ON THE INERTIAL STABILITY OF COASTAL FLOWS

by

JAMES ALFRED HELBIG

M. Sc., University of British Columbia, 1977

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
in
THE FACULTY OF GRADUATE STUDIES

(Department of Physics and Institute of Oceanography)

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
November, 1978

(© James Alfred Helbig, 1978



In presenting this thesis in partial fulfillment of the requirements for
an advanced degree at the University of British Columbia, I agree that
the Library shall make it freely available for reference and study. I
further agree that permission for extensive copying of this thesis for
scholarly purposes may be granted by the Head of my Department or by his
representatives. It is understood that copying or publication of this
thesis for financial gain shall not be allowed without my written

permission.

Institute of Oceanography and
Department of Physics

The University of British Columbia
2075 Wesbrook Place

Vancouver, British Columbia

VeT 1W5

Canada

Date 27 December 1978




Abstract

This thesis investigates two separate but related problems. In
Part I a study is made of the propagation of continental shelf waves and
barotropic Rossby waves in a steady, laterally sheared current of the form
V + EW, where W 1is a centred random function and € << 1. If the
correlation length of W 1is small compared with the characteristic
horizontal length scale of the system; for example, the shelf width or a
channel width, the waves are unstable. Their growth rate is largely
determined by the magnitude of the correlation length, while the phase speed
is given by the sum of weighted averages of the mean current V and the
lateral gradient of potential vorticity. Application of the tﬁeory to the
Brooks and Mooers (1977a) model of the Florida Straits yields wave parameters
that are in accord with tﬁose measured by Dliing (1975).

In Part II, an attempt is made to understand the dynamics governing
observed low-frequency currents in the Strait of Georgia (GS). A simple
two-layer model indicates that the mean currents in GS are probably
baroclinically stable. A barotropic stability model implies that a shear
instability might be of some importance. However, the analysis of current
meter data shows that the velocity components of the fluctuations are either
nearly in phase or close to 180° out of phase; this means that the motions
are not due to the type of waves considered here. BAnalysis of the
relationship bétween the winds and currents in both the frequency and time

domains implies that the wind may play an indirect role in forcing GS motions.
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It is conjectured that the wind and tide interact with the Fraser River
outflow to modulate the estuarine circulation in the system and force
low-frequency currents. Direct nonlinear interaction between tidal

constituents produces a coherent fortnightly variation in the currents,

but cannot account for the observations.
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1. Introduction to Thesis

Two separate but related problems in physical oceanography are
examined in this thesis. In Part I, the inertial instability of currents
which contain a small, randomly fluctuating component is examined. While
this is primarily a theoretical investigation, the theory is applied to
observations made in the Florida Straits with encouraging results. The
latter part of this thesis summarizes an atﬁemét to understand the
low~frequency currents observed in the Strait of Georgia. To this end,
inertial instability, wind forcing, residual tidal flow, and modified
estuarine circulation are considered. Separate, more detailed, introductions

are provided for each part.



2. Introduction to Part I

Under certain conditions a planetary wave propagating through a
region of mean current shear is capable of extracting energy from the flow.
This was pointed out in the pioneering work of Kuo (1949) for Rossby waves
in a zonal current. In particular, he showed that an extremum in the
potential vorticity distribution was a necessary condition for the
existence of unstable waves. Since then, numerous models of unstable flows
on a B-plane have been considered, particularly fof the atmosphere (see
the review by Kuo, 1973). By comparison, scant attention has been paid to
the study of the modification of another class of planetary motions, namely
continental shelf waves (CSWs), by sheared mean flows, although the theory
of CSWs in the absence of mean currents has been extensively investigated
(see LeBlond aﬁd Mysak, 1977, for a review). Since mean coastal flows
always exist, this represents a serious gap in our knowledge of continental
shelf dynamics.

Niiler and Mysak (1971) considered a step-like continental shelf
and a piecewise linear velocity profile and showed the existence of two
classes of motions, modified CSWs and "shear" waves whose existence depends
on the mean current shear. For a certain short wavelength range, the two
modes coalesce into a single unstable wave travelling in the direction of
the current. In a more formal study Grimshaw (1976) extended many of the
results of barotropic instability theory to include unstable CSWs for quite
general depth and velocity profiles. McKee (1977) has calculated the
stable response of the continental shelf to travelling atmospheric

disturbances and showed that it is comprised of a superposition of discrete



normal modes, a continuous set of transient solutions possessing phase
speeds in the range of the mean current, and directly forced motions.

Brooks and Mooers (1977a, hereinafter referred to as BrM), in a model of

the Florida Straits, considered the effect of an intense, laterally sheared
current on CSWs, but they evidently did not search for any possible unstable
solutions. Thus they were limited to modified CSWs with phase velocities
less than the minimum of the mean current velocity. It should be mentioned,
though, that Schott and Dﬁing (1976) found excellent agreement between BrM
model predictions and observations in the Fiorida Straité for the 10-30-day
wave.period band.

In Part I we consider the barotropic stability of (1) an along-
shore current and (2) a zonal flow with respect to CSW and Rossby wave
perturbations, respectively. In each case the basic current is assuméd
steady and to be composed of a sheared mean component with a small,
spatially random part superimposed upon it. Although this choice might seem
to further complicate an already difficult mathematical problem, it turns
out that' the mathematics greatly simplifies, and the problem may be easily
solved provided that the correlation length of the fluctuating current is
sufficiently small. This approach was adopted by Manton and Mysak (1976)
for the case of plane Couette flow, and Part I is an outgrowth of that work.

The rationale for choosing a random current is as follows. The
small-scale feétures of the basic current are generally unknown and
certainly vary in both space and time. Moreover, these features make the
basic current profile so complicated as to render a description of the flow
by a simple mathematical expression impossible. Thus it is reaéonable to

model the current by the sum of a smooth, deterministic profile and a small



irregular part. It is mathematically convenient to represent the irregular
component as a random function. Thus we ignore the actual, small-scale
structure of the current profile and concentrate on its statistical
properties, in particular, its variance.

If this decomposition is to be physically realistic, it is
nécessary that the "random" features of the basic current be distinct from
the motions predicted by the ensuing theory, since these motions are due,
in large part, to the basic flow. This requires that the "waves" admitted
by this'theory be separated in both frequency and wavenumber space from
the random component of the basic current. That is, there must be a
spectral gap or rapid change in slope in the velocity spectra. Unfortunately,
adeguate data is not presently available to test validity of this
representation.

As a first step in a more extensive study, we concentrate solely
on the lateral spatial variations and hencefgrth ignore temporal
fluctuations in the basic flow. In the case of the Florida Current, to
which the theory developed here will be applied, the decomposition of the
flow into deterministic and random components is especially appropriate,
since in the region of the Florida Straits, the current is still adjusting
to an almost 90° northward turn in its passage around the southern tip of
Florida. This is a process which should introduce a large amount of noise
into the flow.

The assumption that the superimposed wave field is barotropic in
the frequency range of interest is supported experimentally by observations
in both an intense western boundary current (Duing, 1975; Mooers and
Brooks, 1977) and in a weak eastern boundary current (Huyer, et al., 1975;

Kundu and Allen, 1976; Wang and Mooers, 1977). In a theoretical analysis,



Allen (1976) has shown that the continental shelf may suppdrt both
barotropic and baroclinic motions, the latter trapped within an internal
Rossby radius of deformation of the coast. We expect this assumption to

be more questionable for Rossby waves in the open ocean where baroclinic
instability is likely to be an important factor. Nevertheless, the present
theory represents a first step in a study of combined barotropic-baroclinic
instability in a randomly perturbed flow.

Two continental shelf models are considered, one in which the
shelf is bounded by a wall parallel to the coast (channel model}), and one
in which it is not (shelf model). 1In both cases the BrM model of bottom
topography and mean current is employed. Attention is primarily focused
on the channel model since the observations to which the theory is to be
compared were made in the Florida Straits. This model also has the added
convenience of being less complex ﬁathematically since the coastal trapped
motion is isolated from the ocean interior and thus no coupling need be
considered. A channel model is also assumed in the Rossby wave case.

Each of the two continental shelf models admits a class of
unstable modified CSWs for long wavelengths provided that the horizontal
correlation length of the fluctuating basic flow is sufficiently short
compared with the shelf width. These waves may propagate in either direction
along the coast depeﬁding on the strength of the mean current; the%r phase
velocity is given by the weighted average of the difference between the
mean velocity and the cross-stream gradient of potential vorticity. The
growth rate is proportional to the amplitude of the random component of the
current and inversely proportional to its correlation length. The fact
that unstable solutions exist is especially important since the BrM

velocity profile is almost certainly barotropically stable; that is, the



classical theory predicts the existence only of stable modified CSWS;
Application of the channéel model tolthe Florida Straits predicts wave
parameters that are in good agreement with observations made by Dling (1975).
The present theory may thus account, in par?, for meanders observed in the
Florida current.

The plan of Part I is as follows. In Section 3 the formal theory
for modified CSWs in a channel is presented, and a complicated integro-
differential equation is derived for the mass-transport stream function.
Scaling arguments are employed to reduce this equation to a more manageable
form. A more physical derivatiqn of this equation based on the balance of
vorticity in the system is given in Section 4. An energy equation is also
derived. A perturbation solution is obtained in Section 5 for the BrM
model, and the basic results for the growth rates and phase speeds are
given. The results are applied to observations made in the Florida Straits.
In Section 6, we briefly consider the continental shelf model, and in
Section 7 the stability of'a zonal flow on a PB-plane to Rossby wave

perturbations is examined. A summary is given in Section 8.



3. Formal Theory for Shelf Waves in a Channel

In this section the equations governing the propagation of
small-amplitude, free, modified CSWs in a laterally sheared, barotropic
current are derived. The basic current is assumed to flow along a
continental boundary of infinite length and is composed of a sheared mean
component and a small spatially random part. Only the channel model is
treated here; consideration of the shelf model is deferred to Section 6.

The dynamics of CSWs derive from the conservation of potential
vorticity, but rather than to proceed directly from the conservation law,
it proves convenient for later purposes to begin with the equations of
motion. It is also desirable to work in terms of nondimensional
quantities and the'following scale factors which are representative of
continental shelf conditions are chosen: the shelf width L (which may
be less than the channel width, see Figure 5.1) for the horizontal
coordinates (x,y), the maximum channel depth H for 2z, a vertically
averaged velocity U for the horizontal velocities (u,v), -an advective
time L/U, and fLU/g for the sea surface elevation. Here f is the
Coriolis parameter and g is the acceleration due to gravity. A basic
state which exactly satisfies the nonlinear, frictionless equations of
motion is specified by the basic current VB(x) and is related to the

basic sea surface slope by

(x) . (3.1)



The shallow-water equations of motion linearized about the basic state

are:

Ro(ut + VBuy) -Vv=-n, (3.2)
Ro(vt + VBVy + uVBx).+ u= - ny (3.3)
(hu)X + h(v)y = 0, (3.4)

Here h(x) is the nondimensional depth and Ro = U/fL is the Rossby

number for the basic flow and is not assumed small. To obtain (3.4) we

invoked the nondivergent approximation, which is good to order f2L2/gH
-3

(10 in Florida Straits), and this allows the definition of a mass-

transport stream function given by

hu = - V¥

Y (3.5)
hv = Wx .

In terms of Y +the linearized potential vorticity equation is
152 v 2
Ro(at + VBay)[h VY -~ (h'/h7) ¥l
- ¥ [Roh™M", - (1 + RoV'p)h'/h’] = 0 (3.6)
y B B *

where a prime denotes differentiation with respect to x. For travelling

wave disturbances of the form



Y o= g (x)es YOt (3.7)

with positive k and possibly complex phase speed ¢, (3.6} reduces to

vy - c)Dd - Q.0 = 0. (3.8)
o =1.2,..2 2 -1.2 . .
Here D = h ~d“/dx° - (h'/h“)d/dx - h" "k so that D& is the relative
vorticity of the perturbation and

-1

9= (R0t + V' )/h (3.9)

is the basic state potential vorticity scaled by Ro. The boundary
conditions are obtained by requiring that there be no flow through the

sidewalls; hence
®(x) =0 at x = 0,%. (3.10)

As the basic current is taken to be a stationary random variable,

it may be separated into its mean and fluctuating parts as
VB(x) = V(X) + eW(x)

such that E(Vg) =V and E(W) = 0 where E represents the average over
an ensemble of realizations of W. The nondimensional parameter € is
assumed to be small and is related to the variances of VB and W by

€2 = var VB/var W. (3.11)



10

In the present case we choose var W = 1 although a different choice will
be made for the shelf model. Since the basic state is random and the
disturbance interacts with it, it necessarily follows that the perturbation

must also contain a random component; we decompose @ as

P(x) = P(x) + €d(x) ' (3.13)

with E@) =¥ and E(¢) = 0. Although it is not necessary to scale the
random part of ® by €, Y will generally be large compared with €¢.

We are primarily concerned hére with deriving a closed form
equation for VY. With these definitions the vorticity equation may be cast

into the form

(L +eM)y®@ + ed) = o, (3.14)

where L and M are deterministic and random differential operators

respectively defined by

(V - c)D - Q, (3.15)

—
fl

M=wD - Ay i (3.16)

Qx and q, are the respective gradients of mean and fluctuating potential

vorticity (scaled by Ro),

0, = h7lv" - (o™ + v')n'/n? (3.17)



11

-1

q =h7e" - W'h'/h2. (3.18)

The boundary conditions become

at x = 0,%. (3.19)

©-
It
o

Stochastic boundary value problems of the type defined by (3.14)-~(3.19)
have been investigated by a number of workers, and several techniques are
available to deal with them (see Mysak, 1978, for a review). It proves
useful to decompose (3.14) into its mean and fluctuating components. By
ensemble averaging (3.14) and subtracting the resultant expression from it

we obtain as follows:

Ly + e°EMy = 0 (3.20)

Lo + My + e[Mp - EMd)T = 0. ' (3.21)

A formal solution of (3.20)-(3.21) was first given by Tatarskii

and Gertsenshtein (1963) and is

Ly = - et J (-0l - ByL ™y, (3.22)

=0

Here | is the identity operator and L™l is the operator inverse to L.
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The sum in (3.22) is convergent provided that EHL-lMH <1, where | (*)]
denotes an appropriate operator norm. This clearly limits the amplitude of
the fluctuating part of the basic flow, and it is henceforth assumed that

€ << 1. 1In the present analysis we retain only the first term in (3.22)

giving
2 -
Ly = e“EML™ My, (3.23)

This constitutes the "first-order smoothing" or "local Born" approximation
and is equivalent to ignoring the bracketed terms in (3.21). Howe (1971)
has given a clear physical interpretation of this approximation.
Essentially, the neglected terms involve the interaction of the fluctuating
component of the basic field with the random part of the perturbation at
distances exceeding their mutual correlation length, whereas the other terms
in (3.20)-(3.21) are determined by the local values of the two fields.

It is convenient to rewrite (3.13) in terms of the Green's

function G(x,§) for (V - c)—lL which satisfies
DG(x,8) - (V - ©) 10,6(x,8) = 8(x - £)
G(OIE) = G(Q,,E) = 0. (3.24)

-1
Substitution of (3.15) .and (3.16) into (3.23) and expression of L in

terms of G(x,£) results in an integro-differential equation for V,
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[V - )2 - e2RO)IDY - (Vv - )@V - 2h™ [ (n'/h)R" (0)

1

2
RO 1Y = €20 [ (v - )76, [Rix - E)DY
: 0

(h'/h?)R'(x - )Y - h™IrR"(x - E)Y1dE

)
mmhw-o [ w-o”
0

lo(x,8) [R' (x - £)DY

+

(hv/hz)Rn (X - g)w - h_lR"' (X - E)w]dg

e%h” 1

2
lw-o [ w-0o"tewx,8) R (x - £)DV
0

(h'/h2)R™ (x - £)¥ - h™IrR™ (x - £)Y14E. (3.25)

Here the correlation function R(E) is defined as R(§) = E[W(xX)W(x + &)1].
This eéuation also holds for the shelf model if the upper limit of
integration is extended to infinity. For the channel model we assume that
W 1is a homogeneous random function so that R'(o) vanishes; further, we
choose R(o) = 1 and define 62 = - R"(0). Then 1/0 1is representative
of the nondimensional correlation length L_/L of the fluctuating current.
(In fact, R"(0o) = - 2/)\2 for a Gaussian process described by FR(E) =
exp (-E2/2%) 1)

Certainly, (3.25) is much too complex to be dealt with directly,
and, indeed, G(x,&) will‘generally be unknown analytically, expressing
our inability to solve the associated deterministic problem. Hence some

approximate analysis must be adopted, and it clearly would be advantageous
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to eliminate the integral terms in (3.25). We will presently demonstrate
that the rhs of (3.25) is an order of magnitude smaller than the 1hs

and thus, to a first approximation, may be ignored. It is shown in

Appendix A that all the integrals in (3.25) are of 0(1) provided that

R(x) and its derivatives are also O0(l). Hence, away from the singular
points of the equation where V = c + €, the rhs of (3.25) is 0(62)

and is thus negligible compared with the 1lhs which contains terms of 0(1)
{and also terms of 0(82)). Near the singular points, however, the analysis
is considerably more complicated, but we claim that either Qy or that both
Y and G(x,£) are O(€) there and hence that the rhs of (3.25) may be
safely neglected. To see this, consider the limiting case of € = 0 for

which (3.25) reduces to
(V- )Y - Q¥ = 0. (3.26)

Since (3.26) must hold pointwise it follows that there are two possibilities
at points X, where V(xs) = ¢ which must be considered. Either the
gradient of potential vorticity Q, or the cross-stream velocity V¥
vanishes there. We disregard the third possibility of solutions with
singular derivatives (that is, those corresponding to a vortex sheet at

X = xcf for two reasons. First, McKee (1977) has demonstrated for stable
mean velocity profiles that, in this case, ¢ belongs to the continuous
part of the eigenvalue spectrum of L and the corresponding eigenfunction
represents only a transient component of the complete solution. McKee's
arguments are readily extended to cases with unstable velocity profiles.

Second, and more importantly, Lin (1961) has elegantly demonstrated that

the inclusion of a small amount of (molecular or eddy) viscosity precludes
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the existence of a continuous spectrum. That is, in the limit of vanishing
friction, the singular solutions of the inviscid theory are not obtained as
limits of viscid solutions.

Now if € 1is sufficientiy small, it follows that at a distance
€ away from V = ¢, either Q  or Y is of 0(e). A similar argument
shows that in the latter case G(x,§) 1is also 0(g): at x = x, and away

from & = x_, , the rhs of (3.24) vanishes and hence so does G(XC,E)

c
since Qg 1is nonzero by assumption. As G(x,f) 1is a continuous function
of x and §, it follows that G(xg, xc) = 0. We again argue that at a
distance € from x = X, , G(x, &) 1is 0{(e). (The above comments
concerning the continuous spectrum of | also imply that we may exclude
the possibility of G(x,f) having singular derivatives at x = Xo o
£ # X, ;7 see McKee, 1977.)

Consider the first case in which 'Q, = 0(€); then the terms on
the 1lhs of (3.25) are all 0(52) while those on the rhs are 0(63).
In the second case, where Y and G are O0(€), the first three terms on
the 1lhs are 0(82) and all the remaining terms in (3.25) are 0(83).
Hence in all cases the 1lhs contains terms at least 0(8_1) greater than
the rhs which may thus be ignored. An entirely analogous argument holds

if ¢ 1is complex with a small imaginary part. We are therefore led to the

consideration of the simplified equation
(v - o) - €210y - (v - c)Q¥ - €%6°h ™Y = o, (3.27)
which is subject to the boundary conditions (3.19). A more physical

derivation of (3.27) is given in the next section.

In the analysis presented in the following sections, approximate
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solutions are obtained for the case of large O. Thus one of the
assumptions made in the preceding scaling argument is violated, namely that
R(x) and its. first fouf derivatives are all 0(1). An evaluation of the
relative sizes of the terms in the analogue of (3.25) for a zonal random
flow on a fB-plane is made in Appendix C. It turns out that the integral
terms are generally smaller than the other terms, although in some cases
they are of similar magnitude for certain regions of the channel. As k
increases and ¢ decreases, the neglect of these terms is better justified.
Thus O must be large enough to permit a perturbation expansion but not so
large that the integral terms become overly significant. In the latter
case, the 'solutions obtained in this thesis are best regarded as approxima-
tions to the first iterative solution of the full integro-differential
equation. Of course, if ¢ 1is not large, then the integral terms may be
safely ignored to a good approximation.

Comparison of (3.27) with the corresponding equation for the
deterministic case (3.26) shows that the randomness of the basic current
manifests itself in two ways. First, the single critical point of (3.26)
at V = ¢ is bifurcated into the pair V = ¢ * €. In any given realization
of VB , there would no doubt exist numerous points at which ¢ = V + €W
(provided that ¢ 1is real), and this is expressed, in the mean, by the
existence of two points each removed by the rms value of €W from V = c.
The second effect appears in the term 8202h—1w and depends not only on
the strength of the fluctuating current but also on its correlation length.

The physical significance of this term is more fully discussed in the next

section where the vorticity balance is considered.
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4. The Vorticity and Energy Balances

In this section the various vorticity and energy balances present
in the system are examined. Consider first (3.20) and (3.21) rewritten in

a more explicit form.
(V - I - o + e*EWDY1 - e*Elq 6] = 0 (4.1)
(Vv - c)D¢$ - Qx¢ + Wy - qxw = - ¢(WD¢ - E[wWDG]). (4.2)

To an observer moving with the wave speed, the terms in (4.1) correspond
respectively to: (1) alongshore . advection of mean disturbance vorticity
Dy by the mean basic fiow, (2) cross-stream.advection of mean basic
vorticity by the mean disturbance, and the correlated parts of (3) advection
by the fluctuating basic flow of the random disturbance vorticity D¢, and
(4) the cross-stream advection of fandom basic vorticity by the fluctuating
disturbance. Similarly, the terms in (4.2) are interpreted as: (1)
advection by the mean basic flow of fluctuating disturbance vorticity,

(2) advection of mean basic Vorficity by the random disturbance, (3)
advection of mean disturbance vorticity by the random basic flow, (4)
cross-stream advection by the mean disturbance of fiuctuating basic
vorticity, and (5) the alongshore advection of random disturbance vorticity
by the fluctuating basic current. The last term in (4.2) is the only one
quadratic in the random fields and thus might be expected to be small.

In fact, it consists of the difference of the total advection of D¢ by

W and that part of WD¢ which is correlated. Since it primarily involves
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the interaction of the two fields at distances exceeding their mutual
correlation length, it plays an insignificant role in the vorticity balance
expressed by (4.2) and is henceforth neglected.

We now consider the relative magnitudes of the various terms in
(4.1) and (4.2) and give a heuristic derivation of (3.27). Substitution
of D¢, as determined by (4.2), into (4.1) yields the analogue of (3.25),

v - Dy - wa _e2w - o) oy - ezczh_l(v - c)~lw

e2p~t

2 -
+ € QX(V - ) 1EIW<1>] Efw o] + ez(h'/hZ)E[wwb] = 0. (4.3)

In order to determine the magnitudes of ¢ and D¢, we use the expression
% 1
Cbx) = - [ (V- o)TTG(x,E) WY - qldE (4.4)
' 0

which is obtained from (3.21) in the local Born approximation. Consider

now the cases examined in the preceding section corresponding to (V - ¢) =
0(1) and V - ¢ = 0(g). (If ¢ 1is complex with small imaginary part,

then the latter case is equivalent to V - ¢, = 0(g€), and c; = 0(e).)

The results are summarized in Table I. In the first case the random fields
play an insignificant role in the balance of mean vorticity; and DY exceeds
eD$- by an order of magnitude. On the other hand, the alongshore advection
of fluctuating disturbance vorticity by the random basic flow (4.1, term 3)
is important in the last two cases, but the cross-stream advection of the
random background vorticity by the fluctuating disturbance (4.1, term 4)

remains unimportant. Near the critical point the random component of



Table I. Order of magnitude estimates of terms in the
vorticity balance equations. The rhs of (4.2)
is neglected, and the magnitudes of ¢ and
D are calculated from (4.4).

V- c=0(1) (4.1) 1 1 €2 ¢&°

DY, ¥ = 0(1) (4.2) 11 1 1

Do,d = 0(1) (4.3) 11 g2 €2 g2 g% g2
V - ¢ = 0(€)

Q = 0(€) (4.1) € € € 82

DY, y,¢ = 0(1) (4.2) 1 e 1 1

Do = o(1/€) (4.3) e € € e g2 g2 g2
V.- ¢ = 0(€)

¥,9 = 0(e) 4.1) € € € ¢€°

DY = 0(1) (4.2) 1 € 1 ¢

Do = 0(1/¢) (4.3) e e e et g
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disturbance vorticity €P¢ is the same order of magnitude as the mean
component, although €¢ remains small. Thus the fluctuating vorticity
tends to cbncentrate near points where V - ¢ is small. In all cases, the
last three terms in (4.3) may be disregarded, and hence (4.3) reduces to
(3.27). Note that neglect of these terms in no way requires the
correlations between ¢ and its derivatives to be small, as suggested by
Manton and Mysak (1976).

An energy equation for the mean component of the perturbed field
is now derived. It is easiest to proceed directly from the nonaveraged
equations of motion (3.2) --(3.4) and then to average the resulting
expression. In the usual fashion we take the scalar product of the momentum

equations with u to obtain

(h/2) (u® + Vi), + (h/2) Vg (u? + vz)y

. -1
= -V Bhuv - Ro h(uCx + va). (4.5)

An integration over the region R defined by the channel width and one
wavelength. in the vy-direction with application of the boundary conditions

and the assumed periodic nature of the disturbance gives
2
(3/8) IR (h/2) (u® + v?) = fo Vg (0T dx. (4.6)

Here the Reynolds stress T is defined by

12

yH+A
Tig = = f huvdy. . (4.7)
Y
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Thus if a wave is unstable, the Reynolds stress must extract kinetic energy
from the shear of the basic current.

By expressing the real quantities wu, v and le in (4.6) in

terms of the deterministic and random components of the stream function

(3.7), and by ensemble averaging the resultant expression we find,

S 2 2.2
Q[ n e+ x5 ax
0

2 X
+ &9 [ nT(er
E 0
L 1 2 oo
=+k [ n V'F (Y, ¥ )dx + €% [ n V'EF (¢p,0,) 1dx
0 0

2
|2 + k2|¢l ) dx

2 L -1
+ ¢ kE [ hTW'InF(Y*,¢)dx. (4.8)
0 .
Here the subscripts R and I (or r and i) refer to the real and
imaginary parts of a quantity, = kci is the growth rate of the

disturbance, and F(f,qg) = fgi - f'g 1is the Wronskian of f and g. The

full Reynolds stress assumes the form

Ty, = (k/20) [F (g, V) + F(dg,6) + InF(P*,0)]. (4.9)

The interpretation of (4.8) is direct and is not pursued here; however, we
note that it is not énergy conserving since no provision was made for the
modification of the basic field which therefore acts as an infinite
reservoir of energy for the disturbance.

It is not clear how to approximate (4.8) in order to obtain an

equation consistent with (3.27); i.e., it is difficult to transfer scaling
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arguments from the vorticity domain to the energy domain. To avoid this

problem we form another energy equation from (3.27) rewritten as

v - D - e2(v - &)oY - o - e20%7Lv - o7y = o. (4.10)

Multiplication of (4.10) by yY* and integration over the channel width

yvields an expression whose imaginary part is

L %
Qf n l(lw'lz + k2|¢|2)dx =x [ h'IV'F(wR,wI)dx
0 0

2 2
g LV -c)” - e

+ ek [ V'F (Y, W) dx

0 hl%n— c]

2
L (V= c vy % 2
v e / 2 ax + €°0°0 f ——lyl~—~—-dx

o h|v-cl? o hlv - ¢|?

Vlel® e lwl?

—ezﬂf
b h'V - cl2

(4.11)

A careful comparison of (4.8) and (4.11) with particular regard to the form
of ¢ as given by (4.4) reveals that terms 1 and 2 in (4.11) correspond
exactly to terms 1 and 3 in (4.8), and that terms 3 and 4 and terms 5 and 6
in (4.11) represent terms 4 and 5 in (4.8), respectively. 1In the case of
large 0O, which will be considered later, it is clear from (4.11) that the

energy source for the unstable perturbation is the shear of the random part
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of the basic flow.

One could proceed, at this point, to derive the equivalents of
the formal relationships developed by Grimshaw (1976). These concern
necessary conditions for instability and bounds to growth rates and phase
speeds. It is sufficient here to derive only a generalized Rayleigh
condition for instability. Rather than use the techniques employed by
Grimshaw, since they are tedious in the preéent case, we proceed from the

unaveraged Rayleigh condition

e; | |s——= éxdx = 0. (4.12)

This relationship is the imaginary part of the expression obtained by
multiplying (3.26) by ¥*/(V - ¢) and integrating over the channel width.
If a system is unstable (c; # 0}, the integral must vanish. This implies
that Qx must vanish at least once in the interval (0,%). To generalize
(4.12), we express ¢ in texrms of Y and ¢ and expand (Vg - c)nl =

-1 . . . . . . .
(V - ¢ + W) in a binomial series. Ignoring triple correlations in the

ensemble average of the resultant expression we obtain to O(€3)

'8
‘ dx

Ci f Qx
0]

V -cC

Q 2QX(V- c.)

5 ELl6]?) - T E(wRe (Y9) ]

+ gl / —x
£ C. —_—
L |Iv - e v - o|*

2012
Emwmre (W0)1 207 [V[°(v - c)
dx = 0. 4.13
Talv - c[f T nlv - cl? x (4.13)
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2 2
In the limit of large O (i.e., € 0 = 0(1)), this reduces to
2.2
[} 2 26°0°(V - c_)
c. [ v o+ dx = 0 (4.14)
i vV - ¢ X 2 ‘
v - ¢

Equation (4.14) shows that instability does not demand that the
mean potential vorticity distribution vanish, since the random part of the
basic flow may possess sufficient relative vorticity to render the basic
flow unstable. 1In this sense, the instability described more fully in the
next section is essentially a shear instability. In more phvsical terms,
the random component introduces local extrema into the potential vorticity
distribution (i.e., points at which §x = 0). Lin (1945) has demonstrated
‘that.the existence of such. points is necéssary for instability; otherwise
a particle displaced from its equilibrium position will always be subject
to a net restoring force. As ¢ increase, the relative vorticity
associated with the random flow increases and therefore so does the
likelihood of finding local maxima and minima in @.

If cy #0 and Q, > 0 everywhere, (4.14) implies that
(V - cy) < 0 somewhere and hence that c, must lie in the range of the
mean current. However, if Q. < O eyerywhere then (V - ¢,) > 0 somewhere
and ¢, is simply bounded above by the maximum value of V; unstable waves

could then, in principle, propagate against the mean flow.
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5. The Channel Model

The boundary value problem defined by (3.27) and (3.19)
encompasses all and more of the difficulties inherent in a deterministic,
barotropically unstable system, for not only does (3.27) have variable
coefficients but it also possesses a pair of singular points at
V(x) = c* €. Since € << 1, an obvious approach to (3.27) would be to
attempt a perturbation solutionvin €. However, the resulting equations
would contain all the mathematical difficulties of the nonrandom problem,
and the solutions, as interesting as they might be, would represent small
deviations from the deterministic solutions. We are interested in a
different class of solutions to (3.27) which does not exist in the nonrandom
case. If the parameter ¢ is large (i.e., if the correlation length of W
is small) then we may try a perturbation expansion in the limit of g =+ o;
we shall show that the resulting solutions are unstable. Hence even though
classic barotropic instability theory may indicate a given system to be
stable, unstable waves may still exist if there is sufficient "noise” in the
mean current.

In order to make the following results more speéific, we adopt the

Brooks and Mooers (1977a) model of the Florida Straits (Figure 5.1):

V = Xe (5.1)

h = (5.2)



Figure 5.1

V(x)

The Brooks and
Mooers model of bottom

topography and mean

current (after Brooks
and Mooers, 1977a).

X
TR

9Z
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with the parameters b = 1.385, § = 2.5 and Ro = 0.3. This model is
chosen since it employs nontrivial but realistic velocity and bathymetric
profiles, and since we wish to apply our results to the Florida Straits.
Although V satisfies all the necessary conditions for instability, it is
extremely unlikely that this model is unstable as the subsequent argument

shows. The Rayleigh condition (4.12) requires that

2 2 2
c; [ oo Jvl/lv - cf “ax = o. ' (5.3)
0

This requirement is usually stated in the form: if c¢; # O, then o
must vanish at least once in the interval (0,%2). In fact, Oy does
vanish at x = 2, but this is not sufficient to ensure that (5.3) is
satisfied. A plot of Qx {Brooks and Mooers, 1977a, Figure 2) shows that
it is extremely small in the interval (2,2 = 2.5) compared with the
interval (0,2). This means that IWI must be extremely large in the
forme? interval which is not likely as the boundary conditions require
PY(L) = 0. That is, if (5.3) were satisfied with c; # 0, very large
alongshore currents trapped against the outer wall would be nécessary. With
respect to application of the present theory to the Florida Straits, we note,
however, that a more realistic bathymetric profile results in a potential
vorticity distribution that is probably unstable (Brooks and Moocers, 1977a).
Unfortunately, Brooks and Mooers apparently did not search for unstable
solutions.

If a perturbation expansion of (3.27) is to lead to nontrivial
results, the term 8202h_1w must be balanced by another term. For fixed

k this requires that ¢ be 0(0). It might appear that this could lead
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to a contradiction of the semicircle theorem (Grimshaw, 1976) which states

that for each realization of the basic flow VB ’

2
[cp = 1/2(Vgy + Vg) 1~ + ;2 = [1/2(vg, - Vv

2
i - 1/2 cw]

Bm)

where Vam and Vem are, respectively, the algebraic maximum and minimum

values of VB +» and ¢ 1is the phase speed of the first mode CSW in

the case of VB = 0. Thus if W is bounded, ¢ 1is bounded above

independent of O. Hence, once again the magnitude of 0 is limited.
Nevertheless, we assume that O 1is large enough to permit its use as an

expansion variable. On the other hand, the values of c; and Cr

computed in this section fall well within the bounds of the semicircle

theorem.  Moreover, it turns out that successive corrections to c, and

e e -1
cy diminish as C© not 0 .

In the following development it is convenient to expand both the

real and imaginary parts of ¢ separately; we take

[o0] (o] o0
-m -m -m
v= ) o Vo c,= ) O ¢ c;j=0 ) O Cim * (5.4)
m=0 m=0 m=0

The choice of either c. = 0(o), c; = 0(1) or c,.,c; = 0(0) 1leads only

rrri

to trivial solutions. The boundary conditions (3.19) become
Yp=0 at x = 0,2.

If the system under consideration contains discontinuities in the gradient
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of potential vorticity, then the equations must be solved in each region
and matched across the point of discontinuity. In general, the matching

conditions are

W1 =0

(5.6)

(v - )? - €2}'/n] - [(V - QY] = 0
where [(*)] represents the jump in (°*). Physically, these conditions
ensure the continuity of mass flux and sea surface elevation across the

discontinuity. Their validity requires that V be continuous. Both h

and Q are continuous in the present case and (5.6) reduces to

(] =0
at x = 1. (5.7)
[y'] =0

The three lowest order equations are

-1 2
Dhy + b (e/c;g) Y, = 0 (5.8)

-1 2
DYy + h T (e/cyq) vy

= - oo H2le;y + 5V = e ) 100 - 10,0} (5.9)
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-1 2 =2 2 2 2
Dwz +h T(E/cyq) WZ = ¢;q {(v - Co) - 2c 5054 = S

- 20V - epgley;y - ey U,

- ZCiO_l[cil + i(V - cro)]UIPl

2 -
- Cio Qe LV - cq) - icil]wo + icyg 1wal . | . (5.10)

The zeroth order equatioh (5.8) defines a Sturm~Liouville procblem for which
an infinite number of solutions wo(n) exist sgch that the nth mode has
exactly n =zeros, and the corresponding eigenvalues (e/cio(n))2 are
ordered and tend to infinity as n = ®. The superscript (n) is henceforth
dropped.

Solutions to (5.8) satisfying both the boundary and jump conditions

are given by:

eb(x_l)sin AxX/sin A 0=sx<=<1
Vg = B (5.11)
sin o(x - L) /sina(l - &) 1 s<sx<124
2 2 2 2 2
>\ = € /Clo -k - b (5.12)

2 2 2
ol =& eiys =K =27+ b (5.13)
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provided that A and O satisfy

b+ A/tan A = a/tan a(1 - 2). {(5.14)

If Xz is negative, the solutions over the shelf are hyperbolic and are
obtained by replacing A with iA. For a given choice of k, b, and 2,
the admissible values of €/ciO are determined implicitly by -(5.14)
together with either (5.12) or (5.13). A»graphical solution of (5.14) is
shown in Figure 5.2 for a case in which hyperbolic solutions are found.
The growth rates of the hyperbolic modes, if they exist, exceed those of
the trigonometric solutions. For the values of b and £ appropriate to
the Florida Straits only trigonometric modes are found.

Further information may be extracted from (5.8)-(5.10) without
actually solving for wl and wz . Since these equations all have
identical homogeneous parts, the Fredholm alternative implies that wO

must be orthogonal to the respective inhomogeneous terms. We thus obtain

2 2. 2 2 2

Cig = E /(AT + kT + b)) (5.15)
Cop = <U> + (c;n2/2e2)<hg > (5.16)
r0o — i0 X ‘
G176 = O (5.17)

2. 2 2
CiyCip = = (3/2<(V = e ) >-e%/2 - (e /2e9<(v - c o)h9,> (5.18)
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Figure 5.2

Graphical solution of (5.14) for b = 3.0 and £ = 2.5. The

(light, heavy) solid line is the locus of b + A/tan A for

(real, imaginary) A, while the dotted line represents

o/tan 0(l - £). Intersections with the (light, heavy) line corre-
spond to (trigonometric, hyperbolic) solutions. For Florida Strait
(b = 1.385, & = 2.5) the first three solutions are

parameters
= 2,809, and ay = 3.891.

al = 1.650, a2
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where

L -1 . -1, 2
<f(x)|g(x)> = f h wo(x)f(x)g(x)dx/f h wo (x)dx (5.19)
0 0

and

<f(x)> = <f(x)|wo(x)> | (5.20)

are weighted cross-channel averages. These results are completely general

and are not limited to the BrM model. For this model, however, Cpo Mmay
be rewritten as
- 2 2 2
C g = V> + <hQ.>/2(A" + k% + b7) (5.21)

which is strikingly similar to the expression'for a CSW in a constant

current V over an exponential shelf,

c =V -20/(A% + k%2 + b%) = < + <>/ (W + k2 + b?) (5.22)
where th = ~ 2b (cf. Buchwald and Adams, 1968, for the case V = o).
We see that the weighted average <V> replaces V} while the potential
vorticity term in (5.21) is diminished by 1/2. This means‘that the speed
of the Doppler shifted wave Cpg — <V> is reduced by the presence of
random irregularities in the.basic current. The explahation is clear:
the disturbance must traverse a longer path length in travelling from one

point to another since it is buffeted about and scattered by the fluctuating

current. This phenomenon is common to wave propagation in random media
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(Howe, 1971).

In order to determine i it is necessary to first evaluate
wl . This is a straightforward, although tedious task, and the complete
results are summarized in Appendix B. The solutions in the onshore and

offshore regions take the form

A
]

1A
—

Alfwo + 1AOP1 0

wl = (5.23)

1A
]

A
=

Alzwo + iA,P, 1
where P1 and P, are particular solutions that satisfy the boundary
conditions; the factor of i ensures that Pl and P2 are real. These

solutions must be matched across x = 1, and the matching conditions (5.7)

in matrix form are

11 2 1
By P, =P
where
sin A - sin a(l - %)
M = (5.25)
b sin A + A cos A - a cos a(l - L) ’

and all quantities are evaluated at x = 1. However, M is singular,



35

since in matching the zeroth order solutions we required that det M = O.
If a solution to (5.24) is to exist, it is necessary that P be orthogonal
to each linearly independent solution of the associated homogeneous adjoint

equation,

M = 0. (5.26)

Since M 1is of rank one, there is only one independent solution of (5.26),
and it leads to the auxiliary condition

1

P.-P, =da ~ tan o (1l - L) (e, - P! (5.27)

1) -
The fulfillment of this restriction was used as a check of the numerical
results presented in Figures 5.3-5.7. The one independent equation

represented by (5.24) serves to fix A

12

Aj, = Ay sin A/sina(l - 2) - iAO(P2 - Pl)/sin a(l - 2), (5.28)

but All remains indeterminate. A careful examination of (5.10) reveals
that the part of wl proportional to ’wo does not contribute to ¢y,

and we choose All = 0. Alternatively, All could be chosen so that wo
and Wl were orthogonal. Similar considerations apply to the higher order
eigenfunctions and eigenvalues. Finally, although it is not immediately
obvious, one finds that . Cron+l and Cion+l vanish and that l,l)Zn/AO and

w2n+l/AO are purely real and imaginary quantities, respectively. This
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means that successive corrections to ¢, and ¢; diminish by 0(1/02).
We now examine the results illustrated in Figures 5.3-5.7 which
were computed for the parameters characteristic of the Florida Straits.

1

The dependence of the growth rate Ql = k(OCiO + g ¢c;1) on o for the

first mode is shown in Figure 5.3. As ¢ increases, Ql increases and

the wave number range over which it is nonzero widens. There is a threshold
value of 0 above which unstable waves exist. For mode 1 it lies between
0 =3 and 0 = 4; for a given k this value decreases with increasing
mode number. Figure 5.4a exhibits the dependence of Ql on k for the
first three modes. It is particularly interesting that the regions of
instability overlap and that for short wavelengths the higher modes may be
the more unstable. . We note, however, that for large wavenumbers, higher
order terms which are neglected here may be siénificant. The frequencies
and phase speeds as functions of k are plotted in Figures 5.5a and 5.6a,
respectively, for modes 1-3. The most striking feature in them is the
existence of points where the curves intersect, which implies the possible
existence of a "resonance" interaction (this potentially was also inherent
in the Couette flow model of Manton and Mysak, 1976, for which the phase
speed was constant and equal for all modes; see Section 7). It has been
documented in the literature (see Mysak, 1978) for a variety‘of physical
systems, that modes which are uncoupled in the deterministic case may

become coupled when randomness is introduced into the préblem. Here, however,
we are dealing with disturbances which do not exist in the deterministic
case; moreover, it is clear that the higher order terms in the perturbation
expansion will not lead to mode coupling. Hence a more careful analysis

of (3.27) is required to resolve this point, perhaps using wO and wl as

a basis set for the real and imaginary parts of . We also note the
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related study by Allen (1975) of coastal trapped waves in a stratefied ocean
where it was shown that CSWs may be coupled to internal Kelvin waves.

Figure 5.6A indicates that the phase speed is positive for all
k and thus that the waves propagate northward; i;e., in the directién of
the mean flow. However, if the Rossby number were small enough, the
vorticity term in (5.16) would predominate, and the disturbances could

travel southward. (Consider, for example, the case of V = 0, hQ, = - 2b.)

This is in marked contrast to the stable CSW's admitted

by the BrM model which propagate only southwards.

From the slopes of the dispersion and phase speed curves, we infer that the
group velocity is positive and exceeds S0 for all k. Finally, we note

that c_. > <V> as k =+ o and thus that the waves are simply advected by

r0
the mean current in this limit.

Contour plots of the mass transport stream functipn for the first
three modes are shown in Figure 5.7. An important feature is the tilting
of the gyre axes toward the coast>since it is related to the sign of the
mean disturbance Reynolds stress ¥i2 = (k/2h)F(wR,wI). In terms of the
phase 8 = k(x - c, t), the stream function is given by Y = wR cos 8 - Y
sin 6. The line along which it vanishes is determined by tan 6 = Ug/Y7 ,
with slope db/dx = - (cos? 8/w12)E(wR,wI). Hence ¥i2 o - d8/dx and
Figure 5.7 shows that it is everywhere negative. Since V' Z 0 for x2 1,
(4.11) reveals the rather surprising result that over the shelf, ¥i2
acts to remove energy from the nonrandom part of the disturbance and to
strengthen the mean shear. This is in concert with the finding of Niiler
and Mysak (1971) that the continental shelf acts as a stabilizing factor.
0Of course, the largest source term in (4.11) is the one proportional to
02 which shows that the aisturbance energy is extracted primarily from the

fluctuating part of the basic current.

Plots of the mass transport stream function are of limited value
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in visualizing the velocity structure over the shelf. Figure 5.8 shows
selected profiles of u and Vv corresponding to Figure 5.7. In all cases
the motion is trapped against the coast.

These results are now compared with observations made in the
Florida'Straits._ The occurrence of fluctuations in the Florida Current
with periods ranging from a few days to several weeks is well known, and
the following review is not intended to be exhaustive; the reader is
referred to the papers referenced here for a more extensive discussion. A
plan view of the Florida Stfaits is shown in Figure.5.9. It reveals the
channel-like topography and illustrates the sharp turn the Florida Current
must make on its northward passage. Cross sections of Ot and alongshore
velocity are presented in Figure 5.10. In addition,to showing the highly
baroclinic nature of the mean flow, it also indicates some of the
longitudinal variations in bathymetry and in the density and velocity fields.
The stfatification is compressed over the shelf, and a typical value of the
Brunt—VéisEla frequency in the pycnocline is 2 X 1072 rad s™!  (Mooers and
Brooks, '1977).

In a marked contrast to low-frequency motions in the open ocean
that are characterized by a red spectrum, there appears to be
a spectral gap between motions with periocds of about 25 days and 1 year
(Brooks and Niiler, 1977; Diling et al., 1977; Wunsch and Wimbush, 1977).
Duing et al. (1975) estimate from mid-channel velocity measurements that
approximately 80% of the nontidal variance occurs at periods exceeding 8
days. In general, the low-frequency motions may be broken into three time
scales, 8-25 days, 4-5 days, and 2-3 days (Dling et al., 1977) each of which
is treated separately here. Seasonal fluctuations in the Florida Current

have also been observed (Niiler and Richardson, 1973).
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The 8-25-Day Band

From the analysis of year-long records of sea level, sea
temperature, and atmospheric pressure,.Brooks and Mooers (l§77b) demonstrated
the existence of southward travélling waves with periods of 7-10 days in
winter and 12-14 days in summer and speeds of 100 cm s_l or greater.. Strong
coherence between sea level and temperature and the atmospheric variables
showed that these disturbances were wind generated; a fit of the BrM CSW
model to these observations was only partially successful as the model
predicts wave speeds less than 50 cm s_l. Schott and Duing (1976) applied
a single barotropic wave model to the results obtained from the analysis
of 65 days of current measurements taken concurrently at stations separated
in the alongshore direction and found a statistically significant fit for
the 10-13-day wave period band and a marginal fit for the 7-10-day band.

In the former case they calculated a wavelength of 270 km, a southward

l, and an amplitude of 14 cm s_l, values which are

phase speed of 17 cm s~
in excellent agreement with the BrM model. The wave parameters were similar
for the 7-10-day band. Duing et al. (1977) concluded that 9-20-day
oscillationsvpossessed amplitudes ranging from 15-25 cm s—l; they also

showed that disturbances in the 10-14-day band occurred intermittently as
phase-coherent wave packets consisting of 4-6 cycles. Since high coherence
was observed between the velocities and the atmospheric variables, especially

the wind stress curl, it appears likely these motions are, initially at

least, atmospherically forced and represent stable, modified shelf waves.

The 4-5-Day Band

In the 4-5-day wave period band, Duing (1975) described a nearly
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barotropic wave, 160-240 km in length, that propagates northward with a
mean speed of 45 cm s—l,‘and an amplitude of about 10 cm s_l. An interesting
manifestation of this disturbance is the reversal 6f the baroclinic mean
flow at depth on the western side of the channel that accompanies its
passage. Based on the analysis of six months of current, temperature, and
bottom pressure measurements téken in. 1974, Wunsch and Wimbush (1977) have
also described a northward travelling 4-7-day wave about 60 km in length.
Duing et al. (1977) showed that like the 10-14~day motion, a 4-5-day
disturbénce occurs intermittently as a wave packet of about 4 cycles and
that it is significantly correlated with the wind stress curl and other
atmospheric variables. No indication of the direction of wave propagation

was given..

The 2-3-Day Band

Lee (1975) and Lee and Mayer (1977) have documented the existence
of wave-like meanders of the mean flow and the transient occurrence of
cyclonic "spin-off" eddies in the 2—3—day band. These eddies are trépped
against the continental boundary, have a lateral length scale of about
10 km and a longitudinal one 2 to 3 times greater. They occur at
approximately weekly periods, propagate northward at speeds ranging between
20-40 cm s—l and persist for up to 3 weeks. A kinematical model of a pair
of vortices superimposed on the mean flow gave a good representation of
the observed near-surface current. The meanders also propagate northward
but at speeds between 65 and 100 cm s7L.

It is for the motions in the 4~5-day band that the present theory

might offer a possible explanation. Indeed, barotropic instability of the
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mean flow has been suggested by Duing (1975) as a likely mechanism for
these motions. We should note,'hoWever, that Brooks and Niiler (1977)
determined that, in the mean, the Florida Current is in an equilibrium
state and that the net interchange of energy between the mean current and
the fluctuations superimposed upon it is extremely small. Of course, this
does not rule out the possibility that disturbances in some frequency
ranges may extract energy from the mean flow. Furthermore, it has been
shown that the primary source of energy for the motions described in this
paper is the small, sheared, fluctuating component of the basic current.
Nevertheless, Brooks and Niilerfs work indicates that along-stream
variations in the flow, as well as its baroclinic nature, may be significant.
For the parameters appropriate to the Florida Straits, Figure 5.6a
indicates phase speeds of about 40 ‘cm s-l for modes 1 and 3, and 25 cm s™1
for mode 2 for the wavelength range of 160-240 km. These results are
independent of € and O. However, the corresponding growth rates are
strong functions of these factors as is illustrated in Table II. 1In general,
the higher modes are more unstable, and in particular, it is seen that the
third mode could grow significantly within one wave period for a wide range
of values of € and o. Duing's (1975) plots of the eastward velocity
component imply the existence of a second or third (or higher) mode;
unfortunately, his measurements extend ‘only over 2/3 of the channel width.
Wunsch' and Wimbush (1977) have calculated velocity cross-spectra, and the
phase difference at 5 days between northward velocities measured at the
continental boundary and the shelf break, and at the shelf break and the
eastern wall is approximately 180° in each case. This is consistent with
a third mode unstable wave but not a second mode disturbance. On the basis

of these results we conclude that a mode 3 fluctuation as described by the
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present theory provides. a possible explanation of Dliing's observations.

It is particularly intriguing that the mode 1 and mode 3 dispersion curves
cross in the range of interest, but it would be improper to draw any
conclusions from this observation.

It is interesting to speculate that some relationship might exist
between a mode 3 wave ‘in the 2-3-~day band and the spinoff eddieé described
by Lee. The propagation gpeeds are similar and the "inner gyre" illustrated
in Figure 5.7 is approximately the same size as the observed eddies.

(Although Figure 5.7 corresponds to k/2m = .15, its form changes relatively

little as k 1is increased.)
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6. The Continental Shelf Model

We now turn to the continental shelf modei‘mentioned in the
introduction. In order.to examine a coastal phenomenon such as the
modification of CSWs by a mean current, it is necéssary that any mechanisms
capable of altering the potential vorticity distribution be localized with
respect to the coast. In all studies of CSWs in the abseﬁce of a basic
flow, the gradient of thé background potential vorticity, h'/h2, has
always died out away from the coast so that this requirement was

automatically fulfilled. If one includes a sheared mean current, however,

1 1

the potential vorticity gradient becomes h™-V" - (Ro — + V')h'/hz, it

is no longer sufficient that only h'/h2 decay as x > ., Niiler and Mysak
(1971) avoided this problem by employing a piecewise linear current that
became constant at a small distance offshore. McKee (1977) énd Brooks and
Mooers (1977a) have avoided fhis problem by adopting a channel model,
although Brooks and Mooers briefly discussed a continental shelf model
utilizing an exponentially decaying curreht. - Grimshaw (1976) also reqguired
the mean current to diminish exponentially.

" Our approach is to require Vg to be bounded away from the shelf

edge. Specifically, we choose

V(x)

s (x) v(x)

(6.1)
W(x)

s{x)w(x)

where " s(x) is a deterministic function that satisfies s(x) - 0 as

x >, and we assume w(x) is a homogeneous random function. In terms of
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the correlation function r(£) = E[w(x)w(x + £)] one finds that

R{o) = szr(o)

2
R'(o) = s r'(o) + ss'r(o) (6.2)
2
R"(0) = ss"r(o) + 2ss'r'(o) + s r" (o).
With the choice of r(o) = 1 and 02 = - r"(o) we find the equation

equivalent to (3.27) to be

[(v - =c)2 - 2210 - (v - c)Q .V

- €2h—1[5202 - ss" + ss*h'/hlY = 0. (6.3)

The boundary conditions are

Y(x) =0 at x =20

(6.4)
PY(x) >0 as x > >,

The interpretation of (6.3) is identical to that of (3.27), but we note
that the term corresponding to 3202 in (3.27) is more complex here and
involves a contribution from R'(0).

The appropriate matching conditions are

Y1 =0
(6.5)

L - )2 - €282 /n] - [(V - )Pl - €2[ss'Y/h] = 0.
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The general form of the BrM model is retained and we choose

1-x
X e 0=x=1
V(x) = s(x)v(x) = (6.6)
U (1-x)
X e x =1
e
1 0=x=1
s(x) = 3 (6.7)
H(1-x)
e Xx =1
-
(
2b (x~1)
e 0=x=1
h(x) = 9 (6.8)
1 =1
L be
where U is positive.
As before, we seek a perturbation solution of the form (5.4).
The three lowest order equations are
-1 2
Dby + h "(es/cig) ¥y = O (6.9)
-1 2
le + h (Es/cio) wl
-1 . .
= - c;9 {2[ejy + i(V = cpg) 1DV, - iQ Y} (6.10)

-1 2, -2 2 2 2.2
Dy, + h “(es/ci0) Wy = cjo LIV = cpg)” - 2055059 — ¢41° - €7

- 2i[(V - Cro)cil - ciocrﬂ}vwo - 2cio‘l[cil + i(V - crO)]le

_2 . 2 _l m"w 2 1 1] 2
- ¢ig {Qx[(v - cro) - lcil] - £h “ss" + €“ss'h'/h }wo

- 1 .
+ icyy Q¥ - (6.11)
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For x< 1, (6.9)-(6.11) are identical with (5.8)-(5.10). The zeroth order

solution satisfying both the boundary and matching conditions is:

(
eb(x_l)sin Ax/sin A
bo = o] (6.12)
EV(DC)/Jv(D)
A2 = e2/c;y’ - X - b (6.13)
v=km  p=eme,,  c=e (I (6.1)
provided that
b+ Aftan A = - k + (e/cio)Jv+l(p)/Jv(p). (6.15)

If Xz is negative, the solutions are hyperbolic over the shelf and may be
obtained by replacing A with iA. The graphical solution of (6.15)
closely resembles that of (5.14), but note that (6.15) must be solved
separately for each choice of €, Y4, and k. This solution is not valid
for k = 0 since Jg cannot satisfy the boundary condition at x = ®

(i.e., at ¢ = 0).

The first order solution is of the form

Allwo + J.AOPl
wl = (6.16)

A + i
1% * 1B,
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and the particular solutions are specified in Appendix B. In order for

wl to satisfy the matching conditions, thé consistency condition (5.27)

must again be satisfied; it was used as a check on the numerical results
derived here, and it proved extremely sensitive to the accuracy of the

roots of (6.15). We again choose . Ay = 0 and A5 is specified by'(5.28).

Application of the Fredholm alternative to (6.9)-(6.11) implies

that
coo = <V> + (o4 /2e%)<h0, /s> (6.17)
Ci1:Cpy = O (6.18)
C.0Cig = - (3/2)<(V - cro)2> - (e2/2)<s2>
- (50 /267)<(V = o Ih0, /s> - (cy0?/2)<s" /s>
+ (e;0%/2)<h's /hs> - dc, o<V - c_p) | ¥p>
- ilej /263y <n0, /5% | vp> ' S (6.19)
where
<f(x) | glx)> = j:-h“1s2w0<xif<x)g(x>dx/f: n~1g2 Oz(x)dx (6.20)
and

<E(x)> = <E(x) | Y, (x)> : (6.21)
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by comparison with (5.17)-(5.19), we see that the terms involving the
potential vorticity gradient are emphasized since s < 1 off the shelf.
Otherwise the interpretation of (6.17)-(6.19) remains unchanged.

A comprehensive study of the dependence of the various results
on | was not carried out, and the choice 1 = 1 was made to facilitate
comparison with the channel mode. The dependence of Ql on ¢ is similar
to that shown in Figure 5.3, and is not shown here. The threshold values
of O are smaller for modes 1 and 3 and larger for mode 2 than they are
for the corresponding channel modes. ‘Plots of Ql and c,.q as functions
of k are illustrated in Figures 5.4b and 5.6b and a detailed comparison
with their channel counterparts reveals nearly as many differeﬁces as
similarities. Two general conclusions may be drawn, however. As either
k or the mode number increases, the disparities between the two models
increase for Ql and decrease for .0 - Thisvis physically reasonable
since as k or the méde number increases, the effective wavelength
decreases; thus, the wave should become less sensitive to the outer boundary
and more sensitive to the basic current profile. Now Ql depends
intimately on this profile and so the two models should be increasingly
disparate at small wavelengths. Similarly, the wave frequency does not
depend on the details of the basic current but it certainly. depends strongly
on the position of the channel wall. Hence the phase speeds predicted by
the two models should differ for long wavelengths. We also note that the
growth rates for the different models no longer overlap. Figure 5.5b shows
that the group velocity is always positive, and from the slope of the
curves in Figure 5.6b we see that, with the exception of the first mode at
small wavenumbers, it exceeds the phase velocity. Finally, the mass

transport stream function is shown in Figure 5.7; it generally resembles

its channel counterpart although the axis tilt is increased.
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7. Rossby Waves in a Random Zonal Flow

In this section we examine the interaction of small-amplitude,
nondivergent, free barotropic Rossby waves with a stochastic, sheared zonal
current. For convenience we assume that the flow is confined to an infinitely
long channel with side walls at y = 0,L. The theory is also applicable
to topographic Rossby waves provided that the bottom slope o is small
enough so that aL/H is of the order of the Rossby number. The following
analysis is entirely analogous to that of the preceding sections, and it
is therefore presented in as succinct a fashion as possible. We note the
related study of Keller and Veronis (1969) wﬁo examined the propagation of
Rossby waves in a weak random current on an infinite B~plane. For a zonal
flow of zero mean they found that the waves were damped and the wave speed
reduced.

In terms of the velocity stream function defined by

> (7.1)

the nondimensional, linearized vorticity equation is

2 woy o
(at + UBax)v ¥ 4 ‘PX(B - U"g) =0 (7.2)

~

where the zonal current. UB(y) defines the basic state. As scale factors

we choose an average current U for (u,v), the channel width L for
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(x,y), and L/U for the time; B 1is nondimensionalized by L2/U so that
the dimensionless Coriolis parameter is £ = 1 + RoBy. For a travelling

wave solution of the form

ik (x-ct) .
¥ = d(y)e » (7.3)
(7.1) reduces to
(Ug - ©) (@" - k%0) + (B - U"g)® = O (7.4)

which is precisely the equation first considered by Kuo (1949). The

boundary conditions require no flow normal to the channel wall, hence

d(y) =0 at y = 0,1. (7.5)

We decompose Ug into its mean and fluctuating components as

Ug = Uly) + eW(y) (7.6)

where E(UB) U and E(W) = 0, and we choose E(W2) = 1. Then application

of the theory developed in Section 3 leads to an equation for the mean part

of ¢,

2

[(U - c)? - e21Fp + (U - )oY - e25%y = o. (7.7)

Here F = d%/ay® - k%, 0, = - R"(0), and Q, = (B - U").

A perturbation expansion of the form (4.4) leads to the following
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results,
2 2
c;9 = E /K (7.8)
_ 2
c g = <U> + <Qy>/2K (7.9)
Ci17C0q = 0 (7.10)
= - (3/2)<(U - c )2 2,2
C;2C50 = - (3/2)< Crg) > — €/
+ (1/2K2)<(U = e 0)0> - icio<(U - cpg) | ¥p>
+ilejo/2KA)<gy | ¥p> - (7.11)
Here
1 1 5
<E(y) fgly)> = [ v, WEWgay/[ vy (y)dy (7.12)
0 0
and
<f(y)> = <f(y)| wo(y)> : (7.13)
where wO = AO sin{nmy) and K2 = k2 + n2ﬂ2. Again one finds that Contl

vanishes and that wZn/AO and Lp2n+l/A0 are real and imaginary quantities
respectively.

These expressions are generalizations of those found by Manton
and Mysak (1976) for plane Couette flow; their results may be recovered by
putting ‘U =y and Qy = 0. In particular, they showed that all modes

travelled with the same constant phase speed; the inclusion of a nonzero



70

vorticity gradient in the present model serves to separate the dispersion
curves as 1is revealed by (7.9). Somewhat more specific results are given
in Appendix C for a parabolic flow model, U = By(y - 1)/2.

Finally, we note that the present theory is not in conflict with
the study of Keller and Veronis which predicts wave damping. Their results
require two-dimensional, translational invariance of the basic state
(Keller, 1967), a condition which cannot be satisfied by a system with a
sheared mean current or by one confined to a channel. Hence their results

do not apply to the present system, even in the limiting case of U = 0.
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8. Summary and Concluding Remarks to Part I

It has been demonstrated that shelf and Rossby waves propagating
through a region of basic sheared current of the form VB =V + EW where
W is a centred random function may be unstable if the lateral correlation
length of W is small compared to the characteristic length scale of the
problem., This is true whether or not V satisfies the well-known
necessary conditions for barotropic instability. The growth rate of these
disturbances is principally determined by the inverse of the correlation
length. The phase speed is the sum of weighted cross-stream averages of
the mean current and the mean gradient of potential vorticity. Depending
on the Rossby number of the system, the waves may travel with or against
the mean flow.

When this theory is applied to a model of the Florida Straits,
unstable CSWs are found with properties that are in good agreement with
observations made by Duing (1975). It may, therefore, offer an explanation

for some of the observed meanders of the Florida Current.

The present theory could obviously be extended in many ways. A
detailed comparison is needed with an intrinsically unstable system in order
to compare growth rates. One could also introduce a small, random cross-
stream velocity into the basic flow. The problem of mode-coupling has yet
to be resolved as does the effect of temporal or along-shore variations in
the basic current. Of course, the present theory represents only a first
step in a more comprehensive examination of the effects of random

potential vorticity distfributions on barotropic-baroclinic instabilities.
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9. Introduction to Part IT

The waters lying between Vancouver Island, the mainland coast of
British Columbia, and the State of Washington (see Figure 9.1) are important
from economic, environmental, navigational, and recreational points of view.
Oceanographically it is a complex estuarine system. In addition to the
major influences of tides, fresh water inflow, topography, Coriolis force,
winds and other atmospheric variables, one must consider the intense mixing
that occurs in the channels that separate the Strait of Georgia (GS) from
Juan de Fuca Strait in the south, and Queen Charlotte Sound in the north.

Part II of this thesis represents an attempt to understand some
of the results presented by Chang et al. (1976; see also Chang, 1976).
From the analysis of 18 months of current records collected along line H
in GS (see Figure 10.1),‘Chang showed that nearly one-half of the kinetic
energy associated with horizontal motions is chtained in broad-banded,
low-frequency current fluctuations characterized by periods ranging from 4
to over 200 days. No forcing mechanisms were evident from Chéng's analysis
as the coherences between the currents and the wind, atmospheric pressure,
sea level, and water temperature were all calculated to be very small.

In an earlier attempt to understand the low-frequency dynamics
of GS, Helbig and Mysak (1976) constructed an analytic model that included
both bottom topography and density stratification. This model admits
northward-travelling topographic planetary waves with periods that lie in
the observed range, but it incorrectly predicts the vertical distribution
of horizontal energy. Helbig and Mysak (1976) suggested that baroclinic
instability of the mean flow was a likely mechanism to account for observed

fluctuations, and it is from this premise that the present study commenced.
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As it turns out, this conjecture is probably incorrect as the anlysis
presented in Sections 11 and 12 shows. Two simple stability models were
constructed of a purely baroclinic and barotropic system, respectively.

For the baroclinic system the results indicate that the mean flow is
unstable for only a narrow band of wave numbers. An unstable shear wave
exists at all wavelengths in the barotropic system and for a 15-day period,
has an e-folding time of about 8 days. However, as is shown in Section 12,
the observed Cartesian velocity components are generally in phase indicating
that the motions are not composed of the types of waves studied here. These
results imply that inertial instability plays only a minor role, at most,

in the dynamics of GS.

Additional current data collected by the Canadian Hydrographic
Service at pointé not along line H (see Figure 10.1) were also examined.
Since_these.records were of limited length (about 30 days) their analysis
is subject to severe statistical limitations. It indicates, however, that
during the observation period an anticyclonic gyre existed in the southern
half of GS. Interestingly, this circulation was of the opposite sense to
that postulated by Waldichuck (1957).

The longer-term records investigated by Chang were also reexamined
with the object of gaining fresh insights. In particular, Chang calculated
rotary spectra which yield no direct information abogt the individual
Cartesian velocity components. As mentioned, the present results indicate
the motion is not comprised of simple waves. Cross-spectra between the
currents and wind stress were computed. While generally low coherence was
found, a consistent phase pattern seemed to emerge. In the frequency range
of interest, the along-channel currents are 180° out of phase with the wind.

The conjecture is made that the forcing of the low-frequency motions is not
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direct but rather that the winds interact nonlinearly with the tides and
Fraser River outflow to modulate the estuarine circulation of the system.
An examinatibn in the time domain of winds and currents suggests that the
water column responds most directly to the wind along the eastern side of
GS with a lag of about five days. The response elsewhere is not clear.

Residual tidal currents were calculated from the time series of
barotropic tidal streams generated from the numerical model of the Juan de
Fuca-Strait of Georgia system developed by Crean (1976, 1978). A coherent
pattern of residuals that varied with the fortnightly tidal cycle was
found. These currents were insufficiently large and of the wrong direction
to explain the observations, however.

The outline of Part II is as follows. A brief description of the
physical oceanography of GS is given in Section 10 and includes a
discussion of the possible character of the observed low-frequency currents
and an enumeration of various forcing mechanisms that might be important.
Two simple inertial instability models are considered in Section 11, while
the data analysis is presented in Section 12. 1In Section 13, tidal
residuals are calculated, and a brief development of the concept of
modulated estuarine flow is given. In Section 14, the key points of Part

IT are summarized.
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10. Physical Oceanography of the Strait of Georgia

Although the physical oceanography of GS has received comprehensive
treatment elsewhere (cf. Waldichuck, 1957), it is important to summarize
here some of its principal features to provide a motivation for the following
study. Some parts of this description are abstracted from Helbig (1977).

A plan view of GS is shown in Figure 10.1. It reveals that the
average width of GS is about 30 km while its length is slightly less than
250 km. Thus, the aspect ratio of channel length to width is approximately
8:1. Bathymétric sections along the lines 1-10 are presented in Figure
10.2, and were extracted from a topographic map of GS compiled by
Dr. P. B. Crean (personal communication) giving average depths over 2-km
squares throughout the Strait. Even though small-scale features are
implicitly smoothed, the bathymetry exhibits great irregularity, particularly
in the northern sector. In general, extremely steep slopes characterize GS
along its western boundary, while slopes nearly as steep (exceeding 10_2)
are common along the east. North of line 4, two channels exist: a narrow
one to the east of Texada Island and a much wider one on the western side.
South of line 4 the topography becomes progressively smoother; lines 7 and
8 illustrate the marked effect of Fraser River sedimentation as extensive
banks on the east. The longitudinal section 10 reveals that although the
axial bathymetry is somewhat smoother than the transverse bathymetry, it
still possesses a high degree of irregularity and exhibits slopes that often
exceed 10—2.

Figure 10.3 shows longitudinal sections of density for winter and
summer. In the upper 50 metres near line 7 (see Figure 10.1) there exists

a strong seasonal variation which is associated with the outflow of fresh
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water from the Fraser River. The Brunt-Vaisala frequency N = [—gpz/p*]l/2

2 1

generally lies in the range of 3 X 1073 to 3 x 1072 rad s~ throughout
the water column which is thus well stratified. Here p, is the vertical
density gradient, p, is a representative value of the density, and g is
the acceleration due to gravity.

The winds in GS are strongly affected by the surrounding
mountainous terrain, and they are predominantly up- or down—strait;.that is,
to the northwest or southeast, respectively (Kendrew and Kerr, 1955).

During the winter months of November through March the prevailing wind is
up¥strait while in the summer months of June to September it is down-strait.
In all seasons the strongest winds are from a southerly direction. There

is of course a great deal of variation ébout this average pattern. Although
Waldichuck (1957) indicates that a cyclonic gyre exists over the southern
strait during the winter, the evidence for this seems weak. We do note,
however, that the prevailing wind at Vancouver is usually to the west.

The rotary spectrum of the winds from Sand Heads computed by Chang
(1976) is shown in Figure 10.4. A rotary spectrum of a vector process, say
u, is obtained by resolving each frequency component of the discre£e
Fourier transformed vector u into two other components, one of which
rotates with a positive freqﬁency (anti-clockwise) and the other with a
negative‘frequency (clockwise) . 'ThiS'giVes a pair of spectra representing
the respective tendency of the process to move in an anti-clockwise or
clockwise sense. (The reader is referred to Chang (1976) or Mooers (1973)
for a comprehensive discussion of rotary current spectra.) Notice that a
plot of the spectrum multiplied by the frequency (fo S) against the
logarithm of the frequency is variance preserving; that is, the area under

the curve is directly proportional to the variance.
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In the present case, Figure 10.4 indicates the cyclonic tendency
of the wind. The spectra are broadly peaked about 3-5 days but the wind
has significant energy to periods as large as 25 days. Approximately 10
percent of the variance is contained in the 10-20-day band and one-third
of the variance is in periods exceeding 7 days.

Some results of Chang's analysis of GS currents are presented in
Figures 10.5-10.8. The current records examined were collected at stations
HO6, H16 and H26 as shown in Figures 10.1 and 10.5. Meters were positioned
at 3, 50 and 200m at the western (HO6) and central (H16) locations and at
3, 50 and 140 m in the easf (H26) . Chang did not analyze records from the
near surface instruments. Most of the current records were obtained with
Aanderaa Model 4 current meters, but several Geodyne Model 850 meters were
employed. The currents were sampled either every 10 (Aanderaa) or 15
(Geodyne) minutes. A subsurface buoy mooring was used for the iniéal year
of the experiment, but was replaced thereafter by a surface buoy, taut-rope
mooring. Although the threshold level of these meters is 1.5 cm s—l,
this presents/hinimal difficulties in the detection of small, low-frequency
currents since stronger tidal currents were sﬁperposed on these fluctuations.

The mean currents computed over the 18-month period are shoﬁn in
Figure 10.6. There are two significant features. The first is the strong,
cross-channel flow at the 50-m central location, and the second is the
very strong current found at 140 m in the east. The mean speed there is
five times greater than that found at the other deep locations, while the
root mean square velocity is twice as large. In the east and the west,
both shallow and deep currents are closely aligned with the locai topography.

Figure 10.7 shows the current spectra obtained by sﬁmming the

respective positive and negative parts of the rotary spectra computed by
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Chang. The area under the curve is thus proportional to the total variance

of the éignal. Examination of this figure reveals the complex nature of

the low-frequency currents in GS, but it must be emphasized that most of

the fine structure is not statistically significant to 95%. The significant
features in Figure '10.7 are: (1) the spectra are broadbanded and appear to

peak apout 15-25 days, and (2) in contrast to the 140-m signal from H26,

the 200-m records contain little energy in comparison with the 50-m records.

Chang (1976) found that coherences between currents at positions
separated both horizontally and vertically were generally small at low
frequencies as is shown in Figure 10.8. The highest value of the squared
coherence between vertically separated currents was observed in the east
and was only about 0.3. There the upper-~ and lower-layer rotary velocities
were nearly in phase which may be indicative of a barotropic motion. At
the other locations the vertical coherence was very small and the phases
were scattered; this result suggests little or no coupling between the upper
and lower layers and hence implies mainly baroclinic motions there. In all
cases the horizontal coherences were below the 95% noise level.

Chang also analyzed sea level, atmosphefic pressure, wind, and
water temperature records for the 18-month period. The temperatures were
collected>by the Aanderaa meters which were equipped to sample currents and
temperatures concurrentl?. In all cases these quantities were essentially
uncorrelated with the currents. The highest value of the squared coherence
was found between the currents and the wind at the eastern location .({about
.3 for both 50 and 140 m), which suggests that the surface wind stress may
be a possible forcing mechanism. It is not clear from Chang's analysis
what other forcing mechanisms are important.

It is épparent, however, that the low-frequency currents must
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result from more or less continuous forcing of some kind; otherwise,
friction would quickly damp out the motions. Prior to the enumeration of
various possible forcing mechanisms, it is useful to consider what charécter
the low-frequency motions might possess. First they could be wavelike.
This classification includes both a superposition of plane waves (as in
Part I)' in which the depehdence on the horizontal céordinates is sebarable
and more complex wavetypes (eddies) in which it is inseparable. Waves
could be directly forced, for example, by the wind, and move with the phase
speed of the atmospheric disturbance, or they cbuld be free and have a
.characteristic frequency. Moreover, waves could occur intermittently in
wave packets or exist almost continuously. Possible subinertial waves
include internal Kelvin and topographic planetary waves. Second, the
low~-frequency currents might be manifestations of transients that could be
initiated by a variety of driving’meChanisms. Third, they could consist of
a superposition of any}df these types. Finally, the motions might be
describable only in statistical terms.

Any mechanism capable of altering the distribution of momentum,
vorticity, or mass in the system might force the low-frequency currents.
Such mechanisms include the wind stress and wind stress curl wﬁich impart
momentum and vorticity, respectively, to the system through the sea surface.
In addition, the wind stress may introduce anomalies into the vorticity
distribution by forcing water columns across bathymetric contours, thus
stretching or compressing vortex lines. Atmospheric pressure differences
act in a similar manner at fhe sea surfaée. The momentum, vorticity, and
mass distributions may be altered internally if the mean fléw of the system
is inertially unstable. In'addition, nonlinear interactions between tidal

constituents may result in residual flows and produce tidal stresses
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analogous to the usual Reynolds stresses . (Heaps, 1978). Similarly, the
tides may interact with the topography to generate internal motions.
Finally, freshwater influxes or intrusions of saline oceanic water result
in density differences which in turn drive currents.

If the magnitude of any of these mechanisms varies in time, the
resultant motions should vary in a similar fashion. Thus one might expect
the spectrum of currents driven directly by the winds to be peaked about
3 to 5 days. as is the wind spectrum. This notion ignores thé possible
importance of the spatial characteriétics of the wind field, however, and
it is conceivable that these motions might peak ét some other frequency for
which the length scales of the winds and currents were comparable. It
seems unlikely, however, that the spatial scale of the wind decreases with
decreasing frequency. On the other hand, a relatively modest spectral
component of the wind might be capable of exciting a free wave at its
characteristic frequency.

In the case of tidal forcing, any process dependént upon the
strength of the tidal streams should vary with a fortnightly period. This
includes the turbulent mixing that occurs in the constricted channels
separating Juan de Fuca Strait from GS (Figure_lO.l). Thus intfusions of
intermediate density water into GS resulting from the mixing of more dense,
relatively deep Juan de Fuca water with outflowing, comparatively light GS
.water could generate currents of fortnightly period. In fact, Herlinveaux
(1957, 1969) has noted that semimonthly variations occur in the surface
salinity and temperature at various locations in the Juan de Fuca—Strait
of Georgia system, and that these variations are most evident near the
connecting passages. Webster and Farmer (1976) have substantiated this

observation from the analysis of a long timeseries of lighthouse station
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data. These findings suggest that the degree of mixing depends on the
tidal range and hence varies with a fortnightly period.

It is also possible that Juan de Fuca Strait and GS are
dynamically coupled and that influences in one may directly or indirectly
force motions in the other. Interestingly, Fissel and Huggett. (1976) have
shown that low-frequency current fluctuations of about a 15-day period
also occur in Juan de Fuca Strait.

Motions could also be driven by one or more of the above-mentioned
mechanisms. For example, the Fraser River outflow (Figure 9.1) might
interact nonlinearly with the tidal éurrents resulting in a fortnightly
modulation of the basic estuarine flow.

Finally, it is possible that a significant fraction of the observed
low-frequency currents in GS can only be classified as geostrophic turbulence.
That is, nonlinear interactions between both large- and small-scale motions,
irrespective of their sburce, may be a predominate influence. Rhines (1975)
has demonstrated that in a geostrophically turbulent system, small-~-scale
fluctuations tend to evolve into larger-scale, more well-defined, planetary
wavelike motions.

Clearly, this discussion of the character of the observed
low-frequency currents and possible forcing mechanisms is not exhaustive.
Perhaps many or all of the mentioned mechanisms play a significant role in
GS dynamics. In Part II of this thesis, the inertial stability of the mean
flow aﬁd the residual tidal circulation are. examined in greater detail. A
few comments are also made concerning the possible interaction of the tides,

Fraser River outflow, and the winds.
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11. Inertial Instability Models

As mentioned in Section 9, at the conclusion of a previous study
(Helbig and Mysak; 1976), it was strongly suspected that inertial
instability of the mean flow within GS was an agent responsible for a major
proportion of the observed low—fréquency energy. This belief was based on
two facts. First, the phase speed of a low-frequency wave of moderate
wavelength would be comparable to mean current speeds as a purely kinematic
argument shows. Consider a l4-day wave of length A. If X is expressed
in kilometres, the phase speed in cﬁ s~ is given‘by .08\; this gives,
for example, a value of 8 cm s-l for a 100-km wave, a speed within the
range of the currents. Second, based on the findings of Chang (1976),
there was no apparent forcing mechanism for the fluctuations.

In particuiar, it was felt that the instability would be primarily
baroélinic, the lateral shear of the currents playing a relatively minor
role. This hypothesis was based on two premises. First, vertical shears
were generally observed to be larger than horizontal shears (with the
exception of the deep eastern station). Second, Helbig and Mysak (1976)
showed that' for an idealized model of GS, topographic planetary waves exist
with frequencies that lie in the observed range for reasonable ¢hoices of
the wave length. The vertical distribution of horizontal kinetic energy
(i.e., that associated with the horizontal motion) for these waves was
opposite to that observed. Thét is, the waves were bottom trapped. It was
felt that perturbations of this form, perhaps initiated by the Qinds, might
grow in time by extracting potential energy from the mean flow with a

resultant enhancement of upper-layer kinetic energy.
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Baroclinic Instability

Therefore, the first step in the analysis of the inertial
stability of GS was to extend the model of Helbig and Mysak (1976). A
two-layer system confined to a channel with a sloping bottom and with a
constant mean velocity in each layer was adopted (Figure 11.1). For
parameters characteristic of GS, the results below indicate that instability
can occur only for a narrow band of wavelengths. The primary reason for
this is the strong stabilizing effect that the narrow channel has on the
system, as it limits the effective waveléngth of any perturbations. It is
interesting that this effect was also largely responsible for the high
degree of bottom trapping found by Helbig and Mysak.

This model has been applied by Mysak and Schott (1977) and Mysak
{(1977) to the Norwegian current and the California undercurrent,
respectively, with considerable success. Although the present.development
of this model was carried out independently, its details are_restricted to
Appendix D since the model has appeared in ﬁhe literature.

The dynamics of baroclinic instability derive from the conserva-
tion of potential vorticity. The goverﬁing equations expressing this were
first derived by Pedlosky (1964), and the derivation presented in Appendix
D is similar although it differs in some respects. The basic state is
specified by the conétant.currents Vl and V2 (see Figure 11.1) which
are in geostrophic balance with the mean surface and interfacial displace-
ments. A perturbation with initial vélocities small compared with mean
currents is applied to the system. If it grows in time the system is said
to be unstable. The nondimensional equations governing the perturbed state

are
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2 114 —
[at + vlay] v <I>l + Fl(<I>2 - <I>l)] - @ly[v 1 Fl(v1 - V2)] =0

(11.1)

By + Vy3,1[V20, = Fy(0, = 01)] = 0y [V"y + Fp(Vy - Vp) + T] = o.

(11.2)

Here @l and @2 are stream functions for the perturbation velocities,

u; = - @iy (11.3)
(11.3)
v; = ®ix (11.4)

where i = 1,2 sgpecifies the layer, and ®1 and @2 are defined in terms

of the perturbation surface and interfacial displacements Cl and Cz ’
respectively,
% =2
(11.4)
@2 = gz + Cl .

The following scale factors were used in the nondimensionalization: L
for the horizontal coordinates (x,y), a typical current U for the
velocities (u,v), an advective time L/U, and fUL/g and fUL/g' for
El and §2 . respectively. Also appearing in (11.1) and (11.2) are the

layer internal Froude numbers Fl = f2L2/g'hl and Fy = f2L2/g'h where

20

g' = g(py - P;)/P, is the reduced acceleration due to gravity; T is a
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topographic parameter -defined by T = - (L/Rohzo)(dhz/dxdim)' and
Ro = U/fL is the Rossby number for the flow. The negative sign ensures
that T is of the same sign as the bottom slope, and the subscript "dim"
denotes a dimensional variable.

ik (y-ct)

For wavelike perturbations of the form ¢ie , (11.1)-(11.2)

reduce to

(Vy - o) [¢"y - k2¢l] - ¢V - F (V) - V)]

-+

Fi(Vy - ) (dy - ¢7) =0 (11.5)
(V, - c)[p", - k2¢2] R PIAAPE F,(V; = V,) + Tl
- Fy(Vy = ) (dy - ¢9) = O. (11.6)

For constant Vl and V2 . the solution is

N
¢l = A, sin nTx
n=12, ..., (11.7)
¢, = By sin nmx
J
where
2
K= + Fl Vl - V2
Br=| "7, * ooy, | (11.8)

2 2 . .
and K = k" + n2ﬂ2 is the "total" wave number. If the solutions are

unstable, A, and B, will be complex and the velocities in the upper and
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lower layers will be out of phase. The phase speed is given by

1

2
1 K2 (K2 + F

2 oew2y
TN {(&® + F) (T - sKk?) F,SK

£ (L% + Fy) (T - sK?) + FlSK2]2
+ ap;F, sk (T - sk?]) M2} (11.9)
where 8§ = Vy - V, is the vertical "shear." With no loss of generality,

T 1is restricted to be positive while S may have either sign.
The ratio of the horizontal kinetic energy (HKE) per unit depth
in the upper layer to that in the lower layer averaged over the area defined
by the channel width and one wavelength in the y-direction is
2

2 Fl (Vl - Cr)z + Cs

2

Q) - Fis/ &2+ P12 4 2L (11.10)

2 2
(k% + F)2 [(V] - ¢c i

By HKE we mean the kinetic energy. associated with the horizontal components
of motion. An integration of (11.10) over the layer depths gives

R = (hy/hyo)R (11.11)

so that R represénts the ratio of the total HKE in the upper layer to that
in the lower layer.

Two limiting cases are of interest. In the first we set
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V, =V, =0 to obtain
2
+ F
T(K l)

oo (11:12)
K2 (k% + Fy + F,)

- 2
1

(K2 + F

e}
1

5 < 1. (11.13)
1) ‘

These results are essentially those obtained by Helbig and Mysak (1976) for
bottom intensified, topographic planetary waves in a 2-layer channel. 1In
the second case, we put T = 0 to obtain the 2-layer analogue of the

classical Eady (1949) solution,

S 1/2}

c=v, - {&* + 2rp = ? - aF;F,) (11.14)

2
2(K° + Fl + F2)

From (11.11) we see that R = 1 and the two layers contain equal‘amounts
of HKE irrespective of their thicknesses.

In the general case, the stable solutions lie between these two
extremes. For sufficiently large T, one root of (11.8) corresponds to a
shear modified topographic wave while the other represents a topographically
modified shear wave. Whether or not these waves are more intense in the
upper or lower layer depends upon the choice of paraméters. In the present
case at wavelengths for which the system is stable, one wave is concentrated

in each layer. Unstable waves are found to be more energetic in the upper
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layer. On the other hand, for Norwegian current parameters, Mysak and

Schott (1977) found unstable waves to be bottom intensified. 1In a recent

study, Wright (1978) has treated this question in much greater detail.
From (11.9) we see that if S 1is positive a necessary but not

sufficient condition for instability is
s > T/K2. (11.16)

The bathymetry thus acts to stabilize the flow if the bottom slopes upward
to the east and is a destabilizing influence in the opposite case. This
agrees with the findings of Blumsack and Gierasch (1972) for a continuously
stratified system. However, this notion must be qualified, for the
presence of weak. topography may render a flow unstable. To see this

4

consider a system with F, =F, and K’ = 4F1F2 corresponding to a neutral

Eady wave (see 11.14). Then (11.9) becomes

1/2
3t - sr,s 1/ 2[97 - 16F,S]

+
16F z 16r, , (11.17)

and if 16FlS >9T (i.e., S > 9T/8K2), the system is unstable with a
growth rate proportional to Tl/2. DeSzoeke (1975) has studied the inter-
action of Eady waves with topography.

Numerical results corresponding to the general relation (11.9)
are now presented. Figures (11.2) and (11.3) illuétrate typical stability
boundaries for the system. The former shows the}stabilizing effect of a

positive bottom slope. As T increases, the region of instability shrinks

in size and shifts to smaller wavelengths. There are no unstable waves for
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negative S (cf. 11.9). Figure 11.3 illustrates the dependence on the

parameter V =F, + F, which may be rewritten as the square of the ratio

1l
of the channel width L to the internal Rossby radius of deformation ry o
| 2%y + hyy) L 2
V=F) +F,= _ : = (79 . (11.18)
v 1
ERRRYS

For small Vv, i.e., for harrow channels or strong stratification, the
region of instability is relatively narrow. As V increases, corresponding
to an increase in the channel width, a decrease in the stratification, or a
thinning upper layer, this region spreads out and shifts to higher wave-
numbers.
Parameters characteristic of GS are Vv = 7.5, A = hl/(hl + h20) =
.14, and T = 7.4 (Helbig and Mysak, 1976). (Note that F, = Av  and
F, = (1 - A)v.) For these parameters, the first-mode dispersion curves are
shown in Figure 11.4 for the cases S = 0.5’(V2 = 0.5Vy;) and S‘= 1.5
(V2 = = 0.5Vy). In the first case, which is generally representative of
GS, the system is unstable only in the wavelength band of 40-46 km. The
most unstable wave has an e-~folding time of 78 days, a period of 11 days,
and is intensified in the upper layef (R =1.3). In the second case, in
which the currents are directed in opposite directions, the first mode is
unstable for all wavelengths exceeding 93 km. The most unstable wave has
a period of 70 days and an e~folding time of 39 days, and is strongest in
the upper layer (R = 2.8). .The higher modes are stable in each case.
Figure 11.5 dramatically illustrates the disparate nature of the
two roots of (11.9) for GS parameters. While the phase speea of the shear

wave is almost independent of T, that of the tdpographic wave varies
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Figure 11.5 The baroclinic model, mode 1, phase speed as
a function of topographic parameter for
k/2m = 0.1, 0.5, and 1.0.
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linearly with T.

Barotropic Instability

A simple barotropic model is now considered in order to gain some
idea of the importance of horizontal shear. The model is illustrated in
Figure 11.6. Although an exponential bottom profile is chosen for
simplicity, this choice does not severely limit the conclusions drawn here.
Indeed, the sloping topography has little effect on the unstable waves.

The governing equations are abstracted directly from Part I; with

€ = 0, (3.8) reduces to

[ 2 [R -1 -+ V']'
. 0 -
(Vv - <) [(%) - =5 41 - 5 ¢ =o0. (11.19)
We specify
Vl 0<x<d
V(x) = (11.20)
V2 d<x =1
and
2b (x-1)
h(x) = e (11.21)

and thus obtain a constant coefficient differential equation in each region.

As before, the boundary conditions are (cf. 3.19)

=0 at x=0,1. (11.22)
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Figure 11.6 .The barotropic instability model.
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The solution is giﬁen by

A, sin le' 0= x< d
¢ (x) = LD (11.23)
A, sin Az(x -1) d<x=1
where
Ao g2, p2 i=1,2 (11.24)
i TRy - O 2 ’

In order that the normal fluxes of mass and momentum be continuous at the

material interface centred at x = d, ¢(x) must satisfy

-
V-c (11.25a)

> at x = d.

[(V - )¢ - v'$] = 0 ) : (11.25b)

(These relationships are derived in LeBlond and Mysak, 1978; p. 429.
However, (11.25b) differs from their (45.9) since they effectively assumed
that ¢ is continuous. In the present case it is not, and one must proceed
from the integral relationship preceding their (45.9).) Application of these
conditions leads to the implicit dispersion relation

vy - c)z)\l v, - c)2>\2

— "b[(Vl - C)
tan de tan Xz(d-D

2

- W, - % =0, (11.26)
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Several limiting cases are of interest. In the first we put

<
I

1 vV, to obtain tan sz = tan 12(d - 1) which has the solution
A, = nm  independent of d. This gives
2b

c =V, - (11.27)
2 Ro(k2 + b2 + nzﬂz)

which is the dispersion relation for a free continental shelf wave in a mean

current V2 (cf. 5.21). 1In the second case we put b = 0 +to obtain

. vV, o+ Qv, . igt/? v, - v
(1 + 0) 1+9 ' 1 2

(11.28)

where Q = - tanh kd/tanh k(d - 1) and is positive. ‘These waves travel at
a speed given by a weighted average of the mean currents and grow in time
at a rate proportional to the shear. Finally, in the short wave limit of

k - o

, (11.26) reduces to

V, + V (v, - V,)
c = L 2'1 i L 2 . (11.29)

2 2

Equations {(11.28) and (11.29) represent a pair of shear waves, one of which
is unstable and another which decays in time.

Aé these special cases suggest, there are at most three sclutions
to (11.26). For nonzero b and S, where. S = V2 - Vl . there exist a
pair of complex roots for all k, corresponding to amplified and damped
modified shear waves. Provided that both Al and Kz are real, a third,
real root exists énd represents a shear modified CSW. This restriction may

be expressed as
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2b
2 2
Ry(k“ + b ) . (11.30)

The region in k, S space in which CSW's exist is shown in Figure 11.7.

Along the line V, = vV, only a CSW is found.

To determine a value of S appropriate to GS, the mean currents

along line H were depth averaged as

[hlEl + h2 (X)'le]

Ugp = ; : (11.31)
[hl + h2(x)]

hl was chosen as 50 m and h2 was determined for each mooring. The
results are shown in Figure 11.8. A reasonable choice is V2 = 1.0,
Vy = 0.5 (with a scale velocity of 5 cm s—l), d=0.66, and b = - 0.3.

The dispersion relation for these values is shown in Figure 11.9. It is
seen that a CSW exists for wavelengths greater than 55 km. An unstable
shear wave of 15-day period has an e-folding time of about 8 days, a phase
speed of about 4 cm s—l and a wavelength of 44 km. It is possible therefore
that a shear instability of this type might play some role in GS dynamics.
However, in the next section it is shown that the motions in the 15-day band
are predominantly nonwavelike in the sense of the waves studied here. This

implies shear instability is of limited importance in GS.
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Figure 12.1 Plan view of the Strait of Georgia showing
current meter locations. These lines should
not be confused with those of Fig. 10.1.
Winds were recorded at Sand Heads.
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course, none of the peaks are statistically significant to 95 percent but
these spectra do indicate the existence of low-frequency energy at locations
north of line H. The comparatively quiet spectfum from Station 41 may be
due to the fact that the meter lies in the "shadow" of a topographic high
just to its south.

Spectra computed from lines 5, 6 and H records for the 26-day
period beginning 29 August 1969 are shown in Figure’l2.3b. These time series
were treated as above, and the spectra all indicate low-frequency energy.
The record from Station 64, 50 m is of dubious quality and thus is of limited
value for comparison with H26, 50 m.

Mean currents were calculated directly from the time series, and
current ellipses (see; for example, Stone, 1963) were constructed from the
avefage of the lowest two spectral bands. The ellipses are illustrated in
Figure 12.4 by their major and minor axes, although in several cases, the
latter is too short to be visible. Due to the statistical limitations of
the data, no indication is given of either the direction of rotation of the
oscillating current vector around the ellipse or of the relative phases
between ellipses. Of course, the ellipse parameters are subject to
contamination by trends during the period of analysis since these affect the
lowest—frequency-spectral estimates, and thus the ellipses calculated here
must be viewed with caution. Of particular interest in Figure 12.4A is the
cross-channel oscillating flow suggested at H16, 50 m and Station 43, 100 m.
The pattern of mean currents illustrated in Figure 12.4B is extremely
interesting since. it indicates a closed, clockwise, mean circulation in the
lower strait. Whilé this may not be true for longer periods; it lends
support to Waldichuck's (1957) conjecture that a gyre exists. It is,

however, of the opposite sense to that indicated by Waldichuck. During this
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Figure 12.4A Mean currents and the 6-32-day band current ellipses for the
26-day period beginning (A) 2 May 1969 and (B) 29 August 1969.
The ellipses are indicated by their major and minor axes.
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period, the flow at H26, 50 m is southward whereas the 18-month mean flow
is northward (Figure 10.6). This implies that the gyre may not be a
permanent feature. A closed circulation is not indicated forrthe central
strait during May 1969 (Figure 12.4A). The strong axial current present at

H26, 50 m is not observed at Station 47, 100 m.

Wind-Driven Motions

The dynamics of low-frequency, large-scale motions are due in
large part to the conservation of potential vorticity, and it is the wind
stress curl. that enters the vortiqity equation as a forcing function. 1In
addition, if the system under consideration possesses significant bottom
topography, the wind stress itself may induce vorticity by forcing water
columns across bathymetric contours thus squeezing or stretching vortex
lines. Indeed, in a barotropic system the vorticity input by this mechanism
may far exceed that due to the wind stress curl (Gill and Schumann, 1974).

.Chang (1976) calculéted cross-spectra between the winds and
currents along line H and found the coherence to be generally small at low
frequencies. However, the use of rotary spectra does not reveal.relation—
ships between the vafious rectangular components of the currents and the
winds. Moreover, the fact that the current spectra are peaked at ébouf 14
days (at least for the eastern and western stations), that the motion may
be barotropic at H26, and that the period of a free CSW for GS parameters
is about 14 days for a variety of bottom profiles (see, e.g., LeBlond and
Mysak, 1977; or Csanady, 1976) suggests very strongly that the wind stress
might force modified CSW's. It is therefore sensible to examine the
relationship between the wind stress and the currents by computing components

spectra. Sufficient data do not exist to adequately determine the wind
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stress curl, which at any rate is a difficult task due to the effect the
complex orography of the British Columbia coast has upon the winds. That
is, measurements taken at land-based stations are not necessarily
representative of conditions at sea. One could attempt to evaluate the
wind stress curl from atmospheric surface-pressure maps, but it is a tedious
exercise and is not pursued here. We note as before, however, that the
ensuing analysis implies that -the low—fiequency currents are not simple
wavelike motions of the type studied in this thesis. In this respect,
therefore, it is unlikely the wind stress curl plays a significant role.
Figure 12.5 shows the spectrum of the wind stress at Sand Heads
for the 500-day period beginning 4 April 1969. Sand Heads is located in
shallow water at the mouth of the Fraser River (see Figure 12.1) adjacent
to a relatively flat region. Thus winds measured there should be compara-
tively free of local topographic influences. The wind stresses were computed

using a quadratic law with a value of 1.5 X lO"3

for the drag coefficient.
Its exact value is unimportant in this discussion since it enters only as a
scale factor,

Figure 12.5A shows the true northward and eastward components of
the wind stress. Both are peaked at about 3 days, but significant variance
is present to periods up to at least 20 days. The mean axis of GS is
directed approximately 50° west of north, and the spectra rotated by 50°
are shown in Figure 12.5B. Since significantly higher coherences were
found in test runs using the rotated wind stress time series, they were
employed.in the following anaiysis. On the other hand, in the vicinity of
line H, the topography runs nearly north-south. Therefore the currents

were not rotated. All subsequent figures refer to the rotated wind stress

and nonrotated currents.
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The 209-day period beginning 29 Augqust 1969 was selected for
analysis, as records existed at all stations along line H (Figure 12.2).
Large gaps in the time series were deleted from good as well as bad records
and the time series were linearly interpolated across short gaps of the
order of a day or two. The resulting record wés 136 days in length.

Curreﬁt spectra computed from these time series are shown in
Figﬁre 12.6; the spectrum of the wind stress is essentially that shown in
Figure 12.5. Two exemplary plots of coherence and phase between the
currents and the along-strait wind stress are shown in Figure 12.7. They
illustrate the generally low coherence observed which decreases with
increasing frequency and the tendency for the currents to be either in
phase or 180° out of phase Qith the along—sﬁrait component of the wind stress.

A more detailed presentation of the coherence and phase relation-
ships is shown in Figure 12.8 for the 34- and 13-day bands. Statistically
significant coherences are found in many cases, although in some, due
respect must be paid to the amount of energy in the given signal. Thus,
for example, the meaning of high value of Y2 = ,6 in the 34-day band
calculated for HO6, 200 m, is unclear due to the corresponding low value of
the spectrum there (Figure 12.6). The most striking feature, however, is
the consistency with which the phase estimateé cluster about either 0° or
180°. This tendency together with the fact that phase determination may be
good even though the corresponding coherences are insignificant (Schott and
Duing, 1976) instills some degree of confidence in the calculated phases.
More specifically, phases between currents and the along-strait wind stress
tend to be close to 180°, while those between the currents and the cross-
channel wind stress lie near 05. The along~strait wind stress- is, of course,

considerably more energetic than the cross-channel component.
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These phase results should not be interpreted to mean, for example,
that the currents flow down-channel when the winds blow up-channel. They
imply simply that the currents are in opposition to the given spectral
component of the along-strait wind. The relationship in the time domain
between the currents and winds will be examined shortly.

Table III lists the coherences and phases calculated between
velocity components for the 13- and 34-day bands. If a motion is composed
of the types of waves studied here, then the phase difference between u
and v should be somewhere near 90°. Deviations from this value may be
caused by friction (see, e.g;, Csaﬁady, 1978) or by instability (see Section
4). With the exception of the value of ¢ = 117° for H26, 140 m at 34
days, examination of Table III shows that if a significant coherence is
found, the corresponding phase is either near 0° or 180°, that is, the
motion is linearly polarized. This implies, with the noted exception,
that the motion is not wavelike. This is true, in particular, for the
obse;ved 13-day current oscillations at H26 for which the pfevious evidence
strongly suggested the contrary. On the other hand, the results for 34
days for H26, 140 m, do suggest a wavelike character and it is enﬁicing
to speculate that this might be a bottom-enhanced wave of the type
described by Helbig and Mysak (1976). There is no direct evidence, of
coufse, to support this speculation, and the motion is just as likely to
be barotropic. We note, however, that CSW's of 34-day period should have

wavelengths in excess of the length of GS (see, e.g., Figure 11.5).

The mean currents and current ellipses for the 13- and 34-day
bands are shown in Figures 12.9 and 12.10. While the mean flow is similar
to that calculated for the full 18 months (Figure 10.6), the deep currents

in both the east and west are considerably stronger. Indeed, at HO6 the
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Table IITI. Calculated coherence squared and phase between velocity
components for the 136-day period of analysis. A positive

phase indicates that v leads u.

13 days 34 days
. 2 2

Station Depth Y ¢ (degq) Y $ (deg)
HO6 50 .36 - 4 .08 52
200 .24 -~ 11 .10 - 178

H1l6 50 .01 3 .05 39
200 .29 179 .69 179

H26 50 .37 5 .18 177
140 51 2 .48 117
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upper- and lower-layer mean flows are nearly the same. The current ellipses
bear a striking resemblance to the respective mean velocities. Although
trends during the period of analysis may contaminate the 34-day band (which
. is averaged over the second to sixth frequencies), they should exert minor
influence on the 13-day band (which is averaged over frequencies 7-14).
These results thus may imply a dynamical relationship between the mean and

fluctuating flows, a point which is discussed further in the next section.

It is evident from the figures that the channel boundaries exert a strong
topographic influence on the near-shore currents.

Approximate barotropic and baroclinic time series were formed by
depth averaging the 136-day records. Indeed, the period of analysis and
the treatment of the data recordé were selected for this purpose. The

velocity time series were combined as

u = (hlEl + h2_t_1_2)/(hl + h.)

2

Upe = hy(u; - uy)/(hy + hy)

to give barotropic (EBT) and upper-layer baroclinic (ups) records,
respectively. The upper-layer depth hl was éhosen as 50 m since this
corresponds to a reasonable fit of a two-layer model to the observed
density distribution (Helbig and Mysak, 1976). The lower-layer depth h,
was then simply obtained from the total depth at each mooring. The
vertical velocity profiie is, in reélity, much more complex. If a greater
number of meters had been used at each station, the method of empirical
orthogonal functions could have been employed to resolve the vertical

structure (see, e.g., Mooers and Brooks, 1978). No other choices of hl
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were tried.

Each time series was spectrally analysed, but the barotropic and
baroclinic spectra were almost indistinguishable from the lower-~ and upper-
layer spectra, respectively.. The results were incohclusive with regard to
correlation between the wind and currents. In some cases higher values of
Y2 were found but in others the correlation was diminished. It is difficult
to determine, therefore, if the separation was successful.

The barotropic and baroclinic mean currents for the 136-day period
are shown in Figure 12.11. While the barqtropic means are similar to the
lower-~layer means of Figure 12.9, the baroclinic means are less suggestive
of a gyrelike circulation than are the upper-layer means.

One current meter, that at H16, 50 m, operated almost continuously
over the 18-month period. ‘Consequently, the SOO—day time series of currents
and winds beginning 17 April 1969 was analyséd for comparison with spectra
computed from shorter record lengths. The current spectrum is very similar
to that shown in Figure 12.6. In general, the calculated coherences between
the currents and winds are decreased from those shown in Figure 12.8 for
both the 34~ and 13-day bands. Interestingly, in the former band, the
cohérence between the velocity components increased from 0.05 to 0.23.

The computed phase differences were similar, and in particular both the u
and v components were nearly l80°.out of phase with the wind stress.

In order to obtain an appreciation in the time domain of how the
water column responds to the wind, the two-month period of March-April 1970
was selected for more intensive study. This period was chosen for two
reasons. First, records were available for all meters for most of the
period. Second, during this time several significant storms occurred, some

with northwest and some with southeast winds. The time series of winds and
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currents were filtered with an A242A25/(242 + 25) filter (Godin, 1972)
in order to remove diurnal and semidiurnal oscillations. This is a low-pass
filter and produces a record with a twelve-hour time step. The results are
shown in Figure 12.12. Notice that the wind has been advanced five days
with respect to the currents. As before, the wind stress was rotated to
bring it into alignment with channel geometry.
Seven wind events are identified in Figure 12.12; peak values of

the wind stress occur for Eq (down-strait) and E (up-strait). For the

6
50-metre record at H26, the signature of the wind on the currents is clear,
and the currents lag the wind by about five days. Similarly, the response
at the 140-m station is apparent for the first month. For the second month,
however, some ambiguity exists in the assignment of E3 - E; . If the
choice indicated is correct, then a down-strait wind does not necessarily
produce a down-channel current (compare events E3 ’ E4 , and E7). This
is opposite to the response observed at 50 m. It is not possible to
definitively correlate currents and wiﬁds at the central 50-m station, but
the correlation at 200 m is clear-cut, again with a 5-day lag. It is also
not possible to make the assignment at HO6, 50 m for the one-month record
that exists. As was the case for the deep eastern meter, correlation of
winds and currents at HO6, 200 m, is ambiguous in the second month. Unlike
the eastern station, however, the chosen assignment indicates direct response
to the wind with a 9-day lag. In the first month the lag is about 7 days.

In an attempt to determine if the response to the winds observed
at 50 m is representative of the entire upper water column, progressive
vector diag?amS'of the currents at 3 m and 50 m [Tabata and Stickland,
1972a; 1972b; 1972c; Tabata et al., 1971] were‘compared with one another

and the wind for the period beginning April 1970 (Figure 12.2).
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At all stations there were times during which the currents at both levels
were obviously correlated and in phase with each other and the wind. But
there were also times during which the currents were out of phase with each
other or the wind. Similarly, the horizontal relationships between the 3-m
currents were unclear. However, the currents at H06 and H16 were, at times,
highly correlated and in phase. Therefore, by comparison with the 3-m
currents, it is difficult to state if the measurements at 50 m are
representative of the entire upper layer.

In summary, examination of the data has indicated several interest-
ing features. First, the low-frequency fluctﬁations are not isolated to
the vicinity of line H or the southern strait. Second, as suggested by the
spectra and response to the wind, Station H26 may lie in an oceanographic
domain distinct from the other two stations. Third, the oscillating currents
bear a resemblance to the mean flow which may indicate that the two are
dynamically linked. If this supposition is valid, then three alternatives
are possible: (1) the fluctuations are due to the mean currents (inertial
instabilityL (2) the mean flow is a byproduct of the osciliations
(transients, arrested waves; see, e.g., Csanady, l978), or (3) they are both
caused by some.other agency of the type outlined in Section 10. The first
possibility may be ruled out on the basis of results of Section 11 and the
fact that the components of the observed oscillating curfents tend to be in
phase. The last alternative is explored briefly in the next section.
Finally, the wind obviously plays some role in GS dynamic¢s but its role is

not clear.
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13. Nonlinear Tidal Interactions

In an earlier study, Helbig and Mysak (1976) discounted the
possibility that the tides were responsible for the low-frequency motions
in GS. However, they were referring to the fortnightly Mg tide and did
" not consider the possibility of nonlinear interactions between tidal
constituents. In a system like GS with large variations in bottom
topography and channel geometry, it is likely that such interactions produce
significant fortnightly variations in the tide. These interactions occur
between tidal constituents through frictional or advective terms, and the
resultant oscillations are known as shallow-water constituents. The
harmonic constants for diurnal, semidiurnal, and higher-frequency tidal
constituents are listed in Table IV and were obtained from the analysis of
a 38-day record of tidéi heights observed at Point Atkinson (see, e.g.,
Figure 12.1). From the frequencies given in Table IV, one may show that
interactions between the M, and K2 r M, and 82., 04 and Kl , and
Ol and Py constituents all produce shallow-water constituents of
fortnightly period. For example, the M, - S, interaction gives the MS ¢
constituent with a 14.76-day period, while the 0; - Ky interaction results
in a 13.66-day oscillation.

In this section two types of tidal interactions are considered.
The first I term direct, nonlinear interaction and is that just outlined.
The second or.indirect, nonlinear interaction consists of the interaction
of the tide with another agency. In particular, I speculate upon the inter-
action of the tide with the Fraser River outflow.

To determine the significance of the first mechanism, results

generated from the Department of the Environment numerical tidal model of
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Table IV. Results of the harmonic analysis of tidal elevations at Point

=
(o}

O OO0 d W+

Atkinson for the 38-day period beginning 6 April 1976. The
P; and S; constituents are inferred from K, NU, is
inferred from N, , T, and K, are inferred from Sé .
(Dr. J. A. Stronach, private communication.)

Constituent

Name Frequency (cpd) Amplitude (cm) Greenwich phase (deg)
Z0 0.0 30.2087 0.0
291 0.85695237 0.1155 96.73
Q1 0.89324397 - 0.6998 326.92
o1 0.92953563 3.9706 215.33
NO1 0.96644622 : 0.4666 276.69
Pl 0.99726212 2.8014 347.70
S1 1.00000000 0.3242 154.08
K1 1.00273705 7.9255 95.47
Jl ' 1.03902912 0.4867 359.38
001 1.07594013 0.1736 221.21
MNS2 1.82825470 0.1048 322.62
MU2 - 1.86454678 0.3987 317.05
N2 1.89598083 2.0722 249.94
NU2 1.90083885 0.3795 228.27
M2 1.93227291 9.3629 148.55
L2 1.96856499 0.2994 262.76
T2 1.99726295 0.1426 24 .32
S2 1.99999905 2.2687 298.19
K2 2.00547504 0.4967 220.37
28M2 2.06772518 0.0464 1.47
MO3 2.86180973 0.0132 137.41
M3 2.89841080 0.0187 247.17
MK3 2.93500996 0.0152 87.29
SK3 3.00273800 0.0095 203.48
MN4 3.82825470 0.0106 276.20
M4 3.86454678 0.0353 139.86
SN4 v 3.89598179 0.0083 281.85
MS4 3.93227291 0.0283 341.27
sS4 4.00000000 0.0093 = 291.57
2MN6 5.76052761 0.0569 146.10
M6 5.79681969 0.0709 33.69
MSN6 5.82825565 0.0220 266.26
2MS6 5.86454582 0.0826 198.62
2SM6 5.93227386 0.0209 334.93
3MN8 : 7.69280148 0.0086 51.41
M8 7.72909451 0.0177 97.38
3MS8 7.79681969 0.0077 327.90

M12 11.59364128 0.0087 99.16
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the Juan de Fuca-Strait of Georgia system (Crean, 1976; 1978) were examined.
This is a two-dimensional, vertically integrated model utilizing an explicit,
forward-stepping, finitevdifference scheme; adjoining inlets‘and northern
passages to the open ocean are simulated as one-dimensional channels. In
the latest version, a 2-km mesh size is employed. The system is driven by
specifying tidal elevations along the open boundaries; thése elevations are
obtained from a 61 harmonic constituent tide.

A 13-day time series of velocities and elevations with-a time
step of 15 minutes has been generated from this model. To determine the
residual currents, the veldcity time series was first smoothed to one hour
with an A42A5/(42 * 5) filter (Godin, 1972) and then low-passed filtered
to 12 hours with the A,,°A,c/ (247 * 25) filter previously described which
effectively eliminates oécillétions with frequencies exceeding 0.8 cpd.

Bf residual, we refer to the remaining low-frequency components. Three days
of data were lost in the application of the two filters leaving a 10-day
time series. The residual flow along line 'H 1is indicated in Figure 13.1
for 3 separate days; the average flow over the 1l0-day period is shown in
Figure 13.2. The currents calculated for the grids encompassing stations
H26, H16 and HO6 are illustrated in Figure 13.3. The tidal elevation and
range based on the predicted tides for Point Atkinson are also shown in
Figure 13.3 for the period of the analysis.

It is evident that a coherent pattern of residual circulation
exists, and that it is dependent upon the tidal range. It is also clear
that the strongest residual flows occur near the eastern boundary.
Unfortunately, the time series is insufficiently long to fully resolve a
fortnightly variation, and it is possible that the very strong flows occur-

ring at the beginning of the analysis period may be transients associated
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" with starting the model from an initial state of rest. However, the model
was run for two (tidal)vdays prior to the 13-day period in order to avoid
this problem. At any rate, it is clear that the residual motions are of
insufficient strength_and improper direction to serve as an explanation of
the observed low-frequency motion aloﬁg line H.

On the other hand, nonlinear tidal interactions may be important
in other ways, for example, in the generation of internal tides or in
interaction with the Fraser River. While the residual flow does not resolve
the present problem, it clearly merits further investigation. 1In particular,
it is likely to be significant in the southern tidal passes (Crean, 1978;
Figures 12 and 13).

Finally, I speculate on the possibility that the tide interacts
nonlinearly with the Fraser River outflow to produce, in part, the observed
low-frequency currents. An examination of the Fraser River discharge at
some distance upstream from the mouth indicates no consistent fortnightly
or monthly variations {(Figure 13.4); the discharge is dominated by the large
annual peak that occurs in late spring and is due to the melting of the
snowpack. However, near the river mouth the tide modulates the river flow,
indeed the region comprises a salt-wedge-type estuary. If the magnitude
of this interaction varies with tidal range, then it is possible that motions
that are driven by the pressure gradient due to Fraser River water lying
above GS water may vary with a fortnightly period. The'hypothesis as
expressed is obviously crude and ignores effects due to density differences,
for example, but it is offered as a speculative poséibility that could be
examined in the future. However, there is some evidence for it. Figure
13.5 shows the low-frequency river speed at the mouth obtained by low-pass

filtering current records. Unfortunately, it is superimposed on an increasing
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discharge due to the onset of freshet. Nevertheless, a significant
variation in the speed is evident in the first lé days of the record. In
addition, the analysis of Chang (1976; Figures 40 and 42) suggests that the
mean current direction at H26 turns to the south in periods of high—river
runoff.

This speculation has the advantage of predicting that the most
significant floﬁ should occur along the eastern boundary since the pressure
head due to the river should be localized there. 1In a period of high runoff
this mechanism might be offset. Moreover, the theory allows for interaction
with the winds which would serve to modify the outflow. It ié clear,
however, that this hypothesis must be part of a more encompassing theory of
the modulation of the estuarine flow in the Juan de Fuca-Strait of Georgia
system. Other effects such as the influence of the strength of tidal
mixing in the southern tidal passes must be examined. Moreover, friction
- has yét to be considered. It is hoped, however, that the present work will
stimulate numerical modelers to work on this syétem and to examine not only

short-period effects but also longer period ones.
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14. Summary of Part II

From the analysis of éurrent and wind data taken in the Strait of
Georgia and from the consideration of simple inertial instability models,
the following conclusions may be drawn from Part II.

1. The observed fluctuations are not due to simple wavelike
motions. That is, they are not composed of free, forced, or unstable
plane waves of the type considered in this thesis. This conclusion is
based on the finding that the components of the fluctuating currents tend
to be in phase.

2. The oscillations may bear some dynamical relationship to
the mean currents. This notion is based on the general resemblance of
the mean and fluctuating currents.

3. As evidenced from the spectra and the response to the wind,
the‘eastern station may respond to forcing differently than the central
and western stations.

4. The wind plays some role in determining the low-frequency
currents. This is suggested by the facts that (a) statistically signif-
icant although small coherences are calculated between the currents and
winds, (b) that the corresponding phases consistently lie near 0° or
180°, and (c¢) in the time domain, the response of the water column to a
wind event is often evident.

-5. Baroclinic instability of the mean flow is an unlikely
" mechanism in GS due to the narrow region of instability in parameter space.
6. A barotropic instability model indicates that shear

instability might be of some significance but (1) militates against this
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possibility.
7. The barotropic, residual tidal circulation is of insufficient

magnitude and the wrong direction to account for the observations.
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Appendix A: Order of Magnitude Estimates of the Integral Terms in (3.25)

In this appendix it is shown that the integral terms in (3.25)

are all of order unity. It is convenient to rewrite (3.25) as

Hy = SZ{QxIl + (/)W - a1, - nhwv - )15} (a.1)
where

H=((v-a?-€e10- (-cg, - elo’n? (a.2)

and Il r In and I are integrals defined, for example, by

L

I, =) - o) le(x,8) [R(x - DY
0 ' (A.3)

1

- (h'/h%)R'(x - )Y - h R (x - E)YI4E.

It suffices to consider only I; since the other integrals are similar in
form. There are two types of points in the range of integration that must

be dealt with, namely points X, at which ¢ = V(xc) and the integrand

is singular and points x; where c¢ = V(xy) £ €. At all other points the
integrands are continuous and are assumed to be of unit order. To isolate

the singularities we partition the integral as.

x_~-§ . x_+§ X6 X6 x,.=6 X, +6 £

I, ~ + + + + + +
1 fO fx_—@ jx_+6 fxc—é fxc+6 fx+—6 fx++6

(A.4)

=J1+J2+J3+J4+J5+J6+J7,
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where 6 is some small positive number which we will later let tend to
zero. We need determine only J, , J4 , and Jg

Consider J, and J6 first; since they are of the same form we
examine only J, . Since Y is proportional to the cross-stream velocity
it must be continuous, and, therefore, Y" can have, at worst, a §-function-
like singularity. We require a somewhat sharper result, however.
Ofdinarily, one could find a Frobenius-type solutioh to (A.l) in order to
determine the behaviour of Y at =x_ , but the presence of the integral
terms prevents this. We therefore look for an iterative solution to (A.1)

of the form

Hyp = €2(0,T; (g) + (b'/n°) (V = )T, (W) (2.6)

-1 - ‘
- h (V- c)I3(1PO)},

etc. A series expansion of (A.5) about x = X_ indicates that the two

linearly independent solutions are of the form

(1) T
Yo o= (x-x)IL+ ) aplx - x_) " (A.7)
' n=1
wo(z) = z by (x - x_ )"+ awo(l)2n|x - x_|. (A.8)
n=0
That is, wO behaves no worse than (x - x_)inx - x_l; since VYP; is

determined by the integrated value wO , it can be no more singular than

wo . The same argument holds for higher V¥, , and we conclude that
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M
shares this quality. We are now ready to estimate J2 ’

' x_+§

3, < (1/e)max[G(x,8) 1{R(e) [ Dy
x_-6

(a.9)

1 x_+§

- h T[R'(e)h'/h + R"(e)] | P
x_-6

Since Y is continuous, the last term vanishes in the limit ¢§ -+ O, and
the first term gives the jump in Y'/h and therefore also vanishes since

P' is of the form inx - x_l near X = X_ . We conclude that J2 , and

hence J. , both vanish as § - 0, .

Evaluation of J4 is more straightforward. We have

3, < max(G(x,£)1RE)DY - (h'/h2)R' ()Y

(A.10)

- Ry W - o) ta.

Consider only the integral and put 7 = V(§) to obtain

X0 _ c+d! _
1=[° w-olE=f Foe-ola
% =06 c-6"'

¢

where F(Z) is the function inverse to V(§), and &' 1is an appropriately
defined constant which tends to 0 with 6. WNow (A.7) is a Cauchy integral

and is readily evaluated by allowing c¢ to have a small imaginary part c¢; .

In the limit of c; > 0, we find
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c+d!
I = sgn(c;)/[2F' ()] + BV [ [F'(2) (¢ - o)1 haz. (A.11)
c-¢'

Here PV denotes the Cauchy principle value, and therefore in the limit of
§ 0, I reduces to =+ (1/2F'(c)) which is an 0(1) guantity. It

follows then that J4 is 0(l) and hence that the integral terms in (A.1)

are also 0(1).
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Appendix B: The First-Order Solutions

In this section we specify the first-order solutions for the

channel and shelf models. For the channel case we find:

AV + 1RGPy
q)l = (B.1)

1A
P

A ¥ + 1RGP, 1< x

where

C.

10 eb(x_l){(Glx - eDl)cos Ax

sin APl

+ el_x[(Alx + Bl)sin AX + (Clx + Dl)cos ax1}, (B.2)

o1-%

Cip sin o (1 2)P2==[G2(x -2 - Dylcos a(x - )
1-x .
+ e {[Az(x - ) + B2]s1n af{x - )

+ [C,y(x =) + D,lcos alx - 2) (B.3)

oo
1l

1= a1/

w
1

0
il

1 = Pay/my

w]
Il

L= 2 py + a1+ 2/Y)1/Y,

@
I

1 - ql/2k

j+1]
il

2 2
2€ /ci‘O + 1+ 2b
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p; = - 2(1 + b)

q = - 2(€2cro/cio2 + b)
Y, =1+ a2

Ay = a3/,

B, = - 2(1 -~ a,/Y,) /Y,
Cy = 2aa2/y2

D, = - 20[2 - a,(1 + 2/v,)1/v,
Gy, = - qy/20

a, = 262/cio2 + 1

a4, = - 2e%c,0/¢50”

Y2 =1 + 4a2.

For the shelf case we find

IA
»

IA
o

Allwo + iAOPl 0]

wl = (B.4)

v
[

AlZwO + 1AOP2 X

where Pl is given as above and

P, = ul(x)JV(pC) + u2(x)Yv(pC) (B.5)



o (1-x)
- miaule, 3, @17 | 3, (PE) ¥, (0E) F (E) dE
0

ul(x)

1-x
e

17[2L12cJ-LOJ\)(p)]'l / JVZ(DE)F(E)dE
0

u2(x)

F(E) = (20262 + 1) (1 - 1 1nd) - 2p%c E - 2.
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(B.6)

(B.7)

(B.8)
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Appendix C: Evaluation of the Integral Terms for a Simple Flow Model

The purpose of this appendix is to estimate the size of the
integral terms in the mean vorticity equation for the case of large O.
To do so we choose the simplest possible model, a parabolic zonal flow on

the PB-plane. The equation equivalent to (3.25) is
2 2
(W - ) - e“1Fh + (U - o)W - e%0%p

1
= - ezgy [ w- o ey, Ry - BYFY - R"(y - E)YIdE €.1)
0

1 _ .
-w-o [ w-otety,8) R (y - OFY - RV (y - E)PIAE,
. 0

where F = d2/dx2 - k2. Although (C.1) is somewhat less complicated than

(3.25), the integrals are of the same form. In order to evaluate these
terms two obstacles must be surmounted. First G(y,£) must be determined,

and second, ‘a form for R(y - &) must be specified. To obtain an

analytical solution for G(y,§) we choose U such that Qy =B - u"

vanishes, namely

Uly) = Byly - 1)/2; (.2)
then G(y,§) 1is given by

sinh ky sinh k(1 - &)/k sinh k O

1A
N
1A
gy
IA
-

Gly,&) = (c.3)

I
Ty
I
<

I
-

sinh k& sinh k(1 - y)/k sinh k 0
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We select R(y) to be Gaussian,
= 2.2
R(y) = exp(- y“0%/2). (C.4)

We now take the solution P = wo + U_lwl as determined from the
perturbation expansion outlined in Section 7, substitute it into (C.1), and
~ determine the relative values of the various terms in the real and imaginary

parts of the resulting expression. Specifically, we find

IPO = AO sin nTy (c.5)
wl = iAO(BKz/ZnTTciO){(y2 - y)sin nTy/nm
(C.6)
- 1v3/3 - y3/2 - (2c_,/8 + 1/20%n%)ylcos nmyl}
Cig = /K (c.7)
_ 2.2
cro - = (8/4) (l/n ™ + 1/3)1 (C.B)
where K2 = k2 + n2m2. The real and imaginary parts of (C.1l) are
[ - cp? - ;2 = 21FYy + 2(U - cp)e;0 TRy - 20,
(c.9)

=~ (U - cr)(Il - I, - o; (I, + I3)
- 2
o l[(U - Cyp) —«ci2 - 82]F¢l - 2(U - cr)ciFwo - Eszl

= = (U - ¢) (I, + Ig) + ¢ (I - 1) (C.10)



where

1

I, = jo |u - ¢| ™2 - e ey, E) R"(y - E)FY,
- Ry - )y laE
o -2
I, =1/0 fo 1u - c]™w - cp)6ly, &) [R"(y - &) FY;
-’y - ©)y;1aE
1 -2
I, = ¢ fo lu - ¢ lG(y,E)[R"(Y - &) Fy,

- Ry - B)Y,ldE

H
Il

1
a=c/of v-cl ey Bmy - DF
0

- Ry - £)¥p14E.

The relative magnitudes of the terms in (C.9) and (C.1l0) are

presented in Table V for selected values of €, 0, and k. The ratio
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(C.11)

(C.12)

(C.13)

(C.14)

T4/T3 determines whether or not neglect of the integral terms is justified.

One sees that the validity of this approximation improves as k increases

and O decreases. This effectively puts an upper bound on the choice

0. There is relatively little dependence on €. Only in the case of

of

€= .5,0=10, and k = w/5 is the rhs of (C.l1l) of greater magnitude

than the lhs and then, only by 16 percent. The approximation is very good

for the two cases of € = .5, 0 =10, k=27 and € = .5, 0 = 54 k =

m.
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Table V. Relative magnitudes of the terms in (C.9) and (C.10). Here
712, T3, and T4 refer, respectively, to the absolute value of
the sum of terms 1 and 2, and the absolute value of terms
3 and 4 in (C.9) and (C.10). The values given here are
symmetrical about y = 0.5.

c=.5,0=10, k = 7/5 €= .5, 0=10, k=1
(C.9) (C.10) ’ (C.9) (c.10)

y T4/T3 T12/T3 T4/T3 T12/T3 T4/T3 T12/T3 T4/T3 T12/T3

0.1 0.26 0.91 1.522 0.95 0.21 0.85 0.21 0.92
0.2 0.89 0.91 1.22 0.92 0.85 0.84 0.01 0.86
0.3 1.13 0.91 0.70 0.91 0.24 0.84 0.64 0.84
0.4 1.16 0.91 0.53 0.90 0.93 0.84 0.67 0.83
0.5 1.16 0.91 0.63 0.90 0.92 0.83 0.72 0.83
€ = .5, 0 =10, k = 21 €= .1, 0=10, k=T
(C.9) (C.10) (C.9) (C.10)

y T4/T3 T12/T3 T4/T3 T12/T3 - T4/T3 T12/T3 T4/T3 T12/T3

0.1 0.30 0.76 0.02 0.97 0.08 1.00 0.17 0.48
0.2 0.60 0.75 0.41 0.80 0.74 0.86 0.66 0.73
0.3 0.61 0.74 0.50 0.74 0.89 0.76 0.69 0.75
0.4 0.61 0.73 0.53 0.72 0.92 0.69 0.66 0.75
0.5 0.62 0.72 0.55 0.72 1.00 0.64 0.69 0.74

£€=.5,0=5,k=T"
(C.9) - (c.10)
MY T4/T3 T12/T3 T4/T3 T12/T3
0.1 0.11 0.83  2.17° 2.44
0.2 0.27 0.83 0.70% 1.23
0.3 0.51 0.83 0.28 0.87
0.4 0.67 0.83 0.13 0.75
0.5 0.75 0.82 0.27 0.75
)
1,2,3,4 If the ratio T4/Tl, where Tl refers to the first term in either

(C.9) or (C.10), is formed the resulting values are 0.28, 0.60,
0.73, and 0.51, respectively.
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We conclude, then, that the neglect of the intégrals is a good
approximation, but that in some cases, namely very large O or small k,
the perturbation solutions are best regarded as representing a first-order
iterative solution‘to the complete integro-differential eguation.

The value of T12/T3 indicates how well the two-term
perturbation solution  satisfies the simplified vorticity equation (7.7).
Since the terms represented by T12 and T3 are generally of opposite

sign, this solution represents a good approximation to the selution of (7.7)

in most cases.
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Appendix D: Baroclinic Instability in a 2-Layer System

In this appendix, the equations governing the model described in
Section 11 are derived. Proceeding from the full nonlinear equations of
motion (see, é.g., Veronis and Stommel, 1964, or Helbig, 1977), we
essentially follow the procedure developed by Pedlosky (1964) although the
two approaches differ in some respects. The principal assumption made in
the derivation of the 2-layer equations is that the horizontal components
of velocity are z—independeﬁt within each layer.

Consider then this set of equations:

upper layer

u +u. * V.u - fv, = - gnl

1t -1 H1 1 (D.1)

X

+ u, s Vv + fu = - gn

Vie T 31 " Vg 1 (b.2)

ly

.
<]
=3
i

(n, -n,), +u ”2) + ”H_+ n -nz)VH~ gi =0 (D.3)

1

lower layer

Upe Uy ¢ Vyuy - fvy = - gngy - 9y - ny)y (D.4)
Vop Uyt vy ¥ fuy = - gny, - g8y -y (D.5)
Nag + Uy * Vglp *+ (hy + M)V = uy + 1y * Vhy = 0. (D.6)

Here the subscript i = 1,2 refers to the upper or lower layer,

respectively; nl and n, are the sea surface and interfacial displacements
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(see Figure 11.1); hl and h2 are the mean layer thicknesses;
§ = oy - pi)/pz expresses the density difference between the two layers,
and VH refers to the two-dimensional Laplacian operator.

As beforé, it is convenient to non-dimensionalize these eqguations.
The following scale factors are chosen: tﬁe shelf width L for the
horizontal coordinates (x,y), a typical speed U for the velocities, and
an advective time L/U for t. In addition, we write the lower-layer
depth as h, = hzob(x,y) where h20 is the maximum depth of the lower
layer, and b(x,y) is an 0(1) gquantity. The elevations are scaled
geostrophically by (fUL/g) and (fUL/gd), respectively. In non-dimensional

form the equations of motion are:

upper layer

Ro(ult + u, . VHul) - fvl = - My (D.7)
Ro(vlt +uy e VHvl) + fuy = - nly (D.8)
Rol(n, - &np)y +uy = V0, - 1 (D.9)
= [Bl - RO(HZ - (ST']]_)]V e E—l

lower layer

Ro(u,, + u, ° Vpu,) - fv, = - n, - (1 —bﬁ)nlx (D.10)
Ro(vy, +'uy ° Vyvo) + fu, = - Moy ~ (1 - S)nzy (D.11)
Ro(N,,. + U, * Vn,) = - [Byb + RoM,1V * u, - Byu, ° Vb. (D.12)
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Here Ro = U/fL 1is the Rossby number, f= f/f =1 1is retained temporarily
to aid in the identification of the Coriolis term, and Bl and B, are
Burger numbers .defined by B, = g'hl/szz' and B, = g'h2/f2L2 where
g' = g8 is the reduced acceleration due to gravity. We will henceforth
ignore the term of 0(S§) on the rhs of (D.10) and (D.1ll) since §d << 1. It
will also be assumed that b is a function of x only.

The presence of the Rossby number in these equations, which for
GS is approximately 4 X 10—2, suggests a perturbation expansion of the form

o

n
(u, ,n3) = ] Ro (u;
n=0

(n) ,ni(n)) (D.13)

The basic state must satisfy the zeroth-order equations,

%Vl(m _ T‘]LX(O) (D.14)
ful(O) _ nly(0) (D.15)
v, - }11(0) -0 (D.16)
%vz(O) _ (nz(O) + nl(O))x. (D.17)
Euz(O) _ (n2(0)‘+ nl(O))y (D.18)
v, - 22(o) -, Oyl g_b}% _o. (D.19)

Equations (D.14), (D.15), (D.17) and (D.18) define stream functions for

each layer. We note that while (D.16) is identically satisfied, (D.19)
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(0)

requires that either u, vanish or that db/dx be O0{(Ro). Although

0 -
we will, in fact, choose uz( ) = 0, this problem again arises at the next
level, and so we put db/dx = — RoT(x). A minus sign is chosen so that the

sign of T coincides with that of the bottom slope; i.e., if the bottom
slopes upward to the east, T > 0. This choice also facilitates comparison

with Mysak and Schott (1977). As a basic state we choose

\

(0,V; (x))

’ (D.20)

=
It

Hi(x)

where V; and H; are related by (D.14)-(D.19). It is easy to show that

this state actually satisfies the complete nonlinear set of equations
(D.7)-(D.12).

The perturbation .state is governed by the first-order equations

ng(l) = nl(l)y (D.21)
Eul(l) = - nl(l)x (D.22)
fvz(l) = - (nl(l) + nz(l))x (D.23)
<§u2(1) = - (nl(l) + nz(l))y (D.24)

which again define stream functions for each layer. As such (D.21)-(D.24)

are indeterminate, and it is necessary to go to second order to obtain an

(1) (1)
5

equation for ny and n To second order, one finds:



upper layer

(3. + Vlay)u1

(Bt + Vlay)vl

(8 + V19y) (ny

lower layer

(B + vpd vy P

(Bt + v2ay)n2‘1)

B fvl = 7 Mk

+ ul.(l)V'l + gul(Z) - -y
- Gnl(l)) + uy (H, - OH;

- %V2(2) _ (n2(2) . ”1(2)
—u, My 4 guz(z) ——

- u2(:L)H.2 - - szv . 22(2)

(2)

+ B

Here a prime denotes differentiation with respect to x.

differentiating the momentum equations and substituting for V °* uy

+n,

(1
o, M.

By cross-

(2)

from the continuity equation we obtain the vorticity equations for the

perturbation state,

[Bt + VlBY][vlx

[3t + V23y] [V2X -

£

By

uzy

A

~

uy [Hy - SH]_]x =0

A

f
- —— TNyl + u, V"
By, 2 27 2

—lu,H', + ByuyTl = 0.

Bob

f "
- ugy g Mg - S+ vy
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(D.25)

(D.26)

(D.27)

(D.28)

(D.29)

(D.30)

(D.31)

(D.32)
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Here we have dropped the superscript (1). A Taylor series expansion of

b(x) about the point Xq where b(xo) =1 gives

b(x) = 1 + RoT(x) (x - xq) + 0(Ry?). (. 33)

It follows then that to the present order of analysis, 1/b may be replaced

by 1. In terms of the stream functions,

\
@l = nl
(D.34)
@2 = nz + T\l ’
J
and the basic state velocities, (D.31)-(D.32) may be rewritten
2 "

=0

[9y + V3, 11720, - F5 (9, = @1)1 = 85, [V"y + Fp(Vy - V) + T1 (D.36)
= 0,
where Fl and F, are internal Froude numbers given simply by the
reciprocals of Bl and B, , respectively. To obtain these, a term of
0(8) was dropped. This is the desired set of equations governing the
perturbation state. Since they express the conservation of potential

vorticity in the system, they could also have been developed directly from

the full, nonlinear, vorticity equations.



