprime, then 

xku(x)f(x) + xkv(x)g(x) = xk for any 0 < k < r n + n - l . Any xkv(x) can be written as 

xkv(x) = qk(x)f(x) + vk(x), where qk{x),Vk{x) € T>[x], and Vk{x) has degree less than n or 

^(x) = 0. We set uk(x) = xku(x) + qk(x)g(x) e V[x], then 

Uk(x)f(x) + vk(x)g(x) = xk (2.10) 

and uk(x) has degree less than m or Uk{x) = 0. We may write 

«fc(x) = dfV- 1 +dfV - 2 + • • •+• 

If we equate the coefficients of x m + n _ 1 , x m + n ~ 2 , 1 in Equations (2.10), we obtain the 

following equations: 

E + E w f = 
i+j=l 
0<i<n 

0<j'<m-l 

i+3=l 
0<i<m 

0<j<n-l 

1, l=k, 

0, Z ^ A:. 

(2.11) 

Considering this as a system of m + n linear equations in the c(fc)'s and d^'s, taken in the order 

(fc) (fc) (k) (k) 
c m - \ i ' ' ' >co ) ^ n - u " " ' >̂ o ' w e s e e t n a t & ' ̂ e s (/>9) = where the £> is the determinant 

/ (m+n- l ) (m+n-1) , (m+n-l) , ( m + n - l ) \ 
( c m - l " " ' c 0 "n-1 " " " "0 I 

£> = det 

V 
c ( 1 ) 

c ( 0 ) 

L m - 1 

'T l -1 

l(0) 
n-1 

0̂ 

Z ( 0 ) / 

Since D € V, Res (/, 5) is a unit. 

Conversely, assume Res (f,g) is a unit in V. Then we can retrace the steps through (2.11) 

and (2.10) for k = 0 and conclude that there exist integral polynomials UQ(X), VQ(X) such that 

u0(x)f(x) + v0(x)g(x) = 1. • 

Remark. It is well known that f{x), g(x) have a common factor if and only if the Res(/,g) = 0. 
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We apply Proposition 2.2 to Lm<n, the (m + n - 2) x (m + n - 2) matrix defined by 

r A 

m< 1 1 

1 1 (2.12) 

/ J 
where the entries are given by 

i i j — s 
1) i < i < j + m - 1,1 < j < n - 1 or j - n + 1 < i < j, n < j < m + n - 2, 

0, otherwise. 

It is easy to see that 

det(L m , n ) = Res(p 
± 1 , (m, n) — 1, 

0, (m, n) 7̂  1. 
(2.13) 

2.4 Group Actions on Riemann Surfaces 

Throughout the thesis all Riemann surfaces S will be connected, orientable and without bound

ary. By the uniformization theorem the universal covering space U of S is one of three possi

bilities: the extended complex plane C , the complex plane C, or the upper half plane BL The 

letter U will always denote one of these three. 

If G is a finite group acting topologically on a surface 5 by orientation preserving homeo-

morphisms then the positive solution of the Nielsen Realization Problem guarantees that there 

exists a complex analytic structure on S for which the action of G is by analytic automorphisms 

(see [27], [11], [9] or [25]). Thus there is no loss of generality in assuming that the action of G 

is complex analytic to begin with, and we will tacitly do so. 
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The orbit space S = S/G of the action of G is also a Riemann surface and the orbit map 

7r : S —>• S is a branched covering, with all branching occurring at fixed points of the action. If 

x 6 S is a branch point then each point in 7r_1(a;) has a non-trivial stabilizer subgroup in G. 

To any action of G on S we associate a short exact sequence of groups 

u n - > r A G - > i , (2.14) 

with T being a discrete subgroup of Aut (U) and II a torsion free normal subgroup of T, as 

follows. Let 7r : U —> S denote the covering map. Then V is defined by 

r = {7 e Aut (u) I 7T o 7 = g O 7T, (2.15) 

In other words T consists of all lifts 7 : U —> U of all automorphisms g: S —• 5, g € G. The 

subgroup T is unique up to conjugation in Aut (U). See the commutative diagram below. 

U -1> U 

5 5 

The epimorphism 9: T —• G? is defined by #(7) = 3 , where 7 and g are as in (2.15). The kernel 

of 9: T —>• G is LT, the fundamental group of 5, and is therefore torsion free. The Riemann 

surface S = U/TI and the action of G on U/TI is given by g[z]u — [7(.z)]n, where z 6 U, g G G, 

and 7 € T is any element such that # (7 ) = g. Here the square brackets denote the orbits under 

the action of n . The orbit surface S = U / T , and the branched covering IT: S —>• S is just the 

natural map U/II -> U / T , [^]n •->• [2]p. 

Conversely, suppose 1—>n—>-T—> G —> I is & given short exact sequence of groups, 

where V is a discrete subgroup of Aut (U) and n is torsion free. Then this short exact sequence 

corresponds to the one arising from the action of G on the Riemann surface S = U/II defined 

above. 

Thus there is a one-to-one correspondence between analytic conjugacy classes of analytic 

actions by the finite group G on compact connected Riemann surfaces and short exact sequences 
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(2.14), where T is a discrete subgroup of Aut (U), unique only up to conjugation in Aut (U), 

and II is a torsion free subgroup of T. 

It is known that the signature of T must have form (g; mi,..., m;), where g is non-negative 

integer, each mj is an integer great than 1 and a factor of \G\, the order of G. As an abstract 

group r has a presentation of the following standard form (see [33] or [10]): 

(i) t + 2g generators Ax,...,At, XX,YU Xg,Yg. 

For brevity, we refer to T by T(g;mi,.. .,mt). Moreover, consideration of non-Euclidean area 

implies the Riemann-Hurwitz formula 

where 7 is the genus of U/IL 

Now suppose G is the cyclic group Zp and T € Zp denotes a fixed generator. Actions of Zp 

on Riemann surfaces correspond to short exact sequences l - ) - i I ->r ->Z p -> l . We see that 

T must have the form T(g;p,... ,p), where g and t are non-negative integers. That is, as an 

abstract group T has the following presentation 

(i) t + 2g generators A\,... , At,X\, Yx,... ,Xg, Yg. 

(ii) t + 1 relations A\ = • • • = A\ = Ax • • • At[Xx, Y{\ • • • [Xg, Yg] = 1. 

Any such group can be embedded in Aut (U) as a discrete subgroup in many different ways up 

to conjugation. In fact the set of conjugacy classes of embedding is a cell of dimension 

See [3] and [4]. The genus of the orbit surface S/Zp is g and the number of fixed points is t. 

Figure 2.1 illustrates a fundamental domain for a particular embedding when g = 0 and 

t — 3. It consists of a regular 3-gon P, all of whose angles are n/p, together with a copy of 

(") t + 1 relations A™1 = • •• = A™1 = A x , . . . , At[Xu Fx] • • • [Xg, Xg] = 1. 

(2.16) 

t times 

d(T) = Qg - 6 + 2t so long as 6g - 6 + 2t > 0. 
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A 2 

Figure 2.1: Fundamental Domain 

P obtained by reflection in one of its sides. The generators A\, A2, A 3 are the rotations by 

2-K/P about consecutive vertices, ordered in the counterclockwise sense. In this case the cell 

dimension is d(F) = 6g — 6 + 2t = 0, in other words, up to conjugacy in Aut (IT) there is 

a unique subgroup of signature (0;p,p,p). 

In a similar manner, when g = 0 and t > 3, a fundamental domain for a particular Fuchsian 
t times 

group T of signature (0;p,. T. ,p) is given by P U R(P), where P is a regular t-gon all of whose 

angles are ir/p and R is a reflection in one of its sides. In this case F is the Fuchsian group 

generated by the rotations A\,... , At through 27r/p about consecutive vertices. The dimension 

of the cell is d(T) = 6g — 6 + 2t = — 6 + 2t > 0. Thus the embedding is not unique up to 

conjugacy in Aut (U). 

t times 

Let T be any Fuchsian group of signature (g; p,. , p). Then an epimorphism 0: T —> Z p 

is determined by the images of the generators. The relations in V must be preserved and the 

kernel of 6 must be torsion free, so 9 is determined by the equations 

0(Aj) = T % 1 < j < t; 9(Xk) = T 6 \ 0{Yk) =Tc\l<k<g. 

The following restrictions must hold: 

(i) The a,j are integers such that 1 < a3 < p — 1 and X^=i aj = 0 (mod p). 

(ii) The bk, ck are arbitrary integers mod p, except that at least one of them is non-zero if 

t = 0 (this guarantees that 6 is an epimorphism). 
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It follows from the first restriction that the only possible values of t are t = 0,2,3,.. . . 

Conversely, given integers a,j, b^, ck satisfying conditions (i) and (ii), there is an epimor-

phism 6: F —> Zp with torsion free kernel II and a corresponding Zp action T : S —>• 5, where 

S = u/n. 

The integer t equals the number of fixed points of T: S —> S and g is the genus of the orbit 

surface S/Zp. A well known result of Nielsen [27] says that the topological conjugacy class of 

T: S —> S is completely determined by g and the unordered sequence (a i , . . . , aj). We use 

the notation [g \ a\,... , at] to denote the topological conjugacy class of the homeomorphism 

T: S —> S determined by this data. If g = 0 we use the notation [a\,... , at], and usually order 

the aj so that 1 < a\ < ... < at < p — 1. 

Of particular interest is the case g = 0. Then the orbit surface 5 / Z p is the extended 

complex plane C and T has the presentation 

(i) t generators Ai,... ,At-

(ii) t + 1 relations A\ = • • • = A\ = Ax • • • At = 1. 

The epimorphism 6 is given by the equations 

0 ( A j ) = T % (2.17) 

where a i , . . . , at satisfy the conditions 

t 
1 < ai < ... < at <p- 1, and ^ a j = 0 (modp). (2.18) 

Proposi t ion 2.3. There is a one-to-one correspondence between the set of topological conju

gacy classes of automorphisms T: S -> S of order p and orbit genus 0, where S is an arbi

trary compact connected Riemann surface, and sequences [a\,..., at] satisfying the conditions in 

(2.18). The integer t is the number of fixed points and the rotation numbers kj are determined 

by the equations kjaj = 1 (mod p), 1 < j <t. 
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Proof. It follows from the above that we can associate to an automorphism T: S -> S of order 

p, where S is any compact connected Riemann surface such that the genus of S/Xp is 0, a 

sequence [a\,... , at] satisfying the conditions in (2.18). According to the results of Nielsen two 

such automorphisms are topologically conjugate if, and only if, the associated sequences are 

identical. 

Conversely, given any sequence [a\,... ,a<] satisfying (2.18) we can construct an automor

phism T: S —> S of order p and orbit genus 0 as follows. Let T be any discrete subgroup of 

Aut (U) of signature (0;p^7~^p). Then Equation (2.17) defines an epimorphism 6: F -> Z p 

with a torsion free kernel II, and this in turn determines an automorphism T of order p on 

S = U/II. The topological conjugacy class of T does not depend on the embedding of T, only 

on the signature and the sequence [a\,... , at]. Thus the correspondence is one-to-one on the 

level of topological conjugacy. 

A particular embedding of F in Aut (U) is the one indicated above; that is, F is the subgroup 

generated by A\, ... , A*, where the Aj are rotations by 27r/p about the vertices of a regular 

t-gon P , all of whose angles are ir/p. See Figure 2.1 for the case where t = 3. The fixed points 

of this action correspond to the orbits of the vertices, and thus there are t of them, P i , . . . , P*, 

where Pj is the orbit of the vertex of rotation for the generator Aj. The epimorphism 6 satisfies 

0{Aj) = Tai, and therefore 0(A^) = T, where the kj satisfy kjaj = 1 (mod p), l < j < t . This 

k • 

implies that the automorphism T : S —»• 5 in a small neighborhood of Pj is represented by A • J , 

a rotation about Pj by an angle of Ikjixjp. In other words the rotation numbers are the kj for 

this particular embedding. This completes the proof since the number of fixed points and their 

rotation numbers are invariants of topological conjugacy. • 

We conclude this section by answering Question 3 in the introduction. This is just a 

matter of determining the possible sets of rotation numbers. Thus let {k\, • • • , kt) be any set 

of t numbers satisfying 1 < kj < p — 1, 1 < j < t, and let aj denote that number such that 

kjQj = 1 (mod p) and 1 < aj < p — 1. 

t times 
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Proposi t ion 2.4. 1 + £ * = 1 ^ i - € A, if, and only if, £ j = 1 a j = 0 (mod p). 

Proof. First suppose that x = 1 + 2^7=1 — £ A. Thus there is an automorphism of order 

p, T: S —> S, on some compact, connected Riemann surface S, such that x(T) = X- ^ n f a c* 

we can assume that the genus of S/Zp is zero. According to the results of this chapter the 

action of Z p on 5 corresponds to a short exact sequence 1—> II -> T —>• Z p —>• 1. Here T 

is abstractly isomorphic to the group presented by t generators A\,... ,At and t + 1 relations 

A\ = • • • = A\ = Ai • • • At = 1. The epimorphism 9 is determined by the equations 9(Aj) = Tai, 

1 < fcj; < p — 1. In order that 0 be well defined it is necessary that Y^j=i aj — 0 (mod j>). 

Next suppose that we are given a set {ki, • • • , satisfying the conditions of the proposi

tion. Then the short exact sequence above determines a Riemann surface S and an automor

phism T: S —> S realizing x as an Eichler trace. • 
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Chapter 3 
The Conjugacy Classes of Type- I 

It is well known that there is an one-to-one correspondence between the conjugacy classes of 

matrices of rational integers with a given irreducible characteristic polynomial f(x) and the 

classes of ideals in Z[x)/(f(x)) [22], [31], [36]. It is also known that under some conditions, 

the matrix class generated by the transpose of X corresponds to the inverse ideal class, [37]. 

E . Bender generalized this correspondence to matrices over an integral domain [2]. In this 

chapter we extend these methods and study symplectic matrices over V with a given separable 

characteristic polynomial of type-I. In particular, we give the the conjugacy class number of 

cyclic matrices with characteristic polynomial a cyclotomic polynomial in the integral symplectic 

groups. In Section 3.1 we shall review some results of ideal classes, most of them can be found in 

[19], [23] or any book on ideal theory. In Section 3.2 we introduce S-pairs. We prove Theorem 1 

and Theorem 2 in Section 3.3. In Section 3.4 we shall prove Theorem 3. Finally, in Section 3.5 

we shall consider the rational integer case and prove Theorem 4. 

3.1 Ideal Classes 

Let f(x) G T>n[x] be a monic irreducible and separable polynomial with degree n and ( be a 

fixed root of f{x). Let T be the quotient field of V and /C be the splitting field over T of f(x). 

Let TZ = T>[C] and S = F[C]. Then S is the quotient field of TZ and TZ C S C fC. We also denote 

the set of non-zero elements of TZ by TZ*. 

The trace of an element a in S is defined as follows. Suppose the n different roots of f(x) 

are £i , . . . , ( n G K with £i = (. Let a = a0 + a\( -I + a „ _ i ( " - 1 G S. The i-th conjugate of 
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a is denned by a® = a0 + aiQ-\ h an-XQ~l. Then the trace of a is 

n 

It is clear that if a G TZ, then Tr (a) 6 V. 

Suppose a\,...,an G «5. Then the discriminant of a i , . . . , an is defined to be 

A ( a i , . . . , a „ ) = det 

(a? a? 

\^ eg* 

a 

a. 

(n)\ 
l 

(n) 

(«) , ah J 

A standard result is that A 2 ( o ; i , . . . , a n ) = det (Tr (a^ay)). 

(3-1) 

(3.2) 

L e m m a 3.1. a i , . . . , an are independent over T if, and only if A ( a i , . . . ,an) ^ 0. 

For a proof see [19]. 

A n ideal (fractional ideal) in S is a non-zero finitely generated 7£-submodule of S which is 

a free P-module of rank n. A n integral ideal is an ideal which is contained in TZ. 

Assume that a and b are two ideals in S. The product ab is the collection of all possible 

finite sums of products ab, where a G a and 6 G b . With this definition ab indeed becomes an 

ideal in S. 

Let ot\,..., ar G S. Then a = { £ i a i -I h £ r a r | & G TZ} is an ideal in S. We denote this 

ideal by ( a \ , a r ) . It is clear that 

(OJI, .. .,ar)(@i, ...,&) = {aidi,.. .,aiPs, • • -,ar0i, • • • ,ar3s). (3-3) 

A n ideal a is called a principal ideal if there is an a in S such that a = (a). If a, (3 G S, then 

(a) = (P) if and only if a and /? are associates, i.e. they differ only by a unit factor. 

Two ideals a and b are said to be equivalent if there exist non-zero elements X,pETZ, such 

that Aa = pb. In fact the collection C of equivalence classes of integral ideals forms a monoid. 
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Let a be an ideal in S. The complementary ideal of o is 

a' = ^aeS Tr(ao)c2?J. (3.4) 

Let a i , . . . , an be a £>-basis of a. There is a dual basis a[,..., a'n in <S", that is a basis such that 

Tr (a^Qj) = 6ij, where Sij is the Kronecker symbol. This is equivalent to either of the following 

equations 

X V i * ^ = or j ; a M = V (3.5) 
k k 

We also have 

o' = Va[ + • • • + Va'n (3.6) 

because if (3 — ^ OiC^ with a» € J", then aj = Tr (/3aj). 

The following lemmas are given here without proof (for reference see [19]). 

Lemma 3.2. Let f'(x) be the derivative of f{x), and = bo + b\X + • • • + 6 n _ i x n _ 1 . Then 

the dual basis of 1, C , . . . , is 

bo bn-\ 

Lemma 3.3. 71' = 71/ (/'(C)). 

Lemma 3.4. aa' C 71'. 

(3.7) 

3.2 S-Pairs 

In this section we assume that f(x) is a separable S-polynomial of type-I and degree 2n. If Q 

is a root of /(x), then A- is also a root of /(x) and A G ̂ "(Ci)- Without loss of generality we 
Si Si 

assume that the 2n roots Ci = C> C2, • • • > (2n of /(x) satisfy C2i-iC2i = 1, for i = 1,. . . , n. 

According to Galois Theory, there are 2n automorphisms 771 = 1, . . . , of K in Gal (/C/JF), 

the Galois group of the extension field K/T, such that 771(C) = Ci- Then the i-conjugate of a G S 

has the form a M = 771(a), for i = 1,. . . , 2n. 
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It is obvious that rj2 is an involution on the extension field S. We use a instead of 172(0) if 

a € S. It is easy to check that 

mi-i(oi) = r}2i{a) and mi(a) = V2i-i(a) (3.8) 

for a € S. 

Some notation is needed for the sake of convenience. We let 

A = (aij) and Vk(A) = A™ = ( a £ } ) (3.9) 

if A = (a^) is a matrix with entries in S, and 0 = {5 | a € a} for any ideal 0 in S. It is clear 

that a is also an ideal in S. 

The following lemmas are very useful. 

Lemma 3.5. Suppose M € M2n(F) and a,(3 G S2n are two vectors. Then for any 1 <i,j < 

2n, there is 1 < k < 2n, where k depends on such that a'^M(3^ = (a'Md^)^. 

Proof. Since V\, - • • ,V2n are permutations of the roots of f(x), for any 1 < i,j < 2n, ri^lnj(()) 

is a root of f(x), say ( k. We have wk(() = f]~lr]j(C,), therefore rjj(a) = 77;% (a), for any a € S. 

Hence (a'Md^f] = m (a'Mnk(3)) = ^ ( o ^ M r ^ / ? ) = a'^MB^. • 

Lemma 3.6. Suppose M,N 6 M2n(F) and a = ( a i , . . . , a 2 n ) ' € «S2™, w/iere a i , . . . , a 2 n are 

independent over V, and a ' M a M = a'Na^ (for i = 1,..., 2n). TVien M = N. 

Proof. We only prove the special case N = 0. By Lemma 3.5, for any 1 < i,j < 2n, there is 

\ < k < 2 n such that a,(i)Ma^ = (a 'MaW)W = 0. i.e. A'MB = 0, where A = ( o ^ ) and 

P> = ^5p^ are 2n x 2n matrices. By Lemma 3.1, det A ^ O and det B 7̂  0, since « i , . . . , oj2n 

are independent over V, and therefore M = 0. • 

Let A = C 1 _ " / ' (0 - Clearly A = - A by (2.7) and /(J) = 0. Note that the pair (a, a) of an 

integral ideal 0 and an element a € 7c is an element of Pf if, and only if a = a A a' and a = a. 

From Lemma 3.3, we have 71' = 71/A and that is (71,1) € P/ . Thus P / 7̂  0. 
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Definition 3.1. A pair (a, a) consisting of an ideal a and an element a in S is said to be an 

S-pair, if there is a basis a\,..., a2n of a, such that 

ol JaW = Su a A , for i = 1,.. . , 2n, (3.10) 

where a = ( « i , . . . , a 2 n ) ' . The basis ct\,..., a^n is called a J-orthogonal basis of o with respect 

to a, and the vector a is called a J-vector with respect to the S-pair (a, a). 

Remark. By Lemma 3.5, we see that (3.10) is equivalent to 

a'WjaW) = < % a « A « . 

The bilinear form defined on column vectors a = (ai,..., a2n)' and /3 = (Pi,.. •, fan)' by 

{a,P) = a'jp is a non-degenerate skew-hermitian form. In particular, if A. = a'Ja, then 

A = —A. Since A = —A it follows that if (a, a) is an S-pair, then a — a. 

L e m m a 3.7. A pair (a, a) is an S-pair if, and only if 

a = aAa' and a = a. (3.11) 

Proof. Suppose (a, a) is an S-pair. Let a = (a\,... , a 2 n ) ' be a J-vector with respect to (a, a). 

Let P = (Pi,..., fan)' = ^Ja. Then a ' W / ? W = % which implies Tr (aj/3,-) = so 

Pi, • • • > P2n is the dual basis of a\,..., a 2 n . Since det( J) = 1, we see that Pi,..., p2n is also a 

basis of ^ o . Hence a = aAa'. 

For the converse, suppose (3.11). If A , . . . ,p2n is a basis of a then Pi,... ,P2n is a basis of a. 

Let 7 i , . . . , 72n be the dual basis of pi,..., p2n. Then Tr (PUJ) = and we have /j'^^O') = 6^, 

where P = (Pi,... ,P2n)', 7 = (71, • • • ,j2n)'- Since 0 = aAa', there is M € GL2n(V) such that 

Mp = aA7 . Then 

P'MW] = a W A W / 3 ' 7

W = <JU aA (3.12) 

and 

/3 'M'^) = aAj'Vi(P) = -aAr ? 2(7')r/ ir ? 2(/3) = -6U aA (3.13) 
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For the last equality, we use Formula (3.8). Thus [3'M/?w = -pVM'pP- (for i = 1,. . . , 2n), and 

so M' = -M (by Lemma 3.6). According to [26] there is Q G GL2n{T>) such that M = Q'JQ. 

If a = Q(3, then 

a ' J S « = /3 'M/3« = 5 l i a A . 

So a is a J-vector with respect to (a, a). • 

Coro l lary 3.1. Suppose a is an integral ideal. Then (a, a) € Pj if and only of (a, a) is an 

S-pair. 

Proof. Suppose (a, a) is an S-pair. We need to show that a € 71. Since o C 71, then ^ = 71' C a'. 

But aAa' = a, so aTZ c a, thus a € 11. 

The converse is clear. • 

3.3 The Correspondence \& 

In this section we prove Theorem 1 and Theorem 2. Recall that Mj is the set of all the matrices 

in SP2n{T>) with characteristic polynomial f(x), and A4/ is the set of the similarity classes in 

Mf over SP2n(T>). Suppose X € Mj. There is an eigenvector a — (a\,..., a.2n)' G 

corresponding to £, that is Xa — (a. Let a be the D-module generated by a.\,..., a2n, i-e. 

a = Va.\ -\ 1- Vain 

and a = A _ 1 o / J 3 . It is easy to check that a is an integral ideal in 71 and a = a. Thus 

a i , . . . , a2n are independent over V. Furthermore we have 

L e m m a 3.8. The pair (a, a) is an S-pair. 

Proof. We only need to prove that a'Ja^ = 0 (for i = 2 , . . . , 2n). Assume 2 < i < 2n. From 

Xa = (a we have X a ' 1 ' = ( i a ^ and l a ' 1 ' = ^rS'1'. Hence 

a ' J S « = ^a'X'JXS® = ^a'Ja®. (3.14) 

The last equality follows from the fact that X € SP2n(V). Since £ / 0, we get a'JaW =0. • 
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Suppose Y is another element of Mf, and 3 = (3i,• • •, fan)' £ TZ2n is an eigenvector 

corresponding to (, that is Y3 = (3- Let b be the integral ideal generated by 3\,..., 3in and 

6 = A'1 p'J/3. 

Lemma 3.9. X ~ y if, and only if (a, a) = (b,b). 

Proof. Necessity. Suppose there is Q E SP2n{T>) such that Y = Q~lXQ. Then QY = XQ and 

therefore XQfi = QY(3 = (Q3, that is Q3 is an eigenvector of X. There are A, fi E TZ* such 

that Aa = nQ(3 = Qfi3- So Ao = fib, and 

AAa = A-l\a'J\a = A~\fiQ 3)'J^QP 

= A^fijlp'Q'jQp = A~lfi]i3'J3 = IH&. 

Therefore (o, a) = (b,b). 

Sufficiency. Suppose A, fi E TZ* are such that Aa = fib and AAa = fifib. Then there is 

Q E GL2n(V) such that Aa = fiQ3, and thus 

fiQY3 = fiQ(3 = (fiQ3 = (Aa = XXa = fiXQ3, 

hence QYfi = XQ/3. Therefore QY = XQ, i.e. Y = Q~lXQ. 

It remains to prove that Q E SP2n(V). If i — 2 , . . . , In, then 

3'Q'JQ3{i) = J S « = 0 = 0 j / 3 « . 
fifi^i 

If i = 1, then 

3'Q'JQ3 = ^ a ' J 2 = - a ' J 5 = tfjp. 
fifi a 

Hence Q ' J Q = J (by Lemma 3.6). • 

Let denote the correspondence from Mf to Vf defined as above. Lemma 3.9 guarantees 

is well defined and injective. The proof of Theorem 1 is completed by following lemma. 

Lemma 3.10. $ is surjective. 
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Proof. Let (o, a) G Pf and a = (a\,..., ain)' be a J-vector with respect to (o, a). Then 

C a i , . . . ,(a2n is another basis of o, and so there is X G GLiniP), such that Xa — C,a. It is 

clear that fx{x) = f{x). We only need to prove that X G SP2n{T>). We have 

a'X'JXa^ = f o / J 5 w = aA. 
S i 

Hence a'X'JXa® = a'Ja^ (for t = 1,..., 2n). By Lemma 3.6, X'JX = J. This completes 

the proof. • 

We now prove the Theorem 2. 

Proof of Theorem 2. By Proposition 2.1, f(x) is a product of irreducible S-polynomials, 

f(x) = (x-l)2k(x + l)2l

Pl(x)---ps(x). 

If Pi(x) is of type-I, then Ppi ^ 0, thus there exists Xi G MVi. On the other hand, if Pj(x) is 

of type-II, then Pj{x) = q(0)xniq(x)q(-^), where q(x) is an irreducible monic polynomial with 

degree (by Lemma 2.5). Let Cq be the companion matrix of q(x). Then Xj = C'q+Cq1 G MPj. 

Hence 

hi * i-hk) * Xi * • • • Xs G Mf. 

That is Mf ^ 0. • 

3.4 Class Number of Vf 

In this section we prove Theorem 3. Suppose 71 is integrally closed in S. Then aa = (a) if and 

only if o = aAa', see [19]. So C is a group, the identity is 71 and a - 1 = Aa' . We easily see that 

(a, a) G Pf if and only if aa = (a) and a = a. Then Vf is a group if we define multiplication in 

Vf by 

(a, a)(b,b) = (ab,a6). 

The identity is (7Z, 1) and the inverse of (a, a) is (a, a). 

For the proof of Theorem 3 we will need the following lemmas. 
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Lemma 3.11. Suppose (a, a) G Pf, A G TZ*. Then 

1. (Aa, AAa) G Pf. 

2. (a, Aa) G Pf if and only if XeU+. 

Proof For the first part we have AaAa = AAaa = ^AAa^ and AAa = AAa = AAa. Hence 

(Aa, AAa) G Pf. 

For the second part, if (a, Aa) G Pf then aa = (Aa) = (a); so A G U. We also have 

Aa — Aa = Aa, and so A = A. The converse is quite simple. • 

Lemma 3.12. Suppose (a, a), (a, 6) G Pf. Then (a, a) = (a, 6) if and only if | G C. 

Proof. Suppose (a, a) = (a, b). There are A, // G TV such that Aa = pa and AAa = ppb. If 

u — ^, then u G U and | = uu, that is | G C. 

Conversely, suppose | = uu for some u G U. Then (a, a) = {a, mxb) = {ua, uub) = (a, b). • 

Lemma 3.13. Let (a, a), (b,b) G P / , and Aa = pb, for some X, p G 7£*. T/ien (a, a) = (b,ub) 

for some u G U+. 

Proof. If Aa = pb, then Aa = fib. Hence (AAa) = AaAa = pbpb = (pjib). Then there is a unit 

u G U+, such that AAa = uflub. Therefore (a, a) = (Aa, AAa) — (uh,pjiub) = (b,ub). • 

Now we can prove Theorem 3; namely there is a short exact sequence 

1 -> U+/C Avf A Co -» 1 

where <̂ ([u]) = (TZ,u) and ^((a, a}) = [a]. 

Proo/ of Theorem 3. Clearly, (f> 1S w e u defined and a group monomorphism (by Lemma 3.12). 

i/> is also well defined and a group epimorphism (by Lemma 3.7). I/N£([U]) = tp({TZ,u)) = [TZ] 

(by definition) and Ker tp = Im <f> (by Lemma 3.13). This completes the proof. • 
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Remark. Lemma 3.11, Lemma 3.12 and Lemma 3.13 are also true even if 71 is not integrally 

closed in S. There is a bijective mapping between Vf and CQ X £ / + / C . 

Coro l lary 3.2. IfV is the rational field Q, then there is an one-to-one correspondence between 

M f and 7Z+/C, where 7l+ = {a G 71* \ a = a] and C = {aa\ae 71*}. 

Proposi t ion 3.1. If f(x) = x2 + x + l, then the number of conjugacy classes of Mf in SP2(Q) 

is infinity. 

Proof. Let 71 = Q[C], ( = e^. Let p, q be different primes with p = q = 2 (mod 3). We want 

to show [p] ̂  [q] in 7l+/C. 

Suppose [p] = [q]. There are A = x\ + y\(, p, — x% + y2( € Z[C] such that AAp = pJJlq, that 

is 

[x\ - xiyi + y\)p = [x\ - x2y2 + y2)q. 

Then there is an integer A; such that 

x\ - xiyi -\-y\ = kq 
(3.15) 

x\ - x2y2 +yl = kp 

This is impossible due to the fact that if the Diophantine equation x 2 — xy + y2 = kpr, where 

p = 2 (mod 3) and p \ k, has a solution, then r is even. 

By a theorem of Dirichlet, there are infinitely many primes of the form 3fc + 2, and so we 

have proved that 7l+ jC is an infinite group. • 

In general we have 

Conjecture. Let f(x) = xv~x + • • • + x + 1, p an odd prime. Then the number of conjugacy 

classes of Mf in SP p_i(Q) is infinite. 
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3.5 The Rational Integer Case 

In this section, we assume V = Z and J7 = Q. Using the fact that the number of ideal classes 

is finite, the unit group U+ is a finitely generated abelian group and U+2 C C, we get 

Proposi t ion 3.2. M.j is finite. 

From now on we consider the m-th (m > 2) cyclotomic polynomial 

$m(x) = (x -Ci ) - - - ( z -C^(m)) (3-16) 

where C i , . . . , C<£(m) a r e t n e primitive m-th roots of unity and <f>{m) is the Euler totient function. 

It is well known that the &m(x) has integral coefficients and is irreducible over Q. Also <&m{x) 

is an S-polynomial. We simply denote M<pm and M$m by Mm and Mm. 

2iri 

Let C = Cm = e~, TZm = Z[(m]. Then the involution on TZm is just complex conjugation. 

We denote Cm by C m . 

Proposi t ion 3.3. For any X G Mm, we have X / X - 1 . 

Proof. Let a G 7Zmm^ be an eigenvector of A corresponding to C5 Xa = (a. Then X~la. = C"-

Hence * ( A ) = (o, A _ 1 o / J a ) and * ( A _ 1 ) = {a,A'la'Ja). If A were conjugate to X - 1 we 

would have (o, A _ 1 a'Jo7) = (a, A _ 1 a ' J a ) , that is we could find non-zero elements A,/x G TZ 

such that Aa = /xa and ^a'Ja = ^a'Ja. But this is impossible since a'Jo" = —a'Ja. • 

Let Ci be the set of integral ideal classes a such that aa is a principal ideal, 

Ci = {a G C | aa = (a) for some a G TZm}. (3-17) 

Ci is a subgroup of C and by definition hi = \Ci\. It is easy to check that Co C Ci . To show 

that Co = Ci we need 

L e m m a 3.14. Suppose ( is a primitive m-th root of unity. Then (1 — C) is a prime ideal ofTZm 

if m is a prime power and I — ( is a unit of TZm if m has at least two distinct prime factors. 
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See [39]. 

L e m m a 3.15. Co = C\. 

Proof. Suppose oo = (ao) where ao € Tl*m. We need to find a unit u G U such that uao = ua~Q. 

Let UQ — We see that uo is a unit because (ao) = (ao), and UQUO — 1- According to [39] 

UQ = ±C f c j for some integer k. If UQ — (2L, for some integer I, then we can choose u — C,1. Now 

we suppose UQ ^ C,21, for any integer /. 

Note that 

a = a (mod 1 - C 2) (3.18) 

for any a G 7Zm. 

Case 1. If m is odd, then UQ = —Ck, for some integer k. This is because if UQ = £ 2 f c - 1 then 

uo = £ 2 f c ~ 1 + m , where 2k — 1 + m is even. By Lemma 3.14, either (1 — £) is a prime ideal in 7lm 

or 1 — £ is a unit in TZm. If 1 — £ is a unit, then = C f c _ 1 = C2'> f ° r some integer /. We 

can choose u = (1 — 

Consider the case where (1 — () is a prime ideal in 7lm- We want to show that UQ ̂  — (H 

for any integer k. 

If a 0 G (1 - C)> then oo C (1 - () since ao = (ao). So either o C (1 — () or o C (1 — (). 

Both cases are the same and imply (ao) C (1 — 0(1 — 0- Let a\ = Then a\ G l¥m 

and uo = fj-. Continuing this procedure, there is a G 71^ with a £ (1 — () such that UQ = | . 

Now suppose uo = ~( k - Then, by (3.18), a = a = —C,ka = —a (mod 1 — (), hence 2a = 0 

(mod 1 — C)- Since (2) is a prime ideal different from (1 — C) we have a = 0 (mod 1 — Q, that 

is a G (1 — £)• Contradiction. 

Case 2. If m is even, then UQ = ( 2 K + L , for some integer k, since — 1 = ( T . Note that —C is 

also a primitive m-th root of unity, so either (1 + () is a prime ideal of 7Zm or 1 + C is a unit in 

7Zm. If 1 + £ is a unit in 7lm, then we use u — (1 + QCk-
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In the case that (1 + Q is a prime ideal of TZm, we want to prove that UQ ^ ^ 2 f c+ 1 for any 

integer k. For a similar reason as in Case 1, there is a 6 TZ*m, a £ (1 + (), such that UQ = f. 

Suppose u0 = C2k+1- By (3.18) we have a = (2t+la = C~{2l+1)a (mod 1 - C2). This implies 

(C-l)(C2/ + --- + C + l)a = 0 (mod l - ( 2 ) , thus (C2i
 + ••• + ( + l)a = 0 (mod 1 + C). We know 

that (2l + • • • + C + 1 £ (1 + C), hence a £ (1 + ()• Contradiction. • 

Now we want compute the index [U+ : C] of C in U+, that is the order of U+/C. Since 

for m = 2 (mod 4), TZm = TZm, we assume that m ^ 2 (mod 4). First, we quote some results 

of number theory (see [23] and [39]). Let W = {±(m}, a finite cyclic group consisting of the 

roots of 1 in TZ. 

Lemma 3.16 (Dirichlet). The unit group U ofTZm is the direct product W x V, where V is 

a free abelian group of rank _ 1 _ 

Lemma 3.17. 

1, m prime power, 
[U : WU+] = < 

2, m not prime power. 

Lemma 3.18. If m is not a prime power, then 1 — Cm ^ WU+ and (1 — Cm)(l — Cm) ^ U+2. 

Proof. If there is an integer I such that Cm(l — Cm) € U+, then (1 — ( m ) ( l — Cm) € U+2. So 

we only need to show that l~^m = —Cm ^ U2. For this purpose we suppose —Cm £ U2. Then 

~Cm = Cm f ° r some /, which implies 41 — 2 = 0 (mod m) and m is even. Since m ^ 2 (mod 4), 

we have m = 0 (mod 4). Thus 4/ — 2 = 0 (mod 4), which is impossible. This completes the 

proof. • 

Lemma 3.19. Let km = [U+ : C]. Then 

km — \ 
2 2 , rn prime power, 

4>(m) . 

2 2 1 , m not prime power. 
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Proof. By Lemma 3.16 and Lemma 3.17, we see that U+ is the direct product of Z2 and a free 

abelian group with rank - 1, and then we get [U+ : U+2} = 2 ^ . 

If m is a prime power, then C = U+2 (Lemma 3.17), and we obtain km = 2^2^. 

Um is not a prime power, then U = WU+U(l-()WU+ (by Lemma 3.17 and Lemma 3.18). 

We get C = U+2 U (1 - C)(l - 0U+2, which implies [C : U+2} = 2. Thus km = 2 * T i - \ since 

[U+ : U+2} = [U+ :C][C: U+2}. • 

This completes the proof of Theorem 4 (by applying Theorem 3). 

Example . Let m = 5. Then h\ = 1, 0(5) = 4, and hence g 5 = 4. There are 4 classes of M 5 in 

SRi(Z). Here is a list of canonical matrices of M 5 , 

/ n i n n \ / n n i n \ 

X 

( 

X3 = 

1 0 °1 f° 0 -1 0 

0 -1 0 
x2 = 

0 0 1 -1 

0 -1 1 1 1 0 -1 

1 -1 °J 1° 1 0 -1 

0 1 -1 -1 0 

- 1 - 1 0 1 

- 1 0 0 0 

- 1 - 1 0 0 
x4 = 

1 0 0 0 

0 - 1 0 0 

\o -1 1 oy 
Similarly a list of canonical matrices of Mw in 5P 4(Z) is -X, -X2, -X3, —X4. 

Example . Let m = 8. Then hi = 1, 0(8) = 4, and hence g 8 = 4. There are 4 classes in M 8 . 

A complete set of conjugacy classes of elements of order 8 in SP 4 (Z) is 

IoJ, Io(-J), 

0 - 1 1 0 

- 1 0 1 1 

- 1 1 0 0 

0 -1 0 oy 

^ A) 1 -1 0 ^ 

1 0 - 1 - 1 

1 - 1 0 0 

\o 1 0 0 y 
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Example . Let m = 12. Then hi = 1, 0(12) = 4, and hence q® = 2. There are 2 classes of 

X G SP 4 (Z) with characteristic polynomial /(x) = x 4 - x2 + 1. Two non-conjugate matrices 

are C / and Cy, where Cf is the companion matrix of f(x). 
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Chapter 4 
Symplect ic Spaces 

If a symplectic matrix X is decomposable, then its characteristic polynomial f(x) is a reducible 

S-polynomial. In general, the converse is not true. In this section we want to find sufficient and 

necessary conditions for X to be decomposable. First, in Section 4.1 we introduce symplectic 

spaces and prove Theorem 5. In Section 4.2 we relate symplectic matrices to symplectic trans

formations and then prove Theorem 6. Finally, in Section 4.3 we shall discuss symplectic group 

spaces and prove Theorem 7. Some of the material in this chapter is known, see [12]. 

4.1 The Symplectic Spaces 

We start with a definition: 

Definit ion 4.1. Let V be a free V-module with rank 2n and suppose there is a skew symmetric 

inner product (, ) on it. V is called a symplectic space over V if there are 2n elements v\,..., v2n 

of V such that their inner product matrix 

M(vu...,v2n) = ((vi,Vj))2nx2n = J. (4.1) 

The ordered elements vi,...,v2n form a symplectic basis of V. Two symplectic spaces are said 

to be isomorphic if there is a P-module isomorphism a which preserves their inner products, a 

is called a symplectic isomorphism. 

Example . Let S be a Riemann surface with genus g > 1. Then Hi(S) with the intersection 

form is a symplectic space over Z , with rank 2g. 

The following lemma says that a symplectic basis is a X>-basis. 
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Lemma 4.1. Suppose V is a symplectic space over V with rank 2n. Then every symplectic 

basis is a D-basis ofV. 

Proof. Suppose vi,...,v2n is a symplectic basis of V. Iiw\,..., w2n is a X>-basis of V, then 

vi = anwi H h ai2nw2n, 

v2 = a2\Wi H h a22nw2n, 
(4.2) 

V2n = a2n iw\ H h a 2 n 2 n w 2 n 

where € V (i, j = 1,.. . , 2n). Let A = (a^) be the coefficient matrix. It is obvious that 

AM(wu...,w2n)A' = M{Vl,...,v2n) = J. 

Hence the determinant of A is a unit in V, therefore v\,..., v2n is a P-basis of V. • 

Lemma 4.2. Two symplectic spaces over V are isomorphic if and only if they have the same 

V-ranks. 

Proof. The necessity is clear. 

For sufficiency, suppose v\,..., v2n is a symplectic basis of V and w\,..., w2n is a symplectic 

basis of W. If we define a : V -> W by a(vi) = Wi (for i = 1,.. . , 2n), then cr is a symplectic 

isomorphism. • 

Lemma 4.3. Suppose two symplectic spaces V and W have the same V-ranks. Then a V-linear 

mapping a : V —> W which preserves inner products is a symplectic isomorphism. 

Proof. Let v\,..., v2n is a symplectic basis of V. Then 

M(a(vi),...,a{v2n)) = M{vu ... ,v2n) = J. 

By Lemma 4.1, cr(vi),... ,cr(v2n) is a basis of W. Hence a is a £>-module isomorphism and 

therefore a symplectic isomorphism. • 
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Consider V2n, the X>-module of 2n-tuple over T>. For any two column vectors a, 8 € V2n, 

we define a skew symmetric inner product on V2n by (a, 8) = a'JB. It is easy to verify that 

V2n with this inner product becomes a symplectic space, which we call the canonical symplectic 

space. Furthermore, if we put 

e; = (0,...,0,1,0,...,0)', for i = 1,... ,2n, (4.3) 

then e i , . . . , e2n is a symplectic basis of V2n, which we call the standard symplectic basis. 

In this section, we always assume that V is a symplectic space over V with rank 2n and 

^l) • • • > V2n is a symplectic basis of V. Let v, w € V, and 

v = aivi H h a2nV2n and w = b\Vi H h ^ n ^ n - (4-4) 

We set a = (a\,..., a2n)' and 3 — (bi,..., 62n)'> the coordinate vectors of v and w under the 

basis v\,..., V2n- Clearly, we have (v, w) = a'J0. 

Suppose Vi , V~2 are P-submodules of V. We use V\ © V2 to denote the module sum V\ + V2 

if Vi n V2 = {0}. Vi and V2 are said to be orthogonal, written as Vi _L V2, if (^1,^2) = 0, for any 

elements v\ € Vi , v2 € V2. Furthermore, suppose Vi , V2 are symplectic subspaces of V. Then 

Vi © V2 is called the symplectic direct sum of Vi and V2, denoted by Vi*V2. 

Let a i , . . . , Ofc be elements of V. It is convenient to denote any greatest common divisor of 

a i , . . . , ak by g.c.d (a\,..., ak)- We know that g.c.d ( a i , . . . , ak) = 1 if and only if there exist 

T*I, . . . , rk € V such that r ia i H f- rkak = 1. In this case, we say that a\,..., ak are relatively 

prime. 

Definition 4.2. A n element v (v ̂  0) of V is said to be primitive, if v = c to, where c £ T> and 

w E V, implies c is a unit in V. Let a\,..., ak € V. We say that a i , . . . , ak are coprimitive if 

for any relatively prime elements a-i,..., ak € V, the linear combination a\a\ + • • • + akdk is 

primitive. A n ordered set of / + k (0 < k, I < n) coprimitive elements a\,..., a;, 81,..., 3k is 

said to form an (I, Abnormal set if 

(a i s 8 j ) = Sij, {au aj) = (A, 8 j ) = 0, (4.5) 
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for all possible i and j. 

If ati,..., a;, Pi,..., Qk form a (/, A;)-normal set, then their inner product matrix is 

Remark. If a\,..., are coprimitive, then every a; is primitive. Let a.\,..., a 2 n be a D-basis. 

Then a\,... , a 2 n are coprimitive. Thus an element of any £>-basis is primitive. A primitive 

element forms an (l,0)-normal set or a (0, l)-normal set. A n ordered set of 2n elements is a 

symplectic basis if, and only if, it forms an (n,n)-normal set. 

L e m m a 4.4. An element v — a\V\ H \-a2nV2n is primitive if and only if the greatest common 

divisor g.c.d (a\,... ,a2n) = L 

L e m m a 4.5. Let v E V be primitive, w E V and a, b be non-zero elements in V. If aw = bv, 

then a I b. 

L e m m a 4.6. Let a.\,..., ak be coprimitive. Then ot\,..., ak are independent and can be ex

tended to a V-basis of V. 

Proof. It is clear that a\,..., ak are independent. 

To complete the proof we need to show that V/W, where W is the subspace generated by 

ati,..., af~, is torsion free. Let v be a non-zero element in V and a be a non-zero element in T>. 

Suppose av is zero in V/W, that is av E W. Then av = a\cxi-\ ha^a*; for some a\,..., EV. 

Let g.c.d (a i , . . . ,Ofc) = b. We have aj = bc\, where C{ E V and g.c.d (c\,... ,Ck) = 1. Then 

av — b(c\a\-\ \-CkCtk) and c\a\-\ \-Ckdk is primitive. Hence a \ b and therefore v E W. • 

L e m m a 4.7. An element v is primitive if, and only if there is an element w E V such that 

{v,w) = 1, that is v,w form an (1, l)-normal set. 

(4.6) 

depending on whether I < k or I > k. 
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Proof. By Lemma 4.4, if v is primitive then g.c.d ( a i , . . . , a2n) = 1- There are c i , . . . , c2n € X> 

such that a i c i = 1- Let w be an element of V such that the coefficient vector of w is 

6 = - J 7 , where 7 = (c x , . . . , C2 n ) ' - Then (v,w) = a'J(-Jj) = 0 / 7 = 1. 

The converse is clear. • 

L e m m a 4.8. If W is V-module summand ofV, then there is a primitive element w in W. 

Proof. This is because every D-basis of W can be extended to a P-basis of V. • 

Proposi t ion 4.1. If V = Vi + V2 and Vi ± V2, then V = V i * V 2 . 

Proof. First, we prove that Vi D V2 = {0}. Let v 6 Vi fl V2. Then for any w = wi + w2, where 

w\ € Vi and w2 G V2, we have {v,w) = (v,wi) + (v,w2) = 0. Hence v = 0, that is V* = Vi © V2. 

Now we prove that Vi is a symplectic subspace of V by induction on rank(Vi), the rank 

of Vi . If rank(Vi) = 1, then Vi _L Vi , and so Vi _L V. Thus Vi = {0}, this is contrary to 

rank(Vi) = 1. Hence rank(Vi) = 1 is impossible. Suppose rank(Vi) > 2. Since Vi ± V2, there 

are two primitive elements wi, w2 of Vi such that (w\,w2) = 1 (by Lemma 4.8 and Lemma 4.7). 

Let W be the symplectic subspace generated by w\ and w2. If rank (Vi) = 2, we see that V\ = W 

is a symplectic space. Suppose rank(Vi) > 2. We let U = {v e Vi | (v,w) = 0 for w € W}. If 

v 6 Vi , then v — {v, w2)w± + {v, w±)w2 E U. We see that V\ = U + W. By the same argument as 

above, Vi = W © U. Thus V = U © (W© V2). Also U ± (W + V2) and rank (U) = rank (Vi) - 2 

by the definition of U. By induction, U is a symplectic subspace, and therefore Vi = W * U is 

a symplectic subspace too. 

By the same reasoning, V2 is a symplectic space. • 

Corol lary 4.1. Suppose V i , . . . , Vm are subspaces of V with 

1. V = Vi + • • • + vm, 

2. Vi ± Vj for i / j. 
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Then V = Vx * • • • * Vm. 

L e m m a 4.9. Let a\,... ,otk, Pi,--- ,8k,Jo, 7 i , • •• ,7; be a V-basis ofV such that {ca,Pj) = &ij 

and (auatj) = (0^7,-) = 0. Then g.c.d ((70,71), • •• , (To, It)) = 1. 

Proof. Suppose there is a non-unit c G D such that 

c | (7o ,7 j ) , for j = I,...,I. (4.7) 

Let 7 = 70 — (jo,@i)a± — ••• — (70, Pk)etk- Then 7 is primitive since 70 is primitive and 

70, eti,...,ak are independent over V. Any » e F can be expressed by 

k 1 

v = ^2 {ai(Xi + bifii) + ̂ 2 Cjjj 
i=l j=0 

where a,i,bi,Cj G V. Hence 

k k l 

(7, v) = (70 - ^2(lo, 8i)au J2 (Qiai + bi&) + ̂ 2 
i=l i=l j=0 

= ̂ 2 bJ^o,8j) + J2 c j ( 7 o , 7 j ) - J2 E M7o, &><a*> 
j = i j = i i = i j = i 

= C i ( 7 o , 7 l ) H r - q ( 7 o , 7 i ) 

which implies c| (7, v) by (4.7). This is contrary to Lemma 4.7. • 

L e m m a 4.10. Let ct\,... ,a>i be an (l,0)-normal set of V. Then for any 0 < k < I, there are 

81,..., 8k, 7 1 , . . . , 7m> where m = 2n — k — /, in V such that 

1. ai,...,Qh Pi,..., 8k, 7i, •••,7m ** a V-basis ofV 

2. « i , . . • , dk, Pi, - • •, Pk form a (k,k)-normal set. 

Proof We prove this lemma by induction on k. 

For k = 0 it is obvious (by Lemma 4.6). 
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Suppose it is true for k — 1. We have elements Pi,..., Pk-i, 71, • • •, 7m+i satisfying these 

two conditions. Set 

k-l k-l 

j=i 3=1 

k-l k-l 
72 = 72 - ̂ ( aJ '72)/?j + ̂ (/?j,72>ay, 

i=i j=i 

fc-i fc-i 

7m+i = 7m+i - J3<ai,7m+i)#; + X ^ ' ^ + i K -
j=l j=l 

We have 

( a i l 7 - > = 0 and (A,7̂ > = 0 (4.8) 

for i = 1,..., A; — 1 and j = 1,... , m + 1. Applying Lemma 4.9 to a\,... ,Q!fc-i, Pi, • • • ,Pk-i, 

ctfc,..., ai, 71,..., 7 ^ + D we see that there are c i , . . . , cm+i in V such that 

ci<Q!fc,7i> + --- + Cm+i(afc.7m+i> = L ( 4- 9) 

Note that here we use the fact (ak,aj) — 0 for j = 1,..., I. 

Now we can find a unit matrix A = (a(j) in GLm+i(V) with c i , . . . , c m +i as its first row, 

see [26]. Let 

Pk = C1I1 + l-cm+l7m+l> 

7l = 02171 + " •+a2m+l7m+l, 

7m = «m+ll7l H ^ «m+lm+l7m+l-

Clearly, ai,... ,att, Pi,..., Pk, 7",. • • 1 7 m forms a 2?-basis of V. Furthermore, let 

P'l = Pi-(c*k,Pi)Pk, 

48 



P'k-i = 0k-i-(ak,Pk-i)Pk, 

0k = Pk-

Then a\,...,ai, (3[,..., B'k, 7 " , . . . , 7 M is also a £>-basis of V. We shall verify that a\,..., ak, 

8[,...,0'k form a (A;,A;)-normal set by using (4.8) and (4.9) 

Case 1. For i,j = l,...,k — l, 

(auftj) = (ai,8j - (ak,8j)0k) = {ciuPj) - {ak,8j)(ai,8k) 

m+l 

= (au0j) ~ (ak,8j) ^2 c s (a , , 7^) = (ai,8j) = 6ij. 
s=l 

Case 2. For i = 1,. . . , k, j = k, 

m+l 

ik-
s=l 

Case 3. For i — k, j = 1,..., k — 1, 

= <afc,/3,-> - (ak,83)(ak,8k) = 0. 

Case 4. For jf = 1,.. . , k — 1, 

m+l 

= (8j ~ (ak,8j)8k,8k) = (faPk) = E cs(M) = °-
s=l 

This completes the proof. • 

Proof of Theorem 5. Without loss of generality we can assume that k < I. Let V\ be the 

symplectic subspace generated by ai,..., ak, 01,...,8k, and V2 = Vr. 

IfveV, let 
k k 

= v- ^2(v,0i)ai + Y2(viai)®i-w 
i=l i-1 

It is easy to see that w € V2. Hence V = V\ + V2. By Proposition 4.1, we see that V2 is a 

symplectic subspace and V = V~i * V2. 
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If k < I, then a i f c + i , . . . , « / form a (I — k, 0)-normal set of V2. By Lemma 4.10 we can find 

0k+i, • • •, 0 i in V2 such that a^+i, • • • , aj, 0 k + \ , • • •, 0 i form a (I — k, I — fc)-normal set. Then 

a i , . . . , on, 0i,...,3i form an (/, /)-normal set. So we can suppose k — I. 

If k = I then a combination of a>i,..., ak, 0 i , . •. , 0 k and a symplectic basis of V2 is a 

symplectic basis of V. • 

Remark. This theorem gives another way to prove that every normal array can be completed 

to a matrix in SP2n(V), see [29]. 

4.2 Symplectic Transformations 

Definition 4.3. A linear transformation a of a symplectic space V is called a symplectic 

transformation if it preserves the inner product. 

A symplectic transformation a is reducible if there is a non-trivial cr-invariant subspace of 

V; otherwise it is called irreducible. A symplectic transformation a is decomposable if V can 

be decomposed as a symplectic direct sum of two non-zero symplectic cr-invariant subspaces; 

otherwise it is indecomposable. 

Remark. It is easy to see that every symplectic transformation maps a (k, /)-normal set to a 

(k, /)-normal set. Thus a symplectic transformation is a P-module isomorphism. 

Clearly, a decomposable symplectic transformation must be reducible. Now we shall see 

that the converse is also true. 

L e m m a 4.11. A symplectic transformation is decomposable if, and only if it is reducible. 

Proof. Suppose V\ is a non-trivial cr-invariant symplectic subspace. Then cr(Vi) = V\. By 

Theorem 5, there is a non-trivial subspace V2, such that V = Vi * V2. V2 is cr-invariant since 

(cr(Vi) ,Cr(V 2 )) = ( V i , V 2 ) = 0 , • 
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Let a be a linear transformation of V and X be the matrix of a with respect to a symplectic 

basis V2n-> i.e. 

a(vi,...,V2n) = (cr(vi),...,CT(v2n)) = ( v i , . . . , U 2 n ) ^ - (4.10) 

We know that the inner product matrix of o(v\),..., a{v2n) is M{o(v\),..., a(v 2 n )) = X'JX. 

Hence a is a symplectic transformation if and only if X G SP2n (V). Suppose a is a symplectic 

transformation. Let v\,... ,V2n and w\,... ,w2n be two symplectic bases of V. Then there is 

a symplectic matrix Q G SP2n(T>) such that (w\,..., u;2n) = (v%,..., v2n)Q. Let X and Y be 

the symplectic matrices of a with respect to the bases v\,... ,V2n and w\,... ,W2n- A simple 

calculation tells us Y = Q~lXQ, that is X ~ Y. 

Proposi t ion 4.2. Suppose a is a symplectic transformation of V. Then a is decomposable if 

and only if X is decomposable. Furthermore, suppose V~i,...,Vm are a-invariant symplectic 

subspaces of V, and V = V\ * • • • * Vm. Then X ~ X\ * • • • * Xm where X\,...,Xm are the 

matrices of a\V\,..., a\Vm respectively. 

Proof. Let rank (Vj) = 2nj, and an,..., a.ini, Sn,..., Qini be a symplectic basis of V}. Let Xi 

be the matrix of a\Vi with respect to the basis an,..., aini, 0n, • • •, dim- We see that 

is a symplectic basis of V, and the matrix of a with respect to the basis (4.11) is X\ * • • • * Xm. 

For the converse, we assume that X — X\ * • • • * Xm. Let V] be the subspace generated by 

(i>i,... ,f2n)[0 * • • • * Xi * • • • * 0]. It is easy to see that V* is a a-invariant symplectic subspace 

of V and Vy + • • • + Vm = V. Thus V = Vx * • • • * Vm. • 

L e m m a 4.12. Let a be a symplectic transformation of V, let p(x), q(x) G T>[x\ be mutually 

coprime polynomials, and let one of them be an S-polynomial. If a, 0 G V are such that 

p(a)(a) = 0 and q(a){0) = 0, then (a,0) = 0. 

Proof. Without lost of generality we assume that q(x) is an S-polynomial. There are two 

polynomials u(x),v(x) G 7J>[x] such that u(x)p(x) + v(x)q(x) = c, where c G V, c ̂  0. Then 
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c a = v(a)q(a)(a), and 

c (a,0) = (v(o)q(a)(a),0) = (v(a)(a),q{o~l){0)) = (v(a)(a),0) = 0 

since q(a)(0) = 0, and q{o~l) = a~2mq(a), where m is the degree of q(x). Here we use the fact 

(a(a),0) = {a,a-H0)). • 

Let V be the canonical symplectic space V2n. Given any X £ SP2n{V), we can define a 

symplectic transformation a as follows, 

a{a) = Xa (for a € V2n) . 

It is well known that the matrix of a with respect to the standard basis e\,..., e-m is X. 

Corol lary 4.2. Lei K, be an extension field of J7 and X, u € JC with A ̂  u and A/j ^ 1. 7/ 

X € SP2n(K) and a, 0 G / C 2 n are suc/i that 

(X - \I)ra = 0 and {X - til)s0 = 0, 

for some integers r, s, then a'J0 = 0. 

Proof. We apply Lemma 4.12 to X. Note that (x — A) r and (x - n)s(x - j^)s are mutually 

coprime, and the latter is an S-polynomial. • 

Now we are ready to complete the proof of Theorem 6. 

Proof of Theorem 6. Suppose f(x) is a reducible S-polynomial and 

m 

fix) = Y[Pi(x) 
1=1 

where pi (x) , . . . ,pm(x) are mutually coprime S-polynomials. Let qi{x) = f(x)/pt(x). There are 

m polynomials, Ui (x ) , . . . , um(x) € T[x], such that 

ui(x)qi(x) + • • • + um(x)qm(x) = 1. (4.12) 
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Suppose X ~ Xi*- • - * X m , where X , G M P i (for % = 1, . . . ,m). There is Q G SP2n(V) such 

that X = g - ^ X i * • • -*Xm)Q. Then c/(X) = Q~l\g(Xi) * • • • * g(Xm)]Q, for any polynomial 

g(x). By (4.12) and the fact that Pi(Xi) = 0 (for i = 1,... ,m), we obtain 

7, i = j, 

0, t ^ j . 

Hence Ui{X)qi{X) = Q - 1 [ 0 * • • • * J * • • • * 0]Q G M2n{V). 

For the converse, we regard X as the symplectic transformation a ->• of the canonical 

symplectic space V2n. Let 

Vi = ui(X)qi(X)(V2n) for i = l , . . . , m. (4.13) 

Then for each 1 < i < m, we have 

1. Vi is submodule ofV2n, because Ui(X)qi(X) € M2„(-D); 

2. Vi is X-invariant, for X(V*) = X (ui(X)qi(X) [V2n)) = Ui(X)qi(X) (X ( P 2 n ) ) = 

3. V2n = Vi + • • • + V m , for •£Ui(X)qi(X) = I; 

4. Vi 1 (i / j), by Lemma 4.12 and Pi(X)Vi = {0}. 

Applying Proposition 4.2, we can complete the proof. • 
Corol lary 4.3. Suppose f(x) and g(x) are strictly coprime S-polynomials, and X G Mfg. Then 

X is decomposable. 

Example . Consider the case D = Z. Let 

A i 

0 0 - 1 0 

0 0 0 1 

1 0 - 1 0 

\0 - 1 0 I) 

and X2 = 

0 1 0 0 

0 0 1 0 

0 0 0 1 

- 1 0 - 1 0 
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XuX2e SP 4 (Z), and fXl(x) = fX2{x) = (x2 + x + l)(x2 - x + 1). We know that 

%(x + l)(x2 - x + l)-±(x- l)(x2 + X + 1) = 1. 

Clearly, Xx is decomposable and \ (Xx +1) (X2 - Xx +I) £ M 4 ( Z ) . But X2 is indecomposable, 

since \{X2 + I){Xl -X2 + I)£ M 4 ( Z ) . 

Example . Let f(x) = (x2 + l)(x2 ± x + 1). Any X € Mf is decomposable, since 

(x ± l)(a;2 + 1) - x{x2 ± x + 1) = ± 1 . 

4.3 Symplectic Group Spaces 

Definit ion 4.4. Given a group G, a symplectic space V is called a symplectic G-space, or 

G-space, if G acts on V and every element of G preserves the inner product. 

Relative to a symplectic basis, V affords a symplectic representation of G. Let G be the 

cyclic group Gm, generated by a fixed element g of order m, where m is a finite integer or 

infinity. To specify a Gm-space V , it suffices to give a symplectic matrix X. The characteristic 

polynomial of X is independent of the representation, we call it the characteristic polynomial 

of the C7m-space. The set of all symplectic (7m-spaces with characteristic polynomial f(x) is 

denoted by Vf. 

Definition 4.5. Two G-spaces V and W are equivalent, denoted by V = W, if there is a 

symplectic isomorphism a :V -> W such that the diagram 

G x V • V 

idxa c 

GxW > W 

is commutative, that is a(g o v) — g o (a(v)). 

Remark. Let Vf denote the set of equivalence classes in Vf. We have a natural one-to-one 

correspondence S, defined as above, between V/ and Mf. 
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A G-space is decomposable if it is expressible as a symplectic direct sum of two non-zero 

G-subspaces; otherwise, it is indecomposable. A G-space is reducible if it contains a non-zero 

G-subspace of smaller rank. A non-zero G-space which is not reducible is called irreducible. 

A n analogue of Lemma 4.11 is 

Proposi t ion 4.3. V is decomposable if and only if it is reducible. 

Example . If we have a group G acting on a Riemann surface S, then Hi(S) is a symplectic 

G-space by passing the action to homology. 

Suppose f(x) is an S-polynomial of type-I, and ( is a fixed root. Given any S-pair (o, a) G Pf 

(cf. Section 3.3), we know that o is a V-module since it is an ideal. We define a skew symmetric 

inner product as follows, 

Let m — order of £. We define the action of Gm on a by g o x = x/(, for all x G o. Note 

that a = aAa'. Let a = ( a i , . . . , a.2n)', where ai,...,a2n is a J-orthogonal basis of a with 

respect to a. Then the components of -^Jot form the dual basis of a±,... ,a.2n- This means 

the matrix Tr ( g - J ' ) is the identity matrix. On the other hand, Tr (fg. J') = Tr (ff-) J ' , 

a i , . . . ,Qf2n is a symplectic basis. Also, it is easy to verify that g preserves the inner product 

and its characteristic polynomial is f(x). We have [a, a] G Vf. 

Before we prove the Theorem 7, we give the following lemmas, 

L e m m a 4.13. If Tr (ax) — Tr (bx) for all x G a, then a = b. 

Proof. Tr is additive, so we only prove the special case where 6 = 0. Let xi,...,X2n be a 

P-basis of a. We obtain a system of 2n equations in the aW's, 

Therefore we obtain a symplectic space, denoted by [a, a], and 

a ( D x W + . . . + a(2n)x(2n) = ^ 
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« ( 1 )4 )
 + - + a ( t e ) 4 a , ) = 0 , 

which only has the 0 solution. Hence = • • • = o^2™) = 0, so a = 0. • 

L e m m a 4.14. Suppose a and b are ideals of TZ, and a : a —> b is a V-linear mapping with 

a(g o x) = g o a(x). Then there is a unique element q of S such that 

a(x) = qx for all x G o. (4-14) 

Proof. First note that a is 7£-linear. To prove this we write any element a of TZ as a P-linear 

combination of 1, 1/C, l / ( 2 , . . . , l / ( 2 n _ 1 . It is easy to verify that a(ax) = aa(x). 

Let «o £ o- Then aoo(x) = a(aox) = a(cto)x. Set q = a(ao)/ao, we see that (4.14) is 

true. • 

Proof of Theorem 7. Suppose a is an symplectic isomorphism from the symplectic Gm-space 

[ai, ai] * • • • * [ar, ar] to [bi, &i] * • • • * [bs, bs]. Thus there is an r x s matrix Q = (qij) with entries 

in 5 so that 

yi 

Q 

\xr J 

for all ( x i , x r ) ' G ai © • • • © o r, and (y\,..., ys)' G bi © • • • © b s . Since a is an isomorphism, 

Q has an inverse, and hence r = s. If we choose all x\,... ,xr to be zero except Xj, we obtain 

qijXj G bi. Thus q^aj C bj for i, j = 1,... ,r . 

If a = ( a i , . . . ,ar)' and /? = (/?i,... ,/3r)' are in [oi,ai] * • • • * [a r,a r], then 

t fx \ \ 

i=l 

V 

ai 

0 (4.15) 
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and similarly 

(a(a),a(0)) = Tr 

V 

61 

V 
1_ 

(4.16) 

Comparing each entry of (4.15) to (4.16), and using Lemma 4.13, we complete the proof of the 

first half. 

To prove the second half, we define a by 

= Q 

\Xr J \Xr J 

a is a P-linear mapping from a\ © • • • © ar to bi © • • • © b r and preserves the inner product, 

hence a is isomorphism by Lemma 4.3. • 

Coro l lary 4.4. If [01,01] * • • • * [a r,a r] = [bi, 61] * • • • * [b r ,6 r ], then 

(01 • • • a r , a i • • • a r) = (bi • • • b r , 61 • • • br). 

Proof. For each generator a\ • • • ar of 01 • • • a r , the product (det Q)a\ • • • ar can be expressed as 

the determinant of the product matrix 

Q 

ai 0 

0 a2 

\ 

0 0 ••• a, 

whose i-th row consists completely of elements qijaj of bj. This proves that 

(det Q)ai • • • ar C bi • • • br. 

A similar argument shows that 

(detQ l)bi • • • b r C ai • • • a,. 
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Multiplying this last inclusion by detQ and comparing, it follows that bi • • • b r is equal to 

(detQ)ai • • • ar; and it is easy to verify that 61 • • • br = (detQ)(detQ)ax •••ar. This completes 

the proof. • 

Now we give some applications of Theorem 7. When r = 1, we have 

Corollary 4.5. [a,a] = [b,b] if, and only if (a,a) = (b,b). 

Proof. By Theorem 7, [0, a] = [b, 6] if and only if there is A € S such that Aa C b and b = AAa, 

which is equivalent to (a, a) = (b,6). • 

Prom this corollary, we obtain a natural injective correspondence <]> : (a, a) —» [a, a] from 

Vf to Vf. The following lemma says $ is surjective. 

Lemma 4.15. For any V € Vf, there is an S-pair (a,a) € Vf such that V = [a,a]. 

Proof. Let v\,..., V2n be a symplectic basis of V. The action of g on V has a representative 

X e SP2n{V). We choose (a, a) € Vf such that * ( X ' _ 1 ) = (a, a), suppose 

X 7-1 

\X2n J 

I- \ Xi 

\X2n J 

where x \ , . . . , X 2 n is a J-orthogonal basis with respect to (a,a). We define the isomorphism 

(f> : V —> a by 4>(VJ) = Xj. It follows that (x{,Xj) = Tr (-^XiXj) = 5ij = (vi,Vj). That is, 4> 

preserves the inner product. • 

Furthermore, we have one-to-one correspondences ^ between M/ and Vf and E between 

Vf and Mf. More precisely, we have 

Proposition 4.4. The correspondence * o S o $ is the identity ofVf. 
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Proof. Let (a,a) G Pf, and a = (ai,..., a2n)' be a J-vector with respect to (o, a). Then 

a\,..., ai2n is a symplectic basis of [a, a]. Let X be the matrix of g with respect to a\,..., a 2 n . 

We need to prove that ${X) = (a,a). S inceg°{o t \ , . . . ,a2n) = \(aii • • • ,a2n) = (ai, • • • , Q ; 2 n ) X , 

and X / _ 1 a = {a, we get = (a, a). Hence = = (a, a). • 

The following proposition gives a method to compute n o S(V), for a symplectic Gm-space 

V € Vf without needing to know a symplectic basis of V. 

Proposition 4.5. Suppose V £ Vf. Let a-i,... ,a2n be a V-basis ofV, not necessarily symplec

tic. Let M be the inner product matrix of a\,..., a2n, and X be the matrix of g with respect 

to a\,..., a 2 n . Let a — {a\,..., a2n)' € V2n be an eigenvector of X with respect to Then 

^ o S(V) = (a,a), where a is the ideal generated by ct\,... , a 2 n and a = A~la'Ma. 

Proof. We choose a symplectic basis v\,..., v2n of V and let Y be the matrix of g with respect 

to vi,... ,v2n- There is Q G GL2n(V) such that ( 0 1 , . . . ,a2n) = (v\,... ,v2n)Q. It follows that 

Y = QXQ-1 and M = Q'JQ. 

If 0 = Qct, then Y0 = QXQ~l{Qa) = QXa = Q(a - QQa = 0 . We see that 0 is an 

eigenvector of Y with respect to £• Now we need to show that 0 is a J-vector with respect to 

of (a, a). From the fact that Q is invertible, we see that the components of 0 form a £>-basis of 

a, and 

a = A~la'Ma = A~la'Q'JQa = A~l0'J0. 

So * o E ( y ) = #(Y) = (a,a). • 

For r = 2, we have 

Corollary 4.6. [a, a] * [b, b] = [R, 1] * [ab, ab] if and only if there are u € a and v G b such that 

™ + Vl = l. (4.17) 
a b 
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Proof. Suppose [o, a]*[b,b] = [71,1] * [ob, ab]. There is a 2 x 2 matrix Q = (c/y) with entries in 

S, so that qn7l C a, q2i7Z C b and 

(4.18) 

Set u — qn, v = q2\ and then compare the top left entries of both sides of Equation (4.18). 

For the converse, suppose there are u G a, v G b such that (4.17) holds. Let Q = 

It follows that Q satisfies (4.18). Now we need to verify that - f a b C a and |ab C b. Since 

v G b, then —v G b, which implies -vb C bb = bAbb' C bTl, and thus - f b C 71. It follows that 

fab C a. Similarly, fab C b. Therefore [a, a] * [b,6] [71,1] * [ab, ab] by Theorem 7. 

This completes the proof. • 

Example. Let 7lm be as in Section 3.5. Then [7lm, -1] * [7lm, -1] ^ [7lm, 1] * [7lm, 1]. 
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Chapter 5 
Order p elements in S P p _ i ( Z ) 

First, in Section 5.1 we will give examples of elements of order p in SPp-i (Z). Then in Section 5.2 
27T1 

we will discuss the cyclotomic units of the cyclotomic field Q[C] , where ( = e p . And finally, 

in Section 5.3 we shall prove Theorem 8. 

5.1 A n Example 

Theorem 1 gives us a way to find representatives for each cyclic matrix class in SP2n(V) with 

characteristic polynomial f(x) irreducible and separable in T>. Suppose we have an S-pair (a, a) 

and a basis (3\,..., (32n of a, which is not necessarily J-orthogonal. The following steps will find 

a symplectic matrix X G SP2n(V) such that ^(X) = (a, a). 

1. Find the dual basis 71 , . . . , j2n of 0i,..., (32n, that is solve the linear system 

l'0ii)=6li (5.1) 

where (3 = (f3u . . . , fan)' and 7 = (71,... ,7 2 n ) ' ; 

2. Find the integral matrix Y G GL2n{T>) such that Yd = C # 

3. Find the skew symmetric matrix M G GL2n(V) such that M/3 = (2A7; 

4. Find a matrix Q G GL2n<(D) such that M = Q'JQ; 

5. Let X = QYQ-1. Then X G SP2n{V) and * ( X ) = (a,a). 

Let 71 = Z[(]. We shall apply this method to find X in fiPp_i(Z) of order p and such that 

V(X) = (71,1). We know that 1, C, • • • , C p ~ 2 is a basis of 71. 
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L e m m a 5.1. The dual basis of C p _ 2 is 71, . . . , 7 P _ i , where 

Jr 
(5.2) 

Proo/. By Lemma 3.2, we need to verify 

where /(x) = xP'1 + • • • + x + 1, and /'(() = Let 70 = 7 P = 0. 

P - 2 p - 2 p - 2 p - 1 p - 2 

(x - 0 £ 7.-+1** = E 7*+i* ' + 1 - E 7.-+iC^ = E - E 7<+iC^ 

i=0 1=0 i=0 1=1 t=0 

i=0 i=0 
p 

Thereby proving our assertion. • 

Let 0 — ( l , C , . . . , (P 2 ) ' and 7 = (71,.. . , 7 p - i) ' . Then Y is the companion matrix 

Cp_i 

0 1 

-1 -1 . .. -1 

and 

0 = 

( 1 \ 

and 7 = C - i 
p 

-1 

-1 -1 

-1 -1 . .. -

P=^Lp^p (5.3) 

where L„ is the n x n matrix whose entries above the diagonal are 0 and the others are — 1. 

Since CP = Cp-iP we have ( 0 = C'^0. Note that A = K ( ^ ) / 2

 w e see that 

62 



.E+l 
Let M = Lp-iC f . By a long but routine computation, we see that 

Af = 

V 
2 

'L'p-i 
2 

is a skew symmetric matrix, and M = Q'p_lJp-iQp-i, where Qp-\ = I + L^-x G G L p _ i ( Z ) . 

Therefore we have shown 

Proposi t ion 5.1. Let 

' 0 1 

Xp — Qp-iGp-xQp^i 

1 1 

-1 1 

-1 

-1 

1 

(5.4) 

where each block is a ^ x ^ m a i r * a ; - Then Xp G S P p _ i ( Z ) with order p and $(Xp) = (ft, 1). 

(0 - l \ 
Example . When p = 3, we see that X = is an element of order 3 in SP2(Z). 

\1 - U 

In Section 5.3 we shall see that all Xp are realizable if p > 5, that is X p is the matrix of 

T* with respect to some canonical basis of Hi(S), for some analytic automorphism T of some 

compact connected Riemann surface S. 

5.2 Cyclotomic Units 

The cyclotomic units in ft are 

sin^r 
Uk 

sm 
f , for(fc,p) = l - (5.5) 
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Since 

1 - CK 

= A f t luk, where A = -(^ (5.6) 
i - C 

1 c*̂  

and is a unit, we conclude that uk E U+. The following properties of the cyclotomic units 

are easy to verify: 

ui — 1 and ump+k = — u m p _ f c = ( - l ) m u f c (5.7) 

uk>0, l < k < p - l , 

uk < 0, p + l < f c < 2 p - l . 

L e m m a 5.2. Y!j=\ u2j+l = u k u k + i + l . 

Proof. We use the trigonometric formulas, 

* * s i n i 2 i ± ^ r s i n E 

E ^ = E s i n 2 f 
0=1 J = l P 

_ J _ V -* 1 ' (2j + / - l ) 7 T (2j + Z + l ) v T 
cos cos 

cos - cos ̂ ±m)E 

2 s i n 2 £ 

s i n M s i n i ^ ± l l l 
V P 

r-2iF = ukuk+i+i 

From now on we let the i-th conjugate of ( be ( \ We have 

L e m m a 5.3. uf = {-lfk-l^i+l^ uikujl. 

(5.8) 

• 

Proof. Using (5.6), we see that 

uf = ( - C ^ ) ^ - 1 ^ 
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l - C i - C * 

= ( _ i ) ( ^ i ) ( H i ) ^ u r i 

• 

Lemma 5.4. A ^ = ( - l ^ u ^ A . 

Proof. Since A = A « = We obtain ^ = ^ ( L ^ ¥ ± n = {-iy^ur\ • 

Lemma 5.5. Suppose X € SP p _i(Z) /ias order p, and * ( A ) = (o, a). T/ien 

f ( I k ) = ( / > , ( - l f ' \ / ) ) , 

where \ < k <p — \, k' is the inverse of k modulo p, and ô fc'̂  = a € a | . 

Proof. Suppose a is a J-vector with respect to (a, a) and Xa — (a. Then a = A _ 1 o ; ' Ja and 

X k a ( k ' ) = Qkk'a{k') = h e n c e = ^a(fc'>,a*), where 

a f c = A - V ( f c , ) J a ^ = ^ ( A - V J o ) ^ ) = (-1)*'" V ^ * 0 

(By Lemma 5.4). This completes the proof. • 

Lemma 5.6. uk C, for 2 < k < p — 2. 

Proof. We only consider 2 < A; < p - ^ . 

Case I: k is even. For 4 < 2A; < p — 1, we get ujj2^ = —U2kU2

1 < 0, and so ^ C . 

Case II: A; is odd. There i s l < i < p — 1 such that p + 1 < ki < 2p — 1. Then we have 

= u k i u 7 l < 0) hence Uk^C. • 

Lemma 5.7. Ukuf1, ukui ^ C , /or 1 < A;, / < and k ^ I. 
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Proof. There is 2 < i < p - 2, such that il = k (mod p). Then Ukuf1 = ±uuu~1 = ±uf\ But 

±uf^ does not belong to C since if it did we would have ±ui € C by choosing the appropriate 

conjugate. This contradicts Lemma 5.6. Then ukut = (ukull)uf £ C (since uf G C). • 

By Lemma 5.5, Lemma 5.6 and Lemma 5.7, the following corollary and Proposition 5.2 are 

easy to prove. 

Corol lary 5.1. The p—l elements [ ± l ] , [ ± i t 2 ] , . . . , [ iu^- i l are distinct in U+/C. 
2 

Proposi t ion 5.2. Let Xp be the matrix given by Equation (5.4). Then Xp,Xp,..., X p

_ 1 are 

not similar to each other. 

Proposi t ion 5.3. If Pj^- is odd, then there is an X G SP p _i(Z) of order p, such that there are 

just two different classes amongst X,... ,Xp~l. 

Proof. Let a = u2 • • • u^i. There is X G SP p _i(Z) of order p such that $ (X) = {71, a). Suppose 

a G TV'1 (a ^ 0), Xa = C,a and a = A'la'Ja. From Lemma 5.5 and the fact that 71^ = 71 

we get * ( X f c ) = (K,ak), where ak = (-l)*' - 1 ^, 1 ^*') and k' is the inverse of k. Note that 

ffc'1 —l —l — 2 

a v > = ±u2k'Uk, •••uE=ik,uk, = ±m • • -Up-iuk, 

E+l 
hence a/ak = ±uk? G C U ( - C ) . Therefore 

* P 0 , if a/akeC, 

±auk, 2 

<b(xK) = { 
^ ( X - 1 ) , ]fa/ak€-C. 

i.e. X,..., X p are in two different classes. 

Example . Let p — l. Let 

X = 

0 0 0 -1 

1 - 1 0 0 

0 0 0 0 

0 1 0 0 

0 0 0 1 

0 0 1 0 

0 

0 

0 

°1 
-1 c3+c-i 
-1 -c6 

a = -c6 

1 C 2 + i 

0 c6+c °J I 1
 J 
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Then one can easily check that Xa = (,a, X G SPe(Z) and X7 = I. One can also check that 

a = A _ 1 o ; ' Ja = C 6 + C = u^u^. By computing, we get 

X ~ X2 ~ X4 and X 3 ~ X5 ~ X 6 . 

Proposi t ion 5.4. Suppose p = 1 (mod 3). T/iere is X G SP p _i(Z) o/ order p sitc/i £/ia£ 

X ~ Xk, where k is the least positive solution of k2 + k + 1 = 0 (mod p). 

Proof. Since p = 1 (mod 3), then x 2 + x + 1 = 0 (mod p) has a solution. Let k be the minimal 

positive solution. There is an X G £ P p _ i ( Z ) , of order p, with \I/(X) = (TZ,UkUk+i). Then by 

applying Lemma 5.5 we get ty(Xk) = (lZ,u), where 

= ( - ^ - ^ ( - i ^ - ^ - ^ ^ , ^ 

Note that k(p — k — 1) = mp + 1 and (fc + l)(p - A; - 1) = (m + l)p - A;. Hence X ~ X * . • 

To finish this section we give a proposition: 

Proposi t ion 5.5. There are integers ki,...,kn, such that 2 < ki < • • • < kn < PJY~, and 

Ukx • • • Ukn G C if and only if hi, the second factor of the class number of TZ, is even. 

Proof. Let C\ be the group generated by ± 1 , U 2 , • • • ,uzz±• Then [U+ : C\] = /12, see [20]. 

Suppose ukl • • -Ukn = u2 G C and u G U+. We see that u £ C\ since u2, • • • ) n £ ^ i a r e f r e e 

generators. Let C2 be the group generated by ± 1 , u,U2,. • • , • Clearly, C\ C C 2 C U+ and 
2 

[C2 : Ci] = 2, so 2\h2. 

rP-i 
If / i 2 is even, there is u G U+, u C\, but u2 G C i . Then u 2 = u^1 • • - u ^ where not 

2 

all of rj are even. Thus u2 = ukl • • • ukn v2 for some distinct integers 2 < kj < Pj^- and some 

v G Ci. It follows that • • • Ukn G C. • 
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Remark. In case that h2 is odd, the 2 ^ elements [ i u ^ u ^ • • • Ukn], where 2 < ki < • • • < kn < 
P j ^ , are all distinct. They are in fact the elements of U+ /C. 

5.3 Realizable Elements of Order p 

Theorem 8 is similar to a result of P. Symonds[35], but our approach is new. We consider short 

exact sequences of Fuchsian groups 

1 -»• II ->• T(0;p,p,p) A Z p ->• 1 

where T(0;p,p,p) — (Ai , A2, A 3 | A 1 A 2 A 3 = A\ = A\ = A\ = 1). If II is torsion free, then we 

get an action of Z p on S = U/II, with genus Now we indicate how to find all epimorphisms 

9 with torsion free kernel. 

The epimorphism 9 : Y —>• Z p is determined by the images of the generators. The relations 

in T must be preserved and the kernel of 9 must be torsion free, therefore 9 is determined by 

the equations 

9:1 

A i -»• T ° , 

A 2 -> T 6 , 

A 3 ^ T c , 

where T is a fixed generator of Z p , l < a , 6, c < p — 1 and o + 6 + c = 0 (mod p). We use 

M ( a , b, c) to denote the matrix class which is induced by T . Let V(a, b, c) denote the symplectic 

Zp-space H\(S) where the action of T on H\(S) is given byT*. ThenS(V(a,6,c)) = M(a,b,c). 

The proof of Theorem 8 is based on Proposition 4.5. Suppose a i , . . . , a p _ i is a basis of 

Hi(S), and M is the intersection matrix of a i , . . . , a p _ i . Let X be the matrix of T* with 

respect to a i , . . . , a p _ i . Let a = ( a i , . . . , a p _ i ) ' € ftp_1 be an eigenvector of X with respect to 

C- It is easy to check that *(M(a,6,c)) = * o S(V(a,6,c)) = (a,A~la'Ma), where a is the 

ideal generated by a 1,..., cc p_i. 

Remark. If we prove the special case where a = 1 and 1 < b < , that is if we show that 

tt(M(l,M) = (n,ubub+i), 
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then Theorem 8 will follow. This is because M(l ,6 ,c) = M ( l , c , 6) and M(a,b,c) is the a'-th 

power of M ( l , 6 i , c i ) , where aa' = 1 (modp), b\ = a'b (mod p), c\ = a'c (modp). Applying 

Lemma 5.5, we would get 

tt(M(a,6,c)) = (n,{-l)a-lua{ublubl+l)^) 

and by Lemma 5.3, we could then have 

u = {-l)a-lua{ublubl+l)^ 

= ( - i ) f l - 1 « a ( - i ) ( 6 i - 1 ) ( * + 1 ) « 6 1 a u r 1 ( - i ) 6 i ( a + 1 ) t * ( 6 l + 1 ) 0 « r 1 

= ua ump+bump+a+b 

= ^ o 1 ( - 1 ) m u h ( - 1 ) m ' u a + 6 = U~lUbUa+b 

where m satisfies b\a = mp + b. We see that u/uaubua+b = u~2 G C. 

Thus we assume a = 1 and 1 < b < Then ^ < c < p — 2. We choose a particular 

embedding of F in Aut (U), namely F is the subgroup generated by A i , A 2 , A 3 , where A i , A 2 , A 3 

are rotations by 27r/p about the vertices vi,V2, ^3 of a regular triangle P, all of whose angles are 

-ir/p, see Figure 2.1. A fundamental domain of F consists of P together with a copy of P obtained 

by reflection in its side V1V3. Then a fundamental domain D of LT is the 2p-gon consisting of 

p copies of the fundamental domain of F obtained by the p rotations A\ (k = 0,. . . ,p — 1), 

see Figure 5.1. Let e i , . . . , e 2 p be the 2p sides of D, and r\i = e 2j_i + e2j (for i = 1 ,p). 

Then r / i , . . . , r)p are closed paths on S and [r/i],..., [rjp-i] forms a basis of H\(S), see [24]. The 

intersection matrix of [771], . . . , [r?p_i] is somewhat complex, so we need to find another basis. 

Since fl^+^A^A*-') = 1, then 7 = A[+i~lA^1 A\~{ G II is a boundary substitution 

of D and so [e2j_i]n = [—e2C+2i]n- In the interior of each side ej, we choose a point Ei such 

that [£?2i-i]n = [E2c+2i]u- Let /j denote the straight line segment from v\ to Ei in D. Let 

= J2i-\ — /2c+2i- Then ^ is a closed path on 5. 

It is clear that [&] = [iji] -\ 1- [rjc+i] and [ni] H \-[r)p] = 0 in the homology group Hi(S). 
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Figure 5.1: Fundamental Domain (order p) 

Hence the transform matrix from [77]'s to [£]'s is the (p — 1) x (p — 1) matrix 

c + l < 1 -1 
-1 

-1 
0 

} p - c - l 

where the entries Xj , - are given by 

1, l < J < p — c — 1 and j < i < j + c, 

— 1, p — c < j < p — 1 and j + c + l—p<i<j — 1, 

0, otherwise. 
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By applying the Laplace expansion theorem to the last row we see that the determinant of this 

matrix is just the determinant of the (p — 2) x (p — 2) matrix Lc+i,p-c-i, s e e Equation (2.9). 

Since p is an odd prime and 1 < c < p — 2, then c + 1, p — c — 1 are coprime, and therefore 

jdet L c + i ) P _ c _ i | = 1 (See Section 2.3). Hence [ft],..., [ft-i] is a basis of Hi(S). 

L e m m a 5.8. The matrix o/T* with respect to [ft],.. . , [ft>-i] is 

/o - l \ 

V 

• l 

- l 

Proof. Let f2p+i = fi and ft+fc = ft. Since 0(Ai) = T, we get T([/;] n) = [Ai(fi)]n = [/i+2]n, 

for i = l , . . . , 2 p . Then 

T([€k]n) = T([f2k-i]n - [/2c+2Jfe]n) 

— [/2fc+i]n — [/2c+2fc+2]n = [£fc+i]n 

for A: = 1,... ,p. Therefore T*([ft]) = [ft+i], for k = 1,... ,p - 1. But [ft] + • • • + [ft] = 0 and 

therefore 

This proves the lemma. 

= [6], 

r.fl&D = [6], 

r*(&-2]) = KP-i], 

r.([eP-i]) = -[ei]-K2] KP-i]-

• 

Now we compute the intersection matrix M of [ft],..., [ft-i]. Let mj j be the intersection 

number ft • ft of [ft] and [ft]. We have 
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L e m m a 5.9. For any 1 < i,j < p - 1, m^j = mj+ij+i and mij+i = - m i i P _ j + 1 . 

Proof. T* preserves the intersection number of closed chains. By Lemma 5.8, 

mi,j = & • ij = p*di) • T*Hj) = ii+i • ij+i = mi+ij+i. 

Iterating this formula we see that mi i P _j+i = mj+i ) P+i = rrij+i^ = —m\j+\. 

Let kj — mij+i . Then m-ij+j = kj. Hence the intersection matrix is of the form 

M = fciMi + • • • + A ; P _ 2 M P _ 2 , 

where the Mj is the (p - 1) x {p - 1) matrix 

/ o ... 0 1 0 A 

0 

-1 

0 

V 0 - 1 0 

The entries x$ of Mj are given by 

x kl 

1, l - k = j, 

- 1 , k - l = j , 

0, otherwise. 

By Lemma 5.9, we see that kj •- mij+i = — m i i P + i _ j = —kp-j, and therefore 

M = feiMi + k2{M2 - M P _ 2 ) + • • • + kj^i ^ M H - I - j . 

L e m m a 5.10. 

kj — 
1, l<j<p-c-l, 

0, p - c < j < ^ i . 
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Proof. It is clear that the intersection of ft and ft+1 (j = 1,..., ^) is only one point, namely 

the vertex vx. The verification of (5.9) is straightforward by referring to Figure 5.2 and 5.3. • 

r2j+l 

Figure 5.2: p - c < j < (p - l)/2 

Let 

a = 

' l + < + ••• + cp~2^ 
l + c + • • • + C p~ 3 

i + C 

V i ) 
a is an eigenvector of C'p_x with respect to the eigenvalue ft that is C p _ 1 a = (a. 

L e m m a 5.11. Let 
A~La'Mia, 

Vj 
A-'a'iMj-M^a, j = 2 , . . . , ^ i . 

Then yj = u2j. 

Proof. Let 0 = (1 - ()a. We see that 0k = l- Cp~k-

p—ip—i 

0'MJ0 = E E = E M - E A ft 
A;=l ;=1 i-fe=j 

p-i-j p-i p-i-i p-i-j 
= E - E = E fofo+j - E fo+jPk 

k=l k=j+l k=l k=l 
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p-l-3 , v , P-1-3 

= E (i-c*-fc)(i-r*-'")- E (i - c- f c^)(i-r f c) 
*=i A;=i 

="E (I - cp-fc - rk'3+cj) - P~E (i - c^-k - rk+v) 
k=l k=l 

= " i f (r f c - cp- fc+c^- fe - r''-*)+(? -1 - i) (V - ?) 

= D(C*-?) + ( P - I - J ) (c-?) 

= E 2(c f e-c f c) + ( P + i - i ) (c-?). fe=i 

Hence for j = 1, /3'M{p = p ((-(). 

For j = 2,..., we have 

pMjfl - V'M^P = J2 2 (Cfc - C") + (p ~ 1 - j) (V - ?) fc=i 

- ' £ 1 2 (cfc - ?) - o>+1 - P+i) (<r' -

=p{tj-?)-P~iz ck) 
=P (cj - ?) 

k=j+l 

So we get 

, ^ (ri 7*\ C ^ C - J (C2 j ~ 1) ,2±l\^ 

• 

Proof o/ Theorem 8. Let o be the ideal generated by the components of a. It is clear that 

a = TZ since 1 6 a. Now applying Lemma 5.2 and Lemma 5.11, we obtain A~la'Ma = u^u^i. 

This completes the proof of Theorem 8. • 
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Chapter 6 
Tors ion i n SP4(Z) 

We consider torsion elements of SPt(Z). The first question we consider is: for what positive 

integers d(d > 2), is there a matrix X G SP2n{Z) having order d? If X has order d, then 

its minimal polynomial mx(x) is a factor of xd — 1, i.e. mx(x) is a product of some different 

cyclotomic polynomials, and its characteristic polynomial fx (x) is a product of some cyclotomic 

polynomials. Suppose d = pf1 • • -pp where pi,... ,pt are different primes. According to a result 

of D. Sjerve [34], the degree of fx(x) is not less then 4>{pSi) H h 0(pj() — 1, so 

0(Pi1) + --- + 0 (p f )<2n + l . 

We get 

If n = 1, then d must be 2, 3, 4, 6. 

If n = 2, then d must be 2, 3, 4, 5, 6, 8, 10, 12. 

(0 - l \ 

Let Wx = and W = W i . Clearly, W _ A = -W'x and W 0 = - J 2 . 

V -v 
Proposi t ion 6.1. Suppose X € SP^CL) has order 3, 4, or 6. T/ien /x(^) = r n x ( x ) = + 

Ax + 1, and A ~ or where A = 1 (resp. 0, —1) if the order is 3 (resp. 4, 6). 

This is an application of Theorem 1 or a corollary of Lemma 6.5. 

We denote by the set of elements of order d in SP^Z). I. Reiner gave a complete list 

of representatives of the conjugacy classes of involutions in all symplectic groups SP<2.n{Z) [30]. 

We state the special case for T2 here without proof. 
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Proposi t ion 6.2. Any X € T 2 is conjugate to one of the three following matrices 

-h, h*(-h) or U + U' (6.1) 

where U 
1 0 

1 - 1 , 

Now we suppose that d > 3. Let X € Tj. The possible minimal polynomials mx (x) and 

characteristic polynomials fx(x) are as follows: 

When d = 3, 

m(x) = (x2 + x + 1), 

m(x) = (x - l)(x2 + x + 1), 

/(x) = (x 2 + x + l ) 2 , 

/(x) = ( x - l ) 2 ( x 2 + x + l). 

(6.2) 

(6.3) 

When d = 4, 

m(x) = (x 2 + 1), 

m(x) = (x- l)(x2 + 1), 

m(x) = (x + l)(x2 + 1), 

/(x) = (x 2 + l ) 2 , 

/(x) = ( x - l ) 2 ( x 2 + l) , 

/(x) = (x + l ) 2 (x 2 + l). 

(6.4) 

(6.5) 

(6.6) 

When d = 5, 

m(x) = f(x) = x4 + x 3 + x 2 + x 1 + 1. (6.7) 

When d = 6, 

m(x) = (x 2 - x + 1), = ( x 2 - x + l ) 2 , (6.8) 

m(x) = ( x - l ) ( x 2 - x + l), fix) = ( x - l ) 2 (x 2 - x + 1), (6.9) 

m(x) = (x + l)(x 2 - x + 1), fix) = (x + l ) 2 ( x 2 - x + l), (6.10) 

m(x) = (x + l)(x 2 + X + 1), fix) = (x + l ) 2 (x 2 + x + l), (6.11) 

m(x) = ( x 2 - x + l ) ( x 2 + x + l), fix) = ( x 2 - x + l)(x 2 + x + l). (6.12) 
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When d = 8, 

m(x) = f(x) = x 4 + 1. (6.13) 

When d = 10, 

m(x) = /(x) = x 4 - x 3 + x 2 - x + 1, (6.14) 

When d = 12, 

m(x) = /(x) = (x 4 - x 2 + 1), (6.15) 

m(x) = /(x) = (x 2 + l)(x 2 + x + l), (6.16) 

m(x) = /(x) = (x 2 + l ) ( x 2 - x + l). (6.17) 

Remark. The characteristic polynomials (6.7), (6.13), (6.14) and (6.15) are irreducible over Z. 

We have given a complete set of conjugacy classes for these cases (see Examples in Section 3.5). 

Remark. The characteristic polynomials (6.16) and (6.17) are products of two strictly coprime 

S-polynomials. According to Theorem 6, all matrices with characteristic polynomials (6.16) or 

(6.17) are decomposable (see Section 4.2). 

By Lemma 2.2 and Proposition 6.1, and the Remarks above, we obtain 

Proposi t ion 6.3. The number of conjugacy classes in T12 is 10. A complete set of non-

conjugate classes is given by 

h o (-W), h o {-W); (6.18) 

J2*W, J2*W, J2*W, J2*W; (6.19) 

J2*(-W), J2*(-W), J2*(-W), J'2*{-W')\ (6.20) 

with respect to characteristic polynomials (6.15), (6.16), (6.17). 

For all other cases, we need to develop some new tools. In Section 6.1 we shall use symplectic 

complements to study the case where ± 1 is an eigenvalue of X. In Section 6.2 we discuss the 
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case of characteristic polynomials (6.2), (6.4) and (6.8). Then in Section 6.3 we consider the 

last case of (6.12). Finally, in Section 6.4 we shall give a list of conjugacy classes which are 

realizable. We use the program Maple V to calculate most of our results in this chapter. 

6.1 Symplectic Complements 

A primitive integral 2n x (j + k) matrix 

j,k <n 

which satisfies the conditions 

A'JA = 0, B'JB = 0, and A'JB 
h 

0 
or ( l , o) 

(depending on whether j > k or j < k) will be called a normal (j, A;)-array. According to 

Theorem 5 every normal (j, fc)-array can be completed to a symplectic matrix by placing n — j 

columns after the first j columns and n — k columns after the last k columns. 

Remark. Let a, 0 e Z 2 n . Clearly, a is (l,0)-array if and only if et is a primitive vector, and 

(a, (3) is a normal (1, l)-array if and only if a'Jf3 = 1. 

L e m m a 6.1. Suppose that X G SF"2n(Z) and / x ( l ) = 0. Then 

X 

h i a A 
0 A & B 

0 0 1 0 

1° C 0 

where Y = 

with 

A B 

, C D, 
G SP 2(n-i)(Z), fx(x) = (x- l)2fY{x), a G Z , and a, f3, 7, 8 G Zn~l 

a 

P 

7 

8 

AS - £ 7 , 

C6 - D7, 

Ca - A'0, 
D'a - B'0. 

(6.21) 
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Furthermore, ifY~Yy = 
Ai 5 i 

X 

then 

( \ 7i ai 5[\ 

0 A i a i Bi 

0 0 1 0 

\0 C i ft 

Proo/. Since 1 is an eigenvalue of X, there is a primitive vector 77 € Z 2 n such that Ar? = 77. By 

Theorem 5, we can find a integer symplectic matrix P with 77 as its first column. Then 

(l i a S'\ 

0 A a B 

0 * b * 

\0 C p DJ 

P~lXP = Xi = € S P 2 n ( Z ) . 

(A B\ 
By computing we can see that the *'s are 0, b — 1, Y = I G 5P2( n_i)(Z), and a, P, 7, 

\C D) 
6 satisfy (6.21). Thus fx(x) = {x - l)2gY(x). 

The second part is easy, merely conjugate by I*Q, where Q € 5P2(P) and Q~1YQ = Y\. • 

L e m m a 6.2. Suppose X € SP4(Z), mx(x) = (x — l)(x2 + Xx + 1) where A = 0, ± 1 . Then X 

is conjugate to one of 

I*WX and I*W'A, 

Moreover, these matrices are not conjugate. 

Proof. It is clear that I *W\ >* I *W'X (cf. Lemma 2.2). 
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X ~ X\ 

By Lemma 6.1, we get 

0 A di B 

0 0 1 0 

\0 C ei D) 

(A B\ 

where Y = € SP2(Z) with / y (x ) = x2 + Xx + l. Then, from Proposition 6.1, Y ~ W A 

or Wj .̂ Without loss the generality we assume V ~ W\. Then 

X ~ x2 = 
1 a2 62 C2 

0 0 a2 -1 

0 0 1 0 
X , = 

^0 1 Aa 2 + c 2 -X) 

0 6 c 

0 0 0 -1 

0 0 1 0 

\0 1 c - A y 

/1 - a 2 \ . / 1 0 \ 

where the last conjugacy is achieved by Q = I +1 ^ SRi(Z). We obtain 

v° 1 / w 7 
(A + 2)6 + c 2 = 0 since mx(x) = (x — l){x2 + Xx + 1). This implies (A + 2) | c. Now we use 

Theorem 6 to see that X 3 is decomposable and use Proposition 6.1 to complete the proof. In 

fact let 

(\ k k ^ 

- 1 —k 

1 

k - 1 

where k — e Z . It is easy to check that P - 1 X 3 P = I * W\. • 

P = 

V 

€ SP 4(Z) 

7 

Similarly, we have 

L e m m a 6.3. Suppose X € SP 4 (Z), m x (x) = (x + l)(x2 + Xx + 1) where X = 0, ± 1 . T/ien X 

is conjugate to one of 

(-1) * Wx and (-1) * W'x, 

and these matrices are not conjugate. 
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Proof. Since m_x{x) = (x - l)(x 2 - Xx + 1), we have -X ~ I * or 7 * W i A . Note that 

-W\ = W'X. This complete the proof. • 

6.2 M i n i m a l Representatives 

Let X G iSP2ri(Z) and 77 = (x i , . . . , X2n)' € Z 2 n . If a = n'JXn then we say that X represents a. 

The set of values represented by X will be denoted by q(X). It is clear that q(X) is a conjugacy 

invariant, for if Y = Q~XXQ, where Q G SP2n{Z), then 

o(Y) = q{Q~lXQ) = {n'JQ-lXQn | 77 G Z 2"} , 

and so putting £ = Qrj gives 

(,'JXi = n'Q'JXQn = n'JQ^XQn = n'JYr). 

Thus q(Y) = q(X). Unfortunately, the converse is not necessarily true. 

The set q(X) is a set of integers, and consequently there is a non-zero 770 in Z 2 n such that 

|77 0 JXT7O | is least. If both n'0JXr]o and —r]0JXr)o = if^JXni occur, we resolve the ambiguity 

by choosing the non-negative value. We write u(X) = r)'0JXr]o- Clearly, if u(X) 7^ 0, the 

minimizing vector XQ must be primitive, and if u(X) = 0, we also can choose a primitive vector 

770 such that rj'0JXr)o = 0. 

Example . If X is quasi-decomposable, then u(X) = 0 since JX will have zero entries on the 

diagonal. 

L e m m a 6.4. Let f(x) = fx(x) be the characteristic polynomial of X. Then 

,„m l < (I)""* ! /Wfc !> !± . „ 2 2 , 

Proof. Note that rj'JXrj is a quadratic form over Z . If M is a symmetric matrix belonging to 

M n ( Z ) , and a — min {JT/MTJI 177 G zW,i) ^ 0}, then 

-J 2 | d e t M | » . 
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See [26]. Clearly, it is also true if M is a rational symmetric matrix. 

We know that rj'JXr) = \r,'{JX + (JX)')r], where \(JX + (JX)') is a rational symmet

ric matrix. Because [JX)' - X'J' = -X'J = -JX'1, and \J\ = \X\ = 1, we see that 

\JX + (JX)'\ = \JX - JX'1] = IJHX- 1!^ 2 - I\ = / ( l ) / ( - l ) . Hence 

\t*(X)\ < 

• 
Remark. Note if X G SPi(Z) is a torsion element, then |/-*(A")| < 1 since is integer and 

the maximum of |/(l)/(—1)| is 16. 

L e m m a 6.5. Suppose X G SP 2 n (Z) , and 1 G q(X). Then 

/ n n _1 n \ 

X 

0 0 - 1 0 

0 A a B 

1 V a 6' 

\0 C 0 DJ 

, A B 

where \ I G S P 2 ( n _ x ) ( Z ) , a G Z , and a, 0,J,8 G Z " " 1 aatfa/y (6.21). 

Proof. Since there is a primitive vector rj G Z 2 n such that rj'JXri = 1, we see that {r},Xrj) is a 

normal (1, l)-array. Let P be the completion of the normal (1, l)-array (r),Xr]) to a symplectic 

matrix. Then 

P = 

and therefore 

P-XXP = Xi = 

rj * Xrj * 

A) * b *^ 

0 A a B 

1 i a 6' 

\0 C 0 DJ 

e 5P 2 n (Z) . 
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The remainder of the proof is similar to that of Lemma 6.1. • 
Corol lary 6.1. Suppose X G SP 2 n (Z) , mx(x) = x2+Xx+l, with 1 G q{X). Then X ~ WX*Y, 

where Y G SP 2( n-i)(^) with my (a;) = mx(x). 

Proof. Since X2rj — -XXrj-rj, we see that the entries of the matrix in Lemma 6.5 are: a = — A , 

a = 0, 0 = 0, and so 7 = 0, S = 0. • 

L e m m a 6.6. Suppose X G SP 2n(Z), and p(X) = 0. Th en 

X 

^0 A a 

1 7' a 6 
0 C 0 D 

^0 0 1 0 J 

A B 
where I ] G 5 P 2 ( n _ 1 ) ( Z ) , a G Z , and a, 0,7,8 G Z n _ 1 sate/?/ (6.21). 

. C -D < 

Proof. Note that we have a normal (2,0)-array (n,Xri), where 77 G Z 2 n is primitive. 

L e m m a 6.7. Suppose X G SP4(Z), with mx{x) — x2 + Xx + 1, w/iere A = 0 , ± 1 . T/ien 

L If u{X) = 1, Men X ~ W A * W A . 

2. If p{X) = - 1 , Men X ~ W A * W j . 

5. 7 / / x ( X ) = 0 and X = ±1, then X ~ W A * Wj . 

4. 7 / M ( X ) = 0, A = 0, and 1 G q(X), then X~W0*W{> = ( - J 2 ) * J 2 . 

5. 7 / / x ( X ) = 0, A = 0, and 1 £ g ( X ) , Men X ~ W 0 + W 0 = (-^2) 0 2̂, 

• 

Proof. (1) If / i(X) = 1, then by Corollary 6.1, X ~ Wx * Y , for some Y G 5P 2 (Z), with 

mY (x) = x2 + Xx + 1. From Proposition 6.1, Y ~ W A or Wj[. Then X ~ Wx * Wx or W A * W'x. 

But ji(W A * W'x) = 0, hence X ~ Wx * Wx. 
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(2) If n(X) = - 1 , then (i{-X) = 1. It is clear that m_x(x) = x2 - Xx + 1, hence 

-X ~ VF_ A * V7_ A , and thus X (W"_A * W_ A ) = Wj[ * W'x. 

(3) -(5) In the following we assume that p,(X) = 0. By Lemma 6.6 we get 

X ~ X\ -

a b 
where Y = | ), a, b € Z . Let P 

6 Xb — a, 

X(a) = 

0 -1 a 0 

1 - A 0 - a 

0 0 - A -1 

y 
0 W'~x 

A 0 0 

0 1 0 6 

0 0 1 0 

0 0 V 

Then P^XiP = X{a), where 

yo 0 1 0 
obtain X ~ X(0) or X ( l ) . 

Let Q -

/ l 0 0 1 

0 1 1 0 

0 0 1 0 

\0 0 0 1 

. Then Q~lX{a)Q = X(a - 2). So we 

It is clear that 1 e q(X(0)) if and only if A is odd, and always 1 € q(X(l)). For the case 

where 1 6 q(X), we get X ~ W\ * W{. This completes the proofs of (3), (4) and (5). • 

From Lemma 6.2, Lemma 6.3, and Lemma 6.7 we obtain the following two Propositions. 

Proposi t ion 6.4. The number of conjugacy classes in T3 is 5. A complete set of non-conjugate 

classes is given by 

W*W, W'*W\ W* W'; 

h *W, h* W. 

with respect to characteristic polynomials (6.2), (6.3). 

(6.23) 

(6.24) 

Proposi t ion 6.5. The number of conjugacy classes in T4 is 8. A complete set of non-conjugate 

classes is given by 

J2 * J2, J2 * J2, J2 * J2, (-h) 0 h\ 
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h * J2, h * J2\ (6-26) 

( - / 2 W 2 , (-h)*J2- (6.27) 

with respect to characteristic polynomials (6.4), (6.5), (6.6). 

6.3 The Case of f(x) = xA + x2 + 1 

In this section we discuss the case that X £ SP 4(Z) has fx{x) = xA + x2 + 1. From Theorem 6 

it follows that: 

L e m m a 6.8. If X is decomposable, then X is conjugate to one of four non-conjugate matrices, 

W*{-W), W*{-W'), W'*(-W), W'*{-W). (6.28) 

Note that mx2(x) — x2 + x + 1, hence X2 is conjugate to one of three non-conjugate 

matrices 

W * W, W2*W2, W* W2. 

Without loss of generality we assume that X2 = X\ * X2, where X\ and X2 are either W or 

W2. We can express X as 

X = Pi * P2 + P 3 o P 4 (6.29) 

where the Pj's are 2x2 matrices. Then 

X3 = X(Xi * X2) = P1X1 * P2X2 + P3X2 o P4XU 

X3 = {Xi * X2)X = X1P1 * X2P2 + X1P3 o X 2 P 4 . 

Note that X has order 6. Then (JX3)' = X'3J' = -JX'3 = —JX3. Therefore we have 

P i = a X 2 , P2 = -aXl P 3 P 4 = ( l - a 2 ) X i , P4P3 = (1 - a2)X2, (6.30) 

and det P3 = det P 4 = 1 — a2 for some a € Z. Also, since X £ SP^Z), we have 

P[JPX + P'AJPA = J, 

P'2JP2 + P'z J P 3 = J , and ^ 

Pi 'JP 3 + P^JP 2 = 0, 

PXJP[+P3JP^ = J, 

P2JP'2 + PiJP't = J, 

P\JP[ + P3JP2 = 0. 

(6.31) 
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We state the following lemmas without proof. They are very easy to verify. Let P be a 

2 x 2 matrix. 

Lemma 6.9. If PW = WP, then P has form P = al + bW. 

Lemma 6.10. If PW + WP = 0 then P = 0. 

Lemma 6.11. If PW = W2P, then P = ( ° 6 V 
Clearly, if P = al + bW, then det(P) = a2 - ab + b2. 

Now suppose that X2 = Wl * Wl. From Equation (6.30), we see that P3 = bi + cW, where 

b2 - be + c2 = 1 - a2. Hence a = -1,0,1. 

If a = ± 1 , then b = c = 0, thus X is decomposable. 

If a = 0, then Px = P2 — 0, hence X = P3 o P 4 is quasi-decomposable. We know that the 

Diophantine equation b2 — be + c 2 = 1 has six integral solutions. 

1. b = 1, c = 0, then P 3 = 7, P 4 = Wl; 

2. 6 = 1, c = 1, then P 3 = -W2, P 4 = - I v ^ 1 ; 

3. b = 0, c = 1, then P 3 = W, P 4 = W ' - 1 ; 

4. b = 0, c = - 1 , then P 3 = - W , P 4 = - W ' - 1 ; 

5. 6 = - 1 , c = 0, then P 3 = - 7 , P 4 = -Wl\ 

6. 6 = - 1 , c = - 1 , then P 3 = W 2 , P 4 = V F m . 

By Lemma 2.1 and I o W' ~ W 7 2 ' o IF 2 ' (use J * W' as the conjugating matrix) we see that the 

matrices P3 o P 4 , in all 6 cases, are conjugate. So we obtain 

Lemma 6.12. Suppose X2 ~ Wl * Wl, I = 1,2. If X is indecomposable, then it is quasi-

decomposable and conjugate to I o Wl. 
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Now we consider the case that X2 = W * W2. 

Lemma 6.13. Suppose X2 ~ W * W2. Then X ~ X(a,b,c), where 

(a b —a c\ 

—c 0 b + c —a 

a b + c 0 -b 

a c -a) 

X(a,b,c)= (6.32) 

for integers a, b, c satisfying a2 — 1 = b2 + be + c2. 

Proof. From (6.30), we see that X = {-aW2) * {aW) + P 3 P 4 , where P 3 P 4 = (1 - a2)W and 

P3W = P3W2. Applying Lemma 6.11, we get 

6 c \ I—c b + c' 
P 3 = ( and P 4 = 

Kb + c -b) \b c 

It is clear that det P 3 = -(b2 + be + c2) = 1 - a2. • 

Remark. For any integral solution of a2 - 1 = b2 + be + c 2, X(a, b, c) 6 5P 4 (Z), and its charac

teristic polynomial is (6.12). Clearly, a ^ O . 

Remark. A n easy calculation proves that X5(a, b, c) ~ X(—a, b, c). 

Lemma 6.14. X(a, b, c) is decomposable if and only if a is odd. 

Proof. It is easy to check that 5 ( A 3 - I) € M 4 ( Z ) if and only if a is odd. 

Lemma 6.15. p(X(a, b, c)) /ms Me same sign as the non-zero number a. 

• 

Proof. Let M = JX(a,b,c) + (JX(a,b,c))'. We want to prove that M is positive definite if 
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a > 0, and M is negative definite if a < 0. We see that 

M = 

2a 2b+ c —a -b + c 

2b + c 2a -b + c —a 

—a -b + c 2a -b -2c 

-b + c —a -b -2c 2a 

Its principal minors are: 

M i = 2a, 

M 2 = det 

/ 

M 3 = det 

2a 26 + c 1 

26 + c 2a j 

2a 26 + c 

26 + c 2a 

—a -b + c 

= 9. 

4a2 - 462 - 46c - c 2 = 4 + 3c2 > 0, 

\ 

= 6(a3 - a62 - a6c - ac2) = 6a, 

—a 

-6 + c 

2a 

Hence M is positive or negative definite dependent according as a > 0 or a < 0, • 

Corol lary 6.2. X(a,6 , c) is quasi-indecomposable. 

Corol lary 6.3. X ( a i , 6 i , c i ) X(a2,62,c2) « / a x a 2 < 0. 

If a is even, then X(a , 6, c) is also indecomposable. It is known that the Diophantine 

equation a2 — 1 = b2+bc+c2 has infinitely many solutions with a even. There are infinitely many 

X € SP4(Z), which are neither quasi-decomposable nor decomposable, of the form X(a, 6, c). 

In the following, we want to show that there are just two classes amongst X(a, 6, c), where a is 

even. For this purpose, we let 

V(x,y,z) = 

2x 0 — y x 

0 — 2x —x —z 

z x —x z 

\-x y V x J 



where 
r 

x = a — b — c, 

y = 2a — 26 — c, 

,z — 2a — b — 2c, 

Then V(x,y,z) = QX(a,b,c)Q~1, where 

or 

Q = 

a = — 3x + y + z, 

b - -2x + z, 

c - —2x + y. 

\ (l 1 -1 0 

0 - 1 - 1 1 

1 1 0 0-1 

v° 0

 1 - v 
It is easy to see that a 2 — 1 = 62 + 6c + c 2 if and only if yz = 3x 2 + 1, and a is even if and only 

if x + y + z is even, and also a > 0 if and only if y > 0. Furthermore, we have 

L e m m a 6.16. Let x, y, z be integers satisfy yz — 3x2 + 1 and x + y + z is even. Then 

1. Ify> 0, then V{x, y, z) ~ V{0,1,1); 

2. Ify< 0, then V(x,y,z) ~ V ( 0 , - 1 , - 1 ) . 

Proof. Suppose yz = 3x 2 + 1, and x + y + z is even. If y is even, then y = 4k, where k is odd. 

The reason for this is that x is odd, and then z is odd and 3x 2 + 1 = 4/ where / is odd. If p is 

an odd prime and y = 0 (mod p), then p = 1 (mod 3). This is because p ^ 3, and 3x 2 + 1 = 0 

(mod p). Thus we see that y has the form 

y = ±4rpri1-P? 

where r = 0,1, rj > 0, and the pi are primes of the form 3/c + 1. 

Now suppose y > 0. First we want to prove there is a solution (u, v) of the Diophantine 

equation y = 3u2 + v2 satisfying u + xv = 0 (mod y). 

If y = 1 then (0,1) is a such solution. 
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If y = 4, then x = ± 1 (mod 4). A solution is (1, +1). 

If y is an odd prime and y = 1 (mod 3) then it is well known that there are a,b G Z such 

that 3a 2 + b2 — y, which implies (a — xb)(a + xb) = a 2 — x 2 6 2 = a2(3rc2 + 1) — yx2 = 0 (mod y). 

Hence either a — xb = 0 (mod y) or a + = 0 (mod y). So either (a, —b) or (a, 6) is a such 

solution. 

In general, we use induction on the factors of y. Suppose y = yiy2, and (UJ, v{) are solutions 

for yi (for i = 1, 2), that is ?/j = 3uf + v 2 and U{ + xu; = 0 (mod y). Let 

U = U\V2 + ^2^1, 

u = V\V2 — "&U\U2. 

Then 3u 2 + v2 = y and 

(u + xu)a; = (^1^2 + u2vi)x + (v\V2 — 3uiu 2 )x 2 

= xv2(u\ + xv{) + u2v\X + U\u2 (mod y) 

= (u\ + xv\)(u2 + XW2) = 0 (mod y) 

So u + xv = 0 (mod y) since (x,y) = 1. Therefore (u, v) is a solution for y. 

Now we can complete the proof. Suppose y = 3u 2 + v2 and u + vx = 0 (mod y). Then 

v - 3xu = v + 3x 2v = (3x2 + l)v = 0 (mod y). Let 

P = 

u —u \ 
u+xv v—Zxu V—diXU u+xv 

y y y y 
u+xv 3m—v r v 2(u+xv) 

y y y 

J — v u 2 u 0 

T h e n P e S P 4 ( Z ) and PV(0 ,1 ,1JP" 1 = That is V(0,1,1) ~v(x,y,z). 

The second part is similar. • 
Remark. The u, v in the proof are coprime. We see that there is a primitive solution of the 

Diophantine equation 3u2 + v2 = m if m is a product of a power of 4 and odd primes of form 

6k + I. 
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Putting all the results from Lemmas 6.2, 6.3, 6.7, 6.8, 6.12, 6.13 and 6.16 together, we have 

Proposi t ion 6.6. Any X € TQ, is conjugate to one of following matrices 

~{W*W), -(W'*W')} -{W*W')\ 

h * (-W), h * (-W); 

- (72 * W), - (72 * w'y 

{-h) * W, ( -J 2 ) * W; 

W*(-W), W*(-W'), W'*(-W), W'*(-W); 

IoW, IoW', V{Otl,l), V(0,-1,-1). 

with respect to characteristic polynomials (6.8), (6.9), (6.10), (6.11), (6.12). 

6.4 Realizable Torsion 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

(6.37) 

In this section we address the question of which classes of torsion in SP^Z) can be realized by 

a cyclic action on some Riemann surface. 

Proposi t ion 6.7. A complete list of realizable classes in SP 4(Z) is as follows 

Order 2, 

Order 3, 

Order 4, 

Order 5, 

Order 6, 

Order 8, 

Order 10, 

where U 
1 0 

1 - 1 . 

- h , U + U'; 

W * W'; 

( - J 2 ) * J 2 ; 

Y, 

- (W*W), 

z, 
-Y, 

A) 1 0 0 

0 0 - 1 0 

0 0 - 1 1 

\i i - l oy 

Y = 

Y\ 

no, i.i), 

-Y\ 

\ 

, and Z = 

Y\ Y\ 

^(0, -1 , -1) ; 

-Y\ 

( 0 - 1 1 0 ^ 

- 1 0 1 1 

-1 1 0 0 

o - l o oy 

- Y 4 

(6.38) 

(6.39) 

(6.40) 

(6.41) 

(6.42) 

(6.43) 

(6.44) 
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Consider the short exact sequence of groups 

1 n - > T A G - > 1 (6.45) 

where F = T(gQ;mi,.. . ,m t ) , G is a cyclic group and IT is torsion free. Recall the Riemann-

Hurwitz formula 

Hence go must be 0 or 1. For go = 0 (resp. 1) we solve (6.46) for t and the mj. Then for each 

solution we find a Fuchsian group T and an epimorphism 9 : F —> G with torsion free kernel. 

To prove the realizability we choose a fundamental domain for F and use it to determine an 

intersection matrix. We illustrate this for the case of order 6; the other cases being similar. 

Suppose G = ZQ. If go = 1, then (6.46) has no solution. We assume that go = 0. We can 

find three solutions for (6.46). 

(i) t = 3, mi = 3, m 2 = m3 = 6, 

(ii) t = 4, mi = mi = 2, m3 = m 4 = 3, 

(iii) t = 4, mi = m 2 = m$ — 2, m 4 = 6. 

If t = 4 and F = T(0; 2,2,2,6), then there is no epimorphism 9 such that n is torsion free. So 

we need only consider the first two cases. 

Case I, t = 3, mi = 3, m 2 = 7713 = 6. That is 

where g is the genus of U/TI. For g = 2 the Riemann-Hurwitz formula becomes 

(6.46) 

r = T(0; 3,6,6) = (A, Bu B2\A3 = B{ = B% = ABXB2 = l ) . 

There are two epimorphisms F —>• Z§. 

01 : Bi -»> T , or 92:< Bi -»• T 5 , 

B2^ T, £ 2 - * T 5 , 
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where T is a fixed generator of Z 6 . 

Figure 6.1: Fundamental Domain (order 6) 

We first consider the case of the epimorphism 9\. A particular fundamental domain of 

II (see Figure 6.1) consists of 6 copies of the fundamental domain of T obtained by the 6 

rotations Bk (k = 0, . . . ,5) . The sides with the same label are identified in the Riemann 

surface S — U/II. It is easy to verify that [rji], [772], [vs], [%] is a canonical basis of Hi(S). 9\ 

induces a homomorphism T* : H\(S) ->• Hi(S) given by 

r)3 -> ~m + Vi, 

«4 ->• -V2+V3-

Hence the matrix of T* with respect to [771], [772], [773], [774] is V(0,1,1), and so V(0,1,1) is real

izable. Similarly, consideration of 92 proves that V(0,-1,-1) is realizable. 

Case II, t = 4, mi = m 2 = 2, m 3 = m 4 = 3. That is 

r = r(0; 2,2,3,3) = ( A i , A2, BuB2\Al = A\ = Bf = 52

3 = AXA2BXB2 = 1> 
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There are two epimorphisms 6 : T ->• Z 6 

0:1 

Ai -»• T 3 , 

A 2 -»• T 3 , 

S i ->• T 2 (resp. T 4 ) , 

£ 2 -> T 4 (resp. T 2 ) . 

Each # induces an action, denoted by T , on some Riemann surface S. Consider that epimor

phism 6 such that 0(B\) = T2. Let X be the symplectic matrix of T* with respect to a canonical 

basis of Hi(S). From a result of Macbeath[21], we see that T is fixed point free, and therefore 

ti(X) = 2. Then X must be conjugate to one of the three matrices 

-(W*W), -(W'*W'), -(W*W). 

See Proposition 6.6. On the other hand, X2 ~ W * W. Hence X ~ —(W * W), and so 

— (W * W) is realizable. The other epimorphism leads to the same conjugate class. This 

completes the proof of the case of order 6. 
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Chapter 7 
The Eichler Trace of Z p Ac t ions on 
R i e m a n n Surfaces 

7.1 The Eichler Trace 

In this section we prove Theorem 9, 10 and 11. We begin by observing that the set A is not a 

subgroup of Z[£]. To see this suppose that x £ A, that is 

4 1 

is the Eichler trace of some automorphism T: S —> S. The possible values for the number 

of fixed points are t = 0, 2, 3 , . . . , and therefore the possible values of x + X = 2 — t are 

2, 0, — 1, — 2,. . . We also have x G A since 

* 1 

is the trace of T _ 1 : 5 —>• S. Therefore, if A were a subgroup we would have X + A7 = 2 — i £ A, 

and hence Z would be a subgroup of A. But if n G A is an integer, n > 2, then n + n = 2n > 4 

is not of the form 2 — t for an admissible t. Therefore A is not a subgroup. 

Recall that A is the set of realizable Eichler traces modulo Z . 

Proposi t ion 7.1. A is a subgroup ofZ[Q. 

Proof. Suppose x i and X2 are in A, say 

* 1 " 1 
X 1

 = 1 + ET*73I' X 2 = 1 + E77—T-
j=i 13 j=i s 
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Therefore x i + X2 = X, where X = 1 + E$=i + E jU ^ijzp I f Xi and X2 are repre

sented by T i : Si —> S i and T2: S 2 —> S 2 respectively, then x c a n be represented by the 

equivariant connected sum of 7\ and T 2 . Namely, for j = 1,2 find discs Dj in Sj such that 

Dj,Tj(Dj),... , T j _ 1 ( D j ) are mutually disjoint. Excise all discs Tk(Dj), k = 0,1, . . . ,p - 1, 

from Sj , j = 1,2, and then take the connected sum by matching d(Tk{Di)) to d(Tk{D2)) for 

fc = 0,1, . . . ,p — 1. The resulting surface S has p tubes joining Si and S 2 . The automorphisms 

T i , T 2 can be extended to an automorphism T: S —»• S by permuting the tubes. The Eichler 

trace of T is x- Thus A is closed under sums. 

If x € -A then also x £ A and x + X = 2 — t. Therefore x is the inverse of x once we 

reduce modulo the integers. The identity element of A is represented by any fixed point free 

action. • 

To determine the index of A in B we need a basis for B, but first we find a basis for B. 

Let m - (p- l)/2. 

Definit ion 7.1. Define elements 9\, 92, ... ,9m in Z[£] by 

p-2 

9i = C+ Yl & a n d °k = Ck - C k , 2 < k < m. 
j=m+l 

Proposi t ion 7.2. A basis of B is given by the m + 1 elements 1, 9\, 92,... , 9m. 

Proof. Suppose x = Ej=o aj& £ ̂ [C]- Then a short calculation gives 

p-2 

X + X = 2ao - «i + Yl (aJ + av-i ~ a i ) C j ' 

and therefore x £ -B if, and only if, a, + a p_j = ai , 2 < j < p — 2. Solving for a m + i , . . . , a p _ 2 

in terms of a i , . . . , a m and substituting into x gives 

X = ao + ai#i + 02̂ 2 -I r- a m 0 m . 

Thus the elements 1, 81, 92,... , #m form a spanning set for 73. 
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Now suppose some linear combination is zero, say ao + a\9i + a 2 0 2 H + a m 0 m = 0. It is 

easy to see that this is equivalent to 

a 0 + a i C + • • • + a m C m + (a x - a m ) C m + 1 + • • • + (ai - a 2)C P" 2 = 0. 

Thus we get ao = a\ = a 2 = • • • = a m = 0, that is the elements are linearly independent. • 

Remark. Every integer n G B since 6\+ 0\ = —1. We also have £ — £ _ 1 G B; in fact 

C - C" 1 = i + 20i + 0 2 + • • • + em. 

It follows that the elements 1, £ — £ 2 — £ ~ 2 , . . . , £ m — Q~m form a basis for an index 2 

subgroup of B. 

A n immediate corollary of Proposition 7.2 is 

Corol lary 7.1. is a free abelian group of rank (p — l)/2. .4 basis is aiuen bjy Me elements 

01, 0 2, • • • , 0m-

Before completing the calculation of the index of A in .B we first consider Question 4 from 

Chapter 1. Thus suppose two elements from A have the same Eichler trace, say 

* 1 u 1 1 + E _ x
 = 1 + E £J,- _ ! • 

j=i s j=i s 

This leads us into consideration of when certain linear combinations of the elements TJEZI A R E 

zero, that is we want to solve the equation 23̂=1 jd̂ x = 0 f ° r * n e integers x .̂ 

If s is any integer relatively prime to p then let R(s) denote that integer q such that 

1 < Q < P — 1 and g = s (mod p), that is, s = [s/p]p + R(s). In what follows Y^jk=n denotes 

the sum over all ordered pairs (j, k) such that jk = n (mod p) and 1 < j < p — 1. 

L e m m a 7.1. 

fe=l s y jk=-l F n=l \jk=n jk=-l J 
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Proof. We use the identity ^ = I E?=i JC* W _ 1 ) and get 

p- i , P p - i 

fc=i ^ y j=i fc=i 

3=2 k=l 

^ ^ n = l \jA:=n / 

= ^ 1 + - - - + X ^ ) + J E [ E « + 1 H C B + M E + I (T 1 -

^ ^ n = l \jfc=n / V \jk=-l J 

Now substitute (J?*1 = —1 — £ — — £ P - 2 into the last term to see that 

ETFTT = ^ i + - + v 1 ) + f E E ^ 1 ) 1 * - E O' + D ^ K 
k=l S ^ ^ n = l \jfc=n j'fc=-l / 

- ; E u + v*k 
F jk=-l 

1 1
 P~2 I 

= - - E 3xk + - E E ̂ * - E i ? 
jk=-l n= l Yj'fc=n jk=—l 

• 

As a corollary we get 

Corol lary 7.2. ^ . = 0 i / , and on/y t/, Zjk=njxk = 0, / o r 1 < n < p - 1. 

Now it is convenient to change the variables x\,... ,xv-\ to new variables y i , . . . , y p - i 

according to the equation 

yi = xk, where kl = 1 (modp). (7.1) 

Then Corollary 7.2 becomes 

Corol lary 7.3. Y%Z\ = 0 if, and only if, £fc=l i?(nA;)yfc = 0, /or 1 < n < p - 1. 
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The coefficient matrix of this linear system is the (p—1) x (p—1) matrix M whose entry 

is M(jj) = R{ij). To solve this system of p—1 equations inp—1 unknowns yk we apply a sequence 

of row and column operations to the matrix M. We use the fact that R(ij) + R((p — i)j) = p. 

Recall that m = (p — l)/2. 

1. Adding the ith row to the (p - i)th row, 1 < i < m, yields the matrix 

Mi 

2 

4 

* l?(2t) . 

m i?(2m) . 

p p 

^ p p 

m 

2m 

m + l 

1 

m + 2 

3 

R(mi) R{(m + l)i) R((m + 2)i) . 

R(m2) R({m + l)m) R((m + 2)m) . 

V P P 

P P P 

p - 1 

p - 2 

R((p-l)i) 

R((p-l)m) 

P 

P 

2. Adding the jth column to the (p — j 

( , 

M 2 = 

2 

4 

i R(2i) 

m R(2m) 

P P 

P P 

) t h column, 1 < j < m, yields the matrix 

\ m p p 

2m p p 

R(mi) p p 

R{m2) p p 

p 2p 2p 

p 2p 2p . . . 2p 

P 

P 

P 

P 

2p 

J 

3. Subtracting the (m + l)st row from rows m + 2,.. . , p - 1 , and then subtracting the 

(m + l)st column from columns m + 2,.. . , p - 1 gives the new coefficient matrix 
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/ 1 

M 3 = 

2 

4 

R(2i) 

m R{2m) 

P P 

0 0 

0 0 

m p 0 

2m p 0 

R(mi) p 0 

i?(m2) p 0 

p 2p 0 

0 0 0 

0 0 0 

0 

0 

0 

0 

0 

The variables z\. for this coefficient matrix are related to the yk by the equations 

Zk = Vk- Vp-k, 1 < k < m, z m + i = y m + i H h yp_i, zm+j = ym+j, 2 < j < p - 1. 

Examination of the last m — 1 columns of M 3 reveals that 2 M + 2 , • . . , 2 p - i are completely 

independent; whereas, z\,... , zm+i must satisfy the matrix equation 

I 1 2 . 

2 4 

i ii(2i) . 

m il(2m) . 

\ P P 

m p 

2m p 

R(mi) p 

Z2 

Zi 

. R(m2) p 

p 2p J 

/ o \ 

0 

\ Zm+l J 

0 

V 0 / 

Now we apply another sequence of row and column operations to this last coefficient matrix. 

1. Subtracting i times the first row from the ith row, 2 < i < m, yields the coefficient 
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matrix 

fl 2 . 

0 0 . 

0 0 . 

0 0 . 

0 0 . 

V p v • 

J 

0 

• ~[3j/p]p • 

• -[ij/p]p • 

• -[™j/p]p . 

P 

m 

0 

-[3m/p]p 

P 

~P 

-2p 

—[im/p]p —(i — l)p 

— [m2/p]p — (m — l)p 

p 2p J 

2. Subtracting j times the first column from the jth column, 2 < j < m, yields the matrix 

\ / 1 0 . . 0 0 P 

0 0 . . 0 0 ~P 

0 0 . . • ~[3j/p]p • -[2m/p]p -2p 

0 0 . . • -[ij/p]p • • —[im/p]p -(i-l)p 

0 0 . . • ~[mj/p]p •.. • -[m2/P]p — (m — l)p 

\P -P •• — (m — l)p 2p 

The new variables Wj, after these last column operations, are related to the Zj by the 

equations w\ — z\ + 2z% + • • • + mzm and Wj = Zj, 2 < j < m + 1. 

It follows that w\ — wm+\ = 0 and w2, • • • , wm are related by the equations 

W2 + 2wz -\ h (m - l)wm - 0, 

~[3;/p]p ••• -[3m/p]p \ ( w3 \ ( 0 ^ -[9/p]p . 

-[Si/p]p . 

\ -[3m/p]p . 

-[ij/P]p .. 

[rnj/p}p .. 

0 — [im/p]p 

-[m2/p]p J \wm J \ 0 J 
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The coefficient matrix of this system can be row reduced to the matrix whose entry, 

3 < i, j < m, is [ij/p]p — [(i — l)j/p]p, by first subtracting row m — 3 from row m — 2, then row 

m — 4 from row m — 3, etc., and then changing all signs. The resulting matrix is invertible, in 

fact its determinant equals ±pm~2hi, where hi is the first factor of the class number [28]. Thus 

Wj = 0, 1 < j < m + 1. 

This proves that Ylk=\ = 0 >̂ a n a - o l u y ^ Vk ~ Vp-k for 1 < A; < p — 1, and 

ym = -ym+2 yP-u 

where ym+2, • • • , 2/>-i are completely arbitrary. Translating back to the xk variables we have: 

Coro l lary 7.4. 2̂A-=1 = 0 */> and tf> xk = xp-k for 1 < k < p — 1, and 

Xm — Xm+2 ' ' ' Xp— l , 

where x M + 2 , - - - , are completely arbitrary. 

We can now complete the proof of Theorem 10. 

Proof. Suppose x i = X2 are the Eichler traces of two actions, say 

* 1 P _ 1 u 
Xi = 1 + £7fe—T = 1 + E7FTT' 

3=1 S fc=lS 

u ^ p-1 

* 2 = 1 + E 77—T = 1 + E 7FT7' 
j=l S fc=l S 

where uk is the number of times k appears as a rotation number in x i , a n d vk is defined 

similarly. We immediately get t = u since x i + Xi = 2 — t and X2 + X2 = 2 — u. The equation 

Xi — X2 = 0 gives the linear relation YX=i = 0' where xk = uk — vk. It follows from 

Corollary 7.4 that the vector x = (xi, • • • , xp-i) is an integral linear combination of the vectors 

ij = (• • • , 1, • • • , - 1 , - 1 , • • • , 1, • • •), 1 < j < m - 1, 

where the l's are in positions j, p — j; the — l's are in positions m, m + l ; and the other entries 

are zero. 
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For argument's sake suppose x = ej for some j. This means we can move from the vector 

of rotation numbers [u\,--- ,Up_i] to the vector [v\,--- , v p _ i ] by replacing a canceling pair 

{j\P — j} by the canceling pair {m,m + 1}. Taking linear combinations of the e} corresponds 

to a sequence of such moves. 

This completes the proof of Theorem 10. • 

The remainder of this section is concerned with the proof of Theorem 9. According to 

Proposition 2.3 and the Eichler Trace Formula (1.1) the set of Eichler traces is given by 

* 1 

.7 = 1 
A=<xe z[C] 

where the only restriction on the rotation numbers kj is that Yl)=\ R{kjl) = 0 (mod p). If we 

define xk to be the number of j , 1 <j <t, such that kj = k, then we can characterize A by 

A = <x € Z[C] 
P - I p - i 1 

X =
 1 + E T * ^ ' X * ^ 0 A N D E ^ _ 1 ) X * = ° (modp)L (7.2) 

fc=i^ fc=i J 

In the next lemma we show that by passing to A we can remove the restriction that the xk 

be non-negative integers. 

L e m m a 7.2. The set of Eichler traces modulo Z is given by 

A={x<ZZ[C] 
p-1 p-1 \ 

^ = E7>rrT' J2R^Xk = ° (modP)[. 
fe=l ^ k=l J 

Proof. First note that by choosing all xk = 1 in (7.2) we get an element x € A. In fact a short 

calculation using Lemma 7.1 gives x — 1 — (p — l)/2, and thus this element represents 0 in A. 

By adding x sufficiently many times to an element in A we can ensure that all the coefficients 

xk become positive, and this does not change its value in A. • 

This description of A contains a lot of redundancy. In fact we have the following charac

terization of A. 
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L e m m a 7.3. The set of Eichler traces modulo Z is given by 

m m 

U — 1 a 1 i 

X 
k=l " k=l 

Proof. According to Lemma 7.2 a typical element X £ A can be represented by 

p—1 m m 

E Xk _ v Xk Xp-k 

rk _ i — Z ^ / ^ f c _ i + Z ^ /--k _ i ' 
ft=i s fc=i s fc=i s 

where the xk are integers satisfying J2k=\ R{k~l)xk = 0 (mod p). Now we use the fact that 

1 1 
+ — r = - l 

to see that \ — where 

m 

E h 

Jfe=l ' 

The restriction on the integers Zfc becomes 2~Jfe=i -^(^ 1)2;fc = 0 (mod p), since 

p—1 m m 

^Rik-^Xk = ^Rik-^Xk + ^Rdp-ky^Xp-k 
k=l k=l k=l 

m m 

= ^Rik-^Xk + ^ip-Rik-^Xp-k 
k=i k=i 

m = Y,R{k-l)zk (modp) 
k=l 

and YX=\ R(k~l)xk = 0 (mod p). • 

In Definition 7.1 we introduced elements #i, # 2, ••• >#m and then in Corollary 7.1 we 

showed that the corresponding classes modulo Z , that is 9i, 62, ... ,9m, formed a basis of B. 

To determine the index of A in B we want to express a typical element of A in terms of this 

basis. But first we need a definition. 

Definition 7.2. For integers k, n define C(k,n) = R(k~1n) + R(k~1) — p. 

The following properties of the coefficients C(k,n) are easy to verify: 
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(i) C(k, n) + C(p - k, n) = 0 and C{k, n) + C(k,p - n) = 2 i ? ( £ r 1 ) - p. 

(ii) C(l,n) =n + l-p, C{k,l) = 2 J R(*T 1 )-p, C(p - 1, n) = p - n - 1, and C(k,p-1) = 0. 

L e m m a 7.4. The elements of A are those elements £ E Z[(] of the form 

^ m m 

x = - E(E c^' nK)^> 
P n = l fc=l 

where the only restriction on the integers zk is E f c L i R{k~l)zk = 0 (mod p). 

Proof. By Lemma 7.3 a typical Eichler trace modulo Z is given by x, where x = E / c L i 

a n d E f c L i R(k-l)zk = 0 (mod p). Using Lemma 7.1 we have 

p-2 

* = - \ E ^* + ^ E ( E ^ * - E cn-
y jk=-l y n=l \jfc=n jk=-\ / 

The condition Xl fcLi R{k~l)zk = 0 (mod p) can be written as E j fc=i J** — 0 ( m o d p), and so 

J2jk=-iJzk — Y,jk=i (P ~ J)zk = 0 (mod p). Therefore, modulo Z we have 

« - '*) < " - ; E f £ - E « ) < • • 

n=l yfc=n jfc=-l / n=l yfc=n j'fc=-l / 

Note that the term corresponding to n = p — 1 contributes 0 to the sum. Also note that 

Zjk=n 3Zk ~ E i f c = - i )*k = £ £ = i and therefore x = J (EAU C(*> «)**) C n -

Next we break the sum up into two pieces, one piece for 1 < n < m, the other piece for the 

remaining values of n, and then use properties of the coefficients C(k,n). 

X 

1 m / m \ ^ m / m \ 

P n=l \k=l ) F «=1 \*=1 ' 
1 m / m \ 1 m / m \ 

P » = 1 \jfc=l / P n=l \*=1 / 
. . m / m \ m / m \ 

- 1 E ( E c ^ « n - + E E (2i^_1) - c _ n 

P n=l \fc=l / ^ « = 1 \*=1 7 

m / m \ ( \ m \ 

P n=2 \k=l J \ P k=l J 
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+ ^ E ^ i ) ^ ) ( c m + 1 + ---+cp-1) 
1 m / m \ 

^ n = l \fe=l / 

The last equation follows from 9i = ( + £ m + 1 -1 (- ( P - 2 . • 

Any sequence [ai,... ,a-t], as in Proposition 2.3, determines uniquely up to topological 

conjugacy, a compact connected Riemann surface S and an analytical automorphism T: S -> 5 

having order p, orbit genus 0, and whose Eichler trace is given by the equation 

* 1 

X = 1 + X Tk~\' where kjdj = 1 (mod p), for 1 < j < t. (7.3) 

Let x [o i , . . . , at] denote this Eichler trace. Then 

(i) x[ai,...,at] + x[bi,...,bu] = x[ai, • • • ,at,h,... ,b u]. 
(ii) £ [ . . . , a , . . . , p - a , . . . ] = x[. . . , a , . . . , p ^ a , . . . ] . 

If we define yk to be the number of j, 1 < j < t, such that aj = k, then we obtain 

1 m / m \ 

• • •, at] = - E E C ^ _ 1 ' ^ (7-4) 
P n = l \A;=1 / 

where zk = yk — Vp-k- This is because that yk — X f t ( f c - i ) and kyk = 0 (mod p). 

Definit ion 7.3. Let K be the collection of m-tuples v — [z\,... , zm] satisfying the condition 
m 

y] kzk = 0 (mod p). 
k=l 

Thus K is a free abelian group of rank m. A basis of K is given by the vectors 

ui = [2,-1,0, . . . ,0], 

vk = [1,... , 1 , - 1 , . . . ] , 2 < k < m - l , 

vm = [1,0,... ,0,2], 
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where for 2 < k < m — 1, the 1 is in the first and the kth entries, the —1 is in the (k + l)st 

entry, and all other entries are zero. This is because the determinant of these m vectors is p. 

Now consider the group homomorphism L: K —> A defined by 

1 m m 

P 71=1 fc=l 

Lemma 7.4 implies that L is an epimorphism. 

Proposi t ion 7.3. L is a group isomorphism. 

Proof. We first compute the images of the basis elements Vk, 1 < k < m, using properties of 

the coefficients C(k,n): 
* m / m \ 

Wi) = - E E c ( f c' n )* f er ; 

P 71=1 U = l / 

pt{ 
m 

= E ~°n' 
71=1 
- m / m \ 

P 71=1 Vfc = l / 
1 m = -Y{C(lM + C{k-\n)-C{{k + l)-\n))dn 

P 71=1 

. m 

- V ((n + 1 - p) + R{kn) + R(k) -p- R({k + l)n) - + 1) + p) #n 
P 

71 = 1 
m 

£ 
71 = 1 

'(k + l)n 
. P . P . 

- l f t 

* m / 771 \ 

P 7 l = l \fc=l / 

^ m 

= - £ ( C ( i , n ) + 2 C ( m - \ n ) ) f t ; 
n = l 

^ 771 

= - E ( C U , ") + CCrn" 1 , n) - C((m + l )" 1 , n)) ft^i 
71=1 

= E 
71=1 

(m + l )n 

P 
mn 

P 
l) 0n, 
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where we have used the equation kn = [y]p + R(kn). 

Now consider the m x m matrix M whose (k, n) entry is given by 

M(k,n) = 
(m + l)n ran 

P . P . 
- 1 

To complete the proof of the proposition we need only show that det(M) ^ 0. In fact we will 

show that the determinant of this matrix is ±h\, thereby completing the proof of Theorem 9. 

Note that all entries in the first row of M are - 1 . For each k, 2 < k < m, we subtract the 

first row of M from the kth row. The resulting entries of the new kth row are 

'{k + l)n kn 

. P . P . 

Clearly, the first column of these new entries is 0. This implies that 

( 
det(M) = ± d e t 

V 

where 2 < k, n < m. 

J 
The first column of this matrix is 0, . . . , 0,1, hence 

( ^ ^ 
det(M) = ± d e t if] ~ [ ^ 1 

V 
where 3 < k, n < m. 

J 

According to [28] the determinant of this matrix is ±h\. This proves the proposition since 

the determinant of M has only changed by a ± sign in the course of the above elementary row 

and column operations. • 

The proof of Theorem 9 follows from the fact that det(M) = ±h\ since the matrix M is 

the coefficient matrix for expressing the basis elements of A in the basis elements of B. 

Clearly, 2r,s = L(vr), for 1 < r < m and 1 + r + s = p. This complete the proof of 

Theorem 11. 
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As mentioned in the introduction, J. Ewing proves our Theorem 9, but in a different setting. 

See Theorem (3.2) in [6]. To Explain how Ewing's results relate to ours we need some notation. 

Let W denote the Witt group of equivalence classes [V, 0, p], where V is a finitely generated 

free abelian group, 0 is a skew symmetric non-degenerate bilinear form on V, and p is a 

representation of Z p into the group of /3-isometries of V. To an automorphism of order p, 

T: S —>• S, we assign the Witt class [V,0,p], where V is the first cohomology group, 0 is the 

cup product form, and p is the induced representation on cohomology. This assignment is 

well defined up to cobordism and so defines a group homomorphism ab: Q, -> W, the so-called 

Atiyah-Bott map. 

The G-signature of Atiyah and Singer defines a group homomorphism from the group of 

Witt classes to the complex representation ring of Z p , sig: W -¥ R(ZP). Let e: i l (Z p ) —> Z[£] 

be the homomorphism that evaluates the character of a representation at the generator T € Z p . 

Let s: Q —» Z[£] denote the composite e o sig o ab: fi —> Z[£]. 

Ewing proves that s is a monomorphism whose image has index h\ in the subgroup R of 

Z[C] spanned by the elements (,k — C~k, k = 1,... , m. From the Remark earlier in this section 

it follows that R has index 2 in B. If < g \ a\,... , at > denotes the cobordism class of T , see 

Section 7.2 for the notation, then 

The relationship between the G-signature a and the Eichler trace x is given by a = 2x +1 — 2, 

and from this it is an easy matter to translate Ewing's results into ours. 

7.2 Equivariant Cobordism 

In this section we prove Theorem 12. To begin with suppose T i : S i —>• Si and T2: S2 —> S2 are 

automorphisms of order p on compact connected Riemann surfaces. We do not assume that 

the orbit genus of either Si or S2 is 0. We start with a standard definition. 
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Definition 7.4. We say that T\ is equivariantly cobordant to T 2 , written T\ ~ T 2 , if there 

exists a smooth, compact, connected 3-manifold W and a smooth Z p action T : W —> W such 

that 

(i) The boundary of W is the disjoint union of S\ and 5 2 , d(W) = Si U 5 2 . 

(ii) T restricted to agrees with Tx U T 2 . 

The cobordism class of an automorphism T: S —> S depends only upon its topological 

conjugacy class [g \ a\,... ,a-t]. We denote this cobordism class by < g | a\,... , at >, and if 

the orbit genus g = 0, we denote it by < a\,... , at >. 

The set of all cobordism classes of Zp actions on compact connected Riemann surfaces 

is denoted by Q. Addition of the cobordism classes of the automorphisms T\: S\ —> S i , 

T 2 : S 2 —> S 2 is defined by equivariant connected sum as follows. Find discs Dj in Sj such 

that Dj, Tj{Dj),... ,T?~l(Dj) are mutually disjoint for j = 1,2. Then excise all discs Tk(Dj), 

j = 1,2, k = 0,1,. . . ,p — 1 from S\, 5 2 and take a connected sum by matching d(Tk{D\)) 

to 9(T f e(/J 2)) for k = 0,1, . . . ,p — 1. The resulting surface S has p tubes joining Si and 5 2 . 

The automorphisms T\, T 2 can be extended to an automorphism T: i f ? —> S by permuting the 

tubes. The cobordism class of T does not depend on the choices made. 

Thus addition in Q, is given by the formula 

< g I 0 1 , . . . , at > + < h I 61,. . . , bu >=< g + h | a u . . . , at, h,... , bu > . (7.5) 

The next two lemmas show that O is an abelian group generated by the cobordism classes 

< a\,... , at >. The identity is represented by any fixed point free action, or by any cobordism 

class consisting entirely of canceling pairs, and the inverse of < g | a\,... , at > is represented 

by < 9 I P ~ aii • • • iP ~ at >• The proofs are not original, but are presented here to emphasize 

the relationship with A. 

L e m m a 7.5. < g | 01 , . . . , at >=< a i , . . . , at > • 
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Proof. Let T : S —> S represent the class < a i , . . . ,at >. First we take the product cobordism 

Wi = S x [0,1], where T is extended over W\ in the obvious way. Next we modify W\ 

on the top end S x {1} as follows. Take a disc D in S such that D , T(D),... , T P _ 1 ( D ) are 

mutually disjoint, and then to each disc Tk(D) in S x {1}, k = 0,1,. . . ,p — 1, attach a copy 

of a handlebody H of genus o by identifying the disc Tk(D) with some disc D' C d(H). Let 

W2 denote the resulting 3-manifold. See Figure 7.1. The action of Z p can be extended to 

W2 by permuting the handlebodies. The manifold W2 provides the cobordism showing that 

< g I a-i,... ,at >=< a-i,... ,at > . • 

Figure 7.1: Cobordism of g = 0 

L e m m a 7.6. < a,p — a, 0 3 , . . . , at >=< 1 | 0 3 , . . . , at > = < 0 3 , . . . , at > . 

Proof. The proof of this lemma is similar to the proof of the last one. Start with a product 

cobordism W\. Suppose PQ\ PI are the fixed points corresponding to the canceling pair {a,p — 

a}. Choose small invariant discs Do, D\ around PQ, P\ respectively, and then modify the 

cobordism at the top end by adding a solid tube D x [0,1] so that D x {0} = Do and D x {1} = 

D\. The automorphism T can be extended over this tube, and the resulting cobordism shows 

that 

< a,p - a,a3,... ,at >=< 1 | a 3 , . . . ,a t > . 
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See Figure 7.2. Lemma 7.5 completes the proof. • 

Figure 7.2: Cobordism with Canceling Pairs 

Define the isomorphism of Theorem 12, 4>: A -» Q,, by <f)(x[ai,... , at]) =< « i , . . . , at > . 

The same relations hold for cobordism classes, see Equation (7.5) and Lemma 7.6, and therefore 

the mapping 4> is a well defined group homomorphism. 

Now we complete the proof of Theorem 12. The argument is analogous to one used in [8]. 

Proof. From the remarks above we know that c/>: A —> CI is a well defined group homomor

phism. Lemma 7.5 implies that it is an epimorphism. It only remains to prove that (f> is a 

monomorphism. 

If there is an element in the kernel of 4> we can assume it is a generator, say x[ai > • • • j at]• 

Suppose T : S —>• S represents [ai , . . . ,at]. Then there is a compact, connected, smooth 3-

manifold W such that d(W) = S, and an extension of T to a smooth homeomorphism T: W —> 

W of order p, also denoted by T . The fixed point set of T: W —> W must consist of disjoint, 

properly embedded arcs joining fixed points in S to fixed points in S. The fixed points at the 

end of each arc will form a canceling pair {a,p — a}. In this way we see that [ai , . . . , at] consists 

entirely of canceling pairs, and hence x[ai, • • • > at] = 0 in A. • 
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7.3 Dihedral Groups of Automorphisms of Riemann Surfaces 

We conclude this thesis by proving Theorem 13. The essential nature of its proof is the relation 

between group actions on compact connected Riemann surfaces and Fuchsian groups, as well as 

the Lefschetz Fixed Point Formula. Let D2p be the dihedral group of 2p elements and Tp,T2 € 

D2p be two fixed generators of order p, 2 with the relations Tp = T | = (TpT2)2 = 1. Suppose 

there is an embedding of D2p in Aut (S). We have a faithful representation R : D2p —• GLg(C), 

by passing to the space of holomorphic differentials on S, assuming g > 1. 

We want to characterize such groups R(D2p). We denote by D2p(A, B) any subgroup of 

GLg(C) generated by A, B with the relations Ap = B2 = ( A B ) 2 = I. Let G{ = D2p{AuBi) 

(i = 1,2). Gi and G2 are said to be conjugate, denoted by G i ~ G2, if there is Q € GLg(C) 

such that Q~xGiQ = G2, and strongly conjugate, denoted by G\ « G2, if Q'^AiQ = A2 and 

Q"lB\Q = B2. A subgroup D2p(A, B) is said to be realizable if it is conjugate to some R(D2p). 

It is well known that the trace of an element of order 2 in GLg(C) is an integer, and the 

trace of an element of order p in GLg(C) is an algebraic integer in the cyclotomic field Q(C)- A 

subgroup G in GLg(C) is called an I-group if all elements of G have integer traces. 

Let X E D2p(A, B) be of order p. Then X ~ X~l, and hence tr (X) = tr (X'1) = tr (X). 

Therefore tr (X) is a real number. Furthermore if tr (X) is rational, then tr (X) is an integer. 

Lemma 7.7. If some element X € D2p(A, B) of order p has rational trace, then D2p(A,B) is 

an I-group and all elements of order p in D2p(A,B) are conjugate. 

Proof. It is clear that tr (X) = k + ki{( + C - 1 ) + • • • + km{(m + ( _ m ) (m = ^ f 1 ) , for some non-

negative integers k, k\, ..., km with k + 2(ki -\ + km) = g. But (,,... C p _ 1 are independent 

over the rational field Q, so we have k\ — • • • — km, say /. Therefore tr (X) = k — I is an 

integer. • 

Lemma 7.8. Suppose Gi = D2p(Ai,Bi), i = 1,2, are two I-groups. Then the following three 

conditions are equivalent. 
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1. G\ ~ G2; 

2. C?i « G2; 

3. tr (A^ = tr (A 2 ) and tr (Bi) = tr (5 2 ). 

Proof. For a dihedral I-group we have the following canonical form G = D2p(Ai,BXjy), where 

Ai = 

\ 

V 

(1 

and Bx>y 

\ 

where x + y + (p - 1)1 = g and tr (At) = x + y - l . Since the number of blocks of Ĵ 's in Bx,y is 

even, tr(BX t V) =x-y. • 

If o- is an automorphism of S of finite order greater than 1, then we have the Lefschetz 

Fixed Point Formula, tr (a) + tr (a) = 2 - Fix (<T), where Fix (a) is the number of fixed points 

of a, see [38]. It is easy to deduce 

L e m m a 7.9. If D2p(A,B) is realizable, then D2p(A,B) is an I-group with tr (A) < 1 and 

tx(B) < 1. 

Thus we complete the proof of the necessity condition of Theorem 13. 

To any action of D2p on S we can associate a short exact sequence of groups 

1 -> II T (g 0 ;TV^Tp, 2,.. 772) 4 D2p -> 1 

where V must has form 

T(g0;p,...,p,2,..7a) = (Xu..., Xgo, Yu ..., Ygo, Au ..., At, Bu ..., Bs) 
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with relations 

A\ = ••• = Ap

t=B2 = --- = B2 = [XuYl]---[Xgo,Ygo]A1---AtBl---Bs = l (7.6) 

By the Riemann-Hurwitz formula (2.16) we see that s must be even. From the results of 

Macbeath[21], we obtain that Fix (Tp) — 2t and Fix (T 2) = s. Hence if D2P{A, B) is realized by 

this action then tr(A) = 1 - t and ti(B) = 2-^. 

To prove the sufficiency condition of Theorem 13, we need the following lemma. Assume 

that D 2 p ( A , B) is an IR-group. 

L e m m a 7.10. Then ^ (g + (p — 1) tr (A) + ptv (B)) is a non-negative integer. 

Proof. This is an easy calculation. Let A, B be of forms A;, Bx>y, as in the proof of Lemma 7.8. 

5 + ( p - l ) t r ( A ) - | - p t r ( B ) 

= x + y + (p-l)l + (p-l)(x + y-l)+p{x-y) 

= p(x + y) + p{x - y) 

— 2px. 

Thus ^ (g + (p — 1) tr (A) +ptv (B)) = x is a non-negative integer. • 

Now we can complete the proof of Theorem 13. 

Proof of Theorem 13. Let t = 1 - tr (A), s = 2 - 2tr (B), and 

go = ^-(g + (p-I) tr (A)+ptr(B)). 
2p 

t s 

We define an epimorphism 0 : T(go; p,. ^p, 2,. T. ,2) —> D 2 p as follows: 

Case 1: If tr (A) = 1 and tr (B) = 1, then t = 0, s = 0, and o0 > 2. We set 

0(X1)=0(Yi)=Tp and 0(*i) = 0(YO = T 2 (for i = 2,. . . ff0)-
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Case 2: If tr (A) = 1, tr (73) = 0, then t = 0 and s = 2, and go > 1. We define 

9(Bl) = 9{B2)=T2 and 0(X*) = 0 ^ ) = T p . 

Case 3: If tr (A) = 1 and tr (73) < - 1 , then t = 0 and s > 4. We define 

9{Bi)=Tp

biT2 and 0(X,-) = 0(Yj) = 1, 

where bi are integers (not all the same) with 0 < bi < p — 1 and Ei=i( — l ) l °i = 0 (mod p). 

Since s is even, 9 preserves the group relations, and hence is an epimorphism. 

Case 4: If tr (A) < 0 and tr (73) = 1, then t > 1, s = 0, and g0 > 1. We define 

0 ( A i ) = T * , 6(Xj)=T£> and 0(1$) = T 2 , 

where â , C j are integers with 1 < aj < p — 1 and 5Z'= 1 â  + 2 E j l j Cj = 0 (mod p). 

Case 5: If tr (A) < 0 and tr (73) < 0, then t > 1 and s > 2. We define 

1 -> IT -> r{g0;p^^~p, 2 , . . . , 2) A 7J 2 p -»• 1. 

It is easy to check that II is torsion free. By Lemma 7.8, we get an action of 7J 2 p on S = U/II 

0 (Ai )=T p % e(Bj) = T}iT2 and 0{Xk) = 9{Yk) = 1 

where au bj are integers with 1 < a{ < p - 1 and £ - = 1 OJ + E j = i ( - ! ) s + 1 O j = 0 (mod p). 

Let IT = Ker(0). We get a short exact sequence of Fuchsian groups 

which realizes D2p{A;B). • 
Corol lary 7.5. The minimal genus of D2p is p — 1. 
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