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Abstract 

This thesis investigates two separate but r e l a t e d problems. In 

Part I a study i s made of the propagation of continental s h e l f waves and 

barotropic Rossby waves i n a steady, l a t e r a l l y sheared current of the form 

V + £W, where W i s a centred random function and £ << 1. I f the 

c o r r e l a t i o n length of W i s small compared with the c h a r a c t e r i s t i c 

h o r i z o n t a l length scale of the system; for example, the s h e l f width or a 

channel width, the waves are unstable. Their growth rate i s l a r g e l y 

determined by the magnitude of the c o r r e l a t i o n length, while the phase speed 

i s given by the sum of weighted averages of the mean current V and the 

l a t e r a l gradient of p o t e n t i a l v o r t i c i t y . A p p l i c a t i o n of the theory to the 

Brooks and Mooers (1977a) model of the F l o r i d a S t r a i t s y i e l d s wave parameters 

that are i n accord with those measured by Duing (1975). 

In Part I I , an attempt i s made to understand the dynamics governing 

observed low-frequency currents i n the S t r a i t of Georgia (GS). A simple 

two-layer model indicates that the mean currents i n GS are probably 

b a r o c l i n i c a l l y stable. A barotropic s t a b i l i t y model implies that a shear 

i n s t a b i l i t y might be of some importance. However, the analysis of current 

meter data shows that the v e l o c i t y components of the f l u c t u a t i o n s are e i t h e r 

nearly i n phase or close to 180° out of phase; t h i s means that the motions 

are not due to the type of waves considered here. Analysis of the 

r e l a t i o n s h i p between the winds and currents i n both the frequency and time 

domains implies that the wind may play an i n d i r e c t r o l e i n f o r c i n g GS motions. 



It is conjectured that the wind and tide interact with the Fraser River 
outflow to modulate the estuarine circulation in the system and force 
low-frequency currents. Direct nonlinear interaction between t i d a l 
constituents produces a coherent fortnightly variation in the currents, 
but cannot account for the observations. 
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1. Introduction to Thesis 

Two separate but r e l a t e d problems i n p h y s i c a l oceanography are 

examined i n t h i s t h e s i s . In Part I, the i n e r t i a l i n s t a b i l i t y of currents 

which contain a small, randomly f l u c t u a t i n g component i s examined. While 

t h i s i s p r i m a r i l y a t h e o r e t i c a l i n v e s t i g a t i o n , the theory i s applied to 

observations made i n the F l o r i d a S t r a i t s with encouraging r e s u l t s . The 

l a t t e r part of t h i s thesis summarizes an attempt to understand the 

low-frequency currents observed i n the S t r a i t of Georgia. To t h i s end, 

i n e r t i a l i n s t a b i l i t y , wind forcing, r e s i d u a l t i d a l flow, and modified 

estuarine c i r c u l a t i o n are considered. Separate, more d e t a i l e d , introductions 

are provided for each part. 
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2. Introduction to Part I 

Under c e r t a i n conditions a planetary wave propagating through a 

region of mean current shear i s capable of extracting energy from the flow. 

This was pointed out i n the pioneering work of Kuo (1949) for Rossby waves 

in a zonal current. In p a r t i c u l a r , he showed that an extremum i n the 

po t e n t i a l v o r t i c i t y d i s t r i b u t i o n was a necessary condition for the 

existence of unstable waves. Since then, numerous models of unstable flows 

on a 3-plane have been considered, p a r t i c u l a r l y for the atmosphere (see 

the review by Kuo, 1973). By comparison, scant attention has been paid to 

the study of the modification of another class of planetary motions, namely 

continental shelf waves (CSWs), by sheared mean flows, although the theory 

of CSWs i n the absence of mean currents has been extensively investigated 

(see LeBlond and Mysak, 1977, for a review). Since mean coastal flows 

always e x i s t , t h i s represents a serious gap i n our knowledge of continental 

shelf dynamics. 

N i i l e r and Mysak (1971) considered a s t e p - l i k e continental shelf 

and a piecewise l i n e a r v e l o c i t y p r o f i l e and showed the existence of two 

classes of motions, modified CSWs and "shear" waves whose existence depends 

on the mean current shear. For a c e r t a i n short wavelength range, the two 

modes coalesce into a sing l e unstable wave t r a v e l l i n g i n the d i r e c t i o n of 

the current. In a more formal study Grimshaw (1976) extended many of the 

re s u l t s of barotropic i n s t a b i l i t y theory to include unstable CSWs f o r quite 

general depth and v e l o c i t y p r o f i l e s . McKee (1977) has calculated the 

stable response of the continental shelf to t r a v e l l i n g atmospheric 

disturbances and showed that i t i s comprised of a superposition of di s c r e t e 
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normal modes, a continuous set of transient solutions possessing phase 

speeds i n the range of the mean current, and d i r e c t l y forced motions. 

Brooks and Mooers (1977a, hereinafter r e f e r r e d to as BrM), i n a model of 

the F l o r i d a S t r a i t s , considered the e f f e c t of an intense, l a t e r a l l y sheared 

current on CSWs, but they evidently did not search for any possible unstable 

solutions. Thus they were l i m i t e d to modified CSWs with phase v e l o c i t i e s 

less than the minimum of the mean current v e l o c i t y . I t should be mentioned, 

though, that Schott and Duing (1976) found excellent agreement between BrM 

model predictions and observations i n the F l o r i d a S t r a i t s f or the 10-30-day 

wave period band. 

In Part I we consider the barotropic s t a b i l i t y of (1) an along

shore current and (2) a zonal flow with respect to CSW and Rossby wave 

perturbations, r e s p e c t i v e l y . In each case the basic current i s assumed 

steady and to be composed of a sheared mean component with a small, 

s p a t i a l l y random part superimposed upon i t . Although t h i s choice might seem 

to further complicate an already d i f f i c u l t mathematical problem, i t turns 

out that the mathematics greatly s i m p l i f i e s , and the problem may be e a s i l y 

solved provided that the c o r r e l a t i o n length of the f l u c t u a t i n g current i s 

s u f f i c i e n t l y small. This approach was adopted by Manton and Mysak (1976) 

f o r the case of plane Couette flow, and Part I i s an outgrowth of that work. 

The r a t i o n a l e for choosing a random current i s as follows. The 

small-scale features of the basic current are generally unknown and 

c e r t a i n l y vary i n both space and time. Moreover, these features make the 

basic current p r o f i l e so complicated as to render a d e s c r i p t i o n of the flow 

by a simple mathematical expression impossible. Thus i t i s reasonable to 

model the current by the sum of a smooth, det e r m i n i s t i c p r o f i l e and a small 
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i r r e g u l a r part. I t i s mathematically convenient to represent the i r r e g u l a r 

component as a random function. Thus we ignore the a c t u a l , small-scale 

structure of the current p r o f i l e and concentrate on i t s s t a t i s t i c a l 

p r operties, i n p a r t i c u l a r , i t s variance. 

I f t h i s decomposition i s to be p h y s i c a l l y r e a l i s t i c , i t i s 

necessary that the "random" features of the basic current be d i s t i n c t from 

the motions predicted by the ensuing theory, since these motions are due, 

in large part, to the basic flow. This requires that the "waves" admitted 

by t h i s theory be separated i n both frequency and wavenumber space from 

the random component of the basic current. That i s , there must be a 

sp e c t r a l gap or rapid change i n slope i n the v e l o c i t y spectra. Unfortunately, 

adequate data,is not presently a v a i l a b l e to t e s t v a l i d i t y of t h i s 

representation. 

As a f i r s t step i n a more extensive study, we concentrate s o l e l y 

on the l a t e r a l s p a t i a l v a r i a t i o n s and henceforth ignore temporal 

fl u c t u a t i o n s i n the basic flow. In the case of the F l o r i d a Current, to 

which the theory developed here w i l l be applied, the decomposition of the 

flow into d e t e r m i n i s t i c and random components i s e s p e c i a l l y appropriate, 

since i n the region of the F l o r i d a S t r a i t s , the current i s s t i l l adjusting 

to an almost 90° northward turn i n i t s passage around the southern t i p of 

F l o r i d a . This i s a process which should introduce a large amount of noise 

into the flow. 

The assumption that the superimposed wave f i e l d i s barotropic i n 

the frequency range of i n t e r e s t i s supported experimentally by observations 

i n both an intense western boundary current (Diiing, 1975; Mooers and 

Brooks, 1977) and i n a weak eastern boundary current (Huyer, et a l . , 1975; 

Kundu and A l l e n , 1976; Wang and Mooers, 1977). In a t h e o r e t i c a l a n a l y s i s , 
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A l l e n (1976) has shown that the continental shelf may support both 

barotropic and b a r o c l i n i c motions, the l a t t e r trapped within an i n t e r n a l 

Rossby radius of deformation of the coast. We expect t h i s assumption to 

be more questionable for Rossby waves i n the open ocean where b a r o c l i n i c 

i n s t a b i l i t y i s l i k e l y to be an important f a c t o r . Nevertheless, the present 

theory represents a f i r s t step i n a study of combined b a r o t r o p i c - b a r o c l i n i c 

i n s t a b i l i t y i n a randomly perturbed flow. 

Two continental shelf models are considered, one i n which the 

s h e l f i s bounded by a wall p a r a l l e l to the coast (channel model), and one 

i n which i t i s not (shelf model). In both cases the BrM model of bottom 

topography and mean current i s employed. Attention i s p r i m a r i l y focused 

on the channel model since the observations to which the theory i s to be 

compared were made i n the F l o r i d a S t r a i t s . This model also has the added 

convenience of being less complex mathematically since the coastal trapped 

motion i s i s o l a t e d from the ocean i n t e r i o r and thus no coupling need be 

considered. A channel model i s also assumed i n the Rossby wave case. 

Each of the two continental shelf models admits a class of 

unstable modified CSWs for long wavelengths provided that the h o r i z o n t a l 

c o r r e l a t i o n length of the f l u c t u a t i n g basic flow i s s u f f i c i e n t l y short 

compared with the shelf width. These waves may propagate i n e i t h e r d i r e c t i o n 

along the coast depending on the strength of the mean current; t h e i r phase 

v e l o c i t y i s given by the weighted average of the difference between the 

mean v e l o c i t y and the cross-stream gradient of p o t e n t i a l v o r t i c i t y . The 

growth rate i s proportional to the amplitude of the random component of the 

current and inversely proportional to i t s c o r r e l a t i o n length. The f a c t 

that unstable solutions e x i s t i s e s p e c i a l l y important since the BrM 

v e l o c i t y p r o f i l e i s almost c e r t a i n l y b a r o t r o p i c a l l y stable; that i s , the 
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c l a s s i c a l theory predicts the existence only of stable modified CSWs. 

Appli c a t i o n of the channel model to the F l o r i d a S t r a i t s p r e d i c t s wave 

parameters that are i n good agreement with observations made by Duing (1975). 

The present theory may thus account, i n part, f o r meanders observed i n the 

F l o r i d a current. 

The plan of Part I i s as follows. In Section 3 the formal theory 

for modified CSWs i n a channel i s presented, and a complicated integro-

d i f f e r e n t i a l equation i s derived f o r the mass-transport stream function. 

Scaling arguments are employed to reduce t h i s equation to a more manageable 

form. A more ph y s i c a l d e r i v a t i o n of t h i s equation based on the balance of 

v o r t i c i t y i n the system i s given i n Section 4. An energy equation i s also 

derived. A perturbation s o l u t i o n i s obtained i n Section 5 for the BrM 

model, and the basic r e s u l t s for the growth rates and phase speeds are 

given. The r e s u l t s are applied to observations made i n the F l o r i d a S t r a i t s . 

In Section 6, we b r i e f l y consider the continental shelf model, and i n 

Section 7 the s t a b i l i t y of a zonal flow on a 6-plane to Rossby wave 

perturbations i s examined. A summary i s given i n Section 8. 
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3. Formal Theory f o r Shelf Waves i n a Channel 

In t h i s section the equations governing the propagation of 

small-amplitude, free, modified CSWs i n a l a t e r a l l y sheared, barotropic 

current are derived. The basic current i s assumed to flow along a 

continental boundary of i n f i n i t e length and i s composed of a sheared mean 

component and a small s p a t i a l l y random part. Only the channel model i s 

treated here; consideration of the shelf model i s deferred to Section 6. 

The dynamics of CSWs derive from the conservation of p o t e n t i a l 

v o r t i c i t y , but rather than to proceed d i r e c t l y from the conservation law, 

i t proves convenient f o r l a t e r purposes to begin with the equations of 

motion. I t i s also desirable to work i n terms of nondimensional 

quantities and the following scale factors which are representative of 

continental s h e l f conditions are chosen: the shelf width L (which may 

be less than the channel width, see Figure 5.1) for the ho r i z o n t a l 

coordinates (x,y), the maximum channel depth H for z, a v e r t i c a l l y 

averaged v e l o c i t y U f o r the ho r i z o n t a l v e l o c i t i e s (u,v), an advective 

time L/U, and fLU/g f o r the sea surface elevation. Here f i s the 

C o r i b l i s parameter and g i s the acceleration due to g r a v i t y . A basic 

state which exactly s a t i s f i e s the nonlinear, f r i c t i o n l e s s equations of 

motion i s s p e c i f i e d by the basic current V (x) and i s r e l a t e d to the 

basic sea surface slope by 

v B(x) = n B x ( x ) . (3.1) 
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The shallow-water equations of motion l i n e a r i z e d about the basic state 

are: 

Ro(u. + V Ru ) - v = - n (3.2) 
x. a y x 

Ro(v t + V B v y + uV B x) + u = - r) y (3.3) 

(hu) x + h ( v ) y = 0. (3.4) 

Here h(x) i s the nondimensional depth and Ro = U/fL i s the Rossby 

number for the basic flow and i s not assumed small. To obtain (3.4) we 
2 2 

invoked the nondivergent approximation, which i s good to order f L /gH 

(10 ^ i n F l o r i d a S t r a i t s ) , and t h i s allows the d e f i n i t i o n of a mass-

transport stream function given by 

(3.5) 
hu = - T y 

hv = ¥ x 

In terms of ¥ the l i n e a r i z e d p o t e n t i a l v o r t i c i t y equation i s 

Ro ( 9 t + V B 9 y ) [h X V 2 , F - ( h ' / h 2 ) ^ ] 

- 1 [Roh _ 1V" B - (1 + RoV' B)h'/h 2] = 0 (3.6) 

where a prime denotes d i f f e r e n t i a t i o n with respect to x. For t r a v e l l i n g 

wave disturbances of the form 
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f = * ( x ) e i k ( y - C t ) (3.7) 

with p o s i t i v e k and possibly complex phase speed c, (3.6) reduces to 

(V_ - c)D$ - Q $ = 0. (3.8) 
hi X 

Here V = h V / d x 2 - (h'/h 2)d/dx - h \ 2 so that P$ i s the r e l a t i v e 

v o r t i c i t y of the perturbation and 

Q = (Ro 1 + V' B)/h (3.9) 

i s the basic state p o t e n t i a l v o r t i c i t y scaled by Ro. The boundary 

conditions are obtained by requiring that there be no flow through the 

sidewalls; hence 

. . $(x) •= 0 at x = 0,1. (3.10) 

As the basic current i s taken to be a stationary random v a r i a b l e , 

i t may be separated into i t s mean and f l u c t u a t i n g parts as 

V B(x) = V(x) + eW(x) 

such that E(V B) = V and E(W) = 0 where E represents the average over 

an ensemble of r e a l i z a t i o n s of W. The nondimensional parameter e i s 

assumed to be small and i s r e l a t e d to the variances of V 0 and W by 

e 2 = var v B / v a r W. (3.11) 
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In the present case we choose var W = 1 although a different choice w i l l 

be made for the shelf model. Since the basic state is random and the 

disturbance interacts with i t , i t necessarily follows that the perturbation 

must also contain a random component; we decompose $ as 

$'(x) = ip(x) + £<M*) (3.13) 

with E 0|>) = and E (<})) =0. Although i t is not necessary to scale the 

random part of $ by £, | w i l l generally be large compared with £(f>. 

We are primarily concerned here with deriving a closed form 

equation for . With these definitions the vorticity equation may be cast 

into the form 

(L + e.M) 0> + e<J>) = 0, (3.14) 

where L and M are deterministic and random differential operators 

respectively defined by 

L = (V - c)V - Q x (3.15) 

M = WP - q x ; (3.16) 

Q and q are the respective gradients of mean and fluctuating potential 

vorticity (scaled by Ro), 

Q x = h _ 1V" - (Ro 1 + V'Vh'/h2 (3.17) 
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q = h 1W" - W'h'/h2. (3.18) 
x 

The boundary conditions become 

UJ = 0 

f at x = 0,1. (3.19) 

<j> = 0 

Stochastic boundary value problems of the type defined by (3.14)-(3.19) 

have been investigated by a number of workers, and several techniques are 

available to deal with them (see Mysak, 1978, for a review). I t proves 

useful to decompose (3.14) into i t s mean and f l u c t u a t i n g components. By 

ensemble averaging (3.14) and subtracting the res u l t a n t expression from i t 

we obtain as follows: 

A formal so l u t i o n of (3.20)-(3.21) was f i r s t given by T a t a r s k i i 

and Gertsenshtein (1963) and i s 

Lip + e2EM(j) = 0 (3.20) 

L<j> + Mip + e[M(f> - E(M<(>) ] = 0. (3.21) 

00 

Li|> = - eEM I [ - £ ( / - E ) L X M ] n + V (3.22) 
n=0 

Here 7 i s the i d e n t i t y operator and L i s the operator inverse to L . 
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The sum i n (3.22) i s convergent provided that e||L "*"M|| < 1, where ||(*)|| 

denotes an appropriate operator norm. This c l e a r l y l i m i t s the amplitude of 

the f l u c t u a t i n g part of the basic flow, and i t i s henceforth assumed that 

£ « 1. In the present analysis we r e t a i n only the f i r s t term i n (3.22) 

giving 

This constitutes the " f i r s t - o r d e r smoothing" or " l o c a l Born" approximation 

and i s equivalent to ignoring the bracketed terms i n (3.21). Howe (1971) 

has given a c l e a r p h y s i c a l i n t e r p r e t a t i o n of t h i s approximation. 

E s s e n t i a l l y , the neglected terms involve the i n t e r a c t i o n of the f l u c t u a t i n g 

component of the basic f i e l d with the random part of the perturbation at 

distances exceeding t h e i r mutual c o r r e l a t i o n length, whereas the other terms 

i n (3.20)- (3.21) are determined by the l o c a l values of the two f i e l d s . 

I t i s convenient to rewrite (3.13) i n terms of the Green's 

function G(x,^) for (V - c) which s a t i s f i e s 

b\> = £ 2E[ML _ 1M]^. (3.23) 

PG(x,5) - (V - c) - 1Q xG(x,£) = 6(x - ?) 

G(0,£) = G U 7 £ ) = 0. (3.24) 

Substitution of (3.15) and (3.16) into (3.23) and expression of L i n 

terms of G(x,£) r e s u l t s i n an i n t e g r o - d i f f e r e n t i a l equation f o r , 
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[(V - c ) 2 - e2R(0)]lty - (V - c)Qxi> - e 2 h _ 1 [ (hVh)R'(0) 

I 
- R"(0)]Tp = £ 2Q X / (V - c) _ 1G(x,£) [R(x -

0 

- (h'/h2)R'(x - ^)UJ - h _ 1R"(x - £ ) M d £ 

+ £2(h'/h2)(V - c) / (V - c)_1G(x,£)[R'(x - £)tty 

0 

- (h'/h2)R"(x - £)IJJ - h _ 1R , M (x - 04>]dE, 

£ 
- e 2h _ 1(v - c) / (V - c) - 1G(x,£) [R"(x - OVi> 

0 
- (h'/h2)R"' (x - - h~1R,v (x - 5 ) M o £ . (3.25) 

Here the correlation function R(£) is defined as R(£) = E[W(x)W(x + O]. 

This equation also holds for the shelf model i f the upper limit of 

integration i s extended to i n f i n i t y . For the channel model we assume that 

W is a homogeneous random function so that R1(o) vanishes; further, we 
2 

choose R(o) = 1 and define O = - R"(o). Then I/O is representative 
of the nondimensional correlation length L c/L of the fluctuating current. 

2 

(In fact, R"(o) = - 2/X for a Gaussian process described by R(?) = 

ex P(-C 2/X 2).) 

Certainly, (3.25) is much too complex to be dealt with directly, 

and, indeed, G(x,£) w i l l generally be unknown analytically, expressing 

our ina b i l i t y to solve the associated deterministic problem. Hence some 

approximate analysis must be adopted, and i t clearly would be advantageous 



14 

to eliminate the i n t e g r a l terms i n (3.25). We w i l l presently demonstrate 

that the rhs of (3.25) i s an order of magnitude smaller than the lhs 

and thus, to a f i r s t approximation, may be ignored. I t i s shown i n 

Appendix A that a l l the i n t e g r a l s i n (3.25) are of 0(1) provided that 

R(x) and i t s derivatives are also 0(1). Hence, away from the singular 
2 

points of the equation where V = c ± £, the rhs of (3.25) i s 0(£ ) 

and i s thus n e g l i g i b l e compared with the lhs which contains terms of 0(1) 
2 

(and also terms of 0(£ ) ) . Near the singular points, however, the analysis 

i s considerably more complicated, but we claim that e i t h e r Q x or that both 

ijj and G(x,£) are 0(£) there and hence that the rhs of (3.25) may be 

saf e l y neglected. To see t h i s , consider the l i m i t i n g case of £ = 0 for 

which (3.25) reduces to 

(V - c)tty - Qxi> = 0. (3.26) 

Since (3.26) must hold pointwise i t follows that there are two p o s s i b i l i t i e s 

at points x c where V(x c) = c which must be considered. E i t h e r the 

gradient of p o t e n t i a l v o r t i c i t y Q x or the cross-stream v e l o c i t y 

vanishes there. We disregard the t h i r d p o s s i b i l i t y of solutions with 

singular d e r i v a t i v e s (that i s , those corresponding to a vortex sheet at 

x = xc)[ f o r two reasons. F i r s t , McKee (1977) has demonstrated f o r stable 

mean v e l o c i t y p r o f i l e s that, i n t h i s case, c belongs to the continuous 

part of the eigenvalue spectrum of L and the corresponding eigenfunction 

represents only a transient component of the complete s o l u t i o n . McKee's 

arguments are r e a d i l y extended to cases with unstable v e l o c i t y p r o f i l e s . 

Second, and more importantly, L i n (1961) has elegantly demonstrated that 

the i n c l u s i o n of a small amount of (molecular or eddy) v i s c o s i t y precludes 
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the existence of a continuous spectrum. That i s , i n the l i m i t of vanishing 

f r i c t i o n , the singular solutions of the i n v i s c i d theory are not obtained as 

l i m i t s of v i s c i d s o lutions. 

Now i f e i s s u f f i c i e n t l y small, i t follows that at a distance 

£ away from V = c, either Q x or ij; i s of 0 ( E ) . A s i m i l a r argument 

shows that i n the l a t t e r case G(x,£) i s also 0(£) : at x = x c and away 

from £ = x c , the rhs of (3.24) vanishes and hence so does G(x c,^) 

since Q x i s nonzero by assumption. As G(x,£) i s a continuous function 

of x and £, i t follows that G(x c, x c) =0. We again argue that at a 

distance £ from x = x c , G(x, E,) i s 0 ( E ) . (The above comments 

concerning the continuous spectrum of L also imply that we may exclude 

the p o s s i b i l i t y of G(x,£) having singular derivatives at x = x c , 

E, ? x c ; see McKee, 1977.) 

Consider the f i r s t case i n which Q x = 0(£); then the terms on 
2 3 the lhs of (3.25) are a l l 0(£ ) while those on the rhs are 0(£ ). 

In the second case, where and G are 0(£), the f i r s t three terms on 

2 3 the lhs are 0(£ ) and a l l the remaining terms i n (3.25) are 0 ( E ) . 

Hence i n a l l cases the lhs contains terms at le a s t 0 (£""'") greater than 

the rhs which may thus be ignored. An e n t i r e l y analogous argument holds 

i f c i s complex with a small imaginary part. We are therefore led to the 

consideration of the s i m p l i f i e d equation 

[(V - c ) 2 - £2]£ty - (V - c ) Q x ^ - £ 2 0 2 h - 1 ^ = 0, (3.27) 

which i s subject to the boundary conditions (3.19). A more ph y s i c a l 

d e r i v a t i o n of (3.27) i s given i n the next section. 

In the analysis presented i n the following sections, approximate 
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solutions are obtained for the case of large 0 " . Thus one of the 

assumptions made i n the preceding s c a l i n g argument i s v i o l a t e d , namely that 

R(x) and i t s f i r s t four derivatives are a l l 0(1). An evaluation of the 

r e l a t i v e sizes of the terms i n the analogue of (3.25) for a zonal random 

flow on a $-plane i s made i n Appendix C. I t turns out that the i n t e g r a l 

terms are generally smaller than the other terms, although i n some cases 

they are of s i m i l a r magnitude f o r c e r t a i n regions of the channel. As k 

increases and 0 decreases, the neglect of these terms i s better j u s t i f i e d . 

Thus O must be large enough to permit a perturbation expansion but not so 

large that the i n t e g r a l terms become overly s i g n i f i c a n t . In the l a t t e r 

case, the solutions obtained i n t h i s thesis are best regarded as approxima

tions to the f i r s t i t e r a t i v e s o l u t i o n of the f u l l i n t e g r o - d i f f e r e n t i a l 

equation. Of course, i f O i s not large, then the i n t e g r a l terms may be 

saf e l y ignored to a good approximation. 

Comparison of (3.27) with the corresponding equation f o r the 

deterministic case (3.26) shows that the randomness of the basic current 

manifests i t s e l f i n two ways. F i r s t , the s i n g l e c r i t i c a l point of (3.26) 

at V = c i s b i f u r c a t e d into the p a i r V = c ± £. In any given r e a l i z a t i o n 

of V , there would no doubt e x i s t numerous points at which c = V + £W 

(provided that c i s r e a l ) , and t h i s i s expressed, i n the mean, by the 

existence of two points each removed by the rms value of £W from V = c. 
2 2-1 

The second e f f e c t appears i n the term £ a h iL» and depends not only on 

the strength of the f l u c t u a t i n g current but also on i t s c o r r e l a t i o n length. 

The p h y s i c a l s i g n i f i c a n c e of t h i s term i s more f u l l y discussed i n the next 

section where the v o r t i c i t y balance i s considered. 
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4. The V o r t i c i t y and Energy Balances 

In t h i s section the various v o r t i c i t y and energy balances present 

i n the system are examined. Consider f i r s t (3.20) and (3.21) rewritten i n 

a more e x p l i c i t form. 

To an observer moving with the wave speed, the terms i n (4.1) correspond 

res p e c t i v e l y to: (1) alongshore . advection of mean disturbance v o r t i c i t y 

P i j j by the mean basic flow, (2) cross-stream advection of mean basic 

v o r t i c i t y by the mean disturbance, and the correlated parts of (3) advection 

by the f l u c t u a t i n g b a s ic flow of the random disturbance v o r t i c i t y D<j), and 

(4) the cross-stream advection of random basic v o r t i c i t y by the f l u c t u a t i n g 

disturbance. S i m i l a r l y , the terms i n (4.2) are interpreted as: (1) 

advection by the mean basic flow of f l u c t u a t i n g disturbance v o r t i c i t y , 

(2) advection of mean basic v o r t i c i t y by the random disturbance, (3) 

advection of mean disturbance v o r t i c i t y by the random basic flow, (4) 

cross-stream advection by the mean disturbance of f l u c t u a t i n g basic 

v o r t i c i t y , and (5) the alongshore advection of random disturbance v o r t i c i t y 

by the f l u c t u a t i n g basic current. The l a s t term i n (4.2) i s the only one 

quadratic i n the random f i e l d s and thus might be expected to be small. 

In f a c t , i t consists of the difference of the t o t a l advection of V$ by 

W and that part of Wpcf) which i s correlated. Since i t p r i m a r i l y involves 

(v - c)Vi> - QJ) + e2E[wP(f)] - e 2 E [ g d>] = o (4.1) 

(v - c)V<t> - Q (J> + wpTp - q u> = - e(wD<j) - E[wP<j)]). (4.2) 
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the i n t e r a c t i o n of the two f i e l d s at distances exceeding t h e i r mutual 

c o r r e l a t i o n length, i t plays an i n s i g n i f i c a n t r o l e i n the v o r t i c i t y balance 

expressed by (4.2) and i s henceforth neglected. 

We now consider the r e l a t i v e magnitudes of the various terms i n 

(4.1) and (4.2) and give a h e u r i s t i c d e r i v a t i o n of (3.27). Substitution 

of T?<J>, as determined by (4.2), into (4.1) y i e l d s the analogue of (3.25), 

(v - c)Vi> - Qj - e 2(v - c ) - 1 l t y - e 2a 2h - 1(v - c)~\ 

+ e 2Q x(v - c)-1E[wcj>] - e 2h _ 1E [w"<j>] + e 2 (h'/h2)E[W'cj)] = 0. (4.3) 

In order to determine the magnitudes of <J> and D<j>, we use the expression 

cf>(x) = - / (V - c ) - 1 G ( x , 5 ) [Wtty - qxljJ]d£ (4.4) 
0 

which i s obtained from (3.21) i n the l o c a l Born approximation. Consider 

now the cases examined i n the preceding section corresponding to (V - c) = 

0(1) and V - c = 0(e). (If c i s complex with small imaginary part, 

then the l a t t e r case i s equivalent to V - c r = 0(e), and c^ = 0(e).) 

The r e s u l t s are summarized i n Table I. In the f i r s t case the random f i e l d s 

play an i n s i g n i f i c a n t r o l e i n the balance of mean v o r t i c i t y , and Vty exceeds 

eVty by an order of magnitude. On the other hand, the alongshore advection 

of f l u c t u a t i n g disturbance v o r t i c i t y by the random basic flow (4.1, term 3) 

i s important i n the l a s t two cases, but the cross-stream advection of the 

random background v o r t i c i t y by the f l u c t u a t i n g disturbance (4.1, term 4) 

remains unimportant. Near the c r i t i c a l point the random component of 
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Table I. Order of magnitude estimates of terms i n the 
v o r t i c i t y balance equations. The rhs of (4.2) 
i s neglected, and the magnitudes of (j> and 
V§ are calculated from (4.4). 

A. V - c = 0(1) (4.1) 1 l e 2 2 
e 

Vi>,ty = o(i) (4.2) 1 l 1 1 

t?<|>,4> = o(i) (4.3) 1 l e 2 Jl „2 2 2 
e e e e 

B. V - c = 0(E) 

Qx = 0(e) (4.1) e e e 2 
e 

= 0(1) (4.2) l e 1 1 

t t y = 0(i/e) (4.3) e e e 2 2 2 
e ê  e ê  

c. v - c = 0(e) 

= 0(e) (4.1) e e e 3 
e 

Tty = 0(1) (4.2) l e 1 e 

P<J> = 0(l/e) (4.3) e e e 2 2 3 3 
e e e e 
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disturbance v o r t i c i t y £#<}> i s the same order of magnitude as the mean 

component, although £<f> remains small. Thus the f l u c t u a t i n g v o r t i c i t y 

tends to concentrate near points where V - c i s small. In a l l cases, the 

l a s t three terms i n (4.3) may be disregarded, and hence (4.3) reduces to 

(3.27). Note that neglect of these terms i n no way requires the 

corr e l a t i o n s between <f> and i t s d e r i v a t i v e s to be small, as suggested by 

Manton and Mysak (1976). 

An energy equation for the mean component of the perturbed f i e l d 

i s now derived. I t i s easiest to proceed d i r e c t l y from the nonaveraged 

equations of motion (3.2) - (3.4) and then to average the r e s u l t i n g 

expression. In the usual fashion we take the scalar product of the momentum 

equations with u_ to obtain 

(h/2)(u 2 + v 2 ) t + (h/2)V B(u 2 + v 2 ) y 

= - V' Bhuv - Ro _ 1h(u(; x + vC y) - (4.5) 

An in t e g r a t i o n over the region R defined by the channel width and one 

wavelength i n the y - d i r e c t i o n with a p p l i c a t i o n of the boundary conditions 

and the assumed p e r i o d i c nature of the disturbance gives 

I 
0 / 9 t ) / (h/2) (u 2 + v 2) = / V B ( x ) T 1 2 d x . (4.6) 

R 0 

Here the Reynolds stress T.. „ i s defined by 

y+A 
= ~ ! huvdy. 

Y 
(4.7) 
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Thus i f a wave i s unstable, the Reynolds stress must extract k i n e t i c energy 

from the shear of the basic current. 

By expressing the r e a l quantities u, v and T i n (4.6) i n 

terms of the deterministic and random components of the stream function 

(3.7), and by ensemble averaging the resultant expression we f i n d , 

n / h - 1 ( | H 2 + k 2 M 2 ) d x 
0 

+ e?Q J h _ 1(|cf)'| 2 + k2|4>|2)dx 
i  0  

I I 
= + k J h" 1V'F(i)j R,^ I)dx + e 2k / h" V E l P t ^ ^ j J l d x 

0 0 

2 ^ 1 
+ e k E / h W'ImF(i|;*,cf))dx. (4.8) 

0 

Here the subscripts R and I (or r and i) r e f e r to the r e a l and 

imaginary parts of a quantity, Q = kc^ i s the growth rate of the 

disturbance, and F(f,g) = f g ' - f'g i s the Wronskian of f and g. The 

f u l l Reynolds stress assumes the form 

T 1 2 = (k/2h) [F 01^ , 1 ^ ) + F(<$>RAX) + ImF(lp*,4>) 1 • ( 4 . 9 ) 

The i n t e r p r e t a t i o n of (4.8) i s d i r e c t and i s not pursued here; however, we 

note that i t i s not energy conserving since no provision was made for the 

modification of the basic f i e l d which therefore acts as an i n f i n i t e 

r e s e r v o i r of energy for the disturbance. 

I t i s not c l e a r how to approximate (4.8) i n order to obtain an 

equation consistent with (3.27); i . e . , i t i s d i f f i c u l t to t r a n s f e r s c a l i n g 



22 

arguments from the v o r t i c i t y domain to the energy domain. To avoid t h i s 

problem we form another energy equation from (3.27) rewritten as 

(V - c)tty - £ 2(V - c ) " ^ - 0xu> - £2a2h_1(V - c ) " 1 ^ = 0. (4.10) 

M u l t i p l i c a t i o n of (4.10) by ty* and int e g r a t i o n over the channel width 

y i e l d s an expression whose imaginary part i s 

£ £ 
ft / h~ (|TJJ'| + k 2|^| 2)dx = k / h - 1V'F ( i ^ , ^ ) dx 

2 £ [(V " o ) 2 - c. 2] 
+ £ k / ~ ~ VF(lJJ R,^ I)dx 

0 hlv - cl 

2 £ (V - c r)V'|l|,'| 2
 2 2 £ \xl)l2 

+ e Q / 7 dx + £ o Q j — 1 — 1 j dx 
0 h|v - c| 0 h|v - c| 

2 / | 2 + k 2|i|^ 2 

~ f. — 
0 hlv - cl 

- £ / ; ^ dx. (4.11) 

A c a r e f u l comparison of (4.8) and (4.11) with p a r t i c u l a r regard to the form 

of rf) as given by (4.4) reveals that terms 1 and 2 i n (4.11) correspond 

exactly to terms 1 and 3 i n (4.8), and that terms 3 and 4 and terms 5 and 6 

i n (4.11) represent terms 4 and 5 i n (4.8), r e s p e c t i v e l y . In the case of 

large 0", which w i l l be considered l a t e r , i t i s clear from (4.11) that the 

energy source for the unstable perturbation i s the shear of the random part 
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of the basic flow. 

One could proceed, at t h i s point, to derive the equivalents of 

the formal r e l a t i o n s h i p s developed by Grimshaw (1976). These concern 

necessary conditions f o r i n s t a b i l i t y and bounds to growth rates and phase 

speeds. I t i s s u f f i c i e n t here to derive only a generalized Rayleigh 

condition f o r i n s t a b i l i t y . Rather than use the techniques employed by 

Grimshaw, since they are tedious i n the present case, we proceed from the 

unaveraged Rayleigh condition 

<i J VB " C 
Q dx = 0 . *x (4.12) 

This r e l a t i o n s h i p i s the imaginary part of the expression obtained by 

multiplying (3.26) by ip*/(V - c) and i n t e g r a t i n g over the channel width. 

If a system i s unstable (c^ ^ 0 ) , the i n t e g r a l must vanish. This implies 

that Q x must vanish at l e a s t once i n the i n t e r v a l ( 0 , £ ) . To generalize 

(4.12), we express $ i n terms of if a n d $ a n c ^ expand (V B - c) 1 = 

(V - c + £W) ^ i n a binomial s e r i e s . Ignoring t r i p l e c o r r e l a t i o n s i n the 
3 

ensemble average of the resultant expression we obtain to 0 ( £ ) 

C i / Q> V - c dx 

r 

v - c 

2Q (V - c ) 
T E M * I ] - -T E[WRe(#)] 

V - c 

EEW"Re(#)] 20"2 | ̂  | 2 (V - c ) 

+  
h V - c h V - c 

-g [ dx = 0 . (4.13) 



24 

2 2 
In the l i m i t of large 0 ( i . e . , €0 = 0(1)), t h i s reduces to 

V - c 

2 e 2 0 2 ( v - c ) r 
Q + 

V - c 
dx = 0 (4.14) 

Equation (4.14) shows that i n s t a b i l i t y does not demand that the 

mean p o t e n t i a l v o r t i c i t y d i s t r i b u t i o n vanish, since the random part of the 

basic flow may possess s u f f i c i e n t r e l a t i v e v o r t i c i t y to render the basic 

flow unstable. In t h i s sense, the i n s t a b i l i t y described more f u l l y i n the 

next section i s e s s e n t i a l l y a shear i n s t a b i l i t y . In more ph y s i c a l terms, 

the random component introduces l o c a l extrema into the p o t e n t i a l v o r t i c i t y 

d i s t r i b u t i o n ( i . e . , points at which Q x = 0). L i n (1945) has demonstrated 

that the existence of such points i s necessary for i n s t a b i l i t y ; otherwise 

a p a r t i c l e displaced from i t s equilibrium p o s i t i o n w i l l always be subject 

to a net r e s t o r i n g force. As O increase, the r e l a t i v e v o r t i c i t y 

associated with the random flow increases and therefore so does the 

l i k e l i h o o d of f i n d i n g l o c a l maxima and minima i n Q. 

If c^ ^ 0 and Q x > 0 everywhere, (4.14) implies that 

(V - c r) < 0 somewhere and hence that c r must l i e i n the range of the 

mean current. However, i f Q x < 0 everywhere then (V - c r) > 0 somewhere 

and c r i s simply bounded above by the maximum value of V; unstable waves 

could then, i n p r i n c i p l e , propagate against the mean flow. 
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5. The Channel Model 

The boundary value problem defined by (3.27) and (3.19) 

encompasses a l l and more of the d i f f i c u l t i e s inherent i n a d e t e r m i n i s t i c , 

b a r o t r o p i c a l l y unstable system, for not only does (3.27) have va r i a b l e 

c o e f f i c i e n t s but i t also possesses a p a i r of singular points at 

V(x) = c ± £. Since £ « 1, an obvious approach to (3.27) would be to 

attempt a perturbation s o l u t i o n i n £. However, the r e s u l t i n g equations 

would contain a l l the mathematical d i f f i c u l t i e s of the nonrandom problem, 

and the solutions, as i n t e r e s t i n g as they might be, would represent small 

deviations from the deterministic solutions. We are interested i n a 

d i f f e r e n t class of solutions to (3.27) which does not e x i s t i n the nonrandom 

case. I f the parameter 0 i s large ( i . e . , i f the c o r r e l a t i o n length of W 

i s small) then we may t r y a perturbation expansion i n the l i m i t of 0 -»- 0 0; 

we s h a l l show that the r e s u l t i n g solutions are unstable. Hence even though 

c l a s s i c barotropic i n s t a b i l i t y theory may indicate a given system to be 

stable, unstable waves may s t i l l e x i s t i f there i s s u f f i c i e n t "noise" i n the 

mean current. 

In order to make the following r e s u l t s more s p e c i f i c , we adopt the 

Brooks and Mooers (1977a) model of the F l o r i d a S t r a i t s (Figure 5.1): 

1-x V = xe (5.1) 

2b(x-l) 
e 0 5 x 5 1 

h = (5.2) 

I1 1 5 x 5 I, 
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with the parameters b = 1.385, I = 2.5 and Ro = 0.3. This model i s 

chosen since i t employs n o n t r i v i a l but r e a l i s t i c v e l o c i t y and bathymetric 

p r o f i l e s , and since we wish to apply our r e s u l t s to the F l o r i d a S t r a i t s . 

Although V s a t i s f i e s a l l the necessary conditions for i n s t a b i l i t y , i t i s 

extremely u n l i k e l y that t h i s model i s unstable as the subsequent argument 

shows. The Rayleigh condition (4.12) requires that 

<=i / QXH'2/|V - c| 2dx = 0. (5.3) 
0 

This requirement i s usually stated i n the form: i f c^ ^ 0, then Q x 

must vanish at l e a s t once i n the i n t e r v a l (0,£). In f a c t , Q x does 

vanish at x = 2, but t h i s i s not s u f f i c i e n t to ensure that (5.3) i s 

s a t i s f i e d . A p l o t of Q x (Brooks and Mooers, 1977a, Figure 2) shows that 

i t i s extremely small i n the i n t e r v a l (2,& = 2.5) compared with the 

i n t e r v a l (0,2). This means that \i>\ must be extremely large i n the 

former i n t e r v a l which i s not l i k e l y as the boundary conditions require 

<p(J£) = 0. That i s , i f (5.3) were s a t i s f i e d with c^ ^ 0, very large 

alongshore currents trapped against the outer wall would be necessary. With 

respect to a p p l i c a t i o n of the present theory to the F l o r i d a S t r a i t s , we note, 

however, that a more r e a l i s t i c bathymetric p r o f i l e r e s u l t s i n a p o t e n t i a l 

v o r t i c i t y d i s t r i b u t i o n that i s probably unstable (Brooks and Mooers, 1977a). 

Unfortunately, Brooks and Mooers apparently d i d not search f o r unstable 

solutions. 

If a perturbation expansion of (3.27) i s to lead to n o n t r i v i a l 

2 2 —1 

r e s u l t s , the term £ O h must be balanced by another term. For f i x e d 

k t h i s requires that c be 0 (CT) . I t might appear that t h i s could lead 



28 

to a contradiction of the semicircle theorem (Grimshaw, 1976) which states 

that f o r each r e a l i z a t i o n of the basic flow V_ , 

[ c r - 1/2(V B M + V B m ) ] 2 + c ±
2 < [1/2(V B M - V B m ) - 1/2 c w ] 2 

where V Bj^ and v g m are, r e s p e c t i v e l y , the algebraic maximum and minimum 

values of V"B , and c w i s the phase speed of the f i r s t mode CSW i n 

the case of V = 0. Thus i f W i s bounded, c i s bounded above 

independent of 0. Hence, once again the magnitude of 0 i s l i m i t e d . 

Nevertheless, we assume that cr i s large enough to permit i t s use as an 

expansion v a r i a b l e . On the other hand, the values of c^ and c r 

computed i n t h i s section f a l l well within the bounds of the semicircle 

theorem. Moreover, i t turns out that successive corrections to c r and 

„• • • , -2 "I 

c^ diminish as 0 not 0 

In the following development i t i s convenient to expand both the 

r e a l and imaginary parts of c separately; we take 

m=0 m=0 
-m 

rm c ± = 0 
00 

I 
m=0 

-m 
0 c. lm (5.4) 

The choice of eit h e r c^ = 0 ( 0 ) , c^ = 0(1) or c
r ' c i = 0 ( a ) leads only 

to t r i v i a l s olutions. The boundary conditions (3.19) become 

= 0 at x = 0,£. 

If the system under consideration contains d i s c o n t i n u i t i e s i n the gradient 
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of p o t e n t i a l v o r t i c i t y , then the equations must be solved i n each region 

and matched across the point of d i s c o n t i n u i t y . In general, the matching 

conditions are 

[i>] = o 

(5.6) 

[{(V - c) - e2}ip'/h] - [(V - c)Qj] = 0 

where [(*)] represents the jump i n (•). P h y s i c a l l y , these conditions 

ensure the continuity of mass flux and sea surface elevation across the 

di s c o n t i n u i t y . Their v a l i d i t y requires that V be continuous. Both h 

and Q are continuous i n the present case and (5.6) reduces to 

m = o 

> at x = 1. (5.7) 

W ] = o 

The three lowest order equations are 

VtyQ + h _ : L ( e / c i 0 ) 2 i | ) o = 0 (5.8) 

Vipi + h 1(e/c±0)\1 

= - c . 0 " 1 { 2 [ c i l + i ( V - c x Q ) W 0 ~ iQ x^ 0} 



30 

+ h~1(Z/c±Q)\2 = c i 0
 2{ (V - c^)2 - 2c, 0c, n - C j l

2 - e 2 

rO' 'i2 I O i l 

- 2i[(V - c r 0 ) c i ; L - c . 0 c r l ] } ^ 0 

-1 2c ± 0 [ C i l + i(V - c r Q ) ] ^ 1 

c i Q 2 2 x [ ( V " Cr0> - i c i l ^ 0
 + i c i 0 _ 1 Q x ^ l (5.10) 

The zeroth order equation (5.8) defines a Sturm-Liouville problem for which 
, (n) 

an infinite number of solutions y Q exist such that the nth mode has 
(n) 2 

exactly n zeros, and the corresponding eigenvalues ( s / c i o ' a r e 

ordered and tend to in f i n i t y as n -*• 0 0. The superscript (n) is henceforth 

dropped. 

Solutions to (5.8) satisfying both the boundary and jump conditions 

are given by: 

b ( x _ 1 ) • w • 1 
e sm Ax/sm A 0 5 x < 1 

(5.11) 

sin a(x - £)/sin a ( l -I) 1 5 x < I 

. 2 2 / 2 2 2 A = £ / c i Q - k - b (5.12) 

2 2 / 2 , 2 "\ 2 ,2 a = e / c
i 0 ~ = ^ (5.13) 
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provided that A and a s a t i s f y 

b + A/tan A = a/tan a ( l - £) . (5.14) 

I f A i s negative, the solutions over the shelf are hyperbolic and are 

obtained by replacing A with iA. For a given choice of k, b, and H, 

the admissible values of e/c^ are determined i m p l i c i t l y by (5.14) 

together with e i t h e r (5.12) or (5.13). A graphical s o l u t i o n of (5.14) i s 

shown i n Figure 5.2 f o r a case i n which hyperbolic solutions are found. 

The growth rates of the hyperbolic modes, i f they e x i s t , exceed those of 

the trigonometric solutions. For the values of b and £ appropriate to 

the F l o r i d a S t r a i t s only trigonometric modes are found. 

a c t u a l l y solving f o r and ^ 2 . Since these equations a l l have 

i d e n t i c a l homogeneous parts, the Fredholm a l t e r n a t i v e implies that 

must be orthogonal to the respective inhomogeneous terms. We thus obtain 

Further information may be extracted from (5.8)-(5.10) without 

c i 0 = e / ( X + k + b ) (5.15) 

= <V> + (c i 0
2/2£ 2)<hQ x> (5.16) 

c. _ , c i l r l = 0 (5.17) 

= - (3/2) <(V - c r Q ) 2 > - e 2 / 2 - (c i 0
2/2£ 2)<(V - c r Q)hQ x> (5.18) 

- i c i 0 < ( V " croHV " i(c i Q
3/2£ 2)<hQ x|V 



32 

Figure 5.2 Graphical s o l u t i o n of (5.14) f o r b = 3.0 and SL = 2.5. The 
( l i g h t , heavy) s o l i d l i n e i s the locus of b + A/tan A for 
(r e a l , imaginary) A , while the dotted l i n e represents 
a/tan a ( l - Z). Intersections with the ( l i g h t , heavy) l i n e corre
spond to (trigonometric, hyperbolic) s o l u t i o n s . For F l o r i d a S t r a i t 
parameters (b = 1.385, I = 2.5) the f i r s t three solutions are 
a = 1.650, a„ = 2.809, and a, = 3.891. 
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where 

£ £ 
<f (x)| g(x)> = / h - 1 i j ; 0 ( x ) f (x)g(x)dx// h - 1 ^ 2 (x) dx (5.19) 

0 0 

and 

<f(x)> E <f(x)|^ 0(x)> (5.20) 

are weighted cross-channel averages. These r e s u l t s are completely general 

and are not l i m i t e d to the BrM model. For t h i s model, however, c r Q may 

be rewritten as 

c r 0 = <V> + <hQx>/2(X2 + k 2 + b 2) (5.21) 

which i s s t r i k i n g l y s i m i l a r to the expression f o r a CSW i n a constant 

current V over an exponential s h e l f , 

c = V - 2b/(A 2 + k 2 + b 2) = <V> + <hQx>/(A2 + k 2 + b 2) (5.22) 

where hQ x = - 2b (cf. Buchwald and Adams, 1968, f o r the case V = 0). 

We see that the weighted average <V> replaces V, while the p o t e n t i a l 

v o r t i c i t y term i n (5.21) i s diminished by 1/2. This means that the speed 

of the Doppler s h i f t e d wave c rQ - <V> i s reduced by the presence of 

random i r r e g u l a r i t i e s i n the .basic current. The explanation i s c l e a r : 

the disturbance must traverse a longer path length i n t r a v e l l i n g from one 

point to another since i t i s buffeted about and scattered by the f l u c t u a t i n g 

current. This phenomenon i s common to wave propagation i n random media 
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(Howe, 1971). 

In order to determine c^ 2 i t is necessary to f i r s t evaluate 

i|> ̂  . This i s a straightforward, although tedious task, and the complete 

results are summarized in Appendix B. The solutions in the onshore and 

offshore regions take the form 

r 
Ai^o + i Ao pi 

Vo + i A0 P2 

0 5 x ^ 1 

1 5 x 5 I 

(5.23) 

where and P 2 are particular solutions that satisfy the boundary 

conditions; the factor of i ensures that P ^ and P 2 are real. These 

solutions must be matched across x = 1, and the matching conditions (5.7) 

in matrix form are 

A l l " _ P 2 - P 1 
M = i A Q = P (5.24) 

A12_ P ' 2 - P ^ 

where 

s i n sin a ( l - l) 

M = (5.25) 

b sin X + A cos a cos a( l - &) 

and a l l quantities are evaluated at x = 1. However, M is singular, 
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since i n matching the zeroth order solutions we required that det M = 0. 

If a s o l u t i o n to (5.24) i s to e x i s t , i t i s necessary that P be orthogonal 

to each l i n e a r l y independent s o l u t i o n of the associated homogeneous adjoint 

equation, 

M' = 0. (5.26) 

Since M i s of rank one, there i s only one independent s o l u t i o n of (5.26), 

and i t leads to the a u x i l i a r y condition 

P - P = a~ x tan a ( l - I) (P' - P',) 
2 1 A X . 

(5.27) 

The f u l f i l l m e n t of t h i s r e s t r i c t i o n was used as a check of the numerical 

r e s u l t s presented i n Figures 5.3-5.7. The one independent equation 

represented by (5.24) serves to f i x A^2 , 

A12 = A l l s i n ^ / s i n ct (1 - 5,) - i A Q ( P 2 - P 1)/sin ot(l - I) , (5.28) 

but A-^ remains indeterminate. A c a r e f u l examination of (5.10) reveals 

that the part of proportional to I|JQ does not contribute to c ^ 

and we choose A-^ = 0. A l t e r n a t i v e l y , A ^ could be chosen so that IJJQ 

and ^ were orthogonal. S i m i l a r considerations apply to the higher order 

eigenfunctions and eigenvalues. F i n a l l y , although i t i s not immediately 

obvious, one finds that c
r 2 n + l a n c ^ c i 2 n + l v a n i s n a n& that ^ n ^ O A N < ^ 

^2n+l / / A0 a r e P u r e l v r e a l a n d imaginary q u a n t i t i e s , r e s p e c t i v e l y . This 
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2 
means that successive corrections to c r and c^ diminish by 0(1/0 ). 

We now examine the r e s u l t s i l l u s t r a t e d i n Figures 5.3-5.7 which 

were computed f o r the parameters c h a r a c t e r i s t i c of the F l o r i d a S t r a i t s . 

The dependence of the growth rate Q-̂  = k(0c^g + 0 ^ c ^ ) on 0 for the 

f i r s t mode i s shown i n Figure 5.3. As 0 increases, 0,^ increases and 

the wave number range over which i t i s nonzero widens. There i s a threshold 

value of 0 above which unstable waves e x i s t . For mode 1 i t l i e s between 

0 = 3 and 0 = 4 ; for a given k t h i s value decreases with increasing 

mode number. Figure 5.4a exhibits the dependence of on k for the 

f i r s t three modes. I t i s p a r t i c u l a r l y i n t e r e s t i n g that the regions of 

i n s t a b i l i t y overlap and that for short wavelengths the higher modes may be 

the more unstable. We note, however, that f o r large wavenumbers, higher 

order terms which are neglected here may be s i g n i f i c a n t . The frequencies 

and phase speeds as functions of k are p l o t t e d i n Figures 5.5a and 5.6a, 

re s p e c t i v e l y , for modes 1-3. The most s t r i k i n g feature i n them i s the 

existence of points where the curves i n t e r s e c t , which implies the possible 

existence of a "resonance" i n t e r a c t i o n (this p o t e n t i a l l y was also inherent 

i n the Couette flow model of Manton and Mysak, 1976, for which the phase 

speed was constant and equal for a l l modes; see Section 7). I t has been 

documented i n the l i t e r a t u r e (see Mysak, 1978) f o r a v a r i e t y of p h y s i c a l 

systems, that modes which are uncoupled i n the deterministic case may 

become coupled when randomness i s introduced into the problem. Here, however, 

we are dealing with disturbances which do not e x i s t i n the d e t e r m i n i s t i c 

case; moreover, i t i s c l e a r that the higher order terms i n the perturbation 

expansion w i l l not lead to mode coupling. Hence a more c a r e f u l analysis 

of (3.27) i s required to resolve t h i s point, perhaps using and ^ as 

a basis set for the r e a l and imaginary parts of We also note the 
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Figure 5.3 Behaviour of the f i r s t mode nondimensional growth rate ti^ as 
a function of O and k. The dimensional values given correspond 
to F l o r i d a S t r a i t parameters (b = 1.385, I = 2.5, Ro = 0.3) . The 

( curves are labeled by the value of 0 " . 
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Figure 5.4A Behaviour of the nondimensional growth rate ft^ as a function 
of k f o r the f i r s t three modes for 0 = 5 and £ = .5; 
(A) channel model (b = 1.385, I = 2.5, Ro = 0.3), (B) shelf 
model (b = 1.385, U = 1.0, Ro = 0.3). w 
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W A V E L E N G T H ( K M ) 
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Figure 5.5A Dispersion curves f o r the f i r s t three modes, 
(A) channel model, (B) s h e l f model. Beyond 
k/2ir = 0.6 the curves are e s s e n t i a l l y l i n e a r . 
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Figure 5.6A Behaviour of the nondimensional phase speed as a function of 
k for the f i r s t three modes, (A) channel model, (B) shelf model. to 
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related study by Allen (1975) of coastal trapped waves i n a s t r a t e f i e d ocean 

where i t was shown that CSWs may be coupled to internal Kelvin waves. 

Figure 5.6A indicates that the phase speed i s positive for a l l 

k and thus that the waves propagate northward; i . e . , i n the di r e c t i o n of 

the mean flow. However, i f the Rossby number were small enough, the 

v o r t i c i t y term i n (5.16) would predominate, and the disturbances could 

travel southward. (Consider, for example, the case of V = 0, hQx = - 2b.) 

This i s i n marked contrast to the stable CSW's admitted 

by the BrM model which propagate only southwards. 

From the slopes of the dispersion and phase speed curves, we infer that the 

group velocity i s positive and exceeds crQ for a l l k. F i n a l l y , we note 

that crQ -»• <V> as k -*• °° and thus that the waves are simply advected by 

the mean current i n this l i m i t . 

Contour plots of the mass transport stream function for the f i r s t 

three modes are shown i n Figure 5.7. An important feature i s the t i l t i n g 

of the gyre axes toward the coast since i t i s related to the sign of the 

mean disturbance Reynolds stress T 1 2 = (k/2h) F (ij; , 4 ^ ) . In terms of the 

phase 0 = k(x - c t) , the stream function i s given by 41 = tyR cos 9 - 4>j 

s i n 0 . The line-along which i t vanishes i s determined by tan 0 = 4 J
R/^ JI / 

with slope d0/dx = - (cos 2 8/4^ 2 ) F ( ^ R / ^ j ) . Hence T 1 2 a - d0/dx and 

Figure 5.7 shows that i t i s everywhere negative. Since V* < 0 for x < 1, 

(4.11) reveals the rather surprising r e s u l t that over the shelf, T 1 2 

acts to remove energy from the nonrandom part of the disturbance and to 

strengthen the mean shear. This i s i n concert with the finding of N i i l e r 

and Mysak (1971) that the continental shelf acts as a s t a b i l i z i n g factor. 

Of course, the largest source term i n (4.11) i s the one proportional to 

a which shows that the disturbance energy i s extracted primarily from the 

fluctuating part of the basic current. 

Plots of the mass transport stream function are of limi t e d value 
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Figure 5.7A The mass transport stream function for (A) channel mode 1, 
(B) channel mode 2, (C) channel mode 3, (D) shelf mode 1, 
(E) shelf mode 2, (F) shelf mode 3. Here 9 = k(y - c r t ) . 
The amplitude i s a r b i t r a r y . 

en 



0/2 TT 

Figure 5.7B 



Figure 5.7C 



Figure 5.7D 





0 / 2 TT 
UI 
O 

Figure 5.7F 



1.0 

0.5 

0.0 

-0.5h 

-1.0 

1.0 

0.5 

0.0 

M O D E I 

U x io 

0.0 0.5 1.0 X 1.5^^20^25 

-

51 

0.5 h 

-1.0 

1.0 

0.5 

0.0 

-0.5 

-1.0 

M O D E 2 

x s — v. 
0.0 0 . 5 K 10___^--t5 / 2.0 25 

- x io 

\ V M O D E 3 

X 

0.0 V)5 Sfe 2.0N 

/ J * 10 

3 of u and v f o r : (1) channel mode 
l i n e 9/2TT = 0.8 i n F i g . 7a, (2) channel mode 2 taken along 
6/2TT = 0.9, and (3) channel mode 3 taken along 9/27T = 0.37. In 
each case the values are normalized by V(x = 0). 
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i n v i s u a l i z i n g the v e l o c i t y structure over the she l f . Figure 5.8 shows 

selected p r o f i l e s of u and v corresponding to Figure 5.7. In a l l cases 

the motion i s trapped against the coast. 

These r e s u l t s are now compared with observations made i n the 

F l o r i d a S t r a i t s . The occurrence of flu c t u a t i o n s i n the F l o r i d a Current 

with periods ranging from a few days to several weeks i s well known, and 

the following review i s not intended to be exhaustive; the reader i s 

refe r r e d to the papers referenced here f o r a more extensive discussion. A 

plan view of the F l o r i d a S t r a i t s i s shown i n Figure 5.9. I t reveals the 

channel-like topography and i l l u s t r a t e s the sharp turn the F l o r i d a Current 

must make on i t s northward passage. Cross sections of O and alongshore 

v e l o c i t y are presented i n Figure 5.10. In addition,to showing the highly 

b a r o c l i n i c nature of the mean flow, i t also indicates some of the 

lo n g i t u d i n a l v a r i a t i o n s i n bathymetry and i n the density and v e l o c i t y f i e l d s . 

The s t r a t i f i c a t i o n i s compressed over the s h e l f , and a t y p i c a l value of the 
_2 -1 

Brunt-Vaisala frequency i n the pycnocline i s 2 x 10 rad s (Mooers and 

Brooks, 1977). 

In a marked contrast to low-frequency motions i n the open ocean 

that are characterized by a red spectrum, there appears to be 

a sp e c t r a l gap between motions with periods of about 25 days and 1 year 

(Brooks and N i i l e r , 1977; Diiing et a l . , 1977; Wunsch and Wimbush, 1977). 

Duing et a l . (1975) estimate from mid-channel v e l o c i t y measurements that 

approximately 80% of the nontidal variance occurs at periods exceeding 8 

days. In general, the low-frequency motions may be broken i n t o three time 

scales, 8-25 days, 4-5 days, and 2-3 days (Diiing et a l . , 1977) each of which 

i s treated separately here. Seasonal f l u c t u a t i o n s i n the F l o r i d a Current 

have also been observed ( N i i l e r and Richardson, 1973). 



Figure 5.9 Plan view of the F l o r i d a S t r a i t s .^showing l i n e s 
I and II along which the sections i n F i g . 5.10 
are taken (from Mooers and Brooks, 1977). 
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Figure 5.10A Sections along l i n e s I and II of (A) G t and (B) alongshore 
v e l o c i t y (from Mooers and Brooks, 1977). 
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The 8-25-Day Band 

From the analysis of year-long records of sea l e v e l , sea 

temperature, and atmospheric pressure, Brooks and Mooers (1977b) demonstrated 

the existence of southward t r a v e l l i n g waves with periods of 7-10 days i n 

winter and 12—14 days i n summer and speeds of 100 cm s ^ or greater. Strong 

coherence between sea l e v e l and temperature and the atmospheric variables 

showed that these disturbances were wind generated; a f i t of the BrM CSW 

model to these observations was only p a r t i a l l y successful as the model 

predicts wave speeds le s s than 50 cm s Schott and Duing (1976) applied 

a single barotropic wave model to the r e s u l t s obtained from the analysis 

of 65 days of current measurements taken concurrently at stations separated 

i n the alongshore d i r e c t i o n and found a s t a t i s t i c a l l y s i g n i f i c a n t f i t for 

the 10-13-day wave period band and a marginal f i t f o r the 7-10-day band. 

In the former case they calculated a wavelength of 270 km, a southward 

-1 -1 phase speed of 17 cm s , and an amplitude of 14 cm s , values which are 

i n e x c e l l e n t agreement with the BrM model. The wave parameters were s i m i l a r 

for the 7-10-day band. Duing et a l . (1977) concluded that 9-20-day 

o s c i l l a t i o n s possessed amplitudes ranging from 15-25 cm s-"*"; they also 

showed that disturbances i n the 10-14-day band occurred i n t e r m i t t e n t l y as 

phase-coherent wave packets c o n s i s t i n g of 4-6 cycle s . Since high coherence 

was observed between the v e l o c i t i e s and the atmospheric v a r i a b l e s , e s p e c i a l l y 

the wind stress c u r l , i t appears l i k e l y these motions are, i n i t i a l l y at 

l e a s t , atmospherically forced and represent stable, modified s h e l f waves. 

The 4-5-Day Band 

In the 4-5-day wave period band, Diiing (1975) described a nearly 
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barotropic wave, 160-240 km i n length, that propagates northward with a 

mean speed of 45 cm s and an amplitude of about 10 cm s \ An i n t e r e s t i n g 

manifestation of t h i s disturbance i s the r e v e r s a l of the b a r o c l i n i c mean 

flow at depth on the western side of the channel that accompanies i t s 

passage. Based on the analysis of s i x months of current, temperature, and 

bottom pressure measurements taken i n 1974, Wunsch and Wimbush (1977) have 

also described a northward t r a v e l l i n g 4-7-day wave about 60 km i n length. 

Diiing et a l . (1977) showed that l i k e the 10-14-day motion, a 4-5-day 

disturbance occurs i n t e r m i t t e n t l y as a wave packet of about 4 cycles and 

that i t i s s i g n i f i c a n t l y correlated with the wind stress c u r l and other 

atmospheric v a r i a b l e s . No i n d i c a t i o n of the d i r e c t i o n of wave propagation 

was given.. 

The 2-3-Day Band 

Lee (1975) and Lee and Mayer (1977) have documented the existence 

of wave-like meanders of the mean flow and the transient occurrence of 

cyclonic " s p i n - o f f " eddies i n the 2-3-day band. These eddies are trapped 

against the continental boundary, have a l a t e r a l length scale of about 

10 km and a l o n g i t u d i n a l one 2 to 3 times greater. They occur at 

approximately weekly periods, propagate northward at speeds ranging between 

20-40 cm s 1 and p e r s i s t for up to 3 weeks. A kinematical model of a p a i r 

of v o r t i c e s superimposed on the mean flow gave a good representation of 

the observed near-surface current. The meanders also propagate northward 

but at speeds between 65 and 100 cm s~^~. 

I t i s for the motions i n the 4-5-day band that the present theory 

might o f f e r a possible explanation. Indeed, barotropic i n s t a b i l i t y of the 
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mean flow has been suggested by Duing (1975) as a l i k e l y mechanism f o r 

these motions. We should note, however, that Brooks and N i i l e r (1977) 

determined that, i n the mean, the F l o r i d a Current i s i n an equilibrium 

state and that the net interchange of energy between the mean current and 

the fl u c t u a t i o n s superimposed upon i t i s extremely small. Of course, t h i s 

does not rule out the p o s s i b i l i t y that disturbances i n some frequency 

ranges may extract energy from the mean flow. Furthermore, i t has been 

shown that the primary source of energy f o r the motions described i n t h i s 

paper i s the small, sheared, f l u c t u a t i n g component of the basic current. 

Nevertheless, Brooks and N i i l e r ' s work indicates that along-stream 

v a r i a t i o n s i n the flow, as well as i t s b a r o c l i n i c nature, may be s i g n i f i c a n t . 

For the parameters appropriate to the F l o r i d a S t r a i t s , Figure 5.6a 

indicates phase speeds of about 40 cm s-"'" for modes 1 and 3, and 25 cm s~^~ 

f o r mode 2 f o r the wavelength range of 160-240 km. These r e s u l t s are 

independent of £ and 0 " . However, the corresponding growth rates are 

strong functions of these factors as i s i l l u s t r a t e d i n Table I I . In general, 

the higher modes are more unstable, and i n p a r t i c u l a r , i t i s seen that the 

t h i r d mode could grow s i g n i f i c a n t l y within one wave period for a wide range 

of values of £ and 0 ~. Diiing's (1975) p l o t s of the eastward v e l o c i t y 

component imply the existence of a second or t h i r d (or higher) mode; 

unfortunately, h i s measurements extend only over 2/3 of the channel width. 

Wunsch and Wimbush (1977) have calculated v e l o c i t y cross-spectra, and the 

phase differ e n c e at 5 days between northward v e l o c i t i e s measured at the 

continental boundary and the shelf break, and at the shelf break and the 

eastern wall i s approximately 180° i n each case. This i s consistent with 

a t h i r d mode unstable wave but not a second mode disturbance. On the basis 

of these r e s u l t s we conclude that a mode 3 f l u c t u a t i o n as described by the 
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Table I I . The c h a r a c t e r i s t i c growth times T = l/ft 
f o r a 200-km wave (k/27T = . 1 5 ) . The 
threshold values a „ are also given. 

Mode 1 Mode 2 Mode 3 

£ . 1 . 2 5 . 5 0 . 1 . 2 5 . 5 0 . 1 . 2 5 . '50 

a 1 6 . 0 6 . 6 0 3 . 5 0 1 3 . 0 5 . 5 0 3 . 3 0 5 . 0 3 . 3 0 3 . 0 0 
T 

a T (days) 

3 . 0 - - - - - - - - 4 . 4 0 

4 . 0 - - 2 . 4 0 - - 2 . 6 0 - 7 . 0 0 2 . 5 0 

5 . 0 - - . 8 6 • - 1 . 2 0 - 3 . 2 0 1 . 4 0 

7 . 5 - - . 3 7 - 2 . 6 4 . 5 6 5 . 5 1 . 5 0 . 7 2 

1 0 . 0 - - . 2 5 - . 7 8 . 3 8 3 . 1 1 . 0 0 . 5 0 
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present theory provides a possible explanation of Diiing's observations. 

I t i s p a r t i c u l a r l y i n t r i g u i n g that the mode 1 and mode 3 dispersion curves 

cross i n the range of i n t e r e s t , but i t would be improper to draw any 

conclusions from t h i s observation. 

I t i s i n t e r e s t i n g to speculate that some r e l a t i o n s h i p might e x i s t 

between a mode 3 wave i n the 2-3-day band and the spinoff eddies described 

by Lee. The propagation speeds are s i m i l a r and the "inner gyre" i l l u s t r a t e d 

i n Figure 5.7 i s approximately the same size as the observed eddies. 

(Although Figure 5.7 corresponds to k / 2 7 T = .15, i t s form changes r e l a t i v e l y 

l i t t l e as k i s increased.) 
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6. The Continental Shelf Model 

We now turn to the continental shelf model mentioned i n the 

introduction. In order to examine a coastal phenomenon such as the 

modification of CSWs by a mean current, i t i s necessary that any mechanisms 

capable of a l t e r i n g the p o t e n t i a l v o r t i c i t y d i s t r i b u t i o n be l o c a l i z e d with 

respect to the coast. In a l l studies of CSWs i n the absence of a basic 
2 

flow, the gradient of the background p o t e n t i a l v o r t i c i t y , h'/h , has 

always died out away from the coast so that t h i s requirement was 
automatically f u l f i l l e d . I f one includes a sheared mean current, however, 

-1 -1 2 the p o t e n t i a l v o r t i c i t y gradient becomes h V" - (Ro + V')h'/h , i t 
2 

i s no longer s u f f i c i e n t that only h'/h decay as x -*• °°. N i i l e r and Mysak 

(1971) avoided t h i s problem by employing a piecewise l i n e a r current that 

became constant at a small distance offshore. McKee (1977) and Brooks and 

Mooers (1977a) have avoided t h i s problem by adopting a channel model, 

although Brooks and Mooers b r i e f l y discussed a continental s h e l f model 

u t i l i z i n g an exponentially decaying current. Grimshaw (1976) also required 

the mean current to diminish exponentially. 

Our approach i s to require V"B to be bounded away from the s h e l f 

edge. S p e c i f i c a l l y , we choose 

V(x) = s(x)v(x) 

(6.1) 
W(x) = s(x)w(x) 

where s (x) i s a deterministic function that s a t i s f i e s s (x) ->• 0 as 

x -* oo, and we assume w(x) i s a homogeneous random function. In terms of 
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the c o r r e l a t i o n function r (E,) = E[w(x)w(x + E,) ] one finds that 

2 
R(o) = s r(o) 

2 
R'(o) = s r'(o) + ss'r(o) (6.2) 

2 
R" (o) = ss"r(o) + 2ss'r'(o) + s r"(o) 

2 
With the choice of r(o) = 1 and C = - r"(o) we f i n d the equation 

equivalent to (3.27) to be 

[(V - c) - £2s2]Vty - (V - c)Q x^ 

- £ 2h 1[s2a2 - ss" + ss'h'/h]^ = 0. (6.3) 

The boundary conditions are 

ty(x) = 0 at x = 0 

(6.4) 
i>(x) -»- 0 as x -»• °°. 

The i n t e r p r e t a t i o n of (6.3) i s i d e n t i c a l to that of (3.27), but we note 
2 2 

that the term corresponding to e a i n (3.27) i s more complex here and 

involves a contribution from R'(0). 

The appropriate matching conditions are 

[{(V - c ) 2 - e 2s 2}^'/h] - [(V - c)p>] - £ 2[ss'^/h] = 0. 

(6.5) 
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r l-x 
x e 

V(x) = s(x)v(x) = < 

0 5 x 5 1 

U(l-x) 
x e x > 1 

(6.6) 

r 

s(x) = < 
y ( i - x ) 

0 5 x 5 1 

x > 1 

(6.7) 

2b(x-l) 

h(x) = < 

0 5 x 5 1 

x > 1 

(6.8) 

where y i s p o s i t i v e . 

As before, we seek a perturbation s o l u t i o n of the form (5.4) 

The three lowest order equations are 

Vi>Q + h 1 ( £ s / c i 0 ) 2 ^ ( ) = 0 (6.9) 

-1 2 
V^>1 + h (es/c i 0) i j ^ 

= - c ± 0
 1 { 2 [ c i l + i ( V - c r 0 ) ] ^ 0 - iQ x V (6-10) 

2 2 V4>2 + h (es/c .0) i f 2 = c i 0 {(V - c r 0 ) - 2 c i 2 c i 0 - c n - e s 

2i[(V - c r 0 ) C i l - c i 0c r l]W 0 - 2 c i 0 " [ C i l + i ( V - c ^ ) ] ! ^ 

-2 2. -1 
lO --x' {Q Yt(v - c r Q ) - i c . J - e h ss" + e^ss'h'/h^ifj ' i l 

(6.11) 
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For x < 1, (6.9)-(6.11) are i d e n t i c a l with (5.8)-(5.10). The zeroth order 

so l u t i o n s a t i s f y i n g both the boundary and matching conditions i s : 

^0 = A0< 

b(x-l) . y , . y 
e s i n Ax/sin A 

J v ( p C ) / J „ ( p ) 

(6.12) 

.2 2 , 2 ,2 ,2 
A = £ /C^Q - k - b (6.13) 

v = k/y p = £/yc iO C = e y(1-x) (6.14) 

provided that 

b + X/tan X = - k + ( e / c i 0 ) J v + 1 ( p ) / J v ( p ) (6.15) 

I f X i s negative, the solutions are hyperbolic over the shelf and may be 

obtained by replacing X with iX. The graphical s o l u t i o n of (6.15) 

c l o s e l y resembles that of (5.14), but note that (6.15) must be solved 

separately for each choice of £, y, and k . This s o l u t i o n i s not v a l i d 

for k = 0 since J Q cannot s a t i s f y the boundary condition at x = 0 0 

( i . e . , at 5 = 0). 

The f i r s t order s o l u t i o n i s of the form 

r 
An%  + i A o p i 

12 0 0 2 

(6.16) 
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and the p a r t i c u l a r solutions are s p e c i f i e d i n Appendix B. In order f o r 

il>2_ t o s a t i s f y the matching conditions, the consistency condition (5.27) 

must again be s a t i s f i e d ; i t was used as a check on the numerical r e s u l t s 

derived here, and i t proved extremely s e n s i t i v e to the accuracy of the 

roots of (6.15). We again choose A-^ = 0 and A 1 2 i s s p e c i f i e d by (5.28) 

App l i c a t i o n of the Fredholm a l t e r n a t i v e to (6.9)-(6.11) implies 

that 

c r Q = <V> + (c i 0
2/2e 2)<hQ x/s 2> (6.17) 

c i l ' c r l = 0 (6.18) 

where 

and 

C i 2 C i O = ~ ( 3/2)<(V - c r Q ) 2 > - (e 2/2)<s 2> 

(c i 0
2/2£ 2)<(V - c r Q ) h Q x / s 2 > - (c i 0

2/2)<s"/s> 

+ (c i 0
2/2)<h's'/hs> - i c i 0 < ( V - c r Q ) | T ) ; ^ 

- i ( c i 0
3 / 2 £ 2 ) < h Q x / s 2 | \l>±> (6.19) 

<f (x) | g(x)> = / h ^-s2^ (x ) f(x ) g(x)dx// h - 1 s V > 2 (x) dx (6.20) 
0 0 

<f(x)> = <f(x) | ̂ Q(x)> (6.21) 
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by comparison with (5.17)- (5.19) , we see that the terms inv o l v i n g the 

p o t e n t i a l v o r t i c i t y gradient are emphasized since s < 1 o f f the s h e l f . 

Otherwise the i n t e r p r e t a t i o n of (6.17)- (6.19) remains unchanged. 

A comprehensive study of the dependence of the various r e s u l t s 

on y was not c a r r i e d out, and the choice ]i = 1 was made to f a c i l i t a t e 

comparison with the channel mode. The dependence of 0,^ on o~ i s s i m i l a r 

to that shown i n Figure 5.3, and i s not shown here. The threshold values 

of 0" are smaller for modes 1 and 3 and larger for mode 2 than they are 

for the corresponding channel modes. P l o t s of fi^ and c rQ as functions 

of k are i l l u s t r a t e d i n Figures 5.4b and 5.6b and a d e t a i l e d comparison 

with t h e i r channel counterparts reveals nearly as many differences as 

s i m i l a r i t i e s . Two general conclusions may be drawn, however. As e i t h e r 

k or the mode number increases, the d i s p a r i t i e s between the two models 

increase for and decrease f o r c r Q . This i s p h y s i c a l l y reasonable 

since as k or the mode number increases, the e f f e c t i v e wavelength 

decreases; thus, the wave should become less s e n s i t i v e to the outer boundary 

and more s e n s i t i v e to the basic current p r o f i l e . Now fi^ depends 

intimately on t h i s p r o f i l e and so the two models should be i n c r e a s i n g l y 

disparate at small wavelengths. S i m i l a r l y , the wave frequency does not 

depend on the d e t a i l s of the basic current but i t c e r t a i n l y depends strongly 

on the p o s i t i o n of the channel w a l l . Hence the phase speeds predicted by 

the two models should d i f f e r f o r long wavelengths. We also note that the 

growth rates for the d i f f e r e n t models no longer overlap. Figure 5.5b shows 

that the group v e l o c i t y i s always p o s i t i v e , and from the slope of the 

curves i n Figure 5.6b we see that, with the exception of the f i r s t mode at 

small wavenumbers, i t exceeds the phase v e l o c i t y . F i n a l l y , the mass 

transport stream function i s shown i n Figure 5.7; i t generally resembles 

i t s channel counterpart although the axis t i l t i s increased. 
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7. Rossby Waves i n a Random Zonal Flow 

In t h i s section we examine the i n t e r a c t i o n of small-amplitude, 

nondivergent, free barotropic Rossby waves with a sto c h a s t i c , sheared zonal 

current. For convenience we assume that the flow i s confined to an i n f i n i t e l y 

long channel with side walls at y = 0,L. The theory i s also applicable 

to topographic Rossby waves provided that the bottom slope a i s small 

enough so that aL/H i s of the order of the Rossby number. The following 

analysis i s e n t i r e l y analogous to that of the preceding sections, and i t 

i s therefore presented i n as succinct a fashion as po s s i b l e . We note the 

rel a t e d study of K e l l e r and Veronis (1969) who examined the propagation of 

Rossby waves i n a weak random current on an i n f i n i t e $-plane. For a zonal 

flow of zero mean they found that the waves were damped and the wave speed 

reduced. 

In terms of the v e l o c i t y stream function defined by 

u 

(7.1) 

v x 

the nondimensional, l i n e a r i z e d v o r t i c i t y equation i s 

0 T + u B 3 x)? 2T + V B T U ' V = 0 (7.2) 

where the zonal current Ug(y) defines the basic state. As scale factors 

we choose an average current U f o r (u,v), the channel width L f o r 
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2 (x,y), and L/U f o r the time; 3 i s nondimensionalized by L /U so that 

the dimensionless C o r i o l i s parameter i s f = 1 + Ro3y. For a t r a v e l l i n g 

wave s o l u t i o n of the form 

ik(x-ct) 
V = <Hy)e (7.3) 

(7.1) reduces to 

(U B - c)($" - k 2$) + (3 - U" B)$ = 0 (7.4) 

which i s p r e c i s e l y the equation f i r s t considered by Kuo (1949) . The 

boundary conditions require no flow normal to the channel w a l l , hence 

<3?(y) = 0 at y = 0,1. (7.5) 

We decompose U B into i t s mean and f l u c t u a t i n g components as 

U B = U(y) + £W(y) (7.6) 

where E(U_,) = U and E(W) = 0, and we choose E(W ) = 1. Then a p p l i c a t i o n 

of the theory developed i n Section 3 leads to an equation f o r the mean part 

of $, 

[(u - c ) 2 - e2]RJj + (u - c)Qy4> - e2o24> = o. (7.7) 

Here F = d 2/dy 2 - k 2 , cr2 = - R" (0) , and Q y = (3 - U") . 

A perturbation expansion of the form (4.4) leads to the following 
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r e s u l t s , 

Here 

c i 0 = e 2/K 2 (7-8) 

c r Q = <U> + <Qy>/2K2 (7.9) 

c , ,c , = 0 (7.10) 
i l r l 

c i 2 c i 0 = - (3/2XCU - c r Q ) 2 > - £ 2/2 

+ (1/2K 2)<(U - c r 0)Qy> - i c i 0 < ( U - c r Q ) | tyf 

+ i ( c i 0 / 2 K 2 ) < Q y | tyf . (7.1D 

1 1 2 <f(y) | g(y)> = / (y) f (y) g (y) dy/J iJJ0(y)dy (7.12) 
0 0 

and 

<f (y)> = <f (y) | 4>Q(y)> (7.13) 

2 2 2 2 

where tyQ = A Q sin(nTry) and K = k + n TT . Again one finds that c 2 n + i 

vanishes and that ^ n ^ O a n < ^ ^2n+1^0 a r e rea-'- a n c ^ imaginary q u a n t i t i e s 

respectively< 

These expressions are generalizations of those found by Manton 

and Mysak (1976) for plane Couette flow; t h e i r r e s u l t s may be recovered by 

putting U = y and Q v = 0. In p a r t i c u l a r , they showed that a l l modes 

t r a v e l l e d with the same constant phase speed; the i n c l u s i o n of a nonzero 
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v o r t i c i t y gradient i n the present model serves to separate the dispersion 

curves as i s revealed by (7.9) . Somewhat more s p e c i f i c r e s u l t s are given 

i n Appendix C f o r a parabolic flow model, U = 3y (y - D/2. 

F i n a l l y , we note that the present theory i s not i n c o n f l i c t with 

the study of K e l l e r and Veronis which predicts wave damping. Their r e s u l t s 

require two-dimensional,' t r a n s l a t i o n a l invariance of the basic state 

(Keller, 1967), a condition which cannot be s a t i s f i e d by a system with a 

sheared mean current or by one confined to a channel. Hence t h e i r r e s u l t s 

do not apply to the present system, even i n the l i m i t i n g case of U = 0. 
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8. Summary and Concluding Remarks to Part I 

I t has been demonstrated that shelf and Rossby waves propagating 

through a region of basic sheared current of the form Vg = V + £W where 

W i s a centred random function may be unstable i f the l a t e r a l c o r r e l a t i o n 

length of W i s small compared to the c h a r a c t e r i s t i c length scale of the 

problem. This i s true whether or not V s a t i s f i e s the well-known 

necessary conditions for barotropic i n s t a b i l i t y . The growth rate of these 

disturbances i s p r i n c i p a l l y determined by the inverse of the c o r r e l a t i o n 

length. The phase speed i s the sum of weighted cross-stream averages of 

the mean current and the mean gradient of p o t e n t i a l v o r t i c i t y . Depending 

on the Rossby number of the system, the waves may t r a v e l with or against 

the mean flow. 

When t h i s theory i s applied to a model of the F l o r i d a S t r a i t s , 

unstable CSWs are found with properties that are i n good agreement with 

observations made by Duing (1975). I t may, therefore, o f f e r an explanation 

for some of the observed meanders of the F l o r i d a Current. 

The present theory could obviously be extended i n many ways. A 

de t a i l e d comparison i s needed with an i n t r i n s i c a l l y unstable system i n order 

to compare growth rates. One could also introduce a small, random cross-

stream v e l o c i t y i n t o the basic flow. The problem of mode-coupling has yet 

to be resolved as does the e f f e c t of temporal or along-shore v a r i a t i o n s i n 

the basic current. Of course, the present theory represents only a f i r s t 

step i n a more comprehensive examination of the e f f e c t s of random 

p o t e n t i a l v o r t i c i t y d i s t r i b u t i o n s on b a r o t r o p i c - b a r o c l i n i c i n s t a b i l i t i e s . 
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9. Introduction to Part II 

The waters l y i n g between Vancouver Island, the mainland coast of 

B r i t i s h Columbia, and the State of Washington (see Figure 9.1) are important 

from economic, environmental, navigational, and r e c r e a t i o n a l points of view. 

Oceanographically i t i s a complex estuarine system. In addition to the 

major influences of t i d e s , fresh water inflow, topography, C o r i o l i s force, 

winds and other atmospheric v a r i a b l e s , one must consider the intense mixing 

that occurs i n the channels that separate the S t r a i t of Georgia (GS) from 

Juan de Fuca S t r a i t i n the south, and Queen Charlotte Sound i n the north. 

Part II of t h i s thesis represents an attempt to understand some 

of the r e s u l t s presented by Chang et a l . (1976; see also Chang, 1976). 

From the analysis of 18 months of current records c o l l e c t e d along l i n e H 

i n GS (see Figure 10.1), Chang showed that nearly one-half of the k i n e t i c 

energy associated with h o r i z o n t a l motions i s contained i n broad-banded, 

low-frequency current f l u c t u a t i o n s characterized by periods ranging from 4 

to over 200 days. No f o r c i n g mechanisms were evident from Chang's analysis 

as the coherences between the currents and the wind, atmospheric pressure, 

sea l e v e l , and water temperature were a l l calculated to be very small. 

In an e a r l i e r attempt to understand the low-frequency dynamics 

of GS, Helbig and Mysak (1976) constructed an a n a l y t i c model that included 

both bottom topography and density s t r a t i f i c a t i o n . This model admits 

northward-travelling topographic planetary waves with periods that l i e i n 

the observed range, but i t i n c o r r e c t l y predicts the v e r t i c a l d i s t r i b u t i o n 

of h o r i z o n t a l energy. Helbig and Mysak (1976) suggested that b a r o c l i n i c 

i n s t a b i l i t y of the mean flow was a l i k e l y mechanism to account f o r observed 

f l u c t u a t i o n s , and i t i s from t h i s premise that the present study commenced. 



Figure 9.1 Plan view of the west coast of B r i t i s h Columbia 
and adjoining waters. 
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As i t turns out, t h i s conjecture i s probably i n c o r r e c t as the a n l y s i s 

presented i n Sections 11 and 12 shows. Two simple s t a b i l i t y models were 

constructed of a purely b a r o c l i n i c and barotropic system, r e s p e c t i v e l y . 

For the b a r o c l i n i c system the r e s u l t s indicate that the mean flow i s 

unstable for only a narrow band of wave numbers. An unstable shear wave 

exis t s at a l l wavelengths i n the barotropic system and for a 15-day period, 

has an e-folding time of about 8 days. However, as i s shown i n Section 12, 

the observed Cartesian v e l o c i t y components are generally i n phase i n d i c a t i n g 

that the motions are not composed of the types of waves studied here. These 

r e s u l t s imply that i n e r t i a l i n s t a b i l i t y plays only a minor r o l e , at most, 

in the dynamics of GS. 

A d d i t i o n a l current data c o l l e c t e d by the Canadian Hydrographic 

Service at points not along l i n e H (see Figure 10.1) were also examined. 

Since these records were of l i m i t e d length (about 30 days) t h e i r analysis 

i s subject to severe s t a t i s t i c a l l i m i t a t i o n s . I t i n d i c a t e s , however, that 

during the observation period an a n t i c y c l o n i c gyre existed i n the southern 

h a l f of GS. I n t e r e s t i n g l y , t h i s c i r c u l a t i o n was of the opposite sense to 

that postulated by Waldichuck (1957). 

The longer-term records investigated by Chang were also reexamined 

with the object of gaining fresh i n s i g h t s . In p a r t i c u l a r , Chang calculated 

rotary spectra which y i e l d no d i r e c t information about the i n d i v i d u a l 

Cartesian v e l o c i t y components. As mentioned, the present r e s u l t s i n d i c a t e 

the motion i s not comprised of simple waves. Cross-spectra between the 

currents and wind stress were computed. While generally low coherence was 

found, a consistent phase pattern seemed to emerge. In the frequency range 

of i n t e r e s t , the along-channel currents are 180° out of pria.se with, trie wind.. 

The conjecture i s made that the f o r c i n g of the low-frequency motions i s not 

http://pria.se
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d i r e c t but rather that the winds i n t e r a c t nonlinearly with the t i d e s and 

Fraser River outflow to modulate the estuarine c i r c u l a t i o n of the system. 

An examination i n the time domain of winds and currents suggests that the 

water column responds most d i r e c t l y to the wind along the eastern side of 

GS with a lag of about f i v e days. The response elsewhere i s not c l e a r . 

Residual t i d a l currents were calculated from the time ser i e s of 

barotropic t i d a l streams generated from the numerical model of the Juan de 

Fuca-Strait of Georgia system developed by Crean (1976, 1978). A coherent 

pattern of residuals that varied with the f o r t n i g h t l y t i d a l cycle was 

found. These currents were i n s u f f i c i e n t l y large and of the wrong d i r e c t i o n 

to explain the observations, however. 

The o u t l i n e of Part II i s as follows. A b r i e f d e s c r i p t i o n of the 

p h y s i c a l oceanography of GS i s given i n Section 10 and includes a 

discussion of the possible character of the observed low-frequency currents 

and an enumeration of various f o r c i n g mechanisms that might be important. 

Two simple i n e r t i a l i n s t a b i l i t y models are considered i n Section 11, while 

the data analysis i s presented i n Section 12. In Section 13, t i d a l 

r e siduals are calculated, and a b r i e f development of the concept of 

modulated estuarine flow i s given. In Section 14, the key points of Part 

II are summarized. 
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10. Physical Oceanography of the S t r a i t of Georgia 

Although the p h y s i c a l oceanography of GS has received comprehensive 

treatment elsewhere (cf. Waldichuck, 1957), i t i s important to summarize 

here some of i t s p r i n c i p a l features to provide a motivation for the following 

study. Some parts of t h i s d e s c r i p t i o n are abstracted from Helbig (1977) . 

A plan view of GS i s shown i n Figure 10.1. I t reveals that the 

average width of GS i s about 30 km while i t s length i s s l i g h t l y l e s s than 

250 km. Thus, the aspect r a t i o of channel length to width i s approximately 

8:1. Bathymetric sections along the l i n e s 1-10 are presented i n Figure 

10.2, and were extracted from a topographic map of GS compiled by 

Dr. P. B. Crean (personal communication) giving average depths over 2-km 

squares throughout the S t r a i t . Even though small-scale features are 

i m p l i c i t l y smoothed, the bathymetry exhibits great i r r e g u l a r i t y , p a r t i c u l a r l y 

i n the northern sector. In general, extremely steep slopes characterize GS 
-2 

along i t s western boundary, while slopes nearly as steep (exceeding 10 ) 

are common along the east. North of l i n e 4, two channels e x i s t : a narrow 

one to the east of Texada Island and a much wider one on the western sid e . 

South of l i n e 4 the topography becomes progressively smoother; l i n e s 7 and 

8 i l l u s t r a t e the marked e f f e c t of Fraser River sedimentation as extensive 

banks on the east. The l o n g i t u d i n a l section 10 reveals that although the 

a x i a l bathymetry i s somewhat smoother than the transverse bathymetry, i t 
s t i l l possesses a high degree of i r r e g u l a r i t y and exhibits slopes that often 

-2 
exceed 10 

Figure 10.3 shows l o n g i t u d i n a l sections of density f o r winter and 

summer. In the upper 50 metres near l i n e 7 (see Figure 10.1) there e x i s t s 

a strong seasonal v a r i a t i o n which i s associated with the outflow of fresh 



Figure 10.1 Plan view of the S t r a i t of Georgia showing 
l i n e s of topographic cross sections (1-10) 
presented i n F i g . 10.2. 
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Figure 10.2 Topographic cross sections: (A) Upper 
panels: 1-9; (B) lower panel: 10. 
The v e r t i c a l exaggeration i s 30:1 i n 
(A) and 150:1 i n (B). The insets i n d i c a t e 
slopes of 10~ 2. 



C. FLATTERY BOUNDARY C.MUDGE 

Figure 10.3A Longitudinal section of Ot for (A) December 1968; 
(B) July 1969 (from Crean and Ages, 1971). 
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water from the Fraser River. The Brunt-Vaisala frequency N = [-gpz/p^] 

generally l i e s i n the range of 3 x 10~ 3 to 3 x i o ~ 2 rad S - 1 throughout 

the water column which i s thus well s t r a t i f i e d . Here P z i s the v e r t i c a l 

density gradient, p^ i s a representative value of the density, and g i s 

the acceleration due to g r a v i t y . 

The winds i n GS are strongly affected by the surrounding 

mountainous t e r r a i n , and they are predominantly up- or down-strait; that i s , 

to the northwest or southeast, r e s p e c t i v e l y (Kendrew and Kerr, 1955). 

During the winter months of November through March the p r e v a i l i n g wind i s 

u p - s t r a i t while i n the summer months of June to September i t i s down-strait. 

In a l l seasons the strongest winds are from a southerly d i r e c t i o n . There 

i s of course a great deal of v a r i a t i o n about t h i s average pattern. Although 

Waldichuck (1957) indicates that a cyclonic gyre e x i s t s over the southern 

s t r a i t during the winter, the evidence f o r t h i s seems weak. We do note, 

however, that the p r e v a i l i n g wind at Vancouver i s usually to the west. 

The rotary spectrum of the winds from Sand Heads computed by Chang 

(1976) i s shown i n Figure 10.4. A rotary spectrum of a vector process, say 

u, i s obtained by r e s o l v i n g each frequency component of the d i s c r e t e 

Fourier transformed vector u into two other components, one of which 

rotates with a p o s i t i v e frequency (anti-clockwise) and the other with a 

negative frequency (clockwise). This gives a p a i r of spectra representing 

the respective tendency of the process to move i n an anti-clockwise or 

clockwise sense. (The reader i s r e f e r r e d to Chang (1976) or Mooers (1973) 

for a comprehensive discussion of rotary current spectra.) Notice that a 

p l o t of the spectrum m u l t i p l i e d by the frequency (f o S) against the 

logarithm of the frequency i s variance preserving; that i s , the area under 

the curve i s d i r e c t l y proportional to the variance. 
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In the present case, Figure 10.4 indicates the cyc l o n i c tendency 

of the wind. The spectra are broadly peaked about 3-5 days but the wind 

has s i g n i f i c a n t energy to periods as large as 25 days. Approximately 10 

percent of the variance i s contained i n the 10-20-day band and one-third 

of the variance i s i n periods exceeding 7 days. 

Some r e s u l t s of Chang's analysis of GS currents are presented i n 

Figures 10.5-10.8. The current records examined were c o l l e c t e d a t st a t i o n s 

H06, H16 and H26 as shown i n Figures 10.1 and 10.5. Meters were positioned 

at 3, 50 and 200m at the western (H06) and ce n t r a l (H16) locations and at 

3, 50 and 140 m i n the east (H26). Chang did not analyze records from the 

near surface instruments. Most of the current records were obtained with 

Aanderaa Model 4 current meters, but several Geodyne Model 850 meters were 

employed. The currents were sampled ei t h e r every 10 (Aanderaa) or 15 

(Geodyne) minutes. A subsurface buoy mooring was used f o r the i n i t i a l year 

of the experiment, but was replaced thereafter by a surface buoy, taut-rope 

mooring. Although the threshold l e v e l of these meters i s 1.5 cm s \ 

t h i s presents minimal d i f f i c u l t i e s i n the detection of small, low-frequency 

currents since stronger t i d a l currents were superposed on these f l u c t u a t i o n s . 

The mean currents computed over the 18-month period are shown i n 

Figure 10.6. There are two s i g n i f i c a n t features. The f i r s t i s the strong, 

cross-channel flow at the 50-m cen t r a l l o c a t i o n , and the second i s the 

very strong current found at 140 m i n the east. The mean speed there i s 

f i v e times greater than that found at the other deep l o c a t i o n s , while the 

root mean square v e l o c i t y i s twice as large. In the east and the west, 

both shallow and deep currents are c l o s e l y aligned with the l o c a l topography. 

Figure 10.7 shows the current spectra obtained by summing the 

respective p o s i t i v e and negative parts of the rotary spectra computed by 
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Figure 10.4 Rotary spectrum of the winds at Sand Heads for the 
600-day period beginning 3 January 1969 (from Chang, 1976). 
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Figure 10.5 Cross section H showing placement of current meters. ^ 
The moorings are spaced 10 km apart. The deep meters ' 
are (from west to east) 50, 80, and 25 m from the 
bottom (from Tabata et a l . , 1971). 



Figure 10.6 Mean currents along l i n e H for the 533-day 
period beginning 16 A p r i l 1969. 
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Chang. The area under the curve i s thus proportional to the t o t a l variance 

of the s i g n a l . Examination of t h i s f i g u r e reveals the complex nature of 

the low-frequency currents i n GS, but i t must be emphasized that most of 

the f i n e structure i s not s t a t i s t i c a l l y s i g n i f i c a n t to 95%. The s i g n i f i c a n t 

features i n Figure 10.7 are: (1) the spectra are broadbanded and appear to 

peak about 15-25 days, and (2) i n contrast to the 140-m s i g n a l from H26, 

the 200-m records contain l i t t l e energy i n comparison with the 50-m records. 

Chang (1976) found that coherences between currents at p o s i t i o n s 

separated both h o r i z o n t a l l y and v e r t i c a l l y were generally small at low 

frequencies as i s shown i n Figure 10.8. The highest value of the squared 

coherence between v e r t i c a l l y separated currents was observed i n the east 

and was only about 0.3. There the upper- and lower-layer rotary v e l o c i t i e s 

were nearly i n phase which may be i n d i c a t i v e of a barotropic motion. At 

the other locations the v e r t i c a l coherence was very small and the phases 

were scattered; t h i s r e s u l t suggests l i t t l e or no coupling between the upper 

and lower layers and hence implies mainly b a r o c l i n i c motions there. In a l l 

cases the h o r i z o n t a l coherences were below the 95% noise l e v e l . 

Chang also analyzed sea l e v e l , atmospheric pressure, wind, and 

water temperature records for the 18-month period. The temperatures were 

co l l e c t e d by the Aanderaa meters which were equipped to sample currents and 

temperatures concurrently. In a l l cases these quantities were e s s e n t i a l l y 

uncorrelated with the currents. The highest value of the squared coherence 

was found between the currents and the wind at the eastern l o c a t i o n (about 

.3 for both 50 and 140 m), which suggests that the surface wind stress may 

be a possible f o r c i n g mechanism. I t i s not clear from Chang's analysis 

what other forcing mechanisms are important. 

I t i s apparent, however, that the low-frequency currents must 
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Figure 10.7 Current spectra for l i n e H for the 533-day 
period beginning 16 A p r i l 1969 (adapted 
from Chang, 1976) . 
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Figure 10.8A Rotary coherence and phase spectra between 
currents, from (A) v e r t i c a l l y separated 
locations and (B) h o r i z o n t a l l y separated 
loca t i o n s . Notice that the frequency here 
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a 95% noise l e v e l (from Chang, 1976). 
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r e s u l t from more or less continuous f o r c i n g of some kind; otherwise, 

f r i c t i o n would quickly damp out the motions. P r i o r to the enumeration of 

various possible f o r c i n g mechanisms, i t i s useful to consider what character 

the low-frequency motions might possess. F i r s t they could be wavelike. 

This c l a s s i f i c a t i o n includes both a superposition of plane waves (as i n 

Part I) i n which the dependence on the h o r i z o n t a l coordinates i s separable 

and more complex wavetypes (eddies) i n which i t i s inseparable. Waves 

could be d i r e c t l y forced, for example, by the wind, and move with the phase 

speed of the atmospheric disturbance, or they could be free and have a 

c h a r a c t e r i s t i c frequency. Moreover, waves could occur i n t e r m i t t e n t l y i n 

wave packets or e x i s t almost continuously. Possible s u b i n e r t i a l waves 

include i n t e r n a l K e l v i n and topographic planetary waves. Second, the 

low-frequency currents might be manifestations of transients that could be 

i n i t i a t e d by a v a r i e t y of d r i v i n g mechanisms. Third, they could consist of 

a superposition of any of these types. F i n a l l y , the motions might be 

describable only i n s t a t i s t i c a l terms. 

Any mechanism capable of a l t e r i n g the d i s t r i b u t i o n of momentum, 

v o r t i c i t y , or mass i n the system might force the low-frequency currents. 

Such mechanisms include the wind stress and wind stress c u r l which impart 

momentum and v o r t i c i t y , r e s p e c t i v e l y , to the system through the sea surface. 

In addition, the wind stress may introduce anomalies into the v o r t i c i t y 

d i s t r i b u t i o n by f o r c i n g water columns across bathymetric contours, thus 

stretching or compressing vortex l i n e s . Atmospheric pressure differences 

act i n a s i m i l a r manner at the sea surface. The momentum, v o r t i c i t y , and 

mass d i s t r i b u t i o n s may be altered i n t e r n a l l y i f the mean flow of the system 

i s i n e r t i a l l y unstable. In addition, nonlinear i n t e r a c t i o n s between t i d a l 

constituents may r e s u l t i n r e s i d u a l flows and produce t i d a l stresses 
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analogous to the usual Reynolds stresses (Heaps, 1978). S i m i l a r l y , the 

tides may i n t e r a c t with the topography to generate i n t e r n a l motions. 

F i n a l l y , freshwater influxes or intrusions of s a l i n e oceanic water r e s u l t 

i n density differences which i n turn drive currents. 

I f the magnitude of any of these mechanisms varies i n time, the 

resultant motions should vary i n a s i m i l a r fashion. Thus one might expect 

the spectrum of currents driven d i r e c t l y by the winds to be peaked about 

3 to 5 days as i s the wind spectrum. This notion ignores the possible 

importance of the s p a t i a l c h a r a c t e r i s t i c s of the wind f i e l d , however, and 

i t i s conceivable that these motions might peak at some other frequency for 

which the length scales of the winds and currents were comparable. I t 

seems u n l i k e l y , however, that the s p a t i a l scale of the wind decreases with 

decreasing frequency. On the other hand, a r e l a t i v e l y modest s p e c t r a l 

component of the wind might be capable of e x c i t i n g a free wave at i t s 

c h a r a c t e r i s t i c frequency. 

In the case of t i d a l f o r c i n g , any process dependent upon the 

strength of the t i d a l streams should vary with a f o r t n i g h t l y period. This 

includes the turbulent mixing that occurs i n the constricted channels 

separating Juan de Fuca S t r a i t from GS (Figure 10.1). Thus int r u s i o n s of 

intermediate density water into GS r e s u l t i n g from the mixing of more dense, 

r e l a t i v e l y deep Juan de Fuca water with outflowing, comparatively l i g h t GS 

water could generate currents of f o r t n i g h t l y period. In f a c t , Herlinveaux 

(1957, 1969) has noted that semimonthly v a r i a t i o n s occur i n the surface 

s a l i n i t y and temperature at various locations i n the Juan de Fuca-Strait 

of Georgia system, and that these vari a t i o n s are most evident near the 

connecting passages. Webster and Farmer (1976) have substantiated t h i s 

observation from the analysis of a long timeseries of lighthouse s t a t i o n 
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data. These findings suggest that the degree of mixing depends on the 

t i d a l range and hence varies with a f o r t n i g h t l y period. 

I t i s also possible that Juan de Fuca S t r a i t and GS are 

dynamically coupled and that influences i n one may d i r e c t l y or i n d i r e c t l y 

force motions i n the other. I n t e r e s t i n g l y , F i s s e l and Huggett (1976) have 

shown that low-frequency current f l u c t u a t i o n s of about a 15-day period 

also occur i n Juan de Fuca S t r a i t . 

Motions could also be driven by one or more of the above-mentioned 

mechanisms. For example, the Fraser River outflow (Figure 9.1) might 

i n t e r a c t nonlinearly with the t i d a l currents r e s u l t i n g i n a f o r t n i g h t l y 

modulation of the basic estuarine flow. 

F i n a l l y , i t i s possible that a s i g n i f i c a n t f r a c t i o n of the observed 

low-frequency currents i n GS can only be c l a s s i f i e d as geostrophic turbulence. 

That i s , nonlinear interactions between both large- and small-scale motions, 

i r r e s p e c t i v e of t h e i r source, may be a predominate influence. Rhines (1975) 

has demonstrated that in a geostrophically turbulent system, small-scale 

f l u c t u a t i o n s tend to evolve into l a r g e r - s c a l e , more well-defined, planetary 

wavelike motions. 

C l e a r l y , t h i s discussion of the character of the observed 

low-frequency currents and possible f o r c i n g mechanisms i s not exhaustive. 

Perhaps many or a l l of the mentioned mechanisms play a s i g n i f i c a n t r o l e i n 

GS dynamics. In Part II of t h i s t h e s i s , the i n e r t i a l s t a b i l i t y of the mean 

flow and the r e s i d u a l t i d a l c i r c u l a t i o n are examined i n greater d e t a i l . A 

few comments are also made concerning the possible i n t e r a c t i o n of the t i d e s , 

Fraser River outflow, and the winds. 
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11. I n e r t i a l I n s t a b i l i t y Models 

As mentioned i n Section 9, at the conclusion of a previous study 

(Helbig and Mysak, 1976), i t was strongly suspected that i n e r t i a l 

i n s t a b i l i t y of the mean flow within GS was an agent responsible f o r a major 

proportion of the observed low-frequency energy. This b e l i e f was based on 

two f a c t s . F i r s t , the phase speed of a low-frequency wave of moderate 

wavelength would be comparable to mean current speeds as a purely kinematic 

argument shows. Consider a 14-day wave of length X. I f A i s expressed 

i n kilometres, the phase speed i n cm s ^ i s given by .08A; t h i s gives, 

for example, a value of 8 cm s **" f o r a 100-km wave, a speed within the 

range of the currents. Second, based on the findings of Chang (1976), 

there was no apparent f o r c i n g mechanism for the f l u c t u a t i o n s . 

In p a r t i c u l a r , i t was f e l t that the i n s t a b i l i t y would be p r i m a r i l y 

b a r o c l i n i c , the l a t e r a l shear of the currents playing a r e l a t i v e l y minor 

r o l e . This hypothesis was based on two premises. F i r s t , v e r t i c a l shears 

were generally observed to be larger than ho r i z o n t a l shears (with the 

exception of the deep eastern s t a t i o n ) . Second, Helbig and Mysak (1976) 

showed that for an i d e a l i z e d model of GS, topographic planetary waves e x i s t 

with frequencies that l i e i n the observed range for reasonable choices of 

the wave length. The v e r t i c a l d i s t r i b u t i o n of h o r i z o n t a l k i n e t i c energy 

( i . e . , that associated with the h o r i z o n t a l motion) for these waves was 

opposite to that observed. That i s , the waves were bottom trapped. I t was 

f e l t that perturbations of t h i s form, perhaps i n i t i a t e d by the winds, might 

grow i n time by extracting p o t e n t i a l energy from the mean flow with a 

resultant enhancement of upper-layer k i n e t i c energy. 



94 

B a r o c l i n i c I n s t a b i l i t y 

Therefore, the f i r s t step i n the analysis of the i n e r t i a l 

s t a b i l i t y of GS was to extend the model of Helbig and Mysak (1976). A 

two-layer system confined to a channel with a sloping bottom and with a 

constant mean v e l o c i t y i n each layer was adopted (Figure 11.1). For 

parameters c h a r a c t e r i s t i c of GS, the r e s u l t s below indicate that i n s t a b i l i t y 

can occur only f o r a narrow band of wavelengths. The primary reason f o r 

t h i s i s the strong s t a b i l i z i n g e f f e c t that the narrow channel has on the 

system, as i t l i m i t s the e f f e c t i v e wavelength of any perturbations. I t i s 

i n t e r e s t i n g that t h i s e f f e c t was also l a r g e l y responsible f o r the high 

degree of bottom trapping found by Helbig and Mysak. 

This model has been applied by Mysak and Schott (1977) and Mysak 

(1977) to the Norwegian current and the C a l i f o r n i a undercurrent, 

r e s p e c t i v e l y , with considerable success. Although the present development 

of t h i s model was c a r r i e d out independently, i t s d e t a i l s are r e s t r i c t e d to 

Appendix D since the model has appeared i n the l i t e r a t u r e . 

The dynamics of b a r o c l i n i c i n s t a b i l i t y derive from the conserva

t i o n of p o t e n t i a l v o r t i c i t y . The governing equations expressing t h i s were 

f i r s t derived by Pedlosky (1964), and the de r i v a t i o n presented i n Appendix 

D i s s i m i l a r although i t d i f f e r s i n some respects. The b a s i c state i s 

s p e c i f i e d by the constant currents V and (see Figure 11.1) which 

are i n geostrophic balance with the mean surface and i n t e r f a c i a l d i s p l a c e 

ments. A perturbation with i n i t i a l v e l o c i t i e s small compared with mean 

currents i s applied to the system. I f i t grows i n time the system i s said 

to be unstable. The nondimensional equations governing the perturbed state 

are 



95 

Z 

/ 

/ 

2 0 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

* A 

upper layer p 

lower layer pz h 2 (x) 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

Figure 11.1 The b a r o c l i n i c i n s t a b i l i t y model. The 
sloping surface elevation and i n t e r f a c i a l 
displacement are i n geostropic balance 
with the mean currents. 
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9t + V 1 3 y ] [ V 2 $ 1 + F 1 ( $ 2 - - $ly[Vn
1 - F 1 ( V 1 - V 2 ) ] = 0 

(11.1) 

[dt + V 2 3 y ] [ V ^ 2 " F 2 ( $ 2 " " $ 2 y [ V " 2 + F 2 ( V 1 _ V 2 } + T] = 0. 

(11.2) 

Here and $ 2
 a r e stream functions f o r the perturbation v e l o c i t i e s , 

U i = " $
i y (11-3) 

(11.3) 

v i = $ i x ( l l - 4 ) 

where i = 1,2 s p e c i f i e s the layer, and $ and ^ are defined i n terms 

of the perturbation surface and i n t e r f a c i a l displacements and ? 2 , 

re s p e c t i v e l y , 

}2 = h  + h 

(11.4) 

The following scale factors were used i n the nondimensionalization: L 

fo r the h o r i z o n t a l coordinates (x,y), a t y p i c a l current U for the 

v e l o c i t i e s (u,v), an advective time L/U, and fUL/g and fUL/g' for 

£^ and £ 2 , r e s p e c t i v e l y . Also appearing i n (11.1) and (11.2) are the 

layer i n t e r n a l Froude numbers F^ = f 2L 2/g'h-^ and F 2 = f 2L 2/g'h 2Q where 

9"' = 9"(P2 ~ Pl^/P2 :"'s t' i e r e (3uced ac c e l e r a t i o n due to gr a v i t y ; T i s a 
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topographic parameter defined by T = - ( L / R Q I ^ Q ) ( d h 2 / d x d ^ m ) , and 

Ro = U/fL i s the Rossby number for the flow. The negative sign ensures 

that T i s of the same sign as the bottom slope, and the subscript "dim" 

denotes a dimensional v a r i a b l e . 

ik(y-ct) 
For wavelike perturbations of the form <J)̂ e , (11.1) - (11.2) 

reduce to 

( V X - c) [<(>»! - k 2 ^ ] - (^[V'-L - F 1 ( V 1 - V 2 ) ] 

+ - c) (o>, - <j>n) = 0 2 (11.5) 

(V 2 - c) [ c f ) " 2 - k^ ( f ) 2 ] - c j) 2[V" 2 + F 2 ( V 1 - V 2) + T] 

- F 2 ( V 2 - c) (<J>2 - f^) = 0. 2 (11.6) 

For constant and V 2 , the solu t i o n i s 

(j)-̂  = A n s i n nTTx 

(J>2 ~ B n s:"-n n 7 r x 

n = 1,2, . . . > (11.7) 

where 

K 2 + F x V x 

c - V, A„ (11.8) 

and K = k + n TT i s the " t o t a l " wave number. If the solutions are 

unstable, A n and B n w i l l be complex and the v e l o c i t i e s i n the upper and 
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lower layers w i l l be out of phase. The phase speed i s given by 

c = V, + „- 2 T { (K 2 + F T ) (T - SK 2) - F , SK 2 

1 2K Z(K^ + F± + F 2) 1 1 

± ([(K Z + F x ) ( T SK2) + Fi SK ] 2 n2 

4F 1F 2sr 
![T - S K 2 ] ) 1 / 2 } (11.9) 

where S = V-̂  - V 2 i s the v e r t i c a l "shear." With no loss of generality, 

T i s r e s t r i c t e d to be p o s i t i v e while S may have either sign. 

The r a t i o of the h o r i z o n t a l k i n e t i c energy (HKE) per u n i t depth 

i n the upper layer to that i n the lower layer averaged over the area defined 

by the channel width and one wavelength i n the y - d i r e c t i o n i s 

R = 
A (V-, - c j ^ + cV 

(K 2 + F±)2 [(V± - c r) - F XS/(K 2 + F x ) ] 2 + c ±
2 . (11.10) 

By HKE we mean the k i n e t i c energy- associated with the h o r i z o n t a l components 

of motion. An int e g r a t i o n of (11.10) over the layer depths gives 

R = ( h 1 / h 2 0 ) R (11.11) 

so that R represents the r a t i o of the t o t a l HKE i n the upper layer to that 

i n the lower layer. 

Two l i m i t i n g cases are of i n t e r e s t . In the f i r s t we set 
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V x = V 2 = 0 to obtain 

T(K 2 + F ) 

K 2 ( K 2 + F1 + F 2) 

2 
F l 

(11.12) 

R = 7~2 72 < !• (11.13) 
(IT + 

These r e s u l t s are e s s e n t i a l l y those obtained by Helbig and Mysak (1976) f o r 

bottom i n t e n s i f i e d , topographic planetary waves i n a 2-layer channel. In 

the second case, we put T = 0 to obtain the 2-layer analogue of the 

c l a s s i c a l Eady (1949) so l u t i o n , 

c = V n - = {(K 2 + 2F-,) ± (K 4 - 4 F , F 9 ) 1 / 2 } . (11.14) 
X 2(K Z + F± + F 2) X 

R = h 2 0 / h 1 . (11.15) 

From (11.11) we see that R = 1 and the two layers contain equal amounts 

of HKE i r r e s p e c t i v e of t h e i r thicknesses. 

In the general case, the stable solutions l i e between these two 

extremes. For s u f f i c i e n t l y large T, one root of (11.8) corresponds to a 

shear modified topographic wave while the other represents a topographically 

modified shear wave. Whether or not these waves are more intense i n the 

upper or lower layer depends upon the choice of parameters. In the present 

case at wavelengths f o r which the system i s stable, one wave i s concentrated 

i n each layer. Unstable waves are found to be more energetic i n the upper 
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layer. On the other hand, f o r Norwegian current parameters, Mysak and 

Schott (1977) found unstable waves to be bottom i n t e n s i f i e d . In a recent 

study, Wright (1978) has treated t h i s question i n much greater d e t a i l . 

From (11.9) we see that i f S i s p o s i t i v e a necessary but not 

s u f f i c i e n t condition for i n s t a b i l i t y i s 

S > T/K 2. (11.16) 

The bathymetry thus acts to s t a b i l i z e the flow i f the bottom slopes upward 

to the east and i s a d e s t a b i l i z i n g influence i n the opposite case. This 

agrees with the findings of Blumsack and Gierasch (1972) f o r a continuously 

s t r a t i f i e d system. However, t h i s notion must be q u a l i f i e d , f o r the 

presence of weak topography may render a flow unstable. To see t h i s 

consider a system with F± = F 2 and K 4 = 4 F 1 F 2 corresponding to a neutral 

Eady wave (see 11.14). Then (11.9) becomes 

1/2 V2 3T - 8F 1S T X / Z [ 9 T - lSF^S] 
C = V l + - l 6 F i ; ±

 1 ^ ' ( 1 1 - 1 7 ) 

and i f 16F 1S > 9T ( i . e . , S > 9T/8K ), the system i s unstable with a 
1/2 

growth rate proportional to T . DeSzoeke (1975) has studied the i n t e r 

action of Eady waves with topography. 

Numerical r e s u l t s corresponding to the general r e l a t i o n (11.9) 

are now presented. Figures (11.2) and (11.3) i l l u s t r a t e t y p i c a l s t a b i l i t y 

boundaries f o r the system. The former shows the s t a b i l i z i n g e f f e c t of a 

p o s i t i v e bottom slope. As T increases, the region of i n s t a b i l i t y shrinks 

i n size and s h i f t s to smaller wavelengths. There are no unstable waves for 



Figure 11.2 Mode 1 s t a b i l i t y boundaries f o r the b a r o c l i n i c model as a 
function of the topographic parameter T. 
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negative S (cf. 11.9). Figure 11.3 i l l u s t r a t e s the dependence on the 

parameter V = F^ + F 2 which may be rewritten as the square of the r a t i o 

of the channel width L to the i n t e r n a l Rossby radius of deformation r ^ , 

f 2 L 2 ( h + h ) 2 
V = F, + F 2 =•• _ = (J±) . (11.18) 

* ' h l h 2 0 

For small V, i . e . , for narrow channels or strong s t r a t i f i c a t i o n , the 

region of i n s t a b i l i t y i s r e l a t i v e l y narrow. As V increases, corresponding 

to an increase i n the channel width, a decrease i n the s t r a t i f i c a t i o n , or a 

thinning upper layer, t h i s region spreads out and s h i f t s to higher wave-

numbers . 

Parameters c h a r a c t e r i s t i c of GS are V = 7.5, A = h-^/(h-^ + h2Q> = 

.14, and T = 7.4 (Helbig and Mysak, 1976). (Note that F = Av and 

F 2 = (1 - A)V.) For these parameters, the first-mode dispersion curves are 

shown i n Figure 11.4 for the cases S = 0.5 (V"2 = O.SV^) and S = 1.5 

(V 2 = - 0.5V-^). In the f i r s t case, which i s generally representative of 

GS, the system i s unstable only i n the wavelength band of 40-46 km. The 

most unstable wave has an e-folding time of 78 days, a period of 11 days, 

and i s i n t e n s i f i e d i n the upper layer (R = 1.3). In the second case, i n 

which the currents are d i r e c t e d i n opposite d i r e c t i o n s , the f i r s t mode i s 

unstable f o r a l l wavelengths exceeding 93 km. The most unstable wave has 

a period of 70 days and an e-folding time of 39 days, and i s strongest i n 

the upper layer (R = 2.8). The higher modes are stable i n each case. 

Figure 11.5 dramatically i l l u s t r a t e s the disparate nature of the 

two roots of (11.9) for GS parameters. While the phase speed of the shear 

wave i s almost independent of T, that of the topographic wave varies 
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Figure 11.4 B a r o c l i n i c model, mode 1, dispersion curves 
fo r S = 0.5 and S = 1.5. The s o l i d c i r c l e s 
i n d i c a t e the most unstable waves. The wave
length and period are calculated using the 
scale factors of U = .5 cm s - x and L = 25 km. 
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Figure 11.5 The b a r o c l i n i c model, mode 1, phase speed as 
a function of topographic parameter f o r 
k/2TT = 0.1, 0.5, and 1.0. 



106 

l i n e a r l y with T. 

Barotropic I n s t a b i l i t y 

A simple barotropic model i s now considered i n order to gain some 

idea of the importance of h o r i z o n t a l shear. The model i s i l l u s t r a t e d i n 

Figure 11.6. Although an exponential bottom p r o f i l e i s chosen for 

s i m p l i c i t y , t h i s choice does not severely l i m i t the conclusions drawn here. 

Indeed, the sloping topography has l i t t l e e f f e c t on the unstable waves. 

The governing equations are abstracted d i r e c t l y from Part I; with 

£ = 0, (3.8) reduces to 

(V - c) [ ( ^ 1 ) • 
V 1 + V ' (j) = 0. (11.19) 

We specify 

fv. 

V(x) =< 

0 < x < d 

d < x 5 1 

(11.20) 

and 

h(x) = e 
2b(x-l) 

(11.21) 

and thus obtain a constant c o e f f i c i e n t d i f f e r e n t i a l equation i n each region. 

As before, the boundary conditions are (cf. 3.19) 

cf> = 0 at x = 0,1. (11.22) 
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Figure 11.6 The barotropic i n s t a b i l i t y model. 
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The s o l u t i o n i s given by 

r 

<f> (x) b(x-lW 

A^ s i n XjK 0 < x < d 

A 2 s i n A 2 ( x - 1 ) d < x 5 1 

(11.23) 

where 

2b 
i R 0 ( v i " <=) 

(k 2 + b 2) i = 1,2. (11.24) 

In order that the normal fluxes of mass and momentum be continuous at the 

material i n t e r f a c e centred at x = d, <f> (x) must s a t i s f y 

V - c = 0 

[ (V - c)<j>' - V<1>] = 0 

at x = d. 

(11.25a) 

(11.25b) 

(These r e l a t i o n s h i p s are derived i n LeBlond and Mysak, 1978; p. 429. 

However, (11.25b) d i f f e r s from t h e i r (45.9) since they e f f e c t i v e l y assumed 

that $ i s continuous. In the present case i t i s not, and one must proceed 

from the i n t e g r a l r e l a t i o n s h i p preceding t h e i r (45.9).) A p p l i c a t i o n of these 

conditions leads to the i m p l i c i t d ispersion r e l a t i o n 

2-, 2 (V, - c) A, (v- - c) A, j ~ 
± k 1 2 _ b [ ( v _ c)Z _ ( v c)Z] = Q_ (H.26) 
tan A-̂ d tan A2 (d - 1) ^ 
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Several l i m i t i n g cases are of i n t e r e s t . In the f i r s t we put 

= V 2 to obtain tan A 2 d = tan A 2 ( d - 1) which has the s o l u t i o n 

A 2 = nir independent of d. This gives 

2b 
c = V„ - p p (11.27) 

1 R Q (k + bz + n TT ) 

which i s the dispersion r e l a t i o n f o r a free continental s h e l f wave i n a mean 

current V 2 (cf. 5.21) . In the second case we put b = 0 to obtain 

V l
 + Q V 2 i 0 1 / 2

 i I 

(1 + Q) 1 + Q 1 1 21 (11.28) 

where Q = - tanh kd/tanh k(d - 1) and i s p o s i t i v e . These waves t r a v e l at 

a speed given by a weighted average of the mean currents and grow i n time 

at a rate proportional to the shear. F i n a l l y , i n the short wave l i m i t of 

k -> «>, (11.26) reduces to 

V, + V- (V, - V 9) 
c = - ^ - r — £ ' ± i n . (11.2-2 2 

Equations (11.28) and (11.29) represent a p a i r of shear waves, one of which 

i s unstable and another which decays i n time. 

As these s p e c i a l cases suggest, there are at most three solutions 

to (11.26). For nonzero b and S, where S = V 2 - , there e x i s t a 

p a i r of complex roots f o r a l l k, corresponding to amplified and damped 

modified shear waves. Provided that both A ^ and A 2 are r e a l , a t h i r d , 

r e a l root e x i s t s and represents a shear modified CSW. This r e s t r i c t i o n may 

be expressed as 
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2b c > V 
1 / 2 R Q ( k 2 + b 2) . ( 1 1 . 3 0 ) 

The region i n k, S space i n which CSWs e x i s t i s shown i n Figure 11.7. 

Along the l i n e = V,, only a CSW i s found. 

To determine a value of S appropriate to GS, the mean currents 

along l i n e H were depth averaged as 

BT 
f h l H l + h 2 ( x ) u 2 ^ 

[h± + h 2(x)] 
(11.31) 

h-̂  was chosen as 50 m and h 2 was determined f o r each mooring. The 

re s u l t s are shown i n Figure 11.8. A reasonable choice i s V = 1.0, 

V 1 = 0.5 (with a scale v e l o c i t y of 5 cm s - 1 ) , d = 0.66, and b = - 0.3. 

The dispersion r e l a t i o n f o r these values i s shown i n Figure 11.9. I t i s 

seen that a CSW e x i s t s f o r wavelengths greater than 55 km. An unstable 

shear wave of 15-day period has an e-folding time of about 8 days, a phase 

speed of about 4 cm s-"*" and a wavelength of 44 km. I t i s possible therefore 

that a shear i n s t a b i l i t y of t h i s type might play some ro l e i n GS dynamics. 

However, i n the next section i t i s shown that the motions i n the 15-day band 

are predominantly nonwavelike i n the sense of the waves studied here. This 

implies shear i n s t a b i l i t y i s of l i m i t e d importance i n GS. 



Figure 11.7 The region i n (k,S) space i n which 
continental shelf waves e x i s t . 
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Figure 11.8 Computed barotropic mean currents along l i n e 
H for the.18-month period beginning A p r i l 1969. 



WAVELENGTH (km) 1 1 3 
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Figure 11.9 Barotropic model dispersion curves f or S = 0.5. The growth 
time i s defined as the e-folding time, u> i s the frequency, 
and 9. i s defined as k • Im c. The wavelength and period 
are computed using the scale factors of u = 5 cm s _ x and 
L = 25 km. 
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Figure 12.1 Plan view of the S t r a i t of Georgia showing 
current meter locations. These l i n e s should 
not be confused with those of F i g . 10.1. 
Winds were recorded at Sand Heads. 
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Figure 12.2A Periods of existent current meter records. 
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Figure 12.3A Current spectra for the 26-day period beginning (A) 2 May 1969 
and (B) 29 August 1969. 
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course, none of the peaks are s t a t i s t i c a l l y s i g n i f i c a n t to 95 percent but 

these spectra do indicate the existence of low-frequency energy at locations 

north of l i n e H. The comparatively quiet spectrum from Station 41 may be 

due to the f a c t that the meter l i e s i n the "shadow" of a topographic high 

j u s t to i t s south. 

Spectra computed from l i n e s 5, 6 and H records f o r the 26-day 

period beginning 29 August 1969 are shown i n Figure 12.3b. These time series 

were treated as above, and the spectra a l l indicate low-frequency energy. 

The record from Station 64, 50 m i s of dubious q u a l i t y and thus i s of l i m i t e d 

value f o r comparison with H26, 50 m. 

Mean currents were calculated d i r e c t l y from the time s e r i e s , and 

current e l l i p s e s (see, f o r example, Stone, 1963) were constructed from the 

average of the lowest two s p e c t r a l bands. The e l l i p s e s are i l l u s t r a t e d i n 

Figure 12.4 by t h e i r major and minor axes, although i n several cases, the 

l a t t e r i s too short to be v i s i b l e . Due to the s t a t i s t i c a l l i m i t a t i o n s of 

the data, no i n d i c a t i o n i s given of eit h e r the d i r e c t i o n of r o t a t i o n of the 

o s c i l l a t i n g current vector around the e l l i p s e or of the r e l a t i v e phases 

between e l l i p s e s . Of course, the e l l i p s e parameters are subject to 

contamination by trends during the period of analysis since these a f f e c t the 

lowest-frequency s p e c t r a l estimates, and thus the e l l i p s e s c a l c u lated here 

must be viewed with caution. Of p a r t i c u l a r i n t e r e s t i n Figure 12.4A i s the 

cross-channel o s c i l l a t i n g flow suggested at H16, 50 m and Station 43, 100 m. 

The pattern of mean currents i l l u s t r a t e d i n Figure 12.4B i s extremely 

i n t e r e s t i n g since i t indicates a closed, clockwise, mean c i r c u l a t i o n i n the 

lower s t r a i t . While t h i s may not be true f o r longer periods, i t lends 

support to Waldichuck's (1957) conjecture that a gyre e x i s t s . I t i s , 

however, of the opposite sense to that indicated by Waldichuck. During t h i s 
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Figure 12.4A Mean currents and the 6-32-day band current e l l i p s e s for 
26-day period beginning (A) 2 May 1969 and (B) 29 August 
The e l l i p s e s are indicated by t h e i r major and minor axes. 

the 
1969. 



Figure 12.4B 
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period, the flow at H26, 50 m i s southward whereas the 18-month mean flow 

i s northward (Figure 10.6). This implies that the gyre may not be a 

permanent feature. A closed c i r c u l a t i o n i s not indicated f o r the c e n t r a l 

s t r a i t during May 1969 (Figure 12.4A). The strong a x i a l current present at 

H26, 50 m i s not observed at Station 47, 100 m. 

Wind-Driven Motions 

The dynamics of low-frequency, large-scale motions are due i n 

large part to the conservation of p o t e n t i a l v o r t i c i t y , and i t i s the wind 

stress c u r l that enters the v o r t i c i t y equation as a f o r c i n g function. In 

addition, i f the system under consideration possesses s i g n i f i c a n t bottom 

topography, the wind stress i t s e l f may induce v o r t i c i t y by fo r c i n g water 

columns across bathymetric contours thus squeezing or stretching vortex 

l i n e s . Indeed, i n a barotropic system the v o r t i c i t y input by t h i s mechanism 

may far exceed that due to the wind stress c u r l ( G i l l and Schumann, 1974). 

Chang (1976) calculated cross-spectra between the winds and 

currents along l i n e H and found the coherence to be generally small at low 

frequencies. However, the use of rotary spectra does not reveal r e l a t i o n 

ships between the various rectangular components of the currents and the 

winds. Moreover, the f a c t that the current spectra are peaked at about 14 

days (at l e a s t f o r the eastern and western s t a t i o n s ) , that the motion may 

be barotropic at H26, and that the period of a free CSW for GS parameters 

i s about 14 days f o r a v a r i e t y of bottom p r o f i l e s (see, e.g., LeBlond and 

Mysak, 1977; or Csanady, 1976) suggests very strongly that the wind stress 

might force modified CSW's. I t i s therefore sensible to examine the 

re l a t i o n s h i p between the wind stress and the currents by computing components 

spectra. S u f f i c i e n t data do not e x i s t to adequately determine the wind 



125 

stress c u r l , which at any rate i s a d i f f i c u l t task due to the e f f e c t the 

complex orography of the B r i t i s h Columbia coast has upon the winds. That 

i s , measurements taken at land-based stations are not n e c e s s a r i l y 

representative of conditions at sea. One could attempt to evaluate the 

wind stress c u r l from atmospheric surface-pressure maps, but i t i s a tedious 

exercise and i s not pursued here. We note as before, however, that the 

ensuing analysis implies that the low-frequency currents are not simple 

wavelike motions of the type studied i n t h i s t h e s i s . In t h i s respect, 

therefore, i t i s u n l i k e l y the wind stress c u r l plays a s i g n i f i c a n t r o l e . 

Figure 12.5 shows the spectrum of the wind stress at Sand Heads 

for the 500-day period beginning 4 A p r i l 1969. Sand Heads i s located i n 

shallow water at the mouth of the Fraser River (see Figure 12.1) adjacent 

to a r e l a t i v e l y f l a t region. Thus winds measured there should be compara

t i v e l y free of l o c a l topographic influences. The wind stresses were computed 

using a quadratic law with a value of 1.5 * 10 for the drag c o e f f i c i e n t . 

Its exact value i s unimportant i n t h i s discussion since i t enters only as a 

scale f a c t o r . 

Figure 12.5A shows the true northward and eastward components of 

the wind s t r e s s . Both are peaked at about 3 days, but s i g n i f i c a n t variance 

i s present to periods up to at l e a s t 20 days. The mean axis of GS i s 

dir e c t e d approximately 50° west of north, and the spectra rotated by 50° 

are shown i n Figure 12.5B. Since s i g n i f i c a n t l y higher coherences were 

found i n t e s t runs using the rotated wind stress time s e r i e s , they were 

employed i n the following analysis. On the other hand, i n the v i c i n i t y of 

l i n e H, the topography runs nearly north-south. Therefore the currents 

were not rotated. A l l subsequent figures r e f e r to the rotated wind stress 

and nonrotated currents. 



126 

( A ) 

( B ) 

PERIOD (days) 
50 25 10 5 2 1 

10 I E - . — i - r 

10V 

10 

10 »-5 

if 
O - eastward 
A - northward 

i i i mill i i i mill 
3 . 1 0 2 p — i 1 1 — i r 

ia ! 

: A 

10"'r , 
: Y O-cross-strait 

A-along-strait 

• i « " " i l i 11 nml 

10"2 10"' 10' 
FREQ (cpd) 

Figure 12.5 Spectrum of the wind stress at Sand Heads for the 500-day 
period beginning 4 A p r i l 1969: (A) the north and east wind 
stress components; (B) the wind stress components rotated 
anti-clockwise by 50°. 
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The 209-day period beginning 29 August 1969 was selected f o r 

an a l y s i s , as records existed at a l l stations along l i n e H (Figure 12.2). 

Large gaps i n the time series were deleted from good as well as bad records 

and the time series were l i n e a r l y interpolated across short gaps of the 

order of a day or two. The r e s u l t i n g record was 136 days i n length. 

Current spectra computed from these time ser i e s are shown i n 

Figure 12.6; the spectrum of the wind stress i s e s s e n t i a l l y that shown i n 

Figure 12.5. Two exemplary plo t s of coherence and phase between the 

currents and the a l o n g - s t r a i t wind stress are shown i n Figure 12.7. They 

i l l u s t r a t e the generally low coherence observed which decreases with 

increasing frequency and the tendency for the currents to be e i t h e r i n 

phase or 180° out of phase with the a l o n g - s t r a i t component of the wind s t r e s s . 

A more d e t a i l e d presentation of the coherence and phase r e l a t i o n 

ships i s shown i n Figure 12.8 for the 34- and 13-day bands. S t a t i s t i c a l l y 

s i g n i f i c a n t coherences are found i n many cases, although i n some, due 

respect must be paid to the amount of energy i n the given s i g n a l . Thus, 
2 

f o r example, the meaning of high value of y = .6 i n the 34-day band 

calculated f or H06, 200 m, i s unclear due to the corresponding low value of 

the spectrum there (Figure 12.6). The most s t r i k i n g feature, however, i s 

the consistency with which the phase estimates c l u s t e r about e i t h e r 0° or 

180°. This tendency together with the f a c t that phase determination may be 

good even though the corresponding coherences are i n s i g n i f i c a n t (Schott and 

Diiing, 1976) i n s t i l l s some degree of confidence i n the calculated phases. 

More s p e c i f i c a l l y , phases between currents and the a l o n g - s t r a i t wind stress 

tend to be close to 180°, while those between the currents and the cross-

channel wind stress l i e near 0°. The a l o n g - s t r a i t wind stress i s , of course, 

considerably more energetic than the cross-channel component. 
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Figure 12.6 Line H current spectra f o r the 136-day 
analysis period. The v e r t i c a l bars i n d i c a t e 
95% confidence l i m i t s . 
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These phase r e s u l t s should not be interpreted to mean, for example, 

that the currents flow down-channel when the winds blow up-channel. They 

imply simply that the currents are i n opposition to the given s p e c t r a l 

component of the a l o n g - s t r a i t wind. The r e l a t i o n s h i p i n the time domain 

between the currents and winds w i l l be examined shortly. 

Table III l i s t s the coherences and phases calculated between 

v e l o c i t y components f o r the 13- and 34-day bands. If a motion i s composed 

of the types of waves studied here, then the phase difference between u 

and v should be somewhere near 90°. Deviations from t h i s value may be 

caused by f r i c t i o n (see, e.g., Csanady, 1978) or by i n s t a b i l i t y (see Section 

4). With the exception of the value of <J> = 117°. f o r H26, 140 m at 34 

days, examination of Table III shows that i f a s i g n i f i c a n t coherence i s 

found, the corresponding phase i s e i t h e r near 0° or 180°, that i s , the 

motion i s l i n e a r l y p o l a r i z e d . This implies, with the noted exception, 

that the motion i s not wavelike. This i s true, i n p a r t i c u l a r , f o r the 

observed 13-day current o s c i l l a t i o n s at H26 for which the previous evidence 

strongly suggested the contrary. On the other hand, the r e s u l t s f or 34 

days for H26, 140 m, do suggest a wavelike character and i t i s e n t i c i n g 

to speculate that t h i s might be a bottom-enhanced wave of the type 

described by Helbig and Mysak (1976). There i s no d i r e c t evidence, of 

course, to support t h i s speculation, and the motion i s just as l i k e l y to 

be barotropic. We note, however, that CSWs of 34-day period should have 

wavelengths i n excess of the length of GS (see, e.g., Figure 11.5). 

The mean currents and current e l l i p s e s for the 13- and 34-day 

bands are shown i n Figures 12.9 and 12.10. While the mean flow i s s i m i l a r 

to that calculated f o r the f u l l 18 months (Figure 10.6), the deep currents 

i n both the east and west are considerably stronger. Indeed, at H06 the 
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Table I I I . Calculated coherence squared and phase between v e l o c i t y 
components f o r the 136-day period of a n a l y s i s . A p o s i t i v e 
phase indicates that v leads u. 

13 days 34 days 

Station Depth Y 2 <j) (deg) Y 2 <f> (deg) 

H06 50 .36 - 4 .08 52 

200 .24 - 11 .10 - 178 

H16 50 .01 3 .05 39 

200 .29 179 .69 179 

H26 50 .37 5 .18 177 

140 .51 2 .48 117 



1 3 4 

upper- and lower-layer mean flows are nearly the same. The current e l l i p s e s 

bear a s t r i k i n g resemblance to the respective mean v e l o c i t i e s . Although 

trends during the period of analysis may contaminate the 34-day band (which 

i s averaged over the second to s i x t h frequencies), they should exert minor 

influence on the 13-day band (which i s averaged over frequencies 7 - 1 4 ) . 

These r e s u l t s thus may imply a dynamical r e l a t i o n s h i p between the mean and 

f l u c t u a t i n g flows, a point which i s discussed further i n the next section. 

It i s evident from the figures that the channel boundaries exert a strong 

topographic influence on the near-shore currents. 

Approximate barotropic and b a r o c l i n i c time seri e s were formed by 

depth averaging the 136-day records. Indeed, the period of analysis and 

the treatment of the data records were selected f o r t h i s purpose. The 

v e l o c i t y time series were combined as 

HfiT
 = ( h l ^ l + h 2 ^ 2 ) / ( h l + V 

and 

HB C = h 2 ( ^ l " U 2 ) / ( h l + V 

to give barotropic (HBT^ a n <3 upper-layer b a r o c l i n i c Ĥgc) records, 

re s p e c t i v e l y . The upper-layer depth h-̂  was chosen as 50 m since t h i s 

corresponds to a reasonable f i t of a two-layer model to the observed 

density d i s t r i b u t i o n (Helbig and Mysak, 1 9 7 6 ) . The lower-layer depth h 2 

was then simply obtained from the t o t a l depth at each mooring. The 

v e r t i c a l v e l o c i t y p r o f i l e i s , i n r e a l i t y , much more complex. I f a greater 

number of meters had been used at each s t a t i o n , the method of empirical 

orthogonal functions could have been employed to resolve the v e r t i c a l 

structure (see, e.g., Mooers and Brooks, 1 9 7 8 ) . No other choices of h^ 



Figure 12.9 Mean currents along l i n e H f o r the 136-day 
analysis period. 



Figure 12.10A Line H current e l l i p s e s f o r the 13-day band: (A) upper layer, 
(B) lower layer; and the 34-day band: (C) upper layer, 
(D) lower layer. 



Figure 12.10B 
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Figure 12.IOC 



Figure 12.10D 
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were t r i e d . 

Each time series was s p e c t r a l l y analysed, but the barotropic and 

b a r o c l i n i c spectra were almost i n d i s t i n g u i s h a b l e from the lower- and upper-

layer spectra, r e s p e c t i v e l y . The r e s u l t s were inconclusive with regard to 

c o r r e l a t i o n between the wind and currents. In some cases higher values of 
2 

Y were found but i n others the c o r r e l a t i o n was diminished. I t i s d i f f i c u l t 

to determine, therefore, i f the separation was successful. 

The barotropic and b a r o c l i n i c mean currents f o r the 136-day period 

are shown i n Figure 12.11. While the barotropic means are s i m i l a r to the 

lower-layer means of Figure 12.9, the b a r o c l i n i c means are less suggestive 

of a gyrelike c i r c u l a t i o n than are the upper-layer means. 

One current meter, that at H16, 50 m, operated almost continuously 

over the 18-month period. Consequently, the 500-day time ser i e s of currents 

and winds beginning 17 A p r i l 1969 was analysed for comparison with spectra 

computed from shorter record lengths. The current spectrum i s very s i m i l a r 

to that shown i n Figure 12.6. In general, the calculated coherences between 

the currents and winds are decreased from those shown i n Figure 12.8 for 

both the 34-~ and 13-day bands. I n t e r e s t i n g l y , i n the former band, the 

coherence between the v e l o c i t y components increased from 0.05 to 0.23. 

The computed phase differences were s i m i l a r , and i n p a r t i c u l a r both the u 

and v components were nearly 180° out of phase with the wind s t r e s s . 

In order to obtain an appreciation i n the time domain of how the 

water column responds to the wind, the two-month period of March-April 1970 

was selected for more intensive study. This period was chosen for two 

reasons. F i r s t , records were a v a i l a b l e for a l l meters for most of the 

period. Second, during t h i s time several s i g n i f i c a n t storms occurred, some 

with northwest and some with southeast winds. The time ser i e s of winds and 
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Figure 12.11 Computed barotropic and upper 
mean currents f o r the 136-day 

layer b a r o c l i n i c 
analysis period. 
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2 2 

currents were f i l t e r e d with an A 2^ A2,j/(.24 • 25) f i l t e r (Godin, 1972) 

i n order to remove di u r n a l and semidiurnal o s c i l l a t i o n s . This i s a low-pass 

f i l t e r and produces a record with a twelve-hour time step. The r e s u l t s are 

shown i n Figure 12.12. Notice that the wind has been advanced f i v e days 

with respect to the currents. As before, the wind stress was rotated to 

bring i t into alignment with channel geometry. 

Seven wind events are i d e n t i f i e d i n Figure 12.12; peak values of 

the wind stress occur f o r (down-strait) and E^ ( u p - s t r a i t ) . For the 

50-metre record at H26, the signature of the wind on the currents i s c l e a r , 

and the currents lag the wind by about f i v e days. S i m i l a r l y , the response 

at the 140-m s t a t i o n i s apparent f o r the f i r s t month. For the second month, 

however, some ambiguity e x i s t s i n the assignment of E^ - E^ . I f the 

choice indicated i s correct, then a down-strait wind does not necessa r i l y 

produce a down-channel current (compare events E^ , E^ , and E ^ ) . This 

i s opposite to the response observed at 50 m. I t i s not possible to 

d e f i n i t i v e l y c o r r e l a t e currents and winds at the c e n t r a l 50-m s t a t i o n , but 

the c o r r e l a t i o n at 200 m i s cl e a r - c u t , again with a 5-day lag. I t i s also 

not possible to make the assignment at H06, 50 m for the one-month record 

that e x i s t s . As was the case f o r the deep eastern meter, c o r r e l a t i o n of 

winds and currents at H06, 200 m, i s ambiguous i n the second month. Unlike 

the eastern s t a t i o n , however, the chosen assignment indicates d i r e c t response 

to the wind with a 9-day l a g . In the f i r s t month the lag i s about 7 days. 

In an attempt to determine i f the response to the winds observed 

at 50 m i s representative of the ent i r e upper water column, progressive 

vector diagrams of the currents at 3 m and 50 m [Tabata and Stickland, 

1972a; 1972b; 1972c; Tabata et a l . , 1971] were compared with one another 

and the wind f o r the period beginning A p r i l 1970 (Figure 12.2). 
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Figure 12.12 Low-pass fi l t e r e d time series of wind stress at Sand Heads 
and currents along line H. A solid line represents either 
the along-strait (northwestward) component of wind stress 
or the northward component of current. A dashed line 
represents either the cross-channel wind stress (northwestward) 
or eastward current component. The wind stress time series 
is advanced by 5 days. 
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At a l l stations there were times during which the currents at both l e v e l s 

were obviously correlated and i n phase with each other and the wind. But 

there were also times during which the currents were out of phase with each 

other or the wind. S i m i l a r l y , the ho r i z o n t a l r e l a t i o n s h i p s between the 3-m 

currents were unclear. However, the currents at H06 and H16 were, at times, 

highly correlated and i n phase. Therefore, by comparison with the 3-m 

currents, i t i s d i f f i c u l t to state i f the measurements at 50 m are 

representative of the en t i r e upper layer. 

In summary, examination of the data has indicated several i n t e r e s t 

ing features. F i r s t , the low-frequency fluctuations are not i s o l a t e d to 

the v i c i n i t y of l i n e H or the southern s t r a i t . Second, as suggested by the 

spectra and response to the wind, Station H26 may l i e i n an oceanographic 

domain d i s t i n c t from the other two stations. Third, the o s c i l l a t i n g currents 

bear a resemblance to the mean flow which may indic a t e that the two are 

dynamically lin k e d . I f t h i s supposition i s v a l i d , then three a l t e r n a t i v e s 

are p o s s i b l e : (1) the flu c t u a t i o n s are due to the mean currents ( i n e r t i a l 

i n s t a b i l i t y ) , (2) the mean flow i s a byproduct of the o s c i l l a t i o n s 

(transients, arrested waves; see, e.g., Csanady, 1978), or (3) they are both 

caused by some other agency of the type outlined i n Section 10. The f i r s t 

p o s s i b i l i t y may be ruled out on the basis of r e s u l t s of Section 11 and the 

fact that the components of the observed o s c i l l a t i n g currents tend to be i n 

phase. The l a s t a l t e r n a t i v e i s explored b r i e f l y i n the next section. 

F i n a l l y , the wind obviously plays some ro l e i n GS dynamics but i t s r o l e i s 

not c l e a r . 
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13. Nonlinear T i d a l Interactions 

In an e a r l i e r study, Helbig and Mysak (1976) discounted the 

p o s s i b i l i t y that the tides were responsible for the low-frequency motions 

i n GS. However, they were r e f e r r i n g to the f o r t n i g h t l y M^ t i d e and did 

not consider the p o s s i b i l i t y of nonlinear i n t e r a c t i o n s between t i d a l 

constituents. In a system l i k e GS with large v a r i a t i o n s i n bottom 

topography and channel geometry, i t i s l i k e l y that such i n t e r a c t i o n s produce 

s i g n i f i c a n t f o r t n i g h t l y v a r i a t i o n s i n the t i d e . These int e r a c t i o n s occur 

between t i d a l constituents through f r i c t i o n a l or advective terms, and the 

resultant o s c i l l a t i o n s are known as shallow-water constituents. The 

harmonic constants for d i u r n a l , semidiurnal, and higher-frequency t i d a l 

constituents are l i s t e d i n Table IV and were obtained from the analysis of 

a 38-day record of t i d a l heights observed at Point Atkinson (see, e.g. , 

Figure 12.1). From the frequencies given i n Table IV, one may show that 

interactions between the M2 and K 2 , M 2 and S 2 , 0-̂  and K-̂  , and 

0-̂  and P-̂  constituents a l l produce shallow-water constituents of 

f o r t n i g h t l y period. For example, the M 2 - S 2 i n t e r a c t i o n gives the MS^ 

constituent with a 14.76-day period, while the O-̂  - K-̂  i n t e r a c t i o n r e s u l t s 

i n a 13.66-day o s c i l l a t i o n . 

In t h i s section two types of t i d a l i n t e r a c t i o n s are considered. 

The f i r s t I term d i r e c t , nonlinear i n t e r a c t i o n and i s that j u s t o u t l i n e d . 

The second or i n d i r e c t , nonlinear i n t e r a c t i o n consists of the i n t e r a c t i o n 

of the t i d e with another agency. In p a r t i c u l a r , I speculate upon the i n t e r 

a ction of the t i d e with the Fraser River outflow. 

To determine the s i g n i f i c a n c e of the f i r s t mechanism, r e s u l t s 

generated from the Department of the Environment numerical t i d a l model of 
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Table IV. Results of the harmonic analysis of t i d a l elevations at Point 
Atkinson f o r the 38-day period beginning 6 A p r i l 1976. The 
P^ and S - L constituents are i n f e r r e d from , Nû , i s 
in f e r r e d from N 2 , T 2 and K 2 are i n f e r r e d from S"2 . 
(Dr. J . A. Stronach, pr i v a t e communication.) 

Constituent 

No. Name Frequency (cpd) Amplitude (cm) Greenwich phase (deg) 

1 ZO 0.0 30.2087 0.0 
2 2Q1 0.85695237 0.1155 96.73 
3 Ql 0.89324397 0.6998 326.92 
4 01 0.92953563 3.9706 215.33 
5 N01 0.96644622 0.4666 276.69 
6 PI 0.99726212 2.8014 347.70 
7 SI 1.00000000 0.3242 154.08 
8 Kl 1.00273705 7.9255 95.47 
9 J l 1.03902912 0.4867 359.38 
10 001 1.07594013 0.1736 221.21 
11 MNS2 1.82825470 0.1048 322.62 
12 MU2 1.86454678 0.3987 317.05 
13 N2 1.89598083 2.0722 249.94 
14 NU2 1.90083885 0.3795 228.27 
15 M2 1.93227291 9.3629 148.55 
16 L2 1.96856499 0.2994 262.76 
17 T2 1.99726295 0.1426 24.32 
18 S2 1.99999905 2.2687 298.19 
19 K2 2.00547504 0.4967 220.37 
20 2SM2 2.06772518 0.0464 1.47 
21 M0 3 2.86180973 0.0132 137.41 
22 M3 2.89841080 0.0187 247.17 
23 MK3 2.93500996 0.0152 87.29 
24 SK3 3.00273800 0.0095 203.48 
25 MN4 3.82825470 0.0106 276.20 
26 M4 3.86454678 0.0353 139.86 
27 SN4 3.89598179 0.0083 281.85 
28 MS 4 3.93227291 0.0283 341.27 
29 S4 4.00000000 0.0093 291.57 
30 2MN6 5.76052761 0.0569 146.10 
31 M6 5.79681969 0.0709 33.69 
32 MSN6 5.82825565 0.0220 266.26 
33 2MS6 5.86454582 0.0826 198.62 
34 2SM6 5.93227386 0.0209 334.93 
35 3MN8 7.69280148 0.0086 51.41 
36 M8 7.72909451 0.0177 97.38 
37 3MS8 7.79681969 0.0077 327.90 
38 M12 11.59364128 0.0087 99.16 
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the Juan de Fuca-Strait of Georgia system (Crean, 1976; 1978) were examined. 

This i s a two-dimensional, v e r t i c a l l y integrated model u t i l i z i n g an e x p l i c i t , 

forward-stepping, f i n i t e d ifference scheme; adjoining i n l e t s and northern 

passages to the open ocean are simulated as one-dimensional channels. In 

the l a t e s t version, a 2-km mesh siz e i s employed. The system i s driven by 

s p e c i f y i n g t i d a l elevations along the open boundaries; these elevations are 

obtained from a 61 harmonic constituent t i d e . 

A 13-day time series of v e l o c i t i e s and elevations with a time 

step of 15 minutes has been generated from t h i s model. To determine the 

r e s i d u a l currents, the v e l o c i t y time series was f i r s t smoothed to one hour 
2 2 

with an A 4 A 5/(4 • 5) f i l t e r (Godin, 1972) and then low-passed f i l t e r e d 
2 2 

to 12 hours with the A 2 4 ^25^ * f i l t e r previously described which 

e f f e c t i v e l y eliminates o s c i l l a t i o n s with frequencies exceeding 0.8 cpd. 

By r e s i d u a l , we r e f e r to the remaining low-frequency components. Three days 

of data were l o s t i n the a p p l i c a t i o n of the two f i l t e r s leaving a 10-day 

time s e r i e s . The r e s i d u a l flow along l i n e H i s indicated i n Figure 13.1 

for 3 separate days; the average flow over the 10-day period i s shown i n 

Figure 13.2. The currents calculated f o r the grids encompassing stations 

H26, H16 and H06 are i l l u s t r a t e d i n Figure 13.3. The t i d a l elevation and 

range based on the predicted tides f o r Point Atkinson are also shown i n 

Figure 13.3 for the period of the a n a l y s i s . 

I t i s evident that a coherent pattern of r e s i d u a l c i r c u l a t i o n 

e x i s t s , and that i t i s dependent upon the t i d a l range. I t i s also c l e a r 

that the strongest r e s i d u a l flows occur near the eastern boundary. 

Unfortunately, the time series i s i n s u f f i c i e n t l y long to f u l l y resolve a 

f o r t n i g h t l y v a r i a t i o n , and i t i s possible that the very strong flows occur

r i n g at the beginning of the analysis period may be transients associated 
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Figure 13.3A Time seri e s of predicted (A) t i d a l height and 
'tidal range at Pt. Atkinson arid calculated 
(B) r e s i d u a l current magnitude and d i r e c t i o n 
along l i n e H. 
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Figure 13.3B 
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with s t a r t i n g the model from an i n i t i a l state of r e s t . However, the model 

was run f o r two (tidal) days p r i o r to the 13-day period i n order to avoid 

t h i s problem. At any rate, i t i s clear that the r e s i d u a l motions are of 

i n s u f f i c i e n t strength and improper d i r e c t i o n to serve as an explanation of 

the observed low-frequency motion along l i n e H. 

On the other hand, nonlinear t i d a l i n teractions may be important 

i n other ways, for example, i n the generation of i n t e r n a l tides or i n 

i n t e r a c t i o n with the Fraser River. While the r e s i d u a l flow does not resolve 

the present problem, i t c l e a r l y merits further i n v e s t i g a t i o n . In p a r t i c u l a r , 

i t i s l i k e l y to be s i g n i f i c a n t i n the southern t i d a l passes (Crean, 1978; 

Figures 12 and 13). 

F i n a l l y , I speculate on the p o s s i b i l i t y that the t i d e i n t e r a c t s 

nonlinearly with the Fraser River outflow to produce, i n part, the observed 

low-frequency currents. An examination of the Fraser River discharge at 

some distance upstream from the mouth indicates no consistent f o r t n i g h t l y 

or monthly v a r i a t i o n s (Figure 13.4); the discharge i s dominated by the large 

annual peak that occurs i n lat e spring and i s due to the melting of the 

snowpack. However, near the r i v e r mouth the ti d e modulates the r i v e r flow, 

indeed the region comprises a salt-wedge-type estuary. I f the magnitude 

of t h i s i n t e r a c t i o n varies with t i d a l range, then i t i s possible that motions 

that are driven by the pressure gradient due to Fraser River water l y i n g 

above GS water may vary with a f o r t n i g h t l y period. The hypothesis as 

expressed i s obviously crude and ignores e f f e c t s due to density d i f f e r e n c e s , 

for example, but i t i s offe r e d as a speculative p o s s i b i l i t y that could be 

examined i n the future. However, there i s some evidence f o r i t . Figure 

13.5 shows the low-frequency r i v e r speed at the mouth obtained by low-pass 

f i l t e r i n g current records. Unfortunately, i t i s superimposed on an increasing 



FRASER RIVER DISCHARGE AT AGASSIZ 

Figure 13.4 The Fraser River discharge approximately 60 miles upstream 
at Agassiz, B r i t i s h Columbia (from Chang, 1976). 



Figure 13.5 Low-pass f i l t e r e d time series of r i v e r speed at the Fraser 
River mouth ( Stronach, 1977) t—1 
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discharge due to the onset of freshet. Nevertheless, a s i g n i f i c a n t 

v a r i a t i o n i n the speed i s evident i n the f i r s t 12 days of the record. In 

addition, the analysis of Chang (1976; Figures 40 and 42) suggests that the 

mean current d i r e c t i o n at H26 turns to the south i n periods of h i g h - r i v e r 

runoff. 

This speculation has the advantage of p r e d i c t i n g that the most 

s i g n i f i c a n t flow should occur along the eastern boundary since the pressure 

head due to the r i v e r should be l o c a l i z e d there. In a period of high runoff 

t h i s mechanism might be o f f s e t . Moreover, the theory allows f o r i n t e r a c t i o n 

with the winds which would serve to modify the outflow. I t i s c l e a r , 

however, that t h i s hypothesis must be part of a more encompassing theory of 

the modulation of the estuarine flow i n the Juan de Fuca-Strait of Georgia 

system. Other e f f e c t s such as the influence of the strength of t i d a l 

mixing i n the southern t i d a l passes must be examined. Moreover, f r i c t i o n 

has yet to be considered. I t i s hoped, however, that the present work w i l l 

stimulate numerical modelers to work on t h i s system and to examine not only 

short-period e f f e c t s but also longer period ones. 
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14. Summary of Part II 

From the analysis of current and wind data taken i n the S t r a i t of 

Georgia and from the consideration of simple i n e r t i a l i n s t a b i l i t y models, 

the following conclusions may be drawn from Part I I . 

1. The observed fl u c t u a t i o n s are not due to simple wavelike 

motions. That i s , they are not composed of fr e e , forced, or unstable 

plane waves of the type considered i n t h i s t h e s i s . This conclusion i s 

based on the f i n d i n g that the components of the f l u c t u a t i n g currents tend 

to be i n phase. 

2. The o s c i l l a t i o n s may bear some dynamical r e l a t i o n s h i p to 

the mean currents. This notion i s based on the general resemblance of 

the mean and f l u c t u a t i n g currents. 

3. As evidenced from the spectra and the response to the wind, 

the eastern s t a t i o n may respond to f o r c i n g d i f f e r e n t l y than the cen t r a l 

and western s t a t i o n s . 

4. The wind plays some r o l e i n determining the low-frequency 

currents. This i s suggested by the fact s that (a) s t a t i s t i c a l l y s i g n i f 

icant although small coherences are calculated between the currents and 

winds, (b) that the corresponding phases consistently l i e near 0° or 

180°, and (c) i n the time domain, the response of the water column to a 

wind event i s often evident. 

5. B a r o c l i n i c i n s t a b i l i t y of the mean flow i s an u n l i k e l y 

mechanism i n GS due to the narrow region of i n s t a b i l i t y i n parameter space. 

6. A barotropic i n s t a b i l i t y model indicates that shear 

i n s t a b i l i t y might be of some s i g n i f i c a n c e but (1) m i l i t a t e s against t h i s 
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p o s s i b i l i t y . 

7. The barotropic, r e s i d u a l t i d a l c i r c u l a t i o n i s of i n s u f f i c i e n t 

magnitude and the wrong d i r e c t i o n to account f o r the observations. 
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Appendix A: Order of Magnitude Estimates of the Integral Terms i n (3.25) 

In t h i s appendix i t i s shown that the i n t e g r a l terms i n (3.25) 

are a l l of order unity. I t i s convenient to rewrite (3.25) as 

fty = £ 2 { Q X I 1 + (h'/h 2)(V - c ) I 2 - h _ 1 ( V - c ) I 3 } (A.l) 

where 

H = [ ( v - c ) 2 - e2]V - ( v - c)Q x - e 2 a 2 h _ 1 (A.2) 

and I j , I 2 r and I^ are i n t e g r a l s defined, for example, by 

I 
I x = / (V - c) 1G(x,^)[R(x - bJVty 

0 (A.3) 

- (h'/h 2)R'(x - 0$ - h _ 1R"(x - £)Md£. 

I t s u f f i c e s to consider only 1^ since the other i n t e g r a l s are s i m i l a r i n 

form. There are two types of points i n the range of in t e g r a t i o n that must 

be dealt with, namely points x c at which c = V(x c) and the integrand 

i s singular and points x+ where c = V(x+) ± £. At a l l other points the 

integrands are continuous and are assumed to be of un i t order. To i s o l a t e 

the s i n g u l a r i t i e s we p a r t i t i o n the i n t e g r a l as 

x_-6 x_+6 x c - 6 xc+<5 x + - 6 x + + 6 £ 
J l ~ / + / + / + / + / + / , + / , 

0 X -0 X +0 X -0 x^+o x,-0 x.+o 
— — C C T -r 

(A.4) 

1 2 3 4 5 6 7 
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where 6 i s some small p o s i t i v e number which we w i l l l a t e r l e t tend to 

zero. We need determine only J 2 , , and Jg . 

Consider J 2 and f i r s t ; since they are of the same form we 

examine only J 2 • Since i s proportional to the cross-stream v e l o c i t y 

i t must be continuous, and, therefore, ip" can have, at worst, a 6-function

l i k e s i n g u l a r i t y . We require a somewhat sharper r e s u l t , however. 

O r d i n a r i l y , one could f i n d a Probenius-type s o l u t i o n to (A.l) i n order to 

determine the behaviour of at x_ , but the presence of the i n t e g r a l 

terms prevents t h i s . We therefore look f o r an i t e r a t i v e s o l u t i o n to (A.l) 

of the form 

Hxb0 = 0 (A.5) 

Hty± = £ 2 { Q X I 1 ( ^ 0 ) + (h'/h 2)(V - c ) I 2 ( ^ 0 ) (A.6) 

- h _ 1 ( V - c ) I 3 ( ^ 0 ) } , 

etc. A series expansion of (A.5) about x = x_ indicates that the two 

l i n e a r l y independent solutions are of the form 

00 

^ 0
 1 = (x - x j [1 + I a n ( x - x_) n] (A.7) 

n=l 

C O 

^ 0

( 2 ) = I b n ( x - x _ ) n + al(; 0
( 1 ) i l n | x - x_| . (A.8) 

n=0 

That i s , behaves no worse than (x - x_)£n|x - x_| ; since ip-̂  i s 

determined by the integrated value Î Q > i t can be no more singular than 

^ n . The same argument holds for higher 4*n , and we conclude that ijj 
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shares t h i s q u a l i t y . We are now ready to estimate J„ , 

J - < (l/e)max[.G(x,p ] 
x_+6 

R(e) / tty 
x_ - 6 

( A . 9 ) 

x +6 
- h 1[R' (e)h'/h + R" (e) 1 / 4> 

Since ijj i s continuous, the l a s t term vanishes i n the l i m i t 6 -»• 0 , and 

the f i r s t term gives the jump i n ^'/h and therefore also vanishes since 

' i s of the form In] x - x_| near x = x_ . We conclude that , and 

hence Jg , both vanish as 6 -*• 0 . 

Evaluation of i s more straightforward. We have 

J 4 < max[G(x,£) ] [R(<S)tty - (h'/h 2)R'( 6 )^ 

( A . 1 0 ) 

-1 x c + 6 . 1 - h R" (6)^] / (V - c) xd£. 
x c - 6 

Consider only the i n t e g r a l and put £ = V(^) to obtain 

x c + 6 - i c + 6 ' -1 
1 = / (V - c) d£ = / [ F ' ( C ) ( ? - c ) ] d? 

x c ~ 6 c-<51 

where F(£) i s the function inverse to V(£), and 6 ' i s an appropriately 

defined constant which tends to 0 with 6 . Now ( A . 7 ) i s a Cauchy i n t e g r a l 

and i s r e a d i l y evaluated by allowing c to have a small imaginary part ^ . 

In the l i m i t of c^ -> 0, we f i n d 
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c+6' 
I = sgn(c i)/[2F'(c) ] + PV / [F' (£) (? - c) ] (A.11) 

c-S' 

Here PV denotes the Cauchy p r i n c i p l e value, and therefore i n the l i m i t of 

6 ->- 0, I reduces to ± (l/2F'(c)) which i s an 0(1) quantity. I t 

follows then that i s 0(1) and hence that the i n t e g r a l terms i n (A.l) 

are also 0(1). 
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Appendix B: The First-Order Solutions 

In t h i s section we specify the f i r s t - o r d e r solutions f o r the 

channel and shelf models. For the channel case we f i n d : 

r 
A i ^ o + i A o p i 

k
A12^0 + i A0 P2 

0 5 x < 1 

1 5 x 5 I 

(B.l) 

where 

c i 0 s i n XP± = e b ( x { (G^x - eD^cos Ax 

+ e 1 X [ ( A x + B-^sin Ax + (CjX + D±) cos Ax]}, (B.2) 

c i Q s i n a ( l - £)P 2 = [G 2(x - £) - e 1 £ D 2 ] c o s a(x - I) 

1-x 
+ e {[A 2(x - I) + B 2 ] s i n a(x - I) 

+ [c 2(x - £) + D 2]cos a.(x - I) (B.3) 

A l = a l ^ l 

B 1 = (p x + 2a 1/Y 1)/Y 1 

= 2Aa 1/Y 1 

D = 2A[ P ; L + a ^ l + 2 A 1 ) ] / Y 1 

G l = " q l / 2 X 

a x = 2 £ 2 / c i 0
2 + 1 + 2b 
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p1 = - 2(1 + b) 

% = ~ 2 ( e 2 c r ( / c i 0 2 + b ) 

y = l + 4A' 

A 2 = a 2/Y 2 

32 = - 2(1 - a 2 / y 2 ) / Y 2 

C 9 = 2aa 9/Y 2 " 2 

D 2 = - 2a[2 - a 2 ( l + 2/Y 2)]/Y 2 

G 2 = - q 2/2a 

a2 = 2 e 2 / c i 0 2 + 1 

2 e c r ( / c i O 

Y 0 = 1 + 4a 

For the sh e l f case we f i n d 

A11^0 + i A 0 P l ° " x " 1 

A12^0 + 1 A 0 P 2 x > 1 

(B.4) 

where i s given as above and 

P 2 = u r ( x ) J v ( p ? ) + u 2(x)Y y(p?) (B.5) 
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(1-x) 

u (x) = - ^[2y 2 c . J,.(p) ] 1 j J (p5)Y v(p£)F(?)d£ (B.6) 

1-x 
e 

u 2(x) = T r [ 2 y 2 c i 0 J v ( p ) ] / J v
2(p?)F(Od? (B.7) 

F(C) = (2p 2? 2 + 1) (1 - y hn£) - 2 p 2 c r 0 ^ - 2. (B.8) 
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Appendix C: Evaluation of the Integral Terms for a Simple Flow Model 

The purpose of t h i s appendix i s to estimate the s i z e of the 

i n t e g r a l terms i n the mean v o r t i c i t y equation for the case of large O. 

To do so we choose the simplest possible model, a parabolic zonal flow on 

the 3-plane. The equation equivalent to (3.25) i s 

(u - c ) 2 - e 2]RJj + (u - c)gyi(> - e 2 a 2 ^ 

1 
- e 2Q / (u - c) _ 1G(y,?) [R(y - 5)F̂  - R"(y - ZWiaZ (c.D 

Y 0 
1 

- (U - c) / (U - c)~1G(y,5) [R"(y - K)H - R 1 V ( y - O ^ d ? , 
0 

2 2 2 

where F = d /dx - k . Although (C.l) i s somewhat less complicated than 

(3.25) , the i n t e g r a l s are of the same form. In order to evaluate these 

terms two obstacles must be surmounted. F i r s t G(y,£) must be determined, 

and second, a form for R(y - K) must be s p e c i f i e d . To obtain an 

a n a l y t i c a l s o l u t i o n for G(y,£) we choose U such that 0 = 3 - U" 

vanishes, namely 

U(y) = 3 y(y - l ) / 2 ; (C.2) 

then G(y,£) i s given by 

fsinh ky sinh k ( l - £)/k sinh k 0 < y < § S 1 

G(y,?> = i (C.3) 

sinh k^ sinh k ( l - y)/k sinh k 0 5 £ 5 y < 1. 
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We s e l e c t R(y) to be Gaussian, 

R(y) = exp(- y 2 a 2 / 2 ) . (C.4) 

We now take the solution IJJ = + a ^ty as determined from the 

perturbation expansion outlined i n Section 7, substitute i t into ( C . l ) , and 

determine the r e l a t i v e values of the various terms i n the r e a l and imaginary 

parts of the r e s u l t i n g expression. S p e c i f i c a l l y , we f i n d 

I J J 0 = A Q s i n nlTy (C.5) 

ijj = iA Q(gK /2nTTci0) { (y 2 - y) s i n nTTy/mr 

- [y 3/3 - y 2/2 - (2c r Q/3 + l/2n 2TT 2)y]cos nlTy] } 

= - (U - ^ ( ^ - I 4) - c . ( I 2 + I 3) 

(C.6) 

c i 0 = £/K (C.7) 

c r Q = - (3/4)(1/nV + 1/3), (C.8) 

where K 2 = k 2 + n 2iT 2. The r e a l and imaginary parts of (C.l) are 

[(u - c r ) 2 - c±
2 - e 2]Bf 0 + 2(u - cr)c±o 1 F ^ 1 - e 2a 2ip 0 

(C9) 

a~ 1[(u - c r ) 2 -. C i
2 - e 2 ] F ^ - 2(u c r ) C i F ^ 0 - e 2a^ 1 

= - (u - c r) {i2 + i 3 ) + c±(i1 - i 4 ) (CIO) 
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where 

1 , 
i 1 = / |u - c| Z(U - c r)G(y rC) [R"(y -

0 

R l v ( y - O^AdK (c.ii) 
1 9 

i 2 = i / a / |u - c|"^(u - c r)G-(y ,5) [R"(y -
o 

- R i v ( y - O ^ l d ? (C12) 

1 , 
i 3 = c ± / |u - c|- zG(y,S) tR"(y - ? ) F ^ 0 

0 

R
l v ( y - C)^ Q]d5 <c-13> 

i _ 9 

i 4 = c ± / a / |u - c| G(y,C) [R"(y - 0H± 

0 

- R i v ( y - ?)^]dC- (C14) 

The r e l a t i v e magnitudes of the terms i n (C.9) and (C.10) are 

presented i n Table V for selected values of £ , 0 , and k. The r a t i o 

T4/T3 determines whether or not neglect of the i n t e g r a l terms i s j u s t i f i e d . 

One sees that the v a l i d i t y of t h i s approximation improves as k increases 

and 0 decreases. This e f f e c t i v e l y puts an upper bound on the choice of 

a. There i s r e l a t i v e l y l i t t l e dependence on £. Only i n the case of 

£ = .5, a = 10, and k = ir/5 i s the rhs of - ( C l ) of greater magnitude 

than the lhs and then, only by 16 percent. The approximation i s very good 

for the two cases of £ = .5, O = 10, k = 2TT and £ = .5, a = 5 V k = TT. 
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Table V. Relative magnitudes of the terms i n (C.9) and (C.10). Here 
T12, T3, and T4 r e f e r , r e s p e c t i v e l y , to the absolute value of 
the sum of terms 1 and 2, and the absolute value of terms 
3 and 4 i n (C.9) and (C.10). The values given here are 
symmetrical about y = 0.5. 

£ = .5, a = 10, k = TT/5 E = .5, a = = 10, k = TT 

(C .9) (c: 10) (c. .9) (C. 10) 

y T4/T3 T12/T3 T4/T3 T12/T3 T4/T3 T12/T3 T4/T3 T12/T3 

0.1 0.26 0.91 1.52* 0.95 0.21 0.85 0.21 0.92 
0.2 0.89 0.91 1.22Z 0.92 0.85 0.84 0.61 0.86 
0.3 1.13 0.91 0.70 0.91 0.94 0.84 0.64 0.84 
0.4 1.16 0.91 0.53 0.90 0.93 0.84 0.67 0.83 
0.5 1.16 0.91 0.63 0.90 0.92 0.83 0.72 0.83 

£ = .5, a = 10, k = 27T £ = .1, a = = 10, k = TT 

(C .9) (C. 10) (C .9) (C. 10) 

y T4/T3 T12/T3 T4/T3 T12/T3 T4/T3 T12/T3 T4/T3 T12/T3 

0.1 0.30 0.76 0.02 0.97 0.08 1.00 0.17 0.48 
0.2 0.60 0.75 0.41 0.80 0.74 0.86 0.66 0.73 
0.3 0.61 0.74 0.50 0.74 0.89 0.76 0.69 0.75 
0.4 0.61 0.73 0.53 0.72 0.92 0.69 0.66 0.75 
0.5 0.62 0.72 0.55 0.72 1.00 0.64 0.69 0.74 

£ = 5, a = 5, k = TT 

(C.9) (C.10) 

y T4/T3 T12/T3 T4/T3 T12/T3 

0.1 0.11 0 .83 2. 3 
17 2. 

A 

44 
0.2 0.27 0 .83 0. 70 4 1. 23 
0.3 0.51 0 .83 0. 28 0. 87 
0.4 0.67 0 .83 0. 13 0. 75 
0.5 0.75 0 .82 0. 27 0. 75 

,2,3,4 I f t h e r a t j _ 0 T4/T1, where TI r e f e r s to the f i r s t term i n e i t h e r 
(C.9) or (C.10), i s formed the r e s u l t i n g values are 0.28, 0.60, 
0.73, and 0.51, r e s p e c t i v e l y . 
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We conclude, then, that the neglect of the i n t e g r a l s i s a good 

approximation, but that i n some cases, namely very large O or small k, 

the perturbation solutions are best regarded as representing a f i r s t - o r d e r 

i t e r a t i v e s o l u t i o n to the complete i n t e g r o - d i f f e r e n t i a l equation. 

The value of T12/T3 indicates how well the two-term 

perturbation s o l u t i o n s a t i s f i e s the s i m p l i f i e d v o r t i c i t y equation (7.7). 

Since the terms represented by T12 and T3 are generally of opposite 

sign, t h i s s o l u t i o n represents a good approximation to the s o l u t i o n of (7.7) 

i n most cases. 
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Appendix D: B a r o c l i n i c I n s t a b i l i t y i n a 2-Layer System 

In t h i s appendix, the equations governing the model described i n 

Section 11 are derived. Proceeding from the f u l l nonlinear equations of 

motion (see, e.g., Veronis and Stpmmel, 1964, or Helbig, 1977) , we 

e s s e n t i a l l y follow the procedure developed by Pedlosky (1964) although the 

two approaches d i f f e r i n some respects. The p r i n c i p a l assumption made i n 

the de r i v a t i o n of the 2-layer equations i s that the ho r i z o n t a l components 

of v e l o c i t y are z-independent within each layer. 

Consider then t h i s set of equations: 

upper layer 

»lt
 + % ' - fv± = - g n l x (D.l) 

v + u • V v, + fu, = - g r u (D.2) 
I t -1 H I 1 l y 

( \ - V t + Hi • v \ - V + ( h i + n i - V V
H * \ = 0 ( D - 3 ) 

lower layer 

u 2 t + H 2 * V H u 2 - f v 2 = - g n l x - g6 0 i 2 - n x ) x (D . 4 ) 

V 2 t + ^2 • V 2
 + f U 2 = " g n i y " g 6 ( T 1 2 " n i > y ( D ' 5 ) 

n 2 t + u 2 • v H n 2 + (h 2 + n 2)V H • u 2 + u^ • Vh 2 = o. (D.6) 

Here the subscript i = 1,2 re f e r s to the upper or lower layer, 

r e s p e c t i v e l y ; r)^ and n 2 are the sea surface and i n t e r f a c i a l displacements 
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(see Figure 11.1); and h 2 are the mean layer thicknesses; 

6 = (p 2 - p^)/p 2 expresses the density difference between the two layer s , 

and V H r e f e r s to the two-dimensional Laplacian operator. 

As before, i t i s convenient to non-dimensionalize these equations. 

The following scale factors are chosen: the shelf width L f o r the 

ho r i z o n t a l coordinates (x,y), a t y p i c a l speed U for the v e l o c i t i e s , and 

an advective time L/U for t. In addition, we write the lower-layer 

depth as h 2 = h 2Qb(x,y) where h 2Q i s the maximum depth of the lower 

layer, and b(x,y) i s an 0(1) quantity. The elevations are scaled 

geostrophically by (fUL/g) and (fUL/g6), r e s p e c t i v e l y . In non-dimensional 

form the equations of motion are: 

upper layer 

R ° ( u i t + -1 ' V l » - ? v l = - ^ l x ( D - 7 ) 

R o ( v l t + u± • VgV^ + f u x = - n l y (D.8) 

R o [ ( n 2 - 6n 1) t + u± • v H ( n 2 - S n 1 ) ] (D.9) 

= [B1 - Ro ( n 2 - &r\±) ] V • u± 

lower layer 

R o ( u 2 t + u 2 • v Hu 2) - f v 2 = - n 2 x - (i - 6)n l x (D.IO) 

R o ( v 2 t + • v H v 2 ) + f u 2 = - n 2 y - ( i - 6 ) n 2 y (D-ii) 

R o ( n 2 t + u 2 • V n 2 ) = - [B 2b + Ron 2lV • u 2 - • Vb. (D.12) 
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/N 

Here Ro = U/fL i s the Rossby number, f = f / f = 1 i s retained temporarily 

to a id i n the i d e n t i f i c a t i o n of the C o r i o l i s term, and B-̂  and B 2 are 
2 2 2 2 Burger numbers defined by B^ = g'h-^/f L and B., = g'h2/f L where 

g' = go i s the reduced acceleration due to gravity. We w i l l henceforth 

ignore the term of 0 ( 6 ) on the rhs of (D .10) and (D.ll) since 6 « 1 . I t 

w i l l also be assumed that b i s a function of x only. 

The presence of the Rossby number i n these equations, which for 

GS i s approximately 4 x 10 , suggests a perturbation expansion of the form 

(u.,^) = I R o ^ ^ ' V ^ 
n=0 

The basic state must s a t i s f y the zeroth-order equations, 

(D.13) 

f v x
( 0 ) = n l x

( 0 ) (D.14) 

f U l
( 0 ) = - n l y

( 0 ) (D-15) 

V H • u x
( 0 ) = 0 (D.16) 

f v o
( 0 ) = ( n , ( 0 )

 + T, 1
( 0 )>„ (D.17) 

f u 2
( 0 ) = (T,2 ( 0 )>n 1

( 0 ,) y (D.18) 

n 0 (0), -1 db n , n 1 0 ) V „ • U 0 - U 9 b — - = 0. (D.19) H — I £ 3 X 

Equations (D.14), (D.15), (D.17) and (D.18) define stream functions f o r 

each layer. We note that while (D.16) i s i d e n t i c a l l y s a t i s f i e d , (D.19) 
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requires that e i t h e r u 2 ^ vanish or that db/dx be 0(Ro). Although 
(0) 

we w i l l , i n f a c t , choose u., =0, t h i s problem again arises at the next 

l e v e l , and so we put db/dx = - RoT(x). A minus sign i s chosen so that the 

sign of T coincides with that of the bottom slope; i . e . , i f the bottom 

slopes upward to the east, T > 0. This choice also f a c i l i t a t e s comparison 

with Mysak and Schott (1977). As a basic state we choose 

u±
i 0 ) = (0,V.(x)) 

n.(°> = H.(x) 

(D.20) 

where V± and H i are r e l a t e d by (D.14)-(D.19). I t i s easy to show that 

t h i s state a c t u a l l y s a t i s f i e s the complete nonlinear set of equations 

(D.7)-(D.12). 

The perturbation state i s governed by the f i r s t - o r d e r equations 

- (1) (1) 
f v x = n x y (D.21) 

(1) (1) 
f U l = - n x (D.22) 

(1) (1) . _ (1). f v 0 = - (ni + n 9 ) x 
(D.23) 

- (1) , (1) (D x 

f u 2 = - (n-L + n 2 ) y 

(D.24) 

which again define stream functions f o r each layer. As such (D.21)-(D.24) 

are indeterminate, and i t i s necessary to go to second order to obtain an 

equation for H]/"^ a n d ^ ^ ' T ° s e c o n d o r <3er, one f i n d s : 
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upper layer 

O t + V ^ y J u ^ 1 5 - f v x
( 2 ) = - T 1 l x

( 2 ) (D-25) 

O t + V X 3 y ) v 1
( 1 ) + u 1. ( 1 )V' 1 + f U l

( 2 ) = - n l y
( 2 ) (D.26) 

O t + V ^ y ) ( T l 2
( 1 ) - <5lli ( 1 )) + u x ( H 2 - 6 H 1 ) X = B^V • u 1

( 2 ) (D.27) 

lower layer 

( 3 t + V 2 8 y ) u 2
( 1 ) - f v 2

( 2 ) = - ( H 2
( 2 )

 + V 2 ) ) x (D.28) 

O t + V2Zy)v2™ - u 2 ^ > V 2 + f u 2
( 2 ) = - ( n 2

( 2 )
 + r)l

( 2 ))Y (D.29) 

( 3 t + V 2 9 y ) n 2
( 1 ) - U 2

( 1 ) H ' 2 = - B 2 b V • u 2
( 2 ) + B 2 U 2

( 1 ] T . (D.30) 

Here a prime denotes d i f f e r e n t i a t i o n with respect to x. By cross-
(2) 

d i f f e r e n t i a t i n g the momentum equations and s u b s t i t u t i n g f o r V • u^ 

from the continuity equation we obtain the v o r t i c i t y equations f o r the 

perturbation state, 

[ 3 t + V ^ y ] [ v l x - u l y + B j ( n 2 - 6 m ) ] + (D.31) 

+ B ^ U 1 [ H 2 " 6 H l ] x = 0 

&t + V 2 3 y ] t v2x " U 2 Y ~ B ^ ' 1 1 2 1 + U2 V"2 ( ° - 3 2 ) 

f [u,H', + B 9u 0T] == 0. B 2 b
L U 2 n 2 °2 U2 
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Here we have dropped the superscript (1). A Taylor series expansion of 

b(x) about the point x Q where b(x Q) = 1 gives 

b(x) = 1 + RoT(x 0) (X - x n) + 0(R n ) 0 
(D.33) 

It follows then that to the present order of a n a l y s i s , 1/b may be replaced 

by 1. In terms of the stream functions, 

? = n + n 
2 2 1 

(D.34) 

and the basic state v e l o c i t i e s , (D.31)-(D.32) may be rewritten 

[ 9 t + V y ] [ V 2 $ 1 + F l ( $ 2 " $ 1 ) ] ~ $ l y [ V " l " F 1 ( V 1 " V 2 ) ] ( D - 3 5 ) 

= 0 

[ 8 t + V 2 9 y ] [ y 2 $ 2 - F 2 ( $ 2 - $ 1 ) ] - $ 2 y [ V " 2 + F 2 ( V 1 " V 2 } + T ] (D.36) 

= 0 , 

where and F 2 are i n t e r n a l Froude numbers given simply by the 

r e c i p r o c a l s of and B 2 , r e s p e c t i v e l y . To obtain these, a term of 

0 ( 6 ) was dropped. This i s the desired set of equations governing the 

perturbation state. Since they express the conservation of p o t e n t i a l 

v o r t i c i t y i n the system, they could also have been developed d i r e c t l y from 

the f u l l , nonlinear, v o r t i c i t y equations. 


